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Résumé
En propagation endo-atmosphérique et sur des longues distances (supérieure à quelques kilomètres), les effets

de la turbulence atmosphérique sont importants pour les liaisons de télécommunication optique en espace libre
(LOA). Le champ de l’onde subit des perturbations de phase qui modulent l’intensité reçue par le récepteur, dans
des proportions pouvant être rédhibitoires pour la fiabilité de la liaison. La précompensation du champ émis à l’aide
d’une optique adaptative (OA) a été proposée afin de limiter cet effet et de permettre d’augmenter la distance de
propagation ainsi que le débit des LOA. L’objectif de cette thèse est d’évaluer les performances et les limites, en
termes d’efficacité vis-à-vis des LOA, des différentes méthodes de corrections par OA et d’étudier la possibilité de
concepts plus efficaces.

Nous avons montré qu’une approche itérative de correction de phase et d’amplitude - qualifiée de correction
optimale - permet d’atteindre des performances excellentes, la meilleure parmi les approches proposées jusque-là.
L’étude de cette approche théorique, nous a permis de fixer les limites de l’apport d’un système d’OA et de montrer
que la correction a encore un intérêt largement au-delà de lalimite des faibles perturbations.

Dans le régime de fortes turbulences, nous montrons les limites des approches classiques - OA par mesure de
front d’onde (ASO), par modulation de phase ou itérative de phase (qualifiée de sous-optimale) - notamment à cause
de la scintillation, des enroulements de phase et de la présence de bruit de mesure. Nous avons quantifié la baisse de
leurs performances vis-à-vis de la correction optimale et proposé une solution permettant de s’affranchir des effets
de la scintillation sur la mesure de front d’onde. Nous avonsfinalement proposé un dispositif pour la précompen-
sation de phase et d’amplitude et plus particulièrement de la mesure et de la commande qui devrait permettre de
mettre en oeuvre la correction optimale.

Mots-clés : OPTIQUE ADAPTATIVE - TÉLÉCOMMUNICATION OPTIQUE - PROPAGATION OPTIQUE- CORREC-
TION EN FORTES PERTURBATIONS.

Abstract
Effects of atmospheric turbulence, on long distance endo-atmospheric propagation (over a few miles), can be

seriously detrimental to free-space optical communications (FSO). The field of the optical wave undergoes phase
perturbations that modulate the received intensity. Theseperturbations can seriously afflict FSO reliability. Precom-
pensation by adaptive optics (AO) has been proposed to mitigate these effects and enable the possibility to increase
propagation distance and data throughput. The purpose of this thesis is to evaluate the performance and limitations,
in terms of FSO effectiveness, of different AO correction methods and to study the possibility of more efficient
concepts.

We demonstrate that a phase and amplitude iterative correction approach - latter described as optimal correction
- enables excellent performance, among the best so far proposed. The study of this theoretical approach enables us
to set boundaries to the effectiveness of AO system. We showed that an efficient correction can be achieved greatly
beyond the weak perturbation regime.

In strong turbulence, it appears that classical approaches- AO by wavefront measurement, phase modulation or
iterative phase correction (described as sub-optimal) - are limited. These limitations are due to scintillation, phase
branch points and noise. We quantify the drop of performancerelative to the optimal correction and propose a
solution enabling the minimization of scintillation effects on phase measurements. We finally propose a method
to precompensation for phase and amplitude and in particular for measurement and control, that should enable the
implementation of the optimal correction.

Keywords: ADAPTIVE OPTICS - OPTICAL COMMUNICATIONS - OPTICAL PROPAGATION - CORRECTION IN

STRONG TURBULENCE.
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General Introduction

La maturité de l’homme, c’est d’avoir retrouvé le sérieux qu’on avait au jeu quand
on était enfant.

“Par-delà le bien et le mal”
Friedrich Nietzsche

Many factors contribute to the development and expansion offree-space optical communi-
cations sytems: their implementation simplicity, their high-data throughput or the fact that the
infrastructure involved is cheaper than for optical fibers.However, as propagation distance in-
creases, atmospheric turbulence reduces the quality of thelink. Turbulence induces random laser
beam movements, beam spreading and scintillation that disrupts communications. Despite the
great advantage offered by free-space optical communication systems, perturbations introduced
by the atmosphere limit both propagation distances and throughput.

In 1953 was proposed the first concept to correct for atmospheric turbulence using adaptive
optics [Babcock-a-53], helping to increase the quality of astronomy images. At the time technical
difficulties, especially in terms of computing power, delayed the expansion of such correction
techniques. Today most major telescopes in the world are equipped with adaptive optics systems.
Exploration of the solar system and the need to communicate with spacecrafts, particularly within
the Strategic Defense Initiative (SDI) project, motivatedthe implementation of devices capable
of transmitting data from ground to space. Throughput, power and size are essential features
for such systems. Laser communications can meet these demanding requirements. In free-
space optical communication systems, atmospheric turbulence notably reduces mean received
flux. It can lead to a total disappearance of the signal and hasgreat temporal variability. Bit-
error-rate becomes much higher than in the absence of turbulence, which can be incompatible
with classical link objectives in terms of throughput, error rate and permanency. One possible
solution is to reduce these effects by using adaptive optics(AO). AO consists in measuring phase
perturbations and correcting them by means of a deformable mirror. The correction is used
to concentrate and stabilise the flux at the reception. Fante[Fried-a-72, Fante-p-75] was one
of the first to suggest AO to solve the issue of transmitting information from ground to space.
This method is particularly adapted to this specific configuration. Atmospheric turbulence is
concentrated near the ground-based telescope and correction of the emitted electromagnetic field
can be limited to phase. A deformable mirror is typically used to correct phase perturbations.

In the case of horizontal propagations (either for imaging or laser communications), turbu-
lence is distributed along the optical path. Correction strategies using AO systems have also

17
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18 GENERAL INTRODUCTION

been developed [Primmerman-a-95, Vorontsov-a-97] to cope with these particular perturbations
distribution. However, the use of a single deformable mirror is usually insufficient and the ex-
ploitation of more mirrors needs to be investigated to control both phase and amplitude of the
field [Primmerman-a-95]. Unfortunately, diffractive effects make the control of the second mirror
difficult. A linear model for the control is no longer adapted. Firstly, when phase perturbations
distributed over the volume are sufficiently strong, amplitude fluctuations of the field can disrupt
wavefront measurements [Mahe-p-00, Voitsekhovich-a-01]. In addition, phase discontinuities
appear in the field [Fried-a-92], making correction by a continuous deformable mirror problem-
atic.

In order to dissociate control and correction issues, we will first limit our study to a theoret-
ical approach of phase and amplitude correction. I first studied chapter6, an approach initially
proposed by Barchers [Barchers-a-02-a, Barchers-a-02-b]. The control consists in an iterative
method leading to a correction he describes as optimal. He suggested the correction principle
and studied its contribution in weak perturbations. His work suggests that pupil truncation has
a large impact on the amplitude of the corrected field after propagation over a long distance. In
order to understand the performance of the optimal correction in the case of horizontal propa-
gation, we use a multi-layered turbulence propagation model. Barchers′ work is characterised
within a larger framework than previously studied (i.e. weak and strong turbulence) using typ-
ical free-space optics criterions. Obtained results serveas a reference to test other correction
methods. We study the impact of pupil truncation on laser propagation using the optimal correc-
tion over all propagation regimes. Propagation regimes arecategorised by the overall strength of
phase perturbations along the propagation path. To understand the limitations of this approach,
we also study the so-called sub-optimal correction. This approach [Barchers-a-02-b] is similar
to the optimal correction but this time we limit ourselves toonly correcting the phase part of the
wave.

The second part the problem focuses on the study and comparison of the optimal and sub-
optimal corrections with respect to classical methods usedin AO. Corrections are restricted to
the phase part of the field. Two mains categories of control applied to the deformable mirror
are developed. The first, studied in chapter7, is based on a linear model of the relation be-
tween phase perturbations created by atmospheric turbulence and measurements by a wavefront
sensor [Fried-a-72, Fante-p-75]. Unfortunately, this approach gives limited improvements for
endo-atmospheric propagations over a long distance where amplitude fluctuations cannot be dis-
regarded. We will study the arrival of such a limitation and propose a simple solution to partially
overcome this issue. The second method is based on an iterative control of the deformable mir-
ror by optimising an objective function [Buffington-a-77, Omeara-a-77, Vorontsov-a-97]. This
approach does not rely on wavefront measurements and has theadvantage to be insensitive to
scintillation. Chapter8, we will study the influence of the algorithm on the correction quality
and on convergence time.

We show (chapter7 and8) that for most turbulence strengths of interest in free-space optical
communication, phase-only correction drastically limitslink quality. This restriction leads us to
the study (chapter9) of a practical implementation strategy for the optimal correction enabling
phase and amplitude precompensation of the emitted field. The impact of spatial sampling of the
field is essential. Several approached were proposed [Primmerman-a-95, Yu-a-04] to modulate
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GENERAL INTRODUCTION 19

both phase and amplitude but measurement and control are still an issue. We propose in this
chapter a practical solution for both measuring and controlling phase and amplitude.
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Chapter 1

Free-Space Optical Communications

Contents
1.1 Optical Communications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.1.1 History of Optical Communications. . . . . . . . . . . . . . . . . . . 23

1.1.2 Principle and Characteristics of Atmospheric Optical Link . . . . . . . 25

1.1.3 Free-Space Optics Challenges. . . . . . . . . . . . . . . . . . . . . . 26

1.2 Endo-Atmospheric Optical Links . . . . . . . . . . . . . . . . . . . . . . . 27

1.2.1 Short-Range FSOs. . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.2.2 Long-Range FSOs. . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.2.3 Wavelength Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.2.4 Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.2.5 The Fortune43G Project. . . . . . . . . . . . . . . . . . . . . . . . . 29

This first chapter briefly introduces the framework of the work presented in the following
chapters. Its goal is to put the presented work into perspective by putting it in the larger context
of free-space optical communications. We will first presenta brief history of atmospheric optical
links along with their general properties. In order to further characterise the framework and
the challenges created by the propagation channel (i.e. Earth’s atmosphere), we will put forth
horizontal line-of-sight channels that are close to groundlevel.

1.1 Optical Communications

1.1.1 History of Optical Communications

It is out of the scope of this paper to write a complete background of the techniques hu-
mankind has used throughout history in order to establish communication links using optical
signals. Nevertheless, important technical achievementsmust be highlighted because they es-
tablish the principles of todays free-space optical (FSO) systems. For instance, Claude Chappe’s
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24 CHAPTRE 1. FREE-SPACE OPTICAL COMMUNICATIONS

optical telegraph based on the principle of semaphores is ofparticular importance [Bouchet-l-04].
In 1844, 500 ’Chappe tours’ cover most important French cities, establishing one of the first op-
tical communication networks.

In addition, Mangin’s optical telegraph can be a presented as precursor of today’s free-space
optical telecommunication systems. It is by many ways comparable to modern systems. Man-
gin’s optical telegraph (see figure1.1) uses a petrol lamp as the light source in order to create
a collimated beam and an obstructer to transmit data using Morse code. A telescope is used to
align instruments and to receive the messages.

Figure 1.1: Mangin optical telegraph (source:http ://fortdebourlemont.fr).

With the invention of the photophone in1880 (see figure1.2), Alexandre Graham Bell
[Bell-a-1880] demonstrated the efficiency of using optical signals (herethe Sun’s radiations)
for transmitting information. He was able to demonstrate the transmission of voice using inten-
sity modulation over a distance of about200 m [Killinger-a-02]. The variability of the source
(the Sun) and the short propagation distance limited by the detection capability of the receiving
system will not allow his invention to become widely used.

The scientific community has been trying, since the1960s and the invention of the laser,
to establish FSO communications using optical signals in a line-of-sight configuration. First
applications were developed for links to space [Lucy-a-68, Lipsett-a-69]. Unfortunately, the
limited live span of lasers, their size and limited luminouspower triggered a rapid downfall of
this technology.

The arrival in the1980s of semi-conductor lasers having long life expectancies, reduced size
and high efficiency enabled laser communication programs both in Europe and in the United
States [Begley-p-02] to emerge. Lasers are light sources with a high directivityand power. They
enable systems to work at a high signal-to-noise ratio (SNR)when associated with modern de-
tectors. Bell lacked such detectors. We will see in chapter3, that working with high SNRs
is a sine qua none condition to achieve high throughput communication channels. A number
of FSO systems were then proposed for numerous scenarios: air-to-air, satellite-to-submarine,

te
l-0

07
71

27
6,

 v
er

si
on

 1
 - 

8 
Ja

n 
20

13



OPTICAL COMMUNICATIONS 25

Figure 1.2: Diagram of Graham Bell’s photophone (figure from[Breguet-a-1880]). Under the
influence of voice, the mirror would change its shape and modulate luminous intensity coming
from the sum at the level of the receiver. The receiver made ofselenium sees it resistance vary
as a function of received luminous intensity enabling the transmission of information.

air-to-submarine, air-to-satellite or satellite-to-satellite. However, most of these programs were
abandoned for various reasons: time to market suspected to be too long due to necessary tech-
nology development, high cost, and lack of political support favouring other projects deemed a
priority.

Since the1990s, a high increase in data throughput and technology maturityof components
developed for fibre communication systems re-stimulates the development of FSOs. First sys-
tems were developed for short distances (typically a few hundred meters) due to variability of
the transmission channel induced by the changing atmospheric conditions (rain, aerosols. . . ) and
the necessity of having a highly reliable and available link.

1.1.2 Principle and Characteristics of Atmospheric Optical Link

Free-Space Optics (FSO) relies on light propagation through the atmosphere to transmit in-
formation between two points. They are generally point-to-point links but point-to-multipoint
configurations also exist. The various areas of application(air-to-air, satellite-to-submarine,
satellite-to-satellite. . . ) have a great impact on their characteristics and implementation. It is
therefore, difficult to have a general description for all FSO systems. In the following chapters,
we will focus on air-to-air FSO systems with direct line-of-sight. Figure1.3 represents a typ-
ical point-to-point FSO link between two urban locations. FSOs can usually overcome issues
posed by fibre optics systems which are often long and expensive to put in place. Furthermore,
such systems do not require any licencing, are immune to interference, are by nature secure (low
divergence) and can be full-duplex1. The possibility of reaching high data throughputs makes
FSO systems also highly competitive with their radio counterpart.

From a conceptual point of view, FSOs only differ from guidedoptics by the propagation
channel. In the case of guided optics, the channel is composed of an emitter-fibre coupler, a fibre

1A telecommunication system where information is transmitted in both direction simultaneously.
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26 CHAPTRE 1. FREE-SPACE OPTICAL COMMUNICATIONS
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Figure 1.3: Diagram of a atmospheric optical link in a point-to-point configuration between two
urban locations. Green and red beams respectively represent one of the communication channels.

and of a fibre-receptor coupler. In the case of free-space optics, the emitter coupler is an optical
system (often a telescope) that launches a beam into free-space. After propagating through atmo-
sphere, the beam is coupled into a detector by means of a collecting system optical. FSOs require
a full line-of-sight visibility between emitter and receiver. In fiber optics the wavelength must be
selected to match the absorption spectra of the fibre. In the same way, for FSO it is imposed by
the necessity to minimise atmospheric attenuations. Atmospheric windows in the visible or near
infrared are the most used (see paragraph1.2.3).

In terms of applications, FSOs play an important role in today’s last mile systems (local
loop). Numerous other applications are envisioned: high-definition television, backbone network
for mobiles or high-speed data transfer for temporary links(temporary events, natural disaster
. . . ). These applications typically require an increased propagation range that is inaccessible with
currently available systems.

1.1.3 Free-Space Optics Challenges

The numerous advantages gained by using free-space opticallinks are counterbalanced by
the randomness of the propagation channel [Bloom-a-03]. This leads to an increase complexity
of communications systems. The main sources of the propagation channel variability are:

• absorption and diffusion by aerosols and precipitation (rain, fog, snow, hail . . . ) [Bouchet-l-04],

• atmospheric turbulence, that as we will see can make the transmission vary in a very short
timescale (typically of the order the millisecond).

Diffusion by aerosols and atmospheric absorption are out ofthe scope of the following chap-
ters. We will mainly focus on the influence of the optical wavedistortions introduced by the
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ENDO-ATMOSPHERICOPTICAL L INKS 27

atmosphere namely by atmospheric turbulence. To these two fundamental issues another techno-
logical one must be added. It is related to the stabilisationof the optical axis both of the emitting
and receiving systems due to thermal and mechanical drifts and vibrations. Depending on the
configuration of the link and the desired application, one orthe other will be predominant.

1.2 Endo-Atmospheric Optical Links

This document is dedicated to the study of endo-atmosphericoptical links with a horizontal
line-of-sight. These links constitute a communication channel where both emitter and receiver
are within Earth’s atmosphere and where atmospheric turbulence will perturb electromagnetic
waves propagation. Firstly, this paragraph will focus on short and long range FSO systems, show-
ing several newly established applications. Secondly, we will study the importance of wavelength
and discuss the modulation strategy. Finally, we will present the specific application framework
studied throughout this document.

1.2.1 Short-Range FSOs

Most systems developed for terrestrial applications have been limited to short propagation
distances. As we have seen, these configurations enable the minimisation of the impact of envi-
ronmental factors related to the transmission channel. As early as 1995, authors [Eardley-p-95]
proposed broadband links with1 Gbit/s over a very short distance (several tens of meters). In
order to illustrate the large variety of applications one can see [Wakamori-a-07] for the last mile
application. It is a typical example of FSO system for a terrestrial broadband application cur-
rently in use in Japan. A number of companies (Shaktiware, AOptix, fSONA, CableFree . . . )
offer off-the-shelf systems with a typical range limited tobetween500 m and a few kilometers.
It demonstrates that it is possible to establish a horizontal link over a short-distance with high-
bandwidth. The impact of aerosols, atmospheric turbulence, thermal and mechanical drifts are
limited for these distances of propagation. It enables the use of small telescopes without the need
for complex correction systems such as adaptive optics.

1.2.2 Long-Range FSOs

Some applications require long-distance connexions (e.g.communication between the coast
and a boat at sea, between ships, rural or temporary links. . .). A study of a61 km link [Giggenbach-p-02]
demonstrates the importance of atmospheric turbulence perturbations in FSO systems. For this
particular experiment however, the turbulence distribution over the propagation path is favourable.
The emitter is located on the top of a mountain where atmospheric turbulence is weaker. In
addition, the system is composed of several emitters mitigating turbulence effects. Increasing
propagation distance for terrestrial FSOs introduces moreperturbations related to atmospheric
turbulence and pointing. In order to mitigate these problems and reach high bandwidths, it is
possible to increase the size of the receptors (i.e. telescopes). Unfortunately, this leads to very
large telescopes, with diameters of a few meters, usually incompatible with typical commercial
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28 CHAPTRE 1. FREE-SPACE OPTICAL L INKS

applications. Novel solutions are therefore required to reduce the impact of turbulence. Adap-
tive optics, already applied in astronomy to reduce atmospheric turbulence effects, appears as
a possible solution. A150 km link has been recently successfully demonstrated [Young-p-07]
using adaptive optics. Problems related to atmospheric turbulence are nevertheless rather lim-
ited at these altitudes (≈ 3000 m) and are not particularly representative of low altitudesoptical
links. A low altitude communication link [Plett-t-07] above Chesapeake Bay, Maryland, United
States, has been established over a distance of16 km. This link used a modulated retro-reflector
to transmit data but only reached a data rate of a few Mbit/s.

1.2.3 Wavelength Selection

Wavelength is an important parameter for atmospheric optical links. Within the transmission
window, greater wavelengths (far infrared) have a better atmospheric transmission that the lower
ones[Hutchinson-l-08], and that regardless of weather conditions. In addition, higher wave-
lengths are less degraded by atmospheric turbulence effects. We will see chapter4.1 that the
Fried parameter, which can be used to characterise the strength of perturbations is proportional
to λ6/5.

However, transmission windows do not exist for all wavelengths. Moreover, telecommuni-
cation systems require electronics that can work with a highdata bandwidth (≈ Gbit/s). This is
true for both the source and the detectors. Numerous electronics systems have been developed
for fibre optics and wavelengths betweenλ = 0.8 µm and1.5 µm. Technologies at these wave-
lengths are now mature. For all these reasons (atmospheric transmission, turbulence impact and
technology maturity), current systems favour the near infrared, mainlyλ = 850 nm and1.5 µm.

Optical transmissions in the mid-infrared (3−5 µm) [Prasad-l-08] or even the far-infrared up
to 10 µm are being studied [Hutchinson-l-08, Manor-a-03]. The far-infrared has a better penetra-
tion rate in fog [Achour-a-03], and is up to2 to 10 times better than near-infrared. Unfortunately,
electronics issues for both the source and the detector makethe construction of long wavelength
FSOs difficult.

1.2.4 Modulation

Most current FSO systems are based on technologies (modulation sources, detectors, de-
modulators) developed for optical communications using fibre optics. FSO systems typically use
On-Off Keying (OOK) modulation that is widely used in fibre optics technology. Other modula-
tion strategies exist and can be used such as the pulse position modulation (PPM) [Wright-a-08].
PPM is more energy efficient then OOK [Xu-p-09] because on-off keying modulation requires
more mean energy to achieve the same error rate. However, PPMrequires a higher bandwidth
and requires accurate synchronisation at the reception [Wilson-p-05] that is more difficult to
achieve. In this document we will limit our study assuming OOK modulation.
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ENDO-ATMOSPHERICOPTICAL L INKS 29

1.2.5 The Fortune43G Project

Shaktiware launched in September2008 a collaboration with ONERA, OKO Tech and Turk-
cell to develop the Fortune43G project. Its objective is to realise a high-bandwidth telecommuni-
cation system between two fix stations. These points should typically be separated by a distance
of ten kilometers. The goal by the end of the project is to propose a technology solution to trans-
mit in free-space data with a bit-rate higher than the Gbit. The expansion of FSO systems to
longer distances will enable the use of this technology for example in wireless networks for the
local loop or for mobile telephone infrastructures. One of the desired application is the devel-
opment of a high-bandwidth communication system that can beused in major natural disasters
such as earthquakes [Aljada-p-06] when the normal network is down.

In this project, the wavelength will be set to1.5 µm. It corresponds to an atmospheric win-
dow and is the wavelength choice for fiber based communication systems. For this wavelength
and propagation distance, atmospheric turbulence effectscannot be neglected. This is the reason
this system shall include adaptive optics. The size of such asystem is a major issue and the tele-
scope diameter shall not exceed30 cm. Field tests are expected by summer2010 to validate the
initial design. Fortune43G will enable by the end of2010 the development of a full FSO system
using adaptive optics. Propagation conditions defined in this project will serve as framework
application for this document.
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Chapter 2

Optical Propagation through Turbulence

Contents
2.1 Atmospheric Turbulence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.1.1 Physical Phenomenon. . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.1.2 Air Refraction Index. . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2 Optical Propagation in Turbulent Media . . . . . . . . . . . . . . . . . . . 35

2.2.1 Electromagnetic Wave Propagation Equations. . . . . . . . . . . . . . 36

2.2.2 Spatial Coherence of the Propagated Field. . . . . . . . . . . . . . . . 37

2.2.3 Weak Perturbation: Analytical Resolution of the Helmholtz Equation . 37

2.2.4 Strong Perturbations. . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.2.5 Propagation Simulation by Phase Screens. . . . . . . . . . . . . . . . 43

2.3 Turbulence Effects on Laser Propagation . . . . . . . . . . . . . . . . . . . 45

2.3.1 Properties and Conventions for Gaussian Beams. . . . . . . . . . . . 46

2.3.2 Turublence Effects on Propagation. . . . . . . . . . . . . . . . . . . . 47

2.4 Nominal Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

The work presented in this document is motivated by adaptiveoptics correction of atmo-
spheric turbulence effects in free-space optics communication systems (FSOCS). This chapter
describes perturbations caused by atmospheric turbulence. I will first present the physical phe-
nomenon of turbulence and then introduce typical quantities used to describe effects of optical
propagation through turbulence. Propagation model and in particular weak and strong perturba-
tion regimes will be discussed. Secondly, I will introduce the impact of atmospheric turbulence
on laser beam propagation. Gaussian beam propagation will serve as the beam model for atmo-
spheric optical communication links.

31
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32 CHAPTER 2. OPTICAL PROPAGATION THROUGHTURBULENCE

2.1 Atmospheric Turbulence

In this paragraph, after presenting the physical phenomenon generating optical perturbations
(§2.1.1), we will focus on the statistical properties of refractionindex fluctuations introduced by
atmospheric turbulence (§2.1.2).

2.1.1 Physical Phenomenon

Earth’s atmosphere is a combination of gas that is subject tosolar radiations on the one hand
and radiative transfer coming for the ground on the other. Wind shear in the atmosphere produces
turbulent air movements. Following Kolmogorov [Kolmogorov-a-41], the kinetic energy of these
vortices is then transmitted to smaller and smaller one (energy cascade theory) until dissipation
by viscous friction. Diagram2.1 illustrates the energy cascade process. These air movements
produce in-homogeneities. Statistical properties of index of refraction in-homogeneities follow
the statistics of temperature in-homogeneities. It can be shown [Obukhov-a-49] that statistics are
governed by Kolmogorov energy cascades.

Figure 2.1: Diagram of energy cascade and turbulent cell division in the atmosphere (diagram
adapted from [Wheelon-l-01]).
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ATMOSPHERICTURBULENCE 33

2.1.2 Air Refraction Index

2.1.2.1 Refraction Index Fluctuations

Let n (r) be the refraction index at a pointr in space andn (r + ρ) the refraction index at a
distant pointρ. Vectorsr andρ represent respectively a position and a separation distance in a
three-dimensional space.

For established turbulent regimes (i.e. temporally and spatially stationary) in the inertial
domain, the variance of the difference in refractive index between two points in space (i.e. the
structure function) is given by [Obukhov-a-49, Yaglom-a-49]:

Dn (ρ) =
〈

|n (r) − n (r + ρ)|2
〉

= C2
nρ

2
3 , (2.1)

where〈.〉 represents the ensemble average.Dn (r) is called the index of refraction structure
function andC2

n is the index of refraction structure constant.C2
n is expressed in m−2/3 and

ρ = |ρ| in m.

2.1.2.2 Inertial Domain

The inertial domain defines the scales where turbulence is fully developed. It is defines for
the larger scale vortices by the turbulence outer-scaleL0 and the smaller ones by turbulence
inner-scalel0. Equation2.1 is actually only an approximation and valid as long asρ is smaller
than the outer-scale. For large distancesρ, indexesn (r) andn (r + ρ) will become completely
independent. Following equation2.1, refraction index fluctuations are then equal to infinity
which does not make any physical sense.Dn (ρ) is therefore only valid forl0 < ρ < L0.

2.1.2.3 Inner and Outer Scales

Let us detail inner and outer scales further. The inner-scale l0(r, t) corresponds to the spatial
scale from which the kinetic energy is dissipated into heat by viscous friction. It is therefore,
strongly dependant on atmospheric density.l0(r, t) can vary from a few millimetres near the
ground to several centimetres in the tropopause.

Outer-scaleL0(r, t) is conditioned by the size of the physical phenomenon triggering air
masses movements and corresponds to the greater macroscopic phenomenon (i.e. air flows,
winds, weather perturbations). It sets the lower frequencies amplitudes of the perturbations trig-
gered by turbulence. Only few measurements have been made ofthe outer-scale in the optical
region. Measurements by [Borgnino-a-92, Ziad-a-04] lead to mean values of the order of a few
tens of meters. These values present a high temporal and spatial variability. In addition, these
measurements were realised for vertical profiles for altitudes higher than a few hundred of me-
ters. Near the grounds, that is forh < 100 m, we generally consider thatL0 ∝ h, whereh is the
altitude over the ground. In this document, we will consideraltitudes below100 meters.

2.1.2.4 Spectral Density of Refractive Index Fluctuations

Another solution to characterise the fluctuations of the index of refraction is to consider the
power spectral density. Following the Wiener-Khinchine theorem, the power spectrum of the

te
l-0

07
71

27
6,

 v
er

si
on

 1
 - 

8 
Ja

n 
20

13



34 CHAPTER 2. OPTICAL PROPAGATION THROUGHTURBULENCE

Kolmogorov index of refraction spatial fluctuations can be calculated from the structure function
by a Fourier transform [Tatarski-l-61]:

Wn(f) = 0.033(2π)−
2
3C2

nf
− 11

3 , (2.2)

wheref is the spatial frequency modulus expressed in m−1. Kolmogorov spectrum (equation
2.2) is theoretically only valid in the inertial area, that is for: 1/L0 < f < 1/l0. It assumes an
inner and outer scales respectively equal to zero and infinity. It also diverges forf = 0.

To justify the use of a spectrum over the entire range of frequencies, we can introduce in
the Kolmogorov spectrumL0 and l0. The introduction of these parameters in the Kolmogorov
spectrum leads to the modified von Karman spectrum [Tatarski-l-61] saturating forf < L0 and
cutting atf = l0. Its analytical expression is given equation2.3. This saturation guaranties
a spectrum without any singularity to the cost of a currentlynot properly know parameterL0.
Figure2.2shows the von Karman spectrum for various values ofL0 andl0. All the results shown
in this document where obtained using a modified von Karman spectrum.

Wn(f) = 0.033(2π)−
2
3C2

n

(

f 2 +
1

L2
0

)− 11
6

e−( 2πl0
5.91

f)
2

, 0 ≤ f <∞ (2.3)

Figure 2.2: Power spectral density of refractive index fluctuations for different values of (l0, L0).
The spectrums are normalised by the squared structure constant of the index of refraction (C2

n).

2.1.2.5 C2
n Vertical Profile Models

The index of refraction fluctuations structure constant, notedC2
n, is dependent on a num-

ber of meteorological parameters (temperature, humidity,solar radiation) but also on orography
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OPTICAL PROPAGATION THROUGHTURBULENCE 35

(terrain type and arrangement) [Hufnagel-p-74, Mahe-t-00] and altitude. It has a strong spatial
and temporal variability.C2

n is a parameter describing turbulence strength distribution along the
propagation path. Near ground level (below the first couplesof hundreds of meters) thermody-
namic atmospheric properties are essentially set by interactions with the ground. Due to these
exchanges, optical turbulence is particularly strong in this area, named the planetary boundary
layer. For the first few hundred meters above the ground (typical high for low-altitude endo-
atmospheric FSO systems),C2

n (h) can typically vary from10−13 m−2/3 to 10−15 m−2/3.
Meteorological models, the so-called Monin-Obukhov similitude laws [Monin-a-54], have

been proposed for the planetary boundary layer [Wyngaard-a-71] and depend on the stability
state of turbulence. These models usually present a dependence on height such asC2

n(h) ∝ h−q.
q can respectively take the value of4/3, 2/3 of 0 for instable, stable and neutral atmospheric
conditions respectively [Mironov-l-81]. Stability is set by the temperature difference between
ground and the atmosphere. When the ground is warmer than air, the less dense heated air goes
up and is replaced near the ground by colder air. The atmosphere is said to be instable and
typically corresponds to terrestrial observations duringthe day. In the adverse case, the air is
warmer then the ground. The atmosphere is stable and typically corresponds to either terrestrial
night-time observations or maritime day-time environments.

In the rest of the document, we will use for free-space optical links a constantC2
n profile

along the propagation path. This is justified by the fact thatwe will only consider horizontal
line-of-sight links. Considering theC2

n decrease as a function of altitude (for example−4/3 for
day-time links), we will be able to determine a ground-levelturbulence strength and calculate
this strength at the desired altitude for the FSOCS.

2.2 Optical Propagation in Turbulent Media

When an electromagnetic wave with a visible or infrared wavelength propagates through a
turbulent media such as the atmosphere, phase and amplitudeparts of the electric field are sub-
ject to fluctuations. These fluctuations are due to variations in the index of refraction presented
in the previous paragraph. Several theoretical approacheshave been developed to describe these
fluctuations. These theories are generally based on an analytical resolution of the propagation
equation. Unfortunately, rigorously solving the propagation equation in the general case, that is
for all propagation regimes, is far from simple. This intrinsic difficulty has lead to the develop-
ment of numerous heuristic theories mainly for strong perturbation regimes.

The perturbed electromagnetic field follows the wave equation. In the case of the atmosphere
it can be reduced to the Helmholtz equation (paragraph2.2.1). First were proposed analytical
resolutions based on perturbative methods (paragraph2.2.3). These methods can in particular,
give analytical expressions of certain moments of the electromagnetic field but are limited to
weak perturbations only. In order to straightforwardly solve the propagation equations beyond
weak perturbations, in strong perturbation regimes (paragraph2.2.4), we will use a Monte Carlo
approach. It consists in using a numerical approximation bysplitting up turbulent volume in
perturbative phase screens (paragraph2.2.5). We will use a monochromatic plane wave for the
rest of the chapter to describe its properties. Results obtain for a spherical wave are quantita-
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36 CHAPTER 2. OPTICAL PROPAGATION THROUGHTURBULENCE

tively similar to those obtained for plane waves. Specificities due to the finite size of beams are
presented at the end of this chapter (paragraph2.3).

2.2.1 Electromagnetic Wave Propagation Equations

2.2.1.1 Helmholtz Equation

Propagation of an electromagnetic wave in a dielectric suchas air follows Maxwell laws.
Considering the oscillation period of the wave as negligible when compared to the time evolution
of the index of refraction fluctuations, it can be shown [Tatarski-l-61] that the wave electromag-
netic fieldE (r) follows the propagation equation:

∇2
E (r) + k2

0n (r)2 E (r) + 2∇ (E(r).∇ (log (n (r)))) = 0, (2.4)

wherer = (x, y, z) is a point in space,n (r) the index of refraction,k0 = 2π/λ the wave number
of the electromagnetic field propagating in the void and∇2 = ∆ = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2

the Laplacian. It has been shown [Clifford-l-78] that the propagation equation2.4can be simpli-
fied by neglecting∇ (E (r) .log (n (r))). This quantity represents the change in polarisation of
the wave as it propagates. It is negligible in visible wavelengths and infrared (IR) because the
wavelengthλ is extremely small compared to the scale of the index fluctuations [Tatarski-l-71].
Equation2.4, also called Helmholtz equation, can thus be simplified to:

∇2
E (r) + k2

0n (r)2
E (r) = 0 (2.5)

The Helmholtz equation2.5can be decomposed into three equations, one for each spatialcom-
ponents of the fieldE (scalar Helmholtz equation) and can be studied separately.

2.2.1.2 Helmholtz Equation Paraxial Approximation

Let us consider a wave that can be decomposed onto a plane wavebasis and propagating in a
turbulent media with direction~ez. Amplitude of the scalar fieldE (r) can been written as:

E(r) = ψ (r) eikz, (2.6)

whereΨ (r) represents the complex amplitude of the non-plane part of the wave. The wave
propagates in a media of average index of refraction〈n〉 where 〈.〉 is the temporal average.
The wave number isk = 〈n〉 k0. The fieldψ (r) is solution to the Helmholtz equation. After
development:

∇2Ψ (r) + 2i 〈n〉 k0
∂Ψ (r)

∂z
+ k0

(

n2 − 〈n〉2
)

Ψ (r) = 0 (2.7)

In the case where spatial variations ofΨ are slow relative to the wavelength, it is possible to

neglect
∣

∣

∣

∂2Ψ
∂z2

∣

∣

∣
relative to

∣

∣k ∂Ψ
∂z

∣

∣ in equation2.7. This approximation is called the paraxial or the

parabolic approximation.
In parallel, by writing the index of refraction asn = 〈n〉 + N , whereN is the index of

refraction fluctuations around the average, the development of n2 to the first order gives with
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OPTICAL PROPAGATION THROUGHTURBULENCE 37

N ≪ 1 [Rytov-l-87]: n2 ≈ 〈n〉2 + 2 〈n〉N . Equation2.7 is simplified to obtain the paraxial
equation (or parabolic equation) of the electromagnetic field:

∂2Ψ (r)

∂x2
+
∂2Ψ (r)

∂y2
+ 2i 〈n〉 k0

∂Ψ (r)

∂z
+ 2k0 〈n〉Nψ (r) = 0 (2.8)

The solution of this equation in a homogeneous media is givenby the Fresnel approximation (see
equation2.27).

2.2.2 Spatial Coherence of the Propagated Field

The spatial coherence functionBΨ of the complex fieldΨ can be used to quantify loss of
spatial coherence introduced by the propagation through turbulence. In the case of a plane wave,
the spatial coherence function is defined by:

BΨ = 〈Ψ (r) Ψ∗ (r + ρ)〉 (2.9)

It can be shown [Yura-a-74] that:

Bψ = exp
−

“

ρ
ρ0

”

5
3

, (2.10)

whereρ = |ρ|. By takingC2
n (z) as the turbulence strength distribution along the propagation

path:

ρ0 =

[

1.46k2
0

∫ L

0

dzC2
n (z)

]− 3
5

(2.11)

ρ0 is the field coherence length. It corresponds to the distancebetween two points of the field in
the reception plane where the spatial correlation has dropped to1/e.

The field coherence length can be written as a function of the Fried parameterr0 [Fried-a-66]
even if these quantities are not defined in the same plane (respectively focal and pupil plane).ρ0

is linked tor0 by the relation:
r0 = 2.11ρ0 (2.12)

2.2.3 Weak Perturbation: Analytical Resolution of the Helmholtz Equa-
tion

The propagation equation2.5 cannot be solved analytically in the general case. Further hy-
pothesis are necessary. The weak perturbation hypothesis enables a perturbative resolution of
the wave equation. Two different approaches have been developed: the Rytov approximation
[Tatarski-l-61] and the Born approximation [Clifford-l-78]. The Rytov approximation consists
in considering perturbations as multiplicative relative to the unperturbed field. The Born approx-
imation, on the other hand, considers perturbations as additives. In this document, we will only
consider the Rytov approximation that enables us to establish principal statistical expression of
the field in weak perturbations.
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38 CHAPTER 2. OPTICAL PROPAGATION THROUGHTURBULENCE

2.2.3.1 The Rytov Approximation

Let a monochromatic wave be solution of the propagation equation in a homogeneous media
of index〈n〉: E0 (r) = eψ0(r). After propagation through turbulence, the field sees its amplitude
altered by index of refraction fluctuations following equation 2.5. The field after propagation is:
E (r) = e[ψ0(r)+ψ1(r)+...]. The perturbationψ1 (r) is only taken to the first order. All other orders
are neglected. By applying the Helmholtz equation2.5to the fieldE, we have:

∇2
(

eψ0+ψ1
)

+ k2
0n

2
(

eψ0+ψ1
)

= 0 (2.13)

By further developing this equation:

(

∇2 (ψ0 + ψ1) + (∇ (ψ0 + ψ1))
2 + k2

0n
2
)

eψ0+ψ1 = 0 (2.14)

The index of refractionn = 〈n〉 + N can be approximated byn ≈ 1 + N by considering
the mean value ofn unitary andN a random variable of zero mean. We can thus consider that
n2 ≈ 1 + 2N . Incidentally, the unperturbed fieldE0 also follows this equation, that is:

∇2 (ψ0) + (∇ (ψ0))
2 + k2

0 = 0 (2.15)

By taking into account the previous approximation on the square index of refraction, we obtain
from equation2.15:

∇2 (ψ1) + ∇ (ψ1) (∇ (ψ1) + 2∇ (ψ0)) + 2Nk2
0 = 0 (2.16)

The Rytov approximation de Rytov consist in considering|∇ψ1| ≪ |∇ψ0|. We have [Tatarski-l-61,
Fante-p-75]:

∇2 (ψ1) + 2∇ (ψ1)∇ (ψ0) + 2Nk2
0 = 0 (2.17)

The solution can therefore be written as:

ψ1 (r) =
k2

2πE0 (r)

∫

V

dr′N (r′)E0 (r′)
eik|r−r

′|

|r − r′| (2.18)

Imposing that|∇ψ1| ≪ |∇ψ0| implies important constrains on perturbations affectingE.
The validity domain of the Rytov approximation will be considered as the weak perturbations
regime.

2.2.3.2 Weak Perturbations Limit

The validity of the results presented in the previous paragraphs is limited to the Rytov ap-
proximation. Empirically, it has been shown that Rytov approximation is valid when the log-
amplitude varianceσ2

χ derived from this approximation is lower than0.3 [Fante-p-75, Clifford-a-74].
This limit is usually expressed as intensity fluctuations variance. It is calculated in the case of
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OPTICAL PROPAGATION THROUGHTURBULENCE 39

weak turbulence fromC2
n profile and a Kolmogorov spectrum. It is called the Rytov variance and

is expressed as:

σ2
R = 4

∫ ∞

0

df2πfWχ(f) (2.19)

= 2.26k7/6

∫ L

0

dzC2
n(z)z

5/6, (2.20)

whereL is the propagation distance andC2
n the structure constant of the index of refraction. The

Rytov variance represents intensity (irradiance) fluctuations of a plane wave. Rytov variance for
a constant turbulence profile can be simplified to:

σ2
R = 1.23C2

nk
7/6L11/6 (2.21)

When the amplitude of perturbations increases,σ2
χ and therefore the value of the intensity

varianceσ2
I increases without limit. This is in contradiction with experiments where the value

of the intensity fluctuations saturates [Gracheva-a-65]. Weak perturbations can be characterised
by σ2

R < 1 and strong perturbations byσ2
R ≫ 1. One can also define a moderate perturbation

regime forσ2
R ≈ 1 and a saturation regime whereσ2

R → ∞. This behaviour is illustrated figure
2.3.

