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Résumé
Cette thèse propose des méthodes computationnelles nouvelles en géométrie de l’in-
formation, avec des applications temps réel au traitement du signal audio. Dans
ce contexte, nous traitons en parallèle les problèmes applicatifs de la segmentation
audio en temps réel, et de la transcription de musique polyphonique en temps réel.
Nous abordons ces applications par le développement respectif de cadres théoriques
pour la détection séquentielle de ruptures dans les familles exponentielles, et pour
la factorisation en matrices non négatives avec des divergences convexes-concaves.
D’une part, la détection séquentielle de ruptures est étudiée par l’intermédiaire de
la géométrie de l’information dualement plate liée aux familles exponentielles. Nous
développons notamment un cadre statistique générique et unificateur, reposant sur
des tests d’hypothèses multiples à l’aide de rapports de vraisemblance généralisés
exacts. Nous appliquons ce cadre à la conception d’un système modulaire pour la
segmentation audio temps réel avec des types de signaux et de critères d’homogé-
néité arbitraires. Le système proposé contrôle le flux d’information audio au fur et
à mesure qu’il se déroule dans le temps pour détecter des changements. D’autre
part, nous étudions la factorisation en matrices non négatives avec des divergences
convexes-concaves sur l’espace des mesures discrètes positives. En particulier, nous
formulons un cadre d’optimisation générique et unificateur pour la factorisation en
matrices non négatives, utilisant des bornes variationnelles par le biais de fonctions
auxiliaires. Nous mettons ce cadre à profit en concevant un système temps réel
de transcription de musique polyphonique avec un contrôle explicite du compromis
fréquentiel pendant l’analyse. Le système développé décompose le signal musical ar-
rivant au cours du temps sur un dictionnaire de modèles spectraux de notes. Ces
contributions apportent des pistes de réflexion et des perspectives de recherche in-
téressantes dans le domaine du traitement du signal audio, et plus généralement de
l’apprentissage automatique et du traitement du signal, dans le champ relativement
jeune mais néanmoins fécond de la géométrie de l’information computationnelle.

Mots-clés : méthodes computationnelles, géométrie de l’information, applications
temps réel, traitement du signal audio, détection de ruptures, familles exponentielles,
factorisation en matrices non négatives, divergences convexes-concaves, segmenta-
tion audio, transcription de musique polyphonique.
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Abstract
This thesis proposes novel computational methods of information geometry with
real-time applications in audio signal processing. In this context, we address in
parallel the applicative problems of real-time audio segmentation, and of real-time
polyphonic music transcription. This is achieved by developing theoretical frame-
works respectively for sequential change detection with exponential families, and
for non-negative matrix factorization with convex-concave divergences. On the one
hand, sequential change detection is studied in the light of the dually flat informa-
tion geometry of exponential families. We notably develop a generic and unifying
statistical framework relying on multiple hypothesis testing with decision rules based
on exact generalized likelihood ratios. This is applied to devise a modular system
for real-time audio segmentation with arbitrary types of signals and of homogeneity
criteria. The proposed system controls the information rate of the audio stream
as it unfolds in time to detect changes. On the other hand, non-negative matrix
factorization is investigated by the way of convex-concave divergences on the space
of discrete positive measures. In particular, we formulate a generic and unifying
optimization framework for non-negative matrix factorization based on variational
bounding with auxiliary functions. This is employed to design a real-time system
for polyphonic music transcription with an explicit control on the frequency com-
promise during the analysis. The developed system decomposes the music signal as
it arrives in time onto a dictionary of note spectral templates. These contributions
provide interesting insights and directions for future research in the realm of audio
signal processing, and more generally of machine learning and signal processing,
in the relatively young but nonetheless prolific field of computational information
geometry.

Keywords: computational methods, information geometry, real-time applications,
audio signal processing, change detection, exponential families, non–negative matrix
factorization, convex-concave divergences, audio segmentation, polyphonic music
transcription.
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Introduction
This thesis aims at providing novel computational methods within the statistical
framework of information geometry. We notably develop schemes for sequential
change detection with exponential families and for non-negative matrix factorization
with convex-concave divergences. Our primary motivations come from the context of
audio signal processing where we apply these schemes to devise systems for real-time
audio segmentation and for real-time polyphonic music transcription. The proposed
methods, however, also fit naturally in the more general contexts of machine learning
and signal processing. In the sequel, we introduce some bibliographical background
on information geometry from both theoretical and computational perspectives. We
also position the present work in this context to outline the directions and sum up
the main contributions of the thesis.

From information geometry theory
In general terms, information geometry is a field of mathematics that studies the
theory of statistics, by using concepts of differential geometry such as smooth man-
ifolds, and of information theory such as statistical divergences. Historically, infor-
mation geometry emerged from the idea that many parametric statistical models
of probability distributions possess a natural and intrinsic geometrical structure of
differential manifold. Studying statistical inference in such structures ensures that
the results of inference are invariant under the arbitrary choice of a parametrization
for the family. Moreover, several statistical constructs can be interpreted in relation
to geometrical concepts, which often provides interesting insights.
The founding work in information geometry is attributed to Rao [1945] who em-

phasized the importance to consider statistical inference from an intrinsic viewpoint,
and notably proposed a structure of Riemannian manifold for certain parametric
families with a metric defined by the Fisher information matrix. Efron [1975] first
clarified the relations between the statistical notion of efficiency in asymptotic theory
of estimation, and the geometrical concept of curvature for one-parameter statistical
models. This was further pursued by Eguchi [1983] who introduced the notion of
divergence, or contrast function, on statistical manifolds and discussed its relations
with the efficiency of certain estimators for curved exponential families.
In the meantime, Chentsov [1982] provided a formal mathematical framework for

information geometry using the language of category theory, in which he introduced
the family of affine α-connections, discussed the duality of these affine connections
with respect to the Fisher information metric, and proved the uniqueness of this
metric and of these connections under Markov morphisms for statistical manifolds
on finite sample spaces. Independently, Amari [1982] studied the α-connections
and α-divergences in link with asymptotic theory of estimation, and Nagaoka and
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Amari [1982] elucidated the duality of the α-connections and of the α-divergences
by proposing a general theory of dually flat spaces.
Since then, several research directions have been investigated to extend these ge-

ometrical structures. For example, Eguchi [1985, 1992] developed the information
geometry of divergences, by showing that any divergence on a statistical manifold
induces a canonical torsion-free dualistic structure in terms of a Riemannian metric
and of a pair of dual symmetric affine connections. Conversely, it was also shown by
Matumoto [1993] that any torsion-free dualistic structure on a statistical manifold
can be induced by a statistical divergence. Certain divergences have received a lot
of attention in this context, notably Csiszár divergences whose geometry was thor-
oughly studied by Vos [1991]. Bregman divergences also revealed deep interests, in
connection with exponential families of distributions and with dually flat structures,
as put in perspective by Amari and Cichocki [2010]. Other divergences were also
introduced by Zhang [2004] who elucidated a more general framework of duality.
Complementary directions were investigated by Barndorff-Nielsen [1986, 1987],

Barndorff-Nielsen and Jupp [1997], who considered other Riemannian metrics than
the expected Fisher information metric, by introducing the observed Fisher infor-
mation metric, and by developing a general theory of yokes on statistical manifolds.
Alternatives were also studied, such as the preferred point geometry of Critchley
et al. [1993]. On a different perspective, Pistone and Sempi [1995], Gibilisco and
Pistone [1998], Cena and Pistone [2007], extended the parametric finite-dimensional
information geometry modeled on Euclidean spaces, by considering non-parametric
infinite-dimensional statistical families modeled on Orlicz spaces.
Today many theoretical and applicative research works enlightened the relevance

of studying statistics and its applications in various domains by the way of infor-
mation geometry. This stimulated the creation of a large community with various
interests in fields such as mathematics, physics, machine learning, signal processing,
engineering science, which led to the maturity of information geometry and to its
modern formulation in the seminal book of Amari and Nagaoka [2000]. For a good
starting point, the early books of Amari [1985] and Amari et al. [1987] provide a
solid theoretical basis and historical insights into the development of the field. For
complementary treatments, we also refer to the books of Murray and Rice [1993],
Kass and Vos [1997] and Arwini and Dodson [2008].

To computational information geometry
The research field of computational information geometry gathers a broad commu-
nity around the development and application of computational methods that rely on
theoretical constructs from information geometry. This community notably inter-
sects the communities of machine learning and of signal processing. In particular,
many techniques from machine learning and signal processing rely on the use of
statistical models or distance functions to analyze and process the data. It is there-
fore a natural approach to elaborate computational methods based on information
geometry, from the perspective of statistical manifolds or information metrics and
divergences, and from the interplay between these notions.

xvi



Introduction

Several authors have undertaken this approach with various purposes, such as
studying theoretical aspects of Boltzmann machines [Amari et al., 1992], neural
networks [Amari, 1995], natural gradient learning [Amari, 1998], robust estima-
tion through minimization of divergences [Basu et al., 1998, Eguchi and Kano,
2001], mean-field approximation [Tanaka, 2000], hierarchies of probability distri-
butions [Amari, 2001], turbo codes [Ikeda et al., 2004], diffusion kernels [Lafferty
and Lebanon, 2005]. The information-geometric approach has also proved beneficial
in a variety of applications such as data clustering and mining with α-divergences
[Hero et al., 2002, Schwander and Nielsen, 2011], data embedding and dimensional-
ity reduction with the Fisher information [Carter et al., 2009, 2011], shape analysis
with information metrics [Peter and Rangarajan, 2006, 2009], blind source separation
with independent component analysis in the space of estimating functions [Amari
and Cardoso, 1997, Amari, 1999], or with robust estimation based on minimization
of divergences [Mihoko and Eguchi, 2002, Eguchi, 2009].
In this context, certain divergences have been employed extensively. This is in

particular the case of Bregman divergences and of their extensions, because of their
links with convex optimization through convex duality, and with statistical exponen-
tial families through dually flat spaces. These divergences have notably been used to
develop novel computational methods, often generalizing standard algorithms and
schemes to a vast family of distance measures or related statistical models. Famous
examples include the generalization of principal component analysis to exponential
families based on the minimization of Bregman divergences [Collins et al., 2002],
and the extension of hard and soft clustering with consideration of k-means and
expectation-maximization within a unifying framework for exponential families and
Bregman divergences [Banerjee et al., 2005].
These divergences have also been employed in a variety of techniques such as

boosting methods [Murata et al., 2004] and their relations to weighted clustering
[Nock and Nielsen, 2006], clustering with approximation guarantees [Nock et al.,
2008], surrogates for learning [Nock and Nielsen, 2009], matrix factorizations [Dhillon
and Sra, 2006, Dhillon and Tropp, 2008], low-rank kernel learning [Kulis et al., 2009],
simplification and hierarchical representations of mixtures of exponential families
[Garcia and Nielsen, 2010], contextual re-ranking [Schwander and Nielsen, 2010],
shape retrieval [Liu et al., 2010, 2012].
They have also proved relevant in the generalization of standard computational

geometry algorithms originally designed for the Euclidean distance, including near-
est neighbor search [Cayton, 2008, Nielsen et al., 2009a,b], range search [Cayton,
2009], centroid computation [Nielsen and Nock, 2009b, Nielsen and Boltz, 2011],
smallest enclosing balls [Nock and Nielsen, 2005, Nielsen and Nock, 2005, 2008,
2009a], Voronoi diagrams [Nielsen et al., 2007, Boissonnat et al., 2010, Nielsen and
Nock, 2011].
More generally, Bregman divergences, and other information divergences including

Csiszár divergences, have revealed of key importance in statistical approaches to
machine learning and signal processing. This had already been put in perspective in
the early paper of Basseville [1989]. The literature on these issues has considerably
expanded in the recent years and an up-to-date and thorough review is presented
by Basseville [2012].
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3. Non-Negative Matrix Factorization
with Convex-Concave Divergences

1. Preliminaries on
Information Geometry

2. Sequential Change Detection
with Exponential Families

5. Real-Time Polyphonic
Music Transcription

4. Real-Time Audio
Segmentation

I. Computational Methods of Information Geometry

II. Real-Time Applications in Audio Signal Processing

Figure 1.: Outline of the thesis. The thesis is organized into two main parts, that
report in parallel the two developed computational methods of informa-
tion geometry on the one hand, and their respective use for real-time
applications in audio signal processing on the other hand.

Outline and contributions of the thesis
In the present work, we propose two independent algorithmic schemes that fall within
the framework of computational information geometry. Although these methods
naturally fit within the general domains of machine learning and signal processing,
our initial motivations actually arise from two problems in audio signal processing,
that of audio segmentation and that of polyphonic music transcription. Furthermore,
we are deeply concerned with online machine listening, and we seek to design real-
time systems to solve the two mentioned problems.
In this context, we address the problem of real-time audio segmentation by intro-

ducing novel computational methods for sequential change detection with exponen-
tial families. Concerning real-time polyphonic music transcription, we develop novel
schemes for non-negative matrix factorization with convex-concave divergences. As
discussed above, the two proposed algorithmic schemes are nonetheless of indepen-
dent interest and directly applicable in other areas of statistical machine learning
and signal processing. Therefore, the main body of this manuscript is organized
into two parts, reporting respectively the theoretical contributions of the compu-
tational methods developed on the one hand, and the applicative contributions of
these methods to audio signal processing on the other hand. The outline of the
thesis is shown in Figure 1 and can be discussed as follows.
In Chapter 1, we introduce the theoretical preliminaries on information geometry
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that are necessary to the developments of Chapter 2 and of Chapter 3. The chapter
is further divided into two parallel sections corresponding to the mathematical con-
structs required respectively for the two subsequent and independent chapters. We
first present important results on exponential families of probability distributions
in relation with convex duality and dually flat information geometry. These results
are employed in Chapter 2 to develop computational methods for sequential change
detection with exponential families. We then focus on introducing relevant no-
tions about separable information divergences on the space of discrete positive mea-
sures, including Csiszár divergences, Bregman divergences and their generalizations
through Jeffreys-Bregman and Jensen-Bregman divergences, as well as α-divergences
or β-divergences and their generalization through skew (α, β, λ)-divergences. This is
employed in Chapter 3 to elaborate computational methods for non-negative matrix
factorization with convex-concave divergences.
In Chapter 2, we elaborate on the novel computational methods for sequential

change detection with exponential families. To the best of our knowledge, it is the
first time that the celebrated problem of change detection is investigated in the
light of information geometry. We follow a standard approach where change detec-
tion is considered as a statistical decision problem with multiple hypotheses and is
solved using generalized likelihood ratio test statistics. A major drawback of pre-
vious work in this context is to consider only known parameters before change, or
to approximate the exact statistics when these parameters are actually unknown.
This is addressed by introducing exact generalized likelihood ratios with arbitrary
estimators, and by expanding them for exponential families. By showing tight links
between the computation of these statistics and of maximum likelihood estimates,
we derive a generic scheme for change detection with exponential families under com-
mon scenarios with known or unknown parameters and arbitrary estimators. We
also interpret this scheme within the dually flat information geometry of exponential
families, hence providing both statistical and geometrical intuitions to the problem,
and bridging the gap between statistical and distance-based approaches to change
detection. The scheme is finally revisited through convex duality, leading to an
attractive scheme with closed-form sequential updates for the exact generalized like-
lihood ratio statistics, when both parameters before and after change are unknown
and are estimated by maximum likelihood. This scheme is applied in Chapter 4 to
devise a general and unifying system for real-time audio segmentation.
In Chapter 3, we elaborate on the novel computational methods developed for

non-negative matrix factorization with convex-concave divergences. We notably for-
mulate a generic and unifying framework for non-negative matrix factorization with
convex-concave divergences. This framework encompasses many common informa-
tion divergences, such as Csiszár divergences, certain Bregman divergences, and in
particular all α-divergences and β-divergences. A general optimization scheme is
developed based on variational bounding with surrogate auxiliary functions for al-
most arbitrary convex-concave divergences. Monotonically decreasing updates are
then obtained by minimizing the auxiliary function. The proposed framework also
permits to consider symmetrized and skew divergences for the cost function. In
particular, the generic updates are specialized to provide updates for Csiszár di-
vergences, certain skew Jeffreys-Bregman divergences, and skew Jensen-Bregman
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divergences. This leads to several known multiplicative updates as well as novel
multiplicative updates for α-divergences, β-divergences, and their symmetrized or
skew versions. These results are also generalized by considering the family of skew
(α, β, λ)-divergences. This is applied in Chapter 5 to design a real-time system for
polyphonic music transcription.
In Chapter 4, we investigate the problem of audio segmentation. We notably de-

vise a generic and unifying framework for real-time audio segmentation, based on
the methods for sequential change detection with exponential families developed in
Chapter 2. A major drawback of previous works in the context of audio segmen-
tation, is that they consider specific signals and homogeneity criteria, or assume
normality of the data distribution. Other issues arise from the potential computa-
tional complexity and non-causality of the schemes. The proposed system explicitly
addresses these issues by controlling the information rate of the audio stream to
detect changes in real time. The framework also bridges the gap between statistical
and distance-based approaches to segmentation through the dually flat geometry
of exponential families. We notably clarify the relations between various standard
approaches to audio segmentation, and show how they can be unified and general-
ized in the proposed framework. Various applications are showcased to illustrate the
generality of the framework, and a quantitative evaluation is performed for musical
onset detection to demonstrate how the proposed approach can leverage modeling
in complex problems.
In Chapter 5, we investigate the problem of polyphonic music transcription. We

notably elaborate a real-time system for polyphonic music transcription by employ-
ing the computational methods for non-negative matrix factorization with convex-
concave divergences developed in Chapter 3. We consider a supervised setup based
on non-negative decomposition, where the music signal arrives in real time to the
system and is projected onto a dictionary of note spectral templates that are learned
offline prior to the decomposition. An important drawback of existing approaches
in this context is the lack of controls on the decomposition. This is addressed by
using the parametric family of (α, β)-divergences, and by explicitly interpreting their
relevancy as a way to control the frequency compromise in the decomposition. The
proposed system is evaluated through a methodological series of experiments, and
is shown to outperform two state-of-the-art offline systems while maintaining low
computational costs that are suitable to real-time constraints.
We conclude the manuscript with a general discussion and draw perspectives for

future work. It is our hope that the presented contributions will bring interesting
insights and directions for future research in the realm of audio signal processing,
and more generally of machine learning and signal processing, in the relatively young
but nonetheless prolific field of computational information geometry.
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1. Preliminaries on Information
Geometry

This chapter presents the theoretical preliminaries on information geometry that are
required for the elaboration of the computational methods proposed in the present
work. We first introduce some prerequisites on exponential families of probability
distributions, in relation to convex duality and dually flat information geometry.
These notions are used in Chapter 2 to develop computational methods for sequential
change detection with exponential families. We then focus on defining notions about
separable information divergences on the space of discrete positive measures. This is
employed in Chapter 3 to elaborate computational methods for non-negative matrix
factorization with convex-concave divergences.

1.1. Exponential families of probability distributions
In this section, we introduce preliminaries on exponential families of probability
distributions. We first define basic notions on standard and general exponential
families. We then present first properties of these families, including reduction of
general families to minimal standard families. We also discuss some results from
convex duality for minimal steep standard families, and for maximum likelihood
estimation when the family is also full. We finally interpret these notions within the
framework of dually flat information geometry.

1.1.1. Basic notions
Exponential families are general parametric families of probability distributions that
were introduced by Fisher [1934], Darmois [1935], Koopman [1936], Pitman [1936].
These families encompass a large class of statistical models that are commonly used
in the realm of statistics and its applications, including the Bernoulli, Dirichlet,
Gaussian, Laplace, Pareto, Poisson, Rayleigh, Von Mises-Fisher, Weibull, Wishart,
log-normal, exponential, beta, gamma, geometric, binomial, negative binomial, cat-
egorical, multinomial models, among others.1 Moreover, the class of exponential
families is stable under various statistical constructs such as truncated and censored
models, marginals, conditionals through linear projections, joint distributions of in-
dependent variables and in particular i.i.d. samples, among others. In this context,

1To be precise, some of these models actually need a restriction of their original parameter space
to be considered as exponential families. We also notice that some statistical models are not
exponential families, such as the uniform distributions because they do not share the same
support, or the Cauchy distributions because they do not have finite moments.
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employing exponential families not only permits the unification and generalization
of the problems considered, but also often contributes to a deeper understanding of
the problem structures. The theory of exponential families has become wide and
we only expose here the main notions and results needed in the present work. For
more theoretical background, we redirect to the early article of Chentsov [1966], and
to the dedicated books of Barndorff-Nielsen [1978] and Brown [1986] which contain
proofs of the results stated here. Complementary information is provided in the
more general books of Lehmann and Casella [1998], Lehmann and Romano [2005].
Before defining general exponential families, we first introduce the useful notion of
standard exponential family.

Definition 1.1. A standard exponential family is a parametric statistical model
{Pθ}θ∈Θ on the Borel subsets of Rm, which is dominated by a σ-finite measure µ,
and whose respective probability densities pθ with respect to µ can be expressed for
any θ ∈ Θ ⊆ Rm as follows:

pθ(x) = λ(θ)−1 exp(θ>x) for all x ∈ Rm , (1.1)

where λ : Θ → R∗+. The parameter θ is then called canonical parameter or natural
parameter, x is called canonical observation or sufficient observation, and λ is called
partition function or normalizer.

Remark 1.1. We assume implicitly that the parameter space Θ is non-empty.
Remark 1.2. The normalizer λ ensures that all probability densities pθ normalize to
one, and thus verifies the following relation:

λ(θ) =
∫
Rm

exp(θ>x)µ(dx) . (1.2)

We see from the latter remark that the parameter space Θ is not necessarily
maximal, in the sense that the above integral may be finite for other values of θ. As
a result, the normalizer λ can be extended to determine probability densities pθ for
these values of θ ∈ Rm \Θ. This leads naturally to the following definitions.

Definition 1.2. The natural parameter space N is the set defined as follows:

N =
{

θ ∈ Rm :
∫
Rm

exp(θ>x)µ(dx) < +∞
}

. (1.3)

Remark 1.3. The above integral is always positive since µ cannot be null. The
normalizer can therefore define probability densities for any θ ∈ N .
Remark 1.4. By construction, Θ is a subset of N , and N is the maximal parameter
space onto which the family can be extended in the sense discussed above. Neverthe-
less, it may happen that the added parameters θ ∈ N \Θ determine distributions pθ

that already are in the original family when the parametrization is not one-to-one.

Definition 1.3. A standard exponential family is full if Θ = N .

Other important classes of standard exponential families can be defined depending
on the properties of the natural parameter space.
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1.1. Exponential families of probability distributions

Definition 1.4. A standard exponential family is regular if N = intN .

Definition 1.5. A standard exponential family is minimal if dimN = dimK = k,
where K is the convex support of the dominating measure µ.

Remark 1.5. Minimality thus avoids dimensional degeneracy of both N and K, by
requiring that the parameters do not lie in a proper affine subspace of Rm, and that
the dominating measure is not concentrated on a proper affine subspace of Rm.

We now introduce a function which reveals crucial to the study of minimal expo-
nential families.

Definition 1.6. The log-partition function or log-normalizer ψ is the logarithm of
the normalizer λ:

ψ(θ) = log λ(θ) for all θ ∈ Θ . (1.4)

Remark 1.6. The respective probability densities pθ with respect to µ can therefore
also be expressed as follows:

pθ(x) = exp(θ>x− ψ(θ)) . (1.5)

In the sequel, we often consider the normalizer λ and log-normalizer ψ extended
to N or Rm. It is clear that λ and ψ take respectively finite positive and finite values
not only on Θ but also on N , and they equal +∞ on Rm \ N . We finally move on
to more general exponential families. Considering standard families is not always
convenient from a practical viewpoint. Indeed, many useful statistical models are
not directly standard families, but their theoretical study can often be reduced to
that of standard families after suitable transformations.

Definition 1.7. An exponential family is a parametric statistical model {Pξ}ξ∈Ξ on
a measurable space (X ,A), which is dominated by a σ-finite measure µ, and whose
respective probability densities pξ with respect to µ can be expressed for any ξ ∈ Ξ
as follows:

pξ(x) = C(ξ)h(x) exp(R(ξ)>T (x)) for all x ∈ X , (1.6)

where C : Ξ→ R∗+, R : Ξ→ Rm, h : X → R+ is Borel measurable, and T : X → Rm

is Borel measurable.

Remark 1.7. We again assume implicitly that Ξ is non-empty.

Remark 1.8. A standard exponential family is obviously an exponential family.

In exponential families, the function C plays the same role as the inverse of the nor-
malizer for standard families. The transformation R is intuitively a reparametriza-
tion of the family, while the transformation h is a modification of the dominating
measure. Finally, the transformation T can be seen as a suitable reduction from a
statistical viewpoint.
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1.1.2. First properties
We begin with explaining how to reduce the study of general exponential families to
that of minimal standard families. This is a consequence of the following proposition
and theorem.

Proposition 1.1. The function T is a sufficient statistic.

Remark 1.9. It justifies that x is called sufficient observation for standard families.

Theorem 1.2. Any exponential family can be reduced by sufficiency, reparametriza-
tion, and proper choice of a dominating measure, to a minimal standard exponential
family.

Remark 1.10. It can then be shown that two such reductions have necessarily the
same dimension, and are actually related through linked affine transforms of their
respective natural parameters and of their respective sufficient observations.
The study of exponential families can be reduced to that of minimal standard

families. We thus focus in the sequel on minimal standard exponential families.
These families inherit several useful properties from their structure. We discuss two
of these properties hereafter.

Proposition 1.3. Any minimal standard exponential family is identifiable.

Remark 1.11. This means that the natural parametrization is one-to-one, and thus
makes statistical inference about parameters relevant.

Proposition 1.4. The normalizer λ and log-normalizer ψ are smooth on the interior
intN of the natural parameter space. Moreover, λ can be differentiated at any order
n ∈ N with respect to variables α ∈ {1, . . . , k}n under the integral sign:

∂ α λ(θ) =
∫
Rm

∂ αθ exp(θ>x)µ(dx) for all θ ∈ intN . (1.7)

Remark 1.12. For regular families, smoothness and differentiability under the inte-
gral sign hold everywhere on N = intN .
Remark 1.13. An interesting consequence is that the moments of a random vari-
able X distributed according to pθ can be obtained from the derivatives of ψ. In
particular, we obtain:

Eθ(X) = ∇ψ(θ) , (1.8)
Vθ(X) = ∇2ψ(θ) . (1.9)

1.1.3. Convex duality
We now introduce notions from convex duality. We only expose the relevant appli-
cation of this to minimal standard exponential families, which is just the tip of a
much richer theory in convex analysis. For additional information, we redirect to
the comprehensive book of Rockafellar [1970].
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1.1. Exponential families of probability distributions

Definition 1.8. The Fenchel conjugate of an arbitrary function ϕ on Rm is the
function ϕ? defined as follows:

ϕ?(ξ?) = sup
ξ∈Rm

ξ>ξ? − ϕ(ξ) for all ξ? ∈ Rm . (1.10)

Proposition 1.5. The Fenchel conjugate ϕ? of a closed proper convex function ϕ
is also a closed proper convex function, and we have ϕ?? = ϕ.

Definition 1.9. A proper convex function ϕ is essentially smooth if the interior
int domϕ of its effective domain is non-empty, if it is differentiable on int domϕ,
and if limn→+∞ ‖∇ϕ(ξn)‖ = +∞ for any sequence of points ξ1, ξ2, . . . ∈ int domϕ
that converges to a boundary point of intϕ.

Definition 1.10. A proper convex function ϕ is of Legendre type if it is closed,
essentially smooth, and strictly convex on the interior int domϕ of its effective do-
main.

The application of convex duality to exponential families arises from the nice
properties possessed by the log-normalizer.

Proposition 1.6. The natural parameter space N is a convex set.

Proposition 1.7. The log-normalizer ψ is a closed proper strictly convex function
with effective domain domψ = N . Moreover, its Fenchel conjugate φ = ψ? is a
closed essentially smooth function with effective domain intK ⊆ domφ ⊆ K, and we
have ψ = φ?.

Remark 1.14. This is the result of a more general duality between essential smooth-
ness and essential convexity for arbitrary convex functions.
Remark 1.15. We remark that in order to have full duality between ψ and φ, we
would need ψ to be essentially smooth, and φ to be strictly convex, which is not
necessarily the case.
In this context, it is convenient to require stronger regularity of the exponential

family in order to have a full convex duality. This can be discussed as follows.

Definition 1.11. A minimal standard exponential family is steep if the log-normal-
izer ψ is essentially smooth.

Remark 1.16. In particular, it can be shown that any regular family is actually steep.
Remark 1.17. Since the log-normalizer ψ is necessarily a closed proper strictly convex
function which is differentiable on int domψ 6= ∅, essential smoothness of ψ and
steepness of the family are equivalent to the assumption limn→+∞ ‖∇ψ(θn)‖ = +∞
for any sequence of points θ1,θ2, . . . ∈ int domψ that converges to a boundary point
of intψ.

Theorem 1.8. For any minimal steep standard exponential family, ψ and φ are of
Legendre type. Moreover, ∇ψ defines a homeomorphism of int domψ = intN and
int domφ = intK, with inverse (∇ψ)−1 = ∇φ.
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Remark 1.18. Steepness ensures that the map ∇ψ is onto. If the family is not steep,
then ∇ψ(intN ) is a proper subset of intK, so that actually ∇ψ is a homeomorphism
of intN and intK iff the family is steep.
Remark 1.19. In particular, the theorem holds for any regular minimal standard
exponential family.
This theorem shows that a minimal steep family with parameter space intN can

be reparametrized by the gradient ∇ψ of the log-normalizer, and the range of this
parametrization is intK.
Definition 1.12. The mean value parameter, or expectation parameter, η ∈ intK
is the parameter associated to the reparametrization of the natural parameter θ ∈
intN by the gradient ∇ψ of the log-normalizer:

η(θ) = ∇ψ(θ) for all θ ∈ intN , (1.11)
θ(η) = ∇φ(η) for all η ∈ intK . (1.12)

Remark 1.20. The parameter name as a mean value or expectation comes from the
relation η(θ) = ∇ψ(θ) = Eθ(X).
Remark 1.21. It is convenient for regular families that the expectation parameter
reparametrizes the full family.
In certain situations, such as when studying maximum likelihood estimators, this

parametrization is more convenient than the natural one.

1.1.4. Maximum likelihood
We now present some general results about maximum likelihood estimation in full
minimal steep standard exponential families.

Theorem 1.9. For any full minimal steep standard exponential family, there exists
a unique maximum likelihood estimator pθml of θ on intK, and it can be expressed
as follows:

pθml(x) = ∇φ(x) for all x ∈ intK . (1.13)
Moreover, if x /∈ intK, then no maximum likelihood estimate of θ from x exists.

Remark 1.22. The theorem shows that the maximum likelihood estimator on intK
is one-to-one and can be expressed in the expectation parametrization simply as
follows:

pηml(x) = x . (1.14)
Remark 1.23. As a result, it is sufficient for maximum likelihood estimates to exist
with probability one that µ(K \ intK) = 0. This is always satisfied when µ is
dominated by the Lebesgue measure, but never satisfied when µ has finite support
or more generally countable support and K 6= Rm.
Remark 1.24. When the family is not steep, maximum likelihood estimates also exist
and are unique iff x ∈ intK, and have the same expression as above on ∇ψ(intN ) ⊂
intK. Nonetheless, the expression cannot be determined as is when x /∈ ∇ψ(intN ).
Moreover, the maximum likelihood estimator is not one-to-one anymore.
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1.1. Exponential families of probability distributions

Remark 1.25. In a steep family, boundary points of N which belong to N do not
occur among the values of the maximum likelihood estimator pθml and are thus
superfluous in this sense.
We naturally present the extension of this when considering an i.i.d. sample from

the exponential family.

Corollary 1.10. For any i.i.d. sampling model of size n ∈ N∗ from a full minimal
steep standard exponential family, there exists a unique maximum likelihood estima-
tor pθml of θ on Knml = {(x1, . . . ,xn) ∈ (Rm)n : 1

n

∑n
j=1 xj ∈ intK}, and it can be

expressed as follows:

pθml(x1, . . . ,xn) = ∇φ
(

1
n

n∑
j=1

xj

)
for all (x1, . . . ,xn) ∈ Knml . (1.15)

Moreover, if (x1, . . . ,xn) /∈ Knml, then no maximum likelihood estimate of θ from
(x1, . . . ,xn) exists.

Remark 1.26. This is actually a direct consequence of the fact that an i.i.d. sampling
model of size n from an exponential family with log-normalizer ψ, natural parameter
θ and sufficient observation x, is also an exponential family with log-normalizer nψ,
natural parameter θ, and sufficient observation

∑n
j=1 xj.

Remark 1.27. The corollary shows that the maximum likelihood estimator on Knml
can be expressed in the expectation parametrization simply as follows:

pηml(x1, . . . ,xn) = 1
n

n∑
j=1

xj . (1.16)

Remark 1.28. It appears that maximum likelihood estimates for steep families exist
with probability increasing up to one as the sample size n tends to +∞.

1.1.5. Dually flat geometry
The above notions are interpretable within the framework of dually flat informa-
tion geometry. For the sake of conciseness, we do not introduce the mathematical
constructs behind this theory, and redirect instead to the book of Amari and Na-
gaoka [2000]. We rather present intuitively the concepts that are relevant to the
present work. In the sequel, we consider a minimal steep standard exponential
family P = {Pθ}θ∈intN on the interior of its natural parameter space.
To sum up intuitively the basic concepts, information geometry considers a para-

metric statistical model as a space that locally looks like a Euclidean vector space,
but that globally differs from this Euclidean vector space in general. This is the ba-
sic intuition behind viewing the statistical model as a topological manifold. On this
statistical manifold, each point represents a probability distribution of the model.
Moreover, the parameters of the respective distributions are their coordinates in
the underlying coordinate system. The exponential family P being identifiable and
having a non-empty connected open parameter space intN , it can be viewed as a

9
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topological manifold with a global coordinate system provided by the natural pa-
rameters θ on intN .
We can then equip the statistical manifold with a differential structure by con-

sidering an atlas of coordinate systems that are compatible with the reference one
in the sense that they are smooth reparametrizations of the model. This permits
to define tangent spaces at each point of the manifold, which are intuitively lin-
earizations of the manifold around these respective points. It permits to enhance
the exponential family P as a differential manifold with a differential structure con-
sisting of the smooth reparametrizations of the natural parameter θ ∈ intN , and
notably includes the expectation parameter η ∈ intK.
The statistical manifold can further be endowed with the Fisher information Rie-

mannian metric, defined by the Fisher information matrix, and consisting of scalar
products on the respective tangent spaces. It makes the model a Riemannian man-
ifold and provides a way to compute the length of vectors in the tangent spaces.
We can also compute the length of a curve joining two distributions by integrat-
ing the length of the speed vector along it. It defines an intrinsic notion of metric
distance between two probability distributions on the statistical manifold by consid-
ering the metric geodesics, which are the curves that minimize the length between
two points. Considering the exponential family P , the Fisher information matrix
is given by G(θ) = ∇2ψ(θ) on intN , and thus also equals the variance Vθ(X).
Since ψ is strictly convex, its Hessian and the Fisher information matrix G(θ) are
positive-definite, hence defining a Riemannian metric g on P and making (P , g) a
Riemannian manifold.
More general notions of geodesics can also be defined by introducing the affine

α-connections which are dual in pairs with respect to the Fisher information metric.
These connections intuitively characterize the way of passing from one tangent space
to another one in its neighborhood. The affine α-geodesics are then defined as curves
with a null acceleration, similarly to the straight lines in Euclidean geometry. This
generalization coincides with that of metric geodesics when considering the self-
dual, or metric, Levi-Civita connection. Thanks to the smoothness properties of
the exponential family P , the dual affine ±α-connections {(∇(+α),∇(−α))}α∈R+

, and
corresponding dual affine ±α-geodesics, can be defined.
Last but not least, more general distance functions can be introduced by employ-

ing relevant information divergences that are locally compatible with both the metric
and the affine connections considered. It appears that for certain families, there exist
both a pair of dual affine±α-connections that are flat, and a somewhat canonical pair
of associated dual ±α-divergences. In such structures, there also exist two dual affine
coordinate systems in which the respective geodesics are provided by simple line
segments between the parameters. In particular, (P , g,∇(+1),∇(−1)) is a dually flat
space, and the natural and expectation parameters {(θ, intN ), (η, intK)} are actu-
ally dual affine coordinate systems. Additionally, the canonical dual ±α-divergences
are provided by the Kullback-Leibler and dual Kullback-Leibler divergences on
the probability distributions, and can alternatively be computed in the respec-
tive coordinate systems with Bregman divergences, generated respectively by the
log-normalizer ψ and its Fenchel conjugate φ, on the parameters. This dually flat
geometry generalizes the standard self-dual Euclidean geometry, with two dual Breg-
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1.1. Exponential families of probability distributions

man divergences instead of the self-dual Euclidean distance, two dual geodesics, and
a generalized Pythagorean theorem.
Let us formalize the notions of divergences that we need in the present work.

