
HAL Id: tel-00768830
https://theses.hal.science/tel-00768830

Submitted on 25 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Methods and tools for the compilation and software
optimization of wireless embedded systems dedicated to

applications
Andréea Chis

To cite this version:
Andréea Chis. Methods and tools for the compilation and software optimization of wireless embedded
systems dedicated to applications. Embedded Systems. Ecole normale supérieure de lyon - ENS
LYON, 2012. English. �NNT : �. �tel-00768830�

https://theses.hal.science/tel-00768830
https://hal.archives-ouvertes.fr

PhD THESIS

submitted for the grade of

Doctor of Université de Lyon

ÉCOLE NORMALE SUPÉRIEURE DE LYON

Laboratoire de l’Informatique du Parallélisme

École Doctorale en Informatique et Mathématiques de Lyon

field: Computer Science

by Andreea CHIS

Title:

Methods and tools for the compilation and software optimization of wireless

embedded systems dedicated to applications

Méthodes et outils pour la compilation et l’optimisation logicielle des systèmes

embarqués sans fil dédiés à des applications

Supervisors:

Mr. Eric FLEURY

Mr. Antoine FRABOULET

Reviewers:

Mr. Gerhard FOHLER

Mr. David SIMPLOT

Contents

List of Figures iii

List of Tables v

1 Introduction 1

2 WSN State of the art 7

2.1 Wireless Sensor Applications Scenarios 7

2.2 Wireless Sensor Nodes . 10

2.3 MAC Protocols for Wireless Sensor Networks 12

2.4 Device Modelling and Driver Generation 19

3 Hardware Software Interface: Cross Layer Mapping Optimization 23

3.1 Software Protocol Description . 23

3.1.1 Definition and Formalism . 23

3.1.2 Application on B-MAC protocol 27

3.2 Hardware Protocol Description . 29

3.3 Software to Hardware Optimized Mapping 37

3.3.1 Software Automaton Transformation 37

3.3.2 Problem Statement and Complexity Analysis 42

3.3.3 Mapping Heuristic . 50

3.4 Code Skeleton Generation . 55

3.4.1 Multi-threaded OS Code Skeleton Generation 56

3.4.1.1 Multi-threaded OSs for WSNs 56

3.4.1.2 Multi-threaded OS Code Skeleton Generation Method . 59

3.4.2 Event-driven OS Code Skeleton Generation 61

i

CONTENTS

3.4.2.1 Event-driven OSs for WSNs 61

3.4.2.2 Event-driven OS Code Skeleton Generation Method . . 65

4 Experimental Evaluation 67

4.1 Stochastic Modeling . 69

4.1.1 Energy Consumption Theoretical Analysis 69

4.1.2 Average Energy Consumption . 75

4.2 Simulation Results . 77

4.2.1 The Worldsens Environment . 77

4.2.2 Simulation Set-up . 79

4.3 WSN Testbed Experiments using the SensLAB platform 83

4.3.1 SensLAB goals and facilities . 83

4.3.2 SensLAB Software and Hardware Infrastructures 85

4.3.2.1 SensLAB Hardware Infrastructure 85

4.3.2.2 SensLAB Software Infrastructure 86

4.3.3 SensLAB Experimental Set-up and Evaluation 88

4.3.3.1 SensLAB Experimental Scenario and Evaluation Metrics 88

4.3.3.2 SensLAB Experimental Set-up 89

5 Conclusion and Perspectives 95

Bibliography 99

ii

List of Figures

2.1 T-MAC Schedule . 16

2.2 WiseMAC communication . 17

3.1 Automaton example. 24

3.2 B-MAC protocol description in the form of a timed automaton. 26

3.3 CC1100 Radio Finite State Machine. 30

3.4 CC1100 Simplified Block Diagram . 31

3.5 Synthesis flow for software to hardware mapping. 39

3.6 Software automaton transformation for the case of free states with input

transitions not resetting the clock variable defining the state’s duration. 39

3.7 Software automaton transformation for free states with output transi-

tions with clock constraints. 40

3.8 Software Automaton A with Free State Sf to be mapped onto hardware

automaton. 43

3.9 Transformation of nodes vi having vali > 1 46

4.1 Simulation scenario: n saturated nodes send data to 1 sink 67

4.2 Markov chain model for B-MAC backoffs. 71

4.3 Transmission probabilities for different packet lengths and number of nodes 72

4.4 Busy medium probabilities for different packet lengths and number of

nodes . 73

4.5 Theoretical gain obtained for the improved backoffs mapping with re-

spect to the unimproved version . 76

4.6 Worldsens - distributed simulation environment 77

4.7 Architecture of the WSN430 WSN node 79

iii

LIST OF FIGURES

4.8 WSim flow of events . 82

4.9 Energy consumption of the improved protocol versions normalized with

respect to the unimproved version . 83

4.10 SensLAB platform . 84

4.11 SensLAB node architecture . 85

4.12 SensLAB software infrastructure . 87

4.13 Average number of sent packets per node for the 3 driver implementations 90

4.14 Average number of packets received by the sink for the 3 driver imple-

mentations . 92

iv

List of Tables

3.1 Description and energy consumption parameters for the states of CC1100 32

3.2 CC1100 Command Strobes Summary . 34

3.3 State Transition Timing . 35

v

LIST OF TABLES

vi

1

Introduction

The recent progress achieved in the domain of micro-electro-mechanical systems (MEMS)

and micro-electronic devices along with their miniaturisation have lead to the developp-

ment of a new field of applications for wireless networks: the Wireless Sensor Networks

(WSN). Sensor networks are composed of a set of small intelligent objects whose role

is to measure environmental informations such as the temperature, air/water pollu-

tion level, to detect movements, vibrations, intruder presence or the proximity of other

sensors etc. Sensor nodes communicate using a radio device in order to manage and

organize the network and to gather the produced data on special nodes called sinks.

The nodes in sensor networks are severely constrained in terms of resources: com-

putation, memory, communication as well as energy. In this context and in order to

deploy efficient sensor networks, a specific care must be invested in the design of the

application, communication protocols and operating systems that are to be executed.

The entire hardware as well as software architecture must be carefully chosen with the

goal of minimizing the energy consumption.

A sensor node is generally composed of a few simple components: a micro con-

troller(MCU), one or several physical sensors, a radio interface, an external memory

and an energy source(typically a battery). Despite the relative simplicity of these basic

components when compared to a PC, the great diversity of choices available on the

market make the tasks of conception, implementation and deployment of WSNs ex-

tremely complex. Diversity in the hardware: MicaZ, Telos, iMote with ARM7, AVR

or TI micro-controllers. The diversity concerns the following aspects:

• radio and physical layers: 868MHz, 2.4GHz, modulation, frequency hopping.

1

1. INTRODUCTION

• operating systems: TinyOS [26], Contiki[17], FreeRTOS[37], JITS[16].

• constraints: real-time constraints[38], energy constraints, memory or processing

constraints.

• applications: from the military to the civil use.

• data traffic patterns, mobility patterns, communication patterns.

Facing this variety of problems, there is no one-fits-all solution but rather one better

solution for each specific case.

Choices have to be made at each level of the design process and these choices gener-

ally have an impact on the application performances. Moreover, debuging and profiling

of micro-controllers and more generally distributed embedded systems is clearly a hard

task.

The current approaches for programming these systems remains classical and com-

parable to the programming models used for systems that do not face the same con-

straints and requirements for low energy consumption. We find among these approaches

the use of operating systems featuring unified hardware abstractions, unified operat-

ing system abstraction layers for ensuring portability[33], network protocol stacks and

multi-threaded applications. Classical approaches do not take into consideration the

possibilities for the energy management available on the nodes used in sensor networks.

Technologies like the low-power modes of the devices as well as the use of all hard-

ware resources available remain far from what is attainable by dedicated programming

performed by a domain expert. These aspects are highly important since the particu-

lar target domain corresponds to deeply embedded applications whose constraints and

behavior are known in advance.

In this context, the development of tools and methods aiming at helping the design

of these dedicated applications and tackling their complexity and their constraints is

crucial.

One of the components that consumes the most energy in a sensor node is its radio

device. WSNs and their associated networking stacks are pushing the integration of

timeliness and timing constraints, energy consumption and implementation of software

stacks. Newer 802.15 communication protocols tend to use precise synchronizations

mechanisms such as beacon modes, TDMA communications and frequency hopping

2

protocols to efficiently use the communication channel. These protocols require precise

timings within the software application code in order to drive the radio device includ-

ing constraints coming from the device itself (calibration, delays to switch between

mode, time to wakeup from a particular low power state) and application and protocol

requirements.

Writing a portable and/or optimized software stack that can combine precise timing

analysis coming from different sets of requirements is a tedious and error prone task. A

modification in many of the timing requirements can have an impact on the state ma-

chine and on the way the hardware is driven with an energy consumption minimization

goal.

Contributions

In this thesis, we propose a methodology that allows a mapping of a software protocol

onto a physical device, that guarantees that all the time constraints are met and all

feasible transitions in the protocol automaton remain realizable, all while minimizing

the energy consumed. We address the problem of mapping a software protocol expressed

as a timed automaton to a physical device whose behavior is expressed as a finite state

machine with annotations. We classify software states as fixed, which correspond to a

unique state in the device automaton, and free, with their mapping left at the designer’s

choice. In the case of a physical device with states of fixed or variable duration but

with lower limit constraint, we prove that the problem of mapping a free state of fixed

duration to a path in the device such that the energy consumption is minimized is NP

complete. We propose a heuristic for the mapping of free software states onto physical

device paths such that the energy consumption is minimized and the transitions in the

software protocol remain realizable. The output of our mapping algorithm is a code

skeleton that implements the intended behavior optimized for a given hardware device.

This code skeleton can be generated to further provide portability among different

platforms and generate low level calls to communication APIs and operating system

functionality.

We illustrate the energy gains that can be obtained by our approach with the

mapping of the B-MAC WSN protocol onto a radio device. We investigate a network

scenario where a set of saturated nodes contend for the channel trying to transmit

3

1. INTRODUCTION

data to one sink. We developed a stochastic model for the behavior of a node in this

scenario and obtain a theoretical gain of 60%[12] of an optimized mapping with respect

to an unoptimized one. The code skeleton obtained for the mapping of the B-MAC

protocol to the CC1100 radio device was adapted to MantisOS and simulated under the

Worldsens environment and the theoretical gains were confirmed. Finally, real-testbed

experiments on the SensLAB platform illustrated that the optimization in terms of

energy consumption did not affect the functional parameters of the protocol[13].

Outline

In what follows, in chapter 2 we will present the context of this thesis. We describe

some application deployments of WSNs in section 2.1, then some of the existing node

platforms with their common architecture and resource constraints in section 2.2. We

continue by describing some of the main MAC protocols dedicated to WSNs thus illus-

trating their characteristics and requirements in section 2.3. Finally, we present some

of the approaches to device modelling and device driver generation in section 2.4.

In chapter 3 we present the problem of software to hardware mapping with energy

consumption minimization constraint we wish to solve. We describe the model derived

from timed automata that we use for the software protocol behavior description in

section 3.1. In section 3.2 we describe the finite state machine with annotations model

used for describing the hardware device. In section 3.3 we prove the NP completeness

of the problem of mapping a free state of the software automaton of fixed duration

to a path in the physical device such that the energy consumption should be minimal

and we propose a heuristic for the software to hardware mapping. The methodology

for code skeleton generation for the software to hardware mapping for two types of

operating systems for WSNs is presented in section 3.4.

In chapter 4 we present the evaluation of our methodology in the particular context

of mapping the B-MAC protocol onto the CC1100 radio device. We investigate a

scenario where saturated nodes contend for the radio channel using B-MAC’s CSMA

trying to transmit data to one sink. In section 4.1 we present a stochastic model of a

sensor node which yields a theoretical gain of 60% between an optimized mapping of

the protocol compared to a simple mapping. In section 4.2 we present the results of

simulation under the Worldsens platform of the code skeleton adapted for MantisOS.

4

In section 4.3 we illustrate the results of real-testbed experiments on the SensLAB

platform.

The conclusion of our work and perspectives are given in chapter 5.

5

1. INTRODUCTION

6

2

WSN State of the art

A wireless sensor network (WSN) is a distributed system composed of several au-

tonomous sensor nodes whose purpose is to monitor physical or environmental condi-

tions such as temperature, sound, vibration, pressure, motion or pollutants. The nodes

in the network communicate and collaborate in order to relay the sensor collected data

across the network towards a main location [28],[21],[46].

Typically, a sensor node contains several basic components: a processor, a memory,

a power supply, a radio and several sensors. Mechanical, thermal, biological, chemical,

optical, and magnetic sensors can be included in the sensor node to measure properties

of the environment.

Given their limited memory and deployment in unaccessible locations, the nodes use

their radio interface and communicate in order to transfer the collected data to a base

station. The nodes are typically battery powered, but they can also use a secondary

power source suitable for the deployment environment.

2.1 Wireless Sensor Applications Scenarios

Although initially the development of wireless sensor networks was motivated by mili-

tary applications nowadays these networks are used in many industrial and consumer

applications. There are two main categories of WSN applications [48]: monitoring

applications and tracking applications.

Monitoring applications target a variety of domains: military (e.g. intrusion de-

tection), business (e.g inventory), habitat (e.g. animal monitoring), public/industrial

7

2. WSN STATE OF THE ART

(e.g. structural monitoring, factory monitoring, chemical monitoring), environment

(e.g weather, temperature, pressure), health (e.g patient monitoring) - to name a few.

Tracking applications involve objects, animals, humans, and vehicles tracking.

PinPtr [39] is an experimental counter-sniper system developed to detect and locate

shooters. The system consists of a large number of inexpensive sensor nodes commu-

nicating through an ad-hoc wireless network. After deployment, the sensor nodes syn-

chronize their clocks, perform self-localization and wait for acoustic events. Their task

is to detect muzzle blasts and acoustic shock waves and measure their time of arrival.

The time-of-arrival measurements are delivered to the base station, where an algorithm

calculates the shooter location estimate.

[40] describes an animal monitoring wireless sensor network application. The goal

of the deployment was to gather data for studying the distribution and abundance of

sea birds on an offshore breading colony on Great Duck Island, Maine. The nodes were

supposed to detect the occupancy of the underground nesting burrows and the role of

micro-climatic factors (temperature and humidity) in the birds habitat selection. The

experiment lasted 4 months producing unique datasets for both systems and biological

analysis.

An environmental monitoring case study is presented in [43]. A wireless sensor

network was deployed that recorded 44 days in the life of a 70-meter tall redwood tree,

at a density of every 5 minutes in time and every 2 meters in space. Each node measured

air temperature, relative humidity, and photo-synthetically active solar radiation. The

network captured a detailed picture of the complex spatial variation and temporal

dynamics of the micro-climate surrounding a coastal redwood tree.

The volcanic monitoring case study presented in [30] is another example of an

environmental monitoring application. The network was deployed on the Reventador

Volcano in northern Ecuador and it consisted of 16 nodes equipped with seismoacoustic

sensors spread over 3 km. The system routed the collected data through a multi hop

network and over a long-distance radio link to an observatory, where a laptop logged the

collected data. Over three weeks, it captured 230 volcanic events, producing useful data

and becoming a proof of the performance of large scale sensor networks for collecting

high resolution volcanic data.

PermaSense [41] is a joint computer science and geoscience project aiming in a first

place at designing a set of wireless nodes for use in remote areas with harsh environ-

8

2.1 Wireless Sensor Applications Scenarios

mental conditions as well as an architecture for their network and a self-organizing

application capable of operating unattended for years. The project’s second goal con-

sists in gathering of environmental data that would help understand the processes that

connect climate change and rock fall in permafrost areas. The geoscientists need this

data in order to develop models for hazard assessment and the support of infrastruc-

ture maintenance. Their network was deployed in the Swiss Alps, each node measuring

temperature and conductivity values indicative for rock moisture content and its phase

state in the near surface layer.

Two structural health monitoring case studies are presented in [20]. A first WSN

composed of 8 nodes was deployed on the railway bridge over the Kersjokk River in

Sweden and performed strain measurements with the final goal of assessing whether the

axle load of the bridge can be increased. A second deployment of a 6 node WSN was

performed on the cable-stayed bridge (Stork Bridge) in Winterthur, with the purpose of

measuring the ambient vibrations in the cables as well as the temperature and humidity.

Infections caused by antimicrobial-resistant bacteria (AMRB) account for an in-

creasing proportion of healthcare-associated infections, particularly in high-risk units

such as intensive care units and surgery; patients discharged to rehabilitation units

often remain carriers of AMRB, contributing to their dissemination into longer-term

care areas and within the community. The overall objective of the MOSAR (Master-

ing hOSpital Antimicrobial Resistance and its spread into the community) european

project is to gain breakthrough knowledge in the dynamics of transmission of AMRB.

A first step towards this goal is to assess the patient’s usage of antibiotics and the

contacts between patients and hospital personel. An experiment took place at the

Maritime Hospital in Berk. It involved equiping everyone at the hospital with small

communicating sensors designed to log all contacts and interractions between people

over a six month period. These logs are cross-checked against biological samples and

prescriptions for antibiotics.

The TubExpo [23] project focuses especially on the evaluation of contacts intensity

and frequency between tuberculosis infected patients and health-care workers inside

the Service of Infectious and Tropical Diseases (SMIT) of the Bichat-Claude Bernard

hospital in Paris, France. To this end, the time spent by the health-care workers in

each patient room of the unit was monitored during a three months period by means of

a WSN. In this deployment, each room was equipped with a fixed sensor node plugged

9

2. WSN STATE OF THE ART

to the power line whose task was to continuously listen to the radio medium. Each

health-care worker was given an autonomous sensor node they had to carry during

their presence in the unit. These mobile sensor nodes were programmed to periodically

transmit a radio packet containing their identity.

2.2 Wireless Sensor Nodes

A sensor node, also known as a mote, is a node in a wireless sensor network that is capa-

ble of performing some processing, gathering sensory information and communicating

with other connected nodes in the network.

Current research efforts in sensor node design aim at developing smaller and cheaper

nodes with less power consumption.

Small sensor nodes are easier to manufacture with lower cost than large scale sensors.

Being smaller, they can be deployed very closely to the target phenomena or sensing

field and at a high density. This way, the shorter sensing range and lower sensing

accuracy of each individual node are compensated for by the shorter sensing distance

and large number of sensors around the target objects.

The intelligence of sensor nodes and the availability of multiple on board sensors

also enhances the flexibility of the entire system.

Due to their small size and self-contained power supply, sensor nodes can be easily

deployed into regions where replenishing energy is not available, including hostile or

dangerous environments. The high node density enables system-level fault tolerance

through node redundancy.

The miniaturisation of sensor nodes however comes at the price of severe-resource

constraints. The nodes are constrained in computation, memory and most importantly-

energy.

In what follows we will briefly describe a few of the motes available today.

The weC mote released in 1998 was developed within the SmartDust project at

UC Berkley. It was built with a small 8-bit 4MHZ Atmel micro-controller with 512

bytes RAM and 8KB flash memory, having an active power consumption of 15mW,

sleep state power consumption of 45 µW and a wake up time of 1 ms. The mote also

incorporated a RFM TR1000 RF transceiver (36mW transmitting power and 9mW

receiving power), an integrated printed circuit board antenna and temperature and

10

2.2 Wireless Sensor Nodes

light sensors. All these hardware components were occupying a space approximatively

of the diameter of a silver dollar.

The Rene motes were produced by Crossbow Technologies. The Rene mote ap-

peared in 1999 had a similar hardware configuration as weC. The Rene 2 mote appeared

in 2000 features an ATmega163 CPU with 1KB RAM and 16KB flash memory and re-

duced wake-up time of 36 µs. The Rene motes feature a modular design. The sensor

board and motherboard were connected together via a 51 pin connector. Thus the basic

sensor board with temperature and light sensors could be expanded via a 51 pin con-

nector to include other sensor boards. This allowed a great deal of design flexibility and

was subsequently used in most of the follow-on motes. The Dot mote released in 2000

had a similar hardware configuration as the Rene2 mote minus the 51 pin connector.

The first mote in the Mica family, the Mica mote [25] appeared in 2001. Its

architecture allows for several different sensor boards, or a data acquisition board, or

a network interface board to be stacked on top of the main processor/radio board. Its

close resemblance to the layered mineral mica is at the origin of its name. It features an

Atmel ATmega103L MCU with 128KB flash memory and 4KB RAM and a radio using

RFM TR1000 supporting up to 40kbps for the same power consumption as the radio

module on weC. The Mica platform has 3 sleep modes: idle (processor off), power-down

(everything is off except the watchdog timer) and power save(similar to power-down

but with an asynchronous timer running).

Mica2 and Mica2Dot appeared in 2002 both feature an improved microprocessor

ATmega128L (with decreased energy consumption, i.e. 33mW active power and 75 µW

sleep power) and improved radio modules (the CC1000).

The MicaZ appeared in 2003 is the last mote in the Mica family. Its main improve-

ment is the use of the CC2420 radio module that supports IEEE802.15.4 and ZigBee

protocols with data rate up to 250kbps.

The TelosB mote [35] released in 2004 features an MSP430 micro controller from

Texas Instruments (3mW active power and 15 µW sleep power), a CC2420 radio, an

on-board USB for easier interface with a PC, integrated humidity, temperature and

light sensors and a 64 bit MAC for unique identification.

The WSN430 platform released in 2005 is another example of sensor node. They

are built on top of an MSP430 16bit micro-controller running at 8Mhz. Each plat-

form includes a 6bytes DS2411 electronic registration, an external 1MB flash memory

11

2. WSN STATE OF THE ART

ST M25P80. There are 2 types of WSN430 platforms based on the radio chip used:

WSN430v13b (using a CC1100 radio chip) and the WSN430v14 (using the CC2420

radio chip).

Despite the variety of components, the architecture of the nodes remains the same:

one micro-controller, an external memory, a radio device and several sensors. We may

safely assume that future research efforts will follow the same type of architecture.

Therefore all methodologies and optimizations proposed in the context of today’s ar-

chitectures will remain valid for years to come.

2.3 MAC Protocols for Wireless Sensor Networks

As stated previously, the miniaturisation of sensor nodes comes at the price of severe-

resource constraints. The nodes are constrained in computation, memory and most

importantly-energy.

The typical behavior of a WSN application involves 4 activities: sensor data acqui-

sition, data storage, data processing and communication. The applications periodically

sample the sensors, process, communicate and in the rest of the time the node com-

ponents are in low-power states. The communication energy cost dominates the data

storage and processing cost.

Energy conservation in a WSN maximizes network lifetime. It is addressed through

efficient wireless communication, intelligent sensor placement for adequate coverage,

security and efficient storage management, and through data aggregation and data

compression.

The communication protocol in the case of WSNs consists of five standard protocol

layers for packet switching: application layer, transport layer, network layer, data-link

layer, and physical layer.