Figure 2.3: Intensity fluctuations variance as a function ofC2
n for plane wave propagation. The

variance value have been obtained by numerical simulationsfor λ = 1.5 µm, L = 10 km and
l0 = 5 mm. The turbulence strength is constant along the propagation path.

The limit defined byσ2
R = 1.23C2

nk
7/6L11/6 = 1 enables us to determine for a fixed turbu-

lence profile, the maximum propagation distanceLRytov guaranteeing weak perturbation regime.
Figure2.4shows on one sideLRytov as a function ofC2

n for two different wavelength values. On
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40 CHAPTER 2. OPTICAL PROPAGATION THROUGHTURBULENCE

the other side it shows Monin-Obukhov similitude laws (in red on the diagram) forC2
n following

h−4/3, whereh represents the height above the ground. The strong chromaticity of this limit can
easily be seen and this figure, favouring longer wavelengths. If one is to choose1.5 µm as the
wavelength and10 km for the propagation distance, it is not possible to rise above a turbulence
strength higher than7 10−16 m−2/3 if one wants to stay in the weak perturbation regime. One
can reach this value for example for ground value ofC2

n of 10−14 m−2/3 (resp.10−13 m−2/3) and
a propagation altitude ofh = 15 m (resp.h > 50 m). As we have seen, in paragraph2.1.2.5,
these values are actually in the lower limit of the variations of the structure constant. It thus
appears that the Rytov variance, in the case of long distanceendo-atmospheric FSOCS, goes
clearly beyond the weak perturbation limit.

Figure 2.4: Theoretical limit for the Rytov theory as function of C2
n for two different wave-

lengths (C2
n is constant along the propagation path). Plots in red represent the decreasing Monin-

Obukhov similitude laws forC2
n as a function of altitude for different values of groundC2

n values.

2.2.3.3 Field Properties in Weak Perturbation Regimes

Statistical Properties of the Propagated Intensity
An important parameter for characterising signal transmission in FSOs (see chapter3) is the

received intensity. One of the important parameters of interest is therefore the intensity density
probability function that is directly related to the log-amplitude. Within the weak perturbation
Rytov approximation, first order perturbations can be expressed as:ψ1 = χ1 + iϕ1 whereχ1 is
the log-amplitude andϕ1 the phase of the perturbation. For the rest of the document, we will use
a simplifying hypothesis where the mean index of refractionis equal to one:〈n〉 = 1. For weak
perturbationsχ as well asϕ, are the sum of independent Gaussian random variables as shown in
equation2.18[Fried-a-66, Fante-p-75, Goodman-l-85]. The probability density ofχ is therefore
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OPTICAL PROPAGATION THROUGHTURBULENCE 41

a centred Gaussian function (within the Rytov framework,〈χ〉 = 0) of full width half maximum
(FWHM) 2

√
2 ln 2σχ.

For the rest of the document we will mainly concentrate on intensityI = ΨΨ∗ = I0e
2χ.

We have seen thatχ follows a normal distribution. Probability density function of I therefore
follows log-normal statistics [Goodman-l-85]:

p (I) =
1

2
√

2πIσχ
exp






−

(

ln I
I0
− 2 〈χ〉

)2

8σ2
χ






, I > 0, (2.22)

whereσ2
χ = 〈χ2〉 − 〈χ〉2 is the log-amplitude variance ofχ. Energy conservation〈I〉 = I0

implying that 〈χ〉 6= 0, we observe the difficulty of Rytov approximation to describe strong
perturbations.

The normalised intensity variance, i.e. scintillation index, is related to log-amplitude variance
by:

σ2
I =

〈I2〉
〈I〉2

− 1 = exp
[

4σ2
χ

]

− 1 (2.23)

For weak perturbations it is possible to develop to the first order the expression of the inten-
sity: e2χ ≈ 1 + 2χ. Normalised intensity probability density can be approximated by a normal
law with:

σ2
I ≃ 4σ2

χ (2.24)

A scintillation rate of20% therefore corresponds to a log-amplitude variance ofσ2
χ = 0.05.

Power Spectral Density
For a homogeneous distribution of turbulence strength along the propagation path, one can

calculate power spectral density for log-amplitudeWχ(f) and phaseWϕ(f) from equation2.18:

Wχ(f) = k2

∫ L

0

dzWn(f)sin2(πzλf 2), (2.25)

Wϕ(f) = k2

∫ L

0

dzWn(f)cos2(πzλf 2), (2.26)

whereWn is the power spectral density of index fluctuation andL the propagation distance.
Figure2.5 represents the intensity fluctuations spectrumWI(f) in the plane of the receiver

after propagation of a plane wave. Propagation distance wasset toL = 10 km and wave-
length toλ = 1.5 µm. The turbulence strength is taken constant along the propagation path:
C2
n = 10−16 m−2/3. In addition, propagation parameters have been chosen so that the weak per-

turbation approximation is valid (σ2
R = 0.14 < 1). The intensity fluctuations spectrum presents a

maximum value that defines the characteristic size of intensity fluctuations (scintillation grain).
Scintillation is created by constructive interferences (high intensities) and destructives interfer-
ences (low intensities) between different points of the field. For weak perturbations, the maxi-
mum is around1/

√
λL, where

√
λL is the Fresnel distance, for a plane wave.

te
l-0

07
71

27
6,

 v
er

si
on

 1
 - 

8 
Ja

n 
20

13



42 CHAPTER 2. OPTICAL PROPAGATION THROUGHTURBULENCE

1
λL

f

f −11/3

1/3

Figure 2.5: Intensity spectrum of a plane wave after propagation. Propagation distance is set to
L = 10 km, wavelength toλ = 1.5 µm andC2

n = 10−16 m−2/3 is constant along the propagation
path leading toσ2

R = 0.14. Index fluctuations are described by a von Karman spectrum. The
blue dashed vertical line represents the cut-off frequencyat1/

√
λL.

2.2.4 Strong Perturbations

The different analytical expressions presented in the previous paragraph (paragraph2.2.3) are
not valid in strong perturbation. The field’s behaviour can nevertheless be describe by numeri-
cally solving the propagation equation [Martin-a-88] or by applying heuristic models. Heuris-
tic model can be used to describe certain properties of the field and in particular its intensity
[Andrews-a-99]. Results presented in this paragraph are obtained by numerical simulation. De-
tails of the method are presented in the following paragraph.

Figure2.6 shows two different intensity distributions after plan wave propagation through
atmospheric turbulence. The first case corresponds to weak perturbation (σ2

R = 0.14) and the
second to a strong perturbation regime (σ2

R = 7). In weak perturbation regimes, scintillation
grains have a circular shape. Oppositely, in strong perturbation conditions, scintillation grains
take a filament shape.

Modification in speckles geometry translates directly ontointensity fluctuations spectrum by
the appearance of two characteristic sizes. On figure2.7 is represented intensity fluctuations
spectrum for plane wave propagation in strong perturbationregime. Propagation distance is set
toL = 10 km and wavelength toλ = 1.5 µm. Turbulence strength is constant along propagation
path and equal toC2

n = 5 10−15 m−2/3. These parameters were chosen to insure a normalised
intensity fluctuation variance ofσ2

R ≃ 7 and be in the strong perturbation regime. The intensity
fluctuation spectrum presents two characteristic sizes forintensity fluctuations corresponding to
the characteristic dimensions observed on figure2.6. The characteristic frequencies arer0/(λL)
and1/r0, wherer0 if the Fried parameter. For the chosen simulation valuesr0 = 2.9 cm.
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OPTICAL PROPAGATION THROUGHTURBULENCE 43

Figure 2.6: Propagation through turbulence forσ2
R = 0.14 (left), σ2

R = 7 (right). The length of
each side of the square is25 cm. Logarithmic colour scale.

2.2.5 Propagation Simulation by Phase Screens

The Helmholtz equation (Eq.2.5) has no analytical solution in the general case. On the
other hand, by using Markov approximation [Tatarski-l-61], it is possible to solve the Helmholtz
equation locally [Lee-p-69]. It is then possible to numerically model wave propagationin a tur-
bulent media[Martin-a-88]. The main advantage of this technique is that it enables to go beyond
the analytical models, limited to weak perturbations. It enables, by a Monte Carlo approach, to
reach statistical properties of the propagated field in strong perturbation regimes.

2.2.5.1 Modelling Principle

The phase screen propagation method of electromagnetic waves is based on the separation
between propagation and turbulence. The approach consistsin sampling the turbulent volume
into several turbulent layers. We then consider that the turbulence contained in one turbulence
slab can be modelled by a thin layer that we call a phase screen.

Between phase screens, propagation is performed in vacuum.The thickness of each layer
must be sufficiently small so that propagation of phase aberrations within the layers can be ne-
glected. On the other hand, the layers’ thickness must be sufficiently large so that two consecutive
layers can be considered decorrelated.

Within the parabolic approximation, propagation in vacuumof a perturbationψ(x, y, z) over
a distanced can be described by a simple Fresnel propagation:

Ψ (x, y, z + d) = Ψ (x, y, z) ∗ e
ikd

iλd
eik

x2+y2

2d (2.27)

= Ψ (x, y, z) ∗ Fd (x, y) , (2.28)
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44 CHAPTER 2. OPTICAL PROPAGATION THROUGHTURBULENCE

λ
r 0
L r 0

1

Figure 2.7: Intensity distribution spectrum after propagation of a plane wave. Propagation dis-
tance is set to10 km, wavelength toλ = 1.5 µm andC2

n = 5 10−15 m−2/3 is constant along the
propagation path. Intensity fluctuations are described by the von Karman spectrum. The two
vertical dashed lines represent the cut-off frequencies atr0/(λL) and1/r0.

whereFd (x, y) is the Fresnel propagator over a distanced, ∗ the convolution product and
Ψ (x, y, z) the incident field.

Figure2.8presents the modelling principal of propagation through a turbulent media by the
phase screen method. The turbulent volume is decomposed into layers, here in blue. Phase
perturbations introduced by one layer are represented as a phase screen, here in gray. The prop-
agation scheme is the following:

Ψ (x, y, z) = A0 (x, y, z) .eiϕ0(x,y,z)

Ψ′ (x, y, z) = Ψ (x, y, z) .eiϕ1(x,y,z)

Ψ (x, y, z + d) =
(

Ψ (x, y, z) .eiϕ1(x,y,z)
)

∗ e
ikd

iλd
eik

x2+y2

2d

= Ψ′ (x, y, z) ∗ Fd (x, y)

Ψ′ (x, y, z + d) = Ψ (x, y, z + d) .eiϕ2(x,y,z+d)

Ψ (x, y, z + 2d) = Ψ′ (x, y, z + d) ∗ Fd (x, y)

· · · = · · ·

The propagated field is a succession of phase perturbations introduced by phase screens and
of phase and amplitude perturbations introduced by propagation of phase aberrations between
layers (diffraction).

This modelling principal has been put in place at ONERA by thePILOT (Propagation et
Imagerie Laser ou Optique à travers la Turbulence) code [Mahe-t-00]. Turbulence is sampled by a
finite number of independent phase screens. Each phase screen is modelled by a Fourier approach
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2.3. TURBULENCE EFFECTS ON LASER PROPAGATION 45

Figure 2.8: Diagram of the principal of phase screen propagation.

[McGlamery-p-76] following von Karman statistics. Numerical simulation results presented in
this document have been obtained using the PILOT code.

2.2.5.2 Temporal Effects Modelling

For the time scales considered (i.e. a few tens of seconds) the temporal evolution of turbu-
lence follows Taylor’s frozen turbulence hypothesis. Thishypothesis enables us to model air
mass movements between two instances in time by a simple translation. Its amplitude is equal to
speed vector componentV⊥, orthogonal to the direction of observation. The index of refraction
at timet can thus be calculated by:n (r, t) ≈ n (r − V⊥ (r) t). To model temporal evolution we
will perform phase screens translations perpendicular to the propagation direction.

2.3 Turbulence Effects on Laser Propagation

Laser beams are essential to establish a high signal-to-noise link. Results presented so far
do not take into account the impact spatial limitation of thefield on FSOs. This paragraph will
address the impact of turbulence on a spatially limited electromagnetic wave.
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46 CHAPTER 2. OPTICAL PROPAGATION THROUGHTURBULENCE

2.3.1 Properties and Conventions for Gaussian Beams

In this document, we will mainly consider mono-mode Gaussian laser beams, that isTEM00

electromagnetic waves. The amplitude of the Gaussian beam complex fieldU0 is:

U0 (r, z) = A (z) exp

(

− r
2

w (z)2 − i
kr2

2R (z)

)

, (2.29)

where:

• A(z) represents the on-axis electric field amplitude;

• k = 2π
λ

the wave number;

• w (z) the1/e beam radius in amplitude;

• R (z) the radius of curvature.

Figure2.9presents the conventions used in this document. The beam radius is calculated on the
amplitude at1/e.

w

e−1

0 r

1

2 2
Amplitude

exp(−r / w )

−w

Figure 2.9: Conventions for a Gaussian beam in amplitude.

For a beam propagating in vacuum, the minimal sizew0 defines the beam waist. The wave-
front is flat at the level of the beam waist (infinite radius of curvature). Letz0 be the plane where
the beam waist is located. The distance dependence of the beam sizewz=L as a function ofz−z0
and the beam waistw0 is governed by this equation:

w(z)2 = w2
0

(

1 +

(

z − z0
ZR

)2
)

(2.30)

whereZR =
πw2

0

λ
is the Rayleigh distance. For long propagation distances (i.e.z ≫ ZR), we can

use the approximation:w(z) ≈ θ0z, with the angleθ0 = λ
πw0

. Figure2.10presents a diagram of
the diameter evolution at1/e in amplitude as a function of propagation distance.
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ZR

θ0

l’amplidude à 1/e
Contour de
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Figure 2.10: Propagation of a convergent (radius of curvature> 0 at origin) Gaussian beam in
vacuum.

The radius of curvatureR(z) evolution as a function of propagation distance is given by:

R(z) = (z − z0)

(

1 +

(

ZR
z − z0

)2
)

(2.31)

2.3.2 Turublence Effects on Propagation

2.3.2.1 Beam Wander and Beam Spreading

Introduction
As we have seen, turbulence introduces index variations along the propagation path. For a

finite size beam such as a Gaussian beam it will introduce on the one hand, random displacement
of the beam as it propagates and on the other beam broadening (larger than that predicted by
diffraction). Random displacements of the beam (or beam wander ρc), are mainly due to tur-
bulence cells larger than the beam size. Oppositely, turbulence cells smaller than the beam will
tend to break-up the beam but not really bend it. As a consequence of these smaller cells, the
beam will be made broader. We can consider two different cases, short and long exposures. Short
exposures do not take beam displacement into account, the beam spreading is then expressed by
the radiusρs (i.e. short-term beam spreading). Long exposures characterised by the radiusρL (or
long-term beam spreading) take into account both effects. Figure2.11schematically illustrates
ρc, ρs andρL in the reception plane and where the hashed red disks represent a laser impacti at
a given timeti.

In strong turbulence regime, the beam will be highly broken up. The beam will mainly
suffer from beam spreading and beam wander will be moderate.If we look at short-exposure
images, the beam will be broken up and composed of a multitudeof speckles. Figure2.12shows
intensity distribution in the plane of reception for several turbulence strengths. These propagation
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Figure 2.11: Diagram of the beam-wander (ρc), short exposure beam-spreading (ρs) and long-
exposure beam-spreading (ρL). Each hashed red disks represent an individual laser impact after
propagation for several independent realisation of turbulence (source [Fante-p-75]).

conditions lead to a Rytov variance, from left to right, of respectively:σ2
R ≃ 0.28, 2.8, 9.8 and

28.

Figure 2.12: Illustration of the impact of atmospheric turbulence on free-space laser beam propa-
gation. From left to right, turbulence strength is:C2

n = 2.10−16, 2.10−15, 7.10−15, 2.10−14 m−2/3.
Propagation distance is set to10 km and wavelength toλ = 1.5 µm. Black circles represent a
30 cm diameter.

Analytical Expressions
Beam wander can be statistically characterised by the variance of the intensity distribution

centre of gravity in a plan perpendicular to the optical axis. In an isotropic medium, position
variance relative the optical axis can be characterised when ρ0 ≪

√
2wo < z et z . 2kwo, by
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TURBULENCE EFFECTS ONLASER PROPAGATION 49

[Fante-p-75, Churnside-a-90]:
〈

ρ2
c

〉

≃ 2.64z2

k2ρ
5/3
0 w

1/3
z=0

, (2.32)

Wherez represents propagation distance andρ0 =
[

1.46k2z
∫ 1

0
dξ (1 − ξ)5/3 C2

n(ξz)
]−3/5

field

coherence distance calculated for a convergent spherical wave in reception plane. In an isotropic
medium, beam wander is identical in both axis [Andrews-p-08]. The variance for only one axis
is simply〈ρ2

c〉 /2.
Considering a Gaussian laser beam propagating over a distance z with an initial beam ra-

diuswz=0 and radius of curvatureRz=0, the long-term beam spreadingρL can be described as

[Fante-p-75] whenz ≪
(

k2C2
nl

5/3
o

)−1

:

〈

ρ2
L

〉

≃ 2z2

k2w2
z=0

+
w2
z=0

2

(

1 − z

Rz=0

)2

+
4z2

k2ρ2
0

(2.33)

ρL is defined as the radius at which the mean intensity distribution is reduced by a factor1/e
from its maximal value. Short-term and long-term beam spreading are related by [Fante-p-75]:

〈

ρ2
L

〉

=
〈

ρ2
c

〉

+
〈

ρ2
s

〉

(2.34)

Beam wander and beam spreading are obtained without the needof making the weak perturbation
approximation. Moreover, when the radius of curvature is small, we are brought back to the
spherical wave case.

Numerical Validations
Figure2.13present a comparison between numerical simulations obtained by the PILOT sim-

ulation tool and analytical expressions given by Fante [Fante-p-75]. We see a very good correla-
tion between theory and simulations. The relative error stays, for the beam wander, below20%
for the studied parameters range (below12% on average). It is difficult to measure accurately the

Figure 2.13: Comparison between theoretical and simulatedvalues. From left to right: beam
wander, long-term beam spreading and short-term beam spreading. Propagation distance is
10 km, wavelength1.5 µm andwz=0 = 6 cm.
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50 CHAPTER 2. OPTICAL PROPAGATION THROUGHTURBULENCE

short-exposure beam size because it is highly fragmented and not longer resembles a Gaussian
intensity distribution. In order to measure beam spreading, it is possible to use the radius of a cir-
cle within which86.47% of the energy is contained [Dios-a-08]. Comparison between simulated
and theoretical data forρL andρs seem to coincide well despite this restriction.

2.3.2.2 Intensity Fluctuations and Power in the Bucket

Gaussian Beam and Scintillation
We have presented average effects of turbulence on Gaussianbeams. Scintillation can also

modify collected intensity after propagation. Due to the spatial limitation of the Gaussian profile,
it is not possible to make the assumption of a spatially stationary process. Mean intensity evolves
radially as a function of distance from the optical centre. Similarly, normalised log-amplitude
variance will change throughout the field. Log-amplitude variance of the field is:

σ2
χ (ρ) =

Var [χ (ρ)]

〈χ (ρ)〉2
(2.35)

Varianceσ2
χ (ρ) generally increases with distanceρ. This equation has no analytical solution but

can be evaluated by numerical simulations [Frehlich-a-00]. However, for weak perturbations,
Velluet et al. [Velluet-p-07] suggests a simplified model to estimate these fluctuations.Fluc-
tuations ofχ can be explained by a combination of beam wander and small-scale fluctuations
(scintillation) of the laser beam log-amplitude. By considering a Gaussian beamχ in the ab-
sence of perturbation is equal toχ0 = − ρ

w
2, whereρ is the distance from the optical axis and

w the radius of the beam, the variance ofχ introduced by Gaussian beam displacement (beam
wander) can be written as:

σ2
χ,bw (ρ) = 4

ρ

w

2 〈
ρ2
c

〉

(2.36)

An estimation of the weak perturbations variance (equation2.37) σ2
χ (ρ), can be obtained by

adding beam wander effects and on-axis variance. The on-axis varianceσ2
χ (0) can be estimated

by Rytov variance for a spherical wave.

σ2
χ (ρ) = σ2

χ (0) + σ2
χ,bw (ρ) (2.37)

In strong turbulence conditions, equation2.37is not longer valid. In fact, the beam is strongly
broken up which increases fluctuations near the axis. Figure2.14presents intensity radial vari-
ance for several turbulence strengths:σ2

R = 0.147 andσ2
R = 14.7.

Power in the Bucket
When using non-negligible pupil sizes, it is possible to integrate the received flux over the

entire pupil surface instead of only considering a single point. Let the power in the bucket (PIB)
be the intensity integral of fieldψR received by the telescope pupilPR and normalised by the
total emitted flux:

PIB = I =

∫

|ψR(r′)|2 PR(r′)dr′
∫

|ψE(r)|2 dr
, (2.38)
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Figure 2.14: Normalised intensity radial variance. Left:σ2
R = 0.15, right: σ2

R = 14.7.

whereψE is the emitted field. LetψE be the field emitted by one of the FSO ends andψR the field
received at the other end by the pupil. In other terms, the normalised PIB represents the coupling
coefficient between the two ends of the communication link. This parameter is at the heart of the
quality estimation of atmospheric optical links. In fact, for FSO systems using OOK modulation
and integrating flux over the entire pupil, the signal-to-noise ratio is proportional to PIB. In
addition, as we will see in the followings paragraphs (see paragraph3.1.1), the bit-error-rate
(BER) is also directly linked to the PIB. Another important parameter for optical communications
is the link margin [Majumdar-l-08]. It is expressed as the ratio between received power and the
required power to achieve a given BER at a given transmissiondata rate.

The combined effect of beam wander, beam spreading and scintillation makes the collected
intensity (PIB) in the collecting pupil evolve over time. Qualitatively, beam wander generally
introduces variations of large amplitude and low frequencies whereas scintillation and beam
spreading leads to variations of higher frequencies. Figure2.15illustrates the temporal evolution
for three turbulence forces with a collecting pupil diameter of 25 cm. Turbulence strength is
constant along the propagation path to represent an endo-atmospheric link. We have chosen
wind speeds between2.5 m.s−1 and10 m.s−1. We can see that when turbulence strength or wind
speed increases temporal variations also increase, leading to a deterioration of the link quality.

Curves shown figure2.16, illustrate the PIB density probability function evolution as turbu-
lence strength varies. Simulation parameters have been chosen so that the Rytov variance is re-
spectively ofσ2

R = 0.14, 1.4 and14 for the different turbulence strengths. We therefore consider
the entire regimes of perturbations, from weak to strong. Wenotice that as turbulence increases,
the more the distribution departs from a log-normal distribution (mainly forC2

n = 10−14 m−2/3).
When perturbations are extremely severe (deep saturation), the PDF becomes a negative expo-
nential law [Gochelashvily-a-71, Bissonnette-a-79].
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52 CHAPTER 2. OPTICAL PROPAGATION THROUGHTURBULENCE

Figure 2.15: Intensity (PIB) temporal evolution. Propagation distance is10 km, wavelength
λ = 1.5 µm and collecting pupil diameterφ = 25 cm.

Figure 2.16: Intensity probability density for a propagation through turbulence. Wavelength:
λ = 1.5 µm, propagation distance:10 km. Intensity is integration over a30 cm diameter pupil.
Histograms realised over300 propagations.

2.3.2.3 Strong Turbulence Regime

The turbulence strength classification based exclusively on Rytov variance is only theoret-
ically applicable to a plane or spherical wave. Weak perturbation conditions correspond to
regimes where the scintillation index is inferior to unity.For Gaussian beams propagating a
quasi-horizontal path, weak perturbation regimes are fulfilled by two conditions [Miller-a-94,
Andrews-a-01]:

σ2
R < 1 andσ2

R

(

2L

kw2
z=L

)5/6

< 1, (2.39)

whereσ2
R is the Rytov variance, andwz=L the beam radius after propagation over a distance

L in the vacuum. If one of these conditions is not satisfied, weak perturbation regime is no
longer valid. This additional condition is to take into account the beam profile and insure that the
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2.4. NOMINAL CONDITIONS 53

inequalityσ2
R < 1 stays valid over the whole field.

In the rest of the document, we will mainly study propagationdistances ofL = 10 km,
wavelengths ofλ = 1.5 µm and relatively large beam diameters (> 7 cm). With these typical

values, the second criterion, that isσ2
R

(

2L
kw2

z=L

)5/6

< 1, will always be satisfied. We can therefore

concentrate exclusively onσ2
R to characterise turbulence regimes. By setting the beam size to

wz=L > 7 cm, we obtain:
(

2L
kw2

z=L

)5/6

≃ 1.

2.4 Nominal Conditions

In the rest of this document, we will present numerical simulation results relative to laser
beam propagation through turbulent media. Typical conditions taken for the numerical modelling
are chosen to be representative of a long-distance atmospheric FSO system. The wavelength, in
the near infrared, will be set toλ = 1.5 µm and propagation distance to10 km. In addition, to
simplify the study, we will set as a general value the telescope diameter betweenD = 25−30 cm
to limit the bulk of the system. These telescopes will emit a coherent wave and do not rely
on emission diversity. Table2.1 summarises the chosen numerical values for the simulations
presented in the following chapters. We will consider a meanpropagation altitude of30 m above
the ground in order to be above obstacles along the path (trees, buildings, landscape . . . )

Numerical Values

Wavelength λ = 1.5 µm
Propagation Distance L = 10 km
Telescope Diameter D = 25 − 30 cm
Height of Propagation h ≃ 30 m

Table 2.1: Table presenting typical numerical values used for modelling.

C2
n profile is taken constant along the propagation path. This turbulence is typical of horizon-

tal line-of-sight link. Dependence ofC2
n with altitude is set by the Monin-Obukhov similitude

laws that state the turbulence strength decreases ash−4/3 for daytime Earth propagation (and as
h−2/3 for night time). For information, we can considerC2

n values presented in table9.1, where
σ2
R is the Rytov variance andρ0 is the wave spatial coherence. Weak perturbations propagation

Weak Median Strong

C2
n (h = 2 m) 3.7 10−15 m−2/3 3.7 10−14 m−2/3 3.7 10−13 m−2/3

C2
n (h = 30 m) 10−16 m−2/3 10−15 m−2/3 10−14 m−2/3

σ2
R (h = 30 m) 0.14 1.4 14
ρ0 (h = 30 m) 14 cm 3.5 cm 0.9 cm

Table 2.2:C2
n, σ2

R andρ0 values, typical for continental climate and horizontal propagation.

conditions enable us to estimate the behaviour of the link infavourable condition. In most real
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54 CHAPTER 2. OPTICAL PROPAGATION THROUGHTURBULENCE

life cases, the presented framework will preferably be in strong perturbations. However, three
atmospheric turbulence cases will enable us to study different perturbation regimes: weak, inter-
mediate and strong. We remind here that the correction performance will be done considering
two metrics: mean intensity〈I〉 or PIB and normalised intensity fluctuationsσI

〈I〉
. The influence

of vibrations and pointing errors will not be studied here.
Results are presented for an outer-scaleL0 of the order of a few meters. The reason of

this limitation is related to the use of phase screens (see paragraph2.2.5) that imposes a strong
constrain on the physical size of screens. It is necessary tocorrectly sample the inner-scale in
addition to keeping a sufficient screen width to minimize aliasing. Inner-scale is of the order of a
few millimetres. In order to minimise calculation time and memory size taken by phase screens,
we will limit screens to a few meter in width. Outer-scale will thus be limited in size and its
effects (mainly on beam wander) under-estimated. Methods have been proposed [Frehlich-a-00]
to improve outer-scale sampling. As we will see in the following paragraphs, this limitation will
have an important impact on the case we will study (see paragraph2.3).
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The Optical Channel
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Chapter 3

Atmospheric Turbulence Effects

Contents
3.1 Telecommunication Link Characterisation . . . . . . . . . . . . . . . . . . 58

3.1.1 Bit-Error Rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.1.2 Intensity Statistical Properties. . . . . . . . . . . . . . . . . . . . . . 61

3.1.3 Terrestrial Link. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.1.4 Estimation of FSO Link in Simulations. . . . . . . . . . . . . . . . . 65

3.2 Turbulence Effects Attenuation Methods . . . . . . . . . . . . . . . . . . . 65

3.2.1 Diversity Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.2.2 Beam Shaping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

In the previous chapter we studied the effects of atmospheric turbulence on laser beam prop-
agation. In order to further characterise perturbations effects on FSOs, we will study in this
chapter how to estimate link quality for a free-space optical communication system (paragraph
3.1). This estimation can be in particular, expressed in terms of bit-error rate (BER). Unfortu-
nately, it generally relies on precise knowledge of the intensity density probability function. For
strong perturbations, there is no satisfactory method to properly characterise it. For this very
reason, we propose to estimate link quality in the case of numerical simulations, mainly by mean
intensity and intensity fluctuations (paragraph3.1.4). For links of more than a few kilometres,
turbulence has a major impact on link quality and mitigatingits effects is essential. Before pro-
ceeding directly to the original research work presented inthis document part three, paragraph
3.2 presents different methods and implementations that can befound in the literature. It will
help us to understand the importance and efficiency of each ofthem. More specifically linked to
the work presented here, we will put forward the importance of adaptive optics pre-compensation
for atmospheric optical link. This aspect will be further developed in the following chapters.

57
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58 CHAPTER 3. ATMOSPHERICTURBULENCE EFFECTS

3.1 Telecommunication Link Characterisation

3.1.1 Bit-Error Rate

3.1.1.1 Transmission Channel Capacity

Channel capacity is the maximal amount of information that can be transmitted reliably (i.e.
without information loss) through a communication channel. Channel capacityC with an addi-
tive white Gaussian noise (ASWGN) is given by the Shannon-Hartley theorem by [Shannon-l-49,
Viterbi-l-79]:

C (t) = B log2 (1 + SNR (t)) (3.1)

Channel capacityC is given in bit/s, bandwidthB in Hertz andSNR is the signal-to-noise ratio.
A reliable transmission information can only be performed when data throughput is inferior to
C. The time-scale at which signal-to-noise ratio and channelcapacity varies is typically of
a few orders of magnitude lower that the modulation speed of the carrier signal. In the case
of FSOs,B is of the order of the GHz and temporal variations ofSNR of the order of the
millisecond. The signal-to-noise ratio varies over time because of the received flux variations
caused by atmospheric turbulence. Channel capacityC(t) because linked to theSNR, will also
vary over time. When data throughput is made larger channel capacity, the communication link
will suffer from information loss.

3.1.1.2 Bit-Error Rate in Absence of Turbulence

Bit-error rate or BER is defined by:

BER =
Number of errors

Number of bits transmitted
= Pr (E) (3.2)

In absence of atmospheric turbulence, it is possible to calculate the error occurrence probability
Pr (E) for an On-Off Keying (OOK) modulation where each bit is codedby a luminous pulse
respectively turned on or off for the duration of the bit. Figure 3.1 illustrates the derivation
of different error probabilities as a function of the detection threshold. For the derivation, we
assume a Gaussian noise adding to the detection signal. Noise will create two different error
types:

• Detection of a ’1’ when a ’0’ has been transmitted: green section on figure3.1

• Detection of a ’0’ when a ’1’ has been transmitted: red section on figure3.1

Such probability errors are respectivelyPr(1|0) (false alarm probability) andPr(0|1) (missed
detection probability). LetiT be the threshold level,I the signal without noise andσ2

N the noise
variance (see annexA.1):

Pr (1|0) =
1√

2πσN

∫ ∞

iT

e−I
2/2σ2

NdI =
1

2
erfc

(

iT√
2σN

)

Pr (0|1) =
1√

2πσN

∫ iT

−∞

e−(I−is)2/2σ2
NdI =

1

2
erfc

(

I − iT√
2σN

)
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Figure 3.1: False alarm detection probability (source [Andrews-l-98]).

By letting the threshold at half the dynamic rangeiT = I/2, we obtainPr(0|1) = Pr(1|0).
Supposing the probability of sending a ’1’p1 equal to the probabilityp0 of sending a ’0’ (with
p0 = p1 = 0.5), we can calculate the total error probability without turbulencePr(E)no turb

[Gagliardi-l-76]:

Pr(E)no turb = p0Pr(1|0) + p1Pr(0|1)

=
1

2

(

1

2
erfc

(

iT√
2σN

))

+
1

2

(

1

2
erfc

(

I − iT√
2σN

))

=
1

2
erfc

(

SNR0

2
√

2

)

,

whereSNR0 = I
σN

is the detection signal-to-noise ratio.

3.1.1.3 Bit-Error Rate in Turbulence

Two different methods have been developed in order to characterise bit-error rates in presence
of turbulence. The first by calculating BER based on an analytical probability density function
expressions of the physical phenomenon itself. In the second method, the BER is directly eval-
uated by an end-to-end Monte Carlo modelling of the physicalphenomenon. We will see that
both methods have serious limitations.

Why Turbulence Increases Error Probability?
We have shown that the bit-error rate is function of the signal-to-noise ratio (SNR), that is for

a constant noise level to the received signal amplitude. This is verified for every detector type
using a detection threshold (non-coherent detection). Atmospheric turbulence makes the received
signal amplitude fluctuate randomly over time. The receivedsignalI(t) therefore becomes a
random variable with probability densityPDF (I). In the same way, the error probabilityPr(E)
will also become a random variable. The error probability ofthe both random phenomenon (noise
and turbulence) must be evaluated by integrating over turbulence the previous error probability
calculated over noise.
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60 CHAPTER 3. ATMOSPHERICTURBULENCE EFFECTS

For optical propagations inferior to a kilometre [Andrews-l-01], systems usually have enough
link-margin to ensure their performance is not degraded by scintillation. For longer distance
links, turbulence is a determining factor for the error rate.

BER Estimation by Probability Density Function
We have seen paragraph3.1.1.2that:

Pr(E)no turb = BER0 =
1

2
erfc

(

SNR0

2
√

2

)

(3.3)

In the case where the received signal and thus the SNR varies,in particular in presence of atmo-
spheric turbulence, error probability is a conditional probability that must be averaged over the
density probability function (PDF) of the collected signalI. We obtain the error probability in
presence of turbulence in the case of an adaptive threshold:

Pr(E)turb = 〈BER〉 =

∫ ∞

0

Pr(E|I = s)no turbpI(s)ds (3.4)

=
1

2

∫ ∞

0

erfc

(

s

2
√

2σN

)

pI(s)ds (3.5)

Unfortunately, the probability distributionpI(s) is not well known (cf. paragraph3.1.2.2) as soon
as turbulence is strong. In order to calculate the BER, some authors [Sandalidis-a-08] consider
a K model for the probability distribution, whereas others [Andrews-p-08] propose aΓΓ model.
In both cases, these are empirical models and their validityregime is not well defined. The
estimation of such a quantity thus requires a numerical estimation ofpI(s) or a direct estimation
of BER.

BER Direct Estimation by Monte Carlo Methods
Direct estimation of BER is performed by counting modelled events with a complete simula-

tion of propagation and detection processes. A complete simulation is extremely time-consuming
and it is important to evaluate the number of simulation rounds that need to be performed in order
to evaluate the BER.

The confidence levelCL that the BER is smaller than a given level gives us the percentage
of change of having the BER estimate equal to the actual BER. If one is to choose a confidence
level ofCL = 90% of having a BER smaller than10−9, one needs to simulaten = 2.3 ∗ 109

bit transmissions if the number of measured error isN = 0 andn = 3.88 ∗ 109 bits forN = 1
(see annexA.2). This extremely high number of required transmission makes it impossible to
use numerical simulation methods using phase screens whichis costly in terms of computation
time.

Limitations of the Average Bit-Error Rate
The average BER enables us to characterise the mean behaviour of telecommunication links

but not to access instantaneous error rates. Atmospheric turbulence limits the relevance of using
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TELECOMMUNICATION L INK CHARACTERISATION 61

mean statistical values to evaluate link quality. In fact, in the case of propagation through turbu-
lence, instantaneous BER increases dramatically because of signal attenuation. The time scale
of signal extinction (of the order of the millisecond) is of afew orders of magnitude larger than
the time duration of a bit. Other metrics exist to characterise link quality (mean fade time, prob-
ability of fade) thus limiting the relevance of average BER as absolute metric for characterising
FSOs.

3.1.2 Intensity Statistical Properties

3.1.2.1 Intensity Density Probability Function Estimation

We have seen paragraph2.2 that different turbulence regimes lead to intensity probability
density functions that are either log-normal for weak turbulence or badly theoretically described
in the case of strong perturbations. As soon as we leave the Rytov regime, intensity is no longer
log-normal.

In the case of atmospheric optical links, the probability density function can be used to cal-
culate the error rate (see paragraph3.1.1). It is therefore an important quantity for characterising
FSO systems. Unfortunately, its theoretical description is badly known. It is difficult to use
mean bit-error rate to characterise link quality with numerical simulations. For FSOCS one re-
quires a very low BER (of the order of10−9 or even10−12). This requires an accurate analytical
expression of density probability function and to undertake an extensive statistical study.

Some authors [Majumdar-p-07] have proposed the use of higher-order statistical moment
to estimate the PDF. These estimates are still an issue for end-to-end numerical simulations.
In parallel, non-parametric methods for estimating PDFs a posteriori exist (Parzen estimator
[Parzen-a-62] for example). However they do not significantly decrease the number of realisa-
tions required to estimate the PDF relative to a classic Monte Carlo approach.

3.1.2.2 The Gamma –Gamma Law

Some authors [Al-Habash-a-01] propose the use of an empirical law called Gamma – Gamma
(Γ − Γ) to describe the intensity probability density collected by a circular aperture. This law
is currently frequently used in FSO studies and in particular in signal processing. The model
assumes that small-scale intensity fluctuations (diffractive phenomenon) are modulated multi-
plicatively by large-scale intensity fluctuations (refractive phenomenon). LetI = IxIy be the
intensity after propagation whereIx andIy are respectively small and large scale intensity fluc-
tuations. Furthermore we assume thatIx andIy are statistically independent and can be described
by a Gamma distribution. The intensityI will follow a Γ − Γ distribution.

p (I) =
2(αβ)(α+β)/2

Γ(α)Γ(β)
I(α+β)/2−1Kα−β

(

2
√

αβI
)

, I > 0 (3.6)

whereKp is the modified Bessel function of the second kind and of orderp. α (resp.β) represents
the effective number of small (resp. large) turbulent cells. These values can be calculated from
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62 CHAPTER 3. ATMOSPHERICTURBULENCE EFFECTS

propagation conditions:

1

α
= σ2

x = exp







0.49β2
0

(

1 + 0.18d2 + 0.56β
12/5
0

)7/6







1

β
= σ2

y = exp







0.21β2
0

(

1 + 0.69β
12/5
0

)−5/6

(1 + 0.90d2 + 0.62β
12/5
0 )







With L the propagation distance,β0 = 0.5C2
nk

7/6L11/6 the Rytov variance for a spherical wave,

d =
√

kD2

4L
the dimensionless ratio of the optical diameter by the Fresnel distance andD the

diameter of the reception optics.
In weak perturbations, theΓ−Γ model gives similar results to the log-normal model [Al-Habash-a-01]

and is in accordance with simulations done by Flatté et al. [Flatte-a-94]. When turbulence
strength increases (up to saturation regime) the intensityprobability density function at the
level of the collecting lens approaches a negative exponential function [Gochelashvily-a-71,
Bissonnette-a-79]. The heuristicΓ − Γ function can be used to describe the entire spectrum
of turbulence regimes and has a good correlation with simulation data [Al-Habash-a-01]. Never-
theless, it is not derived from any analytical model and its validity domain is still to be quantified.

3.1.2.3 Aperture Averaging

An efficient way to mitigate atmospheric turbulence effectsis to increase the physical size of
the telescope’s aperture: called aperture averaging. We have studied paragraphs2.2.3.3and2.2.4
the characteristic size of scintillation grains at the receiver. By averaging several scintillation
grains, it is possible to reduce the global scintillation rate. In order to quantify the impact of
aperture averaging on the received signal we need to multiply the scintillation rateσ2

I calculated
for a point receiver by aperture averaging factorA [Fried-a-67, Tatarski-l-71]:

σ
′2
I = Aσ2

I (3.7)

The aperture averaging factorA is given for a Gaussian collimated beam by [Ricklin-l-08]:

A =
16

π

∫ 1

0

x exp






−D

2x2

β2
0

∗






2 +

β2
0

w2
z=0

(

2z
kwz=0

)2 − β2
oφ

2

w2
z=L












∗
(

Arccos (x) − x
√

1 − x2
)

dx,

(3.8)
whereD is the receiver pupil diameter,wz=0 andwz=L respectively the beam radius at receiver
and emitter without turbulence,β0 = (0.55C2

nk
2L)

−3/5 the coherence length of a spherical wave

andφ , kw2
z=0

2z
− 2z

kβ2
0

for a collimated beam. Figure3.2shows aperture averaging efficiency for
different perturbation regimes and wavelengths. Apertureaveraging appears less effective for
longer wavelengths. This is due to the fact the pupil averages over less scintillation grains.
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TELECOMMUNICATION L INK CHARACTERISATION 63

Figure 3.2: PIB fluctuations attenuation factor as a function of receiver pupil diameter for differ-
ent propagation conditions.

