
HAL Id: tel-00769044
https://theses.hal.science/tel-00769044

Submitted on 27 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mechanized Formal Semantics and Verified Compilation
for C++ Objects
Tahina Ramananandro

To cite this version:
Tahina Ramananandro. Mechanized Formal Semantics and Verified Compilation for C++ Ob-
jects. Programming Languages [cs.PL]. Université Paris-Diderot - Paris VII, 2012. English. �NNT :
2012PA077001�. �tel-00769044�

https://theses.hal.science/tel-00769044
https://hal.archives-ouvertes.fr

THÈSE
pour l'obtention du titre de

Docteur

de l'

Université Paris. Diderot (Paris 7)

École doctorale 386 � Sciences Mathématiques de Paris-Centre

spécialité

Informatique

Les objets en C++ :
sémantique formelle mécanisée

et compilation véri�ée

Mechanized Formal Semantics

and Veri�ed Compilation

for C++ Objects

par

Tahina Ramananandro
soutenue le

10 janvier 2012

à l'

École normale supérieure

devant le Jury composé de

Directeur
Xavier Leroy INRIA Paris-Rocquencourt

Rapporteurs
Thomas Jensen INRIA Rennes Bretagne Atlantique
Michael Norrish NICTA (Australie)

Examinateurs
Patrick Cousot École normale supérieure
Roberto Di Cosmo Université Paris. Diderot (Paris 7)
Gabriel Dos Reis Texas A&M University (USA)
Claude Marché INRIA Saclay Île-de-France

Résumé

C++ est un des langages de programmation les plus utilisés en pratique, y compris pour le logiciel

embarqué critique. C'est pourquoi la véri�cation de programmes écrits en C++ devient intéressante,

en particulier via l'utilisation de méthodes formelles. Pour cela, il est nécessaire de se fonder sur une

sémantique formelle de C++. De plus, une telle sémantique formelle peut être validée en la prenant

comme base pour la spéci�cation et la preuve d'un compilateur C++ réaliste, a�n d'établir la con�ance

dans les techniques usuelles des compilateurs C++. Dans cette thèse, nous nous focalisons sur le modèle

objet de C++.

Nous proposons une sémantique formelle de l'héritage multiple en C++ comprenant les structures

imbriquées à la C, sur laquelle s'appuie notre étude de la représentation concrète des objets avec

optimisations des bases vides, à travers des conditions su�santes que nous prouvons correctes vis-

à-vis des accès aux champs et des opérations polymorphes. Puis nous spéci�ons un algorithme de

représentation en mémoire fondé sur l'ABI pour Itanium, et une extension de cet algorithme avec

optimisations des champs vides, et nous prouvons qu'ils satisfont nos conditions. Nous obtenons alors

un compilateur véri�é et réaliste d'un sous-ensemble de C++ vers un langage à trois adresses et accès

mémoire de bas niveau.

Rajoutant à notre sémantique la construction et la destruction d'objets, nous étudions leurs inter-

actions avec l'héritage multiple. Cela nous permet de formaliser la gestion de ressources, notamment

le principe RAII (resource acquisition is initialization) via l'ordre de construction et destruction des

sous-objets. Nous étudions aussi les e�ets sur les opérations polymorphes telles que la sélection de fonc-

tion virtuelle pendant la construction et la destruction, en généralisant la notion de type dynamique.

Nous obtenons alors un compilateur véri�é pour notre sémantique étendue, notamment en prouvant

la correction de l'implémentation des changements de types dynamiques. Toutes nos spéci�cations et

preuves sont formalisées en Coq.

Abstract

C++ is one of the most widely used programming languages in practice, including for embedded

critical software. Thus, it becomes interesting to apply formal methods to programs written in C++.

To this end, it is necessary to rely on a formal semantics of C++. Moreover, such a formal semantics

can be validated as a basis to the speci�cation and proof of a veri�ed realistic compiler for C++ to gain

con�dence in the implementation techniques of mainstream C++ compilers. In this thesis, we focus on

the C++ object model.

We formally specify C++multiple inheritance with C-style embedded structures, leading us to study

the concrete representation of objects with empty base optimizations. We propose a set of su�cient

layout conditions, and we show that they are sound with respect to �eld accesses and polymorphic

operations. We then specify a realistic layout algorithm based on the Common Vendor ABI for Ita-

nium, and an extension performing empty member optimizations, and we prove that they satisfy our

conditions. We obtain a veri�ed realistic compiler from a subset of C++ to a 3-address language with

low-level memory accesses.

Extending our semantics with object construction and destruction, we study their intrications with

multiple inheritance. This leads us to formalize resource management, namely �resource acquisition

is initialization� through the subobject construction and destruction order. We also study the impact

on polymorphic operations such as virtual function dispatch during construction and destruction, by

generalizing the notion of dynamic type. We obtain a veri�ed compiler for our extended semantics, in

particular by verifying the implementation of dynamic type changes. All our speci�cations and proofs

are carried out with Coq.

Table des matières

Remerciements 15

0 Aperçu 17
0.1 Contexte . 17

0.1.1 Véri�cation de logiciels . 17
0.1.2 Sémantique formelle . 19
0.1.3 Compilation véri�ée . 19
0.1.4 Le langage C++ . 21

0.2 Contributions scienti�ques . 21
0.2.1 Représentation concrète des objets en mémoire (layout) 22
0.2.2 Construction et destruction des objets 23

0.3 Bilan . 24
0.3.1 L'expérience Coq . 24
0.3.2 Impacts pratiques . 24
0.3.3 Impacts potentiels . 25
0.3.4 Travaux futurs . 25

© Preliminaries 29

1 Introduction 31
1.1 Context . 31

1.1.1 Software veri�cation . 31
1.1.2 Formal semantics . 32
1.1.3 Veri�ed compilation . 33
1.1.4 The C++ language . 34

1.2 Summary of the contributions . 34
1.2.1 Object layout . 35
1.2.2 Object construction and destruction . 36

2 Tutorial: the C++ object model 39
2.1 Classes and instances. Aggregation (has-a) . 39
2.2 Inheritance (is-a). Virtual functions . 41

2.2.1 Virtual functions: overriding and dispatch 41
2.2.2 Casts . 43
2.2.3 Inheritance for the purpose of subtyping 44

2.3 Multiple inheritance . 45

2.3.1 Ambiguous subobjects . 47
2.3.2 Cross cast . 49

2.4 Virtual inheritance . 50
2.4.1 Virtual base classes . 50
2.4.2 Casts . 52
2.4.3 Virtual functions: �nal overrider, domination, delegation to sister class . 52

2.5 Construction and destruction . 55
2.5.1 The lifetime of objects . 55
2.5.2 Object initialization . 55
2.5.3 RAII: Resource acquisition is initialization 56
2.5.4 Construction and destruction order . 57
2.5.5 Inheritance . 58
2.5.6 Virtual inheritance . 60
2.5.7 Summary of construction and destruction principles 62

3 Setting and notations 63

3.1 Overall notations . 63
3.2 Small-step operational semantics . 66

3.2.1 Observational semantics of traces . 66
3.2.2 Transition system, programming language 66
3.2.3 Sequences of transition steps . 67
3.2.4 Built-in types, values and operations . 67

I Veri�cation of C++ object layout 69

4 The semantics of C++ multiple inheritance 71

4.1 Classes and subobjects . 71
4.1.1 Class hierarchy . 71
4.1.2 Inheritance paths . 73
4.1.3 Structure array �elds: array paths and generalized subobjects 76
4.1.4 Well-formed hierarchies . 78

4.2 Syntax of the s++ language . 80
4.3 Semantic elements . 82

4.3.1 Values . 82
4.3.2 Execution state . 82

4.4 Semantic rules . 83
4.4.1 Features unrelated to C++ multiple inheritance 83
4.4.2 Static and non-virtual function call . 85
4.4.3 Field and array accesses, and pointer equality test 86
4.4.4 Static cast . 87
4.4.5 Dynamic cast . 88
4.4.6 Virtual function call . 90

5 Formalization of object layout 93

5.1 The object layout problem . 93
5.2 Impact of C++ multiple inheritance on data layout 95

5.2.1 Non-virtual inheritance . 95
5.2.2 Dynamic type data . 96
5.2.3 Virtual inheritance . 96

5.3 Optimizations . 98
5.3.1 Dynamic type data sharing . 98
5.3.2 Reusing tail padding . 99
5.3.3 Empty base optimization . 99

5.4 Formal interface of a layout algorithm . 102
5.5 Soundness conditions . 106

5.5.1 Total size . 106
5.5.2 Alignment . 108
5.5.3 Data size . 110
5.5.4 Non-overlapping of data . 113
5.5.5 Dynamic type data . 117
5.5.6 Identity of subobjects . 122

6 Veri�cation of realistic layout algorithms 127

6.1 An algorithm based on the C++ Common Vendor ABI 127
6.2 An optimized algorithm: CCCPP . 131

7 Application of veri�ed object layout to a veri�ed compiler 135

7.1 Virtual tables . 135
7.2 The Vcm target language . 137

7.2.1 Syntax . 137
7.2.2 Memory model . 139
7.2.3 Execution state . 141
7.2.4 Semantic rules . 141

7.3 A compiler from s++ to Vcm . 145
7.3.1 Virtual tables . 146
7.3.2 Operations unrelated to C++ multiple inheritance 152
7.3.3 Field and array accesses . 152
7.3.4 Pointer equality tests . 153
7.3.5 Static casts . 153
7.3.6 Dynamic casts . 154
7.3.7 Virtual function dispatch . 154

7.4 Correctness of the compiler . 154
7.4.1 Values . 155
7.4.2 Continuation stack . 155
7.4.3 Memory . 156
7.4.4 Invariant preservation . 156

8 Discussion 159
8.1 The Coq development . 159
8.2 Related work . 160

8.2.1 Formalizations of C++ multiple inheritance 160
8.2.2 Concrete object layout . 160

8.3 Application to other languages with inheritance 161
8.4 Future work . 162

8.4.1 Extending the semantics of s++ . 162
8.4.2 Covering more layout optimizations . 165

II Veri�cation of C++ object construction and destruction 169

9 The semantics of C++ construction and destruction 171
9.1 Overview of the construction and destruction process 171

9.1.1 Construction . 171
9.1.2 Destruction . 174

9.2 Syntax of κ++ . 174
9.3 Semantic elements . 176

9.3.1 Construction states . 176
9.3.2 Values . 178
9.3.3 Execution state . 178
9.3.4 Initial and �nal states . 183

9.4 Semantic rules . 183
9.4.1 Structured control and built-in operations 183
9.4.2 Static and non-virtual function call . 185
9.4.3 Object-oriented features . 185
9.4.4 Construction . 189
9.4.5 Destruction . 193

9.5 Impact on the C++ language speci�cation . 195
9.5.1 Virtual function calls during �eld destruction 196
9.5.2 Object lifetime . 196

10 Formalization of object lifetime 199
10.1 κ++ Run-Time invariant . 199

10.1.1 (⋆) Contextual invariants . 200
10.1.2 Stack objects and constructed stack objects 206
10.1.3 General relations between construction states 207

10.2 Progress . 210
10.3 RAII: Resource Acquisition is Initialization . 211

10.3.1 Increase . 211
10.3.2 Construction and destruction order of two subobjects of the same com-

plete object . 212
10.3.3 Formal account of RAII . 215
10.3.4 Subobjects of di�erent complete objects 216

10.4 Safety of scalar �eld accesses . 217
10.5 The generalized dynamic type of a subobject . 218

10.5.1 Safety of virtual function calls . 218
10.5.2 Unicity . 218
10.5.3 Evolution . 220

11 Veri�ed compilation of object construction and destruction 223
11.1 Strategy . 223

11.1.1 Constructors and destructors . 223
11.1.2 Virtual functions during construction and destruction 233
11.1.3 Optimizations . 243

11.2 Syntax of the Ds++ intermediate language . 245
11.3 Ds++ semantic elements . 246

11.3.1 Values . 246
11.3.2 Execution state . 246
11.3.3 Initial and �nal states . 247

11.4 Ds++ Semantic rules . 248
11.4.1 Built-in operations and structured control 248
11.4.2 Blocks with no stack objects . 248
11.4.3 Static and non-virtual functions . 249
11.4.4 Field and array accesses; pointer comparison 249
11.4.5 Blocks with stack objects . 250
11.4.6 Virtual function call . 250
11.4.7 Dynamic cast . 251
11.4.8 Static cast . 251
11.4.9 Special casts to bases . 251
11.4.10Set dynamic type . 252
11.4.11Construction paths . 253

11.5 A compiler from κ++ to Ds++ . 254
11.5.1 Compilation contexts . 254
11.5.2 Statements unrelated to construction and destruction 256
11.5.3 Blocks with stack objects . 258
11.5.4 Constructor names . 260
11.5.5 Constructor calls . 260
11.5.6 Destructor names . 260
11.5.7 Leaving blocks . 261
11.5.8 Functions . 264
11.5.9 Constructors . 264
11.5.10Destructors . 268

11.6 Correctness of the κ++-to-Ds++ compiler . 271
11.6.1 Global states . 271
11.6.2 (⋆) Execution points and continuation stack frames unrelated to construc-

tion or destruction . 273
11.6.3 (⋆) Construction . 277
11.6.4 (⋆) Destruction . 281
11.6.5 Forward simulation . 284

11.7 The CVcm target language . 286
11.7.1 Virtual table tables . 286

11.7.2 Syntax . 286
11.7.3 Memory model . 289
11.7.4 Semantic elements . 290
11.7.5 Semantic rules . 291

11.8 A compiler from Ds++ to CVcm . 293
11.8.1 Construction of virtual tables . 293
11.8.2 Construction of virtual table tables . 296
11.8.3 Operations unrelated to C++ construction or destruction 297
11.8.4 Blocks with stack objects . 297
11.8.5 Special casts to bases . 297
11.8.6 Set dynamic type . 297
11.8.7 Construction paths . 301

11.9 Correctness of the Ds++-to-CVcm compiler . 302
11.9.1 Values . 302
11.9.2 Continuation stack . 302
11.9.3 Memory . 303
11.9.4 Forward simulation . 304

12 Discussion 307
12.1 The Coq development . 307
12.2 Related work . 308

12.2.1 C++ object construction and destruction 308
12.2.2 Safety of object initialization . 311

12.3 Comparison with other languages . 311
12.4 Future work . 312

12.4.1 Extending the semantics of κ++ . 312
12.4.2 Compiler optimizations . 321

∞ In closing 323

13 Conclusion and perspectives 325
13.1 Assessment . 325

13.1.1 The Coq experiment . 325
13.1.2 Practical impact of our work . 326
13.1.3 Potential impacts of our work . 326

13.2 Future work . 327
13.2.1 Exceptions . 327
13.2.2 Templates . 329
13.2.3 Concurrency . 329

13.3 Final thoughts . 330

A Architecture of the Coq development 333
A.1 Small-step semantics . 333
A.2 Semantics of C++ Multiple Inheritance . 333
A.3 Object layout . 335
A.4 Semantics of object construction and destruction 335

A.5 Veri�ed compilation . 336
A.5.1 κ++ to Ds++ . 336
A.5.2 Ds++ to CVcm . 336

B Formal veri�cation of compilers 337
B.1 Program behaviours . 337
B.2 Semantics preservation . 338

B.2.1 Backward simulation . 338
B.2.2 Forward simulation . 339

Bibliography 343

Index of theorems 349

Index of concepts 351

Index of equations 353

Index of notations 357

Ordre ! Discipline ! Rigueur !

Remerciements

Je tiens à remercier en tout premier lieu mon maître de thèse Xavier Leroy. C'est lui qui
m'a transmis tous ses éléments de rigueur scienti�que, dans la droite lignée de mes anciens
professeurs d'informatique et de mathématiques du lycée Kléber de Strasbourg (notamment M.
Pister). C'est lui qui, conformément aux dires de mon prédécesseur, m'a donné toutes les clés
pour transformer le plomb en or, notamment en matière de rédaction. C'est lui, en�n, qui m'a
donné le goût de l'ambition en me montrant ma valeur réelle et en me permettant de publier,
avec succès, à l'une des conférences les plus prestigieuses dans notre domaine.

I am very thankful to my reviewers Thomas Jensen and Michael Norrish. Their reviews
helped me greatly and signi�cantly improve the quality of this thesis. Their attention to the
slightest detail to help the reader handle this quite long document really impressed me, in ad-
dition to their courage and enthusiasm, as well as their expertise on mechanically formalizing
real-world standards, which also guided me one step beyond CompCert.

Je remercie les membres de l'équipe Parasol (Texas A&M University). En premier lieu,
Gabriel Dos Reis m'a ouvert les yeux sur le monde réel de C++, et m'a donné tout le courage
pour l'a�ronter, grâce à son optimisme sans limites qui m'a permis de construire ce � pont �
entre la véri�cation formelle d'une part, et le développement de compilateurs réalistes d'autre
part, deux mondes en tension permanente autour de la conception du Standard C++. À ce titre,
je lui tire mon chapeau. I naturally bow to Bjarne Stroustrup and his all-time fellow Lawrence
Rauchberger, for they utmostly honoured me by the con�dence and the hopes they granted me
to formalize C++ multiple inheritance. Hopefully I deserve their attention.

Je remercie l'ensemble de mes camarades de laboratoire des équipes Gallium, Moscova,
Sanskrit et Contraintes, pour ces années fructueuses passées ensemble. Notamment, Sandrine
Blazy, Zaynah Dargaye, Damien Doligez, Alain Frisch, Gérard Huet, Benoît Razet et Jean-
Baptiste Tristan m'ont guidé tout au long de mes (petits ou grands) pas dans le monde de
la sémantique des langages de programmation. Je n'oublie pas Arthur Charguéraud, pour son
inestimable expérience de Coq ; ni Nicolas Pouillard, Luc Maranget, Jean-Jacques Lévy ou
Sylvain Soliman, qui tous ensemble avons tant de fois refait le monde dans le prolongement
direct de ma thèse, ce qui a eu des impacts non négligeables sur ceux-ci (ma thèse d'abord, le
monde ensuite).

Je remercie Xavier Clerc, Steven Gay, Thierry Martinez, Gabriel Scherer, et également
Denise Maurice (de l'équipe Secret), qui m'ont apporté une aide conséquente pour assurer la
clarté du présent tapuscrit (notamment le tutoriel), jusque dans la critique des exemples que
j'ai choisis. Tous méritent une part des félicitations adressées par mes rapporteurs.

Je remercie l'équipe Marelle, notamment Philippe Audébaud, Yves Bertot, Laurent Théry
et Laurence Rideau, qui m'ont initié à Coq, qui m'ont montré la voie. Je leur dois tout.

I wish to thank Mark Batty, with whom we shared our views on the practices of the C++
Standard Committee, to keep our works realistic, so that they may complete each other.

Les objets en C++ : sémantique formelle mécanisée et compilation véri�ée 15

Remerciements

Je remercie chaleureusement, pour leur participation à mon jury de thèse qui a été un
grand honneur pour moi, Roberto Di Cosmo et Claude Marché, mais aussi Patrick Cousot, qui
a toujours su nous épauler, mes camarades et moi, tout au long de notre scolarité à Ulm et
au-delà, jusqu'à ses interventions pour me permettre de soutenir au sein de l'École normale
supérieure, là où tout commença en 2004, et là où tout �nira désormais.

Je remercie également les autres membres de l'équipe Sémantique et Interprétation Ab-
straite, à Ulm, qui me recueillirent ainsi les bras grand ouverts alors que la �n approchait.
Spécialement, je remercie Xavier Rival, qui, grâce à ses précieux conseils, m'a guidé pendant
la �nalisation de ma thèse et de ma soutenance. À ce titre, je remercie également le personnel
administratif du Département d'Informatique de l'ENS : Michelle Angély, Lise-Marie Bivard,
Joëlle Isnard et Valérie Mongiat, ainsi que Sylvia Imbert qui les a précédées ; mais aussi Régine
Guittard, de l'école doctorale 386.

Je remercie toutes celles et tous ceux qui m'ont épaulé durant toutes ces années depuis 2004
et ma scolarité à Ulm jusqu'à ma soutenance. La liste serait bien trop longue, j'espère qu'on ne
m'en voudra pas trop. Notamment le forum des élèves (et anciens) de l'ENS, qui m'a permis
de me compter parmi les geeks après mes longues nuits blanches sous jonque ou passées à
jouer à des parties endiablées d'Arcanoïd au sein dudit club après des soirées animées par les
clubs Animescens, BD-thèque, Cirque, Jeux, Sporz, ou encore le Département Clandestin de
Lagodéblatératique au sein du 3e Rataud. L'enthousiasme de Sekhmet, Subbak et a3_nm, ainsi
que de notre regretté Jacen Solo, a joué un rôle décisif dans mes choix. Tous, des 1988 aux
2011, m'ont donné la joie de jouer et troller pendant comme avant ma thèse, me rendant plus
e�cace malgré tous les e�orts du club Inutile. Je remercie donc globalement tout le COF, et
l'ENS Ulm en général, mon alma mater, qui m'a o�ert les plus belles années de ma vie.

Je remercie aussi le Raton-Laveur, qui m'a grandement aidé à me sevrer de mon besoin
irrépressible de lignes de Coq, mais aussi à préparer mon pot de thèse depuis plusieurs semestres
sous le haut patronage de ses goûteurs impitoyables, insatiables et parfois même insatis�ables.

Je remercie tous ceux-là, Ulmiens et Lyonnais, ainsi que d'autres encore que je n'ai pas cités
ici, qui, par le jeu, les blagues nacszwxkes, jdmn et autres facéties aléatoires (ou pas), ont su
préserver le sens de ma vie comme je préserve le sens des programmes.

Je remercie aussi mes amis malgaches d'Île-de-France, Rouen, Toulouse ou ailleurs, notam-
ment Misa et les Rano, pour leur disponibilité pendant ces années de thèse.

Je remercie surtout mes oncles, tantes et cousins de Digne-les-Bains, Nancy, Cachan ou
même Madagascar, qui m'ont sagement et e�cacement accompagné pendant toutes mes années
d'études. Aucune distance, euclidienne, SNCF ou autre, ne fut un obstacle pour eux.

Et en�n, surtout, je remercie mes parents. Leur indéfectible soutien (notamment culinaire)
ne peut être décrit en un nombre �ni de mots, et je voudrais leur dire combien je suis �er, et
combien ils peuvent également être �ers, du résultat que nous obtenons désormais, et que con-
stitue le présent tapuscrit, fruit de plus d'un quart de siècle d'éducation rigoureuse et raisonnée,
toujours dans cet esprit de progrès qui est le leur et qui meut tout bon Malgache. Misaotra
indrindra anareo amin'ireo zavatra rehetra nataonareo ho ahy. Tsy ho adinoko mandrakizay.

Vous allez tous me manquer désormais. C'est pourquoi c'est à vous toutes et tous, sans
exception, que je dédie le présent tapuscrit.

Au revoir, et bonne continuation. Veloma daholy, ary soava dia.

16 Tahina Ramananandro

Chapitre 0

Aperçu

This chapter is intended for French-speaking readers who cannot read English. English-
speaking readers can skip it to the actual beginning of this thesis, at Part © (p. 29)

Ce chapitre est destiné aux lecteurs francophones non-anglophones. Il constitue un résumé
de la présente thèse, décrivant dans leur contexte nos contributions scienti�ques et en présentant
le bilan général.

0.1 Contexte

0.1.1 Véri�cation de logiciels

L'informatique est de plus en plus présente dans les systèmes dits critiques, tels que les
transports (chemins de fer [67], aéronautique [55], aérospatiale), les instruments militaires, ou
les dispositifs médicaux. Dans de tels domaines critiques, la moindre défaillance logicielle peut
causer des dommages extrêmement coûteux, voire mortels. Considérons par exemple l'appareil
de radiothérapie Therac-25 : entre 1985 et 1987, aux États-Unis et au Canada, les patients
traités par cette machine ont subi des surdosages massifs de rayonnements ayant entraîné la
mort d'au moins 6 d'entre eux [53]. Pour expliquer ces surdosages, il faut examiner les deux
modes de fonctionnement de cet appareil : soit par de faibles radiations directement envoyées sur
le patient, soit par de fortes radiations envoyées indirectement à travers une cible intermédiaire.
En réalité, le logiciel embarqué dans l'appareil n'a pas pu activer correctement le bon mode, ce
qui a conduit à ces surdosages. De telles surexpositions peuvent même résulter d'une mauvaise
gestion des erreurs au niveau de composants logiciels considérés comme moins critiques tels que
l'interface utilisateur mise à disposition de l'opérateur humain pour contrôler l'appareil. C'est
ce qui s'est produit au Panama avec un autre appareil de radiothérapie entre 2000 et 2002 :
l'interface utilisateur n'a pas contrôlé la validité des données entrées par les médecins, ce qui a
entraîné la mort d'au moins 17 patients [18].

Heureusement, les défaillances logicielles ne sont pas systématiquement mortelles. Cepen-
dant, elles peuvent entraîner des pertes �nancières importantes, de l'ordre de 370 millions de
dollars américains dans le cas de l'échec du vol inaugural d'Ariane 5 en 1996 : un dépassement
de capacité dans un calcul d'entiers [28] a perturbé le fonctionnement du logiciel embarqué,
entraînant la perte de la fusée et de sa charge, le vaisseau Cluster du programme commun
Agence spatiale europénne � NASA, dont la perte a par la suite entraîné 4 années de retard
dans le développement du projet.

Les objets en C++ : sémantique formelle mécanisée et compilation véri�ée 17

Aperçu

Dans son étude [27], Dershowitz a établi une liste de défaillances logicielles parmi les plus
coûteuses (en termes �nanciers et humains) de l'histoire du logiciel embarqué critique. Éviter
de telles défaillances devient donc la motivation principale de la recherche d'un moyen d'établir
la con�ance dans le logiciel critique. L'approche habituellement adoptée dans l'industrie du
logiciel embarqué critique inclut le test [46], qui consiste à faire tourner le logiciel dans des
environnements de test �ctifs pour découvrir des erreurs logicielles, ou bogues. L'industrie fait
également appel à la relecture de code manuelle telle que l'inspection de Fagan [31]. En pra-
tique, le test et la relecture de code se sont révélés relativement e�caces à ce jour : parmi les
accidents mortels dans l'ère (actuelle) de l'aviation assistée par électronique, aucun n'est dû à
une défaillance logicielle. Cet état de fait est rendu possible, en partie par les règlementations
o�cielles telles que DO-178B [65] qui normalisent et rendent systématiques ces procédures de
test et de relecture de code en vue de la certi�cation de logiciels aéronautiques. Cependant, le
temps et le prix de telles procédures de test et de relecture de code se révèlent extrêmement
élevés. De surcroît, il est di�cile de garantir que les tests couvrent tous les cas possibles. En
outre, il est de plus en plus douteux que ces méthodes passent à l'échelle au regard de l'aug-
mentation continue de la taille et de la complexité des systèmes critiques : alors que la taille
du code embarqué dans un Airbus A320 approche les 10 mégaoctets, celle d'un A380 se chi�re
en plusieurs centaines de mégaoctets [34].

Une alternative prometteuse ou complémentaire au test est la véri�cation de logiciels en
faisant appel aux méthodes formelles, a�n de réduire les coûts des procédures de test et d'ac-
croître la con�ance dans les programmes. La véri�cation de logiciels permet aux programmeurs
d'établir des propriétés de haut niveau sur leurs programmes et ce statiquement, c'est-à-dire sans
avoir à les exécuter e�ectivement. Parmi de telles propriétés de haut niveau, on peut vouloir
établir l'absence d'erreurs à l'exécution, l'inaccessibilité d'états déclarés � impossibles �, ou
encore la correction fonctionnelle vis-à-vis d'une spéci�cation donnée.

Les logiciels peuvent être véri�és en utilisant un large éventail de méthodes formelles. Le
model-checking [21] consiste en l'exploration énumérative ou symbolique de l'ensemble des états
accessibles par toutes les exécutions du programme. Une telle exploration repose sur un modèle
du programme, et est menée par des outils entièrement automatiques tels que Alloy [6, 44].
L'interprétation abstraite [23] calcule une approximation de l'ensemble des valeurs que peut
prendre chaque variable du programme (par exemple, en considérant des intervalles d'entiers).
De tels calculs sont menés par des outils dédiés appelés analyseurs statiques tels que Astrée [1],
qui a été utilisé pour véri�er, de manière entièrement automatique, la sûreté des accès mémoire
et des calculs �ottants dans le code � écrit en langage C � des systèmes de contrôle de l'Airbus
A340.

La preuve de programmes par véri�cation déductive est une méthode générale permettant
aux programmeurs de prouver des propriétés de haut niveau sur leurs programmes en les anno-
tant avec des formules logiques (préconditions, postconditions, invariants de boucles). À partir
de ces annotations, un outil automatique, appelé générateur de conditions de véri�cation, tel
que Frama-C [5] ou Why [8], génère des lemmes appelés obligations de preuve, telles que la
preuve des propriétés de haut niveau sur le programme se ramène à la résolution des obliga-
tions de preuve en utilisant des prouveurs automatiques de théorèmes tels que Z3 [26], ou des
assistants de preuve interactive tels que Coq [4].

Finalement, la génération de logiciels véri�és consiste à créer automatiquement un pro-
gramme à partir de preuves (manuelles ou automatiques) de théorèmes dans un modèle ab-
strait, par exemple en utilisant la méthode B dite de ra�nement utilisée pour le système de

18 Tahina Ramananandro

Aperçu

signalisation Meteor SAET du métro 14 [67], ligne entièrement automatique du réseau de Paris.
De manière similaire, le mécanisme d'extraction [51, 52] de Coq [4] génère automatiquement
des programmes exécutables à partir de spéci�cations et preuves en Coq.

0.1.2 Sémantique formelle

Quelle que soit la méthode formelle utilisée, la véri�cation de logiciels nécessite de com-
prendre le sens exact des programmes. Pour cela, il est nécessaire de dé�nir la sémantique des
langages de programmation, c'est-à-dire le sens des expressions et autres tournures du langage.
Le plus souvent, la sémantique d'un langage de programmation est dé�nie par une description
informelle, sous la forme d'un document de standardisation ou de spéci�cation écrit en langue
naturelle (cas de C, C++, Java, ECMAScript), ou même seulement par une implémentation de
référence (cas de Perl, Ruby, Caml, Haskell).

De telles descriptions informelles ne sont pas des bases su�santes pour assurer la correction
des logiciels critiques, car elles peuvent faire l'objet d'ambiguïtés dans les interprétations, ou de
comportements manquants car non spéci�és. Par conséquent, il est nécessaire de dé�nir mathé-
matiquement les spéci�cations a�n qu'elles soient aussi précises que possible. Cela nous amène
à introduire le concept de sémantique formelle d'un langage de programmation, fondée sur de
solides bases mathématiques. Il existe plusieurs formalismes mathématiques [77] permettant
d'établir la sémantique formelle d'un langage : la sémantique axiomatique, ajoutant à la logique
mathématique des règles pour prouver les assertions sur l'état d'exécution du programme ; la
sémantique dénotationnelle interprétant les expressions et autres tournures du langage par des
objets mathématiques ; ou la sémantique opérationnelle dé�nissant les di�érentes étapes possi-
bles de l'exécution d'un programme par une relation de transition entre les états d'exécution.

De nombreuses sémantiques formelles existent, mais elles ne concernent que des langages
abstraits, ou des sous-ensembles jouets de langages existants, souvent dans un but de recherche.
Il est surprenant que de telles sémantiques formelles soient si peu courantes parmi les langages
de programmation e�ectivement utilisés en pratique. En e�et, un des rares exemples connus est
celui du langage fonctionnel Standard ML [61], et ce pourrait être le seul. Cependant, la précision
exhaustive des sémantiques formelles, qui permet d'éviter les ambiguïtés et les situations non
spéci�ées, fait de ces sémantiques des systèmes formels de grande taille, sur lesquels il devient
di�cile de raisonner à la main, et donc préférable de mécaniser les raisonnements avec des
assistants de preuve tels que Coq [4]. Le dé� PoplMark [13] soutient cette aspiration croissante
à la mécanisation de la métathéorie des langages de programmation.

0.1.3 Compilation véri�ée

En général, les logiciels formellement véri�és le sont au niveau de leur code source, lisible
par un opérateur humain, mais non au niveau du code e�ectivement exécuté par l'ordinateur.
Ce code est lui-même obtenu à partir du code source par un programme appelé compilateur,
auquel il est donc également nécessaire de faire con�ance : il ne doit pas changer le sens du
programme source en produisant le programme compilé.

En e�et, les bogues dans les compilateurs peuvent avoir de lourdes conséquences sur les
programmes compilés. En 2011, peu après la sortie du langage Java 7, Apache et Oracle ont
mis en garde leurs utilisateurs contre un bogue important dans le compilateur Java 7 fourni par
Oracle [66]. Ce compilateur e�ectuait des optimisations qui introduisaient des erreurs dans la

Les objets en C++ : sémantique formelle mécanisée et compilation véri�ée 19

Aperçu

compilation de certaines boucles. De telles erreurs se sont répercutées dans de célèbres logiciels
très utilisés en pratique tels que Apache Lucene Core [33]. En outre, les bogues dans les com-
pilateurs ne sont pas rares, comme l'ont montré Yang et al. [86], qui ont trouvé, grâce à des
tests aléatoires massifs, plus de 325 bogues inconnus dans des compilateurs C parmi les plus
courants tels que GCC ou LLVM.

Pour éviter de tels bogues introduits par des compilateurs incorrects, il existe une solution,
proposée et utilisée dans l'aéronautique, prescrite par les règlementations o�cielles DO-178B
[65] : écrire un compilateur tel que la relecture manuelle simultanée du code compilé et du code
source permet d'arguer que le sens du programme source n'a pas été changé par le compilateur.
Cependant, une telle analyse est e�ectuée entièrement à la main et de manière empirique. En
outre, une telle procédure empêche le compilateur d'e�ectuer des optimisations intelligentes sur
le code source [15, �2.1]. De surcroît, cette méthode, utilisée en pratique pour la compilation
de C vers un langage assembleur, est en revanche di�cile à adapter pour un langage de plus
haut niveau (tel qu'un langage orienté objet, ou un langage fonctionnel) : en e�et, de tels
langages présentent un modèle mémoire fort di�érent de celui du langage cible et de la machine
elle-même. C'est pourquoi il est nécessaire de véri�er aussi le compilateur lui-même.

L'étude de Dave [24] résume les principaux travaux de recherche sur la véri�cation de com-
pilateurs jusqu'en 2003. Parmi ces travaux, certains peuvent être considérés comme pionniers.
Dès 1963, McCarthy [57] a souligné le besoin de véri�er les compilateurs. Il y apporta la pre-
mière réponse partielle en prouvant, pour la première fois, la correction d'un compilateur pour
des expressions arithmétiques [58]. Cependant, cette preuve était menée sur papier. Par la suite,
Milner et Weyrauch [60] ont donc apporté une solution plus précise en prouvant un compilateur
similaire, mais pour la première fois en utilisant un système logique mécanisé. En 1989, Moore
[62] a réalisé la preuve mécanisée d'un compilateur plus réaliste à partir d'un langage de type
assembleur.

Pour prouver la correction d'un compilateur, on peut le voir comme un programme ordinaire
et prouver sa correction fonctionnelle vis-à-vis de la spéci�cation suivante :

Étant donné un code source, si le compilateur produit un code compilé, alors toute
spéci�cation respectée par le code source est respectée par le code compilé.

Cependant, il existe une di�érence fondamentale entre un compilateur et un programme
ordinaire : la spéci�cation d'un compilateur inclut en réalité un moyen de décrire les comporte-
ments à la fois du code source et du code compilé. Plus exactement, donner une spéci�cation à
un compilateur nécessite de spéci�er formellement les langages source et cible, c'est-à-dire d'en
donner une syntaxe et une sémantique formelles. Ainsi, la véri�cation de compilateurs est une
motivation supplémentaire à la formalisation de la sémantique des langages de programmation.

Parmi les exemples de compilateurs formellement véri�és, citons Jinja [47], d'un sous-
ensemble de Java vers le code-objet (bytecode) JVM, écrit et prouvé en Isabelle ; et surtout
CompCert [2, 50, 49], de C vers les assembleurs PowerPC, ARM et Intel x86, écrit et prouvé
en Coq [4]. Ces deux compilateurs formellement véri�és sont obtenus par extraction.

Notre travail est fondé sur le compilateur véri�é CompCert. CompCert est une chaîne de
plusieurs passes de compilation, dont la plupart est formellement véri�ée. Certaines passes sont
directement prouvées au moyen de preuves de théorèmes, tandis que d'autres sont prouvées par
validation véri�ée [82] : leur algorithme e�ectif n'est pas lui-même prouvé, mais, pour chaque
compilation, le code source et le résultat de la passe de compilation sont contrôlés par un

20 Tahina Ramananandro

Aperçu

validateur qui, lui, est formellement véri�é pour assurer qu'il n'accepte que des couples source
et résultat ayant e�ectivement la même sémantique.

0.1.4 Le langage C++

Cette thèse traite de la sémantique formelle et de la compilation véri�ée d'un sous-ensemble
du langage C++. C++ [30, 79, 40, 42, 43] est un langage orienté objet créé en 1981 par Bjarne
Stroustrup sous le nom de � C with classes �. En e�et, C++ était initialement conçu comme
une extension de C avec un modèle objet essentiellement fondé sur les classes à la Simula.
C++ o�re un modèle objet exceptionnellement riche : héritage multiple partagé ou répété,
sélection (dispatch) dynamique de méthodes, et transtypage (cast) dynamique. C++ combine
donc de manière unique des outils pour la programmation système avec néanmoins de puissants
mécanismes d'abstraction.

À première vue, C++ peut paraître complexe. Toutefois, il est l'un des langages de program-
mation les plus utilisés en pratique, y compris dans les domaines du logiciel embarqué critique,
par exemple par des entreprises telles que Lockheed Martin. Cependant, de telles entreprises
formulent des lignes de conduite [55] que leurs ingénieurs en programmation doivent suivre : ils
doivent abandonner certaines fonctionnalités de C++ telles que les exceptions. De telles restric-
tions permettent d'arguer moralement que la sémantique des programmes ainsi écrits est bien
dé�nie. De plus, elles sont censées faciliter la relecture et l'analyse de code.

Les motivations de telles restrictions, cependant, ne sont que d'ordre grossièrement moral.
C'est pourquoi notre but est de donner un cadre formel à une partie de ces restrictions en
spéci�ant formellement un sous-ensemble de C++ et en prouvant un compilateur véri�é pour
ce sous-ensemble. La formalisation d'un tel sous-ensemble de C++ permettra de faire con�ance
non seulement au compilateur, mais aussi à la spéci�cation du langage, en donnant un cadre
formel plus fort que les standards C++ écrits en langue naturelle. Dans notre travail, nous nous
focalisons sur le modèle objet de C++, incluant l'héritage multiple, la construction et destruction
d'objets, et la gestion de ressources.

Dans le chapitre 2, nous proposons un tutoriel, certes informel, mais aussi complet que
possible, sur le modèle objet de C++. Le chapitre 3 introduit les notations mathématiques
formelles utilisées tout au long de cette thèse, y compris le formalisme utilisé pour décrire les
sémantiques opérationnelles de nos langages. Dans notre travail, nous suivons une méthode de
compilation véri�ée fondée sur la preuve de théorèmes à la CompCert, présentée formellement
en Appendice.

0.2 Contributions scienti�ques

Le but de notre travail est de formaliser la sémantique du modèle objet de C++, incluant
l'héritage multiple et la construction et destruction d'objets, et de valider cette sémantique par
un compilateur véri�é apportant la preuve de la correction des techniques habituelles utilisées
par les compilateurs les plus courants. Nous avons mécanisé toutes nos sémantiques formelles
et nos preuves à l'aide de l'assistant de preuve Coq [4]. L'intégralité de notre développement
Coq est disponible en ligne [71]. Son architecture est décrite dans l'Appendice A. Ainsi, notre
travail propose une justi�cation formelle de notre a�rmation suivante :

Les objets en C++ : sémantique formelle mécanisée et compilation véri�ée 21

Aperçu

Thèse :
La con�ance dans la sémantique et la compilation du modèle objet de C++

peut s'établir formellement.

Pour cela, nous traitons les deux problèmes que nous considérons comme les plus impor-
tants :

Partie I. La représentation concrète des objets en mémoire, ou layout, permettant les accès
aux champs, les transtypages (casts) statiques et la sélection (dispatch) dynamique
de méthodes en temps et accès mémoire constants, suivant les techniques habituelles
des compilateurs les plus courants.

Partie II. La construction et destruction des objets : le mécanisme de construction est conçu
pour établir, au moment de la création d'un objet, des invariants sur celui-ci en
initialisant ses champs, et au besoin en acquérant des ressources. Inversement, sa
destruction doit donc libérer ces ressources et retransformer cet objet en mémoire
brute. Nous étudions les e�ets de l'héritage multiple en C++ sur ces mécanismes.

La Figure 1.1 (p. 37) résume les langages et passes de compilation traités dans notre travail.

0.2.1 Représentation concrète des objets en mémoire (layout)

Chapitre 4. Nous formalisons la sémantique de l'héritage multiple en C++, y compris l'héritage
partagé et l'héritage répété, les accès aux champs d'un objet, les appels de fonctions
virtuelles, les transtypages (casts) statiques et dynamiques. Notre travail étend le
langage CoreC++ dé�ni par Wasserrab et al. [85, 84] en formalisant les deux notions
de sous-objets d'héritage et sous-objets d'agrégation dus aux structures imbriquées
à la C : nous obtenons alors un langage que nous appelons s++, pour � CoreC++
avec structures imbriquées �.

Chapitre 5. Puis nous spéci�ons formellement une famille d'algorithmes permettant de représen-
ter concrètement les objets C++ en mémoire. Nous donnons un ensemble de con-
ditions su�santes sur les résultats calculés par un tel algorithme. Nos conditions
prennent en compte les optimisations des bases vides a�n de réduire l'espace mé-
moire occupé par les sous-objets de type classe vide au sein d'un objet. Nous prou-
vons que nos conditions satisfont la � propriété de bonnes variables � et préservent
l'identité des sous-objets, permettant ainsi de modéliser correctement les opéra-
tions orientées objet telles que les accès aux champs, les transtypages et les tests
d'égalité entre pointeurs vers sous-objets.

Chapitre 6. Puis nous spéci�ons et prouvons formellement la correction de deux implémen-
tations réalistes de représentation concrète des objets en C++. Le premier algo-
rithme est inspiré de l'ABI pour Itanium [22], que GNU GCC a adapté à d'autres
plateformes. Dans le second algorithme, nous proposons des optimisations supplé-
mentaires pour les membres vides. En réalité, nous prouvons alors que ces deux
algorithmes satisfont nos conditions su�santes.

Chapitre 7. Finalement, pour tout algorithme satisfaisant nos conditions su�santes, nous spé-
ci�ons et prouvons formellement un compilateur de s++ vers un langage à trois
adresses et accès mémoire de bas niveau, implémentant les opérations polymor-
phes (telles que le dispatch de méthodes virtuelles) à l'aide de structures de données

22 Tahina Ramananandro

Aperçu

telles que les tables virtuelles utilisées par la plupart des compilateurs C++ courants.
Comme notre langage cible est une variante du langage intermédiaire Cminor de
CompCert, nous l'appelons donc Vcm, pour � Cminor avec tables virtuelles �.

Nos résultats sont mis en perspective au Chapitre 8.
Nous les avons publiés dans un article [72] à la conférence POPL 2011.

0.2.2 Construction et destruction des objets

Chapitre 9. Nous spéci�ons formellement la sémantique de la construction et destruction d'ob-
jets en C++ : nous introduisons alors un langage que nous appelons κ++ (κ désignant
la présence de � constructeurs �). En guise de fondements à notre sémantique, nous
introduisons la notion d'états de construction d'un objet, marquant l'évolution des
processus de construction et destruction pour chaque objet. Les états de construc-
tion nous permettent de considérer la notion de type dynamique généralisé d'un
objet, pour clari�er le comportement du dispatch dynamique de méthodes pendant
la construction ou la destruction : nous arguons qu'il ne doit pas utiliser des parties
non encore initialisées (ou déjà détruites) d'un objet. Notre sémantique formelle a
eu un impact sur le développement et l'évolution du Standard C++.

Chapitre 10. Puis nous étudions quelques propriétés de notre sémantique, liées à la notion C++
de durée de vie d'un objet, et à la gestion de ressources suivant le paradigme
RAII (resource acquisition is initialization). Nous clari�ons les interactions entre
l'héritage multiple et la construction et destruction d'objets. En particulier, nous
décrivons l'évolution des états de construction et nous étudions son impact sur
le type dynamique généralisé d'un objet, en soulignant les moments où celui-ci
change.

Chapitre 11. Puis, forts de nos résultats, nous spéci�ons et prouvons formellement un compi-
lateur de κ++ vers un langage à trois adresses et accès mémoire de bas niveau.
Nous remarquons que les tables virtuelles d'un objet doivent changer pendant
la construction et destruction, exactement aux moments où son type dynamique
généralisé change. C'est pourquoi nous procédons en deux passes de compilation.
D'abord, nous compilons κ++ vers un sur-ensemble de s++ que nous munissons
d'une opération supplémentaire pour changer explicitement le type dynamique
généralisé d'un objet et de tous ses sous-objets. Nous appelons donc ce langage
intermédiaire Ds++ pour � s++ avec modi�cation du type dynamique généralisé �.
Ainsi, dans Ds++, les états de construction ne sont plus nécessaires.
En�n nous arguons que les tables virtuelles utilisées durant la construction et
destruction, appelées tables virtuelles de construction, doivent elles-mêmes être
stockées dans des tables, appelées tables de tables virtuelles. Alors, notre seconde
passe peut compiler Ds++ vers un langage à trois adresses, accès mémoire de bas
niveau, tables virtuelles et tables de tables virtuelles. Nous appelons donc notre
langage cible CVcm, pour � Vcm avec tables virtuelles de construction �.

Nous mettons nos résultats en perspective au Chapitre 12.
Nous avons publié nos résultats des chapitres 9 et 10 dans un article [73] à la conférence

POPL 2012, ainsi qu'une modi�cation du Standard C++ [45] ; d'autres propositions de modi�-
cation sont en attente.

Les objets en C++ : sémantique formelle mécanisée et compilation véri�ée 23

Aperçu

Finalement, le Chapitre 13 conclut et ouvre des perspectives générales vers une sémantique
formelle et un compilateur véri�é pour C++ tout entier.

0.3 Bilan

0.3.1 L'expérience Coq

À première vue, formaliser le langage C++ avec un assistant de preuve tel que Coq peut
paraître e�rayant et décourageant, au vu de la complexité tant décriée du modèle objet de C++
et de l'importante quantité de détails à prendre en compte dans la formalisation : rien ne peut
être considéré comme � trivial et laissé au lecteur �.

En réalité, ce n'est pas le cas. En e�et, la sémantique formelle de κ++, incluant la construc-
tion et destruction d'objets, s'écrit en seulement 900 lignes de Coq. Nous croyons même qu'elle
pourrait se décrire de façon encore plus succincte en adoptant un point de vue plus général que
l'héritage (par exemple en uni�ant la construction des scalaires et celle des objets � ce qui nous
permettrait de prendre en charge les tableaux de scalaires). Cela montre que les spéci�cations
Coq sont maniables, grâce au langage de spéci�cation Gallina, remarquable pour sa clarté et
ses fondements mathématiques précis tels que le Calcul des Constructions Inductives.

En revanche, les scripts de preuve, de leur côté, totalisent environ 80000 lignes de Coq,
semblent souvent répétitifs (nous croyons qu'ils pourraient être réécrits en reconnaissant des
astuces de preuve souvent utilisées, telles que des preuves par symétrie, et en les factorisant par
des tactiques Ltac), et leur revéri�cation par coqc prend plus de deux heures et demie sur un
Pentium Core Duo cadencé à 2 GHz et consomme la moitié des 4 Go de mémoire vive. Après
des tests informels, nous prétendons que ces problèmes pourraient être essentiellement dus à
l'implémentation du système Coq lui-même, au niveau des dépliages de dé�nitions pendant les
uni�cations de typage. Toutefois, on pourrait également expliquer ces chi�res élevés par notre
choix délibéré d'automatiser nos preuves aussi peu que possible, en nous limitant à l'automa-
tisation des raisonnements en logique du premier ordre, voire propositionnelle (en utilisant la
tactique tauto), ou l'arithmétique entière (omega) : aucun de nos lemmes n'est intégré dans
une base de Hint pour l'automatisation. Notre choix a pour but de comprendre quels lemmes
sont utilisés dans nos preuves, et quand ils le sont, a�n de pouvoir par la suite expliquer nos
preuves au niveau le plus haut possible, ce que nous avons réalisé dans le présent document.

0.3.2 Impacts pratiques

Notre travail nous a permis de trouver des erreurs et incohérences dans le Standard C++03
[42]. Notamment, le programmeur peut appeler une fonction virtuelle pendant la construction
des champs d'un objet, mais le manque de symétrie dans le Standard nous a paru très sur-
prenant, en ce sens qu'il laissait non spéci�és de tels appels durant la destruction des mêmes
champs. Ce problème a été corrigé [45] dans le Standard C++11 [43]. D'autres problèmes ont
été soumis au comité de standardisation C++ pour être pris en compte dans de futures versions
du langage.

Du point de vue pratique, notre travail nous a également permis d'expliquer des bogues
connus dans des compilateurs C++ tels que Microsoft Visual C++ 7.0 ou Borland C++ Builder
5.x [38]. Ces bogues, dus à des optimisations trop agressives, violent le principe d'identité des
sous-objets en présence de bases ou membres vides.

24 Tahina Ramananandro

Aperçu

Finalement, nous avons prouvé un algorithme de représentation concrète des objets en C++
couvrant la presque totalité de l'ABI d'Itanium, maintenant très utilisée sous une forme adap-
tée par GNU GCC sur des plateformes courantes. Nous avons seulement omis une optimisa-
tion controversée des bases primaires virtuelles, que le consortium développant l'ABI considère
cependant comme un � défaut de conception � de l'ABI [22].

0.3.3 Impacts potentiels

En plus des impacts immédiats sur le Standard C++, notre travail peut être considéré comme
une description alternative de C++ pour mieux comprendre le modèle objet de C++. Notre sé-
mantique formelle valide a posteriori les principes de conception orientés objet de C++ et les
exigences du Standard telles que le principe d'identité des sous-objets (pour rendre compte
formellement de l'héritage répété en C++), ou du dispatch de fonction virtuelle pendant la con-
struction (pour modéliser correctement le principe RAII de gestion de ressources). De plus,
notre approche fondée sur la compilation véri�ée donne des bases solides aux techniques d'im-
plémentation habituelles utilisées par les compilateurs C++ les plus courants (dont GNU GCC) :
optimisation des bases vides, tables virtuelles, tables de tables virtuelles.

Inversement, nous croyons que notre travail de description formelle d'un sous-ensemble ori-
enté objet de C++ peut servir de base à l'application de méthodes formelles sur des programmes
écrits en C++. Grâce à notre sémantique formelle, une approche prometteuse pourrait être l'-
analyse statique de programmes par interprétation abstraite [23]. Une telle méthode reposerait
sur un interprète abstrait implémentant directement les règles de la sémantique opérationnelle
de κ++. En revanche, l'application de notre sémantique formelle à la véri�cation déductive de
programmes à la Frama-C [5] ou Why [8] pourrait exiger du travail supplémentaire. Une piste
à explorer pourrait être le développement d'une logique à la Hoare pour l'héritage multiple.
Une telle logique pourrait être fondée sur la logique de séparation développée par Luo et al.
[56] pour raisonner sur les accès aux champs en présence d'héritage multiple. À partir de tels
systèmes logiques, nous espérons que notre travail pourra permettre de spéci�er des précondi-
tions et des postconditions sur les constructeurs et destructeurs d'une classe, ainsi que sur les
fonctions virtuelles pendant la construction et la destruction. Elles pourraient être exprimées
directement en termes de nos états de construction d'objets.

0.3.4 Travaux futurs

Essentiellement, notre travail peut être étendu de deux façons. Tout d'abord, des optimisa-
tions supplémentaires pour la compilation de C++ pourraient être traitées, notamment, la prise
en compte des bases primaires virtuelles. On pourrait également étudier encore plus en détail
les structures de tables virtuelles et tables de tables virtuelles utilisées pour l'implémentation
des opérations polymorphes, notamment leur représentation concrète � incluant aussi une im-
plémentation concrète plus réalistes de dynamic_cast utilisant les structures d'identi�cation
de type à l'exécution (RTTI, run-time type identi�cation). Cela ouvrirait également la voie à
la formalisation des thunks, optimisant les appels aux fonctions virtuelles. Cependant, de telles
représentations et optimisations dépendent fortement de la plate-forme cible ; de plus, si ces
optimisations étaient e�ectuées dans le cadre de CompCert au niveau du langage intermédiaire
CVcm ou Cminor, il faudrait alors veiller à ne pas perdre leurs béné�ces dans les passes suiv-
antes de compilation (backend) vers l'assembleur. (En pratique, contrairement à CompCert,

Les objets en C++ : sémantique formelle mécanisée et compilation véri�ée 25

Aperçu

des compilateurs tels que GNU GCC génèrent directement du code assembleur, sans passer par
des langages intermédiaires.)

Au-delà des optimisations, nous pensons que notre travail peut être étendu du point de
vue de la formalisation de la sémantique, vers C++ tout entier suivant un certain nombre
de directions. Notamment, la formalisation de la sémantique de copie de C++ nécessiterait
d'autoriser la destruction des objets temporaires après l'appel d'un constructeur. Cela nous
permettrait alors de prendre en charge le passage d'arguments par valeur (par copie, en utilisant
le constructeur de copie), ainsi que les fonctions renvoyant des structures.

D'un point de vue plus général, des étapes supplémentaires plus lointaines restent nécessaires
à la formalisation de C++ tout entier : les patrons (templates) suivant les travaux en Isabelle de
Siek et Taha [76], ou encore la concurrence suivant les travaux en Isabelle/HOL de Batty et al.
[14]. La formalisation de C++ en HOL4 par Norrish [64] se veut proche du Standard C++, ainsi
elle pourrait servir de base solide à l'extension de notre travail. En e�et, elle couvre les références,
mais aussi les exceptions, qui requièrent notamment que si la construction d'un sous-objet d'un
objet échoue, alors tous les sous-objets construits jusque-là au sein de cet objet doivent être
détruits. Dans un premier temps, cependant, on pourrait mettre les exceptions de côté et
chercher plutôt à couvrir seulement le sous-ensemble de C++ décrit par les lignes de conduites
formulées par Lockheed Martin [55]. Il resterait alors à traiter l'accessibilité (public/privé), les
const, et surtout la surcharge.

26 Tahina Ramananandro

La lutte des classes

commence à la base.

N.P.

Part ©

Preliminaries

Chapter 1

Introduction

1.1 Context

1.1.1 Software veri�cation

Software is becoming ubiquitous, and in particular in critical systems such as transportation
(railways [67], avionics [55] or space), military applications, or medical devices. In such critical
domains, any bug may lead to very costly damage, and even to loss of human lives. Between
1985 and 1987, massive overdoses of radiation by the Therac-25 radiotherapy machine caused
at least 6 patient deaths [53]. The machine could actually be operated in two radiation modes:
direct low-energy radiations to the patient on the one hand, and indirect high-energy radiations
through an intermediate target on the other hand. The software embedded in the radiotherapy
machine failed to activate the correct mode. Overexposition to radiations may also result from
improper error handling by the user interface: the software embedded in another radiotherapy
machine would not check for the validity of the data entered by the physicians, which led to at
least 17 deaths in Panama between 2000 and 2002 [18].

Even though bugs in critical software are not necessarily fatal, they can incur important
�nancial losses, such as in the 1996 Ariane 5 failed maiden �ight, due to an integer over�ow
[28], leading to the loss of the rocket and its payload (Cluster spacecraft from European Space
Agency and NASA), worth a total US$370 million; moreover, the loss of the spacecraft led to
a 4-year delay for the completion of the Cluster spatial mission.

A survey by Dershowitz [27] lists the costliest and deadliest software bugs in the history
of critical software. Avoiding those critical bugs is the main motivation for �nding a way to
trust critical software. The standard approach adopted in the industry of critical embedded
software includes software testing [46] performed by running the software on �dry-run� test
cases to discover bugs; and manual code reviews such as Fagan inspection [31]. In practice,
software testing and code reviews have been relatively e�ective so far, with no known casualties
in �y-by-wire airplanes due to software errors. This is partly due to their systematization by the
DO-178B o�cial regulations for the certi�cation of avionics software [65]. However, software
testing turns out to be very costly and time-consuming. Moreover, it is di�cult to guarantee that
test cases cover all possible cases. Furthermore, the scalability of software testing is seriously
challenged by the ever increasing size and complexity of critical software: the code size of Airbus
A320 control software reaches a total 10 megabytes; this size amounts to hundreds of megabytes
for the Airbus A380 [34].

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 31

Introduction Chapter 1

A promising alternative or complement to testing is software veri�cation through formal
methods, intended to both reduce testing costs and increase trust in programs. Software veri-
�cation allows programmers to establish high-level properties on their programs statically, i.e.
without actually executing them. Examples of such high-level properties include absence of
run-time errors, unreachability of states deemed �impossible�, and functional correctness with
respect to a given speci�cation.

Software veri�cation can be achieved through several formal methods. Model-checking [21]
consists in an enumerative or symbolic exploration of all reachable states of all program execu-
tions. Such an exploration often relies on a model of the actual program, and is performed by
fully automated tools such as Alloy [6, 44]. Abstract interpretation [23] computes an approxi-
mation of the ranges of values that the variables of a program can take (e.g. integer intervals).
Such computations are performed by dedicated tools called static analyzers such as the fully
automated Astrée [1] used on the actual C code of the control systems of Airbus A340 and
A380 aircraft to prove the safety of their memory accesses and �oating-point computations.

Program proof by deductive veri�cation is a general-purpose method allowing programmers
to prove high-level properties on programs by annotating them with logical formulae (precon-
ditions, postconditions, loop invariants). From those annotations, an automated tool called a
veri�cation condition generator such as Frama-C [5] or Why [8] generates lemmata called proof
obligations, such that proving the high-level properties on the program boils down to discharg-
ing the proof obligations, i.e. solving them using automated theorem provers such as Z3 [26], or
proof assistants such as Coq [4].

Finally, generation of veri�ed software consists in automatically extracting a program from
(manual or automated) proofs of theorems carried within an abstract model, for instance thanks
to the B re�nement method [9, 10] used for the signalling system of the fully automated Paris
Metro line 14 (Meteor SAET 1) [67]. Likewise, the extraction mechanism [51, 52] of Coq [4]
automatically generates executable programs from Coq speci�cations and proofs.

1.1.2 Formal semantics

Software veri�cation, regardless of the method actually used, requires to understand the
exact meaning of programs. To this end, it is necessary to de�ne the semantics of programming
languages, i.e. the meaning of language constructs. Most often, the semantics of programming
languages are de�ned through informal descriptions, such as standards or speci�cations written
in natural language (C, C++, Java, ECMAScript), or even only a reference implementation
(Perl, Ruby, Caml, Haskell).

Such informal descriptions are not enough to ground the correctness of critical software, as
they can su�er from interpretation ambiguities or missing unspeci�ed behaviours. Consequently,
it is necessary to de�ne mathematically-precise speci�cations. This leads to the concept of for-
mal semantics of a programming language, based on solid mathematical grounds. The formal
semantics of a language can be described in several mathematical forms [77], including ax-
iomatic semantics extending the mathematical logic with rules to prove assertions about the
program execution state, denotational semantics interpreting language constructs by math-
ematical objects, and operational semantics de�ning the possible execution steps through a
transition relation between execution states.

1. Système automatisé d'exploitation des trains, Automatized system for train operation

32 Tahina Ramananandro

1.1 Context

Many formal semantics are known for calculi or small language subsets, often for academic
purposes, but are surprisingly rare among widely used languages. The Standard ML [61] func-
tional language is perhaps the only example of realistic programming languages de�ned by a
formal semantics. However, due to their comprehensive precision to avoid ambiguities and un-
speci�ed cases, formal semantics are big formal systems, making it desirable to mechanize them
using proof assistants such as Coq [4]. The PoplMark challenge [13] underpins this desire of
mechanizing the metatheory of programming languages.

1.1.3 Veri�ed compilation

Formal veri�cation of software is generally conducted on the source, human-readable code
of the program, but not the actual code executed by the machine, obtained by the compiler.
Thus, it is necessary to also trust the compiler: it must not change the meaning of the source
program when producing the compiled program.

Indeed, compiler bugs can have serious consequences. In 2011, shortly after the release of
Java 7, Apache and Oracle warned of a serious bug in the Oracle Java 7 compiler [66]. This
compiler introduced optimizations that miscompiled some loops, which introduced bugs in well-
known and widely used software such as the Apache Lucene Core plain text search engine [33].
Moreover, compiler bugs are not rare: Yang et al. [86] found more than 325 unknown bugs in
mainstream C compilers such as GCC or LLVM thanks to massive random testing.

One solution proposed in avionics to avoid such bugs introduced by unsound compilers, as
prescribed by the DO-178B o�cial regulations [65], is to write a compiler such that manual
analysis of the source and compiled code allows to argue that the meaning of the source program
was not changed by the compiler. However, such analysis is done entirely manually and em-
pirically. Moreover, this prevents the compiler from performing clever optimizations [15, �2.1].
Furthermore, this method is di�cult to adapt to high-level languages (such as object-oriented
languages, or functional languages), for which the memory model is by far di�erent from the
actual memory model of the machine. This is why it is necessary to also verify the compiler
itself.

Dave [24] provides a representative survey of works on compiler veri�cation until 2003. A
couple of those works may be regarded as seminal. The need for compiler veri�cation has been
pointed out by John McCarthy as early as 1963 [57]. He partially answers his own concern
by the �rst paper-and-pencil proof of a compiler for arithmetic expressions [58]. However, a
more accurate solution has been seminally brought by Milner and Weyrauch [60], who proved a
similar compiler not on paper, but for the �rst time using a mechanical logic system. In 1989, a
more realistic compiler from an assembly-like language has been mechanically proved by Moore
[62].

One solution to prove the soundness of a compiler is to see it like an ordinary program and
to prove its functional correctness with respect to the following speci�cation:

Given a source code, if the compiler produces a compiled code, then any speci�cation met by
the source code is met by the produced code.

What makes the di�erence between a compiler and an ordinary program is that the speci�-
cation of a compiler actually includes a way of describing the behaviours of both the source and
the compiled code. More exactly, specifying a compiler requires to formally specify the source
and target languages, i.e. to formally describe their syntaxes, and their semantics. As such,

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 33

Introduction Chapter 1

compiler veri�cation is an additional motivation to formalizing the semantics of programming
languages.

Notable examples of formally veri�ed compilers include Jinja [47] from a subset of Java to
the JVM, written and proved in Isabelle [7]; and most importantly CompCert [2, 50, 49] from
C to PowerPC, ARM or Intel x86 assembly languages, written and proved in Coq [4]. Those
two formally veri�ed compilers are obtained by extraction.

Our work is based on the CompCert veri�ed compiler. CompCert is a chain of several
compilation passes, most of which are formally veri�ed. Some passes are proved using direct
theorem proving. Other passes are tackled through veri�ed translation validation [82]: they
actually use an unproved compilation pass, but, for each compilation, the source code and the
result of the compilation pass are checked by a formally veri�ed validator determining whether
they have the same semantics.

1.1.4 The C++ language

This thesis deals with formal semantics and veri�ed compilation for a subset of the C++
language. C++ [30, 79, 40, 42, 43] is an object-oriented language created in 1981 by Bjarne
Stroustrup as �C with classes�: initially, C++ was meant to extend C with an object model
essentially based on Simula-like classes. C++ provides an exceptionally rich object model featur-
ing multiple inheritance with both shared and repeated inheritance, dynamic function dispatch,
and dynamic cast. C++ also features exceptions, and templates (as a compile-time expansion for
generic programming), leading to a unique combination of support for systems programming
providing nevertheless powerful abstraction mechanisms.

Despite its apparent complexity, C++ is one of the most widely used languages, even in crit-
ical embedded software, e.g. by companies such as Lockheed Martin. However, such companies
edict guidelines [55] for their programmers, instructing them to drop some features of C++ such
as exceptions. Such restrictions allow to morally assess that the semantics of their programs
are well-de�ned; moreover, they are designed to ease code review and analysis.

Such guidelines only provide moral rationales. Thus, we aim at giving a formal assessment to
part of those guidelines by formally specifying a subset of C++ and proving a veri�ed compiler for
this subset. Formally specifying a subset of C++ does not only give con�dence on the compiler,
but also on the language speci�cation itself, by providing a formal background stronger than
the prose standards de�ning C++. In this work, we focus on the C++ object model, including
multiple inheritance, object construction and destruction, and resource management.

Chapter 2 exposes an informal, yet comprehensive tutorial on the C++ object model. Chapter
3 introduces the formal mathematical notations used throughout this thesis, including the
underlying formalism used for describing the operational semantics of programming languages.
The theorem-proving method for compiler veri�cation based on CompCert and followed by our
work is formally presented in Appendix B.

1.2 Summary of the contributions

Our work aims at formalizing the semantics of the C++ object model, including multiple
inheritance and object construction and destruction, and validating this semantics by a veri�ed
compiler assessing the soundness of the mainstream techniques used in practice by most real-
world compilers. We have mechanized all our formal semantics, speci�cations and proofs using

34 Tahina Ramananandro

1.2 Summary of the contributions

the Coq [4] proof assistant. Our whole Coq development is available at [71]. Its architecture
is summarized in Appendix A. As such, our work proposes a formal answer to our following
claim:

Thesis:
The semantics and compilation of the C++ object model can be formally trusted.

To this end, we tackle the most two important issues for our goal:

Part I. the object layout problem: how objects are represented in concrete memory in a
practical way allowing �eld accesses, static casts and virtual method dispatch in
constant time and memory accesses.

Part II. object construction and destruction: the C++ object construction mechanism is meant
to establish invariants on an object by initializing its �elds, which may need to acquire
resources, upon its creation. So, its destruction counterpart must turn the object back
to raw memory by releasing those resources. We study the impact of C++ multiple
inheritance on those mechanisms.

Figure 1.1 (p. 37) summarizes all languages and compilation passes of our work.

1.2.1 Object layout

Chapter 4. We formalize the semantics of C++ multiple inheritance including shared and re-
peated inheritance, scalar �eld accesses, virtual function calls, static and dynamic
casts, and adding C-style embedded structures and structure arrays, an aggregation
mechanism distinct from inheritance. This work, an extension to the CoreC++ lan-
guage by Wasserrab et al. [85, 84], formalizes the notion of subobjects due to both
inheritance and aggregation, leading to a language which we called s++, standing
for �CoreC++ with embedded structures�.

Chapter 5. Then, we formally specify a family of C++ concrete object layout algorithms, through
a set of su�cient conditions on their computed results. Those conditions take empty
base optimizations into account, to minimize the memory footprint of subobjects
of empty class types within objects. We prove that those conditions satisfy the
good variable property and preserve the identity of subobjects, allowing to cor-
rectly model object-oriented operations such as �eld accesses, casts and pointer
equality tests.

Chapter 6. Then, we formally prove the correctness of two realistic object layout implementa-
tions. The �rst algorithm is inspired from the Common Vendor ABI for Itanium
[22], which GNU GCC also reuses and adapts for other platforms. In the second
algorithm, we propose further empty base optimizations. Actually, we prove that
those two algorithms meet the soundness conditions of our considered family of
algorithms.

Chapter 7. Finally, for any layout algorithm complying with our su�cient conditions, we for-
mally specify and verify a compiler from s++ to a language featuring low-level mem-
ory accesses and virtual tables, a special data structure used by most present-day
C++ compilers and designed to implement polymorphic operations such as virtual
method dispatch, or dynamic cast. We call this language Vcm, which stands for

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 35

Introduction Chapter 1

�Cminor with virtual tables�, as Vcm is a variant of the Cminor [2, 49, 16] interme-
diate language of CompCert.

We discuss our results in Chapter 8.
Those results have been published in a POPL 2011 article [72].

1.2.2 Object construction and destruction

Chapter 9. We formally specify the semantics of C++ object construction and destruction, lead-
ing to a language we call κ++ (κ standing for �constructors�). This semantics is based
on construction states, which mark the evolution of the construction and destruc-
tion process for each object. Thanks to construction states, we de�ne the notion of
the generalized dynamic type of an object, which is used to clarify the behaviour of
virtual method dispatch during object construction and destruction, arguing that
dispatch prevents from using parts of an object that are not constructed yet (or
already destructed). We also discuss the impact of our semantics on the evolution
of the C++ Standard.

Chapter 10. Then, we study some properties of this semantics, leading to results related to the
C++ notion of object lifetime and RAII (resource acquisition is initialization). We
clarify the intricacies between inheritance and object construction and destruction.
In particular, we describe the evolution of construction states, and we study its
impact on the generalized dynamic type of an object, to point out its changes.

Chapter 11. Then, we apply all our results to build a compiler from κ++ to a language featuring
low-level memory accesses. We point out the fact that the virtual tables of an object
have to change during their construction or destruction, actually at the same time
as the generalized dynamic type changes. Thus, our compilation goes through two
passes.
First, κ++ is compiled to a superset of s++ featuring an additional operation to
explicitly change the generalized dynamic type. Thus, we call this intermediate
language Ds++, which stands for �s++ with set generalized dynamic type�. Thus, in
Ds++, construction states are no longer required.
Then, we argue that virtual tables used during construction and destruction, called
construction virtual tables, have to be stored in tables themselves, called virtual
table tables. Thus, the second pass compiles Ds++ to a language featuring low-level
memory accesses, virtual tables and virtual table tables. Thus, we call our target
language CVcm, which stands for �Vcm with construction virtual tables�.

We discuss our results in Chapter 12.
The results of Chapters 9 and 10 have been published in a POPL 2012 article [73], as well as

a successful request of modi�cation of the C++ Standard [45]; some other requests are pending.

Finally, Chapter 13 concludes and o�ers some general perspectives from our work, towards
a formal semantics and veri�ed compiler for full-�edged C++.

36 Tahina Ramananandro

1.2
Sum

m
ary

of
the

contributions

CoreC++ [85, 84]
Multiple inheritance
Virtual functions
Static and dynamic casts

s++ (�4)
Embedded structures

κ++ (�9)
Constructors and destructors

C++ [30, 79, 40, 42, 43]
Structure return
Templates . . .

Exceptions

Ds++ (�11.2)
Set dynamic type

CVcm (�11.7)
Virtual table tables

Vcm (�7.2)
Virtual tables

Cminor [2, 49, 16]
Low-level memory accesses

�11.5

�7.3
�11.8

Figure 1.1 � Languages, features and compilation passes

M
e
ch
a
n
ize

d
F
o
rm

a
l
S
e
m
a
n
tics

a
n
d
V
e
ri�

e
d
C
o
m
p
ila
tio

n
fo
r
C
+
+
O
b
je
cts

37

Introduction Chapter 1

38 Tahina Ramananandro

Chapter 2

Tutorial: the C++ object model

In this chapter, we describe object-oriented programming, and in particular the C++ ob-
ject model, focusing on multiple inheritance and object construction and destruction, through
practical examples modeling real-world situations.

2.1 Classes and instances. Aggregation (has-a)

Consider an alarm clock. Its purpose is to help its user wake up by producing a loud sound
at a speci�ed time.

An electricity-powered alarm clock (cf. Figure 2.1 p. 39) can draw its electric current through
a plug, which can be plugged or not. Once plugged, it can be controlled through a control switch,
which can be turned on or o�. When it is both plugged and turned on, it simply shows the
current time to the user. To make it really work, the user has to provide the alarm time when
the alarm should ring. The user then makes the alarm clock wait for the indicated time before
actually ringing. But the user can also test the ring.

One can say that an alarm clock has the following attributes:
� a plug, which can be plugged or not,
� a control switch, which can be turned on or not,
� and the time when it should ring.

Figure 2.1: An alarm clock. Image from Wikimedia Commons, public domain.

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 39

Tutorial: the C++ object model Chapter 2

Besides, the user can perform operations on the alarm clock: make it ring, or make it wait for
a time before ringing.

In C++ object-oriented programming, a programmer designs a class to represent alarm
clocks: attributes of an alarm clock object are declared as �elds of the class, also called data
members, whereas operations on objects are declared as methods of the class, also called class
member functions. Data members and class member functions are called class members.

While the values of attributes are local to an alarm clock object, the attributes and oper-
ations are declared at the class level. Thus, in C++, it is not possible to know the attributes
and operations on an object, unless this object is known to be an instance of some class: in the
latter case, the programmer gains access to all 1 �elds and methods of the class on this object,
which represent the attributes and operations of the object.

Thus, an alarm clock can be seen as an instance of a class, say AlarmClock. de�ned as
follows 2:

#include <ctime>

struct Plug {

bool plugged;

};

struct ControlSwitch {

bool turnedOn;

};

struct AlarmClock {

/* Attributes of an alarm clock are

data members of class AlarmClock */

Plug plug;

ControlSwitch controlSwitch;

time_t wakeupTime;

/* Operations on an alarm clock are

class member functions of AlarmClock */

void ring();

void wait();

};

AlarmClock

Attributes:

Plug
Attributes: plugged?

ControlSwitch
Attributes: turnedOn?

wakeUpTime

Operations:
ring
wait

An alarm clock has a plug and a control switch: each instance of AlarmClock embeds an
instance of Plug and an instance of ControlSwitch.

Thus, two di�erent alarm clocks a1 and a2, but still instances of the same AlarmClock
class, may be made available to a (very sleepy) user through the following code:

AlarmClock a1;

AlarmClock a2;

1. C++ de�nes the notions of visibility (public, private, . . .) of class members, to allow or forbid accessing
them from outside class member functions. We do not cover this issue in this thesis, so we consider that
everything is public. This explains why, throughout this thesis, we use struct rather than class.

2. time_t is the type name for dates and times, which are expressed as seconds since January 1st, 1970. It is
equivalent to some integer type. It is de�ned in the C++ ctime standard library, along with its relevant system
calls.

40 Tahina Ramananandro

2.2 Inheritance (is-a). Virtual functions

Each alarm clock embeds a plug and a control switch. Those components, which are aggre-
gation subobjects, may be accessed as follows:

a1.plug.plugged = true;

a2.plug.plugged = true;

a1.controlSwitch.turnedOn = true;

In this example, the user plugged the plugs of both a1 and a2, and turned on the control switch
of a1 only, forgetting a2.

Then, the action of making an alarm clock wait until the given time before ringing may be
de�ned as the following wait class member function of class AlarmClock: if the alarm clock is
plugged and turned on, wait until reaching 3 the wake-up time provided by the user, then ring.

void AlarmClock::wait() {

if(this->plug.plugged && this->controlSwitch.turnedOn) {

while(time(NULL) < this->wakeupTime) {};

this->ring();

}

}

Within the function body, the alarm clock object on which the wait action is performed is
referred to by a pointer called this. The properties and actions on the current object may be
used through this pointer.

Once a proper value is given to the wakeupTime data member of alarm clock a1, the user
may put the alarm clock at work:

a1.wait();

2.2 Inheritance (is-a). Virtual functions

2.2.1 Virtual functions: overriding and dispatch

Assume that an ordinary alarm clock rings by buzzing. Now suppose that we want to model
musical alarm clocks, which play a music tone instead of buzzing.

Like an alarm clock, a musical alarm clock may be plugged or unplugged, turned on or o�,
and may be given the time when to ring. Conceptually, a musical alarm clock is a particular
kind of alarm clock, so any musical alarm clock may be seen as an alarm clock from outside.
This is called a subtyping relation: �musical alarm clock� is a subtype of �alarm clock�.

But, contrary to ordinary alarm clocks, the user may choose the music tone of a musical
alarm clock, say among a �nite number of prede�ned tones. This needs an additional tone data
member. Then, the ring() class member function has to be rede�ned in another way, so that
a musical alarm clock, even if seen from outside as an ordinary alarm clock, will play a musical
tone whenever asked to ring.

To this purpose, C++ o�ers the mechanism of inheritance. In our example, if we want to
de�ne a MusicalAlarmClock class to represent musical alarm clocks, then we shall:

3. time(NULL) is a system call retrieving the current date and time.

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 41

Tutorial: the C++ object model Chapter 2

� declare that MusicalAlarmClock is a subtype of AlarmClock: we say that
MusicalAlarmClock derives from AlarmClock, or that AlarmClock is a base class (or
base for short) of MusicalAlarmClock;

� declare that the ring class member function of AlarmClock may be rede�ned by classes
derived from AlarmClock. Such a class member function is said to be a virtual function

� rede�ne ring for the MusicalAlarmClock: we say that the new de�nition of ring for
MusicalAlarmClock overrides the old de�nition for AlarmClock.

This leads to the following code:

struct AlarmClock {

Plug plug;

ControlSwitch controlSwitch;

time_t wakeupTime;

/* virtual = may be overridden

in derived classes */

virtual void ring();

void wait();

};

/* base classes = subtyping */

struct MusicalAlarmClock: AlarmClock

{

/* additional attribute to allow

the user to choose the musical tone */

int tone;

/* overriding = redefinition */

void ring();

}

AlarmClock

Attributes:

Plug
Attributes: plugged?

ControlSwitch
Attributes: turnedOn?

wakeUpTime

Operations:
ring
wait

MusicalAlarmClock

Attributes:
tone

Operations:
ring (overriding AlarmClock)

is a

As MusicalAlarmClock derives from AlarmClock, it is said to inherit its data members
(plug, control switch, wake-up time) from AlarmClock, so that it is not necessary to redeclare
them. The �alarm clock� point of view of a musical alarm clock, which is the restriction of a
musical alarm clock to the attributes and actions of an alarm clock, is called an inheritance
subobject of the musical alarm clock.

The following code illustrates the use of inheritance in practice:

MusicalAlarmClock ma;

MusicalAlarmClock* pma = &ma; /* create pointer to the object */

AlarmClock* pa = pma; /* implicit conversion thanks to subtyping */

pa->ring(); /* actually calls pma->MusicalAlarmClock::ring() */

42 Tahina Ramananandro

2.2 Inheritance (is-a). Virtual functions

As we can see, a musical alarm clock may be seen as an alarm clock through an implicit
subtyping conversion, called implicit cast. But subtyping only changes the external view of the
object, not its actual behaviour: a musical alarm clock seen as an ordinary alarm clock keeps
behaving like a musical alarm clock, thus the overriding ring() rede�nition is actually called.
The process of selecting the right function to call is named virtual function dispatch.

In particular, thanks to the inheritance mechanism of function overriding, waiting for the
alarm to ring, as implemented in AlarmClock, will also call the overriding ring() rede�nition
of MusicalAlarmClock upon wake-up time. This shows that there is no need to rede�ne the
wait() class member function. Then, when calling the wait() function from a musical alarm
clock:

ma.wait();

Then, the this pointer within the body of wait() must refer to the �alarm clock� point of view
of the musical alarm clock. This requires that an adjustment, i.e. a conversion from musical
alarm clock to alarm clock, be automatically performed during the call, before entering the
function body.

This example points out the fact that inheritance is not only subtyping, but also impacts
the actual behaviour of objects.

2.2.2 Casts

We have seen that it is possible to view an object from the point of view of some subtype of
its actual type, thanks to implicit casts. But in some cases, C++ may allow the programmer to
retrieve the original type of an object from one of its subtypes, through speci�c explicit casts.

Dynamic cast C++ makes it possible to know whether an alarm clock is a musical alarm
clock. To this purpose, C++ provides the dynamic cast operator:

AlarmClock* pa;

...

MusicalAlarmClock* pm = dynamic_cast<MusicalAlarmClock*>(pa);

if(pm != NULL) {

/* we know that pa is actually a musical alarm clock,

pm is pa from the musical point of view */

...

} else {

/* pa is not a musical alarm clock */

...

}

If pa actually refers to a musical alarm clock, then the dynamic cast will succeed and return
the actual musical alarm clock to the programmer. But if pa is actually a genuine alarm clock,
then the dynamic cast will fail and make the programmer aware of the failure by giving a null
pointer.

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 43

Tutorial: the C++ object model Chapter 2

Figure 2.2: A radio receiver. Image from Wikimedia Commons, public domain.

2.2.3 Inheritance for the purpose of subtyping

In C++, inheritance is the only way to achieve subtyping 4. Thus, inheritance may occur
even if there are no class member functions to override. Consider for instance a radio receiver
(cf. Figure 2.2 p. 44). Like an alarm clock, it is an electrical device having a control switch and
a plug. But it also provides an own attribute, its frequency, allowing the user to choose the
radio station listened to.

We can de�ne the type of electrical devices, containing a control switch and a plug. Then
we can say that radios and alarm clocks are electrical devices de�ning each their own attributes
and operations:

struct ElectricalDevice {

Plug plug;

ControlSwitch controlSwitch;

};

struct AlarmClock: ElectricalDevice {

time_t wakeupTime;

virtual void ring();

void wait();

};

struct Radio: ElectricalDevice {

float frequency; /* in MHz, floating-point number */

};

4. C++ o�ers a way to convert an object of some type to another type, by de�ning a type conversion operator,
which may be used implicitly. However, such operators are de�ned by the programmer, by contrast to subtyping,
which is part of the language semantics of C++. This conceptually means that the convertibility of some data to
some other type does not mean that the data actually are of that type. Thus, convertibility is not subtyping.

44 Tahina Ramananandro

2.3 Multiple inheritance

ElectricalDevice
Attributes:

Plug
Attributes: plugged?

ControlSwitch
Attributes: turnedOn?

AlarmClock

Attributes: wakeUpTime

Operations:
ring
wait

is a

ElectricalDevice
Attributes:

Plug
Attributes: plugged?

ControlSwitch
Attributes: turnedOn?

Radio

Attributes: frequency

is a

However, for implementational reasons, C++ de�nes dynamic cast only if the �from� class,
or one of its bases, declares at least a virtual function. It is impossible to dynamically cast from
a radio, or an electrical device.

2.3 Multiple inheritance

Now consider a clock radio (cf. Figure 2.3 p. 46), which is both a radio and an alarm clock,
such that:

� either the radio and the alarm can be turned on or o� independently of the other, through
the corresponding control switch

� if the radio is turned o�, then ringing the alarm actually turns on the radio instead of
buzzing

Then, the two questions are: is a clock radio a radio? Yes, as it can be used exactly like a
radio. Is a clock radio an alarm clock? Yes, as it can be used exactly like an alarm clock.

Thus, a clock radio may be seen as an instance of a ClockRadio class inheriting from two
classes at the same time: Radio and AlarmClock. This is called multiple inheritance. Moreover,
ClockRadio rede�nes the ring() virtual function accordingly:

struct ClockRadio: Radio, AlarmClock {

void ring();

};

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 45

Tutorial: the C++ object model Chapter 2

Figure 2.3: A clock radio. Image from Wikimedia Commons, public domain.

ElectricalDevice
Attributes:

Plug
Attributes: plugged?

ControlSwitch
Attributes: turnedOn?

AlarmClock

Attributes: wakeUpTime

Operations:
ring
wait

is a

ElectricalDevice
Attributes:

Plug
Attributes: plugged?

ControlSwitch
Attributes: turnedOn?

Radio

Attributes: frequency

is a

ClockRadio

Operations:
ring (overriding AlarmClock)

is a

is a

This inheritance scheme, or hierarchy, makes ClockRadio inherit from two classes, each of
which inherits from a common ElectricalDevice class. In C++, this means that a clock radio
is considered to be an electrical device in two distinct ways. This allows distinguishing between
the control switch of the electrical device of the �radio� point of view, and the control switch

46 Tahina Ramananandro

2.3 Multiple inheritance

of the electrical device of the �alarm clock� point of view. This is called repeated inheritance ,
as within a clock radio, there are two distinct �electrical device� inheritance subobjects.

To refer to the control switch of the radio point of view, explicit casts are necessary. Thus,
under this inheritance scheme, the desired ringing protocol of switching on the radio may be
implemented by overriding the ring virtual function in ClockRadio as follows:

void ClockRadio::ring() {

if(!((Radio*)this)->controlSwitch.turnedOn) {

((Radio*)this)->controlSwitch.turnedOn = true;

} else {

this->AlarmClock::ring(); /* bypasses overriding */

}

}

In case the radio is already turned on, the second option chosen actually performs the �legacy�
ring() operation from the alarm clock point of view. This is done in C++ through an explicit
quali�cation, performing a non-virtual function call bypassing inheritance: the exact function
asked for is called.

2.3.1 Ambiguous subobjects

Implicit subtype cast is ambiguous. The following code refuses to compile:

ClockRadio ra;

ra.plug.plugged = true; /* ERROR: ambiguous implicit cast of ra

to ElectricalDevice */

To refer to either control switch, it is necessary to explicitly provide the point of view: convert
this (referring to the current clock radio instance) to the correct subtype, through an explicit
cast. Hence, in the rede�nition of ring, (Radio*)this converts to the radio subtype, to reach
the relevant control switch.

Ambiguous virtual functions Assume, for this section, that an electrical device has a safety
check operation, which, for instance, checks whether the current drawn from the plug is not too
high, and whether the control switch is correctly turned on or o� (and not in an intermediate
state). Such an operation is emulated through the safetyCheck() class member function in
ElectricalDevice, which can be overridden in derived classes:

struct ElectricalDevice {

Plug plug;

ControlSwitch controlSwitch;

virtual bool safetyCheck();

};

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 47

Tutorial: the C++ object model Chapter 2

ElectricalDevice
Attributes:

Plug
Attributes: plugged?
Operations: safetyCheck

ControlSwitch
Attributes: turnedOn?

AlarmClock

Attributes: wakeUpTime

Operations:
ring
wait

is a

ElectricalDevice
Attributes:

Plug
Attributes: plugged?
Operations: safetyCheck

ControlSwitch
Attributes: turnedOn?

Radio

Attributes: frequency

is a

ClockRadio

Operations:
ring (overriding AlarmClock)

is a

is a

Performing such check on a radio (or an alarm clock) becomes possible:

Radio* pr;

...

pr->safetyCheck();

However, for a clock radio, which inherits twice from ElectricalDevice, it is impossible
to know which safety check operation will be selected. A compiler will consequently reject the
following code:

ClockRadio* pra;

...

pra->safetyCheck();

Thus, there are two solutions:
� either cast to Radio or AlarmClock to explicitly choose which safetyCheck function to
call:

48 Tahina Ramananandro

2.3 Multiple inheritance

ClockRadio* pra;

...

Radio* pr = pra;

AlarmClock* pa = pra;

pr->safetyCheck(); /* calls ElectricalDevice::safetyCheck()

seen from Radio

(or Radio::safetyCheck() if overridden) */

pa->safetyCheck(); /* calls ElectricalDevice::safetyCheck()

seen from AlarmClock

(or AlarmClock::safetyCheck() if overridden) */

� or explicitly override safetyCheck in AlarmClock. For instance:
bool ClockRadio::safetyCheck() {

return this->Radio::safetyCheck() && this->Alarm::safetyCheck();

};

In this particular example, those two function calls are not ordinary function calls: as
they are explicitly quali�ed, they bypass inheritance, and they force calling the functions
actually de�ned in the speci�ed classes. Thus, this de�nition performs the safety check
operation speci�c to the radio, then, in case of success, performs the safety check operation
speci�c to the alarm clock.

2.3.2 Cross cast

Besides casts to derived, C++ dynamic cast o�ers a powerful way to navigate within a class
hierarchy: given an alarm clock, it is possible to know whether the object is also a radio, without
exposing to the programmer the intermediate steps (for instance, determining �rst whether the
object is a clock radio). This is called cross cast : cast between two classes which are not base
classes of each other in either way. Then, internally, this operation performs the following steps:

� view the object from its most derived point of view
� then, determine if there is exactly one way to see the object as an instance of the class
to cross-cast to. The cast succeeds if, and only if, this is true.

Again, dynamic cast makes the programmer aware of the failure by returning a null pointer.

AlarmClock* pa;

...

Radio* pr = dynamic_cast<Radio*>(pa);

This dynamic cast succeeds if pa refers to a clock radio, because there is exactly one way
to see a clock radio as a radio. However, it fails for a genuine alarm clock, which is in no way
a radio. Thus, cross cast depends on the most-derived view of the object.

Moreover, ambiguity leads to another case of dynamic cast failure. Consider, for this section,
that an electrical device itself is both a device and also a controlled object (indeed, there may
be controlled objects that have a control switch but are not devices, such as an elevator door),
thus inheriting from two base classes:

struct Device {

virtual bool safetyCheck();

};

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 49

Tutorial: the C++ object model Chapter 2

struct ControlledObject {

ControlSwitch controlSwitch;

};

struct ElectricalDevice: Device, ControlledObject {

Plug plug;

};

Device

ElectricalDevice

Device ControlledObject

ElectricalDevice

AlarmClock Radio

ClockRadio

ControlledObject

Then, in the following code:

ClockRadio* pra;

...

Radio* pr = pra; /* OK, non-ambiguous base */

Device* pd = pr; /* OK, non-ambiguous base */

ControlledObject* pc = dynamic_cast<ControlledObject*>(pd);

/* NULL: ambiguous cross cast */

Dynamic cross cast fails, as there are two ways of seeing a clock radio as a controlled object:
either as a radio, or as an alarm clock.

2.4 Virtual inheritance

There is a design problem in this inheritance hierarchy so far: a clock radio may be seen as
an electrical device in two distinct ways, each of which has its own plug. But in reality, a clock
radio should have only one plug, shared between the radio and the alarm clock features.

C++ o�ers a way to design the inheritance hierarchy to ensure sharing inheritance subobjects:
shared inheritance, also known as virtual inheritance. (Thus, by contrast, repeated inheritance
is also dubbed as non-virtual inheritance).

2.4.1 Virtual base classes

In our example, our clock radio has two control switches, but it should only have one plug.
This may be re�ected on the de�nition of an electrical device. An ElectricalDevice may be
seen as a particular kind of PluggedDevice, where a plugged device provides a plug, and an
electrical device additionally provides a control switch. In our case, we want that, even though
a class may inherit from ElectricalDevice in several di�erent ways, those ways should only
provide one single way of inheriting from PluggedDevice. To this purpose, C++ o�ers the
option of declaring PluggedDevice a virtual base of ElectricalDevice:

50 Tahina Ramananandro

2.4 Virtual inheritance

struct PluggedDevice {

Plug plug;

};

struct ElectricalDevice: virtual PluggedDevice {

ControlSwitch controlSwitch;

};

Then, there is nothing to change at the level of radios, alarm clocks, or clock radios, and
the inheritance graph becomes as follows:

PluggedDevice
Attributes:

Plug
Attributes: plugged?

ElectricalDevice
Attributes:

ControlSwitch
Attributes: turnedOn?

AlarmClock

Attributes: wakeUpTime

Operations:
ring
wait

is a

ElectricalDevice
Attributes:

ControlSwitch
Attributes: turnedOn?

Radio

Attributes: frequency

is a

ClockRadio

Operations:
ring (overriding AlarmClock)

is a

is a

is a (virtual)is a (virtual)

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 51

Tutorial: the C++ object model Chapter 2

2.4.2 Casts

Cast to virtual base The main principle of virtual inheritance is the following: if a class has
a virtual base, then accessing this virtual base from any of its derived classes does not depend
on the way to access it. In other words, in our example, the following two PluggedDevice
objects:

ClockRadio* pra;

...

Radio* pr = pra;

AlarmClock* pa = pra;

PluggedDevice* pp1 = pr;

PluggedDevice* pp2 = pa;

are actually the same object. In particular, the radio and alarm clock features of a clock radio
actually share the same plug.

Thus, in particular, the following cast:

PluggedDevice* pp = pra;

succeeds, because the way to reach the virtual base class is irrelevant.

Cast from a virtual base to derived classes Conversely, a cast from a virtual base
to some derived class is mostly not possible. For instance, casting from PluggedDevice to
ElectricalDevice will not be possible for an AlarmClock, which is an electrical device in two
distinct ways. Thus, such casts have to be actually considered as ordinary cross casts.

