

Soutenance de thèse

Alexandre Delga

Du phénomène quantique au dispositif macroscopique, transport électronique dans les détecteurs inter-sousbandes

> Vincent Berger Mathieu Carras Philippe Christol Laetitia Doyennette Jean-Yves Duboz Robson Ferreira Emmanuel Rosencher Angela Vasanelli Virginie Trinité

Jury

Directeur de thèse Encadrant Rapporteur Invitée Rapporteur Examinateur Président Examinatrice Invitée

Infrared

Technological motivations

Introduction

Signal

Bruit

Detection System

State of the art

Quantum Wells Detectors: QWIP

Quantum Wells Detectors: QCD

From microscopic to macroscopic

- Introduction
- Signal
- Noise
- Perspectives

Transport models hierarchy

Wannier-Stark hopping: states

W-S hopping: diffusion

W-S hopping: current

W-S hopping: responsivity

Hybrid model: principle

- 2nd order tunneling and absorption between *pairs of localized states*
 - Generalization of Kazarinov and Suris formalism with energy conserved
 - Induces an effective "tunnel diffusion time"
 - Rabi coupling calculated as 1st order perturbation

DD

Hybrid model: results

From microscopic to macroscopic

- Introduction
- Signal
- Noise
- Perspectives

Noise in QWIPs: issues

- Gain and capture probability derivation
- Static or dynamic resistance?
- Macro independence without micro
- Adequate transport model & scale?

Johnson << Shot & gain adjustable Noise: measured quantity

Near equilibrium?

Reintroduce fluctuation: master equation

Intersubband scattering

$$\frac{dn_i}{dt} = -\frac{n_i}{\tau_i} + \sum_{j \neq i} \frac{n_j}{\tau_{ji}}$$
$$0 = L\underline{n}$$
$$\underline{n} = (n_1, n_2, n_3, n_4, n_5)$$

Stochastic process

 $p(\underline{n},t)$

Intrasubband relaxation

→ Markov process $\frac{dp(\underline{n},t)}{dt} = -\Gamma_{\underline{n}}p(\underline{n},t) + \int d\underline{n}' w_{\underline{n'},\underline{n}} p(\underline{n'},t)$

1st moment : mean values signal

2nd moment : correlations

noise

Micro-macro link: Ramo-Shockley theorem

Results

Circuit theory

Intersubband transitions: vacuum diodes

$$G_{ij} = \frac{2q\left(\left|\left\langle i_{i \rightarrow j} \right\rangle_{0}\right| + \left|\left\langle i_{j \rightarrow i} \right\rangle_{0}\right|\right)}{4k_{B}T}$$

Noise equivalent circuit

Contacts : QCDs QWIPS

$$S_I = 4k_B T G_{eq}$$

Results

What for?

- Introduction
- Signal
- Noise
- Perspectives