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Abstract

The evaluation of avalanche release depth distributions represents a challenging issue for

the mapping, zoning and long-term hazard management in mountaineous regions. The

focus of this study is on slab avalanches which generally result from the rupture of a weak

layer underlying a cohesive slab. In a first step, a mechanically-based statistical model of

the slab – weak layer system is built to compute avalanche release depth distributions. Two

key ingredients are taken into account for the mechanical description of such slab avalanche

releases: the spatial heterogeneity of the weak layer and the redistribution of stresses via

the elasticity of the slab. Several simulations for different realizations of the heterogeneity

of the weak layer are carried out by increasing the slope angle until rupture. The influence

of slab depth and heterogeneity correlation length on avalanche release angle distributions

is then analyzed. We evidence in particular a heterogeneity smoothing effect caused by

slab elasticity. The obtained release angle distributions are then inverted, yielding release

depth distributions integrated over all slope angles. We also show the critical and major

influence of morphological and topographical features on the localisation of the slab tensile

failure.

However, a purely mechanical model is insufficient to compute accurate avalanche re-

lease depth distributions which also depend on snowfall frequency and intensity. Thus, in

a second step, extreme snowfall data acquired in 40 meteorological stations in the French

Alps since 1966 are deeply analysed using spatial extreme statistics. They are then modeled

within the formal framework of max-stable processes which are the generalization of uni-

variate extreme value theory to the spatial multivariate case. The three main max-stable

processes now available are fitted on the data using composite likelihood maximisation,

and the most flexible Brown-Resnick one is retained on the basis of the TIC criterion, tak-

ing into account anisotropy by space transformation. Different smooth linear and spline

models for the spatial evolution of the GEV parameters are fitted and compared after al-

titudinal correction so as to separate spatial and orographic effects. The best max-stable

model is used to produce snowfall maps for different return periods and we evidence, in

particular, that the dependence of extreme snowfalls is stronger along the local orientation

of the Alpin chain.

Finally, a rigorous formalism in which avalanche release depth distributions are ex-

pressed through a coupling of mechanical and meteorological factors is presented. Con-
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sidering that an avalanche can occur only if the snowfall depth exceeds a critical value

corresponding to a stability criterion, release depth distributions obtained from the slab–

weak layer mechanically-based statistical model are coupled with the distribution of 3-day

extreme snowfalls. We show that this coupled model is able to reproduce field data from

369 natural slab avalanches in La Plagne (France). Not only the power-law tail of the distri-

bution, corresponding to large slab depths, but also the core of the distribution for shallow

ones, are well represented. Small to medium-sized avalanches appear to be controlled

mainly by mechanics, whereas large avalanches and the associated power-law exponent,

are governed by a strong mechanical-meteorological coupling. We demonstrate that the

obtained distribution is strongly space-dependent, and, using the results of the max-stable

mapping, our coupled model is used to obtain release depth maps for given return periods

at the whole French Alps scale.



Résumé

La prédétermination de la hauteur de départ des avalanches représente un défi majeur pour

l’évaluation du risque en montagne. Cette hauteur constitue en effet un ingrédient d’entrée

important des procédures de zonage et de cartographie du risque. Nous nous intéressons

dans cette thèse au cas des avalanches de plaque qui résultent généralement de la rupture

d’une couche fragile enfouie sous une plaque cohésive. Dans un premier temps, un modèle

mécanique – statistique du système plaque – couche fragile est développé pour calculer des

distributions de hauteur de départ d’avalanche. Deux ingrédients clés sont pris en compte

pour la description mécanique de ces avalanches de plaque: l’hétérogénéité de la couche

fragile et la redistribution des contraintes par élasticité de la plaque sus-jacente. Un grand

nombre de simulations pour différentes réalisations de l’hétérogénéité de la couche fragile

sont réalisées en augmentant progressivement l’angle de la pente jusqu’à la rupture. Nous

analysons ensuite l’influence de l’épaisseur de la plaque et de la longueur de corrélation

de l’hétérogénéité sur les distributions d’angle de départ d’avalanche. Nous mettons en

évidence, en particulier, un effet de lissage de l’hétérogénéité induit par l’élasticité de la

plaque. Les distributions d’angle de départ ainsi obtenues sont ensuite inversées pour

donner des distributions de hauteur de départ intégrées sur tous les angles de pente. Nous

montrons également l’influence critique et majeure des caractéristiques morphologiques et

topographiques sur la localisation de la rupture en traction de la plaque.

Cependant, un modèle purement mécanique est insuffisant pour prédéterminer les distri-

butions de hauteur de départ d’avalanche qui dépendent aussi de la fréquence et l’intensité

des chutes de neige. Ainsi, dans un second temps, les données des chutes de neige extrêmes

acquises dans 40 stations météorologiques des Alpes françaises depuis 1966 sont analysées

à l’aide des statistiques des valeurs extrêmes dans un cadre spatial. Ces données sont en-

suite modélisées dans le cadre formel des processus max-stables qui sont la généralisation

de la théorie des valeurs extrêmes univariées au cas multivarié spatial. Les trois principaux

processus max-stables actuellement disponibles sont ajustés aux données par maximisation

de la vraisemblance composite, et le processus le plus flexible, celui de Brown-Resnick, est

retenu sur la base du critère TIC, en prenant en compte l’anisotropie par transformation

de l’espace. Différents modèles linéaires et splines pour l’évolution spatiale des paramètres

de la GEV sont ajustés après correction altitudinale afin de séparer les effets spatiaux et

orographiques. Le meilleur modèle max-stable obtenu est utilisé pour produire des cartes



xiv Résumé

des chutes de neige pour différentes périodes de retour. Nous mettons en évidence, en par-

ticulier, que la dépendance des chutes de neige extrêmes est plus forte selon l’orientation

locale des Alpes.

Enfin, nous présentons un formalisme rigoureux dans lequel les distributions de hau-

teur de départ d’avalanche sont exprimées à travers un couplage des facteurs mécaniques

et météorologiques. Considérant qu’une avalanche ne peut se produire que si la hauteur

de chute de neige dépasse une hauteur critique correspondant à un critère de stabilité, les

distributions de hauteur de départ obtenues à partir du modèle mécanique – statistique

plaque - couche fragile sont couplées avec la distribution des chutes de neige extrêmes sur

3 jours. Nous montrons que ce modèle couplé est capable de reproduire des données de

terrain de 369 avalanches naturelles de plaque à La Plagne (France). Non seulement la

queue de la distribution en loi puissance, correspondant à des épaisseurs de plaque élevées,

mais aussi le corps de la distribution pour les plaques moins épaisses, sont bien reproduits

par le modèle. Les avalanches petites à moyennes semblent être essentiellement contrôlées

par la mécanique, tandis que les grosses avalanches et l’exposant de la loi puissance associé,

sont influencés par un couplage mécanique–météorologique fort. Par ailleurs, nous démon-

trons que la distribution obtenue est fortement dépendante de l’espace, et, en utilisant les

résultats du modèle spatial max-stable, notre modèle couplé est utilisé pour obtenir des

cartes de hauteur de départ d’avalanche pour différentes périodes de retour sur l’ensemble

des Alpes françaises.
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Chapter 1

Introduction

Source of wonder but also of terror, avalanches still hide many secrets, despite major recent

scientific advances. An avalanche consists in a rapid gravitational flow of a snow mass on

a mountaineous slope. Each year, avalanches are responsible for killing about 30 people

in France and 150 in Europe (mainly hikers and backcountry skiers) with a total of about

1.5 million e of damage. In addition to this destructive aspect, avalanches have a strong

mediatic impact, mainly due to the recent increase in the number of mountain practitioners,

skiers and more particularly backcountry skiers. However, most avalanches are triggered

naturally in the backcountry without human influence and become a significant issue only

when human lives or material damage are potentially involved. The disastrous avalanche

cycle of winter 1999 in the European Alps (12 deaths in Montroc, France; 12 deaths in

Evolene, Switzerland; 39 deaths in Galtür, Austria; destruction of many settlements, roads

and railways) recalled their destructive ability and urged to improve the scientific methods

for hazard mapping. Hazard mapping and zoning consists, in bulk, to define the extent and

the maximal impact pressure of an “exceptional” avalanche, where exceptional is defined

by a high return period, 100 – 1000 year, typically.

Today, numerical models of avalanche propagation have acquired a central role in the

current engineering practice for hazard mapping. Scientific studies conducted in recent

years, helped to significantly increase the performance of these models, by taking into

account the specific behavior of flowing snow, erosion and deposition, and the use of nu-

merical schemes suitable for different situations (Barbolini et al., 2000; Lachamp et al.,

2002; Naaim et al., 2003). In addition, several studies have validated the outputs of these

models by comparing them with experimental results or field observations (Barbolini et al.,

2000; Hutter et al., 2005; Naaim et al., 2008).

However, the systematic implementation of these models still faces a number of diffi-

culties, among which the accurate assessment of the avalanche release volume. The release

volume represents an input ingredient, to which the results can be strongly dependent,

especially for small to medium-sized paths. There is currently no clear and well defined
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Figure 1.1: Avalanche release types. Left: Loose snow avalanche release. Right: Slab

avalanche release ( c©Remi Petit).

methodology allowing to evaluate the release volume of a potential avalanche for different

return periods. Even for the best documented sites (e.g. Chamonix valley, Davos region),

the evaluation of the initial volume is generally very difficult because of limited quanti-

tative data available in release zones. The few existing method are mostly empirical and

generally consider that the release depth corresponds to the fresh snow accumulation over

3 days without taking into account mechanical effects. The release area is generally deter-

mined empirically according to geomorphological criteria (Maggioni et al., 2002; Maggioni

and Gruber, 2003). Given the complexity and efficiency of propagation models, it seems

necessary today to improve these oversimplified techniques for the estimation of the release

depth and area by using more rigorous methods in order to improve the accuracy of hazard

mapping procedures.

This introduction is dedicated to recalling the basis of avalanche formation and the

current engineering practice for avalanche risk management in mountaineous areas. The

problematic, the objectives of this PhD thesis and the reading grid are then detailed in the

last part of this introduction.

1.1 Avalanche formation

There are two types of avalanche releases: (1) Loose snow avalanches are formed in co-

hesionless snow and are very similar to the failure of granular materials like sand. This

type of avalanche is initiated at a single point by the rupture of a snow mass which then

propagates and mobilizes more and more snow, leading to a characteristic pear shape (Fig.

1.1a). These avalanches occur generally in spring, the temperature increase giving rise to

a decrese of the cohesion (also called wet avalanche) or during the winter season after a

snowfall accompanied by very low temperatures and no wind on relatively high slopes (also

called “sluff”). (2) Slab releases are reponsible for most of damage and fatalities related

to avalanche activity. Jamieson and Johnston (1992) showed that 99% of avalanche fatal-
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Figure 1.2: Thin weak layer of surface hoar crystals underlaying a cohesive slab. From

Schweizer et al. (2003).

ities between 1972 and 1991 in Canada occured due to slab releases. These releases are

characterized by a linear fracture of the snowpack (Figs. 1.1b and 1.4). These slabs can

be constituted either by soft snow, even recent powder whose density can be lower than

100 kg.m−3 (soft slabs) or hard cohesive snow for which wind transport plays an important

role in their formation. The release can occur on important surfaces, and can involve large

quantities of snow, sometimes in areas far from the initial release. This typical behavior of

fracture propagation over long distances has led snow experts and scientists to introduce

the notion of weak layer. The presence of this layer under the slab is a necessary but not

sufficient condition for slab avalanching (Bader and Salm, 1990). Its presence explains the

large size of slab avalanche release zones. Jamieson and Schweizer (2000) showed that for

80% of slab releases, the weak layer was constituted of depth hoar (Fig. 1.3b), surface hoar

(Fig. 1.3a), faceted crystals weak layers (Fig. 1.4) or interfaces.

Figure 1.3: Typical configuration slab - weak layer suitable for avalanche release. (a)

Surface hoar weak layer ( c©ASARC from Jamieson and Schweizer (2000)) intact on the

right and partially ruptured on the left. (b) Depth hoar weak layer from Schweizer et al.

(2003).
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Figure 1.4: Four-meter crown fracture of a huge slab avalanche that occured in Mt Baker

in March 2012, consequence of a very important snowfall on a faced crystal weak layer.

c©G.Gunderson

These slab avalanche releases are mainly influenced by weather and nivological condi-

tions such as new snowfalls, wind, which can severely increase the local thickness of the

snowpack, the structure of the snowpack with the presence of weak layers, etc, but also

by the morphological characteristics of the path like the mean slope angle, the roughness

(presence of forest, ridges, quality of the ground), the shape and the curvature of the re-

lease zone and the orientation of the path against the sun. However, the physical and

mechanical quantities involved in the release phase are still poorly understood and still not

fully characterized.

1.2 Risk management

To understand the objectives of this thesis, presented later, short-term avalanche forecast

(prevision) and long-term prevention (avalanche control) have to be clearly distinguished.

These are two approaches of avalanche risk management which involve completely different

time and space scales but also seek different communities.

1.2.1 Short-term forecast

Avalanche forecasting consists in the estimation of avalanche activity within a short period

(24 hours) at local and regional scales. It is intended primarily for mountain practitioners

(skiers, snowboarders and hikers) and professionals who go to the backcountry.

Current techniques rely on monitoring weather conditions and predicting the evolu-

tion of the snowpack with the use of physically-based models for forecasting (SAFRAN

/ CROCUS / MEPRA for example in France, SNOWPACK in Switzerland). In France,

these data are processed by MeteoFrance, which broadcasts every day, for each massif
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Figure 1.5: European avalanche danger scale. Information from ski resort for backcountry

practitioners.

(≈100 km2), estimation bulletins of avalanche risk (BRA) which are based on a European

scale of avalanche risk with 5 levels (Fig. 1.5).

1.2.2 Long-term prevention: hazard mapping

Hazard mapping aims at informing about the spatial extent of the risk. Idealistically,

no human being or construction should be located in a dangerous zone. These zones are

defined by the run-out distance of a high return period avalanche, typically equal or higher

than 100-years. However in practice, it is often impossible to avoid any human activity

and infrastructure in these areas. Consequently, it is also necesary to define the avalanche

intensity in order to correctly design the endangered structures or to protect them with

specific devices and structures.

Hazard maps

Hazard mapping criteria are different in each European country. Nevertheless, even if

the final criterion differs, hazard levels are generally defined taking into account the same

ingredients, namely the avalanche frequency (or return period) and/or the avalanche in-

tensity (combination between the run-out distance and the pressure). In France, hazard

maps contains two principal informations: the extent of the maximum observed event and

the extent of the avalanche corresponding to a characteristic frequency, the T=100 years

return period avalanche. Then three levels of hazard can be otained by distinguishing

avalanche intensity thresholds defined by the pressure P = 0.5ρfCDV
2 (ρf being the flow

density, V the avalanche speed and CD the obstacle resistance coefficient). These maps

are part of the PPR (Risk Prevention Plan, Fig. 1.6) and are widely used in avalanche

engineering.
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Figure 1.6: Example of hazard map (PPR) in Chamonix.

Coupled statistical–physical modeling

A few number of methods can be used to obtain an estimation of the intensity and the

frequency of an avalanche for a given path. Historical data, such as direct observations

constitutes a very relevant information for the evaluation of run-out distances. Vegeta-

tion analysis also provide a good approximation of avalanche maximum extents, since an

avalanche can destroy trees and sometimes entire forest, leaving traces for many decades

(Martinelli, 1974). However, to evaluate the hazards (decennial, centennial, tri-centennial)

in a prospective approach, in the sense of predetermination, and to obtain probabilistic

hazard map, physically/mechanically – based models are necessary. This methodology

aims to treat the different phases of the phenomenon (snow formation, avalanche release,

propagation) in a coupled statistical – deterministic framework instead of processing only a

sample of past events (e.g. McClung and Lied (1987)). Such models have shown remarkable

performances to evaluate run-out distances and pressures on obstacles.

Fig. 1.7 (Ancey et al., 2004) summarizes the different ingredients needed in these

models to compute the run-out distance for different return periods:

• a hydrological sub-model to compute the snowfall involved,

• a mechanical sub-model describing avalanche release,

• an avalanche dynamic sub-model to compute the run-out distance and the pressure

on an obstacle.

All these models must be integrated into a probabilistic framework, i.e. input proba-

bility distributions must be specified/infered in order to derive the probability distribution
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Figure 1.7: Illustration of the different ingrendients necessary to compute avalanche run-

out distances within a coupled statistical – physical approach. From Ancey et al. (2004)

of the outputs of interest, namely velocities, pressure, flow depth, etc, in the runout zone

(Eckert et al., 2008).

Among these different sub-models, avalanche propagation codes are nowadays rela-

tively well-established and validated (Salm et al., 1990; Perla et al., 1980; Naaim and

Naaim-Bouvet, 1999; Bartelt et al., 2000). These models consist in modelling the flow of

an avalanche taking into account the specific behavior of flowing snow, erosion and depo-

sition (Barbolini et al., 2000; Naaim et al., 2003). Their input data are: the digital terrain

model, parameters for the description of snow rheology (e.g. friction angle , turbulent fric-

tion coefficient, etc)(Norem et al., 1989; Savage and Hutter, 1991; Naaim and Ancey, 1992;

Bartelt et al., 1997a,b) and the release depth and release area. Concerning the friction

parameters, the current engineering practice consists in calibrating their probability dis-

tribution using historical data such as EPA (“Enquête Permanente sur les Avalanches”) or

CLPA (Carte de Localisation des Phénomènes d’Avalanches). However, the evaluation of

the probability distribution of the release area and the release depth (i.e. the formulation

of the hydrological and release sub-models in Fig. 1.7) currently remains one of the main

difficulty in avalanche engineering. These two ingredients, release depth and area distri-

butions, have a strong influence on the final hazard assessment, namely the estimation of

run-out-distance and pressure values for different return periods.

Snow input: Initial conditions

As stated before, avalanche propagation models used in hazard mapping procedures require

the specification of both potential release area and release depth as initial conditions.
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Release area It depends mainly on a combination of topographical, morphological, and

vegetative features. Factors such as wind and sun exposure, surface roughness are generally

considered as secondary factors that mainly affect avalanche activity and avalanche short-

term forecasting. These latter factors are less important with respect to potential release

areas for “extreme” avalanches used in hazard mapping procedures. Indeed, Maggioni

and Gruber (2003) analyzed a well-documented database of avalanche events with respect

to many topographic and morphologic characteristics. They showed that the mean slope

angle, the curvature and the distance to the ridge are the most important parameters

influencing avalanche release area distributions.

Release depth For slab avalanches, the release depth is generally assumed to be equal

to the snowfall accumulation during the three days preceeding the event, or three days

snow fall, h3j (Schweizer et al., 2003; Ancey et al., 2004). Since “extreme avalanches” are

retained for hazard mapping procedures, the value of h3j is taken as the annual maximum

of the positive difference in snowfall depth calculated using a three days wide window,

moving by one day steps (Barbolini et al., 2004). This is evaluated for a flat area and then

empirically modified for local slope conditions and snow drift overloads (Salm et al., 1990;

Barbolini et al., 2002, 2003). The Swiss Guidelines (Salm et al., 1990) suggest an empirical

formula to estimate the release depth h of an avalanche for a given return period T , taking

into account the snowfall depth h3j, the wind snowdrift overload hw, the slope angle θ and

the rate of growth with the altitude z of the release area:

h(T, z) = (h3j(T, z) + hw)
0.291

sin θ − 0.202 cos θ
+

0.05(z − 2000)

100
(1.1)

The distribution of h3j is inferred by statistical analysis. Annual maximum values of

h3j are fitted to theoretical distributions, which are used to extrapolate from the recorded

events beyond the highest observed values for the design event. Typically, the Gumbel

or more recently the Generalized Extreme Value (GEV) distributions are considered for

this purpose. The wind snowdrift overloads, hw, is usually determined empirically. For

instance, in the Swiss Guidelines values in the range 30 – 50 cm are proposed in the case

of situations appropriate for wind snowdrift processes.

Other authors have studied the correlations between the release depth and the deposit

volume and propose a deterministic transformation to give an evaluation of the release

depth (Meunier and Ancey, 2004; Eckert et al., 2010).

However, all these approaches are purely empirical and oversimplified, and generally

require considerable poorly-formalized expertise. Besides, even if it is true that slab

avalanches are mostly snowfall driven (Fig. 1.8a), unlike wet snow avalanches which are

mostly driven by the increase of temperature and snow metamorphism (Fig. 1.8b), other

factors may influence slab avalanche releases such as the evolution with time of the me-

chanical properties of snow which can result in the creation of weak layers. This is also
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Figure 1.8: Comparison between the occurence distribution of avalanches and 3-day annual

maxima. Data from La Plagne, France. Left: Dry-snow slab avalanches. Right: Wet-snow

avalanches.

what suggests Fig. 1.8a since the occurence of slab avalanche releases is not completely in

agreement with the occurence of 3-day extreme snowfalls, especially in march, when strong

temperature gradients are generally observed giving rise to new weak layers. This high-

lights the necessity of taking into account the influence of mechanics in these evaluations,

by introducing a mechanical stability criterion in a probabilistic framework.

1.3 Problematic and objectives

The statistical distribution of avalanche release volumes at a given site can be expressed as

a combination of statistical distributions of areas and release depths, including a coupling

term since these two variables are not completely independent. In this study, we will focus

on the evaluation of the release depth distributions. The release depth results from two

factors: the available snow depth in the release area and a mechanical stability criterion

coming from the topographical and morphological features of the release zone (e.g. slope

angle) and mechanical properties of snow. Consequently, it seems possible to split the

problem in two subproblems:

• Evaluation of the available snow depth,

• Evaluation of a probabilistic critical depth corresponding to a mechanical stability

criterion.

Then, a coupling between the obtained distributions should be performed to obtain the

global release depth distribution.
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1.3.1 Evaluation of the available snow depth in release zones

Conceptually, the evaluation of snow depth distributions in any potential release zone

should be made by interpolation of data acquired by the snow and weather monitoring

stations located in the concerned region. In practice, however, the difficulties are numerous,

since, in mountaineous regions, available data are few and generally incomplete:

• Data are limited mostly to rainfall chronics measured in water equivalent. The dis-

tinction rain / snow is not always done, which requires the joint analysis of temper-

ature series.

• Measurement stations are usually located far from the starting zones of avalanches.

It is therefore necessary to use spatial interpolation methods adapted to the hetero-

geneity of data, such as kriging (Cressie, 1993).

• In addition, these stations are usually located in the valleys rather than at high alti-

tudes, making it necessary to take into account an orographic precipitation gradients

for the quantification of water equivalents in release areas.

• Avalanches being rare events, extreme snow depths have to be characterized, which

requires an extrapolation beyond the highest observed values in the available series

that are generally short. This requires the implementation of methods for statistical

analysis of extreme (Coles, 2001).

• Finally the stationarity of the underlying phenomenon, which is almost always as-

sumed, is a questionable assumption, particularly in the context of climate change

(Marty and Blanchet, 2011; Eckert et al., 2010).

In the current practice of avalanche engineering, all these difficulties are usually circum-

vented at the cost of very strong assumptions. The problems of interpolation techniques

and orographic gradient are generally treated via the definition of “homogeneous zones

by altitude band” (Salm et al., 1990; Bocchiola et al., 2006). This method, besides the

difficulty in defining these zones, introduces discontinuities at the borders that are in-

compatible with the natural phenomenon. Nevertheless, it has the main advantage of

increasing the number of data and enables to predict high return levels. The treatment of

the extreme character of the values to interpolate remains also generally very imperfect,

since most current methods use almost systematically Gumbel laws rather than a more

general GEV model. This may lead to systematic underestimations of the most extreme

precipitations (Parent and Bernier, 2003; Bacro and Chaouche, 2006). Recently, a solid

formalism has been proposed to characterize the spatial dependence of extreme values.

Applied to a whole series of data around a series of reference, maps of spatial dependence

can thus be obtained (Coles et al., 1999; Heffernan and Tawn, 2004). In line with this
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work, the concept of variogram, which is central to any kriging process, was adapted to

extreme values spatial fields under the form of an extremal function (Cooley et al., 2006,

2007). At the cost of estimation difficulties, sometimes very heavy, this generalized var-

iogram allows the interpolation of spatial fields of extreme values and the definition of a

range, distance to which the interpolation provides information. This formalism is now

beginning to be successfully applied to rainfall data (Bel et al., 2008). It opens up quite

promising for data analysis and interpolation of snow depth data, without the need of the

simplifying assumptions made to date. The main obstacle is related to the consideration of

altitude, which adds an extra dimension to an already complex modeling problem. The use

of this formal framework of extreme value theory generalized to the multivariate spatial

case (Max-Stable Processes, Brown and Resnick, 1977; DeHaan, 1984) seems for us to be

the best choice, for the mapping of extreme snowfalls in the French Alps, and constitutes

one of the objectives of this thesis.

1.3.2 Evaluation of the release depth: statistical – mechanical

modeling

Various authors have studied release depth statistical distributions across several paths,

or even over an entire region (Rosenthal and Elder, 2002; McClung, 2003; Failletaz et al.,

2004). They highlighted, in particular, power-law-type distributions without characteristic

scales. These results have motivated the development of different mechanical models like

cellular automata (Failletaz et al., 2004; Fyffe and Zaiser, 2004, 2007; Bair et al., 2008).

These models incorporate a source of stochastic variability (usually a heterogeneity of me-

chanical properties or snow depth) and are therefore able to provide statistical distributions

of the release depth. Interestingly, they have proven capable of reproducing, under certain

conditions, power law distributions.

The good results obtained by these cellular automata models highlight two basic ingre-

dients that are essential for the mechanical description of avalanche releases, namely the

heterogeneity of the weak layer and the effects of stress redistribution by the elasticity of

the overlying slab.

Based on the results presented above, it is now possible to go further, and to develop

mechanical models adapted to the evaluation of the statistical distributions of the release

depth at the path scale. To do this, we propose to abandon the cellular automata approach,

while retaining the essential ingredients of pre-existing models, and to move towards a full

finite element mechanical modeling of the weak layer – slab system which could further

take into account the influence of topography and geomorphology. A major difficulty that

must be addressed is the specification of the constitutive law of the weak layer, which must

include the ingredients for instability (softening behavior) while remaining simple enough

not to multiply the parameters. There are very few experimental data on this subject, but
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different forms of plausible constitutive laws were nevertheless proposed in the literature

based on considerations of fracture mechanics (McClung, 1979b; Louchet, 2001; Fyffe and

Zaiser, 2004, 2007; McClung, 2009).

The coupling of all the elements listed above – description of the mechanical behavior

of the weak layer and the overlying slab, taking into account the spatial heterogeneity of

snow cover in a well-defined mechanical–statistical model using current numerical methods

and the coupling with snowfall distributions – has, to our knowledge, never been done

before. Yet, in the absence of sufficient data rendering obsolete any purely statistical

approach, such a coupled statistical–mechanical model is, from our point of view, the only

way forward that would produce reliable results for the evaluation of avalanche release

depth distributions.

1.3.3 Scientific questions and objectives

The principal objective of this thesis is to obtain statistical distributions of avalanche release

depths. These distributions must be valid over a long time scale (several decades) and must

be obtainable for any path in the French Alps. This work is thus clearly intended to long-

term risk management and prevention. This objective is far from trivial given the current

state of knowledge about snow and the numerous remaining unknowns. Consequently, this

complex problem of avalanche release has to be simplified. First, we will focus in this

thesis on slab avalanches, more destructive than loose-snow avalanches and generally more

relevant for hazard mapping. It is commonly accepted that slab avalanches are triggered

by the rupture of a weak snow layer buried under one or many slab layers, generally

denser and more cohesive. Thus, the complex stratigraphy of snow will be simplified into

a bi-layer slab – weak layer system. This system is the simplest situation to model the

phenomenon of slab avalanche release. Moreover, let us recall that, besides the scientific

interest of this thesis, the obtained distributions are aimed at serving as inputs of avalanche

propagation models. These models are also very simplified, and generally assume that

the flow is characterized by a depth and a mean velocity integrated over the flow depth.

Consequently, the modeling level of the input must be compatible with that of flow models,

which justifies the assumptions that will be made.

In this thesis, we have focused our efforts on the three following main scientific questions:

• What is the influence of weak layer heterogeneity on snow slab avalanche release?

To answer this question, the idea is to develop a mechanical modeling of avalanche

release in a framework of continuum mechanics. The modeling will be based on

the consideration of the ingredients essential to the onset of instability: softening

of the weak layer, spatial heterogeneities and spatial stress coupling induced by the

elasticity of the slab. Integrated in a probabilistic framework, this model will allow to

obtain avalanche release depth distributions independently of the available snowfall.
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• How to map extreme snowfalls and high return period quantiles? The development of

a framework of statistical interpolation of snowfall using the latest methods of spatial

analysis of extreme values, taking into account, in particular, the spatial dependence

between extreme values, will give an answer to this question.

• How to couple the release depth distributions coming from the mechanical analysis

and snowfall distributions to obtain the global release depth distribution? A rigorous

formalism using conditional probabilities will be proposed to solve this point.

The ultimate goal of this thesis is to develop an operational tool to evaluate, at the

path scale, avalanche release depths for different return periods. This is an ambitious goal,

but crucial for avalanche engineering. The approach we propose, based on a combined

use of statistical and mechanical models, is for us the most suitable to provide answers

to the problem given the current status of scientific knowledge and available data. From

a broader perspective, this thesis addresses one of the major scientific obstacles currently

impeding the modeling of avalanches, i.e. the initiation phase.

1.4 Summary of the main results and reading grid

This PhD thesis is organized around four main articles which are either already published,

submitted or still in preparation.

Chapter 3 presents the current state of the art regarding the many different concepts

used and studied in this thesis. A first section is dedicated to a review of slab avalanche

release processes, then in a second section the existing studies dealing with statistical

analyzes of release depth data are presented. The third section describes the physical and

mechanical properties of snow. In particular, a graphical compilation of the mechanical

parameters of snow reported by many authors and relevant in this study is performed. In

the fourth section, the different mechanical models for slab avalanche release which have

been proposed in the literature are recalled. Finally, the last section gives the necessary

backgroud on extreme value statistics and their application in the multivariate case using

max-stable processes.

In Chapter 4, we study the influence of weak-layer cohesion heterogeneity on slab

avalanche release using a finite element model. This chapter is composed of two articles.

The first one is entitled “Influence of weak layer heterogeneity on snow slab avalanche

release: Application to the evaluation of avalanche release depths.” and was submitted to

Journal of Glaciology. In this paper, a shear-softening interface underlying an elastic slab is

modeled and the system is loaded by increasing the slope angle until failure and avalanche

release. Release angle distributions are analyzed and a heterogeneity smoothing effect due

to redistributions of stresses by elasticity of the slab is highlighted. This smoothing effect

induces a reduction of the release angle variance compared to the case of a fully rigid slab.
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However, the average release angle is almost unaffected by this effect. The obtained release

angle distributions are then inverted, yielding a release depth distribution integrated over

all slopes.

The second paper is entitled “Influence of tensile strength and weak layer heterogeneity

on slab tensile rupture.” and is still in preparation for a submission to Journal of Glaciology.

In this paper, we analyze two different rupture types observed in the simulations. (1) Full-

slope releases for which the heterogeneity is not sufficient to trigger a tensile failure. These

releases are influenced by the topography and the morphology of the path. For instance,

the tensile failure will be very sensitive to the presence of trees, rocks, ridges and local

curvature. (2) Partial-slope releases for which the local variations of weak-layer cohesion is

substantial and can trigger the slab tensile crack on its own. Importantly, for both release

types, the primary rupture process observed is always the basal shear failure of the weak

layer. Hence, slab rupture systematically constitutes a secondary process. We have shown

that the proportion between these two types of rupture is extremely dependent on the

mechanical model parameters. Besides, we present a simple statistical model capable of

reproducing the proportion between release types as a function of the model parameters.

We demonstrate that, for realistic values of the parameters, the releases are mainly full-

slope, which highlights the major influence of slope morphology on the position of the

tensile failure within the slab and thus on the extent of the release area.

Chapter 5 is composed of one article entitled “Mapping extreme snowfalls in the

French Alps using Max-Stable processes.” submitted to Water Resources Research. In this

paper, extreme snowfalls are mapped in the French Alps by spatial interpolation of snow-

fall water equivalent annual maxima of 40 measurement stations. To do so, Max-Stable

Processes, a mathematical formalism generalizing extreme value theory to the multivariate

spatial context are used. Orographic gradients from Durand et al. (2009) were used to

transform our data to a unique altitude level of 2000 m. Using an efficient transformation

of space, anisotropy can be modeled. It appears that the spatial extremal dependence

depends strongly on the local orientation of the alpine axis and the presence of large val-

leys. Linear and spline models for the spatial evolution of the GEV parameters were used

and compared. This smooth modelling of GEV (Generalized Extreme Value) parameters

within max-stable processes and associated with a nested model selection procedure con-

stitutes the methodological strong point of the work. We evidence, in particular, that,

at a constant altitude (2000m), the highest location parameters µ are very North (Mont-

Blanc, Aravis and Bauges), but significant values are also observed far South. The highest

scale parameters σ are in the Southeast (extreme Southern Alps), which corresponds to

the Mediterranean effect that tends to bring variability. The shape parameter is mainly

positive in the Northern, Central and Southern Alps, showing a Frechet attraction domain,

and becomes negative in the extreme Southern Alps (Weibull domain). This model also

allows, the computation of high return level maps of extreme snowfalls, which constitutes
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a powerful operational tool for long-term managing of avalanche risk.

A complementary article entitled “Cross-comparison of meteorological and avalanche

data for characterising avalanche cycles: The example of December 2008 in the eastern

part of the French Alps.”, published in Cold Region Science and Technology is presented in

appendix. A part of this paper, to which I contributed, is dedicated to the application of

the previous Max-Stable model to the avalanche cycle of December 2008 in the eastern part

of the French Alps. A retro-analysis of this event is performed using different techniques

which are cross-compared. It is shown that the 3-day snowfall return period calculated

using the Max-Stable approach globally corresponds to the one derived from Safran outputs

at the massif scale. The relatively good agreement between the two approaches is very

encouraging and emphasizes the ability of our model to achieve retro-expertise of past

extreme snowfall events.

Chapter 6 is composed of an article entitled “Relative influence of mechanical and me-

teorological factors on avalanche release depth distributions: An application to the French

Alps.” published in Geophysical Research Letters. In this paper, we present a rigorous

formalism in which release depth distributions are expressed through a coupling of me-

chanical and meteorological factors. Considering that an avalanche can occur only if the

snowfall depth exceeds a critical value corresponding to a stability criterion, release depth

distributions obtained from the slab–weak layer mechanical model are coupled with the

distribution of 3-day extreme snowfalls. We show that this coupled model is able to re-

produce field data from 369 natural slab avalanches in La Plagne (France). Not only the

power-law tail of the distribution, corresponding to large slab depths, but also the core

of the distribution for shallow slab depths, are well represented. Small to medium-sized

avalanches appear to be controlled mainly by mechanics, whereas large avalanches and the

associated power-law exponent, are influenced by a strong mechanical-meteorological cou-

pling. Finally, we demonstrate that the obtained distribution is strongly space-dependent,

and, using the consistent interpolation formalism presented above, our model is used to

obtain release depth maps for given return periods.

In Appendix, a conference proceeding entitled “Influence of weak layer heterogeneity

on slab avalanche release using a finite element method” published in Springer Series in

Geomechanics and Geoengineering is presented. This paper shows the influence of the

heterogeneity of the weak-layer friction coefficient on release angle distributions and on the

rupture type.

A last article entitled “Quasistatic to inertial transition in granular materials and the

role of fluctuations” published in Physical Review E, whose subject lies outside of the main

scope of this PhD thesis but which was written during the same period, is also provided.
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Chapter 2

Introduction (version française)

Source d’émerveillement mais aussi de crainte et de terreur, les avalanches cachent en-

core bien des mystères, malgré d’importants progrès scientifiques récents. Une avalanche

consiste en un écoulement gravitaire rapide d’une masse de neige sur une pente montag-

neuse. Chaque année, les avalanches sont responsables de la mort d’environ 30 person-

nes en France et 150 en Europe (principalement randonneurs et skieurs hors piste) avec

un total d’environ 1,5 million d’euros de dommages matériels. En plus de cet aspect

destructeur, les avalanches ont un fort impact médiatique, principalement en raison de

l’augmentation récente du nombre de pratiquants de montagne, skieurs, snowboarders et

plus particulièrement les skieurs de randonnée. Cependant, la plupart des avalanches sont

déclenchées naturellement en hors-piste sans influence humaine et deviennent un enjeu im-

portant seulement lorsque des vies ou des dégâts matériels sont potentiellement impliqués.

Le cycle avalancheux catastrophique de l’hiver 1999 dans les Alpes européennes (12 décès

à Montroc, France; 12 décès à Evolène, Suisse; 39 décès à Galtür, Autriche; destruction de

nombreuses structures, routes et chemins de fer) a rappelé leur capacité destructrice et a

poussé à améliorer les méthodes scientifiques pour la cartographie du risque avalanche. La

cartographie du risque et le zonage consistent à définir l’étendue maximale et la pression

d’impact d’une avalanche de référence, associée à une période de retour élevée, de 100 ans,

typiquement.

Aujourd’hui, les modèles numériques de propagation des avalanches de neige ont acquis

un rôle central dans les méthodes d’ingénierie pour la cartographie et le zonage du risque.

Les travaux scientifiques menés au cours de ces dernières années, ont permi d’accroitre sig-

nificativement la performance de ces modèles, grâce à la prise en compte du comportement

spécifique de la neige en écoulement, à la prise en compte des phénomènes d’érosion et de

dépôt par la coulée, ainsi qu’à l’utilisation de schémas numériques adaptés aux différentes

situations traîtées (Barbolini et al., 2000; Lachamp et al., 2002; Naaim et al., 2003). En

outre, plusieurs études ont permi de valider les sorties de ces modèles en les confrontant à

des résultats expérimentaux ou à des observations de terrain (Barbolini et al., 2000; Hutter
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et al., 2005; Naaim et al., 2008).

Pour autant, la mise en oeuvre systématique de ces modèles reste confrontée à un cer-

tain nombre de difficultés, parmi lesquelles l’évaluation précise du volume de départ des

avalanches. Le volume de départ constitue en effet une donnée d’entrée des modèles, et

les résultats en dépendent très fortement, en particulier pour les couloirs de taille petite

à moyenne. Or, il n’existe pas à l’heure actuelle de méthodologie claire et bien définie

permettant, dans un couloir donné, de prédéterminer le volume de départ des avalanches

potentielles pour différentes périodes de retour. Même pour les sites les mieux documentés

(ex: vallée de Chamonix, région de Davos), l’évaluation du volume initial est générale-

ment très délicate en raison du peu de données quantitatives disponibles dans les zones de

déclenchement. Les quelques méthodes existantes sont pour la plupart empiriques et con-

sidèrent généralement que la hauteur de départ de l’avalanche correspond à l’accumulation

de neige fraîche sur 3 jours, sans tenir compte des effets mécaniques. La surface de départ

est généralement déterminée de manière empirique également, à l’aide de critères géomor-

phologiques. Compte tenu de la complexité et de l’efficacité des modèles de propagation,

il semble aujourd’hui nécessaire d’améliorer ces techniques empiriques pour l’estimation

de la hauteur et de la surface de départ en utilisant des méthodes plus rigoureuses afin

d’améliorer la qualité de ces procédures de zonage et de cartographie du risque.

2.1 Problématique et objectifs

Le problème de la prédétermination du volume initial d’une avalanche exige à la fois

l’évaluation de la hauteur et de la surface potentielle de départ. En effet, la distribution

statistique des volumes de départ d’avalanche sur un site donné peut être exprimé comme

une combinaison des distributions statistiques de hauteur et de surface de déclenchement,

en prenant en compte un terme de couplage étant donné que ces deux variables ne sont pas

totalement indépendantes. Dans cette étude, nous allons nous concentrer sur l’évaluation

de la hauteur de départ. Cette hauteur fait intervenir deux facteurs: la hauteur de neige

disponibles dans la zone de départ et un critère de stabilité mécanique provenant des car-

actéristiques topographiques et morphologiques de la zone de départ (angle de la pente par

exemple) et des propriétés mécaniques de la neige. Par conséquent, il semble possible de

diviser le problème en deux sous-problèmes:

• Prédétermination de la distribution de hauteur de neige disponible,

• Prédétermination d’une hauteur critique correspondant à un critère de stabilité mé-

canique, dans un cadre probabiliste.

Ensuite, un couplage entre les distributions obtenues par ces deux approches devra être

réalisé pour obtenir la distribution globale de hauteur de déclenchement.
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2.1.1 Prédétermination des hauteurs de neige en zone de départ

Conceptuellement, la prédétermination des hauteurs de neige dans toute zone de départ

potentielle devrait pouvoir être réalisée par interpolation des données nivo-météorologiques

acquises dans les stations de mesure de la région concernée. En pratique, cependant,

les difficultés sont multiples car, en zone de montagne, les données disponibles sont peu

nombreuses et généralement incomplètes :

• Les données se limitent le plus souvent à des chroniques de précipitations mesurées en

hauteur d’eau. La distinction pluie/neige n’est pas toujours effectuée, ce qui nécessite

l’analyse conjointe des séries de température.

• Les postes nivologiques et pluviométriques sont situés en général assez loin des zones

de départ d’avalanches. Il est donc nécessaire d’employer des méthodes d’interpolation

spatiale adaptées à la forte hétérogénéité des données, de type kriegeage (Cressie,

1993).

• En outre, ces postes sont généralement situés dans les vallées plutôt qu’a des altitudes

élevées, ce qui rend nécessaire la prise en compte d’un gradient orographique de

température et de précipitation pour la quantification de l’équivalent en eau tombé

au niveau des zones de départ.

• Les avalanches étant des évènements rares, ce sont des hauteurs de neige extrêmes qui

doivent être caractérisées, ce qui nécessite d’extrapoler au-delà des plus fortes valeurs

observées dans les séries généralement courtes qui sont disponibles. Cela nécessite la

mise en oeuvre de méthodes de statistique des extrêmes de type analyse des maximas

ou renouvellement (Coles, 2001).

• Enfin la stationnarité du phénomène sous-jacent, qui est pratiquement toujours pos-

tulée, est une hypothèse questionnable notamment dans le contexte du changement

climatique (Marty and Blanchet, 2011; Eckert et al., 2010).

Dans la pratique actuelle de l’ingénierie paravalanche, toutes ces difficultés sont générale-

ment contournées au prix d’hypothèses très fortes. Ainsi les problèmes liés aux techniques

d’interpolation et au gradient orographique sont traités via la définition de “zones ho-

mogènes par bande d’altitude” (Salm et al., 1990; Bocchiola et al., 2006). Cette méthode,

outre les difficultés liées à la définition des zones, introduit des discontinuités au niveau des

frontières qui sont incompatibles avec le phénomène naturel. Néanmoins, elle a l’avantage

principal d’augmenter le nombre de données et permet ainsi de prédire des niveaux de

retour élevés. Le traitement du caractère extrême des valeurs à interpoler reste également

très imparfait, puisque la plupart des méthodes actuelles utilisent quasi-systématiquement

des lois de Gumbel plutôt qu’un modèle plus général de type GEV mieux adapté à la
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description des queues de distribution. Ceci a pour effet de sous-estimer systématiquement

les précipitations les plus extrêmes (Parent and Bernier, 2003; Bacro and Chaouche, 2006).

Récemment, un formalisme solide a été proposé afin de caractériser la dépendance spatiale

des valeurs extrêmes. Appliqué à un ensemble de séries de données autour d’une série de

référence, des cartes de dépendance spatiale peuvent ainsi être obtenues (Coles et al., 1999;

Heffernan and Tawn, 2004). Dans la lignée de ces travaux, la notion de variogramme, qui est

centrale dans toute procédure de kriegeage, a été adaptée aux champs spatiaux de valeurs

extrêmes sous la forme d’une fonction extrémale (Cooley et al., 2006, 2007). Au prix de dif-

ficultés d’estimation parfois très lourdes, ce variogramme généralisé permet l’interpolation

des champs spatiaux de valeurs extrêmes et la définition d’une portée, distance jusqu’à

laquelle l’interpolation apporte de l’information. Ce formalisme commence aujourd’hui à

être appliqué avec succès aux données de pluviométrie (Bel et al., 2008). Il ouvre des per-

spectives tout à fait prometteuses pour l’analyse des données nivologiques et l’interpolation

des hauteurs de neige sans recourir aux hypothèses simplificatrices réalisées jusqu’à présent.

Le principal verrou est lié à la prise en compte de l’altitude, ce qui rajoute une dimension

supplémentaire à un problème de modélisation déjà complexe. L’utilisation de ce cadre

formel de la théorie des valeurs extremes généralisée au cadre multivarié spatial (processus

max-stables, Brown and Resnick, 1977; DeHaan, 1984) semble être le meilleur choix selon

nous, pour la cartographie des chutes de neiges extrêmes dans les Alpes Françaises, et

constitue un des objectifs de cette thèse.

2.1.2 Prédétermination de la hauteur de départ: modélisation

statistique – mécanique

Différents auteurs se sont intéressés aux distributions statistiques de hauteur de départ à

l’échelle de plusieurs couloirs, voire du massif (Rosenthal and Elder, 2002; McClung, 2003;

Failletaz et al., 2004). Ils mettent en évidence, en particulier, des distributions de type

loi puissance sans échelle caractéristique. Ces résultats ont motivé le développement de

différents modèles mécaniques de type automates cellulaires (Failletaz et al., 2004; Fyffe

and Zaiser, 2004, 2007). Ces modèles intègrent une source de variabilité stochastique (en

général une hétérogénéité des propriétés mécaniques ou des hauteurs de neige) et sont donc

à même de fournir des distributions statistiques de tailles de déclenchements. De manière

très intéressante, ils se sont avérés capables de reproduire, dans certaines conditions, des

distributions en loi puissance.

Les bons résultats obtenus par ces modèles de type automates cellulaires permettent

de mettre en évidence deux des ingrédients de base qui sont essentiels pour la description

mécanique du déclenchement des avalanches, à savoir l’hétérogénéité de la couche fragile

et les effets de redistribution des contraintes par l’élasticité de la plaque sus-jacente.

Sur la base des résultats présentés ci-dessus, il apparaît aujourd’hui possible d’aller plus



2.1 Problématique et objectifs 21

loin, et de développer des modèles mécaniques adaptés à la prédétermination des distribu-

tions statistiques des tailles de zones de départ à l’échelle du couloir. Pour ce faire, nous

proposons d’abandonner l’approche automate cellulaire et, tout en conservant les ingrédi-

ents essentiels des modèles pré-existants, d’aller vers une modélisation mécanique complète

par éléments finis du système couche fragile – plaque élastique qui pourrait ultérieurement

prendre en compte l’influence de la topographie et de la géomorphologie. Une difficulté

importante qu’il faudra résoudre réside dans la spécification de la loi de comportement de

cette couche fragile, laquelle doit intégrer les ingrédients nécessaires à l’instabilité (c’est-

à-dire un comportement adoucissant) tout en restant suffisamment simple pour ne pas

multiplier les paramètres. Il existe très peu de données expérimentales sur ce sujet, mais

différentes formes de lois de comportement plausibles ont néanmoins été proposées dans

la littérature sur la base de considérations de mécanique de la rupture (McClung, 1979b;

Louchet, 2001; Fyffe and Zaiser, 2004, 2007).

Le couplage de tous les éléments cités ci-dessus – description du comportement mé-

canique de la couche fragile et de la plaque sus-jacente, prise en compte de l’hétérogénéité

spatiale du manteau neigeux et le couplage avec les distributions de chutes de neige, au

sein d’un modèle mécanique–statistique bien posé et en utilisant les moyens de simulation

numérique actuels – n’a, à notre connaissance, jamais été réalisé. Pourtant, en l’absence

de données en nombre suffisant rendant caduque toute approche purement statistique, une

telle modélisation mécanique constitue à notre sens la seule voie de progrès qui permettrait

d’obtenir des résultats fiables quant à la distribution des hauteurs de départ d’avalanche.

2.1.3 Questions scientifiques et objectifs

L’objectif principal de cette thèse est d’obtenir des distributions statistiques de hauteur

de départ d’avalanche. Ces distributions doivent être valides sur une échelle de temps

longue (plusieurs décennies) et doivent pouvoir être obtenues pour tout couloir des Alpes

Françaises. Ce travail est donc clairement destiné à la gestion du risque à long terme et à

la prévention. Cet objectif est loin d’être trivial étant donné l’état actuel des connaissances

sur la neige et les avalanches et les nombreuses inconnues en jeu. Par conséquent, ce prob-

lème complexe du déclenchement de l’avalanche doit être simplifié. Tout d’abord, nous

allons nous concentrer dans cette thèse sur les départs d’avalanches en plaques, générale-

ment plus destructrices que les avalanches ponctuelles et donc plus pertinentes pour la

cartographie du risque. Il est communément admis que les avalanches de plaques sont

déclenchées par la rupture d’une couche de neige fragile ensevelie sous une ou plusieurs

plaques, généralement plus denses et plus cohésives. Ainsi, la stratigraphie complexe man-

teau neigeux sera simplifiée en un système bi-couche plaque – couche fragile. Ce système

est la situation la plus simple pour modéliser le phénomène d’avalanche de plaque. Par

ailleurs, rappelons que, outre l’intérêt scientifique de cette thèse, les distributions obtenues
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sont destinées à servir en entrée des modèles de propagation. Ces modèles sont aussi très

simplifiés, et supposent généralement que l’écoulement est caractérisé par une épaisseur et

une vitesse moyenne intégrée sur l’épaisseur de l’écoulement. Par conséquent, le niveau de

modélisation en entrée doit être compatible avec celui des modèles d’écoulement, ce qui

justifie les hypothèses qui seront faites. Dans cette thèse, nous avons concentré nos efforts

sur les trois principales questions scientifiques suivantes:

• Quelle est l’influence de l’hétérogénéité de la couche fragile sur le déclenchement des

avalanches de plaque ? Pour répondre à cette question, l’idée est de développer une

modélisation mécanique du phénomène de déclenchement d’avalanche dans le cadre

de la mécanique des milieux continus. La modélisation sera basée sur la considération

des ingrédients essentiels à l’apparition de l’instabilité: l’adoucissement en cisaille-

ment de la couche fragile, l’hétérogénéité spatiale, le couplage spatial des contraintes

induit par l’élasticité de la plaque. Intégré dans un cadre probabiliste, ce modèle

permettra d’obtenir des distributions de départ d’avalanches indépendamment des

chutes de neige disponibles.