3.1.3 Terrestrial Link

In order to give typical FSOCS link quality in terms of mean BER, this paragraph presents an
estimate for typical turbulence conditions. We have shown that the error probability in absence
of turbulence is:

Pr(E)no turb =
1

2
erfc

(

I

2
√

2σd

)

, (3.9)

whereσd represents the detection noise taken as constant andI the received intensity. In the pres-
ence of turbulence, error probability must be calculated bythe conditional probability averaged
over the probability densitypI of the collected signalI.

Pr(E)turb =
1

2

∫ ∞

0

erfc

(

s

2
√

2σd

)

pI(s)ds (3.10)

This equation can be used to calculate the error probabilitywith turbulence for a threshold level
calculated adaptively [Majumdar-l-08]. Figure 3.3 presents the mean BER〈BER〉 with and
without turbulence as a function of the mean received intensity 〈I〉. Various turbulence strengths
are presented and are distinguished by their normalised varianceσI

〈I〉
. Left-hand side curves (resp.

right) shows the evolution of the mean BER for a fixed detection noise atσd = 1/20 (resp.
σd = 1/25). The probability density functionpI is log-normal. When the pupil diameter at
the receiver is sufficiently large to ensureD > λL

r0
or when correction by adaptive optics is

efficient, one can indeed assume log-normal statistics. However, it has been shown that log-
normal statistics underestimates the behaviour of the tailof the PDF relative to experimental data.
Underestimating the tail can lead to important mis-estimations of FSO bit-error rates because
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64 CHAPTER 3. ATMOSPHERICTURBULENCE EFFECTS

Figure 3.3: MeanBER in presence of atmospheric turbulence as a function of mean received
intensity. Right:σd = 1/20. Left: σd = 1/25.

its value is mainly calculated with the tail of the PDF. Nevertheless, we have performed our
calculation assuming a log-normal law. Even if it gives slightly optimistic values in terms of link
quality, it enables us to give values in terms of classical telecommunication metrics.

Detection noise diminution leads to a better signal-to-noise ratio and a better BER. Without
turbulence whereas a received intensity ofI = 0.55 at σd = 1/25 can lead to a BER of10−12,
one needs to increase received intensity toI = 0.7 at σd = 1/20 to reach the same BER value.
Let set, as an example, intensity fluctuations toσI

〈I〉
= 0.25 and mean intensity to〈I〉 = 0.7

for a detection noise ofσd = 1/25 (in bleu on the right hand side figure). The error rate is
〈

BERσd=1/25

〉

= 10−6. In order of achieve a BER of10−12, closer to typical desired value in
optical telecommunications, one needs to double the emitted intensity or equivalently decrease
normalised intensity fluctuations by a factor2.5 (yellow curve).

When turbulence increases, on one hand it will increase the normalised varianceσI

〈I〉
and on

the other it will decrease the mean received intensity〈I〉. In the same way, when atmospheric
turbulence is such that we can reach a normalised variance ofσI

〈I〉
= 0.1 (yellow curve) and an

intensity of〈I〉 = 0.7, the error rate will beBERσd=1/20 = 10−7. When turbulence increases to
σI

〈I〉
= 0.25 (blue curve) and mean intensity drops to〈I〉 = 0.50, BER is multiplied by a factor

1000. In a less favourable case (σI

〈I〉
= 0.5 in red), one cannot reach a rate smaller than10−6 for

studied SNRs.

For terrestrial link, turbulence effects are not tolerable. Typical atmospheric conditions lead
to intensity fluctuation of the order ofσI

〈I〉
= 0.5. Increasing optical power in order to limit the

error rate is only possible in a certain range of powers and its effectiveness is limited to highσI

〈I〉
.

The development of system lowering BER significantively is essential.
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3.2. TURBULENCE EFFECTS ATTENUATION METHODS 65

3.1.4 Estimation of FSO Link in Simulations

We have seen that evaluating performance for FSO links relies on a precise knowledge of the
intensity probability density function. In weak perturbations, the distribution is known to be log-
normal. Calculating its average and its variance are sufficient to characterise it. Oppositely, in
strong perturbations, no satisfactory method exists for characterising it with sufficient precision.
It is clear that average and variance will not be sufficient tofully characterise the link quality.
However, we will make use of these two statistical moments ascriterions to evaluate FSO quality
studied in this document and to compare different correction methods envisaged. This approach
enables us to free us from limitations related to turbulenceregimes (weak or strong) and stay
as general as possible. In this document we will thus characterise transmission quality through
atmosphere by the average total collected intensity and thenormalised standard deviation (or
intensity fluctuations):

Imean = 〈I〉 = PIB mean (3.11)

σI
〈I〉 =

√

〈I2〉 − 〈I〉2

〈I〉 (3.12)

where〈.〉 represents the ensemble average andI the intensity integral of fieldψR in the reception
telescope pupilPR normalised over the total emitted flux:

I = PIB =

∫

|ψR(r′)|2 PR(r′)dr′
∫

|ψE(r)|2 dr
, (3.13)

where indexR (resp. E) represents the reception plane (resp. emission) andψ the complex
field. Using two separate metrics to evaluate link quality can lead to problems when evaluating
performance. Some authors [Xiao-p-07] have proposed a meta-metric∆ containing the two
previous metrics:∆ = 〈I〉 (1 − σI/ 〈I〉). This choice is clearly arbitrary and other meta-metrics
could be equally used. In this document the two metrics will be studied independently.

3.2 Turbulence Effects Attenuation Methods

We have seen that turbulence can highly perturb link qualityand even more so when propaga-
tion distances are large. Several techniques have been put forward to mitigate turbulence effects.
We will briefly present them in this paragraph. The presentedmethods are not exhaustive but
represent the classical techniques used to improve the linkbudget of an FSOCS in a terrestrial
environment.

3.2.1 Diversity Methods

Diversity methods consist in using the transmission’s channel (here Earth’s atmosphere)
decorrelation (either spatial, temporal or in wavelength)to mitigate the impact of turbulence.
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66 CHAPTER 3. ATMOSPHERICTURBULENCE EFFECTS

Each channel being statistically independent, atmospheric turbulence will have a different im-
pact and turbulence will be mitigated by averaging its effects. To a first approximation, it is
equal to dividingσ2

I by N where N is the number of channels. The different possiblemethods
are not exclusive and can be used in synergy within a FSO system. All diversity methods require
a synchronisation procedure between received signals. These different atmospheric turbulence
mitigation techniques have been studied from a signal processing point of view by Khalighi
[Xu-a-09, Khalighi-a-09-b].

3.2.1.1 Wavelength Diversity

Wavelength diversity consists in emitting information redundantly, through the same optical
path, by using several beams with different wavelengths. Unfortunately, an important part of
scintillation effects are from geometric not diffractive origin. Atmospheric turbulence depen-
dence to wavelength is small and the different propagation channels are only weakly decorro-
leted. For this reason, only a modest reduction in scintillation index is obtained when using
diversity with several emitting wavelengths [Kiasaleh-a-06, Peleg-a-06]. The reduction in scin-
tillation index is limited to the order of10% [Kiasaleh-a-06]. A better mitigation would be
obtained by using two beams with very different wavelengths. It is unfortunately, difficult to
design a performing optical system optimised for such wavelengths.

3.2.1.2 Multiple Input and Multiple Output Diversity

In order to reduce the impact of turbulence, it is possible touse several emitting laser beams
(multiple-input-single-output or MISO). Oppositely to the previous case, emitter diversity re-
lies on the spatial decorrelation of turbulence. The different laser beams propagate in differ-
ent optical channels. Adding several lasers incoherently to each other can be seen as reducing
the emitting laser coherence [Polynkin-a-07]. This leads to a reduction of the scintillation rate
[Voelz-p-04, Ricklin-l-08, Baykal-a-09]. Complexity and implementation costs, requiring a com-
plex alignment source and the generation of a large number ofincoherent sources, can lead to
very expensive systems. In order to fully take advantage of emission diversity, it is best to sepa-
rate beam from a distance of at least≃ ρ0.

It is similarly possible to use a reception system with several receptors: reception diversity
(i.e. single-input-multiple-output or SIMO). Such systems generally are composed of several re-
ception pupils that can be used to average received signals.From a conceptual point of view, such
systems a very similar to using a large pupil (aperture averaging). Implementation simplicity of
such a method has driven study of these systems [Belmonte-a-97, Razavi-p-05, Khalighi-a-09-b].

3.2.1.3 Temporal Diversity

Coherence time of the transmission channel (i.e. atmosphere) is relatively long compared to
the typical duration of a bit. It is typically of the order of the millisecond compared to nanosec-
onds. It is therefore possible to transmit information several times [Xu-p-08, Xu-a-09] to take
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TURBULENCE EFFECTSATTENUATION METHODS 67

advantage of the atmospheric turbulence temporal decorrelation. The latency between two suc-
cessive data transmissions must be superior to the atmospheric correlation time. If the error
probability ispe then the joint probability of temporal diversity will bep2

e. The typical correla-
tion time is of the order of10 ms [Davis-p-02]. Unfortunately, this technique has a relative small
interest compared to classical wavelength multiplexing solutions (WDM). In addition, when the
size of the reception pupil is large than coherence time is large compared to the total bit duration.
Long coherence times imply large buffer memories (of the order of∝ 106 bits). In practice, it is
difficult to use temporal diversity for large pupil diameters [Khalighi-a-09-b].

3.2.2 Beam Shaping

3.2.2.1 Static Case

So far we have only considered Gaussian beams. This particular beam geometry is not always
the most appropriate one for FSOCS in turbulence. Some authors have proposed the use of
other beam shapes [Li-p-05, Cai-a-08]. Analytical derivations by [Eyyuboglu-a-06] propose
in particular dark hallow beams in the case of weak perturbations. As an example, the beam
geometry modification can change the scintillation rate from 0.8 for Gaussian beams to0.65
for asymmetric dark hallow beams. These results are only valid in weak perturbations. When
turbulence strength increases towards strong perturbations, the initial beam geometry has little
impact on the final state of the beam geometry after propagation. The beam tends to be Gaussian
on average regardless of the beam geometry at origin.

Particular reception telescope pupil geometries (centralobscuration for Cassegrain telescopes
for example) can lead to optimal beam geometry other than Gaussian. Mansell [Mansell-p-06]
proposed to use a relay mirror in order to shape the beam and maximise the coupled energy
between two Cassegrain telescopes. Others [Li-p-05] proposed to modify the Gaussian shape to
an annular beam to maximise coupling efficiency. Moreover, it has been shown [Henderson-p-08,
Carbon-p-03] that it is possible to use a deformable mirror to shape the beam (super circular
Gaussian, super square Gaussian, circular ring, square ring) at emission or reception.

3.2.2.2 Dynamical Case

Atmospheric turbulence effects evolve rapidly over time. In order to mitigate these effects, it
is possible to modulate in real-time emission phase and amplitude to minimise flux fluctuation at
the reception (PIB). Similar to static beam shaping that enables us to diminish turbulence effects
on average, dynamic shaping can mitigate its effects at every instant in time by pre-compensating
perturbations.

A possible option for dynamically modulating phase and amplitude of the emitted field is
adaptive optics (AO). The purpose of this document is to estimate the possible gain and limita-
tions using AO methods. The following chapter will discuss AO techniques as implemented and
proposed in the literature.
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68 CHAPTER 3. ATMOSPHERICTURBULENCE EFFECTS

3.3 Conclusion

In this chapter we have studied the characterisation of atmospheric turbulence effects on
free-space optical communications. In typical turbulenceconditions and for anticipated config-
urations, atmospheric turbulence makes communication link unreliable. This is the reason why
numerous mitigation solutions have been proposed in the literature, such as diversity methods
or adaptive optics. Diversity methods are simpler to implement but generally do not enable a
sufficient gain for long distance FSOCS. AO appears as the only solution to mitigate turbulence
sufficiently and improve FSO link quality.
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Chapter 4

Precompensation Methods
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4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Adaptive optics was first proposed by Babcock [Babcock-a-53] in 1953 and independently by
[Linnick-a-57] Linnick in 1957 for improving astronomical images. Because of prohibitivecosts
of research and implementation it was not possible at the time to build such systems. One of the
very first adaptive optics system dates from1977 [Hardy-a-77]. One needs to wait until1989
for astronomical applications with the COME-ON project [Rousset-a-90]. Nowadays, adaptive
optics systems equip the vast majority of world’s telescopes (VLT, Keck, Gemini...). Numer-
ous other applications are emerging using adaptive optics such as retinal imaging or free-space
optical communications. We will first introduce the principal of adaptive optics (§4.1.1) and
of wavefront sensing (§4.1.2) to then elaborate on modal phase analysis in weak perturbations
(§4.1.3) and limitations in strong perturbation regimes (§4.1.4).

Endo-atmospheric laser beam propagation through turbulence produces phase and amplitude
perturbations. Adaptive optics, which can act directly on the phase of electromagnetic fields,
seems the tool of choice for correcting perturbations. Laser beam precompensation by adaptive
optics although promising, is hindered by its implementation complexity. Strong perturbations
make wavefront sensing difficult and correction by classical adaptive optics approaches used in

69

te
l-0

07
71

27
6,

 v
er

si
on

 1
 - 

8 
Ja

n 
20

13



70 CHAPTER 4. PRECOMPENSATIONMETHODS

astronomy generally inefficient. Various methods of mitigating atmospheric turbulence by AO
in FSOSC have been proposed in the literature. The method that is the closest to AO correc-
tion concepts used in astronomy is a correction where the wavefront sensing is performed on a
counter-propagating laser beam (§4.2.1) and was first proposed in the70’s. Another classical
approach consists in directly optimising the received intensity in the pupil by modulating the
emitted phase (§4.2.2). This method can free oneself form problems related to wavefront mea-
surements. Finally, a theoretical approach proposed by Barchers [Barchers-a-02-b] leads to the
optimal solution by using a phase and amplitude correction (§4.2.3). To conclude, and in order
to clarify the numerical simulation framework, we will present the nominal conditions that will
be used throughout the following chapters.

4.1 An Introduction to Adaptive Optics

4.1.1 Adaptive Optics Principle

Adaptive optics (AO) is a servo-controlled system that aimsat the real time correction of
wavefront distortions. Measurements of the optical distortions are done by a wavefront sen-
sor. The correcting element is generally a deformable mirror. Adaptive optics bloc diagram is
presented figure4.1.
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Figure 4.1: Adaptive optics bloc diagram for stellar imaging.
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AN INTRODUCTION TOADAPTIVE OPTICS 71

4.1.2 Wavefront Sensing

In is not possible with today’s technology to directly measure the phase of a wavefront in
the optical as it is possible for radio waves. No optical detector can work at the high temporal
frequencies involved. One typically goes around this issueby indirect measurements that is by
measuring the impact of phase perturbations on intensity distribution. Rousset [Rousset-l-99] has
realised a complete description of wavefront sensors for adaptive optics. We will only mention
here the properties of the Shack-Hartmann wavefront sensor. This sensor is the commonly used
in adaptive optics and its limitations are representative of most pupil plan sensors.

Principle of the Shack-Hartmann
The Shack-Hartmann (SH) wavefront sensor (WFS) is a pupil plan wavefront sensor (cf. fig-

ure 4.2) relying on geometrical optics formalism [Shack-a-71]. A grid of lenslets samples the
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Figure 4.2: Shack-Hartmann wavefront sensor bloc diagram.

incoming wavefront in the pupil plan. The measured positions of the focal spots formed by each
lenslet give access to the local slopes in the pupil plan for each lenslet. The measurement of
the spot position is generally done by centre of gravity (COG), but other position estimators can
be used such as correlation for example [Poyneer-a-03]. The slope measured with the COG in
lensletk is respectively for directionx andy:

pkx =

∫∫

sspup
dr δϕk(r)

δx
|ψk (r)|2

∫∫

sspup
dr |ψk (r)|2

pky =

∫∫

sspup
dr δϕk(r)

δy
|ψk (r)|2

∫∫

sspup
dr |ψk (r)|2

, (4.1)

where the indexsspup indicates that the integration is performed over the surface of lensletk,
ϕk is the phase and|ψk| the complex field amplitude. When the intensity is constant over the
lenslet, slope measurement is an average over the lenslet surface.
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72 CHAPTER 4. PRECOMPENSATIONMETHODS

Undersampling and Aliasing
Phase estimation is limited by the spatial sampling of phasein the pupil; that is directly linked

to the number of lenslets. To a first approximation in astronomy (i.e. for weak perturbations) the
number of lenslets used to measure phase is approximately equal to the radial order of Zernike
polynomials used to decompose the phase. The phase estimation error due to undersampling is
given by Noll’s equation (see equation4.8) which represents the wavefront estimation sampling
error.

Wavefront spatial frequencies above the cut-off frequencywill produce aliasing. One can
admit that to a first approximation aliasing error is close toa few tens of percent of undersampling
error.

Noise Sources
The centre of gravity measurement for each of the lenslets isaffected by noise. Two main

sources of noise are generally taken into account [Rousset-l-99].

• Photon noise:

σ2
photon =

π2

2

1

Nph

X2
T

X2
D

[radian2], (4.2)

whereXT is the full width half maximum of the focal plan image spot,XD the full width
half maximum of the image spot limited by diffraction andNph the number of photons
received by each lenslet during integration time.XT andXD are given in pixels.

• Detector noise :

σ2
detector =

π2

3

σ2
e−

N2
ph

X4
S

X2
D

[radian2], (4.3)

whereX2
S is the number of pixels taken into account in the centre of gravity calculation

Precision of wavefront measurement is directly function ofSNR and of the collected flux over
each lenslet.

4.1.3 Weak Perturbations: Modal Analysis of Turbulent Phase

4.1.3.1 Zernike Polynomials

Zernike polynomials form an orthogonal polynomial basis ona circular grid. The polynomi-
als are expressed as function of their radial ordern and of their azimuthal frequencym:

Zn,m(r) = Rm
n (r)Θm

n (θ) (4.4)

They are arranged by indexi = n+m. The analytical expression ofRm
n (r) andΘm

n (θ) are given
by Noll [Noll-a-76]. Figure4.3 represents the first21 Zernike polynomials. We can recognise
the first orders of the Seidel classical aberrations (coma, astigmatism . . . ).
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AN INTRODUCTION TOADAPTIVE OPTICS 73

4.1.3.2 Phase Statistical Properties and Zernike Polynomials

Using Zernike polynomials, it is possible to decompose turbulent phaseϕ(r) by the follow-
ing:

ϕ(r) =

∞
∑

i=1

aiZi(r), (4.5)

By choosing the Zernike polynomials normalisation proposed by Noll [Noll-a-76], the total phase
varianceϕ(r) can be expressed directly as:

σ2
ϕ =

1

S

∫

S

〈

ϕ(r)2
〉

dr =
∞
∑

i=1

〈

a2
i

〉

(4.6)

By using Kolmogorov spectrum Noll [Noll-a-76] gives the analytical expression of the vari-
ance of theses coefficients. Figure4.4presents the Zernike coefficients variance for the first200
orders. It illustrates the fact that low orders are the most highly stimulated orders and that they
will have the most impact on the total phase variance. Expression of the total variance (after
subtraction of the piston mode) of the turbulent phase is given by [Noll-a-76]:

σ2
ϕ =

∞
∑

i=2

〈

a2
i

〉

= 1.03

(

D

r0

)
5
3

(4.7)

An empirical law [Noll-a-76] gives the residual variance after perfect correction of the first j
Zernike polynomials:

σ2
ϕ,j = 0.2944j

−
√

3
2

(

D

r0

)
5
3

(4.8)
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Figure 4.3: The first21 Zernike polynomials arranged by radial orders and azimuthal. The first
polynomial orders correspond to the classical optical aberrations.
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Figure 4.4: Theoretical Zernike coefficient variance for the first 200 orders by assuming Kol-
mogorov statistics for the turbulent phase. Numerical values correspond to aD/r0 = 1.
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76 CHAPTER 4. PRECOMPENSATIONMETHODS

4.1.4 Adaptive Optics Limitations in Strong Perturbations

First applications of adaptive optics where mainly developed for astronomical observations.
In the case of endo-atmospheric propagations, characteristics of the highly perturbed field intro-
duces new constrains in the use of classical adaptive optics[Primmerman-a-95]. The interest of
adaptive optics in imaging configurations in highly turbulent conditions is still a subject of cur-
rent research [Vedrenne-t-08]. These constrains and limitations are introduced by threehighly
coupled phenomenon: scintillation, branch points and anisoplanatism [Fried-a-92].

4.1.4.1 Scintillation Effects

Scintillation is the development of strong high-intensities and low-intensities or even zero
intensity (i.e. non-uniform illumination). Its main impact is to create errors in the phase estima-
tion. Firstly, according to equations4.1, we have seen that local slope measurements are directly
linked to the flux in each lenslet. When illumination is not uniform over the lenslet, slope mea-
surement will be biased [Mahe-p-00, Voitsekhovich-a-01]. Secondly, when the lenslet receives
no or very little flux, measurement noise will dominate the signal to be measured: phase will not
be calculated correctly. These errors both depend on turbulence strength and lenslet size.

4.1.4.2 Branch Points

Let Ψ be the complex field of an electromagnetic wave. The wave phaseϕ is defined when
the amplitude of the field is not equal to zero by:ϕ , arctanℑ(Ψ)

ℜ(Ψ)
, arg (Ψ) [2π]. Increase

in turbulence strength leads to an increase in scintillation. The probability of obtaining points
of zero intensity is no longer negligible in strong perturbations. When intensity is equal to
zero, phase is undetermined. This singularity provokes a wavefront discontinuity called branch
point [Fried-a-92]. Obviously, field and phase defined modulo2π is continuous. Figure4.5
presents module and phase of the electromagnetic field afterpropagation under strong turbulence
conditions. Numerous phase wrapping and branch points (points 1 and 2 on figure) are present
in the phase and are caused by field amplitude cancellation (points 1’ et 2’).

The appearance of phase discontinuities has several consequences. Firstly, geometric wave-
front sensors measuring gradients or local curvatures of the wavefront become ill-fitted because
they rely on geometric approximation and continuity of the wavefront [Lukin-a-02]. This is why
certain authors have proposed to directly drive the deformable mirror without relying on a pupil
plan sensor [Vorontsov-a-97]. Correction of phase perturbations by continuous surface(such as
deformable mirrors) becomes ineffective justifying the use of segmented mirrors [Lukin-a-02].

4.1.4.3 Anisoplanatism

Two electromagnetic waves coming from two different directions will not go through the
same turbulence volume. These two waves will not suffer fromthe same perturbations and are
angularly decorrelated. For endo-atmospheric propagation, angular decorrelation in the field is
very high and problems linked to the isoplanatic patch (thatis the area of the field for which one
can consider the point spread function as invariant) are even more important than for astronomy
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(1)

(2) (2’)

(1’)

Figure 4.5: Phaseϕ (Left) and modulus|ψ| (Right) of the field for strong perturbation conditions
(σ2
R = 7).

[Fried-a-82]. Figure 4.6 presents a diagram of anisoplanatism. The two sources come from
different directions and do not go through the same volume ofturbulence: perturbations are
angularly decorrelated.
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Figure 4.6: Anisoplanatism diagram.

As a consequence, correction performed by a DM located in thepupil plan is appropriate only
in the direction of the sensor. It appears that anisoplanatism significantly limits the angular field
of correction for classical AO systems design for imaging. For FSO, where the correction field is
small (on-axis correction), this limitation will have onlya small impact. However, as we will see
paragraph7.3when reducing turbulence effects on the wavefront measurements, anisoplanatism
will play a dominant role in the final correction quality, especially when several laser sources are
used throughout the field.
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78 CHAPTER 4. PRECOMPENSATIONMETHODS

4.2 FSO Precompensation by Adaptive Optics

An efficient way to correct the impact atmospheric turbulence on a free-space optical com-
munication system is to use adaptive optics precompensation. In the following paragraph, we
will present the principal methods of interest. We will study their implementation and expected
performance in the following chapters. One of the biggest challenges of an AO correction for
FSOCS is the presence of strong turbulence along the propagation path. Turbulence produces
strong optical perturbations and makes AO implementation difficult and often inefficient. An-
other issue is the fact that turbulence is distributed over the volume of the propagation path
whereas the correction is often performed in a single plane.Moreover, phase and amplitude are
decorrelated in strong turbulence. One needs to correct them independently.

One can distinguish between three main AO corrections whichare presented in more details
later in the document. The classical approach, similar to AOapplications in astronomy, consists
in performing correction in a single iteration step by usinga wavefront sensor (§4.2.1). Direct
optimisation of a criterion without ana priori model for data formation (§4.2.2) can be seen as
an attractive solution whenever wavefront sensing is difficult (i.e. strong turbulence). The third
approach (§4.2.3) is a hybrid solution between classical method and iterative approach typical
of criterion minimisation. This approach, that we will later called optimal correction, consists in
correcting both phase and amplitude iteratively.

4.2.1 Correction on Counter-Propagating Beam

In 1972, Fried and Yura [Fried-a-72] then Fante [Fante-p-75] suggest using adaptive optics
to compensate for angle of arrival fluctuations in laser communication between Earth and space.
A laser beam launched for space towards the ground is sent to probe turbulence. Atmospheric
channel reciprocity [Fried-a-72] enables in particular to precompensate for pointing errors due
to turbulence on the beam emitted from the ground. The optimal beam to be sent from ground is
simply obtained by inverting propagation direction of the received laser beam probe. If only the
phase part of the beam is to be precompensated, the electromagnetic field is equal to:

Ψ′ (z = 0, r′) = Ψ0 (z = 0, r′) exp [−iϕ1 (z = 0, r′)] , (4.9)

whereΨ′ is the emitted field,Ψ0 the field we wish to send in the absence of turbulence andϕ1 is
the phase of the received field (probe beam propagating from space to the ground).

It is possible to show on the one hand [Lutomirski-a-71] that solution to the propagation
equation (see equation2.7) can be obtained by:

Ψ (z, r) =
1

λiz

∫∫ ∞

−∞

Ψ (z = 0, r′) exp

[

ik (r − r
′)2

2z
+ χ1 (r, r′) + iϕ1 (r, r′)

]

d2
r
′, (4.10)

whereΨ (z = 0, r′) is the field atz = 0 andχ1 (r, r′) andϕ1 (r, r′) are respectively log-amplitude
and phase random fluctuations of a spherical wave propagating in a turbulent media from point
(z = 0, r′) towards a point(z, r). When atmospheric turbulence is close to the emitter (as for
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FSOPRECOMPENSATION BYADAPTIVE OPTICS 79

example in ground to space links), log-amplitude fluctuations are negligible (that isχ1 ≃ 0) and
only phase fluctuations need to be taken into account. It is obvious from equation4.10that only
correcting for phase will be sufficient as soon as turbulenceis close to the emitter. Furthermore,
telescope pupil diameter needs to follow the inequality:r0os > D, wherer0os represents the
Fried parameter for a spherical wave andD the telescope diameter. WhenD becomes greater
thanr0os, the DM is no longer able to correct for phase perturbations over the entire field because
of anisoplanatism effects (see4.1.4.3).

4.2.1.1 Principle

Phase correction diagram using a counter-propagating probe is shown figure4.7. Tele-
scope number 1 (T1) is the emitting telescope from which the beam carrying the information
is launched. This beam will be later called the telecom beam (in red on the diagram). Telescope
T2 is the reception telescope. The beam sent byT2 propagate in opposite direction relative to
the telecom beam. The counter-propagating beam or probe is in blue on the diagram. The probe
beam enables the system to measure the wavefront atT1.

U0
(r)

U
1−>2

ASO

RTC

Télescope n°1

Optique Adaptative

Télescope n°2

TURBULENCE

Détecteur

EmetteurEmetteur

Détecteur

0
(r)ϕ

Us

MD1

(r,z=0) (r’,z=L)

Faisceau Télécom Faisceau Sonde

Figure 4.7: Phase correction diagram using a counter-propagating probe.

The steps needed to perform phase correction with a counter-propagating laser beam probe are
the following:

• The laser beam probeUs (r′, z = L) is launched from the reception telescopeT2 towards
the emission telescopeT1. This beam must have sufficient beam divergence, as we will
later see, in order to compensate for pointing errors and turbulence effects while still illu-
minating the entire telescopeT1 pupil. This will enable the system to perform wavefront
measurements.

• After propagation through turbulence, beamUs (r, z = 0) = |Us (r, z = 0)| eiϕs(r,z=0) ar-
rives atT1. In a similar way to guide stars (either natural or laser) used in astronomical
adaptive optics, the probe beam helps measuring phase perturbations encountered by the
laser beam.
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80 CHAPTER 4. PRECOMPENSATIONMETHODS

• Telescope’sT1 AO system modifies the DM surface (MD1 on diagram) in order to com-
pensate for perturbations encountered by the laser probe when propagating through atmo-
spheric turbulence.

Telecom beamU1→2 (r, z = 0) launched by telescopeT1 sees its phase modified byMD1 so
that:

U1→2 (r, z = 0) = |U0 (r, z = 0)| e−iϕs(r,z=0)

This implementation strategy (classical adaptive optics)is typically used in astronomy where
the near field approximation is valid and where the impact of perturbations on data formation is
linear. For endo-atmospheric propagations, it has been recorded that near field approximation is
no longer valid. Strong scintillation reduces correction quality.

4.2.1.2 Implementation Strategies

Several implementation strategies have been proposed for wavefront correction with a counter-
propagating laser probe. They can be distinguished by theirconfiguration relative to turbulence
distribution along the propagation path. One can classify them into three main categories: low-
altitude horizontal propagation, slant-path propagationand high-altitude propagation (typically
between two mountaintops).

Horizontal Propagations
Low-altitude horizontal propagation is the most restrictive configuration because turbulence

is distributed almost uniformly along the propagation pathand becauseC2
n values are generally

high. Primmerman [Primmerman-a-95] in 1995 has undertaken a experimental validation for hor-
izontal propagation over a distance of5.5 km and an average height above ground of68 m. Most
investigations lead at that time have been for weak turbulence conditions [Primmerman-a-91].
Primmerman shows a strong AO correction quality degradation as turbulence strength increases.
The main reason for the quality degradation is the appearance of branch points and scintilla-
tion. Numerous branch points can appear; over a hundred forσ2

R > 12 and a pupil diameter of
D = 15 cm.

Laboratory experimental validations [Tyson-a-03, Tyson-p-05-b], have shown BER reduction
for turbulence conditions between0.8 < D/r0 < 2.3. Pre-compensation is limited to the first
Zernike polynomials. However, BER estimation has been performed with the Gamma-Gamma
model which validity domain is still unclear. Moreover, when turbulence strength increases, the
improvement brought by AO drops dramatically. As an example, BER reduction is limited to
approximately1.4 for D/r0 = 2.3.

Slant-Path Propagations
Propagation on a slant-path is a favourable case as far as turbulence distribution is concerned.

Most of the turbulence is concentrated near the ground whichgenerally reducesσ2
R and the

number of branch points relative to a horizontal propagation. Moreover, as we have previously
seen, it is a favourable distribution for AO correction whenever the emitter is located near the
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FSOPRECOMPENSATION BYADAPTIVE OPTICS 81

ground. When the emitter is high above ground, turbulence isnear the receptor. This does
not create scintillation and only slightly perturbs the optical link. Field experiments have been
carried out [Sova-p-06] between a ground station and aerostat located1.2 km away and1 km
above ground. These favourable conditions for turbulence,the authors were able to reach a very
high data throughput (≃ 40 Gbit) for a small bit-error rate (BER < 10−6). In parallel, AOptix
Technologies Inc. sells military grade communication systems that can be used to create a data
link between a summit and the ground, taking advantage of thefavourable turbulence distribution
once again.

Optical Link between two summits
A simple solution in order to increase propagation distancewhile keeping bit-error rate low

is to increase the average propagation altitude. Turbulence strength decrease with altitude as
h−4/3, whereh is the height above ground. By using an AO system correcting for the first30
Zernike modes, Northcott et al. [Young-p-07, Northcott-p-07] have demonstrated the possibility
of creating a FSOCS between two mountains on the Hawai’i islands. The average height for
the telescopes of approximately3000 m, can free the system from most atmospheric turbulence
issues. The authors have estimated turbulence strength approximately toC2

n ≃ 2 10−17 m−2/3

which keeps the turbulence within the intermediate or weak perturbation regimes. Only turbu-
lence close to the reception and emission telescopes needs to be corrected for.

4.2.1.3 Limitations

We have seen that in order to mitigate the impact of anisoplanatism, it is necessary to guaranty
r0os > D. This constrain puts a limit on correction effectiveness tosmall pupil sizes, not taking
fully advantage of aperture averaging. Moreover, equation4.10shows that when log-amplitude
fluctuations are no longer negligible, one must correct bothphase and amplitude of the field.
As currently no phase and amplitude system exists, correction system effectiveness is limited to
weak perturbations.

4.2.2 Phase Modulation Correction

The classical approach for compensating atmospheric perturbations by adaptive optics is
based on wavefront sensing and its reconstruction [Roddier-l-99]. In order to apply this tech-
nique to free-space optical communications, part of the received beam must be used to perform
wavefront measurement. This strategy has been successfully implemented in a number of sys-
tems and in particular for astronomy applications [Rousset-a-90]. For these applications, phase
perturbations are located in the near field of the receptor. It is generally possible to neglect scin-
tillation effects. When phase perturbations are distributed in the volume along the propagation
path and scintillation is no longer negligible, wavefront measurement and its reconstruction is
difficult. This specific phase perturbations distribution is typically encountered in FSOCS.

In order to go around the problem of wavefront measurements in strong perturbations; wave-
front control of the DM can be performed by a direct control ofthe DM shape without prelim-
inary phase measurement. This optimisation is achieved by amodel free optimisation. This
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82 CHAPTER 4. PRECOMPENSATIONMETHODS

concept was proposed at the very beginning of adaptive optics end of1970 in order to improve
image quality and laser beam propagation [Buffington-a-77, McCall-a-77]. However, this tech-
nique was rapidly disregarded because the estimation of theobjective function was incompatible
with the bandwidth available at the time. Several optimisation methods have been proposed,
such as le multi-dithering [Omeara-a-77] and sequential perturbations [Hardy-p-78]. More re-
cently, Vorontsovet al. have proposed a stochastic parallel gradient descent (SPGD) optimi-
sation [Vorontsov-a-97, Vorontsov-a-00] and the decoupled stochastic parallel gradient descent
(D-SPGD) [Vorontsov-a-02] that can increase convergence speed.

Deformable mirrors developments, fast real-time calculators (RTC) in addition to powerful
algorithms enables the implementation of such correction strategies. However, the necessary
bandwidths still generally stays a few orders of magnitude higher that those necessary for systems
using a WFS. In addition, it is impossible to guaranty the optimality of the solution due to the
high non-convexity of the problem. The significance of this correction strategy lies in its capacity
of overcoming strong turbulence issues (i.e. scintillation, branch points). This is only possible
by degrading the bandwidth. Astronomy observation is generally performed in weak turbulence
conditions. This is the reason this solution has not been kept as an implementation strategy.

4.2.2.1 Principle

Figure4.8presents a possible implementation diagram for the correction by optimisation. A
field UE (r, z = 0) (in red on the diagram) is sent by telescopeT1. This beam represents the
telecom beam containing the informationTX to be transmitted. FieldUR (r′, z = L) is received
by telescopeT2 after propagation through atmospheric turbulence.UR (r′, z = L) enables the
transmission of the received signalRX . From the received field, metricJ (i.e. objective function)
is calculated or measured. For example, this metric can be taken as phase, intensity distribution
in the emitting pupil or the total collected intensity by thepupil . . . Metric J (in blue on the
diagram) is then sent back to by telescopeT1. The transmission can, for example, either be
performed by a low throughput radio connection or a counter-propagating optical link. Temporal
evolution of the metric is used by the real-time calculator to compute the voltage to be sent to the
DM. DM tensions computation and global performance of the system is strongly linked to the
algorithm implemented.

4.2.2.2 Implementation for FSOs

Several implementation strategies of direct optimisationby phase modulation have been
proposed [Weyrauch-l-08]. Classical methods using a single deformable mirror [Loizos-p-06,
Vorontsov-a-00] have been studied both in simulations and experimentally.The use of hybrid
solutions combining both wavefront sensing methods and direct optimisation [Vorontsov-a-02,
Weyrauch-a-05] have also been proposed and validated experimentally overa distance of several
kilometres. These systems take advantages of the fact that it is easier to measure low-orders
of the turbulence with a sensor, even in the presence of scintillation, to correct tip-tilt indepen-
dently. Higher-order modes are corrected by direct optimisation by algorithms such as SPGD. In
order to circumvent strong scintillation and anisoplanatism issues on the laser beam probe, it is

te
l-0

07
71

27
6,

 v
er

si
on

 1
 - 

8 
Ja

n 
20

13



FSOPRECOMPENSATION BYADAPTIVE OPTICS 83

0U (r)

E
(r,z=0)

Télescope n°1

Optique Adaptative

Télescope n°2

TURBULENCE

U

DétecteurEmetteur

RTC

Télécom
Signal

(J)

Signal
Télécom

(Tx)

(Rx)

Mesure de la métrique J

U
R
(r’,z=L)

MD1

Métrique à optimiser
Faisceau Télécom

ϕ
E
(r)

Figure 4.8: Implementation diagram for a phase correction using direct optimisation.

possible [Yu-p-03, Yu-a-04] to use multi-conjugate adaptive optics (MCAO). Such systems use
several deformable mirrors conjugated at different planesand enables the precompensation both
in amplitude and in phase of the emitted field.

4.2.2.3 Limitations

Modulation methods require, among others, a much higher control frequency relative to sys-
tems using wavefront sensing on a counter-propagating laser beam probe, presented previously.
This higher frequency is mandatory in order to iteratively optimise for each turbulence realisa-
tion. It is indeed important to have reached convergence (orat least a satisfactory correction
level) before turbulence changes. The characteristic modification time of turbulence is of the
order of the millisecond. As an example, supposing that a hundred iterations are required be-
fore convergence, the control DM frequency must be of the order of 10 kHz. In addition, limits
imposed by using such a correction strategy are not clearly established because no theoretical
approach has yet been proposed. Furthermore, since the metric to be optimised is generally
non-convex, optimality of the correction cannot be guaranteed.

4.2.3 Optimale Correction

4.2.3.1 Optimal Phase and Amplitude Correction

The approach proposed by Barchers [Barchers-a-02-b] is a hybrid solution between the clas-
sical approach and the iterative criterion minimising solution. Barchers proposed a theoretical
implementation solution for the optimal correction of laser beam propagating through turbulent
atmosphere. This approach consists of the use of an adaptiveoptics system capable of controlling
both phase and amplitude of the field emitted by each telescope. The correction is iterative until
convergence towards the optimal solution. The correction of phase and amplitude by adaptive op-
tics generally implements several deformable mirrors. Figure4.9presents a functional diagram
of the iterative optimal correction between two telescopesused for optical communications.
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0(I )(I )0

de Phase
Conjugaison

TURBULENCE
ATMOSPHERIQUE

TELESCOPE n°1
(z = 0)

TELESCOPE n°2
(z = L)

Conjugaison
de Phase

U2      1U1     2

Figure 4.9: Diagram for phase and amplitude iterative correction.

The steps to implement optimal phase and amplitude correction are:

• A first uncompensated laser beam is launched from telescope 1.

• When received by telescope number 2, a phase and amplitude conjugation is performed.
This conjugation consists in re-emitting the laser beam with a complex field notedU2→1

and equal to the complex conjugate of the received fieldU1→2. We obtain, in the absence
of pupil truncation:U2→1 = U∗

1→2.

• The precompensated laser beam then propagates from telescope 2 to telescope 1.

• Arriving at telescope 1, the correction process is repeated: U ′
1→2 = U∗

2→1.

From this moment, both correction systems (located in telescope 1 and 2) are activated. Prop-
agations between the two telescopes of the link are then performed iteratively. Correction con-
vergence is monotonous and each iteration step brings the system closer to the optimal solution.
The author stresses that the process must be preceded by an initial phase to align both telescopes.

The mathematical steps implementing optimal phase and amplitude correction are presented
below with: z = 0 (resp. z = L) the position of telescope number 1 (resp. 2),|A0|2 = I0
the maximal intensity emitted by the laser beams

(∫

P
|U0 (r, z = 0)|2 dr = I0

)

, P1 (resp. P2)
corresponds to the pupil of telescope 1 (resp. 2).D is the pupils diameter. The operatorG1→2

(resp.G2→1) represents propagation through atmospheric turbulence along increasing (resp. de-
creasing) z, that is from telescope 1 to telescope 2 (resp. from 2 to 1). The iteration index of
the complex field is notedi andU∗(i) is the complex conjugated field ofU (i). The complex field
propagating from telescope 1 towards telescope 2 at iteration step (i) is:

U
(i)
1→2 (r′, z = L) = G1→2









A0
√

∫

P2

∣

∣

∣
U

(i)
2→1(r, z = 0)

∣

∣

∣

2

dr

U
∗(i)
2→1 (r, z = 0) × P1









(4.11)
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The complex field propagating from telescope 2 towards telescope 1 at iteration step (i)

U
(i)
2→1 (r, z = 0) = G2→1









A0
√

∫

P1

∣

∣

∣
U

(i−1)
1→2 (r′, z = L)

∣

∣

∣

2

dr

U
∗(i−1)
1→2 (r′, z = L) ×P2









(4.12)

The nominal field that is injected into the system can be takenas a truncated Gaussian beam:

U0 (r, z = 0) = A0exp
(

− r
2

wz=0
2 − i kr2

2Fz=0

)

×P1, wherew2
z=0 is the emission beam size andFz=0

the radius of curvature. The re-emitted field at the level of each telescope is normalised to obtain
a field of intensityI0 = |A0|2 before each iteration step.

