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Abstract

In this thesis, I discuss two main subjects coming from biology and I propose two models
that mimic the behaviours of the biological networks studied.

The �rst part of the thesis deals with intracellular transport of molecules. Proteins,
RNA and, generally, any kind of cargo molecules move freely in the cytoplasm: intracel-
lular transport as a consequence of Brownian motion is classically modelled as a di�usion
process. Some speci�c proteins, like the tumour suppressor p53, use microtubules to fa-
cilitate their way towards the nucleus. Microtubules are a dense network of �laments that
point towards the cell centre. Motor proteins bind to these �laments and move along,
bearing a cargo bound to them. I propose a simpli�ed bi-dimensional model of nucle-
ocytoplasmic transport taking into account the kinetic processes linked to microtubule
transport. Unlike in other models we know, I represented the position of a single MT
�lament. This model is given by a system of partial di�erential equations which are cast
in di�erent dimensions and connected by suitable exchange rules. A numerical scheme
is introduced and several scenarios are presented and discussed to answer to the ques-
tion of which proteins bene�t from microtubule transport, depending on their di�usion
coe�cients.

In the second part of the thesis, I design and analyse a physiologically based model
representing the accumulation of protein p53 in the nucleus after triggering of the sentinel
protein ATM by DNA damage. The p53 protein plays an essential role in the physiological
maintenance of healthy tissue integrity in multicellular organisms (regulation of cell cycle
arrest, repair pathways and apoptosis). Firstly, I developed a compartmental ODE model
to represent the temporal dynamics of the protein. Since the p53 protein is known for its
oscillatory behaviour, I performed a numerical bifurcation study to verify the existence,
in the model, of stable periodic solutions. Next, I have expanded the model by the
addition of a spatial variable and analysed the spatio-temporal dynamics of p53. After
checking the existence of oscillations in the spatial setting, I have analysed the robustness
of the system under spatial variations (di�usion and permeability coe�cients, cell shape
and size).

Keywords: Mathematical Models, Cellular biology, Intracellular dynamics, Partial Dif-
ferential Equations, Signalling Pathways, p53
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Riassunto

In questa tesi ci interessiamo a due diversi sistemi biologici, per ciascuno dei quali intro-
duciamo un modello matematico, al �ne di riprodurne il comportamento.

Nella prima parte della tesi, ci interessiamo al trasporto intracellulare. Proteine, RNA
e, in generale qualsiasi tipo di cargo si muove liberamente nel citoplasma: il trasporto
intracellulare come conseguenza del moto browniano viene classicamente modellizzato
come un processo di di�usione. Alcune speci�che proteine, come la proteina soppres-
sore del tumore p53, utilizzano, oltre alla di�usione, il trasporto lungo i microtuboli.
I microtubuli costituiscono una �tta rete di �lamenti che si espande nel citoplasma in
modo radiale da un punto situato vicino al nucleo della cellula. Alcune proteine, dette
proteine motore, si legano a questi �lamenti e li percorrono trasportando un carico che
rilasciano in prossimità del nucleo. Per rappresentare questo tipo di comportamento,
proponiamo un modello di trasporto bidimensionale tenendo conto dei processi cineteci
legati al trasporto lungo i microtubuli. Rispetto ad altri modelli della letteratura, de�ni-
amo la posizione di un singolo �lamento. Il nostro modello è composto da un sistema
di equazioni di�erenziali, de�nite su più dimensioni e accoppiate attraverso appropriate
regole di scambio. Introduciamo uno schema numerico attraverso il quale simuliamo di-
versi scenari per cercare di capire quali proteine possono trarre bene�cio dal trasporto
lungo i microtubuli, a seconda del loro coe�ciente di di�usione.

Nella seconda parte della tesi, introduciamo ed analizziamo un modello, basato sulla
�siologia, che rappresenta l'accumulo della proteina p53 nel nucleo dopo l'attivazione di
ATM, dovuta a danni subiti dal DNA. La proteina p53 gioca un ruolo essenziale nel
mantenimento dei tessuti sani e dell'integrità degli organismi pluricellulari (regolazione
dell' arresto del ciclo cellulare, dei processi di riparazione e di apoptosi). In primo luogo,
sviluppiamo un modello ODE a compartimenti per descrivere le dinamiche temporali
della proteina. Poiché la proteina p53 è nota per il suo comportamento oscillatorio, svol-
giamo, numericamente, un'analisi delle biforcazioni del sistema, in modo da veri�care
l'esistenza, per il nostro modello, di una soluzione periodica stabile. Successivamente, es-
pandiamo il modello aggiungendo la variabile spaziale, cosa che ci permette di analizzare
la dinamica spazio-temporale di p53. Veri�chiamo l'esistenza di oscillazioni nel con-
testo spaziale e analizziamo la robustezza del sistema rispetto a variazioni dei parametri
spaziali (coe�cienti di di�usione, di permeabilità, dimensioni della cellula).

Parole chiave: Modelli Matematici, dinamiche intracellulari, equazioni di�erenziali alle
derivate parziali, pathways di segnalazione, p53.

iv



Résumé

Dans cette thèse, je me suis intéressée à deux systèmes biologiques di�érents, pour chacun
desquels j'ai introduit un modèle mathématique, a�n d'en reproduire les comportements
observés expérimentalement.

Dans la première partie de cette thèse, j'ai étudié le transport intracellulaire des
molécules. Les protéines, les ARN et, en général, tout type de molécule-cargo, se dépla-
cent librement dans le cytoplasme : le transport intracellulaire à la suite du mouvement
brownien est classiquement modélisé comme un processus de di�usion. Certaines pro-
téines, telles la protéine p53 `suppresseur de tumeur', utilisent, en plus de la di�usion,
le transport le long des microtubules. Les microtubules forment un réseau dense de
�laments dans le cytoplasme qui s'étend radialement à partir d'un point situé près du
noyau de la cellule. Certaines protéines, connues sous le nom de protéines motrices, se
lient à ces �laments et les parcourent longitudinalement en transportant une cargaison
qu'elles relâchent près du noyau. Pour représenter ce type de comportement, je propose
un modèle de transport à deux dimensions qui prend en compte les processus cinétiques
liés au transport le long des microtubules. Comparé à d'autres modèles connus de la
littérature, je précise la position d'un �lament unique. Ce modèle est composé d'un
système d'équations di�érentielles dé�nies en plusieurs dimensions et couplées par des
appropriées règles d'échange. J'introduis ensuite un schéma numérique à l'aide duquel je
résous plusieurs scénarios dont les résultats sont présentés et discutés dans cette partie.
Le but de ces di�érentes simulations est de mieux comprendre quelles protéines peu-
vent béné�cier du transport le long des microtubules, en fonction de leur coe�cient de
di�usion.

Dans la deuxième partie de la thèse, j'introduis et j'analyse mathématiquement un
modèle, basé sur la physiologie, qui représente l'accumulation de la protéine p53 dans le
noyau après activation de l'ATM par des dommages à l'ADN. La protéine p53 joue un rôle
essentiel dans le maintien de l'intégrité des tissus sains dans les organismes multicellu-
laires (régulation des processus d'arrêt du cycle cellulaire, de réparation et apoptose). En
premier lieu, j'ai développé un modèle EDO par compartiments pour décrire la dynamique
temporelle de la protéine. Puisque la protéine p53 est connue pour son comportement os-
cillatoire, j'ai procédé à une analyse théorique et numérique des bifurcations du système,
a�n de véri�er l'existence dans le modèle de solutions périodique stables. Par la suite,
j'ai étendu le modèle en ajoutant une variable d'espace, ce qui permet d'analyser la dy-
namique spatio-temporelles de p53. Véri�ant l'existence d'oscillations dans un contexte
spatial, j'ai examiné la robustesse du système par rapport aux variations des paramètres
spatiaux (coe�cients de di�usion et de perméabilité, forme et taille des cellules).

Mots-clés: modèles mathématiques, dynamique intracellulaire, équations aux dérivées
partielles, voies de signalisation, p53.
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Introduction

Nowadays, biology increasingly needs mathematical models to simulate phenomena which
occur on a microscopic scale. Mathematics provides the main framework to collect and
organize data. Furthermore, mathematical models can be used to test and suggest new
models that can explain biological phenomena. Mathematical systems can also provide
clues for experimental studies, based on the model results.

In this Thesis we will work on some biological problems, approaching them from
a mathematical point of view. In particular, we will focus our attention on problems
related to the dynamics of biological pathways at the single cell level.

Signals and space

In biology, a signalling pathway is a process by which one or more molecules pass a signal
within the cell. For example, an external stimulus received by the secretion of hormones
or other chemical factors, must be transduced through the cell in order to obtain a
change in cell function. Also internal signals, like a damage signal, must be translated
and produce a cellular response, like promoting repair mechanisms or activating mitosis
or apoptosis. All these di�erent signals are transmitted through pathways which consist
in a series of chemical reactions. Enzymes catalyse these reactions and produce molecular
modi�cations of their substrates. Biological pathways may be elaborate since they may
involve several proteins or may be activated by di�erent stimuli. We report, in Figure 1,
a generic example of pathway induced by an external stimulus.

If we look at the current modelling literature that faces problems of signalling path-
ways, the main method used to explore the subject is based on the analysis of the
temporal dynamics of the network [56, 105, 115]. In these models, the cell is commonly
represented as a homogeneous environment where proteins and enzymes are distributed
everywhere. Therefore, the reactions between proteins can occur at each point of the cell
and the localization of processes is not taken into account. This approach corresponds to
the use of ordinary di�erential equations, that allow the analysis of the temporal evolution
of complexes systems. Indeed, ODEs can be quite easily treated numerically. Therefore
large ODE systems, modelling complex networks, can give some insights about the possi-
ble cellular responses. Sometimes, of course, qualitative properties of those systems can
be investigated also analytically.

In recent years, however, more and more studies have revealed the importance of
dealing with problems of intracellular signalling considering their evolution both in space

1



Figure 1: Biological pathways. c©National Human Genome Research Institute

and time.
Emerging evidences of the spatial organizations of enzymatic reactions and the spa-

tial gradients that can arise, were recently discussed [4, 64]. A relevant example is signal
transduction: a signal arrives at the cytoplasmic membrane and, often by phosphoryla-
tion cascades, must be transmitted over long distances, for instance to the nucleus [101].
Meyers et al. proved through mathematical modelling, that cell signalling pathways can
be turned on and o� in response to changes in cell shape and size [88]. Indeed, when
dealing with activators (i.e. kinases) bound to the plasma membrane, versus cytoplasmic
de-activator (i.e. phosphatases), cell growth leads to a decreased proximity to the acti-
vator and the substrate is deactivated. This type of gradients have been experimentally
observed by Nalbant et al. [94]. Cell polarization due to protein gradients and prop-
agation of fronts can also explain cell motility, as it has been shown in [92]. We also
refer to the works of Veglio et al. [133] and of Goehring et al. [42] that deal with cell
polarization. The spatial features of intracellular signalling that can explain such global
behaviours, as cell motility, are thus becoming an attractive subject of study.

In this Thesis we follow this line of research and will consider intracellular phenomena
as spatially localised.

The main contributions of this Thesis

This work is divided into two parts. In the �rst part we deal with transport of proteins
towards the nucleus. We are interested, on the one hand, in the import pathway that
allows molecules to access the nucleus. On the other hand, we want to test which
proteins may bene�t of active transport through motor proteins that walks along the

2
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cell cytoskeleton, in particular along microtubules. A few models exist that treat each
of these subjects, together or separately, as [15, 28, 29, 121, 122]. We introduce a new
model and analyse various possible scenarios by numerical simulations.

In the second part of this work we focus on the cycle of a speci�c nuclear protein, the
tumour suppressor factor p53. Also in this case, there are some mathematical models
that reproduce the temporal dynamics of the p53. Very recently, Sturrock et al. begin
to investigate the spatial dynamics of the protein [128, 129]. Here, we propose a new
model that accounts for localizations of the reactions and directionality of transport.
We approach it at two di�erent levels. We study the temporal dynamics of the network
through a compartmental system of ordinary di�erential equations. This let us analyse
di�erent scenarios, the existence of bifurcations and test the validity of our model in a
simpler way. Then, we introduce the spatial variable and we propose a numerical analysis
of the response of the system over variations of the spatial constraints.

In the following of this introduction we detail further the themes approached in this
thesis, we summarize the principal results and we give a sketch of the methods we used
to obtain them. We will stick to the essential information with the purpose to present
only the main ideas and contributions of this work.

Part I - Nucleocytoplasmic transport

First we investigated the cellular transport from two di�erent points of view. We con-
sidered proteins that are directed to the nucleus and we took into account the pathway
necessary to their import. We also considered the embedded structural support that the
cell provides, represented by the cytoskeleton.

The signalling pathway that allows molecules to access the nucleus has been by now
identi�ed. Molecules having a molecular mass larger than ∼ 40kDa are actively trans-
ported into the nucleus, by means of chaperones that carry through the nuclear membrane
the proteins that are too big to passively di�use through the pores of the nuclear envelope
(Nuclear Pores). This process is based on a complex signalling pathway that 1) controls
which proteins are imported into the nucleus, 2) dictates the directionality of transport
and 3) supplies the energy necessary for active transport.

Before gaining the access to the nucleus, nuclear proteins have to di�use within the
cytoplasm, covering large distances, in order to approach to the nuclear membrane. This
is because proteins are synthesised by ribosomes, that are located in a homogeneous
manner within the cytoplasm. The localization of molecules within the cytoplasm is
partially handled by the cytoskeleton of the cell. Depending on protein molecular mass,
the mobility of a molecule can be highly reduced. Therefore the cytoskeleton of the cell
represents a structural support for proteins displacements. The cytoskeleton is composed
by two main kinds of �laments: actin �laments and microtubles. Microtublules are
organized in a radial network that span the whole cytoplasm and has its centre next to
the nucleus. Large proteins, organelles and viruses are known to use microtubules as a
high-road to move faster in the cytoplasm.

So, In the �rst part, we try to understand if this microtubules transport is e�ective
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and also which proteins, among those supposed to move towards the cell nucleus, may
bene�t of transport along microtubules. To do this, we propose a model that take into
account a generic cargo protein that is able to di�use and to bind to motor proteins that
walk along the microtubule. Let Ω = Ωc ∪Ωn be a rectangular domain, divided into two
sub-domains, as in Figure 2. Let us consider Ωc as the cytoplasmic domain and Ωn as the
nuclear one. Let us suppose Ωc thin enough to contain a unique microtubule �lament.
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Figure 2: Area of the cell where intracellular transport is modelled: Ωc ∪Ωn, cytoplasm
and nucleus. Γnc = ∂Ωc ∩ ∂Ωn is the common boundary of the two compartments. The
yellow rectangle (I×J = [xIn, xFi]× [y0− δ, y0+ δ]) represents the attraction area of the
microtubule �lament, the red strip is the microtubule, positioned in y0.

We localize the microtubule by de�ning an attraction area where proteins can bind to
it, that we coloured in yellow in �gure 2. Let us introduce the following variables: let u
be the concentration of the free cargo protein, v the concentration of cargo bound to the
motor protein and W the complex cargo+motor protein bounded to the microtubule.
We cast u and v in two dimensions and we suppose that both species are able to freely
di�use. On the other hand, we consider W in one-dimension and we suppose that it
moves exclusively by transport, towards the nuclear compartment. We suppose that the
exchange between di�erent species is regulated by kinetic reactions that we model using
the Mass Action Law. Under the previous assumptions, the u and v species satisfy a
reaction-di�usion equation, whileW is controlled by a convection equation modelling the
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transport along the microtubule with a steady velocity c > 0. Our model reads:






∂u
∂t

= du∆u− ku+ k−v, in Ωc,

∂v
∂t

= dv∆v + ku− k−v − k1v1IxJ + k−1w
1IxJ
|J|

+cW (xFi)δ0(x− xFi, y − y0), in Ωc,

∂W
∂t

+ c∂W
∂x

= −k−1W + k1
∫

J
vdy, in ]xIn, xFi[.

(1)

Here du and dv are the di�usion coe�cients of the di�usive species and the k, k−, k1, k−1

are the kinetic constant of the reactions. More details about the notations and the choice
of parameters will be given in Section 2.1.2. The equations assure the conservation of
the mass. We impose periodic boundary conditions on the long sides of the domain and
we close the system by imposing the boundary conditions:







∂u
∂n

= 0, ∂v
∂n

= 0, on Γ4,

du
∂u
∂n

+ puu = 0, dv
∂v
∂n

+ pvv = 0, on Γnc,

w(xIn) = 0.

(2)

By this boundary conditions we suppose that on Γ4 (the plasma membrane) no �ux
is allowed, while on Γnc (the nuclear membrane) there is a �ux proportional to the
species concentration. We developed a numerical approximation scheme based on �nite
di�erences. We tested the accuracy of the proposed scheme and we analysed, by numerical
simulations, di�erent possible scenarios.

Principal results

System (1)-(2) is de�ned only on the domain Ωc. This is because, as a �rst step, we were
interested in understanding which molecules increase their �ow in the direction of the
nucleus, if transport along microtubules is allowed. We di�erentiated molecules by their
di�usion coe�cient, while the velocity along the microtubules is �xed and is the same
for every molecule, since it depends on the speed of motor proteins. We also considered
di�erent detachment rates from the microtubule, in order to quantify the increase on the
total �ow with respect to the ability of the molecule to stay on the microtubule. We
found, as expected, that the longer the cargo is bound to the microtubule, and the lower
its di�usive mean time, the higher �ow towards the nucleus is observed. Thus the bene�t
of microtubule transport depends on the mobility of the cargo, expressed by its di�usion
coe�cient, and on its capability to attach and stay on the �lament. We found that
the delivery towards the nucleus is enhanced for proteins having a di�usion coe�cient
< 6µm2s−1 (which corresponds to a mass of about 200kDa [55]), if the detachment
rate is low enough. More technical and quantitative details about our results, as well as
several �gures of our simulations, can be found in chapter 2.
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As a next step, we considered the whole pathway of nuclear import, thus inscribing
our model in the bi-compartmental domain Ωc ∪Ωn represented in Figure 2. The model
of the import pathway that we used in this thesis and that we do not detail here for sake
of simplicity, has been proposed by Cangiani et al. [15]. Unlike the model in [15], where
the transport along microtubules is described by a vector �eld, we coupled this model
with system (1) and the result is a system of eight reaction-di�usion equations cast in
two dimension and coupled with the one-dimensional convection equation of system (1).
It is important to say that the boundary conditions expressed in (2) changes in the new
model. On Γnc, the �ux of u and v is set to zero, since by now, only the imported
molecules traverse the nuclear membrane. In order to be imported, proteins have to
bind to a chaperone (importin protein) and only the complex cargo+importin is able to
traverse the nuclear membrane Γnc. Furthermore, the coupling of the two models has
been done supposing that the cargo u binds exclusively to the motor protein (giving v) or
to the importin protein. Using these di�erent boundary conditions we observed that the
cargo concentration that accumulates inside the nucleus is lower when the cargo proteins
are transported along the microtubule. Indeed, since the cargo can be carried on the
microtubule, or outside the cytoplasm by di�erent carriers, a competitive mechanism is
established and the import of the cargo is delayed. Only proteins having a very low
mobility (> 1µm2s−1) bene�t of enhanced transport towards the nuclear membrane.
These results are detailed and discussed in chapter 3.

Part II - The protein p53

In the second part of the Thesis we introduced a model for a speci�c cargo protein, called
�p53�. This protein is known for its biological relevance in cell survival. Indeed, when
a damage to DNA is detected, p53 is activated. This protein has multiple roles but in
general, one can say that it acts as a controller. Indeed, p53 blocks the cell cycle in order
to avoid cell division, starts reparation pathways and, if needed, triggers apoptosis (cell
suicide).

The protein p53 is a nuclear protein. When it is in an active state, it accumulates
in the nucleus, where acts as a transcription factor and regulates the expression of many
genes. When it is inactive, it is quickly degraded and, generally, poorly imported into
the nucleus.

Notably, when activated, the level of p53 starts oscillating [70]. Initially the p53
accumulates in the nucleus and its half-life rises. This can be observed 30 minutes after
the damage has been induced to the cell. After 5-6 hours the concentration of p53 in the
nucleus decreases again, but if the damage has not been repaired, a second cycle starts
over. These oscillations are due to the negative feedback that p53 has with its major
antagonist, the protein Mdm2. On the one hand, Mdm2 is responsible of the degradation
of p53, on the other hand, p53 produces the mRNA of Mdm2. Together with this negative
feedback, we need a second trigger for the oscillations. Indeed, mathematical models show
that, in order to produce sustained oscillations in a negative-feedback system, a positive
feedback or a delay on the negative one is needed. There exist several mathematical
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models of p53 and each of them propose an explanation for the oscillations either by
a positive feedback, either with an explicit time delay. Most of the existing models
use ordinary di�erential equations to represent the network of p53. One of the main
weakness of these models is the absence of a localization of the di�erent reactions. Few
models consider at least one species (p53 or Mdm2) localised in the nucleus and in the
cytoplasm. But none of these models distinguishes a nuclear and a cytoplasmic variable
for each considered species. On the contrary, our �spatial� point of view brought us
to consider, for each variable, a nuclear and a cytoplasmic form. This let us 1) to
localize every process, 2) to represent the nuclear accumulation of p53 and 3) to include
the directionality of transport between the nucleus and the cytoplasm. Furthermore,
thinking to possible future extension of the model, in terms of therapeutic applications,
it is important to represent the nucleus, i.e. the location where p53 acts and how long it
takes to accumulate and to exit from it.

Let us introduce the variables of the system we propose. We consider concentrations
for p53, Mdm2, the mRNA of Mdm2 and the phosphorylated form of p53, p53p. We set
ū0 = [p53], ū1 = [Mdm2], ū2 = [Mdm2RNA], ū3 = [p53p]. We distiguish the nuclear
and cytoplasmic concentrations by means of the indexes (n),(c). Let us set a nuclear
and a cytoplasmic compartment that we will call Ωn and Ωc. The two compartments
have a common boundary that we call Γnc. Every species is supposed to di�use freely
in both compartments. We also suppose that every species is produced and degraded
in the appropriate compartment. Finally we represent several enzymatic reactions that
are known to occur between the di�erent species considered. We used the classical quasi
Steady State approximation to obtain the expression of the enzymatic reactions. In the
nuclear compartment Ωn, the model reads:







∂ū0
∂τ = D̄0∆ū0 − kubū1

ū0
(Kub+ū0)

−ATM ū0
(1+ū0)

+ k̄ph
ū3

(K̄ph+ū3)
,

∂ū1
∂τ = D̄1∆ū1 − d̄1ū1,
∂ū2
∂τ = D̄2∆ū2 + k̄pm +

ūh
3

(K̄h
Sp+ūh

3 )
− d̄2ū2,

∂ū3
∂τ = D̄3∆ū3 +ATM ū0

(1+ū0)
− k̄ph

ū3

(K̄ph+ū3)
,

(3)

and in the cytoplasm Ωc we have:






∂ū0
∂τ = D̄0∆ū0 + k̄tp − kubū1

ū0
(Kub+ū0)

−ATM ū0
(1+ū0)

+ k̄ph
ū3

(K̄ph+ū3)
,

∂ū1
∂τ = D̄1∆ū1 + k̄tmū2 − d̄1ū1,
∂ū2
∂τ = D̄2∆ū2 − k̄tmū2 − d̄2ū2,
∂ū3
∂τ = D̄3∆ū3 +ATM ū0

(1+ū0)
− k̄ph

ū3

(K̄ph+ū3)
,

(4)

We set D̄i, i = 0, . . . , 3, for the di�usion coe�cients of the i − th species, expressed in
µm2min−1. Following [15] and [121] we �x Kedem-Katchalsky [62] boundary conditions
at the common boundary Γnc for the species that cross the nuclear membrane from both
sides: 





∂ū0
n

∂n = p̄0
D̄0

(ū0
c − ū0

n) = ∂ū0
c

∂n on Γnc,

∂ū1
n

∂n = p̄1
D̄1

(ū1
c − ū1

n) = ∂ū1
c

∂n on Γnc,
(5)
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meaning that the �ux of each species through the nuclear envelope is proportional to the
di�erence between the concentrations at the two sides of the membrane. Notice that the
normal vector n is pointing outwards from the nucleus and that �uxes are continuous.
We �x the following boundary conditions for ū2 (mRNA of Mdm2) and ū3 (p53p):







∂ū2
n

∂n = − p̄2
D̄2
ū2

n = ∂ū2
c

∂n on Γnc,

∂ū3
n

∂n = p̄3
D̄3
ū3

c = ∂ū3
c

∂n on Γnc,
(6)

because their transport through the nuclear envelope is unidirectional.

In order to analyse this system we proceeded in two di�erent ways: in Chapter 5,
we reduced the reaction di�usion system (3)-(4)-(5)-(6) to an ODE system of equations,
by supposing the concentration of each species homogeneous in each compartment and
setting appropriate exchange rules. In the ODE case we investigated the existence of
bifurcations, and we tested the validity of the system over a wide range of parameters.
Besides to this approach, we focused more to the spatial case which is described in
Chapter 6, by the reaction-di�usion system (3)-(4)-(5)-(6). This system was solved by
�nite element methods.

Main results

Through a numerical bifurcation analysis, we veri�ed in Chapter 5 the existence of sus-
tained oscillations for our model. The interesting aspect of this result is, on the one hand,
the reproduction of the biologically observed behaviour of p53 that attests the validity of
our model. On the other hand, we showed that by the simple distinction between nuclear
and cytoplasmic compartment we could reproduce sustained oscillations avoiding the use
of positive feedback or time delay. This result shows that the core network of p53 (its
negative feedback with Mdm2) and the localization of each process is su�cient to obtain
an oscillating signal. However, we cannot exclude the existence of a positive feedback
that would reinforce the oscillatory behaviour.

In Chapter 5 we also tested the existence of bifurcations depending on several pa-
rameters, verifying the existence of oscillations for a large range of parameters and we
investigated how the oscillations change qualitatively, with respect to variations of pa-
rameters (both period and amplitude).

In Chapter 6 we obtained the oscillations of the p53-Mdm2 system in the spatial
environment. We set the biophysical parameters corresponding to di�usion and perme-
ability coe�cients in the range of the known values, for p53, Mdm2 and the mRNAs
and we reproduced the observed behaviour of p53. We observed the rise of the nuclear
concentration of p53 after 30 minutes from the beginning of the simulations. Then we
tested the robustness of the oscillatory response changing the spatial coe�cients as the
di�usions and permeabilities, but also the total volume and the ratio between cytoplas-
mic to nuclear volume. We also noticed that the period of oscillations depends strongly
on spatial coe�cients such as di�usion and permeability. We veri�ed that the oscillations
of the p53-Mdm2 network are observed over a wide range of spatial parameters. This led
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us to speculate that the oscillatory response of the network has a deep biological mean-
ing, since we could reproduce it, in several di�erent spatial environments. An interesting
information that we obtained through the use of spatial modelling is that activation of
p53 after the damage (which is described by the transformation transformation of p53 in
p53p in our model) must occur in both compartments. Indeed, if only one compartment
is activated, we can observe an isolate pick of p53, but no undamped oscillations.

Plan of the Thesis

This thesis is organized as follows:

• in Chapter 1 we introduce some biological elements about nucleocytoplasmic
transport within eukaryotic cells. To help the reader understanding the biological
notions presented, we report some �gures that illustrate complex biological
situations. In the same chapter, we discuss existing mathematical models that
have been proposed in recent years to reproduce transport mechanism at the
cellular level.

• In Chapter 2 we introduce a model of cytoplasmic transport, assisted by motor
proteins along a single microtubule. We justify our modelling choices and we
discuss the di�erences with respect to existing models in literature. The numerical
scheme used in our simulations is presented and its numerical accuracy veri�ed.
Finally the numerical results are presented and discussed. Tables and �gures
illustrate our results.

• In Chapter 3 we describe the model of nucleocytoplasmic transport proposed in [15].
Then we couple this model with the model proposed in chapter 2 and we evaluate
the di�erences with respect to the simple form discussed in chapter 2. A discussion
about the main di�erences with other known model in the literature is also present.

• Chapter 4 is devoted to the description of the role of protein p53. A detailed
biological introduction is given as well as a discussion about existing models in
literature.

• In chapter 5 we propose our p53 model in its ODE form. We analyse the model
through a numerical bifurcation analysis and we discuss our results proposing a
biological interpretation of what we observe.

• Chapter 6 contains the main results about our model containing a spatial
characterization of p53. Firstly, we introduce the Partial Di�erential System
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describing the p53 cycle. Then we start its analysis by studying the behaviour of
the system in a simpli�ed one-dimensional domain. Next, we analyse, by means
of numerical simulations, the behaviour of the system in a more realistic two
dimensional domain. In this environment, we vary all the spatial parameters of
the system (di�usion and permeability coe�cients, volume and shape of the cell)
and we observe the qualitative change of the responses of the system (existence
of oscillations, amplitude and period of oscillations). We end the chapter with a
discussion about our results and the possible extensions of the model.
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Part I

A mathematical model for the
enhanced cytoplasmic transport:
how to get (faster) to the nucleus
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Chapter 1

Nucleocytoplasmic transport in
eukaryotes

In this chapter we will discuss transport within eukaryotic cells. After a brief descrip-
tion of the characterizing features of the eukaryotic cell, we will explain how certain
macromolecules manage to reach the nucleus and gain access to it.

Contents
1.1 Eukaryotic cell. A few distinguishing elements. . . . . . . . . 13

1.2 Active transport along microtubules . . . . . . . . . . . . . . . 14

1.3 Facilitated nucleocytoplasmic shuttling: the Ran pathway . 17

1.4 Existing models in literature . . . . . . . . . . . . . . . . . . . . 19

1.5 Outline of the Work . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.1 Eukaryotic cell. A few distinguishing elements.

Eukaryotic cells make up plants, mushrooms, animals and human beings. One of the
principal characteristic of eukaryotes is the strict partitioning of di�erent functions to
various locations of the cell. Specialized compartments, called organelles, perform di�er-
ent tasks that are critical to life. For instance, mitochondria provide energy from food
molecules and, in plant cells, chloroplasts are responsible of photosynthesis. Nearly every
organelle is surrounded by a lipid bilayer, its membrane, that separate them from the
rest of the cellular space. Through this speci�c distinction of locations and roles, the
cell accomplishes all its various functions, despite the crowded environment in which it
is enclosed by the plasma membrane.

Among all the organelles, the nucleus is the most important. It contains the DNA
and all the information critical to cell genetic maintenance. Within the nucleus the
RNA is build and exported in the cytoplasm, where it is translated into proteins by the
ribosomes. Proteins then locate to the cellular sub-compartment where their function is
required, or transported outside of the cell. The nuclear envelope, besides protecting the

13



DNA, accomplishes a strict regulation of what can access to or exit from the nucleus.
Homogeneously spread among the membrane, small pores, called nuclear pores (NP),
selectively control the crossing of the envelope. Nuclear pores are large protein channels
and they are composed of proteins known as nucleoporins. In mammals, a single pore
complex (NPC) has a molecular mass of about 120MDa.

A sketch of an eukaryotic cell, compared to a prokaryote, is represented in Figure 1.1.

Figure 1.1: In prokaryotes, the DNA (chromosome) is in contact with the cellular cyto-
plasm and is not housed in a membrane-bound nucleus. In eukaryotes, however, the DNA
takes the form of compact chromosomes separated from the rest of the cell by a nuclear
membrane (also called a nuclear envelope). Eukaryotic cells also contain a variety of
structures and organelles not present in prokaryotic cells. Throughout the course of evo-
lution, organelles such as mitochondria and chloroplasts may have arisen from engulfed
prokaryotes c©Nature Education [32].

1.2 Active transport along microtubules

The eukaryotic cytoplasm is a crowded environment. Several tasks are performed in dif-
ferent locations, at the same moment. For instance, some proteins are synthesised by the
ribosomes, others are degraded by the proteasomes, others bind to form macromolecu-
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lar complexes. Concurrent events take place in each sub-cellular compartment leading
towards healthy cell survival and division. The exact regulation of all the events that
maintain cell life is required and the good localization of each process is also necessary.
A pivotal role in the organization of cytoplasmic activities is played by microtubules.
Microtubules compose, with micro�laments and intermediate �laments, the cytoskeleton
of the cell and help maintaining the cell structure.

Microtubule structure

Microtubules (MTs) are �laments, with a diameter of about 24 nanometers, composed
by tubulin dimers that constitute the cytoskeleton together with actin �laments and
intermediate �laments. The building block of a microtubule is the tubulin subunit, a
heterodimer of α- and β-tubulin [76]. These subunits organize themselves in long strands
called proto�laments. In turn, proto�laments tie up and form a microtubule �lament (see
Figure 1.2). Microtubules rapidly grow or shrink in size. At both ends of the �laments

Figure 1.2: Tubulin subunits (α and β), onrganized in proto�laments, form a microtubule.
c©Wikimedia Commons .

the tubulin bricks are added or removed by chemical reactions. One of the ends, called
the plus end, grows more rapidly and, during interphase, can extend widely towards
cell periphery. The other end, called the minus end, is anchored to the microtubule
organizing centers (MTOC). The primary MTOC, the centrosome, is positioned near
the cell nucleus. In most cells, during interphase, microtubules are nucleated from the
centrosome. Thus, microtubules are organized in a radial structure pointing towards the
nucleus and irradiate from the cell centre to the cell periphery.

Microtubule functions

Microtubules are involved in many cellular process, in particular they are responsible for
vesicles and organelles transport within the cell, they are required in cellular motility
and they maintain the cellular structure. They are also critical during mitosis. In Figure
1.3 it is shown how, during the cell cycle, microtubule activity is critical in cell division.
The violet �laments represent the microtubules.
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Figure 1.3: Microtubules during the cell cycle [76].