• Comment cartographier les valeurs extrêmes de chutes de neige et calculer des niveaux

de retour élevés ? Le développement d’un cadre d’interpolation statistique des chutes

de neige en utilisant les dernières méthodes d’analyse spatiale des valeurs extrêmes, en

prenant en compte, en particulier, la dépendance spatiale entre les valeurs extrêmes,

apportera une réponse à cette quesion.

• Comment coupler les distributions de hauteur de départ provennant de l’analyse mé-

canique et les distributions des chutes de neige afin d’obtenir la distribution globale

de hauteur de départ ? Un formalisme rigoureux en utilisant les probabilités condi-

tionnelles sera proposé pour résoudre ce point.

L’objectif final de cette thèse est de développer un outil opérationnel permettant de

prédéterminer, à l’échelle du couloir, la hauteur de départ d’avalanche pour différentes

périodes de retour. Il s’agit d’un objectif ambitieux, mais crucial pour l’ingénierie par-

avalanche. L’approche que nous proposons, fondée sur une utilisation combinée de modèles

statistiques et mécaniques, nous semble la plus appropriée pour apporter des réponses au

problème posé au vu de l’état d’avancement actuel des connaissances scientifiques et des

données disponibles. D’un point de vue plus général, cette thèse s’attaque à l’un des ver-

rous scientifiques majeurs entravant actuellement la modélisation des avalanches, à savoir

la phase de déclenchement.
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2.2 Récapitulatif des résultats principaux et grille de

lecture

Cette thèse est organisée autour de quatre articles principaux qui sont soit déjà publiés,

soumis ou en cours de préparation.

Le chapitre 3 présente l’état actuel des connaissances sur les nombreux concepts dif-

férents utilisés et étudiés dans cette thèse. Une première section est consacrée à une revue

des processus d’initiation des avalanches de plaque, puis dans une deuxième section, les

études existantes portant sur des analyses statistiques de données de hauteur de départ

d’avalanche sont présentées. La troisième section décrit les propriétés physiques et mé-

caniques de la neige. En particulier, une compilation graphique des paramètres mécaniques

de la neige pertinents pour cette étude est réalisée. Dans la section 4, les différents mod-

èles mécaniques pour le déclenchement des avalanches de plaque qui ont été proposés dans

la littérature sont rappelés. Enfin, la dernière section donne les bases nécessaires sur les

statistiques des valeurs extrêmes et leur application dans le cas multivarié en utilisant les

processus max-stables.

Dans le chapitre 4, nous étudions l’influence de l’hétérogénéité de cohésion de la

couche fragile sur le départ des avalanches de plaque en utilisant un modèle mécanique

simulé par élements finis. Ce chapitre est composé de deux articles. Le premier est intitulé

“Influence de l’hétérogénéité de la couche fragile sur le départ des avalanches de plaque:

Application à l’évaluation de la hauteur de départ d’avalanche” et a été soumis à Journal

of Glaciology. Dans cet article, on modélise une interface adoucissante en cisaillement sous

une plaque élastique et le système est chargé en augmentant l’angle d’inclinaison jusqu’à

la rupture et le départ de l’avalanche. Les distributions d’angle de départ sont analysées et

un effet de lissage de l’hétérogénéité du aux redistributions de contraintes par élasticité de

la plaque est mis en évidence. Cet effet de lissage engendre une réduction de la variance de

l’angle de départ par rapport au cas d’une plaque complètement rigide. L’angle de départ

moyen, en revanche, n’est quasiment pas affecté par cet effet. Les distributions d’angle de

départ obtenues sont ensuite inversées, ce qui donne une distribution de hauteur de départ

intégrée sur toutes les pentes.

Le deuxième article est intitulé “Influence de la résistance à la traction et de l’hétérogénéité

de la couche fragile sur la rupture en traction de la plaque.” et est en cours de fnalisation

pour une soumission dans Journal of Glaciology. Dans cet article, nous analysons deux

types de ruptures différents observés dans les simulations. (1) Les départs complets pour

lesquels l’hétérogénéité n’est pas suffisante pour déclencher une rupture en traction. Ces

départs sont influencés par la topographie et la morphologie du couloir. Par exemple, dans

ce cas, la rupture en traction sera très sensible à la présence d’arbres, de rochers, de crêtes,

de ruptures de pentes et à la courbure locale. (2) Les départs partiels pour lesquels les

variations locales de la cohésion de la couche fragile sont importantes et peuvent déclencher
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la rupture en traction de la plaque à elles-seules. Il est important de noter que, pour les

deux types de départs, le processus de rupture primaire observé est toujours la rupture en

cisaillement de la couche fragile basale. Ainsi la rupture en traction de la plaque constitue

systématiquement un processus secondaire. Nous avons montré que la proportion entre ces

deux types de départ était extrêmement dépendante des paramètres du modèle mécanique.

En outre, nous présentons un modèle statistique simple capable de reproduire la propor-

tion entre les différents types de départs. Nous démontrons que pour des valeurs réalistes

des paramètres, les départs sont principalement de type complet ce qui met en évidence

l’influence majeure de la morphologie et de la topographie du couloir sur la position de la

rupture en traction de la plaque et donc sur l’étendue de la zone de départ.

Le chapitre 5 est composé d’un article intitulé “Cartographie des chutes de neige

extrêmes dans les Alpes françaises en utilisant les processus max-stables.” soumis à Water

Resources Research. Dans cet article, les chutes de neige extrêmes sont cartographiées

dans les Alpes Françaises par interpolation spatiale des maxima annuels de chutes de neige

en équivalent en eau provenant de 40 stations de mesure. Pour ce faire, les processus

max-stables, un formalisme mathématique généralisant la théorie des valeurs extrêmes

au contexte multivarié spatial sont utilisés. Les gradients orographiques de l’étude de

Durand et al. (2009) ont été utilisés pour transformer nos données à une altitude unique

de 2000 m. En utilisant une transformation elliptique de l’espace, l’anisotropie des chutes

de neige extrêmes a pu être modélisée. Il semble que la dépendance spatiale des extrêmes

soit fortement influencée par l’orientation locale de l’axe alpin et la présence des grandes

vallées intra-alpines. Des modèles linéaire et spline pour l’évolution spatiale des paramètres

de la GEV (Generalized Extreme Value) ont été utilisés et comparés en utilisant le critère

TIC. Cette modélisation lisse des paramètres de la GEV en utilisant les processus max-

stables constitue le point méthodologique fort du travail. Nous mettons en évidence, en

particulier, que, à altitude constante (2000m), les valeurs les plus élevées du paramètre

de localisation µ sont situées très au Nord, mais des valeurs significatives sont également

observées dans les Alpes extrême-sud. Les valeurs les plus importantes du paramètre

d’échelle σ se trouvent dans le Sud-Est, ce qui correspond à l’effet méditerranéenne qui

tend à amener de la variabilité. Le paramètre de forme ξ est globalement positif montrant

un domaine d’attraction de Fréchet et est seulement négatif dans les Alpes extrême-sud

(domaine de Weibull). Ce modèle permet notamment, d’établir des cartes de chutes de

neige pour des niveaux de retour élevés, ce qui constitue un outil opérationnel puissant

pour la gestion à long terme du risque d’avalanche.

Un article complémentaire intitulée “Comparaison croisée de données météorologiques

et d’avalanches pour caractériser les cycles avalancheux: L’exemple de Décembre 2008

dans la partie Est des Alpes Françaises.”, publié dans Cold Region Science and Technology

est présenté en annexe. Une partie de cet article, à laquelle j’ai contribué, est dédiée

à l’application du modèle max-stable précédent au cycle avalancheux de Décembre 2008
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dans la partie Est des Alpes Françaises. Une rétro-analyse de cet événement est réalisée en

utilisant différentes méthodes qui sont comparées entre elles. Il est montré que la période

de retour du cumul de neige sur 3 jours calculée en utilisant les résultats de l’approche max-

stable correspond globalement à celle calculée en utilisant les sorties du modèle Safran par

massif. L’accord relativement bon entre les deux approches est très encourageant et met

en évidence les capacités de notre modèle pour la rétro-expertise d’évenements extrêmes.

Le chapitre 6 est composé d’un article intitulé “Influence relative des facteurs mé-

caniques et météorologiques sur les distributions de départ d’avalanche: Application aux

Alpes françaises” et publié dans Geophysical Research Letters. Dans cet article, nous

présentons un formalisme rigoureux dans lequel les distributions de hauteur de départ sont

exprimées à travers un couplage des facteurs mécaniques et météorologiques. Considérant

qu’une avalanche ne peut se produire que si la hauteur des chutes de neige dépasse une

valeur critique correspondant à un critère de stabilité, les distributions de hauteur de dé-

part obtenues à partir du modèle mécanique plaque–couche fragile sont couplées avec la

distribution des chutes de neige extrêmes sur 3 jours. Les distributions de hauteur de

départ prédites par ce modèle couplé sont ensuite comparées à une base de données bien

documentée englobant 369 avalanches naturelles de plaques à La Plagne, France. On mon-

tre qu’avec seulement un paramètre ajustable, un excellent accord avec les données peut

être obtenu à la fois pour la queue en loi de puissance de la distribution, correspondant à

des hauteurs de plaques importantes, et pour son corps correspondant à de faibles hauteurs.

Deux conclusions importantes peuvent être tirées: (1) Les avalanches petites à moyennes

sont principalement contrôlées par la mécanique, tandis que les grosses avalanches sont

influencées par un couplage mécanique-météorologique important. (2) Les distributions de

hauteur de départ, y compris la valeur de l’exposant de la loi de puissance observée pour

les hauteurs de plaques élevées, sont très variables dans l’espace et ne peuvent pas être

considérées comme universelles. Enfin, le modèle est étendu en utilisant les résultats du

modèle max-stable dans le but de produire des cartes de hauteur de départ d’avalanche

pour différentes périodes de retour.

En annexe, un acte de colloque intitulé “Influence de l’hétérogénéité de la couche fragile

sur le départ des avalanches de plaque en utilisant la méthode des éléments finis”, publié

dans Springer Series in Geomechanics and Geoengineering est présenté. Ce document

montre l’influence de l’hétérogénéité du coefficient de frottement de la couche fragile sur

les distributions d’angle de départ d’avalanche et sur le type de rupture.

Enfin, un dernier article intitulé “Transition quasi-statique inertielle dans les milieux

granulaires et le rôle des fluctuations” publié dans Physical Review E sortant du sujet

principal de cette thèse mais également écrit au cours de cette période, est aussi présenté.
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Chapter 3

State of the Art

In this chapter, the current state of knowledge about the different concepts and notions used

in this study is recalled. In the first section, slab avalanche release processes are recalled,

then in a second section the existing studies dealing with statistical analyzes of release

depth data are presented. In the third section, the physical and mechanical properties of

snow are reviewed. In particular, a graphical collection of the mechanical parameters of

snow relevant for this study is done. In the fourth section, the different mechanical models

for slab avalanche release which have been proposed in the literature are recalled. Finally,

in the last section, extreme value statistics and their application in the multivariate case

using max-stable processes are detailed.

3.1 Slab avalanche release

It is now commonly accepted that slab avalanches are initiated by a shear failure in a weak

snow layer (or at a weak interface) followed by tensile crown failure of the overlying slab

(McClung, 1979b; Schweizer et al., 2003). Fig. 3.1 (from Perla (1977) and adapted by

Schweizer et al. (2003)) shows slab avalanche nomenclature. The shear failure is caused

by a local loss of cohesion inside the weak layer that may be due to (1) a localized surface

loading such as skiers or explosives (artificial release), (2) uniform loading due to a new

snowfall (natural release), or (3) changes in the snowpack properties due to weather changes

(natural release). In addition, some recent studies (Johnson et al., 2004; van Herwijnen

and Heierli, 2009) relying on field data show that the initial shear failure of the weak

layer tend to be systematically accompanied by a normal collapse. These authors argued

that slope normal and slope parallel displacements occur simultaneously during release.

Anticrack analytical models have been developed and proved capable of reproducing these

data (Heierli and Zaiser, 2007; Heierli et al., 2008). However, the issue of the influence of

normal collapse on avalanche release is still a matter of debate. Some authors (Jamieson

and Schweizer, 2000; Johnson et al., 2004) suggest that the simultaneous occurrence of
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Figure 3.1: Nomenclature for slab avalanche release. From Perla (1977) and adapted by

Schweizer et al. (2003).

weak-layer collapse and shear failure may facilitate fracture propagation due to bending

effects. McClung (2011), on the contrary, showed that a model that does not account

for slope-normal failure can reasonably reproduce critical length measurements obtained

in field saw-cut tests. Hence, he argued that the slope-parallel propagation is very little

influenced by the interaction between slope-normal displacement and stress.

A conceptual model for slab avalanche release has been proposed by Schweizer et al.

(2003) and is represented in Fig. 3.2. A localized failure, or weak-spot, grows until it

reaches a critical size and then becomes self-propagating. A slab can thus be released after

a tensile rupture at the top (crown). The critical size for self-propagation of the basal failure

is of the order of 0.1 – 10 m, with the longer lengths for rapid surface loading and shorter

lengths for natural releases. The localized failure may be due to different slow mechanisms

such as dammage at the microscopic scale but also to the structural spatial heterogeneity

of snow. Very little experimental studies on fracture initiation and propagation involved

in slab avalanche release were conducted until now. These processes are only documented

Figure 3.2: Conceptual model of snow slab avalanche release (from Schweizer et al., 2003)
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in the case of artificially triggered slab avalanches (van Herwijnen and Jamieson, 2005; van

Herwijnen and Heierli, 2009) but has never been done for natural avalanches for which the

processes still remain poorly understood.

In their review about avalanche formation, Schweizer et al. (2003) described five essen-

tial contributing factors for slab avalanche release:

(1) Terrain which is an essential and constant-over-time factor. Generally, a slope

angle > 30◦ is required for slab avalanching. Fig. 3.3 represents an histogram of slope

angle in release zones for human-triggered slab avalanches (Schweizer et al., 2003) but is

also representative of natural avalanche releases (Perla, 1977). In addition to the slope

angle, Maggioni and Gruber (2003) showed the crucial influence of the curvature of the

release zone and the distance to the ridge on avalanche release. Other terrain aspects such

as roughness and forest density can also play an important role.

Figure 3.3: Slope angle in release zones of 809 human-triggered avalanches. The mean

depth of the slabs was 0.49 m. From Schweizer et al. (2003)

(2) New snow is generally the most important factor for forecasting castastrophic

avalanches. Generally, natural avalanches can be released for new snow depths about

30 – 50 cm and extreme avalanches can be initiated for new snow depths higher than 1 m,

typically.

(3) Wind is the second most important factor after snowfalls and may contribute to a

very significant increase in local thickness of the snowpack and thus very important stress

concentrations. It also contributes to the formation of hard slabs which facilitates the

propagation of the basal fracture over long distances which can cause avalanches of very

large size.

(4) Snow cover stratigraphy is critical for slab avalanche release. The presence of a weak

layer or a weak interface is a necessary but not sufficient condition for slab avalanching

(Bader and Salm, 1990; Schweizer, 1999; Schweizer et al., 2003)
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Figure 3.4: Avalanche release depth cumulative exceedence distributions. (a) 8000

avalanches with a mix of triggers (Rosenthal and Elder, 2002). (b) 187 avalanches in

British Columbia with a mix of triggers (McClung, 2003). (c) 3450 avalanches in Tignes

and La Plagne with the distinction between natural and artificial releases (Failletaz et al.,

2006).

(5) Temperature is an important factor which can contribute to avalanche release even

a long time after the snowfall (see Fig. 1.8). Depending on the rate of change, it can

lead to the formation of new weak layers or to the weakening of existing ones and thus to

instability.

3.2 Avalanche release depth distributions

The evaluation of avalanche release depth distributions represents a challenging issue for the

mapping, zoning and long term management of hazard in mountainous regions. In particu-

lar, these distributions constitute one of the essential ingredients (besides friction, terrain,

and erosion) to predict accurate run-out distance distributions using coupled statistical-

dynamical numerical simulations (Meunier and Ancey, 2004; Eckert et al., 2010). Until

now, very little research has been undertaken to understand and more importantly to

predict these distributions.

Currently, a strong debate is ongoing concerning the existence of a possible universal

behavior for these distributions. In their pioneering work, Rosenthal and Elder (2002)

studied a set of 8000 avalanches mixing artificial and natural triggers at Mammoth Moun-

tain (USA), and showed that the release depth cumulative exceedance distribution (CED)

appears to follow a power-law of exponent −2.6 (Fig. 3.4a). This led them to postulate

that avalanche release depths are scale-invariant and behave as a chaotic process. They

argued that this behavior may be due to the deposition and evolution of snow layers and

to the mechanics of slab avalanche release.

McClung (2003) reported the same behavior and power-law exponent for a set of 187

slab avalanches in British Columbia (mix of triggers, Fig. 3.4b), and pointed out the
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possible role of fracture toughness distributions and mechanical size effects. This author

also analyzed separately artificial and natural avalanche releases to study the effect of the

triggering mechanism. A scale-invariant CED tail was also found on the set of 56 natural

avalanches, although on a relatively small range of depths in this case and with an apparent

power-law exponent of −4.4.

Failletaz et al. (2006) studied 3450 avalanches in Tignes and La Plagne (France) and also

reported a power-law CED with a characteristic exponent of −2.4 for artificially released

avalanches (Fig. 3.4c). Given the similarity of this result with previous studies carried out

in different areas, they concluded on the universality of this power-law exponent.

Finally, a more recent study by Bair et al. (2008) compares the adjustment of different

statistical distributions on release depth data from different mountainous areas, and show

that GEV (Generalized Extreme Value) of Frechet type seem to provide better fits than

power-law distributions for all the analyzed datasets. They also showed a significant spatial

variation in the power-law exponents of the CED tails and concluded, on the contrary, on

a non-universal behavior of avalanche release depth distributions.

3.3 Physical and mechanical properties of snow

3.3.1 Snow metamorphism

Snow forms in the atmosphere by cloud-droplet freezing induced by freezing nuclei and

water vapor deposition. Different shape and size of crystals can develop depending on the

degree of water vapor supersaturation and snow crystals temperature. The most common

shape is the stellar dendrite, which is characterized by a hexagonal symmetry (Fig. 3.5a).

When the snow crystals reach the ground or an existing snowpack, they start to bind

together by sintering, the snowpack densifies (settlement) and the snow crystals change

shape as a function of meteorological conditions (solar radiation, wind, air temperature,

temperature gradients...).

Two main different types of snow metamorphisms lead to different grain shapes: equilib-

Figure 3.5: Examples of snow crystals: a) Stellar snow crystal, b) Rounded snow crystals,

c) Faceted snow crystal, d) Depth hoar. Low temperature scanning electron microscope

images from http://emu.arsusda.gov/.



32 3. State of the Art

Table 3.1: Main morphological grain shape classes from the Fierz et al. (2009) classification.

rium (or rounding) and kinetic (or faceting) metamorphisms. Equilibrium metemorphism

is driven by low temperature gradients which produces rounded grains (Fig. 3.5b). The

initial form (generally dendritic) evolves in few days into rounded particles, in order to

reduce their specific surface. The vapour pressure gradient is the cause of this rounding

process, since it generates a vapour flux from surfaces with high curvature to low curvature

zones (Schneebeli and Sokratov, 2004; Kaempfer et al., 2007; Pinzer, 2009). This process,

is associated with intergranular bonding (sintering cohesion) and thus, generally increases

the stability of the snowpack (Perla and Sommerfeld, 1987). In contrast, kinetic metamor-

phism is driven by strong temperature gradients (usually greater than 10 ◦.m−1 (Akitaya,

1974) which induces high vapor diffusion in the snowpack. This leads water vapour to

move from the warm surface of one snow crystal (at the top) to the cold surface of another

crystal (at the bottom). Hence, grains with angular shapes, sharp edges and flat faces or

facets (Fig. 3.5d) form in a few hours or days. This type of metamorphism is responsible

for the creation of unstable weak snow layers within the snowpack such as depth hoar

(Fig. 3.5d) and faceted crystals (Fig. 3.5c). Indeed, with this characteristic shape, the

grains cannot bind together. This metamorphism is therefore often associated with a loss

of strength and thus of stability. This explains the formation of weak layers within the

snowpack. Weak layers can also form at the surface of the snowpack. Surface hoar crys-

tals generally form during cold and clear conditions, particularly at night. The cooling

of the snow surface due to radiation may lead to a condensation of water vapor on the

snow surface producing surface hoar crystals (McClung and Schaerer, 2006). Once buried,

it is a particularly thin, fragile and persistent weak layer in the snowpack (similar to a

“house of cards” layers) which is responsible for a number of avalanche deaths each season.

Fierz et al. (2009) compiled a classification of all snow types and various snow properties.

The symbols and code of the different types of grains according to this classification are

represented in Tab. 3.1.
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Figure 3.6: Schematic of failure behaviour of snow under shear at different shear strain

rates (from Schweizer et al., 2003). Note that the strain rate increases from a to d, i.e.

ǫ̇a < ǫ̇b < ǫ̇c < ǫ̇d. Figure based on data of Fukuzawa and Narita (1993); McClung (1977);

Narita (1980); Schweizer (1998).

3.3.2 Mechanical properties of snow

Snow is a very complex material whose mechanical behavior is still not fully understood.

Mechanical properties of snow vary with time and space and they depend a lot on the

crystal type, snow density, temperature, the applied strain rate, etc. In particular, snow

deformation and rupture are strongly strain-rate dependent. This has been first shown with

tension tests on homogeneous snow (Narita, 1980, 1983). Shear strength of snow decreases

with increasing strain rate and temperature. A ductile to brittle transition occurs at a

strain rate ǫ̇ of about 10−3–10−4 s−1 depending on temperature and pressure (Fukuzawa and

Narita, 1993; McClung, 1977; Narita, 1980; Schweizer, 1998, 1999; Schweizer et al., 2003).

A brittle rupture implies that virtually none or very little permanent deformation occurs

before fracture (Fig. 3.6d). On the contrary, ductile behaviour means large irreversible

deformations before failure (Fig. 3.6bc) or no failure at all (Fig. 3.6a). Snow behaves as a

brittle material for high strain rates (ǫ̇ >10−3 s−1) or fast loading, while it is ductile under

low loading or deformation rates (ǫ̇ <10−4 s−1) (Fig. 3.6).

Although many laboratory experiments (Mellor, 1975; McClung, 1977; Narita, 1980;

Navarre et al., 1992; Schweizer, 1998) and field measurements (Roch, 1965; De Montmollin,

1978; Jamieson and Johnston, 1990; Föhn et al., 1998; McClung and Schweizer, 2006)

have been carried out for homogeneous snow, only few studies (McClung, 1977, 1979b;

Föhn et al., 1998; McClung and Schweizer, 2006; McClung, 2009) have been undertaken to

characterize the mechanical behaviour of weak layers. The main outcome of these latter

studies is that weak snow layers behave, at high loading rates, as strain-softening (or quasi-

brittle) materials (Fig. 3.7). The softening is caused by the break of ice bridges at the

microscopic scale. The value of the associated characteristic strain-softening displacement
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Figure 3.7: Direct simple shear results for shear stress (kPa) versus horizontal displacement.

(a) Low density samples of 180 kg/m3 sheared with different strain rates (From McClung

(1977)). The lower strain rate sample shows strain hardening and the higher strain rate

sample shows strain softening with a characteristic softening displacement δ ≈ 2 mm.

(b) Sample of faceted snow. Density is 165 kg/m3, test temperature is −15◦ and grain

size is 0.2-0.5 mm. The characteristic strain-softening displacement after peak stress is

δ ≈ 0.1 mm. (From McClung, 2009).

δ is still a mater of debate. It was first found to be close to 2 mm (Fig. 3.7a, McClung,

1977), but estimated lower close to 0.1 mm in more recent experiments (Fig. 3.7b, McClung,

2009). Because of the heterogeneous character of these weak layers, these micro-cracks are

generally localized, they develop almost uniformly and concentrate progressively to form

a macro-crack (or weak-spot), which can eventually propagate until global rupture.

Experimental studies on homogenous snow samples being relatively numerous and those

on weak layers being sparse, I collected and compiled in graphics most of the existing data

on snow mechanical properties required in the present study. The mechanical parameters

presented below depend on several factors, such as snow density, the applied strain rate,

temperature, etc. We chose to represent elasticity and rupture parameters of snow mainly

as a function of density since it appears to be the dominant factor. The strain rate also

plays a very important role on the type of constitutive law (ductile or brittle) but has a

less significant influence than density on the values of the different mechanical quantities.

However, the important variability observed in the following 2D figures can probably be

explained by the multi-factorial dependence of the presented quantities.
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Figure 3.8: (a) Summary of existing values of Young modulus plotted against density. (b)

Summary of existing values of Poisson ratio plotted against density. See text for details.

Elasticity parameters

Young modulus Snow elasticity is known for a long time, since Mellor (1975). Fig. 3.8a

is a compilation of Young moduli from different studies and measured with different meth-

ods:

• Mellor (1975) already made an important compilation of Young Moduli and classified

them into 4 zones corresponding to different measurement techniques and different strain

rates: (A) Pulse propagation or flexural vibration at high frequencies, -10◦ to -25◦C. (B)

Uniaxial compression, strain rate approximately 3 × 10−3 to 2 × 10−2 s−1, temperature

-25◦. (C) Uniaxial compression and tension, strain rate approximately 8×10−6 to 4×10−4

s−1, temperature -12◦ to 25◦C and static creep test, -6.5◦ to -19◦C. (D) Complex modulus,

103 Hz,-14◦C.

• Dynamic torsional shear experiments of Schweizer and Camponovo (2002) converted

to Young modulus values.

• Quasi-static compression experiments by Scapozza (2004). Stoffel (2005) adjusted an

exponential law to Scapozza (2004) data for densities between 180 and 450 kg.m−3:

E0(ρ) = 1.873 × 105 e0.0149ρ. (3.1)

• Dynamic Young modulus measured in a cyclic loading experiment, strain rate ǫ̇ =

2.7 × 10−2, from Sigrist (2006). Habermann (2008) fitted a power law to Sigrist (2006)

data for densities between 100 and 300 kg.m−3:

E1(ρ) = 9.68 × 108

(
ρ

ρice

)2.94

, (3.2)

with ρice = 917 kg.m−3.
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It can be noted from Fig. 3.8a that Young modulus increases with density almost ex-

ponentially and seem to tend asymptotically to a limit. In the present study, we will be in-

terested in the Young modulus of slabs whose density is generally between 100–300 kg.m−3

(Schweizer, 1999). This leads to Young modulus values between 0.3 and 30 MPa.

Poisson ratio Fig. 3.8b summarizes the available data for quasistatic and dynamic de-

terminations of the Poisson ratio ν from the experimental studies of Bader et al. (1951);

Yosida (1963); Haefeli (1966); De Quervain (1966) and McClung (1975) (shear creep test,

ǫ̇ ≈ 10−8 s−1) with the envelop of Mellor (1975). Poisson ratio also increases with density

and slab values are in the 0–0.3 range.

Rupture parameters

Tensile strength σT Several field and laboratory experiments have been conducted up

to now to determine tensile strength of snow. Fig. 3.9 summarizes tensile strength σT

values from these different studies which have been performed with different methods:

• Mellor (1975) sumarized data of tensile strength of dry snow under rapid loading

(ǫ̇ ∈ 10−4−10−2 s−1) in uniaxial stress states from Bucher (1948); Butkovich (1956); Haefeli

(1939); Hawkes and Mellor (1972); Keeler (1969); Keeler and Weeks (1967); Kovacs and

Weeks (1969); Mellor and Smith (1966); Ramseier (1963); Smith (1963, 1965). According

to Mellor (1975), this domain is relevant for brittle failure only.

• Roch (1966) measured the tensile strength under uniaxial tension and high loading

rates directly at the crown of 35 slab avalanches using rectangular and cylindrical measure-

ment devices. Tensile strength values are averages of tensile tests repeated every 50 mm

down the face of slab crown fractures.

• Perla (1969) estimated the tensile strength from 250 cantilever beam tests on a very

recent snowpack.

• McClung (1979a) made 38 in situ tests on large sample size using a tilting-table at

low loading rates and under uniaxial tension. As his results where not affected by the

notches shape, he argued that the failure was ductile.

• Conway and Abrahamson (1984) identified in situ slab weak layer systems and per-

formed tensile tests at high rates and uniaxial tension by isolating a column from effects

of side shear and compressive hold-up with a saw, and inserted the frames of their device

on each side of the tested sample.

• Rosso (1987) tensile measurements are very similar to those of Conway and Abraham-

son (1984), the main difference being the use of a trapezoid frame instead of a rectangular

one.

• Jamieson and Johnston (1990) made 450 tensile tests using the same method as

Conway and Abrahamson (1984) with large cross-sections. Jamieson and Johnston (1990)
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Figure 3.9: Density dependence of the tensile strength for several different studies and

methods. See text for details.

also made a first review of these tensile strength values. They proposed the following

empirical fit to relate the tensile strength to the density:

σT 0(ρ) = 7.97 × 104

(
ρ

ρice

)2.39

. (3.3)

• More recently Sigrist (2006) used the three-point bending laboratory test (3PB) to

calculate the tensile strength of homogeneous snow samples under dynamic conditions.

This test requires a beam specimen which is notched on one side with a cut, placed on two

supporter and then loaded in the middle. This author also proposed an empirical relation

with density:

σT 1(ρ) = 2.4 × 105

(
ρ

ρice

)2.44

. (3.4)

• Hagenmuller et al. (2012) made cold laboratory uniaxial tests to measure the tensile

strength (ǫ̇ ∈ 10−4 − 10−3 s−1) and compared it to finite element calculations of the mi-

crostructure of the sample captured using a tomograph. The tested snow was homogeneous

samples of rounded grains with a density of 350 kg.m3.

As one can note, there is an important dispersion of tensile strength values from these

different studies. However, recent measurements (Sigrist, 2006; Hagenmuller et al., 2012)

still belong to the domain speculated by Mellor (1975). Globally, σT increases with in-

creasing density. For slab densities in the 100–300 kg.m−3, tensile strength values belong

to the 0.3–20 kPa interval, with a mean value around 2 kPa.
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Figure 3.10: (a) Compilation of shear strength values plotted against density for different

types of grains (see Tab. 3.1). Data from Mellor (1975) (hatched domain), Navarre et al.

(1992) (black symbols), Jamieson and Johnston (2001) (orange symbols) and Yamanoi and

Endo (2003) (blue symbols). See text for fit equations. (b) Shear strength as a function of

the grain type from Föhn et al. (1998).

Shear strength τp We have seen before that slab avalanche releases are generally initi-

ated by the shear rupture of a weak layer underlaying a cohesive slab. In that sense, shear

properties of snow such as shear strength τp are of major importance to study initiation

mechanisms. Several authors measured shear strength of homogeneous snow in situ (Mel-

lor, 1975; Conway and Abrahamson, 1988; Navarre et al., 1992; Yamanoi and Endo, 2003)

or during laboratory experiments (Schweizer, 1998; Podolskiy et al., 2010). However, only

few studies attempted to measure weak layers shear strength (Föhn et al., 1998; Jamieson

and Johnston, 2001; Reiweger, 2010; Podolskiy et al., 2010; Reiweger, 2011). Fig. 3.10 is

a collection of shear strength values for different types of grains and different studies:

• Mellor (1975) summarized shear strength values from direct measurements of Bailard

and McGaw (1965); Butkovich (1956); Haefeli (1939); Keeler (1969); Keeler and Weeks

(1967) but also avalanche release data from various sources summarized by Keeler (1969).

• Navarre et al. (1992) made in situ shear strength measurements for different types of

snow grains.
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• Föhn et al. (1998) measured shear strength of different weak snow layer in situ with

different strain rates (ǫ̇ ∈ 10−2 − 1 s−1) corresponding to the brittle domain. They report

shear strength values between 0.2 and 2.8 kPa.

• Jamieson and Johnston (2001) made approximatively 800 sets of 10 shear frame tests

to evaluate the shear strength of different types of weak layers in situ. When the weak

layer was thick enough for density measurements, they could plot the shear strength as

a function of the density. They distinguished two main groups of different grain shapes.

Group I for precipitation particles, decomposing and fragmented precipitation particles

and rounded grains. For this group, Jamieson and Johnston (2001) adjusted the following

empirical relationship to density:

τ I
p(ρ) = 1.45 × 104

(
ρ

ρice

)1.73

. (3.5)

Group II is composed of depth hoar and faceted crystals (most unstable weak layers). The

following empirical relation was fitted to the data of this group:

τ II
p (ρ) = 1.85 × 104

(
ρ

ρice

)2.11

. (3.6)

• Yamanoi and Endo (2003) made in situ shear frame tests for different frame sizes,

normal load, strain rates and different types of grains. They showed the minor effect of size

and normal load on their results. For dry snow (melted forms excluded), they exhibited a

power law evolution of shear strength with density:

τY
p (ρ) = 2.075 × 105

(
ρ

ρice

)2.91

. (3.7)

Hence, shear strength of snow increases with density. In this thesis, we will be interested

in weak layers shear strength which generally have low densities (<200 kg.m−3). According

to Fig. 3.10, weak layer shear strengths belong to the 0.1–3 kPa range, with an average

around 1 kPa.

Besides, in order to further characterize the ductile–brittle transition highlighted before,

I also reported in Fig. 3.11, shear strength values from different studies as a function of

the shear strain rate γ̇:

• Schweizer (1998) used a direct simple-shear apparatus in a cold laboratory to measure

shear strength of homogeneous samples (small rounded particles, density: 290 kg.m−3).

Experiments were performed at a temperature of -10◦C. He found the shear strain rate of

the brittle–ductile transition around 10−3 s−1.

• Fukuzawa and Narita (1993) carried out simple shear experiment in cold laboratory

on weak layers of depth hoar (density: 190 kg.m−3) at a temperature of -6◦C. These author

found the ductile–brittle transition around 2×10−4 s−1. For very low shear rates in the

ductile regime, these autors found relatively large shear strength values (≈10 kPa).
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Figure 3.11: Shear strength strain rate dependence from different studies (see text for

details). The transition between ductile and brittle regimes is between 10−4 and 2 ×

10−3 s−1.

• As stated before, Föhn et al. (1998) measured shear strength of weak snow layer at

high loading rates corresponding to a brittle regime.

• Nakamura et al. (2010) used a vibration apparatus in a cold laboratory to measure

shear strength of dense homogeneous snow layers. These authors found opposite trends

compared to almost all previous studies, namely increasing shear strength with increasing

strain rate. The complexity of their measurement device may be one of the reasons of this

discrepancy.

• Reiweger (2011) made cold laboratory experiments with natural samples including

a weak layer of buried surface hoar. According to her results, she estimated the ductile–

brittle transition around 2 × 10−3 s−1.

These results stress out that this transition between ductile and brittle regimes is still

poorly known and not well characterized. Nevertheless, one can give a range of the tran-

sition strain rate between 10−4 and 2 × 10−3 s−1.

Friction coefficient µ = tanφ The general practice is to define and determine the

shear strength τp according to the Mohr-Coulomb failure criterion for biaxial stress fields:

τp = c+σn tanφ where c is the cohesion and φ the friction angle. Friction thus represent a

contribution to the shear strength. Very little data are available on snow friction coefficient.

The friction coefficient µ is the ratio between shear stress and normal stress of a solid

material while it undergoes deformation. The static (or rupture) friction coefficient is the
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Figure 3.12: Distribution of rupture (De Montmollin, 1978) and residual (van Herwijnen

and Heierli, 2009) friction coefficients.

ratio between the shear stress required to produce the sliding between two surfaces and the

normal stress. Once the surfaces move, it is called dynamic (or residual) friction coefficient.

Fig. 3.12 is an histogram of friction coefficient from different studies:

• De Montmollin (1978) measured the static friction coefficient as a function of snow

density in situ using a manual “bévamètre”. Internal friction coefficient ranged from 0 to

2.7 corresponding to friction angles between 0 and 70◦.

• van Herwijnen and Heierli (2009) were able to compute the evolution of static (rup-

ture) and dynamic (residual) friction coefficients from in situ saw cut tests on slab - weak

layer systems using video sequences and markers. Values of the residual friction coefficient

for 34 experiments are reported in Fig. 3.12.

This figure shows that rupture friction coefficient values have a wide disparity with a

mean around 0.6. On the contrary, residual friction coefficient values from van Herwijnen

and Heierli (2009) do not show a strong variation. The measured values of µ ranged from

0.52 to 0.68 with a mean value of 0.57. This corresponds to friction angles ranging from

28 to 34◦ with a mean of 30◦.

Spatial variability

Results obtained from in situ mechanical tests, suggest the existence of an important vari-

ability of mechanical properties of snow that can be due to the measurement protocol

(samples sizes, loading rate, temperature, snow type, etc), but also to the spatial het-

erogeneity of the snow cover. Schweizer et al. (2008) stated that this spatial variability

and particularly its characteristic range may have a very important influence on avalanche

formation. Geostatistical analysis (Cressie, 1993; Kronholm, 2004) has been introduced
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Figure 3.13: Coefficient of variation CV (minimum, mean and maximum value) from dif-

ferent studies (see text). SS = Shear strength measurement, PR = Point resistance mea-

surement, PS = Point stability measurement.

and used to determine the correlation length (ǫ) and the coefficient of variation (CV) of

field data. Schweizer et al. (2008) made an extensive review of all the existing field studies

that analyzed snowcover spatial variability. Fig. 3.13 is a graphical summary of the coef-

ficients of variation already reviewed by Schweizer et al. (2008). The index of the graphic

corresponds to the following different studies:

• (1) Sommerfeld and King (1979) computed the CV of shear strength (SS) for 3 slopes

approximately 24 h after the avalanche.

• (2) Föhn (1989) studied the CV of stability index derived from shear strength mea-

surements (shear frame) for stable slopes (support of 0.025 m2, minimum spacing of ≈ 10 m

with a spatial extent of 30–300 m).

• (3) Conway and Abrahamson (1988) also analyzed the CV of stability index (derived

from shear strength measurements) for 5 slopes (support of 0.09 m2, minimum spacing

between 0.6 and 0.9 m with a spatial extent of ≈200 m). They suggested that the mea-

surements should be spaced less than 0.5 m apart to capture the spatial variability and

should span at least 3 m.

• (4) Birkeland (1990); Birkeland et al. (1995) made penetration resistance (PR) tests

(support of 0.001 m2, minimum spacing of 1 m and spatial extent of 50 m). They studied

the CV of PR on two slopes.

• (5) Jamieson and Johnston (2001) made approximately 800 sets of 10 shear frame

tests (supports of 0.01, 0.025 and 0.05 m2, minimum spacing of 0.3 m and spatial extent

of 6 m) on different weak snowpack layers. They shown that shear strength measurements

were normally distributed.
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• (6) Stewart (2002); Stewart and Jamieson (2002); Campbell (2004); Campbell and

Jamieson (2007) made point stability (PS) tests using the drop hammer test on 39 slopes

(support of 0.09 and 3 m2, minimum spacing of 0.6 to 2.5 m and spatial extent of 10–50 m).

They showed that CV values depend on the support size.

• (7) Landry (2002); Landry et al. (2004) derived the stability index from shear strength

measurements for 11 slopes (support of 0.09 m2, minimum spacing of 0.5 m and spatial

extent of 42 m).

• (8) Birkeland et al. (2004) used the snow micro-pen (SMP) to determine the CV of

penetration resistance of a buried surface hoar layer slope (two sets of measurements from

two part of the slope six days apart, support of 2×10−5 m2, minimum spacing of 0.5 m

and spatial extent of 30 m).

• (9) Kronholm (2004) made penetration resistance measurements with the SMP over

21 slopes (support of 2×10−5 m2, minimum spacing of 0.5 m and spatial extent of 30 m).

• (10) Logan (2005); Logan et al. (2007) made shear frame tests to derive shear strength

and point stability on 2 uniform slopes (support of 0.025 m2, minimum spacing of 0.5 m

and spatial extent of 14–30 m).

From all these studies, the average CV is ranged between 23 and 60% with an overall

average value of 37%. Note however, that for some of the mentioned studies, the CV

values may be influenced by spatial correlations. Finally, concerning the correlation length

ǫ (spatial range of the variability), it was found to be highly variable from < 0.5 to > 10 m

(Kronholm, 2004; Birkeland et al., 2004). Hence, Schweizer et al. (2008) recommended that

two tests should be spaced out on the order of at least 10 m in order to get independent

results.

3.4 Slab avalanche release models

A slab avalanche is the result of four rupture types: (1) a shear rupture (that may be

accompagnied by a normal collapse) of a buried weak layer or interface; (2) A tensile

rupture at the top of the slab (crown); (3) two lateral shear ruptures on both sides of the

slab (flanks); (4) a compressive rupture at the bottom of the slab (stauchwall) (Schweizer

et al., 2003) (Fig. 3.1).

Most of the existing avalanche release models are based on the assumption first made

by Palmer and Rice (1973) for an overconsolidated clay and then taken up for snow by

McClung (1979b) that a weak spot or shear band, i.e. a zone of zero shear strength, pre-

exists inside the weak layer. Fracture mechanics is then applied to study the conditions

for shear-band propagation. Based on an energy budget at the tip of the band where the

stress concentrates (Fig. 3.14), the rapid propagation occurs when a critical length L is
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Figure 3.14: Snow slab release models with preexisting weak spots. A uniform 2D slope

inclined with a slope angle θ, a slab depth h. The two graphics show the evolution of the

shear stress at the interface between the slab and the substratum for two models: McClung

(1979b) and Bader and Salm (1990), with τg = ρgh sin θ the body weight shear stress, τp

the peak stress and τr the residual stress. From Schweizer et al. (2003).

reached after a phase of slow strain softening. The propagation criterion is given by:

h(1 − ν)

4G

(
(τg − τr)

L

h

)2

= (τp − τr)δ, (3.8)

where h is the slab depth, ν the Poisson ratio of the slab, G the shear modulus of the slab,

τg = ρgh sin θ the body-weight stress, with ρ the density of the slab, θ the slope angle and

δ the softening displacement in the weak spot required for the stress to pass from peak

stress τp to residual stress τr. The right-hand term of Eq. (3.8) represents the resistance

to the extension of the weak spot; the left-hand term is a driving term which provides the

energy for the weak spot to propagate. For realistic values of the different parameters, the

critical length can vary in the 1–20 m range. The size of the end zone (or plastic zone) ω

(Fig. 3.14) is the characteristic length in which the shear stress decreases from the peak

to the residual stress. It is considered as the minimal length to initiate any progressive

failure process.

Following McClung (1979b), Bader and Salm (1990) also analyzed weak layer shear

rupture propagation (Fig. 3.14) but taking into account snow strain-rate dependency.

Based on continum mechanics under small deformations and using simple linear visco-

elastic constitutive laws, they proposed expressions for stress and strain at the edge of the
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weak spot (called super weak zone). One of the main outcome of their study is that a

weakness inside the snowpack is required for avalanche release even with a local increase

of stress such as a skier. Besides, their model is able to predict the critical length for

brittle and ductile fracture propagations. Using more realistic values of snow properties

than Bader and Salm (1990), Schweizer (1999) determined the critical length using their

model. For ductile failure propagation, the critical length is between 0.1 and 3.1 m. For

brittle propagation, it is found to be between 5 an 35 m.

Louchet (2001) developed an analytical micromechanical model in which the weak layer

was treated as an open cell ice foam of an array of ice bonds. These bonds were prone

to break under stress, but broken bonds may reconstruct if in contact with each other

for some time. Hence, this author described creep in relation to the bond-breaking rate

and the bond-rewelding rate. Depending on the load and the balance between breaking

and rewelding rates, the system can lead to stable, unstable (natural avalanche release),

or critical conditions of slope stability. He argued that the critical situation is equivalent

to a ductile to britte transition.

Schweizer (1999) made a review of the existing mechanical models for slab release and

concluded that the critical length for fracture propagation should be between 0.1 and 10 m.

The 1 – 10 m range corresponds to rapid loading such as a skier, whereas the lower range

0.1 – 1 m corresponds to slow loading.

More recently, Chiaia et al. (2008) showed that a simple stress failure criterion coming

from equilibrium equations could also be sufficient to predict shear-band propagation with

a good accuracy when accounting for the thickness of the weak layer.

Nevertheless, as already noted by Schweizer (1999), the very concept of weak-spot is

questionable since, even if we can imagine how local weak zones could appear (for instance

from a progressive damage process at the micro-scale (Fig. 3.2) or around dark spots

such as rocks, where the snow depth is reduced and thus the temperature gradient is

increased), it is probably too simplistic, in general, to represent the complex heterogeneity

of weak-layer mechanical properties. Besides, “because of the stochastic nature of some of

the meteorological processes acting on the snow cover, a purely deterministic approach to

the questions of where and when will have limited success” (quoted from Schweizer et al.,

2003).

Several studies (Conway and Abrahamson, 1988; Jamieson and Johnston, 2001; Birke-

land et al., 2004; Kronholm, 2004; Schweizer et al., 2008; Bellaire and Schweizer, 2011)

have shown that snow mechanical properties present considerable spatial variability. From

field data, this variability is generally described as following Gaussian distributions with

spatial correlations. Hence, the concept of weak-spot may be replaced by mechanical mod-

els taking into account spatial stochastic processes to represent the heterogeneity. Such

models would not only explain failure initiation in weak zones, but also fracture arrest in

stronger zones (Schweizer, 1999). Besides, as pointed out by Schweizer et al. (2008), a



46 3. State of the Art

Figure 3.15: (a) Schematic representation of the FBM (Reiweger et al., 2009). (b) Com-

parison of the FBM simulations with experimental results (Reiweger et al., 2009). (c)

Displacement profile for a failed slope; A cohesive area of slab has ruptured, the crown and

side walls of the avalanche are marked by the thick black lines (Fyffe and Zaiser, 2007).

key factor in avalanche formation would be the relation between the critical length of the

initial failure L (generally belonging to the 0.1–10 m range; Schweizer, 1999) to the spatial

scale of the variability ǫ. For example, if ǫ/L < 1 then it is suggested that the variability

has a stabilizing effect (Kronholm et al., 2004). Recently, several studies attempted to

include this heterogeneity in mechanical models. These studies can be classified as follows,

according to the numerical method used:

(i) Fiber Bundle Model (FBM) are simple statistical fracture models that are well

adapted for representing spatially heterogeneous systems, including possibly time-dependent

effects such as sintering. Hence, Reiweger et al. (2009) model the weak snow layer as a

discrete set of parallel brittle-elastic fibers (Fig. 3.15a). Spatial variability is accounted for

by assigning to each fiber an initial strength taken within a Weibull distribution. Despite

the simplicity of the model, these authors are able to quantitatively reproduce laboratory

shearing experiments on homogeneous snow samples (Fig. 3.15b). However, redistribution

effects by elasticity of the slab cannot be taken into account in such models which are

therefore unable to reproduce full-scale avalanche release.

(ii) Cellular-Automata Models (CAM) consist of a regular grid of cells characterized by

a state that can change over time and as a function of the neighboring cells’ state. Fyffe

and Zaiser (2004, 2007) and Kronholm and Birkeland (2005) applied such approaches to

slab avalanche release with a heterogeneous shear strength of the weak layer represented

by Weibull or Gaussian distributions. Via neighboring elements their models account for

stress redistribution between weak and strong regions. They also included mode-II (shear)
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Figure 3.16: Exemples of spatial heterogeneity of a cohesive slope using a log-normal

random field for two correlation lengths and simulated using a Finite Element Method.

Deformed mesh at slope failure. From Griffiths and Fenton (2004).

rupture of the weak layer with a strain-softening law, and mode-I (tensile) rupture of

the slab as in Failletaz et al. (2004). These studies demonstrated the influence of spatial

variability characteristics (variance, nugget effect, etc) on release depth distributions. Fyffe

and Zaiser (2007) were also able to reproduce (under certain conditions) release depth

distributions following power laws, as in field studies (Rosenthal and Elder, 2002; McClung,

2003; Failletaz et al., 2004). Besides and interestingly, Fyffe and Zaiser (2007) model allows

to mark out the boundaries of avalanche release areas (Fig. 3.15c). However, stress elastic

redistribution effects are oversimplified in these models whose applicability is limited to

the case of a shear strength correlation length lower than the slab depth.

(iii) Finite Element Models (FEM) rely on the resolution of the complete mechanical

equations of the problem. One of the main advantages of FEM compared to CAM is

that it is able to capture large-scale stress redistribution effects due to elasticity. FEM

has already been successfully applied to modeling the mechanical response of sandwich

specimens including weak-snow layers with homogeneous properties (e.g. Bader and Salm,

1990; Stoffel, 2005; Mahajan and Joshi, 2008; Mahajan et al., 2010). However, only few

studies coupled FEM with a stochastic representation of the spatial variability. Recently,

such a model has been introduced by Griffiths and Fenton (2004) to study soil stability

(Fig. 3.16). To our knowledge, the same type of approach has never been undertaken for

snow.

3.5 Extreme value statistics in a multivariate spatial

context

The objective of this section is to present the application of extreme value theory in the

multivariate spatial case using max-stable processes which will enable the mapping of

extreme snowfalls. In a first part, the three main max-stable processes are presented and

the extremal coefficient is defined. Then, in a second part, a likelihood-based method for

fitting a max-stable process to data is shown.
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3.5.1 Max-Stable Processes and spatial extremes

Definition: Max-Stable Process

{Z(x)}x∈X is a max-stable process if there exist positive sequences an(x) and bn(x), such

that if for all n and (Zi)i=1,n independent copies of Z, {Z(x)}x∈X has the same distribution

as {
maxi=1,n Zi(x) − an(x)

bn(x)

}

x∈X

.

As a consequence, all finite dimensional marginal distributions are max-stable and, in

particular, the univariate marginal Z(x) distribution belongs to the GEV family:

P (Z(x) ≤ z) =





exp


−

(
1 +

ξ(x)(z − µ(x))

σ(x)

)−1/ξ(x)

 if 1 +

ξ(x)(z − µ(x))

σ(x)
> 0

1 otherwise

(3.9)

where µ(x), σ(x) and ξ(x) are respectively the location, scale and shape parameters at

location x. According to the sign of ξ(x), Z(x) distribution belongs to three different

families of distributions known as Fréchet (ξ(x) > 0), Weibull (ξ(x) < 0) and Gumbel

(ξ(x) → 0).

Usually it is convenient to transform the univariate marginals setting:

Z∗(x) =

(
1 + ξ(x)

(Z(x) − µ(x))

σ(x)

)1/ξ(x)

. (3.10)

Z∗ is thus a max-stable process with unit Fréchet margins. Models of max-stable pro-

cesses have been proposed by several authors. The most popular are those of Smith (ex-

tremal Gaussian Smith, 1991), a particular case of DeHaan (1984) construction, Schlather

(Schlather, 2002), and Brown-Resnick (Brown and Resnick, 1977) generalized by Kabluchko

(Kabluchko et al., 2009).

Smith MSP The Smith Max-Stable Process (Smith, 1991) with unit Frechet margins is

defined as:

Z(x) = max
i

(ξif(yi, x)) x ∈ X , (3.11)

where (ξi, yi), i ≥ 1 are the points of a Poisson process on (0,+∞) × X with intensity

measure ξ−2dξν(dy), where ν(dy) is a positive measure on X . The function f is non-

negative such that ∫

X

f(x, y)ν(dy) = 1, x ∈ X , (3.12)

This process is often called rainfall-storm process. Eq. (3.11) is general but Smith consid-

ered a particular setting in which ν(dy) is the Lebesgue measure and f(x, y) = f0(y− x) a

multivariate normal density with zero mean and covariance matrix Σ. In this case (and still
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under the unit Frechet margin assumption), one can show that the bivariate cumulative

distribution function (CDF) is expressed as:

P (Z(x1) ≤ z1, Z(x2) ≤ z2) = exp
[
−

1

z1

Φ
(
a

2
+

1

a
log

z2

z1

)
−

1

z2

Φ
(
a

2
+

1

a
log

z1

z2

)]
(3.13)

where Φ is the standard normal cumulative distribution function, a2 = htΣ−1h the Maha-

Figure 3.17: Two simulations of the Smith model with different covariance matrices Σ. (a)

σ11 = σ22 = 9/8 and σ12 = 0. (b) σ11 = σ22 = 9/8 and σ12 = 1. The max-stable processes

are transformed to unit Gumbel margins for viewing purposes. From Ribatet (2009).

lanobis distance between locations x1 and x2 and

Σ =


 σ11 σ12

σ12 σ22


 in a 2D space, or Σ =




σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33


 in a 3D space.

Fig. 3.17 represents two realizations of Smith MSP for two different covariance matrices.

As one can notice, the covariance matrix Σ plays a major role since it defines the shape of

the storm events and the main direction of anisotropy. Due to the use of a multivariate

normal distribution, the storms have an elliptical shape.

Schlather MSP The Schlather Max-Stable Process (Schlather, 2002) with unit Frechet

margins is defined as:

Z(x) = max
i
ξi max(0, Yi(x)) x ∈ X , (3.14)

where Yi are i.i.d copies of a stationnary process on X such that E[max(0, Y (x))] = 1 and

ξi, i ≥ 1 the points of a Poisson process on R
+
∗ with intensity ξ−2dξ.

To obtain a model usable in practice, Schlather proposed to take Yi as a stationnary

standard Gaussian process with correlation function ρ(||h||). With this new assumption,
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one can derive the bivariate CDF from Eq. (3.14):

P (Z(x1) ≤ z1, Z(x2) ≤ z2) = exp

[
−

1

2

(
1

z1

+
1

z2

)(
1 +

√
1 − 2 (ρ(||h||) + 1)

z1z2

(z1 + z2)
2

)]

(3.15)

where ||h|| ∈ R
+ is the Euclidian distance between locations x1 and x2. Usually, ρ(||h||)

Figure 3.18: Plots of the Whittle-Matern (a), the powered exponential (b), the Cauchy (c)

and the Bessel (d) correlation functions. The sill and range parameters are c1 = c2 = 1

while the smooth parameters are given in the legends. From Ribatet (2009).

is chosen from the following valid correlation functions:

Wittle-Matern: ρ(h) = c1
21−ν

Γ (ν)

(
h

c2

)ν

Kν

(
h

c2

)
, ν > 0

Cauchy: ρ(h) = c1


1 +

(
h

c2

)2



−ν

, ν > 0

Powered Exponential: ρ(h) = c1exp

[
−

(
h

c2

)ν]
, 0 < ν ≤ 2

Bessel: ρ(h) = c1

(
2c2

h

)
Γ (ν + 1)Jν

(
h

c2

)
, ν >

p− 2

2

(3.16)

where c2 > 0 and ν are the range and the smooth parameters of the correlation function.

Γ is the gamma function and Jν and Kν are the Bessel and the modified Bessel functions

of the third kind with order ν and p is the dimension of the random fields.

Fig. 3.18 is a plot of these different correlation functions for different values of the

parameters. Fig. 3.19 represents two realizations of Schlather MSP with the powered

exponential and Wittle-Matern correlations functions.
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Figure 3.19: Two simulations of the Schlather model with different correlation functions

having approximately the same practical range. (a) Whittle-Matern with c1 = c2 = ν = 1.

(b) Powered exponential with c1 = ν = 1 and c2 = 1.5. The max-stable processes are

transformed to unit Gumbel margins for viewing purposes. From Ribatet (2009).

Brown-Resnick MSP The Brown-Resnick model (Brown and Resnick, 1977), general-

ized by Kabluchko et al. (2009) is defined as:

Z(x) = max
i

(ξi exp(Wi(x) − σ2(x)/2) x ∈ X , (3.17)

where ξi is a Poisson process on R
∗+ of intensity 1

ξ2dξ and Wi are independent Gaussian

fields, with stationary increments, variance σ2(x) and variogram γ(h).

The expression of the bivariate cumulative distribution function (CDF) is nearly the

same as for the Smith MSP [Eq. (3.13)]:

P (Z(x1) ≤ z1, Z(x2) ≤ z2) = exp

[
−

1

z1

Φ

(
d

2
+

1

d
log

z2

z1

)
−

1

z2

Φ

(
d

2
+

1

d
log

z1

z2

)]
, (3.18)

except that the Mahalanobis distance a is replaced by d =
√

2γ(h). Fig. 3.20 shows

realizations of Brown-Resnick MSPs with a power variogram γ(h) = ||h||α for different

values of α.

Extremal coefficient

Spatial dependence of maxima at two locations x and x′ is characterized by the extremal

coefficient denoted θ(x, x′). If Z∗ is the limiting process of maxima with unit Fréchet

margins, then (Brown and Resnick, 1977):

P (Z∗(x) ≤ z, Z∗(x′) ≤ z) = P (Z∗(x) ≤ z)θ(x,x′)

= exp(−θ(x, x′)/z) (3.19)
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Figure 3.20: Three simulations of the Brown-Resnick model with a power variogram γ =

||h||α. (a) α = 0.4, (b) α = 1.0, (c) α = 1.95. The max-stable processes are transformed

to unit Gumbel margins for viewing purposes. From Schlather (2010).

Thus, if θ(x, x′) = 1 there is perfect dependence of the maxima at stations x and x′ and, on

the contrary, if θ(x, x′) = 2 the maxima are independent. For Smith, Schlather and Brown-

Resnick models the extremal coefficient can be calculated explicitly. According to these

models, the processes are stationary, and the related extremal coefficient only depends on

h = x− x′. The Smith’s model extremal coefficient θSm is given by:

θSm(h) = 2Φ(a(h)/2), (3.20)

with a(h) = (htΣh)1/2 the Mahalanobis distance, Σ a covariance matrix with three param-

eters σ11, σ12, σ22 and Φ the cumulative normal distribution.

The Schlather’s extremal coefficient θSc is given by:

θSc(h) = 1 +

√

1 −
1

2
(ρ(||h||) + 1) (3.21)

with −1 ≤ ρ(||h||) ≤ 1, a valid correlation function (Wittle-Matern, Cauchy, exponential,

Bessel ...). In our study, we generally used the exponential correlation function ρ(h) =

exp(−||h||/c1) where c1 is the range parameter.

Finally, the Brown-Resnick’s extremal coefficient θBR is given by:

θBR(h) = 2Φ



√
γ(||h||)

2


 . (3.22)

The behaviour of the extremal coefficient may give an indication for the choice of the

model. For instance, the Schlather’s MSP cannot achieve full independence (θ = 2). This

can be useful for applications with extremal dependence that remains strong even at very

important distances, but is a major flaw in other cases. Instead, the Smith’s MSP imposes

full independence at long distances (θSm
∞
→ 2) but is quite rigid at short distances. The

Brown-Resnick’s MSP is more flexible as the variogram may take a great variety of shapes

near 0 and allows for full independence (θBR
∞
→ 2) at long distances [Eq. (3.22)].
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Figure 3.21: Example of extremal coefficients of Smith, Schlather and Brown-Resnick

MSPs.

The Smith’s MSP can directly model the anisotropy in the extremal coefficient by

using a modified distance (Mahalanobis), function of the covariance matrix Σ. As already

noted before, this covariance matrix plays a very important role because it determines

the elliptical shape of the extremal dependence. On the contrary, Schlather’s and Brown-

Resnick’s MSP are primarily isotropic as they involve the Euclidean distance. Thus, to

take into account possible directional effects in the case of Schlather’s and Brown-Resnick’s

MSP, we must modify the standard space (Ribatet, 2009; Blanchet and Lehning, 2010)

while infering the extremal dependence. To do this, we set Ẽ = V E with E = [x y]t the

Euclidean coordinates in 2D for instance and V the rotation matrix defined below:

V =


 cosψ sinψ

−ρ sinψ ρ cosψ


 , (3.23)

where ψ represents the anisotropy angle of the transformation and ρ its intensity.

3.5.2 Likelihood-based inference

Composite likelihood

In order to fit a max-stable process to data, likelihood maximisation is used. However, we

cannot calculate the complete likelihood since we only know analytically the expression of

the different bivariate distributions according to Eqs. ((3.13),(3.15),(3.18)). Padoan et al.

(2009) showed that, for MSP, the full log-likelihood can be advantageously replaced by a

special case of composite likelihood (Lindsay, 1988): the pairwise log-likelihood lp defined
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as:

lp(β, z) =
N∑

n=1

K∑

i=1

K−1∑

j=i+1

logf(zn,i, zn,j; β), (3.24)

with z the data available on the whole region, N the number of observations (typically the

number of years of measurements), K the number of measurement stations, β the vector of

parameters to estimate and f the bivariate density of the unit Frechet MSP used (Smith,

Schlather or Brown-Resnick). In the case of annual block maxima data, zn,i represents

the annual maximum of the quantity to be analyzed for year n and station i. One can

then find the parameters β̂ that maximize the composite likelihood by solving the partial

differential equation:
∂

∂β
lp(β̂, z) = 0. (3.25)

Under appropriate conditions (Lindsay, 1988; Ribatet, 2009) the maximum composite like-

lihood estimator is consistent and asymptotically (n → ∞) distributed as β̂MCLE
n→∞
−−−→

N(β̂, H(β̂)J(β̂)−1H(β̂)), where H(β̂) and J(β̂) are the Hessian and Jacobian information

matrices of lp.

Under the pairwise setting for extreme, one can derive the associate standard errors

from H and J estimated by:

H(β̂) = −
N∑

n=1

K∑

i=1

K−1∑

j=i+1

∂2 log f(zn,i, zn,j; β̂)

∂β∂βt
, (3.26)

and

J(β̂) =
N∑

n=1

K∑

i=1

K−1∑

j=i+1

∂ log f(β̂, zi)

∂β

∂ log f(zn,i, zn,j; β̂)

∂βt
. (3.27)

Model selection: TIC

To compare different models, a criterion weighting the value of the likelihood by the num-

ber of model parameters to estimate can be used. The classic AIC (Akaike Information

Criterion Akaike, 1981) cannot be applied when composite likelihood maximisation is used.

A derivative of AIC suitable for composite likelihood is the TIC (Takheuchi Information

Criterion) (Takeuchi, 1976):

TIC(β̂) = −2lp(β̂, z) + 2tr
(
J(β̂)H(β̂)−1

)
, (3.28)

The best model is the one that minimizes the TIC [Eq. (3.28)]. Composite likelihood max-

imisation and TIC computations can be carried out under the SpatialExtreme R package

(Ribatet, 2009).



Chapter 4

Influence of weak layer heterogeneity

on snow slab avalanche release

4.1 Application to the evaluation of avalanche release

depth

This section is composed of an article entitled “Influence of weak layer heterogeneity on

snow slab avalanche release: Application to the evaluation of avalanche release depths.”

which was submitted to Journal of Glaciology with the contribution of Guillaume Cham-

bon, Nicolas Eckert and Mohamed Naaim.

The objective of this article is to compute avalanche release depth distributions from

a mechanically-based statistical model. To do so, a shear-softening interfacial weak layer

underlying an elastic slab is modeled and the system is loaded by increasing the slope

angle until failure and avalanche release. We first study the influence of a single weak

spot in the weak layer in order to validate the model against analytical solutions. The

interaction between two weak spots is also examined. The case of heterogeneous weak

layers represented through Gaussian distributions of the cohesion with a spherical spatial

covariance is then studied. The obtained release angle distributions are analyzed and a

heterogeneity smoothing effect due to redistributions of stresses by elasticity of the slab is

highlighted. This smoothing effect induces a reduction of the release angle variance com-

pared to the case of a fully rigid slab. The obtained release angle distributions are then

inverted, yielding a release depth distribution integrated over all slopes. A coupling with

extreme snowfall distributions is performed and a sensitivity analysis of the final distribu-

tions to the mechanical parameters is done. Note that the coupling equation presented in

this paper is an approximation of the formal coupling equation presented in more details

in Chapter 6 (paper published in Geophysical Research Letters).
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avalanche release depths.
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ABSTRACT. The evaluation of avalanche release depths constitutes a great challenge for

risk assessment in mountaineous areas. This study focuses on slab avalanches which generally

result from the rupture of a weak layer underlying a cohesive slab. We use the finite element

code Cast3M to build a mechanical model of the slab-weak layer system taking into account

two key ingredients for the description of avalanche releases: weak-layer heterogeneity and

stress redistribution via slab elasticity. The system is loaded by increasing the slope angle

until rupture. We first examine the cases of one single and two interacting weak spots in the

weak layer in order to validate the model. We then study the case of heterogeneous weak

layers represented through Gaussian distributions of the cohesion with a spherical spatial

covariance. Several simulations for different realizations of weak layer heterogeneity are car-

ried out and the influence of slab depth and heterogeneity correlation length on avalanche

release angle distributions is analyzed. We show in particular a heterogeneity smoothing

effect caused by slab elasticity. Finally, this mechanically-based probabilistic model is cou-

pled with extreme snowfall distributions. A sensitivity analysis of the predicted distributions

enables to determine the values of mechanical parameters providing the best adjustment to

field data.

1. INTRODUCTION

The evaluation of avalanche release depths is of major im-

portance for all the applications related to hazard mapping

or zoning. In particular, avalanche release depths represents

a crucial input ingredient for dynamical runout models (Bar-

bolini and others, 2000; Naaim and others, 2003) and are

required for implementing statistical-dynamical simulations

(Meunier and Ancey, 2004; Eckert and others, 2010). It has

been shown in different studies (Hutter, 1996; Bartelt and

others, 1999; Jamieson and others, 2008) that the outputs of

these models in terms of run-out distances and impact forces

are strongly dependent on the release mass, as well as on

other ingredients such as friction, deposition and erosion.

It is commonly accepted that dry-snow slab avalanches are

initiated by a shear failure in a weak-snow layer (or at a weak

interface) followed by tensile crown failure of the overlying

slab (McClung, 1979; Schweizer and others, 2003). The shear

failure is caused by a local loss of cohesion inside the weak

layer that may be due to (1) a localized surface loading such

as skiers or explosives (artificial release), (2) uniform loading

due to a new snowfall (natural release), or (3) changes in the

snowpack properties due to weather changes (natural release).

Most of the existing avalanche release models are based

on the assumption first made by Palmer and Rice (1973) for

an overconsolidated clay and then taken up for snow by Mc-

Clung (1979) that a weak spot or shear band, i.e. a zone of

zero shear strength, pre-exists inside the weak layer. Frac-

ture mechanics is then applied to study the conditions for

shear-band propagation. Based on an energy budget at the

tip of the band, the rapid propagation occurs when a criti-

cal length is reached after a phase of slow strain softening.

Schweizer (1999) produced a complete review of these fracture

mechanics models and gave critical length values as a func-

tion of snow characteristics. More recently, Chiaia and others

(2008) showed that a simple stress failure criterion coming

from equilibrium equations could also be sufficient to predict

shear-band propagation with a good accuracy. Nevertheless,

as already noted by Schweizer (1999), the very concept of

weak-spot is questionable since, even if we can imagine how

local weak zones could appear (for instance around rocks,

where the snow depth is reduced and thus the temperature

gradient is increased), it is probably too simplistic, in general,

to represent the complex heterogeneity of weak-layer mechan-

ical properties.

Several studies (Conway and Abrahamson, 1988; Jamieson

and Johnston, 2001; Birkeland and others, 2004; Kronholm,

2004; Schweizer and others, 2008; Bellaire and Schweizer,

2011) have shown that snow mechanical properties present

considerable spatial variability. From field data, this variabil-

ity is generally described as following Gaussian distributions

with spatial correlations. Hence, the concept of weak-spot

may be replaced by mechanical models taking into account

spatial stochastic processes to represent the heterogeneity.

Such models would not only explain failure initiation in weak

zones, but also fracture arrest in stronger zones (Schweizer,

1999). Recently, several studies attempted to include this het-

erogeneity in mechanical models. These studies can be clas-

sified as follows, according to the numerical method used:

(i) Fiber Bundle Models (FBM) are simple statistical frac-

ture models that are well adapted for representing spatially

heterogeneous systems, including possibly time-dependent ef-

fects such as sintering. Using this framework, Reiweger and
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others (2009) model the weak snow layer as a discrete set of

parallel brittle-elastic fibers. Spatial variability is accounted

for by assigning to each fiber an initial strength taken within

a Weibull distribution. Despite the simplicity of the model,

these authors are able to quantitatively reproduce laboratory

shearing experiments on homogeneous snow samples. How-

ever, complex stress redistribution effects by elasticity of the

slab cannot be taken into account in such models, which are

therefore unable to reproduce full-scale avalanche release.

(ii) Cellular-Automata Models (CAM) consist of a regular

grid of cells characterized by a state that can change over

time and as a function of the neighboring cells’ state. Fyffe

and Zaiser (2004, 2007) and Kronholm and Birkeland (2005)

applied such approach to slab avalanche release with a het-

erogeneous shear strength of the weak layer represented by

Weibull or Gaussian distributions. Via neighboring elements

their models account for stress redistribution between weak

and strong regions. They also included mode-II (shear) rup-

ture of the weak layer with a strain-softening law, and mode-I

(tensile) rupture of the slab as in Failletaz and others (2004).

These studies demonstrated the influence of spatial variability

characteristics (variance, nugget effect, etc) on release depth

distributions. Fyffe and Zaiser (2007) were also able to repro-

duce (under certain conditions) release depth distributions

following power laws, as in field studies (Rosenthal and Elder,

2002; McClung, 2003; Failletaz and others, 2004). However,

stress elastic redistribution effects are oversimplified in these

models whose applicability is limited to the case of a shear

strength correlation length lower than the slab depth.

(iii) Finite Element Models (FEM) rely on the resolution of

the complete mechanical equations of the problem. One of the

main advantages of FEM compared to CAM is that it is able

to capture large-scale stress redistribution effects due to elas-

ticity. FEM has already been successfully applied to model-

ing the mechanical response of sandwich specimens including

weak-snow layers with homogeneous properties (e.g. Bader

and Salm, 1990; Stoffel, 2005; Mahajan and Joshi, 2008; Ma-

hajan and others, 2010). However, only few studies coupled

FEM with a stochastic representation of the spatial variabil-

ity. Recently, such a model has been introduced by Griffiths

and Fenton (2004) to study soil stability. To our knowledge,

the same type of approach has never been undertaken for

snow.

In addition, some recent studies (Johnson and others, 2004;

van Herwijnen and Heierli, 2009) relying on field data show

that the shear failure of the weak layer tend to be systemat-

ically accompanied by a normal collapse. These authors ar-

gued that slope normal and slope parallel displacements occur

simultaneously during release. Anticrack analytical models

have been developed and proved capable of reproducing these

data (Heierli and Zaiser, 2007; Heierli and others, 2008). How-

ever, the issue of the influence of normal collapse on avalanche

release is still a matter of debate. Some authors (Jamieson

and Schweizer, 2000; Johnson and others, 2004) suggest that

the simultaneous occurrence of weak-layer collapse and shear

failure may facilitate fracture propagation due to bending ef-

fects. McClung (2011), on the contrary, showed that a model

that does not account for slope-normal failure can reason-

ably reproduce critical length measurements obtained in field

saw-cut tests. Hence, he argued that the slope-parallel prop-

agation is very little influenced by the interaction between

slope-normal displacement and stress. In the present study,

the effect of normal collapse is not considered.

The present paper uses a finite element method to build a

mechanically-based probabilistic model of the slab-weak layer

system taking into account the two key ingredients mentioned

above, namely the redistribution effects by elasticity of the

slab and the heterogeneity of weak-layer mechanical proper-

ties. The objective of this study is the evaluation of avalanche

release depth statistical distributions, distributions that could

be later coupled to propagation models for hazard mapping

and zoning. In sections 2 and 3, we present the considered sys-

tem and validate the model using the well-known weak-spot

case. This validation is also used to highlight a characteristic

length of the system associated to the elastic redistribution of

stresses. In section 4, results obtained with a realistic spatial

heterogeneity based on field data are presented. We analyze

in particular how slab stability depends on slab depth and

on the spatial correlation length of weak-layer properties. Fi-

nally, in section 5, the obtained release depth distributions

are combined with snowfall extreme value distributions and

compared to field data of avalanche crown depths.

2. MECHANICALLY-BASED
PROBABILISTIC MODEL

2.1. Objectives

As already mentioned, the objective of the model developed

in this study is the evaluation of probability distributions

of avalanche release depths, in particular in the context of

absent or scarce data. More precisely, the aim is to produce

a tool capable of predicting release depth distributions that

are meaningful over relatively long time scales (typically sev-

eral decades), and that could be used as inputs for hazard

mapping procedures such as statistical-dynamical approaches

(Keylock and others, 1999; Eckert and others, 2008, 2010).

Hence, the objective is not to develop a complete mechanical

model of slab avalanche release accounting for all the com-

plex processes at play. Both the geometry and the mechani-

cal behavior of the system will be drastically simplified such

as to reduce the number of poorly-known parameters, while

keeping the ingredients essential to describe the mechanics of

slab release. Moreover, to be compared with field data, the

predictions of this model will then need to be coupled with

a description of snowfall distributions, as shown in Gaume

and others (2012). In the present paper, we focus only on the

formulation and validation (numerical consistency) of the me-

chanical part of the model. In the last section, however, the

sensitivity of the predicted distributions (after coupling with

snowfalls) to several mechanical parameters is presented.

2.2. Formulation of the model

The model is based on the finite element code Cast3m (Verpeaux

and others, 1988). The resolution procedure used (“Pasapas”

Charras and Di Paola, 2011) enables considering non lin-

ear models with an implicit integration scheme based on the

weighted residuals method. The momentum conservation equa-

tions, including inertial terms, are solved under the small de-

formations hypothesis:

M.ü+D.u̇+ div.(σ) = F , (1)

ǫ =
1

2

(

grad(u) + gradt(u)
)

, (2)

with M the mass matrix, u the node displacement vector, σ

the stress tensor, ǫ the deformation tensor, F the integrated
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Parameter Typical value Range Reference

Slab density ρ 250kg/m3 100− 300kg/m3 Schweizer (1999)
Slab Young modulus E 1MPa 0.2− 12MPa Schweizer (1999)

Slab Poisson ratio ν 0.2 0.1− 0.4 Schweizer (1999)
Slab viscosity η 108Pa.s 0.2− 5× 108Pa.s Mellor (1975); Camponovo (1998)
W. l. cohesion c 1kPa 0.5− 2.5kPa Föhn and others (1998); Jamieson and

Johnston (2001)

W. l. friction angle Φ 30◦ 20− 40◦ De Montmollin (1978); van Herwijnen
and Heierli (2009)

W. l. displacement to failure up 2mm 1− 10mm McClung (1977)

W. l. residual displacement ur 4mm 1− 10mm McClung (1977)
Correlation length ǫ of w.l. cohesion
variations

0.5− 40m 0.5− 10m Schweizer and others (2008)

Coefficient of variation CV = σc/〈c〉 30% 15− 50% Schweizer and others (2008)

Table 1. Mechanical parameters used

in this study and typical ranges of vari-

ation. (w.l.: weak layer)

Fig. 1. Geometry of the system: a weak layer interface under a

cohesive slab of depth h.

force vector at nodes andD the damping matrix. In our study,

the matrix D is taken as zero.

The system considered is a 2D (plane stress conditions) uni-

form slope inclined at an angle θ, of length L = 50m (Fig. 1).

The x-axis is in the slope-parallel direction and the z-axis

is orthogonal to the slope. The system consists of a slab of

thickness h overlying a weak layer modeled as an interface

of zero thickness. The mesh is composed of 100 elements in

the slope-parallel direction x, and six elements in direction

z. We used quadrilateral elements for the slab (QUA4: four

nodes with 2 dof/node) and joint elements for the weak layer

interface (JOI2: four nodes with 2 dof/node). We checked

that the mesh resolution is fine enough so that it does not

influence the results to be presented (see in particular section

3.1).

The boundary conditions applied to slab are the following:

At the upper end of the slope (BC1) a shear stress σxz =

−ρg(z + h) sin θ is applied in order to avoid bending of the

slab linked to finite size effects. At the lower end (BC2), a

nil displacement in slope-parallel direction x is imposed. The

upper surface of the slab is free and the base is subjected to

an interface law, i.e. a law relating shear stress to tangential

displacement, which represents the weak layer.

2.3. Constitutive relationships

Snow is a very complex material whose mechanical behavior

is still not fully understood. In the present model, only the

ingredients necessary to produce realistic instability of the

system, namely strain-softening of the weak layer and elas-

ticity of the slab, are taken into account. Table 1 summarizes

Fig. 2. Weak layer constitutive law.

the value of the different mechanical parameters used in this

study.

Weak Layer
Various studies (McClung, 1979; Föhn and others, 1998; Mc-

Clung and Schweizer, 2006) have shown that weak snow layers

behave as strain-softening (or quasi-brittle) materials. The

softening is caused by the break of ice bridges at the micro-

scopic scale. In existing mechanical models (McClung, 1979;

Bazant and others, 2003; Fyffe and Zaiser, 2004, 2007; Ma-

hajan and Joshi, 2008; Mahajan and others, 2010; Gaume

and others, 2011), weak layers are generally characterized by

a rupture displacement up and a critical softening displace-

ment δ. The pre-peak behavior is considered to be elastic, but

stiffness values are very difficult to obtain since these layers

are generally very thin and unstable.

In the present study, the weak layer is modeled as a displacement-

softening interface with a simple, linear piecewise relationship

between shear stress τ and tangential displacement u (Fig. 2).

The value of the shear stress peak τp is governed by the Mohr-

Coulomb criterion: τp = c + σn tanΦ, with c the weak layer

cohesion, σn the normal stress and Φ the friction angle. The

friction angle has been chosen as constant Φ = 30◦ (De Mont-
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mollin, 1978; van Herwijnen and Heierli, 2009) and the cohe-

sion c is spatially heterogeneous, as will be described below.

The tangential stiffness of the weak layer during the pre-

peak phase is given by ks = τp/up (Fig. 2). After the peak,

the shear stress decreases (shear softening) until reaching a

residual value τr = σn tanΦ. This residual value corresponds

to the situation where ice bridges are completely broken and

only the friction between the slab and the underlying layer

remains. Following McClung (1977), both the characteristic

peak and softening displacement up and δ are taken equal

to 2mm (see also Bazant and others, 2003; Fyffe and Zaiser,

2004, 2007). Hence, the displacement to reach residual stress

ur = up + δ = 4mm. Note that, according to recent studies

(McClung, 2009, 2011), the softening displacement δ under

high loading rates actually tends to be smaller than the value

assumed in this study, in the 0.1–0.3 mm range. However, as

will be shown later, the precise value of this parameter does

not influence the outcomes of our model.

Slab
At high loading rates such as those characteristic of slab

avalanche release, laboratory experiments (Mellor, 1975; Mc-

Clung, 1977; Narita, 1980; Navarre and others, 1992; Schweizer,

1998) and field measurements (Roch, 1965; De Montmollin,

1978; Jamieson and Johnston, 1990; Föhn and others, 1998;

McClung and Schweizer, 2006) have shown that cohesive snow

behaves as a brittle-elastic material. In the present study, as

will be explained below (see section 2.6), the possible tensile

rupture of the slab is not directly modeled. Therefore, the

mechanical behavior of the slab is modeled by an isotropic

elastic law:

ǫ =
1

E
σ − ν

E

(

tr
(

σ
)

− σ
)

(3)

where E is the Young modulus and ν the Poisson ratio. The

following values have been used: E = 1MPa, ν = 0.2, and

ρ = 250kg.m−3 for the slab density. In addition, in order to

stabilize the computations, it has been necessary to slightly

enrich the above constitutive law by the addition of a viscous

term. All viscosity values within the range 104−109Pa.s have

been found to yield satisfactory results. We retained the value

η = 108Pa.s which is in agreement with real snow viscosity

measurements (Mellor, 1975; Camponovo, 1998; Schweizer,

1999).

2.4. Spatial heterogeneity

The spatial heterogeneity of the weak layer is modeled through

a stochastic distribution of cohesion c. Following Jamieson

and Johnston (2001) and Kronholm and Birkeland (2005), we

consider a Gaussian distribution of average 〈c〉 and standard

deviation σc, with a spherical covariance function C(d):

C(d) = σ2c

(

1− 3

2

d

ǫ
+

1

2

(
d

ǫ

)3
)

I[0,ǫ](d), (4)

where d is the distance between two points, ǫ is the spatial

correlation length and the IA(d) function is 1 if d ∈ A, 0 oth-

erwise. The correlation length ǫ represents the distance over

which the cohesion values are significantly correlated. Note

that in the present model, no nugget effect is considered (i.e.

C(d) → 0 when d→ 0). The effect of the nugget on avalanche

size has been investigated by Kronholm and Birkeland (2005)

using a CAM model.

Fig. 3 shows examples of cohesion field realizations with dif-

ferent values of the correlation length ǫ. These fields were gen-

erated using the turning bands method (Chilès and Delfiner,

Fig. 3. Left: Examples of the heterogeneity of the cohesion for

different values of the correlation length ǫ. Right: Comparison be-

tween the empirical normalized covariance function of the cohesion

fields (computed from 100 independent realizations: circles) and

the theoretical expression given by Eq. (4) (lines).

1999) and we checked that, with the used mesh size, the ob-

tained empirical covariance functions are in good agreement

with the predictions of Eq. (4) for all the values of ǫ investi-

gated. Existing studies are not conclusive on the typical corre-

lation length scale (Jamieson and Johnston, 2001; Schweizer

and others, 2008; Bellaire and Schweizer, 2011) relevant for

weak-snow layers. Schweizer and others (2008) recommended

spacing out snow pits at least 10m apart in order to have inde-

pendent results, thus suggesting that the correlation length ǫ

varies approximately within the 0.5−10m range. In our study,

ǫ was varied between 0.5 and 40m (the lower limit ǫ = 0.5 m

being imposed by our mesh size), but due to finite size ef-

fects, only the results with ǫ ≤ 10m can be cross compared

(for ǫ > 10m, the average cohesion 〈c〉 begins to evolve with

ǫ). Lastly, the average cohesion 〈c〉 was taken equal to 1kPa

and cohesion standard deviation σc to 0.3kPa.

2.5. Loading

Gravity is the only applied external force and the system is

loaded by progressively increasing the slope angle θ at con-

stant slab depth until rupture. As will be shown, this loading

procedure is equivalent to a progressive increase of the slab

depth h at constant slope angle. The loading curve is repre-

sented in Fig. 4. After an initial stage during which gravity is

increased from zero to 9.81m.s−2, the loading is applied in two

phases (Fig. 4). First, the slope angle is increased from zero to

θ1 = Φ = 30◦ with a fast loading speed of 0.4◦ per time-step

since no failure can occur during this stage (τ < τp). Then,

the loading speed is reduced to 0.04◦ per time-step until rup-

ture occurs. We checked that, with this two-phase procedure,

the chosen loading speed values do not influence the results

to be presented. This simple loading is sufficient to study

avalanche releases triggered by a progressive accumulation of

snow. We emphasize that our model is not meant to account

for the slow processes (snow metamorphism, viscous stress

redistributions) active during the formation of the snowpack.

2.6. Rupture mechanism

Avalanche releases observed in our simulations are always in-

duced by a local shear rupture inside the weak layer, which
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Fig. 4. Applied loading curve. The time-step value is 0.1s. The

blue curve represents a typical velocity evolution showing a marked

precursor event.

then propagates to both extremities of the slope. With refer-

ence to real avalanche releases, this would correspond to the

case where the weak layer heterogeneity is not sufficient to

induce a tensile rupture within the slab, and slab rupture is

thus triggered by morphological features such as ridges, slope

breaks, rocks, trees, or other defects within the slab. We also

performed simulations using a brittle-elastic constitutive law

for the slab. These simulations showed that for a realistic

tensile strength value σt = 2kPa (Mellor, 1975; Jamieson and

Johnston, 1990; Sigrist, 2006), effectively no tensile failure

occurred within the slab (the slab remained elastic) and the

rupture mechanism was identical to the one reported in this

study. Note, however, that other sets of parameters may lead

to tensile ruptures within the slab, which constitutes the sub-

ject of a further study (see also Gaume and others, 2011).

2.7. Avalanche release criterion

We consider that an avalanche occurs in our simulations when

the following kinematic release criterion is met:

Release ⇔ vix ≥ N × v̄x
i,m =

N

m

m∑

k=1

vi−k
x . (5)

Hence, an avalanche is detected when the weak-layer velocity

vix is higher than N times the average velocity recorded over

m previous time-steps v̄x
i,m. The values of N = 10 and m =

10 were chosen in order to ensure that the criterion is not

sensitive to small velocity variations triggered by potential

precursor events (Fig. 4), which could lead to wrong release

angle values.

3. MECHANICAL VALIDATION

In this section, the finite element model presented above is

validated against the classical case of release induced by a

single weak spot. For this simple case, analytical solutions

can be derived following the approach presented by Chiaia

and others (2008). The interaction between two weak spots

will also be considered in order to illustrate the influence of

an important characteristic length of the system that emerges

from the analysis.

3.1. A single weak spot

Analytical solution
We follow here the same approach as Chiaia and others (2008),

but considering a non-zero residual stress inside the weak

spot due to friction (Fig. 2). Let us consider a weak spot of

Fig. 5. Geometry of the system with one weak spot of half-length

a with a nil cohesion.

nil cohesion (c = 0), half length a, inside a weak layer of

homogeneous cohesion c = 1kPa underlying a cohesive slab

of depth h (Fig. 5). The equilibrium equation in the slope-

parallel direction integrated over the slab depth writes:

∂

∂x

∫ 0

−h
σxxdz − τ = −τg, (6)

with τg = ρgh sin θ the body weight shear stress, σxx the nor-

mal stress in the slope-parallel direction and τ the shear stress

in the weak layer. The shear stress τ is related to the tangen-

tial displacement u according to the interface constitutive law

(Fig. 2). Two cases have to be distinguished: θ < Φ for which

the shear stress τ depends on the tangential displacement u

both inside and outside the weak spot; and θ > Φ for which

the shear stress τ depends on the tangential displacement u

only outside the weak spot.

Case 1: θ < Φ

For θ < Φ, the shear stress writes τ(x) = τpu/up outside the

weak spot (|x| > a) and τ(x) = τws = τru/up inside the weak

spot (|x| < a). Eq. (6) and the linear elastic behavior of the

slab lead to the following equation:

∂2u

∂x2
− u

Λ(x)2
= − τg

E′h
, (7)

with E′ = E/(1− ν2) (plane stress hypothesis) and

Λ(x) = Λws =

√

E′hup
τr

for |x| ≤ a, (8)

Λ(x) = Λ =

√

E′hup
τp

for |x| > a. (9)

Considering in addition the continuity of displacement and

velocity at the interface between the weak layer and the weak

spot, and the fact that the slope-parallel normal stress σxx
vanishes far away from the weak spot, displacement and stress

profiles can be determined by integrating Eq. (7):

Outside the weak spot (|x| > a):







u(x) =
Λ2τg
E′h

(

1− re−
|x|−a

Λ

)

τ(x) = τg
(

1− re−
|x|−a

Λ

) , (10)

Inside the weak spot (|x| ≤ a):







u(x) =
Λ2

wsτg
E′H

[

1 + r′
(

αex/Λws + βe−x/Λws

)]

τ(x) = τg
[

1 + r′
(

αex/Λws + βe−x/Λws

)] ,

(11)

where expressions of the constants r, r′, α, and β are given

in Appendix A.
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Fig. 6. (a) Displacement u and apparent friction coefficient µ =

τ/σn profiles for a slab depth h = 1m, a weak spot half length

a = 4.5m, and for the case θ < Φ. Symbols: finite element results.

Solid lines: Analytical model. (b) Idem for the case φ < θ < θr ,

where θr is the release angle.

Case 2: θ > Φ

If θ > Φ, the shear stress inside the weak spot (|x| ≤ a)

meets the frictional criterion and thus no longer depends on

displacement u: τ(x) = τr = σN tanΦ. Eq. (6) then becomes:

∂2u

∂x2
=
τr − τg
E′h

, (12)

for |x| ≤ a, and Eq. (7) remains valid for |x| > a. Similarly

to the previous case, the displacement and stress profiles can

be determined again:

Outside the weak spot (|x| > a):






u(x) =
Λ2τg
E′h

(

1− r2e
−

|x|−a
Λ

)

τ(x) = τg
(

1− r2e
−

|x|−a
Λ

) , (13)

Inside the weak spot (|x| ≤ a):
{

u(x) =
Λ2τg
E′h

[
1
2
Λ
a r2

((
x
Λ

)2 −
(
a
Λ

)2
)

+ 1− r2

]

τ(x) = τr
,

(14)

where expression of the constant r2 is given in Appendix

A.

We note that both the shear stress and the displacement

present decreasing exponential profiles outside of the weak

spot [Eqs. (10) and (13)]. The characteristic length associated

with these exponential decreases is the parameter Λ which

0 0.5 1 1.5 2 2.5 3 3.5 4
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35
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Fig. 7. Evolution of the release angle θr as a fonction of the half-

length a of the weak spot. Black squares: Finite element results.

Red dashed line: theoretical stress rupture threshold.

depends both on the slab and weak layer characteristics [Eq.

(9)]. Far from the weak spot (|x| − a >> Λ), the shear stress

tends to its body weight value τg and the displacement tends

to u = upτg/τp (elastic behavior).

The shear band becomes unstable when the maximum stress

τmax at |x| = a reaches τp = c + σN tanΦ. Using Eq. (13),

the theoretical critical stress τg,s for weak spot propagation

can thus be expressed as follows:

τg,s =
1

1 + a
Λ

[

c+ σN tanΦ
(

1 +
a

Λ

)]

. (15)

From this expression, the critical release angle θr,s can then

be derived using:

τg,s = ρgh sin θr,s. (16)

Comparison with simulations
As shown in Figs. 6a and 6b the overall agreement between

theoretical predictions and FEM numerical results is very sat-

isfactory, both for θ < Φ and for θ > Φ. In particular, the

stress concentration at the weak spot tip and the exponential

decrease of stress outside of the weak spot are very well re-

produced. Similarly, the displacement profiles, which present

a maximum at the center of the weak spot, are also well cap-

tured. Note, however, that the numerical model indicates the

existence of slight variations with x of the normal stress σn
that are not accounted for in the theoretical analysis.

Fig. 7 shows a comparison between the release angles ob-

tained by the FEM calculations and those predicted by the

stress rupture criterion [Eqs. (15)–(16)]. Here also, the agree-

ment between the theory and numerical results is excellent

for all values of weak-spot half-lengths. This agreement also

holds for all tested values of slab depth h. Globally, the re-

sults shown in Figs. 6 and 7 constitutes a validation of the

various mechanical ingredients taken into account in our fi-

nite element model. In particular, these results prove that

the used mesh size is fine enough to account for cohesion

heterogeneities with typical length scales (in this case, the

weak-spot half-length) as small as 0.5 m.

3.2. Two weak spots

In order to illustrate the influence of the characteristic length

Λ introduced above, we conducted simulations to investigate
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Fig. 8. Geometry of the system with two weak spots of length a

separated by a distance d.

the interaction between two weak spots of length a separated

by a distance d (Fig. 8). Different values of the distance d were

simulated and the effect of this parameter on the release angle

was examined. Note that for d = 0 the problem is the same

as the one presented previously with one weak spot of half

length a.

Fig. 9 shows the evolution of the release angle as a func-

tion of distance d. Typical displacement profiles illustrating

the behavior for different values of d/Λ are also shown. If

the distance between the weak spots is high compared to Λ

(typically for d/Λ & 10), then the displacement profiles gen-

erated by the weak spots do not interact between each other.

The release thus occurs for the same angle as for the case of

only one weak spot of total length a. If now the distance d

between weak spots decreases to values of the same order as

Λ (i.e. if 1 < d/Λ . 10), the displacement profile still keeps a

bimodal shape but the two peaks progressively coalesce. As

a consequence of this interaction, the release angle θr pro-

gressively decreases as d decreases. Empirically, the evolution

of θr for d/Λ > 1 can be adjusted by an exponential func-

tion: θr = θ∞(1 − γe−d/(kΛ)). As expected, the values of

θ∞ and γ depend on the slab depth h and weak spot length

a (θ∞ ≈ 39.1◦ and γ ≈ 0.17 in the presented case), but

the constant k is independent of these parameters (k ≈ 3).

Finally, if the distance between weak spots is less than the

characteristic length (d/Λ < 1), the release angle increases as

d decreases and the displacement profile becomes unimodal.

This indicates that, in this case, the slab does not “feel the

effect” of the cohesive zone between the two weak spots and

only “sees an equivalent weak spot” of length approximately

L ≈ 2a+ d.

Hence, it appears that the interaction and progressive bridg-

ing between the two weak spots is primarily controlled by the

characteristic length Λ. Physically, this characteristic length

Λ represents the typical distance over which the stress redis-

tribution induced by slab elasticity is felt. As illustrated in

Fig. 9 this stress redistribution actually amounts to smooth-

ing out the effect of the structural heterogeneity of the weak

layer as soon as the typical variations of this heterogeneity

occur over distances less than Λ. Hence, Λ can be viewed as

a characteristic smoothing length associated to slab elastic-

ity. More generally, it shall be noted that this parameter Λ

appears to be the main length scale of the system. In partic-

ular, we checked that the softening length δ involved in the

quasi-brittle weak-layer constitutive law, has essentially no

influence on the results as long as it remains much smaller

than Λ.

4. RESULTS: INFLUENCE OF
WEAK-LAYER HETEROGENEITY

4.1. Simulation protocol

We now consider the case of a spatially heterogeneous weak

layer, as described in section 2.4. We conducted simulations

for different values of the slab depth h varying between 0.25m

and 4m and different values of the correlation length ǫ vary-

ing between 0.5m and 40m. For each couple (h, ǫ), 100 sim-

ulations with different realizations of the heterogeneity were

performed. In each of the simulations, the release angle θr was

determined according to the release criterion given by Eq.

(5), which yields to release angle distributions. For reasons

that will be developed below, the results will be primarily

presented in terms of the release factor F defined as:

F = sin θr − µ cos θr. (17)

Fig. 9. Evolution of the release angle θr with the inter-distance between the two weak spots d (normalized by the characteristic length

Λ) for weak-spot lengths a = 4.5m. The black dots are the results of the finite element model. The red curve is an exponential adjustment

for d/Λ > 1. Three different zones are distinguished: d < Λ, Λ < d . 10Λ and d & 10Λ, and the typical displacement profiles recorded a

few time-steps before release in each of these zones are represented.
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Fig. 10. Cumulative distributions of release angle θr (top scale)

and release factor F (bottom scale). (a) ǫ = 0.5m and various

values of slab depth h, (b) h = 1m and various values of ǫ. Note

that according to Eq. (17), the top scale represented is non linear

in terms of release angle θr

4.2. Release angle and release factor
distributions

Fig. 10 shows the influence of slab depth h and correlation

length ǫ on the cumulative distributions of the release factor

F . Note that these distributions can also be interpreted in

terms of release angle θr. First we observe that all the dis-

tributions obtained can be well adjusted by Gaussian laws,

which can be interpreted as a consequence of the Gaussian

nature of the cohesion heterogeneity. As shown in Fig. 10a,

the average and the variance of the release factor distribu-

tions decrease with the slab depth h. In addition, the average

appears to be approximately independent of the correlation

length ǫ, while the variance increases with ǫ (Fig. 10b). These

results will now be described in more details.

4.3. Average release factor

In a homogeneous case, the release factor Fh is expected to

decrease with h according to Fh = 〈c〉/ (ρgh). As shown in

Fig. 11a, the numerical results appear to closely follow this

prediction. In detail, however, it can be noted that the average

release factor is always slightly lower than Fh, the difference

tending to vanish as the slab depth h increases. The same

slight difference with Fh is seen in Fig. 11b, where it appears

to increase with increasing correlation length ǫ for ǫ < 10m.

Recall that for ǫ > 10m, the results begin to be influenced

by finite size effects. These small discrepancies between the

results and the theoretical homogeneous value Fh are due to

the heterogeneity and the presence of local cohesion minima.

However, globally, we can conclude that the average release

factor 〈F 〉 (and the average release angle 〈θr〉) are almost

unaffected by the weak-layer heterogeneity.

4.4. Variability and heterogeneity smoothing

Fig. 11a shows that the release factor variance decreases with

slab depth h as a power law. The associated exponent is

slightly smaller than −2 (≈ −2.16). In addition, this vari-

ance appears to be significantly smaller than the variance

σ2∞ = σ2c (ρgh)
−2 that would be observed if the stress field in

the weak layer exactly followed the heterogeneity variations

(case of a completely rigid slab). This illustrates the smooth-

ing of the heterogeneity due to the elastic redistribution of

stresses in the slab.

Following section 3, the stress redistribution effects induced

by slab elasticity are characterized by the smoothing length

Λ =
√
E′hup/τp. Hence we can assume that the ratio σ2F /σ

2
∞

can be expressed only in terms of the ratio ǫ/Λ. As shown in
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Fig. 11. Evolution of the average release factor 〈F 〉 and release

factor variance σ2F as functions of slab depth h for ǫ = 0.5m (a) and

as functions of heterogeneity correlation length ǫ for h = 1m (b).

σ2∞ represents the release factor variance that would be obtained

in the case of a completely rigid slab.
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Fig. 12. (a) Ratio between release factor variance σ2F and infinitely

rigid slab variance σ2∞ = σ2c (ρgh)
−2 (see text) as a function of the

ratio between correlation length ǫ and elastic smoothing length

Λ for all (h,ǫ) couples (≈5000 simulations). (b) Evolution of the

elastic smoothing length Λ with slab depth h.

Fig. 12a, all the datapoints corresponding to σ2F /σ
2
∞ obtained

from the simulations effectively collapse on a single master

curve when plotted in terms of ǫ/Λ. The following power-law

expression provides a good fit to the data:

σ2F
σ2∞

= δ
( ǫ

Λ

) 2
3

(18)

with δ = 5.45 × 10−2. Note however that one can expect

σ2F /σ
2
∞ → 1 if ǫ/Λ → ∞. Hence, the power-law given by

Eq. (18) is not expected to remain valid for this limit. In

addition, Fig. 12b shows that the elastic smoothing length Λ

slightly increases with slab depth h in our simulations. This

is consistent with the slightly-less-than 2 power-law exponent

observed for the evolution of σ2F with h in Fig. 11.

We can thus conclude that, at the limit of low values of cor-

relation length ǫ and/or high values of the smoothing length

Λ (and thus high values of slab depth h), σ2F → 0 and the

system behaves as in a homogeneous case. This also explains

why the difference between the average release factor 〈F 〉
and the theoretical homogeneous value Fh decreases when h

increases or ǫ decreases, as noted in Figs. 11a and 11b. For

large correlation lengths, since the effect of ǫ dominates the

effect of h in Eq. (18), very thick slabs can be released even

for moderate slope angles, which corresponds to the so-called

knock-down effect (Kronholm and Schweizer, 2003; Schweizer

and others, 2008).

5. COMPARISON WITH FIELD DATA

5.1. La Plagne release depth data

La Plagne, in the French Alps, is one of the largest ski area

in the world, covering 100km2 with 225km of ski tracks. Ski

patrollers provided us with release depth data from 14,391

avalanches collected during winters 1998 to 2010. Since avalanche

depths cannot always be directly measured, data come from

a mix of eyesight estimates and precise measurements. From

the complete database, 369 naturally-released slab avalanches

were extracted. These data have been analyzed in detail in

Gaume and others (2012). Note that the same data were also

used by Failletaz and others (2004), but with fewer avalanches

(only three winters). These analyses showed that the release

depth cumulative distribution at La Plagne seems to decrease

as a power-law for large slab depths (h > 0.7m, correspond-

ing to cumulative exceedance probability lower than about

10%). Similar power-law trends have also been reported in

other locations (Rosenthal and Elder, 2002; McClung, 2003).

We note however that, due to the error associated to the data,

the value of the power-law exponent is poorly constrained and

strongly dependent on the cutoff considered for the power-

law. Typically, in agreement with McClung (2003), exponents

in the [−3;−5] range provide a good fit to the data.

Our objective here is to examine whether our mechanical

model is capable of reproducing these release depth data for

both the core and the tail of the distribution. This compar-

ison first requires computing the release depth distribution

predicted by the model, which can be obtained in two phases:

(1) The release factor distributions presented above have to

be inverted to obtain release depth distributions for fixed an-

gle values. (2) These release depth distributions must then

be integrated over all slopes since data mix avalanche paths

of various slope angle. Lastly, to be compared with data, the

release depth probability obtained from the mechanical model

has to be combined with the local snowfall probability.

5.2. Release depth distributions obtained
from mechanical model

Inversion of release factor distributions
We have shown that the distributions of the release factor

F are normally distributed with an average 〈F 〉 ≈ 〈c〉/(ρgh)
and a variance σ2F = f(ǫ/Λ)σ2c/(ρgh)

2, with f(ǫ/Λ) given

by Eq. (18). In addition, since Λ varies only slightly in our

results (see Fig. 12b), we assume it to be constant in what

follows. This approximation does not significantly influence

the results to be presented but allows to obtain analytical

solutions. Hence, the variance σ2F can be written as:

σ2F =
f(ǫ)σ2c
(ρgh)2

, (19)

with f(ǫ) ≈ κǫ2/3, and κ = δΛ−2/3 assumed constant. Fi-

nally, the probability density of having a release factor F for

a given slab depth h is given by:

p(F |h) = h

Cσ
√
2π

e
− 1

2

(
hF−Cµ

Cσ

)2

, (20)

with Cµ =
〈c〉
ρg and Cσ =

σc

√
f(ǫ)

ρg .

The Mohr-Coulomb rupture criterion which controls avalanche

release in the simulations can be written in terms of release

factor F = sin θr − µ cos θr as:

ρghF = c. (21)

Hence, slab depth h and release factor F play similar roles

in this criterion. Consequently, it can be shown that, if the

probability density of release factor F for a given slab depth

h value writes p(F |h) = g(F, h), then the probability density

of h for a given value of F writes p(h|F ) = g(h, F ). Eq. (20)

can thus be inverted into:

p(h|F ) =
F

Cσ
√
2π

e
− 1

2

(
hF−Cµ

Cσ

)2

. (22)

A more detailed and rigorous demonstration of this inver-

sion is provided in Appendix B.
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Integration over all slopes
For the sake of simplicity, we chose, in this study, to con-

sider a uniform probability distribution for the slope fac-

tor F = sin θ − µ cos θ between Fmin and Fmax: p(F ) =

1/(Fmax −Fmin). Once again, this assumption enables us to

obtain analytical expressions for the integrated release depth

distribution pm(h):

pm(h) =

∫ Fmax

Fmin

p(h|F )p(F ) dF. (23)

From Eq. (22), we obtain:

pm(h) =
1

h
√
π
[g1(h) + g2(h)] , (24)

with

g1(h) =

∫ Umax

Umin

ue−u2

du

=

√
2Cσ

2h

[

e−
1
2Umin

2

− e−
1
2U

2
max

]

, (25)

and

g2(h) =

∫ Umax

Umin

e−u2

du

=

√
πCµ

2h

[

erf

(
Umin√

2

)

− erf

(
Umax√

2

)]

, (26)

where we defined Umin = (hFmin − Cµ) /Cσ and Umax =

(hFmax − Cµ) /Cσ. In the following, without loss of general-

ity, we will assume Fmin = 0 and Fmax = 1.

5.3. Coupling mechanical and snowfall
distributions

Gaume and others (2012) have shown that the global avalanche

release depth probability pr(h), resulting from the coupling

between the mechanical model presented above and snowfall

distributions, can be related to pm(h) as follows:

⇒ pr(h) ≈
pm(h) psf (hsf ≥ h)

C
, (27)

where psf (hsf ≥ h) is the probability of having a snowfall

whose thickness hsf is higher than the depth h, and C a

normalization constant given by: C =
∫∞
0 pm(h) psf (hsf ≥

h)dh. This coupling relation expresses that the amount of

snowfall represents a limiting factor weighting the mechanical

probability density pm(h) derived from the stability criterion.

To define the snowfall distribution psf (hsf ≥ h), Gaume

and others (2012) considered the 3-day snowfall annual max-

ima in La Plagne (MeteoFrance data: daily measurements

from 1966) at the average altitude of 2200m. These max-

ima follow a generalized extreme value (GEV) distribution

so that:

psf (hsf ≥ h) = 1− exp

[

−
(

1 + ξ
h− µ

σ

)−1/ξ
]

, (28)

where µ, σ and ξ are, respectively, the location, scale, and

form parameters. These parameters assume the following val-

ues: µsf = 0.98m, σsf = 0.21m and ξsf = 0.214.

Fig. 13. Slab release depth distributions predicted by the cou-

pled model [Eq. (27)] for different values of average cohesion 〈c〉,

and comparison with field release depths from La Plagne. The nu-

merical results have been obtained for a cohesion standard devi-

ation σc = 0.3 kPa, a correlation length ǫ = 2m, Fmin = 0 and

Fmax = 1, the other parameters being the same as in section 4.

(a) Cumulative exceedance probability in logarithmic scale, (b) χ2

of the model (χ2 =
∑

(pdata − pmodel)
2/pmodel, where pdata and

pmodel are the cumulative exceedance probabilities derived from

the data and from the model, respectively).

5.4. Result of the coupling and sensitivity
analysis

As shown in Gaume and others (2012) (see also Fig. 13), it

is possible to find a set of mechanical parameters for which

the coupled model described in Eqs. (24)-(27)-(28) provides

a very good adjustment to La Plagne release depth data.

The model effectively predicts a power-law behavior of the

cumulative exceedence distribution for large slab depths, in

good agreement with the empirical distribution, and also well

accounts for the data corresponding to lower release depths.

In spite of the various assumptions involved, this model is, to

our knowledge, the first capable of reproducing release depth

data with such a good accuracy. To complement the results

shown in Gaume and others (2012), we present below a de-

tailed sensitivity analysis of the predicted distribution to the

main mechanical parameters of the model.

Fig. 13 shows the comparison between data and the coupled

model for different values of the average cohesion 〈c〉. The
goodness of the fit (Fig. 13b) shows a pronounced minimum

for 〈c〉 = 0.6 kPa, which indicates that the agreement between

model and data drastically depends on this average cohesion

value. In particular, the depth hm below which no avalanche

can occur is strongly dependent on 〈c〉. This depth can be

approximated by (Gaume and others, 2012):

hm ≈ [〈c〉 − 2σcf(ε)] /(ρgFmax). (29)

With the value 〈c〉 = 1 kPa retained in section 3 and 4, hm
is slightly overestimated compared to the data. For 〈c〉 =

0.6 kPa, a value still fully consistent with existing studies

(Föhn and others, 1998; Jamieson and Johnston, 2001), an

excellent agreement between the coupled model and the data

is obtained.

The influence of the cohesion standard deviation σc is pre-

sented in Fig. 14. First, it can be noted that σc plays a less
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Fig. 14. Slab release depth distributions predicted by the coupled

model [Eq. (27)] for different values of the standard deviation σc,

and comparison with field release depths from La Plagne. The nu-

merical results have been obtained for a cohesion 〈c〉 = 0.6 kPa,

a correlation length ǫ = 2 m, Fmin = 0 and Fmax = 1, the

other parameters being the same as in section 4. (a) Cumulative

exceedance probability in logarithmic scale, (b) χ2 of the model.

significant role than 〈c〉 on the goodness of the fit. As shown

in Fig. 14b, values of σc in the 0.3–0.5 kPa range give similar

results for constant values of the other parameters. In fact, the

standard deviation σc mainly influences the curvature of the

coupled cumulative exceedence distribution around the cut-

off hm. Fig. 14a also displays the distribution that would be

obtained in the case of a completely rigid slab, which poorly

adjusts the data. Even if the tail of this distribution could be

adjusted to the data by tuning the other parameters, there

would be no way to properly adjust the core of the distribu-

Fig. 15. Slab release depth distributions predicted by the coupled

model [Eq. (27)] for different values of the correlation length ǫ, and

comparison with field release depths from La Plagne. The numer-

ical results have been obtained for a cohesion 〈c〉 = 0.6 kPa, a co-

hesion standard deviation σc = 0.3 kPa, Fmin = 0 and Fmax = 1,

the other parameters being the same as in section 4. (a) Cumulative

exceedance probability in logarithmic scale, (b) χ2 of the model.

tion. This highlights the major importance of the elasticity

of the slab and of stress redistribution effects.

Finally, the influence of the correlation length ǫ is shown in

Fig. 15. As well as for the standard deviation σc, the corre-

lation length ǫ mainly modifies the curvature of the coupled

cumulative exceedence distribution around hm. Globally, the

adjustment to the data remains good for correlation length

values in the 0.5–15 m range.

To conclude, in the range of realistic mechanical parame-

ters for snow (for which stress redistribution effects play an

important role), it turns out that the average cohesion 〈c〉 has
the most significant influence on slab avalanche release dis-

tributions predicted by the coupled model. Hence, provided

GEV parameters are known, the adjustment of the model

to the data essentially amounts to a one parameter fit. Note

also that the value of Fmax which has been set to 1 in the

previous results, plays in fact a role essentially similar to that

of 〈c〉 [see Eq. (29)]. Hence, changing the value of Fmax would

results in straightforward modifications of the best fit value

found for 〈c〉.

6. CONCLUSION AND PERSPECTIVES

This paper investigates the influence of weak layer hetero-

geneity on slab avalanche release using a finite element model.

A shear-softening interface underlying an elastic slab is mod-

eled and the system is loaded by increasing the slope an-

gle until failure and avalanche release. After validating the

model on the case of a nil-cohesion weak spot, the effect of

a heterogeneous weak-layer cohesion field was studied. The

heterogeneity is represented through a Gaussian distribution,

with a spherical covariance function characterized by a spa-

tial correlation length. Release angle distributions were an-

alyzed and a heterogeneity smoothing effect due to redistri-

butions of stresses by elasticity of the slab was highlighted.

This smoothing effect induces a reduction of the release angle

variance compared to the case of a fully rigid slab. However,

the average release angle is almost unaffected by this effect.

The presented results showed that the smoothing intensity

critically depends on the ratio between the correlation length

ǫ and a characteristic elastic length of the system Λ. Further

work would be required, however, to fully unravel the possi-

ble interplay between ǫ and the cohesion variance σ2c on this

smoothing effect.

To be compared with field data, the obtained release angle

distributions were inverted, yielding a release depth distri-

bution integrated over all slopes. Coupling this mechanical

distribution with the distribution of 3-day extreme snowfalls,

we were able to reproduce with excellent accuracy field data

from 369 natural slab avalanches. A detailed sensitivity anal-

ysis showed that this agreement is obtained with only one

adjustable parameter, namely the average cohesion 〈c〉. The
mechanically-based probabilistic model thus fullfills the ob-

jectives of the study, namely the evaluation of avalanche re-

lease depth distributions in any potential release zone, as soon

as meteorological data are available. In the future, a straight-

forward extension to the 3d-case will be developed to predict

distributions of avalanche release volumes. However, before

being used in operational context, additional tests on other

datasets and in other locations would need to be performed

to further validate the model. Finally, let us recall that, with

the parameters used in our model, the crown fracture always

occurs at particular morphological features (such as ridges,

rocks, trees, etc.) since the heterogeneity is not sufficient to
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directly trigger tensile rupture within the slab. Another in-

teresting perspective for future work would thus be to study

the release depth distributions obtained with different sets of

parameters leading to other types of failure mechanisms.

APPENDIX A. MODEL VALIDATION:
EXPRESSION OF THE PARAMETERS

We give here the expressions of the parameters involved in

the weak spot analytical solution derived in section 3.1:

r =

Λ
Λws

(

1− Λ2
ws

Λ2

)(

βea/Λ
2
ws − αe−a/Λ2

ws

)

1 + Λ
Λws

(
βea/Λ

2
ws − αe−a/Λ2

ws

) (A1)

α =
1− e−a/Λws

ea/Λws − e−2a/Λws
(A2)

β =
1− αe−a/Λws

ea/Λws
(A3)

r′ =
Λ2

Λ2
ws

− 1− r (A4)

r2 =
a

Λ

(
τr
τg

− 1

)

(A5)

APPENDIX B. INVERSION OF
RELEASE FACTOR DISTRIBUTIONS

The objective is to deduce from the distributions p(F |h) de-

rived from the simulations, the distributions p(h|F ) that would

be obtained in the “dual” experiment (much more difficult to

perform numerically) consisting in fixing the slope angle and

gradually increasing the slab depth h until rupture. The prin-

ciple of this inversion lies in that, for a given realization of

heterogeneity, the rupture is achieved under the same condi-

tions in both experiments. Hence, the couple (F, h) obtained

in both cases must be the same.

It is thus possible to obtain p(h|F ) from p(F |h) by gener-

ating a large number of couples (F, h) in drawing in p(F |h)
distributions for several values of h, and then to reclassify

data obtained as a function of F . To this end, values of h

can be drawn from a random distribution p(h). Instead of

applying this protocol empirically, one can notice that the

knowledge of p(h) allows to consider the couple (F, h) as a

random vector, and to compute p(h|F ) using Bayes formula:

p(h|F ) =
p(F |h) p(h)

∫+∞
−∞ p(F |h) p(h) dh

. (A6)

Then, to avoid biasing the result, it is necessary to sample

uniformly all possible values of h. In other words p(h) has to

be chosen as constant. Eq. (A6) therefore simplifies to:

p(h|F ) =
p(F |h)

∫+∞
−∞ p(F |h) dh

. (A7)

Knowing the expression of p(F |h):

p(F |h) = 1√
2πσF

e
− 1

2

(
F−〈F〉

σF

)2

, (A8)

with

〈F 〉 = 〈c〉
ρgh

, (A9)

Fig. 16. Comparison between the exact expression (A12) and the

Gaussian approximate expression (A13) of the inverted probability

p(ĥ|F ) (case F = 0.5): (a) CV = 0.1, (b) CV = 0.3.

and

σF =
σc
ρgh

√

f
( ǫ

Λ

)

, (A10)

where Λ is the elastic characteristic length of the system, the

inverse distribution p(h|F ) can be obtained numerically by

applying Eq. (A7). In the present case in which p(F |h) is

Gaussian, it is possible to integrate analytically the denom-

inator assuming that Λ = Λ0 is a constant independent of

h. As already mentioned, this assumption is not completely

fulfilled, but the error made is negligible since the influence

of h on the function σF ρgh/σc =
√
f(ǫ/Λ) remains low.

For homogeneity reasons, we also define ĥ = ρgh/〈c〉 (di-

mensionless variable). We can then write

p(F |ĥ) = ĥ√
2πCV

e
− 1

2

(
ĥF−1
CV

)2

, (A11)
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with CV = (σc/〈c〉)
√
f(ǫ/Λ0). We thus obtain:

∫ +∞

−∞
p(F |ĥ)dĥ =

1√
2πCV

∫ +∞

−∞
ĥe

− 1
2

(
ĥF−1
CV

)2

dĥ

=
1

F 2

Finally, from Eq. (A7), it comes:

p(ĥ|F ) =
F 2ĥ√
2πCV

e
− 1

2

(
ĥF−1
CV

)2

(A12)

Hence, strictly, the inverted probability distribution p(ĥ|F )

is not Gaussian. However, as shown in Fig. 16, if the Gaussian

contribution to Eq. (A12) is sufficiently sharp, i.e. if CV is

sufficiently small, the variation of ĥ in the prefactor remains

negligible. We can then replace ĥ in the prefactor by the mode

of the Gaussian, i.e. 1/F , which leads to the following approx-

imate expression:

p(ĥ|F ) =
F√
2πCV

e
− 1

2

(
ĥF−1
CV

)2

, (A13)

which is a Gaussian. This approximation is well justified in

our case, since for ǫ < 10 m we have CV < 10 % (Fig. 16a).

Note that in the case of a completely rigid slab, the coeffi-

cient of variation CV would be equal to that of the cohesion,

σc/〈c〉 = 30 %, value for which the Gaussian approximation

is less valid (Fig. 16b). The role of the variance reduction

by elastic effects (i.e. the role of the function f(ǫ/Λ)) is thus

crucial for this Gaussian approximation of p(h|F ) to be valid.

Returning to the physical variable h, we finally obtain Eq.

(22), which simply corresponds to the expression of p(F |h) in
which the variables F and h have been inverted (again under

the assumption that Λ = Λ0 = const).
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4.2 Application to the evaluation of the position of

avalanche release area

This section is composed of an article entitled “Influence of tensile strength and weak

layer heterogeneity on slab tensile rupture” which is still in preparation for a submission

to Journal of Glaciology. The following authors contributed to this paper: Guillaume

Chambon, Nicolas Eckert and Mohamed Naaim.

In this paper, the mechanically-based statistical model presented in the last section is

used to study the position of the slab tensile rupture. This work aims at helping in the

definition of potential avalanche release zones which is also a crucial input ingredient of

hazard mapping procedures. To do so, the elastic behaviour of the slab was changed into

an elastic-brittle one and the influence of slab tensile strength was studied in a probabilistic

framework. We show, in particular, for realistic value of the mechanical parameters, the

critical and major influence of morphological and topographical features such as rocks,

trees, slope curvature and ridges, etc, on the position of slab tensile rupture. Note that

the statistical model developed in this paper is still preliminary.
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Influence of tensile strength and weak layer heterogeneity

on slab tensile rupture.
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NAAIM1

1Irstea, UR ETNA, 2 rue de la Papeterie, 38400 St Martin d’Heres.

E-mail: johan.gaume@gmail.com

ABSTRACT. The evaluation of the position of slab tensile rupture represents an important

concern for the evaluation of the avalanche release area and hence hazard assessment. In this

paper, a mechanically–based statistical model of the slab – weak layer system accounting

for weak–layer heterogeneity, stress redistribution by elasticity of the slab and the slab

possible tensile failure is simulated. Two types of avalanche releases are distinguished in

the simulations: (1) full slope releases, where the entire simulated slope is released and the

heterogeneity is not sufficient to trigger a tensile failure within the slab; (2) partial slope

release, where tensile failure occurs within the slab due to the heterogeneity so that only

a part of the slope is released. We present the proportion of these two release types as a

function of the different model parameters obtained from finite element simulations, and a

simple statistical model capable of reproducing these results. One of the main outcome is

that, for slab tensile strength σT higher than the average cohesion 〈c〉, all the releases appear

to be full-slope, highlighting the critical and major influence of morphological features such

as rocks, trees, slope curvature and ridge, as already pointed out in the litterature. It is

also shown that the partial slope releases percentage is significantly increased when the slab

depth h is of the same order than the correlation length ǫ and when the standard deviation

of cohesion σc increases. Finally, phase diagrams of partial slope release percentage are

computed to stress out the complex influence of the different parameters involved.

1. INTRODUCTION

For avalanche hazard mapping, coupled statistical–deterministic

models see growing popularity so as to evaluate the runout

distance distribution and the probability of exceedence of

maximal pressure at any location of the runout zone (Bar-

bolini and others, 2000; Naaim and others, 2003; Ancey and

others, 2004; Eckert and others, 2007, 2008, 2010). These

coupled models require the evaluation of the release volume,

combination between the release depth and area. For the eval-

uation of the release depth, empirical techniques already exist

(Swiss guidelines, Salm and others, 1990) and more recently,

a coupled statistical – mechanical model was proposed by

Gaume and others (2012a) and Gaume and others (2012b)

taking into account both mechanical and meteorological fac-

tors in a probabilistic framework. On the other hand, the po-

sition of the release zone and the evaluation of its spatial ex-

tent have been less investigated. Maggioni and others (2002)

and Maggioni and Gruber (2003) analyzed a well-documented

database of avalanche events with respect to many topo-

graphic characteristics and showed that the mean slope an-

gle, the curvature and the distance to the ridge are the most

important parameters influencing avalanche release area dis-

tribution. Failletaz and others (2006); Fyffe and Zaiser (2004,

2007) used cellular-automata approaches to compute avalanche

release area distributions. These models include a source of

stochastic variability such as the heterogeneity of weak layer

mechanical properties. Interestingly, these models are able,

under certain conditions, to reproduce the power-law area

distributions observed from field measurements (McClung,

2003; Failletaz and others, 2004).

In this paper, we extend a mechanically-based probabilis-

tic model developed in a previous study (Gaume and others,

2012a,b) to analyze the parameters influencing the position

of the slab tensile failure and, hence, the extent of the release

area. In a first section, we recall the main characteristics of

the model and present the changes made compared to tour

previous version. Then, in the second section, two rupture

types are distiguished and presented. Finally, in the third

section, we quantify the influence of weak layer heterogene-

ity and slab tensile strength on the position of slab tensile

failure and we propose a simple statistical model capable of

reproducing our results.

2. FORMULATION OF THE MODEL

In this paper, the mechanical model proposed by Gaume

and others (2012b) and deeply detailed in Gaume and others

(2012a) is used. We recall here its main characteristics.

The simulated system is a uniform slope composed of a

slab and a weak layer of length L = 50 m. The simulations

are carried out using the finite element code Cast3m in 2D

(plane stress condition). Gravity is the only applied external

force and the system is loaded by progressively increasing the

slope angle θ until rupture. The main change compared to

Gaume and others (2012b)’s model concerns the constitutive

law of the slab. We use here an elastic–brittle law in order to

take into account the possible tensile failure of the slab. The

Young modulus of the slab is E = 1 MPa, the Poisson ratio

ν = 0.2, and the density ρ = 250 kg.m−3. The tensile strength

of the slab is denoted σT and was varied between 500 and

2000 Pa. The weak layer is modeled as a quasi-brittle (strain-
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softening) interface with a Mohr-Coulomb rupture criterion

characterized by a cohesion c and a friction coefficient µ =

tan 30◦. A spatial heterogeneity of the weak layer is accounted

for through a stochastic distribution of the cohesion c with

a spherical covariance function of correlation length ǫ. The

average cohesion is denoted 〈c〉 and its standard deviation

σc.

Besides the evaluation of avalanche release depth distribu-

tions, this model enabled to evidence, a heterogeneity smooth-

ing effect caused by stress redistribution due to slab elasticity

and characterized by the ration between correlation length ǫ

and a typical length scale of the system Λ associated to elastic

effects (see Gaume and others, 2012b,a, for more details).

3. RELEASE TYPES

Two types of avalanche releases were distinguished in the

simulations: (1) full slope release, where the entire simulated

slope is released without tensile failure within the slab (Fig. 1a);

(2) partial slope release, where tensile failure occurs within

the slab so that only a part of the slope is released (Fig. 1b).

Importantly, however, for both release types, the primary

rupture process observed is always the shear failure of the

weak layer. Slab rupture, when existent, systematically con-

stitutes a secondary process. In the case of a full slope release,

the heterogeneity magnitude is not sufficient to trigger a ten-

sile failure within the slab. The basal shear failure in the weak

layer thus propagates until the top boundary condition which

can be seen as an anchor point where slab tensile rupture

would occur (Fig. 1a).

Replaced in the context of natural avalanche paths, this

boundary condition can represent a strong geomorphological

feature susceptible to trigger the tensile failure (ridges, rocks,

trees, local convex zone, etc.). On the contrary, for partial

slope releases, the cohesion variations in the weak layer are

sufficient to generate the tensile failure within the system.

Local strong zones can effectively stop the progression of the

basal failure and the excess of stress is redistributed in the

slab and engenders slab tensile opening.

4. RESULTS: PARAMETRIC ANALYSIS

In this section, we present the results in terms of partial slope

release probability also called tensile failure probability and

denoted Ptf as a fonction of the following model parameters:

tensile strength σT , correlation length ǫ, slab depth h and

cohesion standard deviation σc. First, the standard deviation

is fixed (σc = 0.3 kPa) and the other parameters, tensile

strength σT , slab depth h and correlation length ǫ are varied

to understand their influence. Then ǫ is fixed at 0.5 m and

the influence of σc is investigated for different values of h.

4.1. Influence of σT

Fig. 2 represents the probability of tensile failure Ptf within

the system as a function of the tensile strength σT for dif-

ferent values of the correlation length ǫ and a constant slab

depth h = 1 m (left) and for different values of the slab depth

h and a constant correlation length ǫ = 0.5 m (right). Tensile

strength values are varied between 0.5 and 1.5 kPa. As ex-

pected, this probability decreases with the tensile strength σT
from 100% to 0%. The rate of decrease and tensile strength

values at 0 and 100 % depend on slab depth h and correlation

length ǫ.

4.2. Influence of h

As shown in Fig. 2 (right), the probability Ptf decreases glob-

ally with slab depth h. The higher h is, the faster the prob-

ability decreases with σT . The values of σT for Ptf = 100%

is almost unaffected by the slab depth h while the value for

Ptf = 0% is deacreasing with increasing slab depth h. In

more detail, Fig. 3 reports the tensile failure probability Ptf

as a function of h for different tensile strength values and a

constant correlation length ǫ = 0.5 m. For σT < 0.75 kPa,

Ptf is approximately equal to 100%, whereas, Ptf is approxi-

mately equal to 0% for σT > 1.5 kPa. For intermediate values

of σT , Ptf decreases from h = 0.5 m to h = 0.25 m. A single

simulation for h = 0.25 m was also performed for σT = 1 kPa

to confirm the increase of Ptf with h for h < 0.5 m that will

be highlighted be the statistical model developed in the next

section.

4.3. Influence of ǫ

The influence of correlation length ǫ is also noticeable on

Fig. 2 (left). The higher ǫ is, the slighter the probability de-

creases with σT . Besides, for constant tensile strength values,

Ptf globally deacreases with ǫ. In contrast with the influ-

ence of slab depth h, the values of σT for Ptf = 100% is

Fig. 1. Diagram representing the two types of failure observed in the simulations. (a) full-slope release: the localization of the slab

tensile failure is influenced by morphological features (rocks, trees, ridge, curvature...). (b) partial-slope release: the local heterogeneity is

sufficient to trigger the tensile failure within the slab. The red-colored part of the weak layer represents a local zone of important shear

strength. The blue curves represent an illustration of the heterogeneity of shear stress difference ∆τ and the dotted line represents the

tensile strength σT .
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Fig. 2. Probability of slab tensile failure Ptf within the simulated system (partial-slope release) as a function of the tensile strength σT
for different values of ǫ and a constant slab depth h = 1 m (left), and for different values of slab depth h and a constant correlation length

ǫ = 0.5 m (right). The curves represent the adjustment given by the statistical model presented in Sec. 5.

deacreasing with increasing correlation length while the value

for Ptf = 0% is almost not affected.

4.4. Influence of σc

The influence of the standard deviation σc of weak-layer het-

erogeneity for a constant tensile strength σT = 0.75kPa and

correlation length ǫ = 0.5 m is then investigated for different

values of the slab depth h.

Fig. 4 (top) shows the tensile failure probability Ptf as

a function of the standard deviation σc. Globally, whatever

the slab depth value, the tensile failure probability increases

with σc and the rate of increase is all the more important

that the slab depth h is low. As shown in Fig. 4 (bottom) all

datapoints collapse on a same master curve when the tensile

failure probability is plotted against σc normalized by ρgf(h)

with fc(h) = 0.64h − 0.17. This adjustment was obtained

empirically (Fig. 4, inset).

Fig. 3. Probability of slab tensile failure Ptf with the simulated

system (partial-slope release) as a function of slab depth h for dif-

ferent values of the tensile strength σT and a constant correlation

length ǫ = 0.5 m. The curves represent the adjustment given by

the statistical model presented in Sec. 1.3.

5. STATISTICAL MODEL

5.1. Formulation of the model

In order to estimate the proportion between the two release

types, one can define the probability that the tensile stress

σxx in the slab exceeds the tensile strength σT . We have

shown that, a necessary condition for slab release is the pri-

mary rupture in shear of the weak layer. Thus, this proba-

bility P (σxx > σT ) is assumed to be equal to P (∆τ > σT ),

the probability that the shear stress difference ∆τ between

two adjacent elements of the weak layer exceeds the tensile

strength σT . The shear stress difference ∆τ is due to weak

layer cohesion heterogeneity. Because of the Gaussian charac-

ter of weak layer heterogeneity, we assume that ∆τ also fol-

lows a Gaussian law of average 〈∆τ〉 and standard deviation

σ∆τ . The variance σ∆τ will mainly depend on the cohesion

standard deviation σc and the average 〈∆τ〉 on the average

cohesion 〈c〉, but also both will depend on other model pa-

rameters such as the slab depth h, the correlation length ǫ

because of the elastic smoothing effect highlighted in Gaume

and others (2012a,b). Let us define these two quantities as:

〈∆τ〉 = (1−R) 〈c〉, (1)

and

σ∆τ = Sσc, (2)

where R = R(ǫ, h, σc) is called the reduction parameter and

S = S(ǫ, h, σc) the smoothing parameter. For instance, for a

homogeneous weak layer (σc = 0), the basal failure will occur

simultaneously over the entire length of the system without

triggering a tensile failure within the slab whatever the value

of the tensile strength σT . In this case, the average 〈∆τ〉 is

equal to zero and thus R → 1 to allow P (∆τ > σT ) = 0 in

any case.

The exceedence probability P (∆τ > σT ) can be analyt-

ically computed if one assumes that ∆τ follows a Normal

distribution. It is then the Normal cumulative exceedence

probability and is given by:

P (∆τ > σT ) = 1− 1

2

[

1 + erf

(
σT − 〈∆τ〉√

2σ∆τ

)]

(3)

As will be shown, this model can reproduce with a good ac-

curacy the proportion between release types.
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Fig. 4. (a) Tensile failure probability as a function of the stan-

dard deviation of weak layer cohesion σc and for different values

of slab depth h. (b) Tensile failure probability as a function of σc
normalized by ρgfc(h). The function fc(h) is represented in the

inset. Both curves are obtained for a constant correlation length

ǫ = 0.5 m and tensile strength σT = 0.75 kPa.

5.2. Application of the model to our results

Evolution with σT for different h, ǫ values
A maximum likelihood adjustement of Eq. (3) to the finite

element calculations presented on Fig. 2 (Ptf (σT ) for different

ǫ values) and Fig. 3a (Ptf (σT ) for different h values) was per-

formed in order to determine the average and standard devia-

tion of ∆τ . These adjustments are represented on Fig. 2 with

continuous lines. The values of the reduction and smoothing

parameters can thus be computed and the obtained values are

represented on Fig. 5, as a function of the correlation length

ǫ (Fig. 5a), of slab depth h (Fig. 5b) and as a function of the

ratio between the correlation length and slab depth ǫ/h (Fig.

5c). In detail, one can note that the smoothing parameter

and thus the standard deviation σ∆τ = Sσc decreases with h

and the reduction parameter R increases with h correspond-

ing to an average 〈∆τ〉 = (1 − R)〈c〉 which decreases with h

(Fig. 5b). This result highlights once again the characteristic

smoothing effect induced by slab elasticity. Concerning the

evolution with the correlation length ǫ, we can remark on

Fig. 5a that the smoothing parameter S and thus also the

standard deviation σ∆τ increase globally with increasing ǫ.
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Fig. 5. Evolution of the reduction and smoothing parameters R

and S computed by fitting a normal distribution to the results

presented in Figs. 2a and 2b as a function of ǫ for a constant slab

depth h = 1m (a), as a function of h for ǫ = 0.5 m (b) and as a

function of the ratio ǫ/h (c).

Finally, the reduction parameter R increases with ǫ corre-

sponding to an average 〈∆τ〉 which decreases with ǫ.

In order to predict the evolution of the tensile failure prob-

ability for different (h, ǫ) values than those that were simu-

lated, the evolution of these two parameters is plotted against
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ǫ/h on Fig. 5c. The two adjustements fR and fS are given

by:

fR

( ǫ

h

)

=







− 0.1758
( ǫ

h

)2
− 0.0424

ǫ

h
+ 0.1182 if ǫ ≤ h

0.061 e0.1754
ǫ
h − 1.551 e−2.198 ǫ

h if ǫ > h

,

(4)

and

fS

( ǫ

h

)

=







0.0965
( ǫ

h

)2
+ 0.3488

ǫ

h
+ 0.1204 if ǫ ≤ h

0.0532
( ǫ

h

)2
− 0.3202

ǫ

h
+ 0.8282 if ǫ > h

.

(5)

These two adjustments were used to determine the evolu-

tion of the tensile failure probability against slab depth h on

Fig. 3 (continuous line). The results from the finite element

computations are well reproduced by this simple adjusted

model for all tensile strength values. For instance, for a tensile

strength σT = 1 kPa, the probability first increases between

h = 0 m and h = 0.5 m and then decreases down to zero for

slab depths higher than 2 m. Besides, the simulation for a slab

depth h = 0.25 m was only performed for σT = 1 kPa and

thus was not used in the fitting of R and S, which confirms

the efficiency of the model, since the quite complex evolu-

tion of tensile failure probability around h = 0.5 m is well

reproduced.

Lastly, using this model and the evolution of R and S with

ǫ/h, phase diagrams representing the probability of tensile

failure as a function of different parameters can be built.

For example, Fig. 6a represents the diagram of tensile fail-

ure probability as a function of ǫ and h for a tensile strength

σT = 1 kPa. We observe maxima of tensile strength proba-

bility on the ǫ = h line (around 70%) and a decrease of this

probability when receding from this line. Note that this dia-

gram was built by extrapolating the evolutions of R and S to

all (h, ǫ) couples while only two directions (h, ǫ = 0.5 m) and

(h = 1 m, ǫ) have been explored. Other simulations would

be necessary to confirm the validity of this diagram. Another

diagram was drawn for the evolution of the tensile failure

probability with the tensile strength σT and slab depth h

for a constant correlation length ǫ = 0.5 m (Fig. 6b). For

this diagram, simulations on the complete grid were made,

ensuring its accuracy. We can clearly note that, globally, for

tensile strength values σT higher than the average cohesion

〈c〉 = 1 kPa, the tensile failure probability is vanishing indi-

cating that only full slope releases occur.

Evolution with σc for different slab depth h values
The adjustment of the evolution with σc of the tensile failure

probability is more complex to obtain since the simulations

have been done for a constant tensile strength value only

σT = 0.75 kPa and thus the average 〈∆τ〉 and the variance

σ∆τ cannot be determined by adjusting P (∆τ > σT ) using

Eq. (3) as it was done in the last section. Consequently, the

evolutions of R and S with σc need to be anticipated.

We assume that the parameters R and S can be expressed

through the following simple functions:

R =
1

rCV + 1
and S =

1

sCV + 1
, (6)

with CV = σc/〈c〉, r and s adjustment parameters. A good

adjustment was found for r = 16.5 and s = 13 and was

represented on Figs. 4a and 4b. Note that other evolutions

of R and S with σc could also lead to suitable adjustments.

Other sets of simulation for different tensile strength values

would be necessary to obtain the most accurate adjustment.

These evolutions are represented on Fig. 7a in terms of

average 〈∆τ〉 = (1 − R)〈c〉 and standard deviation σ∆τ =

Sσc. Besides, 5 distributions of ∆τ are represented in Fig. 7b

illustrating the results of tensile failure probability (for σT =

0.75 kPa and h = 1 m). When σc is very low (e.g. 10 Pa),

the whole distribution is far from the tensile strength line

and thus the tensile failure probability is equal to 0%. Then,

when σc increases (e.g. 65 Pa), a part of the right tail of the

distribution goes beyond the tensile failure criterion leading

to a probability of 8%. When the average of the distribution

〈∆τ〉 becomes greater than σT (e.g. σc = 215 Pa), the tensile

failure probability becomes greater than 50% (63%). Finally,

for values of σc sufficiently high (e.g. 65 Pa), almost the whole

distribution is beyond the tensile failure criterion and thus

the tensile failure probability is close to 100% (99%). This

illustrates the two following necessary constraints to obtain

the good agreement with the results presented on Fig. 4:

• 〈∆τ〉must increase with σc and tend to 〈c〉 when σc → ∞,

• the rate of increase of σ∆τ with σc must not be too large

compared to that of 〈∆τ〉 for the tensile strength probability

to tend to 100% (in this case) when σc is very high. In the

opposite case, a residual part of the distribution of 〈∆τ〉 could

4.2 Application to the evaluation of the position of avalanche release area 77
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still be lower than σT even for large values of σc wich would

generate a decrease of the tensile failure probability.

6. CONCLUSION AND DISCUSSION

In this article, we presented two different release types ob-

served our simulations. (1) Full-slope releases are influenced

by the morphology of the path since the heterogeneity is not

sufficient to trigger a tensile failure. For instance, the tensile

failure will be very sensitive to the presence of trees, rocks,

ridges and local curvature. (2) Partial-slope releases for which

the local variations of weak-layer cohesion is substantial and

can trigger the slab tensile crack on its own. Importantly, for

both release types, the primary rupture process observed is

always the basal shear failure of the weak layer. Hence slab

rupture systematically constitutes a secondary process.

We have shown that the proportion between these two

types is extremely dependent on the model parameters such

as the tensile strength σT , the slab depth h, the correlation

length ǫ, the standard deviation of the weak layer cohesion σc
and probably on other parameters that have not been varied

in this study such as the average cohesion 〈c〉. Besides, we pre-

Fig. 8. Diptych: Avalanche triggered by a snowboarder. The release area is defined by the ridge at the crown and rock and trees at flanks.

Left side: before the impact of the snowboarder. Right side: after the impact. c©Rémi Petit.
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sented a simple statistical model capable of reproducing the

proportion between release types as a function of the model

parameters. Two illustrations of this simple model are repre-

sented on Fig. 1. In the first case (Fig. 1a), the shear stress

difference 〈∆τ〉 is always lower than the tensile strength σT .

The basal failure thus propagates over the entire system un-

til the top boudary condition which can be seen as a ridge, a

rock, a tree or a local curvature. In the second case (Fig. 1b), a

local zone of substantial average 〈∆τ〉 due to strong variation

of the cohesion heterogeneity generates a local tensile failure

within the slab since ∆τ > σT .

We have demonstrated that for values of σT higher than

the average cohesion 〈c〉, the releases are full slope and con-

sequently they are controlled by the morphology of the path.

Let us recall that tensile strength values from laboratory tests

appear to be globally higher than 1 kPa (Jamieson and John-

ston, 1990; Sigrist, 2006) according to many different mea-

surement techniques whereas shear strength values of weak

layers are typically lower than 1 kPa. This indicates, for re-

alistic values of the mechanical parameters, the major influ-

ence of slope morphology on the position of the tensile failure

within the slab and thus on the extent of the release area.

It corroborates the results found by Maggioni and Gruber

(2003) who analyzed the influence of morphological features

of the path on the extend of the release area using a purely

data-driven statistical approach, and brings some mechanical

justification to the predominance of local geometry in the lo-

calization of real avalanches. This result shows in particular

that the release area will be extremely dependent on slope to-

pography (local curvature, ridge...), on the presence of rocks

and trees for instance. For example, Fig. 8 shows a typical

slab avalanche release area defined by the ridge at the crown

and by rocks and trees at flanks. This is a very important

result than encourages us to pursue with more simulations

to study for example the influence of curvature, ridge angle,

rocks...

REFERENCES

Ancey, C., C. Gervasoni and M Meunier, 2004. Computing extreme

avalanches, Cold Reg. Sci. Technol., 39, 161–180.

Barbolini, M, U Gruber, C Keylock, M Naaim and F Savi,

2000. Application and evaluation of statistical and hydraulic-

continuum dense-snow avalanche models to five real European

sites, Cold Reg. Sci. Technol., 31(2), 133–149.

Eckert, N, M Naaim and E. Parent, 2010. Long-term avalanche

hazard assessment with a Bayesian depth-averaged propagation

model, J. Glaciol., 56(198), 563–586.

Eckert, N., E. Parent, M Naaim and D. Richard, 2008. Bayesian

stochastic modelling for avalanche predetermination: from a

general system framework to return period computations,

SERRA, 22, 185–206.

Eckert, N, E. Parent and D. Richard, 2007. Revisiting statisticalto-

pographical methods for avalanche predetermination: Bayesian

modelling for runout distance predictive distribution, Cold Reg.

Sci. Technol., 49(1), 88–107.

Failletaz, J, F Louchet and J.R Grasso, 2004. Two-threshold model

for scaling laws of noninteracting snow avalanches, Phys. Rev.

Lett., 93(20), 208001.

Failletaz, J, F Louchet and J.R Grasso, 2006. Cellular automaton

modelling of slab avalanche triggering mechanisms : from the

universal statistical behaviour to particular cases, Proceedings

of the ISSW , 174–180.

Fyffe, B and M Zaiser, 2004. The effects of snow variability on slab

avalanche release, Cold Reg. Sci. Technol., 40, 229–242.

Fyffe, B and M Zaiser, 2007. Interplay of basal shear fracture and

slab rupture in slab avalanche release, Cold Reg. Sci. Technol.,

49, 2638.

Gaume, J., G. Chambon, N. Eckert and M. Naaim, 2012a. Influ-

ence of weak-layer heterogeneity on snow slab avalanche release:

Application to the evaluation of avalanche release depths., sub-

mitted to J.Glaciol.

Gaume, J., G. Chambon, N. Eckert and M. Naaim, 2012b. Relative

influence of mechanical and meteorological factors on avalanche

release depth distributions., Geophys. Res. Lett., 39, L12401, in

prep.

Jamieson, B and C Johnston, 1990. In-situ tensile tests of snowpack

layers, J. Glaciol., 36(122), 102–106.

Maggioni, M. and U Gruber, 2003. The influence of topographic

parameters on avalanche release dimension and frequency, Cold

Reg. Sci. Technol., 37, 407–419.

Maggioni, M., U. Gruber and M. Stoffel, 2002. Definition and char-

acterisation of potential avalanche release areas, Proceedings of

the ESRI Conference, San Diego.

McClung, D.M., 2003. Size scaling for dry snow slab release, J.

Geophys. Res., 108(B10), 2465–2477.

Naaim, Mohamed, T Faug and F Naaim-Bouvet, 2003. Dry granu-

lar flow modelling including erosion and deposition, Surveys in

Geophysics, 24, 569–585.

Salm, B., A. Burkard and H. Gubler, 1990. Berechnung von fliess-

lawinen: eine anleitung fr pratiker mit beispielen, Internal re-

port EISLF (in German), 47.

Sigrist, C, 2006. Measurements of fracture mechanical properties of

snow and application to dry snow slab avalanche release, (PhD

thesis), ETHZ.

4.2 Application to the evaluation of the position of avalanche release area 79



80 4. Influence of weak layer heterogeneity on snow slab avalanche release



Chapter 5

Mapping extreme snowfalls in the

French Alps using Max-Stable

processes

This chapter is composed of an article entitled “Mapping extreme snowfalls in the French

Alps using Max-Stable processes” which was submitted to Water Resources Research.

The following authors helped in the construction of this paper: Nicolas Eckert, Guillaume

Chambon, Mohamed Naaim and Liliane Bel.

Snowfalls intensity and frequency are one of the most important parameters in avalanche

hazard mapping procedures. To compute accurate avalanche release depth distributions, a

purely mechanical model is insufficient and needs to be coupled with snowfall distributions.

In this paper, the formalism of max-stable processes, generalizing extreme value statistics

to the multivariate spatial case is used to map snowfall annual maxima in the French

Alps. We show in particular how snowfall quantile maps for different return periods can

be obtained using smooth spatial evolution models for the GEV parameters implemented

within a Brown-Resnick max-stable model taking into account orographic gradients and

anisotropy.
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WATER RESOURCES RESEARCH, VOL. ???, XXXX, DOI:10.1029/,

Mapping extreme snowfalls in the French Alps using Max-Stable

processes.

J.Gaume,1 N.Eckert,1 G.Chambon,1 M.Naaim,1 and L.Bel2

Abstract. The evaluation of extreme snowfalls is an important challenge for hazard
management in mountaineous regions. In this paper, extreme snowfall data acquired from
40 meteorological stations in the French Alps since 1966 are analyzed using spatial ex-
treme statistics. They are then modeled within the formal framework of max-stable pro-
cesses which are the generalization of univariate extreme value theory to the spatial mul-
tivariate case. The three main max-stable processes now available are fitted on the data
using composite likelihood maximisation, and the most flexible Brown-Resnick one is re-
tained on the basis of the TIC criterion, taking into account anisotropy by space trans-
formation. Furthermore, different models with smooth trends (linear and splines) for the
spatial evolution of the GEV parameters are tested to allow snowfall maps for different
return periods to be produced. After altitudinal correction that separates spatial and oro-
graphic effects, the different spatial models tested are fitted within the max-stable frame-
work, allowing inference of the GEV margins and the extremal dependence simultane-
ously. Finally a nested model selection procedure is employed to select the best linear
and spline models. Results show that the best linear model produces reasonable quan-
tile maps (assessed by cross-validation using other stations) but that it is outperformed
by the best spline model which better captures the complex evolution of GEV param-
eters with space. For a given return period and at fixed elevation of 2000 m, extreme
3-day snowfalls are higher in the NE and SE of the French Alps. Maxima of the loca-
tion parameter of the GEV margins are located in the North and South while maxima
of the scale parameter are located in the SE which corresponds to the Mediterranean
influence that tends to bring more variability. Besides, the dependence of extreme snow-
falls is shown to be stronger on the local orientation of the Alps in a range of 60◦, an
important result for meteorological variables confirming previous studies. Computations
are performed for different accumulation durations which enables obtaining magnitude
– frequency curves and showing that the intensity of the extremal directional dependence
effect is all the more important when the duration is short. Finally, we show how the
fitted model can be used to evaluate joint exceedence probabilities and conditional re-
turn level maps which can be useful for risk management in practice.

1. Introduction

The evaluation of extreme snowfalls is a challenging issue
for risk management in moutaineous regions. In particular,
extreme snowfall constitutes one of the critical parameters
for road viability analysis and avalanche risk management
[e.g. Schweizer et al., 2009]. For instance, the systematic
implementation of avalanche propagation models requires
the precise evaluation of the snow input distribution [e.g.
Ancey et al., 2004; Eckert et al., 2010b]. In France, the
100-year quantile (quantile corresponding to a return pe-
riod T = 100 years) is widely used for hazard mapping or
for the conception of defence structures. However, in prac-
tice, the evaluation of this input turns out to be difficult for
several reasons:

(i) In mountaineous areas, available data are sparse with
generally incomplete and short time series very rarely longer
than 100 years. Consequently, extrapolating beyond the

1IRSTEA, UR ETGR, 38400 St Martin d’Heres, France.
2AgroParisTech/INRA,UMR 518 Math. Info. Appli.,

F-75005 Paris, France

Copyright 2012 by the American Geophysical Union.
0043-1397 /12/$9.00

highest observed values is necessary. In this context, Ex-
treme Value Theory (EVT) is an adequate formalism to deal
with, since it provides solid theoretical basis for extrapola-
tion, namely the convergence of block maxima to the GEV
(Generalized Extreme Value) distribution [Fisher-Tipet the-
orem Fisher and Tippett , 1928] and of Peaks Over Thresh-
olds (POT) to the GPD (Generalized Pareto Distribution)
via Pickands theorem [Pickands, 1975].

(ii) The data consist mostly in chronicles of precipita-
tion measured in water equivalent (w.e.). The distinction
rain/snow is not always done, which requires the joint anal-
ysis of temperature series.

(iii) Measurement stations are usually located far from
avalanches release zones. It is therefore necessary to use
spatial interpolation methods adapted to the specificity of
extreme values.

(iv) These stations are usually located in the valleys
rather than at high altitudes, which requires using an oro-
graphic snowfall gradient for the quantification of the water
equivalent in avalanche release zones.

In the current engineering practice, all these difficul-
ties are often circumvented by over-simplifying assumptions.
The problems of spatial interpolation and orographic effects
are sometimes treated by defining “homogeneous zones by
altitude band” [Salm et al., 1990; Bocchiola et al., 2006].
Besides the difficulty of zones definition, this method in-
troduces discontinuities at the zone borders that are in-
compatible with the natural phenomenon. Simple kriging

1
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interpolation techniques have also been used, for example
Prudhomme and Reed [1999] for extreme rainfall mapping
in Scotland using a Gaussian field. This method has the
advantage of allowing smooth spatial prediction but with-
out acknowledging the specificity of extreme values. Weisse
and Bois [2001] also used kriging for rainfall quantile map-
ping. In this case, the previous limitation is thus partially
overcome by smoothing directly the quantile of interest ob-
tained by fitting adapted EVT-like distributions rather than
the process. However, this method has the main drawback
of separating two estimation procedures (local GEV distri-
butions and spatial fields) without reporting the local error
on the spatial model. Furthermore, it loses estimation power
by using one single quantile value per location instead of the
full series of maxima. Finally, for extrapolation, the current
engineering methods use almost systematically Gumbel laws
rather than a more general model of the GEV type. This
can result in systematic underestimation of most extreme
snowfalls [Parent and Bernier , 2003; Bacro and Chaouche,
2006].

An important point in spatial extreme approaches is that
covariates are often used to infer the spatial dependence of
the GEV parameters, the rationale being the capability to
predict high quantiles at any point and to reduce the dimen-
sion of the problem. Blanchet and Lehning [2010] used both
altitude and the mean snow depth [“Climate space”, Coo-
ley et al., 2007] to characterize extreme snow depths at the
ground level using smooth spatial models for the GEV pa-
rameters. These autors have shown the superiority of such
an approach over quantile smoothing even without modeling
the extremal dependence. Many other studies have already
considered the GEV parameters as spatial fields [Naveau
et al., 2009], especially in the context of gridded data re-
sulting from climate modeling [Rust et al., 2009; Maraun
et al., 2010].

Recently, a solid formalism based on multivariate extreme
value theory has been proposed to characterize the spatial
dependence of block maxima extreme values. Applied to a
set of data series, maps of extremal dependence can be ob-
tained [Coles et al., 1999]. Furthermore, the definition of
an extremal function can extend to spatial fields of extreme
values the notions of variogram and range; the distance up
to which the different series are dependent [Cooley et al.,
2006]. This formalism is now beginning to be successfully
applied in hydrology. For instance Bel et al. [2008] com-
pared different spatial models on extreme temperature and
rainfall data and Blanchet et al. [2009] analyzed the spatial
dependence of extreme snowfalls in the Swiss Alpine region
using the χ and χ̄ statistics [Joe, 1993; Coles et al., 1999].

To model spatial dependence in extreme values consis-
tently with extreme value theory, Max Stable Processes
(MSP) is an approach based on the pioneering work of
Brown and Resnick [1977]; DeHaan [1984] and further devel-
oped by Smith [1991]; Schlather [2002]; Schlather and Tawn
[2003] and Kabluchko et al. [2009]. Their practical use in
environmental sciences is very recent. It has been applied
with sucess by Padoan et al. [2009] combined with the use
of latitude, longitude and altitude as covariates to model
rainfall data in the Appalachian mountains. This paper
also proposes a practical inferential method for the fitting
of max-stable processes to spatial data by maximisation of
a composite likelihood [Lindsay , 1988; Xu and Reid , 2011],
since the full likelihood is out of reach. This has been ap-
plied by [Blanchet and Davison, 2011] for snow depth data
with a modified anisotropic Schlather’s MSP, chosen among
large classes of Smith and Schlather MSPs.

The aim of this article is the modeling of extreme snow-
falls in the French Alps by Max-Stable processes, a crucial
ingredient to evaluate avalanche depths distributions in all
potential release areas [Gaume et al., 2012]. Snowfalls are
measured in water equivalent w.e. and are thus independent

of density effects. In this spirit, a simple method is proposed
to apply the spatial extreme formalism at a constant altitude
so as to infer “true” spatial effects. With regards to exist-
ing approaches, we bridge the work of Blanchet and Lehning
[2010] and Blanchet and Davison [2011] by estimating the
GEV parameters as continuous functions of space within
the max-stable framework. Furthermore, in addition to the
more classical Smith and Schlather MSP, we implement the
more flexible Brown-Resnick MSP, more adapted to snow-
falls, a less spatially dependent variable than snow depth.
We take also into account directional effects related to the
local alpine geography. Finally, we show how quantile maps
can be obtained and demonstrate the prediction ability of
our approach using cross-validation for the used data sets
but also for other stations.

As stated in Segers [2012] and Ribatet and Sedki [2012],
max-stable copulas would have been another option to reach
similar goals (other copulas, often used in hydrology, would
fail in providing a fair representation of the dependence
structure). However, this would have implied fitting first
the margins at each station (a not necessarily easy task)
and the extremal dependence structure in a second time.
Our work is one of the firsts that performs the two steps
simultaneously. This is for us theoretically preferable, since
it takes into account estimation error on the margin param-
eters in the estimation of the parameters of the extremal
model.

This article is organized as follows: Sec. 2 provides theo-
retical elements about extreme value statistics in the spatial
case and more precisely about MSP. The studied data are
presented in Sec. 3 in which an empirical analysis is per-
formed. In Sec. 4, a criterion for model selection is defined
and the results using linear models and penalized smooth-
ing splines are compared. Finally, in Sec 5, a discussion is
dedicated to the comparison of our results to previous ap-
proaches, to the study of the influence of the accumulation
period on the results and to a joint analysis that uses the
available bivariate distributions and conditional levels which
can be useful for operational purposes.

2. Extreme value statistics in the spatial
case

2.1. Max-Stable Process (MSP)

{Z(x)}x∈X is a max-stable process if there exist se-
quences an(x) and bn(x) > 0, such that if for all n, (Zi)i=1,n

are independent copies of Z, then {Z(x)}x∈X has the same
distribution as

{
maxi=1,n Zi(x)− an(x)

bn(x)

}

x∈X

As a consequence, all finite dimensional marginal distri-
butions are max-stable and, in particular, the univariate
marginal Z(x) distribution belongs to the GEV family:

P (Z(x) ≤ z) =







exp
[

−
(
z′(x)

)−1/ξ(x)
]

if z′(x) > 0

1 otherwise
(1)

with

z′(x) = 1 +
ξ(x)(z − µ(x))

σ(x)
(2)

where µ(x), σ(x) and ξ(x) are respectively the location,
scale and shape parameters at location x. According to
the sign of ξ(x), the Z(x) distribution belongs to three dif-
ferent families of distributions known as Frchet (ξ(x) > 0),
Weibull (ξ(x) < 0) and Gumbel (ξ(x) → 0).
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Usually it is convenient to transform the univariate
marginals setting:

Z∗(x) =

(

1 + ξ(x)
(Z(x)− µ(x))

σ(x)

)1/ξ(x)

. (3)

Z∗ is thus a max-stable process with unit Frchet mar-
gins whose cumulative distribution function is defined as
P (Z∗(x) ≤ z∗) = exp(−1/z∗), z∗ > 0. Models of max-
stable processes have been proposed by several authors.
The most popular are those of Smith [1991] (extremal
Gaussian) a particular case of DeHaan [1984] construction,
Schlather [2002], and Brown and Resnick [1977] generalized
by Kabluchko et al. [2009]. We will focus in this work mainly
on the Kabluchko model defined as:

Z(x) = max
i

(ξi exp(Wi(x)− σ2(x)/2) x ∈ X , (4)

where ξi is a Poisson process on R
∗+ of intensity 1

ξ2
dξ and

Wi are independent Gaussian fields, with stationary incre-
ments, variance σ2(x) and variogram γ(x− x′).

2.2. Extremal coefficient

Spatial dependence of maxima at two locations x and x′

is characterized by the extremal coefficient denoted θ(x,x′).
If Z∗ is the limiting process of maxima with unit Fréchet
margins then [Brown and Resnick , 1977]:

P (Z∗(x) ≤ z, Z∗(x′) ≤ z) = P (Z∗(x) ≤ z)θ(x,x
′)

= exp(−θ(x,x′)/z) (5)

Thus, if θ(x,x′) = 1 there is perfect dependence of the max-
ima at stations x and x′ and on the contrary, if θ(x,x′) = 2
the maxima are independent. For Smith, Schlather and
Brown-Resnick models the extremal coefficient can be cal-
culated explicitly. According to these models, the processes
are stationary, and the related extremal coefficient only de-
pends on h = x−x′. The Smith’s model extremal coefficient
θSm is given by:

θSm(h) = 2Φ(a(h)/2), (6)

with a(h) = (htΣh)1/2 the Mahalanobis distance, Σ a Gaus-
sian covariance matrix with three parameters σ11, σ12, σ22

and Φ the standard normal cumulative distribution.
The Schlather’s extremal coefficient θSc is given by:

θSc(h) = 1 +

√

1− 1

2
(ν(||h||) + 1) (7)

with −1 ≤ ν(||h||) ≤ 1, a valid correlation function (Wittle-
Matern, Cauchy, exponential, Bessel, etc.). We tested sev-
eral forms of correlation functions and we retained the ex-
ponential correlation function ν(h) = exp(−||h||/c1) where
c1 is a range parameter, that gave the best fit to our data
on the basis of the TIC criterion (see below)
Finally, the Brown-Resnick’s extremal coefficient θBR is
given by:

θBR(h) = 2Φ

(√

γ(||h||)
2

)

. (8)

The behaviour of the extremal coefficient may give an
indication for the choice of the model. For instance the
Schlather’s MSP cannot achieve full independence (θ = 2).
This can be useful for applications with extremal depen-
dence that remains strong even at very important distances,
but is a major flaw in other cases. Instead, the Smith’s MSP
imposes full independence at long distances (θSm

∞→ 2) but
is quite rigid at short distances. The Brown-Resnick’s MSP

is more flexible as the variogram may take a great variety of
shapes near 0 and allowing for full independence (θBR

∞→ 2)
at long distances [Eq. (8)].

The Smith’s MSP can directly model the anisotropy in
the extremal coefficient by using a modified distance (Ma-
halanobis), a function of the Gaussian covariance matrix Σ.
This covariance matrix plays a very important role because
it determines the elliptical shape of the extremal depen-
dence. On the contrary, Schlather’s and Brown-Resnick’s
MSP are primarily isotropic as they involve the Euclidean
distance. Thus, to take into account possible directional
effects in extreme snowfalls in the case of Schlather’s and
Brown-Resnick’s MSP, we must modify the standard space
[Blanchet and Lehning , 2010] while infering the extremal
dependence. To do this, we set Ẽ = VE with E =
[long lat alt]t the Euclidean coordinates and V the rotation
matrix defined below:

V =





cosψ sinψ 0
−ρ sinψ ρ cosψ 0

0 0 1



 , (9)

where ψ represents the anisotropy angle of the transforma-
tion and ρ its intensity.

2.3. Spatial models for the GEV parameters

At a given location x, GEV parameters µ(x), σ(x), ξ(x)
can be estimated if there are observations available. If no
data are available at x, these parameters must be inferred
from data at nearby locations. This can be done essen-
tially in two ways: (1) estimate first the pointwise GEV
parameters at locations with observations, and interpolate
or (2) model the spatial evolution of the GEV parameters
[Blanchet and Lehning , 2010]. We choose the second op-
tion and we investigate within the max-stable formalism two
classes of spatial models for the GEV parameters. The first
model links linearly the GEV parameters at location x with
the spatial coordinates x1 = long(x), x2 = lat(x). If η is
one of the 3 GEV parameters

η(x) = β0 + β1x1 + β2x2, (10)

the second model is non-linear, it decomposes η in an ap-
propriate basis B = (bj)j :

η(x) =
m∑

j=1

βjbj(x). (11)

In the following, we will consider penalized splines with ra-
dial basis functions (pr-splines) [Ruppert et al., 2003] of or-
der 3:

η(x) = β0 + β1x1 + β2x2 +

R−1∑

r=0

β3+r||x− κr||3, (12)

where κr are the coordinates of the rth knot of the spline
and R is the number of knots.

3. Empirical analysis

3.1. Data presentation

MeteoFrance, the French meteorological agency, provided
us with daily controlled and homogeneized snowfall mea-
surements (in water equivalent w.e.) for 124 Alpine weather
stations with different temporal series length. We retained
for the modelling 40 weather stations whose measurements
were conducted continuously from 1966 to 2009 (i.e. 44 years
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Figure 1. (a) Location of weather stations on the alpine terrain (coordinates in meters extended Lam-
bert II). The circles represent the 40 retained weather stations and the squares the 84 stations with
shorter time-series used for model validation. (b) Distribution of the altitudes of the 40 retained stations
(in meters). (c) The French Alps divided into 4 Alpine zones. The numbers are massifs index summerized
in Table 1.

Table 1. Details of the mountaineous massifs of the French
Alps presented on Fig. 1c with their highest peak and winter
mean snowfall WMS [from Durand et al., 2009]

Index Massif Highest peak (m) WMS (mm w.e.)
1 Chablais 2466 m 941
2 Aravis 2752 m 1006
3 Bauges 2217 m 1003
4 Chartreuse 2082 m 1015
5 Vercors 2341 m 844
6 Mont-Blanc 4810 m 885
7 Beaufortin 2995 m 874
8 Haute-Tarentaise 3747 m 658
9 Haute-Maurienne 3751 m 508
10 Vanoise 3855 m 632
11 Maurienne 3779 m 718
12 Belledonne 2977 m 906
12 Grandes-Rousses 3465 m 708
14 Thabor 3178 m 499
15 Oisan 3983 m 703
16 Pelvoux 4102 m 658
17 Champsaur 3163 m 628
18 Devoluy 2789 m 631
19 Queyras 3385 m 387
20 Parpaillon 3046 m 448
21 Ubaye 3412 m 446
22 Alpes-Azurennes 3050 m 620
23 Mercantour 3143 m 651

of measurement) and the 84 others with shorter time-series
were kept for model validation. Fig. 1a shows the location
of all stations on the French alpine terrain. Fig. 1b shows
the altitude distribution of the 40 retained stations. One
can notice that most weather stations are located around
1000 m of altitude, and that very few stations are available
at high altitudes (> 2000 m). Fig. 1c shows the partition
of the French Alps into 4 main alpine zones: Northen Alps,
Central Alps, Southern Alps and extreme Southern Alps and
also 23 massifs. Details on the mountaineous massifs with
their highest peak and winter mean snowfall [from Durand
et al., 2009] are presented in Tab. 1.

We extracted from this database, annual snowfall max-
ima over different accumulation periods (1 to 7 days) for
each weather station. Only the winter period (November 15
to May 15) and snow precipitations were considered. Thus,
for the search of maxima, only the days when maximum tem-
perature is below 2◦C at the measurement station were con-
sidered. This is sufficient to ensure that precipitations fall
as snow in avalanche release areas. We will focus mainly in
the following on the accumulation period of 3 days since it is

often considered as the best avalanche predictor [Salm et al.,
1990; Schweizer et al., 2003; Ancey et al., 2004; Schweizer
et al., 2009] for high return period events. In fact, this dura-
tion often corresponds to the most intense avalanche cycles
[Eckert et al., 2010a]. In accordance with Sec. 2, Z(x) de-
notes henceforth the annual snowfall maximum over 3 days
at the weather station of coordinate x.

3.2. Altitude consideration

As shown in Fig. 1b, the number of measurement stations
above 2000 m is very low, which complicates the interpola-
tion at higher altitudes where most avalanche release zones
are located. Hence, we used an orographic gradient δ(x)
by alpine zone from the study of Durand et al. [2009] rep-
resented on Fig. 2, to transform the data at the altitude
alt(x) to the same constant altitude level (2000 m):

z(x, 2000) = z(x, alt(x))

[

1 + δ(x)
2000− alt(x)

WMS(x)

]

︸ ︷︷ ︸

G(x)

(13)

where z(x, 2000) and z(x, alt(x)) are the snowfall annual
maximum data in x at 2000 m and at altitude alt(x), re-
spectively.

Figure 2. Evolution of mean winter snowfall (WMS) as
a function of altitude for the four alpine zones. Figure
constructed from Durand et al. [2009].
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Figure 3. Maps of the GEV parameters estimated pointwise on the transformed data (alt= 2000m).
(a) Location parameter µ, (b) scale parameter σ, (c) shape parameter ξ.

This transformation involves the massif’s winter mean
snowfall WMS(x) (see Tab. 1) for weighting the local an-
nual maximum. We also take into account an attenuation of
the gradient above a given threshold altitude s(x) (2700m
for the Northern Alps, 3000m in the central Alps, South
and extreme South Alps, see Figure 2 [Durand et al., 2009]).
This amounts to replacing alt(x) by s(x) in Eq. (13) when
alt(x) > s(x). This consideration of the altitude is equiv-
alent to assuming that the annual maxima varies with alti-
tude as a proportion of the annual accumulation. This as-
sumption is reasonable because the annual accumulation can
often be explained by a few extreme events only. It is easily
shown that the transformation of annual snowfall maxima
using Eq. (13) is equivalent to the transform of the location
and scale parameters by multiplying them by G while the
shape parameter remains constant i.e. the marginal distri-
bution of Z(x, 2000) is a GEV(µ(x)G(x), σ(x)G(x), ξ(x)).
Hence, this simple way of handling orographic gradients en-
ables a full analytical formulation of GEV marginals at the
transformed altitude. From the point of view of the spatial
analysis, it has the advantage of keeping only longitude-
latitude effects in the spatial variation and avoids specifying
a distance in the 3D space, which is difficult since 1 m of
altitude difference should certainly weight differently than
1 m latitude/longitude. More practically, vertical gradients
could not be infered directly from our data since the altitude
range of the stations is too small.

The results obtained in the Swiss Alps [Blanchet et al.,
2009] on the evolution of extreme snowfall with elevation
support our way of handling altitude. Indeed, with 247 sta-
tions in the Swiss Alps including SLF automatic stations
between 1600 m and 3000 m, these authors were able to
distinguish trends of evolution of the GEV parameters with
altitude: the location µ and scale σ parameters are increas-
ing functions of altitude (with a gradient of ≈ 0.015 mm/m
for µ and 0.003 mm/m for σ) while the shape parameter ξ
is almost not influenced by altitude. In our case, the av-
erage location parameter gradient is equal to 0.02 mm/m
very close to the Swiss one and the average scale parameter
gradient is equal to 0.006 mm/m, slightly higher than the
Swiss one.

3.3. Pointwise GEV parameters

The GEV parameters µ, σ and ξ have been estimated
pointwise on the transformed data [Eq. 13] by maximiza-
tion of the marginal likelihood for each station and plotted
on maps (Fig. 3) and versus longitude and latitude in Fig.
5.

Firstly, it can be noted that, for the three GEV param-
eters, there are strong disparities between zones, especially
between the extreme Southern Alps and the rest of the Alps.
Concerning the location parameter µ, there is a decrease
with latitude from the extreme Southern Alps to the Cen-
tral Alps and then an increase from Southern Alps to North-
ern Alps. Regarding the evolution with the longitude, it is
difficult to distinguish any significant trend, except a slight
increase. Thus, at first sight, latitude seems to be a good
covariate to explain the location parameter µ. The scale
parameter σ decreases generally from the extreme Southern
Alps to the Southern Alps, before stabilizing in the Central
Alps and the Northern Alps. Hence, as shown in Figs. 5b
and 5e, the longitude and latitude appear preliminarily as
two good covariates for the scale parameter σ. Finally, from
Fig. 3, the shape parameter ξ appears to be generally posi-
tive (Frechet domain) except in the extreme southern Alps
where it is negative (Weibull domain). It increases with lat-
itude from extreme southern Alps to the Southern Alps by

Figure 5. Evolution of the GEV parameters µ, σ
and ξ determined pointwise on the transformed data
(alt= 2000 m) as functions of longitude and latitude (in
km). Cubic pr-splines with two knots have been adjusted
on each graph (solid line). The symbols/colors represent
the four alpine zones: the Northern Alps, Central Alps,
Southern Alps and extreme Southern Alps (see Fig. 1c).
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changing its sign, then decreases globally to the Northern
Alps. It generally decreases with longitude from the North-
ern Alps to extreme southern Alps. Again, latitude and
longitude thus appear to be two good potential covariates
for ξ ( Figs. 5c and 5f).

These variations must be taken with care since the GEV
parameters (µ, σ, ξ) are correlated and thus some compen-
sation may occur. However, they suggest that there is strong
spatial variability of snowfall annual maxima over the whole
French Alps. In particular, the extreme southern Alps seem
to behave differently than the rest of the Alps. This is prob-
ably due to climatic differences between alpine areas, which
are submitted to different precipitation regimes. Indeed,
Northen and Central Alps are generally affected mainly by
westerly flows whereas Southern and more particularly ex-
treme Southern Alps are more often affected by easterly flow
patterns which are strongly controlled by the Mediterranean
influence.

3.4. Extremal dependence

The spatial dependence of 3-days annual snowfall max-
ima was studied empirically, by calculating the extremal co-
efficient for each pair of stations (780 pairs) by likelihood
maximisation [Bel et al., 2008]. These values were plotted
against the 2D-distance between stations in Fig. 4. Other
estimators such as least squares and Cooley-Naveau-Poncet
[Cooley et al., 2006] were also tested and gave similar re-
sults. Note that values higher than 2 were constrained to 2.
We remark that full independence (θ = 2) is achieved only
for a very small number of pairs. Distance classes are de-
fined as intervals and averages were then computed within
the classes and have been added to Fig. 4 without taking
into account directional effects.

Figure 4. Extremal coefficient estimated for all pairs of
stations as a function of the distance between the stations
using likelihood maximisation estimation. The black dots
represent the averaged extremal coefficient by distance
classes. Smith’s, Schlather’s and Brown-Resnick’s ex-
tremal coefficients were adjusted to the class averages.

Extremal coefficients of Smith [Eq. (6)], Schlather
[Eq. (7)] and Brown-Resnick [Eq. (8)] were fitted to the
average extremal coefficient. For the Brown-Resnick MSP,
a power variogram γ(h) = ||h||b/a was used to fit the data.
It can be noted that the Schlather’s and Smith’s extremal
coefficients provide a poor fit. Indeed, with only one single

parameter (dependence range) both models are very rigid,
one imposing the asymptotic independence (θSm(h) = 2
for ||h|| → ∞) at large distance and strongly constrain-
ing the shape at the origin (Smith), the other imposing a
rather strong extremal dependence even at long distances
(Schlather: θSc(h) = 1 +

√
2/2 for ||h|| → ∞). Instead, the

Brown-Resnick process has an additional smoothing param-
eter b and thus the shape of the extremal dependence is more
flexible than in the case of the previous models which leads
to an excellent fit (Fig. 4) of the average extremal coeffi-
cient. If we define the range r as the distance corresponding
to an extremal coefficient θ = 1.9, the Brown-Resnick model
gives a range of r = 182km, identical to the one provided
by empirical estimation. Note also that these results remain
valid for different accumulation periods (1 to 7 days).

Figure 6. Extremal coefficient estimated for all pairs of
stations as a function of α defined as the positive angle
between the horizontal and the segment liking the pairs.
The black dots represent the averaged extremal coeffi-
cient by angle classes (the value of the extremal coefficient
is given by the radius). The red bar-plot represents the
percentage of extremal coefficient values θ higher than
1.9.

The influence of a potential directional effect was also
studied. Let us define α as the positive angle between the
horizontal and the segment defined by two pairs of stations.
Fig. 6 shows that extreme snowfalls show a strong direc-
tional effect. In most cases, the independence (θ > 1.9) is
only achieved for pairs of stations whose direction is higher
than 90◦. Averages by angle classes were also computed
showing that, on average, extremal coefficient values are
lower if α < 90◦. In more details, the number of pairs whose
extremal coefficient is higher than 1.9 is the lowest in the
[51◦ - 77◦] range as well as for the lowest average extremal
coefficient. Extremal dependence thus has a greater range
along this interval of α than in other directions. Knowing
that the main direction of the local Alpine axis is around
60◦ due to the presence of large valleys in this direction (Is-
ere, Rhone and Durance), this suggests that annual snowfall
maxima are very sensitive to the orientation of the moun-
tains and the presence of valleys.

Finally, to investigate the strength of the extremal depen-
dence between regions, 4 stations corresponding to different
Alpine zones where chosen as references to compute maps
of the interpolated extremal coefficient (Figs. 8b, 8c, 8d,
and 8e). Besides, we have selected from the data in Fig. 4,
only the pairs of stations for which θ(h) < 1.56 (arbitrary
choice to get a good visual) which were represented by a line
connecting these pairs of stations in Fig. 8a. We can note a
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strong regionalization of the extremal dependence. There is
almost no spatial dependence between the extreme South-
ern Alps and the rest of the Alps. Similarly, the Southern
Alps have a strong internal dependence but only a slight
dependence with the rest of the Alps, except with a few
stations of the Central Alps at the border with the South-
ern Alps. On the contrary, there is a strong dependence
between the Northern Alps and Central Alps accompanied
by a significant internal dependence. Finally, in agreement
with the last observation, it seems that this dependence has
a preferred orientation along the local Alpine axis.

This preliminary study suggests at first that the spatial
dependence in extreme snowfall in the French Alps may be
better captured by a Brown-Resnick MSP, which is shown
to be more flexible than those of Smith and Schlather. In
addition, an important directional effect is exhibited by this
empirical analysis. The orientation of the Alps and the pres-
ence of large valleys are most likely the cause of these direc-
tional trends.

4. Application: Adjustment of a MSP to
data.

4.1. Composite likelihood

In order to estimate the various parameters of the model
(β matrix representing the spatial evolution of the GEV pa-
rameters and the dependence parameters), likelihood max-
imisation is used. However, we cannot calculate the com-
plete likelihood since we only know analytically the ex-
pression of the different bivariate distributions according to
Eq. (5). Padoan et al. [2009] showed that, for MSP, the full
log-likelihood can be advantageously replaced by a special
case of composite likelihood: the pairwise log-likelihood lp
defined as:

lp(β, z) =
N∑

n=1

K∑

i=1

K−1∑

j=i+1

logf(zn,i, zn,j ;β), (14)

with N the number of years of measurements, K the num-
ber of measurement stations, β the matrix of parameters
to estimate and f the bivariate density of the MSP used
(Smith, Schlather or Brown-Resnick). In our case, zn,i is
the maximum annual precipitation for the year n and sta-
tion i projected using Eq. (13) at a constant altitude level of
2000 m. One can then find the parameters β̂ that maximize
the composite likelihood by solving the partial differential
equation:

∂

∂β
lp(β̂, z)

∣
∣
∣
β=β̂

= 0, (15)

and derive the associated standard errors from the Hessian
and Jacobian information matrices H and J , with

H(β̂) = −
N∑

n=1

K∑

i=1

K−1∑

j=i+1

∂2 log f(zn,i, zn,j ; β̂)

∂β∂βt
, (16)

and

J(β̂) =

N∑

n=1

K∑

i=1

K−1∑

j=i+1

∂ log f(zn,i, zn,j ; β̂)

∂β

∂ log f(zn,i, zn,j ; β̂)

∂βt
.

(17)

4.2. Model selection: TIC

To compare different MSP and models of spatial evolu-
tion, a criterion weighting the value of the likelihood by the
number of model parameters to estimate can be used. The
classic AIC [Akaike Information Criterion, Akaike, 1981]

cannot be used in our composite case since the complete
likelihood is not known. We therefore use a derivative of
AIC suitable for composite likelihood, the TIC (Takeuchi
Information Criterion) [Takeuchi , 1976]:

TIC(β̂) = −2lp(β̂, z) + 2tr
(

J(β̂)H(β̂)−1
)

, (18)

The best model is the one that minimizes the TIC [Eq. (18)].
Composite likelihood maximisation and TIC computations
are carried out under the SpatialExtremes R package [Rib-
atet , 2009] complemented with personal communications.

4.3. Linear models

We choose to describe the parameters [µ(x) σ(x) ξ(x)]
firstly through linear evolution models based on the coordi-
nates X = [1 lon(x) lat(x)]t. The linear evolution models
that we use can be written as:





µ(x)
σ(x)
ξ(x)



 =





βµ0 βµ1 βµ2
βσ0 βσ1 βσ2

βξ0 βξ1 βξ2









1
lon(x)
lat(x)



 (19)

For the 3-day maxima, we tested 18 different forms for the
matrix β, with different numbers of non-zero coefficients in
the matrix β. Three models of MSP have also been fitted
to the data for these different models of spatial evolution of
the GEV parameters. Fig. 7 shows the values of the TIC
[Eq. 18] for these different models. These models and the

Figure 7. TIC values as a function of the type of lin-
ear evolution model for different MSP (Smith, Schlather,
Brown-Resnick and Brown-Resnick with a transformed
space.) and as a function of the type of pr-spline for dif-
ferent numbers of knots, using a Brown Resnick MSP.
Details about the different models used can be found in
Appendix 1.

Table 2. Parameters of the β̂ matrix with the associated
standard errors (in brackets) evaluated for the linear model 4
in Fig. 7 with a Brown-Resnick MSP and taking into account
anisotropy by space transformation.

µ βµ0 βµ1 βµ2

−328.7 (49.56) 0.0845 (0.0216) 0.1598 (0.0213)
σ βσ0 βσ1 βσ2

−38.39 (14.81) 0.0726 (0.0163) 0
ξ βξ0 βξ1 βξ2

0.0536 (0.0294) 0 0

5.4 Application: Ajustment of a MSP to data 89
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Figure 8. Pairs of stations whose extremal coefficient is less than 1.56 (a). Maps of the interpolated
(simple kriging) extremal coefficients with reference to 4 stations belonging to the four alpine zones (Fig.
1c). (b) Chamonix-Mont-Blanc, (c) Lans en Vercors, (d) Saint Veran, (e) Saint Etienne de Tinee.

different used covariates are presented in detail in Appendix
1.

It can be noted that, for all the cases, the Brown-Resnick
MSP (with a power variogram γ(h) = ||h||b/a) gives bet-
ter results than the Smith MSP, itself better than Schlather
MSP. The superiority of the Brown-Resnick MSP compared
to the Smith one is related to its greater flexibility (form of
the extremal coefficient) in agreement with the preliminary
empirical study. Schlather’s MSP gives even worse results
since it does not account for complete asymptotic depen-
dence (θ = 2 for large distances). We therefore retain the
Brown-Resnick MSP. Initially taken as isotropic, we further

Figure 9. Extremal coefficient provided by the best fit-
ted MSP (Brown-Resnick linear model 4). (a) Spatial
evolution with reference station: Chamonix-Mont-Blanc.
(b) Evolution with the distance in the ψ direction (Di-
rection 1) and in the orthogonal direction (Direction 2).
The dots represent the empirical extremal coefficient of
pairs whose direction belongs to a 90◦ cone around the
α-direction (Cone 1: α ∈ [ψ − 45;ψ + 45]) and around
the orthogonal direction (Cone 2: α ∈ [ψ+45;ψ+135]).

improved it by transforming the standard space according to
Eq. (9) in order to take into account the directional effects
highlighted in the empirical analysis. This transformation
allowed a non-negligible reduction of the TIC of ≈200.
4.3.1. GEV parameters

It appears that models with evolution of µ with both lon-
gitude and latitude, and of σ with latitude give minimum
TIC values (models 1 and 4 on Fig. 7). Models of evolu-
tion with latitude and longitude for both location and scale
parameters also give low TIC values (models 1 and 13 on
Fig. 7). Note that models with only the longitude as co-
variate for the location parameter µ are the worst since they
lead to the highest TIC values (peaks values: models 2, 5,
8...). The best model corresponds to model 4 on Fig. 7 after
transformation of the standard space [Eq. 9]. The resulting
value of the different parameters of the matrix β̂ [Eq. 19]
are summarized in Tab. 2.

For this model, the location parameter µ is function of
both longitude and latitude while the scale parameter σ

Figure 10. Maps of the 100-year quantile at a fixed al-
titude of 2000m (a) and projected on the relief (b) using
the best linear model from Tab. 2.
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depends on longitude only and the shape parameter ξ is
constant. At a constant altitude (2000m), we obtain the
highest location parameters µ in the Northeast Alps (Mont
Blanc) and the highest scale parameters σ in the Southeast
(extreme Southern Alps) which corresponds to the Mediter-
ranean effect that tends to bring greater variability. The
shape parameter is equal to 0.054 indicating most likely a
Frchet domain, hence an increase of the quantile with the
return period stronger than predicted by a Gumbel model.
However, the 95% CI of ξ contains 0 (Tab. 2) so the Gum-
bel model could also be a sensible one. This does not fully
account for the spatial patterns displayed in Figs. 3 and 5,
which justifies the further improvement using spline models,
see Sec. 4.4
4.3.2. Directional effect and extremal dependence

Using the elliptic transformation matrix [Eq. (9)], the
standard space was transformed iteratively for values of ρ in
the 1–4 range and ψ in the 20◦–80◦ range. With model 4,
the lowest TIC values were found for transformation param-
eters ψ = 62.5◦ and ρ = 2.05, leading to extremal depen-
dence parameters [Eq. (8)] equal to a = 15.5 and b = 0.8.
The extremal coefficient obtained by this model is repre-
sented on Fig. 9a with reference to Chamonix-Mont-Blanc.
A very important directional effect along the α = ψ = 62.5◦

axis is indeed observed. The range (distance corresponding
to θ = 1.9) is maximum (about 185 km) along the direc-
tion of the local Alpine axis (α = 62.5◦), and is only about
85 km along the perpendicular axis (Fig. 9b). This result is
in agreement with the empirical analysis which showed that
the main dependence direction was belonging to the [51◦ -
77◦] range, and thus confirms the importance of mountain

Figure 11. (a) 100-year quantile z100 relative error at
2000m.(b) Comparison between the quantile estimated
pointwise for a given station and the quantile predicted
by the spatial linear model at the location of the station
for different return periods. The red curve represents the
average curve, the black dashed curves represent 95%
confidence interval around the average calculated from
the different curves (mean ± 2× standard deviation).

barriers and valleys on extreme snowfalls, the Isere and the
Rhone valleys being the widest ones in the French Alps.
4.3.3. Quantile estimation

The estimated GEV parameters [Tab. 2], allow us to com-
pute in any location the quantile zT (x) for a return period
T:

P (Z(x) ≤ zT (x)) = e
−

(
1+

ξ(z
T

(x)−µ(x))

σ(x)

)−1/ξ(x)

= 1− 1

T
(20)

⇒ zT (x) = µ(x) +
σ(x)

ξ(x)

[(

−ln

(

1− 1

T

))−ξ(x)

− 1

]

(21)

Fig. 10 shows the maps of 3-day extreme snowfalls for a
return period of 100 years at 2000 m and projected onto the
local relief taking into account the actual altitude after ap-
plication of the inverse gradient [Eq. (13)]. We note firstly
that 3-day extreme snowfalls are the highest at the border
with Switzerland and Italy. However, even if Fig. 10b seems
to be mainly governed by altitudinal effets, the strong re-
gional patterns clearly visible in Fig. 10a still significantly
influence the 100-year quantile. For instance, the 100-year
quantiles predicted in the Haute-Maurienne massif culmi-
nating at 3751 m are significantly higher (> 400 mm w.e.)
than those in the Pelvoux massif culminating at 4102 m
(< 300 mm w.e.).
4.3.4. Standard errors and pointwise/spatial com-
parison

The relative error of the 100-year quantile at a constant
altitude (2000 m) was calculated from the standard errors
on the the GEV parameters ∆µ(x), ∆σ(x) and ∆ξ:

∆zT (x) = ∆µ(x) +

∣
∣
∣
∣

1

ξ

(

ω−ξ − 1
)∣∣
∣
∣
∆σ(x)

+

∣
∣
∣
∣

σ(x)

ξ

(
1

ξ

(

ω−ξ − 1
)

+ ω−ξ lnω

)∣
∣
∣
∣
∆ξ, (22)

with ω = − ln(1−1/T ), ∆µ =
√

XSµXt, ∆σ =
√

(X)SσXt

and ∆ξ =
√

XSξXt. Matrices Sµ, Sσ and Sξ are asymp-
totic covariance matrices of parameters βµi, βσi and βξi and
X is the “design” vector (X = [1 lon(x) lat(x)]t). The
100-year quantile standard error at 2000 m is represented
on Fig. 11a. Note that the relative error does not exceed
26% where the data is available and is the highest in the ex-
treme Southern Alps and in western regions where the spa-
tial interpolation provides less information due to a lower
spatial dependence (cf Fig. 8a) and/or to the proximity of
the boundary of the studied domain. This error can be con-
sidered relatively low given all the assumptions made (linear
evolution of the GEV parameters, orographic gradient, etc).
For instance, it is lower than if dependence between stations
was not accounted for, allowing more confident predictions
of high return levels.

A pointwise/spatial comparison at constant altitude of
2000 m is then used to demonstrate the accuracy of our
model. Indeed, fitting a MSP with spatial evolutions of the
GEV parameters allows us improving the pointwise estima-
tion by “sharing information between stations”. However
the results provided are not an exact interpolation of the
pointwise quantiles, a large difference with, e.g., smoothed
quantiles using kriging techniques [Weisse and Bois, 2001].
Consequently, it must be checked that the spatial model
is not “too far” from the pointwise prediction. Fig. 11b
shows, for each station, the comparison between the point-
wise quantile projected at 2000m using Eq. (13) and the
quantile predicted by the spatial model at 2000m for differ-
ent return periods. We first note that the average curve is
very close to the first bissector, which shows that the overall
spatial model is not biased. In detail, however, the spatial
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Table 3. Parameters of matrix β̂ evaluated for the cubic spline model 27 on figure 7 after space transformation.

µ βµ0 (mm) βµ1 (mm/km) βµ2 (mm/km3) βµ3 (mm/km3)
−2.705× 102 1.668× 10−1 8.536× 10−6 1.05× 10−5

σ βσ0 (mm) βσ1 (mm/km) βσ2 (mm/km) βσ3 (mm/km3) βσ4 (mm/km3)
−3.596× 102 9.562× 10−2 1.472× 10−1 −5.946× 10−6 1.013× 10−5

ξ βξ0 βξ1 βξ2 βξ3

1.586 −7.417× 10−4 −1.078× 10−8 −1.112× 10−7

Spline knots κ1

lon (km) κ2

lon (km) κ1

lat (km) κ2

lat (km)
903.9 935.3 1986.3 2046.2

Figure 12. Spatial evolution of the GEV parameters using the spline model [Eq. (12)]. (a) µ, (b) σ,
(c) ξ at a constant altitude of 2000 m.

model slightly overerestimates the pointwise quantile on av-
erage. The most significant errors come from two stations,
one in the Northern Alps and one in the Southern Alps.
Moreover, we note that the estimation for all extreme South
Alpine stations (4 stations in black diamond) is locally bi-
ased due to the constant shape parameter ξ = 0.056 in the
spatial model while the pointwise shape parameter is nega-
tive in this region (see Sec. 3.3).

4.4. Spline models

Thirty-six different models (presented in detail in Ap-
pendix A) of spatial evolution of the GEV parameters ac-
cording to Eq. (12) were tested, using in this case only
the Brown-Resnick MSP (which outperforms the Smith and
Schlather MSP regardless of the model used to estimate the
spatial evolution of the GEV parameters) and different num-
bers of splines knots (Figure 7). The knots of the pr-spline
are regularly distributed in the considered interval. It can be
firstly noted that models with two knots in both coordinates
have the lowest TIC values and therefore correspond to the
most efficient models, since they are more flexible. Beyond
two knots, the estimation has proved impossible because
of too many parameters to be estimated compared to the
amount of data available. Consequently, models with two
knots in both directions were retained and further improved
by transforming the standard space according to Eq. (9)
in order to take into account directional effects. Hence, the
introduction of splines for the estimation of the evolution of
GEV parameters is a drastic improvement, well quantified
by the significant TIC reduction (Fig. 7) with regards to
the linear models fitted before, since the selected covariates
correspond better to the ones assumed preliminarily in the
empirical analysis (Fig. 5).

4.4.1. GEV parameters
The best model of spatial evolution is model 27 in Fig. 7

after space transformation:

µ = βµ0 + βµ1lat + βµ2(lat− κ1
lat)

3 + βµ3(lat− κ2
lat)

3

σ = βσ0 + βσ1lon + βσ2lat

+ βσ3

(√

(lon− κ1
lon)

2 + (lat− κ1
lat)

2

)3

+ βσ4

(√

(lon− κ2
lon)

2 + (lat− κ2
lat)

2

)3

(23)

ξ = βξ0 + βξ1lat + βξ2(lat− κ1
lat)

3 + βξ3(lat− κ2
lat)

3

where the parameters of the matrix β and the knots param-
eters of the spline are summarized in Table 3.

Using these pr-splines, the best covariates are the latitude
only for the location parameter µ, both latitude and longi-
tude for the scale parameter σ, and latitude for the shape
parameter ξ. The scale parameter σ is thus a 2D-cubic pr-
spline depending on both longitude and latitude, while the
location µ and shape ξ parameters are only 1D-cubic pr-
splines of latitude.

At a constant altitude (2000 m), the map obtained using
the linear model is improved. Fig. 12a shows that we ob-
tain the highest location parameters µ in the North (Mont
Blanc) but the model also predicts the increase of µ in the
extreme Southern Alps (see Fig. 5d) which was not the case
with linear models. Similarly, Fig. 12b shows that the high-
est scale parameters σ are still in the southeast (extreme
Southern Alps) but the attenuation of variations of σ in
the Northern Alps (Figs. 5b and 5e) is better accounted
for. The shape parameter ξ has an evolution with latitude
(Fig. 12c): it is negative in the extreme Southern Alps, pos-
itive in the rest of the Alps and slightly negative again far

92 5. Mapping extreme snowfalls using Max-Stable processes



GAUME ET AL.: MAX-STABLE MAPPING OF EXTREME SNOWFALLS X - 11

North. This evolution enables to account for the different
attraction domains empirically evaluated (Fig. 5f) and con-
trols the spatial variability of the quantile increase rate with
the return period. For instance, it is almost zero (in loga-
rithmic scale) in Chamonix-Mont-Blanc (Fig. 17a), positive
in Villard-de-Lans and Saint Veran (Figs. 17b and 17c) and
negative in Tende (Fig. 17d).

Finally concerning the extremal dependence, there are no
significant changes compared to the previous best fitted lin-
ear model. The directional effect found has the same direc-
tion ψ = 62.5◦ and intensity ρ = 2.05. The only difference
is the value of the extremal dependence parameters which
are slightly lower than for the linear model: a = 12.0 and
b = 0.71. However this does not significantly change the
range of extremal dependence and the extremal coefficient
represented on Fig. 9 remains consequently nearly identical
for the best spline model.

Figure 13. Maps of the 100 year quantile at a fixed al-
titude of 2000 m (a) and projected on the relief (b) using
the cubic spline model (23).

4.4.2. Quantile estimation
Eq. (21) is again used to compute the values of the 100-

year quantile at 2000m (Fig. 13a) and projected on the Alps
relief (Fig. 13b). One can note that the map of the 100-year
quantile at 2000 m (Fig. 13a) is close in terms of global evo-
lution to the one obtained with the linear model (Fig. 10a),
but locally refined. In particular, low values of the quantile
at the west of the Alps predicted by the linear model are
increased by the introduction of splines. Fig. 14 represents
a map of the ratio between the 100-year quantile from the
spline model zs100 and the 100-year quantile from the linear
model zl100. The “spline quantile” is generally higher com-
pared to the “linear quantile” on the west side of the Alps
(more than 25% in the Vercors massif for instance). On the

contrary, it is lower on the east side (≈ 10% lower in the
Queyras and Parpaillon massifs for instance).
4.4.3. Pointwise/spatial comparison and improve-
ment compared to the linear model

A comparison between the pointwise quantile at 2000 m
and the quantile from the spline spatial model at 2000 m
was again performed. We first note (Fig. 15a) that the av-
erage curve is even closer to the first bissector than with the
linear model. Hence, the spline model is more accurate on
average than the linear one. In addition, the bias present in
the Southern Alps with the linear model (Fig. 11) has been
removed by the introduction of pr-splines. Nevertheless, the
two stations already highlighted before (one in the northern
Alps, the other in the Southern Alps) still show a significant
difference compared to the pointwise estimate.

In order to further characterize the improvement of the
model by the introduction of cubic pr-splines, we calculated
the NRMSE (Normalized Root Mean Square Estimator),
both for all the French Alps, and also for each alpine region
to see in which areas the pointwise/spatial agreement has
been improved:

NRMSE =

√
∑N′

T=2

∑K
i=1 [zT (xi)− ẑT,i]

2 / [(N ′ − 1)K]

ẑmax − ẑmin

(24)
where zT (xi) is the T -year quantile for station i given by
the spatial model, ẑT,i the same quantity estimated point-
wise for the station i, ẑmax = max

T,i
[ẑT,i], ẑmin = min

T,i
[ẑT,i],

K = 40 is the number of stations and N ′ = 100 years. One
can notice (Fig. 15b) that the spline model improves the
results compared to the linear model for all the four alpine
zones. In detail, the main source of error of the linear model
is the extreme South of the Alps (NRMSElin = 20 %). It
is significantly reduced (NRMSEspline = 11 %) by the in-
troduction of pr-splines and more particularly by a spline
model for the shape parameter ξ (now accounting for the
Weibull domain in this zone). The error in other alpine ar-
eas is also reduced (down by 2% approximately). Globally,
for all the French Alps, the NRMSE decreases from 13.2%
for the linear model to 11.8 % for the spline model. This
global decrease seems relatively low compared to the dras-
tic improvements in the extreme Southern Alps, but it is
mainly due to the low number of weather stations in this
zone (only four of 40 total stations).

Figure 14. Map of the ratio between the 100-year
quantile computed using pr-splines zs100 and the 100-year
quantile computed using linear models zl100.
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Figure 15. (a) Comparison between the quantile es-
timated pointwise for a given station and the quantile
predicted by the spatial model with cubic pr-splines for
different return periods. The red curve represents the av-
erage curve, the dashed curves the 95% confidence inter-
val around this average (mean ± 2× standard deviation).
(b) Comparison of the NRMSE obtained with the linear
and spline models for all the french Alps and for each
alpine zone.

4.5. Prediction accuracy: validation on non-used
stations

The stations that were not retained for the modelling
(squares in Fig 1a) have been used to demonstrate the pre-
diction accuracy of the best spatial model with pr-splines
[Eq. 23]. Fig. 16a shows the result of this comparison with
the 95% CI determined on the calibration sample at a con-
stant altitude of 2000 m. Fig. 16b shows the same result
but projected onto the local altitude using Eq. (13). Only
5 stations on average are out of the 95% CI, for a valida-
tion sample of 84 stations which is slightly more than 5%
but still very reasonable given the many assumptions made
(spatial evolution of the GEV parameters, orographic gra-
dient, etc). The value of the NRMSE at 2000 m is 13.15%,
a little more than for the calibration sample, and 11% when
projected onto the French Alps relief. This result is quite
satisfactory, and confirms the ability of our spatial model to
predict high quantiles all over the French Alps. It also sug-
gests that the chosen calibration sample was large enough
to be representative of the main spatial patterns over the
considered region. Furthermore, the fact that the NRMSE
computed for the local altitude is lower than the one in the
2000 m case suggests that our simple way of handling alti-
tude is appropriate. To explain this decrease of the NRMSE,
one can note that, for the 2000 m comparison, both the data
used for the pointwise fitting and the spatial modeling are

transformed at 2000 m using Eq. (13). However, for the
comparison projected onto the local relief, the pointwise fit-
ting is done directly on the non-transformed data while the
results from the spatial model at 2000 m are then projected
back on the local altitude using the inverse orographic gra-
dient [Eq. (13)]. Apparently, with this last procedure, the
error propagation is less important than in the 2000 m com-
parison.

Figure 16. Cross-validation for non-used stations: com-
parison between the quantile estimated pointwise for a
given station and the quantile predicted by the spa-
tial model with cubic pr-splines for different return peri-
ods. The red curve represents the average curve and the
dashed curves the 95% confidence interval computed from
the calibration sample. (a) 2000 m, (b) Local altitude.

5. Discussion

5.1. Comparison with previous work

MSPs have been seldomly used to characterise spatial
variations of extreme hydrological quantiles. Thus, a com-
parison with the few existing applications is worthwile.

First, we have shown that, for all tested models, Brown-
Resnick and Smith MSPs give better results than the
Schlather one. On the contrary, Blanchet and Davison
[2011] show that for extreme snow depth data in Switzer-
land, the Schlather’s MSP gives much lower TIC values
than the Smith MSP, without testing the Brown-Resnick
one. This shows that there is a significant difference in
the spatial structure of extreme snowfalls (in water equiv-
alent) and extreme snow depths at the ground level. This
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Figure 17. IDF curves for Chamonix-Mont-Blanc (Mont-Blanc massif) (a), Villard-de-Lans (Vercors
massif) (b), Saint Veran (Queyras massif) (c) and Tende (Alpes-Azureennes massif) (d). The curves are
represented for different return period values (10, 30 and 100 years).

difference is likely to be related to the spatial evolution of
snow depth which is much smoother than snowfalls due to
cumulative effects involved in the formation of snow cover
(successive snowfalls and snow metamorphism). In contrast,
the asymptotic independence is necessary for extreme snow-
falls, ie θ → 2 for large distances, which is not the case with
Schlather MSP and explains its poor adjustment in our case.

Second, the anisotropy of the extremal dependence high-
lighted before is very similar to the one found by Blanchet
and Davison [2011] in the Swiss Alps for extreme snow
depths and to the one shown by Padoan et al. [2009] for U.S.
precipitation data. Indeed, although the form of dependence
highlighted is not the same for extreme snowfalls (Brown-
Resnick), extreme snow depths and rainfall (Schlather), it is
marked in all cases by an important and similar directional
effect related to orography and its main direction. Never-
theless, the local Alps direction in Switzerland is closer to
E-W than in France, explaining why Blanchet and Davison
[2011] found an anisotropy angle αSwiss = 20◦ which is the
direction of the widest valleys in Switzerland, the Rhone
and Rhine River valleys. Similarly, in Padoan et al. [2009],
the main anisotropy corresponded to the orientation of the
Appalachian Mountains.

5.2. Influence of the accumulation period

To investigate the influence of the accumulation period,
the same procedure of fitting a MSP to data (Sec. 4)
was repeated for annual snowfall maxima over 1, 5 and 7
days, using spline models for the GEV parameters and the
anisotropic Brown-Resnick MSP.
5.2.1. IDF: Intensity-Duration-Frequency

IDF curves enables the synthesis of snowfall information
at given station and thus constitutes an interesting tool
for risk management. Four stations in each alpine zone
were selected from the maps to produce Intensity-Duration-
Frequency (IDF) curves and to compare the evolution of the
quantile in these different areas with the duration of accu-
mulation and return period (Fig.17):

• Northen Alps: Chamonix-Mont-Blanc, altitude: 1042m
(Mont Blanc massif)

• Central Alps: Villard-de-Lans, altitude: 1050m (Ver-
cors massif)

• Southern Alps: Saint Veran, altitude 2010m (Queyras
massif)

• Extreme Southern Alps: Tende, altitude: 650m (Mer-
cantour massif)

First, it can be noted on Fig. 17 that the quantile strongly
increases with the duration of accumulation in Chamonix-
Mont-Blanc (Fig. 17a) and Tende (Fig. 17d), reaching more
than 300 mm w.e. for a return period of 100 years and 7

days of accumulation. The increase is weaker in Villard de
Lans (Fig. 17b) where the 100-year quantile reaches 220 mm
w.e. for a 7-days accumulation duration. In St-Veran (Fig.
17c), the quantile is attenuating close to 250 mm w.e., this
maximum being nearly attained for a 3 day accumulation
duration. This result shows the longer persistence of heavy
snowfalls in the Northeast (Mont Blanc) and the extreme
southeast of the Alps, and, on the contrary, that intense
episodes are much shorter in the Queyras massif and a bit
shorter in the pre-Alps (low and mid-altitude massifs).
5.2.2. Directional effect

Then to examine if the directional effect highlighted
above is influenced by the accumulation period, the ψ-angle
and the elongation parameter ρ of the space transformation
matrix [Eq. (9)] are represented on Fig. 18 as functions
of the accumulation period. We can firstly note that the
angle ψ of the transformation is almost constant, varying
between 62.5◦ and 65.2◦, hence corresponding to the local
Alpine axis whatever the accumulation period. This is pre-
sumably explained by the interaction between topography
and predominant atmospheric flows, and may therefore be a
rather general result for hydrological variables as discussed
before.

Figure 18. Influence of the accumulation period on the
parameters of space transformation ψ (anisotropy angle)
and ρ (elongation parameter).

However, the elongation parameter of the matrix ρ and
thus the intensity of the transformation is strongly influ-
enced by the accumulation period. The directional effect is
globally all the more important that the accumulation pe-
riod is short (ρ = 3 for a 1-day accumulation period and
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Figure 19. Joint exceedence probability P (Z∗(x) > zT ; Z∗(x′) > zT ) for 4 couples of stations of the
calibration sample. (a) Challes-les-Eaux (291 m, Bauges) – Lescheraines (590 m, Bauges), (b) Mon-
estier de Clermont (800 m, Oisan) – Pellafol (930 m, Devoluy), (c) Megeve (1104 m, Mont-Blanc) –
Villard-de-Lans (1050 m, Vercors), (d) La Mure (856 m, Oisan) – Guillaumes (620 m, Alpes-Azureennes)

ρ = 1.8 for a 7-day accumulation period). This greater sen-
sivity to the local relief (presence of valleys, moutaineous
barriers) of short extreme events with regards to more per-
sistent ones, complements and refines the preliminary re-
sults of Eckert et al. [2011] obtained with a first version of
the model. Physically, it may indicate that persistent snow
storms diffuse progressively in all directions while interact-
ing durably with the topographic barriers, reducing the dif-
ference between the ranges of the two principal anisotropy
axis of the extremal coefficient.

5.3. Joint analysis

Quantifying the joint occurence of extreme events in dif-
ferent locations can be very useful from an operational per-
spective. The joint probability of exceeding the T -year
quantiles zT (x) and zT (x

′) in two locations x and x′, can
be computed by transforming the margins distributions in
unit Frchet and using Eq. (5):

P
(
Z(x) > zT (x) ; Z(x

′) > zT (x
′)
)
=

P
(
Z∗(x) > z∗

T
; Z∗(x′) > z∗

T

)
=

1− 2

(

1− 1

T

)

+

(

1− 1

T

)θ(x,x′)
(25)

This probability was computed for 4 pairs of stations on
Fig. 19 representing different cases: low or large euclidian
distances and angles ψ close to the main direction of de-
pendence or almost orthogonal. Globally, we can note that
the estimation lies within the case of complete dependence
(θ = 1) and total independence (θ = 2) in all cases, but is
less close to total independence for low euclidian distances
(Figs. 19a and 19b) than for large distances (Figs. 19c and
19d). It is all the more remarkable if the angle α between
stations is close to the main dependence direction ψ = 62.5◦

(Fig. 19a). Indeed, for the same distance between stations
(d ≈ 20 km), the extremal coefficient increases from θ = 1.6
to θ = 1.7 for pairs of stations almost orthogonal one to each
other (Fig. 19b). In the case of large distances, the joint
probability is very close to the one corresponding to total
independence between pairs of stations (Figs. 19c and 19d),
with θ → 2. However, the influence of the directional effect
is still noticeable (dependence a bit stronger in Fig. 19c than
in Fig. 19d). This again shows the need of using MSP en-
abling total asymptotic independence for modeling extreme
snowfalls while extreme snow depth at ground level (much
smoother than snowfalls) can be modelled with asymptotic
dependence θ < 2 at large distance [Blanchet and Davison,
2011].

Additionally, we compared the modelled joint exceedence
probability Pmod to the empirical one Pemp (Fig. 20) for

return periods between 1 and 100 years. As well as for the
quantile comparison, we remark that the model is just very
slightly biased with the mean curve nearly aligned with the
first bissector. In detail, the model slightly underestimates
the empirical values. This can be explained by the fact
that some empirical values of θ have been constrained to
2, while the modelled extremal coefficient is always strictly
lower than 2. Beyond that, this graphic confirms the essen-
tial contribution of MSPs compared to previous approaches
that usually assume independence between stations since,
on average, a model with θ = 2 significantly underestimates
the empirical values, especially for short distances between
pairs of stations and/or high return periods.

5.4. Conditional quantile evaluation

Quickly updating the unconditional quantile maps after
an intense snowfall at one location can be very useful from an
operational point of view. From the previous joint analysi,

Figure 20. Comparison between the empirical joint ex-
ceedence probability Pemp and the modeled joint excee-
dence probability Pmod given by Eq. (25) for all the pairs
of stations. The red curve represents the average curve,
the green one is for a perfect dependence between sta-
tions (θ = 1 in Pmod [Eq. (25)]) and the blue one for
total independence (θ = 2 in Pmod [Eq. (25)]). The scale
is logarithmic in the main graph and linear in the inset.
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conditional return level maps can easily be obtained. We can
define the conditional probability of exceeding the T -year re-
turn level in location x knowing that the T ′-year return level
was exceeded in location x′ as:

P
(
Z(x) > zT (x) | Z(x′) > zT ′(x′)

)
=

P
(
Z∗(x) > z∗T | Z∗(x′) > z∗T ′

)
=

1

T
(26)

with z∗T ′ = −1/ ln(1 − 1/T ′). Using the general expres-
sion of the bivariate probability [Brown and Resnick , 1977;
Kabluchko et al., 2009; Davison et al., 2012]:

− lnP
(
Z∗(x) ≤ z∗T ; Z∗(x′) ≤ z∗T ′

)
=

1

z∗T
Φ (c) +

1

z∗T ′

Φ
(
c′
)

(27)

with c = d/2 + 1/d ln(z∗T ′/z∗T ), d =
√

2γ(h) and c′ = d− c,
we can determine the conditional quantile z∗T by numerically
solving the following equation:

− 1

T
+ T ′

(

1

T ′
− e

−
1

z∗
T + e

−
Φ(c)
z∗
T

−
Φ(c′)
z∗
T ′

)

= 0. (28)

An example of this conditional return level for T = T ′ =
30 years is plotted in Fig. 21 for a reference station located
in the Champsaur massif. Its spatial pattern is a combina-
tion between the shape of the extremal coefficient and of the
30-year quantile map. For instance, knowing that a snowfall
has exceeded z30 ≈150 mm w.e. in this station, leads to a
local increase of the 30-year return level of 35% at 2000 m
(conditional quantile z30 ≈220 mm w.e.). Moreover, the

Figure 21. Conditional return level maps, T = T ′ = 30
years. (a) 2000 m, (b) Local altitude. Conditional
reference station: Chapelle-en-Valgaudemar (1270 m,
Champsaur massif).

directional effect has a major influence on the spatial evo-
lution of the conditional quantile. For instance, 100 km far
from the reference station, in the main direction of depen-
dence, an increase of the conditional 30-year return level is
still noticeable, whereas almost no influence is observed in
the perpendicular direction at 50 km only.

6. Conclusion

In this study, extreme snowfalls have been evaluated in
the French Alps by mapping snowfall water equivalent an-
nual maxima at 40 measurement stations. The mathemati-
cal formalism of max-stable processes generalizing extreme
value theory to the multivariate spatial context has been
used. It has been shown in particular that the Brown-
Resnick model provides an extremal coefficient that fits the
data better than those of Smith and Schlather which are
less flexible. Additionally, space transformation has been
used to model anisotropy, which has further improved the
adjustment. Hence, it appeared that the spatial extremal
dependence depends strongly on the local orientation of the
alpine axis and the presence of large valleys. For example,
for a 3-day accumulation period, the dependence range is
more than twice as high in this alpine axis direction in com-
parison to the orthogonal direction. However, we refined
this result important for many hydrological problems and
already obtained in other cases by showing that the inten-
sity of the directional effect is all the more important when
the duration of accumulation is low.

Linear models and penalized splines with radial basis
functions for the evolution of the GEV parameters with
space were compared, showing slightly lower NRMSE values
in the case of the retained spline model in the whole French
Alps but more significantly in the extreme Southern Alps
and more generally a better modelling of complex evolu-
tions of GEV parameters with space. At a constant altitude
(2000m), the highest location parameters µ are very North
(Mont-Blanc, Aravis and Bauges massifs), but significantly
high values are also observed far South. The highest scale
parameters σ are in the Southeast (extreme Southern Alps)
which corresponds to the Mediterranean effect that tends
to bring variability. The shape parameter is mainly posi-
tive in the Northern, Central and Southern Alps, showing
a Frchet attraction domain but becomes negative in the ex-
treme Southern Alps (Weibull domain). From the (µ, σ, ξ)
maps, the 100-year snowfall quantile could be determined
at any point in the French Alps. In detail, it has also been
shown that the 100-year quantile for a 3-days accumulation
period is the highest in the Central and Southern Alps at
the boarder with Switzerland and Italy. This analysis was
also performed for different periods of accumulations, show-
ing the variability of the persistence of heavy snowfall events
across the French Alps.

These results, and more particularly quantile maps, con-
stitute a powerful operational tool for long-term managing
of avalanche risk, especially to establish hazard maps or as
inputs of propagation models [Naaim et al., 2003]. Besides,
as shown in Gaume et al. [2012], these results can be rigor-
ously coupled with a mechanical stability criterion to eval-
uate avalanche release depth distributions and then used to
perform statistical–dynamical simulations to evaluate run-
out and pressure distributions [e.g. Eckert et al., 2008].

The employed smooth modelling of GEV parameters as-
sociated with MSPs and a nested model selection procedure
constitutes the methodological strong point of the work. We
also studied how a joint analysis can be performed to eval-
uate the risk of obtaining an extreme event in two different
locations within the same year, leading to conditional return
level maps which can also be very useful from an operational
perspective. Validation on other available data has shown
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the accuracy of the fitted model and of the simple way of
handling altitudinal effects which has been proposed. This
up-to-date framework could be put in use for various other
applications in hydrology such as heavy rainfalls or flood ex-
tremes as soon as a sufficient sample of long block maxima
series is avalaible.

Finally, since the main objective of our work was pre-
diction as a continuous function of space, we only used the
geographical coordinates as covariates. However, additional
physical quantities could be further introduced in the model
such as the winter mean snowfall (WMS) which has been
previously put forward, in order to select the best physi-
cal drivers of the spatial trends we highlighted. Another
improvement perspective of the model is the test of very
recently developed MSPs which were not considered here.
Additionally, a pre-selection of the data corresponding to
the flux type (NNW / SSE fluxes) would be interesting in
order to investigate if dependence patterns in extreme snow-
fall vary accordingly.

Appendix A: Covariates for the spatial
evolution of the GEV parameters

Table A.1. Details about the covariates used for the differ-
ent evolution models of the GEV parameters with space. The
numbers corresponds to the model index in Fig. 7. The last
seven models are mixed since they involve spline evolutions of
µ and σ and a linear evolution of ξ with space.

Covariates µ Covariates σ Covariates ξ
Model Type lat long lat long lat long

1 linear × × × ×
2 linear × × ×
3 linear × × ×
4 linear × × ×
5 linear × ×
6 linear × ×
7 linear × × ×
8 linear × ×
9 linear × ×
10 linear × × × × × ×
11 linear × × × × ×
12 linear × × × × ×
13 linear × × × × ×
14 linear × × × ×
15 linear × × × ×
16 linear × × × × ×
17 linear × × × ×
18 linear × × × ×
19 spline × × × ×
20 spline × × ×
21 spline × × ×
22 spline × ×
23 spline × ×
24 spline × ×
25 spline × ×
26 spline × × × × ×
27 spline × × × ×
28 spline × × × ×
29 spline × × ×
30 spline × × ×
31 spline × × ×
32 spline × × ×
33 spline × × × × ×
34 spline × × × ×
35 spline × × × ×
36 spline × × ×
37 spline × × ×
38 spline × × ×
39 spline × × ×
40 spline × × × × × ×
41 spline × × × × ×
42 spline × × × × ×
43 spline × × × ×
44 spline × × × ×
45 spline × × × ×
46 spline × × × ×
47 mixed × × × × ×lin

48 mixed × × × ×lin

49 mixed × × × ×lin

50 mixed × × ×lin

51 mixed × × ×lin

52 mixed × × ×lin

53 mixed × × ×lin
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Chapter 6

Coupling of mechanical and

meteorological factors for the

evaluation of avalanche release depth

distributions

This chapter is composed of an article entitled “Relative influence of mechanical and mete-

orological factors on avalanche release depth distributions: An application to French Alps”

which was published in Geophysical Research Letters the 20th of June 2012. The following

authors helped in the construction of this paper: Guillaume Chambon, Nicolas Eckert and

Mohamed Naaim.

This paper presents a rigorous formalism in which avalanche release depth distributions

are expressed through a coupling between the mechanical and meteorological ingredients

presented in the previous chapters. Considering that an avalanche can occur only if the

snowfall depth exceeds a critical value corresponding to a stability criterion, release depth

distributions obtained from the slab–weak layer mechanical model (Chapter 4) are coupled

with the distribution of 3-day extreme snowfalls (Chapter 5). This coupled model is able to

reproduce field data from 369 natural slab avalanches in La Plagne (France) for both the tail

and the core of the distribution. Small to medium-sized avalanches are controlled mainly by

mechanics, whereas large avalanches are controlled by a strong mechanical–meteorological

coupling. Finally, we demonstrate the non-universality of the obtained distribution, which

is strongly space-dependent, and, using the consistent interpolation formalism presented

in Chapter 5, our model is used to obtain release depth maps for different return periods.
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Relative influence of mechanical and meteorological factors

on avalanche release depth distributions:

An application to French Alps

J. Gaume,1 G. Chambon,1 N. Eckert,1 and M. Naaim1

Received 9 April 2012; revised 14 May 2012; accepted 17 May 2012; published 20 June 2012.

[1] The evaluation of avalanche release depth distributions
represents a major challenge for hazard management. This
paper presents a rigorous formalism in which these distribu-
tions are expressed through a coupling of mechanical and
meteorological factors. Considering that an avalanche can
occur only if the snowfall depth exceeds a critical value
corresponding to a stability criterion, release depth distribu-
tions obtained from a slab–weak layer mechanical model are
coupled with the distribution of 3-day extreme snowfalls. We
show that this coupled model is able to reproduce field data
from 369 natural slab avalanches in La Plagne (France). Not
only the power-law tail of the distribution, corresponding to
large slab depths, but also the core of the distribution for
shallow slab depths, are well represented. Small to medium-
sized avalanches appear to be controlled mainly by
mechanics, whereas large avalanches and the associated
power-law exponent, are influenced by a strong mechanical-
meteorological coupling. Finally, we demonstrate that the
obtained distribution is strongly space-dependent, and, using
a consistent interpolation formalism, our model is used
to obtain release depth maps for given return periods.
Citation: Gaume, J., G. Chambon, N. Eckert, andM. Naaim (2012),

Relative influence of mechanical and meteorological factors on ava-

lanche release depth distributions: An application to French Alps,

Geophys. Res. Lett., 39, L12401, doi:10.1029/2012GL051917.

1. Introduction

[2] The evaluation of avalanche release depth distributions
represents a challenging issue for the mapping, zoning and
long term management of hazard in mountainous regions. In
particular, these distributions constitute one of the essential
ingredients (besides friction, terrain, and erosion) to predict
accurate run-out distances using avalanche propagation
models [Barbolini et al., 2000]. Currently, a strong debate is
still ongoing concerning the existence of a possible universal
behavior for these distributions. In their pioneering work,
Rosenthal and Elder [2003] studied a set of 8000 avalanches
mixing artificial and natural triggers at Mammoth Mountain
(USA), and showed that the release depth cumulative
exceedance distribution (CED) appears to follow a power-
law of exponent �2.6. This led them to postulate that ava-
lanche release depths are scale-invariant and behave as a

chaotic process. They argue that this behavior may be due
to the deposition and evolution of snow layers and to the
mechanics of slab avalanche release. McClung [2003]
reported the same behavior and power-law exponent for a
set of 187 slab avalanches in British Columbia (mix of trig-
gers), and points out the possible role of fracture toughness
distributions and mechanical size effects. This author also
analyzed separately artificial and natural avalanche releases
to study the effect of the triggering mechanism. A scale-
invariant CED tail was also found on the set of 56 natural
avalanches, although on a relatively small range of depths in
this case and with an apparent power-law exponent of �4.4.
Failletaz et al. [2006] studied 3450 avalanches in Tignes and
La Plagne (France) and also reported a power-law CED with
a characteristic exponent of �2.4 for artificially released
avalanches. Given the similarity of this result with previous
studies carried out in different areas, they concluded on the
universality of this power-law exponent. Finally, a more
recent study by Bair et al. [2008] compares the adjustment of
different statistical distributions on release depth data from
different mountainous areas, and show that GEV (General-
ized Extreme Value) and Frechet distributions seem to
provide better fits than power-law distributions for all the
analyzed datasets. They also show a significant spatial vari-
ation in the power-law exponents of the CED tails and
conclude, on the contrary, on a non-universal behavior of
avalanche release depth distributions.
[3] In this study, we present a new modeling framework

in which the observed avalanche release depth distributions
are explained through a coupling of release mechanics
and extreme snowfall probabilities. We will show that our
approach is capable of satisfactory reproducing release depth
data, and supports the conclusions of Bair et al. [2008] in that
neither the core nor the power-law tail of the CED appear to
have universal characteristics.

2. Release Depth Data

[4] Ski patrollers from La Plagne (France) ski resort pro-
vided us with a database collecting the release depth of
369 natural and 5323 artificially-triggered slab avalanches
that occurred from winters 1998 to 2010. We considered that
the typical uncertainty on these data is on the order of 30%
(representative error associated to the measurement proto-
col). Figure 1a shows the obtained release depth CED for
both trigger types. In both cases, a power law of exponent a
was adjusted to the data for depths higher than a cutoff hc. As
shown in Figure 1b, for artificial releases, the power-law
exponent aa varies only slightly with the chosen cutoff hc.
The best fit, in terms of adjustment error, was found for

1IRSTEA, UR ETNA, St Martin d’Heres, France.
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a relatively low cutoff value hc
a = 0.3 m and leads to an

exponent aa = �2.6, very close to the value reported in
previous studies [Rosenthal and Elder, 2003; McClung,
2003; Failletaz et al., 2006]. On the contrary, for natural
releases, the power-law exponent an varies significantly with
the cutoff hc, and the power-law regime tends to be restricted
to large avalanches only. The best fit, in this case, was found
for a cutoff value hc

n = 0.7 m leading to an exponent an =
�4.5, in agreement with the value reported by McClung
[2003]. In view of this relatively large cutoff value, how-
ever, it is clear that a complete description of the release
depth CED cannot be limited to the power-law tail, but needs
to encompass the entire depth range. In the following, we
focus specifically on the naturally-released slab avalanches,
which are generally the most relevant in terms of hazard
zoning applications.

3. Coupled Mechanical-Meteorological Model

3.1. Theoretical Framework

[5] Our approach is based on the assumption that a natural
slab avalanche occurs when the recent snowfall exceeds a
critical depth corresponding to a mechanical stability crite-
rion. In addition, to account for their spatial variability, both
the snowfalls and the critical depth are considered in a sto-
chastic framework. Let us thus define pm(h) and psf (hhsf ) as
the probability densities of the mechanical critical depth
h and of the snowfall depth hsf, respectively. Then, the con-
ditional probability density of having an avalanche release
depth h knowing that a snowfall of depth hsf occurred, can be
expressed as follows:

pðh j hsf Þ ¼
pmðhÞ

R hsf
0

pmðh′Þdh′
if h ≤ hsf

0 if h > hsf

:

8

>

<

>

:

ð1Þ

This amounts to truncating the mechanical distribution
pm(h), retaining only values corresponding to h ≤ hsf (see

Figure 3). Finally the global release depth probability density
p(h) is obtained by integrating over all values of hsf :

pðhÞ ¼
Z ∞

0

pðh j hsf Þpsf ðhsf Þdhsf ¼ pmðhÞ psf=mð≥hÞ; ð2Þ

where psf=mð≥hÞ ¼
Z

∞

h

psf ðhsf Þ
R hsf
0

pmðh′Þdh′
dhsf : ð3Þ

The avalanche release depth probability is thus expressed
through a coupling between mechanical and meteorological
factors. As will be shown later, the rigorous coupling
equation (2) can be approximated by the following empirical
expression:

pðhÞ ≈ ~pðhÞ ¼ pmðhÞpsf ð≥hÞ=C; ð4Þ

where psf (≥h) represents the snowfall CED andC =
R

0
∞ pm(h′)

psf (≥h′)dh′ is a normalization constant. In equation (4), we
clearly recognize that the global release depth probability
p(h) corresponds to the mechanical probability pm(h) weighted
by the probability of having a snowfall hsf greater than h.

3.2. Mechanical Probability Density pm(h)

[6] To determine the probability density pm(h) of the crit-
ical depth h, a mechanical model of slab avalanche release
was built. Such avalanches generally result from the rupture
of a weak-layer buried under a cohesive slab [Schweizer
et al., 2003, and references therein]. In detail, it has also
been shown [McClung, 1979; Schweizer, 1999] that the shear
rupture generally initiates in local weak spots, from which it
then propagates through a stress concentration mechanism.
The two essential ingredients taken into account in our model
are thus the spatial variability of weak-layer mechanical
properties and the redistribution of stresses by elasticity of
the overlying slab. At this stage, normal collapse of the weak
layer, which has been suggested in some studies [Heierli
et al., 2008; van Herwijnen and Heierli, 2009] to play an
important role in the propagation of the instability, is not
included.
3.2.1. Formulation of the Model
[7] A 2D (plane stress condition) uniform slope of length

L = 50 m, composed of a slab and a weak layer was simulated
(Figure 2a) using the finite element code Cast3m. Gravity is
the only applied external force and the system is loaded by
progressively increasing the slope angle q until rupture. The
slab is elastic with a Young modulus E = 1 MPa, a Poisson
ratio n = 0.2, and a density r = 250 kg.m�3. The weak layer is
modeled as a quasi-brittle (strain-softening) interface with a
Mohr-Coulomb rupture criterion characterized by a cohesion
c and a friction coefficient m = tan 30�. The spatial hetero-
geneity of the weak layer is represented through a stochastic
distribution of the cohesion c which, following Jamieson
and Johnston [2001] and Kronholm and Birkeland [2005],
assumes the form a Gaussian law with a spherical covariance
function of correlation length ɛ. An example of an hetero-
geneity realization for ɛ = 2 m is represented in Figure 2a.
According to Schweizer et al. [2008], the values of the
correlation length ɛ have been varied in the range 0.5–10 m.
The cohesion standard deviation sc was fixed at 0.3 kPa
while the average 〈c〉 was varied in the range 0.6–1.5 kPa,

Figure 1. (a) CED of La Plagne slab avalanche release
depth data. Natural and artificial avalanches are distinguished
and power-laws are adjusted to the tails of the distributions.
(b) Power law exponent a as a function of the cutoff value
hc for the two avalanche types.
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corresponding to coefficients of variation CV = sc /〈c〉
ranging between 20% and 50%.
3.2.2. Release Depth Distributions for a Fixed Slope
Angle
[8] More than 5000 simulations were performed for dif-

ferent realizations of the heterogeneity and different sets of
model parameters. This allowed us to obtain statistical dis-
tributions of release depth h for fixed values of slope angle q.
As a consequence of the Gaussian distribution of the
cohesion, these distributions of h are also found to follow
Gaussian laws:

p h j qð Þ ¼ 1

sh

ffiffiffiffiffiffi

2p
p e

�1
2

�

h� hh i
sh

�2

; ð5Þ

where the average 〈h〉 and the standard deviation sh are
related to the model parameters as follows: 〈h〉 = 〈c〉/(rgF)

and sh = sc f (ɛ)/(rgF) = s∞ f (ɛ), with F = sin q� m cos q, and
f (ɛ) ≈ kɛ1/3 (k = 0.23 m�1/3). The factor s∞ represents the
standard deviation that would be observed if the stress field in
the weak layer exactly followed the heterogeneity variations
(case of a completely rigid slab). As shown in Figure 2b, for
realistic values of ɛ, sh

2 is always much lower than the rigid
slab variance s∞

2 . In addition sh
2 decreases with increasing

slope angle q and with decreasing correlation length ɛ. These
evolutions can be explained by a smoothing effect of the
weak-layer heterogeneity due to redistributions of stresses by
slab elasticity.
3.2.3. Integration Over All Slope Angles
[9] Since release depth data from La Plagne encompass

release zones with various slope angles, the mechanical
probability pm(h) is obtained by integrating the release depth
distributions p(h|q) derived from mechanical modeling over
all values of q. For the sake of simplicity, we chose to con-
sider a uniform slope probability distribution p(q) between
qmin = 30� and qmax = 90�. This assumption enables us to
obtain an analytical expression for pm(h):

pmðhÞ ¼
Z qmax

qmin

pðh∣qÞpðqÞdq ¼ scf ðɛÞ
rgh2

ffiffiffiffiffiffi

2p
p g1ðhÞ þ g2ðhÞ½ �; ð6Þ

with

g1ðhÞ ¼ e�
1
2
U2

1 � e�
1
2
U2ðhÞ2 ;

and

g2ðhÞ ¼
ffiffiffi

p

2

r

U1 erf
U1
ffiffiffi

2
p

� �

þ erf
U2ðhÞ

ffiffiffi

2
p

� �� �

;

where we defined U1 = 〈c〉/[sc f (ɛ)] and U2(h) = (rgh� 〈c〉)/
[sc f (ɛ)]. As shown in Figure 3a, the mechanical probability
density pm(h) displays negligible values below a character-
istic depth hm. This mechanical cutoff results from a com-
bination of the weak-layer Mohr-Coulomb criterion and the
slab heterogeneity smoothing effect, and can be approxi-
mated as hm ≈ [〈c〉 � 2sc f(ɛ)]/(rg). A second important
observation is that, for h > hm, the CED pm(≥h) follows a
power-law trend with a characteristic exponent Ym = �1
(Figure 4).

3.3. Snowfall Probability Density psf (hsf )

[10] Natural avalanches, which generally occur after or
during intense precipitations, can be considered as rare

Figure 2. (a) Geometry of the simulated system: a weak
layer interface under a cohesive slab of depth h. A realization
of the heterogeneity of weak layer cohesion for a correlation
length ɛ = 2 m is represented (average 〈c〉 = 1 kPa, standard
deviation sc = 0.3 kPa). (b) Evolution of release depth vari-
ance sh

2 as a function of slope angle q for values of correlation
length ɛ = 0.5 m and ɛ = 2 m. The variance corresponding to
a completely rigid slab s∞

2 is also shown.

Figure 3. Diagram illustrating the coupling between the mechanical probability pm and the extreme snowfall probability psf.
(a) Release depth probability density predicted by the mechanical model. The grayed portion corresponds to snow-depth
values higher than the available snowfall hsf. (b) Probability density of 3-days extreme snowfalls. (c) Coupled mechanical-
meteorological probability density of avalanche release depth. The histogram corresponds to La Plagne data.
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events in the statistical sense. In detail, the 3-day extreme
snowfall is generally considered as the best avalanche pre-
dictor [Schweizer et al., 2003]. Hence, to define the meteo-
rological probability psf (hsf) introduced in equation (2), we
analyzed the 3-day snowfall annual maxima in La Plagne
(Meteo France data: daily measurements since 1966). These
maxima follow a GEV distribution:

psf ð≥hÞ ¼ 1� exp � 1þ x
h� m

s

� ��1=x
" #

; ð7Þ

where m, s and x are, respectively, the location, scale, and
shape parameters. Taking moreover into account an average
snow density of 60 kg.m�3 (24 h-density from La Plagne
data) and a settling of the snowpack after 3 days of 30%,
meteorological data in water equivalent can be converted into
snow heights, which leads to the following GEV parameters:
m = 0.98 m, s = 0.21 m and x = 0.214. As shown in Figure 3b
(density) and Figure 4 (CED), the density psf (hsf) is negligible
for hsf < hs ≈ 0.7 m in La Plagne (in general, hs is a function
of m, s and x). For hsf > hs, the CED decreases as a power law
whose exponent Ysf is directly related to the shape parameter
x of the GEV: Ysf =�1/x ≈�4.68 in La Plagne. Note that the
existence of this power-law tail comes from the fact that the
GEV in La Plagne belongs to the Fréchet domain (x > 0). It
would not be the case with Weibull (x < 0) or Gumbel (x = 0)
distributions.

3.4. Coupling Result

[11] The coupled release depth probability p(h) computed
from equation (2) is represented on Figure 3c (density) and
Figure 4 (CED). First, it can be noted that, as already men-
tioned, the approximate probability ~p (h) (equation (4)) is
almost identical to the rigorous coupled probability p(h) for
the whole range of depths considered. Concerning the shape
of p(h), three different zones can be distinguished (Figure 4).
In zone A, for h < hm no avalanche can occur. Hence, a new

snowfall has to be larger than hm, after settling, to potentially
trigger an avalanche. In zone B, corresponding to hm ≤ h ≤ hs
(small to medium-sized avalanches), the coupled CED shows
a concave shape (in log-log scales). This zone corresponds
to a regime of weak coupling in which the release depth
probability p(h) is essentially controlled by the mechanical
probability pm(h), the available amount of snow being always
sufficient to trigger an avalanche if the mechanical criterion
is reached. Lastly, zone C for h > hs (large avalanches) cor-
responds to a regime of strong coupling. Snowfall depths
larger than hs become infrequent and thus play the role of
a limiting factor on the mechanical probability pm(h) in the
expression of the coupled probability p(h). In this regime,
as a direct consequence of the power-law trends displayed
both by pm(h) and psf (h), the coupled release depth CED also
decreases as a power-law. According to equation (4), the cor-
responding exponent is equal to Y = Ym + Ysf = �1 � 1/x.

4. Comparison With Data and Discussion

[12] As shown in Figures 3 and 4, the coupled model
presented above is able to reproduce La Plagne data with
excellent accuracy. Both the power-law tail, corresponding to
large slab depths, and the core of the distribution for shallow
slab depths, are well represented. To obtain this result, only
the mechanical cutoff hm was adjusted, which in turn depends
on a combination of the average cohesion 〈c〉, the slab density
r, the cohesion standard deviation sc and the heterogeneity
correlation length ɛ. In our case, the best agreement with the
data was obtained for a value hm ≈ 0.18 m, which corresponds
for instance to 〈c〉 = 0.6 kPa and ɛ = 2 m (the other parameters
being fixed as indicated in Section 3.2). Note also that the
obtained agreement critically depends on the fact that, for
values of ɛ in the meter range, the variance sh

2 of the mech-
anical distribution pm(h) is relatively low due to the elastic
smoothing effect (Figure 2b). A less satisfactory data adjust-
ment in zone B would be obtained with values of ɛ larger than
10–15 m.
[13] Concerning the power-law tail of the CED, it can

be noted that, in spite of the good agreement observed in
Figure 4, the exponent value Y ≈ �5.68 predicted by the
model is lower than an ≈ �4.5 estimated directly from
release depth data. This highlights the difficulty of accurately
assessing a power-law exponent on the few data correspond-
ing to large avalanches, as already pointed out by McClung
[2003]. An important outcome of our coupled model is that
the tail exponent Y strongly depends on the local meteoro-
logical conditions through the shape parameter x of the
GEV distribution of extreme snowfalls. In the French Alps,
x-values are generally positive, but present an important
spatial variability at regional scale, typically varying between
�0.2 and 0.4. Hence, in agreement with the conclusions of
Bair et al. [2008], the decay of the tail of natural slab ava-
lanche release depth CED cannot be expected to be universal.
[14] More generally, due to the spatial heterogeneity of the

GEV parameters and mechanical properties, it is actually the
complete distribution of avalanche release depths which is
strongly variable from one location to another. To highlight
this point, our model has been used to predict avalanche
release depths for a given return period over all French Alps.
For that purpose, a spatial interpolation of 3-day extreme
snowfall data has been performed using a robust mathemat-
ical formalism based on Max-Stable processes and properly

Figure 4. Mechanical release depth CED pm(h) (equation (6)),
extreme snowfall CED psf (h) (equation (7)), slab release depth
CED predicted by the coupled model p(h) (equation (2)), and
approximated release depth CED ~p(h) (equation (4)), com-
pared with field release depth data from La Plagne. The
numerical results have been obtained for a correlation length
ɛ = 2 m and an average cohesion 〈c〉 = 0.6 kPa (the other
parameters being indicated in text).
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accounting for the spatial dependence of the data [Blanchet
and Lehning, 2010; Blanchet and Davison, 2011]. A brief
description of this spatial model can be found in Eckert et al.
[2010, 2011]. As shown in Figure 5, the results highlights
that, at first order, avalanche release depths are dominated by
altitudinal effects. However, in detail, the variation patterns
of the GEV parameters with latitude and longitude can also
be noticed. For instance, the release depths predicted in the
Haute-Maurienne massif culminating at 3751 m are signifi-
cantly higher (>1.6 m) than those in the Pelvoux massif
culminating at 4102 m (<1.4 m). Note that, at this stage, these
spatial trends are purely due to snowfall properties since the
values of all mechanical parameters have been assumed
constant in this interpolation. In a further step, spatialization
of the cohesion distributions will also need to be considered,
but additional data will be required for that purpose.

5. Conclusion

[15] This paper investigates the relative influence of
mechanical and meteorological factors on avalanches release
depth distributions. A robust formalism for the coupling of a
stochastic stability criterion (resulting from spatial hetero-
geneity of the mechanical properties) with extreme snowfall
distributions has been developed. It has been shown that this
coupled mechanical-meteorological model is able to repro-
duce with excellent accuracy the release depth distribution
corresponding to 369 natural slab avalanches in La Plagne
(France). Not only the power-law tail, corresponding to large
slab depths, but also the core of the distribution for shallow
slab depths, are well represented. This agreement does not
prove that the physical mechanisms of avalanche release are
fully captured in the model proposed. However, the retained
ingredients appear sufficient to produce realistic release
depth distributions and to provide an interpretation of the
distribution parameters (cutoff, exponent, etc.) in terms of
clearly-identified nivological properties.
[16] From the model, three avalanche release regimes have

been identified. Large avalanches, in particular, are con-
trolled by a strong coupling between mechanical and

meteorological factors. In agreement with previous studies,
the release depth CED in this regime behaves as a power-law.
However, the corresponding exponent directly depends on
the shape parameter of the meteorological GEV distribution
and, thus, cannot be considered as universal.
[17] From an operational perspective, the model presented

in this paper can be viewed as a powerful tool capable of
evaluating avalanche depth distributions at any location,
provided snowfall data are available or a suitable spatial
interpolation procedure is used. It can be highlighted that,
compared to the classical engineering method in which only
the 3-day extreme snowfalls are taken into account, the
release depth values for a given return period computed with
our coupled model generally tend to be lower (see Figure 4).
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Chapter 7

Conclusion

In this thesis, a framework for the evaluation of avalanche depths in any potential release

zone using a coupled statistical–mechanical approach was proposed. First, the influence of

weak layer heterogeneity on slab avalanche release was studied using a finite element model.

A shear-softening weak layer underlying an elastic slab was modeled, and the system is

loaded by increasing the slope angle until failure and avalanche release. After validating

the model on the case of nil-cohesion weak spots, the effect of a heterogeneous weak-layer

cohesion field was studied. Its heterogeneity was modeled by Gaussian distribution, with

a spherical covariance function characterized by a spatial correlation length. Release angle

distributions were analyzed: the average release angle decreases as a power-law with slab

depth h but is almost unaffected by the correlation length ǫ and thus by the heterogeneity;

the release angle variance decreases as a power-law with slab depth h and increases, also

as a power-law, with the correlation length ǫ. Then a heterogeneity smoothing effect due

to redistributions of stresses by elasticity of the slab was highlighted. This smoothing

effect induces a reduction of the release angle variance compared to the case of a fully rigid

slab. The smoothing intensity depends on the ratio between the correlation length ǫ and a

characteristic elastic length of the system Λ. The obtained release angle distributions were

then rigorously inverted, yielding a release depth distribution integrated over all slopes.

We also used this mechanically-based statistical model in the case of an elastic-brittle slab

to study the position of slab tensile failure. Two types of releases were observed in the

simulations: (1) Full-slope releases for which the heterogeneity is not sufficient to trigger

slab tensile failure. Theses releases are influenced by the topography and the morphology

of the path. (2) Partial-slope releases for which the local variations of weak-layer cohesion

is substantial and can trigger the slab tensile crack on its own. Importantly, for both

release types, the primary process is always the basal shear failure of the weak layer. We

showed that, with realistic sets of parameters, the releases are full-slope. Hence, the crown

fracture always occurs at particular topographical and morphological features (such as

ridges, rocks, trees, etc).
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In the future, a straightforward extension of the model to the 3d-case should allow to

predict avalanche release volumes.

Then, extreme snowfalls have been evaluated in the French Alps by mapping snowfall

water equivalent annual maxima coming from 40 measurement stations. The mathematical

formalism of max-stable processes generalizing extreme value theory to the multivariate

spatial context has been used. It has been shown in particular that the Brown-Resnick

model provides an extremal coefficient that fits the data better than those of Smith and

Schlather which are less flexible. Besides, space transformation has been used to model

anisotropy, which further improved the adjustment. It appeared that the spatial extremal

dependence depends strongly on the local orientation of the alpine axis and the presence of

large valleys. For example, for a 3-day accumulation period, the dependence range is more

than twice as high in this alpine axis direction in comparison to the orthogonal direction.

We refined this result important for many hydrological problems and already obtained

in other countries by showing that the intensity of the directional effect is all the more

important than the duration of accumulation is low.

Linear models and penalized splines with radial basis functions for the evolution of the

GEV parameters with space were compared on the basis of TIC and NRMSE criteria. The

best results were obtained with a spline model, showing lower TIC and NRMSE values for

the whole French Alps, and more significantly in the extreme Southern Alps. At a constant

altitude (2000m), the highest location parameters µ are very North (Mont-Blanc, Aravis

and Bauges massifs), but significantly high values are also observed far South. The highest

scale parameters σ are in the Southeast (extreme Southern Alps) which corresponds to

the Mediterranean effect that tends to bring variability. The shape parameter ξ is mainly

positive in the Northern, Central and Southern Alps, showing a Frechet attraction domain,

and becomes negative in the extreme Southern Alps (Weibull domain).

The results of our best model, and more particularly the obtained quantile maps,

present a clear interest for operational applications. For example, the 100-year snow-

fall quantile can be determined at any point in the French Alps and for different periods of

accumulations. In detail, it has been shown that 100-years quantile for a 3-days accumula-

tion period is the highest in the Central and Southern Alps at the boarder with Switzerland

and Italy. Furthermore, the influence of the accumulation period on the intensity and the

frequency of extreme events has been analyzed.

It has also been shown how a joint analysis can be performed to evaluate the risk

of obtaining an extreme event in two different locations within the same year, leading to

conditional return level maps which can also be very useful from an operational perspective.

Validation on other available data has shown the accuracy of the fitted model and of the

simple way of handling altitudinal effects which has been proposed.
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The employed smooth modelling of GEV parameters associated with MSPs and a nested

model selection procedure constitutes the methodological strong point of the work. This

up-to-date framework could be put in use for various other applications in hydrology.

As improvement perspectives of the model, other MSPs which have been very recently

developped could also be tested, and other covariates could be further introduced in the

model such as the winter mean snowfall (WMS). Finally, a pre-selection of the data cor-

responding to the flux type (North–North West / South–South East fluxes) would be an

interesting prospect to investigate given the significant regional effects demonstrated in

this thesis.

Finally, to obtain avalanche release depth distributions, mechanical and meteorological

factors both need to be taken into account. Hence, a robust formalism for the coupling

of a stochastic stability criterion (resulting from spatial heterogeneity of the mechanical

properties) with extreme snowfall distributions has been developed. It has been shown that

this coupled mechanical-meteorological model is able to reproduce with excellent accuracy

the release depth distribution corresponding to 369 natural slab avalanches in La Plagne

(France). Not only the power-law tail, corresponding to large slab depths, but also the

core of the distribution for shallow slab depths, are well represented. A detailed sensitivity

analysis showed that this good agreement is obtained with only one adjustable parameter,

namely the average cohesion 〈c〉, and critically depends on the heterogeneity smoothing

effect by slab elasticity.

From the coupled model, three avalanche release regimes have been identified. Large

avalanches, in particular, are controlled by a strong coupling between mechanical and

meteorological factors. In agreement with previous studies, the release depth CED in this

regime behaves as a power-law. However, the corresponding exponent directly depends

on the shape parameter of the meteorological GEV distribution and, thus, cannot be

considered as universal.

From an operational perspective, the model presented in this thesis can be viewed as

a powerful tool capable of evaluating avalanche depth distributions at any location, as

soon as meteorological data are available. These distributions can be used as inputs of

propagation models (Barbolini et al., 2000; Naaim et al., 2003) to establish hazard maps.

It can be highlighted that, compared to the classical engineering method in which only

the 3-day extreme snowfalls are taken into account, the release depth values for a given

return period computed with our coupled model generally tend to be lower. Besides, using

the mathematical formalism of max-stable processes, avalanche release depth maps for a

given return period can be obtained. At this stage, the spatial trends observed are purely

due to snowfall properties since the values of all mechanical parameters have been assumed

constant in this interpolation. In a further step, spatialization of the cohesion distributions
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will also need to be considered, but additional data will be required for that purpose.

The proposed mechanically-based probabilistic model coupled with extreme snowfalls

thus fulfills the objectives of the study, namely the evaluation of avalanche release depth

distributions in any potential release zone, provided snowfall data are available or a suitable

spatial interpolation procedure is used. However, before beeing fully used operationally,

additional tests on other datasets in other locations should now be performed to further

validate this model.

To finish, a GUI (Graphical User Interface) was developed in the Java language in order

to simplify the selection of snowfall depth data coming from the max-stable model and

avalanche release depth data coming from the coupled model for different return periods

for all French Alps massifs. This interface also shows the GEV distribution and the values

of its parameters (µ, σ and ξ). A screenshot of this GUI in shown in Fig. 7.1.

Figure 7.1: Screenshot of the GUI (Graphical User Interface) developed for the selection of

snowfall depth data coming from the max-stable model and avalanche release depth data

coming from the coupled model for different return periods for all French Alps massifs.
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Conclusion (version française)

Dans cette thèse, la prédétermination des hauteurs d’avalanche dans toute zone de départ

potentielle a été réalisée en utilisant une approche couplée statistique–mécanique. Tout

d’abord, nous avons étudié l’influence de l’hétérogénéité de la couche fragile sur le départ

des avalanches de plaque à l’aide d’une modélisation par élements finis. Le système simulé

est composé d’une couche fragile modélisée comme une interface adoucissante en cisaille-

ment sous une plaque élastique. Le système est chargé en augmentant l’angle de la pente

jusqu’à la rupture correspondant au départ de l’avalanche. Après avoir validé le modèle

sur le cas de zones faibles de cohésion nulle, l’effet d’une cohésion de la couche fragile

spatialement hétérogène a été étudié. L’hétérogénéité est représentée par une distribution

gaussienne, avec une fonction de covariance sphérique caractérisée par une longueur de

corrélation spatiale. Les distributions d’angle de départ obtenues ont été analysées: l’angle

de départ moyen décroit avec l’épaisseur de la plaque h comme une loi puissance mais

n’est quasiment pas affecté par la longueur de corrélation ǫ et donc par l’hétérogénéité; la

variance de l’angle de départ décroit également avec h comme une loi puissance et aug-

mente avec ǫ. Un effet de lissage de l’hétérogénéité du aux redistributions de contraintes

par élasticité de la plaque a été mis en évidence. Cet effet de lissage induit une réduc-

tion de la variance de l’angle de départ par rapport au cas d’une plaque complétement

rigide. L’intensité du lissage dépend du rapport entre la longueur de corrélation ǫ et

une longueur élastique caractéristique du système Λ. Ces distributions d’angle de départ

ont ensuite été rigoureusement inversées afin d’obtenir une distribution de hauteur de dé-

part d’avalanche intégrée sur toutes les pentes. Nous avons également utilisé ce modèle

mécanique-statistique dans le cas d’une plaque élastique-fragile pour étudier la position de

la rupture en traction de la plaque. Deux types de départs ont été observés dans les sim-

ulations: (1) Les départs complets pour lesquels l’hétérogénéité n’est pas suffisante pour

déclencher une rupture en traction. Ces départs sont influencés par la topographie et la

morphologie du couloir. (2) Les départs partiels pour lesquels les variations locales de la

cohésion de la couche fragile sont importantes et peuvent déclencher la rupture en traction
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de la plaque à elles-seules. Il est important de noter que, pour les deux types de départs, le

processus de rupture primaire observé est toujours la rupture en cisaillement de la couche

fragile basale. Nous avons aussi montré que, avec un ensemble de paramètres réalistes, les

départs sont complets. Ainsi, la zone de départ se situe toujours au niveau de caractéris-

tiques topographiques et morphologiques particulières (ruptures de pentes, rochers, arbres,

etc).

Plus généralement, une extension du modèle au cas 3D devrait permettre de prédire

les volumes de départ d’avalanche.

Dans un deuxième temps, la prédétermination des chutes de neige extrêmes dans les

Alpes françaises a été réalisée en cartographiant les maxima annuels de chutes de neige en

équivalent en eau mesurés dans 40 stations nivo-météorologiques. Le formalisme mathé-

matique des processus max-stables généralisant la théorie des valeurs extrêmes au contexte

multivarié spatial a été utilisé. Il a été montré en particulier que les coefficients extrémaux

prédits par le modèle de Brown-Resnick s’ajustent mieux aux données que ceux de Smith

et Schlather qui sont moins souples. Par ailleurs, une transformation elliptique de l’espace

a été utilisée pour modéliser l’anisotropie, ce qui a encore amélioré l’ajustement. Il est

apparu que la dépendance spatiale des extrêmes était fortement fonction de l’orientation

locale de l’axe alpin et de la présence de grandes vallées. Par exemple, pour une période

d’accumulation de 3 jours, la portée de la dépendance est deux fois plus élevée dans la

direction de l’axe alpin que dans la direction orthogonale. Ce résultat, déjà mis en évi-

dence dans d’autres pays, a été affiné en montrant que l’intensité de l’effet directionnel est

d’autant plus important que la durée de l’accumulation est faible.

Pour l’évolution des paramètres de la GEV avec l’espace, des modèles linéaires et des

splines pénalisées avec des fonctions de base radiales ont été comparés sur la base des

critères TIC et NRMSE et le meilleur modèle s’est avéré être un modèle spline. D’après

ce modèle, à altitude constante (2000m), les valeurs les plus élevées du paramètre de

localisation µ sont situées très au Nord (massifs du Mont-Blanc, des Aravis et des Bauges),

mais des valeurs relativement élevées sont également observées dans les Alpes extrême-sud.

Les valeurs du paramètre d’échelle σ sont les plus importantes dans le Sud-Est (Alpes

extrême-sud), ce qui correspond à l’effet méditerranéen qui tend à amener de la variabilité.

Le paramètre de forme ξ est globalement positif dans les Alpes du Nord, centrales et dans

les Alpes du Sud, correspondant à un domaine d’attraction de Fréchet, et devient négatif

dans les Alpes extrême-sud (domaine de Weibull).

Les résultats de notre meilleur modèle, et plus particulièrement les cartes de chutes de

neige pour différentes périodes de retour, constituent un outil opérationnel puissant pour la

gestion à long terme du risque d’avalanche. Par exemple, la chute de neige centenale peut

être déterminée en n’importe quel point des Alpes françaises et pour différentes périodes
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d’accumulation. En détail, nous avons montré que le quantile centennal pour une période

d’accumulation de 3 jours était le plus élevé à la frontière avec la Suisse et l’Italie dans

la partie centrale et sud des Alpes. En outre, l’influence de la période d’accumulation sur

l’intensité et la fréquence des événements extrêmes a été analysée.

Nous avons montré également qu’une analyse jointe pouvait être réalisée afin d’évaluer

la probabilité d’obtenir deux événements extrêmes dans deux endroits différents pendant

la même année, donnant lieu à des cartes de niveaux de retours conditionnels qui peuvent

aussi être très utiles d’un point de vue opérationnel. La validation sur d’autres données

disponibles a montré la précision du modèle ajusté et de la procédure relativement simple

qui a été proposée pour gérer les effets d’altitude.

La modélisation lisse des paramètres de la GEV associée aux processus max-stables et

à une procédure de sélection de modèles imbriqués constitue le point méthodologique fort

de ce travail. Ce cadre pourrait être utilisé pour d’autres applications en hydrologie.

Comme perspectives d’amélioration du modèle, d’autres processus max-stables qui ont

été très récemment développés pourraient également être testés, et d’autres covariables

pourraient être introduites dans le modèle, comme la moyenne hivernale des chutes de

neige par exemple. Enfin, une pré-sélection des données correspondant au type de flux

(Nord - Nord Ouest / Sud - Sud Est) serait une perspective d’étude intéressante étant

donné les effets régionaux importants démontrés dans cette thèse.

Enfin, afin d’obtenir des distributions de hauteur de départ d’avalanche, les facteurs

mécaniques et météorologiques doivent être pris en compte conjointement. Par conséquent,

un formalisme robuste pour le couplage d’un critère de stabilité stochastique (résultant de

l’hétérogénéité spatiale des propriétés mécaniques) avec les distributions des chutes de

neige extrêmes a été développé. Nous avons montré que ce modèle couplé mécanique–

météorologique était capable de reproduire avec une excellente précision la distribution

de départ d’avalanche correspondant à 369 avalanches naturelles de plaque à La Plagne

(France). Non seulement la queue de la distribution en loi de puissance, correspondant

à des épaisseurs de plaque élevées, mais aussi le corps de la distribution pour de faibles

épaisseurs, sont bien ajustés. Une analyse de sensibilité détaillée a montré que cet accord

peut être obtenu avec un seul paramètre ajustable, à savoir la cohésion moyenne 〈c〉, et

que cet accord est possible grâce aux effets de lissages de l’hétérogénéité par élasticité de

la plaque.

A partir du modèle, trois régimes de départ d’avalanche ont été identifiés. Les grosses

avalanches, en particulier, sont contrôlées par un couplage fort entre les facteurs mécaniques

et météorologiques. En accord avec les études précédentes, dans ce régime, la distribution

cumulée de hauteur de départ d’avalanche se comporte comme une loi puissance. Toutefois,

l’exposant correspondant dépend directement du paramètre de forme de la distribution
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GEV des chutes de neiges et, par conséquent, ne peut pas être considéré comme universel.

D’un point de vue opérationnel, le modèle présenté dans cet thèse peut être considéré

comme un outil puissant capable de prédéterminer les distributions de hauteur d’avalanche

en n’importe quelle zone de départ, à partir du moment où des données météorologiques

sont disponibles. Ces distributions peuvent être utilisées pour établir des cartes de risque ou

comme entrées de modèles de propagation (Barbolini et al., 2000; Naaim et al., 2003). Nous

mettons en évidence également que, par rapport à la méthode d’ingénierie classique, dans

laquelle seules les chutes de neige extrêmes sur 3 jours sont prises en compte, les valeurs de

hauteur de départ pour une période de retour donnée calculées avec notre modèle couplé

ont généralement tendance à être plus faibles. En outre, en utilisant le formalisme math-

ématique des processus max-stables proposé, des cartes de hauteur de départ d’avalanche

pour une période de retour donnée peuvent être obtenues. Néanmoins il faut noter qu’à

ce stade, les tendances spatiales sont purement liées aux propriétés des chutes de neige

puisque les valeurs de tous les paramètres mécaniques ont été supposées constantes dans

cette interpolation. Dans une étape ultérieure, la spatialisation de la distribution de cohé-

sion devra également être envisagée, mais des données supplémentaires seront nécessaires

à cette fin.

Le modèle mécanique-statistique proposé couplé avec la probabilité des chutes de neige

extrêmes remplit les objectifs de l’étude, à savoir la prédétermination des distributions de

hauteur d’avalanche dans toute zone de départ potentielle, en utilisant soit des données des

chutes de neige disponibles ou une procédure d’interpolation spatiale appropriée. Toute-

fois, avant d’être pleinement utilisable sur le plan opérationnel, des tests supplémentaires

sur d’autres jeux de données dans d’autres sites doivent maintenant être effectués pour

valider complétement ce modèle.

Pour finir, une interface graphique a été réalisée en language Java afin de simplifier

la saisie des données de hauteurs de chutes de neige issues du modèle max-stable et de

hauteurs de départ d’avalanche issues du modèle couplé, pour différentes périodes de retour

et en tous points des Alpes Françaises. Cette interface renvoie également la distribution

GEV et la valeur de ses paramètres (µ, σ and ξ). Une capture d’écran de cette interface

est presentée en Fig. 7.1.



Appendix A

Influence of weak layer friction

heterogeneity on slab avalanche

release

This appendix is composed of a conference proceeding entitled “Influence of weak layer het-

erogeneity on slab avalanche release using a finite element method”. It was presented in the

International Workshop on Bifurcation and Degradation in Geomaterials and published

in Springer Series in Geomechanics and Geoengineering in 2011 with the contribution of

Guillaume Chambon, Mohamed Naaim and Nicolas Eckert.

The objective of this article is to study the influence of a weak layer friction heterogen-

ity on slab avalanche release using the mechanically-based statistical model presented in

Chapter 4. The main differences with Section 4.1 are thus the choice of the parameter that

varies in space, here the friction angle φ of the weak layer Mohr-Coulomb criterion, and

the constitutive law of the slab which is elastic-brittle with a tensile strength σT = 1 kPa.

From this model, avalanche release depth distributions are obtained and the effect of fric-

tion heterogeneity on the localization of the slab tensile failure is studied. We showed that,

with an heterogenous friction angle of the weak layer, the obtained release angle distri-

butions were very slightly influenced by the slab depth h, which is not very realistic and

which led us to choose an heterogeneous cohesion for the main part of this PhD thesis.



118 A. Influence of weak layer friction heterogeneity on slab release



Influence of weak layer heterogeneity on slab
avalanche release using a finite element method.

