
HAL Id: tel-00768768
https://theses.hal.science/tel-00768768v1

Submitted on 23 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Representation, Segmentation and Matching of 3D
Visual Shapes using Graph Laplacian and Heat-Kernel

Avinash Sharma

To cite this version:
Avinash Sharma. Representation, Segmentation and Matching of 3D Visual Shapes using Graph
Laplacian and Heat-Kernel. Computer Vision and Pattern Recognition [cs.CV]. Institut National
Polytechnique de Grenoble - INPG, 2012. English. �NNT : �. �tel-00768768�

https://theses.hal.science/tel-00768768v1
https://hal.archives-ouvertes.fr


THÈSE

Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE
Spécialité : IMAGERIE, VISION ET ROBOTIQUE

Arrêté ministériel :

Présentée par

Avinash Sharma

Thèse dirigée par Prof. Radu Horaud

préparée au sein Laboratoire Jean Kuntzmann (LJK) -INRIA Rhône-Alpes
et de Mathématiques, Sciences et Technologies de l’Information, Informatique

Representation, Segmentation and
Matching of 3D Visual Shapes using
Graph Laplacian and Heat-Kernel

Thèse soutenue publiquement le 29 Octobre 2012,

devant le jury composé de :

Dr. Edmond Boyer
INRIA Grenoble, France, Président

Dr. Bruno Lévy
INRIA Nancy, France, Rapporteur

Prof. Adrian Hilton
University of Surrey, UK, Rapporteur

Dr. Michael Wand
MPI Saarbruecken, Germany, Examinateur

Dr. Radu Horaud
INRIA Grenoble, France, Examinateur



i

Abstract

3D shape analysis is an extremely active research topic in both computer graphics and
computer vision. In computer vision, 3D shape acquisition and modeling are generally the
result of complex data processing and data analysis methods. There are many practical situ-
ations where a visual shape is modeled by a point cloud observed with a variety of 2D and
3D sensors. Unlike the graphical data, the sensory data are not, in the general case, uniformly
distributed across the surfaces of the observed objects and they are often corrupted by sen-
sor noise, outliers, surface properties (scattering, specularities, color, etc.), self occlusions,
varying lighting conditions. Moreover, the same object that is observed by different sensors,
from slightly different viewpoints, or at different time instances may yield completely differ-
ent point distributions, noise levels and, most notably, topological differences, e.g., merging
of hands.

In this thesis we outline single and multi-scale representation of articulated 3D shapes and
devise new shape analysis methods, keeping in mind the challenges posed by visual shape
data. In particular, we discuss in detail the heat diffusion framework for multi-scale shape
representation and propose solutions for shape segmentation and dense shape registration us-
ing the spectral graph methods and various other machine learning algorithms, namely, the
Gaussian Mixture Model (GMM) and the Expectation Maximization (EM).

We first introduce the mathematical background on differential geometry and graph iso-
morphism followed by the introduction of pose-invariant spectral embedding representation of
3D articulated shapes. Next we present a novel unsupervised method for visual shape segmen-
tation by analyzing the Laplacian eigenvectors. We then outline a semi-supervised solution for
shape segmentation based upon a new learn, align and transfer paradigm. Next we extend the
shape representation to a multi-scale setup by outlining the heat-kernel framework. Finally, we
present a topologically-robust dense shape matching method using the multi-scale heat kernel
representation and conclude with a detailed discussion and future direction of work.

Key-Words: Computer Vision, Articulated 3D Shape Analysis, Visual Shapes, Heat Ker-
nel, Dense Matching, Unsupervised Shape Segmentation, Semi-Supervised Shape Segmenta-
tion.
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Résumé de la thèse

Analyse de la forme 3D est un sujet de recherche extrêmement actif dans les deux l’infographie
et vision par ordinateur. Dans la vision par ordinateur, l’acquisition de formes et de modéli-
sation 3D sont généralement le résultat du traitement des données complexes et des méthodes
d’analyse de données. Il existe de nombreuses situations concrètes où une forme visuelle
est modélisé par un nuage de points observés avec une variété de capteurs 2D et 3D. Con-
trairement aux données graphiques, les données sensorielles ne sont pas, dans le cas général,
uniformément répartie sur toute la surface des objets observés et ils sont souvent corrompus
par le bruit du capteur, les valeurs aberrantes, les propriétés de surface (diffusion, spécularités,
couleur, etc), l’auto occlusions, les conditions d’éclairage variables. Par ailleurs, le mÃªme
objet que l’on observe par différents capteurs, à partir de points de vue légèrement différents,
ou à des moments différents cas peuvent donner la répartition des points tout à fait différentes,
des niveaux de bruit et, plus particulièrement, les différences topologiques, par exemple, la
fusion des mains.

Dans cette thèse, nous présentons une représentation de multi-échelle des formes articulés
et concevoir de nouvelles méthodes d’analyse de forme, en gardant à l’esprit les défis posés
par les données de forme visuelle. En particulier, nous analysons en détail le cadre de diffusion
de chaleur pour représentation multi-échelle de formes 3D et proposer des solutions pour
la segmentation et d’enregistrement en utilisant les méthodes spectrales graphique et divers
algorithmes d’apprentissage automatique, à savoir, le modèle de mélange gaussien (GMM) et
le Espérance-Maximisation (EM).

Nous présentons d’abord l’arrière-plan mathématique sur la géométrie différentielle et
l’isomorphisme graphique suivie par l’introduction de la représentation spectrale de formes 3D
articulés. Ensuite, nous présentons une nouvelle méthode non supervisée pour la segmentation
de la forme 3D par l’analyse des vecteurs propres Laplacien de graphe. Nous décrivons ensuite
une solution semi-supervisé pour la segmentation de forme basée sur un nouveau paradigme
d’apprendre, d’aligner et de transférer. Ensuite, nous étendre la représentation de forme 3D à
une configuration multi-échelle en décrivant le noyau de la chaleur cadre. Enfin, nous présen-
tons une méthode d’appariement dense grâce à la représentation multi-échelle de la chaleur du
noyau qui peut gérer les changements topologiques dans des formes visuelles et de conclure
par une discussion détaillée et l’orientation future des travaux.

Mots-clés: Vision par ordinateur, Analyse de forme 3D articulé, Formes visuelles, Noyau de
la chaleur, Appariement dense, Segmentation non supervisée, Segmentation semi-supervisée.
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1.1 Motivation

3D shape analysis has been an extremely active research topic for the last couple of decades.
With the increasing progress of 3D capture and display consumer technology, e.g., gaming
devices like Kinnect, 3D-television and films, medical scanners, etc. Thus, 3D shape analysis
is getting more relevant to the real world applications.

A widely used 3D shape representation is based on polygonal meshes: Each mesh vertex
corresponds to a 3D point on shape surface and each mesh edge encodes the local connec-
tivity between two vertices. In domains such as computer graphics or geometric design, it
is common to assume that such a mesh corresponds to a discrete representation of a smooth,
continuous, and closed surface – a Riemannian manifold, as shown in the Figure 1.1. In
this case, i.e., graphical shapes, the Delaunay triangulation seems to be the representation of
choice for its nice mathematical properties. In particular, this representation allows the con-
struction of Laplace operators on meshes, which correspond to various discretizations of the
Laplace-Beltrami operator on Riemannian manifolds. Mesh Laplacians are extremely power-
ful mathematical tools because their spectral properties allow the characterization of both the
local and global geometric properties of the underlying shape from within.
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(a) High-resolution Delaunay triangulation of closed (compact and without boundaries) surfaces

(b) Low-resolution Delaunay triangulation of the same surfaces

Figure 1.1: Triangulated meshes of three graphical shapes. These are discrete representations
of smooth and closed surfaces, i.e, without boundaries, holes, self-intersections, etc.
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(a) Low-resolution triangulated meshes gathered with a multiple-camera system.

(b) High-resolution triangulated meshes after mesh processing

Figure 1.2: Triangulated meshes of three visual shapes. (a) “Raw” low-resolution meshes
obtained from [Franco 2009]. (b) “Processed” high-resolution meshes obtained from
[Zaharescu 2011]. Notice that, unlike the graphical meshes of Figure 1.1, there are surface
merges, which yield complex topological changes as the observed shapes deform over time.
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In computer vision, 3D shape acquisition and modeling are generally the result of com-
plex data processing and data analysis methods. There are many practical situations where
a visual shape is modeled by a set of points observed with a variety of 2D and 3D sensors,
e.g., multiple cameras, time-of-flight devices, structured-light/camera systems, laser range-
finders, etc. The data sets gathered with these sensors are, in general, not uniformly distributed
across the surfaces of the observed objects and they are often corrupted by noise, outliers, self
occlusions, and varying lighting conditions. Moreover, the same object that is observed by
different sensors, from slightly different viewpoints, or at different time instances may yield
completely different topologies, e.g., holes. Figure 1.2 shows visual shapes typically used in
computer vision. Figure 1.2a shows three examples of visual shapes captured with a multi-
camera setup [Franco 2009]. Notice how an articulated object undergoes important changes
over time, which cause large discrepancies in their topological structure. While mesh process-
ing, as seen in Figure 1.2b, smoothes the “raw” mesh and removes self intersections between
triangles [Zaharescu 2011], surface merges caused by temporal deformations remain present
in the shapes’ discrete representations.

Consequently, the task of extracting a triangulated mesh from 3D visual data is far from
being an obvious one. Moreover, it is not always possible to guarantee that the meshes gath-
ered with visual sensors satisfy the properties of a Delaunay triangulation [Boissonnat 1998].
Thus, it is not straightforward to adapt and to apply to visual shapes the geometric process-
ing algorithms specifically designed to deal with graphical shapes. There is both a need to
relax the theoretical conditions that the input data must satisfy and to devise a shape analysis
methodology that can accommodate flaws in the data. This motivates us to design new shape
analysis algorithms that can handle challenges posed by visual data.

1.2 Thesis Overview

This thesis deals with 3D shape analysis tasks for real articulated 3D shapes also known as
the visual shapes, captured mainly with multi-camera acquisition systems. In general, we
outline single and multi-scale representation for visual shapes and propose new shape analysis
methods, keeping in mind the challenges posed by visual shape data. In particular, we discuss
in detail the heat diffusion framework for multi-scale shape representation, shedding new light
on the relation between scale of analysis and the dimension of shape embedding. We also
propose solutions for shape segmentation and dense shape registration using the spectral graph
methods and some popular machine learning algorithms, namely, Gaussian Mixture Model
(GMM) and Expectation Maximization (EM).

1.2.1 3D Shape Analysis

Recent innovations in the field of 3D geometry capture have led to more affordable, manage-
able and portable acquisition systems. This has generated considerable amount of interest in
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3D shape analysis from both the industrial as well as academia. The task of 3D shape analysis
involves tracking, segmentation, recognition, registration, animation transfer, motion synthe-
sis, etc. Figure 1.3 illustrates three important shape analysis tasks. In this thesis, we mainly

(a) Segmentation (b) Registration/Matching

· · · · · ·
(c) Temporal Tracking [Varanasi 2008]

Figure 1.3: Illustration of three important shape analysis tasks in computer vision. Segmen-
tation and matching results in (a,b) are obtained using the unsupervised segmentation and
matching methods proposed in this thesis.

focus on unsupervised and semi-supervised shape segmentation and sparse and dense shape
registration/matching.
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1.2.2 Input Data

Recent advancement in shape acquisition technology has led to the capture of large amounts
of 3D data. Existing real-time multi-camera 3D acquisition methods provide a frame-wise
reliable visual-hull or mesh representations for real 3D animation sequences [Franco 2009,
Starck 2009, Slabaugh 2001, Seitz 2006, Vlasic 2008, Zaharescu 2011, Stoll 2010]. Analyz-
ing 3D data in a single framework is still a challenging task considering the large variability of
the data gathered with different acquisition devices. This variation arises due to: 1) variation
in the shape acquisition techniques, 2) local deformations in non-rigid shapes, 3) large acqui-
sition discrepancies (e.g., holes, topology change, surface acquisition noise), 4) local/global
scale change.

We have considered 3D data obtained from multiple sources. This includes synthetic
data [Bronstein 2010a] and real data captured with multi-camera systems [Franco 2009, Starck 2007b,
Stoll 2010] as well as with laser scanner [Vlasic 2008]. The main issue with shape segmen-
tation and matching tasks is the lack of ground-truth for real data. Specifically, the existing
ground-truth data for shape matching is too simple to validate the methods that are designed to
handle challenging transformations in the real data. In this work, we have also prepared some
manual ground-truth data to validate our shape analysis results.

1.2.3 Spectral Representation

In computer vision, graph theory, and machine learning there is a long tradition of representing
meshes and graphs using matrices, in particular graph Laplacian. The advantage of such an
algebraic approach is that it allows to describe and analyze manifold data, and more generally
relational data, using the eigenvalues and eigenvectors of a semi-definite positive symmetric
matrix. We embed input 3D shapes that were originally represented as triangulated mesh
graphs into a multi-dimensional spectral space spanned by the eigenvectors of the respective
graph Laplacian matrix. Thus, the spectral embedding of a 3D shapes is an isometry invariant
(multi-dimensional) point-cloud representation, which makes it invariant to articulated poses.
Hence, two shapes with different poses should have similar spectral representations, provided
the underlying topology of two mesh graphs is similar.

1.2.4 Unsupervised Shape Segmentation

We devise an unsupervised probabilistic method, based on Gaussian mixtures with model
selection, which reveals the structure of each eigenvector of graph Laplacian matrix. This
enables us to select a subset of eigenvectors among the smallest eigenvectors of a graph, to
embed the graph in the space spanned by this selection, and to cluster the graph’s vertices using
a multidimensional Gaussian Mixture Model (GMM) with model selection. When applied
to shape graphs corresponding to articulated objects, such as humans, the proposed method
segments the latter into perceptually meaningful parts.
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1.2.5 Semi-supervised Shape Segmentation

We propose a novel semi-supervised framework for learning shape segmentation. In our
two-stage method, first we introduce a new constrained spectral clustering (CSC) algorithm
which takes as input a shape graph called as ’train-graph’ and a sparse set of ’must-link’ and
’cannot- link’ constraints provided by a user. We propose to use the Laplacian embedding
and the commute-time distance (CTD) to diffuse these sparse pairwise constraints over the
train-graph. This lead to a new spectral representation,which is more suitable for clustering
and provides the desired segmentation of input shape. Second, we consider shape alignment
based on vertex-to-vertex graph matching as a way to probabilistically transfer labels from a
train-graph in training-set of segmented shapes to a unsegmented shape called as test-graph.
This segmentation transfer is carried out via a new probabilistic label transfer (PLT) method
that computes a point-to-point mapping between the Laplacian embeddings of two graphs.
This completely unsupervised matching is based on [Mateus 2008, Horaud 2011] and allows
transfer of labels from a segmented shape to an unsegmented one.

1.2.6 Multi-scale Heat-Kernel Representation

We outline a general framework for the representation and analysis of 3D visual shapes based
on heat diffusion on undirected weighted graphs. It is well known that the heat diffusion equa-
tion has a solution on undirected graphs and that this solution can be made explicit using the
eigenvalue/eigenvector pairs of a Laplacian matrix of the graph, together with a time param-
eter that defines a scale space – the heat kernel. This allowed us to analyze the heat-kernel
matrix within the framework of spectral graph theory [Chung 1997], to construct heat-kernel
matrices well suited for 3D shapes, and to represent the latter in the metric space associated
with the spectral decomposition of this matrix [Shawe-Taylor 2004].

We capitalize on the fact that the eigenvectors of the combinatorial Laplacian can be in-
terpreted as the directions of maximum variance of the shape embedding. Together with the
scale/time parameter, this provides a formal basis for performing dimensionality reduction
and, more generally, to characterize the statistical properties of the embedded shape represen-
tation at multiple scales. We also study the dimensionality of the embedding, i.e., the number
of eigenvectors needed to approximate the heat kernel, as a function of the scale parameter;
We show that the multiplicity of the first non-null eigenvalue and associated eigenvector (the
Fiedler vector) of the Laplacian matrix plays a crucial role in choosing the dimension. Finally,
we propose both a scale-space representation of shapes based on auto diffusion and spectral
distances.

1.2.7 Topologically-Robust Dense Shape Matching

We propose a novel dense 3D shape matching method robust to topological changes in the
shape. These topological changes arise in the case of articulated shapes due to complex kine-
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matic poses. These poses induce self-occlusions and shadow effects, which cause the topo-
logical changes along the sequence, such as merging and splitting. The method starts from
sparse one-to-one correspondences and produces as output dense correspondences. We em-
ploy multi-scale heat diffusion descriptors for this task. At small scales these descriptors are
fairly local and hence it is robust to changes in topology. It can therefore be used to build a
matching score between a point on the first shape and a point of the second shape conditioned
by the initial correspondences. This score is then used to iteratively add new point-to-point cor-
respondences based on a novel seed-growing method that propagates current correspondences
to nearby ones. The final set of dense correspondences is obtained via a point registration
method that uses a variant of the EM algorithm. Finally, we show dense matching results on
some challenging visual shapes with significantly large topological changes.

1.3 Thesis Structure

This document is structured as follows. We first introduce basic mathematical notations and
Riemannian geometry constructs in Chapter 2. This chapter also presents an overview of the
existing linear and non-linear dimensionality reduction methods as well as the spectral em-
bedding of a graph. Chapter 3 introduces pose invariant spectral representation for 3D shapes.
Unsupervised and semi-supervised shape segmentation methods are presented in Chapter 4
and Chapter 5, respectively. In Chapter 6, we present a detailed outline of the heat-kernel
framework for multi-scale shape representation. In the same chapter, we build upon the heat-
kernel framework and propose a novel multi-scale heat distance descriptor. This is followed by
a new topologically-robust dense shape matching method presented in Chapter 7. Finally, we
conclude this thesis with a comprehensive summary and future directions of work in Chapter 8
and extended Appendices A as well as the bibliographic references.
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2.1 Introduction

In this chapter, we present some basic mathematical background that is necessary to under-
stand various analytical constructs proposed and discussed in this thesis. We start with in-
troducing various notations and definitions from the field of linear algebra, graph theory and
elementary metric geometry in Section 2.2. Next, we present an overview of differential geom-
etry of surfaces focusing on Riemannian geometry, manifold surface mapping functions and
the Laplace operator on manifold surfaces in Section 2.3. In the next Section 2.4, we introduce
the graph matching problem as a discrete surface mapping problem and discuss spectral graph
methods in the context of exact graph matching. We briefly mention the linear and non-linear
manifold learning methods for dimensionality reduction in Section 2.5. In Section 2.6, we
consider an undirected weighted graph as the discrete manifold representation and combine it
with the non-linear dimensionality reduction to form the basis of graph dimensionality reduc-
tion using the eigen-decomposition of the discrete Laplace operator on graphs. An intuitive
relationship between the continuous and the discrete Laplace operators is discussed in Sec-
tion 2.7. This is followed by Section 2.8 where we present a brief introduction of two impor-
tant machine learning algorithms, namely, spectral clustering and expectation maximization,
that were frequently used in this document. Finally, we conclude with Section 2.9.

2.2 Definitions and Notations

In this section, we will introduce some basic definitions and notations that will be used through-
out the thesis document.

2.2.1 Linear Algebra

We represent scalar values in normal font as: a,A,α,λ, etc. A vector is a set of scalar variables
and is represented by a small, bold-face letter, e.g., u where it is a column vector and uT

denotes the corresponding row vector format with uT = (u1, . . . ,ui, . . . ,un). 1 and 0 denotes
the column vector of ones and zeros, respectively. A matrix is represented by a capital, bold-
face letter, e.g., U and its transpose as UT where

U = [u1, . . . ,un] =




u11, . . . , un1
...

...
...

u1n, . . . , unn


 . (2.1)

In is the n×n identity matrix. The dot product between two vectors is represented as 〈ui,u j〉=

∑k uiku jk = uT
i u j. The vector norm is denoted as ‖u‖2 = 〈u,u〉. The Euclidean distance be-

tween two vectors is computable as ‖ui−u j‖
2 = 〈ui,ui〉+ 〈u j,u j〉−2〈ui,u j〉. The Frobenius

Norm of a matrix is written as ‖U‖2
F = ∑i ∑ j Ui j = tr(AT A).
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2.2.2 Graph Representation

We denote a connected undirected weighted graph as G = {V,E} where V(G) = {v1, . . . ,vn}

is the vertex set, E(G) = {ei j} is the edge set. Let W be the weighted adjacency matrix of this
graph. Each (i, j)th entry of W matrix stores, a weight wi j whenever there is an edge ei j ∈ E(G)

between graph vertices vi and v j, and 0 otherwise. All the diagonal elements are set to 0 . We
use the following notations: The degree di of a graph vertex di = ∑i∼ j wi j (i ∼ j denotes the
set of vertices v j that are adjacent to vi), the degree matrix D = Diag[d1 . . .di . . .dn], the n×1
degree vector d = D1, and the graph volume Vol(G) = ∑i di.

In spectral graph theory, it is common to use the following expression for the edge weights [Belkin 2003,
von Luxburg 2007]:

wi j = e−
dist2(vi,v j)

σ2 , (2.2)

where dist(vi,v j) denotes any distance metric between two vertices and σ is a free parameter.
In the case of a fully connected graph, matrix W is also referred to as the similarity matrix.
The normalized weighted adjacency matrix writes W̃ = D−1/2WD−1/2. The transition matrix
of the non-symmetric reversible Markov chain associated with the graph is

W̃R = D−1W = D−1/2W̃D1/2. (2.3)

In this work, unless otherwise stated, we consider G as a connected graph such that there exist
a path from each vertex vi to every other vertex v j in V.

2.2.3 Elementary Metric Geometry

Metric geometry is the mathematical construction of the vague idea that classify the relation-
ship between “primitives” as close or far apart, which in turn, is based upon the concept of
“near” and “far”. Thus, the metric geometry studies the concept of length and geodesic dis-
tance in order to obtain an analytical description of geometrical objects. Here we present few
basic definitions from the elementary metric geometry as summarized in [Thorstensen 2009]
and recommend an excellent monograph [Burago 2001] for a detailed understanding of the
metric geometry.

Definition 1 Let Y be an arbitrary abstract set. A function dY : Y×Y 7→ R∪{∞} is a metric
on Y if the following conditions are met for all y1,y2,y3 ∈ Y.

• Non-negativity: dY(y1,y2)≥ 0 and dY(y1,y2) = 0⇔ y1 = y2.

• Symmetry: dY(y1,y2) = dY(y2,y1).

• Triangle inequality: dY(y1,y3)≤ dY(y1,y2)+dY(y2,y3).
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Then the pair (Y;dY) is a metric space. The elements of Y are called points of the metric
space. The function dY(y1,y2) returns the distance between two points y1,y2. A very well
known instance of a metric space is the three-dimensional Euclidean space R

3 with the Eu-
clidean metric. In general, any normed vector space V is a metric space with the metric
induced by the norm.

Definition 2 Let V be a vector space. A function ‖ · ‖ 7→ R is a norm on V if the following
conditions are met for all v1,v2 ∈V and k ∈ R.

• Non-negativity: ‖v‖> 0 if v 6= 0.

• Linearity: ‖kv‖= k‖v‖.

• Triangle inequality: ‖v1 +v2‖ ≤ ‖v1‖+‖v2‖

So a normed vector space is a vector space equipped with a norm. For instance, the Euclidean
space R

n is a normed space with norm ‖(y1, . . . ,yd)‖=
√

(y1)2 + · · ·+(yd)2.

Lastly, we notice that a norm is called Euclidean if it is associated with some scalar prod-
uct.

Definition 3 Let V be a vector space. A scalar product 〈·, ·〉 : V ×V 7→R on V is a symmetric
bi-linear form F whose associated quadratic form is positive definite, i.e., F(v,v) > 0 for all
v 6= 0.

The definition of a bi-linear forms is given as:

Definition 4 Let V be a vector space. A bi-linear form F on V is a function of two variables
V ×V 7→ R satisfying the following equations:

F(v1 +v2,v3) = F(v1,v3)+F(v2,v3) (2.4)

F(kv1,v2) = kF(v1,v2) (2.5)

F(v1,v2 +v3) = F(v1,v2)+F(v1,v3) (2.6)

F(v1,kv2) = kF(v1,v2) (2.7)

with v1,v2,v3 ∈V and k ∈ R.

2.3 Differential Geometry of Surfaces

In this section, we will briefly introduce some basic notions of the Differential Geometry of
Surfaces. These notions, mostly defined for continuous domain, can be easily extended to
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discrete domain and will later provide us a strong mathematical framework to address the
problem of pose invariant shape representation and analysis. We recommend further read-
ing of two popular books [Do carmo 1992, Gray 2006] for a thorough understanding of the
Riemannian geometry.

Differential geometry, in general, is a mathematical discipline that uses the techniques of
differential and integral calculus, as well as algebra, to study problems in the geometry. The
initial development of differential geometry largely involved the theory of plane, space curves
and of surfaces embedded in three-dimensional Euclidean spaces. However, from the late
19th century, differential geometry has evolved into a field concerned more generally with the
geometric structures on differentiable manifolds. In particular, we are more interested in the
study of Riemannian geometry, which mainly deals with the Riemannian manifold - a smooth
manifold with a Riemannian metric.

A Riemannian manifold is a general d-dimensional manifold with an inner product on the
tangent space, i.e., the Riemannian metric. This inner product is defined at each point and
vary smoothly from point to point. The Riemannian metric allows one to define the notion of
angles, length of the curves, surface area, and volume. We are more concerned with differential
geometry of 2-dimensional manifold surfaces as majority of 3D shapes can be treated as the
discrete version of a continuous 2D manifold surface embedded in a 3-dimensional Euclidean
space.

An interesting aspect of the Riemannian geometry is that it allows one to study the in-
trinsic properties of a manifold surface that are independent of the ambient three-dimensional
Euclidean space in which the surface is immersed. This is in contrast with the previous works
in differential geometry that mainly focused on studying the extrinsic properties of (curves
and) surfaces that depend on the properties of embedded Euclidean space. Hence, this can
serve as the basis of design of a intrinsic pose invariant shape representation/analysis algo-
rithm.

2.3.1 Riemannian Geometry of Surfaces

We first introduce the definition of a d-dimensional manifold, a Tangent space, a Riemannian
manifold and a Riemannian metric. This is followed by the definition and analysis of a para-
metric 2D surface patch, which in turn, is a subset of 2-dimensional Riemannian manifold
embedded in the three-dimensional Euclidean space. We deduce the local parametrization of
this 2D surface patch by defining smooth differentiable functions on it and derive an inner
product metric, which in turn, is used to compute the angle and length of the curves on the
surface. Finally we summarize two general theorems of the Riemannian geometry, which will
facilitate an isometric embedding of a Riemannian manifold into a Euclidean subspace.

2.3.1.1 d-dimensional Manifold
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Definition 5 A d-dimensional manifold M is a topological space such that each point x ∈M

has an ε-neighborhood that is homeomorphic to a disc in the d-dimensional Euclidean space.
In case of a manifold with boundary, the disc can be replaced by a d-dimensional half-disk
for the boundary points. Figure 2.1 depicts the typical scenario using a surface patch with
boundary.

Figure 2.1: Visualization of manifold construction using a 2D manifold surface patch.

2.3.1.2 Tangent Space & Tangent Plane

The concept of tangent space in differential geometry is analogous to the idea of linear approx-
imation of a surface in the vector calculus. For a given manifold M embedded in R

d , a linear
subspace can be associated with each point x ∈M . This linear subspace of R

d is called the
tangent space and comprises all the tangent vectors of x. The tangent space is the best linear
approximation of the local manifold surface within a small neighborhood around x. In case
of a manifold being a parametric 2D-surface patch embedded in R

3, the tangent space around
x is called a tangent plane and is typically depicted as TxM . Figure 2.2 depicts the tangent
space of a 2D manifold surface embedded in R

3.

2.3.1.3 Riemannian Manifold & Riemannian Metric

Definition 6 A Riemannian manifold (M ,g) is a smooth manifold M associated with a family
of smoothly varying positive definite inner products g = gx on TxM for each x ∈M . The
family g is called Riemannian metric. Note that metric gx is a bi-linear form on TxM , i.e.,
gx : TxM × TxM −→ R. Thus, for all differential vector fields X ,Y ∈ TxM , x 7→ gx(X ,Y )

defines a smooth function M 7→ R. More formally, a Riemannian metric g is a symmetric
positive definite (0,2)-tensor, i.e., g(X ,X) > 0, ∀X 6= 0 ∈ T M .
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Figure 2.2: Depiction of tangent space of a 2D manifold surface embedded in the three-
dimensional Euclidean space.

Next, we will derive an exact formulation of the Riemannian metric for a parametric sur-
face patch (embedded in the three-dimensional Euclidean space) where it is also known as the
first fundamental form.

2.3.1.4 Parametric Surface Patch

A 2-dimensional parametric surface patch is a surface in the Euclidean space R
n defined by

a parametric equation of two parameters. Let f : R
2 ⊇ Ω 7→ R

n be a smooth differentiable
function of two variables (u,v) that maps a point in the domain Ω ⊆ R

2 to a point in R
n.

A parametric surface patch S can be defined as: S = f (Ω),S ⊆ R
n. If we consider n = 3,

i.e., a three-dimensional Euclidean space with canonical axes x,y and z, then we can write:
f (u,v) = (x(u,v),y(u,v),z(u,v)). Figure 2.3 illustrate a surface patch and its domain.

2.3.1.5 Local Parameterization using Canonical Tangents and Surface Normal

A surface patch S can be locally parametrized at any point p = f (u,v) ∈ S using the canonical
tangents and surface normal at that point.

The canonical tangents of a surface patch can be written as: ∂u f (u,v) and ∂v f (u,v). The
tangent plane at a point p consist of all the tangent vectors to p and can be defined as the linear
combination of canonical tangents. The surface normal at point p is a unit vector orthogonal
to the tangent plane and is defined as the normalized cross product of canonical tangent vectors
as:

nuv =
∂u f (u,v)×∂v f (u,v)

‖ ∂u f (u,v)×∂v f (u,v) ‖
. (2.8)

Figure 2.4 depict canonical tangent vectors and the surface normal on a parametric surface
patch.
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Figure 2.3: Visualization of a parametric surface patch embedded in the three-dimensional
Euclidean space.

2.3.1.6 The First Fundamental Form

The first fundamental form describes the local parametrization of the surface. It is the inner
product on the tangent space of a surface in three-dimensional Euclidean space, which is
induced canonically from the dot product in R

3. This inner product allows to measure the
distortion of angle and lengths in an ε-neighborhood around a point on the surface, which is
induced by the embedding of the surface in the ambient Euclidean space. Hence, it is also
called as the “metric tensor“.

The metric tensor can be derived as follows. Let ω0 = (u0,v0) ∈ Ω be the origin of the
local coordinate system corresponding to a point p0 = f (x(u0,v0),y(u0,v0),z(u0,v0))∈ S . The
function mapping f (ω) for a point ω in the neighborhood of ω0 can be written in terms of the
local first order Taylor approximation as:

f (ω) = f (ω0)+∇ f (ω0)(ω−ω0). (2.9)

Let a,b ∈ R
2 be the two arbitrary vectors as shown in the Figure 2.5. The scalar product of

mapping of these two vectors can be simplified using Eq. (2.9) as:

〈 f (ω0 +a)− f (ω0), f (ω0 +b)− f (ω0) 〉 ≈ 〈∇ f (ω0)a, f (ω0)b 〉

≈ aT
(
∇ f (ω0)

T ∇ f (ω0)
)

︸ ︷︷ ︸
First Fundamental Form

b. (2.10)

The first order derivative of f denoted as ∇ f is a Jacobian matrix of dimensional 3×2 com-
puted on the Euclidean surface. Whereas, the first fundamental form represents an inner prod-
uct matrix ∇ f T ∇ f computed using the dot product of rows of the Jacobian matrix and hence
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Figure 2.4: Visualization of the canonical tangents and the surface normal on a parametric
surface patch embedded in the three-dimensional Euclidean space.

can be written in a 2×2 square matrix as:

(
∇ f T ∇ f

)
=

(
∂u f .∂u f ∂u f .∂v f
∂u f .∂v f ∂v f .∂v f

)
=:

(
E F
F G

)
. (2.11)

This matrix is positive definite for a regular parametrization and positive semi-definite
otherwise.

Thus, the first fundamental form defines a generalized scalar product, which in turn mea-
sures the length and angles on the surface. The metric tensor is commonly denoted as:

I(a,b) := aT
(
∇ f T ∇ f

)
b (2.12)

However, it only captures the change in length, which lead to same parametrization for a
cylindrical surface and a planar surface. This is because only the first order approximation of
the mapping function f ) was used, which is inherently flat. Thus, we need a tool to measure
curvature of the surface in order to differentiate between two such surfaces. This will require
a second order approximation of f .

2.3.1.7 The Second Fundamental Form

The second fundamental form, also known as the shape operator or curvature tensor, captures
the local curvature of the parametric surface. The shape operator can be written in a 2× 2
matrix form as:

S =

(
∂uu f .n ∂uv f .n
∂uv f .n ∂vv f .n

)
=:

(
e f
f g

)
. (2.13)
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Figure 2.5: Construction of Metric Tensor.

The matrix S is a symmetric matrix, but not a positive definite one. Here, n is the surface
normal at the point where the shape operator is computed and ∂uu, ∂uv and ∂vv are the second
order partial differential operators applied to mapping function f at that point. Hence, the sec-
ond fundamental form computes the second derivatives of the function mapping f and project
them in the normal direction in order to cancel the tangential acceleration, thus capturing the
curvature. This can also be seen as the second order Taylor expansion of f with quadratic
terms. For two arbitrary vectors a,b ∈R

2, the curvature tensor is applied as: II(a,b) = aT S b.

The curvature tensor is useful to compute different types of curvatures listed below.

Principal Curvatures: The eigenvalues of a shape operator defined at a given point on the
parametric surface are called the principal curvatures of surface at that point and commonly
denoted as κ1,κ2. The corresponding eigenvectors form the orthonormal tangent bases and
are known as the principal directions of curvature. Since the shape operator matrix is not a
positive (semi-)definite, its eigenvalues can be negative, resulting in negative curvature values.
Figure 2.6 visualize the planes of the principal curvatures.

Normal Curvature: The normal curvature κ(r) at a point is the curvature of the surface
curve obtained by the intersection of the parametric surface and a plane defined by the normal
vector at that point along with a directional vector r in the respective tangent plane. Hence,
the plane of the normal curvature is same as the plane of principal curvature, rotated around
the normal vector, in the direction of r vector. This can be written as:

κ(r) = rT

(
e f
f g

)
r. (2.14)

Thus, the maximum and minimal value of the normal curvature are the values of the princi-
pal curvatures in the direction of orthonormal tangent basis vectors defined by the eigenvectors
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Figure 2.6: Visualization of Principal Curvature. (Source: http://wikipedia.org)

of the shape operator, i.e.,

κ1 = max
r

(κ(r)) , κ2 = min
r

(κ(r)) . (2.15)

Mean Curvature: The mean curvature at a given point on the surface is defined as the
average of the principal curvatures at that point, i.e.,

H =
κ1 +κ2

2
=

1
2

tr

(
e f
f g

)
. (2.16)

Gaussian Curvature: The Gaussian curvature at a given point on the surface is defined as
the multiplication of the principal curvatures at that point, i.e.,

K = κ1 ∗κ2 = det

(
e f
f g

)
. (2.17)

The Gaussian curvature is very important notion in the Riemannian geometry. The famous
theorem Theorema Egregium from Gauss states that the Gaussian curvature of a surface can
be expressed solely in terms of the first fundamental form and its derivatives. Thus, though
computed extrinsically, Gaussian curvature is essentially an intrinsic property of the surface
and hence not affected by the embedding of surface in the ambient Euclidean space.

2.3.1.8 Geodesic Curvature of a Curve

Geodesic curvature is another important notion in differential geometry and leads to the con-
cept of geodesic metric. This is the intrinsic curvature of a curve lying on the surface and does
not depend on how the surface is immersed in the Euclidean space.
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Definition 7 For a given curve lying on the manifold surface and characterized by the arc-
length s and unit tangent vector T , the geodesic curvature is the norm of projection of deriva-
tive dT

ds on the tangent plane of the surface.

Figure 2.7 depicts a curve lying on the surface and the curvature of its projection on the
tangent plane. Thus, any curve that connects two points on a parametric surface and has zero

Figure 2.7: Visualization of intrinsic (geodesic) curvature of a curve lying on manifold surface.

geodesic curvature at each point, is called the geodesic curve and corresponding arc-length is
called the geodesic distance between those two points. This lead us to the notion of minimum
distance path on manifold surfaces.

