Here you ve  tesis wit n utor on its overs. everteless, it is not te ontriution o one voie. It onveys te results o  ontinuous ilo. ometimes it involve  mute reltion wit rtiles n ooks, ut, t its est, it ws n exne o ies wit te people in te sienti  ommunity. Here re some o tem... I tnk my tesis visor, sl imon, or is unrelentin rive n is ility to spot open iretions or reser.

e work on jorn ermions is prtiulrly in-ete to te ruitul ollortion wit Cristin Ben n Denis Cevllier. ur joint work eserves uture oopertion.

A speil tnks is owe to te uno il tesis visor, Fre iéon. Countless ours spent irlin roun te sujet o topoloil insultors tut me te menin o reser in pysis. His vilility or intellient isussion ws  uel or mny ies evelope in tis tesis.

nks to my olleues, L s eome in tree yers  welomin environment or stuyin te topoloil mtter. Hopeully, te in uene o te ler n srp min o Jen-oël Fus trnspires in te ollowin pes. His sienti  enerosity s ene te ll people roun im. e sme n e si out te oo-umore r Goeri, wo me o ee reks n osion to lern pysis wrppe in neotes.

It is r to mt te ortuitous enounters wit vel Kluin. e ew moments in wi I sre is mtemtil perspetive on te sujet o topoloil insultors were trnsenin.

I lso ene te rom isussion wit Gilles ontmux, ierre Delple, ël e Gil, Li-Kin Lim, Gunqun n n Clément Dutreix. e "rpene-people" re nturlly lose to te topis presente insie tis tesis n, even unknowinly, ve spe te ormultion o ies presente ere.

It ws  plesure to ollorte wit Frnçois Crépin, wo me isussions out osoniztion n renormliztion un. I nnot oret severl isussions wit te everinquisitive iols iéut. I ope our topis will meet in te uture n te lk-or isussions n turn in  ollortion. In te sme vein, I tnk to Emilio ino-r, Jen-ené ouquet, i Liu, ttis Alert, iols Crpentier, n Ily Belopolski or introuin me into teir respetive els o reser. It is true tt siene is just v A  i system o ommunitin vessels. It ws  plesure to sre ies wit Json Alie. lkin wit im ws s illumintin s rein is ler rtiles. is olinski is  lost rien; is presene inspire my rst yer o D n is suen ispperne nnot elete is memory.

en mtemtis eme isorientin, Arin iorel, Ion  ru , n ri uile-vi were lwys ville or isussions. nk you! All pysiists tt rosse pt wit me in te institute, in ourses, in summer sools et. eserve  mention. Als, only some o tem oul e nme in tis rie knowl-ement. Furtermore my rtitue is extene to ll te people t te L, wo me te institute su  omortle ple or reser.

Finlly, notin woul ve een possile witout my mily. en te lon ys in  orein ln turne lek, tey lwys ritene tem up. vi I imension. everteless, not ll o tem ve oun n experimentl reliztion. is poses  ontinuous llene to onense mtter pysis; rom te experimentl point o view, it is to n or enineer systems tt will support topoloil pses o mtter n, o ourse, to etet tese exoti sttes o mtter.

e teoretiin nees to propose possile nites, imine etetion semes n oo quntities to mesure. Furtermore, te ro e is not entirely mppe. At te moment, it still remins to ve  systemtil view o te topoloil mtter in te ontext o intertin systems. Alrey te lssi tion semes or ree Hmiltonins nee to e revise in tis new lit 20-22].

In this thesis e present tesis will not well on te strt mtters onernin te lssi tion o topoloil insultors n superonutors. It is pplie entirely to non-intertin topoloil insultors n superonutors s te ones lssi e in . 1.

e tle soul e use to pinpoint te ojet o te present stuy in  more enerl ontext.

e tesis is ivie into two prts. E one will reeive  more etile introution t its respetive einnin. It su es ere to rw te min iretions o reser.

e rst prt o te tesis is ouse mostly on 2D topoloil insultors in lss A. e most mous initnt ws lrey nme: te inteer quntum Hll e et (IHE). Here  is roken trou n externl mneti el. However,  i erent possiility exists, tt ws rst illustrte y Hlne 23]. eoretilly te IHE pysis n rise in te sene o n externl el, y in uxes t te sle smller tt te ell size, ut wi nel overll. us  is still roken, n one oul ex-pet issiptionless urrent t zero mneti el. u  moel i not ve n exper-imentl ul llment, ut ws entrl in iminin te rst Z 2 insultor in rpene 4]. Due to its onnetion to IHE, te Z insultor ws nme quntum nomlous Hll (AH) insultor. e topoloil invrint rterizin te 2D AH insultors re-mins  Cern numer.

e present stuy ouses mostly on miniml two-n moels o AH insultors n investites te onitions or te proution o ns wit i Cern numer.

e nontrivil spet o te reser is tt te i Cern numer is not otine y multiplyin te ns, ut y retin  single n wit  i Cern numer. is is re ete s usul in  multiplition o te ee nnels.

Cp. 1 is onerne entirely wit te ulk rteriztion o AH insultors in  tit-inin ormultion. It is sown ow one n simpliy te tretment o tese moels to te stuy o systems wit Dir points. usequently, prouin ier Cern numer reues in tis se to te requirement tt te noes in te ispersion or pless moels re multiplie trou ition o oppin terms etween istnt sites. e teory is rst put to test in te ontext o n enoenous rti il moel wit ve Cern pses, n, seonly, y moiyin te AH Hlne moel.

Cp. 2 ontens mostly wit numeril n nlytil solutions or ee-stte wve
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e tremenous work rom reent yers s  strtin point in te teoretil proposl o two-imensionl Z 2 topoloil insultors (te quntum spin Hll insultors) 4, 5] n te rpi experimentl isovery in He/Ce quntum wells 6]. oon  er, it ws unerstoo tt te 2D quntum spin Hll insultor is ut n instne o possile topoloil insultors n superonutors. enerle penomen su s te okley sure sttes 7], te topoloil exittions in te u-rie er-Heeer polymer in 8], te inteer quntum Hll e et 9], n mny oters, were ll put toeter s piees o  reter piture; tese penomen ruilly epen on te presene o ee sttes tt re mniesttions o topoloil pses in  ppe ulk.

e topoloil insultors n superonutors sre te sme intriuin eture: te presene o roust ee sttes in te ulk p. For exmple, te ee sttes re not re-move uner te tion o wek isorer wi oes not lose te ulk p. Hene te persistene o tese sttes nnot e ttriute to te point roup symmetries, wi n e estroye in te presene o isorer. In te sene o point roup symmetries, one is le wit t lest two si isrete symmetries: time-reversl symmetry () n re onjution or prtile-ole symmetry (H). ey orm te sis or te lssi tion o non-intertin ppe Hmiltonins in ritrry imensions 10]. is llowe to roup te Hmiltonins into ten lsses in e sptil imension.

ore preisely, te time-reversl n re onjution tin on  Hmiltonin mtrix, in  sis o retion n nniiltion opertors, re represente y te nti-unitry opertors, T n C, tt n squre to ±1 11]. en, ountin lso te possiility tt te system is not invrint uner tese symmetries, tere re 9 possile lsses. A tir irl or sulttie symmetry (L) is represente y  unitry opertor S = TC.

e vlue o S is entirely etermine y te evior o C n T, exept in te prti-ulr se were L is  symmetry o te system wen ot  n H re roken.

is se rises te numer o symmetry lsses to 10 11]. e resultin lssi tion is represente in . 1. --CII (irl sympl.)
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le 1: Clssi tion o ree ermioni ppe Hmiltonins s  untion o symmetries: , H n L. e imensionlity is enote y d. e present tesis toues lmost exlusively moels elonin to te lsses mrke in re. (le tken rom e. 13].)

Furtermore, not ll ppe roun sttes or  iven lss re ientil. Five lsses in every imension ve ppe roun sttes tt re ivie into topoloil setors.

e Hmiltonins in tese lsses orm te topoloil insultors n superonutors 11-14]. ote rom . 1 tt tey ve ssoite  esriptor, Z or Z 2 . is enotes te topoloil invrint tt esries te roun stte o te system n is use trouout to ientiy te type o topoloil insultor (superonutor). e in-vrint ounts ow mny istint ppe pses re in  spei  lss: only two, Z 2 , or  numerle in nity o pses, Z. Alwys one o te ppe pses is trivil in te sense tt it n e itilly onnete to te vuum. ssin rom  ppe pse to n-oter requires losin te ulk p 12]. Connetin two topoloilly istint ppe pses o topoloil insultors (superonutors) retes n intere were ee sttes pper. is enerl result is lle te ulk-ounry orresponene 15, 16] n is te sis o te pysis rown roun te sujet o topoloil insultors (superon-utors).

e robust ee sttes re  onsequene o onnetin roun sttes wit i erent vlues o te topoloil invrint. Ain  wek perturtion tt oeys te symmetries spei  to  lss, nnot estroy tese sttes.

From  prtil perspetive te roustness o ee sttes onstitutes  entrl moti-vtion to stuy te topoloil mterils. For exmple in 2D n 3D, te ees ror quntize metlli sttes tt re roust wit respet to isorer n oul rry urrent witout issiption. A prime exmple re te inteer quntum Hll ee sttes.

ey elon to  2D Z insultor in lss A tt is esrie y n inteer topoloil invrint, te rst Cern numer C. ek isorer oes not estroy te ee sttes n, urtermore, tey re quntize; tey rry urrent n ve  Hll onutne proportionl to C 17-19].

ere re ve non-intertin topoloil insultors n superonutors in e untions in  moel wit Cern |C| = 2. oreover,  ew extensions to our-n moels re nlyze usin te metos evelope in te previous pter, n teir topoloil pse irm is etermine. e seon prt o te tesis is entere roun te stuy o jorn ermions in  spin-orit ouple semionutin wire in te proximity o n s-wve superonutor 24, 25]. is pysil system relizes  one-imensionl topoloil superonutor in lss D (see . 1) tt supports prtiulr ee sttes: te jorn ermions. An introution to tese sintin (qusi)prtiles is o ere in Cp. 3.

In Cp. 4 te system is reonsiere in te presene o Dresselus spin-orit inter-tion. It is sown tt te spin o te eletroni erees o reeom o te zero-enery ee moes respons to rtio etween te s n Dresselus spin-orit ouplin.

ere is n opposite spin-polriztion o te ee moes, in  iretion trnsverse to  mneti el, wi oul e essile trou tunnelin spetrosopy. e ollow-in pter (5) onsiers yri strutures o te types: superonutor-norml n superonutor-norml metl-superonutor uilt upon te orementione system. Furtermore, it investites rin eometries, uner te tion o  uniorm superon-utin pse rient, wi in ertin onition n e mppe to   eterostruture. e entrl interest lies in te extene nture o jorn ermions tt evelop in te norml prt o te eterostrutures.

Finlly, Cp. 6 nes ers n toues upon jorn ermions in  two-n tit-inin BDI lss superonutor. e interest lies in te t tt te system is esrie y  Z topoloil invrint n supports several jorn ermions t its ee (see . 1). It is importnt to note te onnetion wit te Z insultors trete in te rst prt. e sme menism, i.e. ition o ouplin terms etween istnt sites, is responsile or retin multiple zero moes. Conlusion n possile perspetives re ontine in te nl pter.

Part I Topological insulators

Chapter 1 uantum anomalous Hall phases in a two-dimensional Chern insulator 1.1 Introduction e quntum spin Hll (H) insultor tt eute te reent exitement in te el o topoloil insultors (n superonutors) 1-3] s one importnt preursor wi is te sujet o te rst prt o tis tesis. It is te quntum nomlous Hll (AH) insultor tt reeive  rst teoretil reliztion in te work o Hlne 23]. It is  Z insultor tt s irl ee sttes similr to tose o inteer quntum Hll e-et (IHE) wit te ruil i erene tt tey exist in zero mneti el. A AH insultor in two imensions exists only in lss A, wi lks , H or te sult-tie symmetry (see . 1). It will e lso reerre in te ollowin s  Cern insultor ue to te t tt it is esrie y  Cern topoloil invrint C. Beuse it requires no prtiulr isrete symmetry, one expets tt ee stte o tis system re extremely roust, similrly to te ones in IHE 9]. Furtermore, it quires  quntize Hll onutivity proportionl to te Cern inex, σ H = C × e 2 /h. e Hlne tit-inin moel is trete in more etil in e. 1.4. It su es to sy tt it esries spinless eletrons n te  is roken trou urrents inue t  sle smller tt te ell size. ore enerlly, in  spinul system su pysis oul e use y mneti orerin in te presene o spin-orit intertion 23, 26]. eo-retil proposls to relize AH invoke e ets o isorer in metlli erromnets 26] or mneti opin o H insultors 27]. However, to tis moment, tere is no inis-putle pysil reliztion o te AH insultor, n only reently experimentlists lim etetion in mneti topoloil insultors 28]. By ontrst, te H e et ws ostensily investite in He/Ce quntum wells 6]. e irt o te H insultor is relte to te insit tt ominin  AH insultor wit its time reversl opy proues  time-reversl invrint (I) Z 2 insultor tt n ve spin-polrize irl ee sttes 4].

1.2 B C e question tt rives te rst prt o te tesis is ow to etermine e iently te topoloil invrint or te se o  two-n non-intertin Cern insultor (see e. 1.2). oreover, ow n one multiply te topoloil pses in te system wile keepin only two ns? Equivlently, ow n tere e  sinle n wit  lre Cern numer? ote tt witout te two-n onstrint, te nswer must ollow te sme lines o te IHE; te numer o ee nnels is multiplie y vin more ns 29, 30]. e ser or ns wit i Cern numers in AH insultors s reently intersete wit te stuy o t n topoloil moels in wi it is expete to enounter rtionl quntum Hll e et 31-33]. In tis ontext, te ser or i Cern numers ws motivte y te nee to isover pysis ove te lowest Lnu level 34-37].

e sort enerl nswer tt is elorte in te present tesis lims:  sinle n n inrese its Cern numer y in istnt-site oppins in te system 38]. ( e sme question ws nswere in te ontext o t-n topoloil moels y sowin tt  multi-n system n e projete to  two-n moel wit e etive istnt-neior oppins 37].) In prtiulr, tese questions re iven  more onrete nswer y uilin  moel wit ve Cern pses in e. 1.3 n y retin i Cern pses in te Hlne moel in e. 1.4. is question n e seen s  rie to te seon prt o te tesis, were ouplins etween istnt sites n proue severl jorn moes t  sinle ee. ere te time-reversl n irl symmetries ensure tt tey o not yriize to orm reulr eletroni sttes (see Cp. 6). e seon pter trets mostly te ee pysis in  moel AH insultor. ere te question is ow to etermine nlytilly n numerilly te ee sttes in  moel wit |C| = 2. Finlly, te pter ontins two extensions tt sow wys in wi te nlytil e-termintion o te Cern numer n e use in ses o our-n moels. e. 2.3 trets  our-n I Z 2 moel. Here te ee sttes rom |C| = 2 re ppe y I one-prtile perturtion. In e. 2.4 te Cern numer is use to preit new metlli sttes tt pper in  "stripe" topoloil insultor.

Bulk characterization of a Chern insulator 1.2.1 Topological invariant

Chern number for a class A insulator in 2D is susetion ontins  esription o te topoloil invrint tt rterizes  two-imensionl Z topoloil insultor in lss A. is insultin system s no irl symmetry or ny o te nti-unitry symmetries:  n H. usequently it is r-terize y  Cern numer. e min rument vne ere is tt te topoloil invrint n reeive  isrete ormultion tt llows to rw  iret prllel wit te pysis o Dir ermions. e isrete ormultion o te topoloil invrint s te e interest tt ives n e ient wy to ompute n isriminte te topoloilly 1. AH 2D C insultin pses o  two-n insultors.

e tit-inin Hmiltonin or  ree ermion teory is written in  site sis

H = i ε i |i i| + ij t ij |i j|.
(1.1) e on-site enery is iven y ε i n te oppin interls etween i erent neior sites re iven y t ij . In te ollowin, only systems witout isorer re onsiere.

ereore te system is invrint uner  trnsltion wit  Brvis lttie vetor. A Fourier trnsorm llows to express te Hmiltonin in reiprol spe (1.3) opoloy enters te isussion wit te ollowin question: wen re two Hmil-tonins H equivlent? ey re equivlent i te untions n e smootly eorme into e oter. From  topoloil point o view tey re omotopilly equivlent.

e Cern numer inexes te lsses o omotopilly equivlent untions H. For te multin system it n e e ne usin te notion o projetor on te oupie ns. I tere is  p etween te vlene n onution n, ten te pses re inexe y

C = i 2π BZ
r(dP ∧ P dP ), (1.4) were P is te projetor on te oupie ns 39].

A non-zero Cern numer n e unerstoo s n ostrution to  lol ue oie or te wve untion on te B. ysilly tis penomenon is iretly relte to te quntiztion o te Hll onutivity σ H = C × e 2 /h, were C orrespons to te numer o ee sttes 17, 40].

In te ollowin, te ous is lmost entirely on two-n n trnsltion invrint Hmiltonins (n = 2). Hene te momentum spe Hmiltonin n enerlly e eompose in  sis o uli mtries

H = 3 µ=0 h µ (k) • σ µ .
(1.5) 9 1.2 B C e σ uli mtries re not iven  pysil interprettion or te moment. ey mit reer to  spe o two oritls on  site or two nonequivlent sites in te unit ell. e term h 0 σ 0 just si s ientilly te enery ns n oes not moiy te topoloy o te Hmiltonin. It is nelete in te ollowin, n tereore te Hmiltonin res

H(k) = h(k) • σ.
(1.6) is orm is reminisent o  eemn Hmiltonin or  spin 1/2 prtile in  mneti el, exept tt te " el" h(k) is e ne in momentum spe. ere re two enery ns iven y

E ± = ±|h|.
(1.7) For n insultin system, tere is lwys  p etween te ns.

ereore te tree vetor omponents o h(k) never vnis simultneously, wen k vries in te B.

en it ollows tt te unit vetor Hmiltonin ĥ ĥ = h/|h| (1.8) is well e ne. ner te simpli tion o vin only two ns, te Cern numer will inex pses o ĥ ĥ : T 2 → S 2 ,

(1.9) rom te B to te Blo spere. e ns o ĥ orrespon to  ttenin o te ns pertinin to te oriinl Hmiltonin. is iti ttenin preserves te p n tus preserves te topoloy or te Hmiltonin 12]. is oservtion mounts to sy tt te tret spe o h, i.e. R\{(0, 0, 0)}, is omotopi equivlent to S 2 . en ĥ n e tout o s  omposition ĥ = proj • h, were proj : R 3 \{(0, 0, 0)} → S 2 (1.10) is te entrl projetion to te unit spere. All untions h tt n e smootly trnsorme into e oter, wile preservin te spetrl p, orm  omotopy lss. In Z insultors tere is  inteer inex is-tinuisin te i erent pses (i.e. te i erent omotopy lsses) o h, te Cern numer C. A i erent wy to express tis ie is to sy tt te omotopy roup o te mppin ĥ is te roup o inteers Z. itout elortin on tese issues tt o eyon te sope o te present setion, it is noteworty to point out tt Cern num-ers inex mppins etween -speres, ere S 2 → S 2 , n te omotopy roup is π(S d , S d ) ≡ π d (S d ) = Z. However, te omotopy roup o te torus is equivlent to tt o te spere, π(T 2 , S 2 ) = π 2 (S 2 ) = Z.

(1.11) 1. AH 2D C en K numers use to inex te inteer Hll pses 17, 41] re inee Cern numers 42].

ese onsiertions exten to te se o te n-n systems wit noneenerte ns were te topoloil invrint is iven y  vetor o Cern numer o imension n -1

π 2 (Herm(n)) = n-1 i=1 Z.
(1.12) E n s n ssoite invrint, su tt te sum o Cern numers or te entire system is zero. e n -1 imension o te vetor ollows euse te invrint or ny one o te ns is entirely etermine y te sum o te oter invrints 42].

Chern number as a nite sum

Let us ome k to te two-n se in orer to n  workle ormul or te topo-loil invrint. e projetor on te oupie n in terms o ĥ res P = 1 2 (σ 0 -ĥ • σ).

(1.13) e sustitution o P in Eq. (1.4) yiels immeitely te expression or te rst Cern numer or te oupie n C = 1 4π BZ d 2 k ĥ • (∂ kx ĥ × ∂ ky ĥ).

(1.14) e ove ormul sows tt te Cern numer is  winin numer tt ounts ow mny times oes te sure tre y h wrp roun te oriin (0, 0, 0) wen k vries in te B 43]. e only prtil i ulty in eterminin te Cern numer lies in perormin te intertion in Eq. (1.14). e min point o tis setion is tt C n e ompute usin  isrete summtion y eterminin iretly te Brouwer eree o te mp ĥ 44, 45] (e ne elow).

e onition to lulte te eree o ĥ re met: T 2 n S 2 re orientle mn-iols witout ounry n ve te sme imension, T 2 is ompt n S 2 is on-nete. In te enerl se, or  point k in T 2 one e nes te erivtive mp etween tnent vetor spes d ĥ(k) : T k T 2 → T z S 2 .

(1.15) Let sn d ĥ(k) stn or te sin o te orresponin Join t k. en Cern numer C is equl to te Brouwer eree o ĥ t  reulr point z on te unit spere C = k∈ ĥ-1 (z) sn d ĥ(k).

(1.16)

1.2 B C e Cern numer n e ompute lso in terms o h in te ollowin wy. For onveniene, let M enote te ime o te B trou h h(T 2 ) = M ⊂ R 3 \{(0, 0, 0)}.

(1.17)

Consier te set Y = M ∩ proj -1 (z). en one s

C = y∈Y k∈h -1 (y) sn[(∂ kx h × ∂ ky h) • n],
(1.18)

were te n is te unit vetor towrs z. is expression is just te enerliztion o te lultion o te winin numer or  lose urve in 2D wrppin roun  point p 45, 46]. e ormul in Eq. (1.18) n e urter simpli e y n pproprite oie o te point z. e entrl projetion proj mps ny intersetion point etween M n  ry oriintin t (0, 0, 0) to z. I tis ry oes not ross te sure M tre y h, ten it ollows tt te sure oes not wrp roun te oriin n te Cern numer is zero. For  point z on S 2 , one n immeitely otin  set o points on M tt projet to z trou proj. ine te expression (1.16) oes not epen on z, te oie o te ltter n e uie y onveniene. For instne, one n onsier z lyin t  oorinte xis. Let us oose or exmple te σ 3 -xis wi intersets M in  set o points. is is equivlent to sy tt te omponents on te oter xes re zero. i i erently, te intersetion o M wit te σ 3 -xis re imes o te n touins oriintin rom te simpli e Hmiltonin σ 1 h 1 + σ 2 h 2 . Consequently, inste o intertin over te entire B, one only nees to onsier te n touins o te simpli e Hmiltonin. ote tt i h 3 is lso zero t tese points, ten te system is not in  ppe pse.

It only remins to ount or te orienttion o te sure t te intersetion points wit σ 3 -xis. is n e one y stuyin te projetion o te sure norml vetor on te σ 3 -xis (∂ kx h × ∂ ky h) 3 . en h 3 > 0, ssume tt te orienttion is (+1) wen te sin o te projetion is positive n, (-1), wen te sin is netive; te onverse is true wen h 3 < 0. en nin te Cern numer mounts to  omputtion o  nite sum. ine te entire σ 3 -xis ws onsiere, inste o  ry, te sum yiels twie te vlue o te Cern numer.

e ove rument n e enerlize n summrize in te ollowin ormul or Cern numers esriin 2-n systems

C = 1 2 k∈D i sn ∂ kx h × ∂ ky h i sn(h i ). (1.19)
were i is n ritrry xis osen in (pseuo-)spin spe. ereore te interl over moment k in te B eomes  nite sum over k in te set o Dir points D i or Hmiltonins H[h i = 0] (were H is te oriinl Hmiltonin h•σ). ote tt ivision y two is require euse te entire xis ws onsiere, inste o  ry oriintin in (0, 0, 0).

AH 2D C

Fi. 1.1: An exmple o  isrete lultion o  Cern numer. e topoloil invri-nt is lulte t sinle point z on te Blo spere. Here it s two preime points on te B, P 1 n P 2 . ner ĥ,  sis t P 2 nes orienttion wen oin to z. en t z tere re two topoloil res nelin to ive  zero Cern numer.

Discussion

e topoloil invrint or n insultin system ws onnete to  simpler nlysis or pless two-n system tt possess Dir points. ne te Dir points were ienti e, it is immeite to ompute teir irlity χ

χ i (κ) = sn[ ∂ kx h × ∂ ky h i ]| κ .
(1.20) e quntity χ inites i te Berry pse ine y te wve untion roun te Dir point is ±π. usequently te system is ppe y h i , wi is te so lle mss term.

en mss sin h i n te irlity χ i re su ient to etermine te Cern numer C wi inexes te insultin pse o te Hmiltonin. ote tt ue to te enerl ruments me ove, tere is no intrinsi menin or te mss term n ny omponent o h n ply te mss role.

ere is n importnt vet to te ove ormul tt nees to e resse: it is not lwys true tt preime points or te intersetions o xis wit te Blo spere re Dir points or te pless systems. ey n orrespon to nonliner n touins su tt te sin o te Join t te n touin κ is not e ne. is sitution rises wen te n touin is ue to  merin o Dir points. en te rst erivtives o h vnis, lein to χ = sn[0]. ote tt tese ses orrespon to  olin o te mniol M extly on te spin xes (see Fi. 1.2). However te Eq. (1.19) re-mins useul. e rst solution to mintinin its pertinene, is to oose  i erent xis in orer to voi te iolil points were M ols. e seon solution, wi is illustrte in e. 1.4, onsists in eterminin C rom n nlysis o irlities pertin-in to onverin Dir points.

e ie rests on te t tt te merin solutions requires tunin te onverene o multiple Dir points n it is enerlly unstle to perturtions. en  smll perturtion in te prmeters o te Hmiltonin ( per-turtion tt oes not use  topoloil trnsition) splits te merin point into  set 13 1.2 B C Fi. 1.2: Exmples o situtions tt rise wen omputin te Cern numer C s  nite sum. Here te privilee xis is σ 3 n tereore h 1 σ 1 + h 2 σ 2 is  pless Hmiltonin.

e sure tre y te ull h, M, s  ol t σ 3 -xis, su tt te preime o z ives  n touin wit qurti ispersion or te pless moel. is is n exmple o  iolil point on te Blo spere tt must e voie in orer to etermine te insultin pses o te ull moel, usin Eq. (1.19). At te oter pole, tere is te usul se o  well-eve point w, tt s  Dir point s  preime. en tere re only Dir points s preimes o z n w, te topoloil invrint is resolve s  sum over teir irlities usin te nite sum ormul. o Dir points. Furtermore, it ws sown tt te topoloil re ssoite to  n touin wit ier ispersion is onserve n equls te sum over te irlities o te Dir points 47, 48]. en te iolil points n e trete s limit ses or te sme system lose to te merin point n wit multiple Dir ermions.

Let us suppose or te moment tt te privilee xis is σ 3 n te poles ve only Dir points s preimes in B. ere re  ew interestin onsequenes tt ensue.

e sum over te irlities o Dir points is lwys zero. is is seen y in  lre onstnt mss term su tt tere is zero Cern numer. Equivlently te Blo spere is trnslte on te σ 3 xis su tt te oriin (0, 0, 0) is no loner inlue in te spere.

en te sin o te mss n e tore out, n uner te onstrint C = 0, te sum over irlities must yiel zero.

Also note tt in orer to et  nonzero Cern numer, te mss term must ne its sin t lest one. is ives  menin to te requirement o "inverte p" in orer to ve nontrivil pses.

AH 2D C

ere is n equl numer o Dir ermions wit χ = 1 s tose wit χ = -1, euse te sum over irlities is zero,. It ollows tt tere is lwys n even numer o Dir ermions. is  rmtion rees wit te preite oulin o ermions on  lttie 49]. However, n o numer o Dir ermions re permitte wen te ull Hmiltonin h is onsiere. is is te se t n intere etween two Z insultors were te Cern numer nes y n o inteer.

Finlly, or  iven moel tere is lwys  limit to te lrest possile Cern pse n it mniestly epens on te minimum numer o Dir points. Let us suppose tt te numer is 2n euse tere is n even numer o Dir ermions (n ∈ Z). en te lrest Cern numer pse s |C| = n n it orrespons to ppin ll Dir ermions wit  mss term tt nes sin etween te Dir points. ore preisely, te prout etween te irlity o  Dir ermions n te sin o te mss tt ps must remin onstnt. is oservtion opens te ro to te present pter tt essentilly explores te notion o retin lre Cern topoloil pses in moel Z insultors in lss A.

Examples

e e ieny o Eq. (1.19) to isriminte te topoloil pses is exempli e ere on  ouple o populr moels o topoloil insultors: te Hlne moel 23] n te Bernevi-Hues-n 5] (BH) "spin up" Hmiltonin or te He/Ce quntum wells. ey will e trete t  orml level, only s n illustrtion o te tenique.

