
HAL Id: tel-00768281
https://theses.hal.science/tel-00768281v1

Submitted on 21 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

StreamCloud: An Elastic Parallel-Distributed Stream
Processing Engine

Vincenzo Gulisano

To cite this version:
Vincenzo Gulisano. StreamCloud: An Elastic Parallel-Distributed Stream Processing Engine. Dis-
tributed, Parallel, and Cluster Computing [cs.DC]. Universidad Politécnica de Madrid, 2012. English.
�NNT : �. �tel-00768281�

https://theses.hal.science/tel-00768281v1
https://hal.archives-ouvertes.fr

DEPARTAMENTO DE LENGUAJES Y
SISTEMAS INFORMÁTICOS E INGENIERÍA DE SOFTWARE

Facultad de Informática
Universidad Politécnica de Madrid

Ph.D. Thesis

StreamCloud: An Elastic Parallel-Distributed
Stream Processing Engine

Author

Vincenzo Massimiliano Gulisano
M.S. Computer Science

Ph.D. supervisors

Ricardo Jiménez Peris
Ph.D. Computer Science

Patrick Valduriez
Ph.D. Computer Science

December 2012

Acknowledgments

I would like to thank my supervisor Ricardo Jiménez Peris, my thesis co-director Patrick Valduriez

and Marta Patiño-Martínez for their help. Thanks also to all the lab colleagues (especially Mar,

Damián, Paco and Claudio) and the people I had the opportunity to work with (especially Zhang,

prof. Marina Papatriantafilou, Zoe and prof. Kostas Magoutis). Special thanks go to Rocío, my

friends and my family.

Abstract

In recent years, applications in domains such as telecommunications, network security or large

scale sensor networks showed the limits of the traditional store-then-process paradigm. In this con-

text, Stream Processing Engines emerged as a candidate solution for all these applications demanding

for high processing capacity with low processing latency guarantees. With Stream Processing En-

gines, data streams are not persisted but rather processed on the fly, producing results continuously.

Current Stream Processing Engines, either centralized or distributed, do not scale with the in-

put load due to single-node bottlenecks. Moreover, they are based on static configurations that lead

to either under or over-provisioning. This Ph.D. thesis discusses StreamCloud, an elastic parallel-

distributed stream processing engine that enables for processing of large data stream volumes. Stream-

Cloud minimizes the distribution and parallelization overhead introducing novel techniques that split

queries into parallel subqueries and allocate them to independent sets of nodes. Moreover, Stream-

Cloud elastic and dynamic load balancing protocols enable for effective adjustment of resources de-

pending on the incoming load. Together with the parallelization and elasticity techniques, Stream-

Cloud defines a novel fault tolerance protocol that introduces minimal overhead while providing fast

recovery. StreamCloud has been fully implemented and evaluated using several real word applica-

tions such as fraud detection applications or network analysis applications. The evaluation, conducted

using a cluster with more than 300 cores, demonstrates the large scalability, the elasticity and fault

tolerance effectiveness of StreamCloud.

Keywords: Data Streaming, Stream Processing Engine, Scalability, Elasticity, Load Balancing,

Fault Tolerance

Resumen

En los útimos años, aplicaciones en dominios tales como telecomunicaciones, seguridad de redes

y redes de sensores de gran escala se han encontrado con múltiples limitaciones en el paradigma

tradicional de bases de datos. En este contexto, los sistemas de procesamiento de flujos de datos han

emergido como solución a estas aplicaciones que demandan una alta capacidad de procesamiento con

una baja latencia. En los sistemas de procesamiento de flujos de datos, los datos no se persisten y

luego se procesan, en su lugar los datos son procesados al vuelo en memoria produciendo resultados

de forma continua.

Los actuales sistemas de procesamiento de flujos de datos, tanto los centralizados, como los dis-

tribuidos, no escalan respecto a la carga de entrada del sistema debido a un cuello de botella producido

por la concentración de flujos de datos completos en nodos individuales. Por otra parte, éstos están

basados en configuraciones estáticas lo que conducen a un sobre o bajo aprovisionamiento. Esta

tesis doctoral presenta StreamCloud, un sistema elástico paralelo-distribuido para el procesamiento

de flujos de datos que es capaz de procesar grandes volúmenes de datos. StreamCloud minimiza el

coste de distribución y paralelización por medio de una técnica novedosa la cual particiona las queries

en subqueries paralelas repartiéndolas en subconjuntos de nodos independientes. Ademas, Stream-

Cloud posee protocolos de elasticidad y equilibrado de carga que permiten una optimización de los

recursos dependiendo de la carga del sistema. Unidos a los protocolos de paralelización y elastici-

dad, StreamCloud define un protocolo de tolerancia a fallos que introduce un coste mínimo mientras

que proporciona una rápida recuperación. StreamCloud ha sido implementado y evaluado mediante

varias aplicaciones del mundo real tales como aplicaciones de detección de fraude o aplicaciones de

análisis del tráfico de red. La evaluación ha sido realizada en un cluster con más de 300 núcleos, de-

mostrando la alta escalabilidad y la efectividad tanto de la elasticidad, como de la tolerancia a fallos

de StreamCloud.

Palabras clave: Data Streaming, Sistemas de procesamiento de flujos de datos, Escalabilidad,

Elasticidad, Equilibrado de Carga, Tolerancia a fallos

Declaration

I declare that this Ph.D. Thesis was composed by myself and that the work contained therein is my

own, except where explicitly stated otherwise in the text.

(Vincenzo Massimiliano Gulisano)

Table of Contents

Table of Contents i

List of Figures v

List of Tables ix

I INTRODUCTION 1

Chapter 1 Introduction 3
1.1 Application scenarios that motivated data streaming 3

1.2 Requirements of data streaming applications . 5

1.3 From DBMS to SPEs . 9

1.3.1 Limitations of pioneer SPEs . 10

1.4 Contributions . 12

1.5 Document Organization . 13

II DATA STREAMING BACKGROUD 15

Chapter 2 Data Streaming Background 17
2.1 Data Streaming Model . 17

2.1.1 Data Streaming Operators . 18

2.2 Continuous Query Example . 26

2.3 Table Operators . 28

III STREAMCLOUD PARALLEL-DISTRIBUTED DATA STREAMING 33

Chapter 3 StreamCloud Parallel-Distributed Data Streaming 35
3.1 Stream Processing Engines Evolution . 35

3.2 Parallelization strategies . 38

i

3.2.1 Operators parallelization . 43

3.2.1.1 Load Balancers . 45

3.2.1.2 Input Mergers . 48

3.3 StreamCloud parallelization evaluation . 50

3.3.1 Evaluation Setup . 50

3.3.2 Scalability of Queries . 50

3.3.3 Scalability of Individual Operators . 51

3.3.4 Multi-Core Deployment . 57

IV STREAMCLOUD DYNAMIC LOAD BALANCING AND ELASTICITY 59

Chapter 4 StreamCloud Dynamic Load Balancing and Elasticity 61
4.1 StreamCloud Architecture . 61

4.2 Elastic Reconfiguration Protocols . 64

4.2.1 Reconfiguration Start . 65

4.2.2 Window Recreation Protocol . 68

4.2.3 State Recreation Protocol . 71

4.3 Elasticity Protocol . 72

4.4 StreamCloud Dynamic Load Balancing and Elasticity Evaluation 75

4.4.1 Elastic Reconfiguration Protocols . 75

4.4.1.1 Dynamic Load balancing . 77

4.4.1.2 Self-Provisioning . 77

V STREAMCLOUD FAULT TOLERANCE 81

Chapter 5 StreamCloud Fault Tolerance 83
5.1 Existing Fault Tolerance solutions . 83

5.2 Intuition about Fault Tolerance protocol . 88

5.3 Components involved in the Fault Tolerance protocol 90

5.4 Fault Tolerance protocol . 92

5.4.1 Active state . 94

5.4.2 Failed state . 96

5.4.3 Failed while reconfiguring state . 100

5.4.4 Recovering state involved in previous reconfigurations 100

5.4.5 Multiple instance failures . 101

5.5 Garbage collection . 101

5.5.1 Time-based windows . 102

5.5.2 Tuple-based windows . 102

5.6 Evaluation . 103

5.6.1 Evaluation Setup . 103

5.6.2 Runtime overhead . 105

5.6.3 Recovery Time . 107

5.6.4 Garbage Collection . 109

5.6.5 Storage System Scalability Evaluation . 110

VI VISUAL INTEGRATED DEVELOPMENT ENVIRONMENT 113

Chapter 6 Visual Integrated Development Environment 115
6.1 Introduction . 115

6.2 Visual Query Composer . 116

6.3 Query Compiler and Deployer . 119

6.4 Real Time Performance Monitoring Tool . 124

6.5 Distributed Load Injector . 126

VII STREAMCLOUD - USE CASES 129

Chapter 7 StreamCloud - Use Cases 131
7.1 Introduction . 131

7.2 Fraud Detection in cellular telephony . 131

7.2.1 Use Cases . 132

7.3 Fraud Detection in credit card transactions . 138

7.3.1 Use Cases . 138

7.4 Security Information and Event Management Systems 143

7.4.1 SIEM directives . 143

7.4.2 Directives translation . 147

7.4.3 Directive translation example . 148

VIII RELATED WORK 153

Chapter 8 Related Work 155
8.1 Introduction . 155

8.2 Pioneer SPEs . 155

8.2.1 The Borealis project . 155

8.2.2 STREAM . 157

8.2.3 TelegraphCQ . 158

8.2.4 NiagaraCQ . 159

8.2.5 Cougar . 159

8.3 State Of the Art SPEs . 160

8.3.1 Esper . 160

8.3.2 Storm . 160

8.3.3 StreamBase . 161

8.3.4 IBM InfoSphere . 161

8.3.5 Yahoo S4 . 161

8.3.6 Microsoft StreamInsight . 162

8.4 StreamCloud related work . 162

8.4.1 Load Shedding and Operators Scheduling protocols 162

8.4.2 Parallelization techniques . 165

8.4.3 Load Balancing techniques . 167

8.4.4 Elasticity techniques . 170

8.4.5 Fault Tolerance techniques . 172

IX Conclusions 179

Chapter 9 Conclusions 181

X APPENDICES 183

Appendix A The Borealis Project - Overview 185
A.1 Query Algebra . 185

A.2 Operators extensibility . 191

A.3 Borealis Tuples Processing Paradigm . 193

A.4 Borealis Application Development Tools . 195

Bibliography 199

List of Figures

1.1 DBMSs information processing. 6

1.2 SPEs information processing. 8

2.1 Examples of different windows models . 20

2.2 Sample evolution of time based aggregate operator 24

2.3 Sample evolution of tuple based aggregate operator 25

2.4 High Mobility fraud detection query . 27

3.1 SPE evolution . 37

3.2 Fan-out overhead for a single operator instance . 40

3.3 Query Parallelization Strategies . 41

3.4 Query Parallelization in StreamCloud . 43

3.5 Cartesian Product Sample Execution . 47

3.6 Cartesian Product Sample Execution . 48

3.7 Query used for the evaluation. 52

3.8 Parallelization strategies evaluation . 53

3.9 Parallel Aggregate operator evaluation. 54

3.10 Parallel Map operator evaluation. 54

3.11 Parallel Join operator evaluation. 55

3.12 Parallel Cartesian Product operator evaluation. 56

3.13 Join maximum throughput vs. number of StreamCloud instances per node. 58

4.1 Elastic management architecture. 63

4.2 Example of tuple contributing to several windows 65

4.3 Example execution of reconfiguration protocols shared prefix 67

4.4 Example of which windows are managed by old owner or new owner instances during

Window Recreation protocol . 68

4.5 Sample reconfigurations. 70

4.6 Sample execution of the buckets assignment algorithm 74

4.7 Evaluation of the elastic reconfiguration protocols. 76

v

4.8 Elastic Management - Dynamic Load Balancing. 78

4.9 Elastic Management - Provisioning Strategies. 80

5.1 Active Standby Fault Tolerance . 84

5.2 Passive Standby Fault Tolerance . 85

5.3 Upstream Backup Fault Tolerance . 85

5.4 Example of fault tolerance for aggregate operator 89

5.5 StreamCloud fault tolerance architecture . 91

5.6 Bucket state machine. 93

5.7 Linear Road. 103

5.8 Input rate evolution of data used in the experiments 106

5.9 Latency measured at subcluster 0 . 106

5.10 Latency measured at subcluster 1 . 107

5.11 Deploy and State Recovery times for changing subcluster sizes 108

5.12 Deploy and State Recovery times for changing number of buckets 109

5.13 Garbage Collection evaluation . 111

5.14 Storage System Scalability Evaluation . 111

6.1 Abstract query definition . 118

6.2 Compiling an abstract query into its parallel-distributed counterpart 121

6.3 Subquery partitioning . 122

6.4 SC Statistics Monitor architecture . 125

6.5 snapshot of Statistics Visualizer presenting the statistics of the Aggregate operator . . 126

7.1 Consumption Control Query . 133

7.2 Overlapping Calls Query . 135

7.3 Blacklist Query . 136

7.4 Improper Fake Transaction . 139

7.5 Restrict Usage Query . 141

7.6 Rules firing and directives cloning example . 144

7.7 OSSIM directive translation guidelines . 147

7.8 OSSIM Directive translation to continuous query 149

8.1 Box-Splitting example . 166

8.2 Box Sliding example . 168

A.1 High Mobility fraud detection query . 186

A.2 StreamCloud threads interaction . 194

A.3 Steps performed by the user to create an application starting from a continuous query 197

List of Tables

2.1 Example tuple schema . 18

3.1 Cluster setup . 50

4.1 Parameters used by elasticity protocols . 65

4.2 Static vs. Elastic configurations overhead. 79

5.1 Sample input and output tuples for operator A2 . 90

5.2 Variables used in algorithms . 94

5.3 Linear Road tuple schema . 104

6.1 VQC Operators legend . 119

7.1 CDR Schema . 133

7.2 Credit Card Fraud Detection Tuple Schema . 139

7.3 OSSIM rule parameters . 145

7.4 OSSIM input tuples schema . 148

7.5 OSSIM output tuples schema . 149

ix

Part I

INTRODUCTION

Chapter 1

Introduction

In this chapter we provide an introduction to data streaming and to Stream Processing Engines (SPEs).

We first introduce some of the application scenarios that motivated the research in the data streaming

field. We discuss which are the most important requirements of applications that perform on-line data

analysis and discuss why previous existing solutions like Data Base Management Systems (DBMSs)

are not adequate and are being replaced by SPEs. We provide a short overview of pioneer SPEs,

discussing how they overcome the limitations of previous existing solutions. Finally, we discuss

which are the limitations of existing streaming applications and how they motivated StreamCloud,

the parallel-distributed SPE presented in this thesis.

1.1 Application scenarios that motivated data streaming

In this section we present the application scenarios that, during the last decade, motivated the re-

search in the field of data streaming. As presented in [ScZ05], [BBD+02], [CCC+02] and [ACC+03]

these scenarios include both existing and emerging applications that share the same need for high pro-

cessing throughput with low latency constraints. Among others, examples of these scenarios include

fraud detection, network security, financial markets, large scale sensor networks and military appli-

cations. In the following, we present each motivating scenario motivating is need for high processing

capacity with low processing latency.

Fraud detection in cellular telephony. Fraud detection applications in cellular telephony require

the ability of processing data whose size is in the order of tens or hundreds of thousand mes-

Vincenzo Massimiliano Gulisano An Elastic Parallel-Distributed Stream Processing Engine

4 CHAPTER 1. INTRODUCTION

sages per second. As reported by the Spanish commission for the Telecommunications market

[cmt], the number of mobile phones in Spain exceeds the 56 million units. Hence, a sample

fraud detection application that is used to spot mobile phones appearing to maintain more than

one communication at time must process loads that can go from few tens of thousand messages

per second to millions of messages per second (e.g., in correspondence with mass events such

as national feasts or religious events). In cellular telephony fraud detection applications, the

need for low latency processing arises from the fact that the faster the detection, the lower the

amount of money the fraudster costs to the company. That is, if a cloned number is detected

after one week, the money spent during that week is lost by the company.

On-line trading. scenarios involving credit card transactions are another example of applications

demanding for high processing capacity and very low processing latency. As reported by The

Nilson Report [Nil], the projection for the year 2012 says that the number of debit cards holders

in the U.S. is approximately of 191 million people, for a total of 530 million debit cards whose

estimated purchase volume is 2089 billion dollars. With respect to applications that involve

credit cards transactions it is even more imperative to provide low latency guarantees as such

applications must comply with strict time limitations that are often smaller than one second.

Financial Markets applications. Another example of existing application demanding for process-

ing of big volume data with low delay is related to Financial Markets. As discussed in [ScZ05],

the Options Price Reporting Authority (OPRA [OPR]) estimated a required processing rate of

approximately 120, 000 messages per second during year 2005. The growing rate has been so

fast that the required capacity exceeded the 1 million messages per second in 2008. As for

the on-line trading applications, financial market applications demand for very low processing

latencies that are often below the one second threshold.

Network traffic monitoring. With respect to applications monitoring traffic network (e.g., Intrusion

Detection applications), the need for high processing capacity arises from the huge volume of

data moving through the Internet. As presented by CAIDA (the Cooperative Association for

Internet Data Analysis [cai]), an Internet Service Provider (ISP) usually sustains traffic volumes

that is at least in the range of tens of Gigabytes per second. With respect to applications that

analyze the traffic to detect possible threats, the need for high processing capacity arises not

only from the huge traffic volume that must be processed in real-time in order to block possibly

harmful events but also from the type of computations run over the data, that usually define not

trivial aggregation and comparison of on-line and historic data.

Sensor networks, RFID networks. Several emerging applications demanding for high processing

capacity and low processing latency arise from sensor networks. These applications are be-

coming popular due to the decreasing costs of sensors that, nowadays, allow for the creation of

An Elastic Parallel-Distributed Stream Processing Engine Vincenzo Massimiliano Gulisano

1.2. REQUIREMENTS OF DATA STREAMING APPLICATIONS 5

big networks of such devices with small deployment costs. Examples of such scenarios include

military applications where soldiers (or vehicles) can be equipped with GPS devices to monitor

their location. Another sample scenario is RFID tagging for animal tracking or RFID tagging

of products being produced or sold in big industry.

All the presented application scenarios share the same need for high processing capacity and low

processing latency. Furthermore, they share the same need for processing of data whose behavior

evolves over time. This aspect is important as it implies several challenges that must be addressed.

A first consideration that can be made about data behavior is that its volume can abruptly change

over time. As introduced with respect to cellular telephony fraud detection applications, the number

of records that must be processed can suffer abrupt changes in correspondence with national events.

The traffic behavior not only involves changes in the overall volume, but also in its distribution. As

en example, the number of phone calls made (or received) by a mobile phone can vary a lot over time.

Another important aspect of the data processed by the presented application scenarios is the possible

presence of incomplete and out-of-order data. Consider, as an example, a data streaming application

used to process data collected from a sensor network. In such scenario, part of the data produced

by sensor might disappear (e.g., when a sensor runs out of battery). In this case, the application

should still consume the data produced by the other sensor and produce the desired result. Similarly,

a sensor might experience some delay in the forwarding of the produced data. In this case, the data

streaming application should address the possibility of late processing of information in order to

correct imprecise results computed before.

1.2 Requirements of data streaming applications

In this section, we discuss why pioneer SPEs do not address adequately the requirements of the

application scenarios that motivated the research in the data streaming field (i.e., high processing

capacity and low processing latency).

For decades, DBMSs have been used to store and query data. Modern DBMSs provide distributed

and parallel processing of data; furthermore, they are designed to tolerate faults. One of the reasons

why DBMS are so popular comes from their powerful language (e.g., SQL), that allows for complex

manipulation of data by means of a set of well known basic commands. Nevertheless, DBMSs are

not adequate for the application scenarios introduced in the previous section. The reason is that the

primarily goal of DBMSs is data persistence rather than data querying. That is, they are designed to

maintain efficiently collections of data that is accessed and aggregated only when a query is issued

by a user (or accessed by queries triggered periodically). This data manipulation paradigm incurs

in high overheads when applied to applications that demand for high processing capacity with low

processing latency.

Vincenzo Massimiliano Gulisano An Elastic Parallel-Distributed Stream Processing Engine

6 CHAPTER 1. INTRODUCTION

Main

Memory

Input Data

Storage

User

Query
Query

output

(1)

(2)

(3)

(4)

Figure 1.1: DBMSs information processing.

Figure 1.1 presents a high-level overview of how data is stored and processed by a DBMS. Input

data is continuously stored while being received (1). The input messages (we refer to them as tuples)

contain information that is persisted into relations. As an example, in a scenario where a DBMS

is being used to maintain the information related to what is being sold in a shop, a relation might

contain records like Product ID,Quantity and Price. Each time something is purchased by someone,

a new record is stored in the relation for each item that has been bought (Product ID), specifying also

how many units (Quantity) and the overall price (Price). When a request to process a query provided

by a user is received (2), the query is installed and data is read from the storage (3). Finally, data

is processed and the query result is outputted (4). With respect to the previous example, a possible

query might be issued to know how many units of a given product have been sold during the last six

months.

As discussed in [ScZ05], this approach does not match the requirements of the applications intro-

duced in the previous section. With respect to the presented data streaming requirements, we discuss

now the ones that are clearly not addressed by DBMSs.

The most important consideration is that, in a data streaming application, new data is useful if it is

used to update the computation being run over it. That is, data is not sent to a processing node in order

to be stored; rather, data is sent in order to produce new results as soon as possible. This requirement

implies that a query is no longer something that is sporadically executed by a user (or periodically

triggered). On the contrary, a query is running continuously and its computation is updated any time

new information is available. In data streaming, this type of query is referred to as continuous query.

An Elastic Parallel-Distributed Stream Processing Engine Vincenzo Massimiliano Gulisano

1.2. REQUIREMENTS OF DATA STREAMING APPLICATIONS 7

As an example, consider a scenario where a sensor network in used to monitor the temperature of

the rooms of a building in order to generate an alarm in case of a fire (i.e., whenever the temperature

of a room exceeds a given threshold). It is easy to see that the presence of a fire should be detected

as fast as possible. That is, each temperature measurement report generated by any sensor in the

building should be checked as soon as possible in order to detect a possible fire. The requirement of

processing continuously the incoming data by means of a continuous query implies that the operations

run for each incoming tuple should be kept as low as possible in order to reach for a higher processing

capacity.

If we consider how the architecture of traditional DBMSs can be modified in order to reduce the

per-tuple processing latency, the first idea is to remove the persistence of each incoming message. The

removal of the persistence reduces the per-tuple processing latency significantly as writes to and reads

from persistent storage take significantly longer than accesses to main memory. This modification in-

troduces several new challenges about how data is processed. The first challenge relies in the fact that

the available memory is smaller than the available storage space; hence, not all the information can be

maintained. There is need for some mechanism to maintain only part of the information relevant to

the continuous queries running in the system. It should be noticed that the requirement of maintain-

ing only part of the information is an intrinsic need consequence of the nature of the problem. With

respect to the example of the sensor network monitoring the temperature of a building, temperature

reports will be generated continuously; hence, if all the temperature reports are maintained, they will

always eventually saturate the available memory, no matter how big the latter is. As we will discuss

in the following chapter, different models exists to maintain only portion of the incoming informa-

tion. All of them share the same idea that recent information is usually more relevant than old one.

When only a portion of the information is maintained, a new challenge arises with respect to how to

compute blocking operations with partial data (e.g., in order to compute the average of a measured

value, the query first needs to known all the measurements from which to compute it). The idea is to

compute functions over portions of the incoming data (referred to as windows). With respect to the

example, the user can be interested in monitoring the average temperature of each room during the

last 30 seconds.

Figure 1.2 presents how information should be processed by an SPE. Input information is pro-

cessed directly by a continuous query (1). With respect to the example of the temperature monitoring,

each measurement generated by a sensor is sent to the continuous query in charge of detecting fires.

For each incoming message, the query updates its internal state (2). In the example, each time a

measurement from a given room is received, the value of the average temperature is update removing

the contribution of the measurements older than 30 seconds and adding the contribution of the last

received tuple. Finally, if it is the case, an output is generated by the continuous query (3). In the

example, the updated average value of a room temperature is checked against a given threshold and,

Vincenzo Massimiliano Gulisano An Elastic Parallel-Distributed Stream Processing Engine

8 CHAPTER 1. INTRODUCTION

Main

Memory

Input Data
Query

Query

output
(1)

(2)

(3)

Figure 1.2: SPEs information processing.

if it exceeds it, an alarm is generated.

Scenarios such the one present in the example, where an application checks for specific conditions

happening while new data is being processed have been addressed in the past by hand coded solutions

designed to specifically compute the desired computation. Even if such ad hoc solutions provide high

processing capacity, they are hard to port between platforms and hard to maintain. This observation

is very important with respect to SPEs. In fact, one of the requirements in data streaming is that

the language used to express queries should be powerful and simple, to ease the porting of existing

DBMS applications to SPEs and to avoid to recur to hand coded solutions. As we will present in

the following section, one of the data streaming research topics has been the definition of a powerful

yet simple language to specify how data should be processed. Two main ways of defining continuous

queries have been introduced, one defines them as graphs of processing units (specifying directly how

information should flow among the units that manipulate it) while the other extends the SQL language

enriching it with data streaming capabilities.

The last requirement we discuss in this section is related to the need of some kind of persistence

for part of the information processed by an SPE. Even if we discussed why the data streaming process-

ing pattern excludes the persistence of each incoming tuple before its processing, it is clear that it is

always desirable to maintain part of the information. For instance, in the example of the temperature

monitoring, the user might be interested in maintaining information related to all the alarms that are

generated by the system. This requirement is even clearer when defining continuous queries where

real-time information is being compared with historic information. For example, let us consider a

continuous query defined to compute the highest temperature experienced during the last 200 days.

In this case, it is easy to see that the application will maintain a record for each day and that these

records will be loaded by the continuous query to compare it with the real-time information. This

requirement should be addressed defining some combined use of SPEs and lightweight DBs (e.g., in

memory DBs) or relaying in traditional DBs when write and read requests have very low frequency

(i.e., when the introduced overhead is negligible).

An Elastic Parallel-Distributed Stream Processing Engine Vincenzo Massimiliano Gulisano

1.3. FROM DBMS TO SPES 9

1.3 From DBMS to SPEs

In this section we give a short overview of some of the pioneer SPEs prototypes. We present how

they marked an evolution with respect to previous existing solutions overcoming their limitations. We

also provide an overview of the evolution of these pioneer SPEs. Finally, we discuss which are their

limitations and introduce the challenges that motivated our work.

Starting approximately from the year 2000, several SPE prototypes have emerged. These proto-

types have been designed either as improvements of DB based solutions (i.e., solutions that still rely

on DBs) either as “fresh" solutions that do not rely on DBs.

With respect to the prototype applications that were designed to improve DB based solutions to

fit with the requirements of data streaming, we introduce Cougar [BGS01], TelegraphCQ [CCD+03]

[Des04] and NiagaraCQ [NDM+01] [CDTW00].

The Cougar research project focused on sensor databases, where long running queries are issued

to combine live data from a sensor network with some stored data. Even if Cougar does not mark

a step in the evolution of SPEs as it still heavily relies on DBs, the authors introduce an important

aspect of data streaming applications: the need for distributed and local processing of data. That is,

they discuss why an approach where all the sensor data are initially collected by a single node and then

processed by it performs worse than a solution where sensor data is processed locally continuously

(i.e., discarding unneeded information or aggregating it) and routed up to a central node computing

the result of a given query.

NiagaraCQ is one of the first research projects that extends a query language to adapt it to con-

tinuous queries. The project focused on how to efficiently run continuous queries over XML data

files. The XML-QL query language has been extended in order to define long standing queries that

update their computation periodically. Furthermore, the project focused on how to define incremental

evaluation of the different functions being computed and incremental grouping of the overlapping

computations of different queries.

The TelegraphCQ research project is one the first projects that marks a significant step in the

evolution of SPEs as it relies on DBs to persist information but introduces separate data processing

units that manipulate the data. That is, relations are used as a glue between operators that are designed

to manipulate records and that communicate with a dedicated API (named Fjord). Different modules

are introduced in TelegraphCQ: Ingress and Caching modules have been introduced to collect records

from external applications, Adaptive Routing modules are used to distribute tuples among modules

and Processing modules have been designed to manipulate tuples flowing through the system.

In parallel with Cougar, NiagaraCQ and TelegraphCQ, two research projects have focused on

SPEs that do no rely on DBs to store or manipulate data: STREAM [ABB+04] [ABW06] and Aurora

[CCC+02] [ACC+03] [BBC+04] (evolved later to Borealis [AAB+05b] [ABC+05]).

Vincenzo Massimiliano Gulisano An Elastic Parallel-Distributed Stream Processing Engine

10 CHAPTER 1. INTRODUCTION

With STREAM, research has focused on how to ease the migration from DBMS to SPEs. One of

the most important aspect of STREAM is the introduction of the CQL query language, an evolution

of the SQL language, enriched with data streaming related operations. As introduced in Section

1.2, one of the requirements of data streaming applications is to define operations over portions of the

incoming information (referred to as windows). The idea is to represent streams by means of relations

so that data manipulation can be defined using SQL-like commands that operate on them. That is, the

relevant portion of incoming information that is queried is maintained like a relation and its records

are queried by means of traditional DBMSs queries. Finally, the resulting relation is converted to a

stream of tuples outputted to the end user.

The last pioneer SPE we introduce is the centralized SPE Aurora and its distributed SPE evolution

Borealis. The project proposed a new query language where queries are defined as Directed Acyclic

Graphs (DAG) of operators, where each node in the graph represents a processing units that consumes

input tuples and produces output tuples while edges define how tuples flow among processing units.

Being centralized, Aurora only allows for the definition of queries that are entirely executed at the

node where Aurora is running. The initial centralized SPE Aurora has been the base of the Borealis

Project (intermediate steps in the evolution of Aurora SPEs include Aurora* and Medusa [CBB+03]

[SZS+03]). The Borealis project is one of the first distributed SPEs. With a distributed SPE, a single

query can be executed using multiple nodes. That is, a graph of operators that define how input data

should be processed in order to produce the desired results can be run at multiple nodes, assigning

different operators at different nodes.

Being an open source project and one of the first distributed SPE, and due to its flexibility in

defining new operators, the Borealis project has been used as the base of StreamCloud, the SPE being

presented in this thesis.

1.3.1 Limitations of pioneer SPEs

In this section we focus on the limitations of the most important pioneer SPEs and we introduce

the challenges that motivated our work.

The main limitation of both centralized and distributed SPEs is that they both concentrate data

streams to single nodes. A query running at a centralized SPE receives and processes all the data

at the same node. In the case of a distributed SPE, even if different operators of a single query are

deployed at different nodes, each data stream is processed by a single machine (i.e., all the input data

stream is routed to the machine running the first operator of the query, the stream generated by the

first operator is concentrated to the node running the second operator, and so on). This single-node

bottleneck implies that centralized and distributed SPEs do not scale, their processing capacity is

bound to the capacity of a single node. In order to overcome this limitation, data streams should not

be processed by a single node. Sources providing the information for data streaming applications are

An Elastic Parallel-Distributed Stream Processing Engine Vincenzo Massimiliano Gulisano

1.3. FROM DBMS TO SPES 11

often distributed (e.g., antennas generating reports about mobile phone calls, sensor measuring the

temperature of a building, and so on). In order to attain a scalable SPE, the information from these

distributed data sources needs must always to be processed in parallel.

The parallel processing of the information provided by distributed data sources gives room to sev-

eral challenges. First of all, there is need for a parallelization technique for queries (and its operators).

The parallelization technique must guarantee semantic transparency, meaning that results produced

by a parallel query are equivalent to the ones produced by its centralized (or distributed) counterpart.

The second challenge arises from the fact that previous solutions have been designed as static

solutions. That is, how queries (and operators) are assigned to the available nodes is decided statically

at the time when queries are deployed. This static configuration is not appropriate due to the highly

variable nature of data streams. As introduced in Section 1.1, the valley and peak loads of data streams

can be orders of magnitude distant. These problems might affect centralized, distributed and parallel

SPEs. That is, a given deployment for a parallel query can be inadequate with respect to the current

load. As an example, the number of available nodes can be lower than the required one due to a peak

in the system input load (under-provisioning). On the other hand, the number of assigned nodes can

be higher than the needed one due to a decrease in the system load (over-provisioning). It should

be noticed that both under-provisioning and over-provisioning can affect the same configuration at

different times, depending on the fluctuations of the system input load. To overcome this limitation,

an SPE should be elastic. That is, nodes should be provisioned or decommissioned depending on the

current system load to minimize the used computational resources while guaranteeing the Quality of

Service (QoS). It is important to notice that elasticity must be combined with dynamic load balancing

in order to be effective. That is, new nodes should be allocated only if the current load cannot be

processed by the assigned nodes as a whole. On the contrary, nodes could be provisioned simply due

to uneven distribution of the overall load.

The third challenge is related to the tolerance of possible failures. Fault tolerance is a common

requirement for distributed applications as the increase in the number of nodes usually translates in

a higher probability of faults. Fault tolerance protocols have been already introduced for distributed

SPEs. However, existing protocols do not cope with parallel-distributed SPEs with elastic and dy-

namic load balancing capabilities. The first limitation is that existing protocols are designed for static

configurations and cannot cope with continuously evolving configurations. The second limitation is

due to the fact that they do not cover failures that might happen while the system is being reconfigured

(i.e., a failure happening while a node is offloading part of its processing to a less loaded node).

The last challenge that motivated our work is the need for a development environment that eases

the definition, implementation and execution of parallel queries. That is, since our goal is transparent

parallelization (i.e., the execution of a parallel query is equivalent to the execution of its centralized

counterpart), the user should only define an abstract centralized query and asked to provide minimum

Vincenzo Massimiliano Gulisano An Elastic Parallel-Distributed Stream Processing Engine

12 CHAPTER 1. INTRODUCTION

information about how to parallelize it (e.g., provide information about which are the available nodes

that can be used to run the parallel query).

All the challenges that motivated our work have been studied and addressed in StreamCloud:

a parallel-distributed SPE that provides dynamic load balancing, elasticity and fault tolerance. We

summarize in the following section which are the main contributions of the proposed work.

1.4 Contributions

This thesis presents StreamCloud: a parallel-distributed SPE with dynamic load balancing, elastic

and fault tolerance capabilities. The contribution of the presented work can be summarized as follows:

• A new parallelization technique for parallel data streaming queries and operators running in a

shared nothing cluster. The technique provides both syntactic and semantic transparent paral-

lelization. Semantic transparency guarantees that the results produced by a parallel-distributed

query are equivalent to the ones produced by the original centralized query. Syntactic trans-

parency allows the user to define queries providing the same information provided to define

centralized queries with only additional information about the nodes at which to deploy it.

The parallelization technique has been designed, implemented and evaluated for the basic data

streaming operators and also for complex queries.

• Dynamic load balancing and elastic capabilities for data streaming operators. Load balancing

is triggered dynamically as a consequence of a uneven distribution of the processing among

the running node. When the assigned nodes as a whole cannot cope with the incoming load,

StreamCloud automatically provisions new nodes. We define load-aware provisioning so that

the number of provisioned nodes is computed based on the current load and number of assigned

nodes. Decommissioning of nodes is triggered each time the load can be managed by less nodes

than the assigned ones.

• Both dynamic load balancing and elastic capabilities rely on a dynamic reconfiguration protocol

to transfer the processing between the nodes. Two dynamic reconfiguration protocols have been

proposed with different trade-offs. The first protocol has been designed to minimize the amount

of information exchanged between nodes and fits well when working processing involves small

state. On the other hand, the second protocols aims at completing the state transfer as soon as

possible and fits better with processing that involves bigger states.

• An innovative fault tolerance protocol for parallel-distributed SPEs. The proposed protocol

addresses aspects that were not previously considered by other fault tolerance protocols such

how to tolerate failures happening while reconfiguring the system (i.e., failures happening while

An Elastic Parallel-Distributed Stream Processing Engine Vincenzo Massimiliano Gulisano

1.5. DOCUMENT ORGANIZATION 13

the load is being balanced or during elasticity reconfigurations). We provide details about how

the fault tolerance protocol has been designed and implemented and we provide a through

evaluation for it.

• A complete Visual Integrated Development Environment (IDE) that has been designed to ease

the interaction of the user with StreamCloud. This IDE allows the user to visually compose

a query via a drag-and-drop interface (i.e., like for a centralized query) and to compile it to

its parallel-distributed counterpart just specifying additional information about the available

nodes for the initial deployment of the query. Furthermore, the user can specify if elasticity

should be provided just defining which nodes should be assigned at deploy time and which

nodes can be provisioned if necessary. Furthermore, the IDE provides a monitoring tool with a

web based interface to monitor the state of the queries running at StreamCloud (i.e., input and

output throughput, CPU consumption, deployed queries, and so on). Finally, the IDE provides

a parallel data injector to ease benchmarking and adapters to read data from sources like text or

binary data files.

• Finally, we present several real world use cases that have been studied and implemented as con-

tinuous queries run by StreamCloud. We consider fraud detection applications in the context

of cellular telephony, fraud detection applications in the context of on-line credit card transac-

tions, applications related to the detection and mitigation from Distributed Denial of Service

(DDoS) attacks and applications related to Complex Event Processing (CEP) systems.

1.5 Document Organization

The rest of this document is divided into 8 chapters and it is organized as follows:

• Chapter 2, Data Streaming Background introduces data streaming basic concepts like streams,

operators and continuous queries providing both definitions and examples.

• Chapter 3, Stream Processing Engine Parallelization presents how pioneer SPEs evolved and

the limitations that motivated our research. The chapter also introduces StreamCloud paral-

lelization technique and provides a through evaluation of it with respect to both operators and

queries.

• Chapter 4, StreamCloud Dynamic Load Balancing and Elasticity presents the protocols that

have been designed for state transfer, dynamic load balancing and elasticity. The chapter pro-

vides a through evaluation of all the proposed protocols.

Vincenzo Massimiliano Gulisano An Elastic Parallel-Distributed Stream Processing Engine

14 CHAPTER 1. INTRODUCTION

• Chapter 5, StreamCloud Fault Tolerance presents the protocols for StreamCloud fault tolerance

mechanism. As for the previous chapters, we present how the protocols have been designed and

implemented and we include a through evaluation of them.

• Chapter 6, Visual Integrated Development Environment presents the IDE that has been designed

and developed together with StreamCloud in order to ease the interaction with the user.

• StreamCloud use cases Chapter 7 introduces some of the use cases that have been used together

with StreamCloud.

• Chapter 8, Related Work presents the related work.

• Appendix A, The Borealis Project provides an overview of the borealis SPE, the prototype upon

which StreamCloud has been build.

An Elastic Parallel-Distributed Stream Processing Engine Vincenzo Massimiliano Gulisano

Part II

DATA STREAMING BACKGROUD

Chapter 2

Data Streaming Background

This chapter introduces data streaming basic concepts such streams (the unbounded sequences of

tuples received by the Stream Processing Engine), data streaming operators (the base units consuming

and producing streams tuples) and continuous queries (graphs of interconnected operators that allow

for rich, real-time analysis of data). We conclude the chapter presenting a sample query used to spot

frauds in cellular telephony applications.

2.1 Data Streaming Model

A data stream S is an unbounded, append-only sequence of tuples. All tuples t ∈ S share the

same schema, composed by fields (F1, F2, . . . , Fn). We refer to field Fi of tuple t as t.Fi. Each

field is defined by its name and data type. In our model, we assume that, for any schema, a field

ts ∈ (F1, F2, . . . , Fn) represents the time when the tuple has been created. Field ts provides a time

dimension for each tuple. Furthermore, it allows for time based ordering of tuples. We assume tuples

belonging to any stream generated by a data source to have non-decreasing ts values. We also suppose

data sources have clocks that are well-synchronized using a clock synchronization protocol like NTP

[Mil03]. When clock synchronization is not feasible at data sources, tuples are timestamped at the

entry point of the Stream Processing Engine (SPE).

Table 2.1 presents a sample schema of a Call Description Record (CDR) stream used in mo-

bile phone networks. The schema consists of 9 fields. Fields Caller and Callee represent the mo-

bile phones making and receiving the call, respectively. Field Time specifies the call starting time

Vincenzo Massimiliano Gulisano An Elastic Parallel-Distributed Stream Processing Engine

18 CHAPTER 2. DATA STREAMING BACKGROUND

Field Name Field Type
Caller text
Callee text
Time integer
Duration integer
Price double
Caller_X double
Caller_Y double
Callee_X double
Callee_Y double

Table 2.1: Example tuple schema

(expressed in seconds). In our example, ts = Time. Field Duration specifies the call duration (ex-

pressed in seconds). Field Price specifies the call cost (ine). Fields Caller_X and Caller_Y represent

the geographic coordinates of the Caller phone number while fields Callee_X and Callee_Y represent

the geographic coordinates of the Callee phone number while fields. In cellular telephony, streams

defined by a schema similar to the presented one are generated by antennas which mobile phones

connect to.

Continuous Queries are defined over one or more input streams and produce one or more output

streams. A continuous query is defined as a directed acyclic graph (DAG) with additional input and

output edges. Each vertex u is an operator that consumes tuples from one (or multiple) input streams

and produces tuples for one (or multiple) output streams. An edge from operator u to v implies that

tuples produced by u are processed by v. Queries are defined as “continuous" because results are

computed in an on-line fashion as input tuples are processed.

2.1.1 Data Streaming Operators

This section provides an overview of the basic data streaming operators. Data streaming oper-

ators are the base unit used to process and produce output tuples. They’re defined by at least one

input stream and one output stream. Feeding tuples are taken from the input stream while tuples

produced by the operator are sent through its output stream. Data streaming operators are classi-

fied depending on whether they maintain any state while processing input tuples. Stateless operators

perform a one-by-one processing of input tuples. Therefore, each tuple is processed individually

and the corresponding output is (eventually) produced without maintaining any state. Examples of

stateless operators include Map (the data streaming counterpart of the relational projection function),

Filter (the data streaming counterpart of the relational select function) and Union operators. Stateful

operators maintain state as they process multiple input tuples in order to produce one output tuple.

Examples of stateful operators include Aggregate and Join operators. Due to the unbounded nature of

An Elastic Parallel-Distributed Stream Processing Engine Vincenzo Massimiliano Gulisano

2.1. DATA STREAMING MODEL 19

data streams, stateful operators produce output tuples that refer to portions of the processed input tu-

ples. This mechanism is known as windowing. As presented in [PS06], windows are used to maintain

only the most recent part of a stream. Time based windows (also referred to as logical windows) are

defined over a period of time (e.g. tuples received in the last 10 minutes); tuple based windows (also

referred to as physical windows) are defined over the number of stored tuples (e.g., last 50 received

tuples).

The scope of a time-based window (i.e., the period of time it covers) is defined by 4 parameters:

window start WS , window end WE and parameters Size and Advance. Any incoming tuple t is

added to the window maintained by a stateful operator ifWS ≤ t.ts < WE . If t.ts ≥WE the window

is updated, either changing WS ,WE or changing its Size. Depending on how the 4 parameters that

define the scope of a window change, different windows models have been introduced:

• Landmark window: this window keeps WS fixed, while WE is continuously updated to the

latest tuple timestamp. This is, the window Size is always growing, including each new in-

coming tuple.

• Sliding windows: when using sliding windows, both WS and WE are updated depending on

the timestamp of the input tuples being processed. Window parameter Size is fixed and the

constraint WE −WS = Size is maintained when updating windows boundaries. Whenever

WS and WE are updated, we say the window slides. WE is updated each time the incoming

tuple timestamp tin.ts >=WE . Parameter Advance defines how WS is updated:

– Advance = 0: if Advance is set to 0, being [WS ,WE [the current windows boundaries

and being tin an input tuple so that tin.ts > WE , windows boundaries are shifted to

[tin.ts − Size + 1, tin.ts + 1[. That is, the window is shifted enough to include the new

incoming tuple.

– Advance < Size: in this case, the current window [WS ,WE [is updated to [W ′S ,W
′
E [,

where W ′S = WS + Advance and W ′E = WE + Advance. Shifting is repeated until

tin.ts < W ′E .

– Advance = Size: this window model, known as Tumbling Window shifts the current

window by Size time units. That is, window [WS ,WE [is shifted to [WS + Size,WE +

Size[.

When windows are tuple-based, a maximum fixed window of Size tuples is maintained. Similarly

to time-based windows, parameter Advance specifies how the window evolves when it is shifted. If

Advance = 0, then, once the window is full, each new incoming tuple causes the removal of the

earliest one. If 0 < Advance ≤ Size, any time the window is full, the earliest Advance tuples are

discarded.

Vincenzo Massimiliano Gulisano An Elastic Parallel-Distributed Stream Processing Engine

20 CHAPTER 2. DATA STREAMING BACKGROUND

time
5 9 13 30 35 42

Landmark

Sliding Window

No Advance

Sliding Window

Advance: 5s

Tumbling Window

Advance: 5s

No Advance

Advance: 2 tuples

[5,42]

[5,15[

[26,36[
[33,43[

[21,31[

[5,15[
[10,20[

[25,35[
[30,40[

[35,45[

[5,15[
[25,35[

[35,45[

Time-based

windows

Tuple-based

windows

Figure 2.1: Examples of different windows models

Figure 2.1 presents how the different windows models evolves considering a sequence of 6 input

tuples with timestamps 5, 9, 13, 30, 35, 42, respectively. A landmark window will have WS = 5 (as 5

is the first timestamp received) whileWE will grow while processing incoming tuples. After process-

ing the last tuple at time 42 window boundaries will be [5, 42]. A sliding window with parameters

Size and Advance set to 10 and 0, respectively, will initially cover time period [5, 15[. Upon recep-

tion of the tuple with timestamp 30, the window will shift to [21, 31[. Similarly, processing of tuples

having timestamps 35 and 42 will cause the window to shift to [26, 36[and [33, 43[. If Size and

Advance parameters are set to 10 and 5, respectively, the first window [5, 15[will shift by steps of 5

seconds (i.e. [10, 20[,[15, 25[and so on). If Advance is set to be equal to Size (tumbling windows),

then windows slides without covering overlapping portions of time. The first window [5, 15[will

shift to [15, 25[,[25, 35[and so on. The last two examples of Fig. 2.1 presents sample evolutions of

tuple based windows. If no Advance parameter is set, once the window is full (i.e., upon processing

of the tuple with timestamp 13), each new incoming tuple causes the removal of the earliest one. If

parameter Advance is set 2, each time the window is full, the 2 earliest tuples are discarded.

Orthogonally to the different windows models, different models exist with respect to when the

content of a window is made available generating an output tuple. As presented in [BDD+10], dif-

An Elastic Parallel-Distributed Stream Processing Engine Vincenzo Massimiliano Gulisano

2.1. DATA STREAMING MODEL 21

ferent events can trigger the creation of an output tuple carrying the current value of a window: (1)

content-change outputs are generated each time a new incoming tuple changes the value of a func-

tion associated to the window, (2) window-close outputs are generated only before shifting a window,

(3) non-empty content outputs are generated only if the corresponding window contains at least 1

tuple while (4) periodic outputs are generated every time λ tuples or λ time units have been pro-

cessed. Existing research and commercial SPEs implement different triggering policies: STREAM,

the Standford Stream Data Manager [STRa], implements all the 4 triggering conditions; StreamBase

SPE [Strc] does not implement the content-change triggering condition. Similar to STREAM, Esper

[Espa] implements all the 4 triggering conditions.

StreamCloud defines the same window semantics defined by the Borealis project [Borc]: win-

dow models defines both time based and tuple based sliding windows, where parameters Size and

Advance are configurable by the user. With respect to the policy defining when output tuples are

created by stateful operators, the implemented reporting strategies are window close and non-empty

content. That is, each time a window is going to be shifted, its corresponding value is outputted if the

window contains at least one tuple.

The rest of this section includes a detailed description of the basic data streaming operators. Each

operator is defined as:

OPN{P1, . . . , Pm}(I1, . . . , In, O1, . . . , Op)

Where OPN represents the operator name, P1, . . . , Pm represent a set of parameters that spec-

ify the operator semantics (e.g., functions used to transform input tuples, predicates used to decide

which information to discard or parameters related to the windowing model), I1, . . . , In a set of in-

put streams and O1, . . . , Op a set of output streams. Optional parameters are defined using square

brackets. All the examples refer to the schema presented in Section 2.1.

Map The Map operator is a generalized projection operator used to transform the schema of the

input tuples, e.g., to transform a field representing a speed expressed in Km/h to m/s. The Map is

defined as:

M{F ′1 ← f1(tin), . . . , F
′
n ← fn(tin)}(I,O)

where I andO represent the input and output streams, respectively. tin is a generic input tuple and

F ′1, . . . , F
′
n is the schema of output tuples. Each input tuple is transformed by functions f1, . . . , fn.

The following example considers a Map operator converting field Price from euros to dollars.

Vincenzo Massimiliano Gulisano An Elastic Parallel-Distributed Stream Processing Engine

22 CHAPTER 2. DATA STREAMING BACKGROUND

M{Caller ← Caller, Callee← Callee,Duration← Duration, T ime← Time,

Dollars← 1.2492 ∗ Price, Caller_X ← Caller_X,Caller_Y ← Caller_Y,

Callee_X ← Callee_X,Callee_Y ← Callee_Y }(I,O)

Filter The Filter is a generalized selection operator used either to discard or to route tuples from

one input stream to multiple output streams. As an example, a filter operator can be used to discard

CDRs referring to phone calls whose price is lower than 3 e. The Filter is defined as:

F{P1, . . . , Pm}(I,O1, . . . , Om[, Om+1])

where I is the input stream, O1, . . . , Om, Om+1 is an ordered set of output streams and

P1, . . . , Pm is an ordered set of predicates. Each incoming tuple tin is forwarded to Oi, being i

the minimum value for which Pi holds. If no predicate is satisfied, tin is either routed to Om+1 (if

defined) or discarded. Both input and output tuples share the same schema.

The following example considers a Filter operator routing CDR tuples depending on the price

associated to each call.

F{Price ≤ 5e, Price ≤ 10e}(I,O1, O2, O3)

This operator routes incoming tuples to three different output streams O1, O2, O3. Tuples refer-

ring to a phone call whose price is less than or equal to 5 euros are routed to O1. Tuples referring to

a phone call whose price is greater than 5 euros and less than or equal to 10 euros are routed to O2.

Finally, tuples referring to a phone call whose price is greater than 10 euros are routed to O3.

Union The Union operator is used to merge tuples from multiple input streams into a single output

stream, e.g., to merge CDRs coming from distinct antennas. All the input streams and the output

stream tuples share the same schema. The Union operator is defined as:

U{}(I1, . . . , In, O)

where I1, . . . , In is a set of input streams and O is the output stream.

Aggregate The Aggregate operator is used to compute aggregation functions such mean, count,

min, max, first_val and last_val over windows of tuples. It is defined as:

Agg{WType[, ts], Size, Advance, F ′1 ← f1(W), . . . , F ′n ← fn(W)

[, Group− by = (Fi1 , . . . , Fim)]}(I,O)

An Elastic Parallel-Distributed Stream Processing Engine Vincenzo Massimiliano Gulisano

2.1. DATA STREAMING MODEL 23

WType specifies the window type, if WType is set to time the window W is time-based; if

WType is set to tuples window W is based on the number of tuples. Size specifies the amount of

tuples to be maintained inW . IfWType = time, being tin an incoming tuple andWS the timestamp

of the left boundary of window W , the window is full any time tin.ts −WS ≥ Size. Once W is

full, an output tuple carrying the result of the aggregate functions f1(W), . . . , fn(W) is produced.

Subsequently,W is shifted discarding tuples t ∈W : t.ts ∈ [WS ,WS+Advance[andWS is updated

to WS +Advance. If, after the window has been shifted, tin.ts−WS ≥ Size, the window is shifted

repeatedly until tin.ts ∈ [WS ,WS + Size[. As we introduced before, an output tuple is produced

each time the window is shifted if the latter contains at least one tuple. Attribute ts is optional as it

must be provided only for time-based windows.

The following example considers an aggregate operator used to compute, on a per-hour basis, the

number of phone calls made by each distinct phone number and their average duration.

Agg{time, T ime, 3600, 600, Calls← count(),Mean_Duration← mean(Duration),

Group− by = (Caller)}(I,O)

In the example, WType = time. Window Size and Advance parameters are set to 3600 and

600 seconds, respectively. Once the window W is full, an output tuple will be produced every 600

seconds, and will contain the aggregate information of the last 3600 seconds. Two aggregate func-

tions are used to define the output tuples: 1) function count(), with no parameters, that counts the

number of processed tuples, 2) function mean(Duration) that computes the average value of field

Duration for all the tuples contained in any window W . Attribute Group − by is set to input field

Caller. Therefore, a separate window W will be maintained for each distinct value of the field

Caller. The schema associated to the output stream consists of the fields Caller, T ime,Calls and

Mean_Duration.