2.3.1.9 General Theorems of Riemannian Geometry

Here we briefly state two important theorems in Riemannian geometry of surfaces. The first
one, Gauss-Bonnet theorem incredibly relates the topological characteristic of a manifold with
its total curvature. The second is a set of two theorems, also known as the fundamental theo-
rems of Riemannian geometry, lead to an isometric embedding of a Riemannian manifold into
n-dimensional Euclidean space. More formally:

Gauss-Bonnet Theorem: The integral of the Gaussian curvature also known as the total
curvature of a compact 2-dimensional Riemannian manifold is equal to 2πχ(M ), where χ(M )

denotes the Euler characteristic of M , which is a topological characterization of a Riemannian
manifold.

Nash Embedding Theorems: The theorems state that every Riemannian manifold can be
isometrically embedded in a Euclidean space R

n. The first theorem is for continuously dif-
ferentiable (C1) embeddings and the second for analytic embeddings or embeddings that are
smooth of class Ck,3≤ k ≤ ∞.
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These theorems will be useful for finding a pose invariant isometric embedding of an
articulated 3D shape typically represented as the discrete counterpart of a compact Riemannian
manifold (see Chapter 3).

2.3.2 Mapping between Surfaces

Surface mapping is an interesting problem in differential geometry. The idea is to seek a (bijec-
tive) mapping function that allows one-to-one correspondence between two manifold surfaces
which are embedded differently in the Euclidean space. One classical example of surface map-
ping problem is to find a flat map of the earth’s surface. An important result from Gauss proved
that it is impossible to do so without admitting deformations. This significant theorem from
Gauss, known as the Theorema Egregium, laid the foundation of modern differential geometry
which can deal with intrinsic surface mappings. The surface mapping has many important
applications, e.g., texture mapping, dense registration, animation transfer, MRI analysis, etc.
Figure 2.8 illustrates surface mapping scenario in R

3.

Figure 2.8: Mapping between manifold surfaces.

We have already introduced the Riemannian manifolds that are equipped with the Rie-
mannian (dot product) metric. This helps to define various mapping functions between two
manifold surfaces that can preserve certain properties of these surfaces. The three important
types of surface mapping are:

• Isometric Mapping - preserves angles, distances and area.

• Conformal Mapping - preserves only angles.

• Equi-areal Mapping - preserves only area.
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Given a mapping function f : R
2⊇Ω 7→ S ⊂R

3 (see Figure 2.3) that maps a 2D plane (do-
main) to a 3D surface patch, we can compare these mapping based on the respective Jacobian
matrix (∇ f ) and metric tensor introduced in Section 2.3.1.6.

The isometric mapping preserves the distances on surfaces by choosing an orthogonal
rotation matrix (R) as the Jacobian matrix. This causes the metric tensor to become an identity
matrix (I). Thus, in an isometric transformation, a pure rotation is applied to the local tangent
planes, thereby preserving the lengths, angles and area. In case of a conformal mapping, the
Jacobian is a scaled orthogonal rotation matrix (ηR) and metric tensor becomes ηI. This
scaling enables an arbitrary stretching or shrinking of tangent planes, resulting in change in
lengths and area. Hence, only the angles are preserved in the conformal mapping. The equi-
areal mapping constraints the Jacobian matrix to have a determinant value equal to one. This
causes the local tangent plane to stretch in one direction and at the same time shrink in the other
direction in order to keep the determinant value one, thus preserving the area. We will discuss
in detail only the isometric mapping as this thesis primarily uses isometric transformations to
model non-rigid deformations in 3D articulated shapes. Please refer to notes in [Belk 2011]
for a brief mathematical overview of isometries.

2.3.2.1 Isometric Mapping

An isometric mapping is a distance, angle and area preserving mapping between two metric
spaces. A smooth injective map between two surfaces is called a local isometric map if it
preserves the length of curves. A local isometric mapping is called an isometry if it is bijective.

Let S1, S2 be two metric spaces associated with metrics dS1 , dS2 and tangent spaces T S1,
T S2, respectively. A map Φ : S1→ S2 is called local isometry if for any a,b ∈ S1 one has

dS2 (Φ(a),Φ(b)) = dS1(a,b). (2.18)

More formally, a smooth map Φ : S1→ S2 is a local isometry if and only if the derivative

∇pΦ : TpS1→ TΦ(p)S2 (2.19)

at each point p ∈ S1 is an isometric linear transformation. Thus, in case of isometric mapping,
for each tangent vector t ∈ TpS1, the following is true.

‖ ∇pΦ(t) ‖=‖ t ‖ (2.20)

If I1 and I2 be the first fundamental forms of S1 and S2, then we can write:

(∇Φ)T I2(∇Φ) = I1. (2.21)

When two surfaces are mapped from a common domain, e.g., f1 : Ω 7→ S1 and f2 : Ω 7→ S2,
the derivative ∇Φ is simply a 2×2 identity matrix. This results in

I1 = I2, (2.22)
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i.e. S1 and S2 having the same metric tensor. Thus, an isometric mapping between two sur-
face patches (with shared domain), has same metric tensor and consequently, preserves the
Gaussian curvature. Figure 2.9 demonstrates a typical isometric mapping scenario when two
surfaces have the same co-domain.

Figure 2.9: Visualization of isometric mapping when two surface patches have same co-
domain.

2.3.3 Laplace Operator on Manifold

The Laplace operator is a second order differential operator in the n-dimensional Euclidean
space, defined as the divergence (∇·) of the gradient (∇ f ). Thus, if f is a twice-differentiable
real-valued function, then the Laplacian of f is defined as:

∆ f = ∇2 f = ∇ ·∇ f . (2.23)

In general, it maps a k times smoothly differentiable Ck-function to a Ck−2 function defined
on an open set Ω as:

∆ : Ck(Ω)→Ck−2(Ω) (2.24)

2.3.3.1 Laplace-Beltrami Operator

The Laplace-Beltrami operator is an extension of the classical Laplace operator on Riemannian
manifold (see [Rosenberg 1997] for details).
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Let f be a real valued twice differentiable function defined on a Riemannian manifold M .
The Laplace-Beltrami operator ∇ is given by:

∆M f := div(∇M f ) (2.25)

with ∆M f be the gradient of f and div be the divergence of a vector field on a manifold.
The divergence is an operator that measures the magnitude of a vector field’s source or sink
at a given point. The Laplace-Beltrami operator is a linear differential operator and can be
calculated using a local parametrization, i.e., the tangent space. Given the metric tensor g of
M , the Laplace-Beltrami operator on M writes as:

∆M f =
1√
‖g‖

∑
i, j

∂i(g
−1
i j

√
‖g‖∂ j f ). (2.26)

‖g‖ is the determinant of g and ∂i,∂ j are the basis vector of the tangent space. In case
where M ⊂R

2, the metric tensor g simplifies to the identity and the Laplace-Beltrami reduces
to the Laplace operator in R

2:

∆ f =
∂2 f

∂(x1)2 +
∂2 f

∂(x2)2 . (2.27)

The spectrum of the Laplacian is the set of eigenfunctions and associated eigenvalues
solving the Helmholtz equation.

∆M f =−λ f . (2.28)

The solution is an infinite number of eigenvalues λi and eigenfunctions fi (with 0≤ i≤ ∞ ).

In the case of a closed surface without boundary, the first eigenvalue λ0 is always equal to
zero and the associated eigenfunction f0 is a constant function.

Few properties of the Laplace-Beltrami operator as mentioned in the book [Reuter 2006a]
are:

• The spectrum depends only on the metric tensor and is invariant under isometric map-
pings.

• The spectrum of the Laplace-Beltrami operator of d-dimensional manifolds at different
scales can be compared by normalizing the eigenvalues appropriately.

• A change of the surface’s shape results in continuous change of the spectrum.

• The spectrum does not characterize the shape completely, since some non-isometric
manifolds with the same spectrum exist. Nevertheless, these cases appear to be very
rare.

• A substantial amount of geometrical and topological information is known to be con-
tained in the spectrum. As a consequence of the high dimensionality of the eigenspec-
trum, cropping the spectrum is unavoidable and consequently induces a loss of informa-
tion. But nevertheless, the first few eigenvalues contain important information
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Figure 2.10: Visualization of a continuous manifold surface embedded in R3 and its discrete
counterpart with non-uniform sampling and corresponding sparse graph structure that is typi-
cally used to approximate the local neighborhood around each sampled point.

With these properties at hand, the Laplace-Beltrami operator is an important tool to anal-
ysis 3D shapes, represented as manifold surfaces. In particular, the first property is useful to
find an isometry invariant shape representation and analysis of articulated 3D shapes.

2.4 Surface Mapping as Graph Matching

We have already introduced a discussion on surface mapping in the continuous domain setting
in Section 2.3.2. However, this setting is best suited mainly to analyze the theoretical formula-
tions as one can make assumptions about the smoothness and continuity of the domain. On the
other hand, our sensing capabilities lead us to a discrete world where making such assumptions
is difficult and the best we can do is to approximate the theoretical notions. One related ex-
ample in this context is the surface acquisition in computer vision. We have already presented
some example shape visual shapes in Section 1.1, in order to understand the problems with the
discrete approximation of continuous manifold surface. Figure 2.10, reiterates this problem
where a manifold surface is visualized in a discrete setup with non-uniform sampling and the
corresponding sparse graph structure is also shown, which is typically used to approximate the
local neighborhood around each sampled point. easily be violated (due to sensor limitations).

Hence, one can cast the surface mapping as the graph matching problem, by assuming an
infinitely dense sampling of the continuous surface. This consequently makes a large number
of existing graph matching methods as the candidate for solving the surface mapping problem.
The task of graph matching involves finding correspondence between vertices and edges of two
graphs, subject to certain constraints. Traditionally, the structural (skeleton) representation of
3D shapes is used in the context of graph matching [Hilaga 2001, Cornea 2005, Siddiqi 2008,
Biasotti 2006].

Existing graph matching methods can be largely classified as Exact and Inexact, based
upon whether they find an exact solution by enforcing a strict one-to-one correspondence or
an approximate correspondence between graph sub-structures. The exact graph matching is
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traditionally known as the Graph Isomorphism. The idea is to seek a one-to-one mapping be-
tween vertex set of two graph, subject to a strict mapping between corresponding edges. Thus,
the graph isomorphism problem reduces to finding a permutation matrix (see Appendix A.1)
between two sets of graph vertices. One can relax this to a sub-graph isomorphism problem
by finding a mapping between vertices of the first graph and the subset of vertices of the sec-
ond graph. This can further be relaxed to maximum common sub-graph problem where one
seeks the largest subgraph in each of the graphs, for which an isomorphism exists. However,
the complexity of the exact graph isomorphism has not yet been demonstrated and rest of the
above problems are NP-complete [Garey 1990]. Therefore, either one finds an exact graph
isomorphism or seeks an approximate solution for the graph matching problem [Cour 2006].

Though there exists a vast amount of literature on graph matching, in this thesis we mainly
focus on spectral framework for solving graph matching problem. In particular, we first intro-
duce the spectral graph isomorphism in this section and extend it to large graphs by introducing
a graph dimensionality reduction technique in the following sections. In later part of the the-
sis, we discuss in detail the inexact graph matching formulations in the context of dense shape
matching in Chapter 7.

2.4.1 Spectral Graph Isomorphism

Let GA and GB be the two undirected weighted graphs with the same number of nodes, n,
and let WA and WB be their adjacency matrices. They are real-symmetric matrices. In the
general case, the number r of distinct eigenvalues of these matrices is smaller than n. The
standard spectral methods only apply to those graphs whose adjacency matrices have n distinct
eigenvalues (each eigenvalue has multiplicity one), which implies that the eigenvalues can be
ordered.

Graph isomorphism [Godsil 2001] can be written as the following minimization problem:

P⋆ = argmin
P
‖WA−PWBP

⊤‖2
F (2.29)

where P is an n×n permutation matrix (see Appendix A.1) with P⋆ as the desired vertex-to-
vertex permutation matrix and ‖•‖F is the Frobenius norm defined by (see Appendix A.2):

‖W‖2
F = 〈W,W〉=

n

∑
i=1

n

∑
j=1

w2
i j = tr(W⊤W) (2.30)

Let:

WA = UAΛAU
⊤
A (2.31)

WB = UBΛBU
⊤
B (2.32)

be the eigen-decompositions of the two matrices with n eigenvalues ΛA = Diag[αi] and ΛB =

Diag[βi] and n orthonormal eigenvectors, the column vectors of UA and UB.
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2.4.2 An Exact Spectral Solution

If there exists a vertex-to-vertex correspondence that makes (2.29) equal to 0, we have:

WA = P⋆WBP
⋆⊤. (2.33)

This implies that the adjacency matrices of the two graphs should have the same eigen-
values. Moreover, if the eigenvalues are non null and, the matrices UA and UB have full rank
and are uniquely defined by their n orthonormal column vectors (which are the eigenvectors
of WA and WB), then αi = βi,∀i, 1 ≤ i ≤ n and ΛA = ΛB. From (2.33) and using the eigen-
decompositions of the two graph matrices we obtain:

ΛA = U⊤A P⋆ŬBΛBŬ
⊤
B P⋆⊤UA = ΛB, (2.34)

where the matrix ŬB is defined by:
ŬB = UBS. (2.35)

Matrix S = Diag[si], with si = ±1, is referred to as a sign matrix with the property S2 = I.
Post multiplication of UB with a sign matrix takes into account the fact that the eigenvectors
(the column vectors of UB) are only defined up to a sign. Finally we obtain the following
permutation matrix:

P⋆ = UBSU⊤A . (2.36)

Therefore, one may notice that there are as many solutions as the cardinality of the set of
matrices Sn, i.e., |Sn| = 2n, and that not all of these solutions correspond to a permutation
matrix. This means that there exist some matrices S⋆ that exactly make P⋆ a permutation
matrix. Hence, all those permutation matrices that satisfy (2.36) are solutions of the exact
graph isomorphism problem. Notice that once the permutation has been estimated, one can
write that the rows of UB can be aligned with the rows of UA:

UA = P⋆UBS
⋆. (2.37)

The rows of UA and of UB can be interpreted as isometric embeddings of the two graph ver-
tices: A vertex vi of GA has as coordinates the ith row of UA. This means that the spectral
graph isomorphism problem becomes a point registration problem, where graph vertices are
represented by points inRn. To conclude, the exact graph isomorphism problem has a spectral
solution based on: (i) the eigen-decomposition of the two graph matrices, (ii) the ordering of
their eigenvalues, and (iii) the choice of a sign for each eigenvector.

2.4.3 The Hoffman-Wielandt Theorem

The Hoffman-Wielandt theorem [Hoffman 1953, Wilkinson 1965] is the fundamental building
block of spectral graph isomorphism. The theorem holds for normal matrices; Here, we restrict
the analysis to real symmetric matrices, although the generalization to Hermitian matrices is
straightforward:
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Theorem 1 (Hoffman and Wielandt) If WA and WB are real-symmetric matrices, and if αi

and βi are their eigenvalues arranged in increasing order, α1 ≤ . . .≤ αi ≤ . . .≤ αn and β1 ≤

. . .≤ βi ≤ . . .≤ βn, then
n

∑
i=1

(αi−βi)
2 ≤ ‖WA−WB‖

2
F . (2.38)

Proof: The proof is derived from [Wilkinson 1970, Horn 1994]. Consider the eigen-
decompositions of matrices WA and WB, (2.31), (2.32). Notice that for the time being we
are free to prescribe the ordering of the eigenvalues αi and βi and hence the ordering of the
column vectors of matrices UA and UB. By combining (2.31) and (2.32) we write:

UAΛAU
⊤
A −UBΛBU

⊤
B = WA−WB (2.39)

or, equivalently:
ΛAU

⊤
A UB−U⊤A UBΛB = U⊤A (WA−WB)UB. (2.40)

By the unitary-invariance of the Frobenius norm (see Appendix A.2 ) and with the notation
Z = U⊤A UB we obtain:

‖ΛAZ−ZΛB‖
2
F = ‖WA−WB‖

2
F , (2.41)

which is equivalent to:
n

∑
i=1

n

∑
j=1

(αi−β j)
2z2

i j = ‖WA−WB‖
2
F . (2.42)

The coefficients xi j = z2
i j can be viewed as the entries of a doubly-stochastic matrix X: xi j ≥

0,∑n
i=1 xi j = 1,∑n

j=1 xi j = 1. Using these properties, we obtain:

n

∑
i=1

n

∑
j=1

(αi−β j)
2z2

i j =
n

∑
i=1

α2
i +

n

∑
j=1

β2
j −2

n

∑
i=1

n

∑
j=1

z2
i jαiβ j

≥
n

∑
i=1

α2
i +

n

∑
j=1

β2
j −2max

Z

{
n

∑
i=1

n

∑
j=1

z2
i jαiβ j

}
. (2.43)

Hence, the minimization of (2.42) is equivalent to the maximization of the last term in
(2.43). We can modify our maximization problem to admit all the doubly-stochastic matrices.
In this way, we seek an extremum over a convex compact set. The maximum over this compact
set is larger than or equal to our maximum:

max
Z∈On

{
n

∑
i=1

n

∑
j=1

z2
i jαiβ j

}
≤ max

X∈Dn

{
n

∑
i=1

n

∑
j=1

xi jαiβ j

}
(2.44)

where On is the set of orthogonal matrices and Dn is the set of doubly stochastic matrices (see
Appendix A.1). Let ci j = αiβ j and hence one can write that the right term in the equation
above as the dot-product of two matrices:

〈X,C〉= tr(XC) =
n

∑
i=1

n

∑
j=1

xi jci j. (2.45)
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Figure 2.11: This figure illustrates the maximization of the dot-product 〈X,C〉. The two ma-
trices can be viewed as vectors of dimension n2. Matrix X belongs to a compact convex set
whose extreme points are the permutation matrices P1,P2, . . . ,Pn. Therefore, the projection of
this set (i.e., Dn) onto C has projected permutation matrices at its extremes, namely 〈Pmin,X〉

and 〈Pmax,X〉 in this example.

Therefore, this expression can be interpreted as the projection of X onto C, see Figure 2.11.
The Birkhoff theorem (Appendix A.1) tells us that the set Dn of doubly stochastic matrices is
a compact convex set. We obtain that the extrema (minimum and maximum) of the projection
of X onto C occur at the projections of one of the extreme points of this convex set, which
correspond to permutation matrices. Hence, the maximum of 〈X,C〉 is 〈Pmax,X〉 and we
obtain:

max
X∈Dn

{
n

∑
i=1

n

∑
j=1

xi jαiβ j

}
=

n

∑
i=1

αiβπ(i). (2.46)

By substitution in (2.43) we obtain:

n

∑
i=1

n

∑
j=1

(αi−β j)
2z2

i j ≥
n

∑
i=1

(αi−βπ(i))
2. (2.47)

If the eigenvalues are in increasing order then the permutation that satisfies theorem 2.38 is the
identity matrix, i.e., π(i) = i. Indeed, let’s assume that for some indices k and k + 1 we have:
π(k) = k+1 and π(k+1) = k. Since αk ≤ αk+1 and βk ≤ βk+1, the following inequality holds:

(αk−βk)
2 +(αk+1−βk+1)

2 ≤ (αk−βk+1)
2 +(αk+1−βk)

2 (2.48)

and hence (2.38) holds. �



30 Chapter 2. Mathematical Background

Corollary 1.1 The inequality (2.38) becomes an equality when the eigenvectors of WA are
aligned with the eigenvectors of WB up to a sign ambiguity:

UB = UAS. (2.49)

Proof: Since the minimum of (2.42) is achieved for X = I and since the entries of X are
z2

i j, we have that zii =±1, which corresponds to Z = S. �

Corollary 1.2 If Q is an orthogonal matrix, then

n

∑
i=1

(αi−βi)
2 ≤ ‖WA−QWBQ

⊤‖2
F . (2.50)

Proof: Since the eigen-decomposition of matrix QWBQ
⊤ is (QUB)ΛB(QUB)⊤ and

since it has the same eigenvalues as WB, the inequality (2.50) holds and hence corollary 1.2.
�

These corollaries will be useful in the case of spectral graph matching methods presented
below.

2.4.4 Umeyama’s Method

The exact spectral matching solution presented in Section 2.4.2 finds a permutation matrix
satisfying (2.36). This requires an exhaustive search over the space of all possible 2n matrices.
Umeyama’s method presented in [Umeyama 1988] proposes a relaxed solution to this problem
as outlined below.

Umeyama [Umeyama 1988] addresses the problem of weighted graph matching within
the framework of spectral graph theory. He proposes two methods, the first for undirected
weighted graphs and the second for directed weighted graphs. The adjacency matrix is used
in both cases. Let us consider the case of undirected graphs. The eigenvalues are (possibly
with multiplicities):

WA : α1 ≤ . . .≤ αi ≤ . . .≤ αn (2.51)

WB : β1 ≤ . . .≤ βi ≤ . . .≤ βn. (2.52)

Theorem 2 (Umeyama) If WA and WB are real-symmetric matrices with n distinct eigenval-
ues (that can be ordered), α1 < .. . < αi < .. . < αn and β1 < .. . < βi < .. . < βn, the minimum
of :

J(Q) = ‖WA−QWBQ
⊤‖2

F (2.53)

is achieved for:
Q⋆ = UASU⊤B (2.54)



2.4. Surface Mapping as Graph Matching 31

and hence (2.50) becomes an equality:
n

∑
i=1

(αi−βi)
2 = ‖WA−Q⋆WBQ

⋆⊤‖2
F . (2.55)

Proof: The proof is straightforward. By corollary 1.2, the Hoffman-Wielandt theorem
applies to matrices WA and QWBQ

⊤. By corollary 1.1, the equality (2.55) is achieved for:

Z = U⊤A Q⋆UB = S (2.56)

and hence (2.54) holds. �

Notice that (2.54) can be written as:

UA = Q⋆UBS (2.57)

which is a relaxed version of (2.37): The permutation matrix in the exact isomorphism case is
replaced by an orthogonal matrix.

A Heuristic for Spectral Graph Matching: Let us consider again the exact solution out-
lined in Section 2.4.2. Umeyama suggests a heuristic in order to avoid exhaustive search over
all possible 2n matrices that satisfy (2.36). One may easily notice that:

‖P−UASU⊤B ‖
2
F = 2n−2tr(UAS(PUB)⊤). (2.58)

Using Umeyama’s notations, ŪA = [|ui j|],ŪB = [|vi j|] (the entries of ŪA are the absolute values
of the entries of UA), one may further notice that:

tr(UAS(PUB)⊤) =
n

∑
i=1

n

∑
j=1

s jui jvπ(i) j ≤
n

∑
i=1

n

∑
j=1

|ui j||vπ(i) j|= tr(ŪAŪ
⊤
B P⊤). (2.59)

The minimization of (2.58) is equivalent to the maximization of (2.59) and the maximal
value that can be attained by the latter is n. Using the fact that both UA and UB are orthogonal
matrices, one can easily conclude that:

tr(ŪAŪ
⊤
B P⊤)≤ n. (2.60)

Umeyama concludes that when the two graphs are isomorphic, the optimum permutation ma-

trix maximizes tr(ŪAŪ
⊤
B P⊤) and this can be solved by the Hungarian algorithm [Burkard 2009].

When the two graphs are not exactly isomorphic, theorem 1 and theorem 2 allow us to
relax the permutation matrices to the group of orthogonal matrices. Therefore with similar
arguments as above we obtain:

tr(UASU⊤B Q⊤)≤ tr(ŪAŪ
⊤
B Q⊤)≤ n. (2.61)

The permutation matrix obtained with the Hungarian algorithm can be used as an initial solu-
tion that can then be improved by some hill-climbing or relaxation technique [Umeyama 1988].

The spectral matching solution presented in this section is not directly applicable to large
graphs. In the following sections, we introduce the notion of dimensionality reduction for
graphs, which can lead to a tractable graph matching solution.
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2.5 Manifold Learning

In this section, we introduce the notion of Manifold Learning for dimensionality reduction,
providing a platform for a method (presented in the next section) to perform the dimensionality
reduction of graphs.

Data mining techniques are commonly used in computer vision for analyzing the large
amount of data while performing recognition and classification tasks. However, the majority
of this data consist of different types of datum (or their feature representation) that typically
exists in a high dimensional space, e.g., image data sets with millions of images where each
image can have a feature representation of dimension 103 to 104. This is known as the the
curse of dimensionality and is an important bottleneck for majority of the existing data min-
ing techniques. The intuitive solution is to find a way to reduce the dimensionality of the
input data while keeping the maximum information intact. The idea is to adapt a generative
approach and find a set of latent (hidden) variables by fitting a mathematical model for data
generation. These latent variables are then used for a reduced dimensional data representa-
tion. Among the large number of approaches for dimensionality reduction, we will focus on
methods with assumption that the observed high dimensional data is often much simpler and
typically sampled from a lower dimensional manifold. Thus, a dimensionality reduction task
can be achieved by discovering the underlying lower dimensional manifold embedded in the
higher dimensional Euclidean space. This is also called the Manifold Learning.

Given a set of n data points XD×n = [x1, . . . ,xn] ∈ R
D, we assume that they approximately

lie on a smooth manifold X . The intrinsic dimension of X is d = dim(X ) with d≪D. Let the
desired output (latent) space be a d dimensional space R

d with set of data points represented
as Yd×n = [y1, . . . ,yn]∈R

d . In other words, we hypothesize that X is the image of some latent
variable domain Y ⊂R

d under a smooth mapping Φ : Y 7→R
D. The idea of manifold learning

is to find the low dimensional coordinates yi ∈ Y for the corresponding high dimensional
points xi ∈ X .

Manifold Learning can be largely classified as linear and non-linear methods. The linear
methods try to find a reduced dimensional subspace R

d ⊂ R
D. On the other hand, the non-

linear methods seek a global parametrization of a manifold Y ⊂ R
d . The non-linear methods

can further be divided into purely global methods and methods recovering the global mani-
fold structure from local information. Here, we present an overview of the existing manifold
learning techniques.

2.5.1 Linear Dimensionality Reduction

In this section, we will mainly present two linear dimensionality reduction methods, namely,
the principal component analysis and multi-dimensional scaling.
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2.5.1.1 Principal Component Analysis

The Principal Component Analysis (PCA) is a standard dimensionality reduction technique
in multivariate statistics. The idea is to consider as input a vectorial data and output a new
orthogonal coordinate system representation while capturing most of the variance of the data
set. In particular, PCA can be formulated as the problem of finding a d-dimensional subspace
fitting that approximates the input R

D data in the least square sense. This d-dimensional
subspace uses as its basis, the directions of maximum variance; which boils down to computing
the principal eigenvectors of the covariance matrix of the data. The PCA algorithm from
maximum variance perspective is outlined in Algorithm 1.

Algorithm 1 Principal Component Analysis (PCA)

Input: : X = [x1, . . . ,xn] with xi ∈ R
D.

Output: : A set of orthonormal basis vectors UD×d = [u1, . . . ,ud ] for a d-dimensional sub-
space.

1: Let u ∈ R
D be the 1-dimensional subspace (with uT u = 1), that maximizes the variance

of data X.
2: Project each data point xi to a scalar value uT xi and represent the mean of the projected

data as uT x0.
3: The variance of the projected data can be written as: 1

n ∑n
i=1

(
uT xi−uT x0

)2
= uT ΣXu,

where ΣX = 1
n ∑n

i=1 (xi−x0)
2 is the covariance matrix of input data.

4: Thus, the problem of maximum variance can be stated in terms of Rayleigh quotient (see
Section A.4) as: u∗ = argmaxuuT ΣXu.

5: The solution is the set of eigenvectors of ΣX, i.e., {u1, . . . ,ud} corresponding to the first d
largest eigenvalues {λ1 ≥ ·· · ≥ λd}.

2.5.1.2 Multi-Dimensional Scaling

Multidimensional Scaling (MDS) is a class of linear dimensionality reduction techniques that
are very similar to PCA except that they can act as a coordinate-free techniques that can also
operate on non-vector spaces. The classical MDS uses a matrix of squared distance between
pairs of points (xi,x j) in the data set instead of a covariance matrix that was used in the
PCA. The pairwise distance matrix is a n× n matrix. The algorithm seeks a d-dimensional
Euclidean coordinates for each data point so that the pairwise distance of their Euclidean co-
ordinates match the original pairwise distance as closely as possible, thus formulating it as an
optimization problem. This can be generalized to use a Gram matrix, a dis-similarity matrix,
instead of the pairwise distance matrix, thereby replacing the squared distances with the dot
products and allowing to operate on no-metric spaces.. Existing literature has large number
of several cost functions and different minimization algorithms, proposed in the context of
desired optimization problem, which we will not discuss in detail in this text. However, one
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common optimal solution derives the eigenvectors of the Gram matrix weighted with corre-
sponding eigenvalues as the d-dimensional Euclidean coordinates of data points. Please refer
to [Borg 2005] for a detail discussion on MDS.

One interesting generalization of MDS is known as the generalized multidimensional scal-
ing (GMDS), in which the target space is an arbitrary smooth non-Euclidean space. In case
when the dis-similarities are distances on a surface and the target space is another surface,
GMDS allows finding the minimum-distortion embedding of one surface into another. This
was proposed in the context of finding a surface mapping solution in [Bronstein 2006].

2.5.2 Non-Linear Dimensionality Reduction

The linear dimensionality reduction methods fails when data is sampled from a non-linear
manifold. There exists a class of non-linear methods that assume that data is sampled from a
d-dimensional sub-manifold Y embedded in R

D. Majority of these methods rely on adjacency
graphs that are locally defined on data points. The idea is to define the notion of geodesic
distance between data points as they are assumed to lie on a manifold surface.

The Kernel Trick: The majority of existing non-linear dimensionality reduction methods
boil down to computing the eigen analysis of positive definite matrices that are constructed
by measuring the pairwise dis-similarities/distances between data points. The kernel trick
facilitates the analysis of input data originally sampled from a non-linear space into a high
dimensional (possibly) linear space. The idea is to seek a mapping of data points from non-
linear space into a high dimensional (inner product) space where hopefully, the data is linearly
distributed. However, finding an explicit mapping function can be a tedious task. Instead, the
kernel trick allows one to reinterpret the each entry of a dis-similarity matrix as a dot product
between a pair of data points in the mapped high dimensional (linear) space by the means
of a kernel (function) without actually computing the explicit mapping function. The kernel
function acts as a (non-linear) symmetric real valued function over the pairs of data points,
i.e., given a space X , the kernel function is denoted as:

K : X ×X 7→ R, such that, (xi,x j) 7→K (xi,x j) ∀xi,x j ∈ X⊆ X . (2.62)

We will introduce a kernel function in Chapter 6 while introducing the heat kernel based multi-
scale analysis of 3D shapes. Please refer to [Bishop 2006] for details on kernel trick.

Popular Methods: Here, we briefly mention some popular non-linear dimensionality reduc-
tion methods in manifold learning.

• Kernel PCA

The kernel PCA [Schölkopf 1998b] is an extension of linear PCA method where the
covariance matrix is kernelized with some non-linear kernel function. This allows one
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to interpret the entries of a kernel matrix as the covariance matrix of data points that are
mapped in a high dimensional space where it is assumed to be linearly distributed. This
allows one to perform the non-linear dimensionality reduction of data without explicitly
mapping it to a higher dimensional space, using the kernel trick.

• Isomap

This method was first presented in [Tenenbaum 2000] and is a generalization of the
classical MDS where the pairwise distances were replaced with the geodesic distances
that are commonly computed as the shortest distances on graphs.

• Locally Linear Embedding (LLE)

First introduced in [Roweis 2000], LLE aims at recovering the low dimensional geom-
etry of the data by preserving the local structure of data points. LLE assumes that the
small neighborhood can be approximated by the linear manifolds where the position
of each point can be reconstructed from the weighted linear combination of its nearest
neighbors. This is followed by seeking a low dimensional space that best preserves the
reconstructing weights.

• Laplacian Eigenmaps

Introduced by Belkin [Belkin 2003], the Laplacian Eigenmaps embed the input data
X in a d-dimensional space such that the small neighborhood edges in an adjacency
graphs are preserved. We will discuss this method in detail in the next Chapter 3 where
we introduce the notion of pose-invariant shape representation.

• Hessian Eigenmaps

This method is also known as the Hessian Locally Linear Embedding (HLLE) and was
proposed in [Donoho 2003]. HLLE can be viewed as a practical modification of the Lo-
cally Linear Embedding and in theoretical framework as the modification of the Lapla-
cian Eigenmaps where a quadratic form based on the Hessian is substituted in place of
one based on the Laplacian.

• Diffusion Maps

Diffusion maps, presented in [Coifman 2006], propose to build upon random walk anal-
ysis of similarity graphs and use the random walk matrix as the Gram matrix. This ran-
dom walk matrix can be parametrized by a scale parameter relating to length of paths
in a random walk over the graph. Thus, the diffusion maps provides a scale dependent
embedding of input data in terms of random walk on the similarity graph.

• Heat Kernel Embedding (HKE)

The Heat Kernel Embedding builds upon the classical framework of heat diffusion
on graphs in order to provide a scale parametrized representation of data. The Gram
matrix used here is the heat matrix, which is the fundamental solution of the (heat)-
diffusion equation on graphs. This has been discussed in the context of shape analysis
in [Sun 2009, Ovsjanikov 2010]. We will discuss this method in detail in Chapter 6
while outlining the heat kernel framework for multi-scale shape representation.
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• Local Tangent Space Alignment (LTSA)

LTSA, first proposed in [Zhang 2005], is a non-linear dimensionality reduction method,
which is based on the intuition that when a manifold is correctly unfolded, all of the
tangent hyper-planes to the manifold will become aligned. The method first computes
the tangent space at every point using the d-dimensional principal component analysis
in the local neighborhood and then optimizes to find an embedding that aligns these
tangent spaces.

2.6 Spectral Graph Embedding

The Spectral Graph Embedding is an important concept in the spectral graph theory that al-
lows one to perform a dimensionality reduction of graphs using the discrete Laplace operator
defined on graphs. This is similar to the embedding of the Riemannian manifold surfaces using
the spectrum of the Laplace-Beltrami operator presented in Section 2.3.3.1. The idea is quite
similar to the non-linear dimensionality reduction in manifold learning ( Section 2.5.2) where
a graph can be assumed to be a discretized manifold lying in a lower dimensional subspace.

The dimensionality reduction of graphs is eminent in certain scenarios, e.g., solving the
problem of graph matching (Section 2.4) where one needs to compute the eigen-decomposition
of graph adjacency matrix. For large and sparse graphs, the results of Section 2.4.1 and
Umeyama’s method ( Section 2.4.4) hold only weakly. Indeed, one cannot guarantee that all
the eigenvalues have multiplicity equal to one: the presence of symmetries causes some of
eigenvalues to have an algebraic multiplicity greater than one. Under these circumstances and
due to numerical approximations, it might not be possible to properly order the eigenvalues.
Moreover, for very large graphs with thousands of vertices, it is not practical to compute all
its eigenvalue-eigenvector pairs. This means that one has to devise a method that is able
to perform graph isomorphism using a small set of eigenvalues and eigenvectors. Spectral
dimensionality reduction techniques in spectral graph theory provides such a solution where
one seeks the intrinsic dimension of underlying manifold. The eigen-decomposition of the
graph Laplacian matrices is a popular choice while performing the dimensionality reduction
of graphs [Belkin 2003].

In this section, first we will introduce various graph Laplacian matrices and their spectral
analysis. Next, we will study the spectral properties of the graph Laplacian matrices and derive
a principal component analysis analogy for the Laplacian eigenvectors, yielding a spectral
embedding of the graph. Finally, we will present a heuristic for choosing the size of the graph
embedding.

2.6.1 Graph Laplacian Matrix

We can now build the concept of the graph Laplacian operator. We consider the following
variants of the Laplacian matrix [Chung 1997, von Luxburg 2007, Grady 2010]:
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• The unnormalized Laplacian, which is also referred to as the combinatorial Laplacian
L,

• the normalized Laplacian L̃, and

• the random-walk Laplacian L̃R, also referred to as the discrete Laplace operator.

In more detail, we have:

L = D−W (2.63)

L̃ = D−1/2(D−W)D−1/2 = I−W̃ (2.64)

L̃R = D−1(D−W) = I−W̃R (2.65)

with the following relations between these matrices:

L = D1/2L̃D1/2 = DL̃R (2.66)

L̃ = D−1/2LD−1/2 = D1/2L̃RD
−1/2 (2.67)

L̃R = D−1/2L̃D1/2 = D−1L. (2.68)

2.6.2 The Spectral Theorem

The spectral theorem states the condition under which an operator or a matrix can be diago-
nalized. The theorem states that a linear transformation T applied over vector f can be written
as the linear combination of the eigenvectors of T, each multiplied with corresponding eigen-
value and scalar product of eigenvector with f . The theorem is valid for all self-adjoint linear
transforms (i.e., transforms given by real symmetric and Hermitian matrices) and for more
general class of (complex) normal matrices. Formally, we can write:

T(f) = ∑
i=1:n

λi〈ui, f〉ui, (2.69)

where {ui}i=1:n and {λi}i=1:n denotes the eigenvectors and eigenvalues of the linear operator
or matrix T.