The necessity of realising iterations arises from the presence of pupil truncation at the level
of each of the telescopes and their associated diffractive effects. In the absence of truncation, the
optimal solution is simply the conjugated complex fieldU2→1 = U∗

1→2 and only a single iteration
is required. However, access to the fieldU2→1 (resp.U2→1) is spatially limited to the pupil of
telescope 1 (resp. 2). It is not possible to obtain a phase andamplitude conjugation on the entire
planz = L (resp.z = 0).

Barchers [Barchers-a-02-b] studied correction quality as a function of different metrics, namely
PIB and Strehl ratio, for different turbulence strength. Helimited his study to weak and inter-
mediate perturbations with0.4 < σ2

R < 2.8. He has shown that in order to obtain a sufficient
correction quality (95% of coupled energy between the two telescopes), it importantto have pupil
diametersD such asD > 2

√
λL.

It is important to note that the article essentially deals with a novel solution to an existing
problem. It’s behaviour relative to FSOCS is barely mentioned. The selected wavelength used
for the study (λ = 500 nm) does not correspond to typical wavelengths used in lasercommuni-
cations. In addition, strong turbulence conditions are nottreated. However, the most important
shortcoming is that no implementation concept has been proposed, which seriously limits the
significance of the article. This very issue probably explains why no research work on this theme
is mentioned in the literature. If one is to examine implementation possibility of such a correction
strategy, two possibilities come to mind:

• The use of a optical phase conjugation, each iteration is performed optically. The use of op-
tical phase conjugation for optical communications is still an important issue [McAulay-p-99,
Bruesselbach-a-95]. In addition, both the telescopes and the turbulent volumecan be con-
sidered as a cavity and nothing guarantees its stability.

• The use of counter-propagating laser beam shaped by adaptive optics [Roggemann-a-98].
Control of such systems is still to be invented; flux normalisation not being the least of
problems.

4.2.3.2 Sub-optimal Phase Correction

By means of iterative phase and amplitude one achieves optimal correction. Optimality is
possible by using highly complex correction systems where at least two deformable mirrors
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86 CHAPTER 4. PRECOMPENSATIONMETHODS

are necessary. Similarly to iterative phase and amplitude conjugation, it is possible to degrade
correction quality by performing a phase-only correction [Barchers-a-02-b]. The complex field
propagating from telescope 2 towards telescope 1 at iteration step (i):

U
(i)
2→1 (r, z = 0) = G2→1



U0 (r′, z = L)
U

∗(i−1)
1→2 (r′, z = L)

∣

∣

∣
U

(i−1)
1→2 (r′, z = L)

∣

∣

∣

× P2



 (4.13)

The complex field propagating from telescope 1 towards telescope 2 at iteration step (i):

U
(i)
1→2 (r′, z = L) = G1→2



U0 (r, z = 0)
U

∗(i)
2→1 (r, z = 0)

∣

∣

∣
U

(i)
2→1 (r, z = 0)

∣

∣

∣

× P1



 (4.14)

The field’s amplitude is no longer the amplitude of the field propagating in the opposite direction
received at the previous iteration step, but the initial field U0 (where

∫

P
|U0dr|2 = |A0|2 =

1. Link quality is degraded relative to phase and amplitude optimal correction. However, it
enables its implementation by classical AO means using a single deformable mirror. Barchers
[Barchers-a-02-b] observes a strong decrease in correction quality and it is not possible to obtain
a coupled energy higher than95% for D < 4.5

√
λL.

4.3 Conclusion

This chapter was dedicated on one hand to an introduction to the basic concepts of adaptive
optics. In spite of its performance in weak perturbations, adaptive optics show serious limitations
in strong turbulence mainly because of branch points in the phase and strong scintillation. For
endo-atmospheric long-distance optical links, strong turbulence for realistic scenarios will be the
norm.

On the other hand, we have presented possible methods available in the literature to correct
for turbulence effects by AO for FSO. Three strategies have been proposed: wavefront measure-
ments on a counter-propagating probe, direct optimisationand optimal approach. These three
methods all have important limitations.

te
l-0

07
71

27
6,

 v
er

si
on

 1
 - 

8 
Ja

n 
20

13



Chapter 5

Rationale

We have presented in the introductory chapters the influenceof turbulence on optical com-
munication links. In particular, it has been estimated by the use of two important metrics: mean
intensity〈I〉 and normalised intensity fluctuationsσI

〈I〉
. Signal extinctions and attenuations lead

to an increase in bit error rate which is incompatible with requirements. In particular true for
long-distance links. We have seen that normalised intensity fluctuations can typically be of the
order of σI

〈I〉
= 0.5 when a value ofσI

〈I〉
≃ 0.1 actually seems the maximal acceptable value.

Reducing variance by a factor25 or more is difficult to achieve with by diversity methods. Fur-
thermore, when estimating probability density function, we have used a log-normal law. This
law exhibits optimistic values for error rates (under-estimation of the tail of the PDF) and the
value σI

〈I〉
≃ 0.1 is probably also optimistic. Turbulence strongly limits FSOCS performance

by significantly increasing BER. AO precompensation is one of the most promising methods
to overcome this limitation. We have presented in the previous chapter two techniques that are
currently implemented in existing systems: wavefront measurement using a counter-propagation
probe and phase modulation. These methods mainly concern horizontal links near the ground
limited to a few kilometres or to very special conditions (e.g. links between two high-altitude
summits). On the other hand, a theoretical approach to the so-called optimal correction has been
presented, but no implementation strategy has yet been proposed.

The objective of this document is to propose solutions to improve FSOCS performance by
using the theoretical optimal approach. We will study long-distance horizontal links which is
the most limiting case. In this document we will only study systems were both ends of the
communication channel are cooperative, that is where control system can act on both emission
and reception. This particular case is to be distinguished with military applications where the
reception (or target) is not controlled. The application framework will be the Fortune43G project
presented paragraph1.2.5.

We will first study performance for the best possible AO corrected optical communication
system in free-space. Iterative phase and amplitude optimal correction will be studied in details
for optical communications in chapter6. We will present expected performance for a large spec-
trum of atmospheric turbulence. We will then address the envisaged improvement brought by
changing the wavelength and limitation generated by central obscuration. These implementation
constrains for the optimal solution gives reasons for the study of iterative corrections limited to
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88 CHAPTER 5. RATIONALE

phase. Secondly, we evaluate expected performance for classical approaches from the stand-
point of the results obtained previously with the optimal correction. We first study correction by
wavefront measurement on a counter-propagating laser beam(chapter7). This correction type is
strongly impacted by scintillation which perturbs phase measurements. We propose a mechanism
to partially free the system from these limitations. We willalso study the expected performance
(chapter8) of direct optimisation by a performance metric, in particular with stochastic algo-
rithms. Finally, we propose a new concept for measuring and controlling phase and amplitude.
We study its implementation in chapter9.
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Part III

Precompensation by Adaptive Optics
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Chapter 6

Optimal and Sub-Optimal Correction

Contents
6.1 Optimal Correction: Towards a Propagation Mode . . . . . . . . . . . . . 92

6.1.1 Modelling Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.1.2 Optimal Correction in Absence of Turbulence. . . . . . . . . . . . . . 93

6.1.3 Performance as a Function of Turbulence Strength. . . . . . . . . . . 95

6.1.4 Pupil Diameter Influence. . . . . . . . . . . . . . . . . . . . . . . . . 98

6.1.5 Probability Density Function. . . . . . . . . . . . . . . . . . . . . . . 101

6.1.6 Influence of Pupil Geometry. . . . . . . . . . . . . . . . . . . . . . . 102

6.2 Sub-Optimal Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.2.1 Modelling Principal . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.2.2 Optimisation of the Emitted Intensity Distribution. . . . . . . . . . . 107

6.2.3 Performances Function of Turbulence Strength. . . . . . . . . . . . . 109

6.2.4 Pupil Diameter Influence on Performance. . . . . . . . . . . . . . . . 112

6.2.5 Probability Density. . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

The optimal correction proposed by Barchers [Barchers-a-02-b] enables, for a given turbu-
lence realisation, to iteratively reach a propagation mode. A propagation mode is a mode limiting
energy losses between the two ends of the communication channel. This method relies on a phase
and amplitude control of the emitted electromagnetic fields. We will study in this chapter (see
paragraph6.1) and in detail the contribution of this propagation mode forFSO systems. In par-
ticular, we will focus on typical propagation conditions found in the Fortune43G project. We
will expand Barcher’s study to the entire spectrum of perturbation regimes (i.e. weak to strong)
and show that performance is in particular scaled by the sizeof the pupil and by the integrated
turbulence strength over the propagation path. Finally, weevaluate performance of a degraded
correction strategy, the so-called sub-optimal correction (see paragraph6.2), where only the
phase part of the emitted wave is control at each iteration.
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92 CHAPTER 6. OPTIMAL CORRECTION AND SUB-OPTIMAL CORRECTION

6.1 Optimal Correction: Towards a Propagation Mode

6.1.1 Modelling Principle

Modelling of the phase and amplitude iterative control was realised using PILOT simulation
code. We consider a perfect phase and amplitude (full-wave)correction in which the true phase
is used for conjugation. True phase is the phase that actually arrives at the telescope’s level after
propagation. Figure6.1 presents the basic principal diagram of the optical link with telescope
positions (T1 at z = 0 andT2 at z = L) as well as the propagation direction of the field.
Atmospheric turbulence is located between the two telescopesT1 andT2, perturbing fieldsU1→2

andU2→1 as they propagate.

z=Lz=0

Télescope 1 Télescope 2

U1    2

U

z

2    1

Figure 6.1: Diagram of the optical link.

We recall the various steps of the optimal iterative correction between telescope 1 and tele-
scope 2.

Iteration 0







U
(0)
0 (r, z = 0) = U0(r,z=0)

q

R

P1
|U0(r,z=0)|2dr

A0 ×P1

U
(0)
1→2 (r′, z = L) = G1→2

[

U
(0)
0 (r, z = 0)

]

×P2

Iteration 1































U
(1)
2→1 (r, z = 0) = G2→1





U
∗(0)
1→2(r

′,z=L)
r

R

P2

˛

˛

˛

U
(0)
1→2(r′,z=L)

˛

˛

˛

2
dr′
A0



×P1

U
(1)
1→2 (r′, z = L) = G1→2





U
∗(1)
2→1(r,z=0)

r

R

P1

˛

˛

˛

U
(1)
2→1(r,z=0)

˛

˛

˛

2
dr

A0



× P2

...
...
...

Iteration i































U
(i)
2→1 (r, z = 0) = G2→1





U
∗(i−1)
1→2 (r′,z=L)

r

R

P2

˛

˛

˛

U
(i−1)
1→2 (r′,z=L)

˛

˛

˛

2
dr′
A0



× P1

U
(i)
1→2 (r′, z = L) = G1→2





U
∗(i)
2→1(r,z=0)

r

R

P1

˛

˛

˛

U
(i)
2→1(r,z=0)

˛

˛

˛

2
dr

A0



× P2 ,
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OPTIMAL AND SUB-OPTIMAL CORRECTION 93

WhereU0 (r, z = 0) is the initial field,P represents the pupil,Gj→k [.] a turbulent propagation
from telescopej to telescopek, |A0|2 the total emitted field intensity andUj→k the receive
field in k that has propagated fromj. Without any loss of generality, we will set|A0|2 = 1.
Each round trip between telescopes is considered as a singleiteration step. The first iteration
(iteration0) is done without any precompensation. We remind the reader that the diagram of the
telecommunication link has been presented figure4.9.

Statistical values〈Ii〉 and
σIi

〈Ii〉
at iterationi are estimated by a Monte Carlo approach with

approximately300 independent turbulence realisations. At each iteration step the integrated
intensity (PIB) is estimated at the level of each telescope by:

I
(i)
1 =

∫

P1
U

(i−1)
2→1 (r, z = 0) dr

∫

P2
U

(i−1)
1→2 (r′, z = L) dr′

(6.1)

I
(i)
2 =

∫

P2
U

(i)
1→2 (r′, z = L) dr′

∫

P1
U

(i)
2→1 (r, z = 0) dr

(6.2)

The total emitted intensity by telescopeT1 (resp. T2) after truncation by the pupilP1 (resp.
P2) will always be normalised in order to respect the followingequality:

∫

P1
U

(i)
1→2 = I0 (resp.

∫

P2
U

(i)
2→1 = I0). I

(i)
1 andI(i)

2 represents the coupling energy between the two telescopes at each
iteration step. In the rest of the document, we will mainly focus on values relative to telescope
T2. After convergence of the correction, statistical values at both ends of the communications
link are identical. Any argument based onT1 or T2 will be equivalent.

6.1.2 Optimal Correction in Absence of Turbulence

In order of decrease convergence time, we first optimise the initial beam parametersU0 (r, z = 0).
We suppose the beam to be Gaussian. Figure6.2 represents the optimisation of the initial Gaus-
sian beam parameters that is of the waist radiuswo and radius of curvatureR. Optimisation is
performed with a turbulent free propagation over a distanceof L = 10 km, with a wavelength
of λ = 1.5 µm and a pupil diameter ofD = 30 cm. Pupils truncation is added both at the
level ofT1 andT2. For the range of parameters studied here, the final intensity value after op-
timal correction does not seem to depend on the initial beam geometry. Variations on the final
PIB value after10 iterations are inferior to5 10−3. In absence of turbulence, it is possible for
pupilsD ≥ 30 cm to collect approximately100% of the emitted flux. It seems that convergence
is achieved faster for beams with a waist radius ofw0 = 5 cm focalised at the middle of the
propagation path (zwo = 5 km) because truncation effects byT1 andT2 are minimised. System
parameters (pupil ofD = 30 cm, wavelength ofλ = 1.5 µm) lead to a symmetrical situation
where the emitted and received beam size are identical (approximately7 cm in radius). Diffrac-
tion is negligible. Initial beam parameters in the presenceof turbulence will therefore be taken as
w0 = 5 cm for the beam waist, focalised at the middle of the propagation distance (zwo = 5 km).

Figure 6.3 illustrates the energy distribution in the plane ofT2 before and after optimal
correction on an optimised beam and without turbulence. This figure clearly shows that the
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94 CHAPTER 6. OPTIMAL CORRECTION AND SUB-OPTIMAL CORRECTION

Figure 6.2: Curves of same energy: initial Gaussian beam parameters optimisation. Propagation
without turbulence and truncation at both ends of the link. Full-wave optimal correction. Prop-
agation distance:L = 10 km, wavelength:λ = 1.5 µm and pupil diameter:D = 30 cm. The
number of iterations is limited to10.

optimal Gaussian beam is extremely close to the beam after convergence.

Figure 6.3: Influence of optimal correction without turbulence on an optimised Gaussian beam.
Left: image without correction, right: image with optimal correction after10 iterations. Prop-
agation distance:L = 10 km, wavelength:λ = 1.5 µm and pupil diameter:D = 30 cm. The
colour scale is logarithmic.

Figure6.4shows the evolution of integrated intensity (PIB) as a function of pupil diameter.
It shows that without turbulence and as soon as the pupil diameter is larger thanD = 25 cm, it
is possible to transmit approximately all the flux from one telescope to the other. This limit is
actually imposed by diffraction. The entire emitted flux canbe collected to the condition that the
pupil diameter respects the following conditionD > 2

√
λL ≃ 24.5 cm. WhenD < 24.5 cm the

mode that is established in the cavity gives rise to energy losses oppositely to what happens in
a waveguide. This curve will serve as the ultimate referencein terms of correction quality for
propagations in presence of turbulence.
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OPTIMAL AND SUB-OPTIMAL CORRECTION 95

Figure 6.4: Intensity evolution as a function of pupil diameter for propagation without turbulence
using optimal correction. Propagation distance:L = 10 km, wavelength:λ = 1.5 µm and pupil
diameter:D = 30 cm.

6.1.3 Performance as a Function of Turbulence Strength

In this paragraph, we will suppose that telescopeT1 andT2 are immersed in atmospheric
turbulence and have circular apertures of diameterD = 30 cm.

6.1.3.1 Short-Exposure Energy Distribution

As an illustration of the capacity of the system to concentrate energy within the recep-
tion aperture, on figure6.5 is shown energy distributions for short-exposure at telescopeT2
with and without correction. Three turbulence strengths are considered:C2

n = 10−16 m−2/3,
C2
n = 10−15 m−2/3 andC2

n = 10−14 m−2/3. Atmospheric turbulence strength has a strong impact
over the integrated intensity value, both with and without correction. Table6.1gives integrated
intensity values (PIB) obtained from intensity distributions presented figure6.5. These values
are only valid for this particular turbulence realisation.It gives evidence of the improvement
brought by optimal correction which is more clearly visiblefor stronger turbulence conditions.
For weak turbulence, the optical link is already very good without correction and improvement
brought by any correction can only be small.

C2
n = 10−16 m−2/3 C2

n = 10−15 m−2/3 C2
n = 10−14 m−2/3

Without correction I0 = 99.2% I0 = 92.5% I0 = 40.2%
Optimal correction I10 = 99.8% I10 = 98.2% I10 = 80.8%

Table 6.1: Table summarising intensity values obtained figure 6.5 for λ = 1.5 µm and aD =
30 cm diameter pupil .
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96 CHAPTER 6. OPTIMAL CORRECTION AND SUB-OPTIMAL CORRECTION

Figure 6.5: Influence of optimal correction. Top: short-exposure images without correction;
bottom: short-exposure images after10 iterations of phase and amplitude correction. From left
to right: C2

n = 10−16 m−2/3, C2
n = 10−15 m−2/3, C2

n = 10−14 m−2/3. Propagation distance:
L = 10 km, wavelength:λ = 1.5 µm and pupil diameter:D = 30 cm. The colour scale is
logarithmic for better visualisation of contrasts.

6.1.3.2 Influence of Turbulence Strength

We first study and for four different turbulence strengths the evolution of two metrics〈Ii〉 and
σIi

〈Ii〉
as function of the iteration stepi (see figure6.6). Final values for both metrics after optimal

correction convergence, depends on turbulence strengthC2
n. These curves clearly demonstrate

that correction efficiency is function of turbulence strength. Barchers [Barchers-a-02-b] had
limited his study to mean PIB in the case of weak perturbations. As Barchers, we observe that
for C2

n = 10−16 m−2/3 correction is perfect in terms of average PIB (as long asD >
√
λL).

Curves figure6.6 demonstrate that optimal correction can lead to a very satisfactory level of
mean PIB well beyond weak perturbations limitation. If one is to consider theC2

n = 10−14 m−2/3

case, iterative correction can increase PIB form〈I0〉 = 0.31 to more than〈I9〉 = 0.83; or a
mean increase of approximately167%. We remind the reader that the Rytov variance isσ2

R = 14
for the turbulent case under consideration. It is importantto emphasize that it is the case where
correction is the most efficient. In the other cases studied,turbulence strength is lower and mean
PIB is already very good without correction. ForC2

n = 7 10−14 m−2/3, the average PIB level is
very low (〈I0〉 = 0.057). After optimal correction, it is increased to〈I9〉 = 0.333, or an mean
improvement of approximately484%. This confirms that correction efficiency, in terms of mean
PIB, increases with the turbulence strength.

We also characterised PIB residual intensity fluctuations.Its attenuation is capital for FSO
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OPTIMAL AND SUB-OPTIMAL CORRECTION 97

Figure 6.6: Optimal correction efficiency as a function of iteration number. Propagation dis-
tance: 10 km andλ = 1.5 µm. Green:C2

n = 10−16 m−2/3, orange:C2
n = 10−15 m−2/3, red:

C2
n = 10−14 m−2/3 and blue:C2

n = 7 10−14 m−2/3. Left: mean PIB. Right: normalised intensity
fluctuations.

systems. Regardless of the turbulence regime, and apart forC2
n = 7 10−14 m−2/3, a reduction

of a factor of approximately10 is observed after10 iterations. The strongest turbulence case
(bleus curves) corresponds to a Rytov variance ofσ2

R ≃ 98 and a propagation in deep saturation
regime. Optimal correction can reduce residual intensity fluctuations by a factor3 only. Figure
2.3 in chapter2 has shown a small reduction of the true variance for stronglysaturated cases.
Curves figure6.6 confirm that residual fluctuations are reduced forC2

n = 7 10−14 m−2/3 com-
pared toC2

n = 10−14 m−2/3. However, perturbations are too strong for the optimal correction to
sufficiently reduce fluctuations.

Concerning convergence speed, if one iteration is sufficient for weak turbulence and for mean
PIB, it clearly appears that a larger number of iterations are necessary for the other cases. For
the rest of the study, we have systematically insured that a sufficient number of iteration has been
made in order to reach convergence. We have established that5 iterations are generally sufficient.

6.1.3.3 Average Error Rate

Figure6.7presents mean BER evolution as a function of mean received intensity〈I〉. Details
of how BER is estimated using a log-normal law can be found paragraph3.1.3. Three different
turbulence strengths are studied with and without optimal correction:C2

n = 7 10−14 m−2/3 (on
the figure in blue),C2

n = 10−14 m−2/3 (in red) andC2
n = 10−15 m−2/3 (in orange). For the same

emitted optical power, configuration without correction corresponding toC2
n = 7 10−14 m−2/3

andC2
n = 10−14 m−2/3 do not enable the system to reach a reasonable average BER fortypical

FSOCS standards. Table6.2gives a summary of the average error rate for the different turbulence
strength studied both with and without correction. Values are obtained from figure6.7. We have
assumed the emitted optical power to beIemit = 1 and calculated the error rate from the mean
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98 CHAPTER 6. OPTIMAL CORRECTION AND SUB-OPTIMAL CORRECTION

Figure 6.7: Mean BER evolution as a function of mean receivedintensity. Orange curves:C2
n =

10−15 m−2/3, red: C2
n = 10−14 m−2/3 and blue:C2

n = 7 10−14 m−2/3. Dashed lines: without
correction, solid lines: optimal correction.

intensity〈I〉 attenuation for each case.

C2
n 7 10−14 m−2/3 10−14 m−2/3 10−15 m−2/3

Without correction 0.3 2 10−2 4 10−18

Optimal correction 3 10−4 3 10−15 3 10−23

Table 6.2: Table summarising mean BER values as function of the turbulence strength forλ =
1.5 µm and a pupil ofD = 30 cm diametre.

In order to decrease error rates in the least favourable case(i.e. when〈BER〉 > 10−12), it
is important either to increase signal-to-noise ratio (either by decreasing noise varianceσ2

d or by
increasing emitted optical powerIemit), or increase the pupil diameter. When residual fluctuations
of the PIB are high, increasing signal to noise ratio can helplower mean BER below the threshold
of 10−12.

ForC2
n = 7 10−14 m−2/3 and using optimal correction, mean PIB is equal to〈I〉 ≃ 0.33. A

twofold increase (respectively threefold increase) of theemitted intensity makes it possible to
reach〈BER〉 = 3 10−8 (resp. 〈BER〉 = 3 10−14). However, such increase in optical fluxes
is not always possible for endo-atmospheric FSOSC. In addition, these considerations can be
questioned, especially for strong turbulence condition without correction. In this case, we go
beyond the validity of log-normal density probability.

6.1.4 Pupil Diameter Influence

Correction efficiency will naturally depend on turbulence strength but also on pupil diameter,
wavelength and propagation distance. If pupils are too small, it will be impossible to create a
propagation mode minimising loses between the two ends of the optical link. In the opposite
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OPTIMAL AND SUB-OPTIMAL CORRECTION 99

case, we know that for an infinitely large pupil, phase conjugation is the immediate solution.
Barchers put forward the reduced parameter

√
λL as a scaling parameter for pupil diameters

in weak perturbations. Figure6.8 shows pupil diameter influence for a typical wavelength of
λ = 1.5 µm and various propagation regimes. As emphasized by Barchers we observe in weak

Figure 6.8: Optimal correction efficiency as function of pupil diameters for various turbulence
strengths. Propagation distanceL = 10 km and wavelengthλ = 1.5 µm. Green: C2

n =
10−16 m−2/3, orange:C2

n = 10−15 m−2/3, red:C2
n = 10−14 m−2/3 and blue:C2

n = 7 10−14 m−2/3.
Solid lines: optimal correction, dashed lines: no correction. Left: PIB, right: Normalised inten-
sity fluctuations.

turbulence cases, when pupil diameters are smaller thanLF =
√
λL, that it is impossible to

obtain a propagation mode. Iterative correction is therefore inefficient in this case. We recall that√
λL = 12 cm. One must emphasize that this is purely a diffractive effect without any direct link

with atmospheric turbulence. As a matter of fact, we observeexactly the same characteristics
in the absence of turbulence (see figure6.4). A propagation mode can therefore only take place
inside a pseudo-cavity of transverse dimension greater thanLF . This observation imposes a limit
to the minimum size of usable pupils for this particular correction method. Regimes studied by
Barchers are not relevant for typical FSO configurations (i.e. the expected gain is too small).

Let us first focus on the evolution of〈I〉 as a function of pupil diameterD as shown figure6.8.
When the pupil diameter is too large, correction is barely more efficient that direct propagation
without correction. The studied values forD do not enable us to see the appearance of such
a characteristic forC2

n = 7 10−14 m−2/3, located beyondD = 0.6 m. This result shows that
with correction, it is useless to increase the pupil diameter of the telescope beyond the natural
expansion of the beam. Pupil averaging is then predominant and correction is unnecessary.

In diffractive regimes (weak perturbation:σ2
R = 0.14) and up to the appearance of saturation

(σ2
R = 1.4), the characteristic value isLF . Beyond2LF correction is unnecessary with regards

to 〈I〉. In highly perturbed regimes (i.e.σ2
R = 14 andσ2

R = 98), LF is replaced byλL
πρ0

(see first
part I) equal to0.5 m. For the considered pupil diameter (D < 0.6 m), it can be observed that
correction is highly effective relative to〈I〉.
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100 CHAPTER 6. OPTIMAL CORRECTION AND SUB-OPTIMAL CORRECTION

Concerning intensity fluctuations, increasing the pupil diameter enables a significant reduc-
tion even beyond the characteristic size identified previously for 〈I〉. This is valid for all turbu-
lence strengths studied. According to figure3.3, it seems that normalised intensity fluctuations
below approximatelyσI

〈I〉
< 0.1 are able to reduce bit error rate sufficiently. For these fluctua-

tions, mean BER is very close to the no-turbulence case. Forσ2
R = 14, decrease is proportional

toD−1. It is inversely proportional to the square root of the number of independent speckles in
the pupil. Forσ2

R = 0.14 andσ2
R = 1.4, the behaviour is different at least for diameters below

30 cm. For these cases, most of the perturbation is composed of beam wander.
In order to better understand the domain of interest of the correction, in figure6.9is presented

the gain brought by optimal correction. We define gain in terms of PIB by the ratio:

GPIB =
〈I〉With Correction

〈I〉Without Correction

, (6.3)

The normalised intensity fluctuation gain is given by the inverse ratio:

GF luct =

[

σI

〈I〉

]

Without Correction
[

σI

〈I〉

]

With Correction

(6.4)

Figure 6.9: Gain of optimal correction as function of telescopes pupil diameter for various tur-
bulence strength. Propagation distance10 km, λ = 1.5 µm. Green:C2

n = 10−16 m−2/3, orange:
C2
n = 10−15 m−2/3, red:C2

n = 10−14 m−2/3 and blue:C2
n = 7 10−14 m−2/3. Left: PIB gain, right:

normalised intensity fluctuations gain.

Let us first focus on mean PIB〈I〉. As presented previously, optimal correction gain increases
with turbulence strength. Curve forC2

n = 10−16 m−2/3 does not show significant increase rela-
tive to a propagation without correction. When turbulence increases beyond weak perturbation
regime one can observe the appearance of an optimal pupil diameter maximising gain. When
the diameter is too small, the gain stays small (no propagation modes appears). When using a
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OPTIMAL AND SUB-OPTIMAL CORRECTION 101

large pupil, the telescope collects almost all the flux even without correction (i.e. correction is
unnecessary).

6.1.5 Probability Density Function

We have seen paragraph3.1.1.3that probability density functions can be used to derive error
rates of atmospheric optical links. Intensity PDFs for laser beam propagation without any cor-
rection has been presented figure2.16. Calculated BER rely on the hypothesis that PIB follows
log-normal statistics. This hypothesis is justified in absence of precompensation when fluctua-
tions of I are low in two cases:

• when perturbations are weak and the collecting pupil is small compared to
√
λL (i.e. the

characteristic intensity grain size);

• when the collecting pupil is very large compared to the characteristic intensity grain size.
Statistics approaches a normal law (central limit theorem)itself approaching a log-normal
law.

The results we have presented here using an AO pre-compensation show that intensity fluc-
tuations stay small for the studied conditions. It is important to examine probability density
functions in presence of correction to validate the fact that BER evaluations, previously calcu-
lated for small intensity fluctuations with log-normal statistics, can still be carried out.

Figure6.10illustrates PDF modification following iterative phase andamplitude optimal cor-
rection. The distribution seems to be modified towards a log-normal function expected in weak

Figure 6.10: Intensity histograms for several turbulence strengths after optimal correction. Prop-
agation distance10 km, λ = 1.5 µm and pupil diameterD = 30 cm. Dashed curves represent a
log-normal fit.

perturbations or when pupil averaging is strong enough. Dashed curves represent a log-normal
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102 CHAPTER 6. OPTIMAL CORRECTION AND SUB-OPTIMAL CORRECTION

fit for turbulence values ofC2
n = 10−14 m−2/3 andC2

n = 7 10−14 m−2/3. This function is used
to calculate the BER presented paragraph6.1.3.3. For the studied turbulence strengths, optimal
correction helps to retrieve a probability distribution resembling a log-normal distribution. This
seems to hold even for strong turbulence conditions. The modification of the PDF as presented
figure 6.10, will strongly reduce error rates. It brings an increase in mean signal to noise ratio
and a reduction in flux variation.

6.1.6 Influence of Pupil Geometry

So far we have only considered un-obscured apertures. We have shown that efficiency of
the selected propagation mode is function of the pupil diameter. Using an un-obscured aperture
we modify the characteristic size of the pupil and thus diffractive effects at the same time as the
total collecting area. In the perspective of a physical implementation of instruments with com-
plex pupils (e.g. aperture synthesis) one can ask itself therole played by these two parameters
separately. In order to study these parameters, we have chosen a pupil with central obscuration,
particularly interesting from an implementation point of view. Centrally obscured telescopes
(e.g. Cassegrain telescope) are often used, particularly for their implementation simplicity and
low cost. Central obscuration simplifies optical set ups butslightly reduces the collecting surface
available. On the other hand, central obscuration imposes acharacteristic dimension - the width
of the corona - that might strongly constrain the propagation mode efficiency.

6.1.6.1 Absence of Turbulence: an Adapted Propagation Mode

In order to study the impact of central obscuration, we first realised numerical simulations
without atmospheric turbulence. The initial Gaussian beamis launched on the side of the pupil.
This has no impact after optimal correction neither on final field distribution nor on studied
parameters〈I〉 and σI

〈I〉
.

Figures6.11and6.12represent different steps of phase and amplitude iterativecorrection for
a central obscuration respectively withOC = 0.5 andOC = 0.8. They show in parallel phase
and amplitude in the reception plane. Obtained propagationmode differs from the one obtain
without central obscuration. In fact, the mode has changed from a Gaussian mode to a mode
with radial symmetry composed of several lobes. The number of lobes increases with central
obscuration and depends on the size of the pupils.

Intensity distributions of the thus obtained modes are similar toLPml spatial modes observed
in a cylindrical multimode optical step-index fibre. The azimuth numberm represents the number
of mode divided by 2 (e.g. herem = 3 for a50% central obscuration andm = 4 for 80%). The
radial numberl represents the number of coronas andLP01 mode corresponds to the Gaussian
mode. In addition, as for fibre optics, the phases of the lobesare opposite side by side. We
observe that part of the energy still lies outside the pupil but that globally the modes have a
geometry compatible with a circular central obscuration. The phase has discontinuities at the
level of zero intensity. It must be emphasized that oppositely to fibre optics, energy losses are
not negligible. This is particularly true for an80% central obscuration.
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OPTIMAL AND SUB-OPTIMAL CORRECTION 103

Figure 6.11: Intensity (top) and phase (bottom) evolution in reception plane after iterative optimal
correction. Circles represent aD = 25 cm diameter pupil with central obscuration50%. The
propagation distance is10 km andλ = 1.5 µm. From left to right are presented iteration number
1, 2, 5 and 14.

Figure 6.12: Intensity (top) and phase (bottom) evolution in reception plane after iterative optimal
correction. Circles represent aD = 25 cm diameter pupil with central obscuration80%. The
propagation distance is10 km andλ = 1.5 µm. From left to right are presented iteration number
1, 2, 5 and 14.

Perhaps more accurately, one can compare emitted phase of the propagation mode to a 4-
quadrant phase mask [Roddier-a-97] proposed for stellar coronagraphy. The coronagraph is
designed to block flux coming from a luminous star on the optical axis. In the same way, the
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104 CHAPTER 6. OPTIMAL CORRECTION AND SUB-OPTIMAL CORRECTION

pseudo phase mask enables energy rejection from the opticalaxis towards to edges of the pupil.
After iteration, an additional defocalisation appears in the phase compared to the classical phase
quadrants.

Integrated intensity (PIB) evolution as function of central obscurationOC is presented figure
6.13for a propagation without turbulence. The shape of the curves are the same as for an un-

Figure 6.13: Intensity evolution for optimal correction without turbulence as function of
D (1 − OC) (left) and D

2

2
(1 − OC2) (right). The propagation distance isL = 10 km, λ =

1.5 µm and the pupil diameter isD = 30 cm.

obscured pupil by replacing pupil diameter byD by D (1 −OC). We first observe a linear
intensity increase proportional to the collecting surface(D

2

2
(1 −OC2)), then the appearance of

saturation when almost all the energy is collected by the pupil.

6.1.6.2 In Presence of Turbulence

Figure6.14compares energy distribution in reception plane for different turbulence strengths
and different central obscuration values. For weak turbulence, the mode obtained without turbu-
lence is almost retained. The same result was obtained for the un-obscured pupil case. Inversely
and for strong turbulence conditions, the eigen-mode of thesystem differs from the geometry
obtained without turbulence.

Mean intensity and normalised intensity fluctuations evolution as function of central obscu-
ration are presented figure6.15. Mean intensity decreases as obscuration increases. Unsurpris-
ingly and for weak perturbations, mean attenuation after convergence is closely matched to the
one obtained without turbulence. For strong perturbations(i.eC2

n = 10−14 m−2/3), a quasi-linear
increase is obtained for mean attenuation〈I〉 as a function of collecting surfacedc = 1 − OC2.

Regardless of perturbations, fluctuations reduction is obtained by increasing the characteristic
size1 − OC . This was also observed for plain pupils with the same behaviour between weak
and strong perturbations. Figure6.15right, presents mean PIB linearity for strong perturbations
function of dc = 1 − OC2. No saturation is observed for〈I〉 because the pupil diameter of
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OPTIMAL AND SUB-OPTIMAL CORRECTION 105

Figure 6.14: Typical intensity distribution after optimalfull-wave correction (turbulence different
for each realisation). Circles represent aD = 30 cm pupil. Propagation distanceL = 10 km,
λ = 1.5 µm. From top to bottom: central obscuration0%, 50% and80%. From left to right, the
turbulence strength is:C2

n = 10−16 m−2/3, C2
n = 10−15 m−2/3 andC2

n = 10−14 m−2/3.

Figure 6.15: Mean intensity evolution after iterative full-wave correction function of central
obscuration. Propagation distanceL = 10 km,λ = 1.5 µm and pupil diameterD = 30 cm.
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106 CHAPTER 6. OPTIMAL CORRECTION AND SUB-OPTIMAL CORRECTION

D = 30 cm is too small. Figure6.16 presents intensity fluctuations evolution as function of
1 − OC.

Figure 6.16: Intensity fluctuations evolution function ofdc = 1 − OC. Propagation distance
L = 10 km,λ = 1.5 µm and pupil diameterD = 30 cm.

6.1.6.3 Conclusion

For annular pupils, we observe an adapted geometry similar to those found in fibre optics.
We have observed two effects that are partially decoupled:

• loses proportional to surfaceS of the reception pupil,

• constant diffraction (related toλL
D

).

The behaviour of the mean PIB, when the pupil diameterD is constant, is principally related to
S.

6.2 Sub-Optimal Correction

6.2.1 Modelling Principal

Iterative phase-only correction modelling is performed bythe PILOT code, similarly to the
optimal full-wave correction. We first consider perfect phase correction. Precompensation is re-
alised with the true phase. Controlling only the phase part of the field will not enable a correction
as good as one based on both phase and amplitude. Systems controlling only the phase part of
the field are solutions one must resort to for lack of existingoptimal solution implementations.
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SUB-OPTIMAL CORRECTION 107

We remind the reader the principle steps for iterative phasecorrection or sub-optimal correction
between telescope 1 and telescope 2.

Iteration 0







U
(0)
0 (r, z = 0) = U0(r,z=0)√

R

P |U0(r,z=0)|2dr
A0 ×P

U
(0)
1→2 (r′, z = L) = G1→2

[

U
(0)
0 (r, z = 0)

]

×P2

Iteration 1















U
(1)
2→1 (r, z = 0) = G2→1

[

U0 (r, z = 0)
U

∗(0)
1→2(r′,z=L)

˛

˛

˛

U
(0)
1→2(r′,z=L)

˛

˛

˛

]

×P1

U
(1)
1→2 (r′, z = L) = G1→2

[

U0 (r, z = 0)
U

∗(1)
2→1(r,z=0)

˛

˛

˛

U
(1)
2→1(r,z=0)

˛

˛

˛

]

×P2

...
...
...

Iteration i















U
(i)
2→1 (r, z = 0) = G2→1

[

U0 (r, z = 0)
U

∗(i−1)
1→2 (r′,z=L)

˛

˛

˛

U
(i−1)
1→2 (r′,z=L)

˛

˛

˛

]

×P1

U
(i)
1→2 (r′, z = L) = G1→2

[

U0 (r, z = 0)
U

∗(i)
2→1(r,z=0)

˛

˛

˛

U
(i)
2→1(r,z=0)

˛

˛

˛

]

×P2

Where:

• U0 (r, z = 0) is the initial field;

• P represents the pupil;

• Gj→k [.] symbolises the propagation through turbulence from telescopej towards telescope
k;

• |A0| represents total intensity of the emitted field;

• Uj→k is the field received ink after propagation fromj;

• The ratio
U

∗(i)
j→k(r′,z=L)

˛

˛

˛

U
(i)
j→k(r′,z=L)

˛

˛

˛

= e−iϕj represents phase correction ink.

Without loss of generality the total intensity will be fixed to |A0|2 = 1. In other words, the
emitted field after each iteration will be normalised to a value of 1. Each round trip between one
telescope and the other will be considered as a single iteration step. Results are presented for
telescopeT2 only.

6.2.2 Optimisation of the Emitted Intensity Distribution

We suppose that laser beams are emitted through un-obscuredcircular pupils. We also sup-
pose the beams to be monomode Gaussian beams. The initial emitted beam waist can have
an important impact on the total collected flux after propagation with iterative phase-only pre-
compensation. We first optimise the beam waist without turbulence based on PIB values. We
will then jointly optimise mean PIB and normalised intensity fluctuations with atmospheric tur-
bulence.
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108 CHAPTER 6. OPTIMAL CORRECTION AND SUB-OPTIMAL CORRECTION

6.2.2.1 Without Turbulence

We first focus on optimising the emitted beam waist for sub-optimal correction without any
atmospheric turbulence. From figure6.17it is clear that final PIB values and using an iterative
correction are only loosely dependent on the initial Gaussian beam waist. When the emitted

Figure 6.17: Iso-intensity curves after propagation: Gaussian beam parameters optimisation for
a sub-optimal correction. Non-turbulent propagation withpupil truncation at both emission and
reception ofD = 30 cm. Propagation distanceL = 10 km,λ = 1.5 µm.

beam has a small waist or a small radius of curvature, the beamis highly divergent. It will then
suffer from strong energy losses imposed by pupil truncation at reception. Inversely, when the
beam is much larger than the emission pupil, the beam is only slightly divergent. Diffraction by
the edge of emission pupil also leads to energy losses. In an intermediate regime, approximately
between5 cm < w0 < 9 cm, energy losses are minimised. The beam waist position relative to
the propagation path has little impact on the collected energy.

Nevertheless, it appears that a beam of waistw0 = 5 cm focalised in the middle of the
path(zw0 = 5 km), will minimise energy losses. In addition, iso-intensity curves are relatively
flat. Small parameters variationsw0, zw0 orD will not strongly impact the final PIB value after
iterations. By, for example, doubling the beam sizew0 or by choosing a collimated beam with
waist in the pupil (zw0 = 0), energy losses will be kept below the percent. However, when
strongly changing the wavelength or the pupil size, the beamnatural divergence and diffraction
by the pupil edge will no longer be negligible. Optimal parameters will then be modified.