Figure 2.2 shows a sample execution of the previous aggregate operator. Input tuples are shown

as orange boxes. Output tuples are shown as gray boxes. All input (and output) tuples refer to calls

made by phone number A. For the ease of the explanation, input tuple schema does not include the

geographic coordinates of caller and callee phone numbers.

Five input tuples ti, i = 1 . . . 5 are processed by the operator. Tuple t1 refers to a phone call

started at time 25, lasting 30 seconds and whose price is 5.2e. Tuple t2 refers to a phone call started at

time 2400, lasting 55 seconds and whose price is 11e. Both tuples are added to the windowW having

boundaries [0, 3600[. Upon reception of tuple t3, referring to a phone call started at time 4500, lasting

10 seconds and whose price is 2e, window W must be shifted (t3.T ime > 3600). Before shifting W ,

the output tuple T1 is produced. Tuple T1 states that phone number A has made 2 phone calls with

average duration 42.5 seconds during the one-hour period starting at time 0. Window W is shifted

to [600, 4200[, tuple t1 is purged. W must be shifted again as t3.T ime > 4200. Before shifting

Vincenzo Massimiliano Gulisano An Elastic Parallel-Distributed Stream Processing Engine

24 CHAPTER 2. DATA STREAMING BACKGROUND

W [0,3600[

W [600,4200[

W [1200,4800[

W [1800,5400[

W [2400,6000[

t1 [A,B,25,30,5.2] t2 [A,C,2400,55,11] t3 [A,D,4500,10,2] t4 [A,C,4600,60,12] t5 [A,C,5700,25,5]

T1 [A,0,2,42.5]

T2 [A,600,1,55]

T3 [A,1200,3,41.7]

T4 [A,1800,2,35]

time

Figure 2.2: Sample evolution of time based aggregate operator

window W , output tuple T2 is produced. Tuple T2 states that phone number A has made 1 phone call

(lasting 55 seconds) during the one-hour period starting at time 600. Finally, window W is shifted to

[1200, 4800[; no tuple is purged and tuple t3 is added. Tuple t4 refers to a phone call started at time

4600, lasting 60 seconds and whose price is 12e. Tuple t4 causes no shifting as it falls within current

W boundaries. Upon reception of tuple t5, referring to a phone call started at time 5700, lasting 25

seconds and whose price is 5e, window W must be shifted (t5.T ime > 4800). Before shifting W ,

output tuple T3 is produced. Tuple T3 specifies that phone number A has made 3 phone calls with

average duration 41.7 seconds during the one-hour period starting at time 1200. WindowW is shifted

first to [1800, 5400[(tuple t2 is purged) and subsequently to [2400, 6000[(no tuple is purged). Output

tuple T4 is produced after the first shifting. Tuple T4 specifies that phone numberA has made 2 phone

calls with average duration 35 seconds during the window starting at time 1800.

If WType = tuples, window W is full each time Size tuples have been added to it. Once

the corresponding output is produced, the earlier Advance tuples are purged from W . Parameter

Group − by is optional, it can be used to define equivalence classes over the input stream. Given

Group − by = Fi1 , . . . , Fin , a separate window W is maintained for each distinct combination of

fields Fi1 , . . . , Fin values found processing input tuples. The schema of output tuples is composed by

Group− by fields Fi1 , . . . , Fin (if any), ts (if WType = time) and fields F ′1, . . . , F
′
n.

The following example considers an aggregate operator used to computethe minimum and max-

imum phone call duration of the last 3 phone calls made by each phone number. The Aggregator

operator is defined as:

Agg{tuples, 3, 2,Min_Duration← min(Duration),Max_Duration← max(Duration),

Group− by = (Caller)}(I,O)

In the example, WType = tuples. Window Size and Advance parameters are set to 3 and 1

tuples, respectively. OnceW is full (i.e., 3 tuples have been received), an output tuple is produced and

the window is updated removing the two earliest tuples maintained by the window. Two aggregate

functions are defined: 1) function min(Duration), that maintains the shortest call duration, and 2)

An Elastic Parallel-Distributed Stream Processing Engine Vincenzo Massimiliano Gulisano

2.1. DATA STREAMING MODEL 25

Input: t1 [A,B,25,30,5.2]

30

Input: t2 [A,C,2400,55,11]

30 55

Input: t3 [A,D,4500,10,2]

30 55 10

Window slide

10

Input: t4 [A,C,4600,60,12]

10 60

Input: t5 [A,C,5700,25,5]

10 60 25

Window slide

25

Output: T1 [A,10,55]

30 55 10

Output: T2 [A,10,60]

10 60 25

a) b) c)

d) e) f)

g) h) i)

Figure 2.3: Sample evolution of tuple based aggregate operator

function max(Duration) that maintains the longest call duration. Attribute Group − by is set to

input field Caller. Therefore, a separate window W is maintained for each distinct value of the field

Caller. The output stream schema consists of the fields Caller,Min_Duration,Max_Duration.

Figure 2.3 presents a sample execution of the aggregate operator. As in the example of figure 2.2,

input tuples are shown as orange boxes while output tuples are shown as gray boxes. The input tuples

considered in this example are the same of the ones presented in the previous example.

The first two tuples t1, t2 are stored in the window and no output is produced as the window is

still not full (Fig. 2.3.a and 2.3.b). Upon reception of the third tuple t3, the window becomes full

(Fig. 2.3.c). The output tuple T1 carrying the shortest and longest phone calls durations (resp. 10

and 55 seconds) is produced (Fig. 2.3.d). Subsequently, the window is updated discarding the two

earliest tuples (Fig. 2.3.e). After updating the window, tuple t4 is stored without producing any result

(Fig. 2.3.f). Upon reception of tuple t5 (Fig. 2.3.g), the output tuple T2 is produced (Fig. 2.3.h) and

,subsequently, the window is updated discarding the two earliest tuples (Fig. 2.3.i).

Join and Cartesian Product These two stateful operators are used to match tuples from two dis-

tinct input streams, a separate window is maintained for each input stream. They only differ in the

complexity of their predicate. The Join operator defines a predicate that, expressed in Normal Con-

junctive Form, defines at least one term referring to an equality between two fields of the different

input streams (e.g., match phone calls referring to the same Caller number) while the Cartesian Prod-

uct defines a predicate that can be arbitrarily complex (e.g., match CDRs whose spatial distance is

lower than 15Km).

Vincenzo Massimiliano Gulisano An Elastic Parallel-Distributed Stream Processing Engine

26 CHAPTER 2. DATA STREAMING BACKGROUND

Both operators are defined in the same way:

J{P,WType[, ts], Size}(Sl, Sr, O)

CP{P,WType[, ts], Size}(Sl, Sr, O)

Sl and Sr are two input streams referred to as left and right input streams, respectively. They

can carry tuples defined by different schemas. Both operators define a pair of windows Wl, Wr.

Wl is used to maintain tuples received on left stream. Wr is used to maintain tuples received on

right stream. Parameters WType, ts and Size are similar to the aggregate parameters presented

in 2.1.1.0.4. Nevertheless no Advance parameter is defined for the Join and the Cartesian product

operators. If the windows are time-based (i.e., WType = time) left window Wl (resp. right window

Wr) is full if, being tin an incoming tuple on the right (resp. left) stream and WS the window start

of Wl (resp. Wr), tin.ts −WS ≥ Size. That is, tuples received on the left stream are used to purge

tuples from right window while tuples received on the right stream are used to purge tuples from

the left window. As no Advance parameter is specified, whenever a window W is full, all tuples

t ∈W : t.ts < tin.ts− Size are discarded. If windows are tuple-based (i.e., WType = tuples) left

window Wl (resp. right window Wr) is full is Size tuples have been added. After an incoming tuple

has been used to purge the opposite window, the former is matched with all the tuples in the latter.

An output tuple is produced for each pair of tuples verifying predicate P . Finally, tuple tin is added

to its corresponding window (left is the tuple has been received on the left stream, right otherwise).

The schema of the output tuples is defined as the concatenation of the left and right input schemas.

As the schema of the left stream and the right stream may define fields with the same name, the field

names of the left stream are modified adding the prefix Left_ while the ones of the right stream are

modified adding the prefix Right_.

2.2 Continuous Query Example

In this section we present a sample continuous query used in cellular telephony to detect frauds

involving cloned cards numbers. The idea is to spot phone numbers that, between two consecutive

phone calls, cover a suspicious space distance with respect to their temporal distance. As an example,

consider a mobile phone involved in a call in Spain at 12:00 CET and in a second call in U.K. at 12:20

CET. The distance between Spain and U.K. cannot be traversed in 20 minutes, therefore, the phone

number is considered to be cloned. Notice that in order to detect cloned phone numbers, we must

consider consecutive calls involving the same phone number both as caller or callee. This query is

referred to as high mobility fraud, figure 2.4 shows its composing operators.

An Elastic Parallel-Distributed Stream Processing Engine Vincenzo Massimiliano Gulisano

2.2. CONTINUOUS QUERY EXAMPLE 27

Aggregate A Filter F
I OA OF

Union U

Map M1

Map M2

OU

I1

I2

Figure 2.4: High Mobility fraud detection query

The system input is composed by CDRs generated by the antennas which mobile phones connect

to. Initially, each incoming CDR is transformed into a pair of Phone,Duration, T ime, Price,X, Y

tuples, one for the Caller number and one for the Callee number. Subsequently, for each consecutive

pair of tuples referring to the same phone number (appearing as Caller or Callee in the previous

CDRs), the speed at which the mobile phone has moved between the two phone calls is computed

as the Euclidean distance divided the time distance. Finally, phone number appearing to move at a

speed higher than a given threshold are reported in the system output as they represent possibly cloned

numbers.

The query can be defined with 6 operators. Initially, the input stream I is used to feed map

operators M1 and M2. These operators are defined as follows:

M1{Phone← Caller,Duration← Duration, T ime← Time,

Price← Price,X ← Caller_X,Y ← Caller_Y }(I, I1)

M2{Phone← Callee,Duration← Duration, T ime← Time,

Price← Price,X ← Callee_X,Y ← Callee_Y }(I, I2)

M1 and M2 are used to convert each input tuple into a pair of tuples, one for the caller number

and one for the callee number. Subsequently, tuples from streams I1 and I2 are merged together into

stream OU . Merging is performed by union operator U

U{}(I1, I2, OU)

Notice that streams I1 and I2 can be merged by the union operator U as they share the same

schema.

The Aggregate operator A extracts times and X,Y coordinates for each pair of consecutive calls

involving the same phone number. The Aggregate defines a tuple based window with Size and Ad-

vance of 2 and 1 tuples, respectively. Group-by attribute has been set to Phone so that only tuples

referring to the same phone number are matched together. Given a window maintained 2 tuples refer-

ring to the same phone number, function first_val(Fi) is used to extract field Fi value of the earliest

Vincenzo Massimiliano Gulisano An Elastic Parallel-Distributed Stream Processing Engine

28 CHAPTER 2. DATA STREAMING BACKGROUND

tuple while function last_val(Fi) is used to extract field Fi value of the latest tuple. The Aggregate

operator is defined as:

A{tuples, 2, 1, T ime← first_val(Time), T1← first_val(Time), X1← first_val(X),

Y 1← first_val(Y), T2← last_val(Time), X2← last_val(X), Y 2← last_val(Y),

[Group− by = Phone]}(OU , OA)

The schema of output tuples consists of fields Phone, T ime, T1, X1, Y 1, T2, X2, Y 2. The Map

operator M3 is used to compute the speed at which the mobile phone has moved between two con-

secutive phone calls. It is defined as:

M3{Phone← Phone, T ime← Time, Speed←
√
(X2−X1)2 + (Y 2− Y 1)2

T2− T1
}(OA, OM)

Fields Phone and Time are maintained from input tuples. Field Speed is computed dividing the

Euclidean distance between the consecutive calls coordinates by the elapsed time. Finally, the filter

operator F is used to allow to pass to the output stream only the tuples having field Speed greater

than the threshold T . Is it defined as:

F{Speed ≥ T}(MA, OF)

2.3 Table Operators

In this section, we provide an overview of table operators, used to write information to or read

information from external tables. As discussed in Section 1.2, one of the requirements of data stream-

ing applications is the possibility of persisting the results of the computation being run over the data

streams. Examples of these applications include data streaming queries where on-line stream features

are compared with historic information or applications logging generated outputs for later analysis.

The semantic of the table operators being presented is based on the table operators defined in the Bo-

realis SPE [bora]. Table operators are being presented in order to give a complete overview of the data

streaming operators that can be used to define continuous queries and because some of them are used

later when presenting StreamCloud use cases (Chapter 7). Nevertheless, parallelization, dynamic load

balancing, elasticity and fault tolerance for table operators is not in the scope of the presented work.

The Borealis SPE defines four different table operators, one for each basic SQL command: select,

insert, delete and update. For all of them, the operator definition includes a parameter to specify

which is the table containing the information and one parameter that expresses, by means of a SQL

statement, which operation should be executed on it. As the state of a table operator is maintained by

an external entity, table operators can be considered as stateless operators.

An Elastic Parallel-Distributed Stream Processing Engine Vincenzo Massimiliano Gulisano

2.3. TABLE OPERATORS 29

In all the following examples, we refer to a table Top_Expensive used to store records specifying,

for each mobile phone number, the time and the price of the most expensive call being made by the

user. Records of the table are composed by fields 〈Phone, T ime, Price〉.

Select Operator The select operator defines one input stream and one output stream plus two op-

tional output streams. The operator is used to query the given table for each incoming tuple, using the

information carried by the tuple to decide which information to extract from the table. The first output

stream defined by the select operator is used to output the tuples matching the given SQL expression.

The schema of the first output stream tuples will be equal to the table schema. A second output stream

can be used to forward incoming tuples (hence, its schema will be identical to the input tuples one) if

the given SQL statement produces no results. The third output can be defined in order to output the

amount of tuples matching the given SQL expression. In this case, the output schema is composed

by the fields of the SQL where cause plus a field containing the counter value, referred to as Count.

The select operator is defined as:

Select{DB,SQL}(I1, O1[, O2, O3])

Parameter DB specifies the table to be queried while parameter SQL represents the SQL state-

ment to execute. Input stream I1 and output streamO1 are defined as mandatory while output streams

O2 and O3 are defined as optional. A sample select operator can be used to retrieve, for each incom-

ing tuple, the more expensive call made by the Caller phone number appearing in the input tuple.

This operator is be defined as:

Select{Top_Expensive,SELECT * FROM Top_Expensive

WHERE Top_Expensive.Phone = input.Caller}(I1, O1)

Insert Operator The insert operator is used to persist the information carried by each incoming

tuple to the given table. It defines a single input stream and an optional output stream to forward

tuples after they have been persisted. As for the other operators, two parameters are provided to

specify the table to which information should be persisted and the SQL expression containing the

operation to execute. The insert operators is defined as:

Insert{DB,SQL}(I1[, O1])

A sample insert operator to persist the information of an incoming tuple in the Top_Expensive

table, without forwarding the incoming tuple itself, can be defined as:

Vincenzo Massimiliano Gulisano An Elastic Parallel-Distributed Stream Processing Engine

30 CHAPTER 2. DATA STREAMING BACKGROUND

Insert{Top_Expensive, INSERT INTO Top_Expensive

VALUES (Caller,Time,Price)}(I1)

It can be noticed that, in the sample insert operator, a single input but no output stream is defined.

Delete Operator The delete operator is used to delete records from a given table. The operator

defines one input stream and up to two optional output streams. The first optional output is used to

output the tuples that have been deleted from the table. The schema for this tuples will be equal to the

table schema. The second optional output is used to forward incoming tuples, its schema being equal

to the one of the input tuples. The operator is defined as:

Delete{DB,SQL}(I1[, O1, O2])

A sample delete operator used to remove records from the Top_Expensive table can be defined

as:

Delete{Top_Expensive,DELETE FROM Top_Expensive

WHERE Top_Expensive.Phone = input.Caller}(I1, O1, O2)

In this case, each incoming tuple will be forwarded to the output stream O2 and, in case a record

is removed from the table, it will be forwarded to output stream O1.

Update Operator The update operator is used to update records stored in a table. Similarly to the

delete operator, the update operator defines one input stream and up to two optional output streams.

The first output stream can be defined to forward incoming tuples, its schema being equal to the input

tuples one. The second output stream can be defined to forward the table tuples being updated, its

schema being equal to the table one. The operator is defined as:

Update{DB,SQL}(I1[, O1, O2])

A sample operator used to update the Price field to the value carried by an input tuple can be

defined as:

Update{Top_Expensive,UPDATE Top_Expensive

SET Top_Expensive.Price = input.Price

WHERE Top_Expensive.Phone = input.Caller }(I1, O1, O2)

An Elastic Parallel-Distributed Stream Processing Engine Vincenzo Massimiliano Gulisano

2.3. TABLE OPERATORS 31

In this case, as two output streams are defined, each incoming tuple will be forwarded to output

stream O2 while each record being updated (if any) will be forwarded to output stream O1.

Vincenzo Massimiliano Gulisano An Elastic Parallel-Distributed Stream Processing Engine

32 CHAPTER 2. DATA STREAMING BACKGROUND

An Elastic Parallel-Distributed Stream Processing Engine Vincenzo Massimiliano Gulisano

Part III

STREAMCLOUD
PARALLEL-DISTRIBUTED DATA

STREAMING

Chapter 3

StreamCloud Parallel-Distributed
Data Streaming

In this chapter, we present StreamCloud technique to parallelize the execution of data streaming

operators. We first discuss how Stream Processing Engines (SPEs) have evolved from centralized

solutions to parallel-distributed solutions to reach for higher processing throughputs. Subsequently,

we explore the challenges that motivated our work and discuss how they have been addressed. Finally,

we present a thorough evaluation of the proposed parallelization technique.

3.1 Stream Processing Engines Evolution

Earliest SPE prototypes were designed as centralized applications. Some of these first centralized

prototypes include Aurora [CCC+02] [ACC+03], STREAM (the STandford stREam datA Manager)

[ABB+04] [ABW06] [BBC+04], and TelegraphCQ [CCD+03] [Des04]. In this scenario, queries are

entirely deployed at the same SPE instance. The main shortcoming of a centralized SPE is that, upon

saturation of available resources (e.g., CPU), processing of tuples is delayed, leading to high latencies

in system output. A first evolution step was to move from centralized to distributed SPEs. One of

the first prototype of distributed SPEs is Borealis [AAB+05b] [ABC+05], an evolution of Aurora

and Medusa [CBB+03] [SZS+03]. As discussed in [ÖV11], two different kinds of query execution

parallelism exist: inter-query parallelism allows for parallel execution of different queries at different

SPE instances while intra-query parallelism allows for execution of a single query at multiple SPE in-

stances. Intra-query parallelism is further divided into inter-operator and intra-operator parallelism.

Vincenzo Massimiliano Gulisano An Elastic Parallel-Distributed Stream Processing Engine

36 CHAPTER 3. STREAMCLOUD PARALLEL-DISTRIBUTED DATA STREAMING

Inter-operator parallelism allows for execution of different operators belonging to the same query at

different SPE instances while intra-operator parallelism refers to the possibility of deploying a single

operator at multiple SPE instances. Centralized SPEs allow deploying distinct queries at different

data SPE instances (inter-query parallelism). Distributed SPEs allow the deployment of distinct op-

erators belonging to the same query at different SPE instances (inter-operator parallelism), but do not

provide intra-operator parallelism, which is provided by parallel-distributed SPEs.

It should be notice that distributed SPEs might incur in the same problem of their centralized

counterpart. Sudden spikes in the load might lead to high latencies in system output. Both centralized

and distributed SPEs suffer from single-node bottlenecks: each stream goes through a single SPE

instance. Any time the stream volume exceeds the SPE instance capacity (e.g., due to a increase in

the system load that overcomes the instance processing capacity), the system starts delaying tuple

processing, resulting in a growing processing latency. Distinct techniques have been studied to face

this problem, considering both techniques that reduce time or space complexity. For instance, load

shedding [TcZ+03, BDM04] was introduced as a solution to discard part of the incoming tuples if

the processing SPE instance cannot cope with the system load. Decisions about which tuples to

discard are taken depending on how each tuple contribute to the system output. As an example,

if a Quality-of-Service (QoS) metric is defined, load shedding will minimize the QoS degradation

discarding the tuples that contribute less to the overall QoS. Different other techniques have been

defined to reduce the amount of information kept by an SPE instance. As presented in [BBD+02],

these techniques include Sketches, Histograms and Wavelets. For instance, Exponential Histograms

can be used to approximate the result of a given query aggregating together information belonging to

multiple tuples, as presented in [DM07].

We look for a solution that avoids discarding any information due to sudden load variations. We

see as a natural step in SPE evolution the introduction of parallel-distributed SPEs. In such model,

any operator belonging to a query can be deployed in an arbitrary number of nodes. The idea is to

avoid concentrating any stream into a single SPE instance, avoid thus any single-node bottleneck. It

should be noticed that, in real world applications, multiple physical sources define a logical stream.

As an example, imagine a scenario where information related to calls being made by mobile phone is

gathered in order to be processed. All the Call Description Records (CDRs) containing information

like calling number, callee number, call start time, and so on (an example of CDRs information

is presented in Section 2.1) is usually composed by several physical streams generated by several

computing systems. In order to avoid concentrating any stream into a single SPE instance, all the

physical streams composing a logical stream should be always processed in parallel using either

several physical computers or multi-core facilities provided by today off-the-shelf computers.

Figure 3.1 presents the evolution of SPEs showing how a sample query composed by 4 operators

can managed by a centralized, a distributed and a parallel-distributed SPE.

An Elastic Parallel-Distributed Stream Processing Engine Vincenzo Massimiliano Gulisano

3.1. STREAM PROCESSING ENGINES EVOLUTION 37

OP2 OP3 OP4OP1

Distributed SPE

OP2 OP3 OP4OP1

Centralized SPE

OP2 OP3 OP4OP1

Parallel-Distributed SPE

Figure 3.1: SPE evolution

When designing a parallel-distributed SPE, four challenges should be considered:

1. Scalability: the system must be able to process high stream volumes by aggregating the power

of an increasing number of nodes.

2. Semantic Transparency: the results produced by a parallel-distributed query should be equiv-

alent to the ones produced by its centralized or distributed counterpart.

3. Syntactic Transparency: queries should be written as for a centralized SPE, without taking

into consideration any parallelization issue.

4. Elasticity and Dynamic Load Balancing: in a parallel-distributed SPE, the number of nodes

required to process a query (or an operator) might change depending on the incoming stream

volume. A static configuration might lead to either under-provisioning (i.e., allocated SPE in-

stances cannot cope with the system load) or over-provisioning (i.e., allocated SPE instances

are running below their full capacity). The system should be designed considering reconfigura-

tion actions that can change the number of SPE instances assigned to each operator. Moreover,

elasticity should be combined with dynamic load balancing. In a parallel-distributed SPE that

provides dynamic load balancing, new nodes are not provisioned due to a uneven load distribu-

tion, but only if the system as a whole cannot cope with the incoming load. It should be noticed

that dynamic load balancing is crucial for SPEs that rely on public cloud infrastructures (like

Amazon EC2 [Ama]) where provisioning of extra computational resource usually implies a

Vincenzo Massimiliano Gulisano An Elastic Parallel-Distributed Stream Processing Engine

38 CHAPTER 3. STREAMCLOUD PARALLEL-DISTRIBUTED DATA STREAMING

higher cost to pay for the service.

In this chapter and in the following ones we present how StreamCloud, a parallel-distributed

SPE with elastic and dynamic load balancing capabilities, has been designed in order to address

these challenges. The main results were published on ICDCS 2012 [GJPPMV10] and TPDS 2012

[GJPPM+12]. In this chapter, we focus primarily on scalability and semantic transparency. Elastic-

ity and dynamic load balancing will be discussed in Chapter 4 while syntactic transparency will be

discussed in Chapter 6.

3.2 Parallelization strategies

In this section we discuss the different alternatives we considered to parallelize queries in Stream-

Cloud and the overhead associated to each of them.

In order to parallelize an operator, some routing policy must be adopted to distribute its input

tuples to the different SPE instances where the operator is deployed. Due to their one-by-one pro-

cessing, routing of tuples is trivial for stateless operators. Consider a query that is used to process

incoming CDRs discarding the ones referring to phone calls whose price is lower than 5 e. Such

query can be parallelized using an arbitrary number of SPE instance as each single SPE instance will

discard the right tuples independently on how tuples are routed. On the contrary, particular attention

must be given to stateful operators. In order to produce the correct output, we must ensure that all

tuples that must be aggregated/joined together are processed by the same SPE instance. For instance,

with respect to the Aggregate operator presented in Section 2.1.1 computing the number of phone

calls made by each distinct mobile phone and their average duration on a per-hour basis, we must en-

sure that all tuples belonging to the same mobile phone are routed to the same instance to produce the

correct result (that is, if tuples are routed without considering the semantic of the operator, multiple

output tuples referring to the same phone number can be generated, non of them being the correct

answer to the query).

In order to study the different parallelization strategies, we must first consider how the operators

of a query can be distributed (and parallelized) assigning them to a set of available SPE instances.

We characterize the possible different strategies along a spectrum. The first aspect to consider is the

granularity of the parallelization unit: on one extreme, we can chose to distribute the query operators

so that all the operators are deployed at each available SPE instance. On the other extreme, we can

decide to assign operators to SPE instances so that each SPE instance does not contains more than

one operator. Intermediate approaches will be defined by parallelization units that contain at least two

operators.

We illustrate three alternative parallelization strategies by means of the abstract query in Figure

3.3 and its deployment on a cluster of 90 SPE instances. The query is used to compute the number

An Elastic Parallel-Distributed Stream Processing Engine Vincenzo Massimiliano Gulisano

3.2. PARALLELIZATION STRATEGIES 39

of mobile phones that, on a per-hour basis, make N phone calls whose price is greater than P , for

each N ∈ [Nmin, Nmax]. E.g., we might be interested in spotting how many mobile phones make

either 5,6,7,8,9 or 10 calls costing more than 5 e on a per-hour basis. The input tuples schema

is the one presented in 2.1, composed by fields Caller, Callee, Time, Duration, Price, Caller_X,

Caller_Y and Callee_X,Callee_Y. Field Caller specifies the phone number making the call while

field Callee represents the one receiving it. Fields Time and Duration represent the call starting time

and duration, respectively. Filed Price specifies the call cost (in e). Finally, fields Caller_XCaller_Y

and Callee_XCallee_Y represent the geographic coordinates.

The query is composed by two stateful operators (Aggregate operators A1,A2) and three stateless

ones (Map M and Filters F1,F2). Query operators are defined as follows:

M{Caller ← Caller, T ime← Time, Price← Price, }(I,OM)

F1{Price > 5}(OM , OF1)

A1{time, T ime, 3600, 600, Calls← count(), Group− by = (Caller)}(OF1, OA1)

F2{Calls ≥ 5 ∧ Calls ≤ 10}(OA1, OF2)

A2{time, T ime, 3600, 600, Phones← count(), Group− by = (Calls)}(OF2, O)

Map operator M is used to transform the input tuples schema discarding unnecessary fields while

keeping only the ones that are needed by the following operators (i.e., keeping fields Caller, Time

and Price). Map operator M is connected to Filter operator F1 (operator M output stream OM is

the input stream of operator F1). Filter operator F1 is used to forward only tuples whose Price field

is greater than 5 e. Filter operator F1 is connected to Aggregate operator A1 (operator F1 output

stream OF1 is the input stream of operator A1). Aggregate operator A1 is used to count the number

of calls made by each mobile phone on a per-hour basis. Aggregate operatorA1 is connected to Filter

operator F2 (operator A1 output stream OA1 is the input stream of operator F2). Filter operator F2

is used to filter out mobile phones making less than 5 or more than 10 calls. Filter operator F2 is

connected to Aggregate operator A2 (operator F2 output stream OF2 is the input stream of operator

A2). Finally, Aggregate operator A2 is used to count how many mobile phones are making either

5,6,7,8,9 or 10 calls.

In order to study the goodness of different parallelization strategies, we first discuss which are

the important factors that define the parallelization cost. We define two factors that contribute to the

parallelization cost: the Fan-out overhead and the Number of hops overhead. The Fan-out overhead

f represents the system-wide cost related to establishing and keeping all the communication channels

needed by any SPE instance to communicate with other SPE instances. Intuitively, the higher the

number of communication channels with other SPE instances, the higher the overhead. Figure 3.2

presents the average CPU consumption for an SPE instance running a filter operator for an increasing

number of output streams (1,10,20,30,40 and 50 output streams). In all the setups with different

Vincenzo Massimiliano Gulisano An Elastic Parallel-Distributed Stream Processing Engine

40 CHAPTER 3. STREAMCLOUD PARALLEL-DISTRIBUTED DATA STREAMING

1 10 20 30 40 50
0

20

40

60

80

100

Output Streams

%
 C

P
U

 C
on

su
m

pt
io

n

Figure 3.2: Fan-out overhead for a single operator instance

number of output streams the operator is fed with the same constant load of 5000 tuples/second.

When defining 1 or 10 output streams the average CPU consumption is the same, just below 40%.

Starting from 20 outputs streams, the average CPU consumption grows as the number of output

streams increases. With the setup defining the higher number of output streams (50 in the example)

the average CPU consumption grows over 80%, more than the double of the single-output setup.

Number of hops overhead h represents the cost payed to transfer a tuple between operators running

at different SPE instances. When transferring a tuple between different SPE instances each tuple is

serialized just before being sent and deserialized at the receiver site. It should be noticed that, given a

query, this overhead affects all the pairs of consecutive operators running at different SPE instances.

For any parallelization strategy X we define the cost function

c(X) = α · f(X) + β · h(X)

where α, β ∈ [0, 1] are two arbitrary weights.

Query-cloud strategy - QC (Figure 3.3.b). With this strategy, the whole query is deployed at

each SPE instance (90 in the example). In order to provide semantic transparency, tuples have to be

redistributed just before each stateful operator. Therefore, tuples that should be aggregated/joined

together are processed by the same SPE instance. In the query example, tuples are redistributed

before the aggregate operator A1 (counting the number of calls made by each phone number) so that

CDRs referring to the same Caller are processed by the same SPE instance. Similarly, tuples are

redistributed before operator A2 (counting how many times each number of phone calls appears) so

that mobile phones making the same number of calls are processed by the same SPE instance. Being

N the number of SPE instances where the query is deployed, each SPE instance receives one N-th of

the incoming stream. Communication takes place, for every stateful operator, from each instance to

An Elastic Parallel-Distributed Stream Processing Engine Vincenzo Massimiliano Gulisano

3.2. PARALLELIZATION STRATEGIES 41

a) Abstract query

A1 F2 A2
I O

F1M
OM

Map Filter FilterAggregate Aggregate

OF1 OF2OA1

A1 F2 A2F1M

A1 F2 A2F1M

Subcluster 1

b) Query-cloud strategy

... 90

c) Operator-cloud strategy

A2F1M

A2F1M

Subcluster 1

... 18
... 18

... 18...

Subcluster 2 Subcluster 5

A1 F2 A2F1M

A1 F2 A2F1M

d) Operator-set-cloud strategy

Subcluster 1

... 30

Subcluster 2

... 30

Subcluster 3

... 30

Figure 3.3: Query Parallelization Strategies

all other instances. In the example, each SPE instance receives one ninetieth of the incoming stream

and communication takes place before Aggregate operators A1 and A2.

Since each of the N instances keeps a communication channel towards all the other N − 1 in-

stances, fan-out overhead is quadratic with respect to N . Number of hops overhead is proportional to

the number of stateful operators. This is because tuples are redistributed before each stateful operator.

Being s the number of stateful operators defined in a query and N the number of SPE instances, the

cost of the QC strategy is:

c(QC) = α ·N · (N − 1) + β · s ' α ·N2 + β · s

Operator-cloud strategy - OC (Figure 3.3.c). In this strategy, the parallelization unit is a single

operator. Therefore, each operator is deployed over a different subset of nodes (called subcluster). In

the example we assume available SPE instances are uniformely distributed among query operators.

That is, each subcluster is deployed at 18 SPE instances and communication happens from each

instance of one subcluster to all its peers in the next subcluster (downstream peers). Each SPE instance

must keep a communication channel for each of the downstream subcluster instances.

Being l the number of operators composing the query and N the number of SPE instances,

c(OC) = α · N
l
· (l − 1) + β · (l − 1) ' α ·N + β · l

Vincenzo Massimiliano Gulisano An Elastic Parallel-Distributed Stream Processing Engine

42 CHAPTER 3. STREAMCLOUD PARALLEL-DISTRIBUTED DATA STREAMING

Operator-set-cloud strategy - SC (Figure 3.3.d). The above parallelization strategies exhibit a

trade-off between the parallelization costs (i.e., fan-out and number of hops). The QC strategy min-

imizes the number of hops overhead (communication happens only before stateful operators) while

it maximizes the fan-out overhead (communication happens from all to all the SPE instances). On

the other hand, the OC strategy maximizes the number of hops overhead (communication happens

between each pair of consecutive operators) while minimizing the fan-out overhead. The Operator-

set-cloud strategy aims at minimizing both at the same time, reducing the communication between

instances (defining it only before stateful operators) but avoiding the deployment of the entire query

at each SPE instance. The basic idea is to split a query into as many subqueries as stateful operators.

In a query, stateful operators may be interconnected also to stateless ones, leading to different possi-

bilities about which stateless operators to include together with the stateful operator in a subcluster.

For instance, we can partition a query into subclusters that contain a stateful operator plus any of the

following stateless operator separating it from another stateful operator (or the end of the query). If

the query starts with stateless operators, we can also define a first subquery containing all stateless

operators before the first stateful one (referred to as stateless prefix operators). Using this strategy,

the query of Figure 3.3.a has been partitioned into three subqueries, as shown in Figure 3.3.d. As for

the Operator-cloud strategy we suppose the available SPE instances are uniformly distributed among

subclusters. That is, each subquery is deployed on a subcluster of 30 instances. Subquery 1 contains

the map operator M and the filter operator F1. Subquery 2 contains the aggregate operator A1 and

the filter operator F2. Finally, subquery 3 contains the aggregate operator A2.

The total number of hops per tuple is equal to the number of stateful operators (minus one if no

additional subquery is defined for the stateless prefix operators). Communication is required from

all instances of a subcluster to the instances of the next subcluster (since each subquery starts with

a stateful operator it has to receive tuples from all the instances of the previous subcluster in order

to produced the same result the non-distributed version produces). For simplicity, the cost function

is calculated assuming that available SPE instances are uniformly distributed to query subclusters.

Considering the parallelization of a query that defines a stateless prefix (i.e., a first subquery composed

only by stateless operators), being s the number of stateful operators defined in a query and N the

number of available SPE instances,

c(OS) = α · N

s+ 1
· s+ β · s ' α ·N + β · s

We claim that c(QC) > c(SC) and c(OC) > c(SC), that is, OS is the least expensive paral-

lelization strategy. Comparing QC and SC, it can be noticed that the number of hops overhead h is

the same, as they both depend on the number of stateful operators s, while fan-out overhead is higher

for QC as it depends on N2 (while it depends on N for SC). Comparing OC and SC, it can be

noticed that the fan-out overhead h is the same, as they both depend on the number of SPE instances

An Elastic Parallel-Distributed Stream Processing Engine Vincenzo Massimiliano Gulisano

3.2. PARALLELIZATION STRATEGIES 43

a) Abstract query

A1 F2 A2
I O

F1M
OM

Map Filter FilterAggregate Aggregate

OF1 OF2OA1

b) Partitioning into subqueries

A1 F2 A2F1M

Subquery 1 Subquery 2 Subquery 3

Subcluster 1

F1M LBIM

F1M LBIM

Subcluster 2

F2A1 LBIM

F2A1 LBIM

F2A1 LBIM

Subcluster 3

A2 LBIM

A2 LBIM

I LB

I LB

I LB

OIM

OIM

OIM

c) Parallel-Distributed query

Figure 3.4: Query Parallelization in StreamCloud

N , while the number of hops overhead can be higher for OC as it depends on l while it depends on s

for SC (by definition l ≥ s).

StreamCloud employs the Operator-set-cloud strategy as it strikes the best balance between num-

ber of hops and fan-out overheads. According to the Operator-set-cloud strategy, queries are split into

subqueries and each subquery is allocated to a set of StreamCloud instances grouped in a subcluster.

In the rest of the document, we use instance to denote a StreamCloud processing unit (i.e., an in-

stance of StreamCloud running at a given node). All instances of a subcluster run the same subquery,

called local subquery, for a fraction of the input data stream, and produce a fraction of the output data

stream. As discussed previously in this section, in order to provide semantic transparency, tuples

must be routed making sure that tuples that must be processed together are sent to the same operator

instance. We present in the following section how communication between subclusters is designed to

guarantee semantic transparency.

3.2.1 Operators parallelization

In this section we present how queries are parallelized following StreamCloud parallelization

strategy (i.e., the Operator-Set-Cloud strategy). Subsequently, we introduce the operators that encap-

sulate the parallelization logic, Load Balancers and Input Mergers.

Query parallelization is presented by means of the sample query in 3.1, used to compute the

number of mobile phones that, on a per-hour basis, make N phone calls whose price is greater than

P , for each N ∈ [Nmin, Nmax].

Given a subcluster, we term as upstream and downstream its previous and next peers, respectively.

Figure 3.4.a presents the query, while 3.4.b presents how it is partitioned into subqueries.

As presented in the previous Section 3.2, we must ensure that tuples that must be processed

Vincenzo Massimiliano Gulisano An Elastic Parallel-Distributed Stream Processing Engine

44 CHAPTER 3. STREAMCLOUD PARALLEL-DISTRIBUTED DATA STREAMING

together are sent to the same operator instance in order to provide semantic transparency. In order to

do this, we must define which is the distribution unit used to route tuples from a stream to multiple

downstream SPE instances. In StreamCloud this minimum distribution unit is referred to as bucket.

Each stream feeding a parallel operator is partitioned into B disjoint buckets. All tuples belonging to

a given bucket are forwarded to and processed by the same downstream instance. Bucket assignment

is based on one (or more) fields defined by the tuple schema. Given B distinct buckets and tuple

t = (F1, F2, ..., Fn), its corresponding bucket b is computed by hashing one or more of its fields

modulus B (e.g., b = hash(Fi, Fj)%B). As explained later, the fields used to compute the hash

depend on the semantics of the operator to which tuples are forwarded.

Each instance of the downstream subcluster will process tuples belonging to one (or more) buck-

ets. Each subcluster maintains a bucket registry that specifies how buckets are mapped to the subclus-

ter instance). More precisely, being BR the bucket registry and given bucket b, BR[b].dest provides

the instance that must receive tuples belonging to bucket b. The bucket registry associated to one

subcluster is used by its upstream peers to route its incoming tuples. In the following, we say that

subcluster instance A “owns” bucket b (that is, A is responsible for processing all tuples of bucket

b) if, according to the BR of the upstream subcluster, BR[b].dest = A. The assignment of tuples to

bucket is endorsed by special operators, called Load Balancers (LB). They are placed on the outgoing

edge of each instance of a subcluster and are used to distribute the output tuples of the local subquery

to the corresponding instance of the downstream subcluster.

Similarly to LBs on the outgoing edge of an instance, StreamCloud places another special oper-

ator, called Input Merger (IM), on the ingoing edge. IMs take multiple input streams from upstream

LBs and feed the local subquery with a single merged stream.

Figure 3.4.c presents a sample parallel-distributed version of the considered query. In this exam-

ple, input stream I is generated by the 3 different data sources. Subquery 1 is assigned to subcluster 1,

composed by 2 instances. Subquery 2 is assigned to subcluster 2, composed by 3 instances. Subquery

3 is assigned to subcluster 3, composed by 2 instances. Finally, output stream O is composed by 3

distinct physical streams. Each local subquery has been enriched with an IM on the ingoing edge and

a LB on the outgoing edge.

It should be notice that, if subcluster 1 instances are feed directly with the system inputs, the

size of the subcluster will be fixed to 3 instances (one instance for each input stream). Similarly, if

subcluster 3 instances are connected directly to the system outputs, the size of the subcluster will be

fixed to 3 instances (one instance for each output stream). To overcome this limitation, tuples sent by

each data source are first processed by a LB. This way, the number of LBs processing tuples from data

sources is fixed (3 in the example) but the number of subcluster 1 instance can be arbitrarily chosen

by the user. For the same reason, each output stream is preceded by an IM. this way, also the number

of subcluster 3 instance can be arbitrarily chosen by the user.

An Elastic Parallel-Distributed Stream Processing Engine Vincenzo Massimiliano Gulisano

3.2. PARALLELIZATION STRATEGIES 45

3.2.1.1 Load Balancers

In this section we provide a detailed description of Load Balancers operators. As discussed in

the previous Section 3.2.1, load balancers are used to distribute tuples from one local subquery to

all the instances of its downstream subcluster. Upstream LBs of a stateful subquery are enriched

with semantic awareness to guarantee that tuples that must be aggregated/joined together are indeed

received by the same instance. That is, they must be aware of the semantics of the downstream stateful

operator. In what follows, we discuss the parallelization of stateful subqueries for each of the stateful

operators we have considered: Aggregate, Join and Cartesian Product.

Aggregate operator. Parallelization of the Aggregate operator requires that all tuples sharing the

same values of the fields specified in the group − by parameter should be processed by the same

instance. In the example of Figure 3.4.a Aggregate A1 groups incoming tuples by their originating

mobile phone while Aggregate A2 groups incoming tuples by their Calls field. Upstream LBs parti-

tion each input stream intoB buckets and use the bucket registry BR to route tuples to theN instances

where the subquery instance with the Aggregate is deployed. The field specified as group − by pa-

rameter is used at upstream LBs to determine the bucket and the recipient instance of a tuple. That is,

let Fi be the field specified as group−by, then for each tuple t,BR[hash(t.Fi)%B].dest determines

the recipient instance to which t should be sent. If the group − by parameter is defined by multiple

fields, the hash is computed over all of them. LBs are in charge of forwarding tuples sharing the

same value of the group − by field to the same subcluster instance. Algorithm 1 line 1 presents the

pseudo-code used by LBs to route tuples to parallel Aggregate operators. With respect to the example

of Figure 3.4.a, tuples will be routed to Aggregate operator A1 hashing field Caller while tuples will

be routed to Aggregate operator A2 hashing field Calls.

Join operator. The Join considered is an equijoin, i.e., its predicate, expressed in Conjunctive Nor-

mal Form, contains at least a term that defines an equality between two fields Fi and Fj . StreamCloud

uses a symmetric hash join approach [ÖV11]. The protocol is similar to the one used for the aggre-

gate operator. The attribute specified in the equality clause is used at upstream LBs (of both left and

right input streams) to determine the bucket and the recipient instance of a tuple. Algorithm 1 line 1

presents the pseudo-code used by LBs to route tuples to parallel Join operators.

As an example, suppose a Join operator is used to match CDRs coming from two distinct streams

sharing the same calling phone number Caller. Upstream LBs routing tuples of the the Join left

stream and upstream LBs routing tuples of the Join right stream will both route tuples hashing field

Caller.

Vincenzo Massimiliano Gulisano An Elastic Parallel-Distributed Stream Processing Engine

46 CHAPTER 3. STREAMCLOUD PARALLEL-DISTRIBUTED DATA STREAMING

Algorithm 1 Load Balancer Pseudo-Code

LB for Join & Aggregate
Upon: Arrival of t:

1: forward(t,BR[hash(t.Fi)%B].dest)

LB for Cartesian Product
Upon: Arrival of t:

2: for d ∈ BR[hash(t.Fi) % B].dest do
3: forward(t,d)
4: end for

Cartesian Product. The Cartesian Product (CP) operator is defined by an arbitrarily complex pred-

icate (i.e., a predicate involving multiple comparisons like ≤,= or ≥ between multiple fields of the

two input streams schema). Each of the LBs used to route tuples belonging to the left and right stream

partition their data into Bl and Br buckets, respectively. As suggested by the operator name, once

the two input streams have been partitioned into buckets, the cartesian product among all the buckets

must be run to check all the possible matching pairs of tuples. That is, each bucket of the left stream

must be checked against each bucket of the right stream (and vice versa). For this reason, each pair

of buckets bl ∈ Bl, br ∈ Br is assigned to an instance. Given a tuple tl entering the upstream left LB

and a predicate over fields Fi, Fj , the tuple is forwarded to all the instances owning the pair of buckets

(bl, br) : bl = hash(Fi, Fj)%Bl. Similarly, a tuple tr entering the upstream right LB is forwarded

to all the instances owning the pair of buckets (bl, br) : br = hash(Fi, Fj)%Br. It should be noticed

that, for each incoming tuple of the lest (resp. right) stream, the LB might forward a tuple to multiple

downstream instances. From an implementation point of view, the entry BR[b].dest used to feed CP

operators (i.e., the ones used at upstreams LBs) to maintain the recipient instances to which tuples

of bucket b are forwarded is associated to multiple instances. Algorithm 1, lines 2-4, presents the

pseudo-code used by LBs to route tuples to parallel Cartesian Product operators.

Figure 3.5.a depicts a sample query composed by a single CP operator. The query is used to

find, between two streams carrying CDR records, mobile phones involved in two consecutive calls

(as caller or callee) within a time window of 3 seconds. The operator is defined as:

CP{L.Caller = R.Caller ∨ L.Caller = R.Callee∨

L.Callee = R.Caller ∨ L.Callee = R.Callee, time, T ime, 3}(Sl, Sr, O)

It should be noticed that the predicate is not an equijoin because, even if it defines equalities

between fields of the two streams schema, it is expressed as a concatenation of OR conditions.

Figure 3.5.a also shows a sample input sequence and the resulting output. Tuples timestamps are

indicated on the top of each stream (the values to the right of the “ts” tag). For simplicity, tuples are

represented as pairs Caller, Callee (i.e., E,A refers to a phone call made by E to A).

An Elastic Parallel-Distributed Stream Processing Engine Vincenzo Massimiliano Gulisano

3.2. PARALLELIZATION STRATEGIES 47

CP0

CP1

CP2

CP3

IMl0

IMr0

IMl1

IMr1

IMl2

IMr2

IMl3

IMr3

������

0

1

2

3

4

5

6

7

A,B

C,E

E,A

D,E

B,C

B,F

F,A

A,B

D,E

B,C

C,E

B,F

F,A

E,A

CP
Sl

Sr

a) Non-parallel query execution

A,BC,EE,A

D,EB,CB,FF,A

5 4 3 2 1 0ts 5 4 3 2 1 0ts 5 4 3 2 1 0ts

b) Parallel query execution Subcluster1

Sl1

Sr1

Sl2

Sr2

A,B

C,E

E,A

D,E

B,C

B,F

F,A

LB 4

6

0

2

LB 4

6

0

2

LB 3

7

1

5

LB 3

7

1

5

Subcluster2

C,E

D,E

C,E

B,C

E,A

F,A

A,B

B,C

E,A

F,A
C,E

B,C

C,E

D,E

A,B

B,C

Figure 3.5: Cartesian Product Sample Execution

In the example, a CDR related to a phone call made from mobile phone A to mobile phone B is

received at time 0 on stream Sl. A CDR related to a phone call made by mobile phone D to mobile

phone E is received at time 1 on stream Sr, and so on. Four tuples are outputted by the CP operator.

An output tuple, matching tuple A,B with tuple B,C is produced at time 2. Two output tuples,

matching tuple C,E with tuple D,E and matching tuple C,E with tuple B,E, are produced at time

3. Finally, an output tuple matching tuple E,A with tuple F,A is produced at time 5.

Figure 3.5.b shows the parallel version of the query, deployed at 4 SPE instances. Both Sl and Sr
are composed by two physical streams. The logical stream Sl is composed by physical streams Sl1,Sl2
while the logical stream Sr is composed by physical streams Sr1,Sr2. Each pair of streams is forward-

ing tuples to one of the 4 instances of the parallel CP operator. The left stream has been partitioned

into 2 buckets b0l and b1l . In the example, tuples whose Caller field is A,B or E belong to b0l and are

sent to the Cartesian Product instances CP0 and CP1 (i.e., BR[b0l].dest={CP0, CP1}). Tuple whose

Caller field is C,D or F belong to b1l and are sent to the Cartesian Product instances CP2 and CP3

(i.e., BR[b1l].dest={CP2, CP3}). Similarly, the right stream has been partitioned into 2 buckets b0r and

b1r . Tuple whose Caller field is A,B or C belong to b0r and are sent to the Cartesian Product instances

CP0 and CP2 (i.e., BR[b0r].dest={CP0, CP2}). Tuple whose Caller field is D,E or F belong to b1r
and are sent to the Cartesian Product instances CP1 and CP3 (i.e., BR[b1r].dest={CP1, CP3}). Each

of the 4 CP instances performs one fourth of the whole Cartesian Product on the incoming streams.

Vincenzo Massimiliano Gulisano An Elastic Parallel-Distributed Stream Processing Engine

48 CHAPTER 3. STREAMCLOUD PARALLEL-DISTRIBUTED DATA STREAMING

a) A,B – B,C

A,B
0

A,B
1

A,B

B,C
2

B,F
3

A,B

B,C

b)
A,B

0
A,B

1
A,B

2

B,C
3

A,B

B,F

Wl

Wr

Wl

Wr

Wl

Wr

Wl

Wr

Wl

Wr

Wl

Wr

Wl

Wr

Wl

Wr

Figure 3.6: Cartesian Product Sample Execution

3.2.1.2 Input Mergers

In this section, we discuss how input mergers (IMs) (similarly to LBs) are designed to guarantee

semantic transparency. As presented in Section 3.2.1, input mergers IMs are installed by StreamCloud

on the ingoing edge of each local subquery when a query is parallelized. The goal of the IMs is to

process tuples from multiple input streams (one for each upstream LB) and feed the local subquery

with a single merged stream.

Due to the parallel-distributed execution, arrival order of input tuples at one operator might change

with respect to a centralized scenario. That is, the tuple order of a logical stream might not be

preserved when the latter is split into multiple physical streams, processed by different instances and

finally merged. As an example, consider a sequence of three tuples t1, t2, t3 exchanged between two

operators OP1 and OP2, so that t1.ts < t2.ts < t3.ts. If the two operators are deployed at the same

SPE instance, tuples will be outputted and consumed in timestamp order. On the contrary, if the two

operators are deployed at different SPE instances and tuples follow different paths to reach operator

OP2, there’s no guarantee that tuples will be consumed in timestamp order.

A naïve IM that simply forwards incoming tuples in a FIFO manner may lead to incorrect results.

The following example consider two possible evolutions of the operator CP0 presented in Figure

3.5.b. We consider a first evolution where tuples are processed in the same order of the centralized

execution. In the second evolution example we consider a different processing order and we show how

the corresponding output tuples differ from the ones produced execution that processed the tuples in

the same order of a centralized execution. The two evolutions of operator CP0 left and right windows

are presented in Figure 3.6.(a-b). The Figure presents the tuples maintained by the left window (Wl)

and the right window (Wr) at seconds 0,1,2 and 3 (the values to the left of each pair of windows).

We consider first the evolution presented in Figure 3.6.a. Tuple (A,B) is received at time 0 and

buffered in Wl. Tuple (B,C) is received at time 2 and buffered in Wr. Tuples (A,B) and (B,C)

are matched and an output tuple is produced. Finally, tuple (B,F) is received at time 3 and tuple

(A,B) is discarded (time distance between (B,F) and (A,B) is equal to the window size, set to 3

seconds in the experiment). Figure 3.6.b presents the second possible evolution of CP0 windows. In

this execution, tuple B,C is received just after B,F . Tuple (A,B) is received at time 0 and buffered

in Wl. Tuple (B,F) is received at time 3 and tuple (A,B) is discarded. Finally, tuple (B,C) is

received, but no output is produced as tuple (A,B) has been already discarded.

StreamCloud IMs are designed to preserve the tuple arrival order. Hence, the execution of a

parallel-distributed operator is equivalent to the one of its centralized counterpart. Multiple timestamp

An Elastic Parallel-Distributed Stream Processing Engine Vincenzo Massimiliano Gulisano

3.2. PARALLELIZATION STRATEGIES 49

ordered input streams produced by upstream LBs are merged by the IM into a single timestamp

ordered output stream. This implies that the local subquery will process the tuples in the same order of

its centralized counterpart, producing timestamp ordered output tuples. To guarantee correct sorting,

each IM forwards an incoming tuple if at least one input tuple has been received for each of its input

streams. In this case, the forwarded tuple is the one that has the earliest timestamp. To avoid blocking

of the IM (if no tuple is received in one of the input streams the IM cannot forward any tuple),

upstream LBs send dummy tuples for each output stream that has been idle for the last d time units.

Dummy tuples are discarded by IMs and only used to unblock the processing of other streams. In the

example of Figure 3.5.b, the input merger of the right input stream of operator CP0 ensures that tuple

(B,C) is forwarded before tuple (B,F), leading thus to the correct result.

