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Scientific context: machine learning
Learn to solve a task automatically

Data Learning Model

labeled

unlabeled

supervised

unsupervised

classification

clustering
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Numerical and structured data

Numerical data

Each data instance is a numerical feature vector.

Example: the age, body mass index, blood
pressure, ... of a patient.

x =









26
21.6
102
. . .









Structured data

Each instance is a structured object: a string, a tree or a graph.

Examples: French words, DNA sequences, XML documents,
molecules, social communities...

ACGGCTT
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Metric learning
Adapt the metric to the problem of interest

A good metric as part of the solution

Many learning algorithms rely upon a notion of distance (or similarity)
between pairs of examples.

Basic idea

Learn a pairwise metric s.t. instances with same label are close and
instances with different label are far away.

Metric Learning
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Metric learning
Application: image retrieval

Query image

Most similar images
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Contributions of my thesis

1 A String Kernel Based on Learned Edit Similarities (PR ’10)

2 Learning Good Similarities for Structured Data (ECML ’11, MLJ ’12)

3 Learning Good Similarities for Feature Vectors (ICML ’12)

4 Robustness and Generalization for Metric Learning
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Notations & Background

Notations & Background
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Notations & Background Supervised Learning

Supervised learning
Notations and basic notions

Input

A sample of NT labeled examples T = {zi = (xi , yi )}
NT

i=1 independently
and identically distributed (i.i.d.) according to an unknown distribution P
over Z = X × Y. We focus on binary classification, where Y = {−1, 1}.

Output

A hypothesis (model) h that is able to accurately predict the labels of
(unseen) examples drawn from P .

Definition (True risk)

Given a loss function ℓ measuring the agreement between the prediction
h(x) and the true label y , we define the true risk by:

Rℓ(h) = Ez∼P [ℓ(h, z)] .
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Notations & Background Supervised Learning

Supervised learning
Notations and basic notions

Definition (Empirical risk)

The empirical risk of an hypothesis h is the average loss suffered on the
training sample T :

Rℓ
T (h) =

1

NT

NT
∑

i=1

ℓ(h, zi ).

Generalization guarantees

Under some conditions, we may be able to bound the deviation between

the true risk and the empirical risk of an hypothesis, i.e., how much we
“trust” Rℓ

T (h):

Pr[|Rℓ(h)− Rℓ
T (h)| > µ] ≤ δ. (PAC bounds)
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Notations & Background Supervised Learning

Supervised learning
Loss functions
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Notations & Background Metric Learning

Metric learning
Basic setting

Finding a better representation space

Metric Learning

Optimize over local constraints

Existing methods learn the parameters of some metric with respect to
local pair-based or triplet-based constraints such that:

xi and xj should be close to (or far away from) each other.

xi should be closer to xk than to xj .
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Notations & Background Metric Learning

Metric learning
Methods of the literature

Very popular approach

Find the positive semi-definite (PSD) matrix M ∈ R
d×d

parameterizing a (squared) Mahalanobis distance

d2
M(x, x′) = (x− x′)TM(x− x′) such that d2

M satisfies best the
constraints.

Different methods essentially differ by the choice of constraints, loss
function and regularizer on M.

Solving the problems

For feature vectors: convex optimization.

For structured data: inference in probabilistic models.
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Notations & Background Metric Learning

Metric learning
Generalization

Metric learning

algorithm

Metric−based

learning algorithm

Learned metric

Sample of examples

Underlying

unknown

distribution

Generalization guarantees

for the learned model using the metric?

Consistency guarantees

for the learned metric?

Learned

model

Sample of examples

“Plug and hope” strategy

For most approaches, no generalization guarantees are established.
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Notations & Background Metric Learning

Contributions

Contributions

Metric learning algorithms designed to improve sparse linear classifiers,
with generalization guarantees.

1 We will first tackle the case of structured data,

2 and extend these ideas to numerical data.