Microtubules and transport

During interphase, microtubules span into the cytoplasm in a radial structure. Since
each �lament has a plus and a minus end, microtubules have a polarity which permits
to dedicated proteins to move towards the nucleus or towards the cell outer membrane.
Because of their radial organization, microtubules play a critical role in intra-cellular
tra�cking. For instance, viruses use microtubules as a highway to get close to the nucleus
[14]. During cell interphase, vesicles and organelles are positioned within the cytoplasm
by motor proteins bound to microtubules, as shown in Figure 1.4 Two families of motor
proteins associate to the MTs: dynein, which permits transport from the plus end to the
minus end of the �lament, and kinesin, whose members are (+) end-directed microtubule
motor proteins [76]. Both motor proteins use energy from ATP hydrolysis [51] to move
along the microtubule through discrete steps. Kinesin is a two-headed protein and takes
hundreds of steps by walking along the microtubules before detaching [144]. It is a tiny
protein compared to dynein whose mass can be greater than 1MDa. Dynein has two
heavy chains with globular heads with two elongated structures, the stalk and the stem,
emerging from them [11]. These two structures bind the microtubule track and cargoes
respectively. See Figure 1.5.

Researchers have shown that kinesin bound molecules ful�l distances of several mi-
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Figure 1.4: During interphase, motor proteins transport along the microtubules vesicles
and organelles to position them within the cytoplasm.

crometers [130] at a speed ∼ 1µms−1 [12]. In vitro the study of dynein motion has shown
that a single dynein motor moves only along limited distances (∼ 800nm), although in
vivo observations tracked longer distances (several microns [79]). More recent studies
proved that multiple dynein proteins can bind to the same cargo and perform longer
distances in vitro [81], thus explaining the in vitro observations (Figure 1.5). Dynein
motor velocity can span betwen 0.5µms−1 − 1.5µms−1 [81, 79].

Even if the use of microtubules for intracellular transport is mainly reserved to macro-
molecules or organelles, that have low mobility within the cells, recent studies demon-
strate that some small proteins use this network to facilitate their way towards the perin-
uclear region [41, 113, 72, 43, 114]. Some examples are the p53 and the PTHrP proteins
[113], that both are cancer regulatory proteins. These �ndings enhance the hypothesis
that some proteins that regulate important cellular pathways, and need to accumulate
rapidly in the nucleus, use the microtubules as a preferential way to approach faster the
nuclear envelope [137, 14].

1.3 Facilitated nucleocytoplasmic shuttling: the Ran path-

way

In order to regulate the complex cellular activities of eukaryotes, nucleus and cytoplasm
need to exchange information. Many proteins and macromolecules need to shuttle be-
tween these two compartments, at every moment of cell life. The RNAs, synthesised in
the nucleus, need to be exported in the cytoplasm where they take part to the translation
processes. Ribosomal proteins are assembled in the nucleus and exported to the cyto-
plasm. Nuclear proteins, as for instance transcription factors, gain access to the nucleus
in order to play their roles.

Not all proteins are entitled to access to the nucleus and those that may, use di�erent
transport mechanisms. Some small proteins (< 40kDa) and ions can cross the nuclear
membrane freely, but others need a chaperone to get through [47]. Indeed the nuclear
pores, which are protein-lined tunnels through the nuclear envelope, consent the access
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Figure 1.5: Cytoskeletal motors have multiple mechanisms for taking long walks along
�laments. (A) Kinesin is a highly processive molecule that walks hand-over-hand remain-
ing in contact with the microtubule through-out motion. (B) Single dynein molecules
are not very processive, but they become more processive when bound to the accessory
molecule dynactin, which provides an additional attachment to the microtubule. (C)
The addition of a second dynein molecule to a cargo, even in the absence of dynactin,
allows transport along microtubules for several microns [85].

to the nucleus, or to the cytoplasmic compartment, only to entitled proteins. The tag
that identify proteins allowed to enter the nucleus is a signal, called Nuclear Localization
Signal (NLS) [27]. Proteins that have this tag, are detected by members of the importin
protein family. As a �rst step, an adapter protein called importin-α recognizes the signal
and binds to the NLS-bearing protein. Then, the newly formed complex binds to a
molecule of importin-β that is the actual carrier: the ternary complex is thus able to
traverse the nuclear pore and the cargo is then released in the nucleus [46] (for a review
about nuclear import see e.g. [45]).

In a similar way, proteins that have a Nuclear Export Signal (NES) can shuttle
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outside of the nucleus. A member of the exportin family, called Crm1, recognizes the
signal and escorts the NES-protein to the cytoplasm. The binding of exportins to the
cargo protein is cooperatively activated by the protein Ran, that plays a critical role in
nuclear import and export.

The role of Ran

The protein Ran is a GTPase and hydrolyses bound GTP into GDP. The GTP bound
form is considered active (RanGTP), while RanGDP is inactive. The protein Ran can
shuttle between the nucleus and the cytoplasm. In the nucleus another protein (RCC1)
promotes the formation of RanGTP [9]. In the cytoplasm proteins of the group of
RanGAP (GTPase-activating protein) and RanBPs (Ran-binding proteins: RanBP1 and
RanBP2) enhance the formation of RanGDP [7, 8], see Figure 1.6. As a result, RanGDP
is mostly cytoplasmic, while RanGTP is nuclear. The unpaired distribution of Ran
between nucleus and cytoplasm has an essential role in nucleocytoplasmic transport.
Indeed in the nucleus, RanGTP binds to the Importin-β-cargo complex and allows the
cargo dissociation in the nucleus, thus concluding the import cycle. Once the cargo is
released the Importin-Ran complex traverses the nuclear membrane so that Ran and
importin move back in the cytoplasm, to recycle. In the cytoplasm the cycle is closed
by the conversion of RanGTP to RanGDP. Ran is also involved in the export cycle: it
mediates the binding of exportins to NES bearing protein. The cargo is thus exported
in the nucleus in a ternary complex composed by a molecule of RanGTP, an export
protein, and the cargo itself. The hydrolysis of RanGTP into RanGDP in the cytoplasm
dissociates the ternary complex and the cargo is thus released. Ran gets back again into
the nucleus escorted by the nuclear transport factor NTF2 that bind to RanGDP with
high a�nity.

In the process described above proteins move from a region of higher concentration to
one of lower concentration and use carrier proteins to get to the nucleus. This process is
known as facilitated di�usion. Ran is thus responsible of the existence of a concentration
gradient so that facilitated di�usion can occur. For a complete review of nucleocytoplas-
mic transport see [80].

1.4 Existing models in literature

The mathematical formulation of the biological processes of intracellular transport is
a useful tool to determine if a biological model, designed through the interpretation
of experimental events, reproduce the observed behaviour. Easily, through the use of
di�erential equations, the dynamics of a complex biological model can be predicted by
simulations and, sometimes, by the mathematical analysis of the system. This tool has
already been used to model transport along microtubules [122, 15] and to reproduce the
facilitated translocation through the nuclear pores of NLS proteins [48].

For instance, Görlich et al. [48] modelled the transport mechanism mediated by
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the protein Ran with an ODE system of equations and reproduced the experimental
behaviour observed in vitro. From the one hand through this quantitative analysis the
authors could verify that the biological model of nuclear import based on the Ran gradient
is reliable. From the other hand the authors could observe that, during mitosis, the
Ran gradient can be maintained only in su�ciently large cytoplasms. They could thus
represent a behavioural feature of the Ran cycle, depending on cell size.

In [121] the authors reproduced nuclear import of NLS proteins through the Ran
pathway with a PDE system of equations, considering the spatial variable and repre-
senting a nuclear membrane. They used the Virtual Cell Software1 to compare their
experimental results with a 3D simulation of the system model, see Figure 1.7(a). They
predict that the steady state �ux across the NPC is regulated by the Ran gradient and
not by the �ux capacity of a single pore. They also provided a �rst estimate of the total
in vivo �ux: 520 molecules per NPC per second.

A �rst pioneering work that combines the modelling of nuclear import pathway medi-
ated by the Ran gradient, and the microtubule activity as an enhancer of nuclear import
is the paper of Cangiani and Natalini [15]. The authors propose a three-dimensional
model of the import pathway, reproducing the facilitated di�usion through the NE due
to the Ran gradient. Furthermore they consider a vector �eld, acting as microtubule
network, that transports NLS proteins towards the nuclear membrane, thus improving
the total mass import. The authors could con�rm the behaviour experimentally obtained
in [113]. In Figure 1.7(b) we report one of the simulation results of [15].

Microtubule transport has been modelled for the �rst time in a theoretical manner by
Smith et al. [122]. The authors provide a one-dimensional reaction-advection-di�usion
model, that takes into account bi-directional transport along the microtubules and re-
produces qualitatively the transport characteristics of di�erent biological systems, as
organelle transport in neurons or in melanophores2

A step further in the direction of models of motor assisted transport within the cy-
toplasm, has been done by Dinh et al. [28, 29]. The authors relate biochemical and
biophysical aspects of organelle transport in the cytosol. In [29] a model for the kinet-
ics of Melanophores is described. In Melanophores, microtubules and actin �laments
work together in order to distribute pigment granules (melanosomes) within the cell.
Melanosomes can either aggregate at the cell center or disperse throughout the cyto-
plasm and the switch between the two states depends on biochemical signalling path-
ways. Assuming radial distribution, the authors develop a model of partial di�erential
equations that take into account transport along microtubules and actin �laments and
the biochemical activation pathway that changes the status of the system. Their results
agree reasonably with experimental data.

Many other works exist about the parallel aspects of microtubule activity as the
molecular regulation of motor transport. Other authors study the microtubules in dif-

1The Virtual Cell is a computational environment for modelling and simulation of cell biology, vcell.org
developed by the Center for Cell Analysis & Modeling (CCAM) at the University of Connecticut Health
Center.

2Microtubules (MTs) and actin �laments (AFs) work together in order to distribute pigment granules
(melanosomes) in Melanophores (�sh and amphibian epithelial cells).
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ferent phases of the cell state and their role during mitosis. See e.g. [77].

1.5 Outline of the Work

In the next Chapter we develop a simple model of motor-assisted transport in the cy-
toplasm. We will consider a subregion of the cytoplasm where we assume that a single
microtubule is present. A di�usive species will be included in our model. This species
will be able to bind to motor proteins and to attach to the modelled microtubule. We
will locate in the space the attraction area of this unique microtubule, and transport
along it will be modelled using a mono-dimensional transport equation. Thus we will
couple a two dimensional reaction-di�usion system with a mono-dimensional transport
equation. The next step will be to couple this model with the model of nucleocytoplasmic
transport proposed in [15], in Chapter 3, to compare in a more quantitative manner the
enhanced accumulation of proteins in the nucleus, supported by the cytoplasmic faster
translocation due to MT activity.

21



Figure 1.6: (A) Ran shuttles across the Nuclear Envelope (NE), with about 95% in the
nucleus and 5% in the cytoplasm. A high concentration of RanGTP in the nucleus is
maintained by RCC1, which catalyzes the formation of RanGTP. RanGDP is prevalent
in the cytoplasm due to RanGAP and RanBPs that increase its GTPase activity. During
import (left), importins bind to NLS-containing cargoes in the cytoplasm and translocate
them into the nucleus through NPCs. RanGTP in the nucleus binds to importins and
releases the cargoes from the complex. The RanGTP-importin complex is then recycled
to the cytoplasm, where it is disrupted after RanGTP hydrolysis. During export (right),
NES-containing cargoes in the nucleus bind to exportins and RanGTP, and translocate
out of nucleus. In the cytoplasm, the cargoes are released from the complex by RanGTP
hydrolysis ([21, 124, 142, 126]). (B) Images of immuno�uorescence in HeLa cells. The
green staining shows the location of Ran and RCC1 in these cells. Each circular shape
is a cell. RCC1 appears to be located near the nucleus and chromosomes, whereas
Ran appears more di�usely around the cell, both inside and outside the NE. c©Nature
Education . 22
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(a) (b)

Figure 1.7: (a):Ran transport is compared in a time series for Fluorescent Ran in vitro
(grayscale) and for a sample plane from a 3D spatial model of Ran transport that sim-
ulates the same cytosolic microinjection of Ran [121]. (b) : Cargo and receptor spatial
distribution with microtubule activity (above) and inhibited binding (below) [15].
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Chapter 2

A model of active transport using
advection-reaction-di�usion
equations

In the previous chapter we introduced some elements of the biology of intra-cellular
transport. In this chapter we propose a model of transport along microtubules and we
predict which molecules, depending on their di�usion coe�cients, could bene�t of motor-
assisted transport throughout the cytoplasm. In Section 2.1 we introduce the biological
model and its mathematical formulation. In Section 2.2 we provide a numerical scheme
with which we simulate the system proposed. Finally in Section 2.3 we show and discuss
the results of the numerical simulations.
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2.1 A model of active transport

Proteins are synthesised in a fairly homogeneous manner inside the cytoplasm. Each
protein has a speci�c function and, given the spatial organization of eukaryote, a speci�c
location where to carry it out. In particular, the nucleus is the most important organelle
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of the cell and many proteins need to reach it. Transcription factors have to bind to
nuclear DNA to transcribe genes, ribosomal proteins need to get to the nucleus to be
assembled into ribosomes. In the event of cellular damage, the cell answers promptly, by
sending signals that begin the process of repair and by arresting the cell cycle to allow the
complete repair. Many of these events occur by means of the production or degradation
of proteins and, for this reason, a continuous exchange of information between the nucleus
and the cytoplasm is essential.

Import of proteins into the nucleus is regulated by the Ran pathway. Proteins ad-
mitted to the nucleus are labelled with a signal, called the nuclear localization signal
(NLS). Importin proteins recognize this signal and carry the NLS-proteins to the nu-
cleus, passing through the nuclear pores complexes. The protein Ran breaks the complex
importin-NLS-protein and releases the cargo in the nucleus. The unbalanced concentra-
tion of the protein Ran between the nucleus and the cytoplasm dictates the directionality
of transport (for further details see Section 1.3 and references therein).

Several NLS proteins have been found to interact with the cytoskeletal microtubules
in their way towards the nucleus. Such examples are the protein p53 [41, 113], the
parathyroid hormone-related protein PTHrP [72], the Rb retinoblastoma protein [113]
and also NFκB in a complex with DNA, through the recognition of the NFκB NLS [87].
In cell-free Xenopus egg extract, a nuclear localization signal triggers active transport
along microtubules [114]. Using the microtubule �laments as a highway, those proteins
approach faster to the nucleus and their import results enhanced. Cytoskeletal-assisted
nuclear transport can be thus considered as a simple variation of nuclear import [137],
which is conventionally regulated by the Ran pathway.

With the aim to mimic such behaviour, we suggest a simpli�ed bidimensional model
of cytoplasmic tra�cking where nuclear import is enhanced by active transport along
microtubules.

2.1.1 Main assumptions and biological interpretation

In this model we consider a di�usive species capable of binding motor proteins. Our
purpose is to evaluate if the �ux towards the nucleus is enhanced when protein di�usion
is supported by unidirectional transport along microtubules. For this reason, we take
into account only the motor protein dynein, that is the motor that walks along the
microtubules in the direction of the nucleus. This choice does not represent a limitation
to the model, since the species to which we are interested are known to attach only to
dynein. The di�usive species, once bound to dynein, can di�use or bind the microtubules
and be actively transported. We set C, for cargo, the di�usive species. The product of
the kinetic reaction giving the complex cargo-dynein is de�ned as Pf (f for `free'), while
the cargo-dynein complex transported along the microtubules is de�ned as Pt (t for
`transported').

We model a single domain, only the cytoplasmic one, and we consider a thin area
of the cytoplasm where we suppose that a single microtubule (MT) lies, as in Figure
2.1. We assume that motor proteins are abundant in this area and we consider dynein
concentration constant and uniformly distributed. The reactions we model are the fol-
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lowing: the formation and the dissociation of the cargo-dynein complex and the binding
and unbinding to the microtubule. The speci�c feature of this model is the choice of
locating the microtubule: an area of attraction, where the attachment to it is allowed,
de�nes its location. Along the microtubule, the transport velocity is constant: dynein is
known to walk along the �laments at a speed of about 1µms−1 [96] and see Section 1.2.

The kinetic reactions we take into account are schematically represented by:

D + C
k′

⇋

k−
Pf , (2.1)

Pf
k1
⇋

k−1
Pt on I× J. (2.2)

Here k′, k−, k1 and k−1 correspond to the rates of reaction. The symbol ⇋ indicates that
the reactions are reversible. The reaction (2.2) occurs only in the area of attraction of
the microtubule, here denoted by I× J (see Figure 2.1).

2.1.2 Mathematical formulation

Figure 2.1: Area of the cytoplasm where intracellular transport is modelled: Ω = [0, Lx]×
[0, Ly]. The yellow rectangle (I×J = [xIn, xFi]× [y0−δ, y0+δ]) represents the attraction
area of the microtubule �lament, the red strip is the microtubule, positioned in y0.

Let u = [C], v = [Pf ], W = [Pt] be respectively the cargo, cargo-dynein complex
and transported particle concentrations. We cast u and v in two-dimensions and we �x
their unit to mol/µm2. The variable W is mono-dimensional and its unit is expressed in
mol/µm. The Law of Mass Action states that the rate of a reaction is proportional to
the product of the concentrations of the reactants. Applying the Law of Mass Action to
reactions 2.1 and 2.2 leads to the following di�erential equations:

du

dt
= −k′[D]u+ k−v = −ku+ k−v, (2.3)
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dv

dt
= ku− k−v − k1v + k−1W, (2.4)

and
dW

dt
= k1v − k−1W. (2.5)

In equation (2.3) we have �xed k = k′[D], since we assume dynein concentration to be
constant.

In order to describe spatially the dynamics of the modelled processes, let us de�ne
the simulation domain. We consider a rectangular domain Ω, represented in Figure 2.1,
which we imagine to be a cytoplasmic area in�uenced by a single microtubule. We denote
by I = [xIn, xFi] the actual length of the microtubule and J = [y0 − δ, y0 + δ], the width
of the attraction area of the �lament, positioned in y0. The cargo and the cargo-dynein
complexes, u and v, di�use within all the domain Ω, while the transported particles
W obey a one dimensional advection equation. To model di�usion we use the classical
Fick's law of di�usion. This law says that the �ux of a given material is proportional to
the gradient of the concentration of the material; then by a conservation argument, the
spatio-temporal evolution of the di�usive material is calculated [93].

We set du and dv the di�usion coe�cients of the u and v species respectively and c
the motor velocity for the transported particles. Under the previous assumptions the u
and v species satisfy a reaction-di�usion equation, while W is controlled by an advection
equation modelling the transport along the microtubule with a steady velocity c. Our
model reads:






∂u

∂t
= du∆u− ku+ k−v, in Ω,

∂v

∂t
= dv∆v + ku− k−v − k1v1IxJ + k−1W

1IxJ

|J|
+cW (xFi)δ0(x− xFi, y − y0), in Ω,

∂W

∂t
+ c

∂W

∂x
= −k−1W + k1

∫

J

vdy, in ]xIn, xFi[.

(2.6)

Notice that, in order to localize reaction (2.2), we introduced the characteristic function
of the sub-domain I × J, denoted by 1I×J, where 1I×J : Ω → {0, 1}. We also suppose
that the molecules transported along the �lament are freed when they reach its end. The
term cW (xFi)δ0(x− xFi, y − y0), in the equation for v, represents the contribution due
to those molecules: the outgoing �ux of the transported particles at the end of the MT
�lament. The δ0(x, y) stands for the Dirac mass at the origin. This term guarantees
the conservation of the mass, as will be shown below. Let us �rst close the system by
imposing the boundary conditions:







∂u
∂n

= 0, ∂v
∂n

= 0, on Γ4,

du
∂u
∂n

+ puu = 0, dv
∂v
∂n

+ pvv = 0, on Γ2,

W (xIn) = 0.

28



Since the structure of the MTs network is homogeneous within the cell, as in Figure 2.2,
we choose periodic boundary conditions on the long sides of the domain, Γ1 and Γ3, see
�gure 2.3. On Γ4, the Neumann homogeneous boundary conditions is a zero �ux con-
dition, meaning that proteins cannot cross the membrane layer. On Γ2 we consider an
outgoing �ux proportional to the species concentration, as if the species where travers-
ing the nuclear membrane. For the transported cargo W we suppose that there is no
upcoming �ux at the beginning of the microtubule and we �x W (xIn) = 0.

Figure 2.2: Schematic model of the cell with its microtubules structure.

Figure 2.3: Periodic boundary conditions on the long side of the domain (see �gure 2.1)
in system (2.6) make the cell a homogeneous environment. This means that the strip
where we model the system is a �zoom� on a single microtubule. We suppose that the
same reactions take place in the rest of the cell.
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Let us introduce the function, de�ned on the whole domain Ω:

w(x, y) =W (x)
1I×J(x, y)

|J| , (2.7)

in such a way that ∫ ∫

Ω
w dxdy =

∫

I

Wdx.

The total mass of system (2.6) is given by:
∫ ∫

Ω
(u+ v + w)dxdy. (2.8)

Let us write a general conservation equation which says that the rate of change of the
amount of a material in a region is equal to the rate of �ow across the boundary plus
any that is created within the boundary [93].

Proposition 2.1.1. The conservation of system (2.6) yields:

∂

∂t

∫ ∫

Ω
(u+ v + w)dxdy = du

∫

Γ2

∂u

∂n
dσ + dv

∫

Γ2

∂v

∂n
dσ. (2.9)

Proof. Using the equations of system (2.6) and applying the Green's �rst identity, we
get for u:

∂

∂t

∫ ∫

Ω
u dxdy =

∫ ∫

Ω
(du∆u− ku+ k−v)dxdy

=

∫ ∫

Ω

D+C⇋Pf
︷ ︸︸ ︷

(−ku+ k−v) dxdy + du

∫

Γ2

∂u

∂n
dσ,

(2.10)

and for v:

∂

∂t

∫ ∫

Ω
v dxdy =

∫ ∫

Ω
(dv∆v + ku− k−v − k1v1I×J + k−1w)dxdy+

+

∫ ∫

Ω
cW (xFi)δ0(x− xFi, y − y0)dxdy

= dv

∫

Γ2

∂v

∂n
dσ +

∫ ∫

Ω

D+C⇋Pf
︷ ︸︸ ︷

(ku− k−v) dxdy +

∫ ∫

Ω

Pf⇋Pt
︷ ︸︸ ︷

(−k1v1I×J + k−1w) dxdy

+

∫ ∫

Ω
cW (xFi)δ0(x− xFi, y − y0)dxdy.

(2.11)

And �nally the mass of w writes:

∂

∂t

∫ ∫

Ω
w dxdy =

∫ ∫

Ω

(

−c∂W
∂x

1I×J

|J| +
k1
|J|(

∫

J

v1I×Jdy) + k−1w

)

dxdy

=
Integration by parts

−
∫

J

c

|J|



W (xFi)−
=0

︷ ︸︸ ︷

W (xIn)



 dy +

∫ ∫

Ω

Pf⇋Pt
︷ ︸︸ ︷

(k1v1I×J − k−1w) dxdy.

(2.12)
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Summing up equations (2.10), (2.11) and (2.12) we �nd equation (2.9), i.e. system (2.6
conserves the mass.

We conclude this section by some modelling remarks. In this model, we consider ad-
vective and di�usive processes to represent the motion of molecules inside the cytoplasm.
The �rst and second equation represent the variables for which motion is regulated by
di�usion. They lie in two-dimensions: u = u(x, y, t) and v = v(x, y, t) represent the
species concentration per unit surface area at time t in (x, y) ∈ Ω. On the other hand,
we consider the MT dependent transport to be one-dimensional. The advection equation
that model the evolution of the transported cargo concentration, W , is one-dimensional
and uni-directional. Another approach to model transport along microtubules, used for
example by Cangiani et al. in [15] and by Sturrock et al. in [129], is to consider a
velocity �eld v : Ω → Rn, where n depends on the dimension of the modelled domain
(n = 2, 3). Through this approach the in�uence of microtubules is averaged in the whole
domain and no localization is allowed: at each point of the domain particles can attach
to microtubules and be transported following the vector �eld.

Motor proteins attach to microtubules and walk along them in a given direction. As
a result, transport along microtubules is mono-dimensional. Furthermore, microtubules
are single �laments that span the cytoplasm of cells. Our choice was to consider both
these features: we localize a single microtubule �lament by �xing a tiny attraction area.
Next, we consider the transport of proteins along microtubule to be uni-dimensional by
coupling a one-dimensional advection equation with a two-dimensional reaction-di�usion
system. Our goal is, on the one hand, to be more realistic, on the other hand, to
emphasize the di�erences of the two transport mechanisms used by proteins to move
inside the cell (di�usion and motion along cytoskeletal �laments).

2.2 Numerical approximation

In this section we propose a numerical scheme in order to solve the system presented
above. Let us introduce a space discretization of the x and y axes. Our domain Ω is the
rectangle [0, Lx]× [0, Ly] (see Fig. 2.1). We denote by ∆x, ∆y the discretization steps in
the x and y directions respectively and we divide the intervals [0, Lx] and [0, Ly] in Nx+1
and Ny + 1 points. The mesh points will be (xi, yj) = (i∆x, j∆y) with 0 ≤ i ≤ Nx + 1,
0 ≤ j ≤ Ny+1. Let ∆t be the time discretization step and tn the nth step, i.e. tn = n∆t,
n ∈ N. According to these notations uni,j will be the approximation of the solution of
u in (xi, yj) at time tn, while vni,j and Wn

i denote respectively the approximations of v
and W . We remark that W lies in [xIn, xFi], so that Wn

i is well de�ned only for certain
values of i, in particular we need xIn/∆x ≤ i≤xFi/∆x.

We �rst solve the transport equation of system (2.6), i.e. the third equation of the
system. First, let us introduce the numerical approximation of the transport term of the
equation, and omit to contribution of the degradation and of the �ux terms in the right
side of the equation. Since the equation is linear, we can use an upwind scheme and
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directly write it in its viscous form:

Wn+1
i =Wn

i − ν

2
(Wn

i+1 −Wn
i−1) +

ν

2
(Wn

i+1 − 2Wn
i +Wn

i−1), (2.13)

where ν = c∆t
∆x . This scheme needs to satisfy the CFL condition 0 ≤ ν ≤ 1, that assure

its convergence. Then, we consider a �ux limiters to add an antidi�usive term [75]. The
�ux limiters we consider are TVD, Total Variations Diminishing, which means that the
total variation of the mesh solution Wn, de�ned by

TV (Wn+1) =
∑

i

|Wn
i+1 −Wn

i |,

verify

TV (Wn) ≤ TV (Wn+1). (2.14)

We de�ne, for the mesh function the ratios:

ri+1/2 =
Wn

i −Wn
i−1

Wn
i+1 −Wn

i

and ri−1/2 =
Wn

i−1 −Wn
i−2

Wn
i −Wn

i−1

, (2.15)

and we introduce a �ux limiters function φ(r) [131]:

φ(r) = max{0,min{r, 1}}. (2.16)

The antiviscosity term that we add to equation (2.13) reads:

− ν(1− ν)

2

[
φ(ri+1/2)(W

n
i+1 −Wn

i )− φ(ri−1/2)(W
n
i −Wn

i−1)
]
. (2.17)

Finally, let us set

ψi+1/2 = 1− (1− ν)φ(ri+1/2),

and sum the antiviscosity term (2.17) to (2.13). We obtain the TDV-satisfying, second
order accurate transport scheme:

Wn+1
i =Wn

i − ν

2
(Wn

i+1 −Wn
i−1) +

ν

2

(
ψi+1/2(W

n
i+1 −Wn

i )− ψi−1/2(W
n
i −Wn

i−1)
)
.

(2.18)
To use the �ux limiters at the last point of the grid, we need to add a �ctitious point, so
that we can calculate the ratio ri+1/2. Let us call M the i point on the grid for x such
that M∆x = xFi, i.e. the last point of the grid where w is de�ned. We set:

Wn+1
M+1 = 2Wn

M −Wn−1
M−1, (2.19)

in such a way that we can calculate at each time step the quantity φ(ri+1/2) and solve
the transport equation with the same accuracy in the interior points and at the border.
Formula 2.19 is referred to as quasi-characteristic extrapolation, since the extrapolation
uses points near the characteristics [127].
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Then, we look at the right hand side of the transport equation that is made by
two parts. The degradation term −k−1W is sti�, and we approximate it by an implicit
discretization. For the source term F :=

∫

J
v(xi, y)dy, we use an upwinding scheme [112],

which improves the resolution near the asymptotic states, and besides, we approximate
the integral using a trapezoidal rule. Summing up these considerations, we obtain the
following scheme for W :

(1 + ∆tk−1)W
n+1
i =Wn

i − ν

2
(Wn

i+1 −Wn
i−1) +

ν

2

(
ψi+1/2(W

n
i+1 −Wn

i )

−ψi−1/2(W
n
i −Wn

i−1)
)
+

1

2
∆tk1(F

n
i + Fn

i−1).

(2.20)

In oder to solve the reaction di�usion system, i.e. the �rst and second equations in
(2.6), we use a IMEX Midpoint scheme that is a second order scheme [10]. An IMEX
scheme consists in a balance of implicit and explicit terms. Here we treat implicitly
the di�usion terms, to avoid a parabolic CFL condition that would require ∆t ∼ ∆x2

[95]. Instead, the IMEX Midpoint requires ∆t = O(∆x4/3) [10]. We treat explicitly the
sources terms and we obtain:

u
(1)
i,j = uni,j + du

∆t

2
(
δ2xu

(1)

∆x2
+
δ2yu

(1)

∆y2
)− kddyn

∆t

2
u
(1)
i,j + k−

∆t

2
vni,j ,

v
(1)
i,j =







vni,j + dv
∆t
2 ( δ

2
xv

(1)

∆x2 +
δ2yv

(1)

∆y2
)− k−

∆t
2 v

(1)
i,j + kddyn

∆t
2 u

n
i,j ,

−k1
∆t

2
v
(1)
i,j + k−1

∆t

2

Wn+1
i

|J| if i, j ∈ I× J ,

vni,j +
∆t

2
(
δ2xv

(1)

∆x2
+
δ2yv

(1)

∆y2
)− k−

∆t

2
v
(1)
i,j + kddyn

∆t

2
uni,j − k1

∆t

2
v
(1)
i,j

+c
∆t

2∆x

Wn+1
i−1

|J| if (i, j)|(xi, yj) = (xFi+1, y0)

vni,j + dv
∆t

2
(
δ2xv

(1)

∆x2
+
δ2yv

(1)

∆y2
)− k−

∆t

2
v
(1)
i,j + kddyn

∆t

2
uni,j otherwise.

(2.21)
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un+1
i,j = uni,j + du∆t(

δ2xu
(1)

∆x2
+
δ2yu

(1)

∆y2
)− kddyn∆tu

(1)
i,j + k−∆tv

(1)
i,j ,

vn+1
i,j =







vni,j + dv∆t(
δ2xv

(1)

∆x2
+
δ2yv

(1)

∆y2
)− k−∆tv

(1)
i,j + kddyn∆tu

(1)
i,j

−k1∆tv(1)i,j + k−1∆t
Wn+1

i

|J| if i, j ∈ I× J ,

vni,j +∆t( δ
2
xv

(1)

∆x2 +
δ2yv

(1)

∆y2
)− k−∆tv

(1)
i,j + kddyn∆tu

(1)
i,j − k1∆tv

(1)
i,j

+c
∆t

∆x

Wn+1
i−1

|J| if (i, j)|(xi, yj) = (xFi+1, y0)

vni,j + dv∆t(
δ2xv

(1)

∆x2
+
δ2yv

(1)

∆y2
)− k−∆tv

(1)
i,j + kddyn∆tu

(1)
i,j otherwise.

(2.22)
where

δ2xu
(1)

∆x2
=
u
(1)
i+1,j − 2u

(1)
i,j + u

(1)
i−1,j

∆x2

and

δ2yu
(1)

∆y2
=
u
(1)
i,j+1 − 2u

(1)
i,j + u

(1)
i,j−1

∆y2

(respectively for v). Since u and v satisfy mixed boundary conditions on Γ2 and Neumann
boundary conditions on Γ4 we use the second order derivative approximation to calculate
the boundary values:

∂u

∂n
(0, yj) =

1

2∆x
(−3un0,j + 4un1,j − un2,j),

to yield:

un0,j = (
4

3
un1,j −

1

3
un2,j).

We also discretize:

∂u

∂n
(Lx, yj) =

1

2∆x
(3unNx+1,j − 4unNx,j + unNx−1,j),

which gives

unNx+1,j =
du

3du + 2∆xpu
(4unNx,j − unNx−1,j).

Similarly we calculate the numerical approximation of v on the boundary.

Now we detail the treatment of the term corresponding to the outgoing �ux from
the microtubule. For the sake of simplicity, let us consider v as a function of (x, t) and
set xk = xFi+1. If we neglect the reactions terms, the mass traversing the volume D,
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Figure 2.4: We consider the plane (x, t) and the mesh point xFi+1 , called xk.

represented in Figure 2.4, is given by the following formula:
∫ ∫

D
∂tv + ∂x(−∂xv) =

Gauss-Green

∫

∂D
−∂xv dx+

∫

∂D
−v dt. (2.23)

Using formula (2.23) we obtain the expression for v:

vn+1
k =

1

∆x

∫ xk+1/2

xk−1/2

vn+1
k = vnk −

(

1

∆x

∫ tn+1

tn
(−∂xv)k+1/2 −

1

∆x

∫ tn+1

tn
(−∂xv)k−1/2

)

.

