
HAL Id: tel-00769403
https://theses.hal.science/tel-00769403

Submitted on 1 Jan 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Decoupled approaches to register and software
controlled memory allocations

Boubacar Diouf

To cite this version:
Boubacar Diouf. Decoupled approaches to register and software controlled memory allocations. Other
[cs.OH]. Université Paris Sud - Paris XI, 2011. English. �NNT : 2011PA112349�. �tel-00769403�

https://theses.hal.science/tel-00769403
https://hal.archives-ouvertes.fr

Institut National de Recherche en Informatique et Automatique — Université Paris-Sud 11

Decoupled Approaches to Register and

Software-Controlled Memory

Allocations

THÈSE

présentée et soutenue publiquement le 15 Décembre 2011

pour l’obtention du

Doctorat de l’Université de Paris-Sud

Spécialité : informatique

par

M. Boubacar Diouf

Composition du jury

Président : Pr. Yannis MANOUSSAKIS

Rapporteurs : Pr. Pierre BOULET

Pr. Jingling XUE

Examinateurs : Dr. Fabrice RASTELLO

Pr. Sebastian HACK

Dr. Florent BOUCHEZ

Directeur de thèse : Pr. Albert Cohen

Université Paris-Sud, 91405 Orsay Cedex, France

ED Informatique de Paris-Sud

Mis en page avec la classe thloria.

i

Remerciements

L'heure est venue de dire merci à tous ceux qui de près ou de loin m'ont soutenu, aidé

ou encouragé durant ces années de thèse ou durant la redaction de ce manuscrit. Je suis

conscient qu'il me faudrait sans doute l'équivalent d'un autre manuscrit pour remercier

tout le monde monde et n'oublier personne. De ce fait, je tiens à remercier tous ceux dont

les noms n'apparaissent pas dans ce document et qui m'ont, ne serait ce qu'une fois, aidé

dans ma vie, même si ce fût par un petit sourire.

La première personne que je tiens à remercier est Albert Cohen, mon directeur de

thèse, pour avoir accepté de diriger cette thèse. Je tiens aussi a le remercier pour toute

la con�ance qu'il m'a accordé, sa gentillesse et ses conseils.

Mes remerciements vont conjointement et tout particulièrement à M. Pierre Boulet,

professeur à l'université Lille 1 et M. Xingling Xue, professeur à l'université de New

South Wales en Australie, qui m'ont fait l'honneur d'être les rapporteurs de cette thèse.

Le fait d'avoir des professeurs de leur qualité comme rapporteurs constitue pour moi une

motivation et une satisfaction supplémentaire.

Je voudrais également remercier doublement M. Fabrice Rastello, chargé de recherche

Ã l'ENS de Lyon, pour tous les conseils et critiques objectives qu'il m'a prodigué durant

cette thèse, mais aussi pour avoir accepté d'examiner mon rapport de thèse.

Je voudrais également remercier M. Yannis Manoussakis , professeur à l'université

Paris-Sud, M. Sebastian Hack, Professeur à l'université de Saarland et M. Florent Bouchez,

Docteur-ingénieur à Kalray, pour avoir accepté d'examiner mon rapport de thèse et de

faire partie de mon jury de thèse.

J'adresse mes remerciements les plus sincères à Taj et Arame pour les maux de tête

que je leur ai causé lors de la relecture et de la correction de mon rapport de thèse.

Je voudrais remercier l'ensemble du personnel de l'INRIA et plus particulièrement

Valèrie, Christine et Cédric pour leur apport positif lors des di�cultés administratives ou

logistiques que j'ai rencontrées.

Un grand merci à tous les membres de l'équipe Alchemy avec qui j'ai partagés des

moments inoubliables durant toutes ces années de thèse : Mounira, Taj, Mouad, Michael,

Ryiadh, So�ane, Zheng, Walid, Ramakrishna, Cédric, Luidnel, Konrad, Grigori Phillipe,

Louis Noel, Olivier et Piotr.

Je tiens aussi à remercier le club des veilleurs avec qui j'ai passé des moments sym-

patiques sur le parc club et au PCRI : Lina la veilleuse de nuit, Rania son adjointe et

Vincent le matinal.

Je remercie toute ma famille, notamment Mon père Alioune, ma mère Fatoumata et

ii

Ta Ba, mes frères Mao, Big Boss, Oussou,Moussa et Abib, ma soeur Fi�, mon cousin

Seydina et ma belle soeur Fatou Diallo, pour leur irremplaçable et inconditionnel soutien.

Il ne faudrait pas non plus que j'oublie mon voisin de colocation Mathieu, pour sa com-

préhension durant la rédaction et la préparation de la soutenance, et Zorro, pour son aide

et son assistance en vue de la préparation de ma soutenance de thèse. Votre présence m'a

permis de faire face aux di�cultés, aux doutes et aux obstacles que j'ai pu rencontré.

J'aimerais à remercier toutes les personnes qui m'ont assisté durant mes travaux de

recherche et d'écriture de cette thèse.

,

Merci à vous tous!

iii

Je dédie cette thèse

à ma mère Fatoumata Traoré,

à mon père Alioune Diouf,

à ma marraine Ta Ba,

à mes nièces et neuveux, à qui j'ai donné le surnom de : The next generation,

et à mon ami Cheikh Ada, notre voyage ensemble n'a pas duré bien longtemps. Puisse Dieu

nous unir de nouveau dans ses hauts jardins

iv

Sommaire

1 Allocation de Registres . xv

1.1 Allocation de Registres Optimale Itérée xv

1.2 Allocation de Registres Fractionnée xvi

2 Allocation de Mémoire Locale . xvi

2.1 Validation expérimentale . xvii

2.2 Etude théorique . xvii

3 Allocation par Clustering . xviii

Introduction xxi

1 Register Allocation . xxii

1.1 Spill Minimization . xxiii

1.2 Improvements of JIT Register Allocation xxiii

2 Local Memory Allocation . xxiv

2.1 Link between Register and Local Memory Allocations xxiv

2.2 The Local Memory Allocation Optimization Problem xxiv

3 Outline . xxv

3.1 Register Allocation . xxv

3.2 Local Memory Allocation . xxv

3.3 Reconciling Register and Local Memory Allocations 1

I Register Allocation 3

v

vi Sommaire

1 Register Allocation 5

1.1 Introduction . 5

1.2 Terminology . 6

1.3 Aspects of the Optimization Problem 11

1.3.1 Complexity . 11

1.3.2 Register Allocation with Fixed Scheduling 13

1.4 Graph Coloring . 13

1.5 Linear Scan . 17

1.6 Decoupled Register Allocation . 20

1.6.1 A �rst two-phase approach . 20

1.6.2 SSA-based Register Allocation 20

1.6.3 A Decoupled Linear Scan . 22

1.7 Conclusion . 23

2 Split Compilation 25

2.1 Just-In-Time Compilation . 26

2.2 Annotations-Enhanced JIT Compilers 27

2.3 Split Compilation . 28

2.4 Conclusion . 29

3 Split Register Allocation 31

3.1 Introduction . 31

3.1.1 A Case for Split Compilation 31

3.1.2 Outline of the chapter . 32

3.2 Split Register Allocation . 32

3.2.1 Optimization Problem and Baseline Algorithm 33

3.2.2 The ILP Model . 33

3.2.3 Annotation Semantics . 35

3.2.4 The O�ine Procedure . 36

3.2.5 The Online Procedure . 38

3.3 Experimental Evaluation . 39

3.3.1 Methodology . 39

3.3.2 Performance Results . 40

3.3.3 Portability Across Variations of the Register Count 42

3.4 Looking Forward . 42

vii

3.4.1 Portability of the Annotation 42

3.4.2 Separate Compilation . 44

3.5 Related Work . 45

3.6 Conclusion . 46

4 Iterated-Optimal Register Allocation 49

4.1 The Approach . 49

4.2 Experimental Evaluation . 51

4.2.1 Methodology . 51

4.2.2 Results . 52

4.3 Related Work . 53

4.4 Conclusion . 55

II Local Memory Allocation 57

5 Local Memories and Allocation Techniques 59

5.1 Introduction . 59

5.2 Static Allocation Methods . 61

5.3 Dynamic Allocation Methods . 62

5.4 Conclusion . 64

6 Motivation and Approach to Local Memory Allocation 65

6.1 Motivation . 65

6.1.1 Decoupled Allocation . 65

6.1.2 Example . 67

6.2 Our Approach to the Problem . 68

6.2.1 Preliminary Analyses and Transformations 68

6.2.2 Allocation Schemes . 70

6.3 Related Work . 71

6.4 Conclusion . 72

7 Experimental Validation 73

7.1 Allocation . 73

7.2 Assignment . 77

7.3 Experimental Results . 79

viii Sommaire

7.3.1 Setup . 80

7.3.2 Results . 80

7.4 Conclusion . 81

8 Decoupled Local Memory Allocation for Linearized Programs 83

8.1 Weighted Graph Coloring and Local Memory Allocation 83

8.1.1 Weighted Graphs . 83

8.1.2 Linearized Programs . 84

8.1.3 Two Equivalent Classes . 85

8.2 Weighted Graph Coloring . 86

8.2.1 The Ship-Building Problem . 86

8.2.2 The Submarine-Building Problem 87

8.3 Weighted Proper Interval Graph Coloring 89

8.3.1 Proper Interval Graph . 89

8.3.2 Proper Ordering . 89

8.3.3 Decoupled Submarine-Building Problem 90

8.4 Weighted Not-So-Proper Interval Graphs 92

8.5 Extension to Weighted Interval Graphs 94

8.6 Conclusion . 94

III Reconciling Register and Local Memory Allocations 97

9 The Clustering Allocator 99

9.1 The Clustering Register Allocator . 99

9.1.1 Clustering of Variables . 99

9.1.2 Allocation and Assignment . 101

9.2 The Clustering Local Memory Allocator 101

9.2.1 Clustering of Array Blocks . 102

9.2.2 Allocation and Assignment . 104

9.3 Experimental Evaluation . 105

9.3.1 Register Allocation . 105

9.3.2 Local Memory Allocation . 107

9.4 Discussions about the Algorithm . 109

9.4.1 Practicability in the context of Register Allocation 109

ix

9.4.2 Using the Clustering Allocator for Allocation only 109

9.5 Conclusion . 110

Conclusion and Perspectives 111

1 Contributions . 111

2 Perspectives . 112

List of Figures 114

List of Tables 116

Bibliography 117

x Sommaire

Abstract

Register and local memory allocation are two important optimizations performed dur-

ing compilation. The former optimization maps the variables of a program to either

machine registers or main memory locations. The latter one maps arrays to either lo-

cal memory or main memory locations. Recent work in register allocation leverages the

complexity and performance bene�ts of decoupling its allocation and assignment phases.

In this thesis, we exploit the decoupled approach to propose a split register alloca-

tor,showing that linear complexity does not imply reduced code quality in just-in-time

compilation, and to address the spill minimization problem. Considering the similarities

between the register and local memory allocation problems, we study how a decoupled

approach could be applied to the local memory allocation problem. We propose theoret-

ical basis of such an approach, validate it experimentally and reset a bridge between the

register and local memory allocation problems.

xi

Résumé

Les programmes informatiques sont souvent écrits dans des langages de haut niveau et

puis traduit en code machine, une forme dans laquelle ils pourront être exécutés par les

ordinateurs. Cette traduction est e�ectuée par un logiciel appelé, compilateur. Globale-

ment le rôle d'un compilateur est de traduire un programme source en un programme

cible sans en modi�er la sémantique; il doit aussi signaler toutes les erreurs qu'il détecte

durant le processus de traduction et essayer d'optimiser le code généré. Le programme

cible peut être traduit en code machine ou dans un autre langage de programmation. Les

optimisations e�ectuées, par le compilateur, cherchent à minimiser le temps d'execution,

et ou, la taille du programme cible.

Le temps d'exécution d'un programme dépend du nombre d'instructions à exécuter

mais aussi de la durée que prend chacune de ces instructions à s'exécuter. La durée

d'exécution d'une instruction quant à elle peut varier d'une nanoseconde à plusieurs mil-

lisecondes selon le temps pris pour accéder aux données stockées dans la mémoire.

La variance dans les temps d'accès à la mémoire est due à une limitation technologique

fondamentale: il est possible de concevoir des mémoires de petites capacités à accès

rapide, il est aussi possible de concevoir des mémoires de grandes capacités à accès lent,

mais il est impossible de concevoir des mémoires de grandes capacités à accès rapide.

Il est impossible de fabriquer une mémoire de plusieurs giga-octets accessible en une

nanoseconde, ce qui est la performance des processeurs hautes performances actuels. Pour

réduire cette di�érence de performance entre le processeur et la mémoire, les ordinateurs

modernes utilisent une hierarchie mémoire. Cela correspond à une organisation de la

mémoire en plusieurs niveaux. Les mémoires rapides et de petites capacités sont placées

à coté du processeurs, ce qui accèlére les accès, alors que celles de grandes capacités et

lentes en sont éloignées.

La �gure 1 est un exemple de hierarchie mémoire typique utilisée dans les ordinateurs

modernes. Les unités mémoires les plus proches du processeurs sont les registres (situés

dans le processeur) qui sont les plus rapides d'accès dans un ordinateur. Ensuite, nous

avons une mémoire RAM statique (SRAM) de petite capacité, souvent con�gurée en un ou

plusieurs niveaux de mémoire-cache, allant de quelques kilo-octets à plusieurs mega-octets.

La mémoire physique ou mémoire principale allant de quelques centaines de mega-octets

à plusieurs giga-octets, faite de mémoire RAM dynamique (DRAM) représente le niveau

suivant. En�n, le dernier niveau est formé par la mémoire virtuelle avec une capacité de

plusieurs gigaoctets. Lorsqu'un accès mémoire survient, l'ordinateur cherche la donnée

dans la mémoire la plus proche du processeur, et si la donnée ne s'y trouve pas, elle

xii

��������	A	B�C�DE�F����������	A	B�C�DE�F��

��CF�����	A	B�C��CF�����	A	B�C

��E��A�A������A��E��A�A������A

�F���A�A������A�F���A�A������A

�A��F�A�F�D��B�AFFB���A��F�A�F�D��B�AFFB��

���������	 �������AA	���B�C	

�B�A����������

� !����������

� !�"����#���

�!���!#�"�

$��%B�EF

$���� �	F

�&&���� &��F

#&���!&��F

 ����&��F

���F

Figure 1: La hierarchie mémoire

cherche dans le niveau supérieur et ainsi de suite.

Les mémoires SRAM sont généralement con�gurées comme des mémoires caches gérées

par le matériel. Une seconde con�guration possible est de les gérer de manière logi-

cielle. Dans le cas d'une gestion logicielle les mémoires SRAM, mémoire(s) locale(s),

le développeur ou le compilateur insère explicitement des intructions pour transfèrer les

données de la mémoire locale vers la mémoire principale. Les registres aussi, comme les

mémoires locales, sont gérés de manière logicielle. Tous les autres niveaux de la mémoire

sont gérés automatiquement.

Les registres sont les mémoires plus rapides d'accès, mais ils existent en trés petite

quantité. Généralement toutes les variables d'un programme ne peuvent pas être stokées

dans des registres. Les variables pour lesquelles il n'ya pas de registres disponibles sont

stokées dans les couches supérieures de la mémoire qui sont plus éloignées du processeur,

donc plus lentes. Pour réduire les accès à ces niveaux supérieurs, il convient donc d'utiliser

au mieux les registres de la machine. Dans les compilateurs actuels, ce rôle est dédié à

une optimisation appelée: allocation de registres. L'allocateur de registres attribue à

chacune des variables du programme, soit un registre, soit un emplacement en mémoire.

L'allocation de registres se décompose en deux étapes: l'allocation qui détermine à chaque

xiii

point du programme l'ensemble des variables (variables allouées) qui seront stockées en

registres et l'assignation qui choisit un registre spéci�que pour chaque variable allouée.

De même que pour les registres, Il est important d'optimiser l'utilisation de la mémoire

locale pour éviter d'accéder aux niveaux supérieurs de la mémoire, qui sont plus lents.

Dans les compilateurs, l'optimisation en charge de la gestion de la mémoire locale est ap-

pelée allocation de mémoire locale. L'allocateur de mémoire locale selectionne l'ensemble

des variables qui seront stockées dans la mémoire locale à chaque point du programme.

Il choisit aussi pour chaque variable l'emplacement spéci�que qu'il va occuper, soit en

mémoire locale, soit en mémoire principale.

L'allocation de registres et l'allocation de mémoire locale sont deux problèmes qui sont

NP-complets auxquels nous nous intéréssons dans cette thèse, qui est structurée en trois

parties.

Dans la première partie de la thèse, nous nous penchons sur le problème de l'allocation

de registres. Tout d'abord, nous proposons dans le contexte des compilateurs-juste-à-

temps, une allocation de registres fractionnées, appelée split register allocation. Avec cette

approche l'allocation de registres est e�ectuée en deux étapes: une faite durant la phase

de compilation statique et l'autre pendant la phase de compilation dynamique. Ce qui

permet de réduire le temps d'exécution des programmes avec un impact négligeable sur le

temps de compilation. Ensuite Nous introduisons une allocation de registres incrémentale

qui permet de résoudre d'une manière quasi-optimale le problème d'allocation. Cette

méthode est pseudo-polynomiale alors que le problème d'allocation est NP- complet même

à l'intérieur d'un �basic block�.

Dans la deuxième partie de la thèse nous nous intéressons au problème de l'allocation

de mémoire locale. Au vu des dernières avancées dans le domaine de l'allocation de reg-

istres, nous étudions dans quelle mesure le problème d'allocation pourrait être séparé de

celui de l'assignation dans le contexte des mémoires locales. Dans un premier temps nous

validons expérimentalement que les problèmes d'allocation et d'assignation peuvent être

résolus séparément. Ensuite, nous procédons à une étude plus théorique d'une approche

découplée de l'allocation de mémoire locale. Cela permet d'introduire de nouveaux ré-

sultats sur le �submarine-building problem�, une variante du �ship-building problem�, que

nous avons dé�ni. L'un de ces résultats met en évidence pour la première fois une dif-

férence de complexité (P vs. NP-complet) entre les graphes d'intervalles et les graphes

d'intervalles unitaires.

Dans la troisième partie de la thèse nous proposons une nouvelle heuristique, ap-

pelée �clustering allocator� fondée sur la construction de sous-graphes stables d'un graphe

d'interférence, permettant de découpler aussi bien le problème d'allocation pour les reg-

xiv

istres que pour les mémoires locales. Cette nouvelle heuristique se veut le pont qui per-

mettra de réconcilier les problèmes d'allocations de registres et de mémoire locale.

1 Allocation de Registres

L'allocation de registres est un problème NP-complet. En e�et, Chaitin et al. ont montré

que le problème de l'existence d'une allocation sans spills (sill-free) est équivalent au

problème de la coloration de graphe [CAC+81]. En plus, le problème de l'allocation de

registres ne se limite pas uniquement au problème du �spill-free�; si la réponse au problème

du �spill-free� est non, alors le but de l'allocation de registres est aussi de réduire l'impact

des variables spillées sur le temps d'exécution du programme. Ce problème est connu

sous le nom de, minimisation des coûts de spills ou minimisation de spills. Plusieurs

heuristiques et techniques d'approximation au problème d'allocation de registres ont été

proposé dans la litterature [CAC+81, BCT94, PS99, THS98, HGG06, PP08].

Dans cette première partie, nous proposons deux nouvelles techniques à savoir l'allocation

de registres fractionnées, qui cherche à améliorer l'allocation de registres dans le con-

texte de la compilation juste-à-temps (JIT) et l'allocation de registres optimale itérée qui

s'attaque au problème de la spill minimization.

1.1 Allocation de Registres Optimale Itérée

Les travaux en allocation de registres ont montré que lorsque les live ranges des variables

sont assez �nement découpés alors le problème de l'assignation devient quadratique dés

lors qu'une allocation est possible. Il su�t juste que le nombre maximal de variable en vie

en un point du programme soit inférieur au nombre de registres disponibles. Cependant le

problème de la minimisation de spills demeure NP-complet même à l'intérieur d'un basic

block [FCL00]. Les solutions proposées pour la résolution sont loin d'être optimales. Ce

problème est d'autant plus important sur les machines CISC, où le nombre de registres

est trés limité.

Nous nous sommes attaqués au problème de la minimisation de spills. Notre approche,

appelée allocation de registres optimale itérée, permet de résoudre le problème d'allocation

de manière quasi-optimale et ceci rapidement. Notre solution peut être utilisée dans

un contexte découplé ou non. Nous avons comparé notre approche avec la coloration

de graphe, le �linear scan�, une nouvelle heuristique que nous avons conçu et appelé

heuristique mixte et une allocation de registres optimale par programmation linéaire. Les

résultats montrent que L'allocation de registres optimale itérée est souvent proche de

xv

l'allocation de registres optimale et produit de bien meilleurs résultats que les autres

heuristiques. Un résultat trés intéréssant de notre approche est que, pour les programmes

sous SSA, nous avons une garantie de pseudo-polynomialité.

1.2 Allocation de Registres Fractionnée

Dans le contexte de la compilation JIT, la compilation fait partie du processus global

d'exécution des programmes. Ceci implique un compromis entre le temps de compila-

tion, donc des optimisations et celui du temps d'exécution du code généré. En pratique,

l'utilisation d'algorithmes de compléxité linéaire reste la régle pour la compilation JIT.

Notre approche de l'allocation de registres fractionnée montre qu'une compléxité linéaire

n'implique pas forcément une réduction de la qualité du code généré. Notre approche est

un exemple de compilation fractionnée, ou les analyses couteûses sont e�ectuées en avance

pour guider des optimisations quasi-linéaires. Les informations collectées dans la phase

hors-ligne de compilation statique, sont transmises à la phase en ligne, de compilation

juste-à-temps, au moyen d'annotations de bytecode.

Notre allocateur de registres fractionnée garantie quatre propriétés: des annotations

avec un impact minimal sur la taille du code, un traitement des annotations en temps

linéaire, une perte minimale en qualité de code et la portabilité des annotations lorsque le

nombre de registres disponibles varient. Nous avons implanté notre technique d'allocation

de registres fractionnée dans JIkesRVM, la machine virtuelle de recherche d'IBM.

2 Allocation de Mémoire Locale

Dans la majorité des systèmes embarqués, les mémoires locales sont préférées au caches,

du fait des garanties qu'elles o�rent en prédictibilité, en adaptabilité (passage à l'échelle),

en e�cience énergétique, en rapidité d'accès aux données et du faible espace occupé sur la

puce [BSL+02]. La predictibilité et une bonne consommation d'energie sont souvent es-

sentielles aux applications temps réél et embarqués. D'autres processeurs plus spécialisés,

tels que les �stream-processors et les processeurs graphiques, utilisent aussi les mémoires

locales [NVI08, BPMR03].

Pour bien exploiter tout le potentiel des mémoires locales, il est essentiel de les utiliser

de manière e�ciente. Dans les compilateurs, cette tâche est à la charge d'une optimi-

sation appelée allocation de mémoire locale. L'allocateur de mémoire locale selectionne

l'ensemble des variables qui seront stockées dans la mémoire locale à chaque point du pro-

gramme. Il choisit aussi pour chaque variable l'emplacement spéci�que qu'il va occuper,

xvi

soit en mémoire locale, soit en mémoire principale.

L'allocation de mémoire locale est un problème NP-complet [VWM04]. Les travaux

précédants ont porté sur di�érents angles, ciblant aussi bien une allocation du code et

des données du programme. Plusieurs heuristiques ont été proposées à la résolution du

problème d'allocation de mémoire locale. [MFA01, VWM04, UDB06, LFX09, LXK11].

L'allocation de mémoire locale est connectée à l'allocation de registres depuis au moins

30 ans. En e�et, dans son papier phare [Fab79], Fabri a démontré l'existence de liens forts

entre les allocations de registres et de mémoire locale. Ces liens ont été sous-exploités

depuis lors et par conséquant, les nouvelles avancées, réformant le design des �backend� des

compilateurs, dans le domaine de l'allocation de registres ont été complétement ignorées

en allocation de mémoire locale. Notre travail sur l'allocation de registres a été motivé

par les récéntes avancées en allocation de registres et par la volonté de mieux comprendre

le probléme d'optimisation.

2.1 Validation expérimentale

Pour valider notre intuition d'une approche découplée de l'allocation de mémoire lo-

cale, similairement à l'approche découplée en allocation de registres, nous avons exprimé

l'allocation des tableaux en programmation linéaire pour résoudre le problème optimale-

ment (en minimisant le coût des latences d'accès) en utilisant MaxSize comme critère.

MaxSize est la taille maximale occupé par les tableaux en vie au même moment. Une fois

le problème d'allocation résolu, la phase d'assignation se charge d'assigner aux tableaux

alloués des emplacements dans la mémoire locale. Cependant, due à la possible fragmen-

tation que la phase d'assignation peut entrainer, une solution du probléme d'allocation ne

garantie pas forcément une solution au problème d'assignation. Néanmoins, nous avons

expérimentalement montré, sur une série de benchmarks, que dés lors que le problème

d'allocation admettait une solution alors le problème d'assignation aussi en admettait

une sans spills supplémentaires.

2.2 Etude théorique

Aprés avoir expérimentalement validé une approche découplée de l'allocation de registres,

nous avons pris une approche plus théorique qui a aboutit à des résultats fondamentaux

dans le domaine de la gestion des mémoires locales par les compilateurs. Nous avons

montré que la gestion des mémoires locales peut se modéliser comme un problème de

coloration de graphes pondérés et nous avons étudié plusieurs variantes de ce problème.

Ce qui a mené aux contributions suivantes:

xvii

1. L'introduction d'une nouvelle forme de coloration par intervalle que nous avons

appelé �submarine-building�.

2. Un nouvel algorithme linéaire et optimal résolvant le problème du �submarine-

building� pour tout graphe d'intervalle propre et une preuve de NP-complétude

de ce problème pour les graphes d'intervalle.

3. L'introduction d'un critère permettant de décider de la faisabilité ou non d'un prob-

lème de �submarine-building� sur les graphes d'intervalle propre. Lorsque le critère

est satisfait, l'algorithme linéaire et optimal de résolution des problèmes �submarine-

building� permet de résoudre le ship-building problème pour les graphes d'intervalle

propre.

4. Nous exhibons pour la première fois un problème NP-complet pour les graphes

d'intervalle et polynomial pour les graphes d'intervalle propre (qui sont équivalents

aux graphes d'intervalle unitaire).

Les évaluations e�ectuées ont montré que l'approximation des graphes d'intervalle par des

graphes d'intervalle propre ne fournit pas de très bons résultats. Ces résultats décevants

nous ont poussé à la conception d'une nouvelle méthode heuristique de résolution du

problème de la gestion des mémoire locale.

3 Allocation par Clustering

Notre étude théorique d'une approche découplée de l'allocation de mémoire locale a

aboutit à des résultats encourageants. Cependant cette approche n'est pas encore as-

sez mature pour qu'on puisse l'utiliser dans la pratique. De ce fait nous avons considéré

une méthode heuristique que nous avons appelée, clustering allocator. Cette approche,

bien qu'elle ait été conçue pour l'allocation de mémoire locale, fournit de trés bons résul-

tats en allocation de registres. Donc après plusieurs année de séparation, le �clustering

allocator� semble rétablir un pont entre les problèmes d'allocations de mémoire locale et

de registres.

Le �clustering allocator� decouple les problème d'allocation et d'assignation et cherche

à minimiser le coût de l'allocation par la construction de sous-graphes stables d'un graphe

d'interférence. Durant la phase d'allocation, notre algorithme regroupe les variables par

�clusters� qui seront alloués, ou spillés globalement.

Pour les problèmes d'allocation de registres, le �clustering allocator fournit des résultats

presques optimaux et est beaucoup plus performant que les autres heuristiques

xviii

Pour les problèmes d'allocation de mèmoire locale, sur des graphes générés de manière

aléatoire, nous obtenons de meilleurs résultats que l'algorithme du best-�t sur des graphes

de densité moyenne à forte.

xix

xx

Introduction

Programs running on computers are often written in high-level programming languages

and then translated into an executable code, a form in which they can be executed by these

computers. This translation is done by a software program, called a compiler. Globally,

the role of a compiler is to translate a source program into a target program without

changing the semantics of the source code; it must also report any errors that it detects

during the translation and try to optimize the generated target code. The target program

can be an executable code or a program written in another programming language. The

optimizations, done by a compiler, try to minimize the execution time, and or, the size of

the target program.

When a programmer compiles a program from a source language to an executable code,

he wants the compiled one to conserve the source code's semantics. He also wants the code

to run in an acceptable time. The execution time depends on the number of instructions to

compute, and also on the computation time of each of these instructions. The computation

time of an instruction can vary signi�cantly, from nanoseconds to milliseconds, depending

on the time taken to access data in memory.