This can be used to diagonalize the Laplacian matrices L, L̃ and L̃R. Let us consider the
case of combinatorial Laplacian matrix L. The spectral theorem suggests that matrix L can be
diagonalized to yield a complete set of orthonormal basis functions {ui}i=1:n such that

〈ui, u j〉 = 0 ∀i 6= j (2.70)

〈ui, u j〉 = 1 ∀i = j. (2.71)

Using these orthonormal basis functions L can be reconstructed as follows:

L = ∑
i=1:n

λiuiu
T
i = UΛUT , (2.72)
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where U represents a matrix of eigenvectors (set as columns), i.e., U = [u1|u2| . . . |un] and Λ

represents a sparse diagonal matrix with eigenvalues as its diagonal entries, i.e., Λ = Diag(λ1, . . . ,λn).

The same analysis is also applicable to the normalized Laplacian matrix L̃. In the case
of random-walk Laplacian, unlike other the two Laplacian matrices, L̃R is not a symmetric
matrix. Hence, the spectral theorem is not directly applicable. In the next section, we will see
how the close relation between spectral analysis of these Laplacian matrices can be used to
compute the eigenvalues and the eigenvectors of L̃R matrix.

2.6.3 Spectral Analysis of the Laplacian Matrices

The spectral analysis finds the eigenvalues for a general square (n× n) matrix M by solving
the characteristic equation:

det(M−λI) = 0, (2.73)

where ’det’ represents matrix determinant and I is a (n×n) identity matrix. The computation of
the determinant yields the characteristic polynomial of the matrix. Thus, Eq. (2.73) becomes a
system of linear equations and its solution is the roots of the characteristic polynomial. These
are also called the eigenvalues of matrix M, typically denoted as λi. For each λ, there exist a
vectors u 6= 0 such that:

(M−λI)u = 0. (2.74)

The set of vectors corresponding to eigenvalues are called eigenvectors of matrix M. Thus,
reorganizing Eq. (2.74), the eigen-decomposition of matrix M can be obtained by solving the
following system of linear equation:

Mu = λu. (2.75)

Hence, the spectral analysis of the combinatorial and normalized Laplacian matrices, de-
rived in Eq. (2.63) and Eq. (2.64), can be written as follows:

Lu = (D−W)u = λu (combinatorial Laplacian), (2.76)

L̃u = D−1/2(D−W)D−1/2u = λu (normalized Laplacian). (2.77)

In the case of non-symmetric random-walk Laplacian in Eq. (2.65), using the substitution
v = D−1/2u in Eq. (2.77), we can write:

L̃Rv = D−1(D−W)v = λv (random walk Laplacian). (2.78)

The linear system can be transformed to a generalized eigenvalue problem as follows:

(D−W)v = λDv (generalized normalized Laplacian). (2.79)

These different eigen-decompositions have been applied for solving different problems in
image processing and data clustering. For example, the normalized Laplacian in Eq. (2.77)
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was thoroughly used in [Chung 1997] for deriving theoretical results and also employed in
normalized cut based image segmentation algorithm proposed in [Shi 2000] as well as in the
spectral clustering algorithm presented in [Ng 2001]. The expression in Eq. (2.78) was used
in [Meila 2001, Qiu 2007] in the context of understanding random walk on graphs. A Lapla-
cian eigenmap algorithm for dimensionality reduction was proposed in [Belkin 2003] using
the generalized Laplacian eigen-decomposition shown in Eq. (2.79).

The explicit relationship among these Laplacians as shown in Eqs. (2.66-2.68) as well as
the intrinsic relationship in their eigen-decompositions in Eqs. (2.76-2.78) is very important
and implies that spectral analysis serve as the basis for developing spectral graph methods for
various graph analysis tasks such as the segmentation, clustering and dimensionality reduction.
Another important fact about these equivalence in the formulation is that they allow us to
use more stable, accurate and efficient eigen-decomposition system, e.g., a more stabilized
generalized Laplacian can be used to compute the eigen-decomposition of the normalized
Laplacian, which in turn, can be used to compute the eigen-decomposition of non-symmetric
random-walk Laplacian. Nevertheless, there can be need for different algorithms for the eigen-
decomposition of different Laplacian matrices depending on their size, sparseness and desired
size of spectrum. It is also important to practice caution when inverting degree matrix when
a graph can have either completely isolated vertex or a very low degree vertex. Please refer
to [Golub 1989] for details on various eigen-decomposition algorithms.

2.6.4 Spectral Properties of Graph Laplacian

The spectral properties of the Laplacian matrices introduced in Section 2.6.1 have been thor-
oughly studied. The three graph Laplacians definitions presented in 2.6.1 are positive semi-
definite matrices yielding non-negative eigenvalues. Spectral properties of these variants are
summarized in Table 2.1. We derive some subtle properties of the combinatorial Laplacian

Laplacian Null space Eigenvalues Eigenvectors
L = UΛU⊤ u1 = 1 0 = λ1 < λ2 ≤ . . .≤ λn u⊤i>11 = 0,u⊤i u j = δi j

L̃ = ŨΓŨ
⊤

ũ1 = D1/21 0 = γ1 < γ2 ≤ . . .≤ γn ũ⊤i>1D
1/21 = 0, ũ⊤i ũ j = δi j

L̃R = TΓT−1, T = D−1/2Ũ t1 = 1 0 = γ1 < γ2 ≤ . . .≤ γn t⊤i>1D1 = 0,t⊤i Dt j = δi j

Table 2.1: Summary of the spectral properties of the Laplacian matrices. Assuming a con-
nected graph, the null eigenvalue (λ1,γ1) has multiplicity one. The first non null eigenvalue
(λ2,γ2) is known as the Fiedler value and its multiplicity is, in general, equal to one. The
associated eigenvector is denoted as the Fiedler vector [Chung 1997].

which will be useful for the task of graph isomorphism. In particular, we show that the eigen-
vectors of the combinatorial Laplacian can be interpreted as the directions of maximum vari-
ance (i.e., the principal components) of the associated embedded graph representation. We
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note that the embeddings of the normalized and random-walk Laplacians have different spec-
tral properties which make them less interesting for graph isomorphism, i.e., Appendix A.3.

The combinatorial Laplacian. Let L = UΛU⊤ be the spectral decomposition of the com-
binatorial Laplacian with UU⊤ = I. Let U be written as:

U =




u11 . . . u1k . . . u1n
...

...
...

un1 . . . unk . . . unn


 (2.80)

Each column of U, uk = (u1k . . .uik . . .unk)
⊤ is an eigenvector associated with the eigenvalue

λk. From the definition of L in Eq. (2.63) (see [Belkin 2003]), one can easily see that λ1 = 0
and that u1 = 1 (a constant vector). Hence, u⊤k≥21 = 0 and by combining this with u⊤k uk = 1,
we derive the following proposition:

Proposition 1 The components of the non-constant eigenvectors of the combinatorial Lapla-
cian satisfy the following constraints:

∑n
i=1 uik = 0, ∀k,2≤ k ≤ n (2.81)

−1 < uik < 1, ∀i,k,1≤ i≤ n,2≤ k ≤ n. (2.82)

Assuming a connected graph, λ1 has multiplicity equal to one [von Luxburg 2007]. Let us
organize the eigenvalues of L in increasing order: 0 = λ1 < λ2 ≤ . . . ≤ λn. We prove the
following proposition [Chung 1997]:

Proposition 2 For all k ≤ n, we have λk ≤ 2maxi(di), where di is the degree of vertex i.

Proof: The largest eigenvalue of L corresponds to the maximization of the Rayleigh
quotient, i.e.,

λn = max
u

u⊤Lu

u⊤u
. (2.83)

We have u⊤Lu = ∑ei j
wi j(ui−u j)

2. From the inequality (a−b)2 ≤ 2(a2 +b2) we obtain:

λn ≤
2∑ei j

wi j(u2
i +u2

j)

∑i u2
i

=
2∑i diu2

i

∑i u2
i

≤ 2max
i

(di). � (2.84)

This ensures an upper limit on the eigenvalues of L. By omitting the zero eigenvalue and
associated eigenvector, we can rewrite L as:

L =
n

∑
k=2

λkuku
⊤
k . (2.85)
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Each entry uik of an eigenvector uk can be interpreted as a real-valued function that projects
a graph vertex vi onto that vector. The mean and variance of the set {uik}

n
i=1 are therefore a

measure of how the graph spreads when projected onto the k-th eigenvector. This is clarified
by the following result:

Proposition 3 For each eigen vector uk, the mean is uk and the variance is σuk , then, for
2≤ k ≤ n, and 1≤ i≤ n we have:

uk =
n

∑
i=1

uik = 0 (2.86)

σuk =
1
n

n

∑
i=1

(uik−uk)
2 =

1
n

(2.87)

Proof: These results can be easily derived from u⊤k≥21 = 0 and u⊤k uk = 1. �

2.6.5 Principal Component Analysis of a Graph Embedding

The Moore-Penrose pseudo-inverse of the Laplacian can be written as:

L† = UΛ−1U⊤

= (Λ−
1
2 U⊤)⊤(Λ−

1
2 U⊤)

= X⊤X (2.88)

where Λ−1 = Diag(0,1/λ2, . . . ,1/λn).

The symmetric semi-definite positive matrix L† is a Gram matrix with the same eigen-
vectors as those of the graph Laplacian. When omitting the null eigenvalue and associated
constant eigenvector, X becomes a (n− 1)× n matrix whose columns are the coordinates of
the graph’s vertices in an embedded (or feature) space, i.e., X = [x1 . . .x j . . .xn]. It is inter-
esting to note that the entries of L† may be viewed as kernel dot-products, or a Gram matrix
[Ham 2004]. The Gram matrix representation allows us to embed the graph in an Euclidean
feature-space where each vertex v j of the graph is a feature point represented as x j.

The left pseudo-inverse operator of the Laplacian L, satisfying L†Lu=u for any u⊥null(L),
is also called the Green function of the heat equation. Under the assumption that the graph is
connected and thus L has an eigenvalue λ1 = 0 with multiplicity 1, we obtain:

L† =
n

∑
k=2

1
λk

uku
⊤
k . (2.89)

The Green function is intimately related to random walks on graphs, and can be interpreted
probabilistically as follows.



42 Chapter 2. Mathematical Background

2.6.5.1 Commute Time Distance (CTD)

Given a Markov chain such that each graph vertex is the state, and the transition from vertex
vi is possible to any adjacent vertex v j ∼ vi with probability wi j/di, the expected number
of steps required to reach vertex v j from vi, called the access or hitting time O(vi,v j). The
expected number of steps in a round trip from vi to v j is called the commute-time distance:
CTD2(vi,v j) = O(vi,v j)+ O(v j,vi). The commute-time distance [Qiu 2007] can be expressed
in terms of the entries of L†:

CTD
2(vi,v j) = Vol(G)(L†(i, i)+L†( j, j)−2L†(i, j))

= Vol(G)

(
n

∑
k=2

1
λk

u2
ik +

n

∑
k=2

1
λk

u2
jk−2

n

∑
k=2

1
λk

uiku jk

)

= Vol(G)
n

∑
k=2

(
λ
−1/2
k (uik−u jk)

)2

= Vol(G)‖xi−x j‖
2, (2.90)

where the volume of the graph, Vol(G) is the sum of the degrees of all the graph vertices. The
CTD function is positive-definite and sub-additive, thus defining a metric between the graph
vertices, referred to as commute-time (or resistance) distance [Grinstead 1998]. The CTD
is inversely related to the number and length of paths connecting two vertices. Unlike the
shortest-path (geodesic) distance, CTD captures the connectivity structure of the graph volume
rather than a single path between the two vertices. The great advantage of the commute-time
distance over the shortest geodesic path is that it is robust to topological changes and therefore
is well suited for characterizing complex graphs. Since the volume is a graph constant, we
obtain:

CTD
2(vi,v j) ∝ ‖xi−x j‖

2. (2.91)

Hence, the Euclidean distance between any two feature points xi and x j is the commute time
distance between the graph vertex vi and v j.

2.6.5.2 Commute Time Graph Embedding

Using the first K non-null eigenvalue-eigenvector pairs of the Laplacian L, the commute-time
embedding [Qiu 2007] of the graph’s nodes corresponds to the column vectors of the K× n
matrix X:

XK×n = Λ
−1/2
K (Un×K)⊤ = [x1 . . .x j . . .xn]. (2.92)

From (2.82) and (2.92) one can easily infer lower and upper bounds for the i-th coordinate
of x j:

−λ
−1/2
i < x ji < λ

−1/2
i . (2.93)
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Figure 2.12: Visualization of the spectral graph embedding of a discrete manifold surface,
originally embedded in R

3, using the commute-time graph embedding.

The last equation implies that the graph embedding stretches along the eigenvectors with a
factor that is inversely proportional to the square root of the eigenvalues. Theorem 3 below,
characterizes the smallest non-null K eigenvalue-eigenvector pairs of L as the directions of
maximum variance (the principal components) of the commute-time embedding.

Theorem 3 The largest eigenvalue-eigenvector pairs of the pseudo-inverse of the combinato-
rial Laplacian matrix are the principal components of the commute-time embedding, i.e., the
points X are zero-centered and have a diagonal covariance matrix.

Proof: Indeed, from (2.86) we obtain a zero-mean while from (2.92) we obtain a diagonal
covariance matrix:

x =
1
n

n

∑
i=1

xi =
1
n
Λ−

1
2




∑n
i=1 ui2

...
∑n

i=1 uik+1


=




0
...
0


 (2.94)

ΣX =
1
n
XX⊤ =

1
n
Λ−

1
2 U⊤UΛ−

1
2 =

1
n
Λ−1 (2.95)

�.

Figure 2.12 visualizes the spectral graph embedding of a discrete surface in R
3 to an Euclidean

space R
K , using the commute time graph embedding. Figure 2.13 shows the projection of the

graph (in this case 3D shape represented as meshes) vertices on eigenvectors.
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(a) (b) (c)

Figure 2.13: This is an illustration of the concept of the PCA of a graph embedding. Here 3D
shape is represented as a (undirected weighted) shape graph and its vertices are projected onto
the second, third and fourth eigenvectors of the graph Laplacian matrix. These eigenvectors
can be viewed as the principal directions of the shape. (see Chapter 3 for details on shape
graph.)

2.6.6 Choosing the Dimension of the Embedding

A direct consequence of theorem 3 is that the embedded graph representation is centered and
the eigenvectors of the combinatorial Laplacian are the directions of maximum variance. The
principal eigenvectors correspond to the eigenvectors associated with the K largest eigenval-
ues of the L†, i.e., λ−1

2 ≥ λ−1
3 ≥ . . .≥ λ−1

K . The variance along vector uk is λ−1
k /n. Therefore,

the total variance can be computed from the trace of the L† matrix :

tr(ΣX) =
1
n

tr(L†). (2.96)

A standard way of choosing the principal components is to use the scree diagram [Berthold 1999]:

θ(K) =
∑K+1

k=2 λ−1
k

∑n
k=2 λ−1

k

. (2.97)

The selection of the first K principal eigenvectors, therefore depends on the spectral fall-off
of the inverses of the eigenvalues. In spectral graph theory, the dimension K is chosen on
the basis of the existence of an eigengap such that λK+2−λK+1 > t with t > 0. In practice,
it is extremely difficult to find such an eigengap, in particular, in the case of sparse graphs
that correspond to a discretized manifold. Instead, we propose to select the dimension of the
embedding in the following way. Notice that Eq. (2.97) can be written as θ(K) = A/(A + B)

with A = ∑K+1
k=2 λ−1

k and B = ∑n
k=K+2 λ−1

k . Moreover, from the fact that the λk’s are arranged in
increasing order, we obtain B≤ (n−K−1)λ−1

K+1. Hence:

θmin ≤ θ(K)≤ 1, (2.98)

with

θmin =
∑K+1

k=2 λ−1
k

∑K
k=2 λ−1

k +(n−K)λ−1
K+1

. (2.99)
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This lower bound can be computed from the K smallest non null eigenvalues of the combina-
torial Laplacian matrix. Hence, one can choose K such that the sum of the first K eigenvalues
of the L† matrix is a good approximation of the total variance, e.g., θmin = 0.95.

2.7 Discrete and Continuous Laplace Operator

We have already introduced the definition of the continuous Laplace operator on n-dimensional
Euclidean space as well as the Laplace-Beltrami operator on Riemannian manifold in Sec-
tion 2.3.3.1. In this section, we will investigate the relationship between these continuous
operators and the discrete Laplacian matrix operator on graphs presented in Section 2.6.1.

In Section 2.4, we cast the problem of surface mapping as graph matching in a discrete
setup by assuming the discrete sampling of the continuous manifold surface to be infinitely
dense. With this notion of discrete sampling of the continuous domain, the relationship be-
tween the continuous Laplace operator on n-dimensional Euclidean space and the discrete
Laplace (matrix) operator is more intuitive. As shown in [Belkin 2003], one can apply the
discrete (combinatorial) Laplacian L in Eq. (2.63) to a discrete function f ∈ R

n defined on a
graph G as:

[Lf](i) = ∑
(i, j)∈E(G)

wi j (f(i)− f( j)) , (2.100)

where wi j are the edge weights in the graph’s adjacency matrix and f(i) are the elements of f .
Similarly, we can write the quadratic form fT Lf as:

fT Lf = 〈f,Lf〉=
1
2 ∑

(i, j)∈E(G)

wi j (f(i)− f( j))2 . (2.101)

Since, in a similarity graph structure wi j ∝ 1
dist(vi,v j)

≈ 1
ε2

i j
, we can write,

fT Lf ≈
1
2 ∑

(i, j)∈E(G)

(
f(i)− f( j)

ε2
i j

)2

. (2.102)

Thus, Eq. (2.102) can be interpreted as the discrete version of quadratic form associated to the
continuous Laplace operator on R

n given in Eq. (2.23).

In the case of continuous Laplace-Beltrami on Riemannian manifold surface, i.e., Eq. (2.25),
the relationship with the discrete Laplace operator is more complex and is an active subject of
study. Some recent work on convergence of various discretizations of the graph Laplacian to a
continuous Laplace-Beltrami operator have produced formal demonstrations that convergence
is likely when the graph sampling grows to infinity [von Luxburg 2007, Belkin 2003].

2.8 Machine Learning Tools

In this section, we introduce two important machine learning tools that we have extensively
used in this document.
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2.8.1 Spectral Clustering (SC)

One important problem in machine learning is to classify or cluster a set of data points. This
is an important notion and is strongly related to the shape segmentation task while considering
a 3D shape as point-cloud. Traditionally, this is achieved by k-means [Lloyd 1982] type of
algorithm that tries to group the data based on their coordinate representation in the original
space. However, this is difficult to achieve when data lies on a non-linear manifold. The
non-linear dimensionality reduction (kernel trick) techniques are typically used to obtain an
embedding of data points where groups or clusters are linearly separable. This idea is directly
related to the graph dimensionality reduction presented in Section 2.6.

Spectral clustering is one such technique where first the data represented as a similarity
graph is embedded in a d-dimensional space using the Laplacian eigenmap method [Belkin 2003]
and then the traditional K-means algorithm is applied to obtain clustering results. Typically,
d is chosen to be equal to k, i.e., the desired number of clusters in the data. This technique is
strongly related to the notion of graph cut and random walk in graph theory. [von Luxburg 2007]
presents a comprehensive discussion of spectral clustering technique. Although, SC has many
variants, we briefly outline a sample method in Algorithm 2.

Algorithm 2 Spectral Clustering (SC)

Input: : Data points X = [x1, . . . ,xn] ∈ R
D, number k of clusters to construct.

Output: : Clusters C1, . . . ,Ck where ∀(1≤ i≤ k) Ci ⊂ X and Ci∩C j = NULL .
1: Construct a similarity graph for X.
2: Compute the eigenvectors {u1, . . . ,uk} ∈R

n of the Laplacian matrix L ∈R
n×n of similar-

ity graph (see Section 2.6.3).
3: Let Un×k = [u1, . . . ,uk] as the embedding of X.
4: Each data point xi can be represented as yi ∈R

k with its coordinates as ith row of U matrix.
5: Apply K-means clustering on points {yi}i=1,...,n ∈ R

k in order to obtain a set of k clusters
{C1, . . . ,CK}.

2.8.2 Expectation Maximization (EM)

The Expectation Maximization (EM) algorithm is an important machine learning tool that
was first proposed in [Dempster 1977]. It enables an efficient iterative computation of the
Maximum Likelihood (ML) estimate in the presence of missing or hidden data. The basic idea
is to fit a generative model to a given data-set and iteratively compute the model parameter(s).
ML estimation allows one to estimate the model parameter(s) for which the observed data is
the most likely. EM algorithm is an iterative two step method where in the first step, i.e., E-step
(or expectation), the missing data is estimated given the observed data and the current estimate
of the model parameters. This is achieved using the conditional expectation, explaining the
choice of terminology. In the second step, i.e., M-step, the likelihood function is maximized
under the assumption that the missing data is known. The estimate of the missing data from the
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E-step is used in place of the actual missing data. EM has assured convergence property since
the algorithm is guaranteed to increase the likelihood at each iteration. However, one critical
issue is the initialization of model parameters in the very first iteration. If the initialization is
too bad then it could lead to a sub-optimal solution as the iterative algorithm might get stuck
in a local maxima.

Please refer to [Borman 2004] for an informative tutorial on the EM algorithm. We will use
a variant of EM algorithm for d-dimensional point-cloud registration presented in [Mateus 2008,
Horaud 2011], while performing the probabilistic dense shape matching as an intermediate
step for segmentation transfer in Chapter 5.

2.9 Conclusion

In this chapter, we have presented ideas from graph theory, differential geometry and combined
them to form the basis of spectral embedding of a graph. In the next chapter, we will discuss
our choice of graph Laplacian embedding for a pose invariant representation of articulated 3D
shapes. In Chapter 6, we will extend the spectral representation in a multi-scale setup using
the notion of heat diffusion on discrete surfaces. In both single and multi-scale representation
and analysis, we will extensively use the mathematical constructs presented in this chapter.

We would like to mention that the content present in this chapter is only to get an overview
and to build a platform for rest of the document. These mathematical constructs were origi-
nated from different well established areas in the research community and hence were largely
borrowed from many popular books and research publications, duly mentioned in the text, as
well as the publicly available knowledge-bases like Wikipedia. We recommend a further study
of the cited publications for a detail understanding of these constructs.
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3.1 Introduction

We have motivated our thesis with a brief discussion in Chapter 1 where we highlighted the
challenges associated with the visual shape data that are commonly used to represent the real-
world articulated 3D shapes and are typically captured with the multi-camera acquisition sys-
tems. As mentioned in the thesis structure, we mainly focus on developing methods for shape
analysis tasks, namely, segmentation and matching that can deal with the challenging visual
shape data. This would require building an appropriate model or representation for these
shapes.

As pointed out in Section 1.1, the computer graphics and geometry processing community
commonly assume that a 3D shape represented by a polygonal mesh corresponds to a discrete
representation of a smooth, continuous, and closed 2D Riemannian manifold surface embed-
ded in a three-dimensional Euclidean space. This enables one to analyze a mesh using the
geometry processing tools. In particular, it enable one to locally characterize a 3D shape, e.g.,
using the first and second fundamental form of the respective parametric representation. This,
for example, is useful while computing an isometric mapping between two shapes by analyz-
ing their first fundamental form or the Gaussian curvature (see Section 2.3.2.1). However, the
situation is more challenging in the domain of computer vision where visual shapes do not
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(a) (b) (c)

Figure 3.1: Visualization of geodesic distances on articulated visual shapes in different poses
and with topological changes.

agree with the Riemannian manifold assumption. In this domain, it is common to use the dis-
crete counterpart of the Riemannian geometry tools, namely, the graph Laplacian to study the
pose-invariant properties of an articulated 3D shape typically represented as the mesh graph.

The Laplace-Beltrami operator on continuous manifold, introduced in the Section 2.3.3.1,
is a key operator in this regard as the theoretical studies in literature suggests that the spectral
analysis of this operator reveals some important information about the shape (see in [Reuter 2006a]).
In addition to this, there exists a direct analogy between the Laplace-Beltrami and Fourier op-
erator on manifold, which has been used in creating geometry-aware basis functions useful for
shape compression tasks [Lévy 2006, Vallet 2008]. The geometric properties of the discrete
eigenfunctions of the Laplace operator have been extensively used in the computer graphics
for mesh editing and processing [Floater 2005, Sorkine 2006]. These eigenfunctions are also
very popular for shape representation and analysis [Jain 2007, Rustamov 2007, Mateus 2008,
Cuzzolin 2008, Elad 2003].

In the same spirit, we propose to use the spectral embedding representation, a widely used
shape modeling technique for pose-invariant shape representation of articulated 3D shapes [Mateus 2008,
Jain 2007]. Such a representation will be useful to find the dense matching as well as a con-
sistent segmentation of the articulated shapes.

The basic idea of a pose-invariant representation is based upon the observation that the
articulated poses of a 3D shape can be obtained by locally deforming the surface at certain
joints in the object. Hence, a local deformation of an articulated shape should preserve the
intrinsic structure or topology of the object, thereby preserving certain properties like distances
on shape surface. The geodesic distance is a commonly used metric for the measurement of
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distances on 3D shapes (see Section 2.3.1.8). In case of discrete mesh representation, the
geodesic distance are typically computed as the shortest path on the underlying graph structure.

Thus, a visual shape obtained by locally deforming the another visual shape should have
a same distribution of pairwise geodesic distances. However, this is not true when the shape
topology is deformed, e.g., if some parts of the shape are merged together. Figure 3.1 visu-
alizes the geodesic distance on visual shapes. In Figure 3.1(a,b), the geodesic distances are
preserved since the deformations are local and the overall topology is the same. However, in
Figure 3.1(c), both legs are merged together causing a topology change and hence the geodesic
distances are not preserved.

In general, the larger parts of shape surface should not be affected by the local deforma-
tions around certain surface patches that are induced by the topology preserving articulated
poses. One can exploit this property by locally characterizing each point on the surface using
a local neighborhood around it. Hence an input shapes represented by the discrete meshes
structure can be treated as a undirected weighted graphs.This graph representation provides
us the notion of local adjacency relationship between neighboring points on the shape, thus
capturing an intrinsic distance measure that is invariant to the pose of the object.

One direct consequence of graph representation is that the shape can be finally mapped to
a higher dimensional intrinsic Hilbert space using the spectral embedding method presented
in Section 2.6. An interesting property of the spectral embedding method is that it preserves
the local distance measure on graphs, as much as possible, while removing the pose specific
information and yielding a pose invariant representation [Mateus 2009].

In this chapter, we summarize the method to obtain a pose invariant 3D shape representa-
tion. First, in Section 3.2, we briefly present the shape graphs representation of a 3D shape.
Second, we outline the spectral embedding method for mapping a shape graph into a pose-
invariant space. Finally, we conclude with a discussion on strengths and weaknesses of the
outlined spectral representation.

3.2 Shape Graphs

Similarity graph is a popular graph based representation for multi-dimensional data in machine
learning. It is an undirected weighted where the original data points that are originally repre-
sented as a d-dimensional point-cloud are taken as the graph vertices and the similarity score
between each pair of data points is encoded with the corresponding (positive) edge weight.

A discrete 3D shape is commonly represented as a point-cloud in three-dimensional space.
In computer graphics, this can be obtained by controlled sampling of parametric surface while
in computer vision it is the typical output of acquisition systems that uses geometric triangula-
tion using the multiple camera images or any depth sensor, e.g., laser sensor. This point-cloud
representation is subsequently processed to obtain a polygonal mesh representation, which is
a common way to represent shapes in the geometry processing. A polygonal mesh is a graph
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Figure 3.2: Visualization of a shape graph. On the left, we show a 3D shape and on
the right a sparse graph representation obtained by the mesh processing toolbox proposed
in [Zaharescu 2011]

representation where each 3D point on the shape surface corresponds to a vertex of the graph
and an edge encodes connectivity between two vertices. In a polygonal mesh, an edge is typi-
cally binary weighted, storing only the connectivity information between a pair of 3D points.
It is common to extend this representation by choosing a custom weighting scheme, which can
encode certain characterization of the local surface, which was originally sampled during the
shape acquisition.

We call such an extended representation as the shape graph. The shape graph is consid-
erably different from the similarity graph structure commonly used in the machine learning
community. A similarity graph has densely connected data points that are globally distributed
in the space as opposed to a shape graph where the point cloud is obtained by sampling a 2D
manifold surface in three-dimensional Euclidean space. Hence, for a shape graph, the connec-
tivity is very sparse and the notion of neighborhood is fairly local. This local neighborhood
around a vertex typically approximates the tangent space of the corresponding point on the
continuous surface (see Section 2.3.1.2).

There are two key steps while constructing a shape graph from an input 3D point-cloud.
The first step involves defining a connectivity structure in the local neighborhood around each
sampled point. The K-Nearest-Neighbors (KNN) graph and ε-graph are two primitive con-
nectivity structures that can be locally defined on a point-cloud. Another choice is to define
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a voxel based representation, which however is a volumetric parametrization of a 3D shape.
However, these primitive structures do not guarantee that the output graph will be a discrete
approximation of the shape surface. Nevertheless, there exists a vast amount of literature on
mesh processing tools that uses advanced techniques to obtain a polygonal mesh representa-
tion from these primitive structures. [Botsch 2010] provides a detailed account on existing
mesh processing tools in the geometry processing. We obtain the initial volumetric shape
representation using the reconstruction method proposed in [Franco 2009] and subsequently
use a mesh processing toolbox proposed in [Zaharescu 2011] to obtain a triangulated mesh
representation for a visual shape.

Figure 3.2 shows an example shape graph. In the second step, we choose the appropriate
weighting scheme for a shape graph. We will defer the discussion on the weighting scheme
until when we introduce the spectral embedding method in the next section.

3.3 Spectral Embedding of Shape Graphs

In Chapter 2, we have already introduced the notion of spectral graph embedding in the context
of graph dimensionality reduction (see Section 2.6). In this section, we will understand the
spectral embedding method in the context of mapping the shape graphs into a pose invariant
subspace.

The Riemannian geometry of surfaces (introduced in Section 2.3.1) and the isometric map-
ping between manifold surfaces (described in Section 2.3.2.1), together imply that any articu-
lated shape assumed to be a compact Riemannian manifold (without boundary, e.g., holes and
open surfaces) can be isometrically mapped to any other similar shape of the same topology
if the distances on two shape surfaces are preserved. This consequently suggests that an ar-
ticulated deformation can be modeled as an isometric transform between surfaces if there is
no stretching involved. Additionally, an interesting set of theorems called Nash Embedding
Theorems (briefly stated in Section 2.3.1.9) allows one to isometrically embed a Riemannian
manifold into a n-dimensional Euclidean space. Thus, two articulated shapes can be mapped
to a common pose invariant space and consequently matched to each other.

Such a mapping of an articulated shape to an isometric embedding space can be achieved
by defining smoothly varying functions that maps nearby points on the original manifold sur-
face to nearby points in the mapped space, thereby preserving the neighboring distances and
hence canceling the effect of articulated poses. However, formalizing the smoothness con-
straint is not straightforward when dealing with a function defined over manifold surfaces.
Nevertheless, Riemannian geometry equipped with construction of tangent space provides a
solution. The Laplace-Beltrami operator introduced in Section 2.3.3.1 is a key operator that
is traditionally used to map a compact Riemannian manifold surface to an isometry invari-
ant space. Such a space is spanned by the smoothly varying eigenfunctions of the Laplace-
Beltrami operator (see [Reuter 2006a]).
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3.3.1 Manifold Embedding using Laplace-Beltrami Operator

The Laplace-Beltrami operator in Eq. (2.25), is an extension of the classical Laplace oper-
ator on Riemannian manifold, and can also be interpreted as a smoothness constraint in the
following setup. Let f : M 7→ R be a real valued function defined on compact Riemannian
manifold M . The function f should be a local geometry preserving function if it maps nearby
points on M to nearby values in R, i.e., f should be a smoothly varying function on M . One
possible way to enforced the smoothness of f is by making sure that it should have a small
gradient ∇M f . Interestingly, the Laplace-Beltrami operator ∆M f is defined as the divergence
of gradient, i.e., the flux of the gradient field or the rate of change of gradient. Thus, the ideal
solution should be:

∆M f = 0, (3.1)

i.e., zero change in the gradient field. This however, can be interpreted as the solution to the
Helmholtz equation given in Eq. (2.28) with λ = 0 and f (x) = δ, ∀x ∈M , i.e., f being a
constant eigenfunction of ∆M f associated to a zero eigenvalue.

Hence, the subsequent eigenvectors of the Laplace-Beltrami operator corresponding to the
(non-zero) increasing eigenvalues can be seen as the family of smoothly varying orthogonal
functions on M . This interpretation will lead to a mapping of manifold surface to an infinite
dimensional space spanned by the orthogonal eigenfunctions of the Laplace-Beltrami operator
as its basis vectors. This space is, by definition, a pose invariant space as the smoothness con-
straint enforced by the Laplace-Beltrami regularization does not seek to preserve the original
embedding of the manifold surface in the ambient three-dimensional Euclidean space.

Nevertheless, such an isometric mapping would preserve the distance on manifold surface
as the smoothness of mapping is enforced. Thus, the geodesic distance dgeodesic(xi,x j) between
two points xi,x j ∈M on an articulated shape representing a compact Riemannian manifold
M ⊂R

2 should be equivalent to the Euclidean distance between their mapped images (yi,y j)∈

Y in the finite dimensional (Euclidean) embedding space Y ⊂ R
n.

Figure 3.3 shows an example of isometric embedding of a visual shape. Such an embed-
ding would (approximately) preserve the geodesic distances on shape surface. The plotted
embedding is indeed a discrete Laplacian embedding of the corresponding shape graph, which
was obtained using the method outlined in the next section.

3.3.2 Shape Graph Embedding using Discrete Laplace Operator

The analysis presented above is applicable to continuous manifold surfaces. The discussion
presented in Section 2.7 concludes that under certain assumptions, the discrete Laplace oper-
ator (introduced in Section 2.6) can be considered as the discrete version of the continuous
Laplace-Beltrami operator on manifold surfaces.

Thus, we can straightforwardly conclude that the eigen-decomposition of a discrete Laplace
operator on graphs can be used to isometrically embed an articulated shape represented by a
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Figure 3.3: Distance preserving isometric embedding of a visual shape. The geodesic distance
dgeodesic(xi,x j) between two points xi,x j ∈M on visual shape is equivalent to the Euclidean
distance between their mapped images (yi,y j) ∈ Y in the embedding space Y ⊂ R

n

shape graph into a pose invariant n-dimensional Euclidean space. However, finding such a
mapping is computationally not feasible for very large shape graphs as it requires the compu-
tation of all the eigenvectors of the graph Laplacian matrix. Nevertheless, we can adapt the
graph dimensionality reduction framework derived in Section 2.6.5 to obtain a d-dimensional
Euclidean embedding of the shape graphs where d is significantly less than n. It is relatively
easy to compute such a reduced dimensional embedding as the graph Laplacian matrices are
very sparse by their definition and there exists efficient algorithms to compute smaller set
of eigenvectors for such matrices. Figure 3.4, shows the sparse structure of a typical graph
Laplacian matrix of a visual shape.

3.3.2.1 The Laplacian Embedding Method

A shape graph represented as G = (V,E,W) can be mapped to a n-dimensional Euclidean
space using an injecting mapping function Φ : V 7→ Y ⊂ R

n. The mapping function Φ should
project the set of graph vertices V to points in a n-dimensional Euclidean (embedding) space
Y such that the geodesic distances on G are preserved. In other words, the mapping should be
isometric. This can be achieved by preserving the local neighborhood structure around each
vertex of G by finding a smooth map that projects nearby points together. In the discrete setup,
let Φ be a set of n discrete functions Φ = [ f1, . . . , fn], each per dimension in the embedding
space such that f : V 7→ R.

For a single dimensional embedding, following quadratic minimization criteria can be
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Figure 3.4: Sparse Laplacian Matrix for shape graph.

formulated for preserving the local neighborhood structure:

f = argmin
f

∑
(i, j)∈E(G)

wi j ( f (i)− f ( j))2 i, j ∈ V wi j ∈W (3.2)

This minimization can be formulated as a least-square optimization task:

minimize
f

1
2

argmin
f

∑
(i, j)∈E(G)

wi j ( f (i)− f ( j))2 = argmin
f

f T L f ,

subject to f T D f = 1,

f T D1 = 0.

(3.3)

where L is the discrete Laplacian matrix and D is the degree matrix of G (see Section 2.6.1).
The first constraint in Eq. (3.3) ensures the removal of arbitrary scaling of f by enforcing the
orthogonality. The second constraint ensures the translation invariance property.