(2.24)
The �ux due to the microtubule at (xk−1/2, t

n+1) is cWn+1
k−1 so that if we add this �ux to

(2.24) we get:

vn+1
k = vnk +

∆t

∆x

[

vnk+1 − vnk
∆x

−
(

vnk − vnk−1

∆x
+
cWn+1

k−1

|J|

)]

,

that corresponds to the formula used in the numerical scheme (2.21)-(2.22).
To verify the order of accuracy of the proposed scheme, we �x a space step

∆x = 0.005, ∆y = ∆x, and, once calculated the corresponding time steps ∆t =
min(∆x/c,∆x4/3), we evaluate a reference solution uref , vref ,Wref , using the proposed
scheme. We evaluate the reference solution at di�erent �nal times T = 5, T = 10 and
T = 15. Then we change the space step, and accordingly the time step, and we calculate
the error evaluating the L1 distance between the numerical solutions and the reference
solution:

eT (h) :=

∫

Ω
|uTref − uTh |+ |vTref − vTh |+ |wT

ref − wT
h |dxdy, (2.25)

where h = ∆x is the �xed space step. We also recall that we have de�ned

w(x, y) =W (x)
1I×J(x, y)

|J| , thus w is well de�ned on Ω. Using formula 2.25, we plot,

in the logarithmic scale, the numeric error at T = 5, 10, 15 and the h2 curve (light blue).
Looking to Figure 2.5(a) we can observe that the order of accuracy of our scheme is
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h ‖u5ref − u5h‖1 ‖v5ref − v5h‖1 ‖W 5
ref −W 5

h‖1
0.1 1.2576 · 10−3 0.7733 · 10−3 0.4698 · 10−3

0.05 0.1963 · 10−3 0.3147 · 10−3 0.1227 · 10−3

0.02 0.0662 · 10−3 0.1016 · 10−3 0.0447 · 10−3

0.01 0.004 · 10−3 0.0131 · 10−3 0.0141 · 10−3

Table 2.1: Error L1 at di�erent space steps.

h ‖u10ref − u10h ‖1 ‖v10ref − v10h ‖1 ‖W 10
ref −W 10

h ‖1
0.1 0.8837 · 10−5 0.1287 · 10−4 0.0148 · 10−5

0.05 0.2810 · 10−5 0.0507 · 10−4 0.1260 · 10−5

0.02 0.0972 · 10−5 0.0171 · 10−4 0.0464 · 10−5

0.01 0.0145 · 10−5 0.0038 · 10−4 0.0148 · 10−5

Table 2.2: Error L1 at di�erent space steps.

around 2, as expected. The mean error em(h), is given by the arithmetic mean at the
di�erent time steps considered. In order to calculate more precisely the accuracy of our
scheme, we consider the curve

log(em(h)) = γlog(h) + log(C),

where γ is the order of accuracy of the scheme, and we �t this curve by a least square
method. We �nd γ = 1.83 (see Figure 2.5(b)).

The Tables 2.1, 2.2, 2.3 show the L1 distances of solutions at di�erent space steps, at
time T = 5, T = 10 and T = 15. We can observe, from the values reported in the tables,
that the L1 error diminishes with h.

2.3 Simulation results

Our purpose is to evaluate for which proteins microtubule activity is a natural support
for intracellular tra�cking. Several proteins have been proven to use the MTs network
and the motor protein dynein to facilitate their way towards the nucleus. Maybe the
most notable one is the tumor suppressor protein p53, because of its crucial role in cell
life regulation [41, 113]. But other proteins, such as p38 or PTHrP are known to be

h ‖u15ref − u15h ‖1 ‖v15ref − v15h ‖1 ‖W 15
ref −W 15

h ‖1
0.1 0.1090 · 10−6 0.1897 · 10−6 0.4434 · 10−7

0.05 0.0406 · 10−6 0.0617 · 10−6 0.1124 · 10−7

0.02 0.0142 · 10−6 0.0212 · 10−6 0.0417 · 10−7

0.01 0.0034 · 10−6 0.0056 · 10−6 0.0135 · 10−7

Table 2.3: Error L1 at di�erent space steps.
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Figure 2.5: (a)L1 error in logarithmic scale. We set ST = uT +vT +wT . (b) Mean error
plot in logarithmic scale and its least square linear approximation.
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Figure 2.6: Area of the cytoplasm where intracellular transport is modelled: Ω = [0, Lx]×
[0, Ly]. The yellow rectangle (I×J = [xIn, xFi]× [y0−δ, y0+δ]) represents the attraction
area of the microtubule �lament, the red strip is the microtubule, positioned in y0.

transported by motor proteins, which can improve their nuclear accumulation [43, 72].
We solved numerically the reaction-di�usion-advection system (2.6), to calculate the total
�ow of particles, with and without the microtubule.

In in vitro experiments [113], microtubules dynamics is suppressed by the use of
speci�c drugs that dissociate microtubules. Using numerical simulations, we can both
simulate active transport, or assume that the MT is unable to perform its task because
of external variation of the system, such as the infusion of a drug. Or simply assume
that dynein does not bind the cargo proteins.

Model parameters and biophysical quantities

Let us recall some notations relative to the chosen domain. We consider a rectangle
Ω = [0, Lx]× [0, Ly], see �gure 2.6. The attraction area of the microtubule is the sub-
domain I× J = [xIn, xFi]× [y0 − δ, y0 + δ]. We �x Lx = 10, Ly = 0.2, where lengths
are expressed in micrometers. We suppose that in this area a single microtubule lies.
The average diameter of a microtubule is 0.024µm [76], so we have chosen to �x the
thickness of the attraction area |J| of the modelled microtubule to 0.04µm. The length
of a microtubule is variable and depends on the type of the cell. Here we �x its length
to 8µm, which means that we �x the length of the interval I = [xIn, xFi]. In particular,
we assume I = [0.1, 0.9]. Finally y0 = 0.1 so that the microtubule is positioned at the
centre, in the y direction, of the domain Ω.
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Parameter Unit V alue Reference(s)

k s−1 0.2 [15, 97]

k− s−1 0.2 [15, 97]

k1 s−1 0.5 [122]

k−1 s−1 0.5 [122]

c µms−1 1 [96, 81]

du, dv µm2s−1 1 [117]

pu, pv µms−1 1 proposed

MT length µm 8 proposed

Lx, Ly µm 10 and 0.2 proposed

I, J µm 8 and 0.04 proposed

Table 2.4: Parameter values for system 2.6 and corresponding references in literature.
Remark that the value for the permeability coe�cient is not intended to be realistic, since
we are not considering any import pathway. However, a permeability equal to 1µms−1

corresponds roughly to the permeability of a cargo+importin complex: 1.87µms−1 [121].
The length of a microtubule is variable and depends on the cell type. Microtubules can
measure between less than a micrometer to hundreds of micrometers and the average
diameter is 24nm [76].

In order to calculate the mass �ow due to transport and di�usion, we �x a point x̄,
xFi < x̄ < Lx and we calculate the net �ux of each species at the end of the domain.
This is to say:

φu(t) = −du
∫ Ly

0
∇u(x̄, y) · n(x̄, y)dy, φv(t) = −dv

∫ Ly

0
∇v(x̄, y) · n(x̄, y)dy, (2.26)

and integrating over time we de�ne:

Fu(t) =

∫ t

0
φu(t)dt and Fv(t) =

∫ t

0
φv(t)dt . (2.27)

The functions Fu and Fv express the mass amount that has traversed the line x̄ × Ly

after a time t, which makes sense since we are dealing with super�cial concentrations.
We �x the reaction constants for all the species, as in Table 2.4.

The total dynein concentration is assumed to be constant: [D] = 1. We will vary the
di�usion coe�cient of the cargo protein in order to determine which proteins bene�t of
motor-assisted transport. We �x a starting di�usion value to 1µm2s−1 that corresponds
to big proteins of mass > 1000kDa, as it can be seen on Figure 2.8.

2.3.1 The macromolecules �ow increases with MT activity

Using the numerical scheme discussed in Section 2.2 and the values of coe�cients listed in
Table 2.4 we perform numerical simulations of system (2.6). In particular, the di�usion
values of u and v are set to 1µm2s−1. We model the combined action of di�usion
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The initial values are set to:

u(x, y, 0) =

{

10 if 0 ≤ x ≤ x0

10 · e−(x−x0)2 if x0 ≤ x ≤ 10

v(x, y, 0) = 0
w(x, 0) = 0

(2.28)
where x0 = 3.3. Figure 2.7: Initial data for u.

Figure 2.8: Protein di�usion coe�cient and corresponding molecular mass [66]

and active transport along a single microtubule. The action of the microtubule can be
observed 1) in the distribution of the total mass that accumulates around the �lament
and 2) in the higher velocity of the transported particles. Figure 2.9 shows the spatial
distribution of total concentration u + v + w, at di�erent time steps. The non-uniform
distribution of the concentrations is a consequence of the microtubule activity: in the
vertical direction because of localization, in the horizontal direction it is a consequence of
the greater distances in the x direction travelled by the particles attached to the �lament.
Indeed, the displacement along the microtubule during a time t is given by

xc(t) = ct = 1 · t,

where c = 1µms−1 is the constant velocity of the motor along the �lament. The mean
displacement of the di�usive particles is

rD(t) =
√
4Dt ∼ 2

√
t,

for D = 1µm2s−1 [6]. Notice that the mean displacement due to di�usion underlie a
displacement in R2, while the displacement due to the microtubule is in one direction.
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(a) T = 2 (b) T = 4

(c) T = 8 (d) T = 15

(e) realistic dimension

Figure 2.9: Spatial distribution of total concentration u+ v + w at di�erent time steps.
Parameters in Table 2.4. (e) A plot of the spatial distribution of the total concentration
with the right proportion of the area modelled.

Using equations (2.27) we evaluate the total mass �ow at the end of the domain,
given by Fu+Fv. To compare the �ow due to motor-assisted transport with the �ow due
to di�usion alone, we assume that the cargo proteins do not associate with dynein and
we simulate system (2.6) setting k = 0. The �ow due to di�usion and to motor transport
is greater than the di�usive �ow alone. Figure 2.10(a) shows this result: the black curve
is the mass that at time t, traverses the segment at the end of the domain, �xed by the
de�nition of equations (2.26). The blue curve is the mass �ow due to di�usion, when the
attachment to dynein is blocked. When the microtubule operates, enhanced transport
towards the nucleus is evident.

Next, we perform the same simulations using di�erent di�usion coe�cients and we
compare the results obtained when only di�usion is allowed, and when microtubule trans-
port is active. As Figure 2.10(b) shows, for values of di�usion < 4µm2s−1, microtubule
activity enhances the total �ow. If the di�usion coe�cient of the cargo protein is set to
4µm2s−1 the �ow with active transport is equal to the �ow due to di�usion. Our results
con�rm that cytoplasmic transport of big molecules or organelles is increased by the use
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Figure 2.10: (a): Total �ow with microtubule activity (black curve) and total �ow due
to di�usion alone. Di�usion coe�cients are set to 1µm2s−1. (b)Comparison of the total
�ow calculated for di�erent di�usion values: du = dv = 1, 2, 4µm2/s. The blue curves
are the �ow calculated when the activity of microtubules is blocked; the black curves are
the �ow relative to the MT activity. The �ow is calculated using equations (2.27).

of microtubules. For example, a protein having a molecular mass ∼ 500kD would have
a di�usion coe�cient of ∼ 2.5µm2s−1 [117].

We conclude by some remarks. The mean attachment time of the cargo-dynein com-
plex to the microtubule and the mean di�usive time of the cargo-dynein complex are
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given by:

τon =
1

k−1
, τoff =

1

k1
.

Using the values listed in Table 2.4, we can evaluate these values: τon = 2s, and τoff = 2s.
During this reference time, the distance travelled on the microtubule is xc(τon) = 2µm,
while the displacement due to di�usion is rD(τoff ) = 2

√
2. A variation of these coe�-

cients could improve further the bene�t due to microtubule activity, since it would result
in an increase of the time spent on the �lament. We will analyse these possibilities in
the next section.

2.3.2 Detachment and attachment rates from the MT increase the to-
tal �ow

In section 2.3.1 we have shown that molecules having a di�usion coe�cient up to 4µm2s−1

bene�t of active transport. However, a protein like p53, which has a molecular mass
∼ 50kD, has a di�usion coe�cient∼ 15µm2s−1 [58]. The results of Roth et al. [113] show
that proteins like p53 and pRb (molecular mass ∼ 110kD [61]) bene�t of microtubule
activity in their way towards the nucleus. What can explain this discrepancy?

One possible explanation is that the attachment rate of dynein to microtubules is
changeable and depends on the the microtubule length and motor concentration [135].The
detachment rate is also variable and depends on the load. For instance, when unloaded,
dynein detaches rapidly from the microtubule [135].

Suppose that the cargo in question is able to attach to more than one motor protein.
On the one hand, this assumption would imply that the cargo spends a longer time on the
microtubule. On the other hand, we can imagine that several motor proteins increase the
probability to attach to the microtubule in such a way to decrease the time spent o� the
�lament. We test how the attachment and the detachment rates from the microtubule
in�uences its ability to enhance protein transport.

First, we �x the attachment rate k1 of the cargo to the �lament and we perform
simulations for di�erent values of k−1. We �x k1 = 0.5 in such a way that the di�usive
mean time of a cargo-dynein complex is τoff = 2s, as in Section 2.3.1. We perform
numerical simulations for values of k−1 = 0.5, 0.05 and 0.005s−1. The results indicate
that the lower the rate of detachment, the greater the increase of the corresponding
�ow of molecules, that is, the greater the time spent on the microtubule, the greater
the �ow observed. Figure 2.11 illustrates the �ows relative to di�erent k−1, when the
di�usion coe�cients of the cargo and of the cargo-dynein complex, are set to 1µm2s−1.
We observe a remarkable increase of the total �ow when k−1 passes from the value of
0.5s−1 to 0.05s−1. On the contrary, the di�erence between the cases k−1 = 0.05s−1 and
k−1 = 0.005s−1 is very small. This result is not surprising, since the time needed to a
motor protein to walk the whole �lament is of 8 seconds. The values k−1 < 1/8, which
give an average time of attachment greater than 8 seconds do not guarantee better results.
In Figures 2.13 we plot the �ows corresponding to di�usion coe�cients of 2µm2s−1 and
4µm2s−1. We can observe that if k−1 ≤ 0.05 then the microtubule in�uence slightly
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Figure 2.11: Di�usion is set to 1µm2s−1. Blue curve: �ow due to di�usion with no MT
activity. Other curves: total �ow with MT for di�erent values of k−1 = 0.5, 0.005, 0.005
(k1 = 0.5 is a �xed value).

increases the �ow for the di�usion coe�cient of 4µm2s−1. In conclusion, we observed an
increment of the �ow for di�usion values up to ∼ 5µm2s−1 for values of k−1 ≤ 0.05.

Second, we �x the detachment rate k−1 to 0.1s−1 and we perform simulations for
values of k1 = 1 and k1 = 10 in such a way to reduce the mean di�usive time τoff of the
cargo-dynein complex. In this second scenario, the in�uence of microtubule is greater:
the total �ow increases more rapidly and reaches its maximum in a lower time. Figure
2.13(a) shows the di�erent �ows for a di�usion value �xed to 4µm2s−1. Figure 2.13(b)
shows the total �ow for the di�usion coe�cient dv = 6m2s−1. It illustrates that for
the values of k1 and k−1 set to 0.5 and 0.005s−1 respectively (dotted curve) the �ow
with microtubule activity corresponds to the �ow due to di�usion only (blue curve). On
the contrary, the �ow obtained when setting k1 = 10 and k−1 = 0.1 is slightly higher
than the �ow due to di�usion. In conclusion, diminishing the mean di�usive time of the
cargo-dynein complex, further increases the total �ow due to microtubule. In particular,
with this choice of parameters (k1 = 10 and k−1 = 0.1), we have shown that proteins
having a di�usion coe�cient up to 6µm2s−1 bene�t of microtubule transport.

Finally, we could not explain the enhanced transport towards the nucleus of molecules
having a di�usion coe�cient > 6µm2s−1. Proteins having a di�usion coe�cient
∼ 10µm2s−1 have been shown to bene�t of motor-assisted transport. However, we could
reveal a strong di�erence on the total �ow, for proteins having low di�usion coe�cient,
thus con�rming the in�uence of microtubules in cytoplasmic transport.

2.4 Summary and further directions

We introduced this simple model with the aim to reproduce a mechanical behaviour
of signal transport in the cytoplasm and to highlight the importance of microtubule
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Figure 2.12: (a),(b): Comparison of the total �ow, with and without MT, for di�erent
di�usion values. Blue curves: �ow due to di�usion when k is set to zero (no MT activity).
Other curves: total �ow with MT activity (Fu + Fv). (a) du = dv = 2µm2s−1; (b)
du = dv = 4µm2s−1.

activity. It is still unknown why some proteins but others use the MTs. We found a clear
di�erence in the results (total net �ux enhanced thanks to microtubule based transport)
for low-mobility cargoes that use this mechanism to move faster towards the nucleus.
Our purpose was to point out the importance of this mechanism that has recently been
explored as a nuclear protein tra�cking support. Using a PDEs system of equation,
with a two dimensional spatial representation of the free cargo concentration, and one
dimensional representation of the transported cargo, we could compare the di�usion
mechanism against the advection one. Our multidimensional approach was a tool to
stress the di�erence in the two types of transport, which will be compared in the future
to more data in the literature.

We could verify with this model that the mobility of molecules having a di�usion
coe�cient up to 6µm2s−1 is enhanced by motor assisted transport. Depending on the
choice of the attachment and detachment rates (to and from the microtubule), we have
shown that di�erent cargoes take advantages of microtubule transport. In particular, if
we assume that the cargo-dynein complex is attached to the microtubule for 2 seconds and
that it also di�uses for 2 seconds, then the cargoes that bene�t of motor assisted transport
are those that have a di�usion coe�cient ≤ 4m2s−1. On the contrary, if we assume that
proteins have higher attachment rates and lower detachment rates, then bigger proteins,
that have a di�usion coe�cient up to 6µm2s−1, take advantage of microtubule activity.
We remark also that the threshold on the di�usivity could be increased by a higher
velocity of the motor proteins that here we �xed to 1µm/s, that is the mean value
observed in literature.

Our interest was relied on little proteins with higher di�usion coe�cients, that need
to be imported to the nucleus. In the next chapter we will explore the more complete
setting, where all the import pathway of proteins to the nucleus is considered. We will
couple our model with the model of the RAN import pathway proposed by Cangiani and
Natalini in [15]. We will add the nuclear compartment in order to quantify the total
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amount of imported proteins. This improvement of the model will permit us to take into
account the realistic reaction times of the import pathway. In fact, cargo proteins do not
traverse the nuclear membrane by themselves but they need to be actively imported in
the nucleus.
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Figure 2.13: (a),(b): Comparison of the total �ow, with and without MT, for di�erent
di�usion values. Blue curves: �ow due to di�usion when k is set to zero (no MT activity).
Other curves: total �ow with MT activity (Fu + Fv). (a) du = dv = 4µm2s−1; (b)
du = dv = 6µm2s−1.
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Chapter 3

Nucleocytoplasmic transport:
including the whole pathway

In the previous Chapter we have introduced a simpli�ed model of cytoplasmic transport.
We have considered a sub-domain of the cytoplasm where we assumed that a unique
microtubule is present. We have located the microtubule and have reduced its area of
attraction to a sub-strip of the entire domain. Our results show that molecules having a
di�usion coe�cient up to 6µm2s−1 bene�t of microtubule enhanced import.

In this Chapter we couple the model introduced in Chapter 2 with the model presented
by Cangiani and Natalini in [15]. Our aim is to take into account all the reactions network
that regulate protein import in order to evaluate, in this more realistic setting, which
nuclear proteins bene�t of motor assisted transport. In Section 3.1 we introduce the
biological network of the Ran pathway, modelled by Cangiani and Natalini. We describe
their mathematical model and we couple it with our model of motor-assisted transport.
In Section 3.2 we give the details about the numerical treatment of the simulated system.
In Section 3.3 we present the numerical results and we show that the import of nuclear
proteins is enhanced by microtubule activity. Finally in Section 3.4 we discuss the main
features of the model, its limitations and the possible future extensions.
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3.1 A model for Ran

Fundamentals of Biology

Nuclear proteins carry out their functions within the nucleus. After synthesis in the
cytoplasm they need to translocate to the nuclear compartment where they are able to
perform their tasks. In order to get the access to the nucleus they bear a tag, the Nuclear
Localization Signal (NLS) [27], through which they are able to bind to proteins of the
importin family. Importins operate the translocations from cytoplasm to nucleus. Two
types of importins exist: importin-α and importin-β. Members of the �rst family bind to
nuclear proteins with high a�nity [46]. Members of the importin-β family, mediate the
interactions with the nuclear pore and actually shuttle their cargo from one compartment
to the other [45]. Directionality of transport is assured by the Ran gradient. The molecule
Ran can be found in two di�erent forms within the cell: a GTP bound form that is mostly
nuclear and a GDP bound form that is cytoplasmic. Ran-GTP, located near the nuclear
pores, binds to the importin-cargo complex and delivers the cargo inside the nucleus.
The newly formed complex importin-RanGTP shuttles back to the cytoplasm where it
is disrupted after RanGTP hydrolysis, mediated by the cytoplasmic RanGap [7]. In the
nucleus chromatin-bound RCC1 promotes the exchange of Ran-bound GDP by GTP [9].
RanGDP is transported to the nucleus by the receptor NTF2. The existence of a Ran
gradient is thus assured and the directionality of transport follows. See Figure 3.1 for a
schematic view of the Ran cycle. In Section 1.3 the import pathway of nuclear proteins
has been explained in more details.

Modelling choices

The reaction network of the nuclear import pathway has been modelled by several authors
[48, 111, 121]. Cangiani et al. , following Kopito et al. [65], keep the reaction network
to the essentials. Following the authors [15] we introduce the modelled species, and we
assign the names of the corresponding variables:

RanGTP = Rt,
RanGDP = Rd,
Imp = T,
Cargo = C,
Imp-Cargo = Tc,
Imp-RanGTP = Tr,

(3.1)

where, for the sake of simplicity, the importin T represents the complex importin-α,
importin-β and no distinction between the receptor, importin-α, and the transporter,
importin-β, is made. In the same vein, the RanGDP is supposed to be in a complex
with its chaperone NTF2. The nuclear import process begins with the recognition of the
cargo C by the receptor T , that is able to shuttle across the membrane. The formation
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Rt Rd

RdRtT

RCC1

Cytoplasm

Nucleus

NTF2

RanGap

Figure 3.1: Sketch of the Ran cycle: the molecule Ran, in its GTP bound form, Rt is
mostly nuclear. In the nucleus, it binds to the receptor T and delivers the transported
cargo (see Figure 3.2). The complex RanGTP-receptor shuttles in the cytoplasm. Here
the hydrolysis mediated by RanGap transforms RanGTP into RanGDP. RanGDP, Rd,
is carried to the nucleus by the chaperone NTF2. In the nucleus RanGDP is converted
into RanGTP through the action of RCC1.

of this complex is supposed to be only cytoplasmic. On the contrary, the receptor-cargo
complex Tc is disrupted in the nuclear compartment by the action of RanGTP that binds
to the receptor and shuttles to the cytoplasm. In the cytoplasm RanGTP is transformed
into RanGDP. Cytoplasmic RanGDP can shuttle between the two compartments, as it
is assumed to be in a complex with its chaperone NTF2. Nuclear RanGDP, interacts
with the nuclear RCC1 which catalyses the exchange between nucleotide GDP and GTP
forming the nuclear RanGTP. These reactions are summarized in Table 3.1 and the
pathway summarized in Figure 3.2.

Cytoplasm Nucleus

RanGTP
RanGAP−→ RanGDP RanGDP

RCC1−→ RanGTP

Import Cycle Import Cycle

Imp+ Cargo −→ Imp-Cargo Imp-Cargo+RanGTP −→
(Imported into the nucleus) Cargo+ Imp-RanGTP

Table 3.1: Import model [15]
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Figure 3.2: Model of the import pathway designed by [15]. The receptor T form a
complex with the cargo C. The Tc complex crosses the nuclear envelope and, once in
the nucleus, the cargo is released by the binding with RanGTP, Rt. The newly formed
complex, Tr (the receptor T and the Ran molecule, Rt) shuttles back to the cytoplasm
where it is disrupted. A new cycle starts over.

3.1.1 Mathematical formulation

The model is a system of six coupled semilinear parabolic PDEs set on two compartments:
cytoplasm and nucleus. We introduce the following notations. Let Ω be the whole
cell domain and ∂Ω its exterior boundary. Furthermore let Ωc and Ωn be respectively
the cytoplasmic and nuclear domain and Γnc the common boundary of the two sub-
compartment (the nuclear envelope). Each species is supposed to freely di�use within
each compartment and di�usion is modelled by Fickian Law. The membrane is assumed
to be a porous medium and the translocation through each Nuclear Pore is modelled
averaging the single processes. The inclusion of the membrane is thus made by assigning
a permeability coe�cient for each molecular species and permeability conditions are
imposed using Kedem-Katchalsky boundary conditions [62]. See [13, 15, 118, 121] for a
numerical and mathematical discussion about this type of conditions. All the reaction
terms are modelled following the Law of Mass Action and they are summarized in Table
3.2. We obtain the following system of coupled semilinear parabolic equations, in the
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cytoplasm Ωc:







∂Rt
∂t = drt∆Rt −m1(Rt)− r1(Rt, T ) + r−1(Tr),
∂Rd
∂t = drd∆Rd +m1(Rt),
∂Tr
∂t = dtr∆Tr + r1(Rt, T )− r−1(Tr),
∂C
∂t = dc∆C − r2(C, T ),
∂T
∂t = dt∆T − r1(Rt, T ) + r−1(Tr)− r2(C, T ),
∂Tc
∂t = dtc∆Tc + r2(C, T ),

(3.2)

and in the nucleus, Ωn:







∂Rt
∂t = drt∆Rt +m2(Rd)− r1(Rt, T ) + r−1(Tr)− r3(Rt, Tc)
∂Rd
∂t = drd∆Rd −m2(Rd),
∂Tr
∂t = dtr∆Tr + r1(Rt, T )− r−1(Tr) + r3(Rt, Tc)
∂C
∂t = dc∆C + r3(Rt, Tc),
∂T
∂t = dt∆T − r1(Rt, T ) + r−1(Tr),
∂Tc
∂t = dtc∆Tc − r3(Rt, Tc).

(3.3)

The transmission conditions couple system (3.2) and (3.3) on Γnc:







drt
∂R

(c),(n)
t
∂n = 0

drd
∂R

(c)
d

∂n = pd(R
(c)
d −R

(n)
d ) = drd

∂R
(n)
d

∂n

dtr
∂T

(c)
r

∂n = ptr(T
(c)
r − T

(n)
r ) = dtr

∂T
(n)
r

∂n

dc
∂C(c),(n)

∂n = 0

dt
∂T (c)

∂n = pt(T
(c) − T (n)) = dt

∂T (n)

∂n

dtc
∂T

(c)
c

∂n = ptc(T
(c)
c − T

(n)
c ) = dtc

∂T
(n)
c

∂n

(3.4)

where ·(c) and ·(n) represent nuclear and cytoplasmic concentrations, respectively. The
normal vector n is the one relative to the nuclear compartment. Notice that, at each side
of the membrane, the �uxes are continuous, but there can be a jump in the concentrations.
Remark also that the RanGTP, Rt, and the cargo C are unable to traverse the nuclear
membrane if not in a complex with the chaperone T . Therefore, the corresponding �ux
at the nuclear membrane Γnc, is imposed to be zero. At the plasma membrane, ∂Ω,
homogeneous Neumann boundary conditions are imposed for each species. Thus, no
mass exchange with the exterior is allowed.

Microtubule Activity

In the model of Ran mediated import presented above, the authors include also active
transport along microtubules. The microtubules are modelled as a vector �eld that span
the whole cytoplasm. Therefore, at each point of the cytoplasm, except for a narrow area
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Cytoplasm Nucleus

Rt

Rg−→ Rd: m1(Rt) = Kt
cRg

Rt

Kt
m+Rt

Rd
C1−→ Rt: m2(Rd) = Kd

cC1
Rd

Kd
m+Rd

Import Cycle Import Cycle

T +Rt

k2

⇋

k
−2

Tr: r1(T,Rt) = k2TRt and r
−1 = k

−2Tr

T + C
k3−→ Tc: r2(T,C) = k3TC Tc +Rt

k4−→ C + Tr: r3(Tc, Rt) = k4TcRt

Table 3.2: Import model: reactions [15]. The Law of Mass Action is applied to represent
the kinetic processes.

that surround the nucleus, cargo molecules can bind to microtubules, through the dynein
action, and be actively transported. The advection �eld is considered as a radial �eld
pointing to a point inside the nucleus and the �eld module is assumed constant and equal
to 1, to account for the constant velocity of the motor dynein, ∼ 1µms−1 (see Section
1.2). In this light, an equation for the free dynein is added to system (3.3). The binding of
the cargo-importin complex to dynein is allowed and, the resulting product, is assumed
already bound to microtubules. Therefore the equation for the dynein-cargo-importin
complex is an advection equation. Let b be the velocity �eld and D and Dc the two new
species: dynein and the dynein-cargo-importin complex. The binding and unbinding of
every molecule, is modelled following the Law of Mass Action and the resulting reactions
are:

Tc +D
ka
⇋

kd
Dc (3.5)

ra(Tc, D) = kaTcD, rd(Dc) = kdDc (3.6)

The equations for D and Dc, con�ned in the cytoplasm, read:
{

∂D
∂t = dd∆D − ra(Tc, D) + rd(Dc),
∂Dc
∂t = −∇ · (bDc) + ra(Tc, D)− rd(Dc),

(3.7)

while the equation for the cargo-importin complex Tc is accordingly modi�ed, yielding:

∂Tc
∂t

= dtc∆Tc + r2(C, T )− ra(Tc, D) + rd(Dc).

3.1.2 Mathematical coupling

The semi-linear parabolic PDEs system introduced in the previous Section, has be-
come, with the addition of microtubule transport, a system of eight coupled semi-linear
parabolic/hyperbolic equations. However, in the following, we consider only the classical
import pathway, i.e. systems (3.2) and (3.3) coupled by the boundary conditions (3.4)
and we introduce a single microtubule, as in Chapter 2.

First of all, we introduce the simulations domain. We consider a rectangular area, as
in Chapter 2, but we expand it, in order to include the nuclear domain. Following the
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notations of Cangiani et al. we set Ω as the whole simulation domain, Ωc the cytoplasmic
compartment and Ωn the nuclear one. The two sub-domains, nucleus and cytoplasm, have
a common boundary Γnc, as in Figure 3.3. We include, in Ωc, the microtubule �lament,
positioning it from point (xIn, y0) to point (xFi, y0), parallel to the x-axis. We establish
an attraction area for the microtubule, denoted I× J, as in Section 2.1.2.

L Lx
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c n

0
y

x x

y

Ly

y
0

0
y

+δ
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Γ

(0,0)

Γ

Γ
nc
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Γ
4

Ω Ωc n

IxJ

Figure 3.3: Area of the cell where intracellular transport is modelled: Ωc∪Ωn, cytoplasm
and nucleus. Γnc = ∂Ωc ∩ ∂Ωn is the common boundary of the two compartments. The
yellow rectangle (I×J = [xIn, xFi]× [y0− δ, y0+ δ]) represents the attraction area of the
microtubule �lament, the red strip is the microtubule, positioned in y0.

We remind the species and reactions introduced in the previous chapter: we have
considered a cargo molecule C, a cargo+dynein complex Pf . We have de�ned Pt as the
result of the attachment of Pf to the microtubule. We have supposed all the interactions
to be kinetic reactions and modelled them applying the Law of Mass Action. Therefore,
we have obtained:

C +D
k
′

⇋

k−
Pf , (3.8)

yielding:
dC

dt
= −k′

DC + k−Pf , (3.9)

and we �xed k := k
′

D, since we assumed the dynein concentration D constant. Similarly
we have written:

Pf
k1
⇋

k−1

Pt, (3.10)

and, for the Law of Mass Action:

dPf

dt
= kC + k−Pf − k1Pf + k−1Pt. (3.11)
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Finally, for the microtubule species, we have obtained the following equation:

dPt

dt
= k1Pf − k−1Pt. (3.12)

Every species is supposed to have a spatial dynamics: C and Pf di�use, while Pt is
attached to the microtubule and moves along it, at the constant speed c = 1. Thus,
C = C(x, y, t), Pf = Pf (x, y, t), for (x, y) ∈ Ω, t ≥ 0. The microtubule attached species
Pt = Pt(x, t) is de�ned for x ∈]xIn, xFi[, t ≥ 0 and reaction 3.10 is allowed only in the
attraction area I × J. We assume that the cargo C interacts with the receptor T of
model (3.2), (3.3,) (3.4) and we get the following coupled model of ran mediated import
including transport along a single microtubule, in Ωc:







∂Rt
∂t = drt∆Rt −m1(Rt)− r1(Rt, T ) + r−1(Tr),
∂Rd
∂t = drd∆Rd +m1(Rt),
∂Tr
∂t = dtr∆Tr + r1(Rt, T )− r−1(Tr),

∂C
∂t = dc∆C − r2(C, T )

coupling terms
︷ ︸︸ ︷

−kC + k−Pf ,
∂T
∂t = dt∆T − r1(Rt, T ) + r−1(Tr)− r2(C, T ),
∂Tc
∂t = dtc∆Tc + r2(C, T ),
∂Pf

∂t = dc∆Pf + kC − k−Pf − k1Pf1I×J + k−1Pt
1I×J

|J|

+cPt(xFi)δ0(x− xFi, y − y0),

(3.13)

and the equation for Pt valid in ]xIn, xFi[:

∂Pt

∂t
+ c

∂Pt

∂x
= k1Pf − k−1

∫

J
dyPt. (3.14)

In the nucleus the equations relative to nuclear import stay unchanged:







∂Rt
∂t = drt∆Rt +m2(Rd)− r1(Rt, T ) + r−1(Tr)− r3(Rt, Tc)
∂Rd
∂t = drd∆Rd −m2(Rd),
∂Tr
∂t = dtr∆Tr + r1(Rt, T )− r−1(Tr) + r3(Rt, Tc)
∂C
∂t = dc∆C + r3(Rt, Tc),
∂T
∂t = dt∆T − r1(Rt, T ) + r−1(Tr),
∂Tc
∂t = dtc∆Tc − r3(Rt, Tc).