J.Gaume, G.Chambon, M.Naaim and N.Eckert

Abstract Snow avalanches generally result from the collapse of a weaklayer under-
laying a cohesive slab. We use the finite element code Cast3m to build a complete
mechanical model of the{weak layer-slab} system including inertial effects. We
model the weak layer as a strain-softening interface whose properties are spatially
heterogeneous. The softening accounts for the breaking of ice bridges. The over-
lying slab is represented by a Drucker-Prager elasto-plastic model, with post-peak
softening to model the crack opening. The two key ingredients for the mechani-
cal description of avalanches releases are the heterogeneity of the weak layer and
the redistribution of stresses by elasticity of the slab. The heterogeneity is modeled
through a Gaussian stochastic distribution of the frictionangle with spatial correla-
tions. We first study the effect of the weak layer’s heterogeneity and the slab depth
on the release on a simple uniform slope geometry. We observetwo releases types,
full slope releases corresponding to a crown rupture and partial slope releases for
which the traction rupture occurs inside the slope and thus only a part of the slope is
released. The influence of slab depth on the relative proportion of these two rupture
types, as well as on the avalanche angle distributions is also studied.

1 Introduction

Recently, several models have been developed to simulate the flow of the various
types of snow [Naaim2003, Naaim2004] involved in snow avalanches. Nevertheless,
the systematic use of these models in operational applications still faces a number of
difficulties including the evaluation of the avalanche release volume which is an in-
put parameter of these models which very strongly influencesthe results. However,
there is currently no clear and well-defined methodology which would enable, for
a given avalanche path, to predetermine the initial volume of potential avalanches

J.Gaume, G.Chambon, M.Naaim and N.Eckert
Cemagref, BP 76, 38402 St Martin d’Heres, France. e-mail: johan.gaume@cemagref.fr
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for different return periods. Slab avalanches result from the collapse of a thin weak
layer underlaying a cohesive slab. Recently, some cellularautomaton models have
been developped providing important insight into the mechanisms of avalanche re-
lease [Failletaz2004, Fyffe2004, Fyffe2006]. In particular, they pointed the two ba-
sic ingredients that are essential for the mechanical description of avalanche release,
namely the heterogeneity of the weak-layer and the stress redistribution effect con-
veyed by the elasticity of the overlaying slab. However, thetreatment of the mechan-
ical behavior of the different layers is very simplified in these models. In addition
these models are unable to include a detailed description oftopography and geo-
morphology of release zones. The objective of this study is to develop a complete
mechanical model of the{weak layer-slab} system. In this paper, we focus in par-
ticular on the role of the weak layer heterogeneity on the avalanche release mode.

2 Formulation of the model

We use the Finite Element code Cast3m to build a complete mechanical model for
slab avalanche release including inertial effects. The code solves the mass and mo-
mentum balance equations under the small-strain assumption. The used procedure
enables to perform non-linear incremental computations with an implicit integration
scheme.

2.1 Geometry, boundary conditions and loading

We study a simple 2D uniform slope geometry (figure 1). The system is composed
of a weak layer modeled as an interface and an upperlaying slab. The gravity is the
only external force and we load the system by increasing the slope angleθ. The
length of the slope isL = 30m and we perform simulations for different slab depths.
The weak layer’s base is fixed to the ground. The boundary condition at the base
of the slope (BC2) consists in imposing a nil displacement in thex direction. At the
crown of the slope (BC1) we apply a shear stress varying with the depth in order to
avoid bending due to limit size effects.

Fig. 1 Geometry of the system. The red curve represents a realization of the heterogeneity (friction
angle) of the weak layer.
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2.2 Mechanical behavior of snow: constitutive laws

Snow is a very complex material whose mechanical behaviour remains largely un-
known. Nevertheless, it has been shown that under certain conditions [McClung1979]
snow behaves as an elasto-plastic material. Thus, we model the weak layer as an
elasto-plastic interface with shear softening [McClung1979, Fyffe2004, Fyffe2006,
Kronholm2005]. This shear softening is justified by the breaking of ice bonds at the
micro-scale. In a first step, we have considered a Mohr-Coulomb rupture criterion
without cohesion. Once rupture is reached, shear softeningoccurs over a character-
istic tangential displacementuc = 2mm [McClung1979] after which the shear stress
reaches a residual value equal to the half of the peak shear stress.

The slab layer is modeled using a Drucker-Prager constitutive law with a soft-
ening post-peak behavior and a very low residual stress in order to represent the
opening of the traction crack. The value of the mechanical parameters were chosen
according to [Schweizer1999]. We have taken a slab density of ρ = 250kg/m3, a
Poisson’s ratioν = 0.3, a Young’s modulusE = 106Pa and a traction and compres-
sion elastic limitσt = 1kPa, σc = 10kPa. Hence, the parameters of the plastic flow
law are not important since the plastic limit only account for a slab rupture criterion.

2.3 Spatial heterogeneity of the weak layer

The spatial variability of the week layer mechanical properties are modeled through
an heterogeneous stochastic friction angleφ. Several field studies [Jamieson2001,
Schweizer2008, Kronholm2005] show that the spatial variability of mechanical
properties of snow can be approximated by a Gaussian distribution. Thus, in agree-
ment with the litterature,φ is modeled as a Gaussian stochastic field with spa-
tial correlations. The associated covariance matrix is expressed as follow:Ci j =

s2exp(−0.5(di j/ε)2), wheres is the standard deviation,di j is the distance between
Pi andPj andε is the correlation length. Note that no nugget effect is considered.
According to [Conway1984], the typical correlation lengthof strength variation
should be between 0.2m and 1.3m. In this study, we tookε = 1m. According to
[Schweizer2008], we have taken a coefficient of variationCV = tans/ tan< φ >=
15% and the mean friction angle< φ >= 30◦. One realization of this heterogeneity
is represented on figure 1.

3 First results and discussion

For different slab depths (h ∈ {0.3m,0.6m,0.9m,1.2m,1.5m,2.1m}) we performed
100 simulations with different realizations of the heterogeneity. This gives us some
distributions of release angle. For each slab depths, we then studied these distri-
butions and the release type. Knowing the evolution of the mean and the standard
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deviation of release angle distributions in function of theslab depth, we will be able
to determine the distributions of release depths for different slope angles.

3.1 Release types and criteria

By looking at the plastic deformation in the slab for each simulation, we can distin-
guish two kinds of releases: Full slope releases (the entireslope is released without
traction rupture) and partial slope releases (only a part ofthe slope is released with
a traction rupture). Both of them are induced by a shear rupture in the weak layer.
Indeed, the slab rupture is a secondary process and always results from an insta-
bility inside the weak layer (u > uc). Partial releases are generally associated to an
important local heterogeneity (difference of shear strength between adjacent ele-
ments) around the weakest zone. In the case of a global release, the shear rupture
propagates in the whole weak layer since the local heterogeneity is not sufficient
to make the slab rupture (εslab

pl = 0). According to these rupture modes, we defined
two release criteria. The first one is based on the plastic deformation of the slab and
is only relevant for partial releases. The second one is based on the displacement of
the base of the slab and can be used for both full and partial releases.

Fig. 2 Probability of traction rupture (a) and mean release angle (b) as a function of the slab depth.

Figure 2a shows the evolution of the probability of tractionrupture with the slab
depthh calculated from the finite element method. The traction rupture probability
is very low forh < 0.5m and then increases almost linearly untilh ≈ 1.2m where it
starts to level off to 1 more slowly. This means that for very thick slabs (h > 1.2m),
we will a significant proportion of partial slope releases. On the contrary, full slope
releases will be more frequent for thin slabs (h< 0.5m). This evolution can be inter-
preted with a simple small model. We considered the occurence of traction rupture
is directly related to the shear-stress difference∆τ = |τ2− τ1| between two neigh-
boring elements 1 and 2 and occurs when∆τ is greater than the slab traction rupture
limit σT (neglecting spatial correlations). We calculated this probabilityP(∆τ >σT )
by computing many independant realizations ofφ1 andφ2. The results of this model
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are represented on figure 2a (dotted line) and show very good agreement with the
results from the finite element method.

3.4 Release angle distributions

Figure 3 shows the distributions of release angles obtainedusing the traction and the
displacement criterion. We first note that for both rupture criteria, the distributions
are normally distributed with a variance independant ofh. This particular shape is
presumably a direct consequence of the Gaussian heterogeneity.

Figure 2b reports the average of these distribution and we also separate full and
partial slope releases from the displacement criterion. Wecan firstly note that the
slab depth does not strongly influence the slope stability since the release angle
variations remain low. This is due to the frictional rupturecriterion used for the
weak-layer. This criterion also explains why we observe that the slab traction rupture
is more sensitive to the slab depthh. Moreover, the mean release angle is always
lower than the mean friction angle< φ > since the rupture occurs around weakest
spots. Finally, the rupture type (full slope or partial slpoe) has a greater influence on
the release angle for thin slabs (h < 1.2m) than for thick ones (h > 1.2m).

Fig. 3 Distributions of release angle: traction criterion (only partial releases) (a) and displacement
criterion (all releases) (b).

4 Conclusions and perspectives

Slab snow avalanches are triggered by the rupture of a weak layer underlaying
an elasto-plastic slab. In this paper, we study the influenceof the heterogenity of
the weak layer mechanical properties on avalanche release using a finite element
method. We have shown that the slab rupture always results from an instability in-
side the weak layer. We have seen that the slab depth has an important influence on
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the release type but almost no influence on the release angle.Finally, the distribu-
tions of release angles have the same shape as the distribution of the heterogeneity
(Gaussian). As perspectives, we will first repeat this studyin the cohesive case.
Indeed, the slab depth has a little influence on the release angle because of the fric-
tional rupture criterion. Then we will analyse the influenceof the correlation length
ε on the release type.
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Appendix B

Application of the max-stable model

for the retro-analysis of the

December 2008 avalanche cycle in

the Eastern part of the French Alps

This appendix is composed of an article entitled “Cross-comparison of meteorological and

avalanche data for characterising avalanche cycles: The example of December 2008 in the

eastern part of the French Alps”. It was published in Cold Region Science and Technology

in 2010 by Nicolas Eckert as first author.

My contribution to this article was the computation of the return period of the Decem-

ber 2008 snowfall event using the outputs of the max-stable model presented in Chapter

5 (paragraph 2.6 and Fig. 13 of this appendix article mainly). In detail, once the three

parameters of the GEV distribution were obtained as continuous functions of space using

max-stable processes, and after altitude correction of the cycle data, the exceedance proba-

bilities were evaluated, not only at the locations on which the max-stable model calibration

was performed, but also at all locations for which precipitation measurements were made

during the cycle. Finally, these exceedance probabilities were interpolated by kriging (ex-

ponential covariance model) and inverted to obtain the return period of the 3-day snowfall

cycle over the region being studied.

In the rest of the paper, the retro-analysis of this event is also performed using dif-

ferent techniques which are cross-compared. It is shown that the 3-day snowfall return

period calculated using the max-stable approach globally corresponds to the one com-

puted using Safran outputs at the massif scale. The relatively good agreement between

the two approaches is very encouraging and emphasizes the ability of our model to achieve

retro-expertise of past extreme snowfall events.
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In December 2008, an intense avalanche cycle occurred in the eastern part of the southern French Alps.

Southerly atmospheric fluxes that progressively evolved into an easterly return caused important snowfalls

with return periods up to 10 years. Cold temperatures and drifting snow had important aggravating effects.

The return period for the number of avalanches was above 50 years in two massifs and some of the

avalanche had very long runouts that exceeded historical limits recorded in the French avalanche atlas. Using

this case study, this paper illustrates and discusses how avalanche reports, snow and weather data and

results from numerical modelling of the snow cover can be combined to analyse abnormal temporal clusters

of snow avalanches. For instance, it is shown how statistical techniques developed in other fields can be used

to test the significance of different explanatory factors, extract spatio-temporal patterns, compare them with

previous cycles and quantify the magnitude/frequency relationship at different scales.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The concept of avalanche cycle is often used to highlight an

abnormal temporal cluster of avalanche events at a given spatial scale:

the mountain range, the district, etc. An avalanche cycle is generally

caused by a severe storm bringing high snowfalls accompanied by

substantial drifting snow, but strong temperature variations causing

snowmelt and/or fluctuations of the freezing level can also be

involved. Studying avalanche cycles therefore mainly aims at

understanding their relations with climatic factors, such as precipi-

tation, temperature, wind effects (e.g. Birkeland et al., 2001; Höller,

2009). Operationally, these studies are valuable to improve avalanche

forecasting models (e.g. Gassner and Brabec, 2002), so as to close ski

resorts and evacuate the threatened mountain communities when a

critical level is reached. Land use planning policies and hazard zoning

can also benefit, since major avalanches generally occur during the

most extreme cycles. For example, the Montroc avalanche, which

killed 12 people in their homes, occurred during the February 1999

avalanche cycle (Ancey et al., 2000) that caused widespread damage

in a large part of the European Alps (SLF Davos, 2000).

While it is relatively straightforward to precisely evaluate the

magnitude/frequency relationship on given paths (e.g. Meunier and

Ancey, 2004; Eckert et al., 2008a), quantifying the magnitude of an

avalanche cycle that affects a mountain range over several days is more

difficult. First, an appropriate quantitative definition of an avalanche

cyclemustbegiven. The existingdefinitions are sometimesbased on the

number of recorded events, but more generally on cumulative indexes

taking into account one or several magnitude variables such as total

mass of avalanche debris (Birkeland and Mock, 2001; Laternser and

Schneebeli, 2002). This has the advantage of lowering the bias induced

by the non-observation of small avalanche events, but generally

involves estimating the mass from the size classes of the avalanches. A

second consideration is that the spatial and temporal scales that provide

the best description of the phenomenon have to be found to make

historical comparisons. This is particularly tricky because of the strong

spatio-temporal variability of avalanche activity during cycles. More-

over, statistical techniques such as magnitude–duration–frequency

curves that are currently used in the hydrological community (e.g.

Lang et al., 1999; Katz et al., 2002) remain poorly developed in the

avalanche field, except for snowfall analysis (e. g. Parent and Bernier,

2003; Bocchiola et al., 2006). The third major difficulty lies in the

limitations of data quality, quantity and homogeneity. Indeed, ava-

lanche cycles are characterised by harsh winter conditions making it

very difficult and sometimes dangerous to collect enough snow,

weather and avalanche data to properly evaluate the strong altitudinal

and orographic gradients that may exist. Homogeneity problems can

also arise while trying to compare spatially averaged data to point

measurements, aswell as localmeasurements toweather data used by a

snow cover model.

The goal of this paper is to exemplify and discuss how different

information sources can be compared and combined to extract and

better understand the spatio-temporal patterns characterising an

avalanche cycle. For instance, spatial indexes and spatial regression

tools are used to quantify aggregation and gradients during the cycle.
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Additionally, it is shown how the return period concept can be used

not only for snowfalls, but also for avalanche counts, so as to fully

characterise the cycle at different spatial scales. We focus on data

available in France for this study, i.e. snow and weather data collected

by Météo-France, avalanche records, and results from snow cover

modelling including instability indexes. Most of the analyses are

performed at the spatial scale of the massif (Fig. 1), which is used for

data assimilation, snow cover modelling and avalanche forecasting in

an operational context (see Section 2.1). However, the method can

easily be adapted to other countries where data collection protocols

and/or modelling approaches are different.

As an illustrative case study, we analyse the recent remarkable

avalanche cycle that occurred inDecember 2008 in the FrenchAlps. Two

massifs of the southern FrenchAlpswere strongly affected: Queyras and

Mercantour, where important roads were closed over several consec-

utive days. Villages such as Ristolas (Queyras massif) and ski resorts

such as Isola 2000 (Mercantour massif) were thus isolated. A few

buildingswere partially destroyed, for instance in Saint EtiennedeTinée

(Mercantourmassif), and ski lifts aswell as forestsweredamaged. There

were no human casualties, even though several people were buried by

an avalanche that occurred on December 16th 2008 in Ristolas (Fig. 2).

This cycle was remarkable because of its precocity in the season,

especially in themost northerly areas affected. Itwas generated by large

southeasterly fluxes, so that it also affected the western Piedmont Alps

(Maggioni et al., 2009), and, to a lesser extent, most of the French

massifs situated close to the French–Italian border.

The paper is organised as follows: Section 2 presents the different

data used in terms of quantity and limitations, as well as the statistical

methodology employed. Section 3 details the events of the cycle and

relates them to the prevailing constraining factors. Section 4 offers an

extensive historical comparison of the cycle with previous situations.

Section 5 discusses the main results obtained for the analysed cycle,

the generic outcomes for the analysis of avalanche cycles, and

perspectives for further developments.

2. Data and methods

2.1. Snow and weather data

The snow and weather data came from the different observation

networks of Météo-France including surveys and observations of

synoptic stations, radiosondes and pilot balloon networks, climato-

logical stations and automatic weather stations. All these data have

been quality controlled and, in some cases, local expertise was used to

estimate missing data. The automatic weather stations in the French

Alps (Nivôse network) are situated at different elevations and provide

hourly temperature, wind speed and snow depth data. A human

network, mainly ski patrollers, provided more detailed weather and

snowpack information: weather and snow surface conditions twice a

day, and weekly detailed profiles of the snowpack. The main

limitation for this study was that around half sites, mainly ski resorts,

were still closed when the December 2008 cycle occurred. Among all

the data collected during the cycle, only precipitation data were used

directly. However, all the available snow and weather data were used

indirectly as inputs toMétéo-France's SCMmodel chain (Durand et al.,

1999), presented below, to provide modelled snow cover results.

2.2. Snow cover modelling

The SCM model chain is a system of three numerical models:

Safran, Crocus andMepra. It simulates the evolution of the snow cover

and its stability at a massif scale. The different French massifs are

Fig. 1. Studied area and massifs. The French Alps can be roughly divided into Northern (Rhone–Alpes) and Southern (Provence–Alpes–Cote-d'Azur) sections. The massifs are much

smaller spatial units that are used for operational avalanche forecasting.
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shown in Fig. 1. The surface area of each massif is about 500 km2

and the key assumption is their spatial homogeneity, especially for

precipitation. However, for each massif, six aspects, two slopes (20

and 40°), and different elevations with 300-m steps are considered.

Safran computes meteorological variables (temperature, precipita-

tion, radiation, wind speed..., etc.) for the different elevations, slopes

and aspects. Then Crocus calculates the corresponding changes in the

snowpack. Finally, Mepra performs a diagnosis of the snowpack

stability for each simulated snow profile.

To compare real avalanche activity (daily number of avalanche

events) and Mepra's diagnoses, a “modelled daily spontaneous

avalanche activity” index can be used (Martin et al., 2001). It represents

the dailymaximumof theweightedmeanby aspect and altitude in each

massif of these indexes. This daily index, denoted “Instability Index” (II)

in the rest of the paper, is a useful result from the SCM model chain in

operational avalanche forecasting. It varies from 0 to 8 in each massif,

with a local distribution that is somewhat dependent on the massif's

characteristics, e.g. systematically higher values in higher massifs in

relation with higher amounts of snow at high elevations. Note that,

rather than the raw indexes that have been computed for avalanche

forecasting, we use indexes that were recomputed, which allow us to

include additional snowandweather data thatwerenot available in real

time. Furthermore, since a detailed temporal analysis is not undertaken,

we focus mainly on the mean and maximal index over the full cycle,

noted mean(II) and max(II), respectively.

Finally, as shown by Durand et al. (2009a,b), the SCM chain can

also be used for retrospective snow and weather climate analyses,

using as input different initial meteorological fields (air temperature,

humidity, wind speed....) or numerical guess fields provided by

atmospheric General Circulation Models (GCM). From mid-1957 to

2001, the retrospective analyses from ERA-40 (ECMWF, 2004) were

used as input, whereas Météo-France's numerical weather prediction

model ARPEGE (Courtier et al., 1991) provided guess fields since 2001,

every 6 h. In this study, the results of this work were used to compare

the snow and weather characteristics and instability indexes at the

massif scale to previous occurrences over the last few decades.

2.3. Avalanche data from the EPA database

The Enquete Permanent sur les Avalanches (EPA) is a report describing

the avalanche events on approximately 3800 determined paths in the

French Alps and Pyrenees. Avalanche occurrences have been recorded

since the beginning of the 20th century (Mougin, 1922), along with

quantitative (runout altitudes, deposit volumes, etc.) and qualitative

(flow regime, release cause, etc.) data (Jamard et al., 2002). The field

observations are collected by forest rangers and stored by the Cemagref

research institute. The data collectionprotocol and observation network

has seen several changes since the beginning of the report, including a

major update in 2002,which considerably increased the reliability of the

information (Bélanger and Cassayre, 2004).

Fig. 2. Avalanche in Ristolas, December 16th 2008. La Combette avalanche path, Queyras massif, France. Avalanche flow path and runout area are marked with a red outline. Two

houses were hit and damaged (upper panels). Several people were buried outside the houses, but were rescued. Pictures M. Deschatres/Cemagref.
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The EPA report was originally devoted to the evaluation of forest

damage. Nevertheless, two aspects of its observation protocol make it

highly valuable for various other applications. First, thedata series, even if

some of themare incomplete, are unusually long. They are now routinely

used for local predetermination using physical modelling (e.g. Naaim

et al., 2004), combined statistical–dynamical approaches (e.g. Ancey

et al., 2004; Eckert et al., 2007a) and risk analyses (Eckert et al., 2008b;

2009). Second, the EPA database's objective is to be as exhaustive as

possible on a sample of paths situated in all theAlpinemassifs rather than

recording only certain avalanches on all the Frenchpaths. Even if the path

selection was originally not based on scientific arguments, it gives a

relatively accurate view of the spatio-temporal fluctuations of avalanche

activity over the last century. Eckert et al. (2007b) have highlighted

coherent spatial patterns in thenorthern FrenchAlps. Jomelli et al. (2007)

found relations between the local probability of avalanching andweather

data. Finally, Eckert et al. (2010a) have highlighted large-scale temporal

fluctuations possibly related to climate change.

Since the quality of records depends to a large extent on rangers'

careful data recording, the EPA suffers, like all avalanche databases,

from uncertainty and error sources. Some local avalanche series are

poor, with numerous missing events. For intense avalanche cycles,

irregularities at large spatial scales are present. Certain events were

missed when rangers were busy with other things. Moreover, other

events were recorded significantly later than their actual time of

occurrence because of the inability to safely reach remote areas during

the cycle. In that case, standard observation protocol, since 2002, is to

record a time window of two dates to help define the event's true

date. These two points are critical while using the EPA data for relating

avalanche activity to snow and weather conditions. Indeed, the real

magnitude and extension of a cycle may be somewhat under-

estimated if many events have been missed. Moreover, the relation-

ship with snow cover andmeteorologymay be hard to establish when

the true date of many events remains uncertain.

In this study, to compare avalanche activity from one massif to

another, we use the number fi of events per path (or relative activity)

defined as:

fi =
ni

ci
ð1Þ

where ni is the number of avalanche and ci the number of paths under

survey in each massif i, i∈ [1,N], known at least since the 2002

protocol update.

The length of the report is used to evaluate, at the massif scale,

empirical return periods and magnitude–frequency–duration curves

for the number of events per cycle. This allows comparison between

the studied cycle and previous ones, and between return periods for

precipitation and avalanche activity. For these historical comparisons,

the number of events ni is used rather than the number of events per

path fi because of the uncertainty related to ci before 2002. Note also

that we do not discriminate avalanche events by trigger, mainly

because the vast majority of the recorded events are naturally

released, which makes sub-sampling unnecessary (see Section 3.1).

Furthermore, for many old events, the release cause was not recorded

and so the more recent human-triggered avalanches were included in

the database to retain consistency.

When there is uncertainty related to the date of the event, we use

the later date of the time window proposed by the ranger. This likely

biases the results towards extending the cycle beyond its actual end,

but at least the onset of the avalanche cycles is captured accurately.

Using aweightedmean of the two recorded dates was rejected for two

reasons: first, the timewindow of the two dates is available in the EPA

report since the 2002 protocol update only. Second, the events of the

cycle studied for which the date range is larger than the duration of

the cycle are only 13%, and they are for the most part limited to one

massif (see Section 3.1).

Other variables from the EPA report were also considered: the

amount of new snow during the 3 days preceding the events in the

release zone, the flow regime of the events, the deposit volume, which

is estimated from the registered three dimensions of the deposits

(mean length, width and depth), and the runout altitude, i.e. the

elevation of further reach. For the latter one, we use the Runout

Altitude Index (RAI) defined as:

RAIkj =
1

e
exp 1−

zstopkj � zminj

zminj

 !

ð2Þ

where zstopkj
denotes the runout altitude corresponding to the

avalanches k∈ [1,n(j)] recorded in the avalanche path j, n(j) the

total number of avalanches recorded in the path j, zminj
the minimal

runout altitude possible in the path j (often the valley floor), and RAIkj
the corresponding index value. By definition, the RAI equals 1 if zminj

is

reached. Otherwise, the RAI is a continuous and decreasing function of

the runout altitude belonging to ]0,1[.

The RAI is far from perfect. For instance, it gives more weight to

paths were the runout altitudes reached are far above the reference

value zmin. To limit this bias, minimal altitudes zminj
as realistic as

possible have been chosen (see Section 4.4). On the contrary, the RAI

has the advantage of using no other extra data information.

Furthermore, being scaled, it allows, the comparison of runouts

between avalanche paths of different sizes, aspects, altitudes..., etc.

From this point of view, it is relatively similar to the runout index

computed using abscissas and used in avalanche engineering to

evaluate high-return-period avalanches (McClung and Lied, 1987).

Further detailed discussions regarding its advantage and intrinsic

limits can be found in Eckert et al. (2010b), where it is used to

investigate temporal changes of the runout regime under climate

fluctuations.

For the 3 day snowfall, flow regime, deposit volume and RAI data,

rather than the full available EPA data, we chose the five winters

2001/2002 to 2005/2006 as a comparison sample for the December

2008 cycle because of the significant improvement in terms of

reliability since 2002. Since these variables are generally estimated

using binoculars, from a distant and safe observation point, they

remain highly uncertain, even after 2002. However, they may still be

used to make relative statements about the character of avalanche

cycles, e.g. to show that the proportion of powder snow avalanches

was higher during an intense cycle than the mean (see Section 3.2).

2.4. Spatial patterns, Moran's index and spatial regression

To characterise spatial patterns of avalanche events, precipitation

and instability indexes at the massif scale, the Moran index I (e.g.

Cressie, 1993) has been used. It is a measure of spatial autocorrelation

and characterizes proximity in two-dimensional space:

Ik =

N × ∑
N

i=1
∑
N

j=1
ω kð Þ

ij yi−yð Þ yj−y
� �� �

∑
N

i=1
∑
N

j=1
ω kð Þ

ij

� �

× ∑
N

i=1
yi−yð Þ2

ð3Þ

where N is the number of massifs, y is the variable of interest, y is the

mean of y and ωij is a matrix of spatial weights (inverse distances).

The notation Ik and ωij
(k) denotes that the index can be computed for

different distance classes (lags), so as to produce a spatial auto-

correlogram to investigate how spatial autocorrelation varies with

distance.

The expected value of Moran's I under the null hypothesis of no

spatial autocorrelation is E Ikð Þ = −1
N−1, which depends on the number of

massifs considered. Values lower than the expected value indicate a

negative spatial autocorrelation, i.e. anti-clustering. Conversely, values

122 N. Eckert et al. / Cold Regions Science and Technology 64 (2010) 119–136

130 B. Retro-analysis of the December 2008 avalanche cycle using MSP



higher than the expected value indicate the presence of clusters in the

observed spatial patterns. Significance of the observed aggregation/

repulsion patterns can be tested against the null hypothesis of random

spatial sampling. Computations were made using a very simple weight

matrix based on a minimal number of nearest neighbours at a given lag

(Fig. 5, left).

To explain the patterns observed at the massif scale, different

explicit regressions were performed using the generic linear model:

yi = βo + ∑
P

k=1
xikβk + εi ð4Þ

where yi is the explained variable (for example thenumber of events ni),

xik the matrix of the P covariates considered, and (βO,βk) the P+1

regression parameters to be estimated. The εi are the local residuals

which are assumed to be independent and Gaussian. Spatial gradients

were obtainedwhilefitting themodelwith x={lat, long}, where lat, long

denotes the latitude and longitude of the centre of each massif

respectively, following the Lambert II convention. The explanatory

power of the different models was evaluated by computing the

(multiple) R2 statistics, and themarginal significance of each parameter

β using t-tests. The presence of a remaining spatial structure in the

residuals was investigated by computing, after suitable correction (Cliff

and Ord, 1981), Moran's I and testing its significance for the residuals.

2.5. Return period and cycle threshold

The return period, T, is the inverse of the annual exceedance

probability p:

T =
1

p
: ð5Þ

Evaluating the return period of the snowfall is the most usual way

to obtain a return period for an avalanche (e.g. Salm et al., 1990). Two

complementary approaches were considered here. First, the return

period of the Safran modelled snowfall at the massif scale was

obtained by comparison with the back-calculated data of Durand et al.

(2009a,b). Computations were made for daily maxima and cumulated

snowfalls over 2 to 5 days. Since Safran data were available at

different elevations, 1800 masl was chosen to be sure to consider only

snow. Second, the continuous precipitation field corresponding to the

cycle was analysed using a spatial extreme approach (see Section 2.6).

We also evaluated return periods for the number of avalanche

events for durations ranging from1 to 7 days. The cumulated numbers

of events corresponding to each duration were evaluated by

considering moving windows centred on the daily maxima. For

paired windows, the moving window was centred on the first of the

2 days considered, e.g. day 2 for a 4-day moving window. Since the

true number of events occurring is systematically slightly under-

estimated during cycles, the assumption of a similar underestimation

in the past must be made to consider the frequential characterisation

as correct. This is unverifiable, but is for us not unrealistic over the last

few decades.

A cycle threshold of T=2 years for the number of recorded events

was used to discriminate the mountain massifs affected by the

avalanche cycle. It means that an avalanche cycle can be considered

significant if it does not occur more often than once every 2 years on

average. The simple definition has the advantage of offering a relative

threshold for inclusion as an avalanche cycle. It is independent from the

chosen spatial scale and can be applied to different types of data, to

allow comparisons between regions and variables. With this definition,

a few events may be considered as a significant avalanche cycle in an

area where avalanche activity is usually low; conversely, a particularly

high number of avalanches are required in an area that normally sees

high avalanche activity. This is advantageous for operational purposes,

because in areas where high avalanche activity is usual, operational

services are generally well prepared, whereas a few events can cause

considerable problems in areas where avalanche activity is usually low.

Evaluating return periods involves evaluating the exceedance

probability p in Eq. (5). This can be done empirically, by sorting the

data, or with recourse to a parametrical statistical model. In the latter

case, Extreme Value Theory (EVT, Coles, 2001) is generally used. As EPA

data are discrete, the theoretical justification is not valid and EVT cannot

be used rigorously. Thus, an empirical estimation has been employed.

The same estimation has been employed for the Safran snowfalls at the

massif scale to provide a preliminary evaluation of the return period at

the massif scale, for different durations, with a low computational cost.

2.6. Spatial extreme analysis of precipitations

The continuous precipitation field was analysed at the most

appropriate duration ( 3-day) using a fully rigorous but much more

computationally intensive spatial extreme approach which can be seen

as a mixture of EVT and geostatistics, i.e. how spatial dependence

between distribution tails can be captured and modelled. The proposed

analysis is basedon theworkof Schlather (2002),whoexploredhowthe

concept of max-stability on which EVT is based can be applied to

continuous fields. In our work, we used the extremal dependence

formulation proposed by Smith (1990). Furthermore, following the

ideas of Padoan et al. (2010), we modelled the available long winter

(mid-November to end of April) precipitation series ylat, long as

Generalized Extreme Value (GEV) distributions whose location μlat, long
and scale σlat, long parameters are explicit functions of space coordinates

(lat, long). The shape parameter ξ was modelled as constant for the

entire zone studied because there was not enough information in the

calibration data set to infer a possible variation with space. The

cumulative distribution P(Ylat, long≤ylat, long) of the annual maximum

Ylat, long is then:

P Ylat;long ≤ylat;long

� �

= exp − 1 + ξ
y−μ lat;long

� �

σlat;long

2

4
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5
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Differences in altitude between the local series were taken into

account by making all computations at a constant elevation of

2000 masl using the gradients inferred by Durand et al. (2009a)

from the Safran reanalyses. Only snowfallswere considered by retaining

only the past episodes forwhich temperature at 2000 mwasunder 0 °C.

After several trials, simple linear models μlat, long=μo+μ1lat+μ2long
and σlat, long=σo+σ1lat+σ2longwere retained on the basis of a model

selection criterion derived from the Akaike Information Criterion

(Akaike, 1981).

Once the three parameters of the GEV distribution were obtained

(μlat, long and σlat, long as continuous functions of space, and ξ as its best
regional estimate), and after altitude correction of the cycle data, the

exceedance probabilities plat, long=1−P(Ylat, long≤ylat, long) were evalu-

ated, not only at the locations with long series on which model

calibration was performed, but also at all locations for which

precipitation measurements were made during the cycle. Finally,

these exceedance probabilities were interpolated by kriging (exponen-

tial covariance model) and inverted using Eq. (5) to obtain the return

period of the 3-day snowfall cycle over the region being studied.
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3. The December 2008 avalanche cycle

3.1. Recorded avalanche events

The EPA report was used for evaluating the duration of the cycle. In

the full database, the avalancheeventswerehighly concentratedaround

mid-December. Thehighest activitywas recorded on16December,with

a total number of 54 events, but activity was already very significant on

15 December with 46 events, and remained intense on 17, 18 and even

19 December, with 46, 38 and 25 events, respectively (Fig. 3, top left).

Initially, it can therefore be considered that the avalanche cycle lasted

5 days, with a total of 209 avalanches and amean activity of 0.05 events

per path recorded during the cycle. This is very high, since 209

avalanches correspond to about 20% of the usual winter occurrences in

the EPA report. Consequently, the cycle threshold is exceeded for this 5-

day period for the full EPA database, whichmeans that 209 events were

recorded in the EPA report for 5 consecutive days less often than every

2 years on average. The 209 cycle events were recorded on 207 paths.

This indicates that only two paths were affected by 2 events during the

cycle.More than80%were recorded asnaturally releasedwith certainty.

10 events resulted from control measures (artificial release from

helicopter). The remainder have unknown triggers. As already men-

tioned in Section 2.3, we chose not to consider only events that were

naturally released with certainty, which would have made historical

comparisons more difficult.

Fig. 3 (top right) shows that the size of the timewindowprovided by

the rangers is generally shorter than 5 days. This suggests that it is

appropriate to treat the cycle as a block to investigate spatio-temporal

patterns. For the Queyras massif, the date of all the events (except one)

was recorded with an uncertainty lower than 2 days (Fig. 3, middle

right), suggesting that the avalanche cycle was concentrated on 15–17

December in this massif (Fig. 3, middle left). In the Mercantour massif,

the data were partially collected after the storm because of badweather

conditions, so that the release date is highly uncertain (6–7 days) for

about one-third of the events recorded (Fig. 3, bottom right).

Consequently, few events were recorded on 15–17 December with

certainty, and none at all on 16 December (Fig. 3, bottom left). On the

other hand, EPA reports 4 definite events released on 18 December in

this massif, and 9 others that were given a range between December

15th and December 18th. This allows us to postulate that the true time

scale of the avalanche cycle might be closer to 4 days in this massif.

During the cycle, avalanche activity was spatially very heteroge-

neous (Fig. 4). The Queyras and Mercantour massifs, which are both

relatively high (highest summits above 3000 m), and situated near the

Italian border, were by far the most affected. In the Queyras massif, 42

events were recorded between 15 and 19 December, with an activity of

0.21 events per path. This indicates that, in thismassif, one EPA path out

offivewas affected by an event during the cycle. TheMercantourmassif,

which is themost southeasterly oneof theFrenchAlps,wasalso strongly

affected, with 46 events and 0.24 events per path.

Avalanche activity was considerable in five other massifs where

the cycle threshold (2-year return period) was significantly exceeded:

Haute-Tarentaise, Haute-Maurienne and Thabor massifs, situated

northward from Queyras along the French–Italian border, and

Ubaye and Haut Var–Haut Verdon massifs situated between Queyras

and Mercantour. In these five massifs, activity ranged from 0.12 to

0.15 events per path. In Embrunais–Parpaillon, the cycle threshold

was just attained, with 4 events in 5 days and an activity of 0.05

events per path. In Vanoise, activity was slightly below the cycle

threshold, with 7 events but only 0.03 events per path, and very small

to null in all the other massifs. Hence, the cycle threshold was reached

or attained in 8massifs, where 172 events were recorded in 4 days, i.e.

Fig. 3.Number of events per day recorded in the EPA database. Left, daily counts using the second date of the time windows provided by the rangers. In red, the 5 days defined as the

avalanche cycle. Right, size of the time windows given by the rangers for the events of the cycle. The different lines correspond to the full database and to the two most affected

massifs, Queyras and Mercantour.
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82% of the total number of events recorded between 15 and 19

December for the full database. In the rest of the study, we will

therefore consider that the cycle only affected these eight massifs,

with a special intensity in Queyras and Mercantour. Note that, at the

massif scale and for a duration of 5 consecutive days, the cycle

threshold corresponds to an activity of around 0.05 events per path, or

1 path under survey out of 20.

Even if the massifs of Haute-Maurienne and Haute-Tarentaise were

involved, it is clear that the southern French Alps were more severely

affected than the northern French Alps. Also evident is a strong east–

west gradient (Fig. 4). As a consequence, theMoran's I indicates a highly

significant clustering of the number of events and of the number

of events per path at a low distance (Table 1), with p-values below

0.05 indicating that the null hypothesis of random spatial sampling is

rejected. Clustering is no longer significant for both the number of

events and number of events per path for lags ranging between 2 and 4

(Fig. 5, centre and right), indicating that spatial autocorrelation is

limited to short distances. The spatial autocorrelogram indicates a

significant repulsion between the numbers of events per path at lag 5.

This is consistent with the existence of strong spatial gradients, since

4 boundaries are about the size (in the west–east direction) of the

complete region studied.

Spatial gradients can be quantified using the spatial regression of

Eq. (4). For the number of events and the number of events per path,

the direction of maximal gradient is around –14° and –20°, i.e. in the

south-east direction. For the number of events, only the west–east

gradient is significant at the 95% confidence level, with a strong value

of 0.25 avalanches per km (Table 2). For the number of events per

path, both gradients are significant at the 95% confidence level: 0.002

avalanches par path and km in the west–east direction and −0.001

avalanches per path and km in the south–north direction (Table 3).

Spatial regression is reasonable for the number of events (R2=0.59,

Table 4) and good for the number of events per path (R2=0.76).

Overall, the more relative metric of the number of avalanches per

path shows a stronger spatial structure compared with the number of

avalanches in the massif, with more significant Moran indexes for

different lags, significant correlations with the two spatial coordi-

nates, and hence a better agreement between data and spatial

regression. Note that for both the number of events and the number of

events per path, linear spatial gradients are sufficient to explain the

observed spatial clustering since the residuals of the spatial regression

are no longer spatially correlated (null hypothesis of random spatial

sampling is not rejected by Moran's I test, Table 4).

3.2. Meteorological context and consequences for the events

From 14 to 17 December 2008, a large depression formed over the

Mediterranean Sea. It maintained a southerly flow of cold air that

evolved into a southeasterly flow in the east of France. Heavy

precipitation occurred in Italy and extended to France. Heavy

snowfalls therefore occurred in the French Alps situated close to the

Italian border from 14 December to the morning of 17th, with a break

during the 15th. Fig. 6 shows the interpolated cumulated precipitation

in millimetres of water from 13 December at 06 UTC to 17 December

at 06 UTC. The black crosses mark the location of the different data

used.

Rain temporarily occurred at the beginning of the storm below

1200 m in the Mercantour massif, and from 1200 to 1400 m in the

Queyrasmassif. However, because of the coldness of the southeasterly

Fig. 4. Number of avalanches per massif during the cycle.

Table 1

Moran's I for the different variables.

Variable Moran's I p-value

Number of events ni 0.23 0.009

Number of events per path fi 0.47 0.00002

Safran cumulated snowfall over the cycle hi 0.4 0.0001

Averaged instability index over the cycle mean(IIi) 0.19 0.02

Moran's I is computed using first order neighbourhood (see Fig. 5). Bold values indicate

a significant clustering at the 95% confidence level (null assumption of random spatial

sampling is rejected).
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flow, nearly all precipitations fell as snow throughout the affected

massifs during the whole cycle, which is quite remarkable for these

elevations in France. The north–south and east–west gradients visible

in Fig. 4 are even clearer here. Note that the east–west gradient of

precipitation is stronger for the Haute-Maurienne and Queyras

massifs than for the Mercantour massif where the first part of the

precipitation occurred under a southerly flow. Such spatial patterns

typically correspond to a snow and meteorological episode caused by

a perturbation coming from the south and having evolved as an

easterly return. These intense snowfalls were the main release factor

of the cycle's avalanches. However, they were accompanied by strong

wind gusts of up to 100 km h−1. Winds blew consistently from east to

south-east in the Queyras massif and north to north-east in the

Mercantour massif. Considerable drifting snow was observed, and

field observations reported that it locally doubled or tripled the

accumulated snowfall.

These snow and weather conditions are in very good agreement

with those recorded in the EPA report. 82% of the 172 events recorded

in the eight massifs where the cycle threshold was attained were

preceded by at least 50 cm of new snow in 3 days, and 66% of them by

more than 1 m of new snow in 3 days (Table 5). Due to the prevailing

cold temperatures, this increased the proportion of mixed and

powder snow avalanches with regard to the 2001–2005 sample

(Table 6). Note that this classification refers to the flow regime, and

not to the type of release.

To allow cross-comparison between snow and weather data and

avalanche activity, modelled Safran snowfall at the massif scale is

considered (hi in each massif i, i∈ [1,N]). Cumulated snowfalls over 3

or 5 days are quite similar (Fig. 7), indicating that the true duration of

the cycle in terms of snowfalls is close to 3 days, with very small

snowfalls on 18 and 19 December. Given that a few avalanches were

recorded on 18 December in the Mercantour massif, this is a bit

shorter than the full duration of the avalanche activity period.

Spatial patterns in Safran cumulated snowfalls are similar to those

obtained for the number of events, and very similar to those obtained

for the number of events per path. This is indicated by a strongly

significantMoran's I at small distances (Table 1). Moreover, the spatial

autocorrelogram on Fig. 7 (right for the 3-day snowfall, nearly

identical for 5 days) does not present significant autocorrelations

between lags 2 and 4 but a significant repulsion at lag 5. No more

spatial structure in spatial regression's residuals remains (p-value

Fig. 5. Spatial structure of avalanche activity during the cycle. Left, graphical representation of the chosen adjacency matrix. Centre and right, spatial autocorrelogram for the number

of events per massif and the number of events per massif and path, respectively. Lags represent distance classes measured in terms of nearest neighbours at a given order. Horizontal

lines represent Moran's I expectation under random spatial sampling, and vertical bars, computed 95% confidence intervals for Moran's I at each lag.

Table 2

Spatial regression for the number of events.

Variable xk/coefficient βk βk
ˆ βk

ˆ std. error p-value

βo −96.6 90.3 0.3

lat/β1 -0.06 0.03 0.06

long/β2 0.25 0.06 0.0002

Bold values indicate coefficients which are significant at the 95% confidence level (t-test).

Direction of the maximal spatial gradient is given by A tan
βˆ 2

β1
ˆ

� �

= −14:2°.

Table 3

Spatial regression for the number of events per path.

Variable xk/coefficient βk βk
ˆ βk

ˆ std. error p-value

βo −0.24 0.40 0.55

lat/β1 −0.001 0.0001 0.001

long/β2 0.002 0.0003 0.000007

Bold values indicate coefficients which are significant at the 95% confidence level (t-test).

Direction of the maximal spatial gradient is given by A tan
βˆ 2

β1
ˆ

� �

= −19:7°.

Table 4

Summary of the different linear models tested.

Explained

variable yi

Covariates xk Significant

covariates (95%)

R2 Moran's I for

residuals

p-value for

Moran's I

ni lat, long long 0.59 −0.15 0.62

fi lat, long lat, long 0.76 −0.02 0.19

hi lat, long lat, long 0.68 0.06 0.05

max(IIi) lat, long intercept, long 0.48 −0.02 0.17

mean(IIi) lat, long intercept, long 0.53 0.04 0.07

ni hi intercept, hi 0.79 −0.17 0.80

fi hi intercept, hi 0.89 0.13 0.05

fi max(IIi) max(IIi) 0.61 0.32 0.001

fi mean(IIi) mean(IIi) 0.68 0.37 0.0003

fi lat, long, hi lat, hi 0.92 −0.14 0.56

fi lat, long,

mean(IIi)

lat, long,

mean(IIi)

0.86 −0.05 0.25

mean(IIi) hi hi 0.79 0.14 0.05

Intercept refers to the constant term βo in the regression model of Eq. (4). Bold values

indicate a significant clustering at the 95% confidence level of the regression residuals

(null assumption of random spatial sampling is rejected).
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below 0.05, Table 4) and gradients are significant in both directions:

0.66 mm km−1 in the west–east direction and −0.17 mm km−1 in

the south–north direction. Consequently, the cumulated snowfall

over the cycle hi as a single covariate explains avalanche activity very

well (R2=0.79 with the number of events ni and R2=0.89 with the

number of events per path fi, Table 4) and is sufficient for the residuals

to be no longer spatially correlated. The latter point indicates that the

spatial structure in snowfalls fully explains the spatial structure in

avalanche activity at the massif scale. This all quantitatively confirms

the predominant role of snowfalls (amount of precipitation and cold

temperatures) in the analysed cycle.

3.3. Snow cover and snow instability index

Snowfalls started early during the 2008 winter season, and the

snowpack began to develop in November. Results of the SCM model

chain indicate that, at the beginning of the cycle, the snow depth was

already above the average in most of the southern French Alps. As

pointed out in Section 2.1, few weather and snow observations exist

at this early period of the season. However, a snow profile was made

at Auron, Mercantour massif, at an altitude of 2000 m on a 15° north-

east slope by a local observer (Fig. 8). Although not fully of

professional quality, it shows well the structure of the snowpack at

the end of the cycle. The last snowfalls, from 120 cm up to the snow

surface, correspond to a water equivalent of 120 mmwhich is in good

agreement with the modelled Safran snowfall amount for the mid-

December storm. Below the fresh layers, the snowpack consists of

weak snow, partly faceted crystals, with a low density. This snowpack

Fig. 6. Cumulated precipitation (mm water equivalent) during the cycle. Black crosses correspond to measurement stations. Interpolation is performed by kriging. The indicated

massifs are those most affected by the cycle. The map focuses on the French Alpine space.

Table 5

3-day snowfall preceding the recorded avalanches.

Events from the cycle Mean 2001–2005

0 cm 2% 27%

1–20 cm 2% 15%

21–50 cm 4% 28%

51–100 cm 26% 25%

N100 cm 66% 5%

The events from the cycle are the 172 events recorded between December 15th and

19th 2008 in the eight massifs where the cycle threshold is attained. All the events of

the 2001–2005 winters are used as a comparison sample.

Table 6

Flow regime of the recorded avalanches.

Events from the cycle Mean 2001–2005

Powder snow avalanches 23% 6%

Dense snow avalanches 51% 80%

Mixed avalanches 26% 14%
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weakness is confirmed by modelled results of the SCM model chain

(not shown here). Thus, the depth of snow that was potentially

movable in an avalanche was constituted by the fresh snow brought

by the recent snowfalls and the existing weak snowpack which was

another clear aggravating factor explaining the cycle studied.

The mean instability index, mean(IIi), over the cycle is plotted in

Fig. 9 (left), showing similar spatial patterns to the Safran cumulated

snowfall and avalanche activity. Moran's I indicates a slightly weaker

(though significant) clustering of mean(IIi) than of hi and avalanche

activity (Table 1). Although the spatial gradients are somewhat lower

(only longitude is significant) than for avalanche activity and hi,

spatial regression remains reasonable (R2=0.53, Table 4).

The correlation between relative avalanche activity fi and themean

instability index mean(IIi) is similar, though slightly lower than

between relative avalanche activity fi and Safran cumulated snowfall

hi. The residuals of the regression of fi on mean(IIi) are still spatially

correlated (Table 4), whereas the null hypothesis of random spatial

sampling is no longer rejected for the residuals of the regression of fi
on hi. However, considering the different uncertainty sources

concerning observations and modelled data, it can be considered

that the two covariates, hi and mean(IIi) have a similar explanatory

power for relative avalanche activity in this case. It is confirmed by the

regression of mean(IIi)on hi (R2=0.79) indicating that snowfall

patterns explain nearly 80% of the variability and nearly the entire

spatial structure of the mean instability index (Table 4). This is logical,

since Safran snowfall is included in the instability index calculations,

but shows again the predominant role of snowfalls in the cycle.

Finally, the relative avalanche activity fi can be nearly entirely

explained with three covariates: the spatial coordinates (lat, long)

describing the spatial patterns corresponding to the cycle, and hi or

mean(IIi), with R2=0.92 and 0.86 respectively. These high determi-

nation coefficients obtained with very few covariates confirm that the

avalanche cycle was generated by strong and simple snow and

weather patterns.

Similar results are obtainedwith themaxima instability index over

the cycle max(IIi) instead of mean(IIi), though they are slightly worse

in terms of spatial structure (R2=0.48 instead of 0.53 for spatial

regression, Table 4), and correlation with avalanche activity fi
(R2=0.61 instead of 0.68, Table 4). This illustrates/confirms that the

persistence of unstable conditions over several days is more

important for explaining observed avalanche activity than a short

and sharp instability peak.

Fig. 9 (right) shows the residuals of the regression of the number of

events per path fi on mean(IIi). The residuals are generally low, except

for a few massifs. Instability has been overestimated compared to the

number of avalanches observed per path for the Pelvoux, Haute-

Maurienne and Mont-Blanc massifs. On the other hand, the large

positive residuals (between 0.06 and 0.12 events per path) for the Haut

Var–Haut Verdon, Ubaye and Queyras massifs reflect an underestima-

tion of the modelled instability compared to the number of avalanches

observed. There are several possible explanations for these discrepan-

cies. First, the linear regression concerns 15massifs with aweak activity

and only 8 massifs strongly affected by the avalanche cycle, but a

statistical study based on the 8 most affected massifs only would have

beenmeaningless. Second, as stated in Section 2, the index takes higher

values in higher massifs, which explains in part the high negative

residuals in the higher elevation Pelvoux, Haute-Maurienne and Mont-

Blanc massifs. This is critical here since, on the contrary, EPA reports

mainly avalanche activity at lowelevations (human observation). Third,

the regression does not take into account intra-massif gradients in snow

stability and avalanche activity, see Section 4.3.

The fact that the instability index is not clearly a better predictor of

avalanche activity than the Safran snowfall alonemay be surprising and

somewhat disappointing. One reason is that one of themain advantages

of the instability index is to summarise the influence on avalanche

activity of several generating factors. Using the index is therefore not

fundamental in this case because instability was mainly governed by

snowfalls. On the other hand, it can be very useful for other cycles

(Martin et al., 2001), for example, those ofwet snowavalanches coupled

with a positive energy balance, or those discontinuous in terms of

precipitations with a variable rain/snow limit. A second crucial

advantage of the Mepra outputs with regard to rough snowfall data is

to evaluate release probability with a thin spatio-temporal resolution.

This also was not beneficial for this study, since the data were mainly

considered at the scale of themassif, and cumulated over the full cycle's

duration.

4. Historical comparisons

4.1. Return period of the avalanche cycle

Fig. 10 (right) presents the empirical return period of the

December 2008 cycle for ni, the cumulated number of events over

5 days per massif. The spatial patterns appear to agree with those

Fig. 7. Cumulated Safran snowfall (mm water equivalent) over three (a) and five (b) days at the massif scale, and spatial autocorrelogram for three-day snowfall (c).
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obtained for avalanche activity (Fig. 4), Safran snowfalls (Fig. 7) and

instability indexes (Fig. 9). In the Queyras and Mercantour massifs, the

number of recorded events corresponds to thehistoricalmaximumover

5 days since the beginning of the EPA records. The empirical return

period of the cycle is therefore at least 50 years in thesemassifs, butwith

a high uncertainty because of the empirical estimation procedure used

and the relatively short reference period considered. In the Haut–Haut

Verdonmassif, the return period is around 10 years. It is around 8 years

in Haute-Maurienne and around 5 years in all the othermassifs affected

by the cycle. Interestingly, the return period is an increasing function of

the number of events per path at the massif scale: the cycle threshold

(Fig. 10, left) corresponds roughly to 0.05 events per path, a return

period of 5–8 years to approximately 0.12–0.15 events per path, and

historical maxima to 0.2–0.25 events per path.

The maximal instability indexes corresponding to the December

2008 cycle were compared with previous high values encountered over

the last 50 years. For Queyras andMercantour, even if historicalmaxima

were not exceeded, December 2008 was one of the most critical

situations in terms of snow instability over the last few decades. In the

Mercantour massif, the maximal value of the instability index was 5.3

during the cycle. This valuewas already attained in December 1983, and

exceeded in January 2008when it reached5.7. In theQueyrasmassif, the

index reached 4.2 in December 2008. This was a bit less than 5.7 in

March 1971 and far beyond in December 1978where the index reached

its maximum possible value of 8.

4.2. Magnitude–frequency–duration quantification

Fig. 11 shows the return period for ni for durations ranging from 1 to

7 days for the full database, and for a few massifs affected by the cycle.

The different plots can be seen as magnitude–frequency–duration

curves, where, for a given duration, the magnitude is defined as the

number of cumulated events and the frequency by the corresponding

return period. At the scale of the full database (Fig. 11, top), the return

period increases for events cumulated over 1–5 days, reaches a

maximum for events cumulated over 5 days and then slightly decreases.

Relatively similar results are obtained for Haute-Tarentaise and Haute-

Maurienne (Fig. 11, middle), with the magnitude–frequency–duration

curve reaching a maximum for durations of 3–5 days.

The historicalmaximumnumber of events and the highest empirical

return period of 54 years is reached for 3–7 days for the Queyrasmassif,

and for 5–7 days only for the Mercantour massif because of the

events recorded December 19th with delay (Fig. 11, bottom). In these

twomassifs, the return period decreases only ifmuch longer time scales

of several weeks are considered. The link between weather conditions

and avalanche occurrences is then lost, since the events corresponding

to one cycle are compared with the events generated by different

smaller cycles that successively occurred.

The existence of maxima for time scales ranging from 3 to

5 days in all the magnitude–frequency–duration curves except those

corresponding to Mercantour and Queyras confirms that the December

2008 avalanche cycle is remarkable rather because of the succession of

several days of high avalanche activity thanbecause of a very intense but

short activity. However, thedetermination of themost critical time scale

for the cycle remains difficult: (1) variations exist from one massif to

another, depending on the local evolution of the snow and weather

constraining factors; (2) the above-mentioned problem of certain

events having been recorded after their occurrence in the Mercantour

massif makes that an irreducible uncertainty remains. However, such

artefacts may also have existed in the past because the uncertainty

about the release date is recorded since 2002 only. As a consequence,

historical comparisons only allow the time scale of the biased natural

process to be rigorously inferred, without possible subtraction of the

human factor.

4.3. Snowfall return period

Fig. 12 presents the return periods obtained for Safran snowfalls

cumulated over 1 to 5 days, i.e. the magnitude–frequency–duration

curve in each massif. Daily maxima were relatively normal, but

cumulated snowfalls were much more unusual. The highest return

periods are obtained for 3-day snowfalls, thus confirming the 3-day

time scale of the snowfall event. For this duration, the return periods

obtained are around 4 years in the Haute-Mauriennemassif, 6 years in

the Mercantour massif and 10 years in the Queyras massif. Note that a

much longer return period is obtained in the Queyras massif than in

several other massifs for a relatively similar amount of cumulated

precipitation. This arises because Queyras is usually the driest French

massif, seeing intense snowfalls more rarely.

Fig. 13 shows the 3-day snowfalls return period calculated by the

spatial extreme approach described in Section 2.6. It highlights the large

intra-massif snowfall variability. The highest return periods are located

in the extreme east of the Queyrasmassif and in theMercantourmassif,

with very strong intra-massif gradients. The return period for the mean

Safran snowfall at the massif scale (Fig. 12) roughly corresponds to the

maximum local value provided in each massif by the spatial extreme

approach (Fig. 13). To analyse this result, the substantial differences

between the two approachesmust be remembered: the spatial extreme

approach is based on local precipitation data processed with advanced

statistical interpolation tools, whereas the Safran approach is based on

simpler statistical tools, but also on assimilation and processing of a large

amount of data (not only precipitations) at themassif scale using physical

rules. Relatively good agreement between themaximumvalues provided

by the two approaches is therefore already encouraging.

Themost extreme snowfalls correspondedwell to themassifs where

the highest numbers of avalancheswere recorded.Moreover, the spatial

Fig. 8. Snow cover profile at Auron, Mercantour massif, France, December 18th 2008 at

an altitude of 2000 m on a 15° north-east slope. The profile presents snow resistance

and temperature as a function of depth. For each layer, grain type (from International

Classification), grain size (mm), hardness (from 1 to 5), humidity (Wetness index, from

1 to 5) and density (kg m−3) is provided.
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patterns in snowfall return periods and in the return periods of

avalanche numbers during the cycle are quite similar. However, the

highest return periods are much higher for avalanche counts (Fig.10,

right) than for the cumulated snowfalls (Fig. 12): around50 years versus

around 10 years. This has been reported for other cycles including

February 1999 (Schweizer et al., 2009), but with avalanche return

periods based on runout distances and impact pressures rather than on

the number of events. The most likely explanation for the difference in

return period between snowfalls and avalanche numbers is provided by

the aggravating effects highlighted previously (drifting snow, thick

snowpack at the beginning of the cycle..., etc.) that have induced more

avalanches than predicted by snowfalls only. Another possible explana-

tion is that the high intra-massif spatial gradients in snowfall intensity

have led to a high intra-massif clustering of the EPA paths on which the

avalanche events were recorded. Indeed, in the Haute-Maurienne,

Thabor andQueyrasmassifs, nearly all the paths located very close to the

French–Italian border were active during the cycle (Fig. 14), which

corresponds well to the position of local maxima in the snowfall return

period (Fig. 13). Since EPA paths are not uniformly spatially distributed

and are especially numerous close to the French–Italian border because

of a high mountain ridge at this location, this may also explain the fact

that a relatively large and infrequent snowfall was able to generate an

even more extreme number of avalanches.

4.4. Magnitude of the events

Except in Tables 5 and 6, historical comparisons have been up to

here mainly based on avalanche counts. Understanding why the

Fig. 9. Instability index over the cycle. The instability index is computed by the SCM chain. Left, themean instability indexmean(II) over the cycle. Right, residuals from the regression

model of Eq. (4), with mean(II) as unique covariate to explain the observed number of events per path.

Fig. 10. Return period of the number of events per massif for the cycle. The cycle threshold corresponds to a 2-year return period, i.e. to the number of avalanches over 5 days which

has been exceeded only one time in 2 years on average.
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December 2008 avalanche cycle caused substantial damage involves

more precise evaluation of the magnitude of the cycle events in their

runout zones, where the elements at risk are situated. For both the

2001–2005 comparison sample and the 172 events corresponding the

December 2008 avalanche cycle, RAI's distribution is strongly skewed

on the right (Fig. 15, right). This common shape occurs because of the

enhancing effect of the exponential transformation, and because the

differences between the observed and minimal runout altitudes are

always small. For instance, the mean runout altitude during the cycle

was 1643 m (with values ranging roughly between 1200 and 2100 m,

Fig. 15, left), to be compared to 1638 m, the mean minimal altitude of

the paths which were active during the reference period in the

8 massifs affected by the cycle. This small difference indicates that the

reference values are well chosen, making the use of the RAI possible.

For a given probability, the cumulative distribution function of the

RAI is systematically higher for the December 2008 cycle than for the

2001–2005 sample. This remains true to a lesser extent, but still with a

significant p-value, if the comparison sample is limited to the 8massifs

where the cycle occurred. For instance, the valley floor was reached by

19% of the cycle events (i.e. nearly twice asmany as for the 2001–2005

total and partial samples), and seven of them climbed up the opposite

slope of the valley. All this suggests that this cycle's avalanches generally

reached long runouts, which is coherentwith the high proportion of dry

snow avalanches (with or without a powder part) during the cycle, and

with the cold temperatures that existed (friction is reduced with

cold snow). Note that the absence of intense avalanche cycles in the

2001–2005 sample may also explain the systematic difference with the

2001–2005 sample, but it is not sufficient, since several historical

extensions based on much longer records were exceeded during the

2008 cycle. As a consequence, the French avalanche atlas had to be

significantly updated, mainly in the Queyras and Mercantour massifs.

The maximum deposit volume recorded during the cycle

was 180,000 m3.This is much smaller than the maximum over the

2001–2005 comparison sample (900,000 m3). However, for a large

range of probabilities including those corresponding to the 50%–90%

percentile, the cumulative distribution function of deposit volumes is

significantly higher for the December 2008 cycle than for the 2001–2005

sample (Fig. 16, left). Even if no real exceptional deposit volume was

observed during the cycle, volumes higher than in mean were therefore

encountered, especially if it is considered that the deposit volumes

corresponding to the numerous powder snow avalanches having

occurred during the cycle were very likely underestimated. Both the

cycle and the comparison sample's distributions have a similar log-

normal shape, but with different mean and standard deviations. The two

samples are no longer statistically different after log-scaling (i.e. after

dividing thedeviation from themeanby the standarddeviation),which is

in good agreement with the assumption generally made of log-normally

distributed avalanche masses (e.g., McClung, 2003).

5. Discussion, conclusion and outlooks

5.1. The December 2008 cycle

In mid-December 2008, an intense avalanche activity was

observed during southeasterly fluxes over the eastern regions of

southern French Alps and in the nearby region of Italian Piedmont. It

was one of themost critical situations in terms of snow instability over

50 years, and even the historical maxima in terms of the number of

events since the beginning of the systematic avalanche observation in

the Queyras and Mercantour massifs. Over a smaller time scale, it was

themost intense avalanche cycle in the French Alps since the westerly

induced cycle of February 1999. A significant correlation between the

number of events and their magnitude was also present, since the

cycle events on average had higher volumes and reachedmuch longer

runouts than during a mean winter.

The detailed analysis proposed in this paper is useful to better

understand links between synoptic circulation patterns and ava-

lanche activity in the French Alps. The most important factors

explaining the very high number of avalanches observed were the

duration of the episode and the abundant snowfalls brought by

southerly and westerly fluxes. Significant east–west and south–

north gradients of precipitation have existed, and it was shown that

they were sufficient to explain nearly all the spatial structure of the

avalanche activity at the massif scale. Cold temperatures made the

snow–rain limit to be unusually low, and caused long runouts and an

important proportion of powder snow avalanches. The weakness of

the thick snowpack at the beginning of the cycle also played a role,

and wind and drifting snow aggravating effects were observed

locally.

From a temporal point of view, magnitude–frequency–duration

curves helped in demonstrating that an approach based only on

daily maxima of number of events was insufficient for fully

characterising the studied cycle, and that 3 to 5 days was more

likely the critical time scale. This critical time scale may differ from

a purely snow and weather point of view than from the EPA report's

point of view. However, the inherent uncertainty around the

precise time of occurrence of the avalanche events made it

impossible to relate avalanche activity to the available snow and

weather data at short time steps. As a consequence, for most of the

regression and spatial analyses of Section 3, the avalanche cycle

was considered as a block, and avalanches and precipitations were

cumulated over 5 days (for precipitations, this makes very little

difference with 3 days), so as to avoid underestimation of the

cycle's intensity.

5.2. The question of scales

Our relative definition of an avalanche cycle based on the 2-year

return period has the advantage of being independent of the duration

Fig. 11. Magnitude–frequency–duration curves for the number of events for the full

database and selected massifs.
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on which the events are cumulated, as well as of the spatial scale. It

can therefore be used to detect avalanche cycles of various length, and

at any spatial scale, for example at the administrative level (départe-

ment) at which the EPA avalanche data are collected. Since such a

spatial scale is less relevant to understand the physical characteristics

of the factors controlling avalanche cycles, the smaller and more

physically-based scale of mountain massifs devoted to operational

avalanche forecasting was preferred.

However, characterising the spatial and temporal scales that best

describe the studied cycle was very difficult because of its particular

generating weather conditions (easterly return) that made the number

of avalanche releases high very close to the French–Italian border. For

instance, the strong local gradients in snowfall intensity and avalanche

activity shown in Figs. 14 and 15, respectively, demonstrate inhomo-

geneitywithinmassifs. This presumably partially explains thedifference

in return periods between snowfalls and avalanche counts. Similarly, as

exemplified by the differences in magnitude–frequency–duration

curves, the time scale which is the most appropriate to describe the

cycle varies from one massif to another.

All these points highlight that defining zones and periods that are

homogeneous in terms of avalanche activity remains extremely

tough. Since no snow cover model is for the moment able to define

a release probability at the path scale, this indicates that the effort of

joint analyses of avalanche and weather data during avalanche cycles

must be pursued, to better understand the space and time clustering

of avalanche events during the most critical situations, and thus

improve avalanche forecasting.

It must be noted that a specific detailed study of the most

destructive events of the cycle has been conducted at the path scale

(Gaucher et al., 2009). However, such an approach does not allow

Fig. 12. Return period (year) of Safran snowfall at the massif scale for different durations: (a) daily maximum, (b) 2-day, (c) 3-day, (d) 4-day, and (e) 5-day. Considered altitude is

1800 masl.
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much inference of the global response of a mountain system to a

weather signal. Our work at themassif scale can therefore be seen as a

reasonable compromise between having enough information to

obtain robust estimators of a mean behaviour during an avalanche

cycle and choosing regions with a relative homogeneity of the

considered events. Going into greater detail would involve computing

return periods at the path scale, so as to precisely position the

different recorded events on the local magnitude frequency curve

corresponding to each path. This would be appealing in terms of long-

term hazard assessment and zoning. However, it is difficult to do so

systematically because only runout elevations are recorded in the EPA

database, so that substantial field work is necessary to convert them

into distances and extensions with reasonable uncertainty levels.

5.3. Cross comparison of data

Thework aimed at comparing the information conveyedby different

data sources. Analyses showed for the case study good coherence

between the spatial (Moran's I, gradients, regressions) and temporal

(return periods, magnitude–frequency–duration curves) patterns in

snow and weather data, snow instability index and avalanche activity.

The different snow and weather categorical variables recorded in the

EPAdatabasewere in good agreementwithweather conditions, and the

cycle had themost destructive effects where themagnitude of the cycle

was the highest (Queyras and Mercantour massifs). All this is

encouraging in terms of the quality and coherence of the different

data sources.

Some discrepancies between the information conveyed by the

different data sets analysed and methods were though noted. Certain

of them are linked with the lack of homogeneity in terms of data scale

and type, for example avalanche events at the path scale recorded

mainly at low elevations, versus snow and weather data assimilated

and processes by the SCM model chain at the massif scale, with

greater importance given to high elevations. Others are related to the

limitations of each data set, for example missing and delayed

avalanche events in the EPA report. These are for us unavoidable

during the analysis of a real avalanche cycle for which all information

acquired over a large area is used. For instance, in such a context,

everything cannot be fully proven quantitatively and a certain credit

must be given, after quality checking and/or cross-comparison, to

partial, uncertain, or qualitative information provided by experienced

local observers. Finally, certain discrepancies arise presumably simply

because snow avalanches are integrated and nonlinear responses to

snow and weather patterns interacting with topography, which for

example induces delay between snowfalls and certain avalanches, or

even response/non response to a given loading. Nevertheless, the

study has shown that databases, constructed separately, perform

relatively well in illustrating different aspects of an avalanche cycle.

Fig. 13. Return period of the three-day snowfall as a function of space. Black dots correspond to measurement stations with long series that have been used for model calibration.

Black crosses correspond to other measurement stations for which data were available for the December 2008 cycle. Return period is evaluated at 2000 masl.
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Furthermore, making them work together somewhat compensates

the limitations of each of them: missing values, uncertainties around

certain quantitative values..., etc.

An important outcome of this study is that the spatial structure and

correlations of avalanche activity with snow and weather data were

systematically higher for the relative activity fi than for the raw number

of events ni. This pleads in favour of the EPA protocol that monitors

certain paths as exhaustively aspossible rather than asmanyavalanches

as possible on all paths. Sadly, for the historical comparisons, the

number of events per path could not be used because the number of

paths under survey is too uncertain for older data.

Avalanche activity and the modelled instability index have also

found to be globally consistent. However, the predictive power of

the instability index remained limited (relatively high residuals,

results not better than with snowfall alone) in the specific cycle

studied because of its particularity (predominance of snowfalls as

the main explanatory factor, even at low elevations), and the way

the study was conducted (without a high spatio-temporal resolu-

tion). Even if this study did not aim at assessing the employability of

modelled instability index for analysing avalanche cycles, this

highlights the interest of including more data and/or recently

developed statistical methods in a physically-based forecasting

Fig. 14. Activity at the path scale during the cycle.
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procedure such as the SCM model chain employed by Météo-France

at the massif scale.

For the historical analysis, rather than focusing only on the traditional

3-day snowfall, we introduced a recent spatial extreme approach to

compute spatialised return periods, magnitude–frequency–duration

curves, and statistics concerning previous high instability index occur-

rences. We also proposed using adapted statistical tools to characterise

spatial clustering/anti-clustering and quantify spatial gradients of

avalanche activity and constraining snow and weather factors. All this is

relatively new in the snow and avalanche community. It constitutes an

appropriate methodological basis for a deepened analysis of the spatio-

temporal structure of an avalanche cycle with cross-comparison of

different data sources which could be put to use for analysing other

exceptional episodes.

In further work, other variables, such as avalanche extension at the

path scale, orientation of the starting zone of the active paths to better

take into account the local wind effects (drifting snow, orographic

effects..., etc.) could be considered. Methodological developments

remain also necessary in terms of replacing certain empirical

approaches that have been used by explicit modelling procedures. For

instance, lowering the uncertainty around the return period for the

number of avalanche events corresponding to rare avalanche cycles

Fig. 15. Runout altitude of the cycle events. Left, distribution of runout altitudes of the 172 events recorded between December 15th and 19th 2008 in the eight massifs where the

cycle threshold is exceeded. Right compares the RAI of these events to the RAI of the 2001–2005 comparison sample. The 2008 cycle is statistically different from the full reference

sample (Kolmogorv–Smirnov test, p-valueb10−7), and from the reference sample in the 8 massifs where the cycle occurred (p-value=10−3).

Fig. 16. Deposit volume of the 2008 cycle events versus comparison sample. Left compares the deposit volumes of the 172 events recorded between December 15th and 19th 2008 in

the eight massifs where the cycle threshold is exceeded to the deposit volumes of the 2001–2005 comparison sample. The two samples are strongly statistically different

(Kolmogorv–Smirnov test, p-valueb10−7). Right compares the two scaled samples which are no longer statistically different (p-value=0.65).
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would imply replacing our empirical approach with an extreme value

model. This highlights the need for future development of extreme

value statistical models adapted to discrete observations, which for the

moment do not exist. In the same vein, empirical assessment tools of a

spatial structure such as Moran's I could potentially be replaced with

explicit spatial models (Banerjee et al., 2003), so as to undertake the

analysis within a fully explicit spatio-temporal modelling framework.

The underlying assumption of stationarity that was present in all the

historical avalanche cycle comparisons that have been provided would

then be withdrawn, so as to take into account the growing evidence of

changes in avalanche activity over the last several decades and their

repercussions on intense avalanche cycles.
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Appendix C

Quasistatic to inertial transition in

granular materials and the role of

fluctuations

This appendix is composed of an article entitled “Quasistatic to inertial transition in gran-

ular materials and the role of fluctuations”. It was published in Physical Review E in

2011 with Guillaume Chambon and Mohamed Naaim.

This article was written during the thesis, although focused on the subject of my master

thesis. It consists in the numerical modeling of discrete elements in a Couette cell, in order

to characterize the rheology of granular materials in quasistatic and inertial regimes. The

transition between these two regimes is deeply discussed and a new constitutive law valid in

both regimes is proposed. This constitutive law involves the friction coefficient (normalized

shear stress), the inertial number (normalized shear strain rate) and normalized velocity

fluctuations.
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Quasistatic to inertial transition in granular materials and the role of fluctuations

Johan Gaume, Guillaume Chambon,* and Mohamed Naaim

Cemagref, UR ETGR, 2 rue de la Papeterie, FR-38402 St. Martin d’Hères Cedex, France
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On the basis of discrete element numerical simulations of a Couette cell, we revisit the rheology of granular

materials in the quasistatic and inertial regimes, and discuss the origin of the transition between these two regimes.

We show that quasistatic zones are the seat of a creep process whose rate is directly related to the existence

and magnitude of velocity fluctuations. The mechanical behavior in the quasistatic regime is characterized by a

three-variable constitutive law relating the friction coefficient (normalized stress), the inertial number (normalized

shear rate), and the normalized velocity fluctuations. Importantly, this constitutive law appears to remain also

valid in the inertial regime, where it can account for the one-to-one relationship observed between the friction

coefficient and the inertial number. The abrupt transition between the quasistatic and inertial regimes is then

related to the mode of production of the fluctuations within the material, from nonlocal and artificially sustained

by the boundary conditions in the quasistatic regime, to purely local and self-sustained in the inertial regime.

This quasistatic-to-inertial transition occurs at a critical inertial number or, equivalently, at a critical level of

fluctuations.

DOI: 10.1103/PhysRevE.00.001300 PACS number(s): 83.80.Fg, 47.57.Gc

I. INTRODUCTION

One of the most fascinating properties of granular materials

is their ability to either sustain stresses as solids, or to flow as

fluids, depending on the applied solicitation. It has been shown

in several studies [1–3] that, at any given point within the

material, this solid-to-fluid transition is primarily controlled

by the local value of the inertial number I = γ̇ d (ρ/P )0.5.

This number represents the ratio between a microscopic

inertial timescale d(ρ/P )0.5 (P being the pressure, d the grain

diameter, and ρ the grain density) and the macroscopic time

scale γ̇ −1 associated with the shear rate γ̇ . Fluidlike behavior

is obtained for large enough values of I and corresponds to the

so-called inertial regime. In this regime, the constitutive law of

the material is characterized by a one-to-one relationship, of

the viscoplastic type, between the friction coefficient μ = τ/P

and the inertial number I [4,5]. For low values of I , on the

contrary, the μ(I ) relationship loses its validity and solidlike

behavior is recovered. In this so-called quasistatic regime, and

in agreement with the plastic constitutive laws classically used

in soil mechanics for I → 0 [6], the mechanical behavior

is generally described as becoming rate independent and

characterized by a constant friction coefficient μs (critical state

theory).

The transition between the inertial and quasistatic regimes

typically occurs for values of I in the range 10−3–10−2. In

detail, however, the reported I value at the transition appears to

vary between existing studies, and possibly depends on system

size [1,2]. Furthermore, from these studies, it is still not clear

whether this transition occurs sharply at a given value of I ,

or progressively as I → 0. More generally, the real nature

of the quasistatic-to-inertial transition in granular materials,

and the physical processes involved, still remain largely

unknown. Recently, the mechanical behavior in the quasistatic

regime has been shown to be significantly more complex than

described by classical soil mechanics. In particular, continuous

*guillaume.chambon@cemagref.fr

creep in quasistatic zones, incompatible with a supposedly

rate-independent mechanical behavior, has been reported

in several configurations (such as free-surface flows and

Couette cells) [3,7,8]. Several studies have also evidenced the

existence, in the quasistatic regime, of strong and intermittent

fluctuations characterized by collective particle motions with

large correlation lengths (nonlocal processes) [9–13]. Yet, and

although it is reasonable to think these fluctuations may play

an important role in the macroscopic rheology of the material

[12,14,15], the link between fluctuations and creep has never

been formally proved. Similarly, although the existence of

creep in the quasistatic regime could lead one to think that

the transition toward the “true” solid behavior is in fact

progressive, this issue, as well as the potential connection

between the quasistatic creep and the viscoplastic rheology in

the inertial regime, remains to be properly addressed.
The objective of this paper is precisely to explore the

links between creep, fluctuations, and viscoplastic rheology
in order to propose a more consistent description of the
quasistatic-to-inertial transition in granular materials. We will
prove that the creep is effectively related to the existence
of fluctuations within the sample, and that a three-variable
constitutive law between shear rate, friction coefficient, and
fluctuation level can be formulated in the quasistatic regime.
In addition, we will show that this constitutive law remains
valid in the inertial regime, where it can account with good
accuracy for the viscoplastic behavior observed, thus opening
the way toward a unified treatment of both quasistatic and
inertial regimes.

Our work is based on numerical simulations using the
discrete element method (DEM) [16]. This method allows
us to perform veritable numerical experiments on granular
materials. The configuration simulated is a Couette cell (or
annular shear cell), which presents the specificity of placing
locally the tested sample in a state of simple shear, but with
a shear stress σrθ that decreases from the inner wall to the
outer sample boundary according to σrθ (r) = σrθ (Ri) Ri

2/r2

(where Ri is the inner cylinder radius and r the radial position
of the point considered) [3,10,15,17–19]. This setting is thus
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particularly well suited to studying the quasistatic-to-inertial
transition, since coexistence between quasistatic and inertial
zones can be observed within the same sample. It is important
to mention that our simulations are very similar to those
reported in [3]. This latter study actually presents a complete
overview of the mechanical response of a granular sample
placed in a Couette cell, which we shall obviously not
reproduce here. In the present paper, we take one step forward
and, building from the results of [3], our analysis of the
simulation data is specifically focused on insights concerning
sample rheology and the quasistatic-to-inertial transition.

This paper is organized as follows. Section II presents

the simulated system and defines the mechanical quantities

considered. In Sec. III, after having evidenced the existence of

the quasistatic-to-inertial transition, we revisit the rheological

properties of the inertial regime and propose a new approach to

the rheology of the quasistatic regime. In Sec. IV, an empirical

three-variable constitutive law valid in both the quasistatic

and the inertial regimes is derived. Lastly, conclusions re-

garding the physical nature of these two regimes and of the

transition between them are discussed in Sec. V.

II. SIMULATED SYSTEM

The discrete element simulations were performed using the

commercial software PFC2D (by Itasca) which implements

the original soft-contact algorithm described in [20]. The sim-

ulated Couette cell is two dimensional (Fig. 1), with inner and

outer cylinder radii Ri = 0.4 m and Re = 0.6 m. The granular

samples are composed of about 7000 circular particles of

average diameter d = 4.7 mm [thus (Re − Ri)/d ≈ 43], with

a grain size distribution polydispersity of ±30% (diameters

ranging from 3 to 6 mm) in order to prevent crystallization.

Shear is applied by rotation of the inner cylinder at an

imposed rotation velocity � which was varied between 0.05

and 20 rad s−1. The outer cylinder is fixed, but consists of a

flexible membrane through which a constant radial pressure

P = 10 kPa is imposed onto the sample. This setting is

preferable to a rigid wall, in order to accommodate the density

variations undergone by the granular material during shear.

FIG. 1. (Color online) Simulated shear cell. Zones of different

colors within the sample illustrate the shear deformation.

TABLE I. Mechanical parameters used in the simulations. kn: nor-

mal contact stiffness; kt : tangential contact stiffness; μg: intergranular

friction; e: normal restitution coefficient; ρ: particle density.

kn/P kt/kn μg e ρ

104 0.5 0.5 0.1, 0.9 300 kg m−3

Both boundaries are constituted by grains of diameter d to

represent wall roughness.

The interparticle contact laws used in the simulations are

classical [16]. The normal force is the sum of a linear-

elastic and of a viscous contribution (spring-dashpot model),

and the tangential force is linear-elastic with a Coulombian

friction threshold. The corresponding mechanical parameters

are summarized in Table I. Let us mention that the value of the

normal stiffness kn was chosen in order to keep low normal

interpenetrations δ at contacts, δ/d ≪ 10−3, i.e., to work in the

quasirigid grain limit [2,6]. Concerning the normal restitution

coefficient e, we checked that the results presented below,

and more generally all the macroscopic mechanical quantities

obtained from the simulations, are actually independent of this

parameter (in the range 0.1–0.9), in agreement with previous

studies [2].

One of the main interests of DEM simulations is that

mechanical quantities such as stresses, shear rates, etc., can be

computed at each material point within the sample. Hence, the

rheological behavior of the material can be explored locally,

regardless of the spatial heterogeneities possibly displayed

by these mechanical quantities. In our case, the shear rate

γ̇ is obtained from the orthoradial velocity profile v(r)

according to γ̇ = r[d(v/r)/dr]. The stress tensor is derived

using the classical Love homogenization formula [21]. In

the following, only mechanical responses obtained in steady

state will be considered, disregarding the transients that occur
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FIG. 2. (Color online) Correlation between the spatiotemporal

velocity fluctuations δvsp and the temporal velocity fluctuations δv

in the simulated samples. The different symbols refer to the imposed

values of inner cylinder rotation velocity �.
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FIG. 3. (Color online) Radial profiles of (a) friction coefficient μ,

(b) inertial number I , and (c) fluctuation number 	 for the different

imposed values of inner cylinder rotation velocity �. The profiles are

plotted as a function of the reduced radius r∗ = (r − Ri)/d .

at the initiation of shear. Acknowledging this steady-state

condition and the cylindrical symmetry of the system, all the

mechanical quantities computed are subjected to a double,

spatiotemporal averaging procedure 〈·〉θ,t over annuli having a

thickness of 1.6d and over time windows that are sufficiently

long to integrate both individual and correlated particle

motions.

In addition to average quantities, we will also consider the

orthoradial velocity fluctuations δv = (〈〈v〉θ
2〉t − 〈v〉θ,t

2)1/2.

Note that defined as such, the quantity δv only accounts for

the temporal fluctuations of the spatially averaged velocity

〈v〉θ . We chose this fluctuation measure by analogy with

the common practice in fluid turbulence. In addition, as

shown in Fig. 2, we observed that the spatiotemporal velocity

fluctuations defined as δvsp = (〈v2〉θ,t − 〈v〉θ,t
2)1/2 appear

strongly correlated to the temporal fluctuations δv in our

system. Hence, and although this result would deserve further

discussion beyond the scope of this paper, we argue that the

quantity δv can actually be considered as a good proxy for all

types of fluctuations within our samples.

Compared to the simulations described in [3], the only

notable specificity of our study lies in the consideration of

complete annular samples, instead of orthoradial periodic

boundary conditions. As a validation of our work, we checked

that the global response of the samples observed in our

simulations, such as the evolutions with r and � of the

velocity, density, and stresses, fully agrees with the results

presented in [3]. As already mentioned, the reader is thus

referred to this previous study to get an overall view of the

mechanical behavior of a granular sample in a Couette cell.

In what follows, we only focus on the variables relevant to

describing the macroscopic rheology of the granular material,

namely, the inertial number I (dimensionless shear rate),

the friction coefficient μ (dimensionless shear stress), and a

dimensionless measure of the velocity fluctuations 	 defined

as 	 = δv (ρ/P )0.5.

The radial profiles within the sheared samples of the

quantities I , μ, and 	 are shown in Fig. 3. The observed

decrease of the friction coefficient μ with r is fully explainable

by the geometrical heterogeneity of the shear stress inside

the Couette cell: μ ∝ (r/Ri)
−2 (the pressure being constant

in the sample; see [3]). In parallel, both the inertial number

I and the velocity fluctuations 	 also decrease with r .

These two quantities display roughly exponential trends, with

characteristic lengths that remain quasiconstant for all tested

values of the rotation velocity �. (In detail, however, the

localization width, i.e., the characteristic length associated

with the exponential decrease of I , may show a slight increase

with �; see [3].)

III. GRANULAR RHEOLOGY

A. A marked quasistatic-to-inertial transition

The mechanical behavior of the tested material is high-

lighted when representing directly the friction coefficient μ or

the fluctuation number 	 as a function of the inertial number

I for all locations within the sample and all rotation velocities

� (Fig. 4). As already noted in [3], the plot of μ versus I

[Fig. 4(a)] clearly evinces the existence of a marked rheological

transition at a given value of I , It ≈ 5 × 10−3 in our case. For

I > It , all the obtained data points collapse on a master curve

and, therefore, define a single μ(I ) relationship regardless of

the values of rotation velocity � and radius r . For I < It , on

the contrary, there appears to be no one-to-one relationship
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FIG. 4. (Color online) (a) Friction coefficient μ as a function

of inertial number I . The different symbols refer to the imposed

values of inner cylinder rotation velocity �. The blue dotted curve

represents Eq. (1), while the black dashed one corresponds to Eq. (6).

(b) Fluctuation number 	 as a function of inertial number I . The

dashed line represents Eq. (2).

between μ and I . Interestingly, this transition at I = It is also

clearly visible on the evolution of the fluctuation number 	

with I [Fig. 4(b)]. Similarly, a one-to-one relationship 	(I )

is obtained for I > It , while no such relationship exists for

I < It .

Following [3], we identify this transition observed at I = It

with the quasistatic-to-inertial transition. The data points

corresponding to the inertial (I > It ) and to the quasistatic

(I < It ) regime will now be examined independently, in order

to exhibit the rheological properties of each of these regimes.

Let us recall that due to the decrease of the inertial number

I with r , zones lying in the inertial and in the quasistatic

regime may simultaneously coexist within our samples. In

what follows, these cases of coexistence between inertial and

quasistatic zones will prove to be particularly informative in

terms of rheological behavior. In detail, Fig. 3(b) shows that

such a coexistence is actually observed only above a particular

value of the rotation velocity, �t ≈ 1 rad s−1. For � > �t ,

I > It at the sample’s inner boundary and an inertial zone thus

develops around the inner cylinder, surrounded by a quasistatic

zone outside. The thickness of the inertial zone progressively

decreases with �, and vanishes at �t . For � < �t , the whole

sample lies in the quasistatic regime. Note that a quasistatic

zone, either alone or in coexistence with an inertial zone, was

always present in all our simulations.

B. Inertial regime

The rheological behavior observed for I > It is fully con-

sistent with the results obtained in previous studies dedicated

to the inertial regime of granular materials [1,2]. In particular,

the μ(I ) relationship in Fig. 4(a) can be well fitted by the

empirical expression proposed in [4]:

μ = μs +
μl − μs

I0/I + 1
, (1)

with parameters on the same order as those obtained from

experimental data (μs = 0.26, μl = 0.62, I0 = 0.07). Note

that a simpler, alternative expression to describe this μ(I )

relationship will be proposed hereinafter. Independent of the

particular fitting law used, the existence of such a one-to-one

relationship between the friction coefficient μ and the inertial

number I indicates that the inertial regime is characterized

by a rate-dependent rheological behavior similar to that of

a complex fluid. As a macroscopic signature of this rate-

dependent behavior, Fig. 3(a) shows that as soon an inertial

zone exists around the inner cylinder, the friction coefficient

profile in the sample (and thus the global torque on the inner

cylinder) increases with the rotation velocity �.

In parallel, and also in good agreement with previous

studies [1,2], the relationship between the fluctuation and

inertial numbers 	 and I observed for I > It is well fitted

by a power law with an exponent of 0.5 [Fig. 4(b)]:

	 = CI I 1/2, (2)

where CI ≈ 0.12. The existence of this one-to-one relationship

	(I ) can be interpreted as the fluctuations being created locally

by the granular agitation resulting from the shear rate [2,15].

Actually, as will be discussed later, we propose that it is

precisely this property of locality for the fluctuations that

constitutes the “intrinsic” definition of the inertial regime.

C. Quasistatic regime

In contrast to the inertial regime, the quasistatic regime

is characterized by the absence of one-to-one relationships

between μ and I and between 	 and I . We also observe in

Fig. 3(a) that the friction coefficient radial profiles are inde-

pendent of the rotation velocity � for � < �t , i.e., when the

whole sample lies in the quasistatic regime. Nevertheless, these

properties do not imply that the mechanical behavior in this

regime is rate independent, as would be predicted by classical

soil mechanics constitutive laws. First, Fig. 3(b) clearly shows

that significant deformation rates exist within the quasistatic

zones, both for � > �t and for � < �t . When coexistence

between inertial and quasistatic zones occurs (for � > �t ), the

radial profiles of I are actually completely continuous across

the two zones. Hence, as already noted in [3], the quasistatic

zones in the Couette cell appear to undergo a continuous creep
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which is incompatible with a rate-independent mechanical

behavior. (With a rate-independent behavior, we would rather

expect the material to remain immobile in the quasistatic zones,

except in particular localization layers concentrating all the

deformation [19].)

Second, even if there is no unique relationship between μ

and I for I < It , these two variables do nevertheless show clear

correlations [Fig. 4(a)]. In particular, all data points obtained

in quasistatic zones that coexist with an inertial zone (case

� > �t ) appear to collapse on a master curve which smoothly

connects with the μ(I ) relationship obtained for I > It . For

� < �t , the data points follow distinct paths in the μ-I space

according to the value of �, but all these paths remain globally

parallel to the master curve just described for � > �t . Similar

correlations are observed between 	 and I in Fig. 4(b). In

fact, the evolution of the fluctuation number 	 with I in

the quasistatic regime strongly resembles that of the friction

coefficient μ. Data points corresponding to � > �t collapse

on a master curve, while data points obtained for � < �t

follow distinct but approximately parallel paths.

These correlations and the similarity between the evolutions

of μ and 	 with I suggest the existence, in the quasistatic

regime, of a unique relationship between these three quantities.

To check this hypothesis, the three variables are represented in

a three-dimensional (3D) plot in Fig. 5. Although not clearly

evident on a planar representation, we observe that all the data

points obtained in the quasistatic regime effectively appear

to define a single surface in this plot. More quantitatively,

a principal component analysis of the data set made of the

triplets [log10(I ), log10(	),μ] has been performed. It shows

that more than 99.9% of the data dispersion is explained

by the two largest eigenvalues of the correlation matrix (Fig. 5).

This constitutes a formal proof that the three variables are

effectively linked by a unique relationship.
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FIG. 5. (Color online) 3D plot representing the triplets constituted

by the values of inertial number I (log10 scale), fluctuation number

	 (log10 scale), and friction coefficient μ obtained in the quasistatic

regime (I < It ). The histogram represents the three eigenvalues of the

data-set correlation matrix inferred through principal value analysis

(PCA). The surface plotted as an eyeguide corresponds to the plane

defined by the two largest eigenvalues of the PCA.

FIG. 6. (Color online) Instantaneous snapshots of particle ve-

locities in the simulated Couette cell. White (light) particles are

characterized by a velocity that exceeds a fixed threshold (0.4 m s−1

in this example), whereas red (dark) particles have a velocity

below this threshold. (a) � = 5, (b) � = 8, (c) � = 10, and (d)

� = 20 rad s−1.

Hence, in spite of the absence of one-to-one relationships

between μ and I and 	 and I in the quasistatic regime,

these quantities are nevertheless strongly correlated through

a three-variable relationship of the form I = f (μ,	). Since

it only involves local variables, this relationship, for which

we shall propose an empirical expression in what follows,

can be viewed as a local constitutive law characteristic of the

quasistatic regime. Note, however, that the existence of this

law does not imply that the rheology of the material is local.

Indeed, and unlike in the inertial regime, the fluctuations in

the quasistatic regime appear to be essentially produced by

nonlocal processes. Qualitative observation of the particle ve-

locities shows that fluctuations tend to organize into short-lived

“bursts” that emerge at the boundary of the quasistatic zone

(either at the inner cylinder or at the interface with the inertial

zone) and then “propagate” into the material (Fig. 6). We also

remark that when the fluctuation level at the boundary of a

quasistatic zone is fixed, i.e., when the quasistatic zone coexists

with an inertial zone, then the complete radial profile of the

fluctuations inside this quasistatic zone is also fixed (cf. the col-

lapse of the data points corresponding to � > �t in Fig. 4(b)].

These observations indicate that fluctuations in the quasistatic

regime are in fact essentially sustained by the boundary

conditions applied at the periphery of the quasistatic zones.

IV. EMPIRICAL CONSTITUTIVE RELATIONS

A. Derivation of a three-variable relationship

From the principal component analysis presented above,

it can be deduced that a linear function in terms of the
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variables log10(I ), log10(	), and μ would constitute a good

approximation for the three-variable constitutive relationship

characterizing the quasistatic regime (at least for the values of

I , μ, and 	 covered in our simulations). However, an even

better empirical expression for this relationship can be derived

by analyzing the dependence between I and 	 at constant

values of μ. Such an analysis is possible for � < �t , i.e.,

when the whole sample lies in the quasistatic regime, owing

to the fact that the friction coefficient μ is independent of �

in this case. Therefore, studying the dependence between I

and 	 for data determined at constant values of radius r is

equivalent to considering constant values of μ.

Figure 7(a) shows that for each value of friction coefficient

μ, the evolution of the fluctuation number 	 as a function of

the inertial number I approximately follows a power-law of

the form

	 = CQS I β(μ), (3)

with a prefactor CQS ≈ 0.59 independent of μ, and an

exponent β increasing with μ. Furthermore, the dependence

of this exponent β with μ appears to be essentially linear

[Fig. 7(b)]:

β(μ) = β0 + β1μ, (4)

with β0 ≈ 0.29 and β1 ≈ 1.80. Quantitatively, in terms of

least-squares error, these empirical expressions (3) and (4)

provide a fit to the surface defined by the quasistatic data

points in Fig. 5 which is 20% better than the fit obtained

with the linear relationship derived from principal component

analysis.
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FIG. 7. (Color online) (a) Fluctuation number 	 as a function

of inertial number I at fixed values of friction coefficient μ (see

legend). The represented data come from simulations in which the

whole sample lies in the quasistatic regime (� < �t ). Dotted lines

correspond to the best power law fits Eq. (3) obtained for each value

of μ. The dashed line represents the extrapolation of the relationship

between 	 and I established in inertial regime Eq. (2). (b) Evolution

of power-law exponent β with friction coefficient μ. The dashed line

represents the best linear fit Eq. (4).
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FIG. 8. (Color online) Friction coefficient μ as a function of the

composite variable (log10 	 − log10 CQS)/ log10 I . All data points

determined from the simulations are represented, the different

symbols referring to the values of imposed rotation velocity �. The

dashed line represents the prediction of Eq. (5).

Equations (3) and (4) can be rewritten in a more compact

form as

μ =
1

β1

(

log10 	 − log10 CQS

log10 I
− β0

)

. (5)

As a further validation of this expression, Fig. 8 shows

that all data points determined in the quasistatic regime,

including those corresponding to � > �t which were not

taken into account in the establishment of Eqs. (3) and (4),

effectively collapse on a single master curve when plotted

in terms of μ versus (log10 	 − log10 CQS)/ log10 I . Hence,

we argue that Eq. (5), or equivalently Eqs. (3) and (4), can

be regarded as good approximations of the three-variable

constitutive relationship characterizing the quasistatic regime.

We emphasize, however, that these equations are purely

empirical at this stage, and that we cannot rule out the possible

existence of alternative expressions that would produce an

even better fit to the data.

B. Extrapolation to the inertial regime

An important point not mentioned above is that Fig. 8

also includes the data determined in the inertial regime.

Interestingly, these data appear to collapse on the same master

curve as those corresponding to the quasistatic regime. This

unexpected result seems to indicate that Eq. (5), established in

the quasistatic regime, would also remain valid in the inertial

regime. To check this prediction, Eq. (5) can be combined

with Eq. (2) relating 	 and I in the inertial regime, to yield the

following relationship between the variables μ and I alone:

μ = μ0 −
μ1

log10 I
, (6)

with μ0 = (1/2 − β0)/β1 ≈ 0.12 and μ1 = (log10 CQS −

log10 CI )/β1 ≈ 0.38. As shown in Fig. 9, this expression
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FIG. 9. (Color online) Relationship between friction coefficient μ

and inertial number I for the data points obtained in the inertial regime

(I > It ) and for the data points extrapolated from the quasistatic

regime (see text). The dashed curve represents Eq. (6).

effectively provides an excellent fit to the μ(I ) relationship

observed in the inertial regime, with fewer parameters than

Eq. (1) used previously [see also Fig. 4(a)]. Furthermore,

we emphasize that in this case, the two parameters μ0 and

μ1 were not adjusted on the inertial data, but directly derive

from Eqs. (2) and (5), the latter having been established using

quasistatic data only.

Hence, the three-variable constitutive law between I , μ,

and 	 characteristic of the quasistatic regime turns out to

be also valid in the inertial regime. This three-variable law

actually includes the μ(I ) relationship characterizing the

inertial regime, which emerges as soon as fluctuations begin

to be governed by the local law (2). In consequence, a virtual

continuation in the quasistatic regime of the inertial μ(I )

relationship can be drawn assuming that Eq. (2) remains valid

for I < It . This continuation is shown in Fig. 9 using directly

Eq. (6), and through extrapolated data points which have been

computed from quasistatic results as the intersects, for each

value of friction coefficient μ, between relationships (3) and

(2) (see Fig. 7). Note that the value of the exponent β used to

compute these intersects was the best-fitting value obtained

for each friction coefficient, and not the linear approximation

given by Eq. (4). It is interesting to note that these extrapolated

data points figure in the exact continuity of the data points

obtained in the inertial regime, which constitutes further

evidence that the quasistatic and inertial regimes are

effectively governed by the same underlying constitutive law.

V. DISCUSSION AND CONCLUSIONS

The analysis presented in this paper sheds new light on the

rheological behavior of granular materials in the quasistatic

regime. Our results clearly show that this regime is charac-

terized both by a friction coefficient independent of the shear

rate, and by a local, three-variable constitutive relationship

between the inertial number, the friction coefficient, and the

normalized velocity fluctuations. Importantly, this constitutive

law directly relates the occurrence of creep in quasistatic zones

to the existence of fluctuations. It is only in the absence

of fluctuations that the material is jammed and I = 0 for

whatever the level of stress. As soon as fluctuations exist, the

material can flow even under very small applied stresses, with

an apparent viscosity that is a direct function of the fluctuation

amplitude [see Eq. (3)]. The key role played by the fluctuations

in the rheology of quasistatic granular materials has already

been hypothesized by several authors [13,15,22,23]. Our

study thus formally demonstrates this assumption by showing,

directly from local mechanical data, that fluctuations must be

accounted for in the constitutive relationship. An interesting

perspective for future work would now be to go beyond

the purely empirical approach presented here, and develop

a theoretical framework capable of yielding a three-variable

constitutive law compatible with our results.

Another important outcome of this study is the fact that

the three-variable constitutive law obtained in the quasistatic

regime appears to be also valid in the inertial regime. When

combined with the expression governing the fluctuations in

the inertial regime Eq. (2), this constitutive law yields a

one-to-one μ(I ) relationship which, though of a different form

from the relationships previously proposed in the literature

[2,4], provides an excellent fit to the inertial data. Hence,

the distinction between the quasistatic and inertial regimes

cannot be related to the rate-dependent or rate-independent

character of the mechanical behavior. Both regimes are in

fact characterized by the same underlying constitutive law

involving the variables I , μ, and 	.

In spite of this similarity in mechanical behavior, the

quasistatic and inertial regimes are nevertheless separated by

an abrupt transition at I = It . Elaborating from our results,

we propose that the “true” origin of this transition is in fact

related to the mode of production of the fluctuations within

the material. As already pointed by other workers [1,2], in

the inertial regime the fluctuations necessary for the flow are

created locally by the flow itself. This is the meaning of Eq. (2),

and explains the possibility of reducing the three-variable

constitutive law to a local relationship between μ and I alone.

On the contrary, in the quasistatic regime, the fluctuations

result from nonlocal processes [9–11] and, as shown by our

results, are essentially sustained by sources localized at the

boundaries of the quasistatic zones (either at the wall or at the

interface with the neighboring inertial zone). In particular,

when a quasistatic zone coexists with an inertial one, the

fluctuations within the former and, as a consequence, its

apparent rheology (namely, the apparent relationship between

μ and I ), are completely controlled by the latter. In the absence

of boundary sources, on the contrary, the fluctuations in the

bulk would rapidly die off, and I would tend to 0. Eventually,

the three-variable relationship presented in this paper will thus

need to be complemented by a nonlocal evolution equation for

the fluctuations in quasistatic regime.

As a conclusion, the quasistatic-to-inertial transition in

granular materials thus appears to correspond to a transition

between a regime where the fluctuations are governed by

nonlocal processes and a regime where fluctuations are

produced locally. This transition occurs at a critical value of
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I or equivalently [according to Eq. (2)], at a critical value

of 	, 	t ≈ 8 × 10−3 in our case, which can be interpreted

as the fluctuation level above which the mechanisms for

long-range propagations of the fluctuations become inefficient.

Following this interpretation, the parameters 	t and It should

thus represent intrinsic characteristics of the material, whose

value should be independent of the considered system. This

prediction tends to be confirmed by the results reported in [2,3],

in which different system sizes and system geometries result

to apparently constant values of I at the quasistatic-to-inertial

transition. Yet, the uncertainties associated with the determi-

nation of It and the different methods employed to define this

parameter (from global or local measurements) render difficult

the comparisons among existing studies; further work would

be needed to conclude on the intrinsic nature of It .
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