The implementation of the different layers in the protocol stack impacts the energy

consumption, the end-to-end delay and the system efficiency. A trade-off is to be made

between functional aspects optimization and power consumption. Traditional proto-

cols for wireless networks do not address this tradeoff and are therefore not suitable for

WSNs. The energy-efficient protocols for WSNs perform cross-layer optimization by

supporting interactions across the protocol layers. Specifically, protocol state informa-

12

2.3 MAC Protocols for Wireless Sensor Networks

tion at a particular layer is shared across all the layers to meet the specific requirements

of the WSN.

The transport layer ensures the reliability and quality of data at the source and the

sink. It deals with aspects like variable reliability, packet-loss recovery and congestion

control mechanisms. The network layer handles routing of data across the network from

the source to the destination. The data-link layer is concerned with the data transfer

between two nodes that share the same link and provides medium access control (MAC)

and management. Finally, the physical layer provides an interface for transmitting bit

streams over the physical-communication medium. It interacts with the MAC layer,

performing transmission and reception, and modulation.

In this thesis, we are interested in optimizing the mapping of a MAC protocol

over the physical device with the goal of minimizing the energy consumption. In what

follows we will identify the main issues in MAC protocol design:

The main causes of energy waste in a MAC layer protocol are:

• collision: when 2 or more packets from different senders arrive at the destination

node at the same time or just partially intersecting, the data is corrupt, the pack-

ets must be discarded; their re-transmission increases the energy consumption;

• control packet overhead: control packets transmission/reception incurs energy

consumption too, therefore their number should be minimal;

• idle listening: occurs when a node is listening to an idle channel waiting for

possible traffic;

• overhearing: occurs on a node that receives packets without being their desti-

nation (i.e. packets destined to other nodes);

• over-emitting: occurs on a node that transmits a packet when the destination

node is not ready to receive;

There are two main groups of MAC protocols for wireless sensor networks: contention-

based and TDMA based.

The contention-based protocols allow nodes to access independently the shared

wireless medium. Nodes are not required to form a cluster. They are mainly based on

the Carrier Sense Multiple Access (CSMA) or Carrier Sense Multiple Access/Collision

13

2. WSN STATE OF THE ART

Avoidance (CSMA/CA). The basic idea is that when one node needs to send data it

will compete for the wireless channel. Contention-based protocols require no coordina-

tion among the nodes accessing the channel. Colliding nodes will back off for a random

duration of time before attempting to access the channel. These protocols inherit good

scalability and they support node changes and new node inclusions. However, a node

is not able to know when to switch its radio to a proper state. Sleeping mechanism

becomes rather complex, and to avoid unnecessary energy consumption, while pre-

serving desired latency and throughput, it requires control overhead to keep neighbor

nodes synchronized. That is, idle listening, collisions, overhearing, and control packet

overheads are the major sources of energy inefficiency.

In the TDMA-based protocols, nodes are often required to form a cluster. System

time is divided into time slots and each of the nodes has assigned its own time slot

and may access the shared medium only in this specific time slot. It allows avoiding

collisions, idle listening, and it schedules sleep of the transceiver without additional

overhead. However, such an approach also has certain of drawbacks. The difficulty for

the cluster to dynamically change its frame length and time slot assignments, in the

event of node changes or node inclusions, determines poor scalability and poor mobility.

In addition, effective slot assignment in multi-hop networks is challenging. Moreover,

demands of the cluster existence result in a complex inter-cluster communication. Fur-

thermore, the TDMA-based protocol requires high quality time synchronization since

the clock drift may lead to disastrous consequences.

We will describe some of the most known contention based protocols first, then

some TDMA based protocols and finally some hybrid ones.

Sensor-MAC (S-MAC) [47] is a MAC based on IEEE 802.11 aiming at saving

energy. To this end, it uses 3 techniques : sleep schedules, local synchronized virtual

clusters and message passing.

The protocol tackles the problem of idle listening by defining sleep schedules. It

divides the time into frames whose length is determined by applications and within

each frame there is a work stage and a sleep stage. Each node goes to sleep for some

time, and then wakes up and listens to see if any other node wants to talk to it. During

sleep, the node turns off its radio, and sets a timer to awake itself later. Neighboring

nodes must be aware of each other’s schedules in order to know when to send packets

and also re-synchronize periodically to remedy their clock drift.

14

2.3 MAC Protocols for Wireless Sensor Networks

In order to reduce control overhead, it is preferable that neighboring nodes have

the same sleep schedule. Neighboring nodes therefore form virtual clusters to set up a

common sleep schedule. If a node resides in two adjacent virtual clusters, it must wake

up at listen periods of both clusters.

S-MAC features the same contention mechanism as IEEE 802.11, i.e., using RTS

(Request To Send) and CTS (Clear To Send) packets. The node who first sends out

the RTS packet wins the medium, and the receiver will reply with a CTS packet.

Neighboring nodes need to periodically update their schedules to prevent long-time

clock drift. This is achieved through periodic short SYNC packets containing the

address of the sender and the time until it turns to sleep.

Collision avoidance is performed by S-MAC by using virtual and physical carrier

sense and RTS/CTS packets. The listen interval is divided into two parts: one for

receiving SYNC packets and the other one for receiving RTS packets. Each part is

further divided into many time slots for senders to perform physical carrier sense. Under

this approach, when a node wants to send a packet (either SYNC or RTS) it chooses

a random slot in the corresponding part of the listening interval. If the medium is free

until that slot, the medium is considered free. Virtual carrier sense is implemented

as follows: every packet contains a duration field, so when a node receives a packet

destined for another node, it knows for how long it must be quiet. It implements a

timer and knows it cannot send anything until this timer reaches the value 0. A node

sends a packet only when both virtual and physical carrier sense indicate a free medium.

An important feature of S-MAC is the concept of message-passing where long mes-

sages are divided into frames and sent in a burst. With this technique, one may achieve

energy savings by minimizing communication overhead at the expense of unfairness in

medium access.

Timeout-MAC(T-MAC) [45] is an adaptive energy-efficient MAC protocol for

WSNs that minimizes idle listening. Similar to S-MAC, there are active periods and

sleep periods in a time-frame. T-MAC introduces an adaptive duty cycle. Unlike for

S-MAC, a T-MAC active period ends if there is no activity for a time period of Ta. Ta

is the minimum listening time in the time-frame. T-MAC reduces the time in active

state compared with S-MAC as seen in figure 2.1.

B-MAC [27] is a another MAC protocol for WSNs. Its design goals are: low power

operation, effective collision avoidance, simple implementation, efficiency in channel

15

2. WSN STATE OF THE ART

Figure 2.1: T-MAC Schedule

utilization, reconfigurability and scalability. The protocol contains a basic set of media

access functionalities that are configurable by higher layers according to the target

metric to be optimized (power consumption, latency, throughput, fairness or reliability).

In B-MAC, the channel arbitration is achieved through clear channel assessment and

packet backoffs. Reliability is insured through the use of link layer acknowledgments

whereas the low power goal is achieved through low power listening. The complete

description of the protocol’s behavior will further be illustrated in section 3.1.

WiseMAC [19] is a protocol that uses non-persistent CSMA and preamble sam-

pling in order to reduce idle listening.

All nodes in a network sample the medium with a common period checking for

activity. Their relative schedule offsets are independent. If a node finds the medium

busy after it wakes up and samples the medium, it continues to listen until it receives

a data packet or the medium becomes idle again. A preamble precedes each packet

with the purpose of intersecting the destination node’s sampling time interval thus

determining it to receive the packet. A simple choice for the preamble length is the

length of the sampling period.

In order to reduce the preamble-length, WiseMAC nodes learn the sleep schedule

of their neighboring nodes. Thus when a node transmits a packet, it schedules the

preamble length so that it the destination’s sampling time corresponds to the middle

of the sender’s preamble. The preamble start also comprises a random factor meant

to avoid collisions when two transmitters address the same destination and it also

takes into account the possible clock drift between the sender and the destination, as

16

2_related/figures/tmac.eps

2.3 MAC Protocols for Wireless Sensor Networks

Figure 2.2: WiseMAC communication

seen in figure 2.3. The reliability of the communication is achieved through link layer

acknowledgements. The sleep schedule information is piggy-backed on these packets.

The authors in [2] propose a method for improving the preamble-sampling protocols

by replacing the continuous preamble by a series of small frames called micro-frames.

These micro-frames contain information about the destination node and this makes

it possible for nodes that are not the destination to switch their radio off to avoid

receiving irrelevant frames and improve energy saving. Another solution proposed in

[3] is to have the preamble composed of duplicate copies of the data. The advantage

of data-frame preamble (DFP) is that the node that wakes up to check the channel

immediately receives the data, so it does not need to wake up again to receive the data.

In contrast to contention-based MAC, TDMA based protocols offer an inherent

collision-free scheme by assigning unique time slots for every node to send or receive

data. First, interference between adjacent wireless links is guaranteed to be avoided

and this reduces the energy waste due to packet collisions. Second, TDMA can solve

the hidden terminal (when two nodes not hearing each-other transmit simultaneously to

a destination node) problem without the extra message overhead because neighboring

nodes transmit at different time slots.

17

2_related/figures/WiseMAC.eps

2. WSN STATE OF THE ART

µMAC [4] is a TDMA based protocol aiming at obtaining high sleep ratios while

preserving the message latency and reliability at an acceptable level. This is achieved

by adoption of a schedule-based approach to access the shared medium. The protocol

uses a single time-slotted channel, i.e. the time is divided into time slots. The protocol

operations alternate between contention and contention-free periods. They are both

composed of time-slots. The contention period is used to organize the network and to

initialize transmission sub-channels. This is achieved by packet-exchange in the slots of

the contention period, potentially subject to collisions. A sub-channel is formed by a

number of approximately equal spaced contention free slots. The contention-free period

is used to transfer data between nodes. Since the slots are reserved, no collisions can

occur. In this protocol, the contention periods responsible for network organization

incur a large overhead, and should not be frequent. But this makes it hard to adapt to

frequent network organization changes.

DEE-MAC (dynamic energy efficient TDMA based MAC) [14] proposes a clustering-

based TDMA approach for energy consumption reduction. The protocol’s operation

consists of rounds. Each of the rounds includes a cluster formation phase and a trans-

mission phase. Each cluster is dynamically formed based on the remaining power as

all nodes contend (using non-persistent CSMA) to be the cluster head. Based on the

power-level advertised, a node with the highest power-level will be elected as a cluster-

head. The transmission phase consists of a number of sessions, each of which contains

a contention period and a data transmission period. During the time of the contention

period, each node keeps their radio on and indicates interest to send a packet to the

cluster head. After this period, the cluster head knows which node has data to transmit

and it builds a TDMA schedule then broadcasts it to all nodes. Each node is assigned

with one data slot in each session. Based on the broadcasted schedule each of the nodes,

having data to receive or send, knows when to be awake. Clustering and TDMA based

schemes present a rational solution to reduce the cost of idle listening in large-scale

wireless sensor networks. However, the power of cluster head is easily depleted so the

network partitions happen easily.

Recently hybrid protocols appeared, combining the advantages of both contention-

based and TDMA-based protocols. These protocols divide the access channel into two

parts. Control packets are sent in the random access channel, and data packets are

transmitted in the scheduled channel. The control channel schedules the data access.

18

2.4 Device Modelling and Driver Generation

Zebra-MAC(Z-MAC)[36] is a hybrid protocol that combines the strengths of

TDMA and CSMA. Under low contention conditions, it behaves like CSMA, and un-

der high contention, like TDMA. In Z-MAC, a time slot assignment is performed at

the time of deployment. After the slot assignment, each node reuses its assigned slot

periodically in every predetermined period, called frame.This means there can be more

than one owner per slot. A node assigned to a time slot is the owner of that slot and

the others the non-owners of that slot. Unlike TDMA, a node may transmit during any

time slot in Z-MAC but performs carrier-sensing and transmits a packet only when the

channel is clear. An owner of a slot always has higher priority over its non-owners in

accessing the channel. This is implemented by adjusting the initial contention window

size in such a way that the owners are always given earlier chances to transmit than

non-owners. The goal is that during the slots where owners have data to transmit, Z-

MAC reduces the chance of collision since owners are given earlier chances to transmit

and their slots are scheduled a priori to avoid collision, but when a slot is not in use

by its owners, non-owners can steal the slot.

Conclusion All these protocols have in common the fact that they require precise

timings within the software application code in order to drive the radio device including

constraints coming from the device itself (calibration, delays to switch between mode,

time to wakeup from a particular low power state). Mapping such a software onto a

physical radio device is not straightforward.

2.4 Device Modelling and Driver Generation

The desired behavior of embedded systems is usually subject to time constraints and

it involves interactions with a set of physical devices or components, each with its own

individual and specific constraints. The problem of mapping software specification on

top of hardware devices has traditionally been split on one hand on abstraction layers

to manage complexity, portability and reusability and on the other hand on tools that

could support code generation and application specific embedded software.

The first approach to abstraction layer involves domain specific languages. These

languages offer constructs and abstractions specific to a domain so that low level and

implementation specific parts of the system can be generated.

19

2. WSN STATE OF THE ART

Devil [32] is an Interface Definition Language for describing hardware function-

alities which allows the high-level definition of the communication with a device. A

device can be described by three layers of abstraction: ports, registers and device vari-

ables. Ports are abstract physical addresses that hide the type of mapping of the device:

port-mapped or memory mapped. Registers define the granularity of interaction with

a device (their size in bits must be specified) and they usually have 2 attached ports:

one for reading and one for writing. Device variables are independent values grouped

within a single register in order to reduce the number of I/O operations. A compiler au-

tomatically checks the consistency of a Devil definition and generates efficient low-level

code. The IDL proved useful for the description of a wide variety of drivers: mouse,

sound, DMA, Ethernet , video etc.

ProGram [34] is a grammar based protocol specification language which is used for

modeling the behavior of a software/hardware interface (device driver) independently of

the architecture. Specifications in ProGram deal with sequences of allowed events rather

than state transitions as in the finite-state machine model. A ProGram description is

synthesized into an untimed extended state machine that is served as input for the

architecture mapping procedure. The processor specific characteristics and OS kernel

functionalities are captured in two separate libraries: ProcLib and OSLib respectively.

From the extended finite state machine and the 2 libraries the mapping procedure

generates architecture specific code.

NDL [15] is a language for device driver development that provides high-level con-

structs for device programming, describing the driver in terms of its operational inter-

face. The NDL declarations are designed to resemble the specification document for the

device it controls. An NDL driver is typically composed of a set of register definitions,

protocols for accessing those registers, and a collection of device functions. The com-

piler translates register definitions and access protocols into an abstract representation

of the device interface. Device functions are then translated into a series of operations

on that interface. Device drivers are systems-level code that interact directly with the

operating system. The NDL compiler generates C that makes appropriate operating

system calls. Platform specific functions are provided through compiler libraries and

device templates (platform dependencies are minimal). NDL’s main abstraction is a

representation of the state of the peripheral device being controlled.

20

2.4 Device Modelling and Driver Generation

In [6] a solution for global resource control in embedded systems is proposed. Unlike

the previously mentioned approaches that deal with devices individually, [6] takes a

global view on the platform. This way, problems of concurrency and mutual exclusion

for shared resources like buses can easily be solved. A global view of the system also

allows the implementation of a global power-consumption policy at the level of the entire

platform. In this approach, each device driver is described as a Mealy automaton. These

automata are made controllable (i.e. the absence of an additional input may prevent

the automaton from changing states). A controller automaton C is built in such a

way that global properties are ensured. The controller automaton and the controllable

device automata are programmed in some synchronous language. Finally, the control

layer is obtained by compiling the parallel composition of these automata into a single

piece of sequential C code.

Communication protocols abstractions and other DSL approach often rely on timed

automaton and finite state machines. A timed automaton is a finite automaton, i.e.,

a model of behavior composed of a finite number of states, transitions between these

states according to the inputs received and possibly actions to be performed, extended

with real-valued variables called clocks. These variables model the logical timers in the

system, initialized to zero at system start and increasing synchronously with time. The

transitions between states can be conditioned by logical expressions formed with clock

variables. The latter can be reset upon state transitions.

Definition 1 A timed automaton A is a tuple 〈N, l0,C,Σ, E, I〉, where : N is a finite

set of locations (nodes); l0 is the initial location; C is a finite set of real-valued variables,

namely the clocks; Σ is a finite alphabet of symbols standing for actions; B(C) represents

the set of clock constraints; E ⊆ N×B(C)×Σ×2C×N is the set of edges and I : N → B

assigns invariants to locations.

A clock constraint is a conjunction of atomic constraints of the form x ⊗ n or

x − y ⊗ n where ⊗ ∈ {<,≤,=, >,≥} and n ∈ N. An edge is a tuple of the form

〈l, g, a, r, l′〉 (l
g,a,r
−−−→ l′), where l is the start location, l′ is the destination location, g is

the set of guards, a is the set of actions and r is the set of clocks to be reset upon taking

this transition. The location invariants are clock constraints defining the time interval

in which the automaton may remain inside the corresponding location. In the sequel,

21

2. WSN STATE OF THE ART

we will consider timed automata where locations have no invariant and the exit from a

state will be specifically expressed through clock constraints of the form clock = value.

The priced extension of timed automata extends the classical model 〈N, l0,C,Σ, E, I〉

with a cost function P : (E ∪N)→ N that assigns fixed costs to transitions and costs

per unit time to locations respectively. The general formalism of timed automata intro-

duced in [1] allows expressing the expected software behavior of a device in the form of a

finite state automaton extended with real-valued variables called clocks. The particular

constraints of physical devices themselves can also be expressed in this form. For the

priced extension of timed automata several interesting problems have been proposed

and solved: optimal reachability in closed systems [29], optimal infinite schedules for

closed systems [9] or the optimal control synthesis for automata with acyclic control

graphs [44]. Considering only DAG is a strong limitation since several cases like MAC

protocols present cycles in their control graph.

22

3

Hardware Software Interface:

Cross Layer Mapping

Optimization

In this chapter we introduce a timed automata based model for describing the behavior

of a software protocol in section 3.1. We introduce a finite state machine model for

describing the behavior of a hardware device in section 3.2. We classify software states

as either fixed, which correspond to a unique state of the hardware automaton, or free,

for which the mapping is left at the programmer’s choice. We investigate the problem

of mapping the free states of such a software protocol onto a hardware device. We

prove the problem to be NP-complete in subsection 3.3.2 and we propose a heuristic in

subsection 3.3.3. From the software description and the hardware paths determined by

the heuristic, we derive code skeletons suitable for two types of wireless sensor networks

operating systems in section 3.4.

3.1 Software Protocol Description

3.1.1 Definition and Formalism

This section presents the derived model from priced timed automata that we use for

modeling the behavior of a software protocol.

Figure 3.1 illustrates an automaton. It is a strictly sequential model of computation

composed of states (S1, S2, S3 in figure 3.1) and transition between them, having ex-

23

3. HARDWARE SOFTWARE INTERFACE: CROSS LAYER MAPPING
OPTIMIZATION

��

���������

	

AB

�

Figure 3.1: Automaton example.

actly one state active at a given moment. The transitions are ordered 3-tuples composed

of a start state, a label and a destination state (S1
a
−→ S2, S2

b
−→ S3, S3

c
−→ S1, S3

d
−→ S2

in figure 3.1). The labels have different meaning according to the adopted formalism:

they can correspond to an action, to an instruction, a communication. There can be

one or more initial states (S1 in the example). The execution of this model of com-

putation corresponds to a sequence of states starting with one of the initial states and

such that 2 consecutive states are linked through a transition. S1
a
−→ S2

b
−→ S3

c
−→ S1 is

an example of such an execution for figure 3.1.

The general model of automata can be extended in order to correctly reflect the

behavior of the system to be modeled.

The transitions can be labeled with input/output signals modeling the interaction

between the automaton and its environment. The significance of a transition of the

form S1
a/b
−−→ S2 is that the occurrence of the input signal a while the automaton is in

the state S1 triggers the transition of the automaton to the state S2 with the emission

of the signal b.

Another possible extension of the automata is to label its transitions with condi-

tions/actions. The significance of a transition of the form S1
condition/action
−−−−−−−−−−→ S2 is that

the condition must be true in order for the transition to be taken and the corresponding

action is executed along with the transition.

The transitions of a software protocol can be triggered by hardware or software

signals. A particular type of software signal is represented by timer events. These

signals occur when a time interval elapses.

The general formalism of timed automata introduced in [1] allows expressing the

expected software behavior of a physical device in the form of a finite state automaton

24

3_method_and_models/figures/automata.eps

3.1 Software Protocol Description

extended with real-valued variables called clocks. These variables model the logical

timers in the system, initialized to zero at system start and increasing synchronously

with time. The transitions between states can be conditioned by logical expressions

formed with clock variables. The latter can be reset upon state transitions.

The definition of Timed Automata as presented in [5] is as follows:

Definition 2 A timed automaton A is a tuple 〈N, l0,C,Σ, E, I〉, where : N is a finite

set of locations (nodes); l0 is the initial location; C is a finite set of real-valued variables,

namely the clocks; Σ is a finite alphabet of symbols standing for actions; B(C) represents

the set of clock constraints; E ⊆ N × B(C) × Σ × 2C × N is the set of edges and

I : N → B(C) assigns invariants to locations.

A clock constraint is a conjunction of atomic constraints of the form x ⊗ n or

x − y ⊗ n where ⊗ ∈ {<,≤,=, >,≥} and n ∈ N. An edge is a tuple of the form

〈l, g, a, r, l′〉 (l
g,a,r
−−−→ l′), where l is the start location, l′ is the destination location, g

is the set of guards, a is the set of actions and r is the set of clocks to be reset upon

taking this transition. The location invariants are clock constraints defining the time

interval in which the automaton may remain inside the corresponding location.

In order to model the behavior of a software automaton, we consider a timed soft-

ware automaton extended with integer variables and boolean variables, where the tran-

sitions between its states occur on events/signals from other layers in the network stack

or on timer events and they can be conditioned by guards formed with clock variables

(the clock constraints), boolean variables and integer variables. Clock variables may

be reset on transitions, while integer variables may be incremented/decremented/reset

upon transitions.

More formally, the definition of a Software Timed Automata is as follows:

Definition 3 The software timed automaton A is a tuple 〈N, l0,C, β, ϑ,Σ, E, I〉, where

N is a finite set of locations (nodes); l0 is the initial location; C is a finite set of

real-valued variables, namely the clocks; Σ is a finite alphabet of symbols standing for

signals; ϑ is a finite set of integer-valued variables; β is a finite set of boolean variables;

B(C) represents the set of clock constraints; B(ϑ) represents the set of integer variables

constraints; B(β) represents the set of boolean constraints and E ⊆ N ×B(β)×B(C)×

B(ϑ)× Σ× 2C× 2ϑ × 2ϑ × 2ϑ ×N is the set of transitions.

