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Abstract. We consider an inhomogeneous Poisson process X on [0, T ]. The intensity function of

X is supposed to be regular on [0, T ] except at the point θ , in which it has a singularity (a cusp) of

order p. We suppose that we know the shape of the intensity function, but not the location (given by

the parameter θ) of the point of cusp. We consider the problem of estimation of this location (shift)

parameter θ based on n observations of the process X. We study the maximum likelihood estimator

and the Bayesian estimators. We show that these estimators are consistent, their rate of convergence

is n1/(2p+1), they have different limit distributions, and the Bayesian estimators are asymptotically

efficient.

AMS Mathematics Subject Classification (2000): 62M05.

Key words: inhomogeneous Poisson process, cusp, parameter estimation, Bayesian estimators,

maximum likelihood estimator, consistency, limit distribution, convergence of moments, asymptotic

efficiency.

1. Introduction

In this paper, we consider the following parameter estimation problem. Suppose we

observe n realizations of a Poisson process X on some fixed interval [0, T ]. The

intensity function of the process is supposed to be of the form Sθ (t) = s(t − θ),

where s(·) is some known strictly positive function and θ ∈ (0, T ) is some un-

known parameter.

In the case where the problem is regular (e.g. if the function s(·) has a bounded

derivative) the model is locally asymptotically normal (LAN), and both the max-

imum likelihood estimator (MLE) and the Bayesian estimators (BE) consistent,

asymptotically normal and asymptotically efficient (see, e.g. [5, 6]). Here we deal

with the case where the intensity function Sθ (·) is regular everywhere on [0, T ]

except at the point θ , in which it has a singularity (a cusp) of order p. More

precisely, we suppose that

Sθ (t) =
{
a|t − θ |p + ψ(t − θ) if t � θ,

b|t − θ |p + ψ(t − θ) if t � θ,

where a2 + b2 > 0, and ψ(·) is regular. If the singularity is of order higher than

1/2, then, in spite of the non-regularity of the intensity function in θ , the Fisher
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2 S. DACHIAN

information is finite. That is why the case p > 1/2 can be treated as the regular

one, and in the present work we study the case 0 < p < 1/2 only. In this case

we study the asymptotic behavior of the MLE and the BE and we prove that the

rate of convergence of the estimators is faster than in the regular case (n1/(2p+1)),

the estimators are consistent, they have different limit distributions, and the BE are

asymptotically efficient. We verify as well the convergence of moments.

A similar problem of parameter estimation is the problem of estimation of a

cusp location of the density for the i.i.d. model of observations. This problem was

first considered by Prakasa Rao in [7]. Further developments were carried out by

Ermakov in [1] and by Ibragimov and Khasminskii [2–4]. An exhaustive exposition

of the results can be found in Chapter 6 of their book [4], but one can also refer

to the previous works [2, 3] of the authors. More precisely, in Chapter 6 of [4],

the problem of estimation of a shift parameter θ by n independent observations

of a random variable is considered in three different situations (three types of

singularities). Our type of parameter estimation problem corresponds to the case

where the density fθ (x) of the observed random variable has a singularity ‘of the

second type’ at the point θ , that is,

fθ (x) =
{
h(x − θ) exp{a(x − θ) |x − θ |p} if x� θ,

h(x − θ) exp{b(x − θ) |x − θ |p} if x� θ

with some regularity conditions on functions h(·), a(·) and b(·). The asymptotic

behavior of the MLE and of a wide class of BE obtained for this (i.i.d.) model is

similar to the one obtained here for the model of Poisson observations. Particularly,

the rate of convergence of the estimators is n1/(2p+1), and the BE are asymptotically

efficient.

Finally, let us mention here that for the study of the asymptotic behavior of

the estimators we use the method of Ibragimov and Khasminskii presented by the

authors in [4] (see as well [6], where this method is applied to inhomogeneous

Poisson process).

2. Main Results

Suppose we observe n realizations (X1, . . . , Xn) = Xn of the Poisson process

X = {X(t), 0� t � T } of intensity function Sθ (t) = s(t − θ), where θ is some

unknown parameter, θ ∈ � = (α, β) ⊆ (0, T ), and s(·) is some known strictly

positive function on [−T , T ]. We suppose that the function s(·) can be written as

s(t) = d(t)|t|p + ψ(t), where 0 < p < 1/2,

d(t) =
{
a if t < 0,

b if t > 0,

a2 + b2 > 0, and the function ψ(·) is Hölder continuous of order higher than

p + 1/2 , that is, |ψ(x) − ψ(y)|�L |x − y|̹ for all x, y ∈ [−T , T ] with some

4 Estimation of Cusp Location by Poisson Observations



ESTIMATION OF CUSP LOCATION BY POISSON OBSERVATIONS 3

fixed constants L > 0 and ̹ > p + 1/2. Our aim is to estimate the parameter θ

and to study the asymptotic behavior of estimators as n → ∞.

The likelihood ratio in our problem can be written (see, e.g. [6]) as

L(θ, θ1, X
n) = exp

{ n∑

i=1

∫ T

0

ln
Sθ (t)

Sθ1
(t)

dXi(t) −

− n

∫ T

0

[
Sθ (t)

Sθ1
(t)

− 1

]
Sθ1

(t) dt

}
,

where θ1 is some fixed value of θ .

As usually, introduce the MLE θ̂n as one of the solutions of the equation

L(θ̂n, θ1, X
n) = sup

θ∈�
L(θ, θ1, X

n),

and the BE θ̃n for prior density q (supposed to be positive and continuous) and

quadratic loss function as

θ̃n =
∫ β

α

θ q(θ |Xn) dθ,

where the posterior density

q(θ |Xn) = L(θ, θ1, X
n) q(θ)

(∫ β

α

L(θ, θ1, X
n) q(θ) dθ

)−1

.

To describe the properties of these estimators we need to introduce the stochastic

process

Z(u) = exp
{
Wp+1/2(u)− 1

2
|u|2p+1

}
, u ∈ R.

Here and in the sequel WH (·) denotes a standard fractional Brownian motion

(FBM) of the Hurst parameter H , that is a Gaussian random process with zero

mean and the covariance function

E
[
WH (u1)W

H (u2)] = 1
2

[
|u1|2H + |u2|2H − |u1 − u2|2H

]
.

We introduce also the random variables ξ and ζ by the equations

Z(ξ) = sup
u∈R

Z(u),

and

ζ =
∫ +∞

−∞
uZ(u) du

(∫ +∞

−∞
Z(u) du

)−1

.

Let us note here, that ξ is well defined since with probability one the process Z(u)

attains its maximum in a unique point (see, e.g. [1]).

Estimation of Cusp Location by Poisson Observations 5
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Finally, we put

Ip(a, b) =
∫ +∞

−∞
[d(x − 1)|x − 1|p − d(x)|x|p]2 dx,

and we introduce the constant

γ =
(
Ip(a, b)

ψ(0)

)1/(2p+1)

.

Note that 0 < Ip(a, b) < +∞ since a2 + b2 > 0 and p < 1/2, and that it has the

following representation (see Section VI.4 of [4])

Ip(a, b) =
Ŵ(1 + p)Ŵ( 1

2
− p)

22p
√
π (2p + 1)

[a2 + b2 − 2ab cos(πp)]

= B(p + 1 , p + 1)

[
a2 + b2

cos(πp)
− 2ab

]
.

Now we can finally state the main results of this paper.

THEOREM 1. Under the maid assumptions, the following lower bound on the

risks of all estimators holds: for any θ0 ∈ � we have

lim
δ→0

lim
n→∞

inf
θn

sup
|θ−θ0|<δ

Eθ (n
1/(2p+1)(θn − θ))2

�
Eζ 2

γ 2
,

where inf is taken over all possible estimators θn of θ .

This theorem leads us to introduce the following definition.

DEFINITION 2. We say that the estimator θn is asymptotically efficient if

lim
δ→0

lim
n→∞

sup
|θ−θ0|<δ

Eθ (n
1/(2p+1)(θn − θ))2 =

Eζ 2

γ 2

for any θ0 ∈ �.

For the MLE we have the following theorem.

THEOREM 3. The MLE θ̂n has uniformly in θ ∈ K ( for any compact K ⊂ �) the

following properties:

– θ̂n is consistent, that is,

θ̂n
Pθ−→ θ(convergence in probability),

– the limit distribution of θ̂n is ξ/γ , that is,

n1/(2p+1)(θ̂n − θ) =⇒ ξ/γ (convergence in law),

– for any k > 0 we have

lim
n→∞

Eθ

∣∣n1/(2p+1)(θ̂n − θ)
∣∣k =

E|ξ |k

γ k
.

6 Estimation of Cusp Location by Poisson Observations
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And for the BE we have the following theorem.

THEOREM 4. The BE θ̃n have uniformly in θ ∈ K ( for any compact K ⊂ �) the

following properties:

– θ̃n is consistent, that is,

θ̃n
Pθ−→ θ(convergence in probability),

– the limit distribution of θ̃n is ζ/γ , that is,

n1/(2p+1)(θ̃n − θ) =⇒ ζ/γ (convergence in law),

– for any k > 0 we have

lim
n→∞

Eθ

∣∣n1/(2p+1)(θ̃n − θ)
∣∣k =

E|ζ |k

γ k
,

and, moreover, θ̃n is asymptotically efficient.

To prove the above stated theorems we apply the method of Ibragimov and

Khasminskii (see [4]). For this we denote θu = θ + un−1/(2p+1) for all u ∈ Un =
(n1/(2p+1)(α − θ) , n1/(2p+1)(β − θ)), we introduce the normalized likelihood ratio

process as

Zn(u) = L(θu, θ,X
n), u ∈ Un,

the stochastic process Zγ (u) as

Zγ (u) = Z(γ u) = exp{γ p+1/2Wp+1/2(u)− 1
2
γ 2p+1 |u|2p+1}, u ∈ R,

and we establish (the proofs are in the next section) the following three lemmas.

LEMMA 5. The finite-dimensional distributions of Zn(u) converge to the finite-

dimensional distributions of Zγ (u) uniformly in θ ∈ K ( for any compact

K ⊂ �).

LEMMA 6. For any compact K ⊂ � there exists some positive constant C such

that

Eθ |Z1/2
n (u1)− Z1/2

n (u2)|2 �C |u1 − u2|2p+1

for all u1, u2 ∈ Un, θ ∈ K and n ∈ N.

LEMMA 7. For any compact K ⊂ � there exists some positive constant c such

that

EθZ
1/2
n (u)� exp{−c |u|2p+1}

for all u ∈ Un, θ ∈ K and n ∈ N.

Estimation of Cusp Location by Poisson Observations 7



6 S. DACHIAN

Using these lemmas and applying Theorems 1.9.1, 1.10.1 and 1.10.2 of [4] we

get Theorems 1, 3, and 4, respectively.

3. Proofs of the Lemmas

For simplicity of exposition, the proofs will be carried out in the case a = b. The

general case proofs are similar. For convenience of notation, all throughout this

section C and c denote generic positive constants which can differ from formula

to formula (and even in the same formula), and we put ν = 1/(2p + 1) and Ŵ =
γ p+1/2.

In order to prove Lemma 5 we will study the convergence of the two-dimensional

(the general case can be considered similarly) distributions (lnZn(u1), lnZn(u2))

of the process

lnZn(u) =
n∑

i=1

∫ T

0

ln
Sθu(t)

Sθ (t)
dXi(t) − n

∫ T

0

[
Sθu(t)

Sθ (t)
− 1

]
Sθ (t) dt

=
n∑

i=1

∫ T

0

f dXi(t)− n

∫ T

0

g Sθ (t) dt,

where we denote

f = f (θ, t, u, n) = ln
Sθu(t)

Sθ(t)
and g = g(θ, t, u, n) =

Sθu(t)

Sθ(t)
− 1.

The characteristic function of the vector (lnZn(u1), lnZn(u2)) can be written

as (see, e.g. Lemma 1.1 of [6])

φn(λ1, λ2) = Eθ exp {iλ1 lnZn(u1) + iλ2 lnZn(u2)}

= exp

{
n

∫ T

0

[
ei λ1 f1+i λ2 f2 − 1 − iλ1 g1 − iλ2 g2

]
Sθ (t) dt

}
,

and hence

lnφn(λ1, λ2) = n

∫ T

0

[eF − 1 − F ]Sθ (t) dt +

+ iλ1 n

∫ T

0

[f1 − g1]Sθ (t) dt +

+ iλ2 n

∫ T

0

[f2 − g2]Sθ (t) dt, (1)

where we denote fj = f (θ, t, uj, n) and gj = g(θ, t, uj, n) for j = 1, 2, and

F = iλ1 f1 + iλ2 f2.

8 Estimation of Cusp Location by Poisson Observations
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To study this expression, let us at first establish the two following properties.

(a) For any fixed u, we have limn→∞ g(θ, t, u, n) = 0 uniformly in θ ∈ K and

t ∈ [0, T ].
(b) We have

lim
n→∞

n

∫ T

0

g1 g2 Sθ (t) dt =
1

2
Ŵ2[|u1|2p+1 + |u2|2p+1 − |u1 − u2|2p+1],

and particularly (taking u1 = u2 = u)

lim
n→∞

n

∫ T

0

g2 Sθ (t) dt = Ŵ2|u|2p+1.

To prove (a), let us consider separately two cases. First, if |t − θ |� n−ν/2, for n

sufficiently large we have

|g(θ, t, u, n)| =
|s(t − θu)− s(t − θ)|

s(t − θ)

� C
∣∣a |t − θu|p + ψ(t − θu)− a |t − θ |p − ψ(t − θ)

∣∣
� C

∣∣|t − θ − un−ν |p − |t − θ |p
∣∣ +

+ C |ψ(t − θ − un−ν)− ψ(t − θ)
∣∣

� C |t − θ |p
∣∣∣∣
∣∣∣∣1 −

u

(t − θ)nν

∣∣∣∣
p

− 1

∣∣∣∣ + C |un−ν |̹

� C
|u|

|t − θ |1−p nν
+ C

|u|̹

nν̹
�
C(u)

nc
.

Finally, if |t − θ |� n−ν/2, for n sufficiently large we get similarly

|g(θ, t, u, n)| � C
∣∣|t − θ − un−ν |p − |t − θ |p

∣∣ + C |un−ν |̹

� C (|t − θ | + |un−ν |)p + C |t − θ |p + C
|u|̹

nν̹

� C (n−ν/2 + |u| n−ν)p + C n−ν p/2 + C
|u|̹

nν̹
�
C(u)

nc
.

So, (a) is proved.

To prove (b), let us write

n

∫ T

0

g1 g2 Sθ (t) dt = nI1 + nI2 + nI3 + nI4

Estimation of Cusp Location by Poisson Observations 9



8 S. DACHIAN

with

nI1 = n

∫ T

0

[a |t − θu1
|p − a |t − θ |p][a |t − θu2

|p − a |t − θ |p]
s(t − θ)

dt,

nI2 = n

∫ T

0

[ψ(t − θu1
)− ψ(t − θ)][ψ(t − θu2

)− ψ(t − θ)]
s(t − θ)

dt,

nI3 = n

∫ T

0

[a |t − θu1
|p − a |t − θ |p][ψ(t − θu2

)− ψ(t − θ)]
s(t − θ)

dt,

nI4 = n

∫ T

0

[a |t − θu2
|p − a |t − θ |p][ψ(t − θu1

)− ψ(t − θ)]
s(t − θ)

dt.

In order to study I1, let us fix a sequence (An) such that An → +∞ and

Ann−ν → 0 and separate the integral I1 in three parts: integral J1 over (0 , θ −
Ann−ν), integral J2 over (θ−Ann−ν , θ+Ann−ν) and integral J3 over (θ+Ann−ν , T ).

For J2 we get

nJ2 = na2

∫ θ+An n
−ν

θ−An n−ν

[|t − θu1
|p − |t − θ |p][|t − θu2

|p − |t − θ |p]
s(t − θ)

dt

= na2

∫ An n
−ν

−An n−ν

[|y − u1 n
−ν|p − |y|p][|y − u2 n

−ν |p − |y|p]
a|y|p + ψ(y)

dy

≃ n
a2

ψ(0)

∫ An

−An

[|z − u1|p − |z|p][|z − u2|p − |z|p]n−ν(2p+1) dz

=
a2

2ψ(0)

{∫ An

−An

[|z − u1|p − |z|p]2 dz +
∫ An

−An

[|z − u2|p − |z|p]2 dz−

−
∫ An

−An

[|z − u1|p − |z − u2|p]2 dz

}
,

where the symbol ‘≃’ means equality of limits, and is true since Ann−ν → 0 and

the function a|y|p + ψ(y) is continuous in 0. It is easy to see that

lim
n→∞

∫ An

−An

[|z − u|p − |z|p]2 dz = |u|2p+1

∫ +∞

−∞
[|x − 1|p − |x|p]2 dx.

Hence we have clearly

lim
n→∞

nJ2 = 1
2
Ŵ2[|u1|2p+1 + |u2|2p+1 − |u1 − u2|2p+1]. (2)

To study J3, let us at first note that

n

∫ T

θ+Ann−ν

[|t − θu|p − |t − θ |p]2 dt � n

∫ +∞

An n−ν

[|y − un−ν |p − |y|p]2 dy

=
∫ +∞

An

[|z − u|p − |z|p]2 dz → 0,

10 Estimation of Cusp Location by Poisson Observations
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since An → +∞ and the integral is convergent. Therefore, using Cauchy–Schwarz

inequality, we easily get

|nJ3| =
∣∣∣∣na2

∫ T

θ+An n−ν

[|t − θu1
|p − |t − θ |p][|t − θu2

|p − |t − θ |p]
s(t − θ)

dt

∣∣∣∣

� C

√
n

∫
[|t − θu1

|p − |t − θ |p]2 dt × n

∫
[|t − θu2

|p − |t − θ |p]2 dt ,

and hence limn→∞ nJ3 = 0. Similarly, limn→∞ nJ1 = 0, and combining with (2)

we obtain

lim
n→∞

nI1 = 1
2
Ŵ2[|u1|2p+1 + |u2|2p+1 − |u1 − u2|2p+1].

So, to verify (b) it remains to show that

lim
n→∞

nI2 = lim
n→∞

nI3 = lim
n→∞

nI4 = 0.

For this, it is sufficient to remark that

n

∫ T

0

[ψ(t − θu) − ψ(t − θ)]2 dt � nC |un−ν |2̹

= C |u|2̹ n−c → 0,

and apply Cauchy–Schwarz inequality. So, (b) is proved.

Now, using (a), (b) and the representation (1) we can easily terminate the proof

of Lemma 5. Indeed, (a) and (b) imply clearly that

lim
n→∞

∫ T

0

gk1 g
l
2 Sθ (t) dt = 0

in the case k + l� 3, and hence, using (1), we have

lnφn(λ1, λ2) ≃ −
1

2
iλ1 n

∫ T

0

g2
1 Sθ (t) dt −

1

2
iλ2 n

∫ T

0

g2
2 Sθ (t) dt +

+
1

2
n

∫ T

0

F 2 Sθ (t) dt

≃ −
1

2
iλ1 n

∫ T

0

g2
1 Sθ (t) dt −

1

2
iλ2 n

∫ T

0

g2
2 Sθ (t) dt −

−
1

2
λ2

1 n

∫ T

0

g2
1 Sθ (t) dt −

1

2
λ2

2 n

∫ T

0

g2
2 Sθ (t) dt −

− λ1 λ2 n

∫ T

0

g1 g2 Sθ (t) dt,

Estimation of Cusp Location by Poisson Observations 11
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where the symbol ‘≃’, as before, means equality of limits. So, using (b), we get

finally

lim
n→∞

φn(λ1, λ2) = exp

{
−

1

2
iλ1 Ŵ

2|u1|2p+1 −
1

2
iλ2 Ŵ

2|u2|2p+1 −

−
1

2
λ2

1 Ŵ
2|u1|2p+1 −

1

2
λ2

2 Ŵ
2|u2|2p+1 −

−λ1λ2 Ŵ
2 |u1|2p+1 + |u2|2p+1 − |u1 − u2|2p+1

2

}
.

The last expression is clearly the characteristic function of the two-dimensional

distribution (lnZγ (u1), lnZγ (u2)) of the process

lnZγ (u) = ŴWp+1/2(u)− 1
2
Ŵ2 |u|2p+1,

and hence the two-dimensional distributions of Zn(u) converge to the two-

dimensional distributions of Zγ (u). The case of higher-dimensional distributions

can be treated similarly. The uniformity in θ on any compact set K ⊂ � is evident.

Lemma 5 is proved.

Now let us prove Lemma 6. For |u1 − u2|� 1 the assertion is evident since for

all θ and n we have

Eθ |Z1/2
n (u1)− Z1/2

n (u2)|2 � 4� 4 |u1 − u2|2p+1.

Suppose now that |u1 − u2|� 1. Using Lemma 1.5 of [6] we can write

Eθ

∣∣Z1/2
n (u1)− Z1/2

n (u2)
∣∣2

� n

∫ T

0

[√
Sθu1

(t) −
√
Sθu2

(t)
]2

dt

� Cn

∫ T

0

[Sθu1
(t) − Sθu2

(t)]2 dt

� Cn

∫ T

0

[|t − θu1
|p − |t − θu2

|p]2 dt +

+ Cn

∫ T

0

[ψ(t − θu1
)− ψ(t − θu2

)]2 dt

= CnI1 + CnI2

with evident notations.

For the first integral we have clearly

nI1 = n

∫ T

0

[|t − θ − u1 n
−ν|p − |t − θ − u2 n

−ν|p]2 dt

�

∫ +∞

−∞
[|z − u1|p − |z − u2|p]2 dz

= |u1 − u2|2p+1

∫ +∞

−∞
[|x − 1|p − |x|p]2 dx = C |u1 − u2|2p+1.

12 Estimation of Cusp Location by Poisson Observations
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For the second one, taking into account that |u1 − u2|� 1 we get

nI2 = n

∫ T

0

[ψ(t − θ − u1 n
−ν)− ψ(t − θ − u2 n

−ν)]2 dt

� Cn(|u1 − u2| n−ν)2̹
�Cn(|u1 − u2| n−ν)2p+1

= C|u1 − u2|2p+1.

So, in the case |u1 − u2|� 1, for all θ and n we get finally

Eθ |Z1/2
n (u1)− Z1/2

n (u2)|2 �CnI1 + CnI2 �C |u1 − u2|2p+1.

Lemma 6 is proved.

It remains to verify Lemma 7. Using Lemma 1.5 of [6], for any n, θ and u ∈ Un

we can write

EθZ
1/2
n (u)� exp

{
− 1

2
nF(u n−ν)

}
,

where for all u ∈ (α − θ , β − θ) we denote

F(u) =
∫ T

0

[√
Sθ+u(t)−

√
Sθ (t)

]2

dt � c

∫ T

0

[Sθ+u(t) − Sθ (t)]2 dt

= c

∫ T−θ

−θ

[|y − u|p − |y|p]2 dy + c

∫ T−θ

−θ

[ψ(y − u)− ψ(y)]2 dy +

+ c

∫ T−θ

−θ

[|y − u|p − |y|p][ψ(y − u)− ψ(y)] dy

= cI1 + cI2 ± c |I3|

with evident notations.

For the first integral we have

cI1 �C

∫ +∞

−∞
[|y − u|p − |y|p]2 dy = C |u|2p+1,

and

cI1 = c |u|2p+1 sign(u)

∫ (T−θ)/u

−θ/u

[|z − 1|p − |z|p]2 dz

� c |u|2p+1

∫ 1

0

[|z − 1|p − |z|p]2 dz = c |u|2p+1,

since for u ∈ (0, β − θ) we have −θ/u < 0 and (T − θ)/u > 1, and for u ∈
(α − θ, 0) we have −θ/u > 1 and (T − θ)/u < 0.

Estimation of Cusp Location by Poisson Observations 13
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For the second integral we get clearly cI2 �C|u|2̹ , and hence, using Cauchy–

Schwarz inequality, we obtain c |I3|�C|u|p+1/2+̹ for the last integral, and finally

F(u)� c |u|2p+1 − C|u|p+1/2+̹ = c |u|2p+1(1 − C |u|̹−p−1/2)� c |u|2p+1

for all u such that |u|� δ, where δ > 0 is some fixed constant.

On the other hand, we have also

inf
|u|� δ

F(u) = c > 0,

since otherwise we should have Sθ+u∗(t) = Sθ (t) for some fixed u∗ and almost all

t ∈ [0, T ], which is impossible. Hence, for all |u|� δ we can write

F(u)� c� c
|u|2p+1

T 2p+1
= c |u|2p+1.

So, for all θ and u ∈ (α − θ , β − θ) we have

F(u)� c |u|2p+1,

and hence for all n, θ and u ∈ Un we can write

EθZ
1/2
n (u)� exp

{
− 1

2
nF(un−ν)

}
� exp{−c |u|2p+1}.

Lemma 7 is proved.

4. Concluding Remarks

1. For simplicity of exposition, in this paper we considered the Bayesian esti-

mators and the notion of asymptotic efficiency in the case of quadratic loss

function. In fact, the results hold for a larger class of loss functions (see [4] for

more details).

2. Again for simplicity of exposition, we considered the case where the unknown

parameter θ is a shift parameter, that is we supposed that Sθ (t) = s(t − θ).

In fact, the results hold in a more general situation, for example, when the

intensity function is strictly positive and can be written as

Sθ (t) = d(t − θ)|t − θ |p +8(θ, t),

where 0 < p < 1/2, a2 + b2 > 0, and the function 8(θ, t) is continuous, and

uniformly in t Hölder continuous (of order higher than p + 1/2) with respect

to θ . It is not difficult to obtain for this case the same results as those presented

above. The only difference is the constant γ , which now depends on θ and is

given by

γ = γ (θ) =
(
Ip(a, b)

8(θ, θ)

)1/(2p+1)

.
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3. Like in Chapter 6 of [4], one can consider a situation when the intensity func-

tion has several cusps of the same order. More precisely, we suppose that

t1 < · · · < tr with tr − t1 < T , the unknown parameter θ ∈ � = (α, β) ⊆
(−t1 , T − tr), and the intensity function is strictly positive and can be written

as

Sθ (t) =
r∑

i=1

di(t − θ − ti)|t − θ − ti|p +8(θ, t),

where 0 < p < 1/2,

di(x) =

{
ai if x < 0,

bi if x > 0,

a2
i + b2

i > 0, and the function 8(θ, t) is continuous, and uniformly in t Hölder

continuous (of order higher than p + 1/2) with respect to θ . It is not difficult

to obtain for this problem the same results as those presented above. The only

difference is the constant γ , which now depends on θ and is given by

γ = γ (θ) =
(

r∑

i=1

Ip(ai, bi)

Sθ (θ + ti)

)1/(2p+1)

.

4. One can also consider similar problems of parameter estimation for the model

of spatial Poisson observations. An interesting and simple example is the fol-

lowing. Let us consider a two-dimensional Poisson process whose intensity

function has a cusp of order p along a circle of unknown radius ρ ∈ (α, β) ⊆
(0, R) centered at the origin. More precisely, we suppose that the intensity

function is strictly positive and can be written in polar coordinates as

Sρ(r, ϕ) = d(r − ρ)|r − ρ|p +8(ρ, r, ϕ),

where 0 < p < 1/2, a2 + b2 > 0, and the function 8 is continuous, and uni-

formly in r and ϕ Hölder continuous (of order higher than p+1/2) with respect

to ρ. We observe n realizations of this Poisson process on the disk of radius

R centered at the origin, and we want to estimate ρ. This problem can arise in

image reconstruction theory, when we are given an optical detector counting

the photoelectrons emitted by a rough surface, and we want to estimate the

radius of a ‘crater’, whose location is known. It is not difficult to obtain for

this model the same results as those presented above. The only difference is

the constant γ , which now depends on ρ and is given by

γ = γ (ρ) =
(
ρ Ip(a, b)

∫ 2π

0

1

8(ρ, ρ, ϕ)
dϕ

)1/(2p+1)

.
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Abstract

The properties of the maximum-likelihood (MLE) and Bayesian (BE) estimators of the pa-

rameter of ergodic di�usion process are studied in the situation when the trend coe�cient has a

cusp, i.e., it admits the representation S(#; x) = d(x − #)|x − #|p + h(x − #), where p∈ (0; 1
2
),

d(x) = a for x¡ 0, d(x) = b for x¿ 0, and the function h(·) is regular. This problem of esti-

mation is not regular (Fisher information is equal to in�nity), and it is shown that the rate of

convergence of the estimators is T 1=(2p+1), the estimators MLE and BE have di�erent limit laws,

and the BE is asymptotically optimal.

c© 2002 Elsevier B.V. All rights reserved.

MSC: 62M05

Keywords: Ergodic di�usion process; Cusp estimation; Singular estimation problem; Maximum-likelihood

estimator; Bayesian estimator; Limit distribution

1. Introduction

Let us consider the problem of parameter estimation by the observations of di�usion

process

dXt = S(#; Xt) dt + �(Xt) dWt ; X0; 06 t6T; (1)

where #∈� = (�; �) with −∞¡�¡�¡ +∞ is some unknown one-dimensional

parameter. The trend coe�cient S(#; x) = s(x − #), where the function s(·) is regular
everywhere except 0, and has a cusp in 0. More precisely, we suppose that
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(J) The function �(·) is strictly positive and continuous, and the function S(#; x)

admits the representation

S(#; x) =

{
a|x − #|p + h(x − #) if x6#;

b|x − #|p + h(x − #) if x¿#;

where p∈ (0; 1
2
), a �= 0, b �= 0, and the function h(·) satis�es H�older condition of

order �¿p+ 1
2
.

Therefore, in this parameter estimation problem the usual regularity conditions are not

ful�lled, Fisher information is equal in�nity, and to describe the asymptotic (T → ∞)
properties of the maximum-likelihood estimator (MLE) and the Bayes estimators (BE)

we need a special study. For this we use general results by Ibragimov and Khasminskii

(1981).

For the i.i.d. model of observations, a similar problem of parameter estimation for

the densities with singularities was studied by Parakasa Rao (1968) and Ibragimov and

Khasminskii (1981). More precisely, in Ibragimov and Khasminskii (1981, Chapter VI)

the problem of estimation of a shift parameter # by n independent observations of a

random variable is considered in three di�erent situations (three types of singularities).

Our type of parameter estimation problem corresponds to the case when the density

f(#; x) of the observed random variables has a singularity “of the second type” at the

point #, that is

f(#; x) =

{
h(x − #) exp{a(x − #)|x − #|p} if x6#;

h(x − #) exp{b(x − #)|x − #|p} if x¿#

with some regularity condition on functions h(·), a(·) and b(·). The asymptotic behavior
of the MLE and of a wide class of BE obtained for this (i.i.d.) model is similar to

those obtained here for the ergodic di�usion process model. Particularly, the rate of

convergence of the estimators is n1=(2p+1), and the BE are asymptotically optimal.

Another similar problem of parameter estimation was studied in Dachian (2001) for

the model of Poisson observations. More precisely, the problem of estimation of a shift

parameter # by n independent observations of the Poisson process of intensity S#(t)

on a �xed interval [0; T ] was considered in the case when the intensity has a cusp in

the point #, that is

S#(t) =

{
a|t − #|p +  (t − #); if t6#;

b|t − #|p +  (t − #); if t¿#

with some regularity conditions on function  (·). Again, the results obtained for this
model are very similar to those presented here, the rate of convergence of the estimators

is n1=(2p+1), and the BE are asymptotically optimal.

We also suppose that

(A0) The functions �(·); �(·)−1 and S(#; ·) have polynomial majorants and

lim
|x|→∞

sup
#∈�

sgn(x)
S(#; x)

�(x)2
¡ 0:

18 On Cusp Estimation of Ergodic Diffusion Process
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By this condition process (1) has ergodic properties with invariant density

f(#; x) =
1

G(#)�(x)2
exp

{
2

∫ x

#

S(#; v)

�(v)2
dv

}
; x∈R;

where

G(#) =

∫

R

1

�(x)2
exp

{
2

∫ x

#

S(#; v)

�(v)2
dv

}
dx

is the normalizing constant.

We consider the problem of estimation # in the asymptotics of large samples, i.e., we

have the continuous-time observations X T={Xt ; 06 t6T} and describe the properties
of the MLE and BE as T → ∞.
Remind that the likelihood ratio in this problem is

L(#; #1; X
T ) = exp

{∫ T

0

S(#; Xt)− S(#1; Xt)

�(Xt)2
dXt

− 1

2

∫ T

0

S(#; Xt)
2 − S(#1; Xt)

2

�(Xt)2
dt

}
:

Here #1 is some �xed value.

The MLE #̂T and BE (for quadratic loss function) #̃T are de�ned by the usual

relations

L(#̂T ; #1; X
T ) = sup

#∈�

L(#; #1; X
T ) (2)

and

#̃T =

∫

�

�q(�|X T ) d�; q(#|X T ) =
q(#)L(#; #1; X

T )∫
�
q(�)L(�; #1; X T ) d�

: (3)

We suppose that the prior density q(·) is a positive and continuous on � function.

To describe the asymptotics of these estimators we need the following quantities.

Let us put H = p + 1
2
(the Hurst parameter) and introduce the fractional Brownian

motion WH (·), i.e., the Gaussian random process with zero mean and the covariance

function

EWH (u1)W
H (u2) =

1
2
[|u1|2H + |u2|2H − |u1 − u2|2H ]

and the stochastic process

Z(u) = exp{WH (u)− 1
2
|u|2H}; u∈R:

Further, let us de�ne two random variables û and ũ by relations

Z(û) = sup
u∈R

Z(u);

ũ=

∫
R
uZ(u) du∫
R
Z(v) dv

:

On Cusp Estimation of Ergodic Diffusion Process 19
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We introduce as well the function

$2# =
1

G(#)�4(#)

∫ +∞

−∞

[d(x − 1)|x − 1|p − d(x)|x|p]2 dx; (4)

where

d(x) =

{
a if x¡ 0;

b if x¿ 0:

Note that $2# ¡∞ since p¡ 1
2
, and that it has the following representation (see

Ibragimov and Khasminskii, 1981, Section VI.4):

$2# =
1

G(#)�(#)4
$(1 + p)$( 1

2
− p)

22p
√
�(2p+ 1)

[a2 + b2 − 2ab cos(�p)]

or equally

$2# =
B(p+ 1; p+ 1)

G(#)�(#)4

[
a2 + b2

cos(�p)
− 2ab

]
:

Finally, we put # = $
1=H
# .

2. Main results

The �rst result concerns the lower minimax bound.

Theorem 1. Suppose that the conditions (A0) and (J) are ful�lled. Then, for any

#0 ∈�,

lim
�→0

lim
T→∞

inf
�#T

sup
|#−#0|¡�

T 1=HE#( �#T − #)2¿
Eũ 2

2#0
;

where inf is taken over all estimators �#T .

The proof of this theorem is based on the asymptotic behavior of the Bayesian

estimators, so we discuss it a bit later. The more general result can be found in

(Ibragimov and Khasminskii, 1981, Section I.9).

This inequality allows us to de�ne the asymptotically e�cient estimators as follows:

De�nition 2. Let the conditions (A0) and (J) be ful�lled. We call an estimator �#T

asymptotically e�cient if, for any #0 ∈�

lim
�→0

lim
T→∞

sup
|#−#0|¡�

T 1=HE#( �#T − #)2 =
Eũ 2

2#0
:

The properties of the estimators are described in the following theorem:
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Theorem 3. Let the conditions (A0) and (J) be ful�lled, then the MLE and BE are,

uniformly on compacts K ⊂ �, consistent, have the following limits in distribution:

L#{T 1=2H (#̂T − #)} ⇒ L#

{
û

#

}
;

L#{T 1=2H (#̃T − #)} ⇒ L#

{
ũ

#

}

and for any k ¿ 0 we have the convergence

T k=2HE#|#̂T − #|k → E#

∣∣∣∣
û

#

∣∣∣∣
k

;

T k=2HE#|#̃T − #|k → E#

∣∣∣∣
ũ

#

∣∣∣∣
k

:

Moreover, the BE are asymptotically e�cient.

3. Proofs

For simplicity of exposition, the proofs will be carried out in the case a = b. The

general case proofs are similar. For convenience of notations, throughout this section

C and c denote generic positive constants which can di�er from formula to formula

and even in the same formula.

As we are going to apply the general results by Ibragimov and Khasminskii (1981),

we have to establish several properties of the likelihood ratio process

ZT (u) = L(#u; #; X
T ); u∈UT = (T

(�− #); T (� − #));

where  = 1
2
H and #u = # + u=T . These properties will be described below, in the

Lemmas 5–7. But before, let us establish the following:

Lemma 4. Let the conditions (A0) and (J) be ful�lled. Then

1. For any u1; u2 ∈R, uniformly on compacts K ⊂ �, the limit of the integral

TI = T

∫

R

[S(#u1 ; x)− S(#; x)][S(#u2 ; x)− S(#; x)]

�(x)2
f(#; x) dx

is equal to

1
2
$2#[|u1|2H + |u2|2H − |u1 − u2|2H ]:

Particularly,

lim
T→∞

T

∫

R

(
S(#u; x)− S(#; x)

�(x)

)2
f(#; x) dx = $2# |u|2H : (5)
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2. There exists a constant C ¿ 0, such that

sup
#∈K

T

∫

R

(
S(#u1 ; x)− S(#u2 ; x)

�(x)

)2
f(#u2 ; x) dx6C|u2 − u1|2H (6)

for all T ¿ 1 and u1; u2 ∈R such that |u1 − u2|¡ 1.

3. There exists a constant c∗ = c∗(K)¿ 0, such that

∫

R

(
S(#+ u; x)− S(#; x)

�(x)

)2
f(#; x) dx¿ c∗|u|2H (7)

for all #∈K and u∈ (�− #; � − #).

Proof. We start with 1. Let us write

TI = TI1 + TI2 + TI3 + TI4

with

I1 =

∫

R

[a|x − #u1 |p − a|x − #|p][a|x − #u2 |p − a|x − #|p]
�(x)2

f(#; x) dx;

I2 =

∫

R

[h(x − #u1)− h(x − #)][h(x − #u2)− h(x − #)]

�(x)2
f(#; x) dx;

I3 =

∫

R

[a|x − #u1 |p − a|x − #|p][h(x − #u2)− h(x − #)]

�(x)2
f(#; x) dx;

I4 =

∫

R

[a|x − #u2 |p − a|x − #|p][h(x − #u1)− h(x − #)]

�(x)2
f(#; x) dx:

In order to study I1, let us �x a function A(T ) such that A(T )→ +∞ and A(T )=T  →
0 and write the integral I1 as a sum of two: integral J1 over the interval L = (# −
A(T )=T ; #+ A(T )=T ), and integral J2 over the set M = R \ L.

For J1 we have

TJ1

=Ta2
∫ #+A(T )=T 

#−A(T )=T 

[|x − #u1 |p − |x − #|p][|x − #u2 |p − |x − #|p]
�(x)2

f(#; x) dx

=Ta2
∫ A(T )=T 

−A(T )=T 

[|y − u1=T
|p − |y|p][|y − u2=T

|p − |y|p]
�(y + #)2

f(#; y + #) dy

≃ T
a2f(#; #)

�(#)2

∫ A(T )

−A(T )

[|z − u1|p − |z|p][|z − u2|p − |z|p]T−(2p+1) dz
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=
a2f(#; #)

2�(#)2

{∫ A(T )

−A(T )

[|z − u1|p − |z|p]2 dz +
∫ A(T )

−A(T )

[|z − u2|p − |z|p]2 dz

−
∫ A(T )

−A(T )

[|z − u1|p − |z − u2|p]2 dz
}

;

where the symbol “≃” means equality of limits, and is true since A(T )=T  → 0 and

the functions f(#; ·) and �(·) are continuous in 0. It is easy to see that

lim
T→∞

∫ A(T )

−A(T )

[|z − u|p − |z|p]2 dz = |u|2H
∫ +∞

−∞

[|x − 1|p − |x|p]2 dx:

Hence, we have clearly

lim
T→∞

TJ1 =
1
2
$2#[|u1|2H + |u2|2H − |u1 − u2|2H ]: (8)

To study J2, let us at �rst note that

T

∫

M

[|x − #u|p − |x − #|p]2 dx6 2T

∫ +∞

A(T )=T 

[|y − u=T |p − |y|p]2 dy

= 2

∫ +∞

A(T )

[|z − u|p − |z|p]2 dz → 0;

since A(T )→ +∞ and the integral is �nite. Hence, using Cauchy–Schwarz inequality,

we easily get

|TJ2| =
∣∣∣∣Ta

2

∫

M

[|x − #u1 |p − |x − #|p][|x − #u2 |p − |x − #|p]
�(x)2

f(#; x) dx

∣∣∣∣

6C

√
T

∫

M

[|x − #u1 |p − |x − #|p]2 dx × T

∫

M

[|x − #u2 |p − |x − #|p]2 dx;

therefore limT→∞ TJ2 = 0, and combining with (8),

lim
T→∞

TI1 =
1
2
$2#[|u1|2H + |u2|2H − |u1 − u2|2H ]:

So, it remains to show that

lim
T→∞

TI2 = lim
T→∞

TI3 = lim
T→∞

TI4 = 0:

For this, it is su�cient to remark that

T

∫

R

[h(x − #u)− h(x − #)]2

�(x)2
f(#; x) dx6 TC |u=T |2�

∫

R

f(#; x)

�(x)2
dx

6C|u|2�T−(�−H)=H → 0

and apply Cauchy–Schwarz inequality. So, part 1 is proved.
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To verify part 2 we write

T

∫

R

(
S(#u1 ; x)− S(#u2 ; x)

�(x)

)2
f(#u2 ; x) dx

6CT

∫

R

[|x − #u1 |p − |x − #u2 |p]2 dx

+CT

∫

R

[h(x − #u1)− h(x − #u2)]
2f(#u2 ; x)

�(x)2
dx

=CTI1 + CTI2

with evident notations.

For the �rst integral, we have clearly

TI1 = T

∫

R

[|y − u1=T
|p − |y − u2=T

|p]2 dy

=

∫

R

[|z − u1|p − |z − u2|p]2 dz

= |u1 − u2|2H
∫ +∞

−∞

[|x − 1|p − |x|p]2 dx

=C|u1 − u2|2H :

For the second one, taking into account that |u1 − u2|¡ 1 and T ¿ 1, we get

TI26 TC|(u1 − u2)=T
|2�

∫

R

f(#u2 ; x)

�(x)2
dx

6 TC|(u1 − u2)=T
|2H = C|u1 − u2|2H :

So, we get �nally

T

∫

R

(
S(#u1 ; x)− S(#u2 ; x)

�(x)

)2
f(#u2 ; x) dx

6CTI1 + CI26CT |u1 − u2|2H :

To prove part 3 we �rst write

F(u) =

∫

R

[S(#+ u; x)− S(#; x)]2
f(#; x)

�(x)2
dx

= c

∫

R

[|x − #− u|p − |x − #|p]2 f(#; x)

�(x)2
dx

+ c

∫

R

[h(x − #− u)− h(x − #)]2
f(#; x)

�(x)2
dx
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± c

∫

R

[|x − #− u|p − |x − #|p][h(x − #− u)− h(x − #)]
f(#; x)

�(x)2
dx

= cI1 + cI2 ± cI3

with evident notations. For the �rst integral we have

cI16C

∫ +∞

−∞

[|y − u|p − |y|p]2 dy = C|u|2H

and

cI1¿ c

∫ �

�

[|x − #− u|p − |x − #|p]2 f(#; x)

�(x)2
dx

¿ c

∫ �

�

[|x − #− u|p − |x − #|p]2 dx

= c|u|2H sign(u)
∫ (�−#)=u

(�−#)=u

[|z − 1|p − |z|p]2 dz

¿ c |u|2H
∫ 1

0

[|z − 1|p − |z|p]2 dz = c |u|2H ;

since for u∈ (0; �−#) we have (�−#)=u¡ 0 and (�−#)=u¿ 1, and for u∈ (�−#; 0)

we have (�− #)=u¿ 1 and (� − #)=u¡ 0.

For the second integral we get clearly cI26C|u|2�, and hence, using Cauchy–
Schwarz inequality, we obtain |cI3|6C|u|H+� for the last integral, and �nally

F(u)¿ c|u|2H − C|u|H+� = c|u|2H (1− C|u|�−H )¿ c1|u|2H

for all u such that |u|6 � where �¿ 0 is some �xed constant.

On the other hand, we have also

inf
|u|¿�

F(u) = c2¿ 0;

since otherwise we should have S(# + u∗; x) = S(#; x) for some �xed u∗ and almost

all x∈R, which is impossible. Hence, for all |u|¿ � we can write

F(u)¿ c2¿ c2
|u|2H

(� − �)2H
= c3 |u|2H :

So, for all # and u∈ (�− #; � − #) we have

F(u)¿ c∗|u|2H

with c∗ =min(c1; c3). Therefore, Lemma 4 is proved.

Now let us turn to the properties of the likelihood ratio process ZT (·). Put Z#(u) =

Z(#u), u∈R, i.e.,

Z#(u) = exp

{
$#W

H (u)− 1

2
$2#|u|2H

}
; u∈R:
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Lemma 5. Let the conditions (A0) and (J) be ful�lled. Then the marginal dis-

tributions of the likelihood ratio ZT (·) converge to the marginal distributions of the
stochastic process Z#(·) and this convergence is uniform in # on the compacts K ⊂ �.

Proof. As before, we put #u = #+ u=T . The function ZT (·) can be written as

ln ZT (u) =

∫ T

0

S(#u; Xt)− S(#; Xt)

�(Xt)
dWt

− 1
2

∫ T

0

(
S(#u; Xt)− S(#; Xt)

�(Xt)

)2
dt:

Using local time �T (#; x) of this di�usion process (Karatzas and Shreve, 1991), we

can write the second integral as

∫ T

0

(
S(#u; Xt)− S(#; Xt)

�(Xt)

)2
dt

=2

∫

R

[S(#u; x)− S(#; x)]2

�(x)4
�T (#; x) dx

=T

∫

R

(
S(#u; x)− S(#; x)

�(x)

)2
f(#; x) dx

+T

∫

R

(
[S(#u; x)− S(#; x)

�(x)

)2(
2�T (#; x)

T�(x)2
− f(#; x)

)
dx:

For the random function

�T (#; x) =
√
T

(
2�T (#; x)

T�(x)2
− f(#; x)

)

and any m¿ 2, under condition (A0) we have the estimate

sup
#∈�

E#|�T (#; x)|m6Cme
−cm|x| (9)

with some positive constants Cm; cm (see Kutoyants, 2001, Proposition 1.6). Hence, we

can write

E#

∣∣∣∣∣

∫

R

(
S(#u; x)− S(#; x)

�(x)

)2
�T (#; x) dx

∣∣∣∣∣

6

∫

R

(
S(#u; x)− S(#; x)

�(x)

)2
E#|�T (#; x)| dx

6C

∫

R

(
S(#u; x)− S(#; x)

�(x)

)2
e−c2|x|=2 dx:
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For the last integral, according to (6) we have

T 1=2
∫

R

(
S(#u; x)− S(#; x)

�(x)

)2
e−c2|x|=2 dx6CT−1=2|u|2H → 0:

Hence (see (5))

P − lim
T→∞

∫ T

0

(
S(#u; Xt)− S(#; Xt)

�(Xt)

)2
dt = $2#|u|2H

and by the central limit theorem (see Kutoyants, 1984, Theorem 3.3.3) the stochastic

integral is asymptotically normal:
∫ T

0

S(#u; Xt)− S(#; Xt)

�(Xt)
dWt ⇒ N(0; $2#|u|2H ):

Therefore, we have the convergence of one-dimensional distributions of ZT (u) to

those of Z#(u). The proof of the convergence of the multi-dimensional distributions

is based on part 1 of Lemma 4 and the mentioned central limit theorem. It is quite

similar to the given one, so we omit it.

Lemma 6. Let the conditions (A0) and (J) be ful�lled. Then, for any compact

K ⊂ �, there exist some constant C ¿ 0 such that

E#|Z1=2T (u1)− Z
1=2
T (u2)|26C|u1 − u2|2H

for all T ¿ 1, #∈K and u1; u2 ∈UT .

Proof. For |u1 − u2|¿ 1 the assertion is evident since for all # and T we have

E#|Z1=2T (u1)− Z
1=2
T (u2)|26 46 4|u1 − u2|2H :

Suppose now that |u1 − u2|¡ 1. Remind that the stochastic process

V (t) =

(
Zt(u2)

Zt(u1)

)1=2
; 06 t6T;

by the Itô formula admits the representation (with P#u1
probability 1)

V (T ) = 1− 1

8

∫ T

0

V (t)�(Xt)
2 dt − 1

4

∫ T

0

V (t)�(Xt) dWt ;

where

�(x) =
S(#u2 ; x)− S(#u1 ; x)

�(x)
:

Hence

E#|Z1=2T (u1)− Z
1=2
T (u2)|2 = 2− 2E#u1

V (T )

6
1

4

∫ T

0

E#u1
V (t) �(Xt)

2 dt

On Cusp Estimation of Ergodic Diffusion Process 27



164 S. Dachian, Y.A. Kutoyants / Journal of Statistical Planning and Inference 117 (2003) 153–166

6
1

2

∫ T

0

E#u2
�(Xt)

2 dt +
1

2

∫ T

0

E#u1
�(Xt)

2 dt

=
T

2

∫

R

�(x)2[f(#u2 ; x) + f(#u1 ; x)] dx6C|u2 − u1|2H ;

where we used estimate (6). The lemma is proved.

Lemma 7. Let the conditions (A0) and (J) be ful�lled. Then, for any compact

K ⊂ �, there exist some constant �¿ 0 and some function C(N ) de�ned for all

N ¿ 0, such that

sup
#∈K

P#{ZT (u)¿ e−�|u|2H }6 C(N )

|u|N :

Proof. We follow the proof of Lemma 2.4 in Kutoyants (2001). Below 0¡c1¡ 1

and

�(u; x) =
S(#u; x)− S(#; x)

�(x)
:

We have

P#{ZT (u)¿ e−�|u|2H }

=P#

{
c1

∫ T

0

�(u; Xt) dWt −
c1

2

∫ T

0

�(u; Xt)
2 dt¿− c1�|u|2H

}

6P#

{
c1

∫ T

0

�(u; Xt) dWt −
c21
2

∫ T

0

�(u; Xt)
2 dt¿ c1�|u|2H

}

+P#

{
c1 − c21
2

[
TF

( u

T 

)
−

∫ T

0

�(u; Xt)
2 dt

]

¿
c1 − c21
2

TF
( u

T 

)
− 2c1�|u|2H

}

6 e−c1�|u|
2H

+ P#

{
c1 − c21
2

[∫ T

0

[E#�(u; Xt)
2 − �(u; Xt)

2] dt

]

¿

(
c1 − c21
2

c∗ − 2c1�
)
|u|2H

}
;

where we used estimate (7). Let us denote

h(u; x) = E#�(u; Xt)
2 − �(u; x)2
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and put

� =
c1 − c21
8c1

c∗:

Then, for any M ¿ 1, the last probability can be estimated as follows:

P#

{∫ T

0

h(u; Xt) dt ¿
c∗

2
|u|2H

}

6

(
2

c∗|u|2H
)2M

E#

(∫ T

0

h(u; Xt) dt

)2M

6C|u|−4MH

(
E#

(∫ XT

X0

H (u; x)

�(x)
dx

)2M
+ TME#H (u; �)

2M

)
;

where � is a random variable with the density f(#; ·) and

H (u; x) =
2

�(x)f(#; x)

∫ x

−∞

h(u; v)f(#; v) dv:

Remind that TE#�(u; �)
2
6C|u|2H . The similar estimate is valid for the function

TME#H (u; �)
2M
6CT−M |u|4MH :

Hence, using T  ¿ |u|(� − �)−1, we �nally obtain

P#{ZT (u)¿ e−�|u|2H }6 C

TM
6

C(M)

|u|M=
:

The properties of the likelihood ratio described in the Lemmas 5–7 allow us to cite

Theorems I.10.1 and I.10.2 by Ibragimov and Khasminskii (1981), where the general

results concerning the consistency, limit distributions and convergence of moments of

the MLE and BE are established. Further, the Theorem 1 now follows from the limit

behavior of the Bayes estimators and Ibragimov and Khasminskii, 1981 (Theorem

I.9.1).

4. Concluding remarks

Like in Ibragimov and Khasminskii (1981, Chapter VI), one can consider a situation

when the trend coe�cient has several cusps. For example, we can consider the situ-

ation when the trend coe�cient S(#; x) = s(x − #), where the function s(·) is regular
everywhere except at points x1; : : : ; xr , and has cusps of order p in this points. More

precisely, we suppose that

S(#; x) =

r∑

i=1

di(x − #− xi)|x − #− xi|p + h(x − #);

where

di(x) =

{
ai if x¡ 0;

bi if x¿ 0;
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p∈ (0; 1
2
), ai �= 0, bi �= 0, and the function h(·) satis�es H�older condition of order

�¿p+ 1
2
.

In this situation, we obtain exactly the same results as the ones presented above.

The only di�erence is the constant $2#, which is now given by

$2# =

r∑

i=1

$2#; i

with $2#; i de�ned as in (4), but using di(·) in place of d(·). Indeed, if we introduce
r independent fractional Brownian motions WH

i ; i = 1; : : : ; r, then it is not di�cult to

establish that the likelihood ratio process ZT (·) converge to the stochastic process

Z#(u) = exp

{
r∑

i=1

$#; iW
H
i (u)−

1

2
|u|2H

r∑

i=1

$2#; i

}

= exp

{
$#W

H (u)− 1

2
$2#|u|2H

}
;

as well as the analogues of the Lemmas 6 and 7.

The problem considered here belongs to the class of problems described in Kutoyants

(2001), where the observations X T can be replaced by the observations Y T ={Yt ; 06 t

6T} with Yt =Xt�{Xt∈[�;�]}. The MLE and BE constructed by Y T will have the same

asymptotic properties as if the whole observations X T were used. These estimators are

de�ned by the same relations (2) and (3), where the likelihood ratio L(#; #1; X
T ) is

replaced by

�L(#; #1; Y
T ) = exp

{∫ T

0

S(#; Xt)− S(#1; Xt)

�(Xt)2
�{Xt∈B} dXt

− 1
2

∫ T

0

S(#; Xt)
2 − S(#1; Xt)

2

�(Xt)2
�{Xt∈B} dt

}

with the window B = [�; �]. The analysis of proof of the Theorem 3 (and especially

of Lemma 7) shows that all the properties of the likelihood ratio established here do

not change if we take �L(·) in the place of L(·). The details can be found in Kutoyants
(2001).
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Hypotheses Testing: Poisson Versus
Self-exciting
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ABSTRACT. We consider the problem of hypotheses testing with the basic simple hypothesis:

observed sequence of points corresponds to the stationary Poisson process with known intensity. The

alternatives are stationary self-exciting point processes. We consider one-sided parametric and one-

sided non-parametric composite alternatives and construct locally asymptotically uniformly most

powerful tests. The results of numerical simulations of the tests are presented.

Key words: hypotheses testing, Poisson process, self-exciting process, uniformly most powerful

test

1. Introduction

Let {t1, t2, . . .} be a sequence of events of a stationary point process X ={Xt, t ≥ 0} (Xt is

a counting process). The simplest stationary point process is, of course, the Poisson process

with a constant intensity S > 0, i.e. the increments of X on disjoint intervals are independent

and distributed according to the Poisson law

P{Xt −Xs =k}=
Sk(t− s)k

k!
e−S(t−s), 0≤ s < t, k =0, 1, . . ..

Therefore, if we have a stationary sequence of events it is interesting to check first of all if

this model (Poisson process) corresponds well to the observations. The importance of this

problem was discussed by Cox & Lewis (1966, Section 6.3).

The alternatives close to the basic hypothesis corresponds to the case when the non-

poissonian behaviour is due to the small perturbations of the Poisson process and are most

interesting to test. For ‘far alternatives’ any reasonable test has power function close to 1 and

the comparison of tests seems less important. Let us consider the problem of small signals

detection by the tests of fixed size �∈ (0, 1). Using the terminology of statistical radiotech-

nics we say that there is at least two types of close alternatives: the first one corresponds to

small ‘signal–noise ratio’ (signals of small energy) and the second, when the amplitude of

the signal can be small, but the total energy because of the sufficiently long time of obser-

vation is comparable with the noise energy (see, e.g. Kutoyants, 1976). For the first class

of alternatives the approach of locally optimal tests, which provides the optimality of the

power function at the small vicinity of the basic hypothesis (the values of the power func-

tion are close to �) was developed (see, e.g. Capon, 1961) and for the second class of con-

tiguous alternatives the optimality of the test for a wider class of close alternatives (the

values of the power function are in (�, 1)) was proved (Pitman’s, 1948 approach; Le Cam’s,

1956 theory).

For stationary point processes with Poisson hypothesis and stationary alternatives Davies

(1977) proposed the locally optimal (efficient) or asymptotically locally efficient test. This test
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is based on the comparison of the derivative of the log-likelihood ratio with some threshold.

See Daley & Vere-Jones (2003, Section 13.1), where the approach of Davies was discussed.

In the present note we suppose that we have observations of the point process X T ={Xt, 0≤
t≤T} on the interval [0, T ] and consider two problems of hypotheses testing in the asymp-

totics of large samples (T →∞). In both problems the basic hypothesis is simple: the observed

process is standard Poisson with known constant intensity S∗ > 0. The composite alterna-

tives are: the observed process is a realization of self-exciting point process [sometimes called

Hawkes (1972) process] within the first case intensity function depending on one-dimensional

parameter and in the second case the intensity function belonging to a wider (non-

parametric) class of functions. We follow the mentioned above Pitman-Le Cam approach. We

start with the ‘locally asymptotically uniformly most powerful test’ (LAUMPT) in the para-

metric case and the main result of the presented work is the LAUMPT where the optimality

is shown for sufficiently large class of local non-parametric alternatives. The similar results

for diffusion processes can be found in Iacus & Kutoyants (2001) (small noise asymptotics)

and Kutoyants (2003) (ergodic processes).

2. Preliminaries

Recall several facts from the theory of point processes [the details can be found in, e.g.

Liptser & Shiryaev (2001, Ch. 18)]. Let (�,F, P) be a probability space and let {Ft, t≥0} be

a non-decreasing family of right continuous �-algebras Fs ⊂Ft ⊂F for any 0≤ s < t. We denote

by t1, t2, . . ., a sequence of Markov stopping times adapted to {Ft, t≥0} (i.e. {� : ti ≤ t}∈Ft

for all t≥0). Let Xt be the number of events ti up to time t, i.e. X ={Xt,Ft, t≥0} is a random

process such that

Xt =
∑

i≥1

χ{ti≤t}, t≥0,

where χ{A} is the indicator-function of the event A.

We assume that EXt <∞ (there is no accumulation points on any bounded interval). The

process X admits a unique (up to stochastic equivalence) decomposition (Doob–Meyer

decomposition)

Xt =At +Mt, (1)

where M={Mt,Ft, t ≥ 0} is a martingale and A={At,Ft, t ≥ 0} is predictable increasing

process (Liptser & Shiryayev, 2001, Theorem 18.1). We suppose that the compensator A is

absolutely continuous

At =

∫ t

0

S(v, �) dv, t≥0,

where S ={S(t, �),Ft, t≥0} is called intensity function. We suppose that (1) is the minimal

representation of the point process, i.e. S(t, �) is predictable with respect to the filtration

generated by the counting process X and we write S(t, �)=S(t, X ). To describe a point pro-

cess it is sufficient to specify its intensity function. We study in this work a special class of

point processes with intensity functions that can be written as stochastic integrals with respect

to the past of the underlying point process.

In the particular case when S is deterministic, the process X is (inhomogeneous) Poisson

process with intensity function S(v, �)=S(v). In this case

P{Xt −Xs =k}=

[

∫ t

s
S(v) dv

]k

k!
exp

{

−
∫ t

s

S(v) dv

}
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for any t > s≥0 and k =0, 1, . . .. If the assumption of the independence of increments is no

more valid, then S is no more deterministic and X can be a stationary point process [see

Brillinger (1975) and Daley & Vere-Jones (2003) and references therein for wide classes of

such processes and their applications in real problems].

Recall that the distribution P
(T )
S of the point process in the space of its realizations (D (0, T ),

BT ) is entirely characterized by its intensity function S. The likelihood ratio formula (w.r.t.

Poisson process of constant intensity S∗) has the following form [see Liptser & Shiriyev, 2001,

Theorem 19.10]

L(X T )= exp

{
∫ T

0

ln
S(t, �)

S∗
dXt −

∫ T

0

[S(t, �)−S∗] dt

}

,

where we suppose that the intensity S(t, �) is left continuous function and

P

{
∫ T

0

S(t, �) dt <∞
}

under all alternatives studied in this work.

3. One-sided parametric alternative

Suppose that we observe a trajectory X T ={Xt, 0≤ t≤T} of point process of intensity func-

tion ST (ϑ)={S(ϑ, t, �), 0≤ t ≤T}. If ϑ=0, then S(0, t, �)≡S∗, i.e. this point process is a

homogeneous Poisson process of intensity S∗ > 0. Under alternative ϑ> 0 and ST (ϑ) is the

intensity function of self-exciting point process. As usual in such problems, we consider con-

tiguous alternatives (Pitman’s, 1948 alternatives; Roussas, 1972), hence we change the variable

ϑ=u /
√

T and test the following two hypotheses

H0 : u =0

H1 : u > 0.

We denote E0 the mathematical expectation under the hypothesis H0, and Eu under

(simple) alternative ϑ=u/
√

T .

Let us fix �∈ (0, 1) and denote by K� the class of test functions �T (X T ) of asymptotic size

�, i.e. for �T ∈K� we have

lim
T→∞

E0�T (X T )= �. (2)

As usual, �T (X T ) is the probability to accept the hypothesis H1 having observations X T .

The corresponding power function is

�T (u, �T )=Eu�T (X T ), u≥0.

We introduce the asymptotic optimality of tests with the help of the following definition

Le Cam (1956).

Definition 1

A test �∗
T (·) is called locally asymptotically uniformly most powerful in the class K� if for

any other test �T (·)∈K� and any constant K > 0 we have

lim
T→∞

inf
0 < u≤K

[�T (u, �∗
T )−�T (u, �T )]≥0.

Our goal is to construct locally asymptotically uniformly most powerful test in class K�.
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Self-exciting type processes were introduced by Hawkes (1972) and defined by intensity

function of the following form

S(t, �)=S∗+

∫ t−

0

g(t− s) dXs =S∗+
∑

ti < t

g(t− ti), (3)

where S∗ > 0, ti are the events of the point process and the function g(·)≥0 satisfies the con-

dition

�=

∫ ∞

0

g(t) dt < 1. (4)

Recall that according to this representation of the intensity function, the distribution of t1 is

exponential at rate S∗ and for all n≥1

P{tn+1 > t|t1, . . ., tn}= exp

(

−S∗t−
∫ t

0

Xs
∑

i =1

g(s− ti) ds

)

.

Note that �(t)=EXt is solution of the equation

�(t)=E

∫ t

0

S(v, �) dv=S∗t +E

∫ t

0

∫

v−

0

g(v− s) dXs dv

=S∗t +

∫ t

0

∫

v

0

g(v− s)�′(s) dv ds.

In stationary case the intensity S(t, �), is a stationary process

S(t, �)=S∗ +

∫ t−

−∞
g(t− s) dXs

and

�(t)=
S∗

1−�
t≡�t.

The spectral density of this process is

f (�)=
�

2	|1−G(�)|2 ,

where

G(�)=

∫ ∞

0

ei�tg(t) dt, �=G(0).

Example 1. Let g(t)=
 e−�t, where 
> 0, �> 0 and 
/�< 1. Then the point process X with

intensity function

S(t, �)=S∗ +

∑

ti≤t

e−�(t−ti )

is self-exciting with the rate

�=
S∗�

�−

.

Example 2. The function g(·) can be chosen in such a way that the spectral density of the

point process will be rational

f (�)=
�

2	

|Q(i�)|2
|P(i�)|2 ,
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where Q(z)= zp+a1zp−1+ · · ·+ap and P(z)= zp+b1zp−1+ · · ·+bp. It is supposed that P(·) and

Q(·) have no zeroes in common and no zeroes in the closed right half plane [see Pham (1981),

where the asymptotic properties of the maximum likelihood estimator (MLE) for this model

are described].