An important building block

The work of [Balcan et al., 2008a] which

establishes a link between properties of a similarity function and

generalization of a linear classifier.

but provides no algorithm to learn such a good similarity.
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Learning with (ǫ, γ, τ)-Good Similarity Functions

Learning with (ǫ, γ, τ )-Good

Similarity Functions
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Learning with (ǫ, γ, τ)-Good Similarity Functions Definition

Definition of goodness

Definition (Balcan et al., 2008)

A similarity function K ∈ [−1, 1] is an (ǫ, γ, τ)-good similarity function

if there exists an indicator function R(x) defining a set of “reasonable
points” such that the following conditions hold:

1 A 1− ǫ probability mass of examples (x , y) satisfy:

E(x ′,y ′)∼P

[

yy ′K (x , x ′)|R(x ′)
]

≥ γ.

2 Prx ′ [R(x
′)] ≥ τ. ǫ, γ, τ ∈ [0, 1]
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Learning with (ǫ, γ, τ)-Good Similarity Functions Intuition behind the definition

Intuition behind the definition
In this example, K (x, x′) = 1− ‖x− x′‖2 is (0, 0.006, 3/8)-good, (2/8, 0.01, 3/8)-good...

A B

C DE

F

G H

A B C D E F G H
A 1 0.40 0.50 0.22 0.42 0.46 0.39 0.28
B 0.40 1 0.22 0.50 0.42 0.46 0.22 0.37
E 0.42 0.42 0.70 0.70 1 0.95 0.78 0.86

Margin γ 0.3277 0.3277 0.0063 0.0063 0.0554 0.0106 0.0552 0.0707
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Learning with (ǫ, γ, τ)-Good Similarity Functions Implications for Learning

Simple case: R is known

Strategy

Use K to map the examples to the space φ of “the similarity scores with
the reasonable points” (similarity map).

E

F
GH

A

B

C
D

K (x,A)
K (x,B)

K
(x
,E

)
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Learning with (ǫ, γ, τ)-Good Similarity Functions Implications for Learning

Simple case: R is known

A trivial linear classifier

By definition of (ǫ, γ, τ)-goodness, we have a linear classifier in φ that
achieves true risk ǫ at margin γ.

E

F
GH

A

B

C
D

K (x,A)
K (x,B)

K
(x
,E

)
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Learning with (ǫ, γ, τ)-Good Similarity Functions Implications for Learning

What if R is unknown?

Theorem (Balcan et al., 2008)

Given K is (ǫ, γ, τ)-good and enough points to create a similarity map,
there exists a linear separator α that has true risk close to ǫ at margin γ/2.

Question

Can we find this linear classifier in an efficient way?

Answer

Basically, yes (only need to slightly reformulate the definition).

Aurélien Bellet (LaHC) Metric Learning with Guarantees December 11, 2012 20 / 47



Learning with (ǫ, γ, τ)-Good Similarity Functions Implications for Learning

Learning rule

Learning the separator α with a linear program

min
α

n
∑

i=1



1−
n

∑

j=1

αjyiK (xi , xj)





+

+ λ‖α‖1

L1 norm induces sparsity

L1 constraintL2 constraint
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Learning with (ǫ, γ, τ)-Good Similarity Functions Summary

Summary

A nice theory

The true risk of the sparse linear classifier depends on how well the
similarity function satisfies the definition (basically, Rℓ(h) ≤ ǫ).

Limitation

For real-world problems, standard similarity functions may poorly satisfy
the definition (large ǫ gives worthless guarantees).

Our idea

Given a training set T , a set of reasonable points and a margin γ, try
to optimize the empirical goodness over T .

Generalization guarantees for the metric itself implies guarantees for
the classifier!
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Learning Good Similarities for Structured Data

Learning Good Similarities

for Structured Data

Relevant publications

Bellet, A., Habrard, A., and Sebban, M. (2011). Learning Good Edit
Similarities with Generalization Guarantees. In ECML/PKDD, pages
188–203.

Bellet, A., Habrard, A., and Sebban, M. (2012a). Good edit similarity
learning by loss minimization. Machine Learning, 89(1):5–35.

