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Material Appearance:

photo-realistic representation and rendering

Abstract:

This thesis presents some advances in efficient representation of material appearance in
a lighting simulation. The scope of this thesis is two-fold: an interactive shading algorithm
to render measured reflectance with dynamic geometry using frequency analysis of light
transport and hierarchical shading and up-sampling in deferred shading context, and a new
normal distribution function for the Cook-Torrance micro-facet BRDF model, along with
a new shadowing and masking function and a generalization of Schlick’s approximation of
the Fresnel term.

In the first part, we introduce a real-time frequency analysis of light transport frame-
work that allows us to estimate the bandwidth and variance of the shading integrand. The
bandwidth and variance are a function of frequencies in the illumination, distance trav-
eled by light, BRDF and texture, and the geometry configuration (curvature). We use this
information to under-sample the image, and also use an adaptive number of samples for
shading. We devise a single-pass hierarchical shading and up-sampling scheme to assem-
ble an image out of the sparsely shaded image pixels. We extend our interactive technique
to use pre-convolved shading for real-time performance. We also take advantage of the
bandwidth information to perform multi-sample anti-aliasing in deferred shading by sub-
sampling only a small portion of image pixels whose bandwidth is smaller than 1 pixel−1.

In the second part, we propose a new distribution function for the Cook-Torrance
micro-facet BRDF, based on our observations on the reflectance measurements. We iso-
late the distribution components of the reflectance data and directly observe that existing
distribution functions are insufficient. Then we devise the Shifted Gamma Distribution
(SGD) fitting more accurately to the data. We derive the shadowing and masking function
from the distribution. We observe that not all materials have the Fresnel behavior expected
by Schlick’s approximation. Hence, we generalize the Schlick’s approximation to more
accurately fit the model to the measurements. We introduce a two-step fitting approach,
that fits each RGB channel separately — accounting for wave-length dependent effects.
We show that our shading model outperforms existing models and accurately represents a
wider range of materials from diffuse to glossy and highly specular materials.

Keywords: Material appearance, Reflectance, BRDF, Frequency analysis, Micro-facet,
Cook-Torrance



Apparence Matérielle :

représentation et rendu photo-réaliste

Résumé :

Cette thèse présente quelques avancées sur la représentation efficace de l’apparence
matérielle dans une simulation de l’éclairage. Nous présentons deux contributions : un al-
gorithme pratique de simulation interactive pour rendre la réflectance mesurée avec une
géométrie dynamique en utilisant une analyse fréquentielle du transport de l’énergie lumi-
neuse et le shading hiérarchique et sur-échantillonnage dans un contexte deferred shading,
et une nouvelle fonction de distribution pour le modèle de BRDF de Cook-Torrance.

Dans la première partie, nous présentons une analyse fréquentielle de transport de
l’éclairage en temps réel. La bande passante et la variance sont fonction de l’éclairage inci-
dent, de la distance parcourue par la lumière, de la BRDF et de la texture, et de la configura-
tion de la géométrie (la courbure). Nous utilisons ces informations pour sous-échantillonner
l’image en utilisant un nombre adaptatif d’échantillons. Nous calculons l’éclairage de fa-
çon hiérarchique, en un seul passage. Notre algorithme est implémenté dans un cadre de
deferred shading, et fonctionne avec des fonctions de réflectance quelconques, y compris
mesurées. Nous proposons deux extensions : pré-convolution de l’éclairage incident pour
plus d’efficacité, et anti-aliasing utilisant l’information de fréquence.

Dans la deuxième partie, nous nous intéressons aux fonction de réflectance a base de
micro-facette, comme le modèle de Cook-Torrance. En nous basant sur les réflectances
mesurées, nous proposons une nouvelle distribution des micro-facettes. Cette distribution,
Shifted Gamma Distribution, s’adapte aux donnée avec plus de précision. Nous montrons
également comment calculer la fonction d’ombrage et de masquage pour cette distribution.
Dans un deuxième temps, nous observons que pour certains matériaux, le coefficient de
Fresnel ne suit pas l’approximation de Schlick. Nous proposons une généralisation de cette
approximation qui correspond mieux aux données mesurées. Nous proposons par ailleurs
une nouvelle technique d’optimisation, canal par canal, en deux étapes. Notre modèle est
plus précis que les modèles existants, du diffus au spéculaire.

Keywords : Apparence matérielle, réflectance, BRDF, analyse fréquentielle, micro-facette,
Cook-Torrance
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Chapter I

Introduction

Contents

I.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

I.2 List of publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

I.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

In this chapter we give a brief introduction about the main goals of this thesis. It lists
the publications presented in this thesis and concludes with a short overview of the chapters
that will follow.

I.1 Motivation

Computers, as powerful calculators, can take descriptions — such as 3D shapes, materials
and lights — of an environment as well as rules about how — physically or artistically —
light and matter interact and generate pictures. This process is called image synthesis or
rendering and is a major area of research in the field of computer graphics. Such synthe-
sized images can be seen as visual stimuli causing a perceptual response in the viewer, as
if the viewer is immersed in that virtual environment.

In the case of photo-realistic rendering, accurate representation of a virtual scene —
geometry and appearance descriptions — as well as physically correct illumination simula-
tion are very important. Hence, computer graphics is a multi-disciplinary area of research,
borrowing theories and techniques from optics — physical and geometrical —, biology,
psychology, art, mathematics, and computer and engineering sciences.

Computers, no matter how powerful, are limited in their computational resources. And,
graphics simulations are extremely costly. Therefore, computation time in rendering is of
major concern. Efficient rendering algorithms maximize the use of computation resources
and minimize calculations to deliver images as fast as possible to the viewer, allowing
interactivity. Typically, interactive rates are achieved at the cost of losing some degree of
accuracy by approximations to the real-world phenomena being simulated.

The geometric description of a scene can be either mathematically expressed or ex-
plicitly defined by surface representations such as polygonal meshes. The appearance de-
scription of a surface defines its material characteristics mathematically in a way that a
computer program can predict how light interacts with it. This involves defining how much
of the incident light is reflected, refracted, and absorbed when light is hit by a surface. The
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rendering algorithm is concerned with rules about how these descriptions can be efficiently
combined in a lighting simulation to generate pictures.

Image synthesis has a wide range of applications such as visual effects, video games,
virtual prototyping (e.g. automotive design), flight simulations, astrology, archeology, car-
tography, education, scientific visualizations, user-interfaces, and digital arts, just to name
a few. Some applications require real-time interactive feedback such as video games and
flight simulations, which implies fast rendering times. And, other applications require ex-
treme accuracy and realism such as visual effects and automotive design. See Figure I.1
for two examples.

(a) Real-time video game example (b) Realistic automotive design example

(From Call of Duty: Black Ops II) (From Author’s personal portfolio)

Figure I.1: Examples of rendering applications.

Existing geometric descriptions and rendering algorithms are sophisticated enough to
produce photo-realistic images in finite time with current computation resources. The limit-
ing factor, for the time being, is the lack of an efficient way to accurately transfer real-world
material appearance to digital models. Digital appearance modeling is about capturing and
simulating how material and light interact within an environment for a given surface point.
That depends on the nature of illumination, material characteristics, and the geometric pro-
file of the surface. A deep insight to material appearance is not only beneficial in image
synthesis but also in inverse problems such as object recognition and 3D reconstruction
from video or photographs.

Material appearance can be very complex, e.g. non-homogeneous, spatially varying
and multi-layered. Real-world materials are also capable of exhibiting complex behavior
such as sub-surface scattering and time or wavelength-dependent effects. We perceptu-
ally distinguish materials from their color and texture, as well as various degrees of gloss,
haziness, luster, matte, anisotropy, translucency, and transparency. Unfortunately, these
qualitative factors are difficult to measure quantitatively for general material types. And,
it is unknown how many perceptual factors are involved in the qualitative perception of
appearance. Therefore, to numerically capture a material’s appearance, one should mea-
sure how much of the incident light is scattered for various wavelengths and times, for
every possible incident and viewing direction, for every point on the surface. This is a
multi-dimensional quantity, 3 to 12 dimensions, requiring very sophisticated measurement

http://www.callofduty.com/blackops2/
http://mahdi.daportfolio.com/gallery/686762#2
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devices for acquisition, and special treatment for rendering with such vast amount of ac-
quired data. Current acquisition techniques are subject to inaccuracy and noise. Dense
acquisition of a single point on a single material sample may take hours to several days.
The data size for a single material acquisition can be as small as 33 MB for an isotropic
homogeneous material — three dimensional quantity — to several gigabytes for capturing
higher dimensional scattering functions. The current appearance representation models are
subject to inaccuracies and they lack generality — they don’t efficiently support a wide
range of material types.

In this thesis, we attack this problem by two different approaches. First, we look into
how we can render material appearance in an interactive environment using acquired re-
flectance data for accurate shading, while avoiding pre-computations based on geometry.
This requires a framework to assess the light transport from the light source to the viewer
and predict the optimal number of samples required for shading. We use frequency analy-
sis to account for many factors affecting light transport including illumination properties,
material properties, and geometric features. Second, we investigate a more accurate rep-
resentation of measured reflectance using a shifted gamma micro-facet distribution. This
reflectance model outperforms all the existing parametric models for isotropic homoge-
neous materials.

I.2 List of publications

Most of the contributions presented in this thesis have been presented in the following
publications:

• Mahdi M. Bagher, Cyril Soler, Kartic Subr, Laurent Belcour and Nicolas Holzschuch.
Interactive rendering of acquired materials on dynamic geometry using bandwidth

prediction. In ACM Siggraph Symposium on Interactive 3D Graphics and Games
(I3D), pages 127–134, Costa Mesa, United States, March 2012. [M. Bagher 2012b]

• Mahdi M. Bagher, Cyril Soler, Kartic Subr, Laurent Belcour and Nicolas Holzschuch.
Interactive rendering of acquired materials on dynamic geometry using frequency

analysis. IEEE Transactions on Visualization and Computer Graphics, 2013. Invited
paper. [M. Bagher 2013]

• Mahdi M. Bagher, Cyril Soler and Nicolas Holzschuch. Accurate fitting of measured

reflectances using a Shifted Gamma micro-facet distribution. Computer Graphics
Forum, vol. 31, no. 4, June 2012. [M. Bagher 2012a]

I.3 Organization

In the Chapter III, we are going to briefly review the existing body of work related to this
thesis. Then, in Chapter IV, we present an interactive technique for rendering acquired ma-
terials using frequency analysis. In Chapter V, we introduce a new micro-facet distribution
for accurate shading of measured reflectance using a shifted gamma distribution. Finally,
we conclude our contributions in Chapter VI.
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Dans ce chapitre, nous donnons une brève introduction sur les objectifs principaux de
cette thèse. Il dresse la liste des publications présentées dans cette thèse et se termine par
un bref aperçu des chapitres qui vont suivre.

II.1 Motivation

Outils de calcul puissants, les ordinateurs peuvent a partir de formes 3D, de matériaux et de
lumières — d’un environnement, ainsi que des règles sur la façon dont — physiquement ou
artistiquement — lumière et la matière interagissent et générer des images. Ce processus
est appelé synthèse l’image qui est un secteur important de recherche dans le domaine de
l’infographie. Ces images de synthèse peuvent être considérés comme des stimuli visuels
provoquant une réponse perceptive chez le spectateur, comme si celui-à était immergé dans
cet environnement virtuel.

Dans le cas de rendu photo-réaliste, une représentation précise d’une scène virtuelle
— géométrie et les descriptions d’apparence — ainsi que la simulation d’éclairage physi-
quement correcte sont très importants. Par conséquent, l’infographie est un domaine mul-
tidisciplinaire de recherche, qui emprunte des théories et des techniques au domaine de
l’optique — physique et géométrique —, la biologie, la psychologie, l’art, les mathéma-
tiques et informatique et sciences de l’ingénieur.

Aussi puissant, qu’ils puissant être, les ordinateurs sont limités dans leurs ressources
de calcul. Et, les simulations graphiques sont extrêmement coûteuses. Par conséquent, le
temps de calcul de rendu est un critère majeur. Algorithmes de rendu efficace maximiser
l’utilisation des ressources calcul et minimiser les calculs de délivrer des images le plus
rapidement possible pour le spectateur, ce qui permet l’interactivité. En règle générale, les
temps interactifs sont obtenus au prix d’une certaine perte de précision par des approxima-
tions des phénomènes du monde réel simulés.

La description géométrique d’une scène peut être soit exprimée mathématiquement ou
explicitement définie par les représentations de surface tels que des maillages polygonaux.
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La description de l’apparence d’une surface définir des caractéristiques matérielles mathé-
matiquement de manière qu’un programme d’ordinateur puise prédire comment la lumière
interagit avec celui-ci. Il s’agit de définir la quantité de lumière incidente qui est réflé-
chie, réfractée, et absorbée lorsque la lumière rencontre par une surface. L’algorithme de
rendu porte sur la façon dont ces descriptions peuvent être efficacement combinées dans
une simulation de l’éclairage pour générer des images.

La synthèse d’image a une large gamme d’applications telles que les effets spéciaux, les
jeux vidéo, le prototypage virtuel (par exemple, la conception automobile), des simulateurs
de vol, l’astronomie, l’archéologie, la cartographie, l’éducation, la visualisation scienti-
fique, les interfaces utilisateur et les arts numériques, pour n’en nommer que quelques-uns.
Certaines applications nécessitent une rétroaction temps réel, tels que les jeux vidéo et les
simulateus de vol, ce qui implique un rendu rapide. Et, d’autres applications requièrent
précision extrême et un réalisme élevé comme les effets visuels et le design automobile.

Les descriptions géométriques existantes et les algorithmes de rendu sont suffisamment
sophistiqués pour produire des images photo-réalistes en temps raisonnable avec les res-
sources de calcul actuels. Le facteur limitatif, pour le moment, est le manque de moyen
efficace de transférer l’aspect matériel du monde réel avec précision à des modèles numé-
riques. La modélisation numérique de l’apparence consiste en la capture et la simulation
de la lumière interagissent dans un environnement d’un point de surface donnée. Cette à
dépend de la nature de l’éclairement, des caractéristiques des matériaux, et du profil géo-
métrique de la surface. Une compréhension profonde de l’aspect matériel est non seule-
ment bénéfique en synthèse d’images, mais aussi dans les problèmes inverses tels que la
reconnaissance d’objets et la reconstruction 3D a partir de vidéo ou photos.

L’apparence matérielle peut être très complexe, par exemple non-homogène, variant
dans l’espace et à plusieurs couches. Les matériaux du monde réel sont également suscep-
tibles d’avoir un comportement complexe tel que la diffusion sous-surface, et montres une
dépendance en temps ou en longueur d’onde. En tant qu’humains, nous pouvons distin-
guer les matières, leur couleur et leur texture, ainsi que divers degrés de brillance, le flou,
le lustre, le mat, l’anisotropie, la translucidité et la transparence. Malheureusement, ces
facteurs qualitatifs sont difficiles à mesurer quantitativement pour les types de matériaux
généraux. Et, il est inconnu combien de facteurs perceptifs sont impliquées dans la percep-
tion qualitative de l’apparence. Par conséquent, pour capturer numériquement l’apparence
d’un matériau, il convient de mesurer quelle quantité de lumière incidente est diffusée pour
différentes longueurs d’onde, pour chaque direction incidente et chaque direction du re-
gard possible, pour chaque point à la surface. C’est un quantité multi-dimensionnelle, 3 à
12 dimensions, nécessitant des appareils de mesure très sophistiqués pour l’acquisition et
le traitement mais également pour le rendu avec une telle grande quantité de données ac-
quises. Les techniques d’acquisition courantes sont également soumises à des inexactitudes
et à du bruit. L’acquisition dense d’un point unique sur un échantillon de certains matériaux
peut prendre des heures voire plusieurs jours. Le volume des données pour une acquisition
d’un seul matériau peut être aussi faible que 33 Mo pour un matériau homogène et isotrope
— quantité trois dimensionnelle — à plusieurs giga-octets pour la saisie des fonctions de
diffusion. Les modèles actuels de représentation d’apparence sont sujettes à des inexacti-
tudes et ils manquent de généralité — ils n’ont pas la possibilité de représente efficacement
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un large éventail de types de matériaux.
Dans cette thèse, nous attaquons ce problème par deux approches différentes. Premiè-

rement, nous examinons la façon dont nous pouvons rendre l’aspect matériel dans un envi-
ronnement interactif en utilisant les données de réflectance acquises pour l’ombrage précis,
en évitant des pré-calculs basés sur la géométrie. Cela nécessite un cadre pour évaluer le
transport de la lumière de la source lumineuse à l’observateur et de prédire le nombre opti-
mal d’échantillons requis pour l’ombrage. Nous utilisons l’analyse fréquentielle pour tenir
compte des nombreux facteurs affectant transport de la lumière y compris les propriétés
d’éclairage, les propriétés des matériaux et les caractéristiques géométriques. Deuxième-
ment, nous étudions une représentation plus précise de la réflectance mesurée à l’aide d’une
shifted gamma micro-facet distribution. Ce modèle de réflectance surpasse tous les modèles
paramétriques existants pour des matériaux homogènes isotropes.

II.2 Liste des publications

Majeure partie des contributions présentées dans cette thèse ont été présentées dans les
publications suivantes :

• Mahdi M. Bagher, Cyril Soler, Kartic Subr, Laurent Belcour and Nicolas Holz-
schuch. Interactive rendering of acquired materials on dynamic geometry using band-

width prediction. In ACM Siggraph Symposium on Interactive 3D Graphics and
Games (I3D), pages 127–134, Costa Mesa, United States, March 2012. [M. Ba-
gher 2012b]

• Mahdi M. Bagher, Cyril Soler, Kartic Subr, Laurent Belcour and Nicolas Holz-
schuch. Interactive rendering of acquired materials on dynamic geometry using fre-

quency analysis. IEEE Transactions on Visualization and Computer Graphics, 2013.
Invited paper. [M. Bagher 2013]

• Mahdi M. Bagher, Cyril Soler and Nicolas Holzschuch. Accurate fitting of measured

reflectances using a Shifted Gamma micro-facet distribution. Computer Graphics
Forum, vol. 31, no. 4, June 2012. [M. Bagher 2012a]

II.3 Organization

Dans le Chapitrer III, nous allons d’examiner brièvement le corpus existant de travaux
relatifs à cette thèse. Puis, en Chapitrer IV, nous présentons une technique interactive
pour rendre des matériaux acquis en utilisant une analyse fréquentielle. Dans le Cha-
pitrer V, nous introduisons une nouveau distribution de micro-facettes pour l’estimation
précise d’une réflectance mesurée, à l’aide d’une shifted gamma distribution. Enfin, nous
concluons notre contribution au Chapitre VI.





Chapter III

Background and previous work

Contents

III.1 Introduction (français) . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

III.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

III.3 Light transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

III.3.1 Radiometric terms . . . . . . . . . . . . . . . . . . . . . . . . . . 11

III.3.1.1 Radiant power (flux) . . . . . . . . . . . . . . . . . . . . 11

III.3.1.2 Radiance (L) . . . . . . . . . . . . . . . . . . . . . . . . 11

III.3.1.3 Irradiance (E) and Radiosity (B) . . . . . . . . . . . . . 12

III.3.1.4 Radiant intensity (I) . . . . . . . . . . . . . . . . . . . . 12

III.3.2 The rendering equation . . . . . . . . . . . . . . . . . . . . . . . . 12

III.3.3 The Monte Carlo method . . . . . . . . . . . . . . . . . . . . . . . 13

III.3.4 Monte Carlo importance sampling . . . . . . . . . . . . . . . . . . 14

III.3.5 Hardware-accelerated rendering . . . . . . . . . . . . . . . . . . . 14

III.3.5.1 The rendering pipeline . . . . . . . . . . . . . . . . . . . 14

III.3.5.2 Forward vs. deferred shading . . . . . . . . . . . . . . . 15

III.3.6 Multi-resolution screen-space rendering . . . . . . . . . . . . . . . 15

III.3.7 Light field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

III.3.7.1 Light field propagation . . . . . . . . . . . . . . . . . . 18

III.3.7.2 Light field parameterization . . . . . . . . . . . . . . . . 18

III.3.8 Frequency analysis of light transport . . . . . . . . . . . . . . . . . 18

III.3.8.1 Transport in free space . . . . . . . . . . . . . . . . . . 19

III.3.8.2 Reflection . . . . . . . . . . . . . . . . . . . . . . . . . 19

III.3.8.3 Shading . . . . . . . . . . . . . . . . . . . . . . . . . . 20

III.3.8.4 Texture mapping . . . . . . . . . . . . . . . . . . . . . . 20

III.3.8.5 Occlusion . . . . . . . . . . . . . . . . . . . . . . . . . 21

III.3.8.6 Depth of field . . . . . . . . . . . . . . . . . . . . . . . 21

III.3.8.7 Motion blur . . . . . . . . . . . . . . . . . . . . . . . . 21

III.4 Material appearance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

III.4.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

III.4.1.1 Reflectance . . . . . . . . . . . . . . . . . . . . . . . . 21

III.4.1.2 BRDF . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

III.4.2 Taxonomy of appearance . . . . . . . . . . . . . . . . . . . . . . . 23



10 Chapter III. Background and previous work

III.4.3 Reflectance acquisition . . . . . . . . . . . . . . . . . . . . . . . . 23

III.4.3.1 Acquisition techniques . . . . . . . . . . . . . . . . . . 25

III.4.3.2 Isotropic BRDF databases . . . . . . . . . . . . . . . . . 26

III.4.4 Reflectance representation . . . . . . . . . . . . . . . . . . . . . . 27

III.4.4.1 Tabulated BRDF . . . . . . . . . . . . . . . . . . . . . . 27

III.4.4.2 BRDF re-parameterization . . . . . . . . . . . . . . . . 28

III.4.4.3 Dimensionality reduction and compression techniques . . 29

III.4.4.4 Analytical models . . . . . . . . . . . . . . . . . . . . . 30

III.4.4.5 Comparison between existing analytical models . . . . . 37

III.5 Summary and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 38

III.1 Introduction (français)

Un riche corpus de travaux existe déjà sur la simulation de l’éclairage et des images réa-
listes. Dans ce chapitre, nous allons explorer brièvement les travaux existants et donner les
définitions des concepts que nous allons traiter dans les chapitres suivant. Plus précisément,
nous allons expliquer comment la simulation de l’éclairage se fait dans un environnement
synthétique. Nous allons brièvement expliquer les phénomènes de transport de la lumière
et ses implications. Et enfin, nous allons exposer les concepts liés à l’aspect matériel, l’ac-
quisition de réflexion, et de la représentation.

III.2 Introduction

A rich body of work about lighting simulation and realistic imagery already exists. In this
chapter, we are going to briefly explore the existing related work and also give definitions
of the concepts we will be dealing with in the up-coming chapters. More specifically, we
are going to explain how lighting simulation is done within a synthetic environment. We
will briefly explain the light transport phenomena and its implications. And finally, we will
explore concepts related to material appearance, reflectance acquisition, and representation.

III.3 Light transport

According to quantum mechanics, light exhibits a dual behavior by being both a particle
and a wave [Feynman 1988]. On the one hand, particle optics models light as particles
called photons. Each photon carries some energy as it is traveling through the scene. Trac-
ing photons, being shot from a light source, is a fundamental solution to lighting simulation.
On the other hand, wave optics characterizes light as electromagnetic waves to describe
light’s interaction with matter. Apart from the above mentioned, geometrical optics or ray

optics abstracts light propagation in terms of rays. We can think of a ray as a stream of pho-
tons traveling along the same path. The over-simplification in ray optics results in ignoring
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Figure III.1: The geometry of radiance.

wave-like optical effects such as interference and diffraction, e.g. the rainbow colors on
CDs. Since such wave-like effects rarely happen in everyday life, it is usually ignored or
treated separately in computer graphics. [Born 1998] is an excellent reference to the main
principles of optics.

III.3.1 Radiometric terms

Radiometric terms describe units of measurement for physical quantities; light in our case.
Radiometric terms are a function of wave-length, but for the sake of simplicity we omit the
wavelength dependence. Light as an electromagnetic energy is measured in joules (J) and
is called the radiant energy (Q). Each particle carries some joules of energy.

III.3.1.1 Radiant power (flux)

To measure the rate of flow of energy we define the radiant power or flux (Φ), which is
defined as the energy per time or Watt (W).

Φ =
dQ

dt

[
Watt(W) ≡ J

s

]

III.3.1.2 Radiance (L)

To describe how much light is traveling in a particular direction (solid angle), we define
radiance (L) in W

m2 sr
as the flux per unit area per unit solid angle.

L(x, ω) =
d2Φ

cos θdωdA

[
W

m2sr

]

Figure III.1 depicts the geometry of radiance.

What we perceive as brightness in a scene is initially due to radiance. In other words,
radiance measures how much flux is received by a viewer — the eye or a camera — de-
pending on the solid angle subtended by the optical system.
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Definition Name Unit

Φ =
dQ

dt
Radiant power (Flux) Watt(W) ≡ J

s

L(x, ω) = d2Φ
cosΘdωdA

Radiance W
m2 sr

E(x) = dΦi

dA
Irradiance (radiant emittance) W

m2

B(x) = dΦo

dA
Radiosity (radiant exitance) W

m2

I(ω) = dΦ
dω

Radiant intensity W
sr

Table III.1: Radiometric terms.

III.3.1.3 Irradiance (E) and Radiosity (B)

We also need to measure the flow of energy toward or away from a surface patch. It can
be measured by integrating the incident or outgoing flux over all directions per unit area of
the surface.

Irradiance (E) measures the total flux entering a surface point per unit area, W
m2 .

E(x) =
dΦi

dA

[
W

m2

]

Radiosity (B) measures the total flux exiting a surface point per unit area, W
m2 .

B(x) =
dΦo

dA

[
W

m2

]

III.3.1.4 Radiant intensity (I)

In contrast to irradiance (E) and radiosity (B), radiant intensity (I) is the quantity describing
the flux entering or existing a surface point with respect to a solid angle instead of an area.

I(ω) =
dΦ

dω

[
W

sr

]

A summary of radiometric terms and units appears in Table III.1. Please refer to [Glass-
ner 1994] for more details.

III.3.2 The rendering equation

To estimate the radiance leaving an opaque surface point, [Kajiya 1986] introduced the
rendering equation (See Figure III.2):

Lo(x, ω, λ, t) = Le(x, ω, λ, t) +
∫

Ω+
fr(x, ω′, ω, λ, t)Li(x, ω′, λ, t)(−ω′.n)dω′

This equation is an integral over the visible hemisphere for a given surface point x, in
viewing direction (ω), given a wavelength (λ) and time (t). Le is the emitted light. fr is the



III.3. Light transport 13

Figure III.2: The rendering equation describes the total amount of light emitted from a
point x along a particular viewing direction, given a function for incoming light and a
BRDF. (From Wikipedia)

bidirectional reflectance distribution function (BRDF), specifying the ratio of the reflected
radiance exiting in directionω to incident irradiance from directionω′. And finally, (−ω′.n)
is the attenuation factor due to the incident angle — the cosine term.

III.3.3 The Monte Carlo method

The Monte Carlo method [Metropolis 1949], was developed to numerically solve quantita-
tive problems using repetitive stochastic sampling. It has many applications in various
fields of science such as physics, mathematics, and engineering — from fluid simula-
tion and oil discovery to business risk calculation. For example, in mathematics, Monte
Carlo can be used to evaluate multidimensional definite integrals with complicated bound-
ary conditions. Please refer to [Kalos 1986, Spanier 1969, Hammersley 1965] for an in-
troduction to Monte Carlo methods. In computer graphics, it’s widely used to estimate
the value of high dimensional definite integrals such as in the rendering equation. Using
the Monte Carlo method to estimate an integral, we repeatedly evaluate the integral us-
ing random samples and average the results until it converges. Monte Carlo ray-tracing
[Kajiya 1986, Veach 1995, Ward 1988, Ward 1992b], bidirectional path tracing [Lafor-
tune 1996], stochastic radiosity [Bekaert 1999] and photon mapping [Jensen 1996] are
examples of the Monte Carlo method’s applications in computer graphics.

As mentioned by [Veach 1998], Monte Carlo integration is about estimating a definite
integral of a real valued function using random sampling:

I =

∫

Ω

f (x)dµ(x)

If we take N samples [X1, ..., XN] of a real-valued random variable x according to a
probability density function p(x), then the Monte Carlo estimator for the integral I will be:

FN =
1
N

N∑

i=1

f (Xi)
p(Xi)

The convergence rate of the Monte Carlo integration depends on the variance of the
estimator:

Var [FN] = Var


1
N

N∑

i=1

f (Xi)
p(Xi)

 =
1

N2

N∑

i=1

Var

[
f (Xi)
p(Xi)

]
=

1
N

Var

[
f

p

]

http://en.wikipedia.org/wiki/File:Rendering_eq.png


14 Chapter III. Background and previous work

The larger the variance, the more samples we need for the integration to converge.

III.3.4 Monte Carlo importance sampling

The larger the variance, the more noise is in the rendered images using a fixed number of
samples. Several variance reduction techniques exist. They include increasing the number
of samples, using stratified sampling instead of uniform sampling, or choosing a density
function p(x) close to the integrand f (x).

The latter is called Monte Carlo importance sampling and is widely used in computer
graphics. It helps the numerical estimation to converge with a smaller sample set, and
therefore faster convergence, without introducing any bias. It is important to choose a
p(x) with a convenient method of generating samples from it. The importance function
can simply be an approximation of the integrand or some factors of it. Using the exact
integrand as the importance function will result in zero variance. But in most cases, the
integrand is unknown.

In the case of the rendering equation, ideally, the importance function should be the
product of the BRDF, the incident radiance, and the cosine factor. but unfortunately, this
product function is unknown. For diffuse shading with low-frequency illumination, uni-
form sampling or importance sampling based on the cosine term is sufficient. However,
for glossy and specular materials with all-frequency illumination, it requires a very large
number of samples to converge.

Since the value of the product with respect to the parameters are not known beforehand,
it is possible to importance sample based on either the BRDF or incident illumination
to reduce the variance of the integrand to some extent. If the BRDF and the incident
illumination are both high frequency, the number of samples for the integration to converge
will still be very high. Multiple importance sampling [Veach 1998] is a workaround to
combine multiple sampling strategies to reduce variance without introducing any bias.

III.3.5 Hardware-accelerated rendering

Solving the rendering equation with Monte Carlo sampling for every pixel in a 2D image
is extremely expensive and therefore slow. Fortunately, this computation is highly paral-
lelizable — calculations can be carried out simultaneously —, since the same operations
have to be executed millions of times. A graphics processing unit (GPU) is a many-cores
dedicated hardware for parallel graphics processing. Commodity graphics hardware are
widely available on any consumer desktop computer these days.

III.3.5.1 The rendering pipeline

GPUs have programmable rendering pipelines. The rendering pipeline consists of taking
a 3D scene, made of polygons for example, and outputting a 2D rendered view of the
scene. Graphics programming APIs such as OpenGL and Direct3D help programmers
program graphics hardware without having to write in assembly language. Figure IV.11
shows an overview of the rendering pipeline for an state of the art GPU supporting OpenGL
4 and DirectX 11. In this pipeline, some but not all stages are programmable. The three
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main programmable stages are vertex, geometry, and fragment/pixel programs operating
on vertices, primitives, and pixels accordingly.

III.3.5.2 Forward vs. deferred shading

In a classical forward shading approach, all geometry must be rendered independently for
each light source in the scene including the hidden surfaces. This is somewhat wasteful
and therefore slow for complex shading and lighting. Deferred shading [Deering 1988,
Saito 1990] is a practical solution that decouples scene geometry from lighting. It defers
the lighting until all the geometry is rendered into geometry buffers called the G-buffers.
The G-buffers contain lighting properties such as the position and normal for each pixel.
Hence, lighting can be applied as a 2D post process, allowing to render many lights without
significant performance loss. The G-buffers can also be used for post-processing effects
such ass glow, auto-exposure, fog, HDR tone-mapping, edge-smooting, distortion, etc.

One major disadvantage of deferred shading is its incompatibility with hardware anti-
aliasing [Fatahalian 2010], due to the separation between the geometry and lighting stages.
Furthermore, deferred shading can be scaled to multiple materials at the cost of an extra
G-buffer term for material ID. In addition, transparency is not supported. One possible
workaround is to use depth peeling [Mammen 1989, Everitt 2001, Bavoil 2008] at the cost
of extra G-buffers and computation.

III.3.6 Multi-resolution screen-space rendering

Lighting effects such as global illumination, in contrast to local illumination, are very dif-
ficult to handle using GPUs. For each surface point, indirect illumination must be gath-
ered from all the other visible surface points. This is ill-suited for the GPU, because it
is difficult to parallelize and make the memory access coherent. Sophisticated render-
ing algorithms are required to achieve interactive high quality global illumination on the
GPU [McGuire 2009, Wang 2009b, Gautron 2008, Barsi 2005].

One way to overcome this architectural limitation of GPUs is to use multi-resolution
screen-space rendering. These techniques take advantage of the fact that indirect illumi-
nation from diffuse and glossy surfaces are low-frequency and smooth in nature. See Fig-
ure III.4 for an example. Therefore, shading every single pixel can be wasteful, while it can
be approximated by rendering indirect illumination at lower resolutions and up-sampling
them.

A family of interactive rendering techniques heuristically shade pixels at various levels
of coarseness and up-sample them to assemble a fully shaded 2D image within a deferred
shading context. These algorithms splat shading in an screen-space hierarchical buffer such
as a mip-map. After the splatting is done, they recurse through all the levels and interpo-
late values from coarser levels using bi-lateral up-sampling to preserve edges. Doing so
saves computation power since only a subset of pixels will be shaded after all. In chapter
IV, we draw inspiration from some recent multi-pass multi-resolution screen-space ren-
dering algorithms [Nichols 2009, Shopf 2009, Nichols 2010b, Nichols 2010a, Soler 2010,
Segovia 2006, Ritschel 2009] and introduce a single-pass multi-resolution rendering tech-
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Figure III.3: The GPU rendering pipeline for OpenGL 4 and DirectX 11. (From Wikipedia)

http://en.wikipedia.org/wiki/File:The_OpenGL_-_DirectX_graphics_pipeline.png
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Figure III.4: The low frequency nature of indirect illumination: Direct light only (left);
indirect light (center); the combined image (right). (From [Nichols 2009])

nique for all-frequency direct illumination, that performs the shading and up-sampling in
parallel at the same time.

Multi-resolution splatting for indirect illumination [Nichols 2009] splats illumination
in image-space from a series of virtual point lights (VPLs) to a multi-resolution buffer. It
extends the idea of reflective shadow maps (RSM) [Dachsbacher 2005] which is essentially
a light-space G-buffer (camera depth, world position, normal, and reflected flux), using
shadow mapping hardware to generate VPLs. RSM ignores the visibility of indirect illu-
mination rays, assuming that the errors due to incorrect visibility is unnoticeable. Storing
maximum and minimum depth and normal values for each pixel in a min-max mip-map,
they start from 64 splats representing the whole image. They subdivide each splat into 4
new sub-splats if it contains discontinuities in depth or normal values. After the refine-
ment is done, they up-sample the splatted indirect illumination from the coarsest level to
the finest, making sure that empty pixels remain empty. Finally the indirect illumination
is combined with direct illumination to build the final image. Interactive Indirect Illumi-

nation Using Adaptive Multi-resolution Splatting [Nichols 2010b] reduces the rendering
costs further by grouping the sub-splats that potentially receive the same radiance.

Hierarchical Image-Space Radiosity for Interactive Global Illumination [Shopf 2009]
replaces splatting with gathering. Instead of using a multi-resolution hierarchical buffer
and iterative refinement, they flatten the hierarchy into a single resolution texture map with
stencil buffering to gather indirect illumination. They also extended this technique to ren-
dering global illumination for dynamic area lighting supporting visibility [Nichols 2010a].

III.3.7 Light field

Michael Faraday, in a lecture entitled "Thoughts on Ray Vibrations" in 1846, suggested that
light should be considered as a field, much like the magnetic field. Years after, Alexander
Gershun coined the phrase Light field, in a paper on radiometric properties of light in 3D
space in 1936.

Light field describes the amount of light traveling in every direction through any point
in space. This is a 5D plenoptic function: three dimensions to determine the position
(x, y, z) and two dimensions to determine the direction (θ, φ). If we consider a ray out-
side the convex hull of an object or in an empty region of space, the fact that radiance
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Figure III.5: Light transport: light goes through several transformations before reaching
our eyes. (From [Durand 2005])

along any ray remains constant reduces the 5D domain to 4D. In computer graphics, the
radiance along rays in empty space is called the 4D light field [Levoy 1996] or Lumi-

graph [Gortler 1996].

III.3.7.1 Light field propagation

In ray optics, we assume photons are continuously traveling along light rays carrying en-
ergy. As light propagates through the scene, it interacts with the environment around it.
Phenomena such as transport in free space, shading, and occlusion modify the local light
field around a central light ray. Figure III.5 depicts various ways of light field propagation.

III.3.7.2 Light field parameterization

There are two popular parameterizations for the 4D light field at a virtual plane orthogo-
nal to a central ray (Figure III.6). The two-plane parameterization [Chai 2000] uses the
intersection v with a parallel plane at unit distance expressed in the local frame of x (Fig-
ure III.6-a). And, the plane-sphere parameterization [Camahort 1998] uses the angle θwith
the central direction (Figure III.6-b). These two parameterizations are linked by v = tanθ

and are equivalent around the origin, as mentioned in [Durand 2005].

III.3.8 Frequency analysis of light transport

Durand et al. [Durand 2005] introduced a comprehensive study of the frequency content of
a local light field, characterized by a 4D slice of radiance in the neighborhood of a central
ray, and how it is altered by phenomena such as transport, shading, and occlusion. Such
signal processing framework can be used to predict the frequency content of the local light

http://people.csail.mit.edu/fredo/PUBLI/Fourier/
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(a) two-plane parameterization (b) plane-sphere parameterization

Figure III.6: Two popular 4D light field parameterizations: (a) two-plane parameterization
and (b) plane-sphere parameterization

field as it travels through the scene to reach the viewer. This information can then be used
to control sampling rates for rendering.

We define the Fourier spectrum of the radiance field ℓR by ℓ̂R in two-plane parameteri-
zation as:

ℓ̂R(Ωx,Ωv) =
∫ ∞

x=−∞

∫ ∞

v=−∞
ℓR(x, v)e−2iπΩx xe−2iπΩvvdxdv

In a simple scenario, light is emitted from the light source, transported in free space,
optionally occluded by obstacles, transported again, reflected by one or more surfaces, and
finally transported to the viewer. See Figure III.5.

Durand et al. [Durand 2005] studied the local light field propagation assuming a pinhole
camera. Soler et al. [Soler 2009] extended the frequency analysis of light transport to study
the local light field for a photographic lens with finite-sized aperture to support depth of
field with adaptive sampling.

Now we briefly go through each operation:

III.3.8.1 Transport in free space

Transport in free space is a shear of the local light field in the Fourier domain.

ℓ̂R′(Ωx,Ωv) = ℓ̂R(Ωx,Ωv + dΩx)

Please refer to [Durand 2005] for the derivations.

III.3.8.2 Reflection

Reflection is described by two scale transforms due to the incoming and outgoing angles
and two shears due to the surface curvature k.
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Figure III.7: Local shading for a curved receiver with arbitrary BRDF. (From [Du-
rand 2005])

ℓ̂i(Ωx,Ωθ) = e−iΩθθ0/| cos θ0 |̂ℓ(−Ωx cos θ0,Ωθ)

ℓ̂′i(Ω
′
x,Ω

′
θ) = ℓ̂i(Ω

′
x + kΩ′θ,Ω

′
θ)

ℓ̂o(Ω′x,Ω
′
θ) = ℓ̂

′
o(Ω′x − kΩ′θ,Ω

′
θ)

ℓ̂′′(Ωx,Ωθ) = eiΩθθ1/| cos θ1 |̂ℓo(Ωx cos θ1,Ωθ)

III.3.8.3 Shading

Shading is a convolution with a small kernel corresponding to the spectrum of the clamped
cosine term followed by a clamping by the BRDF angular bandwidth.

ℓ̂′o(Ω′x,Ω
′
θ) = (̂l′

i
(Ωx,Ωθ) ⊗ ĉos+(Ωθ)δΩx=0)ρ̂′(Ω′θ)

The important shading effects due to curvature, cosine term, and the BRDF are sum-
marized in Figure III.7.

III.3.8.4 Texture mapping

Texture mapping is a multiplication of radiance in the primal domain and therefore a con-
volution in the Fourier space.

ℓ̂T (Ωx,Ωθ) = T̂ (Ωx)δΩθ=0 ⊗ ℓ̂o(Ωx,Ωθ)
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III.3.8.5 Occlusion

Occlusion corresponds to a convolution by the spectrum of the blockers.

ℓ̂R′(Ωx,Ωv) = ℓ̂R(Ωx,Ωv) ⊗ V̂(Ωx,Ωv)

V is the visibility function ranging from 0 for blocked to 1 for visible.

III.3.8.6 Depth of field

At a finite-sized aperture lens, the spectrum of local light field is band-limited by the spec-
trum of the aperture response function.

ℓ̂L+(Ωx,Ωv) = ℓ̂L−(Ωx,Ωv)̂a(Ωx,Ωv)

L+ (respectively L−) represents the light field after (respectively before) the lens, and
â is the Fourier transform of the indicator function of the set of rays not blocked by the
aperture.

III.3.8.7 Motion blur

Egan et al. [Egan 2009] extended the frequency analysis of light transport even further to
render motion blur using adaptive space-time sampling. They generalized light transport
for moving objects, BRDF reflection, and moving shadows to the time domain.

III.4 Material appearance

Material appearance refers to the visual impression of a certain material. Digital appear-
ance modeling is the data structures and algorithms we use to mathematically express and
simulate a material from any view in any environment. [Dorsey 2008] is an excellent refer-
ence to digital modeling of material appearance.

To simulate the material appearance, we need to define how light interacts with mat-
ter from any incident direction and any point of view, under any illumination conditions.
Therefore, we are going to define what we mean by reflectance and BRDF. Then we will
look at the taxonomy of appearance and how by making assumptions we can reduce the
number of dimensions of a general reflectance function. Next, we are going to introduce
the basic concepts of reflectance acquisition. And finally, we will describe various ways of
representing reflectance.

III.4.1 Definitions

III.4.1.1 Reflectance

According to Nicodemus et al. [Nicodemus 1992], reflection is the process by which elec-
tromagnetic flux (power), incident on a stationary surface or medium, leaves the surface or
medium from the incident side without change in frequency; reflectance is the fraction of
the incident flux that is reflected.
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Figure III.8: BRDF describing how the radiance leaving the surface is related to the radi-
ance incident on the surface.

In this thesis, we skip the concepts of transmittance and absorption for the sake of
simplicity and only look into reflectance.

III.4.1.2 BRDF

Bidirectional reflectance distribution function (BRDF) indicates the ratio of the radiance
reflected in a particular direction Θr as a result of the total incident flux per unit area from
another direction Θi. This ratio is shown in Figure III.8 and expressed below:

fr(λ, x,Θi → Θr) =
dLr(λ, x→ Θi)

Li(λ, x← Θi) cos θidωi

A BRDF must be always positive, energy conserving, and symmetric (reciprocal).

III.4.1.2.1 BRDF and energy conservation

The energy conservation means that the amount of energy reflected to all directions from
light, incident from a single direction, must be between 0 and 1.

∫

ωr

fr(λ, x,Θi → Θr) cos θrdωr ≤ 1

III.4.1.2.2 BRDF and Helmholtz reciprocity

The reciprocity constraint basically means that light paths are reversible. In other terms,
the BRDF must remain the same when the direction of incidence and reflectance are re-
versed.

fr(λ, x,Θi → Θr) = fr(λ, x,Θr → Θi)
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III.4.2 Taxonomy of appearance

Figure III.9 depicts the whole taxonomy of appearance. In the following, we explain each
function:

• General scattering function (12D)

Starting from the general scattering function, it’s a 12 dimensional function depend-
ing on incoming and reflected positions on the surface, angles, wavelengths and
times.

• BSSRDF (8D)

Assuming we do not have phosphorescence and fluorescence, we can reduce the
dimensions to 8D and get Bidirectional Scattering Surface Reflectance Distribution

Function (BSSRDF).

• SVBRDF (6D)

Ignoring sub-surface scattering, the scattering function reduces to 6 dimensions.
Spatially-varying Bidirectional Reflectance Distribution Function (SVBRDF) is a
BRDF that varies with the position. It can also be seen as a texture map that varies
with illumination and viewing direction, called Bidirectional Texture Function (BTF).

• BSSDF (6D)

On the other hand, if we assume that the spatial variation only depends on xr − xi

and yr − yi, it results in Bidirectional Sub-surface Scattering Distribution Function

(BSSDF).

• BRDF (4D)

Ignoring variation across the surface results in a 4D function called Bidirectional

Reflectance Distribution Function (BRDF).

• Isotropic BRDF (3D)

Ignoring anisotropy reduces BRDF from 4D to 3D for isotropic BRDFs.

• Light Field (4D)

Light Fields and their variants such as Lumigraphs and Surface Light Fields (SLF)

are 4D functions resulted from ignoring dependence on incident light direction.

• Diffuse texture (2D)

Finally, diffuse textures are 2D maps not dependent on light direction at all.

III.4.3 Reflectance acquisition

Reflectance of real world materials can be acquired using special measurement devices. To
choose the right acquisition technique, the precision, cost, acquisition time, and range of
materials that can be acquired must be considered.
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Figure III.10: Gonio-reflectometer for isotropic BRDF measurement. (From [Li 2005])

III.4.3.1 Acquisition techniques

The classic device for measuring BRDFs is a gonio-reflectometer [Murray-Coleman 1990,
nis 2010, cor 2005]. It involves a light source, a detector, and a material sample. Each
component can be positioned by stepper motors or robotic arms. If a flat material sample is
used, the detector can take only one sample at a time. Therefore, the measurement process
is very lengthy, taking days to measure a single material. However, it can be carefully
calibrated and multi-spectral high dynamic range detectors can be used.

Li et al. [Li 2005] setup a gonio-reflectometer with only three degrees of freedom for
measuring isotropic BRDFs. This technique uses two degrees of freedom in the orientation
of a planar sample, and one degree of freedom in the angular position of the light source.
See Figure III.10.

Ward [Ward 1992a] accelerated this process by capturing the entire hemisphere of re-
flected directions simultaneously. He used a half-silvered hemispherical mirror, a CCD
detector with a fish-eye lens, and a flat sample in the center. Since only the light direction
should vary, it is a much faster acquisition process. Due to the size and shape of the reflect-
ing hemisphere and the size of the sample, the angular resolution near the grazing angles
is limited.

Dana et al. [Dana 2004] proposed a gonio-reflectometer for capturing spatially-varying
materials. It uses a concave parabolic mirror, a CCD camera, a beam splitter, and transla-
tional stages.

Marschner [Marschner 1999,Marschner 2000] and similarly Matusik et al. [Matusik 2003]
used a spherical material sample in a way that all surface normal variations would be visi-
ble in a single image. See Figure III.11. Multi exposure photography was used to capture
the high dynamic range. This setup is limited to homogeneous isotropic materials only.

Ngan et al. [Ngan 2005] setup a gonio-reflectometer for measuring anisotropic BRDF,
using a set of cylindrical stripes of an anisotropic material. Figure III.12 depicts this acqui-
sition setup. The cylinder tilt, surface normal variation, light position and strip orientation
each contributes to one degree of freedom for acquiring a 4D BRDF. However, the resolu-
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Figure III.11: Image-based isotropic BRDF measurement. The surface normals of the
spherical sample provide two degrees of freedom, the rotating light provides the third for
the 3D isotropic BRDF. (From [Ngan 2006])

tion of the acquired BRDF is mainly limited by the number of material stripes mounted on
the cylinder.

More recently, a large body of work has been done for BRDF acquisition either using
a more sophisticated setup or inferring reflectance from a single image. The contributions
in this thesis are not related to material acquisition, and therefore the reader is referred to
the following references for further reading. [Ren 2011,Romeiro 2008,Romeiro 2010,De-
bevec 2000,Dong 2010,Ghosh 2010a,Ghosh 2010b,Ben-Ezra 2008,Munoz 2011,Hullin 2010]

III.4.3.2 Isotropic BRDF databases

In this thesis we have used the MERL-MIT homogeneous opaque isotropic BRDF database
from [Matusik 2003]. This database contains 100 densely measured isotropic materials
from diffuse to glossy and specular. We chose this database because the measurements
are dense and no interpolation is needed, and also it contains a wide range of materials.
The resolution is 1,458,000 combinations of viewing and illumination directions. See Fig-
ure III.13.

Cornell University [cor 2001] has a few multi-spectral measured paints (automotive,
spray, and house paints). Some materials are acquired using a gonio-reflectometer, and
some other using an image-based technique. The resolution is low (1439 points) and sam-
ples should be interpolated for use in rendering. And, there is not much variety. See
Figure III.14.

CUReT database [cur 1999] contains BRDF measurements for about 60 different real-
world surfaces. The resolution is as low as 200 combinations of viewing and illumination
directions.

One major problem with acquired materials in general is that the signal-to-noise ratio
is usually very low at grazing angles.
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Figure III.12: Gonio-reflectometer for anisotropic BRDF measurement. The cylinder tilt,
surface normal variation, light position, and strip orientation each contribute to one degree
of freedom for acquiring a 4D BRDF. (From [Ngan 2005])

III.4.4 Reflectance representation

Reflectance representation can be derived from actual physical measurements (data driven
reflectance), or can be artistically created, or a mix of both. The choice of what repre-
sentation technique to employ mainly depends on the application and the costs of using it.
Artists like to have control over the overall look of a material while it may not necessar-
ily end up being physically correct, e.g. energy conserving. Editing reflectance requires
meaningful parameters to tweak, which can be derived from fitting the parameters of an
analytical expression to the measurements.

III.4.4.1 Tabulated BRDF

One possible way of representing material appearance is to use the reflectance measure-
ments directly. This can be done by tabulating the measured values in the memory for
on-the-fly evaluation at render time. However, this has several disadvantages. Large mem-
ory consumption and access make this approach almost impractical for densely sampled
acquisitions. For example, each isotropic BRDF in the MERL-MIT database is 33 MB.
An anisotropic material, such as the ones measured by [Ngan 2005], takes about 750 MB
of memory. The lack of parameters for tweaking makes it extremely difficult to edit the
reflectance of a material directly from the measurements. And finally, there is no prac-
tical expression for importance sampling of acquired materials. For BRDF importance
sampling, one should pre-compute the importance samples by inverting the cumulative
distribution function (CDF) of the BRDF [Lawrence 2005] and tabulate it, which is not
very practical.

In chapter IV, we show how an efficient sampling prediction framework can be used to
achieve interactive frame-rates when rendering using tabulated BRDF measurements.
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Figure III.13: The MERL-MIT isotropic BRDF database. (From [Matusik 2003])

Figure III.14: The Cornell BRDF database. (From [cor 2001])

III.4.4.2 BRDF re-parameterization

One simple way to more efficiently represent isotropic BRDFs is the change of variables
proposed by Rusinkiewicz [Rusinkiewicz 1998]. He re-parameterizes the BRDF in terms
of the half-way vector (the vector half-way between incoming and outgoing vectors) and
a difference vector (incoming vector in a frame of reference in which the half-way vector
is at the north pole), instead of the incoming and outgoing angles. Figure III.15 depicts
the half/difference-angle parameterization of BRDFs. This re-parameterization aligns the
features of the BRDF such as the specular peak with the new coordinate axes. Change
of basis using this re-parameterization guaranties less non-zero coefficients, due to the
weak dependency on combinations of both axes. Please note that the MERL-MIT BRDF
database is already parametrized by the half-angle parametrization.
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Figure III.15: The half/difference-angle parameterization: The BRDF as function of (θi, φi)
and (θo, φo) is shown on the left, and the re-parameterization as a function of the half-angle
(θh, φh) and a difference-angle (θd, φd) is shown on the right. (From [Rusinkiewicz 1998])

III.4.4.3 Dimensionality reduction and compression techniques

BRDF measurement data, as a multi-dimensional quantity, can be reduced and compressed
for better rendering performance. Mathematical techniques [Fodor 2002] such as principal
component analysis (PCA) and factor analysis can be used to compress BRDFs.

III.4.4.3.1 Decomposition into basis functions

A solution is to take advantage of the sparsity of the signal after a change of basis.
Decomposition into basis functions such as tensor products of the spherical harmonics
[Westin 1992], Zernike polynomials [Koenderink 1996], spherical wavelets [Schröder 1995,
Lalonde 1997, Claustres 2007], or spherical Gaussians [Wang 2009a] are used for BRDF
compression.

III.4.4.3.2 Factorization and separable approximation

Factorization techniques and separable approximations [Kautz 1999,McCool 2001,Latta 2002]
factor the 4D BRDF into two or more 2D sets of projections for conventional storage such
as hardware 2D texture. The idea is to decompose the high dimensional BRDF into prod-
ucts of two or more factors of lower dimensionality, using singular value decomposition
(SVD) for example.

f (ω̂o, ω̂i) =
N∑

n=1

un (πu (ω̂o, ω̂i)) vn (πv (ω̂o, ω̂i))

where un and vn are two-dimensional functions (suitable for 2D texture storage) and πu

and πv are projection functions associated with each map.
Figure III.16 depicts an example of factorizing a 2D input signal into two and three 1D

factors.
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Figure III.16: A 2D factorization example: the 2D input signal (left); separable approxi-
mation with two 1D factors (center); separable approximation with three 1D factors (right).
(From [McCool 2001])

Figure III.17: The local coordinate system defined by the normal (n̂), tangent (t̂), and bi-
normal (b̂) vectors. (From Wikipedia)

III.4.4.4 Analytical models

Empirical models qualitatively emulate material appearance while ignoring physical prop-
erties of materials, while physically-based models apply first principles of physics to a
surface’s microscopic structure to predict how a material interacts with light.

One major advantage of analytical models is that the parameters can be used for fit-
ting to the measurements. Evaluation at render time is fast and efficient, because instead
of tabulating the whole BRDF we only need to store a few coefficients related to the pa-
rameters in the model. For some models analytical importance sampling expressions exist
which makes rendering fast and efficient. But on the other hand, not all analytical models
are physically plausible. And, the fitting is subject to numerical inaccuracies, specially for
fitting to highly specular materials, which degrades the appearance quality of a rendered
material.

Now, we are going to look at some of the existing parametric models for reflectance.
Please note that BRDF is always defined in local coordinate system, defined by the normal,
tangent and bi-normal. See Figure III.17.

http://en.wikipedia.org/wiki/File:Tangent_normal_binormal_unit_vectors.svg
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Figure III.18: The geometry of reflection: L is the light direction, N is the surface normal
at point P, V is the view direction, R is the ideal specular reflection direction, and H is the
half-way vector between L and V .

III.4.4.4.1 Empirical models

Phong BRDF We start with the Phong BRDF [Phong 1975].

ρphong(L,V) = ρd + ρs

(V · R)n

N · L
ρd and ρs are the diffuse and specular coefficients, which can take on different values

for different RGB channels, and n is the shininess.
See Figure III.18 for the vectors L, V , N, and R.
The diffuse and specular components of a BRDF model describe two different phenom-

ena. The diffuse term is the result of reflecting light almost equally in all directions, due
to absorption and sub-surface scattering. The specular term describes the rather directional
component of reflection. It describes the direction and fall-off of the specular peak.

The Phong BRDF model is not physically correct since it does not conserve energy.
More specifically, the specular term of Phong does not conserve energy at sufficiently large
incident angles [Lewis 1994].

Lewis [Lewis 1994] added a correction factor to make Phong loosely energy conserv-
ing.

ρlewis−phong(L,V) =
ρd

π

+ ρs ·
n + 2
2π

(V · R)n

Blinn [Blinn 1977] re-parameterized Phong based on the half-way vector (H) instead
of the mirror specular direction (R).

ρblinn−phong(L,V) =
ρd

π

+ ρs ·
n + 2
2π

(H · N)n

Ward BRDF Ward [Ward 1992a] replaced the cosine term to a power in the Phong
model with an exponential. He extended the model to anisotropic specular reflection using
an elliptical Gaussian.
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Figure III.19: The definition of vectors and angles for the albedo corrected Ward-Dür
model. (From [Geisler-Moroder 2010])

ρward(L,V) =
ρd

π

+ ρs ·
1

√
(N · L)(N · V)

·
exp

[
− tan2 θh(cos2 φh/α

2 + sin2φh/β
2
]

4παβ

This model is reciprocal but not strongly energy conserving.
Dür [Dür 2006] corrected the normalization factor for the Ward model.

ρward−dur(L,V) =
ρd

π

+ ρs ·
1

(N · L)(N · V)
·

exp
[
− tan2 θh(cos2 φh/α

2 + sin2φh/β
2
]

4παβ

Still, both Ward and Ward-Dür models do not meet energy balance at grazing angles
[Neumann 1999]. Geisler-Moroder and Dür [Geisler-Moroder 2010], recently, introduced
a new ward model with bounded albedo to ensure energy conservation.

ρward−dur−gm(L,V) =
1
παβ
·
(
− tan2 δ

(
cos2 φ

α2
+

sin2 φ

β2

))
·2 (1 + cos θl cos θv + sin θl sin θv cos(φv − φl))

(cos θl + cos θv)4

See also Figure III.19 for the definition of vectors and angles associated with the equa-
tion.

Lafortune BRDF The Lafortune BRDF [Lafortune 1997] is a cosine lobe model as
a generalization of the Phong model. It allows the definition of multiple lobes (possibly
anisotropic) around arbitrary axes with respect to the surface.

ρla f ortune(u, v) = ρs

[
Cxuxvx +Cyuyvy +Czuzvz

]n

where u and v are incoming and outgoing vectors in the local coordinate system at
the surface, where the z axis is the normal, as illustrated in Figure III.20. n controls the
sharpness of the lobe. Multiple lobes of this form can be summed up to form a BRDF.
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Figure III.20: Vectors for the Lafortune model: u is the incoming vector and v is the
outgoing vector in the local coordinate system, where z is the normal at the surface. (From
[Lafortune 1997])

Ashikhmin-Shirley BRDF The Ashikhmin-Shirley BRDF [Ashikhmin 2000] is an-
other extension to the Phong model. This model is anisotropic and physically plausible and
accounts for Fresnel effects. The formulas are not included here due to their complexity,
and the reader is referred to their paper.

III.4.4.4.2 Physically-based models

Physically-based models infer the visual appearance of a material from its microscopic
structure, based on physics first principles.

The micro-facet theory Torrance and Sparrow [Torrance 1967] introduced a new
geometric description of the surface to model light reflection from rough surfaces, that re-
sulted in the idea of micro-facet BRDF models. The Torrance-Sparrow model assumes that
a rough surface is made of many tiny V-shaped grooves composed of smooth mirror-like
facets called the micro-facets. This model predicts reflection as a sum of specular reflec-
tion from these facets plus a diffuse reflection due to multiple reflections and/or internal
scattering. Because the micro-facets are perfectly specular, only those with a normal equal
to the half-angle vector cause specular reflection.

The Cook-Torrance reflectance model Cook and Torrance [Cook 1981] introduced
the Cook-Torrance BRDF model based on the micro-facet theory. The full BRDF is:

ρ(i, o) =
ρd

π

+
ρs

π

F(i · h)D(θh)G(i, o)
cos(θi) cos(θo)

(III.1)

where i is the incoming direction, o is the outgoing direction, h is the half-vector (h =

i + o, normalized). θi, θo and θh are the respective angles between these vectors and the
surface normal n. ρd and ρs are the diffuse and specular coefficients, respectively (see
notations on Figure III.21).

D is the probability distribution function for micro-facet normals. G is the shadowing
and masking coefficient, expressing the amount of light that is blocked by other micro-
facets before reaching the point (shadowing), or after reflection (masking). For isotropic
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Micro-geometry

Macro-geometry

Light, iCamera, o

Figure III.21: For Cook-Torrance BRDF, the material micro-geometry is a random distri-
bution of specular micro-facets. Angles are relative to the normal n of the macro-geometry.

materials, G is approximated by a product of one-dimensional functions:

G(i, o) ≈ G1(i)G1(o)

and G1 is computed from D through a double integration [Smith 1967,Brown 1980,Bourlier 2002,
Walter 2007].

F is the Fresnel term, depending on the refraction index η of the material. It is usually
close to constant at normal incidence, and increases to unity at grazing angles.

The normal probability distribution function (D) The micro-facets are randomly
oriented and their distribution can be statically modeled as a normal probability density

function. It is a statistical distribution of slopes to the mirror-like facets on the surface.
Given a direction ω = (θ, φ) and an infinitesimal solid angle dω centered around this

direction, the probability for the normal of a micro-facet to be inside the cone (ω, dω) is
D(ω) (ω.n) dω.

In order to be physically plausible, D should follow several requirements: it should
be positive, the projected area of the micro-facets in a direction should be equal to the
projected area of the macro-surface and in particular,

∫
D(ω) (ω.n) dω = 1. D is usually

expressed as:

D(θ) =
χ[0, π2 ](θ)

cos4 θ
P22

(
tan2 θ

)
(III.2)

where P22(x) is a positive function of the variable x ∈ [0,∞) and χ[0, π2 ](θ) ensures sided-
ness: it is equal to 1 if θ < π

2 , and 0 otherwise. With this expression,

D(θ) cos θ dω =
1
2

P22(tan2 θ) d(tan2 θ) (III.3)

Since
∫

D(θ) (ω.n) dω = 1, we have
∫ ∞

0
P22(x) dx = 1/π.

Importance sampling based on the distribution We use Equation III.3 for impor-
tance sampling [Walter 2007]: for a given incoming direction i, we first pick a random
micro-facet normal m with probability D(θm) cos θm, then compute the reflected direction o

so that m is the half-vector. Finally, we compute the sampling weight as the BRDF divided
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Beckmann Exponential TR/GGX

P22(x) 1
πα2 e−x/α2 1

2πα2 e−
√

x/α2 α2

π(α2+x)2

Table III.2: P22 functions corresponding to classical micro-facet distributions, with x =

tan2 θ.

by the probability, multiplied by the Jacobian of o:

wo =
ρ(i, o) cos θo

D(θm) cos θm

∥∥∥∥∥
∂ωo

∂ωm

∥∥∥∥∥

To pick m with the probability D(θm) cos θm, we need the associated Cumulative Dis-
tribution Function F:

F(θm, φm) =
∫ φm

0

∫ θm

0
D(θ) cos θ dω =

φm

2

∫ tan2 θm

0
P22(u) du

F is separable: F = FφFθ, with Fφ and Fθ from 0 to 1:

Fφ(φm) =
φm

2π

Fθ(θm) = π

∫ tan2 θm

0
P22(u) du

Assuming we have two uniform random variables u1 and u2 in [0, 1), we get the sampling
equations:

φm = F−1
φ (u1) = 2πu1

θm = F−1
θ (u2)

For any micro-facet distribution D following Equation III.2, importance sampling reduces
to computing the integral of P22 and inverting it.

Existing normal probability distributions Table III.2 lists the P22 functions corre-
sponding to existing micro-facet distributions. Beckmann is frequently used [Cook 1982];
it is a Gaussian in tan θ, and is also very close to the Phong distribution [Walter 2007]. The
exponential distribution is mostly used for the propagation of radio waves [Bourlier 2002,
Brown 1980], and has a sharper peak and larger tails than Beckmann. The Trowbridge-
Reitz [Trowbridge 1975] and GGX [Walter 2007] are independently formed but identical
distributions. They have a sharper peak and larger tails than Beckmann and Exponential
distributions. Please note that α is the root-mean-square slope of the micro-facets, and it
captures surface roughness.

Recently, Löw et al. [Löw 2012] proposed to use a condensed version of the ABC
model as the distribution in the Cook-Torrance BRDF. Please refer to their article for full
details.
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The shadowing and masking attenuation factor (G) Some micro-facets may block
the light before arriving at a particular point causing shadowing, or light may get blocked
by other micro-facets after it’s reflected off the surface causing masking. These geometrical
effects (shadowing and masking) are grouped under a unified geometric term (G).

In the original Cook-Torrance BRDF model [Cook 1981] the shadowing function G

was independent from the micro-facet distribution.

G = min

{
1,

2(N · H)(N · V)
(V · H)

,
2(N · H)(N · L)

(V · H)

}

Further research [Smith 1967, Brown 1980, Bourlier 2002] proved that we get a more
accurate shadowing term by integration from the micro-facet distribution D. G is approx-
imated as the product of two one-dimensional functions: G(i, o) ≈ G1(θi)G1(θo). G1 is
the Smith shadowing function [Smith 1967] and is computed from D through a double
integration:

P2(r) =
∫ ∞

−∞
P22

(
r2 + q2

)
dq (III.4)

Λ(θ) =
∫ ∞

1
tan θ

(r tan θv − 1) P2(r) dr

G1(θ) =
χ[0, π2 ](θ)

1 + Λ(θ)

For further details, please refer to the original papers or the short summary in [Wal-
ter 2007].

The Fresnel term (F) The Fresnel term (F) defines the ratio of light being reflected
by the well-oriented micro-facets. It depends on the wavelength of the incoming light, the
geometry of the surface and the light, and the incoming angle. Schlick’s approximation to
the Fresnel term [Schlick 1994] is widely used in computer graphics.

Fλ(θ) = Fλ(0) + (1 − Fλ(0))(1 − cos θ)5

Lazányi et al. [Lazányi 2005] introduced a more accurate Fresnel approximation for
metals.

Fλ (n, k, cos θ) =
(n − 1)2 + 4n(1 − cos θ)5 + k2)

(n + 1)2 + k2

Where for k = 0 we get back to Schlick’s Fresnel approximation.

The Oren-Nayar reflectance model The Oren-Nayar model [Oren 1994] is a gen-
eralization of Lambert’s perfect diffuse reflection model. They take the micro-facet ap-
proach, but contrary to Cook-Torrance model, they assume the surface is made of Lamber-
tian micro-facets. Because they account for shadowing and masking, although the facets
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are Lambertian, the overall BRDF is not Lambertian anymore. The Oren-Nayar model
simulates back-scattering but not specular reflection.

ρoren−nayar(L,V) =
ρ

π

(
A + B max

[
0, cos(φv − φl)

]
sin(max[θv, θl]) tan(min[θl, θv])

)

Where

A = 1.0 − 0.5
α2

α2 + 0.33

B = 0.45
α2

α2 + 0.09
This is an approximation to the full solution for Lambertian facets with reflectance ρ

and Gaussian slope distribution with the standard deviation of α.

The He-Torrance reflectance model The He-Torrance model [He 1991] is a very
comprehensive analytical model accounting for shadowing and masking, anisotropy, as
well as polarization effects. This model is able to predict the appearance of a nearly smooth
surface, producing variations in sharp and blurred reflections not predicted by other models.
Due to the high complexity of this analytical model, we do not explain this model here.
Please refer to the original paper for details.

III.4.4.5 Comparison between existing analytical models

Many different analytical models for reflectance have been proposed in the past decades.
Hence, there is a need for quantitative and qualitative comparison between all these models
compared to a ground truth such as physical reflectance measurements.

Ngan et al. [Ngan 2005] fitted the previously mentioned analytical BRDF models to
most of the materials in the MERL-MIT database. The isotropic models compared in
their work include: Ward [Ward 1992a], Ward-Dür [Dür 2006], Blinn-Phong [Blinn 1977],
Lafortune [Lafortune 1997], Cook-Torrance [Cook 1981], He-Torrance (also known as
He) [He 1991], and Ashikhmin-Shirely [Ashikhmin 2000]. They fitted the materials with a
single lobe. Adding more lobes to the BRDF model makes it more accurate, but it increases
the instability of the fitting process. 3 lobes are usually considered to be the limit for
automatic fitting.

Figures III.22, III.23, III.24 show examples of the comparison between these models
for beige-fabric as a diffuse material, fruitwood-241 as a glossy material, and chrome as a
specular material respectively.

Ngan et al. [Ngan 2005] reported that physically-based models like Cook-Torrance and
He-Torrance, as well as the Ashihmin-Shirley model often produce the best results. They
further explained that the He model does not produce noticeably superior visual results
to the Cook-Torrance model. The Lafortune model is not a good candidate for glossy
materials due to the anisotropic blurriness near grazing angles. The Blinn-Phong, Ward,
and Ward-Dür models are only suitable to a sub-class of materials, since they have near
constant reflection power independent of the incident angle.
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Figure III.22: Comparison between several analytical models for beige-fabric from MERL-
MIT database — figures from left to right: reference, Ward, Ward-Dür, Blinn-Phong,
Lafortune, Cook-Torrance, He, and Ashikhmin-Shirely. The numbers below each figure
represent the L2 metric error value. (From [Ngan 2005] supplemental material)

III.5 Summary and conclusion

In this chapter, we briefly explored the simulation of light transport within a synthetic
environment. We defined the radiometric terms involved in illumination simulation, the
rendering equation and its estimation using Monte Carlo sampling. We looked at hardware-
accelerated rendering, its pipeline, and the difference between forward and deferred shad-
ing. We briefly reviewed some multi-resolution screen-space rendering techniques that
implement interactive global illumination on graphics hardware in a more efficient man-
ner. We defined light fields, its propagation and parameterization. We also introduced the
concept of analyzing light transport in frequency space using Fourier theory.

Then, we talked about material appearance, what we mean by reflectance and BRDF.
We explored the taxonomy of appearance, and discussed various techniques for reflectance
acquisition using special optical measurement devices. We looked at various ways to rep-
resent reflectance using the measurements directly, re-parameterization, dimensionality re-
duction and compression techniques, and also analytical models. finally, we compared
existing analytical models.

In the next chapter, we will introduce a frequency analysis framework for interactive
rendering of measured reflectance.
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Figure III.23: Comparison between several analytical models for fruitwood-241 from
MERL-MIT database — figures from left to right: reference, Ward, Ward-Dür, Blinn-
Phong, Lafortune, Cook-Torrance, He, and Ashikhmin-Shirely. The numbers below each
figure represent the L2 metric error value. (From [Ngan 2005] supplemental material)

Figure III.24: Comparison between several analytical models for chrome from MERL-MIT
database — figures from left to right: reference, Ward, Ward-Dür, Blinn-Phong, Lafortune,
Cook-Torrance, He, and Ashikhmin-Shirely. The numbers below each figure represent the
L2 metric error value. (From [Ngan 2005] supplemental material)
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IV.1 Introduction (français)

Comme nous l’avons vu dans le chapitre précédent, la synthèse d’images photo-réaliste est
très coûteuse en raison de la nécessité d’une intégration numérique par pixel sur plusieurs
directions incidentes. L’utilisation de BRDF mesurée assure un maximum de réalisme à la

1This chapter is based on the publication [M. Bagher 2012b] and is extended with new features and more
discussions.
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précision des mesures, mais rend le calcul plus coûteux du fait d’un accès mémoire élevé
et des coûts de stockage prohibitifs.

Pour certaines applications, telles que la conception de formes, un feedback interactif
d’apparence matérielle est souhaitable. La nécessité de permettre de changer dynamique-
ment la géométrie pose le premier défi a calcul interactif. En outre, il est important que le
résultat soit réaliste et compatible avec son aspect final après post-conception hors ligne,
par exemple a l’aide d’un modèle physique de rendu.

Une gamme d’approches parvient partiellement à résoudre ce problème. À une extré-
mité, des algorithmes rapides se concentrent sur la géométrie modifiable avec les modèles
de matériaux simples. D’autres algorithmes s’efforçoent de décrire une variété d’effets tels
que l’illumination globale. Cette dernière approche nécessite généralement le pré-calcul du
transfert de rayonnement (comprenant la visibilité) et empêchée l’édition de la géométrie
[Sloan 2002]. Le rendu réaliste interactif d’une géométrie dynamique avec des matériaux
complexes tels que des mesurées BRDFs acquis est encore un problème de recherche ou-
vert et est l’objet de ce chapitre. Nous réalisons cette combinaison au prix de l’illumination
globale et la visibilité.

Simuler l’apparence de matériaux sous éclairage haut fréquence nécessite l’estimation
d’une intégrale de l’éclairage incident à chaque pixel modulée par la fonction de réflectance
du matériau. Les intégrands sont généralement échantillonnées, et le taux d’échantillon-
nage dépend de la matière : les matériaux diffus nécessitent de nombreux échantillons sur
les directions incidentes, mais présentent une faible variation entre les pixels voisins ; les
matériaux spéculaires nécessitent moins d’échantillons sur les directions incidentes mais
provoquent de grandes variations entre les pixels voisins.

Nous nous appuyons sur les théories de l’analyse fréquentielle du transport de la lu-
mière [Durand 2005] (cf. III.3.8) pour exploiter systématiquement la relation entre l’échan-
tillonnage à l’image de l’espace (reconstruction) et d’échantillonnage pour le shading (in-
tégration). Pour la reconstruction, nous proposons un nouvel algorithme multirésolution
en une pane. Pour l’intégration, nous estimons le nombre d’échantillons. Notre prédiction
peut être utilisée en conjonction avec une stratégie d’échantillonnage pour l’intégration nu-
mérique. Le gain dû à notre prédiction est complémentaire au gain éventuel de stratégies
d’échantillonnage efficaces.

Dans ce chapitre, nous introduisons le concept de calcul et de stockage des fréquences
maximales locales du champ de radiance. Nous proposons une représentation concrète de
la band passant, ainsi que qu’une approximation de la variance de la fonction à intégrer,
avec un algorithme rapide pour la calculer. Nous utilisons cette information pour adapter
les taux d’échantillonnage pour la reconstruction et l’intégration pendant le rendu. Notre al-
gorithme de rendu se compose de deux étapes principales. Tout d’abord, pour chaque pixel,
nous estimons la band passant en espace-écran et la variance. Cette information est stockée
hiérarchiquement, dans un tampon ayant la même taille que l’image générée. Ensuite, nous
utilisons cette information pour échantillonner l’image. On calcul moins de pixels dans les
zones variant de façon régulière, et d’adapte le nombre d’échantillons en fonction de la
variance prédite. Nous rendons l’image finale en interpolant les pixels calculés, en prenant
en compte les discontinuités.
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IV.2 Introduction

As we saw in the previous chapter, photo-realistic image synthesis is very costly due to the
need for per pixel numerical integration over multiple incident directions. Using tabulated
BRDF measurements ensures maximum realism, up to the accuracy of the measurements,
but it makes shading even more computationally expensive due to high memory access and
storage cost.

For some applications, such as shape design, interactive feedback of material appear-
ance is desirable. The need to allow dynamically changing geometry poses the first chal-
lenge to interactive shading. In addition, it is important that the shading is realistic and con-
sistent with its final appearance after post-design off-line rendering, e.g. using a physically-
based off-line renderer.

A gamut of approaches partially address this problem. At one end, fast algorithms
focus on editable geometry with simple material models. Other algorithms strive to de-
pict a variety of effects such as global illumination. The latter approach typically requires
the pre-computation of radiance transfer (including visibility) and prevents geometry edit-
ing [Sloan 2002]. The interactive rendering of editable geometry and realistically portray-
ing complex materials such as acquired BRDFs is still an open research problem and is the
focus of this chapter. We achieve this combination at the cost of global illumination and
visibility.

Simulating material appearance under all-frequency illumination requires the estima-
tion of an integral of the incident illumination at each pixel modulated by the material’s
reflectance function. The integrand is typically sampled, and the sampling rate depends on
the material: diffuse materials require many samples over incident directions, but exhibit
low variation between neighboring pixels; specular materials require fewer samples over
incident directions but cause large variation across nearby pixels.

We leverage theories in frequency analysis of light transport [Durand 2005] (refer to
III.3.8) to systematically exploit the relationship between sampling in image-space (recon-
struction) and sampling for shading (integration). For reconstruction, we propose a new
multi-resolution algorithm. For integration, we predict the required number of samples.
Our prediction may be used in conjunction with any sampling strategy for numerical in-
tegration. The gain due to our prediction is complementary to the benefit from efficient
sampling strategies.

In this chapter, we introduce the concept of computing and storing the maximum local
frequencies of the radiance field. We propose a practical representation of —local band-

width—, as well as an approximation of the —variance— of the shading integrand, along
with a fast algorithm to compute it. We use this information to adapt sampling rates for
reconstruction and integration during rendering. Our rendering algorithm consists of two
major steps. First, for each pixel, we estimate the screen-space bandwidth and variance.
This information is stored, hierarchically, in a buffer having the same size as the picture
generated. Next, we use this information to sample the image. We shade fewer pixels
in smoothly varying areas, and adapt the number of samples according to the predicted
variance. We render the final image using the scattered shaded pixels by edge-aware up-
sampling.
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This chapter introduces the following contributions:

1. Rapid bandwidth and variance computation: we quickly (about 8ms) predict local
variation in the image due to reflected illumination, and expected variance for each
pixel.

2. Multi-resolution shading: our multi-resolution deferred shading algorithm uses the
local frequency information for efficient sampling. We adaptively sample for recon-
struction (shading only some pixels) and for integration (number of light samples for
each shaded pixel)

3. Adaptive multi-sample anti-aliasing: we only compute sub-pixel shading for those
pixels where the predicted image-space frequency is greater than 1 pixel−1.

4. Reflectance bandwidth estimation: we estimate local bandwidth of arbitrary reflectance
functions using wavelets.

5. Adaptive sampling for pre-convolved shading: Reflectance usually filters out high
frequencies in the illumination. We take advantage of this fact by taking less samples
for integration using pre-convolved illumination.

6. Local light sources: We show applications of our technique with local light sources
such as an area-light source.

IV.2.1 Overview

The radiance arriving at each pixel p after one-bounce direct reflection at a point x (ignoring
visibility) is

Lp =

∫

Ωx

Li(ω) ρ(x, ω, ωx→p) ω.n(x) dω. (IV.1)

Here ωx→p denotes the direction from x to the eye through pixel p, n(x) is the normal at
x, Li is radiance from illumination, Ωx is the set of incident directions on the hemisphere
above the local tangent plane, and ρ is the reflectance function. This integral is typically
estimated using Monte Carlo estimators as an average of Np illumination samples:

Lp ≈
G

N p

Np∑

i=1

Li(ωi)
g(ωi)

ρ(x, ωi, ωo) ωi.n(x) (IV.2)

where the ωi ∈ S2 are random incidence directions distributed according to the importance
function g(ωi) and G is the importance function integrated over Ωx.

We accelerate rendering by first, avoiding shading all pixels: we compute the integral
for an adaptively sparse set of pixels depending on local variations, and up-sample from
neighboring pixels for the others (Section IV.4.2). Second, for each pixel p where we
estimate the integral, we adaptively choose Np according to the predicted variance of the
shading integrand (Section IV.3.4). In Section IV.4, we present a multi-resolution shading
algorithm that implements this two-fold strategy.
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Figure IV.1: Flatland illustration of local bandwidth propagation. Our idea is to only prop-
agate local bandwidth information (dotted rectangles). Then, using local bandwidth along
a few (typically 16) incident directions at R, we estimate the local image variation at p and
use it to determine image-space sampling rates (see Eq. IV.7).

IV.3 Real-time frequency analysis

We only propagate maximum local frequencies (bandwidth) about light paths. See Fig-
ure IV.1 for an example of bandwidth propagation in Flatland.

2D bandwidth: We analyze the local lightfield using the parametrization of Durand et
al. [Durand 2005]. Their parametrization is in 4D and we define the bandwidth of the
local light-field as a 2D vector with the maximum non-zero Fourier frequencies in space
and angle. For robustness we use a quantile (the 95th percentile) of the power spectra
rather than the absolute maximum. For non-band-limited signals, we store an arbitrarily
large value until the final calculation in image-space, where we clamp to the maximum
representable frequency, which depends on the extent of anti-aliasing chosen. We denote
the bandwidth using ν ≡ [νs νa]T so that the rectangle with opposite corners (−νs,−νa) and
(νs, νa) contains the 2D spatio-angular spectrum of the local light field around a central ray
(Figure IV.2).

From [Durand 2005], we derive simple linear transformations undergone by ν for each
step of the transport process (see Figure IV.3). We describe how to derive sampling rates
using the bandwidth information. Finally, we explain how to estimate the variance of the
shading integrand for adaptive sampling.

IV.3.1 Illumination, textures, and BRDF bandwidth

We present in this section a general technique we used to estimate local bandwidth on 2D
signals. We used it for textures, distant illumination, BRDF and local light sources, since
they all can be easily converted to 2D images—or sets of 2D images.

The most naive way to estimate 2D bandwidth would be to compute a windowed
Fourier transform of the input signal (2D image) and measure the bandwidth of the spec-
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Fourier
transform

Projection
to 2D

2D

95% of energy

4D local lightfield

Figure IV.2: Left: 4D local light-field parametrization adopted by Durand et al. [Du-
rand 2005]. Right: 2D parametrization introduced by Soler et al. [Soler 2009]. We define
local bandwidth ν ≡ [νs νa]T (black dot) so that 95% of the spectral energy lies in the
dotted rectangle.

4D ray space Fourier domain

Transport (free space) spatial shear angular shear

Occlusion product convolution (spatial)

Curvature angular shear spatial shear

BRDF convolution (angular) product

Texture product convolution (spatial)

Figure IV.3: Review of spectral operations from [Durand 2005].

trum. This is a costly computation, and at the same time it does not provide a usable
bandwidth estimate, because it implies a compromise between locality and the range of
possibly measured frequencies.

Instead, we use 2D wavelets. Wavelets are very localized both in space and frequency,
as proven by theory [Mallat 2008] and illustrated in Figure IV.4. Consequently, the set of
wavelets that contribute to the image value at a given pixel may provide a good estimate of
the local spectrum in the image. Of course, power spectra are not additive because doing so
neglects the phase of the different wavelet bands. This overestimates the image bandwidth.

More formally, for a given point x in the image signal s, we have:

s(x) =
∑

i

βi φi(x) +
∑

i

∑

j

λi, j

1
2i
ψ

(
x − 2i j

2i

)
.

(where φ is the scale function and ψ is the mother wavelet). Wavelets of the same scale have
identical bandwidths, so we compute the maximum wavelet coefficient λmax

i
= max j |λi j|

per frequency band, and estimate the wavelet level as:

Iw = argmini

n∑

k=i

λmax
k < εmax

k
λmax

k (IV.3)

The result is independent of ε as long as it is small enough. We used ε = 0.01 in all our
experiments. Figure IV.5 illustrates this process.
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Figure IV.4: Most wavelets have a band-limited spectrum. We use Daubechies wavelets
of order 4, which are drawn at the Left for various detail levels (bands 2,3,5 and 6 re-
spectively). Right: power spectra of the same wavelets. Most of the spectrum energy is
concentrated around frequency 2n+1 where n is the wavelet band.
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Figure IV.5: Instant 2D bandwidth estimation using wavelets. The source image is first
converted into wavelets using a 2D transform, alternating horizontal and vertical pyramid
steps (left). Then for each pixel, we build a histogram of wavelet energy for each frequency
band (middle). We extract the 95 percentile of this energy to get the maximum order of
significant wavelets bands for that pixel. This number is converted into bandwidth thanks
to the very limited spectrum of each wavelet.

We experimented with various methods based on wavelets. An alternative is to apply
a 1D wavelet transform to image lines and columns separately and apply the percentile
extraction to the spectrum of each line. This gives for each pixel a horizontal and a vertical
bandwidth. Taking the maximum value of the two gives a result practically similar to the
estimate given by the presented method.

Distant illumination: The local 2D bandwidth of distant illumination along ω is purely
angular:

ν(ω) = [0, νa(ω)]T

The distant illumination is first converted into an angular map. Then, for each pixel, the
image wavelet hierarchy level Iw from Eq. IV.3 is converted back into angular bandwidth
using

νa(ω) =
2π

2Iwλmax
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Figure IV.6: Input environment map and its local angular bandwidth computed using a 2D
wavelet decomposition.

(a) area-light source (b) spatial bandwidth (c) area-light source (d) spatial bandwidth

Figure IV.7: (a) A finite-sized solid white square-shaped area-light source, and (b) its spa-
tial bandwidth. It contains high bandwidth at the boundaries and zero bandwidth in the
middle. (c) A textured area-light source and (d) its spatial bandwidth.

where λmax is the maximum eigenvalue of the Jacobian for the 2D mapping of spherical
coordinates onto the image plane. This approach allows to compute instant angular band-
width in real time on GPU for environment maps. See Figure IV.6, for an example of
computing the local bandwidth of an environment map as distant illumination.

Local light sources (spatial): The bandwidth of an area-light source is purely spatial, and
is computed using the above method. The area-light source can have any planar shape and
can be textured.

To correctly account for the boundary effects of a finite-sized area-light source, we pad
the area-light source image with zeros, so that its size is twice the original. We compute
the bandwidth of the zero-padded image and crop it back to the original size afterwards.
Figure IV.7 shows an un-cropped solid white square-shaped area-light source as well as a
textured area-light source example.

Texture (spatial): We extract the spatial bandwidth using the same approach, this time ac-
counting for the Jacobian of the mapping onto the surface so that the bandwidth is correctly
expressed in inverse meters.

Reflectance (angular): We only demonstrate separable reflectance: an spatially homoge-
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Figure IV.8: Input BRDF (gold-paint) and its local angular bandwidth computed using a
2D wavelet decomposition. Each square block represents a single slice of the BRDF.

neous angular reflectance distribution along with a texture. However, all the derivations for
bandwidth hold for spatially-varying BRDFs.

For each incident direction in the local tangent frame, we compute the angular band-
width map of the outgoing BRDF lobe. We use the same technique as for distant illumina-
tion and apply 2D wavelet transforms on the slices. We store the result for each lobe of the
BRDF in a large texture. For the general case of 4D reflectance data we use 16 × 16 input
directions and a 16 × 16 image for each reflectance lobe, packed into a 2562 texture. Since
the maximum expressible bandwidth depends on resolution, we compute the bandwidth for
higher-resolution angular slices and reduce it to 16 × 16. See Figure IV.8 for an axample.
We tried compression of the BRDF bandwidth with principal component analysis but did
not observe any improvement.

IV.3.2 Computing one-bounce 2D bandwidth

At the light: the bandwidth of the local light field leaving light sources depends on the
geometry and emission of the light sources. For distant illumination, νs is zero and νa is
directly computed from the environment map. For local light sources at finite distance,
such as an area-light source, νa is zero and νs is computed directly from the light source.
Transport through free space: since transport through free space results in an angular
shear of the local light field’s spectrum [Durand 2005], the transported bandwidths can be
written as Tdν for transport by a distance of d (see Figure IV.1), where Td is defined in
Figure IV.9.
Reflection: in the frequency analysis framework, reflection is realized in four steps [Du-
rand 2005]:

1. Re-parametrization of the incident light-field into the frame of the reflecting surface.
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Figure IV.9: Matrix operators on 2D bandwidth.

This is a spatial scale by cos θi of the spectrum, followed by a spatial curvature
shear of length c in the frequency domain (c is the Gaussian curvature of the surface
expressed in m−1);

2. The product with the incident cosine, which is an angular convolution in Fourier
space with a Bessel function;

3. The angular convolution of the light field with the BRDF is a band-limiting product
in the frequency domain, while the spatial product by the texture is a convolution by
the spectrum of the texture in the Fourier domain.

4. Re-parametrization along the outgoing direction. This is a mirror reflection in the
spatial domain, followed by a spatial curvature shear of length −c and a spatial scale
of 1/ cos θx.

We translate these into matrix operations applicable to the bandwidth vector ν of the
incident local light field (see Figure IV.9). The re-parametrization (first and last steps) are
simply scaling (Pi and Px). The curvature causes a shear of ν by matrices Cc and C−c. The
mirror re-parametrization is a multiplication by matrix S . The reflectance function band-
limits angular frequencies based on its own angular bandwidth ρ while the convolution
with local texture augments the spatial bandwidth by the bandwidth t of the texture. We
denote this using the operator Bt,ρ. We neglect the product by the incident cosine, which
only adds a small constant to the angular frequency.

We quickly pre-compute angular and spatial bandwidths of the reflectance distribution
(and texture). This computation is applicable to any type of reflectance function (analytical
BRDFs, acquired BRDFs or artistic shaders).

The overall transformation undergone by incident bandwidths during reflection can
thus be represented by a reflection operator R over the bandwidth vector:

R = Px C−c S Bt,ρ Cc Pi (IV.4)

The bandwidth around a light path arriving at pixel p after one-bounce of a single ray from
the light is

νi = Td′ R Td ν
i
l (IV.5)

Here d is the distance from the light source to the bouncing point on the surface, d′ is the
distance from the surface to the image plane and νi

l
is the bandwidth while originating at

the light source along direction ωi.
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IV.3.3 Image-space bandwidth and sampling rate

The bandwidth at pixel p depends on the choice of ωi sampled at x. That is the 2D band-
width ν at pixel p is a combination of the individual bandwidths νi along the sampled
directions.

We compute the 2D bandwidth at each pixel ν as a weighted average of the sampled
incident illumination Li(ωi) at x, reflectance and the 2D bandwidths of the associated one-
bounce paths νi:

ν =


νs

νa

 =
1

nb∑
j=1
λi

nb∑

i=1

λiν
i (IV.6)

with
λi = Li(ωi) ρ(ωi, ωx→p) ωi.nx

Although the bandwidth at each pixel is estimated using multiple samples, a small choice
of nb is sufficient (see Figure IV.17).

Using a max operation in place of the sum in Eq. IV.6 would be the only conserva-
tive choice, but it does not capture view-dependent effects. For instance bandwidth after
reflection from a specular sphere would be equally high regardless of viewing or light di-
rection (see Figure IV.10). Eq. IV.6 is a heuristic approximation to the actual variance of
the shading integrand that is bounded to the range of bandwidths from contributing light
paths while giving more credit to light paths with larger energy (If all light paths contribute
the same bandwidth, the approximation is exact). This way, we account for the material
reflectance, relative orientation of illumination and view, and local geometry.

The required sampling rates at the image plane are twice the local image-space band-
width (Nyquist criterion) bp (in pixel−1):

bp = νa max

[
fx

W
,

fy

H

]
(IV.7)

where fx and fy are the horizontal and vertical fields of view, and the rendered image is
W × H pixels.

IV.3.4 Adaptive sampling for shading

In this section, we estimate the variance of the Monte-Carlo estimator Lp of Eq. IV.1 in
order to determine a suitable number Np of integration directions for each pixel p. Because
there is no analytical formula giving the variance V(Lp) of Lp using importance sampling,
we conservatively overestimate it assuming uniform sampling:

V(Lp) ≤ 4π2

Np

σ2
p

The variance σ2
p of the shading integrand about a single illumination direction ωi, at a

point x that projects to pixel p, is

σ2
p = E(λ2

i ) − E(λi)
2

≤ E(χ2
i )
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10

Figure IV.10: Combining bandwidth estimates from sampled incident directions. Middle:

Applying a max overestimates sampling rates (1 pixel−1 almost everywhere on the sphere).
Right: Our approach. Eq. IV.6 predicts view-dependent sampling rates. Left: Final result.

where χi = Li(ωi)ρ(ωi, ωx→p), and E(X) denotes the expected value of X. Finally,

E(χ2
i ) = E(L̂2

i ⊗ ρ̂
2)

where f̂ denotes the Fourier transform of f and ⊗ denotes convolution. This equality is a
consequence of Parseval’s theorem (see, e.g. [Oppenheim 1975]). The convolution is in the
angular domain. We have:

E(L̂2
i ⊗ ρ̂

2) ≤ (νi
a + ν

i
ρa) χ2

i (IV.8)

where νi
a is the angular component of νi = Td ν

i
l
, and νi

ρa is the local angular bandwidth of
the reflectance function. Therefore, we have:

V(Lp) ≤ 4π2

Np

nb∑

i=1

(νi
a + ν

i
ρa) χ2

i (IV.9)

To keep the variance of the shading globally constant, we need to keep Np proportional
to the sum of the bandwidths, weighted by the illumination and reflectance values, along
sampled directions ωi. The sum is a conservative approximation of the variance of the
integrand. nb = 16 provides acceptable quality (see Figure IV.17).

The summations over incident directions — Eq. IV.6 and Eq. IV.9 — indicate that we
implicitly account for the relative alignment (phase) of the illumination and reflectance.
Previous approaches that neglect phase cannot predict variation due to view-dependent
effects.

IV.3.5 Adaptive sampling for pre-convolved shading

As an approximation, we propose a faster integration scheme, that would need far less
directional samples.

Starting again from Eq. IV.1, we can write the illumination to be the sum of a low fre-
quency component Ll

i
and a high frequency component Lh

i
. The high frequency component
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is going to cancel out due to the low-pass filter characteristics of the reflectance:

Lp =

∫

Ωx

(Ll
i(ω) + Lh

i (ω))ρ(x, ω, ωx→p)n.ωdω

≈
∫

Ωx

Ll
i(ω)ρ(x, ω, ωx→p)n.ωdω

Doing this, we can rewrite Eq. IV.9, replacing the bandwidth of the illumination by the
bandwidth of the filtered illumination, which in turn is equal to the bandwidth of the BRDF:

V(Lp) ≤ 4π2

Np

nb∑

i=1

2νi
ρa χ

2
i . (IV.10)

To compute the shading integral, we pick samples in the pre-filtered illumination Ll (e.g a
pre-filtered environment map), at the level given by the maximum frequency of the BRDF.
The number of samples needed to compute the shading integral is therefore greatly reduced.

The calculation we performed is based on the same principle used by pre-convolved
environment map shading [Kautz 2000]. The main difference is that we do not project the
BRDF nor the illumination onto a basis function. We only filter out parts of the illumination
that are out of the support of the spectrum of the BRDF. We still perform a Monte-Carlo
integration to compute Lp, but using less samples. Section IV.5.3 gives examples of using
this technique.

IV.3.6 Implementation roadmap

The practical implementation is simply as follows: for each pixel, we compute the image
bandwidth using Eq. IV.6 and Eq. IV.7, and the number of samples for the shading integrand
using Eq. IV.9. Both are summations over nb = 16 incoming directions ωi. For each ωi,
the local 2D bandwidth νi is given by Eq. IV.4 and Eq. IV.5, using the matrices listed in
Figure IV.9. These matrices require the curvature c, normal n, the incident and outgoing
angles (θi and θo), the pre-computed spatial and angular bandwidth of the material (resp. t

and ρ) for the current pixel and direction ωi, and the pre-computed bandwidth of the light
source νi

l
in direction ωi.

IV.4 Hierarchical shading algorithm

Our rendering algorithm consists of four steps (see Figure IV.11):

1. load the pre-computed bandwidth for BRDF(s) and compute illumination bandwidth
on the fly.

2. a geometry pass that renders G-buffers such as depth, position, normals and material
IDs.

3. we fill the bandwidth buffer with image-space bandwidth, the number of integration
samples to use per pixel and the screen-space bandwidth.
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Figure IV.11: Our rendering pipeline: (a) at each frame, we first render G-Buffers. From
these, we compute an additional bandwidth buffer (b) that stores image space bandwidth
and shader integrand variance maps as well as screen-space curvature. The former is stored
in a multi-resolution pyramid. During rendering of the final image from coarse to fine scale,
depending on our bandwidth and variance predictions, pixels are either explicitly shaded
(numerical integration) or up-sampled from parent pixels (c). Once we reach the finest
level, the image is fully rendered (d).

4. a single-pass multi-resolution shading step, interleaved with up-sampling.

Rendering G-Buffers is a classical geometry pass where we store normals, position,
depths and material IDs into a set of screen-space buffers. Note that G-Buffers do not need
to be hierarchically built (mip-mapped) in our method; we build a multi-resolution pyramid
only for the bandwidth buffer.

IV.4.1 Bandwidth buffer initialization

The bandwidth buffer contains two important values: the local image-space bandwidth and
the number of samples to be used for shading each pixel. These are computed using the
G-Buffers ((IV.7) and (IV.9)). Although these estimations involve numerical integration,
they are several orders of magnitude faster than the actual shading, since a coarse sampling
is sufficient (Figure IV.17). Rather than storing bp (see (IV.7)) in the bandwidth buffer, we
store

min( ⌊log2
1
bp

⌋, min( log2(W), log2(H) ) ) (IV.11)

which is the pyramid resolution at which pixel p needs to be shaded, accounting for the lo-
cal variation at p. The floor operation ensures that the Nyquist sampling rate is respected.
Storing bp directly in the bandwidth buffer leads to identical results; our optimization sim-
plifies tests for deciding the pyramid resolution while shading each pixel.

The bandwidth is mip-mapped using a min filter, so that at a given level in the hierarchy,
the value for a pixel conservatively tells us whether sub-pixels should be computed at this
level. We do the same for the variance estimate using a max filter.

In addition, we estimate screen-space curvature on-the-fly and use it in the bandwidth
estimation, without the need for storing it for later use.
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for all points p at level L do

if bw(p) < L then

compute w0, ...,w3

c(p)← ∑
k wkc(pk)

else if bw(p) == L then

shade(p)

p

1

39

3

Figure IV.12: Up-sampling interpolation scheme. Left: Pseudo-code for the computation
of one level. Right: relative weights αi for parent pixels of pixel p at the next level.

IV.4.2 Shading and up-sampling

We render the image hierarchically, progressively from coarse to fine. At a given resolution
(say 2k×2k), we examine the bandwidth buffer and shade the pixels for which the bandwidth
buffer pyramid contains the current coarseness resolution k. For pixels whose bandwidth
buffer entries are less than the current resolution (i.e.< k), we bilaterally up-sample from
neighbors at the preceding level of coarseness (2k−1 ×2k−1), only accounting for pixels that
are already computed. The parents’ values are averaged with coefficients

wi = gz(z − zi)ga(p − pi)αi

where z (resp. zi) are the depths of the shaded (resp. parent) pixels, and gz is a Gaussian
that cancels out pixels of irrelevant depth, and αi are bilinear weights (Figure IV.12). The
last term ga is an anisotropic 2D Gaussian defined as

ga(v) = e−vT Mv with M = RT
φ


1 0

0 1
cos2 θx

 Rφ

where φ is the angle of the screen-projected normal at the surface, and θx the angle
between the normal and the view direction. This enables efficient anisotropic filtering
aligned with the highest and lowest screen-space frequencies, since

bp

cos θx
and bp estimate

the minimum and maximum directional screen-space bandwidth around current pixel.
We continue this process over successive levels, until we reach the finest resolution

where we shade all remaining pixels. Pseudo-code for the algorithm is presented in Fig-
ure IV.12.

IV.4.3 Shading computation

For each shaded pixel we read the number of samples Np from the bandwidth buffer. We
estimate reflected radiance (IV.2) , unless stated otherwise, by importance sampling the
BRDF lobe for the current view direction. In our implementation, we read Np samples
randomly, from multiple pre-computed vectors of importance samples that are stored in a
texture. Our algorithm is compatible with any importance sampling strategy. In practice,
we importance sample the reflectance by numerical inversion of its cumulative distribution.
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Figure IV.13: Three identical objects with different materials (color-changing-paint3,
red-metallic-paint and gold-paint), and a marble textured ground floor with
white-marble material. We shade more pixels per area for specular materials (red ar-
rows) but we use a larger number of samples to compute shading on diffuse materials
(black arrows).

We always shade with depth and normal values at the finest level, since the G-Buffers
are not mip-mapped. This is possible because the bandwidth buffer predicts whether, for
any sub-pixel of the current level pixel, the computation will yield similar estimates despite
potential variation in the depths, normals and illumination.

IV.5 Results and discussion

All timings reported here were measured on an NVIDIA GeForce GTX 560 Ti graphics
card with 1GB of memory.
Figure IV.13 shows an example of a scene with three identical objects but different materi-
als and a marble textured ground floor. This is a clear example of how our fast frequency
analysis helps us spend the samples where they are most needed.

IV.5.1 Behavior of our algorithm

Computation time: the computation time for our algorithm scales linearly with the total
number of shading samples (Figure IV.14, left). The total number of shading samples re-
quired depends on the desired image quality, the material and the illumination. Figure IV.15
tabulates the computation times for our algorithm to obtain equal quality as ground truth,
for several scenes. It details the cost of individual steps: the cost of bandwidth computation
is independent of the scene and the material, and negligible compared to the overall cost (8
ms, or less than 0.33%). Shading estimation consumes most of the total time (up to 90 %).

Memory cost: The memory footprint of our algorithm on the GPU is approximately
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Figure IV.14: Left: Rendering times are linear in the number of shading samples for various
models. Right: Rendering time against number of samples for anti-aliasing (blue) in log
scale. Our algorithm scales sub-linearly (with an exponent of 0.7) for anti-aliasing.

Model Car body Bunny Buddha Dragon

Reference 2056 ms 1628 ms 2634 ms 1739 ms

Ours: Total 223 ms 398 ms 207 ms 190 ms

Bandwidth calculation 7 ms 8 ms 7 ms 8 ms

Shading integration 216 ms 390 ms 200 ms 182 ms

Figure IV.15: Computation times (in ms) at 512 × 512 screen resolution: Car body
(Fig. IV.13), Bunny (Fig. IV.17), Buddha (Fig. IV.16) and Dragon (Fig. IV.23). Our algo-
rithm provides a 4 to 10× speedup compared to a forward-shaded reference of comparable
quality, depending on the material and screen occupancy. Bandwidth computation is fast
(< 8 ms) for all scenes.

432 MB at a resolution of 512×512 pixels: 17 MB for the G-buffers (4 RGBA buffers for
position, normal, tangent, material ID and the depth buffer); 2 mip-mapped buffers (5.5 MB
each) for the bandwidth buffer and for the shading computations with up-sampling; 2 RGB
buffers of 6 MB for the environment map and its bandwidth; and 2 buffers of 196 MB
for the raw BRDF data and its importance samples. Increasing the picture resolution only
increases the cost of the G-buffers and mip-mapped buffers: 112 MB (instead of 22.5) for
1024×1024 and 448 MB at 2048×2048, which is currently the maximum for our algorithm.

Validation: Figure IV.16 compares our predictions with reference variance and image-
space bandwidth. Our predictions are similar in spatial distribution, and of the same order
of magnitude. Our variance estimate is conservative, as explained in Section IV.3.4. We
computed the reference bandwidth2 using a windowed Fourier transform over the image,

2Reference local frequencies cannot be computed exactly using the windowed Fourier transform because
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(a) Our variance (c) Our bandwidth (e) Our shading

estimate estimate result

(b) Reference (d) Reference (f) False color

variance FFT bandwidth difference

Figure IV.16: Validation of predicted variance and bandwidth. (a) our estimate for the
variance of the shading integrand (Eq. IV.9), (b) reference variance computed using brute-
force sampling, (c) our estimate of the image bandwidth, (d) reference image bandwidth
(windowed FFT of reference image), (e) our result, and (f) relative error of (e) with respect
to a path-traced reference. Material: color-changing-paint3

with a window size of 32× 32 pixels. We computed the reference variance using extensive
sampling.

Influence of parameters: the main parameter for our algorithm is the number of samples
we use for the bandwidth estimation, nb (see Eq. IV.6). Figure IV.17 shows the influence
of varying this parameter. The results are indistinguishable even in the zoomed-in insets
and the Peak Signal-Noise Ratio stays almost constant for all values of nb. The rendering
time has a small dependency on nb. We used a small value, nb = 16, for all results in this
work. This makes sense as nb is only used to estimate the bandwidth and not for the actual
illumination computations.

of the uncertainty principle. However, using our wavelet estimation technique here would not constitute a fair
test either.
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Figure IV.17: Effect of the number of sampled directions nb for bandwidth computation on
time (ms) and quality (PSNR). The data points in the plots are at nb = 16, 64, 256, 1024.
The enlarged insets are virtually indistinguishable for the different nb. The plots depict
that fast bandwidth computation (nb = 16) is sufficient. Resolution: 512×512. Material:
color-changing-paint3.

IV.5.2 Comparison with related work

Brute-force rendering: Figure IV.18 compares our result with a forward shading reference
computed using importance sampling and a fixed number of shading samples per pixel.
For this scene, we achieve a 2.5× speedup due to our adaptive sampling. The extent of
our speed-up depends on the material, the environment map and the area occupied by the
object on screen. Figure IV.15 tabulates rendering times for our algorithm and brute-force
rendering for several scenes. We observe a speed-up of 4× to 10×.

Spherical Gaussian approximation: Figure IV.19 compares the results of Wang et al. [Wang 2009a]
with ours and ground truth computed using path-tracing. The authors kindly provided us
with their best images for the materials. Our algorithm accurately shades acquired materi-
als. The fast algorithm [Wang 2009a] is visibly different from the ground truth.

IV.5.3 Rendering results

Adaptive sampling for pre-convolved shading: To use adaptive sampling for pre-convolved
shading (ASFPCS), we pre-convolve the environment map with Phong lobes of various ex-
ponent and assemble them into an array of textures. At the time of rendering, we estimate
the number of adaptive samples using Eq. IV.10) and look-up pre-filtered illumination for
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(a) similar quality (b) Our algorithm (c) similar time

(2639 ms) (1015 ms) (906 ms)

Figure IV.18: Comparison of our algorithm (b) with a reference for equal quality (a) and
equal time (c). For this scene, we achieve a 2.5× speedup (without anti-aliasing). Forward-
shaded references use BRDF-importance sampling and a fixed number of shading samples
per pixel. Material: green-metallic-paint.

each sample according to the maximum frequency of the BRDF. figure IV.20 depicts ex-
amples of using adaptive sampling for pre-convolved shading (ASFPCS). We achieved a
significant speed-up (10 to 20 times depending on the material and scene coverage).

Area-light source rendering: To render area-light sources, we propagate bandwidth through
the scene from the area-light source towards the camera. Once we know the adaptive num-
ber of samples for shading by bandwidth propagation, we sample the area-light source
directly (no BRDF importance sampling) and shade in the hierarchical buffer. Figure IV.21
depicts two scenes rendered with the area-light sources from Figure IV.7.

Adaptive multisample anti-aliasing: Our bandwidth prediction reduces the cost of multi-
sample anti-aliasing by adaptive sampling. Standard deferred shading evaluates shaders at
every sample: 16 samples per pixel costs 16 times more. Our algorithm scales sub-linearly
in the number of samples (see Figure IV.14, right). We render the G-buffers at the higher
resolution (4 or 16 times the number of pixels), but compute shading at the appropriate
level in the pyramid, depending on the predicted bandwidth. Anti-aliasing only requires a
few extra shader evaluations at the finest levels (blue pixels in Figure IV.23).

Dynamic geometry, normal and displacement mapping: We compute bandwidth and
variance estimates using only the information from the G-buffers (normals, geometry and
curvature). Our algorithm handles dynamic geometry, displacement mapping and normal
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Figure IV.19: Comparison with related work [Wang 2009a]. Our algorithm results in pic-
tures that are identical to ground truth, while [Wang 2009a] result in clear differences.

maps seamlessly. Figure IV.22 shows an example of our bandwidth estimation algorithm
on a dynamic geometry, running at 15 fps.

IV.5.4 Discussion

Best and worst case: The rendering cost for our algorithm depends on the total number of
shading samples predicted. The best case is when the predicted variance is low (a specular
material) with low frequency illumination or when the spatial variation is low (a smooth
diffuse surface). We do not save time when both angular variance and spatial frequencies
are high (a bumpy surface with high frequency illumination).

Conservative bandwidth estimate: We conservatively predict bandwidth, choosing sub-
optimal (excessive) sampling over artifacts from insufficient sampling. The min operator of
Figure IV.9 is larger than the real bandwidth of the product of the BRDF and illumination;
we also over-estimate variance.

Bandwidth estimate and importance sampling: Since we base all our bandwidth pre-
dictions on uniform sampling and render the result using BRDF importance sampling, our
predictions for variance are sometimes very conservative, and it happens that an acceptable
result can still be achieved with less samples. It would be interesting to derive accept-
able approximations of the variance for importance sampling, but we keep this as a future
avenue.

Visibility and global illumination: we focus on accurate depiction of material appearance
rather than scenes. We ignore effects such as visibility for shadows and global illumination.
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(a) Reference (b) Our method (c) Our ASFPCS (d) Our ASFPCS

(1222 ms) (no ASFPCS) (774 ms) (41 ms) 4x MSAA (146 ms)

(e) Reference (f) Our method (g) Our ASFPCS (h) Our ASFPCS

(1231 ms) (no ASFPCS) (468 ms) (54 ms) 4x MSAA (166 ms)

Figure IV.20: Adaptive sampling for pre-convolved shading (ASFPCS) examples (c, g) for
color-changing-paint3 and blue-rubber, compared to the reference (a,e) and our
adaptive sampling method without pre-convolved shading (b,f). Our ASFPCS technique
with 4x multi-sample anti-aliasing is still faster than our method without pre-convolved
shading. The speed-up is 10 to 20 times.

Spatially-varying BRDFs: we have only used homogeneous (non spatially-varying) mate-
rials, modulated by a texture. We pre-computed local bandwidths separately for reflectance
(4D) and texture (2D). Extending our algorithm to fully spatially varying BRDFs (6D) is
possible at the extra cost of 6D bandwidth pre-computation.

IV.6 Conclusion

We have introduced an algorithm for interactively and accurately shading dynamic geom-
etry with acquired materials. Our contribution is to:

• only shade a small fraction of pixels where the local bandwidth is predicted to be
large.

• adaptively sample shading integrals based on the predicted variances.

We achieve these predictions by quickly computing local bandwidth information from stan-
dard G-buffers. We have introduced the concept of a bandwidth buffer, to store this infor-
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Figure IV.21: Left: Buddha rendered with a solid white square area-light source and
red-metallic-paint material (513 ms). The area-light source is positioned at the top of
the object and is shown as inset. Right: Dragon rendered with a textured area-light source
and color-changing-paint3 material (376 ms). The area-light source is positioned at
the top of the object and is shown as inset.

mation, which is exploited to sub-linearly scale multi-sample anti-aliasing with deferred
shading.

Our work can be extended in many ways. We would like to apply this technique to
indirect lighting and visibility effects as well. This constitutes a real challenge: although
extending our theory to these situations seems feasible, the resulting calculations needed
by visibility will increase the computation cost significantly. Accounting for anisotropy in
the bandwidth estimate is another interesting avenue that will require significantly more
calculations.
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Figure IV.22: Application of our algorithm to dynamic geometry, with
red-metallic-paint. Since our algorithm depends only on data from the G-buffers,
it can handle dynamic geometry, displacement mapping and normal maps. Rendered
images as well as pixels for which we performed shading computations (white pixels).
The screen-space bandwidth adapts to the curvature (Rendering time: 66 ms).

Antialiasing 16x

Antialiasing 4x

No antialiasing Pixels requested at level 0

Pixels requested at level -1

Pixels requested at level -2Antialiasing 16x

Bandwidth

Figure IV.23: Adaptive multi-sample anti-aliasing using bandwidth information. Aliasing
artifacts are visible in the top row of enlarged insets (55 ms). Our multi-resolution algo-
rithm handles anti-aliasing seamlessly by adding extra levels to the pyramid (one level for
4× and two levels for 16×). We only compute shading at the finest level for the blue pixels
in the rightmost column, where the predicted bandwidth is high. The cost of anti-aliasing
is thus reduced: 141 ms for 4×, 390 ms for 16×. Material:gold-paint.
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V.1 Introduction (français)

Dans ce chapitre, nous présentons une nouvelle distribution de micro-facettes, la fonction
d’ombrage et de masquage, aussi que le term de Fresnel pour la BRDF de Cook-Torrance.
Nous introduisons également un ajustement précis et robuste pour les BRDF isotropes
(dont les métaux) avec un seul-lobe spéculaire (en plus de la composante diffuse).

1This chapter is based on the publication [M. Bagher 2012a]



66 Chapter V. A new distribution for Cook-Torrance BRDF

(e) SGD Lab error (ours)  (d) SGD distribution (ours)(c) Ground truth(b) Beckmann distribution  (a) Beckmann Lab error 

100%

0%

100%

0%

Figure V.1: gold-metallic-paint material from the MERL database. Comparison between
measured data (c) and Cook-Torrance BRDF using (b) Beckmann distribution or (d) SGD
distribution. (a) and (e): difference measured in Lab color space between ground truth and
(b) and (d) respectively.

La BRDF de Cook-Torrance [Torrance 1967] simule la géométrie d’un micro Maté-
riau spéculaire composé de micro-facettes, et tire la BRDF mathématiquement à partir de
la distribution de probabilité de micro-facettes —voire III.4.4.4.2 pour une introduction.
Bien qu’il soit généralement utilisé avec la distribution Beckmann, le modèle peut être
utilisé avec de nombreuses autres distributions. Notre étude de BRDFs mesurées [Matu-
sik 2003] montre que les matériaux brillants ne suivent pas la distribution Beckmann : les
micro-facettes sont plus susceptibles d’être alignés avec la surface, entraînant un pie dans
la distribution, compatible avec l’apparence lisse.

Nous introduisons densité de probabilité SGD pour les micro-facettes. Cette répartition
permet une optimisation plus précise pour tous les matériaux mesurées, en comparant à
des modèles existants de BRDF, qu’ils soient brillants au diffus Nous utilisons la BRDF
de Cook-Torrance avec la distribution SGD pour se rapprocher des matériaux mesurées.
Il en resulte en une représentation compacte et précise. Comme la distribution SGD se
rapproche très bien de données mesurées, nous sommes capables de concevoir une méthode
d’optimization plus simple. Cette méthode converge rapidement (2,5 minutes en moyenne)
et utilise seulement deux tranches de données mesurées pour s’adapter à des paramètres
inconnus.

V.2 Introduction

In this chapter, we present a new micro-facet distribution, shadowing and masking function,
and Fresnel term for the Cook-Torrance BRDF. We also introduce an accurate and robust
fitting for any isotropic BRDF (including metals) with a single specular lobe (in addition
to the diffuse component).

The Cook-Torrance BRDF [Torrance 1967] simulates the micro geometry of a material
as specular micro-facets and derives the BRDF mathematically from the probability distri-
bution of micro-facets — refer to III.4.4.4.2 for an introduction. Although it is typically
used with the Beckmann distribution, the model can be used with many other distributions.
Our study of measured BRDFs [Matusik 2003] shows that shiny materials do not follow the
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Figure V.2: The micro-facet probability distribution for brass extracted from the measured
data. The SGD distribution (Right) fits the data accurately both at the peak and the tail,
unlike existing distributions (Left)

Beckmann distribution: micro-facets are more likely to be aligned with the surface normal,
resulting in a sharper peak, consistent with the smooth appearance.

We introduce the SGD probability distribution function for micro-facets. This distri-
bution provides a more accurate fitting for most measured materials in the MERL-MIT
database, comparing to existing BRDF models, from highly shiny to diffuse. See Fig-
ure V.2. We use the Cook-Torrance BRDF with SGD distribution to approximate measured
materials resulting in a compact and accurate representation. Since the SGD distribution
approximates measured data very well, we were able to design a simpler fitting method.
This method converges quickly (2.5 minutes on average) and it only uses two slices of the
measured data to fit the unknown parameters.

This chapter is organized as follows: in the next section, we describe the SGD proba-
bility distribution function, and in section V.4 our fitting method. Section V.5 presents our
results and compares them with previous work. In section V.6, we conclude and discuss
potential avenues for future work.

V.3 Our reflectance model

V.3.1 Data observation

Given the Cook-Torrance BRDF:

ρ(i, o) =
ρd

π

+
ρs

π

F(i · h)D(θh)G(i, o)
cos(θi) cos(θo)

and Smith shadowing functions G1 [Smith 1967] directly computed from D:

G(i, o) ≈ G1(θi)G1(θo)

, we are interested in observing the behavior of each component of the Cook-Torrance
BRDF directly from the measurements. However, it is hard to compare measured data
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Figure V.3: The SGD distribution is an accurate fit for a wide range of materials. The
distribution is scaled by ρd and ρs to fit the red curve.

with BRDF models, since models depend on position and several functions. For simple
comparisons, we take i = o. As a consequence, h = i: we get an equation that only
depends on θh, with two unknown functions D and G1 [Ashikhmin 2007]:

ρ(θh) =
ρd

π

+
ρs

π

F(0)D(θh)G1(θh)2

cos2(θh)
(V.1)

For small values of θh and specular materials, G1 is almost constant, equal to 1 (see
Figure V.5). The measured data varies only with D, and we can observe directly the micro-
facet distribution.

Figure V.2 compares the measured distribution D for brass from the MERL-MIT database [Ma-
tusik 2003] with approximations using different distributions. The peak of the measured
distribution is much sharper than the predictions, while the tail is larger. If we fit the tail
accurately (for example with the Beckmann distribution, α = 7 × 10−2), then we miss the
peak. On the other hand, if we fit the peak well, we miss the tail. To fit this data with exist-
ing distributions we would need several lobes. This observation holds for many materials
in the MERL-MIT database: metals, metallic paints and shiny plastics.

At large angles, the measured distribution seem to decrease exponentially. But for
small angles, the decrease is sharper than an exponential. Based on this observation, we
suggest a slope in x−p, where x = tan2 θh and p is a parameter that depends on the model,
multiplied by an exponential factor:

P22(x, α, p) =
Kα,pe−

x
α

(x + α2)p
(V.2)

where Kα,p is a normalization factor. With this distribution, we fit the measured data accu-
rately (see Figure V.2(b)), both at the peak and the tail.
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Figure V.4: The influence of parameters α and p on the shape of the distribution.

V.3.2 The SGD distribution

We compute the normalization factor Kα,p so that
∫ ∞

0
P22(x) dx = 1/π. The result is a

shifted gamma distribution (SGD):

P22(x) =
αp−1

Γ(1 − p, α)
e−

α2+x
α

(
α2 + x

)p

D(θm) =
χ[0, π2 ](θm)

π cos4 θm

P22

(
tan2 θm

)

where Γ is the incomplete Gamma function: Γ(s, x) =
∫ ∞

x
ts−1e−t dt

Figure V.4 illustrates the influence of parameters α and p on the shape of the distribu-
tion. Both parameters affect the peak and fall off of the curve simultaneously.

The SGD fits accurately a large range of materials in the MERL-MIT database, from
diffuse to specular (see Figures V.2(b), V.3 and Appendix A).
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Figure V.5: The shadowing term G1 is expensive for SGD. Our approximation is very
accurate; the L2 error is below 10−5.

V.3.3 Shadowing and masking

Once we have D, we can compute the shadowing and masking function, G1, using Equa-
tion III.4:

P2(r) =
1

√
παΓ(1 − p, α)

U

(
p, p +

1
2
, α +

r2

α

)
e−α−

r2
α

Λ(θ) =
∫ ∞

1
tan θ

(r tan θ − 1) P2(r) dr

G1(θ) =
χ[0, π2 ](θ)

1 + Λ(θ)

where U is the confluent hyper-geometric function of the second kind. We do not have
a closed form expression for G1. We either pre-compute G1 using Gauss integration and
store its values for varying θ or use the following approximation:

G1(θ) ≈


1 + λ

(
1 − ec(θ−θ0)k

)
if θ > θ0

1 if θ ≤ θ0

(V.3)

θ0 =
π

2
−


log

(
1 + 1

λ

)

c



1
k

θ0 ensures that G1(π/2) = 0. We get the (λ, c, k) parameters by fitting the approximation
over the precomputed values, using Levenberg-Marquadt [Lourakis 2004]. This approxi-
mation is a very good fit for G1 for all materials (the L2 error is negligible, mostly below
10−5, see Figure V.5).

The choice between using stored values for G1 and the approximation depends on the
processing power, memory bandwidth and storage capacities. For offline rendering, where
storage is not an issue, we use precomputed values. For GPU rendering, we use the ap-
proximation.
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Figure V.6: The Fresnel term extracted from the measured data does not behave as pre-
dicted by the theory

V.3.4 The Fresnel term

Since we have an expression for D and G1, we can express the Fresnel term using the
measured data:

F(i · h) =
(
m(i, o) − ρd

π

)
π cos θi cos θo

ρsD(θh)G1(θi)G1(θo)
(V.4)

where m(i, o) is the measured data. For simplicity, we will note θd = arccos(i · h). Looking
at the data for the Fresnel term, we make two important observations:

• The measured data behaves strangely at grazing angles. In theory, the Fresnel term
should be increasing with θd up to 1 when θd = π/2. The Fresnel term extracted
from the measured data starts decreasing after a certain angle (from 70o to 80o),
and is equal to 0 for θd = π/2 (see Figure V.6(a)). This is probably caused by the
acquisition process: at grazing angles, the sensor is saturated by direct illumination
from the light source2. We discard data for θd > 70o.

• For some materials such as gold-paint or nickel, the Fresnel term does not behave
as predicted by the Schlick approximation (see Figure V.6(b)). Instead of a plateau
followed by a sharp increase, we observe linear slope, followed by an increase. To
model these materials, we suggest the following generalization of Schlick approxi-
mation:

F(θd) = F0 + (1 − F0)(1 − cos θd)5 − F1 cos θd (V.5)

For F1 = 0, we get the original approximation. Figure V.7 shows how well our
generalization fits to the measured Fresnel.

2F. Durand, personal communication.
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(a) brass (b) gold-paint (c) nickel

Figure V.7: Our generalization to Schlick’s approximation of the Fresnel term fits well to
all the materials in the MERL-MIT database.

V.3.5 Importance sampling

Efficient Monte-Carlo integration requires importance sampling. For this, we need the
inverse of the integral of P22 (see Equation III.4). We easily have Fθ:

Fθ = 1 −
Γ
(
1 − p, α + tan2 θ

α

)

Γ (1 − p, α)

but there is no closed form expression for the inverse for Fθ, so we can’t use it for exact
importance sampling. As an approximation, we importance sample the GGX distribu-
tion [Walter 2007], and compute weights, w, to fit our model:

θm = arctan

(
α
√

u2√
1 − u2

)

φm = 2πu1

m = (cos φm sin θm, sin φm sin θm, cos θm)

o = 2 |i · m|m− i

where u1 and u2 are realizations of a uniform random variable in [0, 1). Our BRDF model
contains a diffuse and a specular component. We alternatively sample either component
according to the following probabilities:

pspecular =
ρs

ρd + ρs

pdiffuse = 1 − pspecular

The importance sampling weights for our distribution is:

wspecular =
4 ρs

pspecular

F(i · h) D(θh) G(i, o) cos3 θm

(α2 + tan2 θ)2

α2

wdiffuse =
ρd

pdiffuse

This expression accounts for the jacobian of sampling m instead of o [Walter 2007]. Fig-
ure V.8 shows the same material rendered with and without importance sampling.
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(a) Uniform Sampling (b) Importance Sampling

Figure V.8: Uniform and importance sampling for specular-violet-phenolic with the same
rendering time (6 mn).

V.4 Fitting algorithm

V.4.1 Fitting RGB channels separately

Fitting BRDF models with measured materials is usually done in a two-step approach [Ngan 2005]:
first compute the diffuse and specular colors using a linear least square optimization, then
compute the BRDF parameters (α, F0) through a second optimization.

This approach places constraints on the second optimization process: the parameters
must fit all RGB channels. We used a different approach: we compute the BRDF param-
eters separately for each channel, red, green and blue. Although we compute and store
more data for each material, the fitting process is faster and more efficient, as we only fit
real-valued functions, with less constraints for each fitting.

We also get wavelength dependent effects. The Fresnel term should change with the
wavelength [Lazányi 2005] and we do find different values for F0 and F1 for the red, green
and blue channels, for all materials in the MERL-MIT database (see Appendix A). Often,
we get similar values for the α and p parameters for the micro-facet distribution.

We do not take any explicit step to conserve the color of the material, since we treat
each channel independently. We still get BRDF models that match very well the color of
the measured materials (see Figures 1, V.9, and V.10 and the Appendix A). We attribute
this to the very good match between our distribution function and the data behavior.

V.4.2 Non-linear optimization

Given the measured data for a single channel, we find the optimal value for the parameters
(ρd, ρs, α, p, F0, F1) so that the BRDF model is as close as possible to the measured data.

We could compute the L2 norm of the difference between the BRDF model and the
measured BRDF over the whole hemisphere, as in [Ngan 2005]. But regular sampling in
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θi and θo results in under-sampling near the specular peak, resulting in poor quality fits.
Instead we fit in two steps:

1. We fit ρd and the probability distribution parameters (α, p) to the measured data for
varying θh, with θd = 0.

2. We fit ρs and the Fresnel term parameters (F0, F1) to the measured data for varying
θd, with θh = 0.

Each step is the fitting of a real-valued function of several parameters, which is simple and
stable. Although we fit the parameters using only two slices of the measured reflectance,
we still capture the full behavior of the BRDF.

We define the following quantities:

• m(i, o): the full measured reflectance, as extracted from the database,

• mh(θh) = m(h, h): the slice of the BRDF corresponding to θd = 0,

• md(θd) = m(i, reflection(i)): the slice of the BRDF corresponding to θh = 0.

In a first step, we fit mh(θh) with:

ρh(θh) =
ρd

π

+
Fr

π

D(θh)G2
1(θh)

cos2(θh)

The function ρh depends on 4 parameters: ρd, Fr, α and p. Using Levenberg-Marquadt
optimization [Lourakis 2004], we find the value of these parameters that minimizes the
error function:

E1(ρd, Fr, α, p) =
∑

i

wi (mh(θh) − ρh(θh))2 (V.6)

At the end of this step, we have the value for 3 parameters: ρd, α and p. The last coefficient,
Fr is the product of ρs and the Fresnel term for θd = 0.

In the second step, we first extract the specular coefficient times the Fresnel term from
md(θd) using the values ρd, α and p we just computed:

ρsFD(θd) =
(
md(θd) − ρd

π

)
π cos2(θd)

D(0)G2
1(θd)

We fit this function with our Fresnel term approximation (Equation V.5), using Levenberg-
Marquadt optimization. The data gives us ρsF0 and ρsF1. Using FD(π/2) = 1, we get ρs,
F0 and F1.

V.5 Results and Comparison

V.5.1 Visual comparison

Figures V.9 and V.10 shows a side-by-side comparison for aventurine and colonial-maple-

223 between images rendered using the measured reflectance from the MERL-MIT database
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(a) Beckmann (b) Lafortune (c) ABC Microfacet

(d) Beckmann Lab error (e) Lafortune Lab error (f) ABC Microfacet Lab error

(g) TR/GGX (h) SGD (ours) (i) Ground truth

(j) TR/GGX Lab error (k) SGD Lab error (ours)
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Figure V.9: Comparison between the Cook-Torrance model with Beckmann, TR/GGX and
SGD distributions, Lafortune, ABC microfacet model [Löw 2012] and ground truth for
aventurine from the MERL-MIT database (spelled aventurnine in [Ngan 2005]).
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(a) Beckmann (b) Lafortune (c) ABC Microfacet

(d) Beckmann Lab error (e) Lafortune Lab error (f) ABC Microfacet Lab error

(g) TR/GGX (h) SGD (ours) (i) Ground truth

(j) TR/GGX Lab error (k) SGD Lab error (ours)
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Figure V.10: Comparison between the Cook-Torrance model with Beckmann, TR/GGX
and SGD distributions, Lafortune, ABC microfacet model [Löw 2012] and ground truth
for colonial-maple-223 from the MERL-MIT database.
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and several BRDF models: Lafortune, ABC microfacet model [Löw 2012], and Cook-
Torrance with the Beckmann, TR/GGX and SGD distributions. For each model, we show
the difference with the reference image, measured in Lab space. We chose the Lab color
space because it is perceptually uniform. Qualitatively, our BRDF model provides the best
approximation to the measured data.

In Appendix A, we provide a similar comparison for all 100 materials in the MERL-
MIT database: reference image and Cook-Torrance BRDF with Beckmann and SGD distri-
butions, along with differences in Lab space. For 13 materials in the database, we couldn’t
find the corresponding parameters in the supplemental of [Ngan 2005], so we only provide
the comparison between the measured material and our distribution. Visually, the Cook-
Torrance BRDF with the SGD distribution looks very close to the measured reflectance.

V.5.2 BRDF Lobes comparison

Figures V.9(l), V.10(l) and V.11, plot the BRDF lobes for aventurine, colonial-maple-223,
hematite, black-obsidian, nickel, and black-oxidized-steel, with the Beckmann, GGX and
SGD distributions compared to the measurements, for four incoming directions (10 ◦, 30 ◦,
50 ◦, and 70 ◦).

The SGD distribution closely fits the measured data, while the Beckmann distribution
either misses the tail by trying to fit the peak of the lobe, or vice-versa. This is particularly
evident for black-obsidian where the Beckmann distribution underestimates the peak. In
the hematite, aventurine, nickel, black-oxidized-steel, and colonial-maple-223 cases, which
are ranging from highly-specular to glossy-specular and glossy-diffuse, the Beckmann dis-
tribution significantly overestimates the lobes. The GGX distribution performs better than
Beckmann and SGD is very close to the actual shape of the lobes.

V.5.3 Quantitative Error Measure

For each material, we define the fitting error as the L2 norm of the difference between
measured data and the Cook-Torrance BRDF:

E =

(∫
(m(i, o) − ρ(i, o))2 cos θi cos θo dωi

) 1
2

To ensure a fair comparison between bright and dark materials, we normalize this error by
dividing it with the maximum albedo of the BRDF, as in [Ngan 2005] (the Appendix A
has the un-normalized error value). Figure V.12 compares the fitting errors for the Cook-
Torrance BRDF using the SGD and Beckmann distributions (parameters for Beckmann
from [Ngan 2005]). We sorted the materials by increasing α roughness, going from highly
specular to diffuse. For all but 3 of the materials (black-fabric, yellow-matte-plastic, and
white-paint), the SGD distribution provides the best approximation. For many materials,
we improve the accuracy by one order of magnitude, and for some, such as hematite, by
two orders of magnitude.

For the materials where we do not improve over Beckmann distribution, we think that
the problem comes from the fitting algorithm rather than the SGD distribution. Manually
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Figure V.11: BRDF lobes (cubic root applied) with Beckmann, GGX and SGD distribu-
tions for hematite, black-obsidian, nickel, and black-oxidized-steel. The SGD distribution
provides a much closer fit to measured reflectance than the Beckmann and GGX distribu-
tion.
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Figure V.12: Normalized average fitting errors (logarithmic scale) of the Cook-Torrance
model with Beckmann — with Ngan parameters and also with our fitting —, TR/GGX and
SGD distributions. In most cases, SGD provides a much better fit. Only 85 materials are
listed — sorted by increasing alpha —, since Ngan et al. has provided paramters for 85
materials only.
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Figure V.13: Pixel-by-pixel comparison between the reference, Beckmann and SGD (with
and without importance sampling) for aventurine from MERL-MIT database.

setting the parameters for these materials improves the accuracy (all the parameters we use
here are computed in a single run of our optimization process, without any tweaking for
specific materials).

To evaluate our fitting method, we used it to compute parameters for the Beckmann
and TR/GGX distributions, and reported the error for each material in Figure V.12. For
almost all materials, the error is higher than with Beckmann distribution and parameters
from [Ngan 2005]. Our fitting method works better if the shape of the distribution matches
the measured data.

Figure V.13 provides a pixel-by-pixel comparison for a horizontal scanline of ren-
dered image between: measured reflectance, Cook-Torrance with Beckmann distribution
and SGD distribution, with and without importance sampling. The Beckmann distribution
overestimates specular lobes; SGD remains very close to the reference. The figure also val-
idates that using GGX importance sampling for SGD distribution gives the same results,
but reduces the noise.

V.5.4 Influence of D, G, and F parameters in our BRDF model

The Cook-Torrance micro-facet model contains three main components, namely:

• Normal distribution function (D)
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• Shadowing and masking function (G)

• Fresnel term (F)

We are going to study the influence of each of these parameters in detail for a diffuse,
a glossy, and a specular material as representatives of all the materials in the MERL-MIT
database. Figures V.14, V.15, and V.16 shows the result of our experiments with beige-

fabric (diffuse), natural-209 (glossy), and specular-violet-phenolic (specular). Changing
the α parameter of the distribution significantly changes the appearance of the materials.
Typically, smaller α values are associated with highly specular materials and the larger
values are associated with diffuse ones. For example, the average α and p values for these
three materials are as following:

• beige-fabric: α = 0.21, p = 0.1

• natural-209: α = 0.017, p = 0.088

• specular-violet-phenolic: α = 0.0006, p = 0.62

In contrast to the distribution parameters, keeping the shadowing and masking function
constant and equal to unity does not affect the visual appearance of the materials noticeably.
For most materials, specially the highly specular ones, the value of the G function is almost
always equal to one. Cancelling the Fresnel variation by setting the Fresnel term to be
constant and equal to F(θd = 0) does not make a very noticeable difference either. The
error gradually increases as the specularity increases.

Based on the results of this experiment, we conclude that the normal distribution func-
tion (D) is the most important component of the micro-facet model. The NDF defines the
portion of the micro-facets aligned with the half-angle vector causing specular reflection.

V.5.5 Fitting RGB channels altogether for D parameters

The results from the fitting algorithm showed that we get similar values for distribution
(D) parameters — α and p — in some cases. The Fresnel coefficients are expected to be
different, since Fresnel is a wavelength dependent effect. Therefore, as an experiment, we
modify the two-step fitting algorithm, described in V.4, to fit the distribution parameters (α,
and p ) to the RGB channels at once — resulting in a single α, and p instead of separate
values for each channel. In the first step, we fit ρR

d
, ρG

d
, ρB

d
, α, and p to the measured data

considering all the channels at once. The second step is like before, fitting ρs, F0, and
F1 for each RGB channel separately — with identical α, and p values for all channels.
We compute the error and compare it with the old fitting method. See Figure V.17 for the
error curves. The materials are sorted by the error in the fitting method explained in V.4.
The results show that the fitting is more unstable and the error is generally higher than the
case we fit each channel independently. Specially, the algorithm failed to fit gold-metallic-

paint2, alum-bronze, two-layer-silver, violet-phenolic, and white-acrylic — and the error is
significantly high. The Figure V.17 also sorts the 100 materials in the MERL-MIT database
in order of fitting errors using our algorithm with our BRDF model.
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Figure V.14: Top row: The influence of D, G, and F in our model for beige-fabric from
the MERL-MIT database as a diffuse material. Bottom row: The associated Lab difference
figures compared to the ground truth.
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Figure V.15: Top row: The influence of D, G, and F in our model for natural-209 from
the MERL-MIT database as a glossy material. Bottom row: The associated Lab difference
figures compared to the ground truth.
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Figure V.16: Top row: The influence of D, G, and F in our model for specular-violet-

phenolic from the MERL-MIT database as a specular material. Bottom row: The associated
Lab difference figures compared to the ground truth.

V.5.6 Timings

Since our algorithm only uses two slices of the BRDF measurement for fitting the parame-
ters, it is extremely fast: 2.5 minutes on average to fit all the parameters for a single material
on a single core 2.57 GHz Intel CPU. For 65 % of the materials, the fitting process took
less than 1 minute.

We also measured the cost of evaluating our reflectance model inside a ray-tracer, using
valgrind profiling tool. A single evaluation takes 3044 CPU cycles, compared to 1416 with
Beckmann and 551 with Lafortune. Our model is more expensive because we estimate the
BRDF independently for each color channel.

V.5.7 Limitations

For some materials in the MERL-MIT database, even with the SGD distribution, we see
evidence of a multi-lobe behavior. This is quite obvious for two-layer-gold and two-layer-

silver (see Figure V.18), and it appears (but it’s less obvious) for alum-bronze. For these
materials, adding a second lobe would improve the accuracy. However, the number of
materials with multi-lobe behavior is 3 out of 100.

Our fitting method is based on only two slices of the material and on the assumption
that the material follows the Cook-Torrance model. It will miss behavior that are outside
of the model, for example color-changing-paint.

The white-paint material illustrates a failure case of our fitting algorithm (see Fig-
ure V.19). The error with SGD is larger than with Beckmann. The difference is clearly
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Figure V.17: Normalized average fitting errors (logarithmic scale) of the Cook-Torrance
model with the SGD distribution with channels fitted separately — different α and p for
each channel — (red curve) and altogether — the same α and p for all channels — (green
curve). Fitting RGB channels separately provides a better fit. All 100 materials in the
MERL-MIT database are listed here, sorted by increasing error.
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(a) MERL-MIT reference (b) SGD distribution
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Figure V.18: An example of a two-layer material, two-layer-silver, that requires two lobes
for accurate fitting.
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Figure V.19: white-paint, a failure case for our fitting algorithm.

visible in the rendered pictures (Figure V.19(b)). A possible explanation is visible in the
lobes (Figure V.19(c)): the Fresnel term is almost null at normal incidence, and our fitting
algorithm does not pick the right shape for the specular lobe.

An interesting observation here is that the normalized average (numerical) error value
is different from the visual (qualitative) error. For example, many materials such as steel

have higher average error than white-paint – see Figure V.17 —, but they visually look
closer to the ground truth than white-paint . This is because the error for steel, as an
example, is distributed across the image, while the error for white-paint is concentrated
in some sub-parts of the image — becoming more visible. Please refer Appendix A for
rendered images of steel .

V.6 Conclusion

We have presented the SGD micro-facet probability distribution function for the Cook-
Torrance BRDF. This distribution provides an accurate fit for most measured materials in
the MERL-MIT database. We derived the shadowing and masking function from the SGD
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distribution. We proposed a generalized Fresnel approximation that fits better to the mea-
surements. We have also presented a new fitting algorithm, where we fit each color channel
independently (instead of pre-computing the diffuse and specular colors), and we fit using
only two slices of the BRDF. This fitting algorithm is very efficient when combined with
the SGD distribution, taking 2.5 mn to compute the parameters for a measured distribution.

In the Appendix A, we provide parameters for the SGD distribution for all materials in
the MERL-MIT database. We hope that this will help researchers and software developers
in using the SGD distribution.

In future work, we want to continue working on micro-facet distributions, finding a dis-
tribution that provides the same accurate fit to measured data while being easier to compute
and integrating into nicer functions. We also want to target material acquisition: we de-
scribe an acquired material accurately with only 18 coefficients. Can we use this property
for faster acquisition of new materials?



Chapter VI

Conclusion

In this thesis, we focused on presenting new ways to represent and render reflectance of
arbitrary isotropic opaque materials.

We introduced a real-time framework for frequency analysis of light transport. The
estimation of bandwidth and variance of the shading integrand enabled us to adaptively
sample both the angular and the image space while shading. We presented a single pass
hierarchical shading and up-sampling algorithm to accelerate the shading process. This
made it possible to render tabulated BRDFs, evaluation of which on the GPU is extremely
expensive, at interactive frame rates. We also proposed a pre-convolved shading technique
to render materials in real-time. With the help of frequency analysis, we were able to
implement multi-sample anti-aliasing in a deferred shading pipeline. This technique could
be employed for applications in which accurate shading of materials, dynamic geometry,
and interactivity are essentially required.

Then, we introduced a new distribution function for the Cook-Torrance micro-facet
BRDF, namely the Shifted Gamma Distribution (SGD). We derived the shadowing and
masking function from the distribution, and generalized the Schlick’s Fresnel approxima-
tion to fit to the measurements with higher accuracy. We advised a solution for importance
sampling using this shading model. We proposed a straightforward two-step fitting algo-
rithm that fit each RGB channel separately and accurately for a wide range of materials
from diffuse to glossy and highly specular in the MERL-MIT database.

We developed the above mentioned solutions to advance the state of the art towards
finding a unified and straightforward approach to appearance modeling. Although we fo-
cused on representation of reflectance of arbitrary isotropic opaque materials, many of our
contributions can be extended to more general materials — e.g anisotropic and non-opaque
materials. The frequency analysis of light transport theory can be further developed to
predict the sampling rate for rendering anisotropic reflectance or refraction for example.
We can account for visibility and multiple reflections to extend our bandwidth estimation
technique to global illumination. The SGD distribution can be used as the reflection term
of a more general, e.g. non-opaque, material.

One important aspect of digital appearance modeling is appearance capture. Although
we have not explored this area in this thesis, our new reflectance distribution suggests that
using much less measurement samples we can infer appearance of an isotropic opaque
material with high fidelity.





Chapitre VII

Conclusion (français)

Dans cette thèse, nous nous sommes concentrés sur la présentation de nouvelles façons de
représenter et de rendre la réflectance de matériaux opaques isotropes.

Nous avons introduit un cadre temps réel pour l’analyse de la fréquence de l’opérateur
de transport de lumière. L’estimation du débit et de la variance de l’intégrande nous a
permis d’échantillonner de manière adaptative à la fois en angle et en espace. Nous avons
présenté un algorithme de rendu hiérarchique en une passe, basé sur un sur-échantillonnage.
Cela a permis de rendre des BRDFs tabulées, dont l’évaluation sur le GPU est extrêmement
coûteux, à des cadences interactives. Nous avons également proposé une technique de pré-
convolution pour rendre les matériaux en temps réel. Avec l’aide de l’analyse fréquentielle,
nous avons permis l’utilisation de l’anti-aliasing dans un pipeline en deferred shading.
Cette technique pourrait être utilisée pour les applications où l’éclairage le rendu précis et
interactif des matériaux, avec une géométrie dynamique sont nécessaires.

Ensuite, nous avons introduit une nouvelle fonction de distribution des micro-facettes
pour le modelé de BRDF de Cook-Torrance, que nous avons appelée la Shifted Gamma
Distribution (SGD). Nous avons calculé la fonction d’ombrage et de masquage de la dis-
tribution, et généralisé l’approximation de Schlick pour le terme de Fresnel, pour s’adapter
aux mesures effectuées avec une plus grande précision. Nous avons proposé une solution
pour l’échantillonnage adaptatif. Nous avons proposé un algorithme de regretion simple en
deux étapes sur chaque canal RGB séparément, qui l’est révélé très précis pour un large
éventail de matériaux diffus, brillants et hautement spéculaires.

Nous avons développé les solutions mentionnées ci-dessus pour faire avancer l’état de
l’art en vue de trouver une approche unifiée et simple à la modélisation de l’apparence.
Bien que nous nous soyons concentrés sur la représentation de la réflectance de matériaux
isotropes opaques, beaucoup de nos contributions peut être étendues à d’autres matériaux,
par exemple anisotropes et non opaques. la théorie de l’analyse fréquentielle de le trans-
port de lumière peut être développée afin de prédire le taux d’échantillonnage pour le rendu
de réflexion ou de réfraction anisotrope par exemple. Nous pouvons rendre compte de la
visibilité et de réflexions multiples et étendre notre technique d’estimation de débit à l’illu-
mination globale. La distribution SGD peut être utilisée comme fonction de réflectance
pour des matériaux plus generaux, par exemple non opaques.

Un aspect important de la modélisation numérique est la capture de l’apparence. Même
si nous n’avons pas exploré cette voie dans cette thèse, notre nouveau modèle de réflectance
suggère qu’il est possible de mesure l’apparence de beaucoup de matériaux en utilisant peu
d’echantillons.





Appendix A

Appendix A: SGD fitting results

Due to the large size of this appendix, for more convenience, it is prepared as a separate
file.
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tanaik. Radiance cache splatting: a GPU-friendly global illumination algorithm.
In ACM SIGGRAPH 2008 classes, SIGGRAPH ’08, pages 78:1–78:10, New York,
NY, USA, 2008. ACM. (Cited on page 15.)

[Geisler-Moroder 2010] David Geisler-Moroder and Arne Dür. A New Ward BRDF Model

with Bounded Albedo. Computer Graphics Forum, vol. 29, no. 4, pages 1391–1398,
2010. (Cited on page 32.)

http://developer.download.nvidia.com/SDK/10/opengl/src/dual_depth_peeling/doc/DualDepthPeeling.pdf
http://developer.download.nvidia.com/SDK/10/opengl/src/dual_depth_peeling/doc/DualDepthPeeling.pdf
http://www.llnl.gov/CASC/sapphire/pubs/148494.pdf
http://www.llnl.gov/CASC/sapphire/pubs/148494.pdf


96 Bibliography

[Ghosh 2010a] Abhijeet Ghosh, Tongbo Chen, Pieter Peers, Cyrus A. Wilson and Paul
Debevec. Circularly polarized spherical illumination reflectometry. ACM Trans-
actions on Graphics, vol. 29, no. 6, pages 162:1–162:12, December 2010. (Cited
on page 26.)

[Ghosh 2010b] Abhijeet Ghosh, Wolfgang Heidrich, Shruthi Achutha and Matthew
O’Toole. A Basis Illumination Approach to BRDF Measurement. Int. J. Comput.
Vision, vol. 90, no. 2, pages 183–197, November 2010. (Cited on page 26.)

[Glassner 1994] Andrew S. Glassner. Principles of digital image synthesis. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, 1994. (Cited on page 12.)

[Gortler 1996] Steven J. Gortler, Radek Grzeszczuk, Richard Szeliski and Michael F. Co-
hen. The lumigraph. In Proceedings of the 23rd annual conference on Computer
graphics and interactive techniques, SIGGRAPH ’96, pages 43–54, New York, NY,
USA, 1996. ACM. (Cited on page 18.)

[Hammersley 1965] J. M. Hammersley and D. C. Handscomb. Monte Carlo Methods
(Methuen’s Monographs on Applied Probability & Statistics). Methuen, January
1965. (Cited on page 13.)

[He 1991] Xiao D. He, Kenneth E. Torrance, François X. Sillion and Donald P. Greenberg.
A comprehensive physical model for light reflection. ACM SIGGRAPH Computer
Graphics, vol. 25, no. 4, pages 175–186, July 1991. (Cited on page 37.)

[Hullin 2010] Matthias B. Hullin, Johannes Hanika, Boris Ajdin, Hans-Peter Seidel, Jan
Kautz and Hendrik P. A. Lensch. Acquisition and analysis of bispectral bidirec-

tional reflectance and reradiation distribution functions. ACM Transactions on
Graphics, vol. 29, no. 4, pages 97:1–97:7, July 2010. (Cited on page 26.)

[Jensen 1996] Henrik Wann Jensen. Global illumination using photon maps. In Euro-
graphics Workshop on Rendering, pages 21–30, London, UK, UK, 1996. Springer-
Verlag. (Cited on page 13.)

[Kajiya 1986] James T. Kajiya. The rendering equation. SIGGRAPH Computer Graphics,
vol. 20, no. 4, pages 143–150, August 1986. (Cited on pages 12 and 13.)

[Kalos 1986] Malvin H. Kalos and Paula A. Whitlock. Monte Carlo methods. J. Wiley &
Sons, 1st édition, October 1986. (Cited on page 13.)

[Kautz 1999] Jan Kautz and Michael D. McCool. Interactive rendering with arbitrary

BRDFs using separable approximations. In ACM SIGGRAPH 99 Conference ab-
stracts and applications, SIGGRAPH ’99, pages 253–, New York, NY, USA, 1999.
ACM. (Cited on page 29.)

[Kautz 2000] Jan Kautz and Michael D. McCool. Approximation of Glossy Reflection

with Prefiltered Environment Maps. In Proceedings Graphics Interface 2000, pages
119–126, May 2000. (Cited on page 53.)



Bibliography 97

[Koenderink 1996] Jan J. Koenderink, Andrea J. Van Doorn, Kristin J. Dana and Shree
Nayar. Bidirectional reflection distribution function expressed in terms of surface

scattering modes. International Journal of Computer Vision, vol. 31, pages 28–39,
1996. (Cited on page 29.)

[Lafortune 1996] Eric P. Lafortune, Eric P. Lafortune, Eric P. Lafortune, Yves D. Willems
and Yves D. Willems. Rendering Participating Media with Bidirectional Path

Tracing. In Eurographics Workshop on Rendering, pages 91–100. Springer-
Verlag/Wien, 1996. (Cited on page 13.)

[Lafortune 1997] Eric P. F. Lafortune, Sing-Choong Foo, Kenneth E. Torrance and Don-
ald P. Greenberg. Non-linear approximation of reflectance functions. In Pro-
ceedings of the 24th annual conference on Computer graphics and interactive
techniques, SIGGRAPH ’97, pages 117–126, New York, NY, USA, 1997. ACM
Press/Addison-Wesley Publishing Co. (Cited on pages 32, 33 and 37.)

[Lalonde 1997] Paul Lalonde and Alain Fournier. Filtered Local Shading in the Wavelet

Domain. In Eurographics Workshop on Rendering, pages 163–174, London, UK,
UK, 1997. Springer-Verlag. (Cited on page 29.)

[Latta 2002] Lutz Latta and Andreas Kolb. Homomorphic factorization of BRDF-based

lighting computation. In Proceedings of the 29th annual conference on Computer
graphics and interactive techniques, SIGGRAPH ’02, pages 509–516, New York,
NY, USA, 2002. ACM. (Cited on page 29.)

[Lawrence 2005] Jason Lawrence, Szymon Rusinkiewicz and Ravi Ramamoorthi. Adap-

tive Numerical Cumulative Distribution Functions for Efficient Importance Sam-

pling. In Eurographics Symposium on Rendering, June 2005. (Cited on page 27.)

[Lazányi 2005] István Lazányi and László Szirmay-Kalos. Fresnel Term Approximations

for Metals. In Winter School of Computer Graphics (WSCG), Short papers, 2005.
(Cited on pages 36 and 73.)

[Levoy 1996] Marc Levoy and Pat Hanrahan. Light field rendering. In Proceedings of
the 23rd annual conference on Computer graphics and interactive techniques, SIG-
GRAPH ’96, pages 31–42, New York, NY, USA, 1996. ACM. (Cited on page 18.)

[Lewis 1994] Robert R. Lewis. Making Shaders More Physically Plausible. Computer
Graphics Forum, vol. 13, no. 2, pages 109–120, 1994. (Cited on page 31.)

[Li 2005] Hongsong Li, Sing Choong Foo, Kenneth E. Torrance and Stephen H. Westin.
Automated three-axis gonioreflectometer for computer graphics applications. In
Optical Engineering, page 2006, 2005. (Cited on page 25.)

[Lourakis 2004] M. I. A. Lourakis. levmar: Levenberg-Marquardt nonlinear least squares

algorithms in C/C++. http://www.ics.forth.gr/~lourakis/levmar/, Jul.
2004. (Cited on pages 70 and 74.)

http://www.ics.forth.gr/~lourakis/levmar/


98 Bibliography

[Löw 2012] Joakim Löw, Joel Kronander, Anders Ynnerman and Jonas Unger. BRDF

models for accurate and efficient rendering of glossy surfaces. ACM Transactions
on Graphics, vol. 31, no. 1, pages 9:1–9:14, February 2012. (Cited on pages 35,
75, 76 and 77.)

[M. Bagher 2012a] Mahdi M. Bagher, Cyril Soler and Nicolas Holzschuch. Accurate

fitting of measured reflectances using a Shifted Gamma micro-facet distribution.
Computer Graphics Forum, vol. 31, no. 4, June 2012. (Cited on pages 3, 7 and 65.)

[M. Bagher 2012b] Mahdi M. Bagher, Cyril Soler, Kartic Subr, Laurent Belcour and Nico-
las Holzschuch. Interactive rendering of acquired materials on dynamic geometry

using bandwidth prediction. In Michael Garland and Rui Wang, editeurs, ACM
Siggraph Symposium on Interactive 3D Graphics and Games (I3D), pages 127–
134, Costa Mesa, United States, March 2012. ACM Siggraph, ACM. (Cited on
pages 3, 7 and 41.)

[M. Bagher 2013] Mahdi M. Bagher, Cyril Soler, Kartic Subr, Laurent Belcour and Nico-
las Holzschuch. Interactive rendering of acquired materials on dynamic geome-

try using frequency analysis. IEEE Transactions on Visualization and Computer
Graphics, 2013. Invited paper. (Cited on pages 3 and 7.)

[Mallat 2008] Stphane Mallat. A wavelet tour of signal processing, third edition: The
sparse way. Academic Press, 3rd édition, 2008. (Cited on page 46.)

[Mammen 1989] Abraham Mammen. Transparency and Antialiasing Algorithms Imple-

mented with the Virtual Pixel Maps Technique. IEEE Computer Graphics and Ap-
plications, vol. 9, no. 4, pages 43–55, July 1989. (Cited on page 15.)

[Marschner 1999] Steve R. Marschner, Stephen H. Westin, Eric P. F. Lafortune, Ken-
neth E. Torrance and Donald P. Greenberg. Image-Based BRDF Measurement

Including Human Skin. In Eurographics Symposium on Rendering, pages 131–
144, 1999. (Cited on page 25.)

[Marschner 2000] Steve R. Marschner, Stephen H. Westin, Eric P. F. Lafortune and Ken-
neth E. Torrance. Image-Based Bidirectional Reflectance Distribution Function

Measurement. Applied Optics, vol. 39, no. 16, pages 2592–2600, Jun 2000. (Cited
on page 25.)

[Matusik 2003] Wojciech Matusik, Hanspeter Pfister, Matt Brand and Leonard McMillan.
A data-driven reflectance model. ACM Transactions on Graphics, vol. 22, no. 3,
pages 759–769, July 2003. (Cited on pages 25, 26, 28, 66 and 68.)

[McCool 2001] Michael D. McCool, Jason Ang and Anis Ahmad. Homomorphic fac-

torization of BRDFs for high-performance rendering. In Proceedings of the 28th
annual conference on Computer graphics and interactive techniques, SIGGRAPH
’01, pages 171–178, New York, NY, USA, 2001. ACM. (Cited on pages 29 and 30.)



Bibliography 99

[McGuire 2009] Morgan McGuire and David Luebke. Hardware-Accelerated Global Il-

lumination by Image Space Photon Mapping. In Proceedings of the 2009 ACM
SIGGRAPH/EuroGraphics conference on High Performance Graphics, New York,
NY, USA, August 2009. ACM. (Cited on page 15.)

[Metropolis 1949] Nicholas Metropolis and Stan Ulam. The Monte Carlo Method. Journal
of the American Statistical Association, vol. 44, no. 247, pages 335–341, Septem-
ber 1949. (Cited on page 13.)

[Munoz 2011] Adolfo Munoz, Jose I. Echevarria, Francisco Seron, Jorge Lopez-Moreno,
Mashhuda Glencross and Diego Gutierrez. BSSRDF Estimation from Single Im-

ages. Computer Graphics Forum, vol. 30, pages 455–464, 2011. (Cited on
page 26.)

[Murray-Coleman 1990] J.F. Murray-Coleman and A.M. Smith. The Automated Measure-

ment of BRDFs and their Application to Luminaire Modeling. Journal of the Illu-
minating Engineering Society, pages 87–99, 1990. (Cited on page 25.)

[Neumann 1999] László Neumann, Attila Neumann and László Szirmay-Kalos. Compact

Metallic Reflectance Models. Computer Graphics Forum, vol. 18, no. 3, pages
161–172, 1999. (Cited on page 32.)

[Ngan 2005] Addy Ngan, Frédo Durand and Wojciech Matusik. Experimental Analysis

of BRDF Models. In Eurographics Workshop on Rendering, pages 117–126, June
2005. (Cited on pages 25, 27, 37, 38, 39, 73, 75, 77 and 80.)

[Ngan 2006] Wai Kit Addy Ngan. Acquisition and modeling of material appearance. PhD
thesis, Cambridge, MA, USA, 2006. (Cited on page 26.)

[Nichols 2009] Greg Nichols and Chris Wyman. Multiresolution splatting for indirect

illumination. In Symposium on Interactive 3D graphics and games (I3D), pages
83–90, 2009. (Cited on pages 15 and 17.)

[Nichols 2010a] Greg Nichols, Rajeev Penmatsa and Chris Wyman. Interactive, Multires-

olution Image-Space Rendering for Dynamic Area Lighting. Computer Graphics
Forum, vol. 29, no. 4, pages 1279 – 1288, 2010. (Cited on pages 15 and 17.)

[Nichols 2010b] Greg Nichols and Chris Wyman. Interactive Indirect Illumination Using

Adaptive Multiresolution Splatting. IEEE Transactions on Visualization and Com-
puter Graphics, vol. 16, no. 5, pages 729–741, 2010. (Cited on pages 15 and 17.)

[Nicodemus 1992] F. E. Nicodemus, J. C. Richmond, J. J. Hsia, I. W. Ginsberg and
T. Limperis. Radiometry. chapitre Geometrical considerations and nomencla-
ture for reflectance, pages 94–145. Jones and Bartlett Publishers, Inc., USA, 1992.
(Cited on page 21.)

[nis 2010] NIST reference reflectometer: STARR facility. http://physics.nist.gov/,
2010. (Cited on page 25.)

http://physics.nist.gov/


100 Bibliography

[Oppenheim 1975] Alan V. Oppenheim and Ronald W. Schafer. Digital signal processing.
Prentice–Hall, 1975. (Cited on page 52.)

[Oren 1994] Michael Oren and Shree K. Nayar. Generalization of Lambert’s reflectance

model. In Proceedings of the 21st annual conference on Computer graphics and
interactive techniques, SIGGRAPH ’94, pages 239–246, New York, NY, USA,
1994. ACM. (Cited on page 36.)

[Phong 1975] Bui Tuong Phong. Illumination for computer generated pictures. Com-
munications of the ACM, vol. 18, no. 6, pages 311–317, June 1975. (Cited on
page 31.)

[Ren 2011] Peiran Ren, Jiaping Wang, John Snyder, Xin Tong and Baining Guo. Pocket

reflectometry. ACM Transactions on Graphics, vol. 30, no. 4, pages 45:1–45:10,
July 2011. (Cited on page 26.)

[Ritschel 2009] T. Ritschel, T. Engelhardt, T. Grosch, H.-P. Seidel, J. Kautz and C. Dachs-
bacher. Micro-rendering for scalable, parallel final gathering. ACM Transactions
on Graphics, vol. 28, no. 5, pages 132:1–132:8, 2009. (Cited on page 15.)

[Romeiro 2008] Fabiano Romeiro, Yuriy Vasilyev and Todd Zickler. Passive Reflectome-

try. In Proceedings of the 10th European Conference on Computer Vision: Part IV,
ECCV ’08, pages 859–872, Berlin, Heidelberg, 2008. Springer-Verlag. (Cited on
page 26.)

[Romeiro 2010] Fabiano Romeiro and Todd Zickler. Blind reflectometry. In Proceedings
of the 11th European conference on Computer vision: Part I, ECCV’10, pages
45–58, Berlin, Heidelberg, 2010. Springer-Verlag. (Cited on page 26.)

[Rusinkiewicz 1998] Szymon Rusinkiewicz. A New Change of Variables for Efficient

BRDF Representation. In Eurographics Workshop on Rendering, June 1998. (Cited
on pages 28 and 29.)

[Saito 1990] Takafumi Saito and Tokiichiro Takahashi. Comprehensible rendering of 3-D

shapes. SIGGRAPH Computer Graphics, vol. 24, no. 4, pages 197–206, September
1990. (Cited on page 15.)

[Schlick 1994] Christophe Schlick. An Inexpensive BRDF Model for Physically-based

Rendering. Computer Graphics Forum, vol. 13, pages 233–246, 1994. (Cited on
page 36.)

[Schröder 1995] Peter Schröder and Wim Sweldens. Spherical wavelets: efficiently repre-

senting functions on the sphere. In Proceedings of the 22nd annual conference on
Computer graphics and interactive techniques, SIGGRAPH ’95, pages 161–172,
New York, NY, USA, 1995. ACM. (Cited on page 29.)

[Segovia 2006] B. Segovia, J. C. Iehl, R. Mitanchey and B. Péroche. Non-interleaved de-

ferred shading of interleaved sample patterns. In Symposium on Graphics Hard-
ware (GH), pages 53–60, 2006. (Cited on page 15.)



Bibliography 101

[Shopf 2009] Jeremy Shopf, Greg Nichols and Chris Wyman. Hierarchical Image-Space

Radiosity for Interactive Global Illumination. Computer Graphics Forum, vol. 28,
no. 4, pages 1141–1149, 2009. (Cited on pages 15 and 17.)

[Sloan 2002] Peter-Pike Sloan, Jan Kautz and John Snyder. Precomputed radiance trans-

fer for real-time rendering in dynamic, low-frequency lighting environments. ACM
Transactions on Graphics, vol. 21, no. 3, pages 527–536, July 2002. (Cited on
pages 42 and 43.)

[Smith 1967] B. Smith. Geometrical shadowing of a random rough surface. IEEE Trans-
actions on Antennas and Propagation, vol. 15, no. 5, pages 668 –671, September
1967. (Cited on pages 34, 36 and 67.)

[Soler 2009] Cyril Soler, Kartic Subr, Frédo Durand, Nicolas Holzschuch and François
Sillion. Fourier depth of field. ACM Transactions on Graphics, vol. 28, no. 2,
pages 18:1–18:12, May 2009. (Cited on pages 19 and 46.)

[Soler 2010] Cyril Soler, Olivier Hoel and Frank Rochet. A Deferred Shading Algorithm

for Real-Time Indirect Illumination. In ACM SIGGRAPH Talks, page 18:1, 2010.
(Cited on page 15.)

[Spanier 1969] J. Spanier and E. M. Gelbard. Monte Carlo principles and neutron transport
problems. Addison-Wesley series in computer science and information processing.
Addison-Wesley Pub. Co., 1969. (Cited on page 13.)

[Torrance 1967] K. E. Torrance and E. M. Sparrow. Theory for Off-Specular Reflection

From Roughened Surfaces. Journal of the Optical Society of America, vol. 57,
no. 9, pages 1105–1112, September 1967. (Cited on pages 33 and 66.)

[Trowbridge 1975] T. S. Trowbridge and K. P. Reitz. Average irregularity representation

of a rough surface for ray reflection. Journal of the Optical Society of America,
vol. 65, no. 5, pages 531–536, May 1975. (Cited on page 35.)

[Veach 1995] Eric Veach and Leonidas J. Guibas. Optimally combining sampling tech-

niques for Monte Carlo rendering. In SIGGRAPH 95, pages 419–428, 1995. (Cited
on page 13.)

[Veach 1998] Eric Veach. Robust monte carlo methods for light transport simulation. PhD
thesis, Stanford, CA, USA, 1998. http://graphics.stanford.edu/papers/
veach_thesis/. (Cited on pages 13 and 14.)

[Walter 2007] B. Walter, S. Marschner, H. Li and K. E. Torrance. Microfacet models for

refraction through rough surfaces. In Eurographics Symposium on Rendering,
2007. (Cited on pages 34, 35, 36 and 72.)

[Wang 2009a] Jiaping Wang, Peiran Ren, Minmin Gong, John Snyder and Baining Guo.
All-frequency rendering of dynamic, spatially-varying reflectance. ACM Transac-
tions on Graphics, vol. 28, no. 5, pages 133:1–133:10, December 2009. (Cited on
pages 29, 59 and 61.)

http://graphics.stanford.edu/papers/veach_thesis/
http://graphics.stanford.edu/papers/veach_thesis/


102 Bibliography

[Wang 2009b] Rui Wang, Rui Wang, Kun Zhou, Minghao Pan and Hujun Bao. An efficient

GPU-based approach for interactive global illumination. ACM Transactions on
Graphics, vol. 28, no. 3, pages 91:1–91:8, July 2009. (Cited on page 15.)

[Ward 1988] Gregory J. Ward, Francis M. Rubinstein and Robert D. Clear. A ray tracing

solution for diffuse interreflection. SIGGRAPH Computer Graphics, vol. 22, no. 4,
pages 85–92, June 1988. (Cited on page 13.)

[Ward 1992a] Gregory J. Ward. Measuring and modeling anisotropic reflection. ACM
SIGGRAPH Computer Graphics, vol. 26, no. 2, pages 265–272, July 1992. (Cited
on pages 25, 31 and 37.)

[Ward 1992b] Gregory J. Ward and Paul S. Heckbert. Irradiance Gradients. pages 85–98,
1992. (Cited on page 13.)

[Westin 1992] Stephen H. Westin, James R. Arvo and Kenneth E. Torrance. Predicting re-

flectance functions from complex surfaces. ACM SIGGRAPH Computer Graphics,
vol. 26, no. 2, pages 255–264, July 1992. (Cited on page 29.)


	Introduction
	Motivation
	List of publications
	Organization

	Introduction (français)
	Motivation
	Liste des publications
	Organization

	Background and previous work
	Introduction (français)
	Introduction
	Light transport
	Radiometric terms
	Radiant power (flux)
	Radiance (L)
	Irradiance (E) and Radiosity (B)
	Radiant intensity (I)

	The rendering equation
	The Monte Carlo method
	Monte Carlo importance sampling
	Hardware-accelerated rendering
	The rendering pipeline
	Forward vs. deferred shading

	Multi-resolution screen-space rendering
	Light field
	Light field propagation
	Light field parameterization

	Frequency analysis of light transport
	Transport in free space
	Reflection
	Shading
	Texture mapping
	Occlusion
	Depth of field
	Motion blur


	Material appearance
	Definitions
	Reflectance
	BRDF

	Taxonomy of appearance
	Reflectance acquisition
	Acquisition techniques
	Isotropic BRDF databases

	Reflectance representation
	Tabulated BRDF
	BRDF re-parameterization
	Dimensionality reduction and compression techniques
	Analytical models
	Comparison between existing analytical models


	Summary and conclusion

	Interactive rendering of reflectance using frequency analysis
	Introduction (français)
	Introduction
	Overview

	Real-time frequency analysis
	Illumination, textures, and BRDF bandwidth
	Computing one-bounce 2D bandwidth
	Image-space bandwidth and sampling rate
	Adaptive sampling for shading
	Adaptive sampling for pre-convolved shading
	Implementation roadmap

	Hierarchical shading algorithm
	Bandwidth buffer initialization
	Shading and up-sampling
	Shading computation

	Results and discussion
	Behavior of our algorithm
	Comparison with related work
	Rendering results
	Discussion

	Conclusion

	A new distribution for Cook-Torrance BRDF
	Introduction (français)
	Introduction
	Our reflectance model
	Data observation
	The SGD distribution
	Shadowing and masking
	The Fresnel term
	Importance sampling

	Fitting algorithm
	Fitting RGB channels separately
	Non-linear optimization

	Results and Comparison
	Visual comparison
	BRDF Lobes comparison
	Quantitative Error Measure
	Influence of D, G, and F parameters in our BRDF model
	Fitting RGB channels altogether for D parameters
	Timings
	Limitations

	Conclusion

	Conclusion
	Conclusion (français)
	Appendix A: SGD fitting results
	Bibliography