We first define the Kullback-Leibler divergence, introduced by Kullback and Leibler
[1951], then define the Bregman divergences, introduced by Bregman [1967]. We
notice that these divergences can be defined in a wider setting, but the following
definitions are sufficient here.
Definition 1.13. Let S be a statistical model on a measurable space (X ,A), which
is dominated by a σ-finite measure µ. The Kullback-Leibler divergence DKL on S is
the function defined as follows:

DKL(P‖P ′) =
∫
X
p(x) log p(x)

p′(x) µ(dx) for all P, P ′ ∈ S , (1.17)

where p, p′, are the respective probability densities of P, P ′, with respect to µ.
Remark 1.29. The Kullback-Leibler divergence can be defined more generally be-
tween two probability measures as soon as the first one is absolutely continuous
with respect to the second one. For exponential families, the probability measures
share the same support so that they are actually absolutely continuous with respect
to each other.
Definition 1.14. Let ϕ be a convex function that is differentiable on the interior
int Ξ of its effective domain domϕ = Ξ. The Bregman divergence generated by ϕ is
the function Bϕ defined as follows:

Bϕ(ξ‖ξ′) = ϕ(ξ)− ϕ(ξ′)− (ξ − ξ′)>∇ϕ(ξ′) for all ξ, ξ′ ∈ int Ξ . (1.18)
Remark 1.30. We can extend the divergence straightforward to include any ξ ∈ Ξ.
Finally, for exponential families, the Bregman divergences on natural and expec-

tations parameters are linked with the Kullback-Leibler divergence on corresponding
distributions.
Proposition 1.11. For any minimal steep standard exponential family, we have the
following relation:

DKL(Pθ‖Pθ′) = Bψ(θ′‖θ) = Bφ(η(θ)‖η(θ′)) for all θ,θ′ ∈ intN . (1.19)
Remark 1.31. The presented notions and proposition can in general be extended
to non-steep families. The difference is that the expectation parameter η lies in a
proper subset of intK. From a technical viewpoint, steepness is however useful to
maximum likelihood estimation, where the maximum likelihood estimates exist and
are unique as soon as the average of the sufficient observations lies in intK, which
happens with probability increasing up to one as the sample size grows to infinity,
and are then given in expectation parameters by this average. For non-steep families,
they also exist and are unique, but are given as is only when the average further lies
in the interior of the range of the expectation parameter, which does not necessarily
happen with probability increasing up to one as the sample size grows to infinity.
Finally, certain notions, such as the generalized Pythagorean theorem, also rely on
steepness to be properly constructed.
The notions formalized here and employed in the sequel are summarized in Fig-

ure 1.1.
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Figure 1.1.: Dually flat geometry of exponential families. The canonical Kullback-
Leibler divergence between two probability distributions on the statisti-
cal manifold can be computed in the natural and expectation parameters
as Bregman divergences using convex duality.

1.2. Separable divergences on the space of discrete
positive measures

In this section, we introduce preliminaries about separable divergences on the space
of discrete positive measures. We begin with defining basic notions on divergences
and in particular on separable divergences. We then present some well-known classes
of divergences, in particular Csiszár divergences, but also Bregman divergences
and their skew generalizations through Jeffreys-Bregman and Jensen-Bregman di-
vergences. These general classes encompass famous information divergences, in-
cluding the parametric families of α-divergences and β-divergences. These two
parametric families can also be unified and extended with the recently proposed
(α, β)-divergences. We further introduce a direct but novel generalization of them
as skew (α, β, λ)-divergences through a standard skewing procedure.

1.2.1. Basic notions
We begin with introducing the central concept of divergence which generalizes the
usual notion of metric distance.
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Definition 1.15. A divergence on a set Y ⊆ Rm is a function D : Y × Y → R such
that D(y‖y′) ≥ 0 and D(y‖y) = 0 for all y,y′ ∈ Y .

Remark 1.32. Metric distances are usually defined by the three axioms of (i) coinci-
dence, or identity of indiscernibles, D(y,y′) = 0⇒ y = y′, (ii) symmetry, D(y,y′) =
D(y′,y), (iii) subadditivity, or triangular inequality, D(y,y′′) ≤ D(y,y′)+D(y′,y′′).
Together, these three axioms imply the separation property D(y,y′) ≥ 0 with equal-
ity iff y = y′. For divergences, we actually only require the two less restrictive axioms
of (i) non-negativity, D(y‖y′) ≥ 0, (ii) identity, D(y‖y) = 0. Therefore a divergence
may not be symmetric, hence the notation D(y‖y′) instead of D(y,y′), nor verify
the triangular inequality. Moreover, we do not require here the identity of indis-
cernibles nor the separation property, which are actually equivalent for divergences
as defined here, since they are not needed for the subsequent derivations to hold.
Remark 1.33. For technical convenience, we consider here divergences on the Carte-
sian square of Y so that we can compare any pair of points in Y . Sometimes, it
is possible to extend a divergence on a subset of Rm × Rm which is not a Carte-
sian square, nor even a Cartesian product, for example, on R∗+ × R+ ∪ {(0, 0)} for
certain scalar Csiszár divergences, or R+ × R∗+ ∪ {(0, 0)} for certain scalar Breg-
man divergences. Such divergences are not necessarily well-behaved everywhere,
notably on the boundary. Moreover, this technical requirement permits to consider
symmetrization and skewing of arbitrary divergences without difficulty.
Many common divergences on Rm can actually be computed coordinate-wise by

summing the corresponding distances on the respective axes. This is the case of the
information divergences considered here, and it can be discussed as follows.

Definition 1.16. A scalar divergence is a divergence d on a set Y ⊆ R.

Definition 1.17. A separable divergence is a divergence D on a set Y = Y m for
some set Y ⊆ R, generated by a given scalar divergence d on Y as follows:

D(y‖y′) =
m∑
i=1

d(yi‖y′i) for all y,y′ ∈ Y . (1.20)

A separable divergenceD is completely defined by the generating scalar divergence
d. In the sequel, we thus concentrate on formulating such scalar divergences.

Example 1.1. The squared Euclidean distance on R is probably the most common
example of scalar divergence:

dE(y‖y′) = (y − y′)2
. (1.21)

Remark 1.34. This cannot be however extended to the more general Mahalanobis
distances since the covariance matrix makes the divergence non-separable in general.

Example 1.2. The Kullback-Leibler divergence on R∗+ provides a well-known ex-
ample of scalar divergence which is asymmetric:

dKL(y‖y′) = y log y

y′
− y + y′ . (1.22)
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Remark 1.35. This divergence can be extended to include all R+ in the first argument
since the limit is always finite at zero, and to include the origin (0, 0) on the diagonal
by setting the divergence null there.

Example 1.3. The Itakura-Saito divergence on R∗+ provides another famous exam-
ple of asymmetric separable divergence:

dIS(y‖y′) = y

y′
− log y

y′
− 1 . (1.23)

Remark 1.36. This divergence can be extended to include the origin (0, 0) on the
diagonal by setting the divergence null there, but cannot be extended to include all
R∗+ in either of the arguments by considering the limits since they are not finite.
We now define wide classes of such divergences. We restrict to separable diver-

gences on the space of discrete positive measures seen as Y = (R∗+)m. Comprehensive
reviews of the early and the recent literatures on more general divergence measures,
some of their properties, and applications to statistical machine learning and signal
processing can be found in [Csiszár, 1978, 2008, Basseville, 1989, 2012, Cichocki and
Amari, 2010].

1.2.2. Csiszár divergences
We begin with the family of Csiszár divergences, which encompasses many common
distance measures, such as the Kullback-Leibler and dual Kullback-Leibler diver-
gences, the total variation distance, the Hellinger distance, or the Pearson’s and
Neyman’s χ2 distances. These divergences were studied independently by Csiszár
[1963], Morimoto [1963], Ali and Silvey [1966], as generic distances between proba-
bility measures. In the context of discrete positive measures, they can be introduced
as follows.

Definition 1.18. Let ϕ : R∗+ → R be a differentiable convex function such that
ϕ(1) = ϕ′(1) = 0. The Csiszár ϕ-divergence is the scalar divergence d(C)

ϕ defined as
follows:

d(C)
ϕ (y‖y′) = y ϕ(y′/y) for all y, y′ ∈ R∗+ . (1.24)

Remark 1.37. The non-negativity is a direct consequence of the convex function ϕ
attaining its global minimum at ϕ(1) = 0 since ϕ′(1) = 0. Moreover, the identity
trivially holds since we have ϕ(y/y) = ϕ(1) = 0, on the diagonal.
Remark 1.38. The class of Csiszár divergences is stable under swapping the argu-
ments since we have d(C)

ϕ (y′‖y) = d
(C)
ϕ∗ (y‖y′), where ϕ∗(y) = y ϕ(1/y) is convex,

differentiable, and such that ϕ∗(1) = ϕ∗′(1) = 0. Moreover, the class is also sta-
ble under the convex combination of different generator functions ϕ. As a result,
Csiszár divergences can be symmetrized or skewed straightforward while staying in
the class.
The class of Csiszár divergences notably contains the well-known parametric fam-

ily of α-divergences. This parametric family encompasses distance measures such as
the Kullback-Leibler and dual Kullback-Leibler divergences, the Hellinger distance,
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or the Pearson’s and Neyman’s χ2 distances. Moreover, it actually corresponds to the
intersection of Csiszár and Bregman divergences [Amari, 2009]. The α-divergences
can be traced back to the works of Chernoff [1952] on evaluating classification er-
rors, Rényi [1961] on generalizing the notion of entropy, and Havrda and Charvát
[1967] on quantifying classification processes. It was rediscovered by Tsallis [1988]
for non-extensive entropies in physics, and by Amari [1982] for information geom-
etry and statistical inference in curved exponential families. For discrete positive
measures, these divergences can be introduced as follows.

Example 1.4. An interesting parametric family of Csiszár divergences parametrized
by a number α ∈ R is provided by the α-divergences:

d(a)
α (y‖y′) = 1

α(1− α)(αy + (1− α)y′ − yαy′1−α) . (1.25)

Remark 1.39. For α ∈ {0, 1}, the definition still holds by considering the limits using
a Taylor series or l’Hôpital’s rule, and respectively leads to the dual Kullback-Leibler
divergence d(a)

0 (y‖y′) = y′ log(y′/y)− y′ + y, and to the Kullback-Leibler divergence
d

(a)
1 (y‖y′) = y log(y/y′)−y+y′. Other particular cases are given by α ∈ {−1, 1/2, 2},

leading respectively to the Neyman’s χ2, Hellinger, and Pearson’s χ2 distances.
Remark 1.40. The α-divergence is easily seen to be a Csiszár divergence for the
differentiable convex function ϕα(y) = 1

α(1−α)(α+(1−α)y−y1−α), which is such that
ϕα(1) = ϕ′α(1) = 0. In the limit case α ∈ {0, 1}, we have ϕ0(y) = −y + y log y + 1,
and ϕ1(y) = y − log y − 1. The formulation of the α-divergence as a Bregman
divergence is yet somewhat trickier to obtain, and the form of its generator function
is technically less convenient.

1.2.3. Skew Jeffreys-Bregman divergences
We now discuss the general class of Bregman divergences and their skew Jeffreys-
Bregman extension. The class of Bregman divergences was first studied by Bregman
[1967] for solving convex optimization problems. These divergences encompass some
well-known distance measures such as the squared Euclidean and Mahalanobis dis-
tances, or the Kullback-Leibler and Itakura-Saito divergences. For discrete positive
measures, and assuming separability, these divergences can be introduced as follows.

Definition 1.19. Let ϕ : R∗+ → R be a differentiable convex function. The Bregman
ϕ-divergence is the scalar divergence d(B)

ϕ defined as follows:

d(B)
ϕ (y‖y′) = ϕ(y)− ϕ(y′)− (y − y′)ϕ′(y′) for all y, y′ ∈ R∗+ . (1.26)

Remark 1.41. The non-negativity is a direct consequence of the tangent inequality
applied to the differentiable convex function ϕ, that is, ϕ(y) ≥ ϕ(y′)+(y−y′)ϕ′(y′).
Moreover, the identity trivially holds since we have ϕ(y)− ϕ(y)− (y − y)ϕ′(y) = 0,
on the diagonal.
Remark 1.42. The class of Bregman divergences is not stable under swapping the
arguments, so it is possible to create new divergences by considering symmetrized
or skew versions of these divergences.
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The class of Bregman divergences contains the relevant parametric family of
β-divergences among others. This family notably encompasses the squared Eu-
clidean distance, as well as the Kullback-Leibler and Itakura-Saito divergences. It
was studied by Basu et al. [1998], Eguchi and Kano [2001], to robustify maximum
likelihood estimation. For discrete positive measures, this parametric family can be
introduced as follows.

Example 1.5. An interesting parametric family of Bregman divergences paramet-
rized by a number β ∈ R is provided by the β-divergences:

d
(b)
β (y‖y′) = 1

β(β − 1)(yβ + (β − 1)y′β − βyy′β−1) . (1.27)

Remark 1.43. For β ∈ {0, 1}, the definition again holds by considering the limits
using a Taylor series or l’Hôpital’s rule, leading respectively to the Itakura-Saito
divergence d(b)

0 (y‖y′) = y/y′ − log(y/y′)− 1, and to the Kullback-Leibler divergence
d

(b)
1 (y‖y′) = y log(y/y′)− y + y′. A relevant particular case is given by α = 2, which

corresponds to the squared Euclidean distance.
Remark 1.44. The β-divergence is easily seen to be a Bregman divergence for the
differentiable convex function ϕβ(y) = 1

β(β−1)(y
β − βy+ β − 1). In the limit case for

β ∈ {0, 1}, we have ϕ0(y) = y − log y − 1, and ϕ1(y) = −y + y log y + 1.
The common way to skew a given Bregman divergence is by considering a convex

combination of the divergence and of its swapped version. A symmetric divergence is
then naturally defined by taking the midpoint of this combination. Special instances
of this construction lead to the well-known Jeffreys divergence as a symmetric version
of the Kullback-Leibler divergence, as well as the cosh distance which arises from
symmetrizing the Itakura-Saito divergence.

Definition 1.20. Let ϕ : R∗+ → R be a differentiable convex function, and λ ∈ [0, 1]
be a skewing parameter. The skew Jeffreys-Bregman (ϕ, λ)-divergence is the scalar
divergence d(JB)

ϕ,λ defined as follows:

d
(JB)
ϕ,λ (y‖y′) = λdϕ(y‖y′) + (1− λ)dϕ(y′‖y) for all y, y′ ∈ R∗+ . (1.28)

In particular, for λ = 1/2, the corresponding scalar divergence d(JB)
ϕ is called the

Jeffreys-Bregman ϕ-divergence.

Remark 1.45. In particular, the symmetric Jeffreys-Bregman ϕ-divergence simplifies
as d(JB)

ϕ = (y − y′)(ϕ′(y)− ϕ′(y′))/2.

1.2.4. Skew Jensen-Bregman divergences
A second relevant way of skewing Bregman divergences exists, and is closely related
to the Burbea-Rao divergences and their skew versions. A famous particular case of
this is given by the Jensen-Shannon divergence as another symmetric version of the
Kullback-Leibler divergence.
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Definition 1.21. Let ϕ : R∗+ → R be a differentiable convex function, and λ ∈ (0, 1)
be a skewing parameter. The skew Jensen-Bregman (ϕ, λ)-divergence is the scalar
divergence d(JB′)

ϕ,λ defined as follows:

d
(JB′)
ϕ,λ (y‖y′) = λdϕ(y‖λy+(1−λ)y′)+(1−λ)dϕ(y′‖λy+(1−λ)y′) for all y, y′ ∈ R∗+ .

(1.29)
In particular, for λ = 1/2, the corresponding scalar divergence d(JB′)

ϕ is called the
Jensen-Bregman ϕ-divergence.

Remark 1.46. The limit cases λ ∈ {0, 1} are not included in the definition since they
lead to a trivial null divergence.

Definition 1.22. Let ϕ : R∗+ → R be a differentiable convex function, and λ ∈
(0, 1) be a skewing parameter. The skew Burbea-Rao (ϕ, λ)-divergence is the scalar
divergence d(BR)

ϕ,λ defined as follows:

d
(BR)
ϕ,λ (y‖y′) = λϕ(y) + (1− λ)ϕ(y′)−ϕ(λy+ (1− λ)y′) for all y, y′ ∈ R∗+ . (1.30)

In particular, for λ = 1/2, the corresponding scalar divergence d(BR)
ϕ is called the

Burbea-Rao ϕ-divergence

Remark 1.47. The limit cases λ ∈ {0, 1} are again excluded from the definition to
avoid trivial null divergences.
Remark 1.48. The skew Jensen-Bregman (ϕ, λ)-divergence and the skew Burbea-
Rao (ϕ, λ)-divergence coincide, d(JB′)

ϕ,λ = d
(BR)
ϕ,λ . In particular, the Jensen-Bregman

ϕ-divergence and the Burbea-Rao ϕ-divergence coincide, d(JB′)
ϕ = d

(BR)
ϕ . Setting

yλ = λy + (1− λ)y′, the equivalence can be seen as follows:

d
(JB′)
ϕ,λ (y‖y′) = λdϕ(y‖yλ) + (1− λ)dϕ(y′‖yλ) (1.31)

= λ(ϕ(y)− ϕ(yλ)− (y − yλ)ϕ′(yλ))
+ (1− λ)(ϕ(y′)− ϕ(yλ)− (y′ − yλ)ϕ′(yλ)) (1.32)

= d
(BR)
ϕ,λ (y‖y′)− (λy + (1− λ)y′ − yλ)ϕ′(yλ) (1.33)

= d
(BR)
ϕ,λ (y‖y′) . (1.34)

Remark 1.49. Since the class of skew Burbea-Rao divergences is clearly stable under
swapping the arguments, which amounts to replacing λ with 1−λ, the class of skew
Jensen-Bregman divergences is also, which is not obvious at first sight from their
definition.

1.2.5. Skew (α, β, λ)-divergences
Recently, in the context of non-negative matrix factorization, Cichocki et al. [2011]
proposed an elegant parametrization of a class of scalar divergences that encom-
passes both α-divergences and β-divergences among others, as shown in Figure 1.2.
Furthermore, this family is potentially robust against noise and outliers, because it
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Figure 1.2.: Parametric family of (α, β)-divergences. The class of (α, β)-divergences
encompasses many common information divergences, including all
α-divergences and β-divergences.

combines the respective scaling properties of the α-divergences and β-divergences,
hence providing both zooming and weighting factors that can be tuned to improve
estimation. This parametric family of (α, β)-divergences can be introduced as fol-
lows.

Definition 1.23. Let α, β ∈ R be scalar parameters. The (α, β)-divergence is the
scalar divergence d(ab)

α,β defined as follows:

d
(ab)
α,β (y‖y′) = 1

αβ(α + β)(αyα+β+βy′α+β−(α+β)yαy′β) for all y, y′ ∈ R∗+ . (1.35)

Remark 1.50. The non-negativity of (α, β)-divergences can be proved with Young’s
inequality, for three different combinations of the signs of αβ, α(α + β), β(α + β).
The function vanishing on the diagonal holds trivially.
Remark 1.51. As soon as either of α or β is null, the definition still holds in the
respective limit cases d(ab)

α,0 (y‖y′) = 1
α2 (yα log(yα/y′α) − yα + y′α) for α 6= 0, and
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d
(ab)
0,β (y‖y′) = 1

β2 (y′β log(y′β/yβ)−y′β +yβ) for β 6= 0. When α+β = 0, the definition
is also valid with the limits d(ab)

α,−α(y‖y′) = 1
α2 (log(y′α/yα) + yα/y′α − 1) for α 6= 0,

and d(ab)
0,0 (y‖y′) = 1

2(log y − log y′)2.
Remark 1.52. As special cases, the (α, β)-divergences reduce to the α-divergences
d

(ab)
α,β = d

(a)
α for α + β = 1, and to the β-divergences d(ab)

α,β = d
(b)
β+1 for α = 1.

We finally introduce a direct but novel parametric family of information diver-
gences as an extension of (α, β)-divergences by standard skewing.

Definition 1.24. Let α, β ∈ R be scalar parameters, λ ∈ [0, 1] be a skewing pa-
rameter. The skew (α, β, λ)-divergence is the scalar divergence d(ab)

α,β,λ defined as
follows:

d
(ab)
α,β,λ(y‖y′) = λd

(ab)
α,β (y‖y′) + (1− λ)d(ab)

α,β (y′‖y) for all y, y′ ∈ R∗+ . (1.36)

These divergences notably encompass all α-divergences and β-divergences, as well
as their skew Jeffreys-Bregman versions. They will also reveal useful in the sequel to
unify the results for non-negative matrix factorization based on these divergences,
as done by Cichocki et al. [2011] for the non-skew versions.
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2. Sequential Change Detection with
Exponential Families

In this chapter, we elaborate methods for sequential change detection within the
computational framework of information geometry. We notably formulate a generic
and unifying framework for sequential change detection with exponential families.
This framework therefore encompasses many common statistical models as discussed
in Chapter 1. We follow a standard non-Bayesian approach where change detec-
tion is considered as a statistical decision problem with multiple hypotheses, and is
solved using generalized likelihood ratio test statistics. A major drawback of pre-
vious work in this context is to consider only known parameters before change, or
to approximate the exact statistics when these parameters are actually unknown.
This is addressed by introducing exact generalized likelihood ratios with arbitrary
estimators, and by expanding them for exponential families. By showing tight links
between the computation of these statistics and maximum likelihood estimates, we
derive a generic scheme for change detection with exponential families, under com-
mon scenarios with known or unknown parameters, and arbitrary estimators. We
also interpret this scheme within the dually flat information geometry of exponential
families, hence providing both statistical and geometrical intuitions to the problem,
and bridging the gap between statistical and distance-based approaches to change
detection. The scheme is finally revisited through convex duality, leading to an
attractive scheme with closed-form sequential updates for the exact generalized like-
lihood ratio statistics, when both parameters before and after change are unknown
and are estimated by maximum likelihood. This scheme is notably applied in Chap-
ter 4 to devise a general and unifying framework for real-time audio segmentation.

2.1. Context
In this section, we first provide some background information on the problem of
change detection, with focus on sequential approaches. We then discuss the moti-
vations of our approach to this problem. We finally sum up our main contributions
in this context.

2.1.1. Background
Let us consider a time series x1,x2, . . . of observations that are sampled accord-
ing to an unknown discrete-time stochastic process. In general terms, the problem
of change detection is to decide whether the distribution of the process presents
some structural modifications of interest along time, as depicted in Figure 2.1. This
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Figure 2.1.: Schematic view of change detection. The problem of change detection
consists in finding variations of interest within the temporal structure
of a process.

decision is often coupled with the estimation of the times when changes in the dis-
tribution occur. These time instants are called change points and delimit contiguous
temporal regions called segments. In addition to estimating the change points, we
sometimes also need to estimate the underlying distributions within the different
segments.
Historically, change detection arose as a sequential problem in the area of quality

control, with the control charts of Shewhart [1925, 1931]. The formulations of change
detection have primarily focused on statistical frameworks, with consideration of
a single change point and known distributions before and after change, by using
likelihood ratio (LR) statistics. The first main approaches were the Bayesian methods
introduced by Girshick and Rubin [1952], and the non-Bayesian procedures such as
the cumulative sum (CUSUM) and the finite moving average charts of Page [1954],
as well as the geometric moving average charts of Roberts [1959].
Later on, Shiryaev [1963, 1978] and Roberts [1966] proved some optimality proper-

ties of the sequential Bayesian detection rule with a geometric prior over the change
time, hence known as Shiryaev-Roberts (SR) rule. This was also shown optimal in
an asymptotic context by Pollak [1985]. In the meantime, Lorden [1971] discussed
results on the asymptotic optimality of the non-Bayesian CUSUM rule, and intro-
duced the generalized likelihood ratio (GLR) statistics to replace the LR statistics in
CUSUM when the parameter after change is unknown and the distributions belong
to a one-parameter exponential family. Optimality results were later proved in a
non-asymptotic context by Moustakides [1986] and Ritov [1990]. As an alternative
to the GLR statistics, Pollak and Siegmund [1975] introduced a weighted CUSUM
rule using mixture likelihood ratio (MLR) statistics, also known as weighted likelihood
ratio (WLR) statistics. These statistics were further used by Pollak [1987] to extend
the Bayesian SR detection rule.
Many of these sequential approaches focused on detecting an additive change point

in the mean of some independent univariate data under normality assumptions.
Since then, several hundreds of papers proposed specific extensions to relax these
assumptions. We refer to the seminal book of Basseville and Nikiforov [1993], and
paper of Lai [1995], for a comprehensive review and unifying framework. The recent
books of Poor and Hadjiliadis [2009], and Chen and Gupta [2012], provide more up-
to-date accounts respectively on sequential and retrospective approaches. The recent
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paper of Polunchenko and Tartakovsky [2012] presents the state-of-the-art results on
optimal procedures for sequential change detection with known parameters before
and after change. Some complementary viewpoints are treated in the books of
Brodsky and Darkhovsky [1993], Csörgő and Horváth [1997], and Gustafsson [2000],
with respective focus on non-parametric methods for change detection, asymptotic
behaviors of change detection procedures, and change detection in adaptive filters.
The field is still in active research today, and a forthcoming book on the topic has
been written by leading researchers [Basseville et al., 2013]. We can sum up the
main distinctions between the different approaches as follows.
The principal distinction, because of both theoretical and philosophical issues, is

between non-Bayesian and Bayesian approaches. This distinction historically lies
in the consideration of the unknown change points either as deterministic or as
random quantities. On the one hand, in non-Bayesian approaches, a change time
is assumed to be an unknown parameter, and the detection is roughly speaking
based on the likelihood of a change compared to no change. On the other hand, in
Bayesian approaches, a change time is assumed to be a latent variable with a given
prior probability distribution, and the detection is rather based on the posterior
probability of a change. In later approaches, this distinction also lies on whether the
unknown parameters, if any, are considered as deterministic or as random quantities.
In non-Bayesian approaches, the detection of a change relies on the point estimation
of the unknown parameters, whereas it relies on their marginalization using suitable
priors in Bayesian approaches.
Other important distinctions can be made depending on the problem assumptions.

Relevant examples include sequential versus retrospective settings, single versus mul-
tiple change points, additive versus non-additive changes, known versus unknown
distributions before or after change, univariate versus multivariate data, continuous
versus discrete data, independent versus non-independent observations, parametric
versus non-parametric distributions, scalar versus vector parameters.
Concerning optimality, the two principal criteria are the average detection delay

and the false alarm rate. The average detection delay is related to the latency of
the system and quantifies the time lag between a change point and the alarm time
at which it is detected, while the false alarm rate is related to the robustness of
the system and quantifies the number of alarms triggered wrongly before a change
really occurs. Another less used criterion is the misdetection rate which is related
to the sensibility of the system and quantifies the number of occurring changes
that are missed. Often, optimality is considered by fixing the false alarm rate and
minimizing the average detection delay, leading to methods for quickest detection. It
is yet intuitive that, depending on the application at hand, a compromise has to be
found between improving the average detection delay and decreasing the detection
errors of false alarms and misdetections.
The applicative fields of change detection are numerous and various in nature.

In addition to quality control in industrial production [Wetherill and Brown, 1991],
applications include fault detection in technological processes [Willsky, 1976], or
automatic surveillance for intrusion and abnormal behavior in security monitoring
[Tartakovsky et al., 2006], and more generally many problems in signal processing
[Basseville and Benveniste, 1983b, Basseville, 1988]. In this context change detection
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has been applied to data from various domains such as geophysics [Basseville and
Benveniste, 1983a], econometrics [Broemeling and Tsurumi, 1987], audio [André-
Obrecht, 1988], medicine [Sonesson and Bock, 2003], image [Radke et al., 2005].
Modern approaches to change detection have also intersected several techniques

in machine learning, with online and offline algorithms for solving respectively the
sequential and retrospective change detection problems. Some common employed
techniques in this context are kernel methods, support vector machines, and convex
optimization. Most related algorithms for change detection then consider some no-
tion of distance in order to define either a cost function for measuring and optimizing
the quality of the segmentation [Harchaoui and Lévy-Leduc, 2008, 2010, Vert and
Bleakley, 2010], or a dissimilarity measure in a high-dimensional feature space for
determining and thresholding the amount of novelty between successive windows of
data [Desobry et al., 2005, Harchaoui et al., 2009a]. The latter methods can actu-
ally be linked with CUSUM schemes by using exponential families and reproducing
kernel Hilbert spaces [Canu and Smola, 2006].

2.1.2. Motivations
The ubiquity of change detection techniques in various applicative fields highlights
the interests in providing generic methods that can handle data of heterogeneous
types. In many approaches, however, either the distributions before and after change
are assumed to be completely known in advance, or particular statistical models
are employed for the unknown parameters, most of the time normal distributions,
and the procedures are derived specifically for these models. Alternatives do exist,
with non-parametric approaches, as well as parametric approaches based on generic
families of distributions, notably with assumptions of independent observations in
one-parameter exponential families. We concentrate on the latter approach, in the
light of computational information geometry with general exponential families.
We thus seek to formulate a unifying and generic framework for statistical change

detection in a times series of independent observations drawn from an exponential
family. We try to encompass different scenarios where scalar or vector parameters
before and after change can be known or unknown, with additive or non-additive
changes, using univariate or multivariate, and continuous or discrete data, indiffer-
ently. We also aim at bridging the gap between classic statistical and contemporary
machine learning approaches to change detection, by showing tight links between
the statistical models involved and some associated distance functions.
Another motivation of our approach comes from the design of online methods for

change detection. In the literature, change detection is still often addressed in a
sequential rather than retrospective setting, that is, the time series is considered as
a data stream that unfolds in time and is processed incrementally. This criterion is
vital in contexts where causality is mandatory, such as real-time applications where
one does not have access to the future. Yet a causal design may also be relevant in
other contexts, not only to keep computations tractable when dealing with a large
amount of data, but also to account for the inherent temporal flow of the time series.
In other words, change detection may be viewed as finding a sufficient amount of
novelty, a rupture of information content between a given time point and its relative
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past. We therefore focus here on online methods for change detection.
In general, sequential procedures are designed to detect a single change point

in the incoming data stream. When multiple change points need to be detected,
the following scheme is employed. We start with an empty window tx ← () and
process the available data incrementally. At each time increment n = 1, 2, . . . , we
concatenate the incoming observation xn with the previous ones as tx← tx |xn, and
attempt to detect a change. If a change is detected, then we discard the observa-
tions before the estimated change point i, and restart the procedure with an initial
window tx ← (xi+1, . . . ,xn). The differences between approaches generally lie in
computational heuristics such as using minimum and maximum window sizes, as
well as window growing and sliding factors before attempting to detect a change.
In these approaches, the sequential detection of multiple change points can there-
fore be reduced to the detection of a single change point in a given data sample
sx = (x1, . . . ,xn) of size n > 1.
We notice, however, that this problem reduction is disputable. First, it requires

the precise estimation of the different change points, and does not take into account
the uncertainty about these estimated change points. Second, it supposes that if no
change point has been detected in the current window yet, then adding some extra
sample observations may only introduce one change point. This is a reasonable
assumption in general but it does not take into account the possibility that a change
point has been missed, or that several change points occur in the added observations.
This may occur when the sampling distributions before and after change are very
similar and not enough sample observations are available to discriminate between
them, or when a small drift in the sampling distribution occurs. In such situations,
one would need to consider several change points or model the drift in some way.
Nevertheless, we focus on the widespread framework of abrupt change detection

where considerations on smooth changes such as drifts are left aside. We also assume
that the change points are detected fast enough so that the alarm times are triggered
before other changes occur. This permits to employ the standard sequential schemes
discussed above. A noticeable advantage of these schemes is that of discarding
completely the past information when a change point is detected. It provides an
important computational advantage over methods that would require storing some
past information so as to deal with multiple change points and with uncertainty in
their estimation.
Finally, we concentrate on approaches similar to CUSUM detection rules with

LR statistics, and their extensions with GLR statistics for unknown parameters. A
major theoretical issue of previous works in this context is to consider only known
parameters before change. This is suitable for applications such as quality control
where a normal regime is completely known in advance, but this is limited in many
other real-world applications. The problem when considering unknown parameters
before change, is that it breaks down the recursivity and computational efficiency of
CUSUM schemes. Therefore, some approximations of the exact GLR test statistics
are in general made to accommodate these situations, such as learning the distri-
bution before change in a training set of samples, or estimating it directly at once
for all hypotheses, either on the whole window, or in a dead region at its beginning
where change detection is turned off. These approximate GLR statistics, however,
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2. Sequential Change Detection with Exponential Families

result in practical shortcomings as soon as changes occur too rapidly, because of the
estimation errors.
A few particular exact statistics have yet been studied. For example, Siegmund

and Venkatraman [1995] considered the exact GLR statistics for unknown mean be-
fore and after change in univariate normals with a fixed and known variance, which
relies on a specific invariance by translation. Recently, Mei [2006] proposed a frame-
work for unknown parametric distributions with a compact parameter space before
and after change in the case of independent observations, by using a point estimation
before change, and a mixing prior after change, with no prior distribution on the
change point. It seems however more natural to consider either a full non-Bayesian
or a full Bayesian framework, as noted by Lai and Xing [2010] who developed a full
Bayesian framework for sequential change detection with unknown parameters be-
fore and after change, based on the derivation of convenient expressions of the MLR
statistics for exponential families, and proved some asymptotic optimality results of
this procedure under the assumption of a geometric prior over change.
Nevertheless, this Bayesian framework is not suitable to all applications. Indeed,

it first requires some expert knowledge or some training data to learn the distribu-
tion of the parameters in a supervised fashion before performing change detection.
Such prior knowledge or data are unfortunately not always available. Moreover,
the assumption of a geometric prior over change is not well-suited to all signals,
which may exhibit more complicated distribution profiles for time intervals between
change points. To overcome this, we seek to employ sequential change detection
schemes without any a priori on the respective distributions of the change points
and parameters.
We therefore position in this continuity but rather develop non-Bayesian methods

for change detection with independent observations from an exponential family, when
both parameters before and after change may be unknown. Nevertheless, we do not
discuss further theoretical optimality here and redirect instead the interested reader
to the given references and citations therein. The problem, in our opinion, is that
there is no widely accepted consensus on how to define exactly optimality, not only
depending on Bayesian and non-Bayesian approaches, but also on asymptotic and
non-asymptotic contexts, or even known and unknown parameters. Moreover, the
theoretical optimality results may not always corroborate practical situations since
the data are often not distributed exactly according to the models considered.

2.1.3. Contributions
Our contributions to the problem of change detection can be summarized as fol-
lows. As the main contribution, we formulate a generic and unifying framework for
sequential change detection with exponential families. Exponential families form a
ubiquitous class of parametric statistical models that encompasses many common
families of probability distributions, as discussed in Chapter 1. The proposed frame-
work therefore handles change detection under various distributional assumptions,
by generalizing previous results relying on normality, and by extending approximate
statistics in more general models to account for exact statistics through a rigorous
estimation of the unknown parameters.
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In particular, we follow a standard non-Bayesian approach to change detection
with dominated parametric statistical models and mutually independent observa-
tions. Change detection is then seen as a decision problem with multiple statistical
hypotheses. We notably employ GLR test statistics to construct the decision rule.
On the contrary to most of the previous works, we carefully consider various sce-
narios where both the parameters before and after change may be unknown. This
is addressed by using exact GLR statistics, whereas these statistics are usually ap-
proximated as soon as the parameter before change is unknown. Moreover, by
considering arbitrary estimators in these statistics, the proposed approach actually
unifies different scenarios that are in general treated separately.
This approach is then applied to exponential families, and in particular to full

minimal steep standard families. While standardness and minimality are of technical
convenience and unrestrictive, fullness and steepness are theoretically crucial to
guarantee the existence and tractability of maximum likelihood estimates to a certain
extent. In this context, the GLR statistics based on arbitrary estimators are actually
shown to be intrinsically linked with the maximum likelihood estimators, which
behave as corrective terms compared to the chosen estimators.
This relation is used to develop a generic scheme for change detection with expo-

nential families based on the GLR statistics with arbitrary estimators. This generic
scheme is interpreted within the dually flat information geometry of exponential fam-
ilies in relation to the Kullback-Leibler divergence, hence providing both statistical
and geometrical intuitions to the problem of change detection. Moreover, because
of the correspondence between exponential families and their associated Bregman
divergences, it gives a unified view of change detection for many common statistical
models and corresponding distance functions, and bridges the gap between statistical
and distance-based approaches to change detection.
We then derive specific forms of the generic scheme under common scenarios by

considering different combinations of estimators for the respective parameters. In
particular, we expand the form of the LR statistics when both parameters before and
after change are known, and of the standard GLR statistics when the parameter be-
fore change only is known. We also compare the standard approximate GLR and the
proposed exact GLR statistics when both parameters are unknown. When relevant,
results are also specialized for the estimation of the unknown parameters by maxi-
mum likelihood. The obtained expressions can systematically be interpreted within
the dually flat geometry of exponential families through information divergences.
Last but not least, we revisit the proposed generic updates through convex dual-

ity for exponential families, by reparametrizing the problem from the natural to the
expectation parameter space. It provides further evidence of the corrective role of
maximum likelihood estimators in the GLR statistics, and leads to an alternative
expression for the GLR statistics which greatly simplifies the computation of the
exact GLR when both parameters are unknown and are estimated by maximum
likelihood. The derived expression is obtained in closed form in terms of the conju-
gate of the log-normalizer for the exponential family. Moreover, it can be updated
sequentially, hence providing a computationally efficient scheme for generic change
detection in exponential families with exact GLR statistics when both parameters
before and after change are unknown.
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2.2. Statistical framework
In this section, we formalize a standard statistical framework for sequential change
detection. The detection of a change point in a given data sample is seen as a de-
cision problem with multiple hypotheses. To solve this problem, we then introduce
the common test statistics of likelihood ratio for known parameters and the corre-
sponding non-Bayesian decision rule, as well as their proposed extension through
the generalized likelihood ratio test statistics with arbitrary estimators.