The variance in memory access times is due to technological limitations: we can make

small storage with fast access-time, we also can make large storage with slow access-time,

but we cannot make large storage with fast access-time. It is impossible to make gigabytes

of memory to be accessed in a nanosecond, the speed of high-performance processors. To

reduce this performance gap between the processor and the memory, modern computers

use a memory hierarchy. It corresponds to an organization of the memory into di�erent

levels of hierarchy. The faster and smaller levels of memory are placed closer to the

processor, this speeds up access, and the slower and larger ones are placed farther from

the processor.

Figure 1, taken from the �Dragon Book� [ALSU06], shows an example of a typical

memory hierarchy in a modern computer. The closest memory level to the processor is

composed of a few registers (located in the processor) that are accessed faster than any

other kind of memory. Then, we have a small amount of on-chip static RAM (SRAM),

xxi

xxii Introduction

usually con�gured as one or many levels of hardware-managed cache, going from some

kilobytes to many megabytes in size. The next level is the physical (main) memory,

made of dynamic RAM (DRAM), going from hundreds of megabytes to many gigabytes.

Finally, the last level in the hierarchy is the virtual memory with a size of many gigabytes.

When a memory access occurs, the computer tries to �nd the data in the closest memory,

and then if the data is not there, it tries in the higher level, and so on.

��������	A	B�C�DE�F����������	A	B�C�DE�F��

��CF�����	A	B�C��CF�����	A	B�C

��E��A�A������A��E��A�A������A

�F���A�A������A�F���A�A������A

�A��F�A�F�D��B�AFFB���A��F�A�F�D��B�AFFB��

���������	 �������AA	���B�C	

�B�A����������

� !����������

� !�"����#���

�!���!#�"�

$��%B�EF

$���� �	F

�&&���� &��F

#&���!&��F

 ����&��F

���F

Figure 1: A typical memory hierarchy con�guration, from the Dragon book [ALSU06]

The alternative approach to manage the SRAM is to con�gure it as a software-

controlled local memory. In such an approach, the developer or the compiler must insert

explicit instructions to transfer data between the local memory and the main memory.

Like software-controlled local memories, registers also are managed by software. All the

other levels of memory are managed automatically.

1 Register Allocation

Registers are the fastest type of memory within a computer. Registers are quickly ac-

cessed, but they exist in a very limited number. Usually, all the values of the executed

code cannot reside in registers. The values not held in registers should reside in memory,

1. Register Allocation xxiii

which is farther from the processor and therefore slower to access. To reduce access to

slower memory, it is essential to have an e�cient usage of registers.

In all modern compilers, there is a phase called register allocation which optimizes

the use of registers. The register allocator, in a phase called allocation, decides at each

program point which variables will be held in registers (allocated variables) and which

variables will be stored in memory; it also assigns each allocated variable to a register and

maps to other variables a location in memory.

The register allocation is NP-complete. Indeed, Chaitin et al. have shown that the

spill-free problem is equivalent to the graph coloring problem [CAC+81]. Moreover,

register allocation is not bound to the spill-free problem; if the answer to the spill-

free problem is no, the goal of register allocation is also to reduce the impact of the

spilled variables on the execution time of the program (spill cost minimization). Many

heuristics and approximation techniques have been proposed to solve register allocation

[CAC+81, BCT94, PS99, THS98, HGG06, PP08].

In this thesis we are interested in two topics: the spill minimization problem and the

improvement of the register allocation in the context of Just-in-time (JIT) compilation.

1.1 Spill Minimization

Recent works in register allocation have shown that when enough live range splitting is

allowed, the assignment problem can be solved in quadratic time as soon as the maximum

number of simultaneously living variables is lower than the number of available registers.

But unfortunately, the spill minimization problem (an allocation that minimizes the access

latency) is still NP-complete even when enough live range splitting is allowed [FCL00].

The proposed solutions are far from being optimal. Thus, our aim is to propose good

heuristics to solve this problem especially on systems like CISC machines where only few

registers are available.

1.2 Improvements of JIT Register Allocation

In the context of Just-in-time compilation, the compilation time is part of the global

execution process. This implies a trade-o� between the time spent for compilation (op-

timizations) and the execution time of the produced code. In practice, (quasi-)linear

complexity is the rule for JIT compilation. This severely impacts the aggressiveness of

optimizations, like register allocation. We are interested in solutions that improve register

allocation without lengthening the JIT compilation.

xxiv Introduction

2 Local Memory Allocation

In most embedded systems, local memories are often preferred to caches due to their better

performance and predictability, their power e�ciency, and their smaller area cost [BSL+02].

Predictability of data access and power consumption e�ciency are often essential to real-

time and embedded applications. More specialized processors also utilize local memories,

including stream-processing architectures such as graphical processors (GPUs) and net-

work processors [NVI08, BPMR03].

To take advantage of all the potentials provided by local memories, it is essential to use

them e�ciently. Within a compiler, the optimization which performs this task is called

local memory allocation. It selects the set of variables that will reside in the local memory

at each point of the program. It also �nds the speci�ed place in the local memory or in

the main memory where a variable will reside in.

The local memory allocation problem is NP-complete [VWM04]. Previous studies

addressed local memory allocation from di�erent angles, targeting both application/code

and data. Many heuristics-based approaches to the problem have been proposed [MFA01,

VWM04, UDB06, LFX09, LXK11].

Our work on local memory allocation is motivated by the recent advances in register

allocation and the desire for a better understanding of the local memory optimization

problem.

2.1 Link between Register and Local Memory Allocations

Compilation-time local memory allocation has been connected to register allocation for at

least 30 years. Indeed, in her seminal paper [Fab79], Fabri reported strong links between

register allocation and local memory allocation. This have been overlooked until very

recently. As a result, the series of, fundamental and applied advances impacting the

design of compiler backends have also been ignored in the �eld of local memory allocation

[AG01, BDGR06a, HGG06, BDR07c, PP08].

2.2 The Local Memory Allocation Optimization Problem

While there exist many heuristics to the local memory allocation problem, theoretical

foundations of the proposed heuristics are missing. More recently, Li et al. [LXK11]

seriously improved the state of the art by proposing an approach to the problem, that

has strong theoretical foundations. Nonetheless, little is known about the optimization

problem, its complexity, and its interplay with other optimizations.

3. Outline xxv

3 Outline

This dissertation is divided into three parts. The �rst part is devoted to register allocation,

the second one tries to see in which context the fundamental advances in register allocation

could be extended to local memory allocation, and the third one aims to rebuild a bridge

between the domains of register and local memory allocations.

3.1 Register Allocation

In Chapter 1, we present the state of the art in register allocation. We introduce the

terminology and the essential notions needed to understand register allocation. We de-

scribe the graph coloring and the linear scan approaches to register allocation and we

show how separating the allocation phase from the assignment helps to ease and improve

the register allocation.

In Chapter 2, we recall the approaches used to process programming languages: static

compilation, interpretation, and JIT-compilation. We also introduce split compilation

and show how it improves the quality of the code generated by JIT compilers.

In Chapter 3, we introduce the split register allocation which leverages the decoupled

approach to improve register allocation in the context of JIT compilation. We experimen-

tally validate the e�ectiveness of split register allocation and its portability with respect

to register count variations, relying on annotations whose impact on the bytecode size is

negligible.

Chapter 4 introduces a new decoupled approach, called iterated-optimal allocation, to

register allocation. The iterated-optimal allocation algorithm achieves results close to op-

timal while o�ering pseudo-polynomial guarantees for SSA programs and fast allocations

on general programs.

3.2 Local Memory Allocation

Chapter 5 sets the state of the art in local memory allocation. We introduce in this

chapter static and dynamic methods for local memory allocation.

In Chapter 6, we explain the motivation of our work on local memory allocation. We

also expose our approach to the problem, the preliminary assumptions we have made and

our methodology to evaluate and compare our work.

Chapter 7 validates our intuition for decoupled approach to local memory allocation.

It shows experimentally that after an optimal allocation phase relying on a generic and

scalable integer linear program, the assignment phase could be achieved without any

3. Outline 1

fragmentation-induced spills.

In Chapter 8, reinforced by results of Chapter 7, we study the local memory allo-

cation in a more theoretical way setting the junction between local memory allocation

for linearized programs and weighted interval graph coloring. We design and analyze

a new variant of the ship-building problem called the submarine-building problem. We

show that this problem is NP-complete on interval graphs, while it is solvable in linear

time for proper interval graphs. We also give a criterion to guarantee the feasibility of

the submarine-building problems for proper interval graphs and then we extend it to an

extension of the class of proper interval graphs interval graphs. Our results show that

while our approach represents an improvement over state of the art methods, it is limited

so far in its practical application.

3.3 Reconciling Register and Local Memory Allocations

In Chapter 9, we propose a heuristic-based solution, the clustering allocator, which decou-

ples the local memory allocation problem and aims to minimize the allocation cost. The

clustering allocator while devised for local memory allocation, appears to be a very good

solution to the register allocation problem. For register allocation, the results show that

the clustering allocator outperforms both graph coloring and linear scan and is often close

to the optimal solution. For local memory allocation the results are not as good as those

for register allocation, but we do believe that the clustering allocator can be improved.

2 Introduction

Part I

Register Allocation

3

Chapter 1

Register Allocation

1.1 Introduction

When a programmer compiles a program from a source language to an executable code, he

wants the compiled one to conserve the source code's semantics. He also wants the code to

run in an acceptable time. The execution time depends on the number of instructions to

compute, and also on the computation time of each of these instructions. The computation

time of an instruction can vary signi�cantly, from nanoseconds to milliseconds, depending

on the time taken to access data in memory.

In a modern computer, it does not take more than one cycle of the CPU clock to read

or write data into a register, while reading the data, from the cache or the main memory,

is an order of magnitude slower. Registers are quickly accessed, but they exist in a very

limited number. A 32-bit x86 architecture has only 8 general-purpose registers, ARM and

PowerPC processors typically have 32 registers. Usually, all the values of the executed

code cannot reside in registers. The values not held in registers should reside in memory.

To reduce accesses to higher levels of memory it is essential to have an e�cient usage of

registers. Registers are software managed whereas all the other levels of the hierarchy are

managed automatically. The management of the registers is done by the programmer,

the application, or the compiler.

In all modern compilers, there is a phase called register allocation which optimizes the

use of registers. The register allocation is usually one of the last phases of the compilation.

It happens when all the candidate variables to register allocation are known. These

candidate variables are composed of the variables already present in the source code and of

the temporaries generated during preceding phases of compilation. The register allocation

is de�ned [ALSU06] as the problem which is often subdivided into two sub-problems:

5

6 Chapter 1. Register Allocation

1. the allocation which selects the set of variables that will reside in registers at each

point of the program.

2. the assignment which picks the speci�ed register where a variable will reside in.

The variables mapped to registers are called allocated variables and the rest, stored in

memory, are called spilled variables.

������

������

�������	��

A������B��

CCC�

D�������

D��������

D�����D��	�D�

DE����D��F�D��

CCC

(a) Before register allocation (b) After register allocation

Figure 1.1: An example of register allocation

Figure 1.1 (b) gives an example of register allocation for the code shown in Figure 1.1

(a). Assuming that three registers, r1, r2 and r3 are available, the variables a, b and c

are assigned respectively to registers r1, r2, and r3.

In this chapter, we intend to present the state of the art in register allocation. Section

1.2 introduces the terms and notions necessary to understand register allocation. Section

1.3 presents some aspects of the register allocation problem, with a sub-section on its

complexity. Then, Sections 1.4 and 1.5 present respectively graph coloring and linear

scan as two approaches to register allocation; the former is the dominant approach, and

the latter is an alternative mostly implemented in just-in-time compilers. Finally, Section

1.6 presents a new approach to register allocation which decouples its allocation and

assignment phases.

1.2 Terminology

We set here the meaning of some terms and notions needed or used in register allocation.

Basic Block. A basic block is a maximal sequence of instructions with the following

properties:

• it has a unique entry point as its �rst instruction. Any instruction within the basic

block but this entry point cannot be a destination of a jump instruction.

1.2. Terminology 7

• it has a unique exit point as its last instruction, meaning that no instruction but

the last one can cause to leave the block.

Within a basic block, when the �rst instruction is executed all the other instructions of

the basic block are executed.

Figure 1.2(b) shows an example of four basic blocks: BB1, BB2, BB3 and BB4.

Control-�ow graph. A control-�ow graph is an intermediate representation describing

all the possible sequencing of instructions that may occur during the execution of the

program. It is a directed graph where each node is a basic block. There is an edge from

the basic block B to the basic block C, if the �rst instruction of C can follow immediately

the last instruction of B. B is called a predecessor of C and C is called a successor of

B. A control-�ow graph must have a unique entry point and a unique exit point. That is

why often an entry block and an exit block are added to the control-�ow graph.

�� ����������

�� 	������A��

B� �������C��

D� EF�������

�� ����������

�� 	������A��

B� �������C��

D� EF�������

�� �������A��

�� �����	����

�� �������C��

�� �������A��

�� �����	����

�� �������C��

��� F�����

��� �����F���F

��� �������C�F

��� F�����

��� �����F���F

��� �������C�F

��� �������A��
��� �������A��

��
�

��
�

��
�

��
�

����������

����������

�������	��

AB�C��D�EF�

����������

����������

����������

����

B�����

�����B���B

���������B

��������E

(a) Program example (b) CFG

Figure 1.2: The control-�ow graph of an example program.

Figure 1.2(b) shows the control-�ow graph of the portion of code given in Figure 1.2(a).

Dominators. A node d of a control-�ow graph dominates a node n if every path of

directed edges from s0, the entry point, to n must go through d [AP02]. Every node

dominates itself. An immediate dominator idom(n) of n is a basic block that dominates

8 Chapter 1. Register Allocation

n and that is also dominated by any other basic block d that dominates n. A basic block

cannot be its own immediate dominator. The graph containing every node of the control-

�ow graph, and for every node n and edge from idom(n) to n is called the dominator tree.

It is a tree because each node has exactly one immediate dominator.

Liveness. We say that a variable v is de�ned by an instruction if it is a result of that

instruction. We also say that it is used by an instruction if it is read by that instruction.

Notice that a variable can be de�ned and used by the same instruction. For instance, the

variable b in Figure 1.2(b) is de�ned by the �rst instruction. The variable d is re-de�ned

and used by the instruction number 7. A variable v is said to be live at the point p if there

exists a path in the control-�ow graph from p to the exit point where v is used without

being re-de�ned.

Live range. The live range of a variable v is the list of program points where it is live.

Figure 1.3 shows the live ranges of the variables of the example program given in Figure

1.2(a). The variable a is supposed to be live in, which means it is live at the beginning

of the basic block, it stays live until it is read, by the instruction 6 if the left branch is

taken, and the instruction 8 if the right branch is taken. By abuse of terminology in this

dissertation, as it is common in the literature, we sometimes use the term live range to

designate the variable it refers to.

Interference. Two variables interfere if the intersection of their live ranges is non-

empty. Two interfering variables cannot share the same register because this will cause

one of them to overwrite the content of the other. The variables a and b interfere because

their live ranges represented in Figure 1.3 intersect, whereas the variables d and f do not.

Spilling. An essential notion to register allocation is spilling. It is frequent that the

number of available registers in an architecture cannot map all the variables of a program.

Therefore, it is sometimes necessary to have some variables that remain in the memory.

We say that these variables are spilled. In certain architectures, e.g., RISC architecture,

memory can only be accessed through load and store instructions. This means that to

use a variable v at address a, we need to load the value at address a (which is the value

of v) into a register and then use this register as an operand. Thus, even if a variable is

spilled, it must be loaded into a register from memory before each of its use, and stored

from a register after each of its de�nition, and the added instructions are called spill

code. In architectures like x86, an instruction's operand can be directly accessed from

1.2. Terminology 9

�� ����������

�� 	������A��

B� �������C��

D� EF�������

�� ����������

�� 	������A��

B� �������C��

D� EF�������

�� �������A��

�� �����	����

�� �������C��

�� �������A��

�� �����	����

�� �������C��

��� F�����

��� �����F���F

��� �������C�F

��� F�����

��� �����F���F

��� �������C�F

��� �������A��
��� �������A��

�

�

�

�

�

�

�

�

��
�

��� ���

���

Figure 1.3: The variables's live ranges in Figure 1.2(a).

memory. It means that to manipulate a variable v at address a in the memory, we can

use a as an operand to directly use or de�ne v. Such a kind of operand is called a memory

operand. But even for these architectures, some restrictions may exist, for instance on

IA-32 architectures, move instructions cannot have more than one memory operand.

Coalescing. Two variables related by a copy instruction and which do not interfere can

be assigned to the same register. That is, the copy instruction becomes useless and can be

safely removed. We say that these two variables are coalesced. A good register allocator

will also strive as most as possible to coalesce variables that can be coalesced, because it

will improve the quality of the generated code. For illustration, the variables a and f in

Figure 1.3 should be coalesced, by looking at instruction 8.

Live range splitting. A variable v live at two di�erent instructions i1 and i2 can be

split into two separate variables renamed v1 live at instruction i1 and v2 live i2. To avoid

changing the semantics of the program, sometimes it is necessary to join instructions v1
and v2, with a copy instruction from v1 to v2. This process of splitting the variable v

is called live range splitting. The live range of a variable v can be very long and can

have a non-empty intersection with many other variables's live ranges. Splitting the live

range of such kind of variables tends to reduce the interference between variables and thus

10 Chapter 1. Register Allocation

minimizes the number of registers required by a program.

Static Single-Assignment (SSA) Form. The SSA form is an intermediate represen-

tation in which each variable has only one de�nition in the program text [AP02, CFR+91,

RWZ88]. The SSA form facilitates many other optimizations like constant propagation,

dead code elimination, and register allocation, as we will see later. In straight line code

(e.g. in a basic block), which is a code without control-�ow, each de�nition of a variable

v is given a new name such as (v1, v2, . . .), and each use of a variable v is renamed to

the most recently de�ned version of the variable. In programs with control-�ows, With

two control-�ow paths merging together, a special form of variable's de�nition called

φ-function, is inserted.

�� �
�
�����

�
����

�

	� A
�
�����

�
�B��

�

C� �
�
�����

�
�D��

�

E� F���
�
�����

�� �
�
�����

�
����

�

	� A
�
�����

�
�B��

�

C� �
�
�����

�
�D��

�

E� F���
�
�����

�� �
�
�����

�
�B��

�� �
�
����A

�
����

�

�� �
	
�����

�
�D��

�

�� �
�
�����

�
�B��

�� �
�
����A

�
����

�

�� �
	
�����

�
�D��

�

��� �
�
�����

�

��� �
	
�����

�
����

�

��� �
C
�����

	
�D��

�

��� �
�
�����

�

��� �
	
�����

�
����

�

��� �
C
�����

	
�D��

�

��� �
E
�������

	
B�

C
�

�	� �
�
�����

E
�B��

��� �
E
�������

	
B�

C
�

�	� �
�
�����

E
�B��

��
�

��
�

��
�

��
�

Figure 1.4: The program in 1.2(a) in SSA form.

In Figure 1.4, a φ-function is inserted at the beginning of the basic block BB4. The

variable d2 and d3 used as the operands of the φ-function indicate which de�nitions of

d reach the join node. Subsequent uses of the variable d are replaced with uses of the

variable d4. The φ-functions do not correspond to hardware instructions and after the

optimizations have been done upon it, a program in SSA form must be translated into an

executable representation without φ-functions.

1.3. Aspects of the Optimization Problem 11

1.3 Aspects of the Optimization Problem

The scope of register allocation can be local, global, or interprocedural. It is local when

it is restricted to a basic block, global when it is performed over a procedure or a method,

and interprocedural when it is performed across multiple procedures. Register allocation

has been performed since the �rst compiler for FORTRAN. It has been widely studied

and shown to be NP-complete. It has also been shown to have strong interactions with

the instruction scheduling optimization.

Depending on the trade-o� between the di�culty of the register allocation problem

and the quality of the solution of the problem (memory-access-latency minimization). We

can identify at least three types of problems that can be considered:

Spill everywhere. It corresponds to the coarser grain of the register allocation problem,

where the live range of each variable is viewed as an atom [PS99], there is no live

range splitting. In this context, a variable cannot be spilled at some part of the

code and allocated at some other part: it is spilled everywhere. This approach does

not give best results but it is simple and when compile time is in concern like in JIT

compilers, it can be well suited.

Register allocation with live range splitting. This approach is �ner than the �rst

one. The live range of a variable can be split at some points, for instance, at points

where variables are rede�ned or spilled (to avoid loosing previous assignment). In

this context, a variable can be assigned to a register r1 sometimes and spilled or

allocated to another register r2 at a di�erent moment. This second approach is

harder but superior to the �rst one and SSA-based techniques and recent work on

register allocation focus on it[THS98, HGG06, BDR07a].

Load-store optimization. The third approach of the �nest granularity. The goal is to

optimize each load and store separately in order to minimize the memory access time.

In this context, the variables's live ranges can be split between every two instructions

that can be consecutive [AG01]. This approach gives much better results than the

two preceding level of granularity, but it is also harder to solve.

1.3.1 Complexity

Register allocation is a NP-hard problem. Indeed, Chaitin et al. have shown that the

spill-free problem is equivalent to the graph coloring problem [CAC+81]. Moreover, regis-

ter allocation is not only bounded to the spill-free problem; if the answer to the spill-free

12 Chapter 1. Register Allocation

problem is no, the goal of register allocation is also to reduce the impact of the spilled

variables on the execution time of the program (spill minimization). In addition to this,

register allocation usually removes useless copy instructions in order to minimize the exe-

cution time of the program (coalescing problem). Register allocation also needs to handle

some irregularities in the underlying architecture, like register aliasing and variable's

pre-coloring.

Spill-free problem. Given k available registers and n variables that are candidates to

register allocation, the spill-free problem answers the question of whether or not it is pos-

sible to assign the n variables to registers without any spilling. For general programs, this

problem is equivalent to the graph coloring problem and is hence NP-complete [CAC+81].

Spill-cost (or spill) minimization problem. When all or part of a variable v in a

program is spilled, it may impact on the execution time of the program because of the

spill code insertion. If we assume that a store has a cost and a load has a cost too, then

it is possible to compute the cost of the spilled variables. The spill minimization is the

problem of minimizing the cost of the spilled variables for a register allocation problem.

This problem becomes NP-complete even for local register allocation as soon as stores

have positive cost [FCL00, LFCK99].

Coalescing problem. The coalescing reduces the cost of move instructions between

variables that do not interfere. The problem of looking for an allocation of minimal cost

(where each pair of coalescable variables has been assigned a cost) is NP-complete [BDR07b].

Aliasing problem. When an assignment to a register name can a�ect the content of

another register name, such register names are said to alias. As shown in Figure 1.5, in

the IA-32 architecture, the two lower bytes of the 32-bit general-purpose registers EAX

and EBX can be referenced with names AX and BX. The �rst byte of AX and BX can be

respectively referenced with AH and BL (high bytes) and their last bytes can be referenced

with AL and BL (low bytes). In this example the register names EAX and AX, EAX

and AH, or AX and AL alias. Lee et al. [LPP08] show that aliased register allocation

is NP-complete even for straight-line programs, which are very simple programs without

control-�ows.

Pre-coloring problem. We say that a variable is pre-colored if it must be assigned

to a register due to some architectural constraints. For instance, in many architectures,

1.4. Graph Coloring 13

�� �� �� �� �

�	
�	

�A
�A

�B

C�B

�� �� �� �� �

D	
D	

DA
DA

DB

CDB

Figure 1.5: An example of aliasing registers's names

registers are used to pass parameters during function and procedure calls. Such kind

of conventions force the �rst k arguments of the called function to be assigned to the

k registers reserved for that purpose. Register allocation with pre-colored variables is

equivalent to the coloring extension problem. Biro et al. [BHT92] demonstrate that

the coloring extension problem is NP-complete for interval graphs, and thus, for register

allocation with pre-colored variables.

1.3.2 Register Allocation with Fixed Scheduling

Register allocation is not the only optimization performed by the compiler. It is part

of a �ow of optimizations which may impact on each other. In particular, it has strong

interactions with instruction scheduling optimization. The instruction scheduling is used

to increase the Instruction Level-Parallelism (the number of simultaneously executed in-

structions during a computer cycle). It looks for an ordering capable of improving the

instruction level-parallelism.

Instruction scheduling can be done before or after register allocation. If it is done

before register allocation, it can increase the number of needed registers and make the

code harder to color. If it is done after register allocation, some ordering opportunities may

then turn impossible due to the performed register allocation. The interplay between these

two problems have been studied and many approaches that consider both of these two

problems have been proposed in the literature [TE04b, BEH91, NP95]. Register allocation

with instruction scheduling considerations is beyond the scope of this dissertation: we

assume that we have a �xed scheduling.

1.4 Graph Coloring

The graph coloring is the dominant approach to register allocation. The idea of abstract-

ing the register allocation problem to a graph coloring problem dates from the early 1960s

[SL62]. The �rst graph coloring framework for register allocation has been implemented

14 Chapter 1. Register Allocation

by Chaitin et al. [Cha82, CAC+81]. We need �rst to introduce some terms about graphs

before presenting the graph coloring approach to register allocation.

A graph G = (V,E) consists of two sets, V the set of vertices or nodes, and E the set

of edges. Every edge (v1, v2) of E has two end points v1 ∈ V and v2 ∈ V . We say that

v1 and v2 are adjacent(s) or are neighbor(s) if (v1, v2) ∈ E. The number of neighbors of

a vertex v is called the degree of v. Here, We only consider undirected graphs, i.e., we do

not make di�erence between the edges (v1, v2) and (v2, v1).

A clique is a set of vertices, where every pair of distinct vertices is adjacent. A clique

is maximum if there is no clique of G of larger cardinality. The number of vertices in a

maximum clique of G is denoted ω(G) and is called the clique number of G.

A vertex coloring (or coloring) of a graph G is a function C that maps each vertex v

of G into a color cv such that adjacent vertices are mapped to di�erent colors. We say

that I is a k-coloring of G, if the number of colors used to color G is equal to k. The

chromatic number χ(G) is the smallest k for which it is possible to �nd a k-coloring of

G. A proper coloring of a maximum clique A of G requires at least ω(G) colors, because

otherwise there will be at least two vertices of A having the same color. Hence, for any

graph G we always have: ω(G) ≤ χ(G).

The technique presented here abstracts the register allocation to an interference graph

coloring problem. The interference graph G of a given program is the intersection graph

of the variables's live ranges in that program. Each variable is represented by a vertex

in G and the vertices of two interfering variables are adjacent in G. If we consider each

register as a color, thus for a given program, the register allocation problem corresponds

to a graph coloring problem.

Chaitin et al. use the Kempe's heuristic to color the interference graph. Given a

graph G and k available colors, the heuristic tries to �nd a k-coloring of G. Assume that

there exists a node n in G of low degree, that is, a node which has less than k neighbors.

From a k-coloring of G− {n}, it is easy to �nd a k-coloring of G, it su�ces to assign to

n a color that di�ers from the colors of its neighbors. Thus, n is always colorable and

G is k-colorable if G − {n} is k-colorable. The node n can be removed (with its edges)

from G and placed on a stack. When n is removed from G, the dregrees of its neighbors

are lowered and this may turn some of its neighbors into low degree nodes in the new

graph and prove that they are colorable. If this procedure can be iterated until the graph

becomes empty, then G is showed to be k-colorable. To color G, it su�ces to pop nodes

from the stack, to insert them back into the graph and to map them to colors (the reverse

order of their removal). A node n popped from the stack is inserted into the graph and

the edges removed at the moment of its removal are restored. It is mapped to a color

1.4. Graph Coloring 15

di�erent from all its current neighbors, though it can have some other neighbors not yet

re-inserted into the graph.

The allocator proposed by Chaitin et al. handles both spill code insertion and coa-

lescing. The principal phases of this allocator are:

Renumber performs live ranges splitting. Each variable v is renamed every time it is

de�ned. It creates a new sub-variable vi for each de�nition of v. At each use point

of v, it merges together the vi of v that reach the use. At the end of this process,

each variable v is represented by a set of sub-variables called names.

Build constructs the interference graph where each node represents a name.

Coalesce removes unnecessary move instructions. Two names that do not interfere and

that are related by a move instruction are coalesced into one node adjacent to the

neighbors of the nodes being replaced. When no more coalescing is possible, the

graph is re-build to trigger new opportunities for coalescing. The Build and Coalesce

phases are repeated until no more coalescing is possible.

Spill costs computes the cost of spilling each name. The cost of spilling a name is an

estimation of the impact of spilling it on the execution time of the program.

Simplify �nds the set of nodes to be colored and order them. It �rst constructs an empty

stack and looks repeatedly for a low degree node:

1. if such a node exists, it removes it from the graph and pushes it on the stack.

2. otherwise, all nodes are of signi�cant degree (degree ≥ k) and it chooses ac-

cording to the spill costs a node to spill and removes it from the graph.

This procedure is repeated until the graph becomes empty.

Spill Code inserts loads and stores instructions if some nodes have been spilled during

the simpli�cation phase. For each spilled name n, it adds a load instruction before

every use of n and a store instruction after every de�nition of n. Thus, n will be

replaced into a collection of new names with tiny live ranges. Hopefully, due to their

tiny live ranges, these new names will not interfere with several other names. After

this step, the whole procedure is restarted from Renumber. These iterations from

Renumber to Simplify are repeated until no node is spilled. But, in practice one or

two iterations often su�ce.