This formulation can be extended to a higher dimensional mapping function Φ as:

Φ =
1
2

argmin
Φ

∑
(i, j)∈E(G)

wi j‖Φ(i)−Φ( j)‖2 (3.4)

= argmin
Φ

tr(ΦT LΦ) (3.5)

The least-square optimization problem in Eq. (3.4) can be minimized by solving for the small-
est eigenvectors of the graph Laplacian matrix L (see appendix A.4). Hence, the eigenvectors
of the graph Laplacian can be used as mapping functions to individually map each shape graph
vertex vi ∈ V to a real value in R.



3.3. Spectral Embedding of Shape Graphs 57

Thus, the mapping function Φ project shape graph vertices to a space spanned by the
n orthogonal eigenvectors of graph Laplacian matrix. This is known as the Laplacian em-
bedding method [Belkin 2003] and summarized in Algorithm 3. It is common to consider a

Algorithm 3 The Laplacian Embedding Method

Input: : A sampled compact Riemannian manifold R
2 ⊃M = [x1, . . . ,xn] represented as the

point-cloud in three-dimensional Euclidean space with xi ∈ R
3.

Output: : A Laplacian embedding R
n ⊃ Y = [y1, . . . ,yn] of M .

1: Build a shape graph G(V,E,W) (see Section 3.2).
2: Define the combinatorial graph Laplacian matrix L = D−W.
3: Solve the eigensystem Lu = λu.
4: Define a mapping function as Φ = [u1, . . . ,un] where each eigenvector of L acts as a dis-

crete function on graph vertices, i.e., V ui : V 7→ R.
5: The mapping function Φ maps each vertex vi ∈ V to a point yi in n-dimensional Euclidean

space such that yi = [ui
1, . . . ,u

i
n]

T where notation ui
j denotes the i-th element of u j vector.

Thus, we can obtain a n-dimensional Laplacian embedding of M as Y = ΦT .

d-dimensional embedding with d ≪ n for very large shape graphs due to computation effi-
ciency, thereby, interpreting the Laplacian embedding method as a dimensionality reduction
tool for shape graphs.

Figure 3.5 shows the one dimensional projection of shape graphs for individual eigenvec-
tors of graph Laplacian (i.e., f : V 7→ R). The pose invariance property of graph Laplacian is
clearly visible as two shape graphs representing two articulated shapes in different poses have
similar projection on corresponding eigenvectors.

Embedding Alignment: We have already seen that an eigenvector of the graph Laplacian
acts as a discrete function and map graph vertices to real values. Thus, in theory two similar
graphs should have their eigenvectors aligned in the sense that they should project respective
graph vertices in a similar fashion. For example, Figure 3.5 shows the projection of two sets
of eigenvectors that are well aligned but there is no theoretical guarantee to achieve such an
alignment. In practice, two sets of eigenvectors are similar only in the sense that the resulting
embedding preserves the geodesic distances on their respective shape graphs. This is because
the Laplacian eigenvectors of the shape graphs might not be reliably ordered and can have
sign ambiguity. The problem of sign ambiguity is inherent to any eigen-decomposition since
the eigen-solvers can compute eigenvectors only up to their sign. Thus, the problem of sign
flip is inevitable in any eigen-solver. The main cause of unreliable ordering of eigenvectors is
two fold. First, the shape graphs corresponding to the visual shapes are not strictly isomorphic
and hence two visual shapes captured using the same articulated object can have different
ordering of eigenvectors due to change in the principal directions of the corresponding shape
graphs. Second, due to inherent symmetry in the structure of a 3D shape, there can be few
Laplacian eigenvectors (i.e. the principal directions of the corresponding shape graph) with
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f2

f3

f4

Figure 3.5: 1D projection of the shape graphs on individual Laplacian eigenvectors visualizing
mapping of the two shape graph to a real line. It is clearly visible that even though the two
shape graphs corresponds to two visual shapes in different poses (and captured by two different
multi-camera acquisition systems), their projection of real line is quite similar. The colors
represent variation in eigenvector elements from negative (blue) to positive (red) values.
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almost the same eigenvalues, thus causing an ordering ambiguity. This can also happen due
to the computational approximation done by the eigen-solvers. Figure 3.6 demonstrates a
scenario where the Laplacian eigenvectors of the two shape graphs are not aligned due to the
existence of both sign flip and ordering problem.

Figure 3.7 visualizes the alignment problem in three-dimensional embeddings of the two
shape graphs. The first three non-null eigenvectors of respective graph Laplacian were used
while plotting these embeddings. It is clearly visible that two embeddings are not aligned due
to sign-flip and ordering problem discussed in the previous paragraph. Here, we would like to
mention that existing spectral shape matching methods cast shape matching as d-dimensional
point-cloud registration problem in the embedding space and hence use different heuristics to
overcome the problem of embedding alignment. For example, the dense probabilistic shape
registration method proposed in [Mateus 2008, Sharma 2012] uses histogram matching to find
an alignment of eigenvectors.

3.3.3 Choice of Laplacian Weighting Scheme

We have introduced the shape graph construction in Section 3.2. The second key step in the
construction of shape graphs is to fill the entries of the weighted adjacency matrix W of a
shape graph with appropriate edge weights. The choice of weighting scheme becomes crucial
while embedding a shape graph using the eigenvectors and eigenvalues of the combinatorial
graph Laplacian matrix L, which in turn is derived using the weighted adjacency matrix as
shown in Eq. (2.63). Thus, choosing a weighting function that has a relevant interpretation
on continuous manifold surface can lead to a better discretization of the continuous Laplace-
Beltrami operator.

The only constraint while constructing a Laplacian matrix is that it should be a positive
semi-definite symmetric matrix. Hence, the edge weights of adjacency matrix must be non-
negative (see Section 2.6.3). The Binary weighting is one simple weighting scheme where wi j

is set to value 1 if there exists an edge between vertices vi and v j and set a zero value if there is
no such edge. The Gaussian weighs and cotangent weights are two popular weighting schemes
in the literature. In this section, we will briefly introduce these two weighting schemes and
provide an abstract discussion on the choice of weighting scheme, supported by the empirical
results computed over a small set of geometrically varying 3D shapes.

3.3.3.1 Cotangent Weights

We have already mentioned that a triangulated mesh may well be viewed as the discretiza-
tion of a continuous Riemannian 2D surface embedded in R3. Several discretizations of the
Laplace-Beltrami operator were proposed in the literature [Wardetzky 2007]. The cotangent
weights [Pinkall 1993, Meyer 2003] is one of the most popular weighing scheme for graphical
shapes. Let vi and v j be two vertices connected by an edge ei j. The cotangent weight of ei j is
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f2

f3

f4

Figure 3.6: 1D projection of the shape graphs on individual Laplacian eigenvectors visualizing
mapping of the two shape graph to a real line. The sign flip and ordering problem of eigenvec-
tors is clearly visible even though two shapes are from the same sequence. This however does
not affect the pose invariant property of the Laplacian embeddings.
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(a)Ben510 [Franco 2009] (b)Flashkick55 [Starck 2007b] (c)Flashkick87 [Starck 2007b]
with 10000 vertices. with 1500 vertices. with 1500 vertices.

Figure 3.7: Three dimensional embedding visualization using the first three non-null Laplacian
eigenvectors of the shape graphs used in Figure 3.5 and 3.6. One can see that three embeddings
are similar (though not aligned) irrespective of the difference in the pose, sampling and data
set of the shapes.

Figure 3.8: Construction of cotangent weights.
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defined by

wi j = cotαi j + cotβi j, (3.6)

where αi j and βi j are the two angles on opposite side of the edge ei j. In [Bronstein 2010c]
it is proposed to combine cotangent weights with vertex degrees taken to be proportional
to the sum of the areas of the triangles sharing the vertex vi. It has been argued that such
a geometry-dependent discretization preserves many important properties of the continuous
Laplace-Beltrami operator and is numerically consistent, i.e., it yields consistent approxima-
tions across various triangulations [Wardetzky 2008]. The drawback of this representation is
that it is well suited only for the Delaunay triangulation. In other cases they are problematic
because the weights either become negative for flat triangles or become infinitely large for
very short edges.

3.3.3.2 Gaussian Weights

In computer vision a weight function that ensures the locality of the operator when vi ≈ v j is
often preferred, where vi,v j ∈ V are the shape graph vertices in R3. The most popular choice
is the Gaussian function typically characterized by a bandwidth parameter σ, namely

ωi j = exp(−‖vi− v j‖
2/2σ2). (3.7)

This choice has been thoroughly justified in the framework of non-linear dimensionality reduc-
tion based on Laplacian eigenmaps [Belkin 2003] and of spectral clustering [von Luxburg 2007].
Variations of these proximity-dependent weights were proved to be valid both for meshed
surfaces [Belkin 2008] and for point-clouds [Belkin 2009]. We note that Gaussian weights
have been successfully used to compute gradients on discrete manifolds in a robust man-
ner [Luo 2009, Mukherjee 2010]. The ability to estimate gradients on meshed surfaces is ex-
tremely useful in the context of surface feature detection and description [Zaharescu 2009].
Graph Laplacians based on Gaussian weights were also used for spectral shape matching
[Jain 2007, Mateus 2008], shape segmentation [Sharma 2010b] and recognition [Mahmoudi 2009].

3.3.3.3 Gaussian v/s Cotangent edge weighting schemes

In this section, we perform an empirical analysis of eigenvalues associated with these weight-
ing schemes. We consider a variety of visual and graphical 3D shapes (shown in Figure 3.9)
while analyzing the behavior of Laplacian eigenvalues with respect to these two weighting
schemes. This includes: (a) A synthetic high resolution human mesh (SHR); (b) A synthetic
low resolution human mesh (SLR); (c) A real unprocessed multi-camera human visual-hull
(RVH); (d) A real processed multi-camera human mesh (RP); (e) A real processed human
mesh with topological changes (RT); (f) A synthetic low resolution wolf mesh (SW); (g) A
synthetic sphere mesh (SS); (h) A synthetic face mesh (SF), which is an open surface.
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(a)Synth. High Resolution (SHR) (b) Synth. Low Resolution (SLR) (c) Real Visual Hull (RVH) (d) Real Processed (RP)

(a)Real Topology-changed (RT) (b) Synth. Sphere (SS) (c) Synth. Wolf (SW) (d) Synth. Face (SF)

Figure 3.9: A collection of graphical and visual 3D shapes with varying geometrical character-
istics. These shapes were used to analyze the eigenvalue distribution for the graph Laplacian
computing using the Gaussian and cotangent weighting schemes.

(a) (b) (c) (d)

Figure 3.10: A visualization of negative cotangent edge weights. A facet is drawn in red if any
of the vertices involved in that facet is also a part of an edge with negative cotangent weight.
While the unprocessed visual shape (Real Visual Hull) shown in (d) has a large number of
negative weights as a consequence of bad meshing, the graphical shapes in (a,b) also posses
many negative cotangent weights due to the presence of flat triangles.
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Figure 3.11: The eigenvalues of many discrete triangulated meshes of a sphere with decreasing
resolution are compared with the theoretical eigenvalues using the Gaussian weighting.

In an attempt to quantify the approximation error of both the weighting schemes, the dis-
crete approximation of corresponding eigenvalues are compared with the continuous eigenval-
ues for the synthetic sphere shape (shown in the Figure 3.9(b)) that are analytically computable
(see [Courant 1962] for details). Figure 3.11 and Figure 3.12 show the plot of Laplacian eigen-
values of many discrete triangulated meshes of a sphere with decreasing resolution, compared
with the theoretical eigenvalues using the Gaussian and cotangent weighting, respectively.
From these figures, it appears that the discrete Laplacian using the cotangent weighting gives
a slightly better approximation for the continuous Laplacian than the discrete Laplacian using
the Gaussian weighting.

However, the cotangent weighting scheme is susceptible to the surface reconstruction noise
in the visual data and also to the triangulation in the synthetic data. We compute cotangent
weights for the shapes shown in Figure 3.9(a)-(d) and plot them with blue and red color in
Figure 3.10 such that a facet is drawn in red if any of the vertices involved in that facet is also
a part of an edge with negative cotangent weight and blue otherwise. In Figure 3.10(d), we
can see that the cotangent weights get negative values for large number of edges due to raw
triangulation, which is not a desirable property for edge weights. For a processed visual shape
with uniform triangulation, we still get some negative weights as shown in the Figure 3.10(c).
It is important to note that the cotangent edge weights can also be largely negative for graphical
shapes, as shown in the Figure 3.10(a,b), due to the presence of large number of flat triangles.

Next, we analyze the distribution of eigenvalues of different shapes together, using the
Gaussian and cotangent weighting schemes. When the meshing is consistent over all the
shapes, the average size of the neighborhood |N | for all the shape graphs is approximately
constant (being 5.960±0.016 for the eight shapes in Figure 3.9). Since the average neighbor-
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Figure 3.12: The eigenvalues of many discrete triangulated meshes of a sphere with decreasing
resolution are compared with the theoretical eigenvalues using the cotangent weighting.
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Figure 3.13: The distribution of the eigenvalues of the unnormalized Laplacian with Gaussian
weighting for different shapes.
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Figure 3.14: The distribution of the eigenvalues of the unnormalized Laplacian with cotangent
weighting for different shapes.

hood size is equal to the average eigenvalue of L,

|N |=
tr(L)

n
=

∑n
k=1 λk

n
, (3.8)

the average eigenvalue is also stable for different geometries as shown in Figure 3.13.

The eigenvalue distribution is, however, not similar for different shapes when the cotangent
weighting is used to compute the combinatorial Laplacian (see Figure 3.14). This is because,
in case of cotangent weights, the average neighborhood size |N |= 127.6±325.9 for the eight
shapes has larger variance.

An important conclusion of this analysis is that the Gaussian weighting scheme is more
appropriate for shape matching, while the cotangent weighting allows shape recognition, based
on the Laplacian spectrum.

3.4 Discussion

In this chapter, we have outlined the pose invariant representation for visual shapes using the
spectral decomposition of corresponding graph Laplacian eigenvectors. We further suggest
the study of [Bruno 2010, Mateus 2009] for building a good understanding of spectral ge-
ometry processing. In this section, we will discuss various important aspects of the spectral
representation outlined in this chapter.

The first important aspect of spectral embedding representation of a shape graph is the con-
vergence of the discrete Laplace operator on graphs to a continuous Laplace-Beltrami operator
on compact manifold. As mentioned in Section 2.7, this is an active area of study focusing
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(a) (b)

(c) (d)

Figure 3.15: Illustration of deformation in spectral representation due to topological changes.
Visual shapes with and without topological changes (a,b) and corresponding Laplacian em-
bedding (c,d) plotted using first three non-null eigenvectors. Two embeddings are no more
similar due to merging of hands.

mainly on problem of graph construction and weighting schemes. The graph construction
problem is easy to handle in case of a shape graph as opposed to the similarity graphs for
machine learning data due to manifold assumption and existence of rich mesh processing lit-
erature. However, the weighting scheme issue is more complicated given the trade-off among
several weighting schemes, claiming a better discretization of the continuous Laplace-Beltrami
operator [Wardetzky 2007]. It is more challenging to deal with these issues in case of visual
shapes where majority of theoretical analysis is not directly applicable.

The second important aspect is the choice of embedding dimension K. As discussed in
Section 2.6.6, the eigen-gap does not exist in case of regularly connected graphs, e.g., shape
graphs, due to absence of strongly and weekly connected cliques in such graphs. This can
be seen in Figure 3.13 and 3.14 where eigenvalues for different geometric shape graphs are
continuously increasing. However, using the PCA interpretation of Laplacian eigenvectors,
we have proposed a scree diagram based method using Eq. (2.99) for the selection of K. The
majority of existing shape analysis methods experimentally choose a value for embedding di-
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mension. In particular, for 3D shape segmentation methods it is commonly assumed to choose
a K equal to the number of desired segments based on perturbation assumption in spectral
clustering [Ng 2001, von Luxburg 2007]. However, there is no theoretical guarantee that this
will yield good segmentation results since the shape graphs are sparse regularly connected
graphs and perturbation analysis of spectral clustering is not applicable for such graphs.

We have proposed an heuristic method to automatically select important eigenvectors for
unsupervised shape segmentation in Chapter 4, thereby bypassing the need to choose K. We
have also extended the scree diagram method to related dimensionality of Laplacian embed-
ding and scale parameter while discussing a multi-scale shape representation in Chapter 6.

Finally, the pose invariance aspect of the spectral representation (discussed in Section 3.3)
has some major limitations. The assumption that articulated shapes are (quasi-)isometric trans-
formations with no stretching is little too restrictive and is valid mainly for graphical shapes.
Visual shapes are more challenging due to the existence of surface noise (causing arbitrary
surface stretching) as well as the topological changes like merging and splitting of the shape
parts and incomplete/partial shapes. Hence, the spectral representation of the visual shapes is
not a perfect solution for pose invariance. Figure 3.15 shows how the spectral embedding of
visual shape deforms due existence of topological changes.

Nevertheless, we have proposed new probabilistic methods, using the machine learning
tools like Gaussian Mixture Model and Expectation Maximization, for shape segmentation
and registration in Chapter 4 and Chapter 5. These methods allows us to handle arbitrary
surface stretching. We have also outlined a heat-kernel framework in Chapter 6 that allows us
to describe and analyze a shape multiple scales. Thus, equipped with heat-kernel framework,
we have proposed a method to analyze the visual shapes at smaller scale in order to address
the problem of topological changes in Chapter 7.
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4.1 Introduction

In this chapter, we address the problem of segmenting 3D shapes into their constituting parts
with emphasis onto complex articulated visual shapes. These shapes are difficult to describe
in terms of their parts, e.g., body parts of humans, because there is a large variability within
the same class of perceptually similar shapes. The reasons for this are numerous: changes in
pose due to large kinematic motions, local deformations, topological changes, etc. We have
already obtained a shape graph representation for articulated 3D shapes in Chapter 3, which
can be viewed as both a 2D discrete Riemannian manifold and a sparse graph. Therefore, the
shape segmentation task can be cast as a graph partitioning problem for which the spectral
clustering (SC) algorithm(s) 2.8.1 provides tractable solution.

We use the geometric properties of the Laplacian eigenvectors introduced in Section 2.6.4
and devise a new spectral clustering algorithm, well suited for the graphs with uniform con-
nectivity, such as the shape graphs. More precisely, we attempt to characterize the one-
dimensional (1D) projections of a graph onto its eigenvectors based upon the nodal domain
theory [Biyikoglu 2007] and to build a practical algorithm using the principal component in-
terpretation of the Laplacian eigenvectors presented in Section 2.6.5. The novel unsupervised
clustering algorithm is applied over a shape graph in order to obtain an unsupervised segmen-
tation of the corresponding visual shape.
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The organization of this chapter is as follows. The literature survey is presented in Sec-
tion 4.1.1 followed by the summary of contributions in Section 4.1.2. Section 4.2 briefly re-
calls few mathematical properties of the graph Laplacian eigenvectors and introduce the nodal
domain theorem along with a strategy to characterize the Laplacian eigenvectors using these
properties. In Section 4.3, we propose a novel clustering algorithm for shape segmentation.
Section 4.4 presents shape segmentation results before concluding the chapter in Section 4.5.

4.1.1 Related Works

Unsupervised segmentation of the articulated shapes is a well investigated problem. Some
popular (non-spectral) unsupervised shape segmentation methods includes: [Shlafman 2002]-
a K-means algorithm applied on mesh facets; [Attene 2006]-a hierarchical clustering algo-
rithm based on fitting primitives like sphere and cylinder; [LAI 2008]-an algorithm with ran-
dom walk on the dual shape graph; [Golovinskiy 2008]-two hierarchical clustering algorithms
using the normalized cut and randomize cut on the shape graph; [Shapira 2008]-a shape di-
ameter function based algorithm. One can find a quantitative comparison of these methods
in [Chen 2009]. These non-spectral methods explicitly analyze the connectivity of the graph
structure in order to find clusters/segments.

On the other hand, the spectral methods are natural choice for pose-invariant segmentation
as they exploit the underlying manifold structure of the shape graphs by embedding the shape
in an isometry invariant space. Spectral clustering methods use the shape graph representations
of the data and solve for graph partitioning within the context of the spectral graph theory.
Early spectral approaches recursively compute the normalized cut [Shi 2000] over the graph
using the first non-null Laplacian eigenvector (also known as the Fiedler vector [Chung 1997])
and are referred to as spectral bi-partitioning (SB) methods. It has been noticed that this does
not guarantee good clusters as the normalized cut is computed recursively, irrespective of the
global structure of the data (see [Belkin 2003]).

Recent spectral methods use the k smallest non-null eigenvectors of the Laplacian matrix
(or one of its variants) to optimally embed the graph onto a k dimensional subspace [Belkin 2003],
and to cluster the embedded graph nodes into k groups. Various grouping strategies can be
used, such as a direct extensions of SB to multiple eigenvectors, i.e., greedy ordering heuris-
tic [Alpert 1999] or a K-means algorithm in the embedding space [Ng 2001, Belkin 2003,
Yu 2003]. In [Zelnik-manor 2004, Nadler 2006], a number of limitations of the spectral clus-
tering method are analyzed, thus focusing on the problems of noise, density and scale varia-
tions in the data. A spectral clustering based temporally consistent shape segmentation method
was proposed in [Cuzzolin 2008].

However, the use of these spectral clustering algorithms cannot be generalized to any type
of graphs. In the case of sparse graphs with uniform connectivity, there is no obvious optimal
graph partitioning solution, namely, the extraction of a number of strongly connected com-
ponents that are only weakly interconnected. Indeed, the Laplacian matrices of such graphs
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cannot be viewed as slightly perturbed matrices of the ideal case (between-cluster similar-
ity is exactly 0) because of the lack of a meaningful eigengap [von Luxburg 2007]. As a
consequence, the estimation of the dimension of the embedding (and hence of the number of
clusters) based on eigenvalue analysis [Chung 1997, Ng 2001, von Luxburg 2007] has several
drawbacks when one deals with sparse graphs whose vertex connectivity is almost uniform
across the graph. First, there is no eigengap in such cases and therefore it is not straight-
forward to estimate the dimension of the spectral embedding in a completely unsupervised
way. Second, the eigenvalues of any large semi-definite positive symmetric matrix are esti-
mated only approximately; this means that it is not easy to study the eigenvalues’ multiplicities
(which play a crucial role in the analysis of the Laplacian eigenvectors [Biyikoglu 2007]) and
that ordering the eigenvectors based on these estimated eigenvalues is not reliable 3.3.2.1. This
has dramatic consequences if one seeks some form of repeatability when clustering similar but
not identical sets of data.

Interestingly, there exists a theoretical framework that extends the Fiedler’s theorem to
the other eigenvectors of a graph, namely, the discrete nodal domain theorem [Davies 2001].
The discrete nodal domain theorem is an extension to the Courant’s nodal domain theorem,
which originally applies to the eigenfunctions of the Laplace-Beltrami operator on continuous
manifolds. Thus, the discrete extension applies to the eigenvectors of the discrete Lapla-
cian operator on graphs. Nodal domains (for details see [Biyikoglu 2007] and Section 4.2
below) provide families of graph segmentations, where there is one segmentation (partition-
ing) for each eigenvector of the adjacency matrix [Powers 1988] or of the Laplacian matrix
[Davies 2001]. This provides a framework for individual-eigenvector analysis.

In practice, each one of the graph’s cluster is present not only in one such segmentation, but
in several segmentations. This means that there is no direct association between clusters and
eigenvectors. Therefore, a clustering algorithm based on these geometric properties should
combine only those eigenvectors that best reveal the graph’s clusters. Empirically, it has been
observed by us and by others [Reuter 2009], that the perceptually prominent clusters of a
graph are revealed by the nodal domains of certain eigenvectors among the ones associated
with the smallest eigenvalues. The nodal domains have been recently discussed in the context
of shape parametrization [Lévy 2006] and of shape segmentation [Reuter 2009]. Although
these authors suggest the idea of selecting a few significant eigenvectors, they do not actually
propose an algorithm for that.

We have empirically observed that more than one perceptually prominent cluster of a graph
is projected onto a single eigenvector, contrary to the assumption of the ideal case in the stan-
dard spectral clustering, where a single eigenvector represents an indicator vector for an indi-
vidual cluster. Therefore, a clustering algorithm based on these geometric properties, should
combine only those eigenvectors that best reveal the graph’s clusters.
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Figure 4.1: A shape graph with approximately 17,000 vertices and with an average of six
edges per vertex is (a) projected onto ten eigenvectors (b) corresponding to the ten smallest
eigenvalues of the normalized Laplacian. Once the vertices with zero eigenfunction values
are removed (see Section 4.3 below) we fit 1D Gaussian mixtures with an optimal BIC cri-
terion (c). The eigenvector values associated with the left most (negative values) and right
most (positive values) components of these Gaussian mixtures are selected as potential cluster
seeds on the extrema of the shape graph. Whenever such a cluster corresponds to a connected
component, the corresponding eigenvector is selected and considered for the embedding. In
this example, the method selected 5 eigenvectors. A 5-dimensional Gaussian mixture with 7
components is fitted to this embedding (d) thus segmenting the shape into 7 clusters (e).

4.1.2 Contributions

In this chapter, we devise a novel unsupervised probabilistic segmentation method, based on
1D Gaussian mixtures with model selection, in order to reveal the structure of the graph pro-
jections on its eigenvectors. Based on this, we show that we are able to select a subset of the set
of eigenvectors corresponding the the smallest eigenvalues of the Laplacian. These selected
eigenvectors are then used to embed the graph. We show how this eigenvector-by-eigenvector
analysis allows to initialize the clustering that is carried out either with a non-parametric
method (hierarchical clustering, K-means) or with Gaussian mixtures. The advantage of the
latter is that it can be combined with the Bayesian information criterion (BIC) [Fraley 2002] to
estimate the optimal number of clusters, when this number cannot be provided by eigenvalue
analysis, i.e., the existence of an eigengap. Figure 4.1 presents a step-by-step outline of the
proposed shape segmentation method.

We apply the proposed segmentation method to the shape graphs representing complex
shapes such as articulated bodies with several protrusions. We seek natural segmentations
of these shapes such that clusters correspond to body parts. We observe that the proposed
algorithm provides perceptually meaningful clustering and that finer body-part details (hands,
legs, thighs, hips, torso, head, etc.) correspond to finer segmentations, i.e. a simple increase in
the number of clusters.

In practice, unlike traditional discrete geometry approaches to mesh processing (which use
the cotangent weights [Pinkall 1993, Lévy 2006, Reuter 2009]), we use the Gaussian weights
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while describing the shape graphs for the visual shapes (for details see Section 3.3.3).

4.2 Analysis of Laplacian Eigenvectors

We have already discussed in detail various properties of the graph Laplacian eigenvectors in
Section 2.6.4. In this section, we present the nodal domain analysis of these eigenvectors and
introduce a heuristic eigenvector selection method for finding a subset of interesting eigenvec-
tors that are for shape segmentation method proposed in the next section.

We can recall few interesting properties of the graph Laplacian eigenvectors from Chap-
ter 2. Assuming the combinatorial Laplacian eigen-decomposition L = UΛU⊤ for a given
shape graph G = (V,E,W) where U = [u1, . . . ,un] and using the proposition 1, we can de-
duce:

∑n
i=1 uik = 0, ∀k,2≤ k ≤ n (4.1)

−1 < uik < 1, ∀i,k,1≤ i≤ n,2≤ k ≤ n. (4.2)

While, the notation uik represents the i-th element of the k-th eigenvector and can also be
written as uk(vi). It emphasizes the fact that an eigenvector is an eigenfunction of L that maps
the vertices of the graph onto an open interval on the real line:

uk : V 7→ ]−1;+1[. (4.3)

Another important property of the graph Laplacian used by the proposed algorithm is the
principal component analysis (PCA) of a graph (see Section 2.6.5). An important implication
of Theorem 3 is that the Laplacian eigenvectors can be interpreted as the principal component
of the respective shape graph or in other words the eigenvectors of the Laplacian matrix L

associated with its smallest non-null eigenvalues can be interpreted as the axes of maximal
variance of the embedded graph.

4.2.1 Nodal Sets and Nodal Domains

Some important properties of the Laplacian eigenvectors stem from the discrete version of
the nodal domain theorem for elliptic operators on manifolds (see [Biyikoglu 2007], Chapter
3). The nodal set of an eigenvector u is the set of graph vertices such that {v j|u(v j) = 0}.
The nodal domains refer to the set of connected components of the complement of the nodal
set, i.e., the components such that {v j|u(v j) 6= 0} and bounded by the nodal sets. However,
on a discrete domain such as a graph representation, an eigenvector can change from positive
to negative values without passing through zero. Therefore one needs to extend the nodal
domain definition to include both strong nodal domains (u(v j) < 0 or u(v j) > 0) as well as
weak nodal domains (u(v j)≤ 0 or u(v j)≥ 0). The number of strong and weak nodal domains
of an eigenvector is bounded by the following theorem (adapted from [Davies 2001]):
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Figure 4.2: Nodal sets and the nodal domains associated with the sixth Laplacian eigenvector
of a 7,000 vertex shape graph. Eigenvector u6 is shown with a blue line. The nodal sets (left)
are shown in green. There are six weak nodal domains in this case (right).

Discrete nodal domain theorem. Let L be the Laplacian matrix of a connected graph with
n vertices. Then any eigenvector ui corresponding to the i-th eigenvalue λi with multiplicity r
has at most i weak nodal domains and i+ r−1 strong nodal domains.

We observe that the properties of the Fiedler vector, i.e., u2 associated with eigenvalue
λ2 > 0 can be viewed as a corollary of this theorem: The multiplicity of λ2 is equal to one
and the Fiedler vector has two weak nodal domains, a positive one and a negative one. This
property has already been used in the past by spectral bi-partitioning. Nevertheless, the design
of an algorithm based on the above theorem, i.e, properties associated with the nodal domains
of the other eigenvectors is not straightforward. Figure 4.2 shows the nodal set (left) and the
nodal domains (right) of eigenvector u6 of a graph Laplacian corresponding to a shape graph
with 7,000 vertices. The nodal set (left) appears on the head as well as on the two arms and
two thighs. In this example, there six nodal domains (right), namely, one positive domain (the
main body) and five negative domains (head, left and right hand, left and right legs). Clearly,
the nodal domains/sets do not provide a perceptually meaningful segmentation.

4.2.2 A Heuristic for Eigenvector Selection

The intuition behind the PCA of a graph is that two different connected components that
are farther away from each other should project onto the positive and negative extremities of
one of the eigenvectors. Given the nodal domains of individual eigenvectors, it is intuitive
to select only those eigenvectors that have a 1D cluster of vertices either at its positive or
at its negative extremity. Notice that not all of the smallest eigenvectors of a graph feature
significant clusters at their extremities. This suggests that the spectral clustering may include
some form of eigenvector selection based on the availability of 1D clusters at their extremities.
This heuristic is also consistent with the fact that the nodal domains have high values at their
centers and low values on their borders (i.e., the nodal sets).



4.3. The Proposed Clustering Algorithm 75

Figure 4.3: 1D Gaussian clusters along the left- and right-side of Laplacian eigenvectors. The
leftmost and the rightmost clusters of each eigenvector are either represented in red, if the cor-
responding vertex set belongs to a single connected component, or in blue, if the corresponding
vertex set belongs to several connected components.

4.3 The Proposed Clustering Algorithm

The PCA interpretation of the Laplacian embedding suggest that the projection of a graph
onto each one of its eigenvectors could provide interesting information about the structure of
the graph associated with the data, as discussed above. Indeed, connected components project
as one-dimensional clusters along the eigenvectors; Moreover, these connected components
are more likely to project towards the extremities of the eigenvectors rather than towards their
centers, i.e., at the lower and upper bounds of the open interval ]− 1;+1[, see Eq. (4.3).
This suggests that one can detect 1D clusters along the eigenvectors, select the leftmost and
rightmost ones, and associate them with the central regions of the nodal domains of a graph
and use them for initialization of the graph clustering, as shown in the Figure 4.3.

Traditionally, the latter is performed by the K-means algorithm, which uses as many clus-
ters as the number of smallest eigenvectors. In the proposed algorithm, we select a set of q
eigenvectors that have identifiable 1D clusters at their extremities and we embed the graph in
the isometric space spanned by these q eigenvectors. Then we perform clustering in this q-
dimensional space. An open issue with the proposed algorithm is how to choose the number of
clusters. For this purpose we combine GMM clustering with an optimality criterion for model
selection, i.e., the Bayesian information criterion (BIC). For practical reasons, we remove the
vertices with nearly zero eigenfunction value, while performing 1-D Gaussian analysis. This
allows GMM to capture small scale clusters along the extremities of an eigenvector.

Consequently, we suggest an algorithm that first performs 1D clustering along the p small-
est eigenvectors. Second, it detects clusters found at the extremities of these vectors. Third,
it performs a simple connectivity analysis in order to determine whether each one of these
extremity-clusters belong to a single connected component, i.e., belongs to a single nodal do-
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main. This allows us to select a subset of q≤ p eigenvectors that are well suited to embed the
graph. Finally we fit a q-dimensional Gaussian mixture to the embedded data and we apply an
optimality criterion for model selection. This yields the algorithm outlined below.

Clustering algorithm:

1. Compute the first p non null eigenvectors of the graph Laplacian, [u2, . . . ,up+1].

2. For each eigenvector ui:

(a) Remove the vertices with eigenfunction value close to zero.

(b) Perform 1D clustering using GMM with optimal model selection.

(c) Choose the outer clusters, i.e., the leftmost one and the rightmost ones.

3. Perform connectivity analysis of all the vertex sets associated with the outer clusters,
thus providing an embedding of size q≤ p.

4. Embed the graph in the space spanned by the selected eigenvectors and fit a q-dimensional
GMM. Select the number of clusters based on BIC.

The main differences between the proposed algorithm and the standard spectral clustering are
followings. The size of the embedding is not governed any more by the detection of an eigen-
gap. Instead, 1D GMM allows a completely unsupervised selection of a set of eigenvectors
well suited to embed the graph. The K-means clustering is replaced with fitting the GMM with
model selection. Thus, instead of the Euclidean distance metric used in the K-means, we use
the Mahalanobis distance metric while fitting GMM to data.

4.4 3D Shape Segmentation Results

We illustrate the segmentation results obtained with the unsupervised method developed in
this chapter and applied to the shape graphs representing 3D articulated objects. Such shape
graphs are by definition, very sparse and with regular local connectivity. Hence, it is desired
that the clusters should correspond to the object parts, protrusions (hands, legs, head) as well
as the torso and hips.

We obtain results on the shape graphs representing the visual shapes that are more chal-
lenging as compared to most of the graphical shapes. We compare the results of proposed
method with the standard spectral clustering approach presented in [Ng 2001]. However, the
proposed algorithm was unable to find an optimal BIC value for deciding the number of com-
ponents, i.e., k in selected subspace. This is because the BIC curve was observed to be contin-
uously increasing (see Figure 4.4), thereby suggesting the non-existence of cluster structure in
the regularly connected shape graphs. We tried different values for k and here we show results
with k = 5,7,9,11,13.
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Figure 4.4: BIC plot as a function of number of components (k) for the shape shown in Fig-
ure 4.5.

(a) k=5 (b) k=7 (c) k=9 (d) k=11 (e) k=13 (f) k=15

Figure 4.5: Segmentation results obtained with the graphs of an articulated shape and with
different values of k. Colors encode different clusters. But the coloring is not the same for all
the segmentations. The top row shows the segmentation obtained with the standard spectral
clustering. The bottom row shows the results obtained with the proposed algorithm.
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Figure 4.6: The figure shows how standard and proposed clustering method splits an articu-
lated visual. In the first row, the segmentation obtained by the standard approach segments the
torso vertically while the segmentation obtained by the proposed method, shown in the bottom
row, segments the shape into perceptually meaningful body parts. Here we choose k = 11.

.

(a) (b) (c) (d) (e) (f) (g)

Figure 4.7: Segmentation results obtain with the proposed method over different articulated
visual shapes with k = 7. Here the different colors are used to represent different parts of the
shape. But this coloring is not part-wise consistent over different poses and subjects.
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(a) (b) (c) (d) (e) (f) (g)

Figure 4.8: Segmentation results obtain with the proposed method over different visual shapes
with k = 11. Notice that as the number of clusters is increased from 7 to 11, we still obtain a
segmentation in terms of semantically and perceptually meaningful parts.

In case of standard spectral clustering implementation, we use the k-dimensional subspace
while finding k segments. In the proposed method, we consider a set of p = 10 eigenvectors
for selecting a subset of eigenvectors, independent of the value of k. The average dimension of
our selected subspace was 5. In the examples shown here, the coloring of identified segments
is not consistent over the individual images. Nevertheless, we can still easily observe the
consistency of our results w.r.t. segment boundaries.

