

Soutenance de thèse

Alexandre Delga

Du phénomène quantique au dispositif macroscopique, transport électronique dans les détecteurs inter-sousbandes

Sous l'encadrement de

Vincent Berger Laetitia Doyennette

Mathieu Carras Virginie Trinité

Infrared detection

000000000000

Atmospheric transparency

Prospects

 \mathbf{O}

Noise

Technological motivations

Visible	Band II	Η ₂ 0	Band III	
0.6 µm	3.9 µm	6.2 μm	<i>10.8 µm</i>	
Introduction	Current	Noise	Prospects	3

Detection System

Technologies

Quantum Cascade Detectors

Du phénomène quantique au dispositif macroscopique, transport électronique dans les détecteurs inter-sousbandes

Noise

Prospects

- Current
 - Historical model
 - Theoretical Framework
 - Hybrid model

Noise

Introduction

Shot and Johnson noise

Current

- New approach
- Prospects

Du phénomène quantique au dispositif macroscopique, transport électronique dans les détecteurs inter-sousbandes

Macroscopic device

- Current
 - Historical model
 - Theoretical Framework
 - Hybrid model
- Noise

Introduction

 \mathbf{O}

Shot and Johnson noise

Current

- New approach
- Prospects

QCD @ 15 μm

Prospects

Noise

Signal related quantities

QCD @ 15 µm Current density (A / cm²) **Dark conditions 10**¹ **10**⁻¹ 80 10⁻³ empérature 60 **10⁻⁵** 40 3 20 **10⁻⁷** 10⁻⁹ -2.0 -3.0 -1.0 0.0 1.0 -4.0 Bias (V)

 Introduction
 Current
 Noise
 Prospects

 ••••••
 ••••••
 ••••••
 •••••

Signal related quantities

Wannier-Stark hopping: Hamiltonian

Wannier-Stark hopping: rate equation

 Introduction
 Current
 Noise
 Prospects

 •••••••
 •••••••
 ••••••
 12

Wannier-Stark hopping: current

Wannier-Stark hopping: responsivity

Transport models

Hamiltonian

$$H_{z} = \frac{p_{z}^{2}}{2m^{*}} + H_{het} + eFz + \delta H$$

- Ω Coupling ≤ 5 meV
- Γ Scattering ~ 10 meV
- **Detuning** Δ any
- Miniband **Bloch states** I i 5B 5C i **4**B 4C Wannier-3B I 2B 3C 1A 2C 1B Localized Wannier

Wacker et al, PRL 80, 369 (1998)

16

Prospects

 \mathbf{O}

Ω

Stark

states

states

Wannier-Stark hopping: current

Noise

Current

Introduction

Callebaut et al, JAP 98, 104505 (2005)

17

Prospects

Hybrid model: results

Du phénomène quantique au dispositif macroscopique, transport électronique dans les détecteurs inter-sousbandes

- Current
 - Historical model
 - Theoretical Framework
 - Hybrid model

Noise

Introduction

Shot and Johnson noise

Current

- New approach
- Prospects

Prospects

Noise

General ideas

Current

Introduction

00000

1/f (technological) none in ISB detectors

• Shot noise
$$S_I = 2eI$$

Noise

 Thermal noise Nyquist theorem

$$S_I = \frac{4k_B T}{R}$$

Prospects

 \mathbf{OOO}

Shot and Johnson noises

Two facets of a single phenomenon

 \mathbf{OOO}

Reintroduce fluctuation: master equation

Intersubband scattering

$$\frac{dn_i}{dt} = -\frac{n_i}{\tau_i} + \sum_{j \neq i} \frac{n_j}{\tau_{ji}}$$

Stochastic process

$$p(\underline{n},t)$$

$$\underline{n} = (n_1, n_2, n_3, n_4, n_5)$$

Intrasubband relaxation

➔ Markov process

$$\frac{dp(\underline{n},t)}{dt} = -\Gamma_{\underline{n}}p(\underline{n},t) + \int d\underline{n'} w_{\underline{n'},\underline{n}} p(\underline{n'},t)$$

Current

1st moment : mean values signal

2nd moment : correlations

Noise

noise

Prospects

Delga et al, PRB 85, 245414 (2012)

Introduction

Micro-macro link: Ramo-Shockley theorem

Current

...........

00000

Current = sum of hops

 $\mathbf{O}\mathbf{O}\mathbf{O}$

$$S_{\rm I}(\omega) = 2e^2 \sum_{i,j,k,l} \langle w_{kl} \rangle_0 \alpha_{ij} \alpha_{kl} \left[\delta_{ij,kl} - \Gamma_{ij} \sum_s M_{is}(\omega) \left(\frac{\langle n_s \rangle_0}{N} - \delta_{ls} \right) \right]$$

poissonian scaling factor Conservation of carriers
Noise Prospects

Results

- Johnson and shot limits
- Same theory for signal & noise
- Quantitative agreement
- Works for other unipolar detectors

Noise

Delga et al, PRB **85**, 245414 (2012)

Current

Introduction

Prospects

 \mathbf{OOO}

Circuit theory

- **Microscopic source:** vacuum diodes
- Scaling factor: noise equivalent circuit
- **Insightful for design**

Introduction

Du phénomène quantique au dispositif macroscopique, transport électronique dans les détecteurs inter-sousbandes

Imaging prospects

Thermal Imaging

Catherine XP τ_{int}=7ms NETD=40mK QWIP@75K Ideal QCD@85K (80K)

Hyperspectral imaging

Introduction

Current

Meteosat $\tau_{\text{int}}=42\text{ms}$

Landsat $\tau_{int}=16ms$

Plasmonics

Plasmonics for QCDs

- Enhance responsivity
- Reduce detector volume
- Multispectral
- Polarization sensing

QCDs for Plasmonics

- III-V AlGaAs/GaAs technology
- Lorentzian shaped absorption

Current

Model system

Introduction

• Tunable thickness

Laux et al, Nature Photonics 2, 161 (2008)

Prospects

30

Noise

On chip spectroscopy

$$SNR \propto \frac{\Delta \Phi}{\sqrt{\Phi}} \propto \sqrt{\Phi}$$

Rise of QCLs

- Room T
- Watt power
- Tunability

Need for QCDs

Unsaturable

Introduction

 \mathbf{O}

- Good sensitivity
- Broadband capability
- Integrated QCD/QCL

Current

Prospects

Noise

Conclusion

Noise

- QCD signal & noise understood quantitatively
 - Coherence is not infinite

Introduction

- Shot and Johnson noises: limit visions of same phenomenon
- future of QCDs : spectroscopy, plasmonics

Current

Acknowledgements and thanks

L. Doyennette, V. Berger, G. Leo, S. Ducci, I. Favero, A. Andronico, P. Ghiglieno, M. Savanier, C. Baker, A. Orieux, D. Parrain, S. Mariani, C. Ozanam, G. Boucher

MPQ

M. Carras, V. TrinitéA. Nedelcu, P. BoisE. Costard, B. VinterV. Guériaux, A. BérurierM. Naurois, G. Maisons

Introduction

L.A de Vaulchier F.R. Jasnot

Current

H. Schneider H.C. Liu S. Rousset, C. Sirtori, A. Vasanelli, A. Servouze, J. Mercier

Prospects

 $\bigcirc \bigcirc \bigcirc \bigcirc$

A. Gomez, E. Lhuillier T. Antoni, A. Buffaz

A. Ghrib, M. Andia G. Altamura, S. Fall

Noise

0000000

Ľ

ш

PARIS 7

THz QWIP

Wannier-Stark hopping: scattering

Current

..........

Introduction

 $\bullet \bullet \bullet \bullet \bullet \bullet$

Noise

0000000

35

Prospects

Wannier-Stark hopping: scattering

Current

00000000000

Introduction

 $\bullet \bullet \bullet \bullet \bullet \bullet$

Noise

0000000

36

Prospects

Hamiltonian

$$H_{z} = \frac{p_{z}^{2}}{2m^{*}} + H_{het} + eFz + \delta H$$

- Ω Coupling ≤ 5 meV
- Γ Scattering ~ 10 meV
- Δ Detuning any

Noise in QWIPs: issues

Current

- Gain and capture probability derivation
- Static or dynamic resistance?
- Macro independence without micro
- Adequate transport model & scale?

Johnson << Shot & gain adjustable Noise: measured quantity

Prospects

 \mathbf{OOO}

Noise

Correlations

Ideal QCD for imaging

Ideal QCD: Physics

- Electronics: ideal
 - Optical Well
 - Perfect Cascade

Optics: real

Introduction

• Grating = Fabry-Perot

$$E_{z} = \frac{tE_{i}}{1 - re^{-(\alpha + \beta)\lambda_{0}}e^{i\Delta\phi}}$$

Current

Noise

Keep things simple

41

Prospects

Ideal QCD: implementation

Broadband detector

Integrated QCD/QCL