25

3. HARDWARE SOFTWARE INTERFACE: CROSS LAYER MAPPING
OPTIMIZATION

(Txp==0) /

y:=0

(EOR | RT) &

TX &
 (y<Twait−Tib−Tcca) /
 x:=0

WAIT

Initial Backoff

CCA

Sampling

WAIT
 Congestion

 Backoff

Transmit

CCA

Sampling

Receive

CCA/Txp−−

~CCA

WAIT

[y==Twait]

[x==Tib]

y:=0

TX/Txp++

Txp==0/y:=0

TX/Txp++

TX/Txp++

(y>=Twait−Tcb−Tcca)
(~CCA)&

TX/Txp++

(Txp==0) & CCA /

TX & (y>=Twait−Tib−Tcca)/Txp++

(~CCA)&(y<Twait−TCB−Tcca) / z==0

TX/Txp++

[z==Tcb]

TX/Txp++

(EOR | RT) &
(Txp>0) /

y:=0

Txp>0/y:=0

Figure 3.2: B-MAC protocol description in the form of a timed automaton.

Thus, an edge is a tuple of the form 〈l, g, s, r, inc,dec, res, l′〉 where l is the start location,

l′ is the destination location, g is the set of guards, s is a signal, r is the set of clocks to

be reset, inc is the set of integer variables to be incremented, dec is the set of integer

variables to be decremented and res is the set of integer variables to be reset upon

taking this transition.

Two types of events can trigger a transition in the software automaton: either a

signal or a timer event. A signal can originate from the hardware or other applications.

A timer event has the form clockvar = value, where clockvar is a clock variable and

value ∈ N. The two types of events are mutually exclusive. If two such triggers arrive

at the same time, they will be sequentialized by the micro-controller. The transitions

that they trigger can be conditioned by guards, which are conjunctions of boolean

constraints, integer variables constraints and clock constraints.

The set of possible boolean constraints B(β) comprises boolean expressions formed

with boolean variables. The set of possible relational constraints involving integer

26

3_method_and_models/figures/bmac.eps

3.1 Software Protocol Description

valued variables are of the form var⊗n, where ⊗ ∈ {<,≤,=,≥, >} and n ∈ N. The set

of clock constraints comprises conjunctions of relational expressions of the form x⊗ n

or x− y ⊗ n where ⊗ ∈ {<,≤, >,≥}, x, y ∈ C and n ∈ N.

To summarize: A transition has the form 〈l, t, g, a, l′〉 (l
t,g,a
−−−→ l′), where t stands for

the triggering condition of the transition (either clockvar = value or signal), g stands

for the guards while a stands for the actions to be performed (clock resets and integer

variables increment/decrement/reset).

3.1.2 Application on B-MAC protocol

Figure 3.2 illustrates the timed automaton representation of the B-MAC protocol [27],

a well known MAC protocol for WSNs.

Although we focus here on the description of a MAC protocol, the timed automata

approach is general. It can be applied to any software protocol intended to control

a physical device whose behavior can be expressed as a finite state machine such as

sensing devices, flash memory, RAM, SPI bus, DSPs, FPGAs, etc.

B-MAC’s design goals are: low power operation, effective collision avoidance, sim-

ple implementation, efficiency in channel utilization, reconfigurability and scalability.

The protocol contains a basic set of media access functionalities that are configurable

by higher layers according to the target metric to be optimized (power consumption,

latency, throughput, fairness or reliability).

In B-MAC, the channel arbitration is achieved through clear channel assessment and

packet backoffs. Reliability is insured through the use of link layer acknowledgments

whereas the low power goal is achieved through low power listening.

The finite state machine in figure 3.2 captures a possible configuration of the pro-

tocol which uses the CSMA and low power listening features of B-MAC.

The Low Power Listening (LPL) feature of the protocol consists in periodically

driving the radio into the receive physical device state in order to sample the medium,

checking for activity, thus performing the Clear Channel Assessment (CCA). If the

medium is found busy, the radio is kept in receive state until a packet is received or

a timer expires, after which it is turned back off. If on the contrary, no activity is

detected on the channel, the radio is turned back off until the next medium checking

event. This sequence of states is illustrated on the left part of figure 3.2. From the

default WAIT state, the MAC protocol switches to the CCA Sampling state when the

27

3. HARDWARE SOFTWARE INTERFACE: CROSS LAYER MAPPING
OPTIMIZATION

clock variable y reaches the Twait value. The CCA Sampling state corresponds to the

RX-receive state of the device. The transitions from the CCA Sampling state according

to the check result are: in case of a busy channel (¬CCA) to the Receive state while

in case of a free channel (CCA), either back to the default WAIT state if there are no

packets pending transmission, or to the WAIT Initial Backoff state if there exist packets

waiting for transmission. The transmission pending integer variable (Txp) records the

number of queued packets. In case of a free medium, both possible transitions reset

the y clock variable. The transition from the Receive state back to the WAIT state

occurs after a successful packet reception signaled by the End Of Receive signal (EOR)

from the radio device, or upon expiration of a second timer RT – Receive Timer – in

case no packet is received (a false positive) as long as there are no packets pending

(Txp = 0). Otherwise, a transition to WAIT Initial Backoff is performed, initiating the

Carrier Sense Multiple Access (CSMA) process for packet transmission.

The protocol behavior on packet transmission is illustrated in the right side of figure

3.2. The channel arbitration is achieved through CSMA, that starts with an initial

backoff followed by successive congestion backoffs in case of unsuccessful clear channel

assessment. Upon a transmission request from an upper layer (TX signal) occurring

in the WAIT state, if there is sufficient time to perform the CCA without missing the

LPL periodic CCA Sampling (y < Twait−Tib−Tcca), the protocol switches to an initial

wait state (WAIT Initial Backoff). The transition is conditioned by a guard which is a

logical conjunction of the signal TX triggered by the application and the clock constraint

specified before. After the elapse of Tib (time initial backoff-random value chosen in a

bounded interval) time units, a transition to CCA Sampling state is enabled. The result

of the channel activity check determines the next transition: either to the TX state

if the medium was found idle - the CCA boolean variable in the figure which encodes

the state of the Clear Channel Assessment procedure - or to a next wait state - WAIT

Congestion Backoff- in case of a busy medium (¬CCA) and if sufficient time remains

for the congestion backoff time to elapse and a new CCA to be issued without missing

the LPL CCA periodic sampling. From the Transmit state, the protocol switches after

a successful transmission modeled by EOT- end of transmission signal- either back to

the default WAIT state if there are no packets pending or to WAIT Initial Backoff

otherwise, both transitions resetting the clock variable y. From the WAIT Congestion

Backoff state, the protocol switches back to the CCA state when the clock variable z

28

3.2 Hardware Protocol Description

reaches the Tcb value also randomly chosen in a bounded interval. The occurrence of a

TX - transmit signal from the upper layer in any of the automaton’s states keeps the

current state but increments the Txp variable, except for the WAIT state where the

self-loop or the transition to the WAIT Initial Backoff are conditioned by disjoint clock

constraints (y >= Twait − Tib − Tcca and y < Twait − Tib − Tcca respectively).

The states appearing in the MAC protocol automaton can be divided into 2 cate-

gories: fixed states (Receive, CCA Sampling, Transmit) that corresponds to a unique

state in the physical device automaton, and free states (WAIT, WAIT Initial Backoff,

WAIT Congestion Backoff) whose mapping is left at the designer’s choice.

3.2 Hardware Protocol Description

The behavior of most embedded components can usually be expressed in the form of

a finite state machine: Flash memory, RAM memories, SPI bus, DSPs, radio devices

and so on.

We will consider here a type of physical device whose behavior can be expressed

as a finite state machine in which states can have either a fixed duration (transitional

states), or a variable duration but with a lower bound constraint (non-transitional

states). A cost per unit time (e.g., energy) will also be associated to each state.

Definition 4 The device finite state machine F is a tuple 〈N, l0, E,Σ, type, tmin, cost〉,

where: N is a set of finite location (nodes); l0 is the initial location; Σ is a finite

alphabet of symbols standing for input commands; E ⊆ N × Σ×N is the set of edges;

type : N → {transitional, nontransitional} is a function assigning types to nodes; tmin :

N → N is a function assigning minimum time duration to states and cost : N → N is

a function assigning cost per unit time to states.

In the sequel, we will illustrate this definition by taking the CC1100 RF transceiver[42]

as an example. The CC1100 is a low-cost sub- 1 GHz transceiver designed for very low-

power wireless applications. CC1100 provides extensive hardware support for packet

handling, data buffering, burst transmissions, clear channel assessment, link quality

indication, and wake-on-radio. The main operating parameters and the 64- byte trans-

mit/receive FIFOs of CC1100 can be controlled via an SPI interface. In a typical

system, the CC1100 will be used together with a micro-controller and a few additional

passive components.

29

3. HARDWARE SOFTWARE INTERFACE: CROSS LAYER MAPPING
OPTIMIZATION

��� � � �� � �

� � 	 A B�� � �

� C � D D

� � 	 A B

� E F � � � � F � � �

� � E F

� � � F �

� � C � � � C �

� D � � C � � �

� � �

D � E � � � � E F A B�

�

� � C � � � C � � D � C � � �� � �

� E F � � � � F � � �

� D � � C � �

� � C

� � C

� � � � � � � � � � � � � � � � � � C D � D � � � � � D F � �� � � � � � � � � � � � � � C � D D � � � � A BB

�

� � � � � � � � � � � � � � D � E � � � � E F A BB� B�

� C � D D � � � � A BB

�

D � E � � � � E F A �B� ��

� C � D D � � � � A BB

�

D � E � � � � E F A BB� B�

� C � D D � � � � A BB

�

D � E � � � � E F A BB� B�

� � C �� � �

� � C � � C � D D � � � � A ��

� � C � � C � D D � � � � A �B

� � � C � � D � � C � � � � � � E

�

� C � D D � � � � A B�� �B

� D � � C � � � � C � D D � � � � A B�

D � E � � � � E F A BB� �B � ��

�

� � C � � � C � � D � C � � �� � �

� C � D D � � � � A B�

� C D � D � � � � � � D F � �

� D � C � D � C

��

�����������	

A����

B�������������	 CDAAE

F�DA

����

��B��D

�C ���A�E

��DF����A

CA��DFB�

���� CA��DFB�

���� CA��DFB�

�� ��

�� �B�A��D�� �� ��A��D��

��DF����A

�C���B

F�DA

� C � D D � � � � A ��� C � D D � � � � A ��

� � C

Figure 3.3: CC1100 Radio Finite State Machine.

30

3_method_and_models/figures/cc1100_tikz.eps

3.2 Hardware Protocol Description

Figure 3.4: CC1100 Simplified Block Diagram (taken from CC1100 datasheet)

The simplified block diagram of CC1100 is illustrated in figure 3.4. The radio

features a low-IF receiver. The received RF signal is amplified by the low noise amplifier

(LNA) and down-converted in quadrature (I and Q) to the intermediate frequency

(IF). The I/Q signals are digitized by the ADCs. Automatic gain control (AGC), fine

channel filtering and demodulation bit/packet synchronization are performed digitally.

The transmitter part of CC1100 is based on direct synthesis of the RF frequency.

The frequency synthesizer includes a completely on-chip inductance-capacitance voltage

controlled oscillator (LC VCO) and a 90 degree phase shifter for generating the I and Q

LO signals to the down-conversion mixers in receive mode. A crystal is to be connected

to XOSC Q1 and XOSC Q2. The crystal oscillator generates the reference frequency

for the synthesizer, as well as clocks for the ADC and the digital part. A 4-wire SPI

serial interface is used for configuration and data buffer access. The digital baseband

includes support for channel configuration, packet handling, and data buffering.

The CC1100 has two dedicated configurable pins (GDO0 and GDO2) and one

shared pin (GDO1) that can output internal status information useful for control

software. These pins can be used to generate interrupts on the MCU. They can be

31

3_method_and_models/figures/cc1100_diagram.eps

3. HARDWARE SOFTWARE INTERFACE: CROSS LAYER MAPPING
OPTIMIZATION

configured to raise an interrupt for various types of events: when sync word has been

received/transmitted, when a complete packet has been received/transmitted, when

RX FIFO is filled at or above the RX FIFO threshold, when the TX FIFO is filled at

or above the TX FIFO threshold, etc.

CC1100 has a built-in state machine that is used to switch between different oper-

ational states (modes). Figure 3.3 shows the state diagram of the CC1100 device while

table 3.1 summarizes the description and energy consumption parameters of its states.

State Current Consumption Characteristics

SLEEP 400nA Lowest power mode, voltage regula-

tor to digital part off, most register

values retained.

XOFF 160µA Crystal oscillator(XOSC) off, volt-

age regulator to digital part on, all

other modules in power down.

IDLE 1.6 mA Only voltage regulator to digital

part and crystal oscillator running

FS WAKEUP 8.2 mA Frequency synthesizer is turned on.

MANCAL 8.2 mA Manual calibration(through com-

mand strobe) of the frequency syn-

thesizer.

CALIBRATE 8.2 mA Auto calibration of the frequency

synthesizer according to the config-

uration settings.

SETTLING 8.2 mA Frequency synthesizer settles to the

correct frequency.

RXTX SETTLING 8.2 mA

TXRX SETTLING 8.2 mA

FS TXON 8.2 mA Frequency synthesizer is on ready to

start transmitting.

TX 13.5mA at -6dBm output Transmit state

16.9mA at 0dBm output

30.7mA at +10dBm output

RX from 14.4mA to 15.4mA Receive state

Table 3.1: Description and energy consumption parameters for the states of CC1100

32

3.2 Hardware Protocol Description

The communication between the micro-controller(MCU) and the radio is achieved

over the 4-wire SPI interface (SI,SO,SCLK and CSn) with the CC1100 as the slave. All

transactions start with a header byte containing a read/write R/W̄ bit, a burst access

bit and a 6-bit address (A5 −A0).

The communication is initiated by the micro-controller by pulling the chip select

CSn pin low (CSn must be kept low during SPI transfers). The micro-controller must

wait until the SO pin goes low (CHIP RDYn), indicating that the radio crystal is

running. Whenever the micro-controller transmits a byte over the SI pin, the radio

responds by sending the chip status byte over the SO pin. Bit 7 is the CHIP RDYn

signal, bits 6:4 code the radio device state, while bits 3:0 contain the FIFO bytes

available (in the RX or TX FIFO respectively according to the type of operation R/W̄

initiated by the MCU).

The CC1100 contains several 8 bit registers with different functionalities.

Registers located on the SPI addresses from 0x00 to 0x2E are configuration reg-

isters. The CC1100 has its own configuration software, the SmartRF Studio software

but it can also be configured ”manually” by writing the desired configuration values in

the configuration registers using the SPI interface. These registers can be both written

and read. An example of such a register is MCSM1 at address 0x17. Bits 7:6 are

reserved, bits 5:4 configure the CCA MODE (behavior for the automatic clear chan-

nel assessment with the following possibilities: 00-always, 01-if RSSI below threshold,

10-unless currently receiving a packet, 11-if RSSI below threshold unless currently re-

ceiving a packet), bits 3:2 configure the RXOFF MODE (the next state of the radio

device upon packet reception with the following possibilities: 00-IDLE, 01-FSTXON,

10-TX, 11-Stay in RX) while bits 1:0 configure the TXOFF MODE (the next state of

the radio device upon packet transmission with the following possibilities: 00-IDLE,

01-FSTXON, 10-Stay in TX, 11-RX).

Registers located located in the address range 0x30-0x3D are multiplexed using the

burst bit in the header byte of the SPI transfer: burst bit 0 selects command strobes

while burst bit 1 selects status registers.

33

3. HARDWARE SOFTWARE INTERFACE: CROSS LAYER MAPPING
OPTIMIZATION

Address Strobe

Name

Description

0x30 SRES Reset chip.

0x31 SFSTXON Enable and calibrate frequency synthesizer (if

MCSM0.FS AUTOCAL=1). If in RX (with CCA):

Go to a wait state where only the synthesizer is running

(for quick RX / TX turnaround).

0x32 SXOFF Turn off crystal oscillator.

0x33 SCAL Calibrate frequency synthesizer and turn it off. SCAL can be

strobed from IDLE mode without setting manual calibration

mode (MCSM0.FS AUTOCAL=0)

0x34 SRX Enable RX. Perform calibration first if coming from IDLE

and MCSM0.FS AUTOCAL=1.

0x35 STX In IDLE state: Enable TX. Perform calibration first if

MCSM0.FS AUTOCAL=1. If in RX state and CCA is en-

abled: Only go to TX if channel is clear

0x36 SIDLE Exit RX / TX, turn off frequency synthesizer and exit Wake-

On-Radio mode if applicable.

0x38 SWOR Start automatic RX polling sequence (Wake-on-Radio)

0x39 SPWD Enter power down mode when CSn goes high.

0x3A SFRX Flush the RX FIFO buffer. Only issue SFRX in IDLE or,

RXFIFO OVERFLOW states.

0x3B SFTX Flush the TX FIFO buffer. Only issue SFTX in IDLE or,

TXFIFO UNDERFLOW states.

0x3C SWORRST Reset real time clock to Event1 value.

0x3D SNOP No operation. May be used to get access to the chip status

byte.

Table 3.2: CC1100 Command Strobes Summary

34

3.2 Hardware Protocol Description

Description XOSC Peri-

ods

26MHz

Crystal

IDLE to RX/TX/FSTXON, no calibration 2298 88.4 µs

IDLE to RX/TX/FSTXON, with calibration ∼21037 809 µs

TX to RX switch 560 21.5 µs

RX to TX switch 250 9.6 µs

RX/TX to IDLE, no calibration 2 0.1 µs

RX/TX to IDLE, with calibration ∼187392 721 µs

Manual calibration ∼187392 721 µs

Table 3.3: State Transition Timing

Command strobes may be viewed as single byte instructions to CC1100. By

addressing a command strobe register, internal sequences will be started determining

state transitions and state change in the radio state machine. These registers are

accessed by transferring a single header byte. Table 3.2 provides a detailed description

of the 13 command strobe registers. These commands are used to disable the crystal

oscillator, enable receive mode etc. Their use in initiating radio state machine changes

is illustrated by annotating the state transitions in figure 3.3 with the corresponding

command strobes. The command strobes are executed immediately, except for SPWD

and SXOFF which are executed when CSn goes high.

Status registers are read-only and they contain information about the status of

CC1100: the received signal strength indication (RSSI), the control state machine state

(MARCSTATE), underflow and number of bytes in the TX FIFO (TXBYTES) and so

on.

CC1100 contains two 64 byte FIFOs: one for received data (RX FIFO) and one

for data to be transmitter (TX FIFO). They are accessed via SPI interface through

the 0x3F addresses, with the R/W̄ bit in the header selecting which of the 2 FIFOs

will be accessed. The access can be single byte or burst access. If the TX FIFO

runs empty before the complete packet has been transmitted, the radio will enter TX-

FIFO UNDERFLOW error state. Similarly in reception when the RX FIFO becomes

full before the content has been read, the radio will enter RXFIFO OVERFLOW error

state. The only way to exit these error states is by issuing an SFTX or an SFRX strobe

respectively.

35

3. HARDWARE SOFTWARE INTERFACE: CROSS LAYER MAPPING
OPTIMIZATION

As we previously mentioned, figure 3.3 shows the CC1100 device internal finite state

machine, while table 3.1 describes the states’ characteristics. RX and TX are the active

modes/states of the CC1100, while SLEEP, XOFF and IDLE are low-power modes. For

the CC1100 to receive/transmit, the frequency synthesizer must be on and it must be

calibrated regularly. One possibility is to configure automatic calibration through a

configuration register (MCSM0). There are 3 calibration options: calibrate when going

from IDLE to RX/TX/FSTXON; calibrate when going from RX/TX to IDLE; calibrate

every fourth time when going from RX/TX to IDLE. Another possibility is to explicitly

ask for a calibration through the SCAL command strobe when in IDLE state. In both

cases (automatic or manual) the calibration takes a fixed amount of time. Similarly, the

frequency synthesiser start-up (FS WAKEUP device state), the settling (SETTLING

device state), the RX to TX (RXTX SETTLING) and TX to RX (TXRX SETTLING)

transitions have a fixed duration. Table 3.3 summarizes the fixed transition times in

the device state machine.

The states of CC1100 can be classified into 3 categories: nontransitional, transitional

and error. State transitions occur upon issuing command strobes that explicitly re-

quest a specific transition, or on internal events (i.e., FIFO overflow or underflow,

end of packet transmission, end of packet reception) with the next state indicated in

configuration registers(i.e the next state after a successful transmission/reception).

The transitional states like CALIBRATION, FS WAKEUP, SETTLING,

RXTX SETTLING and RXTX SETTLING have fixed duration, i.e. the time

the radio remains in such a state is device dependent, thus beyond user/programmer

control. The transitions into transitional states occur on command strobes. The

transition out of such a state is determined by the signal issued for the transition into

the state and both the time and energy consumed are fixed for these states.

The nontransitional states like RX, TX, IDLE, SLEEP, XOFF, FSTXON have a

configurable duration with a lower bound constraint. The duration of these states

has a lower bound which means that each such state has a tmin minimum duration

constraint but no upper bound since the device may remain in these states for an

unlimited amount of time. The transitions into and out of nontransitional states occur

upon issuing command strobes or on internal events according to configuration registers.

The transition into error states like RX OVERFLOW or TX UNDERFLOW occurs

on external error conditions beyond user/programmer control. The device exits these

36

3.3 Software to Hardware Optimized Mapping

states upon issuing a command strobe after acknowledging the error.

3.3 Software to Hardware Optimized Mapping

After having introduced the timed automaton model for describing the software appli-

cation’s behavior in section 3.1 and the finite state machine model used for describing

the physical device in section 3.2, we will focus now on the problem of mapping such

a software protocol onto a physical device such that the energy consumption to be

minimal.

3.3.1 Software Automaton Transformation

The first step in the process of software to hardware state mapping is the identification

of states in the software automaton that map directly to physical states of the hardware

device: the fixed states. For the case of B-MAC, these states are: CCA Sampling and

Receive which map to the RX radio state and Transmit which maps to TX radio state.

The remaining states are free states: WAIT, WAIT Initial Backoff and WAIT Conges-

tion Backoff. These states need to be mapped onto physical device paths, i.e. non

empty lists of successive physical states, that guarantee their time duration constraint.

As noticed above, the transition into and out of a free state may occur upon a signal

from an upper layer or from the physical layer or upon a timer event (clockvar = value),

having as predecessor or successor respectively either another free state or a fixed state.

Timer enabled transitions impose a maximum time constraint on free states. Signal

enabled transitions that are not coupled with time guards on the other hand are not

time correlated since such an external event can occur at any time while inside such a

free state and any physical mapping for the free state should guarantee that any path

from the free state to a fixed state using that transition remains realizable. The case

where the signal enabled transition is coupled with time guards will be transformed in

order to eliminate the time guard. Timer signals can also occur at any moment of time

according to the way they were programmed and it is the protocol’s designer choice

whether to take them into consideration or not with regard to the current state of the

protocol automaton.

In this context, our goal is to define for every time constrained free state S of the

software protocol, a mapping to a unique physical state or to a path of physical states

37

3. HARDWARE SOFTWARE INTERFACE: CROSS LAYER MAPPING
OPTIMIZATION

from the physical device automaton such that all paths towards fixed states starting

with the signal enabled transitions out of S remain realizable, while minimizing the

energy consumption of the state until the end of its duration.

We will consider the following restrictions with respect to the general formalism of

timed automata as defined in [5]: (i) for every free state S in the software automaton,

there should exist at most one output transition of the form clockvar = value defining its

duration; in the case such a transition exists, the clock variable clockvar is associated to

the free state S and no other timer enabled output transition from a free state can con-

tain the same variable; (ii) for every free state S in the software automaton, transitions

into the state that do not reset the clock variable defining its duration should have as

source a fixed state; (iii) for every free state S in the software automaton, transitions

out of the state guarded by clock constraints should only involve the clock variable

defining the state’s duration; (iv) for every free state S in the software automaton,

transitions into the state guarded by clock constraints should only involve the clock

variable defining the parent state’s duration unless the start state of the transition is a

fixed state; (v) transitions conditioned by logical expressions formed with integer and

boolean variables should have as source a fixed state, (vi) fixed states should have a du-

ration superior or equal to the minimum time constraint of the corresponding physical

state.

Figure 3.5 presents the flow of activities in the software to hardware mapping. The

desired behavior of the software application/protocol (here the B-MAC protocol) is

expressed as a timed automaton respecting the constraints introduced in the previous

paragraph. The behavior of the hardware device is expressed in the form of an au-

tomaton with states of fixed or variable duration but having lower limit constraint.

The restricted timed automaton describing the functionality of the software protocol

needs several adjustments (“Software Automaton Transformation” in figure 3.5) which

will be described further. From the transformed software automaton description and

the physical automaton description, an optimized mapping of the software protocol to

the radio device is obtained by minimizing the global energy consumed. The resulted

mapping can be obtained in several formats: graph, code skeleton for event-driven

Operating System and multi-threaded Operating System respectively.

We recall that the software timed automaton A is a tuple 〈N, l0,C, β, ϑ,Σ, E, I〉.

38

3.3 Software to Hardware Optimized Mapping

AutomatonAutomaton

Patterns
OS

HW+SW
representation

SoftwareHardware

Software Automaton
 Transformation

Backend 1 Backend 2

Mapping

Representation (Graph)
Structured Code Skeleton

for Event Based OS
Code Skeleton

for Multi−Threaded OS

Figure 3.5: Synthesis flow for software to hardware mapping.

nnn

t,g,a,r
t,g,a,r t,g

,a
,r

t,g
,a

,r

x = val

x
∈

r

x
∈
r

x = valx = val

¬(
x
∈
r)

¬(
x
∈
r)

x = val

S
′

S
′′S

Figure 3.6: Software automaton transformation for the case of free states with input

transitions not resetting the clock variable defining the state’s duration.

As mentioned before in section 3.1, a transition has the form 〈l, t, g, a, l′〉 (l
t,g,a
−−−→ l′),

where t stands for the triggering condition of the transition (either clockvar = value or

signal), g stands for the guards while a stands for the actions to be performed (clock

resets and integer variables increment/decrement/reset).

In what follows we isolate in the notation the set of clock variables to be reset in

order to clarify the following explanations. Thus a transition has the form 〈l, t, g, a, r, l′〉

(l
t,g,a,r
−−−−→ l′), with the same meaning as in the previous definition except for r-standing

for the set of clocks to be reset upon taking this transition.

Two types of transformations should be performed on the restricted automaton

describing the behavior of a software protocol.

First, a time constrained free state either has a fixed duration (all input transitions

into such a state reset the clock variable defining its duration or have a triggering

condition of the form clockvar = value, where clockvar is the clock variable defining

39

3_method_and_models/figures/designstages2.eps
3_method_and_models/figures/dup1.eps

3. HARDWARE SOFTWARE INTERFACE: CROSS LAYER MAPPING
OPTIMIZATION

its duration) or has a fixed or variable duration depending on the input transition

that was taken for reaching the state (whether that transition did or did not reset its

corresponding clock variable). In the first transformation we separate input transitions

that reset the clock variable defining its duration from the rest of the transitions. This

implies duplicating the state (as well as the output transitions) and separating its input

entries (those resetting the clock and those not resetting it), as seen in Figure 3.6. Thus

for a free state S with corresponding clock variable x (we have imposed the constraint

that ∀s ∈ V s.t. type(s)=free, (∃)! e = s
t,g,a,r
−−−−→ s′ ∈ E s.t. t = (x = Maxvalue)) we

create two states S′ and S′′ and distribute adjacent edges as follows:

• ∀e ∈ E, e = S
t,g,a,r
−−−−→ X remove e from E and add e′ = S′ t,g,a,r

−−−−→ X and

e′′ = S′′ t,g,a,r
−−−−→ X to E;

• ∀e ∈ E, e = X
t,g,a,r
−−−−→ S replace e with e = X

t,g,a,r
−−−−→ S′ if x ∈ r;

• ∀e ∈ E, e = X
t,g,a,r
−−−−→ S replace e with e = X

t,g,a,r
−−−−→ S′′ if ¬(x ∈ r);

Second, for a free state with signal enabled out transitions that contain guards

(clock constraints involving the clock variable defining the state’s duration) or input

transitions triggered by its own clock variable, the constants appearing in the clock

constrains and input transitions define several disjoint intervals into which the state

should be split as seen in Figure 3.7. Thus, for a free state S with corresponding clock

variable x and increasingly ordered set of constants appearing in transitions’ guards

C = {c1, c2, ..., cn} we create n states S1, S2, ...Sn with corresponding clock intervals

t,g,a,r

t,g,a,r

S
x = c1 x = c2S2S1 Sn
t,g&

(x
∈

[0, c
1)),a,r

t,g&
(x
∈

[c
1 , c

2)),a,r

t,g&
(x
∈

[c
n−

1 , c
n)),a,r

t,g&
(x
∈

[0, c
1)),a,r

t,g&
(x
∈

[c
1 , c

2)),a,r

t,g&
(x
∈

[c
n−

1 , c
n)),a,r

Figure 3.7: Software automaton transformation for free states with output transitions

with clock constraints.

40

3_method_and_models/figures/dup2.eps

3.3 Software to Hardware Optimized Mapping

[0, c1], [c1, c2]...[cn−1, cn] respectively and create/distribute/duplicate transitions as fol-

lows:

• ∀Si a state with corresponding clock interval [ci−1, ci], i ∈ {1, 2, ..., n − 1}, add

edge e = Si
x=ci−−−→ Si+1 to E;

• ∀e ∈ E, e = X
t,g,a,r
−−−−→ S create transitions X

t,g&(x∈[ci−1,ci)),a,r
−−−−−−−−−−−−−→ Si for all i ∈

{1, 2, ..., n};

• ∀e ∈ E, e = S
t,g,a,r
−−−−→ X create transitions Si

t,g&(x∈[ci−1,ci)),a,r
−−−−−−−−−−−−−→ X for all i ∈

{1, 2, ..., n} ;

We need to make some remarks regarding this transformation. If an input transition

e ∈ E, e = X
t,g,a,r
−−−−→ S contains guards formed with x, according to restrictions (i) and

(iv), X has to be a fixed state. If the triggering condition of the transition t has the

form t = (x == cst), then the constant cst should be taken into account among the

constants used for splitting the state S.

If in an input transitions e ∈ E, e = X
t,g,a,r
−−−−→ S, X is a free state, by restriction

(ii), it is necessary that x ∈ r, i.e. this transition must reset the clock variable x. Thus

x will have the value 0 and only the edge X
t,g&(x∈[0,c1)),a,r
−−−−−−−−−−−→ S1 will have a valid guard.

The rest of edges of the form X
t,g&(x∈[ci−1,ci)),a,r
−−−−−−−−−−−−−→ Si with i ∈ {2, ..n} will be discarded.

If in an input transition e ∈ E, e = X
t,g,a,r
−−−−→ S, X is a fixed state, then only the

added transitions X
t,g&(x∈[ci,ci+1)),a,r
−−−−−−−−−−−−−→ S1 for which g&(x ∈ [ci, ci+1)) is a valid guard

will be kept. The validity of the guard depends on two aspects. If the initial guard g

contains x (allowed since X is fixed), the validity of the guard depends on the result

of the evaluation g&(x ∈ [ci, ci+1)). The guard will be kept or discarded accordingly.

If the initial guard g does not contain x, then the transition is kept and its guard

g&(x ∈ [ci, ci+1)) will be tested at run-time.

Similarly, for added output transitions Si
t,g&(x∈[ci−1,ci)),a,r
−−−−−−−−−−−−−→ X, only those with

valid guards g&(x ∈ [ci−1, ci)) will be kept. For example for the state S3 with the clock

x in the corresponding interval [c2, c3) if the guard g is x ≥ c4 then g&(x ∈ [c2, c3))

will not be a valid guard and the transition can be discarded.

41

3. HARDWARE SOFTWARE INTERFACE: CROSS LAYER MAPPING
OPTIMIZATION

3.3.2 Problem Statement and Complexity Analysis

The transformations described in section 3.3.1 have as a result a transformed software

automaton composed of three types of free states:

• states of fixed duration

• states of an unknown duration ranging from 0 to an upper bound, with the exact

duration known at run-time;

• states with unknown unbounded duration;

Each such free state might have other constraints besides its duration due to the

signal enabled out transitions. These transitions might restrict even further the physical

states and paths onto which the software state could be mapped.

The general problem we wish to solve is the mapping of a free state of a software

automaton onto a path in the physical device automaton such that transitions out of

the state remain realizable and the energy consumed is minimized.

Consider a software automaton A with a free state Sf as seen in figure 3.8. Consider

Sf is having only 1 input transition originating in a fixed state S and only 1 output

transition towards a fixed state T . Consider Sphys and Tphys to be the physical states

corresponding to the fixed software states S and T respectively. Consider the state

Sf has a fixed duration L. We are fixing ourselves as a goal to map this free state Sf

onto a path in the physical device starting from the physical state corresponding to

S and ending in the physical state corresponding to T , having time duration L and

minimizing the energy consumed.

Note that this problem - mapping a fixed duration free state lacking signal enabled

output transitions- is a sub-problem of the general problem we wish to solve. In what

follows, we will prove its complexity.

In order to investigate the complexity of the defined problem, we choose to modelize

it by means of a path search problem in a graph whose vertices are annotated by means

of some functions. Let G = {V,E} be the graph. This graph will correspond to the

physical device automaton. Each vertex v ∈ V will correspond to a unique state in the

physical device, while each oriented edge e ∈ E will correspond to a transition in the

physical device. Every vertex v ∈ V will have a unique type - either transitional or

non− transitional, according to the corresponding node in the physical device. Also,

42

3.3 Software to Hardware Optimized Mapping

we consider each vertex to be annotated with 2 values: the minimum time duration

and the per unit energy consumption of the corresponding physical state.

From the software automaton in figure 3.8, we retain only the information of start

state S, destination state T and duration L of the free state Sf . We therefore search

for a general path (passing several times through the same node or through the same

oriented edge is allowed) in the graph we just defined from s to t, where s is the

vertex in G corresponding to Sphy and t is the vertex G corresponding to Tphy. We

require that this path should have duration exactly L and that its corresponding energy

consumption should be minimal.

�������� 	A��B���C � DEF����� 	A��B���C

�� ��

�� �C

�

��

�

����� �����

��

�B

Figure 3.8: Software Automaton A with Free State Sf to be mapped onto hardware

automaton.

With this introduction we now formally define the problem of Minimum Con-

sumption Free State Mapping - MCFSM :

Given:

• a graph G = {V,E}

• a function type : V → {trans, nontrans} assigning types to states;

43

3_method_and_models/figures/np_draw.eps

3. HARDWARE SOFTWARE INTERFACE: CROSS LAYER MAPPING
OPTIMIZATION

• a function tmin : V → N∗ assigning minimum time durations to states;

• a function cons : V → N∗ assigning costs per unit time to states.

• s, t ∈ V two vertices

• an integer L

we aim at finding:

• a path P = {s, v1, v2, ..., vn, t} from s to t in G

• a duration assignment set T = {ti | i ∈ {1, ..n} ∧ (ti ≥ tmin(vi) if type(vi) =

nontrans)∧(ti = tmin(vi) if type(vi) = trans)}, assigning durations ti to the vertices

vi in the solution path P

such that

• the path energy consumption
∑n

i=1 ti × cons(vi) is minimal

• the path duration satisfies
∑n

i=1 ti = L.

The decision version of the problem is stated as follows:

Instance: A graph G = {V,E}, a type function (∀v ∈ V, type(v) ∈ {trans, nontrans}),

a minimum time duration function tmin (∀v ∈ V, tmin(v) ∈ N∗) and per unit time energy

consumption function cons (∀v ∈ V, cons(v) ∈ N∗), two vertices s, t ∈ V and two

integers L and W .

Question: Is there a path P = {s, v1, v2, ..., vn, t} in G from s to t and a duration

assignment set T = {ti | i ∈ {1, ..n}∧(ti ≥ tmin(vi) if type(vi) = nontrans)∧(ti = tmin(vi)

if type(vi) = trans)} such that
∑n

i=1 ti = L and
∑n

i=1 ti × cons(vi) ≤W ?

Theorem 1 The problem of Minimum Consumption Free State Mapping (MCFSM) is

NP complete.

It is easy to see that MCFSM ∈ NP , since a nondeterministic algorithm needs

only to guess a path and associated timing set and check in polynomial time if the path

duration and the path consumption satisfy the required conditions.

The proof is achieved by transforming the weighted version of the Change Making

Problem (CMP) into MCFSM.

Given a finite set of coin denominations along with an unlimited supply of coins

in each denomination, CMP is the problem of paying a sum C with the fewest coins

possible. The decision version of the problem is as follows:

44

3.3 Software to Hardware Optimized Mapping

Instance: There are given : n coin types, vali is the value of coin type i, i ∈ {1, 2, ..n},

2 constants M,C ∈ N∗.

Question: Is there a set X = {x1, x2, ...xn} , xi ∈ N such that
∑n

i=1 vali × xi =

C and
∑n

i=1 xi ≤M?

In this definition, C is the sum to be payed, vali and are the coin denominations.

CMP was proven to be NP hard[31].

The weighted version of the change making problem (CMPW) associates weight to

coin denominations and it requires the payment of a sum C with the smallest cumulated

weight possible. The decision version of the problem is as follows:

Instance: There are given : n coin types, vali is the value of coin type i, wi is the

weight of coin type i, i ∈ {1, 2, ..n}, two constants M,C ∈ N∗.

Question: Is there a set X = {x1, x2, ...xn} , xi ∈ N such that
∑n

i=1 vali × xi =

C and
∑n

i=1 xi × wi ≤M?

Note that every instance of the classical CMP can be viewed as an instance of

CMPW, where the weight of each type of coin is constant and equal to 1. CMP is a

sub-problem of CMPW and therefore CMPW is also NP-hard.

In what follows, we will transform an instance of CMPW into an instance of

MCFSM.

In a first step, we create a bidirectional clique G = {V,E} where V = {v1, v2, ...vn}, E =

V × V = {(vi, vj) | i, j ∈ {1, ..n}, i 6= j}, having a vertex corresponding to each coin

type and an edge for each ordered pair (vi, vj).

For each i ∈ {1, ..n} such that vali > 1, split vi in two nodes vi,1, vi,2 and transform

the edges involving vi as illustrated in figure 3.9. For all in-edges, e = (u, vi), modify

it as e = (u, vi,1). For all out-edges, e = (vi, u), modify it as e = (vi,2, u). Add edges

(vi,1, vi,2) and (vi,2, vi,1) to E and set:






















type(vi,1) = type(vi,2) = trans

tmin(vi,1) = 1

tmin(vi,2) = vali − 1

cons(vi,1) = cons(vi,2) = wi

vali
∈ Q

For each i ∈ {1, ..n} such that vali = 1, we set:

45

3. HARDWARE SOFTWARE INTERFACE: CROSS LAYER MAPPING
OPTIMIZATION

vi−1

vi−1

vi,1

vi,2

vi

vi+1 vi+1

Figure 3.9: Transformation of nodes vi having vali > 1











type(vi) = nontrans

tmin(vi) = 1

cons(vi) = wi

We add two new vertices s and t to V , and edges e = (s, vi,1), e = (vi,2, t), e = (s, vi),

e = (vi, t) to E and define:











type(s) = type(t) = nontrans

tmin(s) = tmin(t) = 1

cons(s) = cons(t) = M + 1

We set L = C and W = M .

We have thus defined an instance of MCFSM that contains 2 + 2 ∗ j + i nodes,

where i is the number of coins of denomination 1, j = n − i is the number of coins

of denomination different from 1 and the 2 extra nodes correspond to the source and

target nodes. MCFSM contains a number of edges equal to 2 ∗ n + n× (n− 1) + 2 ∗ j

with the explanation that n×(n−1) are the directed edges in the initial clique, 2∗j are

the extra added edges in a dipole vi,1, vi,2, while the 2∗n extra edges correspond to the

links from the source s to every node of the form vi or vi,1 and from every node of the

form vi or vi,2 to the target t. Therefore we have operated a polynomial transformation

of CMPW into MCFSM.

We must now prove that MCFSM has a solution iff CMPW has a solution.

We discuss first the case ⇒.

Let P = {s, u1, u2, ..., um, t} a path in G from s to t and duration assignment

set T = {ti | i ∈ {1, ..m} ∧ (ti ≥ tmin(ui) if type(ui) = nontrans) ∧ (ti = tmin(ui) if

46

3_method_and_models/figures/np.eps

3.3 Software to Hardware Optimized Mapping

type(ui) = trans)} s.t.
∑m

i=1 ti = L and
∑m

i=1 ti × cons(ui) ≤ W be a solution to

MCFSM.

From the definition of G, the graph in MCFSM, if a node vi,1 appears in a path

from s to t, then the node vi,2 also appears in the path (because the node vi,1 has only

one output transition towards the nodes vi,2). Similarly, if the node vi,2 appears in a

path from s to t, then the node vi,1 also appears in the path (because the node vi,2 has

only one input transition coming from the node vi,1). Therefore if vi,2 appears in the

path, vi,1 appears also and for the same number of times, corresponding to the number

of times the loop (vi,1,vi,2) was traversed. Since vi,1 and vi,2 are transitional nodes,

their corresponding duration in the set T will be their corresponding tmin value. We

denote nvi
the number of appearances of the tuple (vi,1, vi,2) in the path P .

For the nontransitional nodes vi appearing in the path P , we define nvi
=

∑m
j=1,uj=vi

tj-

the total time in the path P that is spent in the nontransitional node vi.

We define the solution for CMPW:










X = {xi | i ∈ {1, ..n}xi = nvi
}

C = L

W = M

From the definition of MCFSM, we see that s and t cannot be part of the solution,

having consumption M+1.

We note that C = L =
∑m

i=1 ti =
∑m

i=1,type(ui)=trans ti +
∑m

i=1,type(ui)=nontrans ti.

The nodes of type vj,1 and vj,2 are the only transitional nodes that appear in the

solution. As stated before, if a node vj,1 appears in the solution to MCFSM, the node

vj,2 appears and for the same number of times nvj
. If the nodes do not appear in the

solution, then nvj
= 0. Also, the duration assignment for a transitional node is its tmin

value. Therefore

m
∑

i=1,type(ui)=trans

ti =

|V |
∑

j=1,vj,1∈V

nvj
× tmin(vj,1) +

|V |
∑

j=1,vj,2∈V

nvj
× tmin(vj,2)

=

|V |
∑

j=1,vj,1∈V

nvj
× 1 +

|V |
∑

j=1,vj,2∈V

nvj
× (valj − 1)

=

|V |
∑

j=1,vj,1,vj,2∈V

xj × valj

For the nontransitional nodes,

47

3. HARDWARE SOFTWARE INTERFACE: CROSS LAYER MAPPING
OPTIMIZATION

m
∑

i=1,type(ui)=nontrans

ti =

|V |
∑

j=1,type(vj)=nontrans

nvj
× 1

=

|V |
∑

j=1,type(vj)=nontrans

nvj
× valj

=

|V |
∑

j=1,type(vj)=nontrans

xj × valj

Therefore C = L =
∑n

i=1 xi × vali.

Similarly, W = M ≥
∑m

i=1 ti × cons(ui) =
∑m

i=1,type(ui)=trans ti × cons(ui) +
∑m

i=1,type(ui)=nontrans ti × cons(ui).

For the transitional nodes,

m
∑

i=1,type(ui)=trans

ti × cons(ui) =

|V |
∑

j=1,vj,1∈V

nvj
× 1× cons(vj,1)

+

|V |
∑

j=1,vj,2∈V

nvj
× (valj − 1)× cons(vj,2)

=

|V |
∑

j=1,vj,1∈V

nvj
× 1× wj/valj

+

|V |
∑

j=1,vj,2∈V

nvj
× (valj − 1)× wj/valj

=

|V |
∑

j=1,vj,1,vj,2∈V

nvj
× (1 + valj − 1)× wj/valj

=

|V |
∑

j=1,vj,1,vj,2∈V

xj × wj

For the nontransitional nodes,

48

3.3 Software to Hardware Optimized Mapping

m
∑

i=1,type(ui)=nontrans

ti × cons(ui) =

|V |
∑

j=1,type(vj)=nontrans

nvj
× 1× cons(vj)

=

|V |
∑

j=1,type(vj)=nontrans

nvj
× wj

=

|V |
∑

j=1,type(vj)=nontrans

xj × wj

Therefore , W = M ≥
∑m

i=1 ti × cons(ui) =
∑|V |

j=1 xj × wj

Let us now discuss the case ⇐. Let X = {xi | i ∈ {1, ...n}} be a solution to CMPW.

Consider ∪ to be a concatenation operator on paths.

In the case of nontransitional nodes(vali = 1), we define the path Pi as:

Pi =

{

{vi} xi > 0
{} otherwise

For transitional nodes (vali > 1) we define Pi as:

Pi = ∪xi

j=1P
′
j , where P ′

j = {vj,1, vj,2}

We define P = ∪n
i=1Pi. Now that we defined the path P we still have to define the

duration assignment set T of the solution. ∀uj ∈ P, j ∈ {1, 2, ..|P |} we define:

tj =

{

xi s.t. uj = vi ∈ V , type(uj) = nontrans,
tmin(vi) s.t. uj = vi ∈ V , type(uj) = trans

Note that the j index denotes the position of a vertex in the solution path P . The

explanation is that if uj is a vertex in the path on position j and it corresponds to the

vertex vi in G of type nontransitional, this vertex appears at most once in the path (by

construction of the path, if xi > 0) and should be assigned as duration in the duration

set the xi value in the solution to CMPW. If on the contrary, vi is a transitional node,

then it might appear several times in the path and should have as duration its tmin

value.

With these notations, the path P and the duration assignment set T = {t1, t2, ...t|P |}

represent a solution to MCFSM since
{

C = L =
∑n

i=1 xi × vali =
∑|P |

i=1 ti

W = M ≥
∑n

i=1 xi × wi =
∑|P |

i=1 ti × cons(vi)

49

3. HARDWARE SOFTWARE INTERFACE: CROSS LAYER MAPPING
OPTIMIZATION

3.3.3 Mapping Heuristic

We have proved in subsection 3.3.2 that the problem of mapping a free software state

of fixed duration onto a path in the physical device between 2 given states while min-

imizing the energy consumption is NP complete. We therefore propose a heuristic

for mapping such free states, guaranteeing that all the transitions in the software au-

tomaton remain realizable, all while trying to consume the least possible energy. We

proceed by investigating the temporal relations in the software automaton and deter-

mining temporal distances between free states and the fixed states accessible. Next, we

propose to investigate certain paths in the hardware device and we give the function

computing their energy consumption. We conclude the section by giving the algorithm

allowing the mapping of the free software states onto physical device paths.

Software Automaton Analysis One of our restrictions with respect to the original

model of timed automata was that there should be at most a transition of the form

clockvar = constant out of a free state. As we stated before, the free states to be

mapped can be categorized into 3 types:

• states of fixed duration;

• states of an unknown duration ranging from 0 to an upper bound, with the exact

duration known at run-time;

• states with unknown unbounded duration;

The first type of free state has its duration defined by a timer variable that has

a fixed known value when entering the state. There are 2 possibilities: either it was

reset on every input transition or it had a fixed unique value on its input transitions

i.e. the input transitions were of the form clockvar = constant. The latter type

of transitions appear from the second type of transformation illustrated in section

3.3.1 and figure 3.7. There is a unique exit from this type of free state of the form

clockvar = constant - this was one of the constraints imposed on the model. Apart

form the output transition enabled by the timer clockvar = constant, there can be

other output transitions triggered by signals.

The second type of state has a unique output transition triggered by a timer of the

form clockvar = constant, but none of its input transitions resets the clock variable

50

3.3 Software to Hardware Optimized Mapping

defining its duration. These states are the result of the first transformation in section

3.3.1. We have imposed the constraint (ii) on the software model which states that

the start states of these type of transitions should be fixed. If this particular transition

was taken for entering the state, its duration is known only at run-time and can vary

between 0 and the constant in clockvar = constant. If the clockvar is higher than the

constant, this state transforms into the third type of state.

The third type of state has no output transition of the form clockvar = constant.

All these free states have output transitions triggered by signals. Such a signal can

occur at any time when the software automaton is in the free state and in particular,

the worst case scenario is the exact beginning of the state.

Consider GHW = {VHW, EHW, tmin, cons} to be the graph corresponding

to the hardware automaton and its associated functions. Consider GSW =

{VSW, ESW, duration, type} to be the graph associated to the modified software au-

tomaton. Duration is the function assigning durations to states: fixed, interval or

infinite, according to the 3 types of states identified previously. Consider SSW to be

a free state of the software automaton and SHW to be a fixed state appearing in the

software automaton that is reachable from SSW, i.e. there exists a path in ASW from

SSW to SHW.

In order to determine the temporal distance between SSW and SHW, we must assign

weights equivalent to time durations to the transitions of the software automaton and

we must perform some transformations and state duplications.

We define the signal bottom level of a state SSW of the software automaton with

respect to a state SHW of the hardware automaton BLs(SSW, SHW) as the minimum

length of all the elementary paths in GSW from the state SSW to the state SHW cor-

responding to a fixed state in the software automaton, having as first edge a signal

enabled edge. We define the timer bottom level of a time constrained free state SSW

of the software automaton with respect to a state SHW of the hardware automaton –

BLt(SSW, SHW) – as the minimum length of all the elementary paths from the state

SSW to the state SHW corresponding to a fixed state in the software automaton, having

as first edge a timer enabled edge (clockvar = value). The computation of these metrics

implies some duplications of the states of the software automaton and assignment of

weights to the edges.

51

3. HARDWARE SOFTWARE INTERFACE: CROSS LAYER MAPPING
OPTIMIZATION

For time constrained states with input transitions without clock reset, all output

edges are assigned 0 weight. Similarly for time unconstrained states, all output edges

in GSW are assigned 0 weight. Time constrained states with input transitions with

clock reset must be duplicated (S ⇒ Ss + St) in order to separate timer enabled output

transitions (used for computing the state’s BLt) and signal enabled output transitions

(used for computing the state’s BLs), while input transitions remain common to the 2

new states. Timer enabled output transitions (corresponding to state St) are assigned

weight equal to the duration of the state and all signal enabled output transitions

(corresponding to state Ss) are assigned 0 weight.

With these transformations, the computation of BLs and BLt resides in a classical

all-pairs shortest paths in GSW restricted to paths containing only free states as inter-

mediate nodes and taking the minimum value when there exist several instances of the

same physical state as a fixed state of the software automaton.

Physical Automaton Analysis For a path P = {s1, s2, ..., sn} in the physical device

automaton, a measure of the energy E[P] consumed by traversing the states in the path

can be obtained by integrating the current/power consumption Isi
corresponding to

each state si with the time spent in it ti, thus yielding: E[P] =
∑n

i=1 Isi
× ti.

For any path P = {s1, s2, ..., sn} in the physical device automaton, there exists a

minimum transition time tmin(P) (tmin(P) =
∑n

i=1 tmin(si)) and a corresponding min-

imum current consumption Imin(P) (Imin(P) =
∑n

i=1 tmin(si)× Isi
), given by the min-

imum transition times tmin(si) of the states in the path and their respective current

consumption. For a timed path in the radio device automaton, if the transition time

of the path tpath allows extra time with respect to the minimum transition time of the

path tmin, this extra time should be spent in the non-transitional state of the path with

the minimum energy consumption smin. Hence, the measure of the energy consumed

during a timed path is:

E[Ptimed] =

{

Imin + (tpath − tmin)×Ismin
tpath ≥ tmin

∞ otherwise
(3.1)

We define the distance dist(S1, S2) from state S1 to state S2 in the physical device

automaton as the minimum of all the lengths of the elementary paths leading from

S1 to S2 in the weighted device automaton, where each transition/edge is assigned as

weight the minimum duration constraint value of the source state of the edge. The

52

3.3 Software to Hardware Optimized Mapping

computation of the time distances between states in the physical automaton can be

obtained as an all-pairs shortest paths.

Mapping algorithm The computed signal bottom levels of a state SSW with respect

to all fixed states accessible (through paths containing only free states as intermediate

states) define the set of physical states admissible for SSW, i.e., the physical states

from which all paths towards fixed states of the software automaton remain realizable

in the case of the occurrence of the signals enabling the output transitions correspond-

ing to those paths. For a given BLs(SSW, SHW), the set of admissible states with

respect to SHW, is defined by: Admissible(SSW, SHW) = {s ∈ VHW | dist(s, SHW) ≤

BLs(SSW, SHW)}. For a state SSW, its set of admissible states is the intersection of

the admissible states with respect to all fixed states reachable through signal enabled

transitions, SHW ∈ RSig.

Admissible(SSW) =
⋂

SHW∈RSig(SSW)

Admissible(SSW, SHW).

Both timer and signal bottom levels of a state SSW (further simply denoted by BL)

with respect to all fixed states reachable from SHW in GHW , SHW ∈ R(SSW), define the

set of physical states admissible as input states for SSW, i.e., in which physical state can

be the automaton at the beginning of the state: Input Admissible(SSW, SHW) = {s ∈

VHW | dist(s, SHW)− tmin(s) ≤ BL(SSW, SHW)}. And thus we have:

Input Admissible(SSW) =
⋂

SHW∈R(SHW)

Input Admissible(SSW, SHW) (3.2)

The transition into a state s ∈ Input Admissible(SSW) might have to be performed

before the beginning of SSW in order for all the transitions out of it to remain realiz-

able. The offset of a state s ∈ Input Admissible(SSW) with respect to SSW is given by:

offset(s, SSW) = max{0,maxSHW∈R(SSW){dist(s, SHW)− BL(SSW, SHW)}}

For a free state SSW of fixed duration, the mapping considers for a given ini-

tial physical state S′ from Input Admissible(SSW) with remaining time trem until the

completion of its minimum time duration, the realizable path of minimum energy

consumption containing only states from Admissible(SSW) and ending in a state s

from {s ∈ Input Admissible(S) | offset(s, S) = 0}
⋃

{s ∈ Input Admissible(S)
∧

s ∈

Admissible(SSW) | offset(s, S) 6= 0} and of path duration SSWduration − trem − offset(s, S),

53

3. HARDWARE SOFTWARE INTERFACE: CROSS LAYER MAPPING
OPTIMIZATION

where S is the successor of SSW on the timer enabled transition. Since trem

is variable in the interval [0..tmin(S
′)], the minimal energy consumption path de-

pends on its current value at the moment when the transition towards SSW was

taken. Equation 3.1 defines the energy consumption function for such a path, with

tpath ∈ [SSWduration − tmin(S
′)− offset(s, S) . . . SSWduration − offset(s, S)]. The intersec-

tion of the graphs of the potential paths divides the interval [0 . . .tmin(S
′)] into several

disjoint intervals, each with its corresponding optimal path.

The free states SSW with variable duration have input transitions that do not

reset their corresponding clock variable and all these transitions have as start state

fixed states. For these states, the mapping searches for paths between the fixed

input states containing only states from Admissible(SSW) and ending in a state s

from {s ∈ Input Admissible(S) | offset(s, S) = 0}
⋃

{s ∈ Input Admissible(S)
∧

s ∈

Admissible(SSW) | offset(s, S) 6= 0} and of path duration SSWduration − offset(s, S), where

S is the succesor of SSW on the timer enabled transition. Equation 3.1 defines the en-

ergy consumption function for such a path, with tpath ∈ [0 . . . SSWmax − offset(s, S)],

where SSWmax is the maximum potential duration of SSW. The intersection of the

graphs of the potential paths divides the interval [0 . . .SSWmax] into several disjoint

intervals, each with its corresponding optimal path.

For a state SSW with unbounded duration, the algorithm searches for paths from all

s ∈ Input Admissible(SSW) containing only states from Admissibles(SSW) towards the

lowest energy consuming state from Admissibles(SSW).

The mapping is outlined in algorithm 1.

By restricting our search to paths with distinct edges, we are allowing the possibility

for a path to pass several times through the same node, hence allowing the path to

contain cycles, but we omit the possibility of passing several times through a cycle.

Even so, the mapping phase implies an exhaustive search of all existing paths in the

physical finite state machine between 2 given states, pruning the paths with minimum

duration exceeding the duration of the software state.

Scalability/Complexity: The worst case scenario for such a search consists of a finite

state machine whose graph is a clique. In such a graph, a path between a source node

and a destination node containing a cycle can always be transformed in a path without

cycles by replacing the edge entering the cycle with an edge to the first node in the

cycle. Considering a clique of size n, we denote by Ni the number of paths between

54

3.4 Code Skeleton Generation

the source and the destination containing i edges. Ni can be thought as the way of

choosing i nodes among the n − 2 remaining since the source and the destination of

the path have been fixed. Thus, Ni = Ci
n−2 and the total number of possible paths

is
∑n−2

i=0 Ci
n−2 = 2n−2, thus a worst case exponential computation time. Even so, we

argue that the automata corresponding to physical devices usually have a small number

of states and a small number of edges. Moreover, we improve the search by using upper

and lower estimated bounds of the path cost which allows to discard large subsets of

fruitless candidates. Also, given that low-power consumption states have a consumption

that is usually several orders of magnitude lower than that of active states, we might

improve our search by specifically targeting these states.

The complexity of the mapping is bounded by m×n2×2n−2, where m is the number

of free states in the transformed software automaton and n is the number of states in

the physical finite state machine. The explanation is that for every free state, the

physical states admissible in input are paired with all the physical states admissible as

input for its successor software state and the optimal path between these 2 is searched,

according to the duration of the software state. The upper bound on the complexity

is exponential in the number of states n in the physical automaton. Hopefully, as

previously stated, the physical state machine has a small number of states and edges.

The exponential particular clique worst case is thus very unlikely.

3.4 Code Skeleton Generation

WSN applications developed without an underlying operating system support represent

a substantial part of the applications deployed today. There exist however operating

systems developed with the purpose of responding to the needs of the resource con-

strained sensor networks and their applications. From the complexity point of view they

are closer to OSs dedicated to embedded systems than to general purpose OSs. Just like

the former, they must respond to a particular application’s needs rather than to offer

extensive functionalities for all possible applications. Also, some general functionalities

such as virtual memory are either unnecessary or too expensive to implement.

There are two main categories of such operating systems with respect to the pro-

gramming model used: the event-driven OSs (Tiny OS) and the multi-threaded OSs

(Contiki, FreeRTOS).

55

3. HARDWARE SOFTWARE INTERFACE: CROSS LAYER MAPPING
OPTIMIZATION

Algorithm 1: Software Automaton to Physical Device Mapping Algorithm

input : {GHW = {VHW, EHW}, tmin, cons} {GSW = {VSW, ESW}, duration, type}

output: Mapping Set M

1 dist← compute time distances(GHW, tmin);

2 BLs ← compute signal bottom levels(GSW, duration);

3 BLt ← compute timer bottom levels(GSW, duration);

4 IA← compute Input Admissible(GSW, GHW,BLt,BLs, dist);

5 A← compute Admissible(GSW, GHW,BLs, dist);

6 offsets← compute offsets(GSW, GHW,BLt,BLs, dist);

7 foreach SSW ∈ VSW do

8 if type(SSW) == free then

9 S ← timer successor(SSW);

10 foreach s ∈ Input Admissible(SSW) do

11 p← compute min paths(s, S);

12 M ←M ∪ {p};

In what follows, we will illustrate the characteristics of these two types of OSs

through examples. Then we present our methodology of deriving code skeletons for

the two types of WSN OSs, starting from the paths identified through our mapping

heuristic.

3.4.1 Multi-threaded OS Code Skeleton Generation

3.4.1.1 Multi-threaded OSs for WSNs

The multi-threaded programming model for WSNs is close to the classical programming

model, where several threads reside in the same memory space and context switches

occur for changing the current active thread.

Mantis OS (MultimodAL NeTworks of In-situ Sensors) [7] is a multi-threaded op-

erating system designed for WSNs aiming for a low memory footprint. Its design re-

sembles classical UNIX-style schedulers and it implements a subset of POSIX threads

[11].

Mantis OS consists of a lightweight kernel (less than 500bytes) with integrated

scheduler, a low level communication stack for serial or radio communication interfaces

56

3.4 Code Skeleton Generation

and a device abstraction layer that provides uniform access to devices of all sorts. On

top of these, a platform-independent System API is layered.

Its scheduler implements the preemptive time-sliced priority based scheduling with

round-robin semantics within a priority level. The CPU time is divided into time

slices and every time slice the scheduler is run to choose which process among the

ones with highest priority should be granted the CPU for the next time slice. The 5

priority levels in descending priority order are: kernel, sleep, high, normal and idle. The

thread synchronization is achieved through binary (mutex) and counting semaphores.

The kernel creates at startup a low priority idle thread which runs when all the other

threads are blocked and which is used to implement power management by deciding

which power saving mode has to be activated.

The RAM space has 2 sections: the one for statically allocated structures and the

rest of the RAM, managed as a heap. At thread creation, stack space is allocated for

the thread out of the heap and this space is recovered when the thread exits. Dynamic

allocation is possible but not encouraged.

MantisOS statically allocates a thread table with a fixed number of thread entries

defined at compile time and defaulting to 12. Each entry contains a stack pointer, a

pointer to the thread’s starting function, the thread’s priority level and a next thread

pointer. A thread’s context (including saved registers) is saved on its stack when the

thread blocks. The kernel also maintains ready-list head and tail pointers for each

priority level.

Networking communication is typically realized as a layered network stack. In

Mantis, the different layers of the stack can be implemented as one or more user-level

threads with the remark that this thread implementation regards layer 3 and above, as

the MAC layer is performed by the communication layer, located in a separate layer of

the OS, below the user-level networking stack. Aiming at minimizing memory buffer

allocation through layers, the data body for a packet is common through all layers

within a thread. This way, data copies are avoided in a ”zero copy” approach.

The communication (”comm”) layer provides a uniform unified interface for com-

munications device drivers (serial, radio). It manages packet buffering and synchroniza-

tion functions. The application threads interact with communication devices through

4 function calls: com send,com recv,com mode and com ioctl. The first 3 deal with

sending, receiving and changing power modes of a device respectively. The fourth has

57

3. HARDWARE SOFTWARE INTERFACE: CROSS LAYER MAPPING
OPTIMIZATION

a particular significance according to the device. The comm layer manages a queue of

buffers (comBufs) with the goal of enabling the ”zero copy” approach. The sending

of packets can be synchronous while the receiving is always asynchronous. The comm

layer is fully interrupt driven, thus achieving zero-polling.

Another example of multi-threaded kernel is FreeRTOS [37]. It is a mini real time

kernel, not a fully fledged operating system. Such a kernel is responsible for managing

system resources (processor, memory, I/O peripherals). The reduced functionalities

offered by a kernel make it more suitable for the constrained WSN nodes than an

operating system because extensive operating system support (file systems, virtual

memory) is not only not required but even cumbersome.

Just like Mantis OS, FreeRTOS is mostly written in standard C. It features a round-

robin priority based scheduler. The scheduler can be configured as either preemptive

or collaborative. The preemptive scheduler can preempt a running task to give CPU

resources to another task that is ready to run. This feature is used for CPU time sharing

between ready tasks with the same priority. It is also used in case of an interrupt which

may wake up a task waiting for a signal or for some data. The woken task should have

a higher priority than the current running task to be allocated CPU time directly.

In cooperative scheduling, context switches only occur if a task blocks or voluntarily

yields.

FreeRTOS offers message queues for inter-task communication and binary semaphores

for synchronization. The queue mechanism can be used to exchange data either be-

tween tasks or between tasks and Interrupt Service Routines(ISR). Tasks can block on

a queue when reading to wait for data to become available; similarly it can block when

writing if the queue is full and it has to wait for space to be freed on the queue. The

access between blocked tasks on the same queue follows priority rules based on tasks

individual priorities.

FreeRTOS offers 3 memory management schemes. The simplest one allocates a huge

table in the memory called the heap. A memory allocation system call increments the

upkeep pointer by the size of the zone requested, while the memory freeing behavior

is not implemented in order to avoid the overhead of a garbage collection algorithm.

A second scheme uses the best-fit algorithm to re-allocate previously freed memory

blocks. The third scheme uses the standard malloc() and free() functions. The latter

2 schemes are not deterministic and can affect the real-time behavior of the system.

58

3.4 Code Skeleton Generation

3.4.1.2 Multi-threaded OS Code Skeleton Generation Method

In what follows, we will consider a multi-threaded OS that offers the possibility of using

message queues for inter-process and inter-thread communication. In this context, the

events that trigger transitions in the software automaton (hardware or software events)

should place corresponding messages on the queue associated to the software protocol.

Thus, Interrupt Service Routines (ISRs) corresponding to hardware events as well as

the other software applications initiating requests to the software protocol should place

a message on its message queue. These messages are further retrieved and treated

appropriately by the software protocol handler.

With these hypotheses in mind, the mapping of the protocol onto a device is realized

in its protocol handler and can be achieved through several nested switch statements

enclosed in an infinite loop, as seen in algorithm 2.

The outer level switch statement branches through all the software protocol states

SWi ∈ VSW, i ∈ {1, ..., |VSW |} (lines 3 – 48). The case branch corresponding to a

fixed state contains only a call to wait event() on the message queue, followed by the

evaluation of the type of event retrieved by this call as seen in lines 37 – 46.

Thus, for a fixed state SWi, that has m out-transitions of the form

SWi

triggerj/guardj/actionsj

−−−−−−−−−−−−−−→ next(SWi, j), where the triggerj is either a signal or a timer

event, guardj is the guard of the transition and actionsj stands for the actions (clock

resets, variables modifications) to be performed upon this transition, the corresponding

code skeleton branches through the m possible triggers of a software transition, tests

the corresponding guard, makes the software state change, performs the actions and

finally breaks out of the switch statements only to re-enter the appropriate branch of

the outer switch, corresponding to the new software state, as seen in lines 41–45.

For each free state SWi, there exist several physical states into which the device

automaton might be found at the moment of entering the free state, states that have

previously been identified in the Input Admissible(SWi) set. The second level of switch

statements branches through the candidates states in the Input Admissible(SWi) set.

For every candidate physical start state SSk ∈ Input admissible(SWi) there

exists a path Pk = {vk,1, vk,2, ...vk,nk
} and associated duration assignment set

Tk = {tk,1, tk,2, ...tk,nk
} to which there corresponds a switch (the third level) state-

ment in the pseudocode, branching through states vk,1 to vk,nk−1 and the start state

59

3. HARDWARE SOFTWARE INTERFACE: CROSS LAYER MAPPING
OPTIMIZATION

Algorithm 2: Generated Skeleton for Multi-threaded OS

1 initialization;
2 while true do
3 switch mac state do
4 ...;
5 case SWi

6 if free(SWi) then /* free state */
7 switch radio start state do
8 ...;
9 case SSk

10 switch radio state do
11 case SSk
12 radio state←vk,1;
13 start timer(phys timer, tk,1) e = wait event();
14 break;
15 ...;
16 case vk,p

17 radio state←vk,p+1;
18 start timer(phys timer,tk,p+1) e = wait event();
19 break;
20 ...;
21 case vk,nk−1
22 radio state←vk,nk

;
23 start timer(phys timer,tk,nk

) e = wait event();
24 break;

25 switch e do
26 ...;
27 case Sigl
28 if guardl then
29 mac state← next(SW

i
, Sigl);

30 radio start state← radio state;
31 actionsl;
32 break;

33 ...;
34 case phys timer
35 break;

36 break;

37 else /* fixed state */
38 e = wait event();
39 switch e do
40 ...;
41 case triggerj
42 if guardj then
43 mac state← next(SWi, j);
44 actionsj ;

45 break;
46 ...;

47 break;
48 ...;

60

3.4 Code Skeleton Generation

for this path, SSk. Each branch vk,p of the statement (p ∈ 1, .., nk − 1) starts by making

a physical state transition to state vk,p+1 then activates the phys timer timer for the

duration tk,p+1 and then yields through a call to wait event(), waiting for the posting

of an event on the message queue, as seen in lines 16-19.

The events that could cause a potential software or hardware state change are dealt

with in a following switch statement in lines 25 to 35. Since SWi is a free state, the

only triggers that could cause a software state change besides the timer event defining

its duration, are signals. The only event that could cause a hardware state change is a

timer event from phys timer.

Thus, for every out transitions of the form SWi
Sigl/guardl/actionsl
−−−−−−−−−−−−→ next(SWi,Sigl),

where the Sigl is a signal, guardl is the guard of the transition and actionsl stands for the

actions (clock resets, variables modifications) to be performed upon this transition, the

corresponding code skeleton tests the corresponding guard, makes the software state

change, performs the actions and finally breaks out of the switch statement only to

re-enter the appropriate branch of the outer switch, corresponding to the new software

state, as seen in lines 27–32.

If the event posted on the message queue corresponds to a timer event from phys timer,

the only action to perform is to break out the switch statements and re-enter the cor-

responding cases in order to perform the hardware state change, as seen in lines 34-35.

3.4.2 Event-driven OS Code Skeleton Generation

3.4.2.1 Event-driven OSs for WSNs

Three of the main drawbacks of a classical multi-threaded operating system with re-

spect to memory constrained WSNs nodes are: the memory requirements for stack space

(since the exact needs are not known in advance, the stack is usually over-provisioned)

of multiple threads, the computational overhead of managing several threads or pro-

cesses and finally the need for locking mechanism to prevent concurrent threads from

modifying shared resources. The event-driven run-to-completion single-threaded exe-

cution paradigm attempts to tackle these drawbacks.

The basic principle behind the event-driven programming model is that the flow of

the program is determined by events initiated by hardware interrupts. Once such an

event occurs, the corresponding handler function is called and runs to completion. Thus

processes in this paradigm are represented by event handlers. New events can be put in

61

3. HARDWARE SOFTWARE INTERFACE: CROSS LAYER MAPPING
OPTIMIZATION

the event list while a function is running. Following the run-to-completion semantics,

an event handler cannot be blocked or interrupted, therefore all processes can share

the same stack. This is a significant improvement in memory usage and computational

overhead when compared to multi-threaded OSs. Also, locking mechanisms aren’t

usually needed since two handlers never run concurrently.

A common particularity of these OSs is the non-blocking operations implemented

using split-phase form. Under this approach, a command to start an operation returns

immediately, while the completion of the operation is signaled through a callback.

For example, to acquire a sensor reading with an analog-to-digital converter (ADC),

software writes to a few configuration registers to start a sample. When the ADC

sample completes, the hardware issues an interrupt, and the software reads the value

out of a data register.

The main loop of such an application consists of an infinite loop that runs the

handler task corresponding to the first event in the scheduler list as seen in Algo 3.

Algorithm 3: Event-driven application main loop

1 initialization;
2 while true do
3 e = get event();
4 e();

TinyOS [26] is among the first operating systems specifically targeted for the WSNs

limitations and their applications. It is a highly popular OS in the WSNs community

and it offers a rich library of networking and application components available for

re-use.

TinyOS implements the event-driven paradigm where every execution is triggered

by some external event representing hardware interrupts coming from the radio, timers

or sensor interfaces.

TinyOS defines a simple component model. In order to do so, it uses a special

description language NesC [24] - an extension of the C language. The NesC compiler

consists of a preprocessor translating a NesC application into a C module, where only

the necessary parts of the operating system are compiled with the application and

unused parts are omitted.

62

3.4 Code Skeleton Generation

In some ways, nesC components are similar to objects. For example, they en-

capsulate state and couple state with functionality. Each TinyOS component has a

specification, a code block that declares the functions it provides (implements) and

the functions that it uses (calls). In order to simplify the specification of components,

nesC provides the concept of interfaces which are collections of related functions. An

interface declares a set of functions called commands that the interface provider must

implement and another set of functions called events that the interface user must

implement. For example, a Send interface meant to send packets declares a send com-

mand and a sendDone event. If a component ”provides” the Send interface, it must

define the send function and it can signal a ”sendDone” event. If a component ”uses”

the Send interface, it must define the sendDone event and can call the send command.

Connecting components that are interface providers to components that are interface

users together is called wiring. Therefore, a TinyOS application consists of a scheduler

and a graph of components ”wired” together.

There are two sources of concurrency in TinyOS: tasks and events. Tasks are

a deferred computation mechanism running to completion without preempting each

other. A component can post a task through an operation that immediately returns,

while the task will be dispatched later by the scheduler in first come first served (FCFS)

order. Events also run to completion, but may preempt the execution of a task or

another event. Events signify that a hardware interrupt has been received or that a

split-phase operation has been concluded. Under the split-phase approach an operation

request is performed by a command while the operation completion is performed by

the execution of an event.

Although the event-driven approach seem to be suitable for the resource constrained

WSN nodes, it is not flawless. First, in a purely event-driven operating system, a

lengthy computation running to completion (for example in the case of cryptographic

operations) completely monopolizes the processor, penalizing the responsiveness to

other events. This would not be the case in a multi-threaded OS. Also, the split-

phase concept makes it hard for a programmer to follow the control flow of its program

and requires skills that make programming prohibitive for non-experts.

Contiki [17] is an hybrid operating system that tries to combine the benefits of both

worlds. The system is based on an event-driven kernel where preemptive multi-tasking

63

3. HARDWARE SOFTWARE INTERFACE: CROSS LAYER MAPPING
OPTIMIZATION

is implemented as an application library that is optionally linked with programs that

explicitly require it.

A running Contiki system consists of the kernel, libraries, a program loader and a

set of processes. A process is defined by an event handler function and optionally a

poll handler function. All processes share the same address space and the interprocess

communication is done by posting events. The kernel’s event scheduler dispatches

events from the system queue to running processes and periodically calls the processes’

polling handlers. Event handlers run to completion once they have been scheduled.

There are two types of events: asynchronous - that behave like a deferred procedure

call, being enqueued by the kernel and dispatched later- and synchronous- that are

immediately scheduled by the kernel and the control returns to the posting process

only after the target finished processing it.

The polling mechanism is used by the processes that operate near the hardware to

check for status updates of hardware devices. When a poll is scheduled, all processes

that implement a poll handler are called in priority order.

Because of the run-to-completion semantics, an event-driven programming model

does not support a blocking wait abstraction. Thus when an operation cannot complete

immediately, it must be split across multiple invocations of the event handler in a

state-machine style. To tackle this problem, Contiki provides protothreads [18]. It

is a programming abstraction that provides a conditional blocking wait operation on

top of an event-driven system. Protothreads are very lightweight when compared to

threads in the sense that all protothreads run on the same stack and context switching

is done by means of stack rewinding. Unlike a thread, a protothread runs only within

a single C function and cannot span over other functions. It can call functions, but

cannot block inside of a called function. Another limitation when compared to threads

is that function local variables allocated on the stack must be explicitly saved before

a blocking wait since otherwise they will be destroyed by the stack rewind. When a

blocking wait is reached, the state of the function (CPU registers and program counter)

excluding the stack are captured. When the waiting is resumed, the function is reset

to what it was before the waiting call was encountered.

64

3.4 Code Skeleton Generation

3.4.2.2 Event-driven OS Code Skeleton Generation Method

In this context, the code skeleton corresponding to this type of OS consists in a main

software protocol handler function having as argument the event which triggered its

execution. Every event triggering transitions in the software automaton (signal or timer

event) posts in the event queue a call to the protocol handler function corresponding

to that event.

With the split-phase approach, the invocation of an operation and its completion

are 2 separate phases of execution. Thus, every software automaton state SWi is

duplicated: SWi init and SWi term. The software protocol handler consists of 2 levels

of imbricated switch statements. The outermost switch statement branches through

all the duplicated states of the software automaton SWi init, SWi term, where SWi ∈

VSW, i ∈ {1, ..., |VSW |}.

In the state SWi init, the timers triggering transitions out of it in the software

automaton are set to the corresponding values (algorithm 4 line 4), after which the

change of software state to SWi term is performed.

If SWi is a free state, the current physical state is identified among the poten-

tial candidates previously determined in Input Admissible(SWi) - algorithm 4 lines 6-

15. To each candidate state SSk ∈ Input Admissible(SWi) there correspond a path

Pk = {vk,1, vk,2, ...vk,nk
} and associated duration assignment set Tk = {tk,1, tk,2, ...tk,nk

}.

Once the physical start state is identified, the corresponding path is initiated by per-

forming the first transition of the path - SSk to vk,1 (lines 9-13). Further transitions

are dealt with in the case branch corresponding to SWi term.

In the state SWi term, the argument of the software handler is tested across the

possible events that could trigger either software state changes (signals or the software

timer) or the physical state change, according to the physical state timer (lines 18-30).

Thus, if the state SWi has m out transitions of the form SWi

triggerj/guardj/actionsj

−−−−−−−−−−−−−−→

next(SWi, j), where the triggerj is either a signal or a timer event, guardj is the guard of

the transition and actionsj stands for the actions (clock resets, variables modifications)

to be performed upon this transition, the corresponding code skeleton branches through

the m possible triggers of a software transition, tests the corresponding guard, makes

the software state change, performs the actions and finally breaks out of the switch

statements (lines 20-24).

65

3. HARDWARE SOFTWARE INTERFACE: CROSS LAYER MAPPING
OPTIMIZATION

In the case of a phys timer event, the transition to the next state in the current path

is performed- lines 26 to 30.

Algorithm 4: Generated Skeleton for Event-driven OS

input : arg
1 switch mac state do
2 ...;
3 case SWi init
4 set timers(SWi timers);
5 mac state←− SWi term;
6 if free(SWi) then /* free state */

7 switch phys state do
8 ...;
9 case SSk

10 phys state←vk,1;
11 start timer(phys timer,tk,1);
12 p← 1;
13 break;
14 ...;

15 break;
16 ...;
17 case SWi term
18 switch arg do
19 ... ;
20 case triggerl
21 if guardl then
22 mac state← SWnext(SWi,trigger

l
) init;

23 actions;
24 Jump to SWnext(SWi,trigger

l
) init case branch by posting an event

25 ...;
26 case phys timer
27 p++;
28 phys state←−vk,p;
29 start timer(phys timer,tk,p);
30 break;

66

4

Experimental Evaluation

In order to assess the benefits of the presented methodology, we investigate the mapping

of a wireless sensor network MAC layer protocol (i.e. B-MAC) onto a physical device

(the CC1100 RF transceiver).

We choose a scenario where n nodes transmit data to one sink as seen in figure

4.1. We consider the nodes to be saturated i.e. having the transmission queue always

nonempty and that the nodes use B-MAC’s Carrier Sense Multiple Access (CSMA) in

order to contend for the channel. We consider that the nodes only transmit packets,

thus the Low Power Listening feature of B-MAC is disabled. Each attempt of packet

transmission starts with an initial backoff followed by successive congestion backoffs in

case of unsuccessful clear channel assessment.

Figure 4.1: Simulation scenario: n saturated nodes send data to 1 sink

This behavior is illustrated on the right side of figure 3.2. After each successful

transmission, the protocol switches to an initial wait state namely the WAIT Initial

Backoff state. After the elapse of the initial backoff time randomly chosen in a fixed

67

4_evaluation/figures/n2sink.eps

4. EXPERIMENTAL EVALUATION

interval, a transition to CCA Sampling state is enabled. The result of the channel

activity check performed in the CCA Sampling state determines the next transition:

either to the Transmit state if the medium was found idle or to a next wait state (WAIT

Congestion Backoff) in case of a busy medium. The WAIT Initial Backoff and WAIT

Congestion Backoff are free states, whose mapping is left at the designer’s choice.

The original implementation for B-MAC in the MantisOS networking stack for the

CC1000 radio was keeping device in the RX radio state. This simple approach does

not take benefit of low-power consumption states in the physical device automaton but

it was used due to its simplicity.

We will study several mappings of the initial and congestion backoff wait states:

• map to the RX device state - this simple approach does not take benefit of low-

power consumption states in the physical device automaton but its simplicity was

used in the B-MAC original implementation in MantisOS for the CC1000 radio

device;

• map to the IDLE state taking into account the transitional times between IDLE

and RX and their corresponding energy consumption;

• optimized according to the backoff value and making use of all lower power con-

sumption states (IDLE, SLEEP and XOFF).

We chose this particular simulation scenario (n saturated nodes only transmitting

and never receiving) because it is the one where the most gain can be illustrated for

our optimized mapping of the free wait states. It’s clear that the busier the medium,

the higher the energy gain if the optimization is performed.

We proceed our investigation on the attainable energy gain at the radio level by

deriving a stochastic model in section 4.1. Next, in section 4.2 the theoretical results

are confirmed through simulations of the code obtained by adapting the generated code

skeleton for the protocol to a real operating system for WSNs - Mantis OS. Finally

in section 4.3 the impact of the optimization in terms of energy consumption with

respect to the functional parameters of the protocol is evaluated through real-testbed

experiments.

68

4.1 Stochastic Modeling

4.1 Stochastic Modeling

As mentioned in the chapter introduction, we will derive in this section a stochastic

model with the goal of investigating the potential energy gain attainable through our

methodology for the particular scenario chosen. First we will derive a model for the

behavior of a node and then we will investigate the average energy consumption of such

a node.

4.1.1 Energy Consumption Theoretical Analysis

In this section, an energy consumption model for the radio chip for the scenario de-

scribed in introduction is derived, using as a starting point the throughput analysis

obtained in [8].

The analysis is carried out under the assumption of ideal channel conditions (no

hidden terminals or capture). The hidden terminal problem occurs when a node is

visible from a destination node, but not from other nodes communicating with the

said destination node. This can lead to collisions between the packets of nodes that

do not ”hear” each other. We consider that all nodes are within range and can listen

to each other’s communications. The channel capture effect is a phenomenon where

one user of a shared medium ”captures” the medium for a significant time, while the

other users are denied use of the medium. We consider that in our scenario, the nodes

have equal chances of sending a packetof constant size. Since our protocol has no

acknowledgements and no retransmission, collisions will not be taken into account.

Note that these hypothesis do not influence the performance evaluation in terms of

energy since we consider a fixed number of saturated stations (the transmission queue

of each station is always nonempty) contending for the channel.

Our analysis proceeds by investigating the behavior of a single station which will

be modelized by a two-stage Markov chain with the goal of deriving the stationary

probability τ that the station transmits in a randomly chosen slot time. In a second

step, the average energy consumption is evaluated by observing the events that can

occur in a randomly chosen slot time.

Let n be the number of saturated stations contending for the channel and let b(t)

be the stochastic process representing the backoff time counter for a given station at a

given time. We adopt a discrete and integer time scale, where t and t + 1 correspond

69

4. EXPERIMENTAL EVALUATION

to the beginning of two consecutive slot times, spaced by exactly the length of the slot

time σ. The backoff counter is decremented at the beginning of each slot time.

In the case of B-MAC, there are two backoff stages: the first initial backoff stage

traversed by every packed and the congestion backoff stage reached either in case of

a busy medium found after the initial backoff time is elapsed or recursively after con-

secutive congestion backoffs followed by the occurrence of a busy medium. We denote

by W0 and W1 the length of the backoff interval for the initial and congestion backoffs

respectively. Taking into consideration that the value of the backoff counter for each

station depends also on its transmission history (whether it was in initial or congestion

backoff before), the stochastic process b(t) is non-Markovian.

We denote by s(t) the stochastic process representing the backoff stage of the station

at time t. It is equal to 0 for the initial backoff and 1 for the congestion backoff.

We denote by pb the probability that when performing the clear channel assessment

when the backoff counter reaches the value 0, the medium is found busy and we make

the approximation that this probability is constant for a given number of contending

stations and for a certain packet length l.

We make the notation P{(i1, k1)|(i0, k0)} = P{s(t + 1) = i1, b(t + 1) = k1 | s(t) =

i0, b(t) = k0}, i.e. the probability for a station to be in the (i1, k1) state of the Markov

chain at time t + 1 given that it was in the state (i0, k0) state of the Markov chain at

time t.

With all these hypotheses in mind, the bi-dimensional process {(s(t), b(t))} can be

modeled as the discrete-time Markov chain illustrated in figure 4.2. The upper level of

this Markov chain corresponds to the initial backoff, while the lower level corresponds

to the congestion backoff. A state in the model has 2 indices (i, j), where i denotes the

backoff stage – 0 for initial backoff, 1 for congestion backoff – and j denotes the current

value of the backoff counter.

For this Markov chain, the non-null transition probabilities are:

P{(i, k)|(i, k + 1)} = 1 k ∈ (0,Wi − 2), i ∈ (0, 1) (4.1)

P{(0, k)|(i, 0)} =
(1− pb)

W0
, k ∈ (0,W0 − 1), i ∈ (0, 1) (4.2)

P{(1, k)|(0, 0)} = pb/W1, k ∈ (0,W1 − 1) (4.3)

P{(1, k)|(1, 0)} = pb/W1, k ∈ (0,W1 − 1) (4.4)

70

4.1 Stochastic Modeling

0,0 0,1 0,W 0−10,W 0−2

1,0 1,1 1,W1−2 1,W 1−1

1 11 1

111

(1−pb)/W 0

pb/W 1

pb/W 1

...........

...........

...........

...........

...........

Figure 4.2: Markov chain model for B-MAC backoffs.

Equation 4.1 stands for the fact that the backoff time counter is decremented at the

beginning of each slot time. For example, when in state (1, 1) with certainty (probability

1) the next state will be (1, 0).

Equation 4.2 stands for the fact that a new packet after a transmission (i.e. medium

is found not busy when performing clear channel assessment) starts with initial backoff

stage 0 and the backoff value chosen randomly in the interval (0,W0 − 1). More pre-

cisely, if the station is in the state (i, 0) in the Markov chain, i.e. the backoff counter

has reached the value 0 and it is either in initial or congestion backoff state (the vari-

able counter i) it finds the medium to be free with probability (1 − pb), and after the

packet transmission its next state will be one of the possible initial backoff states with

probability 1/W0.

Equation 4.3 accounts for the situation where after the initial backoff time is elapsed

(situation corresponding to the state (0, 0) in figure 4.2), the medium is found busy

while performing clear channel assessment (with probability pb) and afterwards the

station passes into congestion backoff stage 1 (a state of the form (1, k) with k between

0 and W1 − 1), with the backoff time counter value chosen randomly in the interval

(0,W1 − 1).

71

4_evaluation/figures/Markov.eps

4. EXPERIMENTAL EVALUATION

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 2 4 6 8 10

τ

Number of nodes

Probability of emitting

2 ms
4 ms
6 ms
8 ms

Figure 4.3: Transmission probabilities for different packet lengths and number of nodes

Similarly, equation 4.4 accounts for the situation where after a congestion back-

off time is elapsed (situation corresponding to the state (1, 0) in figure 4.2) and the

medium is found busy while performing clear channel assessment(with probability pb),

the station remains into congestion backoff stage 1 with the backoff counter value chosen

randomly in the interval (0,W1 − 1).

Let bi,k = limt→∞ P{s(t) = i, b(t) = k}, i ∈ (0, 1), k ∈ (0,Wi − 1) be the stationary

distribution of the chain. In the following, we will determine a closed form solution for

this Markov chain. First we shall note that:

b1,0 =
pb

W1
b0,0 + b1,1 +

pb

W1
b1,0 (4.5)

b1,k =
pb

W1
b0,0 + b1,k+1 +

pb

W1
b1,0, k ∈ (0,W1 − 2) (4.6)

By recursively substituting 4.6 into 4.5, we obtain:

(1− pb)× b1,0 = b0,0 × pb (4.7)

Let us note that: b0,k = (1−pb)
W0

b0,0 + (1−pb)
W0

b1,0 + b0,k+1, k ∈ (0,W0− 2) which yields

after recursive substitutions:

b0,k =
(W0 − k)× (1− pb)

W0
× (b0,0 + b1,0), k ∈ (0,W0 − 2) (4.8)

72

4_evaluation/figures/tauout.eps

4.1 Stochastic Modeling

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

pb

Number of nodes

Probability of busy medium

2 ms
4 ms
6 ms
8 ms

Figure 4.4: Busy medium probabilities for different packet lengths and number of nodes

Similarly, let us note that: b1,k = pb

W1
b0,0 + pb

W1
b1,0 + b1,k+1, k ∈ (0,W1 − 2) which after

recursive substitutions yields:

b1,k =
(W1 − k)× pb

W1
× (b0,0 + b1,0), k ∈ (0,W1 − 2) (4.9)

Using 4.7, 4.8 and 4.9 become:

b0,k =
(W0 − k)

W0
× b0,0, k ∈ (0,W0 − 2) (4.10)

b1,k =
(W1 − k)

W1
×

pb

(1− pb)
× b0,0, k ∈ (0,W1 − 2) (4.11)

All the values bi,k are thus expressed as a function of b0,0 and the probability of

finding the medium busy pb. By imposing the normalization condition, we obtain:

1 =

1
∑

i=0

Wi−1
∑

k=0

bi,k = b0,0 ×

[

W0 + 1

2
+

pb

(1− pb)
×

W1 + 1

2

]

(4.12)

By means of 4.7 and 4.12, we obtain:

b0,0 =
1− pb

(1− pb)×
W0+1

2 + pb ×
W1+1

2

(4.13)

b1,0 =
pb

(1− pb)×
W0+1

2 + pb ×
W1+1

2

(4.14)

73

4_evaluation/figures/pbout.eps

4. EXPERIMENTAL EVALUATION

At this point, we can express the probability τ that a station transmits in a randomly

chosen slot time. Since in our model any transmission occurs when the backoff time

counter equals 0 and the medium is found not busy while performing clear channel

assessment, we have:

τ = (1− pb)×

1
∑

i=0

bi,0 = b0,0 =
1− pb

(1− pb)×
W0+1

2 + pb ×
W1+1

2

(4.15)

Equation 4.15 expresses the probability that a station transmits in a randomly chosen

slot time τ as a function of the probability pb of finding the medium busy when per-

forming clear channel assessment, which is still unknown. The medium is busy during

a randomly chosen slot time if at least one station has started transmitting during one

the previous l − 1 slots, where l is the packet length expressed in number of slots.Since

we consider the modulation speed to be constant, the packet length is directly linked

and related to the TX duration.

Denoting by pi the probability that at least one station starts transmitting in the

ith slot before the current slot, we have: pi = 1 − (1 − τ)n. The events ”at least one

station transmits during the ith slot before the current slot” are mutually exclusive for

i taking values from 1 to l − 1. Thus,

pb =

l−1
∑

i=1

pi = (l − 1)× (1− (1− τ)n) (4.16)

Equations 4.15 and 4.16 form a non-linear system of equations in the two unknowns

τ and pb that can be solved using numerical techniques.

Figure 4.3 illustrates the transmission probability for different packet sizes and

different number of nodes. As it can be seen, for the same number of sending nodes,

the probability of sending a packet is smaller for longer packets. The explanation is

that longer packets occupy the medium longer, therefore reducing the probability of

sending new packets. As for the number of nodes, the higher the number of senders,

the smaller the probability of transmitting.

Figure 4.4 illustrates the probability of finding the medium busy for different packet

sizes and different number of nodes. As it can be seen, for the same number of sending

nodes, the probability of finding the medium busy is higher for longer packets. The

explanation is that longer packets occupy the medium longer, therefore increasing the

probability of finding the medium busy. As for the number of nodes, the higher the

number of senders, the higher the probability of finding the medium busy.

74

4.1 Stochastic Modeling

4.1.2 Average Energy Consumption

The average energy consumption of a station can be readily obtained considering that

in a randomly chosen slot time, with probability τ the station transmits a packet. We

consider all stations transmit packets of the same ”temporal” length. They consume

current ITX (the current consumption per unit time for the TX state in the CC1100;

see table 3.1) for a duration of l. With probability (1 − τ) the station is in a backoff

stage with an average energy consumption E[B]:

E = τ · ITX · l + (1− τ) ·E[B]; (4.17)

The average backoff energy consumption E[B] can be derived considering that it

always includes an initial average backoff energy E[IB] and several successive conges-

tion backoffs of average energy value E[CB], according to the probability of finding the

medium free or busy respectively when performing the clear channel assessment.

The average backoff energy (whether it be for an initial backoff or for a congestion

backoff) is the sum of products p(k)×E(k), where p(k) if the probability of choosing a

backoff value of k (1/W0 for initial backoff and 1/W1 for congestion backoff respectively,

regardless of the particular value of k) and E(k) is the value of the energy consumed if

a backoff value of k is chosen (it takes into account the time spent during transitional

states between the optimal state and RX).

E[IB] =

W0−1
∑

k=0

1

W0
× E(k); (4.18)

E[CB] =

W1−1
∑

k=0

1

W1
× E(k); (4.19)

The probability that the packet would be successfully sent after the first clear

channel assessment is (1 − pb) and the corresponding congestion backoff time is 0 and

it also includes 1 CCA time. The probability that the packet would be successfully

transmitted on the second try is the probability of finding the medium busy during

the first clear channel assessment and free at the second attempt and it includes one

congestion backoff of average value E[CB] and 2 CCA times. The probability that

the packet would be successfully sent on the ith attempt is the probability of having

found the medium busy during the first (i − 1) attempts and clear at the ith attempt

75

4. EXPERIMENTAL EVALUATION

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10

G
ai

n

Number of nodes

Performance Gain

Idle vs RX
Optimized vs RX

Figure 4.5: Theoretical gain obtained for the improved backoffs mapping with respect to
the unimproved version

and it includes (i − 1) congestion backoffs and i CCA times, thus yielding an energy

consumption of p
(i−1)
b (1−pb)∗[(i−1)∗E[CB]+i∗E(CCA)] (where E(CCA) is the energy

spent performing clear channel assessment). The average backoff energy consumption

is thus:

E[B] =E[IB] +
∞
∑

i=1

pb
(i−1) × (1− pb)× [(i− 1)× E[CB] + i× E(CCA)] ;

=E[IB] +
1

1− pb
× E(CCA) +

pb

1− pb
× E[CB]; (4.20)

Figure 4.5 illustrates the gains obtained for two improved implementations of the

B-MAC protocol (one which switches the radio chip into IDLE state taking into ac-

count the transitional times between IDLE and RX and their corresponding energy

consumption and one optimized according to the backoff value and making use of all

lower power consumption states) with respect to the unimproved version of B-MAC

(which keeps the radio chip into RX state while performing backoffs) for different num-

ber of stations contending for the channel (from 2 to 10 stations). As it can be seen,

the gain increases with the number of stations.

76

4_evaluation/figures/gain.eps

4.2 Simulation Results

base station serial link

Serial comm
software

Database storage

GDB

local/remote
debugging TCP/IP GDB

remote protocol

binary file
GCC
cross compiler
toolchain

Application

Node simulator
WSim

Node simulator
WSim

Node simulator
WSim

Node simulator

network packets events

UDP/IP

WSim
Radio simulator

WSNet

Figure 4.6: Worldsens - distributed simulation environment

4.2 Simulation Results

In order to further validate the theoretical energy gains of the method, we conducted

some simulations for the WSN430 platform under the Worldsens [22] simulation envi-

ronment, an integrated environment for development and rapid prototyping of wireless

sensor network applications. In section 4.2.1 we describe the Worldsens framework

while in 4.2.2 we describe the simulation set-up and results.

4.2.1 The Worldsens Environment

Worldsens [22] is an integrated environment for development and rapid prototyping of

wireless sensor network applications. It consists of two simulators - WSim and WSNet

- that can be used either independently or in conjunction.

• WSim is a platform simulator that performs cycle accurate full platform simu-

lation using microprocessor instruction driven timings.

• WSNet is a modular event-driven wireless network simulator.

Figure 4.6 presents the global architecture of the simulation platform. The node

simulator takes as input the binary file of the application. WSim runs the native code

as deployed in the sensor hardware without any change. In order to do so, it emulates

all components/peripherals embedded in the hardware sensor nodes: flash memory,

radio device and so on. All instructions are simulated and in particular those sending

commands to the radio device on the mote. Each node simulator can be connected to a

central radio simulator which deals with aspects such as radio propagation, interference

77

4_evaluation/figures/wsens_simul.eps

4. EXPERIMENTAL EVALUATION

- basically it simulates the communication between the nodes. As seen in the figure,

a remote gdb instance can connect to each node simulator, allowing a step by step

execution at instruction level (C or assembly language). The serial port output of the

mote can be obtained.

WSim is composed of hardware block descriptions that match the chip level de-

scription of the system. Each such block description is available as a software library

within the simulation framework. A sensor node platform can be built by selecting the

components description and by writing a single file that describes the physical intercon-

nection between these blocks. The hardware simulator uses timed finite state machines

to describe the behavior of hardware blocks with a well defined API to connect the

block to the different communications interfaces (GPIO ports, USART, SPI, . . .).

WSim is able to perform a full simulation of hardware events that occur in the

platform and to give back to the developer a precise timing and performance analysis

of the simulated software.

Worldsens includes a logger library used to record selected system events (e.g.

missed interrupts occurring while interrupts are disabled) or to catch a set of pro-

gramming errors chosen by the block developer (e.g. sending a byte to an UART

without proper initialization).

WSim supports an event tracer mechanism that records in a file the activity of

selected signals. Several types of events can be recorded such as interrupt arrival, low

power modes changes, peripherals activity. The events along with their arrival times

logged in special format files can then be used for offline performance estimations and

timing validations among the platform peripherals.

WSNet is a modular event-driven wireless network simulator. When used alone,

it helps to evaluate, refine and validate the application high level design choices of

protocols, traffic pattern, application dimensioning, protocol parameters tuning and

physical layer choices. When used in conjunction with WSim, it simulates a whole

sensor network with a high accuracy.

WSNet is parameterized with several configuration files describing the characteris-

tics of the physical medium and each network node. The nodes are defined by speci-

fying 3 parameters: the antenna model (i.e. omnidirectional, directiona), the mobility

model (i.e. random, static group mobility) and the radio model (i.e. FDMA, CDMA).

The wireless medium is defined by specifying 2 parameters: the propagation model

78

4.2 Simulation Results

and the interference model. Based on the specified parameters, WSNet computes the

SNR(Signal over Noise Ratio) and BER(Bit Error Rate) for eah radio symbol sent over

the medium and for each receiving node.

4.2.2 Simulation Set-up

We conducted several simulations for the WSN430 platform under the Worldsens [22]

environment for the same simulation scenario described in the chapter introduction: n

saturated nodes contending on the channel, trying to send data to 1 sink.

Serial Id

1wire

Flash RAM

16bits 8 bits16 bits

peripherals

w
ire

le
ss

 s
im

ul
at

or

Clock

1MB Flash Memory

SPI

SPI

CC1100
Radio
Module

CPU
MSP430

External Serial
interface

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

����

���
���
���
���

���
���
���
���

��
��
��

��
��
��

����
����
����
����

����
����
����
����

����������

Figure 4.7: Architecture of the WSN430 WSN node

Figure 4.7 presents an example of node that can be fully simulated with WSim -

the WSN430. It is the node used in our simulations. The WSN430 platform includes

a full Texas Instrument MSP430f1611 micro-controller with its complete instruction

set and all digital blocks (timers, basic clock module, serial ports with UART and SPI

modes, etc). The microcontroller is connected to external system peripherals: 1MB

flash memory module (ST M25P80), serial id (Maxim DS2411), a Chipcon CC1100

packet radio interface.

Figure 4.8 illustrates the steps to follow in performing a WSim simulation as well

as the general methodology of the framework. The application code is compiled using

cross-compiler tools in order to generate an executable (.elf file) that is given as input to

the simulator. Since WSim simulates native code, it is independent of any programming

79

4_evaluation/figures/wsn430_hardware.eps

4. EXPERIMENTAL EVALUATION

language and any OS. The feedback from the simulator is used in order to improve

the application until the desired performances are attained and the executable can be

deployed on the real hardware.

In our case, we adapted the code skeleton obtained for mapping the backoff free

states for the contending nodes for Mantis OS[7] - a multi-threaded operating system

for WSNs. The design goals and tradeoffs of this WSN dedicated OS were presented in

section 3.4.1. We will insist now on some particularities related to its communication

stack.

The user-level Mantis OS network stack supports levels three and above, i.e. rout-

ing, transport and application layers. The MAC layer support is offered by the com-

munication layer, also named ”comm” layer. The latter is located in a separate lower

layer of the OS. The MOS comm layer provides a unified interface for communication

device drivers (i.e. radio, USB, serial interfaces). It exposes functionality to network or

application threads through 4 functions: com send,com recv, com mode and com ioctl.

The com mode function call powers up or powers down the device when needed. It

must specify as a parameter on which of the communication devices it acts and what

”mode” it selects for the device. In the case of the radio device on the WSN430 node -

the CC1100 RF Transceiver, the com mode triggers certain state changes in the radio

finite state machine. Its first parameter must be IFACE RADIO, while the second can

be any of the following: IF IDLE (enable IDLE state of the CC1100), IF OFF (enable

XOFF state of the CC1100), IF STANDBY (enable SLEEP state of the CC1100),

IF LISTEN (enable the RX state of the CC1100). Hence this call can put the CC1100

in one of the low power modes or the RX state. The call to com mode blocks until the

target CC1100 state is reached. The manual calibration and transmission primitives

have separate functions.

A particularity of MOS is the zero-copy buffer management policy. Reception hap-

pens in the background. The memory for the received packets is managed by the comm

layer itself, which owns a number of comBufs. Device drivers may request comBufs,

which are allocated to devices. After the device receives a packet it must exchange it

for an empty one from the comm layer. The latter buffers the full packets in order

and dispatches them to threads when these call com recv. Also, if a full packet for the

specified device is not available, the thread calling com recv blocks until one becomes

available, i.e. the device receives a packet. The calling thread must explicitly ”liberate”

80

4.2 Simulation Results

the comBuf at the end, thus informing the comm layer that the buffer may be reused.

When a call to com send is made, the sending thread passes a pointer to a packet buffer,

called comBuf. The comm layer blocks the sending thread and passes the pointer to

the specified device driver. The calls to com send,com recv must therefore specify a

comBuf pointer and the device within the comm layer to which they are addressed.

The MAC layer protocol is located within the device driver for the radio which in

turn is situated inside the comm layer. We encapsulated the adapted code skeleton

within the com send function body. Since the value of timers in the code skeleton is

not explicitly required for clock constraints, we used a simple delay function instead-

mos udelay(delay) that performs a number of nop()-no operation- resulting in the re-

quested delay.

The code thus obtained for the optimized version of the mapping of the BMAC

backoffs (using all low power modes according to the backoff value) was compiled using

the GCC toolchain for the Texas Instruments MSP430 family. The latter includes

the GNU C compiler (msp430-gcc), the assembler and linker (binutils), the debugger

(GDB), and some other tools needed to make a complete development environment

for the MSP430. The resulting binary was emulated by WSim in the network scenario

simulated by WSNet.

We need to make a remark regarding the received signal strength indicator (RSSI)

in WSNet. The network simulator was used in a mode fow which no signal attenuation

was computed. A packet ocuppying the medium ”produces” a constant RSSI of 0

dBm, while a free medium is equivalent to an RSSI of -110dBm. Hence testing for

Clear Chanel Assessment is equivalent to testing whether the CC1100 computed value

for RSSI is equal to 0 or not.

We chose the autocalibration option of the CC1100 performing the calibration every

time when going from IDLE to RX/TX.

The traces produced by WSim allow a very accurate evaluation of the energy con-

sumption of each peripheral device as well as the entire platform. Several types of

events are reported(interrupts arrival, peripherals activity). Recording all such events

with their corresponding arrival time is important for performance validation. WSim

traces are output in binary format that can be transformed in the Gnuplot, VCD or

linear formats. The most commonly used output format is VCD, which stands for

Value Change Dump.

81

4. EXPERIMENTAL EVALUATION

In our particular simulation case, for each node a .vcd file is created recording

events for signals and states of the microcontroller, the ds2411, the cc1100 radio. For

the radio, it logs events on the internal state, the strobes, the CSn, SO, GDO0 and

GDO2 pins. At the top of the file, variable names are defined for the signals to be

recorded. The records in the .vcd file start with a line denoting a time instant. The

value of the time instant is preceded by a # character. On consecutive lines follow

(b < value >,< variable >) pairs denoting the signals which have changed their value

at the time instant of the record and the corresponding value. The value is coded in

binary with fixed number of bits and is preceded by a b character.

From the .vcd trace files obtained for the radio signals for the optimized version

of mapping of the backoffs we generated the other two mappings-the one turning the

radio state machine to IDLE when the backoff value was sufficiently large and the one

keeping the radio in RX during backoffs. After eliminating the initialization part of the

WSN430 from the traces, we computed the average energy spent for sending 1 packet

for the three versions of BMAC.

OS

description

Platform

Cross−compiler tools

Real hardware

Deployment

Simulator

Binary

Elf file

Network

Application

Figure 4.8: WSim flow of events

Figure 4.9 illustrates the normalized energy consumed by the radio device for the two

improved implementations of the B-MAC protocol (one switching the radio into IDLE

and one optimized according to the backoff value using all lower power consumption

states, both taking into account the transition times of the intermediate states) with

respect to the energy consumed by the unimproved version of B-MAC (keeping radio

into RX state while performing backoffs). The observed energy gain at the radio level is

82

4_evaluation/figures/compile.eps

4.3 WSN Testbed Experiments using the SensLAB platform

Figure 4.9: Energy consumption of the improved protocol versions normalized with re-
spect to the unimproved version

significant and it confirms the theoretical gain values obtained by the stochastic model

described in [12].

4.3 WSN Testbed Experiments using the SensLAB plat-

form

4.3.1 SensLAB goals and facilities

The process of design, implementation, deployment and evaluation of software and

protocols for WSN appears to be tedious and error prone, mostly due to the distributed

nature of this type of systems. Simulators play an important role in the evaluation

of a WSN application, but they are not sufficiently accurate as they always rely on

simplifying assumptions.

Real experiments are needed in order to correctly assess the performance and param-

eters of the designed software. However, such experiments are facing serious challenges

as soon as the number of nodes increases: the limited capacities of the nodes in terms

of debugging and programming, the process of deployment involving manipulation of

each individual node, the limited lifetime of nodes’ batteries, etc.

83

4_evaluation/figures/gain_bars.eps

4. EXPERIMENTAL EVALUATION

Figure 4.10: SensLAB platform

SensLAB [10] is a very large scale open wireless sensor network testbed that has

been developed and deployed in order to allow the evaluation of scalable wireless sensor

network protocols and applications. It is composed of 1024 WSN430 nodes evenly dis-

tributed across 4 sites: INRIA Grenoble, INRIA Lille, INRIA Rennes and University of

Strasbourg/LSIIT, as seen in figure 4.10. In order to cover a wide range of experimental

scenarios, the sites have different nodes emplacements: the Grenoble and Rennes sites

have only indoor fixed nodes, Lille and Strasbourg sites have mobile nodes in addition

to the fixed ones, while Strasbourg also has outdoor fixed nodes.

The SensLAB platform offers several facilities which we will briefly cover in what

follows.

It is generic, open and flexible in the sense that it makes no restrictions on the pro-

gramming model, language or Operating System of the applications to be deployed on

the nodes. The platform user is offered an easy way to set-up an experiment through a

webportal. He can either choose the individual nodes from a map of the site or allow the

platform’s scheduler to choose the nodes based on his sensor and radio characteristics

specifications and the required experimental time.

The platform offers reliable remote access to each individual node in an experiment

allowing the reset, stop, start or code re-flashing at any time during the experiment.

Another important facility offered by this testbed is the non intrusive application

84

4_evaluation/figures/senslab-map.eps

4.3 WSN Testbed Experiments using the SensLAB platform

Figure 4.11: SensLAB node architecture

transparent real time monitoring of the sensor nodes (energy consumption and radio

activity on each individual node). The monitored data is securely logged for each

individual experiment.

4.3.2 SensLAB Software and Hardware Infrastructures

4.3.2.1 SensLAB Hardware Infrastructure

Each one of the 4 sites is composed of SensLAB nodes relied by networking back-

bone. The latter provides power and connectivity to the individual nodes as well as

communication with the exterior for command and monitoring purposes.

The SensLAB node is composed of 3 hardware elements, as seen in figure 4.11:

• the WSN430 open wireless sensor node : it is the node accessible to the user

during his experiment for deploying his application

85

4_evaluation/figures/nodesenslab.eps

4. EXPERIMENTAL EVALUATION

• the control WSN430 wireless sensor node : its role is to control the open node

allowing to power up/power down, reset, monitor the open node activity (power

consumption, radio activity) and even send artificial stimuli to the open node

• the node gateway: it connects the 2 WSN430 nodes between themselves as well

as with the SensLAB server, allowing the user to command and to retrieve the

data on the open node’s serial link

The WSN430 nodes are built on top of a low-power MSP430 16bit micro-controller

running at 8Mhz. Each WSN430 platform includes a 6bytes DS2411 electronic reg-

istration number that provides a unique identity to the node, an external 1MB flash

memory ST M25P80. There are 2 types of WSN430 platforms based on the radio

chip used: WSN430v13b (using a CC1100 radio chip) and the WSN430v14 (using the

CC2420 radio chip).

4.3.2.2 SensLAB Software Infrastructure

Figure 4.12 illustrates the software architecture replicated over the 4 sites. We will

cover the software components while following the experimental set-up that a user

must perform.

The first step that must be followed when conducting an experiment is the config-

uration through the webportal. The user must specify a name for the experiment, a

duration and possibly a start date. There are 2 possibilities for choosing the nodes:

either the user chooses them from a map, thus having a direct choice on the topology,

or he specifies their type and characteristics and allows the platform to make the choice

for him. Each node in the software must be a associated with a given firmware. The

user must also specify a profile associated to his experiment, i.e. an ensemble of values

for the radio (CC1100 or CC2420), power mode (line or battery), polling measurements

(type and frequency).

Based on the user’s choices and node availability, the platform’s batch scheduler

software determines a start time for the experiment. This server side module is based

on OAR 1 batch scheduler for large clusters and it performs optimal scheduling and

resource allocation for experiments.

1http://oar.imag.fr

86

4.3 WSN Testbed Experiments using the SensLAB platform

Figure 4.12: SensLAB software infrastructure

At the start time determined by the batch scheduler, the configuration of con-

trol nodes, firmware deployment and node resets are performed automatically by the

SensLAB platform.

The experiment handler software is the server-side module that handles the

interaction with the 256 nodes of its corresponding site. It handles firmware updates,

energy consumption monitoring, polling, receives the data coming from the serial links

of open nodes.

The user virtual machine helps the user by offering him a complete Linux envi-

ronment as well as a set of development tools, cross compilation chains, OSs, drivers,

communication libraries and simulators. From this environment, the user can launch a

dedicated software (senslab-cli) and interact directly with the individual nodes(start,

stop, reset, re-flash) of the current experiment.Senslab-cli achieves this functionalities

by connecting itself to the experiment handler software which further treats the

user’s requests. Another dedicated application allows the user to retrieve the output

of the nodes’ serial link.

87

4_evaluation/figures/architecture-logicielle.eps

4. EXPERIMENTAL EVALUATION

4.3.3 SensLAB Experimental Set-up and Evaluation

As mentioned previously, WSN simulators play an important role in the early stages of

software design, prototyping and evaluation. However, this validation is not sufficient

due to the simplifying assumptions made in the design of the simulators. Therefore

real-platform experiments need to be carried out.

With this goal in mind, we have used the testbed located in Grenoble composed of

256 WSN430v13b (using a CC1100 radio chip) fixed interior sensor nodes.

4.3.3.1 SensLAB Experimental Scenario and Evaluation Metrics

We consider the same simulation scenario as before: n saturated nodes contending for

the channel using B-MAC’s CSMA (no LPL) and we are interested in the impact of the

optimization in terms of energy with regard to the functional properties of the protocol.

To this end we chose 2 metrics:

• the average number of packets sent by a node in a fixed time interval

• the average number of packets received by the sink per node in fixed time interval

and the associated standard deviation

For an experiment with n nodes, if we denote by Nsi the number of packets sent

by the ith sender node during the experimental time interval, the first metric Avgsent

will be equal to the ratio of the total number of sent packets divided by the number of

sender nodes:

Avgsent =

n
∑

i=1

Nsi/n (4.21)

For an experiment with n nodes, if we denote by Nri the number of packets received

by the sink from the ith sender node during the experimental time interval, the second

metric Avgrec will be equal to the ratio of the total number of packets received by the

sink (from all the sender nodes) divided by the number of sender nodes:

Avgrec =
n

∑

i=1

Nri/n (4.22)

The standard deviation will be computed as follows:

Srec =

√

√

√

√

1

N

n
∑

i=1

(Nri −Avgrec)2 (4.23)

88

4.3 WSN Testbed Experiments using the SensLAB platform

Energy consumption The SensLAB platform allows the periodic sampling of the

current, voltage, power, rssi, luminosity and temperature values for some predefined

sampling period values. The physical quantities for which a recording is needed must

be specified in the experimental profile. For the current, voltage and power, these

predefined sampling periods are: 70ms, 100ms, 500ms, 1s and 5s.

The platform creates one file per physical quantity per experiment and records the

values of the selected physical quantities in files containing successive lines of text of

the form <node number, time instant, value>. The values of the physical measured

quantity for all the nodes in the platform will therefore appear in one file. Computing

the energy consumed during the experiment time interval for a node implies extracting

the values corresponding to that node from the file and integrating either the power over

the discrete sampling time moments or the product of the sampled current intensity

and voltage over the discrete sampling time moments.

The evaluation based on the samplings is not sufficiently accurate for our particular

simulation scenario given the sampling frequencies currently supported by the SensLAB

platform. The events in the studied protocol have millisecond precision while the

smallest possible sampling period for the platform is 70ms. After discussions with the

SensLab developers, we agreed they would provide us with a special profile with higher

sampling frequency for our particular experimentation scenario. We have made some

trials for a sampling period of 2ms but the platform could not keep up with such a high

sampling frequency and the resulting measurement files contained data gaps.

The values sampled allow the energy consumption evaluation at the level of the

entire WSN430 platform node while the evaluation at the level of individual peripherals

is not possible for the moment.

Due to these 2 reasons, we were unable to consider the energy consumption as

a metric in our evaluation. We focused however on evaluating the energy consump-

tion optimization impact on the functional aspects of the protocol under real testbed

conditions.

4.3.3.2 SensLAB Experimental Set-up

To help the user in developing his/her application, a virtual machine is setup with all the

development tools preconfigured (cross compilation chains, OS, drivers,communication

libraries).

89

4. EXPERIMENTAL EVALUATION

Figure 4.13: Average number of sent packets per node for the 3 driver implementations

In order to quantify the number of packets sent by each node that are successfully

received by the sink, each packet contains the node ID of the sender as the first byte.

We chose as node ID the CRC field of the DS2411 component of the node, paying

attention not to have two nodes in the experimental set with the same CRC field. The

receiver node sends on its serial link two characters corresponding to the ID of the

sender node for each received packet in hexadecimal format.

A sender node outputs one character on its serial link for each successfully sent

packet.

The outputs on the serial link of both the sender nodes and the receivers will be

logged in individual log files during the experiment and processed later.

Another issue we had to address was the proper node synchronization, i.e. having

all the senders start at the same time instant. To this end, we chose to deploy an extra

node that will be the synchronizer. Thus the sender nodes code starts with a wait for

a packet from the synchronizer. Once this packet is received, the nodes can pass to the

packet sending phase.

With the executables on the senslab server, the experiment launching script creates

an nc – netcat – process attached to each node retrieving the serial link output of the

node. The logging is realized by several tee processes, one for each node, retrieving the

90

4_evaluation/figures/sent.eps

4.3 WSN Testbed Experiments using the SensLAB platform

output of the corresponding nc process. Once these are setup the code is flashed by the

script trough senslab-cli update calls. The last call is for the synchronizer that starts

the experiment. At the end of the experiment duration, the netcat processes are killed

and the resulting logs are retrieved and processed.

During our experiments we experienced several software bugs, both in the senslab

platform infrastructure and in the MantisOS code. The experimental setup of several

nodes saturating the medium with packets transmission is a very high network load for

sensor network applications. From our experiments it seems clear that the MantisOS

developers did not test their operating systems in these conditions and we experienced

several bugs due to race conditions between threads or lack of precision in driver im-

plementations. Many of the bugs we found were related to timing issues concerning the

time spent in transitional phases from sleep to wakeup or radio calibration phase. We

particularly spent a lot of time and effort on the packet reception part of MantisOS as

the original application clearly could not keep up with the packet arrival rate. After

three months of debugging and testing the code without success we decided to use the

SensLAB pre-defined driver primitives which were known to work. We rebuilt the ap-

plication on top of these primitives using the code skeleton generated by our method.

We encountered problems with this approach as well: blocking reception application

under high network traffic, different outcomes according to the choices for API calls

made for adapting the code skeleton. Another three months of coding, debugging and

testing followed until we fixed the bugs and reached the correct configuration of API

calls for the final code.

The SensLAB pre-defined drivers offer primitives for writing the configuration reg-

isters and primitives for command strobes. The command strobes can be initiated by

calling the cc1100 strobe cmd function having as argument the name of the command

strobe register to be accessed. The call is non-blocking, i.e. it returns immediately

even if the target state of the CC1100 radio device hasn’t been reached yet.

A first aspect to be settled was the clear channel assessment procedure. The RSSI

value is an estimate of the signal power level in the chosen channel. For a CC1100

in RX mode, the RSSI value can be read continuously from the RSSI status register

until the demodulator detects a sync word (when sync word detection is enabled). At

that point the RSSI readout value is frozen until the next time the chip enters the RX

state. We made a test application in order to determine the time required for the RSSI

91

4. EXPERIMENTAL EVALUATION

Figure 4.14: Average number of packets received by the sink for the 3 driver implemen-
tations

value to settle when the medium is occupied as well as the threshold indicating a busy

medium. We determined experimentally that 400 ns are sufficient for the RSSI register

to hold an accurate value and that -80dBm is the threshold value indicating a busy

medium.

Another issue to be settled was the avoidance of the overflow of the RX FIFO,

especially in the case of the simple protocol keeping the radio in RX device state

during backoffs. One solution would be to flush the FIFO regularly and sufficiently

often through explicit calls of cc1100 fifo flush and it would require the processor to

be awake for every such call. Another solution is to define an interrupt such that every

time the radio starts receiving a packet and a FIFO threshold is reached, the FIFO

is to be flushed. We chose the latter option and we configured an interrupt for the

GDO0 CC1100 pin whose interrupt service routine flushes the FIFO. Although the

CC1100 datasheet specifies that the FIFO should only be flushed when in IDLE or

RXFIFO OVERFLOW states, our experiments proved that flushing the FIFO when in

RX state is safe.

Another issue to be settled was the way of implementing the time delays in the

protocol. A first option was to use a simple delay function performing no operations

92

4_evaluation/figures/recv.eps

4.3 WSN Testbed Experiments using the SensLAB platform

like in the simulations performed under the Worldsens environment. A second option

was to use the MSP430 timers.

The first option proved to be unsuitable in the real-life experiments. Due to the fact

that in the case of the simple protocol (keeping the CC1100 in RX during backoffs) the

interrupt for flushing the RX FIFO was called much more often and for a number of

times impossible to estimate and that the time required for the RX FIFO flushing was

added to the delay time, the simple protocol did not behave similarly to the optimized

ones.

We therefore chose the second option, i.e. we used the timerB on the MSP430.

Thus the flushing of the radio was performed while the timers were counting and the

flushing time was not added to the total delays.

Figure 4.13 illustrates the number of packets sent by each node for simulation

scenarios using up to 10 senders for each of the 3 driver implementations, i.e. the

Avgsent parameter previously defined. Figure 4.14 illustrated the average number of

packets (total number of packets received by the sink divided by the number of senders)

received by the sink, i.e. Avgrec, as well as the standard deviation Srec computed

according to the number of packets successfully received by the sink for each individual

sender.

As it can be seen, the three driver implementations send approximately the same

number of packets while the sink receives the same average number of packets. Al-

though the evaluation of the energy consumption on real platform was not possible,

the experiments still proved that optimizing the protocol from the energy consumption

point of view doesn’t change its functional parameters.

If the energy evaluation would be possible in the future, it will report the consump-

tion at the level of the entire platform. The stochastic model and the simulation results

reflect the energy gain only at the radio level. Evaluating the energy consumption at

the level of the entire platform would surely result in lower overall gains as the base

power consumption of the platform will remain unchanged.

Conclusions Although the Senslab experiments could not confirm the power con-

sumption gains due to the previously mentioned problems to be fixed on the platform,

the experimentations made allowed us to draw several conclusions:

• Experimentations are tedious and error prone

93

4. EXPERIMENTAL EVALUATION

• Testbeds are the only way to go to test software in high load conditions

• Even if MantisOS has been used in many projects it still contained severe bugs

when used in corner cases communications

• Our method allows to generate replacement code that does not alter the system

behavior (proved in real-testbed experimentation) while optimizing the power

consumption (proved by simulation)

• Writing low level code like the one considered in this section should be automated

or made using assistants and design tools as the code is very error prone

• Generating code skeletons instead of real code is useful since it offers a base

which can later be completed with the API calls which are most suitable for the

particular application/protocol that needs to be mapped (e.g. timer calls proved

to be more suitable to implement delays in the B-MAC example than busy waiting

which was interfering with the radio RXFIFO flush from the CPU point of view).

94

5

Conclusion and Perspectives

Recent achievements in the domain of micro-electro-mechanical systems (MEMS) and

micro-electronic devices have lead to the developpment of a new field of applications for

wireless networks: the Wireless Sensor Networks (WSN). The constant search towards

the miniaturisation of sensor nodes comes at the price of increased resource constraints:

computation, memory and most importantly-energy.

The desired behavior of embedded systems is usually subject to time constraints

and it involves interactions with a set of physical devices or components, each with its

own individual and specific constraints.

In this thesis, we addressed the problem of mapping a software protocol to a physical

device such that software time constraints are guaranteed and the energy consumption

is minimized.

We chose a model derived from timed automata for describing the software protocol

behavior. We classified the software states as fixed – corresponding to a unique state

in the device automaton – and free – whose mapping is left at the designer’s choice.

We described the physical device through a finite state machine with annotations.

In the case of a physical device with states of fixed or variable duration but with

lower limit constraint, we prove that the problem of mapping a free software state of

fixed duration to a path in the physical device such that the energy consumption of the

path is minimal is NP complete.

We proposed a generic methodology that allows a mapping of a software protocol to

a physical device that guarantees that all the time constraints are met and all feasible

transitions in the protocol automaton remain realizable, all while minimizing the energy

consumed.

95

5. CONCLUSION AND PERSPECTIVES

The output of this mapping algorithm is a code skeleton that implements the in-

tended behavior optimized for a given hardware. This code skeleton can be generated

to further provide portability among different platforms and generate low level calls to

communication APIs and operating system functionality.

We illustrated the energy gains that can be obtained by our approach with the

mapping of the well-known B-MAC WSN protocol onto a common radio device namely

the CC1100 RF transceiver. We investigated a network scenario where a set of saturated

nodes contend for the channel trying to transmit data to one sink.

We developed a stochastic model for modeling the behavior of a node in this net-

work scenario and obtained a theoretical gain of 60%. The code skeleton obtained

for the MAC to radio mapping adapted to MantisOS was simulated under the World-

sens environment and the theoretical gains at the radio level were confirmed. Finally,

real-testbed experiments on the SensLAB platform illustrated that the optimization in

terms of energy consumption did not affect the functional parameters of the protocol.

Perspectives

In this thesis we investigated the problem of mapping one software protocol on

one physical device while minimizing the energy consumption. Basically we focused

on solving a one-to-one mapping problem with the additional goal of minimizing the

energy consumed.

We propose three directions for the extension of our work.

A straight-forward extension is the mapping of a software application that interacts

with several devices: a one-to-many mapping. A typical example of such an appli-

cation is a machine-to-machine bio-logging application, where a sensor node attached

to the subject of observation periodically takes samples of a physical characteristic

(e.g. cardiac rhythm, temperature) and then sends these values to the network. If

the application is simple and the two (or more) devices do not interfere in using other

shared resources like buses, there exists an immediate solution: map each automaton

independently to the corresponding device. The communication between the two can

be achieved through signals. In this particular example, when the sampling automaton

has obtained a sampled value, it can output a signal indicating so. The latter would

be an input signal for the radio protocol that would trigger its execution.

A second extension would be the mapping of several applications interacting con-

currently with the same device: a many-to-one mapping. A typical example would be

96

the case of two application protocols driving the same physical device. An immediate

solution to this problem would be to generate the cartesian product of the two software

automata of the interacting applications. A first problem that is raised by this attempt

of solution is the increased number of states in the product. Secondly, the generated

product might not respect the constraints we imposed to the general model of timed

automata in order to allow the mapping. The mapping for this case of combined au-

tomata remains an open problem. Another solution would be to use global control as

in [6] to ensure the mutual exclusion over the device for the interacting applications.

Finally, achieving local optimum does not necessarily imply global optimum. Thus,

fine energy optimization at the level of a particular device might imply frequent tran-

sitions in the device finite state machine. These transitions might require the micro-

controller to remain in a higher consumption state or at least to be woken up frequently

in order to command the transitions in the device state machine. It might be possible

to obtain lower energy consumption by keeping the device in a higher consumption

state with the advantage of keeping the MCU into a low-power mode. Solving this

problem requires to extend the model in order to take into consideration the MCU as

well. A possible attempt of a solution is to inject the MCU external constraints into

the software protocol models.

97

5. CONCLUSION AND PERSPECTIVES

98

Bibliography

[1] R. Alur and D. L. Dill. A theory of timed automata.
Theoretical Computer Science, 126:183–235, 1994. 22, 24

[2] A. Bachir, D. Barthel, M. Heusse, and A. Duda. Micro-
frame preamble mac for multihop wireless sensor net-
works. In Communications, 2006. ICC ’06. IEEE Inter-
national Conference on, volume 7, pages 3365 –3370, june
2006. 17

[3] A. Bachir, L. Samper, D. Barthel, M. Heusse, and
A. Duda. Link cost and reliability of frame preamble
mac protocols. In Sensor and Ad Hoc Communications
and Networks, 2006. SECON ’06. 2006 3rd Annual IEEE
Communications Society on, volume 2, pages 632 –638,
sept. 2006. 17

[4] A. Barroso, U. Roedig, and C. Sreenan. mu;-mac: an
energy-efficient medium access control for wireless sen-
sor networks. In Wireless Sensor Networks, 2005. Pro-
ceeedings of the Second European Workshop on, pages 70
– 80, jan.-2 feb. 2005. 18

[5] J. Bengtsson and W. Yi. Timed automata: Semantics,
algorithms and tools. In Lectures on Concurrency and
Petri Nets, LNCS. 2004. 25, 38

[6] N. Berthier, F. Maraninchi, and L. Mounier. Syn-
chronous programming of device drivers for global re-
source control in embedded operating systems. SIG-
PLAN Not., 46:81–90. 21, 97

[7] S. Bhatti, J. Carlson, H. Dai, J. Deng, J. Rose, A. Sheth,
B. Shucker, C. Gruenwald, A. Torgerson, and R. Han.
Mantis os: An embedded multithreaded operating sys-
tem for wireless micro sensor platforms. In ACM/Kluwer
Mobile Networks and Applications (MONET), Special Is-
sue on Wireless Sensor Networks, page 2005, 2005. 56,
80

[8] G. Bianchi. Performance analysis of the ieee 802.11 dis-
tributed coordination function. IEEE J-SAC, 18(3):535–
547, March 2000. 69

[9] P. Bouyer, E. Brinksma, and K. G. Larsen. Optimal infi-
nite scheduling for multi-priced timed automata. Form.
Methods Syst. Des., 32(1):3–23, 2008. 22

[10] C. Burin Des Rosiers, G. Chelius, E. Fleury,
A. Fraboulet, A. Gallais, N. Mitton, and T. Noël.
SensLAB Very Large Scale Open Wireless Sensor Net-
work Testbed. In Proc. 7th International ICST Confer-
ence on Testbeds and Research Infrastructures for the De-
velopment of Networks and Communities (TridentCOM),
Shanghai, China, Apr. 2011. 84

[11] D. R. Butenhof. Programming with POSIX threads.
Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1997. 56

[12] A. Chis, E. Fleury, and A. Fraboulet. An optimized mac
layer to physical device mapping methodology. In Mo-
bility ’09: Proceedings of the 6th International Conference
on Mobile Technology, Application and Systems, pages 1–
8, New York, NY, USA, 2009. ACM. 4, 83

[13] A. Chis, E. Fleury, and A. Fraboulet. Cross-layer op-
timization for mac layer to physical device communica-
tion protocol mapping. In Proceedings of the 19th In-
ternational Conference on Real-Time and Network Sys-
tems (RTNS’11), Proceedings of 19th International Con-
ference on Real-Time and Network Systems (RTNS11),
pages 169–178, September 2011. 4

[14] S. Cho, K. Kanuri, J.-W. Cho, J.-Y. Lee, and S.-D.
June. Dynamic energy efficient tdma-based mac pro-
tocol forwireless sensor networks. In Autonomic and Au-
tonomous Systems and International Conference on Net-
working and Services, 2005. ICAS-ICNS 2005. Joint In-
ternational Conference on, page 48, oct. 2005. 18

[15] C. L. Conway. Ndl: a domain-specific language for de-
vice drivers. In In Proceedings of Languages, Compilers,
and Tools for Embedded Systems (LCTES, pages 30–36.
ACM Press, 2004. 20

[16] A. Courbot, G. Grimaud, J.-J. Vandewalle, and
D. Simplot-Ryl. Application-driven customization of an
embedded java virtual machine. In EUC Workshops,
pages 81–90, 2005. 2

[17] A. Dunkels, B. Gronvall, and T. Voigt. Contiki - a
lightweight and flexible operating system for tiny net-
worked sensors. In Proceedings of the 29th Annual IEEE
International Conference on Local Computer Networks,
LCN ’04, pages 455–462, Washington, DC, USA, 2004.
IEEE Computer Society. 2, 63

[18] A. Dunkels, O. Schmidt, T. Voigt, and M. Ali. Pro-
tothreads: simplifying event-driven programming of
memory-constrained embedded systems. In Proceedings
of the 4th international conference on Embedded networked
sensor systems, SenSys ’06, pages 29–42, New York, NY,
USA, 2006. ACM. 64

[19] C. Enz, A. El-Hoiydi, J.-D. Decotignie, and V. Peiris.
Wisenet: an ultralow-power wireless sensor network so-
lution. Computer, 37(8):62 – 70, aug. 2004. 16

[20] G. Feltrin, O. Saukh, R. Bischoff, J. Meyer, and M. Mo-
tavalli. Structural monitoring with wireless sensor net-
works: Experiences from field deployments. In Pro-
ceedings of First Middle East Conference on Smart Mon-
itoring, Assessment and Rehabilitation of Civil Structures
SMAR, 2011. 9

[21] E. Fleury and D. Simplot-Ryl. Réseaux de capteurs :
théorie et modélisation. Architecture, Applications, Ser-
vice. Hermes, 2009. 7

[22] A. Fraboulet, G. Chelius, and E. Fleury. Worldsens: De-
velopment and prototyping tools for application specific
wireless sensors networks. In IPSN’07 (SPOTS). ACM,
2007. 77, 79

[23] A. Friggeri, G. Chelius, E. Fleury, A. Fraboulet,
F. Mentré, and J. C. Lucet. Reconstructing social in-
teractions using an unreliable wireless sensor network.
Comput. Commun., 34:609–618, April 2011. 9

[24] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer,
and D. Culler. The nesc language: A holistic approach to
networked embedded systems. In Proceedings of the ACM
SIGPLAN 2003 conference on Programming language de-
sign and implementation, PLDI ’03, pages 1–11, New
York, NY, USA, 2003. ACM. 62

[25] J. Hill and D. Culler. Mica: a wireless platform for
deeply embedded networks. Micro, IEEE, 22(6):12 – 24,
nov/dec 2002. 11

[26] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and
K. Pister. System architecture directions for networked
sensors. SIGPLAN Not., 35:93–104, November 2000. 2,
62

99

BIBLIOGRAPHY

[27] D. C. Joseph Polastre, Jason Hill. Versatile low power
media access for wireless sensor networks. In SenSys,
2004. 15, 27

[28] H. Karl and A. Willig. Protocols and Architectures for
Wireless Sensor Networks. John Wiley & Sons, 2005. 7

[29] K. G. Larsen, G. Behrmann, E. Brinksma, A. Fehnker,
T. Hune, P. Pettersson, and J. Romijn. As cheap as
possible: Efficient cost-optimal reachability for priced
timed automata. In CAV, 2001. 22

[30] K. Lorincz, M. Welsh, O. Marcillo, J. Johnson, M. Ruiz,
and J. Lees. Deploying a wireless sensor network on an
active volcano. In IEEE Internet Computing, pages 18–
25, 2006. 8

[31] G. S. Lueker. Two NP-complete problems in nonneg-
ative integer programming. Technical Report 178, CS,
Princeton University, 1975. 45

[32] F. Mérillon, L. Réveillère, C. Consel, R. Marlet, and
G. Muller. Devil: an IDL for hardware programming. In
OSDI. USENIX, 2000. 20

[33] R. S. Oliver, I. Shcherbakov, and G. Fohler. An oper-
ating system abstraction layer for portable applications
in wireless sensor networks. In Proceedings of the 2010
ACM Symposium on Applied Computing, SAC ’10, pages
742–748, New York, NY, USA, 2010. ACM. 2

[34] M. O’Nils and A. Jantsch. Operating system sensitive
device driver synthesis from implementation indepen-
dent protocol specification. In DATE. ACM, 1999. 20

[35] J. Polastre, R. Szewczyk, and D. Culler. Telos: enabling
ultra-low power wireless research. In Information Pro-
cessing in Sensor Networks, 2005. IPSN 2005. Fourth In-
ternational Symposium on, pages 364 – 369, april 2005.
11

[36] I. Rhee, A. Warrier, M. Aia, J. Min, and M. Sichitiu.
Z-mac: A hybrid mac for wireless sensor networks. Net-
working, IEEE/ACM Transactions on, 16(3):511 –524,
june 2008. 19

[37] Richard Barry. The FreeRTOS Project. online
http://www.freertos.org/, 2011. 2, 58

[38] R. Serna Oliver and G. Fohler. Timeliness in wireless
sensor networks: Common misconceptions. In Proceed-
ings of the 9th International Workshop on Real-Time Net-
works RTN’2010, Brussels, Belgium, July 2010. 2

[39] G. Simon, M. Marti, kos Ldeczi, G. Balogh, B. Kusy,
A. Ndas, G. Pap, J. Sallai, and K. Frampton. Sensor
network-based countersniper system. pages 1–12. ACM
Press, 2004. 8

[40] R. Szewczyk, A. Mainwaring, J. Polastre, J. Anderson,
and D. Culler. An analysis of a large scale habitat mon-
itoring application. In In Proceedings of the Second ACM
Conference on Embedded Networked Sensor Systems (Sen-
Sys, pages 214–226, 2004. 8

[41] I. Talzi, A. Hasler, S. Gruber, and C. Tschudin. Per-
masense: investigating permafrost with a wsn in the
swiss alps. In Proceedings of the 4th workshop on Em-
bedded networked sensors, EmNets ’07, pages 8–12, New
York, NY, USA, 2007. ACM. 8

[42] Texas Instruments. CC1100 single chip low cost low
power rf-transceiver, 2006. 29

[43] G. Tolle, J. Polastre, R. Szewczyk, D. Culler, N. Turner,
K. Tu, S. Burgess, T. Dawson, P. Buonadonna, D. Gay,
and W. Hong. A macroscope in the redwoods. In Pro-
ceedings of the 3rd international conference on Embedded
networked sensor systems, SenSys ’05, pages 51–63, New
York, NY, USA, 2005. ACM. 8

[44] S. L. Torre, S. Mukhopadhyay, and A. Murano. Optimal-
reachability and control for acyclic weighted timed au-
tomata. In TCS. IFIP, 2002. 22

[45] T. van Dam and K. Langendoen. An adaptive energy-
efficient mac protocol for wireless sensor networks. In
Proceedings of the 1st international conference on Embed-
ded networked sensor systems, SenSys ’03, pages 171–180,
New York, NY, USA, 2003. ACM. 15

[46] D. Wagner and R. Wattenhofer. Algorithms for Sensor
and Ad Hoc Networks: Advanced Lectures (Lecture Notes
in Computer Science). Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2007. 7

[47] W. Ye, J. Heidemann, and D. Estrin. An energy-efficient
mac protocol for wireless sensor networks. In INFO-
COM 2002. Twenty-First Annual Joint Conference of the
IEEE Computer and Communications Societies. Proceed-
ings. IEEE, volume 3, pages 1567 – 1576 vol.3, 2002. 14

[48] J. Yick, B. Mukherjee, and D. Ghosal. Wireless sensor
network survey. Comput. Netw., 52:2292–2330, August
2008. 7

100

http://www.freertos.org/