Haldane model

Let us strt y onsierin te primti Hlne moel 23]. A more etile nlysis is unertken in e. 1.4. Here su es to oserve tt it n e seen s  moi tion on te rpene tit-inin system. e ltter lives on  exonl lttie uilt out o two inter-penetrtin trinulr su-ltties wit A n B toms. It is usully p-proximte s vin only nerest-neior () eletron oppin wit te oppin interl t 1 . e Hlne moel ontins lso next-nerest-neior () oppin t 2 , su tt wen te oppin is perorme lokwise in te unit ell te eletron ins  pse φ. However, te overll pse on te unit ell is zero; tere is no net mneti ux. Let te vetors (a 1 , a 2 , a 3 ) esrie te isplements rom B toms to  A toms n b i = 1 2 ǫ ijk (a j -a k ) vetors reltin  sites (see Fi. 1.3). e time-reversl symmetry n prtile-ole symmetry is roken y te presene o te ux φ. It lso s n on-site enery ±M tt s  sin lterntin etween te A n B sites. is term estroys te irl symmetry o te lttie n tereore orin to te lssi tion o non-intertin, ppe, ermion systems, te Hlne moel s insultin pses esrie y  Cern numer. e Dir points in rpene re positione t time-reverse points K n K ′ = -K on B, were K = 4π 3 √ 3 , 0 . e irlity o te Dir points is reily etermine rom Eq. (1.20)

B C e Blo Hmiltonin res

H(k) = 3 i=1 2t 2 os(φ) os(k • b i )σ 0 + t 1 [os(k • a i )σ 1 + sin(k • a i )σ 2 ] + M 3 -2t 2 sin(φ) sin(k • b i ) σ 3 . (1.21) a 1 a 2 a 3 b 3 b 1 b 2 Fi.
χ(±K) = ±1.
(1.22)

In orer to lulte te Cern num-er, one must lso onsier te mss sin t te Dir points, M ± := h 3 (±K), 

M ± = M ∓ 3 √ 3t 2 sin(φ
, m J = 1/2 , |H1, m J = 3/2 , |E1, m J = -1/2 , |H1, m J = -3/2 n it s te orm H = H(k) 0 0 H * (-k) .
(1.25)

1. AH 2D C Dir points (0,0) (π,0) (0,π) (π,π) C mss h 3 M M -4B M -4B M -8B irlity + - - + M < 0 - + + - 0 M ∈ (0, 4B) + + + - + M ∈ (4B, 8B) + - - - - M > 8B + - - + 0 le 1.1:
Cern pses or  "spin-up" BH moel s  untion o system prmeters, wit B > 0.

e system respets time reversl symmetry n relizes  Z 2 topoloil insultor. However it is ssemle out o two Cern insultors: 

H(k) = A sin(k x )σ 1 + A sin(k y )σ 2 + [M -2B(2 -os(k x ) -os(k y ))]σ 3 , (1.26) 
were A, B, M re mteril prmeters. Let us onsier in te sure tre y h n oose σ 3 s  speil xis. e points were te σ 3 -xis pieres te sure re iven y te onition tt h 1 n h 2 vnis simultneously. t etermines our "Dir points" (q x , q y ) ∈ {(0, 0), (0, π), (π, 0), (π, π)}.

e irlity o e Dir point is iven y Eq. (1.20)

χ(q) = sn[os(q x ) os(q y )]
(1.27) evlute t ll Dir points. e mss term h 3 s te ollowin expression t te Dir points,

h 3 (0, 0) = M , h 3 (0, π) = h 3 (π, 0) = M -2B n h 3 (π, π) = M -4B.
e Cern numer n ten e esily ompute or i erent vlues o M n B y summin over te Dir points. e results or te se B > 0 re summrize in . 1.1.

From . 1.1 it ollows tt s M vries etween 0 n 8B, te Cern insultor H(k) exiits two topoloilly nontrivil pses wit C = ±1. en M is outsie te (0, 8B) reion tere is only  trivil insultor pse. ereore nontrivil Cern pses will yiel lso nontrivil Z 2 (H) pses.

 …

Model building of a topological insulator with large

Chern phases 1.3.1 General discussion e ojetive o te present setion is to explore in more etil te question o ow to imine two-n topoloil insultors wit i Cern numer. It is rue tt un-erstnin te topoloil invrint s  nite sum in ition to te symmetry on-strints is su ient to proue Hmiltonins wit lre Cern pses. In prtiulr, ollowin teoretil onsiertions,  simple moel wi n e tune trou ve insultin pses, C ∈ {0, ±1, ±2} is proue step y step.

ote tt wen more tn two ns re llowe, i Cern pses n ensue reily y vin e oupie n ontriutin to te overll onutne. is is inee te se o te inteer quntum Hll e et were te lres Hll onutne is iven y te numer o ns. However te question pose ere is ow to rete  single n wit  i Cern numer. Aruly, tere is  in in teoretil ontrol o tis sitution, wit ll te insultin pses etermine nlytilly.

e nswer to te entrl question ws lrey mentione rie y in te previous setion. It omes own to te wy  Z insultor ws unerstoo y eomposin it into  pless moel wit Dir ermions n  mss term tt ps tem 38].

For  system wit trnsltion symmetry, te pplition o Blo teorem llows to write  enerl Hmiltonin in k-spe

H = h • σ,
(1.28)

were te ientity h 0 σ 0 ws roppe out euse it oes not wei on te topoloil properties o te moel. e uli mtries represent  pseuo-spin eree o reeom ue to te presene o two oritls on  site or two sites in te unit ell. o x ies, te h 3 (k)σ 3 is osen s te mss term trouout te setion. Hene te pless moel H 12 res

H 12 = h 1 (k)σ 1 + h 2 (k)σ 2 .
(1.29) Beuse h is perioi on B, te omponents h i n e Fourier nlyze to ive

h i (k) = c (i) 00 + m,n c (i) m,n os(k • (ma 1 + na 2 )) + m,n s (i)
m,n sin(k e requirement o istnt-neior oppin terms to proue lre Cern pses poses  prolem rom  pysil point o view. e wve untions in te tit-inin moel re lolize n presene o istnt-neior intertion n e usully nelet-e. However it ws lrey sown tt low-enery moels o multi-n system n e mppe to two-n systems wit lre Cern numer 37]. erless o te pysil reliztion, te inlusion o ier rmonis (or istnt-neior oppin terms) is te unvoile requirement to prouin  lre topoloil invrint.

o omplete te isussion it is neessry to exmine te symmetries, or lk tereo, or te Z topoloil insultor in two imensions. In orer to ve  Cern insultor in lss A it is neessry to rek te time reversl, te prtile-ole n te irl (or sulttie) symmetries (see . 1).

e symmetries n impose nerl onstrints on te omponents o h to te e et o  vnisin Cern numer. For exmple, te  n te H re represente y nti-unitry opertors tt will relte opposite moment on te B. ereore tey will impose prity onstrints on te omponents o h. A rule o tum to eliminte tese symmetries is to mix o n even untions in n ritrry omponent o h. e su-lttie symmetry is represente y n unitry Hermitin opertor S n it is roken y in oppin terms etween te equivlent sites (oritls). is orrespons to estroyin te iprtite nture o te system 51].

Let us elorte on te exmple o te . For spinless eletron moels onsiere ere, te time-reversl opertor oes not t on oritl or site spe n ene it is simply te omplex onjution K require to reverse te momentum iretion. Demnin time-reversl invrine n Hermitiity yiels

h 1 (k) = h 1 (-k), h 2 (k) = -h 2 (-k),
(1.32)

h 3 (k) = h 3 (-k).
Hene in  I system te Cern numer vnises euse te intern in eqution (1.14) is n o untion o k, ĥ • (∂ kx ĥ × ∂ ky ĥ) = 0.

(1.33) 1.3  … Generlly, i  symmetry imposes tt eiter extly one o te omponents o h is n o untion, or tt ll omponents re o, ten te Cern vnises uner te sme rument s ove. e H will not e o onern in te ollowin euse y onstrution tere re no superonutin pirin terms.

A model with ve Chern phases

e ojetive is to rete  toy moel o  spinless Cern insultor wit |C| = 2. It is sown ere tt te moel n e rete wit t most nerest-neior oppin terms. u  moel serves s  proo o priniple or te orm o n insultor wit  lre Cern numer n it will e o use lter, wen te interest si s to te investition o ee solutions in  Z insultor.

First  pless moel wit our Dir points is propose s  prerequisite. eonly, te Dir points re ppe y  mss term tt n e lolly tune so tt te Hmilto-nin psses trou ll possile Cern pses {0, ±1, ±2}. e eometril enineerin o te insultors tkes ple in momentum spe. At te en o te setion,  rel-spe implementtion o te moel on  trinulr lttie is isusse.

Topological phases for momentum space Hamiltonian

Let us strt wit te pless moel tt serves s  templte or te onstrution o te insultor. o ve |C| = 2, it is neessry to ve our Dir points. ne o te most simple moel s only  oppin (m < 1 or n < 1) in te Fourier series (1.31). Coosin even untions h 1 n h 2 , it ollows tt

H 12 = h 1 (k)σ 1 + h 2 (k)σ 2 = 2t 1 [os(k x )σ 1 + os(k y )σ 2 ].
(1.34) e enery ispersion res

E = ±2t 1 os 2 (k x ) + os 2 (k y ), (1.35) 
wit our Dir points t q = (±π/2, ±π/2). ote tt to ve time reversl invrine in  spinless moel, h 2 must e n o untion. Hene te oie os(k y ) ensures tt te  is roken.

e irlity oresponin to Dir points is iven y te sin o te Join χ(q) = sn[sin(q x ) sin(q y )].

(1.36) is etermines te irlity χ o te our Dir points s summrize in . 1.2. ote tt te points t q n -q ve te sme irlity. ey will e reerre in te ollowin s  pir o Dir points.

o otin  Cern insultor one nees to   mss term. As one n see rom Eq. (1.30), te Cern inex epens on ot te irlities o te Dir points n te sin Let us rst relize topoloil pses wit C = ±2, were e pir o Dir points is in  i erent reion R. e irlity is n even untion; ene keepin te prout o irlity n mss sin onstnt is omplise y n even untion h 3 . A simple solution is te perioi untion

1. AH 2D C Dir points ( π 2 , π 2 ) ( π 2 , -π 2 ) (-π 2 , π 2 ) (-π 2 , -π 2 ) χ + - - + le
h 3 ∝ os(k x + k y )
(1.37) wit lines o zeros iven y k y = -k x + 2n+1 2 π. e reions R 1 n R 2 or tis term re represente in Fi. 1.4(). e mss term is netive in reion R 1 n positive in reion R 2 . e lowest Cern numer C = -2 is otine or tis moel. Let us onsier tt te term orrespons to  oppin term wit n mplitue t 2 . Hene, te insultin Hmiltonin wit |C| = 2 res

H (1) (k) = 2t 1 os(k x )σ 1 + 2t 1 os(k y )σ 2 + 2t 2 os(k x + k y )σ 3 .
(1.38) e Cern numer is reily etermine

C (1) = -2sn[t 2 ].
(1.39)

Intuitively tis is unerstoo s  oule overin o te Blo spere y h (1) ue to te t tt os(k x + k y ) s twie te requeny o os(k x,y ). e Hmiltonin in Eq. (1.38) lks trivil insultin pses or Cern pses wit C = ±1. o proue  trivil pse wit C = 0, it su es to   lre, "stere potentil" mσ 3 , su tt ll Dir points re ppe ientilly. en euse te sum over irlities is zero, C vnises. ote tt sine uli mtries n t on ny eree 

1.3  … (a) (b)
C (2) = sn[-m -2t 2 ] + sn[m -2t 2 ].
(1.40)

Hene, or  lre enery m, |m| > 2|t 2 |, te system enters  trivil pse n  trnsition etween  C = ±2 pse to  C = 0 pse tkes ple. o rete Cern pses wit C = ±1, it is neessry to p, wit te sme p sin,  pir o Dir points, wile  seon pir s its respetive mss nin sin etween te Dir points. Beuse te irlity is n even untion, te mss term s to e n o untion in orer to et n o untion or te prout etween irlity n mss sin. e simplest oie woul e to  te term proportionl to sin(k x ) + sin(k y ).

e mss or one pir o Dir points is unne, wile, or te pir (q, -q) wit q = (π/2, π/2), te mss nes. I only sin(k x ) + sin(k y ) is present in te mss term, ten te system is not n insultor, euse tere re n touins t q = ±(π/2, -π/2) (see Fi. 1.4()). However in smll even untions in te mss ps ientilly tese Dir points n C = ±1 pses ollow.

1. AH 2D C -2 -1 0 1 2 t 3 -4 -2 0 2 4 m -2 0 0 -1 -1 1 1
Fi. 1.5: se irm o te system or t 2 = 1. E reion is enote y te orre-sponin Cern numer n represents n insultin topoloil pse. e oun-ries o te reions represent topoloil trnsitions were te system eomes pless.

Ain ll terms toeter ives te ollowin omplete Blo Hmiltonin or  moel tt s Cern pses in te set {0, ±1, ±2}

H = 2t 1 os(k x )σ 1 +2t 1 os(k y )σ 2 +[m+2t 2 os(k x +k y )+2t 3 (sin(k x )+sin(k y ))]σ 3 .
(1.41)

ere re our ree prmeters (m, t 1 , t 2 , t 3 ) in te moel. Let us ssume tt ll prmeters re rel. All te pses n e ree y vryin (m, t 2 , t 3 ) wile keepin t 1

xe. e Cern numer or te nl moel res

C = sn(-m -2t 2 ) + 1 2 [sn(m -2t 2 + 4t 3 ) + sn(m -2t 2 -4t 3 )].
(1.42) e expression or C yiels immeitely te pse irm ssoite wit te system esrie y te Hmiltonin in Eq. (1.41). ote tt te prmeter t 1 oes not enter in te etermintion o te pses, ut mniestly nees to e nite in orer to ve non-vnisin σ 1 n σ 2 omponents in te moel. e ormul (1.42) n e il-lustrte y te pse irm in te Fi. (1.5). is irm ontins only our pses o te moel; te pse wit C = 2 nees t 2 < 0.

Direct space realization ntil now te system ws esrie strtly in momentum spe. However it will e o uture interest to investite te struture o its ee n tereore it is neessry to propose  lttie implementtion or te moel.

1.3  … (i + 1, j) (i + 1, j + 1) (i, j) E a 1 a 2 m -m
Fi. 1.6: Diret spe reliztion o te moel (1.41), see Eq. (1.43). (i, j) enotes lttie sites. e Brvis lttie vetors re enote y a 1/2 , n • (•) represents oritls wit enery m (-m). e vertil xis represents te on-site enery i erene etween te two nonequivlent oritls. Blk lines represent t 1 oppins, lue lines, t 2 oppins, n re lines, t 3 oppins. An rrow on  link inites tt n eletron oppin in te orresponin iretion ins  π/2 pse. imilrly  oule line inites  π pse in.

e system oul e relize on  trinulr lttie wit two oritls on e site. e prmeters re interprete s k x,y = k • a 1,2 wit a 1 n a 2 , te two Brvis vetors. en te uli mtries re opertin in te spe o two oritls A n B wit enery ±m.

e Hmiltonin (1.41) n e rewritten in iret spe 1.43) were te Fourier trnsormtion or te nniiltion opertor res

H = ij c † ij m 2 σ 3 c ij + c † i+1j (t 1 σ 1 + it 3 σ 3 )c ij + c † ij+1 (t 1 σ 2 + it 3 σ 3 )c ij + c † i+1j+1 t 2 σ 3 c ij + H.. , ( 
c k = 1 √ N r ij c ij e -ik•r ij .
(1.44)
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e position o sites on te lttie is iven y r ij = ia 1 + ja 2 , wit a 1 n a 2 s Brvis vetors mkin n nle 2π/3 etween tem (see Fi (1.6)). e lttie onstnt ws set to one, a = 1.

e moel is represente in Fi. 1.6. n e site tere re two i erent oritls wit enery ±m.

e Hmiltonin (1.43) esries trou t-terms te overlp etween (non)equivlent oritls.

ote tt tere is no net ux perpeniulr to te two imensionl plne. But te  is roken, euse or ertin lose pts involvin te oppin term t 1 σ 2 , or te eletron movin etween two nonequivlent oritls tere is  in o  pse ±π/2. However or e pt wit  pse in o π/2 tere is one wit -π/2 n tereore tere is no net mneti ux over te entire ell. 

H = m M m c † m c m + m,n t 1 c † m c n + m,n e iφmn t 2 c † m c n .
(1.45) e sum runs over ll te sites on te exonl lttie, n . . . represent nerest nei-ors n . . . next-nerest neiors. e oppin interls re enote y t j . e inex o te oppin interl sini es te orer o te (non)equivlent neiors. e pse or  lokwise oppin rom n to m is φ mn = φ n, -φ, or ntilokwise op-pin. e on-site enery is M m = M , wen m enotes n A tom, n -M , in se o  B tom.

Due to te mss terms (M n t 2 ), te system is enerlly  n insultor. ote tt trouout te pter,  system is onsiere n insultor i its ns n e ttene su tt te Fermi sure rests in te p (n not s usully, i.e. i te Fermi enery is etween te onutne n vlene n). e essentil eture o te moel rests in te t tt tere is no net mneti ux per unit ell. ereore su  moel n e envise in zero externl mneti el. However, one n n pts in rel spe were te eletron ins  pse.

Even tou tere is no net mneti el, Hlne sowe tt tere re Cern numers tt inex te insultin pses o te Hmiltonin. en te system is im-plemente on  nite eometry, tere will e re trnsporte on te ee nnels. ore preisely tere will e  quntize onutne tt is proportionl to te Cern numer C.

e onutivity is iven similrly to te inteer quntum Hll e et y σ H = e 2 /h × C. In tis wy, te moel is  reliztion o  Hll e et witout n exter-nl mneti el.

Altou it ws only  teoretil moel, its importne or te evolution o te sujet o topoloil insultors nnot e unerstte. e rst proposl or HE in rpene is inspire iretly rom te Hlne moel 4, 52]. e spin-orit intertion opens  p in rpene n e spin relizes  opy Hlne wit opposite Cern numer.

ereore it ws preite tt te ppe rpene oul ost irl n spin resolve ee sttes.

eturnin rom H insultor to te oriinl Hlne moel, note tt te mximum Cern numer is |C| = 1, n tus tere n e t most one ee stte. In ontrst,
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in te IHE, one n inrese te numer o ee sttes y llin more Lnu levels.

en  nturl wy to inrese te ee onutne in te Hlne moel, woul e to rete  multi-n system rom  stk o two imensionl Hlne moels, su tt te ee sttes o every lyer ve te sme irlity.

However, tere is n lterntive route to ument te numer o possile ee nnels. e system n e eompose in  pless moel n  mss term. Generlly te n touins o te pless moel re Dir ermions. en  neessry onition to ve  Cern numer |C| = n is to ve 2n Dir points. e Cern numer will e etermine entirely rom te irlity o te Dir ermions n te sin o te mss term tt ps tem.

e Hlne moel is  prtiulrly interestin pltorm on wi to test tis ie euse it is eompose in n unerlyin rpene moel n  mss term tt ontins te pse φ epenene.

First susetion ouses on te stuy o  rpene-like moel wit istnt-neior-oppin interls inlue.

e solution or ll Dir points re stuie up to 7 (next×6-nerest-neior-oppin) rpene. eir evolution in prmeter spe s prtiulr points tt re lle super-merins were ll Dir points meet to rete  n touin wit ier tn liner ispersion reltion. ese re unstle points tt re rterize owever y  smll topoloil re.

eon susetion onsiers ppin te Dir ermions y te mss term. is will ve te e et o retin topoloil insultin pses wit lre Cern num-er. It is equivlent to sy tt more ee nnels n e rete or te nite system. At te topoloil trnsitions etween te pses te system eomes metlli n te exne in Cern numer n e seen in te numer o Dir ermions tt re orme.53] 1.4.1 Distant-neighbor hopping in graphene o nlyze te topoloil properties o te moel it is vnteous to o in momentum spe were te topoloil inex is reily e ne. e two-n Blo Hmil-tonin is evelope in  sis o uli mtries σ in te AB site spe

H = 3 µ=0 h µ σ µ .
(1.46) For ressin te topoloil properties, one n trow wy te term h 0 σ 0 tt reks prtile-ole symmetry n si s (topoloilly) trivilly te ns. Let us lso oose te Brvis lttie vetors a 1 n a 2 , wit a

1 = √ 3 2 , 3 2 a n a 2 = - √ 3 2 , 3
2 a; a is te lttie onstnt n it is set to one in te ollowin. en te Hmiltonin res

H = t 1 [1 + os(k • a 1 ) + os(k • a 2 )]σ 1 + t 1 [sin(k • a 1 ) + sin(k • a 2 )]σ 2 + [M -2t 2 sin φ[sin(k • a 2 ) -sin(k • a 1 ) + sin(k • (a 1 -a 2 ))]σ 3 . (1.47) 1.4 L C H hopping physical chemical neighbors gn distance distance t 1 1 1 3 1 + e -ik•a 1 + e -ik•a 2 t 3 2 2 3 2 cos(a 1 -a 2 ) + e -ik•(a 1 +a 2 ) t 4 √ 7
2 6

e ik•a 1 + e ik•a 2 + e -2ik•a 1 + e -2ik•a 2 + e ik•(a 1 -2a 2 ) + e ik•(a 2 -2a 1 ) t 7 √ 13 3 6 cos(2k • (a 1 -a 2 )) + e -ik•a 1 cos(2k • a 2 ) + e -ik•a 2 cos(2k • a 1 )
le 1.3: Hoppin terms etween AB toms. e pysil istne is ounte in units o lttie onstnt a. e emil istne is te smllest numer o ons psse wen oppin etween two sites. In te olumn "neiors" it is ounte te numer o sites situte t te sme pysil istne rom te entrl site.

e unerlyin rpene-like moel ontins only te h 1 (k) n h 2 (k) terms. e Dir points o te moel re otine rom te zeros o te untion f (k) = h 1 (k)σ 1ih 2 (k)σ 2 . e Dir points re positione in te B t K (′) = (± 4π 3 √ 3 , 0). e interest is to keep te system two-n n to simultneously inrese te numer o Dir points.

e lim is tt tis n e relize y inluin istnt-neior-oppin terms.

Let us enerlize te rpene moel y inluin n (next×(n -1) nerest nei-or) oppin terms.

e AA n BB terms will ontriute only to te ientity term h 0 σ 0 . Beuse tey will not ve n impt on te topoloil inex, tey re roppe out rom te Hmiltonin. By ontrst, te oppin etween i erent sites, AB, on-triutes to h 1 (k) n h 2 (k) terms.

e Hmiltonin res

H = 0 f (k) f * (k) 0 (1.48) wit f (k) = n t n g n (k).
(1.49) e ontriutions g n rom te istnt-neior oppins re tulte to rst or-ers in . 1.3. Here re trete ses up to 7 rpene or wi one n otin irly stritorwr nlytil solutions or te Dir points. ereore te only op-pin terms tt pper in f re t 1 , t 3 , t 4 n t 7 . In te ollowin te oppin interls re onsiere in units o t 1 , su tt tere re 3 ree prmeters le or eterminin te position o Dir points.

o etermine te position o te zeroes, one n keep on te i symmetry line etween K n K ′ . ner te  o te moel n C 3 symmetry o te Γ point, ll te oter solutions reily ollow. ne o te lines KK ′ lies t k y = 0. en te eqution f (k) = 0 epens only on te prmeter k x . I os( √ 3k x /2) is enote y x, it ollows tt te n touins re iven y te eqution

(1 + 2x)(8t 7 x 3 + 4t 4 x 2 + 2(t 3 -4t 7 )x + 1 -t 3 -2t 4 + 2t 7 ) = 0.
(1.50) e possile oppins in rpene 9 moel. From  entrl B tom, te neiors re rrne in onentri irles. Hoppin interls etween istnt sites is enote y t i were i rows wit te istne to te neior.

Eq. (1.50) s lwys  solution t x = -1/2. It orrespons to te reulr K n K ′ points in te  rpene. is solution ue to te symmetry o te exonl lttie is enerl n exists or ny istnt-neior-oppin moel s lon s it respets te oriinl symmetries o te lttie. ereore tere will lwys e n touins t tese points in te rpene-like moel.

I ll solutions re rel n istint, ten tey orrespon to Dir points. However, i  solution s  multipliity ier tn one, ten tey esrie points wit nonliner ispersion. In t one n tink o tem s merins o Dir ermions. ey will pose some oneptul prolem or our meto s te irlity 

χ(κ) = sn(∂ kx h × ∂ ky h) 3 κ , ( 1 
κ = 2 √ 3 3 ros t 3 -1 2t 3 × (1, 0).
(1.52) e solution is rel only wen t 3 oeys

t 3 -1 2t 3 ∈ (-1, 1).
(1.53) en or  lre oppin t 3 ∈ (-∞, -1) ∪ (1/3, ∞), tese stellites pper n move lon te i-symmetry lines etween te reulr Dir points wit te vrition o t 3 . Due to te I (time reversl invrine) n C 3 symmetry o te spetrum it is enou to ollow te motion o  sinle stellite Dir point in te B. Coosin te one in Eq. (1.52), it is seen in Fi. 1.8 tt wen t 3 vries rom -∞ to -1 te stellite points pper t mi istne (point Σ) etween K(K ′ ) points n te enter Γ o te B, n move to nniilte t Γ. en t 3 vries rom 1 3 to ∞, te stellite Dir points pper t M point n vnis t Σ.

It is noteworty tt urin te evolution o  stellite point, tere is  prtiulr vlue o t 3 or wi te stellite points mere wit te reulr Dir points t K(K ′ ). At t 3 = 1/2, tere re tree Dir points merin wit te ssoite reulr Dir points to orm  point wit qurti ispersion. A merin point, were ll stellites ollie into te entrl Dir point, is lle  super-merin. It will e sown tt up to 7 rpene te super-merin is unique.

e reminin stellites n e otine y pplyin rottions o 2π/3 roun K n K ′ . For exmple, tere re two stellites roun K, enote or nottion simpliity lso y κ κ = ros

t 3 -1 2t 3 × - √ 3 3 , ±1 .
(1.54) ner time-reversl symmetry tere re itionl Dir points t κ ′ = -κ. e irlity χ o  Dir point ple t k on B is reily etermine y omput-in te sin o te Join

1. AH 2D C Γ K M K ′ Σ
Fi. 1.8: In lue we represent te evolution o  stellite point in B, wen t 3 vries rom -∞ to -1 n in re, wen it vries rom 1/3 to ∞.

Dir points

K 3 × κ K ′ 3 × κ ′ χ 1 -1 -1
1 le 1.4: Cirlity o te Dir points in 3 rpene.

e symmetries o te system llow one to reily reue te prolem to tt o nin te irlity o only two Dir points:  reulr one n  stellite Dir point ssoite to it. I one is ple t κ, ten its time reverse prtner exists t -κ n s opposite irlity. tellite Dir points tt re otine uner  rottion y 2π/3 roun Γ sre te sme irlity.

As mentione eore, tere re notle exeptions were ormul (1.51) ils or t 3 tune t te merin o stellite points t K (′) .

is is euse te merin point s  qurti ispersion n te ormul is une ne. However, ner te merin point tree stellite points o  iven irlity onvere to  reulr Dir point o opposite irlity. u  senrio ws trete eore 47, 48] n ws sown to yiel  n touin point wit qurti ispersion in ot iretions. e irlity sum-mtion rule ±(1 -3) is still pplile n inites tt te merin point t K (′) is rterize y  irlity ±2. Comprle ses re lso enountere in ilyer rpene 47, 55, 56].

e topoloil re -2 o te n touin t K n e eqully re y expn-in in smll moment (q x , q y ) roun te merin point

k = K + q.
(1.56)

In tis se, te untion f in te e etive Hmiltonin t in K-vlley is proportionl to z 2 , wit z = q x + iq y . e power inites  Berry pse o -2π pike y  ermion mkin one ounter-lokwise revolution roun te merin point K. e oter mer-in point is t K ′ n will ve  topoloil re 2.

1.4 L C H rpene uper-merin f (K + q) re t 1 t 3 t 4 t 7  1 0 0 0 z 1 3 1 1/2 0 0 z 2 -2 4 1 2/5 1/5 0 z z2 1 7 1 7/12 1/4 1/12 z 3 z -2
le 1.5: uper-merin rteristis t K. e untion f rom te e etive low-enery Hmiltonin H eff = 1 2 f σ + + H.. is written s  untion o smll moment z = q x + iq y n up to  multiplitive onstnt wi is nelete.

N4 Graphene

In te se o 4 rpene, tere re two itionl solutions possile t

x ± = - 1 4t 4 [t 3 ± (t 2 3 + 8t 2 4 + 4t 3 t 4 -4t 4 ) 1/2 ].
(1.57) ereore te mximum numer o stellites roun K n row up to six. e epen-ene on two prmeters mkes it rer to n te existene onitions or te stellites. It is owever esy to etermine te prmeters or wi tere is  super-merin solution. Imposin  triply eenerte solution, x = -1/2 in Eq. 1.50, it ollows tt te super-merins evelop t

t 3 = 2 5 , t 4 = 1 5 .
(1.58)

By perturin te prmeters roun te super-merin points, one n see in Fi. 1.9  reulr Dir point n te two triplets o stellites ssoite to it. Expnin te Hmiltonin in smll moment q roun K revels tt te super-merin s  ui ispersion,

f eff (K + q) ∝ z z2 .
(1.59) ote tt ltou te ispersion is ui, te power ountin ives  topoloil re o one. is inites tt te Berry pse ine y n eletron is only π. is is ue to te t tt te super-merin is ue to two sets o stellites wit i erent irlity. en te sum rule yiels orinly te irlity o te n touin t K :

1 -3 + 3 = 1.