16 Chapter 1. Register Allocation

Select assigns colors to the nodes of the graph in the reverse order of their removal.

It pops a node n from the stack and inserts it back into the graph. The node is

assigned a color di�erent from the colors of all its neighbors.

Figure 1.6 taken from Brigg's paper [BCT94] shows the inter-connexion between the

di�erent steps of the Chaitin's allocator.

��������
��������

��	AB
��	AB

CDEA�F��
CDEA�F��

��	AA��DF�F
��	AA��DF�F

�	��A	��
�	��A	��

��A���
��A���

��	AA��DB�
��	AA��DB�

Figure 1.6: The Chaitin et al.'s Allocator

The Chaitin et al. allocator works very well in practice even if it is not �awless and

subsequent works have improved it.

Briggs et al. have shown that deferring the spill code phase to the selection can reduce

the number of spilled nodes [BCT94]. This is possible because the condition for �nding

a low degree node is su�cient but not necessary: a node can have more than k (k being

the number of colors) neighbors and be colorable. This improvement is called optimistic

coloring.

Briggs et al. also pointed out that when the coalescing is done too aggressively, it can

make the interference graph uncolorable and lead to excessive spilling. They introduced

the notion of conservative coalescing which ensures that whenever two nodes are coalesced,

the resulting graph remains colorable, if it was the case for the original graph. They used

the following criterion to conserve this colorability property: two nodes are coalesced only

if the resulting node will not have more than k neighbors [BCT94].

After the improvements of Briggs et al., George and Appel have proposed the iterated

register coalescing that was mostly focused on coalescing [GA96]. They noticed that the

Briggs's allocator was too conservative and left in the program too many move instructions

that could be removed. They have shown that interlacing the simplify phase with the

coalesce phase permits to be much more aggressive in the coalescing without turning the

graph uncolorable. The basic idea is that, when conservative coalescing is performed

before simpli�cation, the move-related nodes of signi�cant degree might not be coalesced,

while they sometimes can be turned into low-degree node after simpli�cation. Hence, in

the described allocator, the simplify phase removes non-move-related nodes one at a time.

1.5. Linear Scan 17

Then, when no more simpli�cation is possible, the coalesce phase merges move-related

nodes in Brigg's style. If a resulting node is no longer move-related, it will be simpli�ed

in the next round of simplify. The simplify and coalesce phases are repeated until there

remains only signi�cant-degree nodes or move-related nodes in the graph. When such

a case is reached, the freeze phase looks for a move-related node and mark it as non-

move-related. All the remaining moves involving this node will not be removed. Then,

the simplify and coalesce phases are resumed. Figure 1.7, taken from �Modern compiler

implementation in Java� [AP02] shows the �ow chart of the allocator proposed by George

and Appel.

��������
��������

�	��A
�	��A

BCD�E�BE
BCD�E�BE

�CFE�F�D��

�����

�CFE�F�D��

�������EE�E
��EE�E

�E�EBF
�E�EBF

DBF	D�

�����

DBF	D�

�����

� �

Rebuild the graph if there were any actual spills

Figure 1.7: Iterated Register Coalescing

1.5 Linear Scan

The linear scan has been introduced by Poletto and Sarkar as an alternative to the graph

coloring approach for fast global register allocation [PS99]. It is suitable for applications

where compile time is a concern, such as just-in-time compilers or dynamic compilation

systems.

The linear scan is based on the notion of live interval which is a conservative ap-

proximation of a variable's live range. Given some numbering of a code's intermediate

representation, [i, j] is said to be the live range of the variable v, if there is no instruction

with number i′ < i, such that v is live at that instruction, and there is no instruction with

number j′ > j such that v is live at that instruction. There may exist some sub-ranges

of [i, j] where v is not live, this inaccuracy in the live ranges approximation is ignored for

the sake of fast computation. Live interval information can be computed with one pass

through the intermediate representation from live variable information. Figure 1.8 shows

the live intervals of variables in the example program in Figure 1.2(a).

The interferences among variables are captured with their live intervals. Two variables

interfere if their corresponding live intervals overlap. The linear scan assigns as many live

intervals (variables) as possible to a register so that two overlapping live intervals are

18 Chapter 1. Register Allocation

�� ����������

�� 	������A��

B� �������C��

D� EF�������

�� ����������

�� 	������A��

B� �������C��

D� EF�������

��� F�����

��� �����F���F

��� �������C�F

��� F�����

��� �����F���F

��� �������C�F

��� �������A��
��� �������A��

��
�

��
�

��
�

� � � � ��

�� �������A��

�� �����	����

�� �������C��

�� �������A��

�� �����	����

�� �������C��

��
�

Figure 1.8: Live intervals of the variables in Figure 1.2(a).

assigned di�erent registers.

Algorithm 1 ClassicalLinearScan
Require: list: the list of basic intervals ordered by increasing start point
Require: R: the number of available registers
Ensure: active: the list of currently live intervals ordered by increasing end point
1: active← ⊥
2: for all i ∈ list do
3: ExpireOldIntervals(i)
4: if length(active) = R then
5: SpillAtInterval(i)
6: else
7: register[i] ← r an available register
8: end if
9: add i to active

10: end for

Algorithm 1 shows the di�erent steps of the linear scan register allocation. The num-

ber of registers available on the architecture is called R. It is assumed that live intervals

have been computed and list is a list that contains all the live intervals sorted by increas-

ing start point. At each step of the algorithm, the list called active maintains the live

intervals placed in registers that overlap the current point; active is sorted by increasing

1.5. Linear Scan 19

end point of live intervals. For each starting live interval i, ExpireOldIntervals(i)

removes from active all the live intervals that do not overlap i's start point. If the size

of active is lower than R then i is assigned a register and is added to active. Otherwise,

SpillAtInterval(i) spills the interval that goes further in the future between i and

last, the last interval of active. If last is spilled, i is assigned to its register and added to

active.

The linear scan algorithm is interesting because it is fast, simple and produces codes

of relatively good quality. This makes it a serious candidate for register allocation in

just-in-time compilers, where compilation time is of the utmost importance. That is why

the linear scan register allocation is implemented in the Java Hotspot and the LLVM

compilers.

�� ����������

�� 	������A��

B� �������C��

D� EF�������

�� ����������

�� 	������A��

B� �������C��

D� EF�������

��� F�����

��� �����F���F

��� �������C�F

��� F�����

��� �����F���F

��� �������C�F

��� �������A��
��� �������A��

��
�

��
�

��
�

� � � � ��

�� �������A��

�� �����	����

�� �������C��

�� �������A��

�� �����	����

�� �������C��

��
�

Figure 1.9: Live intervals with holes of the variables in Figure 1.2(a).

A weakness of the original version of linear scan is the inaccuracy of live intervals.

Indeed, the live interval characterizing the entire live range of variables may contain some

idle holes. Those holes correspond either to program points dominated by a rede�nition

of the variable (the variable is e�ectively dead at those points), or to a hole resulting from

the order in which the basic blocks are numbered (a control-�ow artifact). For instance, in

Figure 1.9, the variable d is still live when the hole within its live interval starts. Wimmer

et al. make use of these holes when implementing an optimized version of the linear

20 Chapter 1. Register Allocation

scan algorithm for Java HotSpot compiler[WM05]. Mössenböck et al. also improved the

quality of the linear scan thanks to the live interval holes and the SSA form which tends

to produce short live intervals [MP02]. The most recent work that we will discuss in the

next section, called extended linear scan, has been done by Sakar et al. [SB07].

1.6 Decoupled Register Allocation

We present the new approaches to register allocation that decouple its allocation and

assignment phases.

The intuition for decoupled register allocation derives from the observation that live

range splitting is almost always pro�table if it allows to reduce the number of register

spills, even at the cost of extra register moves. The decoupled approach focuses on spill

minimization only, pushing the minimization of register moves to a later register coalescing

phase [AG01, BDR08].

1.6.1 A �rst two-phase approach

In 2001, Appel and George have proposed a register allocator adopting a two-phase ap-

proach [AG01]. In the allocation phase, they allowed live range splitting at each program

point (between every two consecutive instructions), and they formulated an integer linear

program that was able to �nd rapidly (tenth of milliseconds) the optimal sets of split

points and spills. To ensure that the resulting interference graph was k-colorable, they

copied every variable to a freshly named temporary to decrease the register pressure. As

a result, they needed to have special care on coalescing, and thus, their assignment phase

was dedicated to coalescing and coloring. They used a variant of Park and Moon's opti-

mistic coalescing algorithm and obtained code of good quality [PM98]. Even if there was

no theoretical reason showing that solving the spilling and coloring problem separately

leads to an optimal solution of the original problem, Appel and George's paper has the

virtue of showing that such an approach can give very good results.

1.6.2 SSA-based Register Allocation

In 2003, Anderson tested a huge number of interference graphs from the SML/NJ of Appel

and George [And03]. He found that for every interference graphG he tested, χ(G) = ω(G).

In the same way, Pereira and Palsberg found that 95% of the methods in the Java 1.5

library have chordal interference graphs when compiled with the JoeQ compiler [PP05].

Based on that observation they proposed a greedy algorithm which can optimally color the

1.6. Decoupled Register Allocation 21

chordal interference graphs in linear time according to the number of edges. They also gave

good heuristics for coalescing and spilling. Comparing their algorithm with the iterated

register coalescing, they produced better results for con�guration with few registers and

comparable results for con�guration with many registers. The works of Anderson and

Pereira et al. experimentally validated that many of the interference graphs could be

colored optimally and in polynomial time.

In 2005, three teams, namely Bouchez et al., Brisk et al., and Hack et al., indepen-

dantly discovered that the interference graph of a program in SSA form is chordal. We

will report here how Hack et al. show this property of interference graphs of programs in

SSA form.

A vertex v of a graph G is simplicial if its neighbors form a clique in G. An ordering

v1, v2, . . . , vn of the vertices of a graph G is a perfect elimination order (PEO) if each vi

is a simplicial vertex in G{vi,vi+1,...,vn}, the graph remaining from G when all the vertices

preceding vi in the ordering have been removed. Given a PEO of a graph G, it is possible

to color G with the following procedure [Gol04]:

1. Remove all the vertices of G in the order they appear in the PEO and push them

into a stack.

2. Pop the vertex v on top of the stack, re-insert it in the graph, and assign it to a

color not used by any of its neighbors. Since the neighbors of v already present in

the graph form a clique, the number of colors used currently is bound by the size of

the maximum clique present in the graph.

3. Repeat the step 2 until the stack becomes empty.

This procedure will use exactly as many colors as the size of the largest clique in G

and thus gives an optimal coloring of G. It is well known in perfect graph theory that a

graph for which there exits a PEO is chordal and therefore perfect [Gol04]. For a perfect

graph G the maximum clique number ω(G) is equal to χ(G) the smallest k for which it

is possible to �nd a coloring.

Hack et al. have shown that a variable v of an interference graph G of a program

in strict SSA-form, where every use of a variable is dominated1 by its de�nition, can be

added to a PEO, if all variables, whose de�nitions are dominated by the de�nition of v

have already been added to the PEO. The intuition is that, whenever v is added to a

PEO, the only neighbors of v remaining in G are those dominating v; since they dominate

1An instruction i dominates another instruction j if all paths, in the control-�ow graph, form the
entry point to j contains i.

22 Chapter 1. Register Allocation

v, they are all live when v is de�ned and hence form a clique. A PEO of the vertices of

G can be obtained by a post-order walk over the program's dominance tree and thus in

quadratic time according to the number of vertices of G. Hack et al. also demonstrate

that for every clique in the interference graph, there exists a point in the program where

all the variables in the clique are live. Thus, a spilling algorithm can make an interference

graph k-colorable by reducing the number of live variables at each program point down

to k. This shows that the register allocation problem can be decoupled into two phases

that can be solved separately:

1. If MaxLive, the maximum number of simultaneously live variables, is greater than

k, use a spilling algorithm to decrease MaxLive down to k.

2. Color the chordal graph optimally and coalesce as much as possible.

For register allocation again, SSA permits to ease the optimization problem. Specif-

ically, the SSA-based register allocation techniques collapse the register coalescing with

the hard problem of getting out of SSA [HGG06, BDdD+09], as one of the last backend

compiler passes.

1.6.3 A Decoupled Linear Scan

Sarkar and Barik have introduced Extended Linear Scan [SB07], a new version of linear

scan which adopts a decoupled approach to register allocation. Extended Linear scan

considers separately the sub-intervals which compose the live intervals (a live interval can

be composed of many sub-intervals interleaved with holes). The allocation decisions are

performed at the end points of these sub-intervals; we call them decision points. In the

allocation phase, at each decision point where count, the number of simultaneously living

variables, exceeds k, the number of available registers, count− k variables are spilled. In

the assignment phase, non-spilled variables are assigned to registers, notice that a non-

spilled variable can be assigned to a di�erent register for each of its sub-intervals. This

can lead to some inconsistencies in the generated code. For instance, in Figure 1.9, if the

variable d is assigned to the register r1 during the �rst sub-interval of its live interval and

then is assigned to r2 during the second sub-interval of its live interval, r2 may hold a

wrong value of d if the �rst branch of the control-�ow is taken. Extended Linear Scan

eliminates these inconsistencies at the cost of inserting some move instructions.

1.7. Conclusion 23

1.7 Conclusion

In this chapter, we have introduced the background of register allocation upon which our

dissertation is based. We have presented the graph coloring and the linear scan approaches

to register allocation and we have shown how separating the allocation phase from the

assignment helps to ease and improve the register allocation.

24 Chapter 1. Register Allocation

Chapter 2

Split Compilation

Traditionally, there are two approaches to translate programs, written in programming

languages, into a form that is executable (machine code or native code) on a target

machine: compilation and interpretation.

A compiler is a software-program that translates a source program, usually written in a

programming language, into a target one written in machine code or another programming

language. If the target program is executable, it can then be run and fed with inputs

to produce outputs. Figure 2.1 illustrates the process of compilation and Figure 2.2

depicts how an executable target program is called for execution. When the compilation

is performed during the execution process, it is called dynamic compilation. Otherwise,

it is called static compilation.

����������������

	�A���B���C�D�

ED�C�EB���C�D�

Figure 2.1: Compilation process, from the Dragon book [ALSU06]

����������	��AB��	CADBA�E����������	��AB��	CADBA�EF�C�� D��C��

Figure 2.2: Execution of a target program, from the Dragon book [ALSU06]

25

26 Chapter 2. Split Compilation

Interpretation is an alternative to compilation. An interpreter directly executes the

operations of the source program on the given inputs. Unlike a compiler, an interpreter

does not produce a target program. Figure 2.3 describes the process of interpretation.

����������������������
�����

	A��B�C��AD�EF

A�����

Figure 2.3: Interpretation, from the Dragon book [ALSU06]

Another approach used to translate programs is to combine both compilation and

interpretation. In this approach, the source program is generally compiled into an in-

termediate form, called bytecode (e.g. the Java .class �les), that: is independent of any

particular hardware, cannot be run directly, and is close to machine instructions. This

�rst compilation is usually called o�-line compilation. The bytecode is then interpreted

by a virtual machine, which is a software implementation that emulates the functioning of

a physical machine or computer. For instance, such an approach is used for programming

languages like Smalltalk [GR83] and Java [GJSB05].

The advantage of the above-mentioned strategy is that the bytecode is portable across

many architectures and operating systems for which a virtual machine exists. Indeed, the

bytecode can be compiled on a computer and run on another one, or over the network.

The imported bytecode is checked for errors before it is executed. This is to prevent

misuses which may be deliberate or not. In addition, if the bytecode is at a higher level

than machine code, it becomes more compact: it is smaller in size and carry, implicitly,

much more semantic information [Ayc03]. This compactness is crucial in environments,

like embedded systems, where the code size is an important issue.

2.1 Just-In-Time Compilation

To speed up the execution of programs, some virtual machines use just-in-time (JIT)

compilers, which dynamically compile (online compilation) the bytecode into machine

code (native code) just before it is executed. JIT compilation leverages advantages of

both static compilation and interpretation. These advantages are listed below:

Execution speed. The machine code produced by a JIT compiler, like one produced

with a static compiler, runs usually faster than an interpreted code.

2.2. Annotations-Enhanced JIT Compilers 27

More optimizations. During the execution, some information that is target-dependent

or that was unavailable prior to execution becomes accessible. For instance, input

parameters, target machine speci�cs and other types information are often unac-

cessible before runtime. This additional information enables more optimizations for

JIT compilers compared to static ones.

Program analysis and optimizations performed during static compilation can be very

expensive in time. Usually, JIT compilers cannot a�ord expensive program analysis and

optimizations since the compilation time is part of the global execution process. Thus,

there is a trade-o� between the time spent for compilation (optimizations) and the exe-

cution time of the produced code.

2.2 Annotations-Enhanced JIT Compilers

In order to reduce the online compilation (optimizations) time and thus the global ex-

ecution time, some annotation-based techniques have been proposed. These techniques

annotate the bytecode (namely Java bytecode) with analysis information that are time-

consuming to collect. The works of Pominville et al. [PQVR+01] and Chrintz et al. [KC01]

are good examples of such annotations-enhanced JIT compilation.

In order to guarantee the safe execution of Java programs, Java virtual machines must

check if the array index exceeds the range and throw an exception (notice of an error) if it

is the case. For array-based application, array bounds checks may incur severe overhead

at runtime. Pominville et al. [PQVR+01] proposed a method to eliminate array bounds

and null pointer checks that can be proven unnecessary by static analysis. They convey

information, on usefulness of checks or not, through bytecode annotations.

Following a similar approach, Krintz and Calder [KC01] proposed an annotation frame-

work that reduces the online compilation time overhead of Java programs. They devised

four kinds of annotations. The �rst one was used to transmit to the dynamic compiler

statically collected data that are needed for some optimizations (e.g. global register allo-

cation) and that precomputed o�ine (before the online compilation). The second kind of

annotations indicate to the compiler which data should be generated once and stored for

reuse instead of being regenerated. The third annotation marks a method for optimiza-

tion or not, or selects the level of optimizations to perform on a method. This helps to

avoid wasting time optimizing methods that will not improve the execution performance.

The last kind of annotation guide the selection of pro�table optimizations to perform on

a method.

28 Chapter 2. Split Compilation

The techniques that are presented here reduce the compilation time and thus the

global execution time. However, they do not improve the performance of the produced

code.

2.3 Split Compilation

The aim of split compilation is to reduce both the compilation and execution times.

The traditional approach to process bytecode language is to distribute the roles among

o�ine and online compilers. Veri�cation and code compaction are typically assigned to

o�ine compilation, while target-speci�c optimizations are performed by online compila-

tion.

Split compilation reconsiders this notion: it allows a single optimization algorithm to

be split into multiple compilation steps, transferring the semantic information between

di�erent moments of the lifetime of a program through carefully designed (bytecode)

language annotations. Split compilation has the potential to combine the advantages of

o�ine and online compilations: running expensive analyses o�ine to prune the optimiza-

tion space, deferring a more educated optimization decision to the online step, when the

precise execution context is known. Many JIT compilation e�orts tried to leverage the

accuracy of dynamic analysis to outperform native compilers; but split compilation is a

concrete path to get the best of both worlds.

One of the �rst split compilation works is the AJIT (annotation-aware Just-In-Time)

framework of Azevedo et al. [ANH99]. In order to improve the quality of the code gener-

ated by the JIT compiler, the authors removed some runtime checks, like array accesses

checks, and mostly focused on splitting the register allocation optimization into two steps:

• The �rst step performed o�ine implements a variant of priority based graph coloring

algorithm. A priority-based coloring algorithm uses heuristics and cost analysis to

sort variables. The most frequently accessed variables have highest priority and

are assigned to colors �rst. Based on this priority list and assuming an in�nite

number of registers, called virtual registers, they assign each variable to a virtual

register (the most important variables are assigned to virtual registers of lowest

numbers). Since real machines have small number of registers, the authors try to

maintain the number of used virtual registers as small as possible. That is, many

non-interfering variables are assigned to the same virtual register. This information

on variables mapped to their virtual registers are transmitted to the online step

through annotation.

2.4. Conclusion 29

• The second step of the algorithm, performed online, uses the annotations to retrieve

the assignment of variables to virtual registers. It �rst replaces virtual registers of

lowest numbers with physical ones. The variables assigned to virtual registers for

which there is no physical register available are spilled.

Azevedo et al. implemented this approach with the public domain JIT compiler system

Ka�e [Wil96]. They showed that on average the code they produced runs two times faster

than the code originally produced by Ka�e. This work, while being interesting, does not

handle the live range e�ect of the calling conventions which sometimes leads to extra

spilling and performance degradation. In addition, by moving some array bounds checks

and in the absence of analysis in the AJIT virtual machine implementation to verify such

accesses, some safety constraints of the Java virtual machine design are violated [Jon02].

Following a similar approach, Jones [Jon02] extended the idea of virtual register anno-

tation with the swap annotations. The swap annotations leverage the non uniform use of

variables throughout a method to improve register allocation. For instance, a variable v

assigned to a register r cannot be accessed within a loop l. Thus, a variable v′ that is fre-

quently accessed within l may be locally assigned to r. Swap annotations were generated

to locally increase the priority of a virtual register into the priority of a higher one. In

addition, Jones forces that the values held by a given virtual register are of the same type.

This permits to verify easily the virtual registers annotations with a simple extension of

the standard Java virtual machine veri�cation procedure. These veri�cation guarantees

that every virtual register access is compatible with all other accesses. This work also

addressed the calling convention issues and portability to deal with architectures that

di�er in number of registers.

Split compilation is not restricted to register allocation. Indeed, the split compilation

term was �rst coined in the context of JIT vectorization [LCC+07].

2.4 Conclusion

This chapter reviews the di�erent approaches to process programming languages. It

emphasizes on how split compilation improves the quality of the code generated by JIT

compilers.

30 Chapter 2. Split Compilation

Chapter 3

Split Register Allocation

3.1 Introduction

Just-In-Time (JIT) compilers rely on continuous, feedback-directed (re-)compilation frame-

works to select hot functions (frequently executed) for online optimizations. These online

optimizations must make important trade-o�s in terms of reducing compilation time for

decreased generated code performance. Reducing compilation overhead has two main

bene�ts, low-complexity algorithms simultaneously increase the amount of code being op-

timized while reducing the compilation time for hot functions. In practice,

(quasi-)linear complexity is the rule for JIT compilation. This severely impacts what kind

of optimizations are admissible and how aggressive they may be.

3.1.1 A Case for Split Compilation

Traditional bytecode language tool chains distribute the roles among o�ine and online

compilers. Veri�cation and code compaction are typically assigned to o�ine compilation,

while target-speci�c optimizations are performed by online compilation. Split compilation

reconsiders this notion: it allows a single optimization algorithm to be split into an o�ine

and an online stage, transferring the semantic information between those stages through

carefully designed bytecode annotations.

Split compilation has the potential to combine the advantages of o�ine and online

compilation: running expensive analyses o�ine to prune the optimization space, deferring

a more educated optimization decision to the online stage, when the precise execution

context is known. Many JIT compilation e�orts tried to leverage the accuracy of dynamic

analysis to outperform native compilers; but split compilation is a concrete path to get

the best of both worlds.

31

32 Chapter 3. Split Register Allocation

To make a concrete case for split compilation, we selected the (spill-everywhere) reg-

ister allocation problem [CAC+81, BCT94]. Register allocation is an ideal candidate to

demonstrate how split compilation impacts the design of future bytecode languages and

compilers, and how it di�ers from plain annotation-enhanced JIT compilation [KC01].

Indeed:

• the principles of register allocation are reasonably well understood;

• it is one of the most important components of all JIT compilers;

• it is challenging to design an o�ine analysis that would improve online register

allocation, while ignoring the exact register count of the target.

3.1.2 Outline of the chapter

This chapter makes two important contributions.

1. We design bytecode annotations enabling a linear-time online algorithm to achieve

high-quality register allocation, with negligible impact on the size of the bytecode.

2. We demonstrate how such annotations are robust to variations in the number of

registers. With additional provisions in the o�ine stage, it is even possible to

accommodate radical changes in the instruction set target architecture.

Our method is implemented in the JikesRVM open source JIT compiler for Java [Aea05],

and evaluated on x86. We do believe that it would be easy to port it to multi-language

JIT frameworks like the ECMA-335 CLI standard.2

The chapter is organized as follows. Section 3.2 presents the split register allocation

�ow and algorithms. Section 3.3 evaluates split register allocation, with coverage of

performance improvements as well as annotation compaction and portability. Section 3.4

explores more complex compilation scenarios. Finally, Section 6.3 discusses related work

on annotation-enhanced just-in-time compilation.

3.2 Split Register Allocation

We �rst introduce some terminology. An interval characterizing the entire lifetime of a

local variable or temporary may contain some idle holes. The live range of a variable x

is the set of program points where x is live; it corresponds to a union of basic intervals.

2http://www.ecma-international.org/publications/standards/Ecma-335.htm

3.2. Split Register Allocation 33

When linearising the control �ow (e.g., when generating code), the basic interval of a

given live range are interleaved with holes. Those holes correspond either to program

points dominated by a rede�nition of the variable (the variable is e�ectively dead at those

points), or to a hole resulting from the order in which the basic blocks are numbered

(a control-�ow artifact). Register pressure refers to the amount of locally live variables.

Considering that a variable is not alive during its idle holes can help in reducing the

register pressure. Jikes RVM takes advantage of this.

3.2.1 Optimization Problem and Baseline Algorithm

Since our primary focus is to illustrate the split compilation concept, we limit ourselves

to the most basic register allocation and assignment problem:

• Spill everywhere allocation: spill the whole live range.

• Single-color assignment: when such a live range is allocated, all its basic intervals

must be assigned to the same register. Some live ranges may be preassigned due to

function call conventions and operand restrictions of some target instructions;

Throughout the chapter, we handle register allocation in di�erent register classes sep-

arately (e.g., general purpose, �oating point), and call R the number of registers in the

current class of interest.

Algorithm 2 recalls the main steps of the linear scan algorithm, as implemented in

JikesRVM. Every time a basic interval i becomes active, Algorithm 2 calls the function

assignOrSuggestSpillCandidate(V (i)), where V (i) is the live range corresponding

to i. According to the allocation that has been performed up to this point, function

assignOrSuggestSpillCandidate(V (i)) returns, either a live range or ⊥ (bottom):

if it returns a live range, it is the one to be spilled in order to continue allocation; if it

returns ⊥ it was possible to assign V (i) without spilling. These algorithms are the basic

framework upon which the o�ine and online phases of our split register allocation are

constructed.

3.2.2 The ILP Model

Here, we discuss our formulation of spilling in register allocation as an ILP problem. We

obtain spilling decisions o�ine and pass this information to the online compilation phase

using annotations. Considering a set S of live ranges, a spill set of S is any subset S ′ of S

such that S \S ′ can be allocated over the R registers (without spilling). We also consider

34 Chapter 3. Split Register Allocation

Algorithm 2 linearScan
Input: list: the list of basic intervals ordered by increasing start point
1: foreach: i ∈ list do
2: toSpill← assignOrSuggestSpillCandidate(V (i))
3: if toSpill 6= ⊥ then
4: if toSpill 6= V (i) then
5: Assign V (i) to the register freed by toSpill
6: end if
7: Spill toSpill
8: end if
9: end for
Return: sets of spilled live ranges and register assignments

Algorithm 3 assignOrSuggestSpillCandidate
Input: v: a live range
1: if v was previously assigned to a register r then
2: if r is free then
3: Continue with this assignment
4: Return ⊥
5: else if v can be assigned to another register r′ then
6: Assign v to r′

7: Return ⊥
8: else
9: Let v′ be the live range assigned to r

10: Return the live range with the minimum cost among v and v′

11: end if
12: else if v can be assigned to a free register r then
13: Assign v to r
14: Return ⊥
15: else
16: Return v′ with the lowest cost among v and the other live ranges at the current

point
17: end if
Return: a live range to spill or ⊥

a function which assigns to each live range in S the cost of spilling it. The cost of a spill

set is the sum of the costs of live ranges within that set. An optimal register allocation is

associated with a spill set with the minimal cost.

We build an ILP model that is optimal among spill-everywhere, single-color allocations,

for a given cost model.

We model register allocation as a {0, 1} linear program, the objective function being

the cost of the spill set. We support multiple classes of registers, each register class

3.2. Split Register Allocation 35

is further decomposed into 2 subclasses: caller-saved (scratch register) and callee-saved

(non-scratch register). Live ranges are partitioned according to register classes, and can

be of the volatile, non-volatile or preassigned kinds: a non-volatile live range can only be

assigned to some callee-saved register, and a preassigned live range can only be assigned

to a speci�c physical register.

We create a {0, 1} variable lr for each live range l and register r that l may be assigned

to (considering class and volatility constraints):

lr = 1 if and only if l is assigned to r.

These variables are constrained by 3 kinds of (in)equalities.