Initial parameters for sub-optimal correction are taken asw0 = 5 cm for the beam waist
focalised atzw0 = 5 km. This means that the radius of the emitted beam in the pupilis wz=0 ≃
7 cm. Both optimal and sub-optimal approaches lead to very similar results.

6.2.2.2 Impact of Atmospheric Turbulence

By adding atmospheric turbulence both, intensity fluctuations and mean intensity must be
studied. Figure6.18presents a parametric study used to optimise the size of the beam for differ-
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SUB-OPTIMAL CORRECTION 109

ent turbulence strengths.

Figure 6.18: Gaussian beam parameters optimisation for iterative phase-only correction. Pupils
diameterD = 30 cm, propagation distanceL = 10 km, λ = 1.5 µm. . Left: mean Power in the
Bucket (PIB), right: normalised intensity fluctuations.

Figure6.18only shows cases where the beam waist is in the emitting pupil, that iszw0 = 0.
Iterative phase-only correction is capable of directly modifying the beam focusing power; the
waist position has a limited effect on final optimisation values. Results of the parametric study
show an optimal beam waist between approximately5 < w0 < 10 cm with turbulence. For the
range of beam waist studied, intensity fluctuations do not depend on the size of the beam.

6.2.3 Performances Function of Turbulence Strength

6.2.3.1 Correction Effect on Energy Distribution

An example of short-exposure intensity distribution afterpropagation is presented figure6.19.
It illustrates phase-only iterative correction efficiencyafter 10 iterations. ForC2

n = 10−14 m−2/3

and this particular turbulence realisation, phase correction lead to an improvement fromI0 =
25% to I9 = 41% of the total collected flux in only 10 iterations. Qualitatively, phase correc-
tion is able to increase the collected flux but does not enable, as with the optimal correction, a
concentration of the major party of the flux within the aperture.

6.2.3.2 Influence of Turbulence Strength

We first study the evolution of mean intensity and intensity fluctuations for three turbulence
strength as a function of number of iterationsi (see figure6.20). We observe that correction
efficiency (i.e. final values of both metrics after convergence of the sub-optimal correction)
depends on turbulence strength. This has already been observed for optimal correction as well.
By first consideringC2

n = 10−14 m−2/3, we observe that phase-only iterative correction can
noticeably increase mean PIB. It goes from〈I0〉 = 0.30 to 〈I4〉 = 0.63 after five iterations. This
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110 CHAPTER 6. OPTIMAL CORRECTION AND SUB-OPTIMAL CORRECTION

Figure 6.19: Sub-optimal iterative phase correction influence. Top: short-exposure images with-
out any correction; bottom: short-exposure images with phase correction and10 iterations. Prop-
agation distance10 km, λ = 1.5 µm. From left to right:C2

n = 10−16, 10−15 and10−14 m−2/3.
For same turbulence strength, intensity distributions areobtained with the same turbulence real-
isation. Logarithmic colour scale for better contrast visualisation.

Figure 6.20: Iterative phase correction efficiency. Propagation distance10 km, λ = 1.5 µm and
D = 30 cm. Left: mean PIB function of number of iterations. Right: normalised intensity
fluctuations function of number of iterations.

is equivalent to an average increase of110%. We recall that the value obtained for the optimal
correction was〈I4〉 = 0.82 for the same configuration. Similarly to the optimal correction, we
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SUB-OPTIMAL CORRECTION 111

observe that correction efficiency for mean PIB increases with turbulence strength. However,
link quality is already excellent for the weaker turbulencecases.

If we now look at residual PIB fluctuations, we can observe that they are reduced whatever the
turbulence strength considered. ForC2

n = 10−14 m−2/3, intensity fluctuations go from
σI0

〈I0〉
= 0.5

to
σI4

〈I4〉
= 0.18 after five iterations. This is equivalent to an average decrease of64% (resp.

σI4

〈I4〉
= 0.08, or 84% for optimal correction).
Concerning convergence speed, the first iteration step is always the most efficient. However,

if one iteration is sufficient for weak turbulence and for average PIB, it appears that a larger num-
ber of iterations is required for other cases. This has already been shown for optimal correction.
For all considered cases, it has been noticed that only5 iterations are generally sufficient to reach
convergence. For sub-optimal correction, the final value after convergence is always lower than
the value reached using an optimal correction scheme. This observation is valid both for〈I〉 or
σI

〈I〉
and regardless of turbulence strength.

6.2.3.3 Average Error Rate

In figure 6.21 is presented the impact of sub-optimal correction on mean error rate. This
figure shows results for a turbulent propagation withC2

n = 10−14 m−2/3 (in red) etC2
n =

10−15 m−2/3 (in orange), with and without sub-optimal correction. Curves show for the weakest

Figure 6.21: Average BER evolution function of mean received intensity. Orange:C2
n =

10−15 m−2/3, red: C2
n = 10−14 m−2/3 Dashed lines: without correction; full lines: sub-optimal

correction.

perturbation studied here, that sub-optimal correction can reduce the error rate significantly and
up to levels approximately equal to levels obtained withoutturbulence. ForC2

n = 10−14 m−2/3,
sub-optimal correction cannot sufficiently reduce fluctuations (σI

〈I〉
> 0.1). However, mean BER

is still much lower than without correction and a normalisedoptical power of〈I〉 = 1.2 will
be sufficient to reach〈BER〉 = 10−12. This optical power requires the emitted power to be
doubled because the received intensity after sub-optimal correction convergence is equal to
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112 CHAPTER 6. OPTIMAL CORRECTION AND SUB-OPTIMAL CORRECTION

〈I〉C2
n=10−14 m−2/3 = 0.63. These considerations are to be taken with precautions because de-

limited by the validity domain of the log-normal probability density.

6.2.4 Pupil Diameter Influence on Performance

Similarly to optimal correction, efficiency after convergence of the sub-optimal correction
depends on turbulence strength, pupil diameters, wavelength and propagation distance. The
dimensioning value is still the reduce parameter

√
λL for weak turbulence. We recall that these

effects are purely diffractive without any relation with turbulence. When pupil diameters are too
small, diffraction imposes loses between the two ends of thelink. Oppositely, for an infinitely
large pupil, all the flux is collected by the pupil and correction is unable to improve the already
extremely good link. Figure6.22shows pupil diameter influence for a wavelength ofλ = 1.5 µm
and several propagation regimes.

Figure 6.22: Phase-only sub-optimal correction efficiencyas a function of telescope pupil diam-
eters for several turbulence strength. Propagation distanceL = 10 km andλ = 1.5 µm. Full
lines: sub-optimal correction; dashed lines: no correction. Left: average PIB; right: normalised
intensity fluctuations.

Lets first focus on average PIB〈I〉 as a function of pupil diametersD. We can observe that for
weak perturbations (i.e. diffractive regime), when pupil diameters are smaller thanLF =

√
λL

and greater than2LF , phase-only correction is inefficient and unnecessary relative to 〈I〉. This
result has already been presented for optimal correction

We present figure6.23correction gain as function of pupil size. We recall that thechosen
conventions for PIB gain and intensity fluctuation gain are given by equations6.3and6.4.

Concerning intensity fluctuations, the correction gain forweak turbulence regimes seem to
saturate from approximately3LF . The real gain brought by sub-optimal correction relative to
no correction at all lies betweenLF < D < 3LF . Beyond these limits, phase-only iterative
correction is unnecessary relative to intensity fluctuations. In a strong perturbation regime (σ2

R =
14), fluctuations decrease proportionally toD−1 or equivalently inversely proportionally to the
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SUB-OPTIMAL CORRECTION 113

Figure 6.23: Gain brought by phase-only iterative correction function of telescope pupil diameter
and turbulence strength. Propagation distanceL = 10 km, λ = 1.5 µm. Left: average PIB gain;
right: normalised intensity fluctuations gains.

square root of the number of independent speckles in the pupil. Forσ2
R = 0.14 andσ2

R = 1.4 the
behaviour is different since most of the perturbations are introduced by beam wander.

We can observe that the slopes are similar to the one presented figure6.9for optimal correc-
tion. However, they show much lower values in the present case. For intensity fluctuations, the
gain in PIB stays lower thanGPIB < 1.3 for the entire range of pupil diameters studied. Sub-
optimal correction efficiency relative to propagation without correction decreases as a function
of the optics size.

Concerning intensity fluctuations gain, they present an intermediate area where gain is max-
imal. This area is approximately located between15 cm < D < 40 cm for weak turbulence,
values identified earlier. By selecting a pupil diameter ofD = 30 cm, the intensity fluctuation
gain is approximately14 (resp.19 and8) for optimal correction. For sub-optimal correction gain
drops to3 (resp. 4.5 et 1.7) with turbulence strength ofC2

n = 10−14 m−2/3 (resp.C2
n = 10−15

and 10−16 m−2/3). This clearly illustrates the loss, in terms of correctionquality, when only
controlling the phase part of the emitted field.

6.2.5 Probability Density

Figure 6.24 illustrates PDF modification created by iterative sub-optimal phase-only cor-
rection. The global distribution seems to be modified towards a log-normal distribution as
predicted for weak perturbations or when pupil averaging issufficiently important. Dashed
curves represent a log-normal fit to the simulation curves respectively forC2

n = 10−15 m−2/3

andC2
n = 10−14 m−2/3. The improvement brought by the sub-optimal correction is clearly visi-

ble for all studied turbulence strengths and when comparingto a propagation without correction.
For comparison see figure2.16. However, discrepancies with the log-normal distribution, rel-
atively reduced for the first case, are fairly important for strong turbulence conditions and that
despite the correction.
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114 CHAPTER 6. OPTIMAL CORRECTION AND SUB-OPTIMAL CORRECTION

Figure 6.24: PIB histograms for various turbulence strength with sub-optimal correction. Prop-
agation distanceL = 10 km, λ = 1.5 µm and pupil diameterD = 30 cm. Dashed curves
represent a log-normal fit to the simulated data.

6.3 Conclusion

In this chapter, we have re-interpreted Bachers work in order to understand the ultimate limits
of adaptive optics correction for FSO systems [Schwartz-p-09]. This study has been performed in
the framework of the Fortune43G project, a typical example of long-distance endo-atmospheric
propagation in the near infrared. The analysis carried out in this chapter enabled us to iden-
tify phase and amplitude (i.e. full-wave) iterative correction as the optimal correction between
two telescopes composing an optical atmospheric link. It shows that optimal control efficiency
goes largely beyond weak perturbation regime. Enabling both an increase in mean PIB and an
important reduction in intensity fluctuations, it appears to be well adapted to FSO applications.
Correction performance has been evaluated according to those two criterions and to the mean
bit error rate of the link. We have observed that correction performance is in particular limited
by pupil truncation and turbulence strength. In the diffractive regime, that is when the pupil
diameterD >

√
λL, it is possible to create a propagation mode. A propagation mode is tempo-

rally and spatially invariant. In addition, we have established that when the coupling coefficient
between the two telescopes is already excellent without correction (i.e. weak perturbations and
D >

√
λL), the improvement brought by correction is small in terms ofaverage PIB but can

be quite substantial for residual intensity fluctuations (afactor of approximately10). For strong
perturbations (σ2

R > 1) correction is able to improve both values simultaneously.However,
when turbulence increases even more (i.e. saturation regime), only PIB improves significantly.
Intensity fluctuations on the other hand are also reduced butto a lesser extent.

To the best of our knowledge, no optimal correction implementation has yet been proposed.
Its study has been limited to a theoretical examination only. Nevertheless, it enables us to estab-
lish theoretical limitations in terms of correction quality that we hope to achieve with adaptive
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CONCLUSION 115

optics correction. The fundamental reason for the lack of implementation is linked to the diffi-
culty of jointly controlling phase and amplitude of the emitted field. This argument led to the
study of the so-called sub-optimal correction limited to a phase-only control of the field. This
chapter enabled us to characterise the Gaussian beam parameters optimising the optical link qual-
ity with atmospheric turbulence and adaptive optics correction. We have observed, regardless of
the poorer performance of the phase-only correction relative to the optimal correction, that is
enables a clear improvement both in terms of PIB and intensity fluctuations. Sub-optimal cor-
rection can be used to establish theoretical limits of a correction limited to the phase part of the
field in the pupil plane. In particular, we have shown that:

• Pupil plane phase modification can be used to stabilise intensity distribution after propa-
gation over a long distance.

• Phase-only correction is a less powerful correction strategy than phase and amplitude cor-
rection. However, it can effectively be used to monotonously increase mean received PIB
(resp. decrease intensity fluctuations).

• Improvement (gain) brought by the correction is proportional to pupil size and turbulence
strengthC2

n.

However, in strong perturbation regimes, phase-only correction does not enable a sufficient re-
duction in residual intensity fluctuations. We have previously set the acceptable intensity fluctu-
ation limit to σI

〈I〉
= 0.1. For a typical pupil diameter ofD = 30 cm, this limit is not achievable.

It is necessary to increase thes diameter toD ≃ 40 cm to keep the performance above the de-
sired threshold. In the two following chapters, we will study various classical AO configurations
implementing phase-only correction.
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Chapter 7

Correction on Counter-Propagating Laser
beam Probe
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In the field of adaptive optics corrected atmospheric optical link, the classical approach con-
sists in using a counter-propagating laser beam probe fixed at the other end of the link. The wave-
front is analysed by the emitting telescope using the counter-propagating laser. This method is a
classical AO implementation with a cooperative point source on which wavefront measurement
is performed. In the theoretical work presented paragraph6.2, we have shown that iterative phase
correction, or sub-optimal correction, can be used to increase link quality significantly. The first
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118 CHAPTER 7. COUNTER-PROPAGATING BEAM CORRECTION

iteration was identified as the most effective with regards to the studied metrics〈I〉 and σI

〈I〉
. Phase

correction on a counter-propagating beam presents the double advantage of making the AO loop
bandwidth requirements less difficult while suffering onlymarginally from performance degra-
dation relative to the full sub-optimal correction. Bandwidth requirements relaxation comes from
the fact that only one iteration is necessary between emitter and receiver to reach the desired so-
lution. The goal of this chapter is to understand limitations imposed by AO correction on a laser
beam probe and analyse its performance relative to optical communication systems.

We will first study the expected performance for a perfect phase control without any itera-
tions using a divergent counter-propagating laser beam. This type of correction requires a exact
knowledge of the received phase and the ability to reproduceits shape perfectly. Secondly, we
compare these results with correction obtained with SH wavefront sensor measurements (para-
graph7.2). Results are compared with two different configurations: perfect non-iterative correc-
tion on counter-propagating beam (paragraph7.1) and iterative phase correction (paragraph7.4).
We show that the improvement brought by AO correction is limited in strong perturbations. This
limitation is mainly due to scintillation. We suggest, paragraph7.3, a simple implementation that
can partially overcome this limitation by using several counter-propagating laser beams instead
of a single one.

7.1 Counter-Propagating Beam Correction using True Phase

In this paragraph, we present results of correction using a counter-propagating laser beam
as presented paragraph4.2.1and by supposing perfect knowledge of the phase of the complex
field Us (r, z = 0). We remind figure7.1 the correction diagram, specifying the different laser
beams used and positions of telescope 1 and 2. We consider, asa first approximation, that

U0
(r)

U
1−>2

ASO

RTC

Télescope n°1

Optique Adaptative

Télescope n°2

TURBULENCE

Détecteur

EmetteurEmetteur

Détecteur

0
(r)ϕ

Us

MD1

(r,z=0) (r’,z=L)

Faisceau Télécom Faisceau Sonde

Figure 7.1: Diagram of phase correction using a counter-propagated laser beam.

the adaptive optics system located at telescope 1 (also called emitting telescope) can be used
to correct phase perfectly. Various errors introduced by the use of a SH wavefront sensor (see
paragraph7.2.1.1) are neglected. In this paragraph we present the probe beam and telecom beam
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COUNTER-PROPAGATING BEAM CORRECTION: TRUE PHASE CASE 119

geometry optimisation (cf. §7.1.1). The influence of pupil diameter on the metrics〈I〉 and σI

〈I〉

are discussed paragraph7.2.2.2.

7.1.1 Laser Beam Geometry

7.1.1.1 Probe Beam

In theory and in this configuration, the probe should be a spherical beam. In practice, the
beam divergence is limited by energetic considerations. The beam divergence must be suffi-
ciently large to ensure that an important part of the flux arrives at the wavefront sensor detector
in T1. The probe beam is not corrected and will directly be affected by turbulence. It will mainly
suffer from beam wander. When the beam wander is too strong, the probe beam will not be able
to reach the emission pupil. Wavefront sensing will be impossible. In order to overcome this
problem, the use of a very divergent beam is necessary to cover a large area at the level of the
emitting pupil. This area must be sufficiently large so that,even with atmospheric turbulence, the
spatially limited beam arrives at the other end of the communication link. We choose the diver-
gence of the beamUs such that its diameter after propagation in free-space without atmospheric
turbulence iswz=0 (Us) = 2 m. This approximately corresponds to a emitting beam radiusof
wz=L (Us) = 5 mm.

Moreover, for a spherical geometry, the beam is infinitely small nearT2. This particular
geometry can be justified by the fact that we know that turbulence creating scintillation on
U1→2 (r′, z = L) nearT2 is located near telescopeT1. Phase perturbations nearT2 mainly leads
to phase modifications but little scintillation. Emitting abeamUs (r′, z = L) of small diameter
will only suffer marginally from perturbations located in the vicinity of T2. We are trying here
to approximate a spherical wave by a Gaussian beam with limited waist size. Figure7.2presents
laser beam probe and telecom beam geometry as well as the impact of turbulence onU1→2 as a
function of propagation distance. The beam carrying the information to be transmitted from tele-

sU

z

Us

Télescope 1

U1    2

1    2U

Turbulence provoquantTurbulence provoquant
des modifications de phaseprincipalement de la scintillation

Télescope 2

Figure 7.2: Geometry of the probe beamUs, telecom beamU1→2 and impact of the turbulence
position relative to the telescopes on the telecom beam.
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120 CHAPTER 7. COUNTER-PROPAGATING BEAM CORRECTION

scope 1 to telescope 2 (telecom beam) must have the maximum ofits energy within the reception
aperture. Its divergence must therefore be limited. We willconsider in the rest of the document
that the beam waist is in the planez = 0.

7.1.1.2 Optimisation of Telecom Beam Parameters

In this paragraph we search for the telecom beam waist value that optimises both〈I〉 and
σI

〈I〉
by using a perfect phase correction. Optimisation is preformed with an aperture diameter of

D = 30 cm, a propagation distance ofL = 10 km and a wavelength ofλ = 1.5 µm. Figure7.3
presents the optimisation results with these propagation parameters and phase-only correction.
The correction phase used is the opposite of the received laser beam probe phase. For an FSO sys-

Figure 7.3: Gaussian beam parameters optimisation for a perfect phase correction using a
counter-propagating beam. Left: mean PIB, right : normalised intensity fluctuations.

tem using propagation through atmospheric turbulence, it is important to jointly optimise mean
intensity and intensity fluctuations. It can be noticed thatsmall telecom beams result in strong
flux loses due to geometrical truncation by telescopeT2. In fact, for beamswz=0 (U1→2) . 7 cm
divergence is such that flux losses is important even for low turbulence. From a certain beam size
(approximatelyw0 = 9 cm) the loss is reduced regardless of turbulence strength. For larger beam
size and for the range of beam sizes studied, diffraction effects by the edges of telescopeT1 are
negligible. For the remainder of the document we will use a telecom beam withw0 = 10 cm.
This result is similar to the optimisation results obtainedfor optimal and sub-optimal corrections.

7.1.2 Influence of Pupil Diameter

7.1.2.1 Example of Correction Efficiency

Figure7.4 gives an example of phase-only correction using a counter-propagating beam. It
shows short-exposure images both without any correction (upper part of the figure) and with a
perfect phase correction (lower part of the figure) for threedifferent turbulence strengths. For
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COUNTER-PROPAGATING BEAM CORRECTION: TRUE PHASE CASE 121

same turbulence strengths, images with and without correction are obtained using the same tur-
bulence realisation. A direct comparison between uncorrected and corrected images is there-
fore possible. For these specific turbulence realisations and for a turbulence strength ofC2

n =

Figure 7.4: Influence of perfect phase correction. Top: short-exposure images without cor-
rection, bottom: short-exposure images with perfect phasecorrection. From left to right:
C2
n = 10−16 m−2/3, C2

n = 10−15 m−2/3 andC2
n = 10−14 m−2/3. Propagation distanceL = 10 km,

wavelengthλ = 1.5 µm and pupil diameterD = 30 cm. Logarithmic colour scale.

10−14 m−2/3, the total intensity integrated of the pupil aperture ofD = 30 cm isIwithout Corr =
0.27 in absence of correction andICorr = 0.39 after perfect phase correction. TheC2

n =
10−15 m−2/3 case leads to an increase ofIWithout Corr = 0.90 to ICorr = 0.94. For the weak-
est turbulence strength studied, the intensity goes fromIWithout Corr = 0.95 to ICorr = 0.99 after
correction.

7.1.2.2 Influence of Pupil Diameter

Figure7.5 represents the quality evolution for a perfect phase correction using a counter-
propagating laser probe. Several turbulence strengths andpupil diameters are studied. On the
left hand side of figure7.5 is studied mean PIB and on the right hand side normalised intensity
fluctuations both using perfect phase correction. We recallthat the Gaussian beam used has been
optimised for a pupil diameter ofD = 30 cm.

As presented in chapter6 when the pupil diameterD is too small, the improvement brought
by correction is small. In the diffractive regime (σ2

R = 0.14), the limit when correction seems
superfluous relative to〈I〉 is approximately located around2

√
λL. This value has already been

identified using optimal and sub-optimal corrections. For intermediate regimes, correction is
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122 CHAPTER 7. CORRECTION USING A COUNTER-PROPAGATING BEAM

Figure 7.5: Correction quality evolution for a perfect phase correction using a counter-
propagating laser beam probe. Different turbulence strengths and pupil diameters are studied.
Left: Mean Power in the Bucket, right: normalised intensityfluctuations. Solid lines: with
perfect phase correction ; dashed lines: without any correction.

unnecessary aboveD ≃ 35 cm. Forσ2
R = 14 the limit is located aroundD < 55 cm. We recall

that λL
πρ0

≃ 50 cm for the studied strong turbulence case. Above this limit mean PIB cannot be
improved by correction.

If we set the acceptable limit in terms of intensity fluctuations to σI

〈I〉
= 0.1, as identified

in introduction chapters, this value cannot actually be reached for the studied pupil diameters
if C2

n = 10−14 m−2/3. Correction is not sufficient to achieve this value. It is necessary to use
a larger telescope withD > 55 cm to reach this goal. Unfortunately, for these diameters the
improvement brought by phase-only correction is minimal when looking at mean PIB. For inter-
mediate turbulence strength (i.e.C2

n = 10−15 m−2/3), pupil diameters of10 < D < 45 cm can be
used to reach the desired fluctuations value. The most interesting area where correction enable
a decrease below theσI

〈I〉
= 0.1 threshold is between20 < D < 30 cm forC2

n = 10−15 m−2/3.
AboveD = 30 cm no correction is required as the optical link is already excellent.

As a conclusion, even by using a perfect wavefront measurement and control, the range
where non-iterative methods can be used seems limited. Thistechnique should be seen more as a
method to increase working range of optical communication links in an intermediate perturbation
regime.

7.2 Correction Using A Counter-Propagating Beam: Shack-
Hartmann Case

So far we has only estimated performance (either iteratively or not) by considering perfect
both the wavefront measurement and the correction systems.Adaptive optics requires at the
minimum a deformable mirror and a wavefront sensor capable of reconstructing the incoming
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CORRECTION USING A COUNTER-PROPAGATING BEAM : SHACK-HARTMANN CASE 123

phase. In this paragraph we will mainly concentrate on the impact of wavefront reconstruction
on phase-only correction (§7.2.2). Firstly, we describe the correction system (§7.2.1) and in
particular the choice and the geometry of Shack-Hartmann wavefront sensor. In addition, we give
the hypotheses used for wavefront reconstruction in order to undertake the necessary numerical
simulations.

7.2.1 Description of the Correction System

7.2.1.1 Errors Analysis

Correction quality is contaminated by errors that do not enable us to perfectly reconstruct
the true wavefront (i.e. perfect phase). The residual errorσ2

res between the true phase and the
reconstructed phase is the sum of several errors:

σ2
res = σ2

fit + σ2
alias + σ2

temp + σ2
noise + σ2

scintillation (7.1)

With:

• σ2
fit: AO can only compensate for a finite number of spatial frequencies. Spatial under-

sampling of the wavefront leads to a fitting error.

• σ2
alias: The Shack-Hartmann wavefront sensor (i.e. SH-WFS) is sensitive to high spatial

frequencies creating an aliasing error of the high frequencies into the lower measured ones.

• σ2
temp: Temporal errors is due to the limited bandwidth of the AO loop; that is that tur-

bulence evolves between the time when the slopes measurements are made and the time
when the voltage is applied to the DM.

• σ2
noise: Slope measurement is affected by noise (photon, electronic, detector . . . ).

• σ2
scintillation: Wavefront measurements are affected by scintillation creating scintillation

error.

In order to simplify the study and discriminate between different errors impacting correction
quality, we will neglect temporal error of the AO loop, that is we consider an infinite bandwidth:
σ2
temp = 0. In addition, as mentioned in the previous chapter, we will also neglect and only for

the time being measurement noise:σ2
noise = 0. Only spatial under-sampling of the wavefront

σ2
fit, aliasingσ2

alias and scintillationσ2
scintillation will be taken into account for the time being.

7.2.1.2 Selection of the Wavefront Sensor

A large number of wavefront sensors exists. In addition, foratmospheric free space com-
munication links, several WFSs can potentially be used. Curvature wavefront sensor, Shack-
Hartmann or phase diversity techniques are possible options. Phase diversity requires heavy
calculations and is currently ill-adapted to FSOs. We will concentrate on SH-WFS for this study.
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124 CHAPTER 7. CORRECTION USING A COUNTER-PROPAGATING BEAM

This type of wavefront sensor is the most commonly used wavefront sensor in current AO sys-
tems and its limitations are representatives of most pupil plan WFSs. The limited number of re-
constructed modes (Zernikes) and in particular the influence of scintillation of the reconstructed
phase is studied in the following chapters.

7.2.1.3 Wavefront Sensor Geometry

The conventional rule for characterising the SH-WFS in AO isdone by choosing the lenslets
diameter to be equal tor0 wherer0 is the Fried diameter. This leads to a value of2 cm (resp.
8.3 cm) for turbulence ofC2

n = 10−14 m−2/3 (resp.10−15 m−2/3). The number of lenslets depends
on the number of mode one wants to correct (aliasing and fitting error) and scintillation error.
The final choice will also depend of the correction strategy (iterative or not). We consider that
the correction is limited to the first38 modes. A justification of this choice will be presented
paragraph7.3.6. A 7 × 7 lenslets SH-WFS array will be used which enables to reconstruct 38
mode.7 × 7 lenslets is the minimum number to achieve an acceptableσ2

fit andσ2
alias. The SH-

WFS is presented figure7.6. The greyed area represents the strongly truncated lenslets by the
pupil. Measurements for these lenslets won’t be taken into account.
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Figure 7.6: Wavefront sensor geometry and pupil imprint with deactivated lenslets.

7.2.1.4 Wavefront Reconstruction

SH-WFS slope measurements are performed by measuring displacement of focal images
observed at the focus of each lenslets. These measurements are affected by detector and photon
noise. Local slopes measurement of the wavefront is measured by centre-of-gravity (COG) of
non noisy images. Temporal error is not taken into account.

LetsM be the measurement slope matrix. When the influence of scintillation is negligible
on COG measurements, the operatorM is linear. The slopes vectors can then be linked to the
phaseϕ of the field in the lenslet by:

s = Mϕ (7.2)

Going from slopes to phase is performed by the generalised inverse of matrixM. M represents
here the interaction matrix of Zernike modes on SH slopes.
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CORRECTION USING A COUNTER-PROPAGATING BEAM : SHACK-HARTMANN CASE 125

Phase reconstruction is affected by scintillation (some active lenslets can randomly over time
receive virtually no flux) and by issues related to COG measurements in strong perturbations
regimes. Figure7.7 shows the influence of turbulence on SH images for different turbulence
strengths. Methods have been developed [Nicolle-a-04] to be more robust to these effects.

Figure 7.7: Influence of turbulence strength of SH noiselessimages on a single turbulence oc-
currence. Left:C2

n = 10−16 m−2/3, centre:C2
n = 10−14 m−2/3 and right:C2

n = 10−14 m−2/3. The
laser beam is divergent.

7.2.2 Wavefront Sensing on Counter-propagating Laser BeamProbe

After having studied perfect true phase correction, we now examine the same correction
strategy when phase perturbations estimation is performedby a SH-WFS with a finite number of
modes. We recall that this is realised by a SH-WFS with a7×7 lenslets enabling the reconstruc-
tion of the first38 Zernike modes.

7.2.2.1 Optimisation of Telecom Laser Beam Parameters

Similarly to perfect wavefront correction, parameters of the telecom beam have been cho-
sen to optimise〈I〉 and σI

〈I〉
. The optimisation is presented figure7.3 using a SH-WFS for the

wavefront reconstruction. It can be seen from figure7.8 that the optimal parameters identified
previously for a perfect phase correction are still valid for SH-WFS limited to the reconstruction
of the first38 Zernike modes. Similarly to perfect phase correction, we use a beam waist of
w0 = 10 cm in radius for the telecom beam. The waist is still in the pupil.

7.2.2.2 Influence of the Pupil Diameter

We present figure7.9 the evolution of correction quality for a phase-only correction based
on a counter-propagating laser beam as a function of turbulence strength and pupil diameter.
Propagation distance isL = 10 km and wavelength is set toλ = 1.5 µm. We study both mean
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126 CHAPTER 7. CORRECTION USING A COUNTER-PROPAGATING BEAM

Figure 7.8: Correction quality function of the Gaussian beam waist size using a phase-only
correction of a counter-propagating beam. Left: Mean Powerin the Bucket, right: normalised
intensity fluctuations.

PIB (see left hand side of the figure) and normalised intensity fluctuations (see right hand side of
the figure).

Figure 7.9: Evolution of correction quality for a phase-only correction based on a counter-
propagating laser beam as a function of turbulence strengthand pupil diameter. Left: Mean
Power in the Bucket, right: normalised intensity fluctuations. Correction of the first38
Zernike modes. Solid line: with phase-only correction, dashed lines: without any correction.
w0 = 10 cm.

Figure 7.10 shows the gain in terms of mean PIB and intensity fluctuationsusing phase-
only correction on a counter-propagating probe and a finite number of Zernike modes. For the
C2
n = 10−16 m−2/3 case and for both correction cases (i.e. perfect phase correction and phase

correction using a SH-WFS) as expected, it can be seen that for mean PIB the gain brought by
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7.3. CORRECTION USING A COUNTER-PROPAGATING BEAM: MULTI-PROBE
ANALYSIS 127

Figure 7.10: Gain of phase-only correction on a counter-propagating probe and a finite number
of Zernike modes function of turbulence and pupil diameter.Left: mean Power in the Bucket,
right: normalised intensity fluctuations. Propagation distanceL = 10 km andλ = 1.5 µm. Solid
lines: correction on an infinite number of Zernike modes, dashed lines: correction of the first38
Zernike modes.

AO in minimal (GF luct ≃ 1). For theC2
n = 10−15 m−2/3 andC2

n = 10−14 m−2/3 cases the gain
of the SH-WFS is significantly less than with perfect phase measurement. However, conclusions
drawn from perfect phase measurement and correction are still valid here. ForC2

n = 10−14 m−2/3

AO does not bring sufficient improvement to reach to requiredFSO system performance of a bit
error rate of10−12. ForC2

n = 10−15 m−2/3 AO brings a small gain that can be used to increase
the usability range of FSO systems for these typical conditions.

7.2.2.3 Conclusion

The impact of wavefront sensing techniques on correction performance is small. This con-
clusion has two explications:

• the AO performance for perfect non-iterative phase-only correction is mediocre;

• the influence or measurement noise has not been taken into account.

We will now concentrate on the impact of noisy wavefront measurement. Secondly, we will
study the impact of wavefront measurement of iterative correction.

7.3 Correction Using a Counter-Propagating Beam: Multi-
Probe Analysis

We did not take into account detection noise effects on wavefront measurement while sim-
ulating a non-iterative phase-only correction using a counter-propagating beam. In practice,
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128 CHAPTER 7. CORRECTION USING A COUNTER-PROPAGATING BEAM

scintillation considerably reduces signal levels on some of the lenslets making noise levels no
longer acceptable.

7.3.1 Correction Principal

In order to circumvent problems related to SH-WFS measurements we propose to take advan-
tage of angular decorrelation of scintillation, also called scintillation anisoplanatism, by placing
several laser beam probes [Kim-p-97, Polynkin-a-07, Schmidt-p-09] distributed over the field of
view. The idea is to average scintillation effects in the field of view (FoV) for each lenslet. Phase
correction diagram using multi-probe counter-propagation is presented figure7.11. Probes are
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Figure 7.11: Diagram of phase correction using multi-probecounter-propagation.

depicted in blue on the diagram. We have previously seen thatscintillation is mainly caused
by phase perturbations close to the source. The goal of the wavefront measurement is here to
measure perturbations close toT1 that are seen by all laser beam probes in the same way. This
configuration can be seen as similar to ground layer adaptiveoptics (GLAO) used in astronomy.
In order to optimise beam density in the plan of the receptionpupil, we use six beams distributed
in circle around the optical axis and one single laser on the optical axis. The geometry is de-
scribed in figure7.12. We therefore use7 counter-propagating laser beam probes in the pupil
plan of telescope2. LetRc be the distance between the optical axis and the position of the outer
laser beams.

7.3.2 Optimal Seperation Distance Between Laser Probes

Spatial statistics of turbulence effects will determine the optimal distance between the probes
in order to achieve the best averaging effect. The more we separate the beams, the more the
turbulence effects are decorrelated and scintillation is reduced. However, as we move the beam
outwards, not only scintillation effects of the different beams become decorrelated but phase
effects also become decorrelated. A compromise is requiredbetween phase anisoplanatism and
scintillation anisoplanatism that is between angular decorrelation of phase effects and angular
decorrelation of scintillation effects. Each laser probe will pass through a slightly different part

te
l-0

07
71

27
6,

 v
er

si
on

 1
 - 

8 
Ja

n 
20

13



CORRECTION USING A COUNTER-PROPAGATING BEAM : MULTI -PROBE ANALYSIS 129

Pupille
Faisceaux Sondes

Télescope n°2

Rc

Figure 7.12: Distribution of laser probes.

of atmospheric turbulence (see. figure7.13). The SH-WFS will only be sensitive to part of
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Figure 7.13: Common turbulence volume for each beam probe. Green: common turbulence,
blue: probes, red: telecom beam, yellow: non-common turbulence.

the phase perturbation along the optical path and will not beable to correct it all. This area is
determined by the turbulence area where all probes pass through (green area on figure). Phase
effects in the non-common area (yellow part on the figure) will be averaged and will not be
measured. Before saturation the following inequality is true: r0 (spherical waves) > α

√
λL

(typicallyα ≃ 3), with:

• r0: the characteristic size of phase angular decorrelation,

•
√
λL: the characteristic size of intensity angular decorrelation.

After saturation,r0 becomes the characteristic angular decorrelation size of both amplitude and
phase. As we will only focus on the non-saturated case (C2

n = 10−15 m−2/3), it is best to separate
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130 CHAPTER 7. CORRECTION USING A COUNTER-PROPAGATING BEAM

sources by a value aroundr0. Numerical simulations are necessary to evaluate the actual gain of
the correction.

7.3.3 Signal-to-Noise Ratio

The calculation of centre of gravity (COG) in the focal plan of each SH-WFS lenslets is
impacted by noise. We haven’t taken its impact so far. This paragraph is dedicated to its study.
The signal-to-noise ratio (SNR) is defined by:

SNR =
Imax

√

σ2
ph + σ2

d

, (7.3)

whereImax is the maximal value received by pixel in the lenslet withoutany atmospheric turbu-
lence,σ2

ph is the photon noise variance andσ2
d the detector noise variance. In order to improve

COG measurements in the presence of noise and scintillation, we will use the approach proposed
by Nicolle [Nicolle-a-04]. It consists in an iterative weighted COG estimation.

7.3.4 Performances as Function of the Distance Between BeamProbes

In order to quantify the optimal distance between sources, numerical simulations were under
taken with the simulation code PILOT. The pupil diameter is set toD = 25 cm. Figure7.14
illustrates typical intensity distribution in the reception pupil plan for cases without any atmo-
spheric turbulence (see left hand side of figure), with non-iterative perfect correction of the true
phase (see central part) and SH-WFS correction (see right hand part of figure). ARc = 9 cm
separation between the sources has been used for this particular illustration with on signal-to-
noise ratio ofSNR = 50 for C2

n = 10−14m−2/3. This illustration clearly shows the efficiency of
the perfect phase correction on energy concentration and the degradation when using a SH-WFS.
The turbulence used is the same for the three studied cases.

Figure 7.14: Influence of multi-probes on correction quality. Left: without any correction,
middle: perfect phase correction, right: SH correction with Rc = 9 cm, SNR = 50 and
C2
n = 1.10−14.
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CORRECTION USING A COUNTER-PROPAGATING BEAM : MULTI -PROBE ANALYSIS 131

The SH correction efficiency as a function of the radiusRc between laser beam sources is pre-
sented figure7.15for different SNRs and turbulence strength. Simple propagation without any
correction is noted ‘No correction’ and non-iterative truephase correction noted ‘Phase only’ on
the figure. These two curves set the minimal and maximal limits of phase-only correction. With
a strong signal-to-noise ratio (in green), the distanceRc does not have a strong impact on the
studied metrics and for weak to intermediate turbulence levels. Conversely, when turbulence lev-
els are high, an optimal separation between the laser probesappears optimising both〈I〉 and σI

〈I〉
.

Plots help us locate the optimal separation around4 < Rc < 9 cm. The SH-WFS correction can
lead to correction quality as least as good (and some time even better for intermediate turbulence
strengths) as with perfect phase correction. This is possible only for SNR level superior to25
for C2

n = 10−15 m−2/3 and superior to50 for C2
n = 10−14 m−2/3. When SNR decreases, the link

quality will naturally also decrease. However, even if no optimal beam separation appears for
weak turbulence regimes, it appears thatRc has an impact on the studied metrics. ForSNR = 10
(in blue on the figure) this optimum is located approximatelybetween7 < Rc < 9 cm. An in-
crease in the number of laser probes in addition to an optimumseparation (7 < Rc < 9 cm) can
lead to an improvement in correction quality.

7.3.5 Probability Density Function

By modifying the separation between sources, we have modified mean intensity and inten-
sity fluctuations. Source separation will therefore also have an impact on intensity histograms
received at the level of each lenslets. Figure7.16 illustrates intensity histograms for the three
studied turbulence levels and for different source separation. Five different separation distances
are studied:3 cm, 6 cm, 10 cm, 14 cm and17 cm. Gain is clearly visible when the separation
goes fromRc = 3 cm to a separation ofRc = 6 cm.

7.3.6 Influence of the Number of Corrected Modes

In the following paragraph influence of the number of corrected modes on both metrics will
be studied. Decrease of the influence of scintillation in wavefront measurement is achieved by
multi-beam spatial diversity. The SH-WFS simulation measurement model takes into account
errors due to scintillation and aliasing. Other errors are neglected.

Figure7.17the two metrics are plotted for corrections respectively reconstructing 2 (tip-tilt),
3 (tip-tilt and focus), 20, 35 and 54 Zernike modes. We suppose that the number of SH lenslets is
constant and equal to8×8. In order of have an idea of the AO correction performance results are
compared to simulations without any correction (crosses) and perfect phase correction (squares).
It appears that with a sufficient number of corrected modes (over 20), AO correction and perfect
phase correction can lead to similar performance.

In order to quantify the PIB improvement brought by AO and confront it to perfect phase
correction (on-axis source), we define a mean PIB relative gain Gav and an intensity fluctuation
gainGstdev as:

Gav =
〈I〉 − 〈I〉Without Corr

〈I〉ϕperfect
− 〈I〉Without Corr

(7.4)
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132 CHAPTER 7. CORRECTION USING A COUNTER-PROPAGATING BEAM

Figure 7.15: Correction efficient as a function of the circleof radiusRc (in meters), SNR levels
and turbulence strength. Left: mean PIB〈I〉, right: intensity fluctuationsσI

〈I〉
.
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CORRECTION USING A COUNTER-PROPAGATING BEAM : MULTI -PROBE ANALYSIS 133

Figure 7.16: Illustration of intensity histograms for the three studied turbulence levels and for
different source separation. From left to right:C2

n = 1.10−16 m−2/3, C2
n = 1.10−15 m−2/3 and

C2
n = 1.10−14 m−2/3. The x-axis is given in logarithm scale o fI in arbitrary units.

Figure 7.17: Influence of the number of correction Zernike modes. Left: mean Power in the
Bucket (PIB), right: normalised intensity fluctuations. Propagation distanceL = 10 km, λ =
1.5 µm andD = 25 cm.