Aurélien Bellet (LaHC) Metric Learning with Guarantees December 11, 2012 23 / 47



Learning Good Similarities for Structured Data Why Structured Data?

Why structured data?

Motivation 1: structured metrics are convenient

Metrics for structured data (strings, trees, graphs) act as proxies to
manipulate complex objects: can use any metric-based algorithm!

Motivation 2: drawbacks of the state-of-the-art

Little work on metric learning from structured data.

Most of it has focused on edit distance learning, through likelihood

maximization in probabilistic models (costly and not flexible).

Motivation 3: avoid the PSD constraint

Edit distance-based metrics are not PSD and difficult/costly to
transform into kernels (cf Chapter 4).

On the other hand, (ǫ, γ, τ)-goodness is well-suited to edit similarities
(cf preliminary study of Chapter 5).
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Learning Good Similarities for Structured Data The Edit Distance

The edit distance

The edit distance is the cost of the cheapest sequence of operations
(script) turning a string into another. Allowable operations are insertion,
deletion and substitution of symbols. Costs are gathered in a matrix C.

Example 1: Standard (Levenshtein) distance

C $ a b

$ 0 1 1
a 1 0 1
b 1 1 0

=⇒ edit distance between abb and aa
is 2 (needs at least two operations)

Example 2: Specific Cost Matrix

C $ a b

$ 0 2 10
a 2 0 4
b 10 4 0

=⇒ edit distance between abb and aa
is 10 (a → $, b → a, b → a)

$: empty symbol, Σ: alphabet, C: (|Σ|+ 1)× (|Σ|+ 1) matrix with positive values.
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Learning Good Similarities for Structured Data Key Simplifications

Key simplification #1
Learning the costs of the Levenshtein script

No closed-form expression for the edit distance → methods of the
literature use iterative procedures.

We make the following key simplification: fix the edit script.

Definition of eC

eC(x, x
′) =

∑

0≤i ,j≤|Σ|

Ci ,j ×#i ,j(x, x
′),

where #i ,j(x, x
′) is the number of times the operation i → j appears in the

Levenshtein script.

We will in fact optimize:

Definition of KC

KC(x, x
′) = 2 exp(−eC(x, x

′))− 1 ∈ [−1, 1]
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Learning Good Similarities for Structured Data Key Simplifications

Key simplification #2
Optimize a relaxed version of the goodness

Avoid a nonconvex formulation

Optimizing the (ǫ, γ, τ)-goodness of KC would result in a nonconvex

formulation (summing/subtracting up exponential terms).

A new criterion

E(x ,y)

[

E(x ′,y ′)

[

[

1− yy ′KC(x , x
′)/γ

]

+
|R(x ′)

]]

≤ ǫ′ (1)

Interpretation

Eq. (1) bounds the criterion of (ǫ, γ, τ)-goodness: “goodness” is

required with respect to each reasonable point (instead of
considering the average similarity to these points).

Consequently, optimizing (1) implies the use of pair-based
constraints.

Aurélien Bellet (LaHC) Metric Learning with Guarantees December 11, 2012 27 / 47



Learning Good Similarities for Structured Data Problem Formulation

Problem formulation

Recall the underlying idea

Moving closer pairs of same class and further away those of opposite class.

GESL: a convex QP formulation

min
C,B1,B2

1
NTNL

∑

1≤i≤NT ,
j :fland (zi ,zj )=1

ℓ(C, zi , zj) + β‖C‖2F

s.t. B1 ≥ − log(12), 0 ≤ B2 ≤ − log(12), B1 − B2 = ηγ
Ci ,j ≥ 0, 0 ≤ i , j ≤ |Σ|,

where ℓ(C, zi , zj) =

{

[B1− eC(xi, xj)]+ if yi 6= yj
[eC(xi, xj)− B2]+ if yi = yj

.

Two parameters: β (regularization parameter on the edit costs) and ηγ
(the “desired margin”).
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Learning Good Similarities for Structured Data Generalization Guarantees

Generalization guarantees

Theorem: GESL has a uniform stability in κ/NT

κ =
2(2 + α)W 2

βα

W is a bound on the string sizes; 0 ≤ α ≤ 1 such that NL = αNT .