Figure 4.5 compares our results with the standard approach. Each column of the figure
represents segmentation for an human articulated 3D shape with with different values of k.
The first row of the figure corresponds to segmentations obtained by the standard spectral
clustering approach, which applies K-means to the embedding defined by the first k non-
null eigenvectors. The second row presents the results of the proposed method. In column
Figure 4.5(a),(b) the standard approach completely failed in assigning distinct parts with same
label color, while in columns (c-d) the segmentation results by the proposed method are more
consistent and perceptually meaningful.

Figure 4.6 shows a comparison of the segmentation results by the standard and proposed
method at k = 11. Here, we can see that the proposed method segments the shape graph
into perceptually meaningful parts (working with 5-dimensional embeddings in most of the
examples shown here) as compared to the standard approach (which uses k dimensional space).

One possible explanation is that the standard SC method uses Euclidean distance met-
ric in K-means, while the proposed method uses Gaussian mixture modeling, which in turn,
uses the Mahalanobis distance metric. Although the Gaussian assumption for the embedded
shape graph coordinates is not completely true, still the GMM equipped with the Mahalanobis
distance is more appropriate to model elongated shapes in embedded space.

In Figure 4.7, we present the segmentation results with the proposed method on visual
shapes with different articulated poses, with subject variation, with no vertex correspondences
and with k = 7. In the last column 4.7(g) we have shown a result on a difficult topology: a
visual shape having topological change, i.e., in this example the merging of hand with torso.
Although the proposed method, which uses the Laplacian eigenvectors is not completely ro-
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bust to such large topological changes (see Section 3.4), we are still able to get consistent
segmentation results, except locally for the regions that are directly involved in the topology
change.

In Figure 4.8, we present the segmentation results on different articulated visual shapes
with k = 11. The first five examples involve shapes taken from the flashkick sequence [Starck 2007b],
with an average of 1500 vertices. The last pair of results correspond to the shapes of the Ben
data sequence [Franco 2009] with (approx.) 17000 vertices.

We use the implementation provided by MCLUST library in R [Fraley 2006] for the pur-
pose of both 1D and multidimensional Gaussian fitting.

4.5 Conclusion

A novel spectral clustering algorithm based on a detailed analysis of geometric properties of
the Laplacian eigenvectors has been proposed in this chapter. More specifically, we devised an
unsupervised probabilistic method, based on Gaussian mixtures with model selection, which
reveals the nodal-domain structure of each eigenvector. This enables us to select a subset of
eigenvectors among the smallest eigenvectors of a graph, to embed the graph in the space
spanned by this selection, and to cluster the graph’s vertices using a multidimensional GMM
with model selection. When applied to shape graphs corresponding to articulated objects, such
as humans, our method segments the latter into perceptually meaningful parts.

Nevertheless, the unsupervised segmentation is a difficult task since the segmentation it-
self is inherently a subjective task. Though, here we characterize individual eigenvectors based
upon how they project a shape graph, in order to find a subspace that separately project dif-
ferent shape protrusions, making it suitable for the spectral clustering technique. However,
in case of visual shapes, there is no guarantee that proposed algorithm will always provide
a coherent and meaningful segmentation on similar shapes. This is due to the data driven
nature of the algorithm, which can easily fail to handle the challenges associated with visual
shapes, e.g., the topological changes, variability in the sampling and variation in graph con-
struction techniques. To overcome these problems, we propose a new semi-supervised shape
segmentation method in the next chapter.



CHAPTER 5

Semi-supervised 3D Shape

Segmentation

Contents

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.1.1 Literature Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.2 Shape Graph Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.3 Propagating Pairwise Constraints . . . . . . . . . . . . . . . . . . . . . . . 86

5.4 Shape Segmentation via Probabilistic Label Transfer . . . . . . . . . . . . 89

5.5 Experiments & Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.1 Introduction

We have already introduced an unsupervised 3D shape segmentation method in Chapter 4.
However, we realized that the segmentation task is very subjective in nature and a com-
pletely unsupervised solution can lead to undesired segmentation results. The spectral cluster-
ing based data-driven shape segmentation solution presented in the previous chapter provides
some consistent shape segmentation result for a visual shape represented by the shape graph.
Nevertheless, the unsupervised spectral clustering algorithms will not always yield satisfac-
tory shape segmentation results for the following reasons: Distances between vertices are only
locally Euclidean (manifold structure), the graph has bounded connectivity (sparseness), and
the number of edges meeting at each vertex is almost the same through the graph (regular
connectivity). Manifoldness will exclude methods that need a fully-connected affinity matrix.
While the sparseness makes the shape graphs a good candidates for the Laplacian embedding
[Belkin 2003, Spielman 2007], the usual spectral clustering assumptions do not hold in the
case of regular connectivity. First, the Laplacian matrix of a shape graph cannot be viewed
as a slightly perturbed version of the ideal case1, namely, a number of strongly connected

1In the ideal case the between-cluster similarity cost is exactly 0.
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(a) (b) (c) (d) (e)

Figure 5.1: First stage: Constrained spectral clustering (CSC), which takes as input a shape
graph together with a sparse set of must-link (dashed lines) and cannot-link (full lines) con-
straints (a). These constraints are propagated using the commute-time distance (b). Spectral
clustering is applied to a modified graph Laplacian (c). Second stage: Probabilistic label
transfer (PLT). Shape segmentation is performed via a vertex-to-vertex matching (d) and prob-
abilistic label transfer (e).

components that are only weakly interconnected [von Luxburg 2007]. Second, there is no
eigengap and hence there is no simple way to determine the number of clusters. Third, the
eigenvectors associated with the smallest non-null eigenvalues cannot be viewed as the re-
laxed indicator vectors [von Luxburg 2007]. Thus, a completely data-driven method can never
guarantee meaningful and consistent segmentation/clustering results on visual shapes. Hence,
we focus on a semi-supervised setup for shape segmentation task. In this chapter, we pro-
pose a learning approach to shape segmentation via a two-stage method, see an overview of
the proposed method in Figure 5.1. First we introduce a new constrained spectral clustering
(CSC) algorithm, which takes as input a shape graph Gtr from a training set. Gtr contains
unlabeled vertices as well as a set of must-link and cannot-link constraints between pairs of
vertices, Figure 5.1-(a). These constraints are propagated, using the unnormalized Laplacian
embedding and the commute-time distance (CTD) such that the edge-weights corresponding
to within-cluster connectivity’s are strengthened while those corresponding to between-cluster
connectivity’s are weakened, Figure 5.1-(b). This modified embedding yields improved shape
segmentation results than the initial one, e.g., Figure 5.1-(c), because it better fits into the
theoretical requirements of spectral clustering [von Luxburg 2007].

Second, we consider shape alignment based on vertex-to-vertex graph matching as a way
to probabilistically transfer labels from a training-set of segmented shapes to a test-set of
unsegmented ones. We consider a shape graph Gtest from a test set. The segmentation of Gtest

is carried out via a new probabilistic label transfer (PLT) method that computes a point-to-
point mapping between the embedding of Gtr and Gtest, e.g., Figure 5.1-(d). This completely
unsupervised matching is based on [Mateus 2008, Horaud 2011] and allows to transfer labels
from a segmented shape to an unsegmented one. Consequently, the vertices of Gtest can be
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classified using the segmentation trained with Gtr, Figure 5.1-(e). While the spectral graph
matching is appealing, it adds an extra difficulty because of the ambiguity in the definition of
spectral embeddings up to switching between eigenvectors corresponding to eigenvalues with
multiplicity and changes in their sign [Mateus 2008, Bronstein 2010b]. This is particularly
critical in the presence of symmetric shapes [Ovsjanikov 2008].

The structure of this chapter is as follows. In Section 5.1.1, a brief survey of the re-
lated methods in the literature is presented. This is followed by chapter contributions in Sec-
tion 5.1.2. In the next Section 5.2, we introduce the notion of modified Laplacian embedding.
Section 5.3 introduces the novel constraint spectral clustering method, which uses modified
Laplacian embedding obtained with constraints propagation. In the following Section 5.4, we
outline the shape segmentation method using the output of the CSC and the probabilistic label
transfer algorithm. Finally, we present the experimental results and comparison with existing
methods in Section 5.5, followed by the concluding remarks in Section 5.6.

5.1.1 Literature Survey

For the reasons already mentioned in the introduction, the results of simple spectral clus-
tering (SC) are unsatisfactory [von Luxburg 2007]. Therefore, more recent methods, such
as [Reuter 2010] and [Liu 2007], also take the topological features of a shape in its embedded
space into account and can achieve this way impressive segmentation results. However, these
methods do not provide intuitive means to include constraints in a semi-supervised framework.

Regarding semi-supervised spectral methods, we distinguish between semi-supervised and
constrained spectral clustering methods: With semi-supervised spectral methods, we consider
algorithms, which attempt to find good partitions of the data given partial labels. In [Szummer 2002]
the labeled data information is propagated to nearby unlabeled data using a probabilistic
label diffusion process, which needs an extra time parameter that must be specified in ad-
vance [Coifman 2006, Qiu 2007, Bronstein 2010b]. In [Belkin 2004] the labeled data are used
to learn a classifier that is then used to sort the unlabeled data. These methods work reason-
ably well if there are sufficient labeled data or if the data can be naturally split into clusters.
Furthermore, these methods were only applied to synthetic “toy” data and their extension to
graphs that represent shapes may not be straightforward.

Constrained clustering methods use prior information under the form of pairwise must-
link and cannot-link constraints, and were first introduced in conjunction with constrained
K-means [Wagstaff 2001]. Subsequently, a number of solutions were proposed that consist
in learning a distance metric that takes into account the pairwise relationships; This generally
leads to convex optimization [Xing 2002, Bilenko 2004]. Since K-means is a ubiquitous post-
processing step with almost any SC technique, it is tempting to replace it with constrained
K-means. However, this does not take full advantage of the graph structure of the data where
edges naturally encode pairwise relationships. Recently, metric learning has been extended
to constrained spectral clustering leading to quadratic programming [Li 2009]. The semi-
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supervised kernel K-means method [Kulis 2009] incorporates constraints by adding reward
and penalty terms to the cost function to be minimized.

Another way to incorporate constraints into spectral methods is to modify the affinity
matrix of a graph using a simple rule: Edges between must-link vertex-pairs are set to 1 and
edges between cannot-link pairs are set to 0 [Kamvar 2003]. Despite its simplicity, this method
is not easily extendable to our case due to graph sparsity: one has to add new edges (with value
1) and to remove some other edges. This will modify the graph’s topology and hence it will
be difficult to use the segmentation learned on one shape in order to segment another shape.

All methods described above need a large number of constraints to work well, which is
a major drawback, as it is desirable to work with a small set of sparse constraints. We note
that the issue of constraint propagation is not well studied: The transitivity property of the
must-link relationship has already been explored [Yu 2004] but this cannot be used with the
cannot-link relationship, which is not transitive.

5.1.2 Contributions

This chapter has two main contributions: 1) A new constrained spectral clustering method that
uses the unnormalized Laplacian embedding to propagate pairwise constraints and a modi-
fied Laplacian embedding to cluster the data; 2) A new shape segmentation method based on
spectral graph matching and on a novel probabilistic label-transfer process.

We exploit the properties of the unnormalized graph Laplacian presented in Section 2.6.4,
which embeds the graph into an isometric space armed with a metric, namely the Euclidean
commute-time distance (CTD) (see Section 2.6.5.1). Unlike the diffusion maps that are parametrized
by a discrete time parameter, which acts as a scale, [Coifman 2006], the CTD reflects the av-
erage connectivity of two graph vertices: All possible paths of all lengths. We build on the
idea of modifying the weighted adjacency matrix of a graph using instance level constraints
on vertex-pairs [Kamvar 2003]. We provide an explicit constraint propagation method that
uses the Euclidean CTD to densify must-link and cannot-link relationships within small vol-
umes lying between constrained data pairs. We show that the modified weighted adjacency
matrix thus obtained can be used to construct a modified Laplacian. The latter respects the
topology of the initial graph but with a distinct geometric structure that have the presence of
dense graph lumps, which is a direct consequence of the constraint propagation process: This
makes it particularly well suited for clustering.

We introduce a shape segmentation method based on a learn, align, transfer, and classify
paradigm. This introduces an important innovation, namely that one can perform the train-
ing on one data-set and then classify a completely different data-set on the premise that the
two sets are approximately isomorphic. Our probabilistic label transfer algorithm is robust to
topological noise as we consider dense soft correspondences between two shapes.

We compare our CSC algorithm with several other methods recently proposed in the lit-
erature, and we evaluate it against ground-truth segmentations of both graphical and visual
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shapes. We note that the existing CSC methods have not been applied to articulated shapes,
which are rather complex discrete Riemannian manifolds. Visual shapes gathered with scan-
ners and cameras are very challenging data-set. As already mentioned, these manifold data
are very difficult to cluster due to the regularity of the associated graph structure.

5.2 Shape Graph Embeddings

We have already introduced various properties of graph Laplacian in Section 2.6.4. In this
section, first we recall some important theoretical results derived in Chapter 2. Second, we
introduce the notion of modified Laplacian embedding Given a graph G = (V,E,W), let edge
weights wi j ∈W for two neighboring vertices in V be the Gaussian weights i.e, Eq. (3.7).
Thus, without loss of generality, we can assume that 0 < wmin ≤wi j ≤wmax ≤ 1, since the cor-
responding two vertices vi,v j ∈ V are typically close neighbors on shape graphs representing
a discrete Riemannian surface.

The L-embedding: The commute-time embedding representation introduced in Section 2.6.5.2
allow us to isometrically embed the graph in a K-dimensional Euclidean feature space spanned
by the first non-null eigenvectors of the graph Laplacian matrix L. Let a shape graph G has a
commute-time embedding represented as:

XK×n = Λ
−1/2
K (Un×K)⊤ = [x1 . . .x j . . .xn]. (5.1)

The Euclidean embedding X is named after the associated commute-time metric introduced in
Section 2.6.5.1, which allows to compute the average connectivity between two graph vertices
vi,v j ∈ V by simply computing the Euclidean distance between their images xi,x j ∈ X.

From the orthonormality of the eigenvectors and from Eq. (2.86), we obtain following
bound on eigenvector elements:

−λ
−1/2
i < ui(v j) < λ

−1/2
i , ∀ j,1≤ j ≤ n (5.2)

Using Eq. (5.2) and Eq. (5.1), we can easily derive bounds on embedding coordinates. The
lower and upper bounds for the i-th coordinate of x j are (reproduced from Eq. (2.93):

−λ
−1/2
i < x ji < λ

−1/2
i . (5.3)

In this chapter, we call the commute-time embedding X as L-embedding.

The L̂-embedding: So far we have described the properties of the spectral embeddings,
which correspond to the graphs that contain only unlabeled vertices. As it will be explained
in the next section, the presence of pairwise constraints could lead to a modified Laplacian
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embedding and in this paragraph we describe the rationale of this modified spectral represen-
tation. We suppose that pairwise constraints are provided and we consider one such vertex-
pair. Two situations can occur: (i) the two vertices are adjacent or, more generally, (ii) the
two vertices are connected by one or several graph paths. While the former situation leads to
simply modifying the edge weights of the corresponding pairs, the latter is more problematic
to implement because it involves some form of constraint propagation and it constitutes the
topic of Section 5.3. To summarize, the presence of constraints leads to modifying some of the
edge weights in the graph. We denote the modified adjacency matrix with Ŵ. We also obtain
a modified degree matrix D̂ and a modified unnormalized Laplacian L̂:

L̂ = D̂−Ŵ (5.4)

This leads to modified Euclidean coordinates:

X̂ = Λ̂−1/2Û
⊤

= [x̂1 . . . x̂ j . . . x̂n] (5.5)

The initial graph can therefore be represented with two different embeddings, the exact geom-
etry of the embedded space depending on the edge weights. Notice, that there is a one-to-one
correspondence between the columns of X and of X̂.

5.3 Propagating Pairwise Constraints

In a constrained clustering task instance-level constraints are available. In practice, it is con-
venient to be able to cope with a sparse set of constraints. The counterpart is that they are
not easily exploitable: propagating these constraints over a manifold (or more generally over
a graph) is problematic. In this section, we describe a constraint propagation method that
uses the L-embedding and the associated Euclidean commute-time distance (CTD). As al-
ready mentioned, must-link and cannot-link constraints were successfully incorporated in sev-
eral variant of the K-means algorithm [Wagstaff 2001, Xing 2002, Bilenko 2004]. However,
these methods did not incorporate constraint propagation. Rather than modifying the K-means
step of spectral clustering, we incorporate a constraint-propagation process directly into the
L-embedding, thus fully exploiting the properties outlined in the previous section.

Consider a subset of the set of graph vertices S = {v̄i},S ⊂ V from which we build two
sets of constraints: A must-set M ⊂ S ×S and a cannot-set C ⊂ S ×S . Vertex pairs from the
must-set should be assigned to the same cluster while vertex pairs from the cannot-set should
be assigned to different clusters. Notice that the cardinality of these sets is independent of the
final number of clusters. Also, it is necessary neither to provide must links for all the clusters,
nor to provide cannot links across all cluster pairs. A straightforward strategy for enforcing
these constraints consists in modifying the weights wi j associated with adjacent vertex-pairs
that belong either to M or to C such that wi j is replaced with w̃i j = 1 if (v̄i, v̄ j)∈M and w̃i j = ε

if (v̄i, v̄ j) ∈ C , where ε is a small positive number. We recall that 0 < wmin ≤ wi j ≤ wmax ≤ 1.
Notice that for graphs corresponding to regular meshes, the edge-weight variability is small.
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Figure 5.2: Propagating constraints. (a): Constraint placement onto the initial graph, two
must-links (dashed lines) and one cannot-link; (b): The L-embedding used for constraint prop-
agation. (c): The propagated constraints are shown on the graph. (d): The new embedding
obtained with the modified Laplacian L̂.

Since the set S is composed of sparsely distributed vertices, the pairs (v̄i, v̄ j) do not nec-
essarily correspond to adjacent vertices. Hence, one has to propagate the initial must-link
and cannot-link constraints to nearby vertex pairs. We propose to use the commute-time dis-
tance (CTD) already mentioned. The CTD introduced in 2.6.5.1 is a well known quantity in
Markov chains [Grinstead 1998]. For undirected graphs, it corresponds to the average num-
ber of (weighted) edges that it takes, starting at vertex vi, to randomly reach vertex v j for the
first time and go back. The CTD has the interesting property that it decreases as the number
of paths connecting the two nodes increases and when the lengths of the paths decrease. We
prefer the CTD to the shortest-path geodesic distance in the graph because it captures the con-
nectivity structure of a small graph volume rather than a single path between two vertices. The
CTD is the integral of the diffusion distances over all times. Hence, unlike the latter, the former
does not need the free parameter t to be specified [Coifman 2006, Qiu 2007, Bronstein 2010b].
Indeed, the scale parameter introduces an additional difficulty because different vertex-pairs
may need to be processed at different scales.

The commute-time distance (Section 2.6.5.1) between two vertices is an Euclidean metric
and it can be written in closed form using the L-embedding, i.e., Eq. (5.1):

d2
CTD(vi,v j) = ‖xi−x j‖

2 (5.6)

The CTD will allow us to propagate must-link and cannot-link constraints within small graph
volumes, e.g., Figure 5.2.

We briefly describe the propagation of must-link constraints. For each pair (v̄i, v̄ j) ∈M

with embedded coordinates xi and x j: We consider the hypersphere centered at (xi + x j)/2
with diameter given by (5.6) and we build a subset Xs ⊂ X that contains embedded vertices
lying in this hypersphere. We build a subgraph Gs ⊂ G having as vertices the set Vs = {vi}

r
i=1

corresponding to Xs. Finally, we modify the weights wi j of the edges of Gs: w̃i j = 1. There is
an equivalent procedure for the propagation of cannot-link constraints. In order to preserve
the topology of the modified graph, in this case the weights are set to a small positive number,
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(a) (b) (c)

(d) (e) (f)

Figure 5.3: The CSC algorithm applied to the the dog and to the flashkick data (Note: unlike
the results in Table 5.1, we seek here for flashkick 14 segments). Initial graphs and manually
placed constraints (a), (d); Constraint propagation (b), (e); Final clustering results (c), (f).
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i.e., the modified weight of a cannot-edge is w̃i j = ε. Hence the proposed CSC Algorithm 4
and it’s illustration in Figure 5.3.

Algorithm 4 Constrained Spectral Clustering (CSC)

Input: : Unnormalized Laplacian L of a shape graph G, a must-link set M , a cannot-link set
C , the number of cluster k to construct.

Output: : A set of binary variables ∆ = {δil} assigning a cluster label l to each graph vertex
vi.

1: Compute the L-embedding of the graph using the p first non-null eigenvalues and eigen-
vectors of L, p≥ k.

2: Propagate the M and C constraints, modify the adjacency matrix of G and build the mod-
ified Laplacian L̂ using Eq. (5.4).

3: Compute the L̂-embedding using the k first non-null eigenvalues and eigenvectors of L̂.
4: Assign a cluster label l to each graph vertex vi by applying K-means to the points X̂ in

Eq. (5.5).

5.4 Shape Segmentation via Probabilistic Label Transfer

The CSC algorithm that we just described is applied to a shape graph Gtr such that the latter is
segmented into k clusters. Given a second shape Gtest we wish to use the segmentation result
obtained with Gtr to segment Gtest. Therefore, the segmentation of Gtest can be viewed as an
inference problem, where we seek a cluster label for each one of its vertices conditioned by
the segmentation of Gtr.

We formulate this label inference problem in a probabilistic framework and adopt a gen-
erative approach where we model the conditional probability of assigning a label to a test
shape vertex. More formally, let Xtr and Xtest be the L-embeddings of the two shapes with
n and m vertices respectively, i.e., Eq. (5.1). We introduce three sets of hidden variables:
S = {s1, . . . ,sm}, which assign each test-shape vertex to its cluster, R = {r1, . . . ,rn}, which as-
sign each train-shape vertex to its cluster, and Z = {z1, . . . ,zm}, which assign a test-shape
vertex to a train-shape vertex. Then the posterior probability of assigning a cluster label
l ∈ {1, . . . ,k} to a test-shape vertex xtest

i ∈ Xtest can be written as :

P(si = l|xtest
i ) =

n

∑
j=1

P(r j = l|xtr
j )P(zi = j|xtest

i ), (5.7)

Here, P(r j = l|xtr
j ) is the posterior probability of assigning a label l to a train-shape vertex xtr

j ,
conditioned by the train-shape vertex. Similarly, P(zi = j|xtest

i ) is the posterior probability of
assigning train-shape vertex xtr

j to test-shape vertex xtest
i and can be termed as soft assignment.

We propose to replace the posteriors P(r j = l|xtr
j ) with hard assignments, namely the output

of the CSC algorithm:
P(r j = l|xtest

j ) = δ jl (5.8)
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The estimation of the posteriors P(zi = j|xtest
i ) is an instance of graph matching in the spectral

domain, which is a difficult problem in its own right, especially in the presence of switches
between eigenvectors and changes in their sign. The graph/shape matching task is further
complicated when the two graphs are not isomorphic and when they have different numbers
of vertices.

We adopted the articulated shape matching method proposed in [Mateus 2008, Horaud 2011]
to obtain these soft assignments. This method proceeds in two steps. The first step uses the
histograms of the k first non-null eigenvectors of the normalized Laplacian matrix to find
an alignment between the Euclidean embeddings of two shapes. The second step registers
the two embeddings using the expectation-maximization (EM) algorithm and selects the best
vertex-to-vertex assignment based on the maximum a posteriori probability (MAP) of a ver-
tex from one shape to be assigned to a vertex from the other shape. In order to fit to our
methodological framework, we introduce two important modifications to the technique de-
scribed in [Mateus 2008]:

1. We use the unnormalized Laplacian. This is justified by the properties of the L-embeddings,
which where described in detail in Section 5.2. In particular, the property in Eq. (5.2)
facilitates the task of comparing the histograms of two eigenvectors.

2. We do not attempt to find the best one-to-one assignments based on the MAP crite-
rion. Instead, we keep all the assignments and hence we rely on soft rather than hard
assignments.

The resulting shape matching algorithm will output the desired posterior probabilities P(zi =

j|xtest
i ) = pi j, ∀1≤ i≤ m. From (5.7) and (5.8) we obtain the following expression that prob-

abilistically assigns a vertex of Gtest to a cluster of Gtr:

γil = argmax
1≤l≤k

n

∑
j=1

pi jδ jl (5.9)

This corresponds to the maximum posterior probability of a test-shape vertex to be assigned
to a train-shape cluster conditioned by the test-shape vertex and by the train-shape-to-test-
shape soft assignments of vertices. The proposed segmentation method is summarized in
Algorithm 5. Figure 5.4 illustrates the PLT method on two examples.

5.5 Experiments & Results

We evaluated the performance of our approach on 3D meshes, consisting of both graphical
shapes [Bronstein 2010a] as well as visual shapes [Franco 2009, Starck 2007b, Stoll 2010,
Vlasic 2008] having a wide range of variability in terms of mesh topology, kinematic poses,
noise and scale. Particularly, the data acquired by multi-camera systems are non-uniformly
sampled and there are major topological changes in between the various kinematic poses, e.g.,
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Algorithm 5 Probabilistic Label Transfer (PLT)

Input: : L-embeddings Xtr and Xtest of train and test shape graphs Gtr and Gtest; a set of binary
variables ∆ = {δ jl} assigning a cluster label l to each vertex xtr

j ∈ Xtr.
Output: : A set of binary variables Γ = {γil} assigning a cluster label l to each vertex xtest

i ∈

Xtest.
1: Align two L-embeddings Xtr and Xtest using the histogram alignment

method [Mateus 2008].
2: Compute the posterior probability pi j of assigning each test graph vertex xtest

i to ev-
ery train graph vertex xtr

j using the EM based rigid point registration method proposed
in [Horaud 2011].

3: Find the cluster label l for each test graph vertex xtest
i using the Eq. (5.9).

(a) (b) (c)

(d) (e) (f)

Figure 5.4: Clustering obtained with CSC (a), (d); vertex-to-vertex probabilistic assignment
between two shapes (b), (e); The result of segmenting the second shape based on label transfer
(c), (f).
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CSC CCSKL [Li 2009] SL [Kamvar 2003] SC
|V | k |M | |C | m̄t pr m̄ppv m̄t pr m̄ppv m̄t pr m̄ppv m̄t pr m̄ppv

dog 3400 9 28 19 0.8876 0.9243 0.5215 0.6239 0.4342 0.5644 0.5879 0.6825
crane 10002 6 9 8 0.9520 0.9761 0.6401 0.7952 0.8673 0.7905 0.7818 0.8526
handstand 10002 6 7 5 0.9659 0.9586 0.6246 0.7691 0.6475 0.7246 0.7584 0.9248
flashkick 1501 6 18 5 0.9279 0.9629 0.5898 0.7539 0.5412 0.5984 0.6207 0.7376
ben 16982 6 7 5 0.9054 0.9563 0.4002 0.5888 0.6434 0.6084 0.5587 0.6494

Table 5.1: Quantitative evaluation of visual shape segmentation using semi-supervised con-
strained spectral clustering algorithms.

Figure 5.1(c). We have generated manual segmentations of all the employed meshes as a
ground truth for the quantitative evaluation of our approach. As a consequence of this, one-
to-one correspondences between ground-truth and our results are available. Therefore, the
standard statistical error measures like the true positives et p

i , the false negatives e f n
i and the

false positives e f p
i can be easily computed for each segmentation and for each cluster i. From

these measures we derive the true positive rate mt pr
i (recall) and positive predictive value mppv

i

(precision) for every cluster: mt pr
i gives for each cluster i the percentage of vertices, which have

been correctly identified from the ground truth, and mt pr
i gives for each identified cluster the

percentage of vertices, which actually truly belong to this cluster. Using these two measures,
we tabulate the overall performance of our segmentation results by computing the mean over
all clusters of each shape mesh. We can define recall and precision as:

m̄t pr =
k

∑
i=1

et p
i

et p
i + e f n

i

, m̄ppv =
k

∑
i=1

et p
i

et p
i + e f p

i

with k being the total number of clusters on the evaluated mesh. To maintain the independence
of the ground truth from the test data, the manual segmentation and constraint placement for
the tested algorithms were performed by different persons. We performed two sets of exper-
iments. First, we evaluate the segmentation performance of the CSC algorithm described in
Section 5.3 against two other constrained spectral clustering algorithms; Second, we evaluate
the probabilistic label-transfer method described in Section 5.4.

We compared our CSC algorithm with the constrained clustering by spectral kernel learn-
ing (CCSKL) method [Li 2009], and with the spectral learning (SL) method [Kamvar 2003].
For completeness we also provide a comparison with the spectral clustering algorithm (SC)
based on the random-walk graph Laplacian. Our implementations of these methods were duly
checked with their respective cited results. With all these constrained spectral clustering meth-
ods the same set of constraints was used as well as the same number of clusters (the latter varies
from one data set to another). The normalized SC algorithm that we implemented corresponds
to the second algorithm in [von Luxburg 2007]: it applies K-means to the unnormalized Lapla-
cian embedding, i.e., Eq. (5.1) and it corresponds to steps 3 and 4 of our own CSC algorithm.
A summary of these results can be found in Table 5.1 and Figure 5.5. The most surprising
result is that, except for the “Crane” data and with SL, both CCSKL and SL could not sig-
nificantly improve over the unsupervised SC algorithm, despite the side-information available
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(a) GT (b) CSC (c) CCSKL (d) SL (e) SC

Figure 5.5: Manual segmentation (a), results obtained with our algorithm (b) and results ob-
tained with three other methods: [Li 2009](c), [Kamvar 2003](d) and [von Luxburg 2007](e).
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Results for several meshes (I) Results for corrupted horse meshes (II)
Gtr Gtest |Vtr| |Vtest | m̄t pr m̄ppv transform |Vtr| |Vtest | m̄t pr m̄ppv

ben handstand 16982 10002 0.9207 0.9594 topology 19248 19248 0.9668 0.9642
handstand ben 10002 16982 0.9672 0.9462 sampling 19248 8181 0.8086 0.9286
flashkick 50 flashkick 89 1501 1501 0.8991 0.9248 noise 19248 19248 1.0 1.0
gorilla horse 2038 3400 0.8212 0.8525 holes 19248 21513 0.9644 0.9896

Table 5.2: Summary of the quantitative evaluation of the PLT algorithm.

to guide the segmentation. The CCSKL algorithm fails to improve over SC with our mesh
data. Indeed, both assume that there are natural partitions (subgraph) in the data that are only
weakly inter connected. Therefore, CCSKL only globally stretches each eigenvector in the
embedded space to satisfy the constraints, without any local effect of these constraints on the
segmentation. The SL algorithm can barely improve over the SC results as it requires a large
number of constraints. With our method the placement of the cannot-link constraints is cru-
cial. Although our method needs only a sparse set of constraints, the number of constraints
increases (still number of constraints≪ |V |) if the desired segmentation is not consistent with
the graph topology, e.g., Figure 5.3(d).

In the second experiment, we evaluate the performance of our probabilistic label transfer
(PLT) method. In all these examples, we consider two different shapes, one from the training
set and one from the test set. First we apply the CSC algorithm to the train-shape and then
we apply the PLT algorithm to the test-shape. Figure 5.1 shows an example of PLT between
two different shapes and in the presence of significant topological changes: the right arm of
Ben, (e), touches the torso. Figure 5.4 shows the additional results, that are quantified in
Table 5.2 (I). We also evaluate the robustness of PLT algorithm with respect to the various
mesh corruptive transformations, such as holes, topological noise, etc. Figure 5.6 and Table
5.2 (II) shows the segmentation results obtained by transferring labels from the original horse
mesh to its corrupted instances. We obtain zero error if the corruptive transformation does not
change the triangulation of the mesh as in the case of Gaussian noise. In Figure 5.7, we show
the segmentation obtained with PLT where the test shape in Figure 5.7-(c) significantly differs
from the training shape in Figure 5.7-(a) due to large topological change (see the left hand
merged with the torso).

5.6 Conclusion

In this chapter, we proposed a novel framework for learning shape segmentation. We made
two contributions: (1) we proposed to use the unnormalized Laplacian embedding and the
commute-time distance to diffuse sparse pairwise constraints over a graph and to design a new
constrained spectral clustering algorithm, and (2) we proposed a probabilistic label transfer al-
gorithm to segment an unknown test-shape by assigning labels between an already segmented
train-shape and a test-shape. We perform extensive testing of both the CSC and the PLT al-
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holes

topological

“noise”

down-

sampling

Gaussian

noise

(a) Ground-truth (b) Label transfer (c) Segmentation

Figure 5.6: Segmentation results with synthetic meshes, which have been corrupted in various
ways.

(a) (b) (c)

Figure 5.7: Clustering obtained with CSC (a); vertex-to-vertex probabilistic assignment be-
tween two shapes (b); The result of segmenting the second shape based on label transfer (c).
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gorithms on real and synthetic meshes. We compare our shape segmentation method with
recent constrained/semi-supervised spectral clustering methods, which were known to out-
perform unsupervised SC algorithms. However, we found it difficult to adapt these existing
constrained clustering methods to the problem of shape segmentation. This is due to the fact
that, unlike the proposed method, they do not explicitly take into account the properties inher-
ently associated with shape graphs, such as sparsity and regular connectivity.

One major limitation of the proposed method is that it heavily rely on dense probabilistic
shape matching for label transfer. However, variability in visual shapes is large enough to rely
on any existing shape matching method, e.g., the majority of existing methods cannot handle
commonly occurring topological changes in the visual shapes. In the following chapters, we
develop a multi-scale heat-kernel framework to describe and reliably match visual shapes with
large topological changes.
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6.1 Introduction

In Chapter 3, we have already introduced an isometry invariant spectral representation of 3D
visual shapes using the eigen-decomposition of graph Laplacian matrices. However, this is a
single scale representation where mainly the global structure of the shape is highlighted. This
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behavior is understandable given the analogy with PCA 2.6.5 and Fourier Analysis [Lévy 2006,
Vallet 2008]. However, analyzing a shape a multiple scales might help to simultaneously study
it’s local and global structure, e.g., characterizing a human shape with it’s (local) facial geo-
metrical features can be useful along with the global limb structure. A major limitation of
single scale representation is that such a global representation fails to handle the topological
changes and partial shapes as they focus on global structure (see Section 3.4). The use of a
multi-scale analysis can help to overcome this problem by locally analyzing a visual shape.

In this chapter, we focus on multi-scale shape representation and outline a general frame-
work for the representation and analysis of 3D visual shapes based on heat diffusion on undi-
rected weighted graphs. It is well known that the heat diffusion equation has a solution on
undirected graphs and that this solution can be made explicit using the eigenvalue/eigenvector
pairs of graph Laplacians, together with a time parameter that defines a scale space – the heat
kernel. This will allow us to analyze the heat-kernel matrix within the framework of spectral
graph theory [Chung 1997], to construct heat-kernel matrices well suited for 3D shapes, and
to represent the latter into the metric space associated with the spectral decomposition of this
matrix [Shawe-Taylor 2004]. We will capitalize on the fact that the eigenvectors of the com-
binatorial Laplacian can be interpreted as the directions of maximum variance of the shape
embedding (see Section 2.5.1.1). Together with the scale/time parameter, this will provide a
formal basis for performing dimensionality reduction and, more generally, to characterize the
statistical properties of the embedded shape representation at multiple scales. We will study
the dimensionality of the embedding, i.e., the number of eigenvectors needed to approximate
the heat kernel, as a function of the scale parameter; We will show that the multiplicity of
the first non-null eigenvalue and associated eigenvector (the Fiedler vector) of the Laplacian
matrix plays a crucial role in choosing the dimension. Finally, we propose both a scale-space
representation of shapes based on auto diffusion and on spectral distances.

The organization of this chapter is as follows. First, we outline the heat-kernel framework
for multi-scale shape representation. We start with a detailed literature survey in Section 6.1.1.
In Section 6.1.2 we list the main contributions of this chapter. Section 6.2 introduce details
of heat diffusion on manifold surface and it’s discrete counterpart for shape graphs. In Sec-
tion 6.3, we discuss spectral properties of heat-kernel matrices and devise a scale dependent
feature space (embedding) representation for shape graphs. In the next Section 6.4, we dis-
cuss the analogy of eigenvectors heat-kernel matrices with PCA and propose a novel analysis
relating scale parameter and dimensionality of heat-kernel embedding. Section 6.5 introduce
various normalization schemes for heat-kernel embedding. Second, we present a dense de-
scriptor based shape representation in Section 6.6, where we propose a new multi-scale heat
distance descriptor for each vertex of the shape graph. Finally, we summarize our conclusions
and future directions of work in Section 6.7.
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6.1.1 Related work

Multi-scale representation and analysis have long been considered among the most power-
ful and successful tools for describing images [Burt 1983, Crowley 1984, Hummel 1987,
Lindeberg 1994]. Scale-space analysis of scalar functions defined over Euclidean domains,
e.g., images, is generally performed based on convolutions with a Gaussian function, the scale
parameter being associated with the variance of this function. The rationale of this definition
of scale is that the Gaussian function corresponds to the closed-form solution of the heat-
diffusion equation on Euclidean domains such as images [Koenderink 1984]. Therefore, one
may think of scale-space representations of 3D shapes as an extension of this mathematical
framework. This implies the understanding of heat diffusion on non Euclidean continuous
domains, such as Riemannian manifolds, or discrete domains, such as graphs.

Multiple-scale shape properties based on heat diffusion are studied in [Sun 2009]: The
heat-kernel signature (HKS) is studied in detail for this purpose. The HKS at a mesh ver-
tex vi is simply the i-th diagonal entry of the heat-kernel matrix. The mesh Laplace operator
proposed in [Belkin 2008] is used in practice to build a shape descriptor based on the HKS. In-
dependently, this has also been referred to as the auto-diffusion function (ADF) [Gebal 2009]:
A link between auto-diffusion at small scales and the Gaussian curvature is established, as well
as a practical method for finding the skeleton of a shape. Subsequently, the HKS/ADF was
used as the basis of a feature-based method for shape retrieval [Bronstein 2011a] allowing
to extend the bag-of-features paradigm to 3D shapes and to devise an efficient shape retrieval
method.

One of the most attractive features of the heat kernel is that it allows the embedding of a
shape into the metric space defined by the spectral decomposition of the heat-kernel matrix.
This enables the computation of spectral distance [Bronstein 2011b] between any two graph
vertices, based on the vertices’ spectral coordinates. The simplest distance between two graph
vertices is the shortest-path (geodesic) distance, which is very sensitive to graph changes, e.g.,
insertion and deletion of edges. In the case of visual shapes, the connectivity information is
derived from the data, and therefore the geodesic distance is extremely sensitive to variations in
the graph’s connectivity. Alternatively, the spectral distance is more robust to noise and to local
variations in the graph’s topology because it averages over many paths [Qiu 2007]. Indeed,
the spectral distance decreases as the number of paths connecting two vertices increases and
when the average length of these paths decreases. Intuitively, the spectral distance based on
the heat kernel captures heat diffusion at time t between two vertices.

Spectral distances were thoroughly studied in the recent past. Diffusion maps, introduced
in [Coifman 2006], are based on even positive powers of the transition matrix of a first-order
time-reversible Markov chain associated with a graph, i.e., Eq. (2.3). Hence, the power pa-
rameter defines a scale-space in this case. The heat kernel belongs to the family of exponential
kernels [Kondor 2002] that allow to define diffusion kernels [Kondor 2004]. There are several
advantages of the exponential family of kernels over diffusion maps. Indeed, it is not clear how
to choose the powers of the transition matrix and particular choices for this power may leave
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some of the graph’s vertices unreachable. Spectral distances were studied in detail within the
framework of shape recognition [Bronstein 2011b]. A 3D shape can be represented based on
scale-dependent distance distributions, e.g., histograms, [Mahmoudi 2009, Bronstein 2010d].
The similarity between two shapes is thus converted into the similarity between two point
distributions.

Representing a 3D shape using a sparse or dense set of local and global feature descriptors
is a natural extension of their 2D counterpart where images are represented using the sparse or
dense set of local feature descriptors, e.g., SIFT [Lowe 2004]. There is considerable amount of
literature available on 3D shape descriptors, however, it has been largely focused on graphical
shapes. The geometry processing community is still searching for a robust generic descriptor
for visual shapes.

The existing local feature descriptor methods can largely be categorized as extrinsic or
intrinsic based upon how they characterize the local geometry around a feature point. The ex-
trinsic descriptors typically capture the local Euclidean geometry, e.g., surface normal. Some
of the popular extrinsic feature descriptors are [Johnson 1999, Körtgen 2003]. On the other
hand, the intrinsic feature descriptors are more preferable for articulated 3D shapes as they
capture (pose invariant) intrinsic geometry of the underlying 2D manifold surface. The gen-
eral idea is to embed the 3D shape in an isometry invariant subspace and compute these de-
scriptors. Thus, many intrinsic feature descriptors are derived by adapting the construction of
their extrinsic counterpart, e.g., [Wang 2010]. The heat kernel signature (HKS), introduced in
the previous discussion, is an important intrinsic shape descriptor that has been used for 3D
shape matching [Sun 2009, Sharma 2011] and shape retrieval tasks [Bronstein 2011a]. Re-
cently, a new intrinsic feature is proposed in [Zaharescu 2012], which captures both the local
geometry of the underlying manifold surface and the scale-space differential properties of the
real-valued function defined over such surface.

Apart from the local descriptors, the global shape descriptors are more popular for shape
retrieval task where a single descriptor can be used for complete shape description. ShapeDNA [Reuter 2006b]
is one such intrinsic global shape descriptors for shape retrieval. It describes a 3D shape by
the spectra of the Laplacian matrix of underlying graph. A recent extension to this method
was proposed in [Wu 2011], where a new global descriptor is computed using the dual Lapla-
cian decomposition for shape matching. In [Wu 2010], a global shape descriptor similar to
shapeDNA, is augmented with a local descriptor, which analyze the spectra of the Laplacian
matrix of a local patch (bin) around a feature point. A key problem with this method is that it
requires a normalized re-sampling of the complete 3D data-set. A detailed survey of various
3D feature descriptors employed for 3D shape matching is presented in [van Kaick 2011].

6.1.2 Contributions

In this chapter, we propose a general framework for describing and analyzing 3D shapes based
on heat-kernel embedding. We build on the ideas of representing a polygonal mesh as an



6.2. Heat Diffusion on a 3D Shape 101

undirected weighted graph and on mapping such a graph onto the metric space associated with
the spectral decomposition of the heat-kernel matrix.

Since the heat-kernel matrix is built using the eigenvalue/eigenvector pairs of a graph
Laplacian operator, we recall some spectral properties of the graph Laplacians already dis-
cussed in detail in Section 2.6.4. The only constraint of this analysis is that the Laplacian
is a positive semi-definite symmetric matrix, hence the edge weights must be non-negative.
Hence, our framework equally applies to polygonal meshes with Gaussian weights or to trian-
gulated meshes with cotangent weights as discussed in Section 3.3.3. We formally define two
heat-kernel embeddings based on the combinatorial and normalized Laplacians. We already
know that the eigenvectors of the combinatorial Laplacian are the principal components of a
zero-centered distribution formed by the spectral embedding of a 3D shape (see Section 2.6.5).
Therefore, 3D shapes lying in R3 can be represented as distributions of points in RK condi-
tioned by a scale parameter (t), where K is the number of principal components of the spectral
shape representation. This naturally casts spectral shape analysis within the framework of ker-
nel PCA. However, unlike the general case [Schölkopf 1998a], the heat-kernel and covariance
matrices share exactly the same eigenvalue/eigenvector pairs. This provides a principled way
to perform dimensionality reduction in spectral space and to choose the K principal vectors.
We formally show that at small scales K must be large while at very large scales K corresponds
to the multiplicity of the first non-null eigenvalue/eigenvector pair of the Laplacian, namely the
Fiedler value/vector. We conclude that a scale-space shape representation must appropriately
combine the scale t and the number of principal components K.

One consequence of the use of an exponential kernel, such as the heat kernel, is that the
kernel collapses to zero extremely rapidly, when the parameter t goes to infinity. Hence, the
distribution associated with the spectral shape representation rapidly collapses to zero as well.
This makes the scale space analysis very sensitive to small scale changes. To prevent this, we
build on existing approaches [Bérard 1994, Sun 2009] and we propose two normalized spectral
representations: (i) a shape embedding mapped on the K-dimensional unit hyper-sphere and
(ii) a embedding scaled by the trace of the heat-kernel matrix. We study the behavior of the
associated distributions as a function of the scale parameter.

After formalizing the heat kernel framework for 3D shape representation, we discuss the
choice of shape representation in the context of visual shape data. This is followed by the def-
inition of a novel, densely computable, multi-scale intrinsic feature descriptor for 3D shapes.

6.2 Heat Diffusion on a 3D Shape

In this section, we will outline the mathematical formulation for heat diffusion on continuous
Riemannian manifold surfaces and extend it to undirected weighed graphs, in order to derive
the heat-kernel matrix for visual shapes represented by such graphs.
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6.2.1 Heat Diffusion on a Closed Riemannian Manifold

Heat diffusion is a fundamental concept in physics. The heat diffusion equation (or more gen-
erally the diffusion equation) is a partial differential equation, which describes the distribution
of heat (or the variation in temperature) in a given location and over time. Heat diffusion is
generally studied in Euclidean spaces but it can be generalized to non-Euclidean ones. In par-
ticular, it can be defined on a closed, i.e., compact and without boundary, Riemannian manifold
M . In this case, it takes the following analytical form:

(
∂

∂t
+∆M

)
f (x; t) = 0 (6.1)

where ∆M denotes the geometric Laplace-Beltrami operator, x ∈M , f : M →R, f ∈ L2(M ),
and t > 0. We will refer to ∂/∂t + ∆M as the heat operator. More formally, the heat semi
group is the family of self ad-joint operators [Bérard 1994]:

(
e−t∆M f

)
(x) =

Z

M

hM (x,y; t) f (y)dy,∀ f ∈ L2(M ) (6.2)

where hM is a smooth function of x,y∈M and of t > 0, namely it is the heat kernel of M . For
a closed manifold, the spectrum of the Laplace-Beltrami operator is a sequence of eigenvalues
0 = λ1 < λ2 ≤ λ3 . . .+∞. Given an orthonormal basis of real eigenfunctions {φi}

∞
i=1 ∈ L2(M )

of the Laplacian, one can write:

hM (x,y; t) =
∞

∑
i=1

e−λitφi(x)φi(y) (6.3)

The operator e−t∆M in (6.2) is the fundamental solution of the heat-diffusion equation on Rie-
mannian manifolds and (6.3) allows to compute the heat kernel using the eigenvalues and
eigenvectors of the Laplace-Beltrami operator.

6.2.2 Heat Diffusion on an Undirected Weighted Graph

The definition of heat diffusion on graphs is exactly the parallel of heat diffusion on Rie-
mannian manifolds. We start by recalling some basic graph notations and definitions from
Chapter 2 along with properties of combinatorial and normalized graph Laplacian from Sec-
tion 2.6.4 and appendix A.3.

We can recall from Section 2.2.2 that a connected undirected weighted graph is represented
as G = (V,E,W) where V = {v1, . . . ,vn} is the vertex set, E = {ei j} is the edge set and W be
the weighted adjacency matrix of this graph, i.e., wi j > 0 whenever there is an edge ei j between
vertices vi and v j, wi j = 0 elsewhere, with wii = 0. The degree di of a graph vertex is defined
by di = ∑ j wi j. Let dmax = maxi(di). A regular graph is such that d1 = . . . = di . . . = dn.
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(a) t = 1 (b) t = 10 (c) t = 100 (d) t = 500

Figure 6.1: Visualization of the heat diffusion on 3D shapes. The color at each vertex vi

encodes the value of the kernel h(i, j; t), where v j is the blue dot on the torso. The heat
diffusion is fairly local for smaller values of time scale parameter t and becomes increasingly
global with larger values of t.

The unnormalized, or combinatorial Laplacian matrix of a graph is defined by (see Sec-
tion 2.6.1):

L = D−W (6.4)

Next we consider real-valued functions f over V, f : V 7→R and we note that f = ( f1 . . . fn)
⊤

is simply a vector indexed by the vertices of G. Using (6.4) one can easily obtain the action of
L on such a vector of functions:

(Lf)i =
n

∑
j=1

wi j( fi− f j) (6.5)

The unnormalized graph Laplacian can therefore be viewed as a discretization of the Laplace-
Beltrami operator ( see Section 2.7).Moreover, let:

F(t) = H(t)f (6.6)

The graph’s heat operator H(t), the heat-kernel matrix of the graph, is a discretization of
(6.2):

H(t) = e−tL (6.7)

where the exponential of a matrix is defined by the following power series:

eA =
∞

∑
k=0

Ak

k!
(6.8)

Notice that the vector F(t) in (6.6) is a solution to the heat diffusion equation on a graph:

(
∂

∂t
+L

)
F(t) = 0 (6.9)
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Hence, f corresponds to some initial heat distribution over the nodes of G and F(t) is the heat
distribution at time t starting from F(0) = f . Notice that starting with a point heat distribution
at vertex j, g j = (0 . . .g j = 1 . . .0)⊤, the heat distribution at time t is given by the jth column
of the heat-kernel matrix, which is denoted by H(·, j; t):

F(t) = H(t)g j = H(·, j; t) (6.10)

The graph Laplacian L is a semi-definite positive symmetric matrix since from (6.5) one can
easily see that f⊤Lf ≥ 0. Hence, the heat-kernel matrix is semi-definite positive symmetric as
well. From (6.10) we obtain a straightforward interpretation of the entries of the heat-kernel
matrix, namely each entry of H(t) corresponds to the amount of heat available at vertex vi at
time t, starting with a point heat distribution at vertex v j, i.e., g j:

h(i, j; t) = H(i, j; t) (6.11)

The discrete symmetric function h : V ×V →R is the heat kernel of a graph G .

Figure 6.1 visualize heat diffusion at multiple scales on a visual shape represented by a
shape graph. It is clearly visible that the heat diffusion is fairly local for smaller values of time
scale parameter t and becomes increasingly global with larger values of t. More importantly,
heat diffusion follows the topology of the shape graph, e.g., amount of heat reaching left hand
is significantly larger than right hand since the point heat source (blue dot) is placed relatively
closer to left shoulder.

6.3 Heat-Kernel Matrices

We have already derived various properties of spectral-decomposition of combinatorial and
normalized graph Laplacian matrices in Section 2.6.4 and Appendix A.3, respectively. From
the spectral decompositions of combinatorial and normalized Laplacian matrices, we further
obtain the spectral decomposition of the corresponding heat-kernel matrices:

H(t) = Ue−tΛU⊤ = UΦU⊤ (6.12)

H̃(t) = We−tΓW⊤ = WΨW⊤ (6.13)

where both

Φ = e−tΛ (6.14)

Ψ = e−tΓ (6.15)

are diagonal matrices with entries:

Φ = Diag[φ1 . . .φn] = Diag[e−tλ1 . . .e−tλn ]

Ψ = Diag[ψ1 . . .ψn] = Diag[e−tγ1 . . .e−tγn ]
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Notice that from the properties of the eigenvalues of the Laplacians we obtain:

1 = φ1 > φ2 ≥ . . .φn > 0 (6.16)

1 = ψ1 > ψ2 ≥ . . .ψn > 0 (6.17)

Let us apply to these matrices a deflation such that:

H(t)←− H(t)−φ1u1u
⊤
1 (6.18)

H̃(t)←− H̃(t)−ψ1w1w
⊤
1 (6.19)

Hence H(t)u1 = 0,H̃(t)w1 = 0 and the remaining eigenvalues and eigenvectors remain un-
changed. The heat-kernel matrices can then be written as:

H(t) =
n

∑
k=2

e−tλkuku
⊤
k (6.20)

H̃(t) =
n

∑
k=2

e−tγkwkw
⊤
k (6.21)

Both H(t) and H̃(t) are Gram matrices: they are symmetric semi-definite positive matrices
whose eigenvectors are the eigenvectors of the associated graph Laplacians. From (6.12),
(6.13) and (6.28), (6.29) one obtains the following factorizations:

H = Ue−tΛU⊤ = X⊤X (6.22)

H = We−tΓW⊤ = Y⊤Y (6.23)

where X and Y are n− 1× n matrices whose columns are the vertex coordinates in feature-
space:

X =
[

x1 . . .xi . . . xn
]
= e−

tΛ
2 U⊤ (6.24)

Y =
[

y1 . . .yi . . . yn

]
= e−

tΓ
2 W⊤ (6.25)

More precisely, the entries of the heat-kernel matrices are:

h(i, j; t) =
n

∑
k=2

e−tλk uiku jk = 〈xi,x j〉 (6.26)

h̃(i, j; t) =
n

∑
k=2

e−tγk wikw jk = 〈yi,y j〉 (6.27)

with:

xi = ( xi2 . . . xik . . . xin )⊤

=
(

e−tλ2/2ui2 . . . e−tλk/2uik . . . e−tλn/2uin
)⊤

(6.28)

yi =
(

e−tγ2/2wi2 . . . e−tγk/2wik . . . e−tγn/2win
)⊤

(6.29)

To summarize:



106 Chapter 6. Multi-scale 3D Shape Representation using Heat Diffusion Framework

• Both xi and yi are elements of two distinct feature spaces, or embeddings of the 3D
shape into Rn−1.

• The heat kernels are Mercer kernels [Shawe-Taylor 2004] and they correspond to dot-
products in feature space.

• The heat-kernel can be used to define distances and norms in feature space, namely the
heat distances:

‖xi−x j‖
2 = h(i, i; t)+h( j, j; t)−2h(i, j; t) (6.30)

‖yi−y j‖
2 = h̃(i, i; t)+ h̃( j, j; t)

− 2h̃(i, j; t) (6.31)

and the heat norms, i.e., the auto-diffusion functions:

‖xi‖
2 = h(i, i; t) (6.32)

‖yi‖
2 = h̃(i, i; t) (6.33)

• The points xi and respectively yi correspond to the coordinates of the graph’s vertex
vi in the Euclidean spaces spanned by the non-null eigenvectors of the combinatorial
Laplacian and of the normalized Laplacian.

To conclude this section, we provide the trace and determinant of the combinatorial heat-kernel
matrix (there are equivalent expressions for the normalized heat-kernel matrix):

tr(H) =
n

∑
k=2

e−tλk =
n

∑
i=1

‖xi‖
2, (6.34)

det(H) =
n

∏
k=2

e−tλk = e−ttr(L), (6.35)

and a visualization of the heat-kernel embedding in Figure 6.2.

6.4 Principal Component Analysis of the Heat-kernel Embeddings

The heat-kernel matrices are Gram matrices and this equivalence provides a straightforward
tool for characterizing the feature space. In particular there is a duality between the kernel
matrix and the feature-space covariance matrix. Let us consider both feature spaces and the
corresponding graph embeddings, i.e., X associated with H and Y associated with H̃, namely
equations (6.24) and (6.25).

We denote by x = 1/nX1 the center of mass of the feature-space points X. From (6.24)
and using Proposition 3 we get x = 0. We obtain the following result:
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Figure 6.2: Heat-kernel embedding of a discrete surface represented as a sparse undirected
weighed graph.

Proposition 4 The eigenvectors of the combinatorial Laplacian are the directions of maxi-
mum variance of the corresponding heat-diffusion embedding. The covariance matrix is

ΣX =
1
n

e−tΛ (6.36)

Proof: Since the feature-space graph embedding has zero mean, the covariance writes
ΣX = XX⊤. Using (6.24) and the orthonormal constraint associated with the eigenvectors,
one can easily obtain (6.36).

Similarly let y = 1/nY1 be the center of mass of the feature-space points Y. Notice that y =

e−
tΓ
2 w where the entries of w = (w1 . . .wk . . .wn)

⊤ are provided by Eq. (A.4). The covariance
matrix of this un-centered data set is ΣY = 1

nYY⊤− y y⊤. Hence, one obtains the following
straightforward result:

Proposition 5 The covariance matrix of the normalized heat-diffusion embedding is given by

ΣY = e−
tΓ
2

(
1
n
I−w w⊤

)
e−

tΓ
2 (6.37)

6.4.1 Choosing the Dimension of the Heat-kernel Embedding

A direct consequence of propositions 4 and 5 is that the combinatorial heat kernel is better
suited than the normalized heat kernel for representing the input graph in feature space. In-
deed, the embedded graph representation is centered at the origin of the feature space and the
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Figure 6.3: α(K, t) curve with varying time scales t for different K values, in which K is always
expressed as a percentage of the total number of eigenvalues. The small circle indicates the
time scale for which α(K, t) = 0.95. (The Gaussian weighting scheme is used to compute the
combinatorial Laplacian.)
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Figure 6.4: α(K, t) curve with varying percentage of eigenvalues for different time scale t.
The small circle indicates the percentage of number of eigenvalues for which α(K, t) = 0.95.
(The Gaussian weighting scheme is used to compute the combinatorial Laplacian.)

eigenvectors of the combinatorial Laplacian correspond to the directions of maximum vari-
ance. The principal eigenvectors correspond to the eigenvectors associated with the K largest
eigenvalues of the heat-kernel matrix H, i.e., e−tλ2 ≥ e−tλ3 ≥ . . . ≥ e−tλK , or equivalently to
the K smallest non null eigenvalues of the combinatorial Laplacian. Notice that in case of
regular graphs w = 0, i.e., Eq. (A.8), the two covariance matrices in Eq. (6.36) and Eq. (6.37)
are strictly equivalent.

The variance along vector uk is e−tλk/n. Therefore, the total variance can be computed
from the trace of the heat-kernel matrix:

tr(ΣX) =
1
n

tr(H(t)) (6.38)

A standard way of choosing the principal components is to use the scree diagram:

α(K, t) =
∑K+1

k=2 e−tλk

∑n
k=2 e−tλk

(6.39)

We perform an empirical analysis of the relationship between time-scale parameter and
embedding dimension by plotting different scree-curves α(K, t) in Eq. (6.39) for a collection
of 3D shapes with varying geometrical characteristics that were shown in the Figure 3.9. The
different subplots of Figure 6.3 show the α(K, t)-curve with varying time scale parameter t for
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different embedding dimensions K, in which K is always expressed as a percentage of the total
number of eigenvalues. Similarly, Figure 6.4 shows the scree diagram with varying percentage
of the eigenvalues for the same set of shapes.

It is important to note that these overlapping curves, which corresponds to different type
of visual and graphical shapes can be understood from the similar behavior of the Lapla-
cian eigenvalue distribution (using the Gaussian weighting) discussed in the previous Sec-
tion 3.3.3.3 (see Figure 3.13).

Interestingly, these overlapping curves provide two fold conclusion. First, it allow us to
choose the minimum time scale depending on the size of Laplacian embedding of one shape.
Second, it enable us to use the same time scale while analyzing other shape by selecting the
appropriate embedding dimension.

6.5 Normalized Shape Embeddings

One disadvantage of the heat-kernel embeddings presented so far is that, when the scale param-
eter t is very large, the embedded representations X and Y collapse to zero. In this section, we
propose three “normalizations". The first one projects the embedding on a unit hyper-sphere.
The second one normalizes the embedded coordinates using the trace of the heat-kernel ma-
trix. Finally, the third one integrates the coordinates over time, thus obtaining a representation
that does not depend on t anymore.

6.5.1 Unit Hyper-sphere Embedding

In order to avoid the collapsing on (0 . . .0) when t goes to infinity, one may re-normalize the
embedding such that the embedded vertex coordinates lie on a unit hyper-sphere of dimension
K, which yields:

x̃i =
xi

‖xi‖
(6.40)

In more detail, the k-th coordinate of x̃i writes as:

x̃ik(t,K) =
e−

tλk
2 uik

(
∑K+1

l=2 e−tλl u2
il

)1/2
,2≤ k ≤ K +1 (6.41)

The heat distance (6.30) becomes equivalent to the geodesic distance on a unit hyper-sphere:

dS (i, j; t,K) = arccos x̃⊤i x̃ j (6.42)

which is equivalent to:

dS (i, j; t,K) = arccos
h(i, j; t,K)

h(i, i; t,K)1/2h( j, j; t,K)1/2
(6.43)
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Figure 6.5: A visualization of the unit hyper-sphere normalized heat kernel embedding using
the first three non-null Laplacian eigenvectors of a 3D shape. With the increasing values of
time scale parameter, the embedding slowly converges to two opposite polar points on the
hyper-sphere (in this case at t=10000).The embedding will in turn shrink to a single point on
the hyper-sphere for the infinitely very large value of ’t’. However, it is difficult to plot the
embedding for such value of time scale since the original embedding is of high dimensions as
opposed to the plotted three-dimensional visualization.
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It is interesting to study the behavior of the embedded points as a function of the time param-
eter. For that purpose, notice that:

x̃ik(0) =
uik

(
∑K+1

l=2 u2
il

)1/2
(6.44)

Moreover, the square of the k-th coordinate of an embedded point can be written as:

x̃2
ik(t) =

e−t(λk−λ2)u2
ik

∑m+1
l=2 u2

il +∑K+1
l=m+2 e−t(λl−λ2)u2

il

(6.45)

where m denotes the multiplicity of λ2 (the first non null eigenvalue of the Laplacian ma-
trix) Therefore, there are m mutually orthonormal eigenvectors u2, . . . ,um+1 spanning the
eigenspace of dimension m associated with λ2. Since λ2 = . . . = λm+1 < λm+2 ≤ . . . ≤ λK+1

we obtain:

lim
t→∞

x̃ik(t) =

{ uik

(∑m+1
l=2 u2

il)
1/2 if 2≤ k ≤ m+1

0 if m+2≤ k ≤ K +1
(6.46)

Therefore, we obtain the following embedding:

x̃i(t→ ∞) =
( ui2

(∑m+1
l=2 u2

il)
1/2 . . . ui m+1

(∑m+1
l=2 u2

il)
1/2 0 . . . 0

)⊤
(6.47)

Notice that when m = 1, i.e., the smallest non null eigenvalue has multiplicity one, the embed-
ding collapses, at the limit, to the point:

x̃i(t→ ∞) = ( 1 0 . . . 0 )⊤ (6.48)

Figure 6.5 visualize a unit hyper-sphere normalized embedding using the first three non-
null Laplacian eigenvectors of a 3D shape. With the increasing values of time scale parameter,
the embedding slowly converges to two opposite polar points on hypersphere. The embedding
will in turn shrink to a single point on the hyper-sphere for an infinitely very large value of the
time scale parameter. However, it is difficult to plot the embedding for such value of the time
scale parameter since the original embedding is higher dimensional as opposed to the plotted
three-dimensional visualization.

6.5.2 Trace-scaled Embedding

Another possible re-normalization is to re-scale the embedded coordinates using the trace of
the heat-kernel matrix, i.e.,:

x̂i =
xi

tr(H(t))
(6.49)

From (6.32) we obtain that tr(H(t)) = ∑n
i=1 ‖xi‖

2 and hence we have:

n

∑
i=1

‖x̂i‖
2 = 1 (6.50)
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Notice that the trace can also be computed with the sum of the eigenvalues, ∑n
k=1 e−tλk , or the

total variance. If we retain the first K non null eigenvalues, the k-th component of x̃i is given
by:

x̂ik(t,K) =
e
−tλk

2 uik
(
∑K+1

l=2 e−tλl
)1/2

,2≤ k ≤ K +1 (6.51)

The heat distance (6.30) writes in this case:

d2
T (i, j; t,K) =

K+1

∑
k=2

φ̂k(uik−u jk)
2 (6.52)

where the trace-normalized eigenvalues of the heat-kernel matrix are:

φ̂k =
e−tλk

∑K+1
l=2 e−tλl

The trace-scaled embedding at t = 0 corresponds to the Laplacian embedding:

x̂i(0) = K−1/2( ui2 . . . ui K+1 )⊤ (6.53)

Using a similar development as in Section 6.5.1, we obtain:

lim
t→∞

x̂ik(t) =

{ uik

m1/2 if 2≤ k ≤ m+1
0 if m+2≤ k ≤ K +1

(6.54)

which yields:

x̂i(t→ ∞) = m−1/2 ( ui2 . . . ui m+1 0 . . . 0
)⊤

(6.55)

Hence, for a large value of t the eigenspace of dimension m, associated with the multiple
eigenvalue λ2, is sufficient to embed the shape. Notice that when m = 1 this embedding
corresponds to mapping the shape’s vertices onto the first non constant eigenvector of the
Laplacian matrix, i.e., the Fiedler vector: x̂i(t→∞) = ( ui2 0 . . . 0 )⊤: Each shape vertex
will be represented by a real number along the direction of the Fiedler vector.

6.5.3 Time-invariant Embedding

The discrete heat operator and its associated spectral representations depend on the time pa-
rameter t. One can easily obtain a representation that is time-invariant by integration of (6.20):

L† =

∞
Z

0

H(t)

=

∞
Z

0

n

∑
k=2

e−tλkuku
⊤
k dt

=
n

∑
k=2

1
λk

uku
⊤
k

= UΛ†U⊤ (6.56)
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with Λ† = Diag[λ−1
2 , . . . ,λ−1

n ]. Matrix L† is called the discrete Green’s function [Chung 2000]
and it corresponds to the Moore-Penrose pseudo-inverse of the combinatorial Laplacian ma-
trix. There is an equivalent definition for the normalized discrete Green’s function. This
time-invariant representation is also referred to as the commute-time embedding (see Sec-
tion 2.6.5.2). By integration we obtain a number of time-invariant representations such as
the commute-time distance (CTD), the commute-time embeddings, the commute-time auto-
diffusion function, and the maximum-variance representation. One can easily verify the fol-
lowing formulas when using the first K non constant eigenvectors of the Laplacian matrix:

xi =
(

λ
−1/2
2 ui2 . . . λ

−1/2
K+1 ui K+1

)⊤
(6.57)

‖xi‖
2 =

K+1

∑
k=2

λ−1
k u2

ik (6.58)

‖xi−x j‖
2 =

K+1

∑
k=2

λ−1
k (uik−u jk)

2 (6.59)

ΣX =
1
n

Diag[λ−1
2 , . . . ,λ−1

K+1] (6.60)

6.6 3D Shape Description using the Heat Diffusion Framework

In this section, we describe a novel 3D shape descriptor using heat diffusion framework. First
we discuss the choice of the embedding representation in the context of visual shape data.
Next, we outline a key-point detection method for obtaining a set of interest points on 3D
shapes. Finally, we present the construction of a new multi-scale intrinsic feature descriptor
using the detected key-points and the scale dependent heat diffusion metric.

6.6.1 Choosing Embedding Representation for Visual Shapes

The choice of embedding representation is very important while performing a multi-scale
shape analysis. We have already concluded in Section 6.4.1 that the combinatorial heat kernel
is better suitable for multi-scale shape representation. The embedding normalization presented
in the previous section is also very crucial factor for shape representation. The time-invariant
normalization (Section 6.5.3) is by definition suitable for a scale invariant representation. In
the case of multi-scale representation, both the unit hyper-sphere normalization (Section 6.5.1)
and the trace-scaled normalization (Section 6.5.2) are applicable. We prefer to choose the unit
hyper-sphere normalized embedding representation since it also provides an inherent normal-
ization of the spectral distances by projecting all the K-dimensional Laplacian embedding
point cloud on a unit hyper-sphere. This is particularly interesting property for visual shape
registration where two shapes can have significantly different sampling. Other critical aspect
of the shape representation is the choice of embedding dimension as well as the scale of anal-
ysis. We have already presented a detailed discussion relating these two shape representation
parameters in Section 6.4.1.
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Figure 6.6: Auto diffusion function (ADF) maxima on meshes. Colors plotted on mesh rep-
resents the absolute function values and Green dots depicts the function maxima computed
locally using a two ring neighboring. At smaller time-scale values, we obtain large number of
maxima due to local nature of ADF while at larger time scale values the ADF is global and
has small number of stable maxima.
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Processed high-resolution triangulated meshes Low-resolution triangulated meshes

(a) Harris3D dense key-point detection (setup II). (b) Harris3D dense key-point detection (setup II).

(c) Harris3D sparse key-point detection (setup I). (d) Harris3D sparse key-point detection (setup I).

(e) ADF maxima dense key-point detection (setup II). (f) ADF maxima dense key-point detection (setup II).

(g) ADF maxima sparse key-point detection (setup I). (h) ADF maxima sparse key-point detection (setup I).

Figure 6.7: Key-point detection on visual shapes using the Harris 3D key-point detec-
tor [Sipiran 2011] (a-d) and the maxima of auto-diffusion function, i.e., Eq. (6.32)(e-h). The
former misses while the latter manages to repeatedly detect key-points around shape protru-
sions. Table 6.1 provides the choice of parameters for the two experiments.
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6.6.2 Key-point Detection

Feature based representation is very common in the image processing community where first
a set of key-points or interest-points are detected on an image and then the image is described
as the vector of features computed on these key-points. A detailed survey on image key-point
detection is presented in [Tuytelaars 2008]. Some desired properties for these key-points are
Repeatability, Locality, Distinctiveness, Accuracy and Efficiency. Repeatability is a key aspect
for any key-point detection method. Another important aspect is the scale at which key-points
are detected. One popular approach is to perform a multi-scale analysis in order to make the
detection process repeatable in the presence of various image transforms. The key idea, based
on seminal work presented in [Lindeberg 1994], is to select the characteristic scale of a local
structure, for which a given function attains an extremum over scales.

On the other hand, the idea of key-points is not well defined in the 3D shape community.
A commonly used definition as stated by [Sipiran 2011] is to relate the measure of interest
with the level of protrusion of the outstanding local structures. This definition directly points
to a multi-scale setup for detection of key-points, as these local structures can exist at multiple
scales. Existing multi-scale methods for image key-points detection can easily be extended to
3D shapes by defining smooth differentiable functions on 2D manifold surface. One simple
choice of such function is the Euclidean coordinates of 3D shape that can also be combined
with surface texture and applied with Gaussian smoothing to obtain a scale-space represen-
tation [Zaharescu 2009, Maes 2010]. However, this choice is computationally expensive. A
recent work proposed in [Sipiran 2011], which extends Harris operator for 3D shapes, is stated
as the best performing feature detector in the existing SHREC benchmark [Boyer 2011]. The
proposed method uses an adaptive technique to determine the neighborhood of a vertex, over
which the local Harris response is calculated.

However, majority of these methods were primarily design to work on graphical data that
usually simulate various shape transforms, but are much simpler than the visual shapes. This
could lead to unexpected behavior while operating on visual data with large surface noise and
topological discrepancies. One more limitation is that these methods do not guarantee the
detection of all major shape protrusions, while seeking a sparse set of key-points. This is
particularly more challenging due to the fact that the repeatability of key-points decreases as
the number of key-points decreases, as observed in [Boyer 2011].

Another class of approaches uses the geometric diffusion theory for key-point detection.
The diffusion operators applied over set of functions defined over the manifold surface reveals
the intrinsic geometry of 3D shapes. We adapt the HKS method proposed in [Sun 2009], to
detect a set of key-points on a 3D shape as the maxima of the heat norm or the auto-diffusion
function shown in Eq. (6.32). Figure 6.6 shows the detected feature points as the maxima of
heat norm computed at different time scales. At smaller time scales, we detect large number
of key-points due to the local nature of the auto diffusion function, which capture the local
surface variations. While at larger time scales, the auto diffusion function is global and hence
the detected key-points are sparse and mainly detected on the shape protrusions.
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A very recent work in [Tombari 2012] presents an exhaustive discussion on performance
evaluation of the existing key-point detectors. They rightfully accept the fact that the HKS
detector offers a wider degree of invariance than the other detectors, and is beneficial in ap-
plications like non-rigid matching. However, according to them it was less relevant to the
scenarios considered in their evaluation methodology and hence only considered as a fixed
scale detector.

Here it is important to note that, unlike previous similar attempts in the literature, we now
have a formalism to choose the appropriate time scale and related embedding dimension. This
will provide an inherent normalization to shape sampling while detecting key-point on two
visual shapes with significantly different meshing.

Figure 6.7(a-d) shows the results of Harris 3D feature point detection on visual shapes
using [Sipiran 2011]. We performed two experiments using two sets of parameters in order to
obtain sparse (a,b) and dense (c,d) key-point detection. This method fails to repeat the detec-
tion of sparse key-points around the shape protrusions. On the other hand, the repeatability
of the sparse key-points detected using the auto-diffusion function in Eq. (6.32) is more reli-
able, as shown in the Figure 6.7(e-h). We detect sparse and dense key-points using large and
small values of time scale parameter, respectively. Table 6.1 presents parameter values used
in the experimental setups. It is important to note that the choice of embedding dimension K
is consistent with the analysis presented in Section 6.4.1 e.g, for sparse key-point detection at
t = 500 we chose K = 10 for visual shapes that has approximate size of n = 10000 vertices,
which is around 0.1% of the size of complete Laplacian spectrum (see Figure 6.4).

Key-point Detection Method Setup I -“Sparse” Setup II -“Dense”
type-neighborhood = adaptive, type-neighborhood = adaptive,

parameter-neighborhood = 0.01, parameter-neighborhood = 0.01,
Harris3D (see [Sipiran 2011]). Harris parameter = 0.04, Harris parameter = 0.04,

ring-maxima-detection = 2, ring-maxima-detection = 2,
interest-points-selection = fraction, interest-points-selection = clustering,

parameter-selection = 0.001. parameter-selection = 0.001.
embedding-dimension K=10, embedding-dimension K=50,

ADF Maxima, see Eq. (6.32). time scale parameter t = 500, time scale parameter t = 50,
ring-maxima-detection = 2. ring-maxima-detection = 2.