(3.15)

Indeed, we suppose that the cargo-dynein complex is not allowed to enter the nucleus,
since dynein is not a nuclear protein. The transmissions terms that couple systems (3.13)
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and 3.15 are, as in [15]:







drt
∂R

(c),(n)
t
∂n = 0

drd
∂R

(c)
d

∂n = pd(R
(c)
d −R

(n)
d ) = drt

∂R
(n)
d

∂n

dtr
∂T

(c)
r

∂n = ptr(T
(c)
r − T

(n)
r ) = dtr

∂T
(n)
r

∂n

dc
∂C(c),(n)

∂n = 0

dt
∂T (c)

∂n = pt(T
(c) − T (n)) = dt

∂T (n)

∂n

dtc
∂T

(c)
tc

∂n = ptc(T
(c) − T (n)) = dtc

∂T
(n)
tc

∂n

dr
∂P

(c),(n)
f

∂n = 0,

(3.16)

at Γnc, where we included a zero-�ux boundary condition for the species Pf . The bound-
ary conditions on Γ1 and Γ3 are periodic while on Γ2 and Γ4 we impose homogeneous
Neumann boundary conditions. We also impose a boundary condition for the transport
equations and we �x, as in Chapter 2:

Pt(xIn) = 0, (3.17)

assuming that the dynein-cargo complex cannot attach at the extremity of the MT.
Finally we consider initial conditions for every species: an initial cargo concentration of
2µM supposed to only cytoplasmic. RanGTP is only nuclear and its total concentration
is �xed to 1.2µM . RanGDP initial concentration is only cytoplasmic, as for the receptor
T and both total concentrations are �xed to 1.2µM . The initial condition for all the
other species is set to zero, since we suppose the cell to be at rest (no reactions occur
before the simulations).

3.2 Numerical treatment of the model

The numerical method used to approximate the mathematical model (3.13), (3.14),
(3.15), closed by the boundary conditions (3.16) and (3.17), is similar to the method
introduced in Section 2.2. We denote by ∆x, ∆y the discretization steps in the x and y
directions respectively and we divide the intervals [0, Lc], [Lc, Ln] and [0, Ly] in Nc + 1,
Nn+1 and Ny+1 points (see Figure 3.3). The mesh points will be (xi, yj) = (i∆x, j∆y)
with 0 ≤ i ≤ Nc +Nn + 1, 0 ≤ j ≤ Ny + 1. Let ∆t be the time discretization step and
tn the nth step, i.e. tn = n∆t, n ∈ N. Let us set u, a general species concentration in
the domain Ω. According to these notations uni,j will be the numerical approximation of
the solution of u in (xi, yj) at time tn. Only Pt will be denoted by Wn

i , to be consistent
with the notations of Section 2.2. Remark that Pt lies in [xIn, xFi] so that Wn

i is well
de�ned only for i satisfying xIn/∆x ≤ i≤xFi/∆x.

We �rst solve the equation for Pt and we refer to Section 2.2 for the numerical
approximation of the transport equation. The approximation of systems (3.13), and
(3.15) is done using an IMEX midpoint scheme of order 2. Let us write in a general form
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the equation for the generic species u:

∂u

∂t
= du∆u+Ru, (3.18)

where Ru represents the reactions terms relative to the equation. We treat explicitly all
the reactions terms and implicitly the contribution of the di�usion term. This yields:

u
(1)
i,j = uni,j + du

∆t

2

(

δ2xu
(1)

∆x2
+
δ2yu

(1)

∆y2

)

+
∆t

2
Rn

u, (3.19)

un+1
i,j = uni,j + du∆t

(

δ2xu
(1)

∆x2
+
δ2yu

(1)

∆y2

)

+∆tR(1)
u , (3.20)

where

δ2xu
(1)

∆x2
=
u
(1)
i+1,j − 2u

(1)
i,j + u

(1)
i−1,j

∆x2

and
δ2yu

(1)

∆y2
=
u
(1)
i,j+1 − 2u

(1)
i,j + u

(1)
i,j−1

∆y2

Since u satisfy Neumann boundary conditions on Γ2 and Γ4, we use the second order
derivative approximation to calculate the boundary values:

∂u

∂n
(0, yj) =

1

2∆x
(−3un0,j +4un1,j −un2,j),

∂u

∂n
(Ln, yj) =

1

2∆x
(3unN,j −4unN−1,j +u

n
N−2,j),

to yield:

un0,j = (
4

3
un1,j −

1

3
un2,j),

unN,j = (
4

3
unN,j −

1

3
unN−1,j),

with N = Nc +Nn + 1. At the interior boundary Γnc we have to �x:

du
∂u(c)

∂n
(Lc, yj) = pu(u

(c)(Lc, yj)− u(n)(Lc, yj)) =
∂u(n)

∂n
(Lc, yj)

which gives

u(c)(Nc, yj) =
α

β
(
4

3
u(c)(Nc−1, yj)−

1

3
u(c)(Nc−2, yj))+λ

α2

β
(
4

3
u(n)(Nc+1, yj)−

1

3
u(n)(Nc+2, yj))

and

u(n)(Nc, y) =
α

β
(
4

3
u(n)(Nc+1, yj)−

1

3
u(n)(Nc+2, yj))+λ

α2

β
(
4

3
u(c)(Nc−1, yj)−

1

3
u(c)(Nc−2, yj));

α, β and λ are de�ned as follows: λ := 2
3
∆xpu
du

, α := (1 + λ)−1 and β = 1 − (αλ)2 and
the approximations in terms of uni,j follow.
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3.3 Simulations results

In Section 3.1.1 we have introduced the model developed by Cangiani and Natalini [15]
for cellular molecular tra�cking, which simulates the nuclear import of all NLS proteins.
In Section 3.1.2 we coupled the model introduced with the model for active transport
along microtubules proposed in Chapter 2. Our goal is to evaluate the in�uence of motor-
assisted transport on the whole nuclear import pathway. The same study has already
been done by Cangiani and Natalini, through the use of a vector �eld that spans the
whole cytoplasmic compartment and represents the microtubules �laments. However, we
test here a di�erent approach, considering a single microtubule and localizing it inside
the cytoplasm. Compared to the model of Ran import (3.2), (3.3), (3.4) and (3.7) [15],
we also add a new species, by distinguishing between cargo+motor and cargo+motor on
the microtubule. Finally we assume that the cargo, namely C, binds to the motor protein
and not the complex cargo+importin, Tc, as done in [15]. The values of all parameters
are set in Table 3.3

A single microtubule does not enhance nuclear import

In this section we compare the simulation results of model (3.2), (3.3), (3.4) to the results
of model (3.13), (3.14), (3.15), (3.16). Namely, we compare, respectively, the nuclear
accumulation of the cargo C without microtubule activity to the accumulation with
microtubule. In both cases we calculate the evolution of nuclear cargo concentration. To
do this, we set the initial concentration value of the cargo protein in the nucleus to 0 and,
since the cargo is only allowed to get inside the nucleus, we calculate its accumulation in
the nucleus over time.

Our results show that nuclear import is not enhanced by motor-assisted transport.
Figure 3.4 illustrates the temporal evolution of the nuclear concentrations of cargo pro-
teins having di�erent di�usion coe�cients. Di�usion coe�cients are set to dc = 1µm2s−1

(Figure 3.4(a)) and to dc = 10µm2s−1 (Figure 3.4(b)). The blue curves show the nuclear
accumulation of the cargo C when k = 0, i.e. when the cargo is not assumed to inter-
act with the motor dynein. The black curves depict the cargo accumulation for k > 0,
that is, the motor assisted transport is allowed. In both cases, the accumulation in the
nucleus is greater without microtubule activity. In the �xed period of 180 seconds, if
only the Ran pathway is used, the cargo completely accumulates inside the nucleus when
dc = 10µm2s−1. On the contrary, with the microtubule, only the 95% of the total cargo
has entered the nucleus. When dc = 1µm2s−1, 85% of the total cargo has got into the nu-
cleus without microtubule activity and the ∼ 79% with microtubule activity. Therefore,
we also observe that the rate of nuclear accumulation depends on the di�usion coe�cient,
i.e. on the mobility of the nuclear protein. It is thus surprising that the microtubule does
not improve nuclear import. To understand better, we represent in Figure 3.5 the spatial
distribution of the cargo protein, at the initial time T = 0 and at the �nal time T = 180,
when dc = 1. In Figure 3.5(a) we plot the initial condition: the whole cargo concen-
tration is enclosed in the cytoplasmic compartment. Figures 3.5(b) and 3.5(c) show the
cargo concentration at T = 180s. Figure 3.5(b) illustrates the case with microtubule
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Parameter Unit Description Value Reference(s)

MT model chapter 2

k s−1 dynein attach. rate 0.2 [15, 97]

k− s−1 dynein detach. rate 0.2 [15, 97]

k1 s−1 attach. rate to MT 0.5 [122]

k−1 s−1 detach. rate from MT 0.05 section 2.3

RAN model (reactions terms)

Kt
c s−1 m1(Rt) 10.6 [15]

Kt
m µM m1(Rt) 0.7 [15]

Rg µM m1(Rt) 0.5 [15]

Kd
c s−1 m2(Rd) 8 [15]

Kd
m µM m2(Rd) 1.1 [15]

C1 µM m1(Rt) 0.7 [15]

k2 (µMs)−1 r1(Rt, T ) 0.1 [15]

k−2 s−1 r−1(Tr) 0.3 [15]

k3 (µMs)−1 r2(C, T ) 0.15 [15]

k4 (µMs)−1 r3(Rt, Tc) 0.1 [15]

Spatial parameters

c µms−1 Dynein velocity 1 [96, 81]

dc µm2s−1 C di�. coe�. 1 [117]

drt µm2s−1 Rt di�. coe�. 22 [15]

drd µm2s−1 Rd di�. coe�. 20 [15]

dt µm2s−1 T di�. coe�. 14 [15]

dtr µm2s−1 Tr di�. coe�. 14 [15]

dtc µm2s−1 Tc di�. coe�. 0.8 proposed

pd µms−1 Rd (with NTF2) perm. coe� 3.73 [15]

pt µms−1 T perm. coe� 1.87 [15]

ptr µms−1 Tr perm. coe� 1.87 [15]

ptc µms−1 Tc perm. coe� 1.87 [15]

MT length µm - 8 section 2.3

Lc, Ln, Ly µm - 10, 2 and 0.2 section 2.3

I, J µm MT attraction area 8 and 0.04 section 2.3

Table 3.3: Parameter values for system (3.13), (3.14), (3.15), (3.16) and corresponding
references in literature.
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Figure 3.4: Nuclear accumulation depends on the di�usion coe�cient but it is not en-
hanced by the microtubule activity.

(a) T = 0

(b) T = 180, MT activity (c) T = 180, Ran cycle

Figure 3.5: Spatial distribution of the cargo concentration C and its complexes. (a)
Initial concentration. (b): Spatial distribution of C + Tc + Pf + Pt at T = 180s. (c):
Spatial distribution of C + Tc at T = 180s .

activity. We plot the spatial distribution of C + Tc + Pf + Pt in 3.5(b), i.e. of the cargo
and all the complexes it forms, with the dynein and the importin proteins. In Figure
3.5(c) we plot the simulation results with no microtubule activity. Therefore we plot the
spatial distribution of C + Tc, since Pf + Pt = 0. Following the colour maps of both
�gures we can observe that, in the cytoplasm, the total concentration of cargo complexes
with the microtubule is higher than the concentration of cargo complexes without the
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microtubule. We can also observe that, if the cargo binds to the MT, the distribution of
the cargo complexes has a lower gradient (i.e. the di�erence between the concentrations
at the cytoplasmic and nuclear membrane is lower than in Figure 3.5(c)) and a higher
concentration has accumulated at the nuclear envelope level. Therefore, we recognize the
in�uence of the microtubule which causes a larger concentration to accumulate near the
nuclear envelope. However, the gradient of the protein Ran handles the import pathway
and it is su�cient for a e�cient nuclear accumulation of the cargo protein.
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Figure 3.6: Cargo nuclear accumulation. The blue curve shows the accumulation due to
the ran import, without dynein activity (k = 0).(a) The green curve represents the cargo
accumulation for k > 0 and k1 = 0. The red dashed curve is the nuclear accumulation
with microtubule activity. (b). Cargo accumulation with the microtubule activity for
di�erent velocities (c = 0, 1 and 2µm/s). The di�usion coe�cient of the cargo is set to
1µm2/s.

The di�erence between the results of model (3.13), (3.14), (3.15), (3.16) and those
of model (3.2), (3.3), (3.4) might be due to the presence of the dynein protein. The
motor dynein forms the complex Pf with the cargo C in such a way to compete with
the formation of the importin-cargo complex Tc. To con�rm this hypothesis, we perform
numerical simulations setting k > 0 and k1 = 0. This means that the cargo binds to
dynein, but the cargo-dynein complex cannot attach the microtubule. As expected, the
nuclear accumulation of the cargo is still lower than the nuclear accumulation obtained
for k = 0 (no dynein concentration). Figure 3.6(a) illustrates this result. The blue
curve shows the accumulation due to Ran import, without dynein activity (k = 0) and
it is the curve that reaches the maximum value. The green curve represents the cargo
accumulation for k > 0 and k1 = 0. The nuclear accumulation in this second case is
lower than the accumulation due to the exclusive use of the ran pathway. Furthermore
it roughly coincides with the accumulation obtained with microtubule transport (k > 0
and k1 > 0, red dashed curve in Fig. 3.6). We also test the e�ects of using di�erent
motor velocities. When the speed of the motor is set to zero (c = 0), i.e. the microtubule
does not transport, but only hold the proteins in the same position, the nuclear import
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is evidently decreased (black curve in Fig. 3.6(b)). If we set c = 2, the nuclear import
increases, but slightly. The presence of the microtubule increases the competition for
the formation of the complex Tc, since it takes away the complexes Pf . The increased
competition seems to be balanced by the microtubule activity that releases the cargo next
to the nuclear envelope. In conclusion, we cannot observe an increased nuclear import
due to microtubule enhanced transport, neither for motor velocities c > 1.

3.4 Summary and further directions

Using the model of cytoplasmic transport on a single microtubule, introduced in Chap-
ter 2, coupled with model of Cangiani et al. [15], we were unable to reproduce the
experimental results of various authors that show that some speci�c nuclear proteins use
microtubule transport to facilitate their way to the nucleus. These results have already
been qualitatively reproduced in [15], where microtubule transport was modelled using
a vector �eld. How can we explain the sharp di�erence of our results? One of the main
di�erences with the model of Cangiani et al. compared to our approach, is that micro-
tubule in�uence is averaged within the cytoplasmic area. This modelling choice yields
two main consequences. The �rst one is �spatial�: at each point of the cell the dynein-
cargo-importin complex is trasported by microtubules and areas with no microtubule
activity are thus suppressed. Even if the microtubule network can be dense, we consider
this assumption too strong, furthermore in a three-dimensional domain: the distance
between two single microtubules cannot be completely avoided. Or, at least, the motor
velocity should not be kept constant, but should be adjusted to the assumptions of an
over-crowding of �laments. The second consequence is �temporal�: as soon as the dynein-
cargo-importin complex is composed, transport along the avareged microtubules begins.
Therefore, the attachment of the motor to the �lament is not taken into account and the
time spent on the microtubule is confused with the time the cargo spends bound to the
molecular motor dynein. These modelling choices make transport along microtubules
more e�cient but are not necessarily more realistic. The comparison with real data can
thus be misleading.

An other di�erence with respect the work of Cangiani et al. [15] is that we have
chosen (see Section 2.1.2 and [26]) to represent the movement along microtubules as a
one-dimensional process. This choice has been done to more accurately model motor-
assisted transport that is, e�ectively, a one dimensional movement. Indeed, dynein walks
along the �lament in the unique possible direction of the nucleus. In this way we highlight
the di�erence between the two considered type of motion: di�usion and advection.

We also remark that in [15], the authors assume that dynein binds to the cargo-
importin complex. Instead, we have supposed, in the model proposed in Section 2.1.2,
that dynein binds directly to the free cargo. The reason of our choice is linked to the
experimental results of Salman and colleagues who have shown [114] that the NLS signal
invokes active transport along microtubules. Thus we have supposed that cargo molecules
can bind to dynein independently of the transport receptor. As we have shown, this
choice leads to a competition between the dynein and the importin proteins to bind
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to the cargo. This competition decreases the nuclear accumulation of the free cargo.
Therefore it is necessary to test our model when the binding to dynein is allowed for the
cargo-importin complexes, as done in [15]. Furthermore our model is very simple and
di�erent extensions are possible and necessary. Indeed we have simulated a thin area of a
cell and we have considered a single microtubule. It would be interesting to test whether
other observations could be done, changing the geometry of the model. The results could
depend on the number of microtubule considered and on the distance between two single
�laments.
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Part II

A spatial model for p53 nuclear
accumulation
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Chapter 4

p53: a speci�c nucleocytoplasmic
shuttling protein

In this chapter will be presented the network of a speci�c cargo protein, named �p53�.
It will be explained how this protein acts in the cell and what are its functions. Some
models known from the literature will then be introduced and the mechanism used to
reproduce the dynamical behaviour of p53 discussed.
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History of p53

The protein p53 was isolated for the �rst time in 1979 (see [73] and Figure 4.1). Since
its molecular mass was calculated to be 53kDa (one Dalton, expressed as Da, represents
roughly the mass of one proton), scientists, unaware of the great interest that this protein
would have aroused, named it �protein 53�, or brie�y p53.

At the beginning, biologists thought that p53 and its corresponding gene was an
oncogene [108, 86], i.e., a gene that, when activated, can lead to uncontrolled prolif-
eration of tumour cells. About ten years after its discovery, experiments have shown
that p53 is a tumour suppressor [52]. Thus, instead of being an oncogene, p53 prevents
cells with damaged DNA from dividing and passing the DNA damage to daughter cells.
Furthermore, multiple studies have shown that the p53 gene is altered in about 50% of
cancer cells. As a consequence, in cancer cells, the protein may not carry out its task of
preventing from uncontrolled proliferation.
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For all these reasons, p53 became popular among cell biologists. And since thirty
years until now the functions, the network and the dynamics of p53 have been widely
investigated, in the hope of developing clinical applications.

What is p53?

p53 is a protein that senses genotoxic stresses and prevents the cells from becoming
tumoral. Protein p53 has multiple roles but in a general manner one can say that it
acts as a controller. Indeed, following DNA damage, p53 blocks the cell cycle in order
to avoid cell division, it starts repair pathways and, if needed, it triggers apoptosis (cell
suicide). p53 is thus essential for healthy cell survival.

4.1 Mechanisms that regulate p53 activity

When a damage is detected, cells react in di�erent ways depending on the type of stress
undergone. The p53 pathway is activated in presence of damages due to ionising radia-
tions, heat shock, cytotoxic drug insult and other forms of stress.

The protein p53 acts primarily as a transcription factor, so that it needs to accumulate

Figure 4.1: p53 discovery, image from [73], 1979. Immunoprecipitation of mouse cell lines
transformed by the SV40 virus (simian virus 40) led to the isolation of a 53kDa protein.
During the same year, p53 was also found to be expressed by tumor-induced cancer cells,
see e.g. [24].
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in the nucleus and bind to DNA to regulate the expression of proteins involved in the
processes like cell cycle arrest, repair and apoptosis.

4.1.1 Healthy cells

In order to proceed normally towards cell division, healthy cells have a low level of
nuclear p53. Even if a total loss of p53 can contribute to tumour development in mice
[31], uncontrolled expression of p53 has been shown to be harmful for embryonic mouse
cells. Indeed in the absence of the p53 major negative regulator, the protein Mdm2, mice
embryos show early lethality. This premature lethality can be counteracted only by p53
knock-out [91].

Healthy cells regulate strictly the activity of p53 by post-translational modi�cations
in order to orient the functions of the protein. The most important negative regulator
of p53 is the protein Mdm2.

This protein inhibits p53 nuclear accumulation and resulting activity in several ways:
it enhances p53 degradation, it blocks its transcriptional activity, it enhances p53 nuclear
export and �nally it reduces p53 nuclear import.

These multiple types of inhibition depend essentially on the enzymatic activity that
Mdm2 exerts on p53. Indeed p53 is degraded by the ubiquitin-proteasome machinery of
the cell and Mdm2 is a ubiquitin ligase for p53 [106, 33, 84]. Furthermore the conforma-
tional transformation due to the ubiquitination process also induces the masking of p53
principal NLS (Nuclear Localization Signal) [82], thus trapping p53 in the cytoplasm,
where it cannot act as a transcription factor. At the same time the mono-ubiquitination
step induced by Mdm2 improves the exposure of p53 NES (Nuclear Export Signal) [17],
so that p53-Mdm2 interactions also result in an enhanced nuclear export 1. Finally the
binary complex p53−Mdm2 is inactive as a transcription factor [89, 120] and the binding
of Mdm2 on p53 results in a loss on p53 activity.

Unexpected though it could be, Mdm2 is one of the target genes of p53 [37]. The
existence of a negative feedback between these two proteins con�rms the importance of
the p53-Mdm2 auto-regulatory loop.

4.1.2 Activation of the p53 pathway

The p53 network can be activated by several independent pathways depending on the
type of insult.

The activation pathway following DNA damage is regulated by ATM and Chk2 [16,
136]. ATM (Ataxia Telangiectasia Mutated gene) and Chk2 are two protein kinases
that sense the damage and launch a signalling pathway that leads to p53 activation. In
particular, ATM responds to damaging agents that produce double strand breaks in the
DNA [74] and mediates the forthcoming phosphorylation events [25].

Aberrant growth signals, such as those resulting from the expression of oncogenes,
activate the p53 network through the action of protein p14ARF [136].

1See Section 1.3 for a brief introduction about NLS, NES and nucleocytoplasmic transport
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The third pathway is induced by a wide range of chemotherapeutic drugs, ultraviolet
light, and protein-kinase inhibitors, and it may involve the ATR kinase [136].

All these di�erent pathways generate a cascade of signals that lead to a decreased
interaction between p53 and Mdm2. Both p53 and Mdm2 undergo post-translational
modi�cations, as phosphorylation or sumoylation that reduce the ability of the two pro-
teins to interact and thus elicit an increased p53 activity.

The activation process of p53 is highly complex and not fully controlled by any single
phosphorylation site or protein [136] and mechanisms that control it have not yet been
completely elucidated.

Just to show the complexity of the system we report in Fig. 4.2 the known sites of
phosphorylation for p53, that is, as said before, only one of the possible post-translational
transformations that p53 undergoes.

Figure 4.2: Phosphorylation known sites of protein p53 and the corresponding kinases
implicated. Image from [2].

4.1.3 Stabilization and subcellular localization

An evidence of p53 activation is its stabilization. The term stabilization is referred to
any process involved in maintaining the integrity of a protein and preventing it from
degradation or aggregation (de�nition of the biological process from the Gene Ontology
database at Ebi).

In response to stress stimuli p53 blocks cell growth, launches repair processes and
triggers apoptosis. In order to accomplish these functions, p53 needs to stabilize and
accumulate in the nucleus, where it can bind to DNA and starts the expression of its
downstreaming genes.

Within a few minutes from start of a stress stimulus in the cell, the p53 protein accu-
mulates in the nucleus [71] and its half-life rises signi�cantly because of post-translational
modi�cations, from twenty minutes to several hours [134, 109].
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Several works demonstrate that p53 stabilization results from p53-Mdm2 blocked
interaction. Indeed at least 11 post-translational modi�cations of p53 have been reported
in response to DNA damage [16, 34]. These modi�cations allow on the one hand the
stabilization of p53, on the other hand they regulate p53 transcriptional activity [34].

A �rst consequence of p53-Mdm2 reduced interaction is the reduced p53 degradation
due to a lower ubiquitination. Secondly the subcellular localization of p53 is promptly
readjusted. While in healthy cells Mdm2 sequesters p53 in the cytoplasm and improve
p53 nuclear export, in stressed conditions these actions are reversed. Indeed, in order to
regulate at best p53 nuclear functions, an appropriate subcellular localization is a crucial
requirement.

Actually p53 NESs are easily masked by post-translational modi�cations and this
make its export less e�cient [82]. A �rst p53 NES is weak, localized in its tetramerization
domain [125], and it is easily masked after DNA damage. A second NES, located at
Mdm2-binding domain, is inhibited by phosphorylation induced by DNA damage [82].

Since nuclear export takes more than 3h to be achieved [125], also a promoted nuclear
import is necessary for a fast stabilization. Interactions of p53 with proteins of the im-
portin family is reduced by Mdm2-induced ubiquitination [82]. Conversely, cytoplasmic
accumulation of ubiquitin-free p53 molecules, promotes the interaction with importin
proteins and results in a rapid import and nuclear accumulation [82].

A sketch of these di�erent processes is reported in Fig. 4.3 and 4.4.

The tumor suppressor p53 also performs some of its tasks in the cytoplasm. Indeed
it is endowed with biological functions that are not all transcriptional-dependent, and
it can directly activate the apoptotic pathway by translocating to mitochondria and
triggering the release of pro-apoptotic factors [19]. Anyway the control of transcription
by nuclear p53 decisively contributes to the function of cytoplasmic p53. Therefore
without transcription, regulated by nuclear p53, endogenous cytoplasmic p53 may not
function properly [49].

4.2 p53 temporal dynamics and existing models in literature

Within the regulatory circuit of p53, the existence of a negative feedback between p53 and
Mdm2 has been clearly established [140]. The protein Mdm2 is the major p53 antagonist:
it enhances p53 degradation [54], it blocks its entry into the nucleus [82] and inhibits
p53 transcriptional activity [120]. Conversely, p53 activates Mdm2 transcription [37].
Through this negative feedback, and more generally as a result of the complex processes
of p53 activation, it is possible to observe oscillations of p53 levels inside the cell under
stress conditions.

Among the �rst to observe damped p53 peaks were Collister et al. in [22] who noticed
a delayed and prolonged accumulation of p53 on cells treated with UV and ionizing
radiations. But the �rst to point out the existence of clear oscillatory dynamics of p53
and Mdm2 (see Fig. 4.5) were Bar-Or et al. [3]. In their work the authors show the
presence of damped oscillations in a human breast cancer epithelial cell population and in
mouse �broblasts submitted to ionizing radiations. Quantitative observations were made
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Figure 4.3: Scheme of p53-Mdm2 reactions in unstressed (up) and stressed (down) con-
ditions, cytoplasmic compartment

on cell populations and the authors observed damped p53 oscillations. Further analysis
demonstrated that the p53-Mdm2 system actually undergoes sustained oscillations after a
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Figure 4.4: Scheme of p53-Mdm2 reactions in unstressed (up) and stressed (down) con-
ditions, nuclear compartment. Improved nuclear import enhances p53 nuclear accumu-
lation.
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Figure 4.5: The authors of [3] observed an oscillatory behaviour of p53 and Mdm2 after
irradiation damage. (A) Mouse �broblasts NIH 3T3 cells expressing wild-type p53 and
wild-type Mdm2 were irradiated with 5 Gy of IR and harvested at the indicated time
points after irradiation. Total cell extracts were subjected to SDS/PAGE followed by
Western blot analysis. (B) Human breast cancer epithelial MCF-7 cells, expressing wild-
type p53 and wild-type Mdm2 were irradiated with 5 Gy of IR and harvested at the
indicated time points after irradiation. Total cell extracts were subjected to SDS/PAGE
followed by Western blot analysis [3].

damage signal [70]. Indeed experimental studies on single cells, made by Lahav et al. [70],
showed that p53 levels start to oscillate after irradiation, following DNA damage. But
how these oscillations depend on damage level? In their work, Lahav et al. observed that
the total number of peaks of p53 concentration increases with damage level. However,
identical cells exposed to the same amount of damage showed varying number of p53
pulses. Thus, the authors conclude that the possibility to see a series of pulses of p53
arises with the irradiation dose. The amplitude and the period of oscillations, on the
other hand, do not depend on damage level.

The reason why Bar-Or et al. [3] observed only damped oscillations of p53 levels is
that their analysis was made on cell populations. In this way, the number of peaks of
single cells, was averaged on the total population, giving a global damped behaviour.
This behaviour is schematically represented in Figure 4.6.

There are two main challenges about p53 oscillatory behaviour. The �rst one is to
understand the biological meaning of these oscillations, i.e. how oscillations are linked to
cell fate `decision' (towards life or death). This problem is still the object of debates, but
undoubtedly oscillations make decisions more �exible. According to a current interpre-
tation [68], each pulse of these oscillations corresponds to an evaluation of the cell state,
and an oscillatory response of the signalling pathway suggests that several evaluations of
the system state can take place before the conclusive commitment towards one fate or
the other.
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Secondly, identifying the physiological mechanisms that underlie the observed oscilla-
tions, and how they can be altered in disease, is also a challenge with possible therapeutic
implications (recalling that p53 is mutated and ine�cient in about 50% of cancers). Thus
is particularly a challenge to modellers. Indeed in recent years many models have ap-
peared aiming at explaining how the two-protein system p53-Mdm2 can reproduce such
sustained oscillations. In a model design perspective, a negative feedback is necessary to

Figure 4.6: Single cell analysis of p53 oscillations. A) Fraction of cells with zero, one two
or more pulses as a function of γ-irradiation dose. Taken from [68]. B) Schematic diagram
showing the di�erential p53 oscillations in individual cells. When studying populations
of cells, the amplitude of the pulses is averaged, and damped oscillations are observed
[69].

75



obtain oscillations, but it is not su�cient by itself [98]. Other mechanisms need to be
identi�ed in order to understand and reproduce the dynamics of p53.

4.2.1 Oscillations in a negative feedback system

An interesting review on how to get suitable oscillations in simple reaction networks has
been made by Tyson and Novák [98]. The authors give some clear examples and brie�y
sum up how simple networks generate oscillations if accurate conditions are satis�ed.

The �rst requirement is the existence of a negative feedback that make the system
step back to its initial state. But sustained oscillations do not appear through a single
negative feedback, other conditions are necessary. Time delay, nonlinearity and time
scale constraints are the ingredients which, if �well mixed�, make oscillations appear. We
report here the �rst of the examples discussed in [98], as it shows that a single variable
system can reproduce oscillatory dynamics if the negative feedback, always required, is
enriched with a time delay. Let us consider a system composed of the single variable
Y and suppose that it represents the concentration of a protein that inhibits its own
transcription. The corresponding equation reads:

dY (t)

dt
= k1S

Kp
d

Kp
d + Y p

− kdEt
Y

Km + Y
, (4.1)

where the �rst member of the right end side is the protein production rate, a decreasing
function of Y , the blue curve in Fig. 4.7. The second term is the degradation term that
is supposed to be a bounded function, increasing with Y (the green curve in Fig. 4.7).
Both terms depend also on source (S), enzymes (Et) and rate constants that are assumed
to be constant. As can be seen in Fig. 4.7 there is a unique equilibrium point, that is
stable, so that no oscillations can appear, whatever the values of parameters. Let us now
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Figure 4.7: A negative feedback alone does not generate oscillations

use an explicit time delay and take into account the time needed for transcription and
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translation. Protein production at time t depends, in this case, on its concentration at
t− τ for a �xed delay τ , and the equation reads:

dY

dt
(t) = k1S

Kp
d

Kp
d + Y p(t− τ)

− kdEt
Y (t)

Km + Y (t)
. (4.2)

The nonlinearity of the equation and the delay introduced allow sustained oscillations,
according to speci�c constraints on τ , p , Km, and S (the signal strength). Let us show
brie�y how to obtain a periodic solution to this equation. Let us start by writing the
equation in dimensionless form:

dy

dt̂
=

σ

1 + [y(t̂− τ̂)]p
− y

κ+ y

where t̂ = k2Et
Kd

t, y = Y/Kd, σ = k1S/(k2Et), κ = Km/Kd, τ̂ = k2Et
Kd

τ . The steady state
solution is the solution of the equation

f(y) := yp+1 + y(1− σ)− σκ = 0.

It is straightforward to see that there is a unique positive root y0 to this equation.
Assuming the solution to have oscillatory dynamics, thus to be of the form ŷ(t̂) = y0 +

ceiωt̂ and substituting this solution in equation 4.2, it is possible to �nd convenient
conditions on τ , p , Km and S for the existence of this solution. Examples of p53-Mdm2
models with an explicit time delay will be introduced in the next subsection.

Another classical example of network that reproduces oscillatory dynamics are sys-
tems that present positive and negative feedback together. Examples of such modelling
choice will be given below.

Finally it is interesting to take into account space and spatial constraints. Indeed
within a cell, every protein needs to be translocated from the nucleus to the cytoplasm in
order to be synthesized and, depending on its functional activities, need to be transported
to the right compartment (nucleus, nucleolus, mitochondria, etc.). Many ODE models
exist to represent the p53-Mdm2 oscillations but few consider the spatial variable as an
element involved in the generation of oscillations. We will discuss in a more detailed
manner the �rst examples of models that include a spatial description for p53 evolution.