Algorithm 2 presents Input Mergers and Load Balancers pseudo-code. With respect to the Input

Mergers protocol, each incoming tuple t received on input stream i is buffered (Line 1). If a tuple has

been received for each input i, the one having the earliest timestamp is chosen (Lines 2-3). Finally, the

tuple is forwarded if it is not a dummy tuple (Lines 4-6). With respect to the Load Balancer protocol,

each time a tuple t is forwarded to destination dest, the latest timestamp value lastTS is updated to

t.ts while the forwarding time of the destination lastT ime[dest] is updated to currentTime()

(Lines 8-9). Subsequently, a dummy tuple carrying the timestamp of the last forwarded tuple is sent

to all the destination that have been idle (i.e., no tuple as been forwarded to them) during the last d

time units (Lines 10-12).

Algorithm 2 Input Merger Pseudo-Code
Upon: Arrival of tuple t from stream i

1: buffer[i].enqueue(t)
2: if ∀i buffer[i].noEmpty() then
3: t0 = earliestTuple(buffer)
4: if ¬ isDummy(t0) then
5: forward(t0);
6: end if
7: end if

Timeout Management at LBs
Upon: forward(t,d):

8: lastTS:= t.ts
9: lastTime[d]:= currentTime()

Upon: ∃dest : currentTime() ≥ lastTime[dest]+d
10: dummy.ts:= lastTS
11: forward(dummy, nextSubcluster[dest])
12: lastTime[dest]:= lastTime[dest]+d

Vincenzo Massimiliano Gulisano An Elastic Parallel-Distributed Stream Processing Engine

50 CHAPTER 3. STREAMCLOUD PARALLEL-DISTRIBUTED DATA STREAMING

3.3 StreamCloud parallelization evaluation

In this section we present the evaluation of StreamCloud parallelization technique. We first intro-

duce the evaluation setup. Subsequently, we evaluate the scalability and overhead of the paralleliza-

tion strategies of Section 3.2. Two additional sets of experiments focus on individual operators and

evaluate their scalability for increasing input loads. Finally, we highlight how StreamCloud takes full

advantage of multi core architectures.

3.3.1 Evaluation Setup

The evaluation was performed in a shared-nothing cluster of 100 nodes (blades) with 320 cores.

The blades composing the cluster are presented in Table 3.1. All blades are Supermicro SYS-5015M-

MF+ equipped with 8GB of RAM and 1Gbit Ethernet and a directly attached 0.5TB hard disk.

Rack 1 2 3 4
Nodes 20 20 30 30

CPU PentiumD Xeon 3040 Xeon X3220 Xeon X3220
@2.8GHz @1.86GHz @2.40GHz @2.40GHz

Cores 2 2 4 4

Table 3.1: Cluster setup

3.3.2 Scalability of Queries

A first set of experiments was conducted in order to evaluate the performance of the different par-

allelization strategies introduced in Section 3.2 (i.e., query-cloud strategy QC, operator-cloud strategy

OC and operator-set-cloud strategy SC). Initially, we have studied the per-tuple processing cost con-

sidering both CPU cycles devoted to tuple processing, CPU cycles devoted to tuple distribution and

idle CPU cycles. The distribution of CPU cycles among the ones spent processing tuples and the ones

spent forwarding them can be computed comparing the CPU utilization with the cost of each opera-

tor (representing the percentage of time the operator is active). E.g., a query with a single operator

showing 80% CPU utilization and cost 0.5 results in 40% of CPU cycles devoted to tuple processing,

40% of CPU cycles devoted to tuples distribution processing and 20% of idle CPU cycles.

The query of Figure 3.7 was deployed in a cluster of 30 instances, according to the three paral-

lelization strategies of Section 3.2. For each of the three approaches, Figure 3.8(a) shows how the

CPU usage is split among tuples processing, tuples distribution and idle cycles. In the Figure, pro-

cessing cost is referred to as Operator, distribution cost is referred to as Distribution while idle cycles

are referred to as Idle.

The query-cloud approach requires communication from each of the 30 instances to all other

An Elastic Parallel-Distributed Stream Processing Engine Vincenzo Massimiliano Gulisano

3.3. STREAMCLOUD PARALLELIZATION EVALUATION 51

peers, for each of the three stateful operators (roughly 3 ·302 communication channels). Figure 3.8(a)

shows that the overall distribution overhead is around 40%. The remaining 60% is used for tuple

processing.

The operator-cloud strategy shows a distribution overhead of more than 30%, while CPU ratio

used to process tuples is roughly 35%. The unused CPU cycles are due to the difference between the

nominal subcluster sizes and the actual ones. For instance, suppose that the optimal distribution plan

(i.e., the plan computing how to assign available SPE instances to the query subclusters in order to

achieve the highest throughput) requires 4.3 instances for a given subcluster. In this case, the request

translates into an assignment of 5 instances, thus leading to one CPU that is not fully utilized.

The operator-set-cloud approach exhibits the lowest communication overhead (roughly 10%). As

with the previous approach, the difference between nominal and actual subcluster sizes lead to unused

resources. However, since the number of subclusters defined by the operator-set-cloud approach is

generally lower than the one defined by the operator-cloud approach, the “idle” percentage of the

former is lower than that of the latter.

After studying how CPU cycles are devoted to both tuple processing and distribution, we have

focused on the maximum throughput each strategy can achieve. The upper part Figure 3.8(b) shows

the scalability of the three approaches, using up to 60 instances. For the query-cloud approach,

we could only use half of the instances because the fan-out overhead with more than 30 instances

was already exceeding the available resources at deployment time. For each strategy, different sub-

cluster sizes have been evaluated and we only report the configurations that achieved the highest

throughput. The StreamCloud approach (operator-set-cloud) attains a performance of approximately

40000 tuples/second, that is, a performance from 2 to 4 times better than operator-cloud (reaching

approximately 10000 tuples/second) and query-cloud (reaching approximately 20000 tuples/second),

respectively.

The bottom part of Figure 3.8(b) shows the evolution of the CPU usage for increasing loads. The

query-cloud and operator-set-cloud approaches reach 100% CPU utilization. However, the former

hits the maximal CPU usage with low input loads (≤ 10, 000 tuples/second) while the operator-

set-cloud approach sustains up to 40, 000 t/s. The operator-cloud approach shows a maximal CPU

utilization of 60% for an input rate of approximately 20000 tuples/second (i.e., roughly 40% of the

CPU is not used). As previously discussed, this is due to the difference between the nominal size of

each subcluster and the actual one.

3.3.3 Scalability of Individual Operators

In this section we evaluate the scalability of StreamCloud operators using the proposed paral-

lelization technique. This set of experiments focuses on the scalability of subclusters with one de-

ployed operator (i.e., Aggregate, Map, Join and Cartesian Product) and shows the associated over-

Vincenzo Massimiliano Gulisano An Elastic Parallel-Distributed Stream Processing Engine

52 CHAPTER 3. STREAMCLOUD PARALLEL-DISTRIBUTED DATA STREAMING

M1 J1 F1 J2 M2 A1 F2 M3

M1 J1 F1 J2 M2 A1 F2 M3

M1 J1 F1 J2 M2 A1 F2 M3

Query-Cloud

Operator-set-cloud

Operator-Cloud

Intra-Cluster Communication

Extra-Cluster Communication

Cluster boundaries

M1: Map 1

J1: Join 1

F1: Filter 1

J2: Join 2

M2: Map 2

A1: Aggregate 1

F2: Filter 2

M3: Map 3

Figure 3.7: Query used for the evaluation.

head. The overhead is measured as average CPU utilization and average input queue length. The

average CPU utilization is computed as the average of the CPU utilization of each SPE instance

where the parallel-operator is deployed. Similarly, the average input queue length is computed as the

average of the input queue length of each SPE instance. The input queue length is taken as a measure

of the overhead since the input queue of an operator is usually empty when it is not overloaded while

it starts growing as soon as the operator cannot cope with the current input load (i.e., when not all the

tuples buffered in the input queue can be processed as soon as they are received).

Three different setups are evaluated for each parallel-operator. The first setup considers a deploy-

ment over a single SPE instance. The remaining setups consider a deployment over 20 and 40 SPE

instances for the Aggregate, Map and Join operator and a deployment over 16 and 36 SPE instances

for the Cartesian Product (we discuss this setup in the following section). In all the experiments, the

machines used to run the parallel operators have been chosen among the ones of racks 3 and 4, as

they share the same quad-core CPUs and have the same amount of main memory (see Table 3.1). In

this set of experiments, each machine runs a single instance of StreamCloud.

All the experiments share the input schema presented in Section 2.1, referring to call descrip-

tion records and composed by fields Caller, Callee, Time, Duration, Price and coordinates

Caller_X,Caller_Y and Callee_X,Callee_Y . Input tuples forwarded to the parallel operators

are taken from a set of real anonymized CDRs.

The experiments show the throughput behavior as the injected load increases. We experienced

a common pattern through all the experiments that can be summarized in three stages: (1) an initial

stage with increasing throughput, CPU utilization below 100% and empty queues; (2) a second stage

where throughput increases with a milder slope: instances are close to saturation and queues start

growing and (3) a final stage showing 100% CPU utilization where queues reach their limits and

throughput becomes stable. Each stage can be clearly seen in the bottom parts of Figures 3.3.3.0.1,

An Elastic Parallel-Distributed Stream Processing Engine Vincenzo Massimiliano Gulisano

3.3. STREAMCLOUD PARALLELIZATION EVALUATION 53

(a) CPU usage breakdown.

0%

20%

40%

60%

80%

100%

Query Cloud Operator
Cloud

OperatorSet
Cloud

Distribution
Idle
Operator

(b) Scalability

0 40000 80000

0.5

1

C
P

U
 U

s
a

g
e

Load (t/s)

0

2

4

x 10
4

T
h

ro
u

g
h

p
u

t
(t

/s
)

Query−cloud

Operator−cloud

Operator−set−cloud

Figure 3.8: Parallelization strategies evaluation

3.3.3.0.1, 3.3.3.0.3 and 3.3.3.0.4 where solid lines show the CPU usage (left Y axis) and dotted lines

show queue lengths (right Y axis).

Aggregate operator The Aggregate operator computes the average duration and the number of calls

made by each mobile phone; the window size and advance are set to 60 and 10 seconds, respectively.

The operator is defined as

Agg{time, T ime, 60, 10, Calls← count(),Mean_Duration← mean(Duration),

Group− by = (Caller)}(I,O)

The schema of the output tuples is composed by fields Caller,Calls and Mean_Duration. The

Aggregate operator exhibits a linear evolution of the throughput for different input rates and number

of instances (upper part of Figure 3.3.3.0.1). When deployed on a single instance, the Aggregate

Vincenzo Massimiliano Gulisano An Elastic Parallel-Distributed Stream Processing Engine

54 CHAPTER 3. STREAMCLOUD PARALLEL-DISTRIBUTED DATA STREAMING

manages an input rate of roughly 11000 t/s. Twenty instances manage an input rate of roughly 210000

t/s (19 times the rate of the single instance) while forty reach a throughput of roughly 430000 t/s (39

times the rate of the single instance).

0 1 2 3 4 5 6 7
x 10

5

0

0.5

1

C
P

U
 U

sa
ge

 (
%

)

Load (t/s)

0

5000

10000

A
vg

 Q
ue

ue
 L

en
gt

h
(#

t)0

2

4

6x 10
5

T
hr

ou
gh

pu
t (

t/s
)

 1 Proc. − t/s
20 Proc. − t/s
40 Proc. − t/s

 1 Proc. − CPU
20 Proc. − CPU
40 Proc. − CPU

 1 Proc. − Q. Length
20 Proc. − Q. Length
40 Proc. − Q. Length

Figure 3.9: Parallel Aggregate operator evaluation.

0 0.5 1 1.5 2 2.5 3
x 10

5

0

0.5

1

C
P

U
 U

sa
ge

 (
%

)

Load (t/s)

0

5000

10000

A
vg

 Q
ue

ue
 L

en
gt

h
(#

t)0

1

2

3x 10
5

T
hr

ou
gh

pu
t (

t/s
)

 1 Proc. − t/s
20 Proc. − t/s
40 Proc. − t/s

 1 Proc. − CPU
20 Proc. − CPU
40 Proc. − CPU

 1 Proc. − Q. Length
20 Proc. − Q. Length
40 Proc. − Q. Length

Figure 3.10: Parallel Map operator evaluation.

An Elastic Parallel-Distributed Stream Processing Engine Vincenzo Massimiliano Gulisano

3.3. STREAMCLOUD PARALLELIZATION EVALUATION 55

Map operator For each input CDR, the Map operator computes the call end time, given the start

time and the duration. It is defined as

M{Caller ← Caller, Callee← Callee, T ime← Time,End_Time← Time+Duration,

Price← Price, Caller_X ← Caller_X,Caller_Y ← Caller_Y,Callee_X ← Callee_X,

Callee_Y ← Callee_Y }(I,O)

The schema of the output tuples is composed by fields Caller, Callee, Time, End_Time, Price

and coordinates Caller_X,Caller_Y and Callee_X,Callee_Y . As presented in the upper part of

Figure 3.3.3.0.1, when deployed on a single instance, the Map manages an input rate of roughly 7000

t/s. When deployed at 20 instances the operator process 138000 t/s (19 times the rate of the single

instance); doubling the number of available instances the throughput reaches 270000 t/s (38 times the

rate of the single instance).

Join operator The Join operator matches phone calls made by the same user every minute. The

Operator is defined as

J{L.Caller = R.Caller AND L.T ime 6= R.T ime, time, T ime, 60}(Sl, Sr, O)

The schema of the output tuples is composed by the concatenation of the fields of the left and right

input schema (i.e., all the fields composing the CDRs schema).

0 0.5 1 1.5 2 2.5 3 3.5 4
x 10

5

0

0.5

1

C
P

U
 U

sa
ge

 (
%

)

Load (t/s)

0

5000

10000

A
vg

 Q
ue

ue
 L

en
gt

h
(#

t)0

1

2

3x 10
5

T
hr

ou
gh

pu
t (

t/s
)

 1 Proc. − t/s
20 Proc. − t/s
40 Proc. − t/s

 1 Proc. − CPU
20 Proc. − CPU
40 Proc. − CPU

 1 Proc. − Q. Length
20 Proc. − Q. Length
40 Proc. − Q. Length

Figure 3.11: Parallel Join operator evaluation.

When deployed over 1 instance, the throughput of the Join operator is of approximately 7000

tuples/second. When deployed over 20 instances, the throughput of the Join reaches approximately

137000 tuples/second (19 times the rate of the single instance). When deployed over 40 instances the

Vincenzo Massimiliano Gulisano An Elastic Parallel-Distributed Stream Processing Engine

56 CHAPTER 3. STREAMCLOUD PARALLEL-DISTRIBUTED DATA STREAMING

throughput almost doubles, reaching approximately 260000 tuples/second (37 times the rate of the

single instance).

Cartesian Product operator The Cartesian Product considered in the evaluation is the one pre-

sented in Section 3.2.1.1.3, used to spot, between two CDRs streams, mobile phones involved in two

consecutive calls (as caller or callee). The idea is to use this query to spot mobile phones whose con-

secutive calls are suspiciously too close in time. A minimum interval of time in the realm of seconds

is required to end a call and start a new one; for this reason, we spot suspicious phone numbers that ap-

pear in consecutive calls withing a time interval of 5 milliseconds. As discussed in Section 3.2.1.1.3,

the parallelization of the Cartesian Product operator requires routing of the tuples processed by LBs

to multiple instances. This requirement leads to a maximum scalability of
√
N when parallelizing the

operator at N nodes. When deploying the operator 16 nodes we assign one fourth of the partitions of

each stream (resp. left and right) to each node. Similarly, when deploying the operator at 36 nodes,

we assign one sixth of the partitions of each stream to each node.

The throughput scalability of the operator is shown in the upper part of Figure 3.3.3.0.4. When

deployed over 1 instance, the throughput of the Cartesian Product operator is of approximately 14000

tuples/second. When deployed over 16 instances, the throughput of the Join reaches approximately

53000 tuples/second (3.8 times the rate of the single instance). When deployed over 36 instances the

throughput reaches approximately 60000 tuples/second (5 times the rate of the single instance).

0 1 2 3 4 5 6 7 8
x 10

4

0

0.5

1

C
P

U
 U

sa
ge

 (
%

)

Load (t/s)

0

2

4x 10
4

A
vg

 Q
ue

ue
 L

en
gt

h
(#

t)0

5

10x 10
4

T
hr

ou
gh

pu
t (

t/s
)

 1 Proc. − t/s
16 Proc. − t/s
36 Proc. − t/s

 1 Proc. − CPU
16 Proc. − CPU
36 Proc. − CPU

 1 Proc. − Q. Length
16 Proc. − Q. Length
36 Proc. − Q. Length

Figure 3.12: Parallel Cartesian Product operator evaluation.

An Elastic Parallel-Distributed Stream Processing Engine Vincenzo Massimiliano Gulisano

3.3. STREAMCLOUD PARALLELIZATION EVALUATION 57

3.3.4 Multi-Core Deployment

In this experiment, we aim at quantifying the scalability of StreamCloud with respect to the num-

ber of available cores in each node, that is, to evaluate whether StreamCloud is able to effectively use

the available CPUs/cores/hardware threads of each node.

We focus on the Aggregate operator of Section 3.3.3, used to compute the average duration and

the number of calls made by each mobile phone (window size and advance are set to 60 and 10

seconds, respectively). The evaluation has been conducted deploying the operator over 1, 10 and 20

quad-core nodes, respectively. On each node, up to 4 StreamCloud instances were deployed.

Figure 3.13 shows linear scalability with respect to the number of StreamCloud instances per

node. When instantiating up to one StreamCloud instance per node, the single node setup achieves a

throughput of approximately 11400 tuples/second, 10 nodes achieve 110000 tuples/second (9.9 times

more) while 20 nodes achieve 215000 tuples/second (19 times more). When instantiating two Stream-

Cloud instances per node, the throughputs of the single node, 10 nodes and 20 nodes setups grow to

22000, 218000 and 415000 tuples/second, respectively; achieving 1.9 times higher throughput on

average than the single instance case. When instantiating three StreamCloud instances per node, the

throughputs of the single node, 10 nodes and 20 nodes setups grow to 32500, 318000 and 630000 tu-

ples/second, respectively; achieving 2.8 times higher throughput on average than the single instance

case. Finally, when instantiating four StreamCloud instances per node, the throughputs of the single

node, 10 nodes and 20 nodes setups grow to 42500, 421000 and 815000 tuples/second, respectively;

achieving 3.7 times higher throughput on average than the single instance case.

The reason why StreamCloud scales linearly with respect to the number of available cores of

each machine is due to its threads scheduling policy. StreamCloud defines three threads for collecting

tuples received from upstream instances, processing them and for sending them to the downstream

instances. As the scheduling policy enforces only one active thread at a given point in time, we can

deploy as many StreamCloud instances as available cores and scale with the number of cores per

node. We give a detailed overview of the tuples processing paradigm defined in Borealis in Appendix

A.3.

Vincenzo Massimiliano Gulisano An Elastic Parallel-Distributed Stream Processing Engine

58 CHAPTER 3. STREAMCLOUD PARALLEL-DISTRIBUTED DATA STREAMING

1 10 20
0

2

4

6

8

10x 10
5

Number of Nodes

T
hr

ou
gh

pu
t (

t/s
)

1/4 proc.
2/4 proc.
3/4 proc.
4/4 proc.

Figure 3.13: Join maximum throughput vs. number of StreamCloud instances per node.

An Elastic Parallel-Distributed Stream Processing Engine Vincenzo Massimiliano Gulisano

Part IV

STREAMCLOUD DYNAMIC LOAD
BALANCING AND ELASTICITY

Chapter 4

StreamCloud Dynamic Load
Balancing and Elasticity

As introduced in Section 3.1, the number of instances assigned to run a parallel-distributed query

might be inadequate depending on the current system input load. In order to avoid under-provisioning

(i.e., the number of assigned instances cannot cope with the system load) or over-provisioning (i.e.,

assigned instances are not running at their full capacity), the system should be able to dynamically

provision and decommission instances depending on the current system load.

In this chapter, we presents StreamCloud dynamic load balancing and elasticity protocols. It

should be noticed that elastic capabilities should be combined with dynamic load balancing, to make

sure that instances are provisioned (resp. decommissioned) only when the system as a whole cannot

cope with the current incoming load (resp. when the system as a whole is running below its full

capacitiy).

We first introduce StreamCloud architecture, presenting its different composing units and how

they interact. Subsequently, we present the protocol used to transfer operators state across nodes and,

finally, the conditions upon which dynamic load balancing or elastic reconfiguration actions are taken.

4.1 StreamCloud Architecture

This section presents the main components of StreamCloud architecture. We first briefly discuss

which are tasks the system needs to address in order to attain elasticity and dynamic load balancing;

subsequently, we present which components have been designed to address these tasks.

Vincenzo Massimiliano Gulisano An Elastic Parallel-Distributed Stream Processing Engine

62 CHAPTER 4. STREAMCLOUD DYNAMIC LOAD BALANCING AND ELASTICITY

The first task that is needed by a system that provides dynamic load balancing and elastic capa-

bilities is monitoring of running instances, in order to continuously check whether a reconfiguration

action should be triggered. In case of a dynamic load balancing, provisioning or decommissioning

action, decisions about how to reconfigure the system are taken based on the current state of each run-

ning instance. Hence, the system will need to define periodically reports that can be used to decide

how to redistribute the load during a reconfiguration action. Finally, in order to provision or decom-

mission instances, the system must also define a pool of available instance, from where instances

are taken in case of provisioning and to where instances will be maintained once they are decom-

missioned. It should be notice that, due to the partitioning of queries into subqueries (discussed in

Section 3.2), decisions about dynamic load balancing, provisioning and decommissioning reconfigu-

ration actions cannot be taken at the whole “query level", but must be taken independently for each

query subcluster.

Figure 4.1 illustrates a sample configuration with StreamCloud elastic management components.

In the example, we consider the query presented in section 3.2, computing the number of mo-

bile phones that, on a per-hour basis, make N phone calls whose price is greater than P , for each

N ∈ [Nmin, Nmax]. Following StreamCloud parallelization technique, the query has been parti-

tioned into two subqueries, one for each stateful operator. More precisely, subquery 1 contains op-

erators M,F1, A1 while subquery 2 contains operators F2, A2. In the example, subclusters 1 and 2

have been deployed over 2 and 3 StreamCloud instances, respectively.

StreamCloud’s architecture includes the following components: StreamCloud Manager (SC-

Mng), Resource Manager (RM) and Local Managers (LMs). Each StreamCloud instance runs a LM

to monitor the instance resource utilization (i.e., CPU consumption) and its incoming load. Each LM

sends periodical reports to SC-Mng. Furthermore, each LM is able to reconfigure the local query

when nodes are provisioned, decommissioned or a dynamic load balancing action is triggered. LMs

reports are collected by SC-Mng that aggregates them on a per-subcluster basis. Depending on the

collected data, SC-Mng may decide to reconfigure the system triggering a dynamic load balancing

action, provisioning new instances or decommissioning part of the existing ones. Reconfiguration

actions are taken and executed independently for each subcluster. Whenever instances must be pro-

visioned or decommissioned, SC-Mng interacts with the RM. The latter maintains a pool of assigned

and available StreamCloud instances. Each time an instance is assigned it moves its ID from the

available instances pool to the assigned instances pool. Similarly, each time an instance is decommis-

sioned, it moves its ID from the assigned instances pool to the available one. StreamCloud Resource

Manager has been implemented as a generic interface so that the system is able to interact with any

cloud data center module. The Resource Manager can interact with a public cloud based on the infras-

tructure as a service model (e.g., Amazon EC2 [Ama]). On the other hand, the resource manager can

also interface with a private cloud infrastructure, like OpenNebula [Ope] or Eucalyptus [Euc]. In this

An Elastic Parallel-Distributed Stream Processing Engine Vincenzo Massimiliano Gulisano

4.1. STREAMCLOUD ARCHITECTURE 63

SC

Manager

Resource

Manager

SC Instance SC Instance...

A1F1M

Subquery 1

F2 A2

Subquery 2

Subcluster 1

Subcluster 2

A1F1MIM LB

Local Manager

A1F1MIM LB

Local Manager

A2F2IM LB

Local Manager

A2F2IM LB

Local Manager

A2F2IM LB

Local Manager

Figure 4.1: Elastic management architecture.

second case, StreamCloud provides an implementation for the Resource Manager. The implementa-

tion allows the user to maintain a pool of available instances that can optionally have StreamCloud

software running on them without any query deployed. If no query is deployed, resources consumed

by StreamCloud are negligible: the CPU consumption of an idle StreamCloud instance is in the order

of 0.002% while its memory footprint is around 20MB. Hence, while in the available pool, a node

can be used by other applications that will not be affected by the idle StreamCloud instance. Stream-

Cloud software is kept active in available instances to reduce the provisioning time of new instances,

accounting only for deployment time.

As motivated in 3.1, dynamic load balancing and elasticity are really essential for a parallel-

distributed SPE in order to avoid under-provisioning and over-provisioning. A parallel-distributed

SPE is under-provisioned whenever the available nodes cannot cope with the system input load. On

Vincenzo Massimiliano Gulisano An Elastic Parallel-Distributed Stream Processing Engine

64 CHAPTER 4. STREAMCLOUD DYNAMIC LOAD BALANCING AND ELASTICITY

the other hand, it is over-provisioned if the available nodes are not fully utilized. It should be no-

ticed that under-provisioning and over-provisioning depend on the current system input load. Due to

variations in the system load, a given deployed parallel-distributed query may suffer under or over-

provisioning. StreamCloud complements elastic resource management with dynamic load balancing

to guarantee that new instances are only provisioned when a subcluster as a whole is not able to cope

with the incoming load. Both dynamic load balancing and elasticity techniques boil down to the abil-

ity to reconfigure the system in an online and non-intrusive manner. The next section is devoted to

this topic.

4.2 Elastic Reconfiguration Protocols

With respect to dynamic load balancing, provisioning or decommissioning, a reconfiguration ac-

tion is the series of steps taken to move part of the computation of an instance to another instance.

In order to provide a way to transfer only a portion of an instance computation, we need to define

which is the minimal distribution unit. As present in Section 3.2.1, operators parallelization is per-

formed partitioning streams into buckets. In StreamCloud, the minimal distribution unit that can be

transferred between two distinct instances is a single bucket. Hence, a subcluster is reconfigured

transferring the ownership of one or more buckets from an old owner instance to a new owner in-

stance. For instance, one (or more) buckets owned by an overloaded instance may be transferred to

a less loaded instance or to a new instance. When transferring a bucket, the idea is to define a point

in time p so that tuples t : t.ts < p are processed by the old owner while tuples t : t.ts ≥ p are

processed by the new owner. This is straightforward for stateless operators: as they process incoming

tuples individually and do not maintain any state, transferring a bucket only implies changing the

destination instance to which tuples are routed. Tuples t : t.ts < p will be routed to the old owner

instance; starting from tuple t : t.ts = p, tuples will be routed to the new owner instance. However,

state transfer is more challenging when reconfiguring stateful operators. The challenge arise from

two aspects: (1) reconfiguring a stateful operator not only involves a modification about how tuples

are routed but must also define a way for transferring the operators state and (2) due to the sliding

window semantic, a single tuple may contribute to several windows.

Figure 4.2 presents the windows evolution of an aggregate operator having window size = 3600

and advance = 600. The first window includes tuples t having timestamps 0 ≤ t.ts < 3600. The

second window includes tuples t having timestamps 600 ≤ t.ts < 4200, and so on. As shown in the

figure, a tuple t with timestamp t.ts = 2100 contributes to 4 consecutive windows.

When reconfiguring a subcluster, StreamCloud triggers one (or more) reconfiguration actions.

Each action transfers the ownership of a bucket from the old owner to the new owner within the same

subcluster. Each reconfiguration action affects the old owner and the new owner instances and the LBs

An Elastic Parallel-Distributed Stream Processing Engine Vincenzo Massimiliano Gulisano

4.2. ELASTIC RECONFIGURATION PROTOCOLS 65

W [0,3600[

W [600,4200[

W [1200,4800[

t, t.ts = 2100

time

W [1800,5400[

W [2400,6000[

Figure 4.2: Example of tuple contributing to several windows

of the upstream subcluster. StreamCloud defines two different elastic reconfiguration protocols that

trade completion time for communication between the instances being reconfigured. When presenting

the protocols, we refer to a generic bucket b being transferred between the old owner instance A and

the new owner instance B. Both protocols share the initial steps. We first present this common prefix

and, subsequently, the two protocols individually. As introduced in Section 3.2.1, each subcluster

employs a Bucket Registry BR. Table 4.1 presents the parameters used in the following protocols.

4.2.1 Reconfiguration Start

This section presents the common prefix protocol of the two reconfiguration protocols provided

by StreamCloud. As presented in the previous section, both reconfiguration protocols define a point

in time (referred to as startTS) so that tuples having timestamp earlier than startTS are processed

by the old owner instance A while tuples having timestamp greater than or equal to startTS are

processed by the new owner instance B. In order to define startTS, we need to communicate the

start of a reconfiguration action to all the involved operators and make sure that all of them agree on

the same value of startTS. This requires some communication between the involved operators. We

present below the detailed description of the initial phase of the reconfiguration protocols.

The ownership transferring action is triggered by the SC-Mng in case a new instance is provi-

BR Bucket registry
BR[b].dest StreamCloud instances to which b tuples are forwarded
BR[b].owner StreamCloud instance owning bucket b
BR[b].state State of bucket b. If b is being transferred, state = transferring
BR[b].startTS Timestamp from which ownership transferring starts
BR[b].switchTS Timestamp from which new owner instance starts processing b

tuples (in case of ownership transferring)
BR[b].endTS Timestamp from which old owner instance stop processing b tu-

ples (in case of ownership transferring)
OPid id of an operator

Table 4.1: Parameters used by elasticity protocols

Vincenzo Massimiliano Gulisano An Elastic Parallel-Distributed Stream Processing Engine

66 CHAPTER 4. STREAMCLOUD DYNAMIC LOAD BALANCING AND ELASTICITY

sioned, an instance is decommissioned or the load between two instances has to be balanced. The

reconfiguration of a subcluster starts sending a reconfigCommand to all the LBs of its upstream

peer. Command reconfigCommand specifies which bucket b will be transferred from the old

owner instance A to the new owner instance B. The goal of this first protocol is to obtain a common

reconfiguration start timestamp (startTS) shared by both instances A and B. Each LB proposes the

latest forwarded tuple timestamp, the highest timestamp becomes the logical start of the reconfigura-

tion.

Algorithm 3 shows the pseudocode common to both reconfiguration protocols. The main actions

performed by each LB consist in updating their bucket registry entry for bucket b and in proposing a

timestamp to bothA andB as a candidate for startTS. Upon reception of the reconfigCommand,

each LB updates the destination to which tuples belonging to bucket b are forwarded, setting as des-

tinations both A and B (Alg. 3 line 1). Subsequently, it updates its bucket registry entry for bucket b

setting parameter endTS to∞. Parameter endTS specifies the end timestamp of the reconfiguration

action. It is initially set to ∞ as the exact value will provided by instance A (or instance B) once

it computes the startTS timestamp (Alg. 3 line 2). Subsequently, the bucket registry specifying

the owner instance of bucket b is the to B (Alg. 3 line 3). Finally, the state of bucket b is set to

reconfiguring and a control tuple is sent to both reconfiguring instances. The control tuple carries

the information related to the timestamp ts proposed as startTS by each LB (set as the timestamp of

the last tuple forwarded), the bucket being reconfigured and the new owner instance B (Alg. 3 lines

4-6).

Upon reception of all the controlTuple messages, both A and B set startTS as the highest

timestamp proposed by LBs (Alg. 3, lines 7-10). startTS will be the same for the old owner instance

and the new owner instance as the both process all the control tuples produced by their upstream

LBs. Despite both A and B compute startTS in the same way, we present them separately in the

algorithm to stress that each of them play a different role (old or new owner) and find it out comparing

its operator id OPid with the newOwner carried by the control tuples. Once startTS has been set,

both A and B update their bucket registry entry owner to the new owner instance B. The pseudo

code for instances A and B is shown in 3 lines 7-10.

Figure 4.3 shows a sample execution with the information exchanged between the instances in-

volved in the reconfiguration and their upstream LBs. In the example, we suppose two upstream LBs

exist, namely LB1 and LB2. For the sake of simplicity, the figure only considers tuples and control

messages related to bucket b. However, we stress that all the involved instances (i.e., LBS, A and B)

might simultaneously process tuples belonging to other buckets.

An Elastic Parallel-Distributed Stream Processing Engine Vincenzo Massimiliano Gulisano

4.2. ELASTIC RECONFIGURATION PROTOCOLS 67

CT1(0,b,B)

LB1 LB2 A B
T0

T1ReconfigCommad(A,B,b)

CT2(1,b,B)

BR[b].startTs=1 BR[b].startTs=1

BR[b].dest={A,B}

BR[b].endTs=∞

BR[b].owner=B

BR[b].state=reconfiguring

Figure 4.3: Example execution of reconfiguration protocols shared prefix

Algorithm 3 Reconfiguration Start Protocol.

LB
Upon: receiving of reconfigCommand(A,B,b)

1: BR[b].dest = {A,B}
2: BR[b].endTS =∞
3: BR[b].owner = B
4: BR[b].state = reconfiguring
5: ts = timestamp of last sent tuple
6: send controlTuple(ts,b,B) to BR[b].dest

Old owner A
Upon: receiving all controlTuple(tsi,b,newOwner) ∧

OPid 6= newOwner
7: BR[b].startTS = maxi{tsi}
8: BR[b].owner = newOwner

New owner B
Upon: receiving all controlTuple(tsi,b,newOwner) ∧

OPid = newOwner
9: BR[b].startTS = maxi{tsi}

10: BR[b].owner = newOwner

Initially, LBs forward tuples belonging to bucket b to their destination instance A. Tuple T0

(timestamp 0) is forwarded by LB1 while tuple T1 (timestamp 1) is forwarded by LB2. Upon re-

ception of the reconfigCommand, both LBs update their BR[b] registry entries and send control

tuples CT1 and CT2 to both A and B. Control tuple CT1 carries timestamp 0 as the latter is the

timestamp of the last tuple forwarded by LB1. Similarly, control tuple CT2 carries timestamp 1.

Vincenzo Massimiliano Gulisano An Elastic Parallel-Distributed Stream Processing Engine

68 CHAPTER 4. STREAMCLOUD DYNAMIC LOAD BALANCING AND ELASTICITY

Upon reception of both control tuples, instances A and B set BR[b].startTS to 1, as it is the highest

timestamp forwarded by any control tuple.

In the following sections we provide the detailed description of the two reconfiguration protocols

provided by StreamCloud.

4.2.2 Window Recreation Protocol

The Window Recreation Protocol has been designed to avoid any communication between the

instances being reconfigured. The idea is to let A process the tuples belonging to its current window

while feeding B in parallel with the same tuples. When A processes the last tuple belonging to its

current windows, the new incoming tuples are only sent to B, resuming regular processing. The pe-

riod during which tuples are sent both to A and B is proportional to the window size. This means that

this protocol is of interest for short-length window (i.e., in the range of seconds or tens of seconds).

W [0,3600[

W [600,4200[

W [1200,4800[

Reconfiguration

startTS = 2100

time

W [1800,5400[

W [2400,6000[Windows

managed by A

First window

managed by B

Figure 4.4: Example of which windows are managed by old owner or new owner instances during
Window Recreation protocol

An example of the windows that are managed by the old owner instance A and the one managed

by the new owner instance B is presented in Figure 4.4. In the example, we consider the same

windows evolution of the aggregate operator presented in Figure 4.2. Timestamp startTS is the to

2100.

Once the reconfiguration action has started as presented in the previous section, upstream LBs

are sending to both old owner instance A and new owner instance B. In order to complete the recon-

figuration, the old owner instance A that is currently maintaining b window must inform upstream

LBs about the timestamp representing the end of the reconfiguration (referred to as endTS). Input

tuples having timestamps greater than or equal to endTS will be forwarded by LBs only to the new

owner instance B. The old owner instance A must also inform the new owner instance B about the

first window the latter will have to process. The Pseudocode for the Window Recreation protocol is

shown in Algorithm 4. A is in charge of processing all windows with an initial timestamp earlier

An Elastic Parallel-Distributed Stream Processing Engine Vincenzo Massimiliano Gulisano

4.2. ELASTIC RECONFIGURATION PROTOCOLS 69

than BR[b].startTS, while B is in charge of processing the following ones. Given BR[b].startTS,

window size and advance, A computes BR[b].endTS using function computeEndTS 1. (Alg. 4,

line 8). BR[b].endTS represents the highest tuples timestamp A will process (i.e., tuples having

timestamp t.ts ≥ BR[b].endTS will be discarded, Alg. 4, lines 10-14).

Algorithm 4 Window Recreation Protocol.

LB
Upon: receiving t for bucket b

1: if BR[b].status = reconfiguring ∧ t.ts > BR[b].endTS then
2: BR[b].dest = BIM [b].owner
3: BR[b].status := normal
4: end if
5: Send t to BR[b].dest

Upon: receiving EndOfReconfiguration(b, ts)
6: BR[b].endTS := ts

Old owner A
Upon: BR[b].startTs = maxi{tsi}

7: BR[b].endTS := ComputeEndTS(BR[b].startTS)
8: Send EndOfReconfiguration(b, BR[b].endTS) to upstream LBs

Upon: receiving tuple t for bucket b ∧ OPid 6= BR[b].owner
9: if t.ts < BR[b].endTS then

10: process t
11: else
12: discard t
13: end if

New owner B
Upon: BR[b].startTS = maxi{tsi}
14: BR[b].switchTS := computeSwitchTS(BR[b].startTS)
Upon: receiving tuple t for bucket b ∧ OPid = BR[b].owner
15: if t.ts < BR[b].switchTS then
16: discard t
17: else
18: Start regular processing of bucket b
19: end if

After computing BR[b].endTS, A sends an endOfReconfiguration message to upstream

LBS (Alg. 4, line 8). The latter update their BR[b].endTS entry (Alg. 4, line 7). As soon as

an incoming tuple t timestamp is equal to or greater than BR[b].endTS, entries BR[b].dest and

BR[b].status are updated and, starting from t, tuples are sent only to B (Alg. 4, lines 1-6). Af-

ter computing BR[b].startTS, new owner instance B computes BR[b].switchTS using function
1All windows of the buckets being reconfigured share the same startTS. This is because StreamCloud enforces that

all windows are aligned to the same timestamp as in [AAB+05a].

Vincenzo Massimiliano Gulisano An Elastic Parallel-Distributed Stream Processing Engine

70 CHAPTER 4. STREAMCLOUD DYNAMIC LOAD BALANCING AND ELASTICITY

time

T6 T4 T3 T1 T0

T9 T6 T4 T3

X
X

Wi (0-5)
Wi+1(4-9)

A

B
startTS

CT1(0)

CT2(1)

switchTSendTS

CT1(0,b,B)

LB1 LB2 A B
T0

T1ReconfigCommad(A,B,b)

CT2(1,b,B)

BR[b].startTs=1

BR[b].endTs=6

BR[b].startTs=1

BR[b].switchTs=1

BR[b].dest={A,B}

BR[b].endTs=∞

BR[b].owner=B

BR[b].state=reconfiguring

T3

T4

T6

T9

EndOfReconfiguration(b,6)

BR[b].endTs=6

CT1(0,b,B)

LB1 LB2 A B
T0

T1ReconfigCommad(A,B,b)

CT2(1,b,B)

BR[b].startTs=1 BR[b].startTs=1

BR[b].dest={A,B}

BR[b].endTs=∞

BR[b].owner=B

BR[b].state=reconfiguring

T3

T5

EndOfReconfiguration(b)

BR[b].dest=B

T3 T1 T0

T5 T3 T1 T0

time

Wi (0-5)

A

B

startTS

CT1(0)

CT2(1)

X
CP

a) Window Recreation b) State Recreation

Figure 4.5: Sample reconfigurations.

computeSwitchTS (Alg. 4, line 15). Similarly to computeEndTS, computeSwitchTS de-

pends on BR[b].startTS, window size and advance. BR[b].switchTS represents the earliest tuple

timestamp B will process (i.e., tuples having timestamp t.ts < BR[b].switchTS will be discarded,

Alg. 4, lines 16-20).

Figure 4.5.a shows a sample execution where windows are time-based and have size and advance

set to 6 and 2, respectively. The example is the continuation of the example 4.3. The bottom part of

Fig. 4.5.a shows the windows managed by A and B, respectively.

Initially, both A and B compute the reconfiguration start time (1 in the example). Subsequently

A computes BT [b].endTS = 6 (BT [b].endTS depends on BT [b].startTS, window size and

advance). Similarly, B computes BR[b].switchTS = 4. A becomes responsible for all windows

up to Wi since its starting timestamp (0) is lower than BR[b].startTS (1). B becomes responsible

for all windows starting from Wi+1 since its starting timestamp (4) is greater than BR[b].startTS

(1). After computing BT [b].endTS = 6, A sends the endOfReconfiguration message to

upstream LBs. Tuples T3 to T4 are sent from LBs to both instances because their timestamp is ear-

lier than BR[b].endTS. Tuple T6 should be sent only to B (its timestamp being 6) but it is sent

to both instances because it is processed by LB2 before receiving the endOfReconfiguration

message. Tuples T3 is discarded by B (T3.ts < BR[b].switchTS). Tuples T6 is discarded by A

(T6.ts = BR[b].endTS). Starting from tuple T9, LBs only forward tuples to B.

An Elastic Parallel-Distributed Stream Processing Engine Vincenzo Massimiliano Gulisano

4.2. ELASTIC RECONFIGURATION PROTOCOLS 71

4.2.3 State Recreation Protocol

Algorithm 5 State Recreation Protocol.

LB
Upon: receiving t for bucket b

1: Send t to BR[b].dest
Upon: receiving EnfOfReconfiguration(b)

2: BR[b].dest = BR[b].owner

Old owner A
Upon: BR[b].startTS = maxi{tsi}

3: Send EndOfReconfiguration(b) to upstream LBs
4: cp:= Checkpoint(b)
5: Send cp to BT [b].owner

Upon: receiving t for bucket b ∧ OPid 6= BR[b].owner
6: Discard t

New owner B
Upon: receiving t for bucket b ∧ OPid = BR[b].owner

7: Buffer t
Upon: receiving checkpoint cp

8: install(cp)
9: process all buffered tuples t : t ∈ b ∧ t.ts ≥ BR[b].startTS

10: start regular processing of bucket b

The protocol presented in the previous section has been designed to avoid any communication

between instances A and B. This leads to a completion time that is proportional to the window size.

Hence, the protocol is not suitable when operating with stateful operators defining large windows

(e.g., 1 hour). Complementary to this protocol, the State Recreation protocol has been designed to

transfer the ownership of a bucket minimizing the completion time independently of the window size.

Once the reconfiguration has been triggered and the common prefix of both reconfiguration pro-

tocols has been completed, the old owner instance A performs two main tasks: (1) it alerts the up-

stream LBs that they can start sending tuples only to the new owner instance B and (2) it trans-

fer its state to the new owner instance B. The state recreation protocol must take into account

that, due to the fact that the serialized state might be received by the new owner instance B af-

ter tuples have already been processed, some buffering mechanism must be defined. The pseu-

docode for State Recreation protocol is shown in Algorithm 5. Once BT [b].startTS has been set,

A sends the EndOfReconfiguration to upstream LBs (Alg. 5, line 3). In this case, the mes-

sage only carries the information about bucket b, but no endTS is sent. This is because, as soon

as the EndOfReconfiguration is received by any LB, BR[b].dest is immediately updated to

BR[b].owner and new incoming tuples are only sent to B (Alg. 5, lines 1-2). After sending the

EndOfReconfiguration, A also serializes the state associated to bucket b and sends it to B

Vincenzo Massimiliano Gulisano An Elastic Parallel-Distributed Stream Processing Engine

72 CHAPTER 4. STREAMCLOUD DYNAMIC LOAD BALANCING AND ELASTICITY

(Alg. 5, lines 4-5). All tuples with timestamp later than or equal to BT [b].startTS are discarded

by A (Alg. 5, line 6). B buffers all tuples waiting for the state of bucket b. Once the state has

been received and installed, B processes all buffered tuples having timestamp equal to or greater than

BR[b].startTS and ends the reconfiguration (Alg. 5, lines 8-10).

Figure 4.5.b shows a sample execution of the State Recreation protocol. The execution resembles

the one in the example of the Window Recreation protocol up to the time when BT [b].startTS is

computed. Tuple T3 is forwarded to both A and B because LB1 processes it before receiving the

EndOfReconfiguration message. The tuple is discarded by A. B processes T3 because it has

already received the state associated to bucket b (denoted as CP). Tuple T5 is only sent to B since it

is processed by LB2 after the EndOfReconfiguration message has been received.

4.3 Elasticity Protocol

As introduced in Section 3.1, a static system is not an appropriate solution for parallel-distributing

SPEs as variations in the input load might lead to either under-provisioning (i.e., allocated SPE in-

stances cannot cope with the system load) or over-provisioning (i.e., allocated SPE instances are

running below their full capacity). To address this problem, we allow the definition of elasticity rules

driving the scale-up and scale-down of the system. StreamCloud specifies different thresholds that

trigger provisioning, decommissioning or dynamic load balancing actions. Given a subcluster, a pro-

visioning action is triggered if its average CPU utilization exceeds the Upper-Utilization-Threshold

(UUT). On the other hand, a decommissioning action is triggered if its average CPU utilization is

below the Lower-Utilization-Threshold (LUT). Whenever instances are allocated (or deallocated),

the number of StreamCloud instances composing the subcluster after the reconfiguration action is

computed to achieve a new average CPU utilization lower than or equal to to the Target-Utilization-

Threshold (TUT). In order to get as close as possible to TUT in case of a provisioning action,

StreamCloud features a load-aware provisioning strategy. When provisioning instances, a naïve strat-

egy would be to allocate one instance at a time (individual provisioning). Such solution might lead

to cascade provisioning (i.e., new instances are continuously allocated) if the additional computing

power of the provisioned instance does not decrease the average CPU utilization below UUT .. To

overcome this problem, StreamCloud load-aware provisioning takes into account the current subclus-

ter size and load to decide how many new instances to provide in order to reach for TUT .

A dynamic load balancing action is triggered whenever the standard deviation of the CPU utiliza-

tion is above the Upper-Imbalance-Threshold (UIT). A Minimum-Improvement-Threshold (MIT)

specifies the minimal performance improvement to start a new configuration. That is, the new config-

uration is applied only if the imbalance reduction is above the MIT .

In general, StreamCloud continuously monitors each subcluster and tries to keep its the average

An Elastic Parallel-Distributed Stream Processing Engine Vincenzo Massimiliano Gulisano

4.3. ELASTICITY PROTOCOL 73

CPU utilization within upper and lower utilization thresholds and its standard deviation below the

upper imbalance threshold.

The protocol for elastic management is illustrated in Algorithm 6. In order to enforce the elasticity

rules, the SC-Mng periodically collects monitoring information from all instances on each subcluster

via the LMs. The information includes the average CPU usage (Ui) and number of tuples processed

per second per bucket (Tb). The SC-Mng computes the average CPU usage per subcluster, Uav (Alg.

6, line 1). If Uav is outside the allowed range, the number of instances required to cope with the

current load is computed (Alg. 6, lines 2-4). If the subcluster is under-provisioned, new instances

are allocated (Alg. 6, lines 5-6). If the subcluster is over-provisioned, the load of unneeded instances

is transferred to the rest of the instances by the Offload function and the unneeded instances are

decommissioned (Alg. 6, lines 7-9). After computing Uav, SC-Mng computes the CPU standard

deviation Usd. Dynamic Load Balancing is triggered if Usd > UIT (Alg. 6, lines 14-16).

Algorithm 6 Elastic Management Protocol.

ElasticManager
Upon: new monitoring period has elapsed

1: Uav =
∑n

i=1 Ui

n
2: if Uav /∈ [LUT,UUT] then
3: old:= n
4: n:=computeNewConfiguration(TUT, old, Uav)
5: if n > old then
6: provision(n-old)
7: end if
8: if n < old then
9: freeNodes:= offload(old-n)

10: decommission(freeNodes)
11: end if
12: end if
13: Usd =

√∑n
i=1(Ui − Uav)2

14: if Usd > UIT then
15: balanceLoad(Usd)
16: end if

Whenever a provisioning, decommissioning or dynamic load balancing action is triggered,

StreamCloud employs a greedy algorithm2 to decide which buckets will be transferred during the

reconfiguration action. Initially, instances are sorted by Ui and, for each instance, buckets within

each instance are sorted by Tb. At each iteration the algorithm identifies the most and least loaded

instances; the bucket with the highest Tb owned by the most loaded instance is transferred to the least

2Optimal load balancing is equivalent to the bin packing problem that is known to be NP-hard. In fact, each instance can
be seen as a bin with given capacity and the set of tuples belonging to a bucket b is equivalent to an object “to be packed”.
Its “volume” is given by the sum of all Tb at each instance of the subcluster.

Vincenzo Massimiliano Gulisano An Elastic Parallel-Distributed Stream Processing Engine

74 CHAPTER 4. STREAMCLOUD DYNAMIC LOAD BALANCING AND ELASTICITY

N1 N2 N3

0.2 0.2

0.2

0.2

0.2

0.1

0.1

0.30.3

0.40.4

0.9 0.90.8

UUT = 0.8

TUT = 0.6

MIT = 0.05

Uav = 0.87

n = 5

UUT

TUT

N1N2N3

0.20.2

0.2

0.2

0.2

0.1

0.1

0.3 0.3

0.4

0.4

0.50.9 0.8

N4N5

0.00.4

Usd = 0.36

UUT

TUT

N1N2 N3

0.20.2

0.2

0.2

0.2

0.1

0.1

0.3 0.3

0.40.4

0.50.50.8

N4N5

0.40.4

Usd = 0.16

UUT

TUT

N1N2 N3

0.20.2

0.2

0.2 0.2

0.1

0.1

0.3 0.3

0.4 0.4

0.50.50.6

N4 N5

0.6 0.4

Usd = 0.08

UUT

TUT

Starting setup

N1 N2N3

0.2 0.2

0.2

0.2

0.2

0.1

0.1

0.30.3

0.40.4

0.9 0.9 0.8

N4 N5

0.0 0.0

Usd = 0.48

UUT

TUT

Step 1

Step 2 Step 3

Step 4

Figure 4.6: Sample execution of the buckets assignment algorithm

loaded one. The CPU usage standard deviation (Usd) is updated and the loop stops when the relative

improvement achieved (i.e., difference of standard deviation between two consecutive iterations) is

lower than MIT .

Figure 4.6 shows a sample execution of the bucket assignment algorithm. In the example, a sub-

cluster is running over 3 instances, namelyN1,N2 andN3 and new nodes are going to be provisioned

as the average CPU utilization Uav = 0.87 exceeds the Upper-Utilization-Threshold UUT = 0.8.

The required number of nodes to process the incoming load with an average CPU utilization lower

than or equal to the Target-Utilization-Threshold TUT = 0.6 is 5. Hence, two new StreamCloud

instances N4 and N5 will be provisioned. At this point, the dynamic load balancing algorithm is

used to determine which buckets will be transferred. At step 1, the most loaded instance N1 is of-

floaded of its heaviest bucket (responsible for 40% of its load) that is transferred to N5. The actual

CPU standard deviation Usd is equal to 0.48. At step 2, after the bucket has been reassigned to N5,

the updated Usd is equal to 0.36. The most loaded instance N3 is offloaded of its heaviest bucket

(responsible for 40% of its load) that is transferred to N4.

An Elastic Parallel-Distributed Stream Processing Engine Vincenzo Massimiliano Gulisano

4.4. STREAMCLOUD DYNAMIC LOAD BALANCING AND ELASTICITY EVALUATION 75

At step 3, after the bucket has been reassigned to N4, the updated Usd is equal to 0.16. The

most loaded instance N2 is offloaded of its heaviest bucket (responsible for 20% of its load) that is

transferred to N4. At step 4, after the bucket has been reassigned to N4, the updated Usd is equal

to 0.08. At this point, the algorithm stops as a new iteration will not decrease Usd anymore. Alto-

gether, 3 buckets will be transferred during the provisioning action, one from each of the StreamCloud

instances N1,N2 and N3.

The provisioning strategy is encapsulated in the ComputeNewConfiguration function (Alg. 6, line

4). The interaction with the pool of free instances (e.g., a cloud resource manager) is encapsulated

in functions Provision and Decommission. The dynamic load balancing algorithm is abstracted in the

BalanceLoad function (Alg. 6, line 12).

4.4 StreamCloud Dynamic Load Balancing and Elasticity
Evaluation

This section presents the experiments performed to evaluate StreamCloud dynamic load balancing

and elastic features. The evaluation has been performed using the setup presented in 3.3.1. A first set

of experiments shows the trade-off between the two elastic reconfiguration protocols of Section 4.2.