Theorem: generalization bound - convergence in O(
√

1/NT )

With probability at least 1− δ:

Rℓ(C) < Rℓ
T (C) + 2

κ

NT

+ (2κ+ B)

√

ln(2/δ)

2NT

.

Gives a (loose) bound on the true goodness.

“Independence” from the size of the alphabet.
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Learning Good Similarities for Structured Data Generalization Guarantees

Generalization guarantees

Metric learning

algorithm

Metric-based

learning algorithm

Learned metric

Sample of examples

Underlying

unknown

distribution

Generalization guarantees

for the learned model using the metric

Consistency guarantees

for the learned metric

Learned

model

Sample of examples
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Learning Good Similarities for Structured Data Experimental Results

Experimental results
Task: classify words as either French or English
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(more experiments on handwritten digit recognition)
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Learning Good Similarities for Structured Data Summary & Perspectives

Summary & perspectives

Summary

An edit similarity learning method which addresses the classic
drawbacks of state-of-the-art methods.

The learned similarity is used to build a sparse linear classifier.

Generalization guarantees in terms of (i) the learned similarity and (ii)
the true risk of the classifier.

Perspectives: extension to trees

Straightforward extension to tree-structured data (use a
Levenshtein tree edit script).

Ongoing experiments in melody recognition (with J.F. Bernabeu,
Universidad de Alicante).
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Learning Good Similarities for Feature Vectors

Learning Good Similarities

for Feature Vectors

Relevant publication

Bellet, A., Habrard, A., and Sebban, M. (2012b). Similarity Learning
for Provably Accurate Sparse Linear Classification. In ICML.
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Learning Good Similarities for Feature Vectors Form of Similarity Function

Form of similarity function

Bilinear Similarity

Optimize the bilinear similarity KA:

KA(x, x
′) = xTAx′,

parameterized by the matrix A ∈ R
d×d .

Advantages

Unlike Mahalanobis, A is not constrained to be PSD nor symmetric
(easier to optimize).

KA is efficiently computable for sparse inputs.

Can define a similarity between objects of different dimension by
taking A nonsquare.
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Learning Good Similarities for Feature Vectors Formulation

Empirical goodness

Goal

Optimize the (ǫ, γ, τ)-goodness of KA on a finite-size sample.

Notations

Given a training sample T = {zi = (xi, yi )}
NT

i=1, a subsample R ⊆ T of NR

reasonable points and a margin γ,

ℓ(A, zi,R) = [1− yi
1

γNR

NR
∑

k=1

ykKA(xi, xk)]+

is the empirical goodness of KA w.r.t. a single training point zi ∈ T , and

ǫT =
1

NT

NT
∑

i=1

ℓ(A, zi,R)

is the empirical goodness over T .
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Learning Good Similarities for Feature Vectors Formulation

Formulation

SLLC (Similarity Learning for Linear Classification)

min
A∈Rd×d

ǫT + β‖A‖2F

where β is a regularization parameter.

Desirable properties

SLLC can be efficiently solved in a batch or online way via
unconstrained or constrained optimization.

Different from classic metric learning approaches (including GESL):
similarity constraints must be satisfied only on average, learn global

similarity (R is common to all training examples).
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Learning Good Similarities for Feature Vectors Formulation

Generalization guarantees

Theorem: generalization bound - convergence in O(
√

1/NT )

With probability 1− δ, we have:

ǫ ≤ ǫT +
κ

NT

+ (2κ+ 1)

√

ln 1/δ

2NT

.

Tighter bound on the true goodness (and thus on the true risk of
the classifier).