The basic ideas that brought us to the model and to the results presented in this
thesis are based on the idea that physical constraints cannot be dodged. Certainly it is
useful and important to study the dynamics of molecular systems considering averaged
cellular concentrations of molecules, as it is done in ODE models. However, we believe
that an important step in the modelling process is to take into account the main physical
features of the system we deal with. In the speci�c case of eukaryote cells, the most
eye-catching physical feature that has to be considered is the separation between the
nucleus and the cytoplasm. As explained in Section 1.3, the processes that regulate the
access to the two compartments are strictly controlled and the functions that proteins
carry out strongly depend on their location. Therefore, in a modelling perspective, we
believe that integrating the spatial variable, as constraint and as functional information,
is an important direction to follow.
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Models introducing a delay

Here we present two examples of models of p53 where the authors use delay di�erential
equations (DDE) to reproduce the oscillatory dynamics of the p53-Mdm2 network. The

Figure 4.8: Diagram of the oscillator in the Wagner model, [78]

model was proposed by Wagner et al in 2005 [78]. In �gure 4.8 we can see the scheme of
the model proposed by the authors. The second model of DDE system is Monk's model
[90] and the corresponding scheme is reported in Fig. 4.9.

Figure 4.9: Scheme of Monk's Model reproducing p53 oscillations, [90].

Both these works reproduce the oscillatory behaviour of p53 and Mdm2. They model
the negative feedback p53 → Mdm2 ⊣ p53 and add a delay that allows oscillations to
occur. In both cases an intermediate variable is introduced. This intermediate represents
the mRNA of Mdm2. As established by [3] the use of a third equation in the p53-Mdm2
feedback is mandatory to obtain the oscillations.

In [78] the authors take into account two di�erent delays, τ1 and τ2. The �rst one
represents the delay due to transcription of Mdm2 mRNA, while the second one, repre-
sents the delay due to translation of Mdm2 mRNA into the Mdm2 protein (see Fig. 4.8).
The authors also model the activation of p53 due to the ATM kinase (see Section 4.1.2)
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and consider p53 in two distinct states: active and inactive (p53 and p53∗ respectively
in Fig. 4.8). Only nuclear concentrations are considered. A constraint is imposed in
order to get stable oscillatory dynamics: τ1 + τ2 > 16 min. But the switch that make
oscillations appear is due to the increased degradation rate of Mdm2, as a consequnece
of ATM activity. Finally, the authors couple these equations with a DNA damage repair
module and an ATM activation module, thus modelling all steps of the p53 pathway.

In the work of Monk, [90], a unique delay τ is taken into account. It stands for
the time due to transcription of Mdm2 (steps 3 and 4 of Fig. 4.9). The authors obtain
oscillations of p53 and Mdm2 levels in good agreement with experimental data. However,
no bifurcation analysis is done and no mathematical details about the existence of a stable
limit cycle are given.

Models of p53 oscillatory behaviour: positive and negative feedback

Here we will describe three di�erent models that reproduce p53 oscillatory dynamics,
obtained by introducing a negative and a positive feedback. Indeed biological evidence
shows that p53 inhibits Mdm2 nuclear entry through its interaction with protein PTEN
[84]. Also, various authors suggest an auto-catalytic nature for p53 transcription [5].
Therefore there are two possible positive feedbacks that can be taken into account in
order to generate oscillations (see Fig. 4.10).

(a) (b)

Figure 4.10: Motifs for the p53-Mdm2 network; (a): Negative and Positive Feedback
(NPF) due to inhibition of Mdm2 nuclear entry, as in [20, 100]. (b): the NPF is obtained
by taking into account an auto-catalysis of p53, as in [18]

Ciliberto [20] and Ouattara [100] consider the �rst scenario of Fig. 4.10. Both models
describe nuclear and cytoplasmic levels of p53 and Mdm2. Furthermore they both take
into account the DNA damage process thus describing an active and an inactive state of
the network. Ciliberto and collaborators in [20] analyse the question whether the oscil-
lations are due to the existence of a positive feedback or if the delay alone is the unique
necessary condition. To this purpose, the authors conceive an experimental study that
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could empirically prove which is the right mechanism (positive and negative feedback
or negative feedback+delay). They propose to remove experimentally the negative feed-
back and induce p53 synthesis. Since the positive feedback creates a bistable state, the
removal of the negative feedback would make the system step in a new state, without
traversing the oscillatory regime. If, instead, the positive feedback does not in�uence p53
dynamics, then the p53 level should increase, after induction of p53 synthesis, and then
come back to its initial state, once the signal is o�.

In [100] the authors introduce a simple model composed of four elements: p53, nuclear
and cytoplasmic Mdm2 and DNA damage. In this model, DNA damage enhances the
Mdm2 degradation rate, thus weakening the Mdm2 negative control on p53. Nuclear
Mdm2 a�ects p53 degradation rate and reduces p53 functional activity. On the other
hand p53 acts as a transcription factor for Mdm2 and inhibits the nuclear entry of
cytoplasmic Mdm2. Finally p53 promotes DNA damage repair (see the scheme of the
model on Fig. 4.11).

Figure 4.11: Reaction network scheme p53/Mdm2 dynamics from the model proposed in
[100]

Here is the system of equations they consider:







d[P ]
dt = kP

K4
P

K4
P+[Mn]4

− (dP + d
′

P [Mn])[P ],

d[Mn]
dt = Vr(kin − k

′

in
[P ]4

K4
Mn

+[P ]4
)[Mc]− kout[Mn]− dMn [Mn],

d[Mc]
dt = kMc + k

′

Mc

[P ]4

K4
Mc

+[P ]4
− (kin − k

′

in
[P ]4

K4
Mn

+[P ]4
)[Mc] +

1
Vr
kout[Mn]− dMc [Mc],

d[DNAdam]
dt = kIrIr− kdam

[P ]4

K4
dam+[P ]4

[DNAdam],

(4.3)
where Ir is the irradiation dose. Here [P ], [Mn] and [Mc] represents respectively the p53,
nuclear Mdm2 and cytoplasmic Mdm2 concentrations. The degradation rate of [Mn],
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dMn , is controlled by DNA damage by imposing dMn = d
′

Mn
+d

′′

Mn

[DNAdam]

K
′

Mn
+[DNAdam]

, where

d
′

Mn
,d

′′

Mn
and K

′

Mn
are �xed parameters.

Ouattara and colleagues analyse several bifurcation scenarios corresponding to di�er-
ent parameter sets. They choose the most relevant parameters by performing a logical
analysis of the dynamic network [1].

In particular they use as a bifurcation parameter the degradation rate of nuclear
Mdm2 (dMn), that depends on DNA damage. And they study the response of the
system to variations of the ratioKMc/KMn . This value represents the p53-Mdm2 binding
a�nity: KMc is the dissociation constant of p53 from Mdm2 target gene, while KMn is
the dissociation constant of p53 to the target genes that are responsible for the down-
regulation of Mdm2 import (see equations 4.3). If the ratio KMc/KMn < 1 the negative
feedback prevails and the bifurcation scenarios are similar to those of models discussed
in the previous section. On the contrary, for high values of KMc the binding a�nity of
p53 to the Mdm2 target gene is low and the positive feedback prevails. We can thus
observe a bistable behaviour which, coupled to the negative feedback loop, results in a
relaxation oscillator (see Fig. 4.12). The oscillatory modes di�er in periods, mean levels
of p53 and amplitude. This study shows the dependence of the type of response of the
network on characteristics such as p53 a�nity to target genes. The authors suggest that
the p53-Mdm2 network is able to modulate its behaviour in order to better respond to
di�erent types of DNA damage.

Finally we recall the model proposed by Chickarmane [18] who proposed the auto-
catalysis of p53 positive feedback in the p53-Mdm2 network. The authors couple the
module of the p53-Mdm2 oscillator (Fig. 4.10(b)) with a bistable switch that represents
the damage sensor. The switch is turned on when damage occurs and oscillations arise.
The authors show that the interaction between the bistable switch and the oscillator is
one way to obtain pulsatile behaviour. Furthermore they show that this system exhibits
robust oscillatory behaviour in the presence of noise.

Spatial models

We conclude this section about models of p53 dynamics with the description of the works
that include the spatial variable in the description of the p53-Mdm2 network. To our
knowledge Chaplain and his colleagues are the only authors who recently developed in
silico experimental cases where the oscillatory regime of p53 is reproduced through the
description of the spatial environment of a single cell. The �rst work that goes in this
direction is the model of Gordon et al. [44]. The authors suggest a simpli�ed model of
the p53 network that takes into account the p53-Mdm2 negative feedback loop and they
introduce a time delay associated to the transcription and translation of Mdm2. They
also represent a DNA damage term that decreases the Mdm2-dependent degradation rate
of p53 and enhances the p53-dependent transcription rate of Mdm2. The most important
aspect of this work is that for the �rst time the spatial component was introduced in order
to describe p53 dynamics. However the spatial component of the model is very simpli�ed:
a unique compartment is designed and no di�erence between nucleus and cytoplasm are

81



Figure 4.12: Di�erent bifurcation scenarios for low and high values of KMc [100]. sss

stands for Stable Steady State, uss Unstable Steady State, slc Stable Limit Cycle and
ulc Unstable Limit Cycle. The type of bifurcations are respectively a sub critical and a
super critical Hopf bifurcation.

imposed on the spatial domain. The cytoplasm is indeed modelled through a weight
function that represents the location where proteins are translated. Furthermore all the
reactions but one, translation, are not localized and the nuclear activity of p53 as a
transcription factor is shifted to the cytoplasm. The spatial component is not completely
exploited or, at least, characterized. However this work has the merit of introducing for
the �rst time, in the study of p53 dynamics, the spatial variable and to ask new questions
about how the environment of the cell can contribute to the generation, maintenance and
quality of the oscillations of the p53 network.

From the same group, two new studies about p53 dynamics with space have appeared
in the last years. In these works the spatial component is an essential ingredient to
explain the dynamics of p53. Thus the spatial environment of the cell has been further
characterised. The �rst one, [128], plunges the equations of Monk's model [90] in a spatial
environment and removes its explicit delay. Two domains are considered, a nuclear and
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a cytoplasmic one. Each represented species is modelled in a cytoplasmic and nuclear
form. Proteins are supposed to di�use freely in the cytoplasm and in the nucleus and
the reactions are localized. Thus, protein transcription take place in the nucleus and
protein translation in the cytoplasm. Furthermore the authors characterize spatially the
location of ribosomes within the cytoplasm and study the robustness of oscillations with
respect to it. The greatest interest of this work is that the authors manage to reproduce
p53-Mdm2 oscillations by neither adding a positive feedback nor a delay, but by using
the spatial description of the cellular environment and the well-known negative feedback.

Recently, an extended version of the model analysed in [128] has been proposed by
the same authors [129] and the spatial details further analysed. In particular the authors
model the nuclear membrane, that was not considered in the previous work. This choice
represents a signi�cant improvement of their work, since the nuclear membrane plays a
pivotal role in regulating the access to the nucleus and protein levels are not continuous
at the two sides of the membrane (for further biological details see Section 1.3). This
aspect was not taken into account in [128] and protein concentration was assumed to be
continuous at the membrane level. Beyond the di�usivity of proteins, the authors also
suppose that transport of p53 and Mdm2 is enhanced by microtubule activity. They
model microtubules through a vector �eld and transport with a convection term, as done
in [15] (see Section 1.2 and 1.4). The extended model is a more robust oscillator over
parameter changes with respect to the previous one. However there is no direct evidence
that Mdm2 uses microtubules to be transported throughout the cytoplasm. Furthermore
the di�usivity (and permeability) coe�cients used in this model do not correspond to
the known values of p53 and Mdm2 di�usion (and permeability), and oscillations disap-
pear for the `right' values of di�usivity, i.e. biological identi�ed. To conclude, the work
proposed in [129] provides an analysis of p53 dynamics in a detailed and realistic spatial
environment. However, in our opinion, some biological assumptions are premature and
need further evidence to be considered (relevance of the role of microtubules). Further-
more the use of spatial mechanisms as di�usion, permeability and microtubule velocity
of transport, is distorted by the choice of coe�cients 2-3 fold orders of magnitude lower
than the experimentally calculated ones.

4.3 Conclusions and Outline of the Work

The most common instruments used to describe the dynamics of p53 protein are ODE
systems of equations. And, as discussed above, the main strategies used to reproduce
oscillations are 1) positive feedback and 2) delays. As regards the former, additional
biological hypotheses on the p53 network need to be introduced. Furthermore, as pointed
out by Puszy«ski [104], the positive feedback used by [20] (and others, see e.g. [138]) is
mediated by other proteins, PTEN, PIP3 and Akt, but the authors do not consider any
of these intermediates explicitly nor introduce any time delay to account for this part of
the pathway. This simpli�cation introduces a direct feedback between p53 and Mdm2
that is not observed in experiments and produces non-physiological dynamics.

On the other side, implicit delays, that imply the use of DDE models, are untrust-
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worthy. Indeed a DDE model cannot characterize the physiological mechanisms that
underlie the introduced delay, so that key mechanisms might be hidden behind the delay.

Finally a few studies [128, 129] used the spatial description of the cellular environment
to reproduce the oscillations of the p53 network. Indeed, as it has been shown by Sturrock
et al. [128], the negative feedback and the localization of p53 and Mdm2 processes give
rise to oscillations. Through the spatial characterization of the biological processes, the
delay due to transcription and translation can be explicitly taken into account and the
delay due to transport is also considered.

In this second part of this thesis we will introduce a new model that considers ac-
tivation of p53, its degradation due to Mdm2 action, and its activity as a transcription
factor. The negative feedback between Mdm2 and p53 will also be taken into account in
terms of directionality of transport.

In Chapter 5 a simpli�ed version of this model will be given in terms of ODEs. We
will study the temporal dynamics of the p53 core network. It will be shown that the
existence of oscillations is dependent on the negative feedback and on the distinction
between nucleus and cytoplasm that naturally provide together the physiological delay
responsible for oscillations. A detailed bifurcation analysis will be done and di�erent
scenarios considered. Then in Chapter 6 we will introduce the spatial component and
we will discuss in a detailed manner the properties of the system in this `new' spatial
environment. We start its analysis by studying the behaviour of the system in a simpli�ed
one-dimensional domain. Then we analyse, using numerical simulations, the behaviour
of the system in a more realistic two dimensional domain. In this environment, we vary
all the spatial parameters of the system (di�usion and permeability coe�cients, volume
and shape of the cell) and we observe the qualitative change in the response of the system
(existence of oscillations, amplitude and period of oscillations). We end the chapter with
a discussion about our �ndings and the possible extensions of the model.
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Chapter 5

A physiological model for p53
intracellular dynamics

Protein p53 regulates essential cellular pathways, as the ones controlling cell cycle arrest,
DNA repair and apoptosis, and thereby it has a decision-making role for the cell, choosing
between death and survival, and such `decision' is strictly regulated by specialised cell
signalling pathways.

Because of the central role that p53 has in cell survival, the network that controls its
stabilization is rich and complex, so that modelling the dynamics of p53 is a challenge
to mathematicians.

An interesting aspect of p53 dynamics is its oscillatory behaviour. While in healthy
cells p53 concentration is low and at steady state, in damaged cells, where p53 is acti-
vated, the protein concentration rises and sustained oscillations appear [40, 70]. Identi-
fying the physiological mechanisms that underlie the observed oscillations, is a challenge
with possible therapeutic implications (knowing that p53 is mutated and ine�cient in
about 50% of cancers). We introduce in this chapter a physiological model that take into
account only the basic signalling pathways of the p53 protein. Our aim is to reach a bet-
ter understanding of the mechanisms which generate the oscillations in the p53 network
and allow the nuclear accumulation of the protein.

This chapter is organized as follows: in Section 5.1 we introduce the biological model
that we designed and we explain our modelling choices. Then, we give the mathematical
formulation of the model in an ODE form. In Section 5.2 we analyse the mathematical
model through equilibrium study and numerical bifurcation theory. Finally we propose
a biological explanation of the oscillations showing that they occur only if the relative
concentrations of active and inactive p53 overcome some threshold.
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Figure 5.1: The compartmental model: we suppose protein concentrations to be homo-
geneous in each compartment and we �x exchange rules between them.

5.2.3 Bifurcations of system (5.13) with respect to changes on the
parameter ATM . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.2.4 Bifurcations with respect to degradation values with �xed ATM 107

5.2.5 p53 degraded in both compartments . . . . . . . . . . . . . . . 108

5.3 Physiological interpretation of the rise of oscillations . . . . 111

5.4 Appendix: computation of the �rst Lyapunov coe�cient . . 115

5.5 Conclusion and Outline of the Work . . . . . . . . . . . . . . . 117

5.1 Model formulation

In this section we introduce the model we analyse in this part of the thesis. We design a
compartmental ODE di�erential system by assuming that the concentrations of proteins
are homogeneous in each compartment. We determine which reactions are allowed in
each compartment and we �x rules for the exchange of mass between them (see �gure
5.1).

The model involves two distinct states of p53 (an active and an inactive one), its
primary inhibitor Mdm2, and the mRNA of Mdm2, whose synthesis is promoted by p53.
Every species of the model exists in a nuclear and in a cytoplasmic form. If necessary, to
avoid confusion between the two compartments, we denote by [·](n) and [·](c), respectively,
the nuclear and cytoplasmic concentration of each species.

Protein p53 undergoes several conformational changes. In our model we represent
the ubiquitination process, i.e. the enzymatic action of Mdm2 on p53 by which p53 is
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marked for degradation. Even if ubiquitination is more complicated than other enzymatic
processes, we choose, for the sake of simplicity, to model it as a classical enzymatic
reaction. Thus we write:

[Mdm2] + [p53]
k
⇋

k−
[Complex]

k1→ [p53U ] + [Mdm2] (5.1)

where p53U represents the ubiquitinated form of p53. Then, following the Quasi Steady
State Approximation [63, 116], the associated di�erential equation describing the chem-
ical kinetics in (5.1) is given by:

d[p53]

dt
= −k1[Mdm2]

[p53]

K1 + [p53]
, (5.2)

where K1 =
k1 + k−

k
is the Michaelis constant and k1[Mdm2] represents the maximum

velocity of the reaction. In our model we do not include an equation for p53U . Indeed,
since through ubiquitination p53 is marked for degradation, we suppose that the right
term of equation (5.2) is a loss of mass in our system. In order to be detected by the
proteasome, p53 actually needs to be ubiquitinated several times (see [89] and reference
therein for a review on Mdm2-mediated p53 ubiquitination). Anyway, we choose not
to describe all the single ubiquitination steps, but rather a global one, because we are
more interested in the activation process. Furthermore we want to represent the simplest
possible network.

We also take into account the phosphorylation and dephosphorylation processes of
p53. As reviewed in Chapter 4, a single conformational change cannot uniquely determine
the activity of the p53 protein. Several post-translational transformations decide how p53
will be activated [34] and stabilised. Since p53 phosphorylation is particularly important
for its regulation in response to DNA damage [30], we represent only this transformation
and we treat the phosphorylated form of p53 as a generic `active' species. Furthermore,
although we are aware of the fact that di�erent kinases are activated and are able to
phosphorylate p53 depending on the type of damage, we choose to model here only the
ATM kinase, that is thus here meant to roughly represent a DNA damage sensor. For the
sake of simplicity we treat ATM as a parameter and consider simple enzymatic kinetics.
We consider the following reactions:

[ATM ] + [p53]
k2
⇋

k−2

[Complex]
k3→ [p53p] + [ATM ], (5.3)

[E] + [p53p]
k4
⇋

k−4

[Complex]
k5→ [p53] + [E], (5.4)

where p53p is the phosphorylated form of p53, while [E] is a generic phosphatase that
removes a phosphate group from its substrate p53p. Again by the quasi Steady State
Approximation we obtain the following equations:

d[p53]

dt
= kdph

[p53p]

Kdph + [p53p]
− k3[ATM ]

[p53]

KATM + [p53]
, (5.5)
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d[p53p]

dt
= k3[ATM ]

[p53]

KATM + [p53]
− kdph

[p53p]

Kdph + [p53p]
, (5.6)

where kdph is the maximum velocity of the dephosphorylation process, Kdph = k5+k−4

k4

and Katm = k3+k−2

k2
, the Michaelis constants. We assume that the phosphorylated form

of p53, that is the product of the reaction in equation (5.3), is unable to interact with
Mdm2, so that after DNA damage, a pool of p53 is not subject to Mdm2 control and is
active in the nucleus as a transcription factor.

Next, we model protein transcription and translation: a part of the mRNA of Mdm2
is produced in the nucleus at a constant rate, but a fraction is also produced as a function
of p53. Since p53 is known to be active as a transcription factor when it is in a tetrameric
form (formed up by four sub-units), we represent this reaction as is classically done in
modelling cooperative processes [57], by using a Hill function with coe�cient 4:

d[Mdm2RNA]

dt
= kSm + kSp

([p53p])
4

([p53p])4 +K4
Sp

, (5.7)

these reactions being located only in the nucleus. The mRNA of Mdm2 is then trans-
lated in the cytoplasm by the ribosomes. We assume a constant production rate for the
synthesis of p53 in the cytoplasmic compartment. Although recent studies [39] show that
p53 transcription could be enhanced after a damage, we choose not to represent explicitly
its mRNA.

We include degradation terms as linear functions of each protein concentration. Since
it has been proved that p53 degradation occurs mainly in the cytoplasm [82], we add,
besides the ubiquitination term, a classical degradation term for p53, in the cytoplasm.
Actually, p53 is known to be degraded also in the nucleus ([36, 141]), but in normal
growth conditions this is not the preferential way chosen by the cell [54]. Phosphorylated
p53 poorly interacts with Mdm2 and thus it is not marked for degradation by Mdm2.
We assume that it is not be degraded at all and do not consider any degradation term for
it. Following Ciliberto et al. in [20], we model the exchanges between compartments as
a linear contribution of a di�erence between averaged nuclear and cytoplasmic concen-
trations and we multiply the nuclear �ux by Vr, a nondimensional quantity representing
the volume ratio between cytoplasm and nucleus. It is known that p53 and Mdm2 can
shuttle between nucleus and cytoplasm [37, 82]. On the contrary, nuclear export of phos-
phorylated p53, that represents active p53, is inhibited after DNA damage [125, 143].
Therefore, basing our modelling hypotheses on these biological observations, we assume
here that p53 and Mdm2 can traverse the di�erent compartments. The phosphorylated
form of p53 is assumed to move from cytoplasm to nucleus but not backwards. On the
other hand, we assume that the mRNA of Mdm2 only moves from the nucleus, where it
is transcribed, to the cytoplasm, where it is translated. See Figure 5.2.

Based on our assumptions we obtain the following di�erential system for the activity
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of the coupled oscillator p53-Mdm2 in the nucleus:







d[p53](n)

dt
= kdph

[p53p]
(n)

Kdph + [p53p](n)
− k1[Mdm2](n)

[p53](n)

K1 + [p53](n)

−k3[ATM ]
[p53](n)

KATM + [p53](n)
− ppVr([p53]

(n) − [p53](c)),

d[Mdm2](n)

dt
= −δm[Mdm2](n) − pmVr([Mdm2](n) − [Mdm2](c)),

d[Mdm2RNA]
(n)

dt
= kSm + kSp

([p53p]
(n))4

([p53p](n))4 +K4
Sp

− δmRNA[Mdm2RNA]
(n)

−pmRNAVr[Mdm2RNA]
(n),

d[p53p]
(n)

dt
= pppVr[p53p]

(c) + k3[ATM ]
[p53](n)

KATM + [p53](n)
− kdph

[p53p]
(n)

Kdph + [p53p](n)
,

(5.8)
and the following one in the cytoplasm:







d[p53](c)

dt
= kS + kdph

[p53p]
(c)

Kdph + [p53p](c)
− k1[Mdm2](c)

[p53](c)

K1 + [p53]

−k3[ATM ]
[p53](c)

KATM + [p53](c)
− pp([p53]

(c) − [p53](n))− δp[p53]
(c),

d[Mdm2](c)

dt
= ktm[Mdm2RNA]

(c) − pm([Mdm2](c) − [Mdm2](n))− δm[Mdm2](c),

d[Mdm2RNA]
(c)

dt
= pmRNA[Mdm2RNA]

(n) − ktm[Mdm2RNA]
(c)

−δmRNA[Mdm2RNA]
(c),

d[p53p]
(c)

dt
= k3[ATM ]

[p53](c)

KATM + [p53](c)
− kdph

[p53p]
(c)

Kdph + [p53p](c)
− ppp[p53p]

(c).

(5.9)

5.2 Analysis of the model

In this section we study model (5.8)-(5.9) in order to capture the temporal dynamics
of the system [107]. To simplify our notations, let us set u0 = [p53], u1 = [Mdm2],
u2 = [Mdm2RNA] and u3 = [p53P ]. In the sequel we denote the nuclear and cytoplasmic
concentrations by the superscripts (n) and (c). The autonomous di�erential system
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Figure 5.2: Schematic view of the import-export abilities of p53 and Mdm2: modelling
choices.
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resulting from the model presented in Section 5.1 may be rewritten as:







du
(n)
0
dt = −k1u1 u

(n)
0

(Km1+u
(n)
0 )

− k3ATM
u
(n)
0

(Katm+u
(n)
0 )

+ kdph
u
(n)
3

(Kdph+u
(n)
3 )

− Vrp0(u
(n)
0 − u

(c)
0 ),

du
(n)
1
dt = −Vrp1(u(n)1 − u

(c)
1 )− d1u

(n)
1 ,

du
(n)
2
dt = kpm + kSp(

u
(n)4
3

(K4
Sp+u

(n)4
3 )

)− Vrp2u
(n)
2 − d2u

(n)
2 ,

du
(n)
3
dt = k3ATM

u
(n)
0

(Katm+u
(n)
0 )

− kdph
u
(n)
3

(Kdph+u
(n)
3 )

+ Vrp3u
(c)
3 ,

du
(c)
0
dt = ktp − k1u

(c)
1 (

u
(c)
0

(Km1+u
(c)
0 )

)− k3ATM
u
(c)
0

(Katm+u
(c)
0 )

+ kdph
u
(c)
3

(Kdph+u
(c)
3 )

+p0(u
(n)
0 − u

(c)
0 )− d0u

(c)
0 ,

du
(c)
1
dt = ktmu

(c)
2 + p1(u

(n)
1 − u

(c)
1 )− d1u1,

du
(c)
2
dt = −ktmu(c)2 + p2u

(n)
2 − d2u

(c)
2 ,

du
(c)
3
dt = k3ATM

u
(c)
0

(Katm+u
(c)
0 )

− kdph
u
(c)
3

(Kdph+u
(c)
3 )

− p3u
(c)
3 .

(5.10)
Here the �rst four equations represent the nuclear concentrations and the others the
cytoplasmic ones. Notice that, accordingly to the new notations, we denote by pi and di
the permeability and degradation coe�cients of the i-th species.

Nondimensionalisation

First of all we adimensionalise the system by writing

ū0(τ) =
u0(t)
α0

, . . . , ū3(τ) =
u3(t)
α3

τ = t
t⋆

where the αi are concentrations of the i-th species (expressed in µM) and t⋆ is a time
constant, expressed in minutes. We �xed α0 = α3 as p53 reference concentrations and
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α1 = α2 as Mdm2 reference concentrations and we rewrite the system as follows:







dū
(n)
0
dτ = −k4t⋆α1ū

(n)
1

ū
(n)
0

(Km1+α0ū
(n)
0 )

− k3ATMt⋆
ū
(n)
0

(Katm+α0ū
(n)
0 )

+ kdph
t⋆

α0

α3ū
(n)
3

(Kdph+α3ū
(n)
3 )

−Vrp0t⋆(ū(n)0 − α0
α0
ū
(c)
0 ),

dū
(n)
1
dτ = −Vrp1t⋆(ū(n)1 − α1

α1
ū
(c)
1 )− d1t

⋆ū
(n)
1 ,

dū
(n)
2
dτ = t⋆

α2
kpm + t⋆

α2
kSp(

(α3ū
(n)
3 )4

K4
Sp+(α3ū

(n)
3 )4

)− Vrp2t
⋆ū

(n)
2 − d2t

⋆ū
(n)
2

dū
(n)
3
dτ = t⋆

α3
k3ATM

α0ū
(n)
0

(Katm+α0ū
(n)
0 )

− kdpht
⋆ ū

(n)
3

(Kdph+α3ū3)(n) + Vrp3
t⋆

α3
α3ū

(c)
3 ,

dū
(c)
0

dτ = t⋆

α0
ktp − k4t

⋆α1ū
(c)
1 (

ū
(c)
0

(Km1+α0ū
(c)
0 )

)− k3ATMt⋆
ū
(c)
0

(Katm+α0ū
(c)
0 )

+ kdph
t⋆

α0

α3ū
(c)
3

(Kdph+α3ū
(c)
3 )

+t⋆p0(
α0
α0
ū
(n)
0 − ū

(c)
0 )− d3t

⋆ū
(c)
0 ,

dū
(c)
1

dτ = t⋆α2
α1

ktmū
(c)
2 + t⋆p1(

α1
α1
ū
(n)
1 − ū

(c)
1 )− d1t

⋆ū
(c)
1 ,

dū
(c)
2

dτ = −t⋆ktmū(c)2 + p2
t⋆α2
α2

ū
(n)
2 − d2t

⋆ū
(c)
2 ,

dū
(c)
3

dτ = t⋆

α3
k3ATM

α0ū
(c)
0

(Katm+α0ū
(c)
0 )

− kdpht
⋆ ū

(c)
3

(Kdph+α3ū
(c)
3 )

− p3t
⋆ū

(c)
3 ,

(5.11)
We collect the commun terms of equations (5.11):







dū
(n)
0
dτ = −k4t⋆ α1

α0
ū
(n)
1

ū
(n)
0

(Km1/α0+ū
(n)
0 )

− ATM
α0

ū
(n)
0

(1+ū
(n)
0 )

+ kdph
t⋆

α0

ū
(n)
3

(Kdph/α3+ū
(n)
3 )

−Vrp0t⋆(ū(n)0 − ū
(c)
0 )

dū
(n)
1
dτ = −Vrp1t⋆(ū(n)1 − ū

(c)
1 )− d1t

⋆ū
(n)
1

dū
(n)
2
dτ = t⋆

α2
kpm +

(ū
(n)
3 )4

(K4
Sp/α

4
3+(ū

(n)
3 )4)

− Vrp2t
⋆ū

(n)
2 − d2t

⋆ū
(n)
2

dū
(n)
3
dτ = ATM

Katm

ū
(n)
0

(1+ū
(n)
0 )

− kdpht
⋆

α3

ū
(n)
3

(Kdph/α3+ū
(n)
3 )

+ Vrp3t
⋆ū

(c)
3

dū0
(c)

dτ = t⋆

α0
ktp − k4t

⋆ α1
α0
ū
(c)
1 (

ū
(c)
0

(Km1/α0+ū
(c)
0 )

)− ATM
Katm

ū
(c)
0

(1+ū
(c)
0 )

+ kdph
t⋆

α0

ū
(c)
3

(Kdph/α3+ū
(c)
3 )

+t⋆p0(ū
(n)
0 − ū

(c)
0 )− d3t

⋆ū
(c)
0

dū
(c)
1

dτ = t⋆ktmū
(c)
2 + t⋆p1(ū

(n)
1 − ū

(c)
1 )− d1t

⋆ū
(c)
1

dū
(c)
2

dτ = −t⋆ktmū(c)2 + p2t
⋆ū

(n)
2 − d2t

⋆ū
(c)
2

dū
(c)
3

dτ = ATM
α0

ū
(c)
0

(1+ū
(c)
0 )

− kdpht
⋆

α3

ū3

(Kdph/α3+ū
(c)
3 )

− p3t
⋆ū

(c)
3 .

(5.12)

We set: kub := t⋆k4
α1
α0
, Kub := Km1

α0
, ¯ATM := ATM

α0
, ¯kdph :=

kdpht
⋆

α0
, ¯Kdph :=

Kdph

α3
,

k̄pm =
t⋆kpm
α2

, K̄Sp :=
KSp

α3
,k̄tp :=

t⋆ktp
α0

, k̄tm := t⋆ktm. We set p̄i = t⋆pi and d̄i = t⋆di for

i = 0, . . . , 3. Then we choose α0 = Katm, t
⋆ = 1

k3
and α2 =

kSp

k3
. This scaling choice has

been made in such a way that the term relative to the main bifurcation (with respect
to the ATM parameter) depends on the smallest possible number of parameters. Other
scaling choises are, of course, possible. Finally, the nondimensional system, which does
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not depend on Katm, k3 and kSp, reads:







dū
(n)
0
dτ = −kubū(n)1

ū
(n)
0

(Kub+ū
(n)
0 )

−ATM
ū
(n)
0

(1+ū
(n)
0 )

+ k̄dph
ū
(n)
3

( ¯Kdph+ū
(n)
3 )

− Vrp̄0(ū
(n)
0 − ū

(c)
0 ),

dū
(n)
1
dτ = −Vrp̄1(ū(n)1 − ū

(c)
1 )− d̄1ū

(n)
1 ,

dū
(n)
2
dτ = k̄pm +

ū
(n)4
3

(K̄4
Sp+ū

(n)4
3 )

− Vrp̄2ū
(n)
2 − d̄2ū

(n)
2 ,

dū
(n)
3
dτ = ATM

ū
(n)
0

(1+ū
(n)
0 )

− k̄dph
ū
(n)
3

(K̄dph+ū
(n)
3 )

+ Vrp̄3ū
(c)
3 ,

dū
(c)
0

dτ = k̄tp − kubū
(c)
1 (

ū
(c)
0

Kub+ū
(c)
0

)−ATM
ū
(c)
0

(1+ū
(c)
0 )

+ k̄dph
ū
(c)
3

(K̄dph+ū
(c)
3 )

+ p̄0(ū
(n)
0 − ū

(c)
0 )

−d̄0ū(c)0 ,
dū

(c)
1

dτ = k̄tmū
(c)
2 + p̄1(ū

(n)
1 − ū

(c)
1 )− d̄1ū

(c)
1 ,

dū
(c)
2

dτ = −k̄tmū(c)2 + p̄2ū
(n)
2 − d̄2ū

(c)
2 ,

dū
(c)
3

dτ = ATM
ū
(c)
0

(1+ū
(c)
0 )

− k̄dph
ū
(c)
3

(K̄dph+ū
(c)
3 )

− p̄3ū
(c)
3 ,

(5.13)
which we will refer to as

dū

dt
= F (ū), ū = (ū

(n)
0 , . . . , ū

(c)
3 ) ∈ R8, (5.14)

in the sequel.