We assume that the observed process is either Poisson with constant intensity S∗ or self-

exciting with contiguous intensity function

S(ϑ, t, �)=S∗ +ϑT

∫ t

0

h(t− s) dXs.

Contiguous means that the likelihood ratio is asymptotically non-degenerate. The function

h(·) is supposed to be known, bounded and

h(·)∈L1
+(R+)=

{

f (·)≥0 :

∫ ∞

0

f (t) dt <∞
}

.

To have contiguous alternatives we choose, as usual in regular problems, ϑT =u/
√

T , i.e.

S(u, t, �)=S∗ +
u√
T

∫ t

0

h(t− s) dXs, u≥0.

Note that for any h(·)∈L1
+(R+) and any u≤K for sufficiently large T the condition (4) is ful-

filled for the corresponding function g(·)=uT−1/2h(·). This leads us to the following one-sided

hypotheses testing problem:

H0 : u =0, (Poisson process)

H1 : u > 0, (self-exciting process).

This model corresponds to ‘small self-exciting perturbations’ of the Poisson process of inten-

sity S∗.

Note that as we use the LAN approach (Le Cam, 1956), we study the behaviour of the

tests statistics under hypothesis only (Poisson process with constant intensity) and do not

use the stationarity of the self-exciting processes under alternatives. The limit of the power

function is obtained using LAN and Le Cam’s Third Lemma.

Let us denote

�T (X T )=
1

S∗
√

T I∗h

∫ T

0

∫ t−

0

h(t− s) dXs[dXt −S∗ dt].

Here
∫ t−

0

h(t− s) dXs =
∑

ti < t

h(t− ti)

(limit from the left of the integral, i.e. the term with si = t is excluded) and

I∗h =

∫ ∞

0

h(t)2 dt +S∗

(
∫ ∞

0

h(t) dt

)2

is the Fisher information of the problem. Throughout this paper we denote by z� the 1− �

quantile of the Gaussian law N (0, 1).

Theorem 1

Let h(·)∈L1
+

(

R+

)

and bounded. Then the test

�̂T (X T )=χ{�T (X T ) > z�}

 Board of the Foundation of the Scandinavian Journal of Statistics 2005.

Hypotheses Testing : Poisson Versus Self-Exciting 35



396 S. Dachian and Y. A. Kutoyants Scand J Statist 33

is locally asymptotically uniformly most powerful in the class K� and for any u > 0 its power

function

�T (u, �̂T )−→ �̂(u)=P{�> z� −u
√

I∗h}, (5)

where �∼N (0, 1).

Proof. First note that the family of measures {P
(T )
ϑ ,ϑ> 0} under hypothesis H0 is LAN at

the point ϑ=0, i.e. the random function ZT (u)=L(u/
√

T , X T ) admits the representation (see

Kutoyants, 1984, Theorem 4.5.3)

ZT (u)= exp

{
∫ T

0

ln

(

1+
u

S∗
√

T

∫ t−

0

h(t− s) dXs

)

dXt

− u√
T

∫ T

0

∫ t

0

h(t− s) dXs dt

}

= exp

{

u
√

I∗h�T (X T )− u2

2
I∗h+ rT (u, X T )

}

,

where

L0

{

�T (X T )
}

=⇒N (0, 1) (6)

and rT

(

uT , X T
)

→0 for any bounded sequence {uT}.

To verify (6) we check the following two conditions:

1 Lindeberg condition for stochastic integral: for any > 0

lim
T→∞

1

T
E0

∫ T

0

H2
t χ{|Ht |>

√
T} dt =0,

2 the law of large numbers:

P0 − lim
T→∞

1

S∗T

∫ T

0

H2
t dt = I∗h. (7)

Here, we denote

Ht =

∫ t−

0

h(t− s) dXs.

By these conditions the stochastic integral �T (X T ) is asymptotically normal. The proof of the

corresponding central limit theorem can be found, say, in Kutoyants (1984, Theorem 4.5.4)

(of course, this theorem is a particular case of general CLT for martingales).

To check these conditions we introduce an independent Poisson process {Xt, t≤0} of inten-

sity S∗ and replace Ht by

H∗
t =

∫ t−

−∞
h(t− s) dXs.

It is easy to see that for the process H∗
t , t≥0 we have

E0H∗
t =S∗

∫ ∞

0

h(v) dv

and

E0([H∗
t −E0H∗

t ][H∗
s −E0H∗

s ])=S∗

∫ ∞

max(0,s−t)

h(v+ t− s)h(v) dv.
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Note as well that

P0

{

1√
T

∫ T

0

[H∗
t −Ht] [dXt −S∗ dt] > �

}

≤ S∗
T�2

∫ T

0

E0

(
∫ 0

−∞
h(t− s) dXs

)2

dt

=
S2
∗

T�2

∫ T

0

[

∫ ∞

t

h(v)2 dv+S∗

(
∫ ∞

t

h(v) dv

)2
]

dt−→0,

as T →∞.

Now the process H∗
t , t≥0 is second-order stationary and

E0(H∗
t )2

=S∗

∫ ∞

0

h(t)2 dt +S2
∗

(
∫ ∞

0

h(t) dt

)2

=E0(H∗
0 )2 <∞.

Hence

E0

(

H∗2
t χ{|H∗

t |>
√

T}

)

=E0

(

H∗2
0 χ{|H∗

0
|>

√
T}

)

−→0,

as T →∞ and

lim
T→∞

1

T

∫ T

0

E0

(

H∗2
t χ{|H∗

t |>
√

T}

)

dt =0.

The law of large numbers (7) will follow from the convergence:

MT =E0

(

1

T

∫ T

0

H∗2
t dt−E0(H∗

0 )2

)2

=
1

T 2

∫ T

0

∫ T

0

E0(H∗2
t −E0(H∗

0 )2) (H∗2
s −E0(H∗

0 )2) dt ds−→0.

To prove it we need the following elementary result.

Lemma 1

Let X = {Xt, t∈A} be a Poisson process of constant intensity S > 0 on A⊂R, and let f (·), g(·)∈
Lk(A)=

{

f (·) :
∫

A
|f (t)|k dt <∞

}

, k =1, . . ., 4. Then

Cov

(

(
∫

A

f (v) dXv

)2

,

(
∫

A

g(v) dXv

)2
)

=4

∫

A

f (v)S dv

∫

A

g(v)S dv

∫

A

f (v)g(v)S dv

+2

(
∫

A

f (v)g(v)S dv

)2

+

∫

A

f 2(v)g2(v)S dv

+2

∫

A

f (v)S dv

∫

A

f (v)g2(v)S dv+2

∫

A

g(v)S dv

∫

A

f 2(v)g(v)S dv.

Proof. Using well-known properties of the Poisson processes (see, e.g. Kutoyants, 1998,

Lemma 1.1), we obtain the moment generating function

�(�, �)=E0 exp

{

�

∫

A

f (v) dXv +�

∫

A

g(v) dXv

}

= exp

{
∫

A

(e�f (v)+�g(v) −1) S dv

}

.
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Recall that

Cov

(

(
∫

A

f (v) dXv

)2

,

(
∫

A

g(v) dXv

)2
)

=
∂4�(�, �)

∂�2∂�2

∣

∣

∣

∣

�=0, �=0

− ∂2�
(

�, 0
)

∂�2

∣

∣

∣

∣

∣

�=0

∂2�(0, �)

∂�2

∣

∣

∣

∣

�=0

.

Therefore the proof of the lemma follows from direct calculations.

Now we can write

R(t, s)=E0((H∗
t )2 −E0(H∗

0 )2)((H∗
s )2 −E0(H∗

0 )2)

=4a2K (t, s)+2K (t, s)2
+S∗

∫ t∧s

−∞
h(t− v)2h(s− v)2 dv

+2aS∗

∫ t∧s

−∞
[h(t− v)2h(s− v)+h(t− v)h(s− v)2] dv,

where we put

a =S∗

∫ ∞

0

h(y) dy

and (for �= t− s)

K (t, s)=S∗

∫ ∞

|�|
h(y)h(y−|�|) dy =K (�).

Further, as the function h(·) is bounded, we have the estimate

R(t, s)≤CK (�).

Hence

MT =
1

T 2

∫ T

0

∫ T

0

R(t, s) dt ds≤ C

T 2

∫ T

0

∫ T

0

K (t, s) dt ds

≤ C

T

∫ T

−T

K (�) d�.

For the function K (·) we have

∫ T

−T

K (�) d�=S∗

∫ T

−T

∫ ∞

|�|
h(y)h(y−|�|) dy d�≤2S∗

(
∫ ∞

0

h(y) dy

)2

.

Hence MT →0 and we have the law of large numbers (7).

The property �̂T (·)∈K� follows from the mentioned above asymptotic normality of the

statistic �T (X T ).

Note as well that the convergence (5) follows from

Lu{�T (X T )}=⇒N (u
√

I∗h, 1)

[see the Third Lemma of Le Cam (van der Vaart, 1998, p. 90)].

The asymptotic optimality of the test follows as well from the general theory (see, e.g. Le

Cam, 1956 or Roussas, 1972), because if we replace H1 by any simple alternative H∗ : u =u∗,

then the test

�̄T (X T )=χ{L(u∗/
√

T , X T ) > b�}

is the most powerful. Here
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b� = exp

{

u∗z�

√

I∗h −
1

2
u2
∗I∗h

}

(1+o(1)).

It is easy to see that �̄T (·)∈K� and the power function

�T (u∗, �̄T )→ �̂(u∗).

Therefore the test �̂T (·) is asymptotically as good as the likelihood ratio test for any simple

alternative.

Remark 1. Note that the statistic �T (X T ) can be written as follows

�T (X T )=
1

S∗
√

T I∗h

∑

0≤tj≤T

∑

ti < tj

h(tj − ti)−
1

√

T I∗h

∑

0≤tj≤T

∫ T−tj

0

h(v) dv,

where ti are the events of the observed process.

Remark 2. By a similar way we can consider the problem of contiguous hypotheses test-

ing when under the hypothesis H0 the observed process is self-exciting too. For example, let

h(ϑ, t)≥0, t≥0 be a smooth function of ϑ∈�, such that for all ϑ∈� the condition
∫ ∞

0

h(ϑ, t) dt < 1

holds. Then with the help of this function we introduce a family of self-exciting processes

with intensity functions

S(ϑ, t, �)=S∗ +

∫ t

−∞
h(ϑ, t− s) dXs.

Recall that these are stationary processes.

Now we can test the hypotheses

H0 : ϑ=ϑ0,

H1 : ϑ>ϑ0

by the observations X T ={Xt, 0≤ t≤T}. Suppose as well that the function h(ϑ, ·) is two times

continuously differentiable on ϑ at the point ϑ=ϑ0 and the derivatives ḣ(ϑ, ·), ḧ(ϑ, ·) satisfy

suitable conditions of integrability. Let us denote

�t(ϑ)=

∫ t−

0

h(ϑ, t− s) dXs, �̇t(ϑ)=

∫ t−

0

∂h(ϑ, t− s)

∂ϑ
dXs,

and put

�T (ϑ0, X T )=
1√
T

∫ T

0

�̇t(ϑ0)

S∗ +�t(ϑ0)
[ dXt −S∗ dt−�t(ϑ0) dt].

Then it can be easily shown that the test

�̂T (X T )=χ{�T (ϑ0 , X T ) > c�},

where c� = z�

√

Ih(ϑ0) is chosen from the condition �̂T ∈K� is locally asymptotically uniformly

most powerful in the class K�. Here Ih(ϑ0) is the Fisher information

Ih(ϑ0)=Eϑ0

(

�̇(ϑ0)2

S∗ +�(ϑ0)

)

,

where �̇(ϑ0) and �(ϑ0) are ‘stationary random variables’ related to the limit distribution of

the vector �̇t(ϑ0), �t(ϑ0).
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4. Testing of dependence

Suppose that we have two sequences of events 0 < t1 < t2 < · · · < tN < T and 0 < s1 <

s2 < · · · < sM < T with corresponding counting processes X T ={Xt, 0 ≤ t ≤ T} and Y T =

{Yt, 0≤ t≤T}. The first process is Poisson with constant known intensity function SX (t, �)=

SX > 0 and the intensity function of the second process can be written as

SY

(

t, �
)

=SY +

∫ t

−∞
r(t− s) dXs,

where r(·)∈L1(R+). Therefore, if r(t)≡0, then the observed processes are standard (indepen-

dent) Poisson processes of intensities SX and SY respectively (Hypothesis H0). For the other

values of r(·) we have dependent point processes.

We suppose that the dependence between these two processes, if exists, is weak, i.e. the

function r(·) is sufficiently small and we can apply the local approach. As before we suppose

that r(t)=ϑT h(t), where h(·)∈L1(R+) and ϑT =u/
√

T →0.

H0 : u =0, (independent Poisson processes)

H1 : u > 0, (depending processes).

Introduce the statistic

�T (X T , Y T )=
1

SY

√
T Ih

∫ T

0

∫ t−

0

h(t− s) dXs[dYt −SY dt]

=
1

SY

√
T Ih

∑

0≤sj≤T

∑

tj < si

h(sj − ti)−
1√
T Ih

∑

0≤tj≤T

∫ T−tj

0

h(v) dv,

where

Ih =
SX

SY

(

∫ ∞

0

h(t)2 dt +SX

(
∫ ∞

0

h(t) dt

)2
)

.

Proposition 1

Let h(·)∈L1
+(R+) and bounded. Then the test

�̂T (X T , Y T )=χ{�T (X T , Y T ) > z�}

is locally asymptotically uniformly most powerful in the class K� and for any u > 0 its power

function

�T (u, �̂T )−→ �̂(u)=P{�> z� −u
√

Ih}, (8)

where �∼N (0, 1).

Proof. The proof is quite close to the given above proof of the theorem 1, and hence is

omitted.

Remark 3. The similar problem can be considered for the couple of mutually exciting point

processes with intensity functions

SX (t, �)=SX +

∫ t

−∞
rXY (t− s) dYs, SY (t, �)=SY +

∫ t

−∞
rYX (t− s) dXs,

where rXY (·), rYX (·)∈L1(R+). Therefore, if rXY (t)≡ 0 and rYX (t)≡ 0, then the observed pro-

cesses are standard (independent) Poisson processes of intensities SX > 0 and SY > 0 respec-
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tively (Hypothesis H0). Under alternative there exists a weak dependence of these processes

through their intensity functions.

5. One-sided non-parametric alternative

In all the above considered problems the alternatives are one-sided parametric. It is pos-

sible to describe similar asymptotically uniformly most powerful tests even in some non-

parametric situations. Using the minimax approach we can consider the least favourable

model in the derivation of the upper bound on the powers of all tests, but, of course, for

special classes of intensities. This approach sometimes is called semiparametric and the rate

of convergence of alternatives is
√

T .

As before, we suppose that under hypothesis H0 the observed point process X T ={Xt, 0≤
t≤T} is standard Poisson with known intensity function S(t)=S∗ > 0 and under alternative

H1 it is self-exciting point process with intensity function

S(t, �)=S∗ +

∫ t

−∞
g(t− s) dXs, 0≤ t≤T ,

where g(·) is now unknown function. We suppose as well that
∫ ∞

0

g(t) dt < 1, (9)

hence the process X T is stationary. To describe the class of local non-parametric alternatives

we rewrite this intensity function as

S(t, �)=S∗ +
1√
T

∫ t

−∞
u(t− s) dXs, 0≤ t≤T ,

where the function u(·) belongs to the set Ur defined below. Let us denote by Cb
+ the set of

non-negative functions bounded by the same constant and introduce the set

Ur =

{

u(·)∈Cb
+ :

∫ ∞

0

u(t) dt = r, supp u (·) is bounded

}

.

Note, that for any r > 0 and T > r2 the condition (9) is fulfilled.

Therefore, we consider the following hypotheses testing problem

H0 : u(·)≡0,

H1 : u(·)∈Ur, r > 0.

The power function of a test �T depends on the function u(·) and we write it as

�T (u, �T )=Eu�T (X T ),

where u =u(·)∈Ur with some r > 0. We want to apply an approach similar to the minimax

one in the estimation theory. More precisely, we seek to maximize the minimal power of test

on the class Ur. However, for any test �T ∈K� we have

inf
u(·)∈Ur

�T (u, �T )≤ �,

since for any T > 0 we can take a function from Ur equal 0 on [0, T ]. Hence we introduce

the set

Ur, N = {u(·)∈Ur : supp u(·)⊂ [0, N ]} ,

denote
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BT (r, N , �T )= inf
u(·)∈Ur, N

�T (u, �T )

and give the following.

Definition 2

A test �∗
T (·) is called locally asymptotically uniformly most powerful in the class K� if for

any other test �T (·)∈K� and any K > 0 we have

lim
N→∞

lim
T→∞

inf
0≤r≤K

[BT (r, N , �∗
T )−BT (r, N , �T )]≥0.

Let us introduce the decision function

�̂T (X T )=χ{T (X T ) > z�}, T (X T )=
XT −S∗T√

S∗T
.

Theorem 2

The test �̂T is locally asymptotically uniformly most powerful in the class K� and for any

u(·)∈Ur its power function

�T (u, �̂T )−→ �̂(u)=P
{

�> z� − r
√

S∗

}

, (10)

where �∼N
(

0, 1
)

.

Proof. Let us fix a simple alternative u(·) ∈Ur, then the likelihood ratio LT

(

u(·)√
T

, X T
)

=

ZT

(

u(·)
)

admits (under hypothesis H0) the representation (see the proof of the theorem 1)

ZT

(

u(·)
)

= exp

{
∫ T

0

ln

(

1+
1

S∗
√

T

∫ t−

0

u(t− s) dXs

)

dXt

− 1√
T

∫ T

0

∫ t

0

u(t− s) dXs dt

}

= exp

{

�T (u, X T )− 1

2
I(u)+ rT (u, X T )

}

,

where

�T (u, X T )=
1

S∗
√

T

∫ T

0

∫ t−

0

u(t− s) dXs[ dXt −S∗ dt],

I(u)=

∫ ∞

0

u(t)2 dt +S∗

(
∫ ∞

0

u(t) dt

)2

=

∫ ∞

0

u(t)2 dt +S∗r
2

and

L0{�T

(

u, X T
)

}=⇒N (0, I(u)), rT (u, X T )→0.

Moreover, these last two convergences are uniform on u(·)∈Ur,N , 0≤ r≤K for any K > 0.

Hence the likelihood ratio test

�̄T (X T )=χ{ZT (u(·)) > d�},

with

d� = exp

{

z�

√

I(u)− I(u)

2

}
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is the most powerful in the class K� for any two simple hypotheses and its power function

�(u, �̄T )−→P
{

�> z� − I(u)1/2
}

, �∼N (0, 1).

It is easy to see that

inf
u(·)∈Ur, N

I(u)=S∗r
2
+

r2

N

because

r2
=

(
∫ N

0

u(t) dt

)2

≤N

∫ N

0

u(t)2 dt

with equality on the ‘least favourable alternative’

u∗(t)= (r / N)χ{0≤t≤N}.

Hence

inf
u(·)∈Ur,N

P{�> z� − I(u)1/2}=P{�> z� − r
√

S∗ +N−1}.

Now we study the power function of the test �̂T . Let us denote

Ut =

∫ t−

0

u(t− s) dXs, 	t =Xt −S∗t,

then

�T (u, X T )=
1

S∗
√

T

∫ T

0

Ut d	t, T (X T )=
1√
S∗T

∫ T

0

d	t

and

E0�T (u, X T )=0, E0�T (u, X T )2
= I(u), E0T (X T )=0,

E0T (X T )2
=1, E0(T (X T )�T (u, X T ))= r

√

S∗.

Hence, under hypothesis H0, we have

L0{�T (u, X T ), T (X T )}=⇒N (0, R),

where R is covariance matrix of the vector (�T , T ) described above. Therefore �̂T ∈K�, and

using Le Cam’s Third Lemma (van der Vaart, 1998) we obtain that under alternative u(·)∈Ur

T (X T )=⇒N (r
√

S∗, 1).

For the power function we have

�(u, �̂T )−→P{�> z� − r
√

S∗}.

It can be shown that this convergence is uniform over u(·)∈Ur,N , 0≤ r≤K for any K > 0 and

this proves the theorem.

6. Simulations

The main results (theorems 1 and 2) of this work are ‘asymptotic in nature’ and it is inter-

esting to see the properties of the tests for the moderate values of T . This can be performed

by Monte-Carlo simulations.
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6.1. Parametric alternative

To illustrate theorem 1 we take S∗ =1 and h(t)=1/2 e−t/2 (see example 1). This yields

S(u, t, �)=1+
u

2
√

T

∑

ti≤t

e−(t−ti )/2, u≥0, 0≤ t≤T .

In this case

�T (X T )=
1√
5T

∑

0≤tj≤T

∑

ti < tj

e−(tj−ti )/2 − 2√
5T

(

XT −
∑

0≤tj≤T

e−(T−tj )/2

)

,

where ti are the events of the observed process, and the test �̂
�

T given by

�̂
�

T = �̂T (X T )=χ{�T (X T ) > z�},

is locally asymptotically uniformly most powerful in the class K�.

In Fig. 1 we represent the size of the test �̂
0.05

T as a function of T ∈ [0, 1000]. This size is

given by


(T )=P0{�T (X T ) > z0.05}, 1≤T ≤1000

and is obtained by simulating M =107 trajectories on [0, T ] of Poisson process of constant

intensity S(t, �)=1 and calculating empirical frequency of accepting the alternative hypo-

thesis.

In Fig. 2 we represent the power function of the test �̂
0.05

T given by

�T (u, �̂
0.05

T )=Pu{�T (X T ) > z0.05}, 0≤u≤5

for T =100, 300 and 1000, as well as the limiting (Gaussian) power function given by

0 100 200 300 400 500 600 700 800 900 1000

T

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

S
iz

e

Fig. 1. Test size.
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Fig. 2. Test power.

�̂(u)=P{�> z0.05 −u
√

5/2}=
1√
2	

∫ ∞

z0.05−u
√

5/2

e−v
2 /2 dv, 0≤u≤5.

The function �T is obtained by simulating (for each value of u) M =106 trajectories on

[0, T ] of self-exciting process of intensity S(u, t, �) and calculating empirical frequency of

accepting the alternative hypothesis.

Now let us consider the �̃
�

T given by

�̃
�

T = �̃T (X T )=χ{�T (X T ) > z},

where the threshold z is chosen so that this test is of exact size �. The choice of this threshold

z as a function of �∈ [0, 0.25] is shown in Figs 3 and 4 for T =100, 300 and 1000, as well as

the Gaussian threshold z�. The values of z are obtained by simulating M =107 trajectories

on [0, T ] of Poisson process of constant intensity S(t, �)=1 and calculating empirical 1− �

quantiles of �T .

For example to obtain test of exact size 0.05 one needs take z≃1.78 for T =100 (z≃1.74

for T =300, z≃1.70 for T =1000) against z� ≃1.64 for Gaussian case.

6.2. Non-parametric alternative

To illustrate the non-parametric alternatives we take intensity functions corresponding to

S∗ =1 and u(t)= (r/N)χ{0≤t≤N}, i.e.

S(t, �)=1+
r

N
√

T

∑

ti < t

χ{t−ti≤N}, 0≤ t≤T ,

where ti are the events of the observed process. This choice of u(·) allows us to compare the

power function of our locally asymptotically uniformly most powerful test

�̂
�

T (X T )=χ{XT > z�

√
T +T},

with the asymptotic power
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Fig. 4. Threshold choice (zoom).

�(r)=
1√
2	

∫ ∞

z�−r

e−v
2 /2 dv,

of Neyman–Pearson test for the least favourable alternatives.

Note that under H0, XT is Poisson random variable with parameter T , therefore the size

of the test �̂
�

T , as well as the threshold giving a test of exact size �, can be calculated directly

(without resort to Monte-Carlo simulations).

We represent the power function of the test �̂
0.05

T given by

�T (u, �̂T )=Pu{XT > z0.05

√
T +T}, 0≤ r≤5,
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Fig. 6. Test power (N =50).

for T =100, 300 and 1000 as well as the limiting (Gaussian) function �(r), 0≤ r≤5. In Figs

5 and 6 we take N =5 and N =50 respectively. The function �T is obtained by simulating

(for each value of r and N) M =106 trajectories on [0, T ] of self-exciting process of intensity

S(t, �) and calculating empirical frequency of accepting the alternative hypothesis.

We see that if 1≪N ≪T , then the power function converge to the limiting function (e.g. if

N =50 and T =1000, the power function almost coincides with the limiting one). If N and T

are of the same order (e.g. if N =50 and T =100) then the power function of the test can be

essentially smaller. This example confirms the importance of use of functions with bounded

support and of the order of limits in definition 2.
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7. Discussions

The constructed tests are asymptotically optimal for parametric (section 3) and non-

parametric (section 5) alternatives. It seems that these are just the first results in this field

and it is interesting to develop the construction of the asymptotically optimal tests for wider

classes of alternatives. Particularly, it is interesting to study ‘smooth alternatives’ like

H1 :

∫ ∞

0

u(k)(t)2 dt > r,

where r > 0. Note that the test �̂T is no more uniformly consistent in this situation.
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Continuous Time Processes
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Abstract: We present a review of several results concerning the construction
of the Cramér–von Mises and Kolmogorov–Smirnov type goodness-of-fit tests
for continuous time processes. As the models we take a stochastic differential
equation with small noise, ergodic diffusion process, Poisson process, and self-
exciting point processes. For every model we propose the tests which provide the
asymptotic size α and discuss the behaviour of the power function under local
alternatives. The results of numerical simulations of the tests are presented.

Keywords and Phrases: Hypotheses testing, diffusion process, Poison pro-
cess, self-exciting process, goodness-of-fit tests

27.1 Introduction

The goodness-of-fit tests play an important role in classical mathematical statis-
tics. Particularly, the tests of Cramér–von Mises, Kolmogorov–Smirnov, and
chi-squared are well studied and allow us to verify the correspondence of the
mathematical models to the observed data [see, e.g., Durbin (1973) or Green-
wood and Nikulin (1996)]. A similar problem, of course, exists for the continuous-
time stochastic processes. The diffusion and Poisson processes are widely used as
mathematical models of many evolution processes in biology, medicine, physics,
financial mathematics, and in many other fields. For example, some theory can
propose a diffusion process

dXt = S∗ (Xt) dt+ σ dWt, X0, 0 ≤ t ≤ T

as an appropriate model for description of the real data {Xt, 0 ≤ t ≤ T} and
we can try to construct an algorithm to verify if this model corresponds well
to these data. The model here is totally defined by the trend coefficient S∗ (·),
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which is supposed (if the theory is true) to be known. We do not discuss here the
problem of verification if the process {Wt, 0 ≤ t ≤ T} is Wiener. This problem
is much more complicated and we suppose that the noise is white Gaussian.
Therefore we have a basic hypothesis defined by the trend coefficient S∗ (·) and
we have to test this hypothesis against any other alternative. Any other means
that the observations come from stochastic differential equation

dXt = S (Xt) dt+ σ dWt, X0, 0 ≤ t ≤ T,

where S (·) �= S∗ (·). We propose some tests which are in some sense similar
to the Cramér–von Mises and Kolmogorov–Smirnov tests. The advantage of
classical tests is that they are distribution-free; that is, the distribution of the
underlying statistics does not depend on the basic model and this property
allows us to choose the universal thresholds which can be used for all models.

For example, if we observe n independent identically distributed random
variables (X1, . . . ,Xn) = Xn with distribution function F (x) and the basic
hypothesis is simple, F (x) ≡ F∗ (x), then the Cramér–von Mises W 2

n and
Kolmogorov–Smirnov Dn statistics are

W 2
n = n

∫ ∞

−∞

[
F̂n (x)− F∗ (x)

]2
dF∗(x), Dn = sup

x

∣∣∣F̂n (x)− F∗ (x)
∣∣∣ ,

respectively. Here

F̂n (x) =
1

n

n
∑

j=1

1{Xj<x}

is the empirical distribution function. Let us denote by {W0 (s) , 0 ≤ s ≤ 1} a
Brownian bridge, that is, a continuous Gaussian process with

EW0 (s) = 0, EW0 (s)W0 (t) = t ∧ s− st.

Then the limit behaviour of these statistics can be described with the help of
this process as follows.

W 2
n =⇒

∫ 1

0
W0 (s)

2 ds,
√
nDn =⇒ sup

0≤s≤1
|W0 (s)| .

Hence the corresponding Cramér–von Mises and Kolmogorov–Smirnov tests

ψn (X
n) = 1{W 2

n>cα}, φn (X
n) = 1{√nDn>dα}

with constants cα, dα defined by the equations

P

{∫ 1

0
W0 (s)

2 ds > cα

}

= α, P

{

sup
0≤s≤1

|W0 (s)| > dα

}

= α
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are of asymptotic size α. It is easy to see that these tests are distribution-free
[the limit distributions do not depend of the function F∗ (·)] and are consistent
against any fixed alternative [see, e.g., Durbin (1973)].

It is interesting to study these tests for a nondegenerate set of alternatives,
that is, for alternatives with limit power function less than 1. It can be realized
on the close nonparametric alternatives of the special form making this problem
asymptotically equivalent to the signal in Gaussian noise problem. Let us put

F (x) = F∗ (x) +
1√
n

∫ x

−∞
h (F∗ (y)) dF∗(y),

where the function h (·) describes the alternatives. We suppose that

∫ 1

0
h (s) ds = 0,

∫ 1

0
h (s)2 ds < ∞.

Then we have the following convergence [under a fixed alternative, given by the
function h (·)],

W 2
n =⇒

∫ 1

0

[∫ s

0
h (v) dv +W0 (s)

]2
ds,

√
nDn =⇒ sup

0≤s≤1

∣∣∣∣
∫ s

0
h (v) dv +W0 (s)

∣∣∣∣ .

We see that this problem is asymptotically equivalent to the following signal in
Gaussian noise problem,

dYs = h∗ (s) ds+ dW0(s), 0 ≤ s ≤ 1. (27.1)

Indeed, if we use the statistics

W 2 =

∫ 1

0
Y 2
s ds, D = sup

0≤s≤1
|Ys|

then under hypothesis h (·) ≡ 0 and alternative h (·) �= 0 the distributions of
these statistics coincide with the limit distributions of W 2

n and
√
nDn under

the hypothesis and alternative, respectively.
Our goal is to see how such kinds of tests can be constructed in the case

of continuous-time models of observation and particularly in the cases of some
diffusion and point processes. We consider the diffusion processes with small
noise, ergodic diffusion processes, and Poisson processes with Poisson and self-
exciting alternatives. For the first two classes we just show how Cramér–von
Mises and Kolmogorov–Smirnov type tests can be realized using some known
results and for the last models we discuss this problem in detail.
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27.2 Diffusion Process with Small Noise

Suppose that the observed process is the solution of the stochastic differential
equation

dXt = S (Xt) dt+ εdWt, X0 = x0, 0 ≤ t ≤ T, (27.2)

where Wt, 0 ≤ t ≤ T is a Wiener process [see, e.g., Liptser and Shiryayev
(2001)]. We assume that the function S (x) is two times continuously differen-
tiable with bounded derivatives. These are not the minimal conditions for the
results presented below, but this assumption simplifies the exposition. We are
interested in the statistical inference for this model in the asymptotics of small
noise: ε → 0. The statistical estimation theory (parametric and nonparametric)
was developed in Kutoyants (1994).

Recall that the stochastic processXε = {Xt, 0 ≤ t ≤ T} converges uniformly
in t ∈ [0, T ] to the deterministic function {xt, 0 ≤ t ≤ T}, which is a solution of
the ordinary differential equation

dxt
dt

= S(xt), x0, 0 ≤ t ≤ T. (27.3)

Suppose that the function S∗ (x) > 0 for x ≥ x0 and consider the following
problem of hypotheses testing,

H0 : S (x) = S∗(x), x0 ≤ x ≤ x∗T
H1 : S (x) �= S∗(x), x0 ≤ x ≤ x∗T ,

where we denoted by x∗t the solution of equation (27.3) under hypothesis H0:

x∗t = x0 +

∫ t

0
S∗ (x

∗
v) dv, 0 ≤ t ≤ T.

Hence, we have a simple hypothesis against the composite alternative.
The Cramér–von Mises

(
W 2

ε

)
and Kolmogorov–Smirnov (Dε) type statistics

for this model of observations can be

W 2
ε =

[∫ T

0

dt

S∗ (x∗t )
2

]−2 ∫ T

0

(
Xt − x∗t
εS∗ (x∗t )

2

)2

dt,

Dε =

[∫ T

0

dt

S∗ (x∗t )
2

]−1/2

sup
0≤t≤T

∣∣∣∣
Xt − x∗t
S∗ (x∗t )

∣∣∣∣ .

It can be shown that these two statistics converge (as ε → 0) to the following
functionals,

W 2
ε =⇒

∫ 1

0
W (s)2 ds, ε−1Dε =⇒ sup

0≤s≤1
|W (s)| ,

52 On the Goodness-of-Fit Tests for Some Continuous Time Processes



Goodness-of-Fit Tests for Continuous Time Processes 389

where {W (s) , 0 ≤ s ≤ 1} is a Wiener process [see Kutoyants (1994)]. Hence the
corresponding tests

ψε (X
ε) = 1{W 2

ε >cα}, φε (X
ε) = 1{ε−1Dε>dα}

with the constants cα, dα defined by the equations

P

{∫ 1

0
W (s)2 ds > cα

}
= α, P

{
sup

0≤s≤1
|W (s)| > dα

}
= α (27.4)

are of asymptotic size α. Note that the choice of the thresholds cα and dα does
not depend on the hypothesis (distribution-free). This situation is quite close
to the classical case mentioned above.

It is easy to see that if S (x) �= S∗ (x), then sup0≤t≤T |xt − x∗t | > 0 and
W 2

ε → ∞, ε−1Dε → ∞. Hence these tests are consistent against any fixed
alternative. It is possible to study the power function of this test for local
(contiguous) alternatives of the following form,

dXt = S∗ (Xt) dt+ ε
h (Xt)

S∗ (Xt)
dt+ ε dWt, 0 ≤ t ≤ T.

We describe the alternatives with the help of the (unknown) function h (·).
The case h (·) ≡ 0 corresponds to the hypothesis H0. One special class of such
nonparametric alternatives for this model was studied in Iacus and Kutoyants
(2001).

Let us introduce the composite (nonparametric) alternative

H1 : h (·) ∈ Hρ,

where

Hρ =

{
h(·) :

∫ xT

x0

h (x)2 µ (dx) ≥ ρ

}
.

To choose the alternative we have to make precise the “natural for this problem”
distance described by the measure µ (·) and the rate of ρ = ρε. We show that
the choice

µ (dx) =
dx

S∗ (x)
3

provides for the test statistic the following limit,

W 2
ε −→

∫ 1

0

[∫ s

0
h∗ (v) dv +W (s)

]2
ds,

where we denoted

h∗ (s) = u
1/2
T h

(
x∗uT s

)
, uT =

∫ T

0

ds

S∗ (x∗s)
2 .
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We see that this problem is asymptotically equivalent to the signal in white
Gaussian noise problem:

dYs = h∗ (s) ds+ dW (s) , 0 ≤ s ≤ 1, (27.5)

with the Wiener process W (·). It is easy to see that even for fixed ρ > 0
without further restrictions on the smoothness of the function h∗ (·), uniformly
good testing is impossible. For example, if we put

hn (x) = c S∗ (x)
3 cos [n (x− x0)]

then for the power function of the test we have

inf
h(·)∈Hρ

β (ψε, h) ≤ β (ψε, hn) −→ α.

The details can be found in Kutoyants (2006). The construction of the uniformly
consistent tests requires a different approach [see Ingster and Suslina (2003)].

Note as well that if the diffusion process is

dXt = S (Xt) dt+ εσ (Xt) dWt, X0 = x0, 0 ≤ t ≤ T,

then we can put

W 2
ε =

[∫ T

0

(
σ (x∗t )
S∗ (x∗t )

)2

dt

]−2 ∫ T

0

(
Xt − x∗t
εS∗ (x∗t )

2

)2

dt

and have the same results as above [see Kutoyants (2006)].

27.3 Ergodic Diffusion Processes

Suppose that the observed process is the one-dimensional diffusion process

dXt = S (Xt) dt+ dWt, X0, 0 ≤ t ≤ T, (27.6)

where the trend coefficient S (x) satisfies the conditions of the existence and
uniqueness of the solution of this equation and this solution has ergodic prop-
erties; that is, there exists an invariant probability distribution FS (x), and for
any integrable w.r.t. this distribution function g (x) the law of large numbers
holds

1

T

∫ T

0
g (Xt) dt −→

∫ ∞

−∞
g (x) dFS (x) .

These conditions can be found, for example, in Kutoyants (2004).
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Recall that the invariant density function fS (x) is defined by the equality

fS (x) = G (S)−1 exp

{
2

∫ x

0
S (y) dy

}
,

where G (S) is the normalising constant.
We consider two types of tests. The first one is a direct analogue of the

classical Cramér–von Mises and Kolmogorov–Smirnov tests based on empirical
distribution and density functions and the second follows the considered-above
(small noise) construction of tests.

The invariant distribution function FS (x) and this density function can be
estimated by the empirical distribution function F̂T (x) and by the local time
type estimator f̂T (x) defined by the equalities

F̂T (x) =
1

T

∫ T

0
1{Xt<x} dt, f̂T (x) =

2

T

∫ T

0
1{Xt<x} dXt,

respectively. Note that both of them are unbiased,

ESF̂T (x) = FS(x), ES f̂T (x) = fS(x),

admit the representations

ηT (x) = − 2√
T

∫ T

0

FS (Xt ∧ x)− FS (Xt)FS (x)

fS (Xt)
dWt + o(1),

ζT (x) = −2fS (x)√
T

∫ T

0

1{Xt>x} − FS (Xt)

fS (Xt)
dWt + o(1),

and are
√
T asymptotically normal (as T → ∞)

ηT (x) =
√
T
(
F̂T (x)− FS (x)

)
=⇒ N

(
0, dF (S, x)2

)
,

ζT (x) =
√
T
(
f̂T (x)− fS (x)

)
=⇒ N

(
0, df (S, x)

2
)
.

Let us fix a simple (basic) hypothesis

H0 : S (x) ≡ S∗(x).

Then to test this hypothesis we can use these estimators for construction of the
Cramér–von Mises and Kolmogorov–Smirnov type test statistics

W 2
T = T

∫ ∞

−∞

[
F̂T (x)− FS∗

(x)
]2

dFS∗
(x),

DT = sup
x

∣∣∣F̂T (x)− FS∗
(x)

∣∣∣ ,
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and

V 2
T = T

∫ ∞

−∞

[
f̂T (x)− fS∗

(x)
]2

dFS∗
(x),

dT = sup
x

∣∣∣f̂T (x)− fS∗
(x)

∣∣∣ ,

respectively. Unfortunately, all these statistics are not distribution-free even
asymptotically and the choice of the corresponding thresholds for the tests
is much more complicated. Indeed, it was shown that the random functions
(ηT (x) , x ∈ R) and (ζT (x) , x ∈ R) converge in the space (C0,B) (of continuous
functions decreasing to zero at infinity) to the zero mean Gaussian processes
(η (x) , x ∈ R) and (ζ(x), x ∈ R), respectively, with the covariance functions [we
omit the index S∗ of functions fS∗

(x) and FS∗
(x) below]:

RF (x, y) = ES∗
[η (x) η (y)]

= 4ES∗

(
[F (ξ ∧ x)− F (ξ)F (x)] [F (ξ ∧ y)− F (ξ)F (y)]

f (ξ)2

)

Rf (x, y) = ES∗
[ζ (x) ζ (y)]

= 4f (x) f (y)ES∗

(
[

1{ξ>x} − F (ξ)
] [

1{ξ>y} − F (ξ)
]

f (ξ)2

)

.

Here ξ is a random variable with the distribution function FS∗
(x). Of course,

dF (S, x)2 = ES

[

η (x)2
]

, df (S, x)
2 = ES

[

ζ (x)2
]

.

Using this weak convergence it is shown that these statistics converge in distri-
bution (under hypothesis) to the following limits (as T → ∞),

W 2
T =⇒

∫ ∞

−∞
η (x)2 dFS∗

(x), T 1/2DT =⇒ sup
x

|η (x)| ,

V 2
T =⇒

∫ ∞

−∞
ζ (x)2 dFS∗

(x), T 1/2dT =⇒ sup
x

|ζ (x)| .

The conditions and the proofs of all these properties can be found in Kutoyants
(2004), where essentially different statistical problems were studied, but the
calculus is quite close to what we need here.

Note that the Kolmogorov–Smirnov test for ergodic diffusion was studied in
Fournie (1992) [see as well Fournie and Kutoyants (1993) for further details],
and the weak convergence of the process ηT (·) was obtained in Negri (1998).

The Cramér–von Mises and Kolmogorov–Smirnov type tests based on these
statistics are

ΨT

(

XT
)

= 1{W 2

T>Cα}, ΦT

(

XT
)

= 1{T 1/2DT>Dα},
ψT

(

XT
)

= 1{V 2

T >cα}, φT

(

XT
)

= 1{T 1/2dT>dα}
with appropriate constants.
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The contiguous alternatives can be introduced in the following way,

S (x) = S∗ (x) +
h (x)√

T
.

Then we obtain for the Cramér–von Mises statistics the limits [see Kutoyants
(2004)]:

W 2
T =⇒

∫ ∞

−∞

[
2ES∗

(
[

1{ξ<x} − FS∗
(x)

]

∫ ξ

0
h (s) ds

)

+ η (x)

]2

dFS∗
(x),

V 2
T =⇒

∫ ∞

−∞

[

2fS∗
(x)ES∗

∫ x

ξ
h (s) ds+ ζ (x)

]2

dFS∗
(x).

Note that the transformation Yt = FS∗
(Xt) simplifies the writing, because

the diffusion process Yt satisfies the differential equation

dYt = fS∗
(Xt) [2S∗ (Xt) dt+ dWt] , Y0 = FS∗

(X0)

with reflecting bounds in 0 and 1 and (under hypothesis) has uniform on [0, 1]
invariant distribution. Therefore,

W 2
T =⇒

∫ 1

0
V (s)2 ds, T 1/2DT =⇒ sup

0≤s≤1
|V (s)| ,

but the covariance structure of the Gaussian process {V (s) , 0 ≤ s ≤ 1} can be
quite complicated.

To obtain an asymptotically distribution-free Cramér–von Mises type test
we can use another statistic, which is similar to that of the preceding section.
Let us introduce

W̃ 2
T =

1

T 2

∫ T

0

[

Xt −X0 −
∫ t

0
S∗ (Xv) dv

]2

dt.

Then we have immediately (under hypothesis)

W̃ 2
T =

1

T 2

∫ T

0
W 2

t dt =

∫ 1

0
W (s)2 ds,

where we put t = sT and W (s) = T−1/2WsT . Under the alternative we have

W̃ 2
T =

1

T 2

∫ T

0

[

Wt +
1√
T

∫ t

0
h (Xv) dv

]2

dt

=
1

T

∫ T

0

[

Wt√
T

+
t

T

1

t

∫ t

0
h (Xv) dv

]2

dt.
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The stochastic process Xt is ergodic, hence

1

t

∫ t

0
h (Xv) dv −→ ES∗

h (ξ) =

∫ ∞

−∞
h (x) fS∗

(x) dx ≡ ρh

as t → ∞. It can be shown [see Section 2.3 in Kutoyants (2004), where we have
the similar calculus in another problem] that

W̃ 2
T =⇒

∫ 1

0
[ρh s+W (s)]2 ds.

Therefore the power function of the test ψ
(
XT

)
= 1{W̃ 2

T>cα} converges to

the function

βψ (ρh) = P

(∫ 1

0
[ρh s+W (s)]2 ds > cα

)
.

Using standard calculus we can show that for the corresponding Kolmogorov–
Smirnov type test the limit will be

βφ (ρh) = P

(
sup

0≤s≤1
|ρh s+W (s)| > cα

)
.

These two limit power functions are the same as in the next section devoted
to self-exciting alternatives of the Poisson process. We calculate these functions
with the help of simulations in Section 27.5 below.

Note that if the diffusion process is

dXt = S (Xt) dt+ σ (Xt) dWt, X0, 0 ≤ t ≤ T,

but the functions S (·) and σ (·) are such that the process is ergodic then we
introduce the statistics

Ŵ 2
T =

1

T 2 ES∗

[
σ (ξ)2

]
∫ T

0

[
Xt −X0 −

∫ t

0
S∗ (Xv) dv

]2
dt.

Here ξ is a random variable with the invariant density function

fS∗
(x) =

1

G (S∗) σ (x)2
exp

{
2

∫ x

0

S∗ (y)

σ (y)2
dy

}
.

This statistic under hypothesis is equal to

Ŵ 2
T =

1

T 2ES∗

[
σ (ξ)2

]
∫ T

0

[∫ t

0
σ (Xv) dWv

]2
dt

=
1

T ES∗

[
σ (ξ)2

]
∫ T

0

[
1√
T

∫ t

0
σ (Xv) dWv

]2
dt.
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The stochastic integral by the central limit theorem is asymptotically normal

ηt =
1√

tES∗

[
σ (ξ)2

]
∫ t

0
σ (Xv) dWv =⇒ N (0, 1)

and moreover it can be shown that the vector of such integrals converges in
distribution to the Wiener process

(
ηs1T , . . . , ηskT

)
=⇒ (W (s1) , . . . ,W (sk))

for any finite collection of 0 ≤ s1 < s2 < · · · < sk ≤ 1. Therefore, under mild
regularity conditions it can be proved that

Ŵ 2
T =⇒

∫ 1

0
W (s)2 ds.

The power function has the same limit,

βψ (ρh) = P

(∫ 1

0
[ρh s+W (s)]2 ds > cα

)
.

but with

ρh =
ES∗

h (ξ)√
ES∗

[
σ (ξ)2

] .

Similar consideration can be done for the Kolmogorov–Smirnov type test too.

We see that both tests cannot distinguish the alternatives with h (·) such
that ES∗

h (ξ) = 0. Note that for ergodic processes usually we have ESS (ξ) = 0
and ES∗+h/

√
T

[

S∗ (ξ) + T−1/2h (ξ)
]

= 0 with corresponding random variables

ξ, but this does not imply ES∗
h (ξ) = 0.

27.4 Poisson and Self-Exciting Processes

The Poisson process is one of the simplest point processes and before taking
any other model it is useful first of all to check the hypothesis that the observed
sequence of events, say, 0 < t1, . . . , tN < T corresponds to a Poisson process.
It is natural in many problems to suppose that this Poisson process is periodic
of known period, for example, many daily events, signal transmission in optical
communication, season variations, and so on. Another model of point processes
frequently used as well is the self-exciting stationary point process introduced
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in Hawkes (1972). As any stationary process it can also describe the periodic
changes due to the particular form of its spectral density.

Recall that for the Poisson processXt, t ≥ 0 of intensity function S (t) , t ≥ 0
we have (Xt is the counting process)

P {Xt −Xs = k} = (k!)−1 (Λ (t)− Λ (s))k exp{Λ(s)− Λ(t)},

where we suppose that s < t and put

Λ (t) =

∫ t

0
S (v) dv.

The self-exciting process Xt, t ≥ 0 admits the representation

Xt =

∫ t

0
S (s,X) ds+ πt,

where πt, t ≥ 0 is a local martingale and the intensity function

S (t,X) = S +

∫ t

0
g (t− s) dXs = S +

∑

ti<T

g (t− ti) .

It is supposed that

ρ =

∫ ∞

0
g (t) dt < 1.

Under this condition the self-exciting process is a stationary point process with
the rate

µ =
S

1− ρ

and the spectral density

f (λ) =
µ

2π |1−G (λ)|2
, G (λ) =

∫ ∞

0
eiλtg (t) dt

[see Hawkes (1972) or Daley and Vere-Jones (2003) for details].

We consider two problems: Poisson against another Poisson and Poisson
against a close self-exciting point process. The first one is to test the simple
(basic) hypothesis

H0 : S (t) ≡ S∗(t), t ≥ 0

where S∗ (t) is a known periodic function of period τ , against the composite
alternative

H1 : S (t) �= S∗(t), t ≥ 0,

but S (t) is always τ -periodic.
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Let us denote Xj (t) = Xτ(j−1)+t − Xτ(j−1), j = 1, . . . , n, suppose that
T = nτ , and put

Λ̂n (t) =
1

n

n
∑

j=1

Xj (t) .

The corresponding goodness-of-fit tests of Cramér–von Mises and
Kolmogorov–Smirnov type can be based on the statistics

W 2
n = Λ∗ (τ)

−2 n

∫ τ

0

[

Λ̂n (t)− Λ∗ (t)
]2

dΛ∗ (t) ,

Dn = Λ∗ (τ)
−1/2 sup

0≤t≤τ

∣

∣

∣Λ̂n (t)− Λ∗ (t)
∣

∣

∣ .

It can be shown that

W 2
n =⇒

∫ 1

0
W (s)2 ds,

√
n Dn =⇒ sup

0≤s≤1
|W (s)| ,

where {W (s) , 0 ≤ s ≤ 1} is a Wiener process [see Kutoyants (1998)]. Hence
these statistics are asymptotically distribution-free and the tests

ψn

(

XT
)

= 1{W 2
n>cα}, φn

(

XT
)

= 1{√nDn>dα}

with the constants cα, dα taken from Equations (27.4), are of asymptotic size α.
Let us describe the close contiguous alternatives which asymptotically re-

duce this problem to the signal in the white Gaussian noise model (27.5). We
put

Λ (t) = Λ∗ (t) +
1

√

nΛ∗ (τ)

∫ t

0
h (u (v)) dΛ∗(v), u (v) =

Λ∗ (v)
Λ∗ (τ)

.

Here h (·) is an arbitrary function defining the alternative. Then if Λ (t) satisfies
this equality we have the convergence

W 2
n =⇒

∫ 1

0

[
∫ s

0
h (v) dv +W (s)

]2

ds.

This convergence describes the power function of the Cramér–von Mises
type test under these alternatives.

The second problem is to test the hypothesis

H0 : S (t) = S∗, t ≥ 0

against nonparametric close (contiguous) alternative

H1 : S (t) = S∗ +
1√
T

∫ t

0
h (t− s) dXt, t ≥ 0.
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We consider the alternatives with the functions h (·) ≥ 0 having compact sup-
port and bounded.

We have Λ∗ (t) = S∗ t and for some fixed τ > 0 we can construct the same
statistics

W 2
n =

n

S∗τ2

∫ τ

0

[
Λ̂n (t)− S∗ t

]2
dt, Dn = (S∗ τ)

−1/2 sup
0≤t≤τ

∣∣∣Λ̂n (t)− S∗ t
∣∣∣ .

Of course, they have the same limits under hypothesis

W 2
n =⇒

∫ 1

0
W (s)2 ds,

√
nDn =⇒ sup

0≤s≤1
|W (s)| .

To describe their behaviour under any fixed alternative h (·) we have to find
the limit distribution of the vector

wn =
(
wn

(
t1
)
, . . . , wn (tk)

)
, wn (tl) =

1√
S∗τ n

n
∑

j=1

[Xj (tl)− S∗tl] ,

where 0 ≤ tl ≤ τ . We know that this vector under hypothesis is asymptotically
normal

L0 {wn} =⇒ N (0,R)

with covariance matrix

R = (Rlm)k×k , Rlm = τ−1min (tl, tm) .

Moreover, it was shown in Dachian and Kutoyants (2006) that for such alterna-
tives the likelihood ratio is locally asymptotically normal; that is, the likelihood
ratio admits the representation

Zn (h) = exp

{

∆n (h,X
n)− 1

2
I (h) + rn (h,X

n)

}

,

where

∆n (h,X
n) =

1

S∗
√
τn

∫ τn

0

∫ t−

0
h (t− s) dXs [dXt − S∗dt] ,

I (h) =

∫ ∞

0
h (t)2 dt+ S∗

(∫ ∞

0
h (t) dt

)2

and
∆n (h,X

n) =⇒ N (0, I (h)) , rn (h,X
n) → 0. (27.7)

To use the third Le Cam’s lemma we describe the limit behaviour of the vector
(∆n (h,X

n) ,wn). For the covarianceQ = (Qlm) , l,m = 0, 1, . . . , k of this vector
we have

E0∆n (h,X
n) = 0, Q00 = E0∆n (h,X

n)2 = I (h) (1 + o (1)) .
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Furthermore, let us denote dπt = dXt − S∗dt and H (t) =
∫ t−
0 h (t− s) dXs;

then we can write

Q0l = E0 [∆n (h,X
n)wn (tl)]

=
1

nS
3/2
∗ τ

E0

⎛
⎝

n
∑

j=1

∫ τj

τ(j−1)
H (t) dπt

n
∑

i=1

∫ τ(i−1)+tl

τ(i−1)
dπt

⎞

⎠

=
1

nτ
√
S∗

n
∑

j=1

∫ τ(j−1)+tl

τ(j−1)
E0H (t) dt =

tl

τ

√

S∗

∫ ∞

0
h (t) dt (1 + o (1)) ,

because

E0H (t) = S∗

∫ t−

0
h (t− s) ds = S∗

∫ ∞

0
h (s) ds

for the large values of t [such that [0, t] covers the support of h (·)].
Therefore, if we denote

h̄ =

∫ ∞

0
h (s) ds

then

Q0l = Ql0 =
tl

τ

√

S∗ h̄.

The proof of Theorem 1 in Dachian and Kutoyants (2006) can be applied
to the linear combination of ∆n (h,X

n) and wn (t1) , . . . , wn (tk) and this yields
the asymptotic normality

L0

(

∆n (h,X
n) ,wn

)

=⇒ N (0,Q) .

Hence by the third lemma of Le Cam we obtain the asymptotic normality of
the vector wn,

Lh

(

wn

)

=⇒ L
(

W (s1) + s1
√

S∗ h̄, . . . ,W (sk) + sk
√

S∗ h̄
)

,

where we put tl = τ sl. This weak convergence together with the estimates such
as

Eh |wn (t1)− wn (t2)|2 ≤ C |t1 − t2|
provides the convergence (under alternative)

W 2
n =⇒

∫ 1

0

[

√

S∗ h̄ s+W (s)
]2

ds.

We see that the limit experiment is of the type

dYs =
√

S∗ h̄ds+ dW (s), Y0 = 0, 0 ≤ s ≤ 1.
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The power β(ψn, h) of the Cramér–von Mises type test ψn(X
n) = 1{W 2

n>cα}
is a function of the real parameter ρh =

√
S∗ h̄,

β (Wn, h) = P

(∫ 1

0
[ρh s+W (s)]2 ds > cα

)
+ o (1) = βψ (ρh) + o (1) .

Using the arguments of Lemma 6.2 in Kutoyants (1998) it can be shown
that for the Kolmogorov–Smirnov type test we have the convergence

√
nDn =⇒ sup

0≤s≤1
|ρh s+W (s)| .

The limit power function is

βφ (ρh) = P

(
sup

0≤s≤1
|ρh s+W (s)| > dα

)
.

These two limit power functions are obtained by simulation in the next
section.

27.5 Simulation

First, we present the simulation of the thresholds cα and dα of our Cramér–
von Mises and Kolmogorov–Smirnov type tests. Because these thresholds are
given by the equations (27.4), we obtain them by simulating 107 trajectories
of a Wiener process on [0,1] and calculating empirical 1 − α quantiles of the
statistics

W 2 =

∫ 1

0
W (s)2 ds and D = sup

0≤s≤1
|W (s)| ,

respectively. Note that the distribution of W 2 coincides with the distribution
of the quadratic form

W 2 =
∞
∑

k=1

ζ2k

(πk)2
, ζk i.i.d. ∼ N (0, 1)

and both distributions are extensively studied [see (1.9.4(1)) and (1.15.4) in
Borodin and Salmienen (2002)]. The analytical expressions are quite compli-
cated and we would like to compare by simulation cα and dα with the real
(finite time) thresholds giving the tests of exact size α, that is, cTα and dTα given
by equations

P
{

W 2
n > cTα

}

= α and P
{√

nDn > dTα
}

= α,
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Figure 27.1. Threshold choice.

respectively. We choose S∗ = 1 and obtain cTα and dTα by simulating 107 tra-
jectories of a Poisson process of intensity 1 on [0,T ] and calculating empirical
1 − α quantiles of the statistics W 2

n and
√
nDn. The thresholds simulated for

T = 10, T = 100, and for the limiting case are presented in Figure 27.1. The
lower curves correspond to the Cramér–von Mises type test, and the upper
ones to the Kolmogorov–Smirnov type test. As we can see, for T = 100 the
real thresholds are already indistinguishable from the limiting ones, especially
in the case of the Cramér–von Mises type test.

It is interesting to compare the asymptotics of the Cramér–von Mises and
Kolmogorov–Smirnov type tests with the locally asymptotically uniformly most
powerful (LAUMP) test

φ̂n (X
n) = 1{δT>zα}, δT =

Xnτ − S∗nτ√
S∗nτ

proposed for this problem in Dachian and Kutoyants (2006). Here zα is the
1−α quantile of the standard Gaussian law, P (ζ > zα) = α, ζ ∼ N (0, 1). The
limit power function of φ̂n is

βφ̂ (ρh) = P (ρh + ζ > zα) .

In Figure 27.2 we compare the limit power functions βψ (ρ), βφ (ρ), and βφ̂ (ρ).
The last one can clearly be calculated directly, and the first two are obtained by
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simulating 107 trajectories of a Wiener process on [0,1] and calculating empirical
frequencies of the events

{∫ 1

0
[ρ s+W (s)]2 ds > cα

}
and

{
sup

0≤s≤1
|ρ s+W (s)| > dα

}
,

respectively.

The simulation shows the exact (quantitative) comparison of the limit power
functions. We see that the power of the LAUMP test is higher than the two
others and this is of course evident. We see also that the Kolmogorov–Smirnov
type test is more powerful that the Cramér–von Mises type test.
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We consider the problem of hypotheses testing with the basic simple hypothesis: observed

sequence of points corresponds to stationary Poisson process with known intensity against

a composite one-sided parametric alternative that this is a stress-release point process. The

underlying family of measures is locally asymptotically quadratic and we describe the behav-

ior of score-function, likelihood ratio and Wald tests in the asymptotics of large samples. The

results of numerical simulations are presented.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Poisson process plays a key role in describing of the reliability systems (see, for example, Rigdon and Basu, 2000). The freedom

in the choice of intensity function of inhomogeneous Poisson process allows to apply this model to a wide range of applied

problems. One of the main characteristics of this process is the independence of the increments on disjoint intervals and the

main statistical advantage is the possibility to use the likelihood ratio analysis. The statistical inference for the other point

processes is essentially more difficult because the likelihood ratio formula is rarely available (in closed form). There are at least

two exceptions. The first one concerns the self-exciting point processes and the second is the stress-release point processes.

In these both cases the increments are not independent but the intensity function, being random process, is measurable with

respect to the observations and therefore we have the opportunity to use the likelihood ratio analysis. Note that these three types

of point processes (Poisson, self-exciting and stress-release) cover a large class of stationary point processes. We suppose that

the problem of the choice of the type of point process is quite important and the most interesting is the testing in the region,

where these models are statistically close and the large samples analysis is non-degenerate (contiguous alternatives).

The model of self-correcting (also called stress-release) point process was proposed in Isham andWestcott (1979) to describe a

stationary sequence of events {t1, t2, . . .} which automatically corrects the intensity function. Note that essentially similar model

was introduced in Knopov (1971) and in Vere-Jones (1978) to describe the seismic activity (see Ogata and Vere-Jones, 1984;

Lu et al., 1999). This is an elementary stochastic version of the elastic rebound theory of earthquake formation. This model is

used in storage and insurance applications too. Roughly speaking, the stress level (intensity function) increases deterministically

between the events and at the instant of event it is reduced (released). We suppose that this model corresponds well to the

behavior of certain technical systems and can be applied in the study of reliability of such models.
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To introduce this processes we denote by X = {Xt , t�0} the counting process, i.e., Xt is equal to the number of events on the

time interval [0, t]. Recall that for a stationary Poisson process with a constant intensity S >0 the increments of X on disjoint

intervals are independent and distributed according to Poisson law

P{Xt − Xs = k} = Sk(t − s)k

k!
e−S(t−s), 0� s < t, k = 0, 1, . . . .

Particularly,

P{Xt+dt − Xt >0} = Sdt(1 + o(1)).

For stress-release point process we have

P{Xt+dt − Xt >0|Ft} = S(t,Xt) dt(1 + o(1)),

whereFt is the �-field generated by {Xs, 0� s� t} and the intensity function

S(t,Xt) = a�(at − Xt), t�0.

Here a >0 and the function �(·) satisfies the following conditions:

1. 0��(x) <∞ for any x ∈ R,

2. there exists a positive constant c such that �(x)�c for any x >0,

3. limx→∞ �(x) >1and limx→−∞ �(x) <1.

Self-correcting processes are called as well stress-release processes (see Daley and Vere-Jones, 2003, p. 239). This class of

processes is widely used as a goodmathematical model for non-Poissonian sequences of events. This model was found especially

attractive in the description of earthquakes.

Example 1. Let

S(t,Xt) = exp{� + �(t − �Xt)},

where � >0, � >0. It is easy to see that conditions 1–3 are fulfilled and the point process with such intensity function is stress-

release.

This model was studied by many authors (see the references in Daley and Vere-Jones, 2003). Particularly it was shown that

under mild conditions there exists an invariant measure � and the law of large numbers (LLN)

1

T

∫ T

0
h(St − Xt) dt −→

∫

h(y)�(dy) (1)

is valid (see Vere-Jones and Ogata, 1984; Hayashi, 1986; Zheng, 1991). Here h(·) is a continuous, integrable (w.r.t. �) function and

S >0 is the rate of the point process. For the model of Example 1 we have the LLN if � >0 and � >0.

As the stress-release model is an alternative for the stationary Poisson process, it is natural and important to test these two

hypotheses by the observations {t1, t2, . . .} on the time interval [0, T], i.e., to test

S(t,Xt) = S versus S(t,Xt) = a�(at − Xt).

Remind that the likelihood ratio in this problem has the following form:

L(XT ) = exp

{

∫ T

0
ln

a�(at − Xt−)

S
[dXt − Sdt] −

∫ T

0

[

a�(at − Xt)

S
− 1 − ln

a�(at − Xt)

S

]

Sdt

}

,

where Xt− is the limit from the left of Xt at the point t (see, for example, Liptser and Shiryayev, 2001). Therefore, if the function

a�(·)/S is separated from 1 then the second integral in this representation tends to infinity and there are many consistent tests.

Hence it is more interesting to compare tests in the situations when the alternatives are contiguous, i.e., the corresponding

sequence of measures are contiguous. This corresponds well to Pitman's approach in hypotheses testing (see Pitman, 1948). We

can have such situations if �(·) = S + o(1) with special rates o(1). In this work we consider one of such models defined by the

intensity function S(t,Xt)= S�(�(St−Xt)) where � is a small parameter and �(0)=1. We suppose that the function �(·) is smooth

and we can write

∫ T

0
[�(�(St − Xt)) − 1 − ln�(�(St − Xt))]Sdt = �

2
�̇(0)2S

2

∫ T

0
(St − Xt)

2dt(1 + o(1)).

70 Hypotheses Testing : Poisson Versus Stress-Release



1670 S. Dachian, Y.A. Kutoyants / Journal of Statistical Planning and Inference 139 (2009) 1668 -- 1684

It is easy to see that the rate � = �T → 0 under hypothesis S(t,Xt) = S is �T ∼ T−1 because

1

ST2

∫ T

0
(St − Xt)

2dt =
∫ 1

0
WT (s)

2 ds �⇒
∫ 1

0
W(s)2 ds,

where WT (s) = (ST)−1/2(STs − XTs) ⇒ W(s), and {W(s), 0� s�1} is Wiener process. Note that we put a = S, otherwise

�̇(0)2�
2
T

2

∫ T

0
(at − Xt)

2 dt = �̇(0)2�
2
T

2

∫ T

0

(

(a − S)t +
√
ST

St − Xt√
ST

)2

dt

= �̇(0)2�
2
T

2
T

∫ 1

0
((a − S)vT +

√
STWT (v))

2 dv

= �̇(0)2

6
�
2
T (a − S)2T3(1 + o(1)).