A second set of experiments evaluates the adaptability of the dynamic load balancing protocol during

changes of the workload and a third set of experiments evaluates provisioning and decommissioning

strategies. For all the experiments, we used the high mobility fraud detection query presented in

Fig. 2.4, used to spot mobile phone that, given two consecutive phone calls, cover a suspicious space

distance with respect to their temporal distance. In particular, we focus on the query stateful subquery,

composed by one aggregate operator and two stateless operators. In the last two sets of experiments,

we have used the State Recreation protocol as it has shown to perform better.

4.4.1 Elastic Reconfiguration Protocols

This set of experiments aims at evaluating the trade-off between Window Recreation protocol

and State Recreation protocol (Section 4.2). In this experiment, we run the aggregate operators with

window size of 1, 5 and 10 seconds (WS labels in Fig. 4.7), respectively. UUT threshold is set to

80%. Hence, SC-Mng will provision a new node whenever the average CPU utilization of the stateful

subcluster is equal to or greater than 80%.

For each reconfiguration protocol, Fig. 4.7 shows the completion times and the amount of data

transferred between instances for an increasing number of windows being transferred. Completion

time is measured from the sending of the reconfiguration command to the end of the reconfiguration

at the new owner instance. Figures 4.7.a, 4.7.c, and 4.7.e show the time required to complete a

Vincenzo Massimiliano Gulisano An Elastic Parallel-Distributed Stream Processing Engine

76 CHAPTER 4. STREAMCLOUD DYNAMIC LOAD BALANCING AND ELASTICITY

reconfiguration from 1 to 2, from 15 to 16 and from 30 to 31 instances, respectively.

0 1 2 3 4
x 10

5

0

10

20

30

40
Completion Time Vs Transferred Windows (1−>2)

Windows

T
im

e
(s

ec
s)

SR−WS 1
SR−WS 5
SR−WS 10

WR−WS 1
WR−WS 5
WR−WS 10

0 1 2 3 4
x 10

5

0

20

40

60

80
Message Size vs Transferred Windows (1−>2)

Windows

S
iz

e
(M

B
)

SR−WS 1
SR−WS 5
SR−WS 10

WR−WS 1
WR−WS 5
WR−WS 10

a) 1→ 2 instances: Completion Time b) 1→ 2 instances: Message Size

0 1 2 3 4
x 10

5

0

5

10

15

20
Completion Time Vs Transferred Windows (15−>16)

Windows

T
im

e
(s

ec
s)

SR−WS 1
SR−WS 5
SR−WS 10

WR−WS 1
WR−WS 5
WR−WS 10

0 1 2 3 4
x 10

5

0

20

40

60

80
Message Size vs Transferred Windows (15−>16)

Windows

S
iz

e
(M

B
)

SR−WS 1
SR−WS 5
SR−WS 10

WR−WS 1
WR−WS 5
WR−WS 10

c) 15→ 16 instances: Completion Time d) 15→ 16 instances: Message Size

0 1 2 3 4
x 10

5

0

5

10

15

20
Completion Time Vs Transferred Windows (30−>31)

Windows

T
im

e
(s

ec
s)

SR−WS 1
SR−WS 5
SR−WS 10

WR−WS 1
WR−WS 5
WR−WS 10

0 1 2 3 4
x 10

5

0

20

40

60

80
Message Size vs Transferred Windows (30−>31)

Windows

S
iz

e
(M

B
)

SR−WS 1
SR−WS 5
SR−WS 10

WR−WS 1
WR−WS 5
WR−WS 10

e) 30→ 31 instances: Completion Time f) 30→ 31 instances: Message Size

Figure 4.7: Evaluation of the elastic reconfiguration protocols.

State Recreation (SR) protocol exhibits a completion time that grows linearly with the number

of windows being transferred. This is because all the windows of the buckets being transferred must

be serialized and sent to the new owner. On the other hand, the Window Recreation (WR) protocol

takes a time proportional to the window size, regardless of the number of windows to be transferred.

The completion time shown in Fig. 4.7.a increases with a steeper slope with respect to Fig. 4.7.c

and Fig. 4.7.e. This is because there is only one instance transferring a large number of buckets;

for configurations with a higher number of instances, this effect disappears and the completion time

only depends on the window size. Figures 4.7.b, 4.7.d, and 4.7.f show the amount of data transferred

to the new owner in each configuration. With the SR protocol, data received by the new instance

grows linearly with the number of transferred windows; using the WR protocol no data is exchanged

between instances being reconfigured.

Comparing the results of this set of experiments, we conclude that SR provides better performance

An Elastic Parallel-Distributed Stream Processing Engine Vincenzo Massimiliano Gulisano

4.4. STREAMCLOUD DYNAMIC LOAD BALANCING AND ELASTICITY EVALUATION 77

as long as the completion time (dependent on the windows being transferred) does not exceed the time

to fill up a window.

4.4.1.1 Dynamic Load balancing

The goal of this set of experiments is to evaluate the effectiveness of dynamic load balancing

when the data distribution of a subcluster changes over time. We monitor the evolution of the stateful

subquery deployed in a subcluster of 15 instances that process a constant input load of 150, 000 t/s.

Input tuples have 10, 000 different phone numbers, i.e., the Group− by parameter of the Aggre-

gate operator has 10, 000 different keys. Input tuples are generated according to a normal distribution

that varies over time, either its average µ or its standard deviation σ. The goal is to show that dynamic

load balancing allows keeping a balanced CPU utilization rate of the allocated instances, despite the

variability of the input load.

Figure 4.8.a compares system performance with and without dynamic load balancing for an input

load that varies its average µ value. The experiment is divided in periods. During the first period,

input data follows a uniform distribution. In all other periods, we use a normal distribution with µ

that changes periodically from 2, 000 to 8, 000 by steps of 2, 000. In Fig. 4.8.a, periods are separated

with vertical lines and, for each of them, µ and σ are specified. Dashed lines show the CPU average

utilization rate (primary Y-axis) and its standard deviation (secondary Y-axis) when dynamic load

balancing is not enabled. It should be noticed that the standard deviation grows each time µ changes.

Solid lines show the performance when dynamic load balancing is enabled. The standard deviation

exhibits a peak after the beginning of each new period, which is reduced after StreamCloud triggers

a dynamic load balancing action. Dynamic load balancing keeps the standard deviation constant,

despite the changes in the input distribution. Due to the fixed input load rate, both configurations show

a constant average CPU utilization. Figure 4.8.b provides results of the experiment where µ is kept

constant and σ changes periodically from 100 to 25 in steps of 25. That is, as time passes, input load

concentrates in fewer different keys (i.e., in fewer StreamCloud instances). Without dynamic load

balancing, the imbalance among instances increases as σ decreases. With dynamic load balancing,

the load is redistributed and the standard deviation is constantly kept below the upper imbalance

threshold.

4.4.1.2 Self-Provisioning

In this set of experiments, we evaluate the effectiveness of provisioning and decommissioning

instances on-the-fly. We set LUT = 0.5, UUT = 0.9 and TUT = 0.6. The load is increased

(resp. decreased) linearly to observe the effectiveness of provisioning (resp. decommissioning) ac-

tions. Figure 4.9.a shows the behavior of the individual provisioning strategy, i.e., when provisioning

only a single instance at a time. We initially deploy the subcluster to a single instance and we study

Vincenzo Massimiliano Gulisano An Elastic Parallel-Distributed Stream Processing Engine

78 CHAPTER 4. STREAMCLOUD DYNAMIC LOAD BALANCING AND ELASTICITY

100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

Time (secs)

C
P

U
 A

vg

0

0.05

0.1

0.15

0.2

C
P

U
 S

td
 D

ev

2000−50 4000−50 6000−50 8000−50

a) Fixed standard deviation - changing average.

50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

Time (secs)

C
P

U
 A

vg

0

0.05

0.1

0.15

0.2

C
P

U
 S

td
 D

ev

3000−100 3000−75 3000−50 3000−25

b) Fixed average - changing standard deviation.

CPU Avg CPU StdDev CPU Avg + LB CPU StdDev + LB

Figure 4.8: Elastic Management - Dynamic Load Balancing.

how it grows up to 15 instances. The throughput increases linearly with the input load, despite neg-

ligible variations at each provisioning step. However, the target utilization is achieved only when

moving from 1 to 2 instances. Starting from size 3, each provisioning step does not provide enough

additional computing power to decrease the average CPU utilization to the target one (TUT). For

larger configurations (e.g., 15 nodes), provisioning of one instance results in a negligible increase of

the overall computing power, leading to an average CPU utilization close to the upper threshold. As

soon as the average CPU utilization stays above the upper threshold, the system suffers from cascade

provisioning. Figure 4.9.b, shows the effectiveness of the StreamCloud load-aware provisioning strat-

egy. In this experiment, we initially set only one instance for the subcluster and let SC-Mng provision

multiple nodes at a time. As the number of provisioned nodes is computed on the current subcluster

size and load, each provisioning step causes the new average CPU utilization to get close to the target

utilization threshold. Moreover, load-aware provisioning affords less frequent reconfiguration steps

than individual provisioning. Hence, the system can reach higher throughput with fewer reconfigu-

An Elastic Parallel-Distributed Stream Processing Engine Vincenzo Massimiliano Gulisano

4.4. STREAMCLOUD DYNAMIC LOAD BALANCING AND ELASTICITY EVALUATION 79

Table 4.2: Static vs. Elastic configurations overhead.
Configuration CPU usage (%) Throughput (t/s)

Static (11 instances) 0.81 64, 506
Elastic (11 instances) 0.80 64, 645

Static (17 instances) 0.85 100, 869
Elastic (17 instances) 0.84 102, 695

ration steps. In other words, load-aware provisioning is less intrusive than individual provisioning.

Once 27 instances are reached, we start decreasing the load and show the system behavior in Fig.

4.9.c. Decommissioning works as effectively as provisioning. The decommissioning intrusiveness is

even lower than the provisioning one due to the fact that instances that are going to be deallocated

have a low CPU utilization.

In order to show that the parallelization technique performance is not affected by the elastic re-

source management, we ran the stateful subquery for two static configurations of 11 and 17 Stream-

Cloud instances and we compared throughput and CPU consumption with the results of Fig. 4.9.b.

For each of the two cases, we compare the throughput that is achieved with a average CPU utilization

greater than 80%. Results are provided in Table 4.2. It should be noticed that for both cluster sizes,

the same throughput is reached with similar CPU usage, independently of how subcluster instances

have been allocated (i.e., statically at deploy time or dynamically on-the-fly).

Vincenzo Massimiliano Gulisano An Elastic Parallel-Distributed Stream Processing Engine

80 CHAPTER 4. STREAMCLOUD DYNAMIC LOAD BALANCING AND ELASTICITY

5

10
x 10

4 Individual Provisioning 1 − 15

T
h

ro
u

g
h

p
u

t
(t

/s
)

0 200 400 600 800 1000
0

0.5

1

C
P

U
 U

s
a

g
e

 (
%

)

Time (secs)

0

5

10

15

C
lu

s
te

r
S

iz
e

 (
#

 c
o

re
s
)

Throughput
CPU Usage
Cluster Size

a) Individual Provisioning

10

x 10
4 Load Aware Self Provisioning 1 − 26

T
h

ro
u

g
h

p
u

t
(t

/s
)

0 500 1000 1500
0

0.5

1

C
P

U
 U

s
a

g
e

 (
%

)

Time (secs)

0

10

20

30

C
lu

s
te

r
S

iz
e

 (
#

 c
o

re
s
)

Throughput
CPU Usage
Cluster Size

b) Load-Aware Provisioning

10

x 10
4 Load Aware Self Provisioning 26 − 1

T
h

ro
u

g
h

p
u

t
(t

/s
)

200 400 600 800 1000 1200
0

0.5

1

C
P

U
 U

s
a

g
e

 (
%

)

Time (secs)

0

10

20

30

C
lu

s
te

r
S

iz
e

 (
#

 c
o

re
s
)

Throughput
CPU Usage
Cluster Size

c) Load-Aware Decommissioning

Figure 4.9: Elastic Management - Provisioning Strategies.

An Elastic Parallel-Distributed Stream Processing Engine Vincenzo Massimiliano Gulisano

Part V

STREAMCLOUD FAULT TOLERANCE

Chapter 5

StreamCloud Fault Tolerance

In this chapter, we discuss StreamCloud fault tolerance protocol. In distributed environments, the

need for fault tolerance comes from the observation that the higher the number of nodes, the higher

the probability of experiencing faults. For this reason, fault tolerance has been a research topic that

has attracted significant attention in the context of distributed SPEs. Existing fault tolerance protocols

have not addresses aspects such parallel execution of operators, dynamic load balancing and elasticity,

which are the innovative aspects of StreamCloud. This lack of appropriate solutions motivated our

study to define a novel fault tolerance technique that fits with StreamCloud. We first discuss the

main fault tolerance approaches that have been introduced for distributed SPEs and introduce the

challenges being addressed by our solution. Subsequently, we discuss the protocols details and we

provide a complete evaluation based on the Linear Road benchmark.

5.1 Existing Fault Tolerance solutions

Fault tolerance in the field of distributed DBs has been studied intensively and well-known tech-

niques are commonly used. As SPE have evolved from DB solutions, these techniques have inspired

the initial proposals, improved in order to address the requirements of SPEs.

In general, a fault tolerance protocol must address two main aspects: (1) detection of failures

and (2) protocols to recreate the failed instance lost state to mask the failure. While detection and

replacement are reactive actions, recreation of the lost state requires a proactive mechanism that

continuously maintains information that might be lost. As presented in [HBR+05], three main base

Vincenzo Massimiliano Gulisano An Elastic Parallel-Distributed Stream Processing Engine

84 CHAPTER 5. STREAMCLOUD FAULT TOLERANCE

OPBOPA OPC

OPB

Node A Node B1

Node B2

Node C

Primary

Secondary

Figure 5.1: Active Standby Fault Tolerance

techniques can be adopted in order to provide fault tolerance to the operators of a query: active

standby, passive standby and upstream backup. The three basic approaches differ primarily in how to

maintain the information that might be lost in case of failure (i.e., the state of the queries operators).

The Active standby (or active replicas) protocol provides fault tolerance for an operator by means

of a secondary copy of the operator that is fed with the same tuples forwarded to its primary peer.

That is, an exact copy of the operator we want to make fault tolerant is available in order to replace the

primary node in case of failure. In Figure 5.1, node B1 (running operator OPB) has been replicated

and tuples generated by node A (running operator OPA) are being forwarded to both the primary

node and the secondary node B2. Node B2 is not connected to the downstream node C (running

operator OPC). It will be connected to it only in case of failure of node B1. This fault tolerance

technique incurs in a high overhead. The main overhead is given by the resources used to maintain

replicas, as they are not exploited for active processing of the data. Furthermore, additional runtime

overhead is imposed by the fact that tuples must be forwarded to multiple nodes (in the example, node

A forwards tuples to bothB1 andB2). Finally, additional overhead might be imposed if replicas must

process tuples in the same order as the primary node (e.g., if we replicate an operator outputting the

first tuple of each group of 5 consecutive tuples, both the primary and the replica operator will have

to process tuples in the same order to produce the same results). On the other hand, the recovery time

of this technique is very low, as it just implies the switching between the primary output stream to the

secondary node one.

With the Passive standby fault tolerance technique, the state of the operators belonging to the

node we want to protect are periodically copied to a secondary node. Copies can be continuously

installed at replica nodes or they can be stored in a dedicated server and installed in a replacement

instance in case of failure. The periodic copy of an operator state is known as checkpointing. Figure

5.2 shows an example of the passive standby approach where a replica node B2 is being maintained

copying to it the state of operator OPB . Basic checkpointing techniques can copy the entire state

maintained by the primary node to the secondary while more efficient technique (delta-checkpointing)

An Elastic Parallel-Distributed Stream Processing Engine Vincenzo Massimiliano Gulisano

5.1. EXISTING FAULT TOLERANCE SOLUTIONS 85

Node A Node B1

Node B2

Node C

Primary

Secondary

OPBOPA OPC

OPB

Figure 5.2: Passive Standby Fault Tolerance

OPBOPA OPC

Node A Node B1 Node C

Figure 5.3: Upstream Backup Fault Tolerance

might update the state of the secondary nodes via “deltas" of the previous state. With respect to the

active standby, this fault tolerance technique reduces the runtime overhead due to the fact that the

information periodically exchanged between the primary and secondary nodes condensates multiple

tuples, resulting in a lower overhead. On the other hand, it increases the recovery time: all the tuples

forwarded to the primary operator during the time interleaving the last checkpoint and the failure are

not maintained at the replica operator; hence, they need to be replayed at the secondary node.

Finally, Upstream Backup defines a different approach where no replicas nodes are used. The idea

is to maintain the tuples forwarded to the primary operator in order to replay them to the replacement

operator in case of failure. As the name suggests, tuples need to be maintained by the operator

upstream peer (tuples will be lost if maintained by the same instance we want to protect from faults).

In Figure 5.3, the node running the operator OPA is using a buffer to maintain the tuples being

sent to the node running operator OPB . In case of failure, these tuples will be forwarded again to

the replacement node. With this approach, the runtime overhead is further decreased, as the only

requirement is the space needed to maintain the upstream tuples. On the other hand, the recovery

time increases as the state of the failed primary operator has to be recreated processing again each

tuple individually (the completion time will depend on the period of time covered by the primary node

state). We present a detailed description of how existing work has improved all this basic techniques

in the related work (Chapter 8).

As discussed in [HBR+05], not only different approaches exist with respect to how to tolerate

faults, but also with respect to which guarantees to provide. The weakest guarantee is provided by the

gap fault tolerance protocol. With gap recovery, the state and the tuples (if any) lost due to a failure are

Vincenzo Massimiliano Gulisano An Elastic Parallel-Distributed Stream Processing Engine

86 CHAPTER 5. STREAMCLOUD FAULT TOLERANCE

simply ignored. A replacement instance is provided with an initial empty state. This technique will

result in the loss of part of the query results or in results whose values differ from the ones of a ideal

fail-free execution. A stronger guarantee is provided by the Rollback recovery. In this case, all the

tuples are processed even in case of failures but the resulting query outputs might differ from the ones

of an ideal fail-free execution. As an example, using the active standby approach without making

sure primary and secondary nodes process tuples in the same order might lead to different outputs

(although all tuples are still processed). Finally, the strongest (and more challenging) guarantee is

provided by the Precise recovery. In this case, any failure is completely masked to the final user and

the results produced by the query are the same produced by an ideal fail-free execution.

In order to discuss which solution has been adopted to provide fault tolerance in StreamCloud,

we first outline the requirements of the solution and then discuss which approach has been chosen

(and improved) and why. The fault tolerance protocol we need must comply with the following

requirements:

1. Low runtime overhead and fast recovery. The most important requisite of any fault tolerance

protocol for an SPE is to provide low runtime overhead and fast recovery. Runtime overhead

must be kept as lower as possible as the protocol is useful as long as its impact on the normal

processing (e.g., its impact on the result latency) does not violate the application requirements.

On the other hand, recovery time should be as short as possible in order to reduce the quality

loss and the user satisfaction upon failures. We stress that, among the two requirements, low

runtime overhead is usually more important than recovery time as failures are considered to

happen occasionally. That is, the runtime overhead is a price that is being paid continuously

while recovery time is a price paid sporadically.

2. Precise Recovery. We look for a fault tolerance protocol that guarantees precise recovery as

we think most of the near real time applications that motivate StreamCloud do not allow for

data loss. As an example, data loss is not acceptable in fraud detection applications.

3. No replicas. Although replicas can lead to fast recovery times, its overhead in terms of compu-

tation and resources is too high. In an environment as the cloud, where the number of nodes is

usually optimized to reduce costs, duplicate (or triplicate) the system size to maintain replicas

is not a feasible solution. As an example, a system that requires two replicas for each primary

node will result in an overhead of 200%.

4. Not rely uniquely on main memory. As discussed in Chapter 2, streams are defined as po-

tentially unbounded sequences of tuples. Thus, solutions that limit the scope of a stream are

mandatory when relying on main memory (e.g., the windowing mechanism). When discussing

a fault tolerance protocol that does not rely on replicas, we cannot make the assumption that all

An Elastic Parallel-Distributed Stream Processing Engine Vincenzo Massimiliano Gulisano

5.1. EXISTING FAULT TOLERANCE SOLUTIONS 87

the states maintained by all the instances running a set of queries can be aggregated using the

main memory of a small number of dedicated servers. For this reason, we look for a solution

that leverages the use of persistent storage.

5. Decouple state maintenance from topology. One of the novel features introduce by Stream-

Cloud are elasticity and dynamic load balancing. As discussed in Chapter 4, both techniques

are based on state transfer protocols used to move part of the state of an operator (the state of

a set of buckets) to another one. Due to the fact that the state of an operator is not statically

assigned to it but it can rather be partitioned and transferred at runtime, the fault tolerance

protocol will need to be designed decoupling state maintenance from any particular topology.

That is, the protocol will not maintain a copy of the state of a particular physical node, it will

rather maintain a copy of the whole state of the parallel-operator independently of the number

of machines being used to process it at any point in time.

6. Tolerate failures happening during reconfigurations of the system. The last requirement

of StreamCloud fault tolerance protocol is that it must tolerate failures happening while the

system is being reconfigured (i.e., failures happening while the state of an operator is being

transferred or while nodes are being provisioned or decommissioned). This constitutes a new

challenge that has not been studied previously.

Considering the possible basic fault tolerance techniques, we discard the active standby technique

as, being based on replicas, is against requirement 2. For the same reason, we discard any variant of

the passive standby approach if checkpoints of operators states are being installed at replica nodes. As

discussed in the related work, solutions where checkpoints are maintained by server nodes rather than

replicas have been studied. Such solutions could in principle be candidate solutions, as the number

of servers used to maintain checkpoints is usually small with respect to the one used by replicas. As

discussed previously, the passive standby approach might require partial re-forwarding of past tuples

depending on the interleaving time between the last checkpointing of the primary node state and the

actual failure. This means that passive standby protocol must be used together with a protocol that

resembles the Upstream Backup (the protocol that defines which tuples the upstream peers should

buffer would be slightly different in this case). This consideration motivates us to focus simply on the

Upstream Backup technique. Several improvements must be defined for the basic approach: (1) nodes

cannot rely uniquely on main memory to maintain tuples that could be re-forwarded (requirement 4)

and (2) the protocol must be extended to comply with requirements 5 and 6.

In the following sections, we proceed describing how the basic upstream backup approach has

been enriched in StreamCloud. We first provide an intuition about the proposed fault tolerance proto-

col and proceed then with a detailed description of the protocol and the related evaluation.

Vincenzo Massimiliano Gulisano An Elastic Parallel-Distributed Stream Processing Engine

88 CHAPTER 5. STREAMCLOUD FAULT TOLERANCE

5.2 Intuition about Fault Tolerance protocol

In this section, we provide an intuition about how fault tolerance is provided to data streaming

operators using an improved version of the upstream backup technique. Without focusing on how to

implement such technique, let us first consider that we have a means for maintaining all the tuples

that are being exchanged between two nodes A and B. In case of failure of node B, we can recreate

the lost state replaying the past tuples to a replacement instance B′. Nevertheless, the following

considerations hold: (1) in order to recreate the same state, tuples should be reprocessed in the same

order they were processed by the failed instance and (2) in order to reduce the recovery time, the

tuples that should be forwarded again should be only the ones that contributed to the state of node

B just before its failure. If we now move to a real system where we have limited resources, more

requirements arise. Suppose we want to implement a naïve solution where all the tuples forwarded

by the upstream node are being persisted to disk (complying therefore with requirement 4 that states

the protocol should not rely uniquely of main memory) and where, upon failure of an instance, all

the previous tuples are replayed. First, the need for reducing the amount of tuples being replayed

to B′ is not only motivated by the need of reducing the recovery time, but also by the impossibility
of maintaining all the past history of a stream (streams are potentially unbounded sequences of

tuples). This implies we need to maintain some information previous to the current point in time
from where tuples should be replayed in case of failures. Once we imposed the limitation about

the amount of tuples that we can maintain, we could define some smart technique to maintain them

in order to reduce the runtime overhead; as an example, we could maintain batches of tuples. In this

case, it might be only possible to replay tuples from specific past points in time. If tuples are

replayed from a point in time earlier than the required one, any duplicate tuple must be discarded
in order for the protocol to be precise. The last aspect we must consider is related to the peer nodes

upon which the node we want to protect from failures relies. The node relies on its upstream peers
in order to maintain past tuples (it cannot rely on itself otherwise it will lose them upon failure).

Consider now a scenario where the tuples being forwarded between the node we want to protect from

faults and its downstream peer are being extremely delayed due to a congestion in the channel (e.g.,

the tuples produced minutes ago have not yet been received by the downstream node). Upon the

failure of a node, if we just recreate the latest state maintained by the node, part of the tuples being

forwarded that were not received by the downstream node might get lost. For this reason, the node

relies on its downstream peers in order to make sure that, each time we update the point in time from

where to replay tuples, all the previous output tuples generated by the node have been received. The

last aspect we must take into account is related to the information maintained in a generic stateful

operator state. While data is being processed, new windows are created and existing windows are

slid. At the same time, windows might become obsolete. As an example, the information related to

An Elastic Parallel-Distributed Stream Processing Engine Vincenzo Massimiliano Gulisano

5.2. INTUITION ABOUT FAULT TOLERANCE PROTOCOL 89

a phone number that is no longer active is obsolete if kept waiting for new incoming calls. For this

reason, obsolete state must be garbage collected to reduce the state that must be recovered upon
a failure.

We introduce the following sample execution of an aggregate operator to give an idea about how

the operator can be recovered in case of failure. In the example, the operator is used to compute the

average price of the calls being made by mobile phones. The input CDR tuples have the schema

presented in Section 2.1, composed by fields Caller and Callee (representing the phone number

making and receiving the call, respectively), fields Time, Duration and Price and coordinates

Caller_X,Caller_Y and Callee_X,Callee_Y . The operator is defined as follows:

Agg{time, T ime, 180, 120, AvgPrice← avg(Price)}(I,O)

The operator defines a time-based window with size and advance of 180 and 120 seconds, respec-

tively. That is, every 2 minutes, the operator outputs the average price of calls being made by

all the mobile phones during the last 3 minutes. The output tuples schema is composed by fields

〈Time,AvgPrice〉.

Agg

Node A Node B Node C

I O

Figure 5.4: Example of fault tolerance for aggregate operator

As presented in Figure 5.4, assume the operator is deployed at node B, its input tuples are for-

warded by an operator deployed at node A while its output tuples are being sent to the operator

running at node C. Assume also that tuples exchanged between nodes A and B are being persisted

and, at any point time, stream I can be replayed starting from a given tuple.

Table 5.1 presents the sequence of tuples consumed and produced by the operator. Input tuples

are denoted as ti while output tuples are denoted as Ti. For the ease of the explanation, we only

consider fields Time and Price for the operator input tuples.

The first window managed by Agg contains tuples ti : ti.T ime ∈ [0, 180[; in the example,

tuples t1, t2, t3. The second window managed by A contains tuples ti : ti.T ime ∈ [120, 300[; in

the example, tuples t3, t4, t5, and so on. Tuple T1 is produced upon reception of tuple t4 as the latter

causes window [0, 180[to slide (t4.T ime falls outside the window). Tuple T1 carries the average call

price computed from tuples t1, t2, t3. After sliding the window, tuples t1, t2 are discarded. Similarly,

Vincenzo Massimiliano Gulisano An Elastic Parallel-Distributed Stream Processing Engine

90 CHAPTER 5. STREAMCLOUD FAULT TOLERANCE

In
t1 t2 t3 t4 t5 t6

ti.T ime (secs) 0 60 120 180 240 300
ti.P rice 7.8 8.2 8 7.5 7.3 8.1

Out
- - - T1 - T2

Ti.T ime (secs) 0 60 120 180 240 300
Ti.AvgPrice - - - 8 - 7.6

Table 5.1: Sample input and output tuples for operator A2

tuple T2 is produced upon reception of tuple t6. Consider how A state changes before and after

processing tuple t4. Before processing t4, three tuples are currently maintained by A (i.e., tuples

t1, t2, t3). After processing t4, the new state includes tuples t3, t4. Imagine that the instance running

operator Agg fails just after outputting tuple T1. If tuple T1 has been received by node C, the node

replacing B can be fed starting from tuple t3. This way, the first tuple the replacement instance will

produce is T2. Doing this, from the point of view of the operator deployed at node C the failure has

been completed masked. If tuple T1 has not been received by node C, the failure will be masked if B

replacement node is fed starting from tuple t0. Doing this, the replacement operator will first output

T1 and later on T2. Notice that, even if T1 has been received by node C, B replacement node can still

be fed starting from tuple t0, as far as the duplicate tuple T1 is not being forwarded to the operator of

node C.

We denote as the earliest timestamp of an operator the smallest timestamp from where tuples

should be replayed in case of failure of operator OP . With respect to the previous example, if T1 has

been received by node C after node B failure, then Agg.et = 180 (i.e., tuples should be replayed

starting from timestamp 180 in order to provide precise recovery). On the other hand, if T1 has not

been received by node C after node B failure, then Agg.et = 0 (i.e., tuples should be replayed

starting from timestamp 0 in order to provide precise recovery). It can be noticed that the earliest

timestamp of an operator depends on both the tuples maintained at its state and the tuples received by

its downstream peer. More precisely, the earliest timestamp represents the earliest tuple timestamp

maintained by an operator if all the tuples that have been previously produced and that depend on

earlier tuples have been received by the downstream instance.

5.3 Components involved in the Fault Tolerance protocol

In this section, we present an overview of the StreamCloud components used to provide fault

tolerance to query operators. Figure 5.5 resembles the sample aggregate operator presented in Fig-

ure 5.4, presenting how the operator (and its upstream and downstream peers) are parallelized in

StreamCloud.

An Elastic Parallel-Distributed Stream Processing Engine Vincenzo Massimiliano Gulisano

5.3. COMPONENTS INVOLVED IN THE FAULT TOLERANCE PROTOCOL 91

...

Parallel File System

Maintain Agg.etPersist Agg tuples

Agg

SC

Manager

Resource

Manager

SC Instance SC Instance...

LB

LB

Local Manager

Local Manager Agg LBIM

Local Manager

Agg LBIM

Local Manager

Agg LBIM

Local Manager IM

IM

Local Manager

Local Manager

Figure 5.5: StreamCloud fault tolerance architecture

Following the operator-set-cloud parallelization strategy, a subquery is defined for the aggregate

operator while a separate subquery is defined for its preceding operator (independently of the oper-

ator type, stateless or stateful). For the ease of the explanation, assume the operator following the

aggregate is stateful, so that a dedicated subquery is defined for it. The instances of the subclus-

ter containing the aggregate defines an input merger and a load balancer. Tuples are routed to the

subcluster by the upstream LBs while they are collected by the downstream IMs.

As discussed previously, the instances rely on their upstream peers to maintain past tuples. In

StreamCloud, we employ the LBs to persist to disk tuples while forwarding them in parallel. As

shown in the figure, tuples are persisted to a parallel file system; we discuss in the following section

why we rely on such system to maintain streams past tuples. While LBs are being employed to persist

tuples, the IMs of the downstream peers are used to maintain the earliest timestamp of the operator

for which we provide fault tolerance. As presented in Section 4.1, each StreamCloud instance runs

Vincenzo Massimiliano Gulisano An Elastic Parallel-Distributed Stream Processing Engine

92 CHAPTER 5. STREAMCLOUD FAULT TOLERANCE

a Local Manager that is used to share information with the StreamCloud Manager and to modify

the running query. With respect to fault tolerance, Local Managers are used to forward the informa-

tion related to the tuples being persisted and the earliest timestamp of operators to the StreamCloud

Manager.

5.4 Fault Tolerance protocol

In this section, we provide a detailed description of StreamCloud fault tolerance protocol. We first

focus on single instance failures and, subsequently, extend the protocol to multi-instance failures.

As discussed in Section 3.2.1, the minimum data distribution unit used to route tuples across two

subclusters is the bucket. In the following, we discuss protocols using buckets b as the minimum

of tuples for which we provide fault tolerance (i.e., we discuss how to provide fault tolerance for

individual buckets or groups of them).

As discussed in the previous section, the earliest timestamp that specifies which tuples should

be replayed in case of failure depends on the operator running at the instance we are protecting

against failures. For each type of operator (i.e., stateful or stateless) and for any query that can be

deployed at a StreamCloud instance, we must define how the overall earliest timestamp is computed.

Stateless operators do not maintain any tuple; hence, we define the earliest timestamp of the operator

as the timestamp of the tuples being forwarded. This means that, upon failure, we plan to resume

tuples processing starting from the last tuple sent by the operator (if the latter actually reached the

downstream instance, we will need to discard the duplicate tuple). With respect to stateful operators,

the earliest timestamp is set to the timestamp of the earliest tuple maintained by the operator. With

respect to the possible operators deployed at a given StreamCloud instance, we discussed in Section

3.2 that a subquery contains no more than one stateful operator. The earliest timestamp must be

computed by the operator maintaining the earliest tuple. For this reason, if the subquery contains a

stateful operator, the latter is used to compute the earliest timestamp, otherwise, the earliest timestamp

of computed by the last subquery stateless operator.

In the following, we denote as IF the instance for which fault tolerance is provided and as IR
the instance replacing the former upon failure. IF upstream subcluster is referred to as U while

downstream subcluster is referred to as D. Given a tuple T outputted by IF , b.et, referred to as

bucket B earliest timestamp, represents the earliest tuple timestamp of bucket b once T is produced.

Each output tuple T schema is enriched with field et, set to the value of bucket earliest timestamp

(T.et = b.et). Hence, if IF fails after T has been received by D, we can recreate IF lost state

replaying its input tuples starting from timestamp T.et.

StreamCloud detects that an instance IF has failed if it stops answering to a series of consecutive

heart-beat messages. Once failure has been detected, a replacement instance IR is allocated by the

An Elastic Parallel-Distributed Stream Processing Engine Vincenzo Massimiliano Gulisano

5.4. FAULT TOLERANCE PROTOCOL 93

Instance failure

Instance

failure
State transfer

State transfer

completed

Recovering completed

Instance failure

during state transfer

Reconfiguring

Active Failed

Figure 5.6: Bucket state machine.

Resource Manager and the query previously deployed at IF is re-deployed at IR. In order to know

which tuples should be replayed in case of failure, b.et is continuously updated by the stateful operator

of IF (or the first stateless one if no stateful operator is defined) and communicated to D using output

tuples.

StreamCloud fault tolerance protocol ensures that, upon failure of the instance owning bucket

b, b tuples are replayed starting from a timestamp ts ≤ bet and that duplicate tuples are discarded,

therefore providing precise recovery. In order to recover b in case of a failure, the protocol must (a)

persist past tuples in order to replay them in case of failure, and (b) maintain the latest value of bet.

In our protocol, task (a) is performed by U LBs (denoted as U.LBs) while task (b) is performed by

D IMS (denoted as D.IMs).

Figure 5.6 presents the possible states that define each bucket b. During regular processing, b state

is set to Active. If b ownership is being transferred (e.g., a provisioning, decommissioning or dynamic

load balancing action is triggered), its state moves to Reconfiguring. Once the reconfiguration has

been completed, its state is set back to Active. Notice that reconfiguration actions are taken only for

Active buckets.

Failures might happen for a bucket in Active or Reconfiguring state. If failure happen while b is

Active, its state moves to Failed. Bucket b remains in this state until recovery ends (i.e., it remains

in Failed state also if a second failure takes place before the first one has been completed solved). b

state is moved to Failed also if the failure occurs while b is in Reconfiguring state.

In the following sections, we present which are the tasks performed by IF and by its upstream

downstream peers U and D depending on b state. With respect to the Reconfiguring state, we refer

the reader to Section 4.2.3, presenting the State Recreation protocol, the state transfer protocol for

which fault tolerance is provided in StreamCloud.

Table 5.2 summarizes the principal variables used in the following algorithms.

Vincenzo Massimiliano Gulisano An Elastic Parallel-Distributed Stream Processing Engine

94 CHAPTER 5. STREAMCLOUD FAULT TOLERANCE

Buf Buffer used by LBs to maintain forwarded tuples
BR Bucket Registry

BR[b].state State of bucket b
BR[b].et Bucket b earliest timestamp

BR[b].last_ts Bucket b latest tuple timestamp
BR[b].dest Instance to which bucket b tuples are forwarded
BR[b].owner Bucket b owner
BR[b].buf Buffer associated to bucket b

IF Failing instance
Q Query deployed at IF
IR Replacement instance
U IF upstream subcluster

U.LBs U load balancers
U.LBprefix Name prefix shared by LBs at U

D IF downstream subcluster
D.IMs D input mergers

Table 5.2: Variables used in algorithms

5.4.1 Active state

While b state is Active, U.LBs are responsible for forwarding and persisting tuples being sent to

IF , the stateful operator (or the last stateless one) deployed at IF is responsible for computing the

instance earliest timestamp and use it to enriching output tuples (setting field T.et) while D.IMs are

responsible for maintaining bet.

With respect to the task performed by U.LBs, the protocol must define an efficient way to persist

and forward tuples (i.e., it cannot be blocking, tuples must be forwarded and persisted in parallel).

Furthermore, persisting individual tuples might result in a high overhead; hence, LBs should first

buffer them and, subsequently, persist at once multiple tuples. In the proposed solution, U.LBs use

a buffer Buf to maintain tuples being forwarded. Each incoming tuple is added to the buffer that

is persisted periodically. Similarly to time-based windows, buffers define attribute size to specify

the extension of the time period they cover. Nevertheless, the periods of time covered by Buf do

not overlap, they rather partition the input stream of each LB into chunks of size time units. All

the LBs at U share the same Buf.size and have aligned buffers (i.e., at any moment, all the buffers

cover the same period of time). Given an input tuple t, and being t.ts its timestamp (expressed in

seconds, or other time units, from a given date), the buffer to which t belongs to will have bound-

aries [
⌊

t.ts
Buf.size

⌋
,
⌊

t.ts
Buf.size

⌋
+ Buf.size[. We refer to the left time boundary of buffer Buf as

Buf.start_ts. Each time the buffer is full (i.e., t.ts − Buf.start_ts ≥ Buf.size), it is asyn-

chronously written to disk. LBs rely on a parallel-replicated file system to persist Buf . The reason is

twofold: (a) file system replication prevents information loss due to disk failures while and (b) being

An Elastic Parallel-Distributed Stream Processing Engine Vincenzo Massimiliano Gulisano

5.4. FAULT TOLERANCE PROTOCOL 95

distributed, tuples persisted by an LB can be accessed also by the other StreamCloud instance running

the query (as presented in the incoming Section 5.4.2). Algorithm 7 presents LBs protocol. Each LB

maintains a Bucket Registry (BR). For each bucket b, BR[b].state defines b state while BR[b].dest

defines the instance to which b tuples are forwarded. For each incoming tuple belonging to bucket

b, function buffer is invoked to add the incoming tuple to Buf and, if the buffer is full, to persist

it. Subsequently, if b state is Active, t is forwarded to its destination instance. Given an incoming

tuple t, function buffer checks whether Buf should be persisted and, eventually, stores tuple t.

Buf is serialized if t.ts − Buf.start_ts > Buf.size. The file to which the buffer is persisted is

identified by the LB name persisting it and Buf.start_ts. Considering how LBs persist their incom-

ing streams, each incoming tuple is either maintained in the LB memory (if it belongs to the current

buffer) or written to disk. Nevertheless, this consideration might not hold if, upon failure of instance

IF , U.LBs continue persisting the tuples they are now buffering. To avoid this, function buffer

stops serializingBuf if one (or more) of the downstream instances fails. That is, tuples are still being

forwarded to the active instances and buffered at Buf , but not persisted to disk. It can be noticed

that, in Algorithm 7 - line 6, the condition checked by the buffer function in order to persist Buf

makes sure no bucket b is in Failed state (i.e., no downstream instance has failed). The overhead

introduced by the persistence of tuples is negligible. It is only caused by the time spent to create a

copy of each incoming tuple and, wheneverBuf is full, by the time it takes to issue the asynchronous

write request.

Algorithm 7 Active State - LBs protocol

LB
Upon: Arrival of tuple t ∈ b

1: buffer(t)
2: BR[b].dest = BR[b].owner
3: if BR[b].state = Active then
4: forward(t,BR[b].dest)
5: end if

buffer(t)
6: if @b : BR[b].state = Failed ∧ t.ts−Buf.start_ts ≥ Buf.size then
7: fileName = concatenate(LB.name,Buf.start_ts)
8: async(Buf ,fileName)
9: Buf .clear()

10: end if
11: Buf .add(t)

D.IMs are responsible for maintaining bucket b earliest timestamp and for discarding duplicate

tuples. Algorithm 8 presents IMs protocol. For each incoming tuple t ∈ b, b earliest timestamp is up-

dated to t.et. Similarly to LBs, each IM maintains a Bucket Registry BR for each bucket b. BR[b].et

Vincenzo Massimiliano Gulisano An Elastic Parallel-Distributed Stream Processing Engine

96 CHAPTER 5. STREAMCLOUD FAULT TOLERANCE

defines b earliest timestamp, BR[b].last_ts the timestamp of the latest tuple received and BR[b].buf

buffer is used to temporarily store incoming tuples. If we consider how to detect duplicates, the as-

sumption about timestamp ordered input streams (Section 2.1) and the timestamp sorting guarantees

provided by the IMs (Section 3.2.1.2), permit to spot a duplicate when its timestamp is earlier than

the previous tuple or, if equal, if the tuple is a copy of another tuple sharing the same timestamp.

D.IMs use BR[b].buf to temporarily store all the tuples sharing the same timestamp (the buffer is

empty each time a new incoming tuple has a new timestamp) in order to check for duplicated tuples.

Function isDuplicate in Algorithm 8 presents the pseudo-code used to check for duplicated tuples.

We have discussed which are the protocols for U.LBs and D.IMs with respect to b Active state.

If we analyze the interaction between these components from a subcluster point of view, we have that

U serializes all the tuples forwarded to IF , partitioning them on a per time period, per LB basis. At

the same time, D maintains bet on a per IM basis. If, due to a failure of IF , the lost state must be

recreated starting from timestamp ts, the tuples will be read from the files persisted by U.LBs. More

precisely, the files to read will be the ones having name [lb][start_ts], where lb is the name of any of

U.LBs and

start_ts = maxiTi :

⌊
Ti

Buf.size

⌋
≤ ts

The tuples being forwarded by IF and carrying information about b.et are routed to the different

D.IMs instances. At any point in time, given a bucket b, bet is computed as the min(beti),∀IMi ∈
D.IMs. That is, the earliest timestamp is the smallest one maintained by any D.IMs.

Bucket earliest timestamps maintenance and cleaning of stale information. Two important as-

pects related to the actions taken by the operators involved in the maintenance of bucket b while in

state Active must be considered. If tuples are continuously persisted, they will eventually saturate the

capacity of the parallel file system. Moreover, if an instance of D fails, its information associated

to bet will be lost. To address both problems, the StreamCloud Manager periodically connects to D

instances and retrieves the earliest timestamps of bucket b. With this information, files that only con-

tains tuples having timestamps earlier than bet can be safely discarded. Furthermore, upon failure of

IF , the earliest timestamp indicating which tuples should be replayed is known by StreamCloud even

if one or more D instances are not reachable (e.g., due to a multiple-instance failure). It should be

noticed that, even if bet is not updated to its latest value, the recovery will still be precise, as discussed

in Section 5.4. Algorithm 9 presents the StreamCloud Manager protocol.

5.4.2 Failed state

In this section, we present the main steps performed by StreamCloud to replace instance IF
in case of failure. We first discuss the overall sequence of steps and proceed then with a detailed

An Elastic Parallel-Distributed Stream Processing Engine Vincenzo Massimiliano Gulisano

5.4. FAULT TOLERANCE PROTOCOL 97

description of each one. The failure of an instance IF is discovered by the StreamCloud Manager

when the former stops answering a given number of consecutive heart-beat messages. At the same

time than the StreamCloud Manager, IF upstream subcluster U discovers the instance has failed

as soon as the TCP connections between them fails. A replacement instance IR is taken from the

pool of available instances maintained by the Resource Manager and the query previously deployed

at IF is re-deployed at IR. While deploying the query, the lost state is recreated reprocessing past

tuples persisted to the parallel file system. Once the query has been deployed, its state has been

recovered and operators have been connected to their upstream and downstream peers, upstream LBs

are instructed by the StreamCloud Manager to forward buffered tuples and resume regular processing.

Algorithm 8 Active State - IM.

IM
Upon: Arrival of tuple t from stream i

1: buffer[i].textttenqueue(t)
2: if ∀i buffer[i].textttnonEmpty() then
3: t0 = earliestTuple(buffer)
4: b = getBucket(t0)
5: if ¬isDuplicate(t0,b) then
6: forward(t)
7: BR[b].et = t.et
8: end if
9: end if

isDuplicate(t,b)
10: result=false
11: if t.ts < BR[b].last_ts then
12: result=true
13: else if t.ts = BR[b].last_ts then
14: if BR[b].buf .contains(t) then
15: result=true
16: else
17: BR[b].buf .add(t)
18: end if
19: else
20: BR[b].last_ts = t.ts
21: BR[b].buf .clear()
22: BR[b].buf .add(t)
23: end if
24: return result

As soon as IF failure is detected by U.LBs, the state of each bucket b owned by IF is changed

to Failed. As presented in Section 5.4.1, this implies that tuples that were previously persisted to the

parallel file system by U.LBs are now only maintained using main memory (as long as the failure has

Vincenzo Massimiliano Gulisano An Elastic Parallel-Distributed Stream Processing Engine

98 CHAPTER 5. STREAMCLOUD FAULT TOLERANCE

been recovered). LBs pseudo-code for the action performed upon failure is presented in algorithm 10,

lines 1-3.

Algorithm 9 Active State - StreamCloud Manager

StreamCloud Manager
Upon: Monitoring period expired for subcluster C

1: for all b do
2: BR[b].et=getBucketET(b)
3: end for
4: T =

⌊
min(BR[i].et)

Buf.size

⌋
5: for all file [LB][ts] : LB.hasPrefix(LBprefix) ∧ts < T do
6: remove file
7: end for

getBucketET(b)
8: bet=∞
9: for all im ∈ D.IMs do

10: bet =min(bet,im.BR[b].et)
11: end for
12: return bet

Algorithm 10 Failed State - LB

LB
Upon: Downstream instance I failure

1: for all b : BR[b].dest = I do
2: BR[b].state = Failed
3: end for

Upon: Downstream instance I recovered
4: for all b : BR[b].dest = I do
5: BR[b].state = Active
6: T = Buf.get(b,ts)
7: for all t ∈ T do
8: forward(t,BR[b].dest)
9: end for

10: resume regular processing
11: end for

Algorithm 11 presents the steps followed by the StreamCloud Manager after discovering instance

IF has failed. We refer to the earliest timestamp from which tuples will be replayed as et. Timestamp

et will be computed as the earlier among the earliest timestamps of any bucket b previously owned

by IF (Algorithm 11, lines 1-5). Once et has been computed, the Resource Manager is instructed

to deallocate instance IF and to allocate a replacement instance IR. Once IR has been allocated, the

An Elastic Parallel-Distributed Stream Processing Engine Vincenzo Massimiliano Gulisano

5.4. FAULT TOLERANCE PROTOCOL 99

query previously deployed at IF is re-deployed at IR (Algorithm 11, lines 6-8). In order to recreate

the lost state, the IM deployed at IR is instructed to replay persisted tuples belonging to IR buckets,

starting from et. Once the lost state has been recovered and IR has been connected to its upstream and

downstream peers, U.LBs are instructed to forward any buffered tuple and resume regular processing

(Algorithm 11, lines 10-12). As shown in Algorithm 10, lines 4-10, each LB changes the state of IR
buckets back to active, gets buffered tuples and, for each of them, forwards it if it belongs to IR
buckets. Once tuples have been replayed, U.LBs resume regular processing.

Algorithm 11 Failed State - StreamCloud Manager

StreamCloud Manager
Upon: Instance I failure

1: et =∞
2: for all b ∈ IF do
3: et =min(et,getBucketET(b))
4: RB .add(b)
5: end for
6: release(I)
7: IR = allocate()
8: deploy(Q,IR)
9: IR.IM.replay(ts,RB ,U.LBprefix)

10: for all b ∈ I, lb ∈ U.LBs do
11: lb.recovered(b)
12: end for

Algorithm 12 presents the pseudocode for the IM deployed at IR. In order to replay RB tuples,

input merger at IR first looks for all the Buf units persisted by upstream LBs and containing tuples

t having timestamp t.ts ≥ et. Each of these files contains tuples persisted in timestamp order. As

multiple timestamp ordered files are read, the IM will have to merge-sort them in order to create

a unique timestamp order stream of tuples. As we discussed, tuples forwarded to IF are persisted

by U.LBs on a per-load balancer, per-time basis. This implies that, when reading them in order to

recreated IF lost state, tuples belonging to buckets that were not owned by IF must be discarded.

Algorithm 12 Failed State - IM

IM
Upon: replay(ts,RB ,LBprefix)

1: fileNames =getFileNames(ts,LBprefix)
2: F =read(fileNames)
3: mergedSort(F)
4: for all t ∈ F : t ∈ RB do
5: forward(t)
6: end for

Vincenzo Massimiliano Gulisano An Elastic Parallel-Distributed Stream Processing Engine

100 CHAPTER 5. STREAMCLOUD FAULT TOLERANCE

5.4.3 Failed while reconfiguring state

This section presents how StreamCloud fault tolerance protocol deals with failures happening

during reconfiguration actions (i.e., while load is being balanced or a provisioning or decommis-

sioning action has been triggered). In the following, we analyze separately how StreamCloud fault

tolerance protocol covers the failure of each instance involved in a reconfiguration action. We refer

to a reconfiguration action where a bucket is being transferred from instance A to B.

If, during a reconfiguration action, one of the upstream LBs fails, the failure can happen before

or after all the control tuples that trigger the bucket ownership transfer have been received by A. In

the former case, the reconfiguration action is postponed after recovering the failed LBs (the instances

involved in the reconfiguration will not transfer any state due to the fact that they did not receive all

the control tuples). In the latter case, no extra action must be taken. When recreating the failed LB

at the replacement instance, it will be instructed to send incoming tuples to B (instance A will have

sent the bucket state to B already, as they both received all the control tuples).

In case of failure of instance A, we can identify two possible cases: the failure happens before or

after the bucket state has been sent (entirely) to B. In the former case, B will not receive the state

of the bucket being transferred. To solve this problem, the StreamCloud Manager will instruct B to

recreate the bucket building its state starting from the persisted tuples (StreamCloud fault tolerance

protocol allows for the recovery of individual buckets). In the latter case, when the state has been

already sent by instance A, the reconfiguration is not affected by instance A failure. State transfer is

not affected if the failing instance is B. All buckets owned by B must be recovered, both if they were

already owned or if they were being transferred when the instance failed.

5.4.4 Recovering state involved in previous reconfigurations

In this section, we analyze how past reconfiguration actions of the failed instance upstream sub-

cluster triggered in the time interleaving the earliest timestamp and the failure affect recovery. That

is, being tlast the last tuple processed by a failed instance IF and being et the earliest timestamp from

where to replay tuple, we analyze how reconfiguration actions involving IF upstream subcluster taken

during the period [et, tlast] affect its recovery.

If IF upstream subcluster has changed its size during period [et, tlast] (e.g., the number of in-

stances has decreased), then part of the tuples to replay has been persisted by an LB that does not

longer exists. Nevertheless, this does not affect the protocol. As presented in Algorithm 12, the IM

deployed at replacement instance IR detects which files must be read depending on timestamp ts

and LBs prefix name LBprefix. Due to the fact that all the LBs of IF upstream subcluster share the

same prefix name (we discuss in Section 6.3 the operators naming convention), the files previously

persisted by an LB that no longer exists are still considered in order to re-build IF lost state.

An Elastic Parallel-Distributed Stream Processing Engine Vincenzo Massimiliano Gulisano

5.5. GARBAGE COLLECTION 101

5.4.5 Multiple instance failures

This section presents how StreamCloud fault tolerance protocol deals with multiple instance fail-

ures. As we discussed, fault tolerance is provided for a given instance relying on its upstream and

downstream peers. Hence, if the two instances involved in the failure are not consecutive (i.e., one

subcluster is the upstream of the other), their recovery can be executed in parallel as actions triggered

by the StreamCloud Manager will not interfere. Similarly, the recovery of two failed instances is

executed in parallel if the two instances belong to the same subcluster.

Opposite to these cases, if two failing instances IF1 , IF2 belong to consecutive subclusters (IF1

preceding IF2), their recovery must be conducted in a specific order. The deployment of IF1 operators

and the connection to their upstream peers is executed in parallel with the deployment of IF2 operators

and the connection to their downstream peers. Nevertheless, connections between IF1 and IF2 can

be established only after the operators of each instance have been recovered. This synchronization

overhead does not significantly affects the recovery time. This is due to the fact that, among all the

actions taken to recover a failed instance, connection to upstream and downstream peers takes a time

negligible with respect to buckets recovery actions.

5.5 Garbage collection

As discussed in Section 5.2, operators obsolete state must be garbage collected in order for the

fault tolerance protocol to be effective. The reason is that, if no garbage collection is provided,

whenever the state of bucket b has to be recreated due to its owning instance failure its state will

always be re-built starting from the oldest obsolete window.

Consider a stateful operator maintaining a window W , assume tl is the latest tuple added to

W . Given parameter timeout and incoming tuple tin, we say W is obsolete if tin.ts − tl.ts >

timeout ∧ tin /∈ W , i.e., we say window W is obsolete if no tuple has been added to it in the last

timeout units.

In many scenarios, the query specified by the user implicitly considers timeouts for any stateful

operator. As an example, the user might be interested in the average speed value of four consecutive

position reports belonging to a vehicle, but might not be interested in such result if position reports

span a time period of several days.

An interesting aspect is related to how obsolete windows are purged by the SPE. Given an obsolete

window W we might want to produce its aggregated result even is not all the necessary tuples have

been processed (e.g., a tuple based window having size 4 but containing only 2 tuples). On the other

end, the user might be not interested in any result produced from obsolete windows.

As we said, streams are ordered by tuple timestamps. If an obsolete window is discovered due

Vincenzo Massimiliano Gulisano An Elastic Parallel-Distributed Stream Processing Engine

102 CHAPTER 5. STREAMCLOUD FAULT TOLERANCE

to garbage collection, we must ensure that, in case its corresponding tuple is produced, the stream

timestamp ordering guarantee is not violated. In the following sections we describe how garbage

collection is implemented in StreamCloud depending on the window type.

5.5.1 Time-based windows

Two solutions are implemented in StreamCloud to manage time-based obsolete windows. If the

user decides that obsolete windows should produce a result, then, whenever an incoming tuple causes

it corresponding window to slide, all the open windows maintained by the operator are slid imme-

diately. This solution does not affect results correctness. If an incoming tuple causes its windows

to slide, the following incoming tuple belonging to a different window will also cause its window to

slide. The adopted solution simply anticipates windows sliding in order to prevent obsolete windows

to remain in memory.

If the user is not interested in results produced from obsolete windows, then it specifies timeout

value as a multiple of the window advance parameter. A window covers intervals [advance ∗
i, advance ∗ i + size[,∀i = 1 . . . n. If timeout is set, any time a window is slid to [advance ∗
i, advance∗ i+size[, all windows up to [advance∗ (i− timeout), advance∗ (i− timeout)+size[
will be considered obsolete and therefore removed. For instance, defining a window with size and

advance of 10 and 2 seconds, respectively, and timeout = 2, a window covering period [0, 10[will

be stale when receiving a tuple t|t.ts ≥ 4, which will slide one of the operators windows to [4, 14[.

Parameter timeout is used to specify how frequently obsolete windows should be removed (setting

timeout = 0, all windows are slid together). To reduce the impact of the garbage collection on the

regular processing, open windows are maintained using a list sorted by their start timestamp. Doing

this, obsolete windows to be removed will always be at the tail of the sorted list.

5.5.2 Tuple-based windows

The solution adopted in StreamCloud to process obsolete tuple-based windows consist in discard-

ing them without producing any result. A window is considered obsolete (and is therefore erased) if

no tuple has been added to it in the last timeout time units. This solution is adopted because, contrary

of time-based tuples, tuple-based window results cannot be anticipated. Outputting tuples computed

over obsolete windows violates the stream timestamp ordering guarantee. Nevertheless, we stress that

this decision does not lead to incomplete results. Parameter timeout is set by the user and must be

therefore chosen accordingly to the results expected by him.

An Elastic Parallel-Distributed Stream Processing Engine Vincenzo Massimiliano Gulisano

5.6. EVALUATION 103

c) Parallel-Distributed query

Subcluster 3

OIM

OIM

Subcluster 2

A2F2 LBIM F3

A2F2 LBIM F3

Subcluster 1

A1F1 LBIM

A1F1 LBIM

Subcluster 0

I LB

I LB

a) Abstract query b) Partitioning into subqueries

F2 A2 F3

I O
A1F1

Filter Aggregate AggregateFilter Filter

1F
O

2F
O

1A
O

2A
O

F2 A2 F3A1F1

Subquery 1 Subquery 2

Parallel File System

...

...

...

...

...

Figure 5.7: Linear Road.

5.6 Evaluation

In this section, we presented the evaluation of StreamCloud fault tolerance protocol. We eval-

uate the protocol studying its runtime overhead, its recovery time, the scalability of the replicated-

distributed file system and the effectiveness of the garbage collection protocol for varying setups.

5.6.1 Evaluation Setup

The evaluation was performed in a shared-nothing cluster of 100 nodes (blades) with 320 cores.

The details about the machines composing the cluster are presented in Section 3.3.1. All the experi-

ments have been conducted using a query extracted from the Linear Road benchmark. Linear Road

[ACG+04], [JAA+06] is the first and most used SPE benchmark. It has been designed by the devel-

opers of Aurora [ACC+03] and Stream [STRa]. Linear Road simulates a toll system for expressways

of a metropolitan area. Tolls are computed considering aspects such traffic congestions and accidents.

In order to evaluate the performance of an SPE, the system running Linear Road must be capable of

processing the various position reports of a given number of highways generating tolls and accident

alerts with a maximum delay of 5 seconds. The performance attained by an SPE is expressed in

number of highways. The overall Linear Road query is composed by several modules used to check

for the presence of accidents, to maintain statistics about each segment of the highway in order to

compute the corresponding toll, a module to notify tolls and so on. In our evaluation, we focus on

one of the Linear Road modules, the accident detection module, shown in Figure 5.7.a.

This portion of the Linear Road query is used to detect accidents. An accident happens if at

least two stopped vehicles are found in the same position at the same time. Following Linear Road

Vincenzo Massimiliano Gulisano An Elastic Parallel-Distributed Stream Processing Engine

104 CHAPTER 5. STREAMCLOUD FAULT TOLERANCE

Field Name Field Type
Time integer
Vehicle_ID integer
Speed integer
Position integer
Type integer

Table 5.3: Linear Road tuple schema

specifications, a vehicle is considered as stopped if four consecutive position reports of the same

vehicle are related to the same position and all have speed equal to zero. In the following, we provide

the details about the query input tuples schema and the operators definition.

The schema of the input tuples is presented in table 5.3. Field Time specifies the time at which

the position report is generated (expressed in seconds). V ehicle_ID is the unique identifier of each

vehicle. Speed field represents the speed at which the vehicle is moving when the report is created.

Position identifies the position of the vehicle. Finally, Type is used to distinguish between posi-

tion reports tuples (Type = 0), toll request (Type = 1) and other reports types. In Linear Road

specification, the position of a vehicle is given by several fields (Highway,Segment and Direction

among others). Furthermore, the input schema contains additional fields. In the description, we are

presenting only the fields relevant to our query, defining a single Position field in order to simplify

the description (without any loss).

The query consists of 5 operators. Filter F1 is used to pass only position report tuples (Type = 0).

The operator does not modify the tuples schema and is defined as:

F{Type = 0}(I,OF1)

The aggregate operator A1 is used to compute, for each distinct vehicle (i.e., Group − by is set

to field V ehicle_ID) the average speed and initial and final position of each group of 4 consecutive

position reports (i.e., window size and advance are set to 4 and 1 tuples, respectively). The operator

is defined as:

A{tuples, 4, 1, Avg_Speed← avg(Speed), F irst_Pos← first_val(Position),

Last_Pos← Last_val(Position), Group− by = V ehicle_ID}(OF1 , OA1)

The output schema consists of fields 〈V ehicle_ID,Avg_Speed, F irst_Pos, Last_Pos〉.
Next to operator A1, filter F2 is used to pass only tuples referring to stopped vehicles. The

operator does not modify the input tuples schema and is defined as:

F2{Avg_Speed = 0 ∧ First_Pos = Last_Pos}(OA1 , OF2)

An Elastic Parallel-Distributed Stream Processing Engine Vincenzo Massimiliano Gulisano

5.6. EVALUATION 105

Aggregate A2 is used to group together each pair of aggregated position reports referring to the

same position in order to look for an accident (i.e., two distinct cars stopped at the same position).

The operator is defined as:

A{tuples, 2, 1, V ehicle_A← first_val(V ehicle_ID),

V ehicle_B ← last_val(V ehicle_ID), Group− by = First_Pos}(OF2 , OA2)

The output tuples schema consists of fields 〈First_Pos, V ehicle_A, V ehicle_B〉
Finally, filter F3 is used to forward accidents alerts (i.e., tuples referring to a pair of distinct

vehicles stopped at the same position). The operator does not modify the input tuples schema and is

defined as:

F3{V ehicle_A 6= V ehicle_B}(OA2 , O)

Figure 5.7.b presents how the original query is partitioned into subqueries. A subquery is defined

for each stateful operator. In this case, we adopted a slight variation of the StreamCloud subquery

partitioning approach where the stateless prefix of the query (operator F1) has been merged with

the subquery containing A1 and where the stateless operator following A1 has been assigned to the

following subquery. That is, subquery 1 is composed by operators F1 and A1 while subquery 2 is

composed by operators F2,A2 and F3.

Figure 5.7.c shows the global parallel-distributed query. The number of nodes assigned to each

subcluster changes depending on the experiment. In the following sections, we define the subclus-

ter size for each experiment. In our evaluation, we provide fault tolerance for subclusters 1 and 2

(subcluster 0, containing the input sources, and subcluster 1, containing the output receivers, are ex-

ternal applications for which we do not provide fault tolerance). As shown in the figure, tuples being

forwarded to subcluster 1 by subcluster 0 LBs (and to subcluster 2 by subcluster 1 LBs) are being

persisted to disk.

Linear Road benchmark provides a data simulator that is used to create the position reports for

any given number of highways. Data created by the simulator covers a period of 3 hours. In our

experiments, we generated position reports for 20 distinct highways. Figure 5.8 presents how the

input data load evolves during the 3 hours period.

5.6.2 Runtime overhead

With this experiment, we evaluate the overhead introduced by StreamCloud fault tolerance proto-

col. We are interested in measuring how tuples processing latency is affected if LBs are forwarding

and persisting tuples in parallel. For this reason, latency is measured during a fail-free period. As

Vincenzo Massimiliano Gulisano An Elastic Parallel-Distributed Stream Processing Engine

106 CHAPTER 5. STREAMCLOUD FAULT TOLERANCE

0 500 1000 1500 2000 2500 3000 3500
2.9

3

3.1

3.2

3.3

3.4x 10
4

Time (secs)

P
os

iti
on

 r
ep

or
ts

 /
se

co
nd

Figure 5.8: Input rate evolution of data used in the experiments

discussed in the previous section, LBs at subcluster 0 are persisting the tuples forwarded to subclus-

ter 1 while LBs at subcluster 1 are persisting the tuples forwarded to subcluster 2. We measure the

processing latency at subclusters 0 and 1 with and without fault tolerance. Rather than measuring the

latency at the query end, measurements are taken at the end of each subcluster in order to precisely

quantify the runtime overhead, excluding the latency introduced by following subclusters. In this

experiment, each subcluster has been deployed over 10 StreamCloud instances. Figure 5.9 presents

the latency measured at subcluster 0 with (solid blue line) and without fault tolerance (dotted black

line). When fault tolerance is not active, the average latency is around 1.5 milliseconds. When fault

tolerance protocol is active, the latency grows up to 3 milliseconds, approximately.

0 100 200 300 400 500 600
0

1

2

3

4

5

Time (sec)

La
te

nc
y

(m
se

cs
)

No−FT
FT

Figure 5.9: Latency measured at subcluster 0

Figure 5.10 shows the latency measured at subcluster 1 (as before, the solid blue line represents

the latency when fault tolerance is activate while the dotted black line when it is not active). When

fault tolerance protocol is not active, the average latency is around 55.5 milliseconds. When fault

An Elastic Parallel-Distributed Stream Processing Engine Vincenzo Massimiliano Gulisano

5.6. EVALUATION 107

tolerance protocol is active, the latency grows up to 57 milliseconds, approximately. It should be

noticed that, in these experiments, whenever fault tolerance is activated, we activate it for both sub-

clusters. That is, when measuring the extra latency introduced by LBs at subcluster 1 (providing fault

tolerance for subcluster 2), the measurement includes the extra latency caused by LBs at subcluster 0

(providing fault tolerance for subcluster 1).

0 100 200 300 400 500 600
55

56

57

58

59

60

Time (sec)

La
te

nc
y

(m
se

cs
)

No−FT
FT

Figure 5.10: Latency measured at subcluster 1

As shown in the figures, we experience an increase of the processing latency at subcluster 0 but

the extra overhead measured at subcluster 1 is negligible. This is due to the different number of

operators deployed at the different subclusters. Subcluster 0 instances are running a single stateless

operator, the LB used to distribute each data source tuples. In this case, the extra operations performed

by the LBs have a noticeable impact on the latency, increasing it of approximately 2 milliseconds.

Subcluster 1 instances run two operators (stateless filter F1 and stateful aggregate A1) plus an input

merger and a load balancer. In this case, the extra operations performed by the LBs have a negligible

impact with respect to the computations performed by the 4 operators. This is noticed as the increase

in the latency (approximately of 2 milliseconds) is mainly caused by subcluster 0 LBs.

5.6.3 Recovery Time

This experiment has been conducted to measure the recovery time of single-instance failures. The

recovery time is mainly defined by the deploy time (i.e., the time it takes to deploy the replacement

instance) and the state recovery time (i.e., the time it takes to read persisted tuples are recreated the

lost instance state). The deploy time is measured as the interleaving time between the detection of a

failing instance IF and the replacement of its query at IR while the state recovery time is measured as

the interleaving time between the request to recreate the state reading persisted tuples and the instant

when IR state has been fully recovered. In the evaluation, we take into account single instance failures

of subcluster 1. In all the experiments, StreamCloud fault tolerance protocol performs well, showing

Vincenzo Massimiliano Gulisano An Elastic Parallel-Distributed Stream Processing Engine

108 CHAPTER 5. STREAMCLOUD FAULT TOLERANCE

10 20 30
0

2

4

6

8

10

12

Subcluster size (# SPE instances)

T
im

e
(s

ec
on

ds
)

Deploy − U
State Recovery − U

Deploy − Subclsuter 0
State Recovery − Subcluster 0

Deploy − Subcluster 1
State Recovery − Subcluster 1

Figure 5.11: Deploy and State Recovery times for changing subcluster sizes

a small recovery time of approximately 7 seconds. To study in detail the different phases of the

recovery, both deploy and state recovery times have been studied with respect to changing subcluster

sizes and changing number of buckets. We take as base scenario the setup where each subcluster is

deployed at 10 StreamCloud instances and, subsequently, we vary the size of each subcluster to 20

and 30 nodes. Moreover, we consider 3 different scenarios where the traffic sent from subcluster 0 to

subcluster 1 is partitioned into 300, 600 and 900 buckets, respectively. We first discuss the expected

results and proceed subsequently presenting the evaluation measurements. When deploying a query,

its deploy time depends on the number of upstream and downstream instances to which it has to

connect to. Hence, we expect the deploy time to increase when the upstream or the downstream

subclusters of subcluster 1 change their size, while we should see a negligible variation with respect

to varying sizes of subcluster 1. Considering now the state recovery time, we expect it to increase

together with the upstream subcluster size. The rationale is that, the bigger the number of nodes

persisting tuples on their own files, the higher the price we pay to open all the persisted files in

parallel in order to recover the state.

Figure 5.11 presents the results of the evaluated deploy and state recovery times with respect to

changing subcluster sizes. The first group of three bars (subclusters of size 10) shows the same deploy

and state recovery times for the three configurations (in the three cases the setup is equal to the base

setup where each subcluster is deployed at 10 instances). For this configuration, the deploy time is

of approximately 0.66 seconds while the state recovery time is of 6.63 seconds. The second group

of bars shows the deploy and state recovery times when one of the three subcluster is deployed at

20 StreamCloud instances. If subcluster 0 is deployed at 20 instances (first bar), both deploy and

state recovery time increase with respect to the base case. The deploy time grows to 0.81 seconds

An Elastic Parallel-Distributed Stream Processing Engine Vincenzo Massimiliano Gulisano

5.6. EVALUATION 109

300 600 900
0

2

4

6

8

10

12

Number of buckets

T
im

e
(s

ec
on

ds
)

Deploy − C
State Recovery − C

Figure 5.12: Deploy and State Recovery times for changing number of buckets

while the state recovery times grows to 8.38 seconds. The growth of the deploy time is due to the

increased number of upstream LBs to which the query being deployed at subcluster 1 must connect.

The growth of the recovery state time is due to the increase in the number of persisted files that

must be read in order to recreate IF lost state (as discussed in 5.4.1), tuples are persisted on a per-

time period, per-LB basis). As expected, if subcluster 1 (second bar) is deployed at 20 StreamCloud

instances, neither the deploy time nor the state recovery time change from the base case. Finally, if

subcluster 2 is deployed at 20 instances (third bar) we can observe that only the deploy time increases

to 0.97 seconds. The state recovery dos not change due to the unvarying number of persisted files that

must be read to recreate subcluster 1 state with respect to the base case. The considerations done for

the three subclusters when deployed over 20 StreamCloud instances hold also when the subclusters

are deployed at 30 StreamCloud instances. In this case, when deploying subcluster 0 at 30 instances

both deploy and state recovery time grow to 0.95 and 8.48 seconds, respectively. When deploying

subcluster 1 at 30 instances deploy and state recovery time do not vary significantly (0.71 and 6.69

seconds, respectively). Finally, when deploying subcluster 2 at 30 instance only the deploy time grows

(1.26 seconds) while the state recovery time is comparable to the one of the base case (6.64).

Figure 5.12 presents the deploy and state recovery times when increasing the number of buckets

used to route the traffic flowing from subcluster 0 to subcluster 1. As it can be seen, both times are

independent from the number of buckets being used by subcluster 0.

5.6.4 Garbage Collection

This experiment measures the effectiveness of StreamCloud garbage collection protocol. With

respect to the query taken into account in this evaluation, we study how the size of the memory

managed by aggregate A1 changes with respect to 4 different configurations: No−GC, GC− 1200,

GC − 600 and GC − 30. No−GC refers to a configuration where no garbage collection is defined.

Vincenzo Massimiliano Gulisano An Elastic Parallel-Distributed Stream Processing Engine

110 CHAPTER 5. STREAMCLOUD FAULT TOLERANCE

GC − 1200 refers to a configuration where garbage collection timeout is set to 1200 seconds (i.e.,

if a window has not received any tuple in the last 1200 seconds, then it is removed). Similarly,

GC − 600 and GC − 30 refer to configurations where garbage collection timeout is set to 600 and

30 seconds, respectively. Due to Linear Road semantics, 30 is the minimum timeout that can be set

without incurring in any result loss. Position reports referring to the same vehicle have time distance

of 30 seconds, therefore, if no position report for a given vehicle has been received in the last 30, its

corresponding window can be discarded without affecting results.

Figure 5.13 presents the experiment result. Four lines are depicted, one for each configuration.

It can be noticed that, with respect to the No − GC configuration (solid line), the number of open

windows increases linearly, reaching the highest value of roughly 1.5 million windows during the 3

hours of data. With respect to configurations GC − 1200 (dashed line), GC − 600 (dotted line) and

GC−30 (dash-dot line), the number of open windows increases linearly in the first phase, continuing

after with a milder slope. Considering, as an example, configuration GC − 1200, it can be noticed

that the number of open windows starts growing slower around second 1200. This is as expected, any

obsolete window maintained will be discarded after 1200 seconds of inactivity. The rationale is that,

after the warm up phase, the simulated traffic contains cars that are always entering the highway while

cars leaving it; each time a car leaves the highway, its state becomes obsolete. Looking at time 2000,

the number of open windows maintained using configurations No−GC, GC−1200, GC−600 and

GC − 30 is, respectively, 1.26, 1.15, 1.05 and 0.95 millions. This implies that, if a failure happens

at time 2000, having no garbage collection implies the recreation of 32% more windows with respect

to a scenario where garbage collection timeout is set to 30 seconds. Notice that these extra windows

that must be recovered are actually obsolete (i.e., it contain earlier tuples), which leads to a bigger

serialized state to be read and replayed.

5.6.5 Storage System Scalability Evaluation

In this section, we provide an evaluation of the storage system scalability. We use term server to

refer to one instance of the parallel file system managing the read and write operations to a single,

dedicated physical disk while we use term client to refer to one LB instance persisting information

on the parallel file system. We analyze which is the throughput of different setups with an increasing

number of servers and clients (resp. 1, 4 and 8). Our evaluation shows that, even when the number

of servers is lower than the number of available physical disks, the storage system does not usually

constitutes a bottleneck as its throughput is higher than the throughput achieved by the StreamCloud

instances running the query.

Figure 5.14 presents the storage system scalability evaluation. The X axes represents the number

of servers of the parallel file system, the left y axes shows the throughput expressed in MB/s while

the right Y shows the throughput expressed in Linear Road tuples / second (in our setup, one tuple is

An Elastic Parallel-Distributed Stream Processing Engine Vincenzo Massimiliano Gulisano

5.6. EVALUATION 111

0 500 1000 1500 2000 2500 3000 3500
0.8

1

1.2

1.4

1.6x 10
6

Time (sec)

O

pe
n

W
in

do
w

s

No−GC
GC−1200 Secs
GC−600 Secs
GC−30 Secs

Figure 5.13: Garbage Collection evaluation

1 4 8
0

100

200

300

400

500

Number of servers

T
hr

ou
gh

pu
t (

M
B

/s
)

0

1

2

3

4
x 10

6

T
hr

ou
gh

pu
t (

t/s
)

1 client
4 clients
8 clients

Figure 5.14: Storage System Scalability Evaluation

Vincenzo Massimiliano Gulisano An Elastic Parallel-Distributed Stream Processing Engine

112 CHAPTER 5. STREAMCLOUD FAULT TOLERANCE

defined by 125 bytes). In all the experiments, clients issue write requests of 1 MB blocks. We consider

3 different setups of 1, 4 and 8 servers and 1, 4 and 8 clients. When defining a setup of a single server,

the throughput achieved by a single client (line marked with black stars) is approximately 80 MB/s

(or 670000 Linear Road tuples per second). This throughput does not change when having 4 or 8

writers accessing the parallel file system in parallel (lines marked with empty circles and squares,

respectively). When defining 4 servers, the throughput achieved by 1 client does not change, while

4 and 8 clients achieve a throughput of approximately 300 MB/s (or 2.5 millions tuples per second).

Finally, when defining a setup with 8 servers, the throughput slightly increases when using 4 clients

while it grows up to almost 460 MB/s (or 3.9 millions tuples per second) when using 8 clients.

An Elastic Parallel-Distributed Stream Processing Engine Vincenzo Massimiliano Gulisano

Part VI

VISUAL INTEGRATED DEVELOPMENT
ENVIRONMENT

Chapter 6

Visual Integrated Development
Environment

6.1 Introduction

One of the challenges in designing a parallel-distributed SPE, as discussed in Section 3.1 while

presenting the evolution of SPEs, is to provide syntactic transparency. A syntactically transparent

parallel-distribute SPE will provide functionalities to define parallel-distributed queries in the same

way as centralized queries, simply providing additional information about the nodes at which queries

can be deployed. StreamCloud Visual Integrated Development Environment (IDE) has been designed

to specifically address this challenge. This IDE eases the user interaction with StreamCloud SPE.

That is, it eases the programming of queries and automates the parallelization process. Furthermore,

it eases the monitoring of running queries and provides utilities to inject data to a query reading it

from text of binary files (containing the tuples to be sent). Four different tools have been developed

in the context of StreamCloud, more precisely:

1. Visual Query Composer: A Graphical User Interface (GUI) application that eases the compo-

sition of queries providing a drag-and-drop interface where operators of a query can be easily

added and interconnected. Most of the existing commercial SPEs define a GUI to simplify

the programming of queries not only to ease the interaction with the user, but also because

this activity is usually tedious and error-prone. For instance, a task that can be simplified and

automatized is the assignment of query operators and streams name by means of a naming

convention. The Borealis project, the SPE upon which StreamCloud is built, included a first

Vincenzo Massimiliano Gulisano An Elastic Parallel-Distributed Stream Processing Engine

116 CHAPTER 6. VISUAL INTEGRATED DEVELOPMENT ENVIRONMENT

prototype of GUI for the programming of queries. Nevertheless, it was an early prototype that

has been re-designed and implemented in order to include aspects covered by StreamCloudsuch

parallelization and elasticity.

2. Query Compiler: an application that transforms an abstract query (i.e., a query that contains no

information about how to distribute operators to the system nodes and which nodes to use) into

its parallel-distributed counterpart. The Query Compiler is currently integrated with the Visual

Query Composer.

3. Real Time Performance Monitoring Tool: a web-based application that integrates with Stream-

Cloud and shows run-time statistics such input rate, output rate or CPU consumption of query

operators. Statistics are aggregated on a per-parallel operator basis. That is, the average CPU

consumption of a parallel-operator is computed as the average CPU consumption of the nodes

where the operator is running.

4. Distributed Load Injector: Once an abstract query has been defined and its parallel-distributed

version has been compiled, the user still needs a way to inject tuples to it. For this reason, we

provide a Distributed Load Injector. With respect to the distributed Load Injector tool, data can

be forwarded at the rate defined by the tuples timestamps (i.e., the interleaving time between

each tuple forwarding is equal to their time distance) or injected at a rate specified by the user,

that can be adjusted manually at runtime.

Borealis, the SPE upon which StreamCloud has been built, provided some basic tools to ease the

composition of data streaming applications. We present them in Appendix A.4.

In the following examples, we refer to the high-availability fraud detection query presented in

Section 2.2, used to spot phone numbers that, between two consecutive phone calls, cover a suspicious

space distance with respect to their temporal distance.

6.2 Visual Query Composer

The Visual Query Composer (VQC) GUI has been designed to ease the composition and deploy-

ment of queries. The steps performed by the user in order to compose a query consists in the definition

of the query operators, the definition of how they interconnect and the definition of the system input

and output.

The IDE provides a drag and drop interface that allows for an intuitive addition or removal of data

streaming operators in order to create the operators that compose the query. Once an operator has

been added to the query, the user specifies its semantic. As discussed in Appendix A, the Borealis

project (and so StreamCloud) define queries by means of XML files. More precisely, a query file is

An Elastic Parallel-Distributed Stream Processing Engine Vincenzo Massimiliano Gulisano

6.2. VISUAL QUERY COMPOSER 117

used to specify which operators compose the query and their attributes while a separate deploy file

is used to specify the nodes at which each operator will run. Listing 1 presents the definition of the

fraud detection query aggregate operator by means of the Borealis (and StreamCloud) XML syntax.
<box name="a" type="aggregate" >

<in stream = "O_U" />
<out stream = "O_U" />
<parameter name = "aggregate−function.0" value = "firstval(Time)" />
<parameter name = "aggregate−function−output−name.0" value = "Time" />
<parameter name = "aggregate−function.1" value = "firstval(Time)" />
<parameter name = "aggregate−function−output−name.1" value = "T1" />
<parameter name = "aggregate−function.2" value = "firstval(X)" />
<parameter name = "aggregate−function−output−name.2" value = "X1" />
<parameter name = "aggregate−function.3" value = "firstval(Y)" />
<parameter name = "aggregate−function−output−name.3" value = "Y1" />
<parameter name = "aggregate−function.4" value = "lastval(Time)" />
<parameter name = "aggregate−function−output−name.4" value = "T2" />
<parameter name = "aggregate−function.5" value = "lastval(X)" />
<parameter name = "aggregate−function−output−name.5" value = "X2" />
<parameter name = "aggregate−function.6" value = "lastval(Y)" />
<parameter name = "aggregate−function−output−name.6" value = "Y2" />
<parameter name = "window−size" value = "2" />
<parameter name = "window−size−by" value = "TUPLES" />
<parameter name = "advance" value = "1" />
<parameter name = "group−by" value = "Phone" />

</box>

Listing 1: Aggregate operator definition

In StreamCloud, an operator is defined by a box XML element containing one (or more) in el-

ement(s), one (or more) out element(s) and several parameter elements. Parameter elements are

defined as optional and used to define any property of an operator. As an example, we respect to the

aggregate operator, the parameter element is used to specify the window semantics and the functions

applied over the input data. With respect to the aggregate operator of the fraud detection query, the

box XML element contains one in and one out element. With respect to the window semantics, size

and advance parameters are referred to as window-size and advance while parameter window-size-by

is set to TUPLES to specify that the window is tuple-based. The group-by field is specified using the

parameter group-by. For each function that the user defines over the window data, a pair of parame-

ters, aggregate-function and aggregate-function-output-name, is used to specify the function and the

output field name containing its result.

Once the semantic of each operator has been defined, operators are interconnected using the

GUI interface linking them visually. The last step performed by the user to complete the abstract

query is the definition of its input and output streams. Input (and output) streams are defined and

connected with the same drag and drop interface used to define query operators. When defining a

system input (or output) stream, the user defines a schema XML element containing a field element

for each attribute defined by the tuples schema. Listing 2 presents how the query input schema is

defined using StreamCloud XML syntax.

Vincenzo Massimiliano Gulisano An Elastic Parallel-Distributed Stream Processing Engine

118 CHAPTER 6. VISUAL INTEGRATED DEVELOPMENT ENVIRONMENT

<schema name="input_schema">
<field name="Caller" type="string" size="9"/>
<field name="Callee" type="string" size="9"/>
<field name="Time" type="int"/>
<field name="Duration" type="int"/>
<field name="Price" type="double"/>
<field name="Caller_X" type="double"/>
<field name="Caller_Y" type="double"/>
<field name="Callee_X" type="double"/>
<field name="Callee_Y" type="double"/>

</schema>

Listing 2: Input Schema operator definition

We provide a complete example of how the query is defined by means of XML elements in

Appendix A.1.

Figure 6.1 presents a snapshot of the Visual Query Composer application. The snapshot captures

how the user defines the semantic of the query operators and how operators are interconnected. The

VQC allows the user to add input and output streams, basic data streaming operators (Filter, Map,

Union, Aggregate and Join) and table operators (Insert, Update, Delete, Select). Table 6.1 presents

the different operators (and their icons) provided by the VQC. The top panel shown in Figure 6.1

lets the user connect operators while the low panel on the right permits the user to specify each their

semantic. In the Figure, the user is defining the semantic of the aggregate operator (the XML is the

one presented in Listing 1).

Figure 6.1: Abstract query definition

An Elastic Parallel-Distributed Stream Processing Engine Vincenzo Massimiliano Gulisano

6.3. QUERY COMPILER AND DEPLOYER 119

System input System Output Map Filter

Union Aggregate Join External DB

Select Insert Update Delete

Table 6.1: VQC Operators legend

Together with the drag-and-drop interface that eases query composition, the VQC defines a set of

syntactic and semantic correctness rules to fix possible user mistakes. In order to guarantee syntactic

correctness, the application checks XML elements against the XSD schema definition, making sure

that parameters and attribute names are nor misspelled or empty. Furthermore, syntactic correctness

is guaranteed making sure that all the mandatory elements of each operator are defined. As presented

before, attributes of an operator (like the windowing semantic of an aggregate operator) are defined

by means of the parameter element. Each operator can define any number of parameter element,

depending on the number of attributes it requires. For this reason, the VQC checks, for each operator,

if all the mandatory attributes have been defined and if the number of input and output streams is

correct (e.g., it checks whether the Union operator defines exactly one output stream). To guarantee

semantic correctness, the VQC checks that the operations performed by each operator are based on

tuple fields previously defined. That is, fields that are either defined by the previous operators or as

system input streams. Similarly, the VQC checks whether the schema of the system output stream is

consistent with the one of the operators generating the system output itself. Another condition that is

checked with respect to streams is the correctness of names. That is, the VCQ checks that the stream

connecting two operators has been defined with the same name in both XML definitions. The VQC

also defines conditions to be checked with respect to the overall query. As an example, one condition

that must be satisfied is that no loops are defined in the query (as discussed in Section 1.3, a query is

defined as a directed acyclic graph - DAG).

6.3 Query Compiler and Deployer

In order to have a complete IDE, we have integrated two additional components: the Query

Compiler and the Deployer. The Query Compiler transforms an abstract query (e.g., the query that

Vincenzo Massimiliano Gulisano An Elastic Parallel-Distributed Stream Processing Engine

120 CHAPTER 6. VISUAL INTEGRATED DEVELOPMENT ENVIRONMENT

has been composed as described in the previous section) into its parallel-distributed counterpart. The

Deployer generates all the input files and the script that can used by the user to execute the resulting

application.

In order to compile an abstract query, the Query Compiler follows three steps: (1) partitioning

into subqueries, (2) template creation and (3) parallelization. We introduce each step separately.

Figure 6.2 presents an overview of these steps with respect to the fraud detection query (shown in

Figure 6.2.a).

Partitioning into subqueries. The first step performed by the complier is the partitioning of the

query into subqueries. Query partitioning is applied by the Query Compiler following the operator-

set-cloud partitioning strategy presented in Section 3.2, where a subquery is defined for each stateful

operator (and the stateless operators following it) and an additional subquery is defined for the query

stateless prefix of operators. If the user decides to apply a different criteria to partition the query, it

can specify manually how operators are partitioned into subqueries (selecting a group of operators

and specifying they belong to the same subquery). Figure 6.2.b shows how the query is partitioned

following the operator-set-cloud strategy. In the example, 3 subqueries are defined if partitioning is

applied by the Query Compiler. One subquery contains the initial map operatorM1 and the following

union operator U . A separate subquery contains the map operator M2. Finally, a third subquery

includes the aggregate operator A and its following stateless operators (map operator M3 and filter

operator F). Once subqueries have been defined the Query Compiler, the user is asked to specify

which nodes will be used to run the parallel query in the initial deployment and if elasticity should

be active while running the query (if elasticity should be provided, the user is asked to define a set of

available instances that can be provisioned if necessary).

With respect to Figure 6.2.b, we suppose each subquery i will be deployed to a set of ni nodes.

Figure 6.3 presents a snapshot of the VQC application where the user is specifying which nodes

are used for the initial deploy and which nodes can be provisioned. Node are expressed by means

of an IP :Port address. With respect to the subquery containing the aggregate operator, the user

has specified that it will be deployed over 6 instances (the Assigned list contains 6 entries). Having

defined 5 additional available instances(the Available list contains 5 entries), the user specifies that

new instances can be provisioned, up to a maximum of 5 .

Template creation. During this second step, the Query Compiler converts each subquery into an

XML template that is later on used to create the parallel-distributed query. For each subquery, its

corresponding template represents the XML query that will be deployed at the subquery instances.

The XML template includes the definition of the operators belonging to the subquery plus an input

merger on each incoming edge (i.e., an input stream generated by an operator belonging to a different

An Elastic Parallel-Distributed Stream Processing Engine Vincenzo Massimiliano Gulisano

6.3. QUERY COMPILER AND DEPLOYER 121

a) Abstract query

b) Partitioning into subqueries

A M3 FU

Union MapAggregate FilterM1

Map

M2

Map

c) Templates creation

Subquery 1

Subquery 2

Subquery 3

A M3 FU

M1

M2

U

M1

LB

IM

Subquery 1 template

IM

A LBIM

Subquery 3 template

M3 F

M2 LBIM

Subquery 2 template

d) Compiling of parallel-distributed query

(associated to n1 SC instances)

(associated to n2 SC instances)

(associated to n3 SC instances)

U

M1

LB

IM

IM

U

M1

LB

IM

IM

Subcluster 2

...
M2 LBIM

M2 LBIM

Subcluster 1

...

A LBIM M3 F

A LBIM M3 F

Subcluster 3

...

n1 SC instances

n2 SC instances

n3 SC instances

Figure 6.2: Compiling an abstract query into its parallel-distributed counterpart

subquery or by a system input) and a load balancer on each outgoing edge (i.e., an output stream

feeding an operator belonging to a different subquery or a system output). All the operators name and

streams names are enriched with a suffix that will be later used to enumerate them (a sample operator

OP distributed over 3 StreamCloud instances will have names OP_1, OP_2 and OP_3). Figure

6.2.c shows how each subquery has been converted into its corresponding template.

Parallelization. During the last step, subqueries XML templates built during the previous stage are

used to create the parallel-distributed query and create the files needed by StreamCloud to execute the

query. As shown in Figure 6.2.d, each subcluster is created duplicating its corresponding subquery

template (the number of duplicates being equal to the number of StreamCloud instances to which the

subcluster will be deployed). Once each subquery has been duplicated the required number of times,

operators and stream suffix names are updated and the resulting XML object is written to disk. The

Query Compiler creates the following files starting from the abstract query:

Vincenzo Massimiliano Gulisano An Elastic Parallel-Distributed Stream Processing Engine

122 CHAPTER 6. VISUAL INTEGRATED DEVELOPMENT ENVIRONMENT

Figure 6.3: Subquery partitioning

query.xml The XML file defining the parallel-distributed query. The file contains the definition of

all the operators belonging to the query; we provide an example of such file in Appendix A.

deploy.xml This XML file defines the StreamCloud instances where each subcluster is deployed. De-

ployment information is not maintained in the same file that defines the query so that different

deployments can be defined referring to the same parallel-distributed query.

SC.xml / ResourceManager.xml these XML files contains parameters used by the StreamCloud

Manager for provisioning, decommissioning, dynamic load balancing or fault tolerance ac-

tions. An excerpt of a sample SC.xml file is presented in Listing 3. The file contains in-

formation about the query and deploy files, the resource manager file, information about the

recovery (in the example the heartbeat period is set to 1 millisecond) and information about

the Load Injectors (in order to start or stop them). The second file created by the Query Com-

piler (ResourceManager.xml), contains information about the StreamCloud instances assigend

to the operators and the ones that can be provisioned. An excerpt of a sample ResourceM-

anager.xml file is presented in Listing 4. It can be noticed that different elements are used to

define assigned and available instances. For each machine, the file specifies how many Stream-

Cloud instances must be activated (and their ports). Furthermore, the file specifies additional

An Elastic Parallel-Distributed Stream Processing Engine Vincenzo Massimiliano Gulisano

6.3. QUERY COMPILER AND DEPLOYER 123

parameters, like the desired number of StreamCloud instance that should be kept in the pool of

available instances.

<SC>
<Query>path to query file</Query>
<Deploy>path to deploy file</Deploy>
<ResourceManager>path to resource manager file</ResourceManager>
<FaultTolerance>

<RecoveryType>precise</RecoveryType>
<HeartBeatPeriod>1000</HeartBeatPeriod>

</FaultTolerance>
<LBs>

<Instances>
<LB>blade52:5000</LB>
<LB>blade42:5008</LB>
<LB>blade42:5009</LB>

</Instances>
</LBs>

</SC>

Listing 3: StreamCloud Parameters example

<ResourceManagerParameters>
<AssignedNodes>

<SCStarter Id="blade52" Port="8000" IP="blade52">
<SCInstance Port="15200" IP="blade52"/>
<SCInstance Port="15100" IP="blade52"/>
<SCInstance Port="15000" IP="blade52"/>

</SCStarter>
</AssignedNodes>
<AvailableNodes>

<SCStarter Id="blade45" Port="8000" IP="blade45">
<SCInstance Port="15200" IP="blade45"/>
<SCInstance Port="15100" IP="blade45"/>
<SCInstance Port="15000" IP="blade45"/>

</SCStarter>
</AvailableNodes>
<DesideredPoolSize>3</DesideredPoolSize>

</ResourceManagerParameters>

Listing 4: Resource Manager Parameters example

Skeletoni.xml these XML files (one for each template subquery i) contain XML templates that are

used when provisioning a new instance or replacing a failed one. These XML files are referred

to as Skeleton as they define the actual query but lack part of the information, as the latter is

added by StreamCloud at deployment time. An example of lacking information is the address to

which the input streams of a subquery should connect if the latter is deployed at a StreamCloud

instance replacing a failed one. This information, computed at runtime by the StreamCloud

Manager, depends on the particular failed instance, and is added to the subquery skeleton XML

just before deploying it.

launch.sh a script that can be used by the user to start (or stop) the query and connect Load Injectors

Vincenzo Massimiliano Gulisano An Elastic Parallel-Distributed Stream Processing Engine

124 CHAPTER 6. VISUAL INTEGRATED DEVELOPMENT ENVIRONMENT

to the running StreamCloud instances.

6.4 Real Time Performance Monitoring Tool

Another component of the IDE that aims at providing support during query execution is the Real

Time Performance Monitoring Tool. This tool has been designed to let the user monitor the queries

that have been deployed at the SPE instances maintained by StreamCloud. For each deployed query,

the application allows the user to monitor the performance and the resource consumption of its com-

posing operators. These statistics are computed as average aggregate statistics on a per-parallel oper-

ator basis (e.g., the CPU statistic of a parallel-operator is computed as the average CPU consumption

of all the instances running the operator). Statistics are retrieved periodically from StreamCloud in-

stances and, once aggregated, used to update the information displayed to the user (the frequency

with which statistics are retrieved can be defined by the user as a parameter of the application) Given

a parallel-operator, the following statistics are provided:

• Input Stream Rate: tuples/second consumed by the operator.

• Output Stream Rate: tuples/second produced by the operator.

• Cost: fraction of the operator processing time over the overall processing time of the operators

deployed at the same instance. This statistics measure the percentage of resources consumed

by an operator with respect to the resources consumed by all the operators running at the same

StreamCloud instance.

• Queue Length: number of tuples currently queued at the operator input buffer. This statistic is

useful as it behavior permits to know when a StreamCloud instance is getting close to saturation.

When the computation being run does not saturate the available resource, this statistic is usually

close to 0 (i.e., all the tuples are immediately processed and no queued). On the other hand, this

statistics starts growing fast when the resources need for the computation of the query exceed

the available ones.

• CPU: average CPU consumption of the SPE instances running the operator.

• Size: number of SPE instances running the parallel operator.

As introduced in Section 4.1, StreamCloud architecture defines Local Managers (LMs) compo-

nent for each StreamCloud instance. This component is used by the StreamCloud Manager to retrieve

information from the instance or to modify the running query. Information between each Stream-

Cloud instance and the StreamCloud Manager is exchanged by means of periodic reports. These

An Elastic Parallel-Distributed Stream Processing Engine Vincenzo Massimiliano Gulisano

6.4. REAL TIME PERFORMANCE MONITORING TOOL 125

reports include several statistics, such CPU consumption, load of each bucket, statistics about the

running operators and so on. Statistics about the operators are maintained by the Statistics sensor

unit, a sub-unit of the LM component. Figure 6.4 shows a sample parallel-distributed version of the

high mobility fraud detection query. In the example, subqueries 1 and 2 have been deployed at sub-

clusters 1 and 2, both composed by 2 StreamCloud instances; while subquery 2 has been deployed

at subcluster 3, composed by 3 instances. As shown in the figure, each Local Manager includes the

Statistics Sensor unit (depicted as a box contained in the LM box).

SC Manager

A LBIM M3 F

A LBIM M3 F

A LBIM M3 F

Subcluster 3

Local Manager
Statistics

Sensor

Local Manager
Statistics

Sensor

Local Manager
Statistics

Sensor

Subcluster 1

M2 LBIM

Local Manager
Statistics

Sensor

M2 LBIM

Local Manager
Statistics

Sensor

U

M1

LB

IM

IM

U

M1

LB

IM

IM

Subcluster 2

Local Manager
Statistics

Sensor

Local Manager
Statistics

Sensor

Statistics

Collector

Statistics

Web Interface

Figure 6.4: SC Statistics Monitor architecture

Periodic reports exchanged by the Statistic Sensor unit of each StreamCloud instance are collected

by the StreamCloud Manager. More precisely, they are collected by the Statistics Collector module,

a sub-module of the StreamCloud Manager, which aggregate statistics on a per-parallel operator ba-

sis. Whenever instances are provisioned, the StreamCloud Manager updates the Statistics Collector

specifying which new statistics reports should be aggregated. Similarly, whenever instances are de-

commissioned, the StreamCloud Manager updates the Statistics Collector specifying which Stream-

Cloud instances reports does not have to be aggregated anymore. While parallel operators statistics

are being aggregated, they are also sent to the Statistics Web Application. The latter provides the user

with an interface presenting all the queries maintained by StreamCloud. For each parallel-operator,

the user can choose which of the presented statistics should be monitored. The application provides

the user the possibility of visualizing multiple statistics at the same time.

Figure 6.5 presents a snapshot of the monitoring tool for the aggregate operator of the sample

query presented in Section 6.2. Looking at the Input Stream Rate statistic, it can be noticed that the

load injected to the operator is increasing linearly. During the time period between 10:32:00 and

Vincenzo Massimiliano Gulisano An Elastic Parallel-Distributed Stream Processing Engine

126 CHAPTER 6. VISUAL INTEGRATED DEVELOPMENT ENVIRONMENT

Figure 6.5: snapshot of Statistics Visualizer presenting the statistics of the Aggregate operator

10:33:30 the load moves from approximately 1000 t/s up to 25000 t/s. Output Stream Rate grows at

the same rate as the Input Stream Rate. Looking at the Size statistic, it can be noticed that, initially,

the aggregate operator has been deployed over a single SPE instance. New StreamCloud instances

have been dynamically provisioned in order to cope with the incoming load. The operator has moved

from 1 to 2 instances at time 10:32:30, from 2 to 3 instances at time 10:33:00 and, finally, from 3 to 5

instances at time 10:33:30. Cost, Queue Length and CPU statistics show a behavior that is similar to

the one of the input and output stream rates. The measured values increase due to the growing load

injected to the operator. In correspondence with each reconfiguration action, the measured statistics

show a sudden drop. This is due to the fact that, as the number of instances increases, each operator

processing cost decreases (processing is shared among more machines).

6.5 Distributed Load Injector

The last components of the IDE is the Distributed Load Injector.The distributed load injector is

used to read tuples from text (or binary) files and forward them to StreamCloud instances. In order

to used this component, the user defines a function that converts a text line into a tuple. This allows

An Elastic Parallel-Distributed Stream Processing Engine Vincenzo Massimiliano Gulisano

6.5. DISTRIBUTED LOAD INJECTOR 127

the user to maintain tuples in any desired format, as long as it provide a way to translate them to

binary objects. As introduced in Section 2.1, a system input stream is composed by tuples having

non-decreasing timestamps. If data sources do not have synchronized clocks, the user can use the

distributed load injector to timestamp tuples before being forwarded to StreamCloud instances. Do-

ing this, the timestamp value of each tuple will be set to the current system timestamp (we suppose

the machines used to inject the load belong to the same set of machines used to run StreamCloud in-

stances). The Load Injector gives the user the possibility of defining a batch factor to group together

tuples sent to StreamCloud. This is particularly useful when working with high volume input streams

as batching of input tuples decreases the per-tuple serialization / deserialization overhead, leading to

higher throughput. When using the Distributed Load Injector to send the input data of a query, multi-

ple instances of the load injector run in parallel. The Distributed Load Injector defines commands to

start / stop the injection of tuples and to adjust the injection rate. A centralized controller is connected

with all the load injector instances so that commands such start injection, stop injection or change

injection rate can be issued at the same time to all of them. Being distributed, the Load Injector

allows for the injection of big loads, in the order of hundreds of thousand tuples per second. This

high sending rate is achieved partitioning the input file containing the tuples and assigning a portion

to each load injector instance.

Vincenzo Massimiliano Gulisano An Elastic Parallel-Distributed Stream Processing Engine

128 CHAPTER 6. VISUAL INTEGRATED DEVELOPMENT ENVIRONMENT

An Elastic Parallel-Distributed Stream Processing Engine Vincenzo Massimiliano Gulisano

Part VII

STREAMCLOUD - USE CASES

Chapter 7

StreamCloud - Use Cases

7.1 Introduction

In this chapter, we present application scenarios that have been studied while designing and de-

veloping StreamCloud SPE as potential target applications where StreamCloud has been deployed.

Among this scenarios, we focus on fraud detection applications in the field of cellular telephony, fraud

detection applications in the field of credit card transactions and in Security Information and Event

Management (SIEM) systems.For each scenario, we motivate why data streaming, and in particular

StreamCloud, is a good candidate solution and present some sample queries motivated by the use

cases, describing their goal and how they can be implemented in StreamCloud. For each implemen-

tation of the sample queries, we provide a high level description of the operators that can be used to

query the input data and proceed with a detailed description of each query operator.

7.2 Fraud Detection in cellular telephony

Fraud detection applications in the context of cellular telephony are one of the scenarios that

motivated research in data streaming due to their need for high processing capacity with low latency

constraints. Nowadays, several millions of mobile phone devices are used worldwide to communicate

via voice calls, text messages or to exchange information accessing the Internet. As discussed in

Chapter 1, the Spanish commission for the Telecommunications market [cmt] counts the number of

mobile phones in Spain to exceed the 56 million units. In such scenarios, spotting fraudulent users

is a hard task. The reason is that, as each mobile phone can be a potential fraudulent user or a

Vincenzo Massimiliano Gulisano An Elastic Parallel-Distributed Stream Processing Engine

132 CHAPTER 7. STREAMCLOUD - USE CASES

potential victim, all the traffic must be constantly monitored in order to look for suspicious activity.

The complexity also raises from the need of checking for fraudulent activity in a real-time fashion.

That is, it is not only important to spot fraudulent activity, but to spot it as soon as possible, as the

larger the time it takes to spot a fraudulent activity, the higher the company loss and, even worse, the

higher the probability of loosing a client.

StreamCloud fits with the discussed scenario for several reasons. By its nature, the infrastruc-

ture upon which mobile cellular telephony applications are built is distributed and the processing

of the information generated by mobile phone antennas is highly parallelizable (that is, the overall

amount of traffic is huge while the per-mobile phone traffic is small). The presence of distributed

sources fits perfectly with StreamCloud as the latter has been designed exactly to overcome the lim-

itation of centralized and distributed SPEs performing an end-to-end parallel analysis of the input

data. Another reason why StreamCloud is a good candidate for managing fraud detection applica-

tions in cellular telephony is its high processing capacity and its scalability, that allows for processing

of hundred of thousand messages per second. As presented in Section 1.3.1, when running parallel-

distributed applications, input data arriving at fluctuating rates might cause under-provisioning or

over-provisioning. When setting up a number of machines big enough to processes data at its highest

rate (over-provisioning), the main shortcoming is that, most of the time, nodes are not used, incurring

in unnecessary costs. The opposite solution, consisting in providing the number of machines needed

to process the average system load (under-provisioning) leads to high processing latency during peak

loads, resulting in a less effective (or even useless) analysis of the input data. Due to StreamCloud dy-

namic load balancing and elasticity protocols, the resource utilization (in terms of computation nodes)

would be constantly adjusted to meet the processing requirements using the appropriate number of

machines (i.e. reducing the overall application cost). Finally, StreamCloud is a good candidate for

cellular telephony fraud detection applications as, thanks to its IDE (see Section 6 for further details),

it reduces the final user task to the definition of the abstract queries to run and the nodes that can be

used, automating all other steps such query parallelization, deployment and runtime management.

We continue this section presenting some sample application used for fraud detection in cellular

telephony.

7.2.1 Use Cases

In this section, we present three sample queries used in cellular telephony fraud detection applica-

tions. For each query, we present the type of fraud it detects and introduce a possible implementation

in terms of data streaming operators. All the sample queries refer to the same schema for the Call

Description Record (CDR) input tuples. As presented in the Section 2.1, this information is usually

generated by antennas to which mobile phones connect to. The schema is composed by the following

9 fields:

An Elastic Parallel-Distributed Stream Processing Engine Vincenzo Massimiliano Gulisano

7.2. FRAUD DETECTION IN CELLULAR TELEPHONY 133

Field Name Field Type
Caller text
Callee text
Time integer
Duration integer
Price double
Caller_X double
Caller_Y double
Callee_X double
Callee_Y double

Table 7.1: CDR Schema

Fields Caller and Callee refer to the mobile phones making and receiving the call, respectively.

Fields Time represents the call start time whileDuration refers to its duration, expressed in seconds.

Field Price refers to the call price in e, while Caller_X , Caller_Y and Callee_X , Callee_Y

represent the geographic coordinates of the caller and callee number, respectively.

The three sample queries we present in the following are the Consumption Control query, used to

spot mobile phones whose number of calls exceeds a given threshold, the Overlapping Calls query,

used to spot mobile phone that appear to maintain more than one call simultaneously and the Blacklist

query, used to spot phone calls made by mobile phones known to be fraudsters.

Consumption Control Query This query, presented in Figure 7.1, is used to spot mobile phones

whose number of calls exceed a given threshold. The goal is to isolate in real time mobile phone

numbers that make a suspicious amount of calls for further investigating the presence of possible

frauds. In the example, we want to spot mobile phones making 20 (or more) phone calls in a time

period of 5 minutes. The query is composed by three operators. The first map operator M is used to

transform the input tuples schema removing the fields that are not used by the following operators.

The idea is to reduce the computational cost of the query removing unnecessary copies of information

that are not used to compute the query result. This rule will be applied also in the following examples.

Next to the map operator, the aggregate operator A is used to compute the number of phone calls

made by each phone number over a period of time. Finally, the filter operator F is used to forward

only mobile phone numbers whose number of calls exceed the given threshold. In the following, we

proceed with a detailed description of each operator of the query.

Aggregate A Filter F
I OA OF

Map M
OM

Figure 7.1: Consumption Control Query

Vincenzo Massimiliano Gulisano An Elastic Parallel-Distributed Stream Processing Engine

134 CHAPTER 7. STREAMCLOUD - USE CASES

The fields of the input tuples needed to compute the query result are the Caller phone number

and the Time when the call is started. The map operatorM is used to discard all the remaining fields.

The operator is defined as:

M{Caller ← Caller, T ime← Time}(I,OM)

The output tuples schema is composed by fields 〈Caller, T ime〉.
Once the unnecessary fields have been removed, the aggregate operator A is used to compute

the number of phone calls made by each Caller number over a period of 5 minutes, emitting results

every minute. Field Caller is set as the group − by attribute and defines a time-based window with

size and advance of 300 and 60 seconds, respectively. The operator is defined as:

A{time, T ime, 300, 60, Calls← count(), Group− by = Caller}(OM , OA)

The output tuples schema is composed by fields 〈Caller, T ime,Calls〉.
Finally, the filter operator F is used to forward only tuples whose number of calls exceeds the

given threshold (20 in the example). The operator does not modify its input tuples schema and is

defined as:

F{Calls ≥ 20}(OA, OF)

Overlapping Calls Query This query is used to spot mobile phones that appear to maintain more

than one call simultaneously (i.e., mobile phones that could have been cloned). It should be noticed

that, for each CDR we must consider both theCaller andCallee as possible cloned numbers. Hence,

similarly to the High Mobility query presented in Section 2.2, we duplicate each incoming tuple into

a pair of tuples, one referring to the Caller number and one referring to the Callee one. To duplicate

input tuples, the query defines two initial map operators M1 and M2 and the union operator U . Map

operatorsM1 andM2 are not only used to extract either the Caller or the Callee phone number from

the input tuples but also used to remove the input schema fields that are not used by the following

operators. The tuples forwarded by the union operator are processed by the aggregate operator A,

used to extract, for each pair of consecutive tuples referring to the same phone number, the end time

of the first call and the start time of the second one. Given the assumption the CDR are produced in

timestamp order, we can spot two overlapping calls if, given two consecutive phone calls, the start

time of the second is less than or equal to the end time of the the first one. In order to spot overlapping

calls, the filter operator F compares the fields extracted by the aggregate operator to forward only

mobile phone numbers appearing to maintain multiple calls simultaneously. In the following, we

proceed with a detailed description of each operator of the query.

An Elastic Parallel-Distributed Stream Processing Engine Vincenzo Massimiliano Gulisano

7.2. FRAUD DETECTION IN CELLULAR TELEPHONY 135

Aggregate A Filter F
I OA OF

Union U

Map M1

Map M2

OU

I1

I2

Figure 7.2: Overlapping Calls Query

The map operatorM1 is used to modify the input tuples schema keeping theCaller field (renamed

to Phone), the Time field (renamed to Start_Time) and computing theEnd_Time field as the sum

of the Time and Duration. The operator is defines as:

M1{Phone← Caller, Start_Time← Time,End_Time← Time+Duration, }(I, I1)

The output tuples schema is composed by fields 〈Phone, Start_Time,End_Time〉.
Similarly to operator M1, the map operator M2 produces tuples composed by fields Phone,

Start_Time and End_Time. In this case, field Phone is set to be equal to the input tuple Callee

number. The operator is defined as:

M2{Phone← Callee, Start_Time← Time,End_Time← Time+Duration, }(I, I2)

The union U is used to merge tuples produced by the two previous map operators. It should be

noticed that this is possible as the map operators define the same output schema (that is why Caller

andCallee fields are being renamed to Phone). The operator does not modify its input tuples schema

is defined as:

U{}(I1, I2, OU)

Tuples forwarded by the union operator are processed by the aggregate operator A. As the aggre-

gate operator must extract fields for each consecutive pair of tuples, its window is set to be tuple-based

and size and advance attributes are set to 2 and 1, respectively. The group − by attribute is set to

Phone to match consecutive pairs of calls referring to the same Phone number. Two functions

are defined, first_val(End_Time) is used to extract the end timestamp of the first call (function

first_val refers to the earliest tuple) while function last_val(Start_Time) is used to extract the

start timestamp of the second call (function last_val refers to the latest tuple). The output tuples

schema is composed by fields Phone, First_Call_End and Second_Call_Start. The operator is

defined as:

A{tuples, 2, 1, F irst_Call_End← first_val(End_Time),

Second_Call_Start← last_val(Start_Time), Group− by = Phone}(OU , OA)

Vincenzo Massimiliano Gulisano An Elastic Parallel-Distributed Stream Processing Engine

136 CHAPTER 7. STREAMCLOUD - USE CASES

The filter operator F is used to forward Phone numbers appearing to have overlapping phone

calls. The condition checked by the operator is Second_Call_Start ≤ First_Call_End. The

operator does not modify its input tuples schema is defined as:

F{Second_Call_Start ≤ First_Call_End}(OA, OF)

Blacklist Query This query is used to spot mobile phone numbers that are known to be fraudsters.

Differently from the two previous queries, the information needed to compute the query results is not

carried entirely by the input tuples themselves. More precisely, the information about which mobile

phone numbers are known to be fraudulent is provided by means of an external DB. For this reason,

the query will mix basic data streaming operators with table operators to retrieve such information

(see Section 2.3 for a description of table operators). Similarly to the previous query, the fraudulent

mobile phone appearing in each CDR can be either the Caller or the Callee number. Hence, we

need to define two initial map operators and a union operator to transform each incoming tuple in a

pair of tuples, one carrying the Caller number and one carrying the Calle number. Tuples produced

by the union operator are processed by the select operator. As presented in Section 2.3, this operator

is used to retrieve tuples from a DB and defines up to three outputs. The first output is used to

forward the records contained in the given relation that, for each incoming tuple, match the given

SQL WHERE statement. The output tuples of this first output stream share the same schema of the

table. The second (optional) output is used to forward input tuples when no record matches the given

SQL condition; the tuples schema is the same as the input one. Finally, the third (optional) output

is used to match, for each incoming tuple, the number of matching records in the table, the output

tuples schema is composed by the fields defined in the SQL WHERE clause plus a Count field. In the

example, the third output is used to retrieve the number of matching tuples. The final filter operator

is used to forward only tuples whose counter is 1, i.e., mobile phones that appear in the blacklist. In

the following, we proceed with a detailed description of each operator of the query.

Filter F
OF

Select S
OS3

DB

OS1

OS2I
Union U

Map M1

Map M2

OU

I1

I2

Figure 7.3: Blacklist Query

Map operators M1 and M2 are used to modify the input tuples schema keeping the Caller and

the Callee field, respectively. They are defined as:

An Elastic Parallel-Distributed Stream Processing Engine Vincenzo Massimiliano Gulisano

7.2. FRAUD DETECTION IN CELLULAR TELEPHONY 137

M1{Phone← Caller}(I, I1)

M2{Phone← Callee}(I, I1)

Tuples produced by map operatorsM1 andM2, both defining the same schema composed by field

Phone are merged by the union operator U . The operator does not modify its input tuples schema

and is defined as:

U{}(I1, I2, OU)

Tuples produced by the union operator are processed by the select operator S. In the example, we

define a table referred to as DB, whose record schema is defined by the field Phone. Each unique

record of the list refers to a known fraudulent mobile phone. The operator is used to query the table

and extract the number of matching records for each incoming tuple. The third output stream is used

to retrieve the number of matching records in the table. The schema of the tuples forwarded to this

stream is composed by the field appearing in the SQL WHERE clause plus a Count field containing

the actual number of matching records. In our example, the Count field will have value 0 if the

mobile phone is not in the blacklist or 1 otherwise. The operator is defined as:

S{DB,SELECT * FROM DB WHERE DB.Phone = input.Phone}(I,OS1, OS2, OS3)

The output tuples schema is composed by fields 〈Phone,Count〉.
The last operator defined by the query is the filter operator F . This operator is used to forward

only tuples whose Counter field is 1. The operator does not modify its input tuples schema and is

defined as:

F{Counter = 1}(OS3, OF)

An interesting consideration about this query is related to how it can be parallelized and run by

StreamCloud providing dynamic load balancing and elasticity. As discussed in 2.3, the parallelization

of table operators is not in the scope of the presented work; nevertheless, this query can be parallelized

and run by StreamCloud with a small effort. This is because the table operator used in the query is

only used to retrieve information. That is, as the information is not updated by the query, it is enough

to provide access to the information contained in the DB to all the instances at which the select

operator could be deployed. It should be noticed that, in order to scale, the access to the information

contained in the table should not rely on a centralized DB. One possible solution is to simply provide

Vincenzo Massimiliano Gulisano An Elastic Parallel-Distributed Stream Processing Engine

138 CHAPTER 7. STREAMCLOUD - USE CASES

a copy of the blacklist DB to each instance running the select operator. Dynamic load balancing can

be easily provided by this query as the select operator can be considered as a stateless operator; that

is, dynamic load balancing for the select operator can be achieved just changing the routing policy of

its input tuples, as far as all the operator instance have access to the same information contained in the

blacklist DB (see Section 4.2 for further details on dynamic load balancing for stateless operators).

7.3 Fraud Detection in credit card transactions

In this section, we discuss a different fraud detection use case for credit card transactions. The

need for real-time solutions that provide high processing capacities with low latency guarantees to

prevent fraud clearly emerges from the huge number of cards used nowadays. As reported by The

Nilson Report [Nil], the projection for the year 2012 estimates the number of debit cards holders in

the U.S. is approximately of 191 million people, for a total of 530 million debit cards whose estimated

purchase volume is 2089 billion dollars. The credit card transaction scenario share similarities with

cellular telephony fraud detection applications: in both cases, applications are required to process

huge amounts of data with low processing latency and, in both cases, processing of such traffic is

highly parallelizable, as the per-credit card (or per-mobile phone) traffic is usually small. As for

cellular telephony applications, the credit card transactions rates fluctuate depending on the particular

period of time and in correspondence with mass events. This makes StreamCloud a good candidate

for data streaming processing thanks to its dynamic load balancing and elastic capabilities.

One of the differences between applications in the domain of fraud detection application in cel-

lular telephony and credit card transactions is that, in the second case, queries can be defined not

only to detect fraudulent activity immediately after its completion, but to prevent it. The reason is

that, when issuing transactions involving credit cards, a series of authentication steps interleave the

transaction request from the transaction completion. Hence, if a fraudulent transaction can be spotted

before authorizing the transaction itself, the money loss is completely prevented. Nevertheless, this

possibility implies a more strict latency bound for tuples processing as authorization of credit card

transactions usually defines time thresholds lower than the second.

In the following section, we present two sample applications used to detect frauds related to credit

cards transactions.

7.3.1 Use Cases

In this section, we present two sample fraud detection applications related to credit card trans-

actions. Both examples refers to the same input tuples schema, presented in Table 7.2. The schema

is composed by four different fields; field Card refers to the card number making the transaction,

An Elastic Parallel-Distributed Stream Processing Engine Vincenzo Massimiliano Gulisano

7.3. FRAUD DETECTION IN CREDIT CARD TRANSACTIONS 139

field Time represents the transaction start time, field Price refers to the amount of money being

transferred while field Seller_ID refers to the entity to which the transaction is being made.

Field Name Field Type
Card text
Time integer
Price double
Seller_ID text

Table 7.2: Credit Card Fraud Detection Tuple Schema

The two sample queries are presented: the Improper-Fake Transaction query, used to spot possibly

fraudulent sellers that are issuing multiple transactions for the same credit card in a short period, and

the Restrict Usage query, used to spot credit card holders whose expenses exceed the credit card usage

threshold.

Improper-Fake Query This sample query is used to spot sellers that simulate proper transactions

with possibly stolen credit cards. The condition to raise an alarm is that, in a short time period (e.g.,

1 hour) at least two distinct credit cards are used multiple times (at least twice in the examples) by

the same seller. As an example, this alarm should be raised if the owner of a shop copies credit cards

numbers of its clients and simulates several purchases of its items in a short time period.

The query is composed by four operators. The first map operator is used to remove the input

tuples fields that are not used by the following query operators. In the example, the fields needed

by the query operators are Card, Time and Seller_ID. Tuples produced by the map operator are

then processed by the aggregate operator, who computes the number of transactions on a per-card,

per-seller basis. In the example, the time window is set to one hour. The following join operator is

used to match tuples sharing the same Seller_ID field but referring to distinct Card numbers. That

is, for each pair of input tuples referring to transactions issued by the same seller but for different

credit cards, an output tuple is produced. Similarly to the aggregate operator, the time window of the

join operator has been set to one hour. Finally, the filter operator is used to output tuples where both

credit cards have been involved in more than two transactions each. In the following, we proceed with

a detailed description of each operator of the query.

Join J Filter F
I OJ OF

Aggregate A

OA

Map M
OM

Figure 7.4: Improper Fake Transaction

Vincenzo Massimiliano Gulisano An Elastic Parallel-Distributed Stream Processing Engine

140 CHAPTER 7. STREAMCLOUD - USE CASES

The map operator M is used to maintain only the input tuples fields used by the following opera-

tor. In the example, fields Card, Time and Seller_ID. The operator is defined as:

M{Card← Card, T ime← Time, Seller_ID ←, Seller_ID}(I,OM)

The output tuples schema is composed by fields 〈Card, T ime, Seller_ID〉.
Tuples produced by the map operator are consumed by the aggregate operator A. This operator

computes the number of transactions on a per-card, per-seller basis (i.e., the group− by parameter is

set to fields Card and Seller_ID). The time-based window has size and advance of one hour and

ten minutes, respectively. The operator is defined as:

A{time, T ime, 3600, 600, T ransactions← count(),

Group− by = Card, Seller_ID}(OM , OA)

The output tuples schema is composed by fields 〈Card, Seller_ID, T ime, Transactions〉.
The join operator J is used to match tuples produced by the aggregate operator referring to the

same seller but to different credit cards. The join operator, that defines two input streams, is feed

twice with the aggregate output stream, so that each output tuple can be compared with the other

ones. As discussed in Section 2.1.1.0.5, the schema of the tuples produced by the join operator is the

concatenation of the left stream and right stream tuples schema. Fields names of the left stream are

modified adding the prefix Left_ while field names of the right stream are modified adding the prefix

Right_. These prefix names are added in order to avoid conflicts between fields of the left and right

input stream that share the same name. The operator is defined as:

J{left.Seller_ID = right.Seller_ID∧left.Card 6= right.Card, time, T ime, 3600}(OA, OA, OJ)

The output tuples schema is composed by fields 〈Left_Card, Left_Seller_ID, Left_Time,

Left_Transactions, Right_Card, Right_Seller_ID, Right_Time, Right_Transactions〉.
Finally, tuples produced by the join operator are consumed by the filter operator F . The condition

that must be satisfied in order to generate the alarm is that both fields Left_Transactions and

Right_Transactions values are greater than or equal to 2. The operator does not modify its input

tuples schema and is defined as:

F{Left_Transactions ≥ 2 ∧Right_Transactions ≥ 2}(OJ , OF)

Restrict Usage Query This last sample query we present, referred to as Restrict Usage query, is

used to spot credit card whose expenses over a period of time (e.g., 30 days) exceed the credit card

limit. This application can have multiple goals, on one side, it could be used to alert users when

exceeding their expense limits; on the other side, it might by used to spot stolen cards that are being

An Elastic Parallel-Distributed Stream Processing Engine Vincenzo Massimiliano Gulisano

7.3. FRAUD DETECTION IN CREDIT CARD TRANSACTIONS 141

used to spend as much as possible in a short time period. Similarly to the Blacklist query presented in

the previous section, this query needs external information related to the expense limit of each credit

card and defines a table operator to retrieve such information. In the example, we suppose the DB

containing such information defines a table whose records are composed by fields Card and Limit.

It should be noticed that, differently from the Blacklist DB with respect to mobile phone numbers,

each credit card appearing in the query input stream has one (and only one) record in the DB.

The query is composed by 5 operators. The first map operator is used to remove the input tuples

schema fields that are not needed by the remaining query operators. In the example, only fields Card,

Time and Price are kept. The following aggregate operator is used to compute the total expense over

the period of time to which the expense limit refers to. Tuples produced by the aggregate operator,

containing the total amount of money spent by each credit card must be compared with the respective

credit card limit. To do this, output tuples are consumed by the select operator to retrieve the expense

limit information from the given DB and then joined by a join operator. The last filter operator is used

to forward only tuples referring to credit cards whose expenses exceed their limit. In the following,

we provide a detailed description of each query operator.

Filter F
I OF

Join J

Select S

OJ

OS

DB

Aggregate A
OA

Map M
OM

Figure 7.5: Restrict Usage Query

The map operatorM modifies the input tuples schema removing the field Seller_ID, as the latter

is not needed to compute the query result. The operator is defined as:

M{Card← Card, T ime← Time, Price← Price}(I,OM)

The output tuples schema is composed by fields 〈Card, T ime, Price〉
Tuple produced by the map operator are consumed by the aggregate operator A. This operator

computes the overall expense of each credit card over a period of time. Hence, its windows are time-

based and the group− by parameter is set to field Card. In the example, we define a time window of

30 days and an advance of 1 day (expressed in seconds in the operator definition); that is, every day,

the overall expense of the previous 30 days while be compared with the credit card expense limit. The

operator is defined as:

A{time, T ime, 3600× 24× 30, 3600× 24, Expenses← sum(Price),

Group− by = Card}(OM , OA)

Vincenzo Massimiliano Gulisano An Elastic Parallel-Distributed Stream Processing Engine

142 CHAPTER 7. STREAMCLOUD - USE CASES

The output tuples schema is composed by fields 〈Card, T ime,Expenses〉
Tuples produced by the aggregate operator are forwarded to the select operator S to retrieve the

expense limit associated to each credit card. In the example, the select operator defines a single output

stream, whose tuples share the same schema of the tuples stored in the table (i.e., fields Card and

Limit). The operator is defined as:

S{DB,SELECT * FROM DB WHERE DB.Card = input.Card}(OA, OS)

The join operator J is used to match tuples produced by the aggregate operator and the select

operator. The predicate used to match the tuples defines a single equality between left and right field

Card. when defining this operator, we must make sure that each tuple produced by the aggregate

operator is checked against the one produced by the select operator. These two tuples will reach the

join operator at different time: tuples produced by the aggregate will reach the join operator before

the ones produced by the select operator. To assure no comparison and no matching is lost, we set

the window of the join operator to be time-based and big enough to let both input tuples reach the

operator; in the example, we set the window size to 10 seconds. The schema of the tuples produced by

the join operator is the concatenation of the schema of the left and right stream tuples. The operator

is defined as:

J{left.Card = right.Card, time, T ime, 10}(OA, OS , OJ)

The output tuples schema is composed by fields 〈Left_Card, Left_Time, Left_Expenses,

Right_Card, Right_Limit〉
Finally, tuples produced by the join operator are processed by the filter operator F and forwarded

only if the overall expense of each credit card exceeds its limit. The operator does not modify its

input tuples and is defined as:

F{Left_Expenses < Right_Limit}(OJ , OF)

Similarly to the Blacklist query presented in the previous section, although this query defines a

table operator and that parallelization, dynamic load balancing and elasticity for table operators is not

in the scope of the presented work, such features can be provided for the query with little effort. As

the information contained in the external DB is not modified my the select operator but simply read

and, as the select operator can be seen as a stateless operator, parallelization, dynamic load balancing

and elasticity can be provided as far as each instance at which the operator could possibly be deployed

has access to the information contained in the DB. As stated before, the access should not rely on a

centralized DB in order to scale.

An Elastic Parallel-Distributed Stream Processing Engine Vincenzo Massimiliano Gulisano

7.4. SECURITY INFORMATION AND EVENT MANAGEMENT SYSTEMS 143

7.4 Security Information and Event Management Systems

In the section, we introduce Security Information and Event Management (SIEM) systems. These

solutions are designed to process security alerts generated by multiple monitoring devices (or applica-

tions) and look for specific patterns or series of events, generating alarms if necessary. As an example,

a SIEM system can be used to check for intrusion detection analyzing the log files of a server in order

to generate an alarm if multiple attempts to access the machine with a wrong password are followed

by a successful login in a short time period. The heart of SIEM systems is the Complex Event

Processing (CEP) engine, equivalent to a data streaming engine, that must provide the capability to

process, aggregate and correlate real-time input data with high capacity and low processing latencies.

In SIEMs, conditions that must be checked are expressed in terms of directives, each expressed as a

tree of rules. Each rule is expressed as a predicate over the input data. With respect to the previous

example, the directive could be expressed as a tree with two rules: the first rule (root node) looking

for 100 consecutive attempts to login withing a time period of 10 minutes while the second rule (leaf

node) looking for a successful login within 1 minute from the previous rule.

Nowadays, SIEM solutions rely on a centralized CEP system to process the information by the

infrastructure being monitored. Our study focus on how to use StreamCloud as the base for a parallel-

distributed SIEM system. With respect to this goal, the challenge relies in how to make such switch in

the SIEM underlying CEP transparent to the final user; i.e., how to automatically translate traditional

CEP directives into data streaming queries. As discussed in Chapter 6, it is important to ease as

much as possible the interaction between a user and the system in charge of processing the input data.

Hence, with respect to SIEM systems, the challenge not only relies in how to define a query whose

results are equivalent to its CEP directive counterpart, but also in how to do it in terms of template

queries that can be used to automatize the translation process.

In the following section, we first present how SIEM directives are defined, we discuss how they

can be converted into data streaming queries and finally, present a sample SIEM directive and its data

streaming query counterpart.

7.4.1 SIEM directives

SIEM directives are defined as a collection of non-empty trees of rules, each rule defined as a

predicate over one or multiple input events. The series of events specified in a directive is analyzed

from the root node to the leaves ones. Each time the predicate of the rule is satisfied (we say the rule

fires), the directive starts checking the predicate of the rule child nodes. The definition of directive

by means of tree structures allows for the definition of OR conditions inside a directive by means of

sibling nodes. For each directive, an output message is forwarded to the final user each time a rule

fires. As multiple messages are generated for each directive, each message defines a Reliability factor

Vincenzo Massimiliano Gulisano An Elastic Parallel-Distributed Stream Processing Engine

144 CHAPTER 7. STREAMCLOUD - USE CASES

that is used to evaluate the relevance of the message itself.

Rule 1

Rule

2a

Rule

2b

Rule

3a

Rule

3b

Rule

3c

E2
Rule 1

Rule

2a

Rule

2b

Rule

3a

Rule

3b

Rule

3c

E2 *

Rule 1

Rule

2a

Rule

2b

Rule

3a

Rule

3b

Rule

3c

E2

Rule 1

Rule

2a

Rule

2b

Rule

3a

Rule

3b

Rule

3c

E1 *

Rule 1

Rule

2a

Rule

2b

Rule

3a

Rule

3b

Rule

3c

E3
Rule 1

Rule

2a

Rule

2b

Rule

3a

Rule

3b

Rule

3c

E3

Rule 1

Rule

2a

Rule

2b

Rule

3a

Rule

3b

Rule

3c

E3 *

Rule 1

Rule

2a

Rule

2b

Rule

3a

Rule

3b

Rule

3c

Rule 1

Rule

2a

Rule

2b

Rule

3a

Rule

3b

Rule

3c

a)

b)

c)

d)

Figure 7.6: Rules firing and directives cloning example

It should be noticed that, at any point in time, multiple instances of the same directive can be

active. As an example, consider the sample directive presented in the previous section, that defines

a directive composed by two rules, the first looking for 100 consecutive failed login attempts within

a time period of 10 minutes and the second rule looking for a successful login within 1 minute of

the previous failed login attempts. Suppose this directive is used to monitor a network containing

multiple server hosts; it is easy to see that each server should be monitored on its own. Furthermore,

the same server can be monitored by multiple instances of the same directive. As an example, suppose

100 unsuccessful login attempts have been made and the directive is now waiting for the following

successful login; it easy to see that the directive should still check for unsuccessful login events if

the user password has not yet been found. In order to define how directives are instantiated, we

An Elastic Parallel-Distributed Stream Processing Engine Vincenzo Massimiliano Gulisano

7.4. SECURITY INFORMATION AND EVENT MANAGEMENT SYSTEMS 145

can imagine that each directive can invoke a clone and remove method. The clone function is

invoked each time the firing rule is the root node or if it has multiple child nodes. For each firing node

that invokes the clone functions, has many directive clones as child nodes are instantiated. The

remove function is invoked each time a leaf node fires (as no further conditions must be checked for

the given directive).

Figure 7.6.a presents a sample directive composed by 6 rules. The root rule 1 defines two sibling

child rules 2a and 2b. Rule 2a defines a single child rule 3a while rule 2b defines two sibling rules

3b and 3c. In the example, the root node is the currently active rule (marked by the yellow line). We

suppose an input event E1 satisfies rule 1 condition (marked with ∗ in the figure). That is, rule 1

fires. After rule 1 has fired, two clones of the directive are instantiated for the given directive, one for

each child of rule 1. As shown in Figure 7.6.b, at this point, 3 directives are active, the first processes

input events checking for rule 1, while the two clones check for rules 2a and 2b respectively. In

the example, we consider an input event E2 that causes rule 2a to fire. After rule 2a has fired, the

resulting configuration is shown in Figure 7.6.c. At this point, the first cloned directive has changed

its active rule to 3a. Consider now an input event E3 that satisfies the condition of rule 3a. As shown

in Figure 7.6.d, the first cloned directive has been removed as rule 3a is a leaf node.

In the following, we provide a detailed description about how rules are defined. We refer to the

OSSIM directives semantics [ali]. Each rule is defined by the following parameters 1:

Name Type
Plugin_Id int
Plugin_Sid int
From IP,subnet,ANY
To IP,subnet,ANY
Port_From 0-65636,ANY
Port_To 0-65636,ANY
Occurrence int
Time_Out int
Reliability int

Table 7.3: OSSIM rule parameters

Parameters Plugin_Id and Plugin_Sid are used to categorize the sensors producing input

events; parameter Plugin_Id is used to specify the sensor type while parameter Plugin_Sid is

used to specify the message type. Both fields are expressed as integer number, each number uniquely

idenfies a sensor type or a message type. For each event, the rule allows for defining which are

the required source and destination addresses (in terms of IP and port number) defining parameters

From,Port_From and To, Port_To. Source and destination IP addresses can be specified as a

specific IP address or as subnets. If any of the two addresses is not required by the rule, parameters
1OSSIM directive defines further parameters, for the ease of the explanation, we refer only to this set of parameters

Vincenzo Massimiliano Gulisano An Elastic Parallel-Distributed Stream Processing Engine

146 CHAPTER 7. STREAMCLOUD - USE CASES

From or To value can be set to ANY . Similarly, port numbers can be set to a specific number or

ANY , otherwise. The OSSIM language defines a referencing system so that parameters of a rule can

refer to the events that satisfied the parent rule. With respect to the sample directive used to spot a

series of failing authentications followed by a valid one that allows the user to access a specific server,

it is easy to see that the failed authentications and the valid one should refer to same server. In OS-

SIM, this is achieved preceding the value of the attribute by a number specifying the parent position

of the referenced rule. As en example, "1:From" refers to the same source IP address of the parent

rule. Each rule permits to define how many events of the same type should be received before firing

by means of parameter Occurrence. If Occurrence > 1, parameter Time_Out specifies which is

the maximum interleaving time between the first and last event for the rule in order to fire. Finally,

parameter Reliability is used to specify the reliability associated to each rule; it can be expressed as

the increase with respect to the previous rule or as an absolute value.

Listing 5 presents a sample OSSIM directive included in the set of directives available with the

standard installation package. The directive is used to spot a possible threat using Server Message

block (SMB) protocol. SMB protocol is used to share files and resources among hosts of a network.

The directive looks for a new file shared among nodes that seems to be harmful.

<directive>
<rule Plugin_Sid ="537,2465,2466" Plugin_Id="1001"

Port_To="ANY" Port_From="ANY" To="ANY" From="ANY" Occurrence="1" Reliability="2">
<rules>

<rule
Plugin_Sid ="2009033,2009034,2009035"
Plugin_Id="1001" Port_To="ANY" Port_From="ANY" To="1:DST_IP"
From="1:SRC_IP" Occurrence="2" Reliability="+1" Time_Out="10"/>

</rules>
</rule>

</directive>

Listing 5: Sample OSSIM directive

The directive is composed by two rules. The root rule fires is a single event (occurence = 1)

generated by sensor 1001 (SNORT sensor) and of type 537, 2465 or 2466 (these IDs refer to a new

file being shared) is sent between any two hosts (all parameters From, To, Port_From, Port_To

are set to ANY). When firing, the rule defines Reliability to be equal to 2. The child rule fires if

two events (occurence = 2), received in a time frame not exceeding 10 seconds (timeout = 10),

generated by sensor 1001 (SNORT sensor) and of type 2009033,2009024 or 2009035 (these messages

refer to a potentially harmful file) is exchanged between the same source and destination IP addresses

seen in the previous rule (from = 1 : SRC_IP , to = 1 : DST_IP) using any port number

(parameters Port_From, Port_To are both set to ANY). When firing, the Reliability associated

to the rule is increased to 3 (Reliability = +1).

An Elastic Parallel-Distributed Stream Processing Engine Vincenzo Massimiliano Gulisano

7.4. SECURITY INFORMATION AND EVENT MANAGEMENT SYSTEMS 147

7.4.2 Directives translation

In this section, we discuss how OSSIM directives can be automatically converted to data stream-

ing queries. A first challenge relies in how to cope with OSSIM cloning and removal of directives.

In order to be scalable, it is not feasible to have a system where copies of the same query are contin-

uously added and removed. Rather, we should have a single continuous query that processes all the

input tuples producing the desired results. An important consideration is that, in an OSSIM directive,

each rule is able to receive input tuples, to share information with its child rules (e.g., when looking

for a given source IP that appeared in a previous rule) and to output tuples to the final user. These

functionality should be addressed by the query template we define to translate each rule. That is, it

must define an input stream to read the system input tuples, an input and output stream to receive

and forwarded tuples from the previous and to the following rules and an output stream to forward

tuples to the final user. Figure 7.7.a presents the generic structure of an OSSIM rule while Figure

7.7.b presents the generic structure of its query counterpart. It can be noticed that the root rule will

only receive tuples from the input stream while the leaf rules will just forward tuples to the final user.

input

Rule 1 Rule 2 Rule 3

input

output

input

output

input

output

Rule 1 Rule 2 Rule 3

output

filter F1

join J aggregate A Filter F2

Map M1

Map M2

input

input from

previous rule

output to

next rule

output

b)a)

c)

Figure 7.7: OSSIM directive translation guidelines

The last challenge to be addressed in order to convert OSSIM rules to data streaming queries, is

how to implement each rule by means of data streaming operators. Two possible ways of achieving

this goal are possible: on one hand, we could define a data streaming user-defined operator (see

Section A.2 for operators extensibility) that exactly reproduces the semantic of an OSSIM rule; on

the other hand, we can define a template query only composed by basic data streaming operators.

We adopt this second strategy as it eases the parallelization of the resulting query. That is, as the

parallelization of each basic data streaming operator is provided by the Parallel Query Compiler

(Section 6.3), the converted query can be directly used by StreamCloud. Figure 7.7.c presents the

Vincenzo Massimiliano Gulisano An Elastic Parallel-Distributed Stream Processing Engine

148 CHAPTER 7. STREAMCLOUD - USE CASES

data streaming operators composing the template query for OSSIM rules. Consider a stream of input

tuples whose schema resembles the parameters of the OSSIM rules. The first filter operator F1 is

used to forward only input tuples which Plugin_Id and Plugin_Sid are the ones specified by the

OSSIM rule. The join operator J is used to forward both input streams (i.e., tuples coming from

the input stream and the ones forwarded by the previous OSSIM rule) to the following operators. In

principle, a union operator could have been used to merge two input streams (as far as they share the

same schema), nevertheless, we adopt the join operator as it permits to forward tuples to the rule only

if the previous rule has fired (i.e., only if there is a tuple on both input streams that can be used to

match input tuples). In the template, the join operator is drawn with a gray shadow to indicate it is

optional. Specifically, it will not be defined for the directive root rule. The aggregate operator A is

used to wait for the number of events specified by the Occurrence specifying a tuple based window

with size and advance of Occurrence and 1, respectively. The timestamp of the first and the last

tuple can be extracted by the operator in order to check if their distance does not exceed the given

Time_Out parameter. Using the group − by attribute, the aggregate operator can define separate

windows for each possible pair of source and destination IP and port pairs. The filter operator F2

is used to check if the time distance between the first and the last event is less than or equal to the

Time_Out parameter. Finally, two separate map operators M1 and M2 are used to forward output

tuples to the next rule and the system output, respectively. We chose to use map operators so that the

schema of tuples forwarded by the filter operator can be modified as needed in order to be forwarded

to the next rule or the system output.

The tool used to convert OSSIM rules into data streaming queries has been integrated as a tool of

the StreamCloud IDE presented in Chapter 6.

7.4.3 Directive translation example

In this section, we study how the sample OSSIM directive presented in Section 7.4.1 is converted

to a data streaming continuous query.

The input tuples schema considered in the example is composed by the fields presented in Table

7.4.

Field Name Field Type
Pid int
Sid int
IPA text
IPB text
PA int
PB int
Time int

Table 7.4: OSSIM input tuples schema

An Elastic Parallel-Distributed Stream Processing Engine Vincenzo Massimiliano Gulisano

7.4. SECURITY INFORMATION AND EVENT MANAGEMENT SYSTEMS 149

Fields Pid and Sid represent the Plugin_Id and Plugin_Sid associated to the message gen-

erated by any monitoring device. Fields IPA and IPB represent the IP addresses of the source and

destination hosts, while fields PA and PB represent their correspondent port numbers. Finally, field

Time carries the information related to when the report has been generated.

The output tuples schema considered in the example is composed by the fields presented in Table

7.5.

Field Name Field Type
IPA text
IPB text
PA int
PB int
Rule int
Reliability int
Time int

Table 7.5: OSSIM output tuples schema

Fields IPA, IPB , PA and PB represent the IP addresses and port numbers of the source and

destination hosts for which the alarm has been raised. Field Rule is used to specify the rule that

generates the output tuple. In the example, the OSSIM directive is composed by two rules, hence,

field Rule will be set 1 when the output tuple is generated by the first rule while it will be set to 2

when generated by the second one. Finally, field Reliability represents the reliability associated to

the generated alarm.

Figure 7.8 presents the resulting continuous query obtained translating the sample OSSIM direc-

tive. In the following, we proceed with a detailed description of the operators of each rule.

filter F1 aggregate A1 Filter F2

Map M1

Map M2

input

filter F3

join J1 aggregate A2 Filter F4 Map M3
output

Rule 1

Rule 2

Union U1

1F
OI

1A
O

2F
O

1M
O

2M
O

3M
O

3F
O

4F
O O2A

O
1J

O

Figure 7.8: OSSIM Directive translation to continuous query

Rule 1 The first rule of the OSSIM directive is converted to the template presented in 7.4.2, except

for the join operator, that is not necessary as the root rule only defines one input stream. The filter

Vincenzo Massimiliano Gulisano An Elastic Parallel-Distributed Stream Processing Engine

150 CHAPTER 7. STREAMCLOUD - USE CASES

operator F1 is used to forward to the operators of the rule 1 only the tuple whose Plugin_Id and

Plugin_Sid values are the ones defined in the OSSIM rule. The schema of the operator output tuples

is the same as the input one. Operator F1 is defined as:

F1{Pid = 1001 AND (Sid = 537 OR Sid = 2465 OR Sid = 2466)}(I,OF1)

When only tuples referring to the desired events have been forwarded by operator F1, the ag-

gregate operator A1 is used to wait for the right number of events (specified by the Occurrences

parameter). The first rule of the OSSIM directive specifies parameter Occurrence as 1; hence, both

window size and advance parameters are set to 1. In order to ensure the time distance between the

first and the last event are within the specified Time_Out, function first_val and last_val

are used to extract the timestamp of the earliest and latest tuple, respectively. Finally, in order to

define separate windows for each possible pair of hosts (both in terms of IP and port numbers),

group − by parameter is set to IPA, IPB, PA, PB . The output tuples schema is composed by fields

〈IPA, IPB, PA, PB, F irst_Time, Last_Time〉. Operator A1 is defined as:

A1{tuples, 1, 1, F irst_Time← first_val(Time), Last_Time← last_val(Time),

Group− by = IPA, IPB, PA, PB}(OF1 , OA1)

Tuples produced by operator A1 are filtered by the filter operator F2. In this case, as the occur-

rence of the OSSIM rule is 1 (i.e., First_Time and Last_Time are equal), the filter condition is

always true. It should be noticed that, for the specific directive rule taken into account, both operators

A1 and F2 are not strictly mandatory, the same results can be achieved simply forwarding tuples gen-

erated by the filter operator F1 to the final user and to the following rule. Nevertheless, for the ease of

the example, we keep all the operators defined in the query template and do not discuss rule-specific

optimizations. Operator F2 is defined as:

F2{true}(OA1 , OF2)

Tuples forwarded by the filter operator F2 are sent to the final user and the following rule using

map operators M1 and M2. Both operators modify their input tuples schema keeping only the fields

related to the source and destination IP addresses and port numbers and field Time. Operator M1,

in charge of outputting tuples to the final user, modifies the tuples schema adding fields Rule and

Reliability. Field Rule is set to 1, in order for the final user to identify the rule that generated the

output. Field Reliability value is set to 2, as defined by the OSSIM rule. The operator is defined as:

M1{IPA ← IPA, IPB ← IPB, PA ← PA, PB ← PB, T ime← Time,

Rule← 1, Reliability ← 2}(OF2 , OM1)

The output tuples schema is composed by fields 〈IPA, IPB, PA, PB, T ime,Rule,Reliability〉

An Elastic Parallel-Distributed Stream Processing Engine Vincenzo Massimiliano Gulisano

7.4. SECURITY INFORMATION AND EVENT MANAGEMENT SYSTEMS 151

Map operator M2 defines the same output schema of operator M1 except for the Rule field, that

is not used by the operators of the following rule. The operator is defined as:

M2{IPA ← IPA, IPB ← IPB, PA ← PA, PB ← PB, T ime← Time,

Reliability ← 2}(OF2 , OM2)

Rule 2 As shown in Figure 7.8, the second OSSIM rule is converted to the query template, except

for one of the final map operators, as this leaf rule has no following rule to send output tuples to. In

this case, the join operator is added to the query as the latter must process both tuples from the input

stream and the previous rule.

Similarly to operator F1, filter operator F3 is used to foward only tuples whose Plugin_Id and

Pluing_Sid values are specified in the OSSIM rule. The schema of the filter output tuples is the

same as the input tuples one. The operator is defined as:

F3{Pid = 1001 AND (Sid = 2009033 OR Sid = 2009034 OR Sid = 2009035)}(I,OF3)

Once tuples are forwarded by operator F3, the join operator J1 is used to match tuples from the

input stream and the previous rule. The join operator is used to ensure that: (1) matched tuples share

the same source and destination IP addresses, as specified by the OSSIM rule, and (2) to forward to

the following operator only input tuples having timestamp greater than or equal to the timestamp of

the tuple generated by the previous rule. That is, as far as the first rule has not outputted a tuple,

input tuple are not being processed by the second rule. The schema of the output tuples is the union

of the left and right input streams tuples schema, and is composed by fields 〈Left_Pid, Left_Sid,

Left_IPA, Left_IPB , Left_PA, Left_PB,, Left_Time, Right_IPA, Right_IPB , Right_PA,

Right_PB , Right_Time, Right_Reliability〉 Operator J1 is defined as:

J1{left.IPA = right.IPA AND left.IPB = right.IPB AND left.T ime ≥ right.T ime,

time, left.T ime, 3600}(OF3 , OM2 , OJ1)

Once events have been matched by operator J1, the aggregate operator A2 is used to wait for the

number of events specified by the Occurrence parameter of the OSSIM rule. The operator is similar

to the aggregate operatorA1, except for the window size, that is set in this case to 2. The schema of the

operator output tuples is 〈Left_IPA, Left_IPB, Left_PA, Left_PB, F irst_Time, Last_Time〉.
The operator is defined as:

A2{tuples, 2, 1, F irst_Time← first_val(Left_Time), Last_Time← last_val(Left_Time),

Group− by = Left_IPA, Left_IPB, Left_PA, Left_PB}(OJ1 , OA2)

Tuples generated by operator A2 are filtered by the filter operator F4. The OSSIM rule specifies

a Time_Out parameter of 10 seconds as maximum interleaving time between the first and last event.

Vincenzo Massimiliano Gulisano An Elastic Parallel-Distributed Stream Processing Engine

152 CHAPTER 7. STREAMCLOUD - USE CASES

Hence, the predicate of the filter operator will check for the difference between fields Last_Time

and First_Time to be less than or equal to 10. Operator F4 is defined as:

F4{Last_Timestamp− First_Timestamp ≤ 10}(OA2 , OF4)

Tuples forwarded by the operator F4 are modified by the map operator M3 in order to be sent to

the final user. The output tuples schema is the one defined by the map operator M1, except for the

values set to fields Rule (set to 2) and Reliability (set to 3). The operator is defined as:

M3{IPA ← Right_IPA, IPB ← Right_IPB, PA ← Right_PA, PB ← Right_PB,

Rule← 1, Reliability ← 3}(OF4 , OM3)

The last union operator is used to merge output tuples forwarded by the two previous rules to the

final user. This is possible as both map operator M1 and M3 define the same output schema. The

operator is defined as:

U1{}(OM1 , OM3 , O)

An Elastic Parallel-Distributed Stream Processing Engine Vincenzo Massimiliano Gulisano

Part VIII

RELATED WORK

Chapter 8

Related Work

8.1 Introduction

In this chapter, we present the existing relevant work that motivated our research in the field of data

streaming and in the design and development of StreamCloud, the parallel-distributed SPE presented

in this thesis. We first introduce the pioneer SPEs that have contributed to data streaming research

and to the development of nowadays commercial products. We continue with a short introduction

of some of the state of the art SPEs. Subsequently, we investigate existing work related to operators

scheduling, load sampling and shedding techniques, parallelization of data streaming operators, load

balancing, elasticity and fault tolerance techniques.

8.2 Pioneer SPEs

Several SPEs have been studied (approximately) since 2000. Among the existing ones, we think

5 SPEs are of particular interest because of the evolution they introduced with respect to the previous

existing work, namely: Borealis, STREAM, TelegraphCQ, NiagaraCQ and Cougar. We present each

of them separately, introducing their most innovative contributions.

8.2.1 The Borealis project

The Borealis project [AAB+05b] [ABC+05] defines one of the first distributed SPEs. It has been

developed by Brandeis University, Brown University and MIT and is an evolution of two previously

Vincenzo Massimiliano Gulisano An Elastic Parallel-Distributed Stream Processing Engine

156 CHAPTER 8. RELATED WORK

existing SPEs developed by the same universities: Aurora [CCC+02] [ACC+03] [BBC+04] and

Medusa [CBB+03] [SZS+03]. We first introduce Aurora and Medusa separately and, subsequently,

we discuss how Borealis merges and improves them.

The Aurora project constitutes one of the firsts centralized SPEs (that is, queries are entirely de-

ployed on a single instance in charge of processing all the input tuples and producing all the output

results). The project focused on the weaknesses of the existing DB based solutions with respect to

emerging data streaming applications. As presented in Chapter 1, SPEs were conceived to provide

higher processing capacity with low processing latency to applications demanding for near real-time

analysis of flows. Among others, interesting aspects that have been studied in the context of the

Aurora project are related to how a data streaming based solution should cope with respect to impre-

cise and missing data, real-time requirements and graceful results degradation under the presence of

peaks in the system input load. Aurora introduces a boxes and arrows model to define queries and

provides a set of around 10 operators. A Scheduler is provided to decide which operator should run

and how many tuples it should process at any point in time. The scheduler component cooperates

with a QoS Monitor component and a Load Shedder component. The QoS Monitor tries to maximize

continuously the quality of the outputs produced by each query. Such results depend on aspects such

response time (i.e., the time it takes to create output tuples), tuple drops (i.e., how dropped tuples

affect the output quality) and values produced (i.e., whether important values are being sent to the

user application). Load shedding is applied any time the resource of the instance cannot cope with

the incoming load. Rules to decide which information to discard are taken minimizing the output

quality degradation. Operator scheduling policies and load shedding techniques are discusses in the

following sections.

After developing Aurora, two distributed SPEs have been developed starting from it: (1) Aurora*

allows to create distributed networks of Aurora instances within the same administrative domain. As

nodes belongs to the same domain, there are no operational restrictions with respect to how queries

operators can be distributed among them. On the other hand, Medusa has been designed to connect

autonomous participants. Each participant represents a set of computing devices of an entity that can

contribute to running queries in several ways: (1) providing data sources, (2) providing computational

resources that can be used to deploy queries operators and (3) consuming queries results.

Aurora* introduces innovative aspects such as two load sharing mechanisms (namely, box sliding

and box splitting) and a high availability protocol to face the increasing probability of failures inher-

ent to distributed SPEs. These aspects will be presented in the following sections where we compare

our parallelization, load balancing, elasticity and fault tolerance protocols with previous existing so-

lutions.

The Borealis project represents the evolution of Aurora* and Medusa. It addresses new aspects

such as dynamic revision of query results and dynamic query modification.

An Elastic Parallel-Distributed Stream Processing Engine Vincenzo Massimiliano Gulisano

8.2. PIONEER SPES 157

Dynamic revision of query results gives the user the possibility to receive corrections to results

previously produced by the query. As an example, a correction can be produced in order to replace

an output value computed only over part of the input streams (e.g., in order to avoid blocking the

query processing). Such revision are based on particular revision tuples that, once processed by

operators instructed to wait for them, cause the emission of updated output values. Dynamic query

modification gives the user the possibility of changing, at execution time, the parameters that define

how data should be processed and which data should be forwarded to the application (e.g., a filter

condition that specifies which tuples are forwarded depending on a specific attribute).

The Borealis project is no longer an active research project, it has been shut down in 2008.

As discussed in Section 1.3, the Borealis SPE has been used as the underlying SPE of Stream-

Cloud. We provide further details about Borealis SPE in Appendix A.

8.2.2 STREAM

Similarly to Borealis, STREAM (the STandford stREam datA Manager) [ABB+04] [ABW06]

has been designed and developed to overcome the limitations of previous DB based solutions. As

discussed in Chapter 1, one of the requirements of data streaming solutions is to provide a “bridge"

from DB solutions to data streaming solutions providing an intuitive and easy way to define queries

used to process the input data. With respect to this need, STREAM introduces a declarative language

to specify queries: CQL (Continuous Query Language). CQL is based on SQL for its relational

query language, while it windows specification language is derived from SQL-99. When defining

a query, some of the constructs of the CQL query language allow for extracting windows of tuples

from a stream and manage them as relations. These relations are transformed into other relations

and, finally, transformed back to stream with relation-to-stream operators. That is, streams are first

transformed to relations; data analysis is performed applying traditional SQL like query over these

relations and final results are forwarded to the final user converting relations back to streams. An

interesting feature of STREAM is that, contrary to Aurora, it allows for sharing of windows of data.

That is, distinct operators fed by the same stream do not only share their input buffer, but they can

also share the same window. Suppose two distinct aggregate operators (defining the same window

semantic) are used to compute the max and min values of one attribute of the stream, the system will

maintain a single window with indexed tuples while each aggregate operator will maintain the index

of the tuple carrying the max and min value of the given stream attribute, respectively.

The scheduling protocol defined in STREAM (Chain Scheduling) takes primarily into account

main memory consumptions as the criteria to decide which operator and how many tuples it should

process. Query execution plans are built defining chains of consecutive operators that effectively

reduce the runtime memory. The idea is to prioritize, if possible, operators that consume a lot of

tuples while producing few. We discuss operator scheduling protocol in the following sections.

Vincenzo Massimiliano Gulisano An Elastic Parallel-Distributed Stream Processing Engine

158 CHAPTER 8. RELATED WORK

Research directions for STREAM are similar to the ones covered by Aurora, namely schedul-

ing, graceful degradation of system outputs under peaks in the incoming load, distributed stream

processing and high availability.

The STREAM project is no longer an active research project, it has been shut down in 2006.

STREAM people, together with the developers of Aurora, have introduced LinearRoad [JAA+06]

[ACG+04] the first benchmark for SPEs. This benchmark is designed to evaluate the performance of

an SPE in terms of the scale out at which the system if able to provide query answers within some

given time constraints. The benchmark simulates a variable tolling system for an imaginary highway

system. Position reports generated by the vehicles traveling in the highway are used to generate

traffic and accident statistics later used to determine tolls charges for each highway segment. The

performance of each SPE is measured in number of highways the system can process complying with

the required QoS.

8.2.3 TelegraphCQ

TelegraphCQ [CCD+03] [Des04] has been designed and developed to address the same limitation

of DB based solutions that motivated Borealis and STREAM (the inadequateness of existing DB

based solution to cope with data streaming applications requirements). Nevertheless, TelegraphCQ

presents a significantly different architecture from previous SPEs.

TelegraphCQ architecture is based on individual modules that communicate using the Fjord API.

Modules are generic units that produce and consume tuples. Different types of modules exists, Ingress

and Caching modules, that provide tuples to the system from external applications; Adaptive Rout-

ing modules, that, given some route criteria, distribute tuples to other modules and Query Processing

modules, that transform incoming tuples to output tuples. Modules communicate using the Fjord API;

the latter provides the glue between modules and allows for push-based and pull-based communica-

tion. TelegraphCQ does not define a specific scheduling unit that is also responsible for the quality of

the system output. Adaptive Routing modules are in charge of measuring the system output quality

and adapt their routing policies accordingly.

TelegraphCQ architecture might seem to share several properties with the boxes and arrows model

employed by the Borealis SPE. Nevertheless, two important factors must be taken into account to

distinguish between the two approaches. First, one of the goals in Borealis is to provide not generic

boxes the user can specialize but rather provide a set of predefined operators that allow for rich

analysis of data streams. Moreover, an important aspect of TelegraphCQ is that, differently from

other SPEs, it has not been developed from scratch. On the contrary, it is based on PostgreSQL [pos].

TelegraphCQ exploits PostgreSQL facilities to store and manipulate data. This way, new code is only

added to provide the data streaming functionalities PostgreSQL does not offer.

An Elastic Parallel-Distributed Stream Processing Engine Vincenzo Massimiliano Gulisano

8.2. PIONEER SPES 159

8.2.4 NiagaraCQ

NiagaraCQ [NDM+01] [CDTW00] is one of the earliest research projects that tries to improve

existing DB-based technology to overcome its limitation with respect to data streaming applications.

It is based on the Niagara project, a data management system developed at the Universtiy of Win-

sconsin and at the Oregan Graduate Institute. Initially, this research project does not propose a new

data processing model to overcome DB-based solutions limitations. It rather tries to achieve a higher

scalability for a distributed database system. The project focuses on queries over distributed XML

data, defined using a query language like XML-QL [DFF+98].

NiagaraCQ proposes a novel approach to attain a scalable system with respect to the number of

continuous queries the system is maintaining at the same time. The idea is to group queries so that

overlapping computation is shared among them. The challenge in grouping continuous query relies in

how to add and remove queries at runtime exploiting already defined groups of queries. NiagaraCQ

defines a dynamic re-grouping protocol to address this challenge. As for the STREAM SPE, where

different operators might share the same window structure, NiagaraCQ groups queries in order to

minimize the processing overhead reducing redundant computations.

Moreover, as for the STREAM SPE, NiagaraCQ exploits existing querying language to ease

the programming of continuous queries. The introduced command language is an extension of the

ordinary XML-QL language that allows the user to add queries at runtime and specify the frequency

with which tuples are emitted by the system.

8.2.5 Cougar

The Cornell GOUGAR research project [BGS01], similarly to NiagaraCQ and TelegraphCQ,

proposes an SPE that still relies on a database engine. Nevertheless, the focus is on sensor databases

systems used to maintain long running queries over the data provided by the sensors. Such systems

usually maintain stored data (information about the available sensors) and sensor data (information

gathered from the sensors).

The traditional centralized (warehousing) approach to process sensors data is a two-step process:

data is initially collected from all the sensors into a centralized DB and, subsequently, queried in

order to extract the desired information. Such system does not scale because (1) a huge amount of

data has to be collected and (2) part of this data might by not included in any query (i.e., data has

been collected pointlessly).

The solution COUGAR proposes is a distributed processing of sensor data. Sensors (modeled

as Abstract Data Types) are queried only to extract the information required by queries (if any).

Furthermore, depending on each query, results can be evaluated at the front-end server or at the

sensor network.

Vincenzo Massimiliano Gulisano An Elastic Parallel-Distributed Stream Processing Engine

160 CHAPTER 8. RELATED WORK

COUGAR distributed processing introduces a key aspect of distributed SPEs: when running dis-

tributed queries, data moved across nodes should be kept to the minimum, transferring only the useful

information. That is, the data being transferred between two nodes should contain only the informa-

tion needed to run a given computation, removing unnecessary data or performing previous analysis

as close as possible to the data sources. This concept turns out to be important not only to attain a

higher throughput in distributed SPEs, it also relates to dynamic load balancing, as will be presented

in the next section.

8.3 State Of the Art SPEs

In this section, we focus on existing SPEs presenting a brief summary of the most important

ones. We take into account the following SPEs: Esper [espb], Storm [sto], StreamBase [strb], IBM

InfoSphere (or System S) [inf], Yahoo S4 [yah] and Microsoft StreamInsight [msi].

8.3.1 Esper

The Esper SPE [espb] is a centralized SPE that allows for rich analysis over data streams. Sim-

ilarly to the STREAM project, it adopts a declarative language that resembles SQL like statements

to express the operations to be run over the input data. The Esper SPE is available as a Java based

solution or as a .NET solution (under the name of NEsper). The good feature provided by the engine

is the high throughput while its main limitation is that, currently, the engine has been designed as a

centralized solution. That is, authors have focused on the richness of the provided query semantic

rather than the scalability and parallelization of its operators. Esper provides an API interface to ease

the interaction with other programs, adapters used for data input and output and allows the user for

fine tuning of operators characteristics such window type and behavior.

8.3.2 Storm

The Storm project [sto] can be seen as the complementary project of Esper. With Storm, the focus

is on the distribution, parallelization and fault tolerance guarantees while letting the specification of

how to process tuples to the final user. That is, queries can be expressed similarly as for StreamCloud,

using the boxes and arrows model; the system will take care of distributing such operators among the

available instances but will let the task of defining (by means of classes and functions) how to process

data to the final user. With Storm, queries are expressed by means of two kind of objects, Spouts and

Bolts. Spout nodes are responsible for generating the system input streams while Bolts are in charge

of processing those streams and generate output tuples results. This project can be seen as the data

streaming alternative to the Map-Reduce paradigm. As for the Map-Reduce [DG08] paradigm, the

An Elastic Parallel-Distributed Stream Processing Engine Vincenzo Massimiliano Gulisano

8.3. STATE OF THE ART SPES 161

user task is to define the functions that are used to read and generate data (Spouts) and to process it in

parallel (Bolts) while the system is in charge of managing the several multi-threaded instances. Storm

relies on Zookeeper servers [zoo] to maintain the state of distributed setups. Zookeeper is a server

used to provide coordination among distributed applications maintaining configuration information

and providing distributed synchronization and group services.

8.3.3 StreamBase

StreamBase [strb] is the commercial evolution of the Aurora SPE. StreamBase comprises three

different products: StreamBase CEP, the core Complex Event Processing engine, StreamBase Live-

View, a real time analytics solution that is used together with the SPE to present the result of the

running queries by means of a warehouse-like interface, and StreamBase Adapters, a set of more than

150 adapters that ease the task of connecting applications to external sources or data receiver appli-

cations (e.g., visualization tools). The product, including the three different applications, provides a

comprehensive data streaming solution that, similarly to StreamCloud, has been designed to ease as

much as possible the user task reducing it to the definition of the desired query while automatizing

all the processes that go from parallelization, fault tolerance and so on to output results visualization.

StreamBase allows the user to define queries by means of a graphical interface (as for StreamCloud)

using the EventFlow semantics or using the declarative StreamSQL language.

8.3.4 IBM InfoSphere

The InfoSphere SPE [inf] represents another alternative parallel-distributed SPE. Two interesting

aspects of this SPE are its capability for processing several input formats such as XML, text, voice,

video and so on and its query language SPADE [GTY+]. SPADE is a declarative language that

allows the user for the definition of queries, also including information related to how to distribute

or parallelize the query operators. The language also allows for the specification of user-defined

functions or operators. The interesting aspect of the language is that, once a query has been defined, it

is compiled to specific code to run the given application. This allows for higher processing capacities

(due to the low-level specialized code) and for query-specific optimizations.

8.3.5 Yahoo S4

The S4 [yah] SPE represents a comprehensive free data streaming solution that provides dis-

tributed processing and fault tolerance capabilities. It is a Java based solution that, similarly to

STORM, relies on the user for the definition of classes used to process and produce streams tuples.

Similarly to the Storm project, S4 relies on Zookeeper to maintain the state of a distributed setup. One

of the features S4 shares with StreamCloud is that it allows for the parallel execution of data streaming

Vincenzo Massimiliano Gulisano An Elastic Parallel-Distributed Stream Processing Engine

162 CHAPTER 8. RELATED WORK

operators (referred to as Symmetrical Deployment. Nevertheless, differently from StreamCloud, S4

does not provide a dynamic load balancing protocol, leaving its definition to the user. S4 also provides

a Fault Tolerance protocol that is based on state checkpointing (i.e., passive standby). As discussed in

Section (5.1, passive standby fault tolerance technique need to be used together with a variant of the

upstream backup technique in order to provide precise recovery (i.e., failures are completely masked

to the final user). In S4, fault tolerance is provided simply relying on state checkpointing and can (as

stated by the authors) lead to (although minimal) state loss.

8.3.6 Microsoft StreamInsight

Microsoft StreamInsight [msi] CEP is the first attempt by Microsoft to emerge in the market of

SPEs. Since the release in 2008, this engine is provided as a product of the SQL Server engine.

Queries are expressed using the declarative LINQ [lin] (Language-Integrated Query) data streaming

language, a SQL-like language that defines statements to use in order to specify window constructs.

The product defines a small set of adapters that can be used to retrieve data and forward produced

results. In general, the product seems to be less mature than other available free or commercial

alternatives, missing appropriate solutions for distributed or parallel processing, load balancing and

fault tolerance.

8.4 StreamCloud related work

In this section we present related work related to the innovative features of StreamCloud including

a discussion about load shedding and operator scheduling protocols, parallelization techniques, load

balancing protocols, elasticity protocol and fault tolerance protocols.

8.4.1 Load Shedding and Operators Scheduling protocols

In this section, we discuss existing work related to load shedding and operators scheduling tech-

niques. All these techniques have been studied in order to improve centralized and distributed SPE

achieving higher throughputs despite of the single-node bottleneck problem (discussed in Section

3.1). Although the related work being presented in this section relates to a solution orthogonal to the

one being proposed in this thesis (single-node bottlenecks are overcome parallelizing data streams

processing), we consider prior research interesting to be discussed as it shares some of the consider-

ations that motivated our work.

Load shedding refers to a solution to face spikes in the system input load that can exceed the

computational resources of an SPE discarding part of the incoming information. As an example,

the processing cost of a system can be decreased sampling the input stream forwarding only part of

An Elastic Parallel-Distributed Stream Processing Engine Vincenzo Massimiliano Gulisano

8.4. STREAMCLOUD RELATED WORK 163

the incoming tuples. With load shedding, the challenge relies in how to chose which information

to discard in order to degrade as less as possible the query output results. One of the early works

related to load shedding is discussed in [Tat02]; the work discusses how load shedding can be applied

without violating a Quality of Service (QoS) agreement. The QoS is based on the percentage of tuples

being forwarded to the final user, their delay and their specific data values. The authors proposed

two alternative load shedding techniques: static load shedding is used to achieve the higher query

throughput taking off-line decisions based on the query operators selectivities and the data streams

properties while dynamic load shedding is used to further discard tuples depending on the current

input load (i.e., in the presence of spikes). The authors define a drop operator to discard tuples based

on their position in the stream while employ a filter operator to discard tuples based on their values.

The presented work is designed for a centralized SPE (Aurora).

The same authors continued their research in load shedding with the work presented in [TcZ+03].

In this paper, the authors define two novel drop operators for both randomized dropping and value

based dropping. The work focuses on the following load shedding aspects: (a) when to activate it, (b)

where to insert drop operators and (c) how to discard tuples. As stated by the authors, there is a trade-

off between the position where drop operators can be inserted for a given query and the resulting

output approximation. The rationale is that, the earlier the drop operator is inserted, the lower the

cost of dropping tuples. On the other hand, the earlier the drop operator is inserted, the higher the

probability that, in case of operators with multiple output streams, the higher the degradation of the

output results. It is interesting to notice that, although our solution addresses spikes in the incoming

load by means of dynamic load balancing or provisioning actions, both our approach and the one

presented in [TcZ+03] require continuous monitoring in order to know when and where to prevent

operator overload.

The work presented in [BDM04] discusses an alternative technique to take decisions about what

information to discard if load shedding is used to prevent resources saturation in case of spikes in the

input load. The authors propose a probabilistic filtering approach where each tuple as a probability

p of being forwarded. In this case, the resulting query output (approximated) is scaled depending on

the percentage of discarded tuples.

The work presented in [CWY05] represents another alternative load shedding technique. In this

case, the focus is on data mining algorithms based on data streaming. The major difference in this

case is that, as data is being mined, no a-priori information about how to provide the higher quality of

service can be provided. Hence, the authors study a load shedding technique where decisions about

which information to maintain and which to discard are based on predictions of future data values.

In [TZ06a] and [TCZ07], the load shedding technique is, for the first time, studied in the context

of the distributed SPE Borealis. As stated by the authors, the main difference between load shedding

in the context of centralized SPEs and distributed SPEs is that decisions about what information to

Vincenzo Massimiliano Gulisano An Elastic Parallel-Distributed Stream Processing Engine

164 CHAPTER 8. RELATED WORK

discard affect the rate (and subsequently the quality) of the information processed by downstream

nodes. Hence, decision about how to shed the incoming load should be taken by each node not only

considering its own quality of service degradation but also the one of its child nodes. The authors

proposed a distributed load shedding technique where each node informs periodically its upstream

peers exchanging metadata (referred to as FIT, Feasible Input Table) containing a summary of what

the nodes expect in terms of input streams rate. This information is used by the upstream node to take

decisions about how to shed load.

The work presented in [TZ06b] defines a different type of load shedding that has not been con-

sidered before. Early load shedding techniques considered every tuple as possible candidate to be

discarded, leading to query results where each output could possibly be approximated. With this

work, the authors focus on a load shedding technique where only part of the results is produced by

a query but where each result is precise rather than approximated. The idea is to discard windows

of data so that stateful operators like the aggregate operator produce less but precise output tuples.

This load shedding technique is challenging because, as discussed in Section 4.2, due to the sliding

window semantic, a single tuple may contribute to several windows. That is, avoiding producing the

result of a given window does not translate in simply discarding all the window tuples.

In [TLPY06] and [TP06], the authors focus on a load shedding technique designed to discard

information so that the overall output streams delay is kept as low as possible. The innovation relies

in the approach used to decide how to discard the information. The authors present a Feedback based

solution where a dedicated controller operator is used to continuously take decisions about the input

streams rates (i.e., the tuples being forwarded) based on the feedback measured in terms of output

streams delay.

Finally, the work presented in [JMSS07] presentes a load shedding technique that, similarly to

[TZ06b], is designed to guarantee that only a subset of the query results are generated with no ap-

proximation. In this case, the information discarded is not based on windows but rather on the se-

mantics of the stateful operators. As an example, the load shedding technique could be defined so

that particular values of the group− by attribute of an aggregate operator are not considered for tuple

processing.

Together with the study of load shedding techniques, research as focused on data streaming op-

erators scheduling. The idea is that load shedding should be enabled only if the available resources

cannot cope with the incoming load (similarly to StreamCloud provisioning of nodes, issued if the

system as a whole cannot cope with the given load). This means the plan used to schedule the oper-

ators of the different queries being run by a centralized SPE can be optimized to reduce the results

degradation.

As presented in [MWA+02], the operator scheduling technique can be designed for different

goals, like reducing the overall response time, maximizing the throughput, providing fairness among

An Elastic Parallel-Distributed Stream Processing Engine Vincenzo Massimiliano Gulisano

8.4. STREAMCLOUD RELATED WORK 165

queries execution or minimizing the overall memory consumption. In the presented work, the authors

focus on this last goal and define a scheduling algorithm that prioritizes operators that consume the

largest number of tuples per unit of time and the operators with low selectivity (i.e., operators pro-

ducing less tuples than the ones consumed) as both operators basically reduce the amount of memory

occupied by the query tuples. As stated by the authors, this strategy could under-utilize operators

with low priority. For this reason, the authors proposed the scheduling strategy to consider chains of

operators in order to provide a fair scheduling of all the query operators.

In [BBMD03], the authors present another operator scheduling strategy that tries to minimize the

overall memory occupied by the queries tuples. The work focuses on single input stream queries.

For each query, the authors define as operator path the chain of operators through which a tuple is

forwarded from the query input stream to its output stream. For each operator path, a progress chart

is built considering the selectivity of each operator in order to define the expected average size of each

tuple depending on its position in the operators chain. As an example, suppose the query is defined by

a chain of three operators having selectivities 1, 0.5 and 0.1, respectively. On average, for each batch

of incoming tuples (e.g., 10000 tuples), the tuples produced by the first operator will be the same (i.e.,

10000), the tuples produced by the second operator will reduce to half of them (i.e., 5000) while the

ones produced by the third one will be one tenth of the previous ones (i.e., 500). On average, the

size of each incoming tuple will reduce to the 50% after the second operator and to the 5% after the

third operator. The operators scheduling policy is designed so that, at each operator selection step,

the operator that results in a smaller memory consumption after all its input tuples are processed is

chosen.

In [CCR+03], the authors propose a different operator scheduling policy that, similarly to the load

shedding technique proposed in [Tat02], defines a QoS metric to take decisions about which queries,

and which operators, to schedule at each moment. As discussed by the authors, operators scheduling

should not rely on multi-threaded infrastructure as, being threads managed by the operating systems,

fine-grained control over the scheduling policy is not feasible (furthermore, multi-threaded systems

do not scale when defining a high number of parallel threads). In the proposed operator scheduling

policy, two-level decision are taken about which query and which operators to execute. Similarly to

[MWA+02], operators are grouped to superboxes in order to be scheduled as an atomic entity. This

grouping is motivated by the need of reducing the tuples processing cost. The authors define both a

static and a dynamic plan to adjust the scheduling policy depending on the current system load.

8.4.2 Parallelization techniques

To the best of our knowledge Aurora* [CCC+02] and Flux [JHCF02] are the only efforts for

parallelizing data streaming in shared-nothing environments with respect to the pioneer SPEs. Nowa-

days, state of the art SPEs such S4 [yah] or Storm [sto] also provide semantic aware parallelization.

Vincenzo Massimiliano Gulisano An Elastic Parallel-Distributed Stream Processing Engine

166 CHAPTER 8. RELATED WORK

Aurora* provides a parallelization technique named box-splitting. The idea is to parallelize an

operator preceding it by a filter operator and putting a union operator after it to collect the results

produced by the parallel operator, as presented in Figure 8.1.

OPCOPBOPA

OPCOPA Filter Union

OPB

OPB

Figure 8.1: Box-Splitting example

This parallelization approach does not overcome the single-node bottleneck problem of any cen-

tralized or distributed SPEs as the parallel operator throughput is bounded by the capacity of its

preceding filter. More precisely, this parallelization approach is useful only if the processing cost of

the operator to be parallelized is greater than the filter or the union ones, and remains useful until

the incoming stream (resp. the outgoing stream) of the parallel operator does not exceed the filter

(resp. the union) capacity. Aurora* box-splitting has been introduced only for stateless operators.

As presented in Chapter 3, the parallelization of stateful operators is more challenging than stateless

ones as the former require semantic aware distribution of tuples in order to produce results that are

equivalent to the ones of a centralized execution. The use of filter operators in order to route tuples in

a semantic-aware fashion to an operator is possible, although the switch-like behavior of the filter op-

erator (the condition of each output stream is checked sequentially in order to find the first matching

output stream) will not provide a good scalability. Nevertheless, the use of Filter operators as routing

operators of a parallel operator is not enough in the case of dynamic load balancing, as the operator

is required to change dynamically its routing policy and manage special control tuples to orchestrate

state transfer between instances of the same operator (as presented in Chapter 4).

Flux extends the exchange operator [Gra90] to a shared nothing environment for data streaming.

The exchange operator has similar goals to our load balancer operator; nevertheless, as it has been

designed for statistic configurations, it does not fit well with the variable nature of streams. Similarly

to our load balancer, flux provides semantic aware tuples routing (referred to as content sensitive

routing). Part of the innovative features of the Flux operator relate to dynamic load balancing, we

An Elastic Parallel-Distributed Stream Processing Engine Vincenzo Massimiliano Gulisano

8.4. STREAMCLOUD RELATED WORK 167

present a detailed comparison of these features in the following section. One of the main lacks of

Flux[JHCF02] is that there is no evaluation on a real system for it. Evaluation has been conducted

using a simulator and considering only a single operator query containing an aggregate operator. With

Flux, aspects related to the parallelization of particular stateful operators are not considered. As an

example, the parallelization of the Cartesian Product operator presented in Section 3.2.1.1.3 requires

a particular routing policy that sends incoming tuples to multiple destination instances.

8.4.3 Load Balancing techniques

Several load balancing protocols have been proposed for data streaming applications. One of the

earliest load balancing protocols has been proposed in Aurora*. The protocol, named box sliding

or horizontal load sharing, is used to move operators among nodes at runtime. Suppose a chain

composed by operators OP1, . . . , OPn is deployed at instance I , operator OP1 is being fed by its

upstream peer IU and operator OPn is feeding its downstream peer ID. A box sliding action can be

performed to move the first operators (e.g., OP1 and OP2) from I to IU or the last operators (e.g.,

OPn−1 and OPn) from I to ID. Operators are usually moved across nodes depending on their selec-

tivity. If the first operator of a node has very low selectivity (input stream rate� output stream rate),

the overall throughput of the query will increase if the operator is moved upstream (this will reduce

the communication overhead between the instances). Similarly, if the last operator shows very high

selectivity (input stream rate� output stream rate) the query throughput will increase when moving

the operator to its downstream peer node (as this will reduce the communication overhead between

the instances). Nevertheless , this load balancing solution does not fit well with real world application

as it only considers moving of operators at the extremes of the chain, while it does not cover cases

where the overall throughput could increase if moving operators located in central positions of the

chain. As example of the box sliding technique is presented in Figure 8.2.

In the example, a query composed by a chain of 5 operator OPA, . . . , OPE is deployed over 3

different nodes Node1, . . . , Node3. Figure 8.2.a presents the initial deploy of the query: operator

OPA is deployed at Node1, operator OPE at Node3 while remaining operators are deployed at

Node2. Figure 8.2.b presents a possible change in the original deployment where operator OPB

has been moved to Node1. Such change in the deployment could happen if the selectivity of OPA

is greater than OPB (i.e., the output stream rate of OPA is greater than the one of OPB). Figure

8.2.c presents a possible change in the original deployment where operators OPC and OPD have

been moved to Node3. Such change in the deployment could happen if the selectivity of operators

OPC and OPD is lower than OPB . It should be noticed that, in order to increase the overall query

throughput, changes in the deploy cannot only be based on the selectivity of the operators but also on

factors like their cost. That is, in the example of Figure 8.2.b, the overall throughput is increased as

far as Node1 has enough computational resources to maintain both operators at the same time.

Vincenzo Massimiliano Gulisano An Elastic Parallel-Distributed Stream Processing Engine

168 CHAPTER 8. RELATED WORK

a)

b)

c)

OPA

Node1

OPCOPB OPD

Node2

OPE

Node3

OPA OPB

Node1

OPC OPD

Node2

OPE

Node3

OPA

Node1

OPB

Node2

OPEOPC OPD

Node3

Figure 8.2: Box Sliding example

Load balancing is addressed in [XZH05] with a focus on the load correlation between operators.

Load correlation between two operators is expressed as a value ∈ [−1, 1]. If correlation is −1 a burst

in the load of one operator corresponds to a decrease in the load of the second. On the other hand, if

correlation between the operators is 1, bursts happen at the same time for both of them. The proposed

algorithm distributes existing operators among available instances trying to maximize the correlation

across different instances. The rationale is that, upon a sudden burst in the input load, the additional

processing cost caused by the spike will be balanced among nodes. The algorithm is composed by a

first off line part used to determine the initial operators distribution plan plus an on-line component

to adjust operators distributions at runtime in case of burst in the system input load.

In [CC09], the dynamic load balancing protocol is designed to redistributed the load of one oper-

ator among multiple instances whenever the operator is overloaded. The ideas is to deploy multiple

instances of each operator composing a query among the instances used to run the query and, in

case of saturation of on operator, to share its load among others idle instances. The protocol does

not require any centralized component to monitor the state of each operator. Upon saturation, each

operator sends a “backpressure” message to its upstream peer; the latter starts distributing its output

tuples to multiple instances of the overloaded operator. The proposed solution presents several prob-

lems. First, multiple instance of each operator are allocated to the available nodes, implying running

instances must share computational resources with idle operators (in StreamCloud, nodes are provi-

sioned or decommissioned in order to make sure that extra computational resources are used only

when necessary and are not kept idle). Moreover, the protocol considers only stateless operators, as

seen in Section 4.2, changing how tuples are routed to a stateful operators is not trivial and requires a

state transfer mechanism between the instances being reconfigured.

Flux defines distinct protocols for short-term imbalances and long-term processing imbalances.

An Elastic Parallel-Distributed Stream Processing Engine Vincenzo Massimiliano Gulisano

8.4. STREAMCLOUD RELATED WORK 169

To face short-term imbalances, the flux operator has been designed to “absorb" fluctuations in an

operator output rate. Flux distributing operator is composed by two separate units: the Ex-Prod

unit is in charge of taking output tuples produced by an operator and pass them to several Ex-Cons

units, in charge of forwarding tuples to the downstream parallel operator. In order to face short-term

fluctuations, the memory allocated by the Ex-Prod unit is not statically partitioned to the existing

Ex-Cons units. On the contrary, it is dynamically adjusted to provide more available memory to the

consumer units receiving more tuples.

Flux also defines a protocol to face the long-term imbalances. The protocol is similar to the

one proposed in StreamCloud, nevertheless: Flux protocol is designed to be blocking, if state must

be transferred between two instances, the system makes sure all its upstream flux operators have

flushed their respective Ex-Cons units and the operator has processed all its input tuples. Furthermore,

the proposed protocol defines generic getPartitionState and installPartitionState

functions to move operators state across instances, while StreamCloud provides two working proto-

cols for state transferring.

The work presented in [BBS04] discusses a load balancing algorithm for federated systems where

autonomous participants might stipulate pairwise contracts pricing the costs of migrating computa-

tional units among them. That is, pairs of participants might fix prices to transfer part of the com-

putation if, letting a peer processing part of the information results in a lower cost than processing it

locally. This problem is quite close to the “classic" load balancing problem as often the processing

being moved to external participants is caused by the saturation of the local resource, which incurs

in high processing costs. Nevertheless, the problem being studied presents also differences from the

original problem, as the balancing problem cannot be seen as the problem of achieving the best dis-

tribution for the system as whole due to the fact that each participant looks at minimizing its cost (i.e.

maximizing its benefits). In the presented work, contracts are negotiated off-line for each pair of par-

ticipants and can be either fixed (the unit processing cost is fixed) or defined by means of an interval

(i.e., min and max price). In the second case, load balancing is more challenging as each participant

can decide to further distribute the processing of another participants depending on the specific cost.

From an implementation point of view, the algorithm as been designed as an on-line, distributed al-

gorithm where each participant negotiates with the others transferring of processing units depending

on the current system load. Processing units being transferred are intended as group of operators be-

longing to the continuous queries defined by each participant. One of the weak points in the proposed

work is that, when transferring stateful operators, the state is not moved across instances but rather

recreated at the destination instance, loosing the one previously maintained by the old participant.

As discussed in Chapters 4 and in 5, state transfer is challenging and recreation of stateful operators

states performed just resuming the processing at a different node (i.e., like the gap recovery protocol)

might lead to incorrect or incomplete results.

Vincenzo Massimiliano Gulisano An Elastic Parallel-Distributed Stream Processing Engine

170 CHAPTER 8. RELATED WORK

The work discussed in [XHCZ06] presents a particular load balancing algorithm designed for

systems that to not allow for the transferring of data streaming operators among nodes. Even if this

system requirement is not a limitation in StreamCloud, it is interesting to study such problem as it

could help in reducing the number of operators transfers among nodes hence reducing reconfiguration

actions. Being the operators statically assigned to each node during all the execution time of a query,

the decision about how to deploy operators must be taken off-line. As discussed by the authors, this

off-line planning of the operators deployment might be enough to face short-term imbalances. This

holds also for the work presented in this thesis, as we suppose the imbalance cause by a change in

the system input stream characteristics has usually an impact which duration exceeds the time it takes

to perform a reconfiguration action. As stated by the authors, the problem of finding the optimal

planning given a set of operators and their expected input rates and selectivities is computationally

hard. For this reason, the authors define a greedy algorithm to find sup-optimal deployment plans.

8.4.4 Elasticity techniques

Elasticity in the context of SPEs has not been studied at the same depth as other aspects such

parallelization, dynamic load balancing and fault tolerance. In the context of traditional database

systems, solutions like the ones proposed in [SAG06] and [CSA06] are designed to dynamically

provision database servers in order to keep the average below an arbitrary service level agreement.

These solutions are hard to compare with data streaming based solution as the two systems have

different goals; more precisely, database system typically do not require near real-time processing.

The work presented in [GSP+] contains some interesting analogies with StreamCloud. Although

the focus is not on data streaming query processing as it is rather related to database solutions, the

presented considerations hold with respect to data streaming queries. The motivations of the pro-

posed work are the challenges that emerge from the possibility of obtaining resources on demand

(e.g., from cloud infrastructures) in large distributed systems. As stated by the authors, new available

resources might provide heterogeneous processing capacities, it is thus mandatory to continuously

adjust the load distribution (or horizontal imbalances as referred by the authors) to meet the punctual

best distribution adjusting the intra-operator parallelization policy. Furthermore, bottlenecks caused

by consecutive operators (or vertical imbalances as referred by the authors) should be removed dis-

tributing the operators at distinct nodes adjusting the inter-operator parallelism. The research done

in StreamCloud covers all these aspects. First, when defining how to partition a query, the parallel

compiler defines subclusters that maximize the throughput (as presented in Chapter 3.2) trying to

minimize the so-called vertical imbalance. Moreover, as presented in Chapter 4, dynamic load bal-

ancing and elasticity techniques have been designed to overcome horizontal imbalances. It should be

noticed that, even if we do not study directly provisioning of heterogeneous resources, our solutions

adapts to them as the fluctuations in the data streams rate and distribution lead to equivalent observed

An Elastic Parallel-Distributed Stream Processing Engine Vincenzo Massimiliano Gulisano

8.4. STREAMCLOUD RELATED WORK 171

behaviors (i.e., machine having different CPU consumption even in front of an even distribution in

terms of tuples / second).

The work presented in [SAG+09] presents an elastic protocol where processing threads are provi-

sioned or decommissioned depending on the node state. In the protocol, a single work queue is used

to maintain the node incoming tuples while multiple processing threads run in parallel consuming the

tuples stored in the queue. This solution has two main shortcomings: the first limitation is that multi-

threaded systems do not scale well for big number of concurrent threads while the second one is that,

independently of the scalability, processing capacity is limited to the resource of a single physical

machine.

This elasticity protocol does not address several challenging aspects addressed by StreamCloud.

Being the provisioned instance a different physical machine, several tasks must be performed before

the machine can start processing tuples. Among others, tasks include connection establishment to and

from the machine and deployment of the new operators. When provisioning only processing threads,

provisioning completion time decreases drastically. This is because provisioning only consists in

informing a new thread it can actually start processing tuples.

The second challenging aspect is related to how load is balanced among processing threads upon

a provisioning or decommissioning action. Due to the shared resources among all the processing

threads, the system is able to maintain a single queue for the incoming tuples, letting each processing

thread consuming tuples at its maximum rate. This is not possible in StreamCloud, as it has been

designed considering a shared-nothing architecture. That is, different instances of the same parallel

operator are not sharing any resource.

Finally, the proposed solution only considers stateless operators. As it has been presented in 4.2,

provisioning, decommissioning or dynamic load balancing actions are challenging when considering

stateful operators.

In [LHKK12], the authors discuss elasticity (and fault tolerance, which will be discussed in the

following section) in the context of a “streaming as a service" architecture. The authors propose a

multi-tenant Cloud based architecture where users can register queries and input streams are receive

results in a real-time fashion relying on the data streaming processing paradigm. The presented work

cannot be directly compared with StreamCloud as it differs from the latter in the sense that elastic

capability is not intended to increase the resources available even to a single operator but rather to

increase the number of nodes where all the different queries (intended as an atomic processing unit)

can be accommodated. That is, the solution is intended to scale with respect to the number of active

queries and input streams. In the proposed solution, load balancing is applied re-assigning part of

the queries run by a node to a different less-loaded node. Similarly to StreamCloud, if load cannot

be balanced using the assigned nodes, additional nodes are added and part of the queries run by

the previous nodes are re-assigned. The presented work introduces several limitation of the queries

Vincenzo Massimiliano Gulisano An Elastic Parallel-Distributed Stream Processing Engine

172 CHAPTER 8. RELATED WORK

that can be run by the system: queries can define multiple input streams but single output streams;

furthermore, the authors make the assumption that the resource consumption of individual queries

does not exceed the available resources of an individual node (i.e., a single query can be executed by

a single node) reducing the scope of the application to small to medium size queries. The authors state

the architecture is being implemented and do not provide preliminary results about system throughput

or scalability.

Recently, the author of [Hei11] presented an high level overview of data streaming elasticity

protocols and the planning for the development of elastic capabilities for the StreamMine system.

The work has been presented at a doctoral symposium and introduces the aspects that are covered in

the Ph.D. research. Most of the aspects related to elasticity are similar to the ones presented in this

thesis; nevertheless, the high level description and the lack of details about the protocols does not

permits a deep comparison between StreamCloud and the author system (StreamMine).

8.4.5 Fault Tolerance techniques

Several fault tolerance algorithms have been proposed in the context of data streaming. In this

section, we present how each existing solution has inspired our work.

[HBR+05] presents a classification of fault tolerance guarantees and protocols. Three different

guarantees are presented. Precise recovery completely hides any failure to the end user application

(e.g., results produced in case of failure are identical to the ones produced during a fail-free execution).

Rollback recovery avoids information loss (e.g., all the information is processed but results may differ

from a fail-free execution). Finally, Gap recovery simply ignores state loss due to one (or more)

instance failure, leading to partial (and possibly different) results. As discussed also in [HBR+03],

three different protocols exists that provide fault tolerance capabilities to an SPE: Active Standby,

Passive Standby and Upstream backup. Active Standby relies on replicas that, in parallel with a

primary node, process the same tuples and whose state is continuously updated with respect to the

one of the primary node. In case of failure, one of the primary replicas is taken as new primary node

switching the input and output streams of the former to the latter. This protocol implies a high runtime

overhead both in terms of resources (as replica nodes keep redundant state) both in term of processing

costs (output tuples are being forwarded to multiple outputs). On the other hand, it provides fast

recovery as the action taken to replace a failed node simply boils down to the redirection of some

streams. Passive Standby defines a checkpointing mechanism used to persist continuously the state

of the query operators. Checkpoints are usually maintained at backup server nodes and, in case of

failures, installed to the replacement instance taking the place of the failed one. Opposite to the Active

Standby, this approach reduces the runtime overhead in terms of resources (the number of backup

server being used to maintain state checkpoints is usually much smaller than the number of replicas)

but leads to a higher recovery time as the replacement instance needs first to install the lost state before

An Elastic Parallel-Distributed Stream Processing Engine Vincenzo Massimiliano Gulisano

8.4. STREAMCLOUD RELATED WORK 173

being able to process new incoming tuples (also in this case the recovery actions include redirection

of the lost instance input and output streams). Finally, Upstream backup provides fault tolerance for

a given instance relying on its previous and next peers (resp. upstream and downstream instances).

That is, upstream instances define a protocol so that output tuples are maintained as long as the

downstream instances confirms they can be deleted. In case of failure, upstream instances replay all

tuples maintained in the output queues that have not being acked by the downstream instances to the

replacement instance. This strategy further reduces the runtime overhead in terms of resources (only

the active nodes are in charge of providing fault tolerance) but implies a recovery time comparable

with the one provided by the Passive Standby approach.

In the following, we provide a description of the most relevant solution being presented to provide

fault tolerance in the context of SPEs. All the solutions can be seen as modifications and improve-

ments of the active standby or the passive standby methods. Rather than discussing why each solution

is not optimal with respect the the parallel-distributed SPE presented in this thesis, we first proceed

with a discussion about the limitations of these approaches and continue then with the presentation

of the related work. We consider that active standby (i.e., replica) based solutions such [SHB04] or

[BBMS08] are unsuitable for parallel-distributed SPEs. They are too expensive in terms of resource

utilization (e.g., using a cluster to run data streaming applications having 3 replicas for each node

leads to 25% utilization). Furthermore, whenever an SPE instance is added due to a provisioning ac-

tion (or removed due to a decommission action) replicas should be setup accordingly, leading to high

reconfiguration times. On the other hand, also passive standby solutions where operators state are

being periodically checkpointed are not optimal. Even if not stated clearly in most of the presented

works, passive standby protocols work only if applied together with upstream backup ones. Upon

a failure of an instance, the information processed by it during the time interleaving the previous

checkpoint and the failure has not been stored nowhere. The only way to avoid the loss of that infor-

mation is keeping it at the upstream peers. This requirement of the passive standby protocol implies a

duplication in the logic of the fault tolerance protocol, making its cost higher. This reason motivated

our research in defining the fault tolerance protocol as an evolution of the upstream backup one. To

the best of our knowledge, our fault tolerance protocol is the first protocol that takes into account

elasticity and dynamic reconfigurations in general.

In [BBMS04] and [BBMS08], the authors describe an active replica based fault tolerance solution

for the Borealis distributed SPE. Although the active replica protocol is not new, the authors improve

it defining a user-configurable trade-off between availability and consistency. Suppose a node being

fed by multiple upstream nodes suddenly stops receiving tuples from one of its upstream peers. The

node could react in two different ways: on one hand, it could still produce results computed over

the tuples forwarded by the remaining instances; on the other hand, the node could wait for the

upstream node to recover as long as the time constraints (expressed as a QoS metric) of the tuples

Vincenzo Massimiliano Gulisano An Elastic Parallel-Distributed Stream Processing Engine

174 CHAPTER 8. RELATED WORK

being processed are not violated. The configurable trade-off is about the amount of time the node

should wait hoping the failed node replacement completes before any imprecise tuple is produced. In

the presented work, the authors define a SUnion operator that is used to make sure the primary node

and replicas are processing incoming tuples in the same order, thus producing the same output tuples

and maintaing the same state. This operator shares some of the design goals of the Input Merger

operator defined by StreamCloud, discussed in Section 3.2.1. In the proposed works, the authors also

discuss the possibility of correcting imprecise tuples by means of correction tuples generated after the

healing of a failed instance. This mechanism can further reduce the impact of a failure but is effective

as long as the imprecise tuples have not being already forwarded to the final user (in which case fault

tolerance would depend on the external user).

In [BSS06] and [BS07], the authors present a Passive Standby approach (referred to as Efficient

and Coordinated Checkpoint - ECOC) that is used in an SPE employed in health-care applications.

The presented protocol does not improve significantly previously techniques relying on the Passive

Standby technique. As stated by the authors, and as discussed in Chapter 5, the passive standby

technique relies also on the upstream technique in order to recover the lost state referring to the

information sent during the time interleaving the last checkpointing and the failure time. In the

proposed work, the passive standby technique is justified by the need of reducing the communication

overhead as much as possible due to the limited resources of the mobile devices used in health-care

applications (like blood pressure monitor, heart beat monitors and so on).

In [HCZ07] and [HCCZ08], the authors discuss an active standby replica fault tolerance approach

for wide-area network SPEs. The presented work introduces some improvements of the classical

active standby protocol. The first improvement is related to how each node processes its incoming

tuples. Rather than consuming the tuples forwarded by its primary upstream node, each node con-

sumes the tuples of any upstream replica so to process the first available tuple. This approach implies

a significant reduction of the recovery time as, in case of failure, downstream instances are already

instructed to process tuples coming from other replicas. Nevertheless, this approach requires a more

efficient way of maintaining replicas consistent. That is, an approach where each replica consumes its

upstream tuples in the same order will slow down the processing to the slowest replica, making thus

the proposed technique inefficient. The authors propose a punctuation based protocol where special

tuples (punctuation tuples) are used to guarantee the stateful operator processing the incoming tuples

that no more tuples will have a lower timestamp than the punctuation tuple one. With this information,

stateful operators introduce a minimal delay in the computation of the output tuples that is negligible

with respect to the one cause by a synchronization of the replicas input streams. The same protocol

is presented in [MPH10a] and [MPH10b], where the authors discuss how the protocol is being used

in the context of the iFlow SPE.

In [HXCZ07], the authors propose an improved algorithm for the passive standby fault toler-

An Elastic Parallel-Distributed Stream Processing Engine Vincenzo Massimiliano Gulisano

8.4. STREAMCLOUD RELATED WORK 175

ance protocol. The first idea is to define delta-checkpointing of the operators states. With delta-

checkpoints, rather than persisting periodically the entire snapshot of an operator state, only the dif-

ference between the previous state and the current one is persisted. The second improvement relies

in the partitioning of the checkpoints deltas and in distributing them at multiple peer nodes acting as

servers. This improvement significantly reduces the recovery time as the lost state can be re-collected

at the replacement instances by multiple sources simultaneously. For the same reason, the recov-

ery time is also reduced in the presence of multiple instance failures as lost operators state can be

recreated in parallel. The presented work studies how the partitions of the operators state should

be distributed among the other peer nodes and, for each stateful operators, defines an ad-hoc delta

checkpointing mechanism. As an example, the state of an aggregate operator is delta-checkpointed

marking each window with a dirty bit that specifies if the window has been created after the previous

checkpoint or, during the interleaving time, it has been modified.

[KBG08] also introduces a protocol based on delta-state checkpointing. While being updated

processing incoming tuples, operators state is periodically checkpointed and persisted. In case of

failure, a replacement instance is deployed and the lost state is re-created starting from the latest

checkpoint. Checkpoints are written to a parallel, replicated file system. This solution introduces the

idea of persisting state relying on disks instead of memory. We believe such solution is mandatory for

a fault tolerance protocol to work with parallel-distributed SPEs. Nevertheless, the proposed solution

might incur (even if with low probability) in delayed processing as the state might not be concurrently

updated and checkpointed.

As stated in [GPYC08], all the existing fault tolerance techniques (either reactive or proactive)

impose a runtime overhead. The idea of the proposed work is to define a predictive model that can

be used to turn such fault tolerance mechanism on only in the presence of an incoming failure. The

proposed protocol implies stream classifiers to continuously monitor the state of a node and mark

it as normal, alert or failure. The idea is to activate the fault tolerance mechanism when the state

of a node switches from normal to alert. In order to build the stream classifiers, the system defines

a training period used by the protocol to prevent future failures. When the system detects a failure

might happen in a short period of time, it first isolates the failing operator moving it to a dedicated

node in order to reduce the impact of the failure and instantiating a replica operator to replace it in

case of failure. When in alert state, the monitoring of a possibly failing operator is increased in order

to collect information that can be useful to predict future failures for the same type of operator. The

main limitation of the proposed work relies in the fact that the types of failures that can be predicted

is usually small. Furthermore, the proposed technique is valid as long as the computational resource

needed by the prediction protocol do not exceeds the ones needed by an alternative fault tolerance

protocol.

In [BFF09b] and [BFF09a], the authors focus on a fault tolerance technique for non deterministic

Vincenzo Massimiliano Gulisano An Elastic Parallel-Distributed Stream Processing Engine

176 CHAPTER 8. RELATED WORK

operators. In data streaming, non determinism in the operator execution can be caused by functions

that are sensitive to the input stream tuples arrival order or to functions that depends on the time. As

stated by the authors, the information to be maintained in order to provide fault tolerance for such

operators will also include ordering and extra information depending on the function being applied to

the data. The authors also study how to maintain active replicas efficiently overcoming the limitations

imposed by a strict synchronization of the replicas input tuples ordering and studying how to run

replicas in a multi-threaded fashion.

In [GZY+09], the authors propose an improvement for the passive stand-by fault tolerance pro-

tocol. With this protocol, referred to as sweeping checkpointing the authors define a checkpoint of an

operator as the copy of its state and its output queues. The idea is to avoid scheduling operators check-

pointing by means of a periodic task but rather let each operator checkpoint its state at the time when

the task will have less impact on the overall computation. The idea is to checkpoint operators state

just after their output queues have been trimmed of tuples no longer required by their downstream

peers. Doing this, the checkpoint state will be smaller and the overall impact of the fault tolerance

technique will be decreased.

In [ZGY+10], the authors propose a hybrid fault tolerance protocol that mixes the active stand-

by and the passive stand-by protocols. The idea is to periodically checkpoint the state of the query

operators but, rather than storing them in a dedicated server, installing them in an idle copy of the

operators. That is, a replica of the operators is being maintained by a separated node but, rather than

receiving the same tuple being processed by the primary node, its state is continuously updated with

incremental checkpoints. In case of temporary failure, the replica is activated and it starts processing

the same tuples of its primary counterpart. If the failure results to be permanent, the query is instructed

to start forwarding tuples only to the replica and start consuming its output tuples.

The authors of [SM11] present a fault tolerance protocol based on an asynchronous checkpointing

mechanism (akin to fuzzy checkpointing) where, instead of checkpointing an operator’s state and

its output queues, output tuples are mixed with windows checkpoints (which are dedicated output

tuples describing a window’s intermediate state) and only output streams are persisted. In case of

failure, the output queue of the failed operator is read to retrieve information about the latest window

checkpoint and, therefore, compute from where to reply tuples of its input stream. As discussed by the

authors, intermediate state checkpoints decrease the overall recovery time as they reduce the amount

of tuples to be read (and replayed) in order to recreate the failed operator lost state. This approach

is similar to StreamCloud in the sense that recovery requires the ability of computing from where

to replay tuples in order to recreate an operator state. Nevertheless, StreamCloud improves on it as

follows: (1) the earliest timestamp (i.e. the information about the point in time from where to replay

tuples in case of failure) is not maintained mixing regular output tuples with checkpoint tuples but

rather using output tuples header (finer granularity and lower overhead); (2) the earliest timestamp

An Elastic Parallel-Distributed Stream Processing Engine Vincenzo Massimiliano Gulisano

8.4. STREAMCLOUD RELATED WORK 177

in maintained on-line in StreamCloud, avoiding thus unnecessary read operations in the parallel file

system to retrieve its value and finally, (3) [SM11] do not consider dynamic setups (elasticity) nor

stateful operators garbage collection mechanisms. The authors of [SM11] leverage previous work

[SM10] on how to efficiently persist a stream connecting two data streaming operators relying on a

parallel file system. StreamCloud leverages and improves on this work by providing a better way

to persist streams adopting a self-identifying naming convention for the persisted information; thus

avoiding metadata maintenance as in [SM10] and reducing the runtime protocol impact (about 20ms

in the proposed work to approximately 1ms in StreamCloud, as presented in 5.6.2).

Vincenzo Massimiliano Gulisano An Elastic Parallel-Distributed Stream Processing Engine

178 CHAPTER 8. RELATED WORK

An Elastic Parallel-Distributed Stream Processing Engine Vincenzo Massimiliano Gulisano

Part IX

Conclusions

Chapter 9

Conclusions

In this thesis we have presented StreamCloud, a parallel-distributed Stream Processing Engine (SPE)

with dynamic load balancing, elasticity and fault tolerance capabilities. We have discussed how re-

search in data streaming emerged in the past decade to overcome the limitations of previous DB-based

solutions that could not satisfy the required high processing capacity and low latency guarantees of

nowadays real-time applications such as network monitoring, financial applications and fraud detec-

tion applications. We have presented the design goals and architecture of pioneer centralized and

distributed SPEs and we discussed why all of them suffer from the single-node performance bot-

tleneck. We have discussed the main challenges in designing a parallel-distributed SPE and each

challenge has been addressed and constitutes a contribution of the presented work:

Parallelization of data streaming operators and queries. StreamCloud introduces a new par-

allelization technique for data streaming operators that guarantees semantic transparency. That is,

tuples produced by a parallel operator are the same as the ones produced by its centralized counter-

part. The parallelization technique has been designed, implemented and fully evaluated for all the

main data streaming operators defined by an SPE. Furthermore, StreamCloud provides a paralleliza-

tion and distribution protocol for continuous queries to achieve high processing throughputs. As for

the data streaming operators, this protocol has been designed, implemented and fully evaluated. All

the protocols are discussed in Chapter 3.

Elasticity and Dynamic Load Balancing protocols. StreamCloud defines protocols to provision

and decommission nodes in an on-line fashion so that the resources being used are always adjusted

Vincenzo Massimiliano Gulisano An Elastic Parallel-Distributed Stream Processing Engine

182 CHAPTER 9. CONCLUSIONS

to the current system load. This overcomes the limitations of workaround solutions such over-

provisioning (where the allocated resources are chosen to cope with the maximum system load) that

results in under-utilization; or under-provisioning (where the allocated resources are chosen to cope

with the average system load) that, in case of temporary spikes or long-term variations in the system

input rate, might lead to high processing latencies. The elasticity protocols have been designed, de-

veloped and evaluated together with a dynamic load balancing protocol. The dynamic load balancing

protocol has been defined in order to make sure that nodes are provisioned (or decommissioned) only

if the system as a whole cannot cope (or is under-utilized) with respect to the system incoming load.

All the protocols are discussed in Chapter 4.

Fault Tolerance protocol. In this thesis we have introduced a novel fault tolerance protocol de-

signed for parallel-distributed SPEs with elastic capabilities. This protocol is designed to incur in a

small runtime overhead while providing fast recovery for single or multiple instance failures. The

presented fault tolerance protocol faces challenges that have not been addressed before, like failures

of nodes being provisioned or failures of nodes whose state is being transferred to other nodes (e.g.,

due to a dynamic load balancing action). The presented protocol has been designed, implemented

and fully evaluated and is discussed in Chapter 5.

Comprehensive IDE. Together with StreamCloud, we developed a comprehensive IDE to ease

user tasks such query composition and application execution. The IDE provided with StreamCloud

reduces the interaction of a user with the system to the definition of the abstract query to be run (i.e.,

with no specific information about how to deploy it) and information about the available nodes. The

IDE compiles then the given query into its parallel-distributed counterpart and provides a series of

scripts that can be used to execute the corresponding application. Several adapters have been designed

to ease the injection and reception of information from different sources or destination applications.

Furthermore, the IDE defines a graphical network interface that can be used to monitor the system

state, visualizing which queries are being executed and presenting, for each query operator, statistics

such input stream rate, output stream rate or CPU consumption. The IDE is presented in Chapter 6.

All the protocols presented in the thesis have been fully implemented and evaluated. During

the development of StreamCloud, several real world applications have been used as a testbed of

the system. Such applications are discussed in Chapter 7, presenting why StreamCloud is a good

candidate for these applications and presenting the definition and possible implementation of real

use-cases.

An Elastic Parallel-Distributed Stream Processing Engine Vincenzo Massimiliano Gulisano

Part X

APPENDICES

Appendix A

The Borealis Project - Overview

In this chapter, we provide a short introduction to some of the features of the Borealis SPE engine.

This introduction is not intended to give a complete description of the Borealis SPE, we only focus

on particular aspects that strictly relate with the design and implementation of StreamCloud. We first

introduce the Borealis SPE query algebra, presenting how continuous queries are defined by means

of XML files. Subsequently, we discuss how new user-defined operators can be added to the set

of available operators used to compose continuous queries. We continue discussing some details of

the Borealis SPE tuple processing paradigm and we conclude introducing the tools provided by the

Borealis SPE to ease the developing of applications.

A.1 Query Algebra

In this section we introduce the Borealis SPE query algebra, presenting how continuous queries

and information related to the nodes where they are deployed is provided my means of XML files. We

refer the reader to the Borealis application programmer’s guide [bora] and the Borealis developer’s

guide [borb] for a detailed description of the Borealis SPE.

As presented in Chapter 2, a continuous query is defined by its composing operators. Each op-

erator is defined by its type, a set of attributes and at least one input stream and one output stream.

For each input (resp. output) stream, a schema specifies which are the composing fields of the in-

put (resp. output) tuples. In Borealis, continuous queries (i.e., schema, streams and operators) are

defined by XML elements. In the following, we present how the High Mobility Fraud Detection

Vincenzo Massimiliano Gulisano An Elastic Parallel-Distributed Stream Processing Engine

186 APPENDIX A. THE BOREALIS PROJECT - OVERVIEW

Aggregate A Map M3 Filter F
I OA OM OF

Union U

Map M1

Map M2

OU

I1

I2

Figure A.1: High Mobility fraud detection query

continuous query introduced in Section 2.2, used in cellular telephony fraud detection applications

to spot mobile phones that, between two consecutive phone calls, cover a suspicious space distance

with respect to their temporal distance is defined using Borealis query algebra. The continuous query,

shown in Figure A.1, consumes CDR tuples whose schema is composed by fields Caller, Callee,

Time, Duration, Price, Caller_X , Caller_Y , Callee_X , Callee_Y . Field Caller specifies the

mobile phone number making the phone call while field Callee specify the call receiver, fields Time,

Duration and Price specify the time when the phone call starts, its duration and the overall price,

fields Caller_X , Caller_Y specify the Caller geographic coordinates while Callee_X , Callee_Y

the Callee ones.

Listing 6 presents the XML schema element that defines the input tuples schema. Each field

element is defined by attributes name and type (plus the extra size attribute for string type) 1. Once a

schema has been defined, it can be associated to any input or output stream. In the listing, the schema

is associated to the input stream named input.
<schema name="input_schema">

<field name="caller" type="string" size="9"/>
<field name="callee" type="string" size="9"/>
<field name="time" type="int"/>
<field name="duration" type="int"/>
<field name="price" type="double"/>
<field name="callerx" type="double"/>
<field name="callery" type="double"/>
<field name="calleex" type="double"/>
<field name="calleey" type="double"/>

</schema>

<input stream="input" schema="input_schema" />

Listing 6: Input Schema and Input definition

For each incoming tuple, each of the first two map operators creates a tuple composed by fields

Phone, Duration, Time, Price, X , Y . While fields values Duration, Time, Price, are just

copied from the input tuple values, operator M1 sets field Phone value to be equal to the input field

Caller and fields X , Y to be equal to Caller_X , Caller_Y while operator M1 sets Phone to be

equal to the input field Callee and fields X , Y to be equal to Callee_X , Callee_Y .

1In all the listing presenting XML code, streams and operators names are converted to lower-case letters and separation
symbols such “_" are removed (i.e., operator name OP3 is converted to op3).

An Elastic Parallel-Distributed Stream Processing Engine Vincenzo Massimiliano Gulisano

A.1. QUERY ALGEBRA 187

<box name="m1" type="map" >
<in stream="input"/>
<out stream="i1"/>
<parameter name="expression.0" value="caller"/>
<parameter name="output−field−name.0" value="phone"/>
<parameter name="expression.1" value="duration"/>
<parameter name="output−field−name.1" value="duration"/>
<parameter name="expression.2" value="time"/>
<parameter name="output−field−name.2" value="time"/>
<parameter name="expression.3" value="price"/>
<parameter name="output−field−name.3" value="price"/>
<parameter name="expression.4" value="x"/>
<parameter name="output−field−name.4" value="callerx"/>
<parameter name="expression.5" value="y"/>
<parameter name="output−field−name.5" value="callery"/>

</box>

<box name="m2" type="map" >
<in stream="input"/>
<out stream="i2"/>
<parameter name="expression.0" value="callee"/>
<parameter name="output−field−name.0" value="phone"/>
<parameter name="expression.1" value="duration"/>
<parameter name="output−field−name.1" value="duration"/>
<parameter name="expression.2" value="time"/>
<parameter name="output−field−name.2" value="time"/>
<parameter name="expression.3" value="price"/>
<parameter name="output−field−name.3" value="price"/>
<parameter name="expression.4" value="x"/>
<parameter name="output−field−name.4" value="calleex"/>
<parameter name="expression.5" value="y"/>
<parameter name="output−field−name.5" value="calleey"/>

</box>

Listing 7: Map operators M1 and M2 definition

As presented in Section 2.2, these operators are defined as:

M1{Phone← Caller,Duration← Duration, T ime← Time,

Price← Price,X ← Caller_X,Y ← Caller_Y }(I, I1)

M2{Phone← Callee,Duration← Duration, T ime← Time,

Price← Price,X ← Callee_X,Y ← Callee_Y }(I, I2)

Their definition by means of XML elements is presented in Listing 7. Both operators are feed with

stream input, as specified by the XML in element, Map operator M1 produces output stream I1

while Map operator M2 produces output stream I2 (out XML elements). The fields composing the

output tuples schema are defined by pairs of parameter elements using attributes expression.# and

output-field-name.# (where # represents the expression number, starting from 0). It can be noticed

that the only difference in how the operators define the output schema is in attributes expression.0,

expression.4 and expression.5: operator M1 defines Phone field to be equal to Caller,X to be equal

toCaller_X and Y to be equal toCaller_Y while operatorM2 defines Phone to be equal toCallee,

Vincenzo Massimiliano Gulisano An Elastic Parallel-Distributed Stream Processing Engine

188 APPENDIX A. THE BOREALIS PROJECT - OVERVIEW

X to be equal to Callee_X and Y to be equal to Callee_Y .

The Union operator U merges tuples produced by both Map operators M1, M2 to a single stream.

It is defined as:

U{}(I1, I2, OU)

The XML representation of this operator is presented in listing 8. This operator defines one in element

for each input stream and one out element. In this case, we specify that the operator consumes the

tuples produced by Map operators M1 and M2 defining as in elements streams I1 and I2.

<box name="u" type="union" >
<in stream = "i1"/>
<in stream = "i2"/>
<out stream = "ou"/>

</box>

Listing 8: Union operator U definition

Once tuples produced by Map operators M1 and M2 have been merged by the Union operator U

we use the Aggregate operator A to extract X , Y and Time fields for each pair of consecutive tuples

referring to the same Phone number. The Aggregate operators is defined as:

A{tuples, 2, 1, T ime← first_val(Time), T1 ← first_val(Time), X1 ← first_val(X),

Y1 ← first_val(Y), T2 ← last_val(Time), X2 ← last_val(X), Y2 ← last_val(Y),

[Group− by = Phone]}(OU , OA)

The XML representation of the Aggregate operator is presented in Listing 9.

The XML parameter is a generic XML element used to define the properties of an operator. With

respect to the Aggregate operator, this element is used both to define the operator parameters such

the window type, the window size and so on and to define the fields composing the output tuples.

Similarly to the Map operator, pairs of elements with attributes aggregate-function-output-name.#

and aggregate-function.# are used to specify the name and the function of each output schema field.

The operator group-by field is specified using a parameter XML element with attribute group-by,

window size and advance are defined by parameters window-size and advance while the window type

(tuple-based in the example) is defined setting attribute window-size-by to TUPLES. As defined in

Borealis, a time-based window is specified setting window-size-by attribute to be equal to TIME.

An Elastic Parallel-Distributed Stream Processing Engine Vincenzo Massimiliano Gulisano

A.1. QUERY ALGEBRA 189

<box name="a" type="aggregate" >
<in stream = "ou" />
<out stream = "oa" />
<parameter name = "aggregate−function.0" value = "firstval(time)" />
<parameter name = "aggregate−function−output−name.0" value = "time" />
<parameter name = "aggregate−function.1" value = "firstval(time)" />
<parameter name = "aggregate−function−output−name.1" value = "t1" />
<parameter name = "aggregate−function.2" value = "firstval(x)" />
<parameter name = "aggregate−function−output−name.2" value = "x1" />
<parameter name = "aggregate−function.3" value = "firstval(y)" />
<parameter name = "aggregate−function−output−name.3" value = "y1" />
<parameter name = "aggregate−function.4" value = "lastval(time)" />
<parameter name = "aggregate−function−output−name.4" value = "t2" />
<parameter name = "aggregate−function.5" value = "lastval(x)" />
<parameter name = "aggregate−function−output−name.5" value = "x2" />
<parameter name = "aggregate−function.6" value = "lastval(y)" />
<parameter name = "aggregate−function−output−name.6" value = "y2" />
<parameter name = "window−size" value = "2" />
<parameter name = "window−size−by" value = "TUPLES" />
<parameter name = "advance" value = "1" />
<parameter name = "group−by" value = "phone" />

</box>

Listing 9: Aggregate operator A definition

The tuples produced by the Aggregate operator A are consumed by the Map operator M3 in order

to compute the speed at which the mobile phone moved between each pair of consecutive calls. The

operator is defined as:

M3{Phone← Phone, T ime← Time, Speed←
√
(X2 −X1)2 + (Y2 − Y1)2

T2 − T1
}(OA, OM)

Its representation by means of an XML element are presented in Listing 10. As for the previous

two Map operators, we define the output tuples schema by means of elements attributes expression.#

and output-field-name.#. The operator in the example defines three output fields, Phone, Time and

Speed. Field Speed is computed as the division between the Euclidean distance and the temporal

distance of consecutive phone calls.
<box name="m3" type="map" >

<in stream="ao"/>
<out stream="om"/>
<parameter name="expression.0" value="phone"/>
<parameter name="output−field−name.0" value="phone"/>
<parameter name="expression.1" value="time"/>
<parameter name="output−field−name.1" value="time"/>
<parameter name="expression.2" value="sqrt(pow(x2−x1,2.0)+pow(y2−y1,2.0))/(t2−t1)"/>
<parameter name="output−field−name.2" value="speed"/>

</box>

Listing 10: Map operator M3 definition

The last operator defined in the continuous query is the Filter operator F . This operator is used

to forward only the tuples referring to mobile phones whose speed exceeds a given threshold (110 in

Vincenzo Massimiliano Gulisano An Elastic Parallel-Distributed Stream Processing Engine

190 APPENDIX A. THE BOREALIS PROJECT - OVERVIEW

the example). The operator is defined as:

F{Speed ≥ 110}(MA, OF)

Its representation by means of a XML element is presented in listing 11. As presented in Section

2.1.1.0.2, the Filter operator may define multiple output streams, one for each filtering condition.

Furthermore, it can define an extra output stream to forward all the tuples that do not satisfy any

filtering condition. In the example, we are interested in forwarding only tuples for which the predicate

Speed ≥ 110 holds. We define this condition using element attribute expression.0.

<box name="f" type="filter" >
<in stream="om" />
<out stream="output" />
<parameter name="expression.0" value="speed>110" />

</box>

Listing 11: Filter operator F definition

Once all the operators of the continuous query have been defined, we must specify which are the

continuous query outputs and their respective schema. In the example, we define the output schema

output_schema in the same way we define schema input_schema. We specify which are the outputs

using the output element.

<schema name="output_schema">
<field name="phone" type="string" size="9" />
<field name="time" type="int"/>
<field name="speed" type="double"/>

</schema>

<output stream = "output" schema = "output_schema"/>

Listing 12: Output Schema and Output definition

Once all the operators and the inputs and outputs have been defined, we can decide whether

to deploy the continuous query on a single Borealis instance (centralized execution) or at multiple

instance (distributed execution). To define how to distribute operators, we must provide additional

information in the query XML file. With respect to the XML containing the definition of the operators,

we must specify which groups of operators will be deployed at the same SPE instance. As an example,

we can decide to group together the first three operators M1, M2 and U and to group together the

remaining operators A, M3 and F . We provide this information in the XML file setting box XML

elements as child of the query element. Listing 13 presents a possible XML definition of the whole

continuous query. For the ease of the understanding, we don’t repeat the XML definition of each

schema or operator presented before.

An Elastic Parallel-Distributed Stream Processing Engine Vincenzo Massimiliano Gulisano

A.2. OPERATORS EXTENSIBILITY 191

<borealis>

<schema name="input_schema" ...

<input stream="input" schema="input_schema" />

<query name="group1">
<box name="m1" type="map" ...
<box name="m2" type="map" ...
<box name="u" type="union"...

</query>

<query name="group2">
<box name="a" type="aggregate"...
<box name="m3" type="map" ...
<box name="f" type="filter" ...

</query>

<output stream = "output" schema = "output_schema"/>

<schema name="output_schema"...

</borealis>

Listing 13: Operators groups definition

The information related to the nodes to which each group will be deployed is provided in a sepa-

rated file, referred to as the Deploy file. For each input stream, output stream and group of operators

we must define the respective Borealis instance address by means of an IP:Port pair.
<deploy>

<publish endpoint="blade39:15000" stream="input"/>

<node endpoint="blade39:15000" query="group1"/>
<node endpoint="blade55:15000" query="group2"/>

<subscribe endpoint="blade55:25000" stream="output"/>

</deploy>

Listing 14: Deployment information

In the example, we specify that input will receive tuples at address blade39:15000. The operators

belonging to group1 will be deployed at the same address while the operators belonging to group2

will be deployed at the Borealis instance running at blade55:15000. Finally, the output stream will

output tuples at address blade55:25000.

A.2 Operators extensibility

In this section we provide a short overview about how user-defined operators can be added to the

set of available operators to be used to define continuous queries. We present this extensibility of the

Vincenzo Massimiliano Gulisano An Elastic Parallel-Distributed Stream Processing Engine

192 APPENDIX A. THE BOREALIS PROJECT - OVERVIEW

Borealis SPE as, due to it simplicity, it was one of the motivating choices in using Borealis as the base

SPE for StreamCloud.

Two main functions must be implemented when defining a new data streaming operator. Func-

tion setup_impl is used to setup the operator using the parameters defined in the XML query file.

Function run_impl is invoked by the Borealis SPE scheduler each time (at least) one tuple is avail-

able for one of the input streams of the operator. In the following, we focus on a sample operator used

to duplicate each incoming tuple duplicate−number times, where parameter duplicate−number
is provided in the XML query file. A possible definition of the operator by means of an XML element

is presented in Listing 15.

<box name="d" type="duplicate" >
<in stream="in"/>
<out stream="out"/>
<parameter name="duplicate−number" value="3"/>

</box>

Listing 15: Sample operator to duplicate input tuples

In the example, the operator defines one input stream in and one output stream out. Each tuple

consumed from the input stream will be duplicated 3 times. The following code presents a possible

implementation for the setup_impl function.

void setup_impl() throw (AuroraException) {

if (get_num_inputs() != 1) {
Throw(aurora_typing_exception,

"Operator Duplicate requires exactly 1 input stream");
}

if (get_num_outputs() != 1) {
Throw(aurora_typing_exception,

"Operator Duplicate requires exactly 1 output stream");
}

_duplicate_number = param("duplicate−number", PARAM_NON_EMPTY);

}

Listing 16: setup_impl implementation

In the example, we define exactly one input stream and one output stream for the operator and

we throw an exception if the number of in or out elements provided in the XML definition is not

correct. Subsequently, we store the value of the parameter duplicate-number into the variable

_duplicate_number. We provide the PARAM_NON_EMPTY option to the param function to

specify that the parameter is mandatory. Once the setup_impl function has been defined, we can

proceed with the definition of the run_impl function. We provide a sample implementation of the

function in Listing 17.

An Elastic Parallel-Distributed Stream Processing Engine Vincenzo Massimiliano Gulisano

A.3. BOREALIS TUPLES PROCESSING PARADIGM 193

void run_impl(QBoxInvocation& inv) throw (AuroraException) {

EnqIterator my_enq_iterator = enq(0);

DeqIterator my_deq_iterator = deq(0);

while (inv.continue_dequeue_on(my_deq_iterator, 0)) {

for (uint i=0;i<_duplicate_number;i++) {
memcpy(my_enq_iterator.tuple(),

(char∗) my_deq_iterator.tuple(),_output_tuple_size);
++my_enq_iterator;

}

++my_deq_iterator;
get_output(0).notify_enq();

}

}

Listing 17: run_impl implementation

As shown Listing 17, Borealis provides two objects named EnqIterator and DeqIterator.

Object EnqIterator is used to add tuples to the operator output stream queue. Each time a tuple

is written to the output queue, the operator ++ is used to increment the position of the queue pointer

where tuples are written. Similarly, object DeqIterator is used to read tuples from the operator in-

put stream queue. Each time a tuple is read from the input queue, the operator ++ is used to increment

the position of the queue pointer to the next available tuple position. Once objects EnqIterator

and DeqIterator have been created, the function proceeds copying each input tuple from the input

queue to the output queue duplicate-number times. Each time tuples are written to the output

queue, the function notify_enq is invoked to alert the operators scheduler new tuples are available.

Once functions setup_impl and run_impl have been implemented, the last step consists

in adding the operator name (duplicate in the example) to the list of available operators and in

recompiling Borealis source code with the new added classes.

A.3 Borealis Tuples Processing Paradigm

As presented in Section 3.3.4, StreamCloud scales with respect to the available number of ma-

chines but also with respect to the number of cores available in each machine. To better understand

why StreamCloud scales with the number of available cores, we provide in this section an overview

of the Borealis tuple processing paradigm, presenting how tuples are processed and transferred across

nodes and discussing how the original Borealis SPE paradigm has been improved in StreamCloud.

As introduce in the Borealis application programmer’s guide [bora] and in the Borealis devel-

oper’s guide [borb] and as analyzed in [AMB12], the Borealis SPE defines 4 main threads to process

Vincenzo Massimiliano Gulisano An Elastic Parallel-Distributed Stream Processing Engine

194 APPENDIX A. THE BOREALIS PROJECT - OVERVIEW

OP OP OP

receive

thread

send

thread

process

thread

Schedule operators execution

Figure A.2: StreamCloud threads interaction

incoming tuples. The first thread, referred to as receive in [AMB12], is used to take tuples from the

network and to store them in the SPE instance input queues. Tuples are exchanged between instances

as events that can contain single or multiple tuples (batching). Once tuples are available in the SPE

instance input queues, a second thread, referred to as process, is in charge of scheduling the operators

deployed at the SPE instance in order for them to process all the input tuples and produce the re-

spective output tuples. Between each pair of operators, tuples are stored using inter-operator queues.

Tuple produced by the last operators of the local query deployed at each SPE instance (i.e., operators

forwarding tuples to operators that are deployed at different SPE instances or forwarding tuples to

the end user application) are processed by the prepare thread, in charge of serializing them back to

events. Finally, serialized events that must be forwarded to other SPE instances or to the end user

application are sent back to the network by the send thread.

During the design and the development of StreamCloud starting from the Borealis SPE, the

paradigm for tuple processing has been improved. One of the modification applied to the original

Borealis SPE was the removal of the prepare thread, whose functionalities have been added to the

send thread. After this modification, tuple processing is now managed by a thread that takes tuples

from the network, a thread used to process tuples locally and a thread used to send output tuples back

to the network. Figure A.2 presents StreamCloud tuples processing paradigm.

In order to understand why StreamCloud scales with respect to the number of available cores

several considerations must be made about the three threads defined to process input tuples. The first

consideration is related to the fact that, even if all the threads could run at the same time, there is a

clear dependency between them. Thread process will run only after thread receive will have added

at least one tuple to the SPE input queue. Similarly, thread send will run only after thread process

will have scheduled and run the operator whose output tuples must be forwarded to a different node.

The second consideration is related to the CPU cycles consumed by each thread. A first observation

An Elastic Parallel-Distributed Stream Processing Engine Vincenzo Massimiliano Gulisano

A.4. BOREALIS APPLICATION DEVELOPMENT TOOLS 195

is that the process thread usually consumes more CPU threads than the other two. The reason is

that the CPU consumption is not only related to the reading and writing of tuples across operators

queues, but also related to the number of operators running at the SPE instance, and the computation

run by each of them. As presented in Section 3.2.1, when running a parallel-distributed continuous

query each local subquery is enriched with an input merger and a load balancer, that is, at least 3

operators are managed by the process thread. A second observation is that, even if the receive and

send threads CPU consumption should be comparable (deserialization and serialization of tuples),

the CPU consumption of the send thread is usually lower than the one of the receive one. The reason

is that the selectivity (i.e. the output stream rate divided the input stream rate) is usually lower than

one. That is, the tuples produced by a query are usually less than the consumed ones. This is due

to the nature of data streaming applications, where a huge amount of data is processed in order to

extract only useful information or to generate alarms. The last consideration to justify why the threads

processing tuples do not exceed the consumption of approximately a single CPU is related to how they

interact when a StreamCloud instance is close to saturation (i.e., when the instance cannot cope with

the incoming load). In order to avoid the memory saturation at the node where the SPE instance is

running, inter-operator queues define a maximum number of tuples to be stored. When this maximum

size is reached, flow control will avoid the processing of new tuples. This limitation on the queues

sizes implies that, under bursty conditions, the receive thread will add tuples to the input queue at a

faster rate than the process thread one. Upon saturation, the receive thread will start waiting for the

process thread to schedule operators in order to free the input buffer, therefore reducing dramatically

its CPU consumption.

A.4 Borealis Application Development Tools

In this section we provide an overview of the tools provided by Borealis to develop applications

running continuous queries. As discussed in Chapter 6, it is important to provide tools to ease the

interaction of the user with the SPE. Even if the tools originally provided by Borealis have been

re-designed and re-implemented in order to provide a better IDE for StreamCloud, we provide a

brief description of them as they help understanding which are the steps a user performs to convert a

continuous queries into an application.

The main tools provided by Borealis are the Marshal and the BigGiantHead. The Marshal tool

has been introduced to generate code to send and receive tuples starting from a query and Deploy

XML files. The schema of the input and output streams (i.e., the fields composing the input and

the output tuples) depend on the particular continuous query being run. The code generated by the

Marshal tool provides send functions for each input stream defined by the continuous query and

receive functions for each output stream. The code that must be provided by the user is related

Vincenzo Massimiliano Gulisano An Elastic Parallel-Distributed Stream Processing Engine

196 APPENDIX A. THE BOREALIS PROJECT - OVERVIEW

to how to create input tuples (e.g., reading them from a file) and what to do with output tuples (e.g.,

store them in a file). The limitation of the code generated by the Marshal tool is due to the fact

that both receiver and sender functions are designed to run at the same application instance. In the

case of a distributed setup involving many nodes and running a continuous query with multiple input

and output streams, the application might constitute a bottleneck as it cannot sustain the inputs and

output rates. Together with the Marshal tool, the BigGiantHead tool has been provided with Borealis

to manage the deployment of continuous queries. This tool accepts as input the pair of XML files

containing the query and the deployment information and coordinates all the SPE instances sending

instructions about which operators to deploy and which input and output streams to subscribe to.

The tool can be used to simply deploy a given continuous query but can also be executed as a stand

alone application that maintains a global catalog of the continuous queries being run by Borealis.

The BigGiantHead tool has two main limitations: (1) the global catalog has not been designed to be

updated with information related to dynamic load balancing, elasticity and fault tolerance actions and

(2) instructions to deploy operators or subscribe streams are sent to the SPE instances as synchronized

actions. When provisioning a new node, or when replacing a failed one, it is fundamental to reduce

the deploy time as much as possible. For this reason, in StreamCloud, operators are deployed invoking

asynchronous functions to reduce the duration of reconfiguration actions.

Together with the Marshal and the BigGiantHead tools, Borealis provided some bash scripts to

automate the deployment and execution of applications running the continuous queries defined by the

user.

Figure A.3.a presents the steps performed by the user in order to prepare and run the application

generated starting from the continuous query:

1. The first step consists in the preparation of the XML query and deploy files.

2. When the files have been prepared, the Marshal tool is invoked to generate the code with the

functions to send to and receive data from the application that will later run the query.

3. The auto generated code must be specialized defining how tuples being sent are created and

what to do with output tuples produced by the continuous query. As an example, the user

might want to read tuples from a file and also to persist received tuples in a file; in this case, he

will implement the needed functionalities.

4. When the auto-generated code has been enriched with the user-defined functions, the applica-

tion is compiled and linked into an executable.

5. The last step consists in preparing the script used to execute the application. The information

provided by the user is basically related to which SPE instance should be activated in order to

deploy the query.

An Elastic Parallel-Distributed Stream Processing Engine Vincenzo Massimiliano Gulisano

A.4. BOREALIS APPLICATION DEVELOPMENT TOOLS 197

a) Preparation

b) Execution

...

Deployment (BigGiantHead invocation)

OP OP OP

...

Executable instantiation

...

SPE instances activation

...OP OP OP

Input / Output subscription – tuples forwarding

XML query and

deploy files

Auto-generated C++

code

Marshal

Executable

Compile

Link

Preparation of

execution scripts
(1)

(2)

(3)

(4)

(6)

(7)

(8)

(9)

Definition of send /

receive functions
(5)

Figure A.3: Steps performed by the user to create an application starting from a continuous query

Once the application has been prepared, the script is executed. The steps followed by the script

are presented in Figure A.3.b:

6. The first step consists in the instantiation of all the SPE instances specified by the user at step

(5). At this point, each SPE instance has no operator deployed at it and is waiting for instruction

about what to deploy and to which streams to subscribe.

7. Subsequently, the script activates the executable created at step (4). From this point on, the

deployment and the execution of the continuous query will be managed by the application.

8. The executable starts deploying the query invoking the BigGiantHead tool.

9. Finally, the application subscribes to the query output streams and starts injecting tuples to

the continuous query input streams. As discussed previously, all the tuples being sent by the

application and all the tuples being received are processed at the same time by the application.

The application runs until all the tuples have been sent (e.g., if the user is reading them from a

file) or until it is killed by the user.

Vincenzo Massimiliano Gulisano An Elastic Parallel-Distributed Stream Processing Engine

198 APPENDIX A. THE BOREALIS PROJECT - OVERVIEW

An Elastic Parallel-Distributed Stream Processing Engine Vincenzo Massimiliano Gulisano

Bibliography

[AAB+05a] Daniel J. Abadi, Yanif Ahmad, Magdalena Balazinska, Ugur Çetintemel, Mitch Cher-

niack, Jeong-Hyon Hwang, Wolfgang Lindner, Anurag Maskey, Alex Rasin, Esther

Ryvkina, Nesime Tatbul, Ying Xing, and Stanley B. Zdonik. The design of the bore-

alis stream processing engine. In CIDR, pages 277–289, 2005.

[AAB+05b] Daniel J. Abadi, Yanif Ahmad, Magdalena Balazinska, Mitch Cherniack, Jeong-hyon

Hwang, Wolfgang Lindner, Anurag S. Maskey, Er Rasin, Esther Ryvkina, Nesime

Tatbul, Ying Xing, and Stan Zdonik. The design of the borealis stream processing

engine. In In CIDR, 2005.

[ABB+04] Arvind Arasu, Brian Babcock, Shivnath Babu, John Cieslewicz, Keith Ito, Rajeev Mot-

wani, Utkarsh Srivastava, and Jennifer Widom. Stream: The stanford data stream

management system. Springer, 2004.

[ABC+05] Yanif Ahmad, Bradley Berg, Ugur Cetintemel, Mark Humphrey, Jeong-Hyon Hwang,

Anjali Jhingran, Anurag Maskey, Olga Papaemmanouil, Alexander Rasin, Nesime Tat-

bul, Wenjuan Xing, Ying Xing, and Stan Zdonik. Distributed operation in the borealis

stream processing engine. In Proceedings of the 2005 ACM SIGMOD international

conference on Management of data, SIGMOD ’05, New York, NY, USA, 2005. ACM.

[ABW06] Arvind Arasu, Shivnath Babu, and Jennifer Widom. The CQL continuous query lan-

guage: semantic foundations and query execution. The VLDB Journal, 15(2), June

2006.

[ACC+03] Daniel J. Abadi, Don Carney, Ugur Cetintemel, Mitch Cherniack, Christian Convey,

Sangdon Lee, Michael Stonebraker, Nesime Tatbul, and Stan Zdonik. Aurora: a new

model and architecture for data stream management. The VLDB Journal, 12(2), August

2003.

[ACG+04] Arvind Arasu, Mitch Cherniack, Eduardo Galvez, David Maier, Anurag S. Maskey,

Esther Ryvkina, Michael Stonebraker, and Richard Tibbetts. Linear road: a stream

data management benchmark. In Proceedings of the Thirtieth international conference

on Very large data bases - Volume 30, VLDB ’04. VLDB Endowment, 2004.

Vincenzo Massimiliano Gulisano An Elastic Parallel-Distributed Stream Processing Engine

200 BIBLIOGRAPHY

[ali] Alienvalut LLC. Alienvault documentation. http://www.alienvault.com/

documentation/.

[Ama] Amazon EC2. http://aws.amazon.com/ec2/.

[AMB12] Shoaib Akram, Manolis Marazakis, and Angelos Bilas. Understanding and improving

the cost of scaling distributed event processing. In Proceedings of the 6th ACM Inter-

national Conference on Distributed Event-Based Systems, DEBS ’12, New York, NY,

USA, 2012. ACM.

[BBC+04] Hari Balakrishnan, Magdalena Balazinska, Don Carney, Ugur Cetintemel, Mitch Cher-

niack, Christian Convey, Eddie Galvez, Jon Salz, Michael Stonebraker, Nesime Tatbul,

Richard Tibbetts, and Stan Zdonik. Retrospective on aurora. The VLDB Journal, 13(4),

December 2004.

[BBD+02] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jennifer Widom.

Models and issues in data stream systems. In Proceedings of the twenty-first ACM

SIGMOD-SIGACT-SIGART symposium on Principles of database systems, PODS ’02,

New York, NY, USA, 2002. ACM.

[BBMD03] Brian Babcock, Shivnath Babu, Rajeev Motwani, and Mayur Datar. Chain: operator

scheduling for memory minimization in data stream systems. In Proceedings of the

2003 ACM SIGMOD international conference on Management of data, SIGMOD ’03,

New York, NY, USA, 2003. ACM.

[BBMS04] Magdalena Balazinska, Hari Balakrishnan, Samuel Madden, and Mike Stonebraker.

Availability-consistency trade-offs in a fault-tolerant stream processing system. Tech-

nical report, 2004.

[BBMS08] Magdalena Balazinska, Hari Balakrishnan, Samuel R Madden, and Michael Stone-

braker. Fault-tolerance in the borealis distributed stream processing system. ACM

Trans. Database Syst., 33(1), March 2008. ACM ID: 1331907.

[BBS04] Magdalena Balazinska, Hari Balakrishnan, and Mike Stonebraker. Contract-based load

management in federated distributed systems. In Proceedings of the 1st conference on

Symposium on Networked Systems Design and Implementation - Volume 1, NSDI’04,

Berkeley, CA, USA, 2004. USENIX Association.

[BDD+10] Irina Botan, Roozbeh Derakhshan, Nihal Dindar, Laura Haas, Renée J. Miller, and

Nesime Tatbul. SECRET: a model for analysis of the execution semantics of stream

processing systems. Proc. VLDB Endow., 3(1-2), September 2010.

An Elastic Parallel-Distributed Stream Processing Engine Vincenzo Massimiliano Gulisano

 http://www.alienvault.com/documentation/
 http://www.alienvault.com/documentation/
http://aws.amazon.com/ec2/

BIBLIOGRAPHY 201

[BDM04] B. Babcock, M. Datar, and R. Motwani. Load shedding for aggregation queries over

data streams. In Data Engineering, 2004. Proceedings. 20th International Conference

on, pages 350 – 361, march-2 april 2004.

[BFF09a] A. Brito, C. Fetzer, and P. Felber. Multithreading-enabled active replication for event

stream processing operators. In 28th IEEE International Symposium on Reliable Dis-

tributed Systems, 2009. SRDS ’09, September 2009.

[BFF09b] Andrey Brito, Christof Fetzer, and Pascal Felber. Minimizing latency in fault-tolerant

distributed stream processing systems. In Proceedings of the 2009 29th IEEE Interna-

tional Conference on Distributed Computing Systems, ICDCS ’09, Washington, DC,

USA, 2009. IEEE Computer Society.

[BGS01] Philippe Bonnet, Johannes Gehrke, and Praveen Seshadri. Towards sensor database

systems. In Proceedings of the Second International Conference on Mobile Data Man-

agement, MDM ’01, London, UK, UK, 2001. Springer-Verlag.

[bora] The Borealis Application Programmer’s Guide. http://www.cs.brown.

edu/research/borealis/public/publications/borealis_

application_guide.pdf.

[borb] The Borealis Developer’s Guide. http://www.cs.brown.edu/research/

borealis/public/publications/borealis_developer_guide.

pdf.

[Borc] The Borealis Project. http://www.cs.brown.edu/research/borealis/

public/.

[BS07] Gert Brettlecker and Heiko Schuldt. The OSIRIS-SE (stream-enabled) infrastructure

for reliable data stream management on mobile devices. In Proceedings of the 2007

ACM SIGMOD international conference on Management of data, SIGMOD ’07, New

York, NY, USA, 2007. ACM.

[BSS06] Gert Brettlecker, Heiko Schuldt, and Hans-Jorg Schek. Efficient and coordinated

checkpointing for reliable distributed data stream management. In Yannis Manolopou-

los, Jaroslav Pokorny, and Timos Sellis, editors, Advances in Databases and Informa-

tion Systems, volume 4152 of Lecture Notes in Computer Science. Springer Berlin /

Heidelberg, 2006.

[cai] The Cooperative Association for Internet Data Analysis. http://www.caida.

org/home/.

Vincenzo Massimiliano Gulisano An Elastic Parallel-Distributed Stream Processing Engine

 http://www.cs.brown.edu/research/borealis/public/publications/borealis_application_guide.pdf
 http://www.cs.brown.edu/research/borealis/public/publications/borealis_application_guide.pdf
 http://www.cs.brown.edu/research/borealis/public/publications/borealis_application_guide.pdf
 http://www.cs.brown.edu/research/borealis/public/publications/borealis_developer_guide.pdf
 http://www.cs.brown.edu/research/borealis/public/publications/borealis_developer_guide.pdf
 http://www.cs.brown.edu/research/borealis/public/publications/borealis_developer_guide.pdf
http://www.cs.brown.edu/research/borealis/public/
http://www.cs.brown.edu/research/borealis/public/
http://www.caida.org/home/
http://www.caida.org/home/

202 BIBLIOGRAPHY

[CBB+03] Mitch Cherniack, Hari Balakrishnan, Magdalena Balazinska, Don Carney, Ugur

Cetintemel, Ying Xing, and Stan Zdonik. Scalable distributed stream processing. In

In CIDR, 2003.

[CC09] Rebecca L. Collins and Luca P. Carloni. Flexible filters: load balancing through back-

pressure for stream programs. In Proceedings of the seventh ACM international con-

ference on Embedded software, EMSOFT ’09, New York, NY, USA, 2009. ACM.

[CCC+02] Don Carney, Ugur Cetintemel, Mitch Cherniack, Christian Convey, Sangdon Lee, Greg

Seidman, Michael Stonebraker, Nesime Tatbul, and Stan Zdonik. Monitoring streams:

a new class of data management applications. In Proceedings of the 28th international

conference on Very Large Data Bases, VLDB ’02. VLDB Endowment, 2002.

[CCD+03] Sirish Chandrasekaran, Owen Cooper, Amol Deshpande, Michael Franklin, Joseph M.

Hellerstein, Wei Hong, Sailesh Krishnamurthy, Samuel R. Madden, Fred Reiss, and

Mehul A. Shah. TelegraphCQ: continuous dataflow processing. In Proceedings of the

2003 ACM SIGMOD international conference on Management of data, SIGMOD ’03,

New York, NY, USA, 2003. ACM.

[CCR+03] Don Carney, Ugur Cetintemel, Alex Rasin, Stan Zdonik, Mitch Cherniack, and Mike

Stonebraker. Operator scheduling in a data stream manager. In Proceedings of the 29th

international conference on Very large data bases - Volume 29, VLDB ’03. VLDB

Endowment, 2003.

[CDTW00] Jianjun Chen, David J. DeWitt, Feng Tian, and Yuan Wang. NiagaraCQ: a scalable

continuous query system for internet databases. SIGMOD Rec., 29(2), May 2000.

[cmt] Spanish Commission for the Telecommunication Market - Comisión del Mercado de

las Telecomunicaciones. http://www.cmt.es/inicio.

[CSA06] null Jin Chen, G. Soundararajan, and C. Amza. Autonomic provisioning of backend

databases in dynamic content web servers. In Autonomic Computing, International

Conference on, volume 0, Los Alamitos, CA, USA, 2006. IEEE Computer Society.

[CWY05] Yun Chi, Haixun Wang, and Philip S. Yu. Loadstar: Load shedding in data stream

mining. In In Proc. Int. Conf. on Very Large Data Bases (VLDB, 2005.

[Des04] Amol Deshpande. An initial study of overheads of eddies. SIGMOD Rec., 33(1),

March 2004.

[DFF+98] Alin Deutsch, Mary Fernandez, Daniela Florescu, Alon Levy, and Dan Suciu. A Query

Language for XML. 1998.

An Elastic Parallel-Distributed Stream Processing Engine Vincenzo Massimiliano Gulisano

http://www.cmt.es/inicio

BIBLIOGRAPHY 203

[DG08] Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified data processing on large

clusters. Commun. ACM, 51(1), January 2008.

[DM07] Mayur Datar and Rajeev Motwani. The sliding-window computation model and re-

sults. In Charu C. Aggarwal and Ahmed K. Elmagarmid, editors, Data Streams, vol-

ume 31 of The Kluwer International Series on Advances in Database Systems. Springer

US, 2007.

[Espa] Esper. http://esper.codehaus.org/.

[espb] Esper - Complex Event Processing. http://esper.codehaus.org/.

[Euc] Ubuntu Eucalyptus. http://www.ubuntu.com/cloud.

[GJPPM+12] Vincenzo Gulisano, Ricardo Jimenez-Peris, Marta Patino-Martinez, Claudio Soriente,

and Patrick Valduriez. Streamcloud: An elastic and scalable data streaming system.

IEEE Transactions on Parallel and Distributed Systems, 99(PrePrints), 2012.

[GJPPMV10] Vincenzo Gulisano, Ricardo Jiménez-Peris, Marta Patiño-Martínez, and Patrick Val-

duriez. Streamcloud: A large scale data streaming system. In ICDCS 2010: Interna-

tional Conference on Distributed Computing Systems, pages 126–137, June 2010.

[GPYC08] Xiaohui Gu, Spiros Papadimitriou, Philip S. Yu, and Shu-Ping Chang. Toward pre-

dictive failure management for distributed stream processing systems. In Proceedings

of the 2008 The 28th International Conference on Distributed Computing Systems,

ICDCS ’08, Washington, DC, USA, 2008. IEEE Computer Society.

[Gra90] Goetz Graefe. Encapsulation of parallelism in the volcano query processing system.

SIGMOD Rec., 19(2), May 1990.

[GSP+] Anastasios Gounaris, Jim Smith, Norman W. Paton, Rizos Sakellariou, Alvaro A. A.

Fernandes, and Paul Watson. Adaptive workload allocation in query processing in

autonomous heterogeneous environments. Distrib. Parallel Databases.

[GTY+] Bu ?gra Gedik, Ibm Thomas, Philip S. Yu, Henrique Andrade, Ibm Thomas,

Myungcheol Doo, and Kun-lung Wu. Spade: the system s declarative stream process-

ing engine. In in SIGMOD ’08: Proceedings of the 2008 ACM SIGMOD international

conference on Management of data.

[GZY+09] Yu Gu, Zhe Zhang, Fan Ye, Hao Yang, Minkyong Kim, Hui Lei, and Zhen Liu. An

empirical study of high availability in stream processing systems. In Proceedings of

the 10th ACM/IFIP/USENIX International Conference on Middleware, Middleware

’09, New York, NY, USA, 2009. Springer-Verlag New York, Inc.

Vincenzo Massimiliano Gulisano An Elastic Parallel-Distributed Stream Processing Engine

http://esper.codehaus.org/
http://esper.codehaus.org/
http://www.ubuntu.com/cloud

204 BIBLIOGRAPHY

[HBR+03] Jeong-hyon Hwang, Magdalena Balazinska, Alexander Rasin, Ugur Cetintemel,

Michael Stonebraker, and Stan Zdonik. A comparison of stream-oriented high-

availability algorithms. Technical report, Brown CS, 2003.

[HBR+05] Jeong-Hyon Hwang, Magdalena Balazinska, Alexander Rasin, Uğur Çetintemel,

Michael Stonebraker, and Stan Zdonik. High-Availability algorithms for distributed

stream processing. In Data Engineering, International Conference on, volume 0, Los

Alamitos, CA, USA, 2005. IEEE Computer Society.

[HCCZ08] Jeong-Hyon Hwang, Sanghoon Cha, Ugur Cetintemel, and Stan Zdonik. Borealis-r:

a replication-transparent stream processing system for wide-area monitoring applica-

tions. In Proceedings of the 2008 ACM SIGMOD international conference on Man-

agement of data, SIGMOD ’08, New York, NY, USA, 2008. ACM.

[HCZ07] Jeong-Hyon Hwang, U. Cetintemel, and S. Zdonik. Fast and reliable stream process-

ing over wide area networks. In 2007 IEEE 23rd International Conference on Data

Engineering Workshop, April 2007.

[Hei11] Thomas Heinze. Elastic complex event processing. In Proceedings of the 8th Middle-

ware Doctoral Symposium, MDS ’11, New York, NY, USA, 2011. ACM.

[HXCZ07] Jeong-Hyon Hwang, Ying Xing, U. Cetintemel, and S. Zdonik. A cooperative, self-

configuring high-availability solution for stream processing. In IEEE 23rd Interna-

tional Conference on Data Engineering, 2007. ICDE 2007, April 2007.

[inf] IBM Infosphere. http://www-01.ibm.com/software/data/

infosphere/.

[JAA+06] Navendu Jain, Lisa Amini, Henrique Andrade, Richard King, Yoonho Park, Philippe

Selo, and Chitra Venkatramani. Design, implementation, and evaluation of the linear

road benchmark on the stream processing core. In Proceedings of the 2006 ACM

SIGMOD international conference on Management of data, SIGMOD ’06, New York,

NY, USA, 2006. ACM.

[JHCF02] Mehul Shah Joseph, Joseph M. Hellerstein, Sirish Ch, and Michael J. Franklin. Flux:

An adaptive partitioning operator for continuous query systems. In In ICDE, 2002.

[JMSS07] T. Johnson, S. Muthukrishnan, V. Shkapenyuk, and O. Spatscheck. Query-aware sam-

pling for data streams. In 2007 IEEE 23rd International Conference on Data Engi-

neering Workshop, April 2007.

An Elastic Parallel-Distributed Stream Processing Engine Vincenzo Massimiliano Gulisano

http://www-01.ibm.com/software/data/infosphere/
http://www-01.ibm.com/software/data/infosphere/

BIBLIOGRAPHY 205

[KBG08] YongChul Kwon, Magdalena Balazinska, and Albert Greenberg. Fault-tolerant stream

processing using a distributed, replicated file system. Proc. VLDB Endow., 1(1), Au-

gust 2008. ACM ID: 1453920.

[LHKK12] Simon Loesing, Martin Hentschel, Tim Kraska, and Donald Kossmann. Stormy: an

elastic and highly available streaming service in the cloud. In Proceedings of the 2012

Joint EDBT/ICDT Workshops, EDBT-ICDT ’12, New York, NY, USA, 2012. ACM.

[lin] Microsoft LINQ. http://msdn.microsoft.com/en-us/library/

bb397926.

[Mil03] David L. Mills. A brief history of ntp time: memoirs of an internet timekeeper. Com-

puter Communication Review, 33(2):9–21, 2003.

[MPH10a] Christopher McConnell, Fan Ping, and Jeong-Hyon Hwang. Detouring and replication

for fast and reliable internet-scale stream processing. In Proceedings of the 19th ACM

International Symposium on High Performance Distributed Computing, HPDC ’10,

New York, NY, USA, 2010. ACM.

[MPH10b] Christopher McConnell, Fan Ping, and Jeong-Hyon Hwang. iFlow: an approach for

fast and reliable internet-scale stream processing utilizing detouring and replication.

Proc. VLDB Endow., 3(1-2), September 2010.

[msi] Microsoft StreamInsight. http://msdn.microsoft.com/en-us/library/

ee362541.aspx.

[MWA+02] Rajeev Motwani, Jennifer Widom, Arvind Arasu, Brian Babcock, Shivnath Babu,

Mayur Datar, Gurmeet Manku, Chris Olston, Justin Rosenstein, and Rohit Varma.

Query processing, resource management, and approximation ina data stream manage-

ment system. http://ilpubs.stanford.edu:8090/549/, 2002.

[NDM+01] Jeffrey Naughton, David Dewitt, David Maier, Ashraf Aboulnaga, Jianjun Chen,

Leonidas Galanis, Jaewoo Kang, Rajasekar Krishnamurthy, Qiong Luo, Naveen

Prakash, Ravishankar Ramamurthy, Jayavel Shanmugasundaram, Feng Tian, Kristin

Tufte, and Stratis Viglas. The niagara internet query system. IEEE Data Engineering

Bulletin, 24, 2001.

[Nil] The Nilson Report. http://www.nilsonreport.com/.

[Ope] OpenNebula. http://opennebula.org/.

[OPR] Options Price Reporting Authority. http://www.opradata.com/.

Vincenzo Massimiliano Gulisano An Elastic Parallel-Distributed Stream Processing Engine

http://msdn.microsoft.com/en-us/library/bb397926
http://msdn.microsoft.com/en-us/library/bb397926
http://msdn.microsoft.com/en-us/library/ee362541.aspx
http://msdn.microsoft.com/en-us/library/ee362541.aspx
http://www.nilsonreport.com/
http://opennebula.org/
http://www.opradata.com/

206 BIBLIOGRAPHY

[ÖV11] M. Tamer Özsu and Patrick Valduriez. Principles of Distributed Database Systems,

Third Edition. Springer, 2011.

[pos] PostgreSQL. http://www.postgresql.org/.

[PS06] Kostas Patroumpas and Timos Sellis. Window specification over data streams. In

Torsten Grust, Hagen Höpfner, Arantza Illarramendi, Stefan Jablonski, Marco Mesiti,

Sascha Müller, Paula-Lavinia Patranjan, Kai-Uwe Sattler, Myra Spiliopoulou, and Jef

Wijsen, editors, Current Trends in Database Technology EDBT 2006, volume 4254 of

Lecture Notes in Computer Science. Springer Berlin / Heidelberg, 2006.

[SAG06] Gokul Soundararajan, Cristiana Amza, and Ashvin Goel. Database replication policies

for dynamic content applications. In In EuroSys06. ACM, 2006.

[SAG+09] Scott Schneider, Henrique Andrade, Bugra Gedik, Alain Biem, and Kun-Lung Wu.

Elastic scaling of data parallel operators in stream processing. In Proceedings of the

2009 IEEE International Symposium on Parallel&Distributed Processing, IPDPS ’09,

Washington, DC, USA, 2009. IEEE Computer Society.

[ScZ05] Michael Stonebraker, Uǧur Çetintemel, and Stan Zdonik. The 8 requirements of real-

time stream processing. SIGMOD Rec., 34(4), December 2005.

[SHB04] Mehul A. Shah, Joseph M. Hellerstein, and Eric Brewer. Highly available, fault-

tolerant, parallel dataflows. In Proceedings of the 2004 ACM SIGMOD international

conference on Management of data, SIGMOD ’04, New York, NY, USA, 2004. ACM.

[SM10] Z. Sebepou and K. Magoutis. Scalable storage support for data stream processing. In

2010 IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST), May

2010.

[SM11] Z. Sebepou and K. Magoutis. CEC: continuous eventual checkpointing for data stream

processing operators. In 2011 IEEE/IFIP 41st International Conference on Depend-

able Systems Networks (DSN), June 2011.

[sto] Storm Project. http://storm-project.net/.

[STRa] Standford Stream Data Manager. http://infolab.stanford.edu/

stream/.

[strb] StreamBase. http://www.streambase.com/.

[Strc] StreamBased Systems, Inc. http://www.streambase.com/.

An Elastic Parallel-Distributed Stream Processing Engine Vincenzo Massimiliano Gulisano

http://www.postgresql.org/
http://storm-project.net/
http://infolab.stanford.edu/stream/
http://infolab.stanford.edu/stream/
http://www.streambase.com/
http://www.streambase.com/

BIBLIOGRAPHY 207

[SZS+03] Stan Zdonik Sbz, Stan Zdonik, Michael Stonebraker, Mitch Cherniack, Ugur C. Et-

intemel, Magdalena Balazinska, and Hari Balakrishnan. The aurora and medusa

projects. IEEE Data Engineering Bulletin, 26, 2003.

[Tat02] Nesime Tatbul. QoS-Driven load shedding on data streams. In Proceedings of the Wor-

shops XMLDM, MDDE, and YRWS on XML-Based Data Management and Multimedia

Engineering-Revised Papers, EDBT ’02, London, UK, UK, 2002. Springer-Verlag.

[TcZ+03] Nesime Tatbul, Uğur Çetintemel, Stan Zdonik, Mitch Cherniack, and Michael Stone-

braker. Load shedding in a data stream manager. In Proceedings of the 29th interna-

tional conference on Very large data bases - Volume 29, VLDB ’03, pages 309–320.

VLDB Endowment, 2003.

[TCZ07] Nesime Tatbul, Ugur Cetintemel, and Stan Zdonik. Staying FIT: efficient load shed-

ding techniques for distributed stream processing. In Proceedings of the 33rd interna-

tional conference on Very large data bases, VLDB ’07. VLDB Endowment, 2007.

[TLPY06] Yi-Cheng Tu, Song Liu, Sunil Prabhakar, and Bin Yao. Load shedding in stream

databases: a control-based approach. In Proceedings of the 32nd international confer-

ence on Very large data bases, VLDB ’06. VLDB Endowment, 2006.

[TP06] Yi-Cheng Tu and Sunil Prabhakar. Control-based load shedding in data stream man-

agement systems. In Proceedings of the 22nd International Conference on Data Engi-

neering Workshops, ICDEW ’06, Washington, DC, USA, 2006. IEEE Computer Soci-

ety.

[TZ06a] N. Tatbul and S. Zdonik. Dealing with overload in distributed stream processing sys-

tems. In 22nd International Conference on Data Engineering Workshops, 2006. Pro-

ceedings, 2006.

[TZ06b] Nesime Tatbul and Stan Zdonik. Window-aware load shedding for aggregation queries

over data streams. In Proceedings of the 32nd international conference on Very large

data bases, VLDB ’06. VLDB Endowment, 2006.

[XHCZ06] Ying Xing, Jeong-Hyon Hwang, Ugur Cetintemel, and Stan Zdonik. Providing re-

siliency to load variations in distributed stream processing. In Proceedings of the 32nd

international conference on Very large data bases, VLDB ’06. VLDB Endowment,

2006.

[XZH05] Ying Xing, Stan Zdonik, and Jeong-Hyon Hwang. Dynamic load distribution in the

borealis stream processor. In Proceedings of the 21st International Conference on

Data Engineering, ICDE ’05, Washington, DC, USA, 2005. IEEE Computer Society.

Vincenzo Massimiliano Gulisano An Elastic Parallel-Distributed Stream Processing Engine

208 BIBLIOGRAPHY

[yah] Yahoo S4. http://incubator.apache.org/s4/.

[ZGY+10] Zhe Zhang, Yu Gu, Fan Ye, Hao Yang, Minkyong Kim, Hui Lei, and Zhen Liu. A

hybrid approach to high availability in stream processing systems. In Proceedings

of the 2010 IEEE 30th International Conference on Distributed Computing Systems,

ICDCS ’10, Washington, DC, USA, 2010. IEEE Computer Society.

[zoo] Apache Zookeeper. http://zookeeper.apache.org/.

An Elastic Parallel-Distributed Stream Processing Engine Vincenzo Massimiliano Gulisano

http://incubator.apache.org/s4/
http://zookeeper.apache.org/

Funding - Acknowledgments

This Ph.D. has been partially funded by the following research projects:

Stream: Scalable Autonomic Streaming Middleware for Real-time Processing of Massive Data
Flows (FP7-216181)
Funding Programme: Seventh European Framework (FP7) (2008-2011)
MASSIF: Management of Security Information and Events in Services Infrastructures (FP7-
257475)
Funding Programme: Seventh European Framework (FP7) (2010-2013)
IOLanes: Advancing the Scalability and Performance of I/O Subsystems in Multi-core Platforms
(FP7-248615)
Funding Programme: Seventh European Framework (FP7) (2010-2013)
CLOUDS: Cloud Computing para Servicios Escalables, Confiables y Ubicuos (S2009TIC-1692)
Funding Programme: Comunidad Autónoma de Madrid (2010-2013)
CloudStorm: Scalable and Dependable Cloud Service Platforms (TIN2010-19077)
Funding Programme: Ministry of Science and Innovation (MICINN) (2010-2013)
Highly Scalable Platform for the Construction of Dependable and Ubiquitous Services (TIN2007-
67353-C02)
Funding Programme: Ministry of Education and Science (MEC) (2010-2013)

Vincenzo Massimiliano Gulisano An Elastic Parallel-Distributed Stream Processing Engine

	Table of Contents
	List of Figures
	List of Tables
	I INTRODUCTION
	Chapter 1 Introduction
	1.1 Application scenarios that motivated data streaming
	1.2 Requirements of data streaming applications
	1.3 From DBMS to SPEs
	1.3.1 Limitations of pioneer SPEs

	1.4 Contributions
	1.5 Document Organization

	II DATA STREAMING BACKGROUD
	Chapter 2 Data Streaming Background
	2.1 Data Streaming Model
	2.1.1 Data Streaming Operators

	2.2 Continuous Query Example
	2.3 Table Operators

	III STREAMCLOUD PARALLEL-DISTRIBUTED DATA STREAMING
	Chapter 3 StreamCloud Parallel-Distributed Data Streaming
	3.1 Stream Processing Engines Evolution
	3.2 Parallelization strategies
	3.2.1 Operators parallelization
	3.2.1.1 Load Balancers
	3.2.1.2 Input Mergers

	3.3 StreamCloud parallelization evaluation
	3.3.1 Evaluation Setup
	3.3.2 Scalability of Queries
	3.3.3 Scalability of Individual Operators
	3.3.4 Multi-Core Deployment

	IV STREAMCLOUD DYNAMIC LOAD BALANCING AND ELASTICITY
	Chapter 4 StreamCloud Dynamic Load Balancing and Elasticity
	4.1 StreamCloud Architecture
	4.2 Elastic Reconfiguration Protocols
	4.2.1 Reconfiguration Start
	4.2.2 Window Recreation Protocol
	4.2.3 State Recreation Protocol

	4.3 Elasticity Protocol
	4.4 StreamCloud Dynamic Load Balancing and Elasticity Evaluation
	4.4.1 Elastic Reconfiguration Protocols
	4.4.1.1 Dynamic Load balancing
	4.4.1.2 Self-Provisioning

	V STREAMCLOUD FAULT TOLERANCE
	Chapter 5 StreamCloud Fault Tolerance
	5.1 Existing Fault Tolerance solutions
	5.2 Intuition about Fault Tolerance protocol
	5.3 Components involved in the Fault Tolerance protocol
	5.4 Fault Tolerance protocol
	5.4.1 Active state
	5.4.2 Failed state
	5.4.3 Failed while reconfiguring state
	5.4.4 Recovering state involved in previous reconfigurations
	5.4.5 Multiple instance failures

	5.5 Garbage collection
	5.5.1 Time-based windows
	5.5.2 Tuple-based windows

	5.6 Evaluation
	5.6.1 Evaluation Setup
	5.6.2 Runtime overhead
	5.6.3 Recovery Time
	5.6.4 Garbage Collection
	5.6.5 Storage System Scalability Evaluation

	VI VISUAL INTEGRATED DEVELOPMENT ENVIRONMENT
	Chapter 6 Visual Integrated Development Environment
	6.1 Introduction
	6.2 Visual Query Composer
	6.3 Query Compiler and Deployer
	6.4 Real Time Performance Monitoring Tool
	6.5 Distributed Load Injector

	VII STREAMCLOUD - USE CASES
	Chapter 7 StreamCloud - Use Cases
	7.1 Introduction
	7.2 Fraud Detection in cellular telephony
	7.2.1 Use Cases

	7.3 Fraud Detection in credit card transactions
	7.3.1 Use Cases

	7.4 Security Information and Event Management Systems
	7.4.1 SIEM directives
	7.4.2 Directives translation
	7.4.3 Directive translation example

	VIII RELATED WORK
	Chapter 8 Related Work
	8.1 Introduction
	8.2 Pioneer SPEs
	8.2.1 The Borealis project
	8.2.2 STREAM
	8.2.3 TelegraphCQ
	8.2.4 NiagaraCQ
	8.2.5 Cougar

	8.3 State Of the Art SPEs
	8.3.1 Esper
	8.3.2 Storm
	8.3.3 StreamBase
	8.3.4 IBM InfoSphere
	8.3.5 Yahoo S4
	8.3.6 Microsoft StreamInsight

	8.4 StreamCloud related work
	8.4.1 Load Shedding and Operators Scheduling protocols
	8.4.2 Parallelization techniques
	8.4.3 Load Balancing techniques
	8.4.4 Elasticity techniques
	8.4.5 Fault Tolerance techniques

	IX Conclusions
	Chapter 9 Conclusions

	X APPENDICES
	Appendix A The Borealis Project - Overview
	A.1 Query Algebra
	A.2 Operators extensibility
	A.3 Borealis Tuples Processing Paradigm
	A.4 Borealis Application Development Tools

	Bibliography