Remark. All the simulations of the system have been done using the values of the
parameters on column 2 of Table 5.1. Those values have been obtained by numerical data
�tting, starting from values found in the biological or modelling literature on p53 [20,
103, 139]. We also found for each parameter a range of values for which the oscillations
are present. To do this, we �xed all the parameters, except for one that we varied, to
assess the response of the system. These ranges correspond in order of magnitude to the
corresponding parameters of many other models [20, 103, 139].

5.2.1 Equilibrium points

Basic de�nitions

We begin this section by shortly recalling some general notions that will be useful in what
follows. Theorems and de�nitions come from the book by Kuznetsov [67], Françoise [35]
or Perko [102]. Let us consider a generic continuous-time dynamical system de�ned by

ẋ = f(x), ∀x ∈ Rn, (5.15)

where f is smooth. Let x0 be an equilibrium of the system, i.e. f(x0) = 0 and let
A denote the Jacobian matrix of f evaluated at x0. Let n−, n0, n+ be the numbers
of eigenvalues of A (counting multiplicities) with negative, zero and positive real part,
respectively.
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Param. Description Chosen Value Units Ranges for osc.

kdph Dephosphorylation velocity 0.1 µM/min 0.039 ≤ kdph ≤ 1.73

Kdph Michaelis dephosporylation constant 0.05 µM 0.0001 ≤ Kdph ≤ 2.2

k1 Ubiquitination velocity 100 min−1 30.5 ≤ k1 ≤ 4180

K1 Michaelis ubiquination constant 1.01 µM 0.023 ≤ K1 ≤ 3.3

k3 Phosphorylation velocity 1 min−1 �xed

Katm Michaelis phosphorylation constant 0.1 µM �xed

δm Mdm2 degradation rate 0.16 min−1 0.03 ≤ δm ≤ 0.45

kSm basal Mdm2 mRNA transcription rate 0.005 µM/min 0 ≤ kSm ≤ 0.19

kSp p53-dependent Mdm2 mRNA transcription velocity 1 min−1 �xed

KSp Michaelis p53-dependent Mdm2 mRNA transcription 0.1 µM 0.06 ≤ KSp ≤ 0.9

δmRNA Mdm2 mRNA degradation rate 0.0001 min−1 0 ≤ δmRNA ≤ 0.41

kS p53 synthesis rate 0.015 µM/min 0.001 ≤ kS ≤ 0.02

δp53 p53 degradation rate 0.2 min−1 0 ≤ δp53 ≤ 23

ktm Mdm2 translation rate 1 min−1 ∀ktm ≥ 0.02

Vr Volume ratio 10 adim 0.8 ≤ Vr ≤ 24.2

p0 p53 permeability 0.083 min−1 p0 ≥ 0

p1 Mdm2 permeability 0.04 min−1 p1 > 0

p2 Mdm2 mRNA permeability 0.083 min−1 p2 > 0

p3 p53p permeability 0.083 min−1 p3 > 0.01

Table 5.1: Parameter values for the model 5.10. Starting from values taken from [139, 103]
and [20] we numerically obtained by data �tting, a complete set of parameter values that
are used in the sequel for the simulations. For instance, in [20], Vr = 15, kS = 0.0055 and
kSm = 0.0015. Keeping all but one of these parameters �xed at these reference values,
and varying the last one, we also calculated ranges of parameters (in projection on each
parameter axis) for which sustained oscillations take place. Note that the parameters
k3, Katm and kSp are presented in this table as �xed because they have been �xed to
constant values by the change of variables occurring in the nondimensionalisation (see
text in Section 5.2).

De�nition 5.2.1. An equilibrium is called hyperbolic if n0 = 0, that is, if there are no
eigenvalues on the imaginary axis. A hyperbolic equilibrium is called a hyperbolic saddle
if n−n+ 6= 0.

Let us also introduce the two invariant sets:

W s(x0) = {x : φtx→ x0, t→ +∞}, W u(x0) = {x : φtx→ x0, t→ −∞},

where φt is the �ow associated with 5.15.

De�nition 5.2.2. W s(x0) is called the stable set of x0, while W u(x0) is called the
unstable set of x0.

Proposition 5.2.1. Globally the invariant sets W s and W u are immersed manifolds
of dimensions n− and n+ , respectively, and have the same smoothness properties af f .
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Having these properties in mind, the sets W s and W u are called the stable and unstable
invariant manifolds, respectively, of the system at x0.

We also state the Hartman-Grobman Theorem:

Theorem 5.2.1. Let E be an open subset of Rn containing the origin, let f ∈ C1(E),
and let φt be the �ow of system (5.15). Suppose that f(0) = 0 and that the matrix
A = Df(0) has no eigenvalues with zero real part. Then there exist a homeomorphism
H of an open set U containing the origin onto an open set V containing the origin such
that for each x̂ ∈ U , there is an open interval Î ⊂ R containing zero such that for all
x̂ ∈ U and t ∈ Î

H ◦ φt(x̂) = eAtH(x̂);

i.e., H maps trajectories of (5.15) near the origin onto trajectories of the system ẋ = Ax
near the origin and preserves the parametrization by time.

Otherwise said, the �ow φt is topologically equivalent to (i.e. conjugated through a
homeomorphism with) the exponential �ow eAt of the linearised system in 0. See below
de�nition 5.2.3. For a proof see [53].

Equilibrium points of system (5.13) when ATM = 0

In healthy cells, p53 is targeted by Mdm2-mediated ubiquitination and it is highly de-
graded by the cell machinery. The damage sensor ATM is inactive and no oscillations
are present, which our model reproduces accurately, as shown below. On the contrary,
when a damage to the DNA occurs, conformational transformations of both Mdm2 and
p53 release this tight control, a pool of active p53 can accumulate in the nucleus and
oscillations start. In system (5.13) we set p53p = ū3 as the free and active species and the
growth of its concentration is related to the phosphorylation process, exerted by ATM.
Thus, if ATM = 0, i.e. if ATM is inactive, ū3 tends to zero and no oscillations appear,
as is easily seen in system (5.13). Indeed the equations for ū3 read, when ATM = 0:

dū
(n)
3

dτ
= −k̄dph

ū
(n)
3

(K̄dph + ū
(n)
3 )

+ Vrp̄3ū
(c)
3 , (5.16)

dū
(c)
3

dτ
= −k̄dph

ū
(c)
3

(K̄dph + ū
(c)
3 )

− p̄3ū
(c)
3 . (5.17)

We remark in equation (5.17) that u
(c)
3 tends to zero, and, as a consequence, u

(n)
3 too. Let

us set v
(n)
0 , . . . , v

(n)
3 and v

(c)
0 , . . . , v

(c)
3 the values of the equilibrium points for system (5.13).

We can calculate explicitly the equilibrium points of system (5.13), when ATM = 0.

Indeed, v
(n)
3 = 0 and v

(c)
3 = 0. Thus, the equation for ū

(n)
2 is uncoupled from the others

seven and we can calculate the corresponding equilibrium:

v
(n)
2 =

k̄pm

Vrp̄2 + d̄2
. (5.18)
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Substituting this value in the equation for ū
(c)
2 results in:

v
(c)
2 = p2(

k̄pm

Vrp̄2 + d̄2
)

1

k̄tm + d̄2
. (5.19)

We continue to substitute into the remaining equations, obtaining the values v
(c)
1 and

v
(n)
1 :

v
(c)
1 =

α

d̄1 + p̄1 − p̄21Vr

d̄1+p̄1Vr

,

v
(n)
1 =

p̄1Vr
d̄1 + p̄1Vr

α

d̄1 + p̄1 − p̄21Vr

d̄1+p̄1Vr

,

(5.20)

where α = p̄2(
k̄pm

Vr p̄2+d̄2
) k̄tm
k̄tm+d̄2

. Notice that the value of v
(c)
1 and v

(n)
1 are both positive for

any value of the parameters, since d̄1 + p̄1 − p̄21Vr

d̄1+p̄1Vr
≥ 0, for all (p̄1, d̄1, Vr) ∈ R3

+ . Let

us set β := v
(n)
1 . Finally we can calculate the values of the equilibria for the equations

for ū
(c)
0 and ū

(n)
0 . We set

v
(n)
0 = v

(c)
0 +

β

p̄0

v
(c)
0

Kub + v
(c)
0

− k̄tp
p̄0

and we substitute in the equation for ū
(c)
0 . We obtain an implicit function of v

(c)
0 given

by the following relation:

− β
v
(c)
0 + β

p0

v
(c)
0

Kub+v
(c)
0

− ktp
p0

Kub + v
(c)
0 + β

p0

v
(c)
0

Kub+v
(c)
0

− ktp
p0

− p0Vr(
β

p0

v
(c)
0

Kub + v
(c)
0

− ktp
p0

) = 0. (5.21)

We solve this relation to �nd two di�erent solutions:

v
(c),1
0 = −βp0Kub + 5Vrβ − βktp + β2 − 5p0Vrktp −A

2βp0

v
(c),2
0 = −βp0Kub + 5Vrβ − βktp + β2 − 5p0Vrktp +A

2βp0

where A = (10β2p20KubVr + 2β2p0Kubktp − 20p0Vrβ
2ktp − 50p20V

2
r βktp + 10βk2tpp0Vr +

10βp20KubVrktp + β2k2tp − 2β3ktp + β4 + β2p20K
2
ub + 2β3p0Kub + 25p20V

2
r β

2 + 10p0Vrβ
3 +

25p20V
2
r k

2
tp)

1/2. Therefore, there are two possible equilibrium states at ATM = 0.

Using the values of the parameters given in Table 5.1, we calculate, using Maple,

the coordinates of the equilibrium values of v
(c),1,2
0 for ATM = 0. For the values of

parameters chosen, only v
(c),2
0 is positive, while v

(c),1
0 is strictly negative. We can thus
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calculate (using a built-in function of Matlab that implements a Newton method) or
formally (using Maple) the equilibrium point whose coordinates are non-negative:

v = [0.2364, 0.0024, 0.0125, 0, 0.3028, 0.0029, 0.0005, 0], (5.22)

where v = [v
(n)
0 , v

(n)
1 , . . . v

(c)
3 ]. This equilibrium point represents the equilibrium concen-

tration of each species when no damage is detected by the cell.

We calculate the Jacobian matrix of system (5.13):

J(ū) =

















−kubū
(n)
1 Kub

(Kub+ū
(n)
0 )2

− ATM

(1+ū
(n)
0 )2

− Vrp0 −kub ū
(n)
0

(Kub+ū
(n)
0 )

0
kdphKdph

(Kdph+ū
(n)
3 )2

0 −Vrp1 − d1 0 0

0 0 −Vrp2 − d2
hkSpK

h
Sp(ū

h−1
3 )

(Kh
Sp

+ū
(n)h
3 )2

ATM

(1+ū
(n)
0 )2

0 0 −kdph Kdph

(Kdph+ū
(n)
3 )2

p0 0 0 0
0 p1 0 0
0 0 p2 0
0 0 0 0

Vrp0 0 0 0
0 Vrp1 0 0
0 0 0 0
0 0 0 Vrp3

−kubū
(c)
1 Kub

(Kub+ū
(c)
0 )2

− ATM

(1+ū
(c)
0 )2

− p0 − d3 − kubū
(c)
0

(Kub+ū
(c)
0 )

0
kdphKdph

(Kdph+ū
(c)
3 )2

0 −p1 − d1 ktm 0
0 0 −ktm − d2 0

ATM

(1+ū
(c)
0 )2

0 0 −kdph Kdph

(Kdph+ū
(c)
3 )2

− p3















and we evaluate its eigenvalues at the equilibrium point (5.22). All the eigenvalues of
the matrix J , evaluated in v have negative real parts. Therefore the equilibrium point is
hyperbolic. Since the vector �eld relative to system (5.13) is smooth, we can apply the
Hartman-Grobman theorem and conclude that v is a stable equilibrium point.

Equilibrium points for ATM > 0

The nonlinear nature of system (5.13) implies the existence of several equilibrium points,
for each value of the parameter ATM . Using the software Maple, we tried to evaluate
formally the expression of those equilibria, but the software was unable to do it. Assigning
the value of all but ATM of the parameters in Table 5.1, Maple gave as a result a
polynomial expression of degree 17, whose coe�cients depends on ATM , unusable to
obtain more information about the values of the equilibria.

However, we can state a general results about their nature. Let us remind that
F : R8 → R8 is the vector �eld associated to system (5.13):
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Proposition 5.2.2. The solutions of F (ū) = 0 depend on the values of the solutions of
the following system of three equations:







−kubū
(n)
1 ū

(n)
0

Kub + ū
(n)
0

− ATMū
(n)
0

1 + ū
(n)
0

+
k̄dphū

(n)
3

K̄dph + ū
(n)
3

− Vrp̄0ū
(n)
0 + Vrp̄0ū

(c)
0 = 0

−Vrp̄1ū(n)1 − d1ū
(n)
1 + Vrp̄1ū

(c)
1 = 0

k̄sp −
kubū

(c)
1 ū

(c)
0

Kub + ū
(c)
0

− ATMū
(c)
0

1 + ū
(c)
0

+
k̄dphū

(c)
3

K̄dph + ū
(c)
3

+ p̄0ū
(n)
0 − p̄0ū

(c)
0 − d̄0ū

(c)
0 = 0

(5.23)

in the three unknowns ū
(n)
0 , ū

(n)
1 and ū

(n)
3 , once the following solutions are made:

v
(c)
2 = v

(n)
2

p̄2
k̄tm + d̄2

,

v
(c)
1 =

k̄tmv
(c)
2 + p̄1v

(n)
1

p̄1 + d̄1
,

v
(c)
0 :=

k̄dphv
(c)
3 + p̄3v

(c)
3 (K̄dph + v

(c)
3 )

ATMK̄dph +ATMv
(c)
3 − k̄dphv

(c)
3 − p̄3v

(c)
3 (K̄dph + v

(c)
3 )

,

v
(c)
3 :=

1

Vrp̄3

(

−ATM v
(n)
0

1 + v
(n)
0

+
k̄dphv

(n)
3

K̄dph + v
(n)
3

)

,

v
(n)
2 :=

1

Vrp̄2 + d̄2



kpm +
(v

(n)
3 )4

K4
Sp + (v

(n)
3 )4



 .

This system has a �nite number of solutions.

Proof. Let us set v = [v
(n)
0 , v

(n)
1 , . . . , v

(c)
3 ] a generic equilibrium point of system F (ū) = 0.

Using the single equations of the system F (ū) = 0 we can explicit the value of the

equilibrium point for v
(c)
2 as a function of v

(n)
2 :

v
(c)
2 = v

(n)
2

p̄2
k̄tm + d̄2

;

then we write v
(c)
1 as a function of v

(c)
2 and v

(n)
1

v
(c)
1 =

k̄tmv
(c)
2 + p̄1v

(n)
1

p̄1 + d̄1
.

In a similar way we write v
(c)
0 as a function of v

(c)
3 and v

(c)
3 as a function of v

(n)
0 and v

(n)
3 :

v
(c)
0 :=

k̄dphv
(c)
3 + p̄3v

(c)
3 (K̄dph + v

(c)
3 )

ATMK̄dph +ATMv
(c)
3 − k̄dphv

(c)
3 − p̄3v

(c)
3 (K̄dph + v

(c)
3 )

,
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v
(c)
3 :=

1

Vrp̄3

(

−ATM v
(n)
0

1 + v
(n)
0

+
k̄dphv

(n)
3

K̄dph + v
(n)
3

)

and �nally:

v
(n)
2 :=

1

Vrp̄2 + d̄2



kpm +
(v

(n)
3 )4

K4
Sp + (v

(n)
3 )4





Thus all the equilibrium points of the nonlinear system F (ū) = 0 depend on the values

of v
(n)
0 , v

(n)
1 and v

(n)
3 . By substituting in F (ū) = 0 all the expressions written above, we

obtain system (5.23).

We veri�ed numerically the existence of at least one positive solution of system (5.23)

Positivity of solutions for ATM > 0

In the previous subsection we stated a theorem that gives us a general form for the
equilibria. However, we cannot write explicitly the values of those equilibria. Therefore,
we still need to show the existence of a positive equilibrium for our system, when ATM >

0. As above, we refer to the values of the equilibrium points as v = (v
(n)
1 , v

(n)
2 , . . . , v

(c)
3 ).

Proposition 5.2.3. The equilibrium values of ū
(n)
1 , ū

(n)
2 , ū

(c)
1 and ū

(c)
2 are positive for

all positive values of the parameter ATM .

Proof. It is easy to see from the second and seventh equations of system (5.13) that the

equilibrium values of v
(c)
1 and v

(n)
1 and of v

(c)
2 and v

(n)
2 have the same sign. We observe

also that the sign of the equilibrium value of v
(c)
2 is concordant with the sign of v

(c)
1 .

Indeed, using the sixth equation of system (5.13) we can write

v
(c)
2 =

1

k̄tm

(

d̄1 + p̄1 −
Vrp̄

2
1

Vrp̄1 + d̄1

)

v
(c)
1 ,

where we have substituted the value for v
(n)
1 obtained from the second equation of system

(5.13), v
(n)
1 =

Vrp̄1v
(c)
1

Vrp̄1 + d̄1
. Therefore, we need to evaluate the positivity of only one of the

four equilibria v
(n),(c)
1 and v

(n),(c)
2 . Using the equation for ū

(n)
2 , we can write the value of

the relative equilibrium point, as a function of v
(n)
3 :

v
(n)
2 =

1

Vrp̄2 + d̄2



k̄pm +
(v

(n)
3 )4

K̄4
Sp + (v

(n)
3 )4



 ≥ 0,

since we only consider positive values of the parameters. Thus the existence of an equi-

librium of system (5.13) implies that the values of v
(n),(c)
1 and v

(n),(c)
2 are positive.
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The expression of the equilibrium points, relative to the variables ū
(n),(c)
0 and ū

(n),(c)
3 ,

are more di�cult to be written explicitly, since the corresponding equations are non-
linear. For this reason, it is more reasonable to study the evolutionary problem. We
state the following proposition:

Proposition 5.2.4. The positive quadrant is invariant for the �ow of system (5.13) if
ATM > 0.

Proof. Let us suppose, one by one, that the values of the variable ū
(n),(c)
0 and ū

(n),(c)
3

drop to zero. If ū0
(n) = 0 the values of the corresponding derivative is :

dū
(n)
0

dτ
= k̄dph

ū
(n)
3

( ¯Kdph + ū
(n)
3 )

+ Vrp̄0ū
(c)
0 ≥ 0,

thus the solution ū
(n)
0 stays positive. Secondly, we consider the derivative of ū

(n)
3 . Setting

ū
(n)
3 = 0 we obtain:

dū
(n)
3

dτ
= ATM

ū
(n)
0

(1 + ū
(n)
0 )

+ Vrp̄3ū
(c)
3 ≥ 0,

which is positive. In the same way, the derivatives of the equations for ū0
(c) and ū

(c)
3 are

positive when (respectively) ū
(c)
0,3 = 0:

dū
(c)
0

dτ
= k̄tp + k̄dph

ū
(c)
3

(K̄dph + ū
(c)
3 )

+ p̄0ū
(n)
0 ≥ 0,

and
dū

(c)
3

dτ
= ATM

ū
(c)
0

(1 + ū
(c)
0 )

≥ 0

It is easy to verify the same property for each variable of the system. Therefore we can
conclude that, for every value of the parameter ATM > 0, if the initial value of system
(5.13) is positive, meaning that each component of the vector of initial values is positive,
then the solution will remain positive .

5.2.2 Basis of Bifurcation analysis

In this section we detail a numerical bifurcation study of system (5.13). Let us introduce
some preliminary de�nitions. What follows comes from the book by Kuznetsov [67]. We
consider a dynamical system that depends on a parameter:

ẋ = f(x, α), x ∈ Rn and α ∈ Rm, (5.24)

where x represents the variable while α is the parameter. If the parameters vary the
phase portrait varies, too. Upon these variations, the system could remain topologically
equivalent to the original one, or its topology could change.
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Example 5.2.1. Consider the two dimensional di�erential system

{

ẋ1 = αx1 − x2 − x1(x
2
1 + x22),

ẋ2 = x1 − αx2 − x2(x
2
1 + x22),

(5.25)

that in polar coordinates takes the form:

{

ρ̇ = ρ(α− ρ2),

θ̇ = 1,
(5.26)

The origin of the phase portrait is, ∀α, the unique equilibrium point of (5.25). For α ≤ 0
the equilibrium is stable since ρ̇ < 0 and ρ(t) → 0 if we start from any initial point. For
α > 0 we have ρ̇ > 0 for ρ <

√
α and ρ̇ < 0 if ρ >

√
α. Moreover the system has a

periodic orbit for any α > 0 of radius
√
α and this orbit is stable. Therefore, α = 0 is a

bifurcation parameter value. The phase portrait changes: it has a stable equilibrium for
α ≤ 0 that becomes unstable for α > 0 while a stable periodic orbit appears. This type of
bifurcation is called an Andronov-Hopf bifurcation, or simply a Hopf bifurcation [67].

In order to classify di�erent types of bifurcations and to combine dynamical systems
that can be considered qualitatively similar, some de�nitions are needed.

De�nition 5.2.3. Two systems of the form (5.24) are called locally topologically equiv-
alent near the origin, if there exist a map (x, α) 7→ (hα, p(α)), de�ned in a small neigh-
bourhood of (x, α) = (0, 0) in the direct product Rn ×Rm and such that

1. p : Rm → Rm is a homeomorphism de�ned in a small neighbourhood of α = 0,
p(0) = 0;

2. hα : Rn → Rn is a parameter-dependent homeomorphism de�ned in a small neigh-
bourhood Uα of x = 0, h0(0) = 0, and mapping orbits of the �rst system in Uα onto
orbits of the second system in hα(Uα), preserving the direction of time.

An important issue in bifurcation theory is the classi�cation of all possible bifurcation
scenarios of generic systems. For local bifurcation of equilibria, universal bifurcation
diagrams are provided by topological normal forms. Consider a simple system, polynomial
in ξi

ξ̇ = g(ξ, β;σ), ξ ∈ Rn, β ∈ Rk, σ ∈ Rl, (5.27)

which has at β = 0 an equilibrium ξ = 0 satisfying k bifurcation conditions determining
a codim k bifurcation of this equilibrium. Here σ is a vector of the coe�cients σi, I =
1, 2, . . . , l, of the polynomials involved in (5.27). Together with system (5.27), let us
consider a system

ẋ = f(x, α), x ∈ Rn, α ∈ Rk, (5.28)

having at α = 0 an equilibrium x = 0.
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De�nition 5.2.4. System (5.27) is called a topological normal form for the bifurcation
if any generic system (5.28) with the equilibrium x = 0 satisfying the same bifurcation
conditions at α = 0 is locally topologically equivalent near the origin to (5.27) for some
values of the coe�cients σi.

By generic system we intend a system that satis�es a �nite number of genericity
conditions. These conditions have the form of nonequalities:

Ni[f ] 6= 0, i = 1, . . . , s,

where each Ni is some algebraic function of certain partial derivatives of f(x, α) with
respect to x and α evaluated at (x, α) = (0, 0). Actually, the value of σ is determined
by the values of Ni, i = 1, . . . , s. Two types of conditions exist: the nondegeneracy
conditions, expressed in terms of partial derivatives of f(x, 0), and the transversality
conditions, in which the derivatives of f(x, α) with respect to α are involved. All these
conditions take the form of nonequalities. The role of these two types of conditions is
di�erent. The nondegeneracy conditions guarantee that the critical equilibrium is not
too degenerate, while the transversality conditions assure that the parameters `unfold'
this singularity in a generic way. We will give now the topological normal form of any
generic two dimensional system undergoing a Hopf bifurcation, since it is the bifurcation
we will encounter for system (5.13). These results can be applied also to systems having
a dimension > 2.

Theorem 5.2.2. Consider a two dimensional system

dx

dt
= f(x, α), x ∈ R2, α ∈ R (5.29)

with f smooth, and assume that if |α| is su�ciently small, the point x = 0 is an equilib-
rium with eigenvalues

λ1,2(α) = µ(α)± iω(α),

where µ(0) = 0, ω(0) = ω0 > 0.
Let the following conditions be satis�ed:

1. l1(0) 6= 0, where l1 is the �rst Lyapunov coe�cient (nondegeneracy);

2. µ′(0) 6= 0 ( transversality).

Then, system (5.29) is topologically equivalent near the origin to one of the following
normal forms:

(
ẏ1
ẏ2

)

=

(
β −1
1 β

)(
y1
y2

)

± (y21 + y22)

(
y1
y2

)

. (5.30)

where β = β(α) =
µ(α)

ω(α)
.
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Remarks. The �rst Lyapunov coe�cient l1 is a real function that is expressed by a
certain combination of Taylor coe�cients of the right-hand sides of the system. Further-
more, the sign before the cubic part of (5.30) is given by the sign of l1 and determines the
nature of the Hopf bifurcation. If l1(0) < 0, the bifurcation is supercritical. In this case
a stable equilibrium point becomes unstable after the bifurcation, and a stable periodic
orbit, surrounding the equilibrium point, appears. Otherwise the bifurcation is subcriti-
cal : a stable equilibrium is surrounded by an unstable limit cycle that shrinks as α goes
towards zero. When α = 0 the equilibrium becomes unstable and remain unstable for
α > 0 . The limit cycle disappears when α crosses 0 from negative to positive values.

Let us now give an analytical expression of the �rst Lyapunov coe�cient for the
general case of systems of n variables undergoing a Hopf bifurcation. In order to do this,
let us introduce some notations. Consider a system ẋ = f(x), with x ∈ Rn, f su�ciently
smooth and f(0) = 0. Suppose it can be written in the form:

ẋ = Ax+ F (x), x ∈ Rn, (5.31)

where F (x) = O(||x||2) is a smooth function. Let us write its Taylor expansion near
x = 0 as

F (x) =
1

2
B(x, x) +

1

6
C(x, x, x) +O(||x||4), (5.32)

where B(x, y) and C(x, y, z) are multilinear functions:

Bi(x, y) =

n∑

j,k=1

∂2Fi(ξ)

∂ξj∂ξk

∣
∣
∣
ξ=0

xiyk, i = 1, . . . , n,

the Hessian form, and

Ci(x, y, z) =

n∑

j,k,l=1

∂3Fi(ξ)

∂ξj∂ξk∂ξl

∣
∣
∣
ξ=0

xjykzl, i = 1, . . . , n,

the third derivative of F . Suppose that A has a simple pair of complex eigenvalues on
the imaginary axis, λ1,2 = ±iω0, ω0 > 0, and these eigenvalues are the only eigenvalues
with Reλ = 0. Let q ∈ Cn be a complex eigenvector corresponding to λ1 and consider
also the adjoint eigenvector p ∈ Cn having the properties

AT p = −iω0p, A
T p̄ = iω0p̄,

and satisfying the normalization condition

〈p, q〉 = 1,

where 〈p, q〉 =
∑n

i=1 p̄iqi is the standard Hermitian product in Cn.
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Then, it can be proved [67] that the expression of the �rst Lyapunov coe�cient is
given by the formula:

l1(0) =
1

2ω2
0

Re
[
〈p, C(q, q, q̄)〉 − 2〈p,B(q, A−1B(q, q̄, q̄))〉

+〈p,B(q̄, (2iω0In −A)−1B(q, q))〉
]

(5.33)

where In is the identity matrix in Rn. In order to calculate this coe�cient numerically,
we will use an algorithm, detailed in [67], that we report in the Appendix of this Chapter.

5.2.3 Bifurcations of system (5.13) with respect to changes on the
parameter ATM

System (5.13) depends over more than one parameter. In the remainder of this chapter,
we analyse numerically the bifurcation scenarios studying the behaviour of the system
with respect to the variations of several parameters. The �rst, and more important one, is
ATM , because it represents the sensor of DNA damage and activates p53 in our system.
Indeed our model writes:

[p53]
ATM−→ [p53p],

where p53p stands for the active form of p53 and it is supposed to be able to transcribe
Mdm2.

Let us rewrite system (5.13) in a di�erent way, to make explicit the dependence on
ATM :

dū

dt
= G(ū, ATM), ū ∈ R8, ATM ∈ R, (5.34)

where G : R9 → R8. As detailed in section 5.2.1, at ATM = 0, system (5.13) has a
hyperbolic equilibrium point v, whose components, strictly positive, are given in formula
(5.22). Starting from this equilibrium point, we determined numerically the equilibrium
curve of (5.34), using a classical continuation method [67]. This curve, de�ned by the
nonlinear system

G(y) = 0, y = (ū, ATM), (5.35)

exists, since the rank of the Jacobian matrix of (5.35), JG = Gy, evaluated in y = (v, 0)
is equal to 8 and we can apply the Implicit Function Theorem. The equilibrium curve
lays in R9 and depends on the parameter ATM .

The equilibrium points corresponding to the values of ATM < 1.4 are hyperbolic.
Indeed, we evaluated, at each computed equilibrium point, the Jacobian matrix of system
(5.13) and its relative eigenvalues, whose real parts are strictly negative [102]. Further-
more, there exist a couple of complex conjugate eigenvalues of our system. Denote by

λ1,2(ATM) = µ(ATM)± iω(ATM),

these eigenvalues. What follows is the result of numerical simulations. At ATM ∼ 1.4,
µ(1.4) drops to zero while ω(1.4) = ω0 > 0: the system exhibits a supercritical Hopf
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bifurcation. The real part of the eigenvalues µ(ATM) crosses the imaginary axis with a
nonzero velocity, as it can been clearly seen in Figure 5.3 and veri�ed numerically by an
approximation of µ′(ATM). Using the algorithm detailed in Appendix 5.4, we evaluated
the �rst Lyapunov coe�cient �nding l1(1.4) < 0. Thus all the genericity conditions given
in theorem 5.2.2 are satis�ed and a unique attractive limit cycle appears under variations
of ATM . At ATM ∼ 97.5 a second supercritical Hopf bifurcation occurs. For higher

−0.1 −0.08 −0.06 −0.04 −0.02 0 0.02
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Figure 5.3: ATM = [1, 2]. The two conjugate eigenvalues λ1,2 in the complex plane.

values of ATM the real part of the eigenvalues λ1,2 decreases towards zero. It crosses
again the imaginary axis at ATM ∼ 97.5 with l1(97.5) < 0. For ATM > 97.5 the
equilibrium points are stable again.

In Figure 5.4 we represent the bifurcation diagram of ū
(n)
3 and ū

(n)
1 . The dotted curves

stand for the value of the unstable equilibrium for each of the variables. The +-marked
curves represent the amplitude of oscillations that, as we can observe, varies slightly. In
order to calculate the period of each limit cycle, we counted the number of local maxima
of each computed numerical solution, at di�erent values of ATM . Once �xed the time
interval of the simulations, the number of local maxima corresponds to the number of
peaks of the solution and we were able to evaluate an approximation of the period of
oscillations. Figure 5.5 shows the (integer) number of peaks corresponding to solutions
at di�erent values of ATM . In our simulations, the period of oscillations varies slightly,
between 25 and 33 min, for values of ATM ∈ [1.4, 97.5]. The amplitude of oscillations can
be very small, for ATM next to the bifurcation values, or be signi�cantly wider depending
on the bifurcation parameter value, as �gure 5.4 shows. This observation is consistent
with biological experiments which show that for low and high values of damage, the period
of oscillations is roughly the same. On the other hand, the amplitude of oscillations is
more changeable [40]. The characteristic period of these numerical simulations is shorter
than the experimental one which is around ∼ 4 − 5h [40]. However, the exact values
of the parameters used here and collected in Table 5.1) are not easy to be determined
physiologically, and we will perform such physiological interpretation only in the PDE
case with the introduction of space coordinates.

In Figure 5.6(a) we draw the temporal evolution of the nuclear concentrations of
phosphorylated p53 and Mdm2 (respectively ū3

(n) and ū1
(n)). We can observe sustained
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(a) Bifurcation diagram of u
(n)
3

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

ATM

(b) Bifurcation diagram of u
(n)
1

Figure 5.4: Bifurcation diagrams (ODE system) for nuclear p53p and nuclearMmd2. The
equilibrium of the system is stable for values of ATM lower than a threshold (ATM ∼
1.4), then a supercritical Hopf bifurcations occurring, it becomes unstable and a limit
cycle appears. The dotted curve represents the branch with unstable equilibrium and
the + marked curves represent the minimum and maximum values of the oscillations.
When ATM becomes higher then at a second threshold the equilibrium becomes stable
again through a second supercritical Hopf bifurcation (ATM ∼ 97.5).
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Figure 5.5: Period (in minutes) of p53 oscillations as function of ATM

oscillations of their concentrations. In 5.6(b) we show the phase plane relative to the
same simulation, where we can observe the corresponding limit cycle in the (ū3

(n), ū1
(n))

plane (respectively nuclear p53p and Mdm2).

In conclusion, we found that for all values of ATM in the interval [1.4, 97.5], the
equilibrium point of system (5.13) is unstable and a stable limit cycle exist. Thus, in
this range of values for the parameter ATM , the system oscillates and reproduces the
observed biological behaviour. As proposed in [78], our results can be interpreted as
follows. If the damage is too low, the cell does not need to activate the p53 pathway
in order to repair. When the damage is high enough, the p53 pathway needs to be
launched and the oscillations begin. On the contrary, if the damage is too big, the cell
does not start repair processes, but directly launches apoptosis. Furthermore, the period
of oscillations does not change signi�cantly with the damage (∼ 30 min), reproducing
once again the behaviour observed experimentally.
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Figure 5.6: ODE Model. Simulations results. (a): Evolution of nuclear concentrations of
Mmd2 and p53p for ATM = 30, a value in the range [1.4, 97.5], giving rise to sustained
oscillations) . (b): Phase plane relative to the variable ū1

(n) and ū3
(n) (nuclear Mmd2

and nuclear p53p). The orbit of the solution tends towards a stable limit cycle.

5.2.4 Bifurcations with respect to degradation values with �xed ATM

The values of degradation parameters have been shown to be determinant in other works
about p53. For example Ciliberto et al. [20] (but see also [40]) use the degradation rate
of Mdm2 as a bifurcation parameter and observe the appearance of oscillations in the
p53-Mdm2 system, over variations of this parameter. Thus we changed, one by one,
the degradation rates of each species and we observed how the behaviour of the system
is a�ected. We set ATM = 3 in such a way that a limit cycle exist for the values of
parameters �xed in Table 5.1.

If we analyse the system over di�erent values of d̄1, the Mdm2 degradation rate, we
obtain, as in the ATM case, two supercritical Hopf bifurcation. But the system looses
its stability after the second bifurcation. The �rst supercritical Hopf bifurcation occurs
at d̄1 ∼ 0.03 and the second one at d̄1 ∼ 0.43. If the parameter goes over the threshold

of ∼ 0.8 the system looses stability. In particular, ū
(n)
3 tends to +∞. See �gure 5.7.

We notice that the system oscillates for very low values of the mRNA degradation
constant d̄2 ∼ 0. The system exhibits a supercritical Hopf bifurcation at d̄2 ∼ 0.41 after
which the equilibrium point is stable. The equilibrium is stable for 0.41 < d̄2 < 0.85.
Then the system looses stability and the solution for u3 tends to +∞ for high values
of the parameter d̄2. We conclude that, if the degradation rate of Mdm2 or mRNA is
too high, p53 degradation by ubiquitination is not controlled and the system does not
reproduce any biologically observed data.

Over changes on the ū0 degradation rate, namely d̄3 we do not see signi�cant variation
of the system. A stable limit cycle exists ∀d̄3 ∈ [0 , 21]. No changes at all in period and
a smooth change in amplitude of oscillations is observed, as it can be seen in Figure 5.8.
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0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

d
2

(c) bifurcation relative to the mRNA degradation
rate

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
28.1

28.2

28.3

28.4

28.5

28.6

28.7

28.8

28.9

29

d
2

p
e
ri

o
d

 (
m

in
)
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Figure 5.7: (a) Bifurcation diagram for u
(n)
1 . Two supercritical Hopf bifurcations at

d̄1 = 0.03 and d̄1 = 0.43, the Mdm2 degradation rate. A stable limit cycle exists for
0.03 < d̄1 < 0.43. (b) Period of the oscillations, in minutes. (c): Bifurcation diagram

for u
(n)
2 . A supercritical Hopf Bifurcation occurs: a stable limit cycle exist for d̄2 < 0.41,

the Mdm2 mRNA degradation rate. The red dotted curve is the unstable equilibrium

for u
(n)
2 . (d) Period of the oscillations as a function of d̄2.

5.2.5 p53 degraded in both compartments

As reported in [82] p53 degradation is more e�cient in the cytoplasm. Other works,
however, see [141], prove that p53 can be degraded in the nucleus. In our model we added
a degradation term only in the cytoplasmic compartment. In order to test whether this
assumption was not too strong, we added a nuclear degradation term for p53. In system

(5.13) only the equation for u
(n)
0 changes and reads:

dū
(n)
0
dτ = −kubū(n)1

ū
(n)
0

(Kub+ū
(n)
0 )

−ATM
ū
(n)
0

(1+ū
(n)
0 )

+ k̄dph
ū
(n)
3

(K̄dph+ū
(n)
3 )

−Vrp̄0(ū(n)0 − ū
(c)
0 )− d̄0ū

(n)
0
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Figure 5.8: (a): Bifurcation diagram for ū
(n)
0 . A supercritrical Hopf bifurcation occurs:

a stable limit cycle exist for d̄3 < 21, the p53 degradation rate. The red dotted curve

is the unstable equilibrium for ū
(c)
0 . The black curve is the stable equilibrium and black

+ are the maxima and minima of oscillations for ū
(c)
0 . (b): Period of the oscillations,

expressed as a function of d̄3. The period is given in minutes.

We calculated the bifurcation diagram as a function of ATM and we observed that
there are no signi�cant di�erences with the response of our original system. Thus we
con�rmed that our assumption was reasonable. We found again two supercritical Hopf
bifurcations. The bifurcation points have smoothly moved: we have a �rst supercritical
Hopf bifurcation for ATM ∼ 1.93 while in the �rst case the bifurcation value was ATM ∼
1.4. The second Hopf supercritical bifurcation is at ATM ∼ 98.5 while in the previous
case the second point was at ATM ∼ 97.5, see Figure 5.9.
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Figure 5.9: System with symmetrical degradation. Similarly to �gure 5.5 we plotted

the bifurcation diagram of ū
(n)
3 (a), and the period (in minutes) of the corresponding

oscillations (b). Compare (a) with Figure 5.4(a) and (b) with Figure 5.5.

We also calculated the bifurcation diagrams over the degradation rate of each variable.
We observe the same behaviour as in the original system (5.13). Only the bifurcation
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relative to d̄3 di�ers from previous scenario: the bifurcation point in this second scenario
is d̄3 ∼ 8 instead of d̄3 ∼ 21 (point which corresponds to the case when the degradation
of u0 is allowed exclusively in the cytoplasmic compartment). The relative bifurcation
diagrams are plotted in Figure 5.10.
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Figure 5.10: Bifurcation diagrams of ū0
(n), ū1

(n), ū2
(n) in the case of ū0 nuclear and

cytoplasmic degradation. (a): ū1
(n) bifurcation diagram over d̄1. (b): period of the

oscillations as a function of d̄1, expressed in minutes. (c): ū2
(n) bifurcation diagram over

d2 and (d) period of the oscillations as a function of d̄2, expressed in minutes. In both
cases for values of d̄1 and d̄2 bigger then ∼ 0.6 the system loose equilibrium as in system
(5.13). (e), (f): ū0

(n) bifurcation diagram over d̄3 and period of the oscillations.
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5.3 Physiological interpretation of the rise of oscillations

What is the physiological explanation of the rise of oscillations? Is it possible to identify
a physiological quantity that induces the start of oscillations? Here we show that oscil-
lations are linked to the ratio of concentrations of p53 in its active and inactive state.
We prove, on a simpli�ed version of our system, that there is threshold value σ > 0, to
be determined, such that, if

[p53p]

[p53]
> σ,

the system is in the oscillatory regime. Let us recall that v = [v
(n)
0 , . . . , v

(c)
0 , . . . , v

(c)
3 ]

stands for a general equilibrium point of system (5.13). De�ne the function φp : R→ R,

φp(ATM) =
v
(n)
3 + v

(c)
3

v
(n)
0 + v

(c)
0

,

that associate to ATM the ratio of the sum of the equilibrium values of p53 (nuclear and
cytoplasmic) and p53p, respectively. This function is well de�ned for all positive values

of ATM , since v
(n)
0 + v

(c)
0 > 0 as we have shown by the numerical computation of the

equilibria done in the previous section, see Figure 5.11.

Proposition 5.3.1. Assume that the function φp is strictly increasing. If system (5.13)
is in its oscillatory regime for a �xed value of the parameter ATM , then φp(ATM) > σ
where σ = φp(ATM0) and ATM0 is the bifurcation parameter value.

Proof. If for a �xed ATM , the system is in its oscillatory regime then
φp(ATM) > φp(ATM0), i.e. φp(ATM) > σ, since φp is supposed to be strictly in-
creasing.

In order to apply Proposition 5.3.1 we have to show that φp is an increasing function
of ATM . Therefore, we need to write explicitly the equilibrium values corresponding
to nuclear and cytoplasmic p53 and p53p, as functions of ATM . Let us rewrite system
(5.13) in its compact formulation:

dū

dt
= F (ū), ū = (ū

(n)
0 , . . . , ū

(c)
3 ) ∈ R8. (5.36)

The problem is to evaluate the equilibrium values of system (5.14), namely the solutions
ū of the system of equations:

F (ū) = 0. (5.37)

As we are interested in the values of v
(n)
0 , v

(c)
0 , v

(n)
3 , v

(c)
3 , we substitute in (5.37) the fol-
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lowing expressions for v
(n)
1 , v

(c)
1 , v

(n)
2 , v

(c)
2 :

v
(n)
1 =

Vrp̄1u
(c)
1

d̄1 + Vrp̄1
, v

(c)
1 =

k̄tm(d̄1 + Vrp̄1)

d̄1(d̄1 + p̄1 + Vrp̄1)
v
(c)
2 ,

v
(n)
2 =

1

d̄2 + Vrp̄2



k̄pm +
(v

(n)
3 )4

K̄4
Sp + (v

(n)
3 )4



 , v
(c)
2 = v

(n)
2

p̄2
k̄tm + d̄2

,

obtained using system (5.37). Using the values of the parameters given in Table 5.1, we
can write the following system of four equations:







−

(

2.4 +
483.5(v

(n)
3 )4

1+(v
(n)
3 )4

)

u
(n)
0

10.1 + u
(n)
0

− ATMu
(n)
0

1 + u
(n)
0

+
v
(n)
3

0.5 + v
(n)
3

− 0.833u
(n)
0 + 0.833u

(c)
0 = 0,

ATMu
(n)
0

1 + u
(n)
0

− v
(n)
3

0.5 + v
(n)
3

+ 0.833v
(c)
3 = 0,

0.15−

(

2.9 +
576.4(v

(n)
3 )4

1+(v
(n)
3 )4

)

u
(c)
0

10.1 + u
(c)
0

− ATMu
(c)
0

1 + u
(c)
0

+
v
(c)
3

0.5 + v
(c)
3

+ 0.0833u
(n)
0 − 0.0833u

(c)
0 = 0,

ATMu
(c)
0

1 + u
(c)
0

− v
(c)
3

0.5 + v
(c)
3

− 0.0833v
(c)
3 = 0.

(5.38)
As already discussed in Section 5.2.1, the equilibria of system (5.13) and equivalently
those of system 5.38 are hard to write in an explicit form. Using the software Maple,
that allows formal computations, we obtain implicit expressions of the roots of system
(5.38), not useful to further analysis. Since for low values of ATM , the values of the
equilibria v0 and v3, computed numerically, are `small' and included in the interval [0, 0.3]
(see Figure 5.11(a) and 5.11(c)), we linearize the system around v0, v3 = 0, and we obtain
the simpli�ed system:







−0.24u
(n)
0 −ATMu

(n)
0 + 2v

(n)
3 − 0.833u

(n)
0 + 0.833u

(c)
0 = 0,

ATMu
(n)
0 − 2v

(n)
3 + 0.833v

(c)
3 = 0,

0.15− 0.28u
(c)
0 −ATMu

(c)
0 + 2v

(c)
3 + 0.0833u

(n)
0 − 0.0833u

(c)
0 = 0,

ATMu
(c)
0 − 2v

(c)
3 − 0.0833v

(c)
3 = 0.

(5.39)
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This system being linear, it is easy to solve and solutions can be written explicitly:

v
(n)
0 =

17.85(ATM + 2.0833)

2.85ATM + 160
,

v
(c)
0 =

47.8

2.85ATM + 160
,

v
(n)
3 =

8.9ATM(ATM + 3.15)

2.85ATM + 160
,

v
(c)
3 =

23ATM

2.85ATM + 160
.

(5.40)

We can now write the expression of the function φp(ATM) =
v
(n)
3 + v

(c)
3

v
(n)
0 + v

(c)
0

,

φp(ATM) =
1.25(2.05 + 0.36ATM)

42.5 + 8.9ATM
,

that is increasing for positive values of ATM since its derivative

dφp

dATM
=

1.5(7.25 + 2.5ATM + 0.265ATM
2
)

(4.25 + 0.89ATM
2
)

> 0.

Finally, we can apply Proposition 5.3.1. This results states that if the total concentration
of active p53 is `σ times bigger' than the concentration of inactive p53 then the system
oscillates. We veri�ed that the results due to the simpli�ed system are in accordance with
the data calculated solving numerically the original system (5.37). We remark that the
range of values of the solutions are roughly the same and the behaviour of all variables

is the same, except for v
(n)
0 . In �gures 5.11(a), 5.11(b),5.11(c) and 5.11(d) we plotted

the values calculated numerically solving system (5.37) and the roots of the simpli�ed
system (5.38). We also evaluated numerically the function φp relative to the original
system (5.37), verifying that it is a increasing function of ATM (see �gure 5.11(e)).

Notice that the same proposition can be applied to the functions: φ1(ATM) =
v
(n)
3

v
(n)
0

and φ2(ATM) =
v
(c)
3

v
(c)
0

since both functions are strictly increasing, as it can be easily

veri�ed using the formulas (5.40). It would be interesting to verify experimentally if the
crossing of a threshold of the ratios of p53 and p53p in the nucleus or in the cytoplasm
(or the total quantity) determine the oscillations. It would be even more interesting
to understand if the biological location of the `unbalanced' concentration of active and
inactive p53 has a role in the starting of oscillations.
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Figure 5.11: (a),(c): Numerically computed equilibrium values of system (5.13) relative
to u0 et u3 in the nucleus (blue) and in the cytoplasm (green). (b),(d): Roots of the
simpli�ed system (5.39), computed using formulas (5.40). (e): The function φp computed
with the numerical solution of system (5.13) (plain line) and computed formally using
formulas (5.40) (dotted line).
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5.4 Appendix: computation of the �rst Lyapunov coe�cient

We summarize here the main steps which are useful to compute the �rst Lyapunov
coe�cient, following the algorithm presented in the book by Kuznetsov [67], to which we
refer for a more detailed description of each step of the algorithm. We remember that
we consider a dynamical system depending on one parameter α (the other parameters
are considered �xed):

ẋ = f(x, α), x ∈ Rn, α ∈ R, (5.41)

where f is a smooth function of (x, α). Let us suppose that f exhibits a Hopf bifurcation
at the equilibrium x0 at the critical parameter value α0. The formula giving the �rst
Lyapunov coe�cient, that determines if a Hopf bifurcation is supercritical or subcrititcal,
reads:

l1(0) =
1

2ω2
0

Re
[
〈p, C(q, q, q̄)〉 − 2〈p,B(q, A−1B(q, q̄))〉

+〈p,B(q̄, (2iω0In −A)−1B(q, q))〉
]

(5.42)

where A is the Jacobian matrix of system (5.41), and q and p satisfy

Aq = iω0q, AT p = −iω0p,

and are normalized by setting 〈p, q〉 = 1. Assume also that 〈q, q〉 = 1 and 〈Re p, Im q〉 = 0.
We recall the de�nition of the bilinear function B : Rn ×Rn → Rn

Bi(x, y) =
n∑

j,k=1

∂2fi(ξ, α0)

∂ξj∂ξk

∣
∣
∣
ξ=x0

xjyk, i = 1, 2, . . . , n, (5.43)

and of the function C : Rn ×Rn ×Rn → Rn

Ci(x, y, z) =
n∑

j,k,l=1

∂3fi(ξ, α0)

∂ξj∂ξk∂ξl

∣
∣
∣
ξ=x0

xjykzl, i = 1, 2, . . . , n. (5.44)

In order to avoid the computations of the partial derivatives in (5.43) and (5.44), notice
that it is possible to evaluate the vector B(v, v) for v ∈ Rn by the formula

B(v, v) =
d2

dτ2
f(x0 + τv, α0)|τ=0 , (5.45)

and similarly, the vector C(v, v, v) for v ∈ Rn can be obtained using the formula:

C(v, v, v) =
d3

dτ3
f(x0 + τv, α0)|τ=0 . (5.46)

These derivatives with respect the scalar variable τ can be easily approximated using
�nite di�erences. Therefore we can evaluate (5.42) using expressions computable via
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(5.45) and (5.46). We denote the real and imaginary parts of the vector q by qR and qI ,
so that we have

B(q, q) = B(qR, qR)−B(qI , qI) + 2iB(qR, qI)
B(q, q̄) = B(qR, qR) +B(qI , qI)
B(q, q, q̄) = C(qR, qR, qR) + C(qR, qI , qI) + iC(qR, qR, qI) + iC(qI , qI , qI).

The formulas (5.45) and (5.46) let us compute some of the terms of the previous ex-
pression, namely B(qR, qR), B(qI , qI), C(qR, qR, qR) and C(qI , qI , qI). B being a bilinear
form, this lead to the following identity:

B(v + w) =
1

4
(B(v + w, v + w)−B(vw, v − w)) .

Similarly we can obtain the following expression for C(v, v, w):

C(v, v, w) =
1

6
(C(v, v, v)− C(v − w, u− v, v − w))− 1

3
C(w,w,w),

which permits to evaluate all the terms involving B and C in the expression for l1.
Let us summarize all the principal steps useful to compute the Lyapunov coe�cient

l1.
Step 0. Evaluate the Jacobian matrix A = fx(x0, α0) of (5.41).
Step 1. Find four vectors qR, qI , pR, pI ∈ Rn satisfying the systems

{

AqR + ω0qI = 0,

−ω0qR +AqI = 0,

and {

AT pR − ω0qI = 0,

ω0pR +AT pI = 0,

and normalize according to

〈qR, qR〉+ 〈qI , qI〉 = 1, 〈qR, qI〉 = 0,
〈pR, qR〉+ 〈pI , qI〉 = 1, 〈pR, qI〉 − 〈pI , qR〉 = 0.

Step 2. Compute the following vectors by the directional di�erentiation:

a =
d2

dτ2
f(x0 + τqR, α0)|τ=0,

b =
d2

dτ2
f(x0 + τqI , α0)|τ=0

and

c =
1

4

d2

dτ2
[f(x0 + τ(qR + qI), α0)− f(x0 + τ(qR − qI), α0)] |τ=0.

Step 3. Solve the linear systems for r and (sR, sI):

Ar = a+ b,
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and {

−AsR − 2ω0sI = a− b,

2ω0sR −AsI = 2c.

Step 4. Compute the following numbers:

σ1 =
1

4

d2

dτ2
〈pR, f(x0 + τ(qR + r), α0)− f(x0 + τ(qR − r), α0)〉|τ=0,

σ2 =
1

4

d2

dτ2
〈pI , f(x0 + τ(qI + r), α0)− f(x0 + τ(qI − r), α0)〉|τ=0,

and evaluate their sum Σ0 = σ1 + σ2.
Step 5. Compute

δ1 =
1

4

d2

dτ2
〈pR, f(x0 + τ(qR + sR), α0)− f(x0 + τ(qR − sR), α0)〉|τ=0,

δ2 =
1

4

d2

dτ2
〈pR, f(x0 + τ(qI + sI), α0)− f(x0 + τ(qI − sI), α0)〉|τ=0,

δ3 =
1

4

d2

dτ2
〈pI , f(x0 + τ(qR + sI), α0)− f(x0 + τ(qR − sI), α0)〉|τ=0,

δ4 =
1

4

d2

dτ2
〈pI , f(x0 + τ(qI + sR), α0)− f(x0 + τ(qI − sR), α0)〉|τ=0,

and evaluate ∆0 = δ1 + δ2 + δ3 − δ4.
Step 6. Compute the numbers

γ1 =
d3

dτ3
〈pR, f(x0 + τqR, α0)〉|τ=0,

γ2 =
d3

dτ3
〈pI , f(x0 + τqI , α0)〉|τ=0,

γ3 =
d3

dτ3
〈pR + pI , f(x0 + τ(qR + qI), α0)〉|τ=0,

γ4 =
d3

dτ3
〈pR − pI , f(x0 + τ(qR − qI), α0)〉|τ=0,

and evaluate Γ0 =
2

3
(γ1 + γ2) +

1

6
(γ3 + γ4).

Step 7. Finally, compute

l1(0) =
1

2ω0
(Γ0 − 2Σ0 +∆0).

If l1(0) 6= 0 and the eigenvalues cross the imaginary axis with nonzero velocity, a unique
limit cycle appears under variation of α.

5.5 Conclusion and Outline of the Work

From this preliminary study of the ODE compartmental model, we veri�ed, in a simpli�ed
setting, that the system proposed reproduces the expected behaviour, with no need of
any arti�cial mechanism. The parameter that activates the system and gives rise to the
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oscillations is ATM . This parameter represents the protein ATM that phosphorylates
p53 in the cell, after a damage. We established the existence of two supercritical Hopf
bifurcations through which the system passes. Oscillations arise for low values of ATM
( ATM ∼ 1.4) and disappear for higher values (ATM ∼ 97). We evaluated the period of
oscillations following variations ATM and we veri�ed that it does not depend strongly
on the damage undergone (value of ATM in our model). This result reproduces the
behaviour of p53, experimentally observed [40]. However the period of the oscillations
of our simulations is shorter than the period observed experimentally. We will show in
the next Chapter how we obtained more realistic periods of our model by the addition
of a spatial variable. Finally we have given a physiological interpretation of the rise of
oscillations, based on the concentration ratio of active and inactive p53. We have shown,
using a simpli�ed model, that if the concentration of active p53 is σ times higher than
the concentration of inactive p53, the system must be in its oscillatory regime. It would
be interesting to further investigate this aspect and to have an experimental con�rmation
of our results. The possibility that the location of the unbalanced concentration of p53 in
its two states could play a role, makes this aspect of the problem even more interesting
to us.
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Chapter 6

A spatial model of p53 nuclear
accumulation

In this Chapter we continue the study of the model of p53 introduced in Chapter 5. We
analyse the behaviour of a modi�ed version of the model, to which we add the spatial
variability. We keep the same reaction network, as in Chapter 5, but we take into account
the distances that molecules have to cover to pass from a compartment to the other. We
assume that all the molecules are able to di�use within each compartment and we add a
transmission condition between the nucleus and the cytoplasm that models the nuclear
membrane. We obtain a reaction-di�usion system of equations, de�ned on two sub-
domains having a common boundary. We analyse the behaviour of this extended system,
testing the e�ects of the variations of the spatial coe�cients, on the temporal dynamics
of p53.

Contents
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6.2 Mathematical formulation . . . . . . . . . . . . . . . . . . . . . 120
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6.4.1 Spatial parameters . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.4.2 Simulations results in a 1-dimensional domain . . . . . . . . . . 125

6.4.3 Results in the 2-Dimensional domain . . . . . . . . . . . . . . . 129

6.5 Summary of the results . . . . . . . . . . . . . . . . . . . . . . . 136

6.6 Conclusions and Perspectives - Part II . . . . . . . . . . . . . 138

6.1 Some remarks about the spatial distribution of p53

Here we introduce the few notions about p53 spatial distribution in damaged or undam-
aged cells. Depending on the state of a cell (damaged or undamaged), but also on the
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type of the cell, p53 can be mostly nuclear or cytoplasmic. For instance, in mouse stem
cells, p53 is cytoplasmic, as �gure 6.1(a) shows. In this �gure we can observe a popu-
lation of stem cells (D3), where p53 is labelled by a green GFP tag, and the nucleus is
visualized using a �uorescent (blue) DNA-interactive agent (Draq5). In healthy cells, the
protein p53 is exported from the nucleus and degraded in the cytoplasm, thus, generally
the total concentration of p53 both in the nucleus and in the cytoplasm is very low and
not always detectable. When the damage is sensed by the cell, the network of p53 is
activated and the protein undergoes several modi�cations that allow its accumulation in
the nucleus. Figure 6.1(b) shows the cases of stem cells, where a gradual p53 stabilization
in the whole cell can be observed. In irradiated cells, nuclear p53 is detected half an hour
after irradiation [82]. The correct location of p53 has a direct impact on the functioning
of the protein. Many tumour types that have mutations on the p53 gene (classically p53
cytoplasmic con�nement) are less responsive to genotoxic stress induced by radiotherapy
or chemotherapy [99]. Import and export of p53 need to be tightly regulated for an
e�ective response in case of DNA damage. Moreover we recall that nuclear import and
export signals of p53 are easily masked or unmasked, depending on the necessities of the
cell and play an important role in p53 activation (see Section 4.1.2).

(a) (b)

Figure 6.1: (a) p53 is localized to the cytoplasm of mouse embryonic stem cells. (b):
p53 accumulates in the nucleus of irradiated embryonic stem cells. GFP-tagged p53 is
expressed in green. To visualize the nuclei, cover slips were incubated with Draq5 (blue)
[123]

6.2 Mathematical formulation

Consider the p53 model, introduced in Chapter 5. We cast system (5.13) in a two-
dimensional domain divided into a nuclear and a cytoplasmic compartment as shown in
Figure 6.2. We set Ω as the entire domain of the cell and we de�ne Ω1 as the nuclear
compartment and Ω2 as the cytoplasmic one. We set Γ12 := ∂Ω1 ∩ ∂Ω2 for the common
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Ω1

Ω
2

Γ12

Γ
3

Figure 6.2: Domain of the PDE system: we represent the two di�erent compartments,
Ω1 for the nucleus and Ω2 for the cytoplasm. Γ12 is the common boundary between the
two compartments; Γ3 is the exterior boundary, representing the cellular membrane.

boundary and Γ3 := ∂Ω\Γ12. Each species is a function of time t and position x = (x, y);
we suppose that each species is able to di�use in the cytoplasm and in the nucleus. We
include permeability conditions at the common boundary Γ12 that take into account
nuclear membrane. As for the ODE case, we nondimensionalise the system. Setting

ū0(ξ, η, τ) =
u0(x,y,t)

α0
, . . . , ū3(τ) =

u3(x,y,t)
α3

,

τ = t
t⋆ , ξ =

x
L , η = y

L ,

where L, expressed in µm, is some one-dimensional space parameter related to cell size,
we obtain in Ω1:







∂ū0
∂τ = D̄0∆ū0 − kubū1

ū0
(Kub+ū0)

−ATM ū0
(1+ū0)

+ k̄ph
ū3

(K̄ph+ū3)
,

∂ū1
∂τ = D̄1∆ū1 − d̄1ū1,
∂ū2
∂τ = D̄2∆ū2 + k̄pm +

ūh
3

(K̄h
Sp+ūh

3 )
− d̄2ū2,

∂ū3
∂τ = D̄3∆ū3 +ATM ū0

(1+ū0)
− k̄ph

ū3

(K̄ph+ū3)
,

(6.1)

and in Ω2:







∂ū0
∂τ = D̄0∆ū0 + k̄tp − kubū1

ū0
(Kub+ū0)

−ATM ū0
(1+ū0)

+ k̄ph
ū3

(K̄ph+ū3)
,

∂ū1
∂τ = D̄1∆ū1 + k̄tmū2 − d̄1ū1,
∂ū2
∂τ = D̄2∆ū2 − k̄tmū2 − d̄2ū2,
∂ū3
∂τ = D̄3∆ū3 +ATM ū0

(1+ū0)
− k̄ph

ū3

(K̄ph+ū3)
,

(6.2)

where we used the same notations as in the previous chapter. Notice that, as in [15],
we used Fick's Law to model the di�usion of each species concentration. We de�ned
D̄i =

t⋆Di
L2 , i = 0, . . . , 3, as the nondimensional di�usion coe�cients, where Di is the

dimensional di�usion parameter of the i − th species, expressed in µm2/min. Finally,
following [15] and [121], and consistently with the assumptions of the ODE model, we
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�x Kedem-Katchalsky [62] boundary conditions at the common boundary Γ12 for the
species that cross the nuclear membrane from both sides:







∂ū0
n

∂n = p̄0
D̄0

(ū0
c − ū0

n) = ∂ū0
c

∂n on Γ12,

∂ū1
n

∂n = p̄1
D̄1

(ū1
c − ū1

n) = ∂ū1
c

∂n on Γ12,
(6.3)

meaning that the �ux of each species through the nuclear envelope is proportional to the
di�erence between the concentrations at the two sides of the membrane. Notice that the
normal vector n is pointing outwards from the nucleus and that �uxes are continuous.
We �x the following boundary conditions for ū2 and ū3:







∂ū2
n

∂n = p̄2
D̄2

(−ū2n) = ∂ū2
c

∂n on Γ12,

∂ū3
n

∂n = p̄3
D̄3
ū3

c = ∂ū3
c

∂n on Γ12,
(6.4)

that include the directionality of transport: ū2, the mRNA of Mdm2, is only able to
exit the nucleus, while ū3, phosphorylated p53, traverses the nuclear membrane only
towards the nucleus. Again notice that the �uxes are continuous. The constants p̄i are
the permeability coe�cients relative to each species and are expressed, in the dimensional
model, in µm/min−1. We also assume that proteins are not able to exit the cell and we
use Neumann homogeneous boundary conditions on Γ3 (zero-�ux) for all species:

∂ui
∂n

= 0 on Γ3, i = 0, . . . , 3. (6.5)

Since nuclear pores are homogeneously distributed on the nuclear envelope and far from
saturation [121], the choice of Kedem-Katchalsky boundary conditions, to model mem-
brane permeability [62], is consistent with our environment; see [15] and references therein
for more details on Kedem-Katchalsky conditions in the case of the nuclear membrane.
We emphasize here that the choice of the boundary condition is coherent with the choice
of the ODE model, where we �xed an exchange rule between compartments as the linear
contribution of the di�erence of the mean concentrations in each compartment. Let us
consider a simpli�ed system for one generic species u that can only di�use in the domain
Ω: {

∂u(n)

∂t = Dn∆u
(n) in Ω1,

∂u(c)

∂t = Dc∆u
(c) in Ω2,

(6.6)

and let us couple this system by using the boundary conditions:

Dn
∂u(n)

∂n
= p(u(c) − u(n)) = Dc

∂u(c)

∂n
on Γ12, (6.7)

closed by the continuity of the �ux: Dn
∂u(n)

∂n = Dc
∂u(c)

∂n . Here again the normal vector
n is the same on both sides. If we integrate over the whole region and apply Green's
formula, we obtain:

{
du(n)

dt = p
|Ω1|

∫

Γ12
(u(c) − u(n))dσ,

du(c)

dt = p
|Ω2|

∫

Γ12
(u(n) − u(c))dσ,

(6.8)
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thus reducing the initial system (6.6) to system (6.8) above, in agreement with equations:

du(n)

dt
= pVr(u

(c) − u(n)),
du(c)

dt
= pVr(u

(n) − u(c)), (6.9)

which corresponds to our choices in the ODE model (5.13).

6.3 Numerical approximation

Figure 6.3: Mesh example.

All simulations have been performed using the open source tool FreeFem++.
FreeFem++ (http://www.freefem.org/�++/) is a computer language dedicated to the
�nite element method, developed at Jacques-Louis Lions Laboratory, Pierre et Marie
Curie University (UPMC), Paris.

Weak formulation

To simplify notations, and introduce the weak formulation of our problem, let us rewrite
the equations in vectorial form. We set V = (v1, . . . , vn)

T that is de�ned as a vector
function V : Ω1 ∪ Ω2 → Rn, with n = 8. We look for solutions of (6.1)-(6.2),(6.3)-(6.4)
in the space H1(Ω1) ∪ H1(Ω2), ∀t ∈ [0, T ] where T represents a �nal time. We de�ne
∇V : Ω1 ∪ Ω2 → Rn,d as the gradient of vector V , where d is the dimension where the
system lies: ∀x ∈ Ω1 ∪ Ω2, ∇vi(x) ∈ Rd. We also de�ne the divergence of a tensor
Q : Ω1 ∪ Ω2 → Rn,d, with rows Qi, i = 1, . . . , n, as ∇ ·Q := (∇ ·Q1, . . . ,∇ ·Qn)

T.
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We de�ne the diagonal tensors A = diag(d1, d2, . . . , dn) and P = diag(p1, p2, . . . , pn)
where the di and pi, i = 1, . . . , n, are respectively the di�usivity and permeability coef-
�cients of each considered species.

We de�ne a vector �eld R(V ) that collects all the reaction terms and we set V0 ∈
[L2(Ω)]n as the initial conditions. Finally we state the problem in vector form: �nd the
solution V ∈ L2(0, T ; [H1(Ω1∪Ω2)]

n) of the following initial and boundary value problem







∂tV = ∇ · (A∇V ) +R(V ) in [0, T ]× (Ω1 ∪ Ω2),

V (0,x) = V0(x) on {0} × (Ω1 ∪ Ω2),

(A∇V )n = 0 on Γ3,

(A∇V )n|Ω1 = P (V |Ω2 − V |Ω1) on Γ12,

(A∇V )n|Ω2 = P (V |Ω1 − V |Ω2) on Γ12,

(6.10)

where, here, n corresponds to the normal vector is relative to each compartment. Let us
consider a test function V̂ ∈ [H1(Ω1 ∪ Ω2)]

n. The weak formulation is given by:

∫

Ω1∪Ω2

∂tV V̂ dx+

∫

Ω1∪Ω2

A∇V ·∇V̂ dx−
∫

Γ12

(A∇V )n ·V̂ dσ =

∫

Ω1∪Ω2

R(V )V̂ dx. (6.11)

In order to describe clearly the contribution due to the �ux between the two compart-
ments, we can re-write the border term as it follows:

∫

Γ12
(A∇V )n · V̂ dσ =

∫

Γ12
P (V |Ω2 − V |Ω1) · V̂ (n)dσ +

∫

Γ12
P (V |Ω1 − V |Ω2) · V̂ (c)dσ

(6.12)

where we ordered the terms of V̂ as �nuclear� and �cytoplasmic�: V̂ = (V̂ (n), V̂ (c))T.

The �nite element method

We use �nite elements for the spatial discretization of problem (6.1)-(6.2), (6.3)-6.4). The
triangularization of the domain is created by FreeFem++ built-in function. Let Λh a C0

�nite element subspace of [H1(Ω1 ∪ Ω2)]
n de�ned on a regular mesh parametrized by h

(e.g see Figure 6.3) . The numerical solution is calculated using a backward Euler scheme
in time and a Newton iteration for the nonlinear terms. Le t0 = 0 and tn+1 = tn + ∆t
where ∆t is the step size in time. For n = 0, 1, . . . , we let

∫

Ω1∪Ω2
V n+1V̂ dx+∆t

∫

Ω1∪Ω2
A∇V n+1 · ∇V̂ dx−∆t

∫

Γ12
(A∇V n+1)n · V̂ dσ

−∆t
∫

Ω1∪Ω2
R(V n+1,k)V̂ dx = 0.

(6.13)

The term V n+1,k is the approximation of the term V n+1 solved by the Newton iteration
step. The algorithms goes as follows: at t0 we set V 1,0 = V 0 and we solve equation
(6.13). After solving the equation, we calculate the L2 distance ‖V 1,1 − V 1,0‖L2(Ω1∪Ω2)n
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Parameter Description Value Reference

dp p53 Di�usion coe�cient 600µm2/min [15]
dm Mdm2 Di�usion coe�cient 600µm2/min [15]

dmRNA Mdm2 mRNA Di�usion coe�cient 6µm2/min [38, 119]
dp′ p53P Di�usion coe�cient 600µm2/min [15]
pp53 p53 permeability coe�cient 10µm ·min−1 obtained
pmdm2 Mdm2 permeability coe�cient 10µm ·min−1 obtained
pmRNA Mdm2 mRNA permeability coe�cient 0.1µm ·min−1 obtained
ppp p53p permeability coe�cient 10µm ·min−1 obtained

Table 6.1: Parameter values for the dimensional model. The permeability coe�cients
are obtained by numerical data �tting. A more accurate description of the choice of the
permeability parameter is done in section 6.4.3.

and we proceed until ‖V 1,1 − V 1,0‖L2(Ω1∪Ω2)n < ε, for a �xed ε. Once calculated the
numerical solution V 1 we set V 2,0 = V 1 and we calculate the solution for the following
time step with a new Newton iteration.

6.4 Simulations Results

6.4.1 Spatial parameters

In this new setting, the number of parameters of the system has increased. Di�usion
and permeability coe�cients need to be set accordingly to the biophysical knowledge of
the cellular environment and molecular species. Since, according to [15], the di�usion
coe�cient of a general protein with a mass of about 40kDa is roughly 600µm2/min, we
take this value as a reference for all the protein species, p53 and Mdm2, in the nucleus
and in the cytoplasm. Using single molecule tracking and statistical analysis, recent
works managed to calculate the mRNA di�usion coe�cient [38, 119, 50] and found that
the coe�cient of a single mRNA particle is ∼ 6− 30× µm2/min, i.e., the ratio between
mRNA and protein di�usion coe�cients is about 1 : 100. Concerning the permeability
coe�cient, we supposed, to tie in with this di�usion coe�cient ratio, that the ratio
between the mRNA and the protein permeability coe�cient is 1 : 100. In the sequel, all
the simulations will be done for values of parameters listed in Table 6.1.

6.4.2 Simulations results in a 1-dimensional domain

We begin the study of the system in a simpli�ed one-dimensional domain, plotted
in Figure 6.4. This domain is given by two adjoining segments that represent the
cytoplasmic and nuclear compartments. We �x an interval [a, c] = [0 , 10] (in µm),
[a, c] = [a, b]∪[b, c], with [a, b] = [0 , 9] the cytoplasmic compartment, and [b, c] = [9 , 10]
the nucleus, as shown on Figure 6.4. We performed all simulations using �nite di�erences
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a b c

2Ω Ω1

Figure 6.4: A 1-dimensional simpli�ed domain of the cell.

schemes and we used a basic IMEX numerical scheme. For further details see [60]. Even
if the geometry is oversimpli�ed, there is a striking di�erence with the ODE case. The
protein �ux from one compartment to the other is not given, as in the ODE case, by
an average of the total concentration over the whole compartment, but by the protein
concentration that actually exists at the membrane location. In order to test whether the
system reproduces the oscillatory behaviour observed in the ODE case, �rst we analyse it
by following the variations of the ATM parameter. As explained above, this parameter is
meant to represent the DNA damage and it is the switch that turns on the system, giving
rise to robust oscillations. In the sequel we �x a time duration of 500 min to compare the
results for di�erent values of the parameters. We observed, see Figure 6.5(a), that for
values of ATM < 2, �rst the system tends towards a stable equilibrium, then starts to
produce damped oscillations (Figures 6.5(c) and 6.5(e)). Oscillations become undamped
and their amplitude rises when ATM > 2, see Figures 6.5(d), 6.5(f) . It is known from in
vitro observations [70, 40] that the period of oscillations is stable over di�erent irradiation
doses and consequent damages. The same behaviour may be observed on our simulation
results that show that once the undamped oscillations occur, the period varies slightly
and stabilises around a value of 35 min. See Figure 6.5(b) where we plotted the number
of peaks of the sustained oscillations observed in 500 min, against ATM variations.

The response of the system is robust upon changes of the di�usion coe�cients.

Once the oscillatory regime is established, we can vary the spatial parameters, namely
di�usion and permeability, to understand how the system responds to spatial pertur-
bations. In Section 6.4.1 we pointed out that the physiological ratio between protein
and mRNA di�usion is about 100:1. Keeping this ratio �xed, we performed simulations,
varying only the di�usion coe�cient. Our results show that the oscillatory behaviour is
highly robust over a wide range of variation for the di�usion coe�cient. Oscillations arise
for very low di�usion coe�cient (see Fig. 6.6) and remain active for very large values
of the parameters. The amplitude of oscillations decreases slightly with the di�usion
coe�cient but the period of oscillations is almost constant. We can observe damped os-
cillations for values of protein di�usion lower than 10µm2/min, but once this threshold
is crossed, undamped oscillations arise with a period of about 35 minutes (lower than
the period observed in biological experiments [40, 70]). Conversely, if simulations are
performed with a 1:1 ratio between mRNA and protein di�usion, oscillations disappear
quickly, for di�usion values D ≥ 100, as shown on Figure 6.7. This suggests that the
di�erence between mRNA and protein di�usion coe�cients is crucial to the oscillations
of the system.
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(c) Nuclear p53 over time, ATM = 1.5
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(d) Nuclear p53 over time, ATM = 2.5
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(e) Nuclear Mdm2 over time, ATM = 1.5
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(f) Nuclear Mdm2 over time, ATM = 2.5

Figure 6.5: 1-dimensional PDE model. (a): Bifurcation diagram of u
(n)
3 as a function of

ATM. (b): Number of sustained oscillations peaks observed in a �xed duration of 500
minutes. Oscillations in the 1-dimensional case: (c),(d) evolution of p53 concentration,
nuclear compartment. (e) (f): evolution of Mdm2 concentration, nuclear compartment.
Undamped oscillations occur only for value of ATM > 2 (ATM = 0.2).

Low permeability is essential for oscillations in the 1-D case.

We analysed the behaviour of the system under variations of the permeability coe�-
cient. In order to cross the nuclear membrane, proteins and RNAs need to pass through
large protein channels, called nuclear pore complexes (NPCs), that let only authorised
molecules to pass through. Even though a nuclear pore can be up to 100 nm long [110]
and the access to the pore is highly controlled, the translocation pathway is impressively
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Figure 6.6: Oscillations in the one-dimensional PDE case. If the ratio between protein
to mRNA di�usion is kept 100:1, varying the di�usion coe�cient do not compromise
the oscillatory behaviour of the system. (a): oscillation amplitudes over the di�usion

coe�cient for u
(n)
3 .(b) Number of peaks of the sustained oscillations during 500 min for

each di�usion coe�cient value. (c) Evolution of u
(n)
3 over time, for a di�usion coe�cient

equal to 50 and 1200µm2/min.

e�cient. The mass �ow through a single NPC can be up to 80 MDa/s [111] and the
time needed for translocation through the pore lasts only 5-7ms [23]. In order to under-
stand whether the permeability parameter is determinant for the model behaviour, we
performed numerical simulations for di�erent permeability values. As in Section 6.4.2,
the ratio between the di�usion coe�cients of protein and mRNA has been set to 100:1.
In the 1-dimensional case, undamped oscillations occur for values of the permeability pi
included between 3 and 20 µm/min. Some damped oscillations still appear for values
of the parameter pi ∈ [20, 40], as shown in Figure 6.8. We also notice that, unlike in
the previous experiments on di�usion coe�cients, the period of the oscillations depends
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Figure 6.7: 1-dimensional PDE model. Temporal evolution of nuclear p53p and Mdm2
concentrations. For homogeneous values of the di�usion coe�cient (ratio 1:1) only
damped oscillations occur. Here we �xed Di = 200, ∀i = 0, . . . , 3. All the other pa-
rameter values are �xed to the reference ones reported in Table 5.1 and 6.1.

highly on permeability variations. Figure 6.8(b) shows the number of peaks of p53 level
observed in 500 minutes.

These �rst results bring out the importance of the spatial variable: analysing vari-
ations of the system with respect to coe�cients that could not be studied in the ODE
case, we have pointed out the strong dependence of the solution upon the permeability
coe�cient. However, the range of values over which we can observe the expected os-
cillatory behaviour is lower than the permeability values proposed in the literature (see
e.g. [121]), that range around 100 µm/min−1. We also noticed that di�erent di�usion
coe�cients did not in�uence - neither qualitatively nor quantitatively - the behaviour of
the system. Since the one-dimensional case is an oversimpli�ed model of the cell, where
the nuclear membrane is reduced to a single point and di�usion is too fast to allow for
signi�cantly di�erent behaviours, we will now analyse the behaviour of the model in a
still simple, but more realistic, two-dimensional domain.

6.4.3 Results in the 2-Dimensional domain

In this section we analyse the system in a two-dimensional cell-shaped domain. For our
simulations we chose the domain represented in Fig. 6.9, where the total area is of about
300 µm2, while the ratio between cytoplasmic and nuclear areas is 10 : 1. These values
will be varied only when speci�ed. References values for spatial parameters have been
reported in Table 6.1.

We reproduced the spatial dynamics of the p53-Mdm2 system, as observed in [70,
40]. As can be observed on Figure 6.10, 30 min after damage sensing, the p53 protein
accumulates in the nucleus. A �rst peak of p53 concentration appears 1 hour after the
start of simulations. Then the cytoplasm and the nucleus empty and a second cycle
starts. Oscillations of Mdm2 follow, see Figure 6.11. The period of oscillations is about
300 min and corresponds to the actual period experimentally observed [70, 40].
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Figure 6.8: 1-dimensional PDE model. (a): Bifurcation diagram for non homogeneous
permeability coe�cient: protein permeability:RNA permeability �xed to 100:1. All the
other parameter values are �xed to the reference ones reported in Table 5.1 and 6.1. (b)
Corresponding number of oscillations in 500 min.

Oscillations exist for realistic protein and mRNA di�usion values.

Following the results of [38, 119] and the numerical results of the previous section, we �xed
the protein to mRNA di�usion coe�cient ratio to 100 : 1. As in section 6.4.2, we observe
a robust oscillatory behaviour, with sustained oscillations occurring for di�usion values
ranging in [10, 1000]µm2/min (see Table 6.2 and Figure 6.12). Comparing these results
with the one-dimensional case, we remark that di�usion values play a more important
role. Indeed in Section 6.4.2 we obtained an oscillatory behaviour for all di�usion values
> 10 µm2/min. Adding the second dimension to the system, we remark instead that
oscillations disappear for values of the di�usion coe�cient higher than 1000 µm2/min,
which implies that very fast di�usion of molecules prevents the occurrence of oscillations.
This emphasizes the importance in the 2D model of spatial di�usion, with physiological
values for the di�usion ce�cients. As shown in [59] experimentally observed p53 mobility
reduces drastically after DNA damage, and its di�usion coe�cient passes from ∼ 18
µm2/s to ∼ 3 µm2/s (1000 µm2/min- 180 µm2/min), within 8 hours. This reduced
mobility is probably due to increased protein-protein interactions and DNA binding of
active p53. Interestingly, the oscillatory dynamics is captured by our model for all those
di�erent values. Nevertheless, we did not consider the di�usion of p53 as a function of
time and DNA damage, which is an open option left for future work.

Period depends on permeability, but sustained oscillations are always present.

We tested again the robustness of the system towards perturbations of the permeability
coe�cients. We know, from the previous section, that in the one-dimensional case the
response of the system is sensitive to permeability variations. In the one-dimensional
setting, oscillations disappear for permeability values lower than the realistic ones (see
[121]). In the two-dimensional model the system reacts in a di�erent way, and we can
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Figure 6.9: Simulation domain of the bi-dimensional PDE model, Volume ratio: (C :
N) = 10 : 1

observe oscillations over a much larger range of the permeability coe�cient. We set the
di�usion constant to 600µm2/min for proteins and to 6µm2/min for the variable u2,
representing the mRNA and we varied the permeability coe�cient.

In the two-dimensional case the system is much more robust and oscillations arise
for permeability values strictly higher than 5 µm/min. We notice that the amplitude
of oscillations is almost constant (see Figure 6.13(a)), whereas, again, it is the period
of oscillations that exhibits the most remarkable variations. It varies from 250 min for
permeability values of 10µm/min to about 40 min when the permeability is set to 200
µm/min (and 2 µm/min for the mRNA), see Fig 6.13(b) and Table 6.2.

We notice that, in the two-dimensional setting, the period of oscillations strongly
depends on these spatial coe�cients. For high permeability constants the frequencies of
oscillations are high, while for lower permeabilities we can reproduce the period of in
vitro observations (about 4-5h, [70]).

The discrepancy between our values and those found in the literature could be due
to the simpli�cation of the transport machinery done in our model. We supposed indeed
that proteins could traverse the nuclear membrane by themselves, which is not the case.
Proteins like p53 or Mdm2 need to be carried by a chaperon through the membrane
and then be released in the destination compartment. The translocation process imply
a number of reactions, like the recognition by the importin and exportin proteins and
the binding (and unbinding) to the small GTPase RAN, that handle the directionality
of the transport. The time needed for these events to occur is not taken into account by
our model and this led us to set low permeability values, namely 10µm/min instead of
100µm/min [121], in order to get oscillations with the period observed in the literature.
Note that this point is more extensively commented in Section 6.6.
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Figure 6.10: Bi-dimensional PDE model. Spatial distribution of p53p at di�erent time-
step on the reference domain. Phosphorylated p53 spatial distribution and temporal
evolution. As observed in biological experiments [40, 70] p53 accumulates in the nucleus.
The peak of p53 protein is observed at 1h from damage sensing. Then the level of p53
steps back towards the initial state.

Period depends on the total volume of the cell rather than on cytoplasmic to

nuclear volume ratio.

The spatial treatment of the problem allow us to analyse the response of the model
in di�erent domains. Numerical simulations have been performed over a large range of
domains having di�erent total area, while the ratio between cytoplasmic and nuclear area
was kept �x at 10 : 1. Our results show that the oscillatory dynamics is the constant
response of the system. However the period of oscillations depends on the total volume
of the in silico cell, see Fig. 6.14(b). For smaller volumes, the period is shorter and it
rises with the volume. We observed variations between 55 and 1000 min.

We also analysed how the nuclear:cytoplasmic volume ratio a�ects the response of

Parameter Description Ref. values values for oscillations

V ol Total area of the simulations domain 300µm2 V ol > 0(µm2)
Vr Volume ratio Cytoplasm:Nucleus 10 2 ≤ Vr ≤ 100
pi Protein permeabilities 10µm/min 5 ≤ pi ≤ 5000(µm/min)
Di Protein di�usion coe�cients 600µm2/min 10 ≤ Di ≤ 1000(µm2/min)

Table 6.2: Parameter ranges of spatial values for which oscillations occurs. Remark:
As explained within the text, the ratio �protein di�usion:mRNA di�usion� has been
�xed to 100:1. Consistently to this choice also the ratio �protein permeability:mRNA
permeability� has been �xed to 100:1. Range of parameters obtained as in Table 5.1.
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Figure 6.11: Bi-dimensional PDE model. Mdm2 evolution in time and space. As shown
in biological experiments, the peak level of Mdm2 follows the peak of p53 [40]. The peak
of nuclear Mdm2 takes place at t=2h, while p53 peaks at t=1h. To compare with p53
evolution, see Figure 6.10.

the system. In this case, we �xed the total area to 300µm2 (Figure 6.9), and we varied
the nuclear area. Here again, the temporal dynamics of the system is oscillatory and
oscillations do not depends on the volume ratio. The period of sustained oscillations
varies between 175 and 400 min. Two or three peaks of p53 level (in the �xed time lapse
of 500 minutes) can be observed on Figure 6.15(b) for volume ratios varying between 2
and 100. See Figures 6.14 and 6.15 below and Table 6.2 for more quantitative details.

One can remark that the dynamics of the system is robust as sustained oscillations
can be observed over di�erent domains. This information let us speculate that the role
of oscillations is crucial for the p53-Mdm2 system. Indeed, even if we change drastically
the physical environment, or the cell shape (as we will see in the next section), sustained
oscillations are always present.

The geometry of the domain does not change the dynamics of the system.

We analysed the behaviour of the system over di�erent geometric domains: rectangular,
elliptic and `cell-shaped' domains. In accordance with Terry et al [132] we conclude that
the geometry of the domain does not in�uence the dynamic response of the system. In
Figure 6.16, we reported the cellular domain used in simulations and the corresponding
temporal evolution of nuclear and cytoplasmic levels of p53, all three domains having
approximately the same area and same volume ratio. As can be seen, the reproduced
temporal dynamics of the three systems are the same. Furthermore, the spatial dynamics
does not depend on the shape of the domain, as can be observed on Figure 6.18 where
we reported the simulations results in two di�erent domains.
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Figure 6.12: 2-dimensional PDE model. Number of peaks of sustained oscillations ob-
served in the �xed time laps of 500 min. On the x-axis the values of the corresponding
di�usion coe�cient expressed in µm2/min.

We also performed simulations locating the ribosomes, the big protein complexes,
scattered within the cytoplasm, that translate the mRNAs into proteins. We designed
the spatial distribution of ribosomes in such a way that their total concentration did not
change, varying only their location. To do this, we considered di�erent functions de�ned
on the domain of Figure 6.9, all having the same mean. No in�uence of the ribosome
location could be observed and we could conclude that the oscillatory behaviour is robust
upon changes on the location of ribosomes. This result di�ers from [128] where the
authors stated that the p53 oscillatory response was dependent on ribosome location.
However the same authors in [129], studying the spatial distribution of ribosomes in a
more precise spatial setting, observed a lower in�uence of this location.

Oscillations depends on the localization of the damage signal.

Finally we were interested in understanding whether the location of the damage signal,
triggered by ATM, and not only its strength, was responsible of generating the oscilla-

tions. To do this, we have changed the equations relative to p53
(n)
p and p53

(c)
p , i.e. ū

(n),(c)
3 .

In a �rst experiment we have set:

∂ū
(n)
3

∂τ
= D̄3∆ū

(n)
3 − k̄ph

ū
(n)
3

K̄ph + ū
(n)
3

,

∂ū
(c)
3

∂τ
= D̄3∆ū

(c)
3 +ATM

ū
(c)
0

1 + ū
(c)
0

− k̄ph
ū
(c)
3

K̄ph + ū
(c)
3

.

so that p53p is produced only in the cytoplasm. In a second experiment, we have assumed
the opposite, i.e. the damage signal is triggered only in the nuclear compartment. In
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Figure 6.13: Bi-dimensional PDE model. Oscillations in the 2-dimensional case. Varia-
tions according to the permeability coe�cient: in the 2-dimensional domain, undamped
oscillations appear for a wide range of permeability values (see Table 6.2). In (a) we
plotted the amplitude of oscillations, while in (b) we plotted the number of oscillations
in 500 min. The protein to mRNA permeabilty ratio is �xed to 100:1.

this case, the equations for ū3 write:

∂ū
(n)
3

∂τ
= D̄3∆ū

(n)
3 +ATM

ū
(n)
0

1 + ū
(n)
0

− k̄ph
ū
(n)
3

K̄ph + ū
(n)
3

,

∂ū
(c)
3

∂τ
= D̄3∆ū

(c)
3 − k̄ph

ū
(c)
3

K̄ph + ū
(c)
3

,

We left unchanged the corresponding boundary condition on Γ1,2, that we recall:

∂ū3
n

∂n
=

p̄3
D̄3

ū3
c =

∂ū3
c

∂n
on Γ12.

In both cases, no oscillations are observed. It is clear that the concentration of p53p,
in the compartment where it is not produced, is very low. Indeed, in both cases, in
at least one compartment, the only reaction term for u3 is of degradation. If p53 is
phosphorylated only in the nucleus, its cytoplasmic concentration tends to zero. Indeed,
p53p moves from the cytoplasm to the nucleus but not back. Thus, no boundary sources
at all are present. Depending on the location of the signal, p53p accumulates mostly in
the nucleus or in the cytoplasm. However, in both cases a fraction of p53p reaches the
nucleus so that the mdm2 production increases. Anyhow, no oscillations occur and a
equilibrium between p53 and Mdm2 concentrations is found. The temporal evolution of
the total concentrations, nuclear and cytoplasmic, are plotted in �gure 6.17. We have also
repeated the same experiments, without considering in one of the compartment, neither
the production term for p53p, nor the degradation one. In this way, one of the two
equations for ū3 (nuclear or cytoplasmic), is reduced to a di�usion equation. The results
are qualitatively similar to the previous case and no oscillations are observed. These
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Figure 6.14: Bi-dimensional PDE model. (a): Oscillations of nuclear p53 (avarage con-
centrations) for di�erent total volume (Vtot) and �xed volume ratio (Vr). (b): number of
oscillations occurring in 500 min for di�erent total volumes.
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Figure 6.15: Bi-dimensional PDE model. (a) Oscillations of nuclear p53 (average concen-
trations) for di�erent volume ratios (Vr) and �xed total area, Vr = cytoplasmic area

nuclear area
. (b):

number of oscillations occurring in 500 min for di�erent volume ratio.

results seem to show that oscillations depends on the nuclear import of cytoplasmic
p53. In fact, when the damage is triggered in the nucleus, active p53 accumulates and
produces the mRNA of Mdm2. Thus, the negative feedback is `on' and should triggers
the oscillations. The fact that it doesn't happened could mean that the import to the
nucleus of activated p53 is necessary to cause the oscillations and that an active p53
species exclusively nuclear, is unable to generate an oscillatory behaviour. A deeper
understating of these results is clearly needed.

6.5 Summary of the results

In this chapter we studied a new model for p53 which describes both its temporal and
spatial dynamics. We were able to reproduce oscillations with the period observed in in
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Figure 6.16: Bi-dimensional PDE model. Di�erent simulation domains having the same
total volume and same nucleus to cytoplasmic volume ratio, lead to similar oscillatory
behaviours of the system.
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Figure 6.17: (a), (b): nuclear and cytoplasmic total concentrations of p53p and Mdm2,
respectively, as functions of time when ATM is blocked into the nucleus. (c), (d): nuclear
and cytoplasmic total concentrations of p53p and Mdm2, respectively, as functions of time
when ATM is blocked into the cytoplasm.
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vitro experiments, namely 4 - 5 hours [70], using realistic di�usion coe�cients, by the
addition of a spatial variable. Moreover we have shown that these oscillations are present
for all known values of p53 di�usivity [59] (knowing that p53 mobility is reduced after
DNA damage).

We observed that the response of the system strongly depends on the spatial coe�-
cients of the system (di�usion, permeability, total volume of the cell), which points out
the signi�cant role of space in the p53 system.

We have also studied how the system responds to variations in permeability coe�-
cients, total volume and nuclear to cytoplasmic volume ratio. We have shown that the
oscillatory response is robust towards such variations, and that the period of oscillations
depends on the permeability coe�cient, and also on the total volume of the cell.

The distinction between nucleus and cytoplasm is the characteristic feature of eukary-
otic cells. We think that a model of signal transduction needs to consider this basic and
simple distinction in order to be consistent with common knowledge of the intracellular
biology and topology.

6.6 Conclusions and Perspectives - Part II

We have proposed a model for p53 nuclear accumulation. We have shown that the nega-
tive p53-Mdm2 feedback reproduces the oscillatory behaviour observed in cultured cells,
if the distinction between the nuclear and cytoplasmic compartments is taken into ac-
count. This implies locating the main cellular processes and making explicit the delays
due to transcription, translation and translocation between compartments. Firstly, we
have studied the response of the ODE di�erential system, and we have veri�ed that the
dynamics of the network proposed was the expected one. We have reproduced undamped
oscillations against ATM variations showing the existence of a Hopf supercritical bifurca-
tion. Then we have introduced a spatial variable and numerically analysed the simulation
results in the new PDE setting. Our choice to develop a spatial model of the p53 net-
work has led us to remark that taking into account physiological phenomena within the
cellular space explains in biologically relevant details the expected oscillations. We have
shown that the experimental di�usion values �t our model and reproduce the oscillatory
behaviour with a good estimation of the period observed in vitro. We have provided
evidence that the oscillatory behaviour of the system is also robust towards variations of
the nuclear to cytoplasmic ratio and of cell shapes. This allows us to speculate that such
a robust response of the system towards changes in physical coe�cients, as cell volume,
di�usion coe�cient or volume ratios, testi�es the crucial role of oscillations in the p53
system.

It is worth nothing that the permeability values that reproduce the physiological be-
haviour in our model are lower than the values proposed in other works [15, 121]. We
believe that, taking into account more signalling pathways involved in the import and ex-
port nucleocytoplasmic machinery should permit to consider more realistic permeability
values. Indeed, it is known that the translocation rate is given by the nucleocytoplasmic
transport machinery [50], and not by the translocation through the nuclear pore com-
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(a)

(b)

Figure 6.18: Bi-dimensional PDE model. (a): p53 oscillations in the two-dimensional
case: after 30 minutes the concentration of the molecule accumulates in the whole cell.
Then the nucleus �lls up and the cytoplasmic concentration decreases. The cycle starts
again. (b): spatial dynamics of p53 in the reference domain. The spatial and temporal
dynamics do not depend on cell shape.
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plexes, since the time during which molecules bind to the central region of the nuclear
pore is very low [23]. Thus to take into account more realistic transport timing it would
be important to couple the model we have designed with the model of nucleocytoplasmic
transport studied in [15]. It would also be interesting to model the cytoskeloton activity
in the transport mechanism, as done in [129, 15]. It has indeed been shown that p53 uses
the microtubule �laments in order to get faster to the nucleus [113, 41]. However, there
is still no experimental evidence for a role of microtubules in Mdm2 cytosolic transport.

To conclude on a medically oriented note, the simplicity of the network considered
in this work may o�er in the future an e�ective tool to understand the e�ects of known
mutations of p53 with respect to the di�erent mechanisms that we represent in our model,
as nuclear import, translation, or phosphorylation. Indeed p53 is known to be mutated
in more than 50% of cancer cells and it is a future goal with possible pharmacological
and clinical consequences for us to understand how these mutations in�uence the spatio-
temporal dynamics of p53.
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Chapter 7

Conclusions and Perspectives

In this thesis we have dealt with the transmission of molecular signals within a cell.
In particular we were interested in the exchange of information between the two major
compartments of the eukaryotic cells, the nucleus and the cytoplasm. Proteins undergo
transformations that have a speci�c meaning for the cell, and move inside the cell in
order to transmit their message to the required location. Often, several proteins and
molecules are involved in signal transmission, and long sequence of transformations, e.g.
a phosphorylation cascade, is necessary in order to transmit a signal. Therefore, the
delivery of a message depends not only on chains of reactions, but also on the distances
that molecules have to cover in the intracellular space.

Most of the current models of signal transduction take into account only the �rst
issue: the chemical reactions. Those models focus on the biological networks in order
to reproduce the dynamics of the considered system. The use of ordinary di�erential
equations is straightforward, since they are a powerful means that permit to explore the
temporal dynamics of complex systems. In this thesis our aim was to consider both
the network and the space. On the one hand, we are interested in the physiology of
the biological system studied, on the other hand, we wanted to reproduce the spatial
dynamics of the networks we considered.

In the �rst part of the thesis the necessity of dealing with a spatial distribution was
crucial. The problem is spatial in its own de�nition. We have proposed a model of
transport of proteins along a single microtubule with the aim to evaluate what kind of
proteins bene�t of motor-assisted transport in their way towards the nucleus. Therefore
we have compared the mass �ow due to di�usion, by which proteins naturally move, with
the �ow given by the combined action of the microtubule and the di�usion. We have
found that transport towards the nucleus, of proteins having a di�usion coe�cient up to
6µm2/s, is enhanced by the interactions with motor proteins, that allow the attachment
to the microtubule. Then, we have coupled our model with a model of nucleo-cytoplasmic
transport, proposed in [15], and we have quanti�ed the nuclear accumulation of a generic
cargo protein. Our results show that the classical import mechanism is e�cient and
that the addition of a `microtubule-bound species' reduces the import rate. This result
is quite surprising, since on the one hand, some experimental works show the opposite
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result for some speci�c proteins. On the other hand, the work of Cangiani et al. [15],
that models in a three-dimensional environment the transport between nucleus and cy-
toplasm with the addition of microtubules, presents a divergent result, that emphasizes
the bene�t of microtubule activity. The main di�erence with our model, that partially
explains the di�erence in the results, is that in [15] the authors consider a vector �eld that
averages the in�uence of many single microtubules. In our model we have located the
microtubule, de�ning a speci�c attraction area, that corresponds roughly to the width of
a microtubule. The transport on the microtubule is uni-directional and uni-dimensional,
while the di�usive particles move in two directions. Moreover, we have de�ned a di�usive
species attached to the motor proteins and a species that is only transported along the
�lament. In this way we have located spatially all the reactions that are needed to per-
form microtubule transport at a macromolecular level. It is clear that our understanding
of these phenomena is still incomplete and further research will be necessary.

In the second part of this thesis, we have introduced a physiologically based model
for the activity of the tumour suppressor protein p53. As a �rst step, we have stud-
ied and analysed the temporal dynamics of the p53 network. The main idea was to
separate, using an ODE compartmental model, nuclear and cytoplasmic reactions. We
have introduced, for each considered species, its nuclear and cytoplasmic forms. This
approach marks the main di�erence with respect to other existing ODE models in the
literature, since it has allowed us to consider the physiological and spatial aspects of the
p53 network. For instance, p53 in its active form is able to reach the nucleus, but unable
to get out of it. The two compartment model that we have proposed, has allowed us
to take into account the directionality of transport. We have analysed this model by a
numerical bifurcation analysis. First with respect to the parameter that activates the
network usually triggered by DNA damage, for which we have shown the existence of
two supercritical Hopf bifurcations that explain the oscillations; then we have considered
other possible parameters and analysed the response of the system to their variations.
Finally by the addition of a spatial variable, we have studied the behaviour of the system
in a PDE form, assuming that all the proteins can di�use within the cytoplasm and the
nucleus. Moreover we added a membrane-like boundary condition (Kedem-Katchalsky
condition) between the two compartments in order to model the nuclear envelope. In this
setting, we have veri�ed the existence of oscillations, and we have shown that the system
is robust with respect to variations of the spatial parameters. We have reproduced the
experimental data coming from the literature, showing a nuclear accumulation of p53
half an hour after the damage signal and the periodicity of nuclear and cytoplasmic ac-
cumulation already shown in [123]. Finally we have reproduced oscillations occurring at
the period experimentally observed. Other works share this approach [129, 132] explain-
ing the temporal oscillations of biological systems using PDE systems of equations. We
believe that this is a direction to follow and that the analysis of biological networks must
include the treatment of the spatial component.

Both topics covered in this thesis have a broad range of perspectives. Concerning
the �rst part of the thesis, it should be important to extend the model in terms of the
geometry of the system. We should consider a domain of the size of a cell, in order
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to allow comparisons with data of the literature. Also a comparison with models that
use velocity �elds, instead of localized microtubules, would be interesting and could
explain the di�erence in the qualitative results of the two types of model. Finally, a
more theoretical study could allow us to establish an optimal setting for the use of
microtubules, that would depend on the distance between two microtubules (that do not
have to congest or overcrowd the cytoplasmic area) and on the size of a cell.

The model of the p53 protein dynamics has possible extensions of di�erent na-
tures. From a mathematical point of view, it would be interesting to consider a three-
dimensional environment and test the system in a cell-like domain.

Concerning the extension of the model from a biological point of view, we think that
this model should be coupled with a model of nucleo-cytoplasmic transport that should
take into account import and export from the nucleus, dependent on the Ran cycles.
This would make a more realistic model, but, �rst of all, it would also allow to study the
impact that the variation on the timing of import and export, have on the oscillations.
On the other hand, it should allow the analysis of two biological models that explain
the stabilization of p53 in the nucleus. In fact, according to some authors [36], the
accumulation of p53 in the nucleus is due to a decreased export of the protein from the
nucleus. According to other authors [82, 83], the reason why p53 accumulates in the
nucleus after DNA damage is the increased import rate triggered by post-translational
modi�cations. Since the import and the export cycles occur on two di�erent time scales,
it would be possible to test which of the two mechanisms allows the accumulation of the
protein in the observed time, using a mathematical model.

An expansion of the model that would include the mRNA of p53, could allow us to
test the latest scienti�c results of Gajjar et al. [39] that show that the interaction be-
tween the p53 mRNA and Mdm2 are necessary for p53 stabilization. These observations
demonstrate the existence of a direct positive feedback between p53 and Mdm2, which
has never been translated into a mathematical model. It would be interesting to analyse
the impact of this extension, in terms of the period and the nature of the oscillations.

Finally this model may have medical applications. Since the network of the model is
reduced to the essential, simple extensions would permit to study the e�ects of genetic
mutations of p53 on the nuclear accumulation of the protein.

To conclude we remark that a comparison of all our numerical results with a larger
set of experimental data would allow to support the validity of our results and it remains
a necessary step to fully validate our models.
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