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réparation!de!l�ADN!endommagé.!Néanmoins,!comment!!FACT!participe!à!la!réparation!et!à!

la! transcription!de! la!chromatine!n�est!pas!élucidé.!Dans!ce! travail!nous!avons! tout!d�abord!

étudié le rôle de FACT dans le processus de réparation par excision de base (BER). Nous 

avons! utilisé! des! nucléosomes! reconstitués! avec! de! l�ADN! les thymines sont partiellement 

substitués!avec!de!l�uracile.!Nous!avons!trouvé!que!l�enzyme!UDG!est!capable!d�enlever!les!

uraciles localisés du côté de la solution et pas les uraciles se trouvant en face de  l�octamer 

d�histones. La présence simultanée de FACT et de RSC (facteur de remodelage de la 

chromatine, impliqué dans la réparation) permet  un enlèvement efficace des uraciles 

localisés du côté de l�octamer d�histones par!l�UDG.!De!plus,!l�action!concertée!de!FACT!et!
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cette! nouvelle! propriété! de! FACT! et! ! nous! montrons! par! une! série! d�expériences!

biochimiques! que! FACT! est! capable! de! stimuler! l�activité! de! remodelage! du! RSC.! Nos!

expériences montrent que la présence de FACT!augmente!l�efficacité!de!RSC!à!transformer!

l�énergie! libérée!par! l�hydrolyse!de! l�ATP!en! travail! « mécanique ».  Les données obtenues 

suggèrent une nature stochastique du BER in vivo, FACT étant un facteur clé dans le 
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processus de réparation.  Nous avons également! ! investigué! ! l�implication!de! l�activité! co-

remodelatrice  de FACT dans la fixation de NF- B! !   aux matrices nucléosomales.  La 

production de nucléosomes remodelés, mais non - mobilisés!(remosomes)!n�est!pas!suffisante!!
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FACT is a vital protein which plays multiple roles in several processes including both 

transcription and repair of damaged DNA. However, how FACT assists repair and 

transcription remains elusive. In this work, we have first studied the role of FACT in Base 

Excision Repair (BER). We used nucleosomes containing DNA with randomly incorporated 

uracil. We found that the enzyme UDG is able to remove uracils facing the solution and not 

the uracils facing the histone octamer. The simultaneous presence of FACT and RSC (a 

chromatin remodeler involved in repair) allows, however, a very efficient removal of uracil 

facing the histone octamer by UDG. In addition, the concerted action of FACT and RSC 

permits the removal of the otherwise un-accessible oxidative lesion 8-oxoG from 

nucleosomal templates by OGG1. This was achieved by the co-remodeling activity of FACT, 

a novel property of this protein that we have discovered and analysed. The experiments 

reveal that the presence of FACT increases the efficiency of RSC to transform the energy 

released by!ATP!hydrolysis!into!�mechanical�!work.!The!presented!data!suggest!a!stochastic!

nature of BER functioning in vivo, with FACT being a key factor in the repair process. The 

implication of the co-remodeling activity of FACT in NF- B factor binding to nucleosomal 

templates was also investigated. The generation of remodeled, but not mobilized 

nucleosomes (remosomes), was not sufficient to promote NF- B!binding. However, the RSC-

induced nucleosome mobilization allows efficient NF- B!interaction with nucleosomal DNA. 

Our data are instrumental in deciphering the molecular mechanism of FACT implication in 

BER and NF- B mediated transcription.  
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1.1 Introduction 

 

�The nucleic-acid �system� that operates in terrestrial life is optimized (through evolution) 

chemistry incarnate. Why not use it to allow human beings to sculpt something new, 

perhaps beautiful, perhaps useful, certainly unnatural.� Roald Hoffmann, writing in 

American Scientist, 1994. 

 

Nature is a grandmaster when it comes to building one atom and one molecule at a time. 

The master works of nature include well ordered, well structured materials be it the synthesis 

of materials like bones, teeth and corals or the more complex molecular machines that patrol 

the human body making biological processes like replication, signaling, transcription, 

translation and DNA repair. These exquisitely designed molecular machines have left us 

pondering at the mystery of how they function and how they are made in the first place.  

In this thesis, we make an attempt at studying the dynamics and function of one class of these 

machines termed chromatin remodelers and the role of histone chaperone FACT (Facilitates 

Chromatin Transcription) in assisting their function in both nucleosome mobilization and 

transcription factor NF- B!binding. 

 

1.2 Chromatin Structure, Organization and Dynamics 

 

1.2.1 Chromatin 

 

1.2.1.1 Landmarks in the field of Chromatin 

 

In the nucleus the DNA exists as a complex structure called chromatin, which is composed of 

DNA and proteins (The!word!chromatin!is!derived!from!the!Greek!word!�Khroma�!meaning!

colored, based on its ability to stain with basic dyes).!The!term!�Chromatin�!was!suggested!

for the first time by W Flemming. In the year of 1953, there was the discovery of the DNA 

double helix structure by Watson and Crick and two separate groups involving Wilkins and 

Franklin [1; 2; 3]. In the year of 1959, Zubay and colleagues were able to prepare soluble 

chromatin [4] and histones were fractionated by Johns [5]. With the advent of the electron 

microscopy H. Davies went on to report the chromatin threads that were 30nm in dimensions 

and were isolated from chicken erythrocyte nuclei [6]. In the following years Klug was able 

to purify these chromatin preparation and also suggested the solenoid model [7]. Olins and 
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Woodcock!reported!individually!the!�beads!on!the!thread�!which!the!former!called!as!v!bodies 

[8; 9]. In 1974, Roger Kornberg in collaboration with J.Thomas postulated a model for the 

chromatin structure and in the subsequent year Pierre Chambon went ahead to coin the term 

Nucleosome for the chromatin subunit [10; 11]. With the advance in technology and the boon 

of X-ray crystallographic studies we were able to profit from the crystal structure of the 

nucleosome [12].   

 

1.2.1.2 Chromatin and Chromosome Structure 

The long strands of chromosomal DNA in the eukaryotic nucleus are approximately 

compacted 10000 to 50000 times in length. In spite of the tight packaging of the DNA the 

chromosome maintains its form and structure allowing regulatory proteins to access it, for 

transcription or replication. The molecular self-assembly takes place with DNA wrapping 

around �Histones�. These histones are positively charged molecules that have a strong 

affinity towards the negatively charged DNA. When visualised under an electron microscope 

they appear as beads on a string every 200 bp [13]. Each bead is a nucleosome core particle 

that includes approximately 146 bp of DNA wrapped almost twice around a core histone 

octamer which comprises of a pair of each histone H2A, H2B, H3 and H4. 

The Histone H1 (termed also as "linker" histone) binds to  40-70 bp of linker DNA, that 

separates adjacent core particles and helps compact the beads-on-a-string into fibers ~30 nm 

in diameter [7; 14]. When viewed under the electron microscope, these 30-nm fibers appear 

as helical structures with six nucleosomes per turn, an arrangement in which the DNA has 

been compacted ~40-fold in its linear dimension.  

Laemmli and his colleagues [15; 16] took some stunning electron micrographs and provided 

enough insights into the organizations of the chromosomes. Their images mainly involved 

HeLa cell metaphase chromosomes stripped of histones showing DNA spooling out 30 to 90-

kb loops from a proteinaceous "scaffold" that is the X shape of the paired sister chromatids 

[16]. If the histones were not stripped from the DNA then they appeared as loops of 

chromatin made up of approximately 180 to 300 nucleosomes coiled in the 30-nm fibre [15]. 

In cross section, the loops appear to radiate from the scaffold. Adjacent loop attachment sites 

are arranged in a helical spiral along the long axis of the metaphase scaffold [15]. Organizing 

15 to 18 such loops per turn along the chromatid would account for ~1.2 million bp of DNA 

[17]. This arrangement probably allows the stacking of loops into a cylinder of chromatin 
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~800 to 1000 nm in thickness, which is in good agreement with the diameter of the 

metaphase chromosome[15; 17]. This model also accounts for the dimensions of metaphase 

chromosomes, which are ~10,000-fold shorter and 400 to 500-fold thicker than the double 

stranded DNA helices contained within them.  

Figure 1 shows the step wise breakdown of the chromosomes into the chromatin and 

subsequently nucleosomes. On the right panel we see the two models of the 30nm fiber, the 

solenoid and the zigzag model. 

 

 

Figure 1: Chromatin organisation and chromatin architecture [18]. 

 

 

Chromosomes are divided into two distinct domains based on their structural and functional 

properties. The chromosomal regions that do not undergo post mitotic decondensation were 

termed as heterochromatin and the chromosomes that decondense and spread out in the 

interphase were referred to as the euchromatin [20]. The general properties of euchromatin 

and heterochromatin are summarised in Figure 2.     
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Figure 2: General properties of Euchromatin and heterochromatin[19]. 

 

 

1.2.2 The Nucleosome 

 

The Nucleosome is the basic subunit of the chromatin and is interconnected by stretches of 

DNA called the linker DNA. Kornberg defined nucleosomes, as structures with about 200bp 

of DNA in close association with the core histones H2A,H2B, H3 and H4 [10].  In the 

absence of the linker histone the nucleosomes appear as beads on a string [8], but in the 

presence of the linker histone they condense and the linker histone binds at the entry and exit 

site of the DNA. This in a way helps in the compaction of the lengthy DNA strands. The 

nucleosome is formed in vitro by reconstituting the DNA and histones and a gradual step 

wise dialysis from 2M salt to 10mM salt is carried out. Figure 3 describes how the 

nucleosome is assembled, first by the deposition of tetramer and then followed by the dimer 

on the DNA fragment. 
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Figure 3: Assembly of Histones on the DNA to form the nucleosome. 

 

1.2.3 The Histones 

 

Histones were first described by A.Kossel in the year 1884 as an acid extractable material 

isolated from chicken erythrocyte. Histones are small basic proteins which are found in all 

eukaryotes and are highly conserved during evolution. There are 5 canonical forms of 

histones: H2A (14 kDa), H2B (14 kDa), H3 (15 kDa) and H4 (11 kDa) referred to as core 

histones and H1 (21 kDa) referred to as linker histone. The core histones have three domains 

namely the Histone fold domain, the N-terminal domain and accessory helices and less 

structured regions.  

The histone fold domain consists of a helix-loop-helix motif. However, in the absence of 

DNA and in moderate salt conditions of 150mM, H3 and H4 form tetramers while H2A and 

H2B exist as dimers. In higher salt concentration of 2M an octamer of histones is formed. 

Apart from the histone fold domains there are the C-terminal and the N-terminal domains. 

The histone tails are prone to modifications and in turn are involved in the maintenance of the 

structure of chromatin. Linker histones help stabilize the higher order architecture. The linker 

histone does not resemble like the other histones and instead has a tripartite structure, made 

up of a globular domain flanked by a highly positive N and C terminal tails [21]. The 

Complete histone Octamer 

with DNA
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globular domain of histone H1 interacts with the entry and exit site of DNA in the 

nucleosome. Hydroxyl radical footprinting shows a particular signature when H1 is deposited 

on the nucleosomes [22].  

 

1.3 Regulation of chromatin Dynamics 

 

1.3.1 Replacement by Histone Variants 

 

The nucleosome is a barrier to numerous vital cell processes that require access to free DNA 

[23]. The cell uses incorporation of histone variants, histone modifications and ATP 

dependant chromatin remodeling complexes to overcome this nucleosome barrier (see Figure 

4) [24; 25; 26].  

 

Figure 4: Nucleosome Dynamics:  where (a) Incorporation of Histone variants (b) 
Modication of Histones and (c) chromatin remodeling. This image is adapted from  a review 

on chromatin remodeling complexes [40]. 
 
The histone variants are non-allelic isoforms of conventional histones which are expressed in 

very low amounts in the cell [26]. In contrast to conventional histones, histone variants are 

incorporated into chromatin in a replication independant manner [26]. 
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Multiple variants of all the core histones except histone H4 have been reported. The H2A and 

the H3 variants are the well studied variants. These variants exhibit a similarity ranging from 

45- 90% [27; 28]. Previously it was reported that the carboxyl terminal of the H2A is 

essential for the stability of nucleosomal particles and that H2A-H2B and the tetramer 

interaction is hampered when the COOH terminus is truncated. Moreover, the remodeling 

and mobilization of the nucleosomes is reduced when the histone variants are incorporated 

[29; 30; 31; 32]. Some of the major histone variants of the histone H2A are H2A.X, H2A.Z, 

MacroH2A(mH2A) and H2A Barr Body deficient(H2A.Bbd) [33]. The major variants with 

the histone H3 which has been extensively studied are the H3.3 and the CENPA [34; 35]. The 

Figure 5 shows the conventional histones alongside the histone variants and their possible 

functions. The image is adapted from a review by Sarma and Danny Reinberg [36]. 

Incorporation of histone variants confers novel properties to the nucleosome [34]. 

Incorporation of histone variants and how they affect the main properties of the nucleosome 

is depicted in Figure 6. This image is adapted from a review on histone variants [34]. 

 

Figure 5: Histone Variants and their functions 
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Figure 6: Incorporation of histone variants and the structural changes and 

perturbations incurred. 
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1.3.2 Post translational modification of histones 

Chromatin modifications and gene regulations are an important branch of chromatin 

biochemistry. Core histones can be reversibly modified by acetylation, methylation, 

phosphorylation, ubiquitination or ADP-ribosylation and these modifications have 

consequences for gene activation, gene repression and chromosome replication. Lysines at 

the amino-terminal ends of the core histones are the predominant sites of known regulatory 

modifications. Active genes are preferentially associated with highly acetylated histones 

whereas inactive genes are associated with hypoacetylated histones. Histone acetylation and 

deacetylation are thought to exert their regulatory effects on gene expression by altering the 

accessibility of nucleosomal DNA to DNA-binding transcription activators, with the help of 

other chromatin modifying enzymes or multi-subunit chromatin remodeling complexes 

capable of displacing nucleosomes. 

An example of the interconnections among histone modifications is the finding that 

deacetylation of lysine K9, located nine amino acids from the amino terminus of histone H3, 

is a prerequisite for methylation of this same lysine. Methylation of K9, in turn, recruits the 

binding of repressor proteins, such as HP1 (Heterochromatin Protein 1) that helps in 

establishing a highly compacted and transcriptionally inactive region of chromatin known as 

heterochromatin. The inter-connectedness of histone modifications that collectively influence 

a web of regulatory events has led to the hypothesis for a "histone code" controlling 

chromatin dynamics [24; 37; 38]. Such a code would allow post-translational modifications 

of various amino acids within the core histones to carry informational content and 

instructions that help specify which genes are to be activated or repressed.  