N7 Graphene and beyond

In 7 pene te position o te itionl n touins is iven y  ui eqution. It is tereore rer to nlyze te solution tt ollows. ou it esier to visu-lize it rom te super-merin point, wi n e etermine rom te onition tt

1. AH 2D C -π -π/2 0 π/2 π -π -π/2 0 π/2 π
Fi. 1.9: e zero lines o h 1 (in reen) n h 2 (in re) in 4 rpene. A smll pertur-tion (+0.001) o t 4 t te merin point t 3 = 2/5, t 4 = 1/5 retes 6 Dir points roun te stle Dir points K. In te inset tere is  zoom roun K.

e Dir points re represente y ull irles, •; tere is  entrl K Dir point in lk, n 2 sets o stellite Dir points, in lue n re.

x = -1/2 is our time eenerte solution to te eqution (1.50). e super-merin is unique t

t 3 = 7 12 , t 4 = 1 4 , t 7 = 1 12 ,
(1.60) su tt  perturtion will proue  mximum o 9 Dir points roun  reulr Dir point. e e etive Hmiltonin sows now  qurti ispersion ner K

f eff (K + q) ∝ z 3 z. (1.61)
Ain, ltou tere is  i-orer ispersion, te low topoloil re is expline y te lterntin irlity or te 3 sets o stellite Dir points ner te super-merin. ere re no loner unique super-merin points or rpene m, wit m > 7. is is ue to te t tt lrey n touins in 8 rpene ve n eqution tt remins ui in x. ereore tere is no sinle unique oie o prmeters or wi te solution x = -1/2 s multipliity our. ereore, even i  more istnt-neior oppin will  one orer to te eqution, te orer o te eqution will never mt in te numer o oe ients.

Ftorin out te trivil solution t x = -1/2, te eqution or Dir points in 8 rpene res 8(t 7 + t 8 )x 3 + 4(t 4 -t 8 )x 2 + 2(t 3 -4t 7 -3t 8 )x + 1 -t 3 -2t 4 + 2t 7 + 3t 8 = 0 (1.62) ere re still super-merin points possile, ut tey re no loner unique. ote tt it is possile to ve prtil merin points were tere re solutions wit i multi-pliity. erless, s te orer o te polynomil rows n te spe o prmeters eomes lrer, we onjeture tt it will lwys e possile to n solutions tt re ll rel n smller tn one in solute vlue. t will le to  multiplition o triplets o stellite Dir points.

Phases of the Haldane model

e oriinl Hlne moel is uilt on te exonl lttie or  rpene y in 2 oppin t 2 , su tt wen oppin is perorme lokwise in te unit ell n eletron ins  pse φ. It is enou to onsier te mss term h 3 σ 3 n trow wy te ientity term, wi just reks te prtile-ole symmetry n si s (topoloilly) trivilly te ns.

e mss term, h 3 σ 3 , wi reks time reversl n inversion symmetry, res

h 3 = M -2t 2 sin φ[sin(k • a 2 ) -sin(k • a 1 ) + sin(k • (a 1 -a 2 ))].
(1.63) en oppin etween istnt sites is llowe, te enerlize mss term res

h 3 = M - n 2t (n) sin(nφ)[sin(nk • a 2 ) -sin(nk • a 1 ) + sin(nk • (a 1 -a 2 ))],
(1.64)

were n is n inteer tt inites tt oppin tkes ple etween AA or BB sites situte t  istne o n √ 3a. nly te rst two terms in tis expression re onsi-ere in te ollowin; tey orrespon to  mximl two-unit-ell oppin. e term ontinin te oppin interl t 5 multiplies te ientity uli mtrix n is nelete in te ollowin. Interestin or te topoloy o te prolems re oppins lon te links were te eletrons in te pse φ. e rst two omponents o te mss term wi ve tis property re te t 2 n t 6 terms.

Gppin 2n Dir points n yiel Cern numer pses n. In te ollowin susetions, ses were i erent mss term ps te system re stuie or i erent unerly-in rpene moels.

-π -π/2 0 π/2 π φ -6 -4 -2 0 2 4 6 M/t 2 -1 1 
Fi. 1.10: se irm or te Hlne Hmiltonin s  untion o te on-site en-ery M , ivie y te oppin interl t 2 , n te ux φ. e topoloilly nontrivil insultin pses re olor-ienti e n ve te topoloil inex enote insie te respetive reions. e topoloilly insultin reions, C = 0, re wite.

Haldane t 2 model  rpene wit  oppin t 2 onstitutes te oriinl Hlne moel. e pse i-rm is otine y oservin tt h 3 nes sin etween te Dir points (K (′) ) o rpene. ereore te Hmiltonin exiits tree topoloil pses;  trivil insu-ltin pse n two |C| = ±1 AH pses. Eq. (1.30) yiels in tis se

C = 1 2 (snM + -snM -), (1.65) were M ± = M ∓ 3 √ 3t 2 sin φ is te mss term t K ′ , n K respetively.
e pse irm is represente in Fi. 1.10. e lines M ± = 0 represent topoloil trnsition lines were te ulk p loses t lest t one o te K n K ′ points.

Lrer Cern pses eome possile wen te unerlyin moel is 3 rpene. e mss term s te sme sin or  reulr Dir point n its stellites, n opposite sin t te time reverse points. ereore, wen te stellites exist, te ppe pses will e inexe y Cern numer, |C| = 2.

omentum κ (′) lotes ny stellite point o K (′) n, mniestly, te expression or χ(κ (′) ) ols in te rne o existene o stellite points.

Let us e ne te mss t te reulr Dir points

M ± = M ∓ ( 4π 3 √ 3 , 0)
. e mss t te stellite Dir points is enote y m +(-) , i it is ssoite to te reulr Dir point K ′ (K). en it ollows rom Eq. (1.30) n . 1.4 tt

C = 1 2 (snM --snM + ) -3(snm --snm + ) , (1.66) 1.4 L C H -π -π/2 0 π/2 π φ -6 -4 -2 0 2 4 6 M/t 2 2 -2 -1 -1 1 1
Fi. 1.11: se irm or te 3 Hlne Hmiltonin. e oppin prmeters re t 2 = 1/3 n t 3 = 0.35 in units o t 1 .

were te mss o te Dir points res

M ± = M ∓ 3 √ 3t 2 sin φ, m ± = M ∓ 2 t 2 t 3 (1 + t 3 ) 1 - 1 -t 3 2t 3 2 sin φ.
(1.67)

Eq. (1.66) yiels te pse irm or te system wen ll eit Dir points re present. en tere re no stellite Dir points (t 3 ∈ (-1, 1/3)), te topoloy o te system is in t ientil to te oriinl system t 3 = 0 n tereore it s te pse irm rep-resente in Fi. 1.10. en t 3 is vrie to o outsie te reion (-1, 1/3), two pses o ier Cern numer evelop roun te M = 0 line. A typil pse irm or te se were stellite Dir points exist is represente in Fi. 1.11. For exmple, rom Eqs. (1.67), it ollows tt t M = 0  reulr Dir point n its stellites will ve te sme mss. ereore te Cern numer reues to C = snM + -snM -. is yiels topoloil pses inexe y ±2. By inresin |M |, one rosses  trnsition line were te Hlne mss o ll stellite points in te system eomes ientil, wile it remins i erent or te reulr Dir points. is trnsition is iven y

m ± = 0.
(1.68) is reion extens up to te te lst topoloil trnsition line iven y M ± = 0. In tis reion te Cern numer reues in to te oriinl se (t 3 = 0) wit C = 1/2(snM --snM + ). en M is inrese even urter, ll Dir points re ppe ientilly n tereore tis is te topoloilly trivil reion.

ote tt te C = ±1 pses ompletely vnis t te merin point

t 3 = 1/2, n te pse C = ±2 woul ve mximl re elimite y M = ±3 √ 3t 3 sin φ. en, t 1. AH 2D C k x -3 -2 -1 0 1 2 3 ky -3 -2 -1 0 1 2 3 E -4 -2 0 2 4 k x -3 -2 -1 0 1 2 3 ky -3 -2 -1 0 1 2 3 E -4 -3 -2 -1 0 1 2 3 4
Fi. 1.12: Enery ispersion or te Hlne t 2 moel on 3 rpene t  topoloil trnsition etween two AH pses (t φ = π/2 n t 2 = 1/3). (a) opoloil trnsition etween C = -2 n C = 0 pses t te merin point etween te reulr K ′ n its tree stellites κ ′ in 3 rpene. e enery ispersion in 3 Hlne sows  qurti n touin t K ′ or M = √ 3, t 3 = 0.5. (b) opoloil trnsition etween C = 1 n C = -2 pses. ree Dir ones orm t te stellite points o K ′ or t 3 = 0.35 n M ≈ 0.95, initin  ne o te Cern numer y 3 units t te topoloil trnsition. te topoloil trnsition rom |C| = 2 pse to te trivil insultor, tere is  qurti n touin tt is represente in Fi. 1.12().

e pse irm in 3 Hlne moel (see Fi. 1.11) s te nie eture tt it ommotes lines o trnsition were Cern numer nes y 3 units. is is rel-ize y te ormtion o tree Dir points t te topoloil trnsition. ese n touins ome rom te vnisin o te Hlne mss t te tree stellite Dir points previously oun in 3 rpene. For exmple, let us tke prmeters t 1 = 1, t 2 = 1/3 n t 2 = 0.35 rom te pse irm in Fi. 1.11. en xin φ = π/2, tere re two trnsition points etween C = -2 n C = 1 pses ner K or K ′ . In prtiulr, ner K ′ , te Dir points orm t te stellites were m + = 0. e enery ispersion t te topoloil trnsition is illustrte in Fi. 1.12().

imilrly, one n tke s unerlyin moel te 4 rpene moel wi ontins te t 3 oppin. In Fi. 1.13 re represent te AH pses tt n pper or  prti-ulr oie o prmeters.

Haldane t 6 model e existene o 2n Dir points or  sumoel ontinin only two sim mtries llows in priniple to uil topoloil insultors wit Cern pses C = n. e 3 rpene moel wit eit Dir points n present  lre Cern numer, C = ±4. o tulize ll possile topoloil pses it is su ient to   t 6 mss term. It s te e et to proue osilltions in te pse-epenent Hlne mss, su tt te term nes sin etween  reulr rpene Dir point n its stellites in 3 rpene. As expete, ll pses re ttinle uner tis moi tion o te Hmiltonin.

1.4 L C H -π -π/2 0 π/2 π φ -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 M 1 -1 1 1 1 -1 -1 -1 4 4 -4 -4
Fi. 1.13: se irm sowin te existene o 2 sets o stellite Dir points. e prmeters re t 1 = 1, t 2 = 1/3 t 3 = 0.59 n t 4 = 0.4.

e mss term eomes

h 3 = M -2t 2 sin φ)[sin(k • a 2 ) -sin(k • a 1 ) + sin(k • (a 1 -a 2 ))] -2t 6 sin(2φ)[sin(2k • a 2 ) -sin(2k • a 1 ) + sin(2k • (a 1 -a 2 ))].
(1.69) e new pse irm is ompute y onsierin te mss term (1.69) t te eit 3 rpene Dir points. en te topoloil trnsition lines re iven y te zeroes o te new mss terms, M ′ ± , m ′ ± , expresse s  untion o te previous mss terms rom Eq. (1.67)

M ′ ± = M ± ± 3 √ 3t 6 sin 2φ m ′ ± = m ± ∓ 2t 6 sin 2φ(2 sin 2κ -sin 4κ), (1.70) 
were κ = ros[(t 3 -1)/(2t 3 )] ols in te omin o existene or stellite Dir points in 3 rpene. e epenene o te mss term on sin 2φ llows lre Cern numer pses, |C| = ±4. Beuse te mss n now ne sin not only etween  reulr Dir point n its time-revere prtner, ut lso etween te reulr one n its stellites (see Fi. 1.15). ereore, wen system prmeters re vrie, 6 Hlne moel n present ll Cern pses etween -4 n 4. A pse irm tt illustrtes tis point is represente in Fi. 1.14().

1. AH 2D C -π -π/2 0 π/2 π φ -3 -2 -1 0 1 2 3 M 2 -2 -1 -1 1 1 3 3 -3 -3 -4 4 1 1 -1 -1 (a) φ -π -π/2 0 π/2 π φ -4 -3 -2 -1 0 1 2 3 4 M 5 -5 2 -2 2 -2 3 -3 3 -3 1 -1 -2 2 -2 2 1 -1 1 -1 -1 1 0 0 0 0 0 0 (b) φ
Fi. 1.14: (a) All AH pses possile or 3 rpene eome ville in Hlne t 6 moel. se irm or te oie

t 1 = 1, t 2 = 1/3, t 3 = 0.35, n t 4 = 0.26. (b)
Hlne moel rom 4 rpene wit  t 6 mss term. Hoppin interls re

t 1 = 1, t 2 = 1/3, t 3 = 0.43, t 4 = 0.3, t 6 = 0.35 n t 7 = 1/3. -π -π/2 0 π/2 π -π -π/2 0 π/2 π K -K
Fi. 1.15: A Dir point tt is represente y • (•) s irlity + (-). e olore lines represent lines o zeros or h 1 (reen), h 2 (re), n te mss term h 3 (lue). e reulr Dir points ple t ± 4π 3 √ 3 , 0 re ppe y  Hlne mss tt s opposite sin. Also te mss term nes sin etween te reulr Dir point n its stellites. For prmeters

t 1 = 1, t 2 = 1/3, t 3 = 0.35, t 6 = 0.26, M = 0 n φ = π/8 te pse is C = -4.
Let us onsier sortly te se o 4 n 7 rpene wit t 6 mss term. ere re two new ree prmeters t 4 n t 7 . e prmeters spe eomes quite lre to esrie nlytilly te ynmis o te Dir points n to trk t te sme time te sin o te 1.5 D mss t te Dir points. e enerl tesis remins owever orret: lrer n lrer AH pses eome possile. In te se o 4 rpene tere is  mximum o six Dir points ner  K point; or 7 rpene tere re nine possile Dir points. is inites tt wit  proper mss term one n ve te lrest Cern pses |C| = 7 (in 4 rpene) or |C| = 10 (in 7 rpene). In Fi. 1.14(), it is represente  se wit lre C = 5 pses.

Discussion

e polynomil wose zeroes etermines te position o te Dir ermions eomes quikly o too i eree or nlytil preension. everteless, wt trnspire ere is tt truly te topoloil pses wit i Cern numer n e inee inue trou ition o istnt-neior oppin. As  sie result,  moel or rpene ws stuie n ws sown tt in istnt-neior oppins inreses te num-er o Dir points. ey move uner  vrition o prmeters n tere re unique super-merin points in prmeter spe were ll itionl Dir points mere wit te K n K ′ rom te reulr rpene.

ey orm points wit  i-orer enery ispersion. However, te solute vlue o te topoloil re ssoite to te super-merin never rows lrer tn two euse te stellite points lwys ome in triplets wit opposite res. nortuntely te stuy is mostly emi n serves s  proo o priniple. e eree o ontrol require to relize te super-merins n te presene o extreme istnt-neior oppin remin rter prolemti. However it woul e possile to n multi-lyer mterils wi re e mppe to two-n moels wit e etive-lon rne oppin. ese systems oul use te metos evelope in tis pter to nlytilly rt teir topoloil pse irm 37].

Chapter 2

Edge states in a Chern two insulator e present pter ouses on te toy moel rom e. 1.3. It ws sown previously tt tis moel supports topoloil pses wit Cern numer |C| = 2.

e pse irm o te system ws etermine y onsierin only ulk properties. en te system is relize on  nite eometry, tere will e ees were te system onnets wit  trivilly ppe pse, ere te vuum. As  onsequene tere will e ee sttes equl in numer to te Cern inex 15].

e question pose ere is wt quntum numer i erentites te two ee sttes tt n pper in te moel. Here it is sown trou i erent numeril n nlyt-il teniques tt it is  vlley numer tt emrtes te ee (es. 2.1 n 2.2). oreover, te moel is extene y in spin erees o reeom, su tt it is on-verte in  time-reversl invrint Z 2 insultor. e ee sttes rom te |C| = 2 pse re expliitly ppe y one-prtile I perturtions (e. 2.3). is on rms tt even Cern numers proue trivil Z 2 pses 52, 57, 58]. In te nl e. 2.4, tere re n in nite numer o interes enineere etween two lterntin topoloil pses o te sme Hmiltonin. It is possile to eue te topoloil pse o overll moel rom knowlee o te Cern numer o te onstituent stripes.

e momentum spe Hmiltonin o te moel 1.41 res

H = 2t 1 os(k x )σ 1 + 2t 1 os(k y )σ 2 + [m + 2t 2 os(k x + k y ) + 2t 3 (sin(k x ) + sin(k y ))]σ 3 (2.1)
wit  topoloil invrint iven y

C = sn(-m -2t 2 ) + 1 2 [sn(m -2t 2 + 4t 3 ) + sn(m -2t 2 -4t 3 )].
(2.2) e Hmiltonin (2.1) is implemente on  yliner n, susequently, ee sttes orm t te ottom n top sies o te yliner were te lttie termintes ruptly. e ollowin setions investite te ee stte wve untions n teir respetive enery ispersion. 



Numerical experiments

k x (c) -2 -1 0 1 2 t 3 -4 -2 0 2 4 m -2 0 0 -1 -1 1 1 a b c (d)
Fi. 2.1: i-z ee enery ispersion wen te ulk Hmiltonin is in i erent Cern pses. e simultion is one or te system on  yliner wit eit o 40 sites n irumerene o 180 sites. e numer o ee sttes is 2 × |C| euse tere re two ees. Enery ispersions or () t 3 = 0.4 (C = -2), () t 3 = 0.85 (topoloil pse trnsition t losin ulk p), () t 3 = 1.6 (C = -1). e oter prmeters re t 1 = 1, t 2 = 1, m = -1.4. () e representtion o osen points on te pse irm.

e nite eometry osen or te numeril stuy is  yliner. It is onstrute out o  pt o te lttie vin te spe o  prllelorm wit Brvis vetors a 1 n a 2 s ees. usequently te ees prllel to a 2 re lue toeter to otin te te nl ylinril spe. Beuse trnsltionl invrine is mintine in te iretion prllel to a 1 , k x remins  oo quntum numer. ereore, one n x k x n onsier te resultin one-imensionl prolem. Let us write te one-prtile solutions o te orresponin sttionry röiner eqution s

|ψ(k x , j) = kx ψ j (k x )c † kx,j |0 , (2.3)
2. E C were j enotes te lyers o sites in a 2 iretion, n ψ j is  spinor ue to te t tt tere re two oritls in te prolem. en or  iven qusi-momentum k x , te röiner eqution res

Γ 1 ψ j + Γ 2 ψ j+1 + Γ † 2 ψ j-1 = Eψ j ,
(2.4)

were

Γ 1 = mσ 3 + 2t 1 os(k x )σ 1 + 2t 3 sin(k x )σ 3 , Γ 2 = t 1 σ 2 + (t 2 e ikx -it 3 )σ 3 .
(2.5) e yliner s te ees t j = 1 n j = L y . ere re r wll ounry on-itions, to te e et tt te mplitues ψ 0 , ψ Ly+1 must vnis. e enery ispersion s  untion o k x is otine y numerilly solvin Eq. (2.4) or te iven ounry onitions n or i erent oies o te prmeters (see Fi. 2.1). In our numeril experiments te yliner irumerene is L x = 180 sites n wit eit L y = 40 sites. All te eneries re mesure in units o t 1 .

e ulk-ee orresponene is illustrte y smplin severl reions o te pse irm in Fi. 1.5. In non-trivil topoloil reions, ee sttes pper roun te ens o te yliner. e numer o ee sttes t  iven en equls te solute vlue o te Cern numer. For exmple, tree sets o prmeter vlues lon te onstnt m = -1.4 line re tken su tt te trnsition etween te

C = -1 n C = -2 pses is explore (see Fi. 2.1()).
ile te ulk remins insultin tere re sttes rossin te p. ese re te ee sttes n teir totl numer is 2 × |C| sine te yliner s two ees. ote tt te ee sttes t zero enery, ross te p t k x = ±π/2. At ny topoloil trnsition te ulk loses t lest in one o te speil points k x = ±π/2. A trnsition nin te Cern numer y two requires tt te p loses t ot points, wile or  ne o one, only one Dir one orms.

Analytical solution

A reter insit into te moel is ine y solvin Eq. (2.4) nlytilly. In tis wy, te pless sttes re lerly ienti e s ee sttes n teir penetrtion lent into te ulk is etermine. e ee stte ispersion lw n e oun eiter y iretly solv-in te röiner eqution or iniretly y stuyin te ulk Hmiltonin trou  meto esrie in e. 59]. Bot pproes re explore in te enerl settin o te moel n re exempli e or  prtiulr oie o prmeters orresponin to te pse C = -2.

Edge states from bulk Hamiltonian

As it ws elently prove in e. 59], te onition o existene n ee stte ispersion n, uner ertin provisions, e oun rom  simple nlysis o ulk Blo 2.2 A Hmiltonins. e meto evelope y te utors pplies wen n in nite rion or  yliner is ut out o te in nite 2D system. e iretion o te ut must ollow  Brvis lttie vetor. In tis se te momentum prllel to te ut k is onserve n te system splits into  set o 1D Hmiltonins esriin te motion o te eletron etween te lyers o sites prllel to te ut. e nl prerequisite to pply te meto is tt tere re only nerest-neior lyer oppin terms. Eq. (2.4) sows tt it is inee te se in te present moel wit k = k x .

e key inormtion out te ee sttes n e revele y stuyin te urves tre y h s  untion o k ⊥ wit xe k . For te se wit only nerest-neior lyer oppin llowe, tese urves re plnr (tully tey re ellipses). ereore, h n e eompose in two prts, h ⊥ perpeniulr to te ellipse plne n h te in-plne omponent. E omponent yiels some importnt piee o inormtion out te ee sttes. mely, te ee stte wit  iven k exists i n only i te ellipse tre y h enloses te projetion o te oriin onto te plne o te ellipse. e enery o te stte is equl to ±|h ⊥ |.

In te present se

k = k x n k ⊥ = k y . is yiels h = (0, 2t 1 os(k y ), 2t 2 os(k x ) os(k y )+2(t 3 -t 2 sin(k x )) sin(k y )+m+2t 3 sin(k x )).
(2.6)

For  xe k x , te eqution (2.6) esries n ellipse prmetrize y k y ∈ [0, 2π). e onition tt te ellipse enloses te oriin res

|m + 2t 3 sin(k x )| < 2|t 3 -t 2 sin(k x )|.
(2.7) is eqution etermines te rne in k x were ee sttes exist. e enery o te stte is ±2t 1 os(k x ).

Altou te ee ispersion is etermine, it still remins to resolve te wve-untion or te ees sttes. Also te existene onition or |C| = 2 pse must llow our ee sttes, n tereore it is le to n te extension in k x or e ee solution seprtely. ese limittions o te ove meto emn  more pplie stuy o te ee sttes.

Edge states from the Schrödinger equation

e eqution rterizin te wve untion mplitues or te ee sttes ve te orm o  reurrene reltion.

en one n n  solution usin te meto o te enertin untions. Here te solution ollows losely te meto use in e. 60]. It involves eterminin te enery ispersion y stuyin te poles o te enertin untion ssoite to te ee sttes. usequently, tis is ollowe y onstrutin te eienvetors o te röiner eqution yielin lolize wve untions t two ees o te yliner. It is sown tt te solutions lwys ross t spei  points in te B n, susequently, n ve n ssoite "vlley" quntum numer.

E C

Let us write te röiner eqution or te ee sttes, omplete wit te oun-ry onitions. For te moment, ssume tt tere is only one ee n te oter one is puse to in nity. t is enou to n te enery ispersion n "spinor" wve untion or te ee sttes.

e roöiner eqution rom Eq. (2.4) wit expliit ounry onition t te ee, j = 1, res

0 = (Γ 1 -E)ψ j + Γ 2 ψ j+1 + Γ † 2 ψ j-1 , j > 1, 0 = (Γ 1 -E)ψ 1 + Γ 2 ψ 2 ,
(2.8)

were

Γ 1 = mσ 3 + 2t 1 os(k x )σ 1 + 2t 3 sin(k x )σ 3 , Γ 2 = t 1 σ 2 + (t 2 e ikx -it 3 )σ 3 .
(2.9) ultiply te j th eqution y z j , were z is  omplex numer. ummin te equtions it ollows tt

∞ j=1 z j-1 [Γ † 2 ψ j + (Γ 1 -E)ψ j+1 + Γ 2 ψ j+2 ] = 0.
(2.10)

Let us introue te enertin untion

G(z) = ∞ j=1 z j-1 ψ j .
(2.11) en usin te ounry onition in Eq. (2.10), it ollows tt te röiner eqution res

[z 2 Γ 2 + z(Γ 1 -E) + Γ 2 ]G(z) = Γ † 2 ψ 1 .
(2.12)

Ee sttes exist only i its poles ve ll  moulus reter tn one 60]. I ll poles o te enertin untion ve moulus less ten one, ten tey orrespon to wve untion mplitues tt row in te ulk. For n exponentilly lolize untion t te ee, ll poles must e reter tn one.

e enertin untion is iven y

G(z) = [z 2 Γ 2 + z(Γ 1 -E) + Γ 2 ] -1 Γ † 2 ψ 1 .
(2.13)

Let us enote or onveniene

α = 2t 1 os(k x ), β = m + 2t 3 sin(k), γ = t 2 e ikx -it 3 n Γ 2 ψ 1 = φ 1 φ 2 . e enertin untion res G(z) = N (z)/D(z), N (z) = z 2 (γ * φ 1 -it 1 φ 2 ) + z((E + β)φ 1 + αφ 2 ) + γφ 1 -it 1 φ 2 z 2 (-γ * φ 1 + it 1 φ 2 ) + z((E -β)φ 2 + αφ 1 ) -γφ 2 + it 1 φ 1 .
e enomintor D(z) is  polynomil o orer our in z. ereore it s our enerlly omplex roots. It s te property tt i z 1 is  solution, ten lso 1/z * 1 is  solution. Let us ssume tt z 1,2 re solutions wit |z 1,2 | < 1. en  lolize ee solution exists, i te roots z 1,2 re simpli e wit te roots o te numertor.

t is equivlent to sy tt te two omponents o N (z) re linerly epenent n ot proportionl to

(z -z 1 )(z -z 2 ).
ereore te oe ient o z 2 n z 0 re proportionl, yielin te enery inepen-ent reltion etween te omponents

(γ * -γ)(φ 2 1 -φ 2 2 ) = 0.
(2.14) e solution γ * = γ is uneptle euse te iète reltions require

|z 1 z 2 | = 1.
(2.15) is oes inst te premise tt ot ve moulus smller tn one. ereore it leves to impose φ 2 1 = φ 2 2 . Hene te ee sttes ψ 1 n e osen to e proportionl to eiensttes o

σ 1 |x± = 1 √ 2 1 ±1 .
(2.16) e enery o te ee stte n e etermine y returnin in N (z) n pplyin in te liner epenene onition wit te onstrint tt φ 1 = ±φ 2 . is yiels te enery ispersion or ees lolize t j = 1

E ± = ±2t 1 os(k x ), or |x± .
(2.17)

Let us rete noter ee t j = N . e system is now  yliner wit ottom t j = 1 n top t j = N . ere re r wll ounry onitions or te wve untions, n ene tere re vnisin mplitues ψ 0 n ψ N +1 . e ee sttes lolize t N will e similrly eiensttes o σ 1 wit respetive eneries, E ± = ±2t 1 os(kx). However, it remins to etermine in te ollowin te ey o te ee wve untion in te ulk, n teir extension in momentum spe. e ltter is resse wen ssessin te existene onitions or te solutions. Beuse te numer o ee solutions epens on te Cern pse, tere re solutions tt must vnis wen moel prmeters re vrie.

o onstrut te ee wve untion use te Anstz

ψ j = z j |x± .
(2.18) ote tt te eqution in te ulk o te yliner res

[z 2 Γ 2 + z(Γ 1 -E ± ) + Γ † 2 ]|x± = 0 0 (2.19)
For te |x+ , n, respetively, |x-it ollows tt

z 2 (∓it 1 + t 2 e ikx -it 3 ) + z[m + 2t 3 sin(k x )] + (∓it 1 + t 2 e -ikx + it 3 ) = 0.
(2.20) ote tt i z 1 n z 2 re solutions or te eqution orresponin to eiensttes |x+ , ten 1/z * 1 n 1/z * 2 re solutions or te eqution orresponin to |x-. en t e ee tere n e t most two solutions one orresponin to |x+ n one to |x-. However to onstrut te wve untion solution is neessry to pply te ounry onition. is is exempli e in te ollowin or  solution orresponin to |x+ tt is lolize t te ottom ee, j = 1.

Beuse tere re two eienmoes z 1,2 ssoite to  "spinor", te wve untion res

ψ j = (c 1 z j 1 + c 2 z j )|x+ ,
(2.21)

were c 1,2 re oe ients. e ounry onition, ψ T 0 = (0, 0), onstrins te oe -ients c + := c 2 = -c 1 . e oe ients c +,-orrespon to |x± eiensttes. ey re xe y pplyin ounry onitions t te ees o te yliner, ut tey re not o onern ere. us i tere is n ee stte solution, its orm n enery re

ψ +b(t) j = c + (z j 1 -z j 2 )|x+ , E = 2t 1 os(k x ), ψ -b(t) j = c -(z * -j 1 -z * -j 2 )|x-, E = -2t 1 os(k x ), (2.22)
were te inex b (t) enotes n ee stte lolize ner te ottom (top) o te ylin-er. e eienmoes re etermine rom te qurti Eq. (2.20)

z 1,2 = -b ± √ b 2 -4ac 2a ,
(2.23)

wit a = -it 1 + t 2 e ikx -it 3 , b = m + 2t 3 sin(k x ), c = -it 1 + t 2 e -ikx + it 3 .
(2.24)

It is mniest tt te moel n ve zero, one or two solutions t n ee. For onreteness, let us exmine te sttes lolize t yliner's ottom (j = 1). I te eienmoes |z 1,2 | = 1, ten te solutions (2.22) esrie extene ulk solutions. ere re no ee solutions, i or ny k x ,

|z 1 | < 1 < |z 2 |, or |z 2 | < 1 < |z 1 |.
(2.25) In tis se ll solutions (2.22) ivere or j > 1. niestly, te sme onlusions pply to te top ee.

Ee solutions n exist wen ot z 1 n z 2 re simultneously smller or reter tn one. ote owever tt it is not possile to enounter  lolize solution ψ +b n ψ -b in te sme rne o k x . is is euse i one is lolize, ten te oter one s iverin eienmoes z. is inites tt i ψ ±b is  lolize solution in  iven k x rne, ten ψ ∓t is  lolize top solution.

Hene tere re  mximum o two wve untion solutions or  iven ee. For C = 1, only one o te solutions ψ ±b ols in te B n te oter is iverin wy rom te ee. For C = 2, ot solutions ψ ±b re possile in istint rnes o k x .

ote tt te enery ispersion lwys rosses te zero enery t k x = ±π/2. At  iven ee, i tere re two solutions, ten tey re ssoite eiter to k x = π/2 or

k x = -π/2.
is nswers te question: wt quntum numer istinuises te ee stte solutions or |C| = 2? Any ee stte n e inexe  "vlley" quntum numer ±K orresponin to  zero rossin t ±π/2.

e existene onitions n te respetive vli ee wve untions re iven y te ollowin inequlities:

|z 1 | < 1, |z 2 | < 1, ψ +b j n ψ -t j , |z 1 | > 1, |z 2 | > 1, ψ -b j n ψ +t j .
(2.26)

Let us illustrte te ove results or  speil point t 1 = 1, t 2 = 1, t 3 = 0, m = 0 48 2. E C o te pse irm in Fi. 1.5. is point orrespons to te "enter" o te C = -2 pse n is rterize y te lrest p n ttest ns or te spetrum o te ulk sttes. ne n expet two ee sttes t eiter en o te yliner. e eienmoes z re etermine rom Eq. (2.20)

z 1,2 = ±i (-i + e ikx )(-i + e -ikx ) -i + e ikx .
(2.27) e penetrtion lent or te ee sttes is iven y

ξ = -1/ ln(|z 1,2 |), = 4 ln[1 + sin(k x )] -ln[1 -sin(k x )]
.

(2.28)

In tis se te ee sttes ve mximl extension n over te entire B, euse te existene onition (2.26) is lwys respete exept t points k x = 0 n k x = π. At tese prtiulr points te ee sttes enter te ulk.

e ove ruments llow to reily otin te our ee stte solutions in te C = -2 pse or

t 1 = t 2 = 1 n m = t 3 = 0.
e wve untions n te respetive eneries re

ψ -Kb j = c + (1 -(-1) j )ρ j 1 |x+ , E = 2 os(k x ), k x ∈ (-π, 0), ψ Kb j = c -(1 -(-1) j )ρ * -j 1 |x-, E = -2 os(k x ) k x ∈ (0, π), ψ Kt j = c + (1 -(-1) j )ρ j 1 |x+ , E = 2 os(k x ), k x ∈ (0, π), ψ -Kt j = c -(1 -(-1) j )ρ * -j 1 |x-, E = -2 os(k x ), k x ∈ (-π, 0). (2.29)
e inies t n b inite weter te ee sttes live lose to te top (j = L y ) or te ottom (j = 1) prt o te yliner. e inex ±K esintes ees sttes rossin te zero enery t ±π/2 or, equivlently in tis se, weter te solutions extene in te rit, respetively le , l o te ([-π, π]) B. e oe ients c ± re normliztion oe ients wi re not o interest ere. e ee sttes' enery ispersion (2.29) re plotte in Fi. 2.2 toeter wit te numeril solution in orer to sow teir peret reement.

Extension: Edges in a Z 2 insulator

e lss A topoloil insultor tt ws onstrute in te previous susetions n e esily trnsorme into  Z 2 topoloil insultor in te sympleti lss AII y imposin time-reversl symmetry (see . 1). In te ollowin, spin erees o reeom re e n  H moel is rete rom two opies o te Z insultor. e ojet o te present susetion is to ollow te te o te two irl ee stes otine t te intere o |C| = 2 pses wit te vuum. Cruilly, tese sttes re not roust wit respet to ritrry one-prtile, time-reversl invrint perturtions. e most stritorwr route to rete te Z 2 insultor is te one tken in e. 4]. A I moel is onstrute rom  Z insultor moel n its time-reversl opy, wit opposite Cern numer. I tere re no terms ouplin te two moels, ten ny ee stte preite rom one o te moels will ve  prtner wit opposite irlity rom te oter one. Let us  spin vor n ensure tt te spin s 3 uli mtrix ommutes wit te Hmiltonin. E o te spinless Z moel, now represents  polrize spin up, respetively own moel, n e ee stte is spin polrize.

uppose tt te spin up omponent is esrie y Eq. (1.41), wile te spin own one represents its time reverse opy. is yiels te ollowin 4-n Hmiltonin:

H(k) = 2t 1 os(k x )σ 1 + 2t 1 os(k y )σ 2 s 3 + [m + 2t 2 os(k x + k y )]σ 3 + 2t 3 [sin(k x ) + sin(k y )]σ 3 s 3 , (2.30)
were s uli mtries represent eletroni spin, n σ, te oritl erees o reeom.

Beuse te spin Hmiltonin is rete rom two opies o te spinless Hmilto-nin, wit no spin mixin terms, te onitions or te enery p re not ne.

t mens te previously oun insultin pses remin insultin or te our-n moel.

n  ylinril eometry, tere re ee sttes ormin roun te ees o te yliner. Beuse tere re no spin mixin terms, te enery spetrum is trivilly o-tine y "oulin" te spetr lrey oun or te spinless Hmiltonin. ore pre-isely it is otine rom te union o te spinless (now spin up) Hmiltonin spetrum n its re etion out k x = 0 uner . ereore te numer o ee sttes will lso oule su tt e oriinl ee stte will et  Krmers prtner.

Altou every previously nontrivil Cern pse will sow ee sttes in te spin-ul moel, not ll o tem re roust. Inee, te H insultor onstrute rom o te spinless moel wit |C| = 2 llows one-prtile I perturtions tt estroys te ee sttes 6, 61].

A smll I perturtion ps te ee sttes t te rossin point k x = ±π/2. Hene it is su ient to nlyze te system ner te rossins to n su  perturtion. e low-lyin ee sttes re esrie y n e etive Hmiltonin, otine y linerizin te solutions (2.29) ner rossins k x = ±π/2. At  iven ee, or te pse wit |C| = 2, tis yiels: 

H eff (q x ) = Ψ † KR↑ vq x Ψ KR↑ + Ψ † -KR↑ vq x Ψ -KR↑ -Ψ † -KL↓ vq x Ψ -KL↓ -Ψ † KL↓ vq x Ψ KL↓ , ( 2 
Ψ † KR↑ Ψ KL↓ -Ψ † -KR↑ Ψ -KL↓ + H... (2.32)
It is possile to uil mny perturtions t te tit-inin level yielin te ove orm t low enery. It is noteworty to oserve tt tey ll rek te spin s 3 symmetry. An exmple o  perturtion in te tit-inin ormultion is

t 4 sin(k x )σ 3 s 1 .
(2.33)

For te pses wit |C| = ±1 no one-prtile, lol, I perturtion n result in kstterin o te ee sttes. e ove exmple rees wit te sttement tt moels wit n even numer o Krmers pirs o ee sttes re Z 2 -trivil 62].

Extension: Stripes of a Z insulator

ere re still wys in wi te Cern numer ompute nlytilly or  two-n moel ontinues to e useul in multin systems. Amon te more simple ones is te "stripe" topoloil insultor explore in te ollowin.

Generlly wen two insultin pses wit i erent Cern numer re put in on-tt, tere re ee moes tt orm etween te pses. Consier now tt one retes stripes rom te sme system wit wit o te orer o te lent o te unit ell. ere re only two type o stripes, i erentite y prmeter vlues (m, t i ). A new 2D system is onstrute y lterntin te two stripes, tus retin interes everywere in te volume.

e nturl supposition woul e tt i te prmeters re ssoite wit i erent Cern pses ten tere re ee sttes ormin everywere in te moel. is turns out to e orret; te system eomes metlli wit trnsport everywere in te ulk in te iretion o te ees. Let us stuy in more etil ow te pses n e etermine rom n nlysis o te pse irm or e stripe Hmiltonin seprtely.

e moel |C| = 2 insultor in Eq. (1.41) is onsiere in. o simpliy te prolem, eliminte te |C| = 1 pse y orin t 3 = 0. en te Hmiltonin res

H = 2t 1 os(k x )σ 1 +2t 1 os(k y )σ 2 +[m+2t 2 os(k x +k y )+2t 3 (sin(k x )+sin(k y ))]σ 3 .
(2.34) e Cern numer tt inexes te insultin pses res

C = sn[-m -2t 2 ] + sn[m -2t 2 ].
(2.35)

In orer to rete te stripes, n lterntin vlue or t 2 is introue etween two jent unit ells. In Fi. 2.3 re represente two o te ells n te stripe moel 51 2.4 E :  Z Fi. 2.3: e stripe moel wit lterntin t 2 n t ′ 2 oppin term. e re ontour in-ites te oriinl unit ell. A er te ition o t ′ 2 , te unit ell oules its volume to te lue ontour. e two oritls wit i erent on-site enery ±m re not repre-sente; te uli mtries σ inite te oppin interls etween oritls lon te tree iretions in te moel.

wi is otine y repetin to in nity te pttern. e ne is equivlent to ou-lin te size o te unit ell, wi now ontins t 2 n t ′ 2 oppin terms. Hene in te stripe moel tere re our oritls in te unit ell. A new set o o uli mtries τ re introue to enote  "ell" eree o reeom.

en te new Hmiltonin in momentum spe res

H = 2t 1 os k x 2 σ 1 τ 1 + 2t 1 os(k y )σ 2 τ 1 + m + (t 2 + t ′ 2 ) os k x 2 + k y σ 3 τ 0 + (t 2 -t ′ 2 ) os k x 2 + k y σ 3 τ 3 .
(2.36) ereore te enery ispersion res

E = a 2 + b 2 + c 2 ± 2 (a 2 + b 2 )c 2 ,
(2.37)

wit a = 2t 1 os 2 (k x /2) + os 2 (k y ), b = m + (t 2 + t ′ 2 ) os(k x /2 + ky), c = (t 2 -t ′ 2 ) os 2 (k x /2 + k y )).
(2.38) ote tt euse te unit ell is oule, te Brillouin zone srinks y  tor o two. However, ere k x ws resle su it ontinues to run rom π to -π. Due to te olin o te B tere re trivil solutions were te enery oes to zero, i.e. (k x , k y ) ∈ {(0, ±π/2), (π, ±π/2)}. ese points orrespon to te ees o te metlli reion. ey orrespon to m = ±2t 2 n m = ±2t ′ 2 . But tis lines in prmeter spe orrespon extly to te topoloil trnsitions etween te topoloil pses or te 

C -3 -2 -1 0 1 2 3 m (b)
Fi. 2.4: () uperimpose pse irm or e o te two stripe-Hmiltonin (one wit t 2 , te oter wit t ′ 2 ) ives te omplete pse irm or te system. e Cern numers inex te (non)trivil pses orin to Eq. 2.35. In rey is represente te metlli pse, were Cern numer is exne t every stripe ee in te moel. () umeril Cern numer lultion or te reen line on te pse irm (), wit (t 2 = 0.5, t ′ 2 = 1) n m vryin in [-3, 3]. en te line rosses te metlli pse te Cern numer is not e ne; ere tis is seen s C tkin rtionl vlues etween te well-e ne C = 0 n C = -2 pses.

ulk Hmiltonin orresponin to te two stripes (see Eq. (2.35)). is solution in-ites tt, in orer to etermine te pse irm o te moel, it su es to know te pse irm or te two sumoels.

en te two stripes re in te sme onnete topoloil pse, ten no ee stte re expete to pper etween tem. ereore te overll system stys in te sme ppe topoloil pse. everteless, or isonnete pses esrie y te sme inex (or exmple, seprte y  i erent pse), ee sttes mit pper, renerin te system metlli. In every se were  Cern numer is exne t te intere, ee nnels will orm, renerin te system metlli. en te pse irm n n e seen y superposin te pse irms or te sumoels (see Fi. 2.4()) e ove result is rst teste y numerilly omputin te enery spetrum. is on rms te presene o metlli pses in te ext winow preite y te superposition rument tt rout te irm in Fi. 2.4(). A more isernin investition involves omputin te Cern numer or i erent prmeters o te Hmiltonin.

At l-llin, tere re two oupie (inexe y n) n two unoupie ns (inexe y n ′ ). en te Cern numer is etermine numerilly 17, 41] 

C = 1 2π BZ d 2 k Ω xy (k), ( 2 
Ω xy (k) = -2 n occ. n ′ unocc. Im[(v x ) nn ′ (v y ) n ′ n ] (E n -E n ′ ) 2 ,
(2.40)

were (v x ) nn ′ is expettion vlue o te veloity opertor etween one oupie n one unoupie n

(v x ) nn ′ = n|∇ kx H|n ′ .
(2.41)

For exmple, t 2 n t ′ 2 re xe, n m is vrie in Fi. 2.4() to yiel te expete vlues or te Cern numer. ote tt te Cern numer is not well-e ne in te metlli reion. is is re ete in spurious rtionl vlues etween well-e ne in-teer vlues (in te Fi. 2.4(), C = 0 n C = -2).

In onlusion, te our-n moel pses n e entirely etermine rom te ori-inl two-n moel. is is not  surprise s te stripe topoloil insultors is o-tine rom oulin te oriinl moel. In te se o te Z 2 insultor, te oulin o te moel kept ll te ps in te oriinl moel. However, in te stripe topoloil insultors, i  ee stte orms etween two stripes s  onsequene o isonnete topoloil pses, ten te entire 2D moel eomes metlli.

Discussion

e nlytil metos in stuyin te ee sttes in topoloil insultors nee urter evelopment. e enompssin enerlity in te esription o ulk pses ontrsts te sort-siteness o ee stte investitions. For exmple, ot metos use to ompute te ee stte solution took vnte o te t tt te 1D röiner eqution tt esries te system onnets only ner-neior sites in te iretion trnsverse to te ee. is is n rtit o te spei  wy in wi te ee ws ut. An open question remins ow to equtely esrie generic ee sttes in topoloil insultors.

e eomposition e ete in Cp. 1 o two-n moels into pless system plus  mss term ives ope tt tis oul e use to esrie su eneri sttes. In perspetive, it woul tke n extension o metos evelope to stuy enerl ee sttes in rpene 63, 64] y onsierin now te role o te mss term.

A nl wor o ution is in orer. Ee sttes n lso exist etween zones wit ientil Cern numer. For exmple, in topoloilly trivial ppe rpene, ee sttes orm t  omin wll ue to  ne in te on-site enery 65, 66]. e sme e et ws oserve in simultions rrie in e. 2.4, n le to te pprition o metl-li pses wen te stripes re rete out o isonnete topoloil pses wit te sme Cern numer. is surprisin e et nees urter investition to ek te ro-ustness o te ee sttes. oreover it s  new level o i ulty in esriin te pysis o te ee sttes, euse it rstilly mens te rule o tum tt equls te numer o ee solutions to te vrition o te Cern numer ross n intere.

Part II

Majorana fermions

Introduction is introutory pter ontins  primer to jorn ermions. First tey re pre-sente s rel solutions to te Dir eqution. eonly tey emere s qusiprtiles in i erent onense mtter reliztions. Amon tese, two one-imensionl systems re prtiulrly relevnt in te ontext o tis tesis n tereore re presente in more etil: te Kitev moel 67] n te spin-ouple semionutin wire supportin jorn ermions in proximity o n s-wve superonutor 24, 25]. Finlly, te pter lso inlues  presenttion o te onept o jorn polriztion s n orer prmeter to esrie  topoloil trnsition.

Majorana fermion primer

Dirac equation and the Majorana condition

A ermioni prtile tt is its own ntiprtile is  jorn ermion 68]. For  solution, Ψ, to te Dir eqution, it is possile to e ne te ntiprtile solution, Ψ c , otine uner te re onjution opertion. en te two re equl, tey orre-spon to  jorn prtile.

Let us etil te re onjution opertion y ollowin e. 69]. e tree-imensionl Dir eqution or  spin-1/2 prtile in te presene o n eletromneti el A µ res

(iΓ µ (∂ µ -ieA µ ) -m)Ψ = 0.
(3.1) e Greek inies run over te sptil (1, 2, 3) n temporl (0) omponents, wile te omn inies run only over te sptil ones. e Γs re te 4 × 4 Dir mtries n re onventionlly osen s e re onjute solution Ψ c will oey te sme Dir eqution (3.1), ut wit opposite re -e. t llows one to e ne te re onjution opertor C, tt yiels te eqution (3.5)

Γ 0 = σ 0 ⊗ τ 3 , Γ j = iσ j ⊗ τ 2 ,
C(iΓ µ (∂ µ -ieA µ ) -m)Ψ = (iΓ µ (∂ µ + ieA µ ) -m)CΨ, = 0 
Let us now onsier te ul lle jorn onition, tt  prtile is ientil to its ntiprtile

Ψ c ≡ CΨ = Ψ.
(3.6) Cruilly tis onition is Lorentz invrint n it is tereore vli in ny reerene rme 70]. oreover, it is immeite rom eqution (3.1) tt only  neutrl spin-1/2 ermion n oey te onition, e = 0. ereore ot Ψ n Ψ c re solutions to te sme Dir eqution

(iΓ µ ∂ µ -m)Ψ (c) = 0.
(3.7) e oriinl Dir spinor Ψ is  omplex our-omponent spinor. Hene it is e-srie y eit ree rel prmeters. ner te jorn onition our re xe. For exmple, i te Dir spinor is written s Ψ T = (φ T , χ T ), wit φ n χ two-omponent spinors, ten te uner jorn onition

Ψ = φ σ 2 φ * .
(3.8) Beuse φ is enerlly omplex,  jorn ermion s only our rel omponents. n-er  unitry trnsormtion one n otin purely rel jorn ermions, were e o its our omponents is rel. is ppens in  jorn representtion, were ll te Γ mtries, not only Γ 2 , re iminry. Here te re onjution eomes omplex onjution n jorn onition emeres s  strit relity onition

Ψ = Ψ * .
(3.9) 58 3. I A possile oie or  jorn sis is

Γ 0 = σ 2 ⊗ τ 1 , Γ 1 = iσ 3 ⊗ τ 0 , Γ 2 = -iσ 2 ⊗ τ 2 , Γ 3 = -iσ 1 ⊗ τ 0 ,
(3.10) wit Γs tt ontinue to oey te Cli or ler.

Altou jorn prtiles re teoretilly vli solutions to te Dir eqution, tey ve never een oun mon te unmentl prtile. o tis moment te neutrino remins n open possiility s  mssive jorn prtile.

Particle-hole symmetry

In reent yers, te ie o  jorn ermion ws resurrete in te ontext o on-ense mtter were it oul e relize s  qusiprtile in  superonutor 71]. Intuitively it is nturl to ser in  superonutor euse qusiprtile exittions ontin ot prtile n ole erees o reeom. A ole is simply te "ntiprtile" o n eletron.

In te lnue o retion n nniiltion opertors, te re onjution op-ertion isusse previously is simply te opertion o tkin te Hermitin onjute.

t ollows euse retin n eletron is ientil to estroyin  ole wit opposite momentum.

At men el level, te Hmiltonin or  superonutor in te seon qunti tion res 13]

H = 1 2 C † HC, (3.11) 
wit C † = (c † , c) n c is  row (or olumn, epenin on ontext) vetor omprisin te nniiltion opertors t ll te lttie sites in  superonutor, eventully wit  spin inex (c ↑ or c ↓ ). e " rst-quntize'' Booliuov-e Gennes Hmiltonin res

H = H 0 ∆ ∆ † -H * 0 , (3.12) 
were ∆ is te mtrix ontinin te superonutin orer prmeters. e tion o te re onjution trnsormtion is to onvert  prtile into  ole n vie vers

CcC -1 = c † .
(3.13) e Hmiltonin exiits te re onjution symmetry

[C, H] = 0.
(3.14) oeter wit te Hermitiity o H, it is su ient to etermine te onsequenes o re onjution symmetry on te BG Hmiltonin, 

CHC -1 = τ 1 Hτ 1 = -H * , ( 3 
HΨ = EΨ, Ψ T = (u T , v T ),
(3.17) were u (v) stns or te prtile (ole) omponent o te wve untion. e solutions esrie te qusiprtiles exittions ove te BC roun stte. en i (u T , v T ) is te solution wit enery E, ten (v † , u † ) is te prtile-ole onjute wit enery -E. In ontrst,  qusiprtile solution is  jorn ermion i it is equl to its own prtile-ole onjute (nti-qusiprtile), at the same energy.

is implies tt  jorn ermion n e relize only t zero enery.

A solution to te men-el eqution n lso e represente y  qusiprtile re-tion opertor

γ † E = j u j,E c † j + v j,E c j ,
(3.18)

were j runs over ll te sites (oritls, n spins) in te superonutor. en te prtile-ole n jorn onitions n lso e onisely expresse s

γ E = γ † -E , H onition, γ † E , jorn onition. (3.19)
rivilly ot onitions re stis e t zero enery or u j,0 = v * j,0 . It is not lwys possile to impose te jorn onitions or te zero moes in superonutors. In  spin-sinlet superonutor, n exittion s te struture 72]

γ † α = j u j,α c † j,α + v j,-α c j,-α , (3.20)
were α is  spin inex ↑ / ↓. ow j runs only over te site n oritl erees o reeom. e jorn onition res γ † α = γ α , n te qusiprtile n te nti-qusiprtile ontin i erent eletron n ole retion opertors. Hene, no mtter te vlue o te oerene tors (u jα , v jα ), it is not possile to rete  jorn ermion.

I

In onlusion,  spin-sinlet superonutor oes not llow nturlly te ormtion o jorn ermions. everteless, tere re wys to rete jorn ermions usin spin-sinlet superonutivity in onert wit i erent inreients tt will e enumerte  erwrs. However up to now, te presene o superonutivity stns out s  neessry onition or nin jorn ermions in onense mtter. e menism involves lwys nin  qusiprtile tt is its own ntiprtile.

By invertin te reltion (3.20), one n express te reulr retion n nniiltion opertors in terms o jorn ermions. is eomposition is enerlly ville n resemles te representtion o  omplex numer usin two rel numers, its im-inry n rel prts. rouout tis tesis te ollowin representtion o  retion opertor is use

c † = e iθ/2 √ 2 (γ 1 -iγ 2 ), (3.21) 
were te nle θ is n ritrry eree o reeom in e nin te jorn ermions. ereore te jorn ermions oey te Cli or ler

{γ A , γ B } = δ A,B , (3.22) 
were δ A,B is te Kroneker symol n A, B re jorn inies, 1 or 2. oreover, unlike omplex ermions, jorns o not squre to zero, ut γ 2 1,2 = 1 2 . Let us ouple two jorn ermions, γ 1 n γ 2 . orkin in te sis o te eien-sttes o γ 1 n γ 2 , te ouplin 2iγ 1 γ 2 will t s  uli σ 2 mtrix wit eienvlues ±1 73]. e ouption numer o te ermioni opertor rete rom te jorns ten res

c † c = 1 2 + iγ 1 γ 2 .
(3.23) ereore te ouption numer c † c is eiter 0 or 1. In te limit o  very wek ou-plin ε etween te jorn ermions (or exmple tey n e lote r wy), tey n still rete  nonlol ermioni stte tt is eiter ull or empty. For vnisin ou-plin, ε → 0, te roun stte is e etively eenerte, n it osts ε to ll or empty te ermioni stte. ereore i te system ontins N γ 1 n N γ 2 jorns, te roun stte eenery will ten e 2 N . ystems wit su  ily eenerte stte were pro-pose in e. 71], were te jorn ermions re trppe in vortex ores o 2D p+ip superonutor. oreover, internin te jorn ermions trou  ontinuous iti proess enertes  i erent roun stte wve untion tt epens on te preise trjetory tken y te vorties. is epenene on te topoloy o pts tken y te vorties inites te non-Aelin rter o te roun stte.

ne o te min interest in nin jorn ermions lies in usin te ily e-enerte roun stte to store inormtion. en omputtions n e relize on it y tkin vnte o its non-Aelin rter n te protetion o jorn ermions.

e tlo o opertions on te roun stte orm  representtion o te ri roup 74]. e ol o tis reser is to nlly relize  topoloil quntum omputer 73]. 61 3.2 C 3.2 Condensed matter realizations 3.2.1 Overview e reer is reerre to exellent reviews tt provie  oo pnorm o te reser on jorn ermions in onense mtter systems 75, 76]. Here it su es to mention  ew milestone in te evolution o te el.

As seen eore, in onense mtter pysis jorn ermions n e relize s qusiprtiles in spinless or triplet-pirin superonutors. ey re possile s zero enery exittions in systems wit prtile-ole symmetry.

turlly tey were rst propose in 2D p + ip superonutors 71], were tey oul e relize s oun moes in te vorties o te superonutor. A 1D vrition ws soon  er trete y Kitev 67], were jorn sttes in  spinless tit-inin moel pper s oun sttes t te ens o te wire. Di erent proposls ollowe tese two pts: ounry sttes in p-wve superonutors or Croli-e Gennes-trion sttes 77], were te jorn ermion pper wen   mneti ux penetrtes  type II p-wve superonutor. ter mterils in wi jorn ermions re tout to pper re 2D eletron ses in te rtionl Hll reime t 5/2 llin tor 78], n two-imensionl strontium rutente, r 2 u 4 79] (n 80] or experiments). ey were lso propose to orm in p-super uis in ultrol tom ses 81, 82] e prolem wit te 2D p-wve superonutors is tt tey re rre mterils. oreover, or te se o jorn sttes oun to vorties, tere re more exite sttes witin te ulk p renerin rile te protetion o te zero moes 76].

A revolution o te el me wen it ws relize tt one n reple te p-wve superonutors wit s-wve superonutors n one n ve n e etive p-wve su-peronutin pirin meite trou s-wve pirin.

e rst exmple ws pro-pose in e. 83].

ere jorn en sttes pper in  2D topoloil insultor eposite on n orinry s-wve superonutor.

e irl ee sttes in te topo-loil insultor n e ouple trou te s-wve pirin su tt insie te p one n ve  pir o Fermi points (or more preisely n o numer in l te B) n n e etive p-wve pirin. umerous proposls ve ollowe wi re usin topoloil insultors n superonutors s  si setup or retin jorn exittions 84, 85]. ome o te experiments ollowin te teoretil proposls re reporte in e. 86].

everteless, topoloil insultors remin exoti mterils. ore reently, propos-ls ve emere were topoloil insultors re reple y reulr semionutin wires wit  stron-spin orit ouplin uner  mneti el 24, 25, 87].

ey re one o te min sujets o te tesis n tey will e esrie in more etil in te next setions. everl rtiles expne on tis iretion, in semionutin quntum wells 88], or in multin spin-orit ouple wires 89, 90]. Experiments in tese iretions were pursue y severl roups 91, 92].

ere re lso vritions to tese systems wi ispense wit te spin-orit ouplin 93, 94].

Let us nlly note te preition o jorn ermions in non-entrosymmetri su- For te etetion o te jorn moes te prinipl iretions re: intererometry 98, 99], mesurin nonlol tunnelin 100, 101], rtionl Josepson e et 67, 102], te etetion o zero is onutne pek 103, 104], et.

Kitaev model

e present tesis is limite to te stuy o penomen relte to jorn ermions risin in one imensionl systems.

e ollowin Kitev moel inesply rises s  prim or 1D systems supportin jorn ermions.

ereore it is worty to proe it in more etil.

e moel ws propose in e. 67] n it is pture y te tit-inin Hmil-tonin

H = N j=1 1/2 -c † j c j µ + (-tc † j c j+1 + ∆c j c j+1 + H..), (3.24) 
were j runs over ll te sites N o  nite lttie. It is  1D toy moel esriin spinless eletrons tt experiene  superonutin pirin ∆, trete t te men-el level; µ is te emil potentil n t is te oppin strent. It ws rue tt su system n present jorn, zero enery sttes oun t te two ens o te wire. is work ws motivte y te ser o  quit tt is protete wit respet to perturtions. e quit is orme y te two entnle jorn sttes. everteless, te interest in te ollowin will e entere on te onitions n te esription o te topoloil pse.

e jorn ermions exist s qusiprtile exittions n tt explins te nee or superonutivity. e system is spinless, yielin essentilly  p-wve superonutor, wit te qusiprtiles γ oeyin te relity (jorn) onition γ = γ † . oreover te system s  ulk p tt protets eventul zero enery moes. (3.25) en, witout loss o enerlity, ∆ is osen ere to e  rel positive quntity. Any ermioni Hmiltonin supports  rewritin in terms o jorn ermions:

γ 1 = 1 √ 2 (c † + c), γ 2 = i √ 2 (c † -c).
(3.26) us ny omplex ermion is ormlly split into two jorn ermions. en te Hmiltonin s te orm

H = i N j=1 µγ j 2 γ j 1 + (∆ -t)γ j 1 γ j+1 2 + (∆ + t)γ j 2 γ j+1 1 .
(3.27) e resultin tit-inin Hmiltonin n present oun sttes tt onsist in vin  zero moe jorn ermion trppe t e ee. For exmple,  limit se ollows or µ = 0 n ∆ = t, wen te Hmiltonin reues to

H = 2it N j=1 γ j 2 γ j+1 1 ,
(3.28) n jorn ermions re ouple only etween neiorin sites. en two unpire jorn ermions remin t te ens o te in, γ 1 1 n γ N 2 (see Fi. 3.1()). ey re ompletely lolize t te extremity sites n ve zero enery s tey re eou-ple rom te Hmiltonin. However tere will e  resiul intertion etween te en moes, rpily eresin wit te lent aN o te wire O(e -aN /ξ ), were ξ is te superonutin oerene lent n a = 1, te lttie onstnt. ote tt in te sene o te oppin t n te superonutin pirins ∆, te Hmiltonin ouples only jorns on te sme site. is ltter limit se represents  trivilly ppe system, n tomi insultor.

e zero moes, protete y te ulk p n te H, susist t zero enery wen prmeters ein to vry rom te vlues set ove. ey will strt to exten, ut tey will remin jorn ermions.

e topoloil pse n e empirilly trke y knowin were te ulk p loses in prmeter spe n i tere re su exoti oun sttes in etween two ulk losins.

e topoloil pse ws rterize y  Z 2 topoloil invrint enote y M in e. 67]. I te wire supports jorn ermions, ten M = -1, n, i te system is in  trivil ppe pse, ten M = 1. en te ulk p loses, M is une ne.

I Any ree ermioni Hmiltonin n e written in te sis o jorn ermions s

H = i 2 m,n A m,n γ m 1 γ n 2 ,
(3.29)

were A is  rel, nti-symmetri mtrix (ue to te ntiommuttion o jorn ermions). e wy to rterize te topoloil properties o te system involves (nti)-perioizin te system in  rin orm. en te topoloil invrint ws sown 67] to e iven y

M(H) = sn([A p ][A a ]), (3.30) 
were A p,a represents te system wit perioi, respetively ntiperioi, ounry on-itions n  enotes te  n o te mtrix. ere is n lterntive wy to rterize te topoloy o te system. ote tt te system is time-reversl invrint in te lss o irl one-imensionl BDI systems (see . 1). As su, te system eqully supports  rteriztion y  winin numer w.

e system is me in nite su tt tere is trnsltionl invrine. Hene momentum k remins  oo quntum numer. e Hmiltonin is Fourier trnsorme in momentum spe, so tt in te sis

C † k = (c † k , c -k ) it res H = 1 2 k C † k HC k .
(3.31) e BG Hmiltonin witout te onstnt j µ/2 tkes te orm

H = -µ -2t os k -2i∆ sin k 2i∆ sin k µ + 2t os k .
(3.32) e ulk enery ispersion res

E ± = ± (µ + 2t os k) 2 + 4|∆| 2 sin 2 k. (3.33) ereore te ulk p loses or k = 0 n µ = -2t, or k = π n µ = 2t.
e Hmiltonin n e expne in  sis o prtile-ole uli mtries τ

H = h 2 τ 2 + h 3 τ 3 , (3.34)
wit h 2 = 2∆ sin k n h 3 = -µ -2t os k. ote tt te system oeys te , represente y te opertor o omplex onjution K n te irl symmetry, repre-sente y te opertor τ 1 . Also note tt te unit vetor Hmiltonin, ĥ, is  mppin 65 3.2 C rom te one imensionl torus T 1 to te irle S 1 . ereore te evior o h n e rterize y  winin numer w (see lso e. 6.1.2)

w = - 1 2 k∈{0,π} sn[h 3 ∂ k h 2 ], = 1 2 (sn[2t -µ] + sn[2t + µ]), (3.35) 
were te sum ws perorme over te noes o te ispersion (k = 0 n k = π). e winin numer is eiter zero, or |µ| > 2|t|, n tere re no ee sttes insie te p, or one, or |µ| < 2|t|, n it is  jorn oun stte insie te p. is llows to relte te winin numer to te M topoloil inex:

M = -1, |µ| < 2|t|, 1, |µ| > 2|t|,
(3.36)

were M = 1 enotes tt te trivil stron-pirin pse n M = -1, te wek-pirin pse (te topoloil pse) 76]. ote tt euse te system is esrie y  Z invrint, it oul sustin multiple jorn moes t  iven ee.

e t tt tere tere re only two topolo-il pses is entirely ue to te t tt it involves only nerest-neior ouplins. Cp. 6 trets n extension o te Kitev moel in te BDI lss, wit istnt-neior ouplins, wi exempli es  se wit winin numer ier tt one, |w| = 2 n two jorn moes t  iven ee.

A i erent evlution o te topoloil invrint M is iven y 24, 67] M = (-1) ν(π)-ν(0) , (3.37)

were ν(k) is te numer o netive eienvlues o H t te k point. Here [0, π] is l te B n ten ν(π)ν(0) is te numer (mo 2) o Fermi points in l-B. is e nition relies on te existene o te H symmetry tt ensures tt te oter l o te B s te sme numer o Fermi points. ereore te onitions to ve jorn ermions in te system re, up to now: vin  spinless or spin-triplet superonutor,  ulk p, n n o numer o Fermi points in l te B.

1D spin-coupled semiconducting wire in proximity to an s-wave superconductor

e Kitev toy moel nees to e implemente in  more relisti settin. Amon i-erent proposls  speil ttention is iven in te present tesis to one wi uses  1D spin-ouple semionutin wire in te proximity to n s-wve superonutor n uner te e et o  mneti el to relize jorn en moes 24, 25]. u moel Fi. 3.2: emti setup or  1D system supportin jorn ermions. emionut-in wire (lk) wit stron spin-orit ouplin eposite on  s-wve superonutor (lue). A mneti el B z ts in z iretion, perpeniulr to te wire. s reeive  lot o ttention in te experimentl ommunity ue to te use o te simplest inreients. Inste unonventionl superonutors, it nees te more ville s-wve sinlet superonutors. oreover, y usin semionutors, inste o topo-loil insultors, it n tke vnte o te tremenous experimentl know-ow in te rition n mnipultion o semionutin wires.

e re to experimentlly isover jorn ermions ws purportely ene wen  zero-is onutne sinture ws etete in  superonutor-norml system tt is se on te orementione moel 91]. However, reent outs ve een rise, limin tt  roust zero-is sinture n e ue to te presene o isorer 105, 106] or Kono resonnes 107].

In te present setion, te system n its pses will e presente more on  pe-nomenoloil level.

e next pter trets  iret extension o te moel wen  Dresselus spin-orit ouplin is inlue. t will e te ple or  more etile nlytil n numeril tretment.

e system is esrie y te Hmiltonin (see lso 108])

H = dx ψ † p 2 2m -µ + αpσ 2 + B z σ 3 ψ + (∆ψ ↑ ψ ↓ + H..) , (3.38) 
were σ re te uli spin mtries. is Hmiltonin moels  1D semionutin wire extene in te x-iretion t emil potentil µ (see Fi. 3.3). e wire experi-enes  proximity e et ue to te presene o te s-wve superonutor. ese les to superonutin orreltions insie te wire, wi re expresse t men-el level y te presene o te superonutin prmeter ∆. ere is lso s spin-orit ouplin α wi tens to lin te spins in te y-iretion. Finlly tere is  mneti el B z perpeniulr to te spin-orit el. All tese elements re neessry to repro-ue t low enery te Kitev moel. First it is neessry to li te spin eenery to llow or te possiility o n o numer o Fermi points. Let us see ow tis ppens y stuyin te ulk enery ispersion.

Due to te presene o te nomlous pirins ψ ↑ ψ ↓ one n write te Hmiltonin

67 3.2 C in  BG orm H = 1 2 Ψ † HΨdx, Ψ † = (ψ † ↑ , ψ † ↓ , ψ ↓ , -ψ ↑ ), H = p 2 2m -µ + αpσ 2 τ 3 + B z σ 3 -∆τ 1 , (3.39) 
were τ re te uli mtries in prtile-ole spe. By squrin twie te Hmiltonin H it ollows tt te ulk enery res For vnisin mneti el n superonutin orreltions, B z = ∆ = 0, te spin y sttes |y± re oo eiensttes o te system. Hene te spin-orit ouplin yiels two si e prols or te ispersion or te two spins (see Fi. 3.3()). However te system still nees to e ppe. e superonutin p is not su ient to enerte jorn ermions. is is euse te system remins time-reversl invrint n tereore te ps t p = 0 n p = p F (Fermi momentum) re ientil. en or every enery, tere will e n even numer o Fermi points or p ∈ [0, ∞). ereore it is neessry to rek te time reversl invrine y in  mneti el B z , wi ps te system t p = 0 (see Fi. 3.3()).

E 2 = ξ 2 p + α 2 p 2 + B 2 z + ∆ 2 ± 2(ξ 2 p α 2 p 2 + ξ 2 p B 2 z + ∆ 2 B 2 z ) 1/2 , ( 3 
ote tt tere re two ps in te system. ne t Fermi momentum, wi is pro-portionl to te inue p

∆(p F ) ∝ ∆, n  p t p = 0, ∆(0) = B z -(µ 2 + ∆ 2 ).
Cruilly te p t p = 0 n ne its sin. en te eemn enery omintes te superonutin p, te p t p = 0 n te p t p F re o o opposite type. is is te onition or te presene o jorn ermions

B 2 z > µ 2 + ∆ 2 .
(3.41) e ove onition is otine riorously rom n nlysis o topoloil invrints in te next pter. It su es to sy tt i |∆| < |B z | tere is  rne o µ or wi te system is in te topoloil pse. is quntity n e ne y tin n one wises to ve  winow s lre s possile in te emil potentil. However te eemn el nnot e inrese ad lib s it tens to estroy te Cooper pirs y polr-izin te eletrons in z-iretion. oreover, te rekin o te time reversl symmetry mkes te system suseptile to isorer, wi in turn n lose te ulk p 109]. A lre C is neee to omt te e et o te mneti el y enorin te nti-linment o eletron spin wit opposite momentum. However, te ownsie is tt  lre C suppresses te eletron moility 76, 110]. 

B z = ∆ 2 + µ 2 , orresponin to ∆ = 0.4.
Finlly, it is neessry to lriy ow n n s-wve superonutin pirin ∆ mei-te p-superonutivity. For tt one works in te winow provie y te topoloil onition in Eq. (3.41) 24]. Assumin tt te superonutin prmeter ∆ is very smll in omprison to B z , one n ionlize te Hmiltonin (3.38) to yiel enery

E ± = ξ p ± B 2 z + α 2 p 2 ,
(3.42) n te two eienvetors re

ψ ± = 1 N ± B z ± B 2 z + α 2 p 2 iαp ,
(3.43)

were N ± re osen to normlize te spinors. e Fermi enery is etween te two ns. en te Hmiltonin wit te superonutin pirin term n e projete on te lower n, n ten one s ess to te pysis t te Fermi momentum. e Hmiltonin projete on te oupie n res

H = dp E -ψ -(p)ψ -(p) + ∆ -(p)ψ -(p)ψ -(-p) + H.. , ∆ -(p) = iαp∆ 2 B 2 z + α 2 p 2 .
(3.44) e e etive pirin is n o untion in te momentum p, pirin prtiles in te sme n wit opposite momentum. us one s e etive p-wve symmetry or spinless eletrons inue trou n s-wve superonutin pirin.

Majorana polarization

is nl introutory setion vnes te notion o jorn polriztion 111]. e onept tries to nswer te nee or  local orer prmeter tt n equtely esrie te topoloil trnsition rom  trivil ppe pse to  jorn supportin ppe stte. It will e use in te next pters s  mens to ientiy zero moes in spinul topoloil superonutors s jorn sttes.

In sort, te jorn polriztion mounts to vin  mesure o te eree o nomlous triplet pirin in te system. As it ws sown in te previous setions, tis unonventionl pirin n e e etively proue even in semionutin systems in proximity to  spin-sinlet superonutor. Here superonutivity is trete only t te men el level. I t te Fermi enery te system is e etively  triplet superonutor n tere re zero moes protete y  ulk p, ten tey re jorn ermions. In tis sense, jorn polriztion is n neessry (ut not su ient) onition or vin jorn ermions.

e Hmiltonin or  spinul 1D superonutor (or in proximity to  superon-utor) is iven y

H = 1 2 dxΨ † HΨ, Ψ † (x) = (ψ † ↑ (x), ψ † ↓ (x), ψ ↓ (x), -ψ ↑ (x)), (3.45) 
were ψ † α is  retion opertor or n eletron wit spin α. e Booliov-e Gennes eqution t  prtiulr point in  1D system res

HΦ(x) = EΦ(x), Φ † = (u ↑ , u ↓ , v ↓ , v ↑ ) * (3.46)
wit u, v mplitues or te eletron, respetively ole, omponents o te wve untion.

e BG eqution is  mtrix eqution were tere re our erees o reeom: spin ↑, ↓, prtile n ole. Generlly tere re our eienvetors n eienvlues solutions to Eq. (3.46).

In tis prtiulr sis te H opertor, wi ntiommutes wit te Hmilto-nin, is represente y σ 2 τ 2 K. rouout σ re te uli mtries in te spin spe n τ in te prtile-ole spe. ner te tion o te prtile-ole opertor te wve-untion trnsorms s

σ 2 τ 2 Φ * (E) = Φ(-E).
(3.47) en te jorn onition res

σ 2 τ 2 Φ * (E) = Φ(E).
(3.48) ne n ompute lolly te overlp etween ny eienvetor n its prtile ole on-jute t te same enery to see ow lose te wve untion respets te jorn on-ition. However, te prtile ole opertor is e ne up to  pse wi is not esily 3. I etermine in prtil situtions. Hene te ous is on te rel prt o te overlp Φ T σ 2 τ 2 e -iθ Φ * , wi is enerlly  omplex numer. Let us onsier tis quntity s  vetor tt n e eompose on te "jorn" x-xis (θ = 0) n y-xis (θ = π/2).

en to ientiy te jorn ermions one n tke te rel n iminry prts o te overlp s polriztions lon te two xis. e jorn x-n y-polriztions re e ne s

P Mx (x) = e[Φ T (x)σ 2 τ 2 Φ * (x)], P My (x) = Im[Φ T (x)σ 2 τ 2 Φ * (x)].
(3.49) e jorn polriztion vetor is ten e ne s te solute vlue o te jorn polriztion vetor

P M (x) = |(P Mx , P My )|.
(3.50)

Here te normliztion rom  jorn solution is onventionlly osen su tt te overlp interte over te reion were te zero moe is extene res

dxP M (x) = 1 2 , (3.51)
wi eoes te prtiulr squrin o  jorn ermion, γ 2 = 1 2 . Expliitly, in terms o te wve untion omponents, te jorn polriztion omponents re

P Mx = 2e[u ↓ v * ↓ -u ↑ v * ↑ ], P My = 2Im[u ↓ v * ↓ -u ↑ v * ↑ ].
(3.52) ote tt te e nitions involve pirin o eletrons n oles wit te sme spin, in-itin  spin-triplet pirin in te moel. en  i erent wy to tink out te jorn polriztion is to see it s  mesure o spin-triplet pirin in te moel. ote tt it is possile to ve non-zero jorn polriztion, ut  jorn ermion exists only wen its jorn ensity intertes to 1/2 (see Eq. 3.51) In te 1D spinul system tt will ppen t zero enery.

It is well suite to ompre te jorn polriztion wit usul opertors use to investite te lol struture o wve untion. Let us nelet or te moment te ole erees o reeom. en one n e ne milir onepts s te lol eletroni ensity o sttes opertor ρ(x) n te lol spin polriztion opertor Ŝ(x) t  iven enery E s

ρ(x, E) = 4 n=1 Ψ † n (x) σ 0 ⊗ τ 0 + τ 3 2 Ψ n (x)δ(E -E n ), (3.53) n Ŝ(x, E) = 4 n=1 Ψ † n (x) σ ⊗ τ 0 + τ 3 2 Ψ n (x)δ(E -E n ) (3.54) 3.3 
were n inexes te eienvlue n te respetive eienuntion. ote tt Ŝ s  vetor struture wit omponents in x, y n z-spin iretion.

In nloy te jorn polriztion opertors n e e ne rom Eq. (3.52)

PMx (x, E) = n Ψ † n (x)σ 2 ⊗ τ 2 Ψ n (x)δ(E -E n ),
(3.55)

PMy (x, E) = n Ψ † n (x)σ 2 ⊗ τ 1 Ψ n (x)δ(E -E n ).
(3.56) ote in tt n eletron (or ole) will lwys ve zero jorn polriztion. Eq. (3.52) sows tt te sme is te se wit wve untions wit spin-sinlet pirin o te type (u ↑ , 0, v ↓ , 0). is rins more support to te ie tt jorn polriztion mesures  eree o spin-triplet pirin in te system.

jorn polriztion n ensity re not pysil quntities tt one n mesure, ut tey n e use to ive  piture o jorn exittions t zero enery. wo zero moes wit opposite jorn polriztions provie  ler illustrtion to te t tt tey re moes tt n e "omine" to orm  jorn unpolrize eletron (or ole). wo jorn moes wit te sme polriztion n oexist nery, ut ten to yriize n orm reulr eletroni sttes i teir polriztion is opposite. A rottion o jorn polriztion mit e ue to te vrition o pysil prmeters s spin-oit ouplin or te superonutin pse. ese ses n pose  prolem s te nle o rottion n e lolly epenent n i ult to interpret. en te solute vlue o te polriztion vetor, te jorn ensity (3.50) woul e more suite to ientiy  wve untion s jorn.

Chapter 4

Topological semiconducting wire with Rashba and Dresselhaus spin-orbit coupling is pter reonsiers te 1D spin-orit ouple semionutin wire rom e. 24, 25] wit n itionl Dresselus spin-orit intertion. e wire supports jorn moes tt present  prtiulr spin texture. e eletroni erees o reeom o te jorn ermions ve  trnsverse polriztion to te mneti el tt is entirely e-termine y te iretion o te spin-orit ouplin vetor. ey re lwys opposite t te two ens o te semionutin wire. Alrey jorn moes or two imensionl spin-triplet topoloil superonutors s een sown to exiit n Isin-like spin ensity tt my llow teir etetion vi ouplin to  mneti impurity 112, 113]. In te sme vein it is sueste tt te spin texture in te 1D superonutor mit e etete in  spin-polrize snnin tunnelin mirosopy experiment.

Furtermore, te jorn polriztion e ne in e. 3.3 is sown to e  oo orer prmeter to esrie te topoloil trnsition in te moel.

Model Hamiltonian

Let us onsier  semionutin wire oriente lon te x-iretion, n in proximity to n s-wve superonutor. Due to ulk inversion symmetry, semionutin wires n exiit lon wit te s  intertion nlyze in es. 25, 87, 108],  Dresselus  intertion 114].

In te present se, Dresselus I to rst orer in momentum p in te x-iretion lon te wire tkes te orm βpσ 1 . e ouplin β n e o te sme orer o mni-tue wit te s C (∼ 0.1 e Å) 115]. e Hmiltonin esriin te system res

H = dx ψ † p 2 2m -µ + αpσ 2 + βpσ 1 + B z σ 3 ψ + (∆ψ ↑ ψ ↓ + H..) . (4.1)
4.1  H e uli mtries σ represent spin. e ientity mtries n te spin inex or te ermioni el re implie wen sent. e emil potentil is enote y µ, B z is te eemn el, ∆ is te inue superonutin pirin n α (β) rterizes te mnitue o te s (Dresselus)  intertion.

Let us onsier or te moment  purely rel superonutin prmeter ∆. Due to te presene o superonutin orreltions, te Hmiltonin n e eqully ste in  Booliuov-e Gennes orm e mneti el s te e et to open  p t zero momentum. en te Fermi enery is in tis p te system eomes e etively "spinless". Finlly, wen superon-utin proximity e et is onsiere, n lose to Fermi enery, te system n e mppe to te Kitev moel. e s-wve pirin ∆ s te e et o openin ps t Fermi momentum n to meite p-wve pirin or te spinless moel.

H = 1 2 dxΨ † HΨ, Ψ † = (ψ † ↑ , ψ † ↓ , ψ ↓ , -ψ ↑ ), H = p 2 2m -µ + αpσ 2 + βpσ 1 τ 3 + B z σ 3 -∆τ 1 . ( 4 
e presene o te Dresselus term only trivilly moi es te spetrum or te trnsltion invrint system 25]. e enery otine y squrin twie te BG Hmil-tonin res

E 2 = ξ 2 p + (α 2 + β 2 )p 2 + B 2 z + ∆ 2 ± 2[ξ 2 p (α 2 + β 2 )p 2 + ξ 2 p B 2 z + ∆ 2 B 2
z ] 1/2 . (4.4) A numeril nlysis requires implementin te BG Hmiltonin in Eq. (4.2) on  lttie. rouout te setion, te lttie onstnt a n re set to 1. e quntities n e expresse in enery units o t = 1 m . e usul sustitutions

dx → L j , ψ(x) → 1 √ L c j , ∂ x ψ(x) → c j+1 -c j-1 2 √ L , (4.5)
were L is te size o te system, llow to write te iret spe lttie BG Hmilto-nin:

H = j C † j [(t -µ)τ 3 + B z σ 3 -∆τ 1 ]C j - 1 2 C † j (t + iασ 2 + iβσ 1 )τ 3 C j+1 + H.. , C j = (c † j↑ , c † j↓ , c j↓ , -c j↑ ).
(4.6) e lttie Hmiltonin reproues te ontinuum Hmiltonin t low enery.

Topological invariant

e omputtion o te topoloil invrint n e rrie out extly in te se o te lttie Hmiltonin. e lultion will sow tt te topoloil onition is not in uene y te Dresselus C β.

Any one-prtile ermioni Hmiltonin supports  representtion in  jorn sis 67]. Let us onsier on-site rel qusiprtile exittion opertors (te jorns)

γ (j) 1,α = 1 √ 2 (c j,α + c † j,α ), γ (j) 2,α = 1 i √ 2 (c j,α -c † j,α ).
(4.7) e jorn ermions oey te nti-ommuttion reltion

{γ (i) Aα , γ (j) 
Bβ } = δ ij δ αβ δ AB , (4.8)
were, (i, j), (α, β), n (A, B) re site, spin, n respetively jorn inies. en in te jorn sis

Γ T j = γ (j) 1↑ , γ (j) 
2↑ , γ

(j) 1↓ , γ (j) 
2↓ te lttie version o Hmiltonin (4.1) is written

H = j (t -µ) + i 2 i,j Γ T i A ij Γ j (4.9)
were A ij is n nti-symmetri rel mtrix. e onstnt term oes not  et te Hmil-tonin topoloy n n e nelete. e mtrix A ij enoes only on-site n nerest-neior oppin terms. ereore one n express te Hmiltonin in  smll numer o 4 × 4 lok mtries, A(ij), wi ontin only spin n jorn inies. ote tt ue to nti-symmetry

A(i -j) = -A(j -i) T .
(4.10) 75 4.3  en, witout te onstnt term, te Hmiltonin res

H = i 2 j [Γ T j A(0)Γ j + 2Γ T j+1 A(1)Γ j ], A(0) = is 2 ((t -µ) + B z σ 3 ) + i∆s 1 σ 2 , A(1) = - 1 2 [s 2 (it + ασ 2 ) -iβσ 1 ].
(4.11) e uli mtries s re pseuo-spin mtries representin te jorn (1, 2) eree o reeom. ote tt te mtries A(0) n A(1) re rel.

I H s  p, ten one n etermine i zero-enery jorn ermions live t te ee o te 1D system y omputin  topoloil inex. A. Kitev s prove 67] tt tey n exist only wen te jorn numer M is netive

M(H) = sn([ Ã(0)])([ Ã(π)]).
(4.12)

Here à is te Fourier trnsorm o A ij ompute t two exeptionl points 0 n π in te B. In te present se, wit only on-site n  terms

A(0/π) = A(0) ± [A(1) -A T (1)].
(4.13) ote tt ot spin-orit ouplin terms re symmetri in jorn n spin inies, n tereore tey rop out rom te topoloil inex. en te topoloil invrint res

M(H) = sn(µ 2 -B 2 z + |∆| 2 )sn((2t -µ) 2 -B 2 z + |∆| 2 ).
(4.14) e onitions or te existene o te topoloil pse supportin jorn ermions re un ete y te Dresselus  intertions. As expete rom te experimentl onsiertions, te nwit t is mu lrer tn te oter prmeters o te system, (∆, B z , α). Hene te seon term is lwys positive, n tus  topoloil pse ontinues to exist or

B 2 z > ∆ 2 + µ 2 .
(4.15)

It is interestin to note owever tt jorn oun sttes n exist even in te -sene o te s term, wen only Dresselus  intertions re present. Dressel-us term s  similr e et s te s term in removin te spin eenery o te enery ns. 

Majorana wave function solutions

µ 2 1 < B 2 z -∆ 2 , x ∈ [0, L], µ 2 0 > B 2 z -∆ 2 , x / ∈ [0, L].
(4.16)

Hene  topoloil reion is orme in te entrl reion n jorn ermions re expete t te ounry wit te outer, trivilly ppe reions. e in nite system exiits ps t p = 0 n  superonutin p t te Fermi momentum p F = 0. e p t zero momentum is ∆-B 2 zµ 2 , wile te p t p F is te inue superonutin p ∆. o solve te system nlytilly, one ssumes tt emil potentils µ 1,2 re osen su tt te p t p = 0 is mu smller tn te superonutin p. Equivlently, i te inue p ∆ is lose in mnitue to te eemn enery, it is neessry only  smll ne in te emil potentil to swit  reion rom  trivilly ppe pse to  topoloilly nontrivil pse. Hene te low enery solutions n e otine y linerizin te BG Hmiltonin (4.2) in p.

H = (αpσ 2 + βpσ 1 )τ 3 + B z σ 3 -∆τ 1 - j∈{0,1} µ j [θ x(2j -1) + θ (x -L)(2j -1) ]τ 3 , (4.17)
were θ is te Hevisie step untion.

e jorn wve untion is etermine y serin or zero enery solutions oun to te ens o te topoloil reion. I te lent o te topoloil reion is very lre, L ≫ 1, te lolize jorn sttes re oun inepenently t te two ens. ey ve te orm o our omponent spinors, n te mplitue o te wve untion must ey wy rom te intere. For exmple, te Anstz or te lolize untion t x = 0 is ψ 0,1 ∝ e ±k 0,1 x , wit wve vetors k 0,1 > 0 n 0, 1, enotin te le (topoloilly trivil), respetively, te rit (topoloilly nontrivil) sie o te intere.

e llowe wve vetors or te omplete system re otine y solvin or te 77 4.3  zero enery eienvlues t e intere

k ± j = ∆ ± B 2 z -µ 2 j α 2 + β 2 , j ∈ {0, 1}.
(4.18) e omplete solutions re orme y mtin te wve untions ross e in-tere. er te interes, x = 0, L te wve untions re iven y

ψ(x ∼ 0) =    κu 1 (µ 1 )e k - 1 x , x > 0, κ 2 (1 + tan φ 1 tan φ 0 )u 1 (µ 0 )e k - 0 x + (1 -tan φ 1 tan φ 0 )u 2 (µ 0 )e k + 0 x , x < 0, (4.19) n ψ(x ∼ L) =    κu 3 (µ 1 )e -k - 1 (x-L) , x < L, κ 2 (1 + tan φ 1 tan φ 0 )u 3 (µ 0 )e -k - 0 (x-L) + (1 -tan φ 1 tan φ 0 )u 4 (µ 0 )e -k + 0 (x-L) , x > L.
(4.20) e spin-orit vetor is

e iϑ = (α + iβ) α 2 + β 2 (4.21)
n te nles φ j re e ne s

e iφ j = 1 √ 2 1 + µ j /B z + i 1 -µ j /B z .
(4.22) e jorn eienvetors re iven y u 1 (µ j ) T = (os φ j e iϑ , -sin φ j , sin φ j e iϑ , os φ j ), u 2 (µ j ) T = (os φ j e iϑ , sin φ j , -sin φ j e iϑ , os φ j ), u 3 (µ j ) T = -(os φ j e iϑ , sin φ j , sin φ j e iϑ , -os φ j ), (4.23) u 4 (µ j ) T = (-os φ j e iϑ , sin φ j , sin φ j e iϑ , os φ j ).

ote tt te otine wve untions re inee jorn ermions respetin te relity onition trou te pse oie (ϑ + π)/2 or te omplex oe ient κ. e mnitue o κ is etermine rom te normliztion onitions o te wve untions n is o te orer o

( B 2 z -µ 2 1 -∆/ α 2 + β 2 ) 1/2 .
e wve untions llow one to ompute te spin polriztion o te jorn wve untion n re iretly te in uene o te Dresselus C. e spin polriztion is reore ere only or te eletroni erees o reeom in te jorn wve untion. It is ompute y tkin te zero enery expettion vlue

s(x) = ψ † (x) σ ⊗ τ 3 + τ 0 2 ψ(x).
(4.24)

For te jorn wve untions rom Eqs. (4.19) n (4.20) extly t te intere, x = 0, L, it ollows tt

s(0) = |κ| 2 2
sin(2φ 1 ) os ϑ, sin(2φ 1 ) sin ϑ, os(2φ 1 ) ,

s(L) = |κ| 2 2
sin(2φ 1 ) os ϑ, -sin(2φ 1 ) sin ϑ, os(2φ 1 ) .

(4.25)

e ove results sow tt te wve untions ve te sme spin polriztion in z-iretion, wi is ue to te tion o te eemn el B z . However, tey ve equl in mnitue, ut opposite trnsverse spin polriztions. In t, te iretion o te spin polriztion t ot interes is iven entirely y te reltive weit o te s n Dresselus C

s 2 s 1 = - β α .
(4.26) e jorn polriztion vetors or te jorn wve untions re lso reily ville, P M = (P Mx , P My ) P M (0) = -P M (L) = -|κ| 2 (os ϑ, sin ϑ os(2φ 1 )).

(4.27) ey re lso opposite or te two en jorn ermions. is ruly llows us to ll te two moes s "i erent" jorns. en te two moes re rout toeter, tey orm  reulr ermion wit zero jorn polriztion.

For xe prmeters µ, ∆ n B z , P Mx is proportionl to s 1 , wile P My is propor-tionl to s 2 . us, wen only s/Dresselus C is present, te totl trnsverse spin polriztion is proportionl to te jorn polriztion, wit  proportionlity onstnt wi epens on te emil potentil potentil n te pplie eemn el. en ot omponents o te C re present, te jorn polriztion n te trnsverse spin polriztion vetors re no loner olliner.

Eq. (4.26) inites tt te lol spin ensity or te jorn eletroni erees o reeom soul rotte in trnsverse iretion uner te in uene o te Dresselus term. It is importnt to stress tt tere is no trnsverse polriztion o te system. is sttement remins true i one onsiers te entire jorn untion or i one puts to-eter n eletron rom its "rtionlize" omponents t te two ens.

Numerical study

e numeril stuy supports te nlytil stuy unertken in te previous setion. e moel BG Hmiltonin is iven in Eq. (4.6), n is implemente in  100-site system.

As mentione eore, te spin-orit ouplins or te pysil system n e ex-pete to e o orer 0.1 e Å ( = 1) or α ∼ β ∼ 10 4 m/s. Hene te spin-orit ou-plin enery, mα 2 , is o te orer 1 K. e eemn enery n e o te orer ∼ 100 K, wile te superonutin proximity e et n rete ps o orer ∆ ∼ 1 -10 K. e oppin strent t = 2 ma 2 is o te orer o te nwit ∼ 10 4 K 76, 108, 115]. In te numeril simultions, te lttie onstnt a n te reue lnk onstnt re imensionless n equl to one, a = = 1. All te pysil quntities re mesure in units o te oppin strent t = 1. Due to nite size e ets on te 100-site system, it is r to visulize te pysis o te jorn system or smll B z n ∆ wit respet to te oppin strent t. ereore, B z , ∆, α re rti illy enne in te ollowin, wile mintinin tem smller tn t. e reerene vlues or te rest o te simultions re ∆ = 0.3, B z = 0.4, α = 0.2 n µ = 0, n ny evition rom tese vlues is expliitly note.

Ext ionliztion o BG Hmiltonin in Eq. (4.6) provies te lol ensity o sttes, n te lol spin-polrize ensity o sttes lon te x, y, n z iretions. For exmple te lol (site n) eletroni i-spin polriztion ensity t  iven enery E is e ne ere s

s n (E) = 4N j=1 Ψ † (j) n σ ⊗ τ 0 + τ z 2 Ψ (j) n δ(E -E j ), (4.28) 
were N is te numer o sites in te system, E j is te j th eienvlue o H n Ψ (j) n is te site n omponent o te j th eienvetor,

Ψ † n (j) = (u (j) n↑ , u (j) n↓ , v (j) n↓ , v (j) n↑ )
. imilrly, it is possile to ompute te lol jorn polriztions s  lttie version o Eqs. (3.52)

P Mx,n = 4N j=1 2e[u (j) n↓ v * (j) n↓ -u (j) n↑ v * (j) n↑ ]δ(E -E j ).
(4.29) e Dir elt untions re implemente s Gussins o wit ∼ 10 -4 v F /a. e x n z omponents o te spin polriztion, s well s te jorn polriztion, in  system witout Dresselus C, re represente in Fi. 4.2. e nlytil solution orretly preits tt tere is no y-spin polriztion, wile te zero oun sttes ve opposite eletroni x-spin polriztion t te two ens. Due to te eemn mneti el, ot en moes re ientilly z-spin polrize. e zero-enery jo-rn wveuntions re extene over  smll numer o ee sites, n exiit stronly mpe sptil osilltions. ote tt te nlytil result in Eq. (4.25) preits tt te z-polriztion vnises or µ 1 = 0, os(2φ 1 ) = 0.

(4.30) is is not te se seen in te numeril simultions, were tere is  ppreile zspin polriztion o jorn moes (see Fi. 4.2()). However te nlyti result ws otine y neletin te kineti term in te Hmiltonin rom Eq. 4.1. o lein orer, te qurti term ontriutes wit n e etive µ

p 2 ≈ O((∆ -B z ) 2 ), (4.31) 
wi retes  negative e etive potentil in qulittive or wit te numeril results. oreover, tis e etive emil potentil is responsile or te sptil (quikly mpe) osilltions o te spin polriztion oserve numerilly. Altou tese os-illtions re not pture y te ontinuum limit lultions, or ny site i te rtio s 2,i /s 1,i epens only on te spin-orit ouplins in reement wit Eq. (4.25).

Fi. 4.3 exempli es te se were only Dresselus C is present. e lol ensity o sttes revels tt zero moes oun t te ens o te wire ontinue to e present (see Fi. 4.3()). jorn n spin polriztion support te nlytil nins. e moes re entirely polrize on te y-iretion, i.e. ortoonl to te se α = 0 n β = 0. For exmple,  plot o te jorn polriztion P My ienti es te zero moes s jorn sttes in Fi. 4.3().

e numeril results or te jorn polriztion presente in Fi. 4.2 lso ollow losely Eq. (4.27). e vlues o te jorn polriztion re lwys opposite t te two ens o te wire. en te Dresselus term is non-vnisin, te moes in  P My omponent. itout Dresselus C, P Mx is proportionl in tis se to te x-spin polriztion. However, in enerl tere is  ruil i erene rom te spin-polriztion.

e jorn polriztion vetor rottes in te trnsverse iretion rom site to site. en ot te s n Dresselus C omponents re present, te jorn polriztion in Eq. (4.27) epens on te os(2φ 1 ) n, susequently, te rtio P My /P Mx n vry on te en sites over wi te jorn moe is extene, in ontrst to te spin se. e preession o jorn polriztion mkes it more vorle to reister In te ollowin, te lim tt jorn polriztion is  oo orer prmeter to 82 4.  … rterize te topoloil trnsition reeives more numeril support. is is one y vryin e o te prmeters (∆, B z , µ) to rive te system in  trivil pse. In Fi. 4.4(), B z is vrie n it is sown tt te system eomes trivilly ppe (no -jorn oun sttes) or B z ≤ ∆. e inset esries te epenene o te l-wire interl o te jorn polriztion or one o te lowest-enery sttes s  untion o B z (n interl o 0.5 is equivlent to  "ull" jorn stte). e jorn polriztion ereses smootly to zero elow te ritil vlue o B z . e sme penomenon n e oserve in Fi. 4.4(), were te sptil istriution o te jorn polriztion is plotte s  untion o B z .

e trnsition eomes srper or n inresin system size. e sme qulittive etures re otine wen ∆ n µ re vrie ross te topoloil trnsition. For exmple, te vrition o te emil potentil is repre-sente in Fi. 4.5.

Discussion

e present pter s sown tt te jorn polriztion (n ensity) is  oo lol orer prmeter to ientiy te topoloil trnsition t B 2 z = ∆ 2 + µ 2 . Furtermore, it ws sown tt tere is  spin texture in te trnsverse plne to te mneti el n it epens on te reltive strent o Dresselus n s spin-orit ou-plin. e eletroni erees o reeom o te jorn wve untion t te two ens o te wire re polrize in opposite iretions on te trnsverse plne. is oul e in priniple etete trou  ontt to n impurity 112, 113]. However it is neessry to etil su lim. How is it possile to ve ess only to te eletroni prt o te wve untion? ote tt te system remins spin unpolrize t zero enery, n tt oul e re-lize only i tere is  ompenstion or te spin polriztions t te two extremities o te wire. en te explntion or te reistere spin-texture must invoke  onservtion o te polriztion in te trnsverse iretion. However, it remins in perspetive to unerstn in more etil te pysil resons or tis prtiulr spin-texture.

Chapter 5

Extended Majorana states in Josephson junctions

e one-imensionl topoloil superonutor supportin jorn ermions ws sown in te previous pters to mit  pertinent implementtion in  eterostruture onstrute rom  spin-orit ouple semionutin wire in proximity to n s-wve superonutor. Detetion semes o jorn ermions o en require uilin on tis si struture. In prtiulr, or trnsport mesurements, te eterostruture n e onnete to  norml metl reion, tus ormin  "superonutor"-norml metl () juntion. ey were reently investite experimentlly in e. 91] n  zero-is onutne pek tout to e ssoite wit jorn ermions 103, 104, 116-118] ws etete trou tunnelin spetrosopy. A i erent system n e onstrute y ouplin two topoloil superonutors trou  norml metl su tt jorn ermions orm in te norml reion. e presene o jorn ermions in tese "superonutor"-norml metl-"superonutor" () juntions ives rise to  rtionl Josepson urrent wit  4π perioiity 67, 102, 119-121].

In te present pter, severl moels or one-imensionl  n  juntions re investite numerilly.

e interest lies in ollowin te evior o te jo-rn sttes in tese new eometries. e essentil property quire y te jorn ermions ue to te ouplin to  norml metl is tt tey n eome extene sttes (see e. 5.1 n es. 76, 118, 122, 123]) In te se o te  juntion, tis s te prtiulr e et tt te norml reion supports two extene jorns (see e. 5.3).

is ppens only t  pse i erene π etween te two superonutors; oterwise te jorn sttes yriize n orm Anreev oun sttes t ier eneries. e two extene jorn ermions re reonize y rein  totl interte jorn polriztion o one over te norml reion. Finlly, in e. 5.4.2, te ormtion o jo-rn ermions is stuie in liner n rin eometries uner  uniorm superonutin pse rient.? ] e rin eometry is o prtiulr interest s te twistin o te pse llows te ormtion zero enery oun sttes in  norml reion, similr to te reulr 

Superconductor-normal junctions

Let us onsier rst te  juntion tt is semtilly represente in Fi. 5.1(). e system onsists o  spin-orit ouple semionutin wire in proximity to n s-wve superonutor. However, te wire sits only prtilly on te superonutor.

ere-ore it is ssume tt te superonutin proximity e et oes not  et te entire wire. is is moele y vin  onstnt inue p ∆ only on N sites. A vrition onsiere susequently is tt o  eyin inue p, wi n e ssoite to  penetrtion lent o Cooper pirs in te norml reion.

e Hmiltonin o te system is n menment to te moel in Eq. (4.6) wit emil potentil µ, inue p ∆, mneti el B z n only te s spin-orit ouplin α

H = L j=1 C † j [(t -µ)τ 3 + B z σ 3 -∆τ 1 θ(N -j)]C j - 1 2 C † j (t + iασ 2 )τ 3 C j+1 + H.. , C j = (c † j↑ , c † j↓ , c j↓ , -c j↑ ), (5.1) 
were L is te totl numer o sites in te system n N , te sites wit inue p. In numeril simultions, te system size L is 100 sites n N is 80 sites. Hene te norml reion extens over te lst 20 sites. nless expliitly spei e, te moel prmeters re osen te sme s in e. 4.4, B z = 0.4, ∆ = 0.3, α = 0.2 n µ = 0, tus plin te system uner te topoloil onition (3.41). e lttie onstnt a n te reue lnk onstnt re set to one; ll prmeters re expresse in units were te oppin strent is one, t = 1. In ontrst to e. 4.4, te elt-untion enterin te e nition o LD n jorn polriztion re implemente s Gussins o wit ∼ 10 -5 v F /a. e onition to ve  jorn ermions remins te sme s te one in Eq. (3.41)

B 2 z > ∆ 2 + µ 2 .
(5.2) e ruil i erene is tt te rit jorn ermion rom te topoloil super-onutor exten uniormly over ll sites o te norml reion.

e interte - e extene nture o te jorn ermions n e visulize y vryin smootly te ouplin t SN etween te norml n superonutin reion. en te ouplin is very wek, te superonutin reion is e etively onnete on te rit sie to  trivil insultor. Hene jorn ermions remin lolize t te en o te super-onutin reion. However, inresin te ouplin t SN les to extene zero enery moes. is sitution is illustrte in Fi. 5.3 y reorin te zero-enery lol ensity o sttes in te norml reion s  untion o t SN . Let us nlly onsier  smoot ey o te superonutin p into te norml reion. For  smll penetrtion lent ξ p o Cooper pirs into te norml reion, te system supports, s eore, extene jorn ermions. en te penetrtion lent eomes lre, te topoloil superonutin reion is prolone into te norml reion.

ereore te jorn ermions eome more n more lolize wit te iminisin norml reion. In Fi. 5.4 is presente  limit se o te ove sitution.

e wire is onnete to  p-wve superonutor only t its le ee n Cooper pirs enter into te wire y proximity e et. In te sme sis s eore, te Hmiltonin tt moels te wire res

H = L j=1 C † j [(t -µ)τ 3 + B z σ 3 -∆e -j/ξp ]C j - 1 2 C † j (t + iασ 2 )τ 3 C j+1 + H.. . (5.3)
Fi. 5.4 illustrtes ses wit n inresin penetrtion lent. ote tt te penetrtion lent n e seen s n estimte o te size o te topoloil superonutin reion in te wire. As te penetrtion lent rows, te norml reion iminises n te jorn ermions eome more n more lolize on te rit sie. ote in tt jorn ermions t te two ens o te wire ve opposite jorn x-polriztion, ut te extension o te rit jorn oes not wei on te t tt te interl jorn polriztion in te norml reion yiels 1/2. Hene te "norml reion" osts  sinle jorn ermion o vrile extension. e ollowin setions re mostly entere on te explortion o jorn ermions in  juntions. e presene o jorns in te norml reion is ruilly isplye in te rtionl Josepson e et. e essentil etures o tis prtiulr penomen re presente next.

Fractional Josephson e ect

A Josepson juntion is rete y rinin into proximity two superonutors (see Fi. 5.5). Between tem n eiter e  wek metlli link, or n insultin rrier. However, Cooper pirs n tunnel etween te two superonutors.

is ives rise

E  …

Fi. 5.5: emti piture o  Josepson juntion. itout loss o enerlity, one n onsier tt te superonutin prmeter s equl solute vlue in te two super-onutors. e le superonutor is onventionlly onsiere rel, wile tere is  superonutin pse φ in te rit wire. In te mile tere is n insultin rrier or  metlli reion.

to te Josepson urrent, tt epens on te pse i erene etween te superon-utors. Here te ous is on te DC Josepson e et 124], in wi tere is no volt-e i erene ross te juntion n te pse etween superonutors is onsiere xe. is results in  iret urrent epenent on te pse i erene φ I J ∝ sin(φ).

(5.4) e remrkle eture o te one imensionl systems supportin jorn ermions is te presene o  actional DC Josepson e et. e tunnelin etween te super-onutin islns tkes ple y usin jorn ermions tt re lose on te le n rit sie o te juntion 67, 102]. is les to tunnelin events involvin sinle eletrons inste o Cooper pirs. e resultin urrent-pse reltion s te istintive 4π-perioiity

I J ∝ sin(φ/2).
(5.5) o unerstn tis reltion, onsier  juntion rete usin te Kitev moel 76, 121]. e juntion is moele y te Hmiltonin

H = H L + H R + H T ,
(5.6) were H L represents te Kitev moel (3.24) esriin te le wire, wit rel super-onutin orer prmeter, n, respetively, H R , te Kitev moel or te rit wire, wit  enerlly omplex superonutin prmeter, vin  pse φ, ∆ → ∆e iφ (see Fi. 5.5). A sort juntion will ve te tunnelin Hmiltonin H T iven y

H T = -Γc † R c L + H.., (5.7) 
were Γ is te ouplin etween te superonutin islns. e opertors c † R/L or-respon to te ermion retion opertors on te rit n, respetively, on te le sie o te juntion.

Let us suppose tt le n rit wires re in  topoloil pse, |µ| < 2|t|. en or wires ple r wy rom e oter, tere re zero enery jorn ermions pinne t te extremities o te two wires. en  juntion is orme y rinin toeter te two wires, te two en jorn ermions n ouple. Furtermore, t low enery, te pysis is entirely etermine y te two en jorns. is is euse te wires re ssume lon enou tt te in uene rom opposite en jorn ermions remins neliile. oreover, ll te oter sttes re eneretilly seprte rom te jorn ermions y te ulk superonutin p.

o unerstn te pysis o te Josepson juntion it is su ient to tret  limit se, wen te jorn ermions re ompletely lolize t one extremity site (see e. 3.2.2) or µ = 0 n ∆ = t. en t low enery one uses Eqs. (3.26) to otin

c L → i √ 2 γ 2 , c R → 1 √ 2 γ 1 e -iφ/2 .
(5.8) ote tt in te ove low-enery sustitution, te missin jorn ermions rom te eomposition o  omplex ermion yriize wit te jorn ermions rom j-ent sites to rete ulk sttes. ereore te low-enery Hmiltonin o te juntion res

H eff = -iΓ os(φ/2)γ 1 γ 2 , = - Γ 2
os(φ/2)(2c † c -1).

(5.9) e seon equlity is otine y usin Eq. (3.23); te e etive Hmiltonin ws written s  untion o te ouption numer c † c o te eletroni stte ue to te usion o te jorn ermions γ 1 n γ 2 .

As expline in e. 76], one notes tt te ouption numer is trivilly  on-serve quntity euse it ommutes wit H eff . ereore n oupie stte s enery E = -Γ/2 t φ = 0 n oes to E = Γ/2 t φ = 2π. e pse φ nees to inrese y noter 2π or  stte to ome k t te oriinl enery. is is te 4π-perioiity o te enery spetrum rteristi to te rtionl Josepson e et. As nnoune, te 4π-perioiity re ets itsel lso in te Josepson urrent

I J ∝ ∂ H eff ∂φ = Γ 2 sin φ 2 .
(5.10) ote tt t φ = π/2 tere re two eenerte zero enery sttes: te jorn ermions. At tis nle tere is  pir o jorn ermions trppe t te juntion. Awy rom φ = π/2, te enery sttes re li e rom zero n eome Anreev oun sttes insie te superonutin p. e rest o te pter is evote to vrious in-rntions o te rtionl Josepson e et in lon juntions.
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Fi. 5.6: A i erent view o rtionl Josepson e et. An  juntion is rete y onnetin two topoloil superonutin reions wit jorn ermions t extremities. e rit reion n ve  omplex pse. en te wires re onnete trou  metlli setion, two entrl jorn ermions exten insie n yriize. However two entrl jorn ermions re ientil t φ = π n o not yriize.

Superconductor-normal-superconductor junction

e  juntion onsiere ere is semtilly presente in Fi. 5.1(). e wire is ple on two s-wve superonutin islns. Due to te proximity e et, tese two outer reions o te wire re mppe to topoloil superonutors. Conventionlly, te le reion s  rel superonutin orer prmeter, wile te rit reion s  omplex superonutin orer prmeter wit  pse φ. e entrl reion o te wire oes not experiene te superonutin proximity e et n orms te norml reion o te juntion.

e min purpose o te pter is to illustrte te Josepson e et in tis eometry. ken seprtely, e superonutin reion supports jorn ermions t its ens. en tey re onnete trou te norml reion, te two en jorn ermions n eome extene in te norml reion.

is penomenon tkes ple t  pse i erene φ = π etween te superonutin islns. For i erent vlues, te two entrl jorn ermions orm extene Anreev sttes t eneries lower tn te ulk superonutin p.

Here te jorn polriztion is use to illustrte te t tt jorn ermions t te juntion re o te sme type or φ = π. is suests  i erent wy to look t te Josepson e et. A rottion o te pse π in  superonutin reion mniests itsel s  ne γ 1 → -γ 2 n γ 2 → γ 1 . ereore, t φ = π, te two jorn ermions t te juntion re o sme type n o not ouple (see Fi. 5.6). For ny oter vlue in [0, 2π] tere is  yriiztion into Anreev oun sttes. An nlysis o te jorn polriztion ptures tis result, euse  rottion wit φ proues  rottion o te polriztion vetor (P Mx , P My ). At φ = 0 te vetor s only  P Mx omponent (see Cp. 4). A ne o pse y π rottes te polriztion vetor y π. Hene t φ = π tere re two zero moes wit te sme jorn polriztion in te juntion, n, susequently, te norml reion will re  jorn ensity o one.

In te numeril stuy,  L = 100 site system is onsiere. e moel prmeters re osen s in te previous setion. e inue superonutin prmeter ∆ is moele s  Hevisie step untion. I  smoot ey is onsiere inste, ten only te extension o jorn ermions in te norml reion is  ete. e Hmiltonin tt moels te system in Fi. 5.1() res

H = L j=1 C † j [(t -µ)τ 3 + B z σ 3 ]C j - 1 2 C † j (t + iασ 2 )τ 3 C j+1 + H.. - N 1 j=1 C † j ∆C j - L j=N 2 C † j ∆e iφ C j ,
(5.11)

were te norml reion extens etween N 1 n N 2 . Durin te simultions te nor-ml reion s 20 sites, N 1 = 40 n N 2 = 60. e pysis o te rtionl Josepson e et is veri e y vin  wire tt respets te topoloil onition, B 2 z > ∆ 2 + µ 2 . In Fi. 5.7() is represente te jorn po-lriztion ensity interte over te norml reion s  untion o te superonut-in pse. is illustrtes two essentil properties: tere re two jorn ermions in te juntion (te ensity rees te vlue one) n tey exist only wen te pse is equl to π. Aitionlly, te jorn ermions tt orm t te juntion re roust wen nin te prmeters o te moel. is mens tt te topoloil onition or te existene o jorn ermions remins vli. For exmple, in Fi. 5.7(), te emil potentil µ is vrie. Consequently, te jorn ermions in te juntion survive until rein te ritil emil potentil etermine rom te topoloil onition (3.41), µ c ≃ 0.26.

Finlly, te jorn polriztion piture o te rtionl Josepson e et is e-tile in Fi. 5.8. For  zero pse i erene etween te superonutin islns, tere re no jorn ermions ormin in te juntion. jorn ermions remin t te extremities o te wire euse te system sits in  topoloil pse (3.41). e woul-e jorn sttes in te norml reion yriize n pper s Anreev oun sttes t 5.4 Ring with a uniform phase gradient is setion evelops te previous numeril stuy o te  juntion to rin eometries s te one semtilly illustrte in Fi. 5.9(). e spin-ouple semionutin wire is sione into  rin n ple t on n s-wve superonutor. ne setion o te wire oes not tou te superonutor n, onsierin tt it oes not experi-ene te superonutin proximity e et, orms te "norml" reion o te rin. e rest o te rin relizes  topoloil superonutor. Even i te te wire prmeters re osen su tt it lls uner te topoloil onition (3.41), tere will e no jo-rn ermions t te intere etween te norml n superonutin reion. is is euse te woul-e jorn ermions ormin t te two ens o te superonut-in reion ommunite trou te norml reion n re li e rom zero enery. everteless jorn ermions oul still orm i te pse o te superonutor is llowe to vry lon te wire.

In e. 125], it ws sown tt superurrents in te ulk o te superonutor oul e use in priniple to mnipulte te jorn ermions. ore preisely, it s een sown tt  onstnt sptil rient in te pse o te superonutin prmeter n rive te system rom  topoloil pse supportin jorn ermions to  Fi. 5.9: () in eometry were  uniorm pse rient vries te pse o te in-ue superonutin prmeter rom 0 to φ in te superonutin reion S. e norml reion () in te wire is represente y  se line. () rition o te su-peronutin pse in  topoloil C wire: te pse φ is set to zero in te le reion, n  onstnt rient is onsiere to e inue in te entrl reion y ulk super-urrents (in re) su s tt te pse φ rees  vlue o π in te le reion o te wire.

trivil pse witout zero-enery oun moes. is is te neessry inreient to orm jorn ermions in te rin eometry.

Beore tklin te rin eometry, it is instrutive to investite rst te liner eometry in orer to unerstn te tion o te uniorm superonutin pse rient.

is stuy ws rrie out in e. 125] n it is illustrte ere in te ontext o  one-imensionl tit-inin moel. e liner eometry is ientil to te one trete in e. 3.2.3 wit te essentil justment tt te superonutin pse is llow to twist lon te wire vi  uniorm pse rient. ne n lso sion  triprtite system were te rient ts only on te entrl reion o te wire. A typil sptil epen-ene o te pse is presente in Fi. 5.9(); tere re two outer reions o onstnt pse, wit  entrl reion uniorm experienin  pse twist. e min interest lies in nin weter te uniorm pse vrition my ive rise to similr pysis to te one oserve in te  juntion. e question is i trou te tion o te pse r-ient lone it is possile to rin te entrl reion in  "norml pse". In te seon susetion, te rin eometry wit  uniorm pse rient in Fi. 5.9() is investite in orer to ientiy te jorn ermions in te norml reion.

Constant phase gradient in a wire

Consier te system present in te previous setions wit te sme moel prmeters.

e system is ompose o tree prts wit  entrl reion tt experienes te uniorm pse rient ∇φ n is moele y te Hmiltonin

H = L j=1 C † j [(t -µ)τ 3 + B z σ 3 -∆e -iφ j ]C j - 1 2 C † j (t + iασ 2 )τ 3 C j+1 + H.. . (5.12) 94 5. E  …
ote tt te pse o te superonutin prmeter, φ j , is site-epenent. In te entrl reion o te wire (etween sites N 1 n N 2 ) tere is  pse rient ∇φ wi ts y inresin te pse, φ j = φ j-1 + ∇φ.

Beore lunin into  numeril nlysis o te tit-inin Hmiltonin in Eq. (5.12), it is worty to onsier te e et o te onstnt pse rient on te topo-loil invrint. It is not entirely surprisin tt te rient o te superonutin p-rmeter n mke te system swit etween  topoloil trivil n nontrivil pse. For  uniorm rient, tis n e reily unerstoo in te limit o n in nite wire. As sown in e. 125], te pse o te pirin term n e ue wy, wit te e et o in  rient-epenent orretion to te nonil momentum n o renorml-izin te oppin prmeter n te spin-orit ouplin. For n in nite tit-inin wire, te onition to ve  topoloil pse, ompute usin te meto presente in e. 4.2, yiels

µ- t 8 (∇φ) 2 2 - α 2 (∇φ) 2 4 -V 2 z +|∆| 2 × µ-2t- t 8 (∇φ) 2 2 - α 2 (∇φ) 2 4 -V 2 z +|∆| 2 < 0.
(5.13) en te nwit t is lrer tn te oter prmeters o te system, te seon term o te prout is lwys positive. us, or  zero emil potentil µ, te ritil pse rient is te ext lttie nloue o te ontinuum expression etermine in e. 125]:

(∇φ) c = 2 √ 2 α t 2 + V 2 z -∆ 2 t 2 + α t 4 1/2 1/2 .
(5.14)

A pse rient s  Cooper pir-rekin e et n n lose te superonutin p t te Fermi momentum. is les to  seon ritil vlue or te pse rient (∇φ) gl ove wi te ulk p loses n te system enters  pless reime (see Fi. 5.10). Its ext vlue is etermine y numerilly stuyin te losin o te p or n in nite system tt experienes  uniorm pse rient ∇φ. e stuy is rrie ere on  momentum spe Booliuov-e Gennes Hmiltonin

H = 1 2 k C † k HC k , C k = (c † k↑ , c † k↓ , c -k↓ , c -k↑ ), H = (t -µ)τ 3 + B z σ 3 -|∆|τ 1
(5.15)

-[t os(k) + α sin(k)σ 2 ] os(∇φ/2)τ 3 -[t sin(k) -α os(k)σ 2 ] sin(∇φ/2).
For te system prmeters (B z = 0.4, ∆ = 0.3, α = 0.2, µ = 0), te rient or wi te system enters te pless pse is (∇φ) gl ≃ 0.27, wile te topoloil onition etermines  ritil pse rient (∇φ) c ≃ 1.57.

Let us enote te entrl reion wi experienes te uniorm pse rient s G. e wire strts in  topoloil pse t zero rient n ene it supports two jorn ermions t its extremities. e question to e teste is weter new jorn Fi. 5.10: se irm o te spin-orit ouple semionutin wire in proximity to  superonutor, uner  pse rient ∇φ (tken rom e. 125]). B is te mneti el (B z ), ∆ te inue superonutin prmeter, µ te emil potentil n u te spin-orit ouplin onstnt (α). e system presents ppe topoloil pses () wi support jorn ermions n trivil pses witout jorn ermions. ere re lso pless pses (GL) (mniestly evoi o jorn ermions). Centrl to te present stuy is te t tt strtin rom  topoloil pse () t zero rient it is impossile to enter  trivilly ppe stte trou te tion o te rient lone; te rient puses te system into  pless (nontopoloil) pse. ermions n orm t te intere o te G wit te outer reions, or extene in te G s in n  juntion. ote tt te ove onsiertions llow us to eliminte te rst possiility. Beuse (∇φ) c > (∇φ) gl , te system enters rst  pless reime, so tere is no ounry to  trivilly ppe pse t te ees o te G. Inspetin te pse irm in Fi. 5.10 inites tt tis result is enerl in nture. Always n inresin pse rient puses te system rom  topoloilly ppe pse to  pless reime n tereore no lolize jorn oun sttes re expete.

I te trnsition tkes ple to  pless pse, ten it still remins open te possi-ility tt jorn ermions oul orm s extene sttes in G. However te r-ient s  prtile-ole rekin e et76, 125] n, moreover, losin te protetion o te ulk p les to te estrution o jorn ermions even or pse rient vlues ove (∇φ) c . In Fi. 5.11() te pse rient over te 20 entrl sites is π/20, smller tn te (∇φ) gl vlue n te G remins topoloilly ppe.

ere is n unique topoloil pse in te system n ene tere re only two jorn sttes wi orm t te wire ens. Beuse o te reltive pse φ = π etween te two outer reions, te jorn ermions ve ientil jorn polriztions. Inresin te rient s te e et to pus te system in  pless reime n to rstilly iminis te p to te rst exite sttes in te G, owever no jorn ermions orm in te G. everteless, tere is one speil se in wi jorn ermions n orm in te G. is sitution rises wen te G is onstrute s  series o Josepson juntions wit  pse inrese o (2n+1)π etween two neiorin sites, wit n ein n inteer.

e G must onsist o n o numer o sites, to ensure  reltive pse i erene (2n ′ +1)π etween te le n rit reions. en extene jorn ermions orm in te G. is sitution is exempli e in Fi. 5.11(): two extene jorn ermions orm or  pse i erene o φ = 11π over n 11-site G. Intertin te jorn polriztion over te entrl reion yiels  totl vlue o one, sowin tt only two jorn sttes orm in tis reion.

is limit se is te only one were jorn ermions re orme s extene sttes in te G. turlly it is i ult to expet tt su stron rient n su prtiulr onitions n e oun in  pysil system.

It is noteworty to point te enerl t tt te system is invrint uner  ne o 2π in te pse rient. Hene or n N -site G, tere is  2πN perioiity in te totl reltive pse φ etween te le n rit ens o te wire. In te speil se wen te rient is over n o numer o sites wit jorn ermions ormin t ∇φ = (2n + 1)π, te perioiity in te totl pse is 4πN (see in Fi. 5.12()).

Ring with a uniform phase gradient

Let us investite te presene o jorn ermions in te rin eometry rom Fi. 5.9().

e pse o te superonutin pse is twiste wit  pse rient ∇φ.

e question is uner wt onitions o jorn ermions orm in te norml reion. e tit-inin Hmiltonin esriin te system res

H = j∈ C † j [(t -µ)τ 3 + B z σ 3 ]C j - 1 2 C † j (t + iασ 2 )τ 3 C j+1 + H.. - N 2 j=N 1 C † j ∆e -iφ j τ 1 C j .
(5.16) e rst sum runs over te entire rin ( ), wile te seon sum runs over te superon-utin reion etween te sites N 1 n N 2 . In te superonutin reion te pse rows uner  uniorm rient φ j = φ j-1 + ∇φ.

ile no jorn sttes re orme t φ = 0, or peulir vlues o te pse i-erene umulte over te superonutin reion, n or pse rients tt re not too lre, jorn ermions n orm in te norml reion. is n e seen in Fi. 5.12(), were re plotte te low-enery eienvlues s  untion o te totl pse i erene. In priniple, wen te umulte pse is π, te woul-e jo-rn sttes re o opposite type n oul exist s extene moes in te norml reion. everteless, note tt in simultions te jorn ermions orm t  pse i erene slitly lrer tn π (see Fi. 5.12()). u evition rom π n e ttriute to nite size e ets n to te ommunition o te zero moes trou te superonutin reion.67] In numeril simultion, jorn ermions orm t π + δφ n te si δφ ereses wit system size. e jorn polriztion is plotte t tis prtiulr vlue in Fi. 5.13(). Intertion o te polriztion sows tt te two zero enery moes ve te sme polriztion, wi is in up to  vlue o one.

is 2(π+δφ) perioiity in te ormtion o jorn ermions is preserve or r- e system is perioi wit site rst n lst site equivlent. Extene jorn moes orm over te entire norml reion. () First two positive eienvlues or  eresin G lent. e totl pse i erene is kept t φ = π, wile te numer o sites is vrie. Close to te ritil vlue o te rient (∇φ) gl = 0.27 ≃ 11.6, te system psses into  pless reime. Due to nite-size e ets te numeril nlysis reovers tis trnsition t  smller vlue tn te expete 11 or 12 sites. ients smller tn te ritil pless trnsition rient (∇φ) gl = 0.27, orrespon-in to  totl pse i erene o φ ≃ 21.6π. As esrie ove, lrer rients re preite to rive te G to  pless reime. However, numeril simultions ini-te tt wile lrer rient vlues o seem inee to tke te system into te pless pse, jorn ermions my still orm or peulir rient vlues; t tis point we o not unerstn te oriin o tis penomenon.

Anoter wy to illustrte te evolution o te system wit te vlue o te pse r-ient is to x te totl pse in φ = π, n to stuy te evior o te low-enery moes wit te numer o sites in te G ( lrer numer o sites is equivlent to  smller pse rient). As it s een illustrte in Fi. 5.12(), ue to nite size e-ets, one s n minip or te woul-e jorn sttes; te enery p or tis moe eomes smller n smller wit inresin te numer o sites. en te numer o sites is reue, te onstrint o onstnt totl pse φ rives te system to lrer n lrer rients. us it is possile to ttin te ritil vlue o te pse rient tt sinls te pssin o te system into te pless pse. For n in nite system tis is (∇φ) gl ≃ 0.27, orresponin to π/11.6. us  pse trnsition is expete wen G rees te size o 11 -12 sites. Inee  rossin o te ns n li in o te low-enery moes ppens or  size o te G o out 9 sites (see Fi. 5.13()).

Discussion

e present pter s stuie te evior o jorn moes in severl  n  juntion onstrute rom semionutin spin-ouple wires in proximity to n s-5.5 D wve superonutor. rouout, it ws sown tt ouplin jorn moes to  norml metl n le to extene jorn moes in te ltter. e extension o te moes is ontrolle y te penetrtion lent ξ p o superonutivity in te norml re-ion. Inresin te penetrtion lent les to  reution o te norml reion. In te limit o  penetrtion lent lrer tn te norml reion size, te system eomes e etively  topoloil superonutor wit lolize jorn ermions.

In te ontext o  juntion, it ws sown ow jorn polriztion n e use to illustrte te pysis o te rtionl Josepson e et. e superonutin pse les to  rottion o jorn polriztion. In tis mnner, te extene jorn ermions ormin t  pse i erene φ = π ve te sme polriztion n o not yriize to orm Anreev oun sttes.

Finlly, ses wit  uniorm rient in te inue superonutin pse were trete in liner n rin eometries. In te liner se,  topoloil superonutor in  nontrivil pse   entrl reion sujete to  uniorm rient. However it ws impossile to inue jorn ermions t te interes wit te outer reions. e entrl reion oul not e turne into  trivilly ppe pse ue to te t tt te system lwys enters rst into  pless reime. Hene te possiility to ve lolize jorn ermions t te intere is exlue. oreover, te rient s  Cooper pir-rekin e et n witout te protetion o te ulk p tere re no extene jorn ermions in te "norml" reion. Extene moes were sown to exist only in te se were te totl pse in is n o multiple o π n, simultneously, te rient nes y π rom site to site.

en te system eves s  series o sort Josepson juntion e t pse i erene φ = π.

In te se o te rin eometry rryin  "norml" reion, it ws sown tt te uniorm rient n twist te pse in te topoloil superonutin reion su tt its two ens ve  i erene o π. en te system mps to  reulr  juntion n extene jorn moes orm in te norml setion. Finite size e ets proue  si δφ rom te iel vlue φ = π. It remins in te uture to investite te pres-ene o jorn ermions t ier rient vlues ove te trnsition into te pless reime; tese re not preite y te teory n o not seem to rise wit te perio-iity 2(π + δφ).

Chapter 6

Multiple Majorana fermions in a two-band model e spin-ouple semionutin wire stuie in te previous pters supports Z 2 topoloil pses, were jorn moes pper ue to proximity e et to n s-wve superonutor. e inex Z 2 mens te jorn ermions re essentilly solitry zero oun moes livin t te intere o te wire wit te vuum. ey re li e rom zero enery trou ouplin wit noter jorn ermion n tey orm  reu-lr omplex ermion. Is it possile to ve multiple jorn livin in proximity to e oter in  1D wire? is question s reently reeive  ler positive nswer. In e. 126] it ws sown tt in te lss o irl topoloil superonutors BDI, one n in priniple ve  system esrie y  Z topoloil invrint (see . 1). ere-ore multiple jorn ermions oul e ommote t te ens o  wire. e possiility ws me more onrete wen  simple two-n tit-inin superon-utin moel or spinless ermions in te BDI lss ws sown to ol two jorn moes 127].

In te present pter te moel propose in e. 127] is trete s n iel moel on pr wit te Kitev moel. It is tully n extension o Kitev moel wit te ru-il moi tion tt tere re next-nerest-neior oppins n superonutin prins in te moel. rou simple ruments it is sown ere tt tis is enerlly  su ient onition to llow or multiple jorn ermions lolize t n ee.

Furtermore, ere re investite te spei  sinture ue to presene o multiple jorn ermions. For one te presene o severl jorn ermions t one ee o te superonutin wire opens severl Anreev trnsport nnels in  juntions n tereore te onutne n re te vlue 2e 2 /h × Q wit Q ∈ Z 128]. However, te ous ere is on te question weter te rtionl Josepson e et, or Josepson juntion onnetin wires wi support multiple jorns, survives n te nomlous 4π-perioiity o te pse/urrent epenene is mintine.129] Finlly, te possiility to rete new jorn moes trou te ition o  uni-orm superonutin pse rient in te entrl reion o te 1D wire is explore.



-BDI e rient n lolly pus te system in  non-trivil Z 2 pse, wile te rest o te system remins  topoloilly trivil Z 2 (ut nontrivil Z).

en new jorn ermions orm t te interes wit te uniorm rient reion, wile multiple jo-rn moes n susist t te en o te wire.

Beore nlyzin te properties o H, let us provie some enerl symmetry ruments wi explin wy  enerl 1D Hmiltonin n sustin pses wit more tn one jorn en sttes.

6.1 Topological properties of a two-band BDI topological superconductor 6.1.1 Symmetry constraints A 1D superonutin system n ve multiple jorn oun sttes t its ens wen te system exiits prtile-ole symmetry n, ruilly is lso time-reversl invrint (I) 126, 127]. For te two-n Booliuov-e Gennes (BG) Hmiltonin pre-sente ere, tis n e seen rom te ollowin simple rument. A enerl two-n BG Hmiltonin H oeys H y onstrution, n n e written in te prtile ole sis s

H = h • τ , (6.1) 
were τ s re te uli mtries in te prtile-ole spe. ote tt uner H symmetry te omponents o te vetor Hmiltonin h oserve

h 1 (k) = -h 1 (-k), h 2 (k) = -h 2 (-k), h 3 (k) = h 3 (-k).
(6.2) e time reversl opertor or spinless ermions is just te omplex onjution opertor. Hene, i te system is I, te omponents o h oey te ollowin onstrints:

h 1 (k) = h 1 (-k), h 2 (k) = -h 2 (-k), h 3 (k) = h 3 (-k).
(6.3) rtile-ole n time-reversl symmetries impose te irl symmetry represente y te opertor τ 1 wi nti-ommutes wit te Hmiltonin 

-2 -1 0 1 2 λ 2 0 1 2 3 4 λ 1 0 2 2 1
Fi. 6.1: se irm or te Hmiltonin in Eq. (6.9). e insultin pses re sep-rte y lk lines. E insultin pse is rterize y  winin numer w in re. e numer o jorn ermions oun t one en is iven y |w|.

Model Hamiltonian and phase diagram

e moel propose in e. 127] is  two-n tit-inin moel or spinless eletrons. e Hmiltonin res

H = i -(1 -2c † i c i )µ -λ 1 (c † i c i+1 + c † i c † i+1 + H..) -λ 2 (c † i-1 c i+1 + c † i+1 c † i-1 + H.) , (6.9) 
were λ 1 orrespons ot to te nerest-neior () oppin mplitue n to te nerest-neior superonutin p wile λ 2 enotes te next-nerest-neior () oppin mplitue n next-nerest-neior superonutin p. In wt ollows, λ 1 is ssume positive. e emil potentil µ is set to one in te ollowin. en λ 2 = 0, te Hmiltonin in Eq. (6.9) orrespons to te Kitev moel 67]. e pse irm o H s een estlise in e. 127]. Here we reover tis pse irm in  i erent mnner, y usin Eq. (6.8) to unmiuously rterize e topoloil pse in te (λ 1 , λ 2 ) plne. is pse irm is rwn or ompleteness in Fi. 6.1.

e pse irm ssoite wit H is rterize y pses wit w = 0, 1, 2. Inee, or λ 2 > 1 + λ 1 or λ 2 < -1 n λ 2 < 1λ 1 , H n sustin  pse wit two jorn zero moes lolize t e wire en 127].

Transport in SN junctions

Beore nlyzin te pysis o Josepson juntions me wit wires supportin severl jorn ermions, let us ous on n  juntion or  superonutor esrie y te Hmiltonin H in Eq. (6.9). For  juntion etween  wire wit one jorn en stte n  norml metl, it s een preite tt te i erentil onutne exiits  zero-is pek o eit 2e 2 /h 103, 104]. A similr question or  juntion etween  topoloil superonutin wire rterize y  topoloil inex w > 1 n  norml metl s een reently resse in e. 128]. e utors ve sown tt or su juntions te onutne G n re  vlue o G = |w| × 2e 2 /h. is pre-ition is eke ere y onsierin  juntion etween  wire esrie y Eq. (6.9) supportin 4 jorn ermions, 2 t e o its extremities, n  norml wire.

e low-enery properties o su  system re etermine y te ouplin o te two en jorn ermions wit te norml metl. is ouplin n e pture y  2 × 2 yriiztion mtrix Γ. In orer to ompute te low-is trnsport properties o tis juntion, one n iretly use te S-mtrix ormlism evelope y Flens-er 104], n notin tt te two wve-untions or te jorn ermions re or-toonl 127], su tt tere is no inter-jorn ouplin term.

e resultin expression or urrent n e written s 104]

I = e h dωM (ω)[f (-ω + eV ) -f (ω -eV )], (6.10) 
were (6.12) kin n expliit tre over te trnsmission mtrix, it ollows tt (6.14) e zero-is vlue o te i erentil onutne is tus te oule o tt ex-pete or  juntion wit  sinle jorn ermion t te intere. is is onsistent wit e intere jorn ontriutin  2e 2 /h to te totl onutne.

M (ω) = r[G R (ω)ΓG A (ω)Γ(ω)], n G R (ω) = 2[ω1 + 2iΓ]
dI dV = 8e 2 h 8 et(Γ) 2 + (eV ) 2 r(Γ 2 ) [(eV ) 2 -4 et(Γ)] 2 + [2eV r(Γ)] 2 , ( 6 

Josephson junctions

In tis setion, it is nlyze ow te Jospeson e et is  ete y te presene o sev-erl jorn zero moes. In prtiulr, only sort Josepson juntions re onsiere etween two wires wi n sustin severl jorn en sttes. e moel Hmilto-nin res

H = H L + H R + H T .
(6.15) e Hmiltonin or te le wire, H L , is esrie y te Hmiltonin H in Eq. (6.9) rterize y prmeters

(λ L 1 , λ L 2 ).
e rit wire is rterize y H R , wi is otine rom

H L y nin (c † i c † j → c † i c † j e iφ
) in Eq. (6.9). ote tt te sme vrile pse φ is tte to te  n  pirin terms. e seon wire is rterize y te prmeters (λ R 1 , λ R 2 ). e tunnelin Hmiltonin n e moele s (6.16) were te juntion is me etween site N (lst o H L ) n N + 1, ( rst o H R ). By onvention te oppin/pirin o te tunnelin Hmiltonin re tken ientil to te ones in te le wire. E wire is lele y  topoloil inex w α = 0, 1, 2 wit α = L, R. e solute vlue o te winin numer inites te numer o jorn ermions t one en in e wire, tken seprtely. It is useul to tink out te juntion s orme y rinin itilly te wires toeter. e low-enery pysis o te juntion reues to n nlysis o te ouplin o te severl jorn moes ross te juntion, s presente in Fi. 6.2. In te ure re illustrte te vrious w Lw R juntions tt re ein trete in te ollowin: te 1 -1, 1 -2 n 2 -2 juntions. e numeril simultions re me on  100-site system wit te juntion t site 50.

H T = -(λ L 1 c † N c N +1 + λ L 2 c † N -1 c N +1 + H..),
Beore nlyzin te Josepson e et in juntions me rom wires supportin multiple jorn ermions, one my sk i  omplex superonutin orer prmeter in  topoloil superonutin wire n ve n e et on its pse irm. However, wile H R (φ) is enerilly omplex, n uniorm pse φ n e ue wy, yielin  rel Hmiltonin n te sme pse irm s te one epite in Fi. 6.1.

e 1 -1 Josephson junction

Let us onsier rst  Josepson juntion etween two wires wit  topoloil inex

w α = 1.
is type o juntion s een extensively stuie n te moel is eke ere tt it is onsistent wit te known pysis. e moel prmeters re osen s

(λ α 1 , λ α 6.   … γ 1 γ 2 γ 1 γ 2 γ 2 γ 3 γ 3 γ 4 γ 1 φ 0
Fi. 6.2: o orm Josepson juntions, wires rterize y winin numers 1 -1, 1 -2 n 2 -2 re rout into ontt. itout loss o enerlity, te le -n sie superonutor s rel orer prmeters, wile on te rit-n sie tey ve  superonutin pse φ.

e low-enery Hmiltonin is ssume to ontin only pse-epenent ouplin terms etween te jorn ermions. Energy Eigenvalue Index

φ = 0 φ = π/2 φ = π (b)
Fi. 6.3: () e epenene o te lowest-enery eienvlues on te superonutin pse i erene etween te two wires. () e eienvlue spetrum or tree i erent vlues o φ = 0, π/2, π. e system exiits our zero-enery moes t φ = π. oel prmeters re λ 1 = 1 n λ 2 = 1

In Fi. 6.3() it is plotte te eienvlue spetrum o te juntion or φ = 0, π/2, π. nly or φ = π one reovers our zero-enery eienvlues wi orrespons to our jorn ermions: one t e extremity n two t te juntion. e 4π-perioiity n e unerstoo rom  simple e etive low enery Hmilto-nin ollowin Kitev 67]. e overlp etween te wve untions o te two jo-rn ermions t te extremities wit te jorn ermions t te intere is nelete.

e simplest low-enery e etive Hmiltonin res 24, 67, 102, 119-121, 130, 131]. Energy Eigenvalue Index

H 1-1 eff = it 12 os(φ/2)γ 1 γ 2 , ( 6 
φ = 0 φ = π/2 φ = π (b)
Fi. 6.4: () e epenene o te lowest-enery eienvlues on te C pse i erene etween te two wires. e enery rnes re lele usin te ouption numer representtion or te two-ermion sttes orme rom usin our jorns ross te juntion. At low enery te two enery rnes re linerly tte: e system exiits eit zero-enery moes t φ = π.

E 2-2 + ± E 2-2 - = (d + ± d -)|φ -π|/2

e 2 -2 Josephson junction

Let us now onsier  juntion etween two superonutin wires rterize y winin numers w α = 2.

Analysis of the spectrum e eienvlue spetrum or  2 -2 juntion is ompute numerilly. e result is sown in Fi. 6.4(). e rst importnt tin to note is tt te nomlous 4π-perioiity still ols. e only i erene is tt tere re now our jorn ermions ormin t te juntion wen te pse i erene is φ = π. At e extremity o te system tere re lso two jorn ermions wi susist or ny vlue o φ, mkin te roun stte eit-ol eenerte t φ = π (see Fi. 6.4()).

A low-enery Hmiltonin ple to esrie te numeril results presente in Fi. 6.4 must involve our jorn ermions. Let us enote y γ 1 , γ 2 te jorn ermions on te le sie o te juntion n y γ 3 , γ 4 te jorn ermions on te rit sie o te juntion. A enerl Hmiltonin involvin te our jorns n e written s

H 2-2 eff = iγ 1 (t 13 γ 3 + t 14 γ 4 ) os φ 2 + iγ 2 (t 23 γ 3 + t 24 γ 4 ) os φ 2 + it 34 γ 3 γ 4 sin φ + it 12 γ 1 γ 2 sin φ.
(6.18) e pse epenene o H 2-2 eff is xe y enorin  2π-perioiity toeter wit te onstrint tt or φ = 0 tere is no iret ouplin etween γ 1 n γ 2 , nor etween γ 3 n γ 4 .

e os(φ/2) is require y ue invrine. Here re ormlly inlue 108 6.   … some iret-tunnelin terms etween te jorn ermions on te sme sie o te juntions (t 12 n t 34 ), wi my e non-zero wen φ = 0, π (tis explins te sin(φ)). However, one n rue tt su terms must e less sini nt sine tey re te result o ier-orer oppin proesses etween te two superonutors. In t tese terms turn out to e neliile or te esription o te low-enery spetrum. Contrry to te 1-1 juntion, were tere ws n ovious quntity ommutin wit te Hmiltonin or ll vlues o φ, or te 2 -2 juntion tis is not ovious or φ = π. In te lter se, tere re our jorn ermions usin to orm two reulr ermions c ± . is n e seen rom te spetrl eomposition o te e etive Hmiltonin . ote tt even i te f 22 term in Eq. (6.18) ws nelete, te orm o te c ± ermions s  untion o te oriinl jorn ermions remins omplite. For exmple, un-er te resonle ssumption tt te ouplin strent etween jorn ermions situte t te sme istne ross te juntion is ientil, t 13 = t 14 , i ollows tt c ± = 1 2 + 2g 2 ± [γ 4 + iγ 1 + g ± (γ 3 + iγ 2 )], wit 

H 2-2 eff = E 2-2 + (2c † + c + -1) + E 2-2 -(2c † -c --1), (6.19) were E 2-2 ± = d ± os(φ/2), (6.20) wit d ± = 1 2 √ 2 b ± √ b 2 -

Analysis of the Majorana polarization

A useul tool to nlyze te evior o jorn ermions is te jorn polriztion,  lol topoloil orer prmeter introue in e. 111] n relte to te eree o nomlous pirin in  1D topoloil wire. e existene o  jorn ermion is reore s  zero-enery jorn polr-iztion ensity o 0.5. A jorn ermion n ve  x-n y-jorn polriztion. en te Hmiltonin is rel t φ = 0 n φ = π, te y-jorn polriztion P My is 0. en te superonutin prmeter quires  pse, te polriztion lon te y-iretion is enerlly nonzero. Here, similr to e. 122], te en jorn ermions respon to te vrition o φ y rottin teir jorn polriztion. is is ue to te superonutin prmeter eomin omplex. However t φ = π te superonutin prmeter eomes rel in n te zero-enery en sttes ve te sme jorn polriztion. For tis pr-tiulr vlue o te pse, our new jorn ermions orm t te juntion, two in e wire, teir x-jorn polriztion ompenstin te jorn polriztion o te en moes (see Fi. 6.5).

e 1 -2 Josephson junction

In te ollowin, te ous is on te reminin 1 -2 juntion. is is  prtiulrly interestin prolem sine two istint topoloil setors re rout into ontt vi  Josepson juntion.

Analysis of the spectrum e pysis o tis juntion is expete to e ominte y tree intertin jorn ermions lolize t te intere. ne n sow tt or  winin numer i erene o one etween te rit sie n te le sie o te juntion, one jorn moe is oun t te intere or ny oie o φ. oreover, t φ = π te system is six-ol eenerte wit tree zero enery jorn in te juntion reion (see Fi. 6.6()).

Let γ 1 enote te jorn ermion on te le sie o te juntion, n y γ 2 , γ 3 te jorn ermions on te rit sie. e ue invrine o te Hmiltonin suests tt te pse-epenent ouplins etween γ 1 n γ 2,3 re proportionl to os(φ/2) to ompenste te sin ne. A low-enery Hmiltonin esriin te jorn ouplin in te 1 -2 system n tus e written s Fi. 6.6: () e epenene o te lowest-enery eienvlues on te superonutin pse i erene etween te two wires. e otte line inite te t o te lowest-enery numeril eienvlue wit te nlytil orm in E + rom Eq. (6.23). e t prmeter is a = t 2 12 + t 2 13 /4. () e eienvlue spetrum or tree i erent vlues o φ = 0, π/2, π. e system exiits six zero-enery moes t φ = π.

is Hmiltonin s tree zero-enery eiensttes t φ = π. For  pse i erene o φ = π, te e etive Hmiltonin (6.22) s one zero eienvlue (require y te ntisymmetry o te 3 × 3 mtrix) n two non-zero eienvlues. e onstnt zero-enery stte, wi is  jorn ee stte oun t te intere etween two topoloilly nonequivlent reions, is te result o te i erene o one unity etween te topolo-il inies o te two reions.

imilr to te 2 -2 juntion, i te lst term o Eq. (6.22) is nelete, te orm or te two eienvlues eomes E ± = ±2a os(φ/2).

(6.23) e oppin epenent prmeter a = 1 4 t 2 12 + t 2 13 n e etermine rom  low-enery t o te numeril ispersion presente in Fi. 6.6(). ote tt tkin into ount lso te term t 23 improves te qulity o te t, espeilly in te viinity o te superonutin p. ote lso tt, wile te t is urte up to eneries lose to te superonutin p, te e etive Hmiltonin H 1-2 eff is exlusively  low-enery e etive Hmiltonin n soul not e expete to reover te ull epenene o te enery eienvlues on te superonutin pse i erene.

Analysis of the Majorana polarization

In te le -sie wire, esrie y  winin numer w = 1, te superonutin p-rmeter is osen to e rel n te sinle jorn ermion t te le en is lwys ully x-polrize. For te rit-n sie wire, t te rit en tere re two jo-rn ermions tt respon to te twistin o te pse φ y inin  y-polriztion; in Fi. 6.7() it is presente te evior o te x-n y-polriztions o tese moes.

Let us now nlyze wt ppens t te juntion etween te two wires. At φ = π it is expete to ve 3 jorn ermions. For ny oter φ tere is lwys t lest one jorn ermion stuk t te intere etween te two topoloilly nonequivlent reions. is n e seen y plottin te zero-enery ensity o sttes, s well s te zero-enery jorn polriztion, interte over te 40 sites roun te juntion. In Fi. 6.7() it is plotte te interte zero-enery ensity o sttes. ote tt or φ = π te ensity o sttes is onstnt n equl to 0.5 orresponin to  sinle jorn moe oun t te juntion. e srp jump etween 0.5 n 1.5 t φ = π esries te ontriution o te two extr jorn moes wi re zero enery t φ = π (tese two extr zero-enery sttes pperin t φ = π n lso e seen in te spetrum esrie in Fi. 6.6()). is is lso on rme y  plot o te zero-enery jorn polriztion, interte over te 40 sites roun te juntion, in Fi. 6.7(); te jump in te x-jorn polriztion t φ = π n e unerstoo s omin rom te two jorn moes tt evelop t zero enery. us, t φ = π tere re tree jorn ermions t te two extremities o te wire (one t te le en n two t te rit en), ully x-polrize in te positive iretion.

ese ermions re ompenste y tree jorn ermions wi orm in te juntion wi re ully x-polrize in te opposite iretion.

Wires with an inhomogeneous superconducting phase

As it ws sown in e. 127], te system exiits two jorn moes t e en, provie tt te time-reversl n irl symmetries re not roken, nmely s lon s te system remins in te BDI lss 12, 13]. Brekin time-reversl symmetry les to te removl o te protetion or two jorn ermions sine te system now elons to te D symmetry lss (see . 1). en te system n return to te more typil stte wit t most one jorn ermion t e en.

Here it is explore  i erent wy to rek , i.e. y in  onstnt pse rient. Let us tke  wire rterize y te topoloil inex w = 2. Inste o n rupt ne in te superonutin pse, onsier  lon juntion omprisin  reion in wi te pse n vry smootly wit  onstnt pse rient. n te le sie o tis lon juntion, te superonutin pse is ssume to e onstnt n equl to 0 wile on te rit sie it is suppose to e onstnt n equl to φ = π. e pse o te entrl reion is suppose to vry smootly rom 0 to π; su  uni-orm pse rient n e inue or exmple y te presene o superurrents in te ulk o te superonutor. is sitution is semtilly epite in Fi. 6.8().

e pse rient n e use to mnipulte te retion or estrution o jorn ermions 125].

Due to te pse rient, te BG Hmiltonin ins  -rekin h 1 (k) o omponent:

h 1 (k) = λ 1 sin(k) sin(∇φ/2) + λ 2 sin(2k) sin(∇φ) h 2 (k) = -λ 1 sin(k) sin(∇φ/2)λ 2 sin(2k) os(∇φ) (6.24)

h 3 (k) = 2 -2λ 1 os(k) os(∇φ/2) -2λ 2 os(2k) os(∇φ),

were te rient ∇φ is te ne o pse over one site. ote tt  pse rient lso retes  non-vnisin h 0 omponent tt multiplies te ientity uli mtrix. Altou it is nelete in te ollowin, it inites te rekin o H n te ten-eny o te rient to estroy Cooper pirs. is poses  oneptul prolem: ow re te jorn ermions protete in se o  roken H? In t numeril simu-ltions sow spurious zero moes tt pper wen te pse rient is present. Let us nelet or te moment te rekin H, s h 0 ≪ h 3 wen te rient is smll. e system is no loner rterize y  winin numer w ut inste y te Kitev Phase gradient ∇φ Fi. 6.9: Illustrtion o te rst netive n te rst two positive eienvlues in  100site superonutin wire sujete in its entirety to  pse rient tt vries rom 0 to 2π. niorm isorer wit  mnitue o ∼ 10% o te oppin strent λ 1 removes spurious zero moes levin zero jorn moes in te winows preite y te topoloil onition (6.25) (mrke wit se lines). λ 1 = 1 n λ 2 = -1.5.

is stis e. ote tt t vnisin pse rient, one reovers te pse irm in Fi. 6.1, wit te only ne tt w = 2 n w = 0 re ot trivil Z 2 pses. ereore in  smll pse rient removes te jorn ermions t te ens o te entrl reion.

is is ue to te t tt lolly ot sies o te reion re topoloilly Z trivil. However, t ot ens o te wire, in te reions witout  pse rient, two jorn moes ontinue to e present euse tey re lolly protete y te time reversl symmetry.

In ontrst, one n rive te entrl reion to  topoloilly Z 2 nontrivil stte, y inresin te pse rient. is ppens wen te inequlity (6.25) is veri e.

en te entrl reion is onnete to two Z 2 trivil reions n one jorn ermion orms t e intere. e pir o jorn ermions persist t te ens o te wire (see Fi. 6.8()).

Due to te twist o te pse y π, te two jorns t te ens re ot x-jorn polrize in te sme iretion.

It is noteworty to relize tt te vliity o te topoloil invrint n e ques-tione in te se were H is roken. However one n see tt te topoloil in-vrint ontinues to ol true. In numeril simultions,  100-site system, oriinlly in te w = 2 topoloil pse, is sujete in its entirety to  uniorm superonutin pse rient wire. In Fi. 6.9 one n see tt wen te rient is e te system eomes  trivil Z 2 topoloil insultor, mrke y te loss o te our-ol eener-y ner ∇φ = 0. purious moes ner zero enery re remove y isorer, n two 114 6.   … roust jorn moes evelop in te winow preite y te topoloil invrint. At tis moment, we lk n explntion o te oriin o te spurious zero moes, or or te perplexin e etiveness o te Z 2 topoloil invrint in te sene o te H symmetry. ese prolems eserve urter reser.

Discussion

e stuy o te Josepson e et etween wires supportin multiple jorn ermions s revele tt te 4π nomlous perioiity is mintine in juntions rterize y  srp ne o te superonutin pse. oreover,  smoot pse rient n e use to estroy te Z pse n to rete jorn ermions t te intere etween trivil n nontrivil Z 2 pses. Also  onnetion ws me etween te work on topoloil insultors wit lre Cern numer n BDI lss topoloil superon-utors. For te two-n moels stuie, it ws sown tt  su ient onition to rete multiple zero-enery oun sttes t te ees o system is to  ouplin terms etween istnt sites. Let us nlly remrk tt te Z jorn moes tt pper in tese system soul e rile wen onsiere in relisti systems s te spin-orit ouple semionutin wire ue to te neessity o time-reversl symmetry. e rel-iztion o jorn ermions ws sown to epen ruilly on te presene o  time-reversl rekin mneti els tt will nturlly t to estroy te i Z pses.

Conclusion and Perspectives

opoloil insultors n superonutors orm  lss o mterils wit  ulk p in te enery spetrum, inite y exoti ee sttes. A topoloil invrint rterizes te ulk properties o tese systems n it is susequently re ete in te numer o te ee sttes.

In te rst prt o te tesis, te investition ws entere roun two-imensionl tit-inin topoloil insultors inexe y  Cern numer.

ey re quntum nomlous Hll insultors tt support n arbitrary numer o ee sttes. However, lre Cern numer or, equivlently, multiple ee sttes re usully rete y sion-in multin systems. It ws sown ere tt it is possile to vry te Cern numer in simple two-n moels y in istnt-neior oppin terms.

e key o te entire stuy lies in unerstnin tt te topoloil invrint mits  isrete ormultion. is llows to see n insultor s  "sum" o  pless system wit Dir points plus  mss term. Cruely, te topoloil invrint reues to  nite sum over te Dir points weie y te sin o te mss term. ereore  neessry onition to inrese te numer o topoloil pses is to multiply te noes in te enery ispersion. is n e relize y vin oppin terms etween istnt sites.

e onsequenes re explore in two moels:  new rti il moel wit ve Cern pses n lso y in istnt-neior oppin in te Hlne moel. e meto llows one to otin omplete topoloil pse irms or te moels.

ere re two iretions in wi to exten te present stuy. e rst onsists in enerlizin to multin systems. Alrey two our-n moel extensions re is-usse:  Z 2 insultor uilt rom two Cern insultors n  "stripe" Z topoloil in-sultor tt n ve lre metlli pses. e seon iretion is to ser or possile pysil reliztions o te moel. e existene o extreme istnt-neior oppin terms remins rter prolemti; owever multin systems mit e etively mp to su moels 37].

ile te ulk mits enerl metos to esily isriminte etween te topoloi-l pses, te ee-stte investitions et quikly mire in etils ssoite to te pr-tiulr eometry o te ees. oreover, te t tt tere oul e severl ee sttes t n intere s  new lyer o i ulty to nlytilly nin te wve-untion so-117 C  lutions. Cp. 2 ontins  etile nlysis o  sitution in wi tere re t most two ee sttes t n intere. In perspetive, one nees to enerlize to ees o i erent eometries. ost importntly, one s to lriy te nture o ee sttes wi orm etween topoloilly ppe pses wit te sme Cern numer. Coneivly, te eomposition o  topoloil insultor in  pless moel plus  mss term oul e use to exten previous stuies o ee sttes in pless systems 63, 64] to topoloil insultors.

e seon prt o te tesis revolves roun te sujet o jorn ermions rel-ize s qusiprtiles in one-imensionl topoloil superonutors. ere is  eep nloy to te previous stuy o topoloil insultors. e jorn ermions re te "ee sttes" o topoloil superonutor n n e preite rom  knowlee o some ulk properties. ey re preite to emere in  vriety o onense mtter systems (see e. 3.2.1). However, Cps. 4 n 5 re ouse on  prtiulr teoreti-l proposl istinuise y te simpliity o its inreients. e jorn ermions re preite to pper s zero-enery exittions in  1D spin-orit ouple semion-utin wire uner te e et o  mneti el n in proximity to n s-wve super-onutor 24, 25]. In Cp. 4,  Dresselus spin-orit ouplin term ws e n it ws sown tt tere is  spin texture to te eletroni erees o reeom tt orm te jorn qusiprtile. ey re spin-polrize in opposite iretion in  trnsverse plne to te mneti el. e ext iretion is etermine y te reltive weits o s n Dresselus spin-orit ouplins. is inormtion oul e use to etet jorn ermions trou te ouplin to mneti impurities. everteless, it still remins to expliit tis ie in te orm o  omplete experimentl proposl.

Cp. 5 ontinue te stuy to superonutor-norml metl n lon superon-utor-norml metl-superonutor () juntions uilt rom te semionutin wire. e jorn ermions n orm s extene sttes into te norml prt o te system. It ws sown tt te extension o te moes n epen on te ouplin etween te norml n superonutin reions n lso tt lekin o Cooper pirs into te norml metl n urter lolize te jorn moes. In te  juntion te jo-rn ermions orm only t pse i erene π etween te two superonutors, oterwise woul-e jorn ermions yriize to orm extene Anreev oun sttes in te norml reion. is penomenon is  slient eture o te rtionl Josepson e et. An orer prmeter, te jorn polriztion, introue in e. 3.3 is use to investite te extene zero-enery sttes in te juntion. Finlly, te stuy turne to  rin ivie in two reions:  norml metl reion n  topoloil superonutin one wit  superonutin pse rient. e system n e mppe in tis se to n  juntion n in jorn ermions rise in te norml reion wen te totl pse twist is lose to π. It is ruil or uture stuies to unerstn in more etil te tion o te rient. e pse rient s  Cooper pir-rekin e et wi n le to pless pses in te superonutor. ese re lre-rient pses evoi o jorn ermions. However tere re peulir vlues were jorn ermions still orm in te norml reion. ese events re not preite y te teory n pose n e nl Cp. 6 trets  prtiulr moel were te presene o time-reversl n irl symmetries llows te ormtion o multiple jorn ermions t te sme ee o  wire 127]. It is sown tt istnt-neior pirin terms ply te sme role s in te 2D Z topoloil insultors stuie eore: tey ilittes te inrese o te topoloil invrint n te multiplition o ee sttes. oreover, te presene o severl jorn ermions llows to onstrut  juntions etween wires in i erent topoloilly nontrivil pses.

e rtionl Josepson e et still rterizes te system n it mintins its sinture 4π-perioiity. Furtermore, te multiple -jorn moes n e estroye y te ition o  pse rient, wi n trnsorm te Z insultor into  Z 2 insultor wit t most one jorn ermion t n ee. e presene o  pse rient poses some serious prolems; euse rient tens to rek te Cooper pirs, te presene o protete zero moes t i rient vlues remins to e properly expline.

In perspetive, tis nlysis nees to e rrie over to more relisti spinul systems to ssess te viility o pses wit multiple jorn. For instne, te spin-ouple semionutin wire stuie eore oes not seem to e  oo nite, euse te mneti el reks te  neessry to ve te Z insultor. A nturl nite to relize topoloil Z superonutors woul e  eterostruture involvin time-reversl invrint H insultors inste 83].
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  Fi. 2.2: Enery spetrum s  untion o momentum k x on  ylinril eometry (eit 40 sites n irumerene 180 sites). wo ee sttes lote ner j = 1 re represente in lue, n two t j = 40 in reen. e position n irlity o te ees is semtilly represente in te inset.

  σ n τ re te usul 2×2 uli mtries. e Γ mtries oey te Cli or ler{Γ µ , Γ ν } = 2η µν , (3.3)wit η µν te inkowski metri tensor, i(1, -1, -1, -1).

  were CΨ = Ψ c . ote tt te opertor C is nti-unitry n tereore must ontin te omplex onjution opertor K. It must lso ontin te only iminry Γ mtrix su tt [C, iΓ µ ] = 0. Hene te re onjution opertor n e represente up to  lol pse yC = Γ 2 K.

  wo topoloil pses o te Kitev moel. e re n lue enote two jorn ermions tt ompose  reulr omplex ermion, represente in lk. () rivil pse were te jorns re ouple insie e site. () ontrivil pse were jorn in jent sites yriize to orm  omplex eletron. npire zero moes re le t te en o te wire. peronutors 95, 96] n or in ultrol tomi ses wit s-wve superonutivity 97].

  trnsormtion, te pse o te superonutin prmeter n e sore in te e nition o te retion n nniiltion opertors. For ∆ = |∆|e iϕ te omplex superonutin, te new opertors re osen su tt c j e iϕ/2 → c j .

  A representtion o te enery ispersion in te rst qurnt or i erent vlues o mneti el B z n inue superonutin p ∆. e mss m n te s C α re set to 1, te emil potentil µ = 0. () i e prols ue to te C. e enery eiensttes ve  ler spin iretion: lue ↑ n re ↓. () onvnisin mneti el opens  p t momentum p = 0 llowin te possiility o n o numer o Fermi points. () opoloil trnsition t p = 0 etween two ppe pses, ∆ = 0.3 nontrivil, ∆ = 0.5 trivil, trou losin o te p wen

  e spin polriztion lon () te z n () x iretions, n () te jorn po-lriztion P Mx , s  untion o enery n position, ∆ = 0.3, B z = 0.4, α = 0.2, β = 0 n µ = 0.

  3: () Lol ensity o sttes n () jorn polriztion P My t ∆ = 0.3, B z = 0.4, µ = 0, α = 0, n β = 0.2. jorn oun sttes re present t te ens o  wire ontinin only Dresselus C. 4: () Lowest-enery eienvlues n te l-wire interl o te jorn polriztion P Mx (inset) s  untion o B z . () jorn polriztion P Mx o te lowest-enery stte s  untion o position n B z . rmeters: ∆ = 0.3, µ = 0, β = 0, n α = 0.2 te jorn polriztion ensity (3.50) n prove tt it is 0.5 or  zero enery moe oun t te wire extremities. () e lowest-enery eienvlues n te l-wire jorn polriztion P Mx interl (inset) re plotte s  untion o µ. In te seon pnel te jorn polr-iztion P Mx o te lowest-enery stte is plotte s  untion o position n µ. e prmeters onsiere re ∆ = 0.3, B z = 0.4, α = 0.2, n β = 0.

  emti representtions o () superonutor-norml n () superon-utor-norml-superonutor juntions.ey re rete y vin te spin-orit ouple semionutin wire e on top o n s-wve superonutor (S). A per-peniulr mneti el B z ts on te wire.  juntion.

  esperesenttion o te jorn ensity s  untion o () te emil po-tentil µ n () te mneti el B z . e topoloil trnsition were te jorn ermion sttes ispper t µ c ≃ 0.26 n B z = 0.3.jorn ensity (3.50) (or lttie version (4.29)) over te norml reion is represente in Fi. 5.2. e t tt it yiels te 1/2 inites tt tere is extly one jorn ermion extene over te norml reion. Furtermore, te topoloil onition is veri e y vryin te prmeters o te system. Fi. 5.2() exempli es te vrition o te emil potentil µ, wile Fi. 5.2(), te vrition o te mneti el B z . In ot ses te topoloil trnsition tkes ple t te vlues preite rom Eq. (3.41); wen te oter prmeters re xe, te ritil emil potentil is µ c ≃ 0.26 n te ritil eemn el is (B z ) c = 0.3. epresenttion o te zero-enery LD epenene on te oppin strent t SN etween te superonutin n norml reion. A lolize jorn ermion extens in te norml reion wen inresin ouplin to te ulk vlue t = 1.

  Low-enery jorn x-polriztion illustrtes te inresin loliztion o rit jorn ermions wit te rowt o te superonutin reion y rmpin up te penetrtion lent ξ p . () ξ p = 50, () ξ p = 100, () ξ p = 200.

  7: () jorn polriztion ensity view o te rtionl Josepson e et. At nle φ = π tere re two jorn ermions ormin in te juntion. () Density o sttes in te norml reion t φ = π. oust jorn moes re present in te juntion wit te vrition o µ. e ritil emil potentil were te jorn moes re estroye is preite y te topoloil onition (3.41, µ c ≃ 0.26.

  jorn x-polriztion, P Mx , t () φ = 0 n t () φ = π. e jorn polriztion rottes wit te pse. At φ = π tere re two extene jorn ermion ormin in te norml reion. () jorn polriztion P Mx (re) n P Mx (lue) or te jorn ermion trppe t te rit extremity. eneries lower tn te superonutin ulk p (see Fi. 5.7()). en te pse vries rom φ = 0, te jorn ermion t te rit en o te wire respons y ro-ttin its polriztion vetor. e Anreev sttes et rully loser to zero enery s te pse pproes φ = π n itionlly ne teir polriztion. At φ = π te Anreev sttes use to rete extene jorn ermions wit te sme polriztion (see Fi. 5.7()). Hene n interte jorn ensity o 1 (i.e. 2 jorn ermions) is reore in te norml reion. In Fi. 5.7() is represente te rottion o te polr-iztion vetor or te rit en jorn ermion. It ws eke in e. 122] tt te Anreev oun sttes, wen pproin zero enery, rully in  jorn polr-iztion to ompenste te ne in polriztion o te rit en zero-oun enery stte.

  11: () e pse o te superonutin prmeter is twiste y π over 20 entrl sites. e entrl reions remins topoloilly nontrivil n jorn ermions wit te sme polriztion orm only t te ens o te wire. () se in o 11π over 11 sites. wo jorn ermions orm in te G vin n opposite polriztion wit respet to te en moes.

  12: () Evolution o te rst two positive eienvlues wit te pse i erene φ or  11-site G. e onstnt zero-enery moe orrespons to n en jorn stte. e enery o te oter moe evolves wit φ n rees zero only wen tere is  (2n + 1)π pse i erene etween two neiorin sites (tis ppens ere or n = 0 n n = 1, orresponin to φ = 11π n respetively φ = 33π). () Evolution o te lowest-enery moes wit te pse i erene φ. ote te si δφ rom te expete ormtion o jorn ermions t π.

  13: () jorn polriztion s  untion o enery n position or  rin wit  totl pse i erene o π + δφ.

  ero-enery jorn polriztion interte over te 40 sites roun te juntion. Four jorn sttes orm t te juntion or φ = π yielin  x-jorn polr-iztion o 2, n ompenstin te jorn polriztion o te our en oun stte.

H

  1-2 eff = iγ 1 (t 12 γ 2 + t 13 γ 3 ) os φ 2 + it 23 γ 2 γ 3 sin φ.

  () e jorn polriztion o te rit-en jorn ermions interte over te lst 30 sites. ote te osilltory evior o te x-(re) n y-(lue) -jorn polriztion omponents wit  totl onstnt jorn ensity o 2 × 0.5, or-responin to two rottin jorn moes. () ero-enery ensity o sttes inte-rte over te 40 sites roun te juntion point. () ero-enery jorn polr-iztion interte over te 40 sites roun te juntion. e x-polriztion (re) n te y-polriztion (lue). ree jorn ermions vin te sme polriztion re supporte t te juntion or φ = π.

  8: A onstnt pse rient over 40 sites twists te superonutin pse rom 0 to π. () emti piture o te setup. uperurrent in te ulk ne te superon-utor pse φ in te (lk) wire rom 0 to π. () e onstnt pse rient removes our B in te mile reion, levin two B t e en, ot x-polrize. () jorn moes orm t te ens o  40 site entrl reion riven in  nontrivil Z 2 pse y  pse rient ∇φ = 2.

  Z 2 invrint 67]. Anlyzin te topoloil invrint revels tt te system is in  topoloilly nontrivil pse i te onition |1λ 2 os(∇φ)| < |λ 1 os(∇φ/2)| (6

  

  were |k re Blo sttes. Beuse tere re no nti-unitry symmetries impose, te Hmiltonin H is enerlly  mtrix in Herm(n), te set o n × n Hermitin mtries wit omplex oe ients. ere re n ns tt n e ue to te presene o i erent oritls per site n nonequivlent toms in  unit ell. ote tt te vrile k is ontinuous n te Brillouin zone is  mniol,  torus T 2 . o e point in te B,

	H =	k∈BZ	H(k)|k k|,	(1.2)

H(k) ssoites  vlue, n tereore it is  mppin rom te torus to te prmeter spe o H H : T 2 → Herm(n).

  term σ 3 h 3 is osen s te mss term, n tereore te pless sumoel is te rpene Hmiltonin (M → 0 n t 2 → 0).

1.3: emti representtion o te Hlne moel. e A (B) sites re repre-sente y wite (lk) ullets, • (•). Alon te se lines n eletron ins  pse φ in te iretion o te re rrows. e vetors a n b re te  n, respetively,  isplement vetors. e

  H(k) n its time reverse opy, in-exe y C n -C. I tere re no interlok mtrix elements, te topoloil invrint n e etermine s  spin Chern number, expresse s C mo 2 50]. ereore it is enou to pik one Cern insultor, n illustrte te omputtion o C[H(k)].

  ∂ kx h × ∂ ky h 3 sn(h 3 ). (1.30) e kernel o H 12 ontins ll te vlues o k or wi h 1 n h 2 vnis simultneously. ey re n touins o te te pless moel H 12 n, in enerl, tey re Dir points wit irlity iven y χ = sn ∂ kx h × ∂ ky h 3 . en  neessry onition to otin  Cern insultor wit lre Cern pses is to rete multiple Dir points. e lrest Cern pse n e otine y tunin  tt te prout o te irlity n te ppin term is onstnt or ll Dir points. ereore, i tere re 2n Dir points te lrest Cern numer is n.

		1. AH	2D C
	mss term su
	e Cern numer rom Eq. (1.19) res
	C =	1 2 k∈ker H 12

sn

  • (ma 1 + na 2 )),(1.31) were m n n re inteers n never ot equl to zero. e vetors a 1 n a 2 re te Brvis lttie vetors re . Ain oe ients s n c orrespons to in oppin terms etween oritls.en multiplyin te Dir points or H 12 requires prou-in istnt-neior oppin terms wi ontin sinusoil omponents tt osillte ster n ster s m n n row. t results in n enery ispersion wi quires more noes wen istnt-neior oppins re inlue.

  1.2: Cirlity χ o te our i erent Dir points. o te mss term in teir viinity. Let us   mss term o te orm h 3 (q)σ 3 . ine h 3 is  perioi untion on te B, in te enerl se, its zeros orm  set o lose lines on te two-imensionl torus. e rst onition in orer to p te initil system is tt tese lines must not pss trou te Dir points. us te lines o zeros elimit reions, R 1 n R 2 , were te mss term s te sme sin. For  proper oie o te p term, it is somewt simpler to see te prolem rom  eometril point o view.

In orer to mximize |C|, one nees tt te lines o zeros seprte te pairs o Dir points su tt  pir o points o  iven irlity re ontine in  reion o positive mss, wile pir o points o opposite irlity re ontine in  reion o netive mss reion. In sort, e pair o Dir points re ple in reions were te mss term s i erent vlues. n te ontrry, i  pir o Dir points is "roken" (su tt one is in reion R 1 n te oter in reion R 2 ), ten te topoloil res will nel out s n e iretly inerre rom Eq. (1.30).

  .31) were Fermi veloity res v = 2t 1 . e inies o te ermioni retion n nniiltion opertors Ψ † n Ψ esrie te vlley (±K), te iretion o motion (L or R) n tt o spin (↑ or ↓). ote lso tt te rst two terms in H eff esrie te ynmis o spin up eletrons, n tereore orrespon to te oriinl 2-n Hmiltonin, wile te spin own terms stem rom o time reversl opertor T; TΨ KR↑ T -1 = Ψ -KL↓ . e lokin etween te iretion o te spin n tt o motion mens tt H eff esries  elil liqui 61]. ove re not roust euse one n rete te ollowin one-prtile, I, lol perturtion tt will p te ee elil liqui in Eq. (2.31) (lol menin tere is no inter-ee stterin)
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  Berry urvture, Ω xy , or te oupie ns

	2.5 D
	in terms o
	.39)
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  re te usul uli mtries tin in prtile-ole spe. is llows to e ne  prtile-ole symmetry represente y n nti-unitry opertor C ′ tt ntiommutes wit te Hmiltonin. ote tt it is not  proper symmetry, ue to te ntiommuttion{C ′ , H} = 0, wit C ′ = τ 1 K, (3.16) n K te omplex onjution opertor. e onsequene o tis property is tt ny eienstte o te BG Hmiltonin s  prtile-ole onjute wit opposite enery. t is, te presene o te H immeitely re ets itsel s reunny in te solutions to te BG equtions. For exmple, tke te röiner eqution

	3.1 
	were
	.15)
	59

τ

  .40) wit ξ p = p 2 /2mµ. Due to te prtile-ole symmetry, ny stte t enery E s  ounterprt t -E. Also ny stte wit momentum p s  ounterprt wit te sme enery n opposite momentum. Beuse o tis reunny, it su es to nlyze te rst qurnt (E > 0 n p > 0) o te ispersion in Eq. (3.40). itout loss o enerlity µ n e set to zero in te ollowin.

  .2) uli mtries τ t in te prtile-ole spe. e prouts o uli mtries tt live in i erent spes soul e unerstoo s  tensor prouts. e BG representtion is prtiulrly useul s it llows ionliztion o te Hmiltonin in  sis o qusi-prtile exittions.e spin-orit intertion tens to orient te spins in (x, y) plne wit n in-plne iretion n xy , wile te mneti el remins perpeniulr to te plne. Bot Dres-selus n s I ten to split te enery ns or sttes wit opposite spins |n xy + n |n xy -. For vnisin B z n ∆, |n xy ± re oo eiensttes o te Hmil-tonin H|n xy ± = ξ p ± α 2 + β 2 p|n xy ± ,

  . 4.1: jorn ermions, represente in re, orm t te intere wit te topoloi-lly trivil sttes wen te emil potentil retes  omin wll.rise t te intere etween trivil n topoloil reions o  one-imensionl wire y onsierin or exmple  position-epenent emil potentil 25]. imilrly,  moel wire is ivie ere in tree reions wit vrile emil potentil. e emi-l potentil n e ne trou tin su tt it tkes te vlue µ 1 in te entrl reion [0, L] n µ 0 outsie

o iretly see te e et o te Dresselus C it is opportune to stuy te wve untions or te jorn ermions. It s een sown tt jorn oun sttes n Fi

  I H oeys ll tese symmetries, ten it ollows tt h 1 must vnis. Hene H s only two reminin omponents n, tereore, ĥ e nes  mppin rom te Brillouin one Winding number of a circuit and role of distant site couplings e orm o te winin numer will ive n insit to ow n one inrese te numer o jorn ermions y in istnt-site ouplin terms in te Hmiltonin. Let us lriy te omputtion o te winin numer o  lose urve roun te oriin in te 2D plne; te urve is  mppin f : T 1 → R 2 \{0}. By omponents te urve res f (t) = (x(t), y(t)). Let t prmetrize tis urve wit t ∈ [0, 2π).en te winin numer w o te urve roun te oriin in R res n e ompute usin te Brouwer eree o  urve 45]. In te se tt te kernel o untion x(t) s  nite numer o points t, te winin numer reues to symmetry onstrints tt te kernel o h 2 ontins t lest te speil B points 0 n π. o rete more jorn oun sttes t one en, te winin numer must stisy |w| > 1. is implies tt ker h 2 must ontin oter points tn 0 n π.is n ppen y enlrin te unit ell trou te ition o oppin n super-onutin pir terms ouplin istnt sites. en new noes in te enery ispersion evelop or k ∈ [0, π] n n le to ier winin numer. Hene te presene o ier-orer oppin or pirin terms is  su ient onition to ve multiple jo-rn oun sttes t te ens o  1D wire.

	6.2 	H					6. 		…
	(B) to te Blo "irle"	
	ĥ : T 1 → S 1 .				(6.5)
	Hene te mppin is rterize y  winin numer w wi is n inteer 126]. ereore  two-n BG Hmiltonin elons to te topoloil BDI lss r-terize y  Z topoloil invrint 11-13].
	6.1.2 w =	1 2π	0	2π	dt	x ẏ -ẋy r 2 ,	r 2 = x 2 + y 2 .	(6.6)
	e winin numer w = -1 t∈ker x 2 sn ẋ(t)y(t) .		(6.7)
	An equivlent ormul or te winin numer n e proue were now one uses  sum over te zeros o y(t). In te se o  enerl I, BG Hmiltonin presente in te previous susetion, te winin numer is
	w = -	1 2	k∈ker h 2	sn[∂ k h 2 h 3 ].		(6.8)
	{H, τ 1 } = 0. ote rom te 103 102	(6.4)

  .17) were γ 1 is  jorn ermion t te rit en o te rst wire, n γ 2 ,  jorn ermion lolize t te le en o te seon wire. Here t 12 is te e etive tunnelin mplitue (see Fi. 6.2). ne n ek tt te osine evior reproues well te low enery spetrum. It is wort empsizin tt iγ 1 γ 2 is trivilly  onserve quntity o

  n te vlue o oe ients d ± is isplye. () e eienvlue spetrum or tree i erent vlues o φ = 0, π/2, π.

  4a 2 wit a = t 14 t 23t 13 t 24 n b = t 2

	13 + t 2 14 + t 2 23 + t 2 24

  However te Hmiltonin n te ouption numers o te two ermions n ± = c † ± c ± trivilly ommute mon e oter. e ouption numers or te two ermions re onserve n one n use Eq. (6.19) to lel te enery rnes in te ouption numer representtion o te two-prtile sttes, |n + n -(seeFi. 6.4). e vlue o E 2-2 ± n e oun numerilly rom  liner t t low enery ner φ = π in Fi. 6.4. ost importntly, te 4π perioiity o te DC Josepson e et is mintine.

	g ± =	1 2t 13	t 23 -t 14 ± 4t 2 13 + (t 14 -t 23 ) 2 .	(6.21)

χ(κ) = sn(∂ kx h × ∂ ky h) 3 κ .(1.55)









) = (1, 1). ur numeril results or te epenene o te enery levels o tis juntion wit te pse i erene reover  4π perioiity onsistent wit te nomlous Josepson e et (see Fi. 6.3()).
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