2.2.1. Multiple hypothesis problem
To unify the problem formulation and discussion, we restrict to the widespread case
where the observations are independently sampled according to distributions from
a given dominated parametric statistical model.

Problem 2.1. Let P = {Pξ}ξ∈Ξ be a dominated parametric statistical model on
a measurable space (X ,A), and let X1, . . . , Xn be n > 1 mutually independent
random variables that are distributed according to probability distributions from P .
The problem of change detection is to decide, on the basis of sample observations
sx = (x1, . . . ,xn) ∈ X n, whether the random variables X1, . . . , Xn are identically
distributed or not.

Remark 2.1. This problem and subsequent derivations can be formulated straight-
forward with adequate notational changes for non-parametric models. We state it in
the parametric case for convenience, and for its direct application to the parametric
models of exponential families later.
Remark 2.2. The formulation can also be extended to non-independent observations
with more technical efforts. This is done by introducing the filtered probability space
with the natural filtration associated to the stochastic process, that is, based on the
increasing sequence of σ-algebras generated by the accumulated random variables.
We then consider conditional distributions on the accumulated past observations
and the observations in a segment are not necessarily identically distributed, but
the parameter of interest ξ does not change.
Remark 2.3. The assumption that the model is dominated can also be dropped
from the problem statement. It is however essential to the subsequent derivations
of statistics based on probability densities.
As discussed previously, we suppose that there is at most one change point. Hence,

the problem of change detection can be seen as a statistical decision between the
null hypothesis of no change against the alternative hypothesis of one change.

Definition 2.1. Let Ξ0,Ξi
0,Ξi

1 be subsets of Ξ, for any 1 ≤ i ≤ n− 1. The hypoth-
esis of no change and the hypothesis of a change are respectively the null and the
alternative statistical hypotheses H0 and H1 defined as follows:

H0 : X1, . . . , Xn ∼ Pξ0 , ξ0 ∈ Ξ0 , (2.1)
H1 : X1, . . . , Xi ∼ Pξi0

, ξi0 ∈ Ξi
0 , Xi+1, . . . , Xn ∼ Pξi1

, ξi1 ∈ Ξi
1 , i ∈ v1, n− 1w .

(2.2)
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. . .

Figure 2.2.: Multiple hypotheses for a change point. The problem of change detec-
tion can be seen as comparing the plausibility of the respective hypothe-
ses that changes occur at the different time instants, with the hypothesis
that no change occurs at all.

Remark 2.4. We notice in this definition that the alternative hypothesis H1 may
encompass the null hypothesis H0, depending on the subsets Ξ0,Ξi

0,Ξi
1. Indeed, we

do not require explicitly that Pξi0
6= Pξi1

. Nevertheless, this is not an issue because
the decision is not based exactly on whether the alternative is more plausible than
the null hypothesis, but rather on to what extent it is more plausible, similarly to a
model selection problem with nested models.

When a change occurs, we also need to estimate the change point. We therefore
partition the hypothesis of a change into multiple hypotheses of a change at the
respective time points. The different hypotheses of no change, and of a change at
the respective time points, are illustrated in Figure 2.2.

Definition 2.2. The hypothesis of a change at time i, for some 1 ≤ i ≤ n − 1, is
the alternative statistical hypothesis H i

1 defined as follows:

H i
1 : X1, . . . , Xi ∼ Pξi0

, ξi0 ∈ Ξi
0 , Xi+1, . . . , Xn ∼ Pξi1

, ξi1 ∈ Ξi
1 . (2.3)

Remark 2.5. For notational reasons, we employ the convention that the change
points refer to the last points of the respective segments rather than the first points
of the subsequent segments.

Remark 2.6. In certain scenarios, the parameters before and after change may be
completely known in advance, being equal respectively to ξbef and ξaft. In this sit-
uation, all hypotheses are simple since we have ξ0, ξ

i
0 ∈ {ξbef}, and ξi1 ∈ {ξaft}.

Nevertheless, the parameters before and after change are most of the time unknown,
thus making some hypotheses to be composite. In the general case, all subsets
Ξ0,Ξi

0,Ξi
1, may be chosen to be different. Often, the subsets before change, respec-

tively after change, are equal either to Ξ itself, or to a singleton if the corresponding
parameter is completely known. These subsets act as a priori information about the
problem, and allow the unification of different scenarios with known and unknown
parameters which are in general treated separately in the literature.
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2. Sequential Change Detection with Exponential Families

2.2.2. Test statistics and decision rules
To assess the plausibility of the alternative hypotheses compared to the null hypoth-
esis, some test statistics are needed. The aim of these statistics is to quantify to
what extent a hypothesis is more plausible than another. The assumption that the
models considered are dominated is crucial for this since it permits to employ the
corresponding probability densities to develop the test. In this context, most test
statistics rely in informal terms on the ratio p(sx|H0)/p(sx|H i

1) between the plausibil-
ity of the data under the respective hypotheses. The different formulations depend
on whether the parameters are known or unknown, and how the unknown param-
eters are dealt with. When the parameters before and after change are known in
advance, we can directly use the respective likelihoods of the data under the different
hypotheses.

Definition 2.3. Suppose that the sets Ξ0,Ξi
0,Ξi

1 are singletons, for any 1 ≤ i ≤ n−1.
The likelihood ratio at time i is the test statistic Λi defined as follows:

Λi(sx) = −2 log
∏n

j=1 pξ0(xj)∏i
j=1 pξi0

(xj)
∏n

j=i+1 pξi1
(xj)

for all sx ∈ X n . (2.4)

Remark 2.7. The LR statistic Λi vanishes whenever the likelihoods under H0 and
H i

1 are equal, meaning informally that they are equally plausible. Moreover, Λi is
positive when the likelihood under H0 is less than under H i

1, meaning that H0 is
less plausible than H i

1. Conversely, Λi is negative when the likelihood under H0 is
greater than under H i

1, so that H0 is more plausible than H i
1.

Remark 2.8. As limit cases, when the likelihood under H0, respectively H i
1, is null,

Λi equals +∞, respectively −∞. In the indeterminate case where both likelihoods
under H0 and H i

1 are null, it is convenient to use the convention that Λi equals 0
since H0 and H i

1 are both equally non-plausible.
Remark 2.9. In the usual case where the parameters ξbef , ξaft, before and after change
are completely known in advance, we have Ξ0 = Ξi

0 = {ξbef}, and Ξi
1 = {ξaft}, for

all 1 ≤ i ≤ n − 1, and the LR simplifies to the common cumulative sum statistic
employed in the CUSUM procedure:

1
2 Λi(sx) =

n∑
j=i+1

log
pξaft(xj)
pξbef (xj)

. (2.5)

These statistics can in general be computed efficiently with a sequential update
scheme, making the CUSUM algorithm an attractive online procedure.
When a parameter is unknown, the likelihood under the corresponding composite

hypothesis cannot be defined anymore and other test statistics are thus required.
The usual non-Bayesian approach is to replace the unknown parameters in the hy-
potheses with their maximum likelihood estimates, and to write the generalization
of the LR corresponding to these fixed parameters. We generalize this approach by
considering arbitrary estimates. This permits to unify the different combinations of
known and unknown parameters before and after change, as well as approximations
of the test statistics as discussed later, and to employ any other estimator than the
maximum likelihood estimator when needed.
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Definition 2.4. Let pξ0,
pξi0,pξi1 : X n → Ξ, be estimators of the parameters ξ0, ξ

i
0, ξ

i
1,

for any 1 ≤ i ≤ n− 1. The generalized likelihood ratio at time i is the test statistic
pΛi defined as follows:

pΛi(sx) = −2 log
∏n

j=i+1 ppξ0(sx)(xj)∏i
j=1 ppξi0(sx)(xj)

∏n
j=i+1 ppξi1(sx)(xj)

for all sx ∈ X n . (2.6)

Remark 2.10. To simplify notations, we consider estimators for sx ∈ X n, and con-
flate the estimators of the individual sample models for xj ∈ X , with the esti-
mators of the i.i.d. sampling models for (x1, . . . ,xn) ∈ X n, (x1, . . . ,xi) ∈ X i,
(xi+1, . . . ,xn) ∈ X n−i. We also allow arbitrary estimators in Ξ since it simplifies
the following discussion without loss of generality. This is up to the user to choose
estimators in the respective correct subsets Ξ0,Ξi

0,Ξi
1 when needed.

Remark 2.11. Rather than using estimators for the unknown parameters, the com-
mon Bayesian alternative to the GLR is to integrate out the unknown parameters
using prior measures on the parameter space as in the MLR. Nonetheless, it re-
quires some prior knowledge on the distribution of the parameters, which is not
always available. Moreover, the computations may become intractable unless spe-
cific conjugate prior measures are employed, which may not always represent reliably
the true distribution of the parameters.
Remark 2.12. In the general case, the GLR is a sum of two cumulative sums:

1
2

pΛi(sx) =
i∑

j=1

log
ppξi0(sx)(xj)
ppξ0(sx)(xj)

+
n∑

j=i+1

log
ppξi1(sx)(xj)
ppξ0(sx)(xj)

. (2.7)

As a special case, the GLR coincides with the LR when the parameters before and
after change are known and thus taken as the estimates. When the parameter before
change only is known, the GLR still simplifies to cumulative sums:

1
2

pΛi(sx) =
n∑

j=i+1

log
ppξi1(sx)(xj)
pξbef (xj)

. (2.8)

This expression is yet computationally more demanding than the LR. Indeed, the
estimates after change need to be computed and may differ for all hypotheses, and
for all successive windows in a sequential update scheme.
Remark 2.13. When the parameter before change is unknown, the GLR cannot be
written with only one cumulative sum anymore, even if the parameter after change
is known. Its expression is not recursive anymore and becomes more expensive to
compute. This is why it is in general approximated, by assuming the parameter
before change known, while actually estimating it at once for all hypotheses, either
on the whole data sample, or in a dead region at the beginning of the window where
no change is supposed to occur.
Remark 2.14. When the maximum likelihood estimates of the parameters in the
hypotheses exist and are taken as the estimates, the GLR as defined here for arbitrary
estimates specializes to the usual definition of an exact GLR statistic:

1
2

pΛi(sx) = log
supξi0∈Ξi0

∏i
j=1 pξi0

(xj) supξi1∈Ξi1

∏n
j=i+1 pξi1

(xj)
supξ0∈Ξ0

∏n
j=1 pξ0(xj)

. (2.9)
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2. Sequential Change Detection with Exponential Families

In particular, when the parameter before change is completely known in advance,
or is assumed to be known while actually being roughly determined, it leads to the
standard GLR statistics employed in practice:

1
2

pΛi(sx) = sup
ξi1∈Ξi1

n∑
j=i+1

log
pξi1

(xj)
pξbef (xj)

. (2.10)

This test statistic is however an approximation of the exact GLR statistics as soon
as the parameter before change is unknown.
Based on the chosen test statistics, we eventually need a decision rule to trigger

a change point or not. Since the GLR as defined here encompasses the LR and
classic or approximate GLR, we thus focus on decision rules based on it. The GLR
statistics quantify how much the respective alternative hypotheses of a change at
the different time points are plausible compared to the null hypothesis of no change.
The classic non-Bayesian decision rule then amounts to thresholding the maximum
of the GLR along time to detect a change.

Definition 2.5. Let λ > 0 be a threshold. The non-Bayesian decision rule for a
change is the statistical decision rule defined as follows:

max
1≤i≤n−1

pΛi(sx)
H1
≷
H0

λ for all sx ∈ X n . (2.11)

Remark 2.15. The change point is then estimated by maximum likelihood estimation,
as the first time point where the maximum of the test statistics pΛi(sx) is reached.
Remark 2.16. As an alternative to the non-Bayesian point estimation with the max-
imum of the GLR, the usual Bayesian decision rule relies on integrating the MLR
with a prior discrete measure on the different time points, or in simpler terms, on
considering a weighted sum of the MLR. This requires some prior knowledge on the
distribution of the time intervals between change points, which is not always avail-
able. Moreover, the computations may again become intractable except for certain
specific priors. In particular, the literature has focused on a geometric prior over
change, which is not always suited to model reliably arbitrary signals
To conclude this section, we insist again on the fact that when the parameter

before change is unknown, almost all previous works employ approximations of the
exact GLR in order to keep the simplicity and tractability of the LR in the CUSUM
procedure. To this end, the parameter before change is assumed to be known,
and is actually estimated at once and set equal in all hypotheses. For example,
the estimation can be performed either on the whole window, or in a dead region
at the beginning of the window where change detection is turned off. In the GLR,
the estimators before change are then set equal to this fixed estimated value for
all hypotheses. Such approximations may work when the time intervals between
successive changes are important so that the approximation is valid, but their results
break down because of estimation errors as soon as the changes occur more often.
We argue after that we can still employ computationally efficient decision schemes
based on the GLR statistics, for the large class of exponential families, and without
using such approximations.
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2.3. Methods for exponential families

2.3. Methods for exponential families
In this section, we elaborate on the proposed methods for change detection when
the parametric statistical model is an exponential family. We first develop a generic
scheme for exact GLR statistics with arbitrary estimators, and interpret it in rela-
tion to maximum likelihood estimation within the dually flat geometry of exponen-
tial families. We then particularize this generic scheme to common scenarios with
known and unknown parameters before and after change. We finally revisit the
generic scheme through convex duality and provide a specific scheme with closed-
form sequential updates for the exact generalized likelihood ratio statistics, when
both parameters before and after change are unknown, and are estimated by maxi-
mum likelihood.

2.3.1. Generic scheme
We recall that the non-Bayesian decision rule amounts to thresholding the maxi-
mum of the GLR along time. It appears that for exponential families, the GLR
with arbitrary estimators is closely related to the maximum likelihood estimators.
In the sequel, we restrict without loss of generality to minimal standard exponen-
tial families. For technical regularity that guarantees the existence and tractability
of maximum likelihood estimates to a certain extent, we further assume that the
minimal standard exponential family is also full and steep.

Theorem 2.1. Suppose that P = {Pθ}θ∈N is a full minimal steep standard ex-
ponential family, and let pθi0 ml,

pθi1 ml, be the maximum likelihood estimators of the
parameters θi0,θ

i
1, for any 1 ≤ i ≤ n− 1. The generalized likelihood ratio pΛi at time

i verifies the following relation:

1
2

pΛi(sx) = i
{
DKL

(
Ppθi0 ml(sx)

∥∥∥Ppθ0(sx)

)
−DKL

(
Ppθi0 ml(sx)

∥∥∥Ppθi0(sx)

)}
+(n−i)

{
DKL

(
Ppθi1 ml(sx)

∥∥∥Ppθ0(sx)

)
−DKL

(
Ppθi1 ml(sx)

∥∥∥Ppθi1(sx)

)}
for all sx ∈ Ki0 ∩ Ki1 ,

(2.12)

where the sets Ki0,Ki1, are defined as Ki0 = {sx ∈ (Rm)n : 1
i

∑i
j=1 xj ∈ intK}, and

Ki1 = {sx ∈ (Rm)n : 1
n−i
∑n

j=i+1 xj ∈ intK}.

Proof. Let sx ∈ Kn be some sample observations. Replacing the densities with their
exponential representations, the GLR at time i can be developed as follows:

1
2

pΛi(sx) =
i∑

j=1

log
exp

{
pθi0(sx)

>
xj − ψ(pθi0(sx))

}
exp

{
pθ0(sx)

>
xj − ψ(pθ0(sx))

}
+

n∑
j=i+1

log
exp

{
pθi1(sx)

>
xj − ψ(pθi1(sx))

}
exp

{
pθ0(sx)

>
xj − ψ(pθ0(sx))

} . (2.13)
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Simplifying the logarithms and exponentials, and regrouping terms, we obtain:

1
2

pΛi(sx) =
i∑

j=1

{
(pθi0(sx)− pθ0(sx))

>
xj − ψ(pθi0(sx)) + ψ(pθ0(sx))

}
+

n∑
j=i+1

{
(pθi1(sx)− pθ0(sx))

>
xj − ψ(pθi1(sx)) + ψ(pθ0(sx))

}
. (2.14)

Assuming now that the sample observations belong to Ki0 ∩ Ki1, the maximum like-
lihood estimates of the parameters θi0,θ

i
1, exist and are unique by steepness of the

family. Moreover, they belong to intN , and are given in expectation parameters
by the average of the respective sufficient observations. The GLR can therefore be
written as follows:

1
2

pΛi(sx) = i
{
ψ(pθ0(sx))− ψ(pθi0(sx)) + (pθi0(sx)− pθ0(sx))

>∇ψ(pθi0 ml(sx))
}

+ (n− i)
{
ψ(pθ0(sx))− ψ(pθi1(sx)) + (pθi1(sx)− pθ0(sx))

>∇ψ(pθi1 ml(sx))
}

. (2.15)

We can also add and subtract the maximum likelihood estimates pθi0 ml(sx), pθi1 ml(sx),
and their log-normalizers ψ(pθi0 ml(sx)), ψ(pθi1 ml(sx)), to make Bregman divergences Bψ

appear as follows:

1
2

pΛi(sx) = i
{
Bψ(pθ0(sx)‖pθi0 ml(sx))−Bψ(pθi0(sx)‖pθi0 ml(sx))

}
+ (n− i)

{
Bψ(pθ0(sx)‖pθi1 ml(sx))−Bψ(pθi1(sx)‖pθi1 ml(sx))

}
. (2.16)

This proves the theorem by rewriting the Bregman divergences on the natural pa-
rameters as Kullback-Leibler divergences on the swapped corresponding distribu-
tions.

Remark 2.17. As illustrated in Figure 2.3, the generic GLR scheme can be inter-
preted as (i) computing the divergences between the maximum likelihood estimates
before change, respectively after change, and the chosen estimate with no change,
(ii) correcting the chosen estimates before change, respectively after change, com-
pared to the maximum likelihood estimates before change, respectively after change,
(iii) weighting by the number of sample observations before change, respectively after
change.

Using different combinations of estimators for the respective parameters in the hy-
potheses, we can derive specific forms of the GLR in many scenarios with known and
unknown parameters, with arbitrary estimates or maximum likelihood estimates,
and even with approximate statistics. Before discussing these different scenarios,
we state a direct corollary which encompasses most of them, except from the exact
GLR when both parameters are unknown, in the case where all estimators before
change are set equal.
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Figure 2.3.: Geometrical interpretation of change detection. The problem of change
detection with exponential families and exact generalized likelihood ra-
tio test statistics based on arbitrary estimators, can be seen as comput-
ing certain information divergences between the estimated distributions
and the maximum likelihood distributions in the different hypotheses.

Corollary 2.2. Suppose that the estimators pθ0,
pθi0 are equal, for any 1 ≤ i ≤ n− 1.

The generalized likelihood ratio pΛi at time i verifies the following relation:

1
2

pΛi(sx) = (n−i)
{
DKL

(
Ppθi1 ml(sx)

∥∥∥Ppθ0(sx)

)
−DKL

(
Ppθi1 ml(sx)

∥∥∥Ppθi1(sx)

)}
for all sx ∈ Ki1 .

(2.17)

Proof. This follows from the theorem in the case where pθ0 = pθi0. More precisely, it is
not required in this case that sx ∈ Ki0 in the proof of the theorem. Indeed, the terms
with the sufficient observations before change vanish so that we need not introduce
the maximum likelihood estimate before change.

Remark 2.18. This specific GLR scheme can therefore be interpreted as (i) comput-
ing the divergence between the maximum likelihood estimate after change, and the
chosen estimator with no change, or equivalently before change since they are equal,
(ii) correcting the chosen estimator after change compared to the maximum likeli-
hood estimate after change, (iii) weighting by the number of sample observations
after change.
Remark 2.19. We have supposed implicitly that the chosen estimator pθ0 = pθi0 is
well-defined everywhere on (Rm)n, or at least on Ki1. If it is not the case, then its
exact domain of definition needs to be considered as an intersection with Ki1. For
example, if we use the maximum likelihood estimator in a dead region of n0 < n
samples at the beginning of the window, then the correct domain is Kn0

0 ∩ Ki1, for
any n0 ≤ i ≤ n− 1. The reasoning is similar for the maximum likelihood estimator
on the whole window.
Remark 2.20. A similar relation can be derived when the estimators after change
and with no change are equal. Nevertheless, this case is in general not relevant in
practical situations so we do not discuss it further.
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2.3.2. Case of a known parameter before change
We consider here the common scenario where the parameter before change is as-
sumed to be known. We begin with the simpler case where the parameter after
change is also known. This actually corresponds to the simple LR statistics, ex-
pressed here for exponential families in terms of information divergences.

Example 2.1. For the problem of change detection with exponential families where
both the parameters θbef ,θaft before and after change are known, the respective
estimators in the hypotheses are taken constant as pθ0 = pθi0 = θbef , and pθi1 = θaft,
for all 1 ≤ i ≤ n− 1. The test statistics can therefore be expressed as follows:

1
2

pΛi(sx) = (n− i)
{
DKL

(
Ppθi1 ml(sx)

∥∥∥Pθbef

)
−DKL

(
Ppθi1 ml(sx)

∥∥∥Pθaft

)}
. (2.18)

Now considering that the parameter after change is unknown, we obtain a similar
expression as for the LR statistics. If we also assume that the unknown parameter is
estimated by maximum likelihood in the respective hypotheses, the expression can
be simplified further. This actually corresponds to the standard GLR statistics for
a known parameter before change, expressed here for exponential families in terms
of a simple information divergence.

Example 2.2. For the problem of change detection with exponential families where
the parameter θbef before change is known, and the parameter after change is un-
known, the respective estimators before change in the hypotheses are taken constant
as pθ0 = pθi0 = θbef , for all 1 ≤ i ≤ n−1. The test statistics can therefore be expressed
as follows:

1
2

pΛi(sx) = (n− i)
{
DKL

(
Ppθi1 ml(sx)

∥∥∥Pθbef

)
−DKL

(
Ppθi1 ml(sx)

∥∥∥Ppθi1(sx)

)}
. (2.19)

Supposing further that the maximum likelihood estimators are chosen for the esti-
mators after change as pθi1 = pθi1 ml, for all 1 ≤ i ≤ n − 1, the test statistics can be
simplified as follows:

1
2

pΛi(sx) = (n− i)DKL

(
Ppθi1 ml(sx)

∥∥∥Pθbef

)
. (2.20)

2.3.3. Case of unknown parameters before and after change
We now turn to the common scenario where both the parameters before and after
change are unknown. In the literature, this situation is most of the time addressed
by setting the estimators before change equal in the respective hypotheses, as dis-
cussed previously. It corresponds to the general case of the above corollary. Further
considering the maximum likelihood estimators, the statistics actually specialize to
the approximate GLR statistics commonly employed.

Example 2.3. For the problem of change detection with exponential families where
both the parameters before and after change are unknown, the respective estimators
before change in the hypotheses can be set equal as pθ0 = pθi0, for all 1 ≤ i ≤
n−1. Supposing further that the maximum likelihood estimators are chosen for the
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2.3. Methods for exponential families

estimators after change as pθi1 = pθi1 ml, for all 1 ≤ i ≤ n− 1, the test statistics can be
simplified as follows:

1
2

pΛi(sx) = (n− i)DKL

(
Ppθi1 ml(sx)

∥∥∥Ppθ0(sx)

)
. (2.21)

The single estimator before or with no change pθ0 can then be chosen as the maximum
likelihood estimator over the whole window or over a dead region at the beginning
of the window, as discussed previously.

We propose here an alternative to approximate GLR statistics, by considering
exact GLR statistics where the estimators before change are estimated separately in
the respective hypotheses. In the general case, it corresponds to the generic updates
of the above theorem. Further considering the maximum likelihood estimators, the
statistics specialize to the exact GLR statistics defined in the literature, but replaced
in practice with the approximate GLR statistics for computational reasons.

Example 2.4. For the problem of change detection with exponential families where
both the parameters before and after change are unknown, the respective estimators
in the hypotheses can be chosen to be the maximum likelihood estimators pθ0 = pθ0 ml,
pθi0 = pθi0 ml, pθi1 = pθi1 ml, for all 1 ≤ i ≤ n−1. The test statistics can then be expressed
as follows:

1
2

pΛi(sx) = iDKL

(
Ppθi0 ml(sx)

∥∥∥Ppθ0 ml(sx)

)
+ (n− i)DKL

(
Ppθi1 ml(sx)

∥∥∥Ppθ0 ml(sx)

)
. (2.22)

This directly follows from the theorem, after remarking that the maximum likelihood
estimate with no change is well-defined. Indeed, if the observations belong toKi0∩Ki1,
then they also belong to K0 = {sx ∈ (Rm)n : 1

n

∑n
j=1 xj ∈ intK} by convexity of intK.

Remark 2.21. The exact GLR scheme with maximum likelihood estimators can
therefore be interpreted as (i) computing the divergence between the maximum
likelihood estimate before change, respectively after change, and the maximum like-
lihood estimate with no change, (ii) weighting by the number of sample observations
before change, respectively after change.

2.3.4. Generic scheme revisited through convex duality
The above expressions of the GLR variations in terms of information divergences
give both statistical and geometrical intuitions to change detection in exponential
families. Moreover, because of the correspondence between exponential families and
their associated Bregman divergences, this shows tight links between statistical and
distance-based approaches to change detection. Further taking advantage of the
dually flat information geometry of exponential families, we now rely on convex
duality to reparametrize the problem from the natural to the expectation param-
eter space. This provides additional evidence for the corrective role of maximum
likelihood estimators in the generic GLR scheme.

Proposition 2.3. Suppose that P = {Pθ}θ∈N is a full minimal steep standard
exponential family, and let pθ0 ml,

pθi0 ml,
pθi1 ml, be the maximum likelihood estimators of
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2. Sequential Change Detection with Exponential Families

the parameters θ0,θ
i
0,θ

i
1, for any 1 ≤ i ≤ n− 1. The generalized likelihood ratio pΛi

at time i verifies the following relation:
1
2

pΛi(sx) = i φ(pηi0(sx))+(n−i)φ(pηi1(sx))−nφ(pη0(sx))+∆i
ml(sx) for all sx ∈ Ki0 ∩ Ki1 ,

(2.23)
where the corrective term ∆i

ml at time i compared to maximum likelihood estimation
is expressed as follows:

∆i
ml(sx) = i (pηi0 ml(sx)− pηi0(sx))>∇φ(pηi0(sx)) + (n− i) (pηi1 ml(sx)− pηi1(sx))>∇φ(pηi1(sx))

− n (pη0 ml(sx)− pη0(sx))>∇φ(pη0(sx)) for all sx ∈ Ki0 ∩ Ki1 . (2.24)

Proof. Rewriting the generic GLR at time i with Bregman divergences Bφ on the
expectation parameters, we obtain the following expression:

1
2

pΛi(sx) = i
{
Bφ(pηi0 ml(sx)‖pη0(sx))−Bψ(pηi0 ml(sx)‖pηi0(sx))

}
+ (n− i)

{
Bφ(pηi1 ml(sx)‖pη0(sx))−Bψ(pηi1 ml(sx)‖pηi1(sx))

}
. (2.25)

Developing the Bregman divergences with their standard expressions and regrouping
terms, the GLR can then be expressed as follows:

1
2

pΛi(sx) = i φ(pηi0(sx)) + (n− i)φ(pηi1(sx))− nφ(pη0(sx)) + ∆i
ml(sx) , (2.26)

where ∆i
ml(sx) writes as follows:

∆i
ml(sx) = i (pηi0 ml(sx)− pηi0(sx))>∇φ(pηi0(sx)) + (n− i) (pηi1 ml(sx)− pηi1(sx))>∇φ(pηi1(sx))

− (i pηi0 ml(sx) + (n− i) pηi1 ml(sx)− n pη0(sx))>∇φ(pη0(sx)) . (2.27)

The last term can be re-expressed to provide the final expression of the corrective
term ∆i

ml(sx). Indeed, it suffices to observe that the maximum likelihood estimate
with no change is the barycenter of the maximum likelihood estimates before and
after a change at time i, that is:

n pη0 ml(sx) = i pηi0 ml(sx) + (n− i) pηi1 ml(sx) . (2.28)

This is easily seen from the equation of the maximum likelihood estimates as averages
of the corresponding sufficient observations. Here we have used implicitly that since
the sample observations belong to Ki0 ∩ Ki1, they also belong to K0 by convexity of
intK, so that the maximum likelihood estimate with no change exist and is unique
by steepness of the family. This proves the proposition.

2.3.5. Case of unknown parameters and maximum likelihood
We finally use the above results to revisit the common scenario where both the pa-
rameters before and after change are unknown, in particular for exact GLR statistics
based on maximum likelihood estimators. In this case, the corrective term vanishes
and simplifies the expression of the statistics.
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Example 2.5. For the problem of change detection with exponential families where
both the parameters before and after change are unknown, and where the estimators
in the respective hypotheses are chosen to be the maximum likelihood estimators
pθ0 = pθ0 ml, pθi0 = pθi0 ml, pθi1 = pθi1 ml, for all 1 ≤ i ≤ n − 1, the test statistics can be
expressed as follows:

1
2

pΛi(sx) = i φ(pηi0 ml(sx)) + (n− i)φ(pηi1 ml(sx))− nφ(pη0 ml(sx)) . (2.29)

This alternative expression for the exact GLR statistics greatly simplifies its compu-
tation. It is obtained in closed form in terms of the conjugate φ of the log-normalizer
ψ for the exponential family. Moreover, because maximum likelihood estimates
between successive windows are related by simple time shifts or barycentric up-
dates in expectation parameters, this provides a computationally efficient scheme
for calculating the statistics in a sequential fashion. For example, if no change has
been detected in the previous window, the statistics can then be simply updated as
pηi0 ml(sx)← pηi0 ml(sx), pηn−1

0 ml (sx)← pη0 ml (sx), pηi1 ml(sx)← ((n−i−1)pηi1 ml(sx)+xn)/(n−i),
pηn−1

1 ml (sx) ← xn, pη0 ml(sx) ← ((n − 1)pη0 ml(sx) + xn)/n, for all 1 ≤ i < n − 1. Similar
updates can be obtained when a change point has been detected. Moreover, certain
values at which the conjugate φ is evaluated actually reappear because of time shifts,
and can therefore be stored to facilitate tractability.

2.4. Discussion
In this chapter, we proposed methods for sequential change detection with expo-
nential families. The developed framework therefore generalizes and unifies change
detection for many common statistical models. Following a standard non-Bayesian
approach, we formulated change detection as a statistical decision problem with
multiple hypotheses, where the decision relies on the computation of generalized
likelihood ratio test statistics. We also introduced exact generalized likelihood ra-
tios with arbitrary estimators. Applying this to exponential families, we developed
a generic scheme for change detection under common scenarios with known or un-
known parameters and arbitrary estimators, in close relation to maximum likelihood
estimation. We also interpreted this scheme within the dually flat geometry of ex-
ponential families, hence providing both statistical and geometrical intuitions, and
bridging the gap between statistical and distance-based approaches to change de-
tection. We finally revisited this scheme through convex duality, and derived an
attractive scheme with closed-form sequential updates for the exact generalized like-
lihood ratio statistics, when both parameters before and after change are unknown
and are estimated by maximum likelihood. Several directions of improvement were
however left out for future work.
To begin with, some direct extensions of the framework are possible. An example

is the generalization of the obtained results to non-full families. We can actually
show that the results derived here still hold for certain curved exponential families,
with slight modifications when revisiting the schemes through convex duality, so as to
account for the maximum likelihoods before and after change not being simply linked
anymore with the maximum likelihood for no change through a barycentric relation.
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2. Sequential Change Detection with Exponential Families

Interestingly, this extension relies on the generalized Pythagorean theorem, and
on projections according to information divergences onto autoparallel submanifolds
in the dually flat geometry of exponential families. We yet did not develop this
extension here for the sake of conciseness.
Another example is to consider non-steep family as well. This requires however a

few additional assumptions. For these families, the maximum likelihood estimates
exist and are unique under the same conditions as for steep families, that is, if the
average of the sufficient observations lies in the interior of the convex support of the
dominating measure. Nevertheless, the maximum likelihood estimate in expectation
parameters does not necessarily equals the average of the sufficient observations.
This is because the open expectation parameter space is a proper subset of the convex
support of the dominating measure. Therefore, the presented results still hold under
the condition that this average is indeed in the expectation parameter space. On
the contrary to steep families, it does not unfortunately occur with probability one
as the sample size tends to infinity, so that the schemes may actually never apply
in practical situations.
A third example is the analysis of specific schemes when using other estimators

than the maximum likelihood. For instance, we can derive a similar sequential
update scheme as for maximum likelihood estimates, when using convex duality for
maximum a posteriori estimates based on standard exponential family conjugate
priors. The scheme is slightly more demanding since the corrective term does not
simplify anymore. The maximum a posteriori estimates are however also related
by simple time shifts and barycentric updates which facilitate tractability. Other
estimators could also be investigated such as using quasi likelihoods to account for
potential model misspecification. This idea is worth exploring.
A last example is the consideration of aggregates, or closures, of exponential fam-

ilies. This would permit to include the domain boundaries as well as the limit dis-
tributions in the schemes, while guaranteeing the existence of maximum likelihood
estimates and of their simple expression in all situations. Further considerations are
however needed on this line to rigorously extend the obtained results.
In complement to the statistical assumptions of mutual independence considered

in the proposed framework, we also want to address the statistical dependence be-
tween the random variables. As discussed in the text, the statistical framework
exposed based on multiple hypothesis testing can be extended to arbitrary condi-
tional models. Nevertheless, the issue in this context rather becomes the tractability
of the test statistics as soon as the parameters are unknown. Specific change detec-
tion schemes have yet been proposed for particular models, notably for autoregres-
sive models as in [André-Obrecht, 1988]. More generally, we would like to address
change detection in linear or even non-linear systems. Online schemes based on par-
ticle filtering have been proposed for instance in [Fearnhead and Liu, 2007] to detect
changes in non-linear systems, but such schemes suffer from computational loads
when properly considering unknown parameters and exact inference. An alternative
based on CUSUM-like test statistics has recently been proposed in [Vaswani, 2007].
On another perspective, we could also formulate sequential change detection in

a Bayesian framework to complement the non-Bayesian framework developed here.
This implies proposing relevant distributions to model both the run length between

40



2.4. Discussion

change points and the unknown parameters, seen as random variables. In this
context, several frameworks have already been proposed, for example in [Adams and
MacKay, 2007, Turner et al., 2009, Lai et al., 2009, Lai and Xing, 2010, Fearnhead
and Liu, 2011], certain dealing notably with exponential families. The inference
schemes, however, are in general more demanding than for non-Bayesian approaches,
even when using convenient conjugate priors on parameters. Moreover, conjugate
priors do not necessarily model adequately the true distributions so that alternatives
may be required. Using mixtures of conjugate priors, or equivalently hyperpriors in
a hierarchical model, may provide interesting solutions to address this.
Finally, we would like to address the use of alternative statistics than likelihoods.

This could be achieved by reversing the problem and starting from divergences. Here
we considered test statistics and derived expressions in terms of information diver-
gences within the dually flat geometry of exponential families. Another approach
is to directly design statistics through divergences in order to obtain more robust
estimators and tests while maintaining sufficient efficiency [Eguchi, 1983, Basu et al.,
1998, Eguchi and Kano, 2001, Mihoko and Eguchi, 2002, Pardo, 2005, Broniatowski
and Keziou, 2009, Eguchi, 2009, Basu et al., 2011]. This was left out for future work.

41





3. Non-Negative Matrix
Factorization with
Convex-Concave Divergences

In this chapter, we elaborate methods for non-negative matrix factorization within
the computational framework of information geometry. We notably formulate a
generic and unifying framework for non-negative matrix factorization with convex-
concave divergences. This framework encompasses many common information di-
vergences presented in Chapter 1, such as Csiszár divergences, certain Bregman
divergences, and in particular all α-divergences and β-divergences. A general opti-
mization scheme is developed based on variational bounding with surrogate aux-
iliary functions for almost arbitrary convex-concave divergences. Monotonically
decreasing updates are then obtained by minimizing the auxiliary function. The
proposed framework also permits to consider symmetrized and skew divergences
for the cost function. In particular, the generic updates are specialized to provide
updates for Csiszár divergences, certain skew Jeffreys-Bregman divergences, skew
Jensen-Bregman divergences. It leads to several known multiplicative updates, as
well as novel multiplicative updates, for α-divergences, β-divergences, and their
symmetrized or skew versions. These results are also generalized by considering
the family of skew (α, β, λ)-divergences. This is applied in Chapter 5 to design a
real-time system for polyphonic music transcription.

3.1. Context
In this section, we first provide some background information on the problem of
non-negative matrix factorization. We then discuss the motivations of our approach
to this problem. We finally sum up our main contributions in this context.