ClockRadio ra;

ClockRadio* pra = &ra;

PluggedDevice* pp = pra; /* OK, only one plug */

ElectricalDevice* pe = dynamic_cast<ElectricalDevice*>(pp)

/* NULL: two possible (radio and alarm clock) views */

Radio* pr = dynamic_cast<Radio*>(pp)

/* OK: ClockRadio is a Radio in exactly one way */

2.4.3 Virtual functions: �nal overrider, domination, delegation to sis-
ter class

Now consider that a plugged device has a safetyCheck() operation (ensuring, for instance,
that not too much electric current is drawn from the plug), that may be overridden by derived
classes:

struct PluggedDevice {

Plug plug;

virtual void safetyCheck();

};

Then, consider that a safety check is performed on a clock radio, in the following sense:

52 Tahina Ramananandro

2.4 Virtual inheritance

ClockRadio ra;

ClockRadio* pra = &ra;

PluggedDevice* pp = pra;

pp->safetyCheck();

There are several cases:

Not overridden We know that there is only one view of a radio alarm as a plugged device.
Thus, if safetyCheck is not overridden in any derived class, then the original function within
PluggedDevice will be called.

PluggedDevice

(safetyCheck)

ElectricalDevice ElectricalDevice

Radio AlarmClock

ClockRadio

Overridden in ClockRadio If the clock radio rede�nes its own safety check, then there is
no ambiguity, and, similarly to non-virtual inheritance, the safety check of the clock radio will
be performed.

PluggedDevice

(safetyCheck)

ElectricalDevice ElectricalDevice

Radio AlarmClock

ClockRadio

(safetyCheck)

dominates
dominates

Overridden in ElectricalDevice By contrast, there are two possible ways of seeing a clock
radio as an electrical device. However, contrary to repeated inheritance, those two points of view
share the same PluggedDevice point of view, so it is impossible to know how to choose the
adequate electrical device point of view to perform the safety check.

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 53

Tutorial: the C++ object model Chapter 2

PluggedDevice

(safetyCheck)

ElectricalDevice ElectricalDevice

Radio AlarmClock

ClockRadio

(safetyCheck) (safetyCheck)

ambiguous!

Overridden in Radio and AlarmClock Similarly, if the two base classes of ClockRadio
each override the safety check operation, then there is no way to know how to choose between
the radio and the alarm clock.

PluggedDevice

(safetyCheck)

ElectricalDevice ElectricalDevice

Radio AlarmClock

ClockRadio

(safetyCheck) (safetyCheck)

ambiguous!

Overridden only in AlarmClock This is the most interesting case. For a clock radio, there
are two candidates: either the original PluggedDevice safety check, or the AlarmClock safety
check.

If the original PluggedDevice safety check were chosen, then, conceptually, the check would
be incomplete, by not taking into account the alarm clock feature. This would be contradictory
with the fact that, for a genuine alarm clock, the alarm clock safety check would be chosen.

To help towards a choice, C++ introduces the notion of dominance. Roughly speaking,
whenever a virtual function call occurs on a virtual base, the dispatch examines all possible
views of subtypes (taking repeated inheritance into account) of the most-derived class that
share this common virtual base, and that override the virtual function. Then, if there is one
candidate of which all other candidates are subtypes, then this candidate is said to dominate.

In our example, of the two candidates, AlarmClock dominates because PluggedDevice is
a subtype of AlarmClock. Then, it will be chosen: such a choice is called the �nal overrider for
PluggedDevice::safetyCheck() within a clock radio.

54 Tahina Ramananandro

2.5 Construction and destruction

PluggedDevice

(safetyCheck)

ElectricalDevice ElectricalDevice

Radio AlarmClock

ClockRadio

(safetyCheck)

dominates

The most interesting thing is that this only �nal overrider will be called independently of the
point of view chosen on a clock radio, as soon as PluggedDevice is a virtual base of this point
of view. More concretely, if the safety check is performed from the Radio point of view of a
clock radio:

Radio* pr = pra;

pr->safetyCheck();

Then, as PluggedDevice is a virtual base of Radio, its �nal overrider will be chosen: the
AlarmClock candidate! This is called the delegation to sister class. Conceptually, choosing the
�nal overrider ensures that the safety check is as complete as possible.

2.5 Construction and destruction

On top of multiple inheritance, C++ provides the programmer with notions of object con-
struction. This mechanism makes the initialization of object �elds easier. Moreover, along with
object destruction, C++ allows the programmer to relate object lifetime with resource manage-
ment (e.g. �les, locks, etc.)

2.5.1 The lifetime of objects

C++ relates the lifetime of objects with their scope in the program. In the following excerpt:

{

Radio ra;

...

}

The statement block creates an instance of the Radio class, and this instance is destroyed once
the block exits.

2.5.2 Object initialization

C++ allows to execute a speci�c piece of code whenever an instance of some class is created.
Such a piece of code is called a constructor of the class. A constructor is called explicitly when

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 55

Tutorial: the C++ object model Chapter 2

requesting the creation of an instance. Thus, it may have some arguments. Constructors are
meant to correctly initialize objects, by giving values to their �elds. For instance, when a Radio
instance is created, its constructor can initialize the frequency of the radio with its argument:

struct Radio: ElectricalDevice {

double frequency;

Radio(double initFreq): frequency(initFreq) {}

};

2.5.3 RAII: Resource acquisition is initialization

Symmetrically to construction, C++ allows to execute a speci�c piece of code whenever an
instance of some class is destructed. Such a piece of code is called the destructor of the class. By
contrast to constructors, when a block de�ning an object is left, the corresponding destructor
is implicitly called, so there may be only one destructor per class, and it accepts no arguments.

Constructors and destructors are meant to model a paradigm of resource management,
called resource acquisition is initialization (RAII): roughly speaking, an object creation can
take a resource, which will be released upon object destruction.

For instance, we build a high-level object model for writing data to a �le, such that:
� an instance of OutputFile is associated to a physical �le in the �le system, whose name

is given when requesting the creation of the OutputFile instance;
� when creating a OutputFile instance, the associated physical �le is opened for writing

operations
� when destroying a OutputFile instance, the associated physical �le is closed

The OutputFile class, along its constructors and destructors, may be implemented as follows 5:

#include <cstdio>

struct OutputFile {

FILE* fileHandler; /* Physical file handler */

OutputFile(char* name) { /* Constructor */

fileHandler = fopen(name, "w"); /* Perform system call */

}

~OutputFile() { /* Destructor */

fclose(fileHandler); /* Perform system call */

}

virtual void write(char* stringToWrite) { /* File write */

fputs(fileHandler, stringToWrite); /* Perform system call */

5. We consider strings (char*) as scalar values, as well as physical �le handlers (FILE*). Then, the
system calls for physical �les are as follows: FILE* fopen(char*, "w") opens a �le in write-only mode,
int fputs(FILE*, char*) writes a string into a �le opened in write mode, and int fclose(FILE*) closes
it. Those system types and calls are de�ned in the C++ cstdio standard library. Moreover, we perform no
error handling: this issue requires exceptions, which are not treated in this thesis, as discussed in Section 13.2.1
(p. 327)

56 Tahina Ramananandro

2.5 Construction and destruction

}

};

Such a class allows hiding low-level implementation details (e.g. �le handler and system
calls), so that the following code actually produces a �le named �toto� containing the string
�Hello world!�:

main () {

{

OutputFile f = OutputFile("toto"); /* explicit constructor call,

opens file "toto" */

f.write("Hello world!");

} /* upon block exit,

implicit destructor call,

closes file "toto" */

}

When f enters its scope, a OutputFile instance is created and bound to it, thus the con-
structor speci�ed by the programmer is called, actually opening the physical �le.

Conversely, once f has left its scope, the OutputFile instance bound to it is destroyed, thus
its destructor is called, actually closing the physical �le.

Thus, resource management may be lifted to the level of the language: a �le is opened if,
and only if, its corresponding OutputFile instance is in the scope. This paradigm is called
resource acquisition is initialization (RAII).

This is why, actually, it is worth saying that an object is destructed (rather than �destroyed�)
upon scope exit: this ensures the safety property that an object must not survive its scope. This
situation is adequate with the meaning of the verb to destruct : �to destroy for safety purposes�.

2.5.4 Construction and destruction order

Assume now that we need to write data to a �le on a non-cooperative device allowing access
by only one process at a time (e.g. a tape). Then, we have to put a lock on the device before
opening the �le, and release the lock after closing the �le. Assume that there exists a class
DeviceLock such that any instance locks a device on its creation, and releases the lock on its
destruction:

struct DeviceLock {

DeviceLock(char* device); /* constructor takes the lock */

~DeviceLock(); /* destructor releases the lock */

};

Then, writing on a �le on a locked device may be implemented by the following LockedDeviceFile
class, having two �elds: the device lock, and the �le to write.

struct LockedDeviceFile {

/* WARNING: this order is important */

DeviceLock deviceLock;

File file;

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 57

Tutorial: the C++ object model Chapter 2

LockedDeviceFile(char* device, char* fileName):

/* order is irrelevant here */

File(fileName),

DeviceLock(device)

{}

~LockedDeviceFile() {}

};

Its constructor takes two arguments: the device to lock and the name of the �le to write.
This constructor explicitly calls the constructors for each of its �elds. Then, C++ guaran-
tees that the �elds are constructed by the corresponding explicit calls in the constructor of
LockedDeviceFile. Moreover, they are constructed in the order of declaration of the �elds,
not of the constructor calls. The following class ensures that the device is locked before opening
the �le.

Conversely, C++ guarantees that, after executing the body of the ~LockedDeviceFile()
destructor, the device lock and the �le are destructed upon destruction of a LockedDeviceFile,
in the reverse order of �eld declaration. This ensures that the lock is released from the device
only once the �le has been closed.

This example illustrates the C++ principle enforcing two objects to destruct in the reverse
order of their construction.

2.5.5 Inheritance

Now consider creating a HTML �le. A HTML �le is a �le, which must begin with <html>
and end with </html>. Moreover, a HTML �le should not contain raw text: any text should
be surrounded by tags such as <p>. . . </p> 6 We would like to design a HTMLFile class, such
that the following example:

main () {

{

HTMLFile f = HTMLFile("index.html");

f.write("hello world!");

f.write("42");

}

}

produces a �le named index.html containing:

<html>

<p>hello world!</p>

<p>42</p>

</html>

HTMLFile would hide any implementation details (system calls, HTML tags) from the user,
who would thus be provided a high level of abstraction.

6. For simplicity, we omit the transformation of special characters, in particular < and >. We also omit the
<head> and <body> structure, and in particular the mandatory <title> tag.

58 Tahina Ramananandro

2.5 Construction and destruction

Construction of Base Classes One approach is to enforce writing the header <html> upon
creation of the �le, and the footer </html> upon its destruction.

This may be realized with the help of the following HeaderedFooteredFile class, deriving
from OutputFile, and equipped with a constructor taking two extra arguments, the header
and the footer:

struct HeaderedFooteredFile: OutputFile {

char* foot; /* Keep footer for later use */

HeaderedFooteredFile(char* name, char* header, char* footer):

/* Constructor */

OutputFile(name), /* Initialize base class:

open underlying file */

foot(footer) /* Initialize field to keep footer

for later use */

{

this->write(header); /* Write the header */

}

~HeaderedFooteredFile() { /* Destructor */

this->write(foot); /* Write the footer */

}

};

When a HeaderedFooteredFile is created, its constructor is called, performing the follow-
ing operations in this order:

1. open the underlying �le, by initializing the OutputFile base class by calling its construc-
tor;

2. then, keep the footer for use upon �le closure, by initializing the foot �eld;

3. �nally, write the header to the underlying �le, by executing the constructor body

Conversely, the destructor of the underlying OutputFile base class is implicitly called only
once the destructor of HeaderedFooteredFile exits: this ensures both that the �le is actually
closed, and that the footer is actually written before closing the �le.

As an HTML �le is a �le with the speci�c header <html> and the speci�c footer </html>,
we de�ne a HTMLFile class deriving from HeaderedFooteredFile, calling its constructor with
the appropriate arguments:

struct HTMLFile: HeaderedFooteredFile {

HTMLFile(char* name): HeaderedFooteredFile(name, "<html>", "</html>") {}

...

}

Virtual functions during construction To ensure that each output to an HTML �le be
surrounded by appropriate <p>...</p> tags, we override the write virtual function, calling
the OutputFile::write function of the underlying �le to write the surrounding tags:

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 59

Tutorial: the C++ object model Chapter 2

struct HTMLFile: HeaderedFooteredFile {

HTMLFile(char* name): HeaderedFooteredFile(name, "<html>", "</html>") {}

void write(char* stringToWrite) {

this->OutputFile::write("<p>");

this->OutputFile::write(stringToWrite);

this->OutputFile::write("</p>");

}

}

Now the question is: when creating a HTML �le, which write function is called within
the constructor of HeaderedFooteredFile to write the header? Logically, it must not be the
function of the most-derived class HTMLFile: the <html> header must not be surrounded by
<p>. . . </p> tags. It is necessarily the function of the underlying OutputFile base class.

This is a general point in C++: during the construction of a base class, any derived classes
are ignored until the constructor exits. This is a contrast to other languages such as Java, which
would invariably use the write method de�ned in the most-derived HTMLFile class.

The same principle holds for destruction: when disposing of a HTMLFile, the </html> footer
is written using the write function of the underlying �le, not of the most-derived HTMLFile
class.

C++ also requires that indirect calls to virtual functions (i.e. calls to virtual functions from
outside the constructor body) during construction also follow this paradigm. That is, if the
constructor for HeaderedFooteredFile is de�ned as follows, then it still has to give the same
result.

void writeToHFFile(HeaderedFooteredFile* hf, char* stringToWrite) {

hf->write(stringToWrite);

}

HeaderedFooteredFile(char* name, char* header, char* footer):

OutputFile(name),

foot(footer)

{

writeToHFFile(this, header); /* performs indirect call to write() */

}

2.5.6 Virtual inheritance

The object model for an HTML �le can still be improved. Indeed, the fact that every
output must be surrounded by tags is a priori independent of the fact that the entire �le must
be surrounded by a header and a footer. Therefore, we de�ne a GuardedOutputFile class
ensuring that any output to the �le is surrounded by a preface and a postface:

struct GuardedOutputFile: OutputFile {

char* pre;

char* post;

60 Tahina Ramananandro

2.5 Construction and destruction

GuardedOutputFile(char* name, char* preface, char* postface):

OutputFile(name),

pre(preface),

post(postface)

{}

~GuardedOutputFile() {}

void write(char* stringToWrite) {

this->OutputFile::write(pre);

this->OutputFile::write(stringToWrite);

this->OutputFile::write(post);

}

};

Now a HTML �le inherits from both a HeaderedFooteredFile and a GuardedOutputFile:

struct HTMLFile: HeaderedFooteredFile, GuardedOutputFile {

HTMLFile(char* name):

HeaderedFooteredFile(name, "<html">, "</html>"),

GuardedOutputFile(name, "<p>", "</p>")

{}

};

GuardedOutputFileHeaderedFooteredFile

HTMLFile

OutputFile OutputFile

However, the two base classes must agree on the output �le to write to: it must not be opened
twice. Repeated inheritance would lead to two di�erent views of a HTML �le as a �le, which
would incorrectly open the �le twice, once for each view. We therefore use virtual inheritance:

struct HeaderedFooteredFile: virtual OutputFile {...};

struct GuardedOutputFile: virtual OutputFile {...};

/* class definitions remain otherwise unchanged */

GuardedOutputFileHeaderedFooteredFile

HTMLFile

OutputFile

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 61

Tutorial: the C++ object model Chapter 2

C++ enforces that virtual base classes are initialized (and destroyed) only once. GuardedOutputFile
and HeaderedFooteredFile may virtually inherit from OutputFile, to ensure that the con-
structor of OutputFile is called only once. To ensure this, the constructor of the virtual base
class is called directly from the most-derived class, and the virtual base constructor calls from
base classes are ignored. Thus, de�ning:

struct HTMLFile: HeaderedFooteredFile, GuardedOutputFile {

HTMLFile(char* name):

OutputFile(name),

HeaderedFooteredFile(name, "<html">, "</html>"),

GuardedOutputFile(name, "<p>", "</p>")

{}

};

ensures that the OutputFile virtual base class is initialized before the other base classes, and
the OutputFile constructor calls within HeaderedFooteredFile and GuardedOutputFile are
ignored, so their name arguments are actually useless for a HTML �le.

2.5.7 Summary of construction and destruction principles

Those simple examples illustrate the need for the following C++ principles for managing
object construction and destruction in the presence of C++ multiple inheritance:

� Virtual bases (and their non-virtual bases) are constructed before the non-virtual bases
of a most-derived object

� An object �rst constructs its bases
� Fields are constructed after bases
� Two bases or �elds, are constructed in their declaration order
� Two bases or �elds are destructed in the reverse order of their construction
Although those examples cover all those principles, they do not cover the interactions be-

tween them. However, such interactions are not infrequent in practice: the C++ iostream
standard library de�nes a much more developed and precise object model for input and output
streams. This object model makes use of all the paradigms (multiple inheritance, RAII, . . .)
presented in this chapter, all at the same time. That points out the importance of precisely
clarifying the intricacies between the di�erent features provided by C++ multiple inheritance
and object construction and destruction.

62 Tahina Ramananandro

Chapter 3

Setting and notations

In this chapter, we introduce general-purpose mathematical notations used throughout this
thesis, along with the formalism of small-step semantics for programming languages.

3.1 Overall notations

This section introduces general-purpose mathematical notations and conventions used through-
out this thesis.

Speci�c notations will be introduced and described following the course of this thesis. How-
ever, for a quick reference at a glance, all notations are gathered in the index of notations (p.
357). Most notations are inspired from Coq [4]

Typographical conventions We use �xed-size serif font for language (syntactic) constructs
as in setDynType, by contrast to variable-size sans-serif font for abstract (semantic) concepts
as in setDynType.

Booleans Booleans (set B) are written true and false.

Integers
� To avoid notation clashes, the set of strictly positive integers will be written N>0.
� S : N→ N denotes the successor function among nonnegative integers.
� [a, b] denotes the �closed� integer interval, i.e. the interval from a to b both included:

[a, b]
def.
{x ∈ Z : a ≤ x ≤ b}

� [a, b) denotes the �semi-open� interval, i.e. the integer interval from a to b, including a
but excluding b:

[a, b)
def.
{x ∈ Z : a ≤ x < b}

Sets
� ∅ is the empty set
� x ∈ S, or S ∋ x, denotes the fact that x is an element of the set S
� A ⊆ B, or B ⊇ A, denotes the fact that every element of A is an element of B
� we retain the usual notations ∩,∪ for set intersection and union

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 63

Setting and notations Chapter 3

� for any sets A,B: A # B if, and only if, A and B are disjoint, i.e. A ∩ B = ∅.
� for any sets A,B: A ⊎ B is the union A ∪ B but assuming that A and B are disjoint

(otherwise, A ⊎ B is unde�ned).
� consequently, in an enumerative description of a set {a, b, c}, we do not assume a 6= b,
b 6= c or c 6= a. Those conditions are enforced by writing {a} ⊎ {b} ⊎ {c} instead.

� the set of all subsets of S is written P(S).

Functions If f : A→ B is a function, then, for any a ∈ A and b ∈ B, f [a← b] is the function
where a becomes associated to b whereas any other image is unchanged:

f [a← b] : A → B
a 7→ b
a′ 6= a 7→ f(a′)

Optional values and partial functions
� for any set S such that ⊥ 6∈ S, we pose S?

def.
S ⊎ {⊥}. The value ⊥ is said to be

unde�ned.
� Thus, a partial function f from A to B may be seen as a total function from A to B?,

where an unde�ned f(a) shall actually take value ⊥.
By convention, any set S is assumed to not contain ⊥, unless S can be written T ? for some T .
In grammar de�nitions, if s is a syntactic category, then s? represents zero or one occurrence
of s (or optional s)

Lists
� ǫ is the empty list
� a :: q is the list starting with an element a and continuing with the tail list q
� for any set S, we write S⋆ the set of the lists of S. In grammar de�nitions, if s is a

syntactic category, then s⋆ represents any �nite number of occurrences of s
� x ∈ l, or l ∋ x, denotes the fact that x is an element of the list l

Operations over lists
� q− is the append (list concatenation) operator: for any list l, we have ǫ q− l

def.
l and

(a :: q) q− l
def.

a :: (q q− l).
� filterf (l) is the list l from which all elements a such that f(a) 6= true have been removed, re-

cursively de�ned as follows: filterf (ǫ) = ǫ and filterf (a :: q) =

{

a :: filterf (q) if f(a) = true

filterf (q) otherwise
� map[f](l) is the list l where each element a has been replaced with its image f(a). That

is, map[f](ǫ) = ǫ and map[f](a :: q) = f(a) :: map[f](q).
� rev(l) is the reverse of the list l, i.e. the list of elements of l given in the reverse order of
l. That is, rev(ǫ) = ǫ and rev(a :: q) = rev(q) q− a :: ǫ.

� length(l) is the length of a list l: length(ǫ)
def.

0 and length(a :: l′)
def.

1 + length(l′)
� q−′ is the operator "append without duplicate", de�ned as l1 q−′ l2 = l1 q− filterx 7→x 6∈l1(l2)
� first is a function de�ned on non-empty lists, such that first(a :: l′)

def.
a for all a, l′.

� last is a function de�ned on non-empty lists, computing their last elements: last(a :: ǫ)
def.

a and last(a :: b :: l′)
def.

last(b :: l′) for all a, b, l′.

64 Tahina Ramananandro

3.1 Overall notations

Finite maps For any two sets A,B, we write f : A 7 7→ B for a partial function f from A to
B with a �nite domain: {a ∈ A : f(a) 6= ⊥} is �nite. 1

In practice (e.g. in our Coq development), such a function is represented as a �nite list of
tuples, or association list : f ∈ (A × B)⋆, such that, (a, b) ∈ f if, and only if, f(a) = b 6= ⊥.
This implies that a �nite map must be entirely computable within a �nite amount of time.

A �nite map is empty if, and only if, its domain is empty (i.e. it maps anything to ⊥). It is
then written ∅

Records A record can be considered as a tuple whose components are named: that is, a tuple
with projection functions. A record type Record de�ned as follows:

Record =
{

c1 : V1 ;

:
... ;

cn : Vn ;
}

can be seen as follows:

Record
def.

V1 × · · · × Vn

c1 : ((v1, . . . , vn) ∈ Record) 7→ (v1 ∈ V1)
...

...
cn : ((v1, . . . , vn) ∈ Record) 7→ (vn ∈ Vn)

If r is a record, then:
� the value c(r) of its component c is written r.c
� r[c ← v] denotes a new record whose value of component c has become v whereas all

other components remain unchanged:

r[c← v].c = v

r[c← v].c′ = r.c′ (c′ 6= c)

� In particular, if r.c is a function from A to B, then r[c(a) ← b] denotes a new record
verifying:

r[c(a)← b].c(a) = b

r[c(a)← b].c(a′) = r.c(a′) (a′ 6= a)

r[c(a)← b].c′ = r.c′ (c′ 6= c)

In other words:
r[c(a)← b] = r[c← r.c[a← b]]

1. Symbol 7 7→ is borrowed from the Z notation [11, 78, 41].

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 65

Setting and notations Chapter 3

In�nite streams Let S be a set. An in�nite stream of elements of S is coinductively written
s ::::S where s ∈ S and S is an in�nite stream of elements of S.

Then, we recursively de�ne the concatenation l qq−S of a �nite list l of elements of S and an
in�nite stream S of elements of S as follows:

ǫ qq−S
def.

S (s :: l) qq−S
def.

s :::: (l qq−S)

3.2 Small-step operational semantics

We present here the formal guidelines allowing us to de�ne, for each language that we shall
consider in our work, a syntax and a small-step operational semantics 2. For formal de�nitions
of program behaviours and semantics preservation as foundations to the proofs of correctness
of compilers, please refer to Appendix B (p. 337).

3.2.1 Observational semantics of traces

To relate two languages through a veri�ed compiler, we must focus on a common, language-
independent subset of their semantics. Indeed, the two languages may act completely di�erently
in internal memory representation, but the results expected by the end user should not be
a�ected by such di�erences.

To this purpose, we focus on the observational semantics 3 of languages: during its execution,
a program produces an event trace, representing a (�nite or in�nite) sequence of inputs/outputs,
and, if it terminates, a return value.

We consider a compiler to preserve the semantics of languages if the compiled program
produces the same event traces and the same return value as the source program. Internals such
as memory usage or time consumption are not considered part of the observational semantics
(unless they are accurately and accordingly modeled in the trace semantics, which is out of the
scope of our work). More formally:

Hypothesis 3.2.1. Throughout this thesis, we assume the existence of a set E of events, and
a set Z of return values.

Then, the trace semantics will be shared among all language semantics considered here:

De�nition 3.2.1. A �nite trace is a (�nite) list of events.
An in�nite trace is an in�nite stream of events.

3.2.2 Transition system, programming language

De�nition 3.2.2. A transition system is a tuple (S, (→, I,F)) where:
� S is the set of execution states (or states for short)
� → ⊆ (S × E? × S) is the transition relation or step relation. A member (s1, e

?, s2) of
this relation, written s1 →

e?
s2, is called a valid transition step, a transition step, or a

transition for short. The transition is said to be silent if e? = ⊥, and then it is simply
written s1 → s2. Otherwise, if e? = e 6= ⊥, then the transition is said to produce the event
e

2. Coq development: theory Smallstep.
3. Coq development: theory Events.

66 Tahina Ramananandro

3.2 Small-step operational semantics

� I ⊆ S is the set of initial states, assumed non-empty
� F ⊆ (S×Z) is the set of �nal states, each of which is associated with a return value. If
(s, z) ∈ F, then s is assumed to be stuck: there can be no event e? and no state s′ such
that s→

e?
s′.

(→, I,F) is called the operational semantics (or semantics for short) of the transition sys-
tem.

Any �nal state is assumed to be stuck, but the converse is false: not all stuck states are
�nal.

Notation 3.2.3. For any transition system (S, (→, I,F)) and any return value z, Fz denotes
the set of all �nal states with return value z:

Fz def.
{s : (s, z) ∈ F}

De�nition 3.2.4. A programming language, or language for short, is a tuple (P, S) where:
� P is the set of all programs written in this language. A description of P (e.g. a grammar)

is called a syntax of the language
� S is a partial function de�ned on programs, such that for any program P ∈ P such that
S(P) is de�ned (such a program is said to be well-formed), then S(P) is a transition sys-
tem, called the meaning (or semantics) of P . The function S itself is called the semantics
of the language.

3.2.3 Sequences of transition steps

De�nition 3.2.5. Let (S, (→, I,F)) be a transition system.
Inductively, for any states s0, s2 ∈ S and any �nite trace t ∈ E⋆, we write s0

+
→
t
s2 when s2

is reachable from s0 through a �nite non-zero number of transitions producing trace t according
to the following rules:

s0 → s2

s0
+
→
ǫ
s2

s0 →
e
s2 e 6= ⊥

s0
+
→
e::ǫ

s2

s0
+
→
t1

s1
+
→
t2

s2

s0
+
→

t1 q−t2
s2

Then, we say that s2 is �nitely reachable (or reachable) from s0, written s0
⋆
→
t
s2, if and

only if (s0, t) = (s2, ǫ) or s0
+
→
t
s2.

3.2.4 Built-in types, values and operations

All languages considered in this thesis manipulate built-in types (for instance int, char,
double, . . .) and built-in values (for instance −18, ′c′, 3.1415926535897932, . . .).

Notation 3.2.6. Let BuiltinTypes be the set of built-in types, and Builtin be the set of built-in
values.

We then assume the existence of built-in operators to manipulate them, such as integer or
�oating-point arithmetics.

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 67

Setting and notations Chapter 3

Hypothesis 3.2.2. Let Op be the set of built-in operators. Then, for each built-in operator
op ∈ Op, we assume that there exists a built-in operation [op] : Builtin⋆ → P(E? × Builtin?),
which is also called the semantics of op. If [op](B) ∋ (e?, b), then B is the list of the arguments
passed to the operator op, and the operation is said to produce an event e? (possibly) and
(possibly) a return value b.

In all our languages, evaluation of built-in operators shall be the only possible non-silent
transition steps. That is, no artifacts observable by the end user shall be caused by operations
related to C++ multiple inheritance (casts, virtual function calls, . . .)

68 Tahina Ramananandro

Part I

Veri�cation of C++ object layout

Chapter 4

The semantics of C++ multiple inheritance

In this chapter, we formalize the notions of C++ objects and subobjects in the presence
of multiple inheritance and structure �elds 1. This leads us to present a language, which we
call s++, featuring scalar and structure �eld and array accesses, static and dynamic casts, and
virtual function dispatch.

Our starting points are Rossie et al. [74], who �rst studied C++ multiple inheritance with
both virtual and non-virtual inheritance; and Wasserrab et al. [85], who formalized their ap-
proach in Isabelle to de�ne a language called CoreC++ featuring scalar �elds, static and dynamic
casts, and virtual function dispatch. We extend those works by featuring �elds of structure and
structure array types, also known as embedded structures and embedded structure arrays.

4.1 Classes and subobjects

4.1.1 Class hierarchy

De�nition 4.1.1. A class de�nition is composed of:

� the declarations of class member functions, or methods, with their names, argument types
and return type, and an indication of whether they are virtual or not. (However, no code
is provided.)

� the declaration of data members, or �elds, which can be either a scalar (as in [85]) or
an embedded structure

� the names of the direct (virtual or non-virtual) bases of the class

A class hierarchy is a �nite map from class names to class de�nitions.

1. Coq development: theory Cplusconcepts.

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 71

The semantics of C++ multiple inheritance Chapter 4

t ∈ ScalarType ::= BuiltinType Built-in type
| ClassName∗ Pointer to an object

of class ClassName

n ∈ Z Structure array size

msig ∈ MethodSig ::= ScalarType?MethodName(ScalarType⋆) Class member function
(method) signature

MethodDecls = MethodSig 7 7→ B Method virtualness

fsig ∈ FieldSig ::= scalar ScalarType FieldName; Data member
| struct ClassName[n] FieldName; (�eld)

Base ::= ClassName | virtual ClassName Direct bases

ClassDef ::= Base⋆{FieldSig⋆ MethodDecls}; Class de�nition

Hierarchy = ClassName 7 7→ClassDef Class hierarchy

A class member function (a.k.a. method) is characterized by its name and the types of its
arguments.

A data member (a.k.a. �eld) is characterized by its name and type. A class may declare two
�elds with the same name as long as they have di�erent types. As regards non-scalar �elds, we
only consider structure array �elds: a structure �eld of type C can be seen as a structure array
�eld of type C[1], with only one cell.

Notation 4.1.2. Given a class C, we write:
� DNV(C) ∈ ClassName⋆ the list of its direct non-virtual bases
� DV(C) ∈ ClassName⋆ the list of its direct virtual bases
� D(C) ∈ (virtual? ClassName)⋆ the list of its direct (virtual or non-virtual) bases
� F(C) ∈ FieldSig⋆ the list of its (scalar or structure array) �elds
� M(C) ∈ MethodDecls its methods (a function retrieving true if the class member function
is virtual, false if the class member function is non-virtual, and ⊥ if C does not de�ne
the method).

We write C for the set of de�ned classes, i.e. the set of class names having a class de�nition
through the hierarchy map.

Example 4.1.1. Consider for instance the following C++ code:

struct A { int i; virtual void f(float); };

struct B: virtual A { C* c; };

struct C: A, B { float j; A a[2]; B b; void f(float); };

72 Tahina Ramananandro

4.1 Classes and subobjects

Then, it corresponds to the following hierarchy:

FieldName = {i, c, j, a, b}
ClassName = {A,B,C}

DNV(A) = ǫ
DV(A) = ǫ
D(A) = ǫ
F(A) = (scalar int i) :: ǫ
M(A) : f(float) 7→ true matches virtual void f(float);

DNV(B) = ǫ
DV(B) = A :: ǫ
D(B) = (virtual A) :: ǫ
F(B) = (scalar C c) :: ǫ matches C* c;
M(B) = ∅ B declares no methods

DNV(C) = A :: B :: ǫ
DV(C) = ǫ
D(C) = A :: B :: ǫ
F(C) = (scalar float j) ::

(struct A[2] a) :: matches A a[2];
(struct B[1] b) :: ǫ matches B b;

M(C) : f(float) 7→ false matches void f(float);

C = {A,B,C}

Even though C overrides f from its base A which declares f as virtual, C is not required
to declare f as virtual.

4.1.2 Inheritance paths

4.1.2.1 Non-virtual inheritance

Example 4.1.2. Consider the following code:

struct A { int a; };

struct B1: A {};

struct B2: A {};

struct C : A {};

struct D : B1, B2, C {};

main() {

D d;

B1* b1 = (B1*) &d;

B2* b2 = (B2*) &d;

A * a1 = (A *) b1;

A * a2 = (A *) b2;

}

6

6@@I ���

66
A A A

B1 B2 C

D

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 73

The semantics of C++ multiple inheritance Chapter 4

An instance of D can be seen as having three di�erent �copies� of A: one reachable through
the direct non-virtual base B1, one through B2, and one from C. This is called non-virtual
inheritance, or repeated inheritance. Each �copy�, called an inheritance subobject of D of static
typeA, has its own value for the �eld a. Therefore, it is necessary to distinguish those subobjects.
Following Rossie et al. [74]., those subobjects can be distinguished by the paths through which
they are reached. More precisely:

De�nition 4.1.3 (Non-virtual path). A list l of class names is a non-virtual inheritance

path from C to A (written C −〈l〉
NV
→ A) if, and only if:

� either C = A and l = A :: ǫ. This path is called the trivial path.
� or there exists a non-virtual direct base B of C and a non-virtual path l′ from B to A,

such that l = C :: l′.

C −〈C :: ǫ〉
NV
→ C

B ∈ DNVC B −〈l′〉
NV
→ A

C −〈C :: l′〉
NV
→ A

De�nition 4.1.4 (Non-virtual base). A is a non-virtual base of C if, and only if, A is
reachable through a non-trivial non-virtual path from C.

If B is a direct non-virtual base of C, then any non-virtual base of B is an indirect non-
virtual base of C.

In Example 4.1.2 (p. 73), A is an indirect non-virtual base of D through three di�erent
paths:

� D :: C :: A :: ǫ,
� D :: B1 :: A :: ǫ which corresponds to the a1 pointer,
� and D :: B2 :: A :: ǫ which corresponds to the a2 pointer.
The C++ Standard [42] dictates a1 6= a2: even though they are pointers to subobjects of

the same C object, those subobjects are accessible through di�erent non-virtual paths, so those
pointers must be di�erent.

Concatenation

Lemma 4.1.1. Any non-virtual path l from any class C to any class B begins with C and ends
with B.

Lemma 4.1.2 (Non-virtual path concatenation). If C :: l is a non-virtual path from C
to B and B :: l′ is a non-virtual path from B to A, then C :: l q− l′ is a non-virtual path from
C to A written (C :: l)@Repeated(B :: l′).

(C :: l)@Repeated(B :: l′)
def.

C :: l q− l′
C −〈C :: l〉

NV
→ B −〈B :: l′〉

NV
→ A

C −〈(C :: l)@Repeated(B :: l′)〉
NV
→ A

4.1.2.2 Virtual inheritance

C++ features virtual inheritance, allowing some subobjects accessible through apparently
di�erent paths to be identical. Rossie et al. [74] give a notion of path allowing such subobjects
to be represented by the same path.

74 Tahina Ramananandro

4.1 Classes and subobjects

De�nition 4.1.5. A class A is a virtual base of C (written C
V
→ A) if, and only if:

� either A is a direct virtual base of C
� or there is a direct (virtual or non-virtual) base B of C such that A is a virtual base of
B. In this case, A is said to be an indirect virtual base of C.

A ∈ DV(C)

C
V
→ A

B ∈ DNV(C) ∪ DV(C) B
V
→ A

C
V
→ A

De�nition 4.1.6 (Inheritance path). Let h ∈ {Repeated, Shared} and l be a list of class

names. The pair σ = (h, l) is an inheritance path from a class C to a class A (written C −〈σ〉
I
→

A) if, and only if:
� either h = Repeated and l is a non-virtual path from C to A
� or h = Shared and there exists a virtual base B of C such that l is a non-virtual path from
B to A.

C −〈l〉
NV
→ A

C −〈(Repeated, l)〉
I
→ A

C
V
→ B −〈l〉

NV
→ A

C −〈(Shared, l)〉
I
→ A

De�nition 4.1.7. The path (Repeated, C :: ǫ) from C to C is said to be trivial . Otherwise, if
there is a non-trivial inheritance path from a class C to a class A, then, A is said to be a base
class, or base for short, of C. Any base of a direct base of C is an indirect base of C.

Example 4.1.3. Consider the following code:

struct A {};

struct B1: virtual A {};

struct B2: virtual A {};

struct C : A {};

struct D : B1, B2, C {};

B1

A

B2 C

A

D

Then, the path from D to A through B1 corresponds to the same subobject as the path through
B2, because A is a virtual base of both B1 and B2: the A subobject is shared by both classes. As
B1 and B2 are bases of D, it is the case that A is a virtual base of D and this subobject is denoted
by the path (Shared, A :: ǫ). However, A is also reachable from D through another non-virtual
path: D :: C :: A :: ǫ, which denotes a di�erent subobject.

De�nition 4.1.6 (p. 75) enforces the fact that reaching a non-virtual inheritance subobject
of a virtual base does not depend on how the virtual base is reached. Consequently, we have an
equivalent characterization of inheritance paths:

Lemma 4.1.3. (h, l) is an inheritance path from C to A if, and only if:
� either h = Repeated and l is a non-virtual path from C to A
� or h = Shared and there is a virtual base B of C such that (h′, l) is an inheritance path

from B to A for some h′

C −〈l〉
NV
→ A

C −〈(Repeated, l)〉
I
→ A

C
V
→ B −〈(h′, l)〉

I
→ A

C −〈(Shared, l)〉
I
→ A

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 75

The semantics of C++ multiple inheritance Chapter 4

Concatenation More generally, we can concatenate two inheritance paths:

Lemma 4.1.4. Let C0, C1, C2 be three classes. Let (h1, l1) be an inheritance path from C0 to
C1 and (h2, l2) be a path from C1 to C2.

� If h2 = Repeated, then (h1, l1@Repeatedl2) is a path from C0 to C2

� If h2 = Shared, then (h2, l2) is a path from C0 to C2

This path is written σ1@σ2.

(h1, l1)@(Repeated, l2) def.
(h1, l1@Repeatedl2) (h1, l1)@(Shared, l2) def.

(Shared, l2)

C0 −〈(h1, l1)〉
I
→ C1 −〈(h2, l2)〉

I
→ C2

C0 −〈(h1, l1)@(h2, l2)〉
I
→ C2

We extensively use the path concatenation operation for de�ning operations that allow
navigating through the inheritance subobjects of an object. Such operations are called casts.

4.1.3 Structure array �elds: array paths and generalized subobjects

Besides inheritance, C++ also provides a mechanism of object embedding (or aggregation)
through structure or structure array data members. However, accessing such objects is not a
matter of inheritance. To take them into account, we extend the work of Wasserrab et al. [85]
with a notion of generalized subobjects including not only inheritance, but also structure �eld
accesses.

Example 4.1.4. Consider for instance the following code:

struct X {};

struct A : X {};

struct B { A fa[4]; };

struct C : virtual B {};

struct D { C fc[5]; };

struct E : D {};

E e[7];

X* px = (X*) &(e[2].fc[0].fa[3]);

The expression de�ning px can be decomposed into the more elementary parts:

E* pe2 = &(e[2]); /* access to array cell */

D* pd = (D*) pe2; /* access to inheritance subobject */

C* pfc = pe2->pfc; /* access to structure array field */

C* pc0 = &(pfc[0]); /* access to array cell */

B* pb = (B*) pc0; /* access to inheritance subobject */

A* pfa = pb->pfa; /* access to structure array field */

A* pa3 = &(pfa[3]); /* access to array cell */

X* px = (X*) pa3; /* access to inheritance subobject */

76 Tahina Ramananandro

4.1 Classes and subobjects

That is, px is accessed from e in two stages:
� select the �nal array pfa through a sequence of �array cell selection, inheritance subobject

selection, structure array �eld selection�, called an array path;
� then, select the �nal array cell within pfa and the �nal inheritance subobject within this

cell.
We formalize the notion of array paths as follows:

De�nition 4.1.8. Let C,C ′ ∈ C, n, n′ ∈ N, and α be a list of elements of the form (i, σ, f)
where i ∈ N, σ is an inheritance path and f is a �eld signature. We say that α is an array path
from C[n] to C ′[n′], and we write C[n] −〈α〉

A
→ C ′[n′], if, and only if, one of these conditions

holds:
� C = C ′ and n′ ≤ n and α = ǫ
� or all the following conditions hold:

� there exists a cell index i within C[n] (such that i < n)
� there is a base A of C through an inheritance path σ
� A has a structure array �eld f = (struct Cf [nf] fname)
� there is an array path α′ from Cf [nf] to C ′[n′]
� and α = (i, σ, f) :: α′

n′ ≤ n

C[n] −〈ǫ〉
A
→ C[n′]

0 ≤ i < n C −〈σ〉
I
→ A f = (struct Cf [nf] fname) ∈ FA Cf [nf] −〈α

′〉
A
→ C ′[n′]

C[n] −〈(i, σ, f) :: α′〉
A
→ C ′[n′]

In Example 4.1.4 (p. 76), pfa corresponds to the following array path α from E e[7] to the
structure �eld A fa[4] of B:

α = (2, (Repeated, E :: D :: ǫ), fc)

:: (0, (Shared, B :: ǫ), fa)

:: ǫ

Then, we combine an array path with an inheritance path to unambiguously designate any
subobject:

De�nition 4.1.9. A generalized subobject or relative pointer p of static type A from (or
within) an array of type C[n] (or a relative pointer from C[n] to A) is a triple p = (α, i, σ)
where:

� α is an array path from C[n] to some C ′[n′];
� i is an array cell index within C ′[n′], such that 0 ≤ i < n′;
� σ is an inheritance path from C ′ to A.

We write C[n] −〈(α, i, σ)〉→ A.

We also write for short C[n] −〈(i, σ)〉
CI
→ A to mean that σ is an A inheritance path within

the i-th cell of array C[n].

0 ≤ i < n C −〈σ〉
I
→ A

C −〈(i, σ)〉
CI
→ A

C[n] −〈α〉
A
→ C ′[n′] −〈(i, σ)〉

CI
→ A

C[n] −〈(α, i, σ)〉→ A

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 77

The semantics of C++ multiple inheritance Chapter 4

In Example 4.1.4 (p. 76), px corresponds to the following generalized subobject from E e[7]:

(α, 3, (Repeated, A :: X :: ǫ))

Now we formally introduce the notion of inheritance subobject and most-derived object :

De�nition 4.1.10 (Inheritance subobject). Let p1 = (α1, i1, σ1) and p2 = (α2, i2, σ2) be
two generalized subobjects from some C[n]. Then p2 is said to be an inheritance subobject of
p1 if, and only if, all the following conditions hold:

(i) they are subobjects of the same array cell: (α1, i1) = (α2, i2), such that C[n] −〈α1〉
A
→ C ′[n′]

for some C ′[n′] such that 0 ≤ i1 < n′,

(ii) and σ2 = σ1@σ′ for some σ′ such that C ′ −〈σ1〉
I
→ C1 −〈σ

′〉
I
→ C2 for some classes C1 and

C2.

Condition (ii) may be also designated as: σ2 is an inheritance subobject of σ1

De�nition 4.1.11 (Most-derived object). A most-derived object is an object that is not an
inheritance subobject of another object.

For instance, if C ′[n′] −〈α〉
A
→ C[n] is an array path, and 0 ≤ i < n, then (α, i, (Repeated, C :: ǫ)),

obtained by the trivial inheritance path from C, is a most-derived object. Corollary 4.1.10
(p. 79) shows that most-derived objects are necessarily of this form, under some well-formedness
conditions on class hierarchies introduced in the next section.

4.1.4 Well-formed hierarchies

We expect some well-formedness and well-foundedness hypotheses 2 to hold on the class
hierarchy, so as to be able to compute, for any class C, some data F (C) depending on F (B)
for all classes B being bases of C or types of the structure array �elds of C.

4.1.4.1 Well-de�ned classes

We assume that the hierarchy is complete in the sense of the C++ standard: all classes
referred to by class de�nitions are correctly de�ned.

Hypothesis 4.1.1. Assume the hierarchy is well-de�ned, i.e. for any de�ned class C ∈ C, all
its bases and structure �elds refer to de�ned classes:

∀(virtual?)B ∈ D(C) : B ∈ C

and compatible with structure array �elds, i.e. such that:

∀(struct B[n] f) ∈ F(C) : B ∈ C

2. Coq development: theory CplusWf.

78 Tahina Ramananandro

4.1 Classes and subobjects

4.1.4.2 Well-founded hierarchies

Hypothesis 4.1.2. Assume the hierarchy is well-founded, i.e. the set of classes can be ordered
by some well-founded relation ≺ compatible with inheritance, i.e. such that:

∀(virtual?)B ∈ D(C) : B ≺ C

and compatible with structure array �elds, i.e. such that:

∀(struct B[n] f) ∈ F(C) : B ≺ C

In our Coq formalization, C ⊆ N>0, and ≺ is the usual ordering relation on N>0.

Notation 4.1.12. For each class C, the set of its virtual bases is written V(C). Thus, as the
hierarchy is well-founded, we can compute V(C) by well-founded induction over ≺:

V(C)
def.

DV(C) ∪
⋃

B∈D(C)

V(B)

Lemma 4.1.5.

∀C, ∀B ∈ V(C) : B ≺ C

In particular, C 6∈ V(C).

Lemma 4.1.6. If there exists an inheritance path from C to A, then A � C.
If there exists an array path from C[n] to C ′[n′], then C ′ � C.

Lemma 4.1.7. The only path from a class C to itself is the trivial path:

(Repeated, C :: ǫ)

Corollary 4.1.8. For any classes C and A, it is possible to compute the set of all inheritance
paths from C to A. This set is �nite.

For any class C and any n ∈ N, it is possible to compute the set of all generalized subobjects
within C[n]. This set is �nite.

Lemma 4.1.9. For any classes C and A, if (h,B :: l) is an inheritance path from C to A,
then B = C if and only if h = Repeated.

Corollary 4.1.10. A most-derived object within an array of C[n] is necessarily of the form:

(α, i, (Repeated, C ′ :: ǫ))

where C[n] −〈α〉
A
→ C ′[n′] and 0 ≤ i < n′. That is, an object is most-derived if, and only if, it is

a structure array cell.

The well-formedness of the hierarchy also allows to argue on the left-hand-side regularity of
path concatenation:

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 79

The semantics of C++ multiple inheritance Chapter 4

Lemma 4.1.11. Consider the inheritance paths D −〈(h, l)〉
I
→ C −〈(h1, l1)〉

I
→ B1 and C −〈(h2, l2)〉

I
→

B2.
Then, (h, l)@(h1, l1) = (h, l)@(h2, l2) implies (h1, l1) = (h2, l2).

Proof. Lemma 4.1.1 (p. 74) immediately gives B1 = B2. First we show that h1 = h2. If, for
instance, h1 = Shared and h2 = Repeated, then (h, l)@(h1, l1) = (Shared, l1). Let l1 = V :: l′, so
that V is a virtual base of C, thus V ≺ C per Lemma 4.1.5 (p. 79). But on the other hand,
(h, l)@(h2, l2) = (h, l@Repeatedl2), so that l@Repeatedl2 = V :: l′. Thus, l starts with V . This means
that l is a non-virtual path from V to C, thus C � V per Lemma 4.1.6 (p. 79), which leads to
a contradiction.

Now since h1 = h2, there are two cases:
� if h1 = Repeated, then for each i ∈ {1, 2}: li = C :: l′i is a non-virtual path from C to B′

i,
and we have (h, l)@(hi, li) = (h, l@Repeatedli), which leads to l@Repeatedl1 = l@Repeatedl2, i.e.
l q− l′1 = l q− l′2. It is easy to see that q− is left-hand-side regular, so l′1 = l′2, which concludes.

� Otherwise, h1 = h2 = Shared, then for each i, (h, l)@(hi, li) = (Shared, li) = (hi, li) so that
l1 = l2, which concludes.

4.2 Syntax of the s++ language

Wasserrab et al. [85] de�ne a subset of C++ called CoreC++ to formalize C++ multiple
inheritance features, in particular static and dynamic casts, and virtual function calls. We
extend their language by adding structure �eld array accesses, to de�ne a language that we call
s++ (for a subset of C++ featuring embedded structures).

s++ is an imperative 3-address language, without embedded expressions: arguments of op-
erations are necessarily variables. s++ features built-in operations (Section 3.2.4 p. 67) and
usual structured control under the form of conditionals, sequences, in�nite loops, and state-
ment blocks with early exit (avoiding the need for goto-like statements, and allowing exit from
in�nite loops).

s++ also has object-oriented features: reading or writing a scalar �eld, accessing a structure
�eld, accessing a structure array cell, pointer equality test, static and dynamic casts, and virtual
function calls. But s++ also allows static (non-class-member) function calls, as well as non-virtual
function calls, which are calls to a class member function bypassing dynamic dispatch, as if it
were a static function.

n ∈ N

op, . . . ∈ Op Built-in operations
x, . . . ∈ Var Variables
B,C, . . . ∈ ClassName Classes
fsig ∈ FieldSig Field signatures
msig ∈ MethodSig Method signatures
sfname ∈ StaticFunName Static function names

st ::= x′ := op(x∗) Built-in operation
| x′ := x Assignment between variables
| if (x) st true else st false Conditional
| st1; st2 Statement sequence

80 Tahina Ramananandro

4.3 Syntax of the s++ language

| skip Do nothing
| loop st In�nite loop
| return x? Return from function
| {st} Statement block
| exit n Exit from n blocks
| x′? := sfname(x∗) Static function call
| x′? := x->C::msig(x∗) Non-virtual function call
| x′ := x->Cfsig Field read
| x->Cfsig := x′ Scalar �eld write
| x′ := &x[xindex]C Array cell access
| x′ := x1 ==C x2 Pointer equality test
| x′ := static_cast〈B〉C(x) Static cast
| x′ := dynamic_cast〈B〉C(x) Dynamic cast
| x′? := x->Cmsig(x∗) Virtual function call

In s++, object-oriented features perform no implicit casts: for instance, �eld accesses explic-
itly require that the class de�ning the �eld exactly match the static type of the object pointer.
In other words, we rely on the C++ typechecker to materialize implicit casts while elaborating
the source program into the s++ intermediate language. For example, under the following C++
class hierarchy:

struct A { int i; } ;

struct B: A {} ;

B* b;

the C++ statement j = b->i; is elaborated to the following s++ code, explicitly casting to A:

a = static_cast〈A〉B(b);

j = a->Ai;

This example also shows that object-oriented operations are tagged by the types expected for
their arguments: no static type inference is performed on s++ code.

Finally, a s++ program is composed of a class hierarchy, de�nitions for static (non-class-
member) functions, and the codes of class member functions, with the names of the arguments
for use within function bodies:

StaticFunDef ::= (x∗){st} Static function
MethodDef ::= this->(x∗){st} Class member function

(method) de�nition
Program =
{

hierarchy : Hierarchy ; Class hierarchy
staticfuns : StaticFunName 7 7→ StaticFunDef ; Static functions
methods : ClassName ×MethodSig 7 7→MethodDef ; Class method codes

}

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 81

The semantics of C++ multiple inheritance Chapter 4

4.3 Semantic elements

We formalized a small-step style semantics for the s++ language. Similarly to some CompCert-
like intermediate languages, the execution state contains a simple �block or callframe� contin-
uation stack to precisely model each step of computation.

4.3.1 Values

A value is either a value of built-in type (integer, �oating-point number, etc.), a pointer to
a generalized subobject, or a null pointer.

In s++, objects cannot be created ; instead, they are assumed to already exist when the
program starts. Such objects are called complete objects. They are represented by locations
written ℓ. A pointer to a generalized subobject is a tuple (ℓ, p) where p represents a generalized
subobject within a complete object stored at location ℓ. Null pointers are required in order to
deal with failing dynamic casts (which purposefully must not interrupt the execution of the
program).

ℓ, . . . ∈ Λ Complete object location
Ptr ::= (ℓ, (α, i, σ)) Pointer to subobject
Val ::= Builtin Value of built-in type

| Ptr Non-null pointer
| NULLC Null pointer of C class type

4.3.2 Execution state

An execution state of the small-step semantics is composed of:

� the current statement to execute
� the list of further statements to execute in the same block
� the environment (mapping of values to variables)
� the continuation stack, which is a list of frames, each frame being either:
� leaving a block, with the further statements to execute after leaving the block
� returning from a function, with the caller variable to store the result (if any), the caller
environment, and the further statements to execute on resumption

� the class type and array size of each location of a complete object
� the value of each scalar �eld. A scalar �eld is unambiguously designated by a complete
object location, a generalized subobject of some class type C within this complete object,
and a scalar �eld signature declared in class C.

For presentation convenience, the types of complete objects and the scalar �eld values are
grouped into a common global state, so that a state is written as a tuple (st , st∗, e,K,G) where
st is the current statement, st∗ is the list of further statements, K the continuation stack, and
G the global state grouping the types of complete objects and the values of scalar �elds.

82 Tahina Ramananandro

4.4 Semantic rules

Env = x→Val ? Environment
e ::= Env

Frame ::= Block(st∗) Further statements
after leaving a block

| Callframe(x?, st∗, e) Return from function
K ::= Frame∗ Continuation stack
G =
{

LocType : Λ→ (ClassName × N>0)? ; Complete object types
FieldValue : Ptr × FieldSig→Val ? ; Scalar �eld values
}
State ::= (st , st∗, e,K,G) Execution state

Notation 4.3.1. We write G ⊢ (ℓ, p) : B to mean that p is a generalized subobject of the
complete object ℓ, and the static type of p is B. More formally:

G.LocType(ℓ) = (C, n) C[n] −〈p〉→ B

G ⊢ (ℓ, p) : B

We also write G ⊢ 〈ℓ〉 C[n] to mean G.LocType(ℓ) = (C, n).

The latter notation allows for chaining notations: G ⊢ 〈ℓ〉 C[n] −〈α〉
A
→ C ′[n′] −〈(i, σ)〉

CI
→ A.

4.4 Semantic rules

The small-step semantics of s++ is given by the transition relation→ between two transition
states, de�ned in this section.

4.4.1 Features unrelated to C++ multiple inheritance

4.4.1.1 Structured control, variable value duplication and built-in operations

In an execution state (st , stl , e,K,G), st is the statement to run, and stl is a pipeline of
pending statements within the same block, each pending enclosing block being represented by
a frame in the continuation stack K. However, the pipeline L is not guaranteed to be executed,
in particular if the statement is exit or return.

Most structured control behaves similarly as in other CompCert-like languages: condition-
als, sequences, in�nite loops, and return from call (once all statements blocks within the current
function have been left), as well as variable value duplication, and built-in operations (Hypoth-
esis 3.2.2 p. 68). The corresponding rules are described below.

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 83

The semantics of C++ multiple inheritance Chapter 4

Structured control The conditional statement selects the next statement depending on the
value of its boolean argument:

e(x) = b ∈ {true, false}

(if(x) st true else st false, stl , e, K, G)
→ (st b , stl , e, K, G)

(s++-if)

The statement sequence feeds the pipeline:

(st1; st2, stl , e, K, G)
→ (st1 , st2 :: stl , e, K, G)

(s++-seq)

The pipeline can be forced by skip:

(skip, st :: stl , e, K, G)
→ (st , stl , e, K, G)

(s++-skip)

An in�nite loop feeds itself into the pipeline, then executes its body:

(loop st , stl , e, K, G)
→ (st , loop st :: stl , e, K, G)

(s++-loop)

When returning from a function, the caller is given by a Callframe on top of the continuation
stack. If the caller expects a return value by giving a variable name, then this variable is updated
with the actual return value.

e(x) = v e′′ = e′[res ← v]

(return x, stl , e , Callframe(res , stl ′, e′) :: K, G)
→ (skip , stl ′, e′′, K, G)

(s++-return-arg)

(return, stl , e , Callframe(⊥, stl ′, e′) :: K, G)
→ (skip , stl ′, e′, K, G)

(s++-return-no-arg)

Built-in operation A built-in operation can produce an observable event:

∀i, e(xi) = vi [op](v1 :: . . . :: vn :: ǫ) ∋ (e?, res) e′ = e[x′ ← res]

(x′ := op(x1, . . . , xn), stl , e , K, G)
→
e?

(skip , stl , e′, K, G)

(s++-builtin)

Assignment between variables The value of the source variable is simply stored into the
target variable:

e(x) = v e′ = e[x′ ← v]

(x′ := x, stl , e , K, G)
→ (skip , stl , e′, K, G)

(s++-var-dup)

84 Tahina Ramananandro

4.4 Semantic rules

4.4.1.2 Statement blocks

Statements may be enclosed into statement blocks, which can terminate prematurely by
executing an exit statement.

({st}, stl , e, K, G)
→ (st , ǫ, e, Block(stl) :: K, G)

(s++-block)

exit n leaves n enclosing blocks.

(exit 0, stl , e, K, G)
→ (skip , stl , e, K, G)

(s++-exit-0)

(exit (S n), stl , e, Block(stl ′) :: K, G)
→ (exit n , stl ′, e, K, G)

(s++-exit-S)

Returning from a function �rst leaves all enclosed blocks.

(return x?, stl , e, Block(stl ′) :: K, G)
→ (return x?, stl ′, e, K, G)

(s++-return-block)

4.4.2 Static and non-virtual function call

Static functions s++ allows to call static (non-class-member) functions 3. Upon such a call, a
new variable environment is created for the callee, to store the values of arguments. The caller,
with its own environment, the further statements to execute, and maybe a variable to store the
return value, are saved into a new Callframe placed on top of the continuation stack. Finally,
the body statement of the function is executed in the callee:

staticfuns(sfname) = (varg1, . . . , vargn){body}
∀j, e(xj) = vj e′ = ∅[varg1 ← v1] . . . [vargn ← vn]

(x? := sfname(x1 . . . xn), stl , e , K, G)
→ (body , ǫ, e′, Callframe(x?, stl , e) :: K, G)

(s++-static-funcall)

Non-virtual function call s++ also allows calls to class member functions in a non-virtual
fashion, i.e. bypassing dynamic dispatch, as in C++ with explicit quali�cation. Such a call
actually corresponds to calling a class member function of n arguments as if it were a non-
class-member function of 1 + n arguments, the additional argument being the object on which
to call the function without dynamic dispatch.

This operation is tagged with a class name C. Contrary to C++, the requested function
must be actually declared in C, and C must be exactly the static type of the object on which
to perform the call: there is no implicit cast.

3. No functions were supported in our POPL 2011 paper [72], which relied on a simpli�ed proof [70].

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 85

The semantics of C++ multiple inheritance Chapter 4

methods(C,msig) = this->(varg1, . . . , vargn){body}
∀j, e(xj) = vj e(x) = v e′ = ∅[this ← v][varg1 ← v1] . . . [vargn ← vn]

(x′? := x->C::msig(x1 . . . xn), stl , e , K, G)
→ (body , ǫ, e′, Callframe(x′?, stl , e) :: K, G)

(s++-non-virtual-funcall)

4.4.3 Field and array accesses, and pointer equality test

Scalar �elds Reading or writing a scalar �eld is tagged by a class name C. The �eld being
accessed must be explicitly declared in C, and the pointer to the object must correspond to a
subobject of static type C (there is no implicit cast). The value of the scalar �eld is retrieved
from, or written to, the G.FieldValue entry of the global state:

f = (scalar t fname) ∈ F(C)
e(x) = π G ⊢ π : C G.FieldValue(π, f) = res e′ = e[x′ ← res]

(x′ := x->Cf, stl , e , K, G)
→ (skip , stl , e′, K, G)

(s++-�eld-scalar-read)

e(x) = π G ⊢ π : C
f = (scalar t fname) ∈ F(C) e(x′) = res G ′ = G[FieldValue(π, f)← res]

(x->Cf := x′, stl , e, K, G)
→ (skip , stl , e, K, G ′)

(s++-�eld-scalar-write)

Structure �elds Only scalar �elds may be assigned. In true C++, assignment to a structure
�eld is actually a call to the operator= class member function. We therefore assume that
the elaborator produced an explicit call to this class member function, and add no speci�c
evaluation rule for that case.

Accessing a structure array �eld actually produces a pointer to its �rst cell, without deref-
erencing it. It is only �pointer adjustment� without actually reading any value.

e(x) = π = (ℓ, (α, i, σ)) G ⊢ π : C f = (struct B[n] fname)) ∈ F(C)
e′ = e[x′ ← (ℓ, (α q− (i, σ, f) :: ǫ, 0, (Repeated, B :: ǫ)))]

(x′ := x->Cf, stl , e , K, G)
→ (skip , stl , e′, K, G)

(Ds++-�eld-struct-point)

Array subscripting Accessing an array cell is only valid on a pointer to a most-derived
object. Indeed, per Corollary 4.1.10 (p. 79), only most-derived objects are array cells, and
the subscripting operation actually allows accessing a sibling array cell, as in the following C++
example:

86 Tahina Ramananandro

4.4 Semantic rules

A a[3];

A* a2 = &(a[2]);

A* a1 = &(a2[-1]); /* equivalent to &(a[1]) */

Then, likewise, it is a mere �pointer adjustment� without actually reading any value:

e(x) = (ℓ, (α, i, (Repeated, C :: ǫ)))
e(xindex) = j ∈ Z e′ = e[x′ ← (ℓ, (α, i+ j, (Repeated, C :: ǫ)))]

(x′ := &x[xindex]C , stl , e , K, G)
→ (skip , stl , e′, K, G)

(s++-array-point)

Pointer equality test Comparing two pointers requires them to be of the same type C.
Either may be null. Thus we need to introduce a notion of pointer typing generalized to null
pointers:

Notation 4.4.1. We de�ne the notation G ⊢ π̃ ÷C to say that a pointer π̃ that may be NULL

has type C:

G ⊢ π : C

G ⊢ π ÷ C G ⊢ NULLC ÷ C

Then, comparing two pointers of the same type C yields a boolean, true if and only if the
two pointers are equal.

∀i ∈ {1, 2} : e(xi) = π̃i

∀i ∈ {1, 2} : G ⊢ π̃i ÷ C b ∈ {true, false} b = true⇔ π̃1 = π̃2 e′ = e[x′ ← b]

(x′ := x1 ==C x2, stl , e , K, G)
→ (skip , stl , e′, K, G)

(s++-ptreq)

4.4.4 Static cast

4.4.4.1 The two �avours of static cast

C++ gives two �avours of static cast from an object of class type B to some class type B′ (cf.
Wasserrab et al. [85]). We write StatCast(σ,B,B′, σ′) to say that static cast from an inheritance
subobject σ of type B to B′ is well-de�ned with σ′ as the result:

� either cast from B to one of its bases B′ such that there is a unique inheritance path from
B to B′

B −〈σ′′〉
I
→ B′ ∀σ′ : B −〈σ′〉

I
→ B′ ⇒ σ′ = σ′′

StatCast(σ,B,B′, σ@σ′′)
(statcast-derived-to-base)

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 87

The semantics of C++ multiple inheritance Chapter 4

� or cast from B to one of its non-virtual derived classes B′ such that there is a unique
non-virtual inheritance path from B′ to B

B′ −〈(B′ :: l)〉
NV
→ B ∀l′′, B′ −〈(B′ :: l′′)〉

NV
→ B ⇒ l′′ = l last(l′) = B′

StatCast((h, l′ q− l), B,B′, (h, l′))
(statcast-base-to-derived-non-virtual)

Lemma 4.4.1. The result of a static cast, if any, is unique.

4.4.4.2 s++ language construct

Those rules are used for de�ning the s++ static cast rule from B to B′, which applies on a
valid pointer to a generalized subobject of static type B (again, there is no implicit cast).

e(x) = π = (ℓ, (α, i, σ))
G ⊢ π : B StatCast(σ,B,B′, σ′) e′ = e[x′ ← (ℓ, (α, i, σ′))]

(x′ := static_cast〈B′〉B(x), stl , e , K, G)
→ (skip , stl , e′, K, G)

(s++-statcast)

4.4.5 Dynamic cast

4.4.5.1 The three �avours of dynamic cast

C++ gives three �avours of dynamic cast from an object of type B to B′. Let σ be an
inheritance subobject of type B from a most-derived C object. We write DynCast(C, σ,B,B′, σ′)
(inspired from Wasserrab et al. [85]) if dynamic cast of σ from B to B′ succeeds and yields the
subobject σ′ of the most-derived C object, and DynCast(C, σ,B,B′,NULLB′) if it fails.

� Either B′ is a base of B and there is a unique inheritance path from B to B′ (derived-to-
base cast):

C −〈σ〉
I
→ B −〈σ′′〉

I
→ B′ σ′′ unique

DynCast(C, σ,B,B′, σ@σ′′)
(dyncast-derived-to-base)

� Or, σ may be decomposed as a B non-virtual subobject of some B′ subobject (non-virtual
base-to-derived cast):

C −〈(h, l′)〉
I
→ B′ −〈(Repeated, B′ :: l)〉

I
→ B

DynCast(C, (h, l′ q− l), B,B′, (h, l′))
(dyncast-base-to-derived-non-virtual)

� Or, there is a unique B′ subobject from D (cross-cast from B to B′ via the most-derived
object D):

C −〈σ〉
I
→ B C −〈σ′〉

I
→ B′ σ′ unique

DynCast(C, σ,B,B′, σ′)
(dyncast-crosscast)

Moreover, if none of the above is applicable, then dynamic cast must yield a null pointer. That
is, dynamic cast never crashes:

88 Tahina Ramananandro

4.4 Semantic rules

C −〈σ〉
I
→ B 6 ∃!σ′′ : B −〈σ′′〉

I
→ B′

6 ∃!σ′ : C −〈σ′〉
I
→ B′ 6 ∃h, l′, l :

{

σ = (h, l′ q− l)

C −〈(h, l′)〉
I
→ B′ −〈(Repeated, B′ :: l)〉

I
→ B

DynCast(C, σ,B,B′,NULLB′)
(dyncast-fail)

Lemma 4.4.2. The result of dynamic cast is unique.

Static and dynamic casts to bases are related:

Lemma 4.4.3. If B′ is a base of B, then dynamic cast from an inheritance subobject succeeds
if, and only if, static cast is well-de�ned, and in such case, they give the same result.

This fact allows the elaborator to optimize away dynamic casts to bases: considering that s++
is an intermediate language, we can assume that dynamic casts to bases have been translated
to static casts, leaving only dynamic casts to non-bases.

4.4.5.2 s++ language construct

The C++ Standard [42] allows dynamic casts from dynamic classes only 4:

De�nition 4.4.2. A class C is said to be dynamic (written isDynamic(c)) if, and only if, at
least one of the following conditions holds:

� C declares at least one virtual function:
� C has at least one virtual base
� C has at least one dynamic base

M(C)(msig) = true

isDynamic(C)

C
V
→ B

isDynamic(C)

B ∈ DNV(C) ∪ DV(C) isDynamic(B)

isDynamic(C)

If the hierarchy is well-formed, then this predicate is decidable 5.
In real-world implementations (for reasons that we shall see in the next chapter), run-time

data is needed to perform dynamic-casts. Thus, following the C++ standard, we shall also
restrict s++ dynamic casts to object of dynamic class types. Moreover, Lemma 4.4.3 (p. 89)
allows us to restrict s++ dynamic cast to non-base classes:

e(x) = π = (ℓ, (α, i, σ)) G ⊢ 〈ℓ〉 C◦[n◦] −〈α〉
A
→ C[n] −〈(i, σ)〉

CI
→ B

isDynamic(B) 6 ∃σ′ : B −〈σ′〉
I
→ B′ DynCast(C, σ,B,B′, σ̃′)

π̃′ = match σ̃′ with σ′ 7→ (ℓ, (α, i, σ′)) | NULLB′ 7→ NULLB′ end e′ = e[x′ ← π̃′]

(x′ := dynamic_cast〈B′〉B(x), stl , e , K, G)
→ (skip , stl , e′, K, G)

(s++-dyncast)

4. Coq development: theory Dynamic.
5. Coq development: theory DynamicWf.

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 89

The semantics of C++ multiple inheritance Chapter 4

4.4.6 Virtual function call

4.4.6.1 Virtual function dispatch

Following Wasserrab et al., we write VFDispatch(C◦, σ
′, f, B′′, σ′′) to say that, if the most-

derived object is of type C◦, then selecting the dispatch subobject for method f from an
inheritance subobject σ′ of C◦ yields the actual subobject σ′′ of C◦ of static type B′′ de�ning
the actual function to call. Virtual function dispatch occurs as follows:

1. Let B be the static type of the pointer to the subobject σ′ on which to operate. Then,
statically choose the static resolving subobject σf of type Bf declaring f . This step,
written staticDispatch(B, f,Bf , σf), actually �nds a unique base class Bf of B declaring
f (unless B itself declares f):

B −〈σf〉
I
→ Bf

M(Bf)(f) 6= ⊥ ∀σ2, B2 :
B −〈σ2〉

I
→ B2 ∧M(B2)(f) 6= ⊥ ⇒

∃σ4 : Bf −〈σ4〉
I
→ B2 ∧ σ2 = σf@σ4

staticDispatch(B, f,Bf , σf)
(static-dispatch)

Contrary to other object-oriented operations such as �eld access, B is not required to
declare f . However, this does not constrain real-life implementations to perform an im-
plicit cast: this static dispatch step is mostly included in clever implementations of virtual
dispatch.

2. Determine the �nal overriders for the methods. The �nal overriders are the inheritance
subobjects σ′′ of C◦ nearest to C◦ along the path σ′@σf , as de�ned by the predicate
�nalOverrider(C◦, σ

′, B, f, B′′, σ′′) as follows:

C◦ −〈σ
′〉

I
→ B

staticDispatch(B, f,Bf , σf) C◦ −〈σ
′′〉

I
→ B′′ M(B′′)(f) 6= ⊥ B′′ −〈σ′′

f 〉
I
→ Bf

σ′@σf = σ′′@σ′′
f ∀σ2, σ4, B2 :

C◦ −〈σ2〉
I
→ B2 −〈σ4〉

I
→ B′′ ∧M(B2)(f) 6= ⊥ ⇒

(B′′, σ′′) = (B2, σ2)

�nalOverrider(C◦, σ
′, B, f, B′′, σ′′)

(�nal-overrider)

3. Finally, virtual function dispatch works only if there is a unique �nal overrider; and only
if there is a base B◦ of C◦ declaring f virtual. This is a slight di�erence from [85] and
[84], where all class member functions (methods) are virtual.

�nalOverrider(C◦, σ, B, f, B′′, σ′′)
∀(B′, σ′) : �nalOverrider(C◦, σ, B, f, B′, σ′)⇒ (B′, σ′) = (B′′, σ′′)

B −〈σ◦〉
I
→ B◦ M(B◦)(f) = true

VFDispatch(C◦, σ, f, B
′′, σ′′)

(virtual-dispatch)

4.4.6.2 s++ language construct

Finally, s++ virtual function call from an inheritance subobject σ of C◦ of static type B is
de�ned as follows:

90 Tahina Ramananandro

4.4 Semantic rules

1. Perform the virtual function dispatch, via the VFDispatch predicate. It returns the dis-
patched subobject σ′′ of static type B′′ on which the actual function of B′′ shall be called.

2. Then, the actually called function expects this pointing to the dispatched subobject.
This requires an adjustment on the this pointer, to make it point to σ′′ instead of σ.

3. Finally, pass that adjusted this pointer along with the arguments to the function.

e(x) = π = (ℓ, (α, i, σ)) G ⊢ 〈ℓ〉 C[n] −〈α〉
A
→ C◦[n◦] −〈(i, σ)〉

CI
→ B

VFDispatch(C◦, σ, f, B
′′, σ′′) methods(B′′, f) = this->(varg1, . . . , vargn){body}

∀j, e(xj) = vj e′ = ∅[this ← (ℓ, (α, i, σ′′))][varg1 ← v1] . . . [vargn ← vn]

(x? := x->Bf(x1 . . . xn), stl , e , K, G)
→ (body , ǫ, e′, Callframe(x?, stl , e) :: K, G)

(s++-virtual-funcall)

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 91

The semantics of C++ multiple inheritance Chapter 4

92 Tahina Ramananandro

Chapter 5

Formalization of object layout

Semantics of programming languages often de�ne data types and structures at an abstract
level (records, unions, arrays, classes, etc.) So, concrete implementation by compilers and in-
terpreters have to �nd an adequate representation of those data types and structures in terms
of low-level memory concepts (bits, pointers, etc.) Such a representation is called layout.

In this chapter, we formalize a family of layout algorithms for C++ objects with multiple
inheritance, with some optimizations. Then, we prove that:

� any two di�erent scalar �elds, reachable through �eld or inheritance subobjects of the
same object, are represented by disjoint memory zones. This allows showing the good
variable property on concrete memory models such as CompCert [2].

� two di�erent subobjects of the same type must be laid out at di�erent memory addresses.
This requirement is called the object identity principle.

However, we shall also see that additional data are involved to implement polymorphic
operations such as virtual function dispatch, dynamic casts, or even access to virtual bases.
Then, we also have to prove that this additional data is stored disjointly from �eld data.

5.1 The object layout problem

Within a compound data structure, components are laid out at o�sets relative to the start
address of the memory area representing the whole structure.

Arrays The most basic example is arrays. An array is an homogeneous compound data
structure: all its components, called cells, are of the same type. Thus, in C++ as in C or
Fortran, cells are laid out contiguously and consecutively in memory.

int i[3] = {11, 22, 33}; 11 22 33
0 4 8 12

Structures But C and C++ also allow to de�ne heterogeneous compound data structures,
called structs (or structures). Within such a structure, components, called members (or �elds),
often are of di�erent types. They may be still laid out consecutively in memory, such that a
�eld within a structure is accessed through a constant o�set within this structure, from the
start address of the structure.

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 93

Formalization of object layout Chapter 5

struct S {

char c1;

int i;

char c2;

};

c1 i c2
0 1 8 5 6

Alignment However, most architectures require that any low-level memory access be cor-
rectly aligned : for instance, an access to a 32-bit integer must be done at an address multiple
of 4 bytes. For any elementary data types (numerical types, pointer types, etc.), a constant
alignment is de�ned, which is a number such that accessing an elementary data through a
memory address requires that this address be a multiple of the alignment of the corresponding
elementary data type.

To ensure this constraint, a compiler may insert padding between two �elds of a structure,
to ensure that the second �eld be correctly aligned:

c1 i c2
0 1 4 4 8 9

This padding space is, most often, unused. Thus, it may be relevant to reorder �elds to
minimize the amount of padding.

i c1 c2
0 4 5 6

However, neither the C standard nor the C++ standard allow the compiler to reorder the �elds
by itself: they require �elds to be laid out at increasing o�sets following their declaration
order. Thus, in both cases, the programmer has to be aware of this layout issue to manually
determine the order of the �elds in the structure. In C++ object-oriented model, this can trigger
unexpected consequences at the level of the semantics itself, where some aspects depend on the
�eld declaration order: for instance, �elds are initialized in their declaration order.

So, for now we assume that the programmer has reordered the �elds of S in the following
way:

struct S {

int i;

char c1;

char c2;

};

Arrays of structures Then, in C and in C++ structures may be themselves aggregated in
arrays of structures:

S s[2];
s[0].i s[1].i

0 6 8 12

s[0]

But the access to the �elds of the second structure cell must still be correctly aligned. This
is ensured by adding even more padding space at the end of the structure, called tail padding.

94 Tahina Ramananandro

5.2 Impact of C++ multiple inheritance on data layout

Then, the alignment of a structure is de�ned to be the least common multiple of the alig-
ments of its �elds. So, to ensure the correct alignment of the �elds of each cell of a structure
array, the aligment of the structure must evenly divide the total size of the structure.

s[0].i s[1].i
0 6 8 4 16

s[0]

Embedded structures C and C++ allow structures to be themselves �elds of other struc-
tures: this is called embedding (or aggregation).

struct T {

S s;

char c;

};

s.i c
0 6 8 12

s

Tail padding of embedded structures can incur unused space within the embedding structure.
But the compiler can reuse this tail padding for the further �elds of the embedding structure.

s.i c
0 6 8

5.2 Impact of C++ multiple inheritance on data layout

5.2.1 Non-virtual inheritance

As with any other data structure, the principle is that, for any pointer to a subobject, the
way to access its �elds must not depend on how the subobject is reached. More generally, the
implementation of operations on an object of some class type must not depend on whether it
is a most-derived object or a subobject of another object.

Thus, the non-virtual base classes of a class can be laid out as if they were structure �elds
of the class. This was the layout introduced by cfront.

C++ program:

struct A {

int i;

char ca;

};

struct B: A {

char cb;

};

cfront layout

struct A {

int i;

char ca;

};

struct B {

A a;

char cb;

};

i ca cb

0 4 5 8 9 12

A

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 95

Formalization of object layout Chapter 5

5.2.2 Dynamic type data

At the level of the abstract semantics, calling a method depends on the way the subobject
is reached: this additional information is the dynamic type of the subobject. At the semantics
level, it is actually the inheritance path from the most-derived object to the subobject.

Thus, at the implementation level, most C++ compilers introduce additional data at the
beginning of some classes to store dynamic type data. In practice, when a virtual method is
called from a subobject of some type A, most compilers such as GNU GCC perform function
dispatch through a read-only virtual function table, or virtual table. Such compilers therefore
store, within the subobject, a pointer to its corresponding virtual table, which is di�erent
depending on the dynamic type of the subobject. Our formalization does not depend on the
actual data stored, it only �xes the size. In practice, such additional data are added in front of
objects of some class type whenever this class has or inherits a virtual method.

struct A {

char c;

virtual void f();

}

dtdata c
0 4 8

The need for dynamic type data introduces the following requirement:

Within an object, �elds and dynamic type data of two (�eld or inheritance) subob-
jects of an object must be laid out in disjoint memory zones.

Moreover, this dynamic type data (often a pointer) also has an alignment constraint imposed
by the underlying architecture, thus introducing a further requirement:

Accesses to dynamic type data must be correctly aligned.

5.2.3 Virtual inheritance

A virtual base is shared between its derived classes. So, it would be incorrect to store a
virtual base within its derived classes: such a layout would lose sharing and would result in
multiple copies of the base being allocated.

Instead, it is mandatory to store a single copy of every virtual base at the level of the most-
derived object only. Thus, a wise idea is to consider the non-virtual part of a subobject of class
type C, which is composed of the �elds de�ned in C and, recursively, the non-virtual parts of
the direct non-virtual base class subobjects of C but exclude virtual bases.

Example 5.2.1. Consider the following layout example:

96 Tahina Ramananandro

5.2 Impact of C++ multiple inheritance on data layout

Roughly speaking, the fol-
lowing hierarchy:

struct V {

int iv;

};

struct B1: virtual V {

int ib1;

};

struct B2: virtual V {

int ib2;

};

struct D: B1, B2 {

int id;

};

. . . may be laid out as follows:

struct V_non_virtual {

int iv;

};

struct V_total {

V_non_virtual v;

};

struct B1_non_virtual {

int ib1;

};

struct B1_total {

B1_non_virtual b1;

V_non_virtual v;

};

struct B2_non_virtual {

int ib2;

};

struct B2_total {

B2_non_virtual b2;

V_non_virtual v;

};

struct D_non_virtual {

B1_non_virtual b1;

B2_non_virtual b2;

int id;

};

struct D_total {

D_non_virtual d;

V_non_virtual v;

};

dtd(D) dtd(B1) ib1 dtd(B2) ib2 id iv

0 4 8 12 16 20 24 28

non-virt. part of B1 non-virt. part of B2 non-virt. part of V

non-virt. part of D

Laying out the non-virtual part of a class �rst, before the virtual bases, allows to treat a
pointer to a base class subobject of some type C in the same way as a pointer to a most-derived
object of type C as regards accesses to �elds and non-virtual base class subobjects.

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 97

Formalization of object layout Chapter 5

Following this layout scheme, we have to consider not only the size of a most-derived object
(which would be retrieved by the C++ sizeof operator), but also the size of the non-virtual
part of a class.

Similarly, it is worth noting that the alignment of the non-virtual part of a class may
be weaker than the alignment of a most-derived object of this class. That is, the alignment
of B_total may be a strict multiple of the alignment of B_non_virtual. This leads us to
distinguish two alignments for a class:

� the alignment of a class C, such that any instance of C be aligned at an o�set multiple
of this alignment

� the non-virtual alignment of a class C, to allow the alignment of C as a base of other
classes, so that any subobject of type C be aligned at an o�set multiple of this alignment

Dynamic type data In summary, a most-derived object of some type D is composed of the
non-virtual part of D and the non-virtual parts of all (direct or indirect) virtual bases of D.
This illustrates that the position of the virtual bases depends on the most-derived object: it is
impossible to statically know the position of the virtual base class subobjects of a subobject
that is not a most-derived object. Thus, at the implementation level, additional data will be
necessary for a subobject to reach its virtual bases. In practice, such additional data will be
read through dynamic type data. So, such dynamic type data will also be added for subobjects
of classes having virtual bases.

Thus, the C++ Standard introduces the notion of dynamic class (De�nition 4.4.2 p. 89).
In practice, this notion corresponds to classes requiring dynamic type data. The fact that this
notion is required by the Standard, illustrates that dynamic cast is often implemented using
dynamic type data.

5.3 Optimizations

5.3.1 Dynamic type data sharing

Systematically adding dynamic type data in front of the non-virtual parts of all dynamic
classes would signi�cantly waste space.

In practice, compilers optimize the layout of objects of dynamic class type to allow sharing
the dynamic data between a class and one of its direct non-virtual base class subobjects. Such
a base class is called the direct non-virtual primary base of the class.

Then, two subobjects are allowed to share their dynamic type data if, and only if, one is a
non-virtual primary base class subobject of another. A class B is a non-virtual primary base of
a class D if, and only if, either it is the direct non-virtual primary base of D or it is a non-virtual
primary base of the direct non-virtual primary base of D.

The �rst C++ compiler, cfront, already implemented this optimization.
We re�ne our layout scheme by formalizing the following layout for a full instance of some

class C, common to many C++ compilers:
� First, the non-virtual part of C, consisting of:

1. The non-virtual part of a dynamic non-virtual direct base A of C, if such class exists

2. If C is dynamic but such A does not exist, then some space for the dynamic type
data for C

98 Tahina Ramananandro

5.3 Optimizations

3. Then the non-virtual parts of other non-virtual direct bases of C

4. Then the �elds of C

� Then the non-virtual parts of all virtual bases of C, so that they never overlap
The requirement on dynamic type data is then:

Within an object, the dynamic type data of two subobjects must be laid out in disjoint
memory zones, unless one subobject is a non-virtual primary base of another.

The hierarchy of Example 5.2.1 (p. 96) can be laid out in the following optimized way compliant
to this requirement:

dtd(D, B1) ib1 dtd(B2) ib2 id iv

0 4 8 12 16 20 24

non-virt. part of B1 non-virt. part of B2 non-virt. part of V

non-virt. part of D

5.3.2 Reusing tail padding

The layout proposed above is the historical layout adopted by Stroustrup's cfront, which
was a C++-to-C translator. Its main drawback is that, as non-virtual parts of subobjects are
laid out like embedded structures, their tail padding is not reused. Such reuse of tail padding is
perfectly safe. It can be achieved easily by de�ning the non-virtual size of a class as excluding
its tail padding.

struct A {

int i;

char ca;

};

struct B: A {

char cb;

};

i ca cb

0 4 5 6 8

A

5.3.3 Empty base optimization

The STL (C++ standard template library) and the Boost libraries make extensive use of
empty classes. Consider the following function template provided by the STL to implement a
sorting algorithm on arrays:

template <typename Ran, typename Comp>

void sort(Ran first, Ran last, Comp cmp);

This template is parameterized by two types, Ran which is the type of arrays to sort, and Comp
which is the type of the comparator. Now we want to use this sorting algorithm on integer arrays.
Thus, we instantiate Ran with int*, and we have to instantiate Comp for the comparator. To
this end, we de�ne the following MyGreater class:

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 99

Formalization of object layout Chapter 5

struct MyGreater {

typedef int first_argument_type;

typedef int second_argument_type;

typedef bool result_type;

bool operator()(int i, int j) const {

return i > j;

}

};

so that sorting an array t of n integers is then performed by:

sort(t, t+n, MyGreater());

where MyGreater() creates an instance of the MyGreater class. This instance actually repre-
sents a comparison function to pass to the sort function. It contains no data, so we expect
compilers to minimize its memory footprint.

However, in practice, the STL provides ready-to-use classes to implement such operators. For
instance, the following std::binary_function template de�nes a class to represent functions
with two arguments:

template <typename FIRST, typename SECOND, typename RESULT>

struct std::binary_function {

typedef FIRST first_argument_type;

typedef SECOND second_argument_type;

typedef RESULT result_type;

};

so that the MyGreater function can inherit from this class:

struct MyGreater:

std::binary_function<int,int,bool> {

bool operator()(int i, int j) const {

return i > j;

}

}

One can see that std::binary_function contains no data and no functions: it is completely
empty, and actually serves as a tagging class for the purpose of static typing. So, we expect the
compiler to minimize its footprint within a MyGreater instance. However, such optimizations
must not contradict the object identity principle: if a class inherits from an empty class through
distinct paths, those di�erent subobjects must be still laid out at distinct o�sets.

A naive approach Objects of empty class type must have a nonzero size, for instance to
distinguish two distinct cells of an array of empty class objects. Consider the following hierarchy:

struct A {}; /* empty */

struct B1: A {}; /* empty */

struct B2: A {}; /* empty */

struct D : B1, B2 { char c; };

100 Tahina Ramananandro

5.3 Optimizations

Assume therefore sizeof(A) = 1. Then, it would be sound to have sizeof(B1) = 1 and
sizeof(B2) = 1.

The following layout is illegal, confusing the two di�erent A subobjects of D:

c

(A∗)(B1∗) &d

(A∗)(B2∗) &d

A naive compiler would lay out B1, B2 and c in disjoint memory locations, yielding sizeof(C) =
3.

c

(A∗)(B1∗) &d

(A∗)(B2∗) &d

A clever optimization However, it is consistent with the Standard to allow c to overlap
empty bases:

c

(A∗)(B1∗) &d

(A∗)(B2∗) &d

This optimization is called empty base optimization: empty bases can overlap the data of
non-empty bases or �elds. Despite this optimization, o�sets for B1 and B2 are still distinct.
However, and perhaps surprisingly, we must actually take sizeof(D) = 2. The explanation
follows: consider an array of two D cells, then we have to ensure that the two a1 and a2
subobjects below be distinct:

D t[2];

A* a2 = (A*)(B2*)&t[0];

A* a1 = (A*)(B1*)&t[1];

(A∗)(B1∗) &t[1]

(A∗)(B2∗) &t[0]

Thus, further tail padding has to be added to D to avoid such illegal sharing, yielding indeed a
size of 2:

c

(A∗)(B1∗) &t

(A∗)(B2∗) &t

So, two empty bases may overlap only with care. We shall see later in more detail the precise
constraints to satisfy before an empty base can overlap other data. This is the main reason why
C++ object layout cannot be mapped to C structure representations as cfront [80] does.

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 101

Formalization of object layout Chapter 5

However, our work also shows that it is possible, without breaking the semantics of a C++
program, to generalize this empty base optimization to empty structure members, as suggested
by Myers [63]. This is the reason why our formalization gives no precise de�nition for empty
classes. Instead, some constraints are enforced:

Hypothesis 5.3.1. A layout algorithm may de�ne its own notions of empty and dynamic
classes, subject to the following constraints:

� An empty class must have no scalar �elds
� An empty class must have no non-empty base
� An empty class must have no structure �eld of non-empty class type (regardless, however,

of the number of array cells)
� A dynamic class must not be empty

Chapter 6 (p. 127) describes layout algorithms giving precise de�nitions for empty classes,
sometimes more restrictive than necessary to lower compilation time, at the price of losing
run-time optimizations on the programs being compiled.

Buggy implementations Our interest in mechanically formalizing empty base and empty
member optimizations and proving their correctness stems from the presence of bugs in real-
world compilers. In his argument for empty base and empty member optimizations, Myers [63]
gives examples of compilers from MetroWerks (CodeWarrior C++ 4.0) and IBM that make too
agressive optimizations not complying with the object identity requirement. Such aggressive
optimizations were also performed by compilers such as Microsoft Visual C++ 7.1 and Borland
C++ Builder 5.x [38], which erroneously identify the base class subobject ((Empty*) &d) with
the data member subobject &(d.value) in the following example:

struct Empty {};

struct Derived: Empty {

Empty value;

};

Derived d;

Sizes and data sizes When dealing with empty classes that can overlap other components,
considering their size or non-virtual size is not enough (as those sizes are necessary not null). We
therefore introduce the notion of data size. Roughly speaking, the data size of a class is an upper
bound on the sum of the sizes of all scalar �elds accessible from this class (through inheritance
and/or structure array �eld paths). The non-virtual data size of a class is an upper bound on
the sum of the sizes of all scalar �elds accessible from this class when the �rst inheritance step
is non-virtual inheritance (i.e. virtual inheritance is allowed only once a structure �eld within
a non-virtual base of C is reached). Both sums also include the sizes of the dynamic type data
for all relevant bases.

The data size and non-virtual data size are not relevant for empty classes.

5.4 Formal interface of a layout algorithm

In this section, we describe the parameters that a layout algorithm is expected to compute.
Consider the following hierarchy:

102 Tahina Ramananandro

5.4 Formal interface of a layout algorithm

struct X {...};

struct V {...};

struct B1: virtual V {...};

struct B2: virtual V {...};

struct B3 {};

struct C: B1, B2, B3 { X f; };

O�sets and data sizes The following �gure depicts the parameters related to data sizes for
a most-derived C object. It illustrates that the data zones of class components (for non-empty
bases and �elds) must not overlap.

�-
� - � - � - � -

?? ??

� -
� -

0

dtdsize

nvdsizeB1

B1 B2 f V

nvdsizeV

dynamic

dnvbo�C(B2) fo�C(f) vbo�C(V)

fboundaryC

nvdsizeC

dsizeC

type data
for C and B1

({B1} = pbaseC)

non-virtual data of B1

non-virtual base data �eld data

non-virtual data virtual base data

data of C

nvdsizeB2
fdsize(f)

This �gure introduces the following parameters:
� dnvboffC : DNV(C) 7 7→ N is a �nite map assigning to each non-virtual direct base of C

an o�set within a subobject of type C. This o�set corresponds to the direct non-virtual
subobject of type B within a subobject of type C.

� vboffC : V(C) 7 7→ N is a �nite map assigning to each virtual base of C an o�set within a
most-derived C object.

� fboundaryC ∈ N is the boundary between the non-virtual data for the direct non-virtual
bases of C and the non-empty �elds of C

� foffC : ScF(C) ∪ StF(C) 7 7→ N is a �nite map assigning to each (scalar or structure
array) �eld of C an o�set within a subobject of type C.

� nvdsizeC is the non-virtual data size of C
� dsizeC is the data size of a most-derived C object
Additionally, this �gure introduces the data size fdsizef of each �eld f of C, which can be

deduced from the other parameters, as we shall see in De�nition 5.5.6 (p. 111).

Total sizes The following �gure depicts the parameters related to total sizes. It illustrates
that empty components may have their o�sets (represented by the bullets) lie within the mem-
ory span of other components, as long as two distinct components of the same type are laid out
at distinct o�sets:

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 103

Formalization of object layout Chapter 5

u u u u uu uu u u u u uuu

? ??
?