Therefore, if a� S, then we have to take �T = uT−3/2 and to test the simple hypothesis H0 : u = 0 against H1 : u>0. In this

case the family of measures is LAN and the usual construction provides us asymptotically uniformly most powerful test (see, for

example, Roussas, 1972). Note that according to (1) for any fixed alternative � >0 we have the convergence

1

T

∫ T

0
(St − Xt)

2dt −→
∫

y2�(dy)

which, of course, requires another normalization.

Therefore we consider the problem of hypotheses testing when under hypothesis H0 the intensity function is a known

constant S >0 (Poisson process) and the alternative H1 is one-sided composite: stress-release process with intensity function

S(t,Xt) = S�(�T (St − Xt)), where for convenience of notation we put �T = u/S�̇(0)T (we suppose that �̇(0) >0). In this case the

corresponding likelihood ratio ZT (u) converges to the limit process

Z(u) = exp

{

−u

∫ 1

0
W(s) dW(s) − u2

2

∫ 1

0
W(s)2 ds

}

,

i.e., the family of measures is locally asymptotically quadratic (LAQ) (see, for example, Le Cam and Yang, 2000). We study three

tests: score-function test, likelihood ratio test, Wald test and compare their power functions with the power function of the

Neyman–Pearson test. Note that we calculate all limits under hypothesis (Poisson process) and we obtain the limit distributions

of the underlying statistics under alternative (stress-release process) with the help of Le Cam's Third Lemma. Therefore we do

not use directly conditions 1–3 given above.

The similar limit likelihood ratio process arises in the problem of hypotheses testing u = 0 against u>0 for the time series

Xj =
(

1 − u

n

)

Xj−1 + 	j, j = 1, . . . ,n → ∞,

where 	j are i.i.d. random variables, E	j = 0,E	2
j

= �2. The asymptotic properties of tests are described under hypothesis and

alternatives in Chan andWei (1987) and Phillips (1987). Particularly, the limits of the power functions are given with the help of

Ornstein–Uhlenbeck process

dYs = −uYs ds + dWs, Y0 = 0, 0� s�1.

Then these limit powers were compared in Swensen (1997).

For the model of Example 1 the power function (for local alternatives) was studied in Ogata and Vere-Jones (1984) and in

Luschgy (1993, 1994). The limit likelihood ratio and tests are similar to that of the mentioned above time series problem. Remind

aswell that in Feigin (1979) it was noted that the same limit likelihood ratio arises in the problem of testing the simple hypothesis

u = 0 against one-sided alternative u>0 by observations

dXt = −u

T
Xt dt + dWt , X0 = 0, 0� t�T → ∞.

In our case we obtain similar limit expressions for the likelihood ratio and power functions and compare the errors of tests.

The analytical considerations give us an asymptotic (for large values of u) ordering of the tests. The numerical simulations of the

tests show that for the small values of 	 and for the moderate values of u the power functions of the likelihood ratio and Wald

tests are indistinguishable (from the point of view of numerical simulations) of the Neyman–Pearson envelope. This interesting

property was noticed (for 	 = 0.05) in Eliott et al. (1996) on the base of 2 × 103 simulations. In our work we obtain similar result

having 107 simulations and we observe for the larger values of 	 that the asymptotic ordering of the tests holds already for the

moderate values of u.

Note finally that a similar problem of hypotheses testing in the situation when the alternative process is self-exciting

(see Hawkes, 1972) was considered in Dachian and Kutoyants (2006).
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2. Score-function test

We observe a trajectory XT = {Xt , 0� t�T} of a point process of intensity function S(·,Xt) and consider the problem of testing

the simple hypothesis against close one-sided composite alternative

H0 : S(t,Xt) = S∗, (2)

H1 : S(t,Xt) = S∗�(�T [S∗t − Xt]), �T >0, (3)

where �T is a small parameter, the value S∗ and the function �(·) are known. The problem is regular in the following sense.

Condition A. The function �(x), x ∈ R is positive, continuously differentiable at the point x = 0, �(0) = 1 and �̇(0) >0.

The rate of convergence �T → 0 is chosen such that the likelihood ratio L(�T ,X
T ) is asymptotically non-degenerate. In the case

�̇(0) <0 we need to change just one sign in the test. This leads us to the reparametrization

�T = u

S∗�̇(0)T
, u�0

and to the corresponding hypotheses testing problem

H0 : u = 0, (4)

H1 : u>0. (5)

Therefore, we observe a Poisson process of intensity S∗ under hypothesis H0 and the point process under alternative H1 has

intensity function

S(t,Xt) = S∗ + u

T
(S∗t − Xt) + o(T−1/2).

Let us fix 	 ∈ (0, 1) and denote byK	 the class of test functions 
T (X
T ) of asymptotic size 	, i.e., for 
T ∈ K	 we have

lim
T→∞

E0
T (X
T ) = 	.

As usual, 
T (X
T ) is the probability to accept the hypothesisH1 having observations XT . The corresponding power function is

�T (u,
T ) = Eu
T (X
T ), u�0.

Let us introduce the statistic

�T (X
T ) = 1

S∗ T

∫ T

0
(S∗t − Xt−)[dXt − S∗ dt] = XT − (XT − S∗T)

2

2S∗T
. (6)

The last equality follows from the elementary representation (see, for example, Kutoyants, 1984, Lemma 4.2.1) for the centered

Poisson process �t = Xt − S∗t:

�2
T = 2

∫ T

0
�t− d�t + �T + S∗T

which obviously is equivalent to

1

T

∫ T

0
�t− d�t =

�2
T − XT

2T
.

Define as well two random variables

�(W) = 1

2
(1 − W(1)2) = −

∫ 1

0
W(s)dW(s), J(W) =

∫ 1

0
W(s)2ds,

where {W(s), 0� s�1} is standard Wiener process.

Remind that the likelihood ratio in this problem has the form

L

(

u

T
,XT

)

= exp

{

∫ T

0
ln�

(

u

T
(S∗t − Xt−)

)

[dXt − S∗ dt]

−
∫ T

0

[

�

(

u

T
(S∗t − Xt)

)

− 1 − ln�

(

u

T
(S∗t − Xt)

)]

S∗ dt

}

, (7)

where  = S∗�̇(0) (see, for example, Liptser and Shiryayev, 2001).
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Therefore the direct differentiation w.r.t. u at the point u = 0 gives us the introduced above statistic

�

�u
ln L

(

u

T
,XT

)
∣

∣

∣

∣

u=0

= �T (X
T ).

Below we denote

a	 =
1 − z2

(1−	)/2

2
and h(u) =

√

2u

1 − e−2u
,

where za is 1 − a quantile of standard Gaussian law, i.e., P(� > za) = a, for � ∼ N(0, 1).

We have the following result.

Theorem 1. Let the ConditionA be fulfilled, then the score-function test


∗
T (X

T ) = 1{�T (XT )>a	} (8)

belongs to the classK	 and for any u∗ >0 its power function

�T (u∗,

∗
T ) → �∗

(u∗) = P{|�|�h(u∗)z(1−	)/2}. (9)

Proof. Under hypothesisH0 the value XT is a Poissonian random variable with parameter S∗T. Therefore we have immediately

XT

S∗T
−→ 1,

XT − ST√
S∗T

�⇒ W(1) ∼ N(0, 1)

and �T (X
T ) �⇒ �(W) as T → ∞. Hence

P0{�T (X
T ) > a	} −→ P

{

�(W) >
1 − z2

(1−	)/2

2

}

= P{|�| < z(1−	)/2} = 	.

This provides 
∗
T ∈ K	.

To study the power �T (u∗,

∗
T ) we would like to use the Third Le Cam Lemma (see Le Cam and Yang, 2000; Strasser, 1985).

Therefore we need first to show the joint weak convergence

L0(�T , lT (u)) �⇒ L

(

�(W),u�(W) − u2

2
J(W)

)

, (10)

where lT (u) = ln L(u/T,XT ).

To verify (10) we denote

l∗T (u) = u�T (X
T ) − u2

2
JT (X

T ),

where

JT (X
T ) = 1

S∗T2

∫ T

0
(S∗t − Xt)

2 dt

and show that

L0(l
∗
T (u)) �⇒ L

(

u�(W) − u2

2
J(W)

)

. (11)

Then (10) will follow from the convergence

l∗T (uT ) − lT (uT ) → 0 (12)

for any bounded sequence uT . �

Lemma 1.

L0{�T (X
T ), JT (X

T )} �⇒
(

−
∫ 1

0
W(s) dW(s),

∫ 1

0
W(s)2 ds

)

. (13)
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Proof. Let us put WT (s) = (S∗T)
−1/2�sT , s ∈ [0, 1]. Then

E0WT (s) = 0, E0[WT (s1)WT (s2)] = min(s1, s2)

and we have

JT (X
T ) = 1

S∗T2

∫ T

0
�2
t dt =

∫ 1

0
WT (s)

2 ds.

Using the standard arguments we verify (well-known fact) that for any collection {s1, . . . , sk} we have the weak convergence

(as T → ∞) of the vectors

(WT (s1), . . . ,WT (sk)) �⇒ (W(s1), . . . ,W(sk)).

Moreover the following estimate holds:

(E0|WT (s1)
2 − WT (s2)

2|)2�E0|WT (s1) − WT (s2)|2E0|WT (s1) + WT (s2)|2�4|s2 − s1|.

Hence (see Gikhman and Skorokhod, 1969, Section IX.7) we have the convergence (in distribution) of integrals

∫ 1

0
WT (s)

2 ds �⇒
∫ 1

0
W(s)2 ds

and

�T (X
T ) = 1 − WT (1)

2

2
(1 + o(1)) �⇒ 1 − W(1)2

2
= −

∫ 1

0
W(s) dW(s).

It is easy to see that we have the same time the joint convergence too because from the given above proof it follows that for

any �1,�2:

�1WT (1)
2 + �2

∫ 1

0
WT (s)

2 ds �⇒ �1W(1)2 + �2

∫ 1

0
W(s)2 ds.

Therefore Lemma 1 is proved. �

Our goal now is to establish a slightly more strong than (12) relation

lT (uT ) = uT�T (X
T )(1 + o(1)) −

u2T
2

∫ 1

0
WT (s)

2 ds(1 + o(1)), (14)

where o(1) → 0 for any sequence uT ∈ UT with UT = {u : 0�u<
√
S∗T/ln T}.

We can write

l∗T (u) − lT (u) =
∫ T

0

⎡

⎢

⎢

⎣

−
uWT

(

t

T

)

√
S∗T

− ln�

⎛

⎜

⎜

⎝

−uWT

(

t

T

)

�̇(0)
√
S∗T

⎞

⎟

⎟

⎠

⎤

⎥

⎥

⎦

d�t

−
∫ T

0

⎡

⎢

⎢

⎢

⎣

u2WT

(

t

T

)2

2S∗T
− �

⎛

⎜

⎜

⎝

−uWT

(

t

T

)

�̇(0)
√
S∗T

⎞

⎟

⎟

⎠

+ 1 + ln�

⎛

⎜

⎜

⎝

−uWT

(

t

T

)

�̇(0)
√
S∗T

⎞

⎟

⎟

⎠

⎤

⎥

⎥

⎥

⎦

S∗ dt

≡ u�1,T − u2

2
�2,T

with obvious notation. Remind that u>0. Using Lenglart inequality (see, for example, Liptser and Shiryayev, 2001) we obtain for

the first term

P0{|�1,T | > a}�
b

a
+ P0

⎧

⎨

⎩

∫ 1

0

[

WT (s) +
√
S∗T

u
ln�

(

−uWT (s)

�̇(0)
√
S∗T

)]2

ds > b

⎫

⎬

⎭

for any a >0 and b >0. Now expanding the functions �(·) we obtain

�

(

−uWT (s)

�̇(0)
√
S∗T

)

= 1 − uWT (s)

�̇(0)
√
S∗T

�̇

(

−ũWT (s)

�̇(0)
√
S∗T

)

,
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where ũ�u. Introduce the set

CT =
{

� : sup
0� s�1

|WT (s)|� �̇(0)
√
ln T

}

and note that for � ∈ CT we have the estimate

sup
u∈UT

sup
0� s�1

u|WT (s)|
�̇(0)

√
S∗T

�
1√
ln T

.

Hence for all u ∈ UT on this set we can write

sup
0� s�1

∣

∣

∣

∣

∣

�̇(0) − �̇

(

−ũWT (s)

�̇(0)
√
S∗T

)
∣

∣

∣

∣

∣

� sup
|v|� (ln T)−1/2

|�̇(0) − �̇(v)| = hT → 0

as T → ∞ because the derivative is continuous at the point v = 0.

Let us denote us = uWT (s)/�̇(0)
√
S∗T. Using the expansion of the logarithm

ln(�(−us)) = ln(1 − us�̇(−ũs)) = − us�̇(−ũs)

1 − ˜̃us�̇(−ũs)

we obtain the following estimate:

P0

⎧

⎨

⎩

∫ 1

0

[

WT (s) +
√
S∗T

u
ln�(−us)

]2

ds > b

⎫

⎬

⎭

�P0{Cc
T } + P0

⎧

⎨

⎩

∫ 1

0
WT (s)

2

(

1 − �̇(−ũs)

�̇(0)(1 − ˜̃us�̇(−ũs))

)2

ds > b,CT

⎫

⎬

⎭

.

Remind that WT (s) is martingale, hence by Doob inequality we have

P0{Cc
T }�P0{|WT (1)| > �̇(0)

√
ln T}� 1

�̇(0)2 ln T
.

For the second probability after elementary estimates we obtain

P0

⎧

⎨

⎩

∫ 1

0
WT (s)

2

(

1 − �̇(−ũs)

�̇(0)(1 − ˜̃us�̇(−ũs))

)2

ds > b,CT

⎫

⎬

⎭

�P0

{

C

∫ 1

0
WT (s)

2 ds

(

h2T + 1

ln T

)

> b

}

�
C

2b

(

h2T + 1

ln T

)

with some constant C >0. Recall that by Tchebyshev inequality

P0

{

∫ 1

0
WT (s)

2 ds > A

}

�
1

2A
.

Therefore, if we take b = a2 then for any a >0

P0{|�1,T | > a} −→ 0

as T → ∞.

The similar arguments allow to prove the convergence

P0{|�2,T | > a} −→ 0

too.

Therefore, the likelihood ratio ZT (u) = L(u/T,XT ),u�0 is (under hypothesis H0) LAQ (see, for example, Le Cam and Yang,

2000), because

ZT (u) �⇒ Z(u) = exp

{

−u

∫ 1

0
W(s) dW(s) − u2

2

∫ 1

0
W(s)2 ds

}

. (15)
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Moreover, we have the convergence l∗T (uT ) − lT (uT ) → 0 for any bounded sequence of uT ∈ UT . Note that the random function

Z(u) is the likelihood ratio in the hypotheses testing problem

H0 : u = 0,

H1 : u>0

by observations of Ornstein–Uhlenbeck process

dY(s) = −uY(s) ds + dW(s), Y(0) = 0, 0� s�1 (16)

under hypothesis u = 0.

This limit for the likelihood ratio under alternative can be obtained directly as follows. Let us denote

YT (s) = XsT − sS∗T√
S∗T

, 0� s�1.

Then using the representation

Xt = S

∫ t

0
�(�T [S∗r − Xr]) dr + Mt ,

whereMt is local martingale and expansion of the function �(·) at the vicinity of 0 we obtain the equation

YT (s) = −u

∫ s

0

�̇(gv)

�̇(0)
YT (v) dv + VT (s), YT (0) = 0, 0� s�1,

where VT (s) is local martingale and gv = (−ũ/�̇(0)
√
S∗T)YT (v) → 0. The central limit theorem for local martingales provides the

convergence VT (s) �⇒ W(s). Hence process (16) is the limit (in distribution) of YT (s). Moreover from (7) we have

�T (X
T ) = YT (1)

2
√
S∗T

+ 1 − YT (1)
2

2
�⇒ 1 − Y(1)2

2
.

This limit of the statistic �T (X
T ) follows from the Third Le Cam Lemma as well. Particularly, for any continuous bounded

function H(·):

EuH(�T (X
T )) = E0[ZT (u)H(�T (X

T ))] −→ E0[Z(u)H(�(W))] = EuH(�(Y)),

where

�(Y) = −
∫ 1

0
Y(s) dY(s) = 1 − Y(1)2

2
.

Hence under alternative (�T = u∗/T) we have the convergence

�T (u∗,

∗
T ) −→ Pu∗

{

|Y(1)|�z(1−	)/2

}

= P

⎧

⎨

⎩

|W(1)|�z(1−	)/2

√

2u∗
1 − e−2u∗

⎫

⎬

⎭

because

Y(1) =
∫ 1

0
e−u(1−s) dW(s) ∼ N

(

0,
1 − e−2u∗

2u∗

)

.

This proves (9).

Theorem 1 is asymptotic in nature, and it is interesting to see the powers of the score-function test for the moderate values of

T and especially to compare them with the limit power functions. This can be done using numerical simulations.

We consider the model of Example 1 with S∗ = 1 and �(t) = et . This yields the intensity function

S(u, t,Xt) = exp

(

u

T
[t − Xt]

)

, u�0, 0� t�T.

In Fig. 1 we represent the power function of the score-function test 
∗
T of asymptotic size 0.05 given by

�T (u,

∗
T ) = Pu{�T (X

T ) > a0.05}, 0�u�20

for T = 100, 300 and 1000, as well as the limiting power function �∗
(·) given by formula (9).
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Fig. 1. Power of the score-function test.

The function �T (·,

∗
T ) is estimated in the following way. We simulate (for each value of u)M = 106 trajectories XT

j
, j= 1, . . . ,M

of stress-release process of intensity S(u, t,Xt) and calculate �j = �T (X
T
j
). Then we calculate the empirical frequency of accepting

the alternative hypothesis

1

M

M
∑

j=1

1{�j>a0.05} ≈ �T (u,

∗
T ).

Note that for T = 1000 the limiting power function is practically attained. Note also that for T = 100 the size of the test is 0.079

which explains the position of the corresponding curve.

Remind that score-function test is locally optimal (see Capon, 1961).

3. The likelihood ratio test and the Wald test

Let us study two other well-known tests: the likelihood ratio test 
̄T based on the maximum of the likelihood ratio function

and theWald test 
̂T based on the MLE �̂T .

Remind that the log-likelihood ratio formula is

ln L(�,XT ) =
∫ T

0
ln�(�(S∗t − Xt−))[dXt − S∗ dt] −

∫ T

0
[�(�(S∗t − Xt−)) − 1 − ln�(�(S∗t − Xt−))]S∗ dt

and the likelihood ratio test is based on the statistic

�T (X
T ) = sup

�∈�

L(�,XT ),

where � is the set of values of � under alternative. The test is given by the decision function


̄T (X
T ) = 1{�T (XT )>b̃	},

where the threshold b̃	 is chosen from the condition 
̄T ∈ K	.

Note that �T (X
T ) = L(�̂T ,X

T ) as well, where �̂T is the maximum likelihood estimator of the parameter �.

The reparametrization�=�T=u/T reduces theproblem(2)–(3) to (4)–(5) andwehave toprecise the regionof local alternatives.

In the traditional approach of locally asymptotically uniformly most powerful tests (regular case, see Roussas, 1972), in order to

check the optimality of a test 
T we compare the power function �T (u,
T ) with the power function of the Neyman–Pearson test

on the compacts 0�u�K for any K >0. For these values of u the alternatives are always contiguous. To consider the similar class

of alternatives in our case is not reasonable because the constant b̃	 became dependent of K. Indeed if we take the test function


̄T (X
T ) = 1{sup0<u � K ZT (u)>b̃	}, ZT (u) = L

(

u

T
,XT

)

,

then the condition 
̄T ∈ K	 implies b̃	 = b̃	(K). Therefore we suppose that K = KT =
√
S∗T/ln T → ∞.
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Finally, we have the following hypotheses testing problem:

H0 : u = 0, (17)

H1 : u = u∗ ∈ UT . (18)

Therefore, to study


̄T (X
T ) = 1{supu∈UT

ZT (u)>b̃	}

we need to describe the asymptotics of its errors under hypothesisH0 and alternativesH1 with � = u∗/T, u∗ ∈ UT .

Below

�(W) = �(W)
√

2J(W)
.

Theorem 2. Let us suppose that conditionA is fulfilled and the value b	 is solution of the equation

P(�(W) > b	) = 	. (19)

Then the test 
̄T with b̃	 = eb
2
	 belongs toK	 and its power function converges to the following limit:

�(u∗, 
̄T ) −→ �̂(u∗) = P{�(Yu∗ ) > b	},

where

�(Yu∗ ) = �(Yu∗ )
√

2J(Yu∗ )
= 1 − Yu∗ (1)

2

√

8J(Yu∗ )

and Yu∗ = {Yu∗ (s), 0� s�1} is Ornstein–Uhlenbeck process (16) with u = u∗.

Proof. The log-likelihood process lT (u) = ln ZT (u) admits (under hypothesisH0) the representation (14)

T (u) = u�T (X
T )(1 + �1,T ) − u2

2
JT (X

T )(1 + �2,T ), (20)

where �i,T → 0 uniformly on u ∈ UT . Hence

�T (X
T )2 ≡ sup

u∈UT

lT (u) �⇒ �(W)2

2J(W)

and we have

E0
̄T (X
T ) = P0

{

sup
u∈UT

lT (u) > b
2
	

}

−→ P(�(W) > b	) = 	.

Let us fix an alternative u = u∗. We have the convergence

L0{�T (X
T ), lT (u∗)} �⇒ L

{

�(W),u∗�(W) − u2∗
2
J(W)

}

. (21)

Convergence (21) allows us to apply Third Le Cam's Lemma as follows: for any bounded continuous function H(·):

Eu∗H(�T (X
T )) = E0[ZT (u∗)H(�T (X

T ))] −→ E0[Z(u∗)H(�(W))] = Eu∗H(�(Yu∗ )).

Hence

�(u∗, 
̄T ) = Pu∗

{

sup
u∈UT

lT (u) > b
2
	

}

−→ Pu∗ {�(Yu∗ ) > b	}.

This completes the proof of Theorem 2. �
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Let us note that the threshold b	 is given implicitly as the solution of equation (19). In the following table we give some values

of b	 obtained using numerical simulations.

	 0.01 0.02 0.03 0.04 0.05 0.1

b	 1.814 1.636 1.524 1.440 1.373 1.144

These thresholds are obtained by simulating M = 107 trajectories on [0, 1] of a standard Wiener process, calculating for each

of them the quantity �(W) and taking (1 − 	)M-th greatest between them.

The next test usually studied in such hypotheses testing problems is the Wald test


̂T (X
T ) = 1{T�̂T � c	}

,

where �̂T is the maximum likelihood estimator of �.

Below

�(W) = �(W)

J(W)
.

Theorem 3. Let us suppose that conditionA is fulfilled and the value c	 is solution of the equation

P(�(W) > c	) = 	. (22)

Then the test 
̂T belongs toK	 and its power function for any alternative u∗ converges to the following limit:

�(u∗, 
̂T ) −→ �̂(u∗) = P{�(Yu∗ ) > c	},

where

�(Yu∗ ) = �(Yu∗ )

J(Yu∗ )
= −u∗ +

∫ 1
0 Yu∗ (s) dW(s)

J(Yu∗ )

and Yu∗ is the same as in Theorem 2.

Proof. The proof follows immediately from representation (20), because

P
(T)
0 {T�̂T �c	} = P

(T)
0

{

sup
0�u� c	

ZT (u) < sup
u>c	 ,u∈UT

ZT (u)

}

−→P0

{

sup
0�u� c	

Z(u) < sup
u>c	

Z(u)

}

= P{�(W) > c	} = 	

and (under alternative u = u∗)

P
(T)
u∗ {T�̂T �c	} = P

(T)
u∗

{

sup
0�u� c	

ZT (u) < sup
u>c	 ,u∈UT

ZT (u)

}

−→Pu∗

{

sup
0�u� c	

Z(u) < sup
u>c	

Z(u)

}

= P{�(Yu∗ ) > c	} = �̂(u∗). �

As above, the threshold c	 is given implicitly as the solution of equation (22). In the following table we give some values of c	
obtained using numerical simulations.

	 0.01 0.02 0.03 0.04 0.05 0.1

c	 13.692 11.224 9.803 8.806 8.042 5.719

These thresholds are obtained by simulating M = 107 trajectories on [0, 1] of a standard Wiener process, calculating for each

of them the quantity �(W) and taking (1 − 	)M-th greatest between them.

Hypotheses Testing : Poisson Versus Stress-Release 79



S. Dachian, Y.A. Kutoyants / Journal of Statistical Planning and Inference 139 (2009) 1668 -- 1684 1679

4. Comparison of the tests

Remind that all these three tests 
∗
T , 
̄T and 
̂T in regular (LAN) case are asymptotically equivalent to the Neyman–Pearson

test 
0
u,T (with known alternative u) and hence are asymptotically uniformly most powerful. In our singular situation all of them

have different asymptotic behavior and therefore it is interesting to compare their limit power functions

�∗
(u) = Pu{�(Yu) > a	}, �̄(u) = Pu

{

�(Yu)
√

2J(Yu)
> b	

}

,

�̂(u) = Pu

{

�(Yu)

J(Yu)
> c	

}

, �0
(u) = Pu

{

u�(Yu) − u2

2
J(Yu) > d	

}

of course, under condition that all of them belong toK	. Our goal is to compare these quantities for the large values of u.

We have to study the distribution of the vector (�(Yu), J(Yu)), where

�(Yu) = −
∫ 1

0
Yu(s) dYu(s), J(Yu) =

∫ 1

0
Yu(s)

2 ds,

where Yu is solution of the equation

dYu(s) = −uYu(s) ds + dW(s), Yu(0) = 0, 0� s�1.

Let us introduce the stochastic process yv =
√
uYu(v/u), 0�v�u (this transformation was introduced in Luschgy, 1994).

Then we can write

dyv = −yv dv + dwv, y0 = 0, 0�v�u,

where wv =
√
uW(v/u) is a Wiener process and

�(Yu) = −u−1
∫ u

0
yv dyv ≡ �u

u
, J(Yu) = u−2

∫ u

0
y2v dv ≡ Ju

u2

in obvious notation. Further, the process yv is ergodic with the density of the invariant law f (y) = e−y2 /
√

�. Hence Ju → ∞ and

1

u

∫ u

0
y2v dv −→ 1

2
.

Note that the distribution of the process yv does not depend on u.

The constant d	 = d	(u) because it is defined by the equation

P0

{

u�(W) − u2

2
J(W) > d	

}

= 	.

For the large values of u this constant can be approximated as follows. We have (under hypothesisH0) as u → ∞:

P0

{

u�(W) − u2

2
J(W) > d	(u)

}

= P0

{

∫ 1

0
W(s)2ds < − 2d	(u)

u2
+ 2�(W)

u

}

−→P0

{

∫ 1

0
W(s)2ds < e	

}

= 	,

where the constant e	 is defined by the last equality. For example, if we take 	 = 0.05 then the numerical simulation gives us the

value e0.05 = 0.056. Therefore d	(u) = −0.5e	u
2(1 + o(1)). If we suppose that 	 is small and try to solve the equation

∫ e	

0
fJ(x) dx = 	,

where fJ(x) is the density function of the integral J(W), then we can easily see that fJ(0) = 0 and all its derivatives f
(k)
J (0) = 0,

k = 1, 2, . . . . Hence to see an approximative solution we need to calculate the large deviation probability of the following form

(below r = s/
√
e	, E = e

−1/2
	 → ∞):

P0

{

e−1
	

∫ 1

0
W(s)2ds <1

}

= P0

{

∫ E

0
W(r)2dr <1

}

.

Below we put d	(u) = −0.5e	u
2.
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We have the relations

�∗
(u) = P{�u >ua	} = P

{∫ u

0
yv dwv < Ju − a	u

}

,

�̄(u) = P

{

�u
√

2Ju
> b	

}

= P

{∫ u

0
yv dwv < Ju − b	

√

2Ju

}

,

�̂(u) = P

{

�u

Ju
>
c	

u

}

= P

{∫ u

0
yv dwv < Ju − c	

u
Ju

}

,

�0
(u) = P

{

�u − Ju
2

> d	

}

= P

{∫ u

0
yv dwv <

1

2
Ju + e	

2
u2
}

.

Therefore the large values of u (Ju ∼ u/2):

1

2
Ju + e	

2
u2 > Ju − c	

u
Ju > Ju − b	

√

2Ju > Ju − a	u,

and finally

�∗
(u) < �̄(u) < �̂(u) <�0

(u).

These inequalities are in accord with Swensen (1997).

Note that for small values of 	 the constant a	 is close to 0.5 (e.g., a0.05 = 0.498, a0.01 = 0.49992) and in this asymptotics the

power of score-function test is

�∗
(u) = P

{∫ u

0
yv dwv < (0.5 − a	)u(1 + o(1))

}

.

Hence one can expect that in this case the score-function test has essentially smaller power than the others.

Now let us turn to numerical simulations of the limiting power functions. We aim to obtain the limiting power functions of

all the three tests, as well as the Neyman–Pearson envelope, for the moderate values of u (u�15).

Note that for the score-function test �∗
(u) can be computed directly using (9). However, the limiting power functions of the

likelihood ratio and of the Wald tests are written as probabilities of some events related to Ornstein–Uhlenbeck process and can

be obtained using numerical simulations.

For the likelihood ratio test we have

�̄(u) = Eu1{�(Yu)>b	} = E0Z(u)1{�(W)>b	},

where

Z(u) = exp

{

u�(W) − u2

2
J(W)

}

.

So we simulateM = 107 trajectoriesWj = {Wj(s), 0� s�1}, j= 1, . . . ,M of a standard Wiener process and calculate for each of

them the quantities �j = �(Wj), Jj = J(Wj), �j = �j/Jj and (for each value of u) Zj(u) = exp{u�j − (u2/2)Jj}. Then we calculate the

empirical mean

1

M

M
∑

j=1

Zj(u)1{�j>b	} ≈ �̄(u).

For the Wald test we have similarly

1

M

M
∑

j=1

Zj(u)1{�j>c	} ≈ �̂(u),

where �j = �j/
√

2Jj.

Finally, in order to compute the Neyman–Pearson envelope, we first approximate (for each value of u) the quantity d	 = d	(u)

by the (1 − 	)M-th greatest between the quantities ln Zj(u), and then calculate

1

M

M
∑

j=1

Zj(u)1{ln Zj(u)>d	(u)} ≈ �0
(u).

The results of these simulations for 	 = 0.05 are presented in Fig. 2.
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Fig. 2. Limiting powers for 	 = 0.05.
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Fig. 3. Limiting powers for different values of 	.

Let us note here that in this case the power functions of the likelihood ratio test and of the Wald test are indistinguishable

(from the point of view of numerical simulations) from the Neyman–Pearson envelope. This quite surprising fact was already

mentioned in Eliott et al. (1996), who showed the similar pictures having 2 × 103 simulations. As we see from Fig. 2, with

107 simulations the curves are still indistinguishable. The situation is, however, different for bigger values of 	. The results of

simulations for 	 = 0.01, 0.05, 0.25 and 0.5 are presented in Fig. 3.

One can note that for big values of 	 (e.g., 	 = 0.5) the powers became more distinguishable, and that the asymptotically

established ordering of the tests holds already for these moderate values of u. Note also that for the small values of 	 (e.g., 	=0.01

and 0.05) the curve of score-function test is essentially lower as expected.

5. Discussion

Remark 1. Note that alternatives u = uT → ∞ with �uT → 0 are local but not contiguous. That means that the corresponding

sequences of measures (P
(T)

�uT

,P
(T)
0 ), T → ∞ are not contiguous. Particularly, the second integral in the likelihood ratio formula

tends to infinity:

∫ T

0
[�(�uT (S∗t − Xt−)) − 1 − ln�(�uT (S∗t − Xt−))]S∗ dt −→ ∞.

In such situation the power function of any reasonable test tends to 1 and to compare tests we have to use, say, the large deviation

principle. For example, the likelihood ratio test
∗
T is consistent for the local far alternatives�=v/

√
S∗T,v ∈ [�,V]where0 < � <V <∞.
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Indeed, under mild regularity conditions we can write

Ev

∗
T (X

T ) = P0

{

sup
�<v<V

L

(

v√
S∗T

,XT

)

> c	

}

= P0

{

sup
�<v<V

[

√

S∗T
∫ 1

0
ln�(vWT (s)) dWT (s)

−S∗T
∫ 1

0
[�(vWT (s)) − 1 − ln�(vWT (s))] ds

]

> ln c	

}

= P0

{

sup
�<v<V

[

1√
S∗T

∫ 1

0
ln�(vWT (s)) dWT (s)

−
∫ 1

0
[�(vWT (s)) − 1 − ln�(vWT (s))] ds

]

>
ln c	

S∗T

}

−→P

{

inf
�<v<V

∫ 1

0
[�(vW(s)) − 1 − ln�(vW(s))] ds >0

}

= 1

because the function g(y) = y − 1 − ln y >0 for y�1 and g(y) = 0 iff y = 1.

Remark 2. Note that we can construct asymptotically uniformly most powerful test if we change the statement of the problem

in the following way. Let us fix some D>0 and introduce the stopping time

�D = inf

{

� :

∫ �

0
(S∗t − Xt)

2S∗ dt�D2

}

.

Then we consider the problem of testing hypotheses

H0 : S(t,Xt) = S∗,

H1 : S(t,Xt) = S∗�(�D[S∗t − Xt]), �D = u

�̇(0)D
>0

by observations X�D = {Xt , 0� t��D} in the asymptotics D → ∞. Now the likelihood ratio Z�D (u) = L(u/�̇(0)D,XD) will be LAN:

Z�D (u) �⇒ exp

{

u� − u2

2

}

, � ∼ N(0, 1)

and the test 
̂�D
= 1{��D

(X�D )>z	} where

��D (X
�D ) = 1

D

∫ �D

0
(S∗t − Xt−)[dXt − S∗ dt]

is locally asymptotically uniformly most powerful.

The proof follows from the central limit theorem for stochastic integrals and the standard arguments (for LAN families).

Remark 3. Note that these problems of hypotheses testing are similar to the corresponding problems of hypotheses testing for

diffusion processes. In particular, let the observed process XT = {Xt , 0� t�T} be diffusion

dXt = �(−�T Xt) dt + �dWt , X0 = 0, 0� t�T,

where the function �(0) = 0 is continuously differentiable at the point 0 and �̇(0) >0. If we consider two hypotheses: � = 0 and

� >0 then the reparametrization

�T = u�

�̇(0)T

provides local contiguous alternatives, i.e., the log-likelihood ratio in the problem

H0 : u = 0,

H1 : u>0

has the limit

ln L

(

u�

�̇(0)T
,XT

)

�⇒ −u

∫ 1

0
W(s) dW(s) − u2

2

∫ 1

0
W(s)2 ds.
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The score-function test based on the statistic

�∗
T (X

T ) = −1

T

∫ T

0
Xt dXt ,

the likelihood ratio test and the Wald test have the same asymptotic properties as those described in Theorems 1–3.

For example, if�(x)=x, thenwe have theWiener process (under hypothesisH0) against ergodic Ornstein–Uhlenbeck process

under alternativeH1.

Remark 4. We supposed above that the derivative of the function �(x) at the point x = 0 is not equal to 0, but sometimes it can

be interesting to study the score-function and the likelihood ratio tests in the situations when the first k − 1 derivatives with

k�2 are null.

Let us consider a stress-release process XT = {Xt , 0� t�T} with intensity function S∗�(�(S∗t− Xt)) such that �(0)= 1 �̇(0)= 0

and �̈(·)�0 (k= 2). In this case the modifications have to be the following. Suppose that �̈(0) >0. To have LAQ family at the point

� = 0 we chose the reparametrization � = �u:

�u =
√

2u

�̈(0)
(S∗T)

−3/4,

which provides the limit

ln L(�u,X
T ) �⇒ u

∫ 1

0
W(s)2 dW(s) − u2

2

∫ 1

0
W(s)4 ds.

Then in the hypotheses testing problem

H0 : u = 0,

H1 : u>0

the score-function test �̂(XT ) = 1{�T (XT )>c	} is based on the statistic

�T (X
T ) = 1

(S∗T)
3/2

∫ T

0
(S∗t − Xt)

2[dXt − S∗ dt].

It is easy to see that underH0

�T (X
T ) �⇒ W(1)3

3
−
∫ 1

0
W(s) ds.

Hence to chose the threshold c	 we have to solve the following equation:

4

3

∫ ∫

x3−y>3c
exp

{

−2x2 + 2xy − 2

3
y2
}

dxdy = 	

because (W(1), 3
∫ 1
0 W(s) ds) is Gaussian vector.

The cases k >2 can be treated in a similar way.
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Different change-point type models encountered in parametric statistical inference give

rise to different limiting likelihood ratio processes. In this paper we consider two such

likelihood ratios. The first one is an exponential functional of a two-sided Poisson

process driven by some parameter, while the second one is an exponential functional of

a two-sided Brownian motion. We establish that for sufficiently small values of the

parameter, the Poisson type likelihood ratio can be approximated by the Brownian type

one. As a consequence, several statistically interesting quantities (such as limiting

variances of different estimators) related to the first likelihood ratio can also be

approximated by those related to the second one. Finally, we discuss the asymptotics

for large values of the parameter and illustrate the results by numerical simulations.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

In this work we are interested by the asymptotic study of non-regular parametric statistical models. It is well known

that in regular case the classical estimators (the maximum likelihood estimator and the Bayesian estimators) are

consistent, asymptotically normal (with rate 1=
ffiffiffi

n
p

) and asymptotically efficient. In non-regular cases the situation

essentially changes: usually these estimators are consistent, have different limiting distributions with a rate better than

1=
ffiffiffi

n
p

and only the Bayesian estimators are asymptotically efficient. An exhaustive exposition of the parameter estimation

theory in both regular and non-regular cases is given in the classical book by Ibragimov and Khasminskii (1981). They have

developed a general theory of estimation based on the analysis of renormalized likelihood ratio. The approach consists in

proving first that the renormalized likelihood ratio (with a properly chosen renormalization rate) weekly converges to a

non-degenerate limit. Thereafter, the properties of the estimators are deduced. Finally, based on the estimators, one can

also construct confidence intervals, tests, and so on. Note that this approach also provides the convergence of moments,

allowing one to deduce equally the asymptotics of some statistically important quantities, such as the mean square errors

of the estimators.
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More precisely, consider an observation Xn from the distribution Pn
y . Suppose one have found a renormalization rate

jn-0, such that the renormalized likelihood ratio process

ZnðuÞ ¼
dPn

yþujn

dPn
y

ðXnÞ, u 2 R,

converges weekly (in a suitable functional space) to some non-degenerate limiting likelihood ratio process Z (u), u 2 R.

Then, one can usually deduce that the Bayesian estimators (here we consider quadratic loss function only) and the

maximum likelihood estimator are consistent, converge with rate jn, and their limiting distributions are given by the

random variables

z¼
R

R
uZðuÞdu

R

R
ZðuÞdu and x¼ argsup

u2R
ZðuÞ

respectively. So, the quantiles of these random variables can be used to construct confidence intervals and tests based on

the estimators. The second moments B¼ Ez2 and M¼ Ex2 of these variables (also called limiting variances of the

estimators) are also important, since usually the convergence of moments is also shown, and so the mean square errors of

the Bayesian estimators and of the maximum likelihood estimator are Bj2
nð1þoð1ÞÞ and Mj2

nð1þoð1ÞÞ, respectively.
Moreover, usually it can also be shown that the Bayesian estimators are asymptotically efficient (have the smallest possible

limiting variance), and so the quantity E=B/M can be used as a measure of the (relative) asymptotic efficiency of the

maximum likelihood estimator.

In regular models the renormalization rate is usually jn ¼ 1=
ffiffiffi

n
p

and the limiting likelihood ratio is the same for

different models (LAN property). In non-regular cases the rates are usually better (for example, in change-point situation

jn ¼ 1=n) and the limiting likelihood ratio processes can be different in different models. In this paper we consider two

such limiting likelihood ratios arising in various change-point type models encountered in statistical inference.

The first one is the random process Zr on R defined by

lnZrðxÞ ¼
rPþ ðxÞ�x if xZ0,

�rP�ð�xÞ�x if xr0,

(

ð1Þ

where r40, and Pþ and P� are two independent Poisson processes on Rþ with intensities 1=ðer�1Þ and 1=ð1�e�rÞ,
respectively. We also consider the random variables

zr ¼
R

R
xZrðxÞdx

R

R
ZrðxÞdx

and xr ¼ argsup
x2R

ZrðxÞ ð2Þ

related to this process, as well as their second moments Br ¼ Ez
2
r and Mr ¼ Ex

2
r and the quantity Er ¼ Br=Mr.

The process Zr (up to a linear time change) arises in various change-point type statistical models as the limiting

likelihood ratio process. The main such model is the below detailed model of i.i.d. observations in the situation when their

density has a jump (is discontinuous). Probably the first general result about this model goes back to Chernoff and Rubin

(1956). Later, it was exhaustively studied by Ibragimov and Khasminskii (1981, Chapter 5) (see also their previous works

Ibragimov and Khasminskii, 1970 and Ibragimov and Khasminskii, 1972).

Example 1. Consider the problem of estimation of the location parameter y based on the observation Xn=(X1,y,Xn) of the

i.i.d. sample from the density f ðx�yÞ, where the known function f is smooth enough everywhere except at 0, and in 0 we

have

0alim
xm0

f ðxÞ ¼ aab¼ lim
xk0

f ðxÞa0:

Denote Pn
y the distribution (corresponding to the parameter y) of the observation Xn. As n-1, the normalized likelihood

ratio process of this model defined by

ZnðuÞ ¼
dPn

yþu=n

dPn
y

ðXnÞ ¼
Y

n

i ¼ 1

f Xi�y�
u

n

� �

f ðXi�yÞ

converges weakly in the space D0ð�1,þ1Þ (the Skorohod space of functions on R without discontinuities of the second

kind and vanishing at infinity) to the process Za,b on R defined by

lnZa,bðuÞ ¼
ln

a

b

� �

PbðuÞ�ða�bÞu if uZ0,

�ln
a

b

� �

Pað�uÞ�ða�bÞu if ur0,

8

>

<

>

:
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where Pb and Pa are two independent Poisson processes on Rþ with intensities b and a, respectively. The limiting

distributions of the Bayesian estimators and of the maximum likelihood estimator are given by

za,b ¼
R

R
uZa,bðuÞdu
R

R
Za,bðuÞdu

and xa,b ¼ argsup
u2R

Za,bðuÞ

respectively. The convergence of moments also holds, and the Bayesian estimators are asymptotically efficient. So, Ez2a,b

and Ex2a,b are the limiting variances of these estimators, and Ez2a,b=Ex
2
a,b is the asymptotic efficiency of the maximum

likelihood estimator.

Now let us note, that up to a linear time change, the process Za,b is nothing but the process Zr with r¼ ln a
b

� ��

�

�

�. Indeed, by

putting u¼ x=ða�bÞ we get

lnZa,bðuÞ ¼
ln

a

b

� �

Pb

x

a�b

� �

�x if
x

a�b
Z0,

�ln
a

b

� �

Pa � x

a�b

� �

�x if
x

a�b
r0,

8

>

<

>

:

¼ lnZrðxÞ ¼ lnZrðða�bÞuÞ:

So, we have

za,b ¼
zr
a�b

and xa,b ¼
xr
a�b

,

and hence

Ez2a,b ¼
Br

ða�bÞ2
, Ex2a,b ¼

Mr

ða�bÞ2
and

Ez2a,b

Ex
2
a,b

¼ Er:

Some other models where the process Zr arises occur in the statistical inference for inhomogeneous Poisson processes,

in the situation when their intensity function has a jump (is discontinuous). In Kutoyants (1998, Chapter 5) (see also his

previous work Kutoyants, 1984) one can find several examples, one of which is detailed below.

Example 2. Consider the problem of estimation of the location parameter y 2�a,b½, 0oaobot, based on the observation

XT on [0,T] of the Poisson process with t- periodic strictly positive intensity function SðtþyÞ, where the known function S is

smooth enough everywhere except at points t�þtk, k 2 Z, with some t� 2 ½0,t�, in which we have

0alim
tmt�

SðtÞ ¼ S�aSþ ¼ lim
tkt�

SðtÞa0:

Denote PT
y the distribution (corresponding to the parameter y) of the observation XT. As T-1, the normalized likelihood

ratio process of this model defined by

ZT ðuÞ ¼
dPT

yþ u
T

dPT
y

ðXT Þ ¼ exp

Z T

0
ln

Syþu=T ðtÞ
SyðtÞ

dXðtÞ�
Z T

0
½Syþu=T ðtÞ�SyðtÞ�dt

� 	

converges weakly in the space D0ð�1,þ1Þ to the process Zt,S� ,Sþ on R defined by

lnZt,S� ,Sþ ¼
ln

Sþ
S�


 �

PS�

u

t

� �

�ðSþ�S�Þ
u

t
if uZ0,

�ln
Sþ
S�


 �

PSþ �u

t

� �

�ðSþ�S�Þ
u

t
if ur0,

8

>

>

>

<

>

>

>

:

where PS� and PSþ are two independent Poisson processes on Rþ with intensities S� and S+ , respectively. The limiting

distributions of the Bayesian estimators and of the maximum likelihood estimator are given by

zt,S� ,Sþ ¼
R

R
uZt,S� ,Sþ ðuÞdu
R

R
Zt,S� ,Sþ ðuÞdu

and xt,S� ,Sþ ¼ argsup
u2R

Zt,S� ,Sþ ðuÞ

respectively. The convergence of moments also holds, and the Bayesian estimators are asymptotically efficient. So, Ez2t,S� ,Sþ

and Ex2t,S� ,Sþ
are the limiting variances of these estimators, and Ez2t,S� ,Sþ

=Ex2t,S� ,Sþ
is the asymptotic efficiency of the

maximum likelihood estimator.

Now let us note, that up to a linear time change, the process Zt,S� ,Sþ is nothing but the process Zr with r¼ jlnðSþ
S�
Þj.

Indeed, by putting u¼ tx=ðSþ�S�Þ we get

Zt,S� ,Sþ ðuÞ ¼ ZrðxÞ ¼ Zr
Sþ�S�

t
u


 �

:

So, we have

zt,S� ,Sþ ¼
tzr

Sþ�S�
and zt,S� ,Sþ ¼

txr
Sþ�S�

,
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and hence

Ez2t,S� ,Sþ
¼ t2Br

ðSþ�S�Þ2
, Ex2t,S� ,Sþ

¼ t2Mr

ðSþ�S�Þ2
and

Ez
2
t,S� ,Sþ

Ex
2
t,S� ,Sþ

¼ Er:

The second limiting likelihood ratio process considered in this paper is the random process

Z0ðxÞ ¼ expfWðxÞ�1
2jxjg, x 2 R, ð3Þ

where W is a standard two-sided Brownian motion. We also consider the random variables

z0 ¼
R

R
xZ0ðxÞdx

R

R
Z0ðxÞdx

and x0 ¼ argsup
x2R

Z0ðxÞ ð4Þ

related to this process, as well as their second moments B0 ¼ Ez
2
0 and M0 ¼ Ex

2
0 and the quantity E0=B0/M0.

The models where the process Z0 arises occur in various fields of statistical inference. A well-known example is the

below detailed model of a discontinuous signal in a white Gaussian noise exhaustively studied by Ibragimov and

Khasminskii (1981, Chapter 7.2) (see also their previous work Ibragimov and Khasminskii, 1975), but one can also cite

change-point type models of dynamical systems with small noise (see Kutoyants, 1984 and Kutoyants (1994, Chapter 5)),

those of ergodic diffusion processes (see Kutoyants, 2004, Chapter 3), a change-point type model of delay equations (see

Küchler and Kutoyants, 2000), an i.i.d. change-point type model (see Deshayes and Picard, 1984), a model of a

discontinuous periodic signal in a time inhomogeneous diffusion (see Höpfner and Kutoyants, 2009), and so on.

Example 3. Consider the problem of estimation of the location parameter y 2�a,b½, 0oaobo1, based on the observation

Xe on [0,1] of the random process satisfying the stochastic differential equation

dX
eðtÞ ¼ 1

e
Sðt�yÞdtþdWðtÞ,

where W is a standard Brownian motion, and S is a known function having a bounded derivative on ��1,0½[�0,1½ and
satisfying

lim
tm0

SðtÞ�lim
tk0

SðtÞ ¼ ra0:

Denote Pey the distribution (corresponding to the parameter y) of the observation Xe. As e-0, the normalized likelihood

ratio process of this model defined by

ZeðuÞ ¼
dPeyþ e2u

dPey
ðXeÞ ¼ exp

1

e

Z 1

0
½Sðt�y�e2uÞ�Sðt�yÞ�dWðtÞ

(

� 1

2e2

Z 1

0
½Sðt�y�e2uÞ�Sðt�yÞ�2 dt

)

converges weakly in the space C0ð�1,þ1Þ (the space of continuous functions vanishing at infinity equipped with the

supremum norm) to the process Z0(r
2u), u 2 R. The limiting distributions of the Bayesian estimators and of the maximum

likelihood estimator are r�2z0 and r�2x0, respectively. The convergence of moments also holds, and the Bayesian estimators

are asymptotically efficient. So, r�4B0 and r�4M0 are the limiting variances of these estimators, and E0 is the asymptotic

efficiency of the maximum likelihood estimator.

Let us also note that Terent’yev (1968) determined explicitly the distribution of x0 and calculated the constant M0=26.

These results were taken up by Ibragimov and Khasminskii (1981, Chapter 7.3), where by means of numerical simulation

they equally showed that B0 ¼ 19:570:5, and so E0 ¼ 0:7370:03. Later in Golubev (1979), Golubev expressed B0 in terms

of the second derivative (with respect to a parameter) of an improper integral of a composite function of modified Hankel

and Bessel functions. Finally in Rubin and Song (1995), Rubin and Song obtained the exact values B0 ¼ 16zð3Þ and

E0 ¼ 8zð3Þ=13, where z is Riemann’s zeta function defined by

zðsÞ ¼
X

1

n ¼ 1

1

ns
:

The random variables zr and xr and the quantities Br, Mr and Er, r40, are much less studied. One can cite Pflug (1993)

for some results about the distribution of the random variables

argsup
x2Rþ

ZrðxÞ and argsup
x2R�

ZrðxÞ

related to xr.

In this paper we establish that the limiting likelihood ratio processes Zr and Z0 are related. More precisely, we show that

as r-0, the process Zrðy=rÞ, y 2 R, converges weakly in the space D0ð�1,þ1Þ to the process Z0. So, the random variables

rzr and rxr converge weakly to the random variables z0 and x0, respectively. We show equally that the convergence of

moments of these random variables holds, so in particular r2Br-16zð3Þ, r2Mr-26 and Er-8zð3Þ=13. Besides their

theoretical interest, these results allow one, for example, to construct tests and confidence intervals on the base of the

distributions of z0 and x0 (rather than on the base of much less known distributions of zr and xr) in models having the

process Zr with a small r as a limiting likelihood ratio. Also, the limiting variances of the estimators and the asymptotic
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efficiency of the maximum likelihood estimator can be approximated as

Br �
16zð3Þ
r2

, Mr �
26

r2
and Er �

8zð3Þ
13

in such models.

These are the main results of the present paper, and they are presented in Section 2, where we also briefly discuss the

second possible asymptotics r-þ1 and present some numerical simulations of the quantities Br, Mr and Er for r 2�0,1½.
Finally, the proofs are carried out in Section 3.

2. Main results and numerical simulations

Consider the process XrðyÞ ¼ Zrðy=rÞ, y 2 R, where r40 and Zr is defined by (1). Note that
R

R
yXrðyÞdy

R

R
XrðyÞdy

¼ rzr and argsup
y2R

XrðyÞ ¼ rxr,

where the random variables zr and xr are defined by (2). Remind also the process Z0 on R defined by (3) and the random

variables z0 and x0 defined by (4). Recall finally the quantities Br ¼ Ez2r, Mr ¼ Ex2r, Er ¼ Br=Mr, B0 ¼ Ez20 ¼ 16zð3Þ,
M0 ¼ Ex20 ¼ 26 and E0 ¼ B0=M0 ¼ 8zð3Þ=13. Now we can state the main result of the present paper.

Theorem 1. The process Xr converges weakly in the space D0ð�1,þ1Þ to the process Z0 as r-0. In particular, the random

variables rzr and rxr converge weakly to the random variables z0 and x0, respectively. Moreover, for any k40 we have

rkEz
k
r-Ez

k
0 and rkEx

k
r-Ex

k
0,

and in particular r2Br-16zð3Þ, r2Mr-26 and Er-8zð3Þ=13.

This theorem will be proved in the next section, but before let us discuss the second possible asymptotics r-þ1. One

can show that in this case, the process Zr converges weakly in the space D0ð�1,þ1Þ to the process Z1ðxÞ ¼ e�x1fx4Zg,

x 2 R, where Z is a negative exponential random variable with PfZotg ¼ et , tr0. So, the random variables zr and xr
converge weakly to the random variables

z1 ¼
R

R
xZ1ðxÞdx

R

R
Z1ðxÞdx ¼ Zþ1 and x1 ¼ argsup

x2R
Z1ðxÞ ¼ Z

respectively. One can equally show that, moreover, for any k40 we have

Ez
k
r-Ez

k
1 and Ex

k
r-Ex

k
1,

and in particular, denoting B1 ¼ Ez21, M1 ¼ Ex21 and E1 ¼ B1=M1, we finally have Br-B1 ¼ EðZþ1Þ2 ¼ 1,

Mr-M1 ¼ EZ2 ¼ 2 and Er-E1 ¼ 1=2.

Let us note that these convergences are natural, since the process Z1 can be considered as a particular case of the

process Zr with r¼ þ1 if one admits the convention þ1 � 0¼ 0.

Note also that the process Z1 (up to a linear time change) is the limiting likelihood ratio process of Model 1 (Model 2) in

the situation when a � b¼ 0 ðS� � Sþ ¼ 0Þ. In this case, the variables z1 ¼ Zþ1 and x1 ¼ Z (up to a multiplicative constant)

are the limiting distributions of the Bayesian estimators and of the maximum likelihood estimator, respectively. In

particular, B1 ¼ 1 and M1 ¼ 2 (up to the square of the above multiplicative constant) are the limiting variances of these

estimators, and the Bayesian estimators being asymptotically efficient, E1 ¼ 1=2 is the asymptotic efficiency of the

maximum likelihood estimator.

To conclude this section, let us present some numerical simulations of the quantities Br,Mr and Er for r 2�0,1½. Besides
giving approximate values of these quantities, the simulation results illustrate both the asymptotics

Br �
B0

r2
, Mr �

M0

r2
and Er-E0 as r-0,

with B0 ¼ 16zð3Þ � 19:2329, M0=26 and E0 ¼ 8zð3Þ=13� 0:7397, and

Br-B1, Mr-M1 and Er-E1 as r-1,

with B1 ¼ 1, M1 ¼ 2 and E1 ¼ 0:5.

First, we simulate the events x1,x2,yof the Poisson processPþ (with the intensity 1=ðer�1Þ), and the events x01,x02, . . . of

the Poisson process P� (with the intensity 1=ð1�e�rÞ).
Then we calculate

zr ¼
R

R
xZrðxÞdx

R

R
ZrðxÞ dx

¼
P1

i ¼ 1 xie
ri�xi þ

P1
i ¼ 1 e

ri�xi�
P1

i ¼ 1 x
0
ie
r�riþx0

i þ
P1

i ¼ 1 e
r�riþx0

i

P1
i ¼ 1 e

ri�xi þ
P1

i ¼ 1 e
r�riþ x0

i
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and

xr ¼ argsup
x2R

ZrðxÞ ¼
xk if rk�xk4r�r‘þx0‘ ,

�x0‘ otherwise,

(

where

k¼ argmax
iZ1

ðri�xiÞ and ‘¼ argmax
iZ1

ðr�riþx0iÞ,

so that

xk ¼ argsup
x2Rþ

ZrðxÞ and �x0‘ ¼ argsup
x2R�

ZrðxÞ:

Finally, repeating these simulations 107 times (for each value of r), we approximate Br ¼ Ez2r and Mr ¼ Ex2r by the

empirical second moments, and Er ¼ Br=Mr by their ratio.

The results of the numerical simulations are presented in Figs. 1 and 2. The r-0 asymptotics of Br and Mr can be

observed in Fig. 1, where besides these functions we also plotted the functions r2Br and r2Mr, making apparent the

constants B0 � 19:2329 and M0=26.

In Fig. 2 we use a different scale on the vertical axis to better illustrate the r-1 asymptotics of Br and Mr, as well as

both the asymptotics of Er. Note that the function Er appear to be decreasing, so we can conjecture that bigger is r, smaller

is the efficiency of the maximum likelihood estimator, and so this efficiency is always between E1 ¼ 0:5 and E0 � 0:7397.

3. Proofs

The results concerning the random variable zr are direct consequence of Ibragimov and Khasminskii (1981, Theorem

1.10.2) and the following three lemmas.

Lemma 2. The finite-dimensional distributions of the process Xr converge to those of Z0 as r-0.

Lemma 3. For all r40 and all y1,y2 2 R we have

EjX1=2
r ðy1Þ�X

1=2
r ðy2Þj2r1

4jy1�y2j:

Lemma 4. For any c 2�0,1=8½ we have

EX
1=2
r ðyÞrexpð�cjyjÞ

for all sufficiently small r and all y 2 R.

Note that these lemmas are not sufficient to establish the weak convergence of the process Xr in the space D0ð�1,þ1Þ
and the results concerning the random variable xr. However, the increments of the process lnXr being independent, the

convergence of its restrictions (and hence of those of Xr) on finite intervals ½A,B� � R (that is, convergence in the Skorohod

space D½A,B� of functions on [A,B] without discontinuities of the second kind) follows from Gihman and Skorohod (1974,

Theorem 6.5.5), Lemma 2 and the following lemma.
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Fig. 1. Br and Mr (r-0 asymptotics).
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Lemma 5. For any e40 we have

lim
h-0

lim
r-0

sup
jy1�y2 joh

PfjlnXrðy1Þ�lnXrðy2Þj4eg ¼ 0:

Now, Theorem 1 follows from the following estimate on the tails of the process Xr by standard argument (see, for

example, Ibragimov and Khasminskii, 1981).

Lemma 6. For any b 2�0,3=40½ we have

P sup
jyj4A

XrðyÞ4e�bA

( )

r4e�bA

for all sufficiently small r and all A40.

So, it remains to prove the lemmas. We start with Lemma 2. Note that the restrictions of the process lnXr (as well as

those of the process lnZ0) on Rþ and on R� are mutually independent processes with stationary and independent

increments. So, to obtain the convergence of all the finite-dimensional distributions, it is sufficient to show the

convergence of one-dimensional distributions only, that is,

lnXrðyÞ ) lnZ0ðyÞ ¼WðyÞ� jyj
2

¼N � jyj
2

,jyj

 �

for all y 2 R. Here and in the sequel ‘‘) ’’ denotes the weak convergence of the random variables, and N ðm,VÞ denotes a

‘‘generic’’ random variable distributed according to the normal law with mean m and variance V.

Let y40. Then, noting that Pþ
y
r

� �

is a Poisson random variable of parameter l¼ y=rðer�1Þ-1, we have

lnXrðyÞ ¼ rPþ
y

r


 �

� y

r
¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y

rðer�1Þ

r Pþ
y

r


 �

�l
ffiffiffi

l
p þ y

er�1
� y

r
¼ ffiffiffi

y
p

ffiffiffiffiffiffiffiffiffiffiffiffi

r

er�1

r Pþ
y

r


 �

�l
ffiffiffi

l
p �y

er�1�r
rðer�1Þ ) N � y

2
,y

� �

,

since

r

er�1
¼ r

rþoðrÞ-1,

er�1�r
rðer�1Þ ¼ r2=2þoðr2Þ

rðrþoðrÞÞ -
1

2

and

Pþ
y

r


 �

�l
ffiffiffi

l
p ) N ð0,1Þ:

Similarly, for yo0 we have

lnXrðyÞ ¼�rP�
�y

r


 �

� y

r
¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�y

rð1�e�rÞ

r l0�P�
�y

r


 �

ffiffiffiffi

l0
p � �y

1�e�r
� y

r
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Fig. 2. Br , Mr (r-1 asymptotics) and Er (both asymptotics).
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¼ ffiffiffiffiffiffiffi�y
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r

1�e�r

r l0�P�
�y
r

� �

ffiffiffiffi

l0
p þy

e�r�1þr

rð1�e�rÞ ) N
y

2
,�y

� �

,

and so Lemma 2 is proved.

Now we turn to the proof of Lemma 4 (we will prove Lemma 3 just after). For y40 we can write

EX
1=2
r ðyÞ ¼ Eexp

r

2
Pþ

y

r


 �

� y

2r


 �

¼ exp � y

2r


 �

Eexp
r

2
Pþ

y

r


 �
 �

:

Note that Pþ
y
r

� �

is a Poisson random variable of parameter l¼ y=rðer�1Þ with moment generating function

MðtÞ ¼ expðlðet�1ÞÞ. So, we get

EX
1=2
r ðyÞ ¼ exp � y

2r


 �

exp
y

rðer�1Þ ðe
r=2�1Þ


 �

¼ exp � y

2r
þ y

rðer=2þ1Þ


 �

¼ exp �y
er=2�1

2rðer=2þ1Þ


 �

¼ exp �y
er=4�e�r=4

2rðer=4þe�r=4Þ


 �

¼ exp �y
tanhðr=4Þ

2r


 �

:

For yo0 we obtain similarly

EX
1=2
r ðyÞ ¼ Eexp �r

2
P�

�y

r


 �

� y

2r


 �

¼ exp � y

2r


 �

exp
�y

rð1�e�rÞ ðe
�r=2�1Þ


 �

¼ exp � y

2r
þ y

rð1þe�r=2Þ


 �

¼ exp y
1�e�r=2

2rð1þe�r=2Þ


 �

¼ exp y
tanhðr=4Þ

2r


 �

:

Thus, for all y 2 R we have

EX
1=2
r ðyÞ ¼ exp �jyj tanhðr=4Þ

2r


 �

, ð5Þ

and since

tanhðr=4Þ
2r

¼ r=4þoðrÞ
2r

-
1

8

as r-0, for any c 2�0,1=8½ we have EX
1=2
r ðyÞrexpð�cjyjÞ for all sufficiently small r and all y 2 R. Lemma 4 is proved.

Further we verify Lemma 3. We first consider the case y1,y2 2 Rþ (say y1Zy2). Using (5) and taking into account the

stationarity and the independence of the increments of the process lnXr on Rþ , we can write

EjX1=2
r ðy1Þ�X

1=2
r ðy2Þj2 ¼ EXrðy1ÞþEXrðy2Þ�2EX

1=2
r ðy1ÞX1=2

r ðy2Þ ¼ 2�2EXrðy2ÞE
X
1=2
r ðy1Þ

X
1=2
r ðy2Þ

¼ 2�2EX
1=2
r ðy1�y2Þ ¼ 2�2exp �jy1�y2j

tanhðr=4Þ
2r


 �

r jy1�y2j
tanhðr=4Þ

r
r

1

4
jy1�y2j:

The case y1,y2 2 R� can be treated similarly.

Finally, if y1y2r0 (say y2r0ry1), we have

EjX1=2
r ðy1Þ�X

1=2
r ðy2Þj2 ¼ 2�2EX

1=2
r ðy1ÞEX1=2

r ðy2Þ ¼ 2�2exp �jy1j
tanhðr=4Þ

2r
�jy2j

tanhðr=4Þ
2r


 �

¼ 2�2exp �jy1�y2j
tanhðr=4Þ

2r


 �

r
1

4
jy1�y2j,

and so Lemma 3 is proved.

Now let us check Lemma 5. First let y1,y2 2 Rþ (say y1Zy2) such that D¼ jy1�y2joh. Then

PfjlnXrðy1Þ�lnXrðy2Þj4egr 1

e2
EjlnXrðy1Þ�lnXrðy2Þj2 ¼

1

e2
EjlnXrðDÞj2 ¼

1

e2
E rPþ

D

r


 �

�D

r

�

�

�

�

�

�

�

�

2

¼ 1

e2
r2ðlþl2Þþ D2

r2
�2lD

 !

¼ 1

e2
ðbðrÞDþgðrÞD2Þo 1

e2
ðbðrÞhþgðrÞh2Þ,

where l¼D=rðer�1Þ is the parameter of the Poisson random variable Pþ ðD=rÞ,

bðrÞ ¼ r

ðer�1Þ ¼
r

rþoðrÞ-1

and

gðrÞ ¼ 1

ðer�1Þ2
þ 1

r2
� 2

rðer�1Þ ¼
1

r
� 1

er�1


 �2

¼ er�1�r
rðer�1Þ


 �2

¼ r2=2þoðr2Þ
r rþoðrÞ
� �

 !2

-
1

4
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as r-0. So, we have

lim
r-0

sup
jy1�y2joh

PfjlnXrðy1Þ�lnXrðy2Þj4egr lim
r-0

1

e2
ðbðrÞhþgðrÞh2Þ ¼ 1

e2
hþ h2

4


 �

,

and hence

lim
h-0

lim
r-0

sup
jy1�y2 joh

PfjlnXrðy1Þ�lnXrðy2Þj4eg ¼ 0,

where the supremum is taken only over y1,y2 2 Rþ .

For y1,y2 2 R� such that D¼ jy1�y2joh one can obtain similarly

PfjlnXrðy1Þ�lnXrðy2Þj4egr 1

e2
EjlnXrðy1Þ�lnXrðy2Þj2 ¼

1

e2
ðb0ðrÞDþg0ðrÞD2Þo 1

e2
ðb0ðrÞhþg0ðrÞh2Þ,

where

b0ðrÞ ¼ r

ð1�e�rÞ ¼
r

rþoðrÞ-1

and

g0ðrÞ ¼ e�r�1þr

rð1�erÞ


 �2

¼ r2=2þoðr2Þ
rðrþoðrÞÞ


 �2

-
1

4

as r-0, which will yield the same conclusion as above, but with the supremum taken over y1,y2 2 R�.

Finally, for y1y2r0 (say y2r0ry1) such that jy1�y2joh, using the elementary inequality ða�bÞ2r2ða2þb2Þ we get

PfjlnXrðy1Þ�lnXrðy2Þj4egr 1

e2
EjlnXrðy1Þ�lnXrðy2Þj2r

2

e2
ðEjlnXrðy1Þj2þEjlnXrðy2Þj2Þ

¼ 2

e2
ðbðrÞy1þgðrÞy21þb

0ðrÞjy2jþg0ðrÞjy2j2Þr
2

e2
ððbðrÞþb

0ðrÞÞhþðgðrÞþg0ðrÞÞh2Þ,

which again will yield the desired conclusion. Lemma 5 is proved.

It remains to verify Lemma 6. Clearly,

P sup
jyj4A

XrðyÞ4e�bA

( )

rP sup
y4A

XrðyÞ4e�bA

( )

þP sup
yo�A

XrðyÞ4e�bA

( )

:

In order to estimate the first term, we need two auxiliary results.

Lemma 7. For any c 2�0,3=32½ we have

EX
1=4
r ðyÞrexpð�cjyjÞ

for all sufficiently small r and all y 2 R.

Lemma 8. For all r40 the random variable

Zr ¼ sup
t2Rþ

ðPlðtÞ�tÞ,

where Pl is a Poisson process on Rþ with intensity l¼ r=ðer�1Þ 2�0,1½, verifies

Eexp
r

4
Zr

� �

r2:

The first result can be easily obtained following the proof of Lemma 4, so we prove the second one only. For this, let us

remind that according to Shorack and Wellner (1986, Proposition 1 on page 392) (see also Pyke, 1959), the distribution

function FrðxÞ ¼ PfZroxg of Zr is given by

1�FrðxÞ ¼ PfZrZxg ¼ ð1�lÞelx
X

n4x

ðn�xÞn

n!
ðle�lÞn

for x40, and is zero for xr0. Hence, for x40 we have

1�FrðxÞrð1�lÞelx
X

n4x

ðn�xÞn
ffiffiffiffiffiffiffiffiffi

2pn
p

nne�n
ðle�lÞn ¼ 1�l

ffiffiffiffiffiffi

2p
p elx

X

n4x

1
ffiffiffi

n
p 1� x

n

� �n

ðle1�lÞn

r
1�l
ffiffiffiffiffiffi

2p
p elx

X

n4x

e�x ðle1�lÞn
ffiffiffi

n
p r

1�l
ffiffiffiffiffiffi

2p
p eðl�1Þxðle1�lÞx

X

n4x

ðle1�lÞn�x

ffiffiffiffiffiffiffiffiffi

n�x
p

¼ 1�l
ffiffiffiffiffiffi

2p
p lx

X

k40

ðle1�lÞk
ffiffiffi

k
p r

1�l
ffiffiffiffiffiffi

2p
p lx

Z

Rþ

ðle1�lÞt
ffiffi

t
p dt¼ 1�l

ffiffiffiffiffiffi

2p
p lx

Gð1=2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�lnðle1�lÞ
p ¼ 1�l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2lnðle1�lÞ
p

r

er�1

� �x
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r
re�r=2

er=2�e�r=2


 �x

¼ re�r=2

2sinhðr=2Þ


 �x

re�rx=2,

where we used Stirling inequality and the inequality 1�lr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2lnðle1�lÞ
p

, which is easily reduced to the elementary

inequality lnð1�mÞr�m�m2=2 by putting m¼ 1�l. So, we can finish the proof of Lemma 8 by writing

Eexp
r

4
Zr

� �

¼
Z

R

erx=4dFrðxÞ ¼ ½erx=4ðFrðxÞ�1Þ�þ1
�1 �r

4

Z

R

erx=4ðFrðxÞ�1Þdx

¼ r

4

Z

R�

erx=4 dxþ r

4

Z

Rþ

erx=4ð1�FrðxÞÞdxr1þ r

4

Z

Rþ

e�rx=4 dx¼ 2:

Now, let us get back to the proof of Lemma 6. Using Lemma 8 and taking into account the stationarity and the

independence of the increments of the process lnXr on Rþ , we obtain

P sup
y4A

XrðyÞ4e�bA

( )

rebA=4Esup
y4A

X
1=4
r ðyÞ ¼ ebA=4EX

1=4
r ðAÞEsup

y4A

X
1=4
r ðyÞ

X
1=4
r ðAÞ

¼ ebA=4EX
1=4
r ðAÞEsup

z40
X
1=4
r ðzÞ

¼ ebA=4EX
1=4
r ðAÞEsup

z40
exp

r

4
Pþ ðz=rÞ�

z

4r


 �
 �

¼ ebA=4EX
1=4
r ðAÞEexp sup

t40

r

4
P r

er�1
ðtÞ�t

� �� �


 �

¼ ebA=4EX
1=4
r ðAÞEexp r

4
Zr

� �

r2ebA=4EX
1=4
r ðAÞ:

Hence, taking b 2�0,3=40½, we have 5b=4 2�0,3=32½ and, using Lemma 7, we finally get

P sup
y4A

XrðyÞ4e�bA

( )

r2ebA=4exp �5b

4
A


 �

¼ 2e�bA

for all sufficiently small r and all A40, and so the first term is estimated.

The second term can be estimated in the same way, if we show that for all r40 the random variable

Z0
r ¼ sup

t2Rþ

ð�Pl0 ðtÞþtÞ ¼ � inf
t2Rþ

ðPl0 ðtÞ�tÞ,

where Pl0 is a Poisson process on Rþ with intensity l0 ¼ r=ð1�e�rÞ 2�0,1½, verifies

Eexp
r

4
Z0
r

� �

r2:

For this, let us remind that according to Pyke (1959) (see also Cramér, 1954), Z0
r is an exponential random variable with

parameter r, where r is the unique positive solution of the equation l0ðe�r�1Þþr¼ 0. In our case, this equation becomes

r

1�e�r
ðe�r�1Þþr¼ 0,

and r¼ r is clearly its solution. Hence Z0
r is an exponential random variable with parameter r, which yields

Eexp
r

4
Z0
r

� �

¼ 4

3
o2,

and so Lemma 6 is proved.
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We consider an inhomogeneous Poisson process X on [0, T ]. The intensity function of X is supposed to
be strictly positive and smooth on [0, T ] except at the point θ , in which it has either a 0-type singularity
(tends to 0 like |x|p , p ∈ (0, 1)), or an ∞-type singularity (tends to ∞ like |x|p , p ∈ (−1, 0)). We suppose
that we know the shape of the intensity function, but not the location of the singularity. We consider the
problem of estimation of this location (shift) parameter θ based on n observations of the process X. We
study the Bayesian estimators and, in the case p > 0, the maximum-likelihood estimator. We show that
these estimators are consistent, their rate of convergence is n1/(p+1), they have different limit distributions,
and the Bayesian estimators are asymptotically efficient.

Keywords: inhomogeneous Poisson process; singularity; parameter estimation; Bayesian estimators;
maximum-likelihood estimator; consistency; limit distribution; convergence of moments; asymptotic
efficiency
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1. Introduction

Inhomogeneous Poisson process is one of the simplest point processes (see, e.g. [1]). However,

due to the large choice of intensity functions, this model is rich enough and is widely used in

many applied statistical problems, such as optical communications, reliability, biology, medicine,

image treatment, and so on (see, e.g. [2–5]).

The diversity of applications is also due to the possibility of using the likelihood ratio anal-

ysis. In parameter estimation problems, the large samples theory is quite close to the one of

the classical (i.i.d.) statistics. In particular, let us consider the problem of estimation of the

parameter θ by n independent observations on some fixed interval [0, T ] of an inhomogeneous

Poisson process X = {X(t), 0 � t � T } of intensity function Sθ (t). Let us mention that this

problem is equivalent to the one of estimation of the parameter by one observation on a growing

interval of a periodic inhomogeneous Poisson process. If the problem is regular (the model is

locally asymptotically normal), then both the maximum-likelihood estimator (MLE) θ̂n and the
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Bayesian estimators (BE) θ̃n are consistent, asymptotically normal:

√
n(θ̂n − θ) =⇒ N (0, I (θ)−1),

√
n(θ̃n − θ) =⇒ N (0, I (θ)−1),

and asymptotically efficient (see, e.g. [6,7]). Here I (θ) is the Fisher information given by

I (θ) =
∫ T

0

Ṡ2
θ (t)

Sθ (t)
dt,

where Sθ (t) is the intensity function and Ṡθ (t) = (∂/∂θ)Sθ (t).

If the problem is not regular, then the properties of estimators essentially change. For example,

if Sθ (·) is smooth everywhere on [0, T ] except at the point θ , in which it has a jump (consider

for instance Sθ (t) = s(t − θ), where s(·) is discontinuous in 0), then the MLE and BE are still

consistent, but converge at a faster rate:

n(θ̂n − θ) =⇒ ξ1, n(θ̃n − θ) =⇒ ξ2,

have different limit distributions (ξ1 and ξ2 are different with Eξ 2
1 > Eξ 2

2 ), and the BE are

asymptotically efficient (see, e.g. [6,7]).

In this paper, we deal with the case where the intensity function Sθ (·) is smooth everywhere on

[0, T ] except at the point θ , in which it has a singularity of order p. The cusp-type singularities were

already studied in the preceding paper [8]. Here we consider 0-type and ∞-type singularities.

More precisely, we suppose that Sθ (t) = s(t − θ), where s(·) is some known strictly positive

function on [−T , T ] \ {0} and θ ∈ (0, T ) is some unknown parameter, and that we have the

following representation:

Sθ (t) = s(t − θ) =
{

a|t − θ |p + ψ(t − θ) if t < θ,

b|t − θ |p + ψ(t − θ) if t > θ,

where a, b > 0, p > −1 (to guarantee the finiteness of intensity measure), and ψ(·) is smooth.

If ψ(0) �= 0 and p > 1/2 then, in spite of the singularity of the intensity function in θ , the

Fisher information is finite, and so this case can be treated as the regular one.

If ψ(0) �= 0 and 0 < p < 1/2, we say that the intensity function has a cusp at θ . This is the

case treated in [8] (where instead of a, b > 0 it was supposed a2 + b2 > 0 only). There it was

shown that the MLE and the BE are consistent, converge at the rate n1/(2p+1) (which is faster than

in the regular case but slower than in discontinuous case):

n1/(2p+1)(θ̂n − θ) =⇒ η1, n1/(2p+1)(θ̃n − θ) =⇒ η2,

have different limit distributions, and the BE are asymptotically efficient. The convergence of

moments was equally verified.

If ψ(0) = 0 and p > 1 then, as above, the Fisher information is finite and this case can be

treated as the regular one.

If ψ(0) = 0 and 0 < p < 1, we say that the intensity function has a 0-type singularity at θ .

In this case, we study the asymptotic behaviour of the MLE and the BE, and we prove that the esti-

mators are consistent, converge at the rate n1/(p+1) (which is again intermediate between the regular

and discontinuous case rates), have different limit distributions, and the BE are asymptotically

efficient. We also verify the convergence of moments.

If −1 < p < 0 we say that the intensity function has a ∞-type singularity at θ . In this

case, we study the asymptotic behaviour of the BE only (MLE makes no sense in this case).

We prove that the estimators are consistent, converge at the rate n1/(p+1) (which is even faster

100 Estimation of the Location of a Singularity by Poisson Observations



Statistics 511

than in discontinuous case), and are asymptotically efficient. We verify as well the convergence

of moments.

Let us note that the jump can also be considered as a singularity by taking p = 0 and a �= b,

which explains that the rates are slower for p > 0 and faster for p < 0.

Let us also mention that our results are similar to those obtained by Ibragimov and Khasminskii

for the problem of estimation of a singularity location of the density for the i.i.d. model of

observations. An exhaustive exposition of the results can be found in Chapter 6 of their book [9],

but one can also refer to their previous works [10,11]. The asymptotic behaviour of the MLE and

of a wide class of BE obtained for this (i.i.d.) model is similar to the one obtained here for the

model of Poisson observations. Particularly, the rate of convergence of the estimators is n1/(p+1),

and the BE are asymptotically efficient.

Finally, let us note that for the study of the asymptotic behaviour of the estimators we use the

method of Ibragimov and Khasminskii presented in their book [9] (see as well [7], where this

method is applied to inhomogeneous Poisson process).

2. Main results

Suppose that we observe n realizations (X1, . . . , Xn) = Xn of the Poisson process X =
{X(t), 0 � t � T } of intensity function Sθ (t) = s(t − θ), where θ is some unknown parameter,

θ ∈ � = (α, β) ⊆ (0, T ), and s(·) is some known strictly positive function on [−T , T ] \ {0}.
We suppose that the function s(·) can be written in the form s(t) = d(t)|t |p + ψ(t), where

p ∈ (−1, 0) ∪ (0, 1),

d(t) =
{

a if t < 0,

b if t > 0,

a, b > 0, and the function ψ(·) is Hölder continuous on [−T , T ] of order higher than (p + 1)/2 ,

that is |ψ(x) − ψ(y)| � L |x − y|κ for all x, y ∈ [−T , T ] with some fixed constants L > 0 and

κ > (p + 1)/2. In the case p > 0, we suppose equally that ψ(0) = 0. Our aim is to estimate the

parameter θ and to study the asymptotic behaviour of estimators as n goes to infinity.

The likelihood ratio in our problem can be written (see, e.g. [7]) as

L(θ, θ1, X
n) = exp

{

n
∑

i=1

∫ T

0

ln
Sθ (t)

Sθ1
(t)

dXi(t) − n

∫ T

0

[

Sθ (t)

Sθ1
(t)

− 1

]

Sθ1
(t) dt

}

,

where θ1 is some fixed value of θ .

As usual, introduce the MLE θ̂n as one of the solutions of the equation

L(θ̂n, θ1, X
n) = sup

θ∈�

L(θ, θ1, X
n)

and the BE θ̃n for prior density q (supposed to be positive and continuous) and quadratic loss

function as

θ̃n =
∫ β

α

θ q(θ |Xn) dθ,

where the posterior density

q(θ |Xn) = L(θ, θ1, X
n) q(θ)

(∫ β

α

L(θ, θ1, X
n) q(θ) dθ

)−1

.

Note that the MLE makes no sense in the case p < 0, since in this case the likelihood equals

infinity in any point θ which is event of one of the Poisson processes X1, . . . , Xn.
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To describe the properties of these estimators, we need to introduce the stochastic process

Z(u) = exp

{

p

∫ +∞

−∞
ln

∣

∣

∣

∣

1 − u

z

∣

∣

∣

∣

π(dz) + ln
a

b

∫ u

0

Y (dz)

−
∫ +∞

−∞

[
∣

∣

∣

∣

1 − u

z

∣

∣

∣

∣

p

− 1 − p ln

∣

∣

∣

∣

1 − u

z

∣

∣

∣

∣

]

d(z)|z|p dz

− a − b

p + 1
|u|p+1 sign(u)

}

, u ∈ R.

Here and in the sequel Y denotes a Poisson process on R of intensity function S0(z) = d(z)|z|p,

and π is its centred version: π = Y − EY .

We introduce also the random variable ζ , and in the case p > 0 the random variable ξ by the

equations

ζ =
∫ +∞

−∞
u Z(u) du

(∫ +∞

−∞
Z(u) du

)−1

and

Z(ξ) = sup
u∈R

Z(u).

Let us note here that ξ is well defined in the case p > 0, since in this case with probability one

the process Z(u) attains its maximum in a unique point (see, e.g. [12]).

Now we can finally state the main results of this paper.

Theorem 1 Under the made assumptions, the following lower bound on the risks of all estimators

holds: for any θ0 ∈ � we have

lim
δ→0

lim
n→∞

inf
θ̄n

sup
|θ−θ0|<δ

Eθ (n
1/(p+1)(θ̄n − θ))2 ≥ Eζ 2,

where inf is taken over all possible estimators θ̄n of θ .

This theorem leads us to introduce the following definition.

Definition 2 We say that the estimator θ̄n is asymptotically efficient if

lim
δ→0

lim
n→∞

sup
|θ−θ0|<δ

Eθ (n
1/(p+1)(θ̄n − θ))2 = Eζ 2

for any θ0 ∈ �.

For the BE we have the following theorem.

Theorem 3 The BE θ̃n have uniformly in θ ∈ K (for any compact K ⊂ �) the following

properties:

• θ̃n is consistent, that is

θ̃n

Pθ−→ θ (convergence in probability),

• the limit distribution of θ̃n is ζ, that is

n1/(p+1)(θ̃n − θ) =⇒ ζ (convergence in law),
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• for any k > 0 we have

lim
n→∞

Eθ |n1/(p+1)(θ̃n − θ)|k = E|ζ |k

and, moreover, θ̃n is asymptotically efficient.

And for the MLE (in the case p > 0) we have the following theorem.

Theorem 4 Let p ∈ (0, 1). The MLE θ̂n has uniformly in θ ∈ K (for any compact K ⊂ �) the

following properties:

• θ̂n is consistent, that is

θ̂n

Pθ−→ θ (convergence in probability),

• the limit distribution of θ̂n is ξ , that is

n1/(p+1)(θ̂n − θ) =⇒ ξ (convergence in law),

• for any k > 0 we have

lim
n→∞

Eθ |n1/(p+1)(θ̂n − θ)|k = E|ξ |k.

To prove the above stated theorems, we apply the method of Ibragimov and Khasminskii [9].

For this we denote θu = θ + u n−1/(p+1) for all u ∈ Un = (n1/(p+1)(α − θ), n1/(p+1)(β − θ)), we

introduce the normalized likelihood ratio process as

Zn(u) = L(θu, θ, Xn), u ∈ Un,

and we establish (the proofs are in the next section) the following three lemmas.

Lemma 5 The finite-dimensional distributions of Zn(u) converge to those of Z(u) uniformly in

θ ∈ K (for any compact K ⊂ �).

Lemma 6 For any compact K ⊂ � there exists some positive constant C such that

Eθ |Z1/2
n (u1) − Z1/2

n (u2)|2 � C |u1 − u2|p+1

for all u1, u2 ∈ Un, θ ∈ K and n sufficiently large.

Lemma 7 For any compact K ⊂ � there exists some positive constant c such that

EθZ
1/2
n (u) � exp{−c |u|p+1}

for all u ∈ Un, θ ∈ K, and n ∈ N.

Using these lemmas and applying Theorems 1.9.1, 1.10.2 and 1.10.1 of [9], we get Theorems 1,

3, and 4, respectively.
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3. Proofs of the lemmas

For convenience of notation, all throughout this section C and c denote generic positive constants

which can differ from formula to formula (and even in the same formula), and we put ν =
1/(p + 1).

First of all let us fix some δ > 0 such that c d(t)|t |p � s(t) � C d(t)|t |p on (−δ, δ), and

s(t) � c on [−T , T ] \ (−δ/4, δ/4). To do so, we note that

|ψ(t)| ≤ |ψ(0)| + C|t |κ = C|t |p
(

|t |κ−p + c|ψ(0)||t |−p
)

� min{a, b} |t |p/2

for t ∈ (−δ, δ), since κ − p > (1 − p)/2 > 0 and ψ(0) = 0 in the case p > 0. It follows clearly

s(t) = d(t)|t |p + ψ(t) �

(

d(t) − min{a, b}
2

)

|t |p �
d(t)|t |p

2

and s(t) � 2 d(t)|t |p. Finally, on the compact set [−T , T ] \ (−δ/4, δ/4) we have s(t) � c since

the function s(·) is continuous.

Now, let us fix some sequence (An) such that An → +∞ sufficiently slow. More precisely, we

suppose that An n−ν → 0 and we will give some additional conditions below. We split the interval

[0, T ] into three parts:

E1 = {t : |t − θ | < An n−ν} = (θ − An n−ν, θ + An n−ν),

E2 = {t : An n−ν < |t − θ | < δ} = (θ − δ, θ − An n−ν) ∪ (θ + An n−ν, θ + δ),

E3 = {t : δ < |t − θ |} = (0, θ − δ) ∪ (θ + δ, T ).

In order to prove Lemma 5, we will only study the convergence of the one-dimensional (the

general case can be considered similarly) distributions of the process

ln Zn(u) =
n

∑

i=1

∫ T

0

ln
Sθu

(t)

Sθ (t)
dXi(t) − n

∫ T

0

[

Sθu
(t)

Sθ (t)
− 1

]

Sθ (t) dt

=
n

∑

i=1

∫ T

0

f dXi(t) − n

∫ T

0

g Sθ (t) dt,

where we denote

f = f (θ, t, u, n) = ln
Sθu

(t)

Sθ (t)
and g = g(θ, t, u, n) = Sθu

(t)

Sθ (t)
− 1.

The characteristic function of the random variable ln Zn(u) can be written as (see, e.g., [7],

Lemma 1.1)

φn(λ) = Eθ exp{i λ ln Zn(u)} = exp

{

n

∫ T

0

[ei λ f − 1 − i λ g]Sθ (t) dt

}

,

and hence

ln φn(λ) = n

∫ T

0

[ei λ f − 1 − i λ f ]Sθ (t) dt + i λ n

∫ T

0

[f − g]Sθ (t) dt. (1)

To study this expression, let us at first establish the two following properties.

(a) For any fixed u, we have limn→∞ g(θ, t, u, n) = 0 uniformly in θ ∈ K and t ∈ E2 ∪ E3.
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(b) We have

lim
n→∞

n

∫

E2∪E3

g2 Sθ (t) dt = 0.

To prove (a), we set y = t − θ ∈ (E2 − θ) ∪ (E3 − θ) and we write

|g(θ, t, u, n)| =
∣

∣

∣

∣

s(t − θu)

s(t − θ)
− 1

∣

∣

∣

∣

=
∣

∣

∣

∣

d(y − u n−ν) |y − un−ν |p + ψ(y − u n−ν) − d(y)|y|p − ψ(y)

s(y)

∣

∣

∣

∣

= |C (|y − u n−ν |p − |y|p) + ψ(y − u n−ν) − ψ(y)|
s(y)

� C
||y − u n−ν |p − |y|p|

s(y)
+ |ψ(y − u n−ν) − ψ(y)|

s(y)

= M1 + M2

with evident notations.

For y ∈ E2 − θ we have

M1 � C
||y − u n−ν |p − |y|p|

c|y|p = C

∣

∣

∣

∣

∣

∣

∣

∣

1 − u

y nν

∣

∣

∣

∣

p

− 1

∣

∣

∣

∣

�
C |u|
|y| nν

�
C |u|
An

−→ 0,

M2 �
C |u n−ν |κ

c
= C |u|κ n−νκ −→ 0 if p < 0,

M2 �
C |u n−ν |κ

c|y|p �
C |u|κ n−νκ

(An n−ν)p
= C |u|κ n−ν(κ−p)

A
p
n

−→ 0 if p > 0.

Finally for y ∈ E3 − θ , using the Hölder continuity of s(·), we have

|g(θ, t, u, n)| � C |u n−ν |κ
c

= C |u|κ n−νκ −→ 0.

So, (a) is proved.

To prove (b), we first note that

n

∫

E3

g2 Sθ (t) dt = n

∫

E3

(Sθu
(t) − Sθ (t))

2

Sθ (t)
dt = n

∫

E3−θ

(s(y − u n−ν) − s(y))2

s(y)
dy

� C n

∫

E3−θ

|u n−ν |2κ dy = C |u|2κ n−(2νκ−1) −→ 0

since 2νκ − 1 > 0. To conclude the proof it remains to show that

n

∫ θ+δ

θ+An n−ν

g2 Sθ (t) dt + n

∫ θ−An n−ν

θ−δ

g2 Sθ (t) dt −→ 0.

For the first term we have

n

∫ θ+δ

θ+An n−ν

g2 Sθ (t) dt = n

∫ δ

An n−ν

(s(y − u n−ν) − s(y))2

s(y)
dy
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� n

∫ δ

An n−ν

(s(y − u n−ν) − s(y))2

c|y|p dy

= C n

∫ δ

An n−ν

(|y − u n−ν |p − |y|p)2

|y|p dy

+ C n

∫ δ

An n−ν

(ψ(y − u n−ν) − ψ(y))2

|y|p dy

+ C n

∫ δ

An n−ν

(ψ(y − u n−ν) − ψ(y))(|y − u n−ν |p − |y|p)

|y|p dy

= n J1 + n J2 + n J3

with evident notations. Further

n J1 = C n

∫ δ nν

An

(|z − u|p − |z|p)2 n−2νp

|z|p n−νp
n−ν dz � C

∫ +∞

An

(|z − u|p − |z|p)2

|z|p dz −→ 0

since

(|z − u|p − |z|p)2

|z|p = |z|p
(

∣

∣

∣

∣

1 − u

z

∣

∣

∣

∣

p

− 1

)2

∼ |z|p
(

C

z

)2

= C |z|p−2

and p − 2 < −1. Similarly

n J2 � C n

∫ δ

An n−ν

|u n−ν |2κ
|y|p dy � C |u|2κ n−(2νκ−1)

∫ δ

0

|y|−p dy −→ 0

since 2νκ − 1 > 0 and −p > −1. Finally

|n J3| � C
√

(n J1) (n J2) −→ 0

by Cauchy–Schwarz inequality, and so the first term converges to 0.

The second term can be treated in the same way. So, (b) is proved.

Now let us return to the study of the characteristic function φn(·). Using Equation (1) we can

write

ln φn = ϕ1 + ϕ2 + ϕ3,

where we set

ϕk = n

∫

Ek

[ei λ f − 1 − i λ f ] Sθ (t) dt + i λ n

∫

Ek

[f − g]Sθ (t) dt.

For ϕ3 we get

ϕ3 = n

∫

E3

[

ei λ f − 1 − i λ f
]

Sθ (t) dt + i λ n

∫

E3

[f − g] Sθ (t) dt

≃ 1

2
n

∫

E3

(i λ f )2 Sθ (t) dt − 1

2
i λ n

∫

E3

g2 Sθ (t) dt

≃ −1

2
λ2 n

∫

E3

g2 Sθ (t) dt − 1

2
i λ n

∫

E3

g2 Sθ (t) dt −→ 0,

where the symbol ‘≃’ means equality of limits.
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In the same way, we get ϕ2 → 0, and it remains to study ϕ1. For this we set yu = y − u n−ν ,

α(y) = d(y)|y|p,

β(y) = s(y)

α(y)
= 1 + ψ(y)

d(y)|y|p

for y ∈ [−T , T ] \ {0}, and β(0) = 1. Note that the function β(·) is clearly Hölder continuous of

order

μ =
{

κ − p if p > 0,

min{κ, −p} if p < 0.

We have

ϕ1 = n

∫

E1

[

ei λ f − 1 − i λ f
]

Sθ (t) dt + i λ n

∫

E1

[f − g] Sθ (t) dt

= n

∫ An n−ν

−An n−ν

[

(

α(yu) β(yu)

α(y) β(y)

)i λ

− 1 − i λ ln
α(yu) β(yu)

α(y) β(y)

]

α(y) β(y) dy

− i λ n

∫ An n−ν

−An n−ν

[

α(yu) β(yu)

α(y) β(y)
− 1 − ln

α(yu) β(yu)

α(y) β(y)

]

α(y) β(y) dy

≃ n

∫ An n−ν

−An n−ν

[

αi λ(yu)

αi λ(y)
− 1 − i λ ln

α(yu)

α(y)

]

α(y) dy

+ n

∫ An n−ν

−An n−ν

αi λ(yu)

αi λ(y)

(

β i λ(yu)

β i λ(y)
− 1

)

α(y) dy

− i λ n

∫ An n−ν

−An n−ν

[

α(yu)

α(y)
− 1 − ln

α(yu)

α(y)

]

α(y) dy

− i λ n

∫ An n−ν

−An n−ν

α(yu)

(

β(yu)

β(y)
− 1

)

dy

= n I1 + n I2 − i λ n I3 − i λ n I4

with evident notations.

Using the Hölder continuity of β(·), we get

|n I4| � n

∫ An n−ν

−An n−ν

α(yu)
|β(yu) − β(y)|

β(y)
dy � n C |u n−ν |μ

∫ An n−ν

−An n−ν

α(yu)

β(y)
dy

≃ C |u|μ n1−νμ

∫ An n−ν

−An n−ν

α(yu) dy = C |u|μ n1−νμ

∫ (An−u) n−ν

(−An−u) n−ν

d(x)|x|p dx

= C |u|μ n1−νμ

[

a

p + 1
(An + u)p+1 + b

p + 1
(An − u)p+1

]

n−ν(p+1)

� C |u|μ (An + |u|)p+1n−νμ −→ 0

if (An) is chosen, so that An n−ν2μ → 0.

Similarly, noting that β i λ(·) is also Hölder continuous of order μ, we get

|n I2| � n

∫ An n−ν

−An n−ν

|αi λ(yu)|
|αi λ(y)|

|β i λ(yu) − β i λ(y)|
|β i λ(y)| α(y) dy
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= n

∫ An n−ν

−An n−ν

|β i λ(yu) − β i λ(y)| α(y) dy � n C |u n−ν |μ
∫ An n−ν

−An n−ν

α(y) dy

= C |u|μ n1−νμ Ap+1
n n−ν(p+1) = C |u|μ Ap+1

n n−νμ −→ 0

under the same condition on the choice of (An).

For n I3 we can write

n I3 = n

∫ An n−ν

−An n−ν

[

d(yu)|yu|p
d(y)|y|p − 1 − ln

d(yu)|yu|p
d(y)|y|p

]

d(y)|y|p dy

= n

∫ An

−An

[

d(z − u)

d(z)

∣

∣

∣

∣

1 − u

z

∣

∣

∣

∣

p

− 1 − ln

(

d(z − u)

d(z)

∣

∣

∣

∣

1 − u

z

∣

∣

∣

∣

p)]

d(z)|z|p
nν(p+1)

dz

−→
∫ ∞

−∞

[

d(z − u)

d(z)

∣

∣

∣

∣

1 − u

z

∣

∣

∣

∣

p

− 1 − ln

(

d(z − u)

d(z)

∣

∣

∣

∣

1 − u

z

∣

∣

∣

∣

p)]

d(z)|z|p dz.

Note that the last integral is finite, since

d(z − u)

d(z)
=

(a

b

)sign(u)1[u− ,u+](z)
,

and hence the integrand behaves as C|z|p−2 as z → ∞.
Finally, for n I1, we have

n I1 = n

∫ An n−ν

−An n−ν

[

d i λ(yu)|yu|i λ p

d i λ(y)|y|i λ p
− 1 − i λ ln

d(yu)|yu|p
d(y)|y|p

]

d(y)|y|p dy

= n

∫ An

−An

[

(

d(z − u)

d(z)

∣

∣

∣

∣

1 − u

z

∣

∣

∣

∣

p)i λ

− 1 − i λ ln

(

d(z − u)

d(z)

∣

∣

∣

∣

1 − u

z

∣

∣

∣

∣

p)

]

d(z)|z|p
nν(p+1)

dz

−→
∫ ∞

−∞

[

(

d(z − u)

d(z)

∣

∣

∣

∣

1 − u

z

∣

∣

∣

∣

p)i λ

− 1 − i λ ln

(

d(z − u)

d(z)

∣

∣

∣

∣

1 − u

z

∣

∣

∣

∣

p)

]

d(z)|z|p dz,

where the last integral is finite as before.

So we get

ln φn −→ L =
∫ ∞

−∞

[

(

d(z − u)

d(z)

)i λ ∣

∣

∣

∣

1 − u

z

∣

∣

∣

∣

i λ p

− 1 − i λ p ln

∣

∣

∣

∣

1 − u

z

∣

∣

∣

∣

]

d(z)|z|p dz

− i λ

∫ ∞

−∞

[

d(z − u)

d(z)

∣

∣

∣

∣

1 − u

z

∣

∣

∣

∣

p

− 1 − p ln

∣

∣

∣

∣

1 − u

z

∣

∣

∣

∣

]

d(z)|z|p dz.

To terminate the proof of Lemma 5, it remains to show that L = ln φ, where φ(·) is the

characteristic function of ln Z(u).

Recall that

ln Z(u) = p

∫ +∞

−∞
ln

∣

∣

∣

∣

1 − u

z

∣

∣

∣

∣

π(dz) + ln
a

b

∫ u

0

Y (dz)

−
∫ +∞

−∞

[
∣

∣

∣

∣

1 − u

z

∣

∣

∣

∣

p

− 1 − p ln

∣

∣

∣

∣

1 − u

z

∣

∣

∣

∣

]

d(z)|z|p dz

− a − b

p + 1
|u|p+1 sign(u)

= K1 + K2 − K3 − K4

with evident notations.
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Hence

ln φ(λ) = ln E exp{i λ ln Z(u)}
= ln E exp{i λ K1 + i λ K2} − i λ K3 − i λ K4

= ln E exp

{

i λ

∫ +∞

−∞

[

p ln

∣

∣

∣

∣

1 − u

z

∣

∣

∣

∣

+ ln
(a

b

)

sign(u) 1[u−,u+](z)

]

π(dz)

}

+ i λ ln
a

b

∫ u

0

d(z)|z|p dz − i λ K3 − i λ K4

=
∫ +∞

−∞

[

exp

{

i λ p ln

∣

∣

∣

∣

1 − u

z

∣

∣

∣

∣

+ i λ ln
(a

b

)

sign(u) 1[u−,u+](z)

}

− 1

− i λ p ln

∣

∣

∣

∣

1 − u

z

∣

∣

∣

∣

− i λ ln
(a

b

)

sign(u) 1[u−,u+](z)

]

d(z)|z|p dz

+ i λ ln
a

b

∫ u

0

d(z)|z|p dz − i λ K3 − i λ K4

=
∫ +∞

−∞

[

∣

∣

∣

∣

1 − u

z

∣

∣

∣

∣

i λ p (

d(z − u)

d(z)

)i λ

− 1 − i λ p ln

∣

∣

∣

∣

1 − u

z

∣

∣

∣

∣

]

d(z)|z|p dz

− i λ K3 − i λ K4

= L(λ) + i λ

∫ +∞

−∞

∣

∣

∣

∣

1 − u

z

∣

∣

∣

∣

p (

d(z − u)

d(z)
− 1

)

d(z)|z|p dz − i λ K4

= L(λ) + i λ

∫ +∞

−∞
|z − u|p (a − b) sign(u) 1[u−,u+](z) dz − i λ K4

= L(λ) + i λ (a − b)

∫ u

0

|z − u|p dz − i λ
a − b

p + 1
|u|p+1 sign(u) = L(λ).

So, the convergence of the one-dimensional distributions is proved. The case of higher-

dimensional distributions can be treated similarly. The uniformity in θ on any compact set K ⊂ �

is evident. Lemma 5 is proved.

Now let us prove Lemma 6. For |u1 − u2| � 1 the assertion is evident since for all θ and n

we have

Eθ

∣

∣Z1/2
n (u1) − Z1/2

n (u2)
∣

∣

2
� 4 � 4 |u1 − u2|2p+1.

Suppose now that |u1 − u2| � 1. Denoting � = u1 − u2 and using Lemma 1.5 of [7] we can

write

Eθ

∣

∣Z1/2
n (u1) − Z1/2

n (u2)
∣

∣

2
� n

∫ T

0

[√

Sθu1
(t) −

√

Sθu2
(t)

]2

dt

= n

∫ T

0

[

√

s(t − θ − u1 n−ν) −
√

s(t − θ − u2 n−ν)
]2

dt

= n

∫ T −θ−u2 n−ν

−θ−u2 n−ν

[

√

s(y − � n−ν) −
√

s(y)
]2

dy

= n

∫ T −θ−u2 n−ν

−θ−u2 n−ν

[s(y − � n−ν) − s(y)]2

[
√

s(y − � n−ν) +
√

s(y)]2
dy

= n I1 + n I2,
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where I1 and I2 are the integrals of the same function over the interval (−δ/2, δ/2) and over the

set E = (−θ − u2 n−ν, T − θ − u2 n−ν) \ (−δ/2, δ/2), respectively.

On the set E we have |y| � δ/2, and hence |y − � n−ν | � δ/4 for n sufficiently large. Recall

that on the set {y : |y| � δ/4} the function s(·) is separated from zero and Hölder continuous of

order κ. So, for n sufficiently large we get

n I2 � n

∫

E

|� n−ν |2κ
c

dy � C n|� n−ν |p+1 = C |u1 − u2|p+1.

Further, for the first integral we have

n I1 � C n

∫ δ/2

−δ/2

[d(y − � n−ν)|y − � n−ν |p − d(y)|y|p]2

[
√

s(y − � n−ν) +
√

s(y)]2
dy

+ C n

∫ δ/2

−δ/2

[ψ(y − � n−ν) − ψ(y)]2

s(y)
dy

� C n

∫ δ/2

−δ/2

[d(y − � n−ν)|y − � n−ν |p − d(y)|y|p]2

1/2[
√

d(y − � n−ν)|y − � n−ν |p/2 +
√

d(y)|y|p/2]2
dy

+ C n

∫ δ/2

−δ/2

|� n−ν |2κ
1/2 d(y)|y|p dy

� C n

∫ δ/2

−δ/2

[

√

d(y − � n−ν)|y − � n−ν |p/2 −
√

d(y)|y|p/2
]2

dy

+ C n |� n−ν |p+1

∫ δ/2

−δ/2

1

d(y)
|y|−p dy

� C n |� n−ν |p+1

∫ ∞

−∞
[d̃(z − 1)|z − 1|p/2 − d̃(z)|z|p/2]2 dz + C |�|p+1

= C |�|p+1 = C |u1 − u2|p+1.

Here in the last integral we have denoted d̃(z) =
√

d(z �) and noticed that the integrand behaves

as C|z|p−2 as z → ∞.

So, in the case |u1 − u2| � 1, for all θ and n sufficiently large we get finally

Eθ |Z1/2
n (u1) − Z1/2

n (u2)|2 � C n I1 + C n I2 � C |u1 − u2|p+1.

Lemma 6 is proved.

It remains to verify Lemma 7. Using Lemma 1.5 of [7], for any n, θ and u ∈ Un we can write

EθZ
1/2
n (u) � exp

{

−1

2
n F(u n−ν)

}

,

where for all u ∈ (α − θ, β − θ) ⊂ (−T , T ) we denote

F(u) =
∫ T

0

[

√

Sθ+u(t) −
√

Sθ (t)
]2

dt.

First we suppose |u| � δ/2. Since θ ∈ K ⊂ (0, T ), we have

F(u) =
∫ T

0

[

√

s(t − θ − u) −
√

s(t − θ)
]2

dt

=
∫ T −θ

−θ

[

√

s(y − u) −
√

s(y)
]2

dy �

∫ ε

−ε

[

√

s(y − u) −
√

s(y)
]2

dy,
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where we can take 0 < ε < δ/2. Hence |y| � δ/2 < δ and |y − u| � δ, and so we get

F(u) �

∫ ε

−ε

[s(y − u) − s(y)]2

[
√

s(y − u) +
√

s(y)]2
dy

�

∫ ε

−ε

[(d(y − u)|y − u|p − d(y)|y|p) + (ψ(y − u) − ψ(y))]2

[
√

2 d(y − u)|y − u|p/2 +
√

2 d(y)|y|p/2]2
dy

= c

∫ ε

−ε

[

√

d(y − u)|y − u|p/2 −
√

d(y)|y|p/2
]2

dy

+ c

∫ ε

−ε

[ψ(y − u) − ψ(y)]2

[
√

d(y − u)|y − u|p/2 +
√

d(y)|y|p/2]2
dy

+ c

∫ ε

−ε

(
√

d(y − u)|y − u|p/2 −
√

d(y)|y|p/2)(ψ(y − u) − ψ(y))√
d(y − u)|y − u|p/2 +

√
d(y)|y|p/2

dy

= I1 + I2 ± |I3|

with evident notations.

For the first integral we have

I1 = C|u|p
∫ ε/|u|

−ε/|u|

[

√

d(u(z − 1))|z − 1|p/2 −
√

d(u z)|z|p/2
]2

dz,

and so c|u|p � I1 � C|u|p since the last integral can be bounded from above and from below by

the integral of the same function over R and over (−ε/T , ε/T ), respectively.

For the second integral we get

I2 � C|u|2κ
∫ ε

−ε

1

[
√

d(y)|y|p/2]2
dy = C|u|2κ .

Using Cauchy–Schwarz inequality, we obtain |I3| � C
√

I1 I2 � C|u|κ+(p+1)/2 for the last

integral, and finally

F(u) � c |u|p+1 − C|u|κ+(p+1)/2 = c |u|p+1
(

1 − C |u|κ−(p+1)/2
)

� c |u|p+1

for u sufficiently small, that is for |u| � σ , where σ > 0 is some fixed constant.

On the other hand, we have also

inf
|u|�σ

F(u) = c > 0,

since otherwise we should have Sθ+u∗(t) = Sθ (t) for some fixed u∗ and almost all t ∈ [0, T ],
which is impossible. Hence, for all |u| � σ we can write

F(u) � c � c
|u|p+1

T p+1
= c |u|p+1.

So, for all θ and u ∈ (α − θ, β − θ) we have

F(u) � c |u|p+1,

and hence for all n, θ , and u ∈ Un we can write

EθZ
1/2
n (u) � exp

{

−1

2
n F(u n−ν)

}

� exp{−c |u|p+1}.

Lemma 7 is proved.
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4. Concluding remarks

(1) For simplicity of exposition, in this paper we considered the Bayesian estimators and the

notion of asymptotic efficiency in the case of quadratic loss function. In fact, the results hold for

a larger class of loss functions (see [9] for more details).

(2) Again for simplicity of exposition, we considered the case where the unknown parameter θ

is a shift parameter, that is Sθ (t) = s(t − θ). In fact, the results hold in a more general situation,

for example when the intensity function is strictly positive (except possibly in θ ) and can be

written as

Sθ (t) = d(t − θ)|t − θ |p + �(θ, t),

where p ∈ (−1, 0) ∪ (0, 1), the function d(·) is as before, and the function �(θ, t) is continuous,

and uniformly in t Hölder continuous (of order higher than (p + 1)/2) with respect to θ . In the

case p > 0 we suppose equally that �(θ, θ) = 0. It is not difficult to obtain for this case the same

results as those presented above.

(3) Like in Chapter 6 of [9], one can consider a situation when the intensity function has several

singularities of the same order. More precisely, we suppose that t1 < · · · < tr with tr − t1 < T ,

the unknown parameter θ ∈ � = (α, β) ⊆ (−t1, T − tr), and the intensity function is strictly

positive and can be written as

Sθ (t) =
r

∑

i=1

di(t − θ − ti) |t − θ − ti |p + �(θ, t),

where p ∈ (−1, 0) ∪ (0, 1),

di(x) =
{

ai if x < 0,

bi if x > 0,

ai, bi > 0, and the function �(θ, t) is continuous, and uniformly in t Hölder continuous (of order

higher than (p + 1)/2) with respect to θ . In the case p > 0 we suppose equally that �(θ, θ + ti) =
0. It is not difficult to obtain for this problem the results similar to those presented above. The

difference is that now one needs to introduce the process Z (and hence the random variables ζ

and ξ ) in a slightly different manner. More precisely, for each i = 1, . . . , n, one should introduce

a process Zi in the same manner (but using constants ai and bi instead of a and b) as Z was

introduced. Further one should consider the process Z defined by

Z(u) =
r

∏

i=1

Zi(u),

where the processes Zi are independent.
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Abstract Different change-point type models encountered in statistical inference for

stochastic processes give rise to different limiting likelihood ratio processes. In a previ-

ous paper of one of the authors it was established that one of these likelihood ratios, which

is an exponential functional of a two-sided Poisson process driven by some parameter, can

be approximated (for sufficiently small values of the parameter) by another one, which is an

exponential functional of a two-sided Brownian motion. In this paper we consider yet another

likelihood ratio, which is the exponent of a two-sided compound Poisson process driven by

some parameter. We establish, that similarly to the Poisson type one, the compound Poisson

type likelihood ratio can be approximated by the Brownian type one for sufficiently small

values of the parameter. We equally discuss the asymptotics for large values of the parameter

and illustrate the results by numerical simulations.

Keywords Compound Poisson process · Non-regularity · Change-point · Limiting

likelihood ratio process · Bayesian estimators · Maximum likelihood estimator · Limiting

distribution · Limiting mean squared error · Asymptotic relative efficiency
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1 Introduction

In this work we are interested by the asymptotic study of non-regular parametric statis-

tical models encountered in statistical inference for stochastic processes. An exhaustive
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exposition of the parameter estimation theory in both regular and non-regular cases is given

in the classical book (Ibragimov and Khasminskii 1981). They have developed a general

theory of estimation based on the analysis of renormalized likelihood ratio. Their approach

consists in proving first that the renormalized likelihood ratio (with a properly chosen renor-

malization rate) weekly converges to some non-degenerate limit: the limiting likelihood ratio

process. Thereafter, the properties of the estimators (namely their rate of convergence and

limiting distributions) are deduced. Finally, based on the estimators, one can also construct

confidence intervals, tests, and so on. Note that this approach also provides the convergence

of moments, allowing one to deduce equally the asymptotics of some statistically important

quantities, such as the mean squared errors of the estimators.

It is well known that in the regular case the limiting likelihood ratio is given by the LAN

property and is the same for different models (the renormalization rate being usually 1/
√

n).

So, the classical estimators—the maximum likelihood estimator and the Bayesian estima-

tors—are consistent, asymptotically normal (usually with rate 1/
√

n) and asymptotically

efficient.

In non-regular cases the situation essentially changes: the renormalization rate is usually

better (for example, 1/n in change-point type models), but the limiting likelihood ratio can

be different in different models. So, the classical estimators are still consistent, but may have

different limiting distributions (though with a better rate) and, in general, only the Bayesian

estimators are asymptotically efficient.

In Dachian (2010) a relation between two different limiting likelihood ratios arising in

change-point type models was established by one of the authors. More precisely, it was shown

that the first one, which is an exponential functional of a two-sided Poisson process driven

by some parameter, can be approximated (for sufficiently small values of the parameter) by

the second one, defined by

Z0(x) = exp

{

W (x) −
1

2
|x |

}

, x ∈ R, (1)

where W is a standard two-sided Brownian motion. In this paper we consider yet another lim-

iting likelihood ratio process arising in change-point type models and show that it is related

to Z0 in a similar way.

1.1 The process Zγ, f

We introduce the random process Zγ, f on R as the exponent of a two-sided compound

Poisson process given by

ln Zγ, f (x) =

⎧

⎪

⎨

⎪

⎩

∑�+(x)

k=1 ln
f (ε+

k +γ )

f (ε+
k )

, if x ≥ 0,

∑�−(−x)

k=1 ln
f (ε−

k −γ )

f (ε−
k )

, if x ≤ 0,
(2)

where γ > 0, f is a strictly positive density of some random variable ε with mean 0 and

variance 1,�+ and �− are two independent Poisson processes of intensity 1 on R+, ε±
k are

independent random variables with density f which are also independent of �±, and we use

the convention
∑0

k=1 ak = 0. We equally introduce the random variables

ζγ, f =
∫

R
x Zγ, f (x) dx

∫

R
Zγ, f (x) dx

,

ξ−
γ, f = inf

{

z : Zγ, f (z) = sup
x∈R

Zγ, f (x)

}

, (3)
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ξ+
γ, f = sup

{

z : Zγ, f (z) = sup
x∈R

Zγ, f (x)

}

,

ξα
γ, f = α ξ−

γ, f + (1 − α) ξ+
γ, f , α ∈ [0, 1],

related to this process, as well as their second moments Bγ, f = Eζ 2
γ, f and Mα

γ, f = E(ξα
γ, f )

2.

An important particular case of this process is the one where the density f is Gaussian,

that is, ε ∼ N (0, 1). In this case we will omit the index f and write Zγ instead of Zγ, f , ξ
α
γ

instead of ξα
γ, f , and so on. Note that since

ln
f (ε ± γ )

f (ε)
= ∓γ ε −

γ 2

2
∼ N (−γ 2/2, γ 2),

the process Zγ is symmetric and has Gaussian jumps.

The process Zγ, f , up to a linear time change, arises in some non-regular, namely change-

point type, statistical models as the limiting likelihood ratio process, and the variables ζγ, f

and ξα
γ, f as the limiting distributions of the Bayesian estimators and of the appropriately cho-

sen maximum likelihood estimator, respectively. The maximum likelihood estimator being

not unique in the underlying models, the appropriate choice here is a linear combination

with weights α and 1 − α of its minimal and maximal values. Moreover, the quantities

Bγ, f and Mα
γ, f are the limiting mean squared errors (sometimes also called limiting vari-

ances) of these estimators and, the Bayesian estimators being asymptotically efficient, the

ratio Eα
γ, f = Bγ, f /Mα

γ, f is the asymptotic relative efficiency of this maximum likelihood

estimator.

The examples include the two-phase regression model and the threshold autoregressive

(TAR) model. The linear case of the former was studied by Koul and Qian (2002), while the

non-linear one was investigated by Ciuperca (2004). Concerning the TAR model, the first

results were obtained by Chan (1993) where he studies the least squares estimator, which

is, in the Gaussian case, equivalent to the maximum likelihood estimator. A more recent

and exhaustive study was performed by Chan and Kutoyants (submitted) (for the Gaussian

TAR model) and in Chan and Kutoyants (to appear). Note finally that in both models, the

parameter γ of the limiting likelihood ratio is related to the jump size of the model.

1.2 The process Z0

On the other hand, many change-point type statistical models encountered in various fields of

statistical inference for stochastic processes rather have as limiting likelihood ratio process,

up to a linear time change, the process Z0 defined by (1). In this case, the limiting distributions

of the Bayesian estimators and of the maximum likelihood estimator are given by

ζ0 =
∫

R
x Z0(x) dx

∫

R
Z0(x) dx

and ξ0 = argsup
x∈R

Z0(x), (4)

respectively, while the limiting mean squared errors of these estimators are B0 = Eζ 2
0 and

M0 = Eξ2
0 . The Bayesian estimators are still asymptotically efficient, and the asymptotic

relative efficiency of the maximum likelihood estimator is E0 = B0/M0.

A well-known example is the model of a discontinuous signal in a white Gaussian noise

exhaustively studied by Ibragimov and Khasminskii (1975) and Ibragimov and Khasminskii

(1981, Chap. 7.2), but one can also cite change-point type models of dynamical systems with

small noise considered by Kutoyants (1984) and Kutoyants (1994, Chap. 5), those of ergodic

diffusion processes examined by Kutoyants (2004, Chap. 3), a change-point type model of
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a delay equation analyzed by Küchler and Kutoyants (2000), a model of a discontinuous

periodic signal in a time inhomogeneous diffusion explored by Höpfner and Kutoyants

(2010), a change-point type model of a threshold diffusion process investigated by Kutoyants

(to appear), and so on.

Let us also note that Terent’yev (1968) determined the Laplace transform of P (|ξ0| > t)

and calculated the constant M0 = 26. Moreover, the explicit expression of the density of ξ0

was later successively provided by Bhattacharya and Brockwell (1976), Yao (1987) and Fujii

(2007). Regarding the constant B0, Ibragimov and Khasminskii (1981, Chap. 7.3) showed

by means of numerical simulation that B0 = 19.5 ± 0.5, and so E0 = 0.73 ± 0.03. Later

Golubev (1979) expressed B0 in terms of the second derivative (with respect to a parameter)

of an improper integral of a composite function of modified Hankel and Bessel functions.

Finally Rubin and Song (1995) obtained the exact values B0 = 16 ζ(3) and E0 = 8 ζ(3)/13,

where ζ is Riemann’s zeta function defined by ζ(s) =
∑∞

n=1 1/ns .

1.3 The results of the present paper

In this paper we establish that the limiting likelihood ratio processes Zγ, f and Z0 are related.

More precisely, under some regularity assumptions on f , we show that as γ → 0, the process

Zγ, f (y/Iγ 2), y ∈ R, (where I is the Fisher information related to f ) converges weakly in

the space D0(−∞,+∞) (the Skorohod space of functions on R without discontinuities of

the second kind and vanishing at infinity) to the process Z0. Hence, the random variables

Iγ 2ζγ, f and Iγ 2ξα
γ, f converge weakly to the random variables ζ0 and ξ0, respectively. We

show equally that the convergence of moments of these random variables holds and so, in

particular, I 2γ 4 Bγ, f → 16 ζ(3), I 2γ 4 Mα
γ, f → 26 and Eα

γ, f → 8 ζ(3)/13. Besides their

theoretical interest, these results have also some practical implications. For example, they

allow to construct tests and confidence intervals on the base of the distributions of ζ0 and ξ0

(rather than on the base of those of ζγ, f and ξα
γ, f , which depend on the density f and are not

known explicitly) in models having the process Zγ, f with a small γ as a limiting likelihood

ratio. Also, the limiting mean squared errors of the estimators and the asymptotic relative

efficiency of the maximum likelihood estimator can be approximated as

Bγ, f ≈
16 ζ(3)

I 2γ 4
, Mα

γ, f ≈
26

I 2γ 4
and Eα

γ, f ≈
8 ζ(3)

13

in such models.

These are the main results of the present paper, and they are presented in Sect. 2, where

we also briefly discuss the second possible asymptotics γ → +∞ and present some numer-

ical simulations of the quantities Bγ , Mα
γ and Eα

γ for γ ∈ ]0,∞[. Finally, the proofs of the

necessary lemmas are carried out in Sect. 3.

Concluding the introduction let us note that a preliminary exposition (in the particular

Gaussian case) of the results of the present paper can be found in Dachian and Negri (2009)

and (2010).

2 Asymptotics of Zγ, f

Let γ > 0, and let f be a strictly positive density of some random variable ε with mean 0

and variance 1.
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2.1 Regularity assumptions

We will always suppose that
√

f is continuously differentiable in L2, that is, there exists ψ ∈
L2 satisfying

∫

R

(√
f (x+h)−

√
f (x)−h ψ(x)

)2
dx = o(h2) and

∫

R
(ψ(x+h)−ψ(x))2

dx = o(1), as well as that ‖ψ‖ > 0.

Note that under this assumptions, the model of i.i.d. observations with density f (x + θ)

is, in particular, LAN at θ = 0 with Fisher information I = 4 ‖ψ‖2 = 4
∫

R
ψ2(x) dx

(see, for example, Ibragimov and Khasminskii (1981, Chap. 2.1)) and so, using characteristic

functions, we have

lim
n→∞

(

Ee
i t ln

f (ε+u/
√

n)
f (ε)

)n

= e
i
(

− I u2

2

)

t− 1
2 I u2t2

and, more generally,

lim
γ→0

(

Ee
i t ln

f (ε+γ )
f (ε)

)1/γ 2

= e
i
(

− I
2

)

t− 1
2 I t2

(5)

for all t ∈ R.

Note also, that only the convergence (5) will be needed in our considerations. So,

one can rather assume it directly, or make any other regularity assumptions sufficient

for it as, for example, Hájek’s conditions: f is differentiable and the Fisher information

I =
∫

R
f −1(x)

(

f ′(x)
)2

dx is finite and strictly positive (see, for example, Ibragimov and

Khasminskii (1981, Chap. 2.2)).

Note finally, that in the Gaussian case the regularity assumptions clearly hold and we have

I = 1.

2.2 The asymptotics γ → 0

Let us consider the process Xγ, f (y) = Zγ, f (y/Iγ 2), y ∈ R, where Zγ, f is defined by (2).

Note that
∫

R
y Xγ, f (y) dy

∫

R
Xγ, f (y) dy

= Iγ 2ζγ, f ,

inf

{

z : Xγ, f (z) = sup
y∈R

Xγ, f (y)

}

= Iγ 2ξ−
γ, f

and

sup

{

z : Xγ, f (z) = sup
y∈R

Xγ, f (y)

}

= Iγ 2ξ+
γ, f ,

where the random variables ζγ, f and ξ±
γ, f are defined by (3). Remind also the process Z0

on R defined by (1) and the random variables ζ0 and ξ0 defined by (4). Recall finally the

quantities Bγ, f = Eζ 2
γ, f , Mα

γ, f = E(ξα
γ, f )

2, Eα
γ, f = Bγ, f /Mα

γ, f , as well as B0 = Eζ 2
0 =

16 ζ(3), M0 = Eξ2
0 = 26 and E0 = B0/M0 = 8 ζ(3)/13. Now we can state the main result

of the present paper.

Theorem 1 The process Xγ, f converges weakly in the space D0(−∞,+∞) to the process

Z0 as γ → 0. In particular, the random variable Iγ 2ζγ, f converges weakly to the random
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variable ζ0 and, for any α ∈ [0, 1], the random variable Iγ 2ξα
γ, f converges weakly to the

random variable ξ0. Moreover, for any k > 0 we have

I kγ 2k Eζ k
γ, f → Eζ k

0 and I kγ 2k E(ξα
γ, f )

k → Eξ k
0 .

In particular, I 2γ 4 Bγ, f → 16 ζ(3), I 2γ 4 Mα
γ, f → 26 and Eα

γ, f → 8 ζ(3)/13.

The results concerning the random variable ζγ, f are direct consequence of Ibragimov and

Khasminskii (1981, Theorem 1.10.2) and the following three lemmas.

Lemma 2 The finite-dimensional distributions of the process Xγ, f converge to those of Z0

as γ → 0.

Lemma 3 For any C > 1/4 we have

E

∣

∣

∣X
1/2
γ, f (y1) − X

1/2
γ, f (y2)

∣

∣

∣

2
≤ C |y1 − y2|

for all sufficiently small γ and all y1, y2 ∈ R.

Lemma 4 For any c ∈ ] 0 , 1/8 [ we have

EX
1/2
γ, f (y) ≤ exp (−c |y|)

for all sufficiently small γ and all y ∈ R.

Note that these lemmas are not sufficient to establish the weak convergence of the pro-

cess Xγ, f in the space D0(−∞,+∞) and the results concerning the random variable ξα
γ, f .

However, the increments of the process ln Xγ, f being independent, the convergence of its

restrictions (and hence of those of Xγ, f ) on finite intervals [A, B] ⊂ R (that is, conver-

gence in the Skorohod space D[A, B] of functions on [A, B] without discontinuities of the

second kind) follows from Gihman and Skorohod (1974, Theorem 6.5.5), Lemma 2 and the

following lemma.

Lemma 5 For any δ > 0 we have

lim
h→0

lim
γ→0

sup
|y1−y2|<h

P
{∣

∣ln Xγ, f (y1) − ln Xγ, f (y2)
∣

∣ > δ
}

= 0.

Now, Theorem 1 follows from the following estimate on the tails of the process Xγ, f by

standard argument (see, for example, Ibragimov and Khasminskii (1981)).

Lemma 6 For any b ∈ ] 0 , 1/12 [ we have

P

{

sup
|y|>A

Xγ, f (y) > e−bA

}

≤ 4 e−bA

for all sufficiently small γ and all A > 0.

The proofs of all these lemmas will be given in Sect. 3.

120 On Compound Poisson Processes Arising in Change-Point Type Models



Stat Inference Stoch Process (2011) 14:255–271 261

2.3 The asymptotics γ → +∞

Now let us discuss the second possible asymptotics γ → +∞. It can be shown that in

this case, the process Zγ, f converges weakly in the space D0(−∞,+∞) to the process

Z∞(x) = �{−η<x<τ }, x ∈ R, where η and τ are two independent exponential random vari-

ables with parameter 1. So, the random variables ζγ, f , ξ
−
γ, f , ξ

+
γ, f and ξα

γ, f converge weakly

to the random variables

ζ∞ =
∫

R
x Z∞(x) dx

∫

R
Z∞(x) dx

=
τ − η

2
,

ξ−
∞ = inf

{

z : Z∞(z) = sup
x∈R

Z∞(x)

}

= −η,

ξ+
∞ = sup

{

z : Z∞(z) = sup
x∈R

Z∞(x)

}

= τ

and

ξα
∞ = α ξ−

∞ + (1 − α) ξ+
∞ = (1 − α) τ − α η,

respectively. It can be equally shown that, moreover, for any k > 0 we have

Eζ k
γ, f → Eζ k

∞ and E(ξα
γ, f )

k → E(ξα
∞)k .

In particular, denoting B∞ = Eζ 2
∞, Mα

∞ = E(ξα
∞)2 and Eα

∞ = B∞/Mα
∞, we finally have

Bγ, f → B∞ = E

(

τ − η

2

)2

=
1

2
,

Mα
γ, f → Mα

∞ = E ((1 − α) τ − α η)2 = 6

(

α −
1

2

)2

+
1

2
(6)

and

Eα
γ, f → Eα

∞ =
1

12
(

α − 1
2

)2 + 1
. (7)

Let us note that these convergences are natural, since the process Z∞ can be considered as

a particular case of the process Zγ, f with γ = +∞ under natural conventions f (ε±∞) = 0

and ln 0 = −∞.

Note also, that Z∞ is the limiting likelihood ratio process in the problem of estimating the

parameter θ by i.i.d. uniform observations on [θ, θ + 1]. So, in this problem, the variables

ζ∞ and ξα
∞ are the limiting distributions of the Bayesian estimators and of the appropriately

chosen maximum likelihood estimator, respectively, while B∞ and Mα
∞ are the limiting

mean squared errors of these estimators and, the Bayesian estimators being asymptotically

efficient, Eα
∞ is the asymptotic relative efficiency of this maximum likelihood estimator.

Finally observe, that the formulae (6) and (7) clearly imply that in the latter problem

(as well as in any problem having Z∞ as limiting likelihood ratio) the best choice of the

maximum likelihood estimator is α = 1/2, and that the so chosen maximum likelihood

estimator is asymptotically efficient. This choice was also suggested for TAR model (which

has limiting likelihood ratio Zγ ) by Chan and Kutoyants (submitted). For large values of γ

this suggestion is confirmed by our asymptotic results. However, we see that for small values

of γ the choice of α will not be so important, since the limits in Theorem 1 do not depend

on α.
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2.4 Numerical simulations

Here we present some numerical simulations (in the Gaussian case) of the quantities Bγ , Mα
γ

and Eα
γ for γ ∈ ]0,∞[. Besides giving approximate values of these quantities, the simulation

results illustrate both the asymptotics

Bγ =
B0

γ 4
+ o(γ −4), Mα

γ =
M0

γ 4
+ o(γ −4) and Eα

γ → E0 as γ → 0,

with B0 = 16 ζ(3) ≈ 19.2329, M0 = 26 and E0 = 8 ζ(3)/13 ≈ 0.7397, and

Bγ → B∞, Mα
γ → Mα

∞ and Eα
γ → Eα

∞ as γ → ∞,

with B∞ = 0.5, Mα
∞ = 6 (α − 0.5)2 + 0.5 and Eα

∞ = 1/
(

12 (α − 0.5)2 + 1
)

.

First, we simulate the events x+
1 , x+

2 , . . . of the Poisson process �+ and the events

x−
1 , x−

2 , . . . of the Poisson process �− (both of intensity 1), as well as the partial sums

S+
1 , S+

2 , . . . of the i.i.d. N (0, 1) sequence ε+
1 , ε+

2 , . . . and the partial sums S−
1 , S−

2 , . . . of the

i.i.d. N (0, 1) sequence ε−
1 , ε−

2 , . . .. For convenience we also put x+
0 = x−

0 = S+
0 = S−

0 = 0.

Then we calculate

ζγ =
∫

R
x Zγ (x) dx

∫

R
Zγ (x) dx

=

∑∞
i=0

1
2

eS+
i

(

(x+
i+1)

2 − (x+
i )

2
)

−
∑∞

i=0
1
2

eS−
i

(

(x−
i+1)

2 − (x−
i )

2
)

∑∞
i=0 eS+

i (x+
i+1 − x+

i ) +
∑∞

i=0 eS−
i (x−

i+1 − x−
i )

,

ξ−
γ = inf

{

z : Zγ (z) = sup
x∈R

Zγ (x)

}

=
{

x+
k , if S+

k > S−
ℓ ,

−x−
ℓ+1, otherwise,

ξ+
γ = sup

{

z : Zγ (z) = sup
x∈R

Zγ (x)

}

=
{

x+
k+1, if S+

k ≥ S−
ℓ ,

−x−
ℓ , otherwise,

and

ξα
γ = α ξ−

γ + (1 − α) ξ+
γ ,

where

k = argmax
i≥0

S+
i and ℓ = argmax

i≥0

S−
i ,

and we use the values 1/2, 1/4 and 0 for α. Note that in this Gaussian case (due to the sym-

metry of the process Zγ ) the random variable ξ1−α
γ has the same law as the variable −ξα

γ ,

that’s why we use for α only values less or equal than 1/2.

Finally, repeating these simulations 107 times (for each value of γ ), we approximate

Bγ = Eζ 2
γ and Mα

γ = E(ξα
γ )2 by the empirical second moments, and Eα

γ = Bγ /Mα
γ by their

ratio.

The results of the numerical simulations are presented in Figs. 1, 2, 3. The γ → 0 asymp-

totics of the limiting mean squared errors is illustrated in Fig. 1, where we rather plotted the

functions γ 4 Bγ and γ 4 Mα
γ , making apparent the constants B0 ≈ 19.2329 and M0 = 26. One

can observe here that the choice α = 1/2 is the best one, though its advantage diminishes

as γ approaches 0 and seems negligible for γ < 1.
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Fig. 1 γ 4 Bγ and γ 4 Mα
γ (γ → 0 asymptotics)
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Fig. 2 Bγ and Mα
γ (γ → ∞ asymptotics)

In Fig. 2 we illustrate the γ → ∞ asymptotics of the limiting mean squared errors by

plotting the functions Bγ and Mα
γ themselves. Here the advantage of the choice α = 1/2 is

obvious, and one can observe that for γ > 5 this choice makes negligible the loss of efficiency

resulting from the use of the maximum likelihood estimator instead of the asymptotically

efficient Bayesian estimators.

Finally, in Fig. 3 we illustrate the behavior both at 0 and at ∞ of the asymptotic relative

efficiency of the maximum likelihood estimators by plotting the functions Eα
γ . All the obser-

vations made above can be once more noticed in this figure. Note also that as γ increases

from 0 to ∞, the asymptotic relative efficiency seems first to decrease from E0 ≈ 0.7397

for all the maximum likelihood estimators, before increasing back to Eα
∞ for the maximum

likelihood estimators with α close to the optimal value 1/2.
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3 Proofs of the Lemmas

For the sake of clarity, for each lemma we will first give the proof in the particular Gaussian

case (in which it is more explicit) and then explain how it can be extended to the general one.

3.1 Proof of Lemma 2

Note that the restrictions of the process ln Xγ (y) = ln Zγ (y/γ 2), y ∈ R, (as well as those of

the process ln Z0) on R+ and on R− are mutually independent processes with stationary and

independent increments. So, to obtain the convergence of all the finite-dimensional distribu-

tions, it is sufficient to show the convergence of one-dimensional distributions only, that is,

the weak convergence of ln Xγ (y) to

ln Z0(y) = W (y) −
|y|
2

∼ N

(

−
|y|
2

, |y|
)

for all y ∈ R. Moreover, these processes being symmetric, it is sufficient to consider y ∈ R+
only.

The characteristic function ϕγ (t) of ln Xγ (y) is

ϕγ (t) = E ei t ln Xγ (y) = E e−i tγ
∑�+(y/γ 2)

k=1 ε+
k −i t

γ 2

2 �+(y/γ 2)

= E E

(

e−i tγ
∑�+(y/γ 2)

k=1 ε+
k −i t

γ 2

2 �+(y/γ 2)

∣

∣

∣

∣

F�+

)

= E

⎛

⎝e−i t
γ 2

2 �+(y/γ 2)

�+(y/γ 2)
∏

k=1

E e−i tγ ε+
k

⎞

⎠

= E e−i t
γ 2

2 �+(y/γ 2)− t2γ 2

2 �+(y/γ 2) = E e− γ 2

2 (i t+t2)�+(y/γ 2)
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where we have denoted F�+ the σ -algebra related to the Poisson process �+, used the

independence of ε+
k and �+ and recalled that E ei tε = e−t2/2.

Then, noting that �+
(

y/γ 2
)

is a Poisson random variable of parameter y/γ 2 with moment

generating function E et�+
(

y/γ 2
)

= exp
(

y

γ 2

(

et − 1
)

)

, we get

ln ϕγ (t) =
y

γ 2

(

e− γ 2

2

(

i t+t2
)

− 1

)

=
y

γ 2

(

−
γ 2

2

(

i t + t2
)

+ o
(

γ 2
)

)

= −
y

2

(

i t + t2
)

+ o(1) → −
y

2

(

i t + t2
)

= ln E ei t ln Z0(y)

as γ → 0 and so, in the Gaussian case Lemma 2 is proved.

In the general case, proceeding similarly we get

ϕγ (t) = E ei t ln Xγ, f (y) = E e
i t

∑�+(y/Iγ 2)
k=1 ln

f (ε
+
k

+γ )

f (ε
+
k

)

= E

(

(

E e
i t ln

f (ε+γ )
f (ε)

)�+(y/Iγ 2)
)

→ ei(− y
2 )t− 1

2 yt2 = E ei t ln Z0(y)

by dominated convergence theorem, since

(

E e
i t ln

f (ε+γ )
f (ε)

)1/γ 2

→ e
i
(

− I
2

)

t− 1
2 I t2

by (5), and γ 2 �+(y/Iγ 2) converges clearly to y/I in L2 (and hence in probability).

3.2 Proof of Lemma 4

Now we turn to the proof of Lemma 4 (we will prove Lemma 3 just after). For y > 0 we

have

EX1/2
γ (y) = E E

(

e− γ
2

∑�+(y/γ 2)
k=1 ε+

k − γ 2

4 �+(y/γ 2)
∣

∣

∣ F�+

)

= E e− γ 2

4 �+(y/γ 2)+ γ 2

8 �+(y/γ 2) = E e− γ 2

8 �+(y/γ 2)

= exp

(

y

γ 2

(

e− γ 2

8 − 1

))

.

The process Xγ being symmetric, we have

EX1/2
γ (y) = exp

( |y|
γ 2

(

e− γ 2

8 − 1

))

(8)

for all y ∈ R and, since

1

γ 2

(

e− γ 2

8 − 1

)

=
1

γ 2

(

−
γ 2

8
+ o(γ 2)

)

→ −
1

8

as γ → 0, for any c ∈ ] 0 , 1/8 [ we have EX
1/2
γ (y) ≤ exp (−c |y|) for all sufficiently small

γ and all y ∈ R. So, in the Gaussian case Lemma 4 is proved.
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In the general case, equality (8) becomes EX
1/2
γ, f (y) = exp

(

|y| (Iγ − 1)/Iγ 2
)

with

Iγ = E

√

f (ε + γ )

f (ε)
≤

√

E
f (ε + γ )

f (ε)
= 1.

Recall the convergence (5) of characteristic functions and note that I
1/γ 2

γ are the correspond-

ing moment generating functions at point 1/2. The convergence of these moment generating

functions (at any point smaller than 1) follows from the fact that for all γ they are equal 1 at

point 1 (which provides uniform integrability). Thus we have I
1/γ 2

γ → e−I/8, which implies

(ln Iγ )/γ 2 → −I/8, and so (Iγ − 1)/Iγ 2 → −1/8.

3.3 Proof of Lemma 3

First we consider the case y1, y2 ∈ R+ (say y1 ≥ y2). Using (8) and taking into account

the stationarity and the independence of the increments of the process ln Xγ on R+, we can

write

E

∣

∣

∣X
1/2
γ (y1) − X1/2

γ (y2)

∣

∣

∣

2
= EXγ (y1) + EXγ (y2) − 2 EX1/2

γ (y1)X1/2
γ (y2)

= 2 − 2 EXγ (y2) E
X

1/2
γ (y1)

X
1/2
γ (y2)

= 2 − 2 EX1/2
γ (|y1 − y2|)

= 2 − 2 exp

( |y1 − y2|
γ 2

(

e− γ 2

8 − 1

))

≤ −2
|y1 − y2|

γ 2

(

e− γ 2

8 − 1

)

≤
1

4
|y1 − y2| .

The process Xγ being symmetric, we have the same result for the case y1, y2 ∈ R−.

Finally, if y1 y2 ≤ 0 (say y2 ≤ 0 ≤ y1), we have

E

∣

∣

∣X
1/2
γ (y1) − X1/2

γ (y2)

∣

∣

∣

2
= 2 − 2 EX1/2

γ (y1) EX1/2
γ (y2)

= 2 − 2 exp

( |y1|
γ 2

(

e− γ 2

8 − 1

)

+
|y2|
γ 2

(

e− γ 2

8 − 1

))

= 2 − 2 exp

( |y1 − y2|
γ 2

(

e− γ 2

8 − 1

))

≤
1

4
|y1 − y2| ,

and so, in the Gaussian case we obtain even more than the assertion of Lemma 3.

In the general case, proceeding similarly we get

E

∣

∣

∣X
1/2
γ, f (y1) − X

1/2
γ, f (y2)

∣

∣

∣

2
≤ −2

|y1 − y2|
Iγ 2

(Iγ − 1)

and, since −2(Iγ − 1)/Iγ 2 → 1/4, the proof is concluded.
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3.4 Proof of Lemma 5

First let y1, y2 ∈ R+ (say y1 ≥ y2) such that � = |y1 − y2| < h. Then, noting that

conditionally to F�+ the random variable

ln Xγ (�) = −γ

�+(�/γ 2)
∑

k=1

ε+
k −

γ 2

2
�+(�/γ 2)

is Gaussian with mean − γ 2

2
�+(�/γ 2) and variance γ 2�+(�/γ 2), we get

P
{∣

∣ln Xγ (y1) − ln Xγ (y2)
∣

∣ > δ
}

≤
1

δ2
E

∣

∣ln Xγ (y1) − ln Xγ (y2)
∣

∣

2

=
1

δ2
E

∣

∣ln Xγ (�)
∣

∣

2

=
1

δ2
E E

(

(

ln Xγ (�)
)2

∣

∣

∣ F�+

)

=
1

δ2
E

(

γ 2�+(�/γ 2) +
γ 4

4

(

�+(�/γ 2)
)2

)

=
1

δ2

(

� +
γ 4

4

(

�

γ 2
+

�2

γ 4

))

=
1

δ2

(

(1 + γ 2/4)� + �2/4
)

<
1

δ2

(

β(γ ) h + h2/4
)

where β(γ ) = 1 + γ 2/4 → 1 as γ → 0. So, we have

lim
γ→0

sup
|y1−y2|<h

P
{∣

∣ln Xγ (y1) − ln Xγ (y2)
∣

∣ > δ
}

≤ lim
γ→0

1

δ2

(

β(γ ) h + h2/4
)

=
1

δ2

(

h +
h2

4

)

,

and hence

lim
h→0

lim
γ→0

sup
|y1−y2|<h

P
{∣

∣ln Xγ (y1) − ln Xγ (y2)
∣

∣ > δ
}

= 0,

where the supremum is taken only over y1, y2 ∈ R+.

The process Xγ being symmetric, we have the same conclusion with the supremum taken

over y1, y2 ∈ R−.

Finally, for y1 y2 ≤ 0 (say y2 ≤ 0 ≤ y1) such that |y1 − y2| < h, using the elementary

inequality (a − b)2 ≤ 2(a2 + b2) we get

P
{∣

∣ln Xγ (y1) − ln Xγ (y2)
∣

∣ > δ
}

≤
1

δ2
E

∣

∣ln Xγ (y1) − ln Xγ (y2)
∣

∣

2

≤
2

δ2

(

E
∣

∣ln Xγ (y1)
∣

∣

2 + E
∣

∣ln Xγ (|y2|)
∣

∣

2
)

=
2

δ2

(

β(γ )y1 + y2
1/4 + β(γ ) |y2| + |y2|2 /4

)

<
2

δ2

(

β(γ )h + h2/4
)

,
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which again yields the desired conclusion. So, in the Gaussian case Lemma 5 is proved.

Another way to prove this lemma, is to notice first that the weak convergence of ln Xγ (y)

to ln Z0(y) (established in Lemma 2) is uniform with respect to y ∈ K for any compact

K ⊂ R. Indeed, the uniformity of the convergence of the characteristic functions in the proof

of Lemma 2 is obvious, and so one can apply, for example, Theorem 7 from Appendix I

of Ibragimov and Khasminskii (1981), whose remaining conditions are easily checked.

Second, using this uniformity we obtain

lim
γ→0

sup
|y1−y2|<h

P
{∣

∣ln Xγ (y1) − ln Xγ (y2)
∣

∣ > δ
}

= lim
γ→0

sup
|y|<h

P
{∣

∣ln Xγ (y)
∣

∣ > δ
}

= sup
|y|<h

P {|ln Z0(y)| > δ}

where the supremum is taken over y1, y2 ∈ R such that y1 y2 ≥ 0, and

lim
γ→0

sup
|y1−y2|<h

P
{∣

∣ln Xγ (y1) − ln Xγ (y2)
∣

∣ > δ
}

≤ 2 sup
|y|<h

P

{

|ln Z0(y)| >
δ

2

}

where the supremum is taken over y1, y2 ∈ R such that y1 y2 ≤ 0.

Finally, reminding that ln Z0(y) ∼ N (− |y| /2 , |y|) and denoting � the distribution

function of the standard Gaussian law, we get

P {|ln Z0(y)| > δ} = �

(

−
δ

√
|y|

+
√

|y|
2

)

+ 1 − �

(

δ
√

|y|
+

√
|y|
2

)

≤ �

(

−
δ

√
h

+
√

h

2

)

+ 1 − �

(

δ
√

h

)

for |y| < h. The last expression does not depend on y and clearly converges to 0 as h → 0,

so the assertion of the lemma follows.

It remains to observe that this second proof does not use any particularity of the process

Xγ and, hence, is trivially extendable to the general case.

3.5 Proof of Lemma 6

Taking into account the symmetry of the process ln Xγ , as well as the stationarity and the

independence of its increments on R+, we obtain

P

{

sup
|y|>A

Xγ (y) > e−bA

}

≤ 2 P

{

sup
y>A

Xγ (y) > e−bA

}

≤ 2 e bA/2 E sup
y>A

X1/2
γ (y) (9)

= 2 e bA/2 EX1/2
γ (A) E sup

y>A

X
1/2
γ (y)

X
1/2
γ (A)

= 2 e bA/2 EX1/2
γ (A) E sup

z>0

X1/2
γ (z).
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In order to estimate the last factor we write

E sup
z>0

X1/2
γ (z) = E exp

⎛

⎝

1

2
sup
z>0

⎛

⎝−γ

�+(z/γ 2)
∑

k=1

ε+
k −

γ 2

2
�+(z/γ 2)

⎞

⎠

⎞

⎠

= E exp

(

1

2
sup
n∈N

(

−γ

n
∑

k=1

ε+
k −

nγ 2

2

))

.

Now, let us observe that the random walk Sn = −
∑n

k=1 ε+
k , n ∈ N, has the same law as the

restriction on N of a standard Brownian motion W . So,

E sup
z>0

X1/2
γ (z) = E exp

(

1

2
sup
n∈N

(

γ W (n) − nγ 2/2
)

)

= E exp

(

1

2
sup
n∈N

(

W (nγ 2) − nγ 2/2
)

)

≤ E exp

(

1

2
sup
t>0

(W (t) − t/2)

)

= E exp

(

1

2
M

)

with an evident notation. It is known that the random variable M is exponential of parameter

1 (see, for example, Borodin and Salminen (2002)) and hence, using its moment generating

function E et M = (1 − t)−1, we get

E sup
z>0

X1/2
γ (z) ≤ 2. (10)

Finally, taking b ∈ ] 0 , 1/12 [ we have 3b/2 ∈ ] 0 , 1/8 [ and, combining (9), (10) and

using Lemma 4, we finally obtain

P

{

sup
|y|>A

Xγ (y) > e−bA

}

≤ 4 e bA/2 exp
(

− 3b
2

A
)

= 4 e−bA

for all sufficiently small γ and all A > 0, which concludes the proof in the Gaussian case.

In the general case the proof is almost the same. Note that we have no longer the symmetry

of the process Xγ, f , so we need to consider the cases y > A and y < −A separately. Besides

that, the only difference is in the derivation of the bound (10). Here we get

E sup
z>0

X
1/2
γ, f (z) = E exp

(

1

2
M

)

,

where M is the supremum of the random walk Sn =
∑n

k=1 Xk, n ∈ N, with Xk = ln
f (ε+

k +γ )

f (ε+
k )

.

Note that

E eX1 = E
f (ε + γ )

f (ε)
= 1,

and so, the cummulant generating function k(t) = ln(E et X1) of X1 admits a strictly positive

zero t0 = 1. Hence, by the well-known Cramér-Lundberg bound on the tail probabilities of

M (see, for example, Theorem 5.1 from Chapter XIII of Asmussen (2003)), we have

P(M > x) ≤ e−t0 x = e−x
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for all x > 0. Finally, denoting F the distribution function of M and using this bound we

obtain

E exp

(

1

2
M

)

=
∫

R

e x/2 d F(x)

=
[

e x/2 (F(x) − 1)
]+∞
−∞ −

1

2

∫

R

e x/2 (F(x) − 1) dx

=
1

2

∫

R−
e x/2 dx +

1

2

∫

R+
e x/2 (1 − F(x)) dx

≤ 1 +
1

2

∫

R+
e−x/2 dx = 2,

which concludes the proof.
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INCLUSION–EXCLUSION DESCRIPTION OF RANDOM FIELDS

S. Yu. Dashian, B. S. Nahapetian

Izvestiya Natsionalnoi Akademii Nauk Armenii. Matematika,
Vol. 30, No. 6, 1995

The inclusion-exclusion approach towards construction of random fields on the ν-dimensional integer
lattice is described. Comparison with classical Gibbs description is presented.

§1. INTRODUCTION

The inclusion-exclusion approach was successfully applied in the framework of point process theory by Ambartzu-

mian and Sukiasian [1]. The main result of this approach is the following theorem.

Theorem A. (R. V. Ambartzumian, H. S. Sukiasian) Let a system {f(x1, ..., xn)}, xi ∈ IRd of nonnegative

symmetrical functions be given satisfying the condition f(x1, ..., xn) < bn, n = 1, 2, .... for some b > 0. If for almost

all x1, ..., xn ∈ IRd and all convex D ⊂ IRd the following inequalities hold

1 +

∞∑

n=1

(−1)n

n!

∫

D

· · ·
∫

D

f(y1, ..., yn) dy1 · · · dyn ≥ 0,

f(x1, ..., xm) +

∞∑

n=1

(−1)n

n!

∫

D

· · ·
∫

D

f(x1, ..., xm, y1, ..., yn) dy1 · · · dyn ≥ 0, m > 0,

then there exists a point process P , such that at the continuity points, the values of f coincide with the densities

of P .

The purpose of this paper is to apply the same approach towards construction of random fields on the integer

lattice ZZν . Special attention is paid to the classical Gibbs random fields. The paper describes the main facts of

the proposed approach, gives some examples and points at a broad class of non Gibbsian random fields. We note

c©1996 by Allerton Press Inc. Authorization to photocopy items for internal or personal use, or the internal or personal use

of specific clients, is granted by Allerton Press, Inc. for library and other users registered with the Copyright Clearance Center (CCC)

Transaction Reporting Service, providing that the base fee of $50.00 per copy is paid directly to CCC, 222 Rosewood Drive, Danvers,

MA 01923.
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that non Gibbsian random fields in statistical physics now receive intensive consideration (see, for example, [2] –

[5]).

§2. RANDOM FIELDS AND P–FUNCTIONS

We consider random fields on the integer ν-dimensional lattice ZZν , ν ≥ 1. For simplicity the phase space X we

assume to consist of two points: X = {0, 1}. Denote by E the set of all finite subsets of ZZν and let

XΛ = {xt, t ∈ Λ}, xt ∈ X, t ∈ Λ, Λ ∈ E

be the set of all configurations (realizations) on Λ. Each element x ∈ XΛ is uniquely determined by the subset of Λ,

where the configuration x assumes the value 1 (in physical terminology this is the subset occupied by the particles).

Therefore any configuration on Λ we will identify with corresponding subset of Λ. A probability distribution on

XΛ we denote by PΛ = {PΛ(x), x ⊆ Λ}, Λ ∈ E . For Λ = ∅ there exists only one probability distribution P∅(∅) = 1.

For Λ ∈ E and I ⊆ Λ denote

(PΛ)I(x) =
∑

J⊆Λ\I

PΛ(x ∪ J), x ⊆ I.

Definition 1. A set of probability distributions P = {PΛ, Λ ∈ E} is called consistent in Kolmogorov sense, if for

any Λ ∈ E and I ⊆ Λ (PΛ)I(x) = PI(x), x ⊆ I.

It is well known that any set of probability distributions consistent in Kolmogorov sense determines some

probability measure on XZZ
ν

equivalently some random field. In the inclusion-exclusion approach the Kolmogorov’s

consistency condition is replaced by some nonnegativity condition imposed on certain finite sums with alternating

signs of summands.

Let B be the Banach space of all bounded functions defined on E with the norm

||b|| = sup
Λ∈E

1

2n(Λ)

∑

J⊂Λ

|bJ |, b = {bj , J ∈ E} ∈ B,

where n(Λ) is some numeration of elements from E .

Definition 2. A function f = {fJ , J ∈ E}, f ∈ B we call a P -function, if f∅ = 1 and for any Λ ∈ E and x ⊆ Λ

∑

J⊆x

(−1)|x\J| fΛ\J ≥ 0, (1)
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where | · | denotes the number of points in a finite set.

Note that the space BP ⊂ B of all P -function is a convex closed subset of B. It is not difficult to show that

BP is compact.

Theorem 1. A system P = {PΛ, Λ ∈ E} of probability distributions is consistent in Kolmogorov sense if and only

if there exists a P -function f such that

PΛ(x) =
∑

J⊆x

(−1)|x\J| fΛ\J , PΛ(∅) = fΛ, x ⊆ Λ, Λ ∈ E . (2)

Proof: Necessity. Let P = {PΛ, Λ ∈ E} be a system of probability distributions consistent in Kolmogorov sense.

Put fΛ = PΛ(∅), Λ ∈ E . Clearly 0 ≤ fΛ ≤ 1, f∅ = P∅(∅) = 1. Further we have

∑

J⊆x

(−1)|x\J| fΛ\J =
∑

J⊆x

(−1)|x\J| PΛ\J(∅) =
∑

J⊆x

(−1)|x\J| (PΛ)Λ\J(∅) =

=
∑

J⊆x

(−1)|x\J|
∑

J̃:J̃⊆J

PΛ(J̃) =
∑

J̃⊆x

PΛ(J̃)
∑

J:J̃⊆J⊆x

(−1)|x\J| = PΛ(x).

At the last step we used the relation

∑

A:B⊂A⊂C

(−1)|C\A| =

{
1, B = C,

0, B 6= C.
(3)

Sufficiency. Let f be a P -function. We put

PΛ(x) =
∑

J⊆x

(−1)|x\J| fΛ\J , x ⊆ Λ, Λ ∈ E

and show that P = {PΛ, Λ ∈ E} is a family of probability distributions consistent in Kolmogorov sense. We have

∑

x⊆Λ

PΛ(x) =
∑

J⊆x

(−1)|x\J| fΛ\J =
∑

J⊆Λ

fΛ\J

∑

x:J⊆x⊆Λ

(−1)|x\J| = f∅ = 1,

i.e. P is a system of probability distributions. Let us verify that it is consistent. For any Λ ∈ E and I ⊆ Λ we can

write

(PΛ)I(x) =
∑

J⊆Λ\I

∑

J̃⊆x∪J

(−1)|x∪J\J̃| f
Λ\J̃

=
∑

J⊆Λ\I

∑

J̃1⊆x

(−1)|x\J̃1|
∑

J̃2⊆J

(−1)|J\J̃2| f
Λ\(J̃1∪J̃2)

=

=
∑

J̃1⊆x

(−1)|x\J̃1|
∑

J̃2⊆Λ\I

f
Λ\(J̃1∪J̃2)

∑

J:J̃2⊆J⊆Λ\I

(−1)|J| =
∑

J̃1⊆x

(−1)|x\J̃1| fI\J1
= PI(x).

§3. EXAMPLES OF P -FUNCTIONS

Example 1. Let f be a P -function. For any B ∈ E such that fB > 0 consider the function f (B) =
{

fB∪J(fB)
−1,

J ∈ E
}

. It is not difficult to see that f (B) again is a P -function. The realizations of corresponding random fields

may assume the value 1 only outside B.
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Example 2. Let P be a random field with independent components and ft = P{t}(∅), t ∈ ZZν . The corresponding

P -function is

f =

{
∏

t∈J

ft, J ∈ E
}
.

The case ft ≡ q, t ∈ ZZν , 0 ≤ q ≤ 1 corresponds to Bernoulli random field.

Example 3. Suppose p(x), x ∈ [0, 1] is a probability density and f = {q|J|, J ∈ E} is a Bernoulli P -function. The

function

b =

{∫ 1

0

q|J|p(q) dq, J ∈ E
}

is a P -function of the corresponding mixture of the Bernoulli random fields. In case p(x) = τxτ−1, τ > 0 the

corresponding P -function is

b =

{
τ

∫ 1

0

q|Λ|+τ−1 dq =
τ

|Λ|+ τ
, Λ ∈ E

}
.

In this case the set of finite dimensional distributions is

PΛ(x) =
τ

|Λ|+ τ

|Λ|∏

i=1

τ

|Λ|+ τ − i
, Λ ∈ E .

In §7 we will demonstrate that this random field is non Gibbsian.

Example 4. Suppose βt,s, t, s ∈ ZZν is a family of nonnegative numbers such that
∑

t∈ZZν

βt,s < ∞. Consider

f =



exp


−

∑

t,s∈J

βt,s


 , J ∈ E



 .

It is a P -function, which is the discrete analog of Ambartzumian–Sukiasian [1] point random field in IRd. We

briefly remind the main result of [1]. The following sequence of functions was considered:

f(x1) ≡ α, f(x1, ..., xn) = αn
∏

{i,j}⊂{1,...,n}

h(xi, xj), n = 2, 3, ..., (4)

where 0 ≤ h(x, y) ≤ 1 is a symmetrical function in IRd × IRd, α > 0 is a parameter (intensity), while the product

is taken over all possible two-subsets of {1, ..., n}. Under the convergence condition

sup
x

∫

IRd

[1− h(x, y)] dy < ∞
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there exists a point process P in IRd for which (4) present the so-called absolutely densities, i.e. for every sequence

x1, ..., xn

P (dx1, ..., dxn) = f(x1, ..., xn) dx1 · · · dxn.

The proof of this result was obtained in [1] using Theorem A. It seems possible to prove the corresponding result

for P -functions.

Example 5. Here we describe some P -functions occurring in the Gibbs random fields theory. For any nonempty

A ∈ E let us fix an arbitrary point tA ∈ A and define a partially ordering in E . Assume that B < A, B,A ∈ E if

there exists a sequence B = B1, B2, ..., Bn = A such that Bi−1 = Bi \ tBi , i = 2, ..., n. A sequence

β = {B1, T1; ...;Bn, Tn}, Bi, Ti ∈ E , Ti ∩Bi = tBi , i = 1, ..., n, B1 ≤ A, Bi ≤ Bi−1 ∪ Ti−1, i = 2, ..., n

we call a path beginning at A and of length n. The set of all paths the beginning at A and of length n we denote

by B
(n)
A , A ∈ E . Now let K = (KJ , J ∈ E) be a function such that

∑

J:t∈J∈E
|J|=n

|KJ | < αλn, λ(1 +
√
α)2 < 1, λ, α > 0.

Then the function

fJ = 1 +
∑

n

∑

β∈B
(n)

J

(−1)nKT1 · · ·KTn , J ∈ E

presents a P -function (see, for example, [9], [10]).

§4. RANDOM FIELDS AND Q-FUNCTIONS

In this section we construct P -functions by the principle used in the theory of Gibbs random fields.

Definition 3. A function θ = {θJ , J ∈ E} we call a Q-function, if θJ > 0, J ∈ E , θ∅ = 1 and for any x ∈ E

∑

J⊆x

(−1)|x\J| θJ ≥ 0. (5)

Unlike the P -functions, the Q-functions have simple constructive description.

Theorem 2. A function θ = {θJ , J ∈ E} is a Q-function if and only if there exists a function H = {HS , S ∈ E},

HS ≥ 0, S ∈ E , H∅ = 1 such that for each J ∈ E , θJ =
∑
S⊆J

HS .
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Proof: Necessity. Let θ = {θJ , J ∈ E} be a Q-function. Put

HS =
∑

J⊆S

(−1)|S\J| θJ , S ∈ E . (6)

Since θ is a Q-function, according to definition of HS , we have HS ≥ 0, S ∈ E and H∅ = 1. We can write

∑

S⊆Λ

HS =
∑

S⊆Λ

∑

J⊆S

(−1)|S\J| θJ =
∑

J⊆Λ

θJ
∑

S:J⊆S⊆Λ

(−1)|S\J| = θΛ, Λ ∈ E .

Sufficiency. Let θΛ =
∑
S⊆Λ

HS . Clearly θJ > 0, J ∈ E , θ∅ = 1. Finally

∑

J⊆S

(−1)|S\J| θJ =
∑

J⊆S

(−1)|S\J|
∑

J̃⊆J

H
J̃
=

∑

J̃⊆S

H
J̃

∑

J:J̃⊆J⊆S

(−1)|S\J| = HS > 0, S ∈ E .

Theorem 2 is proved.

Theorem 3. Let θ = {θΛ, Λ ∈ E} be a Q-function. Suppose Λ ↑ ZZν is a sequence of increasing subsets, such that

for any J ∈ E the following limit exists:

lim
Λ↑ZZν

θΛ\J

θΛ
= fJ . (7)

Then f = {fJ , J ∈ E} is a P -function.

Proof: We have for any I ∈ E

∑

J⊆x

(−1)|x\J| fI\J = lim
Λ↑ZZν

∑

J⊆x

(−1)|x\J|
θΛ\(I\J)

θΛ
= lim

Λ↑ZZν

1

θΛ

∑

J⊆x

(−1)|x\J| θ(Λ\I)∪J , x ⊆ I.

Since θ is a Q-function, for Λ ∈ E , I ⊆ Λ, S ⊂ Λ \ I and x ⊆ I we have
∑

J⊆x∪S

(−1)|x∪S\J| θJ ≥ 0, and hence

D ≡
∑

S⊆Λ\I

∑

J⊆x∪S

(−1)|x∪S\J| θJ ≥ 0.

It follows that

D =
∑

S⊆Λ\I

∑

J1⊆x

(−1)|x\J1|
∑

J2⊆Λ\I

θJ1∪J2

∑

J2:J2⊆S⊆Λ\I

(−1)|S\J2| =
∑

J1⊆x

(−1)|x\J1| θ(Λ\I)∪J1
≥ 0.

Theorem 3 is proved.

We give characterization of Q-systems to be used in §§5,6 below.
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Definition 4. A family of probability distributions Q = {QΛ, Λ ∈ E}, QΛ(∅) > 0, Q∅(∅) = 1 is called consistent

in Dobrushin sense, if for any Λ̃,Λ ∈ E , Λ ∩ Λ̃ = ∅

Q
Λ∪Λ̃

(x) =
Q

Λ∪Λ̃
(∅)

QΛ(∅)
QΛ(x), x ⊆ Λ. (8)

Note that one can equivalently rewrite (8) as follows

Q
Λ∪Λ̃

(x) = QΛ(x)
(
Q

Λ∪Λ̃

)
Λ̃
(∅). (9)

Theorem 4. A system Q = {QΛ, Λ ∈ E}, QΛ(∅) > 0, Q∅(∅) = 1 of probability distributions is consistent in

Dobrushin sense if and only if there exists a Q-function θ = {θJ , J ∈ E} such that for any Λ ∈ E

QΛ(x) =
1

θΛ

∑

J⊆x

(−1)|x\J| θJ , x ⊆ Λ. (10)

Proof: Necessity. Let Q = {QΛ, Λ ∈ E}, QΛ(∅) > 0, Q∅(∅) = 1 be a set of probability distributions consistent in

Dobrushin sense. Set θΛ = [QΛ(∅)]−1, Λ ∈ E . We can write

1 =
∑

S⊆J

QJ(S) =
∑

S⊆J

QJ(∅)
QΛ(∅)

QΛ(S) =
QJ(∅)
QΛ(∅)

∑

S⊆J

QΛ(S).

From this we get

θJ = θΛ
∑

S⊆J

QΛ(S).

Therefore

∑

J⊆x

(−1)|x\J| θJ = θΛ
∑

J⊆x

(−1)|x\J|
∑

S⊆J

QΛ(S) = θΛQΛ(x),

and we obtain (10).

Sufficiency. Let there exist a Q-function θ = {θJ , J ∈ E} such that (10) holds. By definition, QΛ(x) ≥ 0, Q∅(∅) = 1.

Further we have

∑

x⊆Λ

QΛ(x) =
1

θΛ

∑

x⊆Λ

∑

J⊆x

(−1)|x\J| θJ =
1

θΛ

∑

J⊆Λ

θJ
∑

x:J⊆x⊆Λ

(−1)|x\J|θJ = 1,

i.e. the system (10) is a set of probability distributions. Let us verify that it is consistent in Dobrushin sense. First

we note that QΛ(∅) =
1

θΛ
, Λ ∈ E . Also

Q
Λ∪Λ̃

(x) =
1

θ
Λ∪Λ̃

∑

J⊆x

(−1)|x\J| θJ =
θΛ

θ
Λ∪Λ̃

QΛ(x) =
Q

Λ∪Λ̃
(∅)

QΛ(∅)
QΛ(x), z ⊆ Λ.

Theorem 4 is proved.
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Remark 1. If θ = {θJ , J ∈ E} is a Q-function, then

f (Λ) =

{
fJ =

θΛ\J

θΛ
, J ∈ E

}

is a P -function with parameter set Λ ∈ E . The probability distributions for the corresponding random fields have

the form

P
(Λ)
I (x) = (PΛ)Λ∩I(x), x ⊂ I,

(PΛ)∅(x) =

{
1, x = ∅,
0, x 6= ∅.

This is a random field in finite volume Λ.

Remark 2. Since the set of all P -functions is compact, one can choose a convergent sequence of P -functions

f (Λk) → f (as k → ∞), where Λk ↑ ZZν , k → ∞ is some increasing sequence of subsets. A random field with

P -function f is called limiting for random fields in finite volumes.

§5. Q-FUNCTIONS WITH BOUNDARY CONDITIONS AND

CONDITIONAL DISTRIBUTIONS FOR RANDOM FIELDS

Let P = {PΛ, Λ ∈ E} be a random field. According to well known martingale convergence theorem for any Λ ∈ E ,

x ⊂ Λ, x ⊂ ZZν \ Λ there exists the following limit

Qx
Λ(x) = lim

Λ̃↑ZZν\Λ

P
Λ∪Λ̃

(x ∪ x
Λ̃
)

P
Λ̃
(x

Λ̃
)

a.s., (11)

where x
Λ̃
= x∩ Λ̃. For each Λ ∈ E the quantity (11) defines some probability distribution, which we call conditional

distribution on Λ with boundary condition x ⊂ ZZν \ Λ (see [6], [7]). The family of conditional distributions

depending on Λ ∈ E and the boundary conditions x:

Q =
{
Qx

Λ, Λ ∈ E , x ⊂ ZZν \ Λ
}

(11’)

is called conditional distribution of the random field P .

Definition 5. A system of probability distributions (11’) is called consistent in Dobrushin sense, if for any Λ̃,Λ ∈ E ,

Λ ∩ Λ̃ = ∅ and any x ⊂ Λ, y ⊂ Λ̃, x ⊂ ZZν \ (Λ ∪ Λ̃)

Qx

Λ∪Λ̃
(x ∪ y) = Q

x∪y
Λ (x)

(
Qx

Λ∪Λ̃

)
Λ̃
(y). (12)
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Definition 6. A function θ(x) = {θxJcJ , J ∈ E}, θx∅ = 1, x ⊂ ZZν , xJc = x ∩ (ZZν \ J) is called Q-function with

boundary condition x, if for any x ∈ E
∑

J⊆x

(−1)|x\J| θxJcJ ≥ 0.

Any function H(x) = {HxJc
J , J ∈ E}, Hx

∅ = 1, x ⊂ ZZν with nonnegative values we call a H-function with boundary

condition x.

Theorem 5. A function θ(x) = {θxJcJ , J ∈ E}, θx∅ = 1, x ⊂ ZZν is a Q-function with boundary condition x, if and

only if there exists a H-function H(x) such that for any Λ ∈ E

θ
xΛc

Λ =
∑

J⊂Λ

H
xJc
J .

Definition 7. A system θ = {θ(x), x ⊂ ZZν} of Q-functions depending on boundary conditions is called consistent,

if the corresponding system H = {H(x), x ⊂ ZZν} of H-functions has the following property: for any J1, J2 ∈ E

and x ⊂ ZZν

H
x(J1∪J2)c

J1∪J2
= H

x(J1∪J2)c

J1
H

J1∪x(J1∪J2)c

J2
.

Theorem 6. A system of conditional distributions (11’) is consistent in Dobrushin sense if and only if there exists

a consistent system of Q-functions θ = {θ(x), x ⊂ ZZν} such that

Qx
Λ(x) =

1

θ
xΛc

Λ

∑

J⊆x

(−1)|x\J| θxJcJ , x ⊂ Λ.

The proofs of Theorems 5,6 are similar to those for Theorems 2,4. The latter correspond to the case of empty

boundary conditions.

§6. Q-FUNCTIONS FOR GIBBS RANDOM FIELDS

A measurable function Φ defined on E we call a potential if

sup
a∈ZZν

∑

J:a∈J∈E

|Φ(J)| < ∞. (13)

The potential energy of the configuration x ⊂ Λ, Λ ∈ E with boundary condition x ⊂ ZZν \ Λ is defined by the

expression

Ux(x) =
∑

∅6=J⊂x

∑

J̃⊂x

Φ(J ∪ J̃).
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The Q-functions with boundary condition x ⊂ ZZν for Gibbs random fields have the form

ZZ(x) =

{
ZZxΛc

Λ =
∑

x⊂Λ

exp
[
−UxΛc (x)

]
, Λ ∈ E

}
.

The corresponding Gibbs conditional distributions are

QxΛc

Λ (x) =
(
ZZxΛc

Λ

)−1

exp
[
−UxΛc (x)

]
, x ⊂ Λ.

Any element of close convex hull of the set of limiting Gibbs distributions is called a Gibbs random field (see [7],

[8]). Note also that any H-system corresponding to a Gibbs random field has the form

{
Hx

S = exp
[
−Ux(S)

]
, S ∈ E , x ⊂ ZZν \ S

}
.

§7. NON GIBBSIAN RANDOM FIELDS

Below we construct some non Gibbsian random fields.

Proposition 1. Let θ = {θxJ , J ∈ E , x ⊂ ZZν \ J} be a consistent system of Q-functions and H = {Hx
J , J ∈ E ,

x ⊂ ZZν \ J} be the corresponding system of nonnegative functions (H-system). Let R(x), x ⊂ ZZν be a function

such that R(x1) = R(x2) if x1 = x2 up to a finite number of lattice points. Then the system

HR =
{(

Hx
J

)R(x)
, J ∈ E , x ⊂ ZZν \ J

}

determines some consistent θ-system of Q-functions, which we denote by θR.

Proof: For any J1, J2 ∈ E and x ⊂ ZZν \ {J1 ∪ J2} we can write

(
Hx

J1∪J2

)R(x)
=

(
Hx

J1
Hx∪J1

J2

)R(x)

=
(
Hx

J1

)R(x)
(
Hx∪J1

J2

)R(x)

=
(
Hx

J1

)R(x)
(
Hx∪J1

J2

)R(x∪J1)

.

Proposition 2. Let θ = {θJ , J ∈ E , x ⊂ ZZν \ J} be a Gibbsian system of Q-functions. Then the corresponding

θR is non Gibbsian system of Q-functions.

Proof: Since θ is Gibbsian, then the corresponding H system has the form

H =
{
exp

[
−Ux(x)

]
, x ⊂ Λ, x ⊂ ZZν \ Λ, Λ ∈ E

}
.
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Hence

HR =
{
exp

[
−Ux(x)R(x)

]
, x ⊂ Λ, x ⊂ ZZν \ Λ, Λ ∈ E

}
.

According to Proposition 1, HR determines some θR, which is consistent and hence in turn determines a random

field. Let us show that this random field is non Gibbsian, i.e. there is no potential Φ̃ such that

Ux(x)R(x) =
∑

J⊂x

∑

∅6=J̃⊂x

Φ̃(J ∪ J̃). (14)

Suppose the contrary is true, i.e. (14) holds. For x = ∅ we have

Φ(∅) +

∑

∅6=J⊂x

Φ(J)


R(x) = Φ̃(∅) +

∑

∅6=J⊂x

Φ̃(J).

Therefore, if x = ∅, then Φ(∅)R(∅) = Φ̃(∅), and if x = {t}, then

[Φ(∅) + Φ(t)]R(t) = Φ̃(∅) + Φ̃(t), [Φ(∅) + Φ(t)]R(∅) = Φ̃(∅) + Φ̃(t), Φ(t)]R(∅) = Φ̃(t).

In the same way we find that Φ(J)R(∅) = Φ̃(t) for any J ∈ E . Hence

Hx(x)R(x) = Hx(x)R(∅) or R(x) = R(∅).

But the last relation is not valid if x is infinite.

Now we demonstrate that the random field of Example 3 is non Gibbsian. The conditional distributions in

question are

Qx
Λ(x) = p|x|(x)(1− p(x))|Λ|−|x|, x ⊂ Λ, x ⊂ ZZν \ Λ, Λ ∈ E ,

where

p(x) = lim
|Λ|↑∞

|x|
|Λ| a.s.

We rewrite Qx
Λ(x) as

Qx
Λ(x) =

(
p(x)

1−p(x)

)|x|

(1− p(x))−|Λ|
.

Thus the norming factor should be ZΛ(x) = (1− p(x))−|Λ|, and the potential energy is

Ux(x) = |x| ln p(x)

1− p(x)
.

According to Proposition 2, this potential energy fails to generate a Gibbsian random field in classical sense.
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for a given system of one-point distributions with boundary conditions to be a
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1. Introduction

The description of a random field by means of its conditional distribution
was given by Dobrushin in his fundamental works [5–7]. In [5], Dobrushin gave
sufficient conditions for existence and for uniqueness of a random field with given
specification (consistent system of distributions in finite volumes with boundary
conditions). The existence condition was imposed on the whole specification,
while the uniqueness one was imposed only on its subsystem consisting of one-
point distributions. Discussing this fact, Dobrushin noted that under some
strict positivity conditions, the whole specification can be determined by its
subsystem consisting only of one-point distributions, and stated the problem of
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finding consistency conditions for a given system of one-point distributions with
boundary conditions to be a subsystem of some specification. The answer to
this problem would not only permit one to reformulate Dobrushin’s theory in
terms of one-point conditional distributions, but also to develop the theory in
some directions.

In this paper we propose a solution to that problem, by giving necessary
and sufficient consistency conditions for a given system of one-point distribu-
tions with boundary conditions to be a subsystem of some specification. So,
instead of specifications we introduce a new object of consideration: one-point
systems. We give sufficient conditions for existence of a random field with given
one-point conditional distributions, obtain some new conditions for a Gibbs de-
scription of random fields without the usual assumption of strict positivity of its
conditional probabilities, propose some scheme for constructing non-Gibbsian
random fields and a simple method for constructing martingale-difference ran-
dom fields. Another application of this result concerning nonparametric identi-
fication of random fields was given in [2].

Note that in this paper we consider so-called weakly positive or vacuum
specifications with finite state spaces (for example lattice gas models of statisti-
cal physics). Generalizations to the case of vacuum systems with more general
state spaces are possible.

Note also that a preliminary exposition of our results was given in [4].

2. Preliminaries

2.1. Random fields and specifications

We consider random fields on the ν-dimensional integer lattice Zν , i.e., prob-
ability measures P on (X Zν ,FZν ) where (X ,F) is some state space, i.e., space of
values of a single variable. Usually the space X is assumed to be endowed with
some topology T , and F is assumed to be the Borel σ-algebra for this topology.

In this work we concentrate on the case when X is finite, T is the discrete
topology and F is the total σ-algebra, that is F = T = exp(X ).

For any S ⊂ Zν let us consider the space X S of all configurations on S. If
S = ∅, we assume that the space X ∅ = {∅} where ∅ is understood as an empty
configuration. A probability distribution on X S is denoted by PS .

For any T, S ⊂ Zν such that T ⊂ S and any configuration x = {xt, t ∈ S}
on S, we denote by x

T
the subconfiguration (restriction) of x on T defined by

x
T
= {xt, t ∈ T }. For any T, S ⊂ Zν such that T∩S = ∅ and any configurations

x on T and y on S we denote by x⊕ y a configuration on T ∪ S equal to x on
T and to y on S.

Denote by E the set of all finite subsets of Zν , i.e., let E = {Λ ⊂ Zν : |Λ| <
∞} where |Λ| is the number of points of the set Λ. If Λ ∈ E \ {∅}, we can write
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PΛ = {PΛ(x), x ∈ XΛ}. For convenience of notations we agree that for Λ = ∅
there exists only one probability distribution P∅(∅) = 1.

For each Λ ∈ E and I ⊂ Λ we write

(PΛ)I(x) =
∑

y∈XΛ\I

PΛ(x⊕ y), x ∈ X I , (2.1)

to denote the restriction (or marginal) (PΛ)I of PΛ on I.
Any random field P on Zν can be described in terms of its finite-dimensional

distributions {PΛ, Λ ∈ E} which are consistent in the sense that for any Λ ∈ E
and I ⊂ Λ we have

(
PΛ

)
I
= PI .

For all Λ ∈ E there exist for PΛc -almost all x ∈ XΛc

the following limits

qx
Λ(x) = lim

eΛ↑Λc

PΛ∪eΛ(x⊕ xeΛ)

PeΛ(xeΛ)
, x ∈ XΛ.

Any system
Q = {Qx

Λ, Λ ∈ E and x ∈ XΛc}
of probability distributions such that for all Λ ∈ E we have Q

x
Λ = qx

Λ for PΛc -
almost all x ∈ XΛc

is called conditional distribution of the random field P.
A conditional distribution Q of a random field P satisfies P-almost surely

the condition
Q

x
Λ∪eΛ

(x ⊕ y) = Q
x⊕y
Λ (x) (Qx

Λ∪eΛ
)

eΛ
(y)

where Λ, Λ̃ ∈ E , Λ ∩ Λ̃ = ∅, x ∈ XΛ, y ∈ X eΛ and x ∈ X
(
Λ∪eΛ

)c

.

Definition 2.1. A system

Q = {Qx
Λ, Λ ∈ E and x ∈ XΛc}

of probability distributions is called specification if for any Λ, Λ̃ ∈ E such that

Λ ∩ Λ̃ = ∅ and for any x ∈ XΛ, y ∈ X eΛ and x ∈ X
(
Λ∪eΛ

)c

we have

Q
x
Λ∪eΛ

(x⊕ y) = Q
x⊕y
Λ (x) (Qx

Λ∪eΛ
)

eΛ
(y). (2.2)

One of the main goals of random field theory is to study the set of all
random fields having a given specification as a conditional distribution, and
particularly to find conditions on the specification, sufficient for existence and
uniqueness of such random fields. The best known conditions of such type are
the quasilocality of a specification for existence, and Dobrushin’s uniqueness
condition for uniqueness.

Definition 2.2. Let S ⊂ Zν and let g = {gx, x ∈ XS} be an arbitrary real-
valued function on X S . We say that the function g is local if there exist some
finite Λ ⊂ S such that gx = gy for all x,y ∈ XS satisfying xΛ = yΛ, and it is
quasilocal if it is a uniform limit of local functions.

Description of Random Fields by Means of One-Point Conditional Distributions 149



196 S. Dachian and B.S. Nahapetian

Note that quasilocality of g is equivalent to its continuity with respect to
the topology T S , or also to the following condition:

sup
x∈XS

|gxaI − gx | −−→
I↑S

0, (2.3)

where xa
I denotes the configuration on S equal to xI on I and to some fixed

a ∈ X in all points of S \ I.

Definition 2.3. A specification Q is called (quasi)local if for all Λ ∈ E and
x ∈ XΛ the function Q

x
Λ(x) is (quasi)local as a function of x ∈ XΛc

.

Definition 2.4. We say that a specification Q satisfies Dobrushin’s uniqueness
condition if it is quasilocal and we have

1

2
sup
t∈Zν

∑

s∈Zν\t

sup
x,y

∑

x∈X

∣∣Qx
t (xt)− Q

y
t (xt)

∣∣ < 1, (2.4)

where the second sup is taken over all pairs x,y ∈ X Zν\t such that we have
xZν\{s,t} = yZν\{s,t}.

Here and in the sequel, for convenience of notations, we write t for the one-
point set {t}, and xt for the configuration taking value x ∈ X on the set t.

Now we can state the following theorem (see [5]).

Theorem 2.1. Let Q be some fixed specification.

1) If Q is quasilocal, then there exists a random field P having Q as a
conditional distribution.

2) If Q satisfies Dobrushin’s uniqueness condition, then the random field P

having Q as a conditional distribution is unique.

2.2. Gibbsian specifications

The best known examples of specifications are Gibbsian specifications. These
specifications have the following (Gibbsian) form:

Q
x
Λ(x) =

exp(−Ux
Λ(x))∑

y∈XΛ exp(−Ux
Λ(y))

, Λ ∈ E , x ∈ XΛ, x ∈ XΛc

.

Here the function UΛ = {Ux
Λ(x), x ∈ XΛ, x ∈ XΛc} is called Hamiltonian in Λ,

the set of functions U = {UΛ, Λ ∈ E} is called system of Hamiltonians, and is
assumed to be given by the formula

Ux
Λ(x) =

∑

J : ∅6=J⊂Λ

∑

eJ∈E : eJ⊂Λc

Φ(x
J
⊕ x eJ

), Λ ∈ E , x ∈ XΛ, x ∈ XΛc

, (2.5)
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where Φ = {Φ(x), x ∈ X J , J ∈ E \ {∅}} is some function taking values in
R ∪ {+∞} and called (interaction) potential. Here and in the sequel we use
the convention that any sum over an empty space of indexes is equal to 0, i.e.,
Ux
∅ (∅) = 0 for all x ∈ X Zν .
Let us put

ux∆(xt) =
∑

eJ⊂∆\t

Φ(xt ⊕ x eJ
), t ∈ Zν ,∆ ∈ E , x ∈ X , x ∈ X Zν\t.

In order for the system of Hamiltonians U to be well-defined, potentials are
always supposed to be such that the limit

ux(xt) = lim
∆↑Zν

ux∆(xt) (2.6)

exists and is in R ∪ {+∞} for all t ∈ Zν , x ∈ X and x ∈ XZν\t. Since
ux(xt) = Ux

t (xt) for all t ∈ Zν , x ∈ X and x ∈ XZν\t, we call the system
u = {ux(xt), t ∈ Zν , x ∈ X , x ∈ XZν\t} one-point Hamiltonian.

Potentials satisfying (2.6) are called convergent. Usually the potentials are
supposed to be uniformly convergent, i.e., potential and Hamiltonians are sup-
posed to be finite, and the convergence in (2.6) (and hence in (2.5)) is supposed
to be uniform with respect to x. Note that Gibbsian specifications with uni-
formly convergent potentials are clearly quasilocal.

2.3. Vacuum systems

Let us start by introducing the notion of so-called vacuum potentials. Fix
some element θ ∈ X which will be called vacuum and let X ∗ denote X \ θ.

Definition 2.5. A potentialΦ = {Φ(x), x ∈ X J , J ∈ E\{∅}} is called vacuum
potential (with the vacuum θ) if we have Φ(x) = 0 for all x ∈ X J such that
there exists some t ∈ J satisfying xt = θ.

The class of vacuum potentials corresponds to so-called lattice gas models
of statistical physics. Note that for an arbitrary uniformly convergent potential
and any θ ∈ X , one can find a unique (not necessarily uniformly convergent)
vacuum potential giving the same specification as the initial one (see, for exam-
ple, [9]). In physical terminology xt = θ means that this site is not occupied by
any particle, while all other values represent different types of particles.

Consider an arbitrary configuration x ∈ X S , S ⊂ Zν . Denote by T the set
of sites occupied by particles, i.e., T = {t ∈ S, xt 6= θ} ⊂ S. Clearly, we have
x = xθ

T
, and hence the configuration x is uniquely determined by its subcon-

figuration xT ∈ X ∗T . In the sequel we will not distinguish between this two

configurations and will write, for example, x ∈ X ∗T , T ⊂ S for a configuration
x on S.
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Now we can rewrite all the above formulas in these notations. For example,
the quasilocality condition (2.3) becomes

sup
x∈X ∗T , T⊂S

|gxI − gx| −−→
I↑S

0.

The Gibbsian form is

Q
x
Λ(x) =

exp(−Ux(x))∑
y∈XΛ exp(−Ux(y))

, Λ ∈ E , x ∈ X ∗I , I ⊂ Λ, x ∈ X ∗S , S ⊂ Λc.

The Hamiltonian U = {Ux(x), x ∈ X ∗I , I ∈ E , x ∈ X ∗S , S ⊂ Ic} corre-
sponding to a potential Φ = {Φ(x), x ∈ X ∗J , J ∈ E \ {∅}} is given by the
formula

Ux(x) =
∑

J : ∅6=J⊂I

∑

eJ∈E : eJ⊂S

Φ(x
J
⊕ x eJ

).

Note that the Hamiltonian no longer depends on Λ. In fact, vacuum condition
implies that for all Λ ∈ E satisfying I ⊂ Λ ⊂ Sc we get the same Hamilto-
nian (adding empty sites does not change the energy of a configuration). The
relation (2.6) can be rewritten as

ux(xt) = lim
∆↑Zν

ux∆(xt).

Let us finally note here, that in the vacuum case we clearly have U x(∅) = 0
for all x ∈ X ∗S , S ⊂ Zν , and hence we have Q

x
Λ(∅) > 0 for all Λ ∈ E and

x ∈ X ∗S , S ⊂ Λc. Here ∅ is nothing but the configuration θΛ identically equal
to θ on Λ. This remark leads us to introduce the following

Definition 2.6. A specification

Q = {Qx
Λ, Λ ∈ E , x ∈ X ∗S , S ⊂ Λc}

is called vacuum specification (with the vacuum θ) if for all Λ ∈ E and x ∈ X ∗S ,
S ⊂ Λc, we have

Q
x
Λ(∅) > 0. (2.7)

Sometimes vacuum specifications are also called weakly positive specifica-
tions, and the condition (2.7) is called “essentiality” of vacuum.

Note finally that for vacuum specifications the consistency condition (2.2)
can be rewritten in an equivalent form

Q
x
Λ∪eΛ

(x ⊕ y) =
Q

x
Λ∪eΛ

(x)

Q
x⊕x
eΛ

(∅)
Q

x⊕x
eΛ

(y). (2.8)
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3. One-point systems

In this section we propose a description of vacuum specifications, based
on the notion of a consistent system of functions (called one-point system),
which is closely related to one-point distributions. Particularly, the answer to
Dobrushin’s problem for vacuum specifications follows immediately from this
description.

For simplicity, we will first consider the case when X = {0,1}, the vacuum
θ = 0 and X ∗ = {1}, i.e., there exists just one type of particles, corresponding
to 1. Hence, any configuration x on S ⊂ Zν is identified with a subset T of S
where the configuration x takes the value 1. In the sequel we will not distinguish
between these two notions and will write, for example, x ⊂ S for a configuration
x on S.

With these notations we have xΛ = x∩Λ, x⊕y = x∪y, the Gibbsian form
is

Q
x
Λ(x) =

exp(−Ux(x))∑
y⊂Λ exp(−Ux(y))

, Λ ∈ E , x ⊂ Λ, x ⊂ Λc,

the Hamiltonian U = {Ux(x), x ∈ E and x ⊂ xc} corresponding to a potential
Φ = {Φ(J), J ∈ E \ {∅}} is given by the formula

Ux(x) =
∑

J : ∅6=J⊂x

∑

eJ∈E : eJ⊂x

Φ(J ∪ J̃ ),

and the condition of essentiality of vacuum is just Qx
Λ(∅) > 0 for all Λ ∈ E and

x ⊂ Λc.
Before introducing description of specifications by means of one-point sys-

tems, we need some preliminary results.

3.1. Description of specifications by means of H -systems

Here we show that a vacuum specification can be described by means of
a system of functions (H-system), satisfying some consistency conditions. A
more detailed exposition of the results concerning H-systems can be found in [3]
and [4].

Definition 3.1. A system H = {Hx
x , x ∈ E and x ⊂ xc} such that Hx

x ≥ 0 for
all x ∈ E , x ⊂ xc, and Hx

∅ = 1 for all x ⊂ Zν , is called H-system.
An H-system H is called consistent if it satisfies the following condition: for

any x,y ∈ E such that x ∩ y = ∅ and any x ⊂ (x ∪ y)c we have

Hx
x∪y = Hx

x H
x∪x
y . (3.1)
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Theorem 3.1. A system Q = {Qx
Λ, Λ ∈ E and x ⊂ Λc} is a vacuum specifica-

tion if and only if there exists a consistent H-system H such that for any Λ ∈ E
and any x ⊂ Λc we have

Q
x
Λ(x) =

Hx
x∑

y⊂ΛH
x
y

, x ⊂ Λ. (3.2)

Proof. 1) Necessity. Let Q = {Qx
Λ, Λ ∈ E and x ⊂ Λc} be a specification with

Q
x
Λ(∅) > 0 for all Λ ∈ E and x ⊂ Λc. For all x ∈ E and x ⊂ xc, we use the

notation

Hx
x =

∑

J⊂x

(−1)|x\J|
1

Q
x
J(∅)

.

Let us show that (3.2) holds. For any Λ ∈ E , J ⊂ Λ and x ⊂ Λc we can
write

1 =
∑

y⊂J

Q
x
J(y) =

∑

y⊂J

Q
x
J (∅)

Q
x
Λ(∅)

Q
x
Λ(y) =

Q
x
J(∅)

Q
x
Λ(∅)

∑

y⊂J

Q
x
Λ(y),

and hence
1

Q
x
J(∅)

=
1

Q
x
Λ(∅)

∑

y⊂J

Q
x
Λ(y).

Therefore

Hx
x =

∑

J⊂x

(−1)|x\J|
1

Q
x
J (∅)

=
1

Q
x
Λ(∅)

∑

J⊂x

(−1)|x\J|
∑

y⊂J

Q
x
Λ(y) =

Q
x
Λ(x)

Q
x
Λ(∅)

, (3.3)

and taking into account the equality

∑

y⊂Λ

Hx
y =

1

Q
x
Λ(∅)

we obtain (3.2).
Obviously, (3.3) implies that H = {Hx

x , x ∈ E and x ⊂ xc} is an H-system,
and it remains to verify its consistency. For any x,y ∈ E such that x ∩ y = ∅
and any x ⊂ (x ∪ y)c, using (3.3) and (2.8) we can write

Hx
x H

x∪x
y =

Q
x
x∪y(x)

Q
x
x∪y(∅)

Q
x∪x
y (y)

Q
x∪x
y (∅)

=
Q

x
x∪y(x ∪ y)

Q
x
x∪y(∅)

= Hx
x∪y

which concludes the proof of necessity.

2) Sufficiency. Let H = {Hx
x , x ∈ E and x ⊂ xc} be a consistent H-system.

For all Λ ∈ E , x ⊂ Λ and x ⊂ Λc put

Q
x
Λ(x) =

Hx
x∑

y⊂ΛH
x
y

.
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Let us prove that Q = {Qx
Λ, Λ ∈ E and x ⊂ Λc} is a specification. Obvi-

ously Q is a system of probability distributions in finite volumes with boundary
conditions. It remains to verify the consistency condition (2.8). We have

Q
x
Λ∪eΛ

(x ∪ y) =
Hx

x∪y∑
z⊂Λ∪eΛH

x
z

=
Hx

x H
x∪x
y∑

z⊂Λ∪eΛH
x
z

=
Hx

x∑
z⊂Λ∪eΛH

x
z

Hx∪x
y∑

z⊂eΛH
x∪x
z

∑

z⊂eΛ

Hx∪x
z =

Q
x
Λ∪eΛ

(x)

Q
x∪x
eΛ

(∅)
Q

x∪x
eΛ

(y).

The theorem is proved. 2

Remark 3.1. Let H be a consistent H-system. For all x ∈ E and x ⊂ xc denote
Ux(x) = − lnHx

x . Then the system U = {Ux(x), x ∈ E and x ⊂ xc} satisfies
the following consistency property: for all x,y ∈ E such that x ∩ y = ∅ and all
x ⊂ (x ∪ y)c we have

Ux(x ∪ y) = Ux(x) + Ux∪x(y). (3.4)

Now we can rewrite (3.2) in the form

Q
x
Λ(x) =

exp(−Ux(x))∑
y⊂Λ exp(−Ux(y))

, Λ ∈ E , x ⊂ Λ, x ⊂ Λc,

which is the usual Gibbsian form with Hamiltonian U . But in our case, the
system U is an arbitrary system satisfying (3.4), and in general does not have
an explicit form in terms of some potential.

3.2. Description of specifications by means of one-point systems

As we have already seen, consistent H-systems are convenient tool for de-
scription of vacuum specifications. Here we will show that one can describe
specifications by means of more simple systems, namely by means of one-point
systems.

Definition 3.2. A system h = {hxt , t ∈ Zν and x ⊂ Zν \ t} is called one-point
system if for all t ∈ Zν and x ⊂ Zν \ t we have hxt ≥ 0 and for all s, t ∈ Zν and
x ⊂ Zν \ {s,t} we have

hxs h
x∪s
t = hxt h

x∪t
s . (3.5)

The following lemma shows that these one-point systems correspond one-to-
one to consistent H-systems.

Lemma 3.1. A system H = {Hx
x , x ∈ E and x ⊂ xc} is a consistentH-system

if and only if there exists a one-point system h such that for all x ∈ E and x ⊂ xc

we have
Hx

x = hxt1 h
x∪t1
t2

· · · hx∪t1∪···∪tn−1

tn
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where n = |x| and t1, . . . , tn is an arbitrary enumeration of elements of the
set x. Particularly, for all t ∈ Zν and x ⊂ Zν \ t we have Hx

t = hxt .

Proof. 1) Necessity. Let H = {Hx
x , x ∈ E and x ⊂ xc} be a consistent H-

system and put hxt = Hx
t ≥ 0 for all t ∈ Zν and x ⊂ Zν \ t. Since H-system H

is consistent, using (3.1) we obtain

Hx
{s,t} = Hx

s H
x∪s
t = hxs h

x∪s
t .

In the same manner Hx
{s,t} = hxt h

x∪t
s , and hence h is a one-point system. Again

using (3.1) we obtain easily

Hx
x = Hx

t1
Hx∪t1

{t2,...,tn}
= Hx

t1
Hx∪t1

t2
Hx∪t1∪t2

{t3,...,tn}
= · · · = hxt1 h

x∪t1
t2

· · ·hx∪t1∪···∪tn−1

tn

which concludes the proof of the necessity.

2) Sufficiency. Let h = {hxt , t ∈ Zν and x ⊂ Zν \ t} be a one-point system
and for all x ∈ E and x ⊂ xc put

Hx
x = hxt1 h

x∪t1
t2

· · · hx∪t1∪···∪tn−1

tn
≥ 0. (3.6)

First of all let us verify that this definition is correct, i.e., that it does not
depend on the enumeration of the set x. To this end, let us fix some enumera-
tion t1, . . . , tn and let ϕ = {ϕ(1), . . . , ϕ(n)} and ψ = {ψ(1), . . . , ψ(n)} be two
permutations of the set {1, . . . , n}. We need to show that

h
x

tϕ(1)
h
x∪tϕ(1)

tϕ(2)
· · ·hx∪tϕ(1)∪···∪tϕ(n−1)

tϕ(n)
= h

x

tψ(1)
h
x∪tψ(1)

tψ(2)
· · ·hx∪tψ(1)∪···∪tψ(n−1)

tψ(n)
. (3.7)

It is well known that any permutation of the set {1, . . . , n} can be decomposed
in a product of transpositions of nearest neighbours, and hence it suffices to
consider only the case where ψ = ϕ ◦ (k, k + 1) with some k ∈ {1, . . . , n − 1},
i.e., ψ = {ϕ(1), . . . , ϕ(k − 1), ϕ(k + 1), ϕ(k), ϕ(k + 2), . . . , ϕ(n)}. But in this
case (3.7) is reduced to

h
x∪tϕ(1)∪···∪tϕ(k−1)

tϕ(k)
h
x∪tϕ(1)∪···∪tϕ(k−1)∪tϕ(k)

tϕ(k+1)

= h
x∪tϕ(1)∪···∪tϕ(k−1)

tϕ(k+1)
h
x∪tϕ(1)∪···∪tϕ(k−1)∪tϕ(k+1)

tϕ(k)
,

which is an evident consequence of (3.5). So, H is an H-system, and it re-
mains to check its consistency. Let us take some x = {t1, . . . , tn} ∈ E and
y = {s1, . . . , sm} ∈ E such that x ∩ y = ∅ and some x ⊂ (x ∪ y)c. We have
x ∪ y = {t1, . . . , tn, s1, . . . , sm} and hence, using the definition (3.6) of the H-
system H, we get

Hx
x = hxt1 h

x∪t1
t2

· · ·hx∪t1∪···∪tn−1

tn
,

Hx∪x
y = hx∪x

s1
hx∪x∪s1
s2

· · ·hx∪x∪s1∪···∪sm−1
sm

,

Hx
x∪y = hxt1 · · ·h

x∪t1∪···∪tn−1

tn
hx∪t1∪···∪tn
s1

· · ·hx∪t1∪···∪tn∪s1∪···∪sm−1
sm

,
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and hence (3.1) holds. The theorem is proved. 2

Now we can formulate the main result of this section.

Theorem 3.2. A system Q = {Qx
Λ, Λ ∈ E and x ⊂ Λc} is a vacuum specifi-

cation if and only if there exists a one-point system h such that for any t ∈ Zν

and any x ⊂ Zν \ t we have

Q
x
t (∅) =

1

1 + hxt
and Q

x
t (t) =

hxt
1 + hxt

. (3.8)

Proof. 1) Necessity. Let Q = {Qx
Λ, Λ ∈ E and x ⊂ Λc} be a vacuum specifica-

tion. Consider the H-system H corresponding to Q, and let h be the one-point
system corresponding to H. This h is the desired one-point system, since rela-
tions (3.8) follow immediately from (3.2). The necessity is proved.

2) Sufficiency. Let h = {hxt , t ∈ Zν and x ⊂ Zν \ t} be a one-point system.
Consider the H-system H corresponding to h, and let Q be the vacuum speci-
fication corresponding to H. Again (3.8) follows from (3.2), and so the theorem
is proved. 2

Let us note that this theorem answers Dobrushin’s problem, by showing
when a system of one-point distributions with boundary conditions is a subsys-
tem of some specification. In fact, a necessary and sufficient condition for that
is condition (3.5) which can be rewritten, using the obvious relation

hxt =
Q

x
t (t)

Q
x
t (∅)

, (3.9)

as follows:

Q
x
s(s)Q

x∪s
t (t)Qx

t (∅)Qx∪t
s (∅) = Q

x
t (t)Q

x∪t
s (s)Qx

s(∅)Qx∪s
t (∅).

Remark 3.2. Let h be a one-point system. For all t ∈ Zν and x ⊂ Zν \ t denote
ux(t) = − lnhxt . The system u = {ux(t), t ∈ Zν and x ⊂ Zν \ t} is a one-point
Hamiltonian, which in general does not have an explicit form in terms of some
potential.

Finally, let us give an example of one-point system, based on a simple idea
which will be used in Section 4 for constructing non-Gibbsian random fields.

Example 3.1. Let h = {hxt , t ∈ Zν and x ⊂ Zν \ t} be a non-negative system
such that hx1

t = hx2
t if x1 = x2 up to a finite number of lattice points. Then h

is clearly a one-point system.
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3.3. Generalizations to the case of arbitrary finite state space

All the results obtained above can be straightforwardly generalized to the
case of an arbitrary finite state space X . As always we suppose that there is
some fixed element θ ∈ X which is called vacuum and we use X ∗ to denote X \θ.

Definition 3.3. A systemH = {Hx
x , x ∈ X ∗I , I ∈ E , x ∈ X ∗S , S ⊂ Ic} such

that Hx
x ≥ 0 for all x ∈ X ∗I , I ∈ E , x ∈ X ∗S , S ⊂ Ic, and Hx

∅ = 1 for all

x ∈ X ∗S , S ⊂ Zν , is called H-system.
An H-system H is called consistent if it satisfies the following condition: for

any x ∈ X ∗I , I ∈ E , y ∈ X ∗J , J ∈ E such that I ∩ J = ∅ and any x ∈ X ∗S ,
S ⊂ (I ∪ J)c we have

Hx
x⊕y = Hx

x H
x⊕x
y .

Theorem 3.3. A system Q = {Qx
Λ, Λ ∈ E , x ∈ X ∗S , S ⊂ Λc} is a vacuum

specification if and only if there exists a consistent H-system H such that for
any Λ ∈ E and x ∈ X ∗S , S ⊂ Λc, we have

Q
x
Λ(x) =

Hx
x∑

y∈XΛ Hx
y

, x ∈ X ∗I , I ⊂ Λ.

Definition 3.4. A system

h = {hxt (x), t ∈ Zν , x ∈ X ∗, x ∈ X ∗S , S ⊂ Zν \ t}

is called one-point system if for all t ∈ Zν , x ∈ X ∗ and x ∈ X ∗S , S ⊂ Zν \ t we
have hxt (x) ≥ 0, and for all s, t ∈ Zν , x, y ∈ X ∗ and x ∈ X ∗S , S ⊂ Zν \ {s,t} we
have

hxs(y)h
x⊕ys
t (x) = hxt (x)h

x⊕xt
s (y).

Lemma 3.2. A system H = {Hx
x , x ∈ X ∗I , I ∈ E , x ∈ X ∗S , S ⊂ Ic} is a

consistent H-system if and only if there exists a one-point system h such that
for all x ∈ X ∗I , I ∈ E and x ∈ X ∗S , S ⊂ Ic we have

Hx
x = hxt1(xt1) h

x⊕xt1
t2

(xt2 ) · · ·h
x⊕xt1⊕···⊕xtn−1

tn
(xtn)

where n = |I| and t1, . . . , tn is an arbitrary enumeration of elements of the
set I. Particularly, for all t ∈ Zν , x ∈ X ∗ and x ∈ X ∗S , S ⊂ Zν \ t, we have
Hx

xt
= hxt (x).

Theorem 3.4. A system Q = {Qx
Λ, Λ ∈ E , x ∈ X ∗S , S ⊂ Λc} is a vacuum

specification if and only if there exists a one-point system h such that for any
t ∈ Zν and any x ∈ X ∗S , S ⊂ Zν \ t, we have

Q
x
t (θ) =

1

1 +
∑

y∈X ∗ hxt (y)
and Q

x
t (xt) =

hxt (x)

1 +
∑

y∈X ∗ hxt (y)
, x ∈ X ∗.
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Finally relation (3.9) becomes

hxt (x) =
Q

x
t (xt)

Q
x
t (θ)

, x ∈ X ∗.

4. Applications

In this section we propose some applications of one-point systems.

4.1. Description of random fields by means of one-point systems

As we have already mentioned in Section 2, quasilocality of a specification
guarantees existence of random fields having this specification as a conditional
distribution. Using the results of Section 3, we can describe a vacuum specifi-
cation by means of a one-point system. We have the following

Theorem 4.1. A vacuum specification Q is quasilocal if and only if the corre-
sponding one-point system h = {hxt , t ∈ Zν and x ⊂ Zν \ t} is quasilocal as a
function of x for all t ∈ Zν , i.e., if we have

sup
x⊂Zν\t

|hxIt − hxt | −−−→
I↑Zν

0, t ∈ Zν .

Proof. Recall that quasilocality means continuity with respect to the topol-
ogy T Zν\t. If Q is quasilocal, then using (3.9) we get clearly the quasilocality
of h. Now, if h is quasilocal, then by (3.6) we get the quasilocality of the
corresponding H-system H, and then by (3.2) the quasilocality of Q. 2

Now we can state a theorem about existence and uniqueness of a random
field with a given one-point system.

Theorem 4.2. Let h = {hxt , t ∈ Zν and x ⊂ Zν \ t} be a one-point system.

1) If h is quasilocal, then there exists a random field P having h as a one-
point system.

2) If, moreover, h satisfies the condition

sup
t∈Zν

∑

s∈Zν\t

sup
x⊂Zν\{s,t}

|hxt − hx∪s
t |

(1 + hxt ) (1 + hx∪s
t )

< 1, (4.1)

then the random field P having h as a one-point system is unique.

The condition (4.1) is nothing but Dobrushin’s uniqueness condition rewrit-
ten in terms of one-point systems. It is obtained by replacing Q by its values
(expressed in terms of h) in (2.4).
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4.2. Gibbsian one-point systems

The problem of characterization of Gibbsian random fields was considered
in many works (see, for example, [1, 9, 11, 15]). One of the most interesting
aspects of this problem is the description of the class of specifications which are
Gibbsian with a potential satisfying some given conditions. For example, let us
mention the following result.

Theorem 4.3. A specification Q is Gibbsian with uniformly convergent po-
tential if and only if it is quasilocal and strictly positive.

Since vacuum specifications can be described by means of one-point systems,
the above mentioned problem can be reduced to a similar problem for one-point
systems.

Definition 4.1. A one-point system h = {hxt , t ∈ Zν and x ⊂ Zν \ t} is called
Gibbsian with potential satisfying some given condition, if the corresponding
specification Q is Gibbsian with a potential satisfying this condition.

Combining Theorems 4.1 and 4.3 we obtain the following result.

Theorem 4.4. A one-point system h is Gibbsian with uniformly convergent
potential if and only if it is quasilocal and strictly positive.

Note that this result can be also proved directly, taking into account that
the uniform convergence of potential is equivalent to the quasilocality of cor-
responding Hamiltonians, and hence to the quasilocality and strict positivity
of h.

Let us now describe a wider class of one-point systems which are Gibbsian
with (not necessarily uniformly) convergent vacuum potentials. For convenience
we call such one-point systems Gibbsian.

Theorem 4.5. A one-point system h = {hxt , t ∈ Zν and x ⊂ Zν\t} is Gibbsian
if and only if the following two conditions are satisfied:

(h1) for all t ∈ Zν and x ⊂ Zν \ t we have lim
I↑Zν

hxIt = hxt ,

(h2) for all t ∈ Zν and x ⊂ Zν \ t we have hxt = 0 if there exists T ∈ E such
that hxTt = 0.

Proof. 1) Necessity. We suppose that the one-point system h is Gibbsian, i.e.,

that for all t ∈ Zν and x ⊂ Zν \ t we have hxt = exp(−ux(t)) with

ux(t) =
∑

V ∈E :V ⊂x

Φ(V ∪ t)
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where Φ is some convergent potential. We need to check conditions (h1) and
(h2). The first condition follows obviously from the fact that the potential Φ is
convergent. To check the second one, let us take some t ∈ Zν and x ⊂ Zν \ t
and suppose that there exists T ∈ E such that hxTt = 0. We need to show that
hxt = 0. We have

uxT (t) = − ln(hxTt ) = +∞ =
∑

V ∈E :V ⊂xT

Φ(V ∪ t) =
∑

V ⊂xT

Φ(V ∪ t).

But the last sum contains a finite number of summands and hence at least one
of them is equal to +∞. This implies that for any I ∈ E such that I ⊃ T we
have uxI (t) = +∞, and since Φ is convergent we have also ux(t) = +∞, and
hence hxt = exp(−ux(t)) = 0 which concludes the proof of the necessity.

2) Sufficiency. We suppose that the one-point system h satisfies conditions
(h1) and (h2) and that u is the corresponding one-point Hamiltonian. Let us
consider the potential Φ defined by

Φ(J) =





+∞, if ∀ ℓ ∈ J we have uJ\ℓ(ℓ) = +∞,

∑

R⊂J\ℓ

(−1)|(J\ℓ)\R|uR(ℓ), if ∃ ℓ ∈ J such that uJ\ℓ(ℓ) ∈ R.

Note that the last sum is well defined since the number of summands is finite
and by (h2) all the summands are finite. We can also show that this definition
is correct, i.e., that if uJ\ℓ(ℓ), uJ\s(s) ∈ R then

∑

R⊂J\ℓ

(−1)|(J\ℓ)\R|uR(ℓ) =
∑

R⊂J\s

(−1)|(J\s)\R|uR(s).

Indeed, we have
∑

R⊂J\ℓ

(−1)|(J\ℓ)\R|uR(ℓ) =
∑

R⊂J\{ℓ,s}

(−1)|(J\ℓ)\R|uR(ℓ)

+
∑

R⊂J\{ℓ,s}

(−1)|(J\ℓ)\(R∪s)|uR∪s(ℓ)

=
∑

R⊂J\{ℓ,s}

(−1)|(J\ℓ)\R|(uR(ℓ)− uR∪s(ℓ)),

and in the same manner
∑

R⊂J\s

(−1)|(J\s)\R|uR(s) =
∑

R⊂J\{ℓ,s}

(−1)|(J\s)\R|(uR(s)− uR∪ℓ(s)).

Since all the terms in these sums are finite, using (3.5) we see that the sums are
term by term equal.
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It remains to check that the potential Φ indeed corresponds to our one-point
system h, i.e., that

ux(t) =
∑

V ∈E :V⊂x

Φ(V ∪ t) (4.2)

for all t ∈ Zν and x ⊂ Zν \ t. Since condition (h1) holds, it is sufficient to
verify this relation only in the case when x ∈ E . Let us at first suppose that the
left-hand side of (4.2) is finite. In this case by (h1) we have uV (t) < +∞ for all
V ⊂ x. Then by definition of Φ we have

Φ(V ∪ t) =
∑

R⊂V

(−1)|V \R|uR(t),

and hence the right-hand side of (4.2) equals

∑

V⊂x

∑

R⊂V

(−1)|V \R|uR(t) = ux(t).

Now let us consider the case when the left-hand side of (4.2) is infinite, i.e.,
when ux(t) = +∞. We need to show that the right-hand side of (4.2) is also
infinite. Two cases are possible:

• We have u∅(t) = +∞. In this case by the definition of Φ we obtain
Φ(t) = +∞, and since Φ(t) is one of the summands in the right-hand side
of (4.2), the latter is infinite.

• We have u∅(t) ∈ R. In this case clearly there exists a V ⊂ x such that
V 6= ∅, uV (t) = +∞, and for all ℓ ∈ V we have uV \ℓ(t) ∈ R. Hence, for
all ℓ ∈ V we can write

uV \ℓ(t) + u(V \ℓ)∪t(ℓ) = uV \ℓ(ℓ) + uV (t) = uV \ℓ(ℓ) + (+∞) = +∞.

But uV \ℓ(t) ∈ R, and hence we have u(V \ℓ)∪t(ℓ) = u(V ∪t)\ℓ(ℓ) = +∞ for
all ℓ ∈ V . Clearly we have also u(V ∪t)\t(t) = uV (t) = +∞. Thus, by
definition of Φ we have Φ(V ∪ t) = +∞, and hence the right-hand side
of (4.2) is infinite.

2

4.3. Non-Gibbsian one-point systems and random fields

In Theorem 4.5 we have seen necessary and sufficient conditions for a one-
point system to be Gibbsian. Now we will describe a simple scheme for con-
structing non-Gibbsian one-point systems and non-Gibbsian random fields. We
need the following
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Lemma 4.1. Let h = {hxt , t ∈ Zν and x ⊂ Zν \ t} be a one-point system
and R = {R(x), x ⊂ Zν} be a real-valued strictly positive function such that
R(x1) = R(x2) if x1 = x2 up to a finite number of lattice points. Then the
system

hR = {(hxt )R(x), t ∈ Zν and x ⊂ Zν \ t}
is also a one-point system.

Proof. For any s, t ∈ E and x ⊂ Zν \ {s,t} we can write

(hxt )
R(x) (hx∪t

s )R(x∪t) = (hxt )
R(x) (hx∪t

s )R(x) = (hxt h
x∪t
s )R(x)

= (hxs h
x∪s
t )R(x) = (hxs)

R(x) (hx∪s
t )R(x∪s)

which concludes the proof. 2

Remark 4.1. We require the function R to be real-valued and strictly positive
only in order for the system hR to be well-defined. But the lemma holds under
less restrictive conditions. For example, if the system h is strictly positive,
which is equivalent to say that the corresponding Hamiltonian U is finite, we
can consider R to be any real-valued function, and if the system h is less or
equal than 1 (respectively greater or equal than 1), which is equivalent to say
that the Hamiltonian U is strictly positive (respectively strictly negative), we
can allow R to take the value +∞ (respectively −∞). Here and in the sequel
we admit that 1±∞ = 00 = 1, or equivalently (±∞) · 0 = 0 · (±∞) = 0.

Proposition 4.1. Let h = {hxt , t ∈ Zν and x ⊂ Zν \ t} be a strictly positive
Gibbsian one-point system, and let R = {R(x), x ⊂ Zν} be a real-valued
function such that R(x1) = R(x2) if x1 = x2 up to a finite number of lattice
points. The following three conditions are equivalent:

1) the one-point system hR is non-Gibbsian;

2) there exists at least one pair t ∈ Zν and x ⊂ Zν \ t such that R(x) 6= R(∅)
and that hxt 6= 1;

3) the function R = {R(x), x ⊂ Zν} is not constant on the set N defined by
N = {x ⊂ Zν | ∃ t ∈ Zν such that t /∈ x and hxt 6= 1}.

Proof. First let us show that 2) ⇒ 1). Since h is Gibbsian, it has the form

h = {exp(−ux(t)), t ∈ Zν and x ⊂ Zν \ t}

where the one-point Hamiltonian u is finite and given by some convergent po-
tential Φ = {Φ(J), J ∈ E \ {∅}}. Hence

hR = {exp(−ux(t)R(x)), t ∈ Zν and x ⊂ Zν \ t}.
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We need to show that the specification determined by hR is non-Gibbsian, i.e.,
that there is no convergent potential Φ̃ = {Φ̃(J), J ∈ E \ {∅}} such that

ux(t)R(x) =
∑

eJ∈E : eJ⊂x

Φ̃(t ∪ J̃), t ∈ Zν , x ⊂ Zν \ t. (4.3)

Suppose that the contrary is true, i.e., that (4.3) holds. In this case we would
clearly have

ux(t)R(x) = lim
I↑Zν

uxI (t)R(xI) = R(∅) lim
I↑Zν

uxI (t) = R(∅)ux(t)

for any t ∈ Zν and x ⊂ Zν \ t. But the last relation contradicts condition 2).
The implication 1) ⇒ 2) is easy to see, since if 2) does not hold, then

for all t ∈ Zν and x ⊂ Zν \ t we have R(x) = R(∅) or hxt = 1, and hence
(hxt )

R(x) = (hxt )
R(∅). But the last specification is clearly Gibbsian, since got by

multiplying a Gibbsian potential by a constant.
The implication 3) ⇒ 2) is evident.
For the proof of 2) ⇒ 3) note that since there exists a pair t ∈ Zν and

x ⊂ Zν \ t such that R(x) 6= R(∅) and hxt 6= 1, clearly we have x ∈ N. On
the other hand, N contains at least one finite set y, since otherwise we would
have hxs = 1, and hence ux(s) = 0, for all x ∈ E and s ∈ xc, which is possible
if and only if Φ ≡ 0 on E \ {∅} which contradicts hxt 6= 0. So we will have
R(x) 6= R(∅) = R(y), which shows that R is not constant on N. 2

Remark 4.2. 1) Clearly, as in Lemma 4.1 we can allow R to take the value +∞
or −∞ under suitable conditions.

2) If hR is a one-point system of some random field P, then this random
field is non-Gibbsian (i.e., does not have any Gibbsian one-point system) if and
only if the function R = {R(x), x ⊂ Zν} is not P-almost surely constant on N.

Proposition 4.1 allows to construct non-Gibbsian one-point systems and, if
the existence is known, non-Gibbsian random fields. Note that non-Gibbsian
random fields constructed this way are not quasilocal, in the sense that they do
not have any quasilocal conditional distribution.

As an application let us give an example of a non-Gibbsian one-point system.
For any p ∈ (0,1) let us denote by Ip the set of all x ⊂ Zν such that the following
limit exists:

lim
I↑Zν

|xI |
|I| = p(x) = p,

and put I = XZν
∖( ⋃

p∈(0,1)

Ip
)
and

hxt =




0, if x ∈ I,

p(x)

1− p(x)
, otherwise.
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Clearly this is a one-point system, since

hxt h
x∪t
s =

p(x)

1− p(x)

p(x ∪ t)
1− p(x ∪ t) =

p(x)

1− p(x)

p(x ∪ s)
1− p(x ∪ s) = hxs h

x∪s
t .

Now, let us remark that the system h can be rewritten in the form hxt =

(h̃xt )
R(x) where h̃xt = e−1 is the Gibbsian one-point system corresponding to the

potential Φ = {Φ(J) = 1{|J|=1}, J ∈ E \ {∅}}, and the function R is given by

R(x) =




+∞, if x ∈ I,

− ln
p(x)

1− p(x)
, otherwise.

Clearly condition 3) of Proposition 4.1 is satisfied, and hence h is non-Gibbsian.
Note that this one-point system corresponds to a well known example of

a non-Gibbsian random field. In fact, for any p ∈ (0,1) let us consider the
Bernoulli random field Bp with parameter p. Since Bp is concentrated on Ip,
we have Bp-almost surely the equality

hxt =
p

1− p
=

B
p
t (1)

B
p
t (0)

.

Hence, taking into account (3.9) we see that all the fields Bp, p ∈ (0,1), have
h as a one-point system. So, any mixture of these fields also has h as a one-
point system. Let us consider such a non-trivial (P 6= Bp, p ∈ (0,1)) mixture
P and show that it is non-Gibbsian. Indeed, in this case the set N is equal to
{x ( Zν}, and the function R is not P-almost surely constant on N, since it
takes different values on different Ip-s. So, according to part 2) of Remark 4.2
the random field P is non-Gibbsian. Note that this fact can also be obtained
using a general result from [8, Section 4.5.1].

To conclude, let us note that by direct calculation one can easily obtain the
explicit form of the specification Q determined by h:

Q
x
Λ(x) =

{
1{x=∅}, if x ∈ I,

(p(x))|x| (1− p(x))|Λ\x|, otherwise.

4.4. Martingale-difference one-point systems and random fields

A random field {ξt, t ∈ Zν} taking values in X ⊂ R is called martingale-
difference if for all t ∈ Zν we have

E(ξt | ξs, s ∈ Zν \ t) = 0

almost surely. This definition implies that if for all Λ ∈ E we put SΛ =
∑

t∈Λ

ξt,

then for all finite Λ̃ ⊂ Λ ⊂ Zν the following martingale equality holds:

E(SΛ | ξt, t ∈ Λ̃) = SeΛ.
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Martingale-difference random fields are interesting for several reasons. For
example, for such random fields one can develop a limit theory similar to one
developed in [10] for martingale-difference random processes (see, for exam-
ple, [12, 14]). Besides, such random fields are of interest in some problems of
statistical physics. One of the reasons is the asymptotically normal behaviour of
the total spin at the critical point for martingale-difference models, another one
is that to any lattice model with finite spin one can correspond some martingale-
difference model, so that probabilities of the total spin in one model can be
expressed in terms of probabilities of the other one by means of some com-
binatorial formulas (see [13]). This gives a possibility to study the models of
statistical physics by means of martingale theory.

Below we give a simple method for constructing martingale-difference ran-
dom fields using one-point systems.

Let X ⊂ R be a finite space with a fixed vacuum θ.

Definition 4.2. A one-point system

h = {hxt (x), t ∈ Zν , x ∈ X ∗, x ∈ X ∗S , S ⊂ Zν \ t}
is called martingale-difference if we have

∑

x∈X ∗

xhxt (x) = 0

for all t ∈ Z and x ∈ X ∗S , S ⊂ Zν \ t.
We need the following general result about one-point systems.

Lemma 4.2. Consider finite state spaces X and W with fixed vacuums θ ∈ X
and θ′ ∈ W respectively and write, as usually, X ∗ = X \ θ and W∗ = W \ θ′.
Let h = {hxt (x), t ∈ Zν , x ∈ X ∗, x ∈ X ∗S , S ⊂ Zν \ t} be a one-point system,
and let ϕ be a function ϕ : W −→ X such that ϕ(w) = θ if and only if w = θ′.
Then the system

hϕ = {hϕ(w)
t (ϕ(w)), t ∈ Zν , w ∈ W∗, w ∈ W∗S , S ⊂ Zν \ t},

where ϕ(w) = {ϕ(ws), s ∈ S}, is also a one-point system.

Proof. First of all, let us note that since ϕ(w) = θ if and only if w = θ′, the
system hϕ is well defined. Further, for all s, t ∈ Zν , w, v ∈ W∗ and w ∈ W∗S ,
S ⊂ Zν \ {s,t} we have

hϕ(w)
s (ϕ(v))h

ϕ(w⊕vs)
t (ϕ(w)) = hϕ(w)

s (ϕ(v))h
ϕ(w)⊕ϕ(v)

s

t (ϕ(w))

= h
ϕ(w)
t (ϕ(w))h

ϕ(w)⊕ϕ(w)
t

s (ϕ(v))

= h
ϕ(w)
t (ϕ(w))hϕ(w⊕wt)

s (ϕ(v))

which concludes the proof. 2
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Now we can state the following

Theorem 4.6. Suppose the conditions of the preceding lemma are satisfied,
and suppose moreover W ⊂ R, θ′ = 0 and

∑

w∈ϕ−1(x)

w = 0 for all x ∈ X ∗.

Then the one-point system hϕ is martingale-difference.

Proof. We need to show that for all t ∈ Z and w ∈ W∗S , S ⊂ Zν \ t, we have∑
w∈W∗ wh

ϕ(w)
t (ϕ(w)) = 0. Indeed,

∑

w∈W∗

wh
ϕ(w)
t (ϕ(w)) =

∑

x∈X ∗

∑

w∈ϕ−1(x)

w h
ϕ(w)
t (ϕ(w))

=
∑

x∈X ∗

h
ϕ(w)
t (x)

∑

w∈ϕ−1(x)

w = 0

which concludes the proof. 2

It follows clearly from Theorem 4.6 that if the one-point system hϕ defines
some random field, then this field is martingale-difference. The existence of such
fields can be guaranteed, for example, by quasilocality of the one-point system h,
since quasilocality of h implies obviously the quasilocality of hϕ. For example, if
we consider the ferromagnetic Ising model, W = {−1,0,1} and ϕ(w) = 2 |w|−1,
we get the martingale-difference model considered in [13].
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The problem of description of specifications by means of probability distribu-

tions in small volumes with infinite boundary conditions is considered. The

description of specifications by means of n-specifications (consistent systems of

probability distributions in volumes of cardinality bounded by n with infinite

boundary conditions) is established under the condition of very weak positiv-

ity. Particular attention is paid to the most important case n=1 which requires

special considerations.

KEY WORDS: Consistency conditions; specification; n-specification; positivity

conditions; weak positivity; very weak positivity.

1. INTRODUCTION

The notion of specification—consistent system of probability distributions

in finite volumes with infinite boundary conditions—is a basic one in

the theory of random fields and in mathematical statistical physics. The

importance of this notion is that the description of random fields in terms

of specifications turned out to be a powerful tool for the development

of the theory of random fields (see, for example, ref. 1). Besides, the

specifications admitting Gibbsian description represent the mathematical
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background for the study of systems of statistical physics. The problem

of Gibbsian description of specifications was a subject of consideration of

many authors (see, for example, refs. 2–5).

The theory of description of random fields by means of specifica-

tions was constructed by Dobrushin in his fundamental works (refs. 6–8).

Particularly, the conditions of existence and uniqueness of random fields

described by a given specification were obtained in ref. 6.

In the latter work, while commenting the uniqueness condition,

Dobrushin touched upon the problem of restoration of specifications by

means of their one-point elements. Several years ago, in a private con-

versation with one of the authors Dobrushin pointed out the importance

of a closely related problem: the problem of description of specifications

by means of consistent systems of one-point probability distributions with

infinite boundary conditions. However, at that time no consistency condi-

tions on one-point probability distributions were known.

These two problems of Dobrushin were solved by the authors in refs.

9 and 10 under the condition of weak positivity (as well as under the

condition of strict positivity). In particular, consistency conditions under

which a system of one-point probability distributions with infinite bound-

ary conditions describes a specification were established in ref. 10 under

the condition of weak positivity. There it was also shown that the weak

positivity condition is coordinating, that is, a specification is weakly posi-

tive if and only if its subsystem consisting of one-point elements is weakly

positive. It was equally proved that under the condition of weak positiv-

ity, the quasilocality property is heritable, that is, a weakly positive spec-

ification is quasilocal if and only if its subsystem consisting of one-point

elements is quasilocal.

Let us note here that the consistency conditions established in refs.

9 and 10 were mentioned as properties of strictly positive conditional

probabilities of Markov random fields in ref. 11. Note also that some

results concerning the problem of restoration of strictly positive spe-

cifications can be found in refs. 1 and 5. In ref. 12 the attempt to

solve the problems of restoration and description of specifications in

some non-positive cases was undertaken, but sufficiently full results were

obtained only in one-dimensional case and under more complicated

conditions.

In the present work the results of ref. 10 are extended to essentially

more general situation. First, instead of consistent systems of one-point

probability distributions with infinite boundary conditions we consider

more general systems: so-called n-specifications, that is, consistent sys-

tems of probability distributions in small volumes (volumes of cardinal-

ity bounded by n) with infinite boundary conditions. But the principal
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difference is that the results are obtained under so-called very weak pos-

itivity condition which is essentially weaker than the conditions used in

ref. 10.

Note that the results of the present work allow one to formulate the

condition of existence of random fields described by a given specification

in terms of the latter’s one-point elements only, that is, exactly in the same

terms as the well-known Dobrushin’s uniqueness condition. So, it becomes

possible to formulate the problem of description of random fields directly

in terms of 1-specifications.

Note in addition, that the results of the present work will be proba-

bly useful in the recently emerged theory of non-Gibbsian random fields

which are now intensively studied (see, for example, ref. 13).

Note finally, that the methods used in the present work are new and

considerably differ from those used in ref. 10.

2. PRELIMINARIES

We denote by Zν the ν-dimensional integer lattice and by E the set of

all finite subsets of Zν , that is, E={�⊂Zν : |�|<∞}, where |�| is the car-

dinality (the number of points) of the set �. For convenience of notations,

we will omit braces for one-point sets, that is, will write a instead of {a}.

For any n∈N∪∞={1,2, . . . ,∞} we equally denote En ={�∈E : |�|�n}.

Clearly, for n=∞ we have E∞ =E.

Let (X,F) be some measurable state space. Usually X is assumed to

be endowed with some topology T, and F is assumed to be the Borel

σ -algebra for this topology. In the present work we concentrate on the

case when X is finite, T is the discrete topology and F is the total

σ -algebra, that is, F=T= part(X).

For any T ⊂Zν we consider the space X
T of all configurations on T .

For T =∅ we assume that X
∅ ={∅}, where ∅ is understood as an empty

configuration. For any T ,S ⊂Zν such that T ⊂S and any configuration

x ={xt , t ∈S} on S we denote xT the subconfiguration (restriction) of x

on T defined by xT ={xt , t ∈T }. For any T ,S ⊂Zν such that T ∩S =∅ and

any configurations x on T and y on S we denote xy the concatenation of

x and y, that is, the configuration on T ∪S equal to x on T and to y on

S. For any a ∈X, T ⊂Zν and x ∈X
T , the notation x ≡a will mean xt =a

for any t ∈T , and the notation x ∋a will mean xt =a for some t ∈T .

Let �∈E. We denote a probability distribution {P�(x), x ∈X
�} on

X
� by P�. Note that in the case �=∅ there exists only one probability

distribution defined by P∅(∅)=1. For any I ⊂� we denote (P�)
I

the
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restriction (or marginal distribution) of P� on I , defined by

(P�)
I
(x)=

∑

y∈X�\ I

P�(xy).

Finally, let us recall Dobrushin’s consistency condition and the notion

of specification, introduced in ref. 6.

Definition 1. Let �∈E. Any system {Qx

�, x ∈X
Z

ν \�} of probabil-

ity distributions on X
� indexed by infinite boundary conditions will be

called �-kernel and denoted by Q•
�.

Definition 2. Let �∈E and I ⊂�. We will say that a �-kernel Q•
�

is consistent in Dobrushin’s sense with an I -kernel Q•
I (and vice versa), if

Qx

�(xy)= (Qx

�)
�\ I

(x) Qxx

I (y)

for any x ∈X
�\ I ,y ∈X

I and x ∈X
Z

ν \�.

Definition 3. A family {Q•
�,�∈E} of �-kernels indexed by �∈E

will be called specification, if Q•
� and Q•

I are consistent in Dobrushin’s

sense for any �∈E and I ⊂�.

The main goal of this work is the description of specifications by

means of probability distributions in small volumes with infinite boundary

conditions, more precisely, by means of n-specifications.

3. NOTION OF n-SPECIFICATION AND POSITIVITY POINTS

Recall that specifications are families of �-kernels in finite volumes.

Let us consider smaller systems: families of �-kernels in volumes with

bounded size.

Definition 4. Let n∈N. Any family {Q•
�,�∈En} of �-kernels

indexed by �∈En will be called n-system.

In order to describe specifications, n-systems must satisfy some con-

sistency conditions which should at least be properties of n-systems con-

tained in specifications. So, let us introduce the following notion of

n-specification.

Definition 5. Let n∈N \1. An n-system {Q•
�,�∈En} will be called

n-specification, if Q•
� and Q•

I are consistent in Dobrushin’s sense for any

�∈En and I ⊂�.
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Note that the n-systems contained in specifications are indeed n-spe-

cifications. Note also, that in Definitions 4 and 5 one can include the case

n=∞, and that ∞-specifications defined this way will be clearly nothing

else but specifications.

Remark equally, that we did not yet define the 1-specifications, which

would be the most interesting for our purpose, since they are the small-

est. Why we did not do it? The matter is that if we introduce the notion

of 1-specification in the way of Definition 5, then it would be degenerate,

since for 1-systems Dobrushin’s consistency conditions become identities.

So, in order to define the notion of 1-specification, it is necessary to find

some “internal consistency conditions” (that is, some relations between

one-point probabilities only), which should be properties of 1-systems con-

tained in specifications. Such properties are given in Theorem 8, but before

formulating it let us introduce the notion of positivity point, which will

play an important role all along this paper.

Definition 6. Let �∈E, let T ⊂Zν\� and x ∈X
Z

ν \�\T , and let Q•
�

be a �-kernel. A configuration u∈X
� is called positivity point (p.p.) of

Q•
� under boundary condition (b.c.) varying on T and equal to x outside, if

for any α ∈X
T , we have Qxα

� (u)>0.

Let us formulate immediately one of the most important properties of

positivity points.

Theorem 7. Let J, I ∈E such that J ∩ I =∅, put �=J ∪ I , let

T ⊂Zν \� and x ∈X
Z

ν \�\T , and let Q•
J , Q•

I and Q•
� be a J -kernel, an

I -kernel and a �-kernel. Suppose Q•
� is consistent in Dobrushin’s sense

both with Q•
J and Q•

I . If u is a p.p. of Q•
J under b.c. varying on I ∪T

and equal to x outside, v is a p.p. of Q•
I under b.c. varying on J ∪T and

equal to x outside, then the concatenation uv is a p.p. of Q•
� under b.c.

varying on T and equal to x outside.

This theorem will be proved in Section 6, as well as the following the-

orem presenting the above mentioned properties of 1-systems contained in

specifications.

Theorem 8. If QQQ={Q•
�,�∈E2} is 2-specification, then

Q
xv
t (x) Q

xx
s (y) Q

xy
t (u) Q

xu
s (v)= Q

xu
s (y) Q

xy
t (x) Q

xx
s (v) Q

xv
t (u)

for any t, s ∈Zν, x ∈X
t , y, v ∈X

sand x ∈X
Z

ν \ t \ s,

and for any p.p.uof Q•
t under b.c. varying on s and equal tox outside.

(1)
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Remarks: (1) This theorem remains valid if any one of x, y, u, v is

supposed to be a positivity point.

(2) In the formulation of the theorem we could take QQQ to be

n-specification for some n∈ (N \1)∪∞.

(3) In this theorem QQQ is arbitrary, and the conditions are imposed

on the arguments of the relation (1) only. A weaker version of the the-

orem was already established by the authors in ref. 10 under some addi-

tional conditions on QQQ. Note also, that it is not possible to obtain the

relation (1) without any condition at all. Indeed, as shows the following

example this relation may not hold in general.

Example 9. Let the state space X={0,1,2,3} and consider the

∞-system QQQ={Q•
�,�∈E} defined by

Qx

�(x)=





�{x≡0} if |�| �2

�{x=0} if x ∋0

1/5 if x ≡1 and x ∈{0,1,2}

2/5 if x ≡1 and x =3

1/4 if x 	∋0 and x 	≡1 if |�|=1.

It is not difficult to verify that QQQ is a specification. Further, if for some

arbitrary t, s ∈Zν , we take x ∈X
Z

ν \ s \ t such that x ≡1, and put x =2,

u=3, y =1 and v =2, the relation (1) will clearly fail.

Now, in view of Theorem 8 we can introduce the following notion of

1-specification.

Definition 10. A 1-system {Q•
�,�∈E1} is called 1-specification, if

Q
xv
t (x) Q

xx
s (y) Q

xy
t (u) Q

xu
s (v)= Q

xu
s (y) Q

xy
t (x) Q

xx
s (v) Q

xv
t (u)

for any t, s ∈Zν, x ∈X
t , y, v ∈X

s and x ∈X
Z

ν \ t \ s,

and for any p.p.uof Q•
t under b.c. varying on s and equal tox outside.

(2)

Note, that like the case n�2, the 1-systems contained in

specifications will be 1-specifications. So, for any n∈N, the restriction of a

specification on En is nothing but an n-specification. Description of speci-

fications by means of n-specifications is in some sense an inverse operation

to this restriction.
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4. PROBLEM OF DESCRIPTION OF SPECIFICATIONS BY MEANS

OF n-SPECIFICATIONS

The problems of this type was firstly considered by the authors in

refs. 9 and 10. In these works, the problem of description of specifications

by means of n-specifications was solved for n=1 under the condition of

“strict positivity”, as well as under the condition of “weak positivity”.

4.1. Strict Positivity

The strict positivity is the simplest positivity condition for n-systems.

Definition 11. Let n∈N∪∞. An n-system {Q•
�,�∈En} will be

called strictly positive, if for any �∈En each configuration x ∈X
� is a p.p.

of Q•
� under b.c. varying on Zν \� and equal to ∅ outside.

Remark that Definition 11 simply means, that for any �∈En, any

x ∈X
� and any x ∈X

Z
ν \� we have Qx

�(x)>0.

The strictly positive specifications are widely studied and used in

mathematical statistical physics. For example, the specifications admitting

Gibbsian description with a real-valued potential are strictly positive.

Note also, that under the condition of strict positivity, the consistency

conditions (2) from Definition 10 of 1-specification become

Q
xv
t (x) Q

xx
s (y) Q

xy
t (u) Q

xu
s (v)= Q

xu
s (y) Q

xy
t (x) Q

xx
s (v) Q

xv
t (u)

for any t, s ∈Zν, x, u∈X
t , y, v ∈X

s and x ∈X
Z

ν \ t \ s .

Let us now explain the nature and point out several consequences of

the problem of description of specifications by means of n-specifications

using as example the results obtained in refs. 9 and 10.

The main result is that any strictly positive 1-specification q describes

a specification, that is, there exists a unique specification containing q.

The second result is that the strict positivity condition is coordinating,

that is, a specification QQQ is strictly positive if and only if the 1-specifica-

tion contained in QQQ is strictly positive. Let us note here that the necessity

is trivial, and the sufficiency becomes evident in view of considerations of

the present work due to Theorem 7.

Note that these two results imply also that any strictly positive specifi-

cation QQQ can be restored by the 1-specification contained in it (that is, any

specification containing the same 1-specification is necessarily equal to QQQ)

and allow us to conclude that the description is a one-to-one correspon-

dence between strictly positive 1-specifications and strictly positive specifi-

cations.
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The third result is that under the condition of strict positivity the

quasilocality property is heritable, that is, a strictly positive specification QQQ
is quasilocal if and only if the 1-specification contained in QQQ is quasilocal.

This result together with the first one allow us to formulate the con-

dition of existence of random fields described by a given specification

in terms of the latter’s one-point elements only, that is, exactly in the

same terms as the well-known Dobrushin’s uniqueness condition, and so,

it becomes possible to formulate the problem of description of random

fields directly in terms of 1-specifications.

Note in addition, that as it will become clear from the subsequent

considerations of this work, these results can be extended to the case of

arbitrary n∈N.

Now we want to consider the problem of description outside of the

scope of strict positivity condition. First of all let us notice that under no

condition at all this description does not hold.

4.2. Counterexample

Let us fix some n∈N. If the description of specifications by means

of n-specifications held under no condition at all, then any n-specification

would describe a specification. The following example shows that it is not

true.

Example 12. Let X={0,1}, denote F(x) the function which counts

the number of elements equal to 1 in a configuration x on T ⊂Zν and

consider the ∞-system QQQ={Q•
�,�∈E} defined by

Qx

�(x)=





�{x≡0} if F(x)=0

�{x≡1} if F(x)�1 if |�|�2

�{x=0} if F(x)=0

1/2 if F(x)=1

�{x=1} if F(x)�2 if |�|=1.

It is not difficult to verify that QQQ is a specification. However, the

n-specification qn contained in QQQ does not describe a specification, since,

for example, the ∞-system Q̂QQ={Q̂
•

�,�∈E} defined by

Q̂
x

�(x)=





�{x≡1} if |�|�n+2,

Qx

�(x) if |�|�n+1

is also a specification containing qn.
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So, it becomes evident that in order for the description of speci-

fications by means of n-specifications to hold, some kind of positivity

condition is necessary. The strict positivity is the most restrictive positivity

condition, since it does not permit zeros at all. A weaker positivity condi-

tion is the “weak positivity” which was already studied by the authors in

refs. 9 and 10.

4.3. Weak Positivity

The weak positivity condition for n-systems is formulated as follows.

Definition 13. Let n∈N∪∞. An n-system {Q•
�,�∈En} will be

called weakly positive, if there exist some element θ ∈X (called vacuum),

such that for any �∈En the configuration x ≡ θ is a p.p. of Q•
� under b.c.

varying on Zν\� and equal to ∅ outside.

Clearly, this condition on n-systems is really weaker than the strict

positivity one. It remains really weaker when applied to n-specifications

too. For instance, the n-specification contained in the specification QQQ from

Example 9 is weakly positive but not strictly positive.

Weakly positive specifications are well known in mathematical statis-

tical physics. For example, the specifications admitting Gibbsian descrip-

tion with a vacuum potential (which may take infinite values) are weakly

positive.

Note also, that under the condition of weak positivity, the consistency

conditions (2) from Definition 10 of 1-specification have a simpler equiv-

alent form given in the following proposition. The proof of this proposi-

tion is quite similar to those of Proposition 18 (see Section 6) and will be

omitted.

Proposition 14. A weakly positive 1-system {Q•
�,�∈E1} is 1-spe-

cification if and only if

Q
xv◦

t (x) Q
xx
s (y) Q

xy
t (u◦) Q

xu◦

s (v◦)= Q
xu◦

s (y) Q
xy
t (x) Q

xx
s (v◦) Q

xv◦

t (u◦)

for any t, s ∈Zν, x ∈X
t , y ∈X

s,x ∈X
Z

ν \ t \ s,

and for u◦ ∈X
t such that u◦ = θ and v◦ ∈X

s such that v◦ = θ .

As we have already mentioned, the problem of description of specifi-

cations by means of n-specifications under the condition of weak positivity

was solved for n=1 in refs. 9 and 10. There it was shown, that any weakly

positive 1-specification describes a specification. It was equally shown, that

the weak positivity condition is coordinating, and under this condition the
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quasilocality property is heritable. Moreover, as it will become clear from

the subsequent considerations of this work, these results can be extended

to the case of arbitrary n∈N.

So, the further study of the problem of description of specifications

by means of n-specifications reduces to determination of a weaker (in ideal

case the weakest) positivity condition, under which this description holds.

Such a condition is the very weak positivity condition obtained in the

present work.

4.4. Very Weak Positivity

Since the positivity points used in Definition 10 of 1-specification are

positivity points under boundary condition varying on one-point sets only,

it seems natural to consider the following positivity condition.

Definition 15. Let n∈N∪∞. An n-system {Q•
�,�∈En} will be

called too weakly positive, if for any �∈En, any s ∈Zν \� and any

x ∈X
Z

ν \�\ s , there exists a p.p. of Q•
� under b.c. varying on s and equal

to x outside.

However, in accordance with its name, this condition is too weak in

order to solve the problem of description. Indeed, a too weakly positive

n-specification not necessarily describes a specification (for n=1 it is suffi-

cient to consider the 1-specification q1 from Example 12, and a similar

example can be easily constructed for arbitrary n∈N). Moreover, the too

weak positivity condition is not coordinating (for instance, the specifica-

tion QQQ from Example 12 is not too weakly positive). But what is the

matter?

The weak positivity and strict positivity conditions were shown to be

coordinating by concatenating positivity points thanks to Theorem 7. But

for the too weak positivity condition this approach does not work: if we

concatenate two positivity points under boundary conditions varying on

one-point sets, we obtain a positivity point under fixed (varying on the

empty set) boundary condition. So, we need to modify (strengthen) the

condition of too weak positivity in order to be able to correctly concat-

enate positivity points. This leads us to introduce the following positivity

condition.

Definition 16. Let n∈N∪∞. An n-system {Q•
�,�∈En} will be

called very weakly positive, if for any �∈En, any V ∈E such that V ⊂Zν \�

and any x ∈X
Z

ν \�\V , there exists some p.p. u= θ(�,V,x) of Q•
� under

b.c. varying on V and equal to x outside.
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Clearly, this condition on n-systems is really weaker than the weak

positivity one. As shows the following example, it remains really weaker

when applied to n-specifications too.

Example 17. Let X={0,1}, let F be the function used in Exam-

ple 12 and consider the ∞-system QQQ={Q•
�,�∈E} defined by

Qx

�(x)=





�{x≡0} if F(x)=∞,

�{x≡1} if F(x)<∞.

It is not difficult to verify that QQQ is a specification, and that the n-spe-

cification contained in QQQ is very weakly positive but not weakly positive.

Note also, that as well as in the weakly positive case, under the con-

dition of very weak positivity, the consistency conditions (2) from Defi-

nition 10 of 1-specification have a simpler equivalent form given in the

following proposition which will be proved in Section 6.

Proposition 18. A very weakly positive 1-system {Q•
�,�∈E1} is

1-specification if and only if

Q
xv◦

t (x) Q
xx
s (y) Q

xy
t (u◦) Q

xu◦

s (v◦)= Q
xu◦

s (y) Q
xy
t (x) Q

xx
s (v◦) Q

xv◦

t (u◦)

for any t, s ∈Zν, x ∈X
t , y ∈X

s,x ∈X
Z

ν \ t \ s,

and for u◦ = θ(t, s,x) and v◦ = θ(s, t,x).

(3)

In Section 5 we present the main results of this paper which estab-

lish the description of specifications by means of n-specifications under the

condition of very weak positivity.

5. MAIN RESULTS AND THEIR PROOFS

The main results of this work consist of the following three theorems.

The first one is that any very weakly positive n-specification describes

a specification.

Theorem 19. Let n∈N, and let q be a very weakly positive n-spe-

cification. Then there exists a unique specification containing q.

The second one is that the very weak positivity condition is

coordinating.
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Theorem 20. Let n∈N, let QQQ be a specification, and let q be the

n-specification contained in QQQ. Then QQQ is very weakly positive if and only

if q is very weakly positive.

The third one is that under the condition of very weak positivity, the

quasilocality property is heritable.

Theorem 21. Let n∈N, let QQQ be a very weakly positive specifica-

tion, and let q be the n-specification contained in QQQ. Then QQQ is quasilocal

if and only if q is quasilocal.

The proof of the second theorem is evident, since the necessity is triv-

ial, and the sufficiency directly follows from Theorem 7. The third theo-

rem will become clear in view of the proof of the first one. The proof of

the latter will be given in the end of this section and needs some auxil-

iary results which are of independent interest too. These results are given

below and will be proved in Section 6.

Proposition 22. Let �∈E and I ⊂�. A �-kernel Q•
� and an

I -kernel Q•
I are consistent in Dobrushin’s sense if and only if

Qx

�(xy) Qxx

I (v)= Qx

�(xv) Qxx

I (y)

for any x ∈X
�\ I ,y,v ∈X

I and x ∈X
Z

ν \�.
(4)

The equivalent form given in this proposition looks simpler than the

original form of Dobrushin’s consistency condition and will be intensively

used in our considerations.

Proposition 23. Let n∈ (N \1)∪∞. An n-system QQQ={Q•
�,�∈En}

will be n-specification if and only if Q•
� and Q•

�\ t are consistent in

Dobrushin’s sense for any �∈En and t ∈�.

This proposition considerably reduces the set of Dobrushin’s con-

sistency conditions needed in order to check if an n-system is

n-specification.

The next and final theorem establish a general and useful property of

n-specifications.

Theorem 24. Let n∈ (N \1)∪∞ and let QQQ={Q•
�,�∈En} be an

n-system.
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(1) If QQQ is n-specification, then

Q
xuB

A (xA)Q
xxA

B (xB)Q
xxD

C (uC)Q
xuC

D (uD)

= Q
xuC

D (xD)Q
xxD

C (xC)Q
xxA

B (uB)Q
xuB

A (uA)

for any A,B,C,D such that

A∪B =C ∪D ∈En and A∩B =C ∩D =∅,

and for any x,u∈X
A∪B and x ∈X

Z
ν \A\B such that

uC is a p.p. of Q•
C under b.c. varying on D and equal to x outside.

(5)

In particular

Q
xv

t (x) Q
xx

�\ t (y) Q
x

�(uv)= Q
x

�(xy) Q
xx

�\ t (v) Q
xv

t (u)

for any �∈En, t ∈�, x,u∈X
t , y,v ∈X

�\ t and x ∈X
Z

ν \�.
(6)

(2) Conversely, if (6) is fulfilled, then QQQ is n-specification.

This theorem contains in particular the results of Theorem 8 and at

the same time characterizes n-specifications.

Now, we can at last prove the above stated theorem about description

of specifications.

Proof of Theorem 19. Let n∈N, and let q ={q•
�,�∈En} be a very

weakly positive n-specification.

In order to prove the theorem it is sufficient to show, that there exist

a unique (n+1)-specification QQQ containing q. Indeed, in this case QQQ is

clearly very weakly positive too, and so we can conclude the proof by

means of iteration.

First we prove the uniqueness: if there exists an (n+1)-specification

QQQ={Q•
�,�∈En+1} containing q, then it is the unique (n+1)-specification

containing q. For each �∈E let us fix some point ℓ∈�. If |�|�n, then

clearly

Qx

�(x)= qx

�(x) . (7)

Now let |�|=n + 1 and x ∈X
Z

ν \�, and let u∈X
� be the configuration

defined by ut = θ(t,�\ t,x). Using (6) we have

Qx

�(x)= Qx

�(u)
q

xu�\ ℓ

ℓ (xℓ) q
xxℓ

�\ ℓ(x�\ ℓ)

q
xu�\ ℓ

ℓ (uℓ) q
xxℓ

�\ ℓ(u�\ ℓ)
. (8)
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Since
∑

y∈X�

Qx

�(y)=1, we get finally

Qx

�(u)=


 ∑

y∈X�

q
xu�\ ℓ

ℓ (yℓ) q
xyℓ

�\ ℓ(y�\ ℓ)

q
xu�\ ℓ

ℓ (uℓ) q
xyℓ

�\ ℓ(u�\ ℓ)




−1

. (9)

So, any (n+1)-specification containing q have necessarily the explicit form

given by the formulas (7), (8) and (9), and hence the uniqueness is proved.

To conclude the prove of the theorem, it remains to verify that the

(n+1)-system QQQ={Q•
�,�∈En+1} defined by (7), (8) and (9) is indeed an

(n+1)-specification. Applying Proposition 23 and taking into account that

q is n-specification, it is sufficient to verify Dobrushin’s consistency condi-

tion for Q•
� and q•

�\ t with |�|=n+1 only. Further, according to Propo-

sition 22 this condition becomes

Qx

�(xy) qxx
�\ t (v)= Qx

�(xv) qxx
�\ t (y). (10)

For the case t = ℓ, using (8) we obtain

Qx

�(xy) qxx
�\ ℓ(v) = Qx

�(u)
q

xu�\ ℓ

ℓ (x) q
xx

�\ ℓ(y)

q
xu�\ ℓ

ℓ (uℓ) q
xx

�\ ℓ(u�\ ℓ)
qxx

�\ ℓ(v)

= Qx

�(u)
q

xu�\ ℓ

ℓ (x) q
xx

�\ ℓ(v)

q
xu�\ ℓ

ℓ (uℓ) q
xx

�\ ℓ(u�\ ℓ)
qxx

�\ ℓ(y)

= Qx

�(xv) qxx
�\ ℓ(y),

and so (10) is verified. Now, for the case of arbitrary t ∈�, it is sufficient

to show that the right-hand side of (8) does not depend on the choice of

ℓ and apply the same argument.

This property is true due to the following chain of equalities

q
xu�\ ℓ

ℓ (xℓ) q
xxℓ

�\ ℓ(x�\ ℓ)

q
xu�\ ℓ

ℓ (uℓ) q
xxℓ

�\ ℓ(u�\ ℓ)
=

q
xu�\ ℓ

ℓ (xℓ) q
xxℓu�\ ℓ\ t
t (xt ) q

xxℓxt

�\ ℓ\ t (x�\ ℓ\ t )

q
xu�\ ℓ

ℓ (uℓ) q
xxℓu�\ ℓ\ t
t (ut ) q

xxℓxt

�\ ℓ\ t (u�\ ℓ\ t )

=
q

xu�\ t
t (xt ) q

xxtu�\ t \ ℓ

ℓ (xℓ) q
xxtxℓ

�\ t \ ℓ(x�\ t \ ℓ)

q
xu�\ t
t (ut ) q

xxtu�\ t \ ℓ

ℓ (uℓ) q
xxtxℓ

�\ t \ ℓ(u�\ t \ ℓ)

=
q

xu�\ t
t (xt ) q

xxt

�\ t (x�\ t )

q
xu�\ t
t (ut ) q

xxt

�\ t (u�\ t )
.
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The validity of these equalities in the case n�2 is guarantied by The-

orem 24. For n=1 the first and the third equalities are trivial, and the sec-

ond one follows from the definition of 1-specification. So, the theorem is

proved.

6. PROOF OF AUXILIARY RESULTS

Proof of Theorem 7. Let us suppose the contrary: there exists some

α ∈X
T such that Qxα

� (uv)=0. Since Q•
� is consistent in Dobrushin’s sense

with Q•
I , according to Proposition 22 we can write

Qxα

� (uv) Qxαu

I (y)= Qxα

� (uy) Qxαu

I (v).

Taking into account that v is a positivity point, we have Qxαu

I (v)>0,

and hence Qxα

� (uy)=0 for any y ∈X
I .

Similarly, for any y ∈X
I , from the relation

Qxα

� (uy) Q
xαy

J (x)= Qxα

� (xy) Q
xαy

J (u),

we get Qxα

� (xy)=0 for any x ∈X
J .

So Qxα

� (z)=0 for any z∈X
�, which contradicts the fact that Qxα

� is

a probability distribution.

Proof of Theorem 8. This theorem clearly follows from the first

assertion of Theorem 24 by substituting A=C = t , B =D = s, x =xy

and u=uv.

Proof of Proposition 18. The necessity is trivial. In order to prove

the sufficiency, let us first show that

Q
xv◦

t (x) Q
xx
s (y) Q

xy
t (u) Q

xu
s (v◦)= Q

xu
s (y) Q

xy
t (x) Q

xx
s (v◦) Q

xv◦

t (u)

for any t, s ∈Zν, x, u∈X
t , y ∈X

s,x ∈X
Z

ν \ t \ s,

and for v◦ = θ(s, t,x).

(11)

Using (3) we obtain

Q
xv◦

t (x) Q
xx
s (y) Q

xy
t (u◦) Q

xu◦

s (v◦)= Q
xu◦

s (y) Q
xy
t (x) Q

xx
s (v◦) Q

xv◦

t (u◦),

Q
xv◦

t (u) Q
xu
s (y) Q

xy
t (u◦) Q

xu◦

s (v◦)= Q
xu◦

s (y) Q
xy
t (u) Q

xu
s (v◦) Q

xv◦

t (u◦).
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Suppose Q
xu◦

s (y)>0. Then, if we cross-wise multiply these two equali-

ties and cancel identical strictly positive terms, we get the necessary rela-

tion. Now suppose Q
xu◦

s (y)=0. From the same equalities we get clearly

Q
xv◦

t (x) Q
xx
s (y)=0 and Q

xv◦

t (u) Q
xu
s (y)=0, and so the property (11) is

proved.

Further, using (11) we obtain

Q
xv◦

t (x) Q
xx
s (y) Q

xy
t (u) Q

xu
s (v◦)= Q

xu
s (y) Q

xy
t (x) Q

xx
s (v◦) Q

xv◦

t (u),

Q
xv◦

t (x) Q
xx
s (v) Q

xv
t (u) Q

xu
s (v◦)= Q

xu
s (v) Q

xv
t (x) Q

xx
s (v◦) Q

xv◦

t (u),

and so, applying once more the same argument we can conclude the proof

of the proposition.

Proof of Proposition 22. First suppose that Q•
� and Q•

I are consis-

tent in Dobrushin’s sense. Then

Qx

�(xy) Qxx

I (v) = (Qx

�)
�\ I

(x) Qxx

I (y) Qxx

I (v)

= (Qx

�)
�\ I

(x) Qxx

I (v) Qxx

I (y)

= Qx

�(xv) Qxx

I (y),

and so we have (4).

Now suppose (4). For any v ∈X
I we can write

Qx

�(xy) Qxx

I (v)= Qx

�(xv) Qxx

I (y).

Summing over v we obtain

Qx

�(xy)=
∑

v∈XI

Qx

�(xv) Qxx

I (y)= (Qx

�)
�\ I

(x) Qxx

I (y),

and so Q•
� and Q•

I are consistent in Dobrushin’s sense.

Proof of Proposition 23. The necessity is trivial. In order to prove

the sufficiency, it is sufficient to show that the consistency in Dobrushin’s

sense is transitive, that is, if J ⊂ I ⊂�∈E, and if a �-kernel Q•
� is con-

sistent with an I -kernel Q•
I which in its turn is consistent with a J -kernel

Q•
J , then Q•

� and Q•
J are also consistent.
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Let x ∈X
�\J , let y,v ∈X

J and let x ∈X
Z

ν \�. Since Q•
I is consistent

with Q•
J , using Proposition 22, we have

Qxx�\ I
I (xI \J y) Qxx

J (v)= Qxx�\ I
I (xI \J v) Qxx

J (y).

Hence

(Qx

�)
�\ I

(x�\ I ) Qxx�\ I
I (xI \J y) Qxx

J (v)

= (Qx

�)
�\ I

(x�\ I ) Qxx�\ I
I (xI \J v) Qxx

J (y).

Further, since Q•
� is consistent with Q•

I we obtain

Qx

�(xy) Qxx

J (v)= Qx

�(xv) Qxx

J (y),

and so, applying once more Proposition 22 we can conclude the proof of

the proposition.

Proof of Theorem 24. In order to carry out the proof we need the

following two simple lemmas.

Lemma 25. Let I,V ∈E such that I ∩ V =∅, put �= I ∪V , let

x ∈X
Z

ν \�, and let a �-kernel Q•
� be consistent in Dobrushin’s sense with

an I -kernel Q•
I . If u is a p.p. of Q•

I under b.c. varying on V and equal to

x outside, then there exists a configuration γ ∈X
V such that Qx

�(uγ )>0.

Proof. Let us suppose the contrary: for any configuration γ ∈X
V we

have Qx

�(uγ )=0. Since Q•
� is consistent in Dobrushin’s sense with Q•

I , for

any α ∈X
I and any γ ∈X

V according to Proposition 22 we can write

Qx

�(uγ ) Q
xγ

I (α)= Qx

�(αγ ) Q
xγ

I (u),

and hence, taking into account that u is a positivity point we obtain the

equality Qx

�(αγ )=0.

So Qx

�(z)=0 for any z∈X
�, which contradicts the fact that Qx

� is a

probability distribution.

Lemma 26. Let �∈E and I ⊂�, let x ∈X
Z

ν \�, and let a �-ker-

nel Q•
� be consistent in Dobrushin’s sense with an I -kernel Q•

I . If for

some x ∈X
�\ I and y,v ∈X

I we have Qx

�(xy)=0 and Qx

�(xv)>0, then

Qxx

I (y)=0.
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Proof. Since Q•
� is consistent in Dobrushin’s sense with Q•

I , accord-

ing to Proposition 22 we can write

Qx

�(xy) Qxx

I (v)= Qx

�(xv) Qxx

I (y),

and so, taking into account that Qx

�(xy)=0 and Qx

�(xv)>0, we obtain

immediately Qxx

I (y)=0.

Now we turn to the proof of Theorem 24. First let us suppose that QQQ
is n-specification and prove the property (5). For convenience of notations

let us denote �=A∪B =C ∪D. According to Proposition 22, we have

Q
x

�(x) Q
xxA

B (uB)= Q
x

�(xAuB) Q
xxA

B (xB).

Multiplying this equality by Q
xuB

A (uA) and using Proposition 22 on

the right hand side, we obtain

Q
x

�(x) Q
xxA

B (uB) Q
xuB

A (uA)= Q
x

�(u) Q
xuB

A (xA) Q
xxA

B (xB). (12)

In the same way we have

Q
x

�(x) Q
xxD

C (uC) Q
xuC

D (uD)= Q
x

�(u) Q
xuC

D (xD) Q
xxD

C (xC). (13)

Suppose first Q
x

�(x)>0 and Q
x

�(u)>0. Then, if we cross-wise multi-

ply the equalities (12) and (13) and cancel identical strictly positive terms,

we get the relation claimed in (5).

Suppose now Q
x

�(x)=0 and Q
x

�(u)>0. Then from (12) and (13) we

have Q
xuB

A (xA) Q
xxA

B (xB)=0 and Q
xuC

D (xD) Q
xxD

C (xC)=0 correspondingly,

and so, the necessary relation is still valid. Similar considerations show

that it remains valid for the case Q
x

�(x)>0 and Q
x

�(u)=0.

Suppose finally Q
x

�(x)=0 and Q
x

�(u)=0. Since uC is a positivity

point, due to Lemma 25 there exists some configuration γ ∈X
D such

that Q
x

�(uCγ )>0. The latter inequality together with Q
x

�(u)=0 implies

according to Lemma 26 that Q
xuC

D (uD)=0, and so, the left hand side of

the relation claimed in (5) vanishes. It remains to show that the right

hand side of this relation vanishes too. Indeed, if Q
x

�(uCxD)=0 then

taking into consideration that Q
x

�(uCγ )>0 and using Lemma 26 we

obtain Q
xuC

D (xD)=0, and if Q
x

�(uCxD)>0 then taking into account that

Q
x

�(x)=0 we get Q
xxD

C (xC)=0.
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So, the property (5) is established. In order to prove (6) it is sufficient

now to put A= t , B =�\ t , C =∅, D =�, x =xy and u=uv in (5), and

note that u∅ =∅ is indeed a p.p. of Q•
∅ under b.c. varying on � and equal

to x outside.

It remains to prove the second part of the theorem. Suppose (6) is

fulfilled, take some �∈En, t ∈�, x ∈X
t , y,v ∈X

�\ t and x ∈X
Z

ν \�, and

let us show that

Qx

�(xy) Qxx
�\ t (v)= Qx

�(xv) Qxx
�\ t (y). (14)

Suppose first Qxv

t (x)>0. Then, taking u=x in (6) and canceling the

term Qxv

t (x) we obtain (14).

Suppose now Q
xy

t (x)>0. Then, interchanging the positions of y

and v in (6), taking u=x and canceling the term Q
xy

t (x) we obtain (14).

Suppose finally Qxv

t (x)=0 and Q
xy

t (x)=0. Taking in consideration

the first equality, we can show that the left hand side of the relation (14)

vanishes. Indeed, since Qxv

t is probability distribution, we can chose u∈X
t

such that Qxv

t (u)>0, and using (6) we clearly obtain Qx

�(xy) Qxx
�\ t (v)=0.

Similarly, the second equality implies that the right hand side of the rela-

tion (14) vanishes, and so this relation is proved.

Now, in order to conclude the proof of the theorem it remains to

apply consecutively Propositions 22 and 23.
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Abstract. The problem of characterization of Gibbs random fields is consid-
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point framework which in particular allows to describe random fields by means
of either one-point conditional or one-point finite-conditional distributions. The
main outcome are the criteria in terms of one-point finite-conditional distribu-
tion. On the basis of one of the criteria a probabilistically explicit definition of
Gibbs random field is given and the development of an alternative approach to
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Introduction

The classes of processes considered in the theory of random processes are usu-
ally characterized by some properties of their finite-dimensional or conditional
distributions. However in practice, the study of a particular class usually goes
through some representation theorem expressing processes in terms of simple
and convenient objects, such as transition matrices for Markov chains, charac-
teristic functions for processes with independent increments, spectral functions
for stationary processes, and so on.

The situation is quite different for the class of Gibbs random fields. Histori-
cally, instead of being characterized by some properties of their finite-dimensio-
nal or conditional distributions, Gibbs random fields have been defined directly
by the well-known representation of their conditional distributions in terms of
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potentials. And only afterwards the problem of internal characterization of
Gibbs random fields was considered.

It was shown by Kozlov [20] and Sullivan [24] that Gibbs random fields (with
uniformly convergent potentials) can be characterized by strict positivity and
quasilocality of their conditional distributions. More precisely, in order for a
random field to be Gibbsian, its conditional distribution (the system of finite-
volume conditional probabilities with conditions on the entire exterior) must
have a version which is a strictly positive quasilocal specification. As we see,
this criterion imposes conditions on an object (conditional distribution) which
is neither unambiguously defined (is defined up to a set of probability zero), nor
constructive (its elements are indexed by infinite-dimensional boundary condi-
tions) and, in addition, does not always determine the random field uniquely
(phase transitions). In our opinion, it is preferable that a characterization be in
terms of an object which does not have these features.

As a matter of fact, such characterization already exists for the subclass
of Gibbs random fields with real-valued finite-range potentials. It was shown
by Averintsev [1–3] and Sullivan [23] that these random fields are character-
ized by strict positivity and Markov properties. Note that in the strictly posi-
tive case, the Markov property can be formulated in terms of one-point finite-
conditional distribution (the system of single-site conditional probabilities with
finite-volume conditions). This object is defined unambiguously and in con-
structive manner (its elements are ratios of finite-dimensional probabilities).
Moreover, according to Dalalyan and Nahapetian [7], it uniquely determines
(can be identified with) the random field.

The aim of the present work is to characterize Gibbs random fields by some
properties of their one-point finite-conditional distributions in the general case
of uniformly convergent potentials. It is worth mentioning that such character-
ization is very natural in light of and was made possible due to the one-point
framework developed in some recent papers. Namely, an approach towards
description of random fields by means of one-point conditional distributions
(the system of single-site conditional probabilities with conditions on the en-
tire exterior) was developed by the authors in [4–6] (see also Fernández and
Maillard [14, 15]). Later on, a closely related and in some way complementary
description of random fields based on one-point finite-conditional distributions
was proposed in [7].

The main outcome of the present work are random field Gibbsianness criteria
in terms of one-point finite-conditional distribution. These criteria deal with an
unambiguously defined constructive object and allow us to start to develop an
alternative approach to the Gibbs theory by giving (on the basis of one of the
criteria) a probabilistically explicit definition of Gibbs random field.

The plan of the paper is as follows. The necessary notations and prerequi-
sites are given in Section 1, the one-point framework is presented in Section 2,
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the random field Gibbsianness criteria are established in Section 3 and the al-
ternative approach to the Gibbs theory is introduced in Section 4.

1. Preliminaries

In this section we briefly recall some necessary notions and facts from the
theory of Gibbs random fields.

1.1. Random fields

We consider random fields on the ν-dimensional integer lattice Zν (or, more
generally, on any countable set L), i.e. probability measures P on (X Z

ν

,FZ
ν

)
where (X ,F ) is some measurable space of values on single sites (state space).
Usually the space X is assumed to be endowed with some topology T , and F is
assumed to be the Borel σ-algebra for this topology. In this work we concentrate
on the case when X is finite, T is the discrete topology, and F is the total
σ-algebra, that is, F = T = part(X ).

For any S ⊂ Zν , we denote by E (S) the set of all finite subsets of S, that
is, we put E (S) = {Λ ⊂ S : |Λ| < ∞} where |Λ| is the number of points of the
set Λ. For convenience of notation we will omit braces for one-point sets, that
is, will write t instead of {t}. We put also E ∗(S) = E (S) \ {∅}. For S = Zν we
write E = E (Zν) and E ∗ = E ∗(Zν).

For any S ⊂ Zν , the space X S is the space of all configurations on S. If
S = ∅, we assume that the space X ∅ = {∅∅} where ∅∅ is the empty configura-
tion. For any T, S ⊂ Zν such that T ⊂ S and any configuration x = {xt, t ∈ S}
on S, we denote by x

T
the subconfiguration (restriction) of x on T defined by

x
T

= {xt, t ∈ T }. For any T, S ⊂ Zν such that T ∩ S = ∅ and any config-
urations x on T and y on S, we denote by xy the concatenation of x and y,
that is, the configuration on T ∪ S equal to x on T and to y on S. For any
configuration x ∈ X S , the set S ⊂ Zν will be called support of x and we will
write S = S(x). For any Λ ∈ E , we denote

X̃ Λ =
⋃

Λ̃∈E ∗(Λc)

X
Λ̃

the space of all configurations with non-empty finite support contained in the
exterior of Λ.

For any S ⊂ Zν , a probability distribution on X S will be denoted by PS .
Note that if S = ∅ there exists only one probability distribution P∅(∅∅) = 1.
For any T, S ⊂ Zν such that T ⊂ S and any PS , we denote by (PS)T the
marginal distribution (restriction) of PS on T . If Λ ∈ E and I ⊂ Λ, we can
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write PΛ =
{
PΛ(x), x ∈ X Λ

}
and

(PΛ)I(x) =
∑

y∈X Λ\I

PΛ(xy), x ∈ X
I .

Any random field P on Zν is uniquely determined by (can be identified
with) the system {PΛ, Λ ∈ E } of its finite-dimensional distributions which are
consistent in the sense that for any Λ ∈ E and I ⊂ Λ we have (PΛ)I = PI .

Finally, a random field P will be called strictly positive if for any Λ ∈ E

the finite-dimensional distribution PΛ is strictly positive, that is, PΛ(x) > 0 for
all x ∈ X Λ. The set of all strictly positive random fields will be denoted P .

1.2. Finite-conditional and conditional distributions of random fields

Let P be some random field. For any Λ ∈ E , we denote by PE ∗(Λc) the

measure on X̃ Λ whose projection on X Λ̃ is P
Λ̃
for any Λ̃ ∈ E ∗(Λc), that is,

PE ∗(Λc) is the direct sum of the measures P
Λ̃
.

For all Λ ∈ E , the ratios

q x̃

Λ (x) =
P

Λ∪S(x̃)
(xx̃)

P
S(x̃)

(x̃)
, x ∈ X

Λ,

exist for PE ∗(Λc)-almost all x̃ ∈ X̃ Λ. Any system

Q̃ =
{
Qx̃

Λ, Λ ∈ E and x̃ ∈ X̃ Λ
}

of probability distributions such that for every Λ ∈ E we have Qx̃

Λ = q x̃

Λ for

PE ∗(Λc)-almost all x̃ ∈ X̃ Λ will be called finite-conditional distribution of the

random field P. The subsystem of Q̃ consisting of single-site distributions(
|Λ| = 1

)
will be called one-point finite-conditional distribution of P. Note that

in general a random field may have many versions both of finite-conditional and
one-point finite-conditional distributions. However, for strictly positive random
fields these distributions are uniquely determined and strictly positive (consist
of strictly positive elements only). Note also that it is not difficult to check that
if a random field P has a strictly positive version of (one-point) finite-conditional
distribution, then P is necessarily strictly positive itself.

Further, for all Λ ∈ E , the limits

q x

Λ (x) = lim
Λ̃↑Zν\Λ

q
xΛ̃

Λ (x) , x ∈ X
Λ,

exist for PΛc -almost all x ∈ X Λc

. Any system

Q =
{
Qx

Λ, Λ ∈ E and x ∈ X
Λc}
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of probability distributions such that for every Λ ∈ E we have Qx

Λ = q x

Λ for
PΛc -almost all x ∈ X Λc

will be called conditional distribution of the random
field P. The subsystem of Q consisting of single-site distributions will be called
one-point conditional distribution of P. Note that in general a random field P
may have many versions both of conditional and one-point conditional distri-
butions (even if P is strictly positive). Note also that if a random field P has
a strictly positive (consisting of strictly positive elements only) version of (one-
point) conditional distribution, then P is necessarily strictly positive itself. For
the case of conditional distribution this fact is well-known, while for the case of
one-point conditional distribution we refer to the Proposition 3.2 below.

Concluding this section let us emphasize that random field’s (one-point)
finite-conditional distribution contains more information about the random field
than its (one-point) conditional distribution. Indeed, the latter can be clearly
deduced from the former (by passing to the limit), while the converse is not so
clear. Moreover, it is not true in general, since in the strictly positive case, the
(one-point) finite-conditional distribution determines the random field uniquely
(see Section 2.2), while the (one-point) conditional distribution does not always
do so (phase transitions). All this becomes particularly apparent in the Markov
case, when (one-point) conditional distributions can be considered as subsys-
tems of (one-point) finite-conditional distributions. Indeed, let P be a Markov
random field and let ∂Λ denote the neighborhood of the set Λ. As we have
Qx

Λ = Qx∂Λ

Λ , the elements of the (one-point) conditional distribution of P can
be considered as elements of the (one-point) finite-conditional distribution of P.
However, not all the elements of the latter correspond to the elements of the

former, but only the elements Qx̃

Λ such that S(x̃) ⊃ ∂Λ.

1.3. Description of random fields by means of conditional distribu-
tions

The well-known description of random fields by means of conditional distri-
butions introduced by Dobrushin in [8–10] is carried out in terms of specifica-
tions. A system

Q =
{
Qx

Λ, Λ ∈ E and x ∈ X
Λc}

of probability distributions is called specification if

Qx

Λ(xy) =
(
Qx

Λ

)
Λ\I

(x) Qxx

I (y) (1.1)

for all Λ ∈ E , I ⊂ Λ, x ∈ X
Λ\I , y ∈ X

I and x ∈ X
Λc

.

Note that any version of conditional distribution of a random field P satisfies
a condition somewhat weaker than (1.1), where PΛc -almost all (and not nec-
essarily all) x ∈ X Λc

are considered. However, any random field possesses at
least one version of conditional distribution being a specification (see [18, 21]
and [22]).
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One of the main goals of Dobrushin’s theory is to study the set of all random
fields compatible with a given specification, that is, having this specification as
a version of conditional distribution. The best-known sufficient conditions for
existence and for uniqueness of random fields compatible with a given specifica-
tion are quasilocality and Dobrushin’s uniqueness conditions respectively. The
first one will play an important role in our considerations, so we recall it below.

Let S ⊂ Zν . A real-valued function g on X S is called quasilocal if

lim
Λ↑S

sup
x,y∈X S :xΛ=yΛ

∣∣g(x)− g(y)
∣∣ = 0,

or equivalently if g is a uniform limit of functions depending only on values of
configuration on finite sets of sites (local functions). Note also that the quasilo-
cality is nothing but continuity with respect to the topology T S and, taking
into account that X S is compact, the strict positivity and uniform nonnullness
conditions are equivalent for quasilocal functions.

A specification Q =
{
Qx

Λ, Λ ∈ E and x ∈ X Λc}
is called (quasi)local if for

any Λ ∈ E and x ∈ X Λ the function x 7→ Qx

Λ(x) on X Λc

is (quasi)local.
Finally, a specification will be called strictly positive if all its elements are

strictly positive.

1.4. Gibbs random fields and Gibbsian specifications

The main object of consideration of the present paper are Gibbs random
fields. They are defined in terms of Gibbsian specifications, which in turn are
defined in terms of potentials.

Any function Φ on X̃ ∅ taking values in R ∪ {+∞} is called (interaction)
potential . A potential Φ is called convergent if it is real-valued and the series

∑

J̃∈E (tc)

Φ
(
xx

J̃

)
(1.2)

converge for all t ∈ Zν , x ∈ X t and x ∈ X tc .
A potential Φ is called uniformly convergent if it is convergent and the

convergence in (1.2) is uniform with respect to x.
A potential Φ is called finite-range potential if for any t ∈ Zν there exist

only a finite number of sets J̃ ∈ E (tc) such that Φ 6≡ 0 on X t∪J̃ . Note that any
real-valued finite-range potential is uniformly convergent.

For an arbitrary convergent potential Φ one can construct the specification
Q = {Qx

Λ, Λ ∈ E and x ∈ X Λc} given by Gibbs formulae

Qx

Λ(x) =
exp

(
− Ux

Λ (x)
)

∑
y∈X Λ exp

(
− Ux

Λ (y)
) , Λ ∈ E , x ∈ X

Λ, x ∈ X
Λc

, (1.3)
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where

Ux

Λ (x) =
∑

J:∅ 6=J⊂Λ

∑

J̃∈E (Λc)

Φ
(
xJ xJ̃

)
, Λ ∈ E , x ∈ X

Λ, x ∈ X
Λc

. (1.4)

The specification Q is called Gibbsian with potential Φ. Any random field
compatible with Q is called Gibbs random field with potential Φ.

The problem of characterization of the class of Gibbsian specifications with
potentials satisfying some given conditions was subject of consideration of many
authors: one can refer to Averintsev [1–3] and Sullivan [23] (see also Grim-
mett [19]) for real-valued finite-range potentials, Kozlov [20] and Sullivan [24]
for uniformly convergent potentials, and the authors’ works [4,5] for more gen-
eral potentials (which in particular can assume the value +∞). Such charac-
terizations are useful since they yield characterizations (in terms of conditional
distribution) of the classes of corresponding Gibbs random fields.

In this paper we consider uniformly convergent potentials only, so Gibbsian
specifications and Gibbs random fields with uniformly convergent potentials
will be called shortly Gibbsian specifications and Gibbs random fields . The
best-known characterization of the class of Gibbsian specifications is given by
the following criterion (see, for example, [17]).

Criterion 1.1 (Kozlov – Sullivan). A specification is Gibbsian if and only if
it is quasilocal and strictly positive.

Concerning (the subclass of) Gibbsian specifications with real-valued finite-
range potentials, let us recall that they are characterized by strict positivity
and locality. So, Gibbs random fields with real-valued finite-range potentials
are characterized by strict positivity and Markov properties. Let us note that
if the first property (strict positivity) holds, the second one (Markov) allows
various equivalent formulations, one of which uses only single-site conditional
probabilities with finite-volume conditions (see, for example, [25]). So, one has
an internal characterization of Gibbs random fields with real-valued finite-range
potentials in terms of one-point finite-conditional distribution. Establishment of
a similar characterization in the general case of uniformly convergent potentials
is not so straightforward. However, it was made possible due to and is very
natural in light of the recently developed one-point framework which is presented
in the following section.

2. One-point framework

In this section we briefly recall the main results of the authors’ works [4–6]
and of the paper by Dalalyan and Nahapetian [7], concerning the problems of
description of random fields by means of one-point conditional and one-point
finite-conditional distributions correspondingly.
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2.1. Description of specifications and random fields by means of one-
point conditional distributions

The idea that it is possible to describe and study random fields by means of
one-point conditional distributions goes back to Dobrushin [8, 11]. Some steps
in this direction were made by Sullivan [23] and Flood and Sullivan [16]. We can
also mention Theorem 1.33 from the book by Georgii [17] concerning the problem
of restoration of specifications by means of their single-site elements. However,
the realization of Dobrushin’s idea goes through a more important problem:
the problem of description of specifications by means of systems of single-site
probability distributions indexed by infinite boundary conditions (one-point sys-
tems) consistent in some sense. This problem was treated much later, the main
difficulty residing in finding appropriate consistency conditions.

For the case of finite state space (considered in this paper), Dobrushin’s
idea was realized by the authors in [4, 5] under the weak positivity condition
(as well as under the strict positivity condition) and in [6] under the newly-
introduced very weak positivity condition. The case of a general (not necessarily
finite) state space was studied by Fernández and Maillard in [14] under an
alternative nonnullness condition and in [15] under the extension to this case of
the very weak positivity condition. However, some important issues were left
open in these papers. In particular, the necessity of the consistency conditions
proposed in the first paper was not considered. Moreover, it is not difficult to
see that except for some particular cases (for example, the strictly positive case),
this necessity fails. Concerning the second paper, perhaps the most important
issue, the equivalence between the compatibility with the original one-point
system and the compatibility with the full specification constructed from it, is
established within some class of random fields only.

Let us now briefly recall the main results of the authors’ works [4–6]. In these
papers, under wide positivity assumptions (very weak positivity), necessary and
sufficient conditions for a system {Qx

t , t ∈ Zν and x ∈ X tc
}

of probability
distributions to be contained in some specification were established. A system
satisfying these conditions was called 1-specification. It was equally shown that
the specification containing the given 1-specification is uniquely determined by
some explicit formulae involving only the elements of this 1-specification. More-
over, since these formulae make use of finite number of elementary operations,
the entire specification is quasilocal if and only if the 1-specification is, and the
set of random fields compatible with the 1-specification coincides with the set
of random fields compatible with the entire specification. Hence, whole Do-
brushin theory can be reformulated in terms of 1-specifications, and so one can
speak about description of random fields by means of one-point conditional dis-
tributions. The same applies to the results about characterization of Gibbsian
specifications.

Below, we give some more details in the particular strictly positive case.
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The definition of strictly positive 1-specification can be formulated in the
following way: a system

Q =
{
Qx

t , t ∈ Zν and x ∈ X
tc
}

of strictly positive probability distributions will be called 1-specification if

Qxv
t (x)Qxx

s (y)Qxy
t (u)Qxu

s (v) = Qxu
s (y)Qxy

t (x)Qxx
s (v)Qxv

t (u) (2.1)

for all t, s ∈ Zν , x, u ∈ X
t, y, v ∈ X

s and x ∈ X
{t,s}c

.

Further, a 1-specification Q = {Qx

t , t ∈ Zν and x ∈ X tc} is called (quasi)local
if for any t ∈ Zν and x ∈ X t the function x 7→ Qx

t (x) on X tc is (quasi)local.
Finally, a random fields P is called compatible with a 1-specification if the latter
is a version of one-point conditional distribution of P.

The above mentioned explicit formulae determining the elements of the spec-
ification Q = {Qx

Λ, Λ ∈ E and x ∈ X Λc} containing the given strictly positive
1-specification have the following form: for all Λ ∈ E and x ∈ X Λ one has

Qx

Λ(x) =
Q

xu{t2,...,tn}

t1
(xt1)Q

xx{t1}u{t3,...,tn}

t2
(xt2) · · ·

Q
xu{t2,...,tn}

t1
(ut1)Q

xx{t1}u{t3,...,tn}

t2
(ut2) · · ·

× Q
xx{t1,...,tn−1}

tn
(xtn)

Q
xx{t1,...,tn−1}

tn
(utn)

× C, x ∈ X
Λ,

where C is the normalizing factor. Here some fixed configuration u ∈ X Λ and
some enumeration t1, . . . , tn of elements of Λ are chosen arbitrary. Note that the
right hand side of these formulae does not depend on this choice (correctness of
the formulae) thanks to consistency condition (2.1).

Note also, that these formulae imply that the specification containing a
strictly positive 1-specification is necessarily strictly positive itself. Recall that
the quasilocality is also “heritable”. Now Kozlov– Sullivan Criterion 1.1 can be
clearly reduced to the following one, already obtained by the authors in [4, 5].

Criterion 2.1. A specification is Gibbsian if and only if the 1-specification
contained in it is quasilocal and strictly positive.

Since the uniform convergence of potential assures the quasilocality of the
1-specification expressed by Gibbs formulae, one can also obtain the following
corollary of Criterion 2.1.

Criterion 2.2. A specification is Gibbsian if and only if the 1-specification
contained in it admits the representation given by Gibbs formulae (1.3) and (1.4)
with some uniformly convergent potential.
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2.2. Description of random fields by means of one-point finite-condi-
tional distributions

Now we turn to the problem of description of random fields by means of
one-point finite-conditional distributions considered in [7]. This description is
closely related (and in some way complementary) to the one presented in the
previous section.

First, let us note that the necessary and sufficient conditions for a system

q̃ = {Qx̃

t , t ∈ Zν and x̃ ∈ X̃ t} of probability distributions to be contained

in some system Q̃ = {Qx̃

Λ, Λ ∈ E and x̃ ∈ X̃ Λ} of probability distributions
satisfying

Qx̃

Λ(xy) = Qx̃

Λ\I(x)Q
x̃x

I (y) (2.2)

for all Λ ∈ E , I ⊂ Λ, x ∈ X
Λ\I , y ∈ X

I and x̃ ∈ X̃ Λ

are the following:

Qx̃

t (x)Q
x̃x
s (y) = Qx̃

s (y) Q
x̃y
t (x) (2.3)

for all t, s ∈ Zν , x ∈ X
t, y ∈ X

s and x̃ ∈ X̃ {t,s}.

Note also that if q̃ is the one-point finite-conditional (Q̃ is the finite-con-
ditional) distribution of some strictly positive random field, then it necessarily
satisfies the condition (2.3) (the condition (2.2)). However, in order for a strictly

positive system q̃ satisfying (2.3) (Q̃ satisfying (2.2)) to be the one-point finite-
conditional (the finite-conditional) distribution of some strictly positive random
field one needs some additional conditions. It turns out that such conditions
are the following:

Qv
t (x)Q

x
s (y)Q

y
t (u)Q

u
s (v) = Qu

s (y)Q
y
t (x)Q

x
s (v)Q

v
t (u) (2.4)

for all t, s ∈ Zν , x, u ∈ X
t and y, v ∈ X

s.

More precisely, in [7] it was shown that the strict positivity of elements
and the fulfillment of the conditions (2.3) and (2.4) are necessary and sufficient

for a system {Qx̃

t , t ∈ Zν and x̃ ∈ X̃ t} of probability distributions to be the
one-point finite-conditional distribution of some strictly positive random field.
It was equally shown that this random field is uniquely determined by this
system. In particular, a strictly positive random field is uniquely determined
by (can be identified with) its one-point finite-conditional distribution, and so
one can speak about description of random fields by means of one-point finite-
conditional distributions.
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3. Random field Gibbsianness criteria

In this section we turn to the main subject of the present work: the problem
of internal characterization of Gibbs random fields. The main results: random
field Gibbsianness criteria in terms of one-point finite-conditional distribution
will be established in Section 3.3. Before that, random field Gibbsianness criteria
in terms of conditional and one-point conditional distribution will be obtained in
the next two sections by means of transformation and subsequent improvement
of Criteria 1.1, 2.1, 2.2.

3.1. Random field Gibbsianness criteria in terms of conditional dis-
tribution

Combining the definition of Gibbs random field with Criterion 1.1 one gets
the following well-known characterization: a random field is a Gibbs random
field if and only if it has a version of conditional distribution which is a quasilo-
cal and strictly positive specification. This criterion can be improved in the
following way.

Criterion 3.1. A random field is a Gibbs random field if and only if it has a
version of conditional distribution which is quasilocal and strictly positive.

Since the strict positivity of a version of conditional distribution implies the
strict positivity of the random field, the criterion is immediately deduced from
the following proposition which is of general interest.

Proposition 3.1. If a strictly positive random field has a quasilocal version of
conditional distribution, the latter is unique and is necessarily a specification.

Proof. Let P be a strictly positive random field. First, note that the measure P
is everywhere dense, that is, P(A) > 0 for any non-empty open set A ∈ T Z

ν \
{∅}. Indeed, since such a set A necessarily contains a non-empty cylinder sub-
set A′, which in turn contains a subset {x ∈ X Z

ν

: xΛ = x◦} where Λ ∈ E ∗

and x◦ ∈ X Λ, we have P(A) > P(A′) > PΛ(x
◦) > 0. An important evident

property of everywhere dense measures is the following: if a continuous function
is equal to zero almost everywhere (with respect to such a measure), then it is
equal to zero everywhere.

Now, suppose {Qx

Λ, Λ ∈ E and x ∈ X Λc} and {qxΛ, Λ ∈ E and x ∈ X Λc}
are two quasilocal versions of conditional distribution of P. Hence, for any
Λ ∈ E and x ∈ X Λ, the function

x 7−→ Qx

Λ(x)− qxΛ(x)
on X Λc

is quasilocal and equal to zero PΛc -almost everywhere. Since quasilo-
cality is nothing but continuity and the measure PΛc is everywhere dense, this
function is equal to zero everywhere. So, the uniqueness is proved.
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Finally, suppose Q = {Qx

Λ, Λ ∈ E and x ∈ X Λc} is (the unique) quasilocal
version of conditional distribution of P. For any Λ ∈ E , I ⊂ Λ, x ∈ X Λ\I and
y ∈ X I consider the function

x 7−→ Qx

Λ(xy)− (Qx

Λ)Λ\I(x)Q
xx

I (y)

on X Λc

. This function is clearly quasilocal and, as it follows from the properties
of conditional probabilities, is equal to zero PΛc -almost everywhere. Hence it is
equal to zero everywhere, and so Q is a specification. 2

Let us note that Criterion 3.1 was as a matter of fact obtained in [24] using
a different approach.

3.2. Random field Gibbsianness criteria in terms of one-point condi-
tional distribution

Criterion 3.1 characterizes Gibbs random fields in terms of conditional dis-
tribution. However, in view of Section 2.1, it should be possible to do it in
terms of one-point conditional distribution. Indeed, combining the definition
of Gibbs random field with Criterion 2.1 and taking into account the results of
Section 2.1, one gets the following characterization: a random field is a Gibbs
random field if and only if it has a version of one-point conditional distribution
which is a quasilocal and strictly positive 1-specification. As in the preceding
section we can improve this criterion in the following way.

Criterion 3.2. A random field is a Gibbs random field if and only if it has
a version of one-point conditional distribution which is quasilocal and strictly
positive.

The criterion is immediately deduced from the following two propositions
which are of general interest.

Proposition 3.2. If a random field P has a strictly positive version of one-
point conditional distribution, then P is strictly positive itself.

Proof. Let us suppose that the random field P is not strictly positive. In this
case we can find some Λ ∈ E ∗, t ∈ Λ and z ∈ X Λ such that PΛ(z) = 0 and
PΛ\t(zΛ\t) > 0 (recall that P∅(∅∅) = 1). Now denote

A =
{
x ∈ X

tc : xΛ\t = zΛ\t

}
.

Obviously Ptc(A) = PΛ\t(zΛ\t) > 0. Introduce also

B =
⋂

Λ̃∈E (tc)

{
x ∈ X

tc : P
Λ̃
(x

Λ̃
) > 0

}
.
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Since B is a countable intersection of sets of probability 1, we have Ptc(B) = 1.
So, it comes Ptc(A ∩B) > 0.

For all x ∈ A ∩B and all Λ̃ ∈ E (tc) such that Λ̃ ⊃ Λ \ t, we have

q
x

Λ̃
t (zt) =

P
t∪Λ̃

(ztxΛ̃
)

P
Λ̃
(x

Λ̃
)

= 0.

Hence, for all x ∈ A ∩B we get

lim
Λ̃↑Zν\t

q
x

Λ̃
t (zt) = 0

which contradicts the existence of a strictly positive version of one-point condi-
tional distribution of P. 2

Proposition 3.3. If a strictly positive random field has a quasilocal version
of one-point conditional distribution, the latter is unique and is necessarily a
1-specification.

Proof. The uniqueness is proved following exactly the same argument as in the
proof of Proposition 3.1.

To prove the second assertion, suppose {Qx

t , t ∈ Zν and x ∈ X tc} is (the
unique) quasilocal version of one-point conditional distribution of a strictly pos-
itive random field P. For any t, s ∈ Zν , x, u ∈ X t and y, v ∈ X s consider the
function

x 7−→ Qxv
t (x)Qxx

s (y)Qxy
t (u)Qxu

s (v)−Qxu
s (y)Qxy

t (x)Qxx
s (v)Qxv

t (u)

on X {t,s}c

. Applying the reasoning used in the proof of Proposition 3.1, it
clearly comes that this function is equal to zero everywhere. 2

Concluding this section let us note that combining the definition of Gibbs
random field with Criterion 2.2 and taking into account the results of Section 2.1,
one also has the following characterization.

Criterion 3.3. A random field is a Gibbs random field if and only if it has a
version of one-point conditional distribution admitting the representation given
by Gibbs formulae (1.3) and (1.4) with some uniformly convergent potential.

3.3. Random field Gibbsianness criteria in terms of one-point finite-
conditional distribution

Now we can establish random field Gibbsianness criteria in terms of one-
point finite-conditional distribution, which are precisely the main outcome of
the present paper. The first such criterion is the following.
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Criterion 3.4. A random field is a Gibbs random field if and only if it is

strictly positive and its one-point finite-conditional distribution {qx̃t , t ∈ Zν

and x̃ ∈ X̃ t} satisfy one of the following equivalent conditions:

(A) the limits

lim
Λ↑Zν\t

qxΛ
t (x), t ∈ Zν , x ∈ X

t, x ∈ X
tc ,

exist, are uniformly nonnull with respect to x, and the convergence is
uniform with respect to x,

(B) the limits

lim
Λ↑Zν\t

qxΛ
t (x), t ∈ Zν , x ∈ X

t, x ∈ X
tc ,

exist, are strictly positive, and the convergence is uniform with respect
to x.

Proof. The sufficiency is quite evident. Indeed, the strictly positive limits sup-
posed to exist form a strictly positive version of one-point conditional distribu-
tion of the random field. The uniformity of convergence guarantees that this
version is quasilocal and so, the sufficiency follows from Criterion 3.2. Let us
also note that at the same time this quasilocality clearly yields the equivalence
of the conditions (A) and (B).

Now let us turn to the proof of the necessity. Let P be a Gibbs random
field. According to Criterion 3.2 it has a quasilocal and strictly positive version
Q = {Qx

t , t ∈ Zν and x ∈ X tc} of one-point conditional distribution. So,
according to Proposition 3.2, the random field P is strictly positive, and to
conclude the proof it is sufficient to show that

lim
Λ↑Zν\t

sup
x∈X tc

∣∣qxΛ
t (x)−Qx

t (x)
∣∣ = 0

for all t ∈ Zν and x ∈ X t.
For this we need the following inequality due to Sullivan:

inf
y∈X tc :yΛ=z

Qy

t (x) 6 q
z

t (x) 6 sup
y∈X tc :yΛ=z

Qy

t (x) (3.1)

for all t ∈ Zν , Λ ∈ E ∗(tc), x ∈ X t and z ∈ X Λ. This inequality is clearly valid
since

qzt (x) =
Pt∪Λ(xz)

PΛ(z)
=

1

PΛ(z)

∫

{y∈X tc :yΛ=z}

Qy

t (x)Ptc(dy).

Taking this inequality into account, it remains to verify that

lim
Λ↑Zν\t

sup
x∈X tc

∣∣∣ inf
y∈X tc :yΛ=xΛ

Qy

t (x)−Qx

t (x)
∣∣∣ = 0
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and
lim

Λ↑Zν\t
sup

x∈X tc

∣∣∣ sup
y∈X tc : yΛ=xΛ

Qy

t (x) −Qx

t (x)
∣∣∣ = 0

for all t ∈ Zν and x ∈ X t. To show the first one we write

sup
x∈X tc

∣∣∣ inf
y∈X tc :yΛ=xΛ

Qy

t (x) −Qx

t (x)
∣∣∣ 6 sup

x∈X tc
sup

y∈X tc : yΛ=xΛ

∣∣Qy

t (x)−Qx

t (x)
∣∣

and use the quasilocality of Q. The second one is proved similarly. 2

At first sight, Criterion 3.4 deals only with the one-point finite-conditional
distribution. However, in fact it imposes conditions equally on its limit, that is,
on the one-point conditional distribution. The following and last criterion really
deals only with the one-point finite-conditional distribution. Before formulating
it, let as agree that in the sequel when we use the notation xT we presume that
only configurations x such that S(x) ⊃ T are considered.

Criterion 3.5. A random field is a Gibbs random field if and only if it is strictly

positive, its one-point finite-conditional distribution {qx̃t , t ∈ Zν and x̃ ∈ X̃ t}
is uniformly nonnull (consists of uniformly nonnull with respect to x̃ elements)
and one of the following equivalent conditions holds:

(C) for any t ∈ Zν and x ∈ X t one has

lim
Λ↑Zν\t

sup
x̃,ỹ∈X̃ t: x̃Λ=ỹΛ

∣∣qx̃t (x)− qỹt (x)
∣∣ = 0,

(D) for any t ∈ Zν and x ∈ X t one has

lim
Λ↑Zν\t

sup
J∈E ∗(tc)

sup
x̃,ỹ∈X J : x̃Λ=ỹΛ

∣∣qx̃t (x)− qỹt (x)
∣∣ = 0,

(E) for any t ∈ Zν and x ∈ X t one has

lim
Λ↑Zν\t

sup
x̃∈X̃ t

∣∣qx̃t (x)− qx̃Λ
t (x)

∣∣ = 0.

Proof. First we concentrate on the condition (E). Clearly

sup
x̃∈X̃ t

∣∣qx̃t (x) − qx̃Λ
t (x)

∣∣ = sup
I∈E (tc):I⊃Λ

sup
x∈X tc

∣∣qxIt (x)− qxΛ
t (x)

∣∣,

and so the condition (E) is nothing but the Cauchy condition for the existence
of the uniform limits considered in Criterion 3.4. The sufficiency now clearly
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follows from Criterion 3.4 since the Cauchy principle yields the existence of
the uniform limits, and the uniform nonnullness of one-point finite-conditional
distribution guarantees their strict positivity. The necessity also follows from
Criterion 3.4 since the condition (E) is ensured by the Cauchy principle, and
the uniform nonnullness of one-point finite-conditional distribution can be easily
obtained from (3.1) and the condition (A) (use the first inequality of (3.1) and
the uniform nonnullness of limits considered in the condition (A)).

It remains to check the equivalence of the conditions (C), (D) and (E). The
implications (C)⇒ (D) and (C)⇒ (E) are trivial since

sup
J∈E ∗(tc)

sup
x̃,ỹ∈X J : x̃Λ=ỹΛ

∣∣qx̃t (x)− qỹt (x)
∣∣ 6 sup

x̃,ỹ∈X̃ t: x̃Λ=ỹΛ

∣∣qx̃t (x)− qỹt (x)
∣∣

and

sup
x̃∈X̃ t

∣∣qx̃t (x) − qx̃Λ
t (x)

∣∣ 6 sup
x̃,ỹ∈X̃ t: x̃Λ=ỹΛ

∣∣qx̃t (x) − qỹt (x)
∣∣.

Similarly, the inequality

sup
x̃,ỹ∈X̃ t : x̃Λ=ỹΛ

∣∣qx̃t (x) − qỹt (x)
∣∣ 6 2 sup

x̃∈X̃ t

∣∣qx̃t (x)− qx̃Λ
t (x)

∣∣

yields the implications (E)⇒ (C). To prove the last implication (D)⇒ (C), we
need the following lemma.

Lemma 3.1. Let {qx̃I , I ∈ E and x̃ ∈ X̃ I} be the finite-conditional distribu-
tion of some strictly positive random field. Then the set

A =
{
x ∈ X

Z
ν

: lim
Λ↑Zν\I

qxΛ

I (x) exists for every I ∈ E and x ∈ X
I
}

is of probability 1 and possesses the following property: if x ∈ A then zxJc ∈ A
for all J ∈ E and z ∈ X J .

Proof. Since the set A is a countable intersection of sets of probability 1, it is
also of probability 1. It remains to show that if x ∈ A then y = zxtc ∈ A for

all t ∈ Zν and z ∈ X t, that is, limΛ↑Zν\I q
yΛ

I (x) exists for every I ∈ E and
x ∈ X I . This is trivial if t ∈ I (since in this case yΛ = xΛ) and clearly follows
from the relation

q
yΛ

I (x) = q
zxΛ\t

I (x) =
q
xΛ\t

t∪I (zx)
(
q
xΛ\t

t∪I

)
t
(z)

, Λ ∋ t,

otherwise. 2
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Returning to the proof of the implication (D)⇒ (C), let us fix some t ∈ Zν

and x ∈ X t, denote

f(Λ) = sup
J∈E ∗(tc)

sup
x̃,ỹ∈X J :x̃Λ=ỹΛ

∣∣qx̃t (x) − qỹt (x)
∣∣,

and for any ε > 0 choose (according to the condition (D)) some Λε ∈ E such
that |f(Λ)| < ε for all Λ ∈ E , Λ ⊃ Λε.

First we will show that limΛ↑Zν\t q
xΛ
t (x) exists for every x ∈ X tc . Let us

take some x◦ ∈ A (according to the lemma, the set A is of probability 1 and so
is not empty) and consider y = xΛεx

◦
Λc
ε
∈ A. So, we can find some Λ′

ε ∈ E such
that

|qyIt (x)− qyJt (x)| < ε

for all I, J ∈ E , I ⊃ Λ′
ε, J ⊃ Λ′

ε. Thus, for all I, J ∈ E such that I ⊃ Λε ∪ Λ′
ε

and J ⊃ Λε ∪ Λ′
ε we can write

∣∣qxIt (x)− qxJt (x)
∣∣ 6

∣∣qxIt (x) − qyIt (x)
∣∣+

∣∣qyIt (x) − qyJt (x)
∣∣+

∣∣qyJt (x)− qxJt (x)
∣∣

< f(Λε) + ε+ f(Λε) < 3ε,

and hence limΛ↑Zν\t q
xΛ
t (x) exists according to Cauchy principle.

Further, for every x ∈ X tc consider the set V (x) = {y ∈ X tc : yΛε = xΛε}.
Clearly these sets are either mutually disjoint or coinciding, and there is only
a finite number k (more precisely k = |X Λε |) of different sets among them.
Hence there exists a finite collection x1, . . . ,xk ∈ X tc such that

X
tc =

k⋃

i=1

V (xi).

(This fact equally follows from the compactness of X tc .) So, using Cauchy

principle we can find some Λ′′
ε ∈ E such that |qx

i
I

t (x) − q
x
i
J

t (x)| < ε for all
i = 1, . . . , k and all I, J ∈ E , I ⊃ Λ′′

ε , J ⊃ Λ′′
ε .

Now, let the set Λ ∈ E be such that Λ ⊃ Λε ∪ Λ′′
ε , the sets I, J ∈ E be

such that I ⊃ Λ and J ⊃ Λ, and the configurations x̃ ∈ X I and ỹ ∈ X J

be such that x̃Λ = ỹΛ. Clearly, we can find some i ∈ {1, . . . , k} such that
xi
Λε = x̃Λε = ỹΛε , and thus we may write

∣∣qx̃t (x) − qỹt (x)
∣∣ 6

∣∣qx̃t (x) − q
x
i
I

t (x)
∣∣ +

∣∣qx
i
I

t (x)− qx
i
J

t (x)
∣∣ +

∣∣qx
i
J

t (x)− qỹt (x)
∣∣

< f(Λε) + ε+ f(Λε) < 3ε

which shows that the condition (C) holds. 2
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Concluding this section let us note that “multi-point” analogues of Crite-
ria 3.4 and 3.5 formulated in terms of the whole finite-conditional distribution
are of course valid. Concerning the first one, we would like to mention that its
necessity statement was as a matter of fact contained in the proof of Lemma 1
of [24], whose argument we follow while proving Criterion 3.4. As to the second
one, let us mention that the part utilizing the analogue of the condition (D)
can be deduced from Theorems 1 and 2 of [20]. It should be pointed out that
the author does not provide the proof of the sufficiency statement of Theorem 2
(leaving it, as he says, to the reader). However, our considerations show that the
proof of this statement is neither intuitive, nor technically simple. Moreover,
the validity of the statement seems doubtful in the settings of [20] where the
state space is not supposed to be finite or even compact.

4. Some further development

The random field Gibbsianness criteria presented in the previous section are
formulated either in terms of (one-point) conditional distribution, or in terms
of (one-point) finite-conditional distribution. These two types of criteria are
complementary, however, the second type criteria deal with an unambiguously
defined constructive object and allow us to take a different look on and try
to develop an alternative approach to the Gibbs theory. In this section we
undertake some introductory steps in this direction.

First let us note, that roughly speaking, Criterion 3.4 asserts that aside
from positivity considerations, Gibbs random fields are characterized by the
uniform convergence of their one-point finite-conditional distribution (to the
one-point conditional one), while only a weaker (almost sure) convergence is
guaranteed for an arbitrary random field. In our opinion, this is perhaps the
most comprehensible characterization of Gibbs random fields, on the basis of
which the following probabilistically explicit definition of Gibbs random field
can be given.

Definition 4.1. A random field P is called Gibbs random field if

1) for any Λ ∈ E and x ∈ X Λ one has PΛ(x) > 0,

2) the limits

lim
Λ↑Zν\t

Pt∪Λ(xxΛ)

PΛ(xΛ)
, t ∈ Zν , x ∈ X

t, x ∈ X
tc , (4.1)

exist, are strictly positive, and the convergence is uniform with respect
to x.

Note that if P is a Gibbs random field, then the limits (4.1) form a version
of one-point conditional distribution of P and, moreover, their multi-point ana-
logues exist and form a version of conditional distribution of P. We call these
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versions canonical. Note also, that the canonical (one-point) conditional distri-
bution of a Gibbs random field is the only quasilocal version of its (one-point)
conditional distribution. Note also that now, the Criterion 3.4 turns into the
following theorem about representation of canonical conditional distribution of
Gibbs random fields.

Theorem 4.1. If P is a Gibbs random field, then the canonical (one-point)
conditional distribution of P admits the representation given by Gibbs formu-
lae (1.3) and (1.4) with some uniformly convergent potential.

Conversely, if a random field P has a version of (one-point) conditional dis-
tribution admitting the representation given by Gibbs formulae (1.3) and (1.4)
with some uniformly convergent potential, then P is a Gibbs random field, and
this version is canonical.

The set G of all Gibbs random fields is not empty since, as it follows imme-
diately from the above definition, it contains the set M of all strictly positive
Markov random fields. On the other hand, as shows the following example, not
all strictly positive random fields are Gibbsian.

Example 4.1. Let X = {0,1} and consider the random field P given by

PΛ(x) =
1

(|Λ|+ 1)C
|x|
|Λ|

, Λ ∈ E , x ∈ X
Λ,

where |x| = |{t ∈ Λ : xt = 1}| is the number of “particles” (ones) in the
configuration x. (This random field describes the situation when the number of
particles in the volume Λ is distributed uniformly on the discrete interval [[0,Λ]]
and, given that this number is k, all k-particle configurations are conditionally
equiprobable.) First, for all t ∈ Zν , x ∈ X tc and Λ ∈ E ∗(tc) we have

qxΛ
t (1) =

Pt∪Λ(1xΛ)

PΛ(xΛ)
=

|xΛ|+ 1

|Λ|+ 2
.

Further, for any p ∈ [0,1] let us denote by I
p
t the set of all x ∈ X tc such that

∃ lim
Λ↑tc

|xΛ|
|Λ| = p(x) = p,

and put It = X tc \
( ⋃

p∈[0,1] I
p
t

)
. Now we see that the limits (4.1) do not exist

for x ∈ It and are not all strictly positive for x ∈ I0
t ∪ I1t . Each one of these

facts yields the non-Gibbsianness of P.

Let us note that the random field P considered in this example is the uniform
mixture of Bernoulli random fields Bp, p ∈ (0,1). Indeed, for all Λ ∈ E and
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x ∈ X Λ, we have

PΛ(x) =
|x|! (|Λ| − |x|)!

(|Λ|+ 1)!
= B

(
|x|+ 1, |Λ| − |x|+ 1

)

=

1∫

0

p|x|(1− p)|Λ|−|x| dp.

Now, the non-Gibbsianness of P also follows from the general fact that any
non-trivial mixture of Bernoulli random fields is non Gibbsian (see the authors’
work [5], as well as Section 4.5.1 of [12] and Section 4 of [13] for the case of
finite or countably infinite mixtures). Let us give two other examples of such
mixtures where the finite-dimensional distributions are explicit and permit to
check the non-Gibbsianness directly.

Example 4.2. Let τ > 0 and consider the random field P which is the mixture
with the density τpτ−1 of Bernoulli random fields Bp, p ∈ (0,1), that is,

PΛ(x) =

1∫

0

p|x|(1− p)|Λ|−|x|τpτ−1 dp

= τB
(
|x|+ τ, |Λ| − |x|+ 1

)
, Λ ∈ E , x ∈ X

Λ.

(This is a generalization of the previous example, the latter being obtained for
τ = 1.) Here, for all t ∈ Zν , x ∈ X tc and Λ ∈ E ∗(tc) we have

qxΛ
t (1) =

Pt∪Λ(1xΛ)

PΛ(xΛ)
=

|xΛ|+ τ

|Λ|+ τ + 1
,

and so, all the considerations of the previous example hold.

Example 4.3. Let α, p1, p2 ∈ (0,1) such that p1 6= p2 and consider the random
field P which is the mixture of Bernoulli random fields Bp1 and Bp2 with the
coefficients α and β = 1− α, that is,

PΛ(x) = αp
|x|
1 (1− p1)

|Λ|−|x| + βp
|x|
2 (1 − p2)

|Λ|−|x|, Λ ∈ E , x ∈ X
Λ.

Here, for all t ∈ Zν , x ∈ X tc and Λ ∈ E ∗(tc) we have

qxΛ
t (1) =

Pt∪Λ(1xΛ)

PΛ(xΛ)
=
αp1 + βp2 exp{|Λ|HΛ(xΛ)}
α+ β exp{|Λ|HΛ(xΛ)}

,

where

HΛ(xΛ) =
|xΛ|
|Λ| ln

p2
p1

+
(
1− |xΛ|

|Λ|
)
ln

1− p2
1− p1

.
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Clearly, there exist a configuration z ∈ It such that |zΛ|/|Λ| is oscillating be-
tween 0 and 1, that is,

lim inf
Λ↑tc

|zΛ|
|Λ| = 0 and lim sup

Λ↑tc

|zΛ|
|Λ| = 1.

Then, since ln(p2/p1) and ln((1−p2)/(1−p1)) are of opposite signs, |Λ|HΛ(zΛ)
is oscillating between −∞ and +∞. Hence, the limits (4.1) do not exist for
x = z, and so the random field P is non-Gibbsian.

The preceding examples show that G ( P. However, G is dense in P with
respect to the topology of weak convergence (Pn → P if Pn

Λ(x) → PΛ(x) for
all Λ ∈ E and x ∈ X Λ. Indeed, let P ∈ P, let Bp be a Bernoulli random field
(with some p ∈ (0,1), and let Λn ∈ E , n ∈ N, such that Λn ↑ Zν as n→ ∞. For
each n, consider the random field Pn such that its restrictions on Λn and Λc

n

are independent and given by (Pn)Λn = (P)Λn and (Pn)Λc
n
= (Bp)Λc

n
. Clearly,

Pn ∈ M and Pn → P as n → ∞. So, we have shown that M (and hence,
a fortiori, G ) is dense in P. Note that a similar (though limited to the scope
of translation invariant random fields) statement for the case of a general (not
necessarily finite) state space can be found in Section 4.5.6 of [12].

As we have seen above, the mixtures and the limits of Gibbs random fields
can be non-Gibbsian. However, this is no longer the case if we consider Gibbs
random fields having the same canonical (one-point) conditional distribution.
Indeed, we will see below that we have even more: for anyP◦ ∈ G , the set G (P◦)
of all Gibbs random fields having the same canonical (one-point) conditional
distribution as P◦ (which is equivalently the set of all random fields consistent
with the canonical (one-point) conditional distribution of P◦) is convex and
closed.

First we show the convexity. Let P1,P2 ∈ G (P◦), let {qxt , t ∈ Zν and
x ∈ X tc} be their common canonical one-point conditional distribution, let
α ∈ (0, 1) and put P = αP1 +βP2, where β = 1 − α. The strict positivity of
P is evident. Further, for all t ∈ Zν and x ∈ X t, we have

sup
x∈X tc

∣∣∣∣
Pt∪Λ(xxΛ)

PΛ(xΛ)
− qxt (x)

∣∣∣∣

= sup
x∈X tc

∣∣∣∣
αP1

Λ(xΛ)
(
P1

t∪Λ(xxΛ)/P
1
Λ(xΛ)− qxt (x)

)

αP1
Λ(xΛ) + βP2

Λ(xΛ)

+
βP2

Λ(xΛ)
(
P2

t∪Λ(xxΛ)/P
2
Λ(xΛ)− qxt (x)

)

αP1
Λ(xΛ) + βP2

Λ(xΛ)

∣∣∣∣

6 sup
x∈X tc

∣∣∣∣
P1

t∪Λ(xxΛ)

P1
Λ(xΛ)

− qxt (x)
∣∣∣∣+ sup

x∈X tc

∣∣∣∣
P2

t∪Λ(xxΛ)

P2
Λ(xΛ)

− qxt (x)
∣∣∣∣,
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and hence P ∈ G (P◦).
Now let us verify that the set G (P◦) is closed. Let Pn ∈ G (P◦), n ∈ N, such

that Pn → P as n → ∞, and let {qxΛ, Λ ∈ E and x ∈ X Λc} be the common
canonical conditional distribution of the elements of G (P◦). To show that P is
strictly positive, let us note that for all Λ ∈ E and x ∈ X Λ we have

PΛ(x) > inf
x∈X Λc

qxΛ(x)

for any P ∈ G (P◦). Hence,

inf
n∈N

Pn
Λ(x) > inf

P∈G (P◦)
PΛ(x) > inf

x∈X Λc
qxΛ(x) > 0,

and so PΛ(x) > 0. Further, according to our definition of Gibbs random field,
for all t ∈ Zν and x ∈ X t, we have

lim
Λ↑Zν\t

sup
x∈X tc

∣∣∣∣
Pt∪Λ(xxΛ)

PΛ(xΛ)
− qxt (x)

∣∣∣∣ = 0

for any P ∈ G (P◦). Moreover, taking a closer look on the necessity part of the
proof of Criterion 3.4 one can see that all the estimates therein are based on the
canonical one-point conditional distribution only, and so, it becomes clear that
the above convergence is also uniform with respect to P, that is,

lim
Λ↑Zν\t

sup
P∈G (P◦)

sup
x∈X tc

∣∣∣∣
Pt∪Λ(xxΛ)

PΛ(xΛ)
− qxt (x)

∣∣∣∣ = 0.

Hence, for all sufficiently large Λ, the quantity

sup
x∈X tc

∣∣∣∣
Pn

t∪Λ(xxΛ)

Pn
Λ(xΛ)

− qxt (x)
∣∣∣∣

can be made smaller than an arbitrary ε > 0 for all n ∈ N. For any such Λ, by
passing to the limit as n→ ∞, we get

sup
x∈X tc

∣∣∣∣
Pt∪Λ(xxΛ)

PΛ(xΛ)
− qxt (x)

∣∣∣∣ 6 ε,

and so, P ∈ G (P◦).
In conclusion we would like to recall that this section is only a first step in

the development of the above mentioned alternative approach. In our opinion,
the realization of the potential of this approach will make a real contribution to
the Gibbs theory, namely in such problems as uniqueness, decay of correlations
and limit theorems. For example, some results concerning the problem of decay
of correlations can already be found in [7].
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Abstract. The problem of nonparametric estimation for Gibbs random fields is considered. The field
is supposed to be specified through a translation invariant quasilocal one-point system. An estimator
of one-point system is constructed by the method of sieves, and its exponential andLp consisten-
cies are proved in different setups. The results hold regardless of non-uniqueness and translation
invariance breaking.
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1. Introduction

This paper is devoted to nonparametric estimation problem for a class of random
fields defined on theν-dimensional integer latticeZν, ν>1 and taking values in
the state spaceX = {0,1}. An approach towards description of such fields was
introduced in our joint papers with B. S. Nahapetian [2–4]. The main idea of this
approach is to describe random fields by specifications (just as in Gibbs random
field theory) but to define specifications by some systems of real numbers like
Q-functions,H -functions,Q-systems,H -systems and one-point systems, rather
than by interaction potentials. This approach permits one also to describe non-
Gibbsian random fields and provides a parametrization of random fields suitable
for statistical inference.

In this paper we consider the problem of nonparametric estimation of a one-
point system. We construct an estimator by combining the idea of approximating a
ratio of conditional probabilities by a ratio of some empirical conditional frequen-
cies with the main idea of the method of sieves (introduced by U. Grenander [10]):
approximation of infinite-dimensional parameters by finite-dimensional ones. We
prove exponential consistency andLp-consistency, for allp ∈ (0,∞), of our sieve
estimator in different setups.

Let us note here that for maximum likelihood estimators F. Comets in [1] also
gets exponential consistency in the parametric case and in a classical Gibbsian
setup using the theory of large deviations.
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Note too that in general the problem of estimation for Gibbs random fields is
complicated by such classical phenomenons of Gibbs random fields theory as non-
uniqueness (presence of a phase transition) and translation invariance breaking. In
our work the results are established regardless of this aspects of Gibbs random
fields theory.

Parametric statistical inference for Gibbs random fields is now quite well de-
veloped in classical Gibbsian setup. The actual state of the theory is well presented
in the monograph by X. Guyon [11] and references therein. For more information
see [1, 8, 12–14].

As to nonparametric inference, it seems to be less well investigated. We can
mention here a preprint by C. Ji [12]. He considers a classical Gibbsian setup
where the random filed is described by an exponentially decreasing pair-interaction
potential. For this model he studies the sieve estimator of ‘local characteristics’.
The proof presented there needs some rectification. Our work is similar to [12] in
that our one-point system is in fact something similar to local characteristics, and in
that we study the sieve estimator. But unlike [12], our setup is much more general
and in our case we estimate the object (one-point system) which itself describes
the random field.

Let us finally note here that the results of this paper were presented with more
detail in [2]. All the results hold in the case of arbitrary finite state spaceX . See
[2] for more details about this case.

2. Preliminary Results

In this section we recall some basic notions of the Gibbs random fields theory and
introduce the notion of one-point systems.

2.1. RECAPITULATION OF GIBBS RANDOM FIELDS THEORY

We consider random fields on theν-dimensional integer latticeZν, i.e., probability
measures on(�,F) = (XZν ,FZν

0 ). For simplicity the state spaceX (space of
values of a single variable) is assumed to consist of two points and be endowed with
the totalσ -algebra (theσ -algebra consisting fo all subsets ofX ), i.e., (X ,F0) =

({0,1},exp{0,1}). DenoteE = {3 ⊂ Zν : |3| < ∞} the set of all fintie subsets of
Zν. Here and in the sequel|3| is the number of points of the set3. For any3 ∈ E
let

X3 = {x = {xt , t ∈ 3} : xt ∈ X for all t ∈ 3}

be the set of all configurations (realizations) on3. Clearly, each elementx ∈ X3

is uniquely determined by the subset of3 where the configurationx assumes the
value 1 (in physical terminology this subset is occupied by particles). Therefore,
we can identify any configurationx on3 with the corresponding subsetX of3. In
the sequel we will not make any distinction between these two notions and we will
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write x ⊂ 3 for a configurationx on3. Note thatE is countable. Note too that by
definitionF is the smallestσ -algebra on� containing the cyclinder events

{x ∈ � : x3 ∈ A}, 3 ∈ E, A ∈ F3
0 .

Here and in the sequelx3 = x ∩3 ⊂ 3 is the subconfiguration (restriction) on3
of the configurationx.

A probability distribution onX3,3 ∈ E , is denoted by

P3 = {P3(x), x ⊂ 3}.

For3 = ∅, we consider that there exits only one probability distributionP∅(∅) =

1.
It is well known that a probability measure onXZν (or, equivalently, a random

field onZν) can be described in terms of itsfinite-dimensional distributionswhich
are consistent in the sense that(P3)I = PI . Here and in the sequel the probability
distribution(P3)I onX I is the restriction ofP3 on I .

Let us now introduce the concept of conditional distribution of a random field.
For this we need the notion of convergence of nets (sequences) of real numbers

indexed by elements ofE . Let {a3,3 ∈ E} be a real-valued function onE and
T ⊂ Zν be an infinite subset ofZν. We say that lim3↑T a3 = aT if for any
sequence3n ∈ E such that3n ↑ T we have the convergence limn→∞ a3n = aT .

Let P be a random field. It is well known that for any3 ∈ E there exist for
P3c ‘-almost allx ⊂ 3c = Zν\3 the following limits:

qx
3(x) = lim

3̃↑3c

P3∪3̃(x ∪ x3̃)
P3̃(x3̃)

, x ⊂ 3.

Any system

Q = {Qx
3, 3 ∈ E andx ⊂ 3c}

of probability distributions in various finite volumes3 with various boundary con-
ditonsx on3c such that for all3 ∈ E we haveQx

3 = qx
3 for P3c-almost allx ⊂ 3c

is calledconditional distributionof the random fieldP.
It is also well known that any conditonal distributionQQQ of a random fieldP

satisfiesP-almost surely the condition

Qx
3∪3̃

(x ∪ y) = Qx∪y
3 (x)(Qx

3∪3̃
)3̃(y) (1)

where3, 3̃ ∈ E,3 ∩ 3̃ = ∅, x ⊂ 3, y ⊂ 3̃ andx ⊂ (3 ∪ 3̃)c. In fact, this is
nothing but the elementary formula

P(A ∩ B|C) = P(A|B ∩ C)P(B|C) (2)

written for our case.

Nonparametric Estimation for Gibbs Random Fields 217



248 S. DACHIAN

Now let us consider an arbitrary system

QQQ = {Qx
3, 3 ∈ E andx ⊂ 3c}

of probability distributions in finite volumes with boundary conditions. If we want
this system to be a conditional distribution of some random fieldP, then we need
to suppose that itP-almost surely satisfies the condition (1). However, we do not
know the random fieldP a priori. Therefore we need to require that the condition
(1) holds always, rather than almost surely. This leads us to introduce the following

DEFINITION 1. A system

QQQ = {Qx
3, 3 ∈ E andx ⊂ 3c}

of probability distributions in finite volumes with boundary conditions is called
specification, if for any3, 3̃ ∈ E such that3 ∩ 3̃ = ∅ and for anyx ⊂ 3, y ⊂ 3̃

andx ⊂ (3 ∪ 3̃)c we have

Qx
3∪3̃

(x ∪ y) = Qx∪y
3 (x)(Qx

3∪3̃
)3̃(y).

In Gibbs random field theory a random field is described through a specification
QQQ = {Qx

3,3 ∈ E andx ⊂ 3c}. Usually the specification is assumed to have so-
called Gibbsian form, written in terms of some physical quantities like interaction
potentials, but we do not suppose that here. Any random field having the specific-
ationQQQ as a conditional distribution is called aGibbs random fieldfor QQQ. Note
that we use the traditional term ‘Gibbs’ even thoughQQQ does not necessarily have
Gibbsian form. The main question of the Gibbs random field theory is the study
of the setG = G(QQQ) of all Gibbs random fields forQQQ. Is this set empty of not? If
it is not empty, is it a singleton or not, i.e., is the field havingQQQ as a conditonal
distribution unique or not? In the non-uniqueness case, what can be said about
the structure of this set? Another interesting question is the following. Suppose
thatQQQ is translation invariant (i.e., invariant with respect to shift operators onZν

or, in other words, stationary). Are all the random fields fromG(QQQ) translation
invariant or not? In the latter case what can be said about the subsetGt.i = Gt.i(QQQ)
of translation invariant random field?

These questions are answered in a general setup, when the specificationQQQ is
not supposed to have Gibbsian form, but rather is supposed to bequasilocal. In
this case the sets are non-empty and the structure of the sets can be studied. Note,
that it is possible to havenon-uniqueness(|G| > 1, |Gt.i.| > 1) and translation
invariance breaking(G 6= Gt.i.). Note also, that in our work the results are es-
tablished regardless of these phenomena of Gibbs random field theory, since they
hold uniformly onG. For detailed exposition of Gibbs random field theory see the
works of R. L. Dobrushin [5–7] for the Gibbsian case and the excellent book of
H.-O. Georgii [9] for the general case.

DEFINITION 2. Letg = {gx, x ⊂ Zν} be an arbitrary real-valued function on�.
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(1) We say that the functiong is local if it is F3
0 measurable for some3 ∈ E ,

i.e., if it depends only on the restrictionx3 of x on3 or, equivalently, if we have
gx = gx3 for all x ∈ �.

(2) We say that the functiong is quasilocal if we have limI↑Zν gxI = gx

uniformly onx ∈ �, i.e.,

sup
x∈�

|gxI − gx| −→
I↑Zν

0.

DEFINITION 3. A specificationQ is called (quasi)local if for all3 ∈ E andx ⊂ 3

the function{Qz3c
3 (x), z ∈ �} is (quasi)local, i.e., if for all3 ∈ E andx ⊂ 3 the

quantity

ϕx,3(I ) = sup
x⊂3c

|QxI
3 (x)− Qx

3(x)|

tends to 0 asI ↑ Zν (for the quasilocal case) or equals 0 forI sufficiently large
(for the local case). A random fieldP is called (quasi)local if it has a (quasi)local
conditional distribution.

2.2. DESCRIPTION OF SPECIFICATIONS BY MEANS OF ONE-POINT SYSTEMS

As we have already seen the notion of the specification plays central role in the
(Gibbs) random fields theory. In [2–4] an approach towards description of specific-
ations was developed. In this approach speficiations are described by some systems
of real numbers likeQ- functions,Q-systems,H -systems and one-point systems,
rather than by interaction potentials. Here we recall some results about descrip-
tion of specifications by consistentH -systems and one-point systems. Details and
proofs can be found in [2] or in [4].

DEFINITION 4. A systemH = {H x
x , x ∈ E andx ⊂ xc} is calledH-systemif

H x
x > 0 for all x ∈ E andx ⊂ xc andH x

∅ = 1 for all x ⊂ Zν. ThisH -system is
calledconsistentif it satisfies the following condition: for anyx, y ∈ E such that
x ∩ y = ∅ and anyx ⊂ (x ∪ y)c we have

H x
x∪y = H x

x H
x∪x
y .

H -systems let one describe specifications in the following way.

THEOREM 5.A systemQQQ = {Qx
3,3 ∈ E andx ⊂ 3c} is a specification satisfying

Qx
3(∅) > 0 for all 3 ∈ E andx ⊂ 3c if and only if there exists a consistentH -

systemH = {H x
x , x ∈ E and x ⊂ xc} such that for any3 ∈ E and x ⊂ 3c we

have

Qx
3(x) =

H x
x

6y⊂3H
x
y
, x ⊂ 3. (3)
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Now let us introduce the following

DEFINITION 6. A systemh = {hx
t , t ∈ Zν andx ⊂ Zν\t} is calledone-point

systemif for all t ∈ Zν andx ⊂ Zν\t we haveH x
t > 0 and for alls, t ∈ Zν and

x ⊂ Zν\{s, t} we have

hx
sh

x∪s
t = hx

t h
x∪t
s .

Here and in the sequel we writeZν\t as a shorthand notation forZν\{t}, x ∪ t as a
shorthand notation forx ∪ {t} and in general we omit braces for one-point sets.

As the following theorem shows, these one-point systems correspond one-to-
one to consistentH -systems. In fact they are nothing but one-point subsystems of
consistentH -systems and hence, just likeH -systems, describe specifications.

THEOREM 7.A systemH = {H x
x , x ∈ E andx ⊂ xc} is a consistent H-system if

and only if there exists a one-point systemh = {hx
t , t ∈ Zν and x ⊂ Zν\t} such

that for all x ∈ E andx ⊂ xc we have

H x
x = hx

t1
h

x∪t1
t2

· · · h
x∪t1∪···∪tn−1
tn (4)

wheren = |x| and t1, . . . , tn is some arbitrary enumeration of elements of the set
x. Particularly, for all t ∈ Zν andx ⊂ Zν\t we haveH x

t = hx
t .

So, a specifcationQQQ satisfyingQx
3(∅) > 0 can be described by some one-point

systemh. Let us note that such specifications are some-times calledvacuum spe-
cifications. Note also that we include the Gibbsian case.

Clearly the quasilocality ofh is equivalent to the quasilocality of corresponding
specificationQQQ.

Finally, let us turn us turn to the translation invariant case. Obviously a specific-
ationQQQ is translation invariant if and only if the corresponding one-point systemh
is translation invariant, i.e., if we havehx

t = hx+s
t+s for all t, s ∈ Zν andx ⊂ Zν\t .

In this case, clearly one needs to know only the subsystem{hx, x ⊂ Zν\0}, where
hx = hx

0 and0 is the origin ofZν . This subsystem is the object of statistical interest
of this work. Since it determines the whole one-point system we will use the same
notationh for it. Condition of the quasilocality in this case will be written in the
form

γ (I ) = sup
x⊂Zν\0

|hxI − hx| −→
I↑Zν

0.
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3. The Nonparamteric Estimation Problem

In this section we present the statistical model, construct an estimator and state the
main results of the paper: exponential andLp- consistencies of this estimator.

3.1. STATISTICAL MODEL

We writeH = {h : h is quasilocal and translation invariant}. To anyh ∈ H we
associate some specificationQQQ and hence some setsG(h) = G(QQQ) andGt.i.(h) =

Gt.i.(QQQ) of Gibbs random fields.
Supposeh ∈ H is some unknown translation invariant quasilocal one-point

system. We observe a realisation of some random fieldP ∈ G(h) in the observation
window3n. Here and in the sequel3n denotes the symmetric cube with the side
sizen centred at the origin0 of Zν (without loss of generality we assume thatn
is odd). So, based on the dataxn = x3n ⊂ 3n generated by some random field
P ∈ G(h) we want to estimateh. More formally, the statistical model is

{�,F,P ∈ G(h),h ∈ Hexp
A,B}

where 0< A6B < ∞ are some constants andHexp
A,B is the space of one-point

systems satisfying the following conditions.

(C1) h ∈ H, i.e.,h is quasilocal and translation invariant.
(C2) For allx ⊂ Zν\0 we haveA6 hx 6B.
(C3) Let ρ be the supremum norm onZν and put

ϕ(d) = sup
I : ρ(I c\0,0)> d

sup
x⊂Zν\0

|hxI − hx|.

We call the functionϕ(·) rate of quasilocalityand we suppose thatϕ(d)
6 c e−a d

ν+δ
wherec, a andδ are some positive constants.

Note thatc, a andδ are not supposed to be knowna priori and may differ for
differenth ∈ Hexp

A,B .
Let us remark here that our statistical model is a bit unusual, in the sense

that the probability measureP is not determined by the parameterh. Rather,h
determines some setG(h) of probability measures. The observations come from
an arbitrary element of this set but we are not interested in this element, the only
object of interest is the parameterh itself. That is, we want to identify the class
G(h) corresponding to (unknown) one-point systemh, and not a particular element
of this class. In fact, this is the reason for which our results hold regardless of non-
uniqueness and translation invariance breaking. In some sense, if|G(h)| > 1, then
P ∈ G(h) can be viewed asP = P(h, µ), and onlyh is the parameter of interest
(something like semiparametric statistical problem), while all our considerations
will be performed on conditional distributions, the latter ones depending only on
h, and not onµ.
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Any real-valued random functionhn = {h
x
n, x ⊂ Zν\0} constructed fromxn is

said to be anestimatorof h. The distance between the estimatorhn and the true
valueh is measured in the supremum norm:

‖hn − h‖ = sup
x⊂Zν\0

|h
x
n − hx|.

The estimatorhn is said to beconsistent, if for any h ∈ Hexp
A,B we have

‖hn − h‖ −→n→∞ 0 in probability, uniformly overp ∈ G(h), i.e., if for any
h ∈ Hexp

A,B and anyε > 0 we have

sup
P∈G(h)

P(‖hn − h‖ > ε)−→
n→∞

0.

If the last relation holds uniformly onh ∈ Hexp
A,B , then the estimatorhn is said to be

uniformly consistent.
The estimatorhn is said to beLp-consistentfor somep ∈ (0,∞), if for any

h ∈ Hexp
A,B we have‖hn − h‖ −→n→∞ 0 in Lp, uniformly overP ∈ G(h), i.e., if

for anyh ∈ Hexp
A,B we have

sup
P∈G(h)

E‖hn − h‖p −→
n→∞

0.

If the last relation holds uniformly onh ∈ Hexp
A,B , then the estimatorhn is said to be

uniformlyLp-consistent.
Let us finally note here that, if the random field corresponding to a one-point

systemh is unique, then the statistical model, the identifiability and all the notions
of consistency regain their classical statistical sense.

3.2. CONSTRUCTION OF THE SIEVE ESTIMATOR

Let us first note that by (3) we have

Qx
t (t) =

H x
t

6y⊂t H x
y

=
H x
t

H x
∅ +H x

t

=
hx
t

1 + hx
t

,

Qx
t (∅) =

H x
∅

6y⊂t H x
y

=
H x

∅

H x
∅ +H x

t

=
1

1 + hx
t

,

and hence

hx = hx
0 =

Qx
0(0)

Qx
0(∅)

=
Qx

0(1)

Qx
0(0)

. (5)

The main idea of the estimator is to take somek = k(n) and approximate
hx by the ratio of the conditional probabilities with condition in the volume3∗

k .
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For this we use the formula (5) and we approximate the conditional probabilities
Qx

0(x), x ∈ {0,1}, by the probabilitiesP0|3∗
k
(x|x3∗

k
) of observingx in 0 given that

x3∗
k

is observed on3k∗ . The volume3k is called asieveandk = k(n) is called
sieve sizeand is supposed to grow fast enough. In fact, using the total probability
formula and the quasilocality condition, we have

P0|3∗
k
(x|x3∗

k
) =

∫

X3c
k

Q
x3∗

k
∪y

0 (x)P3ck |3∗
k
(dy|x3∗

k
)

≈ Qx
0(x)

∫

X3c
k

P3ck |3∗
k
(dy|x3∗

k
) = Qx

0(x).

On the other hand, ifk grows much slower thann, then the probabilitiesP0|3∗
k

(x|x3∗
k
) in their turn can be estimated by empirical conditional frequency of the

valuex observed in some pointt ∈ 3n given thatx3∗
k
+ t is observed on the set

3∗
k + t .
More precisely, letx(n) be the periodization onZν of the observationxn, that

is, (x(n))3n+nt = xn + nt for all t ∈ Zν . Note that equivalently periodization can
be viewed as wrapping the observationxn on a torus. Now, for everyx ⊂ Zν\0, let
us put

A1 = {y ⊂ Zν : y3k = x3∗
k
∪ 0} and A0 = {y ⊂ Zν : y3k = x3∗

k
}.

Let us also put

N1 =
∑

t∈3n

11{x(n)−t∈A1} and N0 =
∑

t∈3m

11{x(n)−t∈A0}.

Clearly,N1 andN0 are the total numbers of subconfigurations ofxn of the ‘form’
3k and equal tox3∗

k
∪ 0 andx3∗

k
, respectively.

Now we define thesieve estimator̂hn by

ĥxn =





N1/N0, if N0 > 0 andN1 > 0,

A, if N1 = 0,

B, if N0 = 0(andN1 > 0).

Note that the casesN0 = 0 andN1 = 0 are asymptotically not important. Moreover,
we could have not considered at all the second case, that is, we could have put the
estimator still to beN1/N0 = 0. Our definition of the estimator pursues rather
practical aims, and is motivated by the following reasons:N0 = 0 means that
Qx

0(0) ≈ 0 and hencehx is ‘large’, whileN1 = 0 means thatQx
0(1) ≈ 0 and hence

hx is ‘small’; but we knowa priori thatA6 hx 6B.
Let us note here, that the idea of using empirical conditional frequencies to con-

struct estimators, as well as some results on consistency of estimators of such type
for parametric models in the classical Gibbsian setup, can be found in
[8, 11–14].
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3.3. ASYMPTOTIC PROPERTIES OF THE ESTIMATOR

Note that the definition of the sieve estimator depends on the choice ofk. Choosing
k too large may results in insufficient number of repetitions of the subconfiguration
x3∗

k
in xn, i.e., one can too often haveN0 = 0 or N1 = 0. On the other hand,

choosingk too small may result in poor quality of the approximationQx
0(x)≈

P0|3∗
k
(x|x3∗

k
). The following theorems show a ‘good’ choice ofk. Let us denote

b∗ = max{ln(1 + B), ln(1 + B)− ln A} and d∗ = ν/(2b∗).

Now we can formulate the following theorems.

THEOREM 8 (Exponential consistency of the sieve estimator).Assume thath ∈

Hexp
A,B and ĥn is the sieve estimator withk = [(d ln n)1/ν] andd ∈ (0, d∗). Then,

for any h ∈ Hexp
A,B and anyε > 0, there exist some positive constantα > 0 and

somen0 ∈ N such that

sup
P∈G(h)

P(‖ĥn − h‖ > ε)6 e−αn
ν−2d b∗/ ln n

for all n > n0, i.e.., the estimator̂hn is exponentially consistent.

THEOREM 9 (Lp-consistency of the sieve estimator).Assume thath ∈ Hexp
A,B and

ĥn is the sieve estimator withk = [(d ln n)1/ν] and d ∈ (0, d∗), and fix some
p ∈ (0,∞). Then, for anyh ∈ Hexp

A,B and for sufficiently large values ofn, we have

sup
P∈G(h)

(E‖ĥn − h‖p)1/p6 n−(ν/2−d b∗−σ)

where σ is an arbitrary small positive constant, i.e., the estimator ĥn is
Lp-consistent.

These theorems are the main results of this paper. The next section is devoted
to their proof.

Let us finally note here, that the consistencies of the sieve estimator proved in
the Theorems 8 and 9 can be trivially straightened to be uniform, if we consider a
narrower class of one-point systems by fixing not only the constantsA andB from
the condition (C2), but also the constantsa, c, andδ from the condition (C3), that
is considering the class̃H = H̃(A,B, a, c, δ) defined by conditions (C1), (C2)
and (C3) with somea priori fixed constantsA,B, a, c andδ.

Note also that all the bounds on the rates of consistency obtained in the previous
section are ‘slowed’ by the constantd from the definition of the sieve sizek. Hence,
one can consider getting rid of the terms containingd by slightly modifying the
choice of the sieve sizek. In fact, in the case of the spacẽH, by putting k =

[(ln n)1/(ν+δ/2)], one can get uniform exponential consistency with the rate

sup
h∈H̃

sup
P∈G(h)

P(‖ĥn − h‖ > ε)6 e−ακ(n)n
ν
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whereκ(n) is some slowly varying function, andLp-consistency with the rate

sup
h∈H̃

sup
P∈G(h)

(E‖ĥn − h‖p)1/p6 n−(ν/2−σ).

The proofs are similar. The rates in this case are almost same as in the case of
parametric estimation, when the unknown one-point system is supposed to be local.
For more detailed discussion and for the parametric case see [2].

4. Proof of Theorems 8 and 9

Throughout the proofC, α and n0 denote generic positive constants which can
differ from formula to formula (and even in the same formula).

The main component of the proof of Theorem 8 is the so-called ‘conditional
mixing lemma’.

LEMMA 10 (Conditional mixing).Let h ∈ Hexp
A,B,P ∈ G(h) and letϕ(·) be the

corresponding rate of quasilocality also letL = L(n) ∈ N and let the setsR1 =

R1(n), . . . , RL = RL(n) be finite subsets ofZν such thatρ(Rℓ1, Rℓ2)>βn for
ℓ1 6= ℓ2 whereβn −→n→∞ ∞ and

lim
n→∞

max
16 ℓ6 L

|Rℓ|ϕ(βn) = 0.

DenoteR = Zν\(R1 ∪ · · · ∪ RL) and letuℓ : XRℓ → R, ℓ = 1, . . . , L, be some
bounded measurable functions. Then

ER1∪···∪RL|R

(
L∏

ℓ=1

uℓ(xRℓ)|xR

)

=

(
L∏

ℓ=1

ERℓ|R(uℓ(xRℓ)|xR)

)
(1 + δn)

L (6)

whereERℓ|R is the expectation with respect toPRℓ|R and

δn = O

(
max

16 ℓ6L
|Rℓ|ϕ(βn)

)
. (7)

Proof. First of all let us note that ifxt = yt for all t such thatρ(t,0)> d then
by (C2) and (C3) we have∣∣∣∣ln

hy

hx

∣∣∣∣ = | ln hy − ln hx|6C|hy − hx|6Cϕ(d).

Now supposeK1 = K1(n),K2 = K2(n) andK3 = K3(n) form a disjoint
decomposition ofZν such thatK1 ∈ E andρ(K1,K2)>βn. Then, using translation
invariance and the formula (4), we get

∣∣∣∣∣∣
ln
H

xK3∪x′
K2

xK1

H
xK3∪xK2
xK1

∣∣∣∣∣∣
6C|xK1|ϕ(βn)6C|K1|ϕ(βn)
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for all x, x′ ⊂ Zν. If, moreover,|K1|ϕ(βn) −→n→∞ 0, then clearly
∣∣∣∣∣∣
H

xK3∪x′
K2

xK1

H
xK3∪xK2
xK1

− 1

∣∣∣∣∣∣
= O(|K1|ϕ(βn)).

Now we can see that for allx, x′ ⊂ Zν

Q
xK3∪x′

K2
K1

(xK1)

Q
xK3∪xK2
K1

(xK1)
=

H
xK3∪x′

K2
xK1

6S⊂K1H
xK3∪xK2
S

H
xK3∪xK2
xK1

6J⊂K1H
xK3∪x′

K2
J

=
H

xK3∪x′
K2

xK1

H
xK3∪xK2
xK1

∑

S⊂K1

H
xK3∪x′

K2
S

6J⊂K1 H
xK3∪x′

K2
J

H
xK3∪xK2
S

H
xK3∪x′

K2
S

=




H

xK3∪x′
K2

xK1

H
xK3∪xK2
xK1

− 1


+ 1


×

×
∑

S⊂K1

Q
xK3∪x′

K2
K1

(S)




H

xK3∪xK2
S

H
xK3∪x′

K2
S

− 1


+ 1




=


H

xK3∪x′
K2

xK1

H
xK3∪xK2
xK1

− 1


 ∑

S⊂K1

Q
xK3∪x′

K2
K1

(S)


H

xK3∪xK2
S

H
xK3∪x′

K2
S

− 1


 +

+


H

xK3∪x′
K2

xK1

H
xK3∪xK2
xK1

− 1


+

+
∑

S⊂K1

Q
xK3∪x′

K2
K1

(S)


H

xK3∪x′
K2

S

H
xK3∪x′

K2
S

− 1


 + 1

= 1n + 1 (8)

where1n = O(|K1|ϕ(βn)). Using the last formula and the total probability for-
mula we get for allℓ = 1, . . . , n

PRℓ|R∪R1∪···∪Rℓ−1(xRℓ |xR ∪ xR1 ∪ · · · ∪ xRℓ−1)

= PRℓ|R(xRℓ |xR)(1 + δn)

whereδn satisfies (7). Multiplying this relations overℓ = 1, . . . , n we get

PR1∪···∪RL|R(xR1 ∪ · · · ∪ xRL |xR) =

(
L∏

ℓ=1

PRℓ|R(xRℓ |xR)

)
(1 + δn)

L

which implies (6). The lemma is proved.
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The next lemma gives us a uniform lower bound for the conditional probabilities
Qx
3(x) and for the probabilitiesP3(x).

LEMMA 11. Let P ∈ G(h) for someh satisfying the condition (C2). Then, uni-
formly onx ⊂ 3 andx ⊂ 3c, we have

Qx
3(x)> e

−b∗|3| and P3(x)> e−b
∗|3|

whereb∗ = max{ln(1 + B), ln(1 + B)− ln A}.

Proof. The second assertion clearly follows from the first one using the total
probability formula. By the same formula and properties of conditional distribu-
tions the first assertion clearly can be derived from the boundQx

0(x)> e
−b∗

for all
x ⊂ Zν\0 andx ∈ {0,1}. But by (C2) we have

Qx
0(1) =

hx

1 + hx
>

A

1 + B
and Qx

0(0) =
1

1 + hx
>

1

1 + B

and hence

Qx
0(x)> min

{
A

1 + B
,

1

1 + B

}
= emin{ln A−ln(1+B),− ln(1+B)} = e−b

∗

.

The lemma is proved.
In order to use the conditional mixing lemma, let us decompose3n in the fol-

lowing way. For technical reasons supposen = 2mk for somem ∈ N. Then3n is
partitioned intomν = nν/(2k)ν cubesD1, . . . ,Dmν with side 2k. EachDi contains
(2k)ν lattice sites. We order sites of eachDi in the same arbitrary way. Hence, every
t ∈ 3n can be referred to as a pair(i, j), i = 1, . . . , mν, j = 1, . . . , (2k)ν , which
means thej -th site in the cubeDi. In the sequel we will use both the notationst
and(i, j) for points of3n.

If we define

Y 0
ij = 11{x(n)−(i,j)∈A0} and Y 1

ij = 11{x(n)−(i,j)∈A1}

and

N0
j =

mν∑

i=1

Y 0
ij and N1

j =

mν∑

i=1

Y 1
ij ,

thenN0 andN1 from the definition of the sieve estimator will have the form

N0 =

(2k)ν∑

j=1

N0
j and N1 =

(2k)ν∑

j=1

N1
j .

Note that allY 0
ij , Y

1
ij , N

0
j , N

1
j , N

0 andN1 depend onn, onx3∗
k

and on the observa-
tion xn.
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Now, for anyx ⊂ Zν\0, we can write

|ĥx
n − hx| 6 |h

x3∗
k − hx| + |ĥx

n − h
x3∗

k |

= |h
x3∗

k − hx| + 11{N0=0 orN1=0}|ĥ
x
n − h

x3∗
k | +

+ 11{N0>0,N1>0}

∣∣∣∣∣

∑(2k)ν

j=1 N1
j

N0
− h

x3∗
k

∣∣∣∣∣

6 |h
x3∗

k − hx| + 11{N0=0}|B − h
x3∗

k | + 11{N1=0}|A− h
x3∗

k | +

+ 11{N0>0,N1>0}

(2k)ν∑

j=1

∣∣∣∣∣
N1
j

N0
−
N0
j

N0
h

x3∗
k

∣∣∣∣∣

= |h
x3∗

k − hx| + 11{N0=0}|B − h
x3∗

k | + 11{N1=0}|A− h
x3∗

k | +

+

(2k)ν∑

j=1

11{N0>0,N1>0,N0
j=0}

N1
j

N0
+

+

(2k)ν∑

j=1

11{N0
j >0,N1>0}

1

N0
|N1

j − N0
j h

x3∗
k |

= D1
n(x)+D2

n(x)+D3
n(x)+D4

n(x)+D5
n(x) (9)

with evident notations.
First of all, by (C3) we have

‖D1
n(·)‖ = sup

x⊂Zν\0
|h

x3∗
k − hx|6 ϕ(k)6 c e−a k

ν+δ

−→
n→∞

0

and hence

P(‖D1
n(·)‖ > ε/5) = 0 (10)

for n> n0.
To estimate the remaining summands we need the following lemma.

LEMMA 12. DenoteŴ(n) = n−d b∗
, λn = Ŵ(n)mν = nν−d b

∗
/(2k)ν and fix some

r ∈ {0,1}. Then, for anyε ∈ (0,1), there exist some positive constantα > 0 and
somen0 ∈ N such that

P
(
N r
j

λn
< 1 − ε

)
6 e−α n

ν−2d b∗ / ln n,

uniformly onn > n0, j = 1, . . . , (2k)ν andx3∗
k
⊂ 3∗

k .
Proof.For definitioness let us taker = 0. We denote byVij a cube with sidek

centred at(i, j), i = 1, . . . , mν, j = 1, . . . , (2k)ν , and letVj = Zν\(V1j ∪ · · · ∪
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Vmνj ). Note thatY 0
ij depends only on the restriction of our periodized observation

x(n) on the setVij and that fori1 6= i2 we haveρ(Vi1j , Vi2j )> 2k − k = k. So, for
anyλ > 0, it follows from the conditional mixing lemma that

E(e−λN
0
j |xVj ) = (1 + δn)

mν
mν∏

i=1

E(e−λ Y
0
ij |xVj ) (11)

with δn = O(kνϕ(k)) = O(d ln n c e−α k
ν+δ
) = o(n−β) for all β > 0.

Clearly, using the Lemma 11, definition ofY 0
ij and total probability formula, we

have

E(Y 0
ij |xVj )> e

−b∗|3k | > e−b
∗ d ln n = Ŵ(n).

Furthermore, using Taylor expansion formula, we get

E(e−λ Y
0
ij |xVj ) = e

−λE(Y 0
ij |xVj ) E(e−λ(Y

0
ij−E(Y 0

ij |xVj ))|xVj )

6 e−λŴ(n)
(

1 +
λ2

2
eλ
)

6 exp

[
−λ

(
Ŵ(n)−

λ

2
eλ
)]
. (12)

Finally, combining (11), (12), and using Chebychev’s inequality and the total
probability formula, for sufficiently large values ofn we get

P

(
N0
j

λn
< 1 − ε

)
6 eλ(1−ε)λn E e−λN

0
j

6 eλ(1−ε)Ŵ(n)mν exp

[
−λ

(
Ŵ(n)−

λ

2
eλ
)
mν
]
(1 + δn)

mν

6 C exp

[
−λmν

(
εŴ(n)−

λ

2
eλ
)]
.

Now, choosingλ = εŴ(n)/e = ε n−d b∗
/e < 1, for sufficiently large values ofn

we get

P

(
N0
j

λn
< 1 − ε

)
6 C exp

[
−
ε n−d b∗

e

nν

2ν d ln n

(
ε n−d b∗

−
ε n−d b∗

2

)]

6 e−α n
ν−2d b∗/ ln n

with an arbitraryα < ε2/(2ν+1 e d). The lemma is proved.

Using this lemma we clearly get

P(N r
j = 0)6P

(
N r
j

λn
< 1 − ε

)
6 e−α n

ν−2d b∗/ ln n
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for all j = 1, . . . , (2k)ν, r ∈ {0,1} and for sufficiently large values ofn. There-
fore, for sufficiently large values ofn, we have

P(‖D2
n(·)‖ > ε/5) = P

(
sup

x⊂Zν\0
|D2

n(x)| > ε/5

)

6
∑

x3∗
k
⊂3∗

k

P(N0 = 0)6 e−α n
ν−2d b∗/ ln n, (13)

where we take into account thatN0 depends only onx3∗
k
, and hence the supremum

over x ⊂ Zν\0 is in fact a maximum overx3∗
k

⊂ 3∗
k , i.e., a maximum over

2|3∗
k | 6 2d ln n elements.
In exactly the same way we have

P(‖D3
n(·)‖ > ε/5)6 e

−α nν−2d b∗/ ln n, (14)

and similarly we get

P(‖D4
n(·)‖ > ε/5) = P

(
sup

x⊂Zν\0
|D4

n(x)| > ε/5

)

6
∑

x3∗
k
⊂3∗

k

(2k)ν∑

j=1

P(N0
j = 0)6 e−α n

ν−2d b∗/ ln n. (15)

Finally, the last summand is estimated by the following lemma.

LEMMA 13. For any ε ∈ (0,1) there exist some positive constantα > 0 and
somen0 ∈ N such that

P(‖D5
n(·)‖ > ε/5)6 e

−α nν−2d b∗/ ln n (16)

for all n > n0.

Proof.As before, it is sufficient to show that

P
(
N0
j > 0,

1

N0
|N1

j −N0
j h

x3∗
k | >

ε

5(2k)ν

)
6 e−α n

ν−2d b∗/ ln n.

We have obviously

P
(
N0
j > 0,

1

N0
|N1

j −N0
j h

x3∗
k | >

ε

5(2k)ν

)

6 P

(∣∣∣∣∣

mν∑

i=1

(Y 1
ij − Y 0

ij h
x3∗

k )

∣∣∣∣∣ >
εN0

5(2k)ν

)

6P



(2k)ν∑

j=1

N0
j

λn
6 (1 − ε)(2k)ν


+ P

(∣∣∣∣∣

mν∑

i=1

Wij

∣∣∣∣∣ > τλn
)
,
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whereτ = ε(1 − ε)/5 andWij = Y 1
ij − Y 0

ij h
x3∗

k . The estimate of the first term
easily follows from the preceding lemma. To estimate the second one let us at first
note that using translation invariance, total probability formula and the formulas
(2), (5) and (8) we have

E(Y 0
ij |xVj ) h

x3∗
k = P3k |Vj−(i,j)(x3∗

k
|xVj − (i, j)) h

x3∗
k

= Q
x3∗

k
∪(xVj−(i,j))

0 (0)P3∗
k |Vj−(i,j)(x3∗

k
|xVj − (i, j))×

× Q
x3∗

k

0 (1)/Q
x3∗

k

0 (0)

= (1 + ρn)P3∗
k |Vj−(i,j)(x3∗

k
|xVj − (i, j))Q

x3∗
k

0 (1)

= (1 + ρn)
2 P3∗

k |Vj−(i,j)(x3∗
k
|xVj − (i, j))×

× Q
x3∗

k
∪(xVj−(i,j))

0 (1)

= E(Y 1
ij |xVj )(1 + ρn),

whereρn = O(ϕ(k)) = O(c e−α k
ν+δ
) = o(n−β) for all β > 0.

The last equality clearly implies that

E(Wij |xVj ) = E(Y 1
ij |xVj )− E(Y 0

ij |xVj ) h
x3∗

k = O(ρn)

and hence, for anyλ > 0, using the fact that−B 6Wij 6 1 and Taylor expansion,
we get

E(eλW
0
ij |xVj ) = e

λE(W0
ij |xVj ) E(eλ(W

0
ij−E(W0

ij |xVj ))|xVj )

6 eλO(ρn)
[
1 +

λ2(B + 1)2

2
eλ(B+1)

]

6 exp

[
λO(ρn)+

λ2(B + 1)2

2
eλ(B+1)

]
.

Finally, using Chebychev’s inequality, total probability formula and conditional
mixing lemma, we get

P

(
mν∑

i=1

Wij > τλn

)

6 e−λτλn E exp

(
λ

mν∑

i=1

Wij

)

6 e−λτŴ(n)m
ν

E

(
mν∏

i=1

E(λeWij |ξVj )

)
(1 + δn)

mν
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6C e−λτ n
−d b∗ mν

{
exp

[
λO(ρn)+

λ2(B + 1)2

2
eλ(B+1)

]}mν

6C exp

{
−λmν

[
τn−d b∗

−
(B + 1)2

2
λeλ(B+1) −O(ρn)

]}
.

Now, choosingλ = τn−d b∗
/((B + 1)2 eB+1) < 1, we get

P

(
mν∑

i=1

Wij > τλn

)
6 C exp

[
−

τ n−d b∗

(B + 1)2 eB+1

nν

2ν d ln n

τn−d b∗

2

]

6 e−α n
ν−2d b∗/ ln n

with an arbitraryα < τ 2/(2ν+1(B + 1)2 eB+1 d).
By the same argument we have

P

(
−

mν∑

i=1

Wij > τλn

)
6 e−α n

ν−2d b∗/ ln n

which concludes the proof of the lemma.

Now, combining (10), (13)–(16) and taing into account the inequality (9), we
get the assertion of the Theorem 8. The uniformity onP ∈ G(h) is trivial. The
Theorem 8 is proved.

Let us note, that the details of the proof clearly give rise to explicit expression for
the constantα. For example, ifε ∈ (0,1), then one can take an arbitrary

α <
τ 2

2ν+1(B + 1)2 eB+1 d
.

Note, too, that taking a closer look on the proof we can give a ‘more precise’
bound on the rate of consistency, explicitly showing the dependence of the rate on
ε. That is, forε ∈ (0,1/2), we have the bound

sup
P∈G(h)

P(‖ĥn − h‖ > ε)6 11
{6cn−a d(d ln n)δ/ν>ε}

+

+ψn exp{−αε2 nν−2d b∗

/ ln n+O(ρn)βεn
ν−d b∗

/ ln n}

where

α =
1

25 · 2ν+3(B + 1)2 eB+1 d
, β =

1

5 · 2ν+1(B + 1)2 eB+1 d

and the sequenceψn is given byψn = 2d ln n(2ν d ln n+ 1)(2ν d ln n+ 2).
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Consideringε = εn = n−(ν/2−σ) with an arbitrary small positive constantσ and
using the above bound we can easily prove Theorem 9. Indeed, we have

E‖ĥn − h‖p =

∫

‖ĥn−h‖>εn

‖ĥn − h‖p dP +

∫

‖ĥn−h‖6 εn

‖ĥn − h‖p dP

6 (max{nν, B} + B)p P(‖ĥn − h‖ > εn)+ εpn

6 C n−(ν/2−σ)p

for sufficiently large values ofn, where we use the fact thath is bounded byB and
ĥ by max{nν, B}. the assertion of Theorem 9 follows trivially.
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SUMMARY

Risk mapping in epidemiology enables areas with a low or high risk of disease contamination to be
localized and provides a measure of risk differences between these regions. Risk mapping models for
pooled data currently used by epidemiologists focus on the estimated risk for each geographical unit.
They are based on a Poisson log-linear mixed model with a latent intrinsic continuous hidden Markov
random field (HMRF) generally corresponding to a Gaussian autoregressive spatial smoothing. Risk clas-
sification, which is necessary to draw clearly delimited risk zones (in which protection measures may be
applied), generally must be performed separately. We propose a method for direct classified risk map-
ping based on a Poisson log-linear mixed model with a latent discrete HMRF. The discrete hidden field
(HF) corresponds to the assignment of each spatial unit to a risk class. The risk values attached to the
classes are parameters and are estimated. When mapping risk using HMRFs, the conditional distribution
of the observed field is modeled with a Poisson rather than a Gaussian distribution as in image seg-
mentation. Moreover, abrupt changes in risk levels are rare in disease maps. The spatial hidden model
should favor smoothed out risks, but conventional discrete Markov random fields (e.g. the Potts model)
do not impose this. We therefore propose new potential functions for the HF that take into account class
ordering. We use a Monte Carlo version of the expectation–maximization algorithm to estimate parame-
ters and determine risk classes. We illustrate the method’s behavior on simulated and real data sets. Our
method appears particularly well adapted to localize high-risk regions and estimate the corresponding risk
levels.
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1. INTRODUCTION

Efficient disease control requires an understanding of the determinants and dynamics of the disease in
question. In situations where little initially is known, the first questions to ask are: Where are the pop-
ulations at high risk located? Are these locations structured in space? If so, how? Can they be linked
to environmental factors? Disease mapping models of epidemiological risk provide tools to localize
high-risk areas and identify potential sources of a disease. A comparison of disease maps with the spa-
tial distribution of factors suspected of causing the disease can help to identify which are most
significant.

Epidemiological data are frequently count data aggregated at the level of spatial units (e.g. adminis-
trative zones): For each unit, the available information is the number of observed cases and the population
size. The risk in a given spatial unit is the probability that an arbitrary individual in the population of
the unit is contaminated. Classical risk mapping methods are based on spatial models. Spatial correla-
tions account for spatial structure in the unknown or unobserved factors affecting the risk level and/or for
spatial transmission of infectious diseases. These methods are inspired by statistical methods for image
restoration or denoising (see, e.g.Li , 2001). The mathematical framework is that of hidden Markov ran-
dom fields (HMRF). The “hidden image” to be restored is the risk value at each spatial location, and the
observed image is the set of counts of observed cases. The numbers of cases usually are modeled by Pois-
son distributions. Most statistical methods for risk mapping of aggregated data (see, e.g.Molli é, 1999;
Pascuttoand others, 2000) dedicated to noncontagious diseases are based on a Poisson log-linear mixed
model initially proposed byBesagand others(1991). This model is based on a hierarchical Bayesian
approach where the latent intrinsic risk field (parameter of the Poisson distribution) is represented by a
Markov random field (MRF) with continuous state space modeled by a Gaussian autoregressive spatial
smoothing. Recent developments in risk mapping concern spatiotemporal mapping (seeKnorr-Held and
Richardson, 2003; Robertsonand others, 2010) and multivariate disease mapping (seeKnorr-Held and
others, 2002; MacNab, 2010). These procedures produce a precise real-valued estimation of the different
risks in each spatial unit.

Most applications of disease mapping involve real-valued disease risk maps. However, in some cases,
such as animal epidemiology (see, e.g.Abrial and others, 2005), a coarser spatial representation of risk
is needed in which locations with similar risk values are grouped. Such a representation with clearly
delimited areas at risk can help decision makers interpret the risk structure and is important to determine
protection measures such as culling, movement restriction, mass vaccination, etc. These areas at risk can
be viewed as clusters as inKnorr-Held and Rasser(2000), but we prefer to interpret them as classes of
risk, as inGreen and Richardson(2002) or Alfo and others(2009), because geographically separated
areas can have similar risks and be grouped in the same class. There consequently are fewer classes than
clusters, facilitating interpretation by decision makers. Until present, an additional postprocessing step is
generally conducted to define the risk classes either manually (involving the difficult definition of the risk
range of each class) or using automated statistical classification methods (e.g.Fraley and Raftery, 2007).
In either case, the classification step, which is of major interest in animal epidemiology, is not part of the
initial risk mapping procedure and is performed separately. In 2 recent papers, risk classification is part of
a single procedure:Green and Richardson(2002) present a model that is based on hierarchical Bayesian
approaches with the latent risk field modeled by a Gaussian autoregressive spatialsmoothing, whileAlfo
and others(2009) present a method based on discrete HMRF models estimated by an EM-type algorithm
using mode field approximation.

In this article, we propose another approach to risk modeling that integrates an automatic and unsuper-
vised classification of locations into a few risk classes. This method relies on a discrete HMRF model in
which spatial correlations are embedded in the map of classes. A representative risk associated with each
class is estimated during the procedure. Many biologists are unfamiliar with the Bayesian context used
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for estimation in conventional risk mapping methods, such asBesagand others(1991), Molli é (1999), or
Pascuttoand others(2000), and they hesitate to use it. They are most interested in a practical interpre-
tation of each parameter of the model, including hyperprior distributions and hyperparameters. To limit
the hyperprior stacking up that occurs in hierarchical Bayesian approaches, we chose to investigate an
alternative estimation of the different parameters by maximum likelihood (ML) using an EM-type algo-
rithm (seeMcLachlan and Krishnan, 2008). More generally, we aimed to produce a model that can be
interpreted easily by epidemiologists and designed easily based on the context. In particular, the spatial
correlation is controlled by the potential function of order 2 that is quite simple, interpretable, and flex-
ible. At the end of the estimation procedure, the classification is directly estimated from the observed
count data, without any intermediate estimation of individual risks at each location, by computation of
the iterated conditional modes (ICM) estimator (seeBesag, 1986). The output is a disease map where the
color of each spatial unit represents the associated risk class. We present our model for classified disease
mapping from count data in Section2. The estimation classification method is described in Section3. In
Section4, we illustrate the performance of our method first on simulated data and then to produce a spatial
classification of the risk of bovine spongiform encephalopathy (BSE) in France.

2. THE DISEASE MAPPING MODEL

We present here our discrete HMRF for the mapping of disease risk classes. The numbers of observed
casesyi of disease in the spatial unitsi = 1, . . . , n form the observed fieldy = (yi )i =1,...,n and are
associated to the random fieldY = (Yi )i =1,...,n. We represent the unknown risk classes by the random
field X = (Xi )i =1,...,n, usually referred to as the hidden field (HF). We will see that the spatial correlation
characterizing disease maps is fully embedded inX.

2.1 The observed field

In the HMRF framework, the observed fieldY is linked to the HFX assuming conditional independence
given a realizationx (no spatial correlation appears at this stage):

P(Y = y|x, θ) =

n
∏

i =1

P(Yi = yi |xi , θ) = exp

[

n
∑

i =1

log P(Yi = yi |xi , θ)

]

,

with, for a discrete HMRF,θ = (θk)k=1,...,K . In risk mapping,θk is a representative risk associated with
classk (k = 1, . . . , K ), e.g. the absolute risk that corresponds to a probability of infection. For a rare
and noncontagious disease, the case we consider, the distribution ofYi is usually modeled by a Poisson
distribution with expectation equal toni θxi (the mean number of cases in uniti ), with ni denoting the
population size:Yi |xi ∼ P(ni θxi ), with P(Yi = yi |xi , θ) = exp(−ni θxi )(ni θxi )

yi /yi !, for xi = 1, . . . , K
andi = 1, . . . , n. This discrete distribution of theYi s is the first main difference with the discrete HMRF
models commonly used in image segmentation where a Gaussian distribution often is considered.

In practice, epidemiologists usually prefer to study the relative riskrxi , corresponding to the ratio
between a local and an overall risk rather thanθxi . It allows an easier comparison of different risk maps
as the scale of therxi s is always the same; in contrast, the range ofθxi can vary considerably between 2
data sets. For a unique population (without any structure), these 2 risks are equivalent.

2.2 The HF

We now will describe the modeling of the HFX, which involves the spatial correlation characteriz-
ing disease maps. We consider an MRF (see, e.g.Li , 2001) with potential functions of order 1 and 2.
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The distribution ofX then is expressed as

P(X = x|α, β) = γ exp



−

n
∑

i =1

ϕ1(xi |α) + β

n
∑

i =1

∑

j ∈Vi

ϕ2(xi , x j )



 , (2.1)

whereVi is the set of neighbors ofi . In our illustrations (Section4), the territory of France is divided into
1264 hexagons and adjacent hexagons are defined as neighbors.

The use of a potential function of order 1,ϕ1, parameterized by a parameterα, is one way to tune
the proportions of the different risk classes inX. The termϕ2 accounts for spatial correlation and the
parameterβ fixes the balance between these terms. In other words, it controls the importance of the spatial
smoothing. In MRF models, only potential functions of order 1 and 2 usually are considered to facilitate
computation and the interpretation of these functions. The same is true in spatial epidemiology, where the
joint influence of 2 (or more) neighbors on a geographical unit seems much more difficult to interpret than
the influence of a single neighbor. Since we observed good results in our experiments with onlyϕ1 and
ϕ2, we did not consider larger orders.

We compared 2 choices forϕ1. First, we considered a potential function with no a priori,ϕ1(k|α) = 0,
for k = 1, . . . , K , so that only the data and the spatial structure of the classes guide the final distribution
of classes. We then considered the general caseϕ1(k|α) = αk, with α1 = 0 as the potential functions are
defined up to a constant.

We aim to represent situations with smooth variations of risk in space (as can be expected from epi-
demiological data) through the use of the spatial correlation termϕ2. It is highly unlikely that a very
low-risk area would be observed immediately next to a very high-risk area. Extreme risk areas logically
would be separated by a smooth gradation of risks. This means thatϕ2(xi , x j ) should not only favor
configurations where neighboring locations are in the same class, as with the classical Potts model (Wu,
1982) used inAlfo and others(2009) which penalizes equally all pair configurations wherexi 6= x j . ϕ2
also should decrease with the distance betweenxi andx j .

We propose 2 expressions ofϕ2 that take these specific features of risk mapping into account. First, we
assume an ordering of the classes in the sense thatθk < θk+1. Thenϕ2 should penalize pairs of classesk
andk′ at neighboring sites according to their distance: The closer the 2 classes, the higher the probability
that this configuration would be observed. We propose the 2 followingϕ2 based on 2 distances between
the classes of neighboring units that take into account a gradual correlation. The first, referred to as grad1,
is based on the absolute distance:ϕ2(xi , x j ) = 1 − |xi − x j |/(K − 1). The second, referred to as grad2,
is based on the squared distance:ϕ2(xi , x j ) = 1 − (xi − x j )

2/(K − 1)2. While the correlation here only
depends on the distance between the risk classes of 2 adjacent units, more complex forms could be possible
in other contexts. For example, asymmetricϕ2 can be introduced to model a dissemination influenced
by an ecological gradient; andϕ2 can differ in different regions of the map according to geographical
barriers.ϕ2 is easy to interpret and to construct according to the intended application and is one of the
main advantages of our approach.

3. MODEL ESTIMATION

For an epidemiologist, the first output of interest is the risk map, i.e. the values of the risk classesxi ,
followed by the values of the riskθxi (or rxi ) associated with thexi s. The classification procedure that
determines the risk classes is detailed in Section3.2. To obtain thexi s, we must estimate the different
parameters of the model: The risksθk (or rk), the classes proportionsαk (k = 1, . . . , K ), and the smooth-
ing strengthβ. The estimation procedure is presented in Section3.1below. As mentioned previously, we
chose to apply an ML procedure through an EM-type algorithm instead of a Bayesian procedure to avoid
hyperpriors that are difficult for epidemiologists to interpret.
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3.1 Parameter estimation

Without loss of generality, we present here the method for the parameterization of the model with the
absolute risksθk: (θ, α, β). The formulas remain valid if relative risksrk are used in the place ofθk. The
model parameters are estimated with missing data (the HFX). To evaluate the ML estimator, we there-
fore used the EM algorithm (Dempsterand others, 1977). However, the complexity of the HMRF model
renders impossible the computation of the expectation of the complete log-likelihood in the expecta-
tion step of the EM algorithm. To overcome this problem, we applied the Monte Carlo EM (MCEM)
solution proposed byWei and Tanner(1990) which relies on a Monte Carlo method to generate re-
alizations of the HFX. In the expectation step, we also need to compute thea priori distribution of
the HF, P(X = x|α, β). The computation of this probability is too complex to be obtained directly.
To overcome this problem, we used the notion of pseudolikelihood proposed byBesag(1974) which
consists of an approximation of the probability of the MRFX by a product of local conditional prob-
abilities of theXi s given their neighborhood:P(X = x|α, β) ≈

∏n
i =1 P(Xi = xi |xVi , α, β), where

xVi = {x j , j ∈ Vi } denotes the value of neighboring units. Computing this approximated probability
is simple and fast. The iterationq + 1 of the MCEM algorithm with the use of pseudolikelihood is the
following:

Monte Carlo expectation step.GenerateTq+1 realizationsx(q+1),(1), . . . , x(q+1),(Tq+1) of the HF accord-
ing to the conditional probability distribution of the missing dataP(X = x|y, θ (q), α(q), β(q)) using one
iteration of the Gibbs sampling procedure. The expectation of the complete data log-likelihood then is
approximated by

Q̂Tq+1(θ, α, β|θ (q), α(q), β(q))

=
1

Tq+1

Tq+1
∑

t=1

n
∑

i =1

[log P(Yi = yi |x
(q+1),(t)
i , θ) + log P(Xi = x(q+1),(t)

i |x(q+1),(t)
Vi

, α, β)].

Maximization step. Update the parameters to(θ (q+1), α(q+1), β(q+1)) by maximizing the functionQ̂Tq+1

(θ, α, β|θ (q), α(q), β(q)) according to(θ, α, β).
Remark that theθk may be ordered, but this constraint is not included in this estimation procedure. We

only specified ordered initial values of the risksθ0
k as the design of the potential functionϕ2 that favors

ordered situations generally suffices to maintain this order of the risks during the estimation algorithm.
A more complete description of the estimation procedure is presented in Section A of the supplementary
material available atBiostatisticsonline.

3.2 Classification

The EM algorithm (and the Monte Carlo version we used) provides an estimation of the model parameters
but does not assign a class to each site. Conditional probabilities of each classk at each sitei are computed
during the EM procedure. These are used to estimate thexi s (in order to classify the different geographical
units) using the maximum a posteriori (MAP) rule. The MAP estimate is the realization of the HF with the
highest probability conditional to the observed data. Unfortunately, the MAP estimate cannot be computed
directly for a Gibbs distribution as it involves the computation of the conditional distribution of the hidden
variables for all possible hidden maps. We chose to use the ICM algorithm that can be considered (Besag,
1986) as an approximation and an improvement of the MAP. During ICM, the class of each geographical
unit i is iteratively fixed to the mode of the conditional distribution ofXi knowing the observed datayi
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and the current value of the neighborsxVi , i.e. solving:

xi = arg max
k=1,...,K

P(Xi = k|x1, . . . , xi −1, xs
i +1, . . . , xs

n, y, θ̂ , α̂, β̂)

whereθ̂ , α̂, andβ̂ are estimations of the model parameters (we use an average of the latest values of the
MCEM algorithm), andxs is the initialization of the ICM procedure (the last simulated map during the
MCEM algorithm). ICM can be iterated but, in practice, we observe that only one application generally is
sufficient.

4. ILLUSTRATIONS

We first apply our method on a few examples to understand the behavior of the model and to compare it
with the method currently used by practitioners, e.g. the model ofBesagand others(1991) with posterior
classification. We then present the performance of our method on intensive simulations. Finally, we apply
the model to a real data set concerning BSE in France.

4.1 Illustration on simulated representative data sets

We simulated different data sets using the cattle population in France (see Figure3(a)) asni s and 3 risk
maps we built manually. In the first case (Figure1(a)), we defined 3 large risk regions for a rare disease
with θ1 = 10−5, θ2 = 10−4, andθ3 = 10−3. In the second case (Figure1(b)), we defined 5 smaller
risk regions, withθ1 = 10−5, θ2 = 5 × 10−5, θ3 = 10−4, θ4 = 5 × 10−4, andθ5 = 10−3. In the third
case (Figure1(c)), we drew a continuous North–South (NS) gradient for the risks based on the hexagon
centroids going from 10−5 in the South to 10−3 in the North.

Using the populationni , the true classesxi and the associated risk valuesθk, we simulated numbers
of casesyi from Poisson distributionsP(ni θxi ). Figures1(d–f) present examples of observed number of
cases (yi maps) obtained for the 3-classes, 5-classes, and NS gradient risk maps. We first applied our
procedure to these data sets: A discrete HMRF model withϕ2 grad2 estimated with MCEM algorithm.
We applied the 2 forms ofϕ1: The complete procedure estimating bothα andβ, and the simplest case
of α = 0 estimating only the smoothing parameterβ. We then compared our model to one currently
applied by practitioners: The model ofBesagand others(1991), a Gaussian conditional autoregressive
(CAR) smoothing with a single local spatial effect and no global effect (for details, see Section B of
the supplementary material available atBiostatisticsonline). We obtained worse results when using also
a global effect. To classify this continuous estimation of the risks, we applied the clustering procedure
based on a Bayesian regularization for Gaussian mixture (Fraley and Raftery, 2007). For the 3-classes
simulation, Figures2(a) and (b) show that our classification procedure performs well estimating almost
exactly the outline of the high risk region. The 3 estimated risks are also very close to the true values. The
low risk region is not as well retrieved. In particular, when estimating bothα andβ (Figure2(b)), there
is an important region in the South-East (SE) that is classified incorrectly in the low-risk class. However,
this region has a very low population density and, despite the medium risk level, no disease cases have
been observed there. This important lack of information explains the misclassification of the region. The
CAR model presented in Figure2(c) detects that the North-East has a higher risk than the Centre and the
South-West (SW). However, the real pattern is not retrieved and the highest risks are estimated in regions
with very small populations. In addition, all the estimated risks are overestimated.

For the 5-classes simulation, Figures2(d) and (e) show that our procedure performs well, roughly
retrieving the true pattern and estimating quite well the outlines of the high-risk areas. In comparison, the
general pattern and the outlines of these regions are retrieved more approximatively by the CAR model as
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Fig. 1. Simulated data sets: Arbitrary generated risk maps (xi s) used to simulate data sets and examples of cases maps
(yi s) for the 3-classes, the 5-classes, and the continuous gradient examples.
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Fig. 2. Results on simulated examples for 3-classes, 5-classes, and continuous gradient with our discrete HMRF
method and the CAR model with posterior classification.

shown in Figure2(f). In particular, the highest risk is again estimated in the SE region where the population
is very small. In all cases, the estimation of this eastern high-risk region extends too far into the south,
probably because, due to the small population in the SE, the data do not contain enough information to
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detect changes in risk level. It should be noted that the incorrect extension of the SE high-risk region into
the south is much less important with our method. The 2 highest risk levels are very well estimated by
our procedure, coming closer to the true values than the CAR estimates, which are slightly overestimated.
In all the procedures, the 3 other true classes essentially are represented by 2 colors. One color matches
approximately the lowest true risk region, with the corresponding estimates:θ̂2 = 8.24×10−6 for our
method withα = 0, θ̂1 = 1.23×10−5 for our complete method and̂θ1 =6.42×10−5 for the CAR model.
The estimated risk values are closest to the true one (θ1 = 10−5) with our procedure and the outlines of the
lowest risk region are more clearly delimited and exact. The other colors encompass the low and medium
true risk regions (θ2 = 5×10−5, θ3 = 10−4). With our method, the estimates corresponding to this global
region lie between the true ones:θ̂3 = 8.21×10−5 whenα = 0, θ̂2 = 9.1×10−5, andθ̂3 = 9.61×10−5 for
the complete procedure. In contrast, for the CAR model, the valuesθ̂2 = 1.26×10−4 andθ̂3 = 1.84×10−4

clearly overestimate these risks.
Experiments were made on these data sets with a number of classesK entered in the procedure that

were different from the true one (see Section B of the supplementary material available atBiostatistics
online). The good classification rate with our method is always equivalent to or higher than with the CAR
model, and whenK is higher than the true one, the discrete HMRF method can estimate at the end of the
procedure less classes than initially asked.

Figures2(g–l) present the estimated risk maps obtained for the NS gradient simulated data set forK =

3, 5, and 7 classes with our method and the CAR model. As already observed, the CAR model estimates
high risks in the SE region with a very small population (see Figures2(j–l)). With this model, the real
NS pattern is not really retrieved. Moreover, the different risk regions are not clearly delimited, with some
isolated units having a different risk from surrounding areas. In contrast, with our model (see Figures2(g–
i)), the risk regions are delimited very clearly and the NS pattern is retrieved very well. Only Figure2(h)
presents an incorrect curving delimitation in the SW which may be due to the lack of population in the
SE, leading again to an overvaluation of the risk in this region. However, this phenomenon is very limited
with our method compared to the CAR model. With regard to risk values, the lowest are overestimated by
all methods but less by our model (between 1.63×10−4 and 2.37×10−4) than by the CAR model (around
3×10−4); and the estimates of the highest risks are similar with both methods, close to the true values and
slightly underestimated (around 9.3×10−4).

4.2 Intensive simulation study

We now present the performance of our method on intensive simulations. For the 3-classes and the
5-classes risk maps presented in Figures1(a) and (b), we simulated 100 data sets (yi maps as in
Figures1(d) and (e)) from the Poisson distributionP(ni θxi ). We display the results obtained with our
method for the true number of classes (K = 3 or 5) in different cases: With no spatial smoothing, i.e. when
β = 0; in the simplified case whereα = 0 andβ is estimated; with an intermediate procedure,α being
fixed to the values obtained whenβ = 0; and with the complete model estimating bothα andβ. Whenβ

is estimated, we explored the 2 proposedϕ2. According to the number of classes in estimated maps (Class
est.), we present the number of simulations (Sim. nb.), the mean value of the distribution of the absolute
distance between the true and the estimated risk classesdi = |x̂i −xi |, and the median of the estimated risk
valuesθ̂k.

For the 3-classes simulations, as shown in Table1, we observe that the result is quite similar with the
2 proposedϕ2. Our method usually retrieves the true number of classes, a little more often forϕ2 grad2.
When the model returns the true number of classes, except when there is no spatial smoothing (β = 0), the
good classification rate (corresponding tod = 0) is very high; important classification errors (d = 2, i.e.
when the truexi and estimated̂xi classes are very different) are almost never observed; and the estimated
risk values are very close to the true ones.
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Table 1. Distribution of the absolute distance between the true and the estimated risk classes for the
3-classes intensive simulations and median of estimated riskvalues

Class Sim.
d = Median valueof

Method estimated nb. 0 1 2 θ̂1 θ̂2 θ̂3

β = 0 3 91 65 31.1 4 2.2× 10−5 1.1× 10−4 10−3

2 9 57.7 35.4 6.9 7× 10−5 9.5× 10−4 10−3

α = 0, ϕ2 grad1 3 100 94.7 5.3 0 10−5 9.7× 10−5 10−3

α = 0, ϕ2 grad2 3 99 96.1 3.9 0 10−5 9.7× 10−5 10−3

α fixed,ϕ2 grad1 3 84 78.9 21 0 6× 10−5 1.2× 10−4 10−3

2 16 65.2 34.7 0.1 6.9× 10−5 6.7× 10−5 10−3

α fixed,ϕ2 grad2 3 97 83.8 16.2 0 1.3× 10−5 10−4 10−3

2 2 64.5 35.4 0.2 7× 10−5 0 10−3

ϕ2 grad1 3 88 87.9 12.1 0 1.2× 10−5 10−4 10−3

2 12 64.5 35.4 0.1 6.9× 10−5 0 10−3

ϕ2 grad2 3 97 85.4 14.6 0 1.2× 10−5 10−4 10−3

2 2 64.3 35.4 0.3 6.8× 10−5 2 × 10−4 10−3

For the 5-classes experiments, as shown in Table2, the differences between the tested versions of our
model are more distinct. We see clearly that the spatial smoothing is very important in such a context
since important classification errors (d > 3) are observed whenβ = 0, even when the true number of
classes is retrieved. We also notice thatϕ2 grad2 performs a little better thanϕ2 grad1. For example, when
α andβ are estimated,ϕ2 grad1 gives the true number of classes in 65% of the simulations, whereasϕ2
grad2 gives it in 84%. In terms of classification, the best results are obtained whenα andβ are estimated
(less errors in the number of classes and high rate of good classification) or whenα = 0 (high rate of
good classification, even if the number of classes estimated is not the true one). Whenα is fixed, the
results seem worse, but they are difficult to interpret since the important representation ofd = 1 when the
number of classes in estimated maps is not the true one can be due to a shift in the numbering of classes
when some are not represented. We observe that the risk values are generally well estimated, especially
for the highest risks. In general, when some classes disappear they correspond to those with the lowest
risk, possibly because when no or few cases are observed the differences between low risks are difficult
to discriminate. In this case, there is limited underestimation of other risks since these regions may be
integrated into other ones.

4.3 Illustration on a real data set: BSE in France

BSE is a noncontagious neurodegenerative disease in cattle. This sudden and unexpected disease threat-
ened bovine production in Europe and has been studied intensively (e.g.Abrial and others, 2005 for
spatial analyses). In our data set, the numbers of cases shown in Figure3(b) occurred in France between
July 2001 and December 2005. We compared the following methods: Our discrete HMRF forϕ2 grad 2
with only β estimated (α = 0), or α andβ estimated, and the CAR model with and without a posterior
classification. Following current practice, we considered a fixed number of classes, takingK = 5 to obtain
the following risk levels: very low, low, medium, high, and very high.

As shown in Figures3(c–f), the risk pattern is roughly the same with all methods, with high risks
in Brittany (West), the Center, the Alps (East), and in the SW, and low risks in the South-Center, the
North-East, and on Corsica island. The main differences between our method and the CAR model concern
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Table 2. Distribution of the absolute distance between the true and the estimated risk classes for the5-classes intensive simulations and median
of estimated riskvalues

Class Sim.
d = Median valueof

Method estimated nb. 0 1 2 3 4 θ̂1 θ̂2 θ̂3 θ̂4 θ̂5

β = 0 5 37 36.4 33.3 21.8 4.4 0.6 3.1× 10−5 8.9× 10−5 10−4 5.2× 10−4 1.1× 10−3

4 62 35.5 39.4 20.5 3.3 0.3 3× 10−5 8.9× 10−5 9.4× 10−5 5.1× 10−4 1.1× 10−3

3 1 33.3 28 31.2 6.5 0.9 6.4× 10−5 6.7× 10−5 7 × 10−5 4.7× 10−4 1.1× 10−3

α = 0 5 8 58.7 36.2 4.8 0 0 4.8× 10−5 6 × 10−6 8.1× 10−5 5.5× 10−4 1.2× 10−3

and 4 43 60.2 34.8 4.4 0 0 0 6× 10−6 8.3× 10−5 5.3× 10−4 1.2× 10−3

ϕ2 grad1 3 22 57.3 30.3 13.1 0 0 0 0 7.3× 10−5 5.7× 10−4 1.4× 10−3

2 25 56.6 30.3 13.1 0 0 0 0 7.3× 10−5 5.8× 10−4 1.1× 10−4

α = 0 5 9 60.5 34.3 5.8 0 0 5× 10−5 9 × 10−6 8.5× 10−5 5.2× 10−4 1.1× 10−3

and 4 49 59.4 35.2 4.7 0 0 0 6× 10−6 8.2× 10−5 5.3× 10−4 1.2× 10−3

ϕ2 grad2 3 17 57 30 13.1 0 0 0 4.5× 10−6 7.4× 10−5 5.7× 10−4 1.3× 10−3

2 23 56.8 30.1 13.1 0 0 0 0 7.2× 10−5 5.8× 10−4 0
α fixed 5 13 26.2 41.5 22.2 1 0 5.6× 10−5 5 × 10−4 2.6× 10−4 4.8× 10−4 9.6× 10−4

and 4 9 24.4 55.9 8.7 0.1 0 3.2× 10−5 10−4 5.6× 10−4 5 × 10−4 8.6× 10−4

ϕ2 grad1 3 11 13.1 29.4 41.1 13.3 0 7× 10−5 5.8× 10−4 9.6× 10−4 7 × 10−5 0
2 58 7.1 55.1 24.6 13.2 0 0 0 0 7.1× 10−5 5.7× 10−4

α fixed 5 26 47.6 36.4 12.9 0 0 4.3× 10−5 1.1× 10−4 1.1× 10−4 5.4× 10−4 9.4× 10−4

and 4 4 15.7 40.7 33.9 0 0 6.9× 10−5 5.3× 10−4 5.2× 10−4 9.7× 10−4 9.9× 10−4

ϕ2 grad2 3 8 13.1 20.2 51.7 0 0 7.2× 10−5 5.7× 10−4 1.5× 10−3 0 7× 10−4

2 56 6.9 54.3 25.4 0 0 0 0 0 7.1× 10−5 5.7× 10−4

ϕ2 grad1 5 65 58.7 34.3 6.1 0 0 1.8× 10−5 3.9× 10−5 8.7× 10−5 5.4× 10−4 9 × 10−4

4 28 52.6 38.4 7.2 0 0 1.3× 10−5 3.6× 10−5 8.2× 10−5 5 × 10−4 9.3× 10−4

ϕ2 grad2 5 84 59.3 33 5.8 0 0 1.5× 10−5 6.1× 10−5 9.1× 10−5 5.3× 10−4 9 × 10−4

4 12 58 36.6 5.8 0 0 0 1.7× 10−5 8.4× 10−5 5.3× 10−4 9.3× 10−4
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Fig. 3. Real data set: BSE in France. Population map, number of cases during the study and estimated risk maps.
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the South around the Mediterranean that has a low risk with our method, and the North that has a
lower risk with the CAR model. The apparent differences between maps must be interpreted in the
light of the estimated risk values used. The lowest risk estimated by the CAR model (θ̂1 ≈ 4×10−5)
is higher than the low risk estimated by our method whenα = 0 (θ̂2 = 1.45×10−5) and the very
low risk estimated by our complete method (θ̂1 ≈ 1.3×10−5). In contrast, the estimations of the high-
est risks are smaller in the CAR model (θ̂5 = 1.1×10−4 and θ̂4 = 6.55×10−5) than in our method
(θ̂5 = 2.55×10−4 and θ̂4 = 9.87×10−5 whenα = 0, θ̂5 = 1.01×10−4 for the complete procedure). It
also should be noted that Figure3(f) is difficult to interpret as it does not highlight the important spatial
structures as risk clusters. It illustrates why epidemiologists prefer the type of representations given in
Figures3(b–e) built with a posterior classification and is why we propose an integrated classification
method. The maps produced by our discrete HMRF usingϕ2 grad1 compared to Figures3(c) and (d) show
only a few differences located in the SW where, as already noted, the low population imply a more difficult
estimation.

5. DISCUSSION

In this article, we propose to adapt a method relying on discrete HRMF modeling to risk mapping to
produce an automated, integrated, and unsupervised method for the classification of geographical units
into risk classes. The main differences between this method and the CAR model for disease mapping
are the latent discrete HMRF and the EM procedure for ML estimation. The main differences between
our model and HMRF models used for image segmentation consist first in replacing the usual Gaussian
distribution by a discrete Poisson distribution to link the HF of risk classesX to dataY, and second
in specific potential functions of order 2 for a spatial correlation taking into account a smooth spatial
gradation between risk classes.

Our discrete HMRF-based method provides risk maps that are coherent with the CAR model but with
fewer classification errors and more clearly delimited zones at risk. The best results in terms of estimated
number of classes and classification errors are obtained for the discrete HMRF when estimating only
β (α being set to zero) and for the complete procedure (α andβ estimated). In practice, for computa-
tional reasons, we suggest using the version withα = 0, which is more rapid. The simulations show
that our model is particularly adapted to determining high-risk regions (both to precisely localize these
regions and to estimate the associated risk level) that are of principal interest in practice for the even-
tual imposition of control procedures. Low-risk regions are more difficult to determine, especially when
they are in regions with small populations, and our method tends to underestimate low risks; however,
such regions are less important for decision makers. The CAR model leads to more classification errors
and tends to overestimate all risks. Our experiments suggest that the CAR model is not adapted to rare
diseases in very heterogeneous populations as it tends to estimate high risks in regions with very small
populations.

The main advantage of our discrete HMRF method is that all the parameters are easy to interpret and
the model can be adapted easily to different epidemiological situations. In particular, the interpretation of
the potential function of order 2 in terms of neighborhood interaction enables a simple definition of the
smoothing according to the intended application. The definition of the neighborhood used, in this paper
simply based on geographical proximity, can be adapted to different contexts. For example, a dissymmetry
due to an ecological gradient such as wind dissemination could be introduced. Another strength of our
model is that the key classification step is integrated into the model instead of being a separate procedure
as in the method currently used by animal epidemiologists.

Beyond the obvious advantages of drawing risk classes as visual tools, another strength is the spatial
analysis of disease risk. The risk can depend on different explicative variables that influence its spatial
repartition. If the effect of known explicative variables is taken into account when building the risk map,
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the analysis of the remaining spatial structure in the risk map can help identify other, unsuspected factors
implied in the epidemiological risk. Such a method already has been considered in conventional risk
mapping models. The same approach could be envisaged easily in the discrete HMRF framework by
introducing the effect of covariates.

SUPPLEMENTARY MATERIAL

Supplementary material is available athttp://biostatistics.oxfordjournals.org.
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