Table 6.1: Parameter values for key-point detection examples in Figure 6.7.

Interestingly, we also found that by increasing the size of embedding dimension, i.e., K
yields the same key-point detection results, and hence verifying the empirical analysis pre-
sented in Section 6.4.1. We have another important observation by varying the ring-maxima-
detection parameter for low-resolution visual shapes. Our results suggests that even for such
unprocessed visual shape one can get reliable key-point detection around shape protrusions by
increasing the ring size for local maxima detection of ADF function. Figure 6.8 shows one
examples with varying ring size for local maxima detection.
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(a) ring-maxima-detection= 5. (b) ring-maxima-detection= 6.

Figure 6.8: Key-point detection on low-resolution triangulated visual shapes using the maxima
of auto-diffusion function with varying ring size while performing a local maxima detection.
As compared to the key-point detection in Figure 6.7(h), which uses smaller ring size, using the
larger ring size for low-resolution triangulated visual shapes yields better key-point detection
results.

Hence, we propose to detect a set of sparse but reliable key-points on 3D visual shapes as
the maxima of auto diffusion function computed at larger time scales.

6.6.3 Multi-scale Dense Descriptors

As concluded in Section 6.1, the intrinsic feature descriptors are more suitable for 3D artic-
ulated shape representation. In this section, we introduce two multi-scale descriptors, which
are densely computable for each vertex of the shape graph.

Given a visual shape represented as connected undirected weighted shape graph, we can
recall various mathematical notations from Section 6.2.2. A shape graph is represented as
G = {V,E} where V = {v1, . . . ,vn} is the vertex set. Let P = {p1, . . . , pM} be the set of M
sparse key-points detected using the multi-scale analysis presented in the previous section,
where P is essentially a subset of V, i.e., P ⊆ V.

While defining a multi-scale descriptor, we can use τ number of time scales denoted as
(t1, . . . , tτ). Once these values are decided, one can easily choose the corresponding embedding
dimension based upon minimum time scale value using the scree-curves analysis presented in
Section 6.4.1.

6.6.3.1 Multi-scale Heat Diffusion Descriptor

Here we outline the construction of heat diffusion descriptor also know as the heat kernel
signature (HKS) [Ovsjanikov 2010]. The heat diffusion descriptor for each vertex v j stores
the amount of heat diffused to it in different time steps t1, . . . , tτ from each of the multiple
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point heat sources placed at each of key-point in P . Thus, this can be represented as a 2D
array of dimension τ×M.

Descriptor Construction: Let the amount of heat available at vertex vi ∈V at time t, starting
with a point heat distribution source placed at key-point pm ∈ P , where pm is the j-th vertex
in V, is denoted as h(vi, pm; t).

We can now represent a τ-dimensional vector for each vertex vi ∈ V that captures the
respective multi-scale heat diffusion from a of the key-point pm ∈ P as:

hvi
pm

= [h(vi, pm; t1), . . . ,h(vi, pm; tτ)]
⊤ (6.61)

In addition to the heat diffusion from these M key-points, we also consider self diffusion at
multiple times to capture the local geometry. This is encapsulated in a an additional vector:

h
vi
M+1 = [h(i, i; t1), . . . ,h(i, i; tτ)]τ (6.62)

Finally, considering the heat diffusion from all the key-points and self-diffusion we can
define a τ×M +1 descriptor for each vertex vi ∈ V of the shape graph G as:

Hvi = [hvi
p1

. . .hvi
pM

h
vi
M+1]τ×(M+1). (6.63)

6.6.3.2 Multi-scale Heat Distance Descriptor

Here we introduce a novel heat distance descriptor, which stores spectral distances between
a given vertex to the set of key-points. The descriptor is similar in the spirit to previously
proposed intrinsic descriptors in [Ahmed 2008, Ovsjanikov 2010]. The proposed descriptor
uses scale dependent heat diffusion metric in Eq. (6.30) introduced in Section 6.3. The use of
scale dependent metric enabled a straightforward extension to a multi-scale descriptor, which
by storing heat distances computed at multiple-scales from each key-point.

Thus, the heat distance descriptor for each vertex v j stores the multi-scale heat distances
computed at t1, . . . , tτ time scales from each of the key-point in P . This can also be represented
as a 2D array of dimension τ×M. This is very similar to heat diffusion descriptor outlined in
the previous section except that here we store heat distance instead of heat diffusion. However,
heat diffusion only consider amount of heat transfer whereas heat distances also captures the
total amount of heat at source and destination vertex, thereby capturing more information, see
Eq. (6.30).



6.6. 3D Shape Description using the Heat Diffusion Framework 121

1p

2p

Mp

iv

3p jp

1

);,(

);,(

�
�
�

�

�

�
�
�

�

�

=

ττtpvd

tpvd

jih

jih
v
p
i

j
�d

[ ]
M

i

M

ii v
p

v
p

v

×
= τddD �

1

Figure 6.9: Construction of a multi-scale heat distance descriptor. The red dotted line depicts
the multi-scale heat distance to a given vertex from a specific key-point. The descriptor stores
these distances to a given vertex from all the key-points.

Descriptor Construction: Let’s denote scale dependent spectral distance, i.e., heat distance
shown in Eq. (6.30) between two vertices vi and v j as dh(vi,v j; t). One can also choose an
appropriate definition of heat distance from a set of different metrics derived in the Section 6.5.
The choice of metric will depend upon the type of embedding normalization considered.

We can compute a τ-dimensional vector for a vertex vi ∈ V that captures the respective
multi-scale heat distance from one of the key-point pm ∈ P as:

dvi
pm

= [dh(vi, pm; t1), . . . ,dh(vi, pm; tτ)]
T (6.64)

Finally, considering the heat distances from all the key-points, we can define a τ×M
descriptor matrix for each vertex vi ∈ V of the shape graph G as:

Dvi = [dvi
p1

. . .dvi
p j

. . .dvi
pM

]τ×M. (6.65)

Figure 6.9 depicts the construction of the proposed descriptor.

6.6.4 Descriptor Matching Score

The matching between two heat distance descriptors defined on different visual shapes will
require the pre-computed one-to-one assignment between the set of key-points on two shapes.
We will discuss this aspect while performing shape matching in the next section.
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By assuming that a one-to-one assignment between the two set of key-points is known, the
matching score between a descriptor Dvi on shape G and another descriptor Dv′j on a different
shape G′ is computed as:

score(Dvi ,Dv′j) =
M

∑
m=1

||dvi
m−d

v′j
m ||∞. (6.66)

We choose L−∞ norm while computing the matching score so that for each key-point, the
descriptor matching score consider the largest difference in the heat distance values in vector

dvi
m−d

v′j
m , irrespective of the time scale parameter. This ensure that the matching is not biased

to any specific time-scale.

Thus, the vertex descriptors from two different shapes should have a low matching error
score if the corresponding vertices have similar multi-scale heat distances from their respec-
tive key-points. A similar matching formulation was outlined in [Ovsjanikov 2010] for heat
diffusion descriptor.

It is important to note that computing such matching will require a robust alignment of
sparse key-points. We will discuss this aspect in detail while performing a sparse visual shape
matching in the next chapter.

6.7 Conclusion & Future Work

In this chapter, we have outlined a generalized framework for the representation and analysis
of 3D visual shapes based on heat diffusion on undirected weighted graphs. In this context,
a detailed mathematical analysis of various spectral constructs has been provided. The pre-
sented analysis has lead to a formalism that allowed us to combine the scale parameter of
heat diffusion and dimensionality of spectral embedding, providing a basis for performing
dimensionality reduction and, more generally, to characterize the statistical properties of the
embedded shape representation at multiple scales. In addition to this, we have also proposed
a novel multi-scale heat distance descriptor for feature based shape representation.

As part of the future work, we plan to extend this framework to a family of exponential
kernels. Although, we did proposed a novel analysis relating the scale of analysis with dimen-
sion of the heat-kernel embedding, a more sophisticated method to choose the scale of analysis
will be more desirable.

In the next chapter, we will employ the proposed heat descriptors for dense shape registra-
tion in the presence of large topological changes.
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7.1 Introduction

We have already introduced the problem of surface mapping in the continuous domain and
the graph matching as it’s discrete counterpart in Chapter 2. There we presented the spectral
formulation for exact graph matching problem and a relaxed isomorphism solution in Sec-
tion 2.4.4. However, the exact graph matching is typically not suitable for matching the shape
graphs representing visual shapes due to the existence of large acquisition noise, non-uniform
sampling and topological changes. Instead, the inexact graph matching is the key for visual
shapes as it allows one to relax the constraints of strict isomorphism, e.g., a probabilistic
many-to-one matching instead of strict binary matching.
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Figure 7.1: Examples of commonly occurring topological changes in visual shapes.

Thus, we propose to employ inexact graph matching methods in order to obtain a dense
matching solution for visual shapes. In particular, we focus on commonly occurring topologi-
cal changes in the visual shapes, which is a major challenge for majority of the existing dense
shape matching methods. The problem of topological changes exists in visual shapes obtained
from the multi-camera acquisition systems. Such acquisition systems provide independently
reconstructed visual shapes for a dynamic 3D object. However, obtaining a 3D animation se-
quences with spatio-temporal coherence, based on these independently reconstructed shapes,
is a challenging task. It inherently involves estimation of dense 3D correspondences. This is
particularly difficult in the case of articulated shapes due to complex kinematic poses. These
poses induce self-occlusions and shadow effects which cause topological changes along the
sequence, such as merging and splitting. Figure 7.1 demonstrates some common occurrences
of topological changes in independently reconstructed visual shapes that were captured via
multi-camera acquisition systems.

We have already seen some examples of topology change in Section 3.4, suggesting that
the single scale spectral representation is not suitable for shapes with topological merging and
splitting. The multi-scale heat-kernel framework presented in the previous chapter provides a
tool to analyze shapes at different scales. Since the topological changes are local phenomenon
and does not affect the surface characterization of the regions that are not in the direct prox-
imity of such changes. Hence, we can adapt the multi-scale framework and analyze the visual
shapes with topological changes by performing a local analysis at smaller scales, thereby com-
puting the local surface characterization.

In this chapter, we discuss in detail spectral framework for inexact graph matching and
employ it for dense matching of visual shapes represented by shape graphs (see Section 3.2).
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First we derive a sparse shape matching method for key-point alignment. Next, using the
sparse key-point matching, we compute multi-scale heat diffusion descriptors (as outlined
in the previous chapter) and employ a novel seed growing algorithm to find a dense binary
matching solution for visual shapes. Finally, we propose a method to find a topologically-
robust dense probabilistic matching solution for visual shapes with large topological changes.

The chapter organization is as follows. In the beginning, we present a detailed discus-
sion on existing solutions for visual shape matching in the context of inexact graph matching
in Section 7.1.1 and list our contributions in Section 7.1.2. This is followed by Section 7.2
where we present two sparse binary shape matching methods using the geometrical and tex-
ture features on visual shapes. In Section 7.3, we propose a novel seed-growing algorithm
that combines with sparse matching and heat distance descriptors in order to find dense binary
shape matching solution. In the next Section 7.4, we propose a method to find topologically
robust dense probabilistic matching using the EM based algorithm outlined in Section 7.4.1.
In Section 7.5, we present the qualitative and quantitative evaluating of dense matching re-
sults that illustrate the robustness of the proposed method. Finally, Section 7.6 concludes the
chapter with a brief discussion the on proposed method and future directions of work.

7.1.1 Related Work

A large amount of 3D shape analysis literature exists for shape registration/matching task. In
this section, first we summarize the inexact graph matching followed by a compilation of the
existing 3D shape matching methods.

The Inexact Graph Matching: We have already mentioned that in computer vision it is
popular to cast the problem of shape matching as the graph matching problem where 3D shapes
are commonly represented by discrete shape graphs (meshes). It is common to use the inexact
graph matching formulations, which relax the constraints of exact graph matching, thereby
allowing an approximate matching solution on shape graphs representing challenging visual
shapes. The commonly relaxed constraints are many-to-one matching in place of one-to-one
matching or a probabilistic soft assignments in place of a strict binary assignments. However,
this leads to a bigger solution space and hence the approximate or sub-optimal solutions.

The three common approaches to inexact graph matching are: 1) Transforming one graph
to other by penalizing the graph editing operations and choosing the one with minimum
editing cost, e.g., [Bunke 1999, Llados 2001, Neuhaus 2006]; 2) Relaxing the strict isomor-
phism by defining a cost function that penalizing certain matching configurations and finding
a graph matching solution with minimum cost, e.g., [Bolles 1982a, Gold 1996, Pelillo 1999,
Schellewald 2005, Leordeanu 2005, Cour 2006, Cour 2997]; and 3) Spectral approach to em-
bed the graph in a n-dimensional Euclidean metric space, which reflects the original graph con-
nectivity and then applying a linear or non-linear matching in order to obtain a sub-optimal
matching solution, e.g., [Umeyama 1988, Scott 1991, Shapiro 1992, Wang 2006, Luo 2003,
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Mateus 2008]. We recommend reading the Section 4.2 in [Mateus 2009] for a detailed survey
on inexact graph matching methods.

Sparse and Dense Shape Matching Methods: A popular inexact graph matching technique
is to cast the graph matching problem into an integer quadratic problem (IQP) that is equivalent
to find a set of mutually compatible nodes in an association graph [Bolles 1982a]. However,
this is an instance of intractable NP hard problems. Though, there exists sub-optimal solutions
that uses various possible relaxations, e.g., spectral relaxation [Leordeanu 2005] and replicator
equation method [Pelillo 1999]. These methods are tractable only when the graphs are very
small and hence are suitable only for the sparse matching of key-points.

On the other hand, a large number of shape matching methods find vertex-to-vertex dense
matching of the corresponding shape graphs. There are two main classes of approaches that
achieve dense 3D shape matching. The first class consists of model-based approaches, which
by-pass the problem of topological issues by starting with a prior shape model. This model
is locally deformed at each time step of the sequence in order to obtain a globally consistent
shape representation. This is achieved at the cost of loosing detailed geometric and texture in-
formation obtained at each independent reconstruction. Another problem is the accumulation
of deformation errors over time. Moreover, in the case of dynamic scenes, the assumption of
a prior model is not realistic.

The second class consists of model-free approaches, which do not impose any shape pri-
ors. Initially, sparse correspondences are computed between two independently reconstructed
shapes using local cues based either on texture or on geometry. These correspondences are
then propagated to obtain a dense shape matching. However, it is often the case that these
initial sparse correspondences are not uniformly distributed over the shapes, and hence the
propagation of these correspondences is a challenging task. It is even more difficult when
the two shapes differ significantly. Indeed, one major limitation of this class of methods is
that they use a geodesic distance onto the shape manifold, which is not robust to changes in
topology.

In this work, we mainly focus on model-free dense matching approaches that primarily
use the geometrical cues for 3D shape matching.

There exists a class of solutions based on iterative closest point (ICP) method adapted
to 3D shape matching [Sussmuth 2008, Tevs 2009, Cagniart 2010]. These methods perform
shape registration in the Euclidean space and hence do not provide a pose invariant matching.
The high computation complexity is also an important issue with some existing dense shape
matching methods, e.g., an energy minimization solutions based on Markov random fields
(MRF) presented in [Starck 2007a], provide decent matching results, but can result in a very
high computational costs when the sampling of 3D shapes increases. However, a sparse-to-
dense strategy can help to ease this aspect, e.g., a seed-growing method in [Čech 2010].

Many existing methods extends the graph matching to higher order formulations in order to
find dense 3D correspondences, e.g., [Zeng 2010a, Duchenne 2011, Smeets 2012]. However,
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they mainly show results on graphical shapes.

Another class of intrinsic methods relies heavily on the assumption that different poses in
the articulated shapes arises due to non-rigid deformations that are strictly isometric. Hence,
the pose invariance is achieved by embedding the shape into an isometry invariant subspace [Starck 2007a,
Bronstein 2009, Zeng 2010b, Reuter 2010, Sahillionglu 2010, Ovsjanikov 2010, Sharma 2011,
Wu 2011]. However, this is a very strong assumption for visual shapes, as the independently
reconstructed shapes are not strictly isometric and also can have topological changes (see
Section 3.4 and Section 7.1). Interestingly, an intrinsic dense probabilistic matching method
proposed in [Mateus 2008] is a good candidate for matching visual shapes. However, this also
fails to handle topological changes and their histograms matching based heuristic to align two
embeddings is not robust in case of large variations in the visual shapes.

Some existing methods on shape tracking that inherently performs dense shape matching,
employed initial sparse matches to achieve robustness to the topological issues [Vlasic 2008,
Huang 2008, Varanasi 2008]. In [Varanasi 2008], a mesh evolution was performed by locally
deforming the 3D shape according to the sparse 3D correspondences. These sparse correspon-
dences were obtained by minimizing an error function that evaluates the texture and geometric
consistency. However, the texture based error function limits the application of the method and
the geometric consistency check was performed using the geodesic metric, which is vulnerable
to large shape deformations.

In [Ahmed 2008], initial sparse correspondences were used to compute a set of harmonic
functions and each shape vertex was represented by the coordinates of these functions. Then a
dense matching was performed based upon computation of the level set of closest initial cor-
respondences on two shapes. However, these harmonic functions are the solution of stationary
heat equation and hence are globally affected by the topological issues. An hierarchical as-
sembly of independently reconstructed shapes was performed in [Popa 2010] for computing
a globally consistent space-time reconstruction. Recently, [Huang 2011] proposed to find a
single temporally consistent representation over the animation sequence by first introducing a
global alignment graph structure, which uses shape similarity to identify individual shapes in
a temporal registration. This was followed by a graph optimization step, which minimizes the
total non-rigid deformation required to register the input sequences into a common structure.
A very recent attempt in [Letouzey 2012] claims to recover both the topology and the geometry
of a deformable shape over a temporal animation sequence. However, all these methods focus
on recovering a single temporally consistent model over the sequence, by mainly exploiting
the motion cues, instead of finding a topologically-robust dense binary matching solution.

Another class of intrinsic shape matching methods use sampling based approach and min-
imize some distance criterion between two shapes, e.g., [Mémoli 2004] compare two point
clouds representing graphical shapes (manifold surfaces) using an iterative Farthest Point
Sampling algorithm [Moenning 2003], which computes an optimized covering by minimiz-
ing an approximate Gromov-Hausdorff-Distance between two shapes. A set of coarsely sam-
pled landmarks (extremal points of a geodesic integral) were used to compute a geodesic
diffeomorphism in [Tung 2010, Zhang 2008]. In [Ruggeri 2010] a thresholding of critical
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Figure 7.2: Method outline : (a) Input shapes (notice the difference in their topology). (b) Ini-
tial sparse matches. (c) Matches obtained with the seed-growing algorithm. (d) Probabilistic
dense matches obtained with the EM algorithm. (e) Probabilistic transfer of a scalar function
(coloring of shape parts).

points of the Laplace-Beltrami operator were used to compute a set of anchor-points of a
shape. These critical-points of Laplace-Beltrami operator are typically located on geomet-
rically and topologically meaningful regions of the shape and are invariant with respect to
isometry [Reuter 2009]. A recent shape matching method in [Tevs 2011] propose to first find
optimized landmark points and match them for entropy minimization thereby minimizing the
sampling costs. However, majority of these methods show results on graphical shapes and are
less suitable for visual shapes, e.g., the detection of similar critical points of Laplace-Beltrami
operator on two shapes that was used in [Ruggeri 2010] is not reliable for noisy visual shapes.

The closest work to our method in terms of the shape descriptors is [Ovsjanikov 2010].
In their work, a dense shape matching method using a single (or multiple) initial correspon-
dence is used. They propose a detailed theoretical justification for using heat diffusion maps.
However, the proposed descriptor, when used in conjunction with a greedy matching method,
is vulnerable to the topological issues. In our work, instead, we use a robust seed growing
approach for matching, which locally propagate sparse matches and is robust to outliers in the
initial correspondences.

7.1.2 Contributions

The main contribution of this chapter is a dense 3D shape matching method that is robust to
topological changes in the shape. The method starts by finding sparse one-to-one correspon-
dences between set of key-points and produces as output a set of dense correspondences. Fig-
ure 7.2 sketches the pipeline of the proposed method. Given two input visual shapes with topo-
logical changes, Figure 7.2(a), we first obtain sparse matching, Figure 7.2(b). Next, we employ
the multi-scale descriptors (introduced in Chapter 6) to perform a dense shape matching. We
match these descriptors locally using a novel seed-growing method that propagates current
correspondences to nearby ones, Figure 7.2(c). The final set of dense correspondences is ob-
tained via a point registration method that uses a variant of the EM algorithm, Figure 7.2(c). A
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Figure 7.3: Association graph structure: Each node represents a point-to-point binary match-
ing and every edge represents the mutual consistency between two nodes typically measured
by positive weights. The edges with low consistency score are depicted with dashed line as
opposed to the ones with high consistency score. In the ideal case, only the largest maximal
clique should have a complete subgraph structure as shown here.

segmentation transfer introduced in Chapter 5 is employed in order to visualization the dense
probabilistic matching results, Figure 7.2(d).

7.2 Sparse Shape Matching

In this section, we present sparse shape matching methods. We outline an association graph
method to find one-to-one matching of the geometrical features, followed by a texture based
sparse matching method for visual shapes obtained from the same sequence.

7.2.1 Sparse Matching using Geometrical Features

We have already introduced a geometrical feature detection technique for key-point detection
in Section 6.6.2. The method uses multi-scale analysis for detection of sparse key-points on
visual shapes that typically corresponds to geometrical features on shape protrusions.

Here, we employ the existing graph matching techniques in order to find a one-to-one
matching of key-points (geometrical features) on two visual shapes. We have already men-
tioned in Section 2.4 that the graph matching methods are mostly NP-complete problems and
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finding a global optimum is sometime not feasible. Nevertheless, several sub-optimal solutions
are available.

One can cast the key-point matching matching problem into an integer quadratic prob-
lem (IQP), a NP-hard problem, by finding a set of mutually compatible nodes in an associ-
ation graph [Bolles 1982b], which is equivalent to finding the largest maximal clique of the
undirected weighted graph. Other sub-optimal solutions use various possible relaxations of
IQP, e.g., spectral relaxation method [Leordeanu 2005, Sharma 2010a], replicator equation
method [Pelillo 1999] and re-weighted random-walk method [Cho 2010]. These methods are
tractable when the correspondence set is small, namely, of the order of 102 and hence they are
only suitable when one seeks sparse matching.

We represent our sparse graph matching problem in the framework of the association-
graph introduced in [Bolles 1982a]. Each node of the association graph represents a point-to-
point matching and every (positive weighted) edge between two nodes represents the mutual
(isometric) consistency between respective point-to-point matching. Specifically, two mutu-
ally consistent graph nodes are called as strongly connected (i.e., have high edge weights) if
the corresponding key-points onto the two shapes have similar spectral distances.

Figure 7.3 illustrates the construction of association-graph. The association-graph typ-
ically has a complete graph structure but for the simplicity of visualization, we have only
depicted strong edges and some weak edges. A subset of strongly connected nodes, shown
in the big circle (and tagged as the largest maximal clique), represents the largest mutually
consistent set of point-to-point matches that are only weakly connected to the other nodes.

Thus, a set of mutually consistent point-to-point matching can be obtained by finding
the subset of strongly connected nodes of the association-graph. This is an instance of
the largest maximum clique problem, which is an NP-hard problem. There are many al-
gorithms that find an approximate solution by enforcing different constraints [Pelillo 1999,
Leordeanu 2005, Cho 2010]. In [Leordeanu 2005], a spectral relaxation to integer quadratic
formulation, followed by one-to-one matching constraints was employed to find a sub-optimal
solution. [Cho 2010] obtains a approximate solution by simulating the random walks with
re-weighting jumps, thus enforcing the matching constraints on the association graph.

We adapt the energy-minimization framework for the graph isomorphism problem based
on an equivalent maximum clique formulation presented in [Pelillo 1999]. One-to-one key-
point matching problem is formulated as the quadratic program using the adjacency matrix of
association graph and solved using the replicator equations. The method is employed to find
one-to-one matching of the key-points between two shapes.

Sparse Matching Results: Figure 7.4 shows the results of key-point matching obtained
using this method. It is interesting to note that method provide a decent result for the case
when two shapes have different number of key-points, since a new shape protrusion evolved
due to dynamic clothing as shown in the Figure 7.4(b).
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(a) Visual shapes from (b) Visual shapes from (c) Graphical shapes.
different acquisition setup. same sequence.

Figure 7.4: Sparse key-point matching obtained with association graph method. Interestingly,
the method provide a decent result for the case when two shapes have different number of
key-points since a new shape protrusion evolved due to dynamic clothing in (b).

(a) (b)

Figure 7.5: Sparse key-point matching obtained with the replicator equation method. Results
in (a) and (b) represent different maximal cliques obtained with replicator method for the same
association graph.
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Figure 7.6: A failed key-point matching due to the presence of topological issues (hand on the
right shape is merged with the torso).

Limitations of Association Graph Method: One important limitation of the association
graph based feature matching methods is the scalability, since the computational cost of these
methods grows exponentially with the number of key-points. However, it is common to per-
form the heuristic elimination of the association graph nodes that corresponds to less probable
one-to-one matching in order to address the scalability issue. This can be done by using the
extrinsic or intrinsic properties of the local surface around key-points, e.g., texture, curvature,
heat diffusion. We propose to compare and threshold the normalized multi-scale auto diffu-
sion values for every possible matching in order to eliminate the weak matching hypothesis
and corresponding association graph nodes. Another crucial limitation of the proposed method
is that it can find key-point matching solution only up to the symmetry in the given shapes.

While employing the replicator equation method to find the approximate solution to maxi-
mum clique of the association graph, one major limitation is that it does not guarantee a global
consistency in the matching results. The replicator method can only find one of the many
maximal clique since finding the largest maximum clique is not practical. This can lead to
different matching solutions for the same data. Figure 7.5 depicts a typical scenario when two
different matching solutions are obtained with the replicator method.

Another major limitation of the current method (as well as the majority of existing meth-
ods) is that it does not handle the presence of topological discrepancies like merging and
splitting in the 3D shapes. This is due to the fact that the spectral distances are sensitive to
any large topology change. Figure 7.6 shows a incorrect key-point matching result where two
shapes differ in the topology due to merging of hand with torso in one of the shape.

7.2.2 Sparse Matching using Texture based Features

We have already introduced a sparse feature assignment method in the previous section. How-
ever, the proposed sparse matching method is susceptible to the presence of topological changes
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since the spectral distances used to define the mutual compatibility score of the matching is no
more reliable. There are other methods proposed in the past that use local geometry/texture
cues to find a set of sparse correspondences [Zaharescu 2009, Ahmed 2008, Thorstensen 2009,
Hou 2010].

We adapt a SIFT descriptor [Lowe 2004] based sparse shape matching method proposed
in [Ahmed 2008] in order to obtain sparse shape matching in case of visual shapes from the
same sequence and with large topological changes.

7.3 Dense Shape Matching

In this section, we present a dense matching method for visual shapes using heat-kernel frame-
work outlined in the previous chapter. Using the sparse matching method presented in the pre-
vious section, we can obtain sparse one-to-one correspondences between sets of key-points
on two visual shapes. Next, using the same set of key-points, we can define multi-scale
descriptors (see Section 6.6.3) for every vertex of the two shape graphs. Hence, given the
matched key-point, we can now easily compute the descriptor matching score presented in
Section 6.6.4.

Once we have two sets of dense multi-scale heat-kernel descriptors, similar to [Ovsjanikov 2010],
we can straightforwardly employ a greedy matching algorithm in order to find dense matching
results. This might work really well for graphical shapes where heat diffusion on two shapes
is almost the same. However, while dealing with visual shapes, it is not easy to make such
an assumption specifically when two shape can also be significantly different in their topol-
ogy, thus making the heat-kernel descriptors unreliable. Therefore, in case of visual shapes a
greedy matching can lead to erroneous arbitrary assignments that can violet the smoothness of
the desired correspondence map.

In such scenario, we prefer a sparse-to-dense approach where we start with initial sparse
matches and locally propagate them so as to preserve the smoothness of the binary match-
ing. Traditionally, seed-growing algorithms are used to achieve such a sparse to dense match-
ing [Čech 2010].

7.3.1 Correspondence Propagation using Seed Growing

Seed-growing is an interesting class of dense matching method that starts with a set of initial
matches and grows them in a local neighborhood. In our case, we already have a set of sparse
correspondences, which can be easily used as the seed matches. Hence, we propose to use the
dense multi-scale heat-kernel descriptors and a seed-growing algorithm, similar in spirit to the
one proposed in [Čech 2010], for propagating sparse key-point correspondences over visual
shapes.

Let’s define a set of binary variables Γ = {γ1, . . . ,γi, . . . ,γn} for shape G where γi is set to
1 if a vertex vi from the first shape is assigned to a vertex v′j from the second shape and 0
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otherwise. Similarly, we can define Γ′ for G′. Let S = {s1, . . . ,sm, . . . ,sM} be the set of initial
seed matches, with sm = (vi,v′j), e.g., γi = γ′j = 1. S in stored in a priority queue data structure
where each seed correspondence sm is associated with a matching score. The matching score
score(sm) is the heat descriptor matching error computed between the descriptors of vi and
v′j (see Section 6.6.4). Each time an element is drawn from S , it returns the seed with the
minimum matching error score. Initially, the scores of all the seed correspondence are set to
zero. This will ensure that all the seed matches are part of the output binary matching. We
define a matching threshold β and consider only the correspondences with a matching score
less than this threshold. We designate by Nei(vi) the set of 2-ring neighbors of vertex vi on the
shape graph. The output of our algorithm is the set of accepted binary matches represented as
∆ = {δi j}.

The proposed seed-growing algorithm proceeds as follows. We iteratively draw a seed
match with the minimum matching error from S and accept it as a correct binary match (add to
set ∆) if the constituting vertices are not yet assigned to an existing match in ∆. Otherwise, we
drop this seed correspondence from S. Once a seed correspondence is accepted, the algorithm
searches for all the neighboring vertices of this seed correspondence on each shape that are
not yet assigned to any existing binary matches in ∆. It then computes the matching score
between every pair of corresponding vertex descriptors and adds the current pair to priority
queue structure S if the matching score is less than β. Pseudo code of the seed-growing
method is outlined in Algorithm 6.

Algorithm 6 Seed-Growing for Match Propagation

Input: : Two sets of vertex descriptors D, D′; seed matches S ; a set of binary variables Γ, Γ′;
the matching score threshold β.

Output: : Dense matches ∆ = {δi j} where δi j = (vi,v′j).
1: while S is not empty do

2: Draw the seed s ∈ S with the minimum
matching error, s = (vi,v′j).

3: if γi = γ′j = 0 and score(s) < β then

4: ∆ = ∆∪{(vi,v′j)} and set γi = γ′j = 1.
5: for each va ∈ Nei(vi) and γa = 0 do

6: v′∗ = argmin
v′k∈Nei(v′j) γ′

v′k
=0

score(va,v′k).

7: if v′∗ exists and score(va,v′∗) < β then

8: S = S ∪{(va,v′∗)}.
9: end if

10: end for

11: end if

12: end while

The proposed algorithm is partially robust to the initial outlier seeds as those seeds have
a low score and will not be propagated due to the priority queue structure and provision of
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(a) Visual shapes from (b) Visual shapes from (c) Graphical shapes.
different acquisition setup. same sequence.

Figure 7.7: Dense 3D shape matching results with the proposed multi-scale heat diffusion
descriptor computed using the set of sparse key-points shown in the Figure 7.4.

threshold. However, these outlier matches will still exist as part of output matches as we
assign them a zero matching error score. The output can also have some unmatched points if
two shapes have different sampling, which is the usual case with the visual shapes or when the
matching error score is below some threshold.

Another major problem is in the case of visual shapes with topological changes where
the local heat diffusion properties will not be the same in the areas of topological merg-
ing/splitting. This will lead to unmatched set of vertices on two shapes.

Correspondence Propagation Results: We show dense binary matching results for visual
shapes using the proposed seed growing algorithm and multi-scale heat distance descriptor.
We choose the unit hyper-sphere embedding presented in Section 6.5.1 and the associated
diffusion distance metric in Eq. (6.43), while computing the heat distance descriptors. It is
important to note that the analysis presented in Section 6.4 allow us to choose the minimum
time scale depending on the size of Laplacian embedding of one shape. It also enables us to
use the same time scale while analyzing other shapes by selecting the appropriate embedding
dimensions. We heuristically chose 25 as the embedding dimension, i.e., K for the first shape
and then compute minimum time scale and corresponding K′ for the other shape. We heuris-
tically set the value of τ to 5, thereby computing a 5-dimensional vector for each descriptor,
capturing the multi-scale heat distances from each key-point. Once the minimum time scale
value represented as t1 is computed by the scree-curve analysis, we choose the remaining scale
parameters by logarithmically increasing time scales values.

Figure 7.7, shows the dense matching obtained with multi-scale heat distance descriptors,
computed using the corresponding sparse key-points and their binary matching shown in the
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(a) Sparse key-point matching. (b) Dense binary matching.

Figure 7.8: Dense matching of processed high-resolution visual shape with topology change.

(a) Sparse key-point matching. (b) Dense binary matching.

Figure 7.9: Dense matching of unprocessed low-resolution visual shape.



7.3. Dense Shape Matching 137

(a)Gaussian noise (b) Scale change (c) Micro holes

Figure 7.10: Sparse key-point matching (top row) and corresponding dense 3D shape match-
ing (bottom row) in the presence of different shape transforms [Bronstein 2010a]. In case of
Gaussian noise (a) and scale change (b), we obtained accurate dense binary matching as the
two shape graphs have the same topology, i.e., same number of vertices and edges.

Figure 7.4. It is important to note that first two results in the figure are on visual data. In the
first case shown in the Figure 7.7(a), two shapes are from two different acquisition setups and
thus have completely different meshing. In the second result shown in the Figure 7.7(b), two
shapes have different number of protrusions due to dynamic clothing (much clearly visible in
Figure 7.4(b)).

In Figure 7.10, we show dense matching results in the presence on different shape trans-
forms available in the SHREC’10 shape benchmark [Bronstein 2010a]. First two results
in Figure 7.10(a,b) correspond to an exact vertex-to-vertex binary match, i.e., the proposed
method was able to find the original permutation of vertex indices. However, this was the
ideal case where two synthetic shapes have an exact same topology. In case of micro holes,
the key-point matching is locally failed around the ears, resulting a small matching error in that
region. This failure can be explained by the fact that spectral distances at small scales are very
sensitive to surface noise like holes and hence the replicator equation method (while finding
maximal clique of resulting association graph) finds a locally sub-optimal solution leading to
a wrong key-point matching.

A partial matching result was obtained for unprocessed low-resolution shape shown in
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(a) (b)

Figure 7.11: Visualization of heat diffusion on 3D shapes. The color at each vertex vi encodes
the value of the kernel h(i, j; t), where v j is the blue dot on the torso. (a): For small values of t,
the heat diffusion map is very similar on both shapes and it is not affected by their topological
differences (hand merging with body). (b): For large values of t, the behavior of the diffusion
process drastically depends on the shape’s topology.

the Figure 7.9. This is mainly because of challenging triangulation of the shape as well as
due to the initial matching of only 2 key-points. In Figure 7.8, we show sparse key-point
matching and matching for processed high resolution visual shape with topological changes
due to merging of hands. Although, the key-point matching using association graph yielded
only one match (because of the change in topology), the heat-distance descriptor based dense
matching was able match large part of shape, i.e., legs, head and one hand, however, only up
to the symmetry in two shapes.

In this section, we have presented dense matching results on visual shapes, obtained with
seed-growing algorithm. We were able to find completely unsupervised sparse to dense match-
ing of many visual shapes. However, we can infer from the qualitative results that the proposed
method did not performed well on shapes with topological changes. In the next section, we
propose to use more local heat diffusion descriptors, coupled with seed-growing and a dense
probabilistic matching method to overcome this problem.

7.4 Topologically-Robust Dense Matching

We have already mentioned in the previous section that the proposed seed growing method
fails to perform on visual shape with topological changes as the global heat diffusion behavior
on two shapes is no more similar. This is mainly because the heat diffusion behavior changes
in the presence of topological merging/splitting. Figure 7.11 depicts the heat diffusion phe-
nomenon on visual shapes with topological merging. For small values of the time scale param-
eter t, the heat diffusion is limited to a local neighborhood (Figure 7.11.a), whereas for large
values of t, the heat diffusion is fairly global (Figure 7.11.b). Therefore, at small scales, the
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heat diffusion behaves similarly across the two topologically different shapes, while at larger
scales, the behavior is affected by the topological discrepancies between the shapes. This
motivates the choice of a local descriptor based on heat diffusion at small scales.