“Independence” from the dimensionality of the problem.
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Learning Good Similarities for Feature Vectors Formulation

Generalization guarantees

Metric learning

algorithm

Metric-based

learning algorithm

Learned metric

Sample of examples

Underlying

unknown

distribution

Generalization guarantees

for the learned model using the metric

Consistency guarantees

for the learned metric

Learned

model

Sample of examples
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Learning Good Similarities for Feature Vectors Experiments

Experimental set-up

7 UCI datasets of varying size and complexity:

Breast Iono. Rings Pima Splice Svmguide1 Cod-RNA

train size 488 245 700 537 1,000 3,089 59,535
test size 211 106 300 231 2,175 4,000 271,617
# dimensions 9 34 2 8 60 4 8
# runs 100 100 100 100 1 1 1

We compare SLLC to KI (cosine baseline) and two widely-used
Mahalanobis distance learning methods: LMNN and ITML.
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Learning Good Similarities for Feature Vectors Experiments

Experiments
Overall Results

Breast Iono. Rings Pima Splice Svmguide1 Cod-RNA

KI
96.57 89.81 100.00 75.62 83.86 96.95 95.91
(20.39) (52.93) (18.20) (25.93) (362) (64) (557)

SLLC
96.90 93.25 100.00 75.94 87.36 96.55 94.08
(1.00) (1.00) (1.00) (1.00) (1) (8) (1)

LMNN
96.46 88.68 100.00 73.50 87.59 96.23 94.98
(488) (245) (700) (537) (1,000) (3,089) (59,535)

ITML
96.38 88.29 100.00 72.80 84.41 96.80 95.42
(488) (245) (700) (537) (1,000) (3,089) (59,535)

SLLC outperforms KI , LMNN and ITML on 4 out of 7 datasets.

Always leads to extremely sparse models.
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Learning Good Similarities for Feature Vectors Experiments

Experiments
Linear classification

Breast Iono. Rings Pima Splice Svmguide1 Cod-RNA

KI
96.57 89.81 100.00 75.62 83.86 96.95 95.91
(20.39) (52.93) (18.20) (25.93) (362) (64) (557)

SLLC
96.90 93.25 100.00 75.94 87.36 96.55 94.08
(1.00) (1.00) (1.00) (1.00) (1) (8) (1)

LMNN
96.81 90.21 100.00 75.15 86.85 96.53 95.15
(9.98) (13.30) (8.73) (69.71) (156) (82) (591)

ITML
96.80 93.05 100.00 75.25 85.29 96.70 95.14
(9.79) (18.01) (15.21) (16.40) (287) (49) (206)
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Learning Good Similarities for Feature Vectors Experiments

Experiments
PCA projection of the “similarity map” space (Rings dataset)
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Learning Good Similarities for Feature Vectors Experiments

Experiments
k-Nearest Neighbors

Breast Iono. Pima Splice Svmguide1 Cod-RNA

KI 96.71 83.57 72.78 77.52 93.93 90.07
SLLC 96.90 93.25 75.94 87.36 93.82 94.08

LMNN 96.46 88.68 73.50 87.59 96.23 94.98
ITML 96.38 88.29 72.80 84.41 96.80 95.42

Surprisingly, SLLC also outperforms LMNN and ITML on the small
datasets.
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Learning Good Similarities for Feature Vectors Summary & Perspectives

Summary & perspectives

Summary

A global similarity learning method with an efficient formulation.

Leads to extremely sparse linear classifiers.

Tighter generalization bounds than with GESL.

Perspectives

Experiment with online optimization algorithms to make the approach
scalable to very large datasets.

Study the influence of other regularizers (e.g., L2,1 norm). Thanks to
an adaptation of algorithmic robustness (cf Chapter 7 of the thesis) to
metric learning, we do not have to give up generalization guarantees!
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General Perspectives

General Perspectives
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General Perspectives

General perspectives

On the practical side

Like GESL, make implementation of SLLC publicly available.

Online learning of (ǫ, γ, τ)-good similarities.

Play with sparsity-inducing regularizers.

. . .

On the theoretical side

What about guarantees for Nearest Neighbors?

What about the regression setting? Could use the recent adaptation
of goodness to this setting [Kar and Jain, 2012].

What properties of a metric make quality clusterings? First attempt:
[Balcan et al., 2008b].

. . .
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General Perspectives

Thank you for your attention
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