
HAL Id: tel-00770932
https://theses.hal.science/tel-00770932v2

Submitted on 31 May 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Contributions to the Improvement of Multiuser PLC
Home Networks

Pierre Achaichia

To cite this version:
Pierre Achaichia. Contributions to the Improvement of Multiuser PLC Home Networks. Other.
Supélec, 2012. English. �NNT : 2012SUPL0017�. �tel-00770932v2�

https://theses.hal.science/tel-00770932v2
https://hal.archives-ouvertes.fr


No d’ordre : 2012-17-TH

Thèse
présentée devant

SUPÉLEC

pour obtenir le grade de
Docteur de SUPÉLEC

Spécialité : Télécommunications

par
Pierre Achaichia

Équipe d’accueil : Wireless Access System Architecture / Connectivity REsearch and
Modeling (WASA/CREM), Orange Labs Rennes & équipe SCEE Supélec, IETR
École doctorale : Mathématiques, Télécommunications, Informatique, Signal, Systèmes
Electroniques (MATISSE)
Domaine : STIC

Contributions à l’Amélioration des Réseaux
CPL Domestiques Multi-Usagers

Soutenue le 12 octobre 2012 devant la commission d’examen composée de :

Dr. Karine Cavalec-Amis Télécom Bretagne, Brest, France Examinatrice
Prof. François-Xavier Coudoux University of Valenciennes, France Rapporteur
M. Lorenzo Guerrieri Dora, Aoste, Italie Examinateur
Dr. Marie Le Bot Orange Labs, Rennes, France Encadrante
Prof. Jacques Palicot Supélec, Rennes, France Directeur de thèse
Prof. Daniel Roviras CNAM, Paris, France President & Rapporteur
Dr. Pierre Siohan Orange Labs, Rennes, France Co-directeur de thèse





No d’ordre : 2012-17-TH

Dissertation
in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy
from SUPÉLEC

Specialization : Telecommunications

Pierre Achaichia

Laboratories : Wireless Access System Architecture / Connectivity REsearch and Mod-
eling (WASA/CREM), Orange Labs Rennes & Supélec SCEE team, IETR
Doctoral school : Mathématiques, Télécommunications, Informatique, Signal, Systèmes
Électroniques (MATISSE)
Field : STIC

Contributions to the Improvement of
Multiuser PLC Home Networks

Defended on October 12, 2012, in front of a commission composed of:

Dr. Karine Cavalec-Amis Télécom Bretagne, Brest, France Examiner
Prof. François-Xavier Coudoux University of Valenciennes, France Reporter
M. Lorenzo Guerrieri Dora, Aosta, Italy Examiner
Dr. Marie Le Bot Orange Labs, Rennes, France Supervisor
Prof. Jacques Palicot Supélec, Rennes, France Primary supervisor
Prof. Daniel Roviras CNAM, Paris, France President & Reporter
Dr. Pierre Siohan Orange Labs, Rennes, France Supervisor





Acknowledgements i

À Rennes, le 5 novembre 2012.

Au terme de ces trois années passées chez Orange Labs, je tiens tout d’abord à exprimer
ma profonde gratitude envers mes encadrants, Pierre Siohan et Marie Le Bot, qui ont
largement contribué à la réussite de ces travaux. Leur disponibilité, leurs précieux conseils,
et la confiance qu’ils m’ont accordée ont été autant d’éléments moteurs me permettant
de traverser sereinement ces trois années, pour en faire une expérience d’une richesse
incroyable, tant sur le plan des connaissances acquises que sur le plan humain.

Je tiens également à saluer tous les membres de l’URD CREM qui m’ont entouré, en
ayant une pensée particulière pour son manager Jean-Christophe Rault, dont la gentillesse
et la flexibilité m’ont permis de rapidement me sentir en confiance dans son équipe. Je
tiens à remercier tout particulièrement Pascal Pagani et Philippe Christin pour leur aide.

J’exprime ma grande reconnaissance à mon directeur de thèse, le professeur Jacques
Palicot, ainsi qu’à tous les membres de l’équipe SCEE de Supélec, pour l’accueil chaleureux
qu’ils m’ont toujours réservé dans leur laboratoire.

Un grand merci également à tous les autres membres de mon jury de thèse: Pr.
François-Xavier Coudoux, Pr. Daniel Roviras, Mme Karine Amis et M. Lorenzo Guerrieri.

Je remercie enfin mes parents, qui m’ont toujours encouragé tout au long de mes études
en me laissant toujours la liberté de choix, et ma compagne Anne, pour son indéfectible
soutien.



ii Acknowledgements



Contents

Acknowledgements i

Contents iii

List of Figures vii

List of Tables xi

Abstract xiii

Résumé xv

Acronyms xvii

Notations xxiii

1 Introduction 1

2 Broadband Power Line Communications 5
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 In-home PLC Environment Characterization . . . . . . . . . . . . . . . . . . 7

2.2.1 PLC Channel Modeling . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 Noise Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Regulatory Authorities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Broadband PLC Specifications . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Overview of HPAV-based Specifications . . . . . . . . . . . . . . . . . . . . 12

2.5.1 PLC Network Overview . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5.2 Convergence Layer (CL) . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5.3 MAC Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5.3.1 Channel Access Mechanisms . . . . . . . . . . . . . . . . . 14
2.5.3.2 Framing Processes . . . . . . . . . . . . . . . . . . . . . . . 17
2.5.3.3 MPDU Format . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5.4 Physical Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5.4.1 Link Adaptation . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5.4.2 PPDU Format . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

iii



iv contents

3 Capacity Analysis in the HomePlug AV1 and AV2 contexts 25
3.1 Preliminary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.1 Context of this Study: the OMEGA Project . . . . . . . . . . . . . . 25
3.1.2 What Modulation Scheme for Broadband PLC Networks? . . . . . . 26
3.1.3 Transmission Capacity and Achievable Throughput . . . . . . . . . . 27

3.2 Windowed OFDM: Study and Analysis of the HPAV Modulation Scheme . . 28
3.2.1 OFDM Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.2 The Windowed OFDM Modulation . . . . . . . . . . . . . . . . . . . 31
3.2.3 Windowed OFDM Transmission over a Dispersive Channel . . . . . . 32

3.3 HS-OQAM: Study and Analysis of an Alternative to windowed OFDM . . . 37
3.3.1 OFDM/OQAM Modulation Overview . . . . . . . . . . . . . . . . . 38
3.3.2 OFDM/OQAM Transmission over a Multipath Channel . . . . . . . 41

3.3.2.1 Channel Equalization for OFDM/OQAM . . . . . . . . . . 41
3.3.2.2 Generalized Expression of HS-OQAM Interference Term . . 42
3.3.2.3 Analytical Expression of the Noise Power at the ASCET

Equalizer Output . . . . . . . . . . . . . . . . . . . . . . . 44
3.4 Windowed OFDM vs HS-OQAM: Transmission Capacity and Achievable

Throughput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.4.1 Simulation Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.4.2 Performance of Different Prototype Filters Following the HPAV Spec-

ification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4.2.1 Set of Compared Prototype Filters . . . . . . . . . . . . . . 48
3.4.2.2 Prototype Filter Selection . . . . . . . . . . . . . . . . . . . 51

3.4.3 Comparison Between windowed OFDM and HS-OQAM Associated
with a Frequency Selective Filter . . . . . . . . . . . . . . . . . . . . 54
3.4.3.1 HomePlug AV 1 Context . . . . . . . . . . . . . . . . . . . 54
3.4.3.2 HomePlug AV 2 Context . . . . . . . . . . . . . . . . . . . 57

3.4.4 Potential Impact of the CENELEC Mask on HPAV Networks . . . . 60
3.4.4.1 Impact of the CENELEC Mask on the Number of HS-

OQAM and Windowed OFDM Active Tones . . . . . . . . 60
3.4.4.2 Impact of the CENELEC Mask on HPAV Networks Ca-

pacity: Comparison Between HS-OQAM and Windowed
OFDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4 Point-to-Multipoint Transmissions in Powerline Networks 69
4.1 Preliminary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.1.1 The Interest of FDM in PLC Networks . . . . . . . . . . . . . . . . . 69
4.1.2 Resource Allocation Problems . . . . . . . . . . . . . . . . . . . . . . 70
4.1.3 Taking Advantage of the Frequency Diversity . . . . . . . . . . . . . 73

4.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.2.1 Problem Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.2.2 Discrete Extension of the Theorem of Section 4.1.3 . . . . . . . . . . 77
4.2.3 Mathematical Optimization . . . . . . . . . . . . . . . . . . . . . . . 78

4.3 Optimal OFDMA Resource Allocation: Geometrical Approach . . . . . . . 79
4.3.1 Optimal Capacity Region along Basis Vector �e1 . . . . . . . . . . . . 80
4.3.2 Optimal Capacity Region in the Plane (�e1, �e2) . . . . . . . . . . . . . 80



contents v

4.3.3 Optimal Capacity Region in (�e1, �e2, �e3) . . . . . . . . . . . . . . . . . 82
4.3.3.1 Analysis of the Capacity Region in P2 . . . . . . . . . . . . 82
4.3.3.2 Allocation Process . . . . . . . . . . . . . . . . . . . . . . . 84

4.3.4 Optimal Resource Allocation for K > 3 . . . . . . . . . . . . . . . . 89
4.4 Optimal OFDMA Resource Allocation: Study of a Particular Case . . . . . 91
4.5 Suboptimal OFDMA Resource Allocation: The Tone Maps Splitting Algo-

rithm (TMSA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.5.1 Algorithm Description . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.5.2 Complexity Issue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.5.3 TMSA Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.6 Definition of an HPAV-compliant OFDMA Transmission Scheme . . . . . . 97
4.6.1 Integration Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.6.2 Comparison of the TDM and FDM Modes . . . . . . . . . . . . . . . 99

4.6.2.1 Simulation Parameters . . . . . . . . . . . . . . . . . . . . . 99
4.6.2.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . 99

4.6.3 Hybridation of the TDM and FDM Mode. . . . . . . . . . . . . . . . 101
4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5 Multicast Transmissions over Power Line Networks 105
5.1 Preliminary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.1.1 The Interest of Multicast in PLC Networks . . . . . . . . . . . . . . 105
5.1.2 PLC Networks Multicast Issue . . . . . . . . . . . . . . . . . . . . . 107

5.2 The LCG Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.2.1 LCG: PHY Level Analysis . . . . . . . . . . . . . . . . . . . . . . . . 108

5.2.1.1 PHY Rates Computation . . . . . . . . . . . . . . . . . . . 108
5.2.1.2 Unicast Conversion vs LCG: PHY Level comparison . . . . 110

5.2.2 LCG: MAC level Analysis . . . . . . . . . . . . . . . . . . . . . . . . 113
5.2.2.1 Definition of a Multicast Transmission Scheme . . . . . . . 113
5.2.2.2 MAC Rates Computation . . . . . . . . . . . . . . . . . . . 114
5.2.2.3 Unicast Conversion vs LCG: MAC Level Comparison . . . 115

5.3 Multicast Transmission Scheme Based on the Creation of Multiple Multicast
Subsets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.3.1 LCG Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.3.2 Smart Merging Approach . . . . . . . . . . . . . . . . . . . . . . . . 117

5.3.2.1 Construction of a Fast Tone Map Merging Algorithm . . . 118
5.3.2.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . 124

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6 Conclusion 127

Appendix 131

A The ns2-based PLC Network Simulator 133



vi contents

B Transmission Masks 141
B.1 North American excluded frequency ranges . . . . . . . . . . . . . . . . . . 141
B.2 CENELEC excluded frequency ranges . . . . . . . . . . . . . . . . . . . . . 142

C Some Proofs 145
C.1 Proof that E

[
u2m0,n0

]
in (3.60) can be written as (−1)n0F (m0) . . . . . . . 145

C.2 Proof that Var[um0,n0 ] in (3.60) does not depend on n0 . . . . . . . . . . . . 145

D Résumé Français du Mémoire de Thèse 147
D.1 Chapitre 1: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
D.2 Chapitre 2: La technologie des Courants Porteurs en Ligne pour les trans-

missions en Large Bande . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
D.3 Chapitre 3: Analyse de Capacités dans les Contextes des Spécifications

HomePlug AV1 et AV2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
D.4 Chapitre 4: Transmissions en Configuration Point-à-Multipoint dans les

Réseaux CPL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
D.5 Chapitre 5: Diffusion de Flux Multicast dans les Réseaux CPL . . . . . . . 159
D.6 Chapitre 6: Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

Contributions 167

Bibliography 169



List of Figures

2.1 Structure of a PLC access network [68] (M: Meter Unit). . . . . . . . . . . 6
2.2 3 realizations of PLC channels belonging to classes 1, 5 and 9, respectively. 8
2.3 One realization of the colored noise model. . . . . . . . . . . . . . . . . . . 9
2.4 HPAV Spectral mask. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Examples of Physical and logical Networks [7]. . . . . . . . . . . . . . . . . 13
2.6 HPAV system block diagram overview [4]. . . . . . . . . . . . . . . . . . . . 14
2.7 HPAV Beacon period [87]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.8 Priority Resolution Period (PRP). . . . . . . . . . . . . . . . . . . . . . . . 16
2.9 HPAV protocol layer architecture [87]. . . . . . . . . . . . . . . . . . . . . . 18
2.10 MAC frame format [4] [7]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.11 MAC frame stream generation. . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.12 Construction of a MPDU. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.13 520-byte and 136-byte PBs. . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.14 MPDU frame format: AV only mode on the left; Hybrid mode on the right [7]. 21
2.15 The HPAV transmission scheme (AV only mode). . . . . . . . . . . . . . . 23

3.1 CP-OFDM timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Efficient Implementation of CP-OFDM [82]. . . . . . . . . . . . . . . . . . . 29
3.3 Frequency Orthogonality of an OFDM Signal. . . . . . . . . . . . . . . . . 31
3.4 Windowed OFDM timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.5 Windowed OFDM using HPAV tone map fits into the FCC Spectrum Mask. 33
3.6 Window and GI removal at the receiver side. . . . . . . . . . . . . . . . . . 34
3.7 Comparison between the colored noise and the interference levels for a class

2 channel (cf section 2.2.1), in the HPAV band. . . . . . . . . . . . . . . . . 38
3.8 OFDM/OQAM in its analog form (continuous-time). . . . . . . . . . . . . 39
3.9 HS-OQAM general structure [84]. . . . . . . . . . . . . . . . . . . . . . . . 40
3.10 OFDM/OQAM symbols overlapping [84]. . . . . . . . . . . . . . . . . . . . 41
3.11 Structure of the per-carrier ASCET equalizer [84]. . . . . . . . . . . . . . . 41
3.12 Example of class 2 channel and colored noise realizations. . . . . . . . . . . 47
3.13 Compared PSD around a notch between windowed OFDM and HS-OQAM

with FS4, using HPAV transmission mask. . . . . . . . . . . . . . . . . . . 49
3.14 Prototype filters: (a) in time (b) in frequency . . . . . . . . . . . . . . . . . 50
3.15 Comparison of PHY data rates (DPHY) between windowed OFDM and HS-

OQAM using TFL1+ZF, σ2
c,dB = −50 dBm/Hz. . . . . . . . . . . . . . . . . 51

vii



viii list of figures

3.16 Comparison of PHY data rates (DPHY) between windowed OFDM, HS-
OQAM using TFL1+ASCET and HS-OQAM using FS4+ZF, σ2

c,dB = −50
dBm/Hz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.17 Transmission capacities (Dinf gran) comparison between FS4+ZF and MMB4+ZF.:
(a) Class 9 channels (b) Class 2 channels. . . . . . . . . . . . . . . . . . . . 53

3.18 Transmission capacities (dotted curves) and PHY data rates (continuous
curves) in the HPAV 1 context on Class 9 channels. . . . . . . . . . . . . . 55

3.19 Transmission capacities (dotted curves) and PHY data rates (continuous
curves) in the HPAV 1 context on Class 5 channels. . . . . . . . . . . . . . 55

3.20 Transmission capacities (dotted curves) and PHY data rates (continuous
curves) in the HPAV 1 context on Class 2 channels. . . . . . . . . . . . . . 56

3.21 HPAV Spectral mask and its extension in the upper band. . . . . . . . . . . 57
3.22 Achievable throughput (dotted curves) and PHY data rates (continuous

curves) in the HPAV 2 context on Class 9 channels. . . . . . . . . . . . . . 58
3.23 Achievable throughput (dotted curves) and PHY data rates (continuous

curves) in the HPAV 2 context on Class 5 channels. . . . . . . . . . . . . . 58
3.24 Achievable throughput (dotted curves) and PHY data rates (continuous

curves) in the HPAV 2 context on Class 2 channels. . . . . . . . . . . . . . 59
3.25 Compared PSD between HPAV windowed OFDM and HS-OQAM associ-

ated with a FS4 prototype filter, complying with CENELEC spectral mask:
(a) permanently excluded frequencies only (b) permanently and dynami-
cally excluded frequencies. . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.26 Magnified PSDs around the 18 MHz region of Fig. 3.25-(b). . . . . . . . . . 62
3.27 Transmission capacities (dotted curves) and PHY data rates (continuous

curves) on Class 9 channels, considering: (a) permanently excluded fre-
quencies by CENELEC only (b) permanently and dynamically excluded
frequencies by CENELEC. . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.28 Transmission capacities (dotted curves) and PHY data rates (continuous
curves) on Class 5 channels, considering: (a) permanently excluded fre-
quencies by CENELEC only (b) permanently and dynamically excluded
frequencies by CENELEC. . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.29 Transmission capacities (dotted curves) and PHY data rates (continuous
curves) on Class 2 channels, considering: (a) permanently excluded fre-
quencies by CENELEC only (b) permanently and dynamically excluded
frequencies by CENELEC. . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.1 Illustration of the Multiuser diversity among 4 measured PLC channels in
the [1.8, 100] MHz frequency range (provided by the HPAV working group). 70

4.2 Bit-loading performed in the [1.8, 50] MHz frequency range, following the
IEEE P1901 specification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3 Multiple access and broadcast channels. . . . . . . . . . . . . . . . . . . . . 72
4.4 Point-to-multipoint transmission: (a) using TDMA (b) using FDMA. . . . 73
4.5 Splitting the frequency bandwidth into N subbands of equal capacity for

each link. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.6 Example of a sub-optimal and an optimal OFDMA capacity region for

K = 2 (α1 = 0.3 and α2 = 0.7). . . . . . . . . . . . . . . . . . . . . . . . . . 81



list of figures ix

4.7 Impact of the reallocation of one subcarrier on the FDM capacity region
around the F point. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.8 Optimal OFDMA capacity region for K = 3: (a) Γ2 and Γ3 curves (α1 =
0.5, α2 = 0.2, α3 = 0.3) (b) Γ2 curve after the N allocation steps on �e3
(α1 = 0.35, α2 = 0.15, α3 = 0.5). . . . . . . . . . . . . . . . . . . . . . . . . 86

4.9 Representation of 50 optimal capacity regions for 50 different values of φ2

(= arctan
(
α1
α2

)
). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.10 Representations of the K−1 planes containing the optimal capacity region
between the K links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.11 P1901 tone maps belonging to classes 2, 5 and 9 channels: (a) before
orthogonalization (b) after orthogonalization with αk = 1

K . . . . . . . . . . 95
4.12 Evolution of GFDM with the number of tone maps K using various orthog-

onalization techniques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.13 Comparison of the achieved values of GFDM by TMSA to the optimal gain. 97
4.14 Modified P1901 payload and acknowledgment frames structures for FDM

transmissions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.15 FDM and TDM transmission modes Hybridation (K = 3). . . . . . . . . . 102

5.1 Possible configuration of the Orange multiscreen TV offer using 3 Orange
Liveplugs (Picture downloaded from the Orange online support website). . 106

5.2 LCG applied among 4 HPAV 2 tone maps: (a) 4 unicast tone maps (b)
Multicast tone map after applying LCG. . . . . . . . . . . . . . . . . . . . 109

5.3 Static noise model used for the tone maps generation. . . . . . . . . . . . . 111
5.4 Cumulative Distribution Functions of the PHY rate improvement factor

(P (F > X)), for K = 2, 3 and 4 stations to reach. . . . . . . . . . . . . . . 111
5.5 Averaged PHY data rate in each one of the 3 countries (K = 4). . . . . . . 112
5.6 Distribution of the PHY rate improvement factor each one of the 3 countries

(K = 4). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.7 Transmission schemes: (a) HPAV unicast [7] (b) HPAV-compliant multicast.114
5.8 Cumulative Distribution Functions of the MAC rate improvement factor

(P (F > X)), for K = 2, 3 and 4 stations to reach. . . . . . . . . . . . . . . 116
5.9 Averaged MAC data rate in each one of the 3 countries (K = 4). . . . . . . 117
5.10 Distribution of the MAC rate improvement factor in each one of the 3

countries (K = 4). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.11 20000 bits broadcast to 5 stations: (a) by multiplexing 5 Unicast streams,

(b) by merging all the tone maps (LCG solution), (c) by creating two
merged tone maps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.12 Merging Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.13 Comparison of the rates improvement factor by the smart merging algo-

rithm and by LCG, both at the PHY and MAC layers. . . . . . . . . . . . 124

A.1 PLC network simulator Architecture. . . . . . . . . . . . . . . . . . . . . . 134
A.2 Cumulative distribution functions of (a) HPAV and (b) IEEE P1901 tone

maps capacities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
A.3 User interface screen capture. . . . . . . . . . . . . . . . . . . . . . . . . . . 137
A.4 Comparison between simulated (continuous curves) and measured data

rates (dotted curves) for 1, 2, 3 and 4 uplink UDP flows. . . . . . . . . . . 138



x list of figures

A.5 Comparison between simulated (continuous curves) and measured data
rates (dotted curves) for 1, 2, 3 and 4 uplink TCP flows. . . . . . . . . . . . 139

B.1 HPAV Spectral mask. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
B.2 CENELEC spectral Mask (permanent and dynamic notching). . . . . . . . 144

D.1 Masque de transmission défini par la FCC (Amérique du Nord). . . . . . . 150
D.2 Pré-traitement effectué au niveau de récepteur avant de démoduler le signal

windowed OFDM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
D.3 Recouvrement entre symboles OFDM/OQAM consécutifs [84]. . . . . . . . 152
D.4 Représentation des 3 prototypes étudiés: (a) en temps (b) en fréquence. . . 154
D.5 Tone maps suivant la spécification IEEE P1901 générés sur des canaux de

classes 2, 5 et 9, respectivement. . . . . . . . . . . . . . . . . . . . . . . . . 156
D.6 Région de capacité optimale pour K = 3 (α1 = 0.5, α2 = 0.2 and α3 = 0.3). 158
D.7 Modified P1901 payload and acknowledgment frames structures for FDM

transmissions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
D.8 Fonction de répartition des facteurs de multiplication du débit au niveau

de la couche physique(P (F > X)), pour K = 2, 3 et 4 stations destinataires.160
D.9 Comparaison des facteurs de multiplication des débits entre l’algorithme

proposé et la solution LCG, aux niveaux des couches PHY et MAC. . . . . 161



List of Tables

2.1 CW and DC as a function of BPC and priority [17] . . . . . . . . . . . . . 17

3.1 Coding scheme for OFDM/OQAM symbols . . . . . . . . . . . . . . . . . . 39

4.1 GFDM (in %) in the case of 2 stations to reach (FEC rate 16
21 / 1

2). . . . . . 100
4.2 GFDM (in %) in the case of 3 stations to reach (FEC rate 16

21 / 1
2). . . . . . 101

B.1 North America permanently excluded frequency ranges . . . . . . . . . . . 141
B.2 Permanently excluded frequency ranges by CENELEC . . . . . . . . . . . . 142
B.3 Permanently or dynamically excluded frequency ranges by CENELEC . . . 143

xi





Abstract

During the past few years, Power Line Communications (PLC) have become a popular
connectivity solution to answer the growing need of home networks for bandwidth. As
wireless technologies, this solution spares the user from cabling its Local Area Network
(LAN), by directly using the home power grid as a transmission medium. While PLC
generally offer a larger coverage than Wireless Local Area Networks (WLAN), the capacity
offered by current systems is not sufficient to simultaneously support bandwidth intensive
streams. In this thesis, we aim at exploring various solutions for future PLC networks.
Firstly, we aim at improving the spectral efficiency of the current systems Physical (PHY)
layer, where two modulation schemes are compared. On the one hand, we study the
modulation deployed in current PLC networks, called windowed Orthogonal Frequency
Division Multiplexing (OFDM), and we highlight the main limitation of this solution in
the particular context of PLC. On the other hand, we show that and alternative solution,
called OFDM/Offset Quadrature Amplitude Modulation (OQAM), offers some degrees
of freedom which could highly benefit to PLC networks. Secondly, the study is oriented
toward the Media Access Control (MAC) layer of PLC systems, considering a multiuser
utilization of the network. In this second part, we aim at proposing allocation solutions
that will allow a more efficient utilization of the limited and shared transmission resource.
We firstly study the opportunity of defining an Orthogonal Frequency-Division Multiple
Access (OFDMA) transmission scheme for point-to-multipoint transmissions, in order to
increase data rates by taking advantage of the diversity between users’ channels. Finally,
the last chapter is dedicated to the study of broadcast and multicast communications in
PLC networks, where we show that a smart aggregation of the set of users to reach could
greatly improve the efficiency of multicast transmissions.
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Résumé

Ces dernières années, la technologie des courants porteurs en ligne (CPL) a fait son ap-
parition dans les réseaux domestiques afin de répondre au besoin grandissant de bande
passante. Comme pour les solutions sans-fil, cette technologie présente l’avantage de
ne pas nécessiter le déploiement de nouveaux câbles à l’intérieur de la maison, en util-
isant directement le réseau électrique comme milieu de transmission. Offrant une zone de
couverture plus importante que les réseaux Wi-Fi, les débits offerts par les équipements
actuels ne sont néanmoins pas suffisants pour supporter simultanément des applications
gourmandes en bande passante. Cette thèse vise donc à explorer différentes solutions pour
les futurs réseaux domestiques basés sur cette technologie. L’étude a d’abord été menée
au niveau de la couche Physique des systèmes, où deux solutions de transmission ont été
comparées. D’un côté, la modulation windowed OFDM, déployée dans la grande majorité
des réseaux actuels, est étudiée afin de mettre en avant ses limites dans le contexte par-
ticulier des réseaux sur courant porteur. Dans cette partie, nous montrons concrètement
le gain en capacité que pourrait apporter une modulation alternative, l’OFDM/OQAM,
présentant des degrés de liberté supplémentaires vis-à-vis de l’OFDM classique, et dont
l’exploitation s’avère particulièrement intéressante. Dans un second temps, la probléma-
tique de la couche MAC a été abordée dans le contexte d’une utilisation multi-usager
du réseau. L’objectif de cette seconde partie a été de proposer des solutions nouvelles
pour l’allocation et le partage de la ressource entre les différents utilisateurs du réseau.
Premièrement, nous étudions la possibilité de définir un nouveau mode d’accès, basé sur
l’OFDMA, permettant de tirer efficacement parti de la diversité entre différents canaux de
transmission, afin d’augmenter significativement les débits pour les transmissions point-
à-multipoint. Enfin, le dernier chapitre aborde le problème de la transmission multicast
inhérent aux réseaux PLC actuels, en proposant une méthode d’agrégation des utilisateurs
permettant une augmentation significative des débits.
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The notations used in this thesis are listed in below
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δ(t) Dirac delta function
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M set of subcarriers in both OFDM and OFDM/OQAM systems
(Card(M) = M)

Mu set of active subcarriers in both OFDM and OFDM/OQAM sys-
tems (in chapters 4 and 5, we set Mu = M)
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3
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Chapter 1

Introduction

The intense competition between the French Internet Service Providers (ISPs) has led
Orange to quickly expand its service offer during the last decade. This diversification
resulted in the release of the well-known triple play offer, gathering broadband Internet
Access, Internet Protocol Television (IPTV) and Voice over IP (VoIP) services. To differ-
entiate from its competitors, Orange keeps improving the variety of services included in
its Internet access offer. Moreover, Orange being the French historical operator, another
fundamental component of its strategy lies in the customer service it provides. As the
weakest link of the communication chain carrying the subscribed service is often the client
home network, Orange has a deep interest in mastering existing home connectivity solu-
tions. The past decade has seen the popularization of Asynchronous Digital Subscriber
Line (ADSL) offers, allowing up to 20 Mbps Internet accesses. Nowadays, customers can
obtain up to 100 Mbps Internet accesses with Fiber-To-The-Home (FTTH) offers. Conse-
quently, Orange can offer numerous multimedia services to its customers, such as Internet
Protocol Television (IPTV) or Video on Demand (VoD) services. Multimedia applications
are so popular that, according to [1], 37% of the overall Internet bandwidth is dedicated
to video applications. So, it appears that video streaming is one of the most popular
application. Nevertheless, it is also one of the most critical in terms of admissible delay
and requires high transmission capacity networks. So, in a context of multiple and het-
erogeneous streams circulating throughout the home, the LAN (Local Area Network) has
to provide enough capacity and some prioritization mechanisms to ensure that Quality of
Service (QoS) requirements are met.

Nowadays, the home connectivity market is dominated by two technologies. Firstly,
there is the Ethernet, wired technology providing a short-delay and high-capacity trans-
mission link [16]. However, this solution is mainly used to connect nearby devices because
homes are generally not natively wired with Ethernet. Secondly, to connect stations lo-
cated in separate rooms, 802.11-based wireless technologies [15] are generally preferred
to Ethernet. The popularity of Wi-Fi solutions has resulted in a high concentration of
wireless access points in urban areas [13], which drastically reduces the capacity and the
reliability of these networks. Consequently, this technology does not answer all the use
cases it may be subject to, especially when it comes to transmit services with strong QoS
requirements, such as videos streaming. Moreover, the coverage of wireless networks is
highly dependent on the walls thickness and on the distance between communicating sta-
tions, so that the whole home area may not be entirely covered. So, the current trend
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in the home networking field is to diversify the connectivity solutions, as tends to show
the ongoing IEEE P1905 standardization [40], which will result in the definition of a new
layer above the Medium Allocation Control (MAC) in order to abstract the underlying
connectivity solution.

In addition to WLAN technology, the PLC connectivity solution has appeared within
the home networking area to answer this increasing demand for bandwidth. As wireless
technologies, this solution spares the user from deploying new wires inside his home, while
expanding the coverage of his home network. PLC technology basically allows to trans-
form the home power grid into a wired Local Area Network (LAN). Current PLC devices
allow to reach physical data rates comprised between 200 and 500 Mbits/s. However, the
power line is a harsh transmission medium, such that the achieved data rates at the IP
layer rarely exceed 80 Mbits/s. Since 2005, France Télécom has been selling PLC de-
vices to its customers. They are generally sold by pairs and presented as a substitute to
Ethernet, when the set-top box (IPTV decoder) and router are too far apart for cable
connection. Yet, more than two PLC devices can be synchronized to allow the commu-
nications between multiple network hosts, transforming the electrical grid into a LAN.
However, because of the opportunistic access technique implemented in existing devices
and the lack of admission control policy, current PLC networks cannot always ensure that
the QoS requirements for constrained services delivery are met.

Therefore, we can highlight two main issues regarding PLC for current home networks.
Firstly, more efforts have to be made to increase their capacities: this issue is typically
related to the Physical (PHY) layer of the system. Secondly, the simultaneous presence
of heterogeneous data streams, with different bandwidth, delay or jitter requirements,
makes necessary the definition of better prioritization mechanisms and resource allocation
techniques. These functions are carried out by the Media Access Control (MAC) layer
of the networking device. So, this thesis aims at investigating various solutions address-
ing the aforementioned problems. Firstly, this study is focused toward the PHY layer of
current PLC systems. In chapter 3, we firstly highlight the limitations of the modulation
scheme that is used in current PLC networks, called windowed Orthogonal Frequency Di-
vision Multiplexing (OFDM) modulation. Then, we compare this modulation to another
Multi-Carrier Modulation (MCM) scheme, named OFDM Offset QAM (OFDM/OQAM),
highlighting its benefits in the PLC context. This work contributed to a deliverable within
the european FP7 project "OMEGA" [53], and resulted in the publication of three pa-
pers [28], [29], [32]. Then, in chapter 4, we aim at taking advantage of the frequency
diversity between the channels of different users to reach, defining an OFDMA transmis-
sion scheme that can significantly improve data rates in the case of point-to-multipoint
communications. In this part, we describe a method to optimally split the spectral re-
source between users in the case of quasi-static channels. Then, a suboptimal allocation
algorithm is developed and compared to the optimum. The OFDMA transmission scheme
is assessed using an ns-2 based PLC network simulator, which is described in Appendix A.
This chapter resulted in several paper publications and technical contributions [30], [31].
Finally, chapter 5 addresses the broadcast/multicast issue inherent in all current PLC net-
works. A first analysis is conducted using measured PLC channels, which is then extended
using simulated channels. In this fifth chapter, we describe an iterative method aiming at
improving the multicast data rate by splitting the set of stations to reach into multiple
multicast subsets. This chapter resulted in the publication of one paper [27] and several
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technical contributions related to this study were presented to the HPAV Technical Work-
ing Group (all contributions are listed on page 167). Finally, a conclusion is drawn on this
work, highlighting the issues left to address. In this final part, we also broaden the scope
of this study by showing the important role that could play PLC in future Convergent
Digital Home Networks (CDHNs).





Chapter 2

Broadband Power Line
Communications

2.1 Introduction

Power Line Communications (PLC) refer to any solution using the power grid as a telecom-
munication medium. If this technology has been the subject of a growing interest over
the last years, PLC is actually an old idea that dates back to the early 1900s, when the
first patents were filed in this area [58]. Electric utilities around the world have been
using this technology since then, using narrowband (NB) PLC solutions operating in the
low frequency bands (from 9 to 140 kHz), achieving data rates ranging from few bps to
a few kbps [105]. In this context, PLC is mainly used for remote metering and load con-
trol [98], [59]. The capability of remotely turning on/off appliances responsible for high
energy consumption was an important driver for the original interest in PLC. Since the
1930s, Ripple Carrier Signaling has been used to control peak events at demand side by is-
suing control signals to switch off heavy duty appliances [58]. This solution has been quite
successful, especially in Europe, and its use has been extended to include other applica-
tions such as day/night tariff switching, street light control, and control of the equipment
on the power grid.

The revolution of digital comunications, combined with the deregulation of the telecom-
munications market initiated in 1998 in Europe, has renewed the interest in PLC over the
last two decades. Indeed, according to [68], the traditional access networks represents
approximately 50% of the investments in the total network infrastructures. PLC being a
"no new wire" connectivity, this technology directly became a serious candidate for the
so-called "last mile" connectivity, denoted as "access PLC". Access PLC networks can be
realized using the medium and low-voltage power lines that feed homes as transmission
medium (see Fig. 2.1). In such a case, end users are connected to the network via a
PLC modem placed in the electrical power Meter unit (M, cf. Fig. 2.1) or connected
to any socket in the internal electrical network. On the other hand, in-home electrical
installations, that are naturally present in every home, can be used as a local area network
(LAN). This last application of the PLC technology is referred to as "indoor PLC".

In spite of the main advantages inherent in this technology, easy to access and cost
effective, PLC was not an immediate success. Actually, if we go several years back, this
technology was far from reaching an unanimous support in the scientific community, es-
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6 Broadband Power Line Communications

Figure 2.1: Structure of a PLC access network [68] (M: Meter Unit).

pecially as in this period wireless networks were also booming. Firstly, the power grid is
a harsh transmission medium, and the frequency selective nature of the channel demands
sophisticated technologies. Moreover, the PLC medium is subject to various forms of noise
(background white/colored, impulsive noise periodic/aperiodic, narrowband interference)
that require some special cares on signal processing. In addition to that, electrical wires
are not shielded, resulting in Electromagnetic Interference (EMI) that strongly limits the
maximum authorized power level for transmission, and making the medium also sensitive
to external interference sources. Another afflicting worry is that the power grid cannot
provide a dedicated link between transmitters. Since power line medium is shared within a
set of users, the signal generated by one user may interfere with the others that appear in
the same circuit, which makes the definition of efficient resource sharing policies of utmost
importance.

The multiple challenges that broadband PLC were originally facing has made this
study a hot topic in the communication area. More and more tracks concerning PLC have
emerged in several well-known international electrical engineering conferences (Interna-
tional Conference on Communications, Global Communications Conference...). Moreover,
an international symposium dedicated to PLC was created in 1997, as the International
Symposium on Power Line Communications and its applications (ISPLC), that is now sup-
ported by the IEEE Communication Society. This illustrates the growing interest in PLC
to provide high-rate data communications. Nowadays, a lot of applications may benefit
from PLC advancements, from Internet Access [86], to indoor wired Local Area Networks
(LANs) for residential and business premises, in-vehicle data communications [104] and
smart grid applications [41], [5], [26] (advanced metering and control, realtime energy
pricing, peak shaving, mains electricity monitoring, distributed energy generation, etc.).

In this Chapter, we provide an overview of broadband PLC networks. Firstly, the in-
home PLC medium is characterized by introducing various models of PLC channels and
noises that can be found in the litterature. Then, information related to regulatory issues
about EMI is given. Finally, we describe the HomePlug Audio/Video (HPAV) specification
for broadband in-home PLC networks, as it has been used as a baseline for this work.
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2.2 In-home PLC Environment Characterization

2.2.1 PLC Channel Modeling

One of the first problem to tackle when designing a telecommunication system is to model
the transmission channel. Consequently, many contributions in the field of broadband
PLC were primarily focused on this topic. In litterature, PLC channels models are split
into two categories. On the one hand, PLC channels can be modeled following a "bottom-
up" approach, as it was done in [72], [62], [36] or [63]. This approach considers the power
cables as two or Multi conductor Transmission Lines (MTL) [63], where the currents and
the voltages vary in magnitude and phase along the cables. If this kind of models has
the advantage of not requiring any field measurements, it needs a fine knowledge of the
transmission environnement, such as the network topology, the cable characteristics, or
the value of every terminating impedance at each network node. Consequently, a lack of
knowledge in these characteristics may severely degrade the model accuracy [63].

The "top-down" approach is the other way to model PLC channels, and is the most
widely used in the litterature [117], [95], [110], [61]. This approach firstly requires field
measurements in order to fix various parameters of analytical expressions of the PLC
channel. The "top-down" approach has the main advantage of not requiring knowledge of
network characteristics. Among the models that can be found in litterature, the funda-
mental Zimmermann’s model is one of the most famous. This model, originally proposed
in [117], highlights the multipath nature of the powerline network. It considers that each
cable derivation can be associated with a transmission and a reflection factors, and that
impedance mismatches at outlets can be associated with a reflection factor. The general
expression of the Zimmerman’s channel frequency transfer function reads:

H(f) =

NP∑
i=1

gi(f)A(f, di)e
−j2πfτi (2.1)

where Np is the number of signal paths, gi(f) is a complex and frequency dependent
weighting factor, τi is the delay of path i that depends upon the dielectric constant of
the conductor, and A(f, di) is the attenuation encountered over path i of length di and
at the frequency f . The attenuation in PLC actually corresponds to cable losses in the
electrical network. It has been shown in [117] that A(f, d) increases with frequency and
cable length, and can be written in the following closed form:

A(f, d) = e−(a0+a1fk)d, (2.2)

where parameters a0, a1 and k are the attenuation parameters that can be derived from
measured transfer functions.

Zimmermann’s model was used as a baseline to derive another PLC channel model
by Tonello in [110]. This model adds some statistical properties to the Zimmermann
one, by considering that some of its parameters can be modeled as random variables
following specific distribution functions. For example, it considers that the reflection
sources distribution over the power cables follows a Poisson law, and that the weighting
factor gi are complex random variables that are log-normally distributed in amplitude.
On the other hand, a0, a1 and k parameters have still constant values, and are fixed such
that the model fits with measured PLC channels.
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Figure 2.2: 3 realizations of PLC channels belonging to classes 1, 5 and 9, respectively.

In this thesis, we have used a third model of PLC channel model that also falls into
the "top-down" approach. This model, proposed by France Télécom in [109], [107] has the
peculiarity of being purely based upon field measurements. Based on a large set of measures
in different types of PLC environments, from the recent house in the country to the old
downtown apartment, a statistical analysis on these measures led to the classification of
the PLC channels into 9 classes, class 1 corresponding to the most disturbed channels
and class 9 covering the less disturbed ones. As the classification depends on the power
line circuit topology and on realistic living environments [108], this model is considered
as a fairly realistic in-home PLC model that truly captures the realistic channel features.
From those measured PLC channels, an average magnitude and phase model is built for
each class and multipath effects are introduced by means of a statistical-based channel
generator [106]. According to the desired channel class and bandwidth, the corresponding
channel realization is generated in frequency, as Fig. 2.2 illustrates.

2.2.2 Noise Sources

In addition to the multipath nature of the channel, various sources of noise combine, which
results in a transmission medium that is sometimes qualified as "horrible" [39]. In [116], 5
PLC noise sources are distinguished, which can be classified into 2 general categories: the
General Background Noise (GBN) and the impulsive noise.

The GBN is a combination of a colored background noise and narrowband interfer-
ence. The GBN usually remains stationary as it varies very slowly in terms of seconds,
minutes, and sometimes of hours. In [52], France Télécom developed a GBN model de-
rived from a statistical analysis of several measures realized in domestic environments. In
Fig. 2.3, the Power Spectral Density (PSD) representation of one realization of this GBN
model shows that it can be described as a combination of a static component following
an exponential decrease with frequency and a lot of narrowband interference components
randomly distributed across the spectrum. This noise generator also models the Frequency
Modulation (FM) broadcasting band.
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Figure 2.3: One realization of the colored noise model.

The second category gathers two kinds of impulsive noise that are highly time-dependent,
and can consequently cause dramatic drop in the PLC network performance. Firstly, there
is the periodic impulsive noise synchronous to the Alternating Current (AC) line cycle.
This type of noise is typically caused by rectifier diodes in power supplies which oper-
ate synchronously with the network main frequencies (50 or 60 Hz). Some sources are
thyristor- or triac-based electrical appliances such as light dimmers [67,117] which creates
impulses on every cycle or half cycle of the AC line period. However, the impulsive noise
category is largely dominated by the asynchronous impulsive noise type, which is, at the
same time, the most detrimental disturbance for data transmission. Indeed, because of its
unpredictable nature and its peculiar high amount of energy, it can cause the simultaneous
loss of multiple data segments in broadband PLC networks. In this thesis, the impulsive
noise is not considered as all simulations assume static PLC channels, using the France
Télécom’s GBN generator described in [52]. For the interested reader, novel methods to
mitigate the effect of impulsive noise in PLC networks were developed in [90] for instance.

2.3 Regulatory Authorities

Due to the lack of electromagnetic shielding of power lines, PLC are subject to severe
restrictions concerning the transmitted power level. The transmission mask that has to
be respected varies with the country. As our study used the HPAV specification as a
baseline [20], we used the US mask which is the one described in this specification (see
the Annex B.1 for more details about the protected applications). As we can see in Fig.
2.4, this mask limits the Power Spectral Density (PSD) to −50 dBm/Hz and imposes
several notches in which the PSD is limited to −80 dBm/Hz to avoid interfering with
other applications (such as amateur radio for instance). Considering the work conducted
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Figure 2.4: HPAV Spectral mask.

for the european FP7 "OMEGA" project [52], we extended this mask using frequencies
higher than 30 MHz, limiting the PSD to −80 dBm/Hz for the carriers located beyond
28 MHz, and stopping the signal just below the FM band, starting at 87.5 MHz. This
extended mask, presented in Fig. 3.21, is actually very similar to the mask defined by the
HPAV 2 specification.

However, a new transmission mask imposed by the Comitï¿1
2 Europï¿1

2en de Normal-
isation (CENELEC) is about to get released, and imposed to current PLC systems. This
mask, described in Annex B.2, adds a lot more notches to the north american one for
frequencies below 30 MHz, so that it may severely decrease the capacity of PLC networks
located in Europe (the impact of this new transmission mask on HPAV networks capacity
is assessed in the next Chapter).

2.4 Broadband PLC Specifications

The last decade has seen three industrial solution consortia competing to conquer the
broadband in-home PLC market: the HomePlug Powerline Alliance (HPA) [6], the High-
Definition Power Line Communications (HD-PLC) Alliance [3], and the Universal Pow-
erline Association (UPA) [14]. Consequently, the PLC market has been fragmented for
several years. Since 2010, when the UPA suspended its activities, the market has sta-
bilized, thanks to the release of the P1901 standard [7] conducted by the Institute of
Electrical and Electronics Engineers (IEEE).

In the attempt to define a standardized solution for broadband PLC networks, the
HPA was a precursor, and is still the most active organization. The alliance is a trade
organization, created in 2000 and gathering 60 member companies, from chip designers
such as Qualcomm Atheros [12] or Maxim [9], to manufacturers such as Devolo [2] or
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Lea [8], and also service providers like Orange. Twelve years ago, the alliance released
the first specification for in-home broadband powerline communications: the HomePlug
(HP) 1.0 specification [17]. These first broadband PLC systems directly showed their
good performance when compared to 802.11 wireless systems [80], [81]. HP 1.0 allows
PLC networks to reach data rates up to 14 Mbps in the [4, 21] MHz frequency range,
using an opportunistic channel access technique derived from the well-known Carrier Sense
Multiple Access / Collision Avoidance (CSMA/CA) used in 802.11 networks. However,
while HomePlug 1.0 enabled data networking throughout the home power grid, it was not
suitable for multimedia applications [76]. Indeed, multimedia applications not only require
significantly larger bandwidths, but also need Quality of Service (QoS) guarantees. To
address this class of applications, a new generation of the HomePlug Standard, HomePlug
AV (HPAV) [33], [4], was released by the alliance in 2005. HPAV-based PLC systems
theoretically offer up to 200 Mbps throughput and operate in the frequency range of
[1.8, 30] MHz [59]. Furthermore, the specification introduces a centralized Time Division
Multiple Access (TDMA) scheduling scheme for QoS provisioning. So, HPAV systems
offer a reliable solution to support multimedia applications over the power grid. Actually,
the success of HPAV-based PLC devices has made the specification a "de facto" standard.
In 2010, broadband home communications over power line were officially standardized
with the release of the IEEE P1901 standard [7]. P1901 uses HomePlug AV as baseline
technology but extends the bandwidth up to 50 MHz, allowing up to 500 Mbps data rates
at the physical layer. This standard has also the peculiarity of defining two different
PHY (physical) layers [65]. In addition to the windowed OFDM (Orthogonal Division
Frequency Multiplexing) scheme used in HPAV networks, P1901 defines an alternative
modulation technique, called Wavelet OFDM, defended by the HD-PLC consortium led
by Panasonic [64]. However, it seems that a large majority of P1901 systems only use the
windowed OFDM transmission scheme, as it ensures backward compatibility with HPAV
systems that are the most deployed PLC systems.

In 2009, the International Telecommunication Union (ITU) has issued the G.hn set of
standards for home networking over existing wires [91]. Basically, a single G.hn device is
able to network over any of the supported home wire types: telephone wiring, coaxial ca-
bles and power lines. There are great similarities with the IEEE solution, such that G.hn
systems should provide about the same performance. If the two solutions can coexist,
they are not compatible. G.hn developments are supported by a trade organization, the
HomeGrid forum, which is also in charge of certifying G.hn products. It is likely that first
HomeGrid certified products will appear this year. In comparison to HPAV, the major
benefit of the G.hn solution comes from the multiple media on which it can work. There-
fore, we could consider this standard as the most serious competitor to HPAV. However,
the IEEE P1905 working group [40] excluded G.hn from its scope in 2011. As P1905
seems to be quite a success, considering that products implementing it are currently being
launched on the market, G.hn could be definitely marginalized. Moreover, a new Home-
Plug standard, HPAV 2, was released in early 2012 [25]. Two main features differentiate
HPAV 1 from HPAV 2. Firstly, a significant capacity improvement is made possible by
extending the bandwidth up to 86 MHz. Secondly, it defines a Multiple Input Multiple
Output (MIMO) OFDM transmission scheme, enabled by the Line-Neutral coupling and
Line-Protective earth coupling used as two possible transmission paths. HPAV 2 networks
should theoretically provide ten times higher data rates than HPAV ones. Now that actors
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of the PLC industry are currently struggling to impose their solutions for the emerging
smart grid market [66], it seems that the HPA has definitely conquered the in-home broad-
band PLC market. So, in the following of this thesis, we will always focus on HPAV-based
PLC networks (AV1 and 2, and IEEE P1901).

2.5 Overview of HPAV-based Specifications

2.5.1 PLC Network Overview

The HPAV specification defines two network concepts: the Physical network and the
Logical network. The Physical network is the set of stations that can directly communicate,
meaning that its coverage depends on the characteristics of the transmission medium, as
well as the transmitted power. Consequently, it is relative to a given station, and may even
not be the same between two nearby PLC stations. Therefore, a first condition to be met
for two HPAV stations to communicate will obviously be that they both belong to the same
physical network. However, this condition is not sufficient to define an HPAV network.
Stations able to communicate with each other must belong to the same AV Logical Network
(AVLN), and possess a unique Terminal Equipment Identifier (TEI). The set of stations
in the same AVLN possesses the same network identifier, and their communications are
encrypted using the same encryption key. Moreover, the AVLN activity is coordinated
by a specific station, called the Central Coordinator (CCo), which provides the network
time basis, as well as optional QoS management services. Each node in an AV Logical
Network must have a minimum functionality, denoted as mandatory features, which can
be completed by optional features. The AVLN CCo is generally the station providing the
most advanced functionalities. In Fig. 2.5-(a) is presented a network configuration where
physical and logical networks are the same. In such a case, every station of the network is
able to communicate with any other station (they are all linked with bidirectional arrows).
Then, Fig. 2.5-(b) illustrates the case of two AVLNs where the two CCos can physically
communicate with each other. In such case, HPAV defines optional coordination functions
allowing the two CCos to negotiate the sharing of the transmission medium. Note that
two stations belonging to the same logical network will not be able to communicate with
each other if they are not in the same physical network, as it is shown in Fig. 2.5-(c). So,
the specification defines advanced capabilities where an AV station can act as a repeater
to retransmit data to hidden stations. As it remains an unlikely scenario to happen
considering the home networking area, to our knowledge, this feature is not implemented
in practice.

At the highest level of abstraction, an HomePlug AV system consists of the functional
blocks described in Fig. 2.6. On the transmit side:

• The Convergence Layer (CL) performs bridging, classification of traffic into connec-
tions, and data delivery smoothing functions.

• The MAC determines the correct position of transmission, formats data frames into
fixed-length entities for transmission on the channel and ensures timely and error-free
delivery through Automatic Repeat Request (ARQ).

• The PHY layer performs error-control correction, mapping into OFDM symbols, and
generation of time-domain waveforms.
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(a)

(b)

(c)

Figure 2.5: Examples of Physical and logical Networks [7].
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Figure 2.6: HPAV system block diagram overview [4].

On the receiver side, the corresponding functions are performed in reverse order.

2.5.2 Convergence Layer (CL)

The CL is the top portion of the HomePlug Data Link Layer (Layer 2). It is in charge of
formatting packets originating from higher layers or corresponding layers of the bridged
network (generally 802.3 LAN [16] or 802.11 WLAN [15]) before handing them to the
MAC layer. At the receiver side, the CL performs the reverse operation. It also classifies
incoming packets by matching them to established connections. A connection can be
automatically initiated by the convergence layer through an automatic connection service.
This may happen to ensure that QoS constraints are met for the delivery of time sensitive
applications, such as video streaming for instance. In such a case, the CL establishes,
maintains, and tears down connections for these flows. In addition, the CL monitors data
traffic to ensure that the QoS guarantees of a connection are being met. Finally, it provides
traffic smoothing services for jitter control.

2.5.3 MAC Layer

2.5.3.1 Channel Access Mechanisms

HPAV uses beacon-based periodic channel access mechanism. The beacon period can be
split into three main intervals: the beacon region, the CSMA region, and the reserved
region (cf. Fig. 2.7). The beacon region is reserved for the CCo to transmit the central
beacon of the AVLN. Basically, the beacon is a short frame periodically broadcasted by
the CCo that contains general information about the AVLN, such as its identifier or the
terminal identifier of the CCo. The beacon optionally contains scheduling information for
TDMA sessions within the beacon period. These sessions, associated to a unique connec-
tion identifier, are allocated time intervals within the reserved region. The duration of the
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Figure 2.7: HPAV Beacon period [87].

beacon period is twice that of an AC line cycle. Thus, the US 60 Hz AC line cycle will
result in a shorter beacon period (33.33 ms) than in Europe (50 Hz AC line cycle, resulting
in a beacon period of 40 ms). To share the transmission medium between the stations,
HPAV specification defines two channel access mechanisms, depending on the considered
region: CSMA/CA and TDMA.

CSMA/CA Channel Access

Firstly, HomePlug systems implement a distributed and contention-based access pro-
cedure, which is mandatory since the release of the HomePlug 1.0 specification [17]. As
in 802.11 WLAN, it is impossible to detect frame collisions in a PLC network. Therefore,
the CSMA/CA (Carrier Sense Multiple Access/Collision Avoidance) opportunistic access
technique, also used in 802.11 networks, was adopted by HomePlug standards [47]. Be-
fore contending for channel access, the transmitter must firstly listen to the state of the
medium. For this purpose, HomePlug defines a two-level carrier sense mechanism. Firstly,
the PHY layer realizes a Physical Carrier Sense (PCS) that detects priority resolution
symbols and frame preambles. Secondly, the MAC layer realizes a Virtual Carrier Sense
(VCS), by interpreting the frame control fields of detected frames to compute the expected
duration of the channel occupancy. VCS can also infer frame collisions events by detect-
ing the non-transmission of an expected acknowledgement. If the medium is busy (i.e.
some other station is transmitting), the station defers its transmission until the medium
becomes idle. On the other hand, if the medium is detected idle, the station will then
attempt to transmit.

Before stations start contending for channel access, HomePlug CSMA/CA defines a
Priority Resolution Period (PRP) for service differentiation purpose. This is the first
difference with 802.11 CSMA/CA mechanism [15]. When a PLC station receives payload
data from a Higher Layer Entity (HLE), packets are assigned a Channel Access Priority
(CAP) among 4 possible values, from the lowest priority CAP0, to the highest priority
CAP3. The priority allocation depends on the traffic type, and is based upon the 802.1D
standard [19]. The PRP is composed of two Priority Resolution Slots, PRS0 and PRS1,
corresponding to the transmission of two OFDM symbols (cf. CSMA region depicted in
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Figure 2.8: Priority Resolution Period (PRP).

Fig. 2.7). These two slots allow stations to assert their flow priorities on the medium,
following the scheme depicted in Fig. 2.8. The first slot PRS0 is only filled by CAP2 and
CAP3 contending stations. In such a case, CAP0 and CAP1 stations defer their access to
a next transmission opportunity and the slot PRS1 will resolve priority accesses between
CAP2 and CAP3 contending stations. If there is no CAP2 or CAP3 flow, the second slot
PRS1 will resolve the priority access between stations contending at CAP0 and CAP1.
Therefore, PRP ensures that only the stations with the highest priority traffic to send
may contend for the medium in the contention period.

After the PRP comes the contention period, where a random backoff algorithm is used
to disperse the times at which stations with queued frames attempt to transmit. This
process allows to reduce the probability of collision between contending nodes, as each
station determines a random time to wait before deciding to transmit. The second main
difference between HomePlug and Wi-Fi CSMA/CA lies in their backoff algorithms, as
HomePlug systems maintain three counters [73] instead of two, as the conventional IEEE
802.11 CSMA/CA [15]. The three counters are the Backoff Counter (BC), the Backoff
Procedure event Counter (BPC) and, the new one, the Deferral Counter (DC). The BC
corresponds to the number of contention slots the station has to wait, and it is set to any
random value in the range [0, CW], where CW denotes the contention window size defined
according to the transmission CAP and the number of transmission BPC (see Table 2.1).
If the medium remains idle for a slot time, all contending stations decrement their BC
while DC remains fixed. The first station whose BC reaches 0 gains access to the medium,
and the transmission occurs. If the transmission is successful, BPC is reset to 0 for the
next frame transmission. During the contention period, if the carrier sense reports that
the medium state has become busy, the contending stations pause their BC and DC is
decreased by one. Whenever a station experiences a collision, its BPC increases, and BC
and DC are reset according to Table 2.1 schedule. The peculiarity of the HomePlug backoff
procedure lies in the fact that BPC is also incremented by 1 if DC reaches 0. Thus, it
allows to use the deferral information to reduce the collision probability (the higher is the
number of contending stations, the more likely the DC will reach 0).
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Table 2.1: CW and DC as a function of BPC and priority [17]
CAP2 and CAP3 CAP0 and CAP1

BPC = 0 CW = 7, DC = 0 CW = 7, DC = 0

BPC = 1 CW = 15, DC = 1 CW = 15, DC = 1

BPC = 2 CW = 15, DC = 3 CW = 31, DC = 3

BPC = 3 CW = 31, DC = 15 CW = 63, DC = 15

TDMA in the Contention Free Period

If HomePlug CSMA/CA allows to differentiate applications using 4 different CAP
values, there can never be QoS guarantees. Therefore, the HPAV specification introduced
a contention free period using Time Division Multiple Access (TDMA) [59] (cf. Fig. 2.7).
If a HLE or the CL wants to ensure a certain QoS level for a particular application,
it requests the Connection Manager (CM) to establish a dedicated connection (the CM
entity is presented in Fig. 2.9). Within an HPAV network, a connection corresponds to
one or several links, depending on the unicast or multicast/broadcast nature of the flow,
as well as the connection itself, which can be either unidirectional or bi-directional. Each
link is uniquely identified in the AVLN thanks to its Link Identifier (LID), and can be
either local or global. On the one hand, services using local links are directly monitored
by the CM involved in the connection, and are transmitted in the CSMA region. On
the other hand, global links are allocated by the CCo, at the source CM’s request, which
will then define a dedicated time interval for transmission within the Reserved Region.
Based on the specifications of the requested connection, the CM can decide if a local or
a global link should be used. TDMA sessions are directly monitored by the CCo, which
announces TDMA schedules within the periodically transmitted beacon. As the CCo can
retrieve information such as the number of pending packets left to transmit, as well as
an estimation of the link data rate, it can adapt the TDMA interval length to maintain
the desired level of QoS. Furthermore, HPAV introduced a persistent schedule technique
allowing a station to still be able to precisely transmit in the slots it has been allocated by
the CCo, even if it missed several beacons [74]. Within the home networking area, TDMA
allocations are particularly suited to transport multicast video services, such as IPTV, as
they need significant bandwidth and low latency delivery. However, TDMA channel access
being an optional feature, most of current HPAV based systems only use CSMA/CA.

2.5.3.2 Framing Processes

Fig. 2.9 represents the protocol layer architecture of an HPAV system. The HPAV protocol
stack can be split into two functional areas: the control plane and the data plane. Protocol
entities that are involved in creating, managing and terminating the flow of data make up
the control plane. The HPAV control plane is entirely contained in the CM entity. On the
other hand, protocol entities involved in the transfer of user payload make up the data
plane. The data plane defines the packets process chain, received from particular HLE at
a dedicated Service Access Point (SAP), to the delivery of packets to the addressed HLE.
Thus, it includes the HPAV MAC frame generation that will be part of a MAC frame
stream, as well as the segmentation and encapsulation processes of this stream. In other
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Figure 2.9: HPAV protocol layer architecture [87].

words, the data plane defines all functions that will process user data in the PLC network.
These processes are detailed in the following.

HPAV MAC frame

HPAV distinguishes two types of MAC frames. On the one hand, there are MAC
frames that encapsulate user payload, also called the MAC Service Data Unit (MSDU)
payload. Note that a MSDU corresponds to data the overlying layer has requested the
MAC to process, that is passed through the Data SAP at the M1 interface (see Fig. 2.6).
On the other hand, MAC frames can encapsulate MSDUs that do not carry user payload:
these are management messages, which come from the HPAV station itself (CM to CM
communications, CM to CCo communications...). The MAC frame format is depicted in
Fig. 2.10. It is prefixed by a 2-byte header, carrying information about the validity of the
MAC frame, the presence or absence of an Arrival Time Stamp (ATS), and the length of
the frame. An optional 4-byte ATS can be used by connection oriented transmissions, for
jitter control purposes. In the case of management messages, the ATS is replaced by a
random confounder that improves the encryption robustness against attacks. Then, the
MAC frame either encapsulates MSDU payload or a management message, on which is
computed a Integrity Check Value (ICV) that constitutes the last field of the MAC frame.

MAC Framing is a process by which MAC frames are enqueued in independent MAC
frame streams (cf. Fig. 2.11). The HPAV MAC segregates MAC frames carrying MSDU
payload based on the Destination TEI (DTEI), LID-tuple with which they are associated.
MAC frames carrying MSDU payload and belonging to the same DTEI, LID are concate-
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Figure 2.10: MAC frame format [4] [7].

Figure 2.11: MAC frame stream generation.

nated to form a MAC frame stream, referred to as a "data stream". Concerning MAC
frames carrying management messages, they are segregated simply using the DTEI with
which they are associated. MAC frames carrying management messages and belonging to
the same DTEI are also concatenated to form a MAC Frame Stream, but these streams
are referred to as "Management Streams".

Segmentation

As it has been described in the previous section, using the MAC framing process,
MAC frames are generated from MSDUs and multiple MAC frames that belong to the
same stream are concatenated into MAC frame streams. The next step is to segment each
MAC frame stream into 512-byte segments (cf. Fig. 2.12). These segments will be part
of the MAC Protocol Data Unit (MPDU) payload. The segment can be considered as the
basic transmitted entity, as each segment maps onto a single Forward Error Correction
(FEC) block. Since PHY errors occur on a FEC block basis, segmentation ensures that
only corrupted data will be retransmitted. Once a segment is generated from a MAC
frame stream, it is firstly encrypted using the Network Encryption Key (NEK) of the
AVLN. Then, it is encapsulated in Physical Block (PB), where it will constitute the PB
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Figure 2.12: Construction of a MPDU.

Body (PBB). In Fig. 2.13 are presented the 520-byte and 136-byte PB (136-byte PBs can
only be used for management purposes). The PB header contains the segment number,
which is used for reassembly purposes, and the size of payload data it contains (the last
segment may be padded). Finally, a PB Check Sequence (PBCS) is added to check data
integrity at the receiver side.

Each time a station gains access to the channel, the number of transmitted segments
is limited by the channel quality, the chosen FEC rate, and the maximum window of time
the station is allowed to keep the channel (not the same in CSMA and TDMA regions).
The segmentation process aims at improving the MAC efficiency, as it breaks dependency
between the length of received MAC frame at M1 interface (see Fig. 2.6) and the trans-
mission constraints inherent in the PLC network. Indeed, only part of MAC frames can be
transported thanks to segmentation. However, segmentation increases complexity at the
receiver side, where a reassembly process has to be performed to reconstruct the original
MAC frame before handing it to the CL.

2.5.3.3 MPDU Format

The MPDU corresponds to the basic entity MAC layers of communicating stations will
exchange. An MPDU is always prefixed by Frame Control (FC) information, and option-
ally followed by payload data containing segmented MSDUs. FC is used to communicate
critical information to the receiver(s), such as the source and destination addresses, the
frame duration, the tone map to use (cf. section 2.5.4.1)... HPAV defines four different
MPDU frame formats (1), depicted in Fig. 2.14, depending on whether it carries MPDU
payload or not, and if the AVLN is set in "AV only" or "Hybrid" mode. A short MPDU

(1)Note that HPAV 2 has added two new frame formats by defining a short delimiter used both for
synchronization purposes and to transmit FC information. Therefore, it results in a reduced overhead,
and can be used with both short and long MPDUs.
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Figure 2.13: 520-byte and 136-byte PBs.

Figure 2.14: MPDU frame format: AV only mode on the left; Hybrid mode on the right [7].

only carries FC information. The Selective ACK (SACK) frames, communicating the
correctness of the frame reception, and the Sounding (SOUND) frames, used for channel
estimation purposes, use short MPDUs and therefore only carry FC information. On the
other hand, a long MPDU also carries payload data. They are prefixed by FC information,
followed by concatenated PBs, either carrying user or management data. If the AVLN is
set in "AV only" mode, only HPAV-based stations are associated and authenticated in the
network. If the AVLN is set in "Hybrid" mode, 25 bits of HomePlug 1.0.1 FC information
are added to the HPAV FC, in order to be compatible with HP 1.0.1 legacy devices.

2.5.4 Physical Layer

2.5.4.1 Link Adaptation

The frequency selective nature of the PLC channel naturally led to choose Multicarrier
Modulation (MCM) techniques, the most famous representant of this set being the Or-
thogonal Frequency Division Multiplexing (OFDM) modulation. However, the restrictive
spectral mask imposed to PLC systems (cf. section 2.3) makes the classical OFDM, using
a rectangular window, far from the optimal solution because of the bad spectral contain-
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ment of the subcarriers(2). So, HPAV uses a windowed OFDM modulation allowing to fit
into the mask without losing too much spectral efficiency. In addition, the quasi-static
nature of the PLC channel allows stations to adapt the transmitted signal to it [77]. In-
deed, thanks to bit-loading algorithms, the number of bits transmitted on each active
subcarrier is flexible and will depend upon the transmission environment. So, before two
stations can start exchanging user data, the capacity of the link between the two nodes
needs to be estimated. This process is performed at the receiver side, which computes the
channel capacity thanks to specific "Sound" MPDUs, known by all HPAV stations. This
stage results in the definition of a table describing the modulation orders to be used per
subcarrier, also called a tone map, that the receiver will communicate to the transmitter.
User data will then be transmitted by mapping the PBs on OFDM symbols following the
dedicated tone map to the link. Note that the channel estimation procedure does not
uniquely limit to the definition of a tone map. It is always associated with a FEC rate
and a Guard Interval (see Chapter 3) to be used on the link.

While all active links of the AVLN are given a default tone map that can be used
in any portion of the beacon period, HPAV allows the definition of mutiple tone maps
per link. Indeed, channel and noise characteristics over powerlines tend to be periodic
with respect to the underlying AC line cycle [70], [42], [49]. Therefore, it is possible for a
tone map to be only made valid for a specific region of the beacon period. This feature
is extremely useful in the case where short intervals of the AC line cycle are subject to
periodic impulsive noise, as it avoids choosing the "worst case" PHY parameters within the
considered period. However, if this adaptation to the channel capacity allows to approach
the theoretical capacity of the channel at a given moment, there will obviously be a tradeoff
involved in the choice of number of regions and the system performance/complexity, as it
was shown in [75]. Moreover, the PB error rate is always monitored at the receiver side to
adapt to unexpected variations of the channel, by communicating slight modifications of
the current tone map to the transmitter.

2.5.4.2 PPDU Format

The PHY Protocol Data Unit (PPDU) corresponds to the physical entity that is ex-
changed between stations on the transmission medium. PPDUs are generated by the
Physical (PHY) layer, which are then transmitted on the power line. Fig. 2.15 presents
the transmission scheme that is used when an HPAV network is set in "HPAV only"
mode. In this mode, the PPDU firstly consists of a preamble that is used by the receiver
for detection and synchronization purposes. The preamble is followed by FC fields that
are used by the MAC for management purposes. As FC contains critical information,
it is transmitted using a Robust OFDM (ROBO) modulation scheme that ensures error
free transmissions, by applying a low modulation order on every subcarrier of the OFDM
symbol and by repeating information data several times. Note that the ROBO mode is
also used for beacon transmissions, exchange of management messages and broadcast and
multicast communication. FC is followed by the MPDU payload consisting of one or more
forward error coded PBs. PBs are mapped on bit-loaded OFDM symbols, following the
tone map dedicated to the link. When a station gains access to the medium, the maximum
window that is allocated for transmission is limited. Considering the CSMA region, this

(2)Note that this section only gives a general overview of the frame formats exchanged between PHY
layers. The windowed OFDM modulation is studied in Chapter 3.
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Figure 2.15: The HPAV transmission scheme (AV only mode).

window must not exceed 2.5 ms in order to limit the effect of collisions on the network
(inside the TDMA region, this limit is extended to 5 ms). HomePlug AV uses Automatic
Repeat reQuest (ARQ) at a segment level. As segments are numbered, corrupted PBs are
identified at the receiver side. If errors occur during a transmission, the receiving station
communicates which PBs must be retransmitted through the SACK frame that follows
every point-to-point transmission. Finally, note that PLC networks may be subject to
the hidden node problem, as the signal may be strongly attenuated. In such a case, it
is possible to use a Request To Send (RTS)/Clear To Send (CTS) mechanism, as it is
done in 802.11 networks. RTS and CTS frames offer a much better protection against
collison. Before a payload transmission can occur, the transmitter sends a RTS frame and
the station addressed responds with a CTS frame. Only then will the initiator send the
data frame intended for the addressed station. With these two short and robust frames,
all stations in the initiator and the replier’s Phy networks are refrained from transmitting.

2.6 Conclusion

In this Chapter, an overview of the in-home PLC environment has been proposed. The
multipath nature of the channel and the various sources of interference make it a very harsh
transmission medium. Therefore, current broadband PLC networks, mostly following the
HPAV specification, must implement advanced transmission techniques to ensure reliable
message deliveries. On the Physical layer, an OFDM-based modulation scheme is used
to fight interference caused by multipath propagation, and the MAC layer implements
ARQ mechanisms allowing to efficiently react to unexpected events, such as asynchronous
impulsive noise.

Nevertheless, HPAV networks cannot answer to all the use cases current home net-
works may be subject to, as the network capacity is easily reached as soon as multiple
bandwidth-greedy streams are launched simultaneously (e.g. HD videos, file transfers...).
So, increasing the capacity of PLC networks is still a high-priority necessity and that is
why the HPAV 2 specification extends the current bandwidth used by HPAV.

In the following of this document, the France Télécom PLC channel generator [106]
and the Omega GBN model proposed in [52] are used as reference models.





Chapter 3

Capacity Analysis in the HomePlug
AV1 and AV2 contexts

3.1 Preliminary

3.1.1 Context of this Study: the OMEGA Project

The work presented in this Chapter was conducted for an FP7-supported project, called
OMEGA [51], that Orange has led from January 2008 to December 2010. OMEGA is one
of the roots of the current IEEE P1905 standardization effort that is mainly supported
by Orange and Qualcomm. The goal of this project was to set a new standard for home
networks that would take advantage of existing connectivity solutions present in the Home
area, including Wi-Fi, Ethernet or PLC, as well as emerging technologies, such as Visible
Light Communication (VLC) or 60 GHz Wireless Personal Area Networks (WPAN). The
capacity target for OMEGA networks is to provide 1 Gbps LANs everywhere in the home
by combining these various technologies. The core of this project concerns the definition of
a so-called "inter-MAC", a layer 2.5 that allows to hide the heterogeneity of the underlying
connectivity solutions to any HLE. This inter-MAC is in charge of forwarding incoming
packets to the appropriate interface, depending on the destination to reach, as well as
associating a packet to the appropriate service class from which it belongs to. OMEGA
networks also define end-to-end QoS and security supports to deliver constrained services.
Another benefit of this new layer concerns the home network area extension, thanks to
inter-technology bridging. In addition, the reliability can be improved by taking advan-
tage of path redundancy in the heterogeneous network. Broadband PLC was one of the
studied connectivity solutions, and this Chapter presents part of the propositions made by
Orange to improve the Physical layer of PLC networks [53]. This work led to publications
in [28], [29] and [32]. When this study was conducted in 2009 and at the beginning of 2010,
HPAV was undoubtedly the most implemented specification in broadband PLC systems.
Therefore, this specification was naturally chosen as baseline technology to establish com-
parisons. Since the release of the HPAV specification in 2005, PLC has been considered
as a viable solution to deliver multimedia services throughout the home. However, consid-
ering the maximum 200 Mbps that HPAV networks can provide at the physical layer, a
significant effort had to be made to extend this capacity to reach OMEGA 1 Gbps target.
So, the goal of this study was to firstly extend the useful bandwidth of PLC networks up

25
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to 87.5 MHz, which corresponds pretty much to the maximum bandwidth that will use
future HPAV 2 systems (up to 86 MHz). Secondly, we aim at investigating an alternate
modulation solution, called OFDM/OQAM, that holds very interesting properties in the
particular context of powerline communications.

3.1.2 What Modulation Scheme for Broadband PLC Networks?

While the potential benefits of the technology are well identified, PLC posed several chal-
lenges to the researchers community. Indeed, the power grid is clearly not designed to
support broadband communications. On the one hand, the medium is strongly disturbed,
being subject to different kinds of interference and, on the other hand, the electromagnetic
radiations induced by power lines strongly limit the maximum authorized power level at
the transmitter side. Moreover, protecting the multiple radio applications located in the
[1.8; 30] MHz band resulted in the definition of a quite severe transmission mask (see
section 2.4 on page 10). The frequency selective nature of the PLC channel makes MCM
techniques a natural choice. However, the most famous representant of this set, known as
the Orthogonal Frequency Division Multiplexing (OFDM) modulation, defines rectangu-
larly shaped symbols, resulting in badly localized subcarriers in frequency. Consequently,
this scheme is clearly not adapted to the restrictive spectral mask imposed to PLC systems
because a large number of subcarriers would have to be switched off in order to generate
a signal which PSD fits into the mask. So, HPAV defines a windowed OFDM modulation,
derived from the CP-OFDM scheme (OFDM with Cyclic Prefix), allowing to fit into the
transmission mask without losing too much spectral efficiency. However, with windowed
OFDM, the effective protection against Inter-Symbol Interference (ISI) and Inter-Carrier
Interference (ICI) is reduced in proportion of the Roll-off Interval (RI) length required
for the windowing operation. Consequently, other solutions have been proposed. For
example, Filtered Multi Tone (FMT) was studied in the scope of OMEGA as it can pro-
vide efficient notching in frequency [53], the counterpart of it being that it introduces an
overhead because of the oversampling factor. Considering the IEEE P1901 standard [7],
an alternative MCM scheme to the HPAV windowed OFDM was proposed: the Wavelet
OFDM modulation. This solution can achieve deeper notches than traditional OFDM
and does not require any guard interval. Wavelet OFDM is actually really close to the
scheme we present in the following, called OFDM/OQAM, where OQAM stands for Offset
Quadrature Amplitude Modulation [100], or Hermitian Symmetric OQAM (HS-OQAM)
(Hermitian Symmetric version of OFDM/OQAM) [83]. In this chapter, we are going to
show that this modulation offers a good response to PLC requirements by bringing major
advantages compared to windowed OFDM. Since OFDM/OQAM relaxes the orthogonal-
ity condition in the real field, the shaping of the OQAM symbols is allowed so that a better
selectivity in frequency can be obtained. So, it seems obvious that the degree of freedom
offered by OFDM/OQAM in the pulse shaping can be easily exploited in the PLC context
to perfectly fit into the spectral mask imposed by the authorities. Moreover, HS-OQAM
does not use any CP, which naturally leads to a higher throughput, the counterpart of this
being an increased sensitivity to ISI and ICI compared to windowed OFDM.

The benefit of OFDM/OQAM considering the spectral notching imposed to PLC sys-
tems was originally highlighted in [102]. Furthermore, this Chapter can be considered as
an extension of the work presented in [84], in which a comparison between OFDM and
HS-OQAM had been conducted. We extend this work by firstly comparing HS-OQAM to
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the windowed OFDM scheme defined by the HPAV specification. We then compare the
two modulation schemes in a useful bandwidth going up to 87.5 MHz, that will be referred
to as the HPAV 2 context. But before interesting ourselves to the results of this compari-
son, we firstly present the windowed OFDM modulation used in HPAV networks, and we
highlight the inherent limitations of this scheme. Then, we introduce the OFDM/OQAM
modulation, presenting its main principle. A main advantage of this modulation comes
from the latitude it gives in the shaping of the prototype filters. So, a section is dedicated
to highlight the set of filters that are the most appropriate in the PLC context. We also
evaluate the opportunity to associate OFDM/OQAM with a slightly more complex equal-
ization technique than the 1-tap Zero Forcing (ZF) that is classically used with OFDM
modulation. Finally, the comparison between the achievable throughput of the two modu-
lation schemes is performed following the HPAV 1 and HPAV 2 specifications, considering
various channel conditions.

3.1.3 Transmission Capacity and Achievable Throughput

The HPAV specification offers the possibility to finely adapt the transmitted signal to the
channel. This process, performed at the receiver side after sounding the channel linking two
communicating stations, consists in finding the optimal combination of the FEC rate, the
Guard Interval (GI) length and, the appropriate QAM constellation for each subcarrier,
according to a target error rate. In the following, we only consider this last process,
called bit-loading. Applying a bit-loading algorithm on a particular channel results in
the definition of a "tone map", that describes the number of carried bits per subcarrier
on the frequency multiplex. To evaluate the quality of the m-th subchannel, the Signal
to Interference plus Noise Ratio (SINR) needs to be evaluated after equalization. This
metric depends upon the attenuation, the interference and the noise levels affecting the
m-th subchannel ∀m ∈ M, with M = {1, ..,M}. Assuming an OFDM system associated
with a 1-tap ZF equalization, it can be approximated as [99], [92]:

SINR[m] ≈ σ2
c

σ2
n[m]

|Hm|2 +
PISI+ICI[m]

|Hm|2
(3.1)

in which σ2
c denotes the variance of the transmitted symbols and Hm, σ2

n[m] and PISI+ICI[m]
are the frequency channel coefficients, the colored noise level and the interference level at
the m-th subcarrier, respectively. Concerning the interference term, it directly depends
upon the considered modulation scheme. In section 3.2.3 [28], we highlight the interference
that may be created because of the windowing process that is performed by HPAV systems.
In section 3.3.2.2, we establish a generalized expression of the OFDM/OQAM interference
term. Then, to evaluate the number of bits that can be transmitted in a given subchannel,
we use the capacity formula (in bits/symbol) that reads, for the m-th subchannel:

C[m] = log2

(
1 +

SINR[m]

Γ

)
(3.2)

where Γ is the SINR gap defined for a target Symbol Error Rate (SER) by [48]:

Γ =
1

3

[
Q−1

(
SER
4

)]2
(3.3)
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in which Q−1(x) is the inverse tail probability of the standard normal distribution. Then
the transmission capacity (in bits/second), assuming constellations of infinite granularity,
meaning that each subcarrier can carry a fractional and unbounded number of bits, can
be obtained with the following formula:

Dinf gran =
∑

m∈Mu

F0
M

M + LGI
C[m] (3.4)

where F0 = 24.414 kHz is the frequency spacing between two subcarriers, LGI is the Guard
Interval length in samples (cf. section 3.2.1), and Mu is the set of active tones (917 in
HPAV using windowed OFDM). Note that this bit-loading algorithm only guarantees a
peak SER condition per subcarrier. However, the choice of a given bit-loading algorithm
will not significantly impact the comparison presented in this Chapter. Note also that the
HPAV specification defines GI either lasting 5.56 μs, 7.56 μs or 47.12 μs corresponding
to 417, 567 and 3534 samples, respectively. It has been shown that using a GI ensuring
ISI-free transmissions does not necessarily lead to a maximization of the capacity [54].
According to our simulations, the smallest GI always provided better results in spite of an
increased interference term. So, in all our simulations, we fixed LGI to 417 samples not to
penalize the windowed OFDM modulation, compared to OFDM/OQAM.

In practice, only an integer and bounded number of bits per subcarrier can be transmit-
ted, such that the achievable throughput, also denoted as the PHY data rate, is expressed
as follows:

DPHY =
∑

m∈Mu

F0
M

M + LGI
T [m], (3.5)

where T [m] is the tone map dedicated to the considered channel that gives the actual
number of carried bits per subcarrier:

T [m] = argmax
b∈Econst

{b|b ≤ C[m]}, ∀m ∈ Mu, (3.6)

where Econst contains the actual number of bits a single subcarrier can carry. Considering
HPAV specification, the possible constellations are BPSK, 4-QAM, 8-PSK, 16-QAM, 64-
QAM, 256-QAM and 1024-QAM. So, we have Econst = {1, 2, 3, 4, 6, 8, 10}, with bmax =
max{Econst} = 10.

3.2 Windowed OFDM: Study and Analysis of the HPAV
Modulation Scheme

3.2.1 OFDM Principle

The multipath nature of the PLC channel appears through frequency fadings that result
from the combinations of the multiple received signal echoes. Depending on the considered
frequency, the phase shift between the different paths may result in either destructive
or constructive combinations. The channel delay spread, representing the time window
during which an energy impulse is spread when passing through the channel, is directly
related to the number of frequency fadings: a simple rule states that the periodicity of the
frequency fadings is inversely proportional to the channel delay spread. The multipath
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Figure 3.1: CP-OFDM timing.

Figure 3.2: Efficient Implementation of CP-OFDM [82].

characteristic of the PLC channel has strong implications on the dimensioning of the
transmitted signal. Indeed, if we use a single carrier modulation over a frequency selective
channel, performant equalization techniques must be used to mitigate the signal distortion
caused by the channel, as well as to cancel ISI caused by replicates of the previously
transmitted symbols on the current symbol to estimate.

Instead of using single carrier modulations, the OFDM modulation can provide an effi-
cient and simple alternative to provide broadband communication over frequency selective
channels. The main concept of OFDM lies in the choice that is made of transmitting
simultaneously M symbols over M slowly modulated subcarriers of frequency spacing
F0 = 1

T0
, T0 being the OFDM symbol duration. The idea behind OFDM modulation is

that the wideband channel is divided into narrow band sub-channels so that each sub-
channel stream experiences a quasi flat frequency response. Moreover, as the interference
is only located at the beginning of the transmitted symbol, it can be totally suppressed
using a Guard Interval that will absorb all replicates of the previous OFDM symbol. Gen-
erally, the GI is constructed by prefixing each OFDM symbol with a so-called Cyclic-Prefix
(CP), by adding the end of the transmitted symbol before its start to absorb the interfer-
ence induced by the dispersive channel (ICI and ISI). In addition to isolating interference,
the CP reduces the receiver sensitivity to time synchronization errors. Considering an
interference-free transmission, CP-OFDM only needs a simple ZF equalization to be per-
formed at the receiver side, multiplying each subcarrier by the inverse of the estimated
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subchannel coefficient. Fig. 3.1 highlights the CP-OFDM timing, that includes the actual
OFDM symbol of duration T0, prefixed by its GI.

OFDM uses the principle of Fourier series decomposition allowing to express any peri-
odic signal by projecting it on an orthogonal basis of sine and cosine functions. To generate
an OFDM signal, an M -dimensional basis of orthogonal cosine and sine functions using
a fundamental frequency of F0 and the following overtones is needed. Then, the in-phase
and quadrature components at each frequency can be used as independent subchannels to
transmit complex symbols. Finally, the continuous time expression of a baseband OFDM
signal can be simply written as the Inverse Fourier Transform of the M complex symbols
simultaneously transmitted in the frequency multiplex:

s (t) =

M−1∑
m=0

∑
n∈Z

cm,nΠT0 (t− nT0) e
j2πmF0t, (3.7)

where cm,n = cRm,n + jcIm,n is the complex-valued QAM symbol transmitted over the m-
th subcarrier of the n-th OFDM symbol, and where ΠT0 (t) is the rectangular function,
equal to 1 for t ∈ [0, T0] and 0 elsewhere. However, as it was aforementioned, OFDM is
classically associated with a CP, so that the CP-OFDM signal simply reads:

s (t) =
M−1∑
m=0

∑
n∈Z

cm,nΠT0+GI (t− n(T0 + GI)) ej2πmF0t. (3.8)

In practice, the OFDM signal is generated as depicted on Fig. 3.2, using the Inverse Fast
Fourier Transform (IFFT) algorithm, resulting in a discrete time signal composed of M
samples. The last LGI samples are then copied before the first sample, resulting in the
discrete CP-OFDM signal that reads:

s [k] =

M−1∑
m=0

∑
n∈Z

cm,nΠM+LGI [k − n(M + LGI)] e
j2π km

M , (3.9)

where ΠM+LGI [k − n(M + LGI)] corresponds to the discrete rectangular function, equal
to 1 for k ∈ {1, ..,M + LGI} and 0 elsewhere. After a parallel to serial conversion, the
M + LGI samples are passed through a Digital to Analog Converter (DAC) to generate
the continuous signal. At the receiver side, the inverse operation is performed, by firstly
removing the GI and computing an M -point Fast Fourier Transform (FFT) with the M
remaining samples. Note that, if we consider the general case, (3.8) is a complex-valued
signal as it is not hermitian symmetric. In order to directly generate a real baseband
signal, the IFFT size is generally doubled to impose the following condition at the IFFT
input: {

cm,n = c∗M−m,n

c0,n = cM/2,n = 0
(3.10)

If we take a closer look to each subcarrier signal spectrum around a subset of sub-
carriers, as Fig. 3.3 shows, we easily verify the orthogonality in frequency. Indeed, at
each subcarrier frequency (dot on the peak), all other subcarriers do not contribute to the
overall waveform (dot at zero). The spectral efficiency of OFDM directly comes from this
orthogonality condition being verified between the M adjacent subcarriers. On the other
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Figure 3.3: Frequency Orthogonality of an OFDM Signal.

hand, Fig. 3.3 also highlights two main drawbacks of this modulation. Firstly, OFDM
is sensitive to frequency shifts, which cause Inter Carrier Interference. ICI is classically
caused by frequency synchronisation offset between transmitters, or by the presence of
Doppler effect causing frequency spreading of the energy. Secondly, if the OFDM symbols
are well localized in time using periodic rectangular windows, ensuring the time orthogo-
nality between consecutive symbols, this results in badly contained subcarriers following
a sinc function in frequency. As we will see in the following, this constitutes a main
limitation for the classical OFDM modulation in the context of PLC.

3.2.2 The Windowed OFDM Modulation

The radiated power induced by the power lines resulted in the definition of a quite se-
vere transmission mask imposed to HPAV devices, limiting the transmitted power to −50
dBm/Hz, and imposing several notches in which the transmitted power has to be reduced
under −80 dBm/Hz to protect other applications, such as amateur radio. The classical
CP-OFDM modulation, with its rectangularly shaped symbols, cannot provide a frequency
containment of its subcarriers good enough to simultaneously get a suitable spectral effi-
ciency and respect the transmission mask. So, the HPAV specification defines a windowed
OFDM (also denoted as Pulse-Shaped OFDM, PS-OFDM [101]) scheme whereby the sym-
bols are softened on their borders on a Roll-off Interval (RI) [33], thus limiting the number
of subcarriers that have to be switched off at the edges of the notches. This modulation
is directly derived from the CP-OFDM technique, but the windowed OFDM scheme dif-
fers from CP-OFDM by adding a stage after the prefix addition where the symbols are
filtered. Fig. 3.4 describes the windowing scheme, where it can be seen that unlike con-
ventional CP-OFDM, the CP length is equal to GI+RI, in which GI = LGITs denotes the
conventional CP length and RI = LRITs denotes the roll-off interval, Ts being the sam-
pling period. After GI+RI addition, each OFDM symbol is filtered to soften its borders,
on a time interval corresponding to RI. The discrete-time expression of the transmitted
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Figure 3.4: Windowed OFDM timing.

windowed OFDM symbols reads:

s [k] =
M−1∑
m=0

∑
n∈Z

cm,ng [k − n (M + LGI)] e
j2π km

M , (3.11)

where M is the IFFT size, LGI the Guard Interval length in samples, g is the symbol
window of length M +LGI+LRI and cm,n is the complex QAM symbol located at the m-th
subcarrier of the n-th OFDM symbol. Note that the window shape in the roll-off interval
defined by HPAV actually corresponds to a piecewise linear function [33]. This interval also
corresponds to the overlapping duration between two consecutive symbols. This windowing
operation allows the modulated signal PSD to exactly fit into the tone mask (see Fig.
3.5). Considering the HPAV specification, the real valued discrete-time baseband signal
is provided at a sampling rate of 75 MHz and using a 3072-point IFFT. 1155 carriers are
employed in the range from 1.8 MHz to 30 MHz. The default HPAV tone map includes 917
active carriers among the 1155 ones, the remaining carriers being switched off. Also, note
that the subcarriers are separated by a frequency spacing F0 = 24.414 kHz, corresponding
to a symbol duration T0 = 40.96 μs, that the Roll-off interval RI = 4.96 μs and that
the Guard Interval GI can take three different values: 5.56 μs, 7.56 μs, 47.12 μs. At the
receiver side, before applying the classical FFT demodulation, each symbol is processed
as follows (cf. Fig. 3.6):

• Serial to parallel conversion for each block of size M + LGI;

• Remove the first LGI samples of each block;

• Move the first LRI samples to the end for each block.

3.2.3 Windowed OFDM Transmission over a Dispersive Channel

In this Chapter, we aim at evaluating the achievable throughput of the windowed OFDM
transmission scheme, and compare it to the achievable throughput of the OFDM/OQAM
modulation (introduced in section 3.3). The computation of the capacity needs the knowl-
edge of the Signal to Interference plus Noise Ratio (SINR) at the receiver that will be
computed on a subcarrier basis to perform bit-loading (see section 3.1.3). As it is com-
monly done for CP-OFDM, a simple Zero-Forcing (ZF) equalization is performed at the
receiver side. With that assumption, the SINR at the m-th subcarrier reads:

SINR[m] ≈ σ2
c [m]

σ2
n[m]

|Hm|2 +
PWin

ISI+ICI[m]

|Hm|2
(3.12)
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Figure 3.5: Windowed OFDM using HPAV tone map fits into the FCC Spectrum Mask.

in which σ2
c [m] denotes the variance of the transmitted symbols and Hm, σ2

n[m] and
PWin

ISI+ICI[m] are, respectively, the frequency channel coefficient, the colored noise level and
the interference level at the m-th subcarrier.

If the windowing scheme introduced by HPAV allows to keep the same transmission
efficiency as the equivalent CP-OFDM scheme while fitting into the transmission mask,
Fig. 3.6 clearly highlights that the LRI samples that are directly copied from the GI to
demodulate the OFDM signal may result in an increase of the interference level. Indeed,
an interference occurs as soon as the channel impulse response length Lh becomes longer
than (1)LGI−LRI. A way to deduce the interference power for windowed OFDM was firstly
presented in [54]. In the following, we present a direct calculation to obtain the analytical
expression of this interference term. Firstly, let us introduce the main parameters for this
calculation:

• cm,n: Complex QAM, 8-PSK or BPSK symbol located at the m-th subcarrier of the
n-th OFDM symbol, which variance σ2

c [m] depends upon the transmission mask;

• Ts: Sampling period;

• GI = LGITs: Guard Interval;

• RI = LRITs: Roll-off interval;

• T0 = MTs: FFT window;

• F0 =
1
T0

: frequency spacing between adjacent carriers;

(1)We chose to conserve the terminology used in the specification but it has to be underlined that the
time interval designated by GI in HPAV does not define, strictly speaking, a Guard Interval.
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Figure 3.6: Window and GI removal at the receiver side.

• T = (LGI +M)Ts: symbol period;

• g(t): OFDM symbol window (of length RI +GI + T0);

• f(t): FFT window (of length T0);

• h(t) =
∑P−1

i=0 hiδ(τ − τi): multipath channel impulse response.

Then, the continuous time expression of the transmitted windowed OFDM symbols is
given by:

s(t) =

M−1∑
m=0

+∞∑
n=−∞

cm,ng(t− nT )ej2πmF0t, (3.13)

in which the cm,n must be hermitian symmetric in order to generate a real baseband signal,
meaning that: {

cm,n = c∗M−m,n

c0,n = cM/2,n = 0
. (3.14)

Noise taken apart, the received signal y(t) = h(t) ∗ s(t) reads:

y(t) =
P−1∑
i=0

hi

M−1∑
m=0

+∞∑
n=−∞

cm,ng(t− nT − τi)e
j2πmF0(t−τi). (3.15)

Windowed OFDM demodulation:

To recover the QAM symbol cm0,n0 , we first compute the demodulated signal as follows

ym0,n0 =

∫ +∞

−∞
y(t)f∗

m0,n0
(t)dt (3.16)



3.2 Windowed OFDM: Study and Analysis of the HPAV Modulation Scheme 35

with f∗
m0,n0

(t) = f(t− n0T )e
−j2πm0F0t, which leads to

ym0,n0 =
M−1∑
m=0

+∞∑
n=−∞

cm,n

P−1∑
i=0

hie
−j2πmF0τi

×
∫ +∞

−∞
g(t− nT − τi)f(t− n0T )e

j2π(m−m0)F0tdt (3.17)

where f(t) = ΠT0(t− GI−RI
2 ) and corresponds to the FFT window. Note that we introduce

this (GI−RI)
2 delay because we consider g(t) centered at the time origin. Then, to obtain

a more tractable expression, we proceed to a change of variables by setting:{
t− nT − τi = μ+ τ ′

2

t− n0T = μ− τ ′
2

. (3.18)

Then (3.17) can be rewritten as

ym0,n0 =

M−1∑
m=0

+∞∑
n=−∞

cm,n

P−1∑
i=0

hie
−j2πmF0τi

×
∫ +∞

−∞
g(μ+

τ ′

2
)f(μ− τ ′

2
)ej2π(m−m0)F0μdμ

× ej2π(m−m0)F0(
(n+n0)

2
T+

τi
2
)

Setting ν = −(m−m0)F0, we get:

ym0,n0 =
M−1∑
m=0

+∞∑
n=−∞

cm,n

P−1∑
i=0

hie
−j2πmF0τi

×
∫ +∞

−∞
g(μ+

τ ′

2
)f(μ− τ ′

2
)e−j2πνμdμ︸ ︷︷ ︸

Ag,f (τ ′,ν)

× ej2π(m−m0)F0(
(n+n0)

2
T+

τi
2
) (3.19)

where Ag,f (τ, ν) is the cross-ambiguity function between g(t) and f(t) and is defined as
follows:

Ag,f (τ, ν) =

∫ +∞

−∞
g(μ+

τ

2
)f(μ− τ

2
)e−j2πνμdμ (3.20)

with: {
τ ′ = (n0 − n)T − τi

ν = −(m−m0)F0
, (3.21)

so that (3.19) can be rewritten in:

ym0,n0 =
M−1∑
m=0

+∞∑
n=−∞

cm,n

P−1∑
i=0

hie
−j2πmF0τi

× Ag,f (τ
′, ν)ej2π(m−m0)F0(

(n+n0)
2

T+
τi
2
).

(3.22)
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Rearranging (3.22), we finally express the demodulated signal in its analog version as:

ym0,n0 =

M−1∑
m=0

+∞∑
n=−∞

cm,ne
jπ(m−m0)(n+n0)F0T

×
P−1∑
i=0

hiAg,f (τ
′, ν)e−jπ(m+m0)F0τi (3.23)

Discretization step:

Of course, in a practical case, the demodulated signal is obtained in discrete-time. So
let us rewrite the channel impulse response as:

h[k] =

Lh−1∑
l=0

hlδ[k − l] (3.24)

where we define that

hl =

⎧⎪⎨
⎪⎩

hi, l = � τi
Ts
�

0, otherwise.
(3.25)

where �a� denotes the smallest integer greater or equal to a. Then, setting p = m −m0

and q = n − n0, corresponding to the relative frequency and time indexes, respectively,
with 0 ≤ m0 + p ≤ M − 1, and Ag,f [q, p] = Ag,f (qTs, pF0), we express the discretized
demodulated signal (3.23) as follows:

ym0,n0 =
∑
(p,q)

cm0+p,n0+qe
jπp(2n0+q)

M+LGI
M

×
⎛
⎝ ∑Lh−1

l=0 hl Ag,f [−q(M + LGI)− l,−p]

×e−jπ(2m0+p) l
M

⎞
⎠

Finally, we can split (3.26) into two parts, corresponding to the useful part and an inter-
ference part, respectively:

ym0,n0 =

Lh−1∑
l=0

hlAg,f [−l, 0]e−jπ2m0
l
M

︸ ︷︷ ︸
distortion: αm0

cm0,n0

+

⎛
⎜⎜⎝

∑
(p,q)�=(0,0) cm0+p,n0+qe

jπp(2n0+q)
M+LGI

M

(
∑Lh−1

l=0 hlAg,f [−q(M + LGI)− l,−p]

×e−jπ(2m0+p) l
M )

⎞
⎟⎟⎠

︸ ︷︷ ︸
ISI+ICI : Jm0,n0

= αm0cm0,n0 + Jm0,n0
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Calculation of the interference power (before equalization):

Jm0,n0 =
∑

(p,q)�=(0,0)

cm0+p,n0+qe
jπp(2n0+q)

M+LGI
M

×
( ∑Lh−1

l=0 hlAg,f [−q(M + LGI)− l,−p]

×e−jπ(2m0+p) l
M

)
︸ ︷︷ ︸

H
(p,q)
m0

H(p,q)
m0

=

Lh−1∑
l=0

hlAg,f [−q(M + LGI)− l,−p]e−jπ(2m0+p) l
M (3.26)

The interference term being isolated, we compute the interference power as follows:

PWin
ISI+ICI(m0, n0) = E

[
|Jm0,n0 |2

]
=

∑
(p0,q0)

∑
(p′0,q′0)

E
[
cm0+p,n0+qcm0+p′,n0+q′

]

×

⎛
⎜⎜⎝

ejπp(2n0+q)
M+LGI

M

×e−jπp′(2n0+q′)M+LGI
M

×H
(p,q)
m0 H

(p′,q′)
m0

∗

⎞
⎟⎟⎠

in which (p0, q0) stands for (p, q) �= (0, 0). Finally, assuming that the cm,n are independent
and identically distributed for 0 ≤ m ≤ M/2 − 1, we obtain an interference power only
dependent upon the frequency index m0:

PWin
ISI+ICI(m0) =

∑
(p0,q0)

σ2
c (m0 + p)

∣∣∣H(p,q)
m0

∣∣∣2 (3.27)

We remind that in HPAV, the GI can have three different durations: 5.56 μs or 7.56 μs
or 47.12 μs. In the following, the chosen GI was always the shortest one not to penalize
windowed OFDM. In Fig. 3.7, the interference level (before ZF) in a channel belonging to
class 2 [108] (cf. section 2.2.1) is compared to the static colored noise level introduced in
section 2.2.2 (see Fig. 2.3), assuming a −50 dBm/Hz transmitted PSD. From this graph,
we can reasonably assume that in severe channels, the remaining interference of windowed
OFDM has to be taken into account to obtain accurate throughput calculations.

3.3 HS-OQAM: Study and Analysis of an Alternative to win-
dowed OFDM

Considering the very restrictive transmission mask imposed to PLC systems, it clearly
appears that the classical CP-OFDM scheme is not appropriate in this context. Moreover,
if the windowing solution allows to improve the subcarriers localization, this technique is
quickly limited by the interference term that will arise as the RI increases relatively to the
GI. We are going to see in the following that the OFDM/OQAM modulation possesses
strong assets to provide spectrally efficient transmissions over the power grid.
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Figure 3.7: Comparison between the colored noise and the interference levels for a class 2
channel (cf section 2.2.1), in the HPAV band.

3.3.1 OFDM/OQAM Modulation Overview

The first multicarrier modulation systems based on QAM constellations including a time-
offset, i.e. Offset QAM (OQAM), date back to the sixties [97]. This initial scheme
was based on continuous-time filters. A discrete-time FFT-based was then proposed in
1981 [71]. The acronym OFDM/OQAM only appeared in 1995 for a continuous-time sys-
tem [79]. The peculiarity of OFDM/OQAM lies in the fact that instead of transmitting
complex-valued QAM symbols cm,n = cRm,n + jcIm,n over each subcarrier at a given rate
T0, the real and imaginary parts are transmitted separately, with a time-offset T0

2 . It
means that either the real or the imaginary part is delayed of one half-symbol duration.
The constraint is to keep a phase difference of π

2 between adjacent symbols in time and
frequency. The Offset QAM (OQAM) coding rule introduced in [97] is given in Tab. 3.1.
In this Table, T0 is the complex symbol duration, T0/2 the time-offset and F0 = 1/T0 the
frequency spacing. Based on these construction rules, we get the modulator depicted in
Fig. 3.8. From this figure it can be seen that the baseband OFDM/OQAM signal s(t) is
obtained as the combination of 4 signals that are shifted in time by T0

2 , the duration of one
real symbol, and in frequency by F0, the spacing between two successive sub-carriers. Thus
s(t) is obtained as a summation in time and frequency of 4 terms that can also be written
in the concise form proposed in [79], leading to a continuous baseband OFDM/OQAM
signal that reads:

s(t) =

M−1∑
m=0

+∞∑
n=−∞

am,npm,n(t) (3.28)
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Table 3.1: Coding scheme for OFDM/OQAM symbols
(2m−1)F0 (2m)F0 (2m+1)F0

nT0 − T0
2 cR2m−1,n−1 jcI2m,n−1 cR2m+1,n−1

nT0 jcI2m−1,n cR2m,n jcI2m+1,n

nT0 +
T0
2 cR2m−1,n jcI2m,n cR2m+1,n

Figure 3.8: OFDM/OQAM in its analog form (continuous-time).

where the am,n are the real-valued numbers derived from the decomposition of the complex
symbols cm,n and where the base of modulation can be expressed as follows:

pm,n(t) = ejφ(m,n)ej2πmF0tp(t− nτ0) (3.29)

in which p(t) is the prototype filter, τ0 = T0
2 and φ(m,n) = π

2 (n + m) + φ0(m,n) is an
additional phase term where φ0(m,n) can be arbitrarily chosen. φ(m,n) ensures a phase
shift of π

2 between two adjacent symbols in time and in frequency.
In practice, OFDM/OQAM modulation can be realized by means of FFT-based im-

plementation, such that the discrete-time OFDM/OQAM signal can be expressed as fol-
lows [100]:

s[k] =

M−1∑
m=0

∑
n∈Z

am,n p[k − nN ]ej
2π
M

m(k−Lp−1

2
)ejφm,n︸ ︷︷ ︸

pm,n[k]

(3.30)

where Lp is the filter length, M is the IFFT size and N = M
2 is the discrete-time offset.

Note that the added complexity of this modulation compared to the classical OFDM
scheme mainly comes from the fact that transmitting separately the real and imaginary
parts imposes the IFFT to run twice as fast [100]. However, as shown recently in [56],
this drawback has been solved at the transmitter side. Concerning the pulse shaping
implementation, its extra computational cost remains limited using efficient polyphase
implementations and relatively short prototype filters. At this point, it is important to
highlight the main difference between OFDM/OQAM and the classical OFDM modulation.
In the general case, OFDM multiplexes complex QAM symbols, such that a complex
orthogonality must be verified at the receiver to retrieve interference-free symbols. On
the other hand, OFDM/OQAM relaxes the orthogonality condition by imposing it only in
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Figure 3.9: HS-OQAM general structure [84].

the real field, because only real symbols are transmitted at a given time. Therefore, the
orthogonality can be checked with the following relation:

Re{〈pm,n [k] , pm′,n′ [k]〉} = Re{
∑
k∈N

pm,n [k] p
∗
m′,n′ [k]} = δm,m′δn,n′ (3.31)

where δm,m′ = 1 if m = m′ and δm,m′ = 0 if m �= m′.
An alternative version of OFDM/OQAM, called HS-OQAM (for Hermitian Symmet-

ric), was proposed in [83] to directly obtain a real signal at the output of the IFFT. The
HS-OQAM scheme is simply obtained by imposing the following condition:{

a0,n = aN,n = 0

am,n = aM−m,n(−1)Lp−1−N−n
(3.32)

The general HS-OQAM structure (without equalization) is depicted in Fig. 3.9. Even
if the modulation and demodulation process of HS-OQAM system executes two times
faster than that of the equivalent CP-OFDM system, the overall symbol rate of HS-OQAM
remains the same as the equivalent CP-OFDM scheme because only half of the information
is transmitted at a given time. However, the staggering rule imposed by OQAM means
that the transmitted signal always carries an intrinsic interference. Indeed, if CP-OFDM
ensures an orthogonality in time between two consecutive symbols, the modulated HS-
OQAM symbols are overlapped with each other. Moreover, the overlapping degree depends
on the length of the prototype filter. Fig. 3.10 gives a clear view of this situation, where we
assume that the prototype filter is of length M (in samples). In this example, the present
HS-OQAM symbol interferes both with the previous and the following HS-OQAM symbols.
Fortunately, in an ideal channel case, this interference is limited to pure imaginary-valued
term, thanks to the real-field orthogonal condition given by (3.31). In other words, it means
that HS-OQAM achieves an interference-free transmission if we only consider the useful
part of the signal, that is either located on the in-phase or on the quadrature component.

Relaxing the orthogonality condition to the real field gives much more latitude to design
the prototype filter p[k] in comparison to the classical OFDM modulation. We will see in
section 3.4.2.1 how we can efficiently exploit this degree of freedom with the restrictive
transmission mask imposed to PLC systems. Moreover, the HS-OQAM modulation does
not use any CP, which provides a direct gain in the transmission efficiency. However, the
absence of CP also means that there will always remain ISI and ICI in a dispersive channel.
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Figure 3.10: OFDM/OQAM symbols overlapping [84].

3.3.2 OFDM/OQAM Transmission over a Multipath Channel

3.3.2.1 Channel Equalization for OFDM/OQAM

As HS-OQAM modulation does not define any GI prefixing its symbols, the transmission
capacity is naturally improved, the counterpart of this being an increased sensitivity to
ISI and ICI. The remaining interference varies with the chosen prototype filter but also
with the equalization technique applied at the receiver. Classically, OFDM modulation
is associated with a simple 1-tap ZF equalization. Considering HS-OQAM, a slightly
more complex equalizer can be chosen to limit the interference. In [84], the Adaptive
Sine/Cosine-modulated filter bank Equalizer for Transmultiplexer (ASCET) [35] has been
adapted to the OFDM/OQAM modulation. ASCET is a point-wise equalizer generally
involving 3-tap per subcarrier, and can be seen as a 3-tap ZF equalizer. The 3-tap ASCET
structure is depicted for the sub-carrier of index m in Fig. 3.11. At frequency index m, the
equalizer Finite Impulse Response (FIR) filter writes EASCET

m (z) = e0mz + e1m + e2mz−1.
Assuming that the OQAM phase term is defined as φ(m,n) = π

2 (n + m), the equalizer
coefficients eim read [84]:⎧⎪⎪⎨

⎪⎪⎩
e0m = −1

2

(
η−1m−η1m

2 − j
(
η0m − η−1m+η1m

2

))
e1m = η−1m+η1m

2

e2m = −1
2

(
η−1m−η1m

2 + j
(
η0m − η−1m+η1m

2

)) , (3.33)

Figure 3.11: Structure of the per-carrier ASCET equalizer [84].
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where ηim compensates the channel distortion at a chosen frequency following the ZF
criterion, such that it is equal to the inverse of the channel response at this particular
frequency point. So, the eim can be calculated by simply evaluating the channel transfer
function at chosen frequency points, wherein half of the chosen frequencies are nothing else
than the central carrier frequencies and the rest half can be chosen in the transition band.
Generally, these points will be chosen as the middle frequency between two consecutive
subcarriers. Therefore, the ICI on the chosen frequencies can be perfectly compensated
by this method. As ASCET is a linear equalizer, it has the advantage to permit further
analytical computations, such as the capacity, which will be presented in section 3.1.3.
Moreover, with only 3 coefficients per carrier, ASCET is relatively simple to implement
and, as we will show in subsection 6.5.4, it allows getting significant improvements w.r.t.
ZF. However, using a 3-tap ASCET equalizer modifies the noise PSD. In section 3.3.2.3,
we conduct an analysis on the noise power after the equalization stage.

3.3.2.2 Generalized Expression of HS-OQAM Interference Term

Some expressions of the interference power have been provided in [84] for the 1-tap Zero
Forcing and the 3-tap ASCET equalizers. In this section, we provide a simpler expression
of the interference power in the case of an arbitrary length ASCET, for which the 1-tap ZF
equalizer appears as a particular case. The parameters reused in this part keep the same
significations as in section 3.2.3. However, differently from windowed OFDM, with HS-
OQAM we have the same window, a prototype function p(t), at the transmitter and the
receiver sides. Then, for concision, its ambiguity function will be denoted Ap(τ, ν), with
Ap(τ, ν) = Ap,p(τ, ν). We assume the HS-OQAM signal, derived from (3.30) and (3.32),
uses a real-valued and symmetrical prototype function. Therefore, its ambiguity function
is also real valued. Furthermore, as p is orthogonal, i.e. satisfies (3.31), its ambiguity
function is such that

Ap(nT0, 2mF0) = δ(n)δ(m). (3.34)

Knowing that T0 = MTs, this orthogonality condition can be expressed in a discrete-time
formalism:

Ap[nM, 2m] = δ(n)δ(m). (3.35)

Received signal:

For a P -path time invariant channel (see subsection 3.2.3), the received HS-OQAM
signal is given by y(t) = h(t) ∗ s(t), so that:

y(t) =
P−1∑
i=0

hi

M−1∑
m=0

+∞∑
n=−∞

am,npm,n(t− τi). (3.36)

HS-OQAM demodulation:

For the subcarrier of index m0 and at time index n0, the demodulated signal is

ym0,n0 =

∫ +∞

−∞
y(t)p∗m0,n0

(t)dt. (3.37)
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As seen in [84] the discretized demodulated signal can be written, with 0 ≤ m0+p ≤ M−1,
as

ym0,n0 =
∑
(p,q)

am0+p,n0+qe
jΦ

(p,q)
m0,n0H(p,q)

m0
(3.38)

with

H(p,q)
m0

=

Lh−1∑
l=0

hle
−jπ(2m0+p)l/MAp[−l − qM/2,−p] (3.39)

and

Φ(p,q)
m0,n0

=

{
π
2 (p+ q + pq) + πpn0 if φ0(m,n) = 0
π
2 (p+ q − pq)− πqm0 if φ0(m,n) = −πmn

(3.40)

Equalization step:

Denoting by e
(r)
m0 the 2Ke+1 coefficients of the ASCET equalizer, the target estimated

symbol being am0,n0 , the central coefficient is e(0)m0 and the output of the equalizer is defined
by

âm0,n0 = Re{
Ke∑

r=−Ke

e(r)m0
ym0,n0+r}. (3.41)

Note that the 3-tap ASCET equalizer presented in [84] did not use this symmetric indexa-
tion. Note also that the ZF equalizer can be viewed as a particular case of 1-tap ASCET,
with Ke = 0 and one coefficient defined by

e(0)m0
=

1

Hm0

. (3.42)

Inserting the expression (3.38) of ym0,n0 we have

âm0,n0 = Re

{
Ke∑

r=−Ke

e(r)m0

∑
(p,q)

am0+p,n0+r+q × e
jΦ

(p,q)
m0,n0+rH(p,q)

m0

}
(3.43)

that we rewrite in

âm0,n0 =
∑
(p,q)

am0+p,n0+qRe

{
Ke∑

r=−Ke

e(r)m0
× e

jΦ
(p,q−r)
m0,n0+rH(p,q−r)

m0

}
. (3.44)

Noticing that the phase term can be written as (3.40)

Φ
(p,q−r)
m0,n0+r = Φ(p,q)

m0,n0
+

π

2
r(p− 1) +

{
0 if φ0(m,n) = 0

πrm0 if φ0(m,n) = −πmn
(3.45)

we define

Fφ(k) =

{
1 if φ0(m,n) = 0

(−1)k if φ0(m,n) = −πmn
(3.46)

and

A(p,q)
m0

=

Ke∑
r=−Ke

e(r)m0
Fφ(rm0)e

j π
2
r(p−1)H(p,q−r)

m0
. (3.47)
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Then we have
âm0,n0 =

∑
(p,q)

am0+p,n0+qRe{ejΦ(p,q)
m0,n0A(p,q)

m0
}. (3.48)

The output of the equalizer can be split into the useful part and the interference part
as follows

âm0,n0 = βm0am0,n0 + Im0,n0 (3.49)

where the expression of the distortion βm0 is

βm0 = Re{A(0,0)
m0

}. (3.50)

Therefore, as the QAM symbol estimates are defined by

ĉ2m0,n0 = â2m0,2n0 + jâ2m0,2n0+1

ĉ2m0+1,n0 = â2m0+1,2n0+1 + jâ2m0+1,2n0

(3.51)

the useful power of ĉm0,n0 is

Puseful(m0) = σ2
c (m0)

[
Re{A(0,0)

m0
}
]2

(3.52)

and the total power of ĉm0,n0 is:

PTOT(m0) = E
[|â(m0, 2n0)|2

]
+ E

[|â(m0, 2n0 + 1)|2] (3.53)

After some computations, assuming that the am,n are independent and identically dis-
tributed for 0 ≤ m ≤ M/2− 1, we have:

PTOT(m0) =
∑
(p,q)

σ2
c (m0 + p)

[
Re{ej π

2
(p+q+pq)A(p,q)

m0
}
]2

(3.54)

so that the interference power is:

PISI+ICI(m0) =
∑

(p0,q0)

σ2
c (m0 + p)

[
Re{ej π

2
(p+q+pq)A(p,q)

m0
}
]2

(3.55)

3.3.2.3 Analytical Expression of the Noise Power at the ASCET Equalizer
Output

A simplified expression of the noise power has been provided in [84]. Although this expres-
sion is valid in most of the PLC environments, we provide in this section the full expression
in order to get a comprehensive survey.

HS-OQAM demodulator output:

The noise n(t) at the receiver output is assumed to be a Additive White Gaussian
Noise (AWGN), with variance σ2

n, so that the noise at the HS-OQAM demodulator output
is expressed as

bm0,n0 =

∫
n(t)p∗m0,n0

(t)dt (3.56)
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with variance σ2
n.

Equalizer output:

If vm0,n0 and v′m0,n0
refer to the noise term at the output of the equalizer and at the

output of the am,n to cm,n symbol converter (3.51), respectively, the noise power is given
by

Pnoise(m0) = Var[v′m0,n0
] = Var[vm0,2n0 ] + Var[vm0,2n0+1] (3.57)

In the next paragraph, we detail the expression of Var[vm0,n0 ], showing that the noise
power Pnoise only depends on the frequency carrier index m0.

ASCET equalizer:

The noise at the output of the ASCET equalizer is

vm0,n0 = Re{um0,n0} (3.58)

where

um0,n0 =

Ke∑
r=−Ke

e(r)m0
bm0,n0+r (3.59)

The variance of vm0,n0 can be computed from um0,n0 thanks to the following relation

Var[vm0,n0 ] =
1

2

(
Var[um0,n0 ] + Re{E [

u2m0,n0

]}) (3.60)

We can easily show that Var[um0,n0 ] does not depend on n0 and that E
[
u2m0,n0

]
can be

written as (−1)n0F (m0), where F is a function that only depends on m0. Proofs are given
in Annex C. Therefore, inserting (3.60) in (3.57) leads to the following expression of the
noise power

Pnoise(m0) = Var[um0,n0 ] (3.61)

Expression of the noise power:

The power of the noise at the output of the symbol estimator is finally expressed as

Pnoise(m0) = Var[um0,n0 ]

= σ2
n

Ke∑
r=−Ke

Ke∑
r′=−Ke

e(r)m0
e(r

′)∗
m0

e
jΦ

(0,r′−r)
m0,0 Ap[(r

′ − r)M/2, 0]
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The ambiguity function Ap[qM/2, 0] being null if q is even and different from 0, the noise
power becomes

Pnoise(m0) = σ2
n

Ke∑
r=−Ke

|e(r)m0
|2Ap[0, 0]

+ σ2
n

∑
−Ke≤r≤Ke
−Ke≤r′≤Ke
(r′−r) odd

e(r)m0
e(r

′)∗
m0

e
jΦ

(0,r′−r)
m0,0 Ap[(r

′ − r)M/2, 0]

︸ ︷︷ ︸
T (m0)

(3.62)

Note that the second term T (m0) of this expression, that only accounts for odd (r′ − r)
indexes, is negligible for most of the classical PLC channel profiles. We nevertheless detail
it in order to be exhaustive.
(r′ − r) is odd if and only if r and r′ have different parities. Therefore, noticing that
Φ
(0,r−r′)
m0,0

= −Φ
(0,r′−r)
m0,0

and recalling that the ambiguity function is real and symmetrical in
time, we have

T (m0) =
∑
r odd
r′even

2Re{e(r)m0
e(r

′)∗
m0

e
jΦ

(0,r′−r)
m0,0 }Ap[(r

′ − r)M/2, 0] (3.63)

Setting r = 2k + 1 and r′ = 2k, the phase term can be written

Φ
(0,r′−r)
m0,0

= −π

2
+ π(k′ − k) +

{
0if φ0(m,n) = 0

πm0if φ0(m,n) = −πmn
(3.64)

Then, using the function Fφ defined in (3.46), we have

T (m0) = 2Fφ(m0)
∑

−Ke≤2k+1≤Ke
−Ke≤2k′≤Ke

Im{e(2k+1)
m0

e(2k
′)∗

m0
}

× (−1)k
′−kAp[(k

′ − k − 1/2)M, 0]

In the case of a 3-tap ASCET (Ke = 1), this term corresponds to k ∈ {−1, 0} and k′ = 0,
and is equal to

T (m0) = 2Fφ(m0)Im{(e(1)m0
− e(−1)

m0
)e(0)∗m0

}Ap[M/2, 0] (3.65)

Therefore, the noise power is finally expressed as

Pnoise(m0) = σ2
n

1∑
r=−1

|e(r)m0
|2Ap[0, 0]

+ 2σ2
nFφ(m0)Im{(e(1)m0

− e(−1)
m0

)e(0)∗m0
}Ap[M/2, 0] (3.66)
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Zero Forcing equalizer:

The ZF equalizer being viewed as a particular case of a 1-tap ASCET with Ke = 0
and one coefficient (3.42), the noise power (3.62) is simply expressed as

Pnoise(m0) =
σ2
n

|Hm0 |2
. (3.67)

3.4 Windowed OFDM vs HS-OQAM: Transmission Capacity
and Achievable Throughput

3.4.1 Simulation Parameters

In this section, results are presented in terms of transmission capacity (see (3.4)) or achiev-
able throughput, also denoted as the PHY data rate (see (3.5)). For both of these metrics,
the SINR achieved per subcarrier has to be computed (see (3.1)). A first parameter to
fix concerns the channel frequency response. To obtain realistic PLC channels, we use the
PLC channels generator developed by Orange Labs and described in [106]. In short, this
generator is based on a statistical analysis of PLC channels measured in several indoor
environments, more or less appropriate for PLC. This analysis led to the classification of
PLC channels into 9 classes, class 1 corresponding to the worst channels while class 9
includes the less disturbed ones [107]. So, to generate a PLC channel, the inputs needed
by the tool are limited to the desired class and frequency bandwidth. As class 2 channels
were found to be one of the most encountered channels in realistic conditions, accord-
ing to [107], we naturally use this class in our simulations. Then, to compare achievable

Figure 3.12: Example of class 2 channel and colored noise realizations.
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throughputs in less disturbed environments, we used classes 5 and 9 channels. To generate
the noise, we also used a software developed by Orange Labs that generates a realistic
indoor colored noise Power Spectral Density (PSD) [52]. This model presents an expo-
nential decrease with frequency as well as randomly distributed narrow-band noises, as it
can be seen in Fig. 3.12. To finely compute the SINR achieved per subcarrier, we use
the interference terms (3.27) and (3.55), derived in sections 3.2.3 and 3.2.3 for windowed
OFDM and HS-OQAM, respectively, with respect to the selected equalization technique
(see (3.1) for a 1-tap ZF equalizer). When ASCET equalizer is used, we also take into
account the impact on the noise power using the expression (3.66) that was established
in section 3.3.2.3. Each result presented in the following is computed by averaging over
100 channel and noise realizations, with a target SER fixed to 10−2, so that the SINR gap
ΓdB = 6 dB (cf. (3.3)).

3.4.2 Performance of Different Prototype Filters Following the HPAV
Specification

3.4.2.1 Set of Compared Prototype Filters

The main benefit of OFDM/OQAM comes from the latitude it gives in the design of the
prototype filter. This degree of freedom can be exploited to optimize one or several criteria,
depending on the target application. In this study, we only use prototype filters with real
coefficients and satisfying the property of phase linearity. To work properly, a prototype
filter must satisfy an orthogonality condition. However, two classes of filters need to be
distinguished because the orthogonality condition can be perfectly or approximately met.
Indeed, a filter either belongs to the Perfect Reconstruction (PR) or Nearly Perfect Recon-
struction (NPR) class of filters. Of course, the PR feature only holds in ideal conditions,
i.e. no channel distortion and no noise. Ideally, the prototype filter should always be the
one that maximizes the throughput. However, adapting in real-time the prototype filter
is a nearly untractable optimization problem. So, here, we only compare design methods
that do not reach this goal but can be run off-line.

Note also that different approaches can be used in the design of prototype filters.
Indeed, we can firstly distinguish filters that are designed using a continuous-time formal-
ism. The main drawback of the continuous-time formalism comes from the fact that in a
practical implementation case, the prototype filters have to be discretized and truncated
and, therefore, lose their orthogonality property. Nevertheless, they can still satisfy a
NPR condition. On the other hand, prototype filters can be designed in discrete-time.
In this case, the design problem is directly stated as an optimization problem upon the
chosen criterion, for the finite number of taps of the prototype filter. A design method
of PR prototypes, called "compact representation method" [96], has been validated for
the Frequency Selectivity (FS) criterion, with a minimization of the out-of-band energy,
and for the Time-Frequency Localization (TFL) criterion, which minimizes the product of
second order moments in time and frequency [57].

In the following, we select 3 prototype filters to run our simulations. Firstly, we choose
to use a prototype filter optimized upon the TFL criterion. A famous representant of
this set is the Isotropic Orthogonal Transform Algorithm (IOTA) filter [34], which has the
peculiarity of having the same degree of spreading over time and frequency. Therefore, it
is well suited in both time and frequency dispersive channels. However, if it was shown
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Figure 3.13: Compared PSD around a notch between windowed OFDM and HS-OQAM
with FS4, using HPAV transmission mask.

that the PLC channel can be dispersive over frequency in [42], it clearly is a negligible
effect when compared to the impact of the channel delay spread. So, here we limit to the
utilization of a single prototype filter optimized upon the TFL criterion, which is the TFL1
filter. The postfix 1 means that the prototype length is one time the symbol duration.
Thus TFL1 is a relatively short PR prototype filter directly optimized in discrete time upon
the TFL criterion, lasting only T0 (or M samples in a discrete-time formalism), while to
be nearly isotropic IOTA requires to be at least of length 4T0. Interestingly, it was shown
in [82] that for transmission over time-invariant frequency selective channel, ICI is the
predominant factor that limits the overall performance, when compared to ISI. Therefore,
it was highlighted in the same study that in the PLC field, prototype filters optimized
upon the FS criterion lead to better performance than other filters, such as IOTA for
instance. Moreover, the restricting transmission mask clearly highlights the necessity to
optimize the spectral containment of the subcarriers, as it may give the opportunity of
activating more subcarriers around mask notches. However, a good frequency selectivity
can only be attained with a sufficient number of taps, that is why a length of 4T0 is a
minimum duration for that kind of filters. A great advantage, in the PLC context, of using
prototype filters with good spectral containment is that it allows to use more subcarriers
than the 917 active tones defined in HPAV, using windowed OFDM. This point is clearly
illustrated in Fig. 3.13 where we see that windowed OFDM just fits into the mask while HS-
OQAM using FS4 filter offers the possibility to still satisfy the mask with more subcarriers
on. Moreover, we will see in section 3.4.4 that this great advantage of OFDM/OQAM will
become even more predominant when imposing a much more restrictive transmission mask,
such as the one that the CENELEC is currently defining and might be imposed to PLC
systems in a near future. A last filter, also with a good stopband behavior but satisfying a
NPR condition, was chosen in our simulation. This filter, independently proposed in [88]
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(a)

(b)

Figure 3.14: Prototype filters: (a) in time (b) in frequency
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Figure 3.15: Comparison of PHY data rates (DPHY) between windowed OFDM and HS-
OQAM using TFL1+ZF, σ2

c,dB = −50 dBm/Hz.

and [37], is named in short MMB, using the names of its promoters. This MMB4 prototype
filter is also known as PHYDYAS, in relation with a recent FP7 project [11]. The MMB4
prototype filter lasts 4T0. In Fig. 3.14 are plotted the time and frequency representations
of the three prototype filters, as well as the window defined in HPAV. Note that this
window spreads over M +LGI +LRI samples, where LRI is the roll-off interval length. Two
consecutive symbols are overlapped during this interval that lasts 4.96 μs (372 samples
considering the 75 MHz sampling frequency). Also, we see that TFL1 is represented with
M samples while the two frequency selective filters spread over 4M samples. A quick look
at the frequency representations of the prototype filters confirms the frequency selectivity
of FS4 and MMB4.

3.4.2.2 Prototype Filter Selection

Let us firstly show the performance of a low complexity HS-OQAM system compared to
the one of windowed OFDM, following the HPAV 1 specification, i.e. with Card(Mu) = 917
and M = 3072. So, we compute both the achievable throughput and the transmission ca-
pacity of HS-OQAM using TFL1 prototype filter together with a simple 1-tap ZF equalizer.
Fig. 3.15 shows that if HS-OQAM provides similar and better PHY data rates compared
to windowed OFDM in classes 5 and 9 channels, respectively, HS-OQAM is surpassed in
class 2 channels. This result can be easily explained by the fact that if HS-OQAM takes
advantage of the absence of GI in good channels, this advantage is lost in the worst chan-
nels because of a much higher interference term. So, we see that associating a short filter
with a simple equalizer leads to mixed results, when compared to the ones provided by
windowed OFDM.
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Figure 3.16: Comparison of PHY data rates (DPHY) between windowed OFDM, HS-OQAM
using TFL1+ASCET and HS-OQAM using FS4+ZF, σ2

c,dB = −50 dBm/Hz.

Next, we propose to increase the complexity either in the prototype filter or in the
equalization technique. So, on one side, we simulate HS-OQAM keeping TFL1 to shape the
transmitted symbol but using the 3-tap ASCET equalizer, which is slightly more complex
than a 1-tap ZF. On the other side, we keep the ZF equalizer but we use the FS4 prototype
filter which, we recall, lasts 4T0. Fig. 3.16 naturally shows a general improvement in the
achieved throughputs compared to the TFL1+ZF case. An interesting remark that can be
made about this result is that the two different combinations lead to similar results. But
if we consider the remark made in the previous section, a frequency selective filter offers
a degree of freedom that can be exploited to add more subcarriers around the notches of
the imposed transmission mask (see Fig. 3.13). So, exploiting this advantage, as shown
later on, will put the FS4+ZF association ahead of the TFL1+ASCET solution.

In the two previously presented cases, both filters satisfy the PR condition. Now, we
study the influence of the orthogonality or pseudo-orthogonality nature of the filter. To
this end, we use FS4 and MMB4 filters, which possess about the same qualities in terms
of frequency selectivity, MMB4 being a NPR prototype filter and FS4 a PR one. We
compute the transmission capacity (3.4) versus the achieved Signal to Noise Ratio (SNR)
at the receiver side, by increasing the signal power with a maximum imposed by the −50
dBm/Hz limitation. The SNRRX is computed as follows:

SNRRX = 10 log10

(
1

Card(Mu)

∑
m∈Mu

|Hm|2σ2
c

σn[m]2

)
(3.68)
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(a)

(b)

Figure 3.17: Transmission capacities (Dinf gran) comparison between FS4+ZF and
MMB4+ZF.: (a) Class 9 channels (b) Class 2 channels.
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In Fig. 3.17, we observe similar results for all channels classes but looking at the asymp-
totical behaviors of the transmission capacities curves, we see that MMB4 provides higher
throughputs in class 2 channels than FS4, tendency that is reversed in class 9 channels. In
fact, in good channels, as the interference caused by the time spreading of the impulse re-
sponse is really low, the perfect orthogonality nature of FS4 leads to better SINR while the
NPR nature of MMB4 always creates interference even if the channel is perfect. However,
in class 2 channels, in which the interference is much more higher, the slight advantage
brought by the perfect orthogonality is lost and the slightly better frequency selectivity of
MMB4 (see Fig. 3.14-(b)) leads to an higher throughput. Concerning windowed OFDM,
as there is no interference in class 9 channels thanks to the GI, the transmission capacity
linearly increases with the SNR. From the results shown in this section, we can expect
HS-OQAM, associated with frequency selective filters, to achieve better throughput than
windowed OFDM once we will have exploited the possibility to add additional subcarriers
around the notches. However, considering that class 2 channels correspond to a more
often encountered environment than class 9 ones, the ASCET equalizer should always be
preferred than the 1-tap ZF when using HS-OQAM.

3.4.3 Comparison Between windowed OFDM and HS-OQAM Associ-
ated with a Frequency Selective Filter

In this section, we compute both the achievable throughput and the transmission capacity
using firstly the HPAV bandwidth and secondly, an "extended" HPAV band, that will be
denoted as HPAV 2, as it is really similar to the transmission mask that will be imposed
to systems following this new specification. For all the results of this section, presented in
terms of transmission capacity (Dinf gran) and achievable throughput (DPHY), windowed
OFDM is associated with a 1-tap ZF equalizer while HS-OQAM is associated with a 3-tap
ASCET equalizer. Moreover, here we exploit the possibility to add subcarriers around
notches thanks to the good spectral containment of the FS4 prototype filter.

3.4.3.1 HomePlug AV 1 Context

First of all, we used the HPAV 1 specification as the referential of our simulations, mean-
ing that we started this study by limiting our comparisons using windowed OFDM, de-
fined in HPAV with Card(Mu) = 917 active carriers in the [1.8, 30] MHz band with
Econst = {1, 2, 3, 4, 6, 8, 10}, and an FFT size of M = 3072. Concerning HS-OQAM, some
subcarriers can be added while still satisfying the specification (see Fig. 3.30). Using the
FS4 prototype filter, it appears that compared to the windowed OFDM defined in HPAV,
we can add 53 extra subcarriers, setting the last two ones at a -80 dBm/Hz level. There-
fore, with HS-OQAM, we can have 970 subcarriers on instead of 917. Figs. 3.18, 3.19,
3.20 present the achievable throughput versus the averaged SNR at the receiver for classes
9, 5 and 2 channels, respectively. We remind that all the presented curves result from an
average over 100 channels realizations, with a unique colored noise generation per channel
realization. To obtain these curves, the signal PSD is increased from −120 dBm/Hz to
−50 dBm/Hz. So, for each curve, the last point on the right corresponds to the maximum
authorized PSD by the spectral mask (see Fig. 3.21). The averaged SNR is computed as in
(3.68). However, as Mu of windowed OFDM differs from Mu of HS-OQAM, the resulting
SNRRX will vary slightly between the two modulations. In Fig. 3.18, a significant gap
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Figure 3.18: Transmission capacities (dotted curves) and PHY data rates (continuous
curves) in the HPAV 1 context on Class 9 channels.

Figure 3.19: Transmission capacities (dotted curves) and PHY data rates (continuous
curves) in the HPAV 1 context on Class 5 channels.
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Figure 3.20: Transmission capacities (dotted curves) and PHY data rates (continuous
curves) in the HPAV 1 context on Class 2 channels.

can be observed between the results presenting the transmission capacity (dotted curves)
and the ones presenting the achievable throughput (continuous curves). Actually, as these
results were established using class 9 channels, the SINR per subcarrier is very high and
for that reason, the capacity reached per subcarrier theoretically (see (3.2)) allows to carry
much more bits than bmax (see (3.6)). In the same figure, we can also note that from a
certain SNRRX , the transmission capacity of HS-OQAM bends and finally becomes lower
than the one reached by windowed OFDM. This can be easily explained by the remaining
interference inherent in HS-OQAM whenever the channel is not perfect, while the short de-
lay spread of class 9 channels does not affect windowed OFDM, which is practically noticed
by the linear increase of its transmission capacity. Note that for channels belonging to
classes 5 and 2, this crossing cannot be seen because the maximum SNRRX is much lower
than the 85 dB reached with class 9 channels. The three figures also present the achievable
throughput, also denoted as the PHY data rate, for classes 2, 5 and 9 channels. In these
three cases, for any value of the SNRRX , HS-OQAM provides better performance than
windowed OFDM. Actually, at the maximum transmitting power, the bit-rate provided
by HS-OQAM is at least 19% higher compared to the one provided by windowed OFDM.
Indeed, for class 2 channels, HS-OQAM outperforms windowed OFDM with an averaged
data rate being 19.3% higher than the one provided by OFDM. Moreover, it can be no-
ticed that the gap between the data rates reached by the two modulations increases with
the channel class, as the remaining interference decreases. Indeed, for class 5 channels,
the improvement reaches 19.6% while for class 9 channels, the averaged data rate is 20.1%
higher than for windowed OFDM. So, in spite of a bigger interference term for HS-OQAM,
the advantages of having a guard interval reduced to zero and using more subcarriers are
still predominant and allow this modulation to be ahead of windowed OFDM in terms of
bit-rate. However, this advantage could be partly lost if the PLC system could operate at
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Figure 3.21: HPAV Spectral mask and its extension in the upper band.

still higher SNR, which is not envisioned in any specification nor standard, or if the bit
limitation could be significantly increased. Now, let us look at the results achieved in the
context of HPAV 2 networks.

3.4.3.2 HomePlug AV 2 Context

In this part, we extend the HPAV bandwidth up to 87.5 MHz, just below the FM broad-
casting band. As for future HPAV 2 systems, we now consider a sampling frequency
Fs = 200 MHz, and all previous length parameters (M , LGI, LRI) are simply multiplied
by an 8/3 factor. So, the window keeps its initial shape, only its length in samples is in-
creased using an 8192-point FFT, still with a subcarrier spacing unchanged at F0 = 24.414
kHz. The window function is modified in order to take into account the new IFFT size.
Thus the roll-off interval (RI) is increased going from 372 samples in the HPAV band to
372× 8

3 = 992 samples. As it can be seen in Fig. 3.21, the transmitted PSD is limited to
−80 dBm/Hz beyond 28 MHz. Now, keeping the 917 active sub-carriers in the HPAV band
and because of its secondary lobes, windowed OFDM does not respect the spectral mask
if the subcarriers located just beyond the 28 MHz limit are switched on. So, for windowed
OFDM, the 10 first subcarriers are not used in order to still satisfy the HPAV requirement
together with the -80 dBm/Hz limitation. Concerning HS-OQAM using FS4 prototype
filter, these subcarriers can be active while still satisfying the mask. To summarize, the
number of usable subcarriers according to the different modulations is as follows:

• windowed OFDM: Card(Mu) = 917 (HPAV) + 2428 = 3345

• HS-OQAM/FS4: Card(Mu) = 970 (HPAV) + 2438 = 3408

Moreover, HPAV 2 specification, as the IEEE P1901 standard, allows to carry a max-
imum of 12 bits per subcarrier. So, in these simulations, we set bmax = 12 (see subsection
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Figure 3.22: Achievable throughput (dotted curves) and PHY data rates (continuous
curves) in the HPAV 2 context on Class 9 channels.

Figure 3.23: Achievable throughput (dotted curves) and PHY data rates (continuous
curves) in the HPAV 2 context on Class 5 channels.
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Figure 3.24: Achievable throughput (dotted curves) and PHY data rates (continuous
curves) in the HPAV 2 context on Class 2 channels.

3.1.3). The results on the three classes of channels are presented in Figs. 3.22, 3.23 and
3.24. As for Fig. 3.18, 3.19 and 3.20, the transmitted PSD is linearly increased starting
from −120 dBm/Hz for all the active subcarriers but as soon as it reaches −80 dBm/Hz,
the transmitted PSD is only increased for the subcarriers located below 28 MHz until it
reaches −50 dBm/Hz. The point from which the PSD is saturated in the upper band can
be easily noticed in the figure. The first remark that can be made on the results is that
HS-OQAM always shows better performance than windowed OFDM, for the achievable
throughput as for the transmission capacity. Nevertheless, we can notice that the gains in
the data rates, for all channels classes, are lower than the ones observed for the simulations
in the HPAV band only. Actually, the achievable throughputs provided by HS-OQAM are
14.8%, 15.4% and 15.7% higher for channels belonging to classes 2, 5 and 9, respectively.
These lower gains can be easily explained by the fact that, by extending the bandwidth,
the ratio of subcarriers added exclusively for HS-OQAM modulation is lower than the same
ratio observed in the HPAV band only. One can also notice that the crossing between the
transmission capacity curves is no more present. Indeed, because of the limitation to −80
dBm/Hz in the upper band, the maximum SNRRX reached in the extended HPAV context
is, for each class, lower than the one attained in the HPAV context. Nevertheless, for the
simulations in classes 5 and 9 channels, we really take advantage of the extension in the
bandwidth, by reaching data rates up to 1 Gbps using HS-OQAM over class 9 channels
for instance. Now, these good results have to be mitigated for class 2 channels, in which
the gain in the achievable throughput is much lower. Obviously, with the limitation to -80
dBm/Hz, the achievable SINRs per subcarrier are too low to really take advantage of the
new bandwidth, considering its relatively large increase. Finally, these simulations in an
extended HPAV context show that HS-OQAM can provide an important improvement in
the achievable throughput, realizing data rates about 15% higher than windowed OFDM.
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3.4.4 Potential Impact of the CENELEC Mask on HPAV Networks

While the FCC clearly defines a spectral mask that PLC systems must comply with in
North America, the regulatory environment remains uncertain in the EU. Indeed, it ap-
pears that more applications have to be protected from the radiated power by PLC equip-
ments in Europe (see Appendix B.2) than in the US. Consequently, the european com-
mittee in charge of Electromagnetic Compatibility (EMC) regulations, the CENELEC,
proposed a new EMC standard in 2011 for broadband PLC systems. The first version of
the document was firstly rejected by a majority of the national standard committees of
the EU countries, but a new vote will occur in early 2013 to approve or reject the stan-
dard. This document defines a first set of frequency ranges that must always be safe from
PLC EMI, and a second set of frequencies that might be necessary to dynamically notch,
depending on the location where the PLC system is in use. However, regardless of the
considered CENELEC spectral mask, either including permanently only or permanently
and dynamically excluded frequency ranges, the mask remains much more restrictive than
the FCC one. In the case where this standard would be ratified in its current version, it
would have a dramatic impact on the capacity of current PLC networks. In this section,
we firstly aim at assessing the potential decrease in the capacity of HPAV networks that
would be caused by the introduction of this new spectral mask. Secondly, we highlight
the increased performance gap between HS-OQAM and windowed OFDM caused by the
introduction of the CENELEC mask.

3.4.4.1 Impact of the CENELEC Mask on the Number of HS-OQAM and
Windowed OFDM Active Tones

In Fig. 3.25, we present the PSDs of windowed OFDM and HS-OQAM using the FS4
prototype filter. It clearly appears that both CENELEC masks define a lot more notches
than the North American one (see Fig. 3.5), which results in a severe decrease of the
number of active subcarriers. While HPAV 1 allows to use 917 subcarriers following the
FCC spectral mask, this number drops to 767 in order to fit into the CENELEC mask
that only includes permanently excluded frequencies, such that about 16 % of the original
bandwidth is lost. Moreover, if we also consider all dynamic notches, only 503 subcarriers
can be activated, meaning that more than 45 % of the frequency resource is lost! On
the other hand, the excellent spectral containment of the FS4 prototype filter allows HS-
OQAM to keep 871 active tones while still complying with the first CENELEC mask,
which represents a significant gap when compared to the 767 active subcarriers of the
equivalent windowed OFDM scheme. Considering the most restrictive CENELEC mask,
HS-OQAM still allows 632 subcarriers to be used, meaning that HS-OQAM would provide
more than 25 % additional subcarriers than windowed OFDM in such a scenario. As we
have already highlighted in this chapter, using a frequency selective filter allows to activate
more subcarriers at the notch edges. Consequently, the more notches there are, the bigger
will be the gap between HS-OQAM and windowed OFDM. Moreover, the gap becomes
even more important considering the closeness of some notches, which is highlighted in Fig.
3.26, where it appears that it is sometimes not possible to insert any subcarrier between
two consecutive notches using windowed OFDM, while HS-OQAM with FS4 can activate
several ones.
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(a)

(b)

Figure 3.25: Compared PSD between HPAV windowed OFDM and HS-OQAM associated
with a FS4 prototype filter, complying with CENELEC spectral mask: (a) permanently
excluded frequencies only (b) permanently and dynamically excluded frequencies.
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Figure 3.26: Magnified PSDs around the 18 MHz region of Fig. 3.25-(b).

3.4.4.2 Impact of the CENELEC Mask on HPAV Networks Capacity: Com-
parison Between HS-OQAM and Windowed OFDM

As in section 3.4.3, all the results are presented here both in terms of transmission capacity
(Dinf gran) and achievable throughput (DPHY). The HPAV 1 specification is followed, such
that a maximum of 10 bits can be carried with a single subcarrier. Windowed OFDM is
still associated with a 1-tap ZF equalizer, and the number of active subcarriers is either
equal to 767 or 503, depending on whether dynamic notching is used or not. Considering
HS-OQAM, we exploit the possibility to add subcarriers using the FS4 prototype filter,
such that 871 and 632 tones are active, this number also depending on the applied CEN-
ELEC mask. However, as the relative difference in the number of active tones between
the two modulations is significantly higher than in section 3.4.3, in addition to ASCET
equalization, we also associate HS-OQAM with a 1-tap ZF to see if the higher interference
term can be compensated by the additional bandwidth. The curves depicted in Fig. 3.27,
Fig. 3.28 and Fig. 3.29, are computed by averaging simulation results over 100 channels
realizations, using a unique colored noise generation per channel realization. To obtain
these curves, the signal PSD is increased from −120 dBm/Hz to −50 dBm/Hz. So, for
each curve, the last point on the right corresponds to the maximum authorized PSD by the
spectral mask. The averaged SNR is computed as in (3.68). However, as Mu of windowed
OFDM differs from Mu of HS-OQAM, the resulting SNRRX will vary slightly between
the two modulations. Let us firstly look at Fig. 3.27, where the results are presented on
class 9 channels for both masks. The significant gap between the transmission capacity
(dotted curves) and the achievable throughput (continuous curves) has already been ex-
plained in 3.4.3.1: on class 9 channels, the SINR per subcarrier is very high and for that
reason, the capacity reached per subcarrier (see (3.2)) allows to carry much more bits than
bmax. Consequently, the achieved PHY data rates by HS-OQAM on class 9 channels will
not depend upon the chosen equalizer, so that both curves (continuous black and purple
ones) are overlapping. It is also interesting to notice that the association of HS-OQAM
and ASCET allows to reach a maximum capacity higher than windowed OFDM when
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(a)

(b)

Figure 3.27: Transmission capacities (dotted curves) and PHY data rates (continuous
curves) on Class 9 channels, considering: (a) permanently excluded frequencies by CEN-
ELEC only (b) permanently and dynamically excluded frequencies by CENELEC.
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the most restrictive mask is applied (Fig. 3.27-(b)), which was not the case in Fig. 3.18.
Concerning the PHY rates shown in 3.27-(a), HS-OQAM allows to keep about the same
capacity of 200 Mbps as current HPAV networks that use the North American mask (see
Fig. 3.18). Moreover, it appears that if the most restrictive CENELEC mask were to be
imposed to current systems, it would lead to almost dividing by 2 the overall capacity
of HPAV networks! On the other hand, thanks to the additional subcarriers, HS-OQAM
significantly limits the impact of the bandwidth reduction, by achieving saturated PHY
data rates 29 % and 42.7 % higher than windowed OFDM in Fig. 3.27-(a) and Fig. 3.27-
(b), respectively. In Fig. 3.28 where the simulations were performed on class 5 channels,
the two curves presenting the achieved PHY data rates of HS-OQAM either using an
ASCET or a 1-tap ZF can now be discriminated because of the higher interference term.
However, we can notice on both graphs that using the 1-tap ZF still allows HS-OQAM
to significantly outperform windowed OFDM in terms of bit rates. Considering the most
efficient equalization method, HS-OQAM can increase PHY data rates by 28.4 % and 41.6
%, respectively. These gains are slightly lower than the ones achieved on class 9 chan-
nels, due to the higher interference level of HS-OQAM. This term is even higher in class
2 PLC channels, so that PHY rates are improved by 27.7 % and 40.3 % in Fig. 3.29.
Looking at the dotted curves on both plots, we can also notice that HS-OQAM always
provides an higher transmission capacity than windowed OFDM. It is finally important to
highlight the fact that the association of HS-OQAM with a 1-tap ZF always outperforms
the HPAV modulation scheme, whatever channel class being considered. While this short
study clearly highlights the dreadful effect of this new regulation policy, it also confirms
the benefits of a highly spectrally efficient modulation such as HS-OQAM.
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(a)

(b)

Figure 3.28: Transmission capacities (dotted curves) and PHY data rates (continuous
curves) on Class 5 channels, considering: (a) permanently excluded frequencies by CEN-
ELEC only (b) permanently and dynamically excluded frequencies by CENELEC.
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(a)

(b)

Figure 3.29: Transmission capacities (dotted curves) and PHY data rates (continuous
curves) on Class 2 channels, considering: (a) permanently excluded frequencies by CEN-
ELEC only (b) permanently and dynamically excluded frequencies by CENELEC.
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3.5 Conclusion

The main purpose of this Chapter was to study HS-OQAM performance in a realistic sce-
nario and compare it to windowed OFDM, the modulation scheme used by HPAV systems.
We have shown that a significant improvement in the data rates can be achieved using
this alternative modulation scheme, when associated to a frequency selective prototype
filter with a length of at least 4 times the IFFT size, together with a 3-tap equalizer per
subcarrier. Indeed, the flexibility offered by HS-OQAM in the pulse shaping allows the
design of prototype filters well adapted both to the frequency selective channel and to
the transmission mask. Thus, we show that HS-OQAM using an FS4 prototype filter and
associated to an ASCET equalizer always outperforms windowed OFDM, with a minimum
improvement of 15% in the data rates. It is important to notice that the 3-tap ASCET
equalizer only induces a slight complexity augmentation when considering the whole sys-
tem complexity and, above all reasons, when considering the potential benefit brought
by HS-OQAM in this particular context. Moreover, the gap between the two compared
schemes could be even more important if the spectral mask defines more notches in the
[0, 100] MHz bandwidth. If the CENELEC spectral mask is eventually imposed to every
HPAV system sold in the European Union, the capacity of HPAV networks would be then
drastically reduced. It clearly highlights the need for more spectrally efficient modulations
schemes, such as OFDM/OQAM. Finally, we emphasize on the fact that a drawback of
OFDM/OQAM, concerning the time spread of frequency selective prototype filters that
can be an issue when transmitting frames on a shared medium, can be now totally avoided
for short prototype filters, e.g. TFL1, [55], and strongly attenuated for longer ones [38].
In the following of this document, we are going to consider PLC networks working in a
multiuser context, and we will show how the link adaptation that is realized through the
definition of tone maps could be much more efficiently exploited by the MAC layer. The
tone maps we will use in the following were generated using the windowed OFDM modu-
lation defined by HPAV. Nevertheless, for every solution presented in Chapters 4 and 5,
the OFDM/OQAM modulation could have been used to generate tone maps.





Chapter 4

Point-to-Multipoint Transmissions in
Powerline Networks

4.1 Preliminary

4.1.1 The Interest of FDM in PLC Networks

Broadband Internet accesses allow customers to simultaneously access a lot of distant
services. Considering the fact that PLC stations are often requesting distant services, the
network activity is often centralized around the PLC station in charge of forwarding these
services throughout the PLC network, i.e. the one directly connected to the Internet access
point (in the following, this station is referred to as the "access point" of the PLC network).
So, it appears that point-to-multipoint communication is a common use case considering
home networking applications. Also, as current PLC networks only define point-to-point
transmissions, the transmission of multiple services in a point-to-multipoint scenario is
currently handled only using a Time Division Multiplexing (TDM) transmission scheme,
by the means of CSMA/CA or TDMA access techniques.

Now, we have seen that the quasi static nature of the PLC transmission channel allows
the use of bit-loading techniques, resulting in the definition of dedicated tone maps. More-
over, it has been widely shown in literature that the frequency fading nature of the PLC
channel mainly comes from multiple signal reflections due to impedance mismatches at the
outlets [94], [115]. So, it is highly likely that the transmission channels between the access
point, and all the other stations of the network, will provide a multiuser diversity that will
appear through the K tone maps exclusively created to reach the K stations the central
node will be communicating with. In Fig. 4.1, 4 measured point-to-multipoint channels
illustrate this multiuser diversity in frequency in the range [1.8, 100] MHz. Actually, the
frequency selective nature of the PLC channel is not the only source of diversity. Indeed,
in the previous Chapter, we have introduced the transmission mask imposed to all PLC
systems, where it appears that above 30 MHz, the transmitted power must be drastically
reduced. From a -50 dBm/Hz PSD limitation in the lower band, the maximum transmit-
ted PSD beyond this limit must drop to -80 dBm/Hz. Consequently, if we consider the
case where the access point communicates with one station with a low channel attenuation
on the one hand and, on the other hand, with another station for which the transmission
channel is strongly attenuated, thanks to this power limitation, the diversity will be even

69
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Figure 4.1: Illustration of the Multiuser diversity among 4 measured PLC channels in the
[1.8, 100] MHz frequency range (provided by the HPAV working group).

more important between these two transmission paths. Indeed, as it is illustrated by the
two tone maps of Fig. 4.2, a severely attenuated channel will achieve most of its trans-
mission capacity below 30 MHz, meaning that the the frequency resource beyond this
limit is wasted. On the other hand, considering the low attenuated channel, the achieved
capacity in the upper band may be important. So, in this particular but common case, it
is obvious that the PLC network would greatly benefit from the definition of an OFDMA
transmission scheme.

However, it appears that this multiuser diversity is not exploited by current PLC
systems, as only TDM is used. So, in this Chapter, we aim at defining a Frequency Division
Multiplexing (FDM) access mode for point-to-multipoint transmissions, by orthogonalizing
the K tone maps respectively defined on each of the K active links. Firstly, we study the
tone maps orthogonalization problem and we develop a geometrical method for solving
it. Then, we propose a low-cost algorithm to efficiently split tone maps. This solution is
compared to another tone map splitting algorithm that was proposed in [69]. Finally, we
define an HPAV compliant OFDMA transmission scheme which performance is tested using
the PLC network simulator described in Appendix A. In the following, we only consider
quasi-static channels, meaning that their evolutions in time are really slow compared to
the duration of an OFDM symbol. Then, obviously, the tone maps are also considered
time-invariant. To ease notations, we now assume that M = Mu = {1, ..,M}, as we will
only work with the set of active tones.

4.1.2 Resource Allocation Problems

The capacity of multiuser channels has been extensively studied in the literature. If a
limited resource has to be allocated among K users, a K-dimensional capacity region can
be computed to evaluate every possible partition of the resource among the K users. In a
multiuser context, two different scenarios are generally studied, which are presented in Fig.
4.3 in which Hk(ω) and nk denote the channel frequency response and the noise source
on link k, respectively. Firstly, there is the well-known broadcast channel, introduced



4.1 Preliminary 71

Figure 4.2: Bit-loading performed in the [1.8, 50] MHz frequency range, following the IEEE
P1901 specification.

in [50], and modeling downlink transmissions from the "access point" to multiple nodes
of the network. Secondly, there is the multiple access channel [46], corresponding to the
uplink transmission scenario, where all users can access the medium to communicate with
the Base Station, also corresponding to the access point of the network. Considering
in-home PLC, the network has a bus topology and each station can access the channel
to directly communicate with any station of the network. So, multiuser PLC networks
can be modeled using the two aforementioned models and the particular case of point-to-
multipoint transmissions is modeled using the broadcast channel. The balanced capacity of
a multiuser system is defined as the distribution of maximum simultaneously achievable bit
rates that are in proportion with the single-user rates. It is a specific point of the boundary
of the capacity region for which the coexistence with the other users has the same relative
cost for every user. In the past, many studies have been conducted to maximize the
capacity under fixed power constraints [112]. In other approaches, the resource allocation
strategy aims at minimizing the consumed power to satisfy a fixed bit rate by a particular
application [111].

In our approach, we consider the transmissions to be already established using a time
division multiplexing scheme that is actually the current mode of operation of PLC net-
works. Secondly, and this a key point to put in perspective previous works, the bit-loading
is done at the receiver side, meaning that the access point has only knowledge of the
tone maps associated to the K links it is using. Consequently, the classical degrees of
freedom of resource allocation problems, such as power allocation or QoS, are fixed. This
also means that most of the sub-optimal allocation algorithms developed in the literature
cannot directly be applied in the considered context. Basically, the tone maps orthogonal-
ization problem comes down to distribute M active subcarriers among K links, where the
m-th subcarrier of the k-th link is associated with a fixed number of carried bits. Now,
solving this problem is far from being straightforward as the optimal allocation solution
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Figure 4.3: Multiple access and broadcast channels.
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(a)

(b)

Figure 4.4: Point-to-multipoint transmission: (a) using TDMA (b) using FDMA.

is not necessarily to assign a user the best subcarriers seen by that user. Actually, the
complexity of this problem can be foreseen considering the case where the best subcarrier
of a user is also the best subcarrier of another user who happens to have no other good
subcarriers.

4.1.3 Taking Advantage of the Frequency Diversity

Before putting down the tone maps orthogonalization problem, let us prove that FDMA
improves point-to-multipoint transmissions, considering quasi-static links. We consider
the case of K stations to reach: STA1, STA2,..., STAK . The communication channel
between STA0, the transmitter, and the station STAk is characterized by its transmission
capacity Ck, computed inside the bandwidth B = [fmin, fmax], B ⊆ R+:

Ck =

∫ fmax

fmin

bk(f)df, (4.1)

with bk(f) = log2(1 + SINRk(f)
Γ ), a continuous and differentiable function in R+, ∀k ∈

K = {1, ...,K}, where SINRk(f) stands for the Signal to Interference plus Noise Ratio at
frequency f . Γ, the SINR gap, is set to the same value for the K links and is defined for
a target symbol error rate (SER) by [48]:

Γ =
1

3

[
Q−1

(
SER
4

)]2
(4.2)

in which Q−1(x) is the inverse tail probability of the standard normal distribution.
The studied problem is illustrated in Fig. 4.4 and we make the following assumptions:

only useful information is transmitted, so that no overhead is taken into account. Also,
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Figure 4.5: Splitting the frequency bandwidth into N subbands of equal capacity for each
link.

the considered time interval exactly corresponds to the transmission of N OFDM symbols
of duration T0. Here, we recall that the channels are supposed to be static during NT0.
Considering TDMA, pk OFDM symbols are transmitted to STAk, so that

∑K
k=1 pk = N .

Note that all values of pk can be different, in order to take into account the fact that data
rates may vary on every link, that each link possesses its own transmission capacity and
also that the streams may be prioritized by STA0. The averaged transmission capacity
during NT0 using TDMA can be computed as:

CTDMA
av =

∑K
k=1 pkCk

N
. (4.3)

Now, considering FDMA, the K transmissions occur simultaneously, so that:

CFDMA
av =

K∑
k=1

C⊥
k (4.4)

with
C⊥
k =

∫
Bk

bk(f)df , Bp ∩Bq = ∅, ∀ (p, q) ∈ K2. (4.5)

Theorem. Considering pk|pk ∈ N and
∑

k∈K pk = N in which K = {1, ..,K}, Ck and C⊥
k

following the definitions given in (4.1) and (4.5), respectively, ∃ {Bk|Bk ∈ B, B ⊆ R+}
so that: ⎧⎪⎨

⎪⎩
⋃K

k=1Bk ⊆ B⋂K
k=1Bk = ∅

C⊥
k ≥ pkCk

N , ∀k ∈ K

(4.6)

Proof. For each link k, the bandwidth B is divided into N sub-bands ΔBn
k =

[
fn−1
k , fn

k

[
,

n ∈ {1, .., N}, f0
k = fmin and fN

k = fmax, ∀k ∈ K, so that:∫
ΔBn

k

bk(f)df =
Ck

N
. (4.7)
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In the following, N sub-bands ΔBn are iteratively distributed among the K links, so that
Bk =

⋃
i∈Fk

ΔBi, Fk ⊆ {1, .., N}. The number of allocations to the link k is saved in ak,
ak = Card(Fk), initialized to 0, and pk > 2, ∀k ∈ K. This principle, which is illustrated
on Fig. 4.5, leads to the iterative algorithm which is described in the following for any
value of K:

n = 1: the first sub-band is allocated to the link q, with f1
q ≤ f1

k , ∀k ∈ K, so that
ΔB1 = ΔB1

q . aq is incremented so that
∑

k∈K ak = 1, C⊥
q =

Cq

N and is null on any other
link. Also, ∀k ∈ K, the remaining capacity beyond f1

q is greater or equal than (N−1)Ck

N .

n = 2: the second sub-band is allocated to the link r, with f2
r ≤ f2

k , ∀k ∈ K, so that
ΔB2 = ΔB2

r . From the previous iteration, we know that f2
r ≥ f1

q , so that ΔB1∩ΔB2 = ∅.
ar is incremented so that

∑
k∈K ak = 2 and C⊥

r = arCr
N . Also, ∀k ∈ K, the remaining ca-

pacity beyond f2
r is greater or equal than (N−2)Ck

N .
...
n = A1: proceeding in a same manner as for the previous iterations, let us suppose that
the Ath

1 allocation is for the benefit of the link 1 and that a1 reaches the value of p1, while
ak < pk, ∀k ∈ K \ {1}. From the previous iterations, we have

⋂A1
n=1ΔBn = ∅. The link

1 has reached the targeted transmission capacity, so that C⊥
1 = p1C1

N (no more bandwidth
will be allocated to it) and

∑
k∈K ak = A1. Also, ∀k ∈ K, the remaining capacity beyond

fA1
1 is greater or equal than (N−A1)Ck

N .
...
n = AK−1: again, let us suppose that the Ath

K−1 allocation is for the benefit of the link
(K−1) and that aK−1 reaches the value of pK−1, so that only aK < pK . From the previous
iterations, we have

⋂AK−1

n=1 ΔBn = ∅. The link K−1 has reached the targeted transmission
capacity, so that C⊥

K−1 =
pK−1CK−1

N and
∑

k∈K ak = AK−1. Also, ∀k ∈ K\{1, ..,K−2}, the
remaining capacity beyond f

AK−1

1 is greater or equal than (N−AK−1)Ck

N . As the N −AK−1

null-intersected sub-bands left can be allocated to the link K, its current capacity aKCK
N

increases by (N−AK−1)CK

N . As N −AK−1 = pK − aK , we get C⊥
K = pKCK

N .
Finally, N null-intersected sub-bands ΔBn have been allocated, allowing every link

to reach one pk
N

th of their own transmission capacities. In other words, it means that
FDMA allows to transmit the same quantity of information as TDMA, while using a total
bandwidth lower than B. By extension, we prove that FDMA potentially provides a better
transmission capacity than TDMA, as it is always possible to obtain C⊥

k ≥ pkCk
N , ∀k ∈ K,

using the same bandwidth B.

In the following, we set pk
N = αk, with

∑
k∈K αk = 1, which will be referred to as a

priority coefficient.

4.2 Problem Statement

4.2.1 Problem Discretization

In Section 4.1.3, the demonstration of the superiority of FDMA over TDMA has been done
using a continuous-variable formalism. If we now consider K tone maps, defined on each
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one of the K links, it confers a finite granularity to this resource allocation problem as the
frequency bandwidth is divided into M sub-bands, corresponding to the M subcarriers of
the OFDM signal. As there are M subcarriers to allocate among the K links, we easily
infer that the number of allocation solutions is equal to KM .

On the subcarrier m of the link k, (k,m) ∈ K×M where M = {1, ..,M}, the associated
capacity reads:

Ck[m] =

∫ fm

fm−1

bk(f)df , with

{
f0 = fmin

fM = fmax

. (4.8)

At this point, we underline the fact that imposing the same value of Γ (see (4.1)) for the
M subcarriers is essential to ensure the OFDM symbol error rate to remain lower than
the target error rate on the K links after proceeding to the tone maps orthogonalization.
Finally, the kth transmission channel is associated with a unique tone map Tk[m], obtained
by proceeding to a quantization of Ck[m], such that:

Tk[m] = argmax
b∈Econst

{b|b ≤ Ck[m]}, ∀(k,m) ∈ K×M, (4.9)

where Econst contains the actual number of bits a single subcarrier can carry. As an exam-
ple, if we consider the IEEE P1901 specification [7], we have Econst = {0, 1, 2, 3, 4, 6, 8, 10, 12}.

So, a tone map can be seen as a vector with M components, each of them belonging
to a finite and discrete set Econst, the mth component corresponding to the actual number
of bits carried by the mth subcarrier. Also, we define the tone map capacity Rk, Rk < Ck:

Rk =
∑
m∈M

Tk[m], ∀k ∈ K. (4.10)

In the following we mainly work with normalized versions of tone maps, defined as:

tk[m] =
Tk[m]

Rk
, ∀(k,m) ∈ K×M, (4.11)

and associated to the unitarian capacity:

rk =
∑
m∈M

tk[m] = 1. (4.12)

The definition of an FDMA mode using tone maps comes down to distribute the M
subcarriers among the K links to create an OFDMA scheme, so that K orthogonal tone
maps t⊥k [m] are constructed:

t⊥k [m] =

{
tk[m], if m ∈ Sk, with Sk ⊆ M and

⋂
k∈K Sk = ∅

0, otherwise.
, (4.13)

and associated to their normalized capacities:

r⊥k =
∑
m∈M

t⊥k [m] =
∑
m∈Sk

tk[m]. (4.14)

The orthogonality between the newly defined tone maps can be verified using the scalar
product. Recalling that their components are never negative, the orthogonality condition
is reached if t⊥p [m]t⊥q [m] = 0, with p �= q and ∀ m ∈ M.
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4.2.2 Discrete Extension of the Theorem of Section 4.1.3

If FDMA can always provide at least an equivalent capacity than TDMA in the contin-
uous case, this cannot be assumed anymore after having discretized the problem. In the
following, we are going to establish a sufficient condition to ensure the existence of K
null-intersected Sk subsets, so that:

r⊥k =
∑
m∈Sk

tk[m] > αk, ∀k ∈ K. (4.15)

As
∑

m∈M tk[m] = 1 , we can firstly notice that:

(4.15) ⇒
∑

m∈M\(Sk)
tk[m] < 1− αk. (4.16)

⇔
∑
k∈K

∑
m∈M\(Sk)

tk[m] <
∑
k∈K

(1− αk) . (4.17)

Assuming that
⋃

k∈K Sk = M and
⋂

k∈K Sk = ∅, we have
∑

m∈M\(Sk) =
∑

p∈K\{k}
∑

m∈Sp ,
so that: ∑

k∈K

∑
p∈K\{k}

∑
m∈Sp

tp[m] < K − 1 (4.18)

⇔
∑
k∈K

∑
m∈Sk

∑
p∈K\{k}

tp[m] < K − 1 (4.19)

⇔
∑
k∈K

∑
m∈Sk

1

K − 1

∑
p∈K\{k}

tp[m] < 1. (4.20)

Here, we have computed an equivalent tone maps on each Sk subset, by averaging the
(K − 1) tone maps tp[m] verifying p �= k. In the following, we set:

t̄k[m] =
1

K − 1

∑
p∈K\{k}

tp[m]. (4.21)

At this point, we have demonstrated that satisfying (4.15) implies the capacity of this
equivalent tone map to be lower than 1. From (4.15) and (4.20), we can write that:∑

k∈K

∑
m∈Sk

(tk[m]− t̄k[m]) > 0. (4.22)

A sufficient condition to verify (4.22) is:∑
m∈Sk

(tk[m]− t̄k[m]) > 0, (4.23)

which is met if at least 1 subcarrier mk ∈ Sk verifies tk[mk] > t̄k[mk]. Moreover, as∑
m∈Sk (tk[m]− t̄k[m]) = −∑

m∈M\Sk (tk[m]− t̄k[m]), there must be at least 2 subcarriers,
m1

k ∈ Sk and m2
k ∈ M\Sk, on which the two tone maps take different values. Now, if only 2

subcarriers verify tk[m] �= t⊥k [m], it only ensures the existence of only one Sk so that (4.23)
be satisfied. So, to ensure the existence of K null-intersected Sk, a sufficient condition is
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that tk[m] and t̄k[m] take different values on 2K subcarriers, which is necessarily ensured
if the following condition is met:∑

m∈M
|tk[m]− t̄k[m]| > 4Kφ, ∀k ∈ Sk, (4.24)

where φ overestimates the coarsest capacity granularity and is defined as follows:

φ = max
(k,m)∈K×M

(tk[m]) . (4.25)

(4.24) guarantees that there are at least K subcarriers where tk[m] > t̄k[m], ∀k ∈ K,
meaning that for each k ∈ K, there are at least K different solutions (Sk subsets) ensuring
r⊥k > αk, a final condition being that αk < 1 −Kφ, ∀k ∈ K. Finally, we can extend the
formulation of the theorem stated in section 4.5 to the discrete case.

Theorem. We consider {αk|αk ∈ R+, αk < 1 − Kφ and
∑

k∈K αk = 1} with K =
{1, ..,K}, tk[m], r⊥k , t̄k[m] and φ following the definitions given in (4.11), (4.14), (4.21)
and (4.25), respectively. If

∑
m∈M |tk[m] − t̄k[m]| > 4Kφ, ∀k ∈ Sk, ∃ {Sk|Sk ⊆ M ⊆ N}

so that: ⎧⎪⎨
⎪⎩

⋃
k∈K Sk ⊆ M⋂
k∈K Sk = ∅

r⊥k > αk, ∀k ∈ K

, (4.26)

4.2.3 Mathematical Optimization

As we want to equally share the frequency diversity among the K links, the FDM gain
maximization problem comes down to:

Maximize: mink∈K
∑

m∈Sk
tk[m]
αk

subject to: {Sk|
⋃

k∈K Sk ⊆ M and
⋂

k∈K Sk = ∅}

In this case, each subcarrier is exclusively allocated to only one link. According to [112],
this resource allocation problem belongs to the class of integer programming problems, for
which an exact solution usually involves an exhaustive search. As there are M subcarriers
to assign among K stations, the number of possible partitions of the spectrum is equal to
KM , making an exhaustive search not even thinkable. To solve this problem, a possible
method is to enlarge the constraint set using a continuous formalism. In other words, it
comes down to allow a subcarrier to be fractionally allocated among the K links. In [111],
the fractional allocation of a subcarrier is interpreted as the possibility to subdivide each
tone allocation in time, allowing a subcarrier to be shared among several stations. So,
instead of dealing with a discrete set of solutions, we are now dealing with a continuous
set, implying that an infinite number of partitions is possible. Relaxing the problem results
in the following optimization problem statement:

Maximize:
∑

k∈K
∑

m∈Mwk,m
tk[m]
αk
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subject to: -
∑

m∈M{wi,m
ti[m]
αi

− wj,m
tj [m]
αj

} = 0, ∀ (i, j) ∈ K2, ∀ m ∈ M

-
∑

k∈Kwk,m = 1, ∀ m ∈ M
- wk,m ≥ 0, ∀ (k,m) ∈ K×M

where 0 ≤ wk,m ≤ 1 represents the fractional allocation value of the subcarrier m to the
link k. This problem belongs to the convex programming problem family, which can be
solved using the Karush-Kuhn-Tucker (KKT) conditions. To do so, we define the modified
Lagrangian as follows:

M(wk,m, λk,j , νm) =
∑
k∈K

∑
m∈M

wk,m
tk[m]

αk

−
K∑
i=1

K∑
j=i+1

λi,j

∑
m∈M

{wi,m
ti[m]

αi
− wj,m

tj [m]

αj
}

−
∑
m∈M

νm{
∑
k∈K

wk,m − 1}. (4.27)

The solution of this problem can be found by solving the following system (KKT first
order conditions): ⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂M
∂wk,m

≤ 0, ∀ (k,m) ∈ K×M

wk,m ≥ 0, ∀ (k,m) ∈ K×M

wk,m
∂M

∂wk,m
= 0, ∀ (k,m) ∈ K×M

∂M
∂λi,j

= 0, ∀ (i, j) ∈ K×K \ {1, .., i}
∂M
∂νm

= 0, ∀ m ∈ M

(4.28)

Now, it clearly appears that the computational complexity of this system may remain
prohibitive as the numbers of subcarriers and links increase. In the following, we develop
a geometrical approach of the tone maps splitting problem, allowing to directly converge
to the optimal allocation solution.

4.3 Optimal OFDMA Resource Allocation: Geometrical Ap-
proach

The continuous relaxation of the tone maps splitting problem is kept, s.t. the orthogonal-
ized tone maps are associated to the following capacity:

r⊥k =
∑
m∈M

wk,mtk[m], ∀k ∈ K, (4.29)

the orthogonality condition being ensured by the following condition:∑
k∈K

wk,m = 1, ∀m ∈ M. (4.30)
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Then, as we want to equally share the diversity among the K links, we define the FDM
gain, w.r.t. TDM, as follows:

GFDM =
r⊥k
αk

, ∀k ∈ K. (4.31)

Then, in a K-dimensional Euclidean space of basis vectors {�ek : 1 ≤ k ≤ K}, where �ek
denotes the vector with a 1 in the k-th coordinate and 0’s elsewhere, we define:

�R =
[
r⊥1 , r

⊥
2 , .., r

⊥
K

]T
, (4.32)

a K-dimensional vector which k-th component corresponds to the achieved capacity on
link k. Then, based on (4.31), we can write:

�R = GFDM [α1, α2, .., αK ]T , (4.33)

so that the norm of �R simply reads:

||�R|| = GFDM

√∑
k∈K

α2
k. (4.34)

So, for a fixed K-tuple (α1, α2, .., αK), solving the maximization problem stated in
the previous section comes down to maximize the norm of a K-dimensional vector �R,
which components correspond to the achieved capacities by the K orthogonal tone maps,
and which directions are given by (α1, α2, .., αK). In the following, starting from a 1-
dimensional space and progressively extending the dimensions, we iteratively construct
the optimal vector �Ropt, i.e. maximizing GFDM.

4.3.1 Optimal Capacity Region along Basis Vector �e1

If we consider the maximization of GFDM on link 1 only, assuming that α1 �= 0, maximizing
||�R|| is done by allocating the M subcarriers to the first link, so that �R = GFDMα1�e1 = �e1.

4.3.2 Optimal Capacity Region in the Plane (�e1, �e2)

At this point, we have
∑

m∈Mw1,m = M and wk,m = 0, ∀k ∈ K \ {1}. Without loss of
generality, we consider the study of the capacity region between links 1 and 2, i.e. in the
plane generated by basis vectors �e1 and �e2. The two tone maps to process are associated
with two priority coefficients (α1, α2), respectively. We also associate the tone map tk[m]
to ck[m], representing the realized fractional capacity on its first m subcarriers, m ≤ M ,
and expressed as follows:

ck[m] =

{
0, if m = 0∑m

p=1 tk[p], ∀m ∈ M
. (4.35)

Then, assuming the first (m− 1)-th subcarriers are allocated to link 2, the last (M −m)
remaining allocated to link 1, while the m-th subcarrier is shared between the two, we can
express the capacity allocated to the first link as a function of the capacity allocated to
the second link, by defining a piecewise function parameterized as follows:

Γ2 :

{
r⊥2 [m] = c2[m− 1] + w2,mt2[m]

r⊥1 [m] = 1− c1[m− 1]− w2,mt1[m]
, (4.36)
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Figure 4.6: Example of a sub-optimal and an optimal OFDMA capacity region for K = 2
(α1 = 0.3 and α2 = 0.7).

from which we get:

w2,m =
r⊥2 [m]− c2[m− 1]

t2[m]
, (4.37)

leading to the following expression:

r⊥1 [m] = − t1[m]

t2[m]
r⊥2 [m] + 1 +

t1[m]

t2[m]
c2[m− 1]− c1[m− 1] (4.38)

which is plotted in Fig. 4.6 as the Γ2 curve, continuously decreasing on [0, 1].
Noticing that dr⊥1 [m]

dr⊥2 [m]
= − t1[m]

t2[m] , we define a σ permutation, so that the new sequencing

follows the increasing value of the t1[m]
t2[m] ratio, i.e.:

t1[σ(m+ 1)]

t2[σ(m+ 1)]
≥ t1[σ(m)]

t2[σ(m)]
, ∀m ∈ M \ {M}. (4.39)

Then, if we reorder the subcarriers contained in M following the σ permutation, the
resulting capacity region, denoted as Γopt

2 (see Fig. 4.6), appears to be concave. So, this
simple operation leads directly to the optimal OFDMA capacity region, as a maximization
of the capacities on both links is obtained for any (α1, α2) combination. As the projection
of �R onto the plane P2, containing Γopt

2 , corresponds to an �R2 vector of directions (α1, α2),
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an optimal orthogonalization is achieved by separating the capacity region into two halves
at the point F, crossing of the curve Γopt

2 and the line L2 of equation r⊥1 = (tan(φ2))r
⊥
2 =

α1
α2
r⊥2 . The set of subcarriers verifying r⊥1 [σ(m)] − α1

α2
r⊥2 [σ(m)] > 0 are allocated to the

second link, while all the others remain allocated to link 1. At this point, it clearly appears
that the optimal partitioning of two tone maps only needs one subcarrier at most to be
shared among the two links. This subcarrier is the one associated to the part of the
piecewise linear function containing the F point. In the following, in order to simplify
the notations and without loss of generality, we consider that the natural order of the
subcarriers follows the increasing value of the t1[m]

t2[m] ratio, so that Γ2 is naturally concave.

4.3.3 Optimal Capacity Region in (�e1, �e2, �e3)

In the previous section, we managed to maximize the norm of �R2, projection of �R on P2.
In this third stage, we are going to release subcarriers allocated to links 1 and 2 to the
benefit of the third link, in order to construct an �R3 vector, projection of �R on the R3 basis
(�e1, �e2, �e3), and directed by (α1, α2, α3). Obviously, each subcarrier reallocation will result
in a decrease of ||�R2||. So, maximizing ||�R3|| comes down to find the set of subcarriers which
reallocations will result in a maximization of the capacity gain on �e3, while minimizing the
loss on ||�R2||. At each reallocation step i, r⊥,(i)

1 and r
⊥,(i)
2 decrease while r

⊥,(i)
3 increases,

and the F point slides along L2 in the plane P2 (cf. Fig. 4.7). Actually, the plane P2,
containing the OFDMA capacity region between the links 1 and 2, will be translated by
εi�e3 at each reallocation step, while a piecewise linear function, representing the loss on∥∥∥�R2

∥∥∥ as a function of r⊥3 , will be generated in a plane P3, containing vectors �R2 and �e3

(see Fig. 4.8). So, maximizing
∥∥∥�R3

∥∥∥ comes down to minimize the distance covered by F

along �R2 before r⊥3
α3

reaches the value of r⊥k
αk

, k ∈ {1, 2}, s.t. (4.31) be satisfied. In the
following, F(i) denotes the translated F point at the i-th reallocation step.

4.3.3.1 Analysis of the Capacity Region in P2

Let us firstly define a cost function computing the covered distance by F if we allocate
on �e3 a fractional capacity ε(i) at the i-th allocation step. Firstly, we can notice that the
portion of the m-th subcarrier needed to allocate a capacity ε(i) directly depends upon the
tone map of link 3, so that this fractional subcarrier is defined as follows:

δ
(i)
3,m =

ε(i)

t3[m]
. (4.40)

In Fig. 4.7, we have magnified the region where Γopt
2 and L2 intersect. The red continuous

and dotted curves present Γopt
2 before and after the release of δ(i)3,m, respectively. We can

notice that the impact of this reallocation on Γopt
2 comes down to apply two translations.

Firstly, the part of the Γopt
2 curve located on the left hand side of the released capacity

region is translated by −δ
(i)
3,mt1[m]�e1. Secondly, the part of the curve located on the right

hand side of the released capacity region is translated by −δ
(i)
3,mt2[m]�e2. Looking at Fig.
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Figure 4.7: Impact of the reallocation of one subcarrier on the FDM capacity region around
the F point.

4.7, we then deduct that: {
εx = δ

(i)
3,mt2[m], if w2,m > 0

εy = δ
(i)
3,mt1[m], if w1,m > 0.

, (4.41)

which means that if the chosen subcarrier to be released is currently allocated to link 1,
the local impact on Γopt

2 around the F(i) point will be a translation of −δ
(i)
3,mt1[m]�e1. On

the other hand, if the chosen subcarrier is currently allocated to link 2, the local impact
on Γopt

2 around the F(i) point will be a translation of −δ
(i)
3,mt2[m]�e2. However, Γopt

2 being
a continuous piecewise linear curve, it is necessary to discriminate the left hand side and
the right hand side values of β2 w.r.t. F, denoted as β2,l and β2,r, respectively. In order to
compute the translation of the F point at the i-th iteration

∥∥∥F(i)F(i+1)
∥∥∥ for any subcarrier

m, two cases need to be considered:

• If the released subcarrier is currently allocated to link 1, then we have εy = δ
(i)
3,mt1[m].

In such a case, assuming that the value of β2,l remains unchanged after ε(i) has been
allocated to link 3, we express

∥∥∥F(i)F(i+1)
∥∥∥ as a function of εy:∥∥∥F(i)F(i+1)

∥∥∥ =
∥∥∥F(i)B

∥∥∥ +
∥∥∥BF(i+1)

∥∥∥ (4.42)

⇔
∥∥∥F(i)F(i+1)

∥∥∥ = εy sin (φ2) + ‖BC‖ tan
(π
2
− β2,l − φ2

)
(4.43)

⇔
∥∥∥F(i)F(i+1)

∥∥∥ = εy

[
sin (φ2) + cos (φ2) tan

(π
2
− β2,l − φ2

)]
. (4.44)
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• If the released subcarrier is currently allocated to link 2, then we have εx = δ
(i)
3,mt2[m].

In such a case, assuming that the value of β2,r remains unchanged after ε(i) has been
allocated to link 3, we express

∥∥∥F(i)F(i+1)
∥∥∥ as a function of εx:∥∥∥F(i)F(i+1)

∥∥∥ =
∥∥∥DF(i)

∥∥∥ −
∥∥∥DF(i+1)

∥∥∥ (4.45)

⇔
∥∥∥F(i)F(i+1)

∥∥∥ = εx cos (φ2)− ‖ED‖ tan
(π
2
− β2,r − φ2

)
(4.46)

⇔
∥∥∥F(i)F(i+1)

∥∥∥ = εx

[
cos (φ2)− sin (φ2) tan

(π
2
− β2,r − φ2

)]
(4.47)

Thus, we can define for both links an exclusive cost function allowing us to assess the
value

∥∥∥F(i)F(i+1)
∥∥∥ ∀m ∈ M:⎧⎨

⎩ C
(i)
1 [m] = t1[m]

t3[m]

[
sin (φ2) + cos (φ2) tan

(
π
2 − β

(i)
2,l − φ2

)]
, if w1,m > 0

C
(i)
2 [m] = t2[m]

t3[m]

[
cos (φ2)− sin (φ2) tan

(
π
2 − β

(i)
2,r − φ2

)]
, if w2,m > 0

, (4.48)

Finally, the translation of the F point after the release from link k of a capacity ε(i) on the
subcarrier m of the link 3 simply reads:∥∥∥F(i)F(i+1)

∥∥∥ = ε(i)C
(i)
k [m]. (4.49)

In the following, we assume that the value of δ(i)3,m is always set such that the following
constraint on β2 is met: if the chosen subcarrier to be released was originally allocated to
link 1, then β

(i)
2,l = β

(i+1)
2,l , while if it was originally allocated to link 2, then β

(i)
2,r = β

(i+1)
2,r .

In the following, a fine analysis will be conducted to consider the case where F is located
on a singularity point of Γ2, i.e. when β2,l �= β2,r.

Remark: It is important to notice that the value of C
(i)
k [m] is actually dependent

upon the (i− 1)-th previous allocation steps. In order to ease the reading, we choose not
to make this dependency explicitly appear in the expression of the cost function defined
in (4.48).

4.3.3.2 Allocation Process

In this stage, we are going to describe the step-by-step allocation process on �e3, and we will
simultaneously prove that this method leads to a maximization of

∥∥∥�R3

∥∥∥. To understand
the basic idea of the following analysis, it is helpful to see this problem as a directed
graph where, at each node, M possible paths can be chosen, each one corresponding to a
subcarrier of the frequency multiplex. Every subcarrier for which w3,m = 1, i.e. that is
entirely allocated on link 3, is associated with an infinite weighting value, while subcarriers
still allocated to links 1 and 2 are associated with weighting values equal to C

(i)
1 [m] and

C
(i)
2 [m], respectively. Now, what we want to demonstrate here is that if we choose the

minimal weighted edge at each iteration, we will necessarily follow the path minimizing∥∥∥F(0)F(N)
∥∥∥, where N would be the number of allocations steps to satisfy the fairness

constraint r⊥1
α1

=
r⊥2
α2

=
r⊥3
α3

. Actually, it can be proved that, if we do not choose the minimal
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weighted path at the i-th iteration, it will not be possible to find another path leading to a
better solution. As we will see in the following, the veracity of the previous statement lies
in the concavity of the capacity region. Let us now study the only two possible scenarios
of the allocation process.

• β2 = β2,l = β2,r remains constant during the allocation process:

In this particular case, the modification of the capacity region does not lead to
a modification in the value of β2, such that the demonstration of the optimality is
straightforward. Indeed, in such a scenario, the cost function is unchanged during all
the allocation process, apart from the set of subcarriers that were entirely allocated
on �e3. So, at any considered allocation step, the weighting factors associated to the
available subcarriers keep the same values. It is therefore obvious that choosing to
allocate on link 3 the subcarriers minimizing the cost at each one of the N iteration
steps results in a maximization of

∥∥∥�R3

∥∥∥. Moreover, as
∥∥∥F(i−1)F(i)

∥∥∥ ≤
∥∥∥F(i)F(i+1)

∥∥∥
∀i ∈ {1, .., N}, the curve Γ3, representing the loss on

∥∥∥�R2

∥∥∥ as a function of the
capacity allocated to �e3 in the plane P3 (see Fig. 4.8), is also concave.

• The value of β2 changes during the allocation process:

This is the general case. According to (4.48), the values of the cost function will
change with β2, as C2[m] increases while C1[m] decreases with the value of this
angle. Now, let us assume that for the (i− 1)th first allocation steps, we were in the
previous scenario, i.e. β2 = β2,l = β2,r, so that, according to the previous analysis,∥∥∥F(0)F(i−1)

∥∥∥ has been minimized. Without loss of generality, let us now assume that
at the (i− 1)th allocation step:

argmin
k∈{1,2}

{C(i−1)
k [m]} = 2, (4.50)

meaning that the link 2 was chosen at the previous iteration, and this has resulted in
the F point to be located on a discontinuity point of Γopt

2 . Thanks to the concavity
of the capacity region and according to the analysis made in the previous stage, we
can write: {

β
(i)
2,l = β

(i−1)
2,l

β
(i)
2,r > β

(i−1)
2,r

⇒

⎧⎪⎨
⎪⎩

C
(i)

1,β
(i)
2,l

[m] = C
(i−1)

1,β
(i−1)
2,l

[m]

C
(i)

2,β
(i)
2,r

[m] > C
(i−1)

2,β
(i−1)
2,r

[m]
(4.51)

Then, if the following property is verified:

argmin
m∈M

{C(i)

1,β2=β
(i)
2,l

[m], C
(i)

2,β2=β
(i)
2,l

[m]} = argmin
m∈M

{C(i)

1,β2=β
(i)
2,r

[m], C
(i)

2,β2=β
(i)
2,r

[m]},
(4.52)

it means that the two cost functions, either computed with the left or right value
of β2 indicate the same subcarrier to be released, so that we can be sure of the
path minimizing the loss on

∥∥∥�R2

∥∥∥ and, in the next iteration, we will be back in
the case where β2 = β2,l = β2,r. However, if (4.52) is not verified, it means that a
singular point has been reached, where choosing the minimal cost at each allocation
step would make the F point to oscillate around the edges of the two line segments
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(a)

(b)

Figure 4.8: Optimal OFDMA capacity region for K = 3: (a) Γ2 and Γ3 curves (α1 = 0.5,
α2 = 0.2, α3 = 0.3) (b) Γ2 curve after the N allocation steps on �e3 (α1 = 0.35, α2 = 0.15,
α3 = 0.5).



4.3 Optimal OFDMA Resource Allocation: Geometrical Approach 87

of different slopes, while (4.52) is not verified. To interpret this phenomenon, we
have to underline the fact that until now, we have not considered that the optimal
reallocation solution could be a simultaneous transfer of two subcarriers from tone
maps 1 and 2, and that is exactly what is highlighted if (4.52) is not verified. In
such a case, minimizing the reallocation cost on

∥∥∥�R2

∥∥∥ is achieved by combining two
capacity reallocations from two subcarriers m1 and m2 selected as follows:⎧⎪⎨

⎪⎩
m1 = argminm∈M{C(i)

1,β
(i)
2,l

[m]}
m2 = argminm∈M{C(i)

2,β
(i−1)
2,r

[m]} , (4.53)

where m1 and m2 are obviously allocated to �e1 and �e2, respectively. While (4.52) is
not verified, we must ensure that the F point remains at the edges of the two line
segments of different slopes. Firstly, we set:

ε(i) = ε
(i)
1 + ε

(i)
2 , (4.54)

where ε
(i)
1 = δ

(i)
3,m1

t3[m1] and ε
(i)
2 = δ

(i)
3,m2

t3[m2]. Then, to ensure F(i+1) to still be
located on the discontinuity point of the capacity region after the i-th allocation, as

−−−−−−→
F(i)F(i+1) = −δ

(i)
3,m1

.t1[m1]�e1 − δ
(i)
3,m2

.t2[m2]�e2, (4.55)

δ
(i)
3,m1

and δ
(i)
3,m2

are set s.t.:

δ3,m1 .t1[m1]

δ3,m2 .t2[m2]
= tan (φ2) =

α1

α2
, (4.56)

resulting in a minimized loss on
∥∥∥ �R2

∥∥∥ for the allocation of ε(i) that simply reads

∥∥∥F(i)F(i+1)
∥∥∥ = ε

(i)
1 C

(i)

1,β
(i)
2,l

[m1] + ε
(i)
2 C

(i)

2,β
(i)
2,r

[m2]. (4.57)

with ⎧⎨
⎩ ε

(i)
1 = α1t2[m2]t3[m1]

α1t2[m2]t3[m1]+α2t1[m1]t3[m2]
ε(i)

ε
(i)
2 = α2t1[m1]t3[m2]

α1t2[m2]t3[m1]+α2t1[m1]t3[m2]
ε(i)

. (4.58)

Remark: according to (4.50), in the previous iteration, the loss on
∥∥∥�R2

∥∥∥ was:

∥∥∥F(i−1)F(i)
∥∥∥ = ε(i−1) min

m∈M
{C(i−1)

2 [m]}. (4.59)

According to (4.51), we firstly have:

C
(i−1)
2 [m2] ≤ C

(i−1)
1 [m1] = C

(i)
1 [m1] (4.60)

⇔ ε
(i)
1 C

(i−1)
2 [m2] ≤ ε

(i)
1 C

(i)
1 [m1]. (4.61)
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Figure 4.9: Representation of 50 optimal capacity regions for 50 different values of φ2

(= arctan
(
α1
α2

)
).

and, secondly:
C

(i−1)
2 [m2] < C

(i)
2 [m2] (4.62)

⇔ ε
(i)
2 C

(i−1)
2 [m2] < ε

(i)
2 C

(i)
2 [m2]. (4.63)

Summing (4.63) and (4.61) finally leads to:

ε(i)C
(i−1)
2 [m2] ≤ ε

(i)
1 C

(i)
1 [m1] + ε

(i)
2 C

(i)
2 [m2], (4.64)

which means that it is always possible to find a path on which the minimal cost is
increasing with i, so that the piecewise linear function representing the loss on

∥∥∥�R2

∥∥∥as
a function of the capacity allocated to �e3 in the plane P3, which is represented in Fig.
4.8, is also concave. In Fig. 4.9, we present several optimal capacity regions, obtained
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for different values of Φ2: all these capacity regions are concave and are contained
in a plane P3, which is fully defined once the value of Φ2 is fixed. Concavity is
the key property for solving the tone map splitting problem when K is higher than
3. Actually, this is the concave nature of the capacity region in P2 that ensures
that, even if we had chosen another subcarrier to be released than the one providing
the minimal cost at the (i − 1)-th iteration, there would not be any new minima
to be discovered others than the one discovered following the minimal cost path.
So, choosing the minimal cost path at each allocation step always provides a global
optimum.

4.3.4 Optimal Resource Allocation for K > 3

At this point we have managed to prove the optimality of the geometrical approach for
the case of 3 tone maps to orthogonalize, but is it possible to apply the same process
for higher values of K? For the K = 4 case, a geometrical analysis of the 3-dimensional
capacity region represented in Fig. 4.8 leads to establish the 3 following cost functions,
each one being exclusively associated with one of the first 3 links:⎧⎪⎪⎨

⎪⎪⎩
C

(i)
1 [m] = t1[m]

t4[m]f
− (β2,l) f

− (β3,l) , if w1,m > 0

C
(i)
2 [m] = t2[m]

t4[m]f
+ (β2,r) f

− (β3,l) , if w2,m > 0

C
(i)
3 [m] = t3[m]

t4[m]f
+ (β3,r) , if w3,m > 0

(4.65)

with: {
f− (βk,l) = sin (φk) + cos (φk) tan

(
π
2 − βk,l − φk

)
f+ (βk,r) = cos (φk)− sin (φk) tan

(
π
2 − βk,r − φk

) (4.66)

where f− (βk,l) decreases with βk,l and f+ (βk,r) increases with βk,r, βk being the absolute

value of the slope of Γk in the plane Pk, and φk = arctan

(√∑k−1
n=1 α

2
n

αk

)
is the value of the

angle between �Rk and �ek in the plane Pk. With the equivalent assumptions made in the
previous section on the value of βk to perform the allocation of a capacity ε(i) on �e4, we
can also demonstrate that choosing the minimal cost allows to generate a concave capacity
region in a plane P4, containing vector �R4 directed by (α1, α2, α3, α4). Then, we can easily
generalize the expression of the cost function on link n as follows:

C(i)
n [m] =

tn[m]

tK [m]
f+ (βn,r)

K−1∏
k=n+1

f− (βk,l), if wn,m > 0, ∀n ∈ {1, ..,K − 1}, (4.67)

setting f+ (β1,r) = 1.
Thus, for K > 3, the logic remains the same as it is always possible to compute the

cost of any carrier reallocation on
∥∥∥�Rk−1

∥∥∥. However, the optimality of the process lies
in the concavity of the generated capacity region in any of the (K − 1) plane containing
�RK . In order to meet this condition, the allocation step ε(i) may have to be more and
more reduced as the dimension increases, because the probability that F reaches a singular
point of the capacity region becomes more and more likely. Indeed, if in the previous case,
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Figure 4.10: Representations of the K − 1 planes containing the optimal capacity region
between the K links
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there were only 3 possibilities of reallocation (from �e1, �e2 or both), there are 7 different
possible sources of reallocation for the construction of �R4. Actually, for the construction
of �RK , we can easily compute the number of reallocation possibilities, which is equal to∑K−1

p=1

(
K−1
p

)
= 2K−1 − 1. Moreover, each ε(i) reallocation implies to balance capacities

between the (k − 1) links that were previously processed, in order to always satisfy the
fairness constraint. In other words, the computational complexity may rapidly become
quite high as M and K increase.

4.4 Optimal OFDMA Resource Allocation: Study of a Par-
ticular Case

We have previously described a method to solve the problem in the general case. Yet, the
computational complexity of this method increases with M and K and may be too high to
rapidly converge to a solution when using real tone maps (e.g. P1901 specification defines
more than 1700 active subcarriers). So, here we study a particular case that will happen
to be useful to assess the performance of the allocation algorithm described in section 4.5.
Firstly, let us recall that the problem statement is to maximize GFDM, while satisfying a
fixed combination of the priority coefficients (α1, α2, .., αK):

GFDM =
r⊥k
αk

, ∀k ∈ K (4.68)

⇔ αkGFDM = r⊥k , ∀k ∈ K. (4.69)

Then, the summation of the K terms of (4.69) gives:

GFDM
∑
k∈K

αk =
∑
k∈K

r⊥k . (4.70)

Noticing that
∑

k∈K αk = 1, we finally obtain an expression of the FDM gain, indepen-
dently of any priority coefficients combination:

GFDM =
∑
k∈K

r⊥k . (4.71)

This constraint being released, we are going to maximize GFDM. Recalling the definitions
of t⊥k [m] and r⊥k given in (4.13) and (4.14), respectively, we can write:

GFDM =
∑
k∈K

∑
m∈Sk

t⊥k [m]. (4.72)

From (4.72), it clearly appears that the maximization of the gain is simply obtained by
allocating each subcarrier to the link reaching the maximal fractional capacity among the
K ones. So, we define the K Smax

p sets satisfying:

∀p ∈ K and ∀m ∈ M, m ∈ Smax
p ⇔ tp[m] = max

k∈K
(tk[m]) (4.73)

Finally, we have:
Gmax

FDM =
∑
m∈M

max
k∈K

(tk[m]) , (4.74)



92 Point-to-Multipoint Transmissions in Powerline Networks

from which we easily deduce the associated priority coefficients:

αmax
k =

r⊥k
Gmax

FDM
, with r⊥k =

∑
m∈Smax

k

tk[m], ∀k ∈ K. (4.75)

So, it appears that the priority coefficients combination maximizing GFDM can easily be
found. Fixing the priority coefficients based on the FDM gain may appear to be useless
in practice. However, this particular case will be useful to assess the performance of the
suboptimal allocation algorithm described in the next section for values of K higher than
3.

Remark: In fig. 4.6 the (α1, α2) combination maximizing the FDM gain can easily
be inferred. This optimum corresponds to the point from which β2 becomes greater than
π/4, i.e. from which Γ starts drawing closer to the linear function of equation y = 1− x.

4.5 Suboptimal OFDMA Resource Allocation: The Tone Maps
Splitting Algorithm (TMSA)

4.5.1 Algorithm Description

In this section, we describe a fast allocation algorithm, originally proposed in [31], con-
verging to suboptimal partitions of the frequency bandwidth (optimal in the K = 2 case).

Step 1: Pre-processing. The first step of the algorithm is to define a strategy by
which only one partition solution will be tested, being as close as possible to the optimum
one. A subcarrier assignment needs two choices to be made, as we need to choose which
subcarrier to allocate and which link will benefit from this allocation. To answer the
former question, K decision functions are defined:

Δk[m] =

⎧⎪⎪⎨
⎪⎪⎩

Tk[m]∑
p�=k Tp[m] , if

∑
p �=k Tp[m] �= 0

Tk[m] + (bmax/bmin) , otherwise.
, (4.76)

where bmin = argminb∈Econst{b|b > 0} and bmax is the largest element in Econst. Δk[m]
is the ratio of the capacity of the tone map Tk[m] to the summed capacities of the other
tone maps. In another way, it means that for each transmission path k, the denominator
of Δk[m] corresponds to an equivalent tone map constructed by adding up all the tone
maps of the other links. The purpose of this criterion is to directly isolate the subcarriers
that have to be allocated for each link, by taking into account its own capacity, but also
the impact of its allocation on the other links. Note that the decision criterion could be
easily improved by working with normalized tone maps, replacing Tk[m] by tk[m] = Tk[m]

Rk
.

Because of the increase in the complexity and the low improvement brought by this al-
ternative, which was verified in numerous simulations, we chose not to define (4.76) that
way.

Step 2: Tone maps splitting processing. The algorithm consists in a M -iteration
loop by which the M subcarriers will be distributed among the K links. At the initializa-
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tion stage, we set: {
Sk = ∅, ∀k ∈ K

M = {1, ..,M}. (4.77)

While (M �= ∅)

• Selection of one of the links l verifying:
l = argmink∈K{ r⊥k

αk
}.

• Selection of one of the subcarriers s verifying:
s = argmaxm∈M{Δl[m]}.

• Update parameters:

– Sl = Sl ∪ {s};
– M = M \ {s};

end
So, an iteration comes down to firstly choose the link l that has the lowest R⊥

k
αkRk

and,
secondly, by allocating to l an available subcarrier for which Δl[m] reaches its maximum.
Proceeding that way, the algorithm naturally converges to a partition which is close to
satisfy the fairness constraint R⊥

p

αpRp
=

R⊥
q

αqRq
, ∀(p, q) ∈ K2.

4.5.2 Complexity Issue

At first sight, the Δk[m] computation can be seen as a the main drawback of the proposed
algorithm, as this metric needs K×M divisions and K× (K−1)×M additions. Another
solution would be to compute it off-line, but this implementation is less flexible and can be
really costly in terms of memory usage. Now, it can be noticed that the algorithm does not
need all values of Δk[m] to be computed, so that the complexity can be drastically reduced.
Indeed, Δk[m] is only used to find the subcarrier for which it reaches its maximum. As
this function is the ratio of two integer values y

x , its maximum, reached with the couple
(xmin, ymax), can be easily found following this procedure: firstly, all couples satisfying
y = ymax are saved in a set S1. From this list, the subcarrier s1 is selected, which is
associated to the couple (x1, ymax), verifying x1 ≤ x, ∀x ∈ S1. If xmin = 0, the maximum
is found and s1 is selected. If not, all the couples satisfying x = xmin are saved in a set
S2. From this second list, the subcarrier s2 is selected, which is associated to the couple
(xmin, y2), verifying y2 ≥ y, ∀y ∈ S2. If s1 = s2, the maximum is found and the subcarrier
can be allocated. If s1 �= s2, the two values of Δk[s1] and Δk[s2] still need to be compared,
which needs 2 divisions. So, at worst, as there are M subcarriers to allocate, 2M divisions
will have to be computed. For that reason, we infer that the complexity, both in terms of
computational resource and memory usage, can be well contained. Of course, as always,
only an hardware implementation will draw a final conclusion about the complexity issue.

4.5.3 TMSA Performance

In this section, we present the performance of the algorithm in the PLC context. Follow-
ing the IEEE P1901 specification, the tone maps consist of M = 1744 subcarriers, each
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subcarrier carrying a number of bits taking its value in Econst = {0, 1, 2, 3, 4, 6, 8, 10, 12}.
The mapping is realized using a bit-loading algorithm, based on a peak SER target as it is
defined in section 3.1.3 on page 27. Then, to run the splitting algorithm, K tone maps are
randomly chosen in a data base, in order to ensure the singularity of each simulation run
and the diversity of the situations. This data base contains 300 uncorrelated tone maps,
generated using 300 simulated static PLC channels realizations belonging either to classes
2, 5 or 9 [107], [106]. In Fig. 4.11-(a), we give 3 randomly generated tone maps, each one
belonging to a different class. Note that all dots cannot be seen, as some subcarriers carry
the same number of bits on several links. Also, we underline the fact that the general
decrease in the right half of the figure can be explained by the imposed limitation on the
transmitted power beyond 30 MHz (which goes from -50 dBm/Hz to -80 dBm/Hz). On
average, class 2 tone maps capacity is around one half of class 5 one and one third of
class 9 one. Then, in Fig. 4.11-(b), we show the obtained tone maps after running the
splitting algorithm, setting the priority coefficients αk = 1

K , ∀ k ∈ K, so that the K links
are equally prioritized. Comparing figures 4.11-(a) and 4.11-(b), we clearly see that most
of the low-capacity subcarriers of the channel 2 tone map have been allocated to the other
2, so that the achieved gain GFDM = 1.48.

In Fig. 4.12, we give an averaged value of GFDM using various splitting algorithms.
To obtain a relevant mean value using the 3 different channel classes, we ensure that
each K-tuple combination is tested 100 times. To do so, we use the K-combination with
repetitions formula, given by

(
n+K−1

K

)
, with n = 3 as there 3 channel classes. In other

words, it means that the K = 2 case needs 600 simulation runs and the K = 15 case needs
13600 simulation runs. Also, as in Fig. 4.11, the K links are equally prioritized. In this
figure, we can firstly notice that the proposed algorithm (circles) converges to the optimal
solution (squares) for the K = 2 case. With K = 3, the algorithm reaches an averaged
GFDM slightly lower than the optimum. Above K = 3, the gain keeps increasing until
K = 10 and finally levels off for higher values of K. The increase can be interpreted by
firstly noticing that the case where the K tone maps belong to class 9 channels reduces
the averaged GFDM, as these tone maps are quasi-constant. Also, as the weight of this
case decreases with K, the frequency diversity increases and so is the FDM gain. Above
K = 10, we converge to splitting solutions where orthogonalized tone maps are ensured
to keep their best subcarriers, so that GFDM levels off. Even if it cannot be seen on the
figure as the gain is averaged, it has to be underlined that for all the simulation runs,
GFDM > 1, which tends to confirm the demonstration made in section 4.1.3. On this
figure, we also represent the performance of a reference solution [69] (stars). As this
method targets a fixed capacity R⊥

k for every link, our algorithm is firstly executed. Then,
based on the R⊥

k provided by the TMSA, the capacity to be reached on each link k for the
reference solution is fixed. As it can be seen on the figure, this method provides a gain
from K = 2 to K = 9. Above this value, OFDMA degrades the transmission efficiency,
compared to TDMA. Even if it cannot be seen on the figure, it has to be underlined that
for all the simulation runs, the GFDM gain reached by the reference solution never beats
the proposed algorithm. Finally, we examined a simplified version of our orthogonalization
method (crosses), where the definition of Δk[m] is changed, while the core of the algorithm
remains the same as in section 4.5.1. Instead of defining Δk[m] as the ratio of the tone
map k to the addition of the others, we define Δk[m] as the difference between the two
aforementioned values. The new definition does not change the variation of Δk[m], but
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(a)

(b)

Figure 4.11: P1901 tone maps belonging to classes 2, 5 and 9 channels: (a) before orthog-
onalization (b) after orthogonalization with αk = 1

K .
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Figure 4.12: Evolution of GFDM with the number of tone maps K using various orthogo-
nalization techniques.

the maxima are not reached on the same subcarriers. As we can see in Fig. 4.12, if this
alternative always leads to a gain, it is much lower than the one provided by the original
algorithm. Indeed, as the gain provided by the proposed solution always increases, the
alternative one decreases above K = 3 to finally level off for values of K higher than 8.

As it was previously mentioned, the complexity of the geometrical method for solving
the tone maps orthogonalization problem becomes quite important when K is higher than
3. So, to assess the performance of TMSA for higher values of K, a comparison is made in
Fig. 4.13 using the particular case described in section 4.3.4, resulting in the computation
of Gmax

FDM. So, the averaged values of the gain presented in Fig. 4.13 are obtained by firstly
computing the priority coefficients associated to the achieved value of Gmax

FDM, which are
then used as input values of TMSA. Note that the number of tested cases is exactly the
same as for the simulations of Fig. 4.12. According to these results, it seems that the
proposed algorithm provides solutions really close to the optimum. Moreover, as we are
going to see in section 4.6.1, if we take into account the overhead generated at the MAC
layer of realistic PLC systems, the effective increase in the data rates that is achieved
using TMSA is generally strictly equal to the gain that would be obtained by optimally
orthogonalizing the tone maps.
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Figure 4.13: Comparison of the achieved values of GFDM by TMSA to the optimal gain.

4.6 Definition of an HPAV-compliant OFDMA Transmission
Scheme

This work originally described in [30]

4.6.1 Integration Challenges

To ensure the compatibility with current PLC systems, this new access mode has to comply
with several requirements. First of all, the use of the FDM mode has to be exclusively
used for point-to-multipoint transmissions, because only one station at a time can access
the medium. Moreover, this new mode imposes that the same value of guard interval is
used for the K multiplexed flows, as they are synchronously transmitted. Here, we also
remind that the tone map is established by the receiver which communicates it to the
transmitter. So, we assume that a new management frame has been defined in order to
communicate the tone allocation to the K receivers.

In Fig. D.7, a possible integration of the FDM transmission mode is presented. Af-
ter the preamble, on which all stations simultaneously synchronize, comes a modified FC
field where the SOF (Start Of Frame) delimiter has been replaced by a new FDM_SOF
delimiter. The modified FC gathers all the information needed by the receiving stations
to decode the packets transmitted on their own subchannel. Currently, the FDM_SOF
FC is a concatenation of K SOF FC. As this part of the integration is not optimized and,
as probably, the massive amount of redundant information will be drastically reduced in
a near future, the assumption of an unchanged number of FC Symbols per FDM frame is
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Preamble      FC 
(FDM_SOF)

MPDU Payload

FB #1.1 FB #1.2 FB #1.N1

RIFS CIFS

169.76 μs

FB #2.1 FB #2.2 FB #2.N2

FB #K.1 FB #K.1 FB #K.NK

  
SACK 

   #1 RIFS

SACK 

   #2

SACK 

   #K

tSACKMaxFL - (K - 1)(RIFS + tSACK) tSACK tSACK

Figure 4.14: Modified P1901 payload and acknowledgment frames structures for FDM
transmissions.

made. To acknowledge the K frequency-multiplexed data flows, we use the same method
as proposed for the 802.11ac Wi-Fi specification [24] for beam-forming purposes (allowing
simultaneous space-multiplexed transmissions). Applying this method comes down to se-
quence all the receiving stations in a specific order, explicitly specified in the FDM_SOF
FC, so that the FDM frame is acknowledged by the stations one after the other. Remarking
that the less segments to acknowledge there are, the more important the overhead consti-
tuted by the acknowledgement frame is, a first drawback of defining a P1901-compliant
FDM mode arises. Indeed, in the introduction Chapter, we underlined the fact that the
time during which a station can access the medium is limited by the MaxFL parameter
(see Fig. 2.15 on page 23). Theoretically, keeping a MaxFL of 2501.12 μs for FDM frames
complies with P1901 specification. Nevertheless, the (K − 1) additional acknowledgement
frames are part of the whole transmission, so that we decide to reduce the FDM frame
duration by (K − 1)(RIFS + tSACK). That way, we ensure that the FDM transmission
mode does not worsen the effects of collisions on the network performance (cf. section
2.5.4.2). However, it obviously appears that the number of frequency-multiplexed flows
will have to be limited in order to reach a good effective value of GFDM.

Because of segmentation, another drawback can be anticipated concerning this new
transmission mode. Indeed, as the payload is made of FEC blocks of fixed size, the last
OFDM symbol has to be padded (see Fig. D.7). Now, using the FDM transmission mode,
K independently padded flows are transmitted in parallel, so that the padding on a specific
link can potentially extend across several OFDM symbols. Also, because of segmentation
and the padding of the last OFDM symbol, the slight differences that could be observed
between the gains provided by TMSA and the upper bound in Fig. 4.13 will vanish in most
cases. Finally, it is important to underline that the encryption and encoding functions in
charge of processing segments to be sent do not need to be parallelized. Indeed, the FDM
frame construction still needs less computational resource than a TDM frame transmitted
on an ideal channel, i.e. at the maximum transmission capacity allowed by the system.
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4.6.2 Comparison of the TDM and FDM Modes

4.6.2.1 Simulation Parameters

To assess the performance of the FDM transmission mode in realistic PLC networks (P1901
based), we have modified the MAC layer of the ns-2 based PLC network simulator, that is
described in Appendix A. To ensure the diversity of the simulated scenarios, transmission
paths may be assigned 4 different channel classes: 1, 3, 6 and 9. In order to obtain an
averaged value of GFDM, each classes combination is tested varying 1000 times the tone
maps combination.

STA0 is supposed to be the only station of the P1901 network with pending packets to
transmit. Also, point-to-multipoint transmissions are limited to 2 or 3 parallel data flows,
each one being addressed to a unique station of the network. Also, as we aim at assessing
the packet-level performance of the FDM mode, only User Datagram Protocol (UDP) flows
are used. The simulated flows are set so that the network capacity is always reached. In
other words, we ensure that the queues in STA0 are always filled with packets waiting to
be sent. Also, all data flows are assigned the same priority, so that αk = 1

K . Concerning
the Response Inter-Frame Spacing (RIFS) parameter setting, it normally depends on the
processing time at the receiver. Obviously, as FDM reduces the peak data rates on each
link and as the acknowledgements are deferred for (K − 1) stations, it seems highly likely
that the RIFS will be reduced using this transmission mode. Now, as this assumption
cannot be assessed, the RIFS parameter is set to 30 μs for both transmission modes,
which is the minimal value allowed by the specification. Finally, only 1/2 and 16/21 FEC
rates are used, the 18/21 one being an optional feature of the P1901 standard.

4.6.2.2 Simulation Results

Table 4.1 presents the improvement brought by the FDM mode, GFDM, as an averaged
percentage of the data rates increases on both links. First of all, it can be noticed that
using the FDM mode in the case where the two links are assigned class 9 channels (which
can be assumed as ideal) reduces by 5% the achievable throughput. This behavior had
been foreseen in section 4.6.1, where it was underlined that, because of segmentation, the
FDM mode would increase the overhead caused by the padding. Moreover, the access
time dedicated to transmit useful information is reduced by 0.2 ms (RIFS + tSACK). As
the frequency diversity is null on class 9 channels (see Fig. 4.11-(a)), using FDM is not
profitable in that case. Now, if we look at the results on the diagonal of Table I, we can see
that the gain increases as the channel class reduces. This improvement is a direct product
of an increase in the frequency diversity of the tone maps to split, that TMSA perfectly
exploits when K = 2 [31]. So, when both channels belong to class 1, the data rates are
increased by more than 20% for both FEC rates, even if the overhead is at its highest.
Considering this parameter, note that the gains are generally slightly better when using
the 16/21 rate. Indeed, the highest the FEC rate is, the lower the FEC block size is, and
so is the average overhead caused by the padding of the last OFDM symbol.

Another important remark that can be made about Table 4.1 concerns the general
increase of the gain that seems to converge toward the right up corner of the table, where
a 30% improvement of the data rates is reached by associating classes 1 and 9 channels.
Actually, this tendency is not entirely due to the natural frequency diversity brought by
the PLC channels. Indeed, the limitation of transmitted power above 30 MHz (see Fig.
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3.21 on page 57) produces a "virtual" frequency diversity that is at its highest when
combining classes 9 and 1 channels. Now, we have to mitigate this last remark by the fact
that the association of classes 1 and 3 gives results that seem to contradict this tendency.
Actually, in its current version, the simulator processes each link independently, meaning
that the number of scheduled OFDM symbols to be transmitted is only dependent upon
the tone map associated to the link it is currently processing. So, once the simulator has
processed the K parallel flows, the number of scheduled OFDM symbols to transmit can
potentially be of K different values. Of course, using the FDM transmission mode, the
number of transmitted symbols is the same on the K links, so that the simulator selects
the greatest value among the different ones that have been computed. Considering the
combination of classes 1 and 3 tone maps, we have noticed that the padding made on
the class 1 link generally extends on a number of OFDM symbols higher than for the
other classes combinations, which explains these odd results. Obviously, if the cumulated
overhead on the K links was considered, the number of transmitted OFDM symbols could
be optimized. So, this an issue that could be addressed in a future release of the simulator.

On Table 4.2, a third flow is added, so that the PLC network is now composed of 4
stations. It can be firstly noticed that the FDM mode reduces the data rates for four
different combinations of channel classes. Moreover, the case where transmission channels
are ideal now decreases the achievable throughput by more than 10%. Indeed, as the
overhead caused by the padding and the reduction of the useful access time has been
worsened when increasing K, the degradation is accentuated. Still, in a large majority
of the tested cases, the FDM mode brings a noticeable gain, reaching a maximum of
26.6% with the (9, 1, 1) classes combination. Now, this maximum remains lower than
the 30% reached in Table 4.1, which seems a bit odd considering the fact that GFDM
should increase with K. At this point, we can see that defining a P1901-compliant FDM
mode gives performance far from an optimized system (cf. the 48% improvement shown
in the example of Fig. 4.11). Indeed, using segments of fixed size (8320 bits in the case
of a 1/2 FEC rate) advantages channels with high capacity tone maps whereas splitting
them naturally results in a reduction of their capacities. Also, it has to be underlined
that P1901 specification defines short segments of 136 bytes but these segments are not
intended to carry payload data. Yet, we think that using these short segments with the
FDM transmission mode could improve the results shown here.

Table 4.1: GFDM (in %) in the case of 2 stations to reach (FEC rate 16
21 / 1

2).���������Class
Class 9 6 3 1

9 -4.9 / -5.2 2.4 / 2.1 19.1 / 18.9 29.9 / 29.1

6 ... 1.4 / 1.2 14.2 / 14.1 24.2 / 23.8

3 ... ... 11.4 / 11.5 17.5 / 18.5

1 ... ... ... 20.6 / 20.1
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Table 4.2: GFDM (in %) in the case of 3 stations to reach (FEC rate 16
21 / 1

2).���������Classes
Class 9 6 3 1

(9,9) -10.8 / -11 -5.7 / -5.9 5.2 / 4.2 10.5 / 9.2

(9,6) ... -3.9 / -4.1 7.0 / 5.1 11.3 / 9.1

(6,6) ... -2.7 / -2.7 7.0 / 5.5 12.1 / 10.4

(9,3) ... ... 16.7 / 14.0 20.8 / 18.2

(6,3) ... ... 11.5 / 9.2 15.1 / 12.9

(3,3) ... ... 11.6 / 10.7 14.1 / 14.8

(9,1) ... ... ... 26.6 / 26.2

(6,1) ... ... ... 19.6 / 19.8

(3,1) ... ... ... 13.2 / 17.1

(1,1) ... ... ... 23.4 / 22.2

4.6.3 Hybridation of the TDM and FDM Mode.

The results shown in section 4.6.2.2 have raised the following paradox: on the one hand,
increasing the number of parallel flows improves the diversity, which should improve GFDM
but, on the other hand, it simultaneously worsens the overhead caused by the padding at
the end of the frame and reduces the part of access time used for the transmission of
payload data. Now, as there is not a transmission mode always better than the other,
we aim at defining a metric that the transmitter may use to switch between the two
modes. Note that we always assume a saturated throughput scenario, meaning that the
transmitter has always pending packets to transmit in its K queues, so that the duration
of the transmission is as close as possible to the maximum allowed. Also, we decide to
use FDM only if data rates are increased on all active links. Knowing Npay , the greatest
number of OFDM symbols carrying payload data, we compute NTDM

k , the maximum
number of 520 bytes segments carried by a single TDM frame on link k, weighted by its
priority coefficient αk:

NTDM
k = αk�rFECNpayRk

8× 520
�, (4.78)

with �a� denoting the greatest integer less or equal than a, remembering that Rk denotes
the capacity of the tone maps on link k. Then, we compute NFDM

k , the maximum number
of 520 bytes segments carried by a single FDM frame on link k:

NFDM
k = �

rFEC

(
Npay − �(K − 1)RIFS+tSACK

T0+TGI
�
)
R⊥

k

8× 520
�, (4.79)

in which R⊥
k is the capacity of the tone map on link k after orthogonalization. We can

notice that Npay is reduced in order to comply with the transmission window limitation we
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Figure 4.15: FDM and TDM transmission modes Hybridation (K = 3).

imposed in section 4.6.1. Also, we remind here that the priority coefficient αk is directly
taken into account by TMSA to compute the FDM tone map of capacity R⊥

k . Finally, we
define the Δk metric, which is computed on each of the K active links, as:

Δk = NFDM
k −NTDM

k . (4.80)

Before starting the FEC block construction, the transmitter computes the K values of Δk

and, if it is positive ∀k, the FDM transmission mode is activated.
In Fig. 4.15, the achieved data rates for 3 different simulations are presented, setting

K = 3. The blue curves present the results only using the TDM transmission mode,
while the red ones present the results only using FDM. Finally, the black curves present
the achieved data rates when both modes can be used, the switching between the two
modes being enabled by the computation of the Δk metric. Each second, one tone map
among the three ones is changed and each minute, the channel classes and/or the FEC
rate are changed. Looking at the FDM results during the last minute of the simulation,
It is interesting to note how low capacity channels are penalized by the segmentation
process. Indeed, even if TMSA provides the same relative gain to the capacities of the K
orthogonal tone maps, the effective gain is always less important as the channel class is
low. Nevertheless, these results show that the switching metric always chooses the best
transmission mode.
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4.7 Conclusion

This Chapter has shown that current PLC networks could really take advantage of defin-
ing a new transmission mode enabling the frequency multiplexing of multiple flows in a
point-to-multipoint scenario. Also, this study tends to demonstrate that this new feature
could already be integrated in current PLC networks, even if complying with current spec-
ifications implies an increased overhead. Moreover, we have highlighted that the currently
applied segmentation process may appear to be pretty unfair on severely attenuated chan-
nels. Indeed, if the MAC efficiency is naturally degraded as the tone map capacity is low,
this effect becomes even more important because of the fixed 520-byte segment size that
are not small enough to efficiently use the transmission window. Obviously, this drawback
is increased when flows are frequency multiplexed. So, it could be useful to enable the
use of shorter segments, or to increase the maximum transmission window when using the
FDM mode. In the future, complementary studies remain to be done. For instance, the
flow-level performance of this transmission scheme must be studied, using Transport Con-
trol Protocol (TCP) data transmissions. Also, the comparison between TDM and FDM
still needs to be assessed in a non-saturated throughput scenario.

Considering the HPAV 2 specification [25] that will extend the useful bandwidth up
to 86 Mhz, and will enable the utilization of MIMO, the number of active subcarriers
will possibly be multiplied by 4 in comparison to P1901 systems. So, considering next
generation PLC systems, the frequency diversity will be increased while the impact of
segmentation on overhead will be reduced, so that better gains have to be expected using
this OFDMA transmission scheme. To avoid a significant decrease of the MAC efficiency,
note that we could also limit the number of frequency multiplexed flows. If this limitation
is imposed, an interesting study would be to develop a method that would create subsets
of tone maps which orthogonalization brings the highest FDM gain.





Chapter 5

Multicast Transmissions over Power
Line Networks

5.1 Preliminary

5.1.1 The Interest of Multicast in PLC Networks

Multicast refers to the delivery of the same message to a group of network hosts, all
of them being connected to the source transmitting the message. Multicast differs from
Broadcast in the sense that a broadcast message is addressed to any station able to de-
code it. Also, while broadcast transmissions are generally limited at layer 2, typically
by the mean of "Ethernet broadcast", multicast commonly refers to layer 3 of the Open
Systems Interconnection (OSI) model with IP multicast. As broadcast can be seen as
a particular multicast where every network host has subscribed to the service, only the
term "multicast" is used in the following. In practice, IP multicast is realized by means of
specific IP multicast adresses which must be subscribed by any user who wants to access
the service. The subscription mechanism allows the routing of multicast messages, and
can be practically realized using the Internet Group Management Protocol (IGMP) [18]
at a LAN level, and the Protocol-Independent Multicast - Sparse-Mode (PIM-SM) [21]
protocol in large scale networks. As the PLC connectivity we are studying is located in
the home network, let us take a closer look at IGMP. Basically, the integration of this
protocol allows a level-2 network equipment (switch) to intercept multicast messages, so
that this equipment be aware on which interface is connected the host that subscribed the
multicast service. Consequently, multicast messages will only be routed on this interface.
On the other hand, if the switch does not implement IGMP, it cannot know where is
located the subscriber, such that multicast messages will be broadcast on every interface.
From a network topology point of view, a PLC network bridges two or more Ethernet
networks throughout the electrical grid of the home, so that it can be seen as a switch.
Current PLC devices implement the IGMP stack, so that multicast streams are only sent
to stations directly connected to the subscribers. Yet, if multiple stations must receive the
same multicast message, the transmission is far from being optimized.

Considering home networking, multicast applications are mostly represented by IPTV
streaming services. Nowadays, all french ISPs offer multiscreen television services allowing
the customer to install more than one IPTV decoder inside his home network (see Fig.

105
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Figure 5.1: Possible configuration of the Orange multiscreen TV offer using 3 Orange
Liveplugs (Picture downloaded from the Orange online support website).

5.1). If the second decoder is mostly used to watch another program than the first one,
multicast over the PLC network may happen if the user is moving inside his home while
watching live sport on TV, so that his two decoders subscribe to the same multicast stream.
In that particular case, the user could benefit from a PLC network optimizing multicast
transmissions. Apart from user-level applications, some management messages, either
generated from the bridged or the PLC network, may also need to be broadcast inside the
home network (ex: Address Resolution Protocol (ARP) and Dynamic Host Configuration
Protocol (DHCP) requests, Universal Plug and Play (UPnP) announcement messages...).
Also, the recent release of the 802.1 Audio Video Bridging (AVB) standard [23] may
increase multicast traffic in a near future. This standard aims at replacing any application
specific cable by a simple Ethernet cable, by providing new features to current LAN so that
time sensitive audio and/or video data streams will be successfully supported. For this
purpose, AVB devices will be able to be finely synchronized, in order to play multi-channel
audio tracks for instance. However, to work properly, AVB networks will need frequent
transmissions of time-synchronization broadcast messages between playing devices. So, it
is possible that the apparition of AVB devices will increase the need for efficient multicast
transmissions. Nevertheless, it obviously appears that multicast use cases are not so
common considering current home networking applications, but PLC devices can be used
for other purposes than home networking. In public places particularly, several PLC-
based solutions have already been deployed for video streaming purposes. For instance, in
Beijing subway has been deployed an in-train video broadcasting system using broadband
PLC modems [85]. Also, several plasma TVs have been installed in Paris subway to
display animated advertisements, also connected to the IP backbone through PLC. We can
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easily think of a similar system to be used for live sport or news broadcasting in subway
hallways. It clearly appears that all these use cases would benefit from efficient multicast
transmissions over powerline networks. Apart from public spaces, office environments may
also support frequent multicast transmissions. Indeed, it was shown in [93] that 5% to
10% of the payload bytes traffic were transmitted in multicast streaming in enterprise
private networks. This is also the case considering campus networks, where a course may
be broadcast in several classrooms simultaneously. So, if PLC technology becomes an
ubiquitous connectivity solution such as Wi-Fi, addressing the PLC multicast issue will
become necessary.

5.1.2 PLC Networks Multicast Issue

As it was described in previous chapters, the quasi-static nature of the PLC channel allows
to dynamically adapt the transmitted signal to the channel, using bit-loading techniques.
This process, based on an accurate knowledge of the communication channel at the trans-
mitter side, consists in applying independently, for each subcarrier, the appropriate QAM
constellation based on the quality of the subchannel on which it is transmitted, resulting
in the definition of a dedicated tone map. In this Chapter, we will refer to such tone map
as "unicast", as it is defined for a particular transmission path linking two stations of
the PLC network. However, if bit-loading allows to efficiently optimize the point-to-point
transmissions by approaching the theoretical capacity of the link, it naturally partitions
all the receivers from one another. Indeed, as OFDM symbols are mapped following the
tone map dedicated to the unique channel linking two communicating stations, it naturally
makes other stations of the network unable to decode these symbols. Consequently, if a
multicast stream is subscribed by several hosts located beyond different PLC stations of
the network, the multicast transmission delivery may become a problem.

In 2007, when the HomePlug AV (HPAV) specification was released [20], this problem
was not addressed at all. Actually, this can be imputed to the fact that a lot of the PLC
MAC functionalities are derived from 802.11 Wi-Fi standards. As the 802.11 protocol does
not require any Acknowledgment (ACK) for a multicast transmission, some of the receivers
can experience high loss rate. Consequently, several studies were conducted to improve
multicast transmissions over Wi-Fi networks [43], [45]. In [78] and [44], an interesting
leader based mechanism is proposed to improve the reliability of multicast transmissions,
where only one station in the multicast group acknowledges the transmission. On erroneous
reception of the packet at receivers other than the leader, the proposed protocol allows
negative acknowledgements from these receivers to collide with the acknowledgement from
the leader, thus destroying the acknowledgement and prompting the sender to retransmit
the packet. Then in [103], a Batch Mode Multicast MAC protocol (BMMM) was proposed,
ensuring the same reliability as unicast by requesting all recipients for acknowledgments
(this solution will be assessed in section 5.2.2.1). In practice, as most of the proposed solu-
tions need the standards to be modified, multicast transmissions are generally handled by
converting them into as many unicast streams as there are stations to reach. Considering
HPAV devices, a unicast conversion is also performed to handle multicast transmissions(1).
Yet, if Wi-Fi and PLC networks share a lot of common features, the higher reliability and
capacity of the latter [89] makes multicast video streaming a use case much more likely

(1)which makes mandatory the integration of IGMP in current PLC devices.
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to happen. So, in 2010, the IEEE P1901 specification [22] introduced a multicast tone
maps feature in order to simultaneously reach several stations of the network. Now, the
standard does not give any direction on how it can be realized in practice, so that the
recommendation remains, as in HPAV, to forward a multicast/broadcast stream by pro-
ceeding to the unicast conversion of the multicast stream. Yet, as we are going to see in
the following, above 3 or 4 stations, this method becomes really costly as the network load
severely increases. In this Chapter, we present the gains that can be expected if we use
a multicast tone map instead of using the unicast conversion of the stream. The results
provided in this Chapter are based on realistic HPAV 2 [25] tone maps, generated in the
frequency range [1.8, 86] MHz on PLC channels measured by the HPAV working group. In
a second part, the analysis is extended to networks with an increased number of stations,
such that the definition of a unique multicast tone map among the links may not be the
best choice. In this last part, we assess a solution where several multicast subsets are
created instead of a single one.

5.2 The LCG Solution

5.2.1 LCG: PHY Level Analysis

As it was proposed in the P1901 specification, an easy way to improve Multicast/Broadcast
communication could be to allow the transmitter to create multicast tone maps. A multi-
cast tone map defines a tone map that is appropriate for transmissions on multiple links of
the network, which are originating from the same node (denoted as the source in the follow-
ing). A known solution to create such tone map, called Lowest Channel Gain (LCG) [113],
lies in the computation of an equivalent channel among the K links we want to transmit
on. Equivalently, we can directly apply LCG among the K unicast tone maps defined on
the K links, respectively, by choosing for the M active subcarriers the lowest modulation
order among them (see Fig. 5.2). That way, we ensure the error rate of multicast accesses
to remain lower than the error rate of unicast transmissions.

5.2.1.1 PHY Rates Computation

Considering a unicast transmission on link k, the duration of one information bit reads:

tbit =
1

DPHY
k

, (5.1)

where DPHY
k is the PHY level data rate achieved on link k, which is computed as follows:

DPHY
k =

1

T0 + GI
Rk, (5.2)

in which we recall that T0, GI and Rk denote the duration of an OFDM symbol, the
duration of the guard interval and the capacity of the tone map Tk[m], respectively. If the
unicast conversion is used to transmit the same information bit to K stations, its duration
becomes:

tbit =
∑
k∈K

1

DPHY
k

, with K = {1, ..,K}, (5.3)
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(a)

(b)

Figure 5.2: LCG applied among 4 HPAV 2 tone maps: (a) 4 unicast tone maps (b)
Multicast tone map after applying LCG.
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which, after being inverted, gives us the achieved data rate at the PHY level for multicast
transmissions when unicast conversion is used:

DPHY
uniconv =

1∑
k∈K

1
DPHY

k

(5.4)

DPHY
uniconv =

1∑
k∈K

∏
p∈K\{k} DPHY

p∏
k∈K

DPHY
k

(5.5)

DPHY
uniconv =

∏
k∈KDPHY

k∑
k∈K

∏
p∈K\{k}DPHY

p

(5.6)

Now, if we apply LCG among the K unicast tone maps Tk[m], k ∈ K and m ∈ M =
{1, ..,M}, it results in the definition of a new multicast tone maps TLCG[m], defined as:

TLCG[m] = min
k∈K

(Tk[m]), m ∈ M, (5.7)

which capacity simply reads RLCG =
∑

m∈M TLCG[m], resulting in the following data rate
at the physical layer:

DPHY
LCG =

1

T0 + GI
RLCG. (5.8)

where GI is the guard interval duration, that we assume to be fixed to the same value on
the K links.

5.2.1.2 Unicast Conversion vs LCG: PHY Level comparison

To compare LCG to the unicast conversion solution, we generate tone maps using the
same bit-loading algorithm as presented in section 3.1.3 on page 27. Note that part of
this work was used by the HPAV working group to assess the multicast tone map fea-
ture for the next release of the HPAV specification (v2.1). Consequently, the generated
tone maps are composed of more than 3300 active subcarriers in the frequency range [1.8,
86]MHz. Naturally, the transmitted PSD is limited to -50 dBm/Hz below 30 MHz, and
to -80 dBm/Hz beyond that limit. Moreover, we used a colored noise model derived from
the work conducted for the OMEGA project [52], depicted in Fig. 5.3, whose PSD follows
an exponential decrease with frequency from -100 to -155 dBm/Hz. Concerning the PLC
channels, they were directly measured by the HPAV working group during three measure-
ment campaigns, in 3 different houses located in the US, France and Spain, respectively.
In each house, all possible communication channels between 5 outlets were measured, such
that multicast transmissions can be tested for K=2, 3, or 4 stations to reach. Also, we
set the OFDM symbols parameters, such that GI = 5.56 μs and T0 = 40.96 μs. Finally,
to assess the gain brought by the definition of a multicast tone map, we compute a PHY
rate improvement factor that simply reads:

F PHY =
DPHY

LCG

DPHY
uniconv

. (5.9)

In Fig. 5.4 are presented the Cumulative Distribution Function (CDF) distribution of
the achieved value of F PHY for K = 2, 3 and 4 stations to reach, respectively. So, with
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Figure 5.3: Static noise model used for the tone maps generation.

Figure 5.4: Cumulative Distribution Functions of the PHY rate improvement factor
(P (F > X)), for K = 2, 3 and 4 stations to reach.
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Figure 5.5: Averaged PHY data rate in each one of the 3 countries (K = 4).

the 75 different outlets tested as possible sources of a multicast transmission, the K = 2,
3, and 4 CDF functions result from the simulation of 450, 300, and 75 different channel
combinations, respectively. Naturally, we notice that the data rate improvement increases
with K, showing that the cost of the unicast conversion follows the number of stations
to reach. Moreover, for all tested PLC channels, LCG always improves the PHY data
rate, even if some cases show that the channels may be low correlated, resulting, for the
K = 2 case, in a minimum improvement of 17% of the data rate. Nevertheless, in the
general case, the correlation between channels ensures a massive data rate improvement,
such that, if we look at the K = 4 curve, thanks to LCG, the achieved PHY data rates
are at least doubled.

Looking more in depth to the performance of LCG for the K = 4 case, Fig. 5.5 shows
a comparison of the two transmission techniques in the 3 countries. The lower multicast
data rates achieved in the US may draw our attention, as the results in France and Spain
are similar. Actually, two reasons explain this difference: firstly, the measured US channels
are, in general, more attenuated than the channels in the other 2 countries. Secondly, we
noticed that among the 4 unicast channels linking the transmitter to the receivers, there
was often a low attenuated channel in US measures, which is rarely the case with Spain and
France PLC channels. So, as the more similar 2 tone maps are, the highest the merging
gain will be, it naturally explains the difference between those results. Nevertheless, if we
look at Fig. 5.6, we notice that data rates are similarly improved for the 3 countries.
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Figure 5.6: Distribution of the PHY rate improvement factor each one of the 3 countries
(K = 4).

5.2.2 LCG: MAC level Analysis

5.2.2.1 Definition of a Multicast Transmission Scheme

As we have shown in the previous section, enabling the creation of multicast tone maps
would greatly benefit to current PLC networks. However, the integration of this new
feature in a next release of the HPAV specification would need some functionalities to be
added. One of the first issue to be addressed, not the more challenging one though, would
be the definition of a new management message to communicate the multicast tone map
to the K receivers. Indeed, recalling that in PLC networks, the bit-loading is performed at
the receiver side, which then communicates an appropriate tone map to the transmitter,
a new management message is needed to transmit the multicast tone map in the other
way, from the transmitter to the K receivers. But the major concern we might have about
this new feature comes down to the following question: can we ensure the same reliability
using a multicast tone map instead of multiple unicast ones? Looking at current HPAV
specification, there actually exists a feature allowing "real" multicast transmissions, by
the mean of the ROBO mode. Having said that, the reason why we did not introduce this
possibility before is because the ROBO mode actually achieves really low data rates, the
maximum PHY data rate being limited to 10 Mbps. Consequently, it is only intended to
be used for the transmission of critical network management messages, or when there is no
appropriate tone map on the link we are transmitting on. Nevertheless, the ROBO mode
is interesting because it allows a message to be broadcast to all stations of the network.
In this case, as the HPAV transmission scheme allows only one station to acknowledge a
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(a)

(b)

Figure 5.7: Transmission schemes: (a) HPAV unicast [7] (b) HPAV-compliant multicast.

transmission, a "partial acknowledgement" scheme is defined, in which one station in the
group serves as a proxy to provide the Response. This solution is actually really close to
the Leader-Based ARQ mechanism described in [78], except that HPAV does not allow
any other receiver than the proxy to send an ACK. Considering the robustness of ROBO
transmissions, this mechanism can be accepted as a satisfactory reliability can still be
ensured. However, if we want to use a multicast tone map using the LCG technique,
we obviously need the K receivers to acknowledge the transmission to ensure the same
reliability as the unicast conversion. So, the problem we are dealing with is exactly the
same as the one described in section 4.6, where we have defined an HPAV-compliant
OFDMA transmission scheme. As it is shown in Fig. 5.7-(a), the time during which a
station can access the medium is limited by the tMaxFL parameter. If keeping a tMaxFL

of 2501.12 μs for a multicast frame would theoretically comply with legacy devices, the
(K−1) additional acknowledgement frames are part of the whole transmission, so that, as
for the OFDMA transmission scheme, we choose to reduce the multicast frame duration
by (K − 1)(tRIFS + tSACK) (see Fig. 5.7-(b)). As we are going to see in the following, this
decision has a significant impact on the achieved gains.

5.2.2.2 MAC Rates Computation

To assess the MAC level performance, we need to take into account the MAC overhead.
As in the previous Chapter, we assume a saturated throughput scenario, meaning that the
transmitter has always pending packets to transmit. Consequently, the transmitter always
uses the maximum transmission window, limited by the tMaxFL parameter. So, in unicast,
the saturated MAC level data rate on link k reads:

DMAC
k =

Bk

tAcc.
, (5.10)

where Bk is the number of transmitted bits during the access time tAcc.. Considering the
transmission of NOFDM(tpay.) OFDM symbols carrying 520 bytes segments of payload data
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using a FEC rate rFEC during tpay. = tMaxFL − tRIFS, we have:

Bk = 8× 520�rFECNOFDM(tpay.)Rk

8× 520
�, (5.11)

where
NOFDM(t) = � t

(T0 + GI)
� (5.12)

and
tAcc. = 2× tPRS + t̄BO + tSOF + tMaxFL + tRIFS + tSACK + tCIFS, (5.13)

in which tPRS is the duration of one priority resolution symbol (cf. section 2.5.3.1 on page
15); t̄BO denotes an averaged value of the contention window during the Back-off procedure;
tSOF is the duration of the start of frame, which takes into account the synchronization
preamble and the frame control symbols; tSACK is the duration of an acknowledgement
frame and, finally, tRIFS and tCIFS denote the Response and Contention Inter-Frame Spaces
(RIFS and CIFS), respectively. Then, to compute the achieved MAC data rates for multi-
cast transmissions when unicast conversion is used, we apply the formula defined by (5.6),
so that:

DMAC
uniconv =

∏
k∈KDMAC

k∑
k∈K

∏
p∈K\{k}DMAC

p

(5.14)

On the other hand, if LCG is used, the transmission scheme defined in Fig. 5.7-(b)
leads to the following expression of the MAC data rate:

DMAC
LCG =

BLCG(K)

tAcc.
, (5.15)

where

BLCG(K) = 8× 520�rFECNOFDM(tpay. − (K − 1)× (tRIFS + tSACK))Rk

8× 520
�, (5.16)

which takes into account the (K− 1) new acknowledgement frames reducing the allocated
time for payload transmission.

5.2.2.3 Unicast Conversion vs LCG: MAC Level Comparison

In this section, we are going to present simulation results following the same parameters
as in section 5.2.1.2, so that we will be able to compare the results at the PHY and at the
MAC layers. We define a MAC rate improvement factor that simply reads:

FMAC =
DMAC

LCG

DMAC
uniconv

. (5.17)

Then, we also need to fix the values of the time parameters introduced in the previous
section in order to comply with the HPAV specification. We set: tPRS = 35.84 μs; t̄BO =
150 μs; tSOF = 169.76 μs; tMaxFL = 2501.12 μs; tRIFS = 60 μs; tSACK = 169.76 μs;
tCIFS = 100 μs.

In Fig. 5.8 are presented the distribution of the achieved value of FMAC for K = 2, 3
and 4 stations to reach, respectively. If these results can be interpreted in a same manner
as the PHY level ones, the comparison of the simulation results between the two layers (the
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Figure 5.8: Cumulative Distribution Functions of the MAC rate improvement factor
(P (F > X)), for K = 2, 3 and 4 stations to reach.

grey curves present the PHY level CDF) highlights the massive gain reduction induced by
the MAC overhead of the transmission scheme defined in Fig. 5.7-(b). Moreover, we can
notice that this reduction increases with K. Indeed, as the number of addressed stations
increases, the MAC efficiency is worsened. The MAC efficiency can be interpreted as the
ratio of time allocated for payload transmission to the total access time. Considering the
time parameters set in our simulations, increasing K by 1 reduces the payload transmission
window by 100× tSACK+tRIFS

tpay.
= 9.41 %.

As in section 5.2.1.2, Fig. 5.9 and Fig. 5.10 detail the performance of LCG for the
K = 4 case, which provides the worst MAC efficiency. On average, the achieved values
of FMAC are reduced by 29 %, in comparison to F PHY. Nevertheless, these results tend
to show that LCG still brings a significant improvement of the data rates. However, we
may have some concerns on the performance of this new multicast transmission scheme
for higher values of K. The next section deals with this particular issue.

5.3 Multicast Transmission Scheme Based on the Creation
of Multiple Multicast Subsets

5.3.1 LCG Limitations

In the Chapter dedicated to the study of point-to-multipoint communications, we take
advantage of the multiuser diversity between the channels to improve data rates on multiple
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Figure 5.9: Averaged MAC data rate in each one of the 3 countries (K = 4).

links, using an OFDMA transmission scheme. Considering multicast transmissions, the
higher the multiuser diversity is, the lower is the capacity of the multicast tone map after
applying the LCG technique. Moreover, as K increases, as the additional acknowledgement
frames reduce the MAC efficiency, so that creating a unique multicast tone map may not
be the optimal choice. In the following, we study the opportunity of defining multiple
multicast tone maps instead of a single one.

5.3.2 Smart Merging Approach

This section is derived from the work originally presented in [27]. Fig. 5.11 illustrates the
case where the definition of more than 1 multicast tone maps provides an higher data rate.
Without considering the MAC overhead, we see that of all 3 solutions, this example shows
that the creation of 2 multicast tone maps provides the shortest transmission duration.
Note that, even if the LCG solution presented in Fig. 5.11-(b) improves the transmission
efficiency in comparison to the unicast conversion presented in Fig. 5.11-(a), it is not
necessarily the case if we take into account the MAC overhead. Now, to choose which
links should be merged into a multicast subset, several parameters need to be taken into
account. Among them, there is obviously the number of stations to reach, K, but there
is also the overhead inherent to the definition of a new stream (frame headers, inter-
frame spaces, signalization induced...). To find the optimal solution, this combinatorial
problem needs all possible merging combinations to be tested. To do so, in the case of
a transmission to K nodes, it is firstly necessary to look at all possible partitions of the
set {1, ...,K}. Then, for a given partition, {1, ..., P}, {P + 1, ..., Q}, {Q + 1, ...,K} for
instance, where 3 multicast tone maps would be defined, the number of possible merging
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Figure 5.10: Distribution of the MAC rate improvement factor in each one of the 3 coun-
tries (K = 4).

is equal to
(
K
P

) × (
K−P
Q−P

)
. So, it appears that the analysis of all possible partitions can

become rapidly very costly in terms of computational resource. So, in the following, we
propose an algorithm that quickly finds a sub-optimal partitioning of the K links.

5.3.2.1 Construction of a Fast Tone Map Merging Algorithm

The proposed solution aims at gathering together the K stations into N multicast subsets
as the iterations go by so that, for the nth multicast group, we define:

RLn =
∑
m∈M

min
p∈Ln

(Tp[m]), with
N⊔

n=1

Ln = K, (5.18)

as the capacity of the n-th multicast tone map, resulting from the LCG application among
the links which indexes are collected in Ln. Then, a given partition of the K links is
associated to a multicast data rate that reads

DMAC
multicast =

∏
n∈{1,..,N}D

MAC
Ln∑

n∈{1,..,N}
∏

p∈{1,..,N}\{n}D
MAC
Lp

, (5.19)

where DMAC
Ln

is the MAC data rate associated to the multicast tone map of capacity RLn .
Then, the inversion of (5.19) gives us:

1

DMAC
multicast

=
∑

n∈{1,..,N}

1

DMAC
Ln

. (5.20)
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(a)

(b)

(c)

Figure 5.11: 20000 bits broadcast to 5 stations: (a) by multiplexing 5 Unicast streams,
(b) by merging all the tone maps (LCG solution), (c) by creating two merged tone maps.
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If we do not take into account the payload segmentation, we can approximate the MAC
data rate by multiplying (DPHY

Ln
) by the ratio of time allocated for payload transmission

as follows:
DMAC

Ln
=

tPay. − (card(Ln)− 1)× (tSACK + tRIFS)

tAcc.
DPHY

Ln
, (5.21)

⇔ DMAC
Ln

=
tPay. − (card(Ln)− 1)× (tSACK + tRIFS)

tAcc.

RPHY
Ln

T0 + GI
, (5.22)

⇔ DMAC
Ln

=
1

C
[1− (card(Ln)− 1)× rACK ]RPHY

Ln
, (5.23)

where
C =

tAcc.(t0 + GI)
tPay.

(5.24)

is a constant, and
rACK =

tSACK + tRIFS

tPay.
(5.25)

corresponds to the ratio of time by which the unicast transmission window is reduced each
time one station is added in the multicast subset. Then, inserting (5.23) in (5.20) gives
us:

1

DMAC
multicast

= C
∑

n∈{1,..,N}

1

[1− (card(Ln)− 1)× rACK ]RLn

. (5.26)

Finally, the transmission efficiency can be assessed using a metric α, proportional to the
inverse of the multicast data rate:

α =

N∑
n=1

1

[1− (card(Ln)− 1)× rACK ]RLn

, (5.27)

which takes into account the additional MAC overhead induced by the multicast trans-
mission scheme defined in Fig. 5.7-(b). To initialize the merging algorithm, we consider
that the multicast stream is transmitted using the unicast conversion, such that:

αini =

K∑
k=1

1

Rk
. (5.28)

Note that Rk exactly follows the same notation as RLn , with the peculiarity that Ln = {n},
∀n ∈ {1, ...,K}. Starting from the initialization value αini, the method aims at reducing
the value of α.

The critical part of the treatment lies in the criterion that will be used to choose the
tone maps to merge. Considering the transmission scheme defined in section 5.2.2.1, it
obviously appears that the overhead caused by the multiple acknowledgements is the most
significant parameter to take into account for the merging decision. Indeed, if K increases,
the transmission window reduces and we can easily infer that, above a certain value of
K, the creation of multiple multicast subsets will be preferable. Moreover, looking at the
expression of α in (5.27), we can write:

α ≥ 1

mink∈K (RLn [1− (card(Ln)− 1)× rACK])
, (5.29)
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which tends to be an equality if the data rate associated to one multicast subset is much
lower than the data rates associated to the other subsets. This result is pretty intuitive as
the multicast data rate is naturally limited by the most attenuated channel. Interestingly,
this result leads to the definition of a criterion that will help us making the merging
decision. Moreover, if the multicast subsets Li and Lj are merged into a single subset,
∀(i, j) ∈ K2,

1

RLi [1− (card(Li)− 1)× rACK]
+

1

RLj [1− (card(Li)− 1)× rACK]
, (5.30)

originally part of the α computation, is then replaced by:

1

RLi∪Lj [1− (card(Li) + card(Lj)− 2)× rACK]
. (5.31)

As RLi∪Li ≤ min (RLi , RLj ) ∀(i, j) ∈ K2, we necessarily have:

(5.31) ≥ 1

minn∈{1,..,N} (RLn [1− (card(Ln)− 1)× rACK])
. (5.32)

From (5.32), it appears that if Li or Lj corresponds to the subset associated to the lowest
MAC data rate, so that the lower bound of α, defined in (5.29), will necessarily increase
once the two subsets are merged. In order to protect the low capacity subsets, we define
the following merging criterion:

ep,q =
1

RLp∪Lq [1− (card(Lp) + card(Lq)− 2)× rACK]
, (5.33)

assessing the part of α that will change if Lp and Lp are merged. Noticing that ep,q = eq,p
and setting ep,p = 0, all the computed values of the criterion are gathered in the matrix
E:

E =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 e2,1 e3,1 . . . eN,1

e2,1 0 e3,2 . . . eN,2

e3,1 e3,2 0 . . . eN,3

...
...

...
. . .

...

eN,1 eN,2 eN,3 . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎠ (5.34)

At each iteration, the choice to merge two tone maps is made by selecting the minimum
non-zero value of the matrix E. If this merging leads to an improvement of the transmission
efficiency, meaning that the α parameter has been reduced, the choice is validated and
the matrix E is updated. To update E, the two merged tone maps are removed and
the ep,q values are updated. Then, we pass to the next iteration until the α parameter
cannot be reduced anymore. Note that the algorithm presents two possible exits. First,
it can converge to a solution where several multicast groups are defined. The second exit
corresponds to the definition of a unique tone map shared between all the stations, meaning
that the algorithm converged toward the LCG solution. Let us detail more precisely the
algorithm (see Fig. 5.12).
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Step 1: Initialization

• α = αini;

• Ln = {k}, ∀n ∈ {1, ...,K};
• Compute matrix E.

Step 2: Merge multicast subsets Li and Lj

• Selection of the pair (i, j), i �= j, such that ei,j = min (E);

• Lnew
n =

⎡
⎢⎣ Ln, if n /∈ {i, j};

Li ∪ Lj if n = min(i, j);

∅ if n = max(i, j);

• RLnew
n

=
∑

m∈Mmink∈Lnew
n

(Tk[m]);

• Computation of the new α in a temporary variable αnew =
∑K

n=1
1

RL
new
n

;

Step 3: Validation

• If (αnew >= α):

– elimination of the previously tested (i, j) pair by instanciating ei,j = ej,i = ∞;

– if (�(p, q), p �= q, so that ep,q < ∞), end the process as all the pairs have
been tested;

– Else, go back to step 2.

• Else, the merging improves the efficiency of the ressource utilization. Continue to
step 4.

Step 4: Update parameters

• α = αnew;

• Ln = Lnew
n , ∀k ∈ {1, ..., N};

• Update E.

Step 5: Continue or end the process

• If (∃(p, q), p �= q, so that Lp �= ∅ and Lq �= ∅), go back to step 2;

• Else, the algorithm converged to the definition of a unique multicast subset. End
the process.
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Figure 5.12: Merging Algorithm.
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Figure 5.13: Comparison of the rates improvement factor by the smart merging algorithm
and by LCG, both at the PHY and MAC layers.

5.3.2.2 Simulation Results

In this section, the merging algorithm is assessed by computing the achieved values of
F PHY and FMAC for increasing values of K on various simulated channels. For each simu-
lation run, the unicast conversion, the LCG and the smart merging solutions are tested,
by randomly choosing K tone maps in a data base. In order to ensure the singularity of
each simulation run and the diversity of the situations, the data base contains 300 uncorre-
lated HPAV 2 tone maps, generated using 300 simulated static PLC channels realizations
belonging either to classes 3, 5 or 7 [107], [106]. To obtain a relevant mean value using
the 3 different channel classes, we ensure that each K-tuple combination is tested 100
times. To do so, we use the K-combination with repetitions formula, given by

(
n+K−1

K

)
,

with n = 3. In other words, it means that the K = 2 case needs 600 simulation runs
and the K = 15 case needs 13600 simulation runs. Consequently, it appeared that above
K = 7, the number of possible solutions becomes too high to obtain the optimal solution.
In Fig. 5.13 are gathered the simulation results. We can firstly notice that if the MAC
overhead is not considered, LCG appears to the optimal solution, at least until K = 7.
Moreover, F PHY seems to be linearly increasing above K = 4. Note that if we had done
simulations for higher values of K, the values of F PHY would be leveling off before starting
to decrease, as LCG degrades more and more the capacity of the resulting multicast tone
map. Having said that, the most interesting results concern the achieved values of FMAC.
Note that we used the exact same values of the time parameters that were used in section
5.2.2.3. These results firstly confirm the massive gain reduction caused by the additional
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overhead, firstly observed in section 5.2.2.3 using measured PLC channels. The LCG and
the smart merging solutions appear to provide the optimal solution for K = 2 and K = 3.
Then, for K = 4, LCG and the proposed algorithm provide the same results, which are
slightly lower than the optimal value of FMAC. Above K = 4, the improvement factor
achieved by LCG starts decreasing with K, and even degrades the transmission efficiency
above K = 8, in comparison to the unicast conversion. Moreover, as rACK = 0.094, the
transmission window is null over K = � 1

rACK
� + 1 = 11, which is confirmed by the null

value of FMAC above this limit. However, we can see that the gain provided by the merging
algorithm remains pretty close to the optimum, and even slightly increases with K.

5.4 Conclusion

In this study, we have seen that current PLC networks do not optimize the transmission
of multicast services. With the popularization of the PLC technology, the multicast issue
needed to be addressed. It appears that the definition of multicast tone maps, using
the LCG technique, could bring major improvements to PLC networks. Consequently,
the integration of this feature in a next release of the HPAV 2 specification is currently
under discussion. To keep the same reliability as unicast communications, we assessed the
performance of a multiple acknowledgement transmission scheme. It appeared that the
additional overhead of this solution imposes to create several multicast tone maps. Now,
the merging algorithm presented in this Chapter could satisfactorily respond to this issue.
Other analysis would need to be made to evaluate the complexity of the algorithm and
its impact on real systems. Now, we are confident that the flexibility in the choice of the
criterion combined with programming optimization should lead to a limited complexity,
considering the whole system. In the future, it would also be interesting to assess the
performance of the leader based solution [78] [44], which has the advantage of adding no
overhead to the current unicast transmission scheme. However, this solution needs all
segments to be repeated if another station than the leader receives only one erroneous
segment. Consequently, a tradeoff has to be made between improving the MAC efficiency,
which is done by increasing the transmission window length, and limiting the cost of
retransmission on the system throughput, which is done by limiting its duration. This
makes this solution much more complicated to assess.





Chapter 6

Conclusion

Broadband Power Line Communications are getting more and more popular for home
networking, thanks to the already existing infrastructure and the achievable data rates
of current systems. However, looking back in the 2000s, the intense competition between
non-compatible solutions has slowed down the adoption of this technology. Fortunately,
the release of the IEEE P1901 standard in 2010 has largely been contributing to the
stabilization of the market since then. Nowadays, the market is clearly dominated by
systems following specifications established by the HomePlug Powerline Alliance, that are
the HP 1.0, HPAV 1 and the novel HPAV 2 specifications. Nevertheless, this thesis clearly
highlights that these systems could still benefit from significant improvements. In this
study, several topics have been tackled to improve broadband PLC networks in a multiuser
context. We have firstly addressed the need for more capacity by assessing the benefits of
a bandwidth extension of current systems, in association with an alternative modulation
scheme. Then, we have proposed novel resource allocation methods that would allow to
use more efficiently the limited and shared transmission resource among PLC stations.

In Chapter 2, we have firstly presented the PLC transmission medium that is the
in-home power grid. As the PLC channel was obviously not dedicated to support such
application in the first place, it is very hostile to broadband communication. Therefore,
it needs the most advanced transmission techniques to provide reliability in the delivery
of multimedia services. An overview of HPAV networks was conducted, in which we have
highlighted some mechanisms that allow to efficiently cope with the harsh transmission
medium. We particularly presented the two level MAC-framing process that allows systems
to break the dependency between the Ethernet and the HPAV MPDU frame formats. Ad-
ditionally, this segmentation process allows the network to efficiently react to unexpected
events, such as impulsive noise, by only repeating corrupted segments. Moreover, we in-
troduced the two different channel access mechanisms defined by the specification, firstly
represented by the contention-based CSMA/CA access technique. However, in spite of the
four level access priorities allowed by HPAV CSMA/CA, it can never ensure any QoS guar-
antee. So, the HPAV specification also defines an optional contention free period, using
TDMA, that the CCo can use to schedule dedicated sessions supporting QoS demanding
applications such as IPTV.

The multipath nature of the PLC channel, in addition to various sources of interfer-
ence, have made multicarrier modulation techniques natural candidates for PLC. However,
in Chapter 3, we have firstly shown why the classical CP-OFDM is not suited for PLC,
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considering the spectral mask every device must comply with. Indeed, because of the radi-
ated power by the electrical grid, PLC systems must refrain from transmitting in multiple
narrow notches distributed across the [1.8, 28] MHz frequency range, in order to protect
primary applications such as radio amateur. Because of the bad spectral containment of
the rectangularly shaped OFDM symbols, HPAV defines a windowing operation which re-
duces the level of secondary lobes, and consequently limits the number of subcarriers that
have to be switched off around notches. However, windowing OFDM symbols reduces the
GI in proportion of the Roll-Off interval length, and we highlighted that in the worst chan-
nels, a non-negligible interference appears. So, we have established the exact expression of
this interference term over a dispersive PLC channel to finely compute the achieved SINR
per subcarrier. On the other hand, we have introduced another multicarrier modulation
technique: the HS-OQAM modulation. By relaxing the orthogonality condition only to
the real field, HS-OQAM offers the possibility to design prototype filters well adapted
both to the frequency selective channel and to the transmission mask. Using Frequency
selective filters, more subcarriers can be used at notch edges in comparison to windowed
OFDM, while still satisfying the PSD constraint imposed by the mask. However, due
to the absence of GI, the 1-tap ZF equalizer is generally not sufficient to mitigate inter-
ference. So, we have introduced a 3-tap ASCET equalizer, that can be seen as a 3-tap
ZF, that efficiently reduces the interference level. We established a generalized expression
of the interference and noise terms at the output of ASCET, in order to compute the
achievable throughput and the transmission capacity of the HS-OQAM modulation. The
comparison between the two schemes was performed both in the HomePlug AV 1 and
2 contexts, where we have shown that HS-OQAM can outperform windowed OFDM, by
providing a minimum improvement of 15% in the PHY data rates. However, considering
that windowed OFDM has been standardized through IEEE P1901, there is actually little
hope to see OFDM/OQAM being chosen for future PLC systems. Yet, considering the
CENELEC spectral mask that might be imposed to every PLC device sold in Europe, the
performance gap between the two schemes will be even more important.

Thanks to the quasi static nature of the PLC channel, a fine link adaptation can be
achieved using bit-loading algorithms. This process, based on an accurate knowledge of
the communication channel between two stations, consists in applying independently, for
each subcarrier, the appropriate QAM constellation based on the quality of the subchannel
on which it is transmitted, resulting in the definition of a dedicated tone map. In Chapter
4, we have emphasized on the fact that the tone maps defined between one station and K
other ones highlight a diversity that is not exploited by current PLC networks, as they only
work in a TDM scheme. We have shown that this diversity could be efficiently exploited
by frequency multiplexing multiple flows, through the definition an OFDMA transmission
scheme that could be practically realized in a point-to-multipoint transmission scenario.
Considering K tone maps dedicated to each one of the K links we want to simultaneously
transmit on, we introduced the tone maps orthogonalization problem. Based on a set of
fixed priority coefficients associated to each link, we have demonstrated that this problem
could be optimally solved by constructing a concave capacity region between the K links,
only using the K tone maps. However, this geometrical approach remains prohibitive in
terms of computational complexity. So, we have developed a novel allocation algorithm,
called TMSA, that efficiently and quickly distributes the subcarriers among the considered
links. This algorithm was then implemented in a PLC network simulator to assess the
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actual gain that could be achieved by this new FDM access mode, taking into account
constraints of the HPAV specification. Considering a saturated throughput scenario that
puts OFDMA at a disadvantage, we were still able to show significant improvement in the
data rates, thanks to this novel access method. Then, we have presented this FDM access
mode as an additional feature to the current TDM scheme, such that both multiplexing
techniques could be cooperatively used by always choosing the most appropriate one.
In the future, a fine analysis of the complexity will be necessary to decide whether this
OFDMA access mode can be practically realized. A main concern we can have is related
to the rate at which the tone maps are changing, as this will impact the actual FDM
gain. Moreover, it would be interesting to perform a flow-level analysis of the proposed
transmission scheme, using TCP streams. Finally, the comparison between TDM and
FDM still needs to be assessed in a non-saturated throughput scenario, where we expect
FDM to significantly outperform TDM, as the MAC overhead will be reduced.

Then, in Chapter 5, we have highlighted the broadcast/multicast issue inherent in
current PLC networks that arises because of the link adaptation. Indeed, it appears
that tone maps isolate stations from one another such that, if a station has to deliver a
multicast flow to several stations of the PLC network, it will generally perform a unicast
conversion of the stream. The problem comes from the fact that this method wastes the
medium, as the message is repeated as many times as there are stations to reach. In this
last Chapter, we have assessed the opportunity of defining multicast tone maps, using
the LCG technique. A multicast tone map allows to simultaneously communicate with
multiple PLC stations, while still complying with each link targeted error rate. From
the simulations performed on HPAV 2 channels, the application of LCG among a set
of tone maps clearly shows major improvement in the transmission efficiency. However,
this statement remains only true from a PHY layer point of view. Indeed, if we want
each station to acknowledge its own reception status, it creates an additional overhead
that limits the number of stations that can be gathered into a multicast subset. So, we
have introduced a smart merging approach that, by simultaneously taking into account
this additional overhead and the correlation between tone maps, defines several multicast
subsets instead of a single one. This algorithm has shown performance really close to the
optimal solution. If the complexity of the algorithm remains to be assessed, we can be
confident on the fact that a multicast tone map should not need to be modified too often,
as it still remains more robust against errors than the unicast ones, thanks to the LCG
principle. As a further study, it would also be interesting to assess the performance of
the leader based solution [78], [44], which has the advantage of adding no overhead to the
current unicast transmission scheme.

At this point, it appears legitimate to ask us the following question: what is the next
step to be taken in the field of broadband PLC networks? The capacity of future HPAV
2 networks, thanks to the bandwidth extension and the introduction of MIMO, should
be sufficient to support the growing number of multimedia applications circulating within
the home network. However, we cannot ignore the CENELEC spectral mask that could
significantly reduce the capacity of PLC networks in Europe. If this mask happened to
be validated as it is now defined, it could trigger the need to increase even more the
bandwidth of PLC systems. Some people are already thinking of using frequencies above
100 MHz, up to 400 or 500 MHz [60]. In such a case, a whole new Physical layer would
have to be defined for this new frequency range. But this new physical layer might not be
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desirable for the sake of the in-home PLC market. Indeed, looking back at the evolution
of broadband PLC during the last decade, the competition between different solutions
had only resulted in slowing down the mass market adoption of this technology. If HPAV
or P1901 systems are now massively deployed in Europe, the success of PLC is nothing
compared to the one of 802.11 WLAN solutions. If PLC cannot compete with wireless
technologies in terms of mobility, this might not be the only reason explaining the gap
between the two networking solutions. Indeed, another limitation of PLC concerns the fact
that it is never directly implemented in terminal equipments, such as laptops for instance.
This could change in the future, but it could mainly depend upon the success of another
standard: the IEEE P1905. This new solution, that we have briefly introduced in the
first Chapter, aims at taking advantage of every connectivity solution within the home
network, wired or wireless, defining an abstraction layer above the technology dependent
MAC layers. To have a concrete interest, an increasing number of multiple interface nodes
will have to be present in the home network, which is not the case today. So, depending
on the number of companies supporting this P1905 standard, this could be the entry point
for PLC in users terminal equipments.
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Appendix A

The ns2-based PLC Network
Simulator

General information

For the time being, the simulator only runs in a Unix environment. To work properly,
it needs the modified version of ns-2, including the PLC module. To compute statistics
on the network traces generated by ns-2, Gawk scripts are used. The interface can also
export postscript figures, using the Gnuplot graphic utility.

Core of the simulator

The PLC simulator model [87], based on the version 2.30 of ns-2 [10], was developed in
accordance with HPAV and IEEE P1901 specifications. The ns-2 PLC transmission sys-
tem follows the CSMA-only mode that deploys the CSMA/CA access service. The TDMA
access service is not yet available. Thus, as in 802.11-based wireless networks, PLC sta-
tions gain access to the medium by using the opportunistic access technique CSMA/CA
that separates contending users by defining backoff procedures and uses acknowledgment
mechanisms to ensure the delivery of packets and collision detection. Moreover, this access
mode allows to prioritize services by defining 4 channel access priorities (CAP), the eight
801.1Q priorities specified by the user being mapped onto these 4 CAP. To closely model
the PLC MAC layer as specified in [20], [7], the framing and segmentation processes are
also considered. However, unlike the MAC layer, the physical layer in this simulator is
modeled quite superficially; it considers only a generalized channel model with channel
characteristics like Tone Map, FEC and segment error rate. In fact, modeling the whole
communication chain of the PLC physical layer is essential to correctly approach the be-
havior of PLC networks but, at the same time, this type of modeling increases significantly
the complexity of the simulator; simulating seconds of network activity requires hours and
hours of computations. Therefore, to improve this simulator, we deploy the PLC channel
generator.

To model the PHY layer of PLC networks, a PLC channel generator module is inte-
grated in the software. The creation of this module was only made possible thanks to
measurements conducted by Orange Labs in different sites, from the modern apartment
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Figure A.1: PLC network simulator Architecture.

to the old countryside house [107]. From this campaign, 144 PLC channels were measured
and a statistical analysis was led, resulting in the classification of the channels into 9 differ-
ent classes, class 1 containing the worst channels (with the lowest transmission capacities)
and class 9 the less disturbed ones (with the highest transmission capacities). Finally, this
study resulted in the creation of a channel simulator [106], allowing to quickly generate
realistic PLC channels, based on the desired channel class and bandwidth. Concerning
the noise modeling, we do not use the classical Additive White Gaussian Noise (AWGN)
but a colored noise model, also built from a statistical analysis of several measures real-
ized in domestic environments [52]. Based on these realistic channels and noise models,
bit-loading algorithms are run to generate adapted tone maps. In Fig. A.2, cumulative
distributions functions of HPAV and IEEE P1901 tone maps capacities are plotted with
100 independent channels realizations per class. On this figure, it can be seen that if
the transmission capacity of the link naturally increases with the channel class for IEEE
P1901 tone maps, HPAV tone maps over classes 6 to 9 channels reach about the same
capacities. This can be explained by the fact that, according to this specification, sub-
carriers cannot carry more than 10 bits per subcarrier, while IEEE P1901 authorizes up
to 12 bits. So, in classes 6 to 9 channels, the SNR is high enough on a large majority of
the 917 subcarriers so that the maximum of 10 bits is reached. Another reason explaining
this difference concerns the PSD limitation to −80 dBm/Hz beyond 30 MHz. Indeed,
the IEEE P1901 specification, which extends the HPAV frequency band beyond 30 MHz,
has to limit the PSD in the extended band 30 dB under the PSD inside the HPAV band,
so that notable differences between the reached SNR for the subcarriers located beyond
30 MHz can be observed with IEEE P1901, whatever the channel class being used. The
classification of PLC channels can either be used to define a static quality of the link
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(a)

(b)

Figure A.2: Cumulative distribution functions of (a) HPAV and (b) IEEE P1901 tone
maps capacities.

to simulate a particular configuration but also to simulate an abrupt change in the PLC
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channel characteristics. For example, to take into account an event such as the switching
on of a nearby home appliance, we can associate the link to a lower channel class, so that
its transmission capacity will be reduced. Therefore, the simulator associates each link of
the network to a channel class, parameters that can possibly vary during the simulation.

User Interface

To ease the creation of simulation scenarios and the exploitation of the network traces
provided by ns-2, we developed a user interface, written in JAVA. From the main interface,
which is described in Fig. A.3, the user can define:

• the number of PLC stations;

• the link qualities between every pair of stations, and potential events that may affect
the link quality;

• the streams parameters (target data rate, flow type, duration, priority etc...).

The simulation scenario being defined, the software will run ns-2 simulator by automati-
cally generating the TCL (Tool Command Language) script file needed at input by ns-2.
Once the simulation is finished, the ns-2 PLC simulator provides a trace file describing
precisely the network activity at the PLC channel level and all levels of the PLC trans-
mission system. This trace file is used for two purposes: on the one hand, it is exploited
to compute several statistics about each stream (instantaneous data rate, delay, segment
losses). On the other hand, this file can be replayed by the user, the interface displaying
the network activity with the desired refresh rate, and also plotting in a "real-time" man-
ner the previously computed statistics.

Validation

To validate the simulator, we compare simulated data rates to the ones retrieved from a
real PLC network [114], constituted by devices following the HPAV specification. Consid-
ering the ideal conditions in which the measures were done, we assume all communication
channels of the simulated HPAV network to be class 9 ones and we set the FEC (Forward
Error Correction) rate to 16/21, which is the maximum code rate allowed by the HPAV
specification. The network is composed of 5 stations, each of them being able to commu-
nicate directly to the others. We place ourselves in an uplink case scenario, which means
that transmitting stations contend to gain access to the media and then transmit to the
same sink node. In figure A.4, results using 1, 2, 3 and 4 UDP flows are presented, each
active station being set to transmit at 30 Mbps. Obviously, on class 9 channels, HPAV
networks have no trouble supporting 2 parallel 30 Mbps UDP flows, which is confirmed by
the results given by the simulator. Now, as a third flow is defined, the 30 Mbps cannot be
reached simultaneously by the 3 transmitting stations, meaning that the network capacity
has been reached. This limit is well-shown by the simulator, the behaviors of the simu-
lated and the measured data rates being really similar. With the fourth UDP flow, the
per-flow throughput drops even more but again, the simulation results are really close to
the measures. In figure A.5, the comparison is made using TCP flows. The first plot shows
the HPAV network capacity for TCP, which is around 71 Mbps, which confirmed by the
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Figure A.3: User interface screen capture.
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Figure A.4: Comparison between simulated (continuous curves) and measured data rates
(dotted curves) for 1, 2, 3 and 4 uplink UDP flows.

results given by the network simulator. Naturally, as additional TCP flows are defined,
the per-flow throughput decreases by a factor of n. Yet, we can see that results are slightly
pessimistic with 2 and 4 TCP flows, in comparison to the measures. Nevertheless, even
if these differences cannot be explained yet, this problem is not relevant in this thesis,
considering that only UDP flows were used.
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Figure A.5: Comparison between simulated (continuous curves) and measured data rates
(dotted curves) for 1, 2, 3 and 4 uplink TCP flows.





Appendix B

Transmission Masks

B.1 North American excluded frequency ranges

Table B.1: North America permanently excluded frequency ranges
Excluded frequency range (MHz) Service

1.80 - 2.00 Amateur Radio Service
3.50 - 4.0 Amateur Radio Service

5.33 - 5.407 Amateur Radio Service
7.0 - 7.30 Amateur Radio Service

10.10 - 10.15 Amateur Radio Service
14.00 - 14.35 Amateur Radio Service

18.068 - 18.168 Amateur Radio Service
21.00 - 21.45 Amateur Radio Service
24.89 - 24.99 Amateur Radio Service
28.00 - 29.7 Amateur Radio Service
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B.2 CENELEC excluded frequency ranges

Table B.2: Permanently excluded frequency ranges by CENELEC
Excluded frequency range (MHz) Service

1.80 - 2.00 Amateur Radio Service
2.85 - 3.025 Aeronautical mobile

3.40 - 4.0 Aeronautical mobile: 3.40 - 3.50
Amateur Radio Service: 3.50 - 4.00

4.65 - 4.70 Aeronautical mobile
5.25 - 5.41 Amateur Radio Service
5.48 - 5.68 Aeronautical mobile

6.525 - 6.685 Aeronautical mobile
7.0 - 7.30 Amateur Radio Service

8.815 - 8.965 Aeronautical mobile

10.005 - 10.15 Aeronautical mobile: 10.005 - 10.10
Amateur Radio Service: 10.10 - 10.15

11.275 - 11.4 Aeronautical mobile
13.26 - 13.36 Aeronautical mobile
14.00 - 14.35 Amateur Radio Service
17.9 - 17.97 Aeronautical mobile

18.068 - 18.168 Amateur Radio Service
21.00 - 21.45 Amateur Radio Service
21.924 - 22.00 Aeronautical mobile
24.89 - 24.99 Amateur Radio Service
26.96 - 27.41 CB radio
28.00 - 29.7 Amateur Radio Service
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Table B.3: Permanently or dynamically excluded frequency ranges by CENELEC
Excluded frequency range (MHz) Service

2.30 - 2.498 Broadcasting
3.20 - 3.40 Broadcasting
3.90 - 4.05 Broadcasting
4.75 - 5.11 Broadcasting
5.75 - 6.20 Broadcasting
7.20 - 7.70 Broadcasting
9.30 - 9.95 Broadcasting

11.55 - 12.10 Broadcasting
13.55 - 13.90 Broadcasting
15.05 - 15.85 Broadcasting
17.40 - 17.90 Broadcasting
18.90 - 19.02 Broadcasting
21.45 - 21.85 Broadcasting
25.65 - 26.10 Broadcasting
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Figure B.1: HPAV Spectral mask.

Figure B.2: CENELEC spectral Mask (permanent and dynamic notching).
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Some Proofs

C.1 Proof that E
[
u2m0,n0

]
in (3.60) can be written as (−1)n0F (m0)

E
[
u2m0,n0

]
= σ2

n

Ke∑
r=−Ke

Ke∑
r′=−Ke

e(r)m0
e(r

′)
m0

∫
p∗m0,n0+r(t)× p∗m0,n0+r′(t)dt (C.1)

With the expression of pm,n(t) (see (3.30)) and after some computations we get
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= σ2
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Noticing that the phase term can be written as Ψ
(r,r′)
m0 + πn0, with

Ψ(r,r′)
m0

=

{
π
2 (r + r′) + πm0(r − r′ + 1) if φ0(m,n) = 0
π
2 (r + r′) + πm0 if φ0(m,n) = −πmn
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and setting F (m0), independent from n0 to

F (m0) = σ2
n
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e(r)m0
e(r

′)
m0

e−jΨ
(r,r′)
m0 ×Ap[(r

′ − r)M/2, 2m0] (C.3)

we finally have
E

[
u2m0,n0

]
= (−1)n0F (m0) (C.4)

C.2 Proof that Var[um0,n0
] in (3.60) does not depend on n0

Var[um0,n0 ] = σ2
n

Ke∑
r=−Ke

Ke∑
r′=−Ke

e(r)m0
e(r

′)∗
m0

×
∫

p∗m0,n0+r(t)gm0,n0+r′(t)dt (C.5)

145



146 Some Proofs

With the expression of pm,n(t) (see (3.30)) and after some computations we get

Var[um0,n0 ] = σ2
n

Ke∑
r=−Ke

Ke∑
r′=−Ke

e(r)m0
e(r

′)∗
m0

× ej(φ(m0,n0+r′)−φ(m0,n0+r))

× Ap[(r
′ − r)M/2, 0]

Then using the phase function (3.40) we have the following expression, independent on n0

Var[um0,n0 ] = σ2
n

Ke∑
r=−Ke

Ke∑
r′=−Ke

e(r)m0
e(r

′)∗
m0

e
jΦ

(0,r′−r)
m0,0 ×Ap[(r

′ − r)M/2, 0]



Appendix D

Résumé Français du Mémoire de
Thèse

D.1 Chapitre 1: Introduction

Dans un marché français de l’accès Internet fortement concurrentiel, l’activité première
d’un opérateur de réseaux tel qu’Orange a dû rapidement s’adapter en diversifiant son offre
par l’ajout de nouveaux services, tendance qui s’est concrétisée par la démocratisation des
offres triple play (Internet+VoIP+TVoIP). Naturellement, un axe majeur de la stratégie de
différenciation d’Orange vis-à-vis de ses concurrents s’inscrit dans l’amélioration continue
de ses services en enrichissant les contenus proposés. Cependant, en sa qualité d’opérateur
historique, le service client constitue un axe majeur de la stratégie de l’entreprise. Aussi,
l’assurance d’une bonne qualité d’expérience au niveau du client passe nécessairement par
une maîtrise de bout-en-bout de la chaîne de transmission, dont le réseau domestique
constitue bien souvent le maillon faible. Une parfaite maîtrise de toutes les solutions de
connectivité domestique est donc primordiale pour réussir le pari du meilleur service client.
L’augmentation de la capacité du réseau à l’accès pour ses clients Internet, actuellement
bénéficiaires d’offres ADSL et, pour certains, dès aujourd’hui éligibles à des offres FTTH
(Fiber To The Home), permet de proposer de nombreux services dont certains, tels que
la TV HD sur IP, peuvent s’avérer très gourmands en bande passante. Pour diffuser
ces services au sein de l’habitation, une solution filaire comme l’Ethernet [16] répond
idéalement aux besoins en termes de capacité de transmission. Cependant, du point de
vue du client, dont l’environnement domestique est rarement câblé nativement en Ethernet,
cette solution est difficilement défendable, l’installation d’un tel réseau entraînant un coût
supplémentaire important. À l’heure actuelle, les technologies sans-fil, comme le Wi-
Fi [15], permettent de répondre dans une certaine mesure aux cas d’utilisation auxquels
elles sont soumises. Cependant, ces solutions sont victimes de leur succès : on peut
constater une concentration très importante de points d’accès dans les immeubles qui, par
interférences mutuelles, engendre une saturation rapide de ces réseaux [13]. De plus, les
mécanismes de QoS mis en place par ces technologies ne permettent pas d’assurer une
qualité d’expérience satisfaisante au niveau de l’utilisateur, notamment pour des services
tels que la vidéo à la demande. Enfin, les solutions sans-fil ne permettent pas toujours
de couvrir les habitations dans leur globalité, en fonction de leurs tailles, mais aussi de
l’épaisseur des cloisons. Une solution envisagée pour pallier aux limitations de chaque
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technologie prend la forme d’une nouvelle norme: le standard IEEE P1905 [40], qui définit
une nouvelle couche réseau au-dessus de la MAC, doit permettre de facilement combiner
les différentes solutions de transmission présentes dans l’environnement domestique.

En complément des réseaux WLAN, la technologie des courants porteurs en ligne
(CPL) a fait son apparition dans les réseaux domestiques ces dernières années afin de
répondre à ces nouveaux besoins. Comme pour les solutions sans-fil, cette technologie
présente l’avantage de ne pas nécessiter le déploiement de nouveaux câbles à l’intérieur de
la maison, tout en offrant une zone de couverture plus importante. Cependant, les 200 à
500 Mbits/s (maximum théorique au niveau de la couche physique) que sont censés offrir les
équipements actuels ne sont pas suffisants pour supporter simultanément des applications
gourmandes en bande passante. En effet, les solutions actuelles offrent rarement plus
de 80 Mbit/s au niveau IP dans des configurations d’utilisations courantes. De plus, les
systèmes CPL actuels ne sont pas plus performants que les technologies sans-fil concernant
les mécanismes de Qualité de Service qu’ils intègrent, alors même qu’ils doivent faire face
à un milieu de transmission fortement perturbé, dont on peut faire l’analogie, dans une
certaine mesure, avec le medium "air" d’un réseau Wi-Fi. Pour prendre l’exemple de
France Telecom, les modems CPL vendus actuellement dans les boutiques Orange sont
présentés comme un substitut au traditionnel câble Ethernet permettant de relier deux
équipements du réseau local. Ces modems CPL, qui suivent la spécification HPAV (la
plus répandue), ont pourtant la capacité de transformer le réseau électrique en véritable
LAN, supportant la circulation simultanée de plusieurs services concurrents. Cependant,
la technique d’accès aléatoire dénommée CSMA/CA, aujourd’hui utilisée pour effectuer le
partage de la ressource entre les différents utilisateurs du réseau, ne permet pas d’échapper
à des phénomènes de collisions de trames et de saturation du réseau, rendant toute garantie
impossible quant au niveau de QoS assurée à des services devant être acheminés sous
contrainte(s).

Dans ce contexte, on peut mettre en évidence deux carences majeures des réseaux lo-
caux actuels, à supports filaires ou non, auxquelles il devient urgent de répondre. D’une
part, il est nécessaire d’augmenter globalement la capacité de ces réseaux : un problème
typique de la couche Physique (PHY) des systèmes. D’autre part, la présence simul-
tanée de flux hétérogènes sur ces réseaux, aux contraintes très différentes (bande passante
nécessaire, délais d’acheminement, gigue), nécessite la définition de mécanismes de priori-
sation plus évolués qu’en l’état actuel des choses. Ces fonctions assurant l’allocation et le
partage de la ressource, aussi bien au niveau d’une station qu’entre les différentes stations
du réseau, sont implémentées au niveau de la couche MAC des systèmes. Cette thèse
vise donc à explorer différentes solutions pour les futurs réseaux domestiques basés sur la
technologie des courants porteurs en ligne. L’étude a été menée dans un premier temps
au niveau de la couche PHY en vue d’augmenter la capacité globale du réseau. Dans le
chapitre 3, nous mettons en évidence les limitations de la modulation windowed OFDM,
technique de transmission actuellement utilisée dans les systèmes CPL large bande. Cette
solution est ensuite comparée à une modulation alternative, dénommée OFDM Offset
QAM (OFDM/OQAM), qui s’avère particulièrement adaptée au contexte des CPL. Cette
étude s’est inscrite dans le cadre du projet européen FP7 "OMEGA" [53], et a permis la
publication de 3 articles [28], [29], [32]. Le chapitre 4 s’intéresse à la diversité en fréquence
entre les différents canaux de transmission dans une configuration de transmission point-
à-multipoint. Dans cette partie, nous montrons comment cette diversité pourrait être
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efficacement exploitée en définissant un mode d’accès de type OFDMA. Une méthode
permettant de diviser de manière optimale le spectre entre les différents canaux de trans-
mission, en faisant l’hypothèse qu’ils sont quasi-statiques, est d’abord présentée. Un algo-
rithme d’allocation sous-optimal est ensuite décrit. Cette dernière solution a été intégrée
dans un simulateur de réseau CPL basé sur ns-2, décrit en Annexe A, nous permettant de
montrer le gain potentiel que pourrait apporter ce nouveau mode d’accès. Ce chapitre a
donné lieu à plusieurs publications et contributions techniques [30], [31]. Enfin, le chapitre
5 aborde le problème de la diffusion broadcast/multicast. L’analyse est d’abord menée sur
des canaux CPL mesurés, puis est étendue à des canaux simulés. Dans ce dernier chapitre,
nous proposons une méthode itérative permettant d’augmenter les débits en séparant un
groupe de stations destinataires d’un même flux broadcast/muticast en sous-groupes de
multicast. Ce travail a fait l’objet d’un article [27] et de plusieurs contributions techniques
au sein du groupe de travail en charge de l’établissement des spécifications HPAV (toutes
les contributions sont listées p. 167). Une conclusion vient finalement clore ce travail de
thèse, où nous rappelons les principaux résultats de cette étude, ainsi que les points restés
en suspens, puis nous élargissons le champ de cette étude en évoquant brièvement le rôle
que pourrait jouer la technologie CPL dans les futurs réseaux domestiques convergents
(CDHNs).

D.2 Chapitre 2: La technologie des Courants Porteurs en
Ligne pour les transmissions en Large Bande

Le second chapitre est une introduction générale sur le domaine des réseaux CPL large
bande. Dans un premier temps, un bref historique rappelle les motivations originelles
ayant permis l’avènement de cette technologie. Nous procédons ensuite à une description
succincte de l’environnement de transmission que constitue le réseau électrique (canal et
sources de bruit). Les mauvaises adaptations d’impédance au niveau des connecteurs élec-
triques confèrent au canal CPL une caractéristique multi-trajet. Ainsi, tout système CPL
large bande utilise des modulations de type OFDM, dont l’efficacité n’est plus à prouver
sur ce type de canal. Dans cette thèse, nous avons utilisé des modèles de canaux et de
bruit coloré basés sur des mesures effectuées sur le terrain, et développés par l’Orange
Labs de Lannion [106], [52]. La législation encadrant le niveau des émissions électromag-
nétiques induites par les équipements CPL n’est pas très claire. Dans notre étude, nous
avons utilisé le masque défini par la FCC en Amérique du Nord, représenté sur la Fig.
D.1. À l’avenir, ce masque de transmission pourrait être très différent en Europe car une
nouvelle norme imposée aux équipements CPL, définie par le CENELEC, sera soumise à
un vote de ratification dans les prochains mois. Nous avons également rappelé l’historique
des différentes solutions CPL qui sont entrées en concurrence dans les années 2000, dont
semble sorti vainqueur le consortium HomePlug, qui édite la spécification HPAV.

Dans cete thèse, nous souhaitions que les solutions développées prennent appui sur les
spécifications des systèmes existants. HPAV étant la spécification la plus suivie par les
systèmes CPL large bande, nous nous sommes donc attachés à décrire leur fonctionnement.
Dans un réseau CPL, il est nécessaire de faire la distinction entre le réseau physique, dont
la couverture dépend de la portée du signal transmis, et le réseau logique, qui définit
l’ensemble des stations autorisées à échanger entre elles des données de l’utilisateur final.
Un système CPL n’intègre que les couches 1 (PHY) et 2 (LLC) du modèle OSI, et est
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Figure D.1: Masque de transmission défini par la FCC (Amérique du Nord).

généralement utilisé comme un pont entre un réseau Ethernet et le réseau électrique. La
couche LLC est divisée en deux sous-couches: les couches de convergence (CL) et de
contrôle d’accès au support (MAC). La première reçoit les trames provenant de l’interface
Ethernet ou des éventuelles couches supérieures, les classe parmi les connexions actives ou
initie éventuellement une demande de connexion pour les paquets n’ayant pu être identifiés.
La couche MAC prend en charge le formatage des données avant de les transmettre à
la couche physique, et définit les méthodes d’accès au canal. Deux méthodes d’accès
permettant le partage de la ressource entre les différentes stations sont définies par la
spécification: le CSMA/CA et le TDMA. La première technique, implémentée dans tous
les équipements suivant HPAV, est complètement décentralisée. En effet, toute station
ayant des données à transmettre peut tenter de prendre l’accès au canal en fixant une
fenêtre de temporisation de durée aléatoire. De plus, un mécanisme de résolution des
priorités permet de mettre en concurrence uniquement les stations possédant des flux de
même priorité à transmettre (la plus élevée), choisie parmi 4 niveaux possibles. A l’inverse,
le TDMA est une méthode d’accès centralisée au niveau du CCo (station coordinatrice),
qui lui permet d’allouer à une station du réseau un intervalle de transmission exclusif pour
l’une de ses connexions, garantissant au service transmis un niveau de QoS préalablement
négocié. La trame MAC HPAV est construite en deux étapes. Chaque trame Ethernet est
encapsulée une première fois en créant une entête contenant des informations sur la nature
et la structure des données transmises, et une séquence permettant de vérifier l’intégrité des
données au niveau du récepteur est également calculée. Une seconde étape de formatage
des données consiste à segmenter les données appartenant à une même connexion en blocs
de taille fixe (512 octets pour les données de l’utilisateur). Ce mécanisme de segmentation
a une double utilités: il permet de casser la dépendance entre les longueurs des trames
Ethernet reçues et celles des trames émises sur le réseau CPL, mais il permet également de
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limiter le coût des erreurs de transmission car seuls les segments erronés sont retransmis.
Enfin, les segments ainsi créés sont passés à la couche physique, qui se charge de distribuer
le flux binaire selon le "tone map" créé pour le lien concerné par la transmission. Un tone
map est une table décrivant les ordres de constellation à utiliser pour chaque sous-porteuse
du symbole OFDM, cet ordre étant fixé selon le niveau de l’atténuation locale du canal
en fréquence. Les données transmises sont acquittées par le récepteur, qui renvoie une
trame informant explicitement l’émetteur des éventuels segments qu’il sera nécessaire de
retransmettre.

D.3 Chapitre 3: Analyse de Capacités dans les Contextes
des Spécifications HomePlug AV1 et AV2

Dans le cadre du projet européen OMEGA [51], une étude a été menée afin d’étendre la ca-
pacité de transmission des réseaux CPL actuels. Nous proposons dans ce chapitre de com-
parer une modulation multiporteuse à haute efficacité spectrale, dénommée OFDM/OQAM
(Offset QAM), à la modulation windowed OFDM, utilisée par les systèmes suivant HPAV.
La caractéristique quasi-statique du canal CPL permet aux systèmes une adaptation fine
au canal de transmission par l’intermédiaire d’algorithmes dits de "bit-loading", résultant
en la construction d’un tone map adapté au lien considéré. Dans notre étude, nous util-
isons la forme la plus simple de bit-loading, qui alloue à chaque sous-porteuse l’ordre de
modulation le plus élevé permettant de respecter un seuil fixé sur le taux d’erreur symboles
(10−2 dans le cadre d’OMEGA). Les deux modulations sont comparées dans un premier
temps dans la bande utilisée par HPAV 1, s’étendant de 1.8 à 30 MHz, puis la bande est
élargie jusqu’à 87.5 MHz, similaire à celle définie par HPAV 2. Dans chaque contexte de
simulation, deux métriques sont évaluées. La première, dénommée la "capacité de trans-
mission", correspond au débit binaire qui serait atteint en faisant l’hypothèse d’ordres de
modulation à valeurs réelles et non limitées. La seconde métrique calculée est le débit
binaire au niveau de la couche physique, où chaque sous-porteuse est associée à un ordre
de modulation choisi dans un ensemble discret Econst, dépendant de la spécification suivie
(ex: HPAV 1, Econst = {1, 2, 3, 4, 6, 8, 10}).

La modulation définie par la spécification HPAV, dénommée windowed OFDM, est
directement dérivée de l’OFDM avec préfixe cyclique (CP-OFDM). Une opération ad-
ditionnelle de fenêtrage des symboles est néanmoins nécessaire, celle-ci permettant une
meilleure localisation fréquentielle des sous-porteuses. Ce traitement permet de limiter le
nombre de sous-porteuses devant être éteintes pour respecter le masque de transmission
(cf. Fig. D.1). Dans le cas du CP-OFDM classique, si l’intervalle de garde (GI) est plus
long que l’étalement en temps du canal, l’interférence causée par les répliques du symbole
précédent peut être totalement éliminée, et un simple égaliseur Zero Forcing (ZF) à un
coefficient suffit alors à la réception. Cependant, comme le montre la Fig. D.2, l’opération
de fenêtrage réduit la longueur de l’intervalle de garde en fonction de la longueur de
l’intervalle du facteur de retombée, le "Roll-Off" (RI). Il est donc possible qu’un terme
d’interférence non-nul reste présent dans les canaux les plus dispersifs en temps. Le fenê-
trage peut donc avoir une influence négative sur la valeur du SINR (rapport signal à bruit
plus interférence), métrique utilisée lors de l’opération de bit-loading. Pour calculer de
manière précise le SINR par sous-porteuse, nous avons isolé le terme d’interférence qui
apparaît lorsque l’étalement temporel du canal dépasse la limite GI−RI. En partant de
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Figure D.2: Pré-traitement effectué au niveau de récepteur avant de démoduler le signal
windowed OFDM.

Figure D.3: Recouvrement entre symboles OFDM/OQAM consécutifs [84].

l’expression du signal windowed OFDM en entrée du récepteur:

y(t) =

P−1∑
i=0

hi

M−1∑
m=0

+∞∑
n=−∞

cm,ng(t− nT − τi)e
j2πmF0(t−τi), (D.1)

on peut assez aisément isoler le terme d’interférence, dont l’expression analytique de la
puissance au niveau de la sous-porteuse m0 s’écrit:

PWin
ISI+ICI(m0) =

∑
(p0,q0)

σ2
c (m0+p)

∣∣∣∣∣
Lh−1∑
l=0

hlAg,f [−q(M + LGI)− l,−p]e−jπ(2m0+p) l
M

∣∣∣∣∣
2

, (D.2)

où p0 et q0 signifient p �= 0 et q �= 0; σ2
c est la variance des symboles complexes cm,n trans-

mis; Lh et hl représentent la longueur du canal en nombre d’échantillons et le coefficient
associé au lième trajet, respectivement, et Ag,f est la fonction d’ambiguité croisée entre la
fenêtre du symbole windowed OFDM g et la fenêtre rectangulaire de FFT f .

L’alternative que nous proposons au windowed OFDM est la modulation OFDM/OQAM
[100], ou HS-OQAM (OQAM avec symétrie hermitienne) dans sa version en bande de
base réelle [83]. Dans le cas de l’OFDM classique, la contrainte d’orthogonalité entre
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les symboles est imposée dans le corps des complexes. Or, le concept fondamental de
l’OFDM/OQAM consiste à limiter cette contrainte d’orthogonalité au corps des réels.
Les symboles complexes sont en fait transmis en deux étapes, en séparant les voies en
phase et en quadrature d’un délai T0

2 , T0 représentant la durée symbole du système CP-
OFDM équivalent. Cette relaxation sur la contrainte d’orthogonalité autorise une plus
grande liberté quant à l’allure du filtre de mise en forme des symboles OFDM, qui peut
être optimisé selon un critère précis, tel que la sélectivité fréquentielle ou la localisa-
tion temps-fréquence. Le recouvrement entre les symboles transmis, illustré sur la Fig.
D.3, induit la présence d’un terme d’interférence non-nul. Cependant, les symboles en-
voyés étant réels, l’imposition d’une quadrature de phase entre les symboles adjacents
en temps et en fréquence permet de confiner cette interférence sur la voie orthogonale à
celle que l’on souhaite démoduler. L’absence d’intervalle de garde confère à cette modu-
lation une meilleure efficacité spectrale que le système CP-OFDM équivalent. L’absence
de GI provoque néanmoins une plus grande sensibilité à la caractéristique multi-trajet du
canal vis-à-vis de la modulation CP-OFDM. L’utilisation d’un égaliseur ZF à 1 coefficient
pouvant s’avérer insuffisante dans certains cas, nous proposons d’utiliser l’égaliseur AS-
CET [35] [84], pouvant être vu comme un ZF à 3 coefficients. En partant de l’expression
du signal OFDM/OQAM à l’entrée du récepteur:

y(t) =
P−1∑
i=0

hi

M−1∑
m=0

+∞∑
n=−∞

am,npm,n(t− τi), (D.3)

nous calculons en sortie de l’égaliseur ASCET l’expression analytique de la puissance de
l’interférence:

PISI+ICI(m0) =
∑

(p0,q0)

σ2
c (m0 + p)

[
Re{ej π

2
(p+q+pq)A(p,q)

m0
}
]2
, (D.4)

dont les différents termes sont explicités dans la section 3.3.2.2 (p. 42). La puissance du
bruit est également exprimée en sortie de l’égaliseur ASCET:

Pnoise(m0) = σ2
n

1∑
r=−1

|e(r)m0
|2Ap[0, 0]

+ 2σ2
nFφ(m0)Im{(e(1)m0

− e(−1)
m0

)e(0)∗m0
}Ap[M/2, 0],

dont les différents termes sont explicités dans la section 3.3.2.3 (p. 44).
Dans la section 3.4.2.1, nous présentons trois filtres prototypes pouvant être utilisés par

la modulation OFDM/OQAM (cf. Fig. D.4). Le premier, dénommé TFL1, est un proto-
type court de durée T0 possédant la propriété d’orthogonalité stricte (PR: reconstruction
parfaite) et optimisé selon le critère de la localisation temps-fréquence [57]. Dans la thèse
de Lin Hao [82], il a été montré que l’interférence inter-porteuse (ICI) est prédominante
devant l’interférence inter-symbole (ISI) pour les canaux invariants en temps. Ainsi, il
apparaît plus judicieux d’optimiser les prototypes selon le critère de la sélectivité fréquen-
tielle. De plus, la minimisation du niveau des lobes secondaires en fréquence permet de
conserver un nombre plus élevé de sous-porteuses en bordure des encoches du masque de
transmission (bandes de fréquence interdites à l’émission). Cependant, une bonne sélectiv-
ité en fréquence nécessite une longueur minimale de filtre égale à plusieurs fois la durée du



154 Résumé Français du Mémoire de Thèse

(a)

(b)

Figure D.4: Représentation des 3 prototypes étudiés: (a) en temps (b) en fréquence.
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symbole OFDM. Ainsi, les deux autres prototypes présentés, optimisés selon le critère de
la sélectivité fréquentielle, s’étalent sur une durée 4T0. Le premier, dénommé FS4, est un
filtre PR et le second, MMB4, est un filtre NPR (reconstruction presque parfaite) proposé
dans [88] et [37]. Après une étude comparative entre ces 3 filtres prototypes, nous décidons
d’utiliser le filtre FS4 avec un égaliseur ASCET en réception afin de réduire efficacement
la composante interférente du signal.

Dans la section 3.4.3, nous comparons les deux systèmes en utilisant 3 types de canaux
(bon, moyen et mauvais) générés par le simulateur décrit dans [106], et le modèle de
bruit coloré décrit dans [52]. La modulation windowed OFDM est associée à un simple
égaliseur ZF à 1 coefficient en réception. L’utilisation du filtre FS4 permet à l’HS-OQAM
d’utiliser 970 sous-porteuses dans la bande [1, 8 : 30] MHz tout en respectant le masque
nord-américain, alors que le système windowed OFDM doit limiter le nombre de sous-
porteuses actives à 917. Dans le cadre d’HPAV 1, au prix d’une complexité légèrement
accrue dans le procédé d’égalisation, le système HS-OQAM permet d’atteindre un débit
"couche physique" environ 19 % supérieur au système windowed OFDM, quelle que soit
la qualité du canal CPL considéré. Dans le cadre d’HPAV 2, où la bande utile s’étend
jusqu’à 87.5 MHz, en limitant la puissance d’émission à -80 dBm/Hz au delà de 30 MHz,
l’OFDM/OQAM apporte une amélioration de l’ordre de 15 %. Les gains obtenus dans le
cadre d’HPAV 2 sont moins élevés que dans la bande [1.8 : 30] MHz car l’extension de
bande utilisée ne définit pas de nouveaux encoches. Or, ce sont ces fréquences interdites
qui permettent de mettre en avant la meilleure efficacité spectrale de l’OFDM/OQAM,
en activant des sous-porteuses additionnelles à leurs frontières. L’écart de performance
entre les deux systèmes est d’ailleurs largement accru dans les simulations présentées à
la section 3.4.4, où nous utilisons le nouveau masque de transmission défini par le CEN-
ELEC pour les équipements CPL vendus en Europe. Sous la contrainte de ce nouveau
standard, l’OFDM/OQAM permettrait d’atteindre des débits de transmission de 28 à 40
% supérieurs au windowed OFDM en fonction du nombre de bandes à protéger.

D.4 Chapitre 4: Transmissions en Configuration Point-à-
Multipoint dans les Réseaux CPL

En partant du constat que l’activité du réseau CPL est généralement concentrée autour
de la station servant de pont vers l’accès internet du domicile, la configuration de trans-
mission point-à-multipoint apparaît très fréquemment. Lorsque cette station particulière,
que l’on peut considérer comme le "point d’accès" (AP) du réseau CPL, possède K flux
de données en attente de transmission, chacun étant destiné à une unique station parmi
K, celle-ci doit effectuer K accès consécutifs au medium afin de communiquer vers cha-
cune d’entre elles. Or, la création de tone maps sur chacun des canaux de transmission
fait apparaître une diversité en fréquence entre les utilisateurs qui ne peut être exploitée
si le multiplexage des accès s’effectue uniquement en temps. La définition d’un mode
d’accès utilisant l’OFDMA permettrait d’exploiter cette diversité multi-utilisateur: cette
idée s’avère d’autant plus séduisante qu’elle ne pose pas de grandes difficultés techniques
de mise en oeuvre. En effet, si dans la configuration du canal à accès multiple (chaque sta-
tion possède des données à transmettre), l’accès multiple en fréquence pose de nombreux
soucis de réalisation (synchronisation, effet champ proche/champ lointain), ces difficultés
disparaissent dans une configuration de liaison descendante (pour prendre une analogie
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Figure D.5: Tone maps suivant la spécification IEEE P1901 générés sur des canaux de
classes 2, 5 et 9, respectivement.

avec le domaine des radio télécommunications). Le problème posé dans ce chapitre con-
siste à trouver une stratégie pour distribuer les M sous-porteuses du signal OFDM parmi
les K canaux sur lesquels l’AP souhaite transmettre.

Dans la section 4.1.3, sous l’hypothèse de canaux quasi-statiques, nous démontrons que
le multiplexage en fréquence de K flux permet d’atteindre une capacité de transmission
toujours supérieure ou égale à un multiplexage en temps de ces même flux. En effet, si
l’on considère une fenêtre de transmission correspondant à la transmission de N symboles
OFDM, avec N =

∑K
k=1 pk où pk est le nombre de symboles transmis sur le lien k de

capacité

Ck =

∫
B
log2(1 +

SINRk(f)

Γ
)df, (D.5)

on peut démontrer qu’il existe toujours {Bk|Bk ∈ B, B ⊆ R+}, tel que:⎧⎪⎨
⎪⎩

⋃K
k=1Bk ⊆ B⋂K
k=1Bk = ∅

C⊥
k ≥ pkCk

N , ∀k ∈ K

(D.6)

où C⊥
k =

∫
Bk

bk(f)df , Bp∩Bq = ∅, ∀ (p, q) ∈ K2, p �= q. Dans la suite, on définit αk = pk
N

comme le coefficient de priorité associé au canal k. Le théorème démontré utilisant un
formalisme continu, nous trouvons dans la section 4.2.1 une condition minimale permettant
d’étendre ce théorème au cas discret, en utilisant des tone maps. En observant les 3 tone
maps représentés Fig. D.5, Il est intéressant de noter que deux facteurs viennent influencer
le degré de diversité multi-utilisateur. Premièrement, la caractéristique multi-trajet du
canal CPL provoque des évanouissements en fréquence dont les positions dépendent du
point du réseau à partir duquel le signal est récupéré. Ainsi, l’atténuation constatée à
une fréquence précise peut varier significativement en fonction du lien considéré. De plus,
si les systèmes CPL peuvent émettre à un niveau de -50 dBm/Hz jusqu’à 30 MHz, le
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niveau maximal d’émission descend à -80 dBm/Hz au delà de cette limite. Dans la Fig.
D.5, on constate que la limitation de puissance au delà de 30 MHz entraîne un gaspillage
de la ressource pour les porteuses situées au delà de cette limite sur le lien 3. En se
limitant aux canaux 1 et 3, dont le premier est beaucoup plus atténué que le second, on
comprend intuitivement que les sous-porteuses situées dans la première partie du spectre
seront préférablement allouées au lien 1, alors que le lien 3 recevra les sous-porteuses
situées au-dela de 30 MHz.

Afin de poser le problème d’orthogonalisation des tone maps sous la forme d’un prob-
lème d’optimisation sous contraintes, nous effectuons une relaxation continue du problème.
Ainsi, on considère que chaque sous-porteuse peut être allouée partiellement à un lien, la
contrainte à respecter étant que la somme des allocations partielles d’une porteuse soit
unitaire. En considérant K tone maps, chacun étant associé exclusivement à un unique
lien de communication et à un coefficient de priorité αk, nous formulons le problème
d’orthogonalisation ainsi:

Maximiser:
∑

k∈K
∑

m∈Mwk,m
tk[m]
αk

Contraintes:-
∑

m∈M{wi,m
ti[m]
αi

− wj,m
tj [m]
αj

} = 0, ∀ (i, j) ∈ K2, ∀ m ∈ M

-
∑

k∈Kwk,m = 1, ∀ m ∈ M
- wk,m ≥ 0, ∀ (k,m) ∈ K×M

où 0 ≤ wk,m ≤ 1 formalise l’allocation partielle de la sous-porteuse m au lien k. Ce
problème d’optimisation est convexe, et peut-être résolu en appliquant les conditions de
de Karush-Kuhn-Tucker (KKT). Cependant, le système d’équations résultant nécessite
une capacité de calcul trop importante pour espérer obtenir une solution dans une fenêtre
de temps raisonnable. Nous développons alors une nouvelle méthode, basée sur une ap-
proche géométrique du problème, qui va permettre de converger directement vers une
orthogonalisation optimale des tone maps. Nous montrons tout d’abord que le prob-
lème d’allocation revient à maximiser la norme d’un vecteur �R de dimension K, col-
inéaire au vecteur (α1, α2, .., αK), et dont les composantes correspondent aux fractions
de capacité rk allouées à chacun des K liens. L’idée de cette méthode est de construire
itérativement le vecteur optimal, en étendant progressivement les dimensions de l’espace
d’allocation. À partir d’une région de capacité concave construite en dimension N , une
analyse géométrique de la région résulte en la définition d’une fonction de coût dont la
propriété de croissance stricte permet de générer une nouvelle région de capacité concave
dans l’espace de dimension N + 1. La Fig. D.6 illustre la résolution du problème en
dimension 3.

Si l’approche géométrique permet de converger vers une orthogonalisation optimale des
tone maps, la mise en oeuvre de cette méthode dans un système embarqué n’est pas en-
visageable. Dans la section 4.5, nous proposons un algorithme d’allocation sous-optimal,
dénommé TMSA (Tone Maps Splitting Algorithm), permettant de construire très rapi-
dement des tone maps orthogonaux exploitant efficacement la diversité multi-utilisateur.
Afin d’évaluer quel pourrait être le gain apporté par un mode d’accès OFDMA utilisant
cet algorithme, nous proposons ensuite un nouveau schéma de transmission permettant de
satisfaire aux contraintes des spécifications HPAV et IEEE P1901 (Fig. D.7). Celui-ci in-
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Figure D.6: Région de capacité optimale pour K = 3 (α1 = 0.5, α2 = 0.2 and α3 = 0.3).

troduit un mécanisme d’acquittement multiple permettant aux K récepteurs d’informer la
station émettrice sur les états des segments reçus. Si le multiplexage en fréquence permet
théoriquement de surpasser le simple multiplexage en temps, le respect de la contrainte sur
la durée maximale de la fenêtre de transmission ne permet pas de vérifier cette propriété
dans tous les cas. En utilisant l’algorithme TMSA dans un simulateur de réseaux CPL,
décrit en Annexe A, nous montrons néanmoins des gains sur les débits saturés allant jusqu’à
30 % pour K = 2, et 26 % pour K = 3. Afin d’éliminer les cas où l’OFDMA dégrade les
performances, nous définissons une métrique permettant de choisir, sous l’hypothèse de
liens saturés, la solution de multiplexage la plus adaptée.
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Figure D.7: Modified P1901 payload and acknowledgment frames structures for FDM
transmissions.

D.5 Chapitre 5: Diffusion de Flux Multicast dans les Réseaux
CPL

Le dernier chapitre de cette thèse s’intéresse au problème de la prise en charge des flux
multicast/broadcast dans les réseaux CPL, causé par la création de tone maps adaptés
aux liens de communication. En effet, lorsqu’une station souhaite transmettre un même
flux de données à plusieurs stations du réseau, les spécifications HPAV [20] et la norme
IEEE P1901 [22] recommandent la duplication du flux multicast en K flux unicast, K
étant le nombre de stations destinataires. Cette conversion multicast vers unicast induit
une charge excessive du réseau que nous cherchons à réduire. Dans un premier temps,
nous analysons une solution simple, dénommée LCG (Lowest Channel Gain), qui permet
de construire un tone map "multicast" à partir de tone maps "unicast". Ce tone map est
obtenu en choisissant simplement, pour chaque sous-porteuse m, l’ordre de modulation le
plus faible parmi les K tone maps "unicast". En procédant ainsi, on assure que le seuil
limite sur le taux d’erreur est respecté sur tous les liens concernés par la transmission.
L’analyse est d’abord menée au niveau de la couche physique, en évaluant le gain sur les
débits "couche PHY" apporté par la solution LCG vis-à-vis de la conversion multicast
vers unicast. Ces travaux ayant été menés pour le groupe en charge de l’établissement
de la spécification HPAV 2, nous avons travaillé sur des canaux CPL réels fournis par
le consortium HomePlug, en générant des tone maps dans la bande [1.8, 86] MHz. Dans
cette étude, dont les résultats sont résumés en Fig. D.8, nous testons des configurations
de réseaux CPL avec 2, 3 et 4 stations destinataires du flux multicast. Avec ces résultats,
il apparaît clairement que la définition d’un tone map de multicast pourrait améliorer de
manière significative l’efficacité de transmission.

Pour assurer le même niveau de QoS pour les transmissions multicast que pour les
transmissions unicast, nous définissons un mécanisme d’acquittement multiple à la manière
de la proposition faite dans le chapitre précédent. Ce mécanisme a néanmoins le désavan-
tage de dégrader l’efficacité de transmission au niveau de la MAC. En effet, la fenêtre de
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Figure D.8: Fonction de répartition des facteurs de multiplication du débit au niveau de
la couche physique(P (F > X)), pour K = 2, 3 et 4 stations destinataires.

transmission se réduisant avec le nombre de stations à joindre K, il existe un seuil à partir
duquel la définition d’un tone map commun entre les stations à joindre devient moins
efficace que la conversion multicast vers unicast. Entre les deux solutions précédemment
comparées, une proposition alternative est formulée. Au lieu de définir un unique tone
map "multicast" entre les K stations à joindre, l’idée de cette troisième solution est de
classer les K stations en N sous-groupes de multicast, chacun étant associé à un tone
map multicast construit par l’application de la méthode LCG entre les tone maps du
sous-groupe. Ainsi, le problème posé revient à trouver un compromis entre le nombre de
stations adressées simultanément, et la durée de la fenêtre de transmission qui se réduit
à mesure que ce nombre augmente. Dans la section 5.3.2.1, nous établissons d’abord une
métrique α, proportionnelle à l’inverse du débit des transmissions multicast au niveau de
la couche MAC:

α =

N∑
n=1

1

[1− (card(Ln)− 1)× rACK ]RLk

, (D.7)

où Ln contient les indices de stations regroupées dans le nième sous-groupe de multicast,
rACK est le paramètre permettant de prendre en compte l’overhead engendré par une
trame d’acquittement, et RLk

est la capacité du tone map associé au kième sous-groupe de
multicast. Dans un second temps, on définit un critère qui va permettre d’isoler rapidement
les sous-groupes de multicast qu’il semble judicieux de fusionner:

ep,q =
1

RLp∪Lq [1− (card(Lp) + card(Lq)− 2)× rACK]
. (D.8)
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Figure D.9: Comparaison des facteurs de multiplication des débits entre l’algorithme pro-
posé et la solution LCG, aux niveaux des couches PHY et MAC.

Ces deux paramètres permettent alors de construire un algorithme convergeant rapidement
vers une partition des K stations en N sous-groupes de multicast, dont les performances
sont très proches de la solution optimale (cf. Fig. D.9).

D.6 Chapitre 6: Conclusion

La popularité grandissante des systèmes CPL pour les réseaux domestiques s’explique
par les débits atteints par les systèmes actuels, ainsi que par la facilité d’installation du
réseau qui ne nécessite pas de déployer de nouveaux câbles. Ce succès était pourtant loin
d’être acquis au regard de la concurrence acharnée entre les différents acteurs du domaine
dans les années 2000, chacun voulant imposer son propre système. Depuis la finalisation
de la norme IEEE P1901 en 2010, on a pu heureusement constater une stabilisation du
secteur. A l’heure actuelle, le marché est clairement dominé par des systèmes suivant les
spécifications établies par le consortium HomePlug, représentées par les versions HP 1.0,
HPAV 1 et bientôt HPAV 2. Dans cette thèse, en abordant la problématique des réseaux
CPL dans un contexte multi-usagers, nous avons montré que les performances des systèmes
actuels pourraient encore être significativement améliorées. Nous avons premièrement
répondu à la problématique de l’augmentation de capacité, en procédant à une extension de
la bande utile et en proposant une modulation alternative. Dans une seconde partie, nous
avons proposé de nouvelles méthodes d’allocations de ressources permettant de partager
de manière plus efficace le milieu de transmission entre les différentes stations du réseau.



162 Résumé Français du Mémoire de Thèse

Le Chapitre 2 a été introduit par une brève présentation des caractéristiques du canal de
communication CPL. Le réseau électrique n’ayant pas été conçu pour supporter un réseau
de données, il constitue un milieu très hostile aux transmissions à haut-débits. Il est donc
nécessaire de mettre en oeuvre les techniques de transmissions les plus évoluées afin de
supporter le transport de services multimedia. Les principes généraux de fonctionnement
des réseaux basés sur la spécification HPAV ont ensuite été présentés. En particulier, nous
nous sommes attachés à décrire la segmentation à deux niveaux permettant de rompre la
dépendance entre les structures de la trame Ethernet et de la trame HPAV. Le mécanisme
de segmentation décrit par HPAV s’avère également particulièrement efficace pour lutter
contre les perturbations du milieu de transmission, causées notamment par des sources de
bruits impulsifs, en ne répétant que les segments erronés. Nous avons ensuite introduit les
deux modes d’accès définis par la spécification, en présentant premièrement la technique
d’accès opportuniste dénommée CSMA/CA. Si HPAV décrit 4 niveaux de priorité pour
l’accès au medium, le mode CSMA/CA ne permet aucune garantie quant au niveau de
QoS atteint. Ainsi, la spécification définit un second mode d’accès TDMA garantissant
à une station l’accès exclusif au canal. C’est le CCo qui se charge d’allouer une fenêtre
de transmission à une station qui souhaiterait, par exemple, transmettre un flux de type
IPTV.

Pour lutter efficacement contre les interférences causées par la caractéristique multi-
trajet du canal CPL, les modulations multiporteuses s’avèrent particulièrement appro-
priées. Nous avons néanmoins mis en évidence dans le chapitre 3 que la forme la plus
classique de l’OFDM, le CP-OFDM, utilisant une fenêtre rectangulaire, n’apporte pas une
réponse satisfaisante en raison du masque de transmission imposé à tout système CPL
large bande. En effet, les émissions électromagnétiques induits par les cables électriques
imposent aux systèmes de limiter l’émission de leurs signaux à des bandes de fréquences
particulières, afin de protéger d’autres applications telles que les radio amateurs. Pour
améliorer la localisation fréquentielle des sous-porteuses, les systèmes HPAV procèdent
à un filtrage temporel des symboles OFDM permettant d’adoucir la retombée à zéro à
leurs bordures. Ce traitement permet d’atténuer fortement le niveau des lobes secondaires
en fréquence, limitant ainsi le nombre de sous-porteuses devant être éteintes en bordure
des zones interdites à l’émission. Cependant, l’opération de fenêtrage a pour effet de
réduire l’intervalle de garde en proportion de la longueur de l’intervalle du facteur de
retombée ("roll-off"), et nous avons pu mettre en évidence qu’un terme d’interférence non-
négligeable apparaît dans les canaux les plus dispersifs. L’expression analytique de ce
terme a été établie afin de calculer précisément la valeur du SINR. Nous avons ensuite
introduit une modulation alternative au windowed OFDM: la modulation HS-OQAM. En
limitant la condition d’orthogonalité au corps des réels, la modulation HS-OQAM permet
de filtrer les symboles émis en utilisant des filtres prototypes adaptés à la fois au canal
CPL, sélectif en fréquence, et au masque de transmission. L’utilisation de filtres optimisés
selon le critère de la sélectivité fréquentielle permet de conserver un nombre plus impor-
tant de sous-porteuses actives en bordure des encoches du masque, tout en respectant les
contraintes imposées sur le spectre du signal. La modulation HS-OSAM ne définissant pas
d’intervalle de garde, un terme d’interférence est néanmoins toujours présent, ce qui rend
l’égaliseur ZF à 1 coefficient généralement insuffisant. Un égaliseur légèrement plus com-
plexe, dénommé ASCET et pouvant être vu comme un égaliseur ZF à 3 coefficient, permet
quant à lui de réduire de manière significative le niveau d’interférence. Nous avons établi
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les expressions généralisées des termes d’interférence et de bruit en sortie de l’égaliseur AS-
CET, ce qui nous a permis de calculer les capacités de transmission et débits théoriques
atteints par l’OFDM/OQAM. Les comparaisons effectuées entre les deux modulations, en
considérant à la fois les spécifications HomePlug AV1 et AV2, ont permis de démontrer
la supériorité de l’HS-OQAM dans le contexte des CPL, en assurant un gain minimum
de 15 % dans les débits vis-à-vis de la modulation windowed OFDM. Cependant, il est
nécessaire d’avoir à l’esprit que la standardisation de la modulation windowed OFDM, telle
que définie par HPAV, au travers de la norme IEEE P1901, rendra d’autant plus difficile
l’adoption d’une solution alternative par les futurs standards CPL. En introduisant en fin
de chapitre le nouveau masque de transmission du CENELEC concernant les systèmes
CPL, il apparaît pourtant clairement que ce standard pourrait largement contribuer à
accentuer l’écart de performance entre les deux solutions de transmission.

Le canal CPL étant quasi-statique, on peut utiliser des techniques de bit-loading qui
permettent d’adapter finement la quantité d’information transmise. L’application de ces
méthodes nécessite au préalable une connaissance avancée du canal de transmission, par
laquelle il devient possible de décider pour chaque sous porteuse l’ordre de modulation
optimal, i.e. adapté à la capacité locale du canal. Il en résulte la création d’une table,
appelée tone map, listant les constellations allouées sur tout le spectre. Dans le chapitre 4,
nous avons tout d’abord mis en évidence la diversité qui apparaît par la définition de tone
maps entre une station et K autres stations du réseau. Cette diversité multi-utilisateur
n’est actuellement pas utilisée car les accès au canal sont exclusivement multiplexés en
temps. Un multiplexage en fréquence des flux permettrait néanmoins de l’exploiter effi-
cacement, ce qui pourrait être réalisé en pratique en définissant un mode d’accès utilisant
l’OFDMA. Nous avons alors considéré K tone maps, chacun étant associé à un unique
canal de transmission, et nous avons posé le problème d’orthogonalisation des tone maps.
En associant chaque lien à un coefficient de priorité, nous avons démontré que ce prob-
lème pouvait être résolu de manière optimale par la construction itérative d’une région
de capacité concave entre les K liens, en utilisant simplement les K tone maps. Il nous
est néanmoins apparu que cette méthode d’orthogonalisation restait trop complexe pour
envisager une implémentation dans des systèmes réels. Nous avons alors développé un
algorithme sous-optimal, dénommé TMSA, qui permet de distribuer rapidement et effi-
cacement les sous-porteuses entre les différents liens de communication. Cette technique a
été intégrée dans un simulateur de réseau CPL, nous permettant ainsi d’évaluer de manière
plus réaliste le gain que pourrait apporter ce nouveau mode de transmission, en tenant
compte des contraintes imposées par la spécification HPAV. En se plaçant dans une situ-
ation de saturation du réseau désavantageant notre solution, nous avons montré des gains
significatifs vis-à-vis de l’existant. Enfin, une métrique permettant de prendre une déci-
sion quant au mode de multiplexage à privilégier, temporel ou fréquentiel, en fonction du
niveau de diversité entre les K tone maps a été définie. À l’avenir, cette étude mériterait
d’être complétée par une analyse de la complexité induite par l’intégration de ce nouveau
mode de transmission. Une incertitude reste néanmoins présente concernant la fréquence
à laquelle les tone maps évoluent, et avec quelle amplitude, car ces paramètres impactent
directement le gain réalisé lors de l’orthogonalisation. Il serait également intéressant de
procéder à une analyse des performances de cette solution sur des flux TCP. Enfin, les
multiplexages en temps et en fréquence des flux pourraient être comparés en deçà du point
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de saturation du réseau, où l’utilisation de l’OFDMA devrait permettre une réduction de
l’"overhead" au niveau de la couche MAC.

Dans le chapitre 5, nous nous sommes intéressés au problème de la prise en charge
des flux multicast/broadcast dans les réseaux CPL. Il apparaît en effet que la création de
tone maps exclusifs sur chaque lien de communication conduit aux isolations mutuelles
des stations à joindre. En conséquence, une station devant transmettre un flux multi-
cast vers plusieurs stations le dupliquera en autant de flux unicast qu’il y a de stations à
joindre. L’application de cette méthode provoque une utilisation excessive de la ressource
de transmission, pouvant rapidement conduire à une saturation du réseau. Dans le but
d’améliorer la prise en charge de ce type de flux, nous avons tout d’abord évalué le gain
qu’apporterait une méthode dénommée LCG, permettant d’obtenir un tone map multi-
cast. Ce tone map peut être utilisé simultanément sur plusieurs liens de communication
du réseau CPL car il respecte les seuils de taux d’erreur fixés sur tous les canaux consid-
érés. D’après les résultats de simulation obtenus sur des canaux mesurés par le groupe
de travail établissant la spécification HPAV 2, il apparaît clairement que la méthode LCG
pourrait améliorer significativement l’efficacité des transmissions multicast. Cependant,
cette observation n’est vraie que du point de vue de la couche Physique. En effet, si l’on
souhaite que chaque station puisse, indépendamment des autres, acquitter la trame reçue,
cela engendre un overhead additionnel qui limite fortement le nombre de stations pouvant
être adressées simultanément. Nous avons alors introduit un algorithme procédant à une
répartition intelligente des stations en sous-groupes de multicast, tenant compte à la fois de
cet overhead additionnel, mais également de la similarité entre les tone maps des stations
regroupées. Cet algorithme montre des performances très proches de la solution optimale.
À ce jour, la complexité de cette méthode reste à évaluer. Nous pouvons néanmoins émet-
tre l’hypothèse que la plus grande robustesse du tone map multicast vis-à-vis des erreurs
de transmission devrait rendre moins fréquente la mise à jour de celui-ci. Dans l’optique
d’une étude future, il serait intéressant d’évaluer la solution développée dans [78] et [44],
qui a l’avantage de ne pas ajouter d’overhead MAC.

En cette fin de thèse, la question suivante paraît légitime : Quelle pourrait être la
prochaine étape à franchir pour les réseaux CPL large bande? Grâce à l’introduction du
MIMO dans la spécification HPAV 2, la capacité des futurs réseaux CPL devrait être suff-
isante pour supporter le nombre grandissant de services multimedia dans l’environnement
domestique. Nous ne pouvons cependant pas ignorer la possible introduction du masque
CENELEC qui pourrait significativement réduire les performances des systèmes CPL en
Europe. Si ce masque de transmission venait à être imposé en l’état aux systèmes actuels,
il pourrait être alors utile d’étendre encore la bande de transmission. Certaines études
ont par ailleurs déjà été menées afin d’imaginer des systèmes exploitant des bandes de
fréquences allant jusqu’à 400, voire 500 MHz [60] : il serait alors nécessaire de définir une
nouvelle couche physique pour les fréquences situées au-delà de 100 MHz. Du point de vue
du marché des systèmes CPL large bande, cette éventuelle couche physique additionnelle
ne serait peut-être pas une bonne nouvelle. En effet, au regard de l’évolution du domaine
au cours de la décennie passée, la bataille entre plusieurs solutions concurrentes n’a eu
pour effet que de ralentir l’adoption de cette technologie. Aujourd’hui, les systèmes basés
sur la spécification HPAV ou le standard IEEE P1901 sont massivement déployés en Eu-
rope, mais leur succès n’est rien en comparaison de celui des solutions sans-fil basées sur le
standard 802.11. Si cette technologie ne peut tenir la comparaison face aux réseaux Wi-Fi
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du point de vue de la mobilité, cette unique raison ne suffit pas pour expliquer l’écart
d’adoption entre ces deux technologies de connectivité. Il apparaît également qu’un dé-
faut majeur des systèmes CPL concerne leur absence de tout équipement terminal, tel
qu’un ordinateur portable par exemple. Cette situation pourrait évoluer à l’avenir, mais
elle sera sûrement le fait d’un autre standard: le standard IEEE P1905. Cette nouvelle
norme, que nous avons brièvement introduit dans le premier chapitre, doit permettre de
combiner facilement les différentes technologies de communication de l’environnement do-
mestique, filaires ou non, en définissant une nouvelle couche réseau contrôlant les accès
aux différentes couches MAC situées en dessous. Ce standard n’aura de réel intérêt que si
un nombre grandissant d’équipements connectés dans la maison possèdent plusieurs inter-
faces de communication de natures différentes. Ainsi, si ce nouveau standard obtient un
fort soutien de la part du secteur industriel, il pourrait potentiellement constituer le point
d’entrée des interfaces CPL dans des équipements terminaux.
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