1. At most one register per live range (single color assignment):

∑

1≤r≤R

lr ≤ 1

.

2. Interfering live ranges cannot be assigned to the same register: lr + l′r ≤ 1.

3. The third constraint states that if a live range l interferes with a live range l′

preassigned to r, then lr = 0.

3.2.3 Annotation Semantics

The o�ine stage generates annotations that can be used by an online stage to characterize

important properties of some live ranges. The online stage may run on a target that may

not match what was used to generate the annotations in the o�ine stage. This triggers

portability problems: we address register count variations in this section, and defer the

discussion of other problems to Section 3.4.

In the context of register allocation, the most speci�c portability issue is related to

variations in the number of registers. To de�ne portable annotations, it would be ideal

to prove a general result about the inclusion of an optimal spill set for a given number

of physical registers into one of the optimal spill sets for a lower number of registers.

Unfortunately, this is not true in general. Figure 3.1 shows a counter example on the

allocation of 5 live ranges � the horizontal bars. Every number on top of a horizontal bar

denotes the cost of spilling the corresponding live range. Dashed black lines correspond

to spilled live ranges. For the left graph, we assume R = 2 registers. For the graph on

the right, R = 1 register only. When R = 2, we may optimally spill i3 to assign i1 and

36 Chapter 3. Split Register Allocation

i4 to one register and to assign i2 and i5 to the another one. When R = 1, the single

optimal allocation is to spill i2 and i4 and to assign i1, i3 and i5 to the single register. In

this example we see clearly that an optimal spill set for two registers is not included in

the optimal spill set for one register.

��

� � � � �

��

��

��

��

�

�

�

�

�

�

��

� � � � �

��

��

��

��

�

�

�

�

�

�

Figure 3.1: Counter example to spill set inclusion

Although such an inclusion property does not always hold, we experimentally vali-

dated that only few live ranges should be spilled for R + 1 registers but allocated for R

registers. For example, considering the x86 instruction-set architecture, when moving in-

crementally by one register from the minimum number of registers, to a spill-free3 number

of registers for each method, inclusion property was violated for only 0.13% of the live

ranges over the whole SPEC JVM suite. This validates the intuition that the semantics

of an allocate/spill-oriented annotation is portable across variations in the register count.

3.2.4 The O�ine Procedure

Our split register allocation procedure derives from three key observations.

1. First, once the ILP solver �nds an optimal spill set, it would be possible to directly

annotate the code with the best spill set. This can lead to annotation bloat (although

linear), with total annotation size potentially larger than the bytecode itself. Jones

and Kamin do not address the problem [JK00].

2. Second, the more detailed the annotation, the more sensitive it is to low-level de-

cisions on instruction selection and scheduling that may happen after register allo-

cation. To make the annotation portable, it is important to focus it on semantic

properties that preserve the essence of the o�ine optimization while maximizing

independence w.r.t. post-pass optimizations in the online compilation stage. The

3until we reach a number of register for which allocation can be done without spilling

3.2. Split Register Allocation 37

idea here is to focus the annotation on long live ranges whose interferences do not

vary much w.r.t. post-register allocation instruction selection and scheduling. In-

deed, short live ranges are likely to be allocated due to their limited interferences

and high-rate register usage.

3. Third, notice that a greedy allocation algorithm is typically too conservative, al-

locating a live range that should have been spilled or assigning an inappropriate

register/color. This means that annotations should only pertain to �must-spill�

information.

With those three observations in mind, we devised Algorithm 4. The intuition behind

this algorithm is natural: why store annotations for live ranges on which a greedy, linear

procedure can readily make the right decision?

The algorithm uses an oracle-driven version of the linear scan. Every time the greedy

heuristic wishes to spill a live range which does not belong to the annotations, the al-

gorithm forces it to spill a live range which is currently active and which belongs to the

annotations. By doing so, we discover live ranges in the optimal spill set that the linear

scan cannot �nd on its own.

Considering Algorithm 4, at a step where live range V (i) is active (according to the

allocation performed since the beginning of the method being allocated), function as-

signOrSuggestSpillCandidate(V (i)) returns, either a live range or ⊥ (bottom): if

it returns a live range, it is the one to be spilled in order to continue allocation; if

it returns ⊥ it was possible to assign i without spilling. Function findActiveLiv-

eRange(optimalSpills) returns a currently active live range that is in the set optimalSpills,

and set annotation records live ranges that will not be found by the linear scan.

The algorithm returns live ranges that will not be optimally allocated by the linear

scan and keeps those as the constituents for the compressed annotations.

The �nal step consists of pairing the live ranges returned by Algorithm 4 with a

�must-spill� tag. This pairing should be as economical as possible to represent, but it

should also make sense across di�erent targets and carry relevant allocation information.

For each live range l, we compute the maximal value of R for which l must be spilled,

denoting it as Rmax(l). We do not care much about o�ine compilation time in this study:

the computation thus boils down to iterating the ILP model over decreasing values of

R, pre-spilling live ranges spilled at the previous step (for R + 1 register) to guarantee

inclusion.

Finally, annotated live ranges need to be stored in a compact persistent format, to-

gether with the bytecode program. Rather than storing every pair (i, Rmax(l)), we cluster

38 Chapter 3. Split Register Allocation

Algorithm 4 compressAnnotation
Input: list: the list of basic intervals ordered by increasing start point
Input: optimalSpills: the set of live ranges to be spilled as decided by the optimal allo-

cator
1: annotation← ∅
2: foreach: i ∈ list do
3: toSpill← assignOrSuggestSpillCandidate(V (i))
4: if toSpill 6= ⊥ then
5: if toSpill /∈ optimalSpills then
6: toSpill← findActiveLiveRange(optimalSpills)
7: annotation← annotation ∪ toSpill
8: end if
9: if toSpill 6= V (i) then

10: Assign V (i) to the register freed by toSpill
11: end if
12: Spill live range toSpill
13: end if
14: end for
Return: annotation: the compressed annotations

live ranges with the same value of Rmax(l), sort those clusters, and serialize the list of

live ranges in every cluster, prepending each cluster's list with the corresponding value of

Rmax(l). We end up with separate strings, one for each size s of the register set, listing

the live ranges that must be spilled for s registers and that were not already listed in a

string associated with size s′ greater than s. This way, most of the space is used to store

live range names, for which we conservatively count up to 4 bytes per live range.

3.2.5 The Online Procedure

The online stage performs allocation based on a compact spill set collected by the o�ine

stage, and carried as bytecode annotations.

Our online algorithm follows the steps of Algorithm 2. In addition, at the beginning

of every basic interval , it checks whether the corresponding live range is present in the

annotation. If so, then spill it (if the live range was not previously spilled).

This algorithm takes its roots in the decoupled allocation/assignment approach. As

our experiments will con�rm, the annotation-enhanced linear scan algorithm results in a

much better quality allocation. Yet it does not optimally preserve the information avail-

able in the annotation and may yield spurious spill code. The reason is simple: register

assignment on a colorable (spill-free) graph is equivalent to a graph coloring decision prob-

lem, which is NP-complete on live ranges [CAC+81]. It is not NP-complete with su�cient

3.3. Experimental Evaluation 39

Algorithm 5 onlineAllocation
Input: list: the list of basic intervals sorted in increasing start point
Input: annotation: a set of annotated live ranges
1: foreach: i ∈ list do
2: if V (i) is not spilled then
3: if V (i) ∈ annotation then
4: Spill V (i)
5: else
6: assignOrSuggestSpillCandidate(V (i)
7: end if
8: end if
9: end for
Return: sets of spilled live ranges and register assignments

live-range splitting: linear complexity can be achieved on SSA form following a perfect

elimination order � a greedy reverse post-order traversal of the SSA graph [BDR07c]. It

is clearly the way to go for optimality preservation, but it also implies a major engineer-

ing endeavor that has not yet been undertaken in a full-scale JIT compiler. Fortunately,

the interference graphs that arise in non-SSA code are �mostly� chordal [PP05], which

guarantees the existence of a perfect elimination order in most cases; this motivates the

decoupled approach and explains the observed quality of our online algorithm.

3.3 Experimental Evaluation

We implemented split register allocation in JikesRVM version 3.0.1 [Aea05], relying on

CPLEX4 for the o�ine resolution of optimal allocation problems.

3.3.1 Methodology

To assess the cost of a spill, we need to de�ne the optimal solution we are aiming for.

The cost model of the spill-everywhere problem is implemented in Jikes RVM; it combines

dynamic edge pro�ling, static use count and instruction type.

We illustrate split register allocation on SPEC JVM benchmarks. Experiments on the

DaCapo benchmarks [Bla06] could not be included at the time of the submission, but

we are working hard on it. We target a 2.67GHz Intel Core 2 Quad, running in 32-bit

mode, in a PC platform. This con�guration is favorable to register allocation experiments

due to the low number of registers, although the cost of spilling is often marginal due to

4http://www.ilog.com/products/cplex

40 Chapter 3. Split Register Allocation

out-of-order execution and to the sophisticated memory hierarchy.

Each �gure was obtained from 100 individual runs of the benchmark, eliminating the

10% best and 10% worst performing points. We did not conduct a systematic statisti-

cal study of the performance distribution. Instead, we eliminated the largest source of

variation by selecting a non-adaptive, aggressive (maximal optimization), pro�le-directed

strategy (with embedded replay), using the following compilation �ags:

-Xmx1024M -Xms1024M -X:irc:O3 -X:aos:enable_recompilation=false

-X:aos:initial_compiler=opt -X:aos:enable_replay_compile=true

-X:vm:edgeCounterFile=my_edge_counter_file

Split compilation is of course compatible with adaptive optimization. This method-

ology di�ers from the standard practices in that we do not run an adaptive compilation

scheme [Bla06, GEB08]. We claim our methodology is relevant in the context of split

compilation:

• it eliminates the instability triggered by monitoring-based decisions, allowing to

focus on the e�ect of the register allocation itself;

• an adaptive execution methodology is needed to compare the relative contributions

of JIT-compilation, monitoring, garbage collection, and the e�ect of the optimiza-

tions themselves [GEB08]; our methodology allows for a fair comparison nonetheless,

since the online stage of the split allocation does not introduce signi�cant overhead

w.r.t. the original linear scan implementation.

Thanks to its Java API, it was easy to connect CPLEX to our framework. The

total resolution time for the optimal register allocation of all SPEC JVM benchmarks �

running with aggressive optimization including inlining and unrolling � takes less than

4 minutes on a Core 2 Quad processor at 2.67GHz with 4GB of RAM.

3.3.2 Performance Results

Benchmark check compress jess raytrace db javac mpegaudio mtrt jack

Live ranges (number) 86672 86870 181396 122993 93055 406348 127847 122755 220871
Annotations (number) 77 105 214 191 98 685 315 195 236
Compression % 0.09% 0.12% 0.12% 0.16% 0.11% 0.17% 0.26% 0.16% 0.11%
Optimal spill set (number) 2950 2984 6408 3765 3210 16821 3830 3877 6400
Remaining spills % 2.60 % 3.51% 3.34% 5.07% 3.05% 4.07% 8.23% 5.03% 3.69%
Bytecode % 0.9% 6.9% 0.9% 6.9% 3.4% 0.5% 0.9% 1.1% 0.6%

Table 3.1: Annotation compression

3.3. Experimental Evaluation 41

Benchmark check compress jess raytrace db javac mpegaudio mtrt jack average

Original Jikes RVM 1.31 1.38 1.16 1.19 1.59 1.41 1.39 1.14 1.27 1.32
All live ranges Annotation 1.02 1.30 1 1.17 1.01 1.25 1.03 1.19 1.03 1.11
LIR live ranges Annotation 1.02 1.30 1 1.17 1.01 1.25 1.03 1.19 1.03 1.11
Java local variables Annotation 1.25 1.44 1.02 1.19 1.59 1.36 1.32 1.13 1.18 1.28

Table 3.2: Allocation cost normalized to optimal

Benchmark check compress jess raytrace db javac mpegaudio mtrt jack average

All live ranges Annotation 0% 12.0% -1.0% 0.9% -0.4% -0.6% 7.5% 1.2% 0.2% 2.2%
LIR live ranges Annotation 0% 12.1% 0.2% 1.0% -0.3% -0.7% 5.1% 1.1% 0.2% 2.1%
Java local variables Annotation 0% 5.1% 0.8% 0.0% -0.3% -0.2% -1.4% 1.1% -0.3% 0.4%

Table 3.3: Wall-clock speedups of split register allocation

Table 3.1 illustrates the e�ectiveness of the annotation compression scheme: it shows

the total number of live ranges (Live ranges); the e�ective number of live ranges within

the annotations (Annotations); the Annotations/Live ranges ratio (Compression, in per-

centage); the number of live ranges within the optimal spill sets (Optimal spill set); the

Annotations/Optimal Spill set ratio (Remaining spills, in percentage); and the size over-

head w.r.t. the bytecode itself (Bytecode, in percentage, counting 4 bytes per annotation).

Preserving the information collected in the o�ine stage requires at most 0.26% of

the live ranges to be annotated. This is several orders of magnitude more e�ective than

state-of-the-art approaches [JK00], and even comes with a formal guarantee about opti-

mality. The addition compression row reports the bene�ts of Algorithm 4, and con�rm

its important role in making the annotation size negligible w.r.t. the bytecode size.

Table 3.2 Considers the analytical cost model of Jikes RVM as a metric. All live

ranges annotation correspond to annotation produced by Algorithm 4; LIR5 live ranges

annotation correspond to the intersection between the set of live ranges present in the

LIR and all live ranges annotation; Java local variables annotation correspond the set of

Java local variables present in all live ranges annotation. Table 3.2 shows the penalty

(allocation cost / optimal cost) of using the Original Jikes RVM (linear scan), All live

ranges annotation, LIR live ranges annotation and Java local variable annotation methods

in terms of percentage of the optimal spill cost achieved by the ILP model. The Jikes

RVM linear-scan misses the optimal cost by 32% on average, whereas the split allocation

only incurs a 11% average penalty. The case for annotation portability is validated by the

very close �gures for the full annotation (All live ranges) and the LIR-only annotation

(LIR live ranges). However, when only annotating Java variables, the annotation loses its

e�ectiveness. Using the LIR-only annotation appears as the best performance/portability

trade-o�.

5Low-level Intermediate Representation of JikesRVM, which does not include yet all the characteristics
of the target architecture.

42 Chapter 3. Split Register Allocation

Considering wall-clock execution time as a metric (JIT compilation plus execution

time), Table 3.3 shows the speedup of split register allocation w.r.t. original JikesRVM's

allocation algorithm. In most cases, the speedup is consistent between the optimal and

split approaches. Nevertheless, the annotation does not help much on some benchmarks

like javac. The strong improvement in the corresponding column in Table 3.2 indicates

that the cost model itself misses the complex interplay between optimizations and impor-

tant components of the target architecture.

3.3.3 Portability Across Variations of the Register Count

We showed there is no formal inclusion property among optimal spill sets in general.

Nevertheless, for every method and among millions of live ranges, we varied R from a

minimum equal to the number of pre-allocated physical registers for the method to the

spill-free number of registers. Through all these allocation problems only 0.13% of the

intervals spilled for R+ 1 registers did not belong to the optimal spill set for R registers.

To make the annotation portable across variations in the register count, the compres-

sion algorithm must not eliminate a live interval that may be useless for a given number

of registers but useful for a smaller number of registers. We thus run Algorithm 4 on

R = Rmin registers, where Rmin is the minimal number of registers to enable code gener-

ation on the target.

3.4 Looking Forward

So far, we ignored important issues related with the practical applicability of split register

allocation.

3.4.1 Portability of the Annotation

Let us �rst consider the portability of annotation names. The names of the annotated live

ranges must remain consistent between the two stages. Some annotations may be missing

or extraneous, but an annotation designating a live range during the o�ine stage must

designate to the same live range during the online stage. There are practical solutions for

most portability scenarios.

1. The majority of live ranges correspond to Java variables, locations in the operand

stack, and other live ranges synthesized in the intermediate, target-independent

passes of JikesRVM (the LIR). For those live ranges, a non-ambiguous name can

3.4. Looking Forward 43

be crafted that is independent of the execution context when the JIT compiler is

triggered.

2. A fraction of live ranges are synthesized along the target-dependent compilation

�ow: address computation temporaries, conditional predicates, etc. We discard

annotations regarding those live ranges when compiling for another instruction-set

architecture (ISA).6 Fortunately, besides representing a small minority, these live

ranges also feature a very short temporal locality and a low degree of interference

with other live ranges. This reduces the chances of impacting an important alloca-

tion decision that would result in a signi�cant performance di�erence. Indeed, we

showed that annotation associated with target-dependent live ranges have negligible

impact on performance.

Besides the live range names, annotation properties themselves need to be portable

over multiple targets: liveness properties may vary signi�cantly over the targets if no

assumption is made on the optimization �ow. To achieve portability, we thus make one

important assumption: optimizations selected by di�erent JIT compilers must not vary

signi�cantly before the pass where annotations are loaded and attached to the intermediate

representation. This restriction does not impact target-speci�c, post-register allocation

passes like instruction selection and local scheduling.

This restriction does not solve all portability problems: reusing annotations across

ISAs remains an issue. There are multiple reasons to be optimistic. Some of these are

due to the context in which JIT compilation is employed, and some to the nature of the

optimizations being performed before register allocation:

• Embedded system designs value the code compression and safety bene�ts of bytecode

languages, but do not stress portability to the extreme. Although many processors

and hardware con�gurations may exist, Java or CLI applications are likely to run

on some variant of the ARM instruction set. Varying the number of registers is

important to support the ARM's compact instruction encoding options, and to

support extensions like vector instructions of ARM NEON. On general-purpose

platforms, an analogous situation holds, with portability issues from the 32 and 64

bit variants of the x86 instruction set, di�erent vector instruction sets and sizes, etc.

• Bytecode languages are important for link-time optimization. Complex software

architectures built of thousands of independently designed components bring many

6Such annotations remain usable when varying the register count (or the calling convention) for a
given ISA.

44 Chapter 3. Split Register Allocation

opportunities for inter-module optimization at link-time. Again, the ISA portability

issue is only secondary to many of these applications.

• Beyond ISA portability, bytecode languages are used for operating system porta-

bility. In this case, the JIT compiler is minimally impacted, and annotations are

expected to be robust to changes to the underlying OS.

• Eventually, the software provider may easily specialize the o�ine stage to gener-

ate annotations for a particular family of targets and for a particular optimization

�ow, tagging the annotated bytecode accordingly. This consists of constructing a

(lossless) union annotation considering all live ranges that occur when compiling

to the di�erent targets. Since many live ranges will remain the same (e.g., those

associated with Java local variables and constant pool, as opposed to operand stack

or target-speci�c temporaries), the union will not signi�cantly increase the size of

the annotation.

3.4.2 Separate Compilation

Realistic compilation scenarios will run the o�ine stage separately on the di�erent mod-

ules of the application and on its library dependences. This raises a modularity problem

for any annotation-based online compilation approach.

In the context of object-oriented and functional languages, function inlining is of ut-

most importance to reach performance levels on par with lower level imperative imple-

mentations. It raises the following dilemma:

• what is the point of annotating code in functions that will later be inlined, since the

e�ective interference graph will only be known after inlining;

• what is the point of annotating functions whose calling context heavily in�uences

the internal control �ow, hence the spill costs?

Our approach to modular split compilation is twofold.

No performance regression. First of all, if one module depends on a module without

annotations (such as a package form the Java Development Kit), only the code in the

annotated module will bene�t from split compilation. This is not ideal, but not worse

than the usual penalty of separate compilation in o�ine, static compilers. Conversely,

when optimizing a �library� module, it is always possible to run a context-insensitive split-

compilation �ow, relying on a representative execution pro�le; this again is consistent with

the traditional way of optimizing libraries in static compilation.

3.5. Related Work 45

Multiversioning for cross-boundary optimization. Nevertheless, JIT compilation

opens many opportunities for link-time optimization, and JIT compilers for object-oriented

and functional languages do implement such advanced techniques, e�ectively optimizing

across module boundaries (e.g., across application-library boundaries). Split register al-

location is possible in this context.

First of all, a context-sensitive annotation of the callee can be tuned according to the

most frequent calling context(s). This is only impactful when the costs of the live ranges

depend on the calling context, which may be the case when the callee contains complex,

data-dependent control-�ow.

A more aggressive approach consists in generating multiple versions of the annota-

tions for the most frequent call trees. For example, if a library method m2 is frequently

called from an application method m1, the o�ine stage of the split register allocation may

inline m2 into m1, optimize the resulting new method, and generate the annotation for

it. This specialized version of the inlined methods can later be checked for consistency

with the dynamic execution context (indeed, the library code may have changed in the

mean time, or dynamic class loading may have occurred), and used directly in favor of

performing all the optimizations online and dropping the (irrelevant) per-method anno-

tation. Practical ways to implement this scheme have been proposed in the QuickSilver

project [SBMG00]. This scheme has all the bene�ts of running a JIT compiler o�ine

(better optimizations, lower overhead) while preserving modularity (up to dynamic class

loading) and the e�ectiveness of split compilation.

3.5 Related Work

Annotations are an optional part of the Java bytecode speci�cation from the start and

are part of the class �le attributes. They have been used in debugging and integrated

development environments. Syntactic support has been added in recent versions of Java.

The same applies to the ECMA-335 CLI.

Interestingly, annotation-driven JIT compilation was �rst directed to register alloca-

tion, with the pioneering work of Azevedo et al. [ANH99]. This work demonstrated how

to achieve performance competitive with native priority-based graph coloring allocation.

Jones and Kamin [JK00] extended their virtual register allocation approach, dealing with

correctness, calling conventions and portability (addressing variations of the number of

physical registers only).

The split compilation term was �rst coined in the context of JIT vectorization [LCC+07].

Split register allocation improves on Jones and Kamin's annotation-driven approach by

46 Chapter 3. Split Register Allocation

leveraging the decoupled allocation (spilling) and assignment (coloring) phases of register

allocation. Decoupled register allocation is the key to the compactness and the portability

of our annotation. The intuition behind decoupled register allocation is that the assign-

ment problem (mapping of variables to registers with no additional spill) is very easy, as

long as the cost of live-range splitting (the introduction or register moves) is neglected.

This intuition is backed by the important property that spill-free assignment is always

possible if the maximal number of simultaneously live variables (MaxLive) is lower than

the number of available registers. The online stage can rely on the colorability guarantee

inherited from the o�ine stage through the annotation: these strong ties between the of-

�ine and online stages are speci�c to split compilation algorithms, as opposed to classical

annotation-driven JIT compilation.

A fully decoupled approach has been used by Appel and George [AG01], and studied

in the context of SSA-based register allocation [PP05, HGG06, BDGR06b]. Notice that

recent versions of the linear scan algorithm are capable of live range splitting [WM05,

SB07]; they are implicitly based on this decoupled approach. This is not the case for

the linear scan implemented in JikesRVM, and leads in practice to spurious spills (to our

disadvantage), as we con�rmed in our evaluation.

Pominiville et al. [PQVR+01] used annotations to mitigate the performance penalty of

Java pointers and arrays, and designed a generic annotation-driven compilation framework

(Soot). Eventually, Krintz and Calder [KC01] proposed a comprehensive method to reduce

the compilation time overhead through bytecode annotations, enabling rapid method

selection and optimization selection, and precomputing simple method statistics.

Several papers address two additional important questions related to register allocation

in JIT compilers: is there any room for performance improvement, and is it important

to use a linear-time allocation algorithm? Cavazos provides an original answer relying on

adaptive optimization [CMB06]. Annotation-enhanced versions of this method would be

worth investigating.

When using annotations for optimization, safety issues immediately arise because of

incorrect or malicious uses. Solutions can be found in proof-carrying code [Nec97], en-

cryption, or correct-by construction annotation designs. We choose the latter approach,

relying on annotations whose misuse can at worst lead to performance degradations.

3.6 Conclusion

We designed a split compilation framework dedicated to register allocation. We exper-

imentally validated the e�ectiveness of split register allocation and its portability with

3.6. Conclusion 47

respect to register count variations, relying on annotations whose impact on the bytecode

size is negligible. This combination of results is a strong improvement over the state of

the art. It was made possible by revisiting the decoupling of the spilling and coloring

(a.k.a. assignment) phases.

Nevertheless, the approach still depends on the stability of the upstream optimization

�ow in the JIT compiler. Although this restriction is acceptable in a majority of use cases,

it would be useful to design a split register allocation framework that would be more robust

to changes in the optimization �ow. One direction of work consists in revisiting the context

of pre-pass allocation to control register-pressure by inserting additional constraints in

the data dependence graph [TE04a]. This would accommodate for scheduling (local and

global) changes, and possibly for code motion, redundancy elimination and hoisting as

well.

48 Chapter 3. Split Register Allocation

Chapter 4

Iterated-Optimal Register Allocation

Recent works on register allocation have shown that when enough live range splitting is

allowed, the assignment problem can be solved in quadratic time as soon as the maximum

number of simultaneously living variables is lower than the number of available registers.

However, the spill minimization problem (an allocation of minimal cost) is NP-complete

even when enough live range splitting is allowed [FCL00]. Thus, good techniques are

needed to solve this problem and especially on systems like CISC machines where only

few registers are available.

In this chapter we address the spill minimization problem. Our aim is to achieve fast

allocations that are close to optimal ones. We present an iterative register allocation

algorithm, called iterated-optimal allocation, which can be used to perform allocation in

both decoupled and non-decoupled contexts. We compare it with the graph coloring, the

linear scan, a newly devised heuristics called mixed heuristic, and an optimal ILP-based

register allocation algorithm. The results show that the iterative ILP-based algorithm

outperforms the other heuristics and is often close to the optimal. An interesting result

of our approach is that, for SSA programs, the iterated-optimal allocation method has a

pseudo-polynomial time complexity.

4.1 The Approach

In the rest of this chapter we address both the spill everywhere and the register allocation

problem with live range splitting. We assume that an estimated spill cost has been

computed for each variable. A spill cost represents the access frequency of a variable, it

is high when the variable is frequently accessed and low when it is not. We denote R the

number of available registers and Rmin the minimal number of registers to enable code

generation on the target architecture. We assume that Rmin is small, in our experiments

49

50 Chapter 4. Iterated-Optimal Register Allocation

with JikesRVM running on x86 machine, Rmin is equal to 2.

The spill minimization problem is NP-complete for programs in SSA form [BDR07c,

YG87] and thus for general programs. An important result, proven independently by

Yannakakis et al. [YG87] and Bouchez et al. [BDR07c], is that the spill minimization

problem for SSA programs is pseudo-polynomial. That is, it is solvable, by dynamic

programming, when R is �xed to a small number. The intuition of our solution derives

from this result. Our approach is to solve the spill minimization problem for general

programs with R registers by iteratively optimally solving the spill minimization problem

with few registers. Even if, the spill minimization problem is only pseudo-polynomial

for SSA programs, we validate in our experiments that, for general programs, iteratively

solving the the spill minimization problem with few registers gives results close to optimal

while being much faster than directly solving the optimal problem with many registers

(with R registers, where R is not constrained to be small).

Algorithm 6 iterated-optimal allocation
Input: var_list: The list of variables
Var: allocated_list: The list of so far allocated variables
1: result← OptimalAllocation(var_list, Rmin)
2: add every variable of result to allocated_list
3: remove every variable of result from var_list
4: count← Rmin

5: while var_list 6= ⊥ ∧ (count+ step) ≤ R do
6: result← OptimalAllocation(var_list, step)
7: add every variable of result to allocated_list
8: remove every variable of result from var_list
9: count← count+ step

10: end while
11: if count < R then
12: result← OptimalAllocation(var_list, R− count)
13: add every variable of result to allocated_list
14: remove every variable of result from var_list
15: end if
16: return allocated_list

Algorithm 6, which depicts our approach, receives as input var_list, the list of vari-

ables that are candidate to register allocation. It then returns as result allocated_list,

the list of variables that have been allocated with R registers. In its �rst step (lines 1 to

4), Algorithm 6 calls the function OptimalAllocation which returns the optimal set

of allocated variables minimizing the spill cost (optimal allocation set), with a register

count of Rmin. It adds the returned variables to allocated_list, and then removes them

4.2. Experimental Evaluation 51

from var_list. In its second step (lines 5 to 10), Algorithm 6 iteratively �nds the optimal

allocation set, with a register count of step, among the variables that have not yet been

allocated (currently in var_list). Like Rmin, the parameter step is a small number (we

used 2 in our experiments) which guarantees that the function OptimalAllocation

will be polynomial in the case of SSA programs and fast in the case of general programs.

In its last step (lines 11 to 15), Algorithm 6 �nds the set of variables that minimizes the

spill cost among the variables remaining in var_list if R − count registers are available.

We can notice that R− count is smaller than step. The function OptimalAllocation

optimally solves the spill minimization problem, e.g. by dynamic programming, integer

linear programming (ILP), or logic programming.

In Algorithm 6, the number of registers available at each iteration is limited to step

registers because we do not want to increase the complexity of the problem, with registers

that have been considered and allocated at the previous step.

Close to optimal. Our method described in Algorithm 6 does not produce an optimal

allocation. This is for the same reason as the spill set inclusion does not always hold as

shown in Figure 3.1. Let us assume that R is equal to 2, Rmin is equal to one, step is also

set to one, and we run Algorithm 6 on the �ve variables: i1, i2, i3, i4 and i5. In its �rst

step, Algorithm 6 will �nd the optimal allocation set composed of variables i1, i3 and i5,

and mark them as allocated. In its second step, it will �nd an optimal allocation composed

of either i2 or i4. Finally, Algorithm 6 will return either {i1, i2, i3, i5} or {i1, i3, i4, i5} of

spill cost 2 as result, while the optimal allocation set is {i1, i2, i4, i5} of spill cost 1.

Pseudo-polynomial on SSA programs. For SSA programs, the complexity of the

function OptimalAllocation is polynomial, if it is solved by dynamic programming

and for a small register count. Thus, Algorithm 6 is also polynomial if Rmin and step are

chosen to be small numbers.

4.2 Experimental Evaluation

4.2.1 Methodology

In order to evaluate our approach, we have dumped all the register allocation problem
instances obtained during the JIT compilation of the methods of the SPEC JVM 98. The
methods have been compiled with the following options of JikesRVM:

-Xmx1024M -Xms1024M -X:irc:O3 -X:aos:enable_recompilation=false

52 Chapter 4. Iterated-Optimal Register Allocation

-X:aos:initial_compiler=opt -X:aos:enable_replay_compile=true

-X:vm:edgeCounterFile=my_edge_counter_file

In our experiments, the function OptimalAllocation, which returns the optimal

allocation set, is implemented by ILP. Rmin is �xed to 2 because, on x86 architecture

JikesRVM performs precoloration with two registers. The variable step is set to 2.

We also considered di�erent con�gurations of register count going from 2 to 16 regis-

ters. For each instance of the register allocation problem and for each con�guration, we

compared our approach with the following algorithms:

1. Default linear scan: the linear scan algorithm which takes advantage of holes.

2. Belady linear scan: the linear scan algorithm which takes advantage of holes and

which uses the furthest �rst strategy to choose between two variables to spill if their

costs are close enough according to a chosen threshold.

3. Mixed heuristic: an algorithm which chooses the algorithm which has the smaller

spill cost among the linear scan and an algorithm which spills as a priority the most

constrained variables.

4. GC: the graph coloring algorithm.

5. Optimal: an optimal ILP-based allocation algorithm which computes the optimal

allocation.

4.2.2 Results

Figure 4.1 shows the allocation costs of all the benchmarks for each register count. The

allocation costs have been normalized using the optimal allocation's cost. The iterated-

optimal allocation algorithm is close to the optimal except for register counts 14 and 16,

it always outperforms the others.

Figure 4.2 reports the allocation costs for each benchmark, normalized using the opti-

mal allocation's cost, when the register count is 6, the register count of x86 machines. We

see that here again, the iterated-optimal allocation algorithm performs close to optimal

allocation and outperforms all the other allocation algorithms.

Table 4.1 shows, for all benchmarks, the time spent in milliseconds to solve the ILP-

programs of the optimal and the iterated-optimal allocations. We see that when the

register count is 2, the time spent to solve optimal ILP-programs and iterated-optimal

are almost the same. But for all the register counts, we notice important speedups when

4.3. Related Work 53

Normalized Allocation's costs of all benchmarks

Default linear scan Belady linear scan Mixed heuristic GC Iterated Optimal Optimal

2 registers 4 registers 6 registers 8 registers 10 registers 12 registers 14 registers 16 registers

Number of available registers

0.0

0.5

1.0

1.5

2.0

2.5

N
o

rm
a

liz
e

d
 A

llo
ca

tio
n

's
 c

o
st

Figure 4.1: Iterated-optimal compared to other allocators for di�erent register counts

Normalized Allocation's costs with 6 registers

Default linear scan Belady linear scan Mixed heuristic GC Iterated Optimal Optimal

check compress jess raytrace d b javac mpegaudio mt r t jack

Benchmarks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

N
o

rm
a

liz
e

d
 A

llo
ca

tio
n

's
 c

o
st

Figure 4.2: Iterative-optimal compared to other allocators when the register count is 6

using the iterated-optimal allocation algorithm compared to using the optimal one, while

producing approximately the same allocation. With 6 registers we have a speedup of 8x

and when we exceed 8 registers the speedups reach 100x. This shows great improvements

and shows that it is possible to achieve fast allocations that are close to optimal.

Register count Optimal (ms) Iterated-Optimal (ms) speedup (Iterated-optimal/Optimal)

2 registers 2810 2880 0.98
4 registers 22998 7372 3.12
6 registers 74561 8846 8.43
8 registers 381755 9768 39.08
10 registers 1194311 10477 113.99
12 registers 3231582 11120 290.61
14 registers 4147764 11688 354.87
16 registers 4879200 12281 397.3

Table 4.1: Time spent in milliseconds (ms) to solve ILP-programs

4.3 Related Work

Register allocation algorithms often rely on spilling algorithms to perform spill minimiza-

tion.

54 Chapter 4. Iterated-Optimal Register Allocation

In static compilation the dominant approach to register allocation is the graph coloring

in which the spilling and coloring (assignment) algorithms are interleaved. During the

Simplify phase, whenever all the remaining nodes have at least k degrees, a node needs

to be marked as spilled or pushed onto the stack (optimistic coloring) and removed from

the graph. A natural intuition is to choose a node that has a low spilling cost and which

interferes a lot. Many graph-coloring-based allocators are based on this intuition and use

the quantity cost(v)/deg(v) to choose the variables to spill [Cha82]. Thus, the spilling

algorithm uses a global information over the whole program that combines the interference

degree and the spilling cost.

In the context of just-in-time compilation, the compilation time is part of the global

execution time and (quasi-)linear complexity remains a driving force in the design of

optimization algorithm. Moreover, when embedded systems are addressed, the limited

memory resources is also an important issue. The linear scan which is one of the most used

register allocation algorithm on JIT compilers has a worst case complexity of O(n × k),

where n is the number of variables in the program and k is the number of available

registers on the target architecture. The original spilling heuristic used in linear scan

[PS99] is based on the Belady's furthest �rst algorithm [Bel66]. This algorithm relies on

local information to perform spilling: �At a point p where registers are not enough to

hold all the live variables, spill the variables whose live ranges go farther in the future�.

May be the variable chosen for spilling will not interfere a lot in the future and will be

accessed many times or may be it will only be accessed once after this point. But, since

we are using a local information we cannot answer this question at the point p. Recent

versions of linear scan use more elaborate algorithms which are based on variables's spill

cost estimation and even sometimes use the same spilling heuristics used by graph coloring

[SB07]. This gives more global information on which to rely to make spilling decisions in

linear scan.

The idea of improving the spill minimization in a decoupled approach, where the

allocation is decoupled from the assignment, has been explored by Proebsting and Fis-

cher [PF92], and by Braun and Hack [BH09]. Braun and Hack generalized the Belady's

furthest �rst algorithm, which works very well on straight-line code, to control-�ow graphs.

Their approach, while being applicable as a pre-spill phase in any compiler, is more

adapted to a use in SSA-based register allocation. In their evaluation, they reported that

with their approach they reduced the number of reload instructions by 54.5% compared

to the linear scan and by 58.2% compared to the graph coloring. Like the approach of

Braun and Hack, the iterated-optimal allocation algorithm is fast and can be applied as

a pre-spill phase or a non-decoupled allocation for general programs and as a decoupled

4.4. Conclusion 55

allocation phase for SSA programs. However, unlike Braun and Hack, we experimentally

show how the iterated-optimal allocation algorithm is close to optimal allocations.

4.4 Conclusion

We have presented the iterated-optimal allocation algorithm which is a new approach

to solve the spill minimization problem. It is fast and produces allocations that are

close to optimal ones. The iterated-optimal allocation algorithm is pseudo-polynomial

(polynomial, when step and Rmin are �xed to small numbers) on SSA programs. It can

be used in a non-decoupled context for general programs, in a decoupled context for SSA

programs, and as a pre-spill phase in any compiler.

56 Chapter 4. Iterated-Optimal Register Allocation

Part II

Local Memory Allocation

57

Chapter 5

Local Memories and Allocation

Techniques

5.1 Introduction

In Chapter 1, we saw that to reduce the performance gap between the processor and the

memory, modern computers use a memory hierarchy. It corresponds to an organization

of the memory into di�erent levels based on their size and speed of access. The faster and

smaller levels of memory are placed closer to the processor and the slower and larger ones

are placed farther from the processor. Typically, modern computers, have a small number

of registers, followed by a small amount of on-chip static RAM (SRAM) going from some

kilobytes to many megabytes in size. The next level is the physical main memory (o�-

chip memory) going from hundreds of megabytes to many gigabytes of dynamic RAM

(DRAM). Usually, in desktop computers, the on-chip SRAM is con�gured as a hardware

cache. The hardware mechanism automatically stores frequently used instructions and

data into the cache memories.

The alternative approach to manage on-chip SRAM is to con�gure them as software-

controlled local memories, also called local memories or scratchpad memories. In such an

approach the developer or the compiler must insert explicit instructions to transfer data

between the local memory and the main memory. Local memories are often preferred

to caches due to their better performance, their power e�ciency, and their smaller area

cost. Indeed, in a detailed study Banakar et al. [BSL+02] make a comparison between

local memories and caches. The authors measured 18% runtime improvements in cycles

for a con�guration using local memory over one using a cache, when the allocation was

performed with a simple knapsack-based algorithm. They also found that on average,

59

60 Chapter 5. Local Memories and Allocation Techniques

compared with a cache of same capacity, a local memory occupies an area 34% smaller

and reduces the power consumption by about 40%. Moreover, local memory guarantee

better time predictability for real time systems. Indeed, the access time of each memory

object can be predicted, since the compiler or the developer exactly knows where it is

located, either in the local memoryor the main memory.

Given all the above-mentioned advantages of software-controlled local memories over

caches, one may ask why caches are still used in desktop computers? The reason is

that with caches it is possible to guarantee the binary code portability [UDB06], while

local memories do not provide such a guarantee. It is possible for the same program

to be executed across di�erent computers with di�erent cache sizes. In contrast, a code

compiled for a local memory of a given size is not portable across architectures of di�erent

local memory sizes. The binary portability is not the main issue in the embedded world

because the hardware is known and software is often loaded in it within the factory and

is rarely modi�ed afterwards.

Most ARM processors have an on-chip local memory [ARM98], and more generally,

it is typical for DSPs and embedded processors to have local memories [Mot98, Ins97].

More specialized processors also utilize local memories, including stream-processing archi-

tectures such as graphical processors (GPUs) and network processors [NVI08, BPMR03].

Most processor(s) may directly access the main memory, but few exceptions exist. The

IBM Cell broadband engine's synergistic processing units (SPU) [KDH+05] which rely ex-

clusively on Direct Memory Access (DMA) for instruction and data transfers with main

memory.

To take advantage of all the potentials provided by local memories, it is essential to

use them e�ciently. This is the goal of an optimization problem called local memory

allocation. The local memory allocation is de�ned as comprised of the following two

sub-problems which are solved either together or separately:

1. the allocation which selects the set of variables that will reside in the local memory

at each point of the program.

2. the assignment which �nds the speci�ed place in the local memory where a variable

will reside.

Previous work on local memory allocation addressed it from di�erent angles, targeting

for both application code and data placement. All the existing allocation methods can be

classi�ed in two categories: static allocation methods and dynamic ones. Static methods

place variables in the local memory only once in the beginning, and throughout the entire

execution the contents of local memory remains invariant. In contrast, dynamic methods

5.2. Static Allocation Methods 61

place data/code in the local memory at a certain moment during the execution and in the

main memory at a di�erent moment depending on its access frequency. Dynamic methods

re�ect the dynamic behavior of the program and generally outperform static ones except

when code size is extremely constrained [UDB06]. As a result, recent research mainly

focuses on dynamic methods. The two next sections present respectively the main works

that have been done in static and dynamic allocation strategies.

5.2 Static Allocation Methods

Early techniques for local memory allocation were mostly static. Among these static

allocation methods, we mention the works of Steinke et al. [SWLM02], Sjodin and Von

Platen [SvP01], and Avissar et al. [ABS02].

The method proposed by Steinke et al. analyses the application and decides which

part of both data and code to place in the local memory. They formulated the problem

as an integer linear programming (ILP) knapsack problem and proved an improvement

between 12% and 43% in energy consumption over a cache solution.

Sjodin et al. used an ILP formulation to solve the static local memory allocation

problem [SvP01]. In their work, the authors handled global variables and focused on the

fact that it is very common to have di�erent native pointers that are used to access the

di�erent kinds of memory available in embedded systems. For instance, the Intel 8051

has three native pointer types: an 8-bit pointer to access the internal memory, a 16-bit

pointer to access the external memory, and a 16-bit pointer to access the code memory.

They optimized the use of native pointer types to improve the execution speed and to

reduce the code size.

Avissar et al. also proposed an ILP formulation to perform a static allocation over

di�erent types of memory (local memory, main memory) [ABS02]. In contrast to Sjodin

et al. who only managed global variables, Avissar et al. considered also stack variables

in their allocation. Moreover, they used a distributed stack technique [BLAA01] which

distributes stack variables among di�erent memory units (local memory, main memory).

The results show 44% reduction in runtime when using the distributed stack strategy

compared to using a uni�ed stack. They also reported a reduction of 11% in runtime

when using ILP compared to using a greedy strategy consisting of sorting the variables

according to their size and then trying to allocate the variables of smallest size to the

fastest memory.

Static allocation methods are however limited compared to dynamic ones because they

do not handle the dynamic behaviours of the program being executed. That is, they do

62 Chapter 5. Local Memories and Allocation Techniques

not maintain the set of frequently accessed data in the local memory, at each time. This

issue is addressed by dynamic methods presented in the next section.

5.3 Dynamic Allocation Methods

The �rst dynamic allocation methods were restricted to software-caching techniques [MFA01,

HR00]. Moritz et al., manage the local memory as a cache. They substitute the tag-

memory and the cache controller, present on architectures with caches, with a compiler

managed tag-like data structure, address translation and tag checks. As a result, this in-

curs software overhead which is, in some cases, optimized by the compiler. They showed

that even without any hardware support, their approach outperforms hardware caches by

improving caching e�ectiveness. The approach of Moritz et al., like other software-caching

techniques [BCZ90, Iye99, CR95], incurs signi�cant overheads in runtime, code and data

size, energy consumption, and has unpredictable execution times [UDB06]. These draw-

backs led to other dynamic methods which do not emulate the functioning of caches.

Verma et al. proposed an ILP-based approach to solve the dynamic local memory

allocation problem [VWM04]. In their approach, they solved separately the allocation

and the assignment problems. The �rst step of their solution identi�es the candidate

variables which are composed of global variables, non-scalar local variables and frequently

executed code segments. In the second step, a liveness analysis is performed. The control-

�ow graph 7 (CFG) edges are chosen to be the points where allocation decisions and data

transfers between the local memory and the main memory will be performed. The third

step optimally �nds the set of allocated variables and the �nal step �nds an address in the

local memory for each allocated variable under the restriction that a variable is assigned

to the same address each time it is allocated. This technique, compared with a static

allocation technique, shows improvements of 34% in energy consumption and 18 % in

execution time. However, this technique is limited by two practicability issues. First, for

large programs the solution times can be exponential. Second, due to intellectual property

issues it is rare to �nd an industrial compiler which integrates an ILP solver.

An interesting work that does not su�er from the above-cited problems has been

introduced by Udayakumaran et al. [UDB06]. The authors propose an approach for the

compiler-assisted dynamic allocation of global and stack data, and explain how to extend

this approach with some minor modi�cations to also allocate program code. They split the

program into di�erent regions, which are de�ned as the code between successive program

points. Each program point starts before a procedure call or before loop beginning. At

7A de�nition of CFG can be found in Chapter 1.

5.3. Dynamic Allocation Methods 63

every program point, they keep track of timestamps, where a timestamp refers to one

path beginning from the entry to a parent node of the current point. They allocate data

onto the scratch-pad memory between program regions. More speci�cally, they allocate

based on the access frequency-per-byte of a variable in a region, collected from the pro�le

data. For each program point visited in the timestamp order, they choose the variables

to place in the local memory among the ones that are going to be accessed in the next

region. The allocation remains �xed within a region. In a separate phase, the method

performs an assignment for each region as follows:

1. The method collects the list of free holes in the local memory. These holes are due

to de-allocation of variables that are either dead or spilled.

2. It attempts to allocate the incoming variables to the available free holes. The largest

variables are placed �rst in a best-�t fashion.

3. When, a hole of adequate size cannot be found for a variable, compaction, which is

the process of moving variables in order to reduce fragmentation, is considered. It

is performed if it is more pro�table than spilling the variable.

4. If the compaction is not pro�table, the method tries to �nd a cheaper variable to

spill among the already assigned variables in the local memory. If such a variable

cannot be found, it is spilled to o�-chip memory.

This method is quite successful and in their experiments the authors reported on average

improvements of 39% in runtime and 31% in energy consumption depending on the local

memory size used, when comparing with an optimal static allocation.

Li et al. introduced another approach which uses an existing graph coloring technique

to perform memory allocation for arrays [LGX05, LFX09]. There are three main parts

in the presented approach, where in the �rst phase, local memory is partitioned into a

pseudo-register �le with interchangeable and aliased registers. This phase is followed by

a live-range splitting phase, where suitable program points are generated based on the

live-ranges of the arrays. The copy statements between the local memory and the o�-

chip memory are inserted at these points. Third, memory coloring is performed within a

register allocation framework, to remove unnecessary copy statements during live-range

splitting. The advantages of this work are that it uses a very mature framework (the

graph coloring) and leverages live-range splitting to optimize the exploitation of the local

memory. The weakness is that the partitioning of the local memory into di�erent register

class can lead to excessive fragmentation.

64 Chapter 5. Local Memories and Allocation Techniques

In a recent work, Li et al. take a more theoretical approach and proposed a way to

e�ectively decouple the local memory allocation with optimal guarantees in the assignment

phase [LNX07, LXK11]. The authors observed that in many embedded applications most

arrays present a speci�c live range behavior. Speci�cally, for any two arrays, their live

ranges (the list of program points where they are live8) are either disjoint or one of

them is contained by the other one (containment property). They showed that, for the

tested benchmarks, it is extremely rare to have two live ranges which interfere with one

another without containment. When this happens, they extend the live range of one

of the arrays to contain the other. Authors proved that the interference graph of an

application with such a property is a comparability graph which is a superperfect graph

and hence optimal interval-coloring for these array interference graphs is possible. Based

on this observation, they rely on the maximum weighted clique to guarantee the optimal

colorability of generated interference graph. When the maximum weighted clique exceeds

the size of the local memory, they use heuristics to spill or split some of the live ranges until

the resulting graph is optimally colorable. While this work is interesting, it is restricted

to applications where most arrays satisfy the containment property.

5.4 Conclusion

In this chapter, we have seen that in the embedded world, local memories are often

preferred to caches due to their better performance, their power e�ciency, their smaller

area cost and their better time predictability. We have presented �rst the static techniques

to local memory allocation and then the dynamic methods which are often superior to

static ones.

8see Chapter 1

Chapter 6

Motivation and Approach to Local

Memory Allocation

Software-controlled local memories are widely used to provide fast, predictable, and

power e�cient access to critical data. Compilation-time local memory allocation has

been connected to register allocation for at least 30 years. Indeed, in her seminal pa-

per [Fab79], Fabri reported strong links between register allocation and local memory

allocation. The author also presented fundamental results and practical insights about

the interplay with loop transformations. Much of this has been ignored until very recently.

As a result, the series of tremendous, fundamental and applied advances rede�ning de-

sign of compiler backends have also been ignored in the �eld of local memory allocation

[AG01, BDGR06a, HGG06, BDR07c, PP08].

In this chapter we explain what has been motivating our work on local memory allo-

cation, what is our approach to tackle the problem, and how we compare it to previous

works.

6.1 Motivation

Our work on local memory allocation is motivated by recent progress in register allocation

and the question of optimality in local memory allocation.

6.1.1 Decoupled Allocation

Recent progress in register allocation leverages the complexity and performance bene�ts

of decoupling its allocation and assignment phases [AG01, BDR07c]. The allocation phase

decides which variables to spill and which to assign to registers. The assignment phase

65

66 Chapter 6. Motivation and Approach to Local Memory Allocation

chooses which variable to assign to which register.

The allocation phase relies on the maximal number of simultaneously living variables,

called MaxLive, a measure of register pressure9. When ��ne-grain enough� live-range

splitting is allowed, it is su�cient, for all the live ranges to be allocated, that MaxLive

is less or equal to the number of available registers to guarantee that the forthcoming

assignment phase can be done without further spill. In many cases, assignment can even

be achieved in linear time [BDR07c]. If at some program point the pressure exceeds the

number of available registers, needs to be reduced through spilling.

This decoupled approach permits to focus on the hard problem, namely the spilling

decisions. It also improves the understanding of the interplay between live-range splitting

and the expressiveness and complexity of register allocation. This is best illustrated by

the success of SSA-based allocation [BDGR06a, HGG06, BDR07c, BDR07a].

The intuition for decoupled register allocation derives from the observation that live-

range splitting is almost always pro�table if it allows to reduce the number of register

spills, even at the cost of extra register moves. The decoupled approach focuses on

spill minimization only, pushing the minimization of register moves to a latter register

coalescing phase [AG01, BDR08]. Here again, SSA-based techniques have won the game,

collapsing the register coalescing with the hard problem of getting out of SSA [HGG06,

BDdD+09], as one of the last backend compiler passes.

The domain of local memory allocation tells a very di�erent story. Some heuristics

exist [UDB06, KRI+01, LFX09] but little is known about the optimization problem, its

complexity and the interplay with other optimizations. The burning hot question is

of course: does the decoupled approach hold for the local memory allocation problem?

Surprisingly, the state-of-the-art of local memory allocation completely ignores all the

advances in register allocation. When focusing on arrays, the similarity between register

and local memory allocation is obvious nonetheless:

Local memory allocation. Deciding which array blocks to spill to main memory and

which array blocks to allocate to the local memory. Spilling is typically supported

by DMA units.

Local memory assignment. Deciding at which local memory o�set to assign which

allocated array block. When reconciling the o�sets across control-�ow regions or

over multiple incoming paths, there is no unique equivalent of register moves:

• most papers assume a local copy operation with a much lower cost than loading

or storing to main memory;
9Not the sum of array block sizes.

6.1. Motivation 67

• one may also address each local-memory-allocated array block with its own

dedicated pointer; this increases register pressure but brings down the cost of

o�set reconciliation to a plain pointer copy.

In the context of local memory management, the maximum size of simultaneously

living arrays 10, calledMaxSize, gives a measure of local-memory pressure. Again, like for

register allocation, live-range splitting helps to reduce the local-memory pressure. Since

arrays are frequently accessed inside loops, local memory allocation algorithms often split

arrays at loop-entry points , we call these points: decision points. Decision points can

also be chosen in a �ner manner, after loops or before array accesses. Local memory

pressure can also be reduced by loop-transformations like strip-mining, and tiling, which

reduce the portion of accessed arrays. Moreover local memory o�set reconciliation can be

implemented with pointer copies. With such an assumption, the array move/spill ratio

becomes negligible w.r.t. the already low register move/spill ratio. For all these reasons,

the study of a decoupled approach in the local memory allocation context seems very

appealing.

6.1.2 Example

// Nested within outer loops

for (i=0; i<N; i++)

for (j=0; j<N; j++)

C[i][j] = /* ... */;

F[0][0]=1; F[0][1]=2; F[0][2]=1;

F[1][0]=2; F[1][1]=4; F[1][2]=2;

F[2][0]=1; F[2][1]=2; F[2][2]=1;

Figure 6.1: Example: Edge-Detect

Figure 6.1 shows a code fragment from the UTDSP benchmarks [Lee98]. This fragment

has been slightly simpli�ed for the sake of the exposition, preserving the original array

data �ow. Generally, arrays are frequently accessed inside loops. As a result, local memory

allocation algorithms often (re)consider allocation decisions at loop entry points; a form

of live-range splitting. On this code fragment, if live-range splitting is only considered at

loop entry points, accesses to C will arti�cially coincide with accesses to F. Zooming to

the grain of individual program statements, the live ranges of these two arrays are in fact

disjoint. Finer grain decision points would be bene�cial. It is interesting to take allocation

10Not the number of simultaneously living arrays.

68 Chapter 6. Motivation and Approach to Local Memory Allocation

for (i=0; i<N; i++)

// Outer strip-mined loop

for (jj=0; jj<N+B-1; jj+=s)

// Inner strip-mined loop

for (j=jj; j<N && j<jj+s; j++)

C[i][j] = /* ... */;

F[0][0]=1; /* ... */ F[2][2]=1;

Figure 6.2: Homogeneous blocks

for (i=0; i<N; i++)

// Outer strip-mined loop

for (jj=0; jj<N+B-1; jj+=s)

STORE(C[i][jj..min(jj+B-1,N-1)]);

STORE(F[0..2][0..2]);

Figure 6.3: Abstract model

decisions for each array at the points where it is going to be frequently accessed (if its

usage justi�es memory transfers). Of course, the cost of (un)loading whole array blocks to

the local memory is too high to authorize live-range splitting at every instruction (a.k.a.

load/store optimization [AG01, PP08]). More advanced strategies would integrate loop

transformations such as loop distribution and strip-mining [Wol95].

6.2 Our Approach to the Problem

The previous example shows the importance of the selection of decision points (live-ranges

splitting) to take advantage of the dynamic behavior of the program for local memory

allocation.

In the following, main memory refers to the main � typically o�-chip DRAM �

memory resources; local memory refers to � typically on-chip SRAM � low-latency,

high-bandwidth memories to exploit temporal locality and hide the cost of accessing the

main memory.

We will only consider single-threaded code running on a single local memory. To extend

our results to single-threaded code running on multiple local memories with di�erent

characteristics, the gap is expected to be very narrow, analogous to register allocation on

multiple register classes and register �les.

Having set the context of the optimization problem, we present in the following the

preliminary analyses and transformations we assume already performed and we present

three live range splitting schemes that can be adopted to tackle the problem.

6.2.1 Preliminary Analyses and Transformations

We make several assumptions while formulating the local memory allocation and as-

signment problem. We currently restrict our approach to uniform array accesses only.

6.2. Our Approach to the Problem 69

Non-uniform accesses may also be exploited through the use of symbolic expressions, ap-

proximations or pre-pass loop and data-layout transformations [Kan01, DLLK04, KAP97].

Those techniques are complementary to our work, and we consider loop nests that have

been previously tiled for locality, together with data layout compaction and uniformiza-

tion. As a rule of thumb, those transformations should favor the emergence of �homo-

geneous� array blocks. Here, �homogeneous� means that for a given array A, the loop

transformations must strive to strip-mine the computation such that inner loops traverse

a �xed-size block of A in a dense manner. Most numerical and signal-processing codes

exhibit a vast majority of dense, uniform � sum of loop iterator plus a constant � access

patterns. In such cases, homogenization is trivial: it is su�cient to set a constant strip-

mining factor for all loops operating over a given array A [UDB06]. The last step is to

abstract the transformed code, isolating array block operations into atomic regions. Con-

sidering the motivating example, these two steps are illustrated on Figures 6.2 and 6.3; s

is the homogeneous block size for array C.

This abstraction is su�cient to collect pro�le information on the homogenized version

of the loop nest, to solve the allocation and assignment problems. When generating the

code for a real target, one needs to insert back the array block load, store, and pointer

moves. Again, standard techniques exist to handle this, at least when array accesses are

uniform [UDB06, KRI+01].

On the abstracted program, array blocks play the role of scalar variables in a register

allocation problem, with the exception of cost modeling. We keep track of the access

frequency of each execution point to capture the number of accesses for each array block.

To bene�t from its algorithmic properties, we extend the SSA form to operate on

array blocks. This extension di�ers from Array SSA proposals [KS98, RHAR06], in that

it does not attempt to model the data �ow of individual array elements. In this form,

array blocks are fully renamed, and name con�icts at control-�ow points are handled with

Φ functions following the rules of strict SSA form.

From array blocks, one need to extract live ranges which will be the subject of the

allocation and assignment decisions. Live ranges generalize live intervals in basic blocks

to arbitrary control �ow; in SSA form, extraction of live ranges can be done in linear time

[HGG06]. Live ranges and detailed pro�ling of the application is then used to generate

the frequencies for dynamic allocation. Using these live ranges, for each decision point

(as will be explained in more detail in Chapter 7) and for each array block alive at this

point we keep track of the access frequencies. From these access frequencies and from

the size of each array block we compute an estimated of the cost of accessing an array

block in the local memory or in main memory. The cost of accessing array blocks in main

70 Chapter 6. Motivation and Approach to Local Memory Allocation

memory depends on the access pattern of the considered architecture. On systems that

rely exclusively on DMA, for data transfers, accessing a single element of an array block

is as expensive as accessing the whole array block. In contrast, on systems where the

main memory can be accessed directly, accessing a single element is much cheaper than

accessing the whole array block.

Note that, moving array blocks within the local memory at every decision point may

add severe overheads, limiting the e�ective bene�ts of live-range splitting. To avoid such

penalties, we only move the pointers of these array blocks rather than moving the chunk

of data.

In fact, this low-cost solution may seem so appealing to the reader that she may wonder

why it was not considered in the state-of-the-art techniques. The main reason is of course

that a decoupled allocation/assignment scheme is necessary to make sure that all array

block moves induced by the assignment phase are associated with o�set reconciliation

across di�erent control-�ow paths. When resorting to a uni�ed allocation-and-assignment

algorithm with live-range splitting [UDB06], there is no such guarantee. Some moves are

associated with real needs for array block displacement. Another reason is the increased

pressure on the registers: we consider that a register spill is a lot cheaper than local

memory block-copying, and even if repeated register spills occur in an inner loop (which

is very unlikely on RISC or VLIW processors), it will not be more expensive than an

array block displacement; further experimental analysis and tradeo�s should be explored

in the future.

Following Udayakumaran et al. [UB03], we extend every basic block with a �nal pro-

gram point. This extra point will be used to capture any live range load or eviction at the

end of the basic block, isolating the formalization of this decision from the reconciliation

of the decisions associated with incoming/outgoing control-�ow arcs. Thanks to this extra

point, the only cross-basic-block equations will be reconciliation equations.

6.2.2 Allocation Schemes

Live-range splitting can be implemented at di�erent decision points depending on a cus-

tomizable grain/aggressiveness. One objective could be to optimize local memory usage at

every instruction execution, whereas another one could be to statically allocate the arrays

for the whole execution of the program. This is analogous to the options in the register

allocation problem, where the compiler designer needs to trade latency minimization for

complexity. This tradeo� can be instantiated into three typical schemes:

Scheme 1. One could make decisions at �ne granularity points, where a point indicates

6.3. Related Work 71

an � abstract array block � instruction. This will exploit the array allocation

and assignment at instruction granularity, providing a full latency minimization.

However, modeling this scheme as an ILP-program may incur excessive complexity,

due to the number of decision points.

Scheme 2. The second approach is similar to the SSA-based register allocation approach,

where one may only take allocation decisions at points where a live range becomes

alive.

Scheme 3. The third approach is to make an allocation decision per array block, with-

out any splitting. This approach is called static in the context of LM management,

and corresponds to the spill-everywhere register allocation problem. In this case,

there are no program/decision points, leading to a much simpler optimization prob-

lem. However, the connection between MaxSize and colorability is lost, and the

execution latency will be higher compared to the previous schemes.

6.3 Related Work

While previous studies addressed local memory allocation from di�erent angles, targeting

both code and data, we are especially interested in data allocation [KRI+01, IBMD07].

We target dynamic methods which are superior to static ones except when code size is

extremely constrained [UDB06].

We elaborate on three recent series of results targeting stack and global array al-

location in local memories, embracing the analogies with register allocation. The �rst

approach [LGX05, LFX09], uses an existing graph coloring technique to perform memory

allocation for arrays. The second approach [UB03, UDB06, ABS02] allocates data onto

the scratch-pad memory between program regions separated by speci�c program points.

The closest work to ours is the third approach [LXK11], where authors observed that in

many embedded applications it is extremely rare to have two live ranges which does not

respect the containment property. While this work is interesting, it is restricted to ap-

plications where most arrays satisfy the containment property. Compared to these three

approaches, our work leverages the decoupled allocation/assignment approach, allowing

scalable and more e�ective algorithms. Moreover, it o�ers much more �exibility in terms

of integration of architecture constraints and performance models. We are able to analyze

the tradeo�s involving live range splitting, like SSA-based techniques, as well as the e�ects

of loop transformations.

72 Chapter 6. Motivation and Approach to Local Memory Allocation

6.4 Conclusion

We presented in this chapter the reasons that motivate our work on local memory allo-

cation. We then presented the assumptions we made and the approach we chose to solve

this problem and we �nally show how our work is related to previous ones.

Chapter 7

Experimental Validation

In this chapter we intend to experimentally validate our intuition of a decoupled approach

to the local memory allocation problem. First, we express the allocation of array blocks

as an ILP-program (the decoupled ILP-program), which minimizes the cost of access-

latency (execution time). A solution to this ILP-program can then be used in a subsequent

assignment stage, to set the o�sets of the allocated array blocks into the local memory.

Because of the fragmentation of the local memory into uneven regions, this is not su�cient

to guarantee that the assignment stage will succeed without further spilling. This is

a major di�erence with the classical register assignment problem. A solution consists

in adding fragmentation-avoidance constraints to the ILP-program (the integrated ILP-

program). We then compare, for each of the used benchmarks, the cost returned by

the decoupled ILP-program to the one returned by the integrated ILP-program. If the

costs are equal, we can envisage a theoretical study of a decoupled approach to the local

memory allocation problem.

7.1 Allocation

This section addresses the execution time minimization problem using integer linear pro-

gramming. All the variables in the ILP-program are associated with decision points within

a given program. These points represent live range splitting points where allocation de-

cisions are taken and memory transfer instructions may be inserted. There are various

outcomes for each live range, each one being characterized by the ILP-program: (i) evict

the live range from the local memory, (ii) load the live range from main memory to the

local memory, (iii) keep the live range in the local memory, (iv) leave the live range in

the main memory. In this regard, ILP variables closely match those introduced by Appel

and George [GA96].

73

74 Chapter 7. Experimental Validation

Let us formalize the ILP-program. The size of the local memory is denoted as S; the

size of live range v is denoted as sv. The access frequency of a live range is de�ned as the

frequency per byte of its corresponding array block; the access frequency per byte of live

range v at point p is denoted as fpbv,p.

For each point p and for each live range v alive at p, we de�ne the following variables:

• rv,p is a {0, 1} variable, set to one when v is allocated to the local memory at point

p. Otherwise, it is set to zero. Since rv,p is a {0, 1} variable, 1 − rv,p captures the

live ranges residing in main memory.

• lv,p is a {0, 1} variable, set to one when v is loaded into the local memory at point

p. Otherwise, it is set to zero. This variable is related to rv,p and rv,p−1: if v is not

in the local memory at point p−1, i.e., if rv,p−1 = 0, and if it is in the local memory

at point p (rv,p = 1), then v is loaded at point p.

• ev,p is a {0, 1} variable, set to one when v is evicted from the local memory at point

p. Otherwise, it is set to zero.

• dv,p is a {0, 1} variable, set to one when v is dirty, i.e., when v is updated and needs

to be written back to the main memory in case of an eviction. Otherwise, it is set

to zero.

• uv,p is a {0, 1} variable, set to one when v needs to be updated. That is, if v is

evicted and dirty, it will be written back to the main memory. More speci�cally, it

is the logical AND of ev,p(evict) and dv,p(dirty).

In a basic block, we capture the values of lv,p and ev,p using rv,p at successive points

p− 1 and p:

lv,p ≥ rv,p − rv,p−1. (7.1)

This constraint makes sure that live range v is loaded if it was not in local memory at

point p− 1 whereas it is in local memory at point p. At points where there is an explicit

assignment to v, we set lv,p to 0 since the array block is being modi�ed and a local copy

would be useless. Notice that we are dealing with partial updates of array blocks, and

assignment points are not necessary kill points for live ranges.

Similar to a load, a live range v is evicted if it is in the local memory at point p − 1

but it is not anymore in the local memory at point p:

ev,p ≥ rv,p−1 − rv,p. (7.2)

7.1. Allocation 75

However, this is not enough to characterize every eviction since we only set a ≥ in-

equality and we do not have any term that (in)directly minimizes eviction in the objective

function. Indeed, eviction can be free, such as when the data is being evicted but it has

not changed. Setting an equality constraint would not be correct either. To prevent this,

we add the following constraints to provide additional upper-bounds on ev,p:

ev,p ≤ rv,p−1. (7.3)

If v is in the local memory at point p or if it is not in local memory at point p− 1, then

ev,p will be forced to 0. However, if we do not add these constraints, it could be either 0

or 1 depending on the update.

Every assignment statement will mark the target live range as dirty. We formalize

this as:

∀pi, dv,pi = 1, where variable v is modi�ed. (7.4)

Moreover, if v in the local memory is dirty, it should be continuously dirty until it is

written back to the main memory. We enforce the following constraint at every point

except those where live range v is modi�ed. For those cases, Equation 7.4 will be used:

dv,p ≥ dv,p−1 − uv,p−1, where variable v is not modi�ed. (7.5)

This constraint makes sure that if v is dirty at point p − 1 and it is still in the local

memory at point p, then it should be dirty at point p as well. This, in a sense, operates

as dirty bit in a cache coherence protocol.

Also, dv,p will be forced to be set as 0, if v is not in the local memory at point p− 1.

This will ensure that, if v is loaded at point p it will not be dirty:

dv,p ≤ rv,p−1, where variable v is not modi�ed. (7.6)

Deriving from dirty variables, update variables uv,p are set to 1 if v is evicted at point p

and is marked as dirty. We formally express this boolean AND as follows:

uv,p ≥ ev,p + dv,p − 1 ∧ uv,p ≤ ev,p ∧ uv,p ≤ dv,p. (7.7)

We also need to make sure that the available local memory space is not exceeded. At

every point p we add the following constraint:

∀p,
∑

v

rv,p × sv ≤ S. (7.8)

76 Chapter 7. Experimental Validation

Finally, we need to make sure that the local memory remains in the same state as we

iterate through the basic blocks of the application CFG. To ensure this, we add entry

and exit points to basic blocks. This way, we check the states at every merge/split point

whether they are in the local memory or not. More speci�cally, for such pairs of points p

and p′:

∀v, rv,p = rv,p′ . (7.9)

The objective function to be minimized is the following:

∑

v,p

rv,p × lrv,p + lv,p × llv,p + uv,p × lev,p + (1− rv,p)× lmv,p.

It models the cost of array block load, eviction, access in the local memory, and access in

the main memory. Since we follow a decoupled allocation/assignment approach, it does

not account for reconciliation costs, implemented as negligible-cost register moves. This

function depends on the following additional notations:

• lrv,p is the sum of all latencies incurred by an access to v between p and p+ 1, the

following point, where v was in the local memory at p:

lrv,p = latency_LM× fpbv,p × sv.

• llv,p is the sum of all latencies incurred by an access to v between p and p+1, where

v was in the main memory before p, and in the local memory after p:

llv,p = latency_reload(sv)× point_frequencyp.

• lev,p is the sum of all latencies incurred by an access to v between p and p+1, where

v was in the local memory before p and in the main memory after p:

lev,p = sv × latency_spill(sv)× point_frequencyp.

• lmv,p is the sum of all latencies incurred by an access to v between p and p + 1,

where v was in the main memory before, and after p:

lmv,p = latency_MM× fpbv,p × sv.

Each update variable acts as a switch to turn on or o� the cost of the eviction, depending

on the dirtiness of the corresponding live range.

7.2. Assignment 77

This linear program is �exible w.r.t. the tradeo�s between live-range splitting and

complexity, and adapts to the three proposed schemes, mentioned in Chapter 6. Of

course, the p subscript will disappear for Scheme 3. For Scheme 1, rv,p, lv,p and ev,p

will be de�ned for all program points. They will be de�ned at live range beginnings for

Scheme 2.

7.2 Assignment

Due to fragmentation, the colorability result, when MaxSize is below the local memory

size (for the �rst three schemes), is not su�cient to guarantee an atomic allocation of

array blocks. In practice, it is known that classical fragmentation-avoidance heuristics

perform very well, even on rather constrained problems [UDB06]. Those heuristics derive

from dynamic, heap memory allocation algorithms like the buddy system. This pragmatic

approach leads to a very simple, greedy assignment algorithm like Belady's furthest �rst

method [BDR07c, Bel66]. Of course, when implementing Scheme 1, one must be careful

to always assign the same o�set to a given (local-memory-allocated) live range within

a given basic block. Since live range splitting at SSA de�nition points is su�cient to

guarantee the colorability, this restriction does not induce spurious spills.

If fragmentation-induced spills must be avoided at all costs, we need to de�ne ad-

ditional {0, 1} variables to handle the assignment directly. Of course, this breaks the

decoupling of the allocation and assignment phases. The immediate, expected impact is

a dramatic increase in algorithmic complexity.

We de�ne a pair of variables for each point p and live range v alive at p:

• ov,p a {1, S} variable, which represents the o�set of the variable v in the local memory

at p; this variable is valid only if rv,p = 1, that is, if v is not in the local memory,

we set this variable to 0.

• mv,p a {0, 1} variable, which represents the displacement of variable v in the local

memory at p; this is measured by the o�sets at point p (ov,p) and at point p − 1

(ov,p−1).

To account for the relative placement of live ranges in the local memory, we also need a

very large set of variables bv,v′,p in {0, S − 1}. Each variable indicates whether v comes

before v′ in the local memory at point p (and how far it does).

In addition to these new variables, we introduce additional constraints and a modi�ed

objective function which captures both the assignment and allocation costs. First, we

78 Chapter 7. Experimental Validation

modify the previous local memory size constraint with multiple constraints operating on

the variable o�sets. Speci�cally, we change (7.1) into:

ov,p + sv ≤ S + 1 + (1− rv,p)× S. (7.10)

This constraint ascertains that at each point, the size of allocated variables does not

exceed the size of the local memory. Moreover, we set the o�set of any variable, ov,p, to 0

if that variable is not within the local memory. Note that, rv,p will be equal to 0 for such

variables forcing ov,p to 0:

ov,p ≤ rv,p × S. (7.11)

In addition to the upper bound on the o�set, we ensure the lower o�set bound of a local

memory resident variable. If a live range is in local memory, o�set will be set to be greater

than or equal to 1, otherwise it will be greater than or equal to 0:

ov,p ≥ rv,p. (7.12)

As indicated above, we use bv,v′,p to express whether v comes before v′ in the local memory,

through a comparison between the o�sets of v and v′. To characterize this variable, we

add the following constraints:

bv,v′,p ≤ rv,p ∧ bv,v′,p ≤ rv′,p (7.13)

These constraints make sure that variable bv,v′,p is only valid for local-memory-allocated

live ranges: if the variable is not residing in local memory it will have an o�set of 0.

bv,v′,p + bv′,v,p ≤ 1. (7.14)

On the other hand, to force the ordering between live ranges, we set an upper bound of 1

to the above sum. Moreover, if both v and v′ are in the local memory, then either bv,v′,p
or bv′,v,p must be set to 1 to capture the relative position of the two live ranges. This is

ensured by an AND operation between rv,p and rv′,p which will set one of bv,v′,p and bv′,v,p

to 1 through a ≥ inequality:

bv,v′,p + bv′,v,p ≥ rv,p + rv′,p − 1. (7.15)

Next, for all v and v′, o�sets should be assigned such that array blocks are not intersecting.

7.3. Experimental Results 79

More speci�cally,

ov′,p − ov,p ≥ sv × bv,v′,p + (bv,v′,p − 1)× S. (7.16)

As mentioned earlier, we capture the array block displacements through the o�sets. Specif-

ically, we take the di�erence of o�sets at point p (ov,p) and at point p− 1 (ov,p−1):

mv,p × S ≥ |ov,p − ov,p−1|+ (rv,p − 1)× S + (rv,p−1 − 1)× S. (7.17)

Note that, in the above constraint, we force mv,p variable to the o�set distance (|ov,p −

ov,p−1|) only if v is in the local memory at both points p − 1 and p. This is enforced

through the terms (rv,p − 1) × S and (rv,p−1 − 1) × S. If variable v is not in the local

memory at any of these points, then it will add −S to the right part of the constraint

which will set mv,p to 0 since the o�set distance cannot be larger than the local memory

size S and the objective function is minimized in the optimization.

We modify (7.9) which ascertains that local memory remains in the same state through-

out the �ow between basic blocks. We now need to keep the o�sets same in order to

preserve the same state. That is, we check the states at every merge/split point via the

variable o�sets. More speci�cally, for such points p and p′:

∀v, ov,p = ov,p′ . (7.18)

The objective function also needs to be updated, to include movements between di�erent

execution points. This is the purpose of the last term in the following objective function:

∑

v,p

rv,p × lrv,p + lv,p × llv,p + uv,p × lev,p + (1− rv,p)× lmv,p+

∑

v,p

mv,p ×moving_cost(v, p), (7.19)

where moving_cost(v, p) is the function giving the latency incurred by the displacement

of v at point p within the local memory:

moving_cost(v, p) = latency_move(sv)× point_frequency(p).

7.3 Experimental Results

Experiments on real hardware are out of the scope of this work. This section aims at

validating the fundamental hypotheses and the relevance of the decoupled approach for

80 Chapter 7. Experimental Validation

Benchmark Brief Suite Data arrays
description size /blocks

Edge-Detect Edge detection in an image [Lee98] 196644 4/385
D-FFT 256-point complex FFT [Lee98] 2032 7/7
Bmcm Water molecular dynamics [ea88] 125240 10/310
MxM Matrix multiplication n.a. 120000 3/300

Table 7.1: Application codes.

Constant Latency

latency_LM 8
latency_MM 128

latency_move(sv) 8 + 2sv
latency_spill(sv) 128 + 4sv
latency_reload(sv) 128 + 4sv

Table 7.2: Model parameters.

local memory allocation.

7.3.1 Setup

We validate our approach on three array-intensive benchmarks from the UTDSP [Lee98]

and Perfect Club [ea88] suites, and on matrix multiplication, see Table 7.1. Table 7.2 lists

the model parameters. We use Scheme 2 for all experiments, a good tradeo� between

expressiveness and complexity.

7.3.2 Results

���������	ABC
DEFB

D�FB
���������	

�������
����������	AABC

F
F�E

F��

F�A
F��

	

	�E

���������
����� ���� ����

���������!!BC
DEFB

D�FB
���������	

�������
���������	FFFFBC

F

F�E

F��
F�A

F��
	

	�E

���
���������
����� ����

���������E�BC
DEFB

D�FB
���������	

�������
���������	FFBC

F

F�E

F��

F�A

F��

	

	�E

""#
���������
����� ����

���������E�BC
DEFB

D�FB
���������	

�������
���������$�!�BC

F

F�E

F��

F�A

F��

	

	�E

%&'%(&%#%)#
���������
����� ����

Figure 7.1: Experimental results for decoupled and integrated approaches.

Figure 7.1 shows the cost model results for each benchmark. The left bar (dark)

refers to the cost achieved by the allocation phase alone, selecting which live ranges will

reside in the local memory at which point. The one on the right (light) refers to the

cost achieved by the integrated allocation and assignment, a much more complex and

in�exible optimization taking o�sets and fragmentation into account. The second bar can

only be identical or higher than the �rst, since more constraints are taken into account.

7.4. Conclusion 81

We consider di�erent local memory sizes: minimal_size corresponds to the the biggest

array block in the program; �tting_size is the total size of all array blocks; maxsize_size

is the maximum of the total size of array blocks simultaneously alive at any given point;

the minimal size plus 20% of the maxsize_size; and the minimal size plus 40% of the

maxsize_size. We also state minimal_size and �tting_size in percentage of maxsize_size.

The �size� quali�er has been omitted from the �gure.

These experiments validate the two main insights motivating our approach:

1. For all benchmarks, and all local memory sizes, the decoupled and integrated algo-

rithms compute the same cost. This is a strong con�rmation that decoupled local

memory allocation behaves as good as decoupled register allocation, despite the

fragmentation constraints.

2. For all benchmarks, the cost is optimal � same as for �tting_size � as soon as

the local memory size reaches maxsize_size while the cost immediately increases for

smaller local memory sizes (maxsize_size-1). This con�rms that MaxSize is the

relevant criterion.

7.4 Conclusion

This chapter opens a window on exciting research and applications about local memory

allocation. Despite strong progress in the recent years, the state-of-the-art ignores the

tremendous advances in decoupled and SSA-based register allocation. We set up a new

bridge between the two optimization problems. Our experiments validate the decoupling

of the allocation and assignment stages in the context of local memory allocation: after

an optimal allocation phase relying on a generic and scalable integer linear program,

we demonstrate a total absence of fragmentation-induced spills, during the assignment-

phase.

82 Chapter 7. Experimental Validation

Chapter 8

Decoupled Local Memory Allocation

for Linearized Programs

In Chapter 7, we experimentally validated that a decoupled approach could be adopted to

solve the local memory allocation problem. We consider here such a decoupled approach,

but with a more theoretical point of view. We show that the local memory allocation

for linearized programs, where the live ranges of variables or arrays are represented as

intervals, is equivalent to a weighted interval-graph coloring problem that we call the

submarine-building problem. The submarine-building problem di�ers slightly from the

classical ship-building problem [Gol04] by allowing a color interval to �wrap around�. We

show that the submarine-building problem is NP-complete, while it is solvable in linear

time for weighted proper interval graphs.

8.1 Weighted Graph Coloring and Local Memory Allo-

cation

This section sets the terminology and de�nitions used in the rest of the chapter.

8.1.1 Weighted Graphs

A graph G = (V,E) consists of two sets, V the set of vertices, and E the set of edges.

Every edge (v1, v2) of E has two end points v1 ∈ V and v2 ∈ V . We consider undirected

graphs only, i.e., we do not di�erentiate between the edges (v1, v2) and (v2, v1).

A graph G is called an interval graph if its vertices can be put into one-to-one cor-

respondence with a set of intervals I of a linearly ordered set such that two vertices are

83

84 Chapter 8. Decoupled Local Memory Allocation for Linearized Programs

connected by an edge of G if and only if their corresponding intervals have a nonempty

intersection.

Assuming each vertex v of G = (V,E) is associated with a non-negative number w(v),

the weight of a subset S ⊂ V is expressed as:

w(S) =
∑

v∈S

w(v).

The graph G associated with the function w is called a weighted graph and denoted

Gw. Moreover, Gw is a weighted interval graph if G is an interval graph.

An interval coloring of a weighted graph Gw is a function I mapping each vertex v ∈ V

onto a (topologically) open interval Iv of w(v) + 1 consecutive integers of the real line,

such that adjacent vertices are mapped to disjoint intervals; that is, (v1, v2) ∈ E implies

Iv1
⋂

Iv2 = ∅. We say that I is a k-coloring of Gw if Iv ∈ {0, . . . , k}, ∀v ∈ V . The

chromatic number χ(Gw) is the smallest k for which we can �nd a k-coloring of Gw.

Figure 8.1 shows two colorings of a weighted graph shown in Figure 8.1(a). The �rst

coloring given in 8.1(b) is a 6-coloring of the weighted graph and the second coloring

shown in 8.1(c) shows a 5-coloring of the weighted graph. The chromatic number of this

graph is 5.

8.1.2 Linearized Programs

Given an intermediate representation of an arbitrary program on which live range split-

ting has already been applied, the intermediate representation pseudo-instructions can

be numbered according to some order. We de�ne a linearized program as a program for

which such kind of numbering [PS99] has been performed and for each variable v in this

program, we represent its live range as the live interval [i, j[, i being the number of the

�rst instruction where v is �rst de�ned and j being the number of the instruction where

v is last used. There can be some some pseudo-instructions between i and j where v is

not live, but with a successful live range splitting this problem can become marginal. In

the context of just-in-time compilation where compilation time is critical, linearizing pro-

grams can pay o� because it is fast to linearize a program and potentially the produced

code could be of relative quality [SB07].

The linearization �attens the program's control-�ow graph and the generated live

intervals form an interval graph.

8.1. Weighted Graph Coloring and Local Memory Allocation 85

� �

� �

�

� ��

	 	

�

	� �

A 	 � B C D E A 	 � B C D

F
�

F
�

F
�

F
�

F
�

F
�

F
�

F
�

F
�

F
�

F
�

F
�

F
�

F
�

���

��� ���

Figure 8.1: Two colorings of a weighted graph

8.1.3 Two Equivalent Classes

From Local Memories to Weighted Interval Graphs. From a linearized program

we construct a corresponding weighted graph called interference graph. For each variable

in this program, we create a vertex and associate the size of the variable to this vertex.

We create an edge between two vertices if there is a point in the program where the two

variables are simultaneously live. Thus, an edge connects a pair of vertices if and only

if the variables are simultaneously alive. The constructed weighted graph is a weighted

interval graph because each vertex corresponds to an interval de�ned by the de�nition

point and the end point of the variable.

From Weighted Interval Graphs to Local Memories. We use a method similar to

the one presented by Lee et al. [LPP08] to show that, for any weighted interval graph,

we can �nd a corresponding linearized program.

Chen [Che92] and Saha [SPP07] et al. have shown how to convert an interval graph

with q intervals to an isomorphic program like interval graph in O(q log q) time. An

86 Chapter 8. Decoupled Local Memory Allocation for Linearized Programs

interval graph is program-like if the intervals representing the vertices of the graph have

start points and end points that are all di�erent, and the start points and end points of

the intervals form a set {1, . . . , 2q}, where q is the number of intervals.

From a program-like weighted interval graph Gw, we construct in O(q) time the follow-

ing straight-line program (with pseudo-C syntax) which consists of a set of 2q statements:

∀i ∈ {1, . . . , 2q}

typeI vI = · · · where sizeof(typeI) = w(I),

if the interval I of weight w(I) begins at i

· · · = vI if the interval I ends at i

8.2 Weighted Graph Coloring

Thirty years ago, in her seminal paper [Fab79], Fabri already envisaged to model the

so-called problem of �automatic storage allocation� as a weighted graph coloring problem.

She mentions the investigation of special subclasses of weighted graphs that are likely

to occur. We construct a weighted graph Gw from a given linearized program. Finding

an allocation for variables of the linearized program within a local memory of size k

corresponds to �nding a k-coloring of Gw.

This section introduces the ship-building problem which is related to weighted interval

graph coloring. It also de�nes a new variant, called the submarine-building problem, very

well suited to the local memory allocation problems on modern processors, and exhibiting

interesting complexity results and potentially good approximation heuristics.

8.2.1 The Ship-Building Problem

We report here the Ship-Building Problem as presented in the book of Golumbic [Gol04].

In certain shipyards the sections of a ship are constructed on a dry dock, called the

welding plane, according to a rigid time schedule. Each section s requires a certain width

w(s) on the dock during construction. Can the sections be assigned space on a welding

plane of total width k so that no spot is reserved for two sections at the same time?

Let the sections be represented by the vertices of a graph G and connect two vertices

if their corresponding sections have intersecting time intervals. Thus Gw is a weighted

interval graph. An interval coloring of Gw will provide the assignment of the sections to

spaces, of appropriate size, on the welding plane. This assignment will be consistent with

the intersecting time restrictions. The reader must be careful to distinguish between the

time intervals which produced the edges of Gw and the color intervals which provide a

solution to the assignment of space on the dock.

8.2. Weighted Graph Coloring 87

A weighted graph built from a linearized program associated with a number k (corre-

sponding to the size of the local memory) is an instance of the ship-building problem. For

a graph Gw and a number k, we call ship(Gw, k) an instance of the ship-building problem.

Determining whether χ(Gw) ≤ k is an NP-complete problem [Gol04, LPP08]11, even

if G is an interval graph and the weight function w is restricted to the values 1 and 2. It

follows that the ship-building problem is also NP-complete.

8.2.2 The Submarine-Building Problem

Since the local memory size is generally power-of-two, it is common to mask the addresses

(in software or hardware) to let loads and stores wrap around to the local memory trans-

parently. The submarine-building problem is a new variant of the ship-building problem.

Like in the ship-building problem, a vertex must occupy a contiguous color-interval, but a

circular allocation scheme can be adopted permitting to a color-interval to wrap around.

It extends the ship-building problem's interval coloring to circular interval coloring. It

follows that a solution of the ship-building problem is a solution of the submarine-building

problem, but the converse is not generally true. Figure 8.2 shows an example of submarine

coloring for the weighted graph in Figure 8.1. The inner circle represents the colors and

each circular arc Iv represents a color interval assigned to the vertex v. The color interval

IF wraps around.

�
�

�
�

�
�

�
�

�
�

�
�

�
�

	

A

B C

Figure 8.2: An example of a 4-submarine-coloring

For a weighted graph Gw and a number k, we call submarine(Gw, k) an instance of

11This has been previously proven by Stockmeyer, but to the best of our knowledge, the proof of Lee
et al. is the �rst publicly available one [LPP08].

88 Chapter 8. Decoupled Local Memory Allocation for Linearized Programs

the submarine-building problem. For the rest of the chapter we say that Gw is k-ship-

colorable, if ship(G, k) has a solution, and we also say that Gw is k-submarine-colorable,

if submarine(Gw, k) has a solution.

To the best of our knowledge, this variant of the ship-building problem has never

been carefully studied, and it has not been applied to the decoupling of the spilling

and assignment problems in local memory management. Many open questions about

fragmentation, optimality, complexity and feasibility are tied to this new variant of the

ship-building problem.

Unfortunately, the submarine-building problem is also NP-complete on weighted in-

terval graphs as we demonstrate below.

Theorem 8.2.1. The submarine-building problem is NP-complete.

Proof. The submarine-building problem is in NP because we can easily see that a

solution of the problem can be veri�ed polynomially. To show that the submarine-building

problem is NP-hard, we will build from an instance ship(G, k) of the ship-building problem

an instance submarine(Gw, k + 1) of the submarine-building problem.

A problem in NP. The submarine-building problem is in NP because a solution of

the problem can be veri�ed polynomially.

Reduction. From an instance ship(Gw, k) of the ship-building problem, we build an

instance submarine(Gw, k + 1) of the submarine-building problem. Let f and ℓ be re-

spectively the minimum of the startpoints of all intervals in Gw and the maximum of the

endpoints of all intervals in Gw. The graph G′
w consists of all intervals of Gw and the

interval β: [f, ℓ[of weight one.

Let θ be a solution of ship(Gw, k); θ maps each interval of Gw to a color interval

between 0 and k. We de�ne θ′, a function mapping each interval α of G′
w to a color

interval between 0 and k + 1:

∀α ∈ G′
w

{

θ′(α) = θ(α) if α ∈ Gw

θ′(α) = [k, k + 1[if α /∈ Gw

It follows that θ′ is a solution of submarine(Gw, k + 1).

Now, we study the converse case. Let θ′ be a solution of submarine(Gw, k + 1). We

8.3. Weighted Proper Interval Graph Coloring 89

de�ne for a color interval [s, e[, an integer k, and the functions δ and mod:

δ([s, e[, d) = [s+ d, e+ d[

mod([s, e[) = [s mod (k + 1), e mod (k + 1)[

Let θ′(β) = [s, s + 1[(β is of weight one). We de�ne for each interval α of Gw the

function θ:

θ(α) = mod (δ(θ′(α), k − s))

The interval β of G′
w is live from f to ℓ, therefore there is no other interval of G′

w

that occupies the color interval [s, s+1[. θ([s, s+1[) = [k, k+1[, and the value on which

function θ is equal to [k, k + 1[is [s, s + 1[. Thus, θ assigns to each interval α of Gw an

interval of some color between 0 and k. If two interfering intervals α and α′ have two

non-overlapping color intervals c and c′ then θ(α) and θ(α′) are non-overlapping too. It

follows that θ is a solution of ship(Gw, k) if θ′ is a solution of the submarine(Gw, k + 1).

8.3 Weighted Proper Interval Graph Coloring

We study the properties of weighted proper interval graphs, a subclass of weighted interval

graphs. This class is interesting because we will show the submarine-building problem is

solvable in linear time for this class: any instance Gw of this class is colorable with ω(Gw)

colors and in linear time. For this subclass, we also have a su�cient criterion permitting

to decouple the ship-building problem.

8.3.1 Proper Interval Graph

An interval graph G is a proper interval graph if it is constructed from a family of intervals

such that no interval properly contains another [Gol04]. An interval graph is a unit interval

graph if all of its intervals have the same length. It has been shown that the classes of

proper interval graphs and the unit interval graphs coincide. A weighted graph Gw is a

weighted proper interval graph if G is a proper interval graph. Figure 8.3 shows properly

ordered weighted-intervals of the real line and their corresponding weighted proper interval

graph.

8.3.2 Proper Ordering

Let us consider the representation of Gw, a weighted proper interval graph, on the real

line, where the vertices of Gw correspond to intervals on the real line. Let us sort these

90 Chapter 8. Decoupled Local Memory Allocation for Linearized Programs

� �

� �

�

��

� �

�� �

	AB

�CD
�C�

�C�
�C�

�C�
�C�

E � � F D � � � �

	�B

Figure 8.3: An example of a weighted proper interval graph

intervals according to their start points. If two intervals i and i′ start at the same point,

we can place either i before i′ or i′ before i. This kind of ordering can be found for any

weighted proper interval graph, and is called proper ordering in our approach. A proper

ordering of the graph in Figure 8.3 is: A,B, c, d, E, F . Based on this ordering, we say

that i ≺ i′, if i is before i′.

Lemma 8.3.1. If i ≺ i′ then, either i ends before i′ or i and i′ start and �nish at the

same time.

Proof i ≺ i′ implies that either i starts before i′ or i andi′ starts at the same time:

• i starts before i′. Since i cannot properly contain i′, then i ends before i′.

• i and i′ start at the same time. Since, none of these two intervals cannot properly

contain the other, then they end at the same time. �

8.3.3 Decoupled Submarine-Building Problem

Algorithm 7 performs a k-submarine-coloring of intervals of a weighted proper interval

graph Gw. It takes as input a sequence of intervals of Gw sorted according to a proper

ordering. It assigns to each interval a color interval contiguous to the color interval

assigned to the previous interval (according to the proper ordering) in a clockwise manner.

Finally, it gives a k-submarine-coloring of the graph as output.

Theorem 8.3.1. For any weighted proper interval graph Gw, Algorithm 7 guarantees a

k-submarine-coloring if and only if ω(Gw) ≤ k.

Proof.

8.3. Weighted Proper Interval Graph Coloring 91

Algorithm 7 Submarine_Assignment_Algorithm

Input: intervals: a list of properly ordered intervals
Var: map: an array associating to each interval an o�set
1: offset← 0
2: foreach: i ∈ intervals do
3: map[i]← index mod k
4: offset = offset+WeightOf(i)
5: end for
6: return map

Direct. k-submarine-coloring of Gw =⇒ ω(Gw) ≤ k.

Any k-submarine-coloring of Gw must assign color intervals that do not overlap to the

intervals of a clique of weight ω(Gw) and this is only possible if ω(Gw) ≤ k.

Reciprocal. ω(Gw) ≤ k =⇒ k-submarine-coloring of Gw.

We will call a point, the moment an interval starts. Let P be the following property:

�at point n, the live intervals ij, ij+1, . . . , in (sorted according to the proper ordering) are

assigned to contiguous color intervals that do not overlap in a clockwise manner, in this

order: color(ij), color(ij+1), . . . color(in)�. The property P is an invariant at every point

of Algorithm 7. If the graph contains m nodes, we have consequently m intervals and m

points. The proof will be done inductively on points.

Just before the point 1, where the �rst interval i1 starts, none of the color intervals

are used. At point 1, algorithm 7 assigns to i1 a color interval starting at 0 and property

P is trivially satis�ed.

Suppose that property P is satis�ed from point 1 to point n, and let us see if property

P is satis�ed at point n+1 (we assume that we have at least n+1 intervals in the graph).

We call d the number of dead intervals between n and n+ 1 (d can be zero, or n− j), we

prove four claims successively:

1. ij+d is live. Indeed, if ij+d was dead then all intervals preceding it would also be

dead. Therefore, we would have d+1 intervals that are dead, which contradicts the

de�nition of d.

2. All the intervals between ij+d and in are live too. If an interval ik between ij+d and

in is dead then ij+d is also dead because ij+d ≺ ik; this leads to a contradiction with

the �rst claim.

3. From the two �rst claims and the satisfaction of proposition P at point n, we deduce

that all live intervals ij+d, ij+d+1, . . . , in are assigned to contiguous colors that do not

92 Chapter 8. Decoupled Local Memory Allocation for Linearized Programs

overlap, in a clockwise manner, in this order: color(ij+d), color(ij+d+1), . . . color(in).

4. Algorithm 7 assigns to the new interval in+1 a color interval contiguous to the last

used color interval (the color of in) in a clockwise manner. Therefore, the color

intervals assigned to live intervals are contiguous in a clockwise manner, in this

order: color(ij+d), color(ij+d+1), . . . color(in), color(in+1). The colors do not overlap

because they are all contiguous and they do not exceed ω(Gw) which does not exceed

k.

From the fourth claim, we conclude that at the point n+1 the property P is again veri�ed.

Hence, using Algorithm 7 guarantees that at every point, all the live intervals are

assigned to contiguous color intervals that do not overlap, and the next starting interval

will be assigned to a color interval. Thus, a k-submarine-coloring can be found for Gw if

ω(Gw) ≤ k.

As far as we are aware, this is the �rst time a decision problem is shown to be NP-

complete on interval graphs and polynomial on proper interval graphs.

8.4 Weighted Not-So-Proper Interval Graphs

We say that two intervals A and B properly interfere if A interferes with B such that A

strictly starts before B and B strictly ends after A or vice versa.

We de�ne a weighted Not-So-Proper (NSP) interval graph as a weighted interval graph,

where each pair of properly interfering intervals A and B, is such that A and B must not

be contained in any interval of the graph.

Figure 8.4: An example of weighted NSP graph

Figure 8.4 shows an example of a weighted NSP graph (weights have been omitted

in the �gure), whereas Figure 8.5 illustrates two weighted graphs that are not weighted

NSP graphs. The light blue lines represent intervals that properly interfere, the solid

black lines represent intervals that are contained, and the red dashed lines represent the

intervals we do not want to have in weighted NSP graphs.

8.4. Weighted Not-So-Proper Interval Graphs 93

��� ���

Figure 8.5: Two graphs that are not weighted NSP graphs

The weighted NSP graphs are the class of graphs that includes the weighted proper

interval graphs and the superperfect graphs de�ned by Li et al. [LXK11]. Thus, when the

submarine assignment is allowed the weighted NSP interval graphs are guaranteed to be

MaxSize-colorable.

Algorithm 8 NSP_Assignment_Algorithm

Input: intervals: a list of intervals sorted by increasing start point
Var: map: an array associating to each interval an o�set
Var: stack: a stack used to keep track of contained intervals
1: offset← 0
2: container ← ⊥
3: foreach: i ∈ intervals do
4: if container = ⊥ ∨ ¬(Contains(container, i)) then
5: container ← i
6: end if
7: while stack 6= ∅ do
8: if ¬(Contains(Peek(stack), i) then
9: contained← Pop(stack)

10: offset← (offset+MaxSize−WeightOf(contained)) mod MaxSize
11: else
12: break out of the loop
13: end if
14: end while
15: if container 6= i ∧ (Contains(container, i)) then
16: Push(stack, i)
17: end if
18: map[i]← index mod k
19: index = index+WeightOf(i)
20: end for
21: return map

Algorithm 8 performs a submarine assignment for a weighted NSP graph on a local

memory of size MaxSize. It receives as input intervals, a list of intervals sorted by

increasing start point, and returns at the end map, a map that associates to each interval

an o�set into the local memory. Algorithm 8 makes di�erence between intervals that are

94 Chapter 8. Decoupled Local Memory Allocation for Linearized Programs

not contained in any other interval, called containers and those contained in an interval.

The contained intervals are stocked into stack, a stack which keeps track of them. The

variable container keeps track of the last starting container. When a new interval, i,

starts, it is veri�ed for containment. If it is not contained in the currently live intervals,

it is set as the new container. The function Contains(container, i) returns true, if i

is contained in container and false otherwise. Then all the dead intervals are removed

from stack and the o�set is updated. The function WeightOf(i) returns the weight of

the interval i. If i is contained into another interval, it is pushed on stack. Finally, i is

assigned to the current o�set, which is then updated.

8.5 Extension to Weighted Interval Graphs

As explained in Section 8.2, from a linearized program it is possible to construct a cor-

responding weighted interval graph. If the resulting graph is a weighted proper or NSP

interval graph, when the submarine assignment is allowed, it is always possible to use

MaxSize as a criterion to ensure that the assignment phase is feasible without spills.

Thus, the allocation algorithm can be decoupled thanks to MaxSize criterion. For arbi-

trary weighted interval graphs, the problem is NP-complete and a heuristic-based solution

must be envisaged.

We devised a solution that takes advantage of our submarine assignment algorithm.

This solution, that decouples the allocation and assignment, performs the two following

steps:

1. it approximates an arbitrary weighted interval graph into a weighted NSP interval

graph through spilling and splitting.

2. it performs the assignment with Algorithm 8

We have implemented our approach to approximate weighted interval graphs into

weighted NSP interval graphs. We have evaluated it on generated weighted interval

graphs, but so far the approximation algorithm has shown modest results and does not

perform very well. We are trying to improve it and we do not report the results here,

since it is still being studied.

8.6 Conclusion

In this chapter we designed and analyzed a new variant of the ship-building problem

called the submarine-building problem. We showed that this problem is NP-complete on

8.6. Conclusion 95

interval graphs, while it is solvable in linear time for proper interval graphs. We also

give a criterion to guarantee the feasibility of the submarine-building problems for proper

interval graphs and then we extended it to weighted NSP interval graphs. These results

o�er a general solution (more general than the solution of Li et al. [LXK11]) to decouple

spill code generation from local memory assignment. Such a decoupling has been missing

for a long time, limiting the transfer to local memory management of the recent wave

of algorithmic and experimental successes in register allocation. We believe our results

will enable the design of simpler and more robust compilation-time algorithms for local

memory management. However, while our approach represents an improvement over state

of the art methods, it is limited so far in its practical application.

96 Chapter 8. Decoupled Local Memory Allocation for Linearized Programs

Part III

Reconciling Register and Local

Memory Allocations

97

Chapter 9

The Clustering Allocator

In Chapter 8, we intended a theoretical study of the decoupled local memory allocation.

This study showed encouraging results that can be theoretical foundations of a decoupled

approach for local memory allocation, but it is limited so far in its practical application.

In this chapter, we propose a heuristic-based solution, the clustering allocator, which

decouples the local memory allocation problem and aims to minimize the allocation cost.

The clustering allocator while devised for local memory allocation appears to be a very

good solution to the register allocation problem. After many years of separation, this new

algorithm seems to be a bridge to reconcile the local memory allocation and the register

allocation problems.

For the sake of exposition, we will �rst present the version of the clustering allocator

devoted to the register allocation and then we will present the general version for the local

memory allocation.

9.1 The Clustering Register Allocator

Here, we present a new decoupled register allocation algorithm called clustering allocator.

The algorithm has three steps. It �rst packs the variables by clusters. Then, it performs

allocation on the clusters, allocating all the variables of clusters or spilling all of them.

Finally, it assigns each allocated cluster to a physical register.

9.1.1 Clustering of Variables

We assume here that an estimated spill cost has been computed for each variable. This

spill cost represents the access frequency of a variable, it is high when the variable is

frequently accessed and low when it is not.

99

100 Chapter 9. The Clustering Allocator

We de�ne a cluster as a group of variables which do not interfere with each other.

The cost of a cluster is de�ned as being the sum of the spill costs of the variables within

it. A cluster corresponds to a stable in an interference graph.

The goal when performing register allocation is to optimize the use of registers. Imag-

ine that only one register is available on the target architecture. An allocation of minimum

spill cost for a program on this architecture will assign a cluster of maximal cost to the

register. Imagine now that there are k available registers on the target architecture. An

allocation which assigns the k clusters of highest costs to the k registers will not neces-

sarily be of minimum spill cost, but hopefully it will not be far from the allocation of

the minimum cost. This is the intuition upon which the clustering allocator is based and

the trick is in the approximation of clusters of higher costs since we are not computing

them optimally. We �rst approximate the cluster of maximal cost and then the cluster of

maximal cost which does not contain any interval of the �rst cluster, and so on, until we

put all the variables into a clusters. The cluster of maximal cost, computed from a list of

variables, has more chances to contain high cost variables than other variables. Thus, to

compute the cluster of maximal cost we iteratively add, as a priority, high cost variables

which do not interfere with the variables already present in the cluster.

Algorithm 9 Cluster_Variables

Input: vars_list: a list of variables ordered by decreasing spill cost
Var: clusters_list: a list of clusters
1: while vars_list 6= ∅ do
2: cluster ← ⊥
3: removal ← ⊥
4: foreach: v ∈ vars_list do
5: if ¬Interfere(v, cluster) then
6: add v to removal
7: add v to cluster
8: end if
9: end for

10: remove removal from vars_list
11: add cluster to clusters_list
12: end while
13: return clusters_list

The clustering is performed by Algorithm 9 which transforms vars_list, a list of a

program's variables ordered by decreasing cost, into clusters_list, a list of clusters. It

constructs a new cluster at each iteration of the while-loop. To compute the new cluster,

each variable v of vars_list is added to the cluster if it does not interfere with any of

the variables already within the cluster. Every time a variable v is added to cluster,

9.2. The Clustering Local Memory Allocator 101

the cluster being created, it is added to removal. When all the variables have been

tested, cluster is added to clusters_list and all the variables in removal are removed

from vars_list. Then, the next round of while-loop starts. Finally, Algorithm 9 ends

when every variable is in a cluster.

9.1.2 Allocation and Assignment

After the clusters have been computed, Algorithm 10 selects the set of allocated clusters.

The k clusters that maximize the sum of their costs are allocated, k being the number of

available registers.

Algorithm 10 Allocate_Variables

Input: clusters_list: a list of clusters
Input: k: the number of available registers
1: sort clusters_list by decreasing cost
2: if size > k then
3: remove the last (size− k) clusters from clusters_list
4: end if
5: return clusters_list

Algorithm 11 performs assignment by mapping each cluster to a physical register.

Algorithm 11 Assign_Variables

Input: clusters_list: a list of k clusters
Input: registers: the array of k available registers
Var: map: an array that maps each cluster to a register
1: i← 0
2: foreach: c ∈ clusters_list do
3: map[c]← registers[i]
4: i← i+ 1
5: end for
6: return map

Algorithm 12 performs all the complete steps of the clustering allocator algorithm.

9.2 The Clustering Local Memory Allocator

We present here the generalization of the clustering allocator algorithm for local memory

allocation. The main changes between this generalization and the register allocation

version are in the computation of clusters which is changed to take into account the

di�erent sizes of array blocks.

102 Chapter 9. The Clustering Allocator

Algorithm 12 Clustering_Register_Allocator

Input: vars_list: a list of variables ordered by decreasing spill cost
Input: registers: the array of k available registers
Var: map: an array that map each cluster to a register
1: clusters_list← Cluster_Variables(vars_list)
2: allocated_clusters← Allocate_Variables(clusters_list, k)
3: map← Assign_Variables(allocated_clusters, registers)
4: return map

9.2.1 Clustering of Array Blocks

We assume, like in the specialized version for register allocation, that an estimated spill

cost has been computed for each array block.

We de�ne a batch as a set of array blocks such that each array block of the set interferes

at least with another array block of the set. We say that an array block A interferes with

a batch B, if A interferes at least with one array block of B. We also say that a batch

B1 interferes with another batch B2, if an array of B1 interferes with B2 or vice versa.

A batch has a size which is de�ned as the sum of the size of the array blocks within the

batch. The cost of a batch is de�ned as the sum of the spill costs of all the array blocks

within the batch.

Unlike for register allocation where the variables of same size compete for registers,

for local memory allocation, we have many array blocks of di�erent sizes that will share

the local memory. Thus, the goal is now to maximize the use of the di�erent portions of

the local memory. Let us assume we have a portion P of the local memory of size S. We

want to �nd a set of array blocks (cluster) of maximal cost that can be allocated to P .

Like for register allocation, we can de�ne a cluster as a set of array blocks that do not

interfere each other. But since, array blocks can have di�erent sizes and many of them

can be in P at the same time, our solution is to successively assign batches, which do not

interfere and are of size smaller than S, to P . Thus, we re-de�ne a cluster as a set of

batches that do not interfere each other. We also de�ne the size of a cluster as the size of

the portion of the local memory where it will be assigned.

Now comes the question of how the size of the portions are chosen (the sizes of clusters)

and how the clusters are constructed? Algorithm 13 depicts our method. It transforms

arrays_list, a list of array blocks ordered by decreasing size, into clusters_list, a list

of clusters. Algorithm 13 picks up A, the �rst array block (the array block of maximum

size) of arrays_list, removes it from arrays_list, and creates cluster, a cluster of the

size of A. It creates batch and adds it to cluster. Then, it adds to potentials, all the array

blocks that can be potentially added to cluster, which are the array blocks that do not

9.2. The Clustering Local Memory Allocator 103

Algorithm 13 Cluster_Arrays

Input: arrays_list: the list of array blocks ordered by decreasing size
Var: clusters_list: the list of clusters to return
1: while arrays_list 6= ∅ do
2: // create the �rst batch of the cluster
3: cluster ← ⊥
4: A← RemoveFirst(arrays_list)
5: add A to batch
6: add batch to cluster.batches
7: cluster.size← A.size
8: // check o� all the array blocks that can be in the cluster
9: potentials← ⊥

10: foreach: array ∈ arrays_list do
11: if ¬Interfere(array, batch) then
12: add array to potentials
13: end if
14: end for
15: // Iteratively �nd the batches of array blocks that will form the cluster
16: while potentials 6= ∅ do
17: A← RemoveFirst(potentials)
18: size← A.size
19: add A to batch
20: foreach: array ∈ potentials do
21: if Interfere(array, batch) ∧ (weigh+ array.size) ≤ cluster.size then
22: add array to batch
23: size = size+ array.size
24: end if
25: end for
26: remove all array of batch from potentials
27: remove all array of batch from arrays_list
28: foreach: array ∈ potentials do
29: if Interfere(array, batch) then
30: remove array from potentials
31: end if
32: end for
33: add batch to cluster
34: end while
35: add cluster to clusters_list
36: end while
37: return clusters_list

104 Chapter 9. The Clustering Allocator

interfere with batch. Afterwards, Algorithm 13 constructs iteratively the other batches to

add to cluster (line 16 to 34). It adds the �rst array block of potentials to the batch and

while the size of the batch does not exceed A.size (the size of A), it adds to the batch

the array blocks that interfere with one of the array block already in the batch. Once

it becomes impossible to add a new array block to the batch, all the array blocks of the

batch are removed from potentials and arrays_list. All the array blocks that interfere

with batch are also removed from potentials, because two array blocks of two di�erent

batch of the same cluster cannot interfere. When potentials becomes empty, cluster is

added to the clusters_list and a new cluster is constructed. Finally, all the array blocks

will be in a cluster and Algorithm 13 returns the clusters_list.

9.2.2 Allocation and Assignment

Algorithm 14 Allocate_Arrays

Input: clusters_list: a list of clusters
Input: LMSize: the size of the local memory
Var: allocated_clusters: the list of allocated clusters
1: sort clusters_list by decreasing cost
2: size← 0
3: foreach: cluster ∈ clusters_list do
4: if (cluster.size+ size) ≤ LMSize then
5: add cluster to allocated_clusters
6: size← size+ cluster.size
7: else
8: goal ← (LMSize− size)
9: new_cluster ← DecreaseToGoal(cluster, goal)

10: if ¬IsEmpty(new_cluster) then
11: add new_cluster to allocated_clusters
12: size← size+ new_cluster.size
13: end if
14: end if
15: end for
16: return allocated_clusters

Algorithm 14 performs the allocation. It receives as input clusters_list, a list of clus-

ters, and LMSize, the size of the local memory. It then returns allocated_clusters, the

list of allocated clusters. It sorts the list of clusters and adds the clusters to allocated_clusters

while their size does not exceed LMSize. When (cluster.size + size) ≥ LMSize, the

function DecreaseToGoal(cluster, goal) tries to compute a new cluster of size goal

from the array blocks of cluster.

9.3. Experimental Evaluation 105

Algorithm 15 Assign_Arrays

Input: allocated_clusters: the list of allocated clusters
Var: LMSize: the size of the local memory
Var: map: an array that maps each array to an o�set in the local memory
1: offset← 0
2: foreach: cluster ∈ allocated_clusters do
3: foreach: batch ∈ cluster.batchs do
4: current_offset← offset
5: foreach: array ∈ batch do
6: map[array]← current_offset
7: current_offset← current_offset+ array.size
8: end for
9: end for

10: offset← offset+ cluster.size
11: end for
12: return map

Algorithm 15 assigns to each array block an o�set in the local memory.

Algorithm 16 Clustering_LM_Allocator

Input: vars_list: a list of array blocks ordered by decreasing size
Input: LMSize: the size of the local memory
Var: map: an array that map each cluster to a register
1: clusters_list← Cluster_arrays(clusters_list)
2: allocated_clusters← Allocate_Arrays(clusters_list, LMSize)
3: map← Assign_Arrays(allocated_clusters, LMSize)
4: return map

Algorithm 16 performs all the complete steps of the clustering allocator algorithm.

9.3 Experimental Evaluation

We report here the evaluation of our clustering allocator algorithm for register and local

memory allocations.

9.3.1 Register Allocation

Methodology

These experiments have been performed with the same methodology used for experiments

of Chapter 4. We compare our clustering allocator algorithm with the iterated-optimal

allocation and the other algorithms presented in Section 4.2.

106 Chapter 9. The Clustering Allocator

Results

Normalized Allocation's costs of all benchmarks

Default linear scan Belady linear scan Mixed heuristic GC Clustering Iterated Optimal Optimal

2 registers 4 registers 6 registers 8 registers 10 registers 12 registers 14 registers 16 registers

Number of available registers

0.0

0.5

1.0

1.5

2.0

2.5

N
o

rm
a

liz
e

d
 A

llo
ca

tio
n

's
 c

o
st

Figure 9.1: clustering allocator compared to other allocators for di�erent register counts

Figure 9.1 shows the allocation costs normalized over the cost of the optimal alloca-

tion's cost, for con�gurations with di�erent register counts going from 2 to 16 registers.

For almost all the register counts, the clustering allocator heuristic is close to the op-

timal and to the iterated-optimal allocation algorithm. For the con�gurations with 14

and 16 registers, the optimal allocation outperforms both the clustering allocator and

the iterated-optimal allocation algorithms. For the con�guration with 16 registers the

clustering allocator is slightly better than the iterated-optimal allocation algorithm.

Normalized Allocation's costs with 6 registers

Default linear scan Belady linear scan Mixed heuristic GC Clustering Iterated Optimal Optimal

check compress jess raytrace d b javac mpegaudio mt r t jack

Benchmarks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

N
o

rm
a

liz
e

d
 A

llo
ca

tio
n

's
 c

o
st

Figure 9.2: clustering allocator compared to other allocators when the register count is 6

Figure 9.2 reports for each individual benchmark the normalized allocation costs when

we have a register count of six registers. For check, jess, javac, and jack, we note a

degradation up to 60% of the optimal. But for the rest of the benchmarks, the clustering

allocator algorithm is always close to the optimal and to the iterated-optimal allocation

algorithm.

We can notice that the clustering allocator algorithm gives good results compared to

the iterated-optimal allocation algorithm, although it has a quadratic time complexity.

Indeed the function Interfere(v, cluster) can be done in constant time if we represent

9.3. Experimental Evaluation 107

the live range of a cluster as the union of all the live ranges within the cluster and then

perform a simple interference test between the live range of the cluster and the live range

of the variable.

The clustering allocator and the iterated-optimal allocation algorithm are also very

similar because they both proceed iteratively, but there is a subtle di�erence. The iterated-

optimal allocation �nds iteratively the set of variables to allocate, while the clustering

allocator continues the process until the end before it decides which cluster it is more ben-

e�cial to allocate and can sometimes achieve better allocation than the iterated-optimal

allocation as shown in Figure 9.1 for the con�guration with 16 registers.

9.3.2 Local Memory Allocation

To evaluate the clustering allocator algorithm in the context of local memory allocation,

we have generated many weighted interval graphs. We are able to generate the graphs,

to di�erentiate them and we also have control over the density of generated graphs.

Graph Generation

Graphs we have generated for testing our heuristic are based on Scheinerman's studies

on random interval graphs [Sch88]. To create an interval graph with n intervals we

generate 2n independent random variables L1, L2, ..., Ln, R1, R2, ..., Rn and by coupling

these random variables we form intervals [L1, R1], ..., [Ln, Rn]. We associated weights and

costs to these intervals. Eventually these intervals form the random interval graph.

In order to represent the data structures in real life applications, we have added some

constraints and limits on these graphs. We not only have control on the number of intervals

but also on the minimum length of intervals, the maximum number of concurrently live

intervals, the weights and the costs of intervals during the graph generation process.

During the graph generation, we also control the density of the generated graph. For

a graph G = (V,E) where nV is number of vertices and nE is number of edges in the

graph, the density D is calculated with the following formula.

D = 2|E|
|V |(|V |−1)

We are also capable of di�erentiating the interval graphs before generating weights

and costs for them. We did this to justify that our heuristic does not only give good

results for some speci�c type of graphs.

108 Chapter 9. The Clustering Allocator

Methodology

For the purpose of our experiments, we have generated 500 graphs of density between

0% and 35%, we call these graphs (35% dense). We also generated 500 graphs of density

between 36% and 70% called graphs (70% dense). We �nally generated 500 graphs of

density between 71% and 100%, called graphs (+70% dense).

We compared our clustering allocator with an ILP-based allocator and a best-�t allo-

cator, which assigns an array block, represented here by our intervals, to the place in the

local memory where it �ts best. For each generated graph we use a local memory of size

MaxSize. Due to the normalization, we use for these experiments the gain instead of the

costs since the ILP-allocator can give for certain graphs a spill cost of zero. We also stop

the ILP-allocator, for each graph, after half-an hour, if it does not return a solution.

Results

���

����

���

����

�

����

���

����

��	ABCDE�F���������B�D�F��F������CBA�E���������FE��

� !������B��C

��"E��CDF�������B��C

#�E��$D�������B��C

�����B��C

%
B
DF
�F
�
C	

B
�D
&
�
�
��
�
��
�
�
��

!
��
��
�
�
B
��
C

���

����

���

����

�

����

���

��	ABCDE�F���������B�D�F��F������CBA�E��������FE��

� !������B��C

��"E��CDF�������B��C

#�E��$D�������B��C

�����B��C%
B
DF
�F
�
C	

B
�D
&
�
�
��
�
��
�
�
��

!
��
��
�
�
B
��
C

���

����

���

����

�

����

��	ABCDE�F���������B�D�F��F������CBA�E��'�����FE��

� !������B��C

��"E��CDF�������B��C

#�E��$D�������B��C

�����B��C%
B
DF
�F
�
C	

B
�D
&
�
�
��
�
��
�
�
��

!
��
��
�
�
B
��
C

Figure 9.3: clustering allocator for local memory allocation

The three �gures show the average of the allocation gain normalized with the ILP-

based allocator.

Figure 9.3(a) shows the normalized allocation gain for graphs 35% dense. It does not

show a strong improvement for our clustering allocator algorithm which is outperformed

9.4. Discussions about the Algorithm 109

by the best-�t allocator which is in turn outperformed by the ILP allocator. Figure 9.3(b)

shows that for graphs 70% dense the clustering allocator and the best-�t are quite similar

and produces better results than the ILP allcoator. For graphs that are denser (+70%

dense), as depicted in Figure 9.3(c), the clustering allocator is slightly better than both

the ILP allocator and the best-�t.

When evaluating the clustering allocator for local memory allocation, we noticed that

the ILP-programs were not easy to solve and this shows how the problem is hard. The

results we report may appear not very encouraging when comparing to the best-�t, but

so far we do not know of a better heuristic to perform local memory allocation and we

have asked the questions to many experienced researchers. We also think that the version

of clustering allocator for local memory allocation has still room for improvements.

9.4 Discussions about the Algorithm

This section discusses some practical issues, that are speci�c to register allocation, when

using the clustering allocator algorithm. We also discuss how the clustering allocator can

be used to perform allocation while the assignment is performed with another algorithm.

9.4.1 Practicability in the context of Register Allocation

When de�ning the clustering allocator we did not explain how we dealt with the spilled

variables. As we previously saw in Chapter 1, when a variable is spilled it does not

disappear, it is replaced by a set of tiny variables which must be taken into account. We

have two possible solutions for this issue:

1. We can handle them like the linear scan, which assigns them to a free register

whenever they are read or written. If there is no available register it spills locally an

allocated variable and uses its register. On architecture like x86, we can also take

advantage of the complex addressing mode which permits to get operands directly

from memory.

2. We can also restart the process like the graph coloring until we �nd an allocation

which does not spill.

9.4.2 Using the Clustering Allocator for Allocation only

For both the local memory and register allocations, the clustering allocator algorithm

can be used for only the allocation phase and another algorithm can be used to perform

110 Chapter 9. The Clustering Allocator

assignment. In a context where there is no guarantee about the fact that the assignment

will be performed without further spills, using another assignment algorithm can result

in some extra-spilling after the allocation phase.

In the context of decoupled register allocation of SSA programs, where the assignment

can be solved polynomially, the clustering allocator algorithm can be used for the alloca-

tion phase. After the allocation, we can guarantee that an assignment is possible and the

assignment algorithm will �nd it. The reason is that the interference graph of a program

under (strict) SSA-form is a chordal graph and it will be chordal after an allocation with

the clustering allocator. After the allocation, some nodes will be suppressed from the

graphs or transformed into a set of tiny live ranges but the resulting graph will still be

chordal.

For the same reason, in the context of local memory allocation, when the weighted

graphs are superperfect [LXK11] or proper, the clustering allocator algorithm can be used

to perform allocation with the guarantee that the forthcoming assignment will be done

without further spills.

9.5 Conclusion

In this chapter we have introduced a very interesting heuristic called clustering allocator

which appears to work for both register and local memory allocations.

For register allocation, the results show that the clustering allocator outperforms the

graph coloring and the linear scan and is often close to the optimal. We hope that its

simplicity and its low quadratic-complexity will make it a very serious rival to both linear

scan and graph coloring approaches.

For local memory allocation, the results obtained so far are not exceptional but we do

believe that the clustering allocator can be improved.

Conclusion and Perspectives

This thesis addressed two memory optimizations, namely register allocation and local

memory allocation, performed by the compiler, that aim to optimize the use of registers

and local memories within a computer.

Register allocation has been shown to be NP-complete. Indeed, Chaitin et al. have

shown that the spill-free problem is equivalent to the graph coloring problem [CAC+81].

Moreover, register allocation is not only bounded to the spill-free problem; if the answer

to the spill-free problem is no, the goal of register allocation is also to reduce the impact

of the spilled variables on the execution time of the program (spill minimization).

The local memory allocation problem is NP-complete [VWM04]. While there exist

many heuristics to deal with the local memory allocation problem, little is known about

the optimization problem, its complexity, and its interplay with other optimizations.

1 Contributions

This dissertation makes the following contributions:

1. Split Register Allocation: we designed a split compilation framework dedicated

to register allocation. We experimentally validated the e�ectiveness of split register

allocation and its portability with respect to register count variations, relying on

annotations whose impact on the bytecode size is negligible.

2. Iterated-Optimal Allocation: we have introduced a fast register allocator that

performs allocations that are close to optimal ones, by iteratively solving optimal

sub-problems of the global allocation problem. The iterated-optimal allocation algo-

rithm is pseudo-polynomial (polynomial, when parameters are �xed to small values)

on SSA programs.

3. Experimental Validation of a Decoupled Local Memory Allocation: we

validate the decoupling of the allocation and assignment stages in the context of

111

112 Conclusion and Perspectives

local memory allocation; after an optimal allocation phase relying on a generic and

scalable integer linear program, we demonstrated a total absence of fragmentation-

induced spills during the assignment-phase.

4. Basis of Theoretical Foundations for Decoupled Local Memory Alloca-

tion: we designed and analyzed a new variant of the ship-building problem called

the submarine-building problem. We showed that this problem is NP-complete on

interval graphs, while it is solvable in linear time for proper interval graphs. We

also give a criterion to guarantee the feasibility of the submarine-building problems

for proper interval graphs and then we extend it to weighted not-so-proper interval

graphs.

5. Clustering Allocator: we propose a heuristic-based solution, the clustering allo-

cator, which decouples the local memory allocation problem and aims to minimize

the allocation cost. The clustering allocator algorithms packs the variables or array

blocks into clusters and performs the allocation on these clusters. The clustering

allocator while devised for local memory allocation is a very good solution for the

register allocation problem.

2 Perspectives

We are aware that our work is not exhaustive and could be improved in many ways. Here

we point out some extensions that can complement this work.

1. We would like to implement the iterated-optimal allocation and the clustering al-

locator in the context of a SSA-based register allocator o�ered in a framework like

LLVM. This would help us to validate the interesting results presented in Chapter 4

and Chapter 9. Especially, we would like to apply the clustering allocator algorithm

to the aliased register allocation where the size of the di�erent variables (8, 16, 32,

or 64 bytes) will vary in a limited manner.

2. We have shown that MaxSize can be used as a colorability criterion. We want

to extend this colorability criterion to a more general class of graphs or to �nd a

good solution to approximate weighted interval graphs into weighted NSP graphs,

while achieving good results. In case of a good approximation algorithm, we plan

a complete automation of it and of the clustering allocator algorithm in a research

compiler, relying on integrated polyhedral compilation techniques for data-�ow anal-

ysis, loop transformation and code generation.

2. Perspectives 113

3. In our approach to local memory allocation, we only considered single-threaded code

running on a single local memory, we would like to extend this work to environments

with many threads sharing the same local memory. We are particularly interested

in deterministic thread-level parallelism and synchronous languages where the in-

teractions between live ranges in concurrent threads is well behaved

4. GPU architectures are evolving towards shared memories that are increasingly big-

ger (AMD Fusion, ARM MALI, Intel Larrabee). Programming these architectures

more e�ciently requires more attention to memory locality. In such a context, we

are interested in new architectures with a (possibly partitioned) global address space

and programming models (as HMPP12 and OpenCL), that furnish more support for

software-controlled local memories, and thus help the developer or the compiler

manage these software-controlled local memories in a more transparent way. We

would like to consider these new models in our future work.

12http://www.openhmpp.org

List of Figures

1 La hierarchie mémoire . xiii

1 A typical memory hierarchy con�guration, from the Dragon book [ALSU06] xxii

1.1 An example of register allocation . 6

1.2 The control-�ow graph of an example program. 7

1.3 The variables's live ranges in Figure 1.2(a). 9

1.4 The program in 1.2(a) in SSA form. 10

1.5 An example of aliasing registers's names 13

1.6 The Chaitin et al.'s Allocator . 16

1.7 Iterated Register Coalescing . 17

1.8 Live intervals of the variables in Figure 1.2(a). 18

1.9 Live intervals with holes of the variables in Figure 1.2(a). 19

2.1 Compilation process, from the Dragon book [ALSU06] 25

2.2 Execution of a target program, from the Dragon book [ALSU06] 25

2.3 Interpretation, from the Dragon book [ALSU06] 26

3.1 Counter example to spill set inclusion . 36

4.1 Iterated-optimal compared to other allocators for di�erent register counts . 53

4.2 Iterative-optimal compared to other allocators when the register count is 6 53

6.1 Example: Edge-Detect . 67

6.2 Homogeneous blocks . 68

6.3 Abstract model . 68

7.1 Experimental results for decoupled and integrated approaches. 80

8.1 Two colorings of a weighted graph . 85

8.2 An example of a 4-submarine-coloring . 87

114

115

8.3 An example of a weighted proper interval graph 90

8.4 An example of weighted NSP graph . 92

8.5 Two graphs that are not weighted NSP graphs 93

9.1 clustering allocator compared to other allocators for di�erent register counts106

9.2 clustering allocator compared to other allocators when the register count is 6106

9.3 clustering allocator for local memory allocation 108

List of Tables

3.1 Annotation compression . 40

3.2 Allocation cost normalized to optimal . 41

3.3 Wall-clock speedups of split register allocation 41

4.1 Time spent in milliseconds (ms) to solve ILP-programs 53

7.1 Application codes. 80

7.2 Model parameters. 80

116

Bibliography

[ABS02] Oren Avissar, Rajeev Barua, and Dave Stewart. An optimal memory alloca-

tion scheme for scratch-pad-based embedded systems. ACM Trans. Embed.

Comput. Syst., 1(1):6�26, 2002.

[Aea05] B. Alpern and et al. The Jikes RVM project: Building an open source

research community. IBM Systems Journal, 44(2):399�418, 2005.

[AG01] Andrew W. Appel and Lal George. Optimal spilling for CISC machines with

few registers. In PLDI'01, pages 243�253, Snowbird, Utah, USA, June 2001.

[ALSU06] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Je�rey D. Ullman. Compilers:

Principles, Techniques, and Tools (2nd Edition). Addison Wesley, 2 edition,

August 2006.

[And03] Christian Andersson. Register allocation by optimal graph coloring. In

Proceedings of the 12th international conference on Compiler construction,

CC'03, pages 33�45, Berlin, Heidelberg, 2003. Springer-Verlag.

[ANH99] Ana Azevedo, Alex Nicolau, and Joe Hummel. Java annotation-aware just-

in-time (ajit) compilation system. In Proc. ACM 1999 Conf. on Java Grande,

pages 142�151, 1999.

[AP02] Andrew W. Appel and Jens Palsberg. Modern Compiler Implementation in

Java. Cambridge University Press, October 2002.

[ARM98] ARM. Document No. ARM DDI 0084D, ARM Ltd. ARM7TDMI-S data

sheet, 1998.

[Ayc03] John Aycock. A brief history of just-in-time. ACM Comput. Surv., 35:97�113,

June 2003.

117

118 Bibliography

[BCT94] Preston Briggs, Keith D. Cooper, and Linda Torczon. Improvements to graph

coloring register allocation. ACM Trans. Program. Lang. Syst., 16(3):428�

455, 1994.

[BCZ90] John K. Bennett, John B. Carter, and Willy Zwaenepoel. Adaptive soft-

ware cache management for distributed shared memory architectures. In

In Proceedings of the 17th Annual International Symposium on Computer

Architecture, pages 125�134, 1990.

[BDdD+09] Benoit Boissinot, Alain Darte, Benoit Dupont de Dinechin, Christophe Guil-

lon, and Fabrice Rastello. Revisiting out-of-SSA translation for correctness,

code quality and e�ciency. In CGO'09, pages 114�125, 2009.

[BDGR06a] Florent Bouchez, Alain Darte, Christophe Guillon, and Fabrice Rastello.

Register allocation: What does the NP-completeness proof of Chaitin et al.

really prove? In WDDD'06, Boston, MA, 2006.

[BDGR06b] Florent Bouchez, Alain Darte, Christophe Guillon, and Fabrice Rastello.

Register allocation: What does the NP-completeness proof of Chaitin et al.

really prove? or revisiting register allocation: Why and how. In LCPC'06,

LNCS, New Orleans, Louisiana, 2006. Springer Verlag.

[BDR07a] Florent Bouchez, Alain Darte, and Fabrice Rastello. On the complexity of

register coalescing. In CGO'07, 2007.

[BDR07b] Florent Bouchez, Alain Darte, and Fabrice Rastello. On the complexity of

register coalescing. In Proceedings of the International Symposium on Code

Generation and Optimization, CGO '07, pages 102�114, Washington, DC,

USA, 2007. IEEE Computer Society.

[BDR07c] Florent Bouchez, Alain Darte, and Fabrice Rastello. On the complexity of

spill everywhere under ssa form. In LCTES'07, pages 103�112, 2007.

[BDR08] Florent Bouchez, Alain Darte, and Fabrice Rastello. Advanced conservative

and optimistic register coalescing. In CASES'08, pages 147�156, 2008.

[BEH91] David G. Bradlee, Susan J. Eggers, and Robert R. Henry. Integrating register

allocation and instruction scheduling for riscs. SIGPLAN Not., 26:122�131,

April 1991.

119

[Bel66] L. A. Belady. A study of replacement algorithms for virtual storage comput-

ers. 9th Annual ACM-SIAM Symposium on Discrete Algorithms, 1966.

[BH09] Matthias Braun and Sebastian Hack. Register spilling and live-range splitting

for ssa-form programs. In Oege de Moor and Michael Schwartzbach, editors,

Compiler Construction, volume 5501 of Lecture Notes in Computer Science,

pages 174�189. Springer Berlin / Heidelberg, 2009.

[BHT92] Miklós Biró, Mihály Hujter, and Zsolt Tuza. Precoloring extension. i. interval

graphs. Discrete Math, pages 100�1, 1992.

[Bla06] S. M. Blackburn. The dacapo benchmarks: java benchmarking development

and analysis. In OOPSLA'06, pages 169�190, New York, NY, 2006. ACM.

[BLAA01] Rajeev Barua, Walter Lee, Saman Amarasinghe, and Anant Agarawal. Com-

piler support for scalable and e�cient memory systems. IEEE Trans. Com-

put., 50:1234�1247, November 2001.

[BPMR03] Michael Burns, Gregory Prier, Jelena Mirkovic, and Peter Reiher. Imple-

menting address assurance in the Intel IXP, 2003.

[BSL+02] Rajeshwari Banakar, Stefan Steinke, Bo-Sik Lee, M. Balakrishnan, and Peter

Marwedel. Scratchpad memory: design alternative for cache on-chip memory

in embedded systems. In Proceedings of the tenth international symposium

on Hardware/software codesign, CODES '02, pages 73�78, New York, NY,

USA, 2002. ACM.

[CAC+81] G. J. Chaitin, Mark A. Auslander, Ashok K. Chandra John Cocke, Martin E.

Hopkins, and Peter W.Markstein. Register allocation via coloring. Computer

languages, 6:47�57, 1981.

[CFR+91] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and

F. Kenneth Zadeck. E�ciently computing static single assignment form and

the control dependence graph. ACM Trans. Program. Lang. Syst., 13:451�

490, October 1991.

[Cha82] G. J. Chaitin. Register allocation & spilling via graph coloring. In SIG-

PLAN'82: Proceedings of the 1982 SIGPLAN symposium on Compiler con-

struction, pages 98�105, New York, NY, 1982. ACM.

120 Bibliography

[Che92] Lin Chen. Optimal parallel time bounds for the maximum clique problem

on intervals. Inf. Process. Lett., 42(4):197�201, 1992.

[CMB06] John Cavazos, J. Eliot B. Moss, and Michael F.P. Oâ Boyle. Hybrid opti-

mizations: Which optimization algorithm to use? CC'06, 2006.

[CR95] Martin C. Carlisle and Anne Rogers. Software caching and computation

migration in olden, 1995.

[DLLK04] Victor De La Luz and Mahmut Kandemir. Array regrouping and its use

in compiling data-intensive embedded applications. IEEE Trans. Comput.,

53(1):1�19, 2004.

[ea88] M. Berry et al. The perfect club benchmarks: E�ective performance eval-

uation of supercomputers. International Journal of Supercomputer Applica-

tions, 3:5�40, 1988.

[Fab79] Janet Fabri. Automatic storage optimization. In ACM Symp. on Compiler

Construction, pages 83�91, 1979.

[FCL00] Martin Farach-Colton and Vincenzo Liberatore. On local register allocation.

J. of Algorithms, 37(1):37�65, 2000.

[GA96] Lal George and Andrew W. Appel. Iterated register coalescing. ACM Trans.

Program. Lang. Syst., 18(3):300�324, 1996.

[GEB08] Andy Georges, Lieven Eeckhout, and Dries Buytaert. Java performance

evaluation through rigorous replay compilation. SIGPLAN Not., 43(10):367�

384, 2008.

[GJSB05] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. Java(TM) Language

Speci�cation, The (3rd Edition) (Java (Addison-Wesley)). Addison-Wesley

Professional, 2005.

[Gol04] Martin Charles Golumbic. Algorithmic Graph Theory and Perfect Graphs

(Annals of Discrete Mathematics, Vol 57). North-Holland Publishing Co.,

Amsterdam, The Netherlands, The Netherlands, 2004.

[GR83] Adele Goldberg and David Robson. Smalltalk-80: the language and its im-

plementation. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,

USA, 1983.

121

[HGG06] Sebastian Hack, Daniel Grund, and Gerhard Goos. Register allocation for

programs in SSA-form. In CC'06, pages 247�262, 2006.

[HR00] E.G. Hallnor and S.K. Reinhardt. A fully associative software-managed cache

design. In Computer Architecture, 2000. Proceedings of the 27th International

Symposium on, pages 107 �116, june 2000.

[IBMD07] Ilya Issenin, Erik Brockmeyer, Miguel Miranda, and Nikil Dutt. DRDU: A

data reuse analysis technique for e�cient scratch-pad memory management.

ACM Trans. Des. Autom. Electron. Syst., 12(2):15, 2007.

[Ins97] Texas Instruments. TMS370Cx7x 8-bit microcontroller, Texas Instruments,

1997.

[Iye99] Arun Iyengar. Design and performance of a general-purpose software cache.

In Journal of Parallel and Distributed Computing, 1999.

[JK00] J. Jones and S. N. Kamin. Annotating java class �les with virtual registers for

performance. Concurrency � Practice and Experience, 12(6):389�406, 2000.

[Jon02] Joel Jones. Annotating mobile code for performance. PhD thesis, Champaign,

IL, USA, 2002. AAI3070343.

[Kan01] Mahmut T. Kandemir. Array uni�cation: A locality optimization technique.

In CC'01, pages 259�273, 2001.

[KAP97] I. Kodukula, N. Ahmed, and K. Pingali. Data-centric multi-level blocking.

In PLDI'97, pages 346�357, Las Vegas, Nevada, June 1997.

[KC01] Chandra Krintz and Brad Calder. Using annotations to reduce dynamic

optimization time. In PLDI'01, pages 156�167, New York, NY, 2001. ACM

Press.

[KDH+05] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer, and

D. Shippy. Introduction to the Cell multiprocessor. IBM Journal of Research

and Development, 49(4/5), 2005.

[KRI+01] M. Kandemir, J. Ramanujam, J. Irwin, N. Vijaykrishnan, I. Kadayif, and

A. Parikh. Dynamic management of scratch-pad memory space. In DAC'01,

pages 690�695, 2001.

122 Bibliography

[KS98] K. Knobe and V. Sarkar. Array SSA form and its use in parallelization.

In ACM Conf. on Principles of Programming Languages (PoPL'08), pages

107�120, San Diego, CA, January 1998.

[LCC+07] P. Lesnicki, A. Cohen, M. Cornero, G. Fursin, A. Ornstein, and E. Rohou.

Split compilation: an application to just-in-time vectorization. InGREPS'07,

Brasov, Romania, September 2007.

[Lee98] Corinna G. Lee. UTDSP benchmarks, 1998.

[LFCK99] Vincenzo Liberatore, Martin Farach-Colton, and Ulrich Kremer. Evaluation

of algorithms for local register allocation. In Proceedings of the 8th Interna-

tional Conference on Compiler Construction, Held as Part of the European

Joint Conferences on the Theory and Practice of Software, ETAPS'99, pages

137�152, London, UK, 1999. Springer-Verlag.

[LFX09] Lian Li, Hui Feng, and Jingling Xue. Compiler-directed scratchpad memory

management via graph coloring. ACM Trans. Archit. Code Optim., 6:9:1�

9:17, October 2009.

[LGX05] Lian Li, Lin Gao, and Jingling Xue. Memory coloring: A compiler approach

for scratchpad memory management. In PACT'05, pages 329�338, 2005.

[LNX07] Lian Li, Quan Hoang Nguyen, and Jingling Xue. Scratchpad allocation for

data aggregates in superperfect graphs. SIGPLAN Not., 42(7):207�216, 2007.

[LPP08] Jonathan K. Lee, Jens Palsberg, and Fernando Magno Quintão Pereira.

Aliased register allocation for straight-line programs is NP-compl ete. Theo-

retical Computer Science, 407:258�273, 2008. Preliminary version in Proceed-

ings of ICALP'07, 34th International Colloquium on Automata, Languages

and Programming, pages 680�691, Wroclaw, Poland, July 2007.

[LXK11] Lian Li, Jingling Xue, and Jens Knoop. Scratchpad memory allocation for

data aggregates via interval coloring in superperfect graphs. ACM Trans.

Embed. Comput. Syst., 10:28:1�28:42, January 2011.

[MFA01] Csaba Andras Moritz, Matthew Frank, and Saman P. Amarasinghe. Flex-

cache: A framework for �exible compiler generated data caching. In Revised

Papers from the Second International Workshop on Intelligent Memory Sys-

tems, IMS '00, pages 135�146, London, UK, 2001. Springer-Verlag.

123

[Mot98] Motorola. M-CORE � MMC2001 reference manual, Motorola Corporation,

1998.

[MP02] Hanspeter Mössenböck and Michael Pfei�er. Linear scan register allocation

in the context of ssa form and register constraints. In Proceedings of the 11th

International Conference on Compiler Construction, CC '02, pages 229�246,

London, UK, 2002. Springer-Verlag.

[Nec97] G. Necula. Proof-carrying code. In PoPL'97, January 1997.

[NP95] Cindy Norris and Lori L. Pollock. An experimental study of several cooper-

ative register allocation and instruction scheduling strategies. In Proceedings

of the 28th annual international symposium on Microarchitecture, MICRO

28, pages 169�179, Los Alamitos, CA, USA, 1995. IEEE Computer Society

Press.

[NVI08] NVIDIA. NVIDIA uni�ed architecture GeForce 8800 GT, 2008.

[PF92] Todd A. Proebsting and Charles N. Fischer. Probabilistic register allocation.

In Proceedings of the ACM SIGPLAN 1992 conference on Programming lan-

guage design and implementation, PLDI '92, pages 300�310, New York, NY,

USA, 1992. ACM.

[PM98] J. Park and S.-M. Moon. Optimistic register coalescing. In Proceedings of

the 1998 International Conference on Parallel Architectures and Compila-

tion Techniques, PACT '98, pages 196�, Washington, DC, USA, 1998. IEEE

Computer Society.

[PP05] Fernando Magno Quintão Pereira and Jens Palsberg. Register allocation via

coloring of chordal graphs. In In Proceedings of APLASâ05, Asian Sympo-

sium on Programming Languages and Systems, pages 315�329, 2005.

[PP08] Fernando Magno Quintão Pereira and Jens Palsberg. Register allocation by

puzzle solving. In Proceedings of PLDI'08, ACM SIGPLAN Conference on

Programming Language Design and Implementation, pages 216�226, Tucson,

Arizona, June 2008.

[PQVR+01] Patrice Pominville, Feng Qian, Raja Vallée-Rai, Laurie J. Hendren, and

Clark Verbrugge. A framework for optimizing java using attributes. In

CC'01, LNCS, pages 334�354, London, UK, 2001. Springer-Verlag.

124 Bibliography

[PS99] Massimiliano Poletto and Vivek Sarkar. Linear scan register allocation. ACM

Trans. Program. Lang. Syst., 21(5):895�913, 1999.

[RHAR06] Silvius Rus, Guobin He, Christophe Alias, and Lawrence Rauchwerger. Re-

gion array SSA. In PACT'06, pages 43�52, 2006.

[RWZ88] B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Global value numbers

and redundant computations. In Proceedings of the 15th ACM SIGPLAN-

SIGACT symposium on Principles of programming languages, POPL '88,

pages 12�27, New York, NY, USA, 1988. ACM.

[SB07] Vivek Sarkar and Rajkishore Barik. Extended linear scan: An alternate

foundation for global register allocation. In Shriram Krishnamurthi and

Martin Odersky, editors, CC'07, volume 4420 of Lecture Notes in Computer

Science, pages 141�155. Springer, 2007.

[SBMG00] Mauricio Serrano, Rajesh Bordawekar, Sam Midki�, and Manish Gupta.

Quicksilver: A quasi-static compiler for java. In OOPSLA'00, 2000.

[Sch88] E. Scheinerman. Random interval graphs. Combinatorica, 8:357�371, 1988.

10.1007/BF02189092.

[SL62] S.S. and Lavrov. Store economy in closed operator schemes. USSR Compu-

tational Mathematics and Mathematical Physics, 1(3):810 � 828, 1962.

[SPP07] Anita Saha, Madhumangal Pal, and Tapan K. Pal. Selection of programme

slots of television channels for giving advertisement: A graph theoretic ap-

proach. Inf. Sci., 177(12):2480�2492, 2007.

[SvP01] Jan Sjödin and Carl von Platen. Storage allocation for embedded processors.

In Proceedings of the 2001 international conference on Compilers, architec-

ture, and synthesis for embedded systems, CASES '01, pages 15�23, New

York, NY, USA, 2001. ACM.

[SWLM02] S. Steinke, L. Wehmeyer, B. Lee, and P. Marwedel. Assigning program

and data objects to scratchpad for energy reduction. In Proceedings of the

conference on Design, automation and test in Europe, DATE '02, pages 409�,

Washington, DC, USA, 2002. IEEE Computer Society.

[TE04a] S.A.A. Touati and C. Eisenbeis. Early periodic register allocation on ilp

processors. Parallel Processing Letters, 14(2), June 2004.

125

[TE04b] Sid-Ahmed-Ali TOUATI and Christine Eisenbeis. Early Periodic Register

Allocation on ILP Processors. Parallel Processing Letters, World Scienti�c,

14:n2, June 2004.

[THS98] Omri Traub, Glenn Holloway, and Michael D. Smith. Quality and speed in

linear-scan register allocation. In PLDI'98, pages 142�151, New York, NY,

1998. ACM Press.

[UB03] Sumesh Udayakumaran and Rajeev Barua. Compiler-decided dynamic mem-

ory allocation for scratch-pad based embedded systems. In CASES'03, pages

276�286, 2003.

[UDB06] Sumesh Udayakumaran, Angel Dominguez, and Rajeev Barua. Dynamic

allocation for scratch-pad memory using compile-time decisions. ACM Trans.

Embed. Comput. Syst., 5(2):472�511, 2006.

[VWM04] Manish Verma, Lars Wehmeyer, and Peter Marwedel. Dynamic overlay of

scratchpad memory for energy minimization. In Proceedings of the 2nd

IEEE/ACM/IFIP international conference on Hardware/software codesign

and system synthesis, CODES+ISSS '04, pages 104�109, New York, NY,

USA, 2004. ACM.

[Wil96] Tim Wilkinson. Ka�e: A free jit virtual machine to run java code, 1996.

[WM05] Christian Wimmer and Hanspeter Mössenböck. Optimized interval splitting

in a linear scan register allocator. In VEE'05, pages 132�141, New York, NY,

2005. ACM.

[Wol95] Michael Joseph Wolfe. High Performance Compilers for Parallel Computing.

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1995.

[YG87] M. Yannakakis and F. Gavril. The maximum k-colorable subgraph problem

for chordal graphs. Information Processing Letters, 24(2):133�137, 1987.