Gsdtdev =
σI/ 〈I〉 − σIWithout Corr/ 〈I〉Without Corr

σIϕperfect
/ 〈I〉ϕperfect

− σIWithout Corr/ 〈I〉Without Corr

, (7.5)

Where the indexWithout Corrindicates the value without correction andϕperfect a perfect phase
correction. Results are presented figure7.18. This figure demonstrates that for most cases a
correction of the first35 modes is sufficient. In addition, it can be observed that for intermediate
C2
n the relative gain is superior to1. This phenomenon has already been observed several times

in this paragraph and in paragraph7.2.2.2. The average measurement on different points, even
degraded by the WFS, can result in a better performance that one obtained with an on-axis
source. If the number of corrected modes is increases to54, one obtains similar results to those
previously obtained with35. This is the reason why the previous study (see paragraph7.2) has
been limited to the reconstruction of only the first38 Zernike modes.
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134 CHAPTER 7. CORRECTION ONCOUNTER-PROPAGATING LASER BEAM PROBE

Figure 7.18: Relative gain brought by AO correction as function of the number of corrected
Zernike modes. Left: mean Power in the Bucket (PIB), right: normalised intensity fluctuations.
Propagation distanceL = 10 km,λ = 1.5 µm andD = 25 cm.

7.3.7 Correction Stability to Temporal Variation

In a realistic implementation, winds perpendicular to the beam propagation axisV⊥, also
called transverse winds, creates a temporal evolution of phase perturbations. In previous cases,
we considered turbulence to be static, or similarly that theadaptive optics sampling frequency
(fe) was infinite. Transverse wind, or again similarly samplingfrequency, is an essential param-
eter to take into account relative to correction quality when designing an AO system along with
static turbulence characteristics (C2

n, r0, ...). This paragraph tries to demonstrates the importance
of fe in an AO loop.

Let t = t0 be the time when phase perturbations of the incoming electromagnetic field are
measured andt = t1 the time when phase correction is applied. Phase perturbations at the ori-
gin of the field perturbation att = t0 can be totally decorrelated of the perturbations att = t1
when correction is applied. Figure7.19illustrates the pupil footprint during phase perturbation
evolution under the influence of transverse winds. In the least favourable case (t = t′1), phase
perturbations are extremely decorrelated from those takenduring measurement att = t′0. Apply-
ing a correction actually adds new phase perturbations which in return decreases the link quality.

In order to study the impact of temporal error (σ2
temp) on mean PIB and intensity fluctuations,

we present figure7.20the change of these metrics as a function of the AO sampling frequency.
For comparison purposes, results obtained without any temporal errors (‘SH no error’ case) are
also plotted. AV⊥ = 10 m.s−1 wind is considered with a pupil diameter ofD = 25 cm. When the
first 35 Zernike modes are corrected, temporal errors are negligible as soon as the sampling fre-
quency is higher than4 kHz forC2

n = 10−15m−2/3. This study shows the importance of sampling
frequency on the correction quality of an OA system. This is the reason wavefront reconstruction
based systems are usually favoured relative to iterative correction. Iterative usually have much
higher constrains in terms of sampling frequency.
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7.4. PHASE-ONLY ITERATIVE CORRECTION 135

t = t 0 t = t t = t’11

Figure 7.19: Pupil imprint during phase perturbation evolution when transverse winds modifies
the phase perturbation distribution along the propagationpath between timet0 when the phase
measurement is done andt1 when the correction is actually applied.

Figure 7.20: Influence of temporal errors on mean PIB and intensity fluctuations. Top: tip-
tilt only correction, bottom: correction of the first35 Zernike modes. Left: mean PIB, right:
normalised intensity fluctuations. Propagation distanceL = 10 km, λ = 1.5 µm, D = 25 cm
and a transverse wind ofV⊥ = 10 m.s−1.

7.4 Phase-Only Iterative Correction

In this paragraph is presented results relative to phase-only iterative correction using wave-
front reconstruction. This correction is similar to sub-optimal correction with the difference that
the phase used for correction is not the true phase but the reconstructed phase. We address the
question of the influence of pupil size and adaptive optics bandwidth. Noise effects are neglected.

te
l-0

07
71

27
6,

 v
er

si
on

 1
 - 

8 
Ja

n 
20

13



136 CHAPTER 7. CORRECTION ONCOUNTER-PROPAGATING LASER BEAM PROBE

7.4.0.1 Influence of the Pupil Size

A 7 × 7 SH-WFS measurement, reconstructing38 mode with neither temporal nor spatial
errors are considered. The SH-WFS is identical to the one used for count-propagating probe sys-
tem. This enables us to make a direct comparison with identical system complexities. Optimisa-
tion of the number of reconstructed modes for〈I〉 and σI

〈I〉
needs to be undertaken independently

for sub-optimal correction. Figure7.21presents performance function of pupil diameter. Results

Figure 7.21: Efficiency (top) and gain (bottom) of iterativephase-only correction function of
pupil diameter for different turbulence strengths. propagation distance10 km, λ = 1.5 µm.
Statistics were calculated over 300 propagations. Solid lines: correction on38 Zernike modes,
dashed lines: no correction. Left: PIB, right: normalised intensity fluctuations.

obtained are close to those obtained with sub-optimal correction in the case of weak perturba-
tions. Degradation brought by SH-WFS measurements and by the limited number of corrected
modes is relatively small.

Only intermediate turbulent regimes show an interesting prospect relative to phase-only iter-
ative correction. In terms of intensity fluctuations gainGF luct, it grows up to a factor5 for pupil
diameters of approximately25 cm. This is even more interesting in that it enables fluctuations
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PHASE-ONLY ITERATIVE CORRECTION 137

level to go belowσI

〈I〉
= 0.1 after correction. By comparing these results with figure6.23, it can

be observed that the gain is similar to the one obtained with perfect phase correction and for this
turbulence strength. This indicates quality losses introduced by the SH-WFS are negligible in
this case. It therefore seems possible to neglect scintillation and under-sampling effects for the
intermediate turbulent regimes. ForC2

n = 10−14 m−2/3, improvement is not sufficient to consider
using in FSO systems. This correction method looses all interest in strong perturbations.

7.4.0.2 Probability Density Functions

Figure7.22shows probability density functions (PDF) for different pupil diameters. They
are to be compared with figure6.24for perfect phase correction. Strong correction quality degra-
dation can be seen for strong turbulence confirming previousresults obtained on mean PIB and
intensity fluctuations. Weak turbulence PDF (resp. intermediate) are virtually unchanged.

Figure 7.22: Evolution of the probability density functions for different pupil diameters and
turbulence strengths. Iteration phase corrections by SH-WFS phase reconstruction. The pupil
diameter is from left to right respectively20 cm,30 cm and40 cm. Propagation distance:10 km
and wavelength ofλ = 1.5 µm.

7.4.0.3 Impact of the Adaptive Optics Loop Sampling Frequency

Modelling of wind effectsV⊥ is performed by phase screen translation. Three different phase
screen translation amplitudes by unit of time are studied:d1 = 0.78 cm, d2 = 1.56 cm and
d3 = 3.91 cm. Each displacement is performed after a complete iteration between telescope1
and telescope2. We have considered a constant wind across the propagation length: all phase
screens are translated by the same amount. It is possible, inorder to quantify the problem to
express the previous displacements in terms of wind speed orAO loop sampling frequency.
As an example, by takingfe = 100 Hz we obtain for the first case a perpendicular wind of
V⊥ = 0.78 m.s−1. Similarly, by choosing a wind speed ofV⊥ = 5 m.s−1 a sampling frequency of
fe = 640 Hz is obtained. Figure7.23gives transverse wind speed as a function of the adaptive
optics loop sampling frequency for different displacementvalues.

In order to separate temporal and spatial effects, the studyis performed with perfect phase-
only sub-optimal correction. Figure7.24shows evolution of sub-optimal correction (i.e. using
true phase) function of the ratio of wind speed and sampling frequency. Convergence is obtained
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138 CHAPTER 7. CORRECTION ONCOUNTER-PROPAGATING LASER BEAM PROBE

Figure 7.23: Transverse wind speed as a function of samplingfrequency for different displace-
ment values.

Figure 7.24: Mean intensity evolution (left) and normalised intensity fluctuations (right) after
iterative phase correction. Phase screen displacement dueto wind, solid lines:d1 = 0.78 cm per
iteration, dotted lines:d2 = 1.56 cm per iteration and dashed lines:d3 = 3.91 cm per iteration.
Propagation distance of10 km,λ = 1.5 µm,D = 30 cm.

in every case in less than three iterations, as in the static cases. The final value after convergence
of the iterative correction depends on the sampling frequency. For example, sub-optimal phase-
only correction can help achieve a mean PIB of〈ICorr〉 = 0.55 (resp. 〈ICorr〉 = 0.35) for
C2
n = 10−14 m−2/3 with displacement ofd2 (resp. d3). The value obtained with an infinite

sampling frequency is〈ICorr〉 = 0.63. More importantlyV⊥ can strongly increase intensity
fluctuations. In order to reach a level of correction close tothe one obtain without any temporal
errors, the following inequality must be satisfiedV⊥

fe
< ρ0

Number of Iterations. As an example, for

V⊥ = 10 m.s−1 andC2
n = 10−14 m−2/3 it is necessary to have an AO system with a sampling

frequencyfe > 3 kHz.
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7.5. CONCLUSION 139

7.5 Conclusion

In this chapter, limitations of phase-only correction using a counter-propagating laser beam to
probe atmopheric turbulence were studied. This correctiononly pre-compensates phase aberra-
tions of the emitted field. It is performed by measuring the wavefront of a laser beam propagating
in the opposite direction of the emitted field. First, the performance of such a correction device
was studied with perfect phase correction. We have shown that for certain configurations, cor-
rection quality can be closed to sub-optimal correction. However, the lack of iterations reduces
pre-compensation quality. We remind the reader that the first iteration is the most efficient, but
each following ones helps to increase mean PIB and decrease residual fluctuations.

Secondly, a practical implementation solution using SH wavefront sensing was studied. We
have seen that it deteriorates correction quality for strong turbulence scenarios. This is mainly
due to scintillation and phase dislocations. Correction inweak perturbation scenarios is similar
for perfect true phase correction and phase correction using wavefront reconstruction. However,
the use of such a system cannot be justified in strong turbulence. In addition, this is valid for both
iterative phase-only correction (i.e. sub-optimal) and non-iterative phase correction (i.e. with a
counter-propagating probe).

Scintillation of the laser beam probe (not corrected by AO) is strong and disrupts measure-
ments. This is the reason why we have presented a solution to partially overcome this limitation.
It extends the domain of validity of phase-only correction by multiplying the number of probes.
It is therefore possible to average scintillation effects as well as minimising effects due to phase
decorrelation is the field. We have shown an important gain for 〈I〉 and σI

〈I〉
to the condition that

the probes are positioned in an optimal configuration. The improvement brought by multi-lasers
is limited for low SNRs and weak turbulence or for strong turbulence. The study we have led
on the number of corrected Zernike modes (about 30) can lead to a good correction quality and
in some cases better (for intermediate turbulence) than perfect phase correction. Studying tem-
poral errors helped us set a lower limit to the necessary adaptive optics loop speed to minimise
these errors. It brought into light the importance of AO sampling frequency, a strong constrain in
FSOs. The sampling frequency for FSO systems is high and stresses the fact that it is important
to minimise the number of iterations before convergence.

The method based on wavefront measurement of several counter-propagating probes has the
advantage of improving correction quality in particular inthe intermediate regime. In addition,
it is simple to implement on a real system. This is the technical solution we have considered for
the AO system of the Fortune43G project.
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Chapter 8

Correction by Phase Modulation
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Different correction strategies based on phase measurement (sub-optimal and with counter-
propagating probe) have been studied so far. These methods rely on the knowledge of wavefront
deformations and on phase conjugation principal to maximise collected flux in the pupil. We have
presented limitations due to the use of a WFS, in particular for strong turbulence conditions. The
direct PIB optimisation enables us to overcome problems related to wavefront sensing. However,
it generates algorithmic related issues. The objective functionJ (also called cost function, here
considered to be the instantaneous PIB) is generally not convex. It is important not to fall into
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142 CHAPTER 8. CORRECTION BY PHASE MODULATION

a local minimum during the optimisation process. In addition, the use of algorithms converging
faster than the turbulence evolution time is important.

Existing optimisation methods were presented in introductory chapters. The goal of this
chapter is to evaluates these methods in the chosen application framework for this manuscript
and compare their performance with other correction strategies already studied. This chapter
will enable to position optimisation techniques relatively to corrections using a wavefront sen-
sor. It is expected to be less efficient than the sub-optimal perfect phase correction. Numerical
simulations are necessary to evaluate differences in termsof mean intensity and intensity fluc-
tuations. The approach taken for this chapter consists in firstly the study of optimisation using
‘simples’ criterions (see paragraph8.1). We will study performance and principal limitations.
Several pupil configurations will be studied: full pupils onboth sides of the communication link
and full aperture on the emission side and annular aperture for the reception. Central obscuration
(see paragraph8.2) is a frequently encountered case, in particular for largerpupil diametersD.
AO systems with a WFS used on a counter-propagating probe does not deal with the central ob-
scuration easily. Secondly, the main parameter influencingcorrection by direct optimisation will
be studied: number of correction segments (necessarily finite). Direct optimisation techniques
seem more adapted to noisy cases. Today, the most common algorithm in use is the SPGD and
its performance will be studied paragraph8.3.

8.1 Sequential Phase Perturbations

8.1.1 Principle

Vellekoop [Vellekoop-a-07] has recently developed a simple optimisation algorithm used for
coherent light focalisation through a highly diffusing medium. The typical application for this
technique is biological tissues. This algorithm modifies the emitted wavefront to focalise it
after propagation through a diffusing medium. It supposes linearity the diffusion process. The
received field is a linear combination of the field emitted by theN DM segments:

UR = G [UE ] = G
[

N
∑

n=1

Ane
iϕn

]

, (8.1)

with An andϕn the amplitude and phase of the field after reflection on thenth DM segment
andG [.] the propagation operator through diffusing or turbulence media. The algorithm can be
decomposed into the following steps:

• Propagate the emitted fieldUE through turbulence (or diffusing medium);

• Measure metricJ after propagation;

• Modify the wavefront of the first DM segment (n = 1) in order to find the position max-
imising the metricJ ;

• Put the mirror back into original position (i.e. flat);
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SEQUENTIAL PHASE PERTURBATIONS 143

• Modify the wavefront of the second DM segment (n = 2) in order to find the position
maximising the metricJ ;

• Go through all segments (n = 3 · · ·N) by repeating previous steps.

At the end of the optimisation process, the correction phaseoptimising metricJ corresponds to
the linear combination of all optimal positions obtained sequentially for the each of the mirror
segments.

Figure8.1 presents the deformable mirror geometry used for this study. Implementing this
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Figure 8.1: Segmented mirror geometry with7 × 7 segments. Each segment can only be driven
in piston with coupling coefficient equal to zero.

algorithm for the application used in this manuscript, we will sequentially address all DM seg-
ments in order to optimise instantaneous intensity integrated over the reception pupilIR. We
will modify the algorithm proposed by Vellekoop slightly inorder to optimise the metric after
each individual step. Instead of putting back the mean phasor to zero after each step, we will
conserve the optimum position of the segment. The optimisation process will therefore become
more continuous and slightly faster. Oppositely to the firstmethod, this new sequential optimisa-
tion process might necessitate a second round after all the segments have been optimised a first
time.

8.1.2 Influence of the Number of Correction Elements

Figure8.2 shows the change in mean intensity〈I〉 and normalised intensity fluctuationsσI

〈I〉

as function of turbulence strength and number of deformablemirror segments. Three different
cases are presented:4×4, 7×7 and11×11 actuators. The deformable mirror is used to modify
the phase of the electromagnetic wave. Each segment corrects for piston and has a zero coupling
coefficient with neighbouring actuators. The pupils used for this simulation at both end of the
propagation path have aD = 30 cm diameter with no central obscuration. The laser emitted
beam is collimated with a waist ofwo = 7 cm in radius. Each elementary phase perturbation
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144 CHAPTER 8. CORRECTION BY PHASE MODULATION

Figure 8.2: Influence of the Vellekoop algorithm on mean intensity 〈I〉 (left) and on intensity
fluctuations σI

〈I〉
(right) function of the number of iterations andC2

n. From top to bottom, the
number of DM segments is respectively of4 × 4, 7 × 7 and11 × 11. D = 30 cm.

step isε = π
21

. It can be noticed that for weak turbulence this algorithm does not enable us
to significantly improve neither mean intensity nor residual fluctuations. No improvement is
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PERFORMANCES WITHCENTRAL OBSCURATION 145

visible if the number of segments is increased. ForC2
n = 10−14 m−2/3 however,7 × 7 and

11 × 11 segments enables a noticeable improvement in link quality.The mean intensity goes
from 〈I〉 ≃ 0.35 to 〈I〉 ≃ 0.5 for a 7 × 7 DM and up to〈I〉 ≃ 0.6 for a 11 × 11 DM. The
number of segments clearly has an influence on mean intensityfor strong perturbation regimes.
ForC2

n = 10−15 m−2/3, no improvement is visible and a7 × 7 mirror seems sufficient.
For intensity fluctuations, the same observation can be madeon the number of correction

elements forC2
n = 10−15 m−2/3. Is goes fromσI

〈I〉
= 0.03 to σI

〈I〉
≃ 0.015 regardless of the number

of actuators, except for4×4 where onlyσI

〈I〉
≃ 0.02 is achieved. This value is generally sufficient

to ensure a good link quality. As forC2
n = 10−14 m−2/3, the influence of the number of segments

(7 × 7 or 11 × 11) is equally relatively small. Only a small improvement can be seen when in-
creasing the number of segments, but it is negligible. However, a small improvement is achieved
when refraining from using a SH-WFS in strong turbulence conditions. This observation is in
accordance with expectations because problems linked to wavefront sensing (scintillation, phase
wrapping) are no longer an issue for direct optimisation methods.

In addition, the quasi-linearity of the propagation process through turbulence with regards
to introduced phase perturbations is verified. After performing a complete round of correction
(i.e. after addressing all DM segments) two other rounds areperformed. The initialisation phase
for each subsequent correction is the phase optimised at theprevious step. Using two additional
rounds of correction does not significantly improve link quality. In spite of implementation
differences with the algorithm proposed by Vellekoop, one can observed that it is unnecessary
to add additional rounds to improve correction. Even thoughphase correction for a number of
actuators superior or equal to7 × 7 is efficient, it is important to sequentially go over all phase
point for each DM segments. This leads to long convergence times and justifies the search for
more efficient algorithms in terms of convergence time.

Results obtained in strong perturbation regimes for an11 × 11 DM both for intensity fluctu-
ations and mean intensity are similar to those obtained withsub-optimal correction. In addition,
despite the pupil diameter difference (D = 25 cm versusD = 30 cm), it seems that multi-beam
correction gives similar results forC2

n = 10−16 m−2/3 andC2
n = 10−15 m−2/3. On the other hand,

performance seems slightly better when using sequential optimisation forC2
n = 10−14 m−2/3.

However, the obtained results in strong perturbations forD ≃ 30 cm are not sufficient to achieve
the desired BER in typical FSO systems.

8.2 Performances with Central Obscuration

This paragraph is dedicate to the study of phase modulation performance in presence of cen-
tral obscuration. We use a Nelder-Mead type algorithm (alsocalled simplex algorithm) which
is a classical non-linear optimisation method (or downhillsearch) for multidimensional spaces.
It was first introduced by J. Nelder and R. Nead in1965 [Nelder-a-65]. The minimising routine
used during numerical simulations is based onNumerical Recipes[Press-l-86]. This algorithm
requires the evaluation of the function to be optimised. Contrarily to some other minimisation
algorithms it does not require the evaluation of its derivatives. This method is generally consid-
ered simple and robust. Using this technique will validate phase correction for an obscured pupil
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146 CHAPTER 8. CORRECTION BY PHASE MODULATION

without wavefront sensing and with a simple optimisation strategy.

8.2.1 Simulation Conditions

In this paragraph, we perform numerical simulations implementing the downhill simplex al-
gorithm with aD = 25 cm diameter pupil and an obscuration ofOCemission= 0% andOCreception=
35% respectively for the emitting telescope and the receiving telescope. Metrics measurements
is performed without additional noise, the wavelength is set to λ = 1.5 µm and the propagation
distance toL = 10 km. The emitted laser beam has a waist in the pupil of the emitting telescope
of wo = 7 cm in accordance to chapter6.

The continuous representation used for phase is not longer justified in strong perturbations.
We will therefore use a segmented mirror (zonal correction of the phase) with a zero coupling
factor between the actuators. As previously, segments are only driven in piston. In order to de-
crease convergence time, we propose a hierarchical correction. It consists in gradually increasing
the number of corrected segments. The Nelder-Mead algorithm is set to stop when the difference
between two consecutive measurements of the metricI is less than10−2.

8.2.2 Hierarchical Algorithm

Hierarchical phase optimisation consists in starting firstwith a small DM (i.e. with a small
number of actuators) and gradually increasing the number ofsegments as the convergence at each
step is achieved. We first use a2 × 2 DM to start the optimisation process. Once convergence
is reached, we increase the number of segments to4 × 4 to finally finish with an8 × 8 DM. At
each step when increasing the numbers of segments (i.e. whengoing from stepN to stepN +1)
we use the previously obtained phase after convergence at stepN to initialise the phase at step
N + 1. The idea is that by reducing the number of parameters we willreduce the complexity of
the problem. It will in return reduce the global convergencetime of the algorithm and reduce the
number of local minimums. Figure8.3shows a diagram of the hierarchical phase optimisation.
The red colour on the diagram is used to represent the2 × 2 deformable mirror geometry. We
then used the4 × 4 segments mirror represented in blue. Finally, the8 × 8 configuration is used
(in black on the diagram). The pupil imprint on the DM is represented by the light gray circle.
Some of the actuators are actually sitting outside the emitting pupil (in particular numbers 1, 8,
57 and 64) and will have no or limited impact on the final optimisation value.

Figure8.4illustrates the evolution of mean intensity and normalisedintensity fluctuations as
the number of iterations increase.

The influence of the amplitude of the new phase perturbations(ε) applied to the DM at
each iteration step of the algorithm was studied (not shown here). Two different cases were
examined. The first case where phase perturbations are smallcompared to the wavelengthλ with
ε = π

21
, the second whereε = π

2
. Only the case where the amplitude of phase perturbations are

equal toε = π
2

is presented because it enables a more effective correction, especially for strong
perturbations. In addition, the study was limited toC2

n = 10−15 m−2/3 andC2
n = 10−14 m−2/3

cases. TheC2
n = 10−16 m−2/3 case has only a limited interest since the optical link is already

excellent without correction.
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Figure 8.3: Diagram of the hierarchical phase optimisation. In red: the first optimisation level.
In blue: the second and in black the final optimisation stage.

Figure 8.4: Hierarchical downhill simplex algorithm: influence of turbulence strength of mean
intensity〈I〉 (left) and on intensity fluctuationsσI

〈I〉
(right) as function of the number of iterations.

The hierarchical downhill simplex algorithm is implemented using(2 × 2), (4 × 4) then(8 × 8)
segments and elementary phase perturbations ofε = π

2
. D = 25 cm.

By comparing obtained results without a hierarchical configuration (not shown here) it can
be observed that modifying the correction strategy does notinfluence the final values after con-
vergence of the algorithm. The final values are therefore intrinsically linked to the final number
of elements of DM and not the intermediate steps.

The number of iterations necessary to reach convergence goes from an average ofN ≃ 850
(resp. N ≃ 1200) for C2

n = 10−15 m−2/3 (resp. 10−14 m−2/3) with a classical non-hierarchic
correction using a(8 × 8) DM to N ≃ 450 (resp.N ≃ 850) for a hierarchic correction. The
comparison between the two methods was performed using a deformable mirror with(8 × 8)
segments and a perturbation amplitude ofε = π

2
. As expected, the hierarchic correction enables
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148 CHAPTER 8. CORRECTION BY PHASE MODULATION

a reduction in convergence time. The reduction can go as highas a factor tow (resp.1.3 for
strong turbulence).

8.2.3 Conclusion

The impact of central obscuration was studied using a simplephase modulation algorithm
that optimises instantaneous intensityI. The necessary number of DM elements (approximately
8 × 8 segments) leads to a high required number of iterations. Moreover, the final level for
intensity fluctuations after correction in strong turbulence is not compatible with typical bit error
rates required in FSO systems. When used in intermediate turbulence regimes, it can however
be used to get the intensity fluctuations below the thresholdof 0.1. Degradation in correction
quality is brought by the central obscuration ofOC = 35% for the reception telescope. We
have in parallel presented results using a hierarchic optimisation that help reduce the number
of iterations required to reach convergence. It was observed that modifying the algorithm for a
hierarchical one does not change the final values for〈I〉 and σI

〈I〉
after convergence. These values

are mainly related to the number of actuation points (i.e. number of actuators).

8.3 Stochastic Parallel Gradient Descent Optimisation

8.3.1 Introduction

An alternative approach was proposed by Vorontsovet al. [Vorontsov-a-97, Weyrauch-a-05]
consisting in the direct optimisation of the objective function by using a Stochastic Parallel Gra-
dient Descent (SPGD) algorithm. Let J be the objective function to be optimised defined on a
finite reel vector spaceRd or a vector subspaceΩ of R

d. We here look for the maximumx∗

of functionJ in Ω. Stochastic optimisation methods (or metaheuristic) are often used in cases
where:

• The objective functionJ has no analytical expression (the specific values are reached by
either a calculation code or a direct measurement by whichJ can be noisy).

• The gradient ofJ can be inaccessible.

• FunctionJ can comprise many non-linearities.

• Number of correlations between variables can exist but are not precisely identified.

• FunctionJ is multimodal. It has many local minimums.

A stochastic approach seems to be appropriate to the problemof propagation through turbulent
atmosphere when one is using the total integrated intensityover the pupil as objective function.
In addition, the proposed downhill algorithm is a parallel algorithm where each element of the
vector sub-space is optimised simultaneously. This greatly increases convergence speed com-
pared to the previous sequential optimisation methods.
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OPTIMISATION BY STOCHASTIC PARALLEL GRADIENT DESCENT 149

The stochastic descent consist in sending an elementary phase perturbationδuj (whereδuj
can be either positive of negative) to each mirror segment.|δuj| = ε is identical for each DM ac-
tuator. LetN be the number of mirror segments. The perturbation vector attimen is

∑N
j=1 δu

n
j .

The sign of phase perturbation follows Bernoulli law:δunj = ±ε ∀ j ∈ [1 · · ·N ]. After applying
the perturbation vector and measuring the metricJn+, the perturbation signs are inverted to mea-
suredJn−. Perturbations applied forJn+ andJn− are of opposite sign. LetJn± be the metric at time
n after application of one of the perturbations. At timen one obtains:

Jn± = J
(

un1 ± δn1 , · · · , unj ± δnj , · · · , unN ± δnN
)

, (8.2)

with unj the voltage applied to segmentj of the DM at timen and±δnj the elementary perturbation
created by the same segment. Voltage vector values to send tothe mirror at timen+1 is calculated
by the following equation:

{

un+1
j

}N

j=1
=
{

unj + γ(Jnj,+ − Jnj,−)sign(δunj )
}N

j=1
, (8.3)

wheresign(δunj ) the elementary perturbation sign during calculation of metric Jn+, γ is an update

coefficient and{· · · }Nj=1 a vector withN elements. We use a constantγ update parameter for the
optimisation ofJ .

8.3.2 Correction Efficiency: An Example

In the following paragraph we concentrate on numerical simulations of an AO system imple-
menting an SPGD optimisation algorithm. The propagation distance is set toL = 10 km, the
wavelength toλ = 1.5 µm and the pupil diameter toD = 30 cm. In order to illustrate correc-
tion efficiency of the SPGD algorithm, short and long-exposeimages are presented figure8.5.
The energy concentration between non-corrected and corrected images is clearly visible. For
this particular realisation of turbulence (short exposure) the SPGD algorithm helps improving
the integrated energy from0.45 to 0.65 after 200 iterations. The turbulence strength is set to
C2
n = 10−14 m−2/3.

Figure8.6 illustrate the typical evolution of metricJ as a function of the iteration number.
We have considered that turbulence does not change during the optimisation process. The corre-
sponding short-exposure image before and after correctionis given figure8.5. It can be seen that
a strong improvement is brought by the correction at the beginning of the optimisation process
(i.e. strong slope of the curve, in particular between iteration 0 and20). It seems to reach a local
maximum around approximately iteration number70 − 80. After that, metric improvement is
much slower and the optimisation process cannot reach the global maximum easily. The slope at
origin is favourable for rapid turbulence evolution where the system needs to ‘hook on’ rapidly.
Oppositely, once the system is engaged, the metric progression is much slower and chaotic. The
SPGD algorithm does not seem particularly adapted whenJ is close to the global optimum but
only when it is relatively far away from it.
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150 CHAPTER 8. CORRECTION BY PHASE MODULATION

Figure 8.5: Illustration of SPGD correction efficiency. Left: before correction, right: after con-
vergence. Top: short-exposure, bottom: long-exposure. Colour scale: logarithmic for short-
exposure and linear for long-exposure.

Figure 8.6: Typical integrated intensity evolution duringthe optimisation process.
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OPTIMISATION BY STOCHASTIC PARALLEL GRADIENT DESCENT 151

8.3.3 Impact of Turbulence Strength

Figure 8.7 presents optimisation the instantaneous intensityI as a function of turbulence
strength and iteration number. The classical statistical quantities are shown: mean intensity (left)
and normalised intensity fluctuations (right). The deformable mirror can apply pure piston to
each of its segments. The number of segment is limited to7 × 7. Statistics are calculated over

Figure 8.7: SPGD correction efficiency function of turbulence strength. Left: mean intensity.
Right: normalised intensity fluctuations.D = 30 cm without central obscuration.

independent turbulence realisations. It can be seen that SPGD optimisation can lead to a mean
intensity increase and a reduction in intensity fluctuations. As mentioned previously (on a single
iteration), optimisation is quick at the beginning of the optimisation process and slows down
after about30 iterations in strong turbulence conditions.

ForC2
n = 10−14 m−2/3, mean intensity increases from〈I0〉 = 0.35 to slightly above〈I〉 = 0.5

after about a hundred iterations. Intensity fluctuation on the other side go fromσI

〈I〉
= 0.5 to σI

〈I〉
≃

0.2. We remind that the values obtained with Vellekoop’s algorithm where approximately of
σI

〈I〉
≃ 0.2 after convergence. The two methods give similar results. However, the results obtained

with an SPGD optimisation are slightly better than the SH analysis on a counter-propagating
probe (see paragraph7.2) in strong perturbation. It is comparable with the multi-probe method.
Nevertheless, these results are still not compatible with the goal of obtaining a BER of10−12,
that is to haveσI

〈I〉
< 0.1.

The SPGD algorithm converges more rapidly than the algorithms proposed by Vellekoop
or Nelder-Mead. It can reach convergence after approximately 50 iterations only. We recall
that the number of necessary iterations for convergence of the Vellekoop algorithm is obtain
by multiplying the number of segments in the DM by the number of elementary stepsε. In
addition, we have implemented an algorithm with a constant update parameterγ. It has been
shown [Weyrauch-a-01] that using an adaptiveγ help reduce the convergence time at the same
time as keeping the correction quality.
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152 CHAPTER 8. CORRECTION BY PHASE MODULATION

8.3.4 Impact of Pupil Geometry

In this paragraph is presented the ability of the SPGD algorithm to take into account a central
obscuration in the reception pupil (pupil at emission staysun-obscured). More generally, this
paragraph shows the capacity of the SPGD algorithm to take into account any pupil shape (other
than circular for example). Figure8.8shows5 different turbulence realisation all implementing a
SPGD correction withD = 30 cm and a central obscuration of50%. Intensity distribution is ob-

Figure 8.8: Intensity distribution (different turbulencerealisation) after SPGD convergence. Two
turbulence strengths are studied:10−15 m−2/3 (top) and10−14 m−2/3 (bottom). Central obscura-
tion is 50 percent, propagation distance10 km, wavelengthλ = 1.5 µm and pupil diameter
30 cm.

tained after optimisation forC2
n = 10−15 m−2/3 (upper part of the figure) andC2

n = 10−14 m−2/3

(lower part of the figure). From these illustrations, it seems that some turbulence realisations are
favourable and enable the algorithm to concentrate a speckle in the pupil. Other realisations seem
less favourable for energy concentration. For the least favourable cases, the intensity distribution
is more uniform throughout the reception plane.

Figure8.9presents correction efficiency as function of the number of iterations. Phase mod-
ulation based on a SPGD type algorithm seems capable of taking into account the shape of the
pupil, whichever its shape. However, the correction quality seems much lower than without ob-
scuration. We have shown paragraph6.1.6that the chosen set of parameters leads to a reduction
of correction quality due only to the reducing of the collecting surface area. In fact, the mean
intensity goes from〈I〉 = 0.51 to 0.36 with a50% central obscuration. In addition, it seems that
the algorithm cannot distribute the intensity over the entire pupil but concentrates the major part
of the energy within a speckle on the side of the pupil. This observation is particularly true for
realisation 1, 2 and 3 forC2

n = 10−15 m−2/3 and case 3 forC2
n = 10−14 m−2/3 (see figure8.8and

by reading numbers from left to right).
As expected, results are clearly not as good as with the optimal correction. Remember that

for the same set of parameters, mean intensity was〈I〉C2
n=10−14 m−2/3 = 0.6 and residual intensity
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OPTIMISATION BY STOCHASTIC PARALLEL GRADIENT DESCENT 153

Figure 8.9: Mean intensity and intensity fluctuations function of the number of iterations for
SPGD correction. Central obscuration of 50 percent. Propagation distance10 km, wavelength
λ = 1.5 µm, pupil diameter30 cm.

fluctuations σI

〈I〉C2
n=10−14 m−2/3

= 0.1 for the optimal correction. Here, they are respectively of

〈I〉C2
n=10−14 m−2/3 = 0.36 and of σI

〈I〉C2
n=10−14 m−2/3

= 0.25 for the SPDG algorithm. In addition,

convergence is reached only after approximately150 iterations for SPGD whereas only about 10
iterations were sufficient for the optimal case.

8.3.5 Impact of Transverse Wind

In introductory chapters, the influence of transverse windson laser propagation through tur-
bulence was presented. In this paragraph, a numerical simulation of transverse windV⊥ effects
on SPGD correction is also untaken. We simulate continuous wind by shifting phase screen
by sub-pixels. These simulations can help us find the necessary correction speed in order to
keep a sufficient correction gain. As these simulations are realised by shifting phase screens,
the method is still valid either when considering transverse wind speed or adaptive optics loop
speed. Simulations conditions are the following: constantγ parameter, laser beam diameter at
emission2w0 = 14 cm, elementary phase perturbationsε = 2π

21
and pupil diameterD = 25 cm

with 35% central obscuration. Figure8.10shows simulations results for SPGD correction for
three different wind speeds (or equivalently phase screen shifts). The wind speed increases from
bottom to top on the figure.

In order to evaluate the correction quality as a function of wind speed (resp. correction
loop speed) we introduce two new metrics: the mean intensitygain between the value before
correction (att0) and the mean intensity after convergence if the algorithm (theoretically att∞)
and the residual fluctuations after convergence (i.e.σI after convergence). Table8.1 gives the
results in terms of gain relative to the uncorrected case andresidual fluctuations.

A one-pixel shift every20 iteration seems the minimum to obtain an acceptable correction
quality for the undertaken simulations. If a10 m.s−1 wind speed is considered the necessary loop
update frequency isf20 = 25.6 kHz (resp.f10 = 12.8 kHz andf30 = 38.4 kHz). The necessary
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154 CHAPTER 8. CORRECTION BY PHASE MODULATION

Figure 8.10: SPGD correction in presence of a continuous wind speed. From bottom to top the
wind speed increases. Shift of one pixel is done respectively every10, 20 and30 iterations.
Vertical lines represent a full pixel shift.

loop update frequency is crucial. Figure8.11 illustrates correction evolution as a function of
wind speed. The slower the wind (resp. loop frequency high) the higher the correction quality.
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OPTIMISATION BY STOCHASTIC PARALLEL GRADIENT DESCENT 155

Type de correction C2
n [ m−2/3] Gain Residual fluctuations

One pixel shift 10−16 0.0202 0.0015
after 10 propagations 10−15 0.0576 0.0056

10−14 0.0643 0.0102

One pixel shift 10−16 0.0170 0.0008
after 20 propagations 10−15 0.0848 0.0015

10−14 0.0920 0.0021

One pixel shift 10−16 0.0186 0.0009
after 30 propagations 10−15 0.0803 0.0025

10−14 0.1216 0.0040

Table 8.1: Table representing gain and residual fluctuations after correction converge, function
of wind speed and turbulence strength.

Figure 8.11: Correction efficiency as a function of wind speed. Dashed lines: without correction,
solid lines: with correction. Horizontally is representedthe number of propagation simulated
before a one-pixel phase sift.

8.3.6 Noise Sensibility Study

Simulations presented so far did not take into account the effect of noise on the measure-
ments. Adding noise will obviously disrupt the measurementof I and lead to a less effective
optimisation process. In this simulation, we add noise in the measurement of the integrated
intensity over the pupil area after propagation. The SNR is defined as:

SNR =
Itotal
σnoise

, (8.4)

WhereItotal is the total intensity received by the telescope andσ2
noise the noise variance. Noise

is considered Gaussian, with zero mean and a standard deviation of σnoise.
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156 CHAPTER 8. CORRECTION BY PHASE MODULATION

Following figure8.12, it is necessary to have signal-to-noise ratio higher than40 for the
SPGD algorithm to optimise integrated intensity after propagation. A low value will produce
strong intensity fluctuations and for the worst case (SNR < 20) a reduction of mean intensity.
When noise influence is negligible (SNR > 100), the obtained results are the same as with-
out noise. By increasing update frequency of the adaptive optics loop we will increase system

Figure 8.12: Mean intensity curves (left) and intensity fluctuations as a function of iterations
(right) for SPGD correction and different noise levels. Propagation distance10 km, wavelength
λ = 1.5 µm and pupil diameter30 cm.

robustness to temporal evolution of turbulence (i.e. transverse winds). On the other hand, the
intensity received at each iteration step will be lower for higher loop frequencies. A compromise
between small integration time and AO bandwidth is necessary.

8.3.7 Initialisation of the Correction Phase

8.3.7.1 Principle

In order to improve correction convergence speed, it is possible to add an a priori on the driven
phase. By using an SPGD type optimisation algorithm, it is possible to initialise the correction
phase before the iterative process begins by using a wavefront measurements [Vorontsov-a-02].
The idea is to increase algorithm convergence speed by usinga phase that is as close as possible
to the final correction phase calculated after convergence.Two different initialisation phases are
studied: geometric phase and phase in the emission pupil. Geometric phase for a plane wave
corresponds to the sum of all phase perturbations along the propagation path. It corresponds to
the phase measured in weak perturbation regimes in the case of the sub-optimal correction. Phase
in the emission pupil is considered to be the turbulent phasescreen which closest to the emission
plane. It corresponds to phase measured by the counter-propagative multi-probe approach. In
the framework of geometric approximation, when phase perturbations are weak, it should enable
the algorithm to be initialised with the phase obtain after convergence of the algorithm. On the
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8.4. CONCLUSION 157

other hand, for strong perturbation regimes geometric phase is not longer the optimal solution.
Phase perturbations near the emission pupil are responsible for scintillation after propagation. By
pre-compensating for it, one can greatly overcome intensity fluctuations in the reception pupil.

A D = 25 cm pupil is used with a2w0 = 14 cm diameter beam. The number of DM actuators
is limited to7 × 7 and the elementary step toε = 2π

21
. Measurement ofI is supposed noiseless.

The phase initialisation for the SPGD correction is discretized on the DM basis which segments
are only driven in piston. In order to take the mirror geometry into account, we use the average
geometric phase (resp. the phase in the emission pupil) on each mirror segment. We project the
phase on the DM basis (only driven in piston) which is equivalent to the mean light travel on the
segment.

8.3.7.2 Initialisation with Geometric Phase and Phase in the Pupil

Figure8.13represents simulated results obtained for SPGD correctionwith an initialisation
with the geometric phase (top) and the phase in the pupil (bottom). Initialisation the correction
with a phase works well when the turbulence is weak because the final correction phase is close
to the geometric phase. Correction by initialising the phase with the emission pupil phase does
not significantly improve correction, despite a slight gainfor the weakest turbulence studied. On
the other hand, geometric phase seems to slightly improve correction both forC2

n = 10−16 m−2/3

andC2
n = 10−15 m−2/3. When turbulence is strong, the phase that optimises intensity in the

reception pupil differs from the geometric phase. This is the reason why initialising correction
with a non-zero phase (either geometric or the phase locatedin the emission pupil) is not efficient
in strong turbulence.

To conclude, phase initialisation does not seem to increaseconvergence speed for iterative
correction. Initialising the correction only slightly improve the overall correction quality. Geo-
metric phase seems to be slightly more efficient than the phase in the emission pupil. By looking
at the results obtained in this study, coupling wavefront sensing with a SPGD modulation tech-
nique is not justified. In order to reach sufficient gain, a bi-directional link might be useful (such
as a sub-optimal correction).