3.1.1. Background
Let us consider a dataset {y1, . . . ,yn} of size n consisting of non-negative multi-
variate observations of dimension m, and stack these observations into an m × n
non-negative matrix Y whose rows and columns represent respectively the different
variables and observations. As sketched in Figure 3.1, the problem of non-negative
matrix factorization (NMF) is to find an approximate factorization of Y into anm×r
non-negative matrix A and an r × n non-negative matrix X, such that Y ≈ AX,
where the integer r < min(m,n) is the rank of factorization. In this linear model,
each observation yj can then be expressed as yj ≈ Axj. The matrix A thus forms
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Figure 3.1.: Schematic view of non-negative matrix factorization. The prob-
lem of non-negative matrix factorization consists in reconstructing
non-negative observations, as the addition of a small number of
non-negative atoms with non-negative weights.

a basis or dictionary, and the columns of X are a decomposition or encoding of the
respective columns of Y into this basis. Moreover, the rank of factorization is gen-
erally chosen such that mr + rn� mn, so that the factorization can be thought of
as a compression or reduction of the observed data.
The NMF problem is therefore an unsupervised technique for multivariate data

analysis and dimensionality reduction, such as principal component analysis (PCA)
and independent component analysis (ICA). The distinction with the two latter
techniques, however, is that no other constraints than non-negativity of the obser-
vations and factors are required in NMF. These constraints are dropped in PCA and
ICA in favor of constraints for basis vectors that are respectively statistically uncor-
related or independent. As a result, cancellation is not allowed in the decomposition
of NMF, whereas it is allowed in the decomposition of PCA and ICA through the
subtraction of basis vectors. The main philosophy of NMF is thus to explain the ob-
servations in a constructive manner by addition of a small number of non-negative
parts shared by several observations. Such assumptions are particularly interest-
ing when negative values cannot be interpreted, for example, the pixel intensity for
images, the word occurrence for texts, or the frequency power spectrum for sounds.
Because of the low-rank factorization, the NMF model is most of the time only

approximate. As a result, the NMF problem is often formulated as an optimization
problem, where the aim is to find a factorization which optimizes a given functional,
called cost function or objective function, that quantifies the quality of the factor-
ization. In general, the rank of factorization is kept fixed in the optimization, either
chosen by the user or sometimes estimated directly from the data. The optimization
is then performed over all possible pairs of non-negative factors A and X. Moreover,
most if not all works on NMF focus on separable cost functions, that is, that are the
sum of a given scalar cost function considered element-wise.

44



3.1. Context

Historically, the formulation of NMF is attributed to Paatero and Tapper [1994],
Paatero [1997], who solved the problem for a weighted Euclidean cost function by
using an alternating non-negative least squares algorithm, and applied it to the anal-
ysis of environmental data in chemometrics. It became however more popular after
the work of Lee and Seung [1999, 2001], who investigated some simple and useful
algorithms based on multiplicative updates for the Euclidean and Kullback-Leibler
cost functions, with applications to the analysis of facial images and of text docu-
ments. Since then, there has been a growing interest for NMF in the communities
of machine learning and signal processing, and a flourishing literature has developed
about other algorithms and extensions to the standard NMF problem. We refer the
reader to the survey article of Berry et al. [2007] for a general introduction, and to
the book of Cichocki et al. [2009] for a comprehensive treatment as well as a discus-
sion of the main applicative domains of NMF algorithms, including bioinformatics,
spectroscopy, email surveillance, and analysis of text, image or audio data.
The differences between the variations of NMF can be summarized in three prin-

cipal directions. First, the standard model can be modified, for example, by using
non-negative tensors instead of non-negative matrices. Second, the standard con-
straints can be changed, for example, by imposing the sparsity of the factors in ad-
dition to their non-negativity. Third, the standard cost functions can be enhanced,
for example, by using more general divergences, or by adding penalization terms
to regularize the solutions. Several other algorithms than alternating least squares
and multiplicative updates have also been developed to solve NMF and its exten-
sions, notably based on gradient descent methods, adapted to the non-negativity
constraints by using exponentiation, line search, backtracking, or projections.
More recently, NMF has also been considered from statistical perspectives. In

this context, several authors have studied the links between optimization problems
for NMF and statistical inference under generative distributional assumptions of the
dataset [Schmidt and Laurberg, 2008, Schmidt et al., 2009, Virtanen et al., 2008,
Virtanen and Cemgil, 2009, Févotte et al., 2009, Févotte and Cemgil, 2009, Févotte,
2011, Cemgil, 2009, Zhong and Girolami, 2009, Bertin et al., 2010, Hoffman et al.,
2010, Dikmen and Févotte, 2011, Lefèvre et al., 2011a]. In summary, equivalence is
known between the NMF problem with either the Euclidean, Kullback-Leibler, or
Itakura-Saito cost function, and the maximum likelihood estimation under either a
normal, a Poisson, or a gamma observation model, respectively. There also exist
equivalent composite models with superimposed components, which exploit either
the closure under summation of the normal and Poisson observation models for the
Euclidean and Kullback-Leibler cost functions, or a specific property of the circular
complex normal distribution for the Itakura-Saito cost function.
Based on such statistical formulations, it is then possible to use many tools from

statistical inference to solve the related NMF problems, such as the expectation-
maximization algorithm and its generalizations. Moreover, it is possible to add
statistical prior information to the problem, which can be seen as adding penalty
terms to the cost function for regularization. For example, a prior exponential
distribution on the activations is known to favor a sparse solution through an `1-norm
penalty. A full Bayesian framework can be developed in this manner. One then
rather resorts to posterior estimation methods for solving the NMF problem, by
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using Monte-Carlo methods such as Markov chain Monte Carlo schemes and in
particular Gibbs sampling, or by using variational Bayes methods.
In parallel, more general matrix factorization models have also been considered

by using the correspondence between exponential families and Bregman divergences
[Collins et al., 2002, Singh and Gordon, 2008, Mohamed et al., 2009, 2012]. The
general setting is that of latent variable models, where the sample observations
y1, . . . ,yn are supposed to be the sufficient observations of an exponential family
with respective expectation parameters Ax1, . . . ,Axn.1 Under mild assumptions,
the negative log-likelihood − log p(Y|A,X) actually equals the sum of Bregman di-
vergences

∑n
j=1Bφ(yj‖Axj) up to constant terms, where φ is the conjugate of the

log-normalizer ψ for the exponential family. As a result, maximum likelihood es-
timation in this model amounts to a right-sided approximate matrix factorization
problem with a Bregman divergence. It therefore elucidates the relations between
the cost function and the distributional assumptions, and unifies many matrix fac-
torizations models such as PCA, ICA, as well as NMF and the related techniques of
probabilistic latent semantic analysis (PLSA) [Hofmann, 1999, Gaussier and Goutte,
2005], and probabilistic latent component analysis (PLCA) [Smaragdis and Raj, 2007,
Shashanka et al., 2008]. Again, a full Bayesian framework with adapted methods
for statistical inference is also possible in this setting.

3.1.2. Motivations
Because of the wide applicative range of NMF techniques, there is a strong moti-
vation in providing generic methods that handle data of heterogeneous types under
different distributional assumptions. In many NMF algorithms, however, a partic-
ular cost function or statistical model is assumed. Therefore, a generic statistical
framework based on the correspondence between exponential families and Bregman
divergences, as discussed above, seems an interesting approach to the NMF problem.
Indeed it provides tight links between statistical inference in the models involved and
optimization of the related cost functions for a great variety of problems.
Nevertheless, because of the generality of this framework, the inference schemes

employed may undergo theoretical and computational issues, related to convergence,
efficiency and tractability. Moreover, it is not always evident to deal soundly with the
non-negative constraints in generic inference schemes when the priors or model do
not guarantee inherently this constraint. As a result, specific optimization schemes
are still often derived to address particular NMF problems [Tan and Févotte, 2009,
Psorakis et al., 2011].
Other issues are that we do not always know the exact distribution of the data

to analyze, and that the NMF problem may suffer from model misspecification,
hence undermining the robustness of inference. A similar problem arises from the
potential presence of outliers, which requires robust inference methods to be dealt
with. In statistical inference, an alternative to tackle robustness issues is to minimize
other divergences than that for the maximum likelihood estimator, for example, the
left-sided related divergence corresponding to the maximum likelihood predictor
[Barndorff-Nielsen, 1978, Brown, 1986], or by employing more general families of

1It can also be generalized to other parametrizations through the use of link functions.
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divergences designed to improve robustness while maintaining sufficient efficiency
[Eguchi, 1983, Basu et al., 1998, Eguchi and Kano, 2001, Mihoko and Eguchi, 2002,
Pardo, 2005, Broniatowski and Keziou, 2009, Eguchi, 2009, Basu et al., 2011].
In the context of NMF, such alternatives have been considered by several authors.

Cichocki et al. [2006] studied the right-sided NMF problem with certain Csiszár
divergences and proposed heuristic multiplicative updates. Cichocki et al. [2008] fo-
cused on the right-sided NMF problem with α-divergences, and derived multiplica-
tive updates that decrease monotonically the cost function, by using an auxiliary
function based on the convexity of the cost function and Jensen’s inequality. In the
meantime, Dhillon and Sra [2006] studied the right- and left-sided NMF problems
with Bregman divergences, and provided heuristic updates for the right-sided prob-
lem, as well as monotonically decreasing updates for the left-sided problem based
again on an auxiliary function using convexity of the cost function and Jensen’s in-
equality. Kompass [2007] considered the right-sided NMF problem with a subfamily
of β-divergences for which the cost function is convex, and proposed multiplicative
updates that decrease monotonically the cost function with the very same approach.
More recently, Nakano et al. [2010a] extended this to the right-sided NMF problem

with any β-divergence, still using an auxiliary function relying on Jensen’s inequality
for the convex part of the cost function, and on the tangent inequality for the
concave part. Févotte and Idier [2011] independently obtained the same results,
and introduced other monotonically decreasing updates based on the equalization of
the auxiliary function, rather than on its minimization as in the previous approaches.
Cichocki et al. [2011] generalized some results to the right-sided NMF problem with
(α, β)-divergences and provided monotonically decreasing multiplicative updates,
again by minimizing an auxiliary function built with the same approach.
We position in the continuity of these works and seek to formulate a unifying

framework for NMF optimization based on general families of divergences, with
guaranteed monotonic decrease and thus convergence of the cost function.2 More-
over, we aim at studying indifferently left- and right-sided NMF problems, as well
as considering ways of symmetrization and skewing of the cost functions, which has
been left aside from the literature up to now.
In the sequel, we consider algorithms based on alternating updates. Because the

NMF problem is in general not jointly convex in both factors and uneasy to solve,
most algorithms iteratively update the factors A and X separately. After initializing
A and X, a generic NMF scheme can be stated as follows. We first fix X and update
A so as to improve the quality of the factorization, then fix A and update X so as
to improve the quality of the factorization. These two steps are repeated in turn
until a termination criterion is met. We can of course consider the updates in the
reverse order, and the two initializations are not always required depending on the
algorithm and the order of the updates. In this context, it thus seems crucial from
theoretical and practical viewpoints to us, even if heuristic updates are still often
used, that the respective updates guarantee at least the monotonic decrease of the
cost function so that the factorization is improved at each iteration.

2The convergence of the cost function does not prove however its convergence to a global or local
minimum, nor the convergence of the sequence of updates itself, which are theoretically more
difficult to obtain and are not discussed here.
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We also consider NMF with separable divergences. This basic assumption allows
viewing the factors A and X similarly. It seems intuitive at first sight, since if Y ≈
AX, then Y> ≈ X>A>, so that the roles of the factors are interchangeable. In this
context, the NMF problem can be conveniently reduced to finding an update of the
respective columns xj of X, where A is kept fixed. We thus concentrate without loss
of generality on solving the supervised non-negative matrix factorization problem,
also called non-negative decomposition problem, y ≈ Ax, where the non-negative
vector y and matrix A are known, and the non-negative vector x is chosen so as
to optimize the quality of factorization with respect to a separable cost function.
Nevertheless, we notice that the separability assumption, even if intuitive and used in
almost all works, is disputable. Indeed, in the statistical framework exposed above,
it is closely related to assumptions on the independence or exchangeability of the
observations which are not always met in practice. Yet we leave these considerations
apart from the present work, and focus on separable divergences.

3.1.3. Contributions
Our contributions to the problem of non-negative matrix factorization can be sum-
marized as follows. As the principal contribution, we formulate a generic and uni-
fying framework for non-negative matrix factorization with convex-concave diver-
gences. Convex-concave divergences are general divergences that can be expressed
as the sum of a convex part and of a concave part, with respect to either one of
the two arguments. They encompass many common information divergences pre-
sented in Chapter 1, and notably all Csiszár divergences in both the left and right
arguments, all Bregman divergences in the left argument, and certain Bregman di-
vergences in the right argument. In particular, all α-divergences and β-divergences
are actually convex-concave divergences in both arguments. This framework there-
fore permits to handle the majority of cost functions proposed in the literature so
far, as well as novel ones, with a single generic methodology.
To solve for non-negative matrix factorization with convex-concave divergences,

we assume separable divergences and reduce the problem to a common non-negative
decomposition framework where the factors are updated in turn iteratively. We then
propose a general optimization scheme for non-negative decomposition with convex-
concave divergences under mild regularity assumptions. It relies on the optimization
technique of variational bounding, or majorization, where majorizing auxiliary func-
tions are constructed around the current solutions and act as surrogates for the
iterative optimization of the cost function. The auxiliary functions built for convex-
concave cost functions rely on the use of Jensen’s inequality for the convex part, and
on the tangent inequality for the concave part, hence extending several approaches
based on auxiliary functions discussed above. Generic updates are obtained by con-
sidering the minimization of the auxiliary functions around the previous solution at
each iteration. These updates are proved to make the cost function decrease mono-
tonically, provided that the minima of the auxiliary functions are reached in the
interior of the positive orthant, thus ensuring its convergence. Other updates are
also constructible when the latter assumption fails, yet we focus on the case where
it holds since it concerns the main information divergences investigated here.
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3.2. Optimization framework

The generic updates are discussed in contrast to the well-known concave-convex
procedure, where we show how the use of Jensen’s inequality encodes in some way
the non-negativity, and how its coupling with separability permits to reduce the
multidimensional NMF optimization problem into a simpler problem with a system
of one-dimensional independent equations that can be solved more efficiently in
the general case. We also provide insights into the simplification of this system
into closed-form updates, and notably clarify a reasonable assumption in relation
to Pexider’s functional equations to obtain attractive multiplicative updates. This
assumption shows that information divergences based on power functions and their
limit cases are the reasonable candidates for obtaining multiplicative updates. This
includes the parametric families of α-divergences and β-divergences, as well as the
(α, β)-divergences.
The proposed framework also permits to consider non-negative matrix factoriza-

tion with symmetrized and skew divergences. To the best of our knowledge, it is
the first time that this is considered in the context of non-negative matrix factoriza-
tion. In particular, the proposed generic updates are specialized to provide updates
for Csiszár divergences, certain skew Jeffreys-Bregman divergences, skew Jensen-
Bregman divergences. It leads notably to several known multiplicative updates, as
well as novel ones, for α-divergences, β-divergences, and their skew versions. These
results are also generalized by considering the family of skew (α, β, λ)-divergences,
for which multiplicative updates are derived in certain parameter regions.

3.2. Optimization framework
In this section, we formalize a standard optimization framework for NMF. The
non-negative decomposition problem is considered as the minimization of a cost
function built with a given separable divergence. Since this problem cannot be solved
straightforward in general, we then introduce variational bounding as a generic op-
timization method for optimizing the cost function iteratively.

3.2.1. Cost function minimization problem
We formulate the reduced problem of non-negative decomposition, where we keep
the dictionary matrix fixed, and seek encoding coefficients of the observations into
this dictionary.

Problem 3.1. Let y ∈ Rm
+ be an observation vector of sizem ≥ 1, and let A ∈ Rm×r

+
be a dictionary matrix made of r ≥ 1 basis vectors. The problem of non-negative
decomposition is to find an encoding vector x ∈ Rr

+ of y into A such that the
approximation y ≈ Ax is of sufficient quality with respect to a given criterion.

Remark 3.1. A more general decomposition problem with arbitrary or no constraints
can be formulated straightforward. The non-negativity constraints, or even positiv-
ity constraints, will however reveal crucial in the derivation of a generic algorithm
for decomposition with convex-concave divergences, because of the need for positive
weights in Jensen’s inequality and of the multiplicative group structure of R∗+ for
stability under multiplication and inversion.
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As discussed above, we measure the quality of the approximate factorization via
a cost function built with a separable divergence D on a set Y = Y m, generated
by a given scalar divergence d on Y . In the sequel, we suppose without loss of
generality that Y is contained in R+, otherwise it suffices to consider a restricted
subset Y ∩ R+. For the non-negative decomposition problem to make sense, we
further suppose that Y is non-empty and that the observation vector y belongs to
Y . We now define the set of encoding vectors x that are feasible for the problem of
non-negative decomposition.

Definition 3.1. The feasible set is the set X defined as follows:

X = {x ∈ Rr
+ : Ax ∈ Y} . (3.1)

Remark 3.2. The feasible set gathers all encoding vectors for which Ax lies in Y so
that we can measure the quality of the approximate factorization via the separable
divergence. For other encoding vectors, the problem does not make sense anymore
since we cannot measure this quality according to the chosen criterion.

Definition 3.2. The cost function is the function C defined as follows:

C(x) = D(y‖Ax) for all x ∈ X . (3.2)

Remark 3.3. In this definition, we employ the convention that the observations yi are
in the first argument of the scalar divergence. This should not confuse the reader:
there is no loss of generality with this convention, and we can consider left- and
right-sided problems, or obviously symmetric problems if the scalar divergence is
symmetric. For a right-sided problem, it suffices to replace the scalar divergence
d(y‖y′) with the scalar divergence d∗(y‖y′) = d(y′‖y) with swapped arguments.
Remark 3.4. We remark that even if the divergence is separable, the cost function
cannot be seen as a separable function on the entries of the encoding vector x in
general. It is however separable on the entries of the observation vector y since it
can be developed as follows:

C(x) =
m∑
i=1

d

(
yi

∥∥∥∥∥
r∑

k=1

aikxk

)
. (3.3)

Remark 3.5. Using the cost function C(x), the NMF problem can be seen as an
optimization problem, more precisely a constrained minimization problem:

minimize C(x) subject to x ∈ X . (3.4)

In general, this problem cannot be solved straightforward and iterative methods
for optimization are thus employed. Nevertheless, we notice that in an alternating
update scheme for solving the NMF problem with respect to both factors, we do not
need necessarily to solve exactly the above non-negative decomposition subproblem,
but rather to find an encoding vector x ∈ X that makes the cost function decrease
compared to the current encoding vector sx ∈ X .

50



3.2. Optimization framework

Figure 3.2.: Geometrical interpretation of non-negative decomposition. The opti-
mization problem of non-negative decomposition can be seen as a pro-
jection of the observation vector onto the intersection of the conical hull
of the basis vectors with the domain of the divergence.

Remark 3.6. The non-negative decomposition problem also has a nice geometrical
interpretation. Indeed, under some regularity assumptions, the problem can be seen
as a right-sided projection py = arg miny′∈Y ′ D(y‖y′) of the point y ∈ Y onto the
subset Y ′ ⊆ Y with respect to the divergence D, where Y ′ is the intersection of the
conical hull of the set of basis vectors {a1, . . . , ar} with the domain Y of the diver-
gence, as illustrated in Figure 3.2. The optimal encoding vector px then represents
the non-negative coordinates of the projection py with respect to the basis vectors,
provided that the dictionary matrix A is of full rank. Solving for this projection is in
general not easy, even when Y ′ is convex, in part because it is considered with respect
to a divergence and not the Euclidean distance, but also because of the additional
domain constraints on the problem. We notice however that for the left-sided de-
composition problem with Bregman divergences, this projection can be solved under
mild assumptions by using alternate Bregman projections on hyperplanes [Dhillon
and Tropp, 2008]. This procedure is yet slow to converge. Moreover, it cannot be
extended in general to right-sided Bregman divergences or other divergences.

3.2.2. Variational bounding and auxiliary functions
As discussed above, the cost function in the non-negative decomposition problem is
not straightforward to optimize in general. To address this, we rely on the framework
of variational bounding, also called majorization, which is an iterative technique for
minimization problems where we replace the cost function at each step with a surro-
gate majorizing function that we optimize instead [Rustagi, 1976, Hunter and Lange,
2004]. This technique is in general employed for solving optimization problems with
possibly non-convex cost functions, and often reveals efficient provided that the ma-
jorizing auxiliary functions at each step are easier to optimize than the original cost
function. The difficulty lies in choosing appropriate majorizing functions, that can
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Figure 3.2.: Auxiliary function for the cost function. The auxiliary function defines
a majorizing function above the current solution, which can be used as
a surrogate for optimizing the cost.

Lemma 3.1. Let x, sx ∈ X . If G(x|sx) ≤ G(sx|sx), then C(x) ≤ C(sx).

Proof. Let x, sx ∈ X . By definition, we have C(x) ≤ G(x|sx) and C(sx) = G(sx|sx).
Now if G(x|sx) ≤ G(sx|sx), then we have C(x) ≤ G(x|sx) ≤ G(sx|sx) = C(sx), which
proves the lemma.

Remark 3.8. We also have strict decrease of the cost function as soon as we choose
a vector x that makes the auxiliary function strictly decrease as G(x|sx) < G(sx|sx).

Remark 3.9. This justifies the use of an auxiliary function to minimize or at least
make the original cost function decrease. Indeed, if the current solution is given by
sx ∈ X , then choosing a point x ∈ X such that G(x|sx) ≤ G(sx|sx) provides a better
solution. This may be iterated until a termination criterion is met. In general, when
it is possible, the point x is chosen as a minimizer of the auxiliary function at sx, so
that we need to solve the following optimization problem:

minimize G(x, sx) subject to x ∈ X . (3.5)

The minimization can be done on an arbitrary subset X ′ ⊆ X as soon as sx ∈ X ′. It
is also possible to equalize the auxiliary function instead, or to choose any point in
between the minimization and the equalization.

We show in the sequel that we can build auxiliary functions for a wide range of
common information divergences presented in Chapter 1. We can therefore op-
timize the respective cost functions by variational bounding. We will focus on
maximization-minimization schemes where the auxiliary function is iteratively min-
imized to update the solution as discussed above.
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real-time applications in audio signal processing. In this context, we address in
parallel the applicative problems of real-time audio segmentation, and of real-time
polyphonic music transcription. This is achieved by developing theoretical frame-
works respectively for sequential change detection with exponential families, and
for non-negative matrix factorization with convex-concave divergences. On the one
hand, sequential change detection is studied in the light of the dually flat informa-
tion geometry of exponential families. We notably develop a generic and unifying
statistical framework relying on multiple hypothesis testing with decision rules based
on exact generalized likelihood ratios. This is applied to devise a modular system
for real-time audio segmentation with arbitrary types of signals and of homogeneity
criteria. The proposed system controls the information rate of the audio stream
as it unfolds in time to detect changes. On the other hand, non-negative matrix
factorization is investigated by the way of convex-concave divergences on the space
of discrete positive measures. In particular, we formulate a generic and unifying
optimization framework for non-negative matrix factorization based on variational
bounding with auxiliary functions. This is employed to design a real-time system
for polyphonic music transcription with an explicit control on the frequency com-
promise during the analysis. The developed system decomposes the music signal as
it arrives in time onto a dictionary of note spectral templates. These contributions
provide interesting insights and directions for future research in the realm of audio
signal processing, and more generally of machine learning and signal processing,
in the relatively young but nonetheless prolific field of computational information
geometry.
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Figure 3.3.: Auxiliary function for the cost function. The auxiliary function defines
a majorizing function above the current solution, which can be used as
a surrogate for optimizing the cost.

be optimized efficiently, and that provide tight bounds in order to fit well the origi-
nal cost function and make it decrease fast enough. Such majorizing functions can
be defined in general terms as follows.

Definition 3.3. An auxiliary function is a function G : X × X → R such that
G(sx|sx) = C(sx) and G(x|sx) ≥ C(x) for all x, sx ∈ X .

Remark 3.7. We actually need not always define an auxiliary function everywhere on
X ×X . If the updates have to stay in a given subset of X ′ ⊆ X , we can just define
the auxiliary function on X ′×X ′ and optimize it on X ′, provided that the algorithm
is correctly initialized with a point in X ′. This is sometimes the case for non-negative
decomposition with multiplicative updates, where we want the updates to stay in
R∗+ instead of R+ in order to avoid divisions by zero and trivial fixed points that are
not optimal. Of course, it is nonetheless possible that the algorithm converges to
a boundary point while staying in the interior so we do not exclude these potential
solutions of the problem.
The interest of using an auxiliary function lies in the fact that if we can optimize

it, then we can also make the original cost function decrease, that is, we can find
a new point x ∈ X that improves the cost function compared to the current point
sx ∈ X . This is illustrated in Figure 3.3 and formalized in the following lemma.

Lemma 3.1. Let x, sx ∈ X . If G(x|sx) ≤ G(sx|sx), then C(x) ≤ C(sx).

Proof. Let x, sx ∈ X . By definition, we have C(x) ≤ G(x|sx) and C(sx) = G(sx|sx).
Now if G(x|sx) ≤ G(sx|sx), then we have C(x) ≤ G(x|sx) ≤ G(sx|sx) = C(sx), which
proves the lemma.

Remark 3.8. We also have strict decrease of the cost function as soon as we choose
a vector x that makes the auxiliary function strictly decrease as G(x|sx) < G(sx|sx).
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Remark 3.9. This justifies the use of an auxiliary function to minimize or at least
make the original cost function decrease. Indeed, if the current solution is given by
sx ∈ X , then choosing a point x ∈ X such that G(x|sx) ≤ G(sx|sx) provides a better
solution. This may be iterated until a termination criterion is met. In general, when
it is possible, the point x is chosen as a minimizer of the auxiliary function at sx, so
that we need to solve the following optimization problem:

minimize G(x, sx) subject to x ∈ X . (3.5)

The minimization can be done on an arbitrary subset X ′ ⊆ X as soon as sx ∈ X ′. It
is also possible to equalize the auxiliary function instead, or to choose any point in
between the minimization and the equalization.
We show in the sequel that we can build auxiliary functions for a wide range of

common information divergences presented in Chapter 1. We can therefore optimize
the respective cost functions by variational bounding. We will focus onmajorization-
minimization schemes where the auxiliary function is iteratively minimized to update
the solution as discussed above.

3.3. Methods for convex-concave divergences
In this section, we elaborate on the proposed methods for solving the problem
of non-negative decomposition with convex-concave divergences. We first develop
generic updates by constructing and minimizing a general auxiliary function. We
then particularize these generic updates to common families of information di-
vergences, including Csiszár divergences, skew Jeffreys-Bregman divergences, skew
Jensen-Bregman divergences, and skew (α, β, λ)-divergences. It leads to known and
novel closed-form multiplicative updates for all α-divergences, β-divergences, almost
all (α, β)-divergences, and certain of their symmetric or skew versions.

3.3.1. Generic updates
Up from now, we restrict to the case where Y = R∗+ since it concerns the scalar
divergences considered later. This ensures that Y is stable under multiplication and
inversion, which reveals useful in the subsequent derivations. Moreover, it guarantees
that the feasible set X contains at least all positive vectors as soon as it is non-empty.

Lemma 3.2. If Y = R∗+, then X is non-empty iff (R∗+)r ⊆ X .

Proof. On the one hand, if (R∗+)r ⊆ X , then X is clearly non-empty. On the other
hand, if X is non-empty, then we remark that the dictionary A cannot have a null
row. Indeed, if it were the case, then the corresponding row of Ax would be null for
any encoding vector x ∈ Rr

+, so that X would be empty, leading to a contradiction.
As a result, there is no null row in A, and for any encoding vector x ∈ (R∗+)r, we
also have Ax ∈ (R∗+)m, so that x ∈ X and (R∗+)r ⊆ X .

Remark 3.10. We also have equivalence with the dictionary matrix A having no null
row. If it were the case, then the non-negative decomposition would be degenerate
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and we could remove this row of A and the corresponding entry of the observation
vector y, to end up with a non-degenerate problem with this respect.
We therefore suppose that the feasible set X is non-empty, meaning that the

non-negative decomposition problem is feasible. In other terms there exists at least
one encoding vector x such that Ax ∈ Y , and thus it is relevant to search for an
encoding vector that leads to a sufficient or at least improved quality of factorization
compared to others. It also implies that the feasible set X contains the entire positive
orthant. Assuming now that the scalar divergence d is convex-concave, convenient
auxiliary functions can be built by using Jensen’s inequality for the convex parts
and the tangent inequality for the concave parts. During optimization based on
variational bounding with these auxiliary functions, we stay in the positive orthant
for technical validity. This can be discussed as follows.

Proposition 3.3. Suppose that the scalar divergence d is a convex-concave function
in the second argument, and that the decomposition d = qd + pd, where qd and pd are
respectively convex and concave in the second argument, can be chosen such that pd
is differentiable in the second argument. Then, we can define an auxiliary function
G for the cost function C as follows:

G(x|sx) =
m∑
i=1

{
pd
(
yi

∥∥∥∥∥
r∑
l=1

ailsxl
)

+
r∑

k=1

aiksxk∑r
l=1 ailsxl

qd
(
yi

∥∥∥∥∥
r∑
l=1

ailsxl
xk
sxk

)

+
r∑

k=1

aik(xk − sxk)
∂ pd
∂y′

(
yi

∥∥∥∥∥
r∑
l=1

ailsxl
)}

for all x, sx ∈ (R∗+)r . (3.6)

Proof. Let x, sx ∈ (R∗+)r ⊆ X . We separate the cost function C(x) =
∑m

i=1Ci(x)
as the element-wise scalar divergences Ci(x) = d(yi‖

∑r
k=1 aikxk) on the entries

of the observation vector. We further decompose the element-wise cost functions
Ci(x) = qCi(x) + pCi(x), into convex and concave parts qCi(x) = qd(yi‖

∑r
k=1 aikxk)

and pCi(x) = pd(yi‖
∑r

k=1 aikxk). Our aim is to bound separately qCi, pCi, with auxiliary
functions qGi, pGi, and then sum up everything to provide a global auxiliary function
G for the cost function C. Beginning with the convex parts, we define the auxiliary
functions as follows:

qGi(x|sx) =
r∑

k=1

aiksxk∑r
l=1 ailsxl

qd
(
yi

∥∥∥∥∥
r∑
l=1

ailsxl
xk
sxk

)
. (3.7)

The function qGi is well-defined since
∑r

l=1 ailsxl 6= 0, sxk 6= 0, and
∑r

l=1 ailsxl xksxk ∈ R∗+,
for all 1 ≤ k ≤ r. We also have qGi(sx|sx) = qCi(sx) which can be seen from:

qGi(sx|sx) =
r∑

k=1

aiksxk∑r
l=1 ailsxl

qd
(
yi

∥∥∥∥∥
r∑
l=1

ailsxl
)

(3.8)

= qd
(
yi

∥∥∥∥∥
r∑
l=1

ailsxl
)

(3.9)

= qCi(sx) . (3.10)
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Moreover, we have qGi(x|sx) ≥ qCi(x) as a result of Jensen’s inequality for the function
qd, which is convex in the second argument, and using the weights aiksxk ∈ R∗+
normalized by their positive sum:

qGi(x|sx) ≥ qd
(
yi

∥∥∥∥∥
r∑

k=1

aiksxk∑r
l=1 ailsxl

r∑
l=1

ailsxl
xk
sxk

)
(3.11)

= qd
(
yi

∥∥∥∥∥
r∑

k=1

aikxk

)
(3.12)

= qCi(x) . (3.13)

This proves that qGi is indeed an auxiliary function for qCi. We now turn to the
concave parts, and define the auxiliary functions as follows:

pGi(x|sx) = pd
(
yi

∥∥∥∥∥
r∑
l=1

ailsxl
)

+
r∑

k=1

aik(xk − sxk)
∂ pd
∂y′

(
yi

∥∥∥∥∥
r∑
l=1

ailsxl
)

. (3.14)

The function pGi is well-defined since the function pd is differentiable in the second
argument. We also have pGi(sx|sx) = pCi(sx) which can be seen from:

pGi(sx|sx) = pd
(
yi

∥∥∥∥∥
r∑
l=1

ailsxl
)

(3.15)

= pCi(sx) . (3.16)

Moreover, we have pGi(x|sx) ≥ pCi(x), which arises from the tangent inequality applied
to the differentiable concave functions pCi as follows:

pGi(x|sx) = pCi(sx) + (x− sx)>∇ pCi(sx) (3.17)
≥ pCi(x) . (3.18)

This proves that pGi is indeed an auxiliary function for pCi. Putting everything
together, we conclude that G(x|sx) =

∑m
i=1

qGi(x|sx)+ pGi(x|sx) is an auxiliary function
for the cost function C(x) =

∑m
i=1

qCi(x) + pCi(x), which proves the proposition.

Remark 3.11. The framework of convex-concave functions applies to many common
information divergences, except for some Bregman divergences in the second argu-
ment and their skew Jeffreys-Bregman versions. The assumption that the concave
part is differentiable is not too restrictive since most cost functions for non-negative
decomposition are smooth. Moreover, it is well-known that an arbitrary concave
function is actually differentiable at all but at most countably many points. Fi-
nally, it is also possible to extend the results by considering subgradients where the
function is not differentiable.
Remark 3.12. The decomposition d = qd + pd is clearly arbitrary up to adding and
subtracting the same differentiable convex function respectively to qd and pd. For
the divergences considered here, it appears that there is a somewhat canonical de-
composition, but using other decompositions may lead to different results since the
auxiliary function depends on this decomposition.
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To optimize the cost function based on majorization-minimization, we need to
minimize the above auxiliary functions at each step. It guarantees the monotonic
decrease of the cost function as discussed below.
Theorem 3.4. Suppose that the scalar divergence d is a convex-concave function
in the second argument, and that the decomposition d = qd + pd, where qd and pd are
respectively convex and concave in the second argument, can be chosen such that qd
and pd are differentiable in the second argument. Then, for all sx ∈ (R∗+)r, we have
C(x) ≤ C(sx) for any point x ∈ (R∗+)r that verifies the following system of equations:

m∑
i=1

aik
∂ qd
∂y′

(
yi

∥∥∥∥∥
r∑
l=1

ailsxl
xk
sxk

)
= −

m∑
i=1

aik
∂ pd
∂y′

(
yi

∥∥∥∥∥
r∑
l=1

ailsxl
)

for all k ∈ v1, rw .

(3.19)
Proof. Let sx ∈ (R∗+)r. The auxiliary function G at sx can be separated on the entries
of the encoding vector x ∈ (R∗+)r as G(x|sx) = pd(yi‖

∑r
l=1 ailsxl) +

∑r
k=1 gk(xk|sx),

where gk(xk‖sx) is defined as follows:

gk(xk|sx) =
m∑
i=1

aiksxk∑r
l=1 ailsxl

qd
(
yi

∥∥∥∥∥
r∑
l=1

ailsxl
xk
sxk

)
+ aik(xk − sxk)

∂ pd
∂y′

(
yi

∥∥∥∥∥
r∑
l=1

ailsxl
)

.

(3.20)
The auxiliary function G at sx being convex and differentiable, it attains its minimum
at a point x ∈ (R∗+)r iff we have ∂xkG(x|sx) = 0, for any 1 ≤ k ≤ r. Since the
respective derivatives can be developed as ∂xkG(x|sx) = ∂xkgk(xk|sx), the minimum
is attained at the points x that are solutions of the following system of equations:

m∑
i=1

aik
∂ qd
∂y′

(
yi

∥∥∥∥∥
r∑
l=1

ailsxl
xk
sxk

)
+ aik

∂ pd
∂y′

(
yi

∥∥∥∥∥
r∑
l=1

ailsxl
)

= 0 . (3.21)

Moreover, these global minima are such that G(x|sx) ≤ G(sx|sx), and thus verify
C(x) ≤ C(sx) since G is an auxiliary function for C.

Remark 3.13. The assumptions imply that d needs to be differentiable, but for the
same reasons as discussed above, this is not too restrictive in our context.
Remark 3.14. We notice that if a column of the dictionary A is null, then the
corresponding equation is always verified, simply meaning that adding this null
column to any extent in the decomposition does not change anything. As a result,
the problem is degenerate and we can remove this column from the dictionary and
the corresponding entry of the encoding vector, to end up with a non-degenerate
problem with this respect.
Remark 3.15. It is interesting to remark that because of the differentiation, these
equations do not depend on arbitrary affine terms in the decomposition into convex
and concave parts. As a result, constant terms can clearly be omitted in the decom-
position, and linear terms can be put either in the convex part or in the concave part
without changing the updates. The updates may however depend on other arbitrary
convex terms that are not affine. For the considered information divergences, there
is actually a somewhat canonical decomposition that leads to simple solutions as
discussed later.
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Remark 3.16. Here we considered optimization by majorization-minimization, and
thus set the gradient of the auxiliary function to zero to obtain the system of equa-
tions for the updates. This scheme works as soon as the convex auxiliary function
attains its minimum inside the positive orthant. When it is not the case, then an
infimum is actually attained at a limit point. Since the auxiliary function can be
separated on the respective dimensions, the search for such a limit point can also be
separated across the dimensions. Considering a given element-wise convex auxiliary
function, we notice that it cannot be affine with a negative slope, otherwise the
majorized cost function would become negative at some point. As a result, either
its minimum is attained in R∗+, or its infimum is attained at zero. Therefore, set-
ting the updated coordinate anywhere on the open segment in between the current
coordinate solution and zero would make the cost function decrease. The zero value
should however be avoided for technicality reasons, even if the sequence of updates
may converge to this point. We yet do not need such updates here since it does not
concern the information divergences considered.
Remark 3.17. At this point, it is worth mentioning some relations between the pro-
posed method and the concave-convex procedure (CCCP) [Yuille and Rangarajan,
2003]. The CCCP lies in the same framework of variational bounding, but only
considers the tangent inequality to majorize the concave part of the convex-concave
cost function C. It then minimizes the convex auxiliary function by setting its gra-
dient to zero. It leads to the update x of sx as ∇ qC(x) = −∇ pC(sx) when such a point
exists. For several convex-concave problems, the convex part is actually strictly con-
vex and its gradient one-to-one with a closed-form inverse, so that the updates can
be computed efficiently. Applying this to the non-negative decomposition frame-
work, however, is not straightforward in general, because of the linear model and
the non-negative constraints. Indeed, the system of equations of the CCCP would
write as follows:

m∑
i=1

aik
∂ qd
∂y′

(
yi

∥∥∥∥∥
r∑
l=1

ailxl

)
= −

m∑
i=1

aik
∂ pd
∂y′

(
yi

∥∥∥∥∥
r∑
l=1

ailsxl
)

. (3.22)

Because of the weighted sum of derivatives, which arises from the linear model, the
solutions of this system of equations is not available analytically in general, even if
the inverse mapping of ∂y′ qd is in closed form. As a result, we would need to solve for a
system of r equations which all depend on the full vector x of dimension r. Moreover,
there is a priori no consideration of the non-negative constraints when using this
procedure. This makes the CCCP unsuited, even for the standard Euclidean cost
function. In the proposed approach, we further use the Jensen’s inequality for the
convex part of the cost function. On the one hand, it results in general in a looser
bound than for the CCCP. On the other hand, it greatly simplifies the minimization
of the auxiliary function. Indeed, it allows separating the auxiliary function and
its optimization on the entries of x, thus leading to r independent equations in
dimension one, which can be solved much more efficiently in general. Moreover,
the non-negativity assumptions are taken into account in the weights of Jensen’s
inequality. Even if it does not guarantee a priori the non-negativity of the updates
in general, we see later that it is nonetheless the case for many divergences through
the derivation of closed-form multiplicative updates expressed with these weights.
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Remark 3.18. A reasonable condition for the system of equations to admit an ana-
lytical solution, is that the derivative f(y′) = ∂y′ qd(y‖y′) of the convex part allows
separating the ratio xk/sxk from the sum

∑r
l=1 ailsxl, either by taking a multiplica-

tive form f(y′1y′2) = g(y′1)h(y′2), or an additive form f(y′1y′2) = g(y′1) + h(y′2), up to
additive constants. Under mild assumptions, it is well-known that these two Pex-
ider’s functional equations admit respective solutions in the form of power functions
f(y′) = ky′p, and of logarithmic functions f(y′) = k log y′, where k, p ∈ R. In-
tegrating these functions leads again to power functions, logarithmic functions, or
even functions of the form k y′ log y′, up to affine terms. It therefore seems intuitive
that scalar divergences defined using one of these three forms would provide analyt-
ical solutions for the updates of the non-negative decomposition. Combinations of
such functions may also lead to closed-form updates depending on how the different
terms simplify. This highlights the interests in using scalar divergences such as the
α-divergences, β-divergences, and (α, β)-divergences, not only from a statistical and
information-theoretic standpoint, but also from a computational perspective.
This theorem provides a generic method to update the encoding vector while

ensuring monotonic decrease of a convex-concave cost function. For this, we need
to solve r independent equations of dimension one. Provided that a solution does
exist, solving the system can be done iteratively by using simple line search methods,
or more elaborate and efficient schemes such as Newton’s methods. In the sequel,
we show that for common information divergences, these equations simplify further,
and sometimes specifically lead to convenient closed-form multiplicative updates.
As discussed above, we will assume without loss of generality that the dictionary
matrix A has no null row nor column to derive these updates.

3.3.2. Case of Csiszár divergences
When considering the class of Csiszár divergences, the proposed generic method can
be simplified in terms of the generator function ϕ. Since this class is stable under
swapping the arguments and standard skewing, we specify without loss of generality
the form taken by the updates for a right-sided non-negative decomposition problem.

Corollary 3.5. Consider the right-sided non-negative decomposition problem with
the Csiszár ϕ-divergence d(C)

ϕ . For all sx ∈ (R∗+)r, we have C(x) ≤ C(sx) for any
point x ∈ (R∗+)r that verifies the following system of equations:

m∑
i=1

aikϕ
′
(

1
yi

r∑
l=1

ailsxl
xk
sxk

)
= 0 for all k ∈ v1, rw . (3.23)

Proof. The Csiszár ϕ-divergence d(C)
ϕ is clearly differentiable and convex in the sec-

ond argument. We can thus decompose it in respective differentiable convex and
concave parts qd(C)

ϕ (y‖y′) = y ϕ(y′/y), and pd(C)
ϕ (y‖y′) = 0. Applying the generic

method for convex-concave divergences, the corollary follows by remarking that
∂y′ qd(C)

ϕ (y‖y′) = ϕ′(y′/y), and that ∂y′ pd(C)
ϕ (y‖y′) = 0.

Example 3.1. For the right-sided non-negative decomposition problem with the
α-divergences d(a)

α , where α 6= 0, 1, the system of equations leads to the following
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closed-form multiplicative updates as the unique solution:

xk = sxk ×
(∑m

i=1 aik(yi/
∑r

l=1 ailsxl)
α∑m

i=1 aik

)1/α

. (3.24)

For α = 1, corresponding to the Kullback-Leibler divergence, solving the equations
shows that the above multiplicative updates actually still hold. These updates co-
incide with that proposed by Cichocki et al. [2008], where the case α = 0 is yet
omitted. For α = 0, corresponding to the dual Kullback-Leibler divergence, the
updates take a different form as follows:

xk = sxk × exp
(∑m

i=1 aik log (yi/
∑r

l=1 ailsxl)∑m
i=1 aik

)
. (3.25)

These updates were obtained for example by Dhillon and Sra [2006] as a left-sided
problem with the Kullback-Leibler divergence seen as a Bregman divergence. Con-
sidering left-sided problems with α-divergences is straightforward since it actually
suffices by symmetry to replace α with 1 − α, and apply the corresponding above
updates.

Example 3.2. For the right-sided non-negative decomposition problem with the
skew Jeffreys (α, λ)-divergences d(a)

α,λ, where α 6= 0, 1, the system of equations can be
developed as follows:

λ(1− α)
m∑
i=1

aik

(
1
yi

r∑
l=1

ailsxl
)−α(

xk
sxk

)−α

+ (1− λ)α
m∑
i=1

aik

(
1
yi

r∑
l=1

ailsxl
)α−1(

xk
sxk

)α−1

= (α + λ− 2αλ)
m∑
i=1

aik . (3.26)

Unfortunately, it does not admit a closed-form solution in the general case, and itera-
tive methods are required as discussed above. It is neither the case when α ∈ {0, 1},
corresponding to the skew Jeffreys divergence as a skew version of the Kullback-
Leibler divergence, where the unknown variables appear both as logarithmic and
inverse terms. For certain values of α, the equations can be written as polyno-
mial equations, which can be solved more efficiently with specific methods such as
root-finding algorithms, or with analytical solutions for lower degrees, when positive
solutions do exist. For example, for α ∈ {−1, 2}, corresponding respectively to skew
versions of the Neyman’s and Pearson’s chi-square distances, we end up with a poly-
nomial equation of degree three, while for α ∈ {−1/2, 3/2}, we have a polynomial
equation of degree four. Obviously, for α = 1/2, corresponding to the symmetric
Hellinger distance, the skewness has no effect and we have the same solutions for any
value of λ ∈ [0, 1], given as a special case of the above non-skew multiplicative up-
dates. For λ ∈ {0, 1}, corresponding to a left- or right-sided non-skew problem, the
updates also correspond to the above non-skew multiplicative updates. For the left-
sided non-negative decomposition problem with the skew Jeffreys (α, λ)-divergences
d

(a)
α,λ, it actually suffices by symmetry to replace either α with 1−α, or λ with 1−λ,

to end up with a right-sided problem.
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Example 3.3. A novel analytical scheme can be derived for a specific one-parameter
family of skew Jeffreys (α, λ)-divergences. Indeed, if we consider the right-sided
problem with the skew Jeffreys (α, λ)-divergences d(a)

α,λ, where α ∈ R \ [0, 1], and
λ = α/(2α − 1) ∈ (0, 1) \ {1/2}, the system of equations leads to the following
closed-form multiplicative updates as the unique solution:

xk = sxk ×
( ∑m

i=1 aik(yi/
∑r

l=1 ailsxl)
α∑m

i=1 aik(yi/
∑r

l=1 ailsxl)
1−α

)1/(2α−1)

. (3.27)

Notice that we are able to obtain closed-form updates, thanks to the constraint
λ = α/(2α− 1) which allows the constant to vanish in the equations. We also have
an inherent symmetry within the one-parameter family, where replacing α with 1−α,
is equivalent to replacing λ with 1−λ. As a result, we need only consider the values of
α > 1 because the other values are redundant. In the limit case α ∈ {0, 1}, we have
λ = 0, λ = 1, which corresponds to the equivalent non-skew problems of left-sided
non-negative decomposition with the dual Kullback-Leibler divergence, and of right-
sided non-negative decomposition with the Kullback-Leibler divergence, respectively.
As a result, the updates are still valid and actually coincide with the non-skew
multiplicative updates derived above. We can also consider straightforwardly the
left-sided problems with a one-parameter family of skew (α, λ)-divergences, where
the constraint now writes λ = (α − 1)/(2α − 1), and we have equivalence with the
right-sided problems by replacing α with 1− α, and λ with 1− λ.

The class of Csiszár divergences is also stable under the second type of skew-
ing introduced for Jensen-Bregman divergences. We were not however able to de-
rive interesting results to simplify the proposed generic method for skew Jensen
(α, λ)-divergences, except for negative integer values of α where we obtain poly-
nomial equations, and in particular for α = −1, corresponding to the Neyman’s
chi-square distance, where the polynomial equation is of degree four. For the sake
of conciseness, we thus do not develop this type of skewing further.

3.3.3. Case of skew Jeffreys-Bregman divergences
On the contrary to Csiszár divergences, the class of Bregman divergences is not sta-
ble under swapping the arguments, so that the left-sided problems are not equivalent
to right-sided problems in general. Moreover, even if the Bregman divergences are
always convex in the first argument, they are not in general convex-concave in the
second argument. As a result, we cannot specialize the proposed generic method
to the non-negative decomposition problems with arbitrary Jeffreys-Bregman diver-
gences, except for the specific non-skew left-sided problems with Bregman diver-
gences. We therefore state only generic results for the latter problems, where the
proposed generic method simplifies in terms of the generator function ϕ.

Corollary 3.6. Consider the left-sided non-negative decomposition problem with the
Bregman ϕ-divergence d(B)

ϕ . For all sx ∈ (R∗+)r, we have C(x) ≤ C(sx) for any point
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x ∈ (R∗+)r that verifies the following system of equations:

m∑
i=1

aikϕ
′
(

r∑
l=1

ailsxl
xk
sxk

)
=

m∑
i=1

aikϕ
′(yi) for all k ∈ v1, rw . (3.28)

Proof. The Bregman ϕ-divergence d(B)
ϕ is clearly differentiable and convex in the

first argument. We can thus decompose the swapped divergence in respective dif-
ferentiable convex and concave parts qd(B)

ϕ (y‖y′) = ϕ(y′) − ϕ(y) − (y′ − y)ϕ′(y),
and pd(B)

ϕ (y‖y′) = 0. Applying the generic method for convex-concave divergences,
the corollary follows by remarking that ∂y′ qd(B)

ϕ (y‖y′) = ϕ′(y′) − ϕ′(y), and that
∂y′ pd(B)

ϕ (y‖y′) = 0.

Remark 3.19. These updates coincide with that found by Dhillon and Sra [2006],
where the proof is actually a special instance of our generic proof for convex-concave
divergences applied to the Bregman divergences, which are convex in the first argu-
ment so that the concave part and the tangent inequality disappear, and just the
convex part and Jensen’s inequality are used.

Example 3.4. A novel analytical scheme can be derived for the left-sided problem
with the β-divergences d(b)

β , where β 6= 0, 1, for which the system of equations leads
to the following closed-form multiplicative updates as the unique solution:

xk = sxk ×
( ∑m

i=1 aiky
β−1
i∑m

i=1 aik(
∑r

l=1 ailsxl)
β−1

)1/(β−1)

. (3.29)

For β = 0, corresponding to the Itakura-Saito divergence, solving the equations
shows that the above multiplicative updates actually still hold. For β = 1, cor-
responding to the Kullback-Leibler divergence, the updates take a different form,
which coincides with that for the right-sided problem with the dual Kullback-Leibler
divergence seen as a Csiszár divergence:

xk = sxk × exp
(∑m

i=1 aik log (yi/
∑r

l=1 ailsxl)∑m
i=1 aik

)
. (3.30)

Even if there is no generic results for right-sided problems with Bregman diver-
gences, specific results can sometimes be obtained on a case-by-case analysis when
the divergence is convex-concave in the second argument. This is the case for the
convex α-divergences discussed above as a special instance of Csiszár divergences,
or for the β-divergences that we discuss now.

Example 3.5. For the right-sided non-negative decomposition problem with the
convex-concave β-divergences d(b)

β , where β 6= 0, 1, three cases need to be distin-
guished. First, for β ≥ 2, d(b)

β can be decomposed into differentiable convex and con-
cave parts qd(b)

β (y‖y′) = y′β/β, pd(b)
β (y‖y′) = −yy′β−1/(β−1), up to constant terms with

respect to the second argument. Applying the generic method for convex-concave

61



3. Non-Negative Matrix Factorization with Convex-Concave Divergences

divergences, and remarking that ∂y′ qd(b)
β (y‖y′) = y′β−1, ∂y′ pd(b)

β (y‖y′) = −yy′β−2, we
obtain the following closed-form multiplicative updates:

xk = sxk ×
(∑m

i=1 aikyi(
∑r

l=1 ailsxl)
β−2∑m

i=1 aik(
∑r

l=1 ailsxl)
β−1

)1/(β−1)

. (3.31)

Second, for 1 ≤ β ≤ 2, d(b)
β can be decomposed into differentiable convex and concave

parts qd(b)
β (y‖y′) = y′β/β − yy′β−1/(β − 1), pd(b)

β (y‖y′) = 0, up to constant terms. The
derivatives equal ∂y′ qd(b)

β (y‖y′) = y′β−1 − yy′β−2, ∂y′ pd(b)
β (y‖y′) = 0, and we obtain the

following closed-form multiplicative updates:

xk = sxk ×
(∑m

i=1 aikyi(
∑r

l=1 ailsxl)
β−2∑m

i=1 aik(
∑r

l=1 ailsxl)
β−1

)
. (3.32)

Third, for β ≤ 1, d(b)
β can be decomposed into differentiable convex and concave

parts qd(b)
β (y‖y′) = −yy′β−1/(β − 1), pd(b)

β (y‖y′) = y′β/β, up to constant terms. The
derivatives equal ∂y′ qd(b)

β (y‖y′) = −yy′β−2, ∂y′ pd(b)
β (y‖y′) = y′β−1, and we obtain the

following closed-form multiplicative updates:

xk = sxk ×
(∑m

i=1 aikyi(
∑r

l=1 ailsxl)
β−2∑m

i=1 aik(
∑r

l=1 ailsxl)
β−1

)1/(2−β)

. (3.33)

For β ∈ {0, 1}, corresponding to the Itakura-Saito and Kullback-Leibler divergences,
the divergences are respectively convex-concave and convex in the second argument,
and solving the equations shows that the above updates actually still hold. These
updates coincide with that found by Nakano et al. [2010a], Févotte and Idier [2011],
where the proof is a specific instance of that for the proposed generic method with
use of both Jensen’s inequality and the tangent inequality.

Remark 3.20. It is interesting to remark that the three multiplicative updates differ
only by an exponent. This exponent step size varies between 0 and 1, and ensures
the monotonic decrease of the cost function in the three domains considered. Where
the cost function is convex, this exponent step size is relaxed to 1, while it is less
than 1 for the two other domains. It is actually possible to show that the exponent
can also be relaxed to one for 0 ≤ β ≤ 1, while keeping monotonic descent of the
cost function. This is akin to over-relaxation and produces larger steps for a faster
convergence [Févotte, 2011].
Similarly, specific results can sometimes be obtained for skew Jeffreys-Bregman di-

vergences when the divergence is convex-concave in the second argument. This is the
case for the convex skew Jeffreys α-divergences discussed above as a special instance
of Csiszár divergences, and for the convex-concave skew Jeffreys β-divergences. By
symmetry, we only develop the results for the right-sided problems.

Example 3.6. Novel analytical schemes can be derived for the right-sided non-neg-
ative decomposition problem with the skew Jeffreys (β, λ)-divergences d(b)

β,λ, where
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β 6= 0, 1, and three cases need again to be distinguished. First, for β ≥ 2, which
implies 1 − 2λ + λβ > 0, d(b)

β,λ can be decomposed into differentiable convex and
concave parts qd(b)

β,λ(y‖y′) = 1−2λ+λβ
β(β−1) y

′β − 1−λ
β−1y

′yβ−1, pd(b)
β (y‖y′) = − λ

β−1yy
′β−1, up to

constant terms. Applying the generic method, and remarking that ∂y′ qd(b)
β (y‖y′) =

1−2λ+λβ
β−1 y′β−1 − 1−λ

β−1y
β−1, ∂y′ pd(b)

β (y‖y′) = −λyy′β−2, we obtain the following closed-
form multiplicative updates:

xk = sxk ×

∑m
i=1 aik

(
λ(β−1)

1−2λ+λβyi + 1−λ
1−2λ+λβ

∑r
l=1 ailsxl

)
(
∑r

l=1 ailsxl)
β−2∑m

i=1 aik(
∑r

l=1 ailsxl)
β−1

1/(β−1)

.

(3.34)
Second, for 1 − 2λ + λβ ≤ 0, which implies β ≤ 1, λ 6= 0, d(b)

β,λ can be decomposed
into differentiable convex and concave parts qd(b)

β,λ(y‖y′) = − λ
β−1yy

′β−1, pd(b)
β (y‖y′) =

1−2λ+λβ
β(β−1) y

′β − 1−λ
β−1y

′yβ−1, up to constant terms. The derivatives equal ∂y′ qd(b)
β (y‖y′) =

−λyy′β−2, ∂y′ pd(b)
β (y‖y′) = 1−2λ+λβ

β−1 y′β−1− 1−λ
β−1y

β−1, and we obtain the following closed-
form multiplicative updates:

xk = sxk ×

 ∑m
i=1 aikyi(

∑r
l=1 ailsxl)

β−2∑m
i=1 aik

(
1−λ

λ(1−β)y
β−1
i + 2λ−1−λβ

λ(1−β) (
∑r

l=1 ailsxl)
β−1
)
1/(2−β)

. (3.35)

For β = 0, λ ∈ [1/2, 1], the decomposition and equations still hold so that the
updates are also actually valid. Third, for β ≤ 2, 1 − 2λ + λβ ≥ 0, d(b)

β,λ can be
decomposed into differentiable convex and concave parts qd(b)

β,λ(y‖y′) = 1−2λ+λβ
β(β−1) y

′β −
λ
β−1yy

′β−1 − 1−λ
β−1y

′yβ−1, pd(b)
β (y‖y′) = 0, up to constant terms. The derivatives equal

∂y′ qd(b)
β (y‖y′) = 1−2λ+λβ

β−1 y′β−1 − λyy′β−2 − 1−λ
β−1y

β−1, ∂y′ pd(b)
β (y‖y′) = 0, and we obtain

the following system of equations:

1− 2λ+ λβ

β − 1

m∑
i=1

aik

(
r∑
l=1

ailsxl
)β−1(

xk
sxk

)β−1

− λ
m∑
i=1

aikyi

(
r∑
l=1

ailsxl
)β−2(

xk
sxk

)β−2

= 1− λ
β − 1

m∑
i=1

aiky
β−1
i . (3.36)

Unfortunately, this system does not admit a closed-form solution in general when
β 6= 2 and 1− 2λ+ λβ 6= 0, and iterative methods are required. The same happens
for β = 1, λ ∈ (0, 1), corresponding to the skew Jeffreys divergence, as discussed in
the case of skew Jeffreys (α, λ)-divergences, and where the system writes differently
in terms of a logarithm and an inverse of the unknown variables. On the contrary,
for β = 0, λ ∈ [0, 1/2], the decomposition still holds so that the above system of
equations is also valid. For certain values of β, the equations can be written as
polynomial equations, which can be solved more efficiently with specific methods
such as root-finding algorithms, or with analytical solutions for lower degrees, when
positive solutions do exist. For example, for β = 3/2 and λ ∈ (0, 1), or β = 0
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and λ ∈ (0, 1/2), we end up with a polynomial equation of degree two with a
positive discriminant and a unique analytical positive solution, while for β = 1/2
and λ ∈ (0, 2/3), or β = −1 and λ ∈ (0, 1/3), we have a polynomial equation
of degree three, and for β = 2/3 and λ ∈ (0, 3/4), or β = −2 and λ ∈ (0, 1/4),
we have a polynomial equation of degree four. Obviously, as soon as λ ∈ {0, 1}
in any of the three distinctive cases, which corresponds to a left- or right-sided
non-skew problem, the equations or updates lead to the corresponding non-skew
multiplicative updates derived before. Finally, for a left-sided problem with the
skew Jeffreys (β, λ)-divergences, it actually suffices by symmetry to replace λ with
1− λ, and to solve the corresponding right-sided problem.

Remark 3.21. It is interesting to interpret the effect of skewing in the two multi-
plicative updates, compared to that of a right-sided problem with the corresponding
non-skew β-divergence, as a weighted convex mixing of the observations yi with
their current estimates

∑r
l=1 ailsxl, and as a weighted convex mixing of the current

exponentiated estimates (
∑r

l=1 ailsxl)
β−1 with the exponentiated observations yβ−1

i ,
respectively.
Remark 3.22. We also notice that besides the natural decomposition employed here,
we could also have separated the term 1−2λ+λβ

β(β−1) y
′β, into two terms 1−λ

β−1y
′β, λ

β
y′β. It may

seem interesting at first sight since there are still three cases but the domains do not
depend on λ anymore. The other side of the coin, however, is that it adds one extra
term in the equations, which actually only lead to a general analytical solution for
β ≥ 2, and this solution corresponds to the one found above. It confirms the intuitive
reasoning that when analyzing a convex or concave function with a multiplicative
factor, it is more natural to consider only one term and analyze the sign of the
multiplicative factor finely, than to separate different terms to simplify the analysis.

3.3.4. Case of skew Jensen-Bregman divergences
We now focus on the class of skew Jensen-Bregman divergences, which is actually
equivalent to the class of skew Burbea-Rao divergences. On the contrary to Breg-
man divergences, it appears that the skewing procedure makes these divergences
always convex-concave in the first argument and in the second argument. As a
result, the proposed generic method applies to all these divergences, hence provid-
ing novel schemes for non-negative decomposition based on them. Since the class
is stable under swapping the arguments, we concentrate without loss of generality
on the right-sided non-negative decomposition problem with skew Jensen-Bregman
divergences, where the proposed generic method simplifies in terms of the generator
function ϕ.

Corollary 3.7. Consider the right-sided non-negative decomposition problem with
the skew Jensen-Bregman (ϕ, λ)-divergence d

(JB′)
ϕ,λ . For all sx ∈ (R∗+)r, we have

C(x) ≤ C(sx) for any point x ∈ (R∗+)r that verifies the following system of equations:
m∑
i=1

aikϕ
′
(

r∑
l=1

ailsxl
xk
sxk

)
=

m∑
i=1

aikϕ
′
(
λyi + (1− λ)

r∑
l=1

ailsxl
)

for all k ∈ v1, rw .

(3.37)
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Proof. The skew Jensen-Bregman divergence (ϕ, λ)-divergence d(JB′)
ϕ,λ is clearly dif-

ferentiable and convex-concave in the second argument. We can thus decompose it
in differentiable convex and concave parts qd(JB′)

ϕ (y‖y′) = λϕ(y) + (1− λ)ϕ(y′), and
pd(JB′)
ϕ (y‖y′) = −ϕ(λy+ (1−λ)y′). Applying the generic method for convex-concave

divergences, the corollary follows by remarking that ∂y′ qd(JB′)
ϕ (y‖y′) = (1− λ)ϕ′(y′),

and ∂y′ pd(JB′)
ϕ (y‖y′) = −(1− λ)ϕ′(λy + (1− λ)y′).

Remark 3.23. It is interesting to interpret the effect of skewing in the equations,
compared to that of a left-sided problem with the corresponding non-skew Bregman
divergence, as a weighted convex mixing of the observations yi with their current
estimates

∑r
l=1 ailsxl.

Remark 3.24. We notice that besides the natural decomposition, we could have
separated the convex term (1 − λ)ϕ(y′), into a convex term ϕ(y′), and a concave
term −λϕ(y′). In this case, the system of equations becomes:

m∑
i=1

aikϕ
′
(

r∑
l=1

ailsxl
xk
sxk

)
= λ

m∑
i=1

aikϕ
′
(

r∑
l=1

ailsxl
)

+ (1− λ)
m∑
i=1

aikϕ
′
(
λyi + (1− λ)

r∑
l=1

ailsxl
)

. (3.38)

It modifies the system of equations for the natural decomposition by a weighted
convex mixing of the constant

∑m
i=1 aikϕ

′(λyi + (1− λ)
∑r

l=1 ailsxl), which depends
on both the observations yi and their current estimates

∑r
l=1 ailsxl, with the constant∑m

i=1 aikϕ
′(
∑r

l=1 ailsxl), which only depends on the current estimates. It thus seems
intuitive that as λ augments, the solutions are bound towards the current estimates
since the value xk = sxk gets closer to a solution, so that the updates get slowed
down. This is confirmed formally below for the skew Jensen (β, λ)-divergences.

Example 3.7. A novel analytical scheme can be derived for the right-sided problem
with the skew Jensen β-divergence d(b′)

β,λ, where β 6= 0, 1, for which the system of
equations leads to the following closed-form multiplicative updates:

xk = sxk ×
(∑m

i=1 aik(λyi + (1− λ)
∑r

l=1 ailsxl)
β−1∑m

i=1 aik(
∑r

l=1 ailsxl)
β−1

)1/(β−1)

. (3.39)

For β = 0, corresponding to a skew version of the Itakura-Saito divergence, solving
the equations shows that the above multiplicative updates actually still hold. For
β = 1, corresponding to a skew version of the Kullback-Leibler divergence, the
updates take a different form as follows:

xk = sxk × exp
(∑m

i=1 aik log (λyi/
∑r

l=1 ailsxl + 1− λ)∑m
i=1 aik

)
. (3.40)

In particular for λ = 1/2, we have closed-form multiplicative updates for all sym-
metric Jensen β-divergences, including the well-known Jensen-Shannon divergence
for β = 1 as a symmetric version of the Kullback-Leibler divergence, as well as the
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cosh distance for β = 0 as a symmetric version of the Itakura-Saito divergence. For
a left-sided problem with the skew Jensen β-divergence d(b′)

β,λ, it actually suffices to
replace λ with 1− λ, and to solve the corresponding right-sided problem.

Remark 3.25. Considering the alternative decomposition discussed in the above re-
mark, the system of equations for the skew Jensen (β, λ)-divergences leads to closed-
form multiplicative updates too. For β 6= 1, these updates write as follows:

xk = sxk ×
(
λ+ (1− λ)

∑m
i=1 aik(λyi + (1− λ)

∑r
l=1 ailsxl)

β−1∑m
i=1 aik(

∑r
l=1 ailsxl)

β−1

)1/(β−1)

. (3.41)

For β = 1, corresponding to the skew Jensen-Shannon divergence, these updates
write as follows:

xk = sxk × exp
(

(1− λ)
∑m

i=1 aik log (λyi/
∑r

l=1 ailsxl + 1− λ)∑m
i=1 aik

)
. (3.42)

It corroborates the remark that this decomposition intuitively reduces the progres-
sion of the updates as λ augments compared to the progression for the natural
decomposition. It also confirms the reasoning that when analyzing a convex or con-
cave function with a multiplicative factor, it is more natural to consider only one
term and analyze the sign of the multiplicative factor finely, as discussed previously.
Unfortunately, we were not able to derive similar analytical results for the skew

Jensen (α, λ)-divergences, as discussed previously when seen as Csiszár divergences.

3.3.5. Case of skew (α, β, λ)-divergences
We now consider the parametric family of skew (α, β, λ)-divergences. These diver-
gences are almost always convex-concave in the first and in the second argument so
that the proposed generic method applies. Nevertheless, depending on the parame-
ter values, the convex-concave decompositions do differ, and several cases need to be
considered. For simplicity, we begin with the non-skew case, that is, corresponding
to λ ∈ {0, 1}, of non-negative decomposition with the (α, β)-divergences. Because
these divergences are stable under swapping the arguments, we restrict without loss
of generality to the right-sided problem.

Example 3.8. For the right-sided non-negative decomposition problem with the
convex-concave (α, β)-divergences d(ab)

α,β , where αβ(α + β) 6= 0, three cases need to
be distinguished. First, for β/α ≥ 1/α, d(ab)

α,β can be decomposed into differentiable
convex and concave parts qd(ab)

α,β (y‖y′) = y′α+β/α(α+β), pd(ab)
α,β (y‖y′) = −yαy′β/αβ, up

to constant terms. Applying the generic method for convex-concave divergences, and
remarking that ∂y′ qd(ab)

α,β (y‖y′) = y′α+β−1/α, ∂y′ pd(ab)
α,β (y‖y′) = −yαy′β−1/α, we obtain

the following closed-form multiplicative updates:

xk = sxk ×
(∑m

i=1 aiky
α
i (
∑r

l=1 ailsxl)
β−1∑m

i=1 aik(
∑r

l=1 ailsxl)
α+β−1

)1/(α+β−1)

. (3.43)
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Second, for 1/α − 1 ≤ β/α ≤ 1/α, d(ab)
α,β can be decomposed into differentiable

convex and concave parts qd(ab)
α,β (y‖y′) = y′α+β/α(α + β)− yαy′β/αβ, pd(ab)

α,β (y‖y′) = 0,
up to constant terms. The derivatives equal ∂y′ qd(ab)

α,β (y‖y′) = y′α+β−1/α− yαy′β−1/α,
∂y′ pd(ab)

α,β (y‖y′) = 0, and we obtain the following closed-form multiplicative updates:

xk = sxk ×
(∑m

i=1 aiky
α
i (
∑r

l=1 ailsxl)
β−1∑m

i=1 aik(
∑r

l=1 ailsxl)
α+β−1

)1/α

. (3.44)

Third, for β/α ≤ 1/α − 1, d(ab)
α,β can be decomposed into differentiable convex and

concave parts qd(ab)
α,β (y‖y′) = −yαy′β/αβ and pd(ab)

α,β (y‖y′) = y′α+β/α(α + β), up to
constant terms. The derivatives equal ∂y′ qd(ab)

α,β (y‖y′) = −yαy′β−1/α, ∂y′ pd(ab)
α,β (y‖y′) =

y′α+β−1/α, and we obtain the following closed-form multiplicative updates:

xk = sxk ×
(∑m

i=1 aiky
α
i (
∑r

l=1 ailsxl)
β−1∑m

i=1 aik(
∑r

l=1 ailsxl)
α+β−1

)1/(1−β)

. (3.45)

For the limit cases β = 0, or α+ β = 0, solving the equations shows that the above
updates actually still hold as soon as α 6= 0. For the limit case α = 0, the updates
are however not valid anymore. In the special case α = 0, β = 1, corresponding
to the dual Kullback-Leibler divergence, the equations lead to the already known
multiplicative updates as follows:

xk = sxk × exp
(∑m

i=1 aik log (yi/
∑r

l=1 ailsxl)∑m
i=1 aik

)
. (3.46)

The four obtained multiplicative updates coincide with that of Cichocki et al. [2011],
where the proof is a special instance of ours with use of both Jensen’s inequality
and the tangent inequality.3 Nevertheless, for α = 0, β 6= 1, the above reasoning
does not hold anymore as discussed in the remark below. We notice finally that for
α + β = 1, the obtained updates coincide with that of the α-divergences d(a)

α , while
for α = 1, they coincide with that of the β-divergences d(b)

β+1. Moreover, a left-sided
problem can be considered straightforward by swapping α and β, and solving the
corresponding right-sided problem, provided that β 6= 0, or that β = 0 and α = 1.
The updates then also coincide with that of α-divergences and of β-divergences.

Remark 3.26. For α = 0, β 6= 1, the divergences exhibit terms whose convexity or
concavity depends not only on the values of the parameters, but also on the value
of the first argument, or even on different zones of the second argument. Therefore,
the convex-concave decomposition depends not only on the parameter values, but
also on the observations yi and on the region considered for searching a solution.
This situation is not considered properly in [Cichocki et al., 2011] where there is a
technical flaw. It is argued that we can take the limit in the multiplicative updates

3A slight difference appears in their proof, where the tangent inequality is first applied to the
concave term, and the resulting affine term is added to the convex term before applying Jensen’s
inequality, but the results are identical since this extra term has no effect in Jensen’s inequality.
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to obtain the updates for α = 0, β 6= 1. Taking this limit, the authors obtain trivial
identity updates corresponding to a null exponent step size, that is, the updates
actually do not modify the current solution. This of course does not make the
cost function increase, but a more rigorous reasoning would be required to provide
non-trivial updates. Some perspectives on this line are discussed later.

Remark 3.27. It is interesting to remark that the first three multiplicative updates
differ only by their exponent step size which ensures the monotonic decrease of the
cost function in the three domains considered. The four multiplicative updates can
actually be unified, up to exponents, by using deformed exponentials and logarithms
as done in [Cichocki et al., 2011]. This permits to extend the remark to the fourth
update. Moreover, this normalizes the exponents between 0 and 1, where the relaxed
exponent 1 is attained in the convex cases α 6= 0 and 1/α−1 ≤ β/α ≤ 1/α, or α = 0
and β = 1. Last but not least, it is shown in [Cichocki et al., 2011] that the other
exponents can be over-relaxed to 1 under certain conditions, roughly speaking when
the estimates are close enough to the observations so that convexity holds locally.

We now turn to the more complex situation of a general non-negative decompo-
sition problem with arbitrary skew (α, β, λ)-divergences. Because these divergences
are also stable under swapping the arguments, we focus on the right-sided problem.

Example 3.9. Novel analytical schemes can be derived for the right-sided non-
negative decomposition problem with the skew (α, β, λ)-divergences d(ab)

α,β,λ, where
αβ(α + β) 6= 0, for which seven cases need to be distinguished. There are actu-
ally three terms in the decomposition of d(ab)

α,β,λ into convex and concave parts, up
to constant terms. These three terms are λβ+(1−λ)α

αβ(α+β) y
′α+β, − λ

αβ
yαy′β, −1−λ

αβ
yβy′α,

with respective derivatives λβ+(1−λ)α
αβ

y′α+β−1, −λ
α
yαy′β−1, −1−λ

β
yβy′α−1. For different

values of the parameters, these terms can all become convex or concave, almost in-
dependently but just never all concave at the same time, hence the seven possible
combinations. In the general case, we thus have equations with potentially monomi-
als of degree α+β− 1 if the first term is convex, β− 1 if the second term is convex,
α− 1 if the third term is convex, and 0 if at least one term is concave. As a result,
we have in general analytical updates when only one term is convex, otherwise we
end up a priori with non-trivial equations to solve. Special cases where this equation
can be solved are discussed later. We now concentrate on the three principal cases
where each term is convex in turn while the two others are concave. When the first
term only is convex, which is equivalent to α, β ≥ 1 or α, β < 0, we obtain the
following closed-form multiplicative updates:

xk = sxk ×∑m
i=1 aik

(
λβ

λβ+(1−λ)αy
α
i (
∑r

l=1 ailsxl)
β−1 + (1−λ)α

λβ+(1−λ)αy
β
i (
∑r

l=1 ailsxl)
α−1
)

∑m
i=1 aik(

∑r
l=1 ailsxl)

α+β−1

1/(α+β−1)

.

(3.47)

When the second term only is convex, which is equivalent to 0 < α ≤ 1, β < 0,
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α/(α− β) ≤ λ ≤ 1, we obtain the following closed-form multiplicative updates:

xk = sxk × ∑m
i=1 aiky

α
i (
∑r

l=1 ailsxl)
β−1∑m

i=1 aik

(
(λ−1)α
λβ

yβi (
∑r

l=1 ailsxl)
α−1 + λβ+(1−λ)α

λβ
(
∑r

l=1 ailsxl)
α+β−1

)
1/(1−β)

. (3.48)

When the third term only is convex, which is equivalent to 0 < β ≤ 1, α < 0,
0 ≤ λ ≤ α/(α− β), we obtain the following closed-form multiplicative updates:

xk = sxk × ∑m
i=1 aiky

β
i (
∑r

l=1 ailsxl)
α−1∑m

i=1 aik

(
λβ

(λ−1)αy
α
i (
∑r

l=1 ailsxl)
β−1 + λβ+(1−λ)α

(1−λ)α (
∑r

l=1 ailsxl)
α+β−1

)
1/(1−α)

. (3.49)

In the four other cases, there is no such solution, even if we may have polynomial
equations for certain values of the parameters as discussed in the previous examples.
Now in the limit case α + β = 0, α, β 6= 0, there are three non-constant terms in
the decomposition too, whose derivatives coincide with the above ones, so that the
respective systems of equations for the different possible combinations of convex
and concave terms are still valid. It appears that the first term is never convex
alone, so that there are two cases where we have general analytical updates, that is,
when the second term only is convex, and when the third term only is convex. In
these two cases, the updates coincide respectively with the two last multiplicative
updates above. For the other limit cases, where at least α = 0, or β = 0, the
decomposition again depends on the values of the two arguments in general. As a
result, the above reasoning does not hold anymore, except for the case λ = 1, α = 0,
β = 1, or the symmetric case λ = 0, α = 1, β = 0, which correspond to right-
and left-sided non-skew problems with the dual Kullback-Leibler and the Kullback-
Leibler divergences, respectively. More generally, when λ ∈ {0, 1}, we obviously
have the non-skew left- and right-sided problems with the (α, β)-divergences, and
the same multiplicative updates as discussed above when they exist. For α = 1,
or β = 1, we end up with the problems for the skew Jeffreys β-divergences, while
for α + β = 1, we end up with the problems for the skew Jeffreys α-divergences,
with the corresponding closed-form multiplicative updates when they exist. When
α = β, the problem is actually symmetric and is equivalent to the non-skew problem
for any λ ∈ [0, 1], for which the multiplicative updates derived still hold as soon as
α, β 6= 0. Finally, a left-sided problem with the skew (α, β, λ)-divergences can be
considered straightforward either by replacing λ with 1 − λ, or by swapping α and
β, to end up with an equivalent right-sided problem.

Remark 3.28. It is again interesting to interpret the effect of skewing in the multi-
plicative updates, compared to that of a right-sided problem with the corresponding
non-skew divergence, as a weighted convex mixing of the exponentiated observations
with their current exponentiated estimates.

69



3. Non-Negative Matrix Factorization with Convex-Concave Divergences

Remark 3.29. We could also have considered an alternative decomposition by sep-
arating the term λβ+(1−λ)α

αβ(α+β) y
′α+β, into two terms λ

α(α+β)y
′α+β, 1−λ

β(α+β)y
′α+β, whose

convexity or concavity does not depend on λ anymore. Nevertheless, this adds one
extra term in the equations, which actually only lead to a general analytical solu-
tion for α, β ≥ 1, or α, β < 0, and this solution corresponds to the one found above.
This confirms again the intuitive reasoning that when analyzing a convex or concave
function with a multiplicative factor, it is more natural to consider only one term
and analyze the sign of the multiplicative factor finely, than to separate different
terms to simplify the analysis.

Example 3.10. A novel analytical scheme can also be derived for a specific two-
parameter family of skew (α, β, λ)-divergences. Considering the right-sided problem
with the skew (α, β, λ)-divergences d(ab)

α,β,λ, where (α, β) ∈ (R∗− × R∗+) ∪ (R∗+ × R∗−),
λ = α/(α−β) ∈ (0, 1), the monomial of degree α+β− 1 in the system of equations
vanishes. This provides closed-form solutions for the different possible combinations
of convex and concave terms. There are actually three such combinations to distin-
guish. When the two terms are convex, which is equivalent to α < 0 and β ≥ 1,
or β < 0 and α ≥ 1, the system of equations leads to the following closed-form
multiplicative updates:

xk = sxk ×
(∑m

i=1 aiky
β
i (
∑r

l=1 ailsxl)
α−1∑m

i=1 aiky
α
i (
∑r

l=1 ailsxl)
β−1

)1/(β−α)

. (3.50)

As a special case when α + β = 1, α ∈ R \ [0, 1], we obtain the exact same one-
parameter family and multiplicative updates as discussed previously for skew Jeffreys
(α, λ)-divergences. Now, when one term is convex while the other is concave, we
end up with particular cases of two cases discussed above. The first one is when
0 < α ≤ 1, β < 0, where the multiplicative updates specialize as follows:

xk = sxk ×
(∑m

i=1 aiky
α
i (
∑r

l=1 ailsxl)
β−1∑m

i=1 aiky
β
i (
∑r

l=1 ailsxl)
α−1

)1/(1−β)

. (3.51)

The second one is when 0 < β ≤ 1, α < 0, where the multiplicative updates
specialize as follows:

xk = sxk ×
(∑m

i=1 aiky
β
i (
∑r

l=1 ailsxl)
α−1∑m

i=1 aiky
α
i (
∑r

l=1 ailsxl)
β−1

)1/(1−α)

. (3.52)

In the limit case where either α = 0, or β = 0, we respectively have λ = 0, or
λ = 1, and we end up with non-skew left- and right-sided problems discussed above.
Therefore, the reasoning does not hold anymore, except for β = 1, or for α = 1,
where we obtain respectively the equivalent left- and right-sided problems with the
dual Kullback-Leibler and the Kullback-Leibler divergences, for which the above
multiplicative updates still hold and specialize to the ones already known. We also
notice that there is an inherent symmetry within the two-parameter family, where
swapping α and β transforms λ in 1 − λ. As a result, we need only consider the
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values of (α, β) ∈ R∗− × R∗+ because the other values are redundant. We can finally
consider straightforwardly the left-sided problems with a two-parameter family of
skew (α, β, λ)-divergences, where the constraint now writes λ = β/(β − α), and we
have equivalence with the right-sided problems by swapping α and β, and replacing
λ with 1− λ.

3.4. Discussion
In this chapter, we proposed methods for non-negative matrix factorization with
convex-concave divergences. The proposed framework encompasses many common
information divergences, such as Csiszár divergences, certain Bregman divergences,
and in particular all α-divergences and β-divergences. We developed a general opti-
mization scheme based on variational bounding with auxiliary functions that works
for almost arbitrary convex-concave divergences. We obtained monotonically de-
creasing updates under mild conditions by minimizing the auxiliary function. We
also considered symmetrized and skew divergences for the cost function. In partic-
ular, we specialized the generic updates to provide updates for Csiszár divergences,
certain skew Jeffreys-Bregman divergences, skew Jensen-Bregman divergences, thus
leading to several known multiplicative updates, as well as novel multiplicative up-
dates, for α-divergences, β-divergences, and their symmetrized or skew versions. We
also generalized this by considering the family of skew (α, β, λ)-divergences. Several
directions of improvement were however left out for future work.
To begin with, we would like to enhance the standard factorization model consid-

ered here. Direct extensions can easily be handled in the proposed framework, such
as generalizations to convex NMF models and non-negative tensor models through
vectorization, as discussed for β-divergences in [Févotte and Idier, 2011]. Other
generalizations could also be investigated, for example, convolutive NMF models as
proposed in [Smaragdis, 2004].
In addition to extending the models, we could also extend the cost functions.

Although the framework presented for convex-concave divergences unifies and gen-
eralizes the majority of information divergences employed in the literature, we did
not discuss the possibility to add penalty terms to regularize the solutions. The
proposed framework extends straightforward to convex-concave penalties by includ-
ing the respective terms in the decomposition of the cost function into convex and
concave parts for constructing the auxiliary functions. It notably includes penaliza-
tions with `p-norms for sparsity regularization. More specific penalties could also
be considered on a case-by-case analysis, such as the group sparsity employed in
[Lefèvre et al., 2011a]. Nevertheless, even with the simple `1-norm penalty, we may
not be able to systematically derive closed-form multiplicative updates extending
those discussed here. It has already been observed in [Févotte and Idier, 2011] for
the specific β-divergences. This is because the introduced term in the equations
can make them non-trivial to solve, as soon as there are two monomials of different
degrees and a non-null constant term, or more than two monomials. For the same
reasons, we were not able to derive systematic multiplicative updates on the whole
parameter range for standard skewing of the α-divergences and β-divergences, or
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more generally of the (α, β)-divergences.
To handle such situations, it would be interesting to investigate tailored optimiza-

tion schemes to solve the equations. In the present work, we focused on simplifica-
tions of the equations into attractive multiplicative updates. As discussed previously,
the generic updates can nonetheless be solved in the general case by employing opti-
mization schemes such as line search or Newton’s methods in dimension one. More
specific schemes can beneficially be derived to tailor optimization according to the
cost function and penalties considered when no multiplicative updates are available.
A perspective concerning the standard skewing of α-divergences, β-divergences,

and (α, β)-divergences, is to find links between the solutions of the skew problem,
and the respective solutions of the left- and right-sided problems. We have found
in this context that it is possible to express the update of the current solution of
the skew problem, as an equation involving the left- and right-sided updates of this
current solution. Nevertheless, it does not iterate since the obtained solution does
not correspond in general to that of the left- and right-sided updates. As a result,
the equation for the skew updates should be solved at each iteration. It would be
more interesting to solve in parallel the left- and right-sided problem to derive the
skew solution in the end only. We were not yet able to derive such relations.
To go further, other generic updates could also be investigated. As discussed pre-

viously, we focused here on the minimization of the auxiliary function. Nevertheless,
any point that makes the auxiliary function decrease actually also makes the cost
function decrease. This can be used to propose updates based on majorization-
equalization, or any compromise in between minimization and equalization. On the
one hand, the equalization may permit to improve the speed of convergence of the
cost function by behaving as an over-relaxation compared to minimization. On the
other hand, the equalization is less likely than the minimization to have a solution
inside the positive orthant, so that tempered updates may be necessary. This has
notably been developed for β-divergences in [Févotte and Idier, 2011], and is worth
extending to arbitrary convex-concave divergences. Another approach to provide al-
ternative generic updates is to construct other auxiliary functions. In particular, we
may require further assumptions on the convex-concave divergences. For example,
it is well-known that any function with bounded Hessian is actually convex-concave.
Using such functions, we may derive tighter bounds for the auxiliary functions by
considering second-order approximations instead of the simple first-order approxi-
mation in the tangent inequality. Other specific properties may be employed such
as strong convexity or logarithmic convexity.
On another perspective, we could relax slightly the convex-concave assumptions

made here. Indeed, the proposed methodology for constructing the auxiliary func-
tions can be extended as is to consider convex-concave decompositions that depend
not only on the value of the first argument, but also on different values of the sec-
ond argument. As a result, we may generalize the discussion to include divergences
that are not strictly speaking convex-concave, as for certain (α, β)-divergences and
their skew versions. Similar ideas have been considered in [Cichocki et al., 2011] to
provide relaxed multiplicative updates, corresponding to a gradient descent, with
guaranteed monotonic decrease in certain regions of the solution space that depend
on the observations. A systematic analysis of such updates is worth exploring.
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Last but not least, a major theoretical step for non-negative matrix factorization
would be to prove strong convergence properties of the algorithms. In the present
work, we have obtained the guaranteed monotonic decrease of the cost function,
hence ensuring its convergence. Nevertheless, we were not able to prove convergence
of the cost function to a global or local minimum, nor to a stationary point. More-
over, even if the cost function converges, the updates themselves may not converge,
though we are guaranteed by the monotonic decrease that the output solutions have
at least a certain quality. A first step in obtaining further results in this direction is
the study of the supervised non-negative decomposition solely. For example, the ob-
tained updates for non-negative decomposition with the Euclidean cost function ac-
tually converge to the global minimum, as a special case of a more general framework
for quadratic programming with non-negative constraints [Sha et al., 2007]. With
this respect, we believe that the recent convergence proof for the concave-convex
procedure provided in [Sriperumbudur and Lanckriet, 2012] could be adapted to the
proposed framework. Interestingly, this proof relies on a more general theory for
studying convergence properties of iterative algorithms [Zangwill, 1969], which was
also used in [Sha et al., 2007]. Concerning the convergence properties of the general
NMF problem with alternate updates, results have again been proved for the Eu-
clidean cost function in [Lin, 2007], though the case of general divergences is more
complicated. Interesting insights in this direction have been recently investigated by
studying the Lyapunov stability of NMF with α-divergences [Yang and Ye, 2012],
and β-divergences [Badeau et al., 2010]. Further considerations are needed on this
line to prove full convergence of the schemes for general convex-concave divergences.
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4. Real-Time Audio Segmentation
In this chapter, we address the problem of automatic segmentation which is funda-
mental in audio signal processing. A major drawback of existing approaches in this
context is that they consider specific signals and homogeneity criteria, or assume
normality of the data distribution. Other issues arise from the potential compu-
tational complexity and non-causality of the schemes. To address these issues, we
devise a generic and unifying framework for real-time audio segmentation based on
the methods for sequential change detection with exponential families developed
in Chapter 2. The proposed system can handle various types of signals and of
homogeneity criteria, by controlling the information rate of the audio stream to de-
tect changes in real time. The framework also bridges the gap between statistical
and distance-based approaches to segmentation through the dually flat geometry
of exponential families. We notably clarify the relations between various standard
approaches to audio segmentation, and show how they can be unified and general-
ized in the proposed framework. Various applications are showcased to illustrate the
generality of the framework, and a quantitative evaluation is performed for musical
onset detection to demonstrate how the proposed approach can leverage modeling
in complex problems.

4.1. Context
In this section, we first provide some background information on the problem of
audio segmentation, and in particular for onset detection in music signals and for
speaker segmentation in speech signals. We then discuss the motivations of our
approach to the problem of real-time audio segmentation. We finally sum up our
main contributions in this context.

4.1.1. Background
As depicted in Figure 4.1, the task of audio segmentation consists in determin-
ing time instants which partition a sound signal into homogeneous and continuous
temporal regions, such that adjacent regions exhibit inhomogeneities. These time
instants are called boundaries, while the continuous temporal regions between the
boundaries are simply called segments. Audio segmentation has been widely studied
in the literature, mainly for music and speech signals, and is of great interest for
a variety of applications in audio analysis, indexing and information retrieval, as
put in perspective in the popular papers of Tzanetakis and Cook [1999], and Foote
[2000]. In this context, the following design element is of primary importance.
For the segmentation to be relevant, the segments must possess a certain con-

sistency of their own information content, but a difference of information content
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Figure 4.1.: Schematic view of the audio segmentation task. Starting from the au-
dio signal, the goal is to find time boundaries such that the resulting
segments are intrinsically homogeneous but differ from their neighbors.

with the previous and next segments. This therefore requires the definition of a
criterion to quantify the homogeneity, or consistency, and various criteria may be
employed depending on the types of signals considered. For instance, we may want
to segment a conversation in terms of silence and speech, or in terms of different
speakers. Similarly we may want to segment a music piece in terms of notes, or in
terms of different instruments.
Early researches for the automatic segmentation of digital signals can be traced

back to the pioneering work of Basseville and Benveniste [1983a,b] on the detection
of changes according to different criteria, such as spectral characteristics, in various
applicative domains. This framework was later applied by André-Obrecht [1988] to
the segmentation of speech signals into homogeneous infra-phonemic regions. The
problem of audio segmentation is still actively researched today, either for direct
applications such as speaker segmentation in conversations and onset detection in
music signals as discussed later, or as a front-end module in a broad class of tasks
such as speaker diarization [Tranter and Reynolds, 2006, Anguera Miro et al., 2012]
and music structure analysis [Foote, 1999, Paulus et al., 2010] among others.
In many works, audio segmentation relies on application-specific and high-level

criteria of homogeneity in terms of semantic classes, and the supervised detection
of changes is based on a system for automatic classification where the segments
are created in function of the assigned classes. For example, the segmentation of
a conversation into speakers would depend on a system for speaker recognition.
Similarly, the segmentation of a music piece into notes would depend on a system for
note recognition. Such an approach has yet the drawbacks to assume the existence
and knowledge of classes, to rely on a potentially fallible classification, and to require
some training data for learning the classes.
Some approaches without classification have been proposed to address these issues
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and perform an unsupervised, or blind, detection of changes. This is notably the
case of onset detection in music signals [Bello et al., 2005, Dixon, 2006]. In this
context, a detection function is constructed from the signal by extracting certain
sound features. The detection function is then used to localize the onsets by applying
thresholding and peak-picking heuristics. For example, we can employ directly the
energy envelope as a detection function, which is well-suited for percussions and
instruments with a marked attack such as the piano. This basic idea was enhanced
by Klapuri [1999] who considered the energy in non-overlapping frequency bands by
applying a filter bank motivated by psychoacoustic considerations, with fusion of
the onsets detected in the respective bands.
Complementary information is often required to deal both with percussive sounds,

and with smooth sounds such as bowed instruments. This information is notably
contained in the evolution of the spectral characteristics. For example, Duxbury
et al. [2002] proposed to apply a filter bank, and to compute the energy in high-
frequency bands coupled with spectral information in lower bands. Bello and Sandler
[2003] considered the phase information of the spectrum to detect onsets based on
its deviation. The phase information was further combined with the amplitude
information by Duxbury et al. [2003], and with the energy by Bello et al. [2004].
In particular, variations of the so-called spectral flux method have been widely

used. This method consists in computing the difference between the frequency spec-
tra at successive time frames to define the detection function. The maxima of the
detection function then correspond to locations where the spectrum greatly changes.
The principal variants of this method differ both in the processing of the spectra, for
example, choosing a certain frequency scale and an appropriate time-frequency trans-
form, normalizing the spectra, emphasizing certain frequencies, and in the choice of
the distance function used to measure the difference between successive spectra, for
example, the simple Euclidean distance, the taxicab distance as a direct unsigned
difference, the half-wave rectified difference, the Kullback-Leibler divergence as a
distance between histograms.
Other unsupervised approaches have also been considered for the problem of

speaker segmentation [Kemp et al., 2000, Kotti et al., 2008]. In this context, the
audio frames are in general represented with timbre features that encode the spectral
envelope, such as Mel-frequency cepstral coefficients (MFCC). Unsupervised meth-
ods for segmentation then usually consists in computing a metric to quantify the
timbral changes along time represented by the evolution of the MFCC distribution,
supposed to be characteristic of the speaker changes.
In particular, variations of the cepstral flux method have been widely used. This

method relies on computing a distance between the MFCC observations at successive
time frames, where the variants differ both in the processing of the MFCC obser-
vations, for example, the number of coefficients, their normalization, the number of
bands, and in the distance function employed, for example, the simple Euclidean
distance, or more elaborate distances between statistical models representing the
MFCC distribution. When using statistical models, the MFCC observations are in
general supposed to be Gaussian variables, and various metrics are employed, such as
the Kullback-Leibler divergence on maximum likelihood estimates, considered first
by Siegler et al. [1997], or statistics based on likelihoods, including the Bayesian
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information criterion (BIC) proposed by Chen and Gopalakrishnan [1998], and the
generalized likelihood ratio (GLR) proposed by Bonastre et al. [2000].
The BIC method became quite popular and is now the baseline method despite the

relatively high computational cost of its naive implementation. In order to speed up
the BIC method, several directions have been investigated. For instance, Tritschler
and Gopinath [1999] introduced windowing heuristics by computing only the BIC at
the center of a growing or sliding window, with growing and sliding factors of several
time frames, hence making the scheme faster but less precise since not every time
frame is tested as a potential boundary. Cettolo and Vescovi [2003] compared several
tailored implementations by updating the BIC and related statistics incrementally.
An alternative to computational heuristics or optimizations is to consider simpler

test statistics than the BIC, such as the cumulative sum (CUSUM) statistics based
on likelihood ratio (LR) statistics, where approximations in the parameter estimation
before change are realized to make the computation recursive and less expensive. It
was notably used and compared to other methods for speaker segmentation by Omar
et al. [2005]. Finally, several authors have considered two-pass schemes, where the
first pass is done with a fast method to determine rough candidate boundaries,
while the second pass is done with the BIC method on windows centered around
the candidate boundaries for pruning and refinement, as in the well-known system
proposed by Delacourt and Wellekens [2000].

4.1.2. Motivations
We are interested here in providing a unifying framework for audio segmentation,
with arbitrary types of signals and of homogeneity criteria. Moreover, we do not
assume any a priori on the existence of classes. Segmentation is thus distinct from
classification for us, the classes being replaced with consistent informative entities.
This distinction is coherent from the perceptual perspective of auditory scene anal-
ysis [Bregman, 1990]. Indeed, human temporal segmentation is a more primitive
process than sound recognition and identification. Since the characteristics of natu-
ral sound sources tend to vary smoothly along time, new sound events are in general
indicated by abrupt changes. Therefore, the segmentation process does not require
the interpretation of the incoming acoustic data, but rather follows the variation of
its information content so as to detect structural ruptures. We think that taking
such considerations into account would help the design of a generic framework to
perform audio segmentation.
Most unsupervised approaches to audio segmentation are however tailored to a

particular type of signal and of homogeneity criterion. Nonetheless, different seg-
mentation tasks are sometimes addressed with similar approaches. In particular, this
is the case of distance-based approaches such as spectral and cepstral flux methods
in musical onset detection and speaker segmentation. Other interesting approaches
employ information-theoretic distances, such as the parametric family of Rényi en-
tropies [Liuni et al., 2011], or the Kullback-Leibler divergence [Cont et al., 2011], to
perform a segmentation on the spectral distribution as a sound feature. More gen-
eral audio segmentation frameworks employ kernel methods in relation with support
vector machine (SVM) classifiers to compute distances in a high-dimensional feature
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space [Davy and Godsill, 2002, Desobry et al., 2005, Harchaoui et al., 2009b, Sad-
jadi and Hansen, 2010]. These methods have notably been applied successfully in
the context of speaker segmentation to define different metrics in variations of the
cepstral flux method [Fergani et al., 2006, Lin et al., 2007, Kadri et al., 2008].
Actually, the idea of using general distances for quantifying homogeneity had

already been highlighted by Tzanetakis and Cook [1999] who envisioned the devel-
opment of a generic methodology for audio segmentation. This methodology can be
developed in three abstract stages, where the user extracts sound features from the
audio signal to provide a time series of observations, computes the distance between
successive observations to build a detection function, and finds peaks in the detection
function to localize segment boundaries. The authors instantiated the methodology
to provide an offline system based on Mahalanobis distance and several heuristics
for constructing the detection function and finding the peaks.
We believe that a statistical perspective based on information divergences is a

relevant approach to generalize this, and to address a sound and unifying framework
with restricted needs for arbitrary heuristics on the choice of particular distances or
detection strategies. Statistical approaches have already been used in audio segmen-
tation, notably with the BIC method for speaker segmentation as discussed above.
A major drawback of these approaches, however, is that they consider only normal
assumptions on the observations, which is obviously not well-suited to all sound fea-
tures. Secondary issues come from the potential computational complexity, or on the
design heuristics used for speeding up the schemes to the detriment of the segmen-
tation quality. Last but not least, not all these approaches, especially the two-pass
schemes discussed above, are causal and thus suited to real-time constraints.
Causality is indeed primordial in a real-time context where we do not have access

to the future and where the segmentation must be performed online by comparing
the present to the past. Moreover, because a sound signal is a stream that unfolds
in time in a causal manner, we also think that a causal design is still relevant in
an offline setting, and that it is pertinent from a perceptual viewpoint to account
for the inherent temporal flow of the time series. We therefore view the process of
segmentation as the detection of a sufficient amount of novelty, that is, a rupture of
information content between a given time point and its relative past.
General statistical approaches to online segmentation are provided by the theory of

detection of abrupt changes [Basseville and Nikiforov, 1993]. In particular, CUSUM
approaches naturally fit with most statistical models of probability distributions,
with recursive and tractable computations that are compatible with the design of
a real-time system. These approaches, however, undergo approximations for pa-
rameter estimation before change. More precisely, the parameters before change
are assumed to be known in advance when forming the statistical hypotheses of a
change at the respective time points of the window, and when computing the respec-
tive LR statistics. This is suitable for applications such as quality control where a
normal regime is completely known beforehand. It is yet limited in many real-world
applications where we do not seek to detect failures of a known standard regime.
When applying CUSUM in such scenarios, the parameters before change, which

are supposed to be known, are actually estimated either on the whole window, or
in a dead region at the beginning of the window where change detection is turned

81



4. Real-Time Audio Segmentation

off. The LR statistics are thus replaced with approximate GLR statistics, where
the parameter before change is the same in all hypotheses. This results in practical
shortcomings, because of estimation errors, as soon as change points occur rapidly,
which is the case for audio signals in general.
The problem when considering properly unknown parameters before change and

when forming exact GLR statistics, is that it breaks down the recursivity and compu-
tational efficiency of the detection schemes. Therefore, the CUSUM approximations
of the exact GLR statistics are in general still employed to accommodate sequential
situations. A few specific exact GLR statistics have yet been studied, notably for
unknown mean in univariate normals with a fixed and known variance [Siegmund
and Venkatraman, 1995], and some extensions to multivariate normals as employed
in certain methods for speaker segmentation discussed above.
A more general Bayesian framework for independent observations in exponential

families has been proposed recently to address the estimation of parameters before
and after change [Lai and Xing, 2010]. This Bayesian framework, however, relies on
a geometric prior on the time between change points, which is not always well-suited
for arbitrary audio signals. Moreover, it requires a prior knowledge on the distri-
bution of the parameters in the respective segments, which is not always available.
To overcome this, we rather seek to employ sequential change detection schemes
with unknown parameters before and after change, but without any a priori on the
respective distributions of the change points and parameters.

4.1.3. Contributions
Our contributions to the problem of audio segmentation can be summarized as
follows. We first devise a generic and unifying framework for real-time audio seg-
mentation that can handle various types of signals and of homogeneity criteria. This
framework relies on the methods for sequential change detection with exponential
families developed in Chapter 2. The proposed real-time system detects changes
by controlling the information rate of the incoming audio stream as it unfolds in
time. The information content is quantified by employing information measures on
statistical descriptions of the signal. As a by-product, the quantified units can then
be characterized by using representative probabilistic models within the respective
segments, hence permitting their processing for further applications.
More specifically, the proposed modular system relies on the computation of a

short-time sound representation from the incoming audio stream, and on the mod-
eling of the observed sound features with parametric probability distributions. The
segmentation then consists in monitoring the parameters of the distributions in real
time so as to assess structural changes that indicate new segments. The choice of
the audio features and of their associated statistical model is almost arbitrary, and
is left to the user depending on the homogeneity criterion in the application at hand.
Considering distributions from exponential families, a wide range of common statis-
tical families can be employed to model combinations of audio features with various
topologies, such as scalar or multidimensional, discrete or continuous data.
The sequential change detection is performed with the GLR statistics for exponen-

tial families. In addition to their primary statistical interpretation, these statistics
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also found geometrical grounds through the dually flat geometry of exponential
families. As a result, the proposed framework paves the way for bridging the gap
between statistical and distance-based approaches to segmentation, by showing tight
links between the statistical models involved and certain associated distances.
We notably clarify the relations between various standard approaches to audio

segmentation, and show how they can be unified and generalized in the proposed
framework. Such approaches include CUSUM schemes based on LR and approxi-
mate GLR statistics, AIC and BIC methods from model selection theory, as well
as certain kernel methods relying on SVM classifiers and similar approaches. In
particular, the baseline spectral and cepstral flux methods commonly employed in
onset detection and speaker segmentation can be seen as special instances of this
modular framework.
We also discuss and explicitly address the shortcomings of CUSUM approaches for

parameter estimation with approximate GLR statistics. This is achieved by employ-
ing exact GLR statistics, where the unknown parameters are estimated separately in
each hypothesis. These statistics, however, break the inherent recursivity of CUSUM
algorithms. We are yet able to obtain an efficient scheme with sequential updates for
the test statistics, using the convex duality for exponential families. The resulting
scheme is finally applied to a variety of audio signals and segmentation tasks.
In particular, we showcase applications based on the energy for segmentation into

silence and activity regions, on timbral characteristics for segmentation into music
and speech, or into different speakers, and on spectral characteristic for segmentation
into polyphonic note slices. This illustrates the generality of the included applica-
tions on different problems, by adapting the proposed framework to the homogeneity
criteria considered. A quantitative evaluation is further performed for the specific
task of onset detection in music signals on a complex dataset, to demonstrate how
the proposed approach can leverage modeling compared to baseline approaches.

4.2. Proposed approach
In this section, we present the proposed approach to a generic framework for audio
segmentation with arbitrary types of signals and of homogeneity criteria. We first
outline the general architecture of the real-time system designed, which relies on an
arbitrary short-term sound representation and on its modeling through a parametric
statistical model. We then elaborate on the sequential change detection scheme
employed to monitor the variations in the model parameters, and notably clarify
the relations with various standard approaches to audio segmentation in order to
demonstrate how they can be unified and generalized in the proposed framework.

4.2.1. System architecture
The general architecture of the system is depicted in Figure 4.2. We consider an
audio stream that arrives incrementally to the system as successive time frames.
These frames are represented with an arbitrary short-time sound representation
to provide a time series x1,x2, . . . of observations. These observations are modeled
with probability distributions Pξ1 , Pξ2 , . . . from a given parametric statistical family.
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Auditory scene

Statistical modeling

Change detection

Short-time sound representation

Audio segmentation (online)

Figure 4.2.: Architecture of the proposed real-time system. The audio signal arrives
online to the system, and is represented through arbitrary sound fea-
tures that are modeled with parametric probability distributions, whose
parameters are then monitored to detect changes.

The segmentation paradigm then consists in detecting sequentially the changes in
the parameters ξ1, ξ2, . . . of the respective distributions. The sequential change
detection procedure can be sketched as follows.
We start with an empty window tx← ( ). For each time increment n = 1, 2, . . . , we

accumulate the incoming observation xn in the growing window tx← tx |xn, and at-
tempt to detect a change point in the parameters at any time i of the window. When
a change point is detected, we discard the observations before the estimated change
point i and start again the procedure with an initial window tx← (xi+1, . . . ,xn). The
sequential change detection problem can therefore be reduced to finding one change
point anywhere within a given data sample sx = (x1, . . . ,xn). As a by-product, each
segment can then be characterized by a statistical prototype corresponding to the
constant parameters of the probability distribution in that segment.
Concerning the short-time sound representation, various and almost arbitrary

sound features can be employed to produce the time series x1,x2, . . . of observations.
For example, we may compute a short-term Fourier transform, or any other time-
frequency representation, so as to extract information on the spectral distribution
of the audio stream and segment it according to spectral changes. Alternatively, we
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can employ timbral information for segmentation by computing MFCC observations,
or loudness information through the energy envelope. The choice of these sound
descriptors is left to the user depending on the types of signals and on the criteria
for homogeneity considered. The proposed framework based on sequential change
detection is able to handle any sound features in a unifying way, provided that some
statistical assumptions are verified.
Because we seek a general framework for audio segmentation, we cannot rely on

a simple statistical modeling such as using uniquely normal distributions. Indeed,
normality assumptions are well-suited for certain types of sound features such as
MFCC observations, but may fail to model reliably other features. For example, the
simple energy descriptor provides a non-negative time series of observations which
are quite unlikely to be distributed according to normal distributions whose support
is the real line. More generally, sound features may be either scalar or multidimen-
sional, exhibit various ranges, and take continuous or discrete values. Moreover, we
may want also to associate several sound features with different topologies.
To handle such scenarios, we assume that the sound features can be reliably mod-

eled with an exponential family of probability distributions. It leaves the choice for
many common parametric families, such as Bernoulli, Dirichlet, Gaussian, Laplace,
Pareto, Poisson, Rayleigh, Von Mises-Fisher, Weibull, Wishart, log-normal, expo-
nential, beta, gamma, geometric, binomial, negative binomial, categorical, multi-
nomial models, or for any association of such models. We now discuss a modular
change detection paradigm that works for almost all exponential families.

4.2.2. Change detection
In the present work, we employ the GLR statistics for change detection with expo-
nential families developed in Chapter 2. The decision rule based on the GLR statis-
tics simply amounts to comparing the maximum of the GLR within the window
with a threshold λ > 0. We also assume that the parametric statistical model under
consideration is a full minimal steep standard exponential family P = {Pθ}θ∈N . We
finally estimate the unknown parameters before and after change in the respective
hypotheses by using maximum likelihood estimators. Under mild assumptions, the
respective maximum likelihood estimates exist and are unique. The GLR statistics
pΛi at the respective time points i of the window can then be expressed as follows:

1
2

pΛi(sx) = log
∏i

j=1 ppθi0 ml(sx)(xj)
∏n

j=i+1 ppθi1 ml(sx)(xj)∏n
j=1 ppθ0 ml(sx)(xj)

. (4.1)

At this point, let us clarify some commonly confused relations between change
detection methods based on the LR, approximate and exact GLR statistics, as
well as on the AIC and BIC statistics. In informal terms, the LR and GLR
statistics can be written as −2 log(p(sx|H0)/p(sx|H i

1)). The difference between the
statistics lies in the consideration of the parameters in the hypotheses. In the LR
statistics for CUSUM schemes, the parameters before and after change are com-
pletely known in advance. When they are both unknown, the exact GLR statis-
tics estimate them in the different hypotheses by using the available data respec-
tively before and after the hypothesized change point, as pη0 ml(sx) = 1

n

∑n
j=1 xj,
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pηi0 ml(sx) = 1
i

∑i
j=1 xj, pηi1 ml(sx) = 1

n−i
∑n

j=i+1 xj. In the approximate GLR statis-
tics, however, only the parameter after change is actually estimated in the different
hypotheses, while the parameter before change is estimated at once and set iden-
tical for all hypotheses. In general, it is estimated either on the whole window, as
pηi0 ml(sx) ≈ pη0 ml(sx) = 1

n

∑n
j=1 xj, or in a dead region at the beginning of the window

where change detection is turned off, as pηi0 ml(sx) ≈ pη0 ml(sx) ≈ 1
n0

∑n0
j=1 xj, for some

n0 < n. It permits to keep the recursive form of the LR statistics and to use the
computationally attractive CUSUM scheme, but it undermines the correct detection
of changes, because of estimation errors, as soon as changes occur too rapidly.
Concerning the AIC and BIC methods for model selection, they consist in com-

paring the likelihood of the data under the respective hypotheses with a penalty
increasing according to the number of free parameters, so as to favor sparse mod-
els over complex models and avoid overfitting, following the Occam’s razor prin-
ciple. The distinction between the two methods is actually that the penalty term
augments with the sample size n in BIC, but not in AIC, hence favoring in gen-
eral sparser models in BIC than in AIC. For detecting a change when both pa-
rameters are unknown, the differences of AIC or BIC between the hypothesis of
no change and the respective hypotheses of a change are computed. These dif-
ferences can be expressed respectively as −2 log(p(sx|H0)/p(sx|H i

1)) + 2(k0 − ki1),
and −2 log(p(sx|H0)/p(sx|H i

1)) + (k0 − ki1) log n, where k0 and ki1 are the numbers
of free scalar parameters estimated in the respective hypotheses. We actually have
k0 = ki1/2 = d, where d denotes the dimension of the parameter space. The model
selection rule then simply amounts to detecting a change as soon as the maximum of
the differences within the window is positive, that is, −2 log(p(sx|H0)/p(sx|H i

1)) > 2d,
and −2 log(p(sx|H0)/p(sx|H i

1)) > d log n, respectively. Therefore, the AIC and BIC
methods are actually nothing else than particular exact GLR methods, with a con-
stant threshold 2d for AIC, and with a threshold d log n that increases with the
window length for BIC. A penalty parameter γ > 0 is also sometimes introduced to
consider a penalized BIC with a threshold γ d log n, which is again a specific GLR
scheme.
Keeping this in mind, there is absolutely no reason that the AIC, BIC, or penalized

BIC methods are computationally more demanding than the exact GLR method as
sometimes argued in the literature. Nonetheless, the approximate GLR method is
in general faster since it allows the implementation of a recursive CUSUM scheme,
with the difference that the parameters after change need to be estimated in all
hypotheses compared to the standard CUSUM with LR statistics for completely
known parameters.
In addition to unifying LR, GLR, AIC, BIC methods and their variations, the

proposed approach further provides a sound framework to bridge the gap between
these statistical methods and geometrical methods based on the computation of
distances. Indeed, the GLR statistics can also be expressed in terms of information
divergences as follows:

1
2

pΛi(sx) = iDKL

(
Ppθi0 ml(sx)

∥∥∥Ppθ0 ml(sx)

)
+ (n− i)DKL

(
Ppθi1 ml(sx)

∥∥∥Ppθ0 ml(sx)

)
. (4.2)

Rewriting the Kullback-Leibler divergences in terms of associated Bregman diver-
gences on natural or expectation parameters DKL (Pθ‖Pθ′) = Bψ(θ′‖θ) = Bφ(η‖η′),
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this paves the way for the design of arbitrary distance-based approaches to segmenta-
tion, provided that the considered distance is the canonical Bregman divergence of an
exponential family. Furthermore, this lays a theoretical background to understand
and guide the choice of a given distance in relation to the corresponding statistical
assumptions on the distribution of the observations. This includes schemes based on
the widely used Euclidean and Mahalanobis distances, and on the Kullback-Leibler
and Itakura-Saito divergences, to name but a few.
In this context, it is worth comparing the distance-based segmentation derived

from rigorous statistical considerations, to the heuristic distance-based segmenta-
tions usually employed in the literature. Most of the time, the segmentation based
on a given distance relies on the direct computation of the distance between the ob-
servations at two successive time frames, or sometimes more generally between the
left and right parts of a window after averaging the observations on the respective
sides. In contrast, the proposed approach shows that the distance corresponding to
the exact GLR statistics is rather computed separately for the two parts with respect
to the global average as a reference. Interestingly, when using approximate GLR
statistics where all parameters before change are assumed equal, the first distance
vanishes and we end up with a scheme similar to heuristic distance-based schemes.1
The proposed approach is however more general since in a complete scheme, all

time points of the window, and not just the center, are considered as potential change
points. Moreover, the way of averaging the observations in the respective parts of
the window is naturally provided by the mean of the sufficient observations, which
geometrically simply corresponds to the arithmetic mean of the observed points
in expectation parameters and actually coincides with the corresponding Bregman
right-sided centroid. It is also interesting to remark that the two distances are
then naturally weighted by the number of observations in the respective parts of
the window, which cancels out when considering only the center. Last but not
least, common windowing heuristics based on growing and sliding factors can be
seen as approximations of a complete scheme, where the incoming observations are
accumulated in groups of several observations, and the window is offset by several
time frames as soon as it attains its maximal allowed size. As a result, this makes
the scheme faster, but incomplete in the sense that not all time points are tested as
candidate boundaries, and that the analysis step is larger than a single time frame,
hence potentially resulting in detection errors and increased latency.
To go further, some approaches based on kernels methods can also be explained

under the umbrella of the proposed framework. Because the sufficient observations
in exponential families appear through their scalar product with the natural parame-
ters, we can extend them to a high-dimensional feature space through a reproducing
kernel Hilbert space. This has notably been formalized by Canu and Smola [2006]
who demonstrated the equivalence between one-class SVM approaches to novelty
detection, and approximate GLR statistics computed at the center of the window.
Again, the proposed framework provides statistical and geometrical insights into
these methods, and extends them with the introduction of exact GLR statistics.

1The two schemes actually correspond if we only seek to detect a change point at the center of
the window, and if we take the first half of the samples to estimate the unknown parameter
before change.
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From a computational perspective, exact GLR statistics have often been replaced
with their approximate counterparts, except from normal models, as discussed pre-
viously. This is because the standard expression in terms of likelihoods may be
intensive to compute, in particular for complete schemes where all potential change
points are tested, and where the parameters in the respective hypotheses all need
to be estimated to compute the different likelihoods. For normal models, compu-
tational optimizations have been proposed to overcome this by taking advantage of
specific relations between the parameters in successive windows. We argue that such
optimizations can actually be made more generally for all exponential families, and
arise naturally from convex duality. Indeed, rewriting the exact GLR statistics in
expectation parameters leads to the following expression:

1
2

pΛi(sx) = i φ(pηi0 ml(sx)) + (n− i)φ(pηi1 ml(sx))− nφ(pη0 ml(sx)) . (4.3)

Because maximum likelihood estimates between successive windows are related by
simple time shifts or barycentric updates in expectation parameters, this provides a
computationally efficient scheme for calculating the statistics in a sequential fashion.
For example, if no change has been detected in the previous window, the statistics
can then be simply updated as pηi0 ml(sx)← pηi0 ml(sx), pηn−1

0 ml (sx)← pη0 ml (sx), pηi1 ml(sx)←
((n− i−1)pηi1 ml(sx)+xn)/(n− i), pηn−1

1 ml (sx)← xn, pη0 ml(sx)← ((n−1)pη0 ml(sx)+xn)/n,
for all 1 ≤ i < n − 1. Similar updates can be obtained when a change point has
been detected, or when employing growing and sliding window heuristics. Moreover,
certain values at which the conjugate φ is evaluated actually reappear because of
time shifts, and can therefore be stored to facilitate tractability.

4.3. Experimental results
In this section, we report experimental results of the proposed approach on various
types of audio signals and of homogeneity criteria. We notably showcase applica-
tions based on the energy for segmentation into silence and activity regions, and
on timbral or spectral characteristics for segmentation into music and speech, into
different speakers, or into polyphonic note slices. The generic audio segmentation
framework presented above is capable of controlling information rate changes in real
time given that the sound representation is modeled through a member of the ubiqui-
tous exponential families. By unifying and generalizing several reference approaches
to audio segmentation, this framework is expected to provide at least equivalent
performances than the encompassed baseline methods. Therefore, the goal of this
section is not to evaluate systematically the performance of the proposed schemes
in comparison to the literature, but rather to illustrate the plurality of the included
applications on different problems, by adapting the proposed framework to the sig-
nals and homogeneity criteria considered. A quantitative evaluation on a difficult
dataset is nonetheless performed for the specific task of musical onset detection with
various instruments and music styles, to demonstrate how the proposed approach
can leverage modeling on a complex problem.
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Figure 4.3.: Segmentation into silence and activity. By modeling the energy varia-
tions, the system has correctly detected the boundaries between silence
and activity regions, despite the presence of background noise.

4.3.1. Segmentation into silence and activity

We begin with the problem of segmenting an audio signal according to variations of
the energy. As a simple experiment, we considered the fundamental task of segmen-
tation into silence and activity regions. Solving this basic problem is of primordial
interest since a silence detector is the first pre-processing stage in numerous audio
engineering systems. To showcase the system on this task, we analyzed a speech
utterance containing pauses and background noise. As a sound representation, we
chose the short-term energy computed through a standard 40-band filter bank on a
Mel-frequency scale, with a frame size of 512 samples and a hop size of 256 samples
at a sampling rate of 11025Hz. We modeled the energy observations with Rayleigh
distributions. The threshold was set manually to λ = 1. The change detection was
computed under MATLAB on a 2.40GHz laptop with 4.00Go RAM, and was about
10 times faster than real time.
The results are represented in Figure 4.3. The top plot shows the computed

segmentation on the audio waveform, while the bottom plot provides the reference
annotation. It confirms that the system has reliably detected the boundaries be-
tween silence and activity regions despite the background noise. This is because we
do not rely on a crude local analysis of the raw signal variations, but on a statis-
tical modeling of the energy, whose distribution changes during silences compared
to activity regions, as visible on the middle plot. As such, the system is able to
discriminate correctly between silence and activity, but does not classify the seg-
ments accordingly. This could however be done easily by using the estimated scalar
parameters in the respective segments, which for Rayleigh distributions characterize
both the mean and variance of the observations.
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Figure 4.4.: Segmentation into music and speech. By monitoring variations in the
timbre, the system has correctly found the different music and speech
segments, while staying robust within the two classes.

4.3.2. Segmentation into music and speech

We now turn to the task of segmenting audio into music and speech, which arises
in several applications such as the automatic indexing of radio broadcasts. The dis-
crimination between music and speech can be addressed with a timbral homogeneity
criterion. In this context, a baseline sound representation is given by the MFCC ob-
servations. To illustrate this, we created an audio fragment by concatenating music
excerpts and speech utterances. To make the example realistic, we chose three music
excerpts with vocals, and two speech passages with utterances from two different
speakers in the first passage. This was done to verify whether the system is able to
discriminate between the classes of music and speech despite the presence of vocals,
while being robust against speaker changes within the class of speech. We computed
the first 12 MFCC observations excluding the 0th energy coefficient, with a frame
size of 512 samples and a hop size of 256 samples at a sampling rate of 11025Hz.
We modeled the MFCC observations through multivariate spherical normal distri-
butions with a fixed variance of 100. The threshold was set manually to λ = 300.2
The change detection was about 10 times faster than real time.
The results are represented in Figure 4.4. The top plot shows the obtained seg-

mentation on the audio waveform, while the bottom plot shows the ground-truth
segmentation. This proves that the system has correctly detected the changes be-
tween music and speech despite the presence of vocals in the music excerpts. More-
over, there is no over-segmentation within the class of speech even if two different
speakers are present in the first speech region. Here for spherical Gaussians, the
estimated multivariate parameters in the segments actually correspond to the ex-
act means of the 12 MFCC observations within the respective segments, and could
further be employed to classify the obtained regions as music or speech.

2There is actually a redundancy between the variance and the threshold for spherical normal
distributions, where multiplying the variance by some positive value amounts to dividing the
threshold by the same value.
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Figure 4.5.: Segmentation into different speakers. By considering characteristic tim-
bre structures within the class of speech, the system has correctly iden-
tified the boundaries between the different speakers.

4.3.3. Segmentation into different speakers
To go further, we now experiment the segmentation of a speech signal into different
speakers. We constructed a speech fragment by concatenating utterances from 5
different speakers. Because the timbre is also characteristic of speakers at a smaller
scale than speech and music, we chose the same analysis parameters as above and
computed MFCC observations. The threshold was however refined to λ = 100, for
a finer timbral discrimination at the speaker level within the class of speech. The
change detection was about 10 times faster than real time.
The results are represented in Figure 4.5. The top plot shows the obtained seg-

mentation on the audio waveform, while the bottom plot shows the annotated refer-
ence segmentation. This proves that the system has correctly detected the different
speaker turns given the usual 1-second tolerance in this context. The middle plot
depicts the estimated MFCC parameters for the different speakers in the respec-
tive segments. These estimated coefficients actually correspond to the mean of the
MFCC observations, and are clearly distinctive of the different speakers. As a re-
sult, they could be beneficially employed for further applications such as speaker
recognition or diarization.

4.3.4. Segmentation into polyphonic note slices
We now turn to the segmentation of audio based on a spectral homogeneity crite-
rion. Spectral characteristics provide complementary information to the timbre, by
representing finely the frequency content rather than the global frequency shape, or
spectral envelope, of the source. Spectral segmentation therefore applies in general
at a shorter-term level, for tasks such as detecting phoneme boundaries or musical
notes. We focus on the latter application in the context of slicing polyphonic music
into stationary polyphonic chunks. We considered an excerpt of the 4th movement
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Les entretiens de la Belle et de la Bête, from Ma mère l’Oye, Cinq pièces enfantines
pour piano à quatre mains (1908-1910), composed by Maurice Ravel (1875-1937).
This excerpt was synthesized from a ground-truth reference with real piano sam-
ples. In seeking to obtain stationary polyphonic slices, we actually want to detect
note onsets and offsets, so that each segment exhibit a constant combination of note
events that differs from its neighbors. As a sound feature, we employed a normal-
ized magnitude spectrum, computed using a simple short-time Fourier transform
with a frame size of 512 samples and a hop size of 128 samples at a sampling rate of
11025Hz. We considered the normalized magnitude spectra as frequency histograms
and modeled them with categorical distributions. The threshold was set manually
to λ = 10.3 The change detection was about 10 times faster than real time.
The results are represented in Figure 4.6. The top plot represents the detected

segments on the audio waveform, while the bottom plot explores their relevancy
compared to the ground-truth note pitches presented as a piano roll. This is to
confirm that the system has successfully detected change points that actually corre-
spond to note onsets and offsets. We insist on the fact that the system has however
no knowledge about musical notes, and rather detects changes by monitoring the
variations of the spectral information over time. For categorical distributions, the
estimated parameters within the respective segments correspond to the probabilities
of occurrence of the respective variables. For frequency spectra, it provides spec-
tral information as the distribution of the different frequency bins. Therefore, the
segmentation and respective estimated spectral distributions could also be used for
further applications in music information retrieval.

4.3.5. Evaluation on musical onset detection
To complement the above examples and discussions, we finally provide a quantitative
evaluation of the proposed approach on the specific task of musical onset detection.
We notably demonstrate the benefits of the proposed approach compared to the
heuristic distance-based method of spectral flux. We considered a well-known and
difficult dataset described in [Leveau et al., 2004]. This dataset is composed of
17 heterogeneous music clips recorded in various conditions, and ranging from solo
performances of various monophonic instruments and polyphonic instruments, to
complex mixes, in different music genres such as rock, classical, pop, techno, jazz.
For online segmentation, we computed a normalized magnitude spectrum with

a frame size of 1024 samples and a hop size of 126 samples at a sampling rate of
12600Hz, for a time resolution of 10ms. We modeled these features with categorical
distributions. The threshold was chosen constant, and was tuned with a step of 0.1
in the range 1 ≤ λ ≤ 10, so as to achieve optimal results over the dataset.
We compared the results of the proposed algorithm (GLR) with the three most com-

mon variations of the spectral flux method (SF), based respectively on the Kullback-
Leibler divergence, the Euclidean distance, and the half-wave rectified difference,

3There is actually equivalence between considering categorical distributions with a certain thresh-
old, and the corresponding i.i.d. sampling model of multinomial distributions with a given
number of trials where the threshold is divided by the number of trials.
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Figure 4.6.: Segmentation into polyphonic note slices. By modeling the spectral vari-
ations, the system has correctly sliced the music excerpt into stationary
polyphonic chunks.

computed between two successive time frames. The threshold was also chosen con-
stant and was tuned with a step of 0.01 in the range 0.01 ≤ λ ≤ 1.
The performance of the algorithms was measured through the F -measure F com-

puted as the harmonic mean of the precision and recall, where the precision P is
the percentage of correctly detected onsets over the total number of detected onsets,
and thus quantifies the robustness of the algorithm in relation to true negatives
and false positives, while the recall R is the percentage of correctly detected onsets
over the total number of ground-truth onsets, and thus quantifies the efficiency of
the algorithm in relation to true positives and false negatives. According to the
methodological guidelines provided in [Leveau et al., 2004], we assumed an onset to
be correctly detected if it is within a time tolerance of ±50ms from a ground-truth
onset. We also considered doubled and merged onsets to account for them as errors.
We report the evaluation results in Table 4.1. Overall, the results show that the

proposed system and GLR algorithm perform relatively well on this complex dataset
with a maximum F -measure F = 64.52. Moreover, it significantly outperforms all
reference SF algorithms. Using the simple Euclidean distance, SF has the lowest
F -measure F = 27.08. The Euclidean distance actually corresponds to spheri-
cal Gaussian assumptions on the observations, which is not adapted to model the
magnitude spectrum. Concerning the Kullback-Leibler distance function, it exactly
corresponds to the divergence related to the categorical model. The corresponding
SF is thus a crude approximation of GLR, with search for a change point in a sliding
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Algorithm λ P R F Distance function
GLR 5.00 60.93 68.55 64.52 Kullback-Leibler
SF 0.06 22.56 33.87 27.08 Euclidean
SF 0.10 34.42 41.26 37.53 Kullback-Leibler
SF 0.17 40.20 42.74 41.43 Half-wave rectified difference

Table 4.1.: Evaluation results for musical onset detection. The results show that the
proposed approach performs relatively well, with a maximum F -measure
F = 64.52, compared to the baseline spectral flux methods.

window of two observations, and with estimation of the unknown parameter before
change using the first observation. It is thus expected to perform poorly compared
to GLR, and exhibits a F -measure F = 37.53. It is nonetheless higher than for
SF with the Euclidean distance, thanks to the more reliable modeling assumptions
underlying the Kullback-Leibler divergence. This is confirmed by the precision and
recall which are both higher too, meaning that the effect is not due to one algorithm
detecting more ground-truth onsets while also making more detection errors.
Last but not least, the best results for SF are actually obtained for the heuristic

half-wave rectified difference with a F -measure F = 41.43. This distance function
does not correspond to a Bregman divergence, and hence does not have a rigorous
statistical interpretation within the proposed framework. Nevertheless, the half-
wave rectification is often used in onset detection based on the spectral flux, in
order to account only for the significant variations of the spectra that correspond to
positive contributions of energy, and thus to onsets rather than offsets. The other
SF and GLR algorithms employed here do not account for this and therefore also
detect spectral changes corresponding to note offsets. Nonetheless, the proposed
GLR outperforms the heuristic SF method with the half-wave rectified difference.
This is again confirmed by the precision and recall which are also both higher for
GLR.

4.4. Discussion
In this chapter, we discussed the problem of real-time audio segmentation. We ad-
dressed this problem by proposing a generic and unifying framework capable of han-
dling various types of signals and of homogeneity criteria. The proposed approach
is centered around a core scheme for sequential change detection with exponential
families, where the audio stream is segmented as it unfolds in time, by modeling
the distribution of the sound features and monitoring structural changes in these
distributions. We also discussed how the framework unifies and generalizes statisti-
cal and distance-based approaches to segmentation through the dually flat geometry
of exponential families. We finally showcased various applications to illustrate the
generality of the proposed approach, and notably performed a quantitative evalua-
tion for musical onset detection to demonstrate how it can leverage modeling in a
complex task. The obtained results are encouraging for further developments from
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both theoretical and applicative perspectives.
First of all, we want to tackle the assumption that the sound features are sta-

tistically independent along time. This has not been a serious issue for the audio
features considered here, but it may hinder the correct modeling of certain features
that exhibit more complex temporal profiles with clear temporal dependence. A
potential direction is to leave the generality of the framework aside, and to consider
change detection within specific statistical models, such as the autoregressive mod-
els employed for speech segmentation in [André-Obrecht, 1988]. More generally, we
could consider linear or even non-linear systems. Online schemes based on particle
filtering have been proposed to detect changes in non-linear systems for instance
in [Fearnhead and Liu, 2007], but such schemes suffer from computational burdens
when properly considering unknown parameters and exact inference. An alternative
based on CUSUM-like test statistics has recently been proposed in [Vaswani, 2007].
On another perspective, we would like to improve the robustness of the system.

A first possibility is to employ more elaborate post-processing techniques. Here,
following a statistically-grounded viewpoint, we considered the simple thresholding
of the test statistics along time as a decision rule. Yet we could take advantage
of application-specific heuristics to tailor the detection rule by smoothing the test
statistics and adapting the threshold, or by considering sliding and growing heuris-
tics for windowing. More interestingly, it would be a major step to assess such
heuristics in relation to statistical considerations. This has been recently investi-
gated in [Lai and Xing, 2010], where a scanning window decision rule is analyzed
from the standpoint of asymptotic optimality. This should be investigated further.
A complementary idea has been discussed here, by clarifying the relations between

the GLR statistics and the AIC or BIC methods from model selection, hence pro-
viding a way to automatically tune the threshold, not necessarily constant across
the windows. A more specific criterion than AIC and BIC has also been proposed
for estimating the number of change points in an offline setup with exponential fam-
ilies in [Lee, 1997], and could beneficially be employed. The issue of these criteria,
however, is that they rely on the large sample theory, which is not always relevant
for certain signals such as audio where the time intervals between segments may be
low. This is why an additional threshold parameter is for example often used to
define penalized BIC methods as discussed previously. Moreover, when computing
exact statistics, we also test for change points at the window extremities, and rel-
evant criteria should account for this, by correcting the statistics for small sample
sizes. It has been noticed and addressed for offline contexts early in [Deshayes and
Picard, 1986], or more recently in [Chen et al., 2006], and should be adapted to
online contexts.
Besides the non-Bayesian framework employed here, we may also formulate online

change detection in a Bayesian framework. This becomes interesting when we possess
prior knowledge on the distributions of the parameters in the respective segments,
and on the run length distribution between change points, either by expert knowledge
or by learning these distributions on a training dataset. In this context, several
frameworks have already been proposed, for example in [Adams and MacKay, 2007,
Turner et al., 2009, Lai et al., 2009, Lai and Xing, 2010, Fearnhead and Liu, 2011],
certain dealing notably with exponential families. The inference schemes, however,

95



4. Real-Time Audio Segmentation

are in general more demanding than for non-Bayesian approaches. This avenue
merits further considerations and adaptations to real-time processing.
In addition to improving the core scheme of change detection, a parallel effort

could be pursued on considering more elaborate representations and modeling of
sounds. In particular, the framework of exponential families permits the combination
of various features with different topologies. Combined with kernel methods, it
provides an interesting approach to enhance the standard sound representations
employed in the present work. In this context, it would become pertinent to also
provide methods for automatic feature selection and model selection, in order to fit
the representational front-end and its statistical modeling to the problem at hand,
either in an unsupervised setup with no input from the user, or in a semi-supervised
approach.
From the standpoint of applications, we now want to evaluate the proposed frame-

work thoroughly in a variety of direct audio applications. We have showcased here
several such applications, including segmentation of audio into silence and activity,
or into speech and music, and segmentation of speech into different speakers, or of
polyphonic music into polyphonic note slices. Other applications are conceivable,
for example, music structural segmentation based on timbral characteristics, as well
as segmentation of speech in phonemes or syllables, among others. We have demon-
strated, on the specific task of musical onset detection, how the proposed framework
can improve segmentation compared to heuristic baseline methods. This should be
extended on a case-by-case study to the various applications mentioned. Because
the proposed framework encompasses several baseline approaches in these respective
applications, it is expected that it would provide benefits and further intuitions on
the choice of models and distance functions considered for improving the results.
Finally, the proposed audio segmentation framework could be beneficially em-

ployed for further applications as briefly touched upon here. We can not only use
the computed segmentation as a first pre-processing stage in a variety of applica-
tions, but also employ the estimated statistical prototypes characterizing the respec-
tive segments, hence opening up the field for further processing in audio analysis,
indexing and information retrieval. Relevant examples include real-time speaker di-
arization, or real-time music structural analysis, among others. Last but not least,
we believe that the proposed approach can also provide benefits for the analysis of
time series in other domains within the realm of signal processing, including geo-
physics, econometrics, medicine, or image analysis.
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Transcription

In this chapter, we investigate a second problem of major interest in audio signal
processing, and more particularly in music information retrieval, namely the auto-
matic transcription of polyphonic music. We consider a supervised setup based on
non-negative decomposition, where the music signal arrives in real time to the sys-
tem, and is projected onto a dictionary of note spectral templates that are learned
offline prior to the decomposition. An important drawback of existing approaches
in this context is the lack of controls on the decomposition, resulting in practical
shortcomings regarding the correct detection of notes. This issue is addressed by
employing the methods developed for non-negative matrix factorization with convex-
concave divergences in Chapter 3. In particular, we focus on the parametric family
of (α, β)-divergences, and explicitly interpret their relevancy as a way of controlling
the frequency compromise during the decomposition. The proposed system is then
evaluated through a methodological series of experiments, and is shown to outper-
form two state-of-the-art offline systems while maintaining low computational costs
that are suitable to real-time constraints.

5.1. Context
In this section, we first provide some background information on the problem of mu-
sic transcription, in particular for polyphonic music signals and approaches based on
non-negative matrix factorization techniques. We then discuss the motivations of our
approach to the task of polyphonic music transcription with real-time constraints.
We finally sum up our main contributions in this context.

5.1.1. Background
The task of music transcription consists in converting a raw music signal into a
symbolic representation such as a score, as sketched in Figure 5.1. In more details,
the purpose of music transcription is to analyze the low-level information of a music
signal given as a simple audio waveform, in order to extract some high-level symbolic
information that describes its musical content. Several types of musical information
are of interest for music transcription, for example, when considering pitched instru-
ments, we may want to find the respective pitches and onsets of the notes played,
as well as their durations or their offsets. Other information may be of complemen-
tary interest, such as the dynamics, the tempi and rhythms, the instruments, the
unpitched events from percussions, among others.
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Figure 5.1.: Schematic view of the music transcription task. Starting from the low-
level information of a raw music signal given as a simple audio waveform,
the goal is to extract some high-level information that describes its
musical content as a symbolic music score does.

Because of the different types of relevant musical information, the approaches to
music transcription are in general aimed at extracting a particular type of informa-
tion, and we are still far today from a single system capable of transcribing music
like a human expert would. A recent review of the literature is provided in the book
edited by Klapuri and Davy [2006], which gathers contributed chapters of leading
researchers for the main approaches. We notably consider here the important and
difficult subtask of transcribing the note information from polyphonic music. This
is closely related to the problem of multiple fundamental frequency estimation, or
multiple pitch estimation, which consists in determining the fundamental frequen-
cies that are present in the signal as a function of time, in the scenario where there
are potentially several overlapping pitched sound sources. This problem has been
largely investigated for music as well as speech signals, and a wide variety of methods
have been proposed as exposed in the comprehensive book chapter of de Cheveigné
[2006].
In particular, non-negative matrix factorization (NMF) has been widely used since

the pioneering work of Smaragdis and Brown [2003], Abdallah and Plumbley [2004].
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In this context, the observation matrix Y is in general a time-frequency representa-
tion of the sound excerpt to analyze. The rows and columns represent respectively
the different frequency bins and the successive time frames of the analysis. The
factorization Y ≈ AX can then be interpreted as follows. The observation vectors
yj provide the spectral distribution of the signal at the respective time frames. The
dictionary matrix A contains basis vectors as characteristic templates of the spectral
distribution of the signal. The encoding vectors xj represent the activations of the
respective spectral templates at the corresponding time frames.
The main issue of the early NMF approaches to polyphonic music transcription

stems from the lack of controls on the factorization. Notably, there is no guarantee
that the obtained dictionary is made of spectral templates that actually correspond
to musical notes. As a result, the activations of these templates along time do
not necessarily correspond to the exact occurrence of notes. Moreover, there is a
priori no structure in the learned dictionary, and ad hoc techniques are required
to associate each spectral template to a musical pitch, for instance, by using hand
grouping and labeling, automatic classification, or single-pitch estimation.
To circumvent these issues, several specific extensions have been developed, such

as a source-filter model [Virtanen and Klapuri, 2006], a pure harmonic constraint
[Raczyński et al., 2007], a dictionary constrained to note spectral templates [Nieder-
mayer, 2008], a selective sparsity regularization [Marolt, 2009], or a subspace model
of basis instruments [Grindlay and Ellis, 2009]. Considering such models ensures
that the dictionary in the factorization is structured in sound entities that actually
correspond to musical notes whose pitch is known beforehand. This makes the inter-
pretation of the factorization easier and permits to directly process the activations
to find the note pitches that are present in the music excerpt.
Similar approaches in the framework of probabilistic models with latent variables

also share common perspectives with NMF techniques and have been employed for
polyphonic music transcription. In particular, in the framework of probabilistic la-
tent component analysis (PLCA), the non-negative data are considered as a discrete
distribution and are factorized into a mixture model where each latent component
represents a source [Smaragdis and Raj, 2007, Shashanka et al., 2008]. It can then be
shown that maximum likelihood estimation of the mixture parameters amounts to
NMF with the Kullback-Leibler divergence, and that the expectation-maximization
algorithm is equivalent to the classic multiplicative updates scheme. Considering
the problem in a probabilistic framework is however convenient for enhancing the
standard model, and for adding regularization terms through priors and maximum
a posteriori estimation instead of maximum likelihood estimation.
In particular, PLCA has been employed in polyphonic music transcription to

include shift-invariance and sparsity [Smaragdis et al., 2008]. Recent works have ex-
tended the latter model to include a temporal smoothing and a unimodal prior for the
impulse distributions [Mysore and Smaragdis, 2009], a hierarchical subspace model
for representing instrument families [Grindlay and Ellis, 2011], a scale-invariance
[Hennequin et al., 2011b], a time-varying harmonic structure [Fuentes et al., 2011],
and multiple spectral templates [Benetos and Dixon, 2011a].
The above approaches consider either the standard Euclidean distance or the

Kullback-Leibler divergence as a cost function. Recent works on music analysis
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have also investigated the relevance of other cost functions such as the Itakura-Saito
divergence [Bertin et al., 2009, 2010, Févotte et al., 2009, Févotte, 2011, Dikmen
and Févotte, 2011, Lefèvre et al., 2011a], with various extensions, including penal-
ties for sparsity or temporal smoothness, and harmonic models. The more general
parametric β-divergences have also been employed successfully for music and sound
analysis. Relevant examples include audio systems for speech analysis [O’Grady and
Pearlmutter, 2008], musical source separation [FitzGerald et al., 2009], polyphonic
music transcription [Vincent et al., 2010], and non-stationarity modeling of audio
with a parametric model for spectral templates [Hennequin et al., 2010], or with a
source-filter model for time-varying activations [Hennequin et al., 2011a].

5.1.2. Motivations
Our main goal is to devise a robust real-time system for the transcription of poly-
phonic music. Since several note events may overlap, we cannot use single-source
detection techniques such as a simple correlation between spectral note templates
and the audio stream. Instead, we rely on NMF techniques that permit to cope with
the simultaneity of the detected sound events. Nonetheless, most NMF techniques
are inherently suitable only for offline processing of the data, and this is the case
for all music analysis systems discussed above. We are thus interested in adapting
such systems to real-time constraints, where we cannot learn the factorization on
a whole excerpt of music, but rather need to determine the occurrence of musical
pitches rapidly as the audio stream unfolds in time.
A direct approach to achieve this is to rely on the supervised NMF problem of

non-negative decomposition. In this approach, the sound sources are represented
with a fixed dictionary of event templates, which is learned offline prior to the
decomposition, and onto which the audio stream is projected incrementally as it
unfolds in time to provide the activations of the respective templates. The occurrence
of the different events can then be determined by a local analysis of their activations
around the current time. As a result, we do not need to store a long audio excerpt for
learning the factorization. Moreover, because we can a priori structure the dictionary
of templates before the decomposition, we no longer need to perform classification
nor optimize elaborate structured models during the real-time processing of the audio
stream for decoding the nature of the events. This makes the approach potentially
suitable to real-time constraints.
This approach has already been investigated by several authors. For example, a

real-time system to identify the presence and determine the pitch of one or more
voices was proposed by Sha and Saul [2005], and was further adapted to sight-reading
evaluation of solo instrument by Cheng et al. [2008]. Cont [2006] also designed a
real-time system for polyphonic music transcription, which was further enhanced
by Cont et al. [2007] for real-time coupled multiple-pitch and multiple-instrument
recognition. An important drawback of these approaches, however, is the lack of
relevant controls on the robustness and efficiency of the decomposition.
Indeed, during the decomposition of a signal, the price to pay for the simplicity

of a standard scheme is the misuse of event templates to reconstruct this signal.
For the specific task of polyphonic music transcription, this amounts to common
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note insertions and substitutions such as octave or harmonic errors. The issue is
almost as serious in a general pattern recognition setting where different classes of
events are allowed to overlap in time with the presence of noise. In such realistic
cases, providing controls on the decomposition can improve the detection of the
different events. Yet in the literature, little attention has been payed to providing
such controls. To the best of our knowledge, we are only aware of the system of
Cont [2006], Cont et al. [2007], where a control on the decomposition is provided by
enforcing the solutions to have a fixed desired sparsity.
In our context, controlling the sparsity of the solutions can help with reducing

the space of plausible results and increasing the economy of class usage during de-
composition. In most applications, however, the user does not know in advance the
sparsity of the solutions and cannot estimate it easily. Moreover, the sparsity may
also change along the signal. For example, in the problem of polyphonic music tran-
scription, sparsity is highly correlated to the number of notes played simultaneously
at each instant, which is both unknown and variable. In the system of Cont [2006],
Cont et al. [2007], sparsity is nonetheless considered as fixed over the whole signal.
We investigated in prior work the use of more flexible controls on sparsity by consid-
ering both bound constraints and penalties, rather than the hard constraint of the
latter approach. In our experiments, it helped to improve the recognition of acoustic
events in complex environmental auditory scenes with background noise, but it did
not improve systematically the transcription of polyphonic music, where the same
effect as sparsity could be obtained by controlling a simple threshold on the activa-
tions. Therefore, we do not discuss this approach further, and rather concentrate
on other types of control which reveal relevant for polyphonic music transcription.
In particular, we seek here to introduce controls on the frequency trade-off of

the decomposition between the different frequency components. Such a control
may permit to better balance the consideration of certain important frequencies in
the decomposition, such as partials for musical notes, and thus improve detection.
Since the important frequencies to emphasize for polyphonic music transcription
vary along time directly with the notes played, we cannot rely on a simple global
weighting of the frequency distribution. We are thus interested in more adaptable
techniques, where the control is flexible enough so as to fit the weighting to the
current dynamic of the signal.
Such an approach has been addressed by using the parametric β-divergences in

several offline systems discussed above. All these systems however employ heuris-
tic multiplicative updates and lack convergence guarantees, notably concerning the
monotonic descent of the cost function during the iterations.1 This is of course
undesirable for designing a robust real-time system, where we cannot accept unpre-
dictable and unstable behavior of the core procedure during the iterations. This is
alleviated in the real-time systems mentioned by using either the standard Euclidean
distance or the Kullback-Leibler divergence as cost functions, for which monotoni-
cally decreasing multiplicative updates are well-known. Yet some recent advances on
monotonically decreasing updates for the β-divergences presented by Nakano et al.

1Nonetheless, some of these heuristic multiplicative updates can a posteriori be proved to make
the cost function decrease monotonically by using appropriate auxiliary functions, as discussed
by Févotte and Idier [2011].
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[2010a], Févotte and Idier [2011], would permit to design a real-time system based
on these cost functions while maintaining a certain safety in the quality of the output
solutions and in the behavior of the system. Last but not least, the more general
(α, β)-divergences proposed by Cichocki et al. [2011] encompass both α-divergences
and β-divergences, and could beneficially be employed. Yet they are quite recent
and we are not aware of previous work that studies their relevancy in audio analysis.

5.1.3. Contributions
Our contributions to the problem of polyphonic music transcription can be discussed
as follows. We first develop a real-time system for polyphonic music transcription.
This is achieved by using the methods for non-negative matrix factorization with
convex-concave divergences proposed in Chapter 3. The proposed system relies on
the supervised setup of non-negative decomposition. In this setup, the music signal
arrives in real time to the system and is represented through a short-time frequency
transform. The spectral representations are then projected as they arrive in time
onto a dictionary of note spectral templates that are learned offline prior to the
decomposition.
In this context, we focus on the parametric family of (α, β)-divergences for de-

composition. In addition to the known robustness properties of these divergences
for statistical estimation, we provide other insights into their relevancy for audio
analysis, by interpreting the effect of the parameters as a way to introduce a flexible
control on the frequency compromise during the decomposition. This is in contrast
to previous real-time systems for non-negative decomposition of audio, which have
either considered the Euclidean distance or the Kullback-Leibler divergence, with no
suitable controls on the decomposition. Moreover, this is the first time to our knowl-
edge that the recently introduced (α, β)-divergences are applied and interpreted in
the framework of audio analysis.
We also discuss some computational issues of the non-negative decomposition with

(α, β)-divergences. We notably expand multiplicative updates tailored to real time
by taking advantage of the decomposition framework where the dictionary of note
spectral templates is kept fixed. Under mild assumptions, which can be obtained
after some basic pre-processing of the observations, these multiplicative updates
ensure the monotonic decrease of the cost function and thus its convergence. This
guarantees the stable behavior of the system with regards to the quality of the
output activations under all situations.
The proposed system is finally evaluated through a methodological series of ex-

periments. We notably showcase a sample example of piano music to illustrate the
discussion and provide qualitative insights into the effect of the parameters in the
(α, β)-divergences. This highlights that a region of parameters is of particular in-
terest for polyphonic music transcription, in concordance with the interpretation of
the parameters as a way to control the frequency compromise in the decomposition.
This parameter region is further explored through a first quantitative evaluation in
a standard evaluation framework, for the task of multiple fundamental frequency
estimation at the frame level. This is followed by a second evaluation for multiple
fundamental frequency tracking at the note level. In these two tasks, the proposed

102



5.2. Proposed approach

approach is shown to outperform two state-of-the-art offline systems, while main-
taining low computational costs that are suitable to real-time constraints.

5.2. Proposed approach
In this section, we present the proposed approach to polyphonic music transcription.
We first outline the general architecture of the real-time system designed, which relies
on the non-negative decomposition of the incoming music stream into note events
provided a priori to the system as a dictionary of note templates. We then elaborate
on the non-negative decomposition scheme by considering the (α, β)-divergences as
a cost function, and we interpret the relevancy of these information divergences in
the context of audio analysis as a way to control the frequency compromise during
the analysis.

5.2.1. System architecture
The general architecture of the system is depicted in Figure 5.2. The system can be
divided into two distinct modules. On the right side of the figure, the main module
performs the online non-negative decomposition of the incoming audio stream into
note events, and outputs their respective activations. These note events are provided
by the secondary module as a dictionary of note templates, which is learned offline
prior to the decomposition by using non-negative matrix factorization, as shown on
the left side of the figure. We describe the two general modules hereafter.
The offline learning module aims at building a dictionary matrix A of basis vec-

tors that represent characteristic and discriminative templates of the r note events
to detect. We suppose that the user possesses isolated sound exemplars of the r
note events, from which the system learns the desired templates. For each sound
exemplar, we learn exactly one template as follows. We first compute a short-time
sound feature of dimension m to represent the sound exemplar, such as a short-term
magnitude or power frequency spectrum.2 These representations along time provide
the non-negative observation matrix Y(k), where each column y(k)

j is the represen-
tation of the k-th sound exemplar at the j-th time frame. We then solve a simple
NMF problem Y(k) ≈ a(k)x(k)>, with a rank of factorization equal to 1, and a nor-
malization of the activations along time. This learning scheme simply gives one note
event template a(k), while the information from the activations x(k)> is discarded.
Having learned one template for each sound exemplar, we construct the dictionary

matrix A by stacking the r note templates in columns. The problem of real-time
decomposition of an audio stream then amounts to projecting the incoming signal
yj onto A, where yj share the same representational front-end as the templates.
The problem is thus equivalent to a non-negative decomposition yj ≈ Axj, where
the observation vector yj is of length m, the dictionary matrix A is of size m × r
and is kept fixed, and the encoding vector xj is of length r and is learned online.

2For the framework of non-negative matrix factorization to apply, we suppose that the short-time
sound representation is non-negative and approximatively additive, since both non-negativity
and additivity cannot be obtained together.
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Isolated note samples Auditory scene

Non-negative matrix factorization Non-negative decomposition

Note templates Note activations

Short-term sound representation Short-time sound representation

Note template learning (offline) Music signal decomposition (online)

Figure 5.2.: Architecture of the proposed real-time system. The music signal arrives
online to the system, and is decomposed onto note events whose de-
scriptions are provided as a dictionary of note templates learned offline
prior to the decomposition.

The learned encoding vectors xj then provide the activations of the different note
events potentially present in the polyphonic music signal along time. To simplify
the notations in the sequel, we restrict without loss of generality to the case where
there is only one vector y to decompose as y ≈ Ax.
As such, the system reports only a frame-level activity of the different note events.

Depending on the final application, some post-processing is thus needed to extract
more information about the presence of each note event at the frame level or at a
longer-term level. For example, we can simply threshold the activations in order
to assess the presence of note events at a given time frame, or use more elaborate
methods for onset detection. To extract some information at the note level, we can
further smooth the activations or model their temporal evolution.
In preliminary experiments, we tried several post-processing methods on the acti-

vations, such as thresholding, median filtering, minimum duration pruning, temporal
smoothing with a Hidden Markov model. The best detection results were obtained
when coupling the thresholding and pruning heuristics, which are also quite inex-
pensive from a computational perspective, and thus suitable to our real-time con-
straints. For the sake of conciseness, we therefore discuss only these two types of
post-processing in the sequel.
Concerning non-negative decomposition, the similar systems in the literature con-
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sider either the Euclidean distance or the Kullback-Leibler divergence as cost func-
tions. Moreover, there is in general no control on the decomposition, except from
the system of Cont [2006], Cont et al. [2007], where the sparsity of the solutions is
regularized but considered as fixed over the whole signal. As discussed previously,
we tried in prior work several approaches to control sparsity more flexibly, but it did
not succeed to improve systematically the detection of note events in polyphonic
music, where the thresholding heuristics were shown to perform similarly. In the
sequel, we rather investigate the use of a certain parametric family of information
divergences as cost functions, a with flexible control on the frequency compromise
during the decomposition.

5.2.2. Non-negative decomposition
In the present work, we consider the parametric family of (α, β)-divergences to con-
struct the cost function for non-negative decomposition. To the best of our knowl-
edge, this is the first time that these recently introduced divergences are employed
in audio analysis. The (α, β)-divergences nonetheless encompass several well-known
divergences as particular cases, and notably the β-divergences that have already
been proved beneficial in several offline systems for audio analysis, as discussed pre-
viously. The relevance of the β-divergences for audio analysis is partly due to its
interesting scaling property as noted by Févotte et al. [2009]. It appears that the
(α, β)-divergences enjoy a similar scaling property which can be discussed as follows.
For any parameters α, β ∈ R, and for any positive scaling factor γ > 0, the

(α, β)-divergence d(ab)
α,β verifies the following relation:

d
(ab)
α,β (γy‖γy′) = γα+β d

(ab)
α,β (y‖y′) . (5.1)

This scaling property provides insights into the relevancy of the (α, β)-divergences in
the context of audio analysis. For α+β = 0, including the Itakura-Saito divergence
as a special case, the (α, β)-divergence is scale-invariant. This means that the corre-
sponding NMF problem gives the exact same relative weight to all coefficients, and
thus penalizes equally a bad fit of factorization for small and large values. For other
values of α+β, however, the scaling property implies that a different emphasis is put
on the coefficients depending on their magnitude. When α+ β > 0, more emphasis
is put on the higher magnitude coefficients, and the emphasis augments with α+ β.
When α+β < 0, the effect is the converse. In particular, all α-divergences, including
the Kullback-Leibler divergence, are such that α+β = 1, and are thus homogeneous
to the scale. On the contrary, the Euclidean distance responds quadratically to a
rescaling and therefore considerably emphasizes the high-energy coefficients in the
factorization.
Considering audio signals that are represented with a short-time frequency spec-

trum, this amounts to giving different importance to high and low-energy frequency
components in the spectra. In the context of polyphonic music decomposition, we
try to reconstruct an incoming signal by addition of note spectral templates. In
order to avoid common octave and harmonic errors, a good reconstruction would
have to find a compromise between focusing on the fundamental frequencies, the
first partials, and the higher partials. This compromise should also be achieved in
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an adaptable way, independent of the fundamental frequencies, similarly to a com-
pression rather than a global weighting of the different components. The parameters
α, β, can thus help with controlling this trade-off. This interpretation comes in ad-
dition to the zooming and weighting effects of the parameters α, β, as a way to
improve the robustness compared to maximum likelihood estimation, as discussed
by Cichocki et al. [2011].
In the present work, we consider the right-sided non-negative decomposition prob-

lem with the (α, β)-divergences.3 We assume that the observation vector y is pos-
itive, and that the dictionary matrix A has no null row nor column. We can then
solve the non-negative decomposition by initializing the encoding vector x with pos-
itive values and by updating it iteratively with the multiplicative updates derived
in Chapter 3.
For α 6= 0, rewriting the updates in vector form leads to the following expression:

x← x⊗
((

A> ⊗
(
y�α er>

))>(Ax)�β−1

A>(Ax)�α+β−1

)� pα,β
, (5.2)

where the exponent pα,β depends on the parameter values as follows:

pα,β =


1/(α + β − 1) if β/α ≥ 1/α ;
1/(1− β) if β/α ≤ 1/α− 1 ;
1/α if 1/α− 1 ≤ β/α ≤ 1/α .

(5.3)

Concerning implementation, we can take advantage of the dictionary matrix A be-
ing fixed to tailor the multiplicative updates to real-time processing. This helps with
reducing the computational cost of the updates since the matrix A> can be computed
offline beforehand, and the matrix

(
A> ⊗

(
y�α er>

))> can be computed only once
per time frame. Moreover, the vector Ax can be computed only once and exponen-
tiated twice per iteration. In a tailored implementation, the update thus amounts to
computing a maximum of three matrix-vector multiplications, one element-wise vec-
tor multiplication, one element-wise vector division, and three element-wise vector
powers per iteration, as well as one additional element-wise matrix multiplication,
and one vector transposed replication per time frame.
Now for α = 0 and β = 1, corresponding to the dual Kullback-Leibler divergence,

the non-negative decomposition can be solved with the following specific multiplica-
tive updates in vector form:

x← x⊗ exp
(

A> (log y− log(Ax))
A>em

)
. (5.4)

We can again take advantage of the dictionary matrix A being fixed to implement
multiplicative updates tailored to real-time processing. Indeed, the matrix A> and
the vector of row sums A>em can be computed offline beforehand, while the vector

3Since the parametric family of (α, β)-divergences is stable under swapping the arguments, which
is equivalent to swapping the parameters α and β, there is no loss of generality in considering
only right-sided problems and not left-sided problems.
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log y can be computed only once per time frame.4 In a tailored implementation,
the update thus amounts to computing a maximum of two matrix-vector multiplica-
tions, one element-wise vector multiplication, one element-wise vector division, one
element-wise vector subtraction, one element-wise vector logarithm per iteration,
and one element-wise vector exponential per iteration, as well as one additional
element-wise vector logarithm per time frame.
For α = 0 and β 6= 1, we do not have yet such multiplicative updates. The

two above updates ensure monotonic decrease, and thus convergence of the cost
function, as soon as α 6= 0 or β = 1. This guarantees at least a certain quality
of the output solutions. Nevertheless, they a priori do not the ensure convergence
of the output solutions, even if we observed this in practice in general. Moreover,
the solution vector x at each time frame can be directly initialized with the output
solution of the previous frame to speed up the convergence of the cost function.
The only restrictive assumption we made here for deriving the updates is that the
observation vector y is positive, which is in general the case for real-world audio
signals, except in certain chunks where there is a null entry gain, or for simplistic
signals with sinusoidal components and no noise. To guarantee robustness in all
cases, we can simply perform a pre-whitening of the frequency spectra, or set the
zero coefficients to small values ε > 0.

5.3. Experimental results
In this section, we report a methodological series of experiments to assess the rele-
vancy of the proposed approach. We begin with a sample example of piano music to
illustrate the devised system, and to provide qualitative insights into the effect of the
parametric (α, β)-divergences. This highlights that a region of parameters α, β, is
of particular interest for polyphonic music transcription. This region is thus studied
through a quantitative evaluation in a standard evaluation framework, for the task
of multiple pitch estimation at the frame level. We select and fix the best couple
of values for parameters α, β, in terms of transcription quality. We then evaluate
quantitatively the system on a second task, for multiple pitch tracking at the note
level. In the two evaluations, the proposed real-time system is shown to outperform
two state-of-the-art offline systems.

5.3.1. Sample example of piano music
We consider here a simple piano music signal as a sample example to illustrate
the proposed approach and to assess the effect of the design parameters α, β. We
synthesized a short piano excerpt whose spectrogram is shown in Figure 5.3. The
audio synthesis was done by using real piano samples from the MIDI-Aligned Piano
Sounds (MAPS) database [Emiya et al., 2010].
We also learned one spectral template for each of the r = 88 notes of the piano,

using the respective isolated samples from MAPS. As a representation front-end,
4We can consider alternatives by either separating or grouping the difference of logarithms, which
may become interesting depending on the number of iterations compared to the dimensions of
the data, and to the implementations of the elementary operations.
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Figure 5.3.: Spectrogram of the piano excerpt. The excerpt is composed of the notes
C-D-E-F-G-F-E-D-C played successively on the right hand, while the
left hand plays the notes C-G-E-G-C at half the speed.

we considered a simple short-time magnitude spectrum computed with a Fourier
transform, using half-overlapping frames of 1024 samples windowed with a Ham-
ming function at a sampling rate of 12600Hz, leading to observations of m = 513
dimensions after removing the redundant negative frequency bins. We employed
the standard Euclidean NMF for learning the respective templates, and 10 itera-
tions of the multiplicative updates were sufficient to stabilize the learned factors.
The learned dictionary matrix A containing the different spectral templates is rep-
resented in Figure 5.4, where relatively discriminative and characteristic spectral
templates of the respective note pitches have been learned successfully.
For the online decomposition of the successive frequency spectra from the piano

excerpt onto the learned dictionary of note spectral templates, we refined the hop
size to 126 samples to obtain an analysis step of 10ms. We considered values of the
divergence parameters in a standard range α, β ∈ {−1, 0, 1, 2}, leading to 16 different
couples of values. We chose these values to include some well-known α-divergences
and β-divergences, namely, the Euclidean distance, the Kullback-Leibler and dual
Kullback-Leibler divergences, the Itakura-Saito divergence, the Pearson’s and Ney-
man’s χ2 distances. The number of iterations was set to 100 for decomposition so
as to ensure the stabilization of the updates, even if we observed in practice that
10 to 20 iterations, and even less during note sustains due to the initialization with
previous activations, are in general sufficient to obtain relatively good activations.
The results of the decomposition for the different couples (α, β) are shown in

Figure 5.5 in terms of activations of the respective note spectral templates along
time. There are actually three couples in the figure for which the multiplicative
updates do not apply, and which are nonetheless left with empty activations for
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Figure 5.4.: Spectral templates of the piano notes. Characteristic and discriminative
spectral templates are learned for each note on the piano, by applying
non-negative matrix factorization on the corresponding isolated samples.

better visualization. Overall, this demonstrates that the system has succeeded in
matching the note templates to the incoming piano signal. We notice however
that for α + β = 2, such as for the Euclidean distance, the system tends to use
more templates than present notes, in particular templates from octaves and other
harmonics of the actual notes. This effect diminishes and the activations get cleaner
for α + β = 1, corresponding to the α-divergences, and in particular here to the
Kullback-Leibler and dual Kullback-Leibler divergences, as well as the Pearson’s
and Neyman’s χ2 distances. For α+β = 0, such as for the Itakura-Saito divergence,
the activations get sparser, and even the present notes are sometimes activated less
strongly. The same effect also seems to appear for small values of α.
These results prove that there is a compromise to find between the different fre-

quency components in the decomposition of the spectral distributions. We recall
that for α + β = 2, the effect of scaling on the observations is quadratic, while it is
linear for α+ β = 1. As a result, the partials are emphasized more in the decompo-
sition when α+ β decreases. For α+ β = 0, they are equally weighted compared to
the fundamental frequencies. A good frequency trade-off seems to be obtained for a
scale dependence between linearity and invariance. We thus focus in the sequel on
the parameter region 0 ≤ α + β ≤ 1.

5.3.2. Evaluation on multiple fundamental frequency estimation
We now evaluate quantitatively the proposed approach in a framework with widely
accepted evaluation metrics, namely the Music Information Retrieval Evaluation
eXchange (MIREX) [Bay et al., 2009]. We first consider the task of multiple pitch
estimation at the frame level according to the MIREX metrics.
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Figure 5.5.: Activations of the spectral templates. The activations are cleaner for 0 ≤
α + β ≤ 1, corresponding to a scale dependence between linearity and
invariance, than for α+β = 2, corresponding to a quadratic dependence.

For the evaluation dataset, we considered the MAPS database as above. In ad-
dition to isolated samples of piano notes, MAPS contains real audio recordings of
piano pieces with ground-truth references given as MIDI files. We selected 25 pieces
recorded with the Yamaha Disklavier Mark III in close recording conditions, and
truncated each of these pieces to 30 s.
For the dictionary matrix, one spectral template was learned for each note of the

piano, from an audio fragment created by concatenating the three corresponding
samples in MAPS at dynamics piano, mezzo-forte and forte. We employed the
exact same analysis parameters as above.
For online decomposition, we refined the hop size to 10ms and set the number of

iterations to 100. We focused on the parameter region 0 ≤ α+ β ≤ 1, and sampled
it with a step of 0.5, for both −1 ≤ α ≤ 5, and −5 ≤ β ≤ 2, leading to 39 differ-
ent couples of parameter values. These values notably include the Kullback-Leibler
and dual Kullback-Leibler divergences, the Hellinger distance, the Itakura-Saito di-
vergence, the Neyman’s and Pearson’s χ2 distances, as well as the β-divergence
for β = 0.5 which was shown optimal among all β-divergences in experiments on
polyphonic music transcription by Vincent et al. [2010].
The output activations of the algorithms were all post-processed with a simple

threshold λ to detect the presence of note events at the frame level. The threshold
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was tuned for each algorithm with a step of 0.001 in the range 0.001 ≤ λ ≤ 0.1, so
as to achieve optimal results over the database. We did not use any further post-
processing at this point in order to really compare the quality of the activations
output by the different algorithms at the frame level.
The performance of the algorithms was measured through the F -measure F com-

puted as the harmonic mean of the precision and recall, where the precision P is the
percentage of correctly detected note events over the total number of detected note
events, and thus quantifies the robustness of the algorithm in relation to true neg-
atives and false positives, while the recall R is the percentage of correctly detected
note events over the total number of ground-truth note events, and thus quantifies
the efficiency of the algorithm in relation to true positives and false negatives.
We report the evaluation results per algorithm in Table 5.1. There are actually

two couples of parameter values for which the multiplicative updates do not apply,
and which are nonetheless left with empty results for better visualization. Overall,
the results show that the proposed system and algorithms perform relatively well,
with a maximum F -measure F = 70.39. The best results are clearly obtained
for α + β = 0.5. This corroborates that we need to find a compromise between
the different frequency components in the decomposition, and that this trade-off is
optimal for a scale dependence between linearity with α+β = 1, and invariance with
α+β = 0. Interestingly, the optimal results are not obtained for a α-divergence nor
for a β-divergence, but for a (α, β)-divergence with α = 2.5, β = −2.
We also notice that the optimal threshold λ decreases as the parameter α decreases

on the lines of constant scale dependence, which corroborates previous remarks. For
the three such lines, the optimal threshold is around λ = 0.022. We believe that
this effect is due to a necessary rescaling of the threshold to adapt it to the nor-
malization of the spectral templates. Indeed, the spectral templates were computed
and normalized to obtain unitary maximum activations for the Euclidean distance
during learning. In prior experiments, we tried to learn and normalize the spectral
templates directly according to the divergence used for decomposition. Neverthe-
less, it did not improve systematically the results compared to a simple learning and
normalization with the Euclidean distance. Further considerations are needed on
this line to provide insights into this effect.
Last but not least, for the linear scale dependence corresponding to α-divergences,

we notice that the best results are obtained for the Hellinger distance which is widely
used in statistical inference. For the other scale dependence, the best results are
however obtained for statistical divergences outside the range of common distance
measures. This highlights that other statistical divergences than the standard ones
may be beneficial in some applications, and confirms the interest in using parametric
families of divergences with this in prospect.
To compare the results of the proposed scheme (ABND), we also performed the

evaluation for two offline systems at the state-of-the-art. The first one (BHNMF) was
developed by Vincent et al. [2010], and is based on unsupervised NMF with the
β-divergence for β = 0.5, and a harmonic model with spectral smoothness to ensure
a structured dictionary matrix into spectral templates that correspond to musical
notes with a known pitch. The second one (SACS) was developed by Yeh et al. [2010],
and is based on a sinusoidal analysis with a candidate selection exploiting spectral
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α + β α β λ F Distance function
0.0 −1.0 +1.0 0.007 55.62

−0.5 +0.5 0.008 60.13
∓0.0 ±0.0
+0.5 −0.5 0.011 64.00
+1.0 −1.0 0.013 64.92 Itakura-Saito
+1.5 −1.5 0.015 65.67
+2.0 −2.0 0.016 66.19
+2.5 −2.5 0.018 66.51
+3.0 −3.0 0.019 66.75
+3.5 −3.5 0.021 66.86
+4.0 −4.0 0.022 66.94
+4.5 −4.5 0.023 66.91
+5.0 −5.0 0.024 66.87

0.5 −1.0 +1.5 0.009 61.13
−0.5 +1.0 0.011 65.52
∓0.0 +0.5
+0.5 ±0.0 0.015 69.19
+1.0 −0.5 0.017 69.92 β-divergence with β = 0.5
+1.5 −1.0 0.018 70.27
+2.0 −1.5 0.020 70.37
+2.5 −2.0 0.022 70.39
+3.0 −2.5 0.023 70.35
+3.5 −3.0 0.025 70.27
+4.0 −3.5 0.026 70.17
+4.5 −4.0 0.027 70.04
+5.0 −4.5 0.028 69.92

1.0 −1.0 +2.0 0.013 62.89 Neyman’s χ2

−0.5 +1.5 0.016 65.76 α-divergence with α = −0.5
∓0.0 +1.0 0.018 66.92 Dual Kullback-Leibler
+0.5 +0.5 0.021 67.19 Hellinger
+1.0 ±0.0 0.023 67.19 Kullback-Leibler
+1.5 −0.5 0.024 67.09 α-divergence with α = 1.5
+2.0 −1.0 0.026 66.94 Pearson’s χ2

+2.5 −1.5 0.028 66.78 α-divergence with α = 2.5
+3.0 −2.0 0.028 66.58 α-divergence with α = 3
+3.5 −2.5 0.030 66.37 α-divergence with α = 3.5
+4.0 −3.0 0.031 66.19 α-divergence with α = 4
+4.5 −3.5 0.031 66.00 α-divergence with α = 4.5
+5.0 −4.0 0.032 65.78 α-divergence with α = 5

Table 5.1.: Evaluation results for multiple fundamental frequency estimation. The
results show that the proposed system and algorithms perform relatively
well, with a maximum F -measure F = 70.39, obtained for α = 2.5,
β = −2, corresponding to a scale dependence between linearity and
invariance.
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Algorithm P R F A Esub Emis Efal Etot

ABND 67.23 73.85 70.39 54.31 6.24 19.91 29.76 55.91
BHNMF 61.00 66.74 63.74 46.78 10.38 22.88 32.30 65.56
SACS 60.03 70.84 64.99 48.13 16.35 12.81 30.83 59.99

Table 5.2.: Comparative results for multiple fundamental frequency estimation. The
results confirm that the proposed real-time system and algorithms per-
form well at the frame level, and even outperform the two offline state-
of-the-art systems considered.

features. For the sake of completeness, we also computed complementary metrics
from the MIREX framework, namely the accuracy A, total error Etot, substitution
error Esub, missed error Emis, false alarm error Efal, as defined in [Bay et al., 2009].

The comparative results are presented in Table 5.2. They confirm that the per-
formance of the system and algorithms is relatively good and competitive with the
literature. For the optimal parameter values, the online algorithm ABND outperforms
the two offline algorithms BHNMF and SACS for the different global metrics F , A, Etot.
Going into details of the metrics, we see that the precision P and recall R of ABND
are both higher than that for BHNMF and SACS. It means that the good performance
of ABND compared to the reference algorithms is not due to one algorithm detecting
more ground-truth note events while also making more detection errors.

This is corroborated by the respective error metrics, where we see in general that
the three complementary errors Esub, Emis, Efal, are less than for the two reference
algorithms. In particular, ABND makes significantly less substitution errors, meaning
that for one note event detected while a note event is indeed present, there is in
general no error on the musical pitch detected. This is due to the control on the
frequency compromise which allows a better balance of the fundamental frequencies
and partials in the analysis to achieve a good detection. We also remark that the
false alarm errors are relatively similar for the three algorithms, so that that they
all tend to detect to many note events to the same extent. Interestingly, there are
less missed note events with SACS, meaning that when ground-truth note events are
present, associated note events are more often detected. Yet it is undermined by the
fact that these detected note events may not have the correct pitch, as suggested by
the substitution error.

Last but not least, the fact that ABND outperforms BHNMF is due both to the
improvement of the (α, β)-divergences compared to the β-divergences, and to the
note spectral templates being learned on isolated samples for ABND whereas they are
learned directly on the respective music pieces for BHNMF, which is obviously harder.
Nonetheless, BHNMF uses more elaborate pre- and post-processing to improve the
transcription compared to ABND, such as using a perceptually-motivated frequency
scale, or a global normalization of the activations along time which is not possible
in real time.
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5.3.3. Evaluation on multiple fundamental frequency tracking

We now fix the obtained optimal parameter values α = 2.5, β = −2, and consider
further experiments by focusing on the task of multiple pitch tracking at the note
level according to the MIREX metrics. We employed the exact same database,
dictionary matrix of note templates, and number of iterations for decomposition.
The output activations of the algorithm were post-processed with both a thresh-

old λ, and a minimum duration pruning δ, in order to detect the presence of musical
notes. More precisely, a note is detected as soon as its activations exceed the thresh-
old λ during at least δ time frames. The note onset is then determined as the first
such time frame, while the note offset is simply detected as the first time frame such
that the activations fall under the threshold. A new note onset can then be detected.
The threshold was tuned with a step of 0.001 in the range 0.01 ≤ λ ≤ 0.1, so as
to achieve optimal results over the database. The minimum duration pruning was
tested for the values δ ∈ {1, 2, 3, 4, 5}.
The performance of the algorithm was measured through the F -measure F1 com-

puted as the harmonic mean of the precision and recall, where the precision P1 is
the percentage of correctly detected notes over the total number of detected notes,
while the recall R1 is the percentage of correctly detected notes over the total num-
ber of ground-truth notes. According to the MIREX metrics, a note is assumed
to be correctly detected in this scenario if the detected note onset is within a time
tolerance of ±50ms from a ground-truth note onset with the same musical pitch.
To avoid indeterminacies, it is verified that no two reference notes with the same
musical pitch are separated by less than 100ms. To assess the performance in the
detection of note offsets, we also computed the mean overlap ratio M1 defined as
the average of the overlap ratios among the correctly detect notes, where the overlap
ratio is the ratio between the length of the intersection and union of the temporal
widths of the correctly detected and corresponding reference notes.
We report the evaluation results in Table 5.3. Overall, the results show that

the proposed system and chosen algorithm also perform relatively well at the note
level, with a maximum F -measure F1 = 77.82. The best results are obtained for
a minimum duration pruning δ = 5, meaning that this simple form of temporal
smoothing is relatively efficient. This is confirmed by the mean overlap ratio M1
which augments with the minimum duration pruning, and reaches its highest value
for a maximum time smoothing δ = 5. Increasing the minimum duration pruning
above 5 frames did not however improve the transcription results in our experiments,
and would yet augment the latency of the system. Reducing the minimum duration
pruning, the transcription results are still relatively good while the latency decreases,
so that the user may choose a desired compromise without a too severe degradation
of the results if the latency needs to be kept as low as possible.
To compare the results of ABND, we again performed the evaluation for the two

offline algorithms BHNMF and SACS. We also computed additional metrics with the
F -measure F2, precision P2, recall R2, mean overlap ratio M2, in a second tran-
scription scenario from the MIREX framework. In addition to the onset tolerance of
the first scenario, a note is assumed to be correctly detected in this second scenario,
if its offset is also within a time tolerance of either ±50ms, or ±20% of the ground-
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α + β α β δ λ F1 M1

0.5 +2.5 −2.0 1 0.069 68.80 53.36
2 0.065 71.84 54.19
3 0.046 74.47 56.42
4 0.046 76.43 56.68
5 0.038 77.82 57.15

Table 5.3.: Evaluation results for multiple fundamental frequency tracking. The re-
sults show that the proposed system and algorithms perform relatively
well, with a maximum F -measure F1 = 77.82, obtained for δ = 5, corre-
sponding to a temporal smoothing of 50ms.

Algorithm P1 R1 F1 M1 P2 R2 F2 M2

ABND 77.73 77.90 77.82 57.15 28.93 28.99 28.96 77.08
BHNMF 58.09 73.71 64.98 57.66 20.72 26.29 23.17 78.64
SACS 33.00 58.83 42.29 55.10 11.59 20.67 14.86 82.17

Table 5.4.: Comparative results for multiple fundamental frequency tracking. The
results confirm that the proposed real-time system and algorithms per-
form well at the note level, and even outperform the two offline state-of-
the-art systems considered.

truth note duration, whichever is larger, from the ground-truth note offset. This
second scenario provides complementary information to the simple mean overlap
ratio regarding the correct detection of note offsets.
The comparative results are presented in Table 5.4. They confirm that the perfor-

mance of the system with the chosen algorithm is relatively good and competitive
with the literature. The online algorithm ABND again outperforms the two offline
algorithms BHNMF and SACS with respect to both F -measures F1, F2. This is cor-
roborated by the precisions P1,P2, and recalls R1,R2, which are both higher for
ABND than for BHNMF and SACS. We notice however that the two mean overlap ra-
tiosM1,M2, are not better than for the other systems. It might be because some
notes that are more difficult to detect are correctly transcribed by ABND, and not by
BHNMF or SACS. As a result, the detection of the offsets of these notes is less precise
but is taken into account in the mean overlap ratios for ABND and not for BHNMF or
SACS. Moreover, BHNMF uses more elaborate post-processing with a double threshold-
ing and minimum duration pruning for both note onset and offset detection, hence
improving the mean overlap ratio scores.

5.4. Discussion
In this chapter, we discussed the problem of real-time polyphonic music transcrip-
tion. To address this problem, we designed a system based on non-negative decom-
position, where the music signal arrives in real time to the system, and is projected
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onto a dictionary of note spectral templates that are learned offline prior to the de-
composition. We notably investigated the parametric family of (α, β)-divergences for
decomposition with tailored multiplicative updates, and interpreted their relevancy
as a way to provide controls on the frequency compromise during the decomposition,
while maintaining monotonic cost decrease for critical safety, and computational ef-
ficiency for real-time processing. We applied the proposed approach in a method-
ological series of experiments, and discussed the benefits in using such controls to
improve transcription. The proposed system was notably shown to outperform two
state-of-the-art offline systems for multiple pitch estimation and tracking in a stan-
dard evaluation framework. Last but not least, the system has been implemented in
the Max/MSP real-time computer music environment, and is now being employed
for live interaction in music creation and improvisation. These results are encour-
aging for further improvement of the proposed approach.
To begin with, we would like to overcome the implicit assumption that the spectral

templates are stationary. The rigorous consideration of non-stationarity is likely to
improve the detection of notes through a better modeling of their spectro-temporal
characteristics. To address this, it is possible to consider front-end representations
that capture variability over a short time span, such as the modulation spectrum
used in [Cont et al., 2007]. We believe however that a more elaborate approach is
necessary to account for the full temporal profiles of note spectra, by considering
the temporality of the templates directly within the model. For instance, we could
consider extended NMF models that explicitly deal with time-varying objects, such
as those proposed recently by [Hennequin et al., 2010, 2011a, Badeau, 2011]. Another
potential approach is to combine NMF with a state representation of sounds through
hidden Markov models as in [Mysore et al., 2010, Nakano et al., 2010b, Benetos and
Dixon, 2011b]. These two approaches should be investigated further.
Besides modeling the temporality of the note events, the template learning phase

may also be improved. We employed here a simple rank-one NMF with the Euclidean
distance. An advantage in formulating the learning phase in an NMF framework is
that of the variety of extended schemes available to learn one or more templates for
each note event, and thus better account for variability between different instances
of the same note. As discussed previously, we tried to employ the corresponding
(α, β)-divergences directly for template learning. It did not however improve sys-
tematically the results in our experience. Further considerations are also needed in
this direction to understand the theoretical or practical causes of that.
In addition, we could employ other representations that the simple magnitude

spectrum considered here. For polyphonic music transcription, it may be beneficial
to consider non-linear frequency scales, for example, a logarithmic scale with the
constant-Q transform, or perceptually-motivated frequency scales such as the Mel,
Bark, or ERB scales. In a more general setup, we could also use a wavelet transform,
maybe coupled with a modulation spectrum representation, to provide a multi-scale
analysis of the spectro-temporal features of the sounds. The extension of NMF to
tensors may further enhance the system, permitting for instance to use multi-channel
information in the sound representations.
We would like also to improve the robustness of the system. A first direction

is to employ more elaborate post-processing than the thresholding and minimum
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duration pruning used here. As discussed previously, these simple techniques, in
addition to being computationally inexpensive, have yet provided good results and
have outperformed, in our preliminary experiments, other smoothing techniques
based on more demanding techniques such as hidden Markov models. A possibility
to enhance the system in this direction, is to model the information from the en-
coding coefficients during template learning, so as to improve the detection during
the decomposition. We could also investigate the use of non-fixed updated basis
vectors to absorb noise and other undesirable sound components. Alternatively, us-
ing other robust divergences for decomposition may be a solution. Nonetheless, we
tried the more general skew (α, β)-divergences and the complementary skew Jensen
β-divergences in preliminary experiments, but they did not permit to improve the
transcription performances compared to the (α, β)-divergences. This should be in-
vestigated further, maybe in relation to the use of other cost functions for template
learning.
Finally, we did not discuss here the generalization capacities of the proposed sys-

tem. In real-time contexts such as environments for live interaction in music creation
or improvisation, and softwares for music tutoring or computer-aided composition,
we can realistically assume that the note spectral templates are learned directly
from the corresponding instrument. In other contexts, one may want to apply di-
rectly the system to transcribe general music, without available data for learning the
templates. To assess the generality in such situations, we submitted a preliminary
version of the proposed system to the 2010 MIREX evaluation campaign, where it
was evaluated and compared to other algorithms on different tasks of polyphonic
music transcription for various instruments and kinds of music. Even if the submit-
ted system contained only simple piano note templates, and was the only real-time
system, it did however performed competitively with the other systems submitted.5
We believe nonetheless that the system could be enhanced in this direction, for ex-
ample, by employing a hierarchical instrument basis as in [Grindlay and Ellis, 2011],
or more generally by addressing the use of adaptive templates [Le Roux et al., 2009,
Lee et al., 2012], or online dictionary learning techniques [Mairal et al., 2010, Lefèvre
et al., 2011b, Szabó et al., 2011]. Future work should address the adaptation of these
approaches to the proposed algorithms.

5The results of the 2010 MIREX evaluation campaign for multiple fundamental frequency es-
timation and tracking are available online: http://www.music-ir.org/mirex/wiki/2010:
Multiple_Fundamental_Frequency_Estimation_%26_Tracking_Results.
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Conclusion
This thesis aimed at providing novel computational methods within the framework
of information geometry, with a focus on real-time applications in audio signal pro-
cessing. In this context, we proposed two independent algorithmic schemes that
fall within the realm of statistical machine learning and signal processing. On the
one hand, we developed a general and unifying framework for change detection with
exponential families, and applied it to address the problem of real-time audio seg-
mentation. On the other hand, we elaborated a generic and unifying framework for
non-negative matrix factorization with convex-concave divergences, and employed
it to address the problem of real-time polyphonic music transcription. In the se-
quel, we summarize the main contributions of the present work and discuss several
potential perspectives for future work.

Summary of the present work
Hereafter, we summarize our main contributions to sequential change detection and
of its application to audio segmentation. We then sum up our principal contribu-
tions to non-negative matrix factorization and of its application to polyphonic music
transcription.

From sequential change detection to audio segmentation
In Chapter 2, we elaborated novel computational methods for sequential change de-
tection with exponential families. We followed a standard non-Bayesian approach
and formulated change detection as a statistical decision problem with multiple hy-
potheses, where the decision relies on the computation of generalized likelihood ratio
test statistics. We also introduced exact generalized likelihood ratios with arbitrary
estimators. Applying this to exponential families, we developed a generic scheme
for change detection under common scenarios with known or unknown parameters,
and arbitrary estimators, in close relation to maximum likelihood estimation. We
also interpreted this scheme within the dually flat geometry of exponential families,
hence providing both statistical and geometrical intuitions, and bridging the gap
between statistical and distance-based approaches to change detection. We finally
revisited this scheme through convex duality, and derived an attractive scheme with
closed-form sequential updates for the exact generalized likelihood ratio statistics,
when the parameters before and after change are both unknown, and are estimated
by maximum likelihood.
In Chapter 4, we discussed the application of this scheme to the problem of real-

time audio segmentation. We addressed this problem by proposing a generic and
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unifying framework capable of handling various types of signals and of homogene-
ity criteria. The proposed approach is centered around the scheme for sequential
change detection with exponential families, and the audio stream is segmented as
it unfolds in time by modeling the distribution of the sound features, and monitor-
ing structural changes in these distributions. We also discussed how the framework
unifies and generalizes statistical and distance-based approaches to segmentation
through the dually flat geometry of exponential families. We finally showcased var-
ious applications to illustrate the generality of the proposed approach, and notably
performed a quantitative evaluation for musical onset detection to demonstrate how
it can leverage modeling in a complex task.

From non-negative matrix factorization to polyphonic music
transcription
In Chapter 3, we elaborated novel computational methods for non-negative matrix
factorization with convex-concave divergences. We developed a general optimiza-
tion scheme based on variational bounding with auxiliary functions that works for
almost arbitrary convex-concave divergences. We obtained monotonically decreas-
ing updates under mild conditions by minimization of the auxiliary function. We
also considered symmetrized and skew divergences for the cost function. In partic-
ular, we specialized the generic updates to provide updates for Csiszár divergences,
certain skew Jeffreys-Bregman divergences, skew Jensen-Bregman divergences, lead-
ing to several known multiplicative updates, as well as novel multiplicative updates,
for α-divergences, β-divergences, and their symmetrized or skew versions. We also
generalized this by considering the family of skew (α, β, λ)-divergences.
In Chapter 5, we discussed the application of these updates for real-time poly-

phonic music transcription. To address this problem, we designed a system based
on non-negative decomposition, where the music signal arrives in real time to the
system, and is projected onto a dictionary of note spectral templates that are learned
offline prior to the decomposition. We notably investigated the parametric family
of (α, β)-divergences for decomposition with tailored multiplicative updates, and in-
terpreted their relevancy as a way to provide controls on the frequency compromise
during the decomposition, while maintaining monotonic cost decrease for critical
safety, and computational efficiency for real-time processing. We applied the pro-
posed approach in a methodological series of experiments, and discussed the benefits
in using such controls to improve transcription. The proposed system was notably
shown to outperform two state-of-the-art offline systems for multiple pitch estima-
tion and tracking in a standard evaluation framework.

Perspectives for future work
Several interesting perspectives arose from the proposed approaches and were left
out for future work. These perspectives were discussed in detail in the respective
chapters. We summarize some of them hereon, focusing on the connections between
the theoretical and applicative parts.
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Sequential change detection and audio segmentation
To begin with, extensions of the proposed framework for change detection with
exponential families could beneficially be employed for audio segmentation. This
includes the generalization to non-full families. It would provide new possibilities to
model certain audio features more reliably by constraining the parameter space to
encode some relevant sound structures, for example, spectral profiles or harmonicity.
The generalization of the proposed approach to address statistical dependence

between the random variables would also provide more accurate models for certain
audio features with complex temporal profiles and clear dependence, and thus permit
the consideration of more elaborate representations. In this context, methods for
automatic feature and model selection would find interests in adapting the input
observations of change detection to the segmentation problem at hand.
In addition, other estimators than the maximum likelihood could also be employed

to account for a priori knowledge on the signals through maximum a posteriori es-
timation, or to improve robustness in case of model misspecification through quasi
likelihoods. More generally, a Bayesian framework may improve the detection of
changes, when relevant a priori information is known or can be learned from on
a training dataset. Robustness could also be addressed with more elaborate post-
processing techniques in link with statistical considerations, for example, by develop-
ing relevant model selection criteria to account for small sample sizes, and to adapt
the thresholding and windowing heuristics.

Non-negative matrix factorization and polyphonic music
transcription
Concerning non-negative matrix factorization, direct extensions could be handled in
the proposed framework. For example, using convex models would permit to consider
a structured dictionary with several atoms per note, or even a full hierarchical model
of notes and instruments. On another line, tensors could be employed to account
for multi-channel information, therefore helping the segregation of notes to improve
transcription. Employing convolutive models may also leverage the modeling of the
temporal profiles of notes to overcome the stationarity of the spectral templates.
Furthermore, we could employ more elaborate cost functions to provide alternative

controls on the audio decomposition. With this respect, the effect of skewing on the
divergences needs thorough investigations, from both theoretical and applicative
standpoints, to understand their relevancy or irrelevancy for audio analysis, and
more generally for pattern analysis. A complementary approach to enhance the cost
functions would be to consider penalty terms. This may help the regularization
of the solutions, for example, by ensuring temporal smoothness, or by imposing
adequate sparsity structures.
Last but not least, alternative optimization schemes may accelerate the conver-

gence of the algorithms and reduce the computational loads. For example, the con-
sideration of equalization instead of minimization of the auxiliary functions is worth
investigating. Conditional updates that depend on the observations and regions of
the solution space are another promising direction.
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General directions of investigation
In this thesis, we have developed computational methods starting either from sta-
tistical models or from information divergences. For change detection, we have
succeeded in clarifying the relations between the statistical models considered and
their canonical divergences, within the dually flat information geometry of exponen-
tial families. Yet such relations disappear for non-negative matrix factorization as
soon as we employ convex-concave divergences that differ from the canonical ones.
It was justified in the present work by robustness considerations. The other side of
the coin, however, is that we loose the statistical insights in understanding why a
given divergence is adequate or not. It would therefore be interesting to gain further
intuitions on the relations between statistical models and divergences, besides the
exponential families and the Kullback-Leibler or Bregman divergences.
On a different perspective, we believe that the two computational methods pro-

posed in the present work may provide benefits in broader applications and domains
than those discussed. In parallel, other novel and existing methods in the framework
of computational information geometry, as those exposed in the introduction, could
be developed and employed for addressing problems in audio signal processing. The
two schemes proposed in this thesis are just teardrops in the ocean. Nonetheless, it
is our hope that the presented contributions will bring interesting insights and direc-
tions for future research in the realm of audio signal processing, and more generally
of machine learning and signal processing, in the emerging but yet prolific research
field of computational information geometry.
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