In addition to modifying the histones that wrap the DNA into nucleosomes and higher-order 

structures, the DNA itself can be modified, most notably by the addition of methyl groups to 

cytosines. A high level of methylation is typically correlated with gene silencing, and is 

particularly evident in the silencing of transposable elements and multi-copy transgenes. A 

variety of DNA methyltransferases exists to modify the DNA in a variety of patterns. Some 

DNA methyltransferases act primarily in conjunction with replication to perpetuate 

methylation patterns from "mother" strands to newly synthesized "daughter" strands of a 

chromosome. Other DNA methyltransferases can add methyl groups to DNA strands that 

have no pre-existing methylation. Methylation of DNA may silence genes by preventing the 

binding of transcription factors. However, it is likely that cytosine methylation exerts most 
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negative effects on gene regulation via the involvement of other proteins that bind 

specifically to DNA when it is methylated. Indeed, a number of methyl-cytosine binding 

proteins have been identified and several are found in close association with one or more 

histone deacetylases. These findings suggest models, whereby cytosine methylation brings 

about local histone deacetylation, which could facilitate methylation of one or more 

deacetylated lysines on the histones and subsequent recruitment of repressor proteins that 

prevent transcription factors from gaining access to the given genes. 

Some major protein domains involved with chromatin remodelling are as follows  

v DNA methyltransferases (METs,CMTs,DRMs)  

    These are the enzymes that methylate DNA in various patterns. 

v Methylcytosine Binding Domain Proteins (MBDs).  

    These proteins are thought to bind to methylated DNA to mediate other chromatin 

modifying events.  

v Histone acetyltransferases (HACs).  

    These enzymes add acetyl groups to histones.  

v Histone deacetylases (HDAs).  

    These enzymes remove acetyl groups from histones.  

v Chromatin remodeling activities (CHR, CHB, CHC etc).  

    These large multi-protein complexes use energy derived from the hydrolysis of 

ATP to alter the positioning of nucleosomes on DNA.  

v SET Domain containing proteins (SDGs).  

    SET domains are common within proteins that methylate histones.  

v Chromodomain containing proteins.  

    Chromodomains are found in histone-binding repressor proteins such as 

Heterochromatin Protein 1.  

v Bromodomain containing proteins  

    Bromodomains are found in proteins that bind acetylated lysines.  

v High Mobility Group (HMG) Proteins  

    HMG proteins are abundant non-histone chromosomal proteins that bind and bend 

DNA and provide for with "architectural" roles.  
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1.3.3 ATP dependant chromatin remodelling 

 

The ATP dependant chromatin remodelers function either by repositioning nucleosomes, 

altering the nucleosomal conformations, changing histone compositions or ejecting histones 

from the DNA [39].  

 

1.3.3.1 Chromatin remodeler Families 

 

1.3.3.1.1 SWI/SNF Family of Chromatin remodelers 

 

This family of chromatin remodelers have been named the SWI/SNF family mainly because 

of the discovery of the first member ySWI/SNF [41; 42; 43]. The yeast SWI/SNF complex 

consists of 11 subunits namely, SWI2/SNF2, SWI3, SNF5, SNF6, SNF11, SWP82, SWP73, 

SWP29, ARP7 and ARP9 [43; 44; 45; 46].  Most of the SWI/SNF components have similar 

homologous counterparts in other SWI/SNF like remodelers, thus suggesting some kind of 

conservation of function. For example, SWI1p shows homology to OSA and Baf250p of 

dBrahma and hSWI/SNFa. SWI/SNF like remodelers have a tendency to bind to naked DNA 

and to nucleosomal DNA in an ATP dependant manner [47; 48]. A striking similarity of these 

SWI/SNF remodelers is with High Mobility Group Box HMGB containing proteins in their 

ability to bind to DNA structures and not to sequence specific DNA [47; 48]. Moving 

towards higher organisms there is the presence of SWI/SNF like complexes in drosophila 

called BAP(Brahma Associated Protein) or PBAP (Polybromo associated BAP) [49]. 

Likewise there are at least two SWI/SNF like remodelers in humans, BRG1/ hSWI/SNFA or 

hPBAF or hSWI/SNFB. A snapshot of the SWI/SNF family members and their functions is 

illustrated in Figure 7. 

 

RSC (Remodels Chromatin Structure) 

RSC is 15 subunit 1MDa protein isolated from yeast [50]. The RSC subunits, Sfh1, Rsc8 and 

Rsc6 have respective counterparts in SWI2/SNF2, SNF5, Swi3 and Swp73. The two 

complexes share actin related proteins namely Arp7 and Arp9 (also named Rsc11/Swp61 and 

Rsc12/Swp59). This particular remodeler is available in plenty compared to SWI/SNF [50]. 

There are some isoforms of RSC purified by RSC6 antibody short of 90 KDa and missing 

subunits RSC3 and RSC30 and this was referred to as RSCa. There are two other isoforms, 

one containing RSC1 and the other RSC2. While RSC2 containing isoform is more abundant, 
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deletion of either of the genes leads to defects in growth and a double deletion is lethal [51]. 

RSC unlike SWI/SNF is involved in mitosis and in repair of damaged DNA.  

 

 

 

Figure 7: The SWI/SNF Family of remodelers and their functions. 

 

1.3.3.1.2 ISWI family of Remodelers 

 

This group of ATP dependant chromatin remodelers get their name from their similarity to 

the SWI2 ATPase and hence Imitation SWItch. This ATPase is highly similar to Brahma and 

was first discovered in drosophila [52]. ISWI family of remodelers have two SANT domains 

in the C-terminal region and do not have the bromodomain [53; 54]. They have a preference 

to binding to nucleosomes with extra linker DNA than to nucleosome core particles. The 

ISWI group of remodelers play an important role in transcription activation and repression as 

well. A homozygous null mutation of ISWI leads to lethality in drosophila [55]. This suggests 

that it plays an important role in gene expression. Apart from this it has also been shown to 

be involved in maintenance of higher order chromatin structure [55]. 
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The ISWI complex is composed of 2-4 subunits and are about 200-800 kDa in size. dNURF 

and dCHRAC were first identified in drosophila [56; 57]. Drosophila contains three ISWI 

complexes namely, NURF (NUcleosome Remodeling Factor), ACF (ATP-utilising 

Chromatin Factor) and CHRAC (CHRomatin Accessibility Complex). The ATPase activity 

of these remodelers is activated by nucleosomes and not by DNA. dNURF interacts with the 

histone tail of H4 and helps mobilizing the nucleosomes [58]. ACF has been reported as a 

regulator of nucleosome spacing [59; 60]. ACF is also capable of sliding the end positioned 

nucleosomes to centre position [61]. CHRAC is closely related to ACF and can perform like 

ACF in spacing the nucleosomes and sliding them [57; 62]. Based on the homology with 

drosophila ISWI, Tsukiyama and colleagues indentified two ISWI genes ISWI1 and ISWI2 in 

yeast [63]. In higher eukaryotes such as Xenopus laevis, mouse and human there are ISWI 

complexes called RSF (Remodeling and Spacing Factor), hACF, WCRF(Williams Syndrome 

Associated Chromatin remodeling Factor), hCHRAC [64; 65; 66; 67; 68]. As in yeast two 

more genes in humans were identified and they were called hSNF2L and hSNF2H with 

almost 70% homology to the yeast genes [69; 70]. Figure 8 provides a summary of the ISWi 

family members and their general functions. 
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Figure 8: The ISWI group of remodelers and their functions. 
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1.3.3.1.3 CHD family of Remodelers 

 

This particular group of remodelers play an important role in development. It has been shown 

that mutations in dMi-2 is lethal at the embryonic stage [71]. The CHD (Chromodomain 

Helicase DNA-binding) or Mi-2 complexes contain ATPases with one or more 

chromodomains. The first CHD protein was identified in mouse and was isolated as a protein 

which showed the properties of both the SWI2/SNF2 group of remodelers and 

Polycomb/HP1 chromodomain family of proteins. The different CHD remodelers and their 

roles in the cell are summarised in Figure 9.  

 

 

Figure 9: The CHD family of Chromatin Remodelers. 
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1.3.3.1.4 INO80 family of remodelers 

 

This is again a large complex protein with 15 subunits and is known to be involved in DNA 

repair and transcription activation. One of the largest subunits INO80p has a conserved but 

discontinuous ATPase domain, with a huge spacer region in the middle. There are two 

conserved motifs TELY motif at the amino terminus and GTIE motif at the carboxy terminus 

[72]. There are also actin related proteins associated to this complex like Arp 4, 5 and 8. 

Rvb1 and Rvb2 are found to be present in multiple copies per INO80 molecule and also have 

a helicase activity. Yeast mutants of INO80 show an increased hypersensitivity to DNA 

damaging agents and also defects in regulation of transcription. Also the Nhp10 subunit of 

INO80 was reported to be recruited in double strand break repair [73; 74]. A similarly large 

complex called SWR1 was found with 14 subunits and almost 4 subunits similar to INO80 

such as Rvb1, Rvb2, Act1 and Arp4 [75; 76; 77]. SWR1 has been reported to play a role in 

DNA repair and also is involved in replacement of H2A/H2B dimers with H2A.Z /H2B 

dimers in an ATP dependant manner [77]. The involvement in cell events by INO80 family 

of remodelers is schematically described in Figure 10. 

 

Figure 10: The INO80 family of remodelers. 

 

1.3.3.2 Domains involved in Remodeler � Nucleosome Interaction 

 

There are multiple remodeler domains that are involved in nucleosome recognition and 

interaction. However, it is not clear whether they act as individual domains or in concert with 

other domains. Some of the important and well characterised domains are as follows (See 

Figure 11). 

INO80SWR1

INO80
Family

H2A.Z Incorporation;
DNA Repair by

p-H2A Recruitment

DNA Repair by
p-H2A Recruitment;

Core Histone Removal;
Homologous Recobination;

Replication;
Telomere Length Regulation;

Transcription Regulation;
RNAPII Regulation



 
 

27 
 

1.3.3.2.1 Bromodomain 

 

The bromodomain in the remodelers is distinct in its ability to recognise the acetylated 

lysines in the histones. In the case of SWI/SNF there exists such a bromodomain in the C-

terminal region of the protein. Yeast, flies and humans all make two SWI/SNF related 

complexes and one of them has multiple bromodomains. These bromodomians can exist in a 

single protein called as polybromo or can exist in a number of proteins such as yRSC1/2/4/10 

and open the possibility for cooperative recognition of modifications. Noteworthy, it has been 

reported that acetylated nucleosomes are easily mobilised by SWI/SNF [78; 79].  

 

1.3.3.2.2 Chromo Domain (CHD) 

 

The chromodomains is characteristic of the CHD family of remodelers. These remodelers  

have two chromodomains in their N terminal domains. These N-terminal domains behave as 

a structural unit to help the binding of the remodeler to a methylated lysine [80; 81; 82]. The 

presence of the chromodomains is highly necessary for the remodeler to both bind and 

remodel the nucleosomes [80]. 

 

1.3.3.2.3 Plant Homeodomains (PHD) 

 

The Plant Homeodomain PHD finger has a methyl-lysine interaction motif. The PHD finger 

is reported to interact functionally with the bromodomains of the ISWI and the 

chromodomains of the CHD family remodelers [83]. However, in the case of dNURF the 

PHD finger of BPTF subunit interacts with the H3K4me3 stabilizing the BPTF/NURF 

interaction with active chromatin [84]. Apart from histone tails there are other epitopes for 

the recognition by the PHD domain. For example the PHD of dACF recognises the globular 

domain of the core histones [61]. 

 

1.3.3.2.4 Hand SANT-SLIDE Domain 

 

Several remodelers possess Hand SANT-SLIDE domain.This domain consists of three sub-

domains and is found in the C-terminal region of the ISWI remodelers. The SANT domain is 

also found in a lot of chromatin related proteins. The SANT is required for the function of 

ySWI/SNF and is present in ySWI3. Similarly this domain is necessary for the functioning of 



 
 

28 
 

the yRSC and is present in the yRSC8. It is present in yAda2 and enhances the yGcn5 HAT 

activity [85]. While the SANT domain interacts with the histones, the SLIDE domain 

contacts the nucleosomal DNA. However, when the SLIDE domain is deleted in the dISWI 

there is loss of the ATPase and remodelling activities, in the contrary when the SANT 

domain is deleted, then there is reduced remodelling [53]. Thus we can say that this particular 

domain is characteristic of the ISWI family of remodelers and that they cooperate with each 

other in nucleosome recognition and stimulation of ATPase activities. 

 

Figure 11: Chromatin Remodeler Domains The image is adapted from [86] and shows the 

various domains involved in the chromatin remodelers. 
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1.3.3.3 ATP dependant chromatin remodeling: Mechanism 

 

 The remodelers alter the chromatin structure making them more accessible to the DNA for 

processes like transcription and repair. In this part of the manuscript I will briefly summarize 

the data on the mechanism of nucleosome remodeling by the different remodelers. 

 

1.3.3.3.1 Substrate Binding 

 

The remodelers have the tendency to recognise the nucleosomes as their substrates. However, 

they interact both with the DNA and the histone part of the nucleosomes during their activity. 

In the beginning DNA affinity columns were used for the isolation of SWI/SNF [87]. The 

binding of the remodelers to the nucleosomal substrate was previously shown by band shift 

experiments [44]. The SWI/SNF remodelers show an affinity for DNA substrates in an ATP 

dependant fashion.  In the case of ISWI remodelers there is lower affinity in binding with 

DNA in comparison with SWI/SNF remodelers [88]. There are also instances where the 

linker DNA helps in the remodelers to bind with the nucleosome [89].  

Evidence for the same is provided by cross-linking experiments [90] and electron 

micrographs [91; 92; 93; 94]. There are distinct places where the DNA and the histones in the 

nucleosomes come in contact with each other and the remodeler [40; 91; 95]. Leschziner used  

Orthogonal Tilt Reconstruction method (OTR) and showed that RSC posses a deep central 

cavity sufficient to fit in one complete nucleosome [94] (see Figure 12).  
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Figure 12: Electron microscopy reconstructions of ISWI class of remodelers 

 

1.3.3.3.2 ATP binding and Hydrolysis 

 

The remodelers require ATP to carry out its functions of altering nucleosome structures. In 

case of SWI/SNF class of  remodelers, their ATPase activity is stimulated by single stranded, 

double stranded or nucleosomal DNA all to the same extent [44; 50]. In strong contrast the 

ISWI group of remodelers exhibit ATPase stimulation to the nucleosomal substrates alone 

and not to DNA substrates [56]. It was also shown that the SWI/SNF group of remodelers 

have a higher turnover of ATP than that of the ISWI group of remodelers. These remodelers 

belong to the SF2 family of helicases but lack the double strand displacement activity [44].  
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1.3.3.4 Nucleosome Distortion/Disruption Processes 

 

The ATP dependant remodelers function by giving rise to a number of events with an end 

product as a result of distortions and disruptions of the nucleosomal substrate. The DNA that 

is buried deep inside the nucleosome needs to be exposed so that transcription factors and 

repair enzymes can nudge their way to such patches of DNA. This is aided by the remodelers. 

Some of the major nucleosomal disruption processes are summarised below [96] (Figure 13). 

 

Figure 13: Biochemical properties of ATP dependant Chromatin Remodelers 

 

1.3.3.4.1 Superhelical Torsion 

 

The presence of the helicases in remodelers substantiates the fact that the remodelers behave 

like helicases. A series of experiments done by Havas and colleagues [97] on different 
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chromatin remodelers show that the remodelers have a tendency to generate a super helical 

torsion in DNA. They were able to show that the remodelers like SWI/SNF, BRG1 ISWI and 

Xenopus Mi-2 were all able to generate super helical torsion in an ATP dependant manner 

(Figure 13 h).  

 

1.3.3.4.2 Nucleosome sliding 

 

Non ATP dependant mobilization of nucleosomes along DNA or translational positioning can 

occur probably due to high temperature or ionic conditions [98; 99]. However, the strong 

interaction between the DNA and the histones makes such an event to occur unfavourable. 

This is where the ATP dependant remodelers come into play. It has been shown by mobility 

shift assays that the remodelers are able to mobilize the histone octamer along the DNA [100] 

(Figure 13 d). The sliding of histone octamer on DNA in an ATP dependant manner was first 

reported on drosophila extracts [101; 102]. Subsequently, the other remodelers such as 

NURF, ISWI and CHRAC also exhibited mono-nucleosomal sliding on longer DNA 

templates [39; 103]. Apart from nucleosome sliding the ISWI group of remodelers were able 

to generate regularly spaced chromatin templates suggesting their role in chromatin assembly 

[100] (Figure 13 e). The SWI/SNF group of remodelers on the other hand are able to 

mobilize the centrally positioned nucleosomes to end positioned nucleosomes (pushing them 

to the end of the DNA template) away from the thermodynamically favourable position 

[104]. There is yet another event where the remodeler is capable of shifting the nucleosome 

50 bp beyond the DNA template end and such species of nucleosomes are referred to as 

recessed [105; 106]. While all the above papers show in-vitro evidences of nucleosome 

sliding, there are also evidences of the same in in vivo. The IFN-"!promoter!when! infected!

with viruses leads to the assembly of the enhancesome and pre-initiation complex. These 

factors always assemble on a nucleosome free promoter region. When the nucleosome 

position was analysed before and after the transcriptional activation it was seen that the 

TATA sequence for TBP binding which was blocked before, moved 35bp downstream 

allowing TBP to bind [107; 108]. Tsukiyama and group also showed nucleosome sliding in 

yeast by ISW2. Here, they used a galactose inducible allele of ISW2 to study the structural 

changes at the level of the promoter [109]. Figure 14 is a pictrographical representation of the 

different models of nucleosome sliding.   
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Figure 14: Models for Nucleosome Sliding (a) Twist Diffusion model (b) The Loop/Bulge 
propagation model. This image is adapted from [110]. 

 

1.3.3.4.3 Remodeling of Nucleosomes 

 

When remodelers interact with the nucleosomes in the presence of ATP, it gives rise to 

structural alterations of the nucleosomes necessary for their mobilization. These remodeler 

induced alterations are termed remodeling of the nucleosomes (Figure 13 a, b). Nucleosome 

remodeling can be detected by a number of approaches, including DNase I footprinting, 

restriction enzyme or nuclease accessibility analysis etc. The experimental data show that 

SWI/SNF remodelers are able to increase DNase I and restriction enzyme accessibility [96; 

111; 112]. Experiments performed on the nucleosome core particle with no free linker DNA 

were also able to give similar results. In addition hSWI/SNF and ySWI/SNF introduced 

stable topological changes in closed circular arrays [87; 113].  Site specific cross linking 

experiments done on the octamer and DNA did not prevent the SWI/SNF remodelers from 

remodeling the nucleosomes [114].  



 
 

34 
 

1.3.3.4.4 Alteration in nucleosome composition 

 

The disruption of the histone octamer with regard to the ATP dependant remodeling complex 

remains highly controversial. While in the beginning it was suggested that the remodelling by 

SWI/SNF leads to dissociation of H2A-H2B dimers or alters the histone folds [41; 44], 

histone crosslinking experiments later showed that the octamer disruption is not necessary for 

restriction enzyme accessibility [115]. Some studies suggest that dimer expulsion is needed 

when the nucleosomes are pushed to the end of the template and they are off the DNA 

template they tend to have a loose dimer-tetramer interaction. Two independent works 

suggest the transfer of H2A-H2B dimers from a mononucleosomal substrate to H3 �H4 

tetramer [116; 117]. The sequences used for this study was the Mouse Mammary Tumour 

Virus Promoter(MMTV) and these sequences are prone to dimer loses [118]. However, we 

cannot rule out the in vivo evidences that show the exchange or swap of H2A.Z-H2B dimers 

for H2A-H2B dimers [75; 76; 77]. 

 

1.3.3.5 Remosome  

Recently our laboratory has made a detailed analysis of the mechanism of action of RSC 

[111]. High resolution microscopy and novel biochemical techniques were used in this study. 

Atomic Force Microscopy (AFM) and electron cryomicroscopy show that two types of 

products are generated during the RSC remodelling reaction of centrally positioned 601 

nucleosomes: (i) stable non-mobilized particles, termed remosomes that contained about 180 

bp of DNA associated with the histone octamer and, (ii) slid to the end of the nucleosomal 

DNA particles (Figures 15 and 16). EC-M reveals that individual nucleosomes exhibit a 

highly irregular trajectory (Figure 15). Restriction accessibility analysis, DNase I footprinting 

and Exo III mapping clearly show that the histone-DNA interactions within the remosome are 

very highly altered, particularly at the nucleosomal dyad. The data suggest a two-step 

mechanism of RSC remodeling consisting of initial generation of a remosome, followed by 

its mobilization (Figure 16). It was further demonstrated in a series of biochemical 

experiments that the remosomes are intermediate products generated during the first step of 

the remodelling reaction that are further efficiently mobilized by RSC. The very recent data 

of our laboratory shows that, also SWI/SNF, but not ACF, was using the same two step 

mechanism for nucleosome remodelling (unpublished results). 
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Figure 15: Picture showing the experimental evidences of remosomes. 

 

Figure 16: Schematic representation of the two-steps, RSC induced nucleosome 

mobilization. 
 

 

 

- ATP

+ 

ATP

Atomic Force Microscopy

Electron Cryomicroscopy

Remosomes

Remosomes

RSC+ATP



 
 

36 
 

1.4 Histone Chaperones 

 

The! term! �molecular! chaperone�!was! first! coined! by!Ron! Laskey! [119; 120]. He used the 

word to describe the nuclear proteins in the extracts of frog oocytes that prevented the 

incorrect interactions between histones and DNA instead it would end up as aggregates. 

Lately, the term chaperones has been used to describe the molecules which prevents incorrect 

interactions. Similarly the histone chaperones protect the interaction between the negatively 

charged DNA and the positively charged histones.  

Histone chaperones are key molecules that play an important role in the assembling and 

disassembling of the nucleosomes (Figure 17). It has been established that the H3-H4 dimers 

are assembled into the H3-H4 tetramers on the DNA. This conformation of the H3-H4 

tetramer is formed with the help of the histone chaperone and it is this histone chaperone that 

deposits the tetramer on the DNA. This particular structure! is! called! the! �tetrasome�! [121; 

122].!To!this!�Tetrasome�!two!dimers!of!H2A!and!H2B!are!incorporated!thus!giving!rise!to!

the nucleosome core particle. What is important in this step of dimer deposition is that they 

need to be in the opposite direction and hence are deposited in a step wise fashion. While 

doing so, there are instances, where the presence of a single H2A-H2B dimer is termed as a 

�Hexasome�.! Histones! and! DNA! do! not! assemble! into! nucleosomes! under! physiological!

conditions as there is a higher tendency of the histones to no specifically bind to the DNA 

and leading to aggregates [121; 122]. This is exactly where the histone chaperones come to 

play their role of aiding in the molecular assembly and disassembly of the nucleosomes. 

These histone chaperones help in regulating the assembly and disassembly in a less energy 

consuming fashion. 

 

Histone chaperones are acidic in nature and it is a common trait between most of the 

chaperones. However they have very little sequence similarity. The histone chaperone Asf1 

has a hydrophobic beta sheet on the edge and this mediates with the histones [123]. However, 

on the other hand the histone chaperone Chz1 has an irregular chain and alpha helices which 

interacts with the H2A.Z and H2B [124]. Histone chaperones and their functions in particular 

are very diverse and in order to understand them the chaperones are classified into three 

categories. 

1. Chaperones that bind and transfer histones alone without involving additional partners, for 

example, Asf1. 

2.  Chaperones that combine several other histone chaperones subunits, for example, CAF-1. 
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3.  Chaperones that have histone binding capacity and are harboured within large enzymatic 

complexes, for example Arp-4 in INO80 Chromatin remodelling complex) [125; 126]. 

 

 

 

. 
 

 

Figure 17: Histone chaperones aid in step wise assembly and disassembly of the 

nucleosomes [121]. 
 

 

1.4.1 FACT (Facilitate Chromatin Transcription) complex 

 

Human FACT complex was first identified in the year 1998 as an essential factor for 

transcription elongation in the chromatin landscape [127]. The heterodimeric complex is 

composed of two proteins Spt16 and SSRP1. The SSRP1 protein has a homologous 

counterpart in yeast called Pob3 and a HMG protein called Nhp6.  Together they form the 

yeast FACT. Figure 18 shows the alignment and the domain breakup of the FACT complex 

in human and in yeast.  
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Figure 18: Domain distribution and structural alligment of hFACT againstyFACT. 
This Image is adapted from a recent review from Winkler and Luger [128]. 

 

FACT has been linked to activation of the tumour suppressor protein p53 and to histone 

variant H2AX-H2B in instances of DNA damage [129; 130]. However, in all three instances 

be it transcription, replication or repair, FACT functions by reorganising nucleosomes 

through the disruption of histone-histone and histone-DNA interactions. The FACT 

heterodimer also has the ability to deposit the H2A�H2B dimer and H3-H4 tetramer on the 

DNA [131]. It is also worthwhile to mention here that FACT aids in chromatin dynamics 

during certain critical processes in the cell and also has a histone chaperone activity. 

 

The histone modifications are an important step and are involved wherever the chromatin 

dynamicity or histone exchange is needed. Modifications of the core histones in the 

nucleosomes lead to alterations in the structural architecture of the chromatin. This may in 

turn lead to recruitment of the transcription machinery or a blockage of the machinery. These 

epigenetic modifications are carried out with the help of factors such as FACT, CHD1, 

SWI/SNF and ACF [34].  CHD1 a chromatin remodeler is always localised throughout the 
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coding region of actively transcribing genes with the help of a signal from the trimethylation 

mark on the Lys-4 of histone H3 (H3K4me3) [81; 82]. CHD1 and FACT physically interact 

with each other on the nucleosomes in the ORFs of active genes. Similarly, H2BK120ub1 is 

another epigenetic mark and is associated with the PAF complex and FACT [132]. FACT has 

also been implicated in repair and is involved in exchange of histone variants such as H2AX. 

This however is triggered by the phosphorylation of H2AX and this aid in easy exchange of 

variant histones through FACT [133; 134]. 

 

There are also instances where there can be direct modification on the FACT itself. For 

example poly(ADP-ribosylation) of the Spt16 subunit of FACT by PARP1 (poly(ADP-

ribose) polymerase 1 and this type of modified FACT cannot bind on nucleosomes in vitro 

[135]. Similarly, modification to the SSRP1 subunit of FACT alters the FACT activity levels. 

There is evidence of direct phosphorylation of the SSRP1 subunit by interaction with CK2 

(casein kinase 2) [136]. This phosphorylated subunit of FACT does not bind to the 

nucleosomes. Instead, when such phosphorylated SSRP1 is accumulated in a storage pool and 

can lead to sudden activation in vivo. Thus, we can say that the modification on FACT and its 

subunits moderates the nucleosome organisation and chromatin dynamics. 

 

1.4.1.1 FACT functional models 

 

There are two widely supported mechanisms of how FACT may function. While, on one 

hand! the! �Dimer! eviction!model�! suggests! that! the! histone!H2A-H2B dimers are displaced 

thereby providing access to the nucleosomal DNA [131; 137; 138].  This model comprises of 

three steps namely FACT binding to nucleosomes followed by FACT mediated H2A-H2B 

displacement and finally the reinsertion of the H2A-H2B dimers. This window between the 

displacement and the replacement of the dimers gives an ample amount of time for the RNA 

polymerase II to perform its function. In-vitro experiments suggest that the FACT complex 

has maximal activity when the FACT to the nucleosome ratio is near 1:1.  
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On the other hand the!�Global!accessibility!or!non-eviction!model�!suggests!that!it!is!just!the!

reorganisation of the nucleosomes, where the histone DNA contacts are lost, giving a 

sufficient window for accessibility to factors without histone eviction [139; 140]. This fairly 

recent model again includes three main steps. The first step involves the binding of Nhp6 

which leads to small perturbations and this in turn is an essential step for the recruitment of 

the ySpt16-Pob3. The second step involves the tethering of the yeast FACT to the histone 

components in the nucleosome. The final step involves the restoration of the whole 

nucleosome. A model endorsing the two pathways on FACT is shown in the Figure 19. 

 

 

Figure 19: Two Models for FACT mediated Nucleosome Reorganization. 

 

 

 

 

 

 

 



 
 

41 
 

1.5 DNA damage and Repair Systems 

 

1.5.1 DNA Damage 

 

The DNA present in the human body gets damaged due to tremendous endogenous and 

exogenous factors. The DNA in-spite of taking the beating from these factors bypasses them 

with a cascade of events where they are capable of repairing and correcting the aberrated 

DNA with the help of repair enzymes through certain designated pathways. The endogenous 

factors such as those present in the cytoplasmic environment cause DNA damage by 

hydrolysis of purine bases, deamination of cytosine to uracil and adenine to hypoxanthine or 

by oxidation and alkylation [141].The AP-site (Apurinic/Apyrimidiminic Site) is the most 

frequent and spontaneous type of DNA damage. The next most frequently occurring 

endogenous damage happens to be that of the deamination of cytosine to Uracil. The other 

deamination of adenine to hypoxanthine occurs at a lower frequency than that of the former 

[141].Metabolism also gives rise to certain reactive oxygen species also referred to as ROS 

that result in oxidation leading to fragmented or open ring structures of the bases or oxidised 

aromatic derivatives and could give rise to a possible mismatch. S-adenosylmethionine, a 

metabolic byproduct, is a genotoxic agent that attacks nucleophylic sites on the DNA and 

generates N-methyl purines and several alkylation lesions [141]. UV and ionising radiations 

result in the production of radicals, lesions and bulky adducts in the DNA. The above 

described mutations and damages might lead to genomic instability, cancer and subsequent 

organism death. All organisms have created very efficient strategies, the DNA repair 

pathways, to correct these aberrations and to maintain genome integrity and cell viability.  

 

1.5.2 Excision and repair of the DNA damage 

 

The cell has created two major mechanisms for excision of the DNA damage, namely 

Nucleotide Excision Repair (NER) and Base Excision Repair (BER). NER is a very 

complicated repair pathway which allows the removal of bulky adducts and photoproducts, 

attached to the nucleotides. NER functions via a complex, termed nucleotide excision 

repairosome, which consists of at least 30 proteins. To repair the lesion, the repairosome 

excises about 30 nucleotides during the repair process [142].  

BER is involved in the repair of small alterations of the bases and uses fewer enzymes. 

Importantly, in human cells  10-20000 DNA lesions are generated per day, which are repaired 
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by BER [141]. 8-oxoG is the most common base lesion corrected by BER [143]. The 

glycosylase required for this is OGG1. BER is also implicated in the removal of uracil 

formed in the DNA by either deamination of cytosine to uracil, thus resulting in U:G 

mismatch or by misincorporation of dUMP opposite to adenine residues. The glycosylase 

implicated in the removal of uracil is UDG. We will further describe in more details the 

mechanism of BER action in both naked DNA and chromatinized templates.    

 

1.5.2.1 Nucleotide Excision Repair 

 

Nucleotide excision repair has an elaborate mode of lesion detection. There are two major 

pathways in NER: Global Genome NER and Transcription coupled NER (Figure 20). The 

GG-NER screens first on the basis of disrupted base pairing instead of lesions per se like a 

patrolling inspector. In Transcription coupled NER, the lesions which prove as a hindrance 

for the polymerase to carry out transcription are repaired.  While the modes of repair in GG-

NER and TCR NER are strikingly different in their modes of detection and initial repair, 

there are overlapping or identical stages in the later part of the repair. There are 25 or more 

proteins playing a role in NER which are assembled step by step at the site of the lesion and 

then after the repair is done the complex is disassembled again. 

 

There are three main characterised syndromes which arise due to inborn defects in NER. 

They are namely Xeroderma pigmentosum (XP), Cockayne Syndrome (CS) and 

Trichothiodystrophy (TTD). They are all outcomes of extreme sun sensitivity [144]. 

Xeroderma pigmentosum arises from mutations in any one of the seven genes XPA through 

XPG and increases the frequency of tumours and induces neurodegeneration. In Cockayne 

Syndrome, a mutation in the CSA or CSB results in dysmyelination and physical impairment 

(dwarfism). There is also premature ageing due to increased apoptosis events. With regard to 

TTD (has some symptoms similar to Cockayne Syndrome) there is brittle hair, brittle nails 

and scaly skin [145]. 
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Figure 20: Nucleotide Excision Repair Pathway 

This image is adapted from [145]. 
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1.5.2.2 Base Excision Repair 

 

1.5.2.2.1. BER in naked DNA 

 

The different steps of BER on naked DNA templates were well characterized in vivo by 

using purified recombinant proteins (Figure 21) [146]. BER consists of two main steps. 

During the first step a specific glycosylase recognizes the modified base and removes it. This 

results in the generation of apyrimidic/apurinic (AP) site intermediates [147]. This step of the 

BER pathway is realized in both short patch BER, which involves the removal of only one 

nucleotide or long patch BER, which is implicated in the replacement of 2-13 nucleotides 

(Figure 21)[146]. An AP endonuclease activity then cleaved the AP site resulting in the 

formation! of! a! 3�-hydroxyl! and! 5�-deoxyribose phosphate or alternatively by an AP lyase 

producing!a!5�-phosphate!and!a!3�-fragmented deoxyribose. In the short patch BER, the 5�-

dRP can be removed by the dRPase activity of polymerase b (pol b) and the 3�-abasic 

terminus left by AP lyase is cleaved by the 3�-diesterase activity of polymerase b (pol b) and 

the 3� -abasic terminus left by AP lyase is cleaved by the 3� -diesterase activity of AP 

endonuclease. The resulting gap is #lled by pol b and the remaining nick is sealed by DNA 

ligase I or III. In the case of long patch BER, however, additional factors such as FEN1, 

PCNA and RFC are involved. After the formation of the AP site by AP endonuclease, pol g 

or pol e extend the DNA strand from 3�-OH which is accompanied by displacement of the 

strand containing 5�-dRP for several nucleotides. The resulting $ap is removed by the activity 

of FEN1 producing a nick that is ligated by DNA ligase I. The accessory factors such as 

PCNA and RFC enhance the activity of DNA pol g and pol e in this pathway (Figure 21). 

 

. 
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Figure 21: A schematic representation of both short-patch and long-patch base excision 

repair 

 

1.5.2.2.2 BER in nucleosomes       

  

The nucleosomes, as expected, impede BER. However, the BER enzymes involved in the 

repair of distinct lesions are differently affected. For example, 8-oxoG was very unefficiently 

repaired when it was inserted close to the dyad axis of centrally positioned 601 nucleosomes 

[148]. Indeed, OGG1, APE1 and Polymerase " activities were strongly reduced in such 

nucleosomes. However, SWI/SNF stimulated the processing of 8-oxoG by each one of the 

three BER repair factors to efficiencies similar to these for naked DNA. Interestingly, 

SWI/SNF induced remodelling, but not mobilization of conventional nucleosomes, was 

required to achieve this effect [148]. Recently, BER was also studied in dinucleosomal 

templates with or without linker histone H1 [149]. A single 8-oxoG was inserted either in the 

linker or the core particle DNA within the dinucleosomal template. It was found that in the 

absence of histone H1 the glycosylase OGG1 removed 8-oxoG from the linker DNA and 

cleaved DNA with identical efficiency as in the naked DNA. In contrast, the presence of 

histone H1 resulted in close to 10-fold decrease in the efficiency of 8-oxoG initiation of 
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repair in linker DNA independently of linker DNA length. The repair of 8-oxoG in DNA 

within the core particle was very highly impeded in both absence and presence of histone H1. 

Chaperone-induced uptake of H1 restored the efficiency of the glycosylase induced removal 

of 8-oxoG from linker DNA, but not from the nucleosomal DNA. However, the removal of 

histone H1 and nucleosome remodeling are both necessary and sufficient for an efficient 

removal of 8-oxoG in nucleosomal DNA. 

 

 The situation appeared, however, to be quite different for the activity of uracil DNA 

glycosylase (UDG) which recognises and excises uracil bases from DNA [150]. A recent 

study used a set of model nucleosome substrates in which single thymidine residues were 

replaced with uracil at specific locations and a second set of nucleosomes in which uracils 

were randomly substituted for all thymidines. It was found that UDG efficiently removes 

uracil from internal locations in the nucleosome where the DNA backbone is oriented away 

from the surface of the histone octamer, without significant disruption of histone-DNA 

interactions. However, uracils at sites oriented toward the histone octamer surface were 

excised at much slower rates, consistent with a mechanism requiring spontaneous DNA 

unwrapping from the nucleosome. In contrast to the nucleosome core, UDG activity on DNA 

outside the core DNA region was similar to that of naked DNA. Association of linker histone 

reduced activity of UDG at selected sites near where the globular domain of H1 is proposed 

to bind to the nucleosome as well as within the extra-core DNA. These results indicate that 

some sites within the nucleosome core and the extra-core (linker) DNA regions represent hot 

spots for repair that could influence critical biological processes. 
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1.6 Transcription Factor NF- B!(Nuclear Factor Kappa B) 

 

1.6.1 NF- B 

 

The transcription factor NF- B! plays an important role in many cellular processes and 

remains a hot area of interest. This transcription factor by the name of NF- B!(Nuclear Factor 

Kappa B) was first described and reported by Baltimore and Sen as a transcription factor that 

binds to the enhancer element controlling the formation of the immunoglobin kappa light 

chain and its expression [151]. It derives its name since it was first reported to be found in B 

cells. Since then NF- B!has been vividly reported in many journals as a molecule playing an 

important role in inflammatory responses, immune reactions and in tumorigenesis and cancer. 

25 years since its discovery it is one molecule that has been extensively studied and a lot 

needs to be understood as to how it plays such a crucial role. 

 

1.6.2 The Family Tree of NF- B!proteins 

 

NF- B! is the most widely encountered member! of! a! family! of! transcription! factors,! �the!

dimers!of!Rel!proteins�. In mammalian cells, the NF- B/Rel family contains five members: 

RelA (p65), c-Rel, Rel B, NF- B1 (p50 ; p105) and NF- B2 (p52 ; p100) [152] (Figure 22). 

These proteins have homology and possess a structurally conserved 300 amino acid sequence 

called the REL region, a structurally similar motif, referred to as the Rel Homology Region 

(RHR, sometimes also referred as RH). This Rel Homology Region is responsible for 

locating the binding sequence on the DNA, dimerization with other Rel Proteins and most 

importantly nuclear localization. Rel proteins are utilized by many eukaryotic organisms and 

the RH domain remains highly conserved amongst them.  

 

While all Rel proteins share a similar motif, they can still be divided into two classes based 

upon the sequence at the C-terminal side of the RH. The first class of proteins consists of a 

long chain of repeats that inhibit their function. The second class of Rel proteins contains a 

transcription activator region on the C- terminal end of the RH. 

  

Three of the family members, Rel A(p65), c-Rel(Dorsal and Dif in Drosophila), and Rel B, 

have a transactivation domain(TD) at the C-terminus (Figure 22). The transactivation 

domains consists of regions rich in serine, acidic and hydrophobic residues which are 
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essential for trans-activation activity. NF- B1/p105 and NF- B2/p100 are the inactive 

precursors of the p50 and p52 proteins, respectively and in an un-stimulated state; these 

proteins are localized to the cytoplasm. These proteins are processed proteolytically and their 

C-terminal domains are removed, thereby providing these proteins admission inside the 

nucleus [153]. 

 

p50 and p52 usually form homodimers or heterodimers with one of the three proteins that has 

a transactivation domain. RelA and p50 exist in a wide variety of cell types, while c-Rel 

expression is confined to hematopoietic cells and lymphocytes (Figure 22). The expression of 

Rel B!is!limited!to!highly!specific!sites,!such!as!the!thymus,!lymph!nodes!and!Peyer�s!patches 

[2]. In addition to the heterodimers p50/p65 homodimers of these Rel proteins also exists. It 

has been reported that p50 and p52 homodimers do not induce transcription. They are thought 

to be used as post-induction repressors, following invasion by pathogens [154; 155]. 

However, it has been demonstrated in vitro that p50/p50 has kB site dependant transcriptional 

activation [156]. 

 

NF- B!! is induced by stimuli such as pro-inflammatory cytokines and bacterial toxins such 

as LPS and exotoxin B and a number of viruses/ viral products (HIV-1,HTLV-1,HBV, EBV, 

Herpes Simplex) as well as pro apoptic and necrotic stimuli(oxygen free radicals, UV light 

and gamma irradiation)  

 

Although each NF- B!dimer has a different DNA-binding affinity for kB sites bearing the 

consensus sequence GGGRNNYYCC (R, purine : Y, pyrimidine : N, any base)[157], their 

functions often overlap. NF- B complexes composed solely of family members lacking 

transactivation domains, such as p50 homodimers, are thought to impose transcriptional 

repression [158]. 
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Figure 22: NF- B!family 

 

1.7 UV laser fooprinting  

 

UV irradiation of protein-DNA complexes results in different types of lesions in DNA, the 

lesion spectrum depending on the presence and type of proteins in these complexes [159; 

160; 161; 162; 163] (Figure 23). This dependence is determined by local conformational 

changes in DNA induced by protein-DNA interactions which can be easily mapped (Figure 

25).  In fact, UV light "feels" the local DNA structure. Thus, it can be used as a probing agent 

for the analysis of both protein-DNA interactions and DNA conformation. The method 

developed for this analysis is called "photofootprinting". The use of UV lasers has many 

advantages compared to conventional light sources. With a single UV laser pulse a footprint 

of the protein is achieved. Additionally, high intensity laser irradiation, contrary to 

conventional light sources, induces specific biphotonic lesions in DNA. These lesions are 

extremely sensitive to local DNA structure and can be easily detected by treatment with 

chemical reagents or enzymatic digestion. 
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Irradiation of DNA with conventional UV light sources produces mainly two types of 

monophotonic lesions: cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6-4) 

pyrimidone monoadducts ( (6-4) PPs). The efficiency of induction of these photolesions 

might be affected by the presence of specifically bound proteins. This has been exploited to 

map in vivo the interactions of different transcription factors with their cognate DNA 

sequence [159; 160; 161; 162]. UV irradiated DNA was digested with T4 endonuclease V 

(for detection of CPD's) or treated with hot piperidine (for (6-4) PP detection). The sites of 

the cleavage were found by ligation mediated PCR, followed by separation on a sequencing 

gel. The above two types of monophotonic lesions can also be induced by using UV laser 

irradiation, and this was used by Geiselmann and coworkers [163] to study the interactions of 

integration host factor of E. coli with DNA.  

 

Laser irradiation induces both monophotonic and laser specific oxidative lesions. However, 

by changing irradiation conditions one can create mostly one type of lesions only. For 

example, upon high intensity laser irradiation essentially oxidative lesions are formed, the 

quantum yield of monophotonic lesions being strongly reduced. 

 

Figure 23: Illustration depicting the biphotonic mechanism of UV laser induced photo 

lesions. 

 

Two well studied laser-induced oxidative lesions are: 8-oxodG and oxazolone [164; 165] 

(Figure 24). These lesions are very sensitive to local helical DNA conformation and they can 

Biphotonic products:

1. Oxidized nucleosides, 

2. DNA-proteins crosslinks
S0

S1

Ionization

energy

Sn
+

hn

hn

Mechanism of UV laser induced photolesions

Targets: DNA bases

Wavelength of irradiation: 266 nm

Laser pulse duration: pico- or nanoseconds

Mechanism: biphotonic reaction

The UV laser irradiation could be used for both photofootprinting 
and protein-DNA crosslinking
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be analyzed and quantified at the nucleotide level by treatment with specific reagents. 8-

oxodG is quantitatively cleaved by Fpg protein, while oxazolone is removed upon hot 

piperidine treatment [164] (Figure 24). Separation of the cleaved irradiated DNA allows one 

to find the positions and the relative yield of the lesions [165]. The chemical mechanism of 

formation of these two types of lesions is well documented. These lesions originate from the 

competitive transformation process of the transient guanine radical cations precursor 

generated by a biphotonic absorption and ionization mechanism. The majority stable product 

8-oxodG is formed through hydration at position 8 while the less favourable oxazalone is 

formed upon deprotonation of the radical cation precursor. [165]. 

 

 

Figure 24: Chemical and enzymatic mapping of DNA lesions generated by UV laser 

biphotonic ionization chemistry. 

 

We have employed the same technique to study the interaction of the transcription factor NF-

 B!on nucleosomes. The nucleosomes were constructed on the 601 DNA with the NF- B!! 

binding site introduced inside the sequence at the dyad and at the linker. We performed also 

similar experiments with the isolated species of nucleosomes, remosomes and slid and 

compared the transcription factor binding ability.  
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I.8 Objectives 

 

 

FACT is an important protein with diverse roles in different vital for the cell processes. 

Despite the impressive efforts invested how FACT assists, however, DNA repair and 

transcription remains elusive. The current view is that FACT is facilitating these two 

processes by modulating the structure of the nucleosomes, but the available data are 

contradictory and do not allow to have a clear picture of FACT activities. 

 

The two main objectives of the present study are: 

(a) To decipher the molecular mechanism of FACT functioning in Base Excision Repair. 

(b) To understand how FACT modulates the structure of the nucleosome and gives easier 

access to the underlying nucleosome DNA sequence by studying the interaction of the 

transcription factor NF- B!with nucleosomal templates. 

 

We have addressed these questions in vitro by using a number of molecular biology and 

biochemistry methods and reconstituted nucleosomal templates.  We discovered that FACT 

exhibits! a! �co-remodeling�! activity! and! it! is! able to boost the remodelling activity of the 

chromatin remodelers RSC and ACF. Our in vitro experiments demonstrate that FACT 

facilitates both BER and NF- B binding to nucleosomes via its co-remodeling activity.  We 

anticipate that this property of FACT is essential for its in vivo function.  
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Chapter 2  

 

FACT assists base excision repair by boosting the remodeling activity of RSC 
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2.1 Summary 

FACT protein, in addition to its role in transcription, is involved in the repair of damaged 

DNA. Although, how FACT assists repair remains elusive. In this work, we have studied the 

role of FACT in Base Excision Repair (BER). As a model system we have used positioned 

nucleosomes containing uracil randomly incorporated in nucleosomal DNA. UDG, in 

agreement with the available data, was able to remove uracils facing the solution, but not 

uracils facing the histone octamer. FACT alone has no effect on the UDG-mediated removal 

of uracil. The simultaneous presence of FACT and RSC (a chromatin remodeler involved in 

repair) allows, however, a very efficient  removal of uracil facing the histone octamer by 

UDG as well as the removal by OGG1 of the otherwise un-accessible oxidative lesion 8-

oxoG from nucleosomal templates. This was achieved thanks to the un-expected novel 

property of FACT to greatly enhance both the remodeling and mobilization activity of RSC. 

The experimental results reveal that the presence of FACT increases the efficiency of RSC to 

transform the energy freed by ATP hydrolysis into!�mechanical! �work. The presented data 

suggest a stochastic nature of BER functioning in vivo with FACT being a key factor in the 

repair process. 

 

2.2 Introduction 

DNA is packaged under the form of chromatin in the eukaryotic nucleus. The nucleosome, 

the repeating unit of chromatin, consists of an octamer of core histones (two each of H2A, 

H2B, H3 and H4), around which DNA is wrapped in close to two superhelical turns [166]. 

The DNA, connecting the consecutive nuclesomes, is called linker DNA and a fifth histone, 

termed linker histone, interacts with it [166]. Each core histone contains a structured domain, 

the histone fold, and an unstructured NH2-terminus [167; 168; 169]. Both the linker histone 
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and the core NH2-termini are involved in the assembly and maintenance of both the 30 nm 

chromatin fiber [14; 170] and the mitotic chromosomes [171; 172].  

The nucleosome is a barrier for numerous processes requiring access to the naked DNA 

underlying sequences[23]. The three main strategies that the cell uses to overcome the 

nucleosome barrier are the posttranslational modifications of core histones[24], the 

incorporation of histone variants in chromatin[31; 173]  and the chromatin remodelers[25; 

86]. The chromatin remodelers are very sophisticated nanomachines able to perturb the 

histone-DNA interactions and to mobilize the histone octamer along DNA by using the 

energy freed by the hydrolysis of ATP[25; 100; 174; 175]. Depending on the type of ATPase 

that the chromatin remodelers contain, they are classified in at least four main groups, namely 

the SWI/SNF, ISWI, CHD and INO80 families [100; 176; 177]. The chromatin remodeler 

RSC belongs to the SWI/SNF family and it is involved in the repair of damaged DNA [50; 

177]. RSC contains a central cavity sufficient for binding of a single nucleosome [92]. We 

have recently analyzed the mechanism RSC-induced nucleosome mobilization and have 

shown that RSC generates initially an ensemble of particles with highly altered histone-DNA 

interactions, which are further mobilized by RSC [111]. 

Base Excision Repair (BER) is the major pathway that the cell uses to repair lesions induced 

upon oxidative stress. The different steps of BER functioning on naked DNA are well 

understood, but how BER functions on chromatinized templates remains elusive. The 

reported data show that the presence of nucleosomes interferes strongly with BER, although 

the different BER enzymes are affected in distinct manner[146; 150; 178; 179; 180; 181]. For 

example, the accessibility in nucleosome DNA of uracil DNA glycosylase (UDG) is reduced 

down to 30-fold and the removal of histone octamer facing uracil, in contrast to the removal 

of solution facing uracil,  is greatly (up to 3 orders of magnitude) inhibited[150]. No such 

rotational position dependence of the BER enzyme OGG1 removal of 8-oxoG, the major 
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oxidative lesion, was, however, observed [148]. Indeed, in this later case the nucleosome 

remodeling by SWI/SNF was a prerequisite for efficient repair [148; 149].  

Human FACT (Facilitates Chromatin Transcription) protein consists of two subunits, hSpt16 

and SSRP1, which are both required for functionality [138]. FACT exhibits a histone 

chaperone activity, it makes a complex with the H2A-H2B dimer and the (H3-H4)2 tetramer 

and is able to deposit them on DNA [131]. In addition to its role in transcription, FACT 

appeared also to be implicated in both replication and repair of damaged DNA [182]. FACT 

was found in a complex with casein kinase 2 (CK2), which phosphorylates p53 in a DNA 

damage dependent manner resulting in an increase of p53 activity [129; 136]. FACT was also 

involved in both phosphorylation and exchange of histone variant H2A.X, two critical events 

related to the repair of DNA damage [130]. No other data are, however, available on the 

direct role of FACT in the processes of repair of damaged DNA. 

In this work in a series of in vitro experiments we have analyzed the role of FACT in BER of 

uracil containing nucleosomes and we discovered a novel function of FACT in this process. 

Our data show that FACT greatly facilitates the removal of uracil by UDG from nucleosomal 

DNA by boosting the activity of the involved in DNA repair chromatin remodeler RSC. This 

suggests that in vivo FACT might act in a concert with RSC to repair damaged DNA.  

 

2.3 Results 

2.3.1 Effect of FACT on the efficiency of UDG removal of uracil from nucleosomal DNA 

To address the potential role of FACT in BER we have used reconstituted centrally 

positioned nucleosomes. FACT was purified to homogeneity from HeLa cells by double 

immuno-affinity procedure (Supplementary Figure 1C and Materials and methods). The 

histone octamer was assembled with highly purified recombinant core histones 

(Supplementary Figure 1A) and the nucleosome reconstitution was carried out by using the 



 
 

57 
 

601 sequence, containing randomly incorporated uracil [180]. The reconstitution conditions 

were optimized and essentially all DNA was assembled into nucleosomes (Supplementary 

figure 1B). The OH and DNAse I footprintings (Figures 2A, 4) showed clear 10 bp cleavage 

pattern further confirming the proper wrapping of the nucleosomal DNA around the histone  

octamer in the reconstituted samples. The reconstituted nucleosome samples were then 

incubated with increasing amount of UDG (Figure 1, lanes 3-6), DNA was isolated and after 

alkali treatment (to cleave the DNA phosphor-backbone at the abasic site generated upon 

removal of uracil by UDG) the cleaved DNA was run on a PAGE under denaturing 

conditions. The cleavage pattern of the free DNA arms of the nucleosome DNA is identical to 

the cleavage pattern of the naked DNA (Figure 1, bottom of the gel, compare lanes 3-6 with 

lanes 21-24). Although, the cleavage pattern of the nucleosomal DNA strongly differed from 

this of naked DNA (upper part of the gel, compare lanes 3-6 with lanes 21-24). Comparison 

with the OH footprinting of the nucleosome particles (lanes 1 and 25) shows that even at the 

highest concentration of UDG used, cleavage in nucleosomal DNA is only observed at the 

sites facing the solution which are also accessible to OH° radicals. This result is in perfect 

agreement with the reported data  
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Figure 1. The simultaneous presence of both FACT and RSC, but not FACT alone, is 
required for efficient UDG excision of uracil at nucleosomal DNA sites oriented towards the 
histone octamer. Centrally positioned nucleosomes were reconstituted by using 32

P!5�-labeled 
255 bp 601 DNA fragment containing randomly incorporated uracil residues. (A) Lanes 3-6: 
analysis of the UDG enzymatic activity within the nucleosomal and linker DNA. The 
nucleosome solution was incubated with the indicated increasing (nine fold step) amount of 
UDG for 60 minutes at 30°C and the cleavage pattern of the isolated DNA  was analyzed 
using PAGE under denaturing conditions; lane 2, no UDG added lane 1; OH radical 
footprinting of the nucleosomes. (B) Lanes 8-12: RSC induces a highly efficient UDG-
mediated excision of uracil at inward facing sites within the nucleosome. Nucleosomes were 
incubated with increasing (two-fold step) amount of RSC for 50 minutes at 30°C, and after 
arresting the reaction they were treated with 9-2units of UDG and the isolated cleaved DNA  
analyzed on denaturing PAGE; lane 8, control with no RSC added in the reaction. (C) Lanes 
14-19: FACT facilitates the RSC-dependent UDG excision of uracil at inward facing sites 
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within the nucleosome. Nucleosomes were incubated with increasing (2 fold step) amount of 
FACT in the presence of  0.2units of RSC and, after arresting the reaction they were treated 
with 9-2units of UDG. The cleaved purified DNA was analyzed on denaturing PAGE; lane 
13, control containing 1.6pmol of FACT with no RSC added. Note that this highest used in 
the experiment concentration of FACT does not affect the excision of uracil by UDG. (E) 
UDG cleavage pattern of the naked 255 bp 601 fragment. The experiment was carried out as 
described in (A), but with nine-fold smaller concentration of UDG an each respective point; 
on the left is shown schematics of the nucleosome.  
 

(REF) and illustrates the inability of UDG to remove uracil from sites facing the histone 

octamer. Noteworthy, the presence of 1.6 pmol FACT in the reaction mixture does affect 

neither the efficiency nor the pattern of removal of uracil by UDG (compare lane 13 with lane 

4; note that in both cases the same concentration of UDG (9-2units) was used  

Pretreatment of the nucleosome samples with increasing amount of RSC changed, however, 

completely the UDG cleavage pattern of nucleosomal DNA , i.e. it became qualitatively 

indistinguishable from this of naked DNA (compare lanes 8-12 with lanes 21-24). Thus, the 

RSC induced remodeling of the nucleosomes renders all uracil residues (including the ones 

facing the histone octamer) accessible to UDG. Intriguingly, the same effect was observed 

when a very small amount (0.15 Units) of RSC (this amount of RSC was unable to change 

the UDG accessibility to uracil, see lane 8) and increasing amount of FACT was used for the 

pretreatment of nucleosomes (compare lanes 14-19 with lanes 21-24). This shows that in 

vitro FACT and RSC act in concert to facilitate the UDG removal of uracil from nucleosomal 

DNA and suggests that in vivo they could act similarly to assist BER.  
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2.3.2 FACT boosts both the remodeling activity and the capacity of RSC to mobilize the 

nucleosomes 

To analyze how FACT affects the remodeling activity of RSC we have used DNase I 

footprinting. Briefly, we have incubated 601 end-positioned nucleosomes with RSC either in 

the absence or presence of FACT and after arresting the remodeling reaction, the samples 

were treated in controlled manner with DNase I. The cleaved DNA was then purified and 

analyzed on a PAGE under denaturing conditions (Figure 2A). The presence of FACT alone, 

as expected, did not change the clear 10 bp cleavage pattern of nucleosomal DNA (Figure 

2A, compare lane 1 with lane 2). This reveals that under the conditions of the experiment, 

FACT does not alter the structure of the nucleosome. When incubated with 0.2 units of RSC 

nucleosomes exhibited some alterations in the DNase I cleavage pattern, testifying for some 

relatively small perturbations in the histone-DNA interactions induced by RSC (compare lane 

3 with lanes 1 and 2). Remarkably, the treatment of the nucleosomes with the same amount of 

RSC, but in the presence of 1.6pmol of FACT, resulted in very pronounced alterations in the 

DNase I digestion pattern (lane 4). The same altered DNase I digestion pattern was observed 

with 5-fold more RSC in the absence of FACT (1unit, lane 5). We conclude that FACT 

exhibits! strong! �co-remodeling�! activity and is able to boost no less that 5-fold the 

remodeling activity of RSC.  

The effect of FACT on the efficiency on nucleosome mobilization by RSC was studied by 

EMSA (Figure 2B, C). Treatment with 0.2 units of RSC led to mobilization of a very small 

part of the nucleosomes (not exceeding 20%, see Figure 2B and quantification on Figure 2C). 

The presence of increasing amount of FACT in the reaction mixture led to a strong increase 

of the amount of slid nucleosomes and already at the highest concentration (1.6 pmol) of  
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Figure 2. FACT facilitates both RSC-induced remodeling and mobilization of nucleosomes. 
(A) DNase I footprinting. End-positioned nucleosomes, reconstituted on 32

P!5�-labeled 241 
bp 601 DNA fragment, were incubated with 0.2 units of RSC in the absence (lane 3) or in the 
presence of 1.6 pmol of FACT (lane 4)  for 50 minutes at 30°C; lane 5, same as lane 3, but 
with 1 unit of RSC; After arresting the remodeling reaction, the samples were digested with 
0.1 units of DNase I for 2 minutes, the cleaved DNA was isolated and run on 8% PAGE 
under denaturing conditions; lanes 1 and 2, controls showing the DNase I cleavage pattern of 
nucleosomes (lane 1) alone or  incubated with 1.6pmol FACT under the conditions described 
above. (B) The presence of FACT increases the efficiency of RSC-induced nucleosome 
mobilization. Centrally positioned nucleosomes were incubated with 0.2 units of RSC in the 
presence of increasing amount of FACT, the reaction was arrested and the samples were run 
on native PAGE. The position of the unslid and slid nucleosomes were indicated; lane 1 
control nucleosomes; lane 2, nucleosomes incubated with RSC alone (in the absence of 
hFACT) (C) quantification of the data presented in (B). 
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FACT, the slid nucleosomes represent 57% from the overall nucleosome population (Figure 

2C). Similarly, the presence of FACT in the remodeling mixture led to strong increase in the 

time-course of the mobilization reaction (Supplementary Figure 2).  Therefore, FACT boosts 

the RSC ability to mobilize the nucleosomes. 

 

2.3.3 FACT efficiently assists RSC to generate nucleosome-like structures exhibiting 

high accessibility to restriction enzyme  

Our recent high-resolution microscopy and biochemical data suggested an intriguing two 

step-mechanism for RSC nucleosome remodeling (REF). The first step consists in a 

formation of a stable, non-mobilized particle, termed remosome, which contains ~ 180-190 

bp of DNA loosely attached to the histone octamer. The remosome is formed by RSC-

pumping of ~ 15-20 bp from each end of the free DNA linkers of the nucleosome without 

repositioning of the histone octamer. During the second step, the remosome is mobilized by 

RSC [111].  

The main characteristic of the remosome is the higher accessibility of its DNA to restriction 

enzymes. To test if FACT was able to facilitate the generation of remosomes by RSC we 

have! used! the! recently! developed! �in! gel! one! pot! assay�[111]. This approach detects 

quantitatively the alterations in histone-DNA interactions with a 10 bp resolution all along 

the nucleosomal DNA (Figure 3 and [111; 183]. Briefly, eight mutated 32P-end labeled 255 

bp 601.2 sequences were used to reconstitute centrally positioned nucleosomes. A single 

HaeIII restriction site (designated as d0 to d7, where the subscript refers to the number of 

helical turns from the nucleosome dyad) was inserted within each of these sequences. The 

equimolar mixture of the eight reconstituted nucleosomes was incubated with appropriate 

amount of RSC either alone (to produce ~15% of slid nucleosomes) or in the presence of 
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Figure 3.! �In! gel! one!pot! assay�!analysis!of! the! effect! of!FACT!on! the!DNA!accessibility!

towards HaeIII along the length of nucleosomal DNA in control and RSC treated 
nucleosomes. (A, B) Effect of hFACT on RSC-induced remosome generation. (B) 
Preparative PAGE. Centrally positioned nucleosomes were treated with increasing amount of 
FACT in the presence of 0.2 units of RSC and after arresting the reaction they were separated 
on native PAGE; last lane, nucleosomes treated with 5-fold higher amount (1 unit) of RSC, in 
the absence of hFACT; the first three lanes, untreated, and treated  with hFACT and with 0.2 
units of RSC nucleosomes, respectively. The indicated bands (from 1 to 9) were excised from 
the gel and in-gel digested with 8 units of HaeIII for 10 minutes at 30°C. The cleaved DNA 
was then isolated and separated in 8% PAGE under denaturing conditions (B). The positions 
at the cleavage of the different dyads are indicated on the left; the numbers of each lane refers 
to the respective excised bands from the preparative PAGE (see A); ctrl, control, non digested 
DNA; DNA, naked DNA used for reconstitutions of the nucleosomes digested with HaeIII. 
(C) Quantification of the data presented in (B). The # indicates a fragment that corresponds to 
a HaeIII! site!present!only! in!�dyad!7�!601.2! fragment!and! located!at!4!bp!from!the!dyad!7!

(d7) site 
 
 

increasing amount of FACT (Figure 3B). A FACT-concentration dependent mobilization of 

the nucleosome is observed as judged by the EMSA (Figure 3B). The upper electrophoretic 

band, containing the remosome fraction as well as the designated slid nucleosome fraction 
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were excised and in gel digested with HaeIII. The digested DNA was purified from the gel 

and run on an 8% PAGE under denaturing conditions. A similar experiment using either 

control nucleosomes or nucleosomes treated with FACT (in the absence of RSC) was also 

performed. The gel was then dried and the product bands were visualized by exposure on a 

PhosphorImager and quantified. As seen (Figure 3C, D), and in agreement with the reported 

data [111], the accessibility of the control particles (in the absence of FACT) to the restriction 

enzyme strongly decreases from d7 to d0. FACT does not affect this behavior of the HaeIII 

digestion pattern. In fact, d7 and d6 behaved differently compared to the other positions and 

showed a high percent of cleavage (up to 50% in the case of d7). In contrast, the internally 

located positions (from d4 to d0) were poorly cleaved. This is in agreement with the reported 

data and reflects the mode of association of the histone octamer with the nucleosomal DNA 

[183]. Noteworthy, these results reveal that FACT alone in the concentrations used does not 

affect the histone-DNA interactions within the nucleosome.  

However, upon incubation with both RSC and FACT, all sites along nucleosomal DNA 

exhibited highly altered accessibility (Figure 3C, D). The accessibility of d7 decreased 

relative! to! the! control! particles! (this! effect! is! due! to! the! �pumping�! of! linker!DNA! in! the!

nucleosome [111], while that of the other positions strongly increased. This increase in the 

HaeIII accessibility profile paralleled the increase of FACT concentration used in the 

remodeling reaction. Since this altered HaeIII accessibility profile is a remosome specific 

structural! �signature�[111], we conclude that FACT assists RSC in perturbing the histone-

DNA interactions in the nucleosome and in the subsequent generation of remosomes.  
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2.3.4 UDG removes histone octamer faced uracil from both remosomes and slid 

nucleosomes with the same efficiency 

Since FACT increases impressively the capacity of RSC to generate remosomes, its 

involvement in repair might be mainly associated with this specific to it property. If this was 

the case, one should expect damaged DNA to be easily repaired within the remosome. We 

have addressed this question by studying the ability of UDG to remove uracil from 

remosomes (Figure 4). In agreement with the data in Figure 1, UDG was unable to excise 

histone octamer facing uracil from the control nucleosome (Figure 4,! �nucleosomes�).!

Although, even at the lowest concentration of UDG (0.003 units) used in the experiments, in 

addition to solution facing uracil, the histone octamer facing uracil was rather efficiently 

removed!(Figure!4,!�remosomes�).! !Upon!increasing! the amount of UDG, the efficiency of 

removal increases and achieves saturation at ~5x6-1
units!of!UDG!(Figure!4,!�remosomes�).!

Excision of uracil from slid nucleosomes exhibits essentially the same behavior (Figure 4, 

�slid�).! These! results! reveal! that! the! alterations of the histone-DNA interactions in the 

remosome are sufficient for achieving efficient repair.  
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Figure 4. Efficient UDG excision of uracil from RSC-generated remosomes and slid 
nucleosomes. 32

P!5�-labeled  255 bp 601 DNA fragment containing randomly incorporated 
uracil residues was used for reconstitution of centrally positioned nucleosomes. The 
nucleosomes were treated with RSC either in the absence of ATP (control particles)  or  in 
the presence of ATP to produce ~ 50% mobilized particles. The remodeling reaction was 
arrested and the samples were separated on native PAGE. The slid nucleosomes and the non-
mobilized nucleosomes (containing the remosome fraction) as well as the control 
nucleosomes  were eluted from the gel slice. The particles were then treated with the 
indicated increasing concentrations of UDG, the cleaved DNA was isolated and run on 8% 
PAGE under denaturing conditions; DNA, naked 255 bp 601 DNA fragment digested with 
UDG; first and last lane, OH radical footprinting of native nucleosomes; on the right part of 
the figure is shown a schematics of the reconstituted nucleosome. 
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2.3.5 The presence of FACT increases the efficiency of RSC to transform the energy 

freed by ATP!hydrolysis!into!�mechanical� work   

The above presented data reveals that FACT assists very efficiently RSC to both alter the 

histone-DNA interaction and to mobilize the nucleosome in an ATP-dependent manner. To 

achieve this, FACT could either act on the nucleosomal substrate or on RSC or on both of 

them. To differentiate between these possibilities we have carried out the RSC nucleosome 

mobilization assay at increasing concentration of FACT, but at low ATP concentration (120 

µM). At this low concentration of ATP it is possible to precisely measure the amount of ATP 

hydrolyzed by ATP and thus, to precisely determine the percentage of nucleosomes 

mobilized!by!the!hydrolysis!of!a!�unit�!of!ATP.!Under!the!conditions!of!the!experiment,!the!

increase of the FACT concentration results in a 3 fold increase (from 20% to 60 %) of the slid 

by RSC nucleosomes (Figure 5A). Remarkably, under the same experimental conditions no 

changes in the amount of hydrolyzed ATP was detected (Figure 5B). This demonstrates that 

the presence of FACT does not affect the ATPase activity of RSC, while it boosts very 

strongly the generation of slid nucleosomes, i.e. ~4-5-fold more slid nucleosomes are 

generated per unit of hydrolyzed ATP in the presence of the highest amount of FACT 

(1.6pmol) used in the experiments. In other words, the presence of FACT allows RSC to 

transform much more efficiently the energy freed by the ATP hydrolysis into mechanical 

work. Since FACT does not affect the ATPase activity of RSC, it should act on the 

nucleosomes making them more prone to remodeling. 

 

 

 

 



 
 

68 
 

 

 

Figure 5. FACT increases the efficiency of the freed by the RSC-mediated hydrolysis of 
ATP energy used for nucleosome remodeling (A) Nucleosome mobilization assay. Centrally 
positioned nucleosomes were incubated with 0.3 units of RSC at 120 mM of ATP in either the 
absence or presence of increasing amount of FACT for 50 minutes at 30°C. After arresting 
the reaction, the samples were run on native PAGE. The bands corresponding to the centrally 
and end-positioned nucleosomes are indicated. The lower panel  represents the respective 
quantified data (B) ATPase hydrolysis assay. Centrally positioned nucleosomes were 
incubated with RSC (0.3 units) and increasing amount of FACT in the presence of 120 mM of  
ATP and 3.3µM of 32P[gATP]. The products of the ATP hydrolysis were analyzed on 15% 
PAGE under denaturing conditions. Lower panel shows the respective quantified data.  
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2.4 Discussion 

FACT is involved in several processes including transcription, replication and DNA repair 

(recently reviewed in[128]. In this work we have studied how FACT assists BER. The 

presented data reveal that FACT alone has no effect on the removal of uracil by UDG from 

nucleosomal!DNA.!Although,!FACT!exhibits!a!strong!�co-remodeling�!activity and it is able 

to increase many-fold the efficiency of the involved in DNA repair chromatin remodeler RSC 

to both remodel and mobilize the nucleosomes. FACT does not affect the ATPase activity of 

RSC, but instead makes the nucleosomes easier to be remodeled and mobilized, i.e. it 

increases the efficiency of transformation of the energy freed by the RSC-induced hydrolysis 

of ATP into mechanical work. This allows, in turn, very low amount of RSC to be sufficient 

to strongly alter the histone-DNA interactions as well as to slide the nucleosomes and thus, 

the lesions in chromatin DNA to be efficiently repaired. Our data suggest that in vivo FACT 

acts indirect in BER, via RSC, in increasing the efficiency of repair of DNA lesions.  

FACT (at the concentrations used in the experiments) does not affect nucleosome structure as 

judged by both DNase I footprinting and the very sensitive restriction enzyme accessibility 

assay (one pot assay). In addition, no stable binding of FACT to the nucleosome was detected 

by EMSA. Then how does FACT act on the nucleosome substrate to make it much easily 

�remodelable�?! It! is! difficult! to! answer! to! this! question.!Obviously,! some! transient! FACT-

nucleosome interactions during the RSC remodeling process should be generated allowing 

the remodeler to function with much higher efficiency. These transient FACT-nucleosome 

interactions might require at least some flexibility of the histone octamer, since crosslinking 

of!the!histone!octamer!interferes!with!the!�co-remodeling�!activity!of FACT (Supplementary 

Figure S3). Interestingly, FACT assists also very efficiently the nucleosome mobilization by 

ACF (Supplementary Figure S4), a remodeler belonging to the ISWI family. FACT was also 

found stably recruited to the CENP-A nucleosomal complexes [184] and RSF, a chromatin 
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remodeler, is also a member of this complex[185]. In addition, FACT was shown to 

physically interact with CHD1, another chromatin remodeler [186]. Thus, the cell appears to 

use the FACT nucleosome reorganization ability to control the activity of distinct remodelers 

belonging to different families for different purposes in different processes.  

Noteworthy, genetic analysis in yeast has revealed evidences for functional relationship 

between the N-terminal domain of Spt16, one of the FACT subunits, and the docking domain 

of H2A [187]. The proper folding and integrity of the docking domain of H2A is, however, 

required for chromatin remodeler dependent nucleosome mobilization [32]. For example, 

nucleosome reconstituted with deleted docking domain H2A or with the histone variant 

H2A.Bbd (which possesses defective docking domain) cannot be mobilized by remodelers 

from both SWI/SNF and ISWI family [32]. This suggests that FACT could, via a transient 

Spt16-mediated interaction with the H2A docking domain, reorganize the nucleosomes in a 

way to make them easier remodelable.  

As mentioned above, we have not observed structural changes within the nucleosomes due to 

the presence of FACT alone. Although, data are reported that FACT alone is able to alter the 

overall nucleosome structure and to destabilize both histone-DNA and histone-histone 

interactions without any histone eviction [139]. In these last experiments the molar ratio 

FACT: nucleosome exceeded, however, at least 50 fold the ratio of FACT: nucleosome used 

in our experiments.  (It is worthwhile to mention that the FACT used by the Formosa group 

consists of at least 50 fold excess of the Nhp6 with respect to the other components of the 

yeast FACT (Spt16-Pob3) and we are close to equal ratios of the nucleosome and the FACT). 

In addition to facilitating UDG removal of uracil, FACT is also able to efficiently assist the 

OGG1-mediated excision of 8-oxoG (the major oxidative lesion found in vivo) from 

nucleosomal templates in a RSC-dependent manner (Supplementary figure 5). This reveals 

that FACT can facilitate the function of distinct BER enzymes via specific reorganization of 
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the nucleosome structure, probably during the required for BER nucleosome remodeling.  

Importantly, we found that BER acts very efficiently on remosomes and not on non-

remodeled nucleosomes. All this suggests that BER could function in a stochastic manner 

with FACT playing an important role. We propose the following mechanism for BER 

functioning in vivo (see schematics, Figure 5). The chromatin remodelers from the SWI/SNF 

family with the help of FACT generate remosomes throughout the genome in a random way. 

The!BER!enzymes! �scan�! genome-wide chromatin and when they detect a lesion within a 

remosome, they repair it. The remosomes, relatively metastable structures, after being 

repaired are either spontaneously or with the help of remodelers converted into conventional 

nucleosomes.!This!process!of!remosome!�birth!and!death�!is!taking!place!permanently!in!the!

cell nucleus and it requires only very small changes in the overall chromatin structure (the 

remosomes are generated by just pumping 15-20 bp of DNA from both flanking the 

nucleosome linkers [111].  Such a simple scenario may explain how the 10-20 thousands 

oxidative lesions generated in a single cell per day are efficiently repaired without the 

necessity of the BER enzymes to be targeted to the lesions. 

 

2.5 Experimental procedures 

 

2.5.1 Preparation of DNA fragments 

1. The 255 bp 601 DNA probe used for reconstitution of centrally positioned nucleosomes 

was PCR amplified from pGEM-3Z-601.1! plasmid! (kindly! provided!by! J.!Widom).! 5�! end!

labelling was performed by using 32P-labeled primer in PCR.  

2. For! �One! Pot! Restriction! enzyme! Assay�! a! set! of! eight! pGEM-3Z-601.2 mutants were 

utilized, each containing HaeIII site at a different superhelical location, as described before 

(Wu!and!Travers,!2004;!note! that! the!�dyad!7�! fragment! contains!an!additional!HaeIII site 

located at 4 bp away from the d7 site). Briefly, a 281 bp fragment was amplified using 
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primers targeting the vector specific sequence flanking the 601.2 sequence. Labelling of the 

fragment was done as described above.  

The fragments were subsequently digested with SphI to get a fragment of 255 bp with 57 and 

51 bp linker DNA on left and right side respectively. All the fragments were purified on 6% 

native acrylamide gel prior to use for nucleosome reconstitutions.  

3. For repair assays the 601 sequence was incorporated with uracil by substituting 0.25% with 

dUTPs in the normal dNTPs mix comprising dATP, dGTP, dCTP and dTTP with a 

concentration 25mM.1µl of this new dNTP mix was used in a PCR reaction and random 

incorporation of uracil is achieved. 

4. For end positioned nucleosomes we used the p199.1 plasmid to generate a 250bp fragment 

with a single linker length of 100bp and the nucleosome at the end. 

 

2.5.2 SDS PAGE electrophoresis of FACT purified from HeLa cell extract 

In!order!to!study!FACT!and!it�s!combined!effect!with!remodelers!we!characterised!the!protein!

FACT on an 18% SDS PAGE. The FACT is purified from HeLa cell extracts and hence this 

form of hFACT consists of two subunits Spt16 (Suppressor of Ty protein 16) and SSRP1 

(Structure Specific Recognition Protein 1). The yeast FACT comprises of two homologous 

subunits called Spt16 and Pob3. The molecular weight of the 140kDa and 80kDa correspond 

to the higher molecular weight Spt16 and the lower molecular weight SSRP1. The SDS gel 

shows the presence of the two subunits of FACT.  

 

2.5.3 SDS PAGE electrophoresis of recombinant histones and octamer 

The recombinant core histones were purified to homogeneity and the octamer was 

reconstituted in equimolar ratios at 2M NaCl. When reconstituted with the DNA fragment of 

choice the nucleosomes are assembled on the DNA. Here we see the individual hisotnes 
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separated on an 18% gel and a lane showing the reconstituted octamer and its individual 

histones in equimolar ratios. (Alongside is a native chicken histone and its histone 

composition). 

 

2.5.4 Band shift /EMSA of reconstituted centrally positioned nucleosomes  

Nucleosome reconstitution was performed by the salt dialysis procedure. 

In order to carry out the salt dialysis nucleosome reconstitution 2.5 - 3.0 µg of core histones 

was mixed with 2.5 µg of carrier DNA and the labelled DNA probe in 2 M NaCl�10 mM 

Tris�HCl (pH7.4), 1 mM EDTA (pH8.0), 10 mM!"- mercaptoethanol, 1mg of Bovine serum 

albumin per ml in a total volume of 90µl.  

 

The reaction mixtures was thoroughly mixed and transferred to a dialysis tubing and dialysed 

at 4°C against 10 mM Tris-HCl (pH 8.0)�1 mM EDTA (pH 8.0)�10 mM "-mercaptoethanol 

containing 1.2, 1.0, 0.8, and 0.6 M NaCl. Each dialysis step was carried out for 2 h. Finally, 

the reconstituted material was dialyzed overnight against 10 mM Tris-HCl (pH 8.0)�1 mM 

EDTA (TE) and 10 mM NaCl.  

 

The reconstituted nucleosomes were analyzed on a 5% native polyacrylamide 

(acrylamide/bisacrylamide, 29:1)�0.25× TBE gel. Under optimal conditions, more than 90�

95% of the 32P-labeled fragment was usually nucleosome reconstituted.  

 

In the case of centrally positioned nucleosomes the nucleosomes are assembled on 601 255bp 

fragment. Here they are able to form a nucleosome with two linker lengths of 52 and 56bp 

respectively. The gel shift assay/EMSA shows that the nucleosomes are formed and migrate 

slower compared to free DNA because of its structural retardation in the gel.  
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2.5.5 DNAse I footprinting of centrally positioned nucleosomes and DNA  

Once the reconstituted nucleosome particles are ready we next characterised the nucleosomes 

by performing a DNase I footprinting. The nucleosomal samples and the DNA fragments 

were subjected to partial DNase I digestion and then run on a 8% denaturing PAGE - Urea 

gel. We are able to observe the repeats every 10 base pairs showing the intact DNA and 

Histone contact points in the case of the nucleosomes and a ladder of bands in the case of the 

DNA as it is exposed everywhere and is unlike the nucleosomes with the histone octamer 

protecting the DNA sequence. 

 

2.5.6 OH radical foorprinting of centrally positioned nucleosomes and DNA  

The same reconstituted nucleosomes were also subjected to the OHº radical footprinting. In 

order to perform the hydroxyl radical footprinting on the mononucleosomes, it was carried 

out in a 15 µl reaction volume. The hydroxyl radical reaction was carried out by mixing 2.5 

µl each of 2 mM FeAMSOゆ and 4 mM EDTA, 1M Ascorbate and 0.12 % H2O2 in a drop on 

the side of the tube cap before mixing it with the reaction solution. The reaction was stopped 

by adding 0.1% SDS, 25 mM EDTA, 1% glycerol and 100 mM Tris pH 7.4. The DNA was 

purified by phenol chloroform and then run on an 8% denaturing gel. The hydroxyl radical 

footprinting performed on the 601 255 bp fragment gave rise to a pattern characteristic of the 

nucleosome. The OH radical performed on the nucleosomes gives rise to a structured repeat 

of the nucleosomes which are 14 in number and represent the superhelical turns in the 

nucleosomes, 7 on each side from the dyad. In the case of the DNA we can see a ladder of the 

sequences showing its overall exposure to the radicals.  
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2.5.7 Nucleosome remodeling reaction 

Typical remodeling reactions were performed with 30 ng of nucleosomes and  the appropriate 

amount of RSC in remodeling buffer (RB) 10 mM Tris pH 7.4, 5% glycerol, 1 mM rATP, 2.5  

mM MgCl2, 1 mM DTT, 100 mg/ml BSA, 50 mM NaCl, 0.01% NP40) in a volume of 7.5 µl 

at 29°C for 50 minutes. While RSC is used to slide centrally positioned nucleosomes to end 

position and ACF is used to slide the end positioned nucleosomes to central positions. The 

reactions were stopped with 0.1 units of apyrase and 1µg of plasmid DNA pUC18/pUC19.  

 

2.5.8 BER Initiation Assays  

The uracil incorporated DNA was formed by PCR and the nucleosomes were reconstituted on 

this fragment. For carrying out the repair assay the nucleosomes were either subjected to 

either RSC or FACT or a combination of the two. A fixed concentration of the UDG was 

used and the samples were incubated in UDG at 29 ºC for an hour. They were then purified 

by phenol chloroform and precipitated with ethanol and then the reaction was completed 

using an AP-lyase. We used APE-1 incubated with the DNA to complete the reactions. The 

fragment was once again phenol chloroformed and ethanol precipitated before running on an 

8% denaturing PAGE. 

Another method of cleaving the apurinic sites was by treatment with piperidine once the 

UDG treatment was carried out. In a reaction volume of 9 µl for all the samples 1µl of 

piperidine was added and heated at 90ºC for 15 minutes. After 15 minutes the tubes were 

spun at high speed for a short time to bring down the vaporised samples and the heating 

repeated for another 15 minutes. Once this is done the samples are subjected to phenol 

chloroform and then ethanol precipitated. The samples were thoroughly suspended in 

formamide dye heated at 90 degrees for 5 minutes before loading on an 8% denaturing gel. 
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In the case of BER initiation by hOGG1 the DNA fragment used is 601 DNA but is subjected 

to UV irradiation before reconstitution. This gives rise to 8-OxoG lesions at places in the 

DNA fragment. We use human OGG1 to cleave the lesions and then followed by APE-1 

digestion to cleave the DNA at the apurinic sites. The DNA fragment is then phenol 

chloroformed and ethanol precipitated. Then it is thoroughly resuspended in formamide 

buffer and loaded on an 8% denaturing gel.   

 

2.5.9 In Gel One Pot assay 

A sliding reaction was carried out in the presence of increasing concentrations of FACT. 

Here, the amount of RSC used gave rise to 10% slid and with increase in FACT the 

nucleosomes are mobilized. Prior to loading on 5% native polyacrylamide gel, 6.25 pmol of 

not radioactively labelled 255 bp 601 middle positioned nucleosomes were added to each 

reaction as a carrier in order to maintain stability during subsequent procedures. They are 

resolved on 5 % native polyacrylamide gel. Bands corresponding to control unremodeled and 

unmobilized remodeled nucleosomes were excised, collected in siliconized eppendorf tubes, 

crushed very gently and immersed with 50 µl restriction buffer (10 mM Tris pH7.6, 10 mM 

MgCl2, 50 mM NaCl, 1 mM DTT and 100 µg/ml BSA) containing increasing amount of 

HaeIII (0.03, 0.12, 0.50, 2.0, 8 units/µl) for 5 minutes at 29°C. The reaction was stopped by 

addition of an equal volume (50 µl) of stop buffer containing 0.2% SDS and 40 mM EDTA. 

DNA was eluted from the gel slices, purified as described above, and run on 8% denaturing 

gel. The quantification of extent of accessibility at different superhelical locations in the 

nucleosome was performed using Multi-Gauge Software (Fuji). 
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2.5.10 Gel excision of nucleosomes, remosomes and slid fractions 

Centrally positioned 601 nucleosomes were incubated with RSC in the remodeling reaction 

as described above. Reaction was stopped at 50 minutes by addition of 0.1 units of Apyrase 

and 1 µg of plasmid DNA, as under these conditions the non-mobilized fraction contains 

essentially remodelled nucleosome particles. Reaction products were resolved on 5% native 

polyacrylamide gel. Bands, corresponding to plain nucleosome fraction from 0, un-mobilized 

fractions from 50 minute, and mobilized fraction from 50 minute reaction time points were 

excised. Excised bands were then cut in small pieces and soaked in 80 µl Elution Buffer (EB) 

containing Tris 10 mM pH7.4, 0.25 mM EDTA and 10 mM NaCl, at 4°C for 3 hours with 

gentle shaking. 0.75 nmol of cold 601 255 bp nucleosomes were added in the elution buffer 

to maintain the stability of eluted nucleosomes. Eluted nucleosomes were filtered through 

glass fibre filter under low speed centrifugation (200g) to remove acrylamide particles, 

washed and concentrated using 100 kDa cut-off spin filters. Eluted nucleosomes, remosomes 

and slid particles were divided into equal aliquots, were further subjected to repair by UDG 

and hOGG1 in the following experiments. Refer to the DNA repair assays for more details.   

 

2.5.11 ATPase assays  

The ATPase assays were carried out in the remodeling reaction buffer whose composition is 

mentioned above. However, to slow down the reactions we used a lower concentration of 

ATP such as 100µM and the ATPase assay was performed on the naked DNA, nucleosomes 

(centre and end positioned with their respective remodelers). To the reaction mixture 1µl of 

the source 32P ATP was added. After the remodelling reaction is carried out at 29 degree 

Celsius for 50 minutes, the reaction was stopped by adding formamide dye and 0.1% SDS. A 

fraction of the sample was loaded on a 13% denaturing PAGE and migrated at 150 volts for 

35 minutes. The gel was dried on a gel drier and exposed.  
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2.5.12 Crosslinking with DMS 

DMS is water soluble, imidoester crosslinker. The imidoester functional group is one of the 

most specific acylating groups available for modification of primary amines. Moreover, the 

imidoamide reaction product does not alter the overall charge of the protein. The crosslinking 

of the histones in the nucleosomes were carried out as follows. The nucleosome in itself helps 

in bringing the histones in the octamer closer to each other for the crosslinking reaction to 

progess. The free DNA suggests there are no free floating histones in the mixture. DMS is 

freshly prepared with a concentration of 50mg/ml. The nucleosomes are buffered against 

0.3M HEPES pH 10 to remove any remaining traces of Tris. The nucleosome concentration 

is kept at 50ng/µl to prevent intra nucleosome cross-linking. For a 5 µg nucleosome mix in a 

reaction volume of 100 µl at pH 10 we add 20 µl of the DMS stock solution. The reaction 

mixture is incubated at room temperature for 1 hour. The cross linking reaction is stopped by 

the addition of 2 µl of 1M Tris pH8.0 followed by a buffering the solution against 25 mM 

Tris for 90 minutes and then against 10 mM Tris overnight. The amount of cross linked 

histones is checked by running the TCA precipitated histones on a 5-20 % gradient gel. 
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2.5.13 Supplementary Figures 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 1.Characterization of the reconstitututed nucleosomal particles. (A) 
SDS electrophoresis of purified recombinant histones and the histone octamer. (B) EMSA of 
the 255 bp 601 DNA (left) and reconstituted centrally positioned nucleosomes (right). (C) 
SDS electrophoresis of hFACT . The positions of the two subunits of FACT (Spt16 abd 
SSRP1 are indicated. 
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Supplementary Figure 2: Effect of FACT on the time course of RSC-induced 

nucleosome mobilization. (A) Time course of  nucleosome mobilization in the absence (left 
panel) or in the presence (right panel) of FACT. Centrally positioned 601 nucleosomes were 
incubated with  0.8 units of RSC and  1.6 pmol of FACT for the times indicated at  30°C in 
the presence of 1 mM ATP. After arresting the reaction, repositioning of the nucleosomes 
was analyzed by native EMSA. 
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Supplementary figure 3: Histone crosslinking affects the co-remodeling activity of  FACT. 
(A) SDS electrophoresis of the covalently crosslinked nucleosomes. Centrally positioned 601 
nucleosomes were treated with 8mg/ml for one hour and after arresting the histone-histone 
crosslinking reaction with 180mM Tris, they were run on 4-20% gradient SDS gel; lane 3; 
lane 2, untreated input nucleosomes. (B) Effect of FACT on the RSC-induced mobilization of 
control nucleosomes (left panel) and crosslinked nucleosomes (right panel). Input or 
crosslinked see (A). Nucleosomes were incubated with 0.25 units of RSC in the presence of 
increasing amount of FACT. The reaction products of the nucleosome mobilization reaction 
were run on native PAGE. The positions of the centrally positioned, slid end-positioned and 
free DNA are indicated.  
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Supplementary Figure 4: FACT facilitates ACF nucleosome mobilization. (A) EMSA of  
ACF induced nucleosome mobilization in the presence of increasing amount of FACT. End-
positioned 601 nucleosomes were incubated with 0.2 units of ACF either in the absence (lane 
3) or in the presence of increasing concentration of FACT (lanes, 4-9). After arresting the 
reaction, the reaction products were run on a native PAGE; lane 10, EMSA of the 
nucleosomes incubated with 2 units of ACF in the absence of FACT; lanes 1 and 2, controls 
showing the input nucleosomes and the incubated with FACT nucleosomes in the absence of 
ACF, respectively. All reaction solutions contained 1 mM ATP. (B) Quantification of the 
data presented in (A). 
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Supplementary Figure 5:  Remosomes are capable of performing the same extent of Base 
excision repair initiation as that of slid. Centrally positioned nucleosomes were reconstituted 
on 32

P!5�!labeled!255bp!601!DNA!fragment!which!is!UV!irradiated.(A)!Analysis!of!hOGG1!

enzymatic activity within the nucleosomal and the linker DNA. The nucleosomal species 
including nucleosomes, remosomes and slid were gel eluted and then subjected to enzymatic 
treatment by increasing amounts of hOGG1. The nucleosome species were incubated with 
hOGG1 at 29ºC for 90 minutes. The DNA was purified before treating with APE1. This 
enzymatic cleavage of the apurinic sites was carried out at 37ºC for 2 hours. The cleavage 
pattern of the isolated DNA was analysed using an 8% denaturing PAGE.(B) RSC promotes 
hOGG1  cleavage of the lesions that are at the edge and are exposed to the solution. Lane 
numbers 17 and 23  represent a hydroxyl radical footprint of the nucleosomes and helps us 
determine the parts of the fragment that are facing inside at the octamer and those that are 
facing the solution.(C) Increasing amounts of hOGG1gives rise to a signature cleavage  
pattern in the DNA.  Lanes 18-22 represent the DNA that is subjected to hOGG1treatment as 
mentioned in (A).  
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Chapter 3:  

 

3.1 Transcription Factor NF- B!and its interaction with the nucleosomes in 

the presence and absence of FACT  

 

3.1.1 Introduction 

 

As noted in the introduction (Chapter1), FACT is actively involved in transcription [188; 

189; 190; 191]. For example, nucleosomes assembled on a high affinity DNA sequence 

present a polar barrier to transcription of Polymerase II and FACT assists Polymerase II to 

overcome the nucleosome barrier [192]. In addition, FACT facilitates the polymerase driven 

transcription by destabilizing nucleosomal structure so that one histone H2A-H2B dimer is 

removed during enzyme passage [131]. We observed from our previous data that FACT has a 

co-remodeling activity with chromatin remodelers such as ACF and RSC. FACT acts as 

efficient fuel conservers and assists the remodeling (generation of remosomes) and 

mobilization of the nucleosome species with the least energy spent.  

 

With the above in mind, we also wanted to see how the presence of FACT affects the 

transcription factor interaction with nucleosomes. We hypothesized that FACT, by boosting 

chromatin remodeling and sliding,  might also allow an easier access of transcription factors 

to nucleosomal templates. If this was really the case, transcription factors should be able to 

bind to either remodeled nucleosomes (remosomes) and/or slid nucleosomes generated by the 

concerted action of FACT and RSC. We carried out some biochemical experiments to 

validate our hypothesis. We decided to use the transcription factor NF- B!in our studies. The 

transcription factors NF- B!has 150 gene targets but how NF- B! invades! the! nucleosomal!

templates remains still elusive.  

 

We have analyzed how the transcription factor NF- B interacts with the nucleosomes by 

inserting the NF- B!recognition sequence within nucleosomal DNA. The interaction of NF-

 B! (p50/p50 dimer) with control nucleosomes, and RSC-generated remosomes and slid 

nucleosomes was studied by using EMSA, DNase I and UV laser footprinting. The 

combination of these three techniques allowed us to demonstrate that NF- B! binds 

specifically only to slid, but not to both control nucleosomes and remosomes.  
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3.2 Results 

 

3.2.1 Substitution of the NF- B! binding site in the 601 sequence does not alter the 

nucleosome characteristics.  

 

We have inserted the binding sequence (GGGGATTCCCC) of NF- B! at the nucleosomal 

dyad (at the center of the nucleosomal DNA, refered here as NF- B D0, Figure 1). The 

nucleosomes were reconstituted by serial salt dialysis. The efficiency of reconstitution was 

checked by using native PAGE (Figure 2A). As seen, no free DNA was observed in the 

different samples thus evidencing that under the conditions of reconstitution, all the DNA is 

associated with the histone octamer.  Importantly, both reconstituted nucleosomes exhibited 

the same DNAase 1 and the hydroxyl radical footprinting patterns (Figure 2B). We concluded 

that the incorporation of the NF- B!binding sites does affect neither the translational nor the 

rotational positioning of the 601 nucleosomes. This has allowed us to analyze further with 

high accuracy the interaction of NF- B!with the reconstituted nucleosomal templates.  

 

 
 

GGGGATTCCCC

 
 

 

Figure 1: Incorporation of NF- B!binding site in the nucleosome. Schematic showing the 
wild type 601 sequence and the mutated 601 sequence, containing the NF- B!binding sites at 
the dyad of the nucleosome (center of the nucleosomal DNA). 
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Figure 2:  Characterization of the centrally positioned nucleosomes formed on the new 
templates 601 NF- B!D0. (A) EMSA on reconstituted nucleosomes using WT- or  mutated 
601-NF- B!D0 sequence, which contains the inserted GGGGATTCCCC NF- B!! recognition 
sequence at the nucleosomal dyad. Note that there is no change in pattern or migration of the 
abovementioned nucleosomes with no free DNA formed. (B) OHº radial footprinting of 601 
WT and 601 NF- B!D0 nucleosomes. (C) DNase 1 footprinting of 601 WT- and 601 NF- B!
D0 nucleosomes. The position of the nucleosome is indicated on the schematics between 
panel (B) and panel (C).  
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3.2.2 UV Laser Footprinting demonstrates that the RSC-induced mobilization of 

nucleosomes, but not their remodeling, is sufficient for NF- B!binding to its cognate 

DNA sequence  

 

We have analyzed the binding of NF- B to naked nucleosomal DNA, control (non RSC- 

treated) nucleosomes, remosomes and slid nucleosomes. The schematic on Figure 3 shows 

the protocol for isolation of the different species from native PAGE. The species eluted from 

the gel were allowed to interact with NF- B!and then irradiated with a single 266 laser pulse. 

DNA was isolated, treated with Fpg protein, and the cleaved samples were resolved on a 

denaturing gel. The binding of NF- B!to the different probes was also analyzed with EMSA. 

 

As seen, the EMSA shows that NF- B! is able to bind to all of the studied samples (naked 

DNA, control nucleosomes, remosomes and slid nucleosomes). Indeed, in all four cases 

higher molecular complexes are formed with much slower electrophoretic mobility (Figure 

3). Noteworthy, EMSA does not differentiate between specific and non-specific association 

of NF- B!with the respective samples. The use of the UV laser footprinting allows, however, 

to differentiate between specific and non-specific binding (see Chapter 1.7 for more details). 

Analysis of the UV footprinting data reveals that only naked DNA and slid nucleosomes 

exhibited the NF- B UV laser footprinting signature (see Figure 3). No footprints were 

observed for both control nucleosomes and remosomes (Figure 3). This evidences that NF- B!

is able to specifically interact only with naked DNA and slid nucleosomes, i.e. even the 

perturbed histone-DNA interactions within the remosomes represent a sufficiently strong 

barrier for NF- B to interact with its cognate sequences.  
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Figure 3:  NF- B!binding on the Nucleosome species. (A) Schematics of the isolation of the 
different nucleosome species. DNA, control nucleosomes and RSC treated mobilized and non 
mobilized (remosomes) fractions were run on native gel,   excised from the gel and after gel 
elution they were allowed to bind with NF- B. The NF- B!complexes!were! then irradiated 
with the UV laser and treated with Fpg. The cleaved DNA was run on denaturing gel. (B)  
UV laser footprinting (lower panel) and EMSA (upper panel) of the studied samples. The 
inset (right) shows an enlarged part of the gel containing the binding sequence of NF- B.!
Above the inset, the position of the control and the slid nucleosomes are presented. 
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3.2.3 FACT boosts RSC mediated mobilization of nucleosomes and aids in the binding 

of transcription factor NF- B on the nucleosomes  

 

We hypothesized that FACT would be able to assist the binding of NF- B to nucleosomal 

templates through boosting the remodeling activity of RSC. To test this we have incubated 

601 NF- B!D0 nucleosomes with either 0.2 u or 1.4 u of RSC (at both these concentrations of 

RSC a very small part of the nucleosomes was slid) in the presence or absence of FACT. 

After arresting the mobilization reaction, NF- B was added to the reaction mixture and 

allowed to interact with the different templates. Next, the different sample solutions were 

irradiated with a single UV laser pulse and DNA was isolated and treated with Fpg. The 

cleaved DNA was then run on a denaturing PAGE (Figure 4). The control naked DNA shows 

a very clear footprinting reflecting the specific binding of NF- B to its cognate sequence 

(Figure 4, compare lane 3 with lane 4). In agreement with the previous data (Figure 3), no 

binding of NF- B was observed to the control nucleosomes (Figure 4, lane 6). Importantly, 

FACT alone was unable, as expected, to help NF- B to bind to the nucleosome (Figure 4, 

lane 8). Incubation with 0.2 units of RSC alone or in combination with FACT has again no 

effect on the capacity of NF- B to interact specifically with the nucleosomes (Figure 4, lanes 

9-12). Although, the concerted action of 1.4 units of RSC and FACT leads to the appearance 

of a footprinting and thus, to some binding of NF- B (Figure 4, lanes 13-16). 
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Figure 4: Transcription factor binding in the presence and absence of FACT. Lanes 1 and 17 
10 bp DNA ladder. The bottom panel shows the enlarged NF- B binding sequence. On the 
right is shown the schematic presentation of the nucleosome..  
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Chapter 4:  

 

4.1 General conclusions and perspectives 

 

4.1.1 FACT and repair of damaged DNA 

 

FACT is an important molecule that is involved in transcription, replication and DNA repair. 

We have in this work tried to understand how FACT assists in Base excision repair and 

transcription. The data presented demonstrates that the FACT by itself is not able to bring 

about any changes in the structure of the nucleosome but through its co-remodelling activity 

it is able to increase the efficiency of the remodelers to both remodel and mobilize 

nucleosomes and thus to facilitates BER.  FACT turns out to be a fuel conserver and acts in 

the efficient conversion of the energy freed by the hydrolysis of ATP by the remodeler in 

order to have maximum work done. This scenario was shown to be valid for both remodelers 

RSC and ACF. However, since FACT function is realized by making the remosomes easier 

�remodelable�!we!predict!that!FACT!would!be!also!able!to!boost!the!activities!of!chromatin!

remodelers belonging to other families. This remains to be tested in future.  

 

The presented data show that in vitro FACT acts in concert with RSC to assist BER.  If this 

was also happening in vivo, one should expect FACT to be associated within the cell with 

different repair proteins as well as with remodelling factors involved in repair of damaged 

DNA. We would like to test this hypothesis. Briefly, we plan to establish stable cell lines 

expressing double tagged (FLAG and HA) SSRP1 (one of the subunits of FACT) and then to 

purify the FACT complex by using double immuno-purification procedure. The members of 

the immuno-purified FACT complex will be identified by mass spectrometry. Their identity 

will be further confirmed by Western blotting using specific antibodies. If we find some 

remodelling factors involved in DNA repair and/or repair proteins associated with FACT, this 

will be a strong evidence for the FACT operating mechanism in DNA repair. 

 

The proposed mechanism for FACT functioning in DNA repair  predict that FACT should be 

physically present at the site of DNA damage at least at the beginning of the repair process to 

allow efficient chromatin remodelling.  We will study this by using cell lines expressing 

GFP-FACT.  We expect GFP-FACT to be recruited to the sites of laser-induced damage of  

DNA. We will follow in real time both the recruitment and the time-course of GFP-FACT 
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recruitment to damaged DNA by using fluorescence microscopy. If we find that FACT is 

recruited as predicted to the sites of DNA damage, we will next ask whether the time-course 

of recruitment of FACT is similar to these of the other identified proteins of the FACT 

complex (see above). Of particular interest will be to analyse the kinetics of recruitment to 

damaged DNA of the expected chromatin remodeler(s) associated with FACT in vivo. 

 

 

4.1.2 FACT and NF- B!binding to chromatin 

 

The presented in chapter 3 data suggest that FACT could be involved in the activation of NF-

 B! dependent genes via boosting the remodelling of the chromatin structure at their 

promoters. In addition, the available literature data suggest that FACT should assist 

transcription by allowing an easier Polymerase II passage through the nucleosome. We will 

study these questions by ChIP using either specific antibodies against FACT or cells which 

express tagged (HA- and FLAG) versions of FACT (see 4.1.1). In the last case the 

commercially available high affinity anti-HA and anti-FLAG antibodies would be very 

helpful. We will analyze both the presence and the time of recruitment of FACT to both the 

promoters and the coding sequences of early and late NF- B!responsive genes.  
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Appendix 

 
 
Wild type 601.2 sequence in pGEM-3Z 
 
CAGTGAATTGTAATACGACTCACTATAGGGCGAATTCGAGCTCGGTACCCTACATGCACA 
GGATGTATATATCTGACACGTGCCTGGAGACTAGGGAGTAATCCCCTTGGCGGTTAAAAC 
GCGGGGGACAGCGCGTACGTTCGATCAAGCGGATCCAGAGCTTGCTACGACCAATTGAG 
CGGCCCCGGGACCAAGCTTCTGCAGGGCGCCCGCGTATAGGGTCCGGGGATCCTCTAGA 
GTCGACCTGCAGGCATGCAAGCTTGAGTATTCTATAGTGTCACC 

 

 
Representation of HaeIII sites in the 601.2 sequences used for �one pot assay� 
 
CAGTGAATTGTAATACGACTCACTATAGGGCGAATTCGAGCTCGGTACCCTACATGCACA 
 
 
GGATGTATATATCTGACACGTGCCTGGAGACTAGGGAGTAATCCCCTTGGCGGTTAAAAC 
 
  Dyad                 Dyad1               Dyad2                Dyad3                Dyad4              Dyad5 
GGCCGGGACAGGCCGTACGTGGCCTCAAGCGGCCCCAGAGGGCCCTACGAGGCCTTGAG 
 
    Dyad6                Dyad7 
CGGCCCCGGGAGGCCGCTTCTGGCCGGCGCCGGCCTATAGGGTCCGGGGATCCTCTAGA 
 
 
GTCGACCTGCAGGCATGCAAGCTTGAGTATTCTATAGTGTCACC 

 
Primers for 282 bp fragment : 
 
New_Trav_link_2nd: 5' CAGTGAATTGTAATACGACTC AC 3' 
AT_Rev223: 5' GGTGACACTATAGAATACTCAAGC 3' 

 
Primers for 223 bp fragment : 
 
AT_For: CAGGATGTATATATCTGACAC 
AT_Rev223: GGTGACACTATAGAATACTCAAGC 

 
601WT (pGEM3Z-601): 
 
CTATCCGACTGGCACCGGCAAGGTCGCTGTTCAATACATGCACAGGATGTATATATCTGA 
CACGTGCCTGGAGACTAGGGAGTAATCCCCTTGGCGGTTAAAACGCGGGGGACAGCGCG 
TACGTGCGTTTAAGCGGTGCTAGAGCTTGCTACGACCAATTGAGCGGCCTCGGCACCGGG 
ATTCTCCAGGGCGGCCGCGTATAGGGTCCATCACATAAGGGATGAACTCGGTGTGAAGA 
ATCATGC 

 
Primers for 255 bp fragment: 
601-Eco: GCTCGGAATTCTATCCGACTGGCACCGGCAAG 
601-Bst: GCATGATTCTTAAGACCGAGTTCATCCCTTATGTG 
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SI Text 

Figure Legends 

Figure S1. Expression and purification of H2A COOH-terminal deletion and chimeric 

proteins and hydroxyl radical footprinting of nucleosmes. (A) Alignment of human H2A.1 

and H2A.Bbd proteins.  Domain structure of histone H2A is represented in the form of 

cartoon drawing below the sequence. H2A docking domain is represented as 

punctuated line below the sequence.  (B) 18% SDS PAGE of different histones and H2A 

COOH-truncated mutant proteins. All the proteins were bacterially expressed in 

denaturing condition and purified from inclusion bodies using SP-sepharose medium. 

(C) Characterization of conventional, variant and mutant nucleosomes by �OH 

footprinting. The gel shows �OH radical cleavage profile of the indicated nucleosomes 

reconstituted on 205 bp 3'-labeled 601 DNA fragment. Note the higher background 

(smaller contrast) observed in the cleavage pattern of H2A.Bbd, ddBbd and d79 

nucleosomes. 

Figure S2. One pot restriction accessibility assay of conventional and H2A.Bbd   

nucleosomes. Both types of nucleosomes were digested with Hae III and samples were 

processed and percentage of Hae III cleavage was quantified as described for Figure 2. 

Cleavage efficiency of conventional (triangles) and H2A.Bbd (Squares) nucleosomes are 

presented. 



Figure S3. Scans of hydroxyl radical cleavage profile (See Figure 4B) for H2A, H2A.Bbd 

and H2A.ddBbd containing dinucleosomes in absence or presence of linker histone H1.   
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