� -

� -
� -

� -
� -

� -

0

dnvbo�C(B3)
(B3 empty)

B1 B2 f V

bases of B1

o�sets to empty

from f

o�sets to empty
to empty
o�sets

bases of V
classes accessible

dnvbo�C(B2) fo�C(f) vbo�C(V)

�eld fnon-virtual part of B1

non-virtual part of C

virtual base V

nvsizeC

sizeC

fsize(f)

nvsizeV

nvsizeB1

nvsizeB2

This �gure introduces the following parameters:
� nvsizeC is the non-virtual size of C
� sizeC is the size of a most-derived C object, as would be given by the sizeof operator
Additionally, this �gure introduces the total size fsizef of each �eld f of C, which can be

deduced from the other parameters, as we shall see in De�nition 5.5.2 (p. 107).

Summary

De�nition 5.4.1. A class layout is a tuple of class-indexed families:

(
(dnvboffC), (vboffC), (fboundaryC), (foffC), (nvdsizeC), (dsizeC),
(nvsizeC), (sizeC),
(nvalignC), (alignC)

)C∈C

where, for each class C, in addition to the other parameters described before:
� nvalignC is the non-virtual alignment of C
� alignC is the alignment of C

As the hierarchy is assumed to be well-founded, a class layout algorithm can incrementally
compute o�sets for a given class C, assuming that for all classes B ≺ C, o�sets have already
been computed.

Then, given such a class layout, it is possible to compute the o�set of non-virtual paths
within a subobject of some class C, and the o�set of any inheritance path within a full instance
of C.

De�nition 5.4.2. If l is a non-virtual path from some class C to some class A, then nvsoff(l) ∈
N shall denote its o�set within a subobject of type C. It is computed as follows, by structural
recursion on l:

� nvsoff(C :: ǫ)
def.

0 (C :: ǫ is the trivial non-virtual path to the subobject itself).
� if l = C :: B :: l′, then B ∈ DNV(C) and B :: l′ is a non-virtual path from B to A, and
nvsoff(C :: B :: l′)

def.
dnvboffC(B) + nvsoff(B :: l′).

De�nition 5.4.3. If (h, l) is a path from C to A, then its o�set soffC(h, l) ∈ N within a full
instance of C is computed as follows:

104 Tahina Ramananandro

5.4 Formal interface of a layout algorithm

� soffC(Repeated, l) def.
nvsoff(l),

� soffC(Shared, l) def.
vboffC(B) + nvsoff(l), where B ∈ V(C) and l is a non-virtual path

from B to A

The above de�nition can be simpli�ed by the convention vboffC(C)
def.

0, thanks to the
well-foundedness of the hierarchy: indeed, C is not a virtual base of itself, so vboffC(C) is
theoretically unde�ned. Then, with this convention, we obtain for any path (h,B :: l′) from C
to A:

soffC(h,B :: l′) = vboffC(B) + nvsoff(B :: l)

regardless of h. Remember that Lemma 4.1.9 (p. 79) makes h depend on whether B = C or
not. This leads us to introduce the notion of generalized virtual bases of a class:

De�nition 5.4.4. The generalized virtual bases of C are C and the virtual bases of C. This
set, written Ṽ(C), shall be the domain of vboffC:

Ṽ(C)
def.

V(C) ∪ {C}

vboffC : Ṽ(C) → N

C 7→ 0
B ∈ V(C) 7→ vboffC(B)

Lemma 5.4.1. If l′ is a non-virtual path from some class B to some class A, then casting a
subobject from B to A through path l′ is equivalent to adding the o�set nvsoff(l′) to the o�set
of the subobject. That is, for any path σ from C to B:

soffC(σ@(Repeated, l′)) = soffC(σ) + nvsoff(l′)

This shows that non-virtual derived-to-base casting does not depend on the starting subob-
ject. However, to make a derived-to-base static cast through virtual inheritance, it is necessary
to know the o�set of the virtual base from the full object, so a subobject has to know its o�set
from the full object. Chen [20] mechanically formalizes a type system for C++ multiple inher-
itance to determine which arithmetic operations are necessary for casts. We follow a di�erent
approach by directly proving the correctness of a compiler (Chapter 7 p. 135).

Given those de�nitions for inheritance path o�sets, we can compute the o�set of an array
of n′ structures of type C ′ within an array of n structures of type C:

De�nition 5.4.5. Let C,C ′ be two classes, and n, n′ two integers. If α is an array path from
C[n] to C ′[n′], then the o�set aoffC(α) of C ′[n′] within C[n] through the array path α is computed
as follows:

�

aoffC(ǫ) def.
0

� if α = (i, σ, f) :: α′, then i is the index in the array C[n], so 0 ≤ i < n, and there is a
class B such that σ is an inheritance path from C to B, and f is a �eld of B declared
as an array of q structures of type A for some q and A, so that α′ is an array path from
A[q] to C ′[n′]. Then we de�ne:

aoffC((i, σ, f) :: α
′)

def.
i · sizeC + soffC(σ) + foffB(f) + aoffA(α

′)

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 105

Formalization of object layout Chapter 5

De�nition 5.4.6. Let p = (α, i, σ) be a generalized subobject (or relative pointer) from an
array of some type C[n], where α is an array path from C[n] to C ′[n′] for some class C ′. Then,
the o�set of p within C[n] is written:

off(p)
def.

aoffC(α) + i · sizeC′ + soffC′(σ)

5.5 Soundness conditions

In our formalism, rather than imposing a �xed object layout as for C structures in CompCert
[2], we propose some su�cient conditions 1 on object layout, which layout algorithms must
abide by. Then we prove 2 that those constraints make two distinct scalar �elds disjoint and
two pointers to di�erents subobjects of the same static type point to distinct memory locations.

Throughout this section, we consider a �xed class C.

5.5.1 Total size

The total size sizeC of a class C is speci�ed as an upper bound on the sizes of all its
components. In the same way, the total non-virtual size nvsizeC of a class C is an upper bound
on the sizes of all its non-virtual components (the non-virtual sizes of its direct non-virtual
bases, and the sizes of its �elds).

Hypothesis 5.5.1. The non-virtual size of C is an upper bound on the non-virtual sizes of all
its direct non-virtual bases:

∀B ∈ DNVC : dnvboffC(B) + nvsizeB ≤ nvsizeC (nvsize-upper-bound-bases)

Lemma 5.5.1. If l is a non-virtual path from C to some class A, then the non-virtual part of
A is included in the non-virtual part of C:

nvsoff(l) + nvsizeA ≤ nvsizeC

Proof. By induction on the length of l.
If l is the trivial path C :: ǫ, then A = C, nvsoff(l) = 0 and the inequality is an equality.
If l = C :: B :: l′, then B ∈ DNV(C) and B :: l′ is a non-virtual path from B to A, and

we have nvsoff(C :: B :: l′) = dnvboffC(B) + nvsoff(B :: l′). By induction hypothesis, we have
nvsoff(B :: l′) + nvsizeA ≤ nvsizeB. By the above hypothesis, we have dnvboffC(B) + nvsizeB ≤
nvsizeC , which concludes.

Hypothesis 5.5.2. The total size of C is an upper bound on the non-virtual sizes of all its
generalized virtual bases (including C itself):

∀B ∈ Ṽ(C) : vboffC(B) + nvsizeB ≤ sizeC (fullsize-upper-bound)

1. Those conditions appear in a di�erent order than in our POPL 2011 article [72]. The index of equations
(p. 353) pairs the condition numbers of our POPL 2011 article with their actual names in the present thesis.

2. Coq development: theory LayoutConstraints.

106 Tahina Ramananandro

5.5 Soundness conditions

Lemma 5.5.2. If (h, l) is an inheritance path (= base class subobject) from C to some class
A, then the non-virtual part of A is included in C:

soffC(h, l) + nvsizeA ≤ sizeC

Proof. Recall that l = B :: l′ for some class B ∈ Ṽ(C) and some l′ such that B :: l′ is a
non-virtual path from B to A. We then have soffC(h, l) = vboffC(B) + nvsoff(B :: l′). (fullsize-
upper-bound, p. 106) gives us vboffC(B) + nvsizeB ≤ sizeC . Lemma 5.5.1 (p. 106) gives us
nvsoff(B :: l′) + nvsizeA ≤ nvsizeB, which concludes.

The non-virtual part of a class C contains all �elds de�ned in C. To express this condition,
we must de�ne the size of a �eld.

Notation 5.5.1. We assume that there exists a function scsize : A∪C → N>0 computing the
size of a scalar value (atom, or pointer to C for some class C).

The function scsize should not depend on the layout algorithm. For most compilers, the size
of a value of type pointer to T does not depend on T . We shall see that the compiler actually
also needs such a condition.

De�nition 5.5.2. The size fsize(f) of a �eld f is de�ned as follows:

fsize(scalar t fname)
def.

scsize(t) (for a scalar �eld)

fsize(struct B[n] fname)
def.

n · sizeB (for a structure array �eld of n cells of type B)

Hypothesis 5.5.3. The total non-virtual size of C is an upper bound on the sizes of all its
�elds:

∀F ∈ F(C) : foffC(F) + fsize(F) ≤ nvsizeC (nvsize-upper-bound-�elds)

Lemma 5.5.3. If α is an array path from C[n] to C ′[n′], then the designated array C ′[n′] is
�included� in C[n]:

aoffC(α) + n′ · sizeC′ ≤ n · sizeC

Proof. By structural induction on α.
� If α = ǫ, then C ′ = C and n′ = n and aoffC(α) = 0, so the inequality is an equality.
� Otherwise, α = (i, (h, l), f) :: α′ where 0 ≤ i < n, (h, l) is an inheritance path from C
to some class B, and f is a structure array of some type A[m] de�ned in B. So, we have
aoffC(α) = i · sizeC + soffC(h, l) + foffB(f) + aoffA(α

′), and :
� by induction hypothesis, aoffA(α

′) + n′ · sizeC′ ≤ m · sizeA = fsize(f) by de�nition
� foffB(f) + fsize(f) ≤ nvsizeB by (nvsize-upper-bound-�elds, p. 107)
� soffC(h, l) + nvsizeB ≤ sizeC by Lemma 5.5.2 (p. 107)
� i+ 1 ≤ n by hypothesis
which concludes.

Corollary 5.5.4. If p is a relative pointer (= generalized subobject) from C[n] to some class
A, then the non-virtual part of A is included in C[n]:

offC(p) + nvsizeA ≤ n · sizeC

Proof. Immediately follows from Lemma 5.5.2 (p. 107) and Lemma 5.5.3 (p. 107).

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 107

Formalization of object layout Chapter 5

5.5.2 Alignment

The non-virtual alignment of a class C is a boundary used to align C as a non-virtual base
of another class. So, it has to be a multiple of the alignments of all the non-virtual components
of C: the alignments of �elds de�ned in C, and the non-virtual alignments of non-virtual bases
of C.

So we must �rst de�ne �eld alignments.

Notation 5.5.3. We assume that there exists a function scalign : A∪C → N>0 computing the
alignment of a scalar value (atom, or pointer to B for some class B).

As with scsize, the function scalign should not depend on the layout algorithm.

De�nition 5.5.4. The alignment falign(f) of a �eld f is de�ned as follows:
� falign(scalar t fname)

def.
scalign(t) for a scalar �eld

� falign(struct B[n] fname)
def.

alignB for a structure array �eld

Indeed, a structure array �eld contains �full� instances of some class B, so the �eld must be
aligned to the whole alignment of B, not only the non-virtual alignment of B.

Hypothesis 5.5.4. The non-virtual alignment of a class C is a multiple of the alignments of
its �elds. Any �eld f of C must be laid out with respect to its alignment:

∀F ∈ F(C) : (falign(F) | nvalignC) ∧ (falign(F) | foffC(f)) (falign)

Hypothesis 5.5.5. The non-virtual alignment of a class C is a multiple of the non-virtual
alignments of its direct non-virtual bases. Any non-virtual base B of C must be laid out with
respect to its non-virtual alignment::

∀B ∈ DNV(C) : (nvalignB | nvalignC) ∧ (nvalignB | dnvboffC(B)) (nvalign)

Finally, the alignment of a class C synthesizes the non-virtual alignments of C and its virtual
bases.

Hypothesis 5.5.6. The alignment of a class C is a multiple of the non-virtual alignments of
its generalized virtual bases (including C itself). Any virtual base B of C must be laid out with
respect to its non-virtual alignment:

∀B ∈ Ṽ(C) : (nvalignB | alignC) ∧ (nvalignB | vboffC(B)) (align)

Then, all those constraints allow to show that the access to a �eld is correctly aligned.

Lemma 5.5.5. If l is a non-virtual path from some class C to some class A, then the access
to A through l is correctly aligned:

(nvalignA | nvalignC) (i)

(nvalignA | nvsoff(l)) (ii)

Proof. By structural induction on l.
� If l = ǫ, then C = A and nvsoff(l) = 0, which trivially concludes.

108 Tahina Ramananandro

5.5 Soundness conditions

� Otherwise, l = B :: l′ with B ∈ DNV(C) and nvsoff(l) = dnvboffC(B) + nvsoff(l′). So:
� (nvalignB | nvalignC) by (nvalign, p. 108) and (nvalignA | nvalignB) by induction hypoth-
esis, thus (i) by transitivity.

� (nvalignB | dnvboffC(B)) by (nvalign, p. 108), and (nvalignA | nvalignB) by induction
hypothesis, and (nvalignA | nvsoff(l

′)) by induction hypothesis, thus (ii) by transitivity
and compatibility of (. | .) with addition.

Lemma 5.5.6. If (h, l) is an inheritance path (= base class subobject) from some class C to
some class A, then the access to A through (h, l) is correctly aligned:

(nvalignA | alignC) (i)

(nvalignA | soffC(h, l)) (ii)

Proof. Recall that l = B :: l′ for some class B ∈ Ṽ(C) and some l′ such that B :: l′ is a
non-virtual path from B to A. We then have soffC(h, l) = vboffC(B) + nvsoff(B :: l′).

� (align, p. 108) gives us (nvalignB | alignC); part (i) of Lemma 5.5.5 (p. 108) gives us
(nvalignA | nvalignB), thus (i) by transitivity.

� (align, p. 108) also gives us (nvalignB | vboffC(B)); Lemma 5.5.5 (p. 108) gives us
(nvalignA | nvalignB) and (nvalignA | nvsoff(l

′)), thus (ii) by transitivity and compati-
bility of (. | .) with addition.

If C is a class and c is an array of several structures of type C, then access to the second
structure item of c will be realized at low-level through adding an o�set of sizeof(C) bytes to
a pointer to c. So, the following constraint is necessary to ensure the correct alignment of such
an access:

Hypothesis 5.5.7.
(alignC | sizeC) (align-size)

This condition ensures the following property:

Lemma 5.5.7. If l is an array path from C[n] to C ′[n′], then the designated array C ′[n′] is
correctly aligned in C[n]:

(alignC′ | alignC) (i)

(alignC′ | aoffC(l)) (ii)

Proof. By structural induction on l.
� If l = ǫ, then C ′ = C and aoffC(l) = 0, which trivially concludes.
� Otherwise, l = (i, (h, p), f) :: l′ where 0 ≤ i < n, (h, p) is an inheritance path from C
to some class B, and f is a structure array of some type A[m] de�ned in B, such that
falign(f) = alignA. So, we have aoffC(l) = i · sizeC + soffC(h, p) + foffB(f), and:
� (alignC′ | alignA) by induction hypothesis, and (falign(f) | nvalignB)

q

alignA

by (falign,

p. 108), and (nvalignB | alignC) by part (i) of Lemma 5.5.6 (p. 109), thus (i) by transi-
tivity

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 109

Formalization of object layout Chapter 5

� thanks to (i) and (align-size, p. 109), we have (alignC′ | i · sizeC). Moreover, by induc-
tion hypothesis, (alignC′ | alignA), and (alignA | nvalignB) as above, and (nvalignB |
soffC(h, p)) by part (ii) of Lemma 5.5.6 (p. 109), and (alignA | foffB(f)) by (falign,
p. 108), and (align′C | aoffA(l

′)) by induction hypothesis, thus (ii).

Corollary 5.5.8. If p is a relative pointer (= generalized subobject) from C[n] to some class
A, then the access to A through p is correctly aligned:

(nvalignA | alignC)

(nvalignA | offC(p))

Proof. Immediately follows from Lemma 5.5.6 (p. 109) and Lemma 5.5.7 (p. 109).

This lemma stresses out the di�erence of use between the alignment and the non-virtual
alignment of a class: whereas full instances are aligned to the full alignment of their class, by
contrast, generalized subobjects are aligned to the non-virtual alignment of their static type.

This �nally allows to show a general alignment guarantee:

Theorem I.1 (Scalar �eld alignment). If p is a generalized subobject of static type A from
a structure array of C, and if scalar t f is a scalar �eld of A of scalar type t ∈ A ∪ C, then
the access to this �eld is correctly aligned:

(scalign(t) | alignC)

(scalign(t) | offC(p) + foffA(f))

Proof. Immediately follows from Corollary 5.5.8 (p. 110) and condition (falign, p. 108).

5.5.3 Data size

We aim at stating constraints to forbid the overlapping of di�erent scalar data. So, we shall
only consider here non-empty components, in the sense that roughly speaking, a component is
non-empty as soon as it contains some scalar data.

Then, to express that di�erent scalar data do not overlap, we shall not use the sizes, but
the data sizes of the relevant components. In this section, we shall show that data sizes are not
relevant for empty components.

Recall that the actual de�nition for an empty class is left to the layout algorithm. Based on
this de�nition, we introduce the notion of empty �eld, which is a structure �eld of an empty
class type, regardless of the number of its array elements:

Notation 5.5.5. The set of empty �elds of C is the set of those �elds de�ned in class C that
are array structures of type B for some empty class B:

EF(C)
def.
{(struct B[n] f) ∈ F(C) | B is empty}

The set of non-empty �elds of C is:

NEF(C)
def.

ScF(C) ∪ StF(C)\EF(C)

110 Tahina Ramananandro

5.5 Soundness conditions

Then, we de�ne the notion of the data size of a �eld. For a scalar �eld, the data size of a
�eld is equal to its size. But for a structure array �eld, there are two cases:

� if the �eld has only one structure element of some type B, then the data size of such a
�eld is equal to the data size of the class B.

� otherwise, it is important to note that the data of a �eld is considered to be a contiguous
interval. So, any padding between two array elements is lost. However, nothing prevents
us from reusing the padding of the last element of the array.

For this reason, we de�ne the data size of a non-empty �eld as follows.

De�nition 5.5.6. The data size of a scalar �eld scalar t fname is:

fdsize(scalar t fname)
def.

scsize(t)

The data size of a non-empty structure array �eld struct B[n]fname is:

fdsize(struct B[n] fname)
def.

(n− 1) · sizeB + dsizeB

Then, in the same way as for the whole sizes, we introduce the notions of non-virtual data
size (for the non-virtual part of a class) and data size (for the whole class), as bounds on the
sizes of the class components.

Notation 5.5.7. In the same way as for �elds, we shall use the following notations:
� NEDNV(C) for the set of non-empty direct non-virtual bases of C
� EDNV(C) for the set of empty direct non-virtual bases of C
� NEV(C) for the set of non-empty virtual bases of C
� EV(C) for the set of empty virtual bases of C
� NEṼ(C) for the set of non-empty generalized virtual bases of C
� EṼ(C) for the set of empty generalized virtual bases of C

Then, the non-virtual data of a class C is divided into two parts, each being a contiguous
interval :

� the non-virtual data of the non-empty direct non-virtual bases of C
� the data of the �elds de�ned in C
The following hypothesis ensures that those two parts are disjoint:

Hypothesis 5.5.8. The boundary fboundaryC ∈ N between the non-virtual data for the direct
non-virtual bases of C and the non-empty �elds of C is such that:

∀B ∈ NEDNV(C) : dnvboffC(B) + nvdsizeB ≤ fboundaryC (fboundary-lower-bound)

∀F ∈ NEF(C) : fboundaryC ≤ foffC(F) (fo�-low-bound)

In our formalization, such a boundary is included in the de�nition of a class layout (i.e.
fboundaryC is a value explicitly computed by the layout algorithm).

Hypothesis 5.5.9. The non-virtual data size of class C is an upper bound of the data sizes of
the two parts of the non-virtual data of C (in particular, it is an upper bound of the data sizes
of all non-empty �elds).

fboundaryC ≤ nvdsizeC (fboundary-upper-bound-bases)

∀F ∈ NEF(C) : foffC(F) + fdsize(F) ≤ nvdsizeC (fboundary-upper-bound-�elds)

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 111

Formalization of object layout Chapter 5

(fboundary-upper-bound-bases, p. 111) is necessary if there are no non-empty �elds de�ned
in C. Otherwise, (fboundary-upper-bound-bases, p. 111) is entailed by (fboundary-upper-bound-
�elds, p. 111).

Lemma 5.5.9. If l is a non-virtual path from C to some non-empty class A, then the non-
virtual part of A is included in the non-virtual part of C:

nvsoff(l) + nvdsizeA ≤ nvdsizeC

Proof. Same shape as the proof for Lemma 5.5.1 (p. 106), additionally using (fboundary-upper-
bound-bases, p. 111). Additionally to A, all considered classes are not empty, as they have a
non-empty base A.

Hypothesis 5.5.10. The total data size of C is an upper bound on the non-virtual data sizes
of all its non-empty generalized virtual bases (including C itself, if non-empty):

∀B ∈ NEṼ(C) : vboffC(B) + nvdsizeB ≤ dsizeC (datasize)

Lemma 5.5.10. If (h, l) is an inheritance path (= base class subobject) from C to some class
A, then the non-virtual data of A is included in C:

soffC(h, l) + nvdsizeA ≤ dsizeC

Proof. Same shape as the proof for Lemma 5.5.2 (p. 107).

Recall that the data of a structure array of n cells of type C consisting of a contiguous
interval embedding the total sizes of the �rst n− 1 cells and only the data of the last cell:

(n− 1) · sizeC + dsizeC

Theorem I.2 (Non-virtual data subobject inclusion). If p = (l, i, σ) is a relative pointer
(= generalized subobject) from C[n] to some non-empty class A, then the non-virtual data of A
is included in the data of C[n]:

offC(p) + nvdsizeA ≤ (n− 1) · sizeC + dsizeC

Proof. By structural induction on l.
� If l = ǫ, then i ≤ (n− 1) and offC(p) = i · sizeC + soffC(σ); moreover, σ is an inheritance

path from C to A, so by Lemma 5.5.10 (p. 112), soffC(σ) + nvdsizeA ≤ dsizeC , which
concludes.

� Otherwise, l = (i′, (h′, p′), f ′) :: l′ where 0 ≤ i′ < n, (h′, p′) is an inheritance path from
C to some class B, and f ′ is a structure array of some type C ′[n′] de�ned in B, such
that (l′, i, σ) is a relative pointer from C ′[n′] to A, and offC(p) = i · sizeC + soffC(h, p) +
foffB(f

′) + offC′(l′, i, σ), and :
� by induction hypothesis, offC′(l′, i, σ) + nvdsizeA ≤ (n′− 1) · sizeC′ + dsizeC′ = fdsize(f ′)

by de�nition
� foffB(f)+ fdsize(f) ≤ nvdsizeB by (fboundary-upper-bound-bases, p. 111) (legal because,

as A is not empty, neither is B)
� soffC(h, p) + nvdsizeB ≤ dsizeC by Lemma 5.5.10 (p. 112)
� i′ ≤ n− 1 by hypothesis
which concludes.

112 Tahina Ramananandro

5.5 Soundness conditions

5.5.4 Non-overlapping of data

To express that two �elds F1 and F2 de�ned in some class C should not overlap, we could
expect their full size intervals to be disjoint:

[foffC(F1), foffC(F1) + fsize(F1)) # [foffC(F2), foffC(F2) + fsize(F2))

This condition is actually enforced by the C++ Common Vendor ABI [22, Section 4.1]. How-
ever, it impedes the reuse of tail padding, even alignment tail padding. For instance, consider
the following structure:

struct Z {};

struct A: Z {

int i;

char ca;

};

struct B {

A a;

char cb;

}

Naive layout:

i ca cb

0 4 5 8 9 12

A

Optimized layout:

i ca cb

0 4 5 6 8

A

Most compilers (such as GCC) lay out a and cb completely disjointly within B, laying out
cb at o�set 8 (on Intel x86 32-bit platforms). This incurs the loss of unused space between the
end of a.ca and the beginning of cb: 3 bytes for alignment padding.

Our formalization allows reusing this padding, by de�ning data sizes distinct from sizes,
trying to exclude padding as most as possible. Then, we introduce constraints to ensure that
data intervals be disjoint.

In our example, whereas the size of a is 8, its data size would be only 5 thanks to our
formalization, such that cb would be laid out at o�set 5 instead of 8.

Thus, we have to use the notion of data size rather than size, to express that two �elds of
the same class do not overlap:

Hypothesis 5.5.11. The data of two non-empty �elds de�ned in the same class do not overlap:

∀F1, F2 ∈ NEF(C) :
[foffC(F1), foffC(F1) + fdsize(F1))

[foffC(F2), foffC(F2) + fdsize(F2))
(�elds-non-overlap)

Similarly, the non-virtual data of two direct non-virtual bases of C do not overlap:

Hypothesis 5.5.12. ∀B1, B2 ∈ DNV(C) :

[dnvboffC(B1), dnvboffC(B1) + nvdsizeB1
)

[dnvboffC(B2), dnvboffC(B2) + nvdsizeB2
)

(nvbases-non-overlap)

However, non-virtual sizes may overlap. Consider for instance the following hierarchy:

struct A {};

struct B {char c};

struct C: A, B {};

Naive layout:

c

A

B

Optimized layout:

c

A

B

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 113

Formalization of object layout Chapter 5

Then, the following layout (actually given by GNU GCC) complies with the above condi-
tions:

nvdsizeA = 0
nvsizeA = 1

foffB(char c) = 0
nvdsizeB = 1
nvsizeB = 1

dnvboffC(A) = 0
dnvboffC(B) = 0

nvdsizeC = 1
nvsizeC = 1

Here, the non-virtual sizes of A and B overlap in C, but this does not impede the access to
�eld c of B, as A is empty.

The actual purpose of distinguishing sizes from data sizes is that a pointer to an empty
class can point outside of the actual data (accessible non-empty �elds), but must still point
inside the whole size of the object (so as to prevent it from pointing into another object that
would be created independently). However, we shall see further in Section 5.5.6 (p. 122) weaker
conditions to prevent two pointers to di�erent subobjects of static type A (where A is an empty
class) from pointing to the same memory location.

Lemma 5.5.11. If l1, l2 are two distinct non-virtual paths from some class C to some non-
empty classes B1, B2, then their �eld data zones are disjoint:

[

nvsoff(l1) + fboundaryB1
, nvsoff(l1) + nvdsizeB1

)

#
[

nvsoff(l2) + fboundaryB2
, nvsoff(l2) + nvdsizeB2

)

Proof. For symmetry reasons, we can assume length(l1) ≤ length(l2). Then, there are two cases:
� either there is a non-virtual non-trivial path B1 :: A :: l′ from B1 to B2 such that
l2 = l1@Repeated(B1 :: A :: l′). So A is a non-virtual direct base of B1, and actually
the non-virtual data of A (which includes the non-virtual data of B2, in particular �eld
F2) is disjoint from the �eld data of B1 (in particular �eld F1) thanks to the boundary
fboundaryB1

.
� or there are a class A and two distinct non-virtual direct bases A1 and A2 of A, and a
list l such that for each i ∈ {1, 2}, l q− A :: Ai :: ǫ is a non-virtual path from C to Ai

and Ai :: l
′
i is a non-virtual path from Ai to Bi for some l′i. The non-virtual direct bases

A1 and A2 of A have disjoint non-virtual data. The non-virtual data of Ai includes the
non-virtual data of Bi, and in particular �eld Fi, so those �elds are disjoint.

Recall the convention vboffC(C)
def.

0. This allows to say that the non-virtual data of all
non-empty generalized virtual bases of C (with C considered as a generalized virtual base of
itself) are laid out one after another, in such a way that they are disjoint:

Hypothesis 5.5.13. ∀B1, B2 ∈ NEṼ(C) : if B1, B2:

[vboffC(B1), vboffC(B1) + nvdsizeB1
)

[vboffC(B2), vboffC(B2) + nvdsizeB2
)

(vbases-non-overlap)

114 Tahina Ramananandro

5.5 Soundness conditions

It follows immediately that:

Lemma 5.5.12. If σ1, σ2 are distinct inheritance paths from C to some B1, B2, then their �eld
data zones are disjoint:

[

soffC(σ1) + fboundaryB1
, soffC(σ1) + nvdsizeB1

)

#
[

soffC(σ2) + fboundaryB2
, soffC(σ2) + nvdsizeB2

)

Proof. Let σi = (hi, Ai :: li) for each i. If A1 = A2, then Lemma 5.5.11 (p. 114) about non-
virtual paths can be reused. Otherwise, we know by (vbases-non-overlap, p. 114) that the non-
virtual data of Ai are disjoint, then Lemma 5.5.9 (p. 112) and (fboundary-upper-bound-bases,
p. 111) conclude.

The conditions given so far are enough to show that two di�erent scalar �elds reachable
from two base class subobjects of an object are disjoint. However, when it comes to traversing
structure array �elds, we must show that two �elds reachable from two di�erent cells of the
same array are disjoint. So far there is no condition ensuring such a property. Indeed, there is
yet no link between the data size and the size of a class: we have to explicitly constrain that:

Hypothesis 5.5.14. For any class C:

dsizeC ≤ sizeC (datasize-upper-bound)

Theorem I.3 (Non-overlapping of scalar �elds). If pi are two generalized subobjects of
static type Bi within a structure array of type C, and if Fi are two scalar �elds de�ned in class
Bi, such that (p1, F1) 6= (p2, F2), then those two �elds are disjoint.

Proof. We have to reason about the length of the generalized subobjects:

Notation 5.5.8. The length of a pointer p = (α, j, σ), written plength(p), is the length of its
array path α:

plength(p)
def.

length(α)

For symmetry reasons, we can assume plength(p1) ≤ plength(p2). Reason by induction on
plength(p1). Then, we shall introduce an alternate representation for pi:

De�nition 5.5.9 (Alternate representation of generalized subobjects). (= alternate
relative pointers) For any generalized subobject (= relative pointer) p = (α, j, σ) from a struc-
ture array of type C to some class B, we can �nd j′ ∈ Z, an inheritance path σ′ from C to
some class B′, and a Φ such that:

� either Φ = ⊥ and p = (ǫ, j′, σ′)
� or there is a structure array �eld F ′ and a relative pointer p′ = for some array path α′ such

that Φ = (F ′, (α′, j, σ)) and α = (j′, σ′, F ′) :: α′ (so that plength(α′, j, σ) = plength(p)− 1
to allow induction).

(j′, σ′,Φ) is called the alternate representation of p, and we write:

(α, j, σ) ∝ (j′, σ′,Φ)

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 115

Formalization of object layout Chapter 5

Lemma 5.5.13. The alternate representation of a relative pointer p is unique:

p ∝ p1 ∧ p ∝ p2 ⇒ p1 = p2

This alternate representation is intended for proofs about concrete object layout, by contrast
to the �regular� De�nition 4.1.9 (p. 77) which is designed for the abstract high-level semantics of
C++ (especially to model casts and other dynamic operations such as virtual method dispatch).
This alternate representation is trivially compatible with o�sets:

Lemma 5.5.14. Let p ∝ (j′, σ′,Φ) be a relative pointer from C of static type B.
� if Φ = ⊥, then:

offC(p) = j′ · sizeC + soffC(σ
′)

� otherwise, σ′ is an inheritance path from C to some class A and Φ = (F ′, p′) for some
structure �eld F ′ of type B′ de�ned in A and for some relative pointer p′ from B of static
type B, and:

offC(p) = j′ · sizeC + soffC(σ
′) + foffA(F

′) + offB′(p′)

In particular, the following interesting lemma holds:

Lemma 5.5.15. If p ∝ (j′, σ′,Φ) is a relative pointer from C of static type B, such that σ′ is
an inheritance path from C to some class C ′, then the �eld data of p is included in the �eld
data of C ′:

[offC(p) + fboundaryB, offC(p) + nvdsizeB)
⊆ [j′ · sizeC + soffC(σ

′) + fboundaryC′ , j′ · sizeC + soffC(σ
′) + nvdsizeC′)

Then, for each i, let pi ∝ (j′i, σ
′
i,Φi). There are several cases:

� if j′1 6= j′2, then we have two disjoint cells of an array of structures of some type C. Thanks
to (datasize-upper-bound, p. 115), their data are also disjoint, which concludes.

� j′1 = j′2 and σ′
1 6= σ′

2: then, thanks to the above lemma, the theorem for virtual inheritance
directly applies.

� Now assume j′1 = j′2, σ
′
1 = σ′

2.
� If Φ1 = Φ2, then F1 6= F2 are distinct �elds of the same subobject, so by (�elds-non-

overlap, p. 113) they are disjoint.
� Otherwise, we can assume Φ2 = (F ′

2, p
′
2) (because plength(p1) ≤ plength(p2), so that if

Φ2 = ⊥, then Φ1 = ⊥).
� if Φ1 = ⊥, then F1 and F ′

2 are distinct �elds (because F1 is scalar whereas F ′
2 is a

structure �eld) of the same class, so their data are disjoint.
� Otherwise, Φ1 = (F ′

1, p
′
1).

� if F ′
1 6= F ′

2, then they are two distinct �elds of the same class, so their data are
disjoint.

� Otherwise, we may use the induction hypothesis.

Our layout constraints allow to produce smarter layouts than GNU GCC. Indeed, �elds are
laid out not by their whole sizes, but only by their data sizes. This allows �elds to be stored
within the end of a structure array �eld. Consider for instance:

116 Tahina Ramananandro

5.5 Soundness conditions

struct Z {};

struct A1: Z {};

struct A2: Z {};

struct B: A1, A2 { char b; };

struct D { B pb; char d; };

Naive layout:

b d

B

A1A2 Optimized layout:

b d

A1A2

Assuming sizeof(char) = 1, GNU GCC gives sizeof(B) = 2, as two di�erent o�sets to
subobjects of type Z have to be allotted.

But GNU GCC would give sizeof(D) = 3 by laying out j beyond the size of �eld c, so at
o�set 2, whereas our formalization allows d to be laid out at o�set 1, that is just after the end
of �eld b of pb, not waiting for the actual end of �eld pb, thus yielding sizeof(D) = 2. Such
an optimization was proposed by [63].

In other words, our formalization generalizes empty base o�sets to empty �elds, thanks to
the fact that the data size of a �eld of type C[n] is (n − 1) · sizeC + dsizeC instead of n · sizeC
as prescribed by the C++ Common Vendor ABI [22].

5.5.5 Dynamic type data

When a class has a polymorphic behaviour (e.g. virtual bases, or virtual functions), it is
dynamic. Then, additional dynamic type data is needed for subobjects of such class types.

If C is dynamic, then there are two cases:
� if C has a direct non-virtual base A that is dynamic, then this base may be chosen as a

primary base that will have o�set 0 within the non-virtual part of C.
� otherwise, some space must be explicitly allocated at the beginning of C to store the
dynamic type data.

This ensures that any dynamic class C has some space at the beginning of C to store the
dynamic type data. If C has a primary base A, then C and A will share their dynamic type
data.

Hypothesis 5.5.15. The size of dynamic type data is written dtdsize. It is positive and it does
not depend on any class.

In practice, for compilers such as GNU GCC, dtdsize = sizeof(void∗) to store a pointer
to a virtual table. Other compilers like Microsoft Visual C++ used dtdsize = 2 · sizeof(void∗)
to store additional data (a pointer to the table of virtual bases) [20].

The choice of the primary base is formalized as follows:

Hypothesis 5.5.16. There exists pbaseC ∈ DNV(C)? such that if pbaseC = A 6= ⊥, then C
and A are dynamic and:

dnvboffC(A) = 0 (pbase)

In this case, A is called the primary base of C.

A class C having a dynamic non-virtual direct base does not necessarily have a primary
class: the layout algorithm is not forced to choose any. However, as regards performance, such
an algorithm could yield under-optimized layouts, with C having its own dynamic type data
disjoint from all of its bases'.

We have to prove non-overlapping lemmata for dynamic type data. Indeed, we must ensure
that:

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 117

Formalization of object layout Chapter 5

� whenever a �eld is written to, the dynamic type data of dynamic subobjects are not
altered

� whenever a subobject is being initialized, the dynamic type data of other subobjects are
not altered

Disjointness of �elds and dynamic type data Writing data to a scalar �eld must not
impact the polymorphic behaviour of its holding subobject. Thus, we have to prevent such
operation from overwriting dynamic type data.

Hypothesis 5.5.17. The dynamic type data of a dynamic class C is disjoint from the �eld
data of C:

dtdsize ≤ fboundaryC (dtdatasize-upper-bound)

This hypothesis along with (fboundary-upper-bound-bases, p. 111) allows to show that the
dynamic type data of a class is included in its non-virtual data.

The following hypothesis makes C's dynamic type data disjoint from any of its non-empty
non-virtual direct bases if C has no primary base:

Hypothesis 5.5.18. If pbaseC = ∅, then for any non-empty direct non-virtual base B of a
dynamic class C:

dtdsize ≤ dnvboffC(B) (dtdatasize-pbase)

Lemma 5.5.16. If l is a non-virtual path from some dynamic class C to some non-empty class
B, then the dynamic type data of C is disjoint from the �eld data of B. More precisely:

dtdsize ≤ nvsoff(l) + fboundaryB

Proof. By induction on l. If l = C :: ǫ is the trivial path, then B = C and (dtdatasize-upper-
bound, p. 118) concludes. Otherwise, if l = C :: B′ :: l′, then B′ is a non-virtual direct base of
C. There are two cases:

� If B′ is the primary base of C, having o�set 0 within C, then B′ is dynamic and we use
the induction hypothesis.

� Otherwise, it su�ces to show that B′ itself starts at o�set at least dtdsize within C, which
would conclude. There are two cases:
� If C has no primary base, then (dtdatasize-pbase, p. 118) concludes.
� Otherwise, if P is the primary base of C, then the data of P and B′ are disjoint.
However, we need an additional hypothesis to conclude:

Hypothesis 5.5.19. Any non-empty class A has non-zero non-virtual data size:

0 < nvdsizeA (nonempty-nvdatasize-positive)

In practice, this hypothesis makes sense, but its proof depends on the layout algorithm
and, in particular, the notions of empty class and dynamic class.

Lemma 5.5.17. If l is a non-virtual path from some class C to some dynamic class B, then
the dynamic type data of B is disjoint from the �eld data of C. More precisely:

nvsoff(l) + dtdsize ≤ fboundaryC

118 Tahina Ramananandro

5.5 Soundness conditions

Proof. By case analysis on l. If l = C :: ǫ is the trivial path, then B = C and (dtdatasize-upper-
bound, p. 118) concludes. Otherwise, if l = C :: B′ :: l′, then B′ is a non-virtual direct base of
C, and:

� dtdsize ≤ fboundaryB by (dtdatasize-upper-bound, p. 118)
� fboundaryB ≤ nvdsizeB by (fboundary-upper-bound-bases, p. 111)
� nvsoff(B′ :: l) + nvdsizeB ≤ nvdsizeB′ by Lemma 5.5.9 (p. 112)
� dnvboffC(B

′) + nvdsizeB′ ≤ fboundaryC by (fboundary-lower-bound, p. 111)
which concludes.

Lemma 5.5.18. If l1 is a non-virtual path from C to some dynamic class B1, and if l2 is a
non-virtual path from C to some non-empty class B2, then the �eld data of B2 is disjoint from
the dynamic data of B1:

[nvsoff(l1), nvsoff(l1) + dtdsize)
#

[

nvsoff(l2) + fboundaryB2
(F), nvsoff(l2) + nvdsizeB2

)

Proof. There are three cases:
� if there is a non-virtual path p fromB1 toB2 such that l2 = l1@Repeatedp, then Lemma 5.5.16

(p. 118) concludes.
� if there is a non-virtual path p fromB2 toB1 such that l1 = l2@Repeatedp, then Lemma 5.5.17

(p. 118) concludes.
� Otherwise, there is a class A and a non-virtual path p from C to A and A1 6= A2 ∈ DNVA

and non-virtual paths l′1 from A1 to B1 and l′2 from A2 to B2 such that ∀i : li =
p@Repeated(A :: Ai :: ǫ)@Repeatedl

′
i. As A1 and A2 are two distinct direct non-virtual non-

empty bases of A, their data zones are disjoint, which concludes.

Corollary 5.5.19. If σ1 is an inheritance path from C to some dynamic class B1, and if σ2

is an inheritance path from C to some non-empty class B2, then the �eld data of B2 is disjoint
from the dynamic data of B1:

[soffC(σ1), soffC(σ1) + dtdsize)
#

[

soffC(σ2) + fboundaryB2
(F), soffC(σ2) + nvdsizeB2

)

Proof. Let σi = (hi, B
′
i :: li) for each i. Then, there are two cases:

� if B′
1 = B′

2, then the previous lemma immediately concludes.
� Otherwise, B′

1 and B′
2 are two distinct non-empty generalized virtual bases of C, so by

(vbases-non-overlap, p. 114) their data are disjoint, which concludes thanks to Lemma 5.5.10
(p. 112)

Theorem I.4 (Dynamic type data are disjoint from scalar �elds). If p1, p2 are gen-
eralized subobjects of static type B1, B2 within an array of C, such that B1 de�nes a scalar
�eld F and B2 is dynamic, then F is disjoint from the dynamic type data of B1:

[offC(p1) + foffB1
(F), offC(p1) + foffB1

(F) + fdsize(F))
[offC(p2), offC(p2) + dtdsize)

Proof. By induction on plength(p1). For each i, let pi ∝ (ji, σi,Φi). Then:

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 119

Formalization of object layout Chapter 5

� If j1 6= j2, then we have two di�erent cells of the array of C, so thanks to (datasize-upper-
bound, p. 115) and Theorem I.2 (p. 112), their data are disjoint.

Otherwise, let B′
i be the static type of σi. By Lemma 5.5.15 (p. 116), F is included in the �eld

data of B′
1.

� If Φ2 = ⊥, then Corollary 5.5.19 (p. 119) concludes.
Otherwise, let Φ2 = (F ′

2, p
′
2). Then, the dynamic type data of B2 is included in the data zone

of the structure �eld F ′
2 by Theorem I.2 (p. 112), which is itself in the �eld data zone of B′

2.
� If σ1 6= σ2, then, by Lemma 5.5.12 (p. 115), the two �eld data zones of B′

1 and B′
2 are

disjoint, which concludes.
Otherwise, σ1 = σ2 and B′

1 = B′
2.

� If Φ1 = ⊥, then F and F ′
2 are distinct �elds (because F is scalar whereas F ′

2 is a structure
�eld) of the same subobject, so by (�elds-non-overlap, p. 113) their data are disjoint.

Otherwise, let Φ1 = (F ′
1, p

′
1) with plength(p′1) = plength(p1)− 1 to allow induction.

� If F ′
1 6= F ′

2, then they are distinct �elds of the same subobject, so their data are disjoint.
� Otherwise, we may use the induction hypothesis.

Disjointness of two dynamic type data The non-virtual data of two di�erent non-virtual
bases of C are not necessarily disjoint, because such classes can share their dynamic type
data with their primary bases. As this phenomenon can propagate, it is necessary to precisely
determine which subobjects will share their dynamic type data.

De�nition 5.5.10. A non-virtual path l from some class B to some class A is primary (written
isPrimaryPath(l)) if, and only if, at least one of the following conditions holds:

� either B = A and l = B :: ǫ
� or B has a primary base B′ and l = B :: B′ :: l′ for some l′, such that B′ :: l′ is a primary

path from B′ to A.

isPrimaryPath(B :: ǫ)

pbase(B) = A isPrimaryPath(A :: l)

isPrimaryPath(B :: A :: l)

Lemma 5.5.20. For any non-virtual, non-primary path l from some class B to some class A,
there exists a unique path written reducePath(l) and called the reduced path from l, such that
there exists l′ the longest primary path such that l = reducePath(l)@Repeatedl

′. By convention, if
l is primary, then reducePath(l)

def.
B :: ǫ.

Lemma 5.5.21. If l′ is a primary path, then reducePath(l@Repeatedl
′) = reducePath(l).

Lemma 5.5.22. For any non-virtual path l, nvsoff(l) = nvsoff(reducePath(l)).
In particular, any non-virtual path l to a dynamic class shares its dynamic type data with

its reduced path reducePath(l).

Proof. It su�ces to show that for any non-virtual paths l and l′, if l′ is primary, then nvsoff(l@Repeatedl
′) =

nvsoff(l). By induction on l′.

Conversely:

Lemma 5.5.23. If two non-primary non-virtual paths l1, l2 from some class B to some dy-
namic classes A1, A2 such that reducePath(l1) 6= reducePath(l2), then their dynamic type data
are disjoint.

120 Tahina Ramananandro

5.5 Soundness conditions

Proof. Pose l′i = reducePath(li) for each i. Then, as l1 and l2 are not primary, their reduced
paths l′1, l

′
2 are not trivial. By symmetry, we may assume length(l′1) ≤ length(l′2). Then, there

are two cases:
� If l′2 = l′1@Repeatedl, then, as l′2 6= l′1, l is not trivial. So, l

′
1 = l′′ q−A′

1 :: A1 :: ǫ and there are
two cases:
� either l = A1 :: A2 :: ǫ, so that A2 is a non-primary direct non-virtual base of A1, which

concludes
� either l = A1 :: l′′′ :: A′ :: A2 :: ǫ for some non-virtual base A′ of A1 such that A2 is a

non-primary direct non-virtual base of A′. Then, A2 starts at o�set at least dtdsize in
A′, which is enough to conclude.

Corollary 5.5.24. If two non-virtual paths l1, l2 from some class B to some dynamic classes
A1, A2 such that reducePath(l1) 6= reducePath(l2), then their dynamic type data are disjoint.

Proof. � If both paths were primary, then they would have the same reduced path, which
is absurd.

� If (for instance) l1 is primary and l2 is non-primary, then A2 starts at o�set at least dtdsize
in B, which concludes.

� Otherwise, Lemma 5.5.23 (p. 120) concludes.

Corollary 5.5.25. If two paths (h1, l1), (h2, l2) from some class C to some dynamic classes
A1, A2 such that reducePath(l1) 6= reducePath(l2), then their dynamic type data are disjoint.

Theorem I.5 (Non-overlapping of dynamic type data). If p1 = (α1, j1, (h1, l1)), p2 =
(α2, j2, (h2, l2)) are two generalized subobjects from C[n] to some dynamic classes A1, A2 such
that:

(α1, j1, (h1, reducePath(l1))) 6= (α2, j2, (h2, reducePath(l2)))

Then their dynamic type data are disjoint.

Proof. As there is a condition on (h1, l1), (h2, l2), we cannot use the alternate representation for
pointers. So a direct reasoning is necessary.

� If (α1, j1) = (α2, j2), then Corollary 5.5.25 (p. 121) concludes.
� Otherwise, if α1 = α2 and j1 6= j2, then there are two di�erent cells of the same array, so

their data are disjoint.
Otherwise, assume α1 6= α2. By symmetry, we may assume length(α1) ≤ length(α2). Then, we
have α2 = (j′2, P

′
2, F

′
2) :: α

′
2. Reason by structural induction on α1. There are several cases:

� If α1 = ǫ, then the dynamic type data targeted by p2 is included in the data of F ′
2 which

is included in the �eld data of the subobject p1. Then, Theorem I.4 (p. 119) concludes.
� Otherwise, α1 = (j′1, σ

′
1, F

′
1) :: α

′
1. If (j

′
1, σ

′
1) 6= (j′2, σ

′
2), then our generalized subobjects p1

and p2 are located in disjoint �eld zones, which concludes. Otherwise, if F ′
1 6= F ′

2, then
the data of those two �elds are disjoint, which concludes. Otherwise, we may use the
induction hypothesis.

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 121

Formalization of object layout Chapter 5

Dynamic type data alignment As with �elds, access to dynamic type data must be cor-
rectly aligned.

Hypothesis 5.5.20. We assume that there exists an alignment dtdalign > 0 for dynamic type
data.

Then, the following theorem:

Theorem I.6 (Dynamic type data alignment). If p is a generalized subobject of static
type A from a structure array of C, such that A is dynamic, then the access to the dynamic
type data of A is correctly aligned:

(dtdalign | offC(p))

(dtdalign | alignC)

is a direct consequence of Corollary 5.5.8 (p. 110) requiring the following hypothesis:

Hypothesis 5.5.21. If A is a dynamic class, then:

(dtdalign | nvalignA) (dtdalign-nv)

5.5.6 Identity of subobjects

In this section, we want to show that if p1 6= p2 are two distinct generalized subobjects of
the same static type A from the same structure array of C, then they are located at distinct
o�sets offC(p1) 6= offC(p2) within the structure array.

The proof of this theorem is very di�erent depending on whether A is empty or not.

5.5.6.1 Non-empty base o�sets

If A is not empty, then (nonempty-nvdatasize-positive, p. 118) ensures that nvdsizeA 6= 0.
However, recall that the non-virtual data of two distinct subobjects of the same static type

are not necessarily disjoint, because of their dynamic type data.

Lemma 5.5.26. If l1, l2 are distinct non-virtual paths from some class B to some non-empty
class A, then nvsoff(l1) 6= nvsoff(l2).

Proof. By symmetry, we may assume length(l1) ≤ length(l2). Then, there are two cases:
� Case l2 = l1@Repeatedl is absurd. Indeed, as l1 and l2 have the same static type A, we would

have l trivial, so l2 = l1.
� So, l1 and l2 point to subobjects of some classes B′

1 6= B′
2 that are distinct direct non-

virtual bases of some class B′. As the non-virtual data of B′
1, B

′
2 are disjoint, and the

non-virtual data of A is non-null, arithmetics conclude.

Corollary 5.5.27. If σ1, σ2 are distinct paths from some class B to some non-empty class
A, then soffB(σ1) 6= soffB(σ2).

Theorem I.7 (Non-empty subobject identity). If p1, p2 are distinct generalized subob-
jects from some class C to some non-empty class A, then offC(p1) 6= offC(p2).

122 Tahina Ramananandro

5.5 Soundness conditions

Proof. For each i, let pi ∝ (ji, σi,Φi). By symmetry, we may assume plength(l1) ≤ plength(l2).
Reason by induction on plength(p1). Then, there are several cases:

� if j1 6= j2, then we have two distinct cells of the same array, so their data are disjoint.
� Otherwise, if j1 = j2 and Φ2 = (F2, p

′
2), then there are two cases:

� if Φ1 = (F1, p
′
1), then there are three cases:

� if σ1 = σ2, then either F1 = F2, in which case we may use the induction hypothesis,
or F1 6= F2 so those are two distinct �elds of the same subobject, so their data are
disjoint.

� otherwise, the designated subobjects are located in disjoint �eld zones.
� Otherwise, Φ1 = ⊥. Then, there are several cases:
� Case σ2 = σ1@Repeatedσ is absurd (the hierarchy is well-founded).
� Case σ1 = σ2@Repeated(B2 :: B′ :: l): in that case, whereas p2 is located in the �eld
data zone of B2, p1 is located in the data zone of B′ which is a direct non-virtual
base of B2: those two data zones are disjoint

� Otherwise, σ1 = σ@RepeatedB
′ :: B′

1 :: l1 and σ2 = σ@RepeatedB
′ :: B′

2 :: l2 with B′
1 and

B′
2 two distinct direct non-virtual bases of B′, so their data are disjoint.

� Otherwise, j1 = j2, Φ2 = ⊥ and Φ1 = ⊥ (as plength(p1) ≤ plength(p2)), so Corol-

lary 5.5.27 (p. 122) concludes.

5.5.6.2 Empty base o�sets

Unfortunately, this kind of reasoning cannot be done if A is empty. In this case, we have to
explicitly enumerate the o�sets to all possible subobjects of an empty static type.

De�nition 5.5.11. The sets nveboffsC of the non-virtual empty base o�sets of C and eboffsC
of empty base o�sets of C are de�ned as follows:

nveboffsC def.

{

{(C, 0)} if C is empty
∅ otherwise

∪
⋃

B∈NV(C)

dnvboffC(B) + nveboffsB

∪
⋃

(struct B[n] f)∈F(C)

⋃

i∈[0...n)

foffC(struct B[n] f) + i · sizeB + eboffsB

eboffsC def.

⋃

B∈Ṽ(C)

nveboffsB

In our Coq development, those two sets are de�ned as mutually inductive predicates. Only
at the level of the algorithms, we show that we can construct for any class C two sets such that
(A, o) is in either set if and only if (A, o) veri�es the corresponding predicate, assuming that
such sets exist for any class B ≺ C. Indeed, we shall see that those sets are computed at the
same time as class layout.

Lemma 5.5.28. (A, o) ∈ nveboffsC if, and only if, A is empty and there is a class B and a
non-virtual path l from C to B such that at least one of the following conditions holds:

� either B = A and o = nvsoff(l)

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 123

Formalization of object layout Chapter 5

� or there is a structure array �eld f of some type B′[m′] de�ned in class B and an array
path α from B′[m′] to some A′[n′], a nonnegative integer k < n′ and an inheritance path
σ from A′ to A such that:

o = nvsoff(l) + aoffB′(α) + k · sizeA′ + soffA′(σ)

(A, o) ∈ eboffsC if, and only if, A is empty and there is a class B and an inheritance path
σ from C to B such that at least one of the following conditions holds:

� either B = A and o = soffC(σ)
� or there is a structure array �eld f of some type B′[m′] de�ned in class B and an array

path α from B′[m′] to some A′[n′], a nonnegative integer k < n′ and an inheritance path
σ′ from A′ to A such that:

o = soffC(σ) + aoffB′(α) + k · sizeA′ + soffA′(σ′)

Proof. ⇒: by mutual induction on the de�nitions of eboffs and nveboffs.
⇐: cases B = A by induction on p for non-virtual inheritance, by case analysis on h where

σ = (h, l) for virtual inheritance. Other cases by induction on α.

Theorem I.8 (Empty subobject identity). Let A be an empty class. Two di�erent point-
ers of static type A, but from the same initial object, point to a di�erent memory location, if
and only if, in the construction of the sets eboffs and nveboffs, the unions are disjoint, i.e. for
all classes C, the following conditions hold:

� ∀B1, B2 ∈ DNV(C) : B1 6= B2 ⇒

dnvboffC(B1) + nveboffsB1
dnvboffC(B2) + nveboffsB2

(nvebo�s-disjoint)

� ∀B1 ∈ DNV(C), ∀(struct B2[n] f) ∈ F(C), ∀i ∈ [0 . . . (n− 1)] :

dnvboffC(B1) + nveboffsB1
foffC(struct B2[n] f) + i · sizeB2

+ eboffsB2

(nvebo�s-ebo�s-disjoint)
� ∀(struct B1[n1] f1), (struct B2[n2] f2) ∈ F(C), (struct B1[n1] f1) 6= (struct B2[n2] f2)⇒
∀i1 ∈ [0 . . . (n1 − 1)], ∀i2 ∈ [0 . . . (n2 − 1)] :

foffC(struct B1[n1] f1)+ i1·sizeB1
+eboffsB1

foffC(struct B2[n2] f2)+ i2·sizeB2
+eboffsB2

(ebo�s-disjoint)
� ∀B1, B2 ∈ Ṽ(C) : B1 6= B2 ⇒

vboffC(B1) + nveboffsB1
vboffC(B2) + nveboffsB2

(vbo�-nvebo�s-disjoint)

Proof. Mostly by de�nition of nveboffs and eboffs, except for two empty bases of distinct cells
of a structure array. In that case, we have to use the fact that two di�erent cells of the same
array are totally disjoint (not only their data). Then, we need a further hypothesis:

Hypothesis 5.5.22. The non-virtual size of any class B is positive.

nvsizeC > 0 (nvsize-positive)

The reason why (nvsize-positive, p. 124) is required already for non-virtual sizes (not only
for total sizes) may seem not obvious, but the following simple example makes it clear:

124 Tahina Ramananandro

5.5 Soundness conditions

struct A {};

struct B1: A {};

struct B2: A {};

struct C: B1, B2 {};

C t[2];

A * a1 = (A*) (B2*) &t[0];

A * a2 = (A*) (B1*) &t[1];

Invalid layout:
(A∗)(B1∗) &t[1]

(A∗)(B2∗) &t[0]

Valid layout:

c

(A∗)(B1∗) &t

(A∗)(B2∗) &t

If nvsizeA = 0, nvsizeB1
= 0, and nvsizeB2

= 0 were allowed, then we would not be able to
distinguish pointers a1 and a2 above.

How empty base class o�sets are checked In practice, following the behaviour prescribed
by the C++ Common Vendor ABI [22] to compute o�sets for a given class C, assuming that
layout has already been computed for all bases of C and all classes that are types of some
structure �elds of C, components of C (base or �eld) are laid out one after another, and for
each attempt to lay out a given component, it is checked against all components previously laid
out.

Considering intervals instead of eboffs and nveboffs is not enough, even in practice. Indeed,
consider the following hierarchy:

struct A {};

struct B {};

struct C: A {};

struct D: B {};

struct E1: A, B {};

struct E2: A, B {};

struct F: E1, C, E2 {};

struct G: F, D {};

G

F

E1

A,B

C

A

E2

A,B

D

B

0 1 2 3 4

A naive layout: laying out
D within G relies on an
interval-based checking, for-
bidding the B subobject of
D to be laid out at o�sets
[0 . . . 2] within G.

G

F

E1

A,B

C

A

E2

A,B

D

B

0 1 2 3

The layout actually given
by GNU GCC: laying out D
within G relies on checking
for the exact set of actually
used o�sets, allowing the B
subobject of D to be laid
out at o�set 1 within G.

The existence of the type con�ict test existence, but not the way it should work, is prescribed
by the C++ Common Vendor ABI [22]). If such a test relies on interval checking, then base F
of G would reserve the o�set interval [0 . . . 2] for base B, so that base D of G would be laid
out at o�set 3. However, it would be consistent to lay out D at o�set 1 within G, which GNU
GCC actually does. This justi�es why the exact sets of o�sets have to be checked.

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 125

Formalization of object layout Chapter 5

126 Tahina Ramananandro

Chapter 6

Veri�cation of realistic layout algorithms

In Chapter 5 (p. 93), we chose not to directly impose a layout, as CompCert does with
C structures, but to set some constraints for layout algorithms, allowing them to make some
optimizations that our constraints do not necessarily catch, such as �eld or base reordering for
optimizing data alignment. The two algorithms considered in this chapter take advantage of
this freedom, notably to optimize the layout of empty base classes.

The �rst algorithm we verify is based on the C++ Common Vendor ABI [22], a popular
Application Binary Interface used by GCC and other C++ compilers (except notably Microsoft
Visual C++). The second algorithm we consider extends the �rst algorithm with additional
optimizations for empty base tail padding.

As the hierarchy is well-formed, we may prove, by well-founded induction on ≺ (the well-
founded order on class names, cf. Section 4.1.4.2 p. 79), that those algorithms satisfy the
soundness conditions of Chapter 5 (p. 93). We do not explain the technical details of those
proofs, which are done in Coq; we only give here the high-level arguments used in those proofs.

6.1 An algorithm based on the C++ Common Vendor ABI

The principle of this algorithm based on the Common Vendor C++ ABI for Itanium [22]
is that all bases and �elds are laid out within a class such that they are mutually totally
disjoint, not only their data. This actually incurs stronger constraints than the ones stated in
Chapter 5 (p. 93). Consequently, for two such disjoint components (bases or �elds), any two
o�sets to generalized subobjects of some class type A (empty or not) from those components
are automatically distinct.

However, such a layout would be too naive for empty bases, as it would consume some space
for them. For this reason, an important exception is prescribed for empty bases, which may
be laid out at o�set 0. In that case, explicit checks are necessary to ensure that a subobject
reachable from an empty base will not con�ict with another subobject of the same type reachable
from another base or �eld.

However, to limit the amount of such explicit checks that must be performed during layout,
this algorithm considers classes with �elds to be non-empty. More formally:

De�nition 6.1.1. A class C is empty if, and only if, all the following conditions hold:
� C has no virtual methods
� C has no direct virtual base

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 127

Veri�cation of realistic layout algorithms Chapter 6

� C has no �elds
� all direct non-virtual bases of C are empty

In particular, a class having a virtual base is not empty. More generally:

Lemma 6.1.1. Dynamic classes are not empty.

Then, each class C is laid out through the following way, assuming that all classes B such
that B ≺ C have been already laid out 1:

1. If C has a dynamic direct non-virtual base B, choose B as the primary base of C, and
lay out B within C at o�set 0.

2. Otherwise, if C is dynamic, reserve some space for dynamic type data

3. For each direct non-virtual base B of C that is not the primary base of B, lay it out
within C as follows:
� If B is empty, try to lay it out at o�set 0, unless there is a type con�ict for empty bases.
� Otherwise, try to lay out B at the current value of nvdsizeC so far. If there is a type
con�ict for empty bases, then increase by the non-virtual alignment nvalignB of the
base B, knowing that beyond the current value for nvsizeC , there will be no con�ict
(because all o�sets of bases reachable from C so far are less than nvsizeC).

� If B is not empty, update nvdsizeC to include the whole non-virtual size of the base
(not only its non-virtual data size).

4. Then, for each �eld, lay it out at increasing o�sets, making them wholly disjoint (not only
their data).

5. Then, lay out all virtual bases of C the same way as for non-virtual bases (i.e. trying
o�set 0 for empty virtual bases, and making them wholly disjoint � not only their data).

During the layout of the components of C, it is also wise to construct the sets nveboffsC and
eboffsC of generalized subobjects of an empty class type that are reachable from C.

However, the overall shape of the algorithm as described above and in the C++ Common
Vendor ABI does not exactly state how type con�icts for empty bases should be resolved. In
fact, there are only two possible con�icts:

� when trying to lay out an empty base B at o�set 0, it is necessary to check that no
empty base reachable through B con�ict with any empty base reachable from all other
non-virtual bases that have been already laid out.

� when trying to lay out a non-empty base B, or a �eld f , it is only necessary to check that
there is no con�ict with any empty base reachable from non-virtual empty bases laid out
so far. Indeed, this algorithm lays out all non-empty components in such way that two
distinct non-empty components are totally disjoint (not only their data).

We now formalize this layout algorithm:

The main algorithm The general shape of the algorithm is as follows. Starting with the
choice of the primary base and/or the allocation of dynamic type data, it then lays out the
remaining components of the class, �rst the non-virtual bases (other than the primary base),
then the �elds, and �nally the virtual bases.

This algorithm computes the set eboffs′C of empty subobjects that are subobjects of empty
bases. So, to check whether an empty subobject is laid out without con�ict, there are two cases:

1. Coq development: theory CommonVendorABI.

128 Tahina Ramananandro

6.1 An algorithm based on the C++ Common Vendor ABI

� either this empty subobject is a subobject of an empty base, then its o�set is in eboffs′C
on which the check is directly performed

� or this empty subobject is a subobject of a non-empty base B, then its o�set lies within
the non-virtual size of B. But B is laid out in such a way that its non-virtual size is
totally disjoint from the non-virtual sizes of other non-empty objects (thus including
their empty bases), as well as from the o�sets of empty subobjects of empty bases. So it
is not necessary to collect the o�sets of empty subobjects of non-empty bases, as they are
covered by the whole memory spans of non-empty bases.

1: nvdsizeC ← 0,
pbaseC , nveboffsC , eboffs

′
C ← ∅,

dnvboffC , foffC , vboffC : ∅→ Z,
nvsizeC , nvalignC ← 1

2: if C is dynamic then
3: if ∃B dynamic direct non-virtual base of C then
4: pbaseC ← {B}
5: dnvboffC(B)← 0
6: nveboffsC ← nveboffsB
7: nvdsizeC ← nvsizeB
8: nvsizeC ← nvsizeB
9: nvalignC ← nvalignB

10: else {there is no dynamic direct non-virtual base of C}
11: nvdsizeC ← dtdsize

12: nvsizeC ← dtdsize

13: nvalignC ← dtdalign

14: end if
15: end if
16: lay out direct non-virtual bases B of C such that pbaseC 6= {B}
17: fboundaryC ← nvdsizeC
18: lay out �elds of C
19: eboffsC ← nveboffsC
20: dsizeC ← nvdsizeC
21: sizeC ← nvsizeC
22: alignC ← nvalignC
23: lay out virtual bases of C
24: vboffC(C)← 0
25: sizeC ← min{o | (alignC | o) ∧ sizeC ≤ o}

Direct non-virtual bases

1: for all B direct non-virtual base of C such that pbaseC 6= {B} do
2: if B is empty and nveboffsB # nveboffsC then
3: dnvboffC(B)← 0
4: else
5: dnvboffC(B)← min{o | (nvalignB | o) ∧ nvdsizeC ≤ o}
6: while dnvboffC(B) < nvsizeC ∧ ¬dnvboffC(B) + nveboffsB # eboffs′C do
7: dnvboffC(B)← dnvboffC(B) + nvalignB
8: end while

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 129

Veri�cation of realistic layout algorithms Chapter 6

9: end if
10: nveboffsC ← nveboffsC ∪ dnvboffC(B) + nveboffsB
11: if B is empty then
12: eboffs′C ← eboffs′C ∪ dnvboffC(B) + nveboffsB
13: else
14: nvdsizeC ← dnvboffC(B) + nvsizeB
15: end if
16: nvsizeC ← max(nvsizeC , dnvboffC(B) + nvsizeB)
17: nvalignC ← lcm(nvalignC , nvalignB)
18: end for

Line 6 imposes that the whole memory span of the object be disjoint from both:
� the whole memory spans of the non-empty bases of C, including the locations of their

empty base subobjects, by checking on nvdsizeC (because the non-virtual data size of C
includes the whole memory spans of its non-empty non-virtual bases)

� and the memory locations of empty subobjects that are subobjects of empty bases of C,
by checking on eboffs′C

Line 12 collects the o�sets of empty subobjects that are subobjects of empty direct non-
virtual bases only.

Line 14 imposes every non-empty direct non-virtual base B to have its whole non-virtual
part (not only its data) included in the non-virtual data of C.

Thanks to this requirement, con�ict checks for empty bases are limited to those o�sets
reachable only through empty direct bases (line 6). Indeed, in the �else� case of lines 5�8, B
is laid out wholly (not only by its data) disjointly from all other non-empty non-virtual bases
laid out so far. So, in particular, o�sets to empty bases are disjoint.

Fields In this algorithm, no �eld is considered empty. Moreover, �elds are laid out disjointly
from the whole memory spans of the direct non-virtual bases of C. So the only requirement is
to check whether a structure �eld overlaps memory locations of empty bases of empty direct
non-virtual bases of C.
1: for all f �eld of C do
2: foffC(f)← min{o | (falign(f) | o) ∧ nvdsizeC ≤ o}
3: if f is a structure �eld (fid, B, n) then

4: while ¬
⋃

0≤j<n

foffC(f) + j · sizeB + eboffsB # eboffs′C do

5: foffC(f)← foffC(f) + alignB
6: end while
7: nveboffsC ← nveboffsC ∪

⋃

0≤j<n

foffC(f) + j · sizeB + eboffsB

8: end if
9: nvdsizeC ← foffC(f) + fsize(f)

10: nvsizeC ← max(nvsizeC , foffC(f) + fsize(f))
11: nvalignC ← lcm(nvalignC , falign(f))
12: end for

Virtual bases The layout of the non-virtual parts of (generalized) virtual bases is similar to
the layout of the non-virtual parts of direct non-virtual bases. In particular, the data size of

130 Tahina Ramananandro

6.2 An optimized algorithm: CCCPP

a most-derived C object covers the whole memory span of the non-virtual parts of non-empty
virtual bases.
1: for all B virtual base of C do
2: if B is empty and nveboffsB # eboffsC then
3: vboffC(B)← 0
4: else
5: vboffC(B)← min{o | (alignB | o) ∧ dsizeC ≤ o}
6: while vboffC(B) < sizeC ∧ ¬vboffC(B) + nveboffsB # eboffs′C do
7: vboffC(B)← vboffC(B) + nvalignB
8: end while
9: end if

10: eboffsC ← eboffsC ∪ vboffC(B) + nveboffsB
11: if B is empty then
12: eboffs′C ← eboffs′C ∪ vboffC(B) + nveboffsB
13: else
14: dsizeC ← vboffC(B) + nvsizeB
15: end if
16: sizeC ← max(sizeC , vboffC(B) + sizeB)
17: alignC ← lcm(alignC , nvalignB)
18: end for

Summary

Lemma 6.1.2. This algorithm ensures that for any class C, for any non-empty non-virtual
bases B1, B2 of C, for any �elds F1, F2 declared in C, and for any non-empty generalized virtual
bases V1, V2 of C:

nvdsizeC ≤ nvsizeC
[dnvboffC(B1), dnvboffC(B1) + nvsize(B1))

[dnvboffC(B2), dnvboffC(B2) + nvsize(B2))

[foffC(F1), foffC(F1) + fsize(F1))
[foffC(F2), foffC(F2) + fsize(F2))

[vboffC(V1), vboffC(V1) + nvsize(V1))
[vboffC(V2), vboffC(V2) + nvsize(V2))

That is, two distinct sibling non-empty components are wholly disjoint (not only their data).

As a corollary:

Theorem I.9 (Correctness of the Common Vendor ABI layout algorithm). This al-
gorithm satis�es the soundness conditions of Chapter 5 (p. 93).

6.2 An optimized algorithm: CCCPP

One obvious drawback of the previous algorithm is that the alignment tail padding of non-
empty bases is never reused to store the data of subsequent non-empty components of an
object. In this section, we propose an optimized algorithm, which we call CCCPP (standing
for �CompCert C Plus Plus�), where the data of a class only includes the data of its bases,
without their tail padding. Thus, tail paddings may be reused as long as there is no con�ict

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 131

Veri�cation of realistic layout algorithms Chapter 6

on empty bases. However, we can no longer rely on the sizes of bases to reason about those
con�icts. Consequently, we have to collect the o�sets of all empty bases during the computation
of layout.

Moreover, we also allow �elds of empty class types to be laid out in an optimized way. To
this purpose, we tailor the notion of empty class as follows:

De�nition 6.2.1. A class C is empty if, and only if, all the following conditions hold:
� C has no virtual methods
� C has no direct virtual base
� C has no scalar �elds
� if C has a structure array �eld of some type B, then B is empty
� all direct non-virtual bases of C are empty

Given the de�nition of dynamic classes taken for our algorithms, this de�nition for empty
bases is the smallest possible satisfying the constraints of Hypothesis 5.3.1 (p. 102).

Lemma 6.2.1. Dynamic classes are not empty.

In particular, a class having an empty virtual base is not empty.

The main algorithm The general shape of the algorithm 2 is similar to the previous one,
except when choosing a primary base: in that case, after the choice of the primary base but
before the layout of the other direct non-virtual bases, the non-virtual data size is updated to
the non-virtual data size of the primary base (line 7), not its whole non-virtual size.
1: nvdsizeC ← 0,

pbaseC , nveboffsC ← ∅,
dnvboffC , foffC : ∅→ Z,
vboffC : C 7→ 0,
nvsizeC , nvalignC ← 1

2: if C is dynamic then
3: if ∃B dynamic direct non-virtual base of C then
4: pbaseC ← {B}
5: dnvboffC(B)← 0
6: nveboffsC ← nveboffsB
7: nvdsizeC ← nvdsizeB
8: nvsizeC ← nvsizeB
9: nvalignC ← nvalignB

10: else {there is no dynamic direct non-virtual base of C}
11: nvdsizeC ← dtdsize

12: nvsizeC ← dtdsize

13: nvalignC ← dtdalign

14: end if
15: end if
16: lay out direct non-virtual bases B of C such that pbaseC 6= {B}
17: fboundaryC ← nvdsizeC
18: lay out �elds of C

2. Coq development: theory CCCPP.

132 Tahina Ramananandro

6.2 An optimized algorithm: CCCPP

19: eboffsC ← nveboffsC
20: dsizeC ← nvdsizeC
21: sizeC ← nvsizeC
22: alignC ← nvalignC
23: lay out virtual bases of C
24: sizeC ← min{o | (alignC | o) ∧ sizeC ≤ o ∧ dsizeC ≤ o}

Direct non-virtual bases The CCCPP algorithm considers more layout possibilities than
the Common Vendor ABI. Indeed, the �nal choice of the o�set is done by successive checks for
empty base o�set con�icts, by a systematic comparison against eboffsC (line 7). This systematic
comparison is necessary as those checks can no longer rely on the sizes of subobjects. Finally,
the only di�erence between laying out an empty and a non-empty direct base is the starting
point (lines 3�6): for an empty base, all o�sets starting from 0 are tried; by contrast, for a
non-empty base, o�sets starting from nvdsizeC (maybe adding alignment padding) are tried,
thus ensuring that the data of non-empty direct non-virtual bases are disjoint.

Another di�erence with the Common Vendor ABI algorithm is line 12, taking into account
only the data part of non-empty bases, thus excluding its tail padding, which is then allowed
for reuse.
1: for all B direct non-virtual base of C such that pbaseC 6= {B} do
2: if B is empty then
3: dnvboffC(B)← 0
4: else
5: dnvboffC(B)← min{o | (nvalignB | o) ∧ nvdsizeC ≤ o}
6: end if
7: while dnvboffC(B) < nvsizeC ∧ ¬dnvboffC(B) + nveboffsB # eboffsC do
8: dnvboffC(B)← dnvboffC(B) + nvalignB
9: end while

10: nveboffsC ← nveboffsC ∪ dnvboffC(B) + nveboffsB
11: if B is not empty then
12: nvdsizeC ← dnvboffC(B) + nvdsizeB
13: end if
14: nvsizeC ← max(nvsizeC , dnvboffC(B) + nvsizeB)
15: nvalignC ← lcm(nvalignC , nvalignB)
16: end for

Fields Here, contrary to the Common Vendor ABI, we distinguish between empty and non-
empty �elds. In the latter case, �elds are laid out by making their data part disjoint only, thus
allowing to reuse their tail padding (line 14). This approach follows the same pattern as for
laying out the direct non-virtual bases.
1: for all f �eld of C do
2: foffC(f)← min{o | (falign(f) | o) ∧ nvdsizeC ≤ o}
3: if f is a structure �eld (fid, B, n) then
4: if B is empty then
5: foffC(f)← 0
6: else
7: foffC(f)← min{o | (alignB | o) ∧ nvdsizeC ≤ o}

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 133

Veri�cation of realistic layout algorithms Chapter 6

8: end if
9: while ¬

⋃

0≤j<n

foffC(f) + j · sizeB + eboffsB # eboffsC do

10: foffC(f)← foffC(f) + alignB
11: end while
12: nveboffsC ← nveboffsC ∪

⋃

0≤j<n

foffC(f) + j · sizeB + eboffsB

13: if B is not empty then
14: nvdsizeC ← foffC(f) + fdsize(f)
15: end if
16: else {f is a scalar �eld}
17: nvdsizeC ← foffC(f) + fdsize(f)
18: end if
19: nvsizeC ← max(nvsizeC , foffC(f) + fsize(f))
20: nvalignC ← lcm(nvalignC , falign(f))
21: end for

Virtual bases The layout algorithm has the same pattern as for laying out the direct non-
virtual bases.
1: for all B virtual base of C do
2: if B is empty then
3: vboffC(B)← 0
4: else
5: vboffC(B)← min{o | (alignB | o) ∧ dsizeC ≤ o}
6: end if
7: while vboffC(B) < sizeC ∧ ¬vboffC(B) + nveboffsB # eboffsC do
8: vboffC(B)← vboffC(B) + nvalignB
9: end while

10: eboffsC ← eboffsC ∪ vboffC(B) + nveboffsB
11: if B is not empty then
12: dsizeC ← vboffC(B) + nvdsizeB
13: end if
14: sizeC ← max(sizeC , vboffC(B) + sizeB)
15: alignC ← lcm(alignC , nvalignB)
16: end for

Theorem I.10 (Correctness of the optimized CCCPP layout algorithm). This algo-
rithm satis�es the soundness conditions of Chapter 5 (p. 93).

The proof is simpler than that of Theorem I.9 (p. 131), as the CCCPP algorithm is much
closer to the soundness conditions than the Common Vendor ABI algorithm.

134 Tahina Ramananandro

Chapter 7

Application of veri�ed object layout to a

veri�ed compiler

In this chapter, we de�ne and formally verify a simple compiler for the s++ language of
Chapter 4 (p. 71), taking advantage of the object layout framework from Chapter 5 (p. 93),
but independent of the algorithm actually chosen, as long as it complies with the soundness
conditions of the framework (Chapter 6 p. 127 shows that such algorithms exist in practice).

To this purpose, we specify a target language, called Vcm, featuring low-level memory
accesses and a speci�c data structure to handle polymorphic operations, called virtual tables.
Then, we build a compiler from s++ to Vcm, and we prove that the compiler preserves the
semantics of programs through a compilation invariant.

7.1 Virtual tables

Whenever a polymorphic operation (dynamic cast, virtual function call, access to virtual
base) is performed on an object, this operation is implemented by looking up its dynamic
type, which is stored at o�set 0 before any subsequent object data. Dynamic type data can be
represented in many di�erent forms (as shown by Driesen et al. [29] through their extensive
survey of virtual function dispatch implementations), but, most often (such as in the GNU
GCC compiler), it is a pointer to a table stored at a read-only memory location, called virtual
table, containing all the information required to implement polymorphic operations.

Virtual function dispatch and this pointer adjustment Consider the following C++
code:

struct V1 {

virtual void f();

int iv1;

};

struct V2 {

virtual void f();

int iv2;

};

struct D: virtual V1, virtual V2 {

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 135

Application of veri�ed object layout to a veri�ed compiler Chapter 7

void f() {

this->i++;

}

};

D d;

V1* v1 = (V1*)&d;

V2* v2 = (V2*)&d;

v1->f();

v2->f();

Those two calls to the f virtual function choose the D::f overriding de�nition in D. Within
this function, the this pointer refers to the whole D object. At the level of function calls, v1
and v2 must be adjusted to the D object. This is called this pointer adjustment.

At the implementation level, adjustment is performed by subtracting some o�set from the
pointer used for the call. This o�set, as well as the actual function to be called, is known only
at run time, so it has to be stored somewhere in the virtual table.

Concretely, there are several solutions. The simplest solution is to store two pieces of data
for each virtual function: the pointer to the function body, and the o�set for this pointer
adjustment. Another solution is to store only a pointer to a function which performs itself the
adjustment. Such a function is called thunk. However, our formalization does not cover the
concrete implementation, and models the contents of virtual tables only in an abstract way.

Notice that the adjustments are di�erent from V1 than from V2. This illustrates that di�erent
virtual tables are needed for each inheritance subobject of a given class.

Summary of the contents of virtual tables To sum up, for any class C, a virtual table for
a C object (regardless of whether the object is a most-derived object, or inheritance subobject
of another object) contains:

� the o�set to each virtual base subobject of C
� for each well-de�ned dynamic cast, the o�set to the corresponding objects
� for each virtual function having a �nal overrider for C, the pointer to the actually dis-
patched function as well as the o�set for the this pointer adjustment.

Whereas such data are always present in the virtual tables for any C object, their contents
may vary depending on the actual most-derived class D and the inheritance path σ from D to
C.

We only give an abstract model of the contents of virtual tables, leaving aside their concrete
implementation.

Sharing We saw in Section 5.3.1 (p. 98) that an object may share its dynamic type data with
its primary bases. This implies that the virtual table of a class must also feature the necessary
information of the virtual tables of its primary bases. Such information related to the primary
base must be stored with respect to the structure of the virtual table of the primary base as
this virtual table were stand-alone.

To avoid unnecessary duplication, the virtual tables of a class can share relevant pieces of
information with the virtual tables of its primary bases. Consider the following example:

struct B {

136 Tahina Ramananandro

7.2 The Vcm target language

virtual void f();

};

struct D: B {

void f(); /* overrides B::f */

virtual void g();

};

In this single inheritance example, an instance of D will share its dynamic type data with its
B subobject, so that the single virtual table entry (shared between B and D) corresponding to
the f virtual function will accordingly contain a pointer to the D::f function overridden by D.
As B is laid out at o�set 0 within D, the this pointer adjustment to perform will be the same.
This illustrates that a single virtual table can be used for both D and its primary base B.

7.2 The Vcm target language

7.2.1 Syntax

The Vcm target language is a variant of CompCert Cminor [2, 49, 16]. It features low-level
memory accesses, pointer arithmetic, and virtual tables in an abstract representation. Hence
its name: Vcm stands for �Cminor with virtual tables�.

Like s++, Vcm is a 3-address language, without complex expressions: arguments of operations
are necesarily variables. Vcm features built-in operations, and the usual structured control:
conditionals, sequences, in�nite loops, and statement blocks with early exit (avoiding the need
for goto-like statements, and allowing exit from in�nite loops). Moreover, Vcm also features
function calls.

Unlike s++, Vcm also features low-level memory accesses: memory loads, memory stores, at
memory addresses obtained by pointer arithmetic. However, in Vcm, object-oriented operations
are no longer primitive, and class hierarchies are no longer needed. Instead, and additionally
to CompCert Cminor, Vcm features accesses to virtual tables, to retrieve o�sets to virtual
bases, o�sets to subobjects for dynamic casts, and pointers to dispatched virtual functions,
along with their this pointer adjustment o�sets. Those features are enough to implement C++
virtual function dispatch; however, to allow for further back-end optimizations, Vcm features
thunk calls, a compound operation that performs virtual table accesses, this pointer adjustment
and function call at the same time.

7.2.1.1 Memory chunks

The Vcm low-level memory accesses (load, store) are parameterized by the memory chunk,
which expresses the expected kind of the value to read from memory or to write to memory:

T : Chunk Type of data writable to memory (chunk)
Chunk ::= BuiltinType Built-in type (Notation 3.2.6 p. 67)

| Ptr Pointer to memory
| Fptr Pointer to function
| Vptr Pointer to virtual table

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 137

Application of veri�ed object layout to a veri�ed compiler Chapter 7

7.2.1.2 Virtual table type de�nition

A virtual table type declares all entries that can be de�ned in virtual tables of this type.
From the C++ point of view, a virtual table type τ ∈ VTableType corresponds to a class
de�nition, but limited to the virtual bases, the virtual functions and the results of dynamic
cast operations. VTableType is left as a parameter of the semantics of Vcm.

A virtual table type τ can be said to have a parent virtual table type τ ′ ∈ VTableType: a
virtual table of type τ must then contain all entries declared in the type τ ′, allowing for virtual
table sharing: from the C++ point of view, this corresponds to the primary base.

VTableEntry ::= vboff B Virtual base o�set
| dyncast X Dynamic cast
| disp F Virtual function dispatch

VTableTypeDefs = VTableType 7 7→VTableTypeDef

VTableTypeDef =
{

parent : VTableType? ; Parent virtual table (for sharing)
entries : VTableEntry∗ ; Valid entries

}

7.2.1.3 Statements

The syntax of Vcm statements follows:
st ::= if (x) st true else st false Conditional

| st1; st2 Statement sequence
| skip Do nothing
| loop st Loop
| {st} Statement block
| exit n Leaving n blocks
| x′ := x Variable value duplication
| x′ := op(x⋆) Built-in operation
| return x? Return from function
| x′ := fname(x⋆) Function call
| x′ := (∗x)(x⋆) Function call through function pointer
| x′ := ∗Chunk(x+ δ) Memory read

at a constant δ o�set from pointer x
| ∗Chunk(x+ δ) := x′ Memory write

at a constant δ o�set from pointer x
| x := x′ + δ Constant o�set shift
| x := x′ + xi · δ Variable o�set shift

by a constant factor
| x′ := x1 == x2 Pointer comparison
| x′ := NULL Null pointer
| x′ := vboff〈B〉τ (x) O�set to virtual base
| x′ := dyncastdef〈X〉τ (x) Is dynamic cast de�ned?
| x′ := dyncastoff〈X〉τ (x) Dynamic cast o�set

138 Tahina Ramananandro

7.2 The Vcm target language

| x′ := dispfunc〈F 〉τ (x) Virtual function dispatch
| x′ := dispoff〈F 〉τ (x) this pointer adjustment

for virtual function dispatch
| x′? := x->τF (x1, . . . , xn) Thunk call

There are three ways to call a function: by explicitly giving its name; through a function
pointer; or through a thunk call. The latter is a compound operation to call a function by �nding
its function pointer and the this pointer adjustment in a virtual table.

7.2.1.4 Virtual tables

A virtual table is composed of three �nite maps: virtual base o�sets, dynamic cast o�sets,
and virtual function dispatch. The latter maps each function (for which dispatch is well-de�ned)
to a function pointer and the corresponding this pointer adjustment.

VTables = VTableName 7 7→VTable

VTable =
{

type : VTableType ; Type of virtual table
(for abstract vtable layout)

vboff : VBOffRequest 7 7→Z ; Virtual base o�sets
dyncast : DynCastRequest 7 7→Z ; Dynamic cast o�sets

disp : DispRequest 7 7→ FuncName × Z ; Function pointer and
this pointer adjustment
for virtual function dispatch

}

VTableName, VBOffRequest , DynCastRequest and DispRequest are left as parameters of the
semantics of Vcm.

7.2.1.5 Program

A program is composed of function de�nitions, the declaration of virtual table types and
the contents of virtual tables:

Func ::= (x∗){st} Function de�nition
Program =
{

funcs : FuncName 7 7→ Func ; Functions
vtabletypes : VTableTypeDefs ; Virtual table types

(for abstract vtable layout)
vtables : VTables ; Virtual tables

}

7.2.2 Memory model

The low-level memory model of Vcm is inspired from the CompCert memory model [16].
Memory is organized in several memory blocks. Each block is a �nite array of bytes. Values are
stored within one block, spanning an interval of one or several bytes.

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 139

Application of veri�ed object layout to a veri�ed compiler Chapter 7

7.2.2.1 Memory operations

The memory model de�nes the following operations: retrieve the size or alignment of a
memory chunk (which are actually platform-speci�c parameters rather than operations on a
memory state), load value from memory, store value to memory, and retrieve the size of a
memory block.

MemSpec =
{

chunksize : Chunk →N>0 ; Size of data chunk
chunkalign : Chunk →N>0 ; Alignment of data chunk

load : Mem × Chunk ×MemBlock × Z→Value? ; Memory load
store : Mem × Chunk ×MemBlock × Z× Value→Mem? ; Memory store

blocksize : Mem ×MemBlock →N? ; Size of a memory block
}

7.2.2.2 Values

Values A value is either a value of built-in type (integer, �oating-point number, etc.), a pointer
to a memory location (which is the pair of a memory block and an integer o�set within this
block), a null pointer, a pointer to a function, or a pointer to a virtual table:

Val ::= Builtin Value of built-in type
| @(b, o) Pointer to memory location at o�set o within block b
| NULL Null pointer
| &FuncName Pointer to function
| &VTableName Pointer to virtual table

7.2.2.3 Value typing

To write a value to memory, it must correspond to the chunk speci�ed for the store operation.
Thus, we de�ne the relation v : T denoting the fact that value v corresponds to the chunk T :

Builtin ∈ BuiltinType

Builtin : BuiltinType @(b, o) : Ptr NULL : Ptr &FuncName : Fptr

&VTableName : Vptr

7.2.2.4 Axioms for memory load/store

We axiomatize the behaviour of memory operations as follows (CompCert [16] provides a
memory model that satis�es those axioms):

� A successfully written value may be immediately read back:

store(M, T, b, o, v) = M′ 6= ⊥

load(M′, T, b, o) = v
(Vcm-mem-load-store-same)

140 Tahina Ramananandro

7.2 The Vcm target language

� A memory write has no impact on reading from disjoint memory locations. Actually,
this rule justi�es the need for theorems of non-overlap such as Theorem I.3 (p. 115) or
Theorem I.4 (p. 119), to argue for the correctness of �eld write.

b 6= b′ ∨ [o, o+ chunksize(T)) # [o′, o′ + chunksize(T ′)) store(M, T ′, b′, o′) = M′ 6= ⊥

load(M′, T, b, o) = load(M, T, b, o)
(Vcm-mem-load-store-other)

� A memory write is successful if the value is of the corresponding chunk, the range of
bytes accessed is within the bounds of an existing block, and the o�set within the block
is correctly aligned. Actually, this rule justi�es the need for theorems of alignment such
as Theorem I.1 (p. 110) to argue for the correctness of �eld write.

v : T
blocksize(M, b) = sz 6= ⊥ 0 ≤ o o+ chunksize(T) < sz (o | chunkalign(T))

store(M, T, b, o, v) 6= ⊥
(Vcm-mem-store-some)

� Storing a value into memory has no impact on the sizes of memory blocks:

store(M, T, b, o, v) = M′ 6= ⊥

blocksize(M′, b) = blocksize(M, b)
(Vcm-mem-store-blocksize)

In Vcm, memory blocks cannot be created; instead, they are assumed to already exist when the
program starts.

7.2.3 Execution state

An execution state of the small-step semantics is composed of:
� the current statement to execute,
� the list of further statements to execute in the same block,
� the environment (mapping of values to variables),
� the continuation stack, which is a list of frames, each frame being either of:
� leaving a block, with the further statements to execute after leaving the block,
� returning from a function, with the caller variable to store the result (if any), the caller
environment, and the further statements to execute on resumption

� the memory state

M ∈ Mem Memory state
e : Var → Val ? Environment
Frame ::= Block(st∗) Further statements

after leaving a block
| Callframe(x?, st∗, e) Return from function

K ::= Frame∗ Continuation stack
State ::= (st , st∗, e,K,M) Execution state

7.2.4 Semantic rules

The small-step semantics of Vcm is given by the transition relation→ between two transition
states, de�ned in this section.

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 141

Application of veri�ed object layout to a veri�ed compiler Chapter 7

7.2.4.1 Structured control, variable value duplication, built-in operations and
statement blocks

Most structured control behaves similarly as in other CompCert-like languages: condition-
als, sequences, in�nite loops, and return from call (once all statements blocks within the current
function have been left), as well as variable value duplication, and built-in operations (Hypothe-
sis 3.2.2 p. 68). Vcm reuses the corresponding rules of s++ de�ned in Section 4.4.1.1 (p. 83). Vcm
also reuses the s++ rules corresponding to statement blocks de�ned in Section 4.4.1.2 (p. 85).

7.2.4.2 Function call

Vcm de�nes functions. Function call is performed in two steps. First, the function to be
called has to be selected. We write e ⊢ ϕ fname to de�ne function selection, depending on
the kind of function call:

� either the function is given by its name:

e ⊢ fname fname
(Vcm-call-select-static)

� or the function is called through a function pointer, so its name is given by the (pointer)
value of the variable:

e(x) = &fname

e ⊢ ∗x fname
(Vcm-call-select-dynamic)

Then, once the name of the function is known, arguments are passed and a new call frame is
pushed onto the stack, and the function body is ready to execute:

e ⊢ ϕ fname funcs(fname) = (varg1, . . . , vargn){st}
∀i, e(xi) = vi e′ = ∅[varg1 ← v1] . . . [vargn ← vn]

(ϕ(x1, . . . , xn), stl , e , K, M)
→ (st , ǫ, e′, Callframe(x′?, stl , e) :: K, M)

(Vcm-call)

There is also a third kind of function call: thunk call. It will be de�ned later, in Section 7.2.4.4
(p. 143).

7.2.4.3 Memory accesses and pointer arithmetics

Memory accesses Memory load (resp. store) reads from (resp. writes to) memory using
the load (resp. store) memory model operation. Their success or failure are determined by the
axioms of Section 7.2.2.4 (p. 140)

e(x) = @(b, o) load(M,Chunk , b, o+ δ) = v 6= ⊥ e′ = e[x′ ← v]

(x′ := ∗Chunk(x+ δ), stl , e , K, M)
→ (skip , stl , e′, K, M)

(Vcm-load)

e(x) = @(b, o) e(x′) = v 6= ⊥ store(M,Chunk , b, o+ δ, v) = M′ 6= ⊥

(∗Chunk(x+ δ) := x′, stl , e, K, M)
→ (skip , stl , e, K, M′)

(Vcm-store)

142 Tahina Ramananandro

7.2 The Vcm target language

Pointer arithmetic Vcm de�nes shifting operations on pointers. They shift a pointer by
an o�set within the same memory block (it is impossible to retrieve a pointer to a di�erent
block): either a constant o�set, or a variable o�set multiplied by a constant factor. Moreover,
the equality between two pointers to memory may be tested. Finally, it is always possible to
retrieve a null pointer.

e(x) = @(b, o) e′ = e[x′ ← @(b, o+ δ)]

(x′ := x+ δ, stl , e , K, M)
→ (skip , stl , e′, K, M)

(Vcm-shift-const)

e(x) = @(b, o) e(xi) = i ∈ Z e′ = e[x′ ← @(b, o+ i · δ)]

(x′ := x+ xi · δ, stl , e , K, M)
→ (skip , stl , e′, K, M)

(Vcm-shift-const-factor)

e(x1) = @(b1, o1)
e(x2) = @(b2, o2) res ∈ B res = true⇔ (b1, o1) = (b2, o2) e′ = e[x′ ← res]

(x′ := x1 == x2, stl , e , K, M)
→ (skip , stl , e′, K, M)

(Vcm-ptreq)
e′ = e[x′ ← NULL]

(x′ := NULL, stl , e , K, M)
→ (skip , stl , e′, K, M)

(Vcm-null)

7.2.4.4 Virtual tables and thunk call

Finally, it remains to de�ne the operations on virtual tables: retrieving the function pointer,
or the this pointer adjustment, for virtual function dispatch; determining whether a dynamic
cast is de�ned, and, if so, retrieving the corresponding o�set; retrieving the o�set of a virtual
base. Moreover, an additional function call is de�ned: thunk call, using virtual tables.

Valid access to information from virtual tables All those requests for information rely
on the underlying type system for virtual tables. Operations are parameterized by a virtual
table type τ such that the requested information is expected by the de�nition of τ . Then,
access to such information is valid only if the actual type τ ′ of the virtual table pointer given
by the value of the variable x is a subtype of τ , written τ ≤ τ ′. This subtyping relation is the
re�exive and transitive closure of the virtual table type parentship relation.

vtabletypes(τ2).parent = τ1

τ1 < τ2
(Vcm-vtype-lt-step)

τ1 < τ2 τ2 < τ3

τ1 < τ3
(Vcm-vtype-lt-trans)

τ1 < τ2

τ1 ≤ τ2
(Vcm-vtype-le-step)

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 143

Application of veri�ed object layout to a veri�ed compiler Chapter 7

τ ≤ τ
(Vcm-vtype-le-re�)

Retrieving the o�set of a virtual base from the virtual table succeeds only if the requested
virtual base is declared as a potential entry in the type declaration of τ , and if the actual type
τ ′ of the virtual table is a subtype of τ :

e(x) = &vname vtables(vname) = V
V.vboff(B) = off τ ≤ V.type (vboff B) ∈ vtabletypes(τ).entries e′ = e[x′ ← off]

(x′ := vboff〈B〉τ (x), stl , e , K, M)
→ (skip , stl , e′, K, M)

(Vcm-vbo�)
Similarly for retrieving function dispatch information. The two operations retrieving the

function pointer on the one hand, and the this pointer adjustment o�set on the other hand,
are separate:

e(x) = &vname vtables(vname) = V V.disp(F) = (fname,_)
τ ≤ V.type (disp F) ∈ vtabletypes(τ).entries e′ = e[x′ ← &fname]

(x′ := dispfunc〈F 〉τ (x), stl , e , K, M)
→ (skip , stl , e′, K, M)

(Vcm-dispfunc)

e(x) = &vname vtables(vname) = V
V.disp(F) = (_, off) τ ≤ V.type (disp F) ∈ vtabletypes(τ).entries e′ = e[x′ ← off]

(x′ := dispoff〈F 〉τ (x), stl , e , K, M)
→ (skip , stl , e′, K, M)

(Vcm-dispo�)
For dynamic casts, a separate operation is necessary to know whether dynamic cast succeeds

or fails.

e(x) = &vname

vtables(vname) = V b ∈ {true, false} b = false⇔ V.dyncast(X) = ⊥
τ ≤ V.type (dyncast X) ∈ vtabletypes(τ).entries e′ = e[x′ ← b]

(x′ := dyncastdef〈X〉τ (x), stl , e , K, M)
→ (skip , stl , e′, K, M)

(Vcm-dyncastdef)

e(x) = &vname vtables(vname) = V V.dyncast(X) = off

τ ≤ V.type (dyncast X) ∈ vtabletypes(τ).entries e′ = e[x′ ← off]

(x′ := dyncastoff〈X〉τ (x), stl , e , K, M)
→ (skip , stl , e′, K, M)

(Vcm-dyncasto�)

Thunk call This function call performs the following operations in one step:

1. read the virtual table pointer from x

2. adjust x by the this pointer adjustment o�set retrieved from the virtual table

144 Tahina Ramananandro

7.3 A compiler from s++ to Vcm

3. then call the function given by the function pointer retrieved from the virtual table

e(x) = @(b, o) load(M, Vptr, b, o) = &vname

vtables(vname) = V V.disp(F) = (fname, off) τ ≤ V.type
(disp F) ∈ vtabletypes(τ).entries funcs(fname) = (this , varg1, . . . , vargn){st}
∀i, e(xi) = vi e′ = ∅[this ← @(b, o+ off)][varg1 ← v1] . . . [vargn ← vn]

(x′? := x->τF (x1, . . . , xn), stl , e , K, M)
→ (st , ǫ, e′, Callframe(x′?, stl , e) :: K, M)

(Vcm-thunkcall)
This construct is meant to consider Vcm as a source language for further compilation to a

lower-level language where the concrete representation of virtual tables would be made explicit.
Then, this compound construct would facilitate a clever compilation of function calls using
virtual tables (e.g. by thunks).

However, in our formalization, we leave open the choice of compiling virtual function calls
through thunk calls or by explicitly and separately retrieving the relevant information from the
virtual table.

7.3 A compiler from s++ to Vcm

Now that the semantics of the Vcm target language has been de�ned, we can compile s++
programs into Vcm. Our compiler, described in this section, transforms class member functions
of n arguments into ordinary functions of 1 + n arguments, the additional argument corre-
sponding to the this pointer. We make use of the layout algorithm to implement casts and
�eld accesses, and we compile C++ virtual function dispatch, dynamic casts, and accesses to
virtual bases, through accesses to a read-only structure called virtual tables. To this purpose,
we show how to populate those read-only structures at the level of the Vcm program.

Notation 7.3.1. If st is a s++ statement, then the corresponding Vcm compiled statement will
be written [[st]]

Notation 7.3.2 (Compilation of variable names). The variable names in the target Vcm
program are of the two forms:

� x for any variable x of the source s++ program;
� y for any variable introduced by the compiler

We assume that those notations are injective and that x 6= y.

Notation 7.3.3 (Compilation of function names). The function names of the target Vcm
program are of the two forms:

� f for any static function f of the source s++ program;
� (B,msig) for any (virtual or non-virtual) method signature msig of a class member func-

tion declared in B. Such a name may be computed by name mangling (encoding the
declaring class and argument types within the new name).

We assume that those notations are injective and that f 6= (B,msig).

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 145

Application of veri�ed object layout to a veri�ed compiler Chapter 7

De�nition 7.3.4. The types of s++ scalar values are mapped to their corresponding Vcm mem-
ory chunks by the following [[·]] function:

[[BuiltinType]]
def.

BuiltinType [[C∗]]
def.

Ptr

Hypothesis 7.3.1. The size and alignment of a scalar data of type t, given by platform-
dependent parameters of the layout algorithm, matches its chunk size and alignment at the
level of Vcm memory model:

scsize(t) = chunksize([[t]]) scalign(t) = chunkalign([[t]])

Hypothesis 7.3.2. The size and alignment of dynamic type data given by platform-dependent
parameters of the layout algorithm, match the corresponding size and alignment at the level of
Vcm memory model:

dtdsize = chunksize(Vptr) dtdalign = chunkalign(Vptr)

7.3.1 Virtual tables

We have seen that a virtual table is necessary for any inheritance subobject that is not a
primary base class subobject of another distinct object. In this section, we investigate which
virtual tables to construct, and how to construct them.

7.3.1.1 What is an adjustment ?

Virtual tables contain this pointer adjustment o�sets for virtual function dispatchs, and
adjustment o�sets for dynamic casts.

More generally, if a s++ operation transforms (in either way) a subobject σ to another
subobject σ′ of the same most-derived object D, then, at the low level of the Vcm compiled
program, this is translated by adding the adjustment o�set soffD(σ

′)− soffD(σ) to the pointer
to the subobject.

7.3.1.2 Which virtual tables are necessary?

It can be easily seen that:

Lemma 7.3.1. The o�set of a subobject is the same of the o�set of its reduced path
More formally, if D[n] −〈(α, i, σ)〉→ B, then:

offD(α, i, σ) = offD(α, i, reducePath(σ))

Consequently, a subobject has the same o�set as all its primary base subobjects.

Conversely:

Lemma 7.3.2. An inheritance path σ = (h, l) from D to C is not a primary subobject of
another distinct subobject if, and only if, l = reducePath(l). Moreover, those are the only paths
of the form (h′, reducePath(l′)) for some (h′, l′).

146 Tahina Ramananandro

7.3 A compiler from s++ to Vcm

Proof. We have l = reducePath(l)@(Repeated, l′) where l′ is primary, so the equality holds if
and only if l′ is trivial, which concludes.

So, we claim that it su�ces to construct the virtual tables for inheritance subobjects of the
form (h, l) such that l = reducePath(l).

In the following sections, we show that the virtual table of a subobject may share its
information with its primary base class subobjects.

7.3.1.3 Virtual bases

Theorem I.11 (Correctness of Vcm virtual table sharing: virtual base o�sets). The
adjustment o�set to access a virtual base V from a primary base B of a C subobject is the same
as from C.

Proof. Consider a C inheritance subobject of a most-derived D object, say D −〈σ〉
I
→ C. Let

B be a primary base of C, say C −〈l〉
NV
→ B where l is primary. If V is a virtual base of B,

then V is also a virtual base of C; and the adjustment to access V from B is vboffD(V) −
soffD(σ@(Repeated, l)) = vboffD(V)− soffD(σ)−nvsoff(l). As l is primary , nvsoff(l) = 0, which
concludes.

7.3.1.4 Dynamic cast

Lemma 7.3.3. Let C be a class and B be a non-virtual base of C, such that C −〈l〉
NV
→ B for

some non-virtual path l.
If X is not a base class of C, then, for any subobject σ of D of static type C, dynamic cast

from σ to X succeeds if, and only if, dynamic cast from σ@(Repeated, l) to X succeeds.

Proof. First assume that the dynamic cast from σ to X succeeds. Then, there are two cases:
� either C is a non-virtual base of X along σ (i.e. σ = σ′@(Repeated, l′) where D −〈σ′〉

I
→

X −〈l′〉
NV
→ C). In this case, dynamic cast from B to X also succeeds, as B is also a

non-virtual base of X along σ@(Repeated, l).
� or there is a unique X subobject within D, then dynamic cast obviously succeeds.
Now assume that the dynamic cast from σ@(Repeated, l) to X succeeds. Then, there are

two cases:
� either B is a non-virtual base of X along σ@(Repeated, l). Then, as X is not a base of C,
we necessarily have that C is a non-virtual base of X, so the dynamic cast succeeds.

� or there is a unique X subobject within D, then dynamic cast obviously succeeds.

This result is no longer true if B is a base of C through virtual inheritance. Indeed, consider
the following hierarchy:

struct B {};

struct C: virtual B {};

struct X: C {};

struct Y1: X {};

struct Y2: X {};

struct D: Y1, Y2 {};

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 147

Application of veri�ed object layout to a veri�ed compiler Chapter 7

Within a most-derived D object, dynamic cast from C to X succeeds, as C is a non-virtual
base of X; however, dynamic cast from B to X fails, as B is not a non-virtual base of X and
D has two distinct inheritance paths to K.

Corollary 7.3.4. If B is a primary base of C such that the dynamic cast from a B subobject
to a class X that is not a base of C succeeds, then the adjustment is performed through the same
o�set as from the C subobject.

Proof. Let σ′ be the inheritance path from D to the X subobject resulting from the dynamic
cast. Then, the adjustment corresponding to the cast from B to X is performed through the
o�set soffD(σ

′)− soffD(σ@(Repeated, l)) = soffD(σ) + nvsoff(l) per Lemma 5.4.1 (p. 105). But
B is a primary base of C. Thus l is a primary path, which implies that nvsoff(l) = 0 and
concludes.

Then, if D −〈σ〉I→ C, we de�ne, for any class X, the following o�set ∆(D, σ,X), by well-
founded induction on C using the well-founded order ≺ (Section 4.1.4.2 p. 79):

∆(D, σ,X) =

soffD(σ
′)− soffD(σ) if D −〈σ〉I→ C ∧ DynCast(D, σ, C,X, σ′)

and X not a base of C

⊥ if D −〈σ〉I→ C ∧ DynCast(D, σ, C,X,⊥)

and X not a base of C

∆(D, σ@(Repeated, C :: B :: ǫ), X) if pbase(C) = B and X base of C

⊥ if pbase(C) = ⊥ and X base of C

so that:

Theorem I.12 (Correctness of Vcm virtual table sharing: dynamic cast). If D −〈σ〉
I
→

C −〈l〉
NV
→ B where l is a non-virtual primary path, then, for any class X that is not a base of

B, the dynamic cast from B to X succeeds if, and only if, ∆(D, σ,X) = δ 6= ⊥, and, in this
case, the adjustment is performed by adding o�set δ.

Proof. By induction on the length of l, with the help of Corollary 7.3.4 (p. 148).
� If l = C :: ǫ, then B = C and the result comes by de�nition of ∆.
� Otherwise, if X is not a base of C, then Lemma 7.3.3 (p. 147) concludes.
� Otherwise, l = C :: B′ :: l′ and we use the induction hypothesis with

D −〈σ@(Repeated, C :: B′ :: ǫ)〉
I
→ B′ −〈B′ :: l′〉

NV
→ B

where B′ is the direct primary non-virtual base of C and B′ :: l′ is a primary path.

Here the hypothesis of X not being a base class of B plays an important role. To understand
why, consider the following example:

struct A {

virtual void f ();

};

struct B1: A {};

struct B2: A {};

struct D: B1, B2 {

virtual void f ();

};

148 Tahina Ramananandro

7.3 A compiler from s++ to Vcm

A dynamic cast from B1 to A succeeds, since A is a non-ambiguous base class of B1. However,
a dynamic cast from D to A fails, since A is an ambiguous base class of D. But if B1 and D share
their pointers to virtual tables, then di�erent information for dynamic cast to A have to be
stored in the virtual table common to B1 and D (dynamic cast failure has to be explicitly stored
as such in the virtual table). Such a discrepancy does not occur for dynamic casts to non-bases.

7.3.1.5 Virtual function dispatch

Lemma 7.3.5. Let C◦ −〈σ〉
I
→ C be an inheritance path. If σ′′ is a �nal overrider for σ to

dispatch some function f , then σ′′ is also a �nal overrider for any σ@σ′ base class subobject of
σ such that the static dispatch of f succeeds. More formally, if:

finalOverrider(C◦, σ, C, f, B
′′, σ′′)

then, for any inheritance path C −〈σ′〉
I
→ B such that staticDispatch(B, f,Bf , σf), we have:

finalOverrider(C◦, σ@σ′, B, f, B′′, σ′′)

Proof. By de�nition of finalOverrider (�nal-overrider, p. 90), there is a unique σ′
f such that

staticDispatch(C, f,B′
f , σ

′
f). But we have already staticDispatch(B, f,Bf , σf), so that (B′

f , σ
′
f) =

(Bf , σ
′@σf).

By hypothesis, we then have that σ′′ is the closest subobject to C◦ de�ning f along σ@σ′
f =

σ@σ′@σf , so by de�nition, σ′′ is also a �nal overrider for σ@σ′.

Corollary 7.3.6. If method dispatch succeeds for a subobject and one of its base class sub-
objects, then they agree on the dispatch candidate:

VFDispatch(C◦, σ, f, B1, σ1)
VFDispatch(C◦, σ@σ′, f, B2, σ2)

}

⇒ (B1, σ1) = (B2, σ2)

Proof. By de�nition, (B1, σ1) is a �nal overrider of f for σ.
By hypothesis, σ@σ′ has a �nal overrider, so in particular static dispatch succeeds, so we

can use Lemma 7.3.5 (p. 149) to say that (B1, σ1) is also a �nal overrider of f for σ@σ′. Unicity
of virtual function dispatch (by de�nition of VFDispatch) concludes.

It is worth noting that, for any subobject σ of a most-derived object C◦, the set:

{(B′, σ′) : VFDispatch(C◦, σ, f, B
′, σ′)}

can be computed in a �nite amount of time. So, we de�ne, by well-founded induction on last(σ)
(using the ≺ order on class names, cf. Section 4.1.4.2 p. 79), the following Φ(C◦, σ, f) function:

Φ(C◦, σ, f) =

((B, f), soffC◦
(σ′)− soffC◦

(σ)) if VFDispatch(C◦, σ, f, B, σ′)

Φ(C◦, σ@(Repeated, C :: B :: ǫ), f) if dispatch fails for σ

and pbase(C) = B

⊥ if dispatch fails for σ

and pbase(C) = ⊥

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 149

Application of veri�ed object layout to a veri�ed compiler Chapter 7

Theorem I.13 (Correctness of Vcm virtual table sharing: virtual function dispatch).
If virtual function dispatch for f succeeds on a primary subobject σ@(Repeated, l) of the subob-
ject σ of the most-derived object C◦, then Φ(C◦, σ, f) = ((B, f), δ) where B is the class of the
�nal overrider, and δ the o�set for the this pointer adjustment.

Indeed, the following hierarchy:

struct B1 {

virtual void f();

};

struct B2 {

virtual void f();

};

struct D: B1, B2 {};

is a valid C++ program. Here, the dispatch of f for a D most-derived object fails, but it succeeds
for each of its B1 and B2 subobjects, in particular for B1, which shares its virtual table with
D. Thus, the virtual table contains information accurate for B1 but not for D.

7.3.1.6 Summary

Using the previous results in this section, we are now in a position to compute the virtual
table types and the virtual tables, starting from the class hierarchy.

Virtual table types The virtual function types are the names of dynamic classes:

VTableType
def.
{B : isDynamic(B)}

A virtual function type A is the parent of the virtual function type B if, and only if, A is
the direct non-virtual primary base of B:

vtabletypes(B).parent
def.

pbase(B)

Let B be a dynamic class.

De�nition 7.3.5. Since the hierarchy is well-founded, the set M′(B) of virtual functions in-
herited by B can be recursively computed as follows:

M′(B)
def.
{f :M(B)(f) = true}

∪
⋃

A∈DV(B)∪DNV(B)

M′(A)

Finally, the following entries may be de�ned in virtual tables:
� the virtual functions declared in B or inherited by B
� the virtual bases of B
� dynamic casts to any de�ned classes

vtabletypes(B).entries
def.
{disp f : f ∈M′(B)}

∪ {dyncast X : X ∈ C}

∪ {vboff V : V ∈ V(B)}

150 Tahina Ramananandro

7.3 A compiler from s++ to Vcm

Lemma 7.3.7. If A ≤ B, then vtabletypes(A).entries ⊆ vtabletypes(B).entries.

Proof. We �rst consider the special case where A is the direct non-virtual primary base of
B. Then, the virtual functions inherited by B include the virtual functions declared in A or
inherited by A. The virtual bases of A are also virtual bases of B. Finally the result generalizes
to any A by transitivity.

Virtual tables The virtual tables are the inheritance paths to dynamic classes that are not
primary subobjects of other objects:

VTableName
def.

(D, (h, l)) :
D −〈(h, l)〉

I
→ C

isDynamic(C)
l = reducePath(l)

This set can be computed in a �nite amount of time (such inheritance paths can be enumerated).
Lemma 5.5.20 (p. 120) shows that any inheritance path (h′, l′) is of the form:

(h′, reducePath(l′)@Repeatedl
′′)

where l′′ is a primary non-virtual path. It follows that no inheritance path has been forgotten.
Then, for any virtual table name (D, (h, l)), its type is the destination of the inheritance path
(h, l):

vtables(D, (h, l)).type
def.

last(l)

Thanks to Theorem I.11 (p. 147), the �nite map of virtual base o�sets of a virtual table
(D, (h, l)) is computed as follows:

VBOffRequest
def.
C

vtables(D, (h, l)).vboff
def.

V ∈ Vlast(l) 7→ vboffD(V)− soffD(h, l)
V 6∈ Vlast(l) 7→ ⊥

Similarly, thanks to Theorem I.12 (p. 148), the �nite map of dynamic cast o�sets for a
virtual table (D, (h, l)) is computed as follows:

DynCastRequest
def.
C

vtables(D, (h, l)).dyncast
def.

X 7→ ∆(D, (h, l), X)

Similarly, thanks to Theorem I.13 (p. 150), the �nite map of virtual function dispatch for
a virtual table (D, (h, l)) is computed as follows:

DispRequest
def.

MethodSig

vtables(D, (h, l)).disp
def.

f ∈M′(B) 7→ Φ(D, (h, l), f)
f 6∈ M′(B) 7→ ⊥

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 151

Application of veri�ed object layout to a veri�ed compiler Chapter 7

7.3.2 Operations unrelated to C++ multiple inheritance

Structured control, built-in operations, statement blocks compile trivially, usingNotation 7.3.2
(p. 145) to match variables:

[[if(x)st true else st false]] def.
if(x)[[st true]] else [[st false]]

[[st1; st2]] def.
[[st1]]; [[st2]]

[[skip]]
def.
skip

[[loop st]]
def.
loop [[st]]

[[return x?]]
def.
return x?

[[x′? := op(x∗)]]
def.

x′? := op(x∗)

[[x′ := x]]
def.

x′ := x

[[{st}]]
def.
{[[st]]}

[[exit n]]
def.
exit n

Static and non-virtual calls use Notation 7.3.3 (p. 145) to match function names.
A class member function call x->msig(x1, . . . , xn) of a class B is compiled with the x

argument transformed into an ordinary argument in �rst position: (B,msig)(x, x1, . . . , xn).

[[x′? := f(x∗)]]
def.

x′? := f(x∗)

[[x′? := x->C::msig(x∗)]]
def.

x′? := (C,msig)(x, x∗)

Recall that in s++, fully quali�ed non-virtual class member function calls make no implicit
cast, expecting the x argument to be of the exact static type C. Therefore, no this pointer
adjustment is necessary for x.

7.3.3 Field and array accesses

Scalar �elds Let x be a variable containing a pointer to some subobject of static type C.
Then, the value of the scalar �eld f is stored at o�set foffC(f) within the C subobject. Thus,
reading and writing the scalar �eld f of type T is compiled into the following memory read or
write:

[[x′ := x->Cf]] def.
x′ := ∗[[T]](x+ foffC(f))

[[x->Cf := x′]]
def.
∗[[T]](x+ foffC(f)) := x′

The success of memory write is ensured by its bounds thanks to Theorem I.2 (p. 112),
and its correct alignment thanks to Theorem I.1 (p. 110).

152 Tahina Ramananandro

7.3 A compiler from s++ to Vcm

Structure �elds In s++, access to structure �elds is simply a pointer adjustment. In Vcm,
this translates to a pointer shift by the constant foffC(f) o�set, with no memory read:

[[x′ := x->Cf]] def.
x′ := x+ foffC(f)

Structure array accesses Similarly, in s++, access to an array cell of type C is simply a
pointer adjustment from a most-derived C object. In Vcm, this translates to a pointer shift by
a variable o�set given by the index, multiplied by a constant factor given by the size of a cell,
the size of a most-derived object C.

[[x′ := x[xindex]C]] def.
x′ := x+ xindex · sizeC

7.3.4 Pointer equality tests

Thanks to the object identity requirement (Theorem I.7 p. 122; Theorem I.8 p. 124),
pointer equality tests are compiled trivially:

[[x′ := x1 ==C x2]] def.
x′ := x1 == x2

7.3.5 Static casts

Consider an inheritance subobject σ of D of static type C:

D −〈σ〉
I
→ C

Consider a static cast of σ to X. C,X are known at compile time. Then, the compiler proceeds
to the following case analysis:

� If X is a non-ambiguous non-virtual base of C, the non-virtual path l from C to X is
known at compile time, and so is its o�set. The cast necessarily succeeds with the result
σ@(Repeated, l). Thus, the static cast translates to a constant o�set shift:

[[x′ := static_cast〈X〉C(x)]] def.
x′ := x+ nvsoff(l)

� Similarly, if C is a non-ambiguous non-virtual base of X, then the non-virtual path l from
X to C is known at compile time, and so is its o�set. If the cast succeeds, then actually
σ = (h, l′@Repeatedl), so that the result of the cast is (h, l′). Thus, the static cast translates
to a constant o�set shift:

[[x′ := static_cast〈X〉C(x)]] def.
x′ := x+−nvsoff(l)

� If X is a non-ambiguous base of C through virtual inheritance, then the path (Shared, V ::
l) is known at compile time. However, the o�set to the virtual base V is not. This o�set
must �rst be read from the virtual table of the current subobject. Then the further
adjustment to the V :: l non-virtual subobject is a constant o�set:

[[x′ := static_cast〈X〉C(x)]] def.
tmp := ∗Vptr(x)

; tmp := vboff〈X〉C(tmp)

; x′ := x+ tmp · 1

; x′ := x′ + nvsoff(l)

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 153

Application of veri�ed object layout to a veri�ed compiler Chapter 7

7.3.6 Dynamic casts

s++ de�nes dynamic casts from a C subobject to some class X only if X is not a base of
C. Thus, in Vcm, dynamic casts are compiled using the virtual table. Dynamic casts must not
fail: if unde�ned, their result is the null pointer.

[[x′ := dynamic_cast〈X〉C(x)]] def.
tmp1 := ∗Vptr(x)

; tmp2 := dyncastdef〈X〉C(tmp1)

; if(tmp2)

tmp1 := dyncastoff〈X〉C(tmp1)

; x′ := x+ tmp1 · 1

else

x′ := NULL

7.3.7 Virtual function dispatch

Virtual function call is compiled as a lookup into the virtual table for the virtual function
entry. If the call is successful, the virtual table holds a corresponding entry giving the pointer
to the actual function to run, and the this pointer adjustment.

Using detailed accesses to virtual table

[[x′? := x->Cmsig(x∗)]]
def.

tmp1 := ∗Vptr(x)

; tmp2 := dispfunc〈F 〉C(tmp1)

; tmp1 := dispoff〈F 〉C(tmp1)

; tmp1 := x+ tmp1 · 1

; x′? := (∗tmp2)(tmp1, x
∗)

Using thunk calls Vcm de�nes the thunk call operation to perform all those operations in
once.

[[x′? := x->Cmsig(x∗)]]
def.

x′? := x->Cmsig(x∗)

7.4 Correctness of the compiler

We prove the correctness of the compiler by proving the preservation of a run-time compi-
lation invariant s ⊲ s′ between an execution state s of s++ and an execution state s′ of Vcm,
�nally obtaining Theorem I.14 (p. 156).

We do not achieve full-�edged forward simulation (Theorem B.1 p. 340), as we did not
de�ne the notions of initial states for s++ or Vcm. This is due to the initial objects, which are
assumed to already exist in both languages. However, once construction is involved to deal with
object creation, forward simulation will be made fully possible, as we will show in Section 11.9
(p. 302).

154 Tahina Ramananandro

7.4 Correctness of the compiler

Hypothesis 7.4.1. For any location ℓ of an existing s++ object of n cells of type D, there exists
a block b(ℓ) in the Vcm memory state, of size at least n · sizeD.

The b function is assumed to be injective: two distinct complete objects map to distinct
memory blocks.

Let s = (st , stl , e,K,G) be a s++ state, and s′ = (st ′, stl ′, e′,K′,M) be a corresponding Vcm
state.

Invariant 7.4.1 (s++-to-Vcm Invariant). The invariant s ⊲ s′ is split into several parts:
� The statement and the statement list of s′ are compiled from s
� The s++ object store is constant
� An invariant v ⊲Val v

′ holds between the values of s++ variables and the values of their
corresponding Vcm variables.

� An invariant K ⊲Stack K
′ relates the continuation stacks.

� An invariant G ⊲global M relates the global state with the concrete memory state.

st ′ = [[st]] stl ′ = map[[[·]]](stl)
G.LocType = LocType ∀x : e(x) 6= ⊥ ⇒ e(x) ⊲Val e

′(x) K ⊲Stack K
′ G ⊲global M

(st , stl , e,K,G) ⊲ (st ′, stl ′, e′,K′,M)

7.4.1 Values

Values are related by the ⊲Val relation, such that:
� A s++ built-in value is unchanged in Vcm:

Builtin ⊲Val Builtin

� A valid pointer to a s++ subobject is related to a concrete pointer to the memory block
corresponding to the complete object, under the o�set corresponding to the generalized
subobject:

LocType(ℓ) = D[n] D[n] −〈p〉→ C

(ℓ, p) ⊲Val (b(ℓ), offD(p))

7.4.2 Continuation stack

An invariant K ⊲Stackframe K
′ holds frame by frame:

ǫ ⊲Stack ǫ

K ⊲Stackframe K
′ K ⊲Stack K

′

K :: K ⊲Stack K
′ :: K′

Statement blocks For a stack frame corresponding to an enclosing block, the Vcm statement
list is compiled from the s++ statement list:

Block(stl) ⊲Stackframe Block(map[[[·]]](stl))

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 155

Application of veri�ed object layout to a veri�ed compiler Chapter 7

Call frames For a stack frame corresponding to a function caller, the Vcm list of statements
to execute upon function return is compiled from its s++ counterpart. The values of s++ variables
in the enclosing environment are matched in Vcm.

∀x : e(x) 6= ⊥ ⇒ e(x) ⊲Val e
′(x)

Callframe(x?, stl , e) ⊲Stackframe Callframe(x?,map[[[·]]](stl), e′)

7.4.3 Memory

The invariant G ⊲global M between the s++ global state and the CVcm memory state is
composed of two parts:

Field values For any complete object, the values of all its scalar �elds are stored in concrete
memory.

LocType(ℓ) = D[n]
D[n] −〈p〉→ C f = scalar T t ∈ F(C) G.FieldValue((ℓ, p), f) = v 6= ⊥

∃v′ : load(M, [[T]], b(ℓ), offD(p) + foffC(f)) = v′ 6= ⊥ ∧ v ⊲Val v
′

Whenever a �eld is written, this invariant is preserved thanks to Theorem I.3 (p. 115).

Dynamic type data Let ℓ be a complete object of type D. For any generalized subobject
p of D of static type C such that class C is dynamic, if p can be written p = (α, i, σ) so that

D[n] −〈α〉
A
→ D′[n′] −〈(i, σ)〉

CI
→ C, such that p is not a primary base subobject of another object

(i.e. σ = (h, l) = (h, reducePath(l))), then it contains a pointer to the virtual table corresponding
to the subobject σ of D′.

LocType(ℓ) = D[n] p = (α, i, σ)

σ = (h, l) l = reducePath(l) D[n] −〈α〉
A
→ D′[n′] −〈(i, σ)〉

CI
→ C isDynamic(C)

load(M, Vptr, b(ℓ), offD(p)) = &(D
′, σ)

Whenever a �eld is written, this invariant is preserved thanks to Theorem I.4 (p. 119).

7.4.4 Invariant preservation

The correctness of the compiler is based on the following theorem ensuring that the invariant
is preserved:

Theorem I.14 (Correctness of the s++-to-Vcm compiler). The run-time compilation in-
variant ⊲ is preserved during execution: each s++ execution step corresponds to a �nite number
of Vcm execution steps.

∀s1, s2, s1
′ : s1 → s2 ∧ s1 ⊲ s1

′

⇒ ∃s2
′ : s1

′
+

→′s2
′ ∧ s2 ⊲ s2

′

s1
e?

//

⊲

s2

⊲

s1
′

e?

+
// s2

′

156 Tahina Ramananandro

7.4 Correctness of the compiler

Proof. We sum up the theorems and lemmata used for the proof of invariant preservation for
the most interesting steps:

s++ execution step Proof case Theorem used

Scalar �eld write
(s++-�eld-scalar-write, p. 86)

Success: alignment Theorem I.1 (p. 110)
Success: in bounds Theorem I.2 (p. 112)
Good variable property wrt.
�elds

Theorem I.3 (p. 115)

Good variable property wrt.
dynamic type data

Theorem I.4 (p. 119)

Pointer equality test
(s++-ptreq, p. 87)

Pointers of non-empty class
type

Theorem I.7 (p. 122)

Pointers of empty class type Theorem I.8 (p. 124)
Static cast (s++-statcast,
p. 88)

Access to virtual base Theorem I.11 (p. 147)

Dynamic cast (s++-dyncast,
p. 89)

Theorem I.12 (p. 148)

Virtual function call (s++-
virtual-funcall, p. 91)

Theorem I.13 (p. 150)

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 157

Application of veri�ed object layout to a veri�ed compiler Chapter 7

158 Tahina Ramananandro

Chapter 8

Discussion

In this chapter, we give a technical overview of our Coq development. Then, we position our
work among earlier work about C++ formal semantics, and object layout. Then, we compare
with other languages featuring multiple inheritance. Finally, we investigate perspectives for
extending our formalism.

8.1 The Coq development

To design the semantics of s++ and Vcm, we mostly use inductive types, rather than an
executable semantics. However, for well-formed class hierarchies, predicates such as knowing
whether a class is dynamic are decidable, and sets such as virtual function dispatch candidates
are computable in a �nite amount of time, which is actually needed to populate virtual tables
during compilation. It should therefore be possible to construct executable semantics equivalent
to ours.

Our su�cient conditions are grouped into a per-class record, so that, to prove that a class
hierarchy compliant to them, it su�ces to construct a �nite map associating each class with a
proof that its layout parameters (data size, total size, and component o�sets) make the layout
conditions hold. The Coq development turns out to require an overall 23,000 lines of Coq,
detailed as follows:

Theories Specs loc Proofs loc
Class hierarchies 996 1308

Well-formed hierarchies 283 1794
Layout conditions 1550 5726

Common Vendor ABI algo 729 3681
Optimized algorithm 689 3522
Simpli�ed compiler 771 2061

Total 5018 18091
However, those �gures correspond to the Coq development [70] of our POPL 2011 article

[72], which featured no functions (the use of dynamic type data and virtual tables was illustrated
only by dynamic casts and accesses to virtual bases). Moreover, virtual table typing was not
developed: we naively forgot to distinguish accesses to the same virtual base from instances of
two classes that do not share their virtual tables. Furthermore, we used a simpli�ed memory
model, with only one block containing all values.

In fact, we wrote and proved a more general compiler including C++ object construction and

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 159

Discussion Chapter 8

description, described in Section 11.8 (p. 293). The proofs presented in this part are an excerpt
of this compiler, describing the features unrelated to C++ object construction and destruction,
and readapted to the formalism of [72] for virtual tables.

8.2 Related work

8.2.1 Formalizations of C++ multiple inheritance

Our work is based on the formalism of Rossie et al. [74], an algebraic model for C++ multiple
inheritance and subobjects. On top of this model, Wasserrab et al. [85, 84] formalized in Isabelle
an operational semantics for C++ casts and virtual function dispatch. Those two works leave
aside concrete object layout.

Chen [20] proposed a typed intermediate language for compiling C++ multiple inheritance.
This work formally describes which pointer adjustments are necessary for casts and virtual
function calls (including the this pointer adjustments), and introduces an abstract model
of virtual tables. However, this work leaves largely unspeci�ed the concrete object layout;
moreover, the thorny issue of object identity is not addressed.

Luo et al. [56] formalized a separation logic to allow high-level reasoning about �eld ac-
cesses under C++ multiple inheritance, based on a �eld resolution algorithm close to the work
by Ramalingam et al. [69]. However, those two works do not address concrete object layout.
Moreover, Luo et al. restrict their work to non-virtual inheritance only, with an abstract storage
model, and de�ned the semantics of �eld access through substitution.

Norrish [64] models the semantics of C++ in a machine-checked formalization in HOL4. This
work reuses the formalization of subobjects by Wasserrab et al. [85]. However, it is built on a
low-level memory model down to the level of bytes. It supports two kinds of pointers: pointers to
scalar data under the form of a memory address, and pointers to inheritance subobjects under
the form (a, σ) of the memory address a of a most-derived object along with the inheritance
path σ of the subobject. Scalar or structure �eld selection from such a pointer to a subobject is
made through a subobj_offset function computing the memory o�set of a subobject within
its most-derived object (used similarly as soff), and a function lookup_offset returning the
memory o�set of a �eld within an object (used similarly as foff). As such, the notion of subobject
o�sets is directly part of the abstract semantics. However, the semantics lacks properties about
those subobj_offset and lookup_offset functions, left �under-speci�ed�, arguing that �there
is no speci�cation of how base sub-objects are laid out�. We believe that our work completes this
semantics by suggesting to equip those functions with the essential properties of �eld separation
and subobject identity.

8.2.2 Concrete object layout

Layout algorithms have been formally veri�ed in the simpler world of C structures. Tuch
[83] axiomatized a �eld separation property of structure layout and used it in a separation logic
able to verify low-level system C code. The CompCert Clight formal semantics of Blazy and
Leroy [17] de�nes a simple structure layout algorithm; the �eld separation, �eld alignment and
pre�x compatibility properties were mechanically veri�ed.

However, to the best of our knowledge, no C++ object layout algorithm so far has been
reported as formally veri�ed. Stroustrup [30] extensively discusses object layout algorithms

160 Tahina Ramananandro

8.4 Application to other languages with inheritance

found in earlier C++ compilers such as cfront. Sweeney and Burke [81] developed a formalism
to characterize when compiler artifacts (such as virtual tables) are needed to support run-
time semantics of C++ multiple inheritance. In practice, their work in�uenced design choices in
real-world C++ compilers such as IBM Visual Age C++ 5.

Our layout algorithms do not prescribe any explicit implementation for virtual function
dispatch. However, our compiler tackles, in an abstract fashion, the special case of virtual
tables, used by most present-day compilers such as GNU GCC. We believe that our compiler
can be easily reinterpreted under di�erent viewpoints to model other possible implementations
for virtual function dispatch, not necessarily based on virtual tables, but always requiring
dynamic type data, as shown by an extensive survey by Driesen et al. [29].

Empty base optimization In [30, p. 164], Stroustrup explicitly stated that �objects of an
empty class have a nonzero size�. An unwanted consequence of this requirement was that no
empty base optimization was possible at the time of cfront. This requirement was relaxed and
clari�ed in the C++ Standard [42, � 10.3] to allow such optimizations, so that they are �nally
required by the Common Vendor ABI for Itanium [22].

Our CCCPP optimized layout algorithm featuring optimized storage for �elds of empty
class types, is based on observations by Myers [63]. He credited Jason Merrill for the possibility
of optimizing empty member subobjects.

8.3 Application to other languages with inheritance

Our data layout algorithms obviously apply to all languages with single inheritance, such
as Java or C♯: in such cases, the base class of a class can always be chosen as the primary base
class as soon as it is dynamic. Therefore, an inheritance subobject holds at most one memory
zone for dynamic type data. Consequently, since all inheritance subobjects are primary, the
subobject identity requirement becomes trivial.

Additionally, a Java or C♯ class can inherit from several interfaces. However, an interface is a
very special class: it has no �eld, and none of its methods has any body. Thus, implementations
do not really consider them as classes: they do not require subobjects, and the mechanisms of
interface dispatch (calling a function declared in an interface on an instance of a class imple-
menting an interface) are often di�erent. For instance, Alpern et al. [12] propose an interface
dispatch algorithm where each class is associated with a positive integer, the type identi�er,
such that its divisors actually represent the interfaces implemented by the class.

Simula only features single inheritance, but Krogdahl proposes an implementation of multi-
ple inheritance and outlines a layout algorithm that can easily be expressed in our framework.
[48]. However, this work explicitly excludes shared inheritance.

Ei�el [59] features multiple inheritance. But it does not feature the subobject identity prin-
ciple: the notion of repeated or shared inheritance is not de�ned at the level of classes, but
at the level of each feature (equivalent to methods or virtual functions). In practice, feature
dispatch is done by a dictionary approach: the dynamic type data actually stores the dispatch
key. Such an implementation paves the way to dispatch optimizations without having to use
any virtual table [87]. More generally, this validates the approach of our formalization of object
layout, where the actual nature of the dynamic type data is left unspeci�ed and can be applied
to various virtual function dispatch mechanisms such as those covered by Driesen's survey [29].

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 161

Discussion Chapter 8

8.4 Future work

Our formalization of C++ object layout may be extended in a number of directions, ei-
ther theoretical in terms of the abstract semantics for C++, or practical in terms of layout
optimizations.

8.4.1 Extending the semantics of s++

8.4.1.1 Scalar arrays

Our work features arrays, but only considers structure arrays. Indeed, arrays of scalars can
be simulated through arrays of structures having only one scalar �eld. For instance 1:

struct A {

int t[18];

};

can be simulated with:

struct Sint {

int value;

};

struct A {

Sint t[18];

};

This point of view has no signi�cant impact on performance 2: accessing the �eld of a
structure from a structure array yields only one memory access, as many as accessing a �eld
from an array of scalars.

8.4.1.2 Towards a more realistic semantics of function dispatch

Implicit argument cast Our formal semantics dispatches virtual functions by expecting an
exact type match for function arguments. In C++, however, this is not always the case. Consider
the following example:

struct B {};

struct D: B {};

struct X {

virtual void f(B* b);

};

struct Y: X {

virtual void f(D* d);

};

1. This simulation pattern works for all scalar types: not only for built-in types, but also for pointer types.
A generic pattern for scalar types would use a template. However, templates are out of the scope of our work.

2. As long as Sint has only a default constructor, which may be ignored at execution. However, constructor
inlining is out of the scope of our work.

162 Tahina Ramananandro

8.4 Future work

Y y;

D d;

main () {

X* x = static_cast<X*>(&y);

x->f(&d);

}

Wasserrab et al. [85] correctly address this issue and make the above example call f of X by
�rst implicitly casting its argument from D to B.

On the contrary, we chose not to support such implicit casts in the semantics of s++, thus
requiring the programmer to provide the function signature with the exactly right argument
types.

Indeed, function dispatch occurs in two steps: �rst the non-virtual function selection, then
the choice of the �nal overrider. The argument types are determined by the function found
upon the non-virtual selection. We argue that this �rst step can be resolved at compile time.
Thus, s++ can be considered as an intermediate language to which a compiler would have �rst
determined the argument types and inserted the appropriate static casts before the call. From
this point of view, nothing needs to be changed in the semantics of s++, and the above program
would become:

main () {

X* x = static_cast<X*>(&y);

B* b = static_cast<B*>(&d);

x->f(&b);

}

Covariant return Wasserrab [84] extended his earlier work [85] by adding covariant return
functions, thus making the return type depend on function dispatch. Consider the following
example:

struct B {};

struct D: B {};

struct X {

virtual B* f();

};

struct Y: X {

virtual D* f();

};

Y y;

main() {

X* x = static_cast<X*>(&y);

B* b = x->f();

}

Here, C++ dispatches f to the function of Y returning D instead of B. It follows that the return
value must be cast again from D to the return type B expected by the caller. However, this
adjustment is only known at run time. We can see two ways of performing this adjustment:

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 163

Discussion Chapter 8

� Either explicitly distinguish functions with names depending on the return type, and
provide wrapper functions. That is, for the above example, the function f of Y re�ning
the return type to D would be distinguished from a wrapper function returning actually
B:
struct X {

virtual B* fB();

};

struct Y: X {

virtual D* fD();

virtual B* fB() {

D* d = this->fD();

B* b = (d == null ? static_cast<B*>(d) : null);

return b;

};

};

Y y;

main() {

X* x = static_cast<X*>(&y);

B* b = x->fB();

};

Then, virtual function dispatch may be performed as usual. One advantage of this solution
is that it may be performed at the abstract level, with no modi�cation required in our
semantics. But in practice, this would cause expensive code duplication and increase the
sizes of virtual tables. Moreover, this could preclude optimizations where covariant return
casts would compile to zero-o�set adjustments (especially if B is a primary base of D).

� Or adapt the semantics of s++ following [85]. The dispatch has to be performed indepen-
dently of return type (i.e. return type must no longer be part of the function signature),
and further information to the Callframe stack frame has to be added: the actual return
type of the callee, and the return type expected by the caller, so that the cast may be
performed upon function return. Then, from an implementation point of view, the re-
turn type adjustment o�set would be provided by virtual tables. In practice, such an
adjustment, if non-trivial, prevents thunks from being tail-called.

8.4.1.3 Bit �elds

A structure can contain bit �elds. A bit �eld is a �eld whose size in bits is explicitly indicated
by the programmer. Then, the compiler usually transforms a contiguous sequence of bit �elds
into an integer, accessing each �eld through shift and mask operations.

In our formalization, we did not specify the size unit, so that sizes and o�sets can be
expressed in bits instead of bytes. However, this may not be enough to fully implement bit
�elds, as they require speci�c alignment constraints. Consider the following example:

struct A {

int i: 29;

int j: 2;

int k: 3;

};

164 Tahina Ramananandro

8.4 Future work

On a 32-bit platform, i and j can be packed into a single 32-bit integer, and retrieved by shifting
and masking from this integer. However, k should not be packed adjacent to j, otherwise two
correctly aligned memory accesses would be required to recover the value of k. Our alignment
constraints over �eld o�sets would have to be strengthened accordingly.

8.4.1.4 Unions

C++, similarly to C, features unions. When a union data type is used within another struc-
ture, its tail padding may be reused. However, the practical bene�ts are low, as unions are
rarely used within a multiple inheritance hierarchy.

8.4.1.5 Accessibility

In our work, we do not consider the accessibility of �elds or bases. Indeed, in C++, a program-
mer can declare a class �eld hidden from the user, by declaring it private. Our formalization
does not take this accessibility aspect into account. In practice, access operations involving
private components could be seen as a two-step access operation: �rst locate the object or
�eld assuming that everything is public, then check on the obtained path whether private
�elds or bases are traversed.

8.4.2 Covering more layout optimizations

8.4.2.1 PODs

Our work does not consider the speci�cities of POD (Plain Old Data), and does not distin-
guish them from other C++ structures. Roughly speaking, a POD structure is a structure with no
inheritance, and no non-POD �elds: as such, it is roughly equivalent to a C structure. The C++
Standard [42] mandates that the layout of a POD be compatible with C. Under this requirement,
we would have to prove the correctness of compiling structure assignment using memcpy raw
bitwise memory copy operation. However, we suspect that nvdsizeC = nvsizeC = dsizeC = sizeC
for any POD type C could ensure this property, even if C is inherited by another class.

Dawes [25] proposed to amend the C++03 Standard, in order to specify PODs by ensuring
compatibility with C without precluding optimizations. This proposal has been accepted to
C++11.

8.4.2.2 Concrete virtual table layout

We mostly left abstract the representation of virtual tables. Actually, studying their concrete
representation would depend on the concrete implementation of polymorphic operations: virtual
function calls on the one hand, dynamic cast on the other hand. Such a formalization would be
a further step towards integrating our veri�ed compiler to the existing CompCert.

Virtual function calls In our abstract representation, each virtual function entry features,
along with the function pointer, a further �eld holding its corresponding this pointer adjust-
ment o�set. This requires the caller to perform the adjustment by reading this �eld before
accessing the actual function pointer and performing the call.

Many C++ compilers such as GNU GCC use a di�erent approach based on adjusting entry
points : the virtual function entry holds a pointer to a function, called thunk, which adjusts

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 165

Discussion Chapter 8

the this pointer before transferring control to the actual function body. In practice, the latter
transfer, however, must be performed with extreme care: a full-�edged function call would
worsen performances [54]. So we would have to support functions with multiple entry points.
But we would face the following practical issues:

� not all platforms support multiple-entrypoint functions
� in particular, CompCert, meant to be platform-independent (at least for front-end), does
not. One solution could be to use tail calls, but CompCert imposes limitations on their
use (e.g. number of arguments)

� Intricacy between front-end and back-end: the order of entry points heavily relies on
hardware properties to avoid cache misses (prediction of the right entry point). We are
not aware of the heuristics to ensure that.

Dynamic cast and run-time type identi�cation Our formalization left mostly abstract
the implementation of dynamic cast: we only rely on a single virtual table entry for each
base. However, in practice, most compilers resolve dynamic casts thanks to data related to the
dynamic type of the object, namely run-time type identi�cation (RTTI), which is part of the
virtual table. RTTI involves the C++ typeinfo class; such objects have to be automatically
generated and populated with sound information at the beginning of the program. So we would
have to formalize this step not only at the level of the compiled Vcm code, but also as early as
in the formal semantics of s++.

8.4.2.3 Virtual primary bases

Our implementation allows a class to share its dynamic type data only with a non-virtual
primary base. However, the Common Vendor ABI [22] extends this sharing to virtual bases, as
long as they are nearly empty : they have no �elds, and they have no base except their primary
base and empty bases. In practice, such a virtual base is similar to Java interfaces, without
�elds, but with method declarations. However, this optimization breaks the scheme of laying
out the non-virtual parts of an object separately from the virtual parts. Moreover, nearly empty
virtual base may appear several times in an object. Thus it is necessary to choose which will
be the corresponding subobject within the most-derived object. We do not know how to solve
this layout ambiguity. Consider the following example:

struct A { virtual void f(); };

struct V: virtual A {};

struct C: virtual A {};

struct B1: virtual V {};

struct B2: virtual V {};

struct D: C, B1, B2 {};

A

V

B1 B2C

D

Then, the following �gure depicts several layouts where virtual primary bases may be laid
out within the dynamic type data of derived classes. In practice, such issues have brought the
development consortium of the Common Vendor ABI to �nally consider this optimization as
an �error in the design� of the ABI.

166 Tahina Ramananandro

8.4 Future work

C B1 B2 A V

C B1 B2 VA

C B1 B2A V

C B1 B2VA

C B1 B2A V

Moreover, virtual primary base optimization raises an issue with dynamic cast:

#include <cassert>

struct V {

virtual void f();

};

struct A: virtual V {};

struct B: A {};

struct C1: B {};

struct C2: B {};

struct D: C1, C2 {

virtual void f();

};

D d;

main () {

C1* c1 = static_cast<C1*>(&d);

A* a1 = static_cast<A*>(c1);

V* v = static_cast<V*>(a1);

assert(dynamic_cast<B*>(v) == NULL);

assert(dynamic_cast<B*>(a1) != NULL);

}

Both assertions succeed, even though v and a1 share the same pointer to virtual table. This
shows that the dynamic cast operator also depends on the source class.

However, in C++ such program design is progressively discouraged in favor of templates.

8.4.2.4 Bidirectional object layout

In our formalism, an object contains its bases and �elds at positive o�sets from its start-
ing point. However, it might be also possible to store data at negative o�sets. Moreover, the
dynamic type data could then be shared with two primary bases. Such data layout is called
bidirectional object layout and has been proposed by Gil et al. [35]. Such an optimization could
be arguably space and time-e�cient. This optimization was re�ned by Gil et al. [36] to a

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 167

Discussion Chapter 8

�language-independent� object layout algorithm. However, the latter work explicitly excludes
C++-style non-virtual multiple inheritance, which is not rare in practice.

Moreover, bidirectional object layout heavily assumes that the compiler knows in advance
the complete hierarchy: it is impossible to perform separate compilation, or even to use dynam-
ically linked libraries. Thus, it is not suitable to most realistic C++ compilers.

168 Tahina Ramananandro

Part II

Veri�cation of C++ object construction

and destruction

Chapter 9

The semantics of C++ construction and

destruction

In this chapter, we de�ne a language, called κ++, to formally specify how C++ objects are
constructed and destructed.

9.1 Overview of the construction and destruction process

In C++, the construction of an object allows it to initialize its �elds and bases. But, conjointly
with destruction, construction o�ers a way to manage resources related to the lifetimes of
objects, as explained in the tutorial of Section 2.5 (p. 55).

9.1.1 Construction

Construction of an object starts when the constructor is called with its arguments. An
object is constructed when the body of the constructor exits: at this moment starts its lifetime.

Construction must follow these two basic principles:
� An object requires prior construction of all of its subobjects
� An object must not be constructed more than once

9.1.1.1 Non-virtual inheritance only

If a class has no virtual base, then the construction of an instance is straightforward:

1. First construct the direct non-virtual bases, in declaration order

2. Then construct the �elds, in declaration order

3. Finally run the constructor body

To construct a direct non-virtual base, the constructor of the object �rst has to compute
the arguments to pass to the constructor of the direct non-virtual base. This step corresponds
to running the initializer for the direct non-virtual base. The construction only starts when the
arguments are passed to the constructor.

However, even though arguments are passed, the body of the constructor is not immediately
run: the construction of non-virtual bases, and of �elds, must �rst occur.

For instance, consider the following class hierarchy:

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 171

The semantics of C++ construction and destruction Chapter 9

struct B1 { B1 (int i) {} };

struct B2 { B2 (int j) {} };

struct C: B1, B2 { C (int i1, int i2) : B1 (i1 - i2), B2(i2 - i1) {} }

Suppose that an instance of C is requested to be constructed using C(18, 42). Then:

1. Arguments 18 and 42 are passed as i1 and i2 to the constructor C(int, int)

2. The construction of the non-virtual base B1 is requested using B1(18− 42)

3. The value of the argument 18− 42 is computed (initializer phase)

4. The computed value −24 is passed as i to the constructor B1(int)

5. B1 has no bases or �elds, so the body of its constructor is run

6. Then, back to C, the construction of the non-virtual base B2 is requested using B2(42−18)

7. The value of the argument 42− 18 is computed (initializer phase)

8. The computed value 24 is passed as j to the constructor B2(int)

9. B2 has no bases or �elds, so the body of its constructor is run

10. Then, back to C, there are no more bases or �elds to construct, so the body of the
cosnstructor C is run

To construct a structure array �eld requires the construction of the object of each array
cell, in increasing index order.

9.1.1.2 Virtual inheritance

Consider the following class hierarchy:

struct A {};

struct B0 {};

struct B1: virtual A {};

struct B2: virtual A {};

struct C: B0, B1, B2 {}

If A were to be constructed as if it were a non-virtual base, following the above protocol,
then A would have been constructed twice. This is prevented by the C++ standard.

In fact, virtual bases are constructed independently before any non-virtual part of the most-
derived object. For instance, in the hierarchy above, the A subobject within C is constructed
even before B0, even though B0 has no virtual base.

However, this is not precise enough. Indeed, consider the following hierarchy:

struct A {};

struct B0 {};

struct B1: virtual A {};

struct B2: virtual A {};

struct C: B0, virtual B1, virtual B2 {}

172 Tahina Ramananandro

9.1 Overview of the construction and destruction process

D

V1 · · · VnV B1 · · ·BnDNV

f1[0]
: A1
· · ·

f1[s1]
: A1

f2[0]
: A2

· · ·
fnF

[snF
]

: AnF

V DNV F

NV NV NV NV

full full
NV

ClassD is assumed to have (direct or indirect) virtual bases V1, . . . , VnV
, direct non-virtual bases

B1, . . . , BnDNV
and structure array �elds f1 : A1[s1], . . . fnF

: AnF
[snF

]. The tree represented here
is the �full� tree of all the subobjects of a most-derived object of type D. The subtree inside
the thick NV triangle represents the non-virtual part of D, the only part considered for a D
object that is a base-class subobject of another object, thus excluding the virtual bases of D.
Figure 9.1: A tree representation of the subobjects of a class, such that a depth-�rst left-to-
right traversal exactly yields the subobject construction order.

Then, A still has to be prevented from being constructed twice. However, A must be con-
structed before B1 and B2 because A is a base of B1 and B2.

In fact, when constructing a most-derived object, all its virtual bases are listed in a certain
order ≺V

C guaranteeing that if a virtual base A of C is actually a virtual base of B, then A ≺V
C B

and A is constructed before B. The Standard prescribes such an order, called inheritance graph
order. We shall see further down that we have modeled this order (De�nition 10.3.4 p. 214)
and we have proved that it meets this requirement (Lemma 10.3.7 p. 214).

Then, to construct a most-derived object of type C, the standard mandates the following
process:

1. Construct the non-virtual parts of the virtual bases of C, following the order ≺V
C

2. Construct the non-virtual part of the most-derived object

Then, constructing the non-virtual part of a subobject follows the protocol mentioned before
as if there were no virtual bases.

The order of construction of subobjects is summarized on Figure 9.1 (p. 173).

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 173

The semantics of C++ construction and destruction Chapter 9

9.1.2 Destruction

Destruction of an object follows the only one principle: if two subobjects constructed in
order, then they are destructed in the exact reverse order. In more detail:

� the cells of an array of size n are destructed from cell n− 1 down to cell 0
� a most-derived object has its non-virtual part destructed �rst, before its virtual bases
following the order ≻V

C (reverse of ≺V
C)

� to destruct the non-virtual part of an inheritance subobject: the destructor is run �rst,
then the �elds are destructed in the reverse declaration order, then the direct non-virtual
bases in the reverse declaration order.

9.2 Syntax of κ++

The formal model presented in this chapter aims at capturing the essence of object con-
struction and destruction semantics. Like s++ (Section 4.2 p. 80), the language we consider in
this chapter 1 features multiple inheritance (both shared and repeated), virtual functions (a.k.a
�methods�), static and dynamic casts, and scalar or structure nonstatic data members (a.k.a
��elds�). Additionally, this chapter introduces constructors and destructors, and block-scoped
objects: an object is created upon entering a statement block, and destructed upon block exit.
For this reason, we call our language κ++, κ standing for �constructors�.

n ∈ N

op, . . . ∈ Op Built-in operations
x, . . . ∈ Var Variables
B,C, . . . ∈ ClassName Classes
fsig : FieldSig Field names
msig : Method Method names

st ::= x′ := op(x∗) Built-in operation
| x′ := x Assignment between variables
| if (x) st true else st false Conditional
| st1; st2 Statement sequence
| skip Do nothing
| loop st Loop
| {st} Statement block
| exit n Exit from n blocks
| return x? Return from virtual function
| x′? := sfname(x∗) Static function call
| x′? := x->C::msig(x∗) Non-virtual function call
| x′ := x->Cfsig Field read
| x->Cfsig := x′ Scalar �eld write
| x′ := &x[xindex]C Array cell access
| x′ := x1 ==C x2 Pointer equality test
| x′ :=
dynamic_cast〈B〉C(x) Dynamic cast
| x′ := x->Cmname(x∗) Virtual function call

1. Coq development: theory Cppsem.

174 Tahina Ramananandro

9.2 Syntax of κ++

| x′ :=
static_cast〈B〉C(x) Static cast
| {C x[size] = Complete object
{ObjInit∗}; st} lifetime
| C(x∗) Constructor call

(class initializer only)
| initScalar(x) Scalar �eld initialization

Each constructor comes with:
� the variable names of its arguments
� the initializers for direct non-virtual bases
� the initializers for �elds
� the initializers for all (direct or indirect) virtual bases, used only for the construction of
a most-derived object

For any class B, an initializer of a subobject of type B is a statement containing a call to
a constructor of B with variables given as arguments. Such a statement allows for initializing
variables for constructor arguments, before handing over to the constructor. A scalar �eld of
a class may also have an initializer, then this initializer exits by giving, through the initScalar

statement, the variable used to initialize the �eld.
In our semantics, an initializer ends by handing over to a constructor. In this last step, it

cannot pass a reference to a temporary object. Indeed, such a temporary would have to be
destructed after returning from the constructor. Our semantics does not allow initializers to
perform any additional steps after calling the constructor.

Contrary to C++03 [42], where structure array �elds with several cells were necessarily
constructed using the default constructor (with no argument), the latest C++11 Standard [43]
allows di�erent constructors to be called for each cell. Our κ++ language correctly models this
new feature.

ObjInit ::= C{st} Class object initializer
FieldInit ::= fsig{st} Scalar �eld initializer

| fsig{ObjInit∗} Structure �eld
initializers (one for
each array cell)

Init ::= ObjInit | FieldInit
Constr ::= C(x∗) : Init∗{st} Constructor
Destr ::= ∼ C(){st} Destructor

Finally, along with a class hierarchy, a program de�nes constructors and a destructor for
each class, each provided with some piece of code. Moreover, a program provides pieces of code
for class member functions.

A class member function comes with its argument types and its statement body. Function
arguments and return values can be either values of built-in types (integers, �oats) or pointers
to objects: temporary objects for function arguments must be made explicit in our language,
and only pointers to structures may be passed. By the way, this allows for �xing the order of
construction of temporaries. However, functions returning structures are not allowed.

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 175

The semantics of C++ construction and destruction Chapter 9

StaticFunDef ::= (x∗){st} Static function
MethodDef ::= this->(x∗){st} Class member function

(method) de�nition
Program =
{

hierarchy : Hierarchy ; Class hierarchy
staticfuns : StaticFunName 7 7→ StaticFunDef ; Static functions
methods : ClassName ×MethodSig 7 7→MethodDef ; Class method codes

constructors : ClassName 7 7→Constr ⋆ ; Constructors
destructors : ClassName 7 7→Destr ; Destructors

main : st ; Entry point
}

9.3 Semantic elements

We formalized a small-step style semantics for C++ object construction and destruction,
with a continuation stack to precisely model each step of computation.

9.3.1 Construction states

Subobjects A constructor body (resp. a destructor) may use virtual functions of its class
or one of its bases, under the following principle: As long as the body of the constructor (resp.
destructor) is still running, the overriding of its virtual functions behaves as if the object being
constructed were the most-derived object.

In fact, initializers for �elds may also use the virtual functions of the object being con-
structed, as well as their constructors (indirectly, when a pointer or a reference to the object
being constructed is used within the �eld constructor). Then, the virtual function overriding
mechanism happens �as if� �elds were constructed within the body of the constructor. However,
virtual functions are prevented from use as long as bases have not been constructed.

To formalize this ability, we introduce the notion of the construction state of a subobject,
to mark the precise steps of construction or destruction undergone by the subobject. However,
this notion has to be interpreted in two di�erent ways, depending on whether the considered
object is a most-derived object or an inheritance subobject.

For a most-derived object:
� Unconstructed: Construction has not started yet
� StartedConstructing: The construction of inheritance bases has started, but not the �elds
� BasesConstructed: The bases are wholly constructed. Now starting the construction of
�elds, and the constructor body.

� Constructed: The constructor body has left, and the destruction body has not yet entered
� StartedDestructing: The destructor body has entered, and the �elds are being destructed
� DestructingBases: The �elds have been wholly destructed. Bases are being destructed
� Destructed: All bases and �elds have been destructed
For other inheritance subobjects:
� Unconstructed: Construction of the non-virtual part has not started yet (virtual bases may
have been already constructed)

176 Tahina Ramananandro

9.3 Semantic elements

� StartedConstructing: The construction of non-virtual inheritance bases has started, but
not the �elds

� BasesConstructed: The bases are wholly constructed. Now starting the construction of
�elds, and the constructor body.

� Constructed: The constructor body has left, and the destruction body has not yet entered
� StartedDestructing: The destructor body has entered, and the �elds are being destructed
� DestructingBases: The �elds have been wholly destructed. Non-virtual bases are being
destructed

� Destructed: All �elds and non-virtual bases have been destructed
In other words, for an inheritance subobject di�erent from the most-derived object, the

construction state is only relative to its non-virtual part. This is due to the fact that virtual
bases are constructed separately from non-virtual bases: a (virtual or non-virtual) base may
have been destructed before its virtual bases.

Then, the lifetime of an object can be de�ned as the time interval when its construction
state is exactly Constructed. However, virtual functions may already be used as soon as the
construction state is at least BasesConstructed, and strictly before DestructingBases. In that
case, for the purpose of function overriding, the object is considered as the most-derived object
as long as the construction state is not Constructed.

Consider the following example:

struct A {virtual void f ();};

struct B1: virtual A {};

struct B2: virtual A {virtual void f ();};

struct C: B1, B2 {}

Consider an instance of C. Then, during the execution of the constructor body of its base
B2, the corresponding B2 subobject is BasesConstructed, and the virtual function f can be
executed from within the constructor body of B2.

De�nition 9.3.1. We de�ne a successor function 2 S on construction states, such that:

Unconstructed
S
7→ StartedConstructing

S
7→ BasesConstructed

S
7→ Constructed

S
7→ StartedDestructing

S
7→ DestructingBases

S
7→ Destructed

Then, we de�ne an order < on construction states, namely the smallest transitive relation such
that c < S(c) .

Fields Similarly, a �eld can be accessed only if it has been constructed.
We also de�ne the construction state of a scalar �eld to be one of the following:
� Unconstructed: the �eld has not yet been constructed, it cannot be accessed yet
� Constructed: the �eld has been constructed, its value initialized
� Destructed: the �eld has been destructed, it can no longer be accessed
Similarly, for a structure �eld:
� Unconstructed: the �eld has not yet been constructed, it cannot be accessed yet

2. This function is partial, as it is unde�ned for Destructed

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 177

The semantics of C++ construction and destruction Chapter 9

� StartedConstructing: the cells of the array are under construction
� Constructed: all cells of the array are constructed
� StartedDestructing: the cells of the array are under destruction
� Destructed: all cells of the array are destructed
The di�erences are that:
� when executing the initializer for a scalar �eld, it cannot be accessed until given its
�nal value, so it is still considered Unconstructed; however, for a structure array �eld,
as di�erent initializers are used for the di�erent cells of the array, the �rst cell may
be accessed from within the initializer of subsequent cells, so there is an observational
di�erence with Unconstructed which really intends that no subobject of the �eld has
started its construction.

� when destructing a scalar �eld, the semantics allows no speci�c code to run (a scalar type
has no destructor).

9.3.2 Values

κ++ values are exactly the same as in s++ (Section 4.3.1 p. 82): a value can be either a
built-in value, a pointer to a subobject (which is a pair of a complete object location and a
generalized subobject within this complete object), or a null pointer.

ℓ, . . . ∈ Λ Complete object location
Ptr ::= (ℓ, (α, i, σ)) Pointer to subobject
Val ::= Builtin Value of built-in type

| Ptr Non-null pointer
| NULLC Null pointer of C class type

9.3.3 Execution state

An execution state of the small-step semantics is the combination of the following parts:
� the execution point of the state : code point, or list of objects about to be constructed or
destructed

� the continuation stack modeling the resumption points on the return from a function, or
on the completion of the construction or destruction of a subobject

� the class types and array sizes of complete objects
� the scalar �eld values. A �eld is uniquely identi�ed by its complete object location, the
generalized subobject within this complete object de�ning it, and the �eld signature.

� the construction states of subobjects and �elds
� the list of deallocated objects

For presentation convenience, a common global state groups the complete object types and
the scalar �eld values as in s++, but additionally features the construction states and the list
of deallocated objects, so that a κ++ execution state is written as a triple (S,K,G) where S is
the execution point, K the continuation stack, and G the global state.

178 Tahina Ramananandro

9.3 Semantic elements

Env = x→Val ? Environment
e ::= Env

G =
{

LocType : Λ→ (ClassName × N>0)? ; Complete object types
FieldValue : Ptr × FieldSig→Val ? ; Scalar �eld values

ConstrState : Ptr →ConstrState ; Construction states of objects
ConstrStateF : Ptr × FieldSig→ConstrState ; Construction states of �elds

dealloc : Λ⋆ ; Deallocated objects
}
State ::= (S,K,G) Execution state

Notation 9.3.2. Throughout this thesis, we may also use an alternate notation to read a com-
ponent of a state s = (S,K,G): we write ConstrStates(π) = G.ConstrState(π), and similarly for
other components of G.

Once a complete object is given its class type and array size, such data remains in the store
forever, to allow reasoning about the construction states of the subobjects even when they
are destructed. Thus, the store alone does not say anything about deallocated objects. This is
the purpose of providing the state with the list of deallocated objects, so that an object ℓ is
allocated if, and only if, its location ℓ is de�ned in the store, and is not in the list of deallocated
objects.

De�nition 9.3.3 (Object lifetime). The lifetime of an object (ℓ, p) is the set of all states
(S,K,G) such that G.ConstrState(ℓ, p) = Constructed.

This notion of lifetime is consistent with the Standard, except for arrays: the C++03 Standard
[42] considers the lifetime of an array to start at allocation and end at deallocation, regardless of
the construction and destruction process. Actually, our notion of construction state only covers
subobjects with a certain static type, not whole arrays. However, this notion may be �xed in
an upcoming C++ Standard to match the array lifetime with the lifetime of its last cell.

9.3.3.1 Execution point

Contrary to s++, the κ++ execution point (or kind) of a state is not always a statement. It
can be of one of the following:

� Executing a statement. This execution point also indicates whether the statement is
included in a statement block.

� About to construct a list of (virtual or direct non-virtual) bases, or �elds
� About to construct an array cell and all its next neighbors
� About to destruct a list of (virtual or direct non-virtual) bases, or �elds
� About to destruct an array cell and all its previous neighbors

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 179

The semantics of C++ construction and destruction Chapter 9

S ::= Codepoint(st1, st
∗, e,Block ∗)

Executing statement st1 followed by the list of state-
ments st∗, under variable environment e. Block ∗ is the
list of all blocks enclosing the current statement

| Constr(π, ItemKind , κ, L, e)
About to construct the list L of the bases or �elds of
the subobject π. Initializers are to be looked for using
constructor κ, and they operate on the variable environ-
ment e to pass arguments to their constructors.

| ConstrArray(ℓ, α, n, i, C,ObjInit∗, e)
About to construct cells i to n − 1 of type C, of the
array α from the complete object ℓ, using the initial-
izers ObjInit∗ to initialize the cells, and e as variable
environment to execute the initializers.

| Destr(π, ItemKind , L)
About to destruct the list L of bases or �elds of the
subobject π.

| DestrArray(ℓ, α, i, C)
About to destruct cells i down to 0 of type C, of the
array α from the complete object ℓ

.

ItemKind ::= Bases(BaseKind) Construct (or destruct) bases
| Fields Construct (or destruct) �elds

BaseKind ::= DirectNonVirtual Construct (or destruct) direct
non-virtual bases

| Virtual Construct (or destruct) virtual
bases

Block ::= (ℓ?, st∗)

A block: the automatic object to
destruct at block exit, if any, and
the remaining statements to exe-
cute after exiting from the block

9.3.3.2 Continuation stack

A state features a continuation stack to model the pending operations that are to be resumed
on the return from a function as in s++, or additionally on the completion of the construction or
destruction of a subobject. Each element of this stack, or stack frame, represents a resumption
point. Such a frame can be:

180 Tahina Ramananandro

9.3 Semantic elements

� remaining statements to execute after returning from a function call
� remaining subobjects to construct/destruct
� pending constructor call after returning from the initializer

However, contrary to s++, enclosing statement blocks are not represented by individual stack
frames: they are included in the corresponding stack frames and execution point depending on
the context.

K ::= Kcode

| Kconstruction

| Kdestruction

Kcode ::= Kcontinue(ℓ, st1, e, st
∗
2,Block

∗)
After the construction of a complete object ℓ, enter the
block and execute statement st1, then, after exiting the
block, execute statements st∗2 enclosed by other blocks
Blocks∗, under variable environment e. Also used when
destructing ℓ on block exit, with st1 the corresponding
exit statement, and st∗2 the pending statements of the
enclosing block, once the block is exited.

| Kretcall(res?, e, st∗,Block ∗)
On returning from a virtual function call, update the
environment e by storing the result (if any) in variable
res?, then continue the caller execution with the further
statements st∗ enclosed by other blocks Blocks∗.

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 181

The semantics of C++ construction and destruction Chapter 9

Kconstruction ::= Kconstr(π, ItemKind , B, L, κ)
Used during the execution of a base or scalar �eld initial-
izer. When it returns, it will give the constructor to con-
struct the base B of subobject π, then the other items
L of π will have to be constructed, using constructor κ
to retrieve their initializers.

| Kconstrother(π, ItemKind , B, L, κ, e)
Used during the construction of the base or �eld B of
subobject π. When the constructor body returns, then
the other bases or �elds L of π will have to be con-
structed, using constructor κ to retrieve their initializ-
ers.

| Kconstrarray(ℓ, α, n, i, C,ObjInit∗)
Used during the execution of an initializer for a most-
derived object of class type C. When it returns, it will
give the constructor to construct the most-derived ob-
ject at the cell i of the array α of the complete object ℓ.
Then, the other cells from i+1 to n−1 will remain to be
constructed, ObjInit∗ giving the corresponding initializ-
ers.

| Kconstrothercells(ℓ, α, n, i, C,ObjInit∗, e)
Used during the construction of the most-derived object
of class type C at the cell i of the array α of the com-
plete object ℓ. When the constructor body returns, the
other cells from i + 1 to n − 1 will remain to be con-
structed, ObjInit∗ giving the corresponding initializers
to run under the variable environment e.

Kdestruction ::= Kdestr(π)
The body of the destructor for subobject π is running.
When it returns, the destruction of the �elds and direct
non-virtual bases of π will start.

| Kdestrother(π, ItemKind , f, L)
Used during the destruction of a base or �eld B of π.
When destruction of B is complete, then the other bases
or �elds L will have to be destructed

| Kdestrcell(ℓ, α, i, C)
Used during the destruction of the non-virtual part of
the most-derived object of class type C at the cell i of the
array α of the complete object ℓ. When the destruction
is complete, the virtual bases of this most-derived object
will have to be destructed, before the other cells from
i− 1 down to 0.

182 Tahina Ramananandro

9.4 Semantic rules

9.3.4 Initial and �nal states

As in s++, the program starts by executing the main statement with no allocated object at
all. Moreover, the construction states of all subobjects are Unconstructed:

De�nition 9.3.4. The initial state is:

(Codepoint(main, ǫ,∅, ǫ), ǫ,G◦)

where:

∀ℓ : G◦.LocType(ℓ) = ⊥ ∀π : G◦.ConstrState(π) = Unconstructed

∀π, f : G◦.ConstrState
F(π, f) = Unconstructed ∀π, f : G◦.FieldValues(π, f) = ⊥

G◦.dealloc = ǫ

The program ends when the main statement returns after having left all statement blocks:

De�nition 9.3.5. A state (S,K,G) is �nal with return value i if, and only if, all the following
conditions hold:

S = Codepoint(return x, L, e, ǫ) e(x) = i ∈ Z K = ǫ

Note that this de�nition does not a priori prevent from having some undestructed objects
in the global state G of a �nal state. However, we shall prove that this is not possible (if there
is no free store): such a state would not be reachable from an initial state.

9.4 Semantic rules

The small-step semantics of κ++ is given by the transition relation→ between two transition
states, de�ned in this section.

9.4.1 Structured control and built-in operations

Structured control Most structured control (conditionals, sequences, in�nite loops) behaves
similarly as in s++. However, since the structure of κ++ states di�ers, we shall present the corre-
sponding κ++ rules separately below. Indeed, in an execution state of kind Codepoint(st , L, e,B),
st is the statement to run, and L is a pipeline of pending statements within the same block,
while B represents the list of pending enclosing blocks. The pipeline is not guaranteed to be
executed, in particular if the statement is exit or return.

e(x) = b ∈ {true, false}

(Codepoint(if(x) st true else st false , L, e,B), K, G)
→ (Codepoint(st b , L, e,B) , K, G)

(κ++-if)

(Codepoint(st1; st2 , L, e,B) , K, G)
→ (Codepoint(st1 , st2 :: L, e,B), K, G)

(κ++-seq)

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 183

The semantics of C++ construction and destruction Chapter 9

(Codepoint(skip , st :: L, e,B), K, G)
→ (Codepoint(st , L, e,B) , K, G)

(κ++-skip-cons)

(Codepoint(loop st , L, e,B) , K, G)
→ (Codepoint(st , loop st :: L, e,B), K, G)

(κ++-loop)

Built-in operations They are unchanged since s++.

Hypothesis 9.4.1. The set of values of built-in types Builtin is assumed to contain:
� a subset of Z to model array cell indexes
� the Boolean values true and false

∀i, e(xi) = vi [op](v1 :: . . . :: vn :: ǫ) ∋ (e?, res) e′ = e[x′ ← res]

(Codepoint(x′ := op(x1, . . . , xn) , L, e,B), K, G)
→ (Codepoint(skip , L, e′,B) , K, G)

(κ++-atom)

Blocks with no stack objects In this section, we �rst de�ne the semantics of the blocks that
do not de�ne stack objects. Entering such a block embeds the pipeline into a new enclosing block
with no stack object. However, contrary to s++, this new block is not added to the continuation
stack as a standalone frame, but added to B within the execution point.

(Codepoint({st} , L, e,B) , K, G)
→ (Codepoint(st , ǫ, e, (⊥, L) :: B), K, G)

(κ++-block-no-obj)

exit n exits from n blocks. We �rst de�ne the semantics of exiting from blocks with no stack
objects.

(Codepoint(exit 0 , L, e,B), K, G)
→ (Codepoint(skip , L, e,B) , K, G)

(κ++-exit-0)

(Codepoint(exit (S n) , L, e, (⊥, L′) :: B), K, G)
→ (Codepoint(exit n, L′, e,B) , K, G)

(κ++-exit-S)

If there are no more instructions to execute in the block, then the following rule requests
automatic exit from the block:

(Codepoint(skip , ǫ, e,B) , K, G)
→ (Codepoint(exit 1 , ǫ, e,B), K, G)

(κ++-skip-nil)

This rule implies that if there are no more instructions to execute at the highest level of the
function, i.e. B = ǫ, then the semantics gets stuck. So, in such cases, the user is mandated to
explicitly provide a return statement.

184 Tahina Ramananandro

9.4 Semantic rules

9.4.2 Static and non-virtual function call

Similarly to s++, κ++ allows calling static (non-class-member) functions, and calling class
member functions in a non-virtual fashion, bypassing virtual function dispatch: in the latter
case, there is no implicit cast, and the type of the pointer on which to perform the call must
be the class actually de�ning the function.

staticfunsf = (varg1, . . . , vargn){body}
∀j, e(xj) = vj e′ = ∅[varg1 ← v1] . . . [vargn ← vn]

(Codepoint(x->C::f(x1 . . . xn), L, e,B), K, G)
→ (Codepoint(body , ǫ, e′, ǫ) , Kretcall(x, L, e,B) :: K, G)

(κ++-static-funcall)

e(x) = π G ⊢ π : C methods(C, f) = this->(varg1, . . . , vargn){body}
∀j, e(xj) = vj e′ = ∅[varg1 ← v1] . . . [vargn ← vn][this← π]

(Codepoint(x->C::f(x1 . . . xn), L, e,B), K, G)
→ (Codepoint(body , ǫ, e′, ǫ) , Kretcall(x, L, e,B) :: K, G)

(κ++-non-virtual-funcall)
Then, once all blocks have been exited, returning from a virtual function call is modelled

as follows:

e(x) = v e′′ = e′[res ← v]

(Codepoint(return x, L, e, ǫ), Kretcall(res , e′, L′,B) :: K, G)
→ (Codepoint(skip, L′, e′′,B) , K, G)

(κ++-return-arg)

(Codepoint(return, L, e, ǫ), Kretcall(⊥, e′, L′,B) :: K, G)
→ (Codepoint(skip, L′, e′,B) , K, G)

(κ++-return-no-arg)

returning from within a block with no stack objects �rst dismisses this block:

(Codepoint(return x?, L, e, (⊥, L′) :: B), K, G)
→ (Codepoint(return x?, L′, e,B) , K, G)

(κ++-return-block-no-obj)

9.4.3 Object-oriented features

9.4.3.1 Field and array accesses

Scalar �elds Like s++, reading a scalar �eld is modelled by retrieving its value from the
global state; the static type of the object must be exactly the class where to �nd the �eld: there
is no implicit cast.

e(x) = π G ⊢ π : C
f = (scalar t fid) ∈ F(C) G.FieldValues(π, f) = res e′ = e[x′ ← res]

(Codepoint(x′ := x->Cf , L, e,B), K, G)
→ (Codepoint(skip , L, e′,B) , K, G)

(κ++-�eld-scalar-read)

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 185

The semantics of C++ construction and destruction Chapter 9

Likewise, writing to a scalar �eld is modelled by updating its value in the global state as
in s++. However, we add a further requirement in κ++: conformingly to the C++ Standard, our
formalization forbids writing data to a scalar �eld that is not Constructed. Such restrictions are
not needed when reading: we can prove (Theorem II.11 p. 217) that if a �eld has a value,
then it is necessarily Constructed.

e(x) = π G ⊢ π : C f = (scalar t fid) ∈ F(C)
G.ConstrStateF(π, f) = Constructed e(x′) = res G ′ = G[FieldValues(π, f)← res]

(Codepoint(x->Cf := x′ , L, e,B), K, G)
→ (Codepoint(skip , L, e,B) , K, G ′)

(κ++-�eld-scalar-write)

Structure �elds Similarly to s++, accessing a structure �eld actually makes a pointer to its
�rst cell, so it is only "pointer adjustment" without actually reading any value. So, as there is
no �dereferencing�, no constraint on construction states is needed. However, an additional κ++
requirement allows structure �eld access only if the complete object is not deallocated.

e(x) = π = (ℓ, (α, i, σ)) ℓ 6∈ G.dealloc G ⊢ π : C
f = (struct B[n] fid) ∈ F(C) e′ = e[x′ ← (ℓ, (α q− (i, σ, f) :: ǫ, 0, (Repeated, B :: ǫ)))]

(Codepoint(x′ := x->Cf , L, e,B), K, G)
→ (Codepoint(skip , L, e′,B) , K, G)

(κ++-�eld-struct-point)

Array subscripting Similarly to s++, accessing an array cell is only valid on a reference
to a most-derived object. Then it is a mere �pointer adjustment� without actually reading any
value, so no constraint on construction states is needed. However, an additional κ++ requirement
allows array subscripting only if the corresponding complete object is not deallocated.

e(x) = π = (ℓ, (α, j, (Repeated, C :: ǫ)))

ℓ 6∈ G.dealloc G.LocType(ℓ) = (C ′, n′) C ′[n′] −〈α〉
A
→ C[n] 0 ≤ j < n

e(xi) = i ∈ Z 0 ≤ j + i < n e′ = e[x′ ← (ℓ, (α, j + i, (Repeated, C :: ǫ)))]

(Codepoint(x′ := x[xi]C , L, e,B), K, G)
→ (Codepoint(skip , L, e′,B) , K, G)

(κ++-array-point)

9.4.3.2 Pointer equality test

Similarly to s++, κ++ allows comparing two pointers of the same type C; either may be null.
However, pointers must not refer to deallocated objects.

∀i ∈ {1, 2} : e(xi) = π̃i

∀i ∈ {1, 2} : G ⊢ π̃i ÷ C ∀i ∈ {1, 2} : π̃i = (λ, p)⇒ λ 6∈ G.dealloc
b ∈ {true, false} b = true⇔ π̃1 = π̃2 e′ = e[x′ ← b]

(Codepoint(x′ := x[xi]C , L, e,B), K, G)
→ (Codepoint(skip , L, e′,B) , K, G)

(κ++-ptreq)

186 Tahina Ramananandro

9.4 Semantic rules

9.4.3.3 Static cast

To reach a base through static cast, the class must have all its bases constructed (construc-
tion state between BasesConstructed, and StartedDestructing). From the implementation point
of view, it is necessary for the class to know where its bases, in particular its virtual bases, are
located, which justi�es the requirement on the bases being constructed. Then, apart from this
additional requirement in κ++, static cast behaves as in s++ using the two static cast �avours
formally described in Section 4.4.4.1 (p. 87).

e(x) = π = (ℓ, (α, i, σ))
BasesConstructed ≤ G.ConstrState(π) ≤ StartedDestructing G.LocType(ℓ) = (D,n)

D[n] −〈(ℓ, i, σ)〉→ B StatCast(σ,B,B′, σ′) e′ = e[x′ ← σ′]

(Codepoint(x′ := static_cast〈B′〉B(x) , L, e,B), K, G)
→ (Codepoint(skip , L, e′,B) , K, G)

(κ++-statcast)

9.4.3.4 Virtual function call: the generalized dynamic type of a subobject

Generalized dynamic type A program is allowed to use virtual functions on a subobject
π and all of its bases, in two cases:

� not only during the lifetime of its most-derived object,
� but also during the execution of the constructor body (or �eld initializers), or the de-

structor of π.
But the behaviour of virtual function resolution is not the same in the two cases. Indeed,

during construction, the subobject for which the constructor body is running is considered as
if it were the most-derived object for the purpose of virtual function resolution.

This leads us to de�ne the notion of generalized dynamic type, to designate such a subobject,
as an extension to the Standard notion of dynamic type (which designates the most-derived
object for any subobject, during the lifetime of the most-derived object): informally, the gener-
alized dynamic type of an object is the type of the object that is considered as the most-derived
object for the purpose of dynamic operations such as virtual function call or dynamic cast.

De�nition 9.4.1 (Generalized dynamic type). Formally, we introduce the predicate G ⊢
gDynType(ℓ, α, i, σ, C◦, σ◦, σ

′) to denote that the generalized dynamic type of (ℓ, (α, i, σ)) is σ◦,
which is of static type C◦, and σ′ is an inheritance subobject of C◦ such that σ = σ◦@σ′.

There are two cases:
� Either the most-derived object is constructed. Then, it is the generalized dynamic type for

all its subobjects, following the Standard notion of dynamic type:

G.LocType(ℓ) = (D,n) D[n] −〈α〉
A
→ C[m] −〈(i, σ)〉

CI
→ B

G.ConstrState(ℓ, (α, i, (Repeated, C :: ǫ))) = Constructed

G ⊢ gDynType(ℓ, α, i, σ, C, (Repeated, C :: ǫ), σ)
(κ++-dyntype-constructed)

� Otherwise, the generalized dynamic type is an object of construction state BasesConstructed
(during the construction or �elds, or within the constructor body) or StartedDestructing

(during the destruction of �elds, or within the destructor body), and it is de�ned only on

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 187

The semantics of C++ construction and destruction Chapter 9

inheritance subobjects of such objects:

G.LocType(ℓ) = (D,n)

D[n] −〈α〉
A
→ C[m] −〈(i, σ◦)〉

CI
→ C◦ G.ConstrState(ℓ, (α, i, σ◦)) = c

c = BasesConstructed ∨ c = StartedDestructing C◦ −〈σ
′〉

I
→ B σ = σ◦@σ′

G ⊢ gDynType(ℓ, α, i, σ, C◦, σ◦, σ
′)

(κ++-dyntype-pending)

The properties of the generalized dynamic type are studied in more detail in Section 10.5
(p. 218).

Virtual function call So, we combine our notion of generalized dynamic type with the s++
virtual function dispatch rules de�ned in Section 4.4.6.1 (p. 90), to obtain the κ++ rule for
virtual function call:

1. determine the generalized dynamic type σ◦ of (ℓ, (α, i, σ)) ; let C◦ be the type of σ◦, and
let σ′ such that σ = σ◦@σ′

2. dispatch the virtual function assuming that the most-derived object is of type C◦ ; let σ′′

be the resulting inheritance subobject of C◦

3. �nally the selected subobject is (ℓ, (α, i, σ◦@σ′′)), adjust the this pointer to this subobject
and call f on it.

e(x) = (ℓ, (α, i, σ)) G ⊢ gDynType(ℓ, α, i, σ, C◦, σ◦, σ
′)

VFDispatch(C◦, σ
′, f, B′′, σ′′) B′′.f = f(varg1, . . . , vargn){body}

∀j, e(xj) = vj e′ = ∅[varg1 ← v1] . . . [vargn ← vn][this← (ℓ, (α, i, σ◦@σ′′))]

(Codepoint(x->Bf(x1 . . . xn), L, e,B), K, G)
→ (Codepoint(body , ǫ, e′, ǫ) , Kretcall(x, L, e,B) :: K, G)

(κ++-virtual-funcall)
We currently do not handle pure virtual functions, or unimplemented virtual functions.

9.4.3.5 Dynamic cast

The behaviour of dynamic cast also makes such a distinction on the object that is considered
as the most-derived object, "origin" of dynamic cast. So its semantics also makes use of the
generalized dynamic type of the subobject.

Then, the κ++ dynamic cast operation �rst obtains the generalized dynamic type of the
subobject following Section 9.4.3.4 (p. 187), then performs the cast under this object considered
as a most-derived object, following the s++ rules of Section 4.4.5.1 (p. 88).

e(x) = (ℓ, (α, i, σ1)) G.LocType(ℓ) = (D,n)
D[n] −〈(ℓ, i, σ1)〉→ B G ⊢ gDynType(ℓ, α, i, σ1, C, σ◦, σ) DynCast(C, σ,B,B′) = s
s′ = match s with σ′ 7→ (ℓ, (α, i, σ◦@σ′)) | NULLB′ 7→ NULLB′ end e′ = e[x′ ← s′]

(Codepoint(x′ := dynamic_cast〈B′〉B(x) , L, e,B), K, G)
→ (Codepoint(skip , L, e′,B) , K, G)

(κ++-dyncast)

188 Tahina Ramananandro

9.4 Semantic rules

9.4.4 Construction

De�nition 9.4.2. Let C be a class, and n ∈ N∗. A complete object of type C is an array of
structures explicitly declared in a program block, by a C++ language construct of the form:

{C c[n] = {ObjInit∗}; st1}

The notion of complete object must not be confused with that of most-derived object.
Indeed, a most-derived object is an object that cannot be cast to a derived class, but it can be
a cell of an array �eld contained in another object. Actually, any most-derived object is a cell
of an array �eld corresponding either to a complete object, or to an object �eld.

We shall see that, even though st may return, the destruction of the created block-scoped
object is still ensured.

Consider entering a block de�ning a complete object:

{C c[n] = {ι}; st}

Then, a new object is allocated in the store, and the construction of the array path ǫ starts.
The current code point is not yet saved into the list of enclosing blocks, but is still pending in
a continuation frame specifying that a block is to be entered.

ℓ 6∈ dom(G.LocType)
G ′ = G[LocType(ℓ)← (C, n)] e′ = e[c← Ptr(ℓ, ǫ, 0, (Repeated, C :: ǫ))]

(Codepoint({C c[n] = {ι}; st}, St , e,Bl), K, G)
→ (ConstrArray(ℓ, ǫ, n, 0, C, ι, e′) , Kcontinue(st , e′, St ,Bl) :: K, G ′)

(κ++-block-obj)
So, when the last cell has been constructed, then the execution resumes, entering a new

block (with the detail that the variable environment during array construction supersedes the
environment in continuation, as cell initializers may have modi�ed some variables):

(ConstrArray(ℓ, ǫ, n, n, C, ι, e′) , Kcontinue(st , e, St ,Bl) :: K, G)
→ (Codepoint(st , ǫ, e′, (ℓ, St) :: Bl), K, G)

(κ++-constr-array-nil-kcontinue)

Most-derived object Consider a cell i < n of class type C of array α of size n from a com-
plete object ℓ. Then, the corresponding initializer is being run, to choose the right constructor
for the cell, which is put in a pending state:

i < n st = ι(i)

(ConstrArray(ℓ, α, n, i, C, ι, e), K, G)
→ (Codepoint(st , ǫ, e, ǫ) , Kconstrarray(ℓ, α, n, i, C, ι) :: K, G)

(κ++-constr-array-cons)
Then, the initializer hands over to a constructor when there are no pending blocks

while running the initializer. In particular, any object created within the initializer has
to be destructed before handing over to the constructor. Thus, no reference to a temporary
object can be passed to the constructor. Indeed, such a temporary would have to be destructed

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 189

The semantics of C++ construction and destruction Chapter 9

after returning from the constructor. Our language does not allow initializers to perform any
additional steps after calling the constructor.

So, when the initializer hands over to a constructor to construct an array cell, the arguments
are passed to the constructor, forming a new variable environment. Then the construction of
a most-derived object starts with the (direct or indirect) virtual bases, assuming the following
hypothesis:

Hypothesis 9.4.2. For any class C, there exists a list VO(C) of virtual base classes of C such
that each virtual base of C appears exactly once in VO(C), and, if A and B are virtual bases
of C such that A is a virtual base of B, then A appears before B in VO(C).

The Standard prescribes a way to compute the list of the virtual bases of a class, inducing
an order called inheritance graph order. We shall see further down that we have modeled this
computation (De�nition 10.3.4 p. 214) and we have proved that it meets this requirement
(Lemma 10.3.6 p. 214 and Lemma 10.3.7 p. 214).

π = (ℓ, (α, i, (Repeated, C :: ǫ)))
L = VO(C) G ′ = G[ConstrState(π)← StartedConstructing]

vars = x0, . . . , xj κ = C(arg0, . . . , arg j) : . . . {. . .}
∀i, e(xi) = vi e′ = ∅[arg0 ← v0] . . . [arg j ← vj][this← Ptr(π)]

(Codepoint(Cκ(vars), l , e, ǫ) , Kconstrarray(ℓ, α, n, i, C, ι) :: K, G)
→ (Constr(π,Bases(Virtual), L, κ, e′), Kconstrothercells(ℓ, α, n, i, C, ι, e) :: K, G ′)

(κ++-constructor-kconstrarray)
Then, when all virtual bases are done constructing, the construction of the non-virtual part

of the object starts, beginning with direct non-virtual bases.

π = (ℓ, (α, i, (h, l))) last(l) = C L = DNV(C)

(Constr(π,Bases(Virtual), ǫ, κ, e) , K, G)
→ (Constr(π,Bases(DirectNonVirtual), L, κ, e), K, G)

(κ++-constr-bases-virtual-nil)

For the above rule, the semantics does not a priori require that π be a most-derived object
when constructing the virtual bases. But in fact, we prove it as a run-time invariant.

Non-virtual part of a subobject For any subobject (that is, not necessarily a most-derived
object), after constructing all its direct non-virtual bases, then its �elds are being constructed,
marking the subobject as BasesConstructed to allow using virtual functions:

π = (ℓ, (α, i, (h, l)))
last(l) = C L = F(C) G ′ = G[ConstrState(π)← BasesConstructed]

(Constr(π,Bases(DirectNonVirtual), ǫ, κ, e), K, G)
→ (Constr(π, Fields, L, κ, e) , K, G ′)

(κ++-constr-bases-direct-non-virtual-nil)
Finally, when all �elds have been constructed, the body of the constructor is entered:

κ = C(. . .){body}

(Constr(π, Fields, ǫ, κ, e), K, G)
→ (Codepoint(body , ǫ, e, ǫ) , K, G)

(κ++-constr-�elds-nil)

190 Tahina Ramananandro

9.4 Semantic rules

What happens on constructor exit (at a return) depends on the �rst continuation stack
frame, and shall be discussed later.

Now let us see in more detail what happens when constructing a virtual base, a direct (or
indirect) non-virtual base, or a �eld.

Base or scalar �eld For all cases except structure �elds, starting the construction of such a
component c �rst runs the corresponding initializer:

β = Fields⇒ scalar c κ = C(. . .) : . . . , c{init}, . . . {. . .}

(Constr(π, β, c :: L, κ, e), K, G)
→ (Codepoint(init , ǫ, e, ǫ) , Kconstr(π, β, c, L, κ) :: K, G)

(κ++-constr-cons)

Then, there are two cases.
First, if c is a scalar �eld, then the initializer returns by giving, through init(x), the variable

x to be used as the initial value of the �eld. But again, all blocks must have been exited
before, no temporaries are allowed to survive to the handover. The given value constructs the
�eld, then other �elds are to be constructed.

scalar f e(x) = v G ′ = G[FieldValue(π, f)← v][ConstrStateF(π, f)← Constructed]

(Codepoint(initScalar(x), sl , e, ǫ), Kconstr(π, Fields, f, L, κ) :: K, G)
→ (Constr(π′, Fields, L′, e) , K, G ′)

(κ++-initscalar)
The second case is if c is a base, that is a (direct or indirect) virtual base, or a direct non-

virtual base, then the initializer shall exit through handing over to a constructor, again only
with no pending blocks (any temporary object has to be destructed before handing over to
the constructor). On such an exit, arguments are passed to the constructor (marking the actual
start of the construction of the base, thus its construction state changes), then the construction
of the non-virtual part of the base starts, beginning with its direct non-virtual bases.

The rule below applies for both virtual and direct non-virtual bases, the only di�erence
between the two is the computation of the path of the base.

AddBase((ℓ, (α, i, (h, l))), β, B) = match β with

| DirectNonVirtual 7→ (ℓ, (α, i, (h, l q− B :: ǫ)))
| Virtual 7→ (ℓ, (α, i, (Shared, B :: ǫ)))
end

(κ++-addbase)
π′ = AddBase(π, β, B) κ′ = B(arg0, . . . , arg j) : . . . {. . .}

vars = x0, . . . , xj ∀i, e(xi) = vi e′ = ∅[arg0 ← v0] . . . [arg j ← vj][this← Ptr(π′)]
G ′ = G[ConstrState(π′)← StartedConstructing]

(Codepoint(Bκ′(vars), sl , e, ǫ) , Kconstr(π,Bases(β), B, L, κ) :: K, G)
→ (Constr(π′,Bases(DirectNonVirtual), L′, e′), Kconstrother(π,Bases(β), B, L, κ, e) :: K, G ′)

(κ++-constructor-kconstr-base)
Again, for a virtual base, the rule does not explicitly require that the object π be most-

derived: we prove it as a run-time invariant.
Then, the construction of the bases goes on, until the constructor body exits through a

return(): in that case, the base becomes wholly Constructed, and the construction of other
sibling bases goes on.

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 191

The semantics of C++ construction and destruction Chapter 9

π′ = AddBase(π, β, B) G ′ = G[ConstrState(π′)← Constructed]

(Codepoint(return(), ǫ, e, ǫ), Kconstrother(π,Bases(β), B, L, κ, e) :: K, G)
→ (Constr(π,Bases(β), L, κ, e) , K, G ′)

(κ++-return-kconstrother-bases)

A particular case: scalar �elds with no initializer In real-world C++, a scalar �eld may
be left uninitialized though declared constructed, if no initializer is speci�ed in the constructor.
The following rule allows such a behaviour.

κ has no initializer for c c is scalar G ′ = G[ConstrStatesF(π, f)← Constructed]

(Constr(π, Fields, c :: L, κ, e), K, G)
→ (Constr(π, Fields, L, κ, e) , K, G ′)

(κ++-constr-cons-�eld-scalar-no-init)

Structure �elds The construction of a structure �eld is equivalent to the construction of its
array. Contrary to bases, running initializers is part of the construction of the �eld, so that the
construction state of the �eld changes before the �rst initializer starts running.

π = (ℓ, (α, i, σ)) struct B[n] f
κ = C(. . .) : . . . , f{inits}, . . . {. . .} G ′ = G[ConstrStateF(π, f)← StartedConstructing]

(Constr(π, Fields, f :: L, κ, e) , K, G)
→ (ConstrArray(ℓ, α q− (i, σ, f) :: ǫ, n, 0, B, inits , e), Kconstrother(π, Fields, f, L, κ, e) :: K, G ′)

(κ++-constr-cons-�eld-struct)
Then, when the last cell of the array is constructed, then the �eld is considered wholly

Constructed, and the construction of other remaining �elds goes on, with the variable environ-
ment at the end of structure array construction superseding the old one.

G ′ = G[ConstrStateF(π, f)← Constructed]

(ConstrArray(ℓ′, α′, n, n, B, inits , e′), Kconstrother(π, Fields, f, L, κ, e) :: K, G)
→ (Constr(π, Fields, L, κ, e′) , K, G ′)

(κ++-constr-array-nil-kconstrother)

End of the construction of a most-derived object When the body of a most-derived
object returns, the �rst continuation stack frame requests the construction of the further re-
maining sibling cells of this most-derived object. At that point, the most-derived object becomes
Constructed.

G ′ = G[ConstrState(ℓ, (α, i, (Repeated, C :: ǫ)))← Constructed]

(Codepoint(return(), l ,E ′, ǫ) , Kconstrothercells(ℓ, α, n, i, C, ι, e) :: K, G)
→ (ConstrArray(ℓ, α, n, i+ 1, C, ι, e), K, G ′)

(κ++-return-kconstrothercells)

192 Tahina Ramananandro

9.4 Semantic rules

9.4.5 Destruction

Complete object We have seen the semantics of exit and return statements when run
from inside a block with no stack object.

To exit from a block with a stack object, this object must �rst be destructed, starting from
the destruction of its last cell.

ExitStmt ::= exit (S n) | return x? (κ++-exitstmt)

G.LocType(ℓ) = (C, n)

(Codepoint(ExitStmt , L, e, (ℓ, L′) :: B), K, G)
→ (DestrArray(ℓ, ǫ, n− 1, C) , Kcontinue(ℓ,ExitStmt , e, L′,B) :: K, G)

(κ++-exit-block-obj)
Then, once the cell −1 is requested to be destructed (i.e. once all cells have been destructed),

the object is deallocated from the stack (i.e. it disappears from block de�nitions, and appears
in the list of deallocated objects) and the execution resumes after block exit.

ExitSucc(ExitStmt) = match ExitStmt with

| exit (S n) 7→ exit n
| return x? 7→ return x?

end

(κ++-exitsucc)

G ′ = G[dealloc← ℓ′ :: G.dealloc]

(DestrArray(ℓ, α,−1, C) , Kcontinue(ℓ′,ExitStmt , e, L′,B) :: K, G)
→ (Codepoint(ExitSucc(ExitStmt), L′, e,B), K, G ′)

(κ++-destr-array-nil-kcontinue)
Here, nothing enforces ℓ = ℓ′, nor the array path α = ǫ, this is to be shown as an invariant,

as we shall see further down.
However, note that G.LocType(ℓ) is still de�ned, so as to allow reasoning on construction

states even after ℓ is deallocated. Another purpose of the list of deallocated objects is to prevent
from reusing ℓ for a later allocated object.

Most-derived object When the destruction of a most-derived object (i.e. a structure array
cell) is requested, then the destruction of the non-virtual part of this object starts: the de-
structor body is entered, then the destruction of �elds and bases is requested through Kdestr.
Kdestrcell reminds, not only that other array cells have to be destructed, but also that a most-
derived object is being destructed, so as not to forget virtual bases once the non-virtual part
is destructed.

0 ≤ i ∼ C(){st} π = (ℓ, (α, i, (Repeated, C :: ǫ)))
e = ∅[this← π] G ′ = G[ConstrState(π)← StartedDestructing]

(DestrArray(ℓ, α, i, C), K, G)
→ (Codepoint(st , ǫ, e, ǫ) , Kdestr(π) :: Kdestrcell(ℓ, α, i, C) :: K, G ′)

(κ++-destr-array-cons)

Non-virtual part of a subobject When a destructor returns, then the �elds of the corre-
sponding subobject have to be destructed, in the reverse declaration order.

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 193

The semantics of C++ construction and destruction Chapter 9

π = (ℓ, (α, i, (h, l))) last(l) = C L = rev(F(C))

(Codepoint(return, st∗, e, ǫ), Kdestr(π, C) :: K, G)
→ (Destr(π, Fields, L) , K, G)

(κ++-return-kdestr)

Destructing a scalar �eld erases its value and changes its construction state. Then the
destruction of other �elds is requested.

f = (fid , (Sc, t)) G ′ = G[FieldValues(π, f)← ⊥][ConstrStatesF(π, f)← Destructed]

(Destr(π, Fields, f :: L), K, G)
→ (Destr(π, Fields, L) , K, G ′)

(κ++-destr-�elds-cons-scalar)
Destructing a structure �eld changes its construction state to StartedDestructing, then re-

quests the destruction of the corresponding array, starting from its last cell, and remembering
about other �elds through Kdestrother.

π = (ℓ, (α, i, σ)) f = (fid , (St, (C, n)))
α′ = α q− (i, σ, f) :: ǫ G ′ = G[ConstrStatesF(π, f)← StartedDestructing]

(Destr(π, Fields, f :: L) , K, G)
→ (DestrArray(ℓ, α′, n− 1, C), Kdestrother(π, Fields, f, L) :: K, G ′)

(κ++-destr-�elds-cons-struct)
Then, once all cells have been destructed, the �eld is Destructed, and the destruction of

further �elds can be proceeded.

G ′ = G[ConstrStatesF(π, f)← Destructed]

(DestrArray(ℓ′, α′,−1, C), Kdestrother(π, Fields, f, L) :: K, G)
→ (Destr(π, Fields, L) , K, G ′)

(κ++-destr-array-nil-kdestrother)
Then, once all �elds have been destructed, the subobject changes its construction state to

DestructingBases (at this point, no virtual function call may be used from this subobject) and
the destruction of the direct non-virtual bases can be proceeded, in their reverse declaration
order.

π = (ℓ, (α, i, σ))
last(l) = C L = rev(DNV(C)) G ′ = G[ConstrState(π)← DestructingBases]

(Destr(π, Fields, ǫ) , K, G)
→ (Destr(π,Bases(DirectNonVirtual), L), K, G ′)

(κ++-destr-�elds-nil)
Destructing a (virtual or direct non-virtual) base B of π enters its destructor, remembering

other bases through Kdestrother.

∼ B(){st}
π′ = AddBase(π, β, B) e = ∅[this← π′] G ′ = G[ConstrState(π′)← StartedDestructing]

(Destr(π,Bases(β), B :: L), K, G)
→ (Codepoint(st , ǫ, e, ǫ) , Kdestr(π′) :: Kdestrother(π,Bases(β), B, L) :: K, G ′)

(κ++-destr-bases-cons)

194 Tahina Ramananandro

9.5 Impact on the C++ language speci�cation

Then, once all direct non-virtual bases of π have been destructed, there are two cases,
depending on the top of the continuation stack.

Either the continuation stack starts with a Kdestrother(π′,Bases(β)), then π′ is not a most-
derived object. So, only the non-virtual part of π had to be destructed, so it may become
Destructed, and the destruction of those other bases of π′ is requested.

G ′ = G[ConstrState(π)← Destructed]

(Destr(π,Bases(DirectNonVirtual), ǫ), Kdestrother(π′,Bases(β), B, L) :: K, G)
→ (Destr(π′,Bases(β), L) , K, G ′)

(κ++-destr-bases-direct-non-virtual-nil-kdestrother)

End of the destruction of a most-derived object The second case is when the contin-
uation stack starts with a Kdestrcell. Then, π is a most-derived object (this is not constrained
by the rules, but must be proved as an invariant), and its virtual bases need to be destructed,
in the reverse order of their construction (given by the list VO(C)).

L = rev(VO(C))

(Destr(π,Bases(DirectNonVirtual), ǫ), Kdestrcell(ℓ, α, i, C) :: K, G)
→ (Destr(π,Bases(Virtual), L) , K, G)

(κ++-destr-bases-direct-non-virtual-nil-kdestrcell)
Finally, when all virtual bases have been destructed, then the object (which is actually the

most-derived object) is Destructed, and the destruction of further cells may be proceeded.

π = (ℓ, (α, i, (h, l))) last(l) = C G ′ = G[ConstrState(π)← Destructed]

(Destr(π,Bases(Virtual), ǫ), K, G)
→ (DestrArray(ℓ, α, i− 1, C) , K, G ′)

(κ++-destr-bases-virtual-nil)
Contrary to the construction semantics, one can see that Kdestrcell is not a strict counterpart

to Kconstrothercells, as it is not present in the continuation stack when destructing the virtual
bases (then, the object π in Destr(π,Bases(Virtual), . . .) or Kdestrother(π,Bases(Virtual), . . .) ac-
tually refers to the most-derived object from which the next array cell may be deduced. It would
have been redundant to keep Kdestrcell under such circumstances; conversely, Kconstrothercells
is required during construction because of the variable environment, which changes between
each cell due to their initializers.

9.5 Impact on the C++ language speci�cation

Following our work, Gabriel Dos Reis and Bjarne Stroustrup submitted proposals for mod-
ifying the C++03 Standard [42]. Some of them have been adopted in time for C++11 3 as voted
in March 2011 [43]. This proves the interest of machine-checked formalizations to reason about
the consistency of prose standards. The question of whether such textual standards should be
replaced by mathematized formalizations is, however, left open.

3. formerly dubbed �C++0x�

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 195

The semantics of C++ construction and destruction Chapter 9

9.5.1 Virtual function calls during �eld destruction

The C++03 Standard [42] prescribes that virtual functions can be called directly or indirectly
from within the constructor body, including the mem-initializers for data members. That is,
during the construction of data member subobjects, virtual functions of the object may be
used, as in the following C++ code:

struct B;

struct X {

X(B* b) {

b->f();

}

};

struct B {

X x;

B(): x(this) {} /* initializer for x calls this->f(), well-defined */

virtual void f();

};

However, according to [42], the semantics of function call was not de�ned in the symmetric
case of destructor body:

struct B;

struct X {

X(B* b) {}

~X() {

b->f();

}

};

struct B {

X x;

B(): x(this) {}

~B() {} /* destructing a calls this->f(), undefined */

virtual void f();

};

Our work led to a proposal [45] to amend the Standard. This amendment has been accepted
to the newest C++11 Standard [43]. Our κ++ language correctly models the modi�ed seman-
tics: the generalized dynamic type is always de�ned for an object during the construction or
destruction of its data members.

9.5.2 Object lifetime

9.5.2.1 Con�icting descriptions of end of object lifetime

Although our formalism does not allow explicit management of object lifetime (apart from
objects attached to statement blocks by scoping rules), the development of our formalism led

196 Tahina Ramananandro

9.5 Impact on the C++ language speci�cation

us to discover several con�icts and unintended semantics in both C++03 and C++11 standard
documents.

For instance, C++11 introduces a con�ict in the e�ects of calling a destructor. On the one
hand, �3.8p1 and 3.8p4 claim that the lifetime of an object ends when its non-trivial destructor
is called or its storage is reused or releasted. On the other hand, �14.2p4 claims that once a
(trivial or non-trivial) destructor is invoked, �the object no longer exists�. As an object can
be manipulated during its construction or destruction, it must necessarily already exist. This
discrepancy pointed out a confusion between object lifetime (= already constructed, destruction
not yet started) and object existence (= allocated, not yet deallocated). This issue will be
corrected after C++11.

9.5.2.2 Lifetime of array objects

Again, both C++03 and C++11 inconsistently de�ne the lifetime of array objects: they make
it start right upon allocation, and end right upon deallocation, independently of the lifetimes of
array cells. This contradicts the general principle that the lifetime of an object starts once the
lifetimes of all its subobjects have started. The lifetime of an array could be more accurately
de�ned as the lifetime of its last cell. This issue will be corrected after C++11.

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 197

The semantics of C++ construction and destruction Chapter 9

198 Tahina Ramananandro

Chapter 10

Formalization of object lifetime

In this section, we �rst present a run-time invariant holding on κ++ states during the ex-
ecution of a program (Section 10.1 p. 199). Then, thanks to this invariant, we show a wide
range of interesting high-level properties on the construction states of objects during program
execution. We summarize them below:

10.2 Construction and destruction rules are structurally sound: they may fail only because of
wrong user code in initializers or constructor/destructor bodies.

10.3 Construction states are monotonic; each object goes through each construction state fol-
lowing S from Unconstructed to Destructed, and changes its construction state exactly once
each. This monotonicity property allows to formally state and prove the principle of RAII
(Resource Acquisition is Initialization). Each object becomes constructed and destructed
exactly once. Subobjects of a complete object are destructed in the reverse order of their
construction. The lifetime of an object is included in the lifetime of all of its subobjects.
This allows to prove that, when an object is deallocated, then all its subobjects have
been destructed before. Moreover, as κ++ only features stack-allocated objects, lifetimes
of di�erent complete objects actually follow a stack discipline.

10.4 If a scalar �eld has a value, then it is constructed.

10.5 The generalized dynamic types of each object and all of its bases change at well-de�ned
execution points.

10.1 κ++ Run-Time invariant

On top of the operational semantics of κ++ de�ned in Chapter 9 (p. 171), we built a run-time
invariant 1 and we proved that this invariant always holds during program execution 2, and also
holds for the initial state with no initially allocated objects. This invariant is built of several
layers:

� Contextual invariants: states some properties about subobjects involved in the state kind
and the stack frames.
� Kind-level invariant : states that the subobject involved in the state kind during con-
struction and destruction are valid (i.e. it is consistent with the hierarchy and the object
heap), and sets their construction state with respect to the kind

1. Coq development: theory Invariant.
2. Coq development: theory Preservation.

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 199

Formalization of object lifetime Chapter 10

� Stack-level invariant : states that the subobjects involved in the continuation stack
frames are during construction and destruction are valid (i.e. they are consistent with
the hierarchy and the object heap), and sets their construction state with respect to
the current construction step

� Stackframe chaining : states that the kind requires the presence of a speci�c frame on
top of the stack, and precises similar conditions allowing or not two stack frames to
immediately follow each other

� Stack well-foundedness : states that the stack is �sorted� following an order on the sub-
objects involved in the construction and destruction stack frames

� Stack objects and constructed stack objects: shows how to compute the sets of allocated
objects and relates their construction states

� General relations between construction states:
� Vertical invariant : relates the construction states between an object and its direct
(inheritance or �eld) subobjects (vertical relations between construction states)

� Horizontal invariant : relates the construction states between two �sister� subobjects,
that is, two subobjects that have the same direct parent object (horizontal relations
between construction states).

All those invariants trivially hold on the initial state. But, proving their preservation along
semantic rules needs around 15000 lines of Coq and around two hours to compile on a Pentium
Core Duo 2GHz, consuming around 2Gb of RAM.

Virtually all invariants in this section need each other to hold.
In this whole section, we consider a �xed execution state (S,K,G).

10.1.1 (⋆) Contextual invariants

This section is very technical and allows one to understand how the more �high-level� prop-
erties can be proved. On �rst reading, it can be skipped to Section 10.1.2 (p. 206)

The semantic rules are rather lax: they do not appear to constrain the subobject involved
in di�erent state kinds or stack frames. However, such conditions are essential to reason about
the construction and destruction process.

10.1.1.1 Invariant on execution point

To safely apply the semantic rules, some conditions must hold on the subobjects involved
in state kinds, and on their construction states.

� Whenever a list of items is requested to be constructed:

S = Constr(π, ItemKind , κ, L,Env)

� π is a valid pointer to a subobject of some static type B (regardless of its construction
state):

G ⊢ π : B

� there is a list L′ such that the complete list of ItemKind of B can be written as L′ q−L,
with any item A ∈ L′ being Constructed, and any item A ∈ L is Unconstructed.

� if ItemKind = Bases(β):
� the construction of π has started, but only concerning its bases:

G.ConstrState(π) = StartedConstructing

200 Tahina Ramananandro

10.1 κ++ Run-Time invariant

� if β = Virtual, then π is a most-derived object of static type B
� otherwise (ItemKind = Fields), the bases of π are already constructed:

G.ConstrState(π) = BasesConstructed

� Whenever an array cell is requested to be constructed:

S = Constrarray(ℓ, α, n, i, C, κ)

� ℓ is a valid object location:

G.LocType(ℓ) = (C ′, n′)

� α is an array path from (C ′, n′) to (C, n) where n is maximal
� 0 ≤ i ≤ n (we may have i = n, in this case rules (κ++-constr-array-nil-kcontinue, p. 189)

and (κ++-constr-array-nil-kconstrother, p. 192) may apply instead of (κ++-constr-array-
cons, p. 189))

� all cells j with 0 ≤ j < i are Constructed

� all cells j with i ≤ j < n are Unconstructed

� Whenever a list of items is requested to be destructed:

S = Destr(π, ItemKind , L)

� π is a valid pointer to a subobject of some static type B (regardless of its construction
state):

G ⊢ π : B

� there is a list L′ such that the complete list of ItemKind of B can be written as
rev(L′ q−L), with any item A ∈ L′ being Destructed, and any item A ∈ L is Constructed.

� if ItemKind = Bases(β):
� the destruction of π has started, already concerning its bases:

G.ConstrState(π) = DestructingBases

� if β = Virtual, then π is a most-derived object of static type B
� otherwise (ItemKind = Fields), the bases of π are still constructed:

G.ConstrState(π) = StartedDestructing

� Whenever an array cell is requested to be destructed:

S = Destrarray(ℓ, α, i, C, κ)

� ℓ is a valid object location:

G.LocType(ℓ) = (C ′, n′)

� α is an array path from (C ′, n′) to (C, n) where n is maximal
� −1 ≤ i < n (we may have i = −1, in this case rules (κ++-destr-array-nil-kcontinue,

p. 193) and (κ++-destr-array-nil-kdestrother, p. 194) may apply instead of (κ++-destr-
array-cons, p. 193))

� all cells j with 0 ≤ j ≤ i are Constructed

� all cells j with i < j < n are Destructed

The invariant for Codepoint depends on the �rst item on top of the stack, as we shall see in
the next sections.

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 201

Formalization of object lifetime Chapter 10

10.1.1.2 Invariant for stack frames

To safely apply the semantic rules, some conditions must hold on the subobjects involved
in each stack frame, and on their construction states.

� Whenever a list of items is pending to be constructed, during the construction of B:

K ∋ Kconstrother(π, ItemKind , κ, B, L,Env)

� π is a valid pointer to a subobject of some static type B (regardless of its construction
state):

G ⊢ π : B

� there is a list L′ such that the complete list of ItemKind of B can be written as
L′ q− B :: L

� B is StartedConstructing (or maybe BasesConstructed, allowed only if ItemKind =
Bases(β))

� if ItemKind = Bases(β):
� the construction of π has started, but only concerning its bases:

G.ConstrState(π) = StartedConstructing

� if β = Virtual, then π is a most-derived object of static type B
� otherwise (ItemKind = Fields), the bases of π are already constructed:

G.ConstrState(π) = BasesConstructed

� Whenever an array cell is requested to be constructed:

K ∋ Kconstrothercells(ℓ, α, n, i, C, κ)

� ℓ is a valid object location:

G.LocType(ℓ) = (C ′, n′)

� α is an array path from (C ′, n′) to (C, n) where n is maximal
� 0 ≤ i < n
� cell i is StartedConstructing, or BasesConstructed

� Whenever a list of items is requested to be destructed:

K ∋ Kdestrother(π, ItemKind , B, L)

� π is a valid pointer to a subobject of some static type B (regardless of its construction
state):

G ⊢ π : B

� there is a list L′ such that the complete list of ItemKind of B can be written as
rev(L′ q− B :: L)

� B is StartedDestructing (or maybe DestructingBases, allowed only if ItemKind = Bases(β))
� if ItemKind = Bases(β):

� the destruction of π has started, already concerning its bases:

G.ConstrState(π) = DestructingBases

202 Tahina Ramananandro

10.1 κ++ Run-Time invariant

� if β = Virtual, then π is a most-derived object of static type B
� otherwise (ItemKind = Fields), the bases of π are still constructed:

G.ConstrState(π) = StartedDestructing

� Whenever an array cell is requested to be destructed:

K ∋ Kdestrcell(ℓ, α, i, C, κ)

� ℓ is a valid object location:

G.LocType(ℓ) = (C ′, n′)

� α is an array path from (C ′, n′) to (C, n) where n is maximal
� 0 ≤ i < n
� cell i is StartedDestructing, or DestructingBases

Those invariants are very close to the kind invariants, but they di�er in the construction
state of the object being constructed or destructed. The construction states of sibling objects
are not speci�ed here, but they may be deduced thanks to the horizontal invariants described
further down.

Other stack frames only appear in speci�c contexts: Kconstr (during the initializer for a
base or scalar �eld), Kconstrarray (during the initializer for a structure array cell), and Kdestr

(during the destructor). For this reason, they are not treated as �stand-alone� stack frames, but
separately, in the following section (chaining).

10.1.1.3 Stackframe chaining

Some stack frames necessarily require to be immediately followed (towards the bottom of
the stack) by speci�c stack frames. The same holds with some kinds, which require speci�c
stack frames on top of the stack. Moreover, depending on those stack frames, their involved
subobjects are related in some way.

In this section, we consider that K = K′ q−K1 :: K2 :: K′′, and we describe, depending on
K1, which frame K2 may follow. (In parallel, we mention those invariants that may also hold
for some kinds requiring that K = K2 :: K

′′).

Construction/destruction kinds and stack frames
� During the construction of the virtual bases of an object π, i.e. any of the following cases:
� K1 = Kconstr(π,Bases(Virtual), . . .)
� K1 = Kconstrother(π,Bases(Virtual), . . .)
� or S = constr(π,Bases(Virtual), . . .) and K = K2 :: K

′′

Then, necessarily, the frame (or kind) is immediately followed by pending cells:

K2 = Kconstrothercells(ℓ, α, n, i, C, . . .)

and their subobjects are related:

π = (ℓ, (α, i, (Repeated, C :: ǫ)))

� During the construction of an array cell, i.e. any of the following cases:

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 203

Formalization of object lifetime Chapter 10

� K1 = Kconstrarray(ℓ, α, i, C, . . .)
� K1 = Kconstrothercells(ℓ, α, i, C, . . .)
� or S = constrarray(ℓ, α, i, C, . . .) and K = K2 :: K

′′

Then, necessarily, the frame (or kind) is immediately followed by one of the two cases,
depending on α:
� either α = ǫ: then, the array being constructed is the whole complete object ℓ itself, so

the frame (or kind) must be followed by a code frame K2 = Kcontinue(ℓ, . . .) specifying
that the array in construction or destruction is actually the allocated stack object.

� otherwise, α = α′ q−(i′, σ′, f ′) :: ǫ is a structure array �eld, so the frame (or kind) must be
followed by the �eld construction frame K2 = Kconstrother(ℓ, (α′, i′, σ′), Fields, f ′, . . .).

� During the construction of the non-virtual bases, or the �elds, of an object π, i.e. any of
the following cases with β 6= Bases(Virtual):
� K1 = Kconstrother(π, β, . . .)
� K1 = Kconstr(π, β, . . .)
� or S = constr(π, β, . . .) and K = K2 :: K

′′

Then, one of the following cases holds, depending on π:
� construction of the bases of some object π′:

K2 = Kconstrother(π′,Bases(β′), B, . . .)

Then, π is the base B being precisely constructed by K2:

π = AddBase(π′, β′, B)

� construction of array cells:

K2 = Kconstrothercells(ℓ, α, i, C)

Then, π is the cell being constructed:

π = (ℓ, (α, i, (Repeated, C :: ǫ)))

Similarly, for destruction:
� During the destruction of the virtual bases of an object π, i.e. any of the following cases:

� K1 = Kdestrother(π,Bases(Virtual), . . .)
� or S = Destr(π,Bases(Virtual), . . .) and K = K2 :: K

′′

or, during the destruction of an array cell, i.e. any of the following cases:
� K1 = Kdestrcell(ℓ, α, i, C, . . .)
� or S = DestrArray(ℓ, α, i, C, . . .) and K = K2 :: K

′′

Then, necessarily, in the �rst two cases, π = (ℓ, (α, i, (Repeated, C :: ǫ))) is a most-derived
object; and, in all cases, the frame (or kind) is immediately followed by one of the two
cases, depending on α:
� either α = ǫ: then, the array being destructed is the whole complete object ℓ itself, so

the frame (or kind) must be followed by a code frame K2 = Kcontinue(ℓ, . . .) specifying
that the array is the stack object.

� otherwise, α = α′ q− (i′, σ′, f ′) :: ǫ is a structure array �eld, so the frame (or kind) must
be followed by the �eld destruction frame K2 = Kdestrother(ℓ, (α′, i′, σ′), Fields, f ′, . . .).

� During the destruction of the non-virtual part of an object π, i.e. any of the following
cases with β 6= Bases(Virtual):

204 Tahina Ramananandro

10.1 κ++ Run-Time invariant

� K1 = Kdestrother(π, β, . . .)
� K1 = Kdestr(π) (running the destructor)
� or S = destr(π, β, . . .) and K = K2 :: K

′′

Then, one of the following cases holds, depending on π:
� destruction of the bases of some object π′:

K2 = Kdestrother(π′,Bases(β′), B, . . .)

Then, π is the base B being precisely destructed by K2:

π = AddBase(π′, β′, B)

� destruction of array cells:
K2 = Kdestrcell(ℓ, α, i, C)

Then, π is the cell being destructed:

π = (ℓ, (α, i, (Repeated, C :: ǫ)))

Code points If K1 is a code frame, that is Kretcall or Kcontinue (or if S = Codepoint(. . .)
and K = K2 :: K

′′), then K2 may be one of the following cases:
� another code point, Kcontinue(. . .) or Kretcall(. . .)
� while executing an initializer for a base or scalar �eld: Kconstr(π, ItemKind , B, L, . . .).

Then, the kind invariant of constr(π, ItemKind , B :: L) holds (the construction states do
not change when entering the initializer)

� while executing an initializer for an array cell: Kconstrarray(ℓ, α, i, C, . . .). Then, the kind
invariant of ConstrArray(ℓ, α, i, C, . . .) holds (the construction states do not change when
entering the initializer)

� while executing the constructor for a baseB of some object π: Kconstrother(π,Bases(β), B, L, . . .).
Then, the base B is BasesConstructed, but not yet Constructed (not before the constructor
has exited), so it must be made explicit that all its �elds are already Constructed.

� while executing the constructor for a most-derived object (i.e. a structure array cell):
Kconstrothercells(ℓ, α, n, i, C). Then, the cell i is BasesConstructed, but not yet Constructed
(not before the constructor has exited), so it must be made explicit that all its �elds are
already Constructed.

� symmetrically, while executing the destructor for an object: Kdestr(π). Then, π is StartedDestructing,
but no longer Constructed, as the destructor entered, so must be made explicit that all
�elds of π are still Constructed.

10.1.1.4 Stack well-foundedness

To make reasoning easier, we show an invariant on the stack frames, relating the subobjects
of two di�erent stack frames, but regarding the same complete object. Roughly speaking, if (ℓ, σ)
is the object being constructed/destructed by some stack frame, then it is a strict subobject of
any object (ℓ, σ′) being constructed/destructed by a stack frame deeper down in the stack.

More precisely:

De�nition 10.1.1. The subobject being constructed or destructed by a stack frame K is:
� π, if K is any of Kconstr(π, . . .), Kconstrother(π, . . .), Kdestr(π) or Kdestrother(π, . . .),

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 205

Formalization of object lifetime Chapter 10

� unde�ned otherwise
Similarly, the subobject being constructed or destructed by a state kind S is:
� π, if S is any of Constr(π, . . .), Destr(π, . . .)
� unde�ned otherwise

De�nition 10.1.2. The array being constructed or destructed by a stack frame K is:
� (ℓ, α), if K is any of Kconstrarray(ℓ, α . . .), Kconstrothercells(ℓ, α, . . .) or Kdestrcell(ℓ, α, . . .)
� unde�ned otherwise
Similarly, the array being constructed or destructed by a state kind S is:
� (ℓ, α), if S is any of ConstrArray(ℓ, α, . . .), DestrArray(ℓ, α, . . .)
� unde�ned otherwise

Then, if K = K′ q−K1 :: K
′′, and if K2 ∈ K

′′ (or similarly, if S is a state kind and K2 ∈ K),
then:

� if π1 = (ℓ, (α1, i1, σ1)) is the subobject being constructed or destructed by K1 or S, then:
� if π2 = (ℓ, (α2, i2, σ2)) is the subobject being constructed or destructed by K2, then:
� either α1 = α2 q− α for some α 6= ǫ
� or α1 = α2, i1 = i2, and σ1 is an inheritance subobject of σ2 distinct from σ2 itself

� otherwise, if (ℓ, α2) is the array being constructed or destructed byK2, then α1 = α2 q−α
for some α (maybe ǫ)

� otherwise, if (ℓ, α1) is the array being constructed or destructed by K1 or S, then, if
(ℓ, (α2, i, σ)) is the subobject, or if (ℓ, α2) is the array, being constructed or destructed by
K2, then α1 = α2 q− α for some α 6= ǫ

10.1.2 Stack objects and constructed stack objects

In this section, we investigate how to compute the list of stack objects, and stackframe
objects, looking at the code points.

When executing a statement block, the block may or may not de�ne a complete object. In
this case, this object is called the stack object associated to the block. However, when de�ning
such an object, the block receives this object only when it is wholly constructed, and it loses
this object once the object starts destruction.

More formally:

De�nition 10.1.3 (Stack object of a block). A block b : Block has at most one stack ob-
ject, written CΩ(b) :

� If the block is (⊥, Stmt), then it has no stack object
� If the block is (ℓ, Stmt), then ℓ is its stack object

The list of constructed stack objects is computed by gathering all stack objects of all blocks
of all code points (code stack frames Kcontinue or Kretcall, and also the kind if it is Codepoint).

De�nition 10.1.4. The list of the constructed stack objects CΩ(K) of a stack frame K is:
� if K = Kretcall(res?,Env , Stmt∗,B) or K = Kcontinue(ℓ?, Stmt1,Env , Stmt∗2,B), then
CΩ(K) =

⋃

b∈B CΩ(b)
� otherwise, CΩ(K) = ǫ.

(The notation
⋃

is meant here to keep the order of collected objects following the order of
blocks in the block list).

206 Tahina Ramananandro

10.1 κ++ Run-Time invariant

De�nition 10.1.5. Similarly, the list of the constructed stack objects CΩ(S) of a state kind S
is:

� if S = Codepoint(Stmt1, Stmt∗,Env ,B), then CΩ(S) =
⋃

b∈B CΩ(b)
� otherwise, CΩ(S) = ǫ.

Putting all together:

De�nition 10.1.6. The list of the constructed stack objects CΩ(S,K) of an execution state
(S,K,G) is computed as follows:

CΩ(S,K) = CΩ(S) ∪
⋃

K∈K

CΩ(K)

To collect all stack objects, we must also take into account the objects in construction or
destruction, carried by corresponding Kcontinue frames:

De�nition 10.1.7. The list of the stack objects Ω(K) of a stack frame K are:
� if K = Kcontinue(∅, Stmt1,Env , Stmt∗2,B) or K = Kretcall(res?,Env , Stmt∗,B), then
Ω(K) =

⋃

b∈B CΩ(b)
� if K = Kcontinue(ℓ, Stmt1,Env , Stmt∗2,B), then Ω(K) = ℓ ::

⋃

b∈B CΩ(b)
� otherwise, Ω(K) = ǫ.

De�nition 10.1.8. The list of the stack objects Ω(S,K) of an execution state (S,K,G) is
computed as follows:

Ω(S,K) = CΩ(S) ∪
⋃

K∈K

Ω(K)

Lemma 10.1.1.

CΩ(S,K) ⊆ Ω(S,K)

Invariants
� If G.LocType(ℓ) = ⊥ is unde�ned, then any construction state on ℓ is Unconstructed.
� Ω(S,K), and G.dealloc, have no duplicates.
� Ω(S,K) and G.dealloc are disjoint.
� G.LocType(ℓ) is de�ned if, and only if, ℓ ∈ Ω(S,K) ∪ G.dealloc
� If ℓ ∈ CΩ(S,K) and if G.LocType(ℓ) = (C, n), then all n cells of ℓ are Constructed.
� Similarly, if G.LocType(ℓ) = (C, n) and ℓ ∈ G.dealloc, then all n cells of ℓ are Destructed.
The latter invariant is needed to show the kind invariant of DestrArray for rule (κ++-exit-

block-obj, p. 193).

10.1.3 General relations between construction states

This section is more high-level: it relates the construction states of objects depending on
their relative position in the �subobject ordering� tree 3 of Figure 9.1 (p. 173).

3. Coq development: theory SubobjectOrdering.

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 207

Formalization of object lifetime Chapter 10

10.1.3.1 Vertical relations

De�nition 10.1.9. Let p, p′ be two subobjects of the same complete object. We say that p is a
direct subobject of p′ if either of the following is true:

� p is a direct non-virtual base of p′

� p′ is a most-derived object and p is a virtual base of p′

� p is a cell of a structure array �eld of p′ (then, we say that p is a �eld subobject of p′).
In the �rst two cases, we say that p is a base subobject of p′.

By language abuse, we say that p is a virtual base (resp. direct non-virtual base) of p′ when p
designates the subobject corresponding to a virtual base (resp. direct non-virtual base) of the
class that is the static type of p′.

Invariant 10.1.1 (Middle-level invariant: vertical relations on construction states).
If p is a direct subobject of p′, then the following table relates their construction states:

If p′ is... Then p is...
Unconstructed Unconstructed

StartedConstructing

Unconstructed

if p is a �eld subobject of p′

between Unconstructed and Constructed

otherwise

BasesConstructed

Constructed

if p is a base subobject of p′

between Unconstructed and Constructed

otherwise
Constructed Constructed

StartedDestructing

Constructed

if p is a base subobject of p′

between Constructed and Destructed

otherwise

DestructingBases
Destructed

if p is a �eld subobject of p′

between Constructed and Destructed

otherwise
Destructed Destructed

10.1.3.2 Horizontal relations

De�nition 10.1.10. Let p1, p2 be two subobjects of a complete object of type C. We say that
p1 occurs before p2 (p1 ≺C[n] p2) if, and only if, either of the following is true:

� there is a most-derived object p′ subobject of the complete object C such that p1, p2 are
two virtual bases of p′ in inheritance graph order

� there is a subobject p′ of the complete object C such that p1 and p2 are two direct non-
virtual bases of p′ in declaration order

� p1 and p2 are two cells of the same array �eld, in the order of their indexes within the
array

� p1 and p2 are two cells of two di�erent �elds in declaration order

208 Tahina Ramananandro

10.2 κ++ Run-Time invariant

� there is a most-derived object p′ subobject of the complete object C such that p1 is a virtual
base, and p2 is a direct non-virtual base of p′ or a cell of an array �eld of p′

� there is a subobject p′ of the complete object C such that p1 is a direct non-virtual base of
p′ and p2 is a cell of an array �eld of p′

Virtual base
Direct non-virtual base Structure array �eld

(if p most-derived)
p1, p2

inheritance
graph order

p1 p2
p1, p2

declaration order
p1 p2

p1, p2
�eld declaration order
or cell index order
of the same �eld

This de�nition is consistent insofar as it only depends on the type of the complete object.

Invariant 10.1.2 (High-level invariant: horizontal relations on construction states).
Let p1, p2 two subobjects such that p1 ≺C[n] p2. Then, the following table relates their construc-
tion states:

If p1 is... Then p2 is...
Unconstructed

UnconstructedStartedConstructing

BasesConstructed

Constructed in an arbitrary state
StartedDestructing

DestructedDestructingBases

Destructed

More concisely, for any state s:

ConstrStates(ℓ, p1) < Constructed⇒ ConstrStates(ℓ, p2) = Unconstructed

ConstrStates(ℓ, p1) > Constructed⇒ ConstrStates(ℓ, p2) = Destructed

Corollary 10.1.2. In particular, by contraposition, if two subobjects p1 ≺C[n] p2, then the
lifetime of p2 is included in the lifetime of p1:

ConstrStates(ℓ, p2) = Constructed⇒ ConstrStates(ℓ, p1) = Constructed

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 209

Formalization of object lifetime Chapter 10

10.2 Progress

To show that our rules make sense, i.e. that they do not forget any bases to construct, we
showed a sanity-check progress theorem 4 5: if a class C and all its children have no user-de�ned
constructors, then the construction and destruction of an instance of C always succeeds.

De�nition 10.2.1 (Nearly trivial constructor). We say that a class C has a nearly trivial
constructor if, and only if, all the following conditions hold:

� C has a default constructor (with no arguments), having only the following initializers:
� bases and structure array �elds are initialized through a call to their default constructor

(without arguments), without prior statement
� scalar �elds are initialized only with built-in operations without arguments

� all virtual bases and direct non-virtual bases of C have nearly trivial constructors
� for each structure array �eld f of C, if f has type B, then B has a nearly trivial con-

structor

There is no exactly corresponding notion of the Standard: the latter de�nes a notion of trivial
constructor implying that the class C has no virtual bases. In practice, the Standard puts this
restriction to allow compilers to produce no code for such classes (e.g. PODs), which is not
possible in the presence of virtual bases, as they require additional dynamic data (e.g. pointer
to virtual tables) to be initialized, as we pointed out in Section 5.2.2 (p. 96) and Section 5.5.5
(p. 117).

However, the Standard notion of trivial constructor is a particular case of nearly trivial
constructors: the conditions are exactly the same, with the further requirements that C have
neither virtual bases, nor virtual functions. In other words, a class has a trivial constructor
if, and only if, it is a non-dynamic class (in the sense of De�nition 4.4.2 p. 89, it �has no
polymorphic behaviour� following the Standard) with a nearly trivial constructor.

Theorem II.1 (Construction progress). If C is a class having a nearly trivial constructor,
then the allocation of a new array of C calling the default constructor for each cell always
succeeds, with all cells becoming Constructed.

The same theorem also holds for destruction. But here, we may directly take the Standard
notion of trivial destructor, as the destructor has no arguments:

De�nition 10.2.2 (Trivial destructor). A class C has a trivial destructor if, and only if,
all the following conditions hold:

� its destructor immediately returns
� all virtual bases and direct non-virtual bases of C have trivial destructors
� for each structure array �eld f of C, if f has type B, then B has a trivial destructor

Theorem II.2 (Destruction progress). If C is a class having a trivial destructor, then the
deallocation of a constructed array of C always succeeds, with all cells becoming Destructed.

4. Coq development: theory Progress.
5. Coq development: theory ProgressInv.

210 Tahina Ramananandro

10.3 RAII: Resource Acquisition is Initialization

10.3 RAII: Resource Acquisition is Initialization

In this section, we investigate how the lifetime of an object is related to the scope of its
most-derived object, and how the lifetime of an object is related to the lifetime of its subobjects.
In particular, we aim at showing that destruction of any two subobjects is performed in the
reverse order of their construction.

10.3.1 Increase

We �rst investigate, for a given object, in which order it goes through its construction
states 6. The following theorem gives us a �ne-grained viewpoint on the evolution of the con-
struction state of a subobject:

Theorem II.3 (Construction order increment). If s→ s′ is a transition step of the κ++
small-step semantics, and if the construction state of (ℓ, p) goes from c to c′ 6= c, then c′ = S(c)
and any other subobject p′ 6= p keeps its construction state unchanged.

Proof. By case analysis on the small-step semantic rules.

By transitivity, we easily obtain the following corollary:

Theorem II.4 (Objects are not constructed more than once). Any subobject is never
constructed more than once: given a construction state c, no subobject ever changes its con-
struction state twice to c.

In particular, any virtual base subobject is constructed at most once.

Corollary 10.3.1. By contraposition, if s→∗ s′ and if ConstrStates(ℓ, p) = ConstrStates′(ℓ, p),
then the construction state of (ℓ, p) remains unchanged between s and s′: for any state s′′ such
that s→∗ s′′ →∗ s′, we have ConstrStates(ℓ, p) = ConstrStates′′(ℓ, p)

In particular, in a given execution sequence, the lifetime of any object is such a state interval.
More precisely, we exactly know that an object skips no construction states. In other words, if
an object goes from one construction state to another, then it must go through all construction
states in between:

Corollary 10.3.2 (Intermediate values theorem for construction states). If s →∗

s′, then, for any subobject (ℓ, p), and for any construction state c′′ such that:

ConstrStates(ℓ, p) ≤ c′′ < S(c′′) ≤ ConstrStates′(ℓ, p)

there exist �changing states� s′′1, s
′′
2 such that:

s→∗ s′′1 → s′′2 →
∗ s′

and ConstrStates′′
1
(ℓ, p) = c′′ and ConstrStates′′

2
(ℓ, p) = S(c′′).

6. Coq development: theory Constrorder.

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 211

Formalization of object lifetime Chapter 10

10.3.2 Construction and destruction order of two subobjects of the
same complete object

In this section, we shall prove that two subobjects of the same complete object are destructed
in the reverse order of their construction 7.

10.3.2.1 General theorem

Assume that, for any class C and any n ∈ N∗, there exists a static relation ⊳C[n] (i.e.
independent on the execution state) on generalized subobjects of a full object of type C[n],
such that for any generalized subobjects p1, p2 of C[n], the following conditions hold:

� p1 ⊳C[n] p2 ∨ p2 ⊳C[n] p1 (i.e. ⊳C[n] is total)
� for any execution state s, and for any complete object ℓ of type C[n], if p1 ⊳C[n] p2 and
ConstrStates(ℓ, p2) = Constructed, then ConstrStates(ℓ, p1) = Constructed

Then, we may show the following:

Theorem II.5 (Subobjects are destructed in the reverse order of their construction).
Let ℓ be a complete object of type C[n]. If p1 and p2 are two generalized subobjects of complete
object ℓ, such that p1 was constructed before p2, then, if p1 is being destructed, then p2 was
destructed before p1. In other words, if s1 is constructed before s2, then the lifetime of s2 is
included in the lifetime of s1 .

s0→s1→
∗s2→s3 →∗ s4→s5

¬c1 c1 ¬c2 c2 c1 ¬c1
⇓

∃s′3, s
′
4

s3→
∗s′3→s′4→

∗s4
c2 ¬c2

(ci means �pi is Constructed at this state�)

Proof. First we show that p1 ⊳C[n] p2. As ⊳C[n] is total, we may reason by case analysis. Assume
p2 ⊳C[n] p1. Then, at state s1, p1 is Constructed, so p2 is also Constructed at s1. But construction
states are increasing, so p2 is at least Constructed at s2. As it is Constructed at s3, it is necessarily
Constructed at s2, which is absurd. So, necessarily, as ⊳C[n] is total, we have p1 ⊳C[n] p2.

We immediately see that p1 6= p2. Indeed, if p1 = p2, then, as Constructed in s1 and also in
s3, p2 would also be Constructed in s2, which is absurd.

Now we show that p2 is no longer Constructed at s4. As ≤ is total on construction states, we
may reason by case analysis. Assume p2 is at most Constructed at s4. Then, p2 is Constructed
at s4 (increase from s3). But p1 6= p2 and s4 → s5 changes the construction state of p1. Then
p2 is Constructed also at s5. But p1 ⊳C[n] p2, so p1 is also Constructed at s5, which is absurd.

To sum up, p2 is no longer Constructed at s4, but it is Constructed at s3. So, by the interme-
diate values theorem, there exists s3 →∗ s′3 → s′4 →

∗ s4 such that step s′3 → s′4 makes p2 from
Constructed to StartedDestructing, which concludes.

7. Coq development: theory ConstrSubobjectOrdering.

212 Tahina Ramananandro

10.3 RAII: Resource Acquisition is Initialization

10.3.2.2 Application: subobject ordering

It only remains to �nd such a relation ⊳C[n]. Here we show that the subobject lifetime relation,
the depth-�rst left-to-right traversal of the subobject tree of Figure 9.1 (p. 173), is suitable.

De�nition 10.3.1. Let p1, p2 two generalized subobjects of C[n]. We say that p1 is included in
p2 (written p1 ⊆C[n] p2) if, and only if, either p1 = p2, or there exists a generalized subobject p
of C[n] such that p1 is a direct subobject of p and p is included in p2.

Roughly speaking, this inclusion relation ⊆C[n] is the �re�exive and transitive closure� of the
�direct subobject� relation. It expresses the notion of path in the subobject tree of Figure 9.1
(p. 173).

However, this notion is distinct from the notion of inheritance and array paths: if p is not a
most-derived object, then it does not include the subobjects corresponding to its virtual bases
(only paths within the non-virtual part of the subobject tree are to be considered). Nevertheless,
if p is a most-derived object, it does include its virtual bases, so all of its subobjects.

By transitivity, it follows that:

Lemma 10.3.3. f p1 ⊆C[n] p2, then the following table relates their construction states:

If p2 is... Then p1 is...
Unconstructed Unconstructed

Constructed Constructed

Destructed Destructed

Finally, we de�ne the subobject lifetime relation ⊳C[n] as follows.

De�nition 10.3.2. Let p1, p2 be two subobjects of C[n]. We say that p1 lays before p2, written
p1 ⊳C[n] p2, if, and only if, either condition holds:

� p1 ⊆C[n] p2
� there exist two sibling subobjects p′1 ≺

D
C[n] p

′
2 such that p1 ⊆C[n] p

′
1 and p2 ⊆C[n] p

′
2

In fact, this de�nition says that p1 lays before p2 if, and only if, p1 appears before p2 in a
depth-�rst left-to-right traversal of the subobject tree. However, we do not need to prove that
it is an order.

Lemma 10.3.4 (⊳C[n] is total).

∀B1, B2, p1, p2 :
C[n] −〈p1〉→ B1

C[n] −〈p2〉→ B2

}

⇒

(

p1 ⊳C[n] p2
∨ p2 ⊳C[n] p1

Proof. Long and tedious case analysis.

Lemma 10.3.5. The subobject lifetime relation is compatible with subobject lifetimes: if p1 ⊳C[n] p2,
then, for any execution state, and for any complete object ℓ of type C[n], whenever (ℓ, p2) is
Constructed, then (ℓ, p1) is Constructed.

Proof. � If p1 ⊆C[n] p2, then the previous lemma directly applies.
� Otherwise, let p′1 ≺

D
C[n] p

′
2 be two subobjects such that p1 ⊆C[n] p

′
1 and p2 ⊆C[n] p

′
2. We

�rst show that p′1 is Constructed. Let c1 the construction state of p′1. As ≤ is total on
construction states, we have two cases:

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 213

Formalization of object lifetime Chapter 10

� if c1 < Constructed, then p′2 is Unconstructed, so p2 is also Unconstructed, which is
absurd.

� if c1 > Constructed, then p′2 is Destructed, so p2 is also Destructed, which is absurd.
So p′1 is Constructed. Thus, p1 is also Constructed, which concludes.

The immediate corollary follows from those two lemmata:

Theorem II.6 (Lifetimes of subobjects of the same complete object). The lifetimes
of two subobjects of the same complete object are either included in one another, or disjoint.

10.3.2.3 Subobject ordering, inheritance and aggregation

Now it remains to relate the order of construction of subobjects with the notions of inheri-
tance and aggregation.

When constructing the virtual bases of a most-derived object, the Standard prescribes an
order called inheritance graph order, modelled as follows:

De�nition 10.3.3. If the class hierarchy is well-founded, then the following recursive function
VO :

({Repeated, Shared} × C)∗
VO
→ (C)∗

VO(ǫ) = ǫ
VO((Repeated, B) :: q)

def.
VO(D(B)) q−′ VO(q)

VO((Shared, B) :: q)
def.

VO(D(B)) q−′ (B :: VO(q))

is well-de�ned.

VO actually performs a depth-�rst search of all virtual bases induced by l, including the
classes that are elements of l declared as �virtual bases�, but quoting each virtual base only
once.

De�nition 10.3.4. For any class C, we pose VO(C)
def.

VO(D(C)). VO is called the virtual
base ordering function.

De�nition 10.3.5. Two virtual bases A and B of C are in inheritance graph order (written
A ≺V

C B) if, and only if, A occurs before B in VO(C).

We show that this way of computing the list of the virtual bases of a class satis�es the
requirement of Hypothesis 9.4.2 (p. 190):

Lemma 10.3.6. VO(C) contains all the virtual bases of C exactly once each, and only them.

Lemma 10.3.7. If B is a virtual base of C, then for any virtual base A of B, A ≺V
C B.

Proof. It su�ces to show that, for any list l such that B ∈ VO(l), A occurs before B in VO(l).
Reason by induction on the de�nition of VO . There are two cases:

� Let l = (Repeated, B′) :: q, or l = (Shared, B′) :: q with B′ 6= B. If B ∈ VO(D(B′)),
then, by induction hypothesis, A occurs before B in VO(D(B′)). Otherwise, either A ∈
VO(D(B′)), or A occurs before B in VO(q) by induction hypothesis.

214 Tahina Ramananandro

10.3 RAII: Resource Acquisition is Initialization

� Let l = (Shared, B) :: q. Then, by Lemma 10.3.6 (p. 214), A ∈ VO(D(B)) but B 6∈
VO(D(B)) (otherwise B would be a virtual base of itself, which would contradict the
well-formedness of the hierarchy), which concludes.

Consequently:

Lemma 10.3.8. Let p be a subobject of a complete object C[n]. If p′ is an inheritance subobject
of p, then the lifetime of p is included in the lifetime of p′.

Proof. There are two cases:
� If p′ is a non-virtual base-class subobject of p, then p′ ⊆C[n] p, so a previous lemma applies.
� Otherwise, if p′ is a virtual base-class subobject of p, then there are two cases:
� If p is a most-derived object, then p′ ⊆C[n] p.
� Otherwise, we can show that p′ ⊳C[n] p. Let A be the static type of p. Then, p′ is a
non-virtual base-class subobject of some virtual base V of A. There are two cases:
� If p is a non-virtual base-class subobject of its most-derived object, then it is a non-
virtual base-class subobject of some base B; so let pV and pB represent the direct
subobjects of the (common) most-derived object of p and p′ for B and V , so that
p′ ⊆C[n] pV and p ⊆C[n] pB. As B is a non-virtual base and V is a virtual base, then
we have pV ≺C[n] pB, which concludes.

� Otherwise, p is a virtual base-class subobject of its most-derived object, then it is a
non-virtual base-class subobject of some virtual base B of the most-derived object.
By transitivity, V is a virtual base of B, so pV ≺C[n] pB by the above lemma, and we
can conclude similarly as the previous case.

Lemma 10.3.9. If p1 ⊆C[n] p2 ⊳C[n] p3, then p1 ⊳C[n] p3.

Proof. By de�nition of ⊳C[n] and by transitivity of ⊆C[n].

Theorem II.7 (The lifetime of an object is included in the lifetimes of its subobjects).
Let p be a subobject of a complete object C[n], and p′ be a subobject of p. Then, the lifetime of
p is included in the lifetime of p′.

Proof. There are two cases:
� If p′ is an inheritance subobject of p, then Lemma 10.3.8 (p. 215) applies.
� Otherwise, p′ ⊆C[n] pf ⊆C[n] pB where pf is an array cell of some �eld f of some inheritance
subobject pB of p, so we may conclude by Lemma 10.3.9 (p. 215).

10.3.3 Formal account of RAII

We can now prove general properties about the RAII paradigm.

Theorem II.8 (Subobjects are constructed and destructed before deallocation). If
a subobject has its complete object deallocated, then the subobject has been constructed and de-
structed before, in this order.

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 215

Formalization of object lifetime Chapter 10

Proof. Let s→ s′ be the deallocation step of an object ℓ. Then, by the low-level invariant, we
know that the construction state of ℓ is Destructed at s, so is it for any subobject p of ℓ. As it
is Unconstructed at the initial state of the program, then, by the intermediate values theorem,
(ℓ, p) passes through a step Constructed→ StartedDestructing, which corresponds to entering the
destructor. Again, before this step, (ℓ, p) passes through a step BasesConstructed→ Constructed,
which corresponds to leaving the constructor body.

Theorem II.9 (Objects destructed when program exits). At the end of the program,
all objects were destructed.

Proof. It su�ces to show that at the �nal step, there are no allocated objects. This can be
shown thanks to the structure of the �nal step. The result then follows from the above lemma.

This theorem is not true in the presence of a free store (nothing guarantees that delete has
been called for each dynamically allocated object).

10.3.4 Subobjects of di�erent complete objects

In general, in a real-world C++ program (except for embedded systems, where dynamic
memory allocation is not necessarily permitted), there is no information about whether two
complete objects created by new have their lifetimes included, disjoint or overlapping.

However, in our model where all objects are in stack, RAII can be extended to a stack
discipline for object lifetimes 8.

Lemma 10.3.10. Consider an object location ℓ. If it is valid:

G.LocType(ℓ) = (C, n)

but outside the list Ω(S,K) of stack objects, then all n cells of ℓ are Destructed.

Proof. This can be proved as an additional run-time invariant. It needs, however, the run-time
invariant about the precise construction states of objects (kind invariants): for the particular
step (κ++-destr-array-nil-kcontinue, p. 193) when an object is about to be deallocated, this object
must be Destructed.

Hypothesis 10.3.1. We assume a total order over object locations, such that the operation
�retrieve a new fresh location in the object store� be strictly increasing.

In practice, object locations may range over Z, for instance. This is the case in our Coq devel-
opment.

Lemma 10.3.11. If s→ s′ is a step changing the construction state of a subobject (ℓ, p), then
there can be no object ℓ′ > ℓ in the set of allocated objects.

Proof. It su�ces to show that the set of allocated objects forms an ordered stack w.r.t. <. This
can be proved as an invariant along with the run-time invariant.

Then, operations over construction states only modify the top-most object of this stack,
which is maximal w.r.t. <.

8. Coq development: theory ConstrorderOther.

216 Tahina Ramananandro

10.4 Safety of scalar �eld accesses

Lemma 10.3.12. If s →∗ s′ and if ℓ is a complete object belonging to the set of allocated
objects for states s and s′, then, for any subobject (ℓ′, p′) such that ℓ′ < ℓ, the construction state
of (ℓ′, p′) does not change between s and s′.

Proof. Follows from the above lemma, by transitivity.

Lemma 10.3.13. If, between s and s′, an object in the allocation set of s is no longer in the
allocation set of s′, then it is deallocated between s and s′.

Proof. Trivial induction on the length of the execution path s→∗ s′.

Lemma 10.3.14. Let ℓ be an allocated object, and s0 → s be an allocation step of some object
ℓ′ 6= ℓ. Then, if s→∗ s′ and if (ℓ, p) changes its construction state between s and s′, then ℓ′ is
deallocated between s and s′.

Proof. The small-step semantic rule for object allocation s0 → s only allocates ℓ′, with ℓ already
allocated, so ℓ′ > ℓ.

Let c be the construction state of (ℓ, p) at s. Then, by the intermediate values theorem,
there exists s →∗ s1 → s2 →

∗ s′ such that s1 → s2 makes (ℓ, p) from c to S(c). At this step, ℓ
is necessarily the top-most object on the allocation stack, so in particular, at s1, ℓ′ is no longer
allocated. So, by the previous lemma, there exists a deallocation step for ℓ′ between s and s1.

Lemma 10.3.12 (p. 217) and Lemma 10.3.14 (p. 217) give us the following corollary:

Theorem II.10 (Lifetimes of subobjects of two di�erent complete objects). The life-
times of two subobjects of di�erent complete objects are either disjoint, or included in one
another.

10.4 Safety of scalar �eld accesses

In κ++, reading the contents of a scalar �eld puts no precondition on the construction state
of the �eld. We can, however, show 9 that (κ++-�eld-scalar-read, p. 185) gets stuck whenever the
�eld is not in the Constructed state:

Theorem II.11 (Safety of scalar �eld accesses). If a scalar �eld has a value, then it is
Constructed.

Proof. There are only three rules modifying the value of a �eld:
� (κ++-�eld-scalar-write, p. 186) explicitly requires the �eld being Constructed

� (κ++-initscalar, p. 191), giving the �eld its initial value, switches the �eld construction
state to Constructed

� (κ++-destr-�elds-cons-scalar, p. 194) erases the value of the �eld, so the hypothesis no
longer holds

The run-time invariant is needed to discriminate between a scalar and a structure �eld when
its construction state changes.

9. Coq development: theory ScalarFields.

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 217

Formalization of object lifetime Chapter 10

In particular, if a scalar �eld has a value, then the corresponding complete object is not
deallocated. This means that, once an object is deallocated, it has actually been turned back
into raw memory. However, it is possible to go further in showing the safety of �eld accesses,
once (κ++-constr-cons-�eld-scalar-no-init, p. 192) is disabled, enforcing each scalar �eld to be
explicitly initialized during object construction.

Theorem II.12 (Strong safety of scalar �eld accesses). If rule (κ++-constr-cons-�eld-scalar-
no-init, p. 192) is disabled, then a �eld has a value if, and only if, it is Constructed.

10.5 The generalized dynamic type of a subobject

In this section, we study the properties of the generalized dynamic type (de�ned in Sec-
tion 9.4.3.4 p. 187) of a subobject, i.e. the type of the class considered as most-derived object
for the purpose of polymorphic operations.

10.5.1 Safety of virtual function calls

Our de�nition of the generalized dynamic type is a ground to the safety of virtual function
calls:

Theorem II.13 (Safety of virtual function calls). Whenever a virtual function is called,
the subobject bound to its this parameter is in state BasesConstructed, Constructed or StartedDestructing,
so that all its base class subobjects are Constructed.

Proof. Rule (κ++-virtual-funcall, p. 188) governs κ++ virtual function calls of the form x->Cf(. . .).
It requires the generalized dynamic type of the subobject σ referred to by x to be well-de�ned;
then, it adjusts the this pointer within the function to an inheritance subobject σ@σ′ of σ.
There are two cases:

� If the most-derived object of which σ is an inheritance subobject is Constructed, then by
Lemma 10.3.8 (p. 215), σ and σ@σ′ as well.

� Otherwise, by (κ++-dyntype-pending, p. 188), there exists a subobject σ◦ such that σ =
σ◦@σ1, and σ◦ is in state BasesConstructed or StartedConstructing. If σ@σ′ = σ◦ (i.e. the
subobject referred to by x is exactly the generalized dynamic type, and at the same time
requires no this pointer adjustment), then the result is trivial. Otherwise, σ@σ′ is an
inheritance subobject of σ◦, so we can conclude using Invariant 10.1.1 (p. 208) and
Lemma 10.3.8 (p. 215).

10.5.2 Unicity

We aim at showing that, for any most-derived object, there is at most one inheritance
subobject that can play the role of generalized dynamic type for a given execution state 10.

So, tailoring rules (κ++-dyntype-constructed, p. 187) and (κ++-dyntype-pending, p. 188), we
can rede�ne the notion of generalized dynamic type only depending on the most-derived object.

10. Coq development: theory Dyntype.

218 Tahina Ramananandro

10.5 The generalized dynamic type of a subobject

By language abuse, we say that σ is the generalized dynamic type of the structure array cell
(ℓ, α, i) and we write getgDynType(ℓ, α, i, σ) :

G.LocType(ℓ) = (D,n)

D[n] −〈α〉
A
→ C[m] G.ConstrState(ℓ, (α, i, (Repeated, C :: ǫ))) = Constructed

G ⊢ getgDynType(ℓ, α, i, (Repeated, C :: ǫ))
(κ++-getgdyntype-constructed)

G.LocType(ℓ) = (D,n) D[n] −〈α〉
A
→ C[m] −〈(i, σ′)〉

CI
→ B′

G.ConstrState(ℓ, (α, i, σ′)) = c c = BasesConstructed ∨ c = StartedDestructing

G ⊢ getgDynType(ℓ, α, i, σ′)
(κ++-getgdyntype-pending)

Immediately, we then have that:

Lemma 10.5.1. Let ℓ be a complete object of type D[n], and α such that D[n] −〈α〉
A
→ C[m]

and 0 ≤ i < m. Let σ′ be an inheritance subobject of C of static type B. Then, if σ′ is the
generalized dynamic type of the structure array cell (ℓ, α, i), then, for any inheritance subobject
σ′′ of B, σ′ is the generalized dynamic type of the subobject (ℓ, (α, i, σ′@σ′′)):

getgDynType(ℓ, α, i, σ′)⇒ gDynType(ℓ, α, i, σ′@σ′′, B, σ′, σ′′)

Lemma 10.5.2. Conversely, for any inheritance subobject σ of C, if σ′ is the generalized
dynamic type of (ℓ, (α, i, σ)) such that gDynType(ℓ, α, i, σ, B, σ′, σ′′) for some B and σ′′, then σ′

is the generalized dynamic type of the array cell (ℓ, α, i) and there is an inheritance subobject
σ′′ of σ′ such that σ = σ′@σ′′.

gDynType(ℓ, α, i, σ, B, σ′, σ′′)⇒ getgDynType(ℓ, α, i, σ′) ∧ σ = σ′@σ′′

In other words, the generalized dynamic type can be obtained using the getgDynType pred-
icate, whereas gDynType can be used to determine whether a subobject has its generalized
dynamic type de�ned, and how the corresponding inheritance subobject of the generalized
dynamic type can be deduced.

Moreover, an inheritance subobject has its generalized dynamic type de�ned only if it is a
base of the generalized dynamic type of the array cell. Indeed, consider the following example:

struct A {virtual void f ();};

struct B1: virtual A {};

struct B2: virtual A {virtual void f ();};

struct C: B1, B2 {}

Consider an instance of C. Then, during the execution of the constructor body of its base B2,
the corresponding B2 subobject is BasesConstructed, so it is the generalized dynamic type of the
array cell. But, even though the subobject B1 is already Constructed, its generalized dynamic
type is unde�ned, as B1 is not a base of B2. So, calling f on B1 has unde�ned behaviour.

Now, we can reason about the generalized dynamic type of an array cell instead of consid-
ering the generalized dynamic type of a subobject.

Lemma 10.5.3. Considering a most-derived object, there can be at most one inheritance sub-
object in construction state BasesConstructed or StartedDestructing.

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 219

Formalization of object lifetime Chapter 10

Proof. If there are two of them, say p1 and p2, then there are two cases:
� say p2 is a base of p1. Then, as p1 is BasesConstructed or StartedDestructing, all its bases

are Constructed, in particular p2, which is absurd.
� otherwise, there is a subobject p and two direct bases p′1, p

′
2, say in this order, such that

each pi is a base of p′i. Then, p
′
2 is Unconstructed or Destructed, so p2 as well, which is

absurd.

Lemma 10.5.4. The generalized dynamic type of an array cell, if any, is unique.

Proof. If the most-derived object is Constructed, then the result is trivial. Otherwise, it follows
from the lemma above.

Those lemmata entail the following immediate corollary:

Theorem II.14 (Unicity of generalized dynamic type). The generalized dynamic type
of a subobject, if any, is unique.

10.5.3 Evolution

However, the generalized dynamic type of an object does not continuously exist: during the
lifetime of the subobject, while the most-derived object is not yet Constructed, the generalized
dynamic type of the array cell does exist only if there is an inheritance subobject that is
BasesConstructed or StartedDestructing.

Indeed, in the above example, after exiting from the body of the constructor for B1, but
before entering the body of the constructor for B2, there is no constructor body in progress for
the instance of C, so there is no generalized dynamic type for the instance C.

Lemma 10.5.5. The following table summarizes the evolution of the dynamic type of an array
cell (ℓ, α, i) of type C (writing σ◦ = (Repeated, C :: ǫ) the corresponding most-derived object)

When the subobject goes from to
then the dynamic type

of (ℓ, α, i) goes

from to

(ℓ, (α, i, σ)) Unconstructed StartedConstructing Unde�ned Unde�ned

(ℓ, (α, i, σ)) StartedConstructing BasesConstructed Unde�ned σ

(ℓ, (α, i, σ)) with
σ 6= σ◦

BasesConstructed Constructed σ Unde�ned

(ℓ, α, i, σ◦) BasesConstructed Constructed σ◦ σ◦

(ℓ, α, i, σ◦) Constructed StartedDestructing σ◦ σ◦

(ℓ, (α, i, σ)) with
σ 6= σ◦

Constructed StartedDestructing Unde�ned σ

(ℓ, α, i, σ) StartedDestructing DestructingBases σ Unde�ned

(ℓ, α, i, σ) DestructingBases Destructed Unde�ned Unde�ned

(ℓ′, (α′, i′, σ′))
with (ℓ, α, i) 6=
(ℓ′, α′, i′)

Any Any Does not change

220 Tahina Ramananandro

10.5 The generalized dynamic type of a subobject

Theorem II.15 (Evolution of the generalized dynamic type). The following table sum-
marizes the evolution of the dynamic types of a subobject depending on the evolution of con-
struction states.

When the subobject goes from to
then the dynamic

type of
goes from to

(ℓ, (α, i, σ)) Unconstructed StartedConstructing (ℓ, (α, i, σ′)) Undef. Undef.

(ℓ, (α, i, σ)) StartedConstructing BasesConstructed
(ℓ, (α, i, σ@σ′′)) Undef. σ

(ℓ, (α, i, σ′)) not a
base of σ

Undef. Undef.

(ℓ, (α, i, σ)) with

σ 6= σ◦
BasesConstructed Constructed

(ℓ, (α, i, σ@σ′′)) σ Undef.

(ℓ, (α, i, σ′)) not a
base of σ

Undef. Undef.

(ℓ, (α, i, σ◦)) BasesConstructed Constructed (ℓ, (α, i, σ′)) σ◦ σ◦

(ℓ, (α, i, σ◦)) Constructed StartedDestructing (ℓ, (α, i, σ′)) σ◦ σ◦

(ℓ, (α, i, σ)) with

σ 6= σ◦
Constructed StartedDestructing

(ℓ, (α, i, (σ@σ′′))) Undef. σ

(ℓ, (α, i, σ′)) not a
base of σ

Undef. Undef.

(ℓ, α, i, σ) StartedDestructing DestructingBases
(ℓ, ((α, i, (σ@σ′′))) σ Undef.

(ℓ, (α, i, σ′)) not a
base of σ

Undef. Undef.

(ℓ, (α, i, σ)) DestructingBases Destructed (ℓ, (α, i, σ′)) Undef. Undef.

(ℓ, (α, i, σ)) Any Any

(ℓ′, (α′, i′, σ′))
with (ℓ, α, i) 6=
(ℓ′, α′, i′)

Does not change

In more detail:

Lemma 10.5.6. When a subobject p becomes BasesConstructed or StartedDestructing:
� its dynamic type changes and becomes de�ned, as well as the dynamic type of all of its

bases.
� the dynamic type of all other subobjects (which are not bases of p) cannot change to a

de�ned value.

Proof. � The �rst case is obvious, as the dynamic type cannot be p before it becomes
BasesConstructed.

� In the second case, consider a subobject p′′ which is not a base of p. If its dynamic type
is, say, p′, then, necessarily, p′ is in state BasesConstructed or StartedDestructing (as the
most-derived object cannot be Constructed). By unicity, p′ = p, which is absurd.

Conversely:

Lemma 10.5.7. � If the most-derived object becomes Constructed, then nothing happens
on the dynamic types.

� Otherwise, if a subobject p becomes other than BasesConstructed or StartedDestructing,
then the dynamic type of an object cannot change to a de�ned value.

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 221

Formalization of object lifetime Chapter 10

� Otherwise, if no subobject changes its construction state, then no dynamic type changes.

Proof. � In the �rst case, the construction state of the most-derived object passes from
BasesConstructed to Constructed. So, in both cases, the dynamic type of all bases has
already switched to the most-derived object.

� In the second case, consider a subobject p′′ whose dynamic type becomes de�ned as a
subobject p′ in state BasesConstructed or StartedDestructing. Then, p′ 6= p (as p is no
longer in such a construction state). So, p′ was not a�ected by the construction state
change, so it was already BasesConstructed or StartedDestructing before the construction
state change. So, the dynamic type of p′′ was already p′, so it has not changed.

� The third case is trivial.

The diagram below 11 depicts the evolution of the generalized dynamic type on the given
class hierarchy:

struct A {};

struct B1: virtual A {};

struct B2: virtual A {};

struct D: B1, B2 {};

A:

A B1 B2 D B2 B1 A

B1:

B1 D B1

B2:

B2 D B2

D:

D

BC C

BC C

BC C

SC BC C SD DB

SD DB

SD DB

SD DB

Destructed

This diagram, grounded on the results of this section, points out the precise times when
the generalized dynamic type changes, shown by the thick transitions in the diagram above:
when all bases are constructed, and just before the construction of �elds, the pointers to virtual
tables change for the subobject and all of its bases, as well as entering the destructor. Those
execution points correspond to precise times when a compiler implementation has to actually
change the dynamic type data to re�ect the dynamic type at the implementation level. Indeed,
we shall de�ne in Section 11.1.2.2 (p. 238) a �set dynamic type� operation in an intermediate
language to which we will compile κ++. Following the diagram above, this operation shall be
used when compiling a constructor, before constructing the �elds of an object (Section 11.5.9.2
p. 266), and, when compiling a destructor, upon entering it (Section 11.5.10 p. 268).

11. where

SC=StartedConstructing

BC=BasesConstructed

C =Constructed

SD=StartedDestructing

DB=DestructingBases

222 Tahina Ramananandro

Chapter 11

Veri�ed compilation of object

construction and destruction

In this chapter, we aim at compiling κ++ to a language featuring low-level memory accesses.
We propose a compilation strategy, which we describe in Section 11.1 (p. 223), separating
the compilation of construction-speci�c features from the other features related to multiple
inheritance (virtual function dispatch, casts).

To this purpose, we de�ne an intermediate language called Ds++, which is a superset of the
s++ intermediate language de�ned in Chapter 4 (p. 71). In addition to C++ multiple inheritance,
Ds++ features speci�c operations to manage the changes of generalized dynamic types during
construction, but no longer construction and destruction themselves. We describe the syntax of
Ds++ in Section 11.2 (p. 245), its semantic elements in Section 11.3 (p. 246), and its semantic
rules in Section 11.4 (p. 248). Then, we build a compiler from κ++ to Ds++ in Section 11.5
(p. 254), which we prove to be correct by exhibiting a compilation invariant in Section 11.6
(p. 271).

Once construction-speci�c features have been compiled away, we adapt the compiler from
s++ to the Vcm target language with low-level memory accesses and virtual tables, which we
de�ned in Chapter 7 (p. 135). To take the additional features of Ds++ into account, we have
to enrich Vcm with a new read-only data structure, virtual table tables, leading to the CVcm
language, which we describe in Section 11.7 (p. 286) Then, in Section 11.8 (p. 293), we compile
those additional features, essentially corresponding to navigating through virtual table tables
and updating the pointers to virtual tables in objects. Finally, we prove the correctness of this
compiler by exhibiting a compilation invariant in Section 11.9 (p. 302).

Our work is machine-checked with the Coq proof assistant. The proofs are available at [71].

11.1 Strategy

In this section, we describe in more detail, but from a higher level, our compilation strategy,
to investigate which features are to be added to s++ to de�ne the Ds++ language.

11.1.1 Constructors and destructors

In κ++ constructors and destructors are special member functions, with their own calling
conventions: constructors can be called only in initializers during construction, and destructors

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 223

Veri�ed compilation of object construction and destruction Chapter 11

only during destruction. By contrast, we aim at compiling them to ordinary static (not class
member) functions, and call them ordinarily as appropriate, as there is no notion of object
construction and destruction in Ds++.

In C++, a class can have several constructors, distinguished by the types of their arguments.
By contrast, a class has exactly one destructor, with no argument.

11.1.1.1 Scope

In C++, an object declared within a scope block has to be constructed when declared, and
destructed anywhere the scope block is being left. Consider the following C++ code:

struct A;

void foo(int, A*);

int bar();

struct A {

A(int i) {

foo(i, this);

return;

}

~A() {

foo(3, this);

return;

}

};

main() {

while(true) {

A a(1);

foo(2, &a);

if(bar()) {

break;

}

}

return 0;

}

The compilation of this example introduces the following design issues:
� The constructor and destructor for A should be compiled to ordinary static (not class-

member) functions with a further this argument
� Compiling the declaration of a must call the constructor chosen following the types of the

arguments given at the level of the declaration
� The constructor must be called at each entry of the loop body block, as each loop turn

creates a new block scope
� The destructor must be called just before leaving the block scope of a: at the normal end

of each loop turn, and when breaking the loop.
Those compilation design choices roughly yield the following compiled �pseudo-C� code:

struct A {};

void _constr_A(A* this, int i) {

224 Tahina Ramananandro

11.1 Strategy

foo(i, this);

return;

};

void _destr_A(A* this) {

foo(3, this);

return;

}

main () {

while(true) {

A a;

_constr_A(&a, 1);

foo(2, &a);

if(bar()) {

_destr_A(&a);

break;

}

_destr_A(&a);

}

return 0;

}

11.1.1.2 Initializers

If a structure has a scalar �eld, then the constructor is meant to give the member its initial
value. There are two ways to do this. The �rst naive version is to give values to �elds directly
in the body of the constructor, mimicking Java's initialization model:

struct A {

int i;

A(int i0) {

this->i = i0;

return;

}

};

However, C++ has its own mechanism, which is to use an initializer for i at the level of the
constructors of A:

struct A {

int i;

A(int i0): i(i0) {

return;

}

};

Conceptually, using an initializer for i shows that the notion of construction also applies for
the �elds of a structure. The presence of initializers in C++ guarantees that the corresponding
�eld will be constructed, whereas a heavy program analysis is required in the naive case where
�elds are given their values in the body of the constructor.

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 225

Veri�ed compilation of object construction and destruction Chapter 11

But in practice, those two pieces of code have very similar behaviours, so they will be
compiled to Ds++ in similar ways:

struct A {

int i;

}

void _constr_A(A* this, int i0) {

this->i0 = i;

return;

}

11.1.1.3 Structure data members (aggregation)

Like C, C++ features embedded structures through data members, as in the following ex-
ample:

struct A {};

struct B {

A a;

};

In C++, a structure is required to take care of the construction and destruction of its embedded
structure data members. This means that the constructor (resp. destructor) of B is responsible
for calling the constructor (resp. destructor) of A for its data member a. To this purpose, the
user should also provide, at the level of the constructors of B, an initializer for its structure �eld
a, specifying which constructor of A to use and which arguments. (Nothing similar is needed
for the destructor, as a class has exactly one destructor, with no arguments). For instance:

struct A {

A(int) {}

~A() {}

};

struct B {

A a;

B(): a(18) {}

~B() {}

};

So, compiling the constructor (resp. destructor) of B makes it call the constructor (resp. de-
structor) for A with a this pointer argument adjusted to the data member a.

struct A {};

struct B {

A a;

};

void _constr_A(A* this, int) {

return;

}

void _destr_A(A* this) {

226 Tahina Ramananandro

11.1 Strategy

return;

}

void _constr_B(B* this) {

_constr_A(&(this->a), 18);

return;

}

void _destr_B(B* this) {

_destr_A(&(this->a));

return;

}

11.1.1.4 Resource acquisition is initialization (RAII)

In C++, data members of a class must be fully available in the bodies of its constructors and
destructor. This allows the following example, where a structure A opens a �le, which is used
by B embedding a in a �eld, in such a way that B reads from the �le during its construction,
and writes to the �le during its destruction:

#define file_descr int

file_descr open();

char read(file_descr);

void write(file_descr, char);

void close(file_descr);

struct A {

file_descr fd;

A() : fd(open()) {

}

~A() {

close(fd);

}

};

struct B {

A a;

B(): a() {

read(a.fd);

}

~B() {

write(a.fd, 42);

}

};

Then, this requires that the �le be opened before the beginning of the body of B(), and not be
closed before the end of the execution of the body of ~B(). C++ solves this problem by enforcing
destruction to behave symmetrically of construction:

� A() constructor must be called before the body of B() executes
� and symmetrically ~A() destructor must be called after the body of ~B() has executed.

This paradigm is called resource acquisition is initialization (RAII). In terms of compilation,
this would yield:

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 227

Veri�ed compilation of object construction and destruction Chapter 11

struct A {

file_descr fd;

};

struct B {

A a;

};

void _constr_A(A* this) {

this->fd = open();

return;

};

void _destr_A(A* this) {

close(this->fd);

return;

};

void _constr_B(B* this) {

_constr_A(&(this->a));

read(&(this->a)->fd);

return;

};

void _destr_B(B* this) {

write(&(this->a)->fd, 42);

_destr_A(&(this->a));

return;

}

Following the same principle:
� if a structure has several �elds, then they are destructed in the reverse order of their
construction

� if a structure has an array �eld, then its cells are destructed in the reverse order of their
construction

11.1.1.5 Non-virtual inheritance

Besides structure aggregation, C++ also proposes inheritance. The RAII paradigm also ap-
plies to base class subobjects, so that in the above example B can be written using inheritance
rather than aggregation. Then, the user should provide an initializer for the A base class sub-
object of B:

struct B: A {

B(): A() {

read(((A*) this)->fd);

}

~B() {

write(((A*) this)->fd, 42);

}

};

Similarly to aggregation, the A base class subobject must be constructed before the execution
of the constructor body of B, and destructed after the execution of the constructor body of

228 Tahina Ramananandro

11.1 Strategy

A. Similarly to the �eld access for constructing/destructing a structure �eld, calling the con-
structor/destructor for A needs to adjust the this pointer argument to access the A base class
subobject:

struct B: A {};

void _constr_B(B* this) {

_constr_A((A*) this);

read(((A*) this)->fd);

return;

};

void _destr_B(B* this) {

write(((A*) this)->fd, 42);

_destr_A((A*) this);

return;

}

C++ proposes multiple inheritance: a class may inherit from several base classes. Then, following
the RAII principe, they are to be destructed in the reverse order of their construction.

11.1.1.6 Virtual inheritance

Thanks to multiple inheritance, a same class X may be inherited from another class C
through several paths. Ordinarily, then, each path corresponds to its own �copy� of X. But C++
also proposes shared, or virtual, inheritance, where a base class V may be declared virtual.
In this case, all base classes declaring a virtual base class V will share their �copy� of V (inde-
pendently of the other �copies� of V declared as non-virtual base class subobjects), as in the
following hierarchy:

struct V {

V() {}

~V() {}

};

struct B1 : virtual V {

B1(): V() {}

~B1() {}

};

struct B2 : virtual V {

B2(): V() {}

~B2() {}

};

struct D : B1, B2 {

D(): B1(), B2() {}

~D() {}

};

Consider the construction of an instance of D.
Naively, if we followed a tree-based approach, construction of D would start by constructing

B1, which in turn would �rst initiate the construction of V. Then, after the completion of B1,

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 229

Veri�ed compilation of object construction and destruction Chapter 11

the construction of B2 would start. Would it again initiate the construction of V, which is a
shared subobject between B1 and B2 No: in C++ each subobject has to be constructed only
once.

To enforce this, C++ distinguishes the notion of most-derived object : an object that is not
a base class subobject of any other object. Then, each object only constructs and destructs
its own non-virtual base class subobjects, except for a most-derived object, which, beforehand,
must �rst construct (resp. last destruct) its direct or indirect virtual base class subobjects in
such an order that, if V1 and V2 are (direct or indirect) virtual bases of some class B such
that V1 is a virtual base of B2, then V1 is constructed before (resp. destructed after) V2. This
guarantees that, during the construction (resp. destruction) of any object, all its base class
subobjects, including its virtual base class subobjects, are already (resp. still) constructed.

So, when constructing the B1 and B2 subobjects, the called B1() and B2() constructors
must not try to construct the virtual base subobject V, which has already been constructed by
the most-derived object D: the initializer for V in B1() and B2() are ignored.

To this purpose, constructors and destructors need to be tailored accordingly to behave
di�erently for a most-derived object than for a base class subobject. One approach can be to
compile them with a further argument, a boolean indicating whether the object being con-
structed is a most-derived object requiring its virtual base subobjects to be constructed:

struct V {};

struct B1 : virtual V {};

struct B2 : virtual V {};

struct D : B1, B2 {};

void _constr_V(bool isMostDerived, V* this) {}

void _destr_V(bool isMostDerived, V* this) {}

void _constr_B1(bool isMostDerived, B1* this) {

if(isMostDerived) {

_constr_V(false, (V*) this);

}

}

void _destr_B1(bool isMostDerived, B1* this) {

if(isMostDerived) {

_destr_V(false, (V*) this);

}

}

void _constr_B2(bool isMostDerived, B2* this) {

if(isMostDerived) {

_constr_V(false, (V*) this);

}

}

void _destr_B2(bool isMostDerived, B2* this) {

if(isMostDerived) {

_destr_V(false, (V*) this);

}

}

void _constr_D(bool isMostDerived, D* this) {

if(isMostDerived) {

230 Tahina Ramananandro

11.1 Strategy

_constr_V(false, (V*) this);

}

_constr_B1(false, (B1*) this)

_constr_B2(false, (B2*) this);

}

void _destr_D(bool isMostDerived, D* this) {

_destr_B2(false, (B2*) this)

_destr_B1(false, (B1*) this);

if(isMostDerived) {

_destr_V(false, (V*) this);

}

}

Like non-virtual base class construction, the constructor or destructor for the virtual base class
has to be called with a this pointer argument adjusted to the virtual base class subobject.

Alternately, a constructor or destructor may be duplicated into two versions, one as a most-
derived object, another as a base-class subobject (for brevity, only constructors are shown
below):

void _constr_V_mostDerived(V* this) {}

void _constr_V_subobject(V* this) {}

void _constr_B1_mostDerived(B1* this) {

_constr_V(false, (V*) this);

}

void _constr_B1_subobject(B1* this) {}

void _constr_B2(B2* this) {

_constr_V(false, (V*) this);

}

void _constr_D_most_derived(D* this) {

_constr_V(false, (V*) this);

_constr_B1(false, (B1*) this)

_constr_B2(false, (B2*) this);

}

void _constr_D_subobject(D* this) {

_constr_B1(false, (B1*) this)

_constr_B2(false, (B2*) this);

}

The _mostDerived constructor could also call the _subobject counterpart (and vice-versa
for the destructor), but we shall see further down why that �optimization� on code size is not
performed.

11.1.1.7 Inheritance vs. aggregation

Inheritance and aggregation are distinct notions: the base class subobjects of a structure
�eld must be constructed separately from the base class subobjects of its containing class. In
particular, the constructor for a structure �eld must not forget its virtual base class subobjects:
a structure �eld is a most-derived object, as it is not a base class subobject of any other object,
in particular of the object containing the structure �eld:

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 231

Veri�ed compilation of object construction and destruction Chapter 11

struct V {

V() {}

};

struct A : virtual V {

A(): V() {}

};

struct B : virtual V {

A a;

B(): V(), a() {}

};

struct D : B {

D(): V(), B() {}

};

In the above hierarchy, V is a virtual base class of B (and D), but there is another unrelated
copy of V in the A data member of B, which is a most-derived object, so the constructor called
for a must not forget this copy of V.

To harmonize, C++ mandates that the base class subobjects of an object, but including
their data member subobjects, be constructed before (resp. destructed after) its data member
subobjects. That is, in B, a (including all its base class subobjects, in particular its copy of V)
is constructed after the V virtual base class subobject of B.

struct V {};

struct A : virtual V {};

struct B : virtual V {

A a;

};

struct D : B {};

void _constr_V(bool isMostDerived, V* this) {}

void _constr_A(bool isMostDerived, A* this) {

if(isMostDerived) {

_constr_V(false, (V*) this);

}

}

void _constr_B(bool isMostDerived, B* this) {

if(isMostDerived) {

_constr_V(false, (V*) this);

}

_constr_A(true, &(this->a)); /* a is most-derived regardless of B */

}

void _constr_D(bool isMostDerived, D* this) {

if(isMostDerived) {

_constr_V(false, (V*) this);

}

_constr_B(false, (B*) this);

}

232 Tahina Ramananandro

11.1 Strategy

We shall see further down another reason why own data member subobjects are constructed
after base class subobjects.

11.1.2 Virtual functions during construction and destruction

11.1.2.1 Motivation

One of the main characteristics of inheritance is that a virtual function of a base class can
be overridden in a derived class, even if the derived class is known only at run time.

Once entering the body of a constructor or destructor, the virtual functions of the class
and its base classes are available, not only to direct calls from the constructor/destructor body,
but also indirectly through other functions themselves directly or indirectly called from the
constructor/destructor body. Consider the following example:

struct A {

virtual void f();

};

void g(A* a) {

a->f();

}

struct B: A {

virtual void f();

B(): A() {

g((A*) this);

}

};

struct D: B {

virtual void f();

D(): B() {

g((A*) this);

}

};

main () {

D d;

}

Consider the instance d of D, C++ constructs the base class subobjects in the following order:
A, then B, and �nally D.

Now, during the construction of an instance of D, we focus on the constructor body for B.
Contrary to Java, where the corresponding function of the most-derived class D would have
been called, C++ avoids a potential use of uninitialized parts of D, by choosing the function
declared in class B instead of D.

As the call occurs only indirectly, through another function g whose code may not be known
to B, this particular choice cannot be resolved by a static program transformation, but only
at run time. This corrects a bug in Wasserrab's Ph.D. thesis [84], where constructors only
transform virtual function calls in the constructor body, where indeed some of them are known
at compile-time to resolve to B instead of D, but erroneously ignoring indirect calls.

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 233

Veri�ed compilation of object construction and destruction Chapter 11

This example illustrates that the polymorphic behaviour of an object changes during its
construction. Our κ++ language features construction states to model such behaviour changes,
and from these construction states can be inferred the notion of generalized dynamic type, that
is the subobject considered as the most-derived object for polymorphic operations (calling a
virtual function or performing a dynamic cast).

In Ds++, we would like to explicitly determine the precise times when the generalized dy-
namic type has to change, by transposing the results of Section 10.5 (p. 218) without referring
to construction states any longer. To this purpose, we de�ne the �generalized dynamic type� in
Ds++ as a property of any subobject that can be explicitly modi�ed by a new operation, �set
dynamic type�, to indicate that the current being constructed should be considered as the most-
derived object for polymorphic behaviour. (This is by contrast to κ++, where the �generalized
dynamic type� was de�ned as a consequence of construction states.)

In practice, the �set dynamic type� operation must occur once all base class subobjects are
constructed. So, the constructors for this class hierarchy would be compiled as:

struct A {

virtual void f();

};

struct B: A {

virtual void f();

};

struct D: B {

virtual void f();

};

void g(A* a) {

a->f();

}

void _constr_A(bool isMostDerived, A* this) {

set dynamic type of this to A;

}

void _constr_B(bool isMostDerived, B* this) {

_constr_A(false, (A*) this);

set dynamic type of this to B;

g((A*) this);

}

void _constr_D(bool isMostDerived, D* this) {

_constr_B(false, (A*) this);

set dynamic type of this to D;

g((A*) this);

}

Aggregation and polymorphic behaviour The main di�erence between inheritance and
aggregation is that the polymorphic behaviour of a class is related to the polymorphic behaviour
of its base class subobjects, but not related to the polymorphic behaviour of its data members,
thus pointing out the fact that the two notions of aggregation and inheritance are semantically
distinct, commonly dubbed as �has-a vs. is-a�.

To illustrate this independence, consider the following example:

234 Tahina Ramananandro

11.1 Strategy

struct X {

X(int) {}

};

struct A {

virtual int f();

};

int g(A* a) {

return a->f();

}

struct B: A {

X x;

virtual int f();

B(): x(g((A*) this)) {}

};

struct D: B {

virtual int f();

D(): B() {}

};

The virtual functions of a class are available for use in the arguments of its data member
initializers, as well as during the construction and destruction of the latter. This means that
the �set dynamic type� operation has to be performed before constructing the data member
subobjects.

This justi�es that data members have to be constructed after (resp. destructed before) the
non-virtual and virtual base class subobjects of an object.

So, the above example yields:

struct X {};

struct A {

virtual int f();

};

int g(A* a) {

return a->f();

}

struct B: A {

X x;

virtual int f();

};

struct D: B {

virtual int f();

};

void _constr_X(bool isMostDerived, X* this, int) {

set dynamic type of this to X;

}

void _constr_A(bool isMostDerived, A* this) {

set dynamic type of this to A;

}

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 235

Veri�ed compilation of object construction and destruction Chapter 11

void _constr_B(bool isMostDerived, B* this) {

_constr_A(false, (A*) this);

set dynamic type of this to B;

_constr_X(true, &(this->x), g((A*) this));

}

void _constr_D(bool isMostDerived, D* this) {

_constr_B(false, (B*) this);

set dynamic type of this to D;

}

To be more precise, the �set dynamic type� operation must act on an object and all its base
class subobjects (to re�ect the right polymorphic behaviour on A), but not their data member
subobjects (in particular the polymorphic behaviour of x). We shall see in Section 11.1.2.2
(p. 238) the inner workings of the �set dynamic type� operation.

Summary To sum up, a κ++ constructor of a class having direct or indirect virtual or non-
virtual bases, or structure array or scalar �elds, should be compiled into a Ds++ static function
as roughly follows (we formalize this compilation step more precisely in Section 11.5.9 p. 264):

void _constr_C(bool isMostDerived, C* this, ...) {

if(isMostDerived) {

for each V direct or indirect virtual base of C {

execute the initializer for V, ending with

_constr_V(false, (V*) this, ...);

}

}

for each B direct non-virtual base of C {

execute the initializer for B, ending with

_constr_B(false, (B*) this, ...);

}

set dynamic type to C;

for each m data member of C {

if m is a scalar {

execute the initializer for m, ending with

this->m = value;

} else, m is a structure A[n] {

for(i = 0, i < n, ++i) {

execute the initializer for m[i], ending with

_constr_A(true, &(this->m[i]), ...);

}

}

};

execute the constructor body;

return;

}

Destructors behave symmetrically, with the simpli�cation that a destructor has no user-
de�ned arguments, so that no counterpart to �initializers� exist. The body of the destructor is

236 Tahina Ramananandro

11.1 Strategy

executed �rst, before destructing the �elds in reverse declaration order, then the direct non-
virtual bases, and �nally, if the destructed object is a most-derived object, the direct or indirect
virtual bases.

The destruction of a base-class subobject needs to call the corresponding class destructor,
as well as the destruction of each cell of a structure array data member, with the di�erence
that structure array cells are most-derived objects, so their virtual base subobjects also have
to be destructed.

By contrast, nothing has to be done for a scalar �eld. (In κ++, their value were erased, but we
know that no κ++ program would have a de�ned behaviour when accessing a destructed scalar
�eld. As far as our compiler is concerned, we wish to prove the preservation of the semantics of
programs that actually have a well-de�ned behaviour, thus following the principle of �garbage
in, garbage out�.)

A virtual function can be called in the body of the destructor (or indirectly during the
destruction of a data member, which was not explicitly allowed in the C++ Standard until we
submitted a modi�cation request integrated into the latest C++11, cf. Section 9.5.1 p. 196), the
destructed object being considered as the most-derived object. Thus, the destructor call has to
�rst set the dynamic type. However, such an operation is useless if the destructor is called for a
most-derived object: in such a case, the dynamic type would not change through this operation.

Finally, the compilation scheme for a destructor is as roughly follows (we formalize this
compilation step more precisely in Section 11.5.10 p. 268):

void _destr_C(bool isMostDerived, C* this) {

if(!isMostDerived) {

set dynamic type to C;

}

execute the destructor body;

for each f data member of C in reverse order {

if f is a scalar {

} else, f is a structure A[n] {

for(i = n-1, i >= 0, --i) {

_destr_A(true, &(this->f[i]));

}

}

};

for each B direct non-virtual base of C in reverse order {

_destr_B(false, (B*) this);

}

if(isMostDerived) {

for each V direct or indirect virtual base of C in reverse order {

execute the initializer for V, ending with

_destr_V(false, (V*) this);

}

}

return;

}

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 237

Veri�ed compilation of object construction and destruction Chapter 11

11.1.2.2 The �set dynamic type� operation

In κ++, each base class subobject (ℓ, (α, i, σ))) of a most-derived object (ℓ, (α, i, (Repeated, C ::
ǫ))) has a �generalized dynamic type� whose value is computed depending on the construction
states of the most-derived object (ℓ, (α, i, (Repeated, C :: ǫ))) and all of its base class subobjects:

� if the most-derived object (ℓ, (α, i, (Repeated, C :: ǫ))) is Constructed, then the generalized
dynamic type of (ℓ, (α, i, σ)) is ((Repeated, C :: ǫ), σ)

� otherwise, if (ℓ, (α, i, σ)) is a base class subobject of some (ℓ, (α, i, σ◦)) such that (ℓ, (α, i, σ◦))
is BasesConstructed, or StartedDestructing, then the generalized dynamic type of (ℓ, (α, i, σ))
is (σ◦, σ

′) with σ′ such that σ = σ◦@σ′.
� otherwise, the generalized dynamic type of (ℓ, (α, i, σ)) is unde�ned.
In Ds++, subobjects no longer have construction states, so the notion of generalized dy-

namic type has to be rede�ned manually. To this purpose, we introduce a new operation,
setDynType(π), to explicitly modify the generalized dynamic type of a subobject π and all of
its base class subobjects at the same time. That is, considering the following hierarchy:

struct X {

virtual void u();

};

void t(X* x) {

x->u();

}

struct Y : X {

virtual void u();

Y(): X() {

t((X*) this);

}

};

struct Z : Y {

virtual void u();

};

the constructor for Y is roughly turned into:

void _constr_Y(bool isMostDerived, Y* this, ...) {

_constr_X((X*) this);

set dynamic type to Y;

t((X*) this);

return;

}

so that, when t is called with the X subobject of Y, then u of Y is called: that is, the �set dynamic
type� operation turns the generalized dynamic type of not only the Y, but also the X subobject,
to the Y subobject.

Real-world C++ compilers such as GNU GCC implement the polymorphic behaviour of C++
classes with multiple inheritance using virtual tables: each object of a class having at least one
virtual base, or one virtual function de�ned in itself or in one of its direct or indirect bases,
has a pointer to a read-only memory zone, called a virtual table containing pointers to virtual

238 Tahina Ramananandro

11.1 Strategy

functions and o�sets to virtual bases, so that virtual function dispatch and access to a virtual
base be realized in constant time and memory access.

So, in practice, when compiling Ds++ into a more low-level CVcm language, the �set dynamic
type� operation corresponds to the time when the pointers to virtual tables of subobjects are
to be changed. We formalize this compilation step in Section 11.8.6 (p. 297).

Naively, the �set dynamic type� operation on a subobject of some static type A could write
pointers to the virtual tables of A considered as a most-derived object. However, considering
the following hierarchy with virtual inheritance:

struct V {

int vi;

};

struct B: virtual V {};

struct D: B {

int di;

};

Concretely, a B subobject of D sees its V subobject at an o�set di�erent than if B were a true
most-derived object, because of the further data member of D. As accessing V from a B subobject
requires reading the virtual table, this shows that di�erent virtual tables have to be used. But,
consequently, this also requires to know the path from the most-derived object to the subobject
being constructed (or destructed). In real world, this cannot be done by a computation on the
pointer to the subobject, so a further argument is required to indicate this path, which we call
the construction path.

In practice, this further argument corresponds to a pointer to the virtual table table (VTT)
of σ◦, that is a table where to �nd the pointers to virtual tables for base class subobjects of
(ℓ, (α, i, σ◦)) when setting the generalized dynamic type of (ℓ, (α, i, σ◦)). Those virtual tables
are called construction virtual tables (although also used similarly during destruction). Such
implementations are common in several compilers, and standardized for the Itanium platform
by the Common Vendor ABI.

So, the �set dynamic type� operation has two arguments: the pointer to the subobject for
which the generalized dynamic type is to be modi�ed, as well as the dynamic type of all of its
bases, and the corresponding construction path. The operation has a de�ned semantics only
if the pointer to the subobject actually corresponds to the construction path: that is, when
setting the generalized dynamic type of (ℓ, (α, i, σ◦)) with the construction path σ◦.

This in turn entails the need for further operations in Ds++ to use those construction paths:
� retrieve the path to a most-derived object of a class C
� given a construction path σ, retrieve the construction path of a direct non-virtual base,
or of a direct or indirect virtual base (only for most-derived objects).

We also add a third operation on construction paths to determine whether a most-derived is
being constructed, thus replacing the boolean argument of the constructor with the construction
path:

void _constr_C(void* _cpath, C* this, ...) {

if(_cpath represents a most-derived C object) {

for each V direct or indirect virtual base of C {

execute the initializer for V, ending with

_cpath’ = construction path from _cpath to the virtual base V;

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 239

Veri�ed compilation of object construction and destruction Chapter 11

_constr_V(_cpath’, (V*) this, ...);

}

}

for each B direct non-virtual base of C {

execute the initializer for B, ending with

_cpath’ = construction path from _cpath to the direct non-virtual base B;

_constr_B(_cpath’, (B*) this, ...);

}

set dynamic type to C;

for each m data member of C {

if m is a scalar {

execute the initializer for m, ending with

this->m = value;

} else, m is a structure A[n] {

for(i = 0, i < n, ++i) {

execute the initializer for m[i], ending with

_cpath’ = construction path of a most-derived A;

_constr_A(_cpath’, &(this->m[i]), ...);

}

}

};

execute the constructor body;

return;

}

Then, it is the responsibility of the caller to pass the right construction path to the constructor:
it shall be the path representing a most-derived object, except in initializers for base-class
subobjects as seen above.

In more detail, if δ is a partial function retrieving the generalized dynamic type δ(ℓ, (α, i, σ)) =
(σ◦, σ

′) of a subobject (ℓ, (α, i, σ)) in Ds++, then the �set dynamic type� operation should update
δ. We write it as δ[setDynType(ℓ, (α, i, σ◦))].

One of the invariants to prove within the κ++-to-Ds++ compiler is that, if a subobject
(ℓ, (α, i, σ)) has a well-de�ned generalized dynamic type σ◦ in κ++, then it has the same gener-
alized dynamic type in Ds++: if gDynType(ℓ, α, i, σ, B, σ◦, σ

′), then δ(σ) = (σ◦, σ
′).

Moreover, one of the invariants to prove within the Ds++-to-CVcm compiler is that, if
δ(σ) = (σ◦, σ

′) in Ds++, then σ = σ◦@σ′ and the corresponding CVcm concrete object holds a
pointer to the virtual table of σ′ considering σ◦ as the �most-derived object� for the purpose of
polymorphic behaviour.

However, we saw in Section 5.5.5 (p. 117) that an object may share its pointer to virtual
table with one of its non-virtual bases, called the primary base. The actual choice of this non-
virtual primary base is left to the layout algorithm. Thus, the Ds++-to-CVcm invariant has to
be rephrased accordingly. In fact, we also saw that for any inheritance path σ, there exists a
unique inheritance path reducePath(σ) and a path σ′′ such that σ = reducePath(σ)@σ′′ with σ′′

being a primary path of maximal length. So, if a subobject is a primary base class subobject
of another, then they have the same reduced path. But a class can share its virtual table
with its primary bases. So, the Ds++-to-CVcm invariant is: if δ(σ) = (σ◦, σ

′) in Ds++, then
σ = σ◦@σ′ and the corresponding CVcm concrete object holds a pointer to the virtual table

240 Tahina Ramananandro

11.1 Strategy

of reducePath(σ′) considering σ◦ as the �most-derived object� for the purpose of polymorphic
behaviour.

Our question is now: which semantics should be given to the �set dynamic type� operator
that would make both invariants hold?

A naive attempt: leave others alone One solution could be to say that only the generalized
dynamic types of (ℓ, (α, i, σ◦)) and all of its base class subobjects would change:

δ[setDynType(ℓ, (α, i, σ◦))] : (ℓ, (α, i, σ◦@σ′)) 7→ (σ◦, σ
′)

(ℓ, (α, i, σ))
7→ δ(ℓ, (α, i, σ))

σ not a base of σ◦

(ℓ′′, (α′′, i′′, σ′′))
7→ δ(ℓ′′, (α′′, i′′, σ′′))

(ℓ′′, α′′, i′′) 6= (ℓ, α, i)

However, this would break the Ds++-to-CVcm invariant. Consider the following simple example:

struct B {

virtual void f();

};

struct D : B {

virtual void f();

};

When destructing an instance of D, we �rst call the destructor of D, then the destructor of
B, which performs a setDynType operation on the B subobject. In CVcm, this operation would
be compiled into writing a pointer to a B virtual table into the B subobject. But, as we
saw in Section 5.3.1 (p. 98) and Section 5.5.5 (p. 117) a layout algorithm may (and actually
does, in the case of GNU GCC, or the Common Vendor ABI for Itanium) choose B as the
primary base of D, thus sharing B's and D's pointer to virtual table. In Ds++, the generalized
dynamic type of D remains de�ned to ((Repeated, D :: ǫ), (Repeated, D :: ǫ)) through the
setDynType operation on the B subobject, but the generalized dynamic type of B becomes
((Repeated, D :: B :: ǫ), (Repeated, B :: ǫ)). So, the pointer to virtual table of D contains
information valid only for B but not for D.

This illustrates the discrepancy of the generalized dynamic types of a class and its primary
base.

A further naive attempt: erase everyone To dissipate the problem, we could argue that,
in κ++, when setting the generalized dynamic type of an object (ℓ, (α, i, σ◦)), all base class
subobjects of the same most-derived object but that are not base class subobjects of σ◦ have
their generalized dynamic type unde�ned. We could mimic this behaviour into Ds++:

δ[setDynType(ℓ, (α, i, σ◦))] : (ℓ, (α, i, σ◦@σ′)) 7→ (σ◦, σ
′)

(ℓ, (α, i, σ))
7→ Unde�ned

σ not a base of σ◦

(ℓ′′, (α′′, i′′, σ′′))
7→ δ(ℓ′′, (α′′, i′′, σ′′))

(ℓ′′, α′′, i′′) 6= (ℓ, α, i)

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 241

Veri�ed compilation of object construction and destruction Chapter 11

Then, in CVcm, no information on pointers to virtual tables is available for objects whose
dynamic type is unde�ned in κ++. However, pointers to virtual tables are used not only for
polymorphic operations (virtual function calls, dynamic casts), but also to access the virtual
base class subobjects of an object. And this must be possible when all base class subobjects
have been constructed, but also during the lifetime of the subobject, even once leaving the
constructor body. Consider the following example:

struct B1;

B1* b1;

struct V {

int i;

V() : i(18) {}

};

struct B1 : virtual V {

B1() : V() {

b1 = this;

}

};

struct B2 {

B2 () {

((V*) b1)->i++;

};

};

struct D : B1, B2 {};

Consider an instance of D. Then, we construct in order: V , B1, B2, then D. But, once leaving
the constructor body of B1, the lifetime of B1 subobject begins, so the lifetime of B1 starts, and
this before entering the constructor body of B2 which triggers a �set dynamic type� operation.
If generalized dynamic type information for B1 (which is not a base of B2) were erased in Ds++,
then we would have no further information on the pointer to the virtual table held by B1, so
the access to V from B1 inside the constructor of B2, which should be valid as B1 has entered
its lifetime, cannot be proved feasible in CVcm.

This problem also illustrates the need for a condition in Ds++ to allow accessing the virtual
base subobjects of an object. In κ++, this can be explained thanks to the construction states
of the object, which must be BasesConstructed, Constructed, or StartedDestructing. But Ds++
no longer has construction states for objects, and in CVcm we know that accessing a virtual
base needs the pointer to virtual table even though the generalized dynamic type is no longer
de�ned in κ++. It then turns out that the generalized dynamic type must still be de�ned in
Ds++.

Our solution When setting the dynamic type of some subobject (ℓ, (α, i, σ◦)), we know that
in CVcm we overwrite the pointers to virtual tables of those objects (ℓ, (α, i, σ)) such that σ◦

is a primary non-virtual base subobject of σ. Then, we could mimic this behaviour into Ds++.
However, it would not be clean to have layout-dependent elements in Ds++. But in fact, Ds++ can
be parameterized by a notion of primary non-virtual path (Repeated, l), say Π(l) ∈ {true, false};
no speci�c property about Π is required in Ds++ except its decidability. Using this parameter,
we can now give our solution to model the �set dynamic type� operation. We adopt this solution

242 Tahina Ramananandro

11.1 Strategy

in our Ds++ language, more precisely in Section 11.4.10 (p. 252).

δ[setDynType(ℓ, (α, i, σ◦))] : (ℓ, (α, i, σ◦@σ′)) 7→ (σ◦, σ
′)

(ℓ, (α, i, σ))
7→ Unde�nedσ not a base of σ◦

σ◦ = σ@(Repeated, l) with Π(l) = true

(ℓ, (α, i, σ))
7→ δ(ℓ, (α, i, σ))σ not a base of σ◦

σ◦ not a primary base of σ

(ℓ′′, (α′′, i′′, σ′′))
7→ δ(ℓ′′, (α′′, i′′, σ′′))

(ℓ′′, α′′, i′′) 6= (ℓ, α, i)

Then, in Ds++, accessing a virtual base of (ℓ, (α, i, σ)) would be allowed if and only if its
generalized dynamic type is de�ned, regardless of its value. This leads to the further κ++-to-
Ds++ invariant: any Constructed subobject in κ++ has its generalized dynamic type de�ned in
Ds++.

Recall that part of the Ds++-to-CVcm invariant is to show that if δ(ℓ, (α, i, σ)) = (σ◦, σ
′),

then σ = σ◦@σ′. Thanks to this invariant, we can show that the access to virtual bases only
depends on (σ◦@σ′), that is on σ but not individually on σ◦ and σ′. This illustrates the behaviour
of some early Microsoft Visual C++ compilers, which stored for each object two pointers: the
one being a pointer to the table of virtual base o�sets, while the other being a pointer to the
table of virtual functions and dynamic casts, modeling true C++ polymorphic behaviour. But
such layout has �nally been abandoned to reduce the size of objects (the sizes of virtual tables
being deemed neglected before the sizes of all objects potentially constructed during program
lifetime).

11.1.3 Optimizations

Compile-time vs. run-time o�set resolution When constructing an object, adjustments
of �this� have to be performed to construct the subobjects of this o�set. The o�sets of direct
non-virtual subobjects, and data members, are known at compile time and do not change
whether the object being constructed is a most-derived object or an inheritance subobject. But
this is not the case for virtual bases, only known for most-derived objects. However, virtual
base subobjects are being constructed only within the constructor for a most-derived object.
So, we have to provide, in Ds++, an operation allowing to access the virtual base subobjects of
a most-derived object without referring to its generalized dynamic type (which is unde�ned at
this time). Then, those adjustments can be compiled into CVcm through constant o�set shifts.

But the question also arises when compiling the setDynType(ℓ, (α, i, σ)) operation from Ds++
to CVcm: for each inheritance subobject σ′ of σ, update the pointer to its virtual table. Such
a traversal of paths could require reading virtual tables if σ has virtual base subobjects. But
again, those accesses to virtual tables can be avoided if we know that σ is a most-derived object:
then, the o�sets to all of its base class subobjects are known at compile time. So, we choose to
parameterize the setDynType operation in Ds++ with a compile-time boolean �ag, true only if
a most-derived object, or an object with no virtual base subobjects, is constructed.

Those two elements lead us to �nally choose to duplicate constructors and destructors,
instead of adding a run-time test to discriminate between a most-derived object and a subobject.

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 243

Veri�ed compilation of object construction and destruction Chapter 11

Restriction to dynamic classes All classes do not necessarily require a pointer to virtual
table: only those having virtual functions, or virtual bases. Such classes are called dynamic, or
polymorphic classes. So, while it is not necessary to introduce this distinction as early as in
the semantics of Ds++, however, an optimization can occur in the Ds++-to-CVcm compilation,
by stating Ds++-to-CVcm invariants only for subobject of dynamic class type, so that the
operations on construction paths, as well as setDynType, can be compiled into no-ops for non-
dynamic classes.

It is worth noting that this notion is part of the Standard, in such a way that dynamic casts
from an object of non-dynamic class type are not allowed.

244 Tahina Ramananandro

11.2 Syntax of the Ds++ intermediate language

11.2 Syntax of the Ds++ intermediate language

The Ds++ language 1 is a superset of s++ (Chapter 4 p. 71) featuring static and non-virtual
function calls and C++ object-oriented operations such as data member and array accesses,
static and dynamic casts, and virtual function calls.

Ds++ di�ers from κ++ by having no constructors or destructors. Instead, Ds++ is based
on s++ to which it adds construction-speci�c features: the �set dynamic type� operation, and
construction path operations (most-derived path, direct non-virtual base path, or virtual base
path).

n ∈ N

op, . . . : Op Built-in operation
this , x, . . . : x Variables
B,C, . . . : ClassName Classes
fname : FieldName Field names
mname : MethodName Method names
sfname : StaticFunName Static function names
BaseKind ::= DirectNonVirtual | Virtual Base kind for construction paths

st ::= if (x) st⊤ else st⊥ Conditional
| st1; st2 Statement sequence
| skip Do nothing
| loop st Loop
| {st} Statement block
| exit n Leaving n blocks
| x′ := x Variable value duplication
| x′ := op(x∗) Built-in operation
| x′ := x->C::mname(x∗) Non-virtual function call
| x′ := sfname(x∗) Static function call
| return x? Return from function
| x′ := x->Cfname Field read
| x->Cfname := x′ Scalar �eld write
| x′ := &x[xindex]C Array cell access
| x′ := x1 ==C x2 Pointer equality test
| x′ := dynamic_cast〈B〉C(x) Dynamic cast
| x′ := x->Cmname(x∗) Virtual function call
| x′ := static_cast〈B〉C(x) Static cast
| {C x[size]; st} Complete object allocation
| x′ := base_cast〈BaseKind , B〉C(x) Special cast to base
| x′ := setDynType(x, xcpath)

Bool

C Set dynamic type
| x′ := rootPath(C) Most-derived construction path
| x′ := basePath(x, C,BaseKind , B) Base construction path

1. Coq development: theory Interm.

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 245

Veri�ed compilation of object construction and destruction Chapter 11

StaticFunDef ::= (x∗){body} Static function
MethodDef ::= this->(x∗){st} Class member function

(method) de�nition
ProgramCode =
{

hierarchy : Hierarchy ; Class hierarchy
staticfuns : StaticFunName 7 7→ StaticFunDef ; Static functions
methods : Class ×MethodName 7 7→MethodDef ; Class method codes

main : st ; Entry point
}

Like κ++, our Ds++ language only features stack objects declared in scope blocks. It allows
no manual memory management: no kind of new (neither for dynamic memory allocation, nor
for construction at an explicit memory location) or delete is provided.

11.3 Ds++ semantic elements

We formalized a small-step style semantics for the Ds++ language. Contrary to κ++, but
similarly to s++ and many Compcert-like intermediate languages, the execution stack is pro-
vided with a simple �block or callframe� continuation stack to precisely model each step of
computation.

11.3.1 Values

A Ds++ value is either a value of built-in type (integer, �oating-point number, etc.), a pointer
to a subobject, a null pointer, as in s++, or also a construction paths (pairing the class of the
most-derived object with an inheritance subobject from this class).

ℓ, . . . ∈ Λ Complete object location
Ptr ::= (ℓ, (α, i, σ)) Pointer to subobject
Val ::= Builtin Value of built-in type

| Ptr Non-null pointer
| NULLC Null pointer of C class type
| (C, σ) Construction path (inheritance path from C)

11.3.2 Execution state

Similarly to s++, a Ds++ execution state of the small-step semantics is composed of the
current statement to execute, the list of further statements to execute in the same block, the
environment (mapping of values to variables), the class types and array sizes of complete objects,
and the values of scalar �elds. Additionally, a Ds++ execution state also features:

� a continuation stack, which is a list of frames, each frame being either of:
� leaving a block, with the stack object location to deallocate and the further statements
to execute after leaving the block

246 Tahina Ramananandro

11.3 Ds++ semantic elements

� returning from a function, with the caller variable to store the result (if any), the caller
environment, and the further statements to execute on resumption

� the location of the next object to be allocated
� the generalized dynamic types of subobjects (which are the last remnants of the κ++
construction states)

For presentation convenience, the types and sizes of complete objects, the scalar �eld values,
and the generalized dynamic types of objects are grouped into a common global state, so that
a state is written as a tuple (st , st∗, e,K,G) where st is the current statement, st∗ is the list
of further statements, K the continuation stack, and G the global state grouping the store, the
scalar �eld values, and the generalized dynamic types of subobjects.

Env = x→Val ? Environment
e ::= Env

Frame ::= Block(ℓ?, st∗) Further statements
after leaving a block

| Callframe(x?, st∗, e) Return from function
K ::= Frame∗ Continuation stack
Path ::= σ
G =
{

LocType : Λ→ (ClassName × N>0)? ; Complete object types
FieldValue : Ptr × FieldSig→Val ? ; Scalar �eld values
gDynType : Ptr → (Path × Path)? ; Generalized dynamic type of objects
}
State ::= (st , st∗, e,K,G) Execution state

Contrary to κ++, a complete object location is given its class type and array size only within
its de�ning block: once the block exits, those data are removed from the store. However, the
store is guaranteed to never reuse the same location for two objects allocated at di�erent times,
thanks to the following hypotheses to determine the location of the next object to be allocated:

Hypothesis 11.3.1. The set ℓ of object locations is assumed to be equipped with 2:
� an element ℓ◦ which will be the location of the �rst object allocated by the program
� a strict order <
� a function next : Λ→ Λ such that ℓ < next(ℓ) for any location ℓ

11.3.3 Initial and �nal states

Consider a program of the form

ClassDecl∗StaticFunDef ∗MethodDef ∗{st}

Then, the initial state is the state featuring the entry point statement with no allocated object
at all, and an empty continuation stack:

2. In our Coq development, this is the case as ℓ = positive. Moreover, those hypotheses are analogous to
Hypothesis 10.3.1 (p. 216) otherwise used for reasoning about the construction states of di�erent subobjects.

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 247

Veri�ed compilation of object construction and destruction Chapter 11

De�nition 11.3.1. The initial state is:

(st , ǫ,∅, ǫ,G◦)

where G◦ is the initial global state:

∀ℓ : G◦.LocType(ℓ) = ⊥ ∀π, f : G◦.FieldValue(π, f) = ⊥ ∀π : G◦.gDynType(π) = ⊥

G◦.ℓnext = ℓ◦

In a �nal state, the entry point statement returns with an integer, after having exited from
all blocks and functions:

De�nition 11.3.2. A state (st , st∗, e,K,G) is �nal with return value i if, and only if, all the
following conditions hold:

st = return x e(x) = i ∈ Builtin K = ǫ

Note that this de�nition does not a priori prevent from having some undestructed objects
in the global state G of a �nal state. However, as we shall see later, the semantics preservation
of the compiler from κ++ to Ds++ shall prove that it is not possible to produce such a program
by compiling a κ++ program.

11.4 Ds++ Semantic rules

The small-step semantics of Ds++ is given by the transition relation → between two transi-
tion states, de�ned in this section.

11.4.1 Built-in operations and structured control

In an execution state (st , stl , e,K,G), st is the statement to run, and L is a pipeline of
pending statements within the same block, each pending enclosing block being represented by a
frame in the continuation stack K. However, the pipeline stl is not guaranteed to be executed,
in particular if the statement is exit or return.

Most structured control behaves similarly as in other Compcert-like languages: conditionals,
sequences, in�nite loops, and return from call (once all statements blocks within the current
function have been left), as well as variable value duplication, and built-in operations (Hy-
pothesis 3.2.2 p. 68). Ds++ reuses the corresponding rules of s++ de�ned in Section 4.4.1.1
(p. 83)

11.4.2 Blocks with no stack objects

In this section, we �rst de�ne the semantics of the blocks that do not de�ne objects. Entering
such a block embeds the pipeline into a new enclosing block without attached object, as a new
stack frame added on top of the continuation stack:

({st}, stl , e, K, G)
→ (st , ǫ, e, Block(⊥, stl) :: K, G)

(Ds++-block-no-obj)

248 Tahina Ramananandro

11.4 Ds++ Semantic rules

exit n leaves n blocks.

(exit 0, stl , e, K, G)
→ (skip , stl , e, K, G)

(Ds++-exit-0)

(exit (S n), stl , e, Block(⊥, stl ′) :: K, G)
→ (exit n , stl ′, e, K, G)

(Ds++-exit-S)

returning from within a block with no stack objects �rst dismisses this block.

(return x?, stl , e, (⊥, stl ′) :: K, G)
→ (return x?, stl ′, e, K, G)

(Ds++-return-block-no-obj)

11.4.3 Static and non-virtual functions

Ds++ allows to call static (non-class-member) functions, as well as class member functions
in a non-virtual fashion (as in C++ with explicit quali�cation), except that the class where to
explicitly �nd the function must be exactly the static type of the object on which to perform
the call: there is no implicit cast. The rules are exactly the same as for s++ (Section 4.4.2 p. 85).

11.4.4 Field and array accesses; pointer comparison

The semantic rules of Ds++ for data member and array accesses are unchanged since s++
(Section 4.4.3 p. 86).

They di�er from κ++ by the fact that there are no condition on object construction states (as
such a notion no longer appears in Ds++). Moreover, contrary to κ++ where an object location
has to be checked not to be in the set of deallocated objects, it is enough to have in Ds++
that the object location is associated with a class and a number of cells in the heap (as object
deallocation actually removes heap data in Ds++, by contrast to κ++).

To access an array cell, we need to express array cell indices:

Hypothesis 11.4.1. The set of values of built-in types Builtin is assumed to contain:
� Z to model array cell indexes 3

� the Boolean values true and false

By contrast to κ++, Ds++ poses no condition about when to forbid writing data to a scalar
�eld, as Ds++ no longer features construction states. Likewise, contrary to κ++, Ds++ does not
require �elds to be unassigned.

3. Requiring built-in values to include the whole Z may not seem realistic; however, we could argue that the
problem would arise only after CVcm, as all object sizes are known statically at compile time (there are only
stack-allocated objects), so that a static check on those requested sizes could tell whether memory accesses �t
in realistic bounds (o�sets less than 231 for instance).

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 249

Veri�ed compilation of object construction and destruction Chapter 11

11.4.5 Blocks with stack objects

Ds++ can allocate and deallocate stack objects attached with a block, but has no notion of
construction or destruction (as constructors and destructors are to be compiled into ordinary
static functions).

The following rule allocates a complete object of n instances of C:

n > 0 ℓ = G.ℓnext
G ′ = G[LocType(ℓ)← (C, n)][ℓnext ← next(ℓ)] e′ = e[c← (ℓ, ǫ, 0, (Repeated, C :: ǫ))]

({C c[n]; st}, stl , e , K, G)
→ (st , ǫ, e′, Block(ℓ, stl) :: K, G ′)

(Ds++-block-some)
When leaving a block attached to a complete object, this object is deallocated, i.e. removed

from the heap, by contrast to κ++. However, the location of the next object to be allocated
does not change.

G ′ = G[LocType(ℓ)← ⊥]

(exit (S n), stl ′, e, Block(ℓ, stl) :: K, G)
→ (exit n , stl , e, K, G ′)

(Ds++-exit-some)

G ′ = G[LocType(ℓ)← ⊥]

(return x?, stl ′, e, Block(ℓ, stl) :: K, G)
→ (return x?, stl , e, K, G ′)

(Ds++-return-some)

11.4.6 Virtual function call

Operations such as virtual function call or dynamic cast require to know the generalized
dynamic type of the object on which to operate. Contrary to κ++, where the generalized dynamic
was computed from the construction states of the objects, in Ds++ the generalized dynamic type
is explicitly immediately available in the global state. Thus, it su�ces to retrieve the generalized
dynamic type from this part of the global state, before dispatching the virtual function or
performing the dynamic cast using the generalized dynamic type as the most-derived type.

The Ds++ virtual function call �rst retrieves the generalized dynamic type from the global
state. Once the generalized dynamic type has been determined, it is used as the most-derived
type to perform the virtual function call dispatch through the VFDispatch predicate de�ned in
Section 4.4.6.1 (p. 90):

e(x) = π = (ℓ, (α, i, σ)) G ⊢ π : B G.gDynType(ℓ, α, i, σ) = (σ◦, σ
′)

last(σ◦) = C◦ VFDispatch(C◦, σ
′, f, B′′, σ′′) B′′.f = f(this , varg1, . . . , vargn){body}

∀j, e(xj) = vj e′ = ∅[varg1 ← v1] . . . [vargn ← vn][this ← (ℓ, (α, i, σ◦@σ′′))]

(x? := x->Bf(x1 . . . xn), stl , e , K, G)
→ (body , ǫ, e′, Callframe(x?, stl , e) :: K, G)

(Ds++-virtual-funcall)

250 Tahina Ramananandro

11.4 Ds++ Semantic rules

11.4.7 Dynamic cast

The dynamic cast language operation �rst obtains the generalized dynamic type of the
subobject, then performs the cast under this object considered as a most-derived object, using
the DynCast predicate de�ned in Section 4.4.5.1 (p. 88). As in s++ and κ++, dynamic casts can
be performed only from a dynamic class type (De�nition 4.4.2 p. 89), as required by the C++
Standard [42, 43], corresponding in practice to classes requiring dynamic type data.

However, to prepare for the compilation to CVcm, we add a restriction to the dynamic cast
from a class B to B′: B′ must not be a base class of B, similarly to s++ (s++-dyncast, p. 89);
we shall also see in the compiler from κ++ to Ds++ (Section 11.5.2 p. 257) cast to a base class
may be safely replaced with a static cast following Lemma 4.4.3 (p. 89).

e(x) = π = (ℓ, (α, i, σ1))
G ⊢ π : B G.gDynType(ℓ, α, i, σ1) = (σ◦, σ) DynCast(C, σ,B,B′) = s

s′ = match s with σ′ 7→ (ℓ, (α, i, σ◦@σ′)) | NULL 7→ NULL end e′ = e[x′ ← s′]

(x′ := dynamic_cast〈B′〉B(x), stl , e , K, G)
→ (skip , stl , e′, K, G)

(Ds++-dyncast)

11.4.8 Static cast

In κ++, base class subobjects may be accessed once they are all constructed. So, a static
cast is allowed if the object from which to cast is BasesConstructed, StartedDestructing, but also
Constructed: in the latter case, the generalized dynamic type may not be de�ned in κ++, although
a virtual table would be necessary in CVcm when accessing a virtual base class subobject.

We model this necessity by the need for the generalized dynamic type to be de�ned in Ds++,
although its value is not relevant. The existence of the generalized dynamic type is ensured if
the object is BasesConstructed, or StartedDestructing, in κ++. So, it will be necessary to show, as
part of the κ++-to-Ds++ invariant, that if the object is Constructed in κ++, then its generalized
dynamic type exists in Ds++.

Finally, static cast, based on the usual rules by Wasserrab et al. (cf. Section 4.4.4.1 p. 87)
follows:

e(x) = π = (ℓ, (α, i, σ))
G.gDynType(π) 6= ⊥ G ⊢ π : B StatCast(σ,B,B′, σ′) e′ = e[x′ ← (ℓ, (α, i, σ′))]

(x′ := static_cast〈B′〉B(x), stl , e , K, G)
→ (skip , stl , e′, K, G)

(Ds++-statcast)

11.4.9 Special casts to bases

When a constructor is about to construct one of its direct non-virtual bases (or one of its
virtual bases if the object is the most-derived object), it has to provide the constructor with
an adjusted this pointer.

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 251

Veri�ed compilation of object construction and destruction Chapter 11

We could naively compile this operation using static cast. However, this would require the
generalized dynamic type of the object to be de�ned in Ds++, which is not the case at that
stage of object construction, so static type cannot be used there.

Another reason is that, actually, the o�sets used to perform those special casts to bases
in CVcm are always statically known at compile time. Indeed, such a cast to a virtual base is
only used if the class is a most-derived object (as base class subobjects must not construct or
destruct their virtual base subobjects).

For this reason, there are two cases. The �rst case is a cast to a direct non-virtual base.

e(x) = π = (ℓ, (α, i, σ))
G ⊢ π : D B ∈ DNVD e′ = e[x′ ← (ℓ, (α, i, σ@(Repeated, D :: B :: ǫ)))]

(x′ := base_cast〈DirectNonVirtual, B〉D(x), stl , e , K, G)
→ (skip , stl , e′, K, G)

(Ds++-casttobase-direct-non-virtual)
The second case casts to a virtual base only from a most-derived object:

e(x) = π = (ℓ, (α, i, (Repeated, C :: ǫ)))
G ⊢ π : C B ∈ VC e′ = e[x′ ← (ℓ, (α, i, (Shared, B :: ǫ)))]

(x′ := base_cast〈Virtual, B〉C(x), stl , e , K, G)
→ (skip , stl , e′, K, G)

(Ds++-casttobase-virtual)

11.4.10 Set dynamic type

As we motivated in Section 11.1.2.2 (p. 238), before constructing the data members of an
object π, or before executing the destructor body of the object, its generalized dynamic type
has to be modi�ed, as well as the generalized dynamic type of all of its base class subobjects,
so that they re�ect π as considered a �most-derived object� for the purpose of polymorphic
operations.

But also, the generalized dynamic type of the ancestors of which π is a non-virtual primary
base subobject, have to be erased, to provide for sharing the pointer to virtual table when
compiling Ds++ to CVcm. However, this particular notion of primary base subobject by virtual
pointer sharing is related to object layout, so it should not appear in the semantics of Ds++.

Actually, it su�ces to parameterize the semantics of Ds++ with an arbitrary notion of non-
virtual primary inheritance path:

Hypothesis 11.4.2. We assume given a boolean function Π(l) ∈ {true, false} over non-virtual
inheritance paths. Then, any non-virtual path l is said to be Π-primary (or primary if the
context is clear enough) if, and only if, Π(l) = true.

De�nition 11.4.1. Let D be a class, and σ′, σ two inheritance subobjects of D. σ′ is said to be
a non-virtual Π-primary base of σ (written σ′ ⊆Π

D σ) if, and only if, there exists a Π-primary
non-virtual path l such that σ′ = σ@(Repeated, l).

Then, the following de�nition shows how G.gDynType is modi�ed by the �set dynamic type�
operation 4:

4. Coq development: theory IntermSetDynType.

252 Tahina Ramananandro

11.4 Ds++ Semantic rules

De�nition 11.4.2 (Set dynamic type). If δ : Ptr 7 7→ (Path × Path) is a �nite map retriev-
ing generalized dynamic types to some subobjects, then, given a class D and a pointer to a
subobject π = (ℓ, (α, i, σ◦)) such that σ◦ is an inheritance subobject of D, the following func-
tion written δ[setDynTypeΠD(π)] retrieves the generalized dynamic types of subobjects after the
operation setDynTypeΠD(π):

δ[setDynTypeΠD(ℓ, (α, i, σ◦))] : (ℓ, (α, i, σ◦@σ′)) 7→ (σ◦, σ
′)

(ℓ, (α, i, σ))
7→ ⊥σ not a base of σ◦

σ◦⊆
Π
Dσ

(ℓ, (α, i, σ))
7→ δ(ℓ, (α, i, σ))σ not a base of σ◦

σ◦ 6⊆
Π
Dσ

(ℓ′′, (α′′, i′′, σ′′))
7→ δ(ℓ′′, (α′′, i′′, σ′′))

(ℓ′′, α′′, i′′) 6= (ℓ, α, i)

This operation is well-de�ned if the class hierarchy is well-formed 5.
Finally, the �set dynamic type� operation in itself is de�ned as follows: it takes two arguments

known at run-time, the one being the object on which to operate, and the other being the
construction path. The operation has a de�ned semantics only if the construction path is actually
the inheritance path from the true most-derived object to the subobject on which to operate.

Moreover, the �set dynamic type� operation is �agged with a boolean, true only if the object
on which to operate is a most-derived object, or has no virtual bases. This �ag only introduces
a condition under which the compilation to CVcm can be optimized (in particular, o�sets to
virtual bases are known at compile time in the case of a most-derived object); this �ag has
no in�uence on the actual semantics of the operator (it is always correct, albeit naive, for a
κ++-to-Ds++ compiler to produce setDynTypes invariably �agged false).

e(x) = π = (ℓ, (α, i, σ◦)) e(xpath) = (D, σ◦) G ⊢ 〈ℓ〉 D′[n′] −〈α〉
A
→ D[n] −〈(i, σ)〉

CI
→ C

G ′ = G[gDynType← G.gDynType[setDynTypeΠD(π)]]

b = true⇒ (σ◦ = (Repeated, D :: ǫ) ∨ ∀V : C 6
V
→V

(setDynType(x, xpath)
b
C , stl , e, K, G)

→ (skip , stl , e, K, G ′)

(Ds++-setdyntype)

11.4.11 Construction paths

The setDynType statement shows the actual purpose of construction paths. However, there
remains to describe operators allowing to produce construction paths. There are two of them.

The rootPath operator produces the construction path for a most-derived class D:

e′ = e[x′ ← (D, (Repeated, D :: ǫ))]

(x′ := rootPath(D), stl , e , K, G)
→ (skip , stl , e′, K, G)

(Ds++-rootpath)

5. Coq development: theory IntermSetDynTypeWf.

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 253

Veri�ed compilation of object construction and destruction Chapter 11

Then, given a construction path, the basePath operator produces the construction path for
a direct non-virtual base class, or for a (direct or indirect) virtual path, the latter case only if
the given construction path corresponds to a most-derived object:

e(x) = (D, σ) D −〈σ〉
I
→ C B ∈ DNVC e′ = e[x′ ← (D, σ@(Repeated, C :: B :: ǫ))]

(x′ := basePath(x, C,Repeated, B), stl , e , K, G)
→ (skip , stl , e′, K, G)

(Ds++-basepath-direct-non-virtual)

e(x) = (D, (Repeated, D :: ǫ)) D
V
→ V e′ = e[x′ ← (D, (Shared, V :: ǫ))]

(x′ := basePath(x,D, Shared, V), stl , e , K, G)
→ (skip , stl , e′, K, G)

(Ds++-basepath-virtual)

11.5 A compiler from κ++ to Ds++

Now we present and prove our compilation scheme 6 7 from κ++ to Ds++ by compiling con-
structors and destructors into ordinary functions. We show that other object-oriented features
of C++ irrelevant to construction are left unchanged.

11.5.1 Compilation contexts

In this section, we investigate the parameters on which the compilation of a statement must
depend. We shall group them into a single structure called compilation context.

Variables If v is a κ++ variable name, then it is injectively translated into a Ds++ variable
name written v. This allows us to introduce, for the purpose of compilation, new variables
written w such that, for any v, w: v 6= w. 8 Then, if w is a Ds++ variable, then w is called a
compiler-purpose variable.

However, we shall see that the number of di�erent needed compiler-purpose variables actu-
ally depends on the size of the program.

Blocks Consider a κ++ block de�ning a block-scoped object. Then, the semantics of κ++
makes this object available to the programmer who provides a variable name, say v, to this
purpose:

{

C v[2];

...

}

6. Coq development: theory Cppsem2IntermAux.
7. Coq development: theory Cppsem2Interm.
8. In our Coq development, this is easy because variables are positive integers in binary representation, so

that, for instance, v
def.

2 · v whereas w
def.

2 · w + 1.

254 Tahina Ramananandro

11.5 A compiler from κ++ to Ds++

κ++ stores in v a pointer to the �rst cell of the array declared by the programmer. But v
is not a particular variable: nothing prevents overwriting this value in v. But when compiling
to Ds++, the compiler has to destruct the object when leaving the block. So, a pointer to the
block-scoped object has to be stored into a compiler-purpose variable whose value never changes
during the execution of the block. This compiler-purpose variable will be said to be attached
to the block.

Then, to enforce this, it is necessary that a further embedded block have its attached variable
di�erent from the attached variables of its embedding blocks. This shows that the number of
di�erent needed compiler-purpose variables depends on the size of the program � actually, on
the level of block nesting.

For those two reasons, the compilation of a statement depends on the domain of available
compiler-purpose variables. But it also depends on the variables attached to blocks: when
compiling exit or return, destruction of all exited blocks has to be initiated.

Implicit variables for initializers An initializer terminates with a call to a constructor, or
with a initScalar to give a scalar �eld its initial value. Those statements operate on an implicit
object. In Ds++, this object must be made explicit. So, the compilation of a statement depends
on a compiler-purpose variable introduced to make this object explicit.

Choice of constructors and destructors We chose to duplicate constructors and destruc-
tors at compile time: each class features both a constructor for a most-derived object (called
from within the initializer for a block-scoped object or for a structure data member) on the one
hand, and a constructor for a base class subobject (called from within a base class initializer)
on the other hand. So, it is necessary to statically know which to choose when compiling a
constructor call.

Inlining destructor bodies In κ++, destructor bodies end with return. So, one naive im-
plementation would be to isolate the destructor body in a separate function, which would be
called by the actual compiled destructor. But it is possible to inline the destructor body by
including it into a block, and replacing each return with an appropriate exit. So, the compi-
lation of statements also depends on whether the statement being compiled is within the body
of a destructor.

Summary To sum up the parameters on which the compilation of a statement must depend,
we introduce the notion of compilation context :

De�nition 11.5.1. A compilation context Γ is a tuple whose constituents are:
� Γ.Used is the set of already used compiler-purpose variables 9

� Γ.curobj is the compiler-purpose variable corresponding to the object on which to call the
constructor (irrelevant if not in an initializer)

� Γ.curpath is the compiler-purpose variable corresponding to the construction path with
which to call the constructor (irrelevant if not in an initializer)

� Γ.isMostDerived is a boolean, true if and only if the constructor or destructor for a most-
derived object is to be called (irrelevant if not in an initializer)

9. In the Coq development, compiler-purpose variables are positives, and this set is a �nite interval
[1 . . .maxvar), so it is represented by its upper bound maxvar .

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 255

Veri�ed compilation of object construction and destruction Chapter 11

� Γ.Blocks is the list of the compiler-purpose variables attached to each block: its elements
are of the form ⊥ for blocks de�ning no stack object, or (newobj ,Used , (C, n)) for a block
de�ning a scope object, which is an array of n cells of class C, where newobj is the
compiler-purpose variable corresponding to the object, and Used is the set of already used
compiler-purpose variables at this block

� Γ.curfield is a tuple (C, f) where C is the class of the current object to construct, and f
is the scalar �eld to initialize (irrelevant if not in the initializer of some scalar �eld)

� Γ.isDestructorBody is a boolean, true if and only if the statement being compiled is part of
the body of a destructor

We �x an initial compilation context written Γ◦, such that:

Γ◦.Used = ∅

Γ◦.Blocks = ǫ

Γ◦.isDestructorBody = false

the other values being irrelevant. 10 This initial compilation context serves in the compilation of
the main program statement and function bodies.

Then, we introduce the compiler notations:

De�nition 11.5.2. Given a compilation context Γ, a κ++ statement st is compiled into a Ds++
statement written [[st]]Γ, which is computed by structural induction on st .

By contrast, the compilation of functions, constructors, destructors does not depend on the
compilation context and will be simply written [[·]].

11.5.2 Statements unrelated to construction and destruction

Operations that compile trivially Tests, loops, sequences and built-in operations are triv-
ially transformed:

[[if(b) strue else sfalse]]
Γ

def.
if(b) [[strue]]

Γ else [[sfalse]]
Γ

[[loop s]]Γ
def.
loop [[s]]Γ

[[s1; s2]]
Γ

def.
[[s1]]

Γ; [[s2]]
Γ

[[x′? := op(x1, . . . , xn)]] def.
x′? := op(x1, . . . , xn)

The semantics of �eld and array accesses, as well as non-virtual function calls, are the same
in Ds++ as in κ++, the only di�erence being fewer conditions, so their compilation is trivial:

[[x′ := x->Cf]]
Γ

def.
x′ := x->Cf

[[x->Cf := x′]]Γ
def.

x->Cf := x′

[[x′ := x[xindex]]] def.
x′ := x[xindex]

[[x′? := x->C::f(x1, . . . , xn)]]
Γ

def.
x′? := x->C::f(x1, . . . , xn)

10. In the Coq development, such irrelevant values are actually of option type.

256 Tahina Ramananandro

11.5 A compiler from κ++ to Ds++

Static casts also compile trivially, the access condition does not modify the semantics:

[[x′ := static_cast〈B〉C(x)]]
Γ

def.
x′ := static_cast〈B〉C(x)

Virtual function calls also compile trivially:

[[x′? := x->Cf(x1, . . . , xn)]]
Γ

def.
x′? := x->Cf(x1, . . . , xn)

Static function call The static (non-class-member) functions of the Ds++ compiled program
are not exactly the same as the static functions of the κ++ source program. Indeed, the compiler
adds constructors and destructors along with them. So, we have to follow the same convention
as for variables:

De�nition 11.5.3. Let f be a static function of the κ++ program, then the name of the cor-
responding static function of the Ds++ program will be written f . This name translation is
injective.

Then, static function calls are compiled in a straightforward way:

[[x′? := f(x1, . . . , xn)]]
Γ

def.
x′? := f(x1, . . . , xn)

Dynamic cast The case of dynamic cast from a class B to a class B′ is slightly di�erent.
If B′ is a base of B, then the dynamic cast is turned into a static cast. Otherwise, it is left
unchanged:

[[x′ := dynamic_cast〈B〉C(x)]]
Γ

def.

{

x′ := static_cast〈B〉C(x) if B is a base class of C

x′ := dynamic_cast〈B〉C(x) otherwise

This transformation is not due to construction or destruction 11, but it simpli�es the com-
pilation from Ds++ to CVcm.

Blocks with no stack object A block with no object compiles almost trivially, except that
a block can be automatically exited in κ++. To solve this issue, we systematically append an
exit 1 at the end of the block body before compiling. However, we shall see later how to compile
this exit 1 more precisely.

[[{st}]]Γ
def.
{[[st ; exit 1]]Γ

′

}

where Γ′ is the compilation context updated as follows:

Γ′ = Γ[Blocks← ⊥ :: Γ.Blocks]

11. C++ allows the use of the dynamic cast operator for casts to bases, which are not truly dynamic casts.
Likewise, C++ allows the use of unquali�ed calls for non-virtual function calls, so they have to be di�erentiated
from virtual function calls in a similar way (by statically determining whether there is a base class de�ning
a virtual function with the name and argument types prescribed by the call). We believe that the correctness
proof of such a transformation di�erentiating class member function calls is as simple as di�erentiating static
casts from dynamic casts. However, we argue that such a transformation would have to happen when generating
the κ++ program rather than the Ds++ program, as it is much easier to have them already di�erentiated when
studying the semantics of κ++.

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 257

Veri�ed compilation of object construction and destruction Chapter 11

to re�ect that a new block with no stack object has been entered.
exit 1 will be similarly appended when compiling the body of a block with a stack object.

This allows for trivially compiling skip:

[[skip]]Γ
def.
skip

The transformation trick has to be used also for compiling the body of a function, construc-
tor, destructor, or an initializer: indeed, the semantics of a function body without return gets
stuck only after successfully applying the �automatic block exit� rule in κ++, so this step must
be matched in Ds++.

As [[·]]· is computed by structural induction on the statement, [[st ; exit 1]]Γ
′

is actually
rendered as [[st ′]]Γ

′

;χΓ′ where χΓ′ is an auxiliary to compile exit 1. So we have to ensure that
χΓ′ does not recursively call the compilation function [[·]]·. We shall see later how this is ensured.

11.5.3 Blocks with stack objects

Consider a κ++ block de�ning a stack object of type C, which is a structure array with n
cells:

{C c[n] = inits ; st}

Then, we must take care of the following issues:
� Construct the cells of c from 0 up to n− 1
� Compile its body st remembering its attached object for destruction
� Destruct the cells of c from n− 1 down to 0
As we said before, c is not a particular variable in κ++, nothing prevents it from being

overwritten by the programmer, including in the initializers inits themselves. So, we have to
provide a compiler-purpose variable to remember the object for its destruction, and even for
the construction of its further cells. To make proofs easier, we choose di�erent compiler-purpose
variables for those two purposes.

Structure array cell initializer When constructing an array cell, the construction of all the
other cells is remembered by a unique κ++ continuation stack frame Kconstrarray or Kconstrothercells.
We match this stack frame with a Ds++ Block continuation stack frame. So, each cell initializer
has to be embedded into a Ds++ block with no stack object, so that the further statements of
the enclosing block comprises the construction of the further cells.

So, a compiled initializer performs the following operations:
� access the corresponding array cell as the implicit object to be constructed.
� execute the initializer, with the construction path corresponding to a most-derived object
� leave its block
To this purpose, several compiler-purpose variables are needed 12:
� index for the cell index
� newobj for the pointer to the cell to construct
� newpath for the construction path

12. In our Coq development, the proof is made simpler by reusing those compiler-purpose variables throughout
all the cell initializers for a given array

258 Tahina Ramananandro

11.5 A compiler from κ++ to Ds++

So, if obj is a compiler-purpose variable supposed to hold the pointer to the �rst cell of
the whole array, then we de�ne the compilation compileConstrArrayInit(C, i, init , obj ,Γ) of the
initializer init for the i-th cell as follows:

compileConstrArrayInit(C, i, init , obj ,Γ)
def.

index := i;

({index 6∈ Γ.Used) newobj := obj [index]C ;
newpath := rootPath(C);

{[[init ; exit 1]]Γ
′

}

where Γ′ is the compilation context updated as follows:

Γ′ = Γ [Used← Γ.Used ⊎ {newobj} ⊎ {newpath}]
[curobj← newobj]
[curpath← newpath]
[Blocks← ǫ]

to re�ect that the implicit object on which to call the constructor must be the cell being
constructed. The stack of blocks, however, is emptied, because the blocks to be opened within
the initializer are irrelevant to the blocks enclosing the initializer.

Array initializer When entering a block with a stack object, the execution of the body is
postponed onto the κ++ continuation stack by a Kcontinue frame. We match this stack frame
with a Ds++ Block continuation stack frame. So, the whole construction of the array has to
be embedded in a Ds++ block with no stack object, and this block has to be exited after
constructing the last array cell.

For each cell, its index i is known at compile time, so �nally, the initializers for an array are
compiled by unfolding a �for� loop at compile time 13.

Assuming that the compiler-purpose variable obj holds a pointer to the �rst cell of an array
of C, we de�ne compileConstrArray(C, n, i, inits , obj ,Γ) to compile the inializers for that array
as follows:

compileConstrArray(C, n, i, inits , obj ,Γ)
def.

compileConstrArrayInit(C, i, inits i, obj ,Γ);

(i < n) compileConstrArray(C, n, i+ 1, inits , obj ,Γ)

compileConstrArray(C, n, n, inits , obj ,Γ)
def.

exit 1

Block body Finally, once the construction ends, the body of the block is executed, so that
the block is compiled as:

[[{C c[n] = inits ; st}]]Γ
def.

{
C obj ′[n];
c := obj ′;
obj := obj ′;
{compileConstrArray(C, n, 0, inits , obj ,Γ1)};
[[st ; exit 1]]Γ2

}

13. Coq development: theory ForLoop.

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 259

Veri�ed compilation of object construction and destruction Chapter 11

where Γ1 is the compilation context used during construction, updated as follows:

Γ1 = Γ[Used← Γ.Used ⊎ {obj} ⊎ {obj ′}]

and Γ2 is the compilation context used for the block body, updated as follows:

Γ2 = Γ [Used← Γ.Used ⊎ {obj ′}]
[Blocks← (obj ′,Γ.Used, (C, n)) :: Γ.Used]

to re�ect the new block with a stack object attached to the compiler-purpose variable obj ′.
To make the proof simpler, a di�erent variable obj is used for the construction process. This
explains why Γ1 must be used instead of Γ during the construction process: to prevent obj ′

from reuse.

11.5.4 Constructor names

Let κ be a constructor for class C. Then, κ is compiled into two Ds++ static functions,
whose names are written κtrue corresponding to the constructor for a most-derived object, and
κfalse corresponding to the constructor for a base class subobject. Such names are guaranteed
to be distinct from the names of static functions (f for each κ++ static function f). They are
computed through a function taking as argument the types of the arguments of κ: this is a form
of name mangling 14.

This process is injective, except for a slight optimization: if C has no virtual bases, then
κtrue = κfalse. This allows the same function to serve as constructor for both a most-derived
object and a base class subobject. We shall see later how this peculiarity is exploited when
compiling a constructor, and why it is correct in such cases.

11.5.5 Constructor calls

Now, suppose we are compiling an initializer calling κ. Then, determining whether the
constructor for the most-derived object or for a base class subobject must be called, is done
through the Γ.isMostDerived parameter of the compilation context.

Then, the constructor is called using the implicit pointer to the object to construct, assumed
to be stored in the Γ.curobj compiler-purpose variable, and the construction path assumed to
be stored in the Γ.curpath compiler-purpose variable.

Finally, the semantics of κ++ imposes to have left all blocks within the initializer before
calling the constructor; and so the call terminates the execution of the initializer. In Ds++ this
translates to leaving the block in which the initializer was embedded:

[[κ(x1, . . . , xn)]] def.
κΓ.isMostDerived(Γ.curobj,Γ.curpath, x1, . . . , xn);

exit 1

11.5.6 Destructor names

The destructor for a class C is compiled into two Ds++ static functions, whose names are
written ~Ctrue corresponding to the destructor for a most-derived object, and ~Cfalse correspond-
ing to the destructor for a base class subobject. Such names are guaranteed to be distinct from
the names of static functions, as well as from the names of constructors.

14. Coq development: theory Mangle.

260 Tahina Ramananandro

11.5 A compiler from κ++ to Ds++

This process is injective. Contrary to constructors, we did not optimize destructor sharing.
Indeed, such sharing would impose the use of the destructor for a base-class subobject, even
for a most-derived object. This would make the destructor for a most-derived object perform a
useless setDynType operation. However, such an optimization could be done � and would make
sense � for non-dynamic classes (with no polymorphic behaviour: no virtual bases, no virtual
functions): then, in such cases, even though the setDynType operation were useless in Ds++, it
would have been compiled to a no-op in CVcm, as we shall see later in this chapter.

11.5.7 Leaving blocks

Leaving a block requires to destruct its attached stack object, if any. However, κ++ provides
the feature of leaving several blocks at the same time. In this case, all stack objects attached to
all blocks from which to exit are to be destructed. The issue is that it is necessary to destruct
those objects before leaving any block. Indeed, a block can have several exit points; but if we
destructed objects one block at a time, then any block exit would branch to the same point in
the immediately enclosing block, so that it would be impossible to implement multiple points
of multiple block exits.

So, a exit n statement shall be compiled into �destruct n objects, then exit n blocks�. The
destruction phase looks at Γ.Blocks to retrieve the variables holding the corresponding stack
objects to destruct, and pick n o� the list, destruct them, then discard them from the list.

The destruction of a structure array is simply performed by a destructor call on each cell.

Structure array cell destruction Similarly to cell construction, for each cell of an array
pointed to by the compiler-purpose variable obj , the cell is accessed, but there is no counterpart
to the initializer: instead, the destructor for a most-derived object is directly called, provided
with the construction path corresponding to a most-derived object.

A Kdestrcell frame is present on top of the κ++ continuation stack frame during cell destruc-
tion (at least during the destruction of its non-virtual part). But, contrary to construction, we
match this frame with a Callframe frame in Ds++, corresponding to the return from destructor
call, so it is not necessary to embed the call in a block.

So, we de�ne compileDestrArrayFin(C, i, obj ,Γ) to compile the destruction of the i-th cell is
as follows:

compileDestrArrayFin(C, i, obj ,Γ)
def.

index := i;

({index} ⊎ {newobj} ⊎ {newpath} # Γ) newobj := obj [index]C ;
newpath := rootPath(C);
~Ctrue(newobj , newpath)

Structure array destruction When destructing a stack object, a Kcontinue frame is present
on top of the κ++ continuation stack frame to indicate the pending exit statement (and the
further block objects to destruct). We match this frame with a Block frame in Ds++, so that
array destruction has to be embedded in a block with no stack objects, and leave that block
once the cell 0 has been destructed.

Then, similarly to construction, we de�ne compileDestrArray(C, i, obj ,Γ) to compile the de-
struction of cells i down to 0 by unfolding a �for� loop at compile time:

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 261

Veri�ed compilation of object construction and destruction Chapter 11

compileDestrArray(C, i, obj ,Γ)
def.

compileDestrArrayFin(C, i, obj ,Γ);

(0 ≤ i) compileDestrArray(C, i− 1, obj ,Γ)

compileDestrArray(C,−1, obj ,Γ)
def.

exit 1

Leaving n blocks We de�ne compileDiscard(n,Γ, st) to discard n κ++ blocks from Γ.Blocks,
destructing their block objects on the way, before executing st . However, blocks are discarded
from κ++ without leaving their Ds++ counterparts. There are three cases:

� if n = 0, then st is executed;
� otherwise, if the current block is attached with no object, then the block is simply dis-

carded and the destruction of the further n−1 block objects resumes, but a skip statement
has to be inserted to match the execution steps;

� otherwise, the current block object is destructed, then the further n − 1 block objects
resumes with the new set of already used compiler-purpose variables provided with the
block.

compileDiscard(0,Γ, st)
def.

st

compileDiscard(Sn,Γ, st)
def.

skip;

(Γ.Blocks = ⊥ :: Blocks ′) compileDiscard(n,Γ′, st)
(Γ′ = Γ[Blocks← Blocks ′])

compileDiscard(Sn,Γ, st)
def.

compileDestrArray(C, n− 1, obj ,Γ);

(Γ.Blocks = (obj ,Used ′, (C, n)) :: Blocks ′) compileDiscard(n,Γ′, st)
(Γ′ = Γ[Blocks← Blocks ′][Used← Used ′])

Then, leaving n blocks is compiled as follows:

[[exit n]]Γ
def.

compileDiscard(n,Γ, exit n)

However, such an equation is very di�cult to handle within proofs. To make them easier,
we add a further parameter to the compilation context:

De�nition 11.5.4. In addition to Used, curobj, curpath, isMostDerived,Blocks, curfield, isDestructorBody,
a compilation context Γ also holds a further parameter, furtherBlocks, which is a natural number
indicating how many blocks have been exited in κ++ but not yet in Ds++.

This number is 0 in the Γ◦ initial compilation context.

and then, we rede�ne the compilation of exit as follows:

[[exit n]]Γ
def.

compileDiscard(n,Γ, exit (n+ Γ.furtherBlocks))

We note that, during the compilation process itself, furtherBlocks is invariably set to 0;
however, this parameter will change during the proof. Indeed, after Γ.furtherBlocks block exits,
the actual statement in the Codepoint κ++ execution state is exit (n− Γ.furtherBlocks), which
is the actual number of blocks remaining to be exited in κ++, whereas the �nal exit statement
in Ds++ (after destructing all block objects) is still exit n.

The interest of adding a parameter lies in the following lemma, relating [[exit (S n)]]Γ with
[[exit n]]Γ

′

for some Γ′ (i.e. uniquely in terms of [[·]]· and not compileDiscard):

262 Tahina Ramananandro

11.5 A compiler from κ++ to Ds++

Lemma 11.5.1. The following equations hold:

[[exit 0]]Γ = exit Γ.furtherBlocks

[[exit (Sn)]]Γ = skip;
(Γ.Blocks = ⊥ :: Blocks ′) [[exit n]]Γ

′

(Γ1 = Γ[Blocks← Blocks ′])
(Γ′ = Γ1[furtherBlocks← S(Γ.furtherBlocks)])

[[exit (Sn)]]Γ = compileDestrArray(C, n− 1, obj ,Γ);
(Γ.Blocks = (obj ,Used ′, (C, n)) :: Blocks ′) [[exit n]]Γ

′

(Γ1 = Γ[Blocks← Blocks ′])
(Γ2 = Γ1[Used← Used ′])

(Γ′ = Γ2[furtherBlocks← S(Γ.furtherBlocks)])

Compiling an exit does not recursively call the compilation function [[·]]·. This ensures
that, when a statement st requires the compilation of another statement of the form st ′; exit 1
(where st ′ is a structural subterm of st), it is actually rendered as

[[st ′]]Γ; compileDiscard(n,Γ, exit (n+ Γ.furtherBlocks))

so that [[·]]· can be actually de�ned by structural induction on the κ++ statement.

Return from function returning from a function �rst requires all blocks to exit. The
number of all those blocks is actually length(Γ.Blocks), the length of the list of blocks in the
compilation context. However, care must be taken when compiling a return from within a
destructor body: in that case, as the body is inlined in the destructor under the form of a
block, return has to be changed to an appropriate exit.

[[return x?]]Γ
def.

compileDiscard(length(Γ.Blocks),Γ, stm)

with stm being given as:

stm =

{

exit (S(length(Γ.Blocks)) + Γ.furtherBlocks) if Γ.isDestructorBody = true

return x? otherwise

Indeed, to leave a destructor body, the Ds++ code has to leave:
� the block embedding the initializer (hence S)
� the remaining κ++ blocks (hence length(Γ.Blocks))
� but also the blocks already exited in κ++ but not yet in Ds++ (hence Γ.furtherBlocks)
Similarly, the following lemma eliminates the compileDiscard terms:

Lemma 11.5.2. The following equations hold:

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 263

Veri�ed compilation of object construction and destruction Chapter 11

[[return x?]]Γ = return x?

(Γ.Blocks = ǫ)
(Γ.isDestructorBody = false)

[[return x?]]Γ = exit(S(Γ.furtherBlocks))
(Γ.Blocks = ǫ)

(Γ.isDestructorBody = true)

[[return x?]]Γ = skip;
(Γ.Blocks = ⊥ :: Blocks ′) [[return x?]]Γ

′

(Γ1 = Γ[Blocks← Blocks ′])
(Γ′ = Γ1[furtherBlocks← S(Γ.furtherBlocks)])

[[return x?]]Γ = compileDestrArray(C, n− 1, obj ,Γ);
(Γ.Blocks = (obj ,Used ′, (C, n)) :: Blocks ′) [[return x?]]Γ

′

(Γ1 = Γ[Blocks← Blocks ′])
(Γ2 = Γ1[Used← Used ′])

(Γ′ = Γ2[furtherBlocks← S(Γ.furtherBlocks)])

11.5.8 Functions

In the previous sections, we described how to compile the statements whose semantics are
de�ned in function bodies. Now we can pack all together and give the compilation scheme
for function bodies. Compiling a function does not depend on the compilation context: the
compilation of bodies use the Γ◦ initial compilation context.

Static functions Recall that the name f of a static function has to be translated into f
because static functions are added to the program for compiling constructors and destructors,
so it is necessary to avoid name clashes. Then we have:

[[f(x1, . . . , xn){st}]] def.
f(x1, . . . , xn){[[st ; exit 1]]

Γ◦}

Class member function The compilation of a (virtual or non-virtual) class member function
is straightforward:

[[virtual?this->f(x1, . . . , xn){st}]] def.
virtual?this->f(x1, . . . , xn){[[st ; exit 1]]

Γ◦}

11.5.9 Constructors

In the previous sections, we showed how to compile static and class member functions. Now
it remains to compile constructors and destructors.

Let D be a class, and κ be a constructor of D. Then, it will be compiled into two static
functions, κtrue corresponding to the constructor for a most-derived object, and κfalse for a base
class subobject.

Suppose that D has V1, . . . , Vv direct or indirect virtual bases, B1, . . . , Bb direct non-virtual
bases, and M1, . . . ,Mm data members; and that the constructor κ is written:

264 Tahina Ramananandro

11.5 A compiler from κ++ to Ds++

D(κ.this , κ.arg1, . . . , κ.arga) : κ.inits{κ.body}

where κ.this , κ.arg1, . . . , κ.arga are the arguments of the constructor, κ.inits are the initializ-
ers (such that κ.inits(Virtual, Vi) is the initializer for the virtual base Vi, κ.inits(DirectNonVirtual, Bi)
for the direct non-virtual base Bi, and, for each data member Mi, κ.inits(Mi) is the initializer
for Mi if Mi is scalar, or a collection of n initializers if Mi is a structure array �eld of n cells).

We brie�y recall the execution scheme for a constructor:

1. if the constructor corresponds to a most-derived object, construct the virtual bases
2. construct the direct non-virtual bases
3. set the dynamic type
4. construct the �elds
5. execute the constructor body

We describe the compilation of the constructor starting from the �elds up to the construction
of virtual bases.

11.5.9.1 Fields

We de�ne compileConstrFields(D, κ, L,Γ) to compile the construction of the list of �elds
L of a class D, assuming that a pointer to the current object being constructed is stored in
the compiler-purpose variable Γ.curobj. Once all �elds are constructed, then the body of the
constructor is run. It is compiled with the initial compilation context, Γ◦, as compiler-purpose
variables are no longer useful in or after the constructor body.

compileConstrFields(D, κ, ǫ,Γ)
def.

[[κ.body ; exit 1]]Γ◦

compileConstrFields(D, κ,M :: L,Γ)
def.

compileConstrField(D, κ,M,Γ);

compileConstrFields(D, κ, L,Γ)

where, for any data member M , compileConstrField(D, κ,M,Γ) compiles the construction of a
�eld M de�ned in class D, using the initializers of the constructor κ, and assuming that Γ.curobj
holds a pointer to the object being constructed.

Thanks to this de�nition, a Kconstrother(. . . , Field, L, . . .) continuation stack frame in κ++
will be matched with a Block frame where the next statement to execute is compileConstrFields(. . . , L, . . .).

Scalar �elds Assume M is a scalar data member. Then, its initializer is compiled as follows:

compileConstrField(D, κ,M,Γ)
def.
{[[κ.inits(M); exit 1]]Γ

′

}

with Γ′ being the compilation context updated as follows:

Γ′ = Γ[curfield← (D,M)]

to re�ect that the implicit �eld to initialize through initScalar is actually the �eld M de�ned in
class D.

Indeed, the initializer has to terminate its execution with a initScalar statement to give the
�eld its initial value. Thus, this statement is compiled into a mere �eld write followed by leaving
the block in which the initializer is to be embedded:

[[initScalar(x)]]Γ
def.

Γ.curobj->DM := x;

(Γ.curfield = (D,M)) exit 1

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 265

Veri�ed compilation of object construction and destruction Chapter 11

Structure �elds Assume M is a structure data member of n cells of type C. Then, we need
to construct a structure array, so we need further compiler-purpose variables to store a pointer
to the �rst cell of the array. Let newobj 6∈ Γ.Used be such a compiler-purpose variable. Then,
we have:

compileConstrField(D, κ,M,Γ)
def.

newobj := Γ.curobj->DM ;

{compileConstrArray(C, n, 0, κ.inits(M), newobj ,Γ′)}

with Γ′ being the compilation context updated as follows:

Γ′ = Γ[Used← Γ.Used ⊎ {newobj}]

to prevent newobj from reuse. However, Γ.curfield needs no update: indeed, Γ.curfield is used
only for compiling initScalar, which does not apply to structure �elds.

11.5.9.2 Bases: where the �set dynamic type� operation comes into play

Consider a β base C of D, that is a direct non-virtual base of D (β = DirectNonVirtual), or
a direct or indirect virtual base of D (β = Virtual) if constructing a most-derived object. Then,
its initializer has to call the constructor for a base class subobject of C with a this argument
adjusted to the base class subobject. Thus, we need a further compiler-purpose variable, say
newobj 6∈ Γ.Used.

To perform this adjustments, we cannot use a static cast: indeed, the generalized dynamic
type of the object being constructed is not de�ned yet, so it would invalidate the guard condition
for Ds++ static cast, see (Ds++-statcast, p. 251). So, we instead use the base_cast〈β, C〉D
operator, which we speci�cally designed to this purpose.

We also need to pass a further argument to the constructor, to indicate the construction
path. So we also need a further compiler-purpose variable, say newpath 6∈ Γ.Used. The con-
struction path will be obtained by an adjustment of the path contained in Γ.curpath, using the
speci�c basePath operator.

As usual, the initializer for a base class subobject is to be embedded in a block with no
stack object, so as to match Kconstrother continuation stack frames in κ++ with Block frames
in Ds++.

Then we de�ne compileConstrBase(D, κ, β, C,Γ) to compile the construction of a base class
subobject B of D:

compileConstrBase(D, κ, β, C,Γ)
def.

newobj := base_cast〈β, C〉D(Γ.curobj);
newpath := basePath(Γ.curpath, D, β, C);

{[[κ.inits(β, C); exit 1]]Γ
′

}

The initializer is compiled using a compilation context Γ′ updated from Γ as follows:

Γ′ = Γ [Used← Γ.Used ⊎ {newobj} ⊎ {newpath}]
[curobj← newobj]
[curpath← newpath]
[Blocks← ǫ]

to re�ect that the implicit object on which to call the constructor must be the base class
subobject being constructed. The stack of blocks, however, is emptied, because the blocks to
be opened within the initializer are irrelevant to the blocks enclosing the initializer.

266 Tahina Ramananandro

11.5 A compiler from κ++ to Ds++

Direct non-virtual bases Then, we use it to compile a list L of direct non-virtual bases of
D.

When all direct non-virtual bases are (L = ǫ), then, before constructing the �elds of
D, the �set dynamic type� operation must be performed on the current object being
constructed (Γ.curobj), with the current provided construction path (Γ.curpath).

Recall that this operation has to be �agged with a boolean b, true only if we are constructing
a most-derived D object or if D has no virtual bases. This �ag is intended to optimize the Ds++-
to-CVcm compilation of �set dynamic type�. To exploit this opportunity, we need to know
whether we are in the constructor for a most-derived object, which is given by Γ.isMostDerived.
So, the natural choice for the �ag b follows:

b = Γ.isMostDerived ∨ (V(D) = ǫ)

Then we de�ne compileConstrDNVBases(D, κ, L,Γ) to compile the construction of the list L
of direct non-virtual base subobjects of D:

compileConstrDNVBases(D, κ, ǫ,Γ)
def.

setDynType(Γ.curobj,Γ.curpath)bD;

compileConstrFields(D, κ,FD,Γ)

compileConstrDNVBases(D, κ,B :: L,Γ)
def.

compileConstrBase(D, κ,DirectNonVirtual, B,Γ);

compileConstrDNVBases(D, κ, L,Γ)

Virtual bases We de�ne compileConstrVBases(D, κ, L,Γ) to compile the construction of the
list L of direct or indirect virtual base subobjects of D. These operations only occurs in the
constructor for a most-derived object.

When all virtual bases are constructed, then the construction of the direct non-virtual bases
of D starts. However, there is a κ++ execution step in between, doing nothing else than changing
the execution point. To re�ect this no-operation step, we have to insert a skip.

compileConstrVBases(D, κ, ǫ,Γ)
def.

skip;

compileConstrDNVBases(D, κ,DNVD,Γ)

compileConstrVBases(D, κ, V :: L,Γ)
def.

compileConstrBase(D, κ,Virtual, V,Γ);

compileConstrVBases(D, κ, L,Γ)

11.5.9.3 Summary

Finally, the constructor is compiled into two static functions.
For a most-derived object, the construction of virtual bases is requested, using the inheri-

tance graph order for virtual bases (Hypothesis 9.4.2 p. 190, De�nition 10.3.4 p. 214):

κtrue(curobj , curpath, κ.arg1, . . . , κ.arga) {

κ.this = curobj ;
compileConstrVBases(D, κ,VO(D),Γtrue)

}

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 267

Veri�ed compilation of object construction and destruction Chapter 11

For a base class subobject, the construction of direct non-virtual bases is requested:

κfalse(curobj , curpath, κ.arg1, . . . , κ.arga) {

κ.this = curobj ;
skip;
compileConstrDNVBases(D, κ,DNVD,Γfalse)

}

The compilation contexts Γtrue and Γfalse used for compiling construction operations is ob-
tained from the initial compilation context Γ◦ as follows:

Γb = Γ◦ [Used← {curobj , curpath}]
[curobj← curobj]
[curpath← curpath]
[isMostDerived← b]

The additional skip prepended before the construction of direct non-virtual bases allows
enforcing the:

Lemma 11.5.3. If D has no virtual bases, then, for any constructor κ of D, the static func-
tions κtrue and κfalse generated as the compilation of κ have the same code. Thus, they can be
shared by identifying their names:

κtrue = κfalse

Proof. We know that, if D has no virtual bases, VO(D) = ǫ and:

compileConstrVBases(D, κ,VO(D),Γfalse) = skip; compileConstrDNVBases(D, κ,DNVD,Γfalse)

because of the no-operation step in κ++. Hence the additional skip in κfalse.
Moreover, compiling construction operations with Γtrue instead of Γfalse only changes the

isMostDerived parameter, which is only used for determining the �ag on setDynType (indeed,
the choice of constructors for the bases and data members does not depend on this parameter).
Then, the chosen �ags on setDynType actually give

∀b : (Γb.isMostDerived ∨ (V(D) = ǫ)) = true

which concludes.

11.5.10 Destructors

Let D be a class, then D has exactly one destructor ~D. Then, it will be compiled into two
static functions, ~Dtrue corresponding to the destructor for a most-derived object, and ~Dfalse

for a base class subobject. Let ~D.this be its this argument, and ~D.body be its body.
We brie�y recall the compilation scheme for a destructor, which is the exact reverse of the

constructor except for the position of the �set dynamic type� operation:

1. set the dynamic type, except for a most-derived object

2. execute the body

3. destruct the �elds in reverse order

268 Tahina Ramananandro

11.5 A compiler from κ++ to Ds++

4. destruct the direct non-virtual bases in reverse order

5. if the constructor corresponds to a most-derived object, destruct the virtual bases in
reverse order

The compilation of destructors is much simpler, as there is no counterpart to the initializers.
The body of the destructor is not compiled with the initial compilation context, but with

ad-hoc compilation contexts:

Γ = Γ◦ [Used← {curobj , curpath}]
[curobj← curobj]
[curpath← curpath]
[isDestructorBody← true]

Γb = Γ [isMostDerived← b]

to allow inlining the destructor body, and to prevent the compiler-purpose variables from reuse
by the destructor body, as they are needed to destruct the bases and members.

While the destructor body is inlined, it is also embedded in a block with no stack object,
so that the return statement is compiled into an appropriate exit statement, and the Kdestr

continuation stack frame, indicating that the �elds must be destructed �rst, corresponds to a
Block frame.

Assume compileDestrFields(D,L,Γ) destructs the list L of �elds of D as well as all base
class subobjects of D. Then, for a base class subobject, the �set dynamic type� operation is
requested, with the �ag set to false:

~Dfalse(curobj , curpath) {

~D.this = curobj ;
setDynType(curobj , curpath)falseD ;
{[[~D.body ; exit 1]]Γ};
compileDestrFields(D, rev(FD),Γfalse)

}

For a most-derived object, however, the �set dynamic type� operation is omitted:

~Dtrue(curobj , curpath) {

~D.this = curobj ;
{[[~D.body ; exit 1]]Γ};
compileDestrFields(D, rev(FD),Γtrue)

}

Γb.isMostDerived is not used in the compilation of the destructor body. As we shall see later,
it will be used only to determine whether to destruct virtual bases.

Contrary to constructors, we perform here no optimization on code size and let the de-
structor code be duplicated. However, ~Dtrue could be optimized away by only using ~Dfalse in
case D were a non-dynamic class: not only would D have no virtual bases (which would ensure
that the behaviour of the compiled destructor would not depend on Γb.isMostDerived), but no
virtual functions either. In this case, the setDynType operator added in Ds++ wouild compile
to a no-op in CVcm.

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 269

Veri�ed compilation of object construction and destruction Chapter 11

Fields We de�ne compileDestrFields(D,L,Γ) to compile the destruction of the list L of �elds
of D as follows:

compileDestrFields(D, ǫ,Γ)
def.

skip;

compileDestrDNVBases(D, rev(DNVD),Γ)

compileDestrFields(D,M :: L,Γ)
def.

compileDestrField(D,M,Γ);

compileDestrFields(D,L,Γ)

where compileDestrDNVBases compiles the destruction of direct non-virtual base class sub-
objects, in reverse declaration order, once there are no �elds left to destruct (a skip is necessary
to match the execution steps); and compileDestrField(D,M,Γ) destructs �eld M .

Destructing a scalar �eld erases its value in κ++, but this is not necessary in Ds++. So,
nothing has to be done, except a skip to make the execution step match.

compileDestrField(D,M,Γ) = skip

Destructing a structure array �eld of n cells of type C destructs the array starting from the
last cell n− 1. The �rst cell of the array has to be accessed, yielding a pointer, which must be
stored in a compiler-purpose variable, say newobj 6∈ Γ.Used.

compileDestrField(D,M,Γ)
def.

newobj := Γ.curobj->DM ;

{compileDestrArray(C, n− 1, newobj ,Γ′)}

with Γ′ being the compilation context updated as follows:

Γ′ = Γ[Used← Γ.Used ⊎ {newobj}]

to prevent newobj from reuse.

Non-virtual bases We de�ne compileDestrDNVBases(D,L,Γ) to compile the destruction of
the list L of direct non-virtual bases of D.

Once all direct non-virtual bases are destructed, it must be decided whether virtual bases
are to be destructed. The answer lies in the Γ.isMostDerived parameter. If it is necessary, then
this further stage is performed through compileDestrVBases, after a skip to match the execution
steps. Otherwise, there is nothing left to destruct, so the destructor may be exited.

compileDestrDNVBases(D, ǫ,Γ)
def.

skip;

(Γ.isMostDerived = true) compileDestrVBases(D, rev(VD),Γ)

compileDestrDNVBases(D, ǫ,Γ)
def.

return

(Γ.isMostDerived = false)

compileDestrDNVBases(D,B :: L,Γ)
def.

compileDestrBase(D,DirectNonVirtual, B,Γ);

compileDestrDNVBases(D,L,Γ)

where compileDestrBase(D, β,B,Γ) compiles the destruction of a β ∈ {DirectNonVirtual,Virtual}
base class subobject, as described below: the destructor of B corresponding to a base class sub-
object is called with a this argument adjusted to the base class subobject (through base_cast〈β,B〉D
operator instead of static cast, for similar reasons as for construction) and with the constructor
path adjusted to the path to the base.

compileDestrBase(D, β,B,Γ)
def.

newobj := base_cast〈β,B〉D(Γ.curobj);
({newobj} ⊎ {newpath} # Γ.Used) newpath := basePath(Γ.curpath, D, β, B);

~Cfalse(newobj , newpath)

270 Tahina Ramananandro

11.6 Correctness of the κ++-to-Ds++ compiler

Virtual bases We de�ne compileDestrVBases(D,L,Γ) to compile the destruction of the list
L of direct or indirect virtual bases of D, for a most-derived object.

Once all virtual bases are destructed, there is nothing left to destruct, so the destructor
may be exited.

compileDestrVBases(D, ǫ,Γ)
def.

return

compileDestrVBases(D,B :: L,Γ)
def.

compileDestrBase(D,Virtual, B,Γ);

compileDestrVBases(D,L,Γ)

11.6 Correctness of the κ++-to-Ds++ compiler

We prove the correctness of the compiler by forward simulation (Theorem B.1 p. 340): we
show that an invariant s ⊲ s′ is preserved between an execution state s of κ++ and an execution
state s′ of Ds++, �nally obtaining Theorem II.16 (p. 284).

Let s = (S,K,G) be a κ++ execution state, and s′ = (st ′, stl ′, e′,K′,G ′) be a Ds++ state.

Invariant 11.6.1 (Invariant). The invariant is split into three parts:
� The execution invariant of κ++ stated in Section 10.1 (p. 199) holds on s.
� An invariant G ⊲global G

′ relates the global states.
� An invariant s ⊲exec s′ relates the execution points and the continuation stacks.

11.6.1 Global states

In this section, we describe the components of the invariant G ⊲global G
′ relating the global

states.

11.6.1.1 Object locations

Invariant 11.6.2. Let ℓ be an object location. Then, either ℓ corresponds to an object deal-
located in κ++, or the κ++ and Ds++ object stores agree on ℓ:

ℓ ∈ G.dealloc ∨ G.LocType(ℓ) = G ′.LocType(ℓ)

This lemma allows to really remove ℓ from G ′.LocType once ℓ becomes deallocated in κ++.
Indeed, we know that ℓ is never reused in κ++ more than once; moreover, whenever ℓ is deallo-
cated in κ++, it will stay deallocated forever.

An important consequence of this invariant is the:

Lemma 11.6.1. If (ℓ, (α, i, σ)) is a subobject of ℓ that is not Destructed, then ℓ is a valid Ds++
object, and we have G.LocType(ℓ) = G ′.LocType(ℓ).

Proof. If ℓ were deallocated in κ++, then, the κ++ run-time invariant would require all subobjects
of ℓ to be Destructed.

Conversely, what actually allows to make non-deallocated objects exactly match in spite of
removing deallocated objects from the Ds++ store, is the following:

Invariant 11.6.3. The location of the next object to be allocated is the same in the two
languages:

G.ℓnext = G
′.ℓnext

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 271

Veri�ed compilation of object construction and destruction Chapter 11

11.6.1.2 Generalized dynamic type

The following invariant allows proving the correctness of the compilation of polymorphic
operations (virtual function call, dynamic cast):

Polymorphic operations

Invariant 11.6.4. Let π = (ℓ, (α, i, σ)) be a pointer to a subobject. If the generalized dynamic
type of π in κ++ is well-de�ned, then it is also de�ned in Ds++ and they are the same:

(G ⊢ gDynType(ℓ, α, i, σ, σ◦, σ1))⇒ G
′.gDynType(ℓ, (α, i, σ)) = (σ◦, σ1)

The preservation of this invariant is done thanks to the corresponding theorem (cf. Con-
struction).

Static cast However, a further invariant about the dynamic types is required to prove the
preservation of the semantics of static cast:

Invariant 11.6.5. If an object is Constructed, then its generalized dynamic type exists in
Ds++:

G.ConstrState(π) = Constructed⇒ G ′.gDynType(π) 6= ⊥

This invariant allows showing that, during the whole lifetime of a subobject (even during the
construction or destruction of one of its siblings), it is possible to access its virtual bases: the
guard condition of the static_cast〈·〉· operator holds.

Proof. The preservation of this invariant is done thanks to the κ++ run-time invariant on the
relations between object construction states. Let s1 → s2 be a κ++ transition step. Then, there
are several cases:

� If no construction state changes, or if an object changes its construction state to StartedConstructing,
DestructingBases or Destructed, then neither the κ++ nor the Ds++ generalized dynamic
types change. Moreover, the Constructed objects are the same before (at s) as after (at
s2) the execution step s1 → s2, so the invariant trivially keeps holding.

� Assume an object π̃ changes its construction state to Constructed. Then, the Ds++ gen-
eralized dynamic types do not change. Let π a Constructed object in s2. Then, there are
two cases:
� If π = π̃, then π was BasesConstructed in s1, so its generalized dynamic type was de�ned
in κ++, thus per Invariant 11.6.4 (p. 272) in Ds++ as well. The latter does not change.

� Otherwise, Invariant 11.6.5 (p. 272) ensures the Ds++ generalized dynamic type of π
is de�ned before the step. The latter does not change.

� If an object π̃ changes its construction state to BasesConstructed or StartedDestructing,
then the generalized dynamic types change: they become de�ned in Ds++ for every base
class subobject of π̃. Let π be a Constructed object in s2. Then, π 6= π̃ and there are three
cases:
� If neither one is a base class subobject of the other, then neither the construction state
nor the Ds++ generalized dynamic type of π change. Thus, Invariant 11.6.5 (p. 272)
keeps holding.

272 Tahina Ramananandro

11.6 Correctness of the κ++-to-Ds++ compiler

� Otherwise, if π̃ is a base class subobject of π, then, as π is Constructed, π̃ is necessarily
Constructed, which is absurd. In particular, this allows to eliminate the case where π̃ is
a primary base of π and the Ds++ generalized dynamic type of π is erased.

� Otherwise, π is a base class subobject of π̃. As the Ds++ generalized dynamic types of
every base class subobject of π̃ become de�ned, this concludes.

11.6.1.3 Scalar data members

A consequence of the κ++ invariant is that, if a scalar data member has a value in κ++,
then this member is Constructed. Thus, the corresponding object is not deallocated in κ++, so
it also exists in Ds++. Then, it is possible to reason about the value of the data member in this
corresponding Ds++ object:

Invariant 11.6.6. If a scalar data member of any object has a value in κ++, then in the
corresponding Ds++ object, it has the same value:

G.FieldValue(π, f) = v 6= ⊥ ⇒ G ′.FieldValue(π, f) = v

11.6.2 (⋆) Execution points and continuation stack frames unrelated
to construction or destruction

In the following sections, we describe the remaining part of the compilation invariant, namely
the components of the invariant s ⊲exec s

′ relating the execution points. These sections are
rather technical; on �rst reading, they may be skipped to the proof of forward simulation in
Section 11.6.5 (p. 284).

11.6.2.1 Non-exiting statements

When a κ++ statement st is being executed, it corresponds to a Ds++ statement [[st]]Γ for
some compilation context Γ.

Then, the pipeline of further κ++ statements to be executed also correspond to their Ds++
counterparts compiled with the same compilation context Γ. However, due to the �automatic
block exit�, a further exit 1 has to be present at the end of the Ds++ statement sequence, so
that it is peeked from the Ds++ pipeline when applying the κ++ automatic block exit. This
explains why function, constructor and destructor bodies are compiled with a further exit 1.

In κ++, the continuation stack K and the enclosing blocks B are separated, whereas in Ds++
information about enclosing blocks is included in the continuation stack. So, the latter is divided
into two parts: the top part related to the blocks of the current κ++ execution point, and the
bottom part related to the κ++ continuation stack.

So, assume that st is not an exiting statement (that is, neither exit n nor return x?). Then,
no block is exited in κ++ and not in Ds++, and the invariant relating the execution points and
the continuation stacks can be written as follows:

∀i, st 6= exit i ∀x?, S 6= return x?

Γ.furtherBlocks = 0 e ⊲Var e
′ G, e′; Γ ↓ Γ1 ⊢ B ⊲Block KB

′ G; Γ1 ⊢ (e,K) ⊲Stack (e
′,K′)

(Codepoint(st , stl , e,B),K,G) ⊲exec ([[st]]
Γ,map[[[·]]Γ](stl q− exit 1 :: ǫ), e′,KB

′
q−K′,G ′)

where:

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 273

Veri�ed compilation of object construction and destruction Chapter 11

� ⊲Var relates the environments;
� G, e′; Γ ↓ Γ1 ⊢ · ⊲Block · relates the list of κ++ enclosing blocks with the corresponding top
part of the Ds++ continuation stack;

� G; Γ?
1 ⊢ (e?,K) ⊲Stack (e

′?,K′) relates the κ++ continuation stack with the bottom part of
the Ds++ continuation stack

11.6.2.2 Environments

If a variable x has a value in κ++, then its Ds++ counterpart x has the same value.

∀x, v : e(x) = v 6= ⊥ ⇒ e′(x) = v

e ⊲Var e
′

11.6.2.3 Blocks

G, e′; Γ ↓ Γ1 ⊢ · ⊲Block · relates the list of κ++ enclosing blocks to the top-part of the Ds++
continuation stack, such that Γ1 is the compilation context once the most enclosing block has
been reached. There are three cases:

� If there is no enclosing block, then the corresponding part of the Ds++ continuation frame
is empty, and the compilation context does not change.

G, e′; Γ ↓ Γ ⊢ ǫ ⊲Block ǫ

� Otherwise, if there is an enclosing block without stack object, then it must correspond to
a Ds++ block without stack object as well, and the statements must match:

Γ = Γ1[Blocks← ⊥ :: Γ1.Blocks] G, e′; Γ1 ↓ Γ2 ⊢ B ⊲Block KB
′

G, e′; Γ ↓ Γ2 ⊢ (⊥, stl) :: B ⊲Block Block(⊥,map[[[·]]Γ1](stl q− exit 1 :: ǫ)) :: KB
′

� Otherwise, there must be a Ds++ compiler-purpose variable corresponding to the object
attached to the enclosing block. This variable must contain a pointer to the �rst cell of
the object, and the type and number of cells of the object must match the ones expected
during compilation. This variable will be actually used for the destruction of this block
object.

Γ = Γ1[Blocks← (x,Γ1.Used, (C, n)) :: Γ1.Blocks][Used← Γ1.Used ⊎ {x}]
e′(x) = (ℓ, (ǫ, 0, (Repeated, C :: ǫ))) G ⊢ 〈ℓ〉 C[n] G, e′; Γ1 ↓ Γ2 ⊢ B ⊲Block KB

′

G, e′; Γ ↓ Γ2 ⊢ (ℓ, L) :: B ⊲Block (Block(ℓ,map[[[·]]Γ1](L q− exit 1 :: ǫ)) :: KB)
′

11.6.2.4 Continuation stack

Once blocks have been treated, the κ++ continuation stack can be confronted with the
remaining bottom part of the Ds++ continuation stack. We shall see later why the environments
may be actually needed to help this invariant hold.

Empty stacks match; the environments are irrelevant, as they are assumed to be already
constrained within ⊲exec.

G; Γ ⊢ (e?, ǫ) ⊲Stack (e
′?, ǫ)

274 Tahina Ramananandro

11.6 Correctness of the κ++-to-Ds++ compiler

When returning from a function, the provided environments are the environments of the
callee, so they are irrelevant, as they are expected to be discarded once the function exits. The
invariant is a simpli�ed version of ⊲exec on Codepoint: the environments of the caller must match,
the return value variables must match, further caller statements and statements of enclosing
blocks must match the top part of the stack, but there are no blocks exited in κ++ and not in
Ds++. Moreover, the callee must not be a destructor body (which is not a true function, as it
is inlined into a block, so that return is compiled to exit):

Γ.isDestructorBody = false

e1 ⊲Var e1
′ Γ1.furtherBlocks = 0 stl ′ = map[[[·]]Γ1](stl q− exit 1 :: ǫ)

G, e1
′; Γ1 ↓ Γ2 ⊢ B ⊲Block KB

′ G; Γ2 ⊢ (e1,K) ⊲Stack (e1
′,K′)

G; Γ ⊢ (e?,Kretcall(x?, stl ,B, e1) :: K) ⊲Stack (e
′?,Callframe(x?, stl ′, e1

′) :: KB
′
q−K′)

Other possible continuation frames are related to construction and destruction. We shall
see them later.

11.6.2.5 Leaving blocks

Recall that, leaving a block in κ++ does not immediately trigger leaving the corresponding
Ds++ block. Following how exits are compiled, objects associated to blocks requested to be left
are �rst destructed, but without actually leaving any block in Ds++. Only once all requested
blocks are left in κ++, i.e. when reaching exit 0, the block exits start in Ds++.

Remember that the number of blocks already exited in κ++ but not in Ds++ is given by
Γ.furtherBlocks. However, this data is not enough for our invariant: we must also prove that the
objects attached to those exited blocks, which still exist in Ds++, have been actually destructed.

To this purpose, the top part of the Ds++ continuation stack, related to blocks, has to be
itself split into two parts, a bottom part KB

′ related to the blocks not yet exited in κ++, and
a top part of size Γ.furtherBlocks related to the blocks already exited. This part is written
map[Block](Bll) to ensure that it contains only Block continuation frames, so that Bll is a list
whose elements are of the form (ℓ?, st) where any de�ned ℓ is deallocated in κ++.

First consider a non-trivial exit statement (that is, exit (S n) or return). Then, the state-
ment pipeline of the current execution point is pointless. The compilation of the statement
pipelines of the enclosing blocks, however, will be executed only once all exited blocks in κ++
are also exited in Ds++, so they must be compiled with furtherBlocks = 0:

st = exit (S n) ∨ st = return x?

e ⊲Var e
′ ∀ℓ, stl ℓ

′ : (ℓ, stl ℓ
′) ∈ Bll ⇒ ℓ ∈ G.dealloc length(Bll) = Γ.furtherBlocks

Γ1 = Γ[furtherBlocks← 0] G, e′; Γ1 ↓ Γ2 ⊢ B ⊲Block KB
′ G; Γ2 ⊢ (e,K) ⊲Stack (e

′,K′)

(Codepoint(st , stl , e,B),K,G) ⊲exec ([[st]]
Γ, stl ′, e′,map[Block](Bll) q−KB

′
q−K′,G ′)

By contrast, in the case of exit 0, the κ++ statement pipeline has to be matched in Ds++. If
no κ++ block has been exited yet, then the corresponding Ds++ pipeline is the current statement
pipeline; otherwise, it is the statement pipeline of the deepest block in Bll , which is the most-
enclosing exited block. So it is retrieved from the list Bll of blocks not yet exited from Ds++

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 275

Veri�ed compilation of object construction and destruction Chapter 11

by the following retrieveStmts function:

retrieveStmts(stl ′, ǫ)
def.

stl ′

retrieveStmts(stl ′, (ℓ?, stl1
′) :: Bll1) def.

retrieveStmts(stl1
′,Bll1)

so that:

e ⊲Var e
′ ∀ℓ, stl ℓ : (ℓ, stl ℓ) ∈ Bll ⇒ ℓ ∈ G.dealloc

length(Bll) = Γ.furtherBlocks st = exit 0 st ′ = [[st]]Γ

Γ1 = Γ[furtherBlocks← 0] retrieveStmts(stl ′,Bll) = map[[[·]]Γ̃](stl q− exit 1 :: ǫ)
G, e′; Γ1 ↓ Γ2 ⊢ B ⊲Block KB

′ G; Γ2 ⊢ (e,K) ⊲Stack (e
′,K′)

(Codepoint(stmt, stl , e,B),K,G) ⊲exec (st
′, stl ′, e′,KB

′
q−K′,G ′)

Actually, the latter rule also covers the case of other non-exit statements, for which there
is no block exited in κ++ and not in Ds++: Bll = ǫ. So, �nally, the following unique rule
summarizes the three cases:

st = exit n1 ∨ st = return x? ∨ Bll = ǫ
e ⊲Var e

′ ∀ℓ, stl ℓ
′ : (ℓ, stl ℓ

′) ∈ Bll ⇒ ℓ ∈ G.dealloc
length(p) = Γ.furtherBlocks Γ1 = Γ[furtherBlocks← 0]

st = exit (S n2) ∨ st = return x? ∨ retrieveStmts(stl ′,Bll) = map[[[·]]Γ1](stl q− exit 1 :: ǫ)
st ′ = [[st]]Γ G, e′; Γ1 ↓ Γ2 ⊢ B ⊲Block KB

′ G; Γ2 ⊢ (e,K) ⊲Stack (e
′,K′)

(Codepoint(st , stl , e,B),K,G) ⊲exec (st
′, stl ′, e′,map[Block](Bll) q−KB

′
q−K′,G ′)

Application: blocks with no object Now we sketch the proof of preservation of ⊲exec for
a block exit with no object. Consider the following s1→s2 step:

(Codepoint(exit (S n), stl1, e, (⊥, stl2) :: B), K, G)
→ (Codepoint(exit n, stl2, e,B) , K, G)

Assume s1 ⊲exec s1
′. Then, this invariant gives:

s1
′ = ([[exit (S n)]]Γ1 , stl1

′, e′,map[Block](Bll1) q− Block(⊥,map[[[·]]Γ̃](stl2 q− exit 1 :: ǫ)) ::

KB
′
q−K′,G ′)

Γ1.Blocks = (blockvar ,Γ2.Used, (C, n)) :: Γ2.Blocks

Γ̃ = Γ2[furtherBlocks← 0]

where Bll1 is the list of blocks exited in κ++ but not in Ds++, so that Γ.furtherBlocks =
length(Bll1). But then, we know that [[exit (S n)]]Γ = skip; [[exit n]]Γ2 with Γ2.furtherBlocks =
S(Γ1.furtherBlocks). Actually, to show the preservation of ⊲exec, we perform:

Bll ← Bll2 q− (⊥,map[[[·]]Γ̃](stl2 q− exit 1 :: ǫ)) :: ǫ

to record the κ++ block exit, so that Γ2.furtherBlocks = length(Bll2). Then, we notice:

map[Block](Bll1) q− Block(⊥,map[[[·]]Γ1](stl2 q− exit 1 :: ǫ)) :: KB
′

= map[Block](Bll1 q− (⊥,map[[[·]]Γ1](stl2 q− exit 1 :: ǫ)) :: ǫ) q−KB
′

276 Tahina Ramananandro

11.6 Correctness of the κ++-to-Ds++ compiler

meaning that the Ds++ continuation stack remains unchanged: the corresponding Ds++ steps
actually trigger no Ds++ block exit. Finally, we have:

([[exit (S n)]]Γ1 , stl1
′, e′,map[Block](Bll1) q− Block(⊥,map[[[·]]Γ1](stl1 q− exit 1 :: ǫ)) :: KB

′
q−K′,G ′)

+
→([[exit n]]Γ2 , stl1

′, e′,map[Block](Bll2) q−KB
′
q−K′,G ′)

However, if all requested κ++ blocks have been exited (i.e. if n = 0), then the statement
pipeline becomes signi�cant again, so it remains to show that, if n = 0, then retrieveStmts(stl1

′,Bll2) =

map[[[·]]Γ̃](stl2 q− exit 1 :: ǫ). This is actually the case as (⊥,map[[[·]]Γ̃](stl2 q− exit 1 :: ǫ)) is the
last element of Bll2.

Application: actual Ds++ block exit We shall see now when blocks are actually exited in
Ds++. Consider the following s1→s2 step:

(Codepoint(exit 0, stl , e,B), K, G)
→ (Codepoint(skip, stl , e,B) , K, G)

Assume s ⊲exec s
′. Then, this invariant gives:

s1
′ = ([[exit 0]]Γ, stl1

′, e′,map[Block](Bll) q−KB
′
q−K′,G ′)

where Bll is the list of blocks exited in κ++ but not in Ds++, so that Γ.furtherBlocks = length(Bll)

and retrieveStmts(stl1
′, p) = map[[[·]]Γ̃](stl q− exit 1 :: ǫ) where Γ̃ = Γ2[furtherBlocks ← 0] (this

is true as exit 0 is not a non-trivial exit statement). But then, we know that [[exit 0]]Γ =
exit Γ.furtherBlocks = exit (length(Bll)). So we conclude by easily showing the:

Lemma 11.6.2 (Ds++ exit progress). Let Bll be a list of Ds++ execution blocks. If map[Block](Bll)
describes the top of the continuation stack, then exit (length(Bll)) succeeds:

∃G2 :
(exit (length(Bll)), stl ′, e′, map[Block](Bll) q−K′, G1)

→+ (skip , retrieveStmts(stl ′,Bll), e′, K′, G2)

The global state G1 changes to G2 where all objects attached to any block in Bll are deallocated:

∀ℓ : G1.LocType(ℓ) = G2.LocType(ℓ) ∨ ∃stl ℓ
′, (ℓ, stl ℓ

′) ∈ Bll

with other components of G1 being unchanged.

A similar reasoning scheme can be applied to show the preservation of ⊲exec for returning from
a function.

11.6.3 (⋆) Construction

11.6.3.1 Continue after construction

When a block-scoped object is requested to be constructed, a Kcontinue stack frame is
present in the κ++ stack. This frame records the body of the block, the statements of the
immediately enclosing block, as well as the statements of the further enclosing blocks. However,
the environment has to be explicitly provided.

The initializer for the array is compiled in an additional block, so that there are two suc-
cessive corresponding Ds++ continuation frames, from top towards bottom:

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 277

Veri�ed compilation of object construction and destruction Chapter 11

� the �rst frame is a Block with no stack object, representing the block enclosing the
initializer block; so the further statements are actually the body of the κ++ block

� the second frame is also a Block representing the block enclosing the κ++ block itself.
Then, a compiler-purpose variable, say blockvar , holds a pointer to the �rst cell of the array
being constructed. This variable shall be used later to destruct the array. The type and number
of cells of the array must match the ones expected by the compilation.

This rule involves four di�erent compilation contexts:
� the provided Γ compilation context is the context of the initializer, where blockvar is

de�ned
� the compilation context Γ̃ is used for compiling the block body, so it has to record a new

enclosing block
� the compilation context Γ1 is used for compiling the further enclosing blocks, so blockvar

is no longer relevant
� the compilation context Γ2 is obtained when reaching the most-enclosing block

Γ = Γ1[Used← Γ1.Used ⊎ {blockvar}]
G ⊢ 〈ℓ〉 C[n] e′(blockvar) = (ℓ, ǫ, 0, (Repeated, C :: ǫ))

Γ̃ = Γ[Blocks← (blockvar ,Γ.Used, (C, n)) :: Γ.Blocks]

st ′ = [[st]]Γ̃ stl ′ = map[[[·]]Γ1](stl q− exit 1 :: ǫ)
G, e′; Γ1 ↓ Γ2 ⊢ B ⊲Block KB

′ G; Γ2 ⊢ (e,K) ⊲Stack (e
′,K′)

G; Γ ⊢ (e,Kcontinue(ℓ, st , stl ,B,Constr) :: K) ⊲Stack (e
′,Block(⊥, st ′ :: ǫ) :: Block(ℓ, stl ′) :: KB

′
q−K′)

11.6.3.2 Array of structures

When an array of n cells of type C is requested to be constructed, the execution point is a
ConstrArray: it corresponds to the initializer for the array, which is compiled to a Ds++ statement
thanks to the compileConstrArray compilation function. The compiler-purpose variable obj is
expected to hold a pointer to the �rst cell of the array being constructed. There are no further
statements within the same block of the initializer (further construction operations are recorded
by continuation stacks). So, the corresponding ⊲exec rule follows:

Γ = Γ2[Used← Γ2.Used ⊎ {obj}] e′(obj) = (ℓ, (α, 0, (Repeated, C :: ǫ)))
e ⊲Var e

′ G; Γ2 ⊢ (e,K) ⊲Stack (e
′,K′) st ′ = compileConstrArray(C, n, i, inits , obj ,Γ)

(ConstrArray(ℓ, α, n, i, C, inits , e),K,G) ⊲exec (st
′, ǫ, e′,K′,G ′)

Then, when executing the initializer for a cell of some array, a Kconstrarray frame is present in
the κ++ continuation stack, corresponding to the construction of the further remaining cells.
But the cell initializer is compiled within a block, so this stack frame matches a Ds++ Block

continuation frame. This rule involves three di�erent compilation contexts:
� The provided Γ compilation context is the context of the initializer, with Γ.curobj and
Γ.curpath de�ned and supposed to respectively hold a pointer to the cell being constructed,
and the construction path for a most-derived object (those data will be used when calling
the constructor) 15

15. Note the interesting construct: Γ = Γ1[. . .][curobj ← Γ.curobj][. . .], which is not a de�nition of Γ but an
equality between Γ and Γ1, simply expressing that the value of Γ1.curobj is overwritten by Γ. In particular, this
construct allows to express that Γ1.curobj = Γ.curobj is not enforced.

278 Tahina Ramananandro

11.6 Correctness of the κ++-to-Ds++ compiler

� Γ1 is the compilation context for compiling the construction of the further cells of the
array, thus requiring a compiler-purpose variable obj to hold a pointer to the �rst cell of
the array

� Γ2 is the compilation context for the remainder of the stack

Γ = Γ1[Used← Γ1.Used ⊎ {Γ.curobj} ⊎ {Γ.curpath}][curobj← Γ.curobj][curpath← Γ.curpath]
e′(Γ.curobj) = (ℓ, (α, i, (Repeated, C :: ǫ))) e′(Γ.curpath) = (C, (Repeated, C :: ǫ))

Γ1 = Γ2[Used← Γ2.Used ⊎ {obj}] e′(obj) = (ℓ, (α, 0, (Repeated, C :: ǫ)))
e ⊲Var e

′ K ′ = Block(⊥, compileConstrArray(C, n, i+ 1, inits , obj ,Γ1) :: ǫ)
G; Γ2 ⊢ (e,K) ⊲Stack (e

′,K′)

G; Γ ⊢ (e,Kconstrarray(ℓ, α, n, i, C, inits) :: K) ⊲Stack (e
′, K ′ :: K′)

Then, once the constructor for this cell has been called, then Kconstrothercells is present in
the κ++ continuation stack. The di�erence between the two stack frames is the fact that
in Kconstrarray, the constructor has not been called yet. So, for Kconstrothercells, a further
Callframe continuation frame, expecting the return from constructor (thus Γ.isDestructorBody =
false enforces return to be compiled to return in the constructor body), has to be prepended
before the frame corresponding to the construction of further cells. Thus, the provided compila-
tion context and the environments, related to the body of the called constructor, are irrelevant
to the construction of the other cells of the array. Upon return from the constructor, this
Callframe continuation frame immediately requests exit from the block enclosing the initializer:

Γ.isDestructorBody = false Γ2 = Γ3[Used← Γ3.Used ⊎ {obj}]
e1

′(obj) = (ℓ, (α, 0, (Repeated, C :: ǫ))) e1 ⊲Var e1
′ K1

′ = Callframe(⊥, exit 1 :: stl ′, e1
′)

K2
′ = Block(⊥, compileConstrArray(C, n, i+ 1, inits , obj ,Γ2) :: ǫ)

G; Γ3 ⊢ (e1,K) ⊲Stack (e1
′,K′)

G; Γ ⊢ (e?,Kconstrothercells(ℓ, α, n, i, C, inits , e1) :: K) ⊲Stack (e
′?, K1

′ :: K2
′ :: K′)

11.6.3.3 Bases and �elds

The construction of a list L of base class subobjects or data members, of an object π within
its constructor κ, is represented in κ++ by the Constr execution point, directly compiled to a
Ds++ statement thanks to the following compileConstr compilation function:

compileConstr(C, κ,Bases(DirectNonVirtual), L,Γ)
def.

compileConstrDNVBases(C, κ, L,Γ)

compileConstr(C, κ,Bases(Virtual), L,Γ)
def.

compileConstrVBases(C, κ, L,Γ)

compileConstr(C, κ, Fields, L,Γ)
def.

compileConstrFields(C, κ, L,Γ)

Actually, those compilation functions already include the construction of all subsequent sub-
objects of the object (i.e. for instance compileConstrDNVBases also includes the construction of
the �elds of C), which is consistent with the semantics of Constr in κ++.

The compiler-purpose variable Γ.curobj is expected to hold a pointer to the object π, and
Γ.curpath is expected to hold the construction path corresponding to the inheritance path to π

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 279

Veri�ed compilation of object construction and destruction Chapter 11

from its most-derived object. so that we have the following corresponding ⊲exec rule:

e′(Γ.curobj) = π = (ℓ, (α, i, σ))

G ⊢ 〈ℓ〉 Dℓ[nℓ] −〈α〉
A
→ D[n] e′(Γ.curpath) = (D, σ) e ⊲Var e

′

Γ = Γ1[Used← Γ1.Used ⊎ {Γ.curobj} ⊎ {Γ.curpath}][curobj← Γ.curobj][curpath← Γ.curpath]
G; Γ1 ⊢ (e,K) ⊲Stack (e

′,K′)

(Constr(π, C, κ, β, L, e),K,G) ⊲exec (compileConstr(C, κ, β, L,Γ), ǫ, e′,K′,G ′)

Then, when actually executing the initializer for such a component, there are three cases:
bases, scalar �elds, and structure �elds.

11.6.3.4 Bases

Consider the construction of a base B of π through the corresponding initializer in κ.
When executing its initializer, it is actually compiled under the Γ compilation context,

so that Γ.curobj is assumed to hold a pointer to the base to construct, and Γ.curpath the
corresponding construction path, in order to pass those data to the constructor. However, the
pointer to the object π itself, as well as its corresponding construction path, have to be kept
in the compilation context Γ′ used for the construction of siblings of B and further subobjects
of π. As usual, the initializer is embedded in a Ds++ block, so the corresponding Ds++ stack
frame is a Block:

AddBase(σ,C,Virtual, V)
def.

(Shared, V :: ǫ)

AddBase(σ,C,DirectNonVirtual, B)
def.

(σ@(Repeated, C :: B :: ǫ))

σ̃ = AddBase(σ, C, β,B)

e′(Γ.curobj) = (ℓ, (α, i, σ̃)) G ⊢ 〈ℓ〉 Dℓ[nℓ] −〈α〉
A
→ D[n] e′(Γ.curpath) = (D, σ̃)

Γ = Γ1[Used← Γ1.Used ⊎ {Γ.curobj} ⊎ {Γ.curpath}][curobj← Γ.curobj][curpath← Γ.curpath]
e′(Γ1.curobj) = π = (ℓ, (α, i, σ)) e′(Γ1.curpath) = (D, σ)

Γ1 = Γ2[Used← Γ2.Used ⊎ {Γ1.curobj} ⊎ {Γ1.curpath}][curobj← Γ1.curobj][curpath← Γ1.curpath]
K ′ = Block(⊥, compileConstr(C, κ,Bases(β), L,Γ1) :: ǫ) G; Γ2 ⊢ (e,K) ⊲Stack (e

′,K′)

G; Γ ⊢ (e,Kconstr(π, C, κ,Bases(β), B, L) :: K) ⊲Stack (e
′, K ′ :: K′)

Then, once the constructor is called, the corresponding κ++ stack frame is Kconstrother(Bases(β)).
Thus, returning from the constructor needs a further Callframe prepended to the Block continu-
ation frame. Then, the provided environments and compilation context Γ, corresponding to the
body of the called constructor, are irrelevant to thhe construction of the further siblings of B.
However, Γ.isDestructorBody = false is necessary to enforce return to be compiled to return
within the constructor body.

Γ.isDestructorBody = false

e1
′(Γ2.curobj) = π = (ℓ, (α, i, σ)) G ⊢ 〈ℓ〉 Dℓ[nℓ] −〈α〉

A
→ D[n] e1

′(Γ2.curpath) = (D, σ)
Γ2 = Γ3[Used← Γ3.Used ⊎ {Γ2.curobj} ⊎ {Γ2.curpath}][curobj← Γ2.curobj][curpath← Γ2.curpath]

e1 ⊲Var e1
′ K1

′ = Callframe(⊥, exit 1 :: S, e1
′)

K2
′ = Block(⊥, compileConstr(C, κ,Bases(β), L,Γ2) :: ǫ) G; Γ3 ⊢ (e1,K) ⊲Stack (e1

′,K′)

G; Γ ⊢ (e?,Kconstrother(π, C, κ,Bases(β), B, L, e1) :: K) ⊲Stack (e
′?, K1

′ :: K2
′ :: K′)

280 Tahina Ramananandro

11.6 Correctness of the κ++-to-Ds++ compiler

11.6.3.5 Scalar �elds

For a scalar �eld f , no constructor is expected to be called by the initializer, but a initScalar

instead, thus requiring Γ.curfield to be set to f . Moreover, Γ.curobj and Γ.curpath must refer to
the current object being constructed, holding the �eld.

e′(Γ.curobj) = π = (ℓ, (α, i, σ))

G ⊢ 〈ℓ〉 Dℓ[nℓ] −〈α〉
A
→ D[n] e′(Γ.curpath) = (D, σ) Γ = Γ1[curfield← f]

Γ1 = Γ2[Used← Γ2.Used ⊎ {Γ.curobj} ⊎ {Γ.curpath}][curobj← Γ.curobj][curpath← Γ.curpath]
K ′ = Block(⊥, compileConstr(C, κ, Fields, L,Γ1) :: ǫ) G; Γ2 ⊢ (e,K) ⊲Stack (e

′,K′)

G; Γ ⊢ (e,Kconstr(π, C, κ, Fields, f, L) :: K) ⊲Stack (e
′, K ′ :: K′)

11.6.3.6 Structure �elds

For a structure �eld f , actually there is one initializer for each cell, so the κ++ continuation
stack frame is Kconstrother(Fields). The invariant is very similar as the one for Kconstr(Fields)
for a scalar �eld, except Γ.curfield is irrelevant:

e′(Γ.curobj) = π = (ℓ, (α, i, σ)) G ⊢ 〈ℓ〉 Dℓ[nℓ] −〈α〉
A
→ D[n] e′(Γ.curpath) = (D, σ)

Γ = Γ1[Used← Γ1.Used ⊎ {Γ.curobj} ⊎ {Γ.curpath}][curobj← Γ.curobj][curpath← Γ.curpath]
K ′ = Block(⊥, compileConstr(C, κ, Fields, L,Γ) :: ǫ) G; Γ1 ⊢ (e,K) ⊲Stack (e

′,K′)

G; Γ ⊢ (e,Kconstrother(π, C, κ, Fields, f, L, e1) :: K) ⊲Stack (e
′, K ′ :: K′)

Note that the κ++ e1 environment is irrelevant, as it is superseded by e which is used for the
initializers of the cells of f .

11.6.4 (⋆) Destruction

11.6.4.1 Array of structures

When an array of n cells of type C is requested to be destructed, the execution point is a
DestrArray: it corresponds to the destruction of the cells of the array, which is compiled to a
Ds++ statement thanks to the compileDestrArray compilation function using some compilation
context Γ such that the compiler-purpose variable obj is expected to hold a pointer to the
�rst cell of the array being destructed. There are no further statements within the same block
of the initializer (further destruction operations are recorded by continuation stacks). Then,
the embedding block, used once the array has been entirely destructed, is compiled using the
compilation context Γ1. So, the corresponding ⊲exec rule follows:

Γ = Γ1[Used← Γ1.Used ⊎ {obj}] e′(obj) = (ℓ, (α, 0, (Repeated, C :: ǫ)))
G; Γ1 ⊢ (⊥,K) ⊲Stack (e

′,K′) st ′ = compileDestrArray(C, i, inits , obj ,Γ)

(DestrArray(ℓ, α, i, C),K,G) ⊲exec (st
′, ǫ, e′,K′,G ′)

⊲Stack carries no κ++ environment (⊥) as there is actually none available.
Then, when destructing an array cell, a Kdestrcell frame appears in the κ++ continuation

stack frame, actually corresponding to a Callframe expecting return from destructor. It requires
no compilation context of its own. By contrast, Γ1 is the environment used for compiling the
destruction of further array cells, where obj holds a pointer to the �rst cell of the array. Finally,

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 281

Veri�ed compilation of object construction and destruction Chapter 11

Γ2 is the compilation context to use once the array has been entirely destructed, either for
the destruction of further �elds if the array corresponds to a �eld (Kdestrother(Fields)), or for
the execution of further statements if the array corresponds to a complete object to destruct
(Kcontinue).

Γ1 = Γ2[Used← Γ2.Used ⊎ {obj}] e1
′(obj) = (ℓ, (α, 0, (Repeated, C :: ǫ)))

K ′ = Callframe(⊥, compileDestrArray(C, i− 1, obj ,Γ1) :: ǫ, e1
′)

G; Γ2 ⊢ (⊥,K) ⊲Stack (e1
′,K′)

G;⊥ ⊢ (⊥,Kdestrcell(ℓ, α, i, C) :: K) ⊲Stack (⊥, K
′ :: K′)

11.6.4.2 Destructor body

While executing the destructor body for an object π, a Kdestr frame is present in the κ++
continuation stack, to mean that once the destructor body exits, the destruction of �elds and
bases of π may start, in the reverse order of their construction. In Ds++, it actually corresponds
to a Block frame, expecting exit from the block within which the destructor body has been
compiled. The destructor body is compiled using the compilation context Γ, for which curobj

must hold a pointer to π being destructed, and curpath the corresponding construction path.
The isDestructorBody �ag enforces return statements to be turned into appropriate exits,
which allows inlining the destructor body. Upon exit, the �elds of π will start destructing in
reverse order.

{Γ.curobj} ⊎ {Γ.curpath} ⊆ Γ.Used Γ.isDestructorBody = true

e′(Γ.curobj) = π = (ℓ, (α, i, σ)) G ⊢ 〈ℓ〉 Dℓ[nℓ] −〈α〉
A
→ D[n] e′(Γ.curpath) = (D, σ)

K ′ = Block(⊥, compileDestrFields(C, rev(F(C)),Γ) :: ǫ) G;⊥ ⊢ (⊥,K) ⊲Stack (⊥,K
′)

G; Γ ⊢ (e,Kdestr(π, C) :: K) ⊲Stack (e
′, K :: K′)

The e environment and the Γ compilation context provided during the execution of the de-
structor body are not �transmitted� to the remaining part of the stack (which is relevant only
upon return from the compiled destructor).

11.6.4.3 Fields

During the destruction of a list of �elds L of an object of type C, the κ++ execution point is
Destr(Fields), which is directly compiled to a Ds++ statement thanks to the compileDestrFields

compilation function. The environment e′ and the compilation context Γ are no longer relevant
when the destruction of π ends; so they are not �transmitted� to the stack.

{Γ.curobj} ⊎ {Γ.curpath} ⊆ Γ.Used e′(Γ.curobj) = π = (ℓ, (α, i, σ))

G ⊢ 〈ℓ〉 Dℓ[nℓ] −〈α〉
A
→ D[n] e′(Γ.curpath) = (D, σ) G;⊥ ⊢ (⊥,K) ⊲Stack (⊥,K

′)

(Destr(C, Fields, L),K,G) ⊲exec (compileDestrFields(C,L,Γ), ǫ, e′,K′,G ′)

During the destruction of a structure �eld f , a Kdestrother(Fields) is present in the stack to
remind the further �elds to destruct. As we saw before, the destruction of the array is included
in a block, so that the embedding block corresponds to the destruction of further �elds. So, this
κ++ stack frame matches a Block in Ds++. The construction context Γ and the environment e′

come from the compilation of the destruction of the array cells of f , thus they must be explicitly
provided. But as before, they are no longer relevant once the destruction of π ends.

282 Tahina Ramananandro

11.6 Correctness of the κ++-to-Ds++ compiler

{Γ.curobj} ⊎ {Γ.curpath} ⊆ Γ.Used e′(Γ.curobj) = π = (ℓ, (α, i, σ))

G ⊢ 〈ℓ〉 Dℓ[nℓ] −〈α〉
A
→ D[n] e′(Γ.curpath) = (D, σ) G;⊥ ⊢ (⊥,K) ⊲Stack (⊥,K

′)

G; Γ ⊢ (⊥,Kdestrother(π, C, Fields, L) :: K) ⊲Stack (e
′,Block(⊥, compileDestrFields(C,L,Γ) :: ǫ) :: K′)

11.6.4.4 Non-virtual bases

During the destruction of a list of direct non-virtual bases L of an object of type C, the
κ++ execution point is Destr(Bases(DirectNonVirtual)), which is directly compiled to a Ds++
statement thanks to the compileDestrDNVBases compilation function. The environment e′ and
the compilation context Γ are no longer relevant when the destruction of π ends; so they are
not �transmitted� to the stack.

{Γ.curobj} ⊎ {Γ.curpath} ⊆ Γ.Used e′(Γ.curobj) = π = (ℓ, (α, i, σ))

G ⊢ 〈ℓ〉 Dℓ[nℓ] −〈α〉
A
→ D[n] e′(Γ.curpath) = (D, σ) G;⊥ ⊢ (⊥,K) ⊲Stack (⊥,K

′)

(Destr(C,Bases(DirectNonVirtual), L),K,G) ⊲exec (compileDestrDNVBases(C,L,Γ), ǫ, e′,K′,G ′)

During the destruction of a direct non-virtual baseB, a Kdestrother(Bases(DirectNonVirtual))
is present in the stack to remind the further direct non-virtual bases to destruct. The destruction
of B corresponds to running the destructor, which is compiled to a Ds++ static function, so
this κ++ stack frame matches a Callframe in Ds++. For this reason, the construction context Γ
and the environment e′ need not be provided. Similarly, they need not be transmitted to the
remaining part of the stack.

{Γ.curobj} ⊎ {Γ.curpath} ⊆ Γ.Used

e′(Γ.curobj) = π = (ℓ, (α, i, σ)) G ⊢ 〈ℓ〉 Dℓ[nℓ] −〈α〉
A
→ D[n] e′(Γ.curpath) = (D, σ)

K ′ = Callframe(⊥, compileDestrDNVBases(C,L,Γ) :: ǫ, e′) G;⊥ ⊢ (⊥,K) ⊲Stack (⊥,K
′)

G;⊥ ⊢ (⊥,Kdestrother(π, C,Bases(DirectNonVirtual), L) :: K) ⊲Stack (⊥, K
′ :: K′)

11.6.4.5 Virtual bases

During the destruction of a list of virtual bases L of an object of type C, the κ++ execution
point is Destr(Bases(Virtual)), which is directly compiled to a Ds++ statement thanks to the
compileDestrVBases compilation function. Destructing the virtual bases of an object only occurs
for a most-derived object, i.e. for an array cell; however, the corresponding κ++ Kdestrcell

frame has disappeared from the stack, as its information is already contained in the
Destr(Bases(Virtual)) execution point: destructing the virtual bases of cell i also reminds of
destructing the further cells i − 1 down to 0 of the same array. This does not mean that the
corresponding Ds++ frame has disappeared, on the contrary. The trick is then to pretend that
this κ++ frame still exists for the purpose of the proof. Thus, the following rule is slightly
di�erent from its non-virtual counterpart:

{Γ.curobj} ⊎ {Γ.curpath} ⊆ Γ.Used

e′(Γ.curobj) = π = (ℓ, (α, i, σ)) G ⊢ 〈ℓ〉 Dℓ[nℓ] −〈α〉
A
→ D[n]

e′(Γ.curpath) = (D, σ) G;⊥ ⊢ (⊥,Kdestrcell(ℓ, α, i, C) :: K) ⊲Stack (⊥,K
′)

(Destr(C,Bases(Virtual), L),K,G) ⊲exec (compileDestrVBases(C,L,Γ), ǫ, e′,K′,G ′)

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 283

Veri�ed compilation of object construction and destruction Chapter 11

The same reasoning is necessary during the destruction of a virtual base V of C, when
Kdestrother(Bases(Virtual)) is present in the κ++ continuation stack:

{Γ.curobj} ⊎ {Γ.curpath} ⊆ Γ.Used

e′(Γ.curobj) = π = (ℓ, (α, i, σ)) G ⊢ 〈ℓ〉 Dℓ[nℓ] −〈α〉
A
→ D[n]

e′(Γ.curpath) = (D, σ) K ′ = Callframe(⊥, compileDestrDNVBases(C,L,Γ) :: ǫ, e′)
G;⊥ ⊢ (⊥,Kdestrcell(ℓ, α, i, C) :: K) ⊲Stack (⊥,K

′)

G;⊥ ⊢ (⊥,Kdestrother(π, C,Bases(Virtual), L) :: K) ⊲Stack (⊥, K
′ :: K′)

11.6.4.6 Continue after destruction

When a block-scoped object is requested to be constructed, a Kcontinue stack frame is
present in the κ++ stack. This frame records the �successor exit� statement (i.e. the transformed
exit statement once the block is actually left � or the return statement), the statements of
the immediately enclosing block, as well as the statements of the further enclosing blocks, and
the environment. Indeed, during destruction, the κ++ environment is not used.

The instruction to destruct an array is compiled in an additional block. However, there are
also blocks previously exited in κ++ and not yet in Ds++. Let Bll be this list of blocks, then this
list has Γ.furtherBlocks elements, and any object attached to one of those blocks is deallocated
in κ++; and the κ++ statement pipeline corresponds to the statement pipeline once all those
blocks are actually exited in Ds++.

A compiler-purpose variable, say blockvar , holds a pointer to the �rst cell of the array being
destructed. The type and number of cells of the array must match the ones expected by the
compilation.

This rule involves three di�erent compilation contexts:
� the provided Γ compilation context is the context of the initializer, where blockvar is

de�ned
� the compilation context Γ1 is used for compiling the further enclosing blocks, so blockvar

is no longer relevant
� the compilation context Γ2 is obtained when reaching the most-enclosing block

Γ.Blocks = (blockvar ,Γ.Used, (C, n)) :: Blocks1 Γ.Used = Used1 ⊎ {blockvar}
Γ1 = Γ[Blocks← Blocks1][Used← Used1][furtherBlocks← Γ.furtherBlocks+ 1]

G ⊢ 〈ℓ〉 C[n] e′(blockvar) = (ℓ, ǫ, 0, (Repeated, C :: ǫ))
retrieveStmts(stl ′,Bll) = map[[[·]]Γ1](stl q− exit 1 :: ǫ)

length(Bll) = Γ.furtherBlocks ∀ℓ′, stl ℓ′ : (ℓ
′, stl ℓ′) ∈ Bll ⇒ ℓ′ ∈ G.dealloc

K ′ = Block(⊥, [[st]]Γ1 :: stl ′) G, e′; Γ1 ↓ Γ2 ⊢ B ⊲Block KB G; Γ2 ⊢ (e,K) ⊲Stack (e
′,K′)

G; Γ ⊢ (⊥,Kcontinue(ℓ, st , stl ,B,Destr(e)) :: K) ⊲Stack (e
′, K ′ :: map[Block](Bll) q−KB q−K′)

11.6.5 Forward simulation

The correctness of the compiler is based on forward simulation, usingTheorem B.1 (p. 340).
The following theorem shows that forward simulation holds:

Theorem II.16 (κ++ to Ds++ forward simulation). ⊲ is a forward simulation from κ++
to Ds++:

284 Tahina Ramananandro

11.6 Correctness of the κ++-to-Ds++ compiler

� Initial states match:

∀s◦ ∈ I : ∃s′◦ ∈ I′, ∃s′1 ∈ S′ : s′◦
⋆

→′ s′1 ∧ s◦ ⊲ s
′
1

� Forward invariant preservation:

∀s1, s2, s1
′ : s1 → s2 ∧ s1 ⊲ s1

′

⇒ ∃s2
′ : s1

′
+

→′s2
′ ∧ s2 ⊲ s2

′

� Final states match:
∀(sf , z) ∈ F, ∀s′9 ∈ S′ : sf ⊲ s

′
9

⇒ ∃s′f ∈ F′
z : s′9

⋆

→′ s′f

Graphically:

S I
∋ s◦

⊲

s1
e?

//

⊲

s2

⊲

sf

⊲

∈
Fz

S′ I′ ∋
s′◦

′⋆
// s′1 s′1

e?

′+
// s′2 s′99

′⋆
// s′f

∈
F′
z

Proof. We sum up the theorems and lemmataused for the proof of invariant preservation for
the high-level steps:

s++ execution step Proof case Theorem used
Scalar �eld read (κ++-�eld-
scalar-read, p. 185)

Object not deallocated Theorem II.11 (p. 217)

Starting the construction
of the �elds of an object
(κ++-constr-bases-direct-
non-virtual-nil, p. 190)

Generalized dynamic type
change

Theorem II.15 (p. 221)

Entering destructor body
for a most-derived ob-
ject (κ++-destr-array-cons,
p. 193)
Entering destructor body
for a base class subob-
ject (κ++-destr-bases-cons,
p. 194)

The remaining part of the proof mostly corresponds to matching the structures of execution
states, by �tting the κ++ complex structures for execution points and continuation stack frames
(due to construction and destruction) to the Ds++ �current statement and block-or-callframe�
simple structure.

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 285

Veri�ed compilation of object construction and destruction Chapter 11

11.7 The CVcm target language

Now that we have compiled constructors and destructors into Ds++, we aim at compiling the
obtained intermediate program into a language featuring low-level accesses, which we present
in this section.

11.7.1 Virtual table tables

As we saw, modern compilers such as the Common Vendor ABI for Itanium use di�er-
ent virtual tables for construction. To retrieve those virtual tables, additional read-only data
structures are required at run time. Those structures are called virtual table tables or VTT.

Basically, for each dynamic class C and for each possible inheritance path σ to C, there is
a virtual table table containing:

� (a pointer to) the virtual table of each dynamic direct or indirect base class subobject σ′

of C, assuming that σ is considered a most-derived object for the purpose of polymorphic
operations

� (a pointer to) the VTT of each dynamic direct non-virtual base B of C
� for the VTT of a most-derived object (σ = (Repeated, C :: ǫ)), (a pointer to) the VTT of
each dynamic direct or indirect virtual base V of C

A VTT for a most-derived object is called a main VTT. For any path σ, the VTT of any direct
non-virtual base class subobject of σ (as well as the VTT of any direct or indirect virtual base
subobject of σ, if σ is a most-derived object) is said to be a sub-VTT of the VTT of σ.

11.7.2 Syntax

The CVcm language 16 features low-level memory accesses. The class hierarchy is no longer
required; polymorphic operations are modelled through read-only memory accesses to virtual
tables and virtual table tables.

CVcm is based on Vcm (Section 7.2 p. 137) with which it shares the memory model; however,
CVcm additionally features virtual table tables.

In more detail, we recall the following operations on low-level memory accesses are common
to Cminor, Vcm and CVcm:

� memory read and write
� constant and variable pointer shift
� pointer equality test
Additionally, Vcm and CVcm model C++-style polymorphic operations by the following

operations on virtual tables:
� retrieve o�set of virtual base
� retrieve o�set for dynamic cast
� retrieve pointer to function and this pointer adjustment o�set for virtual function call
However, contrary to Vcm, CVcm models construction-speci�c features through virtual table

tables (VTTs). Those operations are split into two parts:
� on the one hand, VTT handling operations are close to Ds++ operations handling con-
struction paths, as the representation of VTT is left abstract in CVcm:
� retrieve pointer to a main VTT

16. Coq development: theory Target.

286 Tahina Ramananandro

11.7 The CVcm target language

� retrieve pointer to a sub-VTT of a VTT
� on the other hand, an operation is speci�c to CVcm and help compile the �set dynamic
type� operation: retrieve pointer to virtual table from a VTT and a constant inheritance
path.

However, to emphasize that a CVcm program no longer requires a C++-like class hierarchy,
we develop an abstract representation of virtual tables independent of class hierarchy.

The CVcm operations for low-level memory access (load, store) are parameterized with the
memory chunk, which expresses the expected kind of the value to read from memory or to write
to memory:

T : Chunk Type of data writable to memory (chunk)
Chunk ::= t Built-in type

| Ptr Pointer to memory
| Fptr Pointer to function
| Vptr Pointer to virtual table
| VTTptr Pointer to VTT

In program syntax, we assume a type system for accessing virtual tables and virtual table
tables. Section 7.2.1.2 (p. 138) describes the �type system� for virtual tables of Vcm, reused by
CVcm without changes. A virtual table type declares all entries that can be de�ned in virtual
tables of this type. From the C++ point of view, a virtual table type corresponds to a class
de�nition, but limited to the virtual bases, the virtual functions and the results of dynamic
cast operations.

CVcm additionally introduces VTT types to describe a �type system� for virtual table
tables. Similarly, a VTT type declares all entries that can be de�ned in virtual table tables of
this type. From the C++ point of view, a VTT type corresponds to the inheritance hierarchy.
However, this type system will be ignored for the �main VTTs�, which are the virtual table
tables corresponding to most-derived objects.

VTTTypeDefs = VTTType 7 7→VTTTypeDef

VTTTypeDef =
{

vtable : VTableRequest 7 7→VTableType ; Types of expected virtual tables
subvtt : SubVTTRequest 7 7→VTTType ; Types of expected sub-VTTs

}

Then, the syntax of CVcm statements follows:
B : VBOffRequest Virtual base whose o�set is requested
X : DynCastRequest Target of a requested dynamic cast
F : DispRequest Virtual function whose dispatch is requested
V : VTableRequest Request a virtual table from a VTT
τ : VTableType Type of virtual table
θ : VTTType Type of VTT

st ::= if (x) st⊤ else st⊥ Conditional
| st1; st2 Statement sequence
| skip Do nothing

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 287

Veri�ed compilation of object construction and destruction Chapter 11

| loop st Loop
| {st} Statement block
| exit n Leaving n blocks
| x′ := x Variable value duplication
| x′ := op(x∗) Built-in operation
| x′ := sfname(x∗) Function call
| x′ := (∗x)(x∗) Function call through function pointer
| return x? Return from function
| x′ := ∗Tx Memory read
| ∗Tx := x′ Memory write
| x′ := x1 == x2 Pointer comparison
| {x : size; st} Memory block allocation
| x′ := vboff〈B〉τ (x) O�set to virtual base
| x′ := dyncastdef〈X〉τ (x) Is dynamic cast de�ned?
| x′ := dyncastoff〈X〉τ (x) Dynamic cast o�set
| x′ := dispfunc〈F 〉τ (x) Virtual function dispatch
| x′ := dispoff〈F 〉τ (x) this pointer adjustment

for virtual function dispatch
| x′ := MainVTT(M) Main VTT
| x′ := SubVTT〈S〉θ(x) Sub-VTT of a VTT
| x′ := vtable〈V 〉θ(x)

Virtual table tables contain the corresponding construction virtual tables, and sub-VTTs
for the construction of base class subobjects.

VTTs = VTTName 7 7→VTT

VTT =
{

type : VTTType ; Type of VTT
(for abstract VTT layout)

vtable : VTableRequest 7 7→VTableName ; Virtual tables
subvtt : SubVTTRequest 7 7→VTTName ; Sub-VTTs
}

Finally, the components of a CVcm program are:

� the entry point statement
� functions (as in Vcm, there are no more conceptual distinctions between two functions,
be they compiled from a Ds++ static function or class member function)

� virtual tables (Section 7.2.1.4 p. 139) and virtual table type declarations (Section 7.2.1.2
p. 138), similarly to Vcm

� virtual table tables and VTT type declarations
� the main VTTs (which contain the virtual table tables used during the normal lifetime of
objects)

288 Tahina Ramananandro

11.7 The CVcm target language

Func ::= (x∗){st} Function de�nition
Program =
{

main : st ; Entry point statement
funcs : FuncName 7 7→ Func ; Functions

vtables : VTables ; Virtual tables (Section 7.2.1.4 p. 139)
vtts : VTTs ; Virtual table tables

vtabletypes : VTableTypes ; Virtual table types
(for abstract vtable layout)
(Section 7.2.1.2 p. 138)

vtttypes : VTTTypes ; VTT types
(for abstract VTT layout)

mainvtts : MainVTTRequest 7 7→VTTName ; Main VTTs
}

11.7.3 Memory model

The low-level memory model 17 of CVcm extends the memory model of Vcm (Section 7.2.2
p. 139), inspired from the CompCert memory model [16]. Memory is organized in several mem-
ory blocks. Each block is a �nite array of bytes. Values are stored within one block, spanning
one or several bytes.

Contrary to Vcm, memory blocks may be allocated and deallocated in CVcm. To simplify,
similarly to early versions of CompCert, we assume that allocation of a memory block never
fails. So, memory operations are summarized as follows:

MemSpec =
{

chunksize : Chunk →N>0 ; Size of data chunk
chunkalign : Chunk →N>0 ; Alignment of data chunk

load : Mem × Chunk ×MemBlock × Z→Value? ; Memory load
store : Mem × Chunk ×MemBlock × Z× Value→Mem? ; Memory store

blocksize : Mem ×MemBlock →N? ; Size of a memory block
alloc : Mem × Z→MemBlock ×Mem ; Allocate a new block
free : Mem × Block →Mem ; Deallocate a block

}

Pointer arithmetics (constant o�set shift, and variable o�set shift by a constant factor) allow
to operate on pointers within a given block. It is impossible to retrieve a pointer within a block
from a pointer within another block.

Section 7.2.2.4 (p. 140) axiomatizes the behaviour of memory load and store operations,
which do not change since Vcm. Additionally, the following rules axiomatize the behaviour of
memory block allocation and free:

� allocation has no impact on reading from already existing blocks:

alloc(M, sz) = (M′, b′) b 6= b′

load(M′, T, b, o) = load(M, T, b, o)
(CVcm-mem-load-alloc-other)

17. Coq development: theory Memory.

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 289

Veri�ed compilation of object construction and destruction Chapter 11

� the size of an allocated block is well-de�ned after allocation, and not before allocation:

alloc(M, sz) = (M′, b′)

blocksize(M′, b′) = sz
(CVcm-mem-blocksize-alloc-same-after)

alloc(M, sz) = (M′, b′)

blocksize(M, b′) = ⊥
(CVcm-mem-blocksize-alloc-same-before)

� allocation does not change the block sizes of already allocated blocks:

alloc(M, sz) = (M′, b′) b 6= b′

blocksize(M′, b) = blocksize(M, b)
(CVcm-mem-blocksize-alloc-other)

� deallocation has no impact on reading from other blocks, and does not change the sizes
of other blocks:

free(M, b) = M′ b 6= b′

load(M′, T, b′, o′) = load(M, T, b′, o′)
(CVcm-mem-load-free-other)

free(M, b) = M′ b 6= b′

blocksize(M′, b′) = blocksize(M, b′)
(CVcm-mem-blocksize-free-other)

11.7.4 Semantic elements

Values A value is either a value of built-in type (integer, �oating-point number, etc.), a
pointer to a memory location (that is, a pair of a memory block and an integer o�set within
this memory block), a null pointer, a pointer to a function, a pointer to a virtual table, as in
Vcm, or additionally a pointer to a virtual table table:

Val ::= Builtin Value of built-in type
| @(b, o) Pointer to memory location at o�set o within block b
| NULL Null pointer
| &FuncName Pointer to function
| &VTableName Pointer to virtual table
| &VTTName Pointer to virtual table table

Then, �typing� a value � determining whether a value corresponds to some memory chunk
� is given by the rules de�ned as in Vcm (Section 7.2.2.3 p. 140), to which pointers to virtual
table tables have to be additionally taken into account:

&VTTName : VTTptr

Execution state A CVcm execution state of the small-step semantics is composed of the
same parts as in Vcm, except that a stack frame corresponding to a statement block can be
attached to an allocated memory block. To sum up, a CVcm execution state is composed of:

� the current statement to execute,
� the list of further statements to execute in the same block,

290 Tahina Ramananandro

11.7 The CVcm target language

� the environment (mapping of values to variables),
� the continuation stack, which is a list of frames, each frame being either of:
� leaving a block, with the memory block to deallocate on block exit (if any, as an addition
to Vcm) and the further statements to execute after leaving the block

� returning from a function, with the caller variable to store the result (if any), the caller
environment, and the further statements to execute on resumption

� the memory state

e = x→Val ? Environment
Frame ::= Block(b?, st∗) Further statements

after leaving a block
| Callframe(x?, st∗, e) Return from function

K ::= Frame∗ Continuation stack
State ::= (st , st∗, e,K,Mem) Execution state

11.7.5 Semantic rules

The small-step semantics of CVcm is given by the transition relation → between two tran-
sition states, de�ned in this section.

11.7.5.1 Structured control, variable value duplication, built-in operations

Most structured control behaves similarly as in other Compcert-like languages: conditionals,
sequences, in�nite loops, and return from call (once all statements blocks within the current
function have been left), as well as variable value duplication, and built-in operations (Hy-
pothesis 3.2.2 p. 68). CVcm reuses the corresponding rules of s++ de�ned in Section 4.4.1.1
(p. 83).

11.7.5.2 Function call, memory accesses, pointer arithmetics and virtual tables

The semantics of CVcm exactly agrees with Vcm concerning function calls (Section 7.2.4.2
p. 142), memory accesses and pointer arithmetics (Section 7.2.4.3 p. 142), and virtual tables
(Section 7.2.4.4 p. 143), including thunk calls.

11.7.5.3 Statement blocks

For statement blocks with no attached memory blocks, CVcm takes the corresponding Ds++
rules de�ned in Section 11.4.2 (p. 248).

However, contrary to Vcm, CVcm allows creating and destroying memory blocks. When
entering a statement block requesting a memory block of size sz , such a memory block is
allocated and attached to the statement block. The programmer then obtains a pointer to the
o�set 0 within this block:

sz > 0 alloc(M, sz) = (b,M′) e′ = e[c← @(b, 0)]

({c : sz ; st}, stl , e , K, M)
→ (st , ǫ, e′, Block(b, stl) :: K, M′)

(CVcm-block-some)

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 291

Veri�ed compilation of object construction and destruction Chapter 11

When leaving a statement block attached to a memory block, this object is deallocated:

free(M, b) = M′

(exit (S n), stl ′, e, Block(b, stl) :: K, M)
→ (exit n , stl , e, K, M′)

(CVcm-exit-some)

free(M, b) = M′

(return x?, stl ′, e, Block(b, stl) :: K, M)
→ (return x?, stl , e, K, M′)

(CVcm-return-some)

11.7.5.4 Virtual table tables

Finally, it remains to de�ne the operations on virtual table tables: retrieving a pointer to a
sub-VTT, or a pointer to a construction virtual table.

Sub-VTTs The relation vttname : θ ⊢ S vttname ′ denotes the fact that accessing the
sub-VTT S of the VTT vttname of type θ succeeds by returning the VTT vttname ′. Access to
sub-VTT actually relies on the underlying type system for virtual table tables. This operation
is parameterized with a virtual table table type θ such that the type declaration of θ explicitly
allows access to the sub-VTT S:

mainvtts(θ) = vttname

vtts(vttname) = V V.type = θ vtttypes(θ).subvtt(S) = ⊥ V.subvtt(S) = vttname ′

vttname : θ ⊢ S vttname ′

(CVcm-subvtt-access-main)
However, VTT type information is not used when reading the main VTT of this type:

indeed, from the C++ point of view, a main VTT corresponds to a most-derived object, which
may have sub-VTTs for virtual bases, contrary to ordinary VTTs.

vtts(vttname) = V V.type = θ
vtttypes(θ).subvtt(S) = θ′ V.subvtt(S) = vttname ′ vtts(vttname ′).type = θ′

vttname : θ ⊢ S vttname ′

(CVcm-subvtt-access)
Those two access rules are packed together to form the actual transition rule for accessing

a sub-VTT:

e(x) = &vttname vttname : θ ⊢ S vttname ′ e′ = e[x′ ← &vttname ′]

(x′ := SubVTT〈S〉θ(x), stl , e , K, M)
→ (skip , stl , e′, K, M)

(CVcm-subvtt)

Virtual tables Access to a construction virtual table contained in a VTT relies on the
underlying type system for virtual table tables. This operation is also parameterized with a
virtual table table type θ such that the type de�nition of θ must explicitly allow accessing the

292 Tahina Ramananandro

11.8 A compiler from Ds++ to CVcm

requested virtual table:

e(x) = &vttname vtts(vttname) = v v.type = θ vtttypes(θ).type(V) = τ
v.vtable(V) = vname ′ vtables(vname ′).type = τ e′ = e[x′ ← &vname ′]

(x′ := vtable〈V 〉θ(x), stl , e , K, M)
→ (skip , stl , e′, K, M)

(CVcm-vtt-vtable)

11.8 A compiler from Ds++ to CVcm

Now that the semantics of the CVcm target has been de�ned, we can compile Ds++ programs
into CVcm. Our compiler, described in this section 18, is mostly based on the compilation of s++
to Vcm described in Section 7.3 (p. 145). The main di�erences are that virtual tables have to
be compiled slightly di�erently to include construction virtual tables; and virtual table tables
have to be added, as well as the �set dynamic type� operation, which is actually intended to
update the low-level dynamic type data (pointers to virtual tables).

We reuse the notations and de�nitions of the s++-to-Vcm compiler: compiled statements
(Notation 7.3.1 p. 145), variables (Notation 7.3.2 p. 145), function names (Notation 7.3.3 p. 145),
memory chunks corresponding to scalar data types (De�nition 7.3.4 p. 146. Moreover, we also
match the CVcm sizes of memory chunks and pointers to virtual tables with the corresponding
sizes of scalar data and dynamic type data given by the object layout algorithm, in the same
way as in Vcm (Hypothesis 7.3.1 p. 146, Hypothesis 7.3.2 p. 146). However, no hypothesis is
necessary about the size or alignment of pointers to virtual table tables, since such pointers are
never stored or read from memory.

11.8.1 Construction of virtual tables

The virtual tables 19 of an object change during their construction or destruction, due to
the �set dynamic type� operation. Let π = (ℓ, α, i, σ) a pointer to an inheritance subobject of

a most-derived D object: such that G ⊢ Dℓ[nℓ] −〈α〉
A
→ D[ℓ]. Then, σ may be written σ◦@σ′

where D −〈σ◦〉
I
→ C◦ −〈σ1〉

I
→ C such that σ◦ is the generalized dynamic type of π. But, once this

generalized dynamic type exists, the polymorphic behaviour only depends on σ1, pretending
that the most-derived object is of type C◦, although o�set computations must also take σ◦ into
account.

Thus, the program needs the virtual tables for all inheritance objects σ from D to some
dynamic class C such that σ = σ◦@σ′ for some inheritance paths σ◦ from D to some class C◦

and σ′ from C◦ to C that are not primary subobjects of other subobjects of σ◦, i.e. such that
σ′ = reducePath(σ′). As such, we pose:

VtableType
def.
{C : isDynamic(C)}

VtableName
def.

(D, σ◦, σ
′) :

D −〈σ◦〉
I
→ C◦ −〈σ

′〉
I
→ C

isDynamic(C)
σ′ = reducePath(σ′)

18. Coq development: theory Interm2Target.
19. Coq development: theory Vtables.

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 293

Veri�ed compilation of object construction and destruction Chapter 11

For any virtual table name (D, σ◦, (h, l)), its type is the destination of the inheritance path
(h, l):

vtables(D, σ◦, (h, l)).type def.
last(l)

The declarations of entries allowed in virtual tables, at the level of virtual table types, are
computed in a way similar to Vcm (Section 7.3.1.6 p. 150).

The actual contents of virtual tables are also computed in a way similar to Vcm, but with
the main di�erence that in CVcm the most-derived object is given by the generalized dynamic
type. The consequent changes are explained in more detail in the following sections.

11.8.1.1 Dynamic casts

Lemma 11.8.1. Consider a most-derived D◦ object. Let D be a base of D◦, C be a base of
D, B be a dynamic primary non-virtual (direct or indirect) base of C, and X a class that is
not a base of C. Then, the dynamic cast from B to X pretending D is the most-derived object
succeeds if, and only if, the dynamic cast from C to X succeeds, and then both cast to the same
subobject of D◦ and with the same o�set adjustment.

Proof. This is a direct consequence of Lemma 7.3.3 (p. 147). As regards the o�set adjustment,
let σ◦ be the path from D◦ to D, and let σ′ be the inheritance subobject from D to the X
subobject resulting from the dynamic cast. Then, the adjustment corresponding to the cast
from B to X is performed through the o�set soffD◦

(σ◦@σ′) − soffD◦
(σ◦@σ@(Repeated, l)) =

soffD◦
(σ◦@σ) + nvsoff(l) per Lemma 5.4.1 (p. 105). But B is a primary base of C. Thus l is a

primary path, which implies that nvsoff(l) = 0 and concludes.

Let D◦ −〈σ◦〉
I
→ D −〈σ〉

I
→ C be an inheritance path from D◦ to a dynamic class C. Thanks

to this lemma, we de�ne, for any class X, the following o�set ∆(D◦, σ◦, σ,X), by well-founded
induction on C using the well-founded order ≺ (Section 4.1.4.2 p. 79):

∆(D◦, σ◦, σ,X) =

soffD◦
(σ◦@σ′)− soffD◦

(σ◦@σ) if D −〈σ〉I→ C ∧ DynCast(D, σ, C,X, σ′)

and X not a base of C

⊥ if D −〈σ〉I→ C ∧ DynCast(D, σ, C,X,⊥)

and X not a base of C

∆(D◦, σ◦@σ@(Repeated, C :: B :: ǫ), X) if pbase(C) = B and X base of C

⊥ if pbase(C) = ⊥ and X base of C

Theorem II.17 (Correctness of CVcm virtual tables: dynamic cast). Let D◦ −〈σ◦〉
I
→

D −〈σ〉
I
→ C −〈l〉

NV
→ B be an inheritance path from D◦ to B such that the generalized dynamic

type of σ◦@σ is σ◦, and l is a non-virtual primary path.
Then, for any class X that is not a base of B, the dynamic cast from B to X pretending

D to be the most-derived object succeeds if, and only if, ∆(D◦, σ◦, σ,X) = δ 6= ⊥, and, in this
case, the adjustment is performed by adding o�set δ.

Proof. The proof is similar to that of Theorem I.12 (p. 148), using Lemma 11.8.1 (p. 294).

294 Tahina Ramananandro

11.8 A compiler from Ds++ to CVcm

11.8.1.2 Virtual function dispatch

Let D◦ −〈σ◦〉
I
→ C◦ −〈σ〉

I
→ C be an inheritance subobject of D◦ of static type C, such that

the generalized dynamic type of σ◦@σ is σ◦ of type C◦. Corollary 7.3.6 (p. 149) allows to
de�ne, by well-founded induction on last(σ) (using the≺ order on class names, cf. Section 4.1.4.2
p. 79), the following Φ(D◦, σ◦, σ, f) function:

Φ(DC◦, σ◦, σ, f) =

((B, f), soffD◦
(σ◦@σ′)− soffD◦

(σ◦@σ)) if VFDispatch(C◦, σ, f, B, σ′)

Φ(D◦, σ◦, σ@(Repeated, A :: B :: ǫ), f) if dispatch fails for σ

and pbase(A) = B

⊥ if dispatch fails for σ

and pbase(A) = ⊥

Theorem II.18 (Correctness of CVcm virtual tables: virtual function dispatch). Let

D◦ −〈σ◦〉
I
→ C◦ −〈σ〉

I
→ C be an inheritance subobject of C◦ of static type C, such that the gener-

alized dynamic type of σ◦@σ is σ◦.
If virtual function dispatch for f succeeds on a primary subobject σ@(Repeated, l) of σ, then

Φ(C◦, σ◦, σ, f) = ((B, f), δ) where B is the class of the �nal overrider, and δ the o�set for the
this pointer adjustment.

Proof. The proof is similar to the proof of Theorem I.13 (p. 150).

11.8.1.3 Summary

Now we can compute the contents of virtual tables, based on the class hierarchy. Thanks to
Theorem I.11 (p. 147), the �nite map of virtual base o�sets of a virtual table (D, σ◦, (h, l))
may be computed as follows:

vtables(D, σ◦, (h, l)).vbo� def.

V(last(l)) 7 7→ Z

V 7→ vboffD(V)− soffD(σ◦@(h, l))

Similarly, thanks to Theorem II.17 (p. 294), the �nite map of dynamic cast o�sets for a
virtual table (D, σ◦, (h, l)) may be computed as follows:

vtables(D, σ◦, (h, l)).dyncast def.

C 7 7→ Z

X 7→ ∆(D, σ◦, (h, l), X)

Similarly, thanks to Theorem II.18 (p. 295), the �nite map of virtual function dispatch for
a virtual table (D, σ◦, (h, l)) may be computed as follows:

vtables(D, σ◦, (h, l)).disp def.

M′(last(l)) 7 7→ FuncName × Z

f 7→ Φ(D, σ◦, (h, l), f)

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 295

Veri�ed compilation of object construction and destruction Chapter 11

11.8.2 Construction of virtual table tables

VTT types Virtual table tables are used during the construction of an object of dynamic
class type:

VTTTypes
def.
{C : isDynamic(C)}

Then, a virtual table table of type C may contain the sub-VTTs for each direct non-virtual
base B of C. Then, each such sub-VTT is expected to be of the corresponding type B:

vtttypes(C).subvtt : {DirectNonVirtual} × DNV(C) 7 7→ DNV(C)
(DirectNonVirtual, B) 7→ B

Indeed, the entries for virtual bases are expected only at the level of the VTT for the most-
derived object, i.e. the main VTT. Thus, it is not necessary to include them in the VTT type
declaration.

Then, a virtual table table of type C may also contain the virtual tables for all inheritance
paths from C to dynamic classes, which are not primary subobjects of other subobjects of C.
The set of all those inheritance paths is written PC and de�ned as follows:

PC def.

(h, l) :
C −〈(h, l)〉

I
→ B

isDynamic(B)
l = reducePath(l)

Thanks to this de�nition, the virtual tables that may be de�ned in a virtual table table of
type C are:

vtttypes(C).vtable : PC 7 7→ C
(h, l) 7→ last(l)

Virtual table tables A virtual table table is de�ned for each inheritance path to a dynamic
class. It is worth noting that VTT names actually correspond to construction paths:

VTTNames
def.

{

(D, σ) : D −〈σ〉
I
→ C

isDynamic(C)

}

The type of a virtual table table (D, σ) is given by the destination of the inheritance path
σ = (h, l):

vtt(D, (h, l)).type
def.

last(l)

The virtual tables of a VTT (D, σ) of type C are the virtual tables ((D, σ, σ′)) of all in-
heritance subobjects σ′ ∈ PC of C of type B where B is a dynamic class, and which are not
primary base class subobjects of other inheritance subobjects of C:

vtt(D, σ).vtables : PC 7 7→ VTableNames

σ′ 7→ (D, σ, σ′)

The sub-VTTs of a VTT (D, σ) of type C are the sub-VTT corresponding to the direct non-
virtual bases of C. Moreover, if (D, σ) is the VTT of a most-derivedD object (D, (Repeated, D ::
ǫ)) (i.e. the main VTT of type D), then the sub-VTTs for virtual bases of D have to be added:

vtt(D, σ).subvtt : BaseKind × C 7 7→ VTTNames

(DirectNonVirtual, B)(B ∈ DNV(C)) 7→ (D, σ@(Repeated, C :: B :: ǫ))
(Virtual, V)(V ∈ V(C), σ = (Repeated, D :: ǫ)) 7→ (D, (Shared, V :: ǫ))

296 Tahina Ramananandro

11.8 A compiler from Ds++ to CVcm

11.8.3 Operations unrelated to C++ construction or destruction

The compilation of Ds++ operations to CVcm mostly follow the same compilation scheme
as for the compilation from s++ to Vcm:

� structured control, built-in operations, statement blocks with no objects, block exits,
static and non-virtual function calls (Section 7.3.2 p. 152)

� �eld and array accesses (Section 7.3.3 p. 152)
� pointer equality tests (Section 7.3.4 p. 153)
� static casts (Section 7.3.5 p. 153)
� dynamic casts (Section 7.3.6 p. 154)
� virtual function dispatch (Section 7.3.7 p. 154)

11.8.4 Blocks with stack objects

When a Ds++ statement block allocates an object of n cells of type D, this object must
correspond to a new memory block large enough to contain the array. That is, of size n× sizeD:

[[{D d[n]; st}]]
def.
{d : n× sizeD; [[st]]}

The compilation of statement block exits is also correct, because, contrary to κ++, no de-
structor is called upon exiting a Ds++ statement block, so that the object is directly deallocated.

11.8.5 Special casts to bases

Ds++ allows special casts from an object to one of its direct non-virtual base subobjects,
or virtual base subobjects in the case of a most-derived object. Those casts are used when the
generalized dynamic type of the object is not well-de�ned, especially during construction.

Such casts are translated by constant o�set shifts, with no need to use any virtual table:

[[x′ := base_cast〈DirectNonVirtual, B〉C(x)]] def.
x′ := x+ dnvboffC(B)

[[x′ := base_cast〈Virtual, V 〉C(x)]] def.
x′ := x+ vboffC(V)

11.8.6 Set dynamic type

The set dynamic type operation setDynType(x, xcpath)
b
C consists in declaring a subobject of

type C, referred to by variable x, to be the most-derived object for the purpose of polymorphic
operations. Then, the construction path held by variable xcpath allows to know the inheritance
path from the most-derived object to the subobject operated on.

In practice, this step corresponds to the times when pointers to virtual tables within sub-
objects are changed 20. Actually, the construction path held in xcpath corresponds in CVcm to a
pointer to the relevant virtual table table. This pointer helps retrieve those pointers to virtual
tables.

20. Coq development: theory CompileSetDynType.

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 297

Veri�ed compilation of object construction and destruction Chapter 11

11.8.6.1 Compilation

There are three cases:

Not a dynamic class type If the subobject, on which the set dynamic type operation is
performed, is not of dynamic class type, then there are no subobjects to update: there is nothing
to do.

[[setDynType(x, xcpath)
b
C]] def.

skip (C not dynamic)

Most-derived object, or object with no virtual bases In this case, we statically know
the o�sets of subobjects of the objects. We �rst recursively de�ne the seqlist operator, which
turns a list of statements into a sequence of statements:

seqlist(ǫ)
def.
skip seqlist(st :: stl)

def.
st ; seqlist(stl)

Then, we remark that the set PC of inheritance subobjects from C to dynamic classes and
that are not primary subobjects of other subobjects of C, can be computed in a �nite amount
of time: the paths may be enumerated into a list.

Consider such a path σ′ ∈ PC . We statically know its o�set within C (either because σ′ is
non-virtual, or because the operated subobject is a most-derived object), so that the following
S(σ′) statement writes the corresponding pointer to the virtual table of σ′:

S(σ′)
def.

tmp := vtable〈σ′〉C(xcpath)

; ∗Vptr(x+ soffC(σ
′)) := tmp

Finally, to implement �set dynamic type� operation, it su�ces to update the pointers to virtual
tables for all inheritance subobjects of σ which are not primary bases of other subobjects of σ:

[[setDynType(x, xcpath)
true
C]]

def.
seqlist(map[S](PC))

General case Assume that the subobject operated on is the σ inheritance subobject of D of
static type C. Then, xcpath actually holds the construction path (D, σ).

In the general case, the o�sets of subobjects to dynamic class types are known at compile
time with the notable exception of virtual inheritance. To this purpose, o�sets to virtual bases
must be read from the virtual table (D, σ, (Repeated, C :: ǫ)) of the C subobject σ considered
as the most-derived object.

Assume that the pointer to this virtual table is already stored in the temporary variable
tmp1 introduced by the compiler. Then, for each path σ′ ∈ PC , the following S(σ′) statement

298 Tahina Ramananandro

11.8 A compiler from Ds++ to CVcm

updates its dynamic type data to the corresponding (D, σ, σ′) pointer to virtual table:

S(Repeated, l)
def.

tmp2 := vtable〈σ
′〉C(xcpath)

; ∗Vptr(x+ nvsoff(l)) := tmp2

S(Shared, V :: l)
def.

tmp2 := vtable〈σ
′〉C(xcpath)

; tmp3 := vboff〈V 〉C(tmp1)

; tmp3 := x+ tmp3 × 1

; ∗Vptr(tmp3 + nvsoff(V :: l)) := tmp2

Finally, to implement �set dynamic type� operation, it su�ces to �rst retrieve the virtual table
of σ pretended as the �most-derived object�, then update the pointers to virtual tables for all
inheritance subobjects of σ which are not primary bases of other subobjects of σ:

[[setDynType(x, xcpath)
false
C]]

def.
tmp1 := vtable〈(Repeated, C :: ǫ)〉C(xcpath)

; seqlist(map[S](PC))

11.8.6.2 Correctness

Using PC has two advantages. First, it allows to minimize the number of memory writes
(in particular, if PC is represented without duplicates, then we never write twice at the same
place). Moreover, it makes easier to prove the:

Theorem II.19 (Dynamic type data update of an object and its subobjects). Assume
that x holds a pointer to an inheritance subobject σ of a most-derived D object, and that xcpath

holds the corresponding (D, σ) construction path.
Then, [[setDynType(x, xcpath)

b
C]] updates the dynamic type data of all inheritance subobjects

σ′ of σ that are not primary base subobjects of other subobjects of σ to pointers to their corre-
sponding virtual tables (D, σ, σ′).

Indeed, it su�ces to show that two such distinct subobjects σ′
1, σ

′
2 have their dynamic type

data disjoint, by using Theorem I.5 (p. 121), which requires to show that the reduced paths
of σ@σ′

1 and σ@σ′
2 are distinct. The proof of this statement boils down to the:

Lemma 11.8.2. Let (α, i, σ) be a generalized subobject of some type C:

D[n] −〈α〉
A
→ D′[n′] −〈(i, σ)〉

CI
→ C

Let C −〈(h1, l1)〉
I
→ B1 and C −〈(h2, l2)〉

I
→ B2 be two inheritance paths from C. Pose (h′

i, l
′
i) =

σ@(hi, li) for i ∈ {1, 2}.
Then, reducePath(l′1) = reducePath(l′2) implies reducePath(l1) = reducePath(l2).

Proof. Let B be the class of the reduced path reducePath(l′1) :

B = last(reducePath(l′1)) = last(reducePath(l′2))

Then, Lemma 5.5.20 (p. 120) gives:

l′1 = reducePath(l′1)@Repeated(B :: l′′1) l′2 = reducePath(l′2)@Repeated(B :: l′′2)

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 299

Veri�ed compilation of object construction and destruction Chapter 11

with B :: l′′1 and B :: l′′2 primary inheritance paths from the same class B to some classes
B1 and B2. Then, necessarily, one of them is a pre�x of the other. By symmetry, assume
l′′2 = l′′1@Repeated(B1 :: l

′′) for some l′′ such that B1 :: l
′′ is a primary path from B1 to B2. Then,

we actually have (h′
2, l

′
2) = (h′

1, l
′
1)@(Repeated, B1 :: l

′′), i.e.:

σ@(h2, l2) = σ@(h1, l1)@(Repeated, B1 :: l
′′)

where B1 :: l′′ is primary. Then, Lemma 4.1.11 (p. 80) allows getting rid of the σ on the left-
hand-side of @. This leads to (h2, l2) being a primary base class subobject of (h1, l1), so h1 = h2

by de�nition of path concatenation (Lemma 4.1.4 p. 76), and reducePath(l1) = reducePath(l2)
thanks to Lemma 5.5.21 (p. 120).

However, it is also necessary to show that the dynamic types of irrelevant subobjects are
not changed. The semantics of Ds++ erases those generalized data types of subobjects σ′ such
that σ is a Π-primary inheritance subobject of σ′ for some notion of Π, which we choose here
to match with the �primary path� notion of object layout:

Hypothesis 11.8.1. A non-virtual inheritance path is Π-primary in the sense of Ds++ (Hy-
pothesis 11.4.2 p. 252) if, and only if, it is a primary path in the sense of the object layout
algorithm (De�nition 5.5.10 p. 120):

Π(l) = true⇔ isPrimaryPath(l)

Thanks to our choice, we can now complete the proof of the correctness of the compilation
of �set dynamic type�:

Theorem II.20 (Dynamic type data update for other objects). Assume that x holds
a pointer to an inheritance subobject σ of a most-derived D object, and that xcpath holds the
corresponding (D, σ) construction path.

Then, [[setDynType(x, xcpath)
b
C]] does not change the dynamic type data of inheritance sub-

objects σ′ of D such that σ is not a primary base class subobject of σ′.

Indeed, it su�ces to show that two such distinct subobjects σ′, σ have their dynamic type data
disjoint, by using Theorem I.5 (p. 121), which requires to show that the reduced paths of σ
and σ′2 are distinct. The proof of this statement boils down to the:

Lemma 11.8.3. Let (α, i, σ) be a generalized subobject of some type C:

D[n] −〈α〉
A
→ D′[n′] −〈(i, σ)〉

CI
→ C

Let C −〈σ0〉
I
→ B0 and C −〈σ1〉

I
→ B1 be two inheritance paths from B1 such that σ1 = (h1, l1) is

not an inheritance subobject of σ0, and σ0 = (h0, l0) is not a primary inheritance subobject of
σ1.

Then, reducePath(l0) 6= reducePath(l1).

Proof. Assume reducePath(l0) = reducePath(l1). Then, l0 and l1 are two primary base class
subobjects of the same subobject. In particular, they are non-virtual inheritance subobjects
from the same class, so h0 = h1. Moreover, one is a primary base class subobject of the other,
which contradicts the hypothesis.

300 Tahina Ramananandro

11.9 A compiler from Ds++ to CVcm

Here again, the hypothesis �a primary base class is non-virtual� plays an important role.
Indeed, if we allowed sharing the virtual pointer of a class with one of its virtual base classes,
then consider the following C++ example:

struct V1 {

virtual void f();

};

struct V2 {

int i;

};

struct B1: V1, V2 {};

struct B2: V1 {};

struct D: B1, B2 {};

If for instance D, B1 and V1 share their dynamic type data, then, when constructing B2, the
dynamic type data of V1 is updated, which overwrites the already constructed B1. The problem
is that such data overwrite must preserve the access to V2 from B1, which requires data related
to V2 in the construction virtual table of V1 in B2, even though V2 is totally unknown to the
inheritance tree from B2.

11.8.7 Construction paths

The Ds++ operations on construction paths actually correspond in CVcm to the selection
of a sub-VTT. However, sub-VTTs only exist for dynamic classes.

Root path The �root path� for some class D actually corresponds to retrieving the main
VTT for D. So, there are two cases:

� If D is not dynamic, then simply retrieve a null pointer:

[[x′ := rootPath(D)]]
def.

x′ := NULL (D not dynamic)

� Otherwise, retrieve a pointer to the main VTT of D:

[[x′ := rootPath(D)]]
def.

x′ := MainVTT(D) (D dynamic)

Base path The �base path� for some class C to some class (β,B) actually corresponds to
retrieving a sub-VTT from the VTT of C. Assume that, if β = DirectNonVirtual, then B ∈
DNV(C), and if β = Virtual, then B ∈ V(C). Then, there are two cases:

� If B is not dynamic, then simply retrieve a null pointer:

[[x′ := basePath(x, C, β,B)]]
def.

x′ := NULL (B not dynamic)

� Otherwise, retrieve a pointer to the corresponding sub-VTT:

[[x′ := basePath(x, C, β,B)]]
def.

x′ := SubVTT〈(β,B)〉C(x) (B dynamic)

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 301

Veri�ed compilation of object construction and destruction Chapter 11

11.9 Correctness of the Ds++-to-CVcm compiler

We prove the correctness of the compiler by forward simulation (Theorem B.1 p. 340): we
show that an invariant s⊲ s′ is preserved between an execution state s of Ds++ and an execution
state s′ of CVcm, �nally obtaining Theorem II.16 (p. 284).

Let s = (st , stl , e,K,G) be a Ds++ state, and s′ = (st ′, stl ′, e′,K′,M) be a corresponding
CVcm state.

Invariant 11.9.1 (Invariant). The invariant s ⊲ s′ is split into several parts:
� The statement and the statement list of s′ are compiled from s
� An invariant G, b ⊢ v ⊲Val v

′ holds between the values of s++ variables and the values of
their corresponding Vcm variables.

� An invariant G, b ⊢ K ⊲Stack K
′ relates the continuation stacks.

� An invariant b ⊢ G ⊲global M relates the global state with the concrete memory state.
where b : Λ → MemBlock ? is a partial function associating a CVcm memory block to every
allocated Ds++ object.

st ′ = [[st]] stl ′ = map[[[·]]](stl)
∀x : e(x) 6= ⊥ ⇒ G, b ⊢ e(x) ⊲Val e

′(x) G, b ⊢ K ⊲Stack K
′ b ⊢ G ⊲global M

(st , stl , e,K,G) ⊲ (st ′, stl ′, e′,K′,M)

Contrary to s++, the b function may vary during execution. Its properties are stated more
precisely in ⊲global.

11.9.1 Values

Values are related by the ⊲Val relation, such that:
� A s++ built-in value is unchanged in Vcm:

G, b ⊢ Builtin ⊲Val Builtin

� A valid pointer to a s++ subobject is related to a concrete pointer to the memory block
corresponding to the complete object, under the o�set corresponding to the generalized
subobject:

G.LocType(ℓ) = D[n] D[n] −〈p〉→ C

G, b ⊢ (ℓ, p) ⊲Val (b(ℓ), offD(p))

� A valid construction path to a dynamic class is related to the corresponding pointer to
VTT:

D −〈σ〉
I
→ C isDynamic(C) ⇒ v = (D, σ)

G, b ⊢ (D, σ) ⊲Val v

11.9.2 Continuation stack

An invariant G, b ⊢ K ⊲Stackframe K
′ holds frame by frame:

G, b ⊢ ǫ ⊲Stack ǫ

G, b ⊢ K ⊲Stackframe K
′ G, b ⊢ K ⊲Stack K

′

G, b ⊢ K :: K ⊲Stack K
′ :: K′

302 Tahina Ramananandro

11.9 Correctness of the Ds++-to-CVcm compiler

Statement blocks For a stack frame corresponding to an enclosing block, the CVcm state-
ment list is compiled from the Ds++ statement list, and, if any, :

Block(⊥, stl) ⊲Stackframe Block(⊥map[[[·]]](stl))

ℓ 6= ⊥ b(ℓ) 6= ⊥

G, b ⊢ Block(ℓ, stl) ⊲Stackframe Block(b(ℓ),map[[[·]]](stl))

Call frames For a stack frame corresponding to a function caller, the CVcm list of statements
to execute upon function return is compiled from its Ds++ counterpart. The values of Ds++
variables in the enclosing environment are matched in CVcm.

∀x : e(x) 6= ⊥ ⇒ G, b ⊢ e(x) ⊲Val e
′(x)

G, b ⊢ Callframe(x?, stl , e) ⊲Stackframe Callframe(x?,map[[[·]]](stl), e′)

11.9.3 Memory

The invariant b ⊢ G ⊲global M between the Ds++ global state and the CVcm memory state is
composed of several parts:

11.9.3.1 Objects and memory blocks

� b : Λ→ MemBlock ? is injective
� for any object ℓ de�ned in G, b(ℓ) is well-de�ned
� if ℓ is a complete object of n cells of type D, then the corresponding b(ℓ) block must be
large enough:

G(ℓ) = D[n]⇒ blocksize(b(ℓ)) = n× sizeD

11.9.3.2 Field values

For any complete object, the values of all its scalar �elds are stored in concrete memory.

LocType(ℓ) = D[n]
D[n] −〈p〉→ C f = scalar T t ∈ F(C) G.FieldValue((ℓ, p), f) = v 6= ⊥

∃v′ : load(M, [[T]], b(ℓ), offD(p) + foffC(f)) = v′ 6= ⊥ ∧ v ⊲Val v
′

Whenever a �eld is written, Theorem I.3 (p. 115) ensures that the written �eld does not
impact the values of other �elds stored in concrete memory. Similarly, whenever dynamic data
is written (because of the compilation of �set dynamic type�), Theorem I.4 (p. 119) ensures
that the values of scalar �elds are not overwritten in concrete memory.

11.9.3.3 Dynamic type data

Let ℓ be a complete object of type D. Let p = (α, i, σ◦@σ) be a generalized subobject p of
D of static type C such that class C is dynamic. Assume that the generalized dynamic type of
p is σ◦, such that:

D[n] −〈α〉
A
→ D′[n′] −〈(i, σ◦)〉

CI
→ C◦ −〈σ〉

I
→ C

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 303

Veri�ed compilation of object construction and destruction Chapter 11

Assume that σ is not a primary base subobject of another object (i.e. σ = (h, l) = (h, reducePath(l))).
Then the subobject contains a pointer to the virtual table (D′, σ◦, σ) corresponding to the sub-
object σ of C◦ where C◦ is considered as the most-derived object, but within an object of type
D′.

G ⊢ 〈ℓ〉 D[n] −〈α〉
A
→ D′[n′] −〈(i, σ◦)〉

CI
→ C◦ −〈σ〉

I
→ C

p = (α, i, σ◦@σ) G.gDynType(ℓ, (α, i, σ◦@σ)) = (σ◦, σ)
isDynamic(C) σ = (h, l) l = reducePath(l)

load(M, Vptr, b(ℓ), offD(p)) = &(D
′, σ◦, σ)

Whenever a �eld is written, Theorem I.4 (p. 119) ensures that the dynamic type data are
not overwritten in concrete memory. By contrast, whenever a �set dynamic type� operation is
performed on some generalized subobject π = (ℓ, (α, i, σ)), the generalized dynamic types of
several subobjects change. Theorem II.19 (p. 299) proves that the dynamic type data of σ
and all its subobjects are correctly changed, whereas Theorem II.20 (p. 300) proves that the
dynamic type data of other inheritance subobjects σ′ such that σ is not a primary base class
subobject of σ′, are correctly kept unchanged.

Ds++ invariant for static cast To prove the correctness of the compilation of static cast,
it is necessary to keep an invariant on the Ds++ source program:

Invariant 11.9.2. Let G ⊢ 〈ℓ〉 D[n] −〈α〉
A
→ D′[n′] −〈(i, σ)〉

CI
→ C be a subobject of dynamic

type σ◦:
G.gDynType(ℓ, (α, i, σ)) = (σ◦, σ

′)

Then, σ = σ◦@σ′ and D′ −〈σ◦〉
I
→ C◦ −〈σ

′〉
I
→ C for some class C◦.

11.9.4 Forward simulation

The correctness of the compiler is based on forward simulation, usingTheorem B.1 (p. 340).
The following theorem shows that forward simulation holds:

Theorem II.21 (Ds++ to CVcm forward simulation). ⊲ is a forward simulation from
Ds++ to CVcm:

� Initial states match:

∀s◦ ∈ I : ∃s′◦ ∈ I′, ∃s′1 ∈ S′ : s′◦
⋆

→′ s′1 ∧ s◦ ⊲ s
′
1

� Forward invariant preservation:

∀s1, s2, s1
′ : s1 → s2 ∧ s1 ⊲ s1

′

⇒ ∃s2
′ : s1

′
+

→′s2
′ ∧ s2 ⊲ s2

′

� Final states match:
∀(sf , z) ∈ F, ∀s′9 ∈ S′ : sf ⊲ s

′
9

⇒ ∃s′f ∈ F′
z : s′9

⋆

→′ s′f

304 Tahina Ramananandro

11.9 Correctness of the Ds++-to-CVcm compiler

Graphically:

S I
∋ s◦

⊲

s1
e?

//

⊲

s2

⊲

sf

⊲

∈
Fz

S′ I′ ∋
s′◦

′⋆
// s′1 s′1

e?

′+
// s′2 s′99

′⋆
// s′f

∈
F′
z

Proof. We sum up the theorems and lemmata, as well as the relevant parts of the invariant,
used for the proof of invariant preservation for the most interesting steps:

s++ execution step Proof case Theorem used
Scalar �eld write
(s++-�eld-scalar-write, p. 86)
(unchanged since
s++-to-Vcm)

Success: alignment Theorem I.1 (p. 110)
Success: in bounds Theorem I.2 (p. 112)
Good variable property wrt.
�elds

Theorem I.3 (p. 115)

Good variable property wrt.
dynamic type data

Theorem I.4 (p. 119)

Pointer equality test
(s++-ptreq, p. 87)
(unchanged since
s++-to-Vcm)

Pointers of non-empty class
type

Theorem I.7 (p. 122)

Pointers of empty class type Theorem I.8 (p. 124)
Static cast (Ds++-statcast,
p. 251)

Dynamic type data Invariant 11.9.2 (p. 304)
(Ds++ only, independent of
the CVcm compiled pro-
gram)

Access to virtual base (un-
changed since s++-to-Vcm)

Theorem I.11 (p. 147)

Dynamic cast (Ds++-

dyncast, p. 251)
Theorem II.17 (p. 294)

Virtual function call (s++-
virtual-funcall, p. 91)

Theorem II.18 (p. 295)

Set dynamic type
(Ds++-setdyntype, p. 253)

Same object and its subob-
jects

Theorem II.19 (p. 299)

Other objects Theorem II.20 (p. 300)
Scalar �elds unchanged Theorem I.4 (p. 119)

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 305

Veri�ed compilation of object construction and destruction Chapter 11

306 Tahina Ramananandro

Chapter 12

Discussion

In this chapter, we give a technical overview of our Coq development. Then, we position
our work among earlier work about object construction and destruction. Then, we compare
with other object-oriented languages. Finally, we investigate perspectives for extending our
formalism.

12.1 The Coq development

To express the semantics of κ++, we mostly use inductive types, rather than an executable
semantics. However, for well-formed class hierarchies, predicates such as knowing whether a class
is dynamic are decidable, and sets such as virtual function dispatch candidates are computable
in a �nite amount of time, which is actually needed to populate virtual tables and virtual table
tables during compilation.

The main drawback of our development is the lengthy proof of the κ++ run-time invariant: it
accounts for half of the entire development, and needs an estimated 21

4
hours of proof checking

on a 2 GHz Intel Pentium IV consuming about half of the 4 Go of RAM. After some tests, it
turns out that this lengthy time for proof checking might be due to the de�nition unfolding
system of Coq during type uni�cation.

On the contrary, once this invariant is proved, theorems related to object lifetime and
resource management are advantageously clear to state and easy to prove. This shows that the
invariant is strong enough, and that the burden of the proof is only related to the complexity
of the underlying semantics, and not to the high-level notions of object lifetime or resource
management expected by programmers. This is illustrated by the following detailed proof sizes:

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 307

Discussion Chapter 12

Theories Specs loc Proofs loc
κ++ language 895 144
κ++ invariant 693 81

Invariant preservation 324 13154
Object lifetime 2296 6306
Ds++ language 814 651
κ++ to Ds++ 1577 6781

CVcm language 445 0
Ds++ to CVcm 1 1822 5780

Total 8866 32897

12.2 Related work

12.2.1 C++ object construction and destruction

There have been very few works on the formalization of C++ object construction and de-
struction. In his Ph.D. thesis, Wasserrab [84] models object construction and destruction not in
a formal way, but through an unproven algorithm (which Wasserrab credits to Frank Tip) trans-
forming constructors and destructors to special functions that construct and destruct an object
and its subobjects by explicitly calling their corresponding �constructor/destructor� functions,
similarly to our κ++-to-Ds++ compiler pass of Section 11.5 (p. 254). However, they di�er on
their treatment of virtual function calls during construction and destruction. Indeed, whereas
our compiler does not change such calls, Wasserrab's unproven algorithm additionally trans-
forms, at compile time, direct calls to virtual functions from within constructor bodies, into the
appropriate non-virtual calls, thus statically solving function dispatch, such as in the following
example, where this original C++ code:

struct A {

virtual void f();

A();

};

/* constructor for A */

A::A() {

this->f(); /* must call A::f, not B::f */

}

struct B: A {

void f();

B() {}

};

is correctly transformed by Wasserrab's unproven algorithm to:

struct A {

virtual void f();

1. Except object layout

308 Tahina Ramananandro

12.2 Related work

};

/* "Constructor" for A */

void constr_A(A* this) {

this->A::f(); /* non-virtual function call, bypasses inheritance:

calls A::f instead of B::f */

}

struct B {

void f();

};

/* "Constructor" for B */

void constr_B(B* this) {

constr_A(static_cast<A*>(this));

}

However, this transformation fails to capture indirect calls to virtual functions, i.e. calls
from functions previously called from a constructor body, as in the following example, where
this original C++ code:

struct A {

virtual void f();

A();

};

void g(A* a) {

a->f();

}

/* Constructor for A */

A::A() {

g(this); /* indirect call to f: must call A::f, not B::f */

}

struct B: A {

void f();

B() {}

};

is erroneously transformed by Wasserrab's unproven transformation to:

struct A {

virtual void f();

A();

};

void g(A* a) {

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 309

Discussion Chapter 12

a->f(); /* full dispatch */

}

/* Constructor for A */

void constr_A(A* this) {

g(this); /* indirect call to f with full dispatch:

for a B instance, erroneously calls B::f

instead of expected A::f */

}

struct B: A {

void f();

};

/* Constructor for B */

void constr_B(B* this) {

constr_A(static_cast<A*>(this));

}

The most complete formalization of C++ object construction and destruction so far is the
work by Norrish [64], presenting a full-�edged semantics of C++ in HOL4. This semantics
covers C++ object construction and destruction, including temporary objects (an issue we do
not tackle, as discussed below): as such, Norrish's semantics is very close to the C++ Standard.
However, this semantics is based on �on-the-�y� program transformations: a constructor call
with its sequence of initializers is transformed into an ordinary statement sequence, losing the
logical relations between the components (bases and �elds) to construct. Thus, it would be
di�cult to reason about the construction order of subobjects.

Moreover, we found an inaccuracy in the formalization of indirect virtual function calls dur-
ing and after object construction. In Norrish's work, pointers to subobjects during construction
are not the same as pointers to subobjects of a constructed object: pointers carry the path
to the object considered as �most-derived object� for the purpose of function call. However,
consider the following C++ code:

struct A {

virtual void f();

};

A* amem;

void g(A* a) {

if(amem == nullptr) {

amem = a;

}

amem->f();

}

struct B: A {

B(): A() {

g((A*) this);

}

310 Tahina Ramananandro

12.3 Comparison with other languages

};

struct D: B {

virtual void f();

D(): B() {

amem->f();

}

};

main () {

D d;

}

When constructing an instance of D, the B constructor calls g with a special pointer to the A
subobject considering that the most-derived object is B. g memorizes this argument to amem.
When entering the constructor for D, the D subobject will be considered the most-derived object,
but amem will not change, so that amem->f() incorrectly calls A::f() instead of the expected
D::f(). Our semantics of κ++ shows that the notion of which object should be considered the
�most-derived object� for polymorphic operations, the notion of �generalized dynamic type�, is
a notion related to the object itself (rather than to pointers).

12.2.2 Safety of object initialization

Object initialization has been mechanically formalized in order to ensure that all �elds and
bases of an object are correctly initialized, i.e. that programs never access uninitialized parts
of objects, or that initialization leaves no uninitialized �elds behind. Such safety properties
have been mostly studied for object-oriented languages featuring single inheritance only, such
as Java or C♯.

Programmers often make use of a naive technique to ensure safe �eld initialization: they
preinitialize all �elds of an object to null before determining the actual values to use for
initialization. Fähndrich et al. [32] developed a type system to determine which of those null
initializations are useless, and to remove them.

Qi et al. [68] developed a type system for Java to statically determine at compile time
which �elds may be read or not, at precise program points. For the same purpose, Hubert
et al. [39] formalized in Coq a type system for Java, which, similarly to our work, makes use
of construction states for objects, but lifted to the level of types and maintained at compile
time. Although those type systems are restricted to Java single-inheritance object model, we
suspect that the semantics of our κ++ language could be equipped with a similar type system
to statically reason about the safety of C++ object initialization.

12.3 Comparison with other languages

Most object-oriented languages extensively deal with object initialization through various
models of object construction. However, those models are often inadequate for resource man-
agement, as those languages mostly do not feature equally precise destruction mechanisms.

Until recently, Java only featured object �nalization. The Object class (from which every
class directly or indirectly inherits) is equipped with a finalize() method, which the Java

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 311

Discussion Chapter 12

speci�cation [37] requires to be called once by the runtime system, before the object is deallo-
cated from memory by the garbage collector. However, the speci�cation leaves undetermined
when precisely this method is called, so that, in particular, there is no guarantee about the
order in which two objects are �nalized. Thus, �nalization is inadequate to model the disposal
of two objects a and b if the lifetime of a depends on the lifetime of b (e.g. a �le and a lock on
its device).

In July 2011, Java 7 introduced the try with resource construct. This language feature,
similar to using in C♯ (already present in C♯ 1.0 since 2001), features a mechanism of object
disposal. The following example creates a �le named toto and writes Hello world to this �le.
In Java 7:

try (FileOutputStream file = new FileOutputStream("toto")) {

file.writeln("Hello world");

}

In C♯:

using (TextWriter file = File.CreateText("toto")) {

file.WriteLine("Hello world");

}

Internally, those mechanisms attach a resource to a statement block. This resource must be of a
class type implementing a speci�c interface for resources (Closeable in Java, IDisposable in
C♯), featuring a disposal method (close() in Java, Dispose() in C♯), which is actually called
once the statement block exits. This also guarantees that an object declared in an enclosed
statement block is disposed before the object of the enclosing block, thus implementing a form
of RAII, in particular if an uncaught exception is thrown.

However, those disposal mechanisms do not take inheritance into account. If, for instance
in Java, the programmer replaces FileOutputStream with the following class:

public class File extends FileOutputStream {

public void close() {}

}

Then, the close() method of File is called. This method actually does nothing, and in par-
ticular nothing constraints it to call the close() method of the parent class: in practice, the
physical �le is not closed. In other words, the Java and C♯ languages do not enforce the de-
struction of base class subobjects.

12.4 Future work

12.4.1 Extending the semantics of κ++

The semantics of κ++ can be extended in a number of directions towards a more realistic
C++ language.

312 Tahina Ramananandro

12.4 Future work

12.4.1.1 Manual memory management

Free store Our κ++ language only features objects with a lifetime controlled by statement
blocks. However, C++ also features a free store, which allows to create objects on the �y through
the new language construct, without attaching their lifetime to statement blocks. When an
object is created in such a way, its constructor is called.

Most object-oriented languages feature a free store, more often called a heap, which is mostly
garbage-collected, contrary to C++ 2, where only the programmer controls the lifetime on such
objects, by explicitly requesting their destruction and deallocation through delete.

int* i = NULL;

{

int* j = new int[10]; /* creates an array of 10 integers */

i = &j[2];

}; /* j is not destructed here */

...

delete &i[-2]; /* &i[-2] == &j[0] == j,

thus destructs the entire array */

The programmer can use delete on a pointer to any object, which may be an inheritance
subobject of another object. In such case, the most-derived object must be destructed. To
ensure that the destructor of the most-derived object and all its subobjects will be called, C++
requires that the destructor be virtual.

struct B {

virtual ~B();

};

struct D: B {};

D* d = new D();

B* b = d;

...

delete b; /* actually destructs d */

Adding a free store would not signi�cantly change the semantics of object construction and
destruction. It would only require additional rules for object allocation and deallocation from
the free store. However, from the point of view of proofs, it is not possible to reason on the
lifetimes of free store objects. Thus, the free store should be disjoint from the stack.

Moreover, the compilation of array construction and destruction would have to change, as
the number of cells is known only at run time in such cases. In practice, the Common Vendor
ABI [22] provides a function to iterate construction and destruction over all cells of an array.

2. The new C++11 Standard [43] allows garbage-collected implementations, but the programmer still has
control on free store object lifetimes through delete.

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 313

Discussion Chapter 12

Explicit destructor call and object placing In addition to the free store, C++ provides
tools for �ne-grained memory management: the programmer can explicitly provide the memory
location where to create an object. This can be useful on devices with a limited amount of
memory. However, very few guarantees help the programmer �nd out whether the memory
location is available and not occupied by another object. To o�er such a guarantee, C++ allows
the programmer to directly call the destructor on an object. Such direct destructor calls indicate
that the memory occupied by the object of type T can be reused to create an object of type T ′

as long as sizeof(T ′) ≤ sizeof(T).

struct A {

int i;

};

struct B {

float f;

};

A* a = new A();

...

a->~A(); /* destructs A without deallocating */

B* b = new(a) B(); /* constructs B at the location of the old A

without allocating new space

possible because sizeof(B) <= sizeof A() */

To add such features to κ++ would require a more precise memory model, in particular
taking object layout into account.

12.4.1.2 Temporary objects

Our languages speci�ed and formalized in this thesis are 3-address languages. On the con-
trary, C++ features embedded complex expressions, which often leads to the creation and de-
struction of unnamed objects, not attached to any variable. Those objects are called temporary
objects.

Passing temporary objects as constructor arguments In C++, a temporary object can
be passed to a function, as in the following example creating an unnamed instance of A passed
to f:

struct A {...};

void f(const A& a) {...};

f(A());

This can be modelled in κ++ using the ordinary mechanism of block-scoped objects:

314 Tahina Ramananandro

12.4 Future work

void f(A∗ a) {. . .}

{
A a[1]; // construct the temporary object
pa = &a[0];
f(pa);

} // destruct the temporary object

However, such reasoning is not possible for constructor calls: any object created within
an initializer must have been destructed before calling the constructor. This prevents passing
pointer to such temporary objects to the constructor, as in the following C++ example:

struct A {

A(int i) {...}

};

struct C {

C(const A& a) {...}

};

main() {

C c(A(1));

...

};

In this example, the following objects are constructed and destructed:

1. An unnamed instance of A, said to be a temporary object, is created and constructed.

2. An instance c of C is created, and constructed with the constructor of C given a reference
to the temporary A instance.

3. Then, the C++ Standard [42, 43] mandates that, when the full expression C c(A());
has �nished execution, all created temporaries must be destructed. This requires the
temporary A to destruct at this point.

4. Then, once the temporary is destructed, the remaining part of the body of main() is
executed.

5. Finally, upon exit, the c instance of C is destructed.

This example illustrates that the temporary A object is destructed right upon the end of the con-
structor of c. This is not covered by our semantics: once a constructor exits, no more operation
is allowed within the initializer from which the constructor has been called. In practice, if the
main() function were naively expressed in κ++, then κ++ would have required the temporary

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 315

Discussion Chapter 12

A to be destructed before the C constructor call:

{
C c[1]
{ // Initializer for c[0]

A tmp[1]; // Temporary object
ptmp = &tmp[0];
C(ptmp); // in κ++, tmp must have been destructed

// before this constructor call
};
. . . // body of main()

}

In κ++, when an initializer calls the constructor, a Kconstrother or Kconstrothercells frame is
added on top of the continuation stack. This frame instructs subsequent sibling subobjects to
start their construction once the constructor exits, thus disallowing any further action at the
level of the initializer for the object being constructed. One solution to allow the destruction of
temporaries could be to add a further argument to Kconstrother and Kconstrothercells, namely
the list of temporary objects not yet destructed when the constructor is called. Then, upon
constructor exit, the destruction of all those temporary objects is performed before starting the
construction of subsequent sibling subobjects.

This example also illustrates that the lifetime of the temporary is not included in the lifetime
of c. As a consequence, adding temporaries would invalidate theorems about the construction
order of subobjects of di�erent complete objects. Actually, the C++ Standard does not specify
the relations between the lifetime of an object explicitly named by the programmer and the
lifetime of a temporary object. However, the Standard mandates that two temporary objects
constructed in the same context � actually, in the same full expression, until the next ;� are
destructed in the reverse order of their construction:

struct C {

C(const A& a1, const A& a2) {...}

};

main() {

C c(A(1), A(2));

...

};

The Standard does not mandate the order in which the two temporaries A(1) and A(2) are
constructed, but it imposes A(2) to destruct before A(1) if, and only if, A(1) was constructed
before A(2). It could be interesting to reason about the construction order of two temporary
objects used for the purpose of the same constructor call. However, this would require to
precisely de�ne the notion of temporary context, as the construction and destruction order
of two �unrelated� temporary objects is unspeci�ed. One idea to de�ne such a context is to
state that two temporary objects belong to the same context if, and only if, they belong to
the same list of objects to deallocate upon constructor return, i.e. within a Kconstrother or
Kconstrothercells construction stack frame.

316 Tahina Ramananandro

12.4 Future work

Call by value: implicit argument copy Another context where temporary objects are
needed is when a function expects its arguments to be given by value. Consider the following
C++ example:

struct A {};

void f(A a) {

A(const A&); /* copy constructor */

};

A a0;

f(a0); /* A copy of a0 is passed to f. This copy is

implicitly created using the copy constructor,

and implicitly destructed once f returns. */

Actually f does not receive a reference to a0, but to a copy of a0, obtained by creating a
new instance of A using the copy constructor A(const A&). This can be modeled by our κ++
language; however, call by value becomes a property of the function call, but no longer of the
function itself:

struct A {

A(A*); /* copy constructor */

};

void f(A* a) {...};

A a0[1];

{

A copya0[1] = { pa = &a0[0]; A(pa) }; /* explicit argument copy */

pcopya0 = ©a0[0];

f(pcopya0);

} /* copy destructed upon block exit */

Consequently, if κ++ is extended to allow temporary objects as constructor arguments, then
such an extension will also model constructors expecting arguments passed by value following
this pattern.

Functions returning structures Once temporary objects are added to the semantics of
κ++, it would then be possible to further extend κ++ by allowing functions returning structures.
Consider the following example:

#include <cstdio>

struct C {

int i;

C(int i0) : i(i0) {}

};

C f(int i) {

C c1 = C(i);

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 317

Discussion Chapter 12

C c2 = C(-i);

if(i >= 0) {

return c1;

} else {

return c2;

}

};

main () {

printf("%d\n", f(-42).i);

};

Roughly speaking, in C++, when such a function is called, the following steps are taken:

1. The caller allocates temporary space to hold the return value of the function.

2. Then, the caller calls the function (here f), passing an additional �hidden� argument to
indicate to the function where to construct the return value.

3. The callee executes normally (here, two instances of C are created and constructed: c1
then c2).

4. When the callee encounters a return statement, it �rst evaluates the expression to return,
then this result is copied into the temporary space for return value: actually, the copy
constructor C(const C&) is implicitly called to construct an object in the temporary
space, and the argument to the constructor is the computed value. (Here, C(c2) is called,
to create a copy of c2.)

5. Once the constructor exits, all objects allocated and created within the callee are destruc-
ted (here c2 then c1), then the callee exits.

6. Once the callee has exited, the caller uses the temporary object (in this example, its �eld
i is read).

7. Once the full expression involving the temporary has �nished its execution (here, the call
to printf), the temporary is destructed and �nally deallocated.

The following pseudo-C code illustrates how such a program would be compiled:

struct C {

int i;

};

void constr_C(C* target, int i0) {

target->i = i0;

}

void copy_C(C* target, C* source) {...} /* corresponds to copy constructor

C(const C&)

the compiler has to generate one

if the programmer has provided none */

void f(C* target, int i) {

C c1;

constr_C(&c1, i);

C c2;

constr_C(&c2, -i);

318 Tahina Ramananandro

12.4 Future work

if(i >= 0) {

copy_C(target, c2);

return;

} else {

copy_C(target, c1);

return;

}

}

To extend the semantics of κ++, we could follow this scheme and consider that a function
�returning� a structure is actually a function initializing an object. As such, a call to a function
returning a structure could occur in lieu of a constructor call, within an initializer; conversely,
such function call could only occur in an initializer.

More precisely, consider the initializer for a most-derived object of class C. Then, during
this initializer, a Kconstrarray frame is present on top of the continuation stack. This stack
frame indicates the array cell being constructed, so that if the initializer calls a function to
construct the array cell, then in practice, the location of the object to construct is given by
the Kconstrarray stack frame. Upon such a call, the function body is then itself an initializer,
expected to call the constructor, or again another function returning a structure. However,
the temporary objects used for the function call must be destructed once the construction of
the cell ends. To ensure this, it is necessary to equip Kconstrarray with the list of objects to
destruct, so that this list will be transferred to Kconstrothercells once the constructor is called.
This extension could be also applied to base class subobjects. Thus, our example could be
modelled in an extension of κ++ as follows (roughly speaking):

struct C {

int i;

C(int i0) : i(i0) {}

C(C* c) : i(..) {...}

/* copy constructor */

};

C f(int i) {

C c1[1] = { C(i); };

pc1 = &c1[0];

C c2[1] = { j = -i; C(j); };

pc2 = &c2[0];

if(i >= 0) {

C(pc1); /* "return" by constructor call */

} else {

C(pc2); /* "return" by constructor call */

}

};

main () {

{

C tmp[1] = { i0 = -42; f(i0); };

/* temporary is created,

initialized by f */

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 319

Discussion Chapter 12

ptmp = &tmp[0];

s = "%d\n";

j = ptmp->i;

printf(s, j);

} /* temporary is destructed */

};

This is an example in an �extended κ++�, where all constructor calls are explicit. If this code
were executed in real C++, copy constructor calls would be inserted according to the Standard.
The following section discusses this issue.

Copy elision: return value optimizations When a function returns a structure, the com-
puted result is copied into the temporary space allocated by the caller, through a call to the
�copy constructor�. This is the reason why the semantics of C++ temporaries is called the copy
semantics. One question raised by programmers and compiler developers is the following: in
which cases can calls to copy constructors be elided? In other words, is it possible to construct
the result directly in the designated memory space, thus avoiding temporaries?

Return value optimization Consider the following C++ code:

C c = f(18);

The Standard prescribes that a temporary object be created to hold the value of the full
expression f(18), actually the return value of f. Then this temporary has to be again copied
to the �nal memory space of c. However, is it possible to not allocate temporary memory space,
and to directly tell f to construct its return value into the �nal space allocated for c? In fact,
the C++03 Standard [42] also allows this behaviour, called return value optimization (RVO).
However, this actually makes the semantics of C++ non-deterministic, as those two behaviours
are not always equivalent (in particular, if for instance the copy constructor changes the value
of an object �eld). Thus, such program transformation is not really an �optimization�, in the
sense that it is not possible to prove that a compiler performing such �optimization� would
preserve the semantics of programs.

However, an extended version of κ++ as modi�ed for functions returning structures, could
deal with RVO. The following �extended-κ++� code models the example without RVO:

C c[1] = {

C tmp[1] = { i=18; f(i); }; /* temporary introduced by function call */

ptmp = &tmp[0];

C(ptmp); /* temporary copied into final memory space */

}

The following �extended-κ++� code models the same example with RVO:

C c[1] = { i=18; f(i); }; /* f directly constructs into final memory space */

Thus, RVO can be seen as a program transformation independent of �extended-κ++�.

320 Tahina Ramananandro

12.4 Future work

Named return value optimization Consider the following C++ code:

C g() {

C c;

...

return c;

}

printf("%d", g().i);

Then, the following objects are constructed and destructed:

1. Temporary memory space is created to hold the result of g().

2. g() is called.

3. Within g, memory space for c is allocated.

4. The constructor C() is called to construct c

5. Upon return, c is copied into the temporary return space.

6. c is destructed and deallocated.

7. g() is exited.

However, if all return statements of g return the same object reference (herec), then C++
allows to construct c directly in the temporary return space, yielding the following sequence of
object constructions and destructions:

1. Temporary memory space is created to hold the result of g().

2. g() is called.

3. Within g(), c directly refers to the temporary return space, with no further memory
allocation.

4. The constructor C() is called to directly construct the return value c.

5. g() is exited.

An extended version of κ++ would have to allow further operations on c within g after it has
been actually constructed, but before it is returned. So, we would have to show that those
further operations would not change the construction states of c or its subobjects.

12.4.1.3 Unifying built-in types with structure types

Our semantics of construction and destruction treats scalar �elds separately from structure
�elds. However, it could be possible to unify the semantics of construction and destruction of
scalar and structure types, by considering that a scalar type is actually a type whose all values
already exist: as such, the set of object locations would be separated between a �nite set of
user-allocated objects, and an in�nite set of �scalar� values.

12.4.2 Compiler optimizations

12.4.2.1 Concrete VTT layout

Our CVcm language leaves abstract the representation of virtual table tables. In particular,
it is independent of whether a VTT contains its sub-VTTs or only pointers to sub-VTTs. The
same question can be asked for construction virtual tables managed by VTTs.

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 321

Discussion Chapter 12

VTT sharing The Common Vendor ABI for Itanium [22] prescribes sharing virtual table
tables: in the case of a non-virtual base that has no virtual bases, its main VTT may be used
instead of the corresponding construction VTT.

In practice, such sharing of virtual table tables could be done at the level of CVcm, by
recognizing that the contents of a virtual table table is included in the contents of another,
independently of the class hierarchy, which no longer exists in CVcm. However, the Common
Vendor ABI prescribes such sharing early depending on the class hierarchy, which still exists.
To systematize this sharing would require to show, at the level of class hierarchies, that some
construction path shall always produce virtual table table contents included in the virtual table
table of some other construction path.

However, this actually depends on the actual implementation of dynamic casts. Instead of
our abstract formalization, dynamic cast could be implemented by a two-step process: �rst
look for a dynamic cast o�set in the virtual table of the current subobject, then, if none found,
fallback to reading the virtual table of the �most-derived� object (for the purpose of polymorphic
operations, i.e. the generalized dynamic type). Casting back to the most-derived object could
be done thanks to a further o�set in the virtual table.

12.4.2.2 Elision of trivial constructor/destructor

Our compiler systematically compiles all constructors and destructors. However, this incurs
a time overhead for PODs (Plain Old Data, roughly C structures with no inheritance and no
non-POD �elds) and other structures which have no user-de�ned constructors or destructors.
Actually, the construction and destruction of such structures produce no side e�ects. Thus, an
optimized compiler could eliminate the corresponding constructor/destructor calls.

For non-dynamic classes such as PODs, this issue is related to the more general question
of function inlining, so that such an optimization could occur at the level of CVcm, once
all object-oriented features have been compiled. However, for dynamic classes requiring to
update dynamic type data, such an optimization would have to consider aliasing, showing that
intermediate trivial constructor calls for subobjects are useless, as they produce no side e�ect
other than updating dynamic type data which will be anyway overwritten by constructors for
derived class objects.

322 Tahina Ramananandro

Part ∞

In closing

Chapter 13

Conclusion and perspectives

In this chapter, we give an overall assessment of our work. We comment on our experiment
with the Coq proof assistant. We outline the practical and potential impacts of our work. Then,
we investigate more general directions to extend our work towards a full-�edged C++. Finally,
we generalize the conclusions of our work to the wider topic of formal veri�cation.

13.1 Assessment

13.1.1 The Coq experiment

At �rst sight, formalizing the C++ language with a proof assistant such as Coq [4] might
seem frightening and highly discouraging, due to the alleged complexity of the C++ object
model and the large amount of details to deal with during formalization: nothing can be left as
a triviality to the reader.

In fact, this is not the case, as the development proper to object construction and destruc-
tion, mainly the set of κ++ semantic rules, is no more than 900 Coq lines long. We even believe
that our semantics could be made shorter if we adopted a more general point of view than
objects with inheritance (e.g. by unifying the construction of scalars with the construction of
objects, which would allow scalar arrays). This shows the tractability of the Coq speci�cations,
thanks to the Gallina speci�cation language, which is clear and relies on precise mathematical
backgrounds such as the Calculus of Inductive Constructions.

By contrast, at the level of the proofs, the scripts amount an estimated 80000 lines of code
altogether, often look quite repetitive (we believe that they could be revamped by recognizing
and factorizing into tactics some proof patterns such as symmetry reasonings), and take more
than 2.5 hours to recheck using coqc on a 2 GHz Pentium Core Duo consuming half of the
4 GB RAM. After some informal tests, we claim that this issue might be due to Coq-speci�c
shortcomings about de�nition unfoldings during type uni�cation. However, as an explanation
to those apparently huge �gures, we have deliberately chosen to limit the use of proof automa-
tion, actually restricted to propositional or �rst-order logic (using the tauto tactic), or integer
arithmetics (omega): none of our lemmata are integrated into any Hint automation databases.
The purpose of our choice is to understand which and when our lemmata are reused in proofs,
enabling us to explain them at a high level, which led to the redaction of this thesis.

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 325

Conclusion and perspectives Chapter 13

13.1.2 Practical impact of our work

Our work allowed us to �nd and report errors and inconsistencies in the C++03 standard
[42]. Virtual function calls are allowed during the construction of the data members of an object,
but, surprisingly, the Standard lacked symmetry by leaving unspeci�ed virtual function calls
during their destruction. This issue has been corrected [45] in the C++11 standard [43]. The
following other issues have been submitted to the C++ Standards Committee and are planned
to integrate a future version of C++: the lifetime of an array is not considered to be included in
the lifetime of its cells, violating the high-level principle stating that the lifetime of an object is
included in the lifetime of all its subobjects; and the lifetime of objects of built-in types is not
ended by explicitly calling their destructor, contrary to objects of compound (e.g. structure)
types.

From the practical point of view, our work also allowed us to explain some known bugs in
real-world C++ compilers such as Microsoft Visual C++ 7.0 or Borland C++ Builder 5.x [38].
Those bugs are violations of the subobject identity requirement in the presence of empty bases
and members.

Finally, we have proved a layout algorithm covering almost all of the widely used Common
Vendor ABI. The only omission is the controversial virtual primary base optimization, being
dubbed as �an error in the design� of the Common Vendor ABI, as stated a posteriori by its
development consortium.

13.1.3 Potential impacts of our work

Besides the immediate e�ects on the C++ Standard, our work is valuable as an alternative
description of C++ to help understand the C++ object model. Our formal semantics validates
a posteriori the object-oriented design principles of C++ and the requirements of the Standard
such as the subobject identity principle (to formally account C++ non-virtual inheritance), or
virtual function dispatch during construction (to correctly model the RAII resource manage-
ment principle). Moreover, our approach based on veri�ed compilation gives sound foundations
for implementation techniques commonly used in most modern-day C++ compilers (including
GNU GCC) such as empty base optimization, virtual tables and virtual table tables.

As a formal description of an object-oriented subset of C++, we believe that our work can
serve as a basis for applying formal methods to C++ programs. Thanks to our formal semantics,
a promising approach could be static analysis of programs by abstract interpretation [23]. Such
a method would rely on a straightforward abstract interpreter directly implementing the κ++
semantic rules. By contrast, applying our formal semantics to deductive program veri�cation
a la Frama-C [5] or Why [8] could need more work than via abstract interpretation. Research
directions include developing a Hoare-like logic for multiple inheritance. Such a logic could be
based on the separation logic by Luo et al. [56] to reason about �eld accesses in the presence
of multiple inheritance. Based on such logical systems, we hope that our work will help �nd
a way of specifying preconditions and postconditions of constructors and destructors and of
virtual functions during construction or destruction, maybe expressed in terms of our subobject
construction states.

326 Tahina Ramananandro

13.2 Future work

13.2 Future work

There is only so much that can be done during a Ph.D.; a full formalization of C++ cannot.
However, our work can be extended in a number of directions towards the whole C++ language,
by including references, constness, accessibility (public/private), exceptions, templates, concur-
rency. The work by Norrish [64] could be a solid base for extending our work. A �rst realistic
step would be to cover the subset of C++ described by the guidelines edicted by Lockheed
Martin [55].

13.2.1 Exceptions

Exceptions are one of the hallmarks of C++, which has been one of the �rst languages to
feature and to e�ciently implement them, so that they have become an idiom in contradiction
with their name: exceptions are not exceptional in a real-world C++ program.

In C++, a program can throw any value to break the execution of a statement. For instance,
the following program computes the greatest common divisor of two integers, using the formula:

gcd(a, b) = gcd(b, a mod b)

The program executes until a mod b fails (when b = 0, in which case a is thrown).

int modulo(int a, int b) {

if (b == 0) {

throw a; /* give the dividend back */

}

return (a % b);

};

int gcd(int a, int b) {

try {

while (true) {

int result = modulo(a, b);

a = b;

b = result;

}

} catch (int result) {

return result;

}

};

Exceptions interact with the C++ object model insofar as they are the only way for object
construction to fail. For instance, back to the tutorial (Section 2.5.3 (p. 56)), the OutputFile
class opens a �le for data output, but such operation must fail on a read-only device. In such
case, the �le object must not be created. The programmer implements such case using an
exception:

struct OutputFile {

FILE* fileHandler;

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 327

Conclusion and perspectives Chapter 13

OutputFile(char* name) {

if (! fileHandler = fopen(name, "w")) { /* perform system call

to open file */

/* fileHandler is NULL, open failed:

abort object creation by throwing an exception */

throw 42;

}

}

};

main () {

try {

OutputFile example("toto");

example.write("18");

} catch (int i) {

printf("Open failed\n");

}

}

Then, in the main function, if �le opening fails, then the exception 42 is thrown, so that the
constructor call fails in the caller, thus preventing �le write.

Now recall the de�nition of the LockedDeviceFile, which models a �le on a non-cooperative
device requiring a lock at the level of the device:

struct LockedDeviceFile {

/* WARNING: this order is important */

DeviceLock deviceLock;

File file;

LockedDeviceFile(char* device, char* fileName):

/* order is irrelevant here */

File(fileName),

DeviceLock(device)

{}

~LockedDeviceFile() {}

};

The constructor takes a lock on the device, then tries to open the �le. What happens if �le
opening fails? The lock has to be released! Thus, C++ ensures that, if the construction of a
�eld or base class subobject of an object fails, then the parts of the object that have been
successfully constructed so far must be destructed, and the construction of the whole object
fails.

In our formalism of construction states (Section 9.3.1 p. 176), this means that in the presence
of exceptions, objects do not necessarily visit through all construction states: in particular, if
the construction of a subobject of an object π fails, then π never goes through the Constructed

328 Tahina Ramananandro

13.2 Future work

construction state. As a consequence, the κ++ run-time invariant would have to be tailored to
take this issue into account.

Now, what would happen if an uncaught exception broke a destructor, for instance if �le
closing failed? Actually, in this case, C++ does not de�ne the semantics of such programs.

Moreover, exceptions interact with the semantics of C++ temporary objects (discussed in
Section 12.4.1.2 p. 314): when an exception is caught, it might have to be copied before being
used by the exception handler. Presumably for all those reasons, Lockheed Martin guidelines
[55] prescribe their project engineers not to use C++ exceptions.

13.2.2 Templates

C++ o�ers a way to parameterize structure and function de�nitions with types or data at
compile time, through templates. Siek and Taha [76] formalized templates in Isabelle-Isar. For
instance, the following function template represents the identity function:

template <typename T> T id(T t) {

return t;

};

This is actually not a function, but a function template. To be used, a template must be
instantiated by giving a value to its template parameters:

cout << f<int>(18) << f<float>(4.2) << endl;

This asks the compiler to actually produce two functions, namely f<int> and f<float>, by
replacing the template parameter T with int or float. However, the programmer is also allowed
to omit the type name, such as cout << f(18) << f(4.2) << endl, thus asking the compiler
to perform type inference to determine the type to use for T. This is called implicit instantiation.

Moreover, the programmer is also allowed to �override� particular instantiations of tem-
plates. This is called specialization. For instance, if the programmer specializes f<int> as
follows:

int f(int i) {

return -i;

};

Then, implicit template instantiations should select this specialized template. Template spe-
cialization interacts with the C++ object model in the presence of overloading and partial
specialization (a template with several parameters, but not all of them receive a value).

13.2.3 Concurrency

Before C++11, concurrency was not a core feature of C++: it was only implemented through
libraries not covered by the C++03 Standard [42]. Batty et al. [14] formalized in Isabelle the
concurrency model candidate for the C++0x draft standard, which has since become o�cial
under C++11 [43]. This concurrency model is based on several kinds of atomic operations:
sequentially consistent atomics for which sequential consistency is ensured but expensive, and

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 329

Conclusion and perspectives Chapter 13

low-level atomics for which the memory order may be �ne-tuned by the programmer depending
on the expected level of guarantee.

In practice, concurrency could interact with C++ object construction in compiler implemen-
tations: when the generalized dynamic type of an object changes, compilers update its dynamic
type data as well as the data of all its subobjects, which often represent several memory accesses.
Is this sequence of memory accesses free of data races?

13.3 Final thoughts

When I started my Ph.D. thesis on formal veri�cation of compilers for object-oriented lan-
guages, I �rst focused on Java, fearing that the C++ object model would be too di�cult and
too technical to tackle, in the same way as Cargill [19] (in particular, delegate to sister class,
or virtual functions during construction). When I decided to switch to C++, my colleagues
warned me against the alleged complexity of what would later become this thesis: I would
study the trickiest language, namely object-oriented C++ with multiple inheritance and ob-
ject construction and destruction, using the trickiest formal methods, namely machine-checked
formal veri�cation with the Coq proof assistant.

Now that I have formalized the C++ object model on machine, on the contrary, my work
has helped me understand important parts of the semantics of C++ multiple inheritance and
object construction and destruction, and even more: I am convinced that they are relevant and
useful in practice.

On the one hand, my Coq formalism shows that C++ object-oriented features are not obscure
tools reserved for hackers. On the other hand, my veri�ed compilation approach also shows that
those features are not obscure high-level notions reserved for academic scholars. On the contrary,
through my work, I am convinced that my work can serve as a bridge of trust between two
distant worlds: the academic world and industrial engineering. Moreover, this bridge links the
two worlds in both directions: scholars help engineers understand the meaning of their programs,
while conversely engineers keep scholars aware of the real world.

From the general point of view of formalization, my work has strengthened more than ever
my thoughts about the relevance of machine-checked veri�cation. I am now convinced that any
system, however complex it might be, deserves machine-checked formal veri�cation. Complexity
is not an obstacle (not even practical), but on the contrary a motivation for formal veri�cation:
formalizing a complex system in a proof assistant shows that the system is well understood. Con-
versely, a formal system description is more understandable than a prose textual speci�cation,
as formalization clari�es and eliminates most ambiguities of textual descriptions. Mechanized
formalization in particular, and formal veri�cation in general, prove to be the ultimate way
of understanding and making understand complex systems to discuss of their correctness. I
strongly hope that standardization organisms will one day call on formal veri�cation to build
a solid foundation to their standards and to reduce the risk of interpretative ambiguities or
missing unspeci�ed cases, following the �nal manifesto of my thesis:

Formal veri�cation leads to understanding. Understanding leads to trust.

330 Tahina Ramananandro

In Coq we trust.

Appendix A

Architecture of the Coq development

All proofs (except in the Discussion chapters) have been carried out with the Coq proof
assistant [4]. They are available at [71]. The Coq theories do not include separate theories for
s++ and Vcm 1: the speci�cation proofs presented in this thesis for those two languages are parts
of the speci�cations and proofs for Ds++ and CVcm.

This chapter describes the architecture of the Coq development, by listing the theories
in dependency order (so that no theory depends on any other theory listed below it). The
dependencies between theories are depicted p. 334.

A.1 Small-step semantics

Events Section 3.2.1 (p. 66): Observational semantics of traces.

Smallstep Section 3.2 (p. 66): Small-step operational semantics.

A.2 Semantics of C++ Multiple Inheritance

Cplusconcepts Section 4 (p. 71): Class hierarchies, subobjects; static and dynamic cast,
virtual function dispatch.

Dynamic Section 4.4.5.2 (p. 89): Dynamic classes.

CplusWf Section 4.1.4 (p. 78): Well-formed hierarchies. Casts, function dispatch are decid-
able. The list of inheritance paths, the list of virtual bases, are computable in a �nite amount
of time.

DynamicWf Section 4.4.5.2 (p. 89): If the hierarchy is well-formed, the notion of �dynamic
class� is decidable.

1. However, an older proof about object layout can be seen at [70] (at the time of our POPL 2011 [72]
article). It models a simpli�ed version of s++ and Vcm without functions.

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 333

A
rc
h
it
e
ct
u
re

o
f
th
e
C
o
q
d
e
v
e
lo
p
m
e
n
t

A
p
p
e
n
d
ix

A

Invariant

Cppsem

Dynamic

Cplusconcepts

CplusWf

DynamicWf

SubobjectOrdering

ConstrSubobjectOrdering

Dyntype

Preservation (32 modules)

Constrorder ScalarFields

IntermSetDynTypeWf

LayoutConstraints

Interm2Target

Cppsem2IntermAux

IntermSetDynType

Cppsem2Interm

Interm

Vtables

Target

Memory

CommonVendorABI

CCCPP

CompileSetDynType

Mangle

ForLoop

Smallstep

Events

33
4

T
ah

in
a
R
a
m
a
n
a
n
a
n
d
r
o

A.5 Object layout

A.3 Object layout

LayoutConstraints Section 5.5 (p. 106): Su�cient conditions for object layout, and their
proof of soundness.

CommonVendorABI Section 6.1 (p. 128): The Common Vendor ABI object layout algo-
rithm, and its proof that it satis�es the soundness conditions.

CCCPP Section 6.2 (p. 132): Our CCCPP object layout algorithm, optimized for empty
data member optimization, and its proof that it satis�es the soundness conditions.

A.4 Semantics of object construction and destruction

Cppsem Section 9.2 (p. 174): Syntax and semantics of κ++.

SubobjectOrdering Section 10.1.3 (p. 207): �Direct subobject� and �appears before� sub-
object orderings.

Progress Section 10.2 (p. 210): Construction and destruction rules progress for objects with
nearly trivial constructors and trivial destructors.

Invariant Section 10.1 (p. 199): κ++ Run-time invariant.

ConstrSubobjectOrdering Section 10.3.2 (p. 212): A subobject goes through all construc-
tion states in order.

Dyntype Section 10.5.2 (p. 218): Unicity of the generalized dynamic type.

Preservation Section 10.1 (p. 199): (a total 32 theories) Proof of preservation of the κ++
run-time invariant.

ProgressInv Section 10.2 (p. 210): A more precise statement of progress theorems, including
the construction states of constructed or destructed objects.

Constrorder Section 10.3.1 (p. 211): Resource Acquisition is Initialization, subobject con-
struction order, evolution of the generalized dynamic type.

ConstrorderOther Section 10.3.4 (p. 216): Construction order of two subobjects of di�erent
complete objects.

ScalarFields Section 10.4 (p. 217): Safety of scalar �eld accesses.

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 335

Architecture of the Coq development Appendix A

A.5 Veri�ed compilation

A.5.1 κ++ to Ds++

IntermSetDynType Section 11.4.10 (p. 252): Speci�cation of the �set dynamic type� Ds++
operation.

Interm Section 11.2 (p. 245): Syntax and semantics of the Ds++ intermediate language.

IntermSetDynTypeWf Section 11.4.10 (p. 253): If the hierarchy is well-formed, then the
�set dynamic type� operation is well-de�ned, decidable, and its result is unique.

ForLoop Section 11.5.3 (p. 259): Compile-time �for� loops, to compile construction and de-
struction of arrays.

Cppsem2IntermAux Section 11.5 (p. 254): A compiler for κ++ statements, constructors
and destructors to Ds++, and its correctness proof.

Mangle Section 11.5.4 (p. 260): Name mangling: encoding the constructor argument types
in a function name.

Cppsem2Interm Section 11.5 (p. 254): A compiler from κ++ to Ds++, and its proof of
correctness: optimization of constructors for non-dynamic classes.

A.5.2 Ds++ to CVcm

Memory Section 11.7.3 (p. 289): The CVcm memory model, inspired from CompCert.

Target Section 11.7.2 (p. 286): Syntax and semantics of the CVcm target language.

Vtables Section 11.8.1 (p. 293): Construction of the contents and types of virtual tables and
virtual table tables from a well-formed hierarchy.

CompileSetDynType Section 11.8.6 (p. 297): Compilation of the �set dynamic type� oper-
ation: updating the pointers to virtual tables.

Interm2Target Section 11.8 (p. 293): A compiler from Ds++ to CVcm, and its proof of
correctness.

336 Tahina Ramananandro

Appendix B

Formal veri�cation of compilers

Verifying a compiler implies proving that the semantics of the source is preserved by the
target. Thus, it requires to relate somehow all the semantics of source, intermediate and target
languages. To this purpose, this chapter describes the formal foundations for proving compiler
correctness. In particular, this chapter justi�es our use of forward simulation for our veri�ed
compilers of Section 7.3 (p. 145) and Section 11.8 (p. 293). All facts presented in this chapter
are taken from CompCert [2].

B.1 Program behaviours

De�nition B.1.1. A behaviour of a transition system (S, (→, I,F)) can be one of the follow-
ing:

� A terminating behaviour with return code z is a �nite trace t ∈ E⋆ produced by a �nite
number of transitions from an initial state s0 to a �nal state sf :

∃s0 ∈ I : ∃sf ∈ Fz : s0
⋆
→
t
sf

� A diverging behaviour is a �nite trace t ∈ E⋆ produced by a �nite number of transitions
from an initial state s0 to a state s followed by an in�nite number of silent transitions:

∃s0 ∈ I : s0
+
→
t
s1 →

ǫ
s2 →

ǫ
. . .→

ǫ
sn →

ǫ
. . .

� A reacting behaviour is an in�nite trace T produced by an in�nite number of transitions
from an initial state s0, but with no in�nite sequence of silent transitions. In other words,
it is an in�nite sequence of �nite sequences with non-empty �nite traces:

∃s0 ∈ I :

s0
+
→
t0

s1
+
→
t1

s2
+
→
t2

. . .
+
→
tn−1

sn
+
→
tn

. . .

∀i : ti 6= ǫ
∀i : Ti = ti qq− Ti+1

T = T0

� A wrong behaviour is a �nite number of transitions from an initial state s0 to a non-�nal
stuck state s1 (from which there can be no step to any state s2):

t ∈ E⋆ ∧ ∃s0 ∈ I : ∃s1 : s0
⋆
→
t
s1 ∧ ∀t2, s2 : s1 6→

t2
s2 ∧ ∀z : (s1, z) 6∈ F

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 337

Formal veri�cation of compilers Appendix B

Lemma B.1.1. Any transition system has at least one behaviour 1.

B.2 Semantics preservation

Program behaviors allow to formalize the notion of semantics preservation following [50]:
if a transition system S is transformed into a transition system S′, then every speci�cation
satis�ed by a transition system S′ has to be preserved, i.e. satis�ed by the produced transition
system S′.

De�nition B.2.1 (Speci�cation). A speci�cation is a logical predicate over non-wrong be-
haviours.

A transition system S is said to satisfy a speci�cation S, denoted S � S, if and only if, S
cannot go wrong and, for any behaviour b of S, S(b) holds.

This formalism allows to specify safety properties (speci�cations over non-wrong behaviours
only). However, CompCert [2] also allows reasoning about liveness properties (involving �nite
traces that are pre�xes of possibly wrong behaviours). For the sake of brevity, we will not detail
those proofs here.

De�nition B.2.2 (Semantics preservation). Let S and S′ be two transition systems. S′ is
said to preserve the semantics of S if, and only if, any speci�cation satis�ed by S is satis�ed by
S′:

∀S : (S � S)⇒ (S′
� S)

De�nition B.2.3 (Compiler correctness). Let (P, S) and (P′, S′) be two programming lan-
guages. A compiler C, partial function from P to P′, is said to be correct if, and only if, for
each source program P ∈ P such that its compiled program C(P) exists, the semantics of the
transition system S′(C(P)) preserves the semantics of S(P).

Proving semantics preservation directly using this de�nition can be tedious. Fortunately,
CompCert provides several proof techniques to this purpose, which are described in the following
sections.

B.2.1 Backward simulation

The following lemma provides a way of showing semantics preservation at the level of pro-
gram behaviours:

Lemma B.2.1. Let S, S′ be two transition systems such that the following two conditions hold:

(a) if S cannot go wrong, then neither can S′

(b) any non-wrong behaviour of S′ is a behaviour of S

Then, S′ preserves the semantics of S.

Proof. Let S be a speci�cation satis�ed by S. Then, by hypothesis, S cannot go wrong, so
neither can S′.

Let B be a non-wrong behaviour of S′. Then, as S cannot go wrong, B is also a non-wrong
behaviour of S, thus S(B) holds, which concludes.

1. This result requires the excluded middle.

338 Tahina Ramananandro

B.2 Semantics preservation

The most accurate way to show semantics preservation between two transition systems S

and S′ is to show a backward simulation. Any transition step of S′ match a �nite sequence of S
transition steps from safe S states:

De�nition B.2.4. Let S be a transition system. A state s is said to be safe if, and only if, it
is �nal or not stuck.

De�nition B.2.5 (Backward simulation). Let S = (S, (→, I,F)) and S′ = (S′, (→′, I′,F′))
be two transition systems, and ⊲ ⊆ S ×S′ a relation between S states and S′ states. ⊲ is said
to be a backward simulation between S and S′ if, and only if, there is a well-founded order <
on S such that the following conditions hold:

(i) Final states match:
∀(s′f , z) ∈ F′, ∀s9 ∈ S : s9 ⊲ s

′
f

⇒ ∃sf ∈ Fz : s9
⋆
→ sf

(ii) Backward invariant preservation:

∀s′1, s
′
2, s1 : s′1 → s′2 ∧ s1 ⊲ s1

′ ∧ s1 safe
⇒ ∃s2 : s1

⋆
→ s2 ∧ s2 ⊲ s2

′

∧(s1 = s2 ⇒ s′2 < s′1)

(iii) Initial states match:

I 6= ∅⇒ ∀s′◦ ∈ I′ : ∃s◦ ∈ I, ∃s1 ∈ S : s◦
⋆
→ s1 ∧ s1 ⊲ s

′
◦

(iv) For any states s ⊲ s′ such that s is safe, then s′ is safe.

(v) If there is a S initial state, then there is a S′ initial state.

The correctness of backward simulation is ensured by the following lemma:

Lemma B.2.2 (Semantics preservation by backward simulation). If there is a backward
simulation between S and S′, then S′ preserves the semantics of S.

Proof. Using Lemma B.2.1 (p. 338):

(a) is proved thanks to (iv), (v)

(b) is proved thanks to (i), (ii), (iii) following CompCert [2] by case analysis on the behaviours,
then by induction on terminating behaviours, or coinduction on diverging or reacting be-
haviours.

B.2.2 Forward simulation

Backward simulation is often di�cult to prove, even not mechanically. Indeed, usually,
semantics preservation is proved in a more natural way following the execution of the source
program rather than the target program, using forward simulation:

De�nition B.2.6 (Forward simulation). Let S = (S, (→, I,F)) and S′ = (S′, (→′, I′,F′))
be two transition systems, and ⊲ ⊆ S ×S′ a relation between S states and S′ states. ⊲ is said
to be a forward simulation from S to S′ if, and only if, the three following conditions hold:

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 339

Formal veri�cation of compilers Appendix B

� Initial states match:

∀s◦ ∈ I : ∃s′◦ ∈ I′, ∃s′1 ∈ S′ : s′◦
⋆

→′ s′1 ∧ s◦ ⊲ s
′
1

� Forward invariant preservation:

∀s1, s2, s1
′ : s1 → s2 ∧ s1 ⊲ s1

′

⇒ ∃s2
′ : s1

′
+

→′s2
′ ∧ s2 ⊲ s2

′

� Final states match:
∀(sf , z) ∈ F, ∀s′9 ∈ S′ : sf ⊲ s

′
9

⇒ ∃s′f ∈ F′
z : s′9

⋆

→′ s′f

Graphically:

S I
∋ s◦

⊲

s1
e?

//

⊲

s2

⊲

sf

⊲

∈
Fz

S′ I′ ∋
s′◦

′⋆
// s′1 s′1

e?

′+
// s′2 s′99

′⋆
// s′f

∈
F′
z

Fortunately, if the target language is deterministic enough, then the following theorem allows
to prove semantics preservation through forwards simulation:

Theorem B.1 (Semantics preservation by forward simulation). Let S = (S, (→, I,F))
and S′ = (S′, (→′, I′,F′)) be two transition systems such that there is a forward simulation be-
tween S and S′. Then:

(i) any non-wrong behaviour of S1 is a behaviour of S2;

(ii) moreover, if (S, S′) form a receptive-determinate system, then, S′ preserves the semantics
of S.

Proof. (i) Following CompCert [2], by case analysis on the behaviours, then by induction on
terminating behaviours, or coinduction on diverging or reacting behaviours.

(ii) Following Sevcik et al. [3, 75] introducing the:

De�nition B.2.7. (S, S′) form a receptive-determinate system if, and only if, there exists
some equivalence relation ∼ between events, such that:
� S is receptive, i.e. for any step from a state s producing an event e1, there is a step

from s producing e2 for each e2 ∼ e1
� S′ is determinate, i.e. for any two steps from a common state, either none produces any

event, or both produce events matching through ∼
� S′ is internally deterministic, i.e. for any state s′1 and any e? ∈ E?, there is at most one

state s′2 such that s′1 →
′

e?
s′2

Then, roughly speaking, the proof constructs a backward simulation by making the S

transition system stutter : it is already known that a S′ transition is part of a sequence of
S′ transitions matching one S transition through the forward simulation diagram. Then,
determinacy hypotheses allow de�ning the backward simulation.

340 Tahina Ramananandro

B.2 Semantics preservation

Internal determinism says that the only possible source of non-determinism is the trace
semantics, e.g. the sequence of user (or random) inputs.

In practice, the receptive-determinate hypothesis shall be veri�ed by all the languages con-
sidered in our work, as regards transition steps other than built-in operations: any step related
to C++ multiple inheritance shall be deterministic. Then, it su�ces to assume them on built-in
operations, as other operations are assumed to produce no event.

Obviously, if there are a forward simulation commutative diagram from S to S′ on the one
hand, and from S′ to S′′ on the other hand, then it is possible to construct a commutative
forward simulation diagram from S to S′′.

So, �nally, to prove the correctness of a compiler, it su�ces to:

1. show each compilation pass 2 by a commutative forward simulation diagram

2. then show that the last (lowest-level) target language has no internal non-determinism 3

and forms a receptive-determinate system with the �rst (highest-level) source language 4

This justi�es why, throughout this thesis, all results about veri�ed compilation shall be
proved through commutative forward simulation diagram: our target language is a superset of
Cminor, which is then intended (in the future) to be compiled to Cminor; then, the CompCert
backend (which is proved only using such forward simulation patterns) shall be reused, so that
the semantics shall be preserved by transitivity of forward simulation.

2. Unless there are compilation passes that preserve only some selected behaviours from a non-determinist
transition system. However, this is not the case with the languages that we shall present throughout this thesis.

3. which is the case for the assembly language as formalized by CompCert
4. which can be assumed at the level of built-in operations (Section 3.2.4 p. 67)

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 341

Formal veri�cation of compilers Chapter B

342 Tahina Ramananandro

Bibliography

[1] The Astrée static analyzer. http://astree.ens.fr.

[2] The CompCert veri�ed compiler. http://compcert.inria.fr.

[3] The CompCertTSO compiler � commented Coq development. http://www.cl.cam.ac.
uk/~pes20/CompCertTSO/doc/.

[4] The Coq proof assistant. http://coq.inria.fr.

[5] Frama-C Software Analyzers. http://frama-c.com.

[6] The Alloy Analyzer. http://alloy.mit.edu.

[7] The Isabelle proof assistant. http://www.cl.cam.ac.uk/research/hvg/isabelle/.

[8] Why. http://why.lri.fr.

[9] Jean-Raymond Abrial. A formal approach to large software construction. In Proceedings of
the International Conference on Mathematics of Program Construction, 375th Anniversary
of the Groningen University, pages 1�20, London, UK, 1989. Springer-Verlag.

[10] Jean-Raymond Abrial. The B-book: assigning programs to meanings. Cambridge University
Press, 1996.

[11] Jean-Raymond Abrial, Stephen A. Schuman, and Bertrand Meyer. A speci�cation lan-
guage. In A. M. Macnaghten and R. M. McKeag, editors, On the Construction of Programs.
Cambridge University Press, 1980.

[12] Bowen Alpern, Anthony Cocchi, Stephen Fink, and David Grove. E�cient implementation
of Java interfaces: invokeinterface considered harmless. In Proceedings of the 16th ACM
SIGPLAN conference on Object-oriented programming, systems, languages, and applica-
tions, OOPSLA '01, pages 108�124, New York, NY, USA, 2001. ACM.

[13] Brian Aydemir, Aaron Bohannon, Matthew Fairbairn, J. Foster, Benjamin Pierce, Peter
Sewell, Dimitrios Vytiniotis, Geo�rey Washburn, Stephanie Weirich, and Steve Zdancewic.
Mechanized Metatheory for the Masses: The PoplMark Challenge. In Joe Hurd and
Tom Melham, editors, Theorem Proving in Higher Order Logics, volume 3603 of Lecture
Notes in Computer Science, pages 50�65. Springer Berlin / Heidelberg, 2005.

[14] Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark Weber. Mathematizing
C++ concurrency. In POPL'11, pages 55�66, 2011.

[15] Ricardo Bedin França, Denis Favre-Felix, Xavier Leroy, Marc Pantel, and Jean Souyris.
Towards Formally Veri�ed Optimizing Compilation in Flight Control Software. In Philipp
Lucas, Lothar Thiele, Benoit Triquet, Theo Ungerer, and Reinhard Wilhelm, editors, Pre-
dictability and Performance in Embedded Systems : PPES 2011, volume 18 of OpenAc-
cess Series in Informatics (OASIcs), pages 59�68, Grenoble, France, March 2011. Schloss
Dagstuhl�Leibniz-Zentrum für Informatik.

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 343

http://astree.ens.fr
http://compcert.inria.fr
http://www.cl.cam.ac.uk/~pes20/CompCertTSO/doc/
http://www.cl.cam.ac.uk/~pes20/CompCertTSO/doc/
http://coq.inria.fr
http://frama-c.com
http://alloy.mit.edu
http://www.cl.cam.ac.uk/research/hvg/isabelle/
http://why.lri.fr

BIBLIOGRAPHY

[16] Sandrine Blazy and Xavier Leroy. Formal veri�cation of a memory model for C-like im-
perative languages. In International Conference on Formal Engineering Methods (ICFEM
2005), volume 3785 of Lecture Notes in Computer Science, pages 280�299. Springer, 2005.

[17] Sandrine Blazy and Xavier Leroy. Mechanized semantics for the Clight subset of the C
language. Journal of Automated Reasoning, 43(3):263�288, 2009.

[18] Cari Borrás. Overexposure of radiation therapy patients in Panama: problem recognition
and follow-up measures. Pan-American J. of public health, 20(2/3):173�187, 2006.

[19] Thomas A. Cargill. Controversy: The Case Against Multiple Inheritance in C++. Com-
puting Systems, pages 69�82, 1991.

[20] Juan Chen. A typed intermediate language for compiling multiple inheritance. In 34th
symp. Principles of Programming Languages, pages 25�30. ACM, 2007.

[21] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic veri�cation of �nite-state
concurrent systems using temporal logic speci�cations. ACM Trans. Program. Lang. Syst.,
8:244�263, April 1986.

[22] CodeSourcery, Compaq, EDG, HP, IBM, Intel, Red Hat, and SGI. Itanium C++ ABI.
http://www.codesourcery.com/public/cxx-abi, 2001.

[23] Patrick Cousot and Radhia Cousot. Abstract interpretation: a uni�ed lattice model for
static analysis of programs by construction or approximation of �xpoints. In Proceedings
of the 4th ACM SIGACT-SIGPLAN symposium on Principles of programming languages,
POPL '77, pages 238�252, New York, NY, USA, 1977. ACM.

[24] Maulik A. Dave. Compiler veri�cation: a bibliography. SIGSOFT Softw. Eng. Notes,
28:2�2, November 2003.

[25] Beman Dawes. POD's Revisited; Resolving Core Issue 568 (Revision 2). Technical report,
ISO/IEC SC22/JTC1/WG21, March 2007.

[26] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: An E�cient SMT Solver. In
TACAS, pages 337�340, 2008.

[27] Nachum Dershowitz. Software Horror Stories. http://www.cs.tau.ac.il/~nachumd/
horror.html.

[28] Mark Dowson. The Ariane 5 software failure. SIGSOFT Softw. Eng. Notes, 22:84�, March
1997.

[29] Karel Driesen, Urs Hölzle, and Jan Vitek. Message dispatch on pipelined processors. In
Mario Tokoro and Remo Pareschi, editors, ECOOP'95 � Object-Oriented Programming,
9th European Conference, Aarhus, Denmark, August 7-11, 1995, volume 952 of Lecture
Notes in Computer Science, pages 253�282. Springer Berlin / Heidelberg, 1995.

[30] Margaret A. Ellis and Bjarne Stroustrup. The Annotated C++ Reference Manual. Addison-
Wesley, 1990.

[31] M. E. Fagan. Design and code inspections to reduce errors in program development. IBM
Systems Journal, 15(3):182 �211, 1976.

[32] Manuel Fähndrich and Songtao Xia. Establishing object invariants with delayed types. In
Proceedings of the 22nd annual ACM SIGPLAN conference on Object-oriented program-
ming systems and applications, OOPSLA '07, pages 337�350. ACM, 2007.

[33] The Apache Foundation. Apache Lucene. http://lucene.apache.org.

344 Tahina Ramananandro

http://www.codesourcery.com/public/cxx-abi
http://www.cs.tau.ac.il/~nachumd/horror.html
http://www.cs.tau.ac.il/~nachumd/horror.html
http://lucene.apache.org

BIBLIOGRAPHY

[34] Pierre Froment. L'architecture avionique de l'A380. In Les Annales des Mines, Réalités
Industrielles. November 2005.

[35] Joseph Gil and Peter F. Sweeney. Space and Time-E�cient Memory Layout for Multiple
Inheritance. In 14th conf. on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA 1999), pages 256�275. ACM, 1999.

[36] Joseph (Yossi) Gil, William Pugh, Grant E. Weddell, and Yoav Zibin. Two-dimensional
bidirectional object layout. ACM Trans. Program. Lang. Syst., 30(5):1�38, 2008.

[37] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language Speci�cation. Addison
Wesley, 3rd edition edition, 2005.

[38] Nicolas Hognon, Je� Schwab, and Rob Williscroft. Multiple In-
heritance size problem. http://bytes.com/topic/c/answers/

129536-multiple-inheritance-size-problem, 2005.

[39] Laurent Hubert, Thomas Jensen, Vincent Monfort, and David Pichardie. Enforcing secure
object initialization in Java. In Computer Security � ESORICS 2010, volume 6345 of
Lecture Notes in Computer Science, pages 101�115. Springer, 2010.

[40] International Organization for Standards. International Standard ISO/IEC 14882:1998.
Programming Languages � C++, 1998.

[41] International Organization for Standards. International Standard ISO/IEC 13568:2002.
Information Technology � Z Formal Speci�cation Notation � Syntax, Type System and
Semantics, 2002.

[42] International Organization for Standards. International Standard ISO/IEC 14882:2003.
Programming Languages � C++, 2003.

[43] International Organization for Standards. International Standard ISO/IEC 14882:2011.
Programming Languages � C++, 2011.

[44] Daniel Jackson. Alloy: a lightweight object modelling notation. ACM Trans. Softw. Eng.
Methodol., 11:256�290, April 2002.

[45] C++ Standards Committee (ISO/IEC JTC1/SC22/WG21). CWG 1202: Calling virtual
functions during destruction. In C++ Standard Core Language Defect Reports. Interna-
tional Organization for Standards, http://www.open-std.org/jtc1/sc22/wg21/docs/
cwg_defects.html#1202, March 2011.

[46] Cem Kaner, Jack L. Falk, and Hung Quoc Nguyen. Testing computer software. Wiley,
1993.

[47] Gerwin Klein and Tobias Nipkow. A machine-checked model for a Java-like language, vir-
tual machine and compiler. ACM Transactions on Programming Languages and Systems,
28(4):619�695, 2006.

[48] Stein Krogdahl. Multiple inheritance in Simula-like languages. BIT Numerical Mathemat-
ics, 25:318�326, 1985.

[49] Xavier Leroy. Formal certi�cation of a compiler back-end, or: programming a compiler
with a proof assistant. In 33rd ACM symposium on Principles of Programming Languages,
pages 42�54. ACM Press, 2006.

[50] Xavier Leroy. Formal veri�cation of a realistic compiler. Communications of the ACM,
52(7):107�115, 2009.

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 345

http://bytes.com/topic/c/answers/129536-multiple-inheritance-size-problem
http://bytes.com/topic/c/answers/129536-multiple-inheritance-size-problem
http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#1202
http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#1202

BIBLIOGRAPHY

[51] Pierre Letouzey. A new extraction for Coq. In Herman Geuvers and Freek Wiedijk, editors,
Types for Proofs and Programs, volume 2646 of Lecture Notes in Computer Science, pages
617�617. Springer Berlin / Heidelberg, 2003.

[52] Pierre Letouzey. Extraction in Coq, an Overview. In Logic and Theory of Algorithms,
Fourth Conference on Computability in Europe, CiE 2008, volume 5028 of Lecture Notes
in Computer Science, Athens, Grèce, 2008. Springer-Verlag. ANR CompCert.

[53] N.G. Leveson and C.S. Turner. An investigation of the Therac-25 accidents. IEEE Com-
puter, 26:18�41, 1993.

[54] Stanley B. Lippman. Inside the C++ object model. Addison-Wesley, 1996.

[55] Lockheed Martin. Joint Strike Fighter Air Vehicle C++ Coding Standards for the Sys-
tem Development and Demonstration Program. http://www.research.att.com/~bs/
JSF-AV-rules.pdf, 2005.

[56] Chenguang Luo and Shengchao Qin. Separation Logic for Multiple Inheritance. Electron.
Notes Theor. Comput. Sci., 212:27�40, 2008.

[57] John McCarthy. A basis for a mathematical theory of computation. In Computer Pro-
gramming and Formal Systems, pages 33�70. North-Holland, 1963.

[58] John Mccarthy and James Painter. Correctness of a compiler for arithmetic expressions.
pages 33�41. American Mathematical Society, 1967.

[59] Bertrand Meyer. Ei�el, le langage. InterEditions, 1992.

[60] R Milner and R Weyhrauch. Proving compiler correctness in a mechanized logic. In In
Proc. 7th Annual Machine Intelligence Workshop, volume 7 of Machine Intelligence, pages
51�72. Edinburgh University Press, 1972.

[61] Robin Milner, Mads Tofte, Robert Harper, and David McQueen. The De�nition of Stan-
dard ML (Revised). MIT Press, 1997.

[62] J Strother Moore. A mechanically veri�ed language implementation. Journal of Automated
Reasoning, 5:461�492, 1989.

[63] Nathan Myers. The Empty Member C++ Optimization. Dr Dobb's Journal, August 1997.

[64] Michael Norrish. A Formal Semantics for C++. Technical report, NICTA, 2008.

[65] Radio Technical Commission on Aviation. DO-178B � Software Considerations in Airborne
Systems and Equipment Certi�cation, 1992.

[66] Oracle Sun Developer Network. Hotspot creashed with sigsegv from PorterStem-
mer (Bug ID 7070134). http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=
7070134, July 2011.

[67] Marie-Laure Potet and Didier Bert. La méthode B. http://www-verimag.imag.fr/
~potet/ejcp-expose.pdf, May 2010. Course given at École des Jeunes Chercheurs en
Programmation, Dinard.

[68] Xin Qi and Andrew C. Myers. Masked Types for Sound Object Initialization. In POPL
'09, pages 53�65, New York, NY, USA, 2009. ACM.

[69] G. Ramalingam and Harini Srinivasan. A member lookup algorithm for C++. In Program-
ming Language Design and Implementation (PLDI'97), pages 18�30. ACM, 1997.

346 Tahina Ramananandro

http://www.research.att.com/~bs/JSF-AV-rules.pdf
http://www.research.att.com/~bs/JSF-AV-rules.pdf
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=7070134
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=7070134
http://www-verimag.imag.fr/~potet/ejcp-expose.pdf
http://www-verimag.imag.fr/~potet/ejcp-expose.pdf

BIBLIOGRAPHY

[70] Tahina Ramananandro. Machine-checked object layout for C++ multiple inheritance with
empty-base optimization � Technical report, Coq development and supplementary mate-
rial. http://gallium.inria.fr/~tramanan/cxx/object-layout, 2010.

[71] Tahina Ramananandro. Veri�ed compilation of C++ Multiple Inheritance � Coq proofs.
http://gallium.inria.fr/~tramanan/cxx/compiler, 2011.

[72] Tahina Ramananandro, Gabriel Dos Reis, and Xavier Leroy. Formal veri�cation of object
layout for C++ multiple inheritance. In Proceedings of the 38th annual ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, POPL '11, pages 67�80.
ACM, 2011.

[73] Tahina Ramananandro, Gabriel Dos Reis, and Xavier Leroy. A Mechanized Semantics for
C++ Object Construction and Destruction, with Applications to Resource Management.
In Proceedings of the 39th Symposium on Principles of Programming Languages (POPL),
2012.

[74] Jonathan G. Rossie and Daniel P. Friedman. An Algebraic Semantics of Subobjects. In 10th
conf. on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA
1995), pages 187�199. ACM, 1995.

[75] Jaroslav Sevcik, Viktor Vafeiadis, Francesco Zappa Nardelli, Suresh Jagannathan, and
Peter Sewell. Relaxed-memory concurrency and veri�ed compilation. In Proceedings of
the 38th annual ACM SIGPLAN-SIGACT symposium on Principles of programming lan-
guages, POPL '11. ACM, 2011.

[76] Jeremy Siek and Walid Taha. A Semantic Analysis of C++ Templates. In Dave Thomas,
editor, ECOOP 2006 Object-Oriented Programming, volume 4067 of Lecture Notes in Com-
puter Science, pages 304�327. Springer Berlin / Heidelberg, 2006.

[77] Kenneth Slonneger and Barry L. Kurtz. Formal Syntax and Semantics of Programming
Languages. Addison-Wesley, 1995.

[78] J. Michael Spivey. The Z Notation: A reference manual. International Series in Computer
Science. Prentice Hall, 2nd edition, 1992.

[79] Bjarne Stroustrup. The design and evolution of C++. ACM Press/Addison-Wesley Pub-
lishing Co., New York, NY, USA, 1994.

[80] Bjarne Stroustrup. A history of C++: 1979�1991, pages 699�769. ACM, New York, NY,
USA, 1996.

[81] Peter F. Sweeney and Michael G. Burke. Quantifying and evaluating the space overhead
for alternative C++ memory layouts. Software: Practice and Experience, 33(7):595�636,
2003.

[82] Jean-Baptiste Tristan. Véri�cation formelle de validateurs de traduction. PhD thesis,
Université Paris. Diderot (Paris 7), 2009.

[83] Harvey Tuch. Formal veri�cation of C systems code: Structured types, separation logic
and theorem proving. Journal of Automated Reasoning, 42(2):125�187, 2009.

[84] Daniel Wasserrab. From Formal Semantics to Veri�ed Slicing � A Modular Framework with
Applications in Language Based Security. PhD thesis, Karlsruher Institut für Technologie,
Fakultät für Informatik, October 2010.

[85] Daniel Wasserrab, Tobias Nipkow, Gregor Snelting, and Frank Tip. An operational seman-
tics and type safety proof for multiple inheritance in C++. In 21st conf. on Object-Oriented

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 347

http://gallium.inria.fr/~tramanan/cxx/object-layout
http://gallium.inria.fr/~tramanan/cxx/compiler

BIBLIOGRAPHY

Programming, Systems, Languages, and Applications (OOPSLA 2006), pages 345�362.
ACM, 2006.

[86] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. Finding and understanding bugs
in C compilers. In 2011, 2011.

[87] Olivier Zendra, Dominique Colnet, and Suzanne Collin. E�cient dynamic dispatch with-
out virtual function tables: the SmallEi�el compiler. In Proceedings of the 12th ACM
SIGPLAN conference on Object-oriented programming, systems, languages, and applica-
tions, OOPSLA '97, pages 125�141, New York, NY, USA, 1997. ACM.

348 Tahina Ramananandro

Index of theorems

I.1 Scalar �eld alignment . 110
I.2 Non-virtual data subobject inclusion . 112
I.3 Non-overlapping of scalar �elds . 115
I.4 Dynamic type data are disjoint from scalar �elds 119
I.5 Non-overlapping of dynamic type data . 121
I.6 Dynamic type data alignment . 122
I.7 Non-empty subobject identity . 122
I.8 Empty subobject identity . 124
I.9 Correctness of the Common Vendor ABI layout algorithm 131
I.10 Correctness of the optimized CCCPP layout algorithm 134
I.11 Correctness of Vcm virtual table sharing: virtual base o�sets 147
I.12 Correctness of Vcm virtual table sharing: dynamic cast 148
I.13 Correctness of Vcm virtual table sharing: virtual function dispatch 150
I.14 Correctness of the s++-to-Vcm compiler . 156
II.1 Construction progress . 210
II.2 Destruction progress . 210
II.3 Construction order increment . 211
II.4 Objects are not constructed more than once . 211
II.5 Subobjects are destructed in the reverse order of their construction 212
II.6 Lifetimes of subobjects of the same complete object 214
II.7 The lifetime of an object is included in the lifetimes of its subobjects 215
II.8 Subobjects are constructed and destructed before deallocation 215
II.9 Objects destructed when program exits . 216
II.10 Lifetimes of subobjects of two di�erent complete objects 217
II.11 Safety of scalar �eld accesses . 217
II.12 Strong safety of scalar �eld accesses . 218
II.13 Safety of virtual function calls . 218
II.14 Unicity of generalized dynamic type . 220
II.15 Evolution of the generalized dynamic type . 221
II.16 κ++ to Ds++ forward simulation . 284
II.17 Correctness of CVcm virtual tables: dynamic cast 294
II.18 Correctness of CVcm virtual tables: virtual function dispatch 295
II.19 Dynamic type data update of an object and its subobjects 299
II.20 Dynamic type data update for other objects . 300
II.21 Ds++ to CVcm forward simulation . 304
B.1 Semantics preservation by forward simulation . 340

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 349

Index of theorems

350 Tahina Ramananandro

Index of concepts

� A �
alignment . 104

data member . 108
non-virtual . 104

array path. .77
array path o�set . 105

� B �
base . 75

empty . 111
indirect .75
non-virtual . 74
primary . 117
virtual. .75
generalized . 105

base class . 75
behaviour . 337
boundary

data member . 103
built-in

types . 67
values . 67

� C �
class

dynamic . 89
compiler correctness . 338
construction path . 239
construction virtual table.239
constructor . 175
correct compiler . 338
CVcm . 286

� D �
data member

empty . 110
data member alignment 108
data member boundary.103
data member data size 111
data member o�set . 103

data member size . 107
data size . 103

data member . 111
non-virtual . 103

destructor . 175
direct non-virtual base o�set 103
direct subobject . 208
Ds++ . 245
dynamic class . 89
dynamic type data . 96

� E �
empty base . 111
empty base o�sets . 123
empty base optimization.99
empty data member . 110
event . 66

� F �
�eld . see data member

� G �
generalized dynamic type

κ++ . 187
generalized subobject . 77
generalized subobject o�set.106
generalized virtual base 105

� I �
indirect base . 75
inheritance

non-virtual . 74
inheritance subobject o�set.104
initializer . 171, 175

� K �
κ++ . 174

� M �
method see virtual function
most-derived object . 78

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 351

Index of concepts

� N �
non-virtual alignment . 104
non-virtual data size . 103
non-virtual inheritance . 74
non-virtual size. .104
non-virtual subobject o�set 104

� O �
occurs before . 208
o�set

array path. .105
data member . 103
direct non-virtual base 103
empty base . 123
generalized subobject 106
inheritance subobject 104
non-virtual subobject104
virtual base . 103

� P �
path

array . 77
construction . 239
inheritance . 75
non-virtual . 74

primary . 120
reduced . 120
trivial . 75

primary base . 117
primary path . 120

� R �
reduced path . 120
relative pointer see generalized subobject

� S �
s++ . 80
semantics

observational . 66
operational . 66
preservation . 338

set dynamic type 234, 238, 252
compilation . 297

simulation
backward. .339
forward . 339

size . 104
data member . 107

non-virtual . 104
speci�cation . 338
subobject

direct . 208
generalized . 77
inheritance . 78

subobject inclusion . 213
subobject o�set

inheritance . 104
non-virtual . 104

� T �
trace . 66
transition system . 66
trivial path . 75

� V �
Vcm . 137
virtual base . 75

generalized . 105
virtual base o�set . 103
virtual function. .72
virtual inheritance . 75
virtual table .135

construction . 239
virtual table table . 239
VTT.see virtual table table

352 Tahina Ramananandro

Index of equations

� A �
align . 108
align-size . 109

� C �
C1.see nvsize-upper-bound-bases

C10 see fboundary-upper-bound-�elds

C11.see fboundary-upper-bound-bases

C12 . see vbases-non-overlap

C13 . see datasize

C14 . see falign

C15 . see nvalign

C16 . see dtdalign-nv

C17 . see align

C18 . see align-size

C19 see dtdatasize-upper-bound

C2 see nvsize-upper-bound-�elds

C20 . see dtdatasize-pbase

C21 . see pbase

C22 see nonempty-nvdatasize-positive

C23 . see nvebo�s-disjoint

C24 see nvebo�s-ebo�s-disjoint

C25 . see ebo�s-disjoint

C26 see vbo�-nvebo�s-disjoint

C3.see fullsize-upper-bound

C4 see datasize-upper-bound

C5 . see nvsize-positive

C6 . see nvbases-non-overlap

C7 see fboundary-lower-bound

C8 . see fo�-low-bound

C9 . see �elds-non-overlap

CVcm-block-some . 291
CVcm-exit-some . 292
CVcm-mem-blocksize-alloc-other 290
CVcm-mem-blocksize-alloc-same-after 290
CVcm-mem-blocksize-alloc-same-before 290
CVcm-mem-blocksize-free-other 290
CVcm-mem-load-alloc-other 289
CVcm-mem-load-free-other 290

CVcm-return-some . 292
CVcm-subvtt .292
CVcm-subvtt-access . 292
CVcm-subvtt-access-main292
CVcm-vtt-vtable . 293

� D �
datasize . 112
datasize-upper-bound .115
Ds++-basepath-direct-non-virtual 254
Ds++-basepath-virtual . 254
Ds++-block-no-obj . 248
Ds++-block-some .250
Ds++-casttobase-direct-non-virtual 252
Ds++-casttobase-virtual .252
Ds++-dyncast . 251
Ds++-exit-0 . 249
Ds++-exit-S . 249
Ds++-exit-some . 250
Ds++-�eld-struct-point .86
Ds++-return-block-no-obj 249
Ds++-return-some . 250
Ds++-rootpath . 253
Ds++-setdyntype . 253
Ds++-statcast . 251
Ds++-virtual-funcall . 250
dtdalign-nv . 122
dtdatasize-pbase . 118
dtdatasize-upper-bound .118
dyncast-base-to-derived-non-virtual 88
dyncast-crosscast . 88
dyncast-derived-to-base . 88
dyncast-fail . 89

� E �
ebo�s-disjoint . 124

� F �
falign . 108
fboundary-lower-bound . 111

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 353

Index of equations

fboundary-upper-bound-bases 111
fboundary-upper-bound-�elds 111
�elds-non-overlap . 113
�nal-overrider . 90
fo�-low-bound . 111
fullsize-upper-bound . 106

� K �
κ++-addbase . 191
κ++-array-point . 186
κ++-atom .184
κ++-block-no-obj . 184
κ++-block-obj . 189
κ++-constr-array-cons . 189
κ++-constr-array-nil-kconstrother 192
κ++-constr-array-nil-kcontinue 189
κ++-constr-bases-direct-non-virtual-nil 190
κ++-constr-bases-virtual-nil 190
κ++-constr-cons . 191
κ++-constr-cons-�eld-scalar-no-init 192
κ++-constr-cons-�eld-struct 192
κ++-constr-�elds-nil . 190
κ++-constructor-kconstr-base 191
κ++-constructor-kconstrarray190
κ++-destr-array-cons . 193
κ++-destr-array-nil-kcontinue193
κ++-destr-array-nil-kdestrother 194
κ++-destr-bases-cons . 194
κ++-destr-bases-direct-non-virtual-nil-kdestrcell195
κ++-destr-bases-direct-non-virtual-nil-kdestrother

195
κ++-destr-bases-virtual-nil 195
κ++-destr-�elds-cons-scalar 194
κ++-destr-�elds-cons-struct 194
κ++-destr-�elds-nil . 194
κ++-dyncast . 188
κ++-dyntype-constructed 187
κ++-dyntype-pending . 188
κ++-exit-0 . 184
κ++-exit-block-obj .193
κ++-exit-S . 184
κ++-exitstmt . 193
κ++-exitsucc . 193
κ++-�eld-scalar-read .185
κ++-�eld-scalar-write . 186
κ++-�eld-struct-point .186
κ++-getgdyntype-constructed 219

κ++-getgdyntype-pending 219
κ++-if . 183
κ++-initscalar . 191
κ++-loop . 184
κ++-non-virtual-funcall . 185
κ++-ptreq . 186
κ++-return-arg . 185
κ++-return-block-no-obj 185
κ++-return-kconstrother-bases 192
κ++-return-kconstrothercells 192
κ++-return-kdestr . 194
κ++-return-no-arg . 185
κ++-seq . 183
κ++-skip-cons . 184
κ++-skip-nil . 184
κ++-statcast . 187
κ++-static-funcall . 185
κ++-virtual-funcall .188

� N �
nonempty-nvdatasize-positive 118
nvalign . 108
nvbases-non-overlap . 113
nvebo�s-disjoint .124
nvebo�s-ebo�s-disjoint . 124
nvsize-positive . 124
nvsize-upper-bound-bases 106
nvsize-upper-bound-�elds 107

� P �
pbase .117

� S �
statcast-base-to-derived-non-virtual88
statcast-derived-to-base .87
static-dispatch . 90
s++-array-point . 87
s++-block . 85
s++-builtin . 84
s++-dyncast . 89
s++-exit-0 . 85
s++-exit-S .85
s++-�eld-scalar-read . 86
s++-�eld-scalar-write .86
s++-if .84
s++-loop . 84
s++-non-virtual-funcall . 86

354 Tahina Ramananandro

Index of equations

s++-ptreq . 87
s++-return-arg .84
s++-return-block .85
s++-return-no-arg . 84
s++-seq . 84
s++-skip . 84
s++-statcast .88
s++-static-funcall . 85
s++-var-dup . 84
s++-virtual-funcall . 91

� V �
vbases-non-overlap . 114
vbo�-nvebo�s-disjoint . 124
Vcm-call . 142
Vcm-call-select-dynamic 142
Vcm-call-select-static . 142
Vcm-dispfunc . 144
Vcm-dispo� . 144
Vcm-dyncastdef . 144
Vcm-dyncasto� . 144
Vcm-load . 142
Vcm-mem-load-store-other141
Vcm-mem-load-store-same 140
Vcm-mem-store-blocksize 141
Vcm-mem-store-some . 141
Vcm-null .143
Vcm-ptreq . 143
Vcm-shift-const . 143
Vcm-shift-const-factor . 143
Vcm-store . 142
Vcm-thunkcall . 145
Vcm-vbo� . 144
Vcm-vtype-le-re� . 144
Vcm-vtype-le-step . 143
Vcm-vtype-lt-step . 143
Vcm-vtype-lt-trans . 143
virtual-dispatch .90

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 355

Index of equations

356 Tahina Ramananandro

Index of notations

� Symbols �
q−

append . 64
q−′

append with no duplicate 64
qq−

concatenation of �nite list to in�nite stream
66

7 7→
�nite map . 65

@
inheritance path concatenation 76
pointer to memory location
Vcm. 140
CVcm . 290

@Repeated

non-virtual inheritance path concatenation
74

⊥
unde�ned value . 64

{. . .}
record . 65
statement block
κ++ . 184
s++ . 85

[[. . .]]
compilation
κ++ to Ds++ . 256
s++ to Vcm . 145
Ds++ to CVcm . 293

[. . .]
array subscripting
κ++ . 186
Ds++ . 87

built-in operation . 68
[. . . , . . .]closed interval. .63
[. . . , . . .)semi-open interval 63
[· ← ·]

function update . 64

[setDynType(. . .)] see setDynType

::
cons (lists) . 64

::

non-virtual function call
κ++ . 185
s++ . 85

::::
in�nite streams . 66

->

�eld access
κ++ . 185
s++ . 86

non-virtual function call
κ++ . 185
s++ . 85

virtual function call
κ++ . 188
s++ . 91
Ds++ . 250

∆
dynamic cast o�sets for virtual table
s++ to Vcm . 148
Ds++ to CVcm . 294

ǫ
empty list . 64

==
pointer equality test
κ++ . 186
s++ . 87

∅
empty map . 65

·
translation of static function names
κ++ to Ds++ . 257

translation of variable names
κ++ to Ds++ . 254

Φ
function pointer and virtual function dis-

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 357

Index of notations

patch o�set for virtual table
s++ to Vcm . 149
Ds++ to CVcm . 295

+
→

�nite non-empty transition sequence . . . 67
≺V

C

inheritance graph order 214
≺C[n]

occurs before . 208
∝

alternate representation of generalized sub-
objects . 115

?

optional value . 64
;

statement sequence
κ++ . 183
s++ . 84

#
disjoint sets . 64

⋆
→

�nite transition sequence 67
⋆

list of values . 64
−〈·〉→

generalized subobject 77
−〈·〉

A
→
array path . 77

−〈·〉
I
→
inheritance path . 75

−〈·〉
CI
→
inheritance path within an array cell . . . 77

−〈·〉
NV
→
non-virtual inheritance path 74

⊳C[n]

subobject lifetime relation 213
⊆C[n]

subobject inclusion 213
·

compiled constructor name 260
compiler-purpose variables
κ++ to Ds++ . 254

⊎
union of disjoint sets 64

V
→

virtual base . 75
· ⊢ 〈·〉 ·

type of complete objects 83
· ⊢ · : ·

non-null pointer typing 83
· ⊢ · ÷ ·

pointer typing . 87

� A �
AddBase .191
align . 104
alloc .289
aoff . 105

� B �
B

booleans. .63
base_cast〈·〉· . 252
basePath . 254
BasesConstructed . 176
Block

κ++ . 178
s++ . 83
Ds++ . 247

Blocks . 255
blocksize

Vcm. .140
CVcm . 289

Builtin . 67
BuiltinTypes . 67

� C �
C

de�ned classes . 72
Callframe

κ++ . 178
s++ . 83
Ds++ . 247

chunkalign

Vcm. .140
CVcm . 289

chunksize

Vcm. .140
CVcm . 289

Codepoint . 179
compileConstrArray . 259
compileConstrArrayInit . 259

358 Tahina Ramananandro

Index of notations

compileConstrBase . 266
compileConstrDNVBases 267
compileConstrField . 265
compileConstrFields . 265
compileConstrVBases .267
compileDestrArray . 261
compileDestrArrayFin. .261
compileDestrBase . 270
compileDestrDNVBases .270
compileDestrField . 270
compileDestrFields . 270
compileDestrVBases . 271
compileDiscard . 262
Constr .179
ConstrArray .179
ConstrState . 178
ConstrStateF . 178
Constructed .176
constructors . 175
curfield . 255
curobj . 255
curpath . 255

� D �
D

direct bases. .72
Destr . 179
DestrArray .179
Destructed .176
DestructingBases .176
destructors .175
DNV

direct non-virtual bases 72
dnvboff . 103
dsize . 103
dtdalign . 122
dtdsize . 117
DV

direct virtual bases . 72
dynamic_cast〈·〉·

κ++ . 188
s++ . 89
Ds++ . 251

DynCast . 88

� E �
eboffs . 123

EDNV
empty direct non-virtual bases111

EF
empty data members 110

else

κ++ . 183
s++ . 84

EV
empty virtual bases.111

EṼ
empty generalized virtual bases 111

exit

κ++ . 184
CVcm . 292
s++ . 85
Ds++ . 249, 250

� F �
F

data members . 72
falign . 108
false . 63
fboundary

data member boundary 103
fdsize .111
FieldValue

κ++ . 178
s++ . 83
Ds++ . 247

filter . 64
finalOverrider . 90
first . 64
foff .103
free . 289
fsize . 107
funcs

Vcm. .139
CVcm . 288

� G �
gDynType

κ++ . 187
Ds++ . 247

getgDynType . 219

� H �
hierarchy

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 359

Index of notations

κ++ . 175
s++ . 81
Ds++ . 245

� I �
if

κ++ . 183
s++ . 84

initScalar . 191
isDestructorBody .255
isDynamic . 89
isMostDerived .255
isPrimaryPath .120

� K �
Kconstr .181
Kconstrarray . 181
Kconstrother .181
Kconstrothercells . 181
Kcontinue . 181
Kdestr . 182
Kdestrcell .182
Kdestrother . 182
Kretcall .181

� L �
last . 64
≤

virtual table subtyping 143
load

Vcm. .140
CVcm . 289

LocType

κ++ . 178
s++ . 83
Ds++ . 247

loop

κ++ . 184
s++ . 84

<
virtual table (strict) subtyping.143

� M �
M

class member functions 72
M′

inherited virtual functions 150
main

κ++ . 175
CVcm . 288
s++ . 81
Ds++ . 245

mainvtts . 288
map· . 64
methods

κ++ . 175
s++ . 81
Ds++ . 245

� N �
NEDNV

non-empty direct non-virtual bases . . . 111
NEF

non-empty data members110
NEV

non-empty virtual bases 111
NEṼ

non-empty generalized virtual bases . . 111
NULL

CVcm . 290
Vcm. .140

nvalign . 104
nvdsize . 103
nveboffs . 123
nvsize . 104
nvsoff . 104

� O �
off . 106

� P �
P

set of subsets . 64
pbase .117
PC

inheritance paths that are not primary sub-
objects of other subobjects of C . . 296

plength . 115

� R �
reducePath . 120
return

κ++ . 185
s++ . 84
Ds++ . 250, 292

rev . 64

360 Tahina Ramananandro

Index of notations

rootPath . 253

� S �
S

successor
construction states 177
nonnegative integers 63

scalign .108
scsize .107
setDynType

global state update 253
setDynType

language construct 253
size .104
skip

κ++ . 184
s++ . 84

soff . 104
StartedConstructing . 176
StartedDestructing . 176
StatCast . 87
static_cast〈·〉·

κ++ . 187
s++ . 88
Ds++ . 251

staticDispatch .90
staticfuns

κ++ . 175
s++ . 81
Ds++ . 245

store

Vcm. .140
CVcm . 289

� T �
true . 63

� U �
Unconstructed . 176
Used . 255

� V �
Ṽ

generalized virtual bases 105
V

virtual bases. .79
vboff . 103
VFDispatch . 90

VO
virtual bases in inheritance graph order190,

214
vtables

Vcm. .139
CVcm . 288

vtabletypes

Vcm. .139
CVcm . 288

vtts . 288
vtttypes . 288

Mechanized Formal Semantics and Veri�ed Compilation for C++ Objects 361

	Table des matières
	Remerciements
	Aperçu
	Contexte
	Vérification de logiciels
	Sémantique formelle
	Compilation vérifiée
	Le langage C++

	Contributions scientifiques
	Représentation concrète des objets en mémoire (layout)
	Construction et destruction des objets

	Bilan
	L'expérience Coq
	Impacts pratiques
	Impacts potentiels
	Travaux futurs

	 Preliminaries
	Introduction
	Context
	Software verification
	Formal semantics
	Verified compilation
	The C++ language

	Summary of the contributions
	Object layout
	Object construction and destruction

	Tutorial: the C++ object model
	Classes and instances. Aggregation (has-a)
	Inheritance (is-a). Virtual functions
	Virtual functions: overriding and dispatch
	Casts
	Inheritance for the purpose of subtyping

	Multiple inheritance
	Ambiguous subobjects
	Cross cast

	Virtual inheritance
	Virtual base classes
	Casts
	Virtual functions: final overrider, domination, delegation to sister class

	Construction and destruction
	The lifetime of objects
	Object initialization
	RAII: Resource acquisition is initialization
	Construction and destruction order
	Inheritance
	Virtual inheritance
	Summary of construction and destruction principles

	Setting and notations
	Overall notations
	Small-step operational semantics
	Observational semantics of traces
	Transition system, programming language
	Sequences of transition steps
	Built-in types, values and operations

	I Verification of C++ object layout
	The semantics of C++ multiple inheritance
	Classes and subobjects
	Class hierarchy
	Inheritance paths
	Structure array fields: array paths and generalized subobjects
	Well-formed hierarchies

	Syntax of the s++ language
	Semantic elements
	Values
	Execution state

	Semantic rules
	Features unrelated to C++ multiple inheritance
	Static and non-virtual function call
	Field and array accesses, and pointer equality test
	Static cast
	Dynamic cast
	Virtual function call

	Formalization of object layout
	The object layout problem
	Impact of C++ multiple inheritance on data layout
	Non-virtual inheritance
	Dynamic type data
	Virtual inheritance

	Optimizations
	Dynamic type data sharing
	Reusing tail padding
	Empty base optimization

	Formal interface of a layout algorithm
	Soundness conditions
	Total size
	Alignment
	Data size
	Non-overlapping of data
	Dynamic type data
	Identity of subobjects

	Verification of realistic layout algorithms
	An algorithm based on the C++ Common Vendor ABI
	An optimized algorithm: CCCPP

	Application of verified object layout to a verified compiler
	Virtual tables
	The Vcm target language
	Syntax
	Memory model
	Execution state
	Semantic rules

	A compiler from s++ to Vcm
	Virtual tables
	Operations unrelated to C++ multiple inheritance
	Field and array accesses
	Pointer equality tests
	Static casts
	Dynamic casts
	Virtual function dispatch

	Correctness of the compiler
	Values
	Continuation stack
	Memory
	Invariant preservation

	Discussion
	The Coq development
	Related work
	Formalizations of C++ multiple inheritance
	Concrete object layout

	Application to other languages with inheritance
	Future work
	Extending the semantics of s++
	Covering more layout optimizations

	II Verification of C++ object construction and destruction
	The semantics of C++ construction and destruction
	Overview of the construction and destruction process
	Construction
	Destruction

	Syntax of ++
	Semantic elements
	Construction states
	Values
	Execution state
	Initial and final states

	Semantic rules
	Structured control and built-in operations
	Static and non-virtual function call
	Object-oriented features
	Construction
	Destruction

	Impact on the C++ language specification
	Virtual function calls during field destruction
	Object lifetime

	Formalization of object lifetime
	++ Run-Time invariant
	() Contextual invariants
	Stack objects and constructed stack objects
	General relations between construction states

	Progress
	RAII: Resource Acquisition is Initialization
	Increase
	Construction and destruction order of two subobjects of the same complete object
	Formal account of RAII
	Subobjects of different complete objects

	Safety of scalar field accesses
	The generalized dynamic type of a subobject
	Safety of virtual function calls
	Unicity
	Evolution

	Verified compilation of object construction and destruction
	Strategy
	Constructors and destructors
	Virtual functions during construction and destruction
	Optimizations

	Syntax of the Ds++ intermediate language
	Ds++ semantic elements
	Values
	Execution state
	Initial and final states

	Ds++ Semantic rules
	Built-in operations and structured control
	Blocks with no stack objects
	Static and non-virtual functions
	Field and array accesses; pointer comparison
	Blocks with stack objects
	Virtual function call
	Dynamic cast
	Static cast
	Special casts to bases
	Set dynamic type
	Construction paths

	A compiler from ++ to Ds++
	Compilation contexts
	Statements unrelated to construction and destruction
	Blocks with stack objects
	Constructor names
	Constructor calls
	Destructor names
	Leaving blocks
	Functions
	Constructors
	Destructors

	Correctness of the ++-to-Ds++ compiler
	Global states
	() Execution points and continuation stack frames unrelated to construction or destruction
	() Construction
	() Destruction
	Forward simulation

	The CVcm target language
	Virtual table tables
	Syntax
	Memory model
	Semantic elements
	Semantic rules

	A compiler from Ds++ to CVcm
	Construction of virtual tables
	Construction of virtual table tables
	Operations unrelated to C++ construction or destruction
	Blocks with stack objects
	Special casts to bases
	Set dynamic type
	Construction paths

	Correctness of the Ds++-to-CVcm compiler
	Values
	Continuation stack
	Memory
	Forward simulation

	Discussion
	The Coq development
	Related work
	C++ object construction and destruction
	Safety of object initialization

	Comparison with other languages
	Future work
	Extending the semantics of ++
	Compiler optimizations

	 In closing
	Conclusion and perspectives
	Assessment
	The Coq experiment
	Practical impact of our work
	Potential impacts of our work

	Future work
	Exceptions
	Templates
	Concurrency

	Final thoughts

	Architecture of the Coq development
	Small-step semantics
	Semantics of C++ Multiple Inheritance
	Object layout
	Semantics of object construction and destruction
	Verified compilation
	++ to Ds++
	Ds++ to CVcm

	Formal verification of compilers
	Program behaviours
	Semantics preservation
	Backward simulation
	Forward simulation

	Bibliography
	Index of theorems
	Index of concepts
	Index of equations
	Index of notations