Hence, in order to match two topologically different shapes, similar to dense matching
attempt in the previous section, we compute dense multi-scale heat diffusion descriptor (see
Section 6.6.3.1) for each vertex of the shape graph and employ seed-growing algorithm to
propagate initial sparse matches. It is important to note that, first we intentionally use smaller
time scales while computing the multi-scale heat diffusion descriptor and second we use the
sparse binary matching obtained with texture features (see Section 7.2.2). This should provide
robustness to topological changes as now the heat diffusion on shape graphs should be fairly
local and hence similar on two visual shapes, except in the region of topological changes. Also,
the initial sparse correspondence should be invariant to topological changes due to photometric
consistency across the sequence. This however make the application of this method limited
to matching visual shapes from the sequence. Nevertheless, these correspondences are very
sparse as compare to the sampling of visual shapes and any other sparse feature matching
method or even manual input can be used if they can provide such initial matches.

Interestingly, match propagation with seed-growing algorithm is more relevant in this sce-
nario as our heat diffusion descriptor are more local and hence a local propagation algorithm
should be preferable than a global algorithm like greedy matching. Nevertheless, even a local
propagation algorithm like seed-growing can at best provide only partial matching due to large
deformation in heat diffusion behavior in the region of topological changes. Hence, we require
a more robust method that can take as a input the partial matching output of seed-growing and
provide dense matching results.

7.4.1 Dense Probabilistic Matching with EM

Here we outline a probabilistic method, which takes as input a sparse set of binary correspon-
dences between the two visual shapes and provides as output a dense set of correspondences.

The method is based on a parametric probabilistic model, namely, maximum likelihood
with missing data (see 2.8.2 and [Horaud 2011]). Let us consider the Laplacian embeddings of
two shapes, i.e., Eq. (6.24) with t = 0: X = {xi}

n
i=1,X

′= {x′j}
n′
j=1, with X,X′⊂Rk, where k≪

min{n,n′} is the common dimension of the two embeddings, 3 ≤ k ≤ 10 in our experiments.
Without loss of generality, we assume that the points in the first set, X are cluster centers of
a Gaussian mixture model (GMM) with n clusters and an additional uniform component that
accounts for outliers and unmatched data. The matching X↔ X′ will consist in fitting the
Gaussian mixture to the set X′.

Let this Gaussian mixture undergo a k× k transformation Q with Q⊤Q = Ik,det(Q) =

±1, more precisely Q ∈ O(k), the group of orthogonal matrices acting on Rk. Hence, each
cluster in the mixture is parametrized by a prior pi, a cluster mean µi = Qxi, and a covariance
matrix Σi. It will be assumed that all the clusters in the mixture have the same priors, {pi =
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πin}
n
i=1, and the same isotropic covariance matrix, {Σi = σIk}

n
i=1. This parametrization leads

to the following observed-data log-likelihood (with πout = 1− nπin and U is the uniform
distribution):

P(X′) =
n′

∑
j=1

log

(
n

∑
i=1

(
πinN (x′j|µi,σ)

)
+πoutU

)
(7.1)

It is well known that the direct maximization of (7.1) is not tractable and it is more practi-
cal to maximize the expected complete-data log-likelihood using the EM algorithm, where
“complete-data” refers to both the observed data (the points X′) and the missing data (the
point-to-point assignments). In our case, this expectation writes (see [Horaud 2011] for de-
tails):

E(Q,σ) =−
1
2

n′

∑
j=1

n

∑
i=1

α ji(‖x
′
j−Qxi‖

2 + k logσ), (7.2)

where α ji denotes the posterior probability of an assignment: x′j↔ xi:

α ji =
exp(−‖x′j−Qxi‖

2/2σ)

∑n
q=1 exp(−‖x′j−Qxq‖2/2σ)+ /0σk/2

, (7.3)

where /0 is a constant term associated with the uniform distribution U. Notice that one easily
obtains the posterior probability of a data point to remain unmatched, α jn+1 = 1−∑n

i=1 αi j.
This leads to the dense matching procedure outlined in Algorithm 7.

Algorithm 7 Dense matching with EM

Input: : Two embedded shapes X and X′;
Output: : Dense correspondences Φ : X 7→ X′ between the two shapes;

1: Initialization: Set Q(0) and σ(0);
2: E-step: Compute the posteriors α

(q)
i j using (7.3);

3: M-step: Estimate the transformation Q(q) = argminQ ∑i, j α
(q)
i j ‖x

′
j−Qxi‖

2 and the variance

σ(q) = ∑i, j α
(q)
i j ‖x

′
j−Q(q)xi‖

2/k ∑i, j α
(q)
i j

4: Assignment: Match xi 7→ x′j if maxi α
(q)
i j > 0.5, i.e., Φ(i) = j.

However, the proposed EM algorithm can be easily trapped in a local minimum and the
final result crucially depends on correct initialization. Hence, we use the dense binary match-
ing obtained with seed propagation algorithm to initialize our probabilistic dense matching
algorithm. Here we assume that the initial sparse matches have enough binary correspondence
including the correspondences around the region of topological change in order to find a decent
initial estimate of k× k transformation matrix Q.

The algorithm is robust to those few bad initial sparse matches that were not propagated
by the seed-growing algorithm, but still exist in its output. This is because the large number of
good correspondences would bias the initialization of the EM algorithm and the probabilistic
output matching will completely ignore those bad initial matches.
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(a) (b) (c)

Figure 7.12: Dense shape matching: (a) Initial sparse matches, (b) Matches obtained with seed
growing, (c) Final matching after EM.

Nevertheless, we agree that the complete absence of sparse initial correspondences around
the region of large topological changes can lead to inconsistent matching results.

7.5 Experiments & Results

In this section, we present the qualitative and quantitative evaluation of the dense match-
ing results obtained using the proposed method on visual shapes with significant topologi-
cal changes. We also presents a comparison with existing dense matching method proposed
in [Mateus 2008] an [Ovsjanikov 2010].

While implementing [Ovsjanikov 2010], we computed HKS descriptors using the same set
of parameters that were used for our method. As mentioned before, the greedy algorithm for
descriptor matching is not suitable for matching the local HKS descriptors that are computed
with smaller time scale parameters and particularly, on shapes with topological changes, as it
does ensure the neighborhood consistency of the binary matches. Thus, in order to make a fair
comparison with [Ovsjanikov 2010], we used our seed growing algorithm (see Section 7.3.1)
with HKS descriptors (see Section 6.6.3.1) to find a dense binary matching solution. In prac-
tice we use τ = 5 and set {t1, . . . , t5} = {0,20,40,80,100} while comping heat diffusion de-
scriptor.

Similarly, we implemented EM algorithm of [Mateus 2008] using the same set of param-
eters used for our method. Since, both our method and method proposed in [Mateus 2008]
compute a probabilistic dense matching solution, we obtain dense matching by thresholding
the maximum probability matches and selecting only those matches that have posterior prob-
ability value larger than a threshold value of 0.50 (see Algorithm 7). Additionally, we also
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impose a binary (one-to-one) matching constraint since the EM algorithm estimates many-
to-one probabilistic assignments between shape graph vertices. However, we use the original
may-to-one probabilistic matching result for the purpose of segmentation transfer between two
shapes (see Algorithm 5).

7.5.1 Qualitative Evaluation

In Figure 7.12, we show wide-time-frame matching obtained in the presence of topological
merging. For the purpose of visualization, we color code the body parts of one shape and
we transfer the corresponding vertex-to-part labels to the other shape, as proposed in 5. This
makes use of the fact that EM outputs a posterior probability for each vertex of one shape to
be matched with each vertex of the second shape.

Figure 7.14 shows the results of matching obtained with our method and with two other
two methods. The matching based on histograms of Laplacian eigenvectors is not reliable
when the two shapes have different topologies and hence the dense matching method pre-
sented in [Mateus 2008] fails to provide good results, e.g., Figure 7.14(b). As mentioned ear-
lier, greedy matching [Ovsjanikov 2010] does not consider the neighborhood consistency of
matches and leads to wrongly matched patches on shapes, e.g., Figure 7.14(c). We also show
our results on another challenging visual data in Figure 7.15. This is an interesting results
since the rope is very thin as well as broken at places and we only use one initial match in the
rope region. A vertex to vertex color transfer is used for visualization of the dense matching.

However, we do not claim to completely solve such a challenging problem. Sometime
the method might yield inconsistent matching results if we do not use enough embedding
dimensions in the case when the region of topological change is relatively small and difficult
to handle, i.e., Figure 7.16. Nevertheless, our method can still provide a relatively correct
matching.

7.5.2 Quantitative Evaluation

In this section, we present our attempt to perform a quantitative evaluation of the proposed
dense matching method and compare it with other two methods proposed in [Mateus 2008,
Ovsjanikov 2010].

The quantitative evaluation of visual shape matching is indeed a difficult task given the lack
of ground truth data. We believe that an evaluation on existing graphical shapes is not a fair
measure as these methods are specifically designed to handle large deformations in the data.
The qualitative results presented in Section 7.5.1, show dense matching using a probabilistic
segmentation transfer method (see Algorithm 5) as well as the down-sampled binary matches
obtained by thresholding the maximum probabilistic matches. Here, we conduct two set of
experiments to evaluate these two aspects.



7.5. Experiments & Results 143

(a) flashkick 17-16 (b) flashkick 24-25

(c) Samba 118-121 (d) Samba 118-123

Figure 7.13: Shape matching results in the presence of topological issues. Only 1% of the
total matches are actually shown for ease of visualization.
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(a) Proposed method. (b) [Mateus 2008]. (c) [Ovsjanikov 2010]
(greedy algorithm).

Figure 7.14: Comparison with two existing methods. The colors encode the body-part labels
transferred from a segmented shape, i.e., Figure 7.12(a).

In the first experiment, similar to [Mateus 2009], we perform a smoothness evaluation of
the binary correspondence map. A smooth binary correspondence map Φ : G 7→ G′ between
the two shape graphs (G(V,E),G′(V′,E′)) would ensure that the adjacent vertices (vi ∼ v j)∈ E

should map to neighboring vertices on
(

v′Φ(i),v
′
Φ( j)

)
∈ E′. We need to relax this condition of

adjacent neighborhood to a more general neighborhood structure in order to deal with chal-
lenging visual shapes with non-uniform sampling and complex topological changes.

Hence, we define r-neighborhood around each vertex vi by finding the set of vertices that
are closest to a given vertex in the local geodesic sense and represent it as Neir(vi). A good
approximation of geodesic distances can be computed using the fast marching algorithm pro-
posed in [Sethian 1996]. We use the MATLAB Fast Marching Toolbox1 to compute the ap-
proximate geodesic distances on visual shapes. Hence, we compute in advance, the geodesic
distance of each vertex to all the vertices on a shape graph. Unlike [Mateus 2009], we propose
to use a relative neighborhood definition in order to handle the sampling variation in visual
shapes. Thus, the r-neighborhood of a vertex can be computed by selecting r percentage of
total number of vertices |V| that has the shortest geodesic distance to the given vertex. This
definition of neighborhood is locally robust to topological changes in the shape except if the
vertex is part of the region where topological change exist.

Once we have a neighborhood for each vertex, we define a binary match
(

vi,v′Φ(i)

)
as-

sociated with each vi ∈ V to be smooth if all the neighboring vertex of vi are mapped to the

1http://www.mathworks.com/matlabcentral/fileexchange/6110
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(a) (b)

(c) (d)

Figure 7.15: Dense shape matching: (a) Initial sparse matches, (b) Matches obtained with seed
growing, (c) Final matching after EM, (d) Vertex-level color transfer. Only one initial match
was provided on the thin rope.
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(a) (b)

Figure 7.16: Dense shape matching: (a) Initial sparse matches, (d) Probabilistic color transfer.
Clearly, the right hand was only partial matched even though there were some initial matches
around it.

neighbors of vΦ(i). Formally,

r-smooth(i,Φ(i)) =

{
1 if ∃

(
v j,v′Φ( j)

)
∀v j ∈ Neir(vi), ∀v′Φ( j) ∈ Neir(v′Φ(i)),

0 otherwise.
(7.4)

We can further relax this definition by considering partial smoothness in order to extend
the resolution of smoothness measure, i.e., r-smoothθ(i,Φ(i)), by considering θ percentage
of neighbors instead of all the neighbors. This can be helpful to handle some binary matches
obtained by thresholding the matches of similar probability values.

Hence, the smoothness of a correspond map Φ can be computed as:

r-smoothθ(Φ) =
∑i r-smoothθ(i,Φ(i))

|V|
. (7.5)

However, r-smoothθ(Φ) is a directional quantity, derived only for one shape among the two
matched shape and hence not a symmetric metric for measuring the quality of matching. Nev-
ertheless, this can be a decent measure to assess the smoothness of visual shape matching in
the absence of ground truth data.

Table 7.1, summarizes the mesh size (n = |V | and n′ = |V ′|), the initial number of anchor
correspondences |A |, the number of matches obtained with our seed-growing algorithm and
the total number of binary matches obtained from EM algorithm (|Φ|).
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|V | |V ′| |A | |∆| |Φ|

flashkick 117-130 12041 12656 91 7118 11065
flashkick 024-025 12231 12282 410 10214 12046
flashkick 016-017 12006 12005 379 10191 11599
samba 118-123 4284 4226 167 2641 4211
samba 118-121 4284 4254 200 2432 4210
lucie 340-358 6403 6309 114 3758 6046

Table 7.1: Data-set details: Number of vertices of the input meshes (|V | and |V ′|), the initial
number of anchor correspondences (|A |), the number of correspondences found with the seed-
growing algorithm (|∆|) and the total number of binary matches obtained from EM algorithm
(|Φ|).

Table 7.2 presents the r-smooth measure, computed for various dense matching results,
some of which shown in the figures in previous section. In this work, we consider θ = 90%
and r-neighborhoods for different values of r = {0.1,0.2,0.3,0.4,0.5,0.8}. The entries of
Table 7.2 concludes that the proposed method consistently outperform other two methods as
far as the smoothness of dense matching is concerned. However, it is important to note that
the smoothness is a desired property for a correspondence map but not enough to classify a
map as good or bad. This is because we only consider smoothness of individual matches and it
is possible to have a locally smooth but globally incorrect correspondence mapping, yielding
large number of smooth matches. Our qualitative assessment shown in the previous section
provides the complementary information in this regard.

An interesting observation is that the smoothness measure for some dense matching re-
sults obtained using HKS with seed growing is relatively closer to the proposed method (e.g.,
flashkick 025-024 and flashkick 017-016). This behavior is understandable as in these visual
shape pairs, the topological changes are relatively small and hence the output of seed grow-
ing algorithm yield large number of binary matches (see Table 7.1). Here, we would like
to recall that we use seed growing with HKS instead of greedy matching for a fair compar-
ison with [Ovsjanikov 2010], which otherwise yield much lower performance due to lack of
smoothness in greedy matching. The existence of some zero entries in Table 7.2 is due the fact
that the corresponding neighborhood size is very small (e.g., 4) and no binary match showed
smoothness with respect to such smaller neighborhoods.

Nevertheless, we would like to note that the proposed method also achieves a relatively
low smoothness score. We believe the reason behind is that we use smaller embedding size
(e.g., k≤ 10) while performing the probabilistic matching in Algorithm 7. Hence, only global
information about the shape structure is retained while the local information is lost leading to
a less accurate binary assignments in a local neighborhood around each vertex.

In the second experiment, we performed quantitative evaluation of the segmentation trans-
fer results obtained by the probabilistic dense matching output of our method and the methods
proposed in [Mateus 2008]. We first independently created ground-truth segmentation for
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Visual Shapes r
r-smoothθ(Φ)

[Ovsjanikov 2010] [Mateus 2008] Proposed Method

flashkick 117-130

0.1 8.56 15.93 36.33
0.2 14.09 20.70 44.30
0.3 16.47 24.64 53.25
0.4 17.22 26.28 55.75
0.5 19.21 28.25 60.14
0.8 20.43 30.10 65.10

flashkick 025-024

0.1 24.63 16.95 38.60
0.2 38.96 22.60 52.51
0.3 50.40 27.02 64.67
0.4 52.41 28.56 65.16
0.5 58.99 30.53 71.85
0.8 64.88 31.66 78.88

flashkick 017-016

0.1 30.47 12.79 39.17
0.2 48.09 15.65 54.70
0.3 59.70 18.68 67.56
0.4 65.41 19.75 70.82
0.5 68.13 20.49 73.10
0.8 74.27 22.87 82.83

samba 118-123

0.1 00.00 00.00 00.00
0.2 07.60 11.61 24.37
0.3 08.39 15.54 37.00
0.4 11.65 17.51 47.70
0.5 10.57 17.79 49.26
0.8 14.45 20.13 55.82

samba 118-121

0.1 00.00 00.00 00.00
0.2 07.05 10.53 25.71
0.3 07.28 13.28 38.62
0.4 08.43 16.31 45.08
0.5 09.52 17.58 51.26
0.8 12.24 20.24 55.76

lucie 340-358

0.1 07.65 10.52 30.64
0.2 09.01 12.87 36.01
0.3 10.04 13.71 38.62
0.4 13.05 17.66 42.44
0.5 12.82 20.53 49.69
0.8 16.80 23.81 58.06

Table 7.2: Comparison of the smoothness measure (r-smoothθ(Φ)) for dense binary match-
ing results on various visual shape pairs. These dense binary matching were obtained
by applying the proposed method and two other existing methods: HKS with seed grow-
ing [Ovsjanikov 2010] and EM based probabilistic matching [Mateus 2008] for varying neigh-
borhood sizes, i.e., r.
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Visual shapes Proposed Method [Mateus 2008]
m̄t pr m̄ppv m̄t pr m̄ppv

flashkick 117-130 0.9134 0.9400 0.2765 0.2488
flashkick 025-024 0.9548 0.9807 0.2259 0.1647
flashkick 017-016 0.9815 0.9919 0.4791 0.4846
samba 118-123 0.9574 0.9845 0.1308 0.1138
samba 118-121 0.9705 0.9876 0.3829 0.4521

Table 7.3: Comparison of segmentation transfer results to asses the quality of dense proba-
bilistic matching using the quantitative evaluation measure, namely, average recall (m̄t pr) and
precision (m̄ppv) as introduced in Section 5.5.

visual shapes and then use the segmentation transfer measurement entities, namely, average
recall (m̄t pr) and precision (m̄ppv) as introduced in Section 5.5 to asses the quality of our re-
sults. Table 7.3 summarizes our findings. One can easily infer that the proposed method has
higher average recall and precision as compare to other methods. This explains the difference
in quality of dense matching in Figure 7.14(a,b). However, we agree that the method proposed
in [Mateus 2008] does not use the extra information we have in terms of seed matches as well
as their work does not claim to handle visual shapes with topological changes.

7.5.3 Dense Trajectory Results

We have also computed dense binary matching over a sequence of independently reconstructed
shapes from [Starck 2007b] using the proposed method, with no manual intervention. We
use the trajectory plotting software developed in [Petit 2011] to show the frame-wise dense
matching of visual shapes. Thus, we do not claim to perform any vertex-level tracking in these
results.

Figure 7.17 shows the dense trajectories of the corresponding binary matching of the
past five consecutive frames (shapes) for the listed visual shapes. Interestingly, the proposed
topologically-robust dense matching method provides continuous dense trajectories even in
the presence of large topological change, e.g., Figure 7.17(a-b). Similarly, Figure 7.18 shows
the dense trajectories for the nine continuous frames of the flashkick sequence. We can clearly
see that the dense matching trajectories are quite stable even though during these frames, it
happens twice that the left hand merges with the torso and then again splits.

Data-set The matching results were obtained on publicly available graphical shapes from
TOSCA data-set [Bronstein 2008] as well as the visual shapes from INRIA [Franco 2009],
University of Surrey [Starck 2007b] (the flashkick sequence) and MIT data-set [Vlasic 2008]
(the samba dance sequence). In case of MIT data-set, we use a simple voxel carving algorithm
to compute a visual hull represented as a mesh.
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(a) flashkick 019 (b) flashkick 029 (c) flashkick 067

Figure 7.17: Trajectories of the dense binary shape matching over the past five frames in the
flashkick sequence. Only the vertex trajectories of the pairwise frames are shown. No explicit
vertex-level tracking was performed. The transition of colors from blue to green while plotting
the dense trajectories represents the forward traversal in the temporal dimension.

7.6 Conclusion

We proposed a dense shape matching method using a sparse key-point matching association
graph method, set of multi-scale heat-kernel descriptors, a seed-growing algorithm that locally
propagates only the good matches and a variant of the EM algorithm that eventually registers
the two shapes. The key feature of our method is that it considers an intrinsic scale-space
representation based on the heat-kernel. This provides a principled framework for defining
descriptors at small scales and for robustly propagating correspondences locally, in spite of
topological changes. We have shown decent matching results on shapes in the presence of
large topological merging. Our method can be used to perform dense shape registration, which
stands as the basis of transferring any scalar function defined one shape, to the other one.
However, as pointed out earlier, one major limitation of the proposed method is that it requires
reliable initial sparse matches, specifically around the area of topological changes. Otherwise,
method could yield locally incorrect matching in those regions.

As part of the future work, it will be interesting to employ local heat-kernel descriptors
in a dynamic 3D environment where any prior assumption about shape topology is not valid.
Additionally, automatic detection and correction of topological issues will be an important
direction to explore. It will also be interesting to better understand the EM matching algorithm
in the context of multi-scale shape representation as well as the dimension of the spectral
embeddings.



7.6. Conclusion 151

(a) flashkick 104 (b) flashkick 105 (c) flashkick 106

(d) flashkick 107 (e) flashkick 108 (f) flashkick 109

(g) flashkick 110 (h) flashkick 111 (i) flashkick 112

Figure 7.18: Trajectories of the dense binary shape matching over the past five frames in the
sequence, for nine consecutive frames of the flashkick sequence. Only the vertex trajectories
of the pairwise frames are shown. No explicit vertex-level tracking was performed. The
transition of colors from blue to green while plotting the dense trajectories represents the
forward traversal in the temporal dimension.
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The technological advancement in 3D acquisition is leading us to a new era with vast
amount of 3D data. However, majority of such data, which we called as the visual shapes, are
very challenging as compare to the traditional graphical shapes used in the compute graphics
community. Hence, it is difficult to use the traditional shape analysis methods for visual shapes
that were primarily designed to deal with graphical shapes.

In this thesis, we have tried to address this issue by proposing new methods that uses
spectral graph theory and probabilistic tools to robustly handle visual shapes. In particular, we
devised new segmentation and registration techniques for articulated 3D shapes represented as
point clouds or meshes by single and multi-scale shape analysis.

8.1 Comprehensive Summary

The derivation of spectral representation for 3D shapes brings together concepts from spec-
tral graph theory, non-linear dimensionality reduction and geometry processing. We adapted
Laplacian eigenmap method to isometrically embed a 3D shape represented as sparse and reg-
ularly connected shape graph into a subspace spanned by the eigenspace of graph Laplacian
matrix. This allowed us to analyze articulated 3D shapes in a pose invariant subspace by as-
suming the articulated poses as the quasi-isometric deformations. In such space, a shape can
be represented as d-dimensional point cloud. Such a representation enabled the application of
ideas from machine learning techniques in shape analysis. In particular, we extensively used
ideas from spectral clustering for shape segmentation and existing expectation maximization
based solutions for point cloud registration.

First, we introduced a novel completely unsupervised visual shape segmentation algorithm
based on the PCA interpretation of the Laplacian eigenvectors of the shape graph and on para-
metric clustering using Gaussian mixtures. We analyzed the geometric properties of these
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vectors and we devise a practical method that combines single-vector analysis with multiple-
vector analysis. We attempted to characterize the projection of the graph onto each one of its
eigenvectors based on PCA properties of the eigenvectors. We devised an unsupervised prob-
abilistic method, based on one-dimensional Gaussian mixture modeling with model selection,
to reveal the structure of each eigenvector. Based on this structure, we selected a subset of
eigenvectors among the set of the smallest non-null eigenvectors and we embedded the shape
graph into the isometric space spanned by this selection of eigenvectors. The final clustering
was performed via unsupervised classification based on learning a multi-dimensional Gaussian
mixture model of the embedded graph to obtain segmentation labels.

Next, we proposed a semi-supervised segmentation solution for visual shapes that enabled
the use of minimal user interaction to drive the segmentation. We proposed a spectral learning
approach to shape segmentation. The method was composed of a new constrained spectral
clustering algorithm that was used to supervise the segmentation of a shape from a training
data set, followed by a probabilistic label transfer algorithm that was used to match two shapes
and to transfer cluster labels from a training-shape to a test-shape. The novelty resided both in
the use of the Laplacian embedding to propagate must-link and cannot-link constraints and in
the segmentation algorithm based on a learn, align, transfer, and classify paradigm.

This was followed by the outline of a generalized heat-kernel framework for multi-scale
analysis of visual shapes. The representation of visual shapes as undirected weighted graphs
allowed us to analyze the heat-kernel within the framework of spectral graph theory, construct
heat-kernel matrices well suited for visual shapes, and to represent the latter into the metric
space associated with the spectral decomposition of this matrix. We provided a detailed math-
ematical analysis of various spectral constructs useful for shape representation. We proposed
to combine the scale parameter of the heat kernel and dimensionality of the spectral repre-
sentation, providing a basis for performing dimensionality reduction and, more generally, to
characterize the statistical properties of the embedded shape representation at multiple scales.
In addition to this, we also introduced a novel multi-scale heat distance descriptor using the
proposed heat-kernel framework. The proposed descriptor characterize a point on 3D shape
using the scale dependent diffusion metric and a set of sparsely detected key-points.

Finally, we proposed a new shape matching method that is robust to complex topologi-
cal changes in visual shapes, e.g., merging and splitting of parts. We proposed to combine
the multi-scale heat-kernel descriptors (computed at smaller time scales) with sparse matches
obtained by a association graph based matching method in a sparse-to-dense propagation ap-
proach in order to obtain a densified 3D shape matching for visual shapes. The algorithm
starts from a sparse set of seed matches and outputs dense matching. At small scales the
heat diffusion descriptors behaves locally and hence it is robust to global changes in topol-
ogy. Therefore, it can be used to build a vertex-to-vertex matching score conditioned by an
initial correspondence set. This score was then used to iteratively add new correspondences
based on a novel seed-growing method that iteratively propagates the seed correspondences
to nearby vertices. The matching was further densified via an EM-like method that explores
the congruency between the two shape embeddings. The algorithm initialize with output of
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seed-growing and yields dense probabilistic matching for visual shapes.

8.2 Contributions

The aim of this thesis was to study the analysis of 3D articulated shapes represented as visual
shapes and develop methods that can deal with challenges posed by visual shapes. We mainly
investigated single and multi-scale representation and analysis of visual shapes in the context
of shape segmentation and registration tasks. The main contributions of this thesis are as
follows.

1. A pose invariant spectral representation of articulated visual shapes using the Laplacian
eigenvectors of corresponding shape graph (Chapter 3).

2. An unsupervised method for 3D shape segmentation that combines characterization of
individual Laplacian eigenvectors with Gaussian mixture model to obtain a pose invari-
ant segmentation of articulated visual shapes (Chapter 4).

3. A semi-supervised segmentation algorithm, based on a learn, align, transfer, and classify
paradigm that uses a user guided spectral clustering method to seek a desired segmen-
tation of few visual shapes followed by a probabilistic label transfer to classify a new
shape for different segment labels (Chapter 5).

4. A generalized heat-kernel framework for multi-scale representation and analysis of vi-
sual shape (Chapter 6).

5. An empirical analysis to find the appropriate minimum scale of analysis for a given
embedding representation (Section 6.4.1).

6. A novel heat-kernel descriptor using sparse key points and heat-diffusion metric (Sec-
tion 6.6.3.2).

7. A dense shape matching method by combining heat-kernel descriptor with novel seed-
growing method (Section 7.3.1).

8. A topologically-robust dense shape matching method that start with output of seed-
growing method and use EM algorithm to obtain a probabilistic dense matching (Sec-
tion 7.4).

8.3 Future Work

In this document, we have extensively studied single and multi-scale spectral representation
and analysis of 3D articulated shapes and proposed solutions for unsupervised and semi-
supervised shape segmentation as well as dense shape registration that are more suitable to
visual shapes with large acquisition noise and topological changes.
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Nevertheless, there are many aspects that need more understanding efforts and many ques-
tions that need clearer answers. One such question can be framed as “what could be the
optimal embedding dimension”. This needs to be answered in the context of task at hand.
Another important open question is the correct scale of analysis for a given task. Although,
our empirical analysis showed that these two questions can be related, this needs a better the-
oretical understanding. We have repeatedly used EM based point registration algorithm for
dense matching. However, few aspects like it’s sensitivity t0 embedding dimensions as well as
scale of analysis needs further investigation. Another important direction to pursue is to deal
with more generic 3D data with multiple objects interacting with each other. We believe that
heat-kernel based local representation can be key while deal with with such complex data.



APPENDIX A

Appendix

A.1 Permutation and Doubly-stochastic Matrices

A matrix P is called a permutation matrix if exactly one entry in each row and column is equal
to 1, and all other entries are 0. Left multiplication of a matrix A by a permutation matrix P

permutes the rows of A, while right multiplication permutes the columns of A.

Permutation matrices have the following properties: det(P) =±1, P⊤ = P−1, the identity
is a permutation matrix, and the product of two permutation matrices is a permutation ma-
trix. Hence the set of permutation matrices P ∈ Pn constitute a subgroup of the subgroup of
orthogonal matrices, denoted by On, and Pn has finite cardinality n!.

A non-negative matrix A is a matrix such that all its entries are non-negative. A non-
negative matrix with the property that all its row sums are +1 is said to be a (row) stochastic
matrix. A column stochastic matrix is the transpose of a row stochastic matrix. A stochastic
matrix A with the property that A⊤ is also stochastic is said to be doubly stochastic: all row
and column sums are +1 and ai j ≥ 0. The set of stochastic matrices is a compact convex set
with the simple and important property that A is stochastic if and only if A1 = 1 where 1 is
the vector with all components equal to +1.

Permutation matrices are doubly stochastic matrices. If we denote by Dn the set of doubly
stochastic matrices, it can be proved that Pn = On ∩Dn [Zavlanos 2008]. The permutation
matrices are the fundamental and prototypical doubly stochastic matrices, for Birkhoff’s the-
orem states that any doubly stochastic matrix is a linear convex combination of finitely many
permutation matrices [Horn 1994]:

Theorem 4 (Birkhoff) A matrix A is a doubly stochastic matrix if and only if for some N < ∞

there are permutation matrices P1, . . . ,PN and positive scalars s1, . . . ,sN such that s1 + . . .+

sN = 1 and A = s1P1 + . . .+ sNPN .

A complete proof of this theorem is to be found in [Horn 1994][pages 526–528]. The
proof relies on the fact that Dn is a compact convex set and every point in such a set is a
convex combination of the extreme points of the set. First it is proved that every permutation
matrix is an extreme point of Dn and second it is shown that a given matrix is an extreme point
of Dn if an only if it is a permutation matrix.
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A.2 The Frobenius Norm

The Frobenius (or Euclidean) norm of a matrix An×n is an entry-wise norm that treats the
matrix as a vector of size 1× nn. The standard norm properties hold: ‖A‖F > 0⇔ A 6= 0,
‖A‖F = 0⇔ A = 0, ‖cA‖F = c‖A‖F , and ‖A+B‖F ≤ ‖A‖F + ‖B‖F . Additionally, the
Frobenius norm is sub-multiplicative:

‖AB‖F ≤ ‖A‖F‖B‖F (A.1)

as well as unitarily-invariant. This means that for any two orthogonal matrices U and V:

‖UAV‖F = ‖A‖F . (A.2)

It immediately follows the following equalities:

‖UAU⊤‖F = ‖UA‖F = ‖AU‖F = ‖A‖F . (A.3)

A.3 Spectral Properties of the Normalized Laplacian

The normalized Laplacian Let ũk and γk denote the eigenvectors and eigenvalues of L̃; The

spectral decomposition is L̃ = ŨΓŨ
⊤

with ŨŨ
⊤

= I. The smallest eigenvalue and associated
eigenvector are γ1 = 0 and ũ1 = D1/2

1.

We obtain the following equivalent relations:

∑n
i=1 d1/2

i ũik = 0, 2≤ k ≤ n (A.4)

d1/2
i |ũik|< 1, 1≤ i≤ n,2≤ k ≤ n. (A.5)

Using (2.66) we obtain a useful expression for the combinatorial Laplacian in terms of
the spectral decomposition of the normalized Laplacian. Notice, however, that the expression
below is NOT a spectral decomposition of the combinatorial Laplacian:

L = (D1/2ŨΓ1/2)(D1/2ŨΓ1/2)⊤. (A.6)

For a connected graph γ1 has multiplicity 1: 0 = γ1 < γ2 ≤ . . .≤ γn. As in the case of the
combinatorial Laplacian, there is an upper bound on the eigenvalues (see [Chung 1997] for a
proof):

Proposition 6 For all k ≤ n, we have µk ≤ 2.

We obtain the following spectral decomposition for the normalized Laplacian :

L̃ =
n

∑
k=2

γkũkũ
⊤
k . (A.7)
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The spread of the graph along the k-th normalized Laplacian eigenvector is given by ∀(k, i),2≤
k ≤ n,1≤ i≤ n:

ũk =
1
n

n

∑
i=1

ũik (A.8)

σuk =
1
n
− ũ

2
k . (A.9)

Therefore, the projection of the graph onto an eigenvector ũk is not centered. By combining
(2.66) and (A.7) we obtain an alternative representation of the combinatorial Laplacian in
terms of the the spectrum of the normalized Laplacian, namely:

L =
n

∑
k=2

γk(D
1/2ũk)(D

1/2ũk)
⊤. (A.10)

Hence, an alternative is to project the graph onto the vectors tk = D1/2ũk. From ũ⊤k≥2ũ1 = 0
we get that t⊤k≥21= 0. Therefore, the spread of the graph’s projection onto tk has the following
mean and variance, ∀(k, i),2≤ k ≤ n,1≤ i≤ n:

tk = ∑n
i=1 d1/2

i ũik = 0 (A.11)

σtk = 1
n ∑n

i=1 diũ2
ik. (A.12)

The random-walk Laplacian. This operator is not symmetric, however its spectral prop-
erties can be easily derived from those of the normalized Laplacian using (2.68). Notice that
this can be used to transform a non-symmetric Laplacian into a symmetric one, as proposed in
[Sun 2009] and in [Luo 2009].

A.4 The Least-square Optimization

Many optimization problems that can be related to the Rayleigh-Ritz ratio [Horn 1994] are
solved using the eigenvalues of Hermitian matrices. Given a n×n Hermitian matrix M, with
eigenvalues in increasing order of magnitude λ1 ≤ λ2 ≤ ·· · ≤ λn. The famous Rayleigh-Ritz
theorem states that for a given n-dimensional vector f following holds:

λ1f
T f ≤ fT Mf ≤ λnf

T f. (A.13)

Using the eigen-decomposition M = UΛUT , we can rewrite fT Mf as:

fT Mf = fT UΛUT f = (UT f)T Λ(UT f) (A.14)

fT Mf =
n

∑
i=1

λi
(
(UT f)i

)2
(A.15)
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Interestingly, we can write:

n

∑
i=1

(
(UT f)i

)2
= ‖UT f‖2 = fT f (A.16)

By dividing Eq. (A.13) with fT f and using Eq. (A.14) and Eq. (A.16), we can write:

λ1 ≤
fT Mf

fT f
≤ λn. (A.17)

From Eq. (A.17), we can deduce:

λmax = λn = max
f 6=0

fT Mf

fT f
= max

fT f=1
fT Mf, (A.18)

λmin = λ1 = min
f 6=0

fT Mf

fT f
= min

fT f=1
fT Mf. (A.19)

Thus, the Rayleigh-Ritz theorem gives a variational characterization of the largest and
smallest eigenvalues of a Hermitian matrix and gives solution to quadratic optimization prob-
lems of the form:

max
f 6=0

fT Mf

fT f
and min

f 6=0

fT Mf

fT f
. (A.20)

in terms of these eigenvalues.

The intermediate eigenvalues can be characterized by the orthogonality constraints. Let f1

be the first eigenvector corresponding to λ1, then using the constraints f 6= 0 and f ⊥ f1, allows
to characterize f2 as:

min
f 6= 0

f ⊥ f1

fT Mf

fT f
= min

fT f = 1
f ⊥ f1

fT Mf = λ2. (A.21)

This result can be further extended to remaining eigenvectors, by always finding an orthogonal
vector to current subspace. Similar analysis is possible for the max case. The Rayleigh-Ritz
theorem is also applicable to complex matrices just by replacing the transpose with complex
conjugate.
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