8.4 Conclusion

Direct optimisation method by adaptive optics has been suggested for many years in the lit-
erature. These methods were the first to be implemented in adaptive optics system in the1970s.
Despite the relative simplicity of implementation (mainlyby not using a complex optical el-
ement such as wavefront sensors), its practical implementation remains difficult. In fact, the
required bandwidths are usually prohibitive for most FSO systems. When the required band-
width is achieved (typically> 10 kHz), it is possible to correct atmospheric turbulence phase
perturbations, for example by SPGD methods. These techniques have been around for a long
time but can only recently be implemented in real systems because of the high bandwidth they
require. This algorithm has been used successfully in a number of free-space communication sys-
tems [Weyrauch-a-05, Zhao-p-08] or validated for image restoration that have been degradedby
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158 CHAPTER 8. CORRECTION BY PHASE MODULATION

Figure 8.13: Top: intensity optimisation by SPGD with (solid line) and without (dashed lines)
geometric phase initialisation. Bottom: intensity optimisation by SPGD with (solid line) and
without (dashed lines) emission pupil phase initialisation.

turbulence [Vorontsov-a-97, Aubailly-a-08, Yang-a-09]. The implementation of more efficient
algorithms and the rise of faster adaptive optics loops has renewed interest in phase modula-
tion techniques. In addition, these techniques seem particularly adapted when data construction
model is not known and when temporal constrains are limited (for example for laser focalisation
though biological tissues).

This chapter enabled us to study several basic concept of phase modulation in the context of
endo-atmospheric optical communication link on long distances. Stochastic methods seem the
most appropriate methods for FSOs where temporal constrains impose large bandwidths. Static
performances are satisfactory and correspond to those obtained for sub-optimal correction. No
theoretical limit has been demonstrated as for the limits ofalgorithms such a SPGD for FSO
systems. A number of other algorithms can be used and their performance estimation is still to be
undertaken. Phase modulation methods can obtain similar results to those produced by a multi-
probe analysis system. The technical problems encounteredduring implementation of multi-
beam correction (i.e. optical complexity, number of laser sources, scintillation) are transposed to
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CONCLUSION 159

an algorithmic and technological complexity (i.e. bandwidth of deformable mirror and real-time
controller). We have seen in this chapter that SPGD type algorithms can take the geometry of the
pupil into account (central obscuration for example). It isimportant to have enough bandwidth
to converge faster that the time evolution of turbulence. Inaddition, we have seen that the signal-
to-noise ratio can sufficiently reduce the signal quality tono longer enable optimisation. Signal-
to-noise ratio is directly linked to integration time on thedetector. The necessary loop frequency
is dictated by the characteristic time evolution of phase perturbations. In other words, the loop
frequency is a compromise between two temporal constrains.However, oppositely to SH-WFS
where the flux is limited to the size of the lenslet, the flux used for optimisation is the total
collected flux in the pupil.

It appears possible to improve the SPGD algorithm by severalmethods. Firstly by making
theγ parameter adaptive, enabling a reduction in convergence time but by keeping performance
at the same level [Weyrauch-a-01]. Secondly, we have shown an improvement in convergence
time for the Nelder-Mead algorithm thanks to a hierarchicaloptimisation. However, the problem
of convergence speed remains. In addition, phase perturbations applied to the DM segments
follow a Bernouilli law that is not adapted to atmospheric turbulence. The study statistics more
appropriate to turbulence could improve the convergence speed of the algorithm.

Performance obtained by phase correction remain significantly below performance of a phase
and amplitude correction. Driving both phase and amplitudeof the field could improve correction
quality.
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Chapter 9

Practical Implementation of Pseudo-Phase
Conjugation
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In chapter6 we have presented amplitude and phase pre-compensation andshowed how it
can be used to reach the so-called optimal correction. Othertypes of correction, limited to the
phase part of the wave, cannot reach the same correction levels. This is even clearer for strong
perturbations where amplitude variations are not longer negligible. In strong turbulence and
even by using an iterative true-phase correction, losses can be important. To the best of our
knowledge, no system currently implements the optimal correction. In this chapter, we will
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162 CHAPTER 9. PSEUDO-PHASE CONJUGATION IMPLEMENTATION

study different implementations for an iterative phase andamplitude correction of the emitted
field. The proposed solutions will however represent a degradation of the perfect optimal pre-
compensation strategy.

A possible solution to modulate phase and amplitude in the pupil plane is to use two de-
formable mirrors. In paragraph9.1 a simple implementation strategy for phase and amplitude
correction based on two tip-tilt mirrors is presented. Thismethod takes advantage of the speckle
distribution of the received intensity to concentrate the maximum flux within the most ener-
getic speckle. In the following paragraph (paragraph9.2) influence of pupil spatial sampling on
optimal correction is evaluated from a theoretical point ofview. In the same paragraph, we inves-
tigate the possibility off increasing wavelength to relax system constrains related to turbulence.
Finally, with the idea of building a system using iterative phase and amplitude conjugation, we
propose paragraph9.3a practical implementation. This is performed by sampling the pupil with
a monomode waveguide matrix that can be used to modulate phase and amplitude of an electro-
magnetic field. The re-emitted wave after correction corresponds to the complex conjugate of
the received electromagnetic wave (iterative correction principle). Limitations related to the use
of waveguides are also investigated.

9.1 Phase and Amplitude Correction Using Two Deformable
Mirrors

In previews chapters, we emphasised the importance of correcting both phase and amplitude
of the field. In fact, after having evaluated the performanceof different correction methods and in
particular the optimal and sub-optimal approaches, we clearly demonstrated that using a phase-
only correction is often not appropriate. Our best option istherefore to perform a phase and
amplitude correction. In this chapter several concept are presented.

9.1.1 Introduction

No systems have been presented so far that can correct phase and amplitude of the field. We
have therefore based our reasoning on a perfect system. In order to implement this type of cor-
rection, some authors [Roggemann-a-98] have proposed the use of two deformable mirrors. The
first deformable mirrorDM1 is positioned in the pupil planP and controls the phase part of the
wave. It is driven by measurements taken by a WFS in a pupil-conjugate plan. The second mirror
DM2 is located a distanced away from the pupil.DM2 enables by the phase aberrations it in-
troduces and after propagation to modify the amplitude distribution in pupilP . Figure9.1shows
a schematic of phase and amplitude correction with two deformable mirrors. One of the major
issues for this type of correction is computing the control to apply to the second mirrorDM2.
This problem cannot be solves in an exact way. In order to circumvent this problem, Roggemann
proposed to positionDM2 in the far field ofDM1 and use a phase retrieval algorithm. In weak
perturbation regimes, the resulting study showed a gain when compared to phase-only correction
of approximately1.5 on the amplitude of the field on the optical axis. When phase perturba-
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MD 2 MD 1

Amplitude
du champ

P

z

Turbulenced

Figure 9.1: Schematic for two deformable mirrorsDM1 andDM2 correction used to drive both
phase and amplitude in the pupil planP .

tions distributed over the entire volume are sufficiently strong, amplitude fluctuations in the field
disrupt the wavefront sensing process [Mahe-p-00, Voitsekhovich-a-01]. Problems (phase dis-
location, scintillation) found in the phase measurement instrong perturbations are found again
in driving severalDMs. The problem of generating control signals to drive mirrorsDM1 and
DM2 in an optimal way is still to be answered.

9.1.2 Tip-Tilt Correction

In this paragraph is presented a phase and amplitude pre-compensation method based on
modal decomposition of perturbations. It focuses on a simple implementation with only two
tip-tilt mirrors.

9.1.2.1 Correction Principle

We have shown in introductory chapters that the low orders modes of turbulence are the most
energetic ones. When perturbations are weak, the primarilyimpact is beam wander and tilting of
the incident beam. We here study the implications of compensating for both effects. The practical
implementation of such a correction is relatively simple. For correcting tip-tilt and re-centring
the beam, only two tip-tilt mirrors are necessary. The first is placed outside the pupil plane and is
used to centre the emitted beam on the incoming beam’s COG as received in the pupil plane. The
second in a conjugated pupil plane corrects for phase. Thesemirrors are relatively cheap optical
elements with high bandwidths. The wave tilting is measuredby a low resolution detector placed
in the focal plane. Measurement of the beam position requires a low-resolution detector located
in the pupil plane. The importance of correcting for beam wander lies in the fact that tilt is only
measured where the received intensity is maximal. Phase canvary greatly from one point to the
other in the pupil. We need to re-emit the beam where the tip-tilt has been measured, i.e. where
the intensity is maximal. Figure9.2 illustrates a two tip-tilt mirror concept to shift the beam to
the maximal received intensity (by usingDM2) and perform phase correction (usingDM1).

The optimal position for the emitted laser beam is calculated using the most energetic scin-
tillation speckle from a counter-propagating beam. The correction therefore consists only in
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MD 2 MD 1

z

Front d’onde incident

x=p: intensité max. reçueRecentrage Correction
du tip−tiltdu faisceau

Faisceau
émis

Direction du 

Direction du 
front d’onde en x=0

front d’onde en x=p

Figure 9.2: Illustration of the two tip-tilt mirror correction for beam re-centring and phase cor-
rection.

correcting for a single speckle and concentrating all the energy in this one only. It enables us
to use phase conjugation principles on a reduced part of the emission plane. Figure9.3presents
typical intensity distribution in the pupil planT2 after propagation through turbulence of a laser
beam emitted fromT1. Figure9.3presents simultaneously pupilT2 and the position where the

Position d’émission 

Pupille de réception

du faisceau

Figure 9.3: Typical intensity distribution after propagation with position (in blue) of the emitted
beam at the following iteration step.

counter-propagating beam will be sent fromT2.
Calculation of the position for the most energetic scintillation speckle is done by thresholding

and centre of gravity. This helps, among other things, to limit the noise impact on measures.
Centre of gravity measurements are weighted by a function (typically a top-hat) in order to
privilege an energy distribution minimising pupil truncation effects [Zhao-p-08]. This restoring
force favours configurations where the beam emission is close to the optical axis. From this
position, the emitted beam is re-centred in order to be super-imposed to the previously calculated
position. To a first approximation, the emitted intensity distribution is expressed as a Gaussian.
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PHASE AND AMPLITUDE CORRECTION USING TWO DEFORMABLE M IRRORS 165

Optimisation of the emitted beam size will be presented in the following paragraph. In order to
improve correction performance, an iterative correction between the communication extremeties
T1 andT2 is used. The algorithm we have used for numerical simulations is summarised below:

• An initial divergent Gaussian beam is sent fromT1 to T2. The divergent beam is used to
increase the probability of interception byT2.

• Calculation of positionp in telescopeT2 where the incoming beam has maximal energy.

• Measurement of global tip-tilt value over the reception pupil.

• The pre-compensated (tip-tilt only) beam is emitted fromT2 to T1 in positionp. The laser
beam is collimated and its beam waistw0 optimised.

• From this moment on the iterative correction is in place. Thetwo telescopes both emit a
re-centred collimated beam. The centring position is calculated at every iteration step.

9.1.2.2 Impact of Beam Waist

Figure9.4 presents intensity distribution at the level of telescopeT1 for various correction
methods. The turbulence strength is set toC2

n = 10−14 m−2/3 and the chosen turbulence dis-
tribution for this particular illustration is clearly favourable for a tip-tilt correction with beam
re-centring. The first iteration is without any correction (left of the figure). The overall col-
lected intensity for this particular turbulence realisation isIwithout corr = 0.33. The first correction
strategy (upper level on the figure) shows the impact of a phase and amplitude optimal itera-
tive correction as presented in chapter6. It enables the best correction quality possible with
I9 = 0.83 (only the first4 iterations are shown). Sub-optimal correction (central part) presented
chapter6.2 and beam re-centring correction (lower part of the figure) give similar results. The
received intensity after 9 iterations is increased toI9 = 0.55. The presented numerical simula-
tions presented all make use the same turbulent phase screens and enable a direct comparison of
correction methods (for this particular case).

Optimisation of the beam waistw0 for the emitted beam after re-centring is presented figure
9.5. This optimisation is based on both the mean intensity (leftpart of the figure) and normalised
intensity fluctuations (right part of the figure). We have chosen a collimated laser beam because
the influence of focalisation is not very strong. Pupil diameter for bothT1 andT2 is set toD =
25 cm. Two turbulence strengths are studied:C2

n = 10−15m−2/3 (red) andC2
n = 10−14m−2/3

(orange)
For theC2

n = 10−15m−2/3 case, optimisation using both metrics gives a beam waist between
5 and7 cm. When beam size is too small, natural divergence producesstrong flux losses due to
strong truncation by the reception pupil. Inversely, when the beam size is too large, energy is
distributed over an area much larger than the speckle size. Using a correction limited to tip-tilt
and re-centring only cannot be justified in this case.

For C2
n = 10−14m−2/3, tip-tilt limited correction cannot sufficiently increaselink quality

regardless of the beam sizew0. Without any correction we obtain〈I〉 = 0.26 (resp. σI

〈I〉
= 0.56).
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Optimale

Sous−optimale

Recentrage

Figure 9.4: Intensity distribution at the level of telescope T1. From top to bottom: optimal
correction, sub-optimal correction and tip-tilt correction with beam re-centring. Pupil limits are
shown in black with a diameter ofD = 0, 25 m and turbulence strength isC2

n = 10−14 m−2/3.

After correction we respectively obtain〈I〉 = 0.4 and σI

〈I〉
= 0.3. Despite a reduction by a factor

of approximately2, the desired intensity fluctuations level cannot be reached.

Conclusion
The correction strategy presented here relies on beam re-centring and tip-tilt correction at

each iteration step. The position of the emitted Gaussian beam corresponds to the position of
the most energetic speckle received from the incoming wave.The system we have implemented
is relatively simple since it only requires two pointing mirrors. A restoring force favouring
positions in the centre of the pupil can be used to minimise truncation effects. A static study was
undertaken by the use of decorrelated turbulent phase screens. We have observed that certain
turbulence realisation are clearly favourable and other clearly not (few or no energetic speckles
in the pupil). We have found that the correction quality is below the typical requirements for
FSO systems.
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Figure 9.5: Mean intensity (left) and normalised intensityfluctuations (right) evolution function
of the emitted laser beam waist for a tip-tilt correction on both telescopes. Two turbulence
strengths are studied:C2

n = 10−15m−2/3 (red) andC2
n = 10−14m−2/3 (orange).

9.2 Influence of Wavelength and Field Sampling

When turbulence strength increases beyond the weak perturbation regime, phase dislocations
and wrapping appear. In addition, scintillation increasescreating a strong spatial and tempo-
ral variability of the amplitude of the field. An analysis based on a modal decomposition of
phase and amplitude does not make sense anymore. It becomes increasingly interesting to drive
phase and amplitude by a zonal approach. This paragraph studies the influence of the number
of elements that control phase and amplitude for an optimal correction type. In this chapter is
presented, on the one hand the influence of electromagnetic field sampling and on the other hand
the influence of wavelength. Table9.1reminds the reader of the values forσ2

R andρ0 for the two
wavelengths under study in this chapter:λ = 1.5 µm andλ = 4 µm.

C2
n 10−16 m−2/3 10−15 m−2/3 10−14 m−2/3 7.10−14 m−2/3

σ2
R (λ = 1.5 µm) 0.14 1.4 14 98.6
σ2
R (λ = 4 µm) 0.04 0.45 4.49 31.4
ρ0 (λ = 1.5 µm) 14.3 cm 3.6 cm 0.9 cm 0.3 cm
ρ0 (λ = 4 µm) 46.3 cm 11.6 cm 2.9 cm 0.9 cm

Table 9.1: Comparison ofσ2
R andρ0 for λ = 1.5 µm andλ = 4 µm.

9.2.1 Principle

Figure 9.6 presents a schematic of how the emitted field is calculated from the incoming
field by using a finite number of correction elements. It is supposed that a single measurement
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168 CHAPTER 9. PSEUDO-PHASE CONJUGATION IMPLEMENTATION

element evaluates the mean incident field on its surface. We will later show a justification of
this hypothesis. In our explanation we go here from a pupil with N = 16 correcting elements
to N = 4. From a practical point of view, in order to under-sample thenumber of elements in

Σ iCalcul du champ: U =    u

U

uu

u u

1 2

3 4

Pupille sous−échantillonnéePupille

Elément permettant 
la correction de phase
et d’amplitude

D

Figure 9.6: Schematic for calculating field in the pupil after correction.

the pupil (i.e. compared to a perfect optimal correction), we calculate the mean fieldU from the
sum of the fieldsui in the initial pupil:

U =
n
∑

i=0

ui

Every emitting element is supposed capable of emitting a spatially uniform field on its surface.
Phase and amplitude of this field is calculated from phase andamplitude over the same surface
element. The size of the pupilD stays the same in the process. Without loss of generality a
square pupil is used in this study.

9.2.2 Performance Function of Sampling

We first concentrate on performance atλ = 1.5 µm. Figure9.9presents mean PIB evolution
(left part of the figure) and intensity fluctuations (right part) as a function of the number of
actuation pointsN controlling both phase and amplitude of the emitted field. The square pupil
has sides of approximatelyD = 23.5 cm. From figure6.8 showing correction quality function
of pupil size, the chosenD enables us be in a regime beyondLF =

√
λL = 12 cm.LF has been

identified as the minimal dimension that can be used to establish a propagation mode in weak
perturbations regime. It is obvious that increasingN will help improving correction quality for
both studied metrics: mean PIB and intensity fluctuations. From a particular number of elements
Nsat correction quality saturates. The saturation seems to arrive earlier for mean PIB than for
fluctuations. In fact, for intensity fluctuations the plateau does not seems related to turbulence
strength. It is reached for approximately twenty actuators. The weaker the turbulence the smaller
the number of elementsN is required to reach saturation of the correction quality. This can be
explained by the fact thatρ0 increases asC2

n decreases. It is therefore possible to relax spatial
sampling constrains.
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INFLUENCE OFWAVELENGTH AND FIELD SAMPLING 169

Figure 9.7: Mean PIB (left) and intensity fluctuations evolution (right) function of the number of
correction elements and turbulence strength.D = 23.5 cm.

In figure9.8 is evaluated the ratio between mean intensity as a function of N over the mean

intensity for an infinite number of elementsN 〈I〉(N)
〈I〉(N=∞)

(left hand side), and the ratio
σI
〈I〉 (N)

σI
〈I〉 (N=∞)

(right hand side) for intensity fluctuations. These ratios can be linked to the loss due to pupil
sampling.

Figure 9.8: Mean PIB Evolution (left) and intensity fluctuations (right) as a function of the
number of correction elements and turbulence strength.

Table9.2 recalls D
ρ0

values for the different turbulence strengths studied and indicates the
necessary number of correction elements to achieve mean intensity and intensity fluctuation sat-
uration.

We can observe that forN ∝
(

D
ρ0

)2

(whereN is the number of correction elements), we

cannot reach the same performance levels for the three studied turbulence strengths. In fact, the
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170 CHAPTER 9. PSEUDO-PHASE CONJUGATION IMPLEMENTATION

C2
n 10−16 m−2/3 10−15 m−2/3 10−14 m−2/3

D
ρ0

1.6 6.5 26

Nsat on intensity 16 × 16 24 × 24 > 48 × 48
Nsat on fluctuations 24 × 24 24 × 24 24 × 24

Table 9.2:D
ρ0

values forλ = 1.5 µm andD = 23.5 cm function of turbulence strength and the
necessary number of correction elements required to reach saturation levels.

calculated values forN =
(

D
ρ0

)2

are not enough the reach saturation level neither for〈I〉 nor for

fluctuations. This indicates that the sampling estimation cannot be evaluated from this quantity.
Performance evaluation by numerical simulation means is essential. We remind the reader that
dimensioning an adaptive optics systems withρ0 value is only valid for the first iteration step.
Each successive field correction step modifies both phase andamplitude perturbations statistics.
As a consequence, it changes the number of required correction elements.

Figure9.9presents mean intensity and intensity fluctuations as a function of iteration number
between both ends of the optical link. It enables us to illustrate correction effectiveness for
different numbers of correction elements. Convergence seems to be reached for a limited number
of iterations (< 5). Only cases with a large degree of freedom take slightly longer to converge.
Limiting the number of correction elements has the double advantage to make the correction
easier and reduce the convergence time of the iterative process.

Figure 9.9: Mean PIB (left) and intensity fluctuations (right) function of the number of iteration,
turbulence strength and phase and amplitude action points.

In order to reach an acceptable performance level, we need tolimit intensity fluctuations to
σI

〈I〉
< 0.1 for all turbulence strengths. In the studied cases, it meansusing a system with at

leastN = 10 × 10 correction elements. This configuration leads to a mean intensity level of
〈I〉 ≃ 0.55 for the worst case scenario.
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INFLUENCE OFWAVELENGTH AND FIELD SAMPLING 171

9.2.3 Influence of Wavelength on Optimal Correction

In chapter6.1 we have studied the optimal correction for a wavelength ofλ = 1.5 µm.
This wavelength corresponds to an atmospheric window and isa wavelength typically used in
telecommunications. We have studied the influence of pupil diameter and turbulence strength.
Mid-infrared3 < λ < 5 µm is generally considered as an atmospheric window with low atten-
uation. In addition, increasing the wavelength reduces theimpact of turbulence. However, the
actual gain obtained by using aλ = 4 µm wavelength is still to be quantified.

Despite its benifits, it is still to be understood how resultsobtained atλ = 1.5 µm can be
translated toλ = 4 µm. Since wavelength is different, the influence of diffraction will also be
different. System parameters (pupil size, reachable propagation distance, beam diameter) will
be modified. In addition, implementation of FSO communication systems forλ = 4 µm still
poses technological issues (laser source, matrix detector). The question we ask ourselves in this
paragraph is that of the theoretical gain brought by changing the wavelength to a longer one.

9.2.3.1 Impact of Turbulence Strength

In this chapter the optimal phase and amplitude correction for λ = 4 µm is studied. We have
seen that the initial phase or intensity distribution does not impact the studied metrics (i.e. mean
PIB and intensity fluctuations) after convergence. Optimalcorrection can indeed modify both
phase and amplitude of the field. In the following we will the optimum Gaussian parameters
found forλ = 1.5 µm.

Firstly, figure9.10studies the evolution of〈Ii〉 and
σIi

〈Ii〉
for four different turbulence strengths

and for each iteration stepi. The pupil diameter is set toD = 30 cm. Final metric values
after convergence strongly depend onC2

n. It can be seen that for weak perturbations (i.e.C2
n =

10−16 m−2/3) optimal correction cannot achieve the maximal PIB. The size of the pupil is too
small to enable it. For the three weakest turbulence the optimal correction atλ = 1.5 µm (see
figure6.6) gives better results than atλ = 4 µm. However, when turbulence is further increased
(i.e. C2

n = 7 10−14 m−2/3) correction atλ = 4 µm achieves a slightly better PIB (i.e〈I〉 = 0.4
against0.34 atλ = 1.5 µm) but still keeping similar intensity fluctuations values.

Residual PIB fluctuations have also been characterised. Regardless of the turbulence regime,
a reduction by a factor4 is observed after10 iterations. This factor is relatively constant through-
out the studied turbulence conditions. Concerning convergence speed, if only one iteration is
sufficient for weak perturbations and mean PIB, it appears that larger number of iterations is re-
quired for the other cases and in particular forC2

n = 7 10−14 m−2/3. The same observation can be
made forλ = 1.5 µm, where the required number of iterations for convergence was increasing
with turbulence strength. However, the required number of iterations seems slightly smaller than
for at λ = 1.5 µm and for weak turbulence. This relaxes the constrains in terms of bandwidth
for the correction system.

9.2.3.2 Impact of Pupil Diameter

It has been observed during theλ = 1.5 µm study that correction quality depends on pupil
size and propagation distance. All other things being equalthis will also be dependent on wave-
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172 CHAPTER 9. PSEUDO-PHASE CONJUGATION IMPLEMENTATION

Figure 9.10: Optimal correction efficiency function of the number of iterations. Left: mean PIB,
right: normalised intensity fluctuations. Propagation distance10 km, λ = 4 µm. Green:C2

n =
10−16 m−2/3, orange:C2

n = 10−15 m−2/3, red:C2
n = 10−14 m−2/3 and blue:C2

n = 7 10−14 m−2/3.
D = 30 cm.

length. Figure9.11 shows metrics evolution for different pupil diameters and wavelengths of
λ = 4 µm (top) andλ = 1.5 µm (bottom). It is reminded that the characteristic parameter
LF =

√
λL = 20 cm atλ = 4 µm (LF = 12 cm atλ = 1.5 µm) had been identified as the

parameter defining the minimal pupil size. This is the reasonthe propagation mode appears for
a larger telescope diameter in the diffractive cases (weak perturbationsC2

n = 10−16 m−2/3 and
C2
n = 10−15 m−2/3) for λ = 4 µm than forλ = 1.5 µm. As previously, it can be observed that

fromD = 2LF the correction in terms of PIB is near perfect. Beyond these values the reduction
in terms of intensity fluctuations is however still important.

For strong turbulence (i.eσ2
R = 4.5 andσ2

R = 31.4) LF is replaced by the ratioλL
πρ0

∝
L8/5λ−1/5. This ratio is not strongly dependent on wavelength but is strongly dependent propa-
gation distance. A strong improvement for these turbulent conditions is not expected in terms of
PIB with a constantD by increase the wavelength. Only the case withC2

n = 7 10−14 m−2/3 sees
a slight improvement in PIB. On the other side, saturation appears much latter becauseσ2

R de-
pends on wavelength. Increasing wavelength reduced fluctuations without any correction. After
optimal correction both wavelength seem to give the same correction quality in terms of residual
fluctuations and for strong turbulence.

9.2.3.3 Density Probability

Figure9.12puts forward the PDF evolution for different pupil sizes, turbulence conditions
and with or without correction. Results obtained forλ = 4 µm are presented without correction
(upper part of the figure) and with optimal correction (lowerpart). PDF is presented for two
pupil diameters:D = 30 cm (left) andD = 40 cm (right).

By comparing these results to those obtained figure6.10for aD = 30 cm telescope diameter
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INFLUENCE OFWAVELENGTH AND FIELD SAMPLING 173

Figure 9.11: Optimal correction efficiency for various telescope diameter, turbulence strength
and wavelengths. Solid lines: optimal correction, dashed:no correction. Left: PIB, right: nor-
malised intensity fluctuations. Propagation distance10 km withλ = 4 µm (top) andλ = 1.5 µm
(bottom). Green:C2

n = 10−16 m−2/3, orange:C2
n = 10−15 m−2/3, red: C2

n = 10−14 m−2/3 and
blue:C2

n = 7 10−14 m−2/3.

andλ = 1.5 µm wavelength, it seems that no improvement is expected by increase the wave-
length. Only for very strong turbulence perturbations can the improvement brought by increasing
the wavelength be seen.

9.2.3.4 Impact of Sampling

For a constant telescope diameter and propagation distanceincreasing the wavelength does
not seem to improve performance. However, the importance ofgoing up toλ = 4 µm does not
only lie in efficiency improvement but also in reducing constrains in the implementation of the
AO system. Figure9.13presents the sampling influence on optimal correction performance. In
order to compare the results to theλ = 1.5 µm case we choose a square pupil ofD = 23.5 cm
of side. Unfortunately, this size is too small to reach intensity fluctuations lower than0.1 for
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174 CHAPTER 9. PSEUDO-PHASE CONJUGATION IMPLEMENTATION

Figure 9.12: Probability density function changes for different pupil sizes, turbulence and cor-
rection. Top: no correction, bottom: optimal correction. Pupil diameterD = 30 cm (left) and
D = 40 cm (rigth). Propagation distance10 km, wavelengthλ = 4 µm.

C2
n = 10−14 m−2/3. However, intensity fluctuations saturation arrives clearly before:Nsat = 6

regardless of the turbulence strength.
The small optics (i.e aD = 23.5 cm pupil) prevent the correction of reaching the required

level of σI

〈I〉
< 0.1. Figure9.14presents the impact of optimal correction for different spatial

sampling and for a diameter ofD ≃ 49 cm. The implementation difficulty brought by the use of
a larger telescope is compensated by an important reductionin the number of required correction
elements. In fact, onlyN = 8 × 8 correction points are required to go fromσI

〈I〉
< 0.32 to

σI

〈I〉
< 0.06. If the desired limit is set toσI

〈I〉
= 0.1 only aN = 5 × 5 system is sufficient. We

remind the obtained results forλ = 1.5 µm helped us defineN = 10× 10 correction element as
the minimum to reach this value. Using a5 × 5 correction system increases the mean intensity
up to 〈I〉 ≃ 0.65. The value before correction is〈I〉 = 0.51. The mean intensity value with
correction is slightly larger than forλ = 1.5 µm where the value was〈I〉 = 0.60.

When wavelength is increased fromλ = 1.5 µm toλ = 4 µm,N goes from approximately
one hundred elements to twenty five, or a factor4. We remind that when changing wavelengths
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INFLUENCE OFWAVELENGTH AND FIELD SAMPLING 175

Figure 9.13: Mean PIB evolution (left) and fluctuations (right) function of number of phase
and amplitude correction elements and turbulence strength. Square pupilD = 23.5 cm and
λ = 4 µm.

Figure 9.14: Mean PIB (left) and fluctuations (right) function of phase and amplitude correcting
elements and turbulence strength. Square pupilD ≃ 49 cm andλ = 4 µm.

(

D
ρ0

)2

is divided by a factor9. The elementary surface of correction between aλ = 1.5 µm

and aλ = 4 µm correction is only divided by4. Even if the pupil sizes are not identical for
both cases, it can be observed thatρ0 is not the scaling factor for the number of elements. In
addition, it cannot be used to justify the reduction inN by changing the wavelength. Even if
ρ0 seems an appropriated scaling parameter without any correction, it completely losses interest
when implementing an optimal iterative correction.

Figure9.15presents the change in mean intensity and intensity fluctuations as a function of
the number of iterations between the two extremities of the link. Convergence seems reached
after only a limited number of iterations (< 5). Only the case of large degrees of freedom takes
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176 CHAPTER 9. PSEUDO-PHASE CONJUGATION IMPLEMENTATION

slightly longer. The behaviour is similar for both wavelengths studied.

Figure 9.15: Mean PIB (left) and intensity fluctuations (right) changes as a function of the num-
ber of iteration, turbulence strength and number of phase and amplitude action points. Square
pupil withD ≃ 49 cm andλ = 4 µm.

9.2.4 Conclusion

In the previous paragraphs the influence of wavelength on optimal correction was presented.
We has seen that the scaling parameter

√
λL, increased with increasing wavelength, requiring an

increase in telescope diameter in order to maintain performance obtained atλ = 1.5 µm. Despite
the negative impact related to diffraction, a study of the required number of correction elements
shows a strong reduction for the longer wavelength. Changing wavelength helps us to divide the
number of elements by a factor4 by only doubling the optics sizeD. It goes fromN = 100
correcting elements atλ = 1.5 µm to onlyN = 25 atλ = 4 µm. ρ0 can no longer be considered
as a scaling parameter for the number of actuation point for an iterative optimal correction.

9.3 Iterative Conjugation by Injection into a Waveguide

We are investigating means of measuring phase and amplitudeon an incoming wave. In
addition, we are also interested in creating a wave resulting from a finite sum of spatial modes
than can be controlled both in phase and in amplitude in orderto re-emit a conjugated wave.
Most of existing systems (deformable mirrors, liquid crystals, and electro-optical systems) can
only control the phase part of the spatial mode. In parallel,it is possible to control their amplitude
by attenuation devices. Let the intensity|E0|2 be defined as the quadratic sum of then modes’
amplitudes:|E0|2 =

∑n
i=1 |Ei|

2. The device described in the following text can modulate phase
and amplitude of each mode of beam without affecting the total intensity of the beam. The optical
power is therefore not modified. We will later see how this device can be used to measure phase
and amplitude of the incoming beam.
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ITERATIVE PHASE CONJUGATION BY INJECTION IN A WAVEGUIDE 177

9.3.1 Correction Principle

The problem is similar to the duplication of a unique mode with total control over phase and
amplitude of each of the duplicated modes. The total intensity is kept unchanged. Figure9.16
shows the device used to split the initial beamE0 into two beamsE1 andE2. The two beams
can be controlled in phase and amplitude by means of three dephasing elements (ϕ0, ϕ1 andϕ2).
The three phase-shifting elements control the phase of the beams in an absolute fashion. Only
two phase-shifting elements are needed if one only needs to control the relative phase which is
only the differential phase between the beams. Only phase-shift ϕ0 andϕ1 (or ϕ2) are useful in
this case. The phase-shifting elementϕ0 is used to control the energy distribution betweenE1

andE2. This system verify energy conservation:|E1|2 + |E2|2 = |E0|2

ϕ
1

E0

ϕ
2

Mach−Zehnder

Déphaseur

Déphaseur

Déphaseur

E

E2

1

Miroir

Miroir semi−réfléchissant

ϕ
0

Figure 9.16: Diagram of the phase and amplitude control of two complex fields from a single
coherent source.

It is equally possible to recombineE1 andE2 in order to create fieldE0. If one needs to drive
n complex amplitude beams, it is not possible to recombine them two-by-two because all beams
much interfere. We propose to put these elements in cascade in order to realise this function.
Figure9.17shows the implementation diagram based on elements presented figure9.16. Each
elementary function is depicted as a rectangle used to divide the beam in two beams controlled
in phase and amplitude. By using this device a de-multiplexing device is realised and a unique
beam is split into several beams. By reversal of the light path and by using the same device a
combination system can be realised.

When phases and amplitudes are known (by using the de-multiplexing device) the phase-
shift estimation to be applied is simple because based on a direct model perfectly known. In
its principle the resolution relies on the knowledge of the amplitudes. Theses amplitudes give
directly access to the phase-shifts by reasoning by levels (i.e. elementary function). Estimation
of the other values is then straightforward. When phases andamplitudes are unknown, when used
in recombination mode, one must add measurements to estimate the phase-shifts to apply. Spatial
and temporal modulation techniques can be used and/or combined to realise this measurement. It
can be realised on the final re-combined beam or the recombined beams at each level. Ifn beams

te
l-0

07
71

27
6,

 v
er

si
on

 1
 - 

8 
Ja

n 
20

13



178 CHAPTER 9. PSEUDO-PHASE CONJUGATION IMPLEMENTATION

0E

...

...

...
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...

...

...

E1

E2

En

Figure 9.17: Diagram of the phase and amplitude control ofn complex fields from a single
coherent source. Each rectangle represents an elementary function presented figure9.16.

need to be controlled in phase and amplitude,n − 1 basic functions are required. Therefore, in
order to drive one hundred modes we will typical need one hundred elementary systems. This
relatively high value is a justification for studying integrated optics implementation strategies.

In the framework of FSO pre-compensation, the system described above is a practical im-
plementation of the iterative phase and amplitude correction [Barchers-a-01-a, Barchers-a-01-b].
The proposed configuration is symmetrical, meaning that emission and reception are identical.
Reception plane (resp. emission) is spatially sampled by a lenslet matrix (see figure9.18). The
field is focalised after each lenslet into a monomode opticalfibre. The fibres are coupled to
system described above. In re-combination mode it is used tomeasure phase and amplitude. In
reverse, it is used to emit a phase conjugated wave.

Laser T2 vers T1
Laser T1 vers T2

TURBULENCE

E’

E’

E’

Module
d’émission

Module de
réception

Télescope n°2

E’

n

1

02 2E0

En

E

E

1

Module
d’émission

Module de
réception

Télescope n°1

et d’amplitude 
Modulation de phase 

et d’amplitude 
Modulation de phase 

Guide d’onde monomodePupilles 

Figure 9.18: Diagram of phase and amplitude correction realised by injecting into monomode
fibre optics.

9.3.2 Injection into a Single-Mode Waveguide

In ordre to realise the elementary function presented previously, one must inject the received
wave into a finite number of single-mode optical fibres at reception. For example, we place
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ITERATIVE PHASE CONJUGATION BY INJECTION IN A WAVEGUIDE 179

ourselves in the case where single-mode fibres are used. A single-mode fibre is a spatial filter
selecting the part of the incoming field equal to its eigenmode. References for single-mode fibre
injection are found in Ruillier and Cassaing [Ruillier-a-01]. LetM0(r) be the normalised single-
mode fibre mode in the pupil plane (‖M0‖ = 1). The scalar product corresponds to:

〈X|Y 〉 ,

∫ ∫

X(r).Y ∗(r).P0(r)dr
∫ ∫

P0(r)dr
, (9.1)

and the norm:
〈X〉 , 〈X|1〉 (9.2)

‖X‖ ,
√

〈X|X〉, (9.3)

whereP0 is the pupil transmittance. A single-mode fibre only transmits the energy from the
incoming fieldE corresponding to its eigenmode. Coupling efficiency is given by [Ruillier-a-01]:

Ω(E) =
〈E|M0〉
||E|| (9.4)

From Ruillier [Ruillier-a-01], the Gaussian mode that optimises coupling coefficient cancou-
ple approximately80% of the energy ofE. The fibre mode chosen is therefore a Gaussain beam
where approximately80% of the energy is transmitted through the lenses composing the matrix.

The measured amplitude and phase will be used to make the correction. The correction field
E ′′ = conj(E ′) = A ∗ Ω∗ ∗ M0 is simply the complex conjugate that will be propagated in
reverse direction. Defocalisation due to propagation of the Gaussian fibre-modeM0 is neglected
between the fibre exit and the emitting lens.

9.3.3 Numerical Simulation Conditions

Firstly, we present numerical simulation results for a lenslet distribution as shown figure9.19.
Emission and reception pupils of diameterD are considered to be sampled by lenses of diameter
d adjacent to each other.

D

d

Figure 9.19: Pupil configuration.
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180 CHAPTER 9. PSEUDO-PHASE CONJUGATION IMPLEMENTATION

Figure 9.20: Illustration of received intensity distribution in the reception pupil plane after prop-
agatioN and with and without correction;C2

n = 10−14 m−2/3.

Figure9.20represents a single realisation for the intensity distribution in the reception pupil
plane after propagation without any correction (images on the left) and with correction (the two
images on the right). Illustrations represent on the one side intensity distribution in reception
plane and on the other the same distribution after injectioninto a matrix of fibres. Turbulence
strength is set toC2

n = 10−14 m−2/3 and the individual pupil diameters tod = 1 cm with a
wavelength ofλ = 1.5 µm and a propagation distance ofL = 10 km. For this particular turbu-
lence distribution, the total collected intensity withoutcorrection isI0 = 16.8% and goes up to
I3 = 33.1% after correction (4 iterations). In spite of the low level ofreceived intensity (lim-
ited surface, limited filling factor in both emission and reception pupils) a92% increase in the
collected intensity is obtained after only4 iterations.

9.3.4 Performance Without Turbulence

In this study, we will use different sizesd for lenslets and different pupil sizesD. First, we
will look at performance in the absence of turbulence. Figure 9.21represents numerical simula-
tion results for various pupil configurations without atmospheric turbulence. It can be observed
that integrated intensity remains small in spite of the increase of pupil diameterD. However,
correction gain is clearly visible when comparing results to the uncorrected case with the excep-
tion of D = 10 cm where correction does not help improving quality. This low value of means
PIB comes from various factors such as filling factor and fibreinjection. Firstly, the chosen
pupil geometry leads to a factorπ

4
reduction when compared to a full square pupil (geometrical

losses). Secondly, the empty spaces in the reception pupil create interferences such that part of
the energy is ejected outside the pupil after propagation over a long distance (diffraction losses).
After a long propagation distance, the energy contained thesecondary lobes increases. Finally,
injection into the single-mode fibre optics creates anotherloss (injection losses, see paragraph
9.3.2). We remind the reader that injection losses are of the orderof 20%. Geometrical and
diffractive losses can be in part compensated by a correction; however its gain is hard to evaluate
because depending on turbulence strength.

Besides the above mentioned losses, an additional loss is observed forD = 20 cm andD =
30 cm when the diameterd is reduced from2 cm to 1 cm. Those losses are due to numerical
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ITERATIVE PHASE CONJUGATION BY INJECTION IN A WAVEGUIDE 181

Figure 9.21: Numerical simulation results without turbulence for lenslets of diameterd = 3 cm
(left), d = 2 cm (middle) andd = 1 cm (right). Pupil diameterD isD ≃ 10 cm (top),D ≃ 20 cm
(middle) andD = 30 cm (bottom). Solid lines represent reception and dashed lines emission.
Wavelengthλ = 1.5 µm and propagation distanceL = 10 km.

issues related to aliasing. In fact, during emission the pupil acts as a grating. For a linear plane
diffraction grating of stepp and slit widtha, the diffracted intensity at a pointx in the Fraunhofer
approximation is given by:

I ∝ sinc2
(

πXa

λL

)

(

sin
(

NπXp
λL

)

sin
(

πXp
λL

)

)2

, (9.5)

WhereN in the number of slits andL the propagation distance. As a result, the smaller the
pupil diameterd the more the secondary lobes will be far for the optical axis.These secondary
lobes will therefore be more likely to be aliased for smallerdiameterd. Figure9.22shows the
diffraction pattern of a linear plan grating for a propagation distance ofL = 10 km calculated
form equation9.5.

Unfortunately, the propagation model using turbulent phase screens (of finite dimension) that
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182 CHAPTER 9. PSEUDO-PHASE CONJUGATION IMPLEMENTATION

Figure 9.22: Diffraction pattern of a linear plan grating for a propagation distance ofL = 10 km
with a = 1 cm,p = 1.25 cm andN = 30.

are used in simulation create aliasing. As a result, numerical simulations lead to a different
diffraction pattern for a pupilD = 30 cm with d = 1 cm than the one presented figure9.22. In
addition, Fresnel formalism is used for propagation which also slightly modifies the diffraction
pattern. Figure9.23presents on the one side intensity distribution (on the left-hand side) after
aL = 10 km propagation and cut going through the optical axis (right-hand side). We can see

Figure 9.23: Left: intensity distribution in reception plane. Right: Intensity distribution cut
though the optical axis.

that intensity is lower on the optical axis that next to it. Secondary lobes in this simulation case
have been aliased on the optical axis because of digitalisation on a finite grid. The secondary
lobes come from a coherent source (the emitted wave) and their phase is opposite to the principal
lobe phase. This is the reason, by reasoning in amplitude, that the contribution of the aliased
lobes can either be additive or subtractive. For the studiedcase it is subtractive and the intensity
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ITERATIVE PHASE CONJUGATION BY INJECTION IN A WAVEGUIDE 183

integrated over the pupil area decreases. On the other hand,the other pupil configuration (d =
2 cm andd = 3 cm) do not have this issue as the influence of aliasing is weaker for the simulation
parameters chosen.

In the absence of turbulence or when it is weak, the emitted wave is strongly coherent. The
results obtained are strongly impacted by the negative effects of aliasing. Conversely, for strong
turbulence, the emitted wave rapidly losses coherence. Results for strong perturbations will
suffer less from aliasing effects. In addition, for the application of interest (i.e. endo-atmospheric
long-distance FSOs) only strong perturbations are really of interest.

9.3.5 Impact of the Total Pupil Diameter

In the following paragraph results relating to the influenceof pupil sizeD on correction qual-
ity in turbulence are presented. The study was performed with three different spatial sampling
diameterd (d = 1, 2 and3 cm), making the number of correcting elements vary. This study is
similar to the one presented paragraph9.2.

9.3.5.1 Impact of DiameterD for d = 1 cm

Figure9.24shows numerical simulation results for a pupil matrix composed of pupil ofd =
1 cm in diameter. Three sizes of square pupilD are represented; from top to bottom by increasing
size (D ≃ 10 cm (upper part of the figure),D ≃ 20 cm (central part) and forD ≃ 30 cm (lower
part)).

As expected, when increasing the global collecting areaD the correction quality improves.
The difference is clearly visible between10 cm×10 cm and20 cm×20 cm. This fact has already
been noticed in paragraph6. WhenD ≃ 10 cm intensity fluctuations stay superior toσI/ 〈I〉 =
0.1 for the least favourable cases. In the following paragraph we will mainly focus on matrices
of sizeD > 10 cm. In fact, we have seen that pupils ofD < 10 cm cannot be used to establish
a propagation mode in weak perturbations. FromD = 20 cm fluctuations are strongly reduced
and go below the threshold (i.e.σI

〈I〉
= 0.1) whatever the turbulence strength studied.

The left part of figure9.24present mean intensity〈I〉. ForD ≃ 30 cm correction helps to
improve intensity from〈I〉 = 0.12 to 〈I〉 = 0.34 after 19 iterations and forC2

n = 10−14 m−2/3.
The final value depends onD (even if it can be observed that correction gain is very limited
betweenD = 20 cm andD = 30 cm for casesC2

n = 10−16 m−2/3 andC2
n = 10−15 m−2/3). In

fact, forD ≃ 20 cm the improvement brought by the correction creates an improvement from
〈I〉 = 0.09 to 〈I〉 = 0.3 for C2

n = 10−14 m−2/3.
Concerning intensity fluctuations (right-hand side), theyare equally dependent on the number

of correction elementsN . It evolves form
σI0

〈I0〉
≈ 0.2 (resp.

σI0

〈I0〉
≈ 0.4) without correction to

σI19

〈I19〉
≈ 0.03 (resp.

σI19

〈I19〉
≈ 0.06) with correction forD ≃ 30 cm (resp.D ≃ 20 cm). Even if

pupil geometries are slightly different, we approximatelyencounter the same values obtained
previously for perfect optimal correction. In fact, as seenparagraph9.2.2when the number of
correction elements is greater thanN ≈ 20 × 20 for a D = 20 cm pupil we reach optimal
correction values for intensity fluctuations.
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Figure 9.24: Simulation results for a matrix with pupils each of d = 1 cm in diameter. Solid lines
represent results for telescopeT1 and dashed lines forT2. Wavelength is set toλ = 1.5 µm and
propagation distance toL = 10 km.

Convergence speed for mean intensity is high for all studiedparameters. Convergence speed
for intensity fluctuations depends on turbulence strength and pupil diameter. The stronger the
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turbulence the fewer iterations are required. However, above 10 iterations it can be considered
that convergence as been reached. The value is reduce (convergence is reached after5 iterations)
when the turbulence strength is increased.

Despite the strong gain, it must be noticed that a large number of fibres is required (approx-
imately900 for the best correction scenario) which can be a limitation when implementing this
solution. We remind that the parameterρ0 = 1 cm forC2

n = 10−14 m−2/3 which is approximately
the size of the pupilsd. Perturbations are therefore well sampled. By increasing diameterd we
will decrease the useful number of fibres by making the sampling coarser.

9.3.5.2 Impact of DiameterD for d = 2 cm

In order to relax constrains related to the high number of elements, figure9.25shows numer-
ical simulation results for a matrix where each pupil has a diameter ofd = 2 cm. Two different
sizes of overall collecting areas are studied:D ≃ 20 cm (upper curves),D ≃ 30 cm (lower
curves). Similarly to the1 cm case, the more we increase the total collecting area the better the
correction. ForD = 20 cm the same results are obtained in terms of normalised intensity fluc-
tuations as in paragraph9.2 for N = 100. We remind that the size of the correcting elements is
here ofd = 2 cm and is identical to theN = 100 case presented previously. Oppositely, mean
intensity is smaller than the case presented paragraph9.2confirming the small impact of the fill-
ing ratio on mean intensity (and not fluctuations). The reasoning done on intensity fluctuations
with a simplified study (i.e. full square pupil and not fibre injection) is still valid for the present
case with a different pupil geometry and taking into accountinjection in single-mode fibres.

Increasingd from1 cm to 2 cm helps increasing〈I〉 but not σI

〈I〉
. Increasing the diameterd

of the correction elements can relax system constrains. If the goal is set in terms of intensity
fluctuations,100 pupils ofD = 20 cm withd = 2 cm seems sufficient. This is enough to reduce
intensity fluctuations fromσI

〈I〉
= 0.3 to σI

〈I〉
= 0.1 in only approximately5 iterations. In addition,

for weak turbulence convergence is reached sooner than ford = 1 cm.

9.3.5.3 Impact of DiameterD for d = 3 cm

In this paragraph results for lenslets ofd ≃ 3 cm are presented. It can be observed, even if a
D ≃ 20 cm pupil is sufficient ford = 2 cm, that the required pupil diameter is nowD = 30 cm.
Correction for weak and intermediate turbulence strength cannot reach the correction quality
obtained withd = 2 cm. The area of the correcting elements being too large it cannot sample
the field in the pupil sufficiently, leading to a loss in quality for the two studied metrics. In
fact d > ρ0 and the correction on a single correction element is limitedto piston only. This
approximation is not longer valid for large sizes ofd. It can be noticed that the same value is
obtained in terms of intensity fluctuations forD = 20 cm withd = 2 cm and forD = 30 cm with
d = 3 cm. For these two cases, the number elements used for correction isN = 100. To a first
approximation, it seems thatσI

〈I〉
is relatively independant ofD but strongly depends onN . This

is not the case for〈I〉 which depends both onD and onN .

te
l-0

07
71

27
6,

 v
er

si
on

 1
 - 

8 
Ja

n 
20

13



186 CHAPTER 9. PSEUDO-PHASE CONJUGATION IMPLEMENTATION

Figure 9.25: Simulation results for a matrix with pupils each of d = 2 cm in diameter. Solid lines
represent results for telescopeT1 and dashed lines forT2. Wavelength is set toλ = 1.5 µm and
propagation distance toL = 10 km.

9.3.5.4 Conclusion

The reduction in mean collected intensity can be much higherthan using a full pupil. The
maximum mean intensity that one can hope to reach is approximately〈I〉 ≃ 0.63 (geometrical
losses ofπ

4
and injection losses of20%). This is the actual factor found in the best correction

cases. In order to improve mean intensity values which have dropped from the perfect optimal
case, one must densify the pupil plane. It is possible, for example, to use square lenslets capable
of filling the entire aperture surface. However, the opticalfibres eigenmode is Gaussian. Chang-
ing from a circular geometry to a square geometry will not enable a significant increase except
if the eigenmode of the waveguide is square (i.e. the waveguide itself is square). In addition, the
drop in 〈I〉 is not particularly prejudicial as intensity fluctuations are less sensitive to the pupil
filling ratio. Moreover, even if mean intensity is an important factor for the BER, the result-
ing losses are negligible compared to losses produced by atmospheric absorption. Minimising
intensity fluctuations is on the other hand of prime importance.
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ITERATIVE PHASE CONJUGATION BY INJECTION IN A WAVEGUIDE 187

Figure 9.26: Simulation results for a matrix with pupils each of d = 3 cm in diameter. Solid
lines represent results for telescopeT1 and dashed lines forT2. Wavelength is set toλ = 1.5 µm
and propagation distance toL = 10 km.

Various pupil sizesD were studied with various combination of correction elements sizesd.
For each of these cases, optimal correction improves the link budget. In order to design a FSO
system using such a correction device, it is important to setan acceptable threshold in terms of
intensity fluctuations. This particular threshold will then set the necessary number of correction
elements and the required total optical surface. If high performance is desired, one must use a
large optical apertureD with a large number of optical fibres. In this study, controlling a hundred
modes is sufficient which with the proposed technology solution seems feasible.

9.3.6 Impact of the Pupil Filling Ratio

Correction on a total surface of approximately30 cm× 30 cm has a better correction quality
because it performs phase conjugation on a large part of the field in the reception plane. Pre-
viously, we studied an iterative correction with pupils ofd = 1, 2 and3 cm in diameter. The
correction with the finest spatial sampling (i.e. producingthe best correction) requires a lot of

te
l-0

07
71

27
6,

 v
er

si
on

 1
 - 

8 
Ja

n 
20

13



188 CHAPTER 9. PSEUDO-PHASE CONJUGATION IMPLEMENTATION

correction elements.
However, by taking as a design goalσI

〈I〉
< 0.1 onlyN = 100 correction points are necessary.

In this paragraph, we focus on the reduction of the lenslet size which is equivalent to diluting the
pupil (see figure9.27). Cases withD = 20 cm etD = 30 cm are presented. Figure9.28shows
the simulation results.

D

d d

D

Figure 9.27: Illustration for the pupil configuration in thereception plane. Left: non-diluted
pupil, right: diluted pupil.
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ITERATIVE PHASE CONJUGATION BY INJECTION IN A WAVEGUIDE 189

Figure 9.28: Simulation results for a matrix with100 lenslets. Each lenslet is eitherd = 1 cm
or d = 2 cm in diameter withD = 20 cm andD = 30 cm. Solid lines represent emission
and dashed lines reception. The wavelength is set toλ = 1.5 µm and propagation distance to
L = 10 km.
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190 CHAPTER 9. PSEUDO-PHASE CONJUGATION IMPLEMENTATION

Pupil dilution strongly reduces mean collected intensity.As a matter of fact, reducing the
paving density increases geometrical losses by also diffraction related losses. The casesD =
30 cm andd = 1 cm shows the limit for pupil dilution where the received meanintensity is
almost zero. Conversely, normalised intensity fluctuations do not seem to be strongly affected
by the increase of gaps in the pupil. This is what we have shownin the previous paragraph:σI

〈I〉

depends onN but not so much onD. Fluctuations seem more directly related to diameterD for
a fixedN , whereas mean intensity seems more to be fixed by the total collecting surface and gap
factor.

The shown geometry with gaps is clearly not optimal. It cannot be used to reachσI

〈I〉
= 0.1

for C2
n = 10−14 m−2/3. A better lenslet distribution is necessary. The use of denser optical fibre

configurations, with for example square of hexagonal lenslets, can be used to achieve of pupil
plan without any gaps. In order to fully benefit from the correction, it is possible to develop
pupils with large gaps but with a geometry minimising fluctuations. As an example, it is possible
to use lenslets of varying sizes throughout the pupil (see figure9.29). Such a configuration has

B

D

a

d

Figure 9.29: Pupil configuration with gaps.

a good sampling factor near the optical axis used to achieve an important flux collection. It also
has a large baseB capable of focalising and stabilising the beam after propagation. However,
the optimisation of the geometry and the design of such pupilare still to be undertaken.

9.4 Conclusion

In this chapter we have proposed different novel implementation strategies of phase and am-
plitude correction. First, we have studied the influence of tip-tilt iterative correction combined
with beam re-centring. This system is easy to implement as only two tip-tilt mirrors can be
used. However, this iterative correction does not seem powerful enough because the number
of corrected modes is insufficient. In addition, for strong perturbations it seems that a modal
correction is not longer suitable and a zonal approach is more efficient.

Paragraph9.2impact of spatial sampling on non-diluted pupils (square lenslets without gaps)
was studied theoretically for optimal correction. This result was used as a reference and we have
showed thatσI

〈I〉
mainly depends ofN whereas〈I〉 depends onN but also onD. It has been
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CONCLUSION 191

shown that a high number of correction elementsN is required to reach sufficient correction
quality. In terms of intensity fluctuations, the plateau where no improvement is obtained by in-
creasingN does not seem to depend on turbulence strength. However, if one is to set the required
performance to sayσI

〈I〉
= 0.1 and wavelength toλ = 1.5 µm, a minimum ofN = 100 correc-

tion elements is necessary. Increasing the wavelength can help reduce the number of elements
but one need to simultaneously increase the overall pupil size. Increasing the wavelength from
λ = 1.5 µm toλ = 4 µm reduces by4 the number of necessary correction points when the pupil
diameterD is doubled.

Finally, we proposed a novel approach for implementing iterative phase and amplitude cor-
rection by injecting into single-mode optical fibres. We first used circular lenslets with no gaps
in between (geometrical losses ofπ

4
). We then studied the impact of increasing the gaps between

individual lenslets. Three different losses origins have been identified: losses introduced by in-
jecting into single-mode optical fibres, geometrical losses due to gaps in the pupil and diffraction
losses. The last ones are created by gaps within the pupil which increases secondary lobes den-
sity outside the reception pupil. Pupil density (i.e. the presence of gaps or not in the pupil) has
a strong impact on mean received intensity. Intensity fluctuations however mainly depend on
N when gaps between lenslets increase (no important variation between the studied cases with
diluted pupils). Mean intensity is strongly modified and it seems necessary to optimise the pupil
geometry when using a pupil with gaps between lenslets. However, it has been observed that
the design in terms of normalised intensity fluctuations as showed paragraph9.2 is identical for
this type of correction despite important geometrical modifications. We have shown that to the
first order, σI

〈I〉
mainly depends onN and that〈I〉 depends onN but also onD and ond. This

is only the first evaluation step and a more advanced study needs to be carried out. In spite
of these losses, correction using injection into an opticalfibre can reach a satisfactory level of
correction in return for a sufficient total collection surface and spatial sampling. It seems that
fromN = 100 and above, intensity fluctuations can be reduced down toσI

〈I〉
< 0.1 for all studied

turbulence strengths. In the framework of our study, controlling a hundred modes is sufficient.
With the proposed correction solution it seems entirely feasible technologically.te
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General Conclusion

Summary

The work presented in this document has focused on the impactof atmospheric turbulence in
free-space optical links and on adaptive optics (AO) correction to reduce its impact.

In the first part, I have presented the problem and evaluated the correction efficiency levels to
reach typical free-space optics (FSO) requirements. In order to quantify correction quality, I have
proposed the use of mean power in the bucket (PIB) and normalised intensity fluctuations. These
metrics are easily linked to classical FSO metrics such as the bit error rate (BER). However, the
relation between these parameters is exact only in the weak perturbation case, for an important
pupil averaging effect or when an efficient adaptive optics correction is in place. We have shown
that in order to achieve an efficient correction it is important to increase the mean collected flux
to assure sufficient signal-to-noise ratio. More importantly it is essential to reduce temporal
intensity fluctuations. We have set the threshold for normalised fluctuations (i.e. σI

〈I〉
) to 0.1

or less based on a study on mean BER values. In these conditions, BER curves are similar
to the theoretical curve obtained in absence of turbulence.It enables us to reach mean BERs
typically between10−9 and10−12. In typical conditions (i.e. in terms of turbulence strength,
optics diameters, wavelength) and for long-distance endo-atmospheric links as we have studied,
the order of magnitude of fluctuations isσI

〈I〉
≃ 0.5. A reduction in intensity variance of a factor

25 is hard to achieve with methods such as diversity. Correction by an adaptive optics system
has the potential of delivering the desired reduction.

The second part of the document focused on the detailed analysis and extension to all pertur-
bation regimes of the work initially proposed by Barchers onoptimal and sub-optimal correction.
Truncation by pupilD and turbulence strengthC2

n were established as the main limiting param-
eters. These corrections are worked out iteratively and enable, whenD andC2

n enable it, the
creation of a propagation mode. We have shown that the relevant scaling parameter for pupil
diameter in weak perturbations isLF =

√
λL. For pupil diameters larger than2LF and smaller

thanLF correction is superfluous when compared to an uncorrection optical link. For strong
perturbationsλL

πρ0
was identified as the scaling parameter for the pupil size. Aslong asD stays

smaller thanλL
πρ0

the link budget of the system is strongly improved by correction. Extension of
the optimal correction efficiency was demonstrated in very strong perturbations and even satura-
tion. For a Rytov scintillation variance rateσ2

R of about100, correction is still able to improve
the link. However, correction efficiency drops when we reachsuch variances. We have shown
that intensity fluctuations can be reduced by up to a factor30 (depending on turbulence strength
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194 GENERAL CONCLUSION

and pupil size) and that mean intensity can be increased by upto a factor6 (equally dependent
onC2

n andD).

We subsequently addressed sub-optimal correction, where only the phase part of the field
is corrected. For the sub-optimal case we observe the same scaling factors and limitations in-
troduced by turbulence strength and pupil diameter as we have observed for optimal correction.
Performance is clearly below that of the optimal correctionand that for all the studied situations.

The third part of this document addressed classical AO corrections for FSO. We first studied
an approach based on wavefront sensing which is typical of AOtechniques used in astronomy.
This approach is based on the measurement and the reconstruction of phase perturbations. It is
strongly sensitive to scintillation. The relevance of thistechnique lies mainly in its correction
capability in low scintillation regimes, typically forσ2

R < 1. We have shown that restricting
the number of corrected Zernike modes can be sufficient to reach the correction levels achieved
by a perfect phase-only correction. Within the studied framework, only the first35 modes are
indispensable. In order to partially alleviate scintillation issues, we have proposed the use of
several beam probes. This configuration helps averaging scintillation effects and increases the
usability domain where correction is useful.

The second approach studied was phase modulation. It completely removes problems related
to scintillation but on the other hand requires a much higherbandwidth for the deformable mirror.
Such a correction system cannot guaranty the optimality of the solution after convergence. In
addition, obtained performance is on average only slightlyhigher that with a wavefront sensor
(if the multi-beam approach is used, reducing the impact of scintillation).

The three correction methods that we have presented (i.e. sub-optimal, counter-propagating
laser beam probe and modulation) can only correct for the phase part of the emitted field. We
have shown that for strong perturbations and for all studiedstrategies it is not possible to reduce
intensity fluctuations below the require threshold set in terms of error rate. This observation
demonstrates the importance of the optimal method and the necessity of pre-compensating for
both phase and amplitude.

This is the reason why the last part of the document focuses onthe implementation of the
optimal correction. We demonstrated the importance of pupil plan spatial sampling. A large
number of correction elements, approximately one hundred for a pupil ofD = 30cm in diameter,
is required. An implementation of the optimal correction bysampling the pupil plane with a
matrix of fibre optics has been proposed. This method reachesmuch higher correction levels
than those limited to phase only. It can reach optimal correction levels in terms of intensity
fluctuations. However, the large number of correction elements imposes either an important
technological development or the study of ways of reducing this number. We have proposed two
different approaches. The first consisted in increasing thewavelength. By increase wavelength
from λ = 1.5 µm (hypothesis used for this work) toλ = 4 µm, it is possible to reduce the
degrees of freedom up to a factor4. The second approach consisted in diluting the pupil in
order to use only a limited number of correction elements judiciously placed over a large area.
This approach is similar to certain aspects of optical synthetic aperture used in multi-aperture
instruments.
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PERSPECTIVES 195

Perspectives

The results developed in this document are the first steps of the establishment of a more
global phase and amplitude correction such as one could wishfor FSO systems.

Field test for the Fortune43G project will take place mid-2010. During the system design, we
have chosen a pupil diameter ofD = 25 cm with no central obscuration in order to limit effects of
pupil truncation at the reception. The impact of pupil truncation was established during the study
of AO correction using a counter-propagating probe. In addition, seven counter-propagating
beams were chosen in order to attenuate scintillation effect on wavefront measurement and ex-
tend the usability domain of the sytem. The SH-WFS is composed of a8×8 lenslets array used to
correct approximately the first fifty Zernike modes. These field tests will enable an experimental
validation of the design and test the method based on wavefront measurement. We have seen in
particular that for intermediate perturbations (σ2

R = 1.4) this correction is better than the perfect
phase-only correction. The fundamental reasons are still to be evaluated.

Concerning wavefront measurements for FSO applications, we have concentrated our work
on the SH-WFS. A number of other WFSs currently exist such as:the pyramid[Ragazzoni-a-96],
curvature [Roddier-a-88], YAW [ Gendron-a-07] or phase diversity [Mugnier-l-06, Gonsalves-a-82].
A detailed study on the usefulness of each system for FSO applications must be undertaken in or-
der to extend the phase-only correction validity domain. Using a wavefront sensor more adapted
to strong perturbations associated with a deformable mirror capable of reconstructing phase steps
can possibly significantly improve final performance.

Even if SPGD algorithms are promising, nothing can guarantythat they are the best possible
algorithms. Unfortunately, no theoretical study can compare different algorithms for AO correc-
tion of a terrestrial optical link. An improvement of current algorithms is still to be undertaken.
In addition, we only focused on phase-only modulation of theemitted field. On the other hand,
we have shown the usefulness of driving both phase and amplitude. Several deformable mirrors
can be used to control both phase and amplitude at the same time. The control or the optimisa-
tion algorithm is still to be developed. During this thesis work, we have built an optical bench
experimentally implementing adaptive optics correction using phase modulation. Unfortunately,
due to supply issues of certain parts it was not possible to extensively explore the setup, and
especially test the phase modulation method. As stressed previously, this strategy can improve
link budget. The optical bench is an ideal tool to study both experimentally and numerically
phase-only modulation and phase and amplitude modulation of the emitted field.

Concerning AO correction of a FSO system, I mainly focused myactivity on the study at
a wavelength ofλ = 1.5 µm. We have showed that increasing the wavelength toλ = 4 µm,
can have certain advantages. If this solution seems very promising for reducing the degrees of
freedom, the design of such an instrument is still to be undertaken. Diffraction related effects,
attainable distance and required optical diameters are modified by the change of wavelength and
are still to be quantified. A theoretical study must be undertaken for all presented correction
methods, and in particular for the last part on the implementation of the optimal correction.

In this manuscript we have only briefly mentioned the problemrelated to optimal configura-
tion of a multi-pupil system. This multi-aperture system can be used to implement the iterative
phase and amplitude correction (i.e. an approximation of the optimal correction). A thorough
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196 GENERAL CONCLUSION

study in order to optimise pupil geometry is essential. As a matter of fact, the goal is twofold and
contradictory. The first is to minimise the correction pupiltotal surface as much as possible in or-
der to reduce complexity and implementation costs. The second goal is to maximise the collected
flux and minimise intensity fluctuations in order to reach therequired FSO specifications.
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Appendix A

Reminder

A.1 Error Function

Let the functionerf(x) be the error function anderfc(x) its complementary function:

erf(z) ,
2√
π

∫ z

0

e−t
2

dt

erfc(z) , 1 − erf(z) ,
2√
π

∫ ∞

z

e−t
2

dt

A.2 Calculating BER by counting

How many bitsn are to be sent so that ifk errors are detected, one can ensure a specificBER
with confidence levelCL?

CL = P (k > N |BER) , (A.1)

WhereBER is the probability error for each bit,k the number of errors andN the number of
specified errors. For each transmission either we obtain an error with a probability of errorBER
or the transmission is correct (binomial distribution):

Pn(k) =
n!

k!(n− k)!
BERk(1 −BER)n−k (A.2)

Wheren is the number of transmitted bits. The probability that at leastN errors occur is:

Pn(k > N) = 1 − Pn(k ≤ N) = 1 −
N
∑

k=0

(

n!

k!(n− k)!
BERk(1 − BER)n−k

)

(A.3)

As n approached infinity and BER approaches 0 withn × BER = ǫ, the binomial distribution
approaches a Poisson distribution with parametern× BER:

Pn(k) −→
n→∞

(n× BER)k

k!
e−n×BER (A.4)
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And so:

CL = P (k > N |BER) = 1 −
N
∑

k=0

(n× BER)k

k!
e−n×BER (A.5)

Then:

n = − ln (1 − CL)

×BER +
ln
(

∑N
k=0

(n×BER)k

k!

)

BER
(A.6)

A.3 Conditional Probability

The conditional probability is defined in the general case as:

Pr(Y ) =

∫

Pr (Y |X = x) pX (x) dx (A.7)
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Mitigation of Atmospheric Effects by
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Mitigation of Atmospheric Effects by Adaptive Optics for

Free-Space Optical Communications

Noah H. Schwartza, Nicolas Védrennea, Vincent Michaua, Marie-Thérèse Vellueta and Frédéric

Chazalletb

a ONERA - Optics Department, 29 avenue de la division Leclerc, 92332 Châtillon, France
bShaktiware, 27 boulevard Charles Moretti Bat B, 13014 Marseille, France

ABSTRACT

Data-rates of long-range free-space optical communication links are deteriorated by atmospheric turbulence which
causes power in the bucket fluctuations. In order to compensate for those effects the use of adaptive optics is
envisioned. Different solutions have been proposed for the correction. We study here the performances of several
compensation methods, encompassing both amplitude and phase and phase-only precompensation. In the case
of phase-only precompensation we studied two system designs, one which is dedicated to symmetrical communi-
cation systems and the other to dissymmetric systems. In the dissymmetric case we studied two ways of driving
the deformable mirror : the use of a Shack-Hartmann wavefront sensor and a model-free phase modulation. For
each compensation architecture simulation results covered weak, moderate and strong turbulence conditions.

Keywords: Atmospheric turbulence, adaptive optics, free-space optical communication, Monte Carlo simula-
tions, optical propagation

1. INTRODUCTION

Local refractive index inhomogenities (i.e. atmospheric turbulence) disturb the phase of electromagnetic waves
propagating through the atmosphere. In the case of a laser beam, they notably give rise to random displacement
of the center of gravity (beam wander), significantly broader beams than predicted by the diffraction theory (beam
spreading) and illumination fluctuations (scintillation) [1]. These intensity fluctuations can seriously increase
bit-error rates [2, 3] of optical communication systems, thus limiting the practical distance and throughput of
Free-Space Optical Communications Systems (FSOCS). The rapid growth of FSOCS, and in particular the need
to increase their range and data-rate, stimulates the need to study means of mitigating intensity fluctuations.
Indeed, optical communication systems have many advantages over their RF-based counterparts. They allow a
smaller size and weight, a narrower beam (providing a secure channel), and enable a potential increase in total
throughput.

A real-time modification of the emitted beam, can significantly reduce intensity fluctuations [4]. This tech-
nique is called precompensation. One of the main issues of phase precompensation is to determine the adequate
shape to give to the phase correctors (usually Deformable Mirrors (DM)) in order to optimize the criterion we are
interested in, that is to say power in the bucket. Two different methods arise from this precompensation need:
phase measurement and phase modulation. Phase measurement supposes that the correction phase optimizing
our criterion is the actual measured phase by the wavefront sensor (WFS). The behavior the the most currently
used wavefront sensor (WFS), the Shack-Hartmann (SH), is usually poorly know under strong turbulence con-
ditions. On the other hand, phase modulation techniques require compensation devices significantly faster than
the turbulence evolution time-scale [5, 6].

In the present work, we investigated an adaptive optics (AO) system approach to correct for atmospheric
disturbances by means of numerical simulations. In section 2 we present a brief description of the FSO system
context. In section 3 we present an iterative method to estimate the optimal correction. This correction is based

Further author information:
Noah.Schwartz@onera.fr, Telephone:+33 (0)1 46 73 48 82
Vincent.Michau@onera.fr, Telephone: +33 (0)1 46 73 47 80
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on perfect phase conjugation. We also discuss the possibility of altering the performance by means of simple
phase-only correction. A non-iterative correction and its implementation based on a SH phase measurement is
reported in section 4. A model-free phase modulation precompensation is described in section 5.

2. LONG-DISTANCE TERRESTRIAL FSO SYSTEMS

2.1 Context of Study

The context of the study is a 10km terrestrial commercial Free-Space Optical (FSO) communication link. Select-
ing the wavelength for such a system is a trade-off between atmospheric absorption (i.e. atmospheric windows),
scattering, turbulence effects and available technology. The maximum operating wavelength will be set to 1.5µm.
Furthermore, as turbulence strength (characterized by the index of refraction structure constant C2

n) is a de-
creasing function of height, it is best to place the FSO system as high above the ground as possible. On the
other hand, wind speed tends to increase with altitude as well as the needed bandwidth of the correction system.
The system should be placed approximately at an altitude of 30m. A constant C2

n can be considered because
the communication link will be horizontal. Various cases of turbulence strength will be studied in this paper:
C2

n = 1.10−16m−2/3, C2
n = 1.10−15m−2/3 and C2

n = 1.10−14m−2/3, corresponding respectively to a Rytov vari-
ance for a plane wave of σ2

1 = 0.14, σ2
1 = 1.4 and σ2

1 = 14, where σ2
1 = 1.23k7/6C2

nL11/6. The scope of this work
will thus encompass weak to strong perturbation regimes. Normalized power in the bucket can be used as a first
approximation to estimate the link quality:

I =

∫

drU(r).U∗(r).P(r)
∫

drU(r).U∗(r)
, (1)

where P is the pupil of the receiving telescope and U(r) is the received electromagnetic field. Losses due to
incomplete focalization into an optical fiber, atmospheric absorption and the such are not taken into account.
The mean power in the bucket will be noted < I >, where < . > is the statistical average. For the remainder
of the paper we will use mean intensity (mean power in the bucket) and of the normalized intensity fluctuations

(
√

<I2>−<I>2

<I> ) to estimate the communication link quality.

3. OPTIMAL LASER BEAM SHAPING BY MEANS OF ITERATIVE CORRECTION

The general purpose of this paragraph is to present an optimal laser beam shape in order to maximize transmission
of a laser beam propagation through a turbulent atmosphere. This method, based on an approach proposed by
Barchers [7], enables an increase in mean power in the bucket and a decrease in intensity fluctuations. This type
of correction leads to a symmetrical system where both emitter and receiver are identical.

3.1 Optimal Correction based on a Amplitude and Phase Iterative Correction

Figure 1 illustrates the basic concept of the iterative amplitude and phase correction. The electromagnetic
field is propagated back and forth across the turbulent volume. At the level of each telescope a pseudo-phase
conjugation is performed. The correction necessitates the use of two or more phase compensation devices in
order to control both emitted amplitude and emitted phase. The implemented algorithm utilizes an iterative

(I )
0

Conjugation
Phase

0
(I )

Phase

Conjugation

TURBULENCE

TELESCOPE #2TELESCOPE #1

(z = L)(z = 0)

LASER BEAMLASER BEAM

Figure 1. Basic concept of the optimal amplitude and phase iterative correction.
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propagation between the two telescopes of the communication link. The different steps in the iterative correction
are presented below, where: z = 0 (resp. z = L) corresponds to the position of telescope number 1 (resp. 2),
I0 is the nominal intensity emitted by the laser beams (

∫

|U0(~r, z = 0)|2d~r = I0), P1 (resp. P2) corresponds
to the pupil of telescope number 1 (resp. 2), D is the pupil diameter. The operator G+ (resp. G−) represents
the propagation through atmospheric turbulence along increasing (resp. decreasing) z. The subscript for each
complex field depicts the iteration index and the complex conjugate of Ui is U∗

i :

Ui(~r, z = 0) = G−

[

I0
∫

|Ui−1(~r, z = L)d~r|2
U∗

i−1(~r, z = L) ×P2

]

(2)

Ui(r, z = L) = G+

[

I0
∫

|Ui(~r, z = 0)d~r|2
U∗

i (~r, z = 0) ×P1

]

, (3)

The nominal beam shape injected to the system is U0(r, z = 0) = A0exp
(

− r
2

wz=0
2 − i kr2

2Fz=0

)

, where w2
z=0 is the

beam width at the emitter and Fz=0 the radius of curvature. After each propagation, a normalization by I0 is
performed to take into account the initial laser beam power. This simulation algorithm was used to compute
the effectiveness of the optimal correction as a function of the pupil diameters (Figure 2). The purpose of this
optimal iterative correction is to attain a propagation mode of the system composed by {telescope #1, turbulent

atmosphere, telescope #2} . This approach can be compared to a spatial mode selection in laser beam cavity.
When this mode is obtained, losses due to atmospheric turbulence and pupil truncation are minimized. As
expected [7], the pupil diameter has a fundamental effect on link quality. When pupil diameters are too small,
this type of a propagation mode is impossible to reach due to the prominent constraints imposed on the spatial
limitation of the beam. When the diffraction effects are negligible this mode can be obtained. If they are no
longer negligible (longer wavelength or smaller pupil diameter), this mode will not be attained. This is why we
observe that the uncorrected beam can yield even better results than the corrected beam for very small pupils.
On the other hand, it can be observed that for large pupils the gap between optimality and beam propagation
without correction decreases; this is due to the pupil averaging effect. As the pupil diameter increases, more
energy is collected by the pupil. For large enough pupils, all the energy will be collected and the correction
effectiveness will lose interest. Plain pupils are used for this simulation ; telescopes with a central occultation

Figure 2. Effectiveness of optimal correction as a function of pupil diameters. Propagation length: 10km, λ = 1.5µm.
Statistics are calculated on 300 propagations. Green: C2

n = 1.10−16m−2/3, yellow: C2

n = 1.10−15m−2/3, red: C2

n =
1.10−14m−2/3. Solid lines: optimal correction, dashed lines: no correction. Left: Mean power in the bucket as a function
of pupil diameter and turbulence strength. Right: intensity fluctuations as a function of pupil diameter and turbulence
strength.

have not yet been taken into account. The authors are currently addressing this issue. According to Figure 2, a
pupil diameter between 20cm and 50cm seems to be a good compromise. To minimize the general bulk of the
system while maintaining a decent correction, a 30cm pupil can be judiciously chosen.

Figure 3 presents the evolution of mean power in the bucket and mean intensity fluctuations as a function of
the iteration index. Clearly the first iteration has the most effect. Nevertheless, each step refines the correction
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towards optimality. Only a few iterations are necessary to achieve a reasonable correction. For example, in the
strongest turbulence simulated case (i.e. C2

n = 1.10−14m−2/3), mean intensity evolves from 0.30 to 0.72 in only
five iterations. The iterative correction changes normalized intensity fluctuations from 0.52 to 0.071. Based on
these curves, we see that intrinsic limitations of the optimal correction are both set by the pupil diameter and
by the turbulence strength.

Figure 3. Effectiveness of optimal correction as a function of iterations. Pupil diameter: 30cm. Propagation length: 10km,
λ = 1.5µm. Statistics are calculated on 300 propagations. Green: C2

n = 1.10−16m−2/3, yellow: C2

n = 1.10−15m−2/3, red:
C2

n = 1.10−14m−2/3.

Upper part of Figure 4 illustrates a typical realization of energy distribution after a 10km propagation of
a laser through atmospheric turbulence. Side by side are presented the propagation of a laser beam without
any correction and the laser beam after optimal correction. The 30cm pupil is presented on these images to
illustrate the effectiveness of the correction. After 10 iterations most of the energy is contained within the pupil.
Optimal correction can be used as a reference to understand the performances of other precompensation devices.
As mentioned earlier, a correction that needs to compensate for both phase and amplitude requires at least two
deformable mirrors to operate. Each additional mirror increases the cost of the correction device. With this
perspective in mind, one can investigate the eventual loss of correction quality by use of a phase-only correction.
Correcting only the phase of an electromagnetic field can be performed by means of a single deformable mirror.

3.2 Iterative Phase-Only Correction

Phase-only correction is obtained by replacing the phase conjugation U ∗
i (r) (equations (2) and (3)) at the ith

iteration by the phase-only correction. For example, equation (3) then becomes:

Ui(r, z = L) = G+

[

I0U0(~r, z = 0)
∫

|Ui(~r, z = 0)d~r|2
×

U∗
i (~r, z = 0)

|Ui(~r, z = 0)|
× P1

]

(4)

Figure 4 illustrates a typical phase-only correction result. After 10 iterations, a notable gain can be achieved.
Side by side, we illustrate the propagation of a laser beam without any correction, and the laser beam after
phase-only correction. Phase-only correction seems to yield poorer results than the optimal phase and ampli-
tude correction. Nevertheless, phase-only correction still leads to a more noticeable improvement than without
precompensation. Figure 5 plots phase-only results as a function of the pupil diameters for 300 statistically
independent realizations. Figure 6 illustrates phase-only efficiency as a function of iteration index. Only a
few iterations are necessary to achieve a good correction. For example, in the strongest turbulent case (i.e.
C2

n = 1.10−14m−2/3), mean intensity increases from 0.3 to 0.64 in only five iterations and changes normalized
intensity fluctuations from 0.52 to 0.156. Limitations of the phase-only correction are set both by the pupil
diameter and the turbulence strength. These results compare well with the optimal correction. For a 30cm pupil
and C2

n = 1.10−14m−2/3, the mean power in the bucket (resp. intensity fluctuations) is 0.64 (resp. 0.1568) for
phase-only and 0.72 (resp. 0.071) for optimal correction after iteration. The simulations performed for phase-only
correction used a narrow collimated beam (exp(−1) amplitude beam radius at pupil level w0 ≈ 7cm).
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Figure 4. Typical energy distribution for iterative optimal and phase-only correction. Top: optimal correction. Bottom:
phase-only correction. Left: No correction; right: optimal (reps. phase-only) correction after 10 iterations. Circles
represent a 30cm pupil diameter. Propagation length: 10km, λ = 1.5µm. C2

n = 1.10−14m−2/3. These two figures have
been obtained under the same atmospheric turbulence conditions. Logarithmic scaling.

Figure 5. Effectiveness of iterative phase-only correction as a function of pupil diameters. Propagation length: 10km,
λ = 1.5µm. Statistics calculated on 300 propagations. Left: Mean normalized power in the bucket (< I >); right:
normalized fluctuations of power in the bucket ( σI

<I>
). Green: C2

n = 1.10−16m−2/3, yellow: C2

n = 1.10−15m−2/3, red:

C2

n = 1.10−14m−2/3. Solid lines: phase-only correction; dashed lines: no correction.

An optimization of the initial laser beam radius in the case of a phase-only iterative correction is presented
Figure 7. When the beam waist is too small, natural beam divergence induces a strong reduction in the total
collected energy at the receiver pupil. On the other hand, when the beam waist is too big an important
truncation will be introduced by the emitter pupil. These simulations place an upper limit on phase only
correction efficiency. However, the development of a system based on an iterative correction requires two AO
systems. Before considering such a complex device, we need study more classical approaches.

4. PHASE-ONLY CORRECTION WITH DISSYMMETRIC BEAMS

4.1 Concept of Correction

The aim of this paragraph is to present a particular type of phase-only correction [8]. The interest of this
type of configuration is that only one AO system is necessary, and not two as for the iterative approach. This
correction circumvents the iteration process and will precompensate the emitted beam in a single propagation.
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Figure 6. Effectiveness of iterative phase-only correction as a function of iteration index. Propagation length: 10km,
λ = 1.5µm, pupil diameter: 30cm. Statistics are calculated on 300 propagations. Green: C2

n = 1.10−16m−2/3, yellow:
C2

n = 1.10−15m−2/3, red: C2

n = 1.10−14m−2/3.

Figure 7. Evolution of the figures of merit as a function of the initial laser beam radius in the case of a phase-only iterative
correction. Propagation length: 10km, λ = 1.5µm. Statistics are calculated on 300 propagations. Left: mean normalized
power in the bucket (< I >); right: normalized fluctuations of power in the bucket ( σI

<I>
). Green: C2

n = 1.10−16m−2/3,

yellow: C2

n = 1.10−15m−2/3, red: C2

n = 1.10−14m−2/3. Solid lines: optimization with exact phase-only correction, pluses:
optimization with a noiseless SH-WFS.

More precisely, a back-propagating laser beam (from receiver to emitter) will probe atmospheric disturbances.
To prevent effects of beam wander, this uncorrected beam should be chosen to be largely divergent. Scintillation

Real TimeLASER

EMITTER RECEIVER

TURBULENCE

Laser Beam

FIBERLASER

Probe

Mirror
Deformable

Computer

Wavefront
Sensor

Figure 8. Configuration of the single-source probe precompensation device with a WFS. The mirror surface is updated
by the real time computer (RTC) based on the WFS measurements.

effects are caused by the propagation of phase aberrations. Scintillation will thