J. Adamcik and J. M. Jung, Understanding amyloid aggregation by statistical analysis of atomic force microscopy images, Nature Nanotechnology, vol.63, issue.6, pp.423-428, 2010.
DOI : 10.1038/nnano.2010.59

K. Ako and T. Nicolai, Salt-Induced Gelation of Globular Protein Aggregates: Structure and Kinetics, Biomacromolecules, vol.11, issue.4, pp.864-871, 2010.
DOI : 10.1021/bm9011437

K. Ako and T. Nicolai, Micro-phase separation explains the abrupt structural change of denatured globular protein gels on varying the ionic strength or the pH, Soft Matter, vol.37, issue.20, pp.4033-4041, 2009.
DOI : 10.1039/b906860k

S. G. Anema and A. B. Mckenna, Reaction Kinetics of Thermal Denaturation of Whey Proteins in Heated Reconstituted Whole Milk, Journal of Agricultural and Food Chemistry, vol.44, issue.2, pp.422-428, 1996.
DOI : 10.1021/jf950217q

R. K. Apenten and D. Galani, Thermodynamic parameters for beta-lactoglobulin dissociation over a broad temperature range at pH 2.6 and 7.0, Thermochimica Acta, vol.359, issue.2, pp.181-188, 2000.
DOI : 10.1016/S0040-6031(00)00523-2

T. Arakawa and S. N. Timasheff, Mechanism of protein salting in and salting out by divalent cation salts: balance between hydration and salt binding, Biochemistry, vol.23, issue.25, pp.5912-5923, 1984.
DOI : 10.1021/bi00320a004

L. N. Arnaudov and R. D. Vries, Multiple Steps during the Formation of ??-Lactoglobulin Fibrils, Biomacromolecules, vol.4, issue.6, pp.1614-1622, 2003.
DOI : 10.1021/bm034096b

R. Aschaffenburg, Crystal forms of ??-lactoglobulin, Journal of Molecular Biology, vol.13, issue.1, pp.194-201, 1959.
DOI : 10.1016/S0022-2836(65)80089-4

P. Aymard and J. C. Gimel, &Experimental evidence for a two-step process in the aggregation of beta-lactoglobulin at pH 7, Journal De Chimie Physique Et De Physico-Chimie Biologique, vol.93, issue.5, pp.987-997, 1996.

P. Aymard and T. Nicolai, &Static and Dynamic Scattering of b-Lactoglobulin Aggregates formed after Heat-Induced Denaturation at pH2, Macromolecules, vol.35, pp.2542-2552, 1999.

J. J. Basch and S. N. Timasheff, Hydrogen ion equilibria of the genetic variants of bovine ??-lactoglobulin, Archives of Biochemistry and Biophysics, vol.118, issue.1, pp.37-47, 1967.
DOI : 10.1016/0003-9861(67)90275-5

R. Bauer and S. Hansen, Detection of Intermediate Oligomers, Important for the Formation of Heat Aggregates of ??-Lactoglobulin, International Dairy Journal, vol.8, issue.2, pp.105-112, 1998.
DOI : 10.1016/S0958-6946(98)00027-2

G. Kontopidis and C. Holt, Invited Review: ??-Lactoglobulin: Binding Properties, Structure, and Function, Journal of Dairy Science, vol.87, issue.4, pp.785-796, 2004.
DOI : 10.3168/jds.S0022-0302(04)73222-1

M. R. Krebs and G. L. Devlin, Protein Particulates: Another Generic Form of Protein Aggregation?, Biophysical Journal, vol.92, issue.4, pp.1336-1342, 2007.
DOI : 10.1529/biophysj.106.094342

M. R. Krebs and G. L. Devlin, Amyloid Fibril-Like Structure Underlies the Aggregate Structure across the pH Range for ??-Lactoglobulin, Biophysical Journal, vol.96, issue.12, pp.5013-5019, 2009.
DOI : 10.1016/j.bpj.2009.03.028

A. J. Law and J. Leaver, Effect of pH on the Thermal Denaturation of Whey Proteins in Milk, Journal of Agricultural and Food Chemistry, vol.48, issue.3, pp.672-679, 2000.
DOI : 10.1021/jf981302b

L. Bon, C. , and T. Nicolai, Growth and structure of aggregates of heat-denatured beta-Lactoglobulin, International Journal of Food Science and Technology, vol.6, issue.5-6, pp.5-6, 1999.
DOI : 10.1021/ma970112j

P. R. Majhi and R. R. Ganta, Electrostatically Driven Protein Aggregation:?? ??-Lactoglobulin at Low Ionic Strength, Langmuir, vol.22, issue.22, pp.9150-9159, 2006.
DOI : 10.1021/la053528w

S. Mehalebi and T. Nicolai, The influence of electrostatic interaction on the structure and the shear modulus of heat-set globular protein gels, Soft Matter, vol.6, issue.4, pp.893-900, 2008.
DOI : 10.1039/b718640a

S. Mehalebi and T. Nicolai, Light scattering study of heat-denatured globular protein aggregates, International Journal of Biological Macromolecules, vol.43, issue.2, pp.129-135, 2008.
DOI : 10.1016/j.ijbiomac.2008.04.002

J. S. Mounsey and B. T. Kennedy, Conditions limiting the influence of thiol???disulphide interchange reactions on the heat-induced aggregation kinetics of ??-lactoglobulin, International Dairy Journal, vol.17, issue.9, pp.1034-1042, 2007.
DOI : 10.1016/j.idairyj.2006.12.008

T. Nicolai and M. Britten, ??-Lactoglobulin and WPI aggregates: Formation, structure and applications, Food Hydrocolloids, vol.25, issue.8, pp.1945-1962, 2011.
DOI : 10.1016/j.foodhyd.2011.02.006

T. Nicolai and D. Durand, Scattering properties and modelling of aggregating and gelling systems, Light Scattering : Principles and development. . W. Brown, 1996.

O. Kennedy, B. T. , and J. S. Mounsey, The dominating effect of ionic strength on the heat-induced denaturation and aggregation of ??-lactoglobulin in simulated milk ultrafiltrate, International Dairy Journal, vol.19, issue.3, pp.123-128, 2009.
DOI : 10.1016/j.idairyj.2008.09.004

K. M. Oliveira and V. L. Valente-mesquita, &Crystal structures of bovine betalactoglobulin in the orthorhombic space group C222(1) Structural differences, 2001.

C. Schmitt and C. Bovay, Multiscale Characterization of Individualized ??-Lactoglobulin Microgels Formed upon Heat Treatment under Narrow pH Range Conditions, Langmuir, vol.25, issue.14, pp.7899-7909, 2009.
DOI : 10.1021/la900501n

C. Schmitt and C. Moitzi, Internal structure and colloidal behaviour of covalent whey protein microgels obtained by heat treatment, Soft Matter, vol.17, issue.19, pp.4876-4884, 2010.
DOI : 10.1016/j.foodhyd.2010.05.010

E. P. Schokker and H. Singh, Heat-induced aggregation of ??-lactoglobulin A and B with ??-lactalbumin, International Dairy Journal, vol.10, issue.12, pp.843-853, 2000.
DOI : 10.1016/S0958-6946(01)00022-X

E. P. Schokker and H. Singh, Characterization of intermediates formed during heat-induced aggregation of -lactoglobulin AB at neutral pH, International Dairy Journal, vol.9, issue.11, pp.791-800, 1999.
DOI : 10.1016/S0958-6946(99)00148-X

J. W. Simons and H. A. Kosters, Role of calcium as trigger in thermal ??-lactoglobulin aggregation, Archives of Biochemistry and Biophysics, vol.406, issue.2, pp.143-152, 2002.
DOI : 10.1016/S0003-9861(02)00429-0

M. Stading and A. M. Hermansson, Viscoelastic behaviour of ??-lactoglobulin gel structures, Food Hydrocolloids, vol.4, issue.2, pp.121-135, 1990.
DOI : 10.1016/S0268-005X(09)80013-1

Y. Surroca and J. Haverkamp, &Towards the understanding of molecular mechanisms in the early stages of heat-induced aggregation of beta-lactoglobulin A, 2002.

S. N. Timasheff and R. Townend, &The optical rotary dispersion of the lactoglobulins, J. Biol. Chem, vol.241, pp.2496-2501, 1966.

A. Tolkach and S. Steinle, Optimization of Thermal Pretreatment Conditions for the Separation of Native ??-Lactalbumin from Whey Protein Concentrates by Means of Selective Denaturation of ??-Lactoglobulin, Journal of Food Science, vol.32, issue.3, pp.557-566, 2005.
DOI : 10.1111/j.1365-2621.2005.tb08319.x

G. Unterhaslberger and C. Schmitt, Beta-lactoglobulin aggregates from heating with charged cosolutes: formation, characterization and foaming, . Food Colloids: Self assembly and material science, pp.175-192, 2007.

C. Veerman and H. Ruis, Effect of Electrostatic Interactions on the Percolation Concentration of Fibrillar ??-Lactoglobulin Gels, Biomacromolecules, vol.3, issue.4, pp.869-873, 2002.
DOI : 10.1021/bm025533+

M. Verheul and J. S. Pedersen, Association behavior of native ?-lactoglobulin, Biopolymers, vol.219, issue.1, pp.11-20, 1999.
DOI : 10.1002/(SICI)1097-0282(199901)49:1<11::AID-BIP2>3.0.CO;2-1

M. Verheul and S. P. Roefs, Kinetics of Heat-Induced Aggregation of ??-Lactoglobulin, Journal of Agricultural and Food Chemistry, vol.46, issue.3, pp.896-903, 1998.
DOI : 10.1021/jf970751t

Y. L. Xiong and K. A. Dawson, &Thermal Aggregation of Beta-Lactoglobulin - Effect of Ph, Ionic Environment, and Thiol Reagent.& Journal of Dairy Science, vol.76, issue.1, pp.70-77, 1993.

D. Zittle and . Monica, &The Binding of Calcium Ions by b-Lactoglobulin Both before and after Aggregation by Heating in the Presence of Calcium Ions.& Contribution From The Eastern Regional Research Laboratory, pp.4661-4666, 1957.

R. N. Zuniga and A. Tolkach, &Kinetics of Formation and Physicochemical Characterization of Thermally-Induced beta-Lactoglobulin Aggregates, & Journal of Food Science, vol.75, issue.5, pp.261-268, 2010.

M. Pouzot, T. Nicolai, R. W. Visschers, and M. Weijers, X-ray and light scattering study of the structure of large protein aggregates at neutral pH, Food Hydrocolloids, vol.19, issue.2, pp.231-238, 2005.
DOI : 10.1016/j.foodhyd.2004.06.003

P. Aymard, J. C. Gimel, T. Nicolai, and D. Durand, Experimental evidence for a twostep process in the aggregation of b-lactoglobulin at pH7, Journal de chimie, vol.93, pp.987-997, 1996.

C. Sanchez, Multiscale Characterization of Individualized beta-Lactoglobulin Microgels Formed upon Heat Treatment under Narrow pH Range Conditions, Langmuir, vol.25, issue.14, pp.7899-7909, 2009.

J. M. Jung, G. Savin, M. Pouzot, C. Schmitt, and R. Mezzenga, Structure of Heat-Induced ??-Lactoglobulin Aggregates and their Complexes with Sodium-Dodecyl Sulfate, Biomacromolecules, vol.9, issue.9, pp.2477-2486, 2008.
DOI : 10.1021/bm800502j

L. Donato, C. Schmitt, L. Bovetto, and M. Rouvet, Mechanism of formation of stable heat-induced ??-lactoglobulin microgels, International Dairy Journal, vol.19, issue.5, pp.295-306, 2009.
DOI : 10.1016/j.idairyj.2008.11.005

E. Schurtenberger, P. Stradner, and A. , Internal structure and colloidal behaviour of covalent whey protein microgels obtained by heat treatment, Soft Matter, vol.6, pp.4876-4884, 2010.

T. Nicolai, Food structure characterisation using scattering methods, Understanding and controlling the microstructure of complex foods Light Scattering : Principles and development, 2007.

B. J. Berne, R. Pecora, J. C. Gimel, and R. Johnsen, Dynamic Light Scattering Analysis of relaxation functions characterized by a broad monomodal relaxation time distribution, pp.697-711, 1993.

M. Verheul, S. P. Roefs, and K. G. De-kruif, Kinetics of Heat-Induced Aggregation of ??-Lactoglobulin, Journal of Agricultural and Food Chemistry, vol.46, issue.3, pp.896-903, 1998.
DOI : 10.1021/jf970751t

A. Tolkach and U. Kulozik, Effect of pH and temperature on the reaction kinetic parameters of the thermal denaturation of beta-lactoglobulin. Milchwissenschaft-Milk Science International, Globular Proteins after Heat-Induced Denaturation, pp.6120-6127, 1999.

S. Mehalebi, T. Nicolai, and D. Durand, Light scattering study of heat-denatured globular protein aggregates, International Journal of Biological Macromolecules, vol.43, issue.2, pp.129-135, 2008.
DOI : 10.1016/j.ijbiomac.2008.04.002

D. Durand, J. C. Gimel, and T. Nicolai, Aggregation, gelation and phase separation of heat denatured globular proteins. Physica A: Statistical Mechanics and its Applications, pp.1-2, 2002.

E. H. Bromley, M. R. Krebs, and A. M. Donald, Mechanisms of structure formation in particulate gels of beta-lactoglobulin formed near the isoelectric point

P. Aymard, J. C. Gimel, T. Nicolai, and D. Durand, Experimental evidence for a two-step process in the aggregation of beta-lactoglobulin at pH 7, pp.987-997, 1996.

J. J. Baumy and G. Brulé, Binding of bivalent cations to ??-lactalbumin and ??-lactoglobulin: effect of pH and ionic strength, Le Lait, vol.68, issue.1, pp.33-48, 1988.
DOI : 10.1051/lait:198813

URL : https://hal.archives-ouvertes.fr/hal-00929117

W. Brown, Light Scattering: Principles and development, 1996.

C. M. Bryant and D. J. Mcclements, Molecular basis of protein functionality with special consideration of cold-set gels derived from heat-denatured whey, Trends in Food Science & Technology, vol.9, issue.4, pp.143-151, 1998.
DOI : 10.1016/S0924-2244(98)00031-4

L. Donato, C. Schmitt, L. Bovetto, and M. Rouvet, Mechanism of formation of stable heat-induced ??-lactoglobulin microgels, International Dairy Journal, vol.19, issue.5, pp.295-306, 2009.
DOI : 10.1016/j.idairyj.2008.11.005

S. G. Hambling, A. S. Mc-alpine, and L. Sawyer, -lactoglobulin, In P. F. Fox Advanced Dairy Chemistry -1: Proteins (pp. 141 -190) Structure-forming processes in Ca2+-induced whey protein isolate cold gelation, International Dairy Journal, vol.7, pp.827-834, 1992.

P. Hongsprabhas, S. Barbut, and A. G. Marangoni, The structure of cold-set whey protein isolate gels prepared with Ca(++), Food Science and, 1999.

J. M. Jung, G. Savin, M. Pouzot, C. Schmitt, and R. Mezzenga, Structure of Heat-Induced ??-Lactoglobulin Aggregates and their Complexes with Sodium-Dodecyl Sulfate, Biomacromolecules, vol.9, issue.9, pp.2477-2486, 2008.
DOI : 10.1021/bm800502j

J. E. Kinsella, D. M. Whitehead, J. Brady, and N. A. Bringe, Milk proteins: possible relationships of structure and function, P. E. Fox Developments in dairy chemistry. (4) (pp. 55!95), 1989.

H. A. Mckenzie, Milk Proteins, 1971.
DOI : 10.1016/S0065-3233(08)60041-8

S. Mehalebi, T. Nicolai, and D. Durand, The influence of electrostatic interaction on the structure and the shear modulus of heat-set globular protein gels, Soft Matter, vol.6, issue.4, pp.893-900, 2008.
DOI : 10.1039/b718640a

S. Mehalebi, T. Nicolai, and D. Durand, Light scattering study of heat-denatured globular protein aggregates, International Journal of Biological Macromolecules, vol.43, issue.2, pp.129-135, 2008.
DOI : 10.1016/j.ijbiomac.2008.04.002

C. Moitzi, L. Donato, C. Schmitt, L. Bovetto, G. Gillies et al., Structure of ??-lactoglobulin microgels formed during heating as revealed by small-angle X-ray scattering and light scattering, Food Hydrocolloids, vol.25, issue.7, pp.1766-1774, 2011.
DOI : 10.1016/j.foodhyd.2011.03.020

T. Nicolai, Food structure characterisation using scattering methods, 2007.
DOI : 10.1201/9781439824115.ch11

T. Nicolai, M. Britten, and C. Schmitt, ??-Lactoglobulin and WPI aggregates: Formation, structure and applications, Food Hydrocolloids, vol.25, issue.8, pp.1945-1962, 2011.
DOI : 10.1016/j.foodhyd.2011.02.006

T. Phan-xuan, T. Nicolai, D. Durand, C. Schmitt, L. Donato et al., On the crucial importance of the pH for the formation and self-stabilisation of protein microgels and strands, Langmuir, pp.15092-15101, 2011.

M. Pouzot, T. Nicolai, R. W. Visschers, and M. Weijers, X-ray and light scattering study of the structure of large protein aggregates at neutral pH, Food Hydrocolloids, vol.19, issue.2, pp.231-238, 2005.
DOI : 10.1016/j.foodhyd.2004.06.003

S. P. Roefs, P. H. Bovay, C. Vuilliomenet, A. M. Rouvet, M. Bovetto et al., Aggregation and gelation of whey proteins: Specific effect of divalent cations?, In R. M. Dickinson Eric Food Colloids: Fundamentals of Formulation, Multiscale Characterization of Individualized beta-Lactoglobulin Microgels Formed upon Heat Treatment under Narrow pH Range Conditions, pp.358-368, 2001.

C. Schmitt, C. Moitzi, C. Bovay, M. Rouvet, L. Bovetto et al., Internal structure and colloidal behaviour of covalent whey protein microgels obtained by heat treatment, Internal structure and colloidal behaviour of covalent whey protein microgels obtained by heat treatment, pp.4876-4884, 2010.
DOI : 10.1016/j.foodhyd.2010.05.010

C. P. Sherwin and E. A. Foegeding, The effects of CaCl2 on aggregation of whey proteins, Milchwissenschaft-Milk Science International, pp.93-96, 1997.

J. W. Simons, H. A. Kosters, R. W. Visschers, and H. H. De-jongh, Role of calcium as trigger in thermal ??-lactoglobulin aggregation, Archives of Biochemistry and Biophysics, vol.406, issue.2, pp.143-152, 2002.
DOI : 10.1016/S0003-9861(02)00429-0

C. H. Wang and S. Damodaran, Thermal gelation of globular proteins: influence of protein conformation on gel strength, Thermal Gelation of Globular-Proteins -Influence of Protein Conformation on Gel Strength, pp.433-438, 1991.
DOI : 10.1021/jf00003a001

M. Zittle, D. Rudd, and \. Custer, The Binding of Calcium Ions by, 1957.

T. Nicolai, M. Britten, and C. Schmitt, beta-Lactoglobulin and WPI aggregates: Formation, structure and applications. Food Hydrocolloids, pp.25-1945, 2011.

P. Aymard, T. Nicolai, D. Durand, and A. Clark, Static and Dynamic Scattering of ??-Lactoglobulin Aggregates Formed after Heat-Induced Denaturation at pH 2, Macromolecules, vol.32, issue.8, pp.2542-2552, 1999.
DOI : 10.1021/ma981689j

C. Veerman, H. Ruis, L. M. Sagis, and E. Van-der-linden, Effect of Electrostatic Interactions on the Percolation Concentration of Fibrillar ??-Lactoglobulin Gels, Biomacromolecules, vol.3, issue.4, pp.869-873, 2002.
DOI : 10.1021/bm025533+

L. N. Arnaudov, R. De-vries, H. Ippel, and C. P. Van-mierlo, Multiple Steps during the Formation of ??-Lactoglobulin Fibrils, Biomacromolecules, vol.4, issue.6, pp.1614-1622, 2003.
DOI : 10.1021/bm034096b

W. S. Gosal, A. H. Clark, and S. B. Ross-murphy, Fibrillar ??-Lactoglobulin Gels:?? Part 1. Fibril Formation and Structure, Biomacromolecules, vol.5, issue.6, pp.2408-2419, 2004.
DOI : 10.1021/bm049659d

M. R. Krebs, K. R. Domike, and A. M. Donald, Protein aggregation: more than just fibrils, Biochemical Society Transactions, vol.37, issue.4, pp.682-685, 2009.
DOI : 10.1042/BST0370682

J. Adamcik, J. Jung, J. Flakowski, P. De-los-rios, G. Dietler et al., Understanding amyloid aggregation by statistical analysis of atomic force microscopy images, Nature Nanotechnology, vol.63, issue.6, pp.423-428, 2010.
DOI : 10.1038/nnano.2010.59

P. Aymard, J. C. Gimel, T. Nicolai, and D. Durand, Experimental evidence for a twostep process in the aggregation of beta-lactoglobulin at pH 7, Journal De Chimie Physique Et De Physico-Chimie Biologique, issue.5, pp.93-987, 1996.

S. Mehalebi, T. Nicolai, and D. Durand, Light scattering study of heat-denatured globular protein aggregates, International Journal of Biological Macromolecules, vol.43, issue.2, pp.43-129, 2008.
DOI : 10.1016/j.ijbiomac.2008.04.002

J. M. Jung, G. Savin, M. Pouzot, C. Schmitt, R. Mezzenga et al., Structure of Heat-Induced ??-Lactoglobulin Aggregates and their Complexes with Sodium-Dodecyl Sulfate, Biomacromolecules, vol.9, issue.9, pp.2477-2486, 2008.
DOI : 10.1021/bm800502j

C. Sanchez, Multiscale Characterization of Individualized beta-Lactoglobulin Microgels Formed upon Heat Treatment under Narrow pH Range Conditions, Langmuir, vol.25, issue.14, pp.7899-7909, 2009.

C. Moitzi, L. Donato, C. Schmitt, L. Bovetto, G. Gillies et al., Structure of beta-lactoglobulin microgels formed during heating as revealed by small-angle X-ray scattering and light scattering. Food Hydrocolloids On the crucial importance of the pH for the formation and self-stabilisation of protein microgels and strands, Langmuir C, vol.25, issue.16, pp.1766-1774, 2011.

E. Schurtenberger, P. Stradner, A. Bromley, E. H. Krebs, M. R. Donald et al., Internal structure and colloidal behaviour of covalent whey protein microgels obtained by heat treatment Mechanisms of structure formation in particulate gels of beta-lactoglobulin formed near the isoelectric point Heat induced formation of beta-lactoglobulin microgels driven by addition of calcium ions, Soft Matter European Physical Journal E Food Hydrocolloids, vol.6, issue.18, pp.4876-4884, 2006.

C. A. Zittle, E. S. Della-monica, R. K. Rudd, J. H. Custer, D. Renard et al., The Binding of Calcium Ions by b-Lactoglobulin Both before and after Aggregation by Heating in the Presence of Calcium Ions. Contribution from the eastern regional research laboratory Effects of pH and salt environment on the association of b-lactoglobulin revealed by intrinsic fluorescence studies, International Journal of Biological Macromolecules Busnel, J. P. International Journal of Biological Macromolecules, vol.79, issue.2134, pp.4661-4666, 1957.

K. Ako, T. Nicolai, D. Durand, and G. Brotons, Micro-phase separation explains the abrupt structural change of denatured globular protein gels on varying the ionic strength or the pH, Soft Matter, vol.37, issue.20, pp.4033-4041, 1992.
DOI : 10.1039/b906860k

T. Lefevre, M. S. Subirade, T. Hagiwara, H. Kumagai, T. Matsunaga et al., Effects of Calcium Level on the Structure of Pre-heated Whey Protein Isolate Gels. Lebensmittel-Wissenschaft & Technologie Fractal analysis of the elasticity of BSA and b-lactoglobulin gels Aggregation and gelation of whey proteins: Specific effect of divalent cations? In Food Colloids Fundamentals of Formulation Advances in modifying and understanding whey protein functionality. Trends in Food Science & Technology The effects of CaCl2 on aggregation of whey proteins. Milchwissenschaft-Milk Science International Food structure characterisation using scattering methods Analysis of relaxation functions characterized by a broad monomodal relaxation time distribution, Understanding and controlling the microstructure of complex foods Light Scattering: Principles and development, pp.578-586, 1993.

K. Ako, D. Durand, T. Nicolai, and L. Becu, Quantitative analysis of confocal laser scanning microscopy images of heat-set globular protein gels, Food Hydrocolloids, vol.23, issue.4, pp.1111-1119, 2009.
DOI : 10.1016/j.foodhyd.2008.09.003

L. Bon, C. Nicolai, T. Durand, D. Griffin, W. G. Griffin et al., Kinetics of Aggregation and Gelation of Globular Proteins after Heat-Induced Denaturation Molecular-Basis of Thermal Aggregation of Bovine Beta-Lactoglobulin-A Effect of the cluster size on the micro phase separation in mixtures of beta-lactoglobulin clusters and kappa-carrageenan, Visschers, R. W.; Weijers, M., X-ray and light scattering study of the structure of large protein aggregates at neutral pH, pp.6120-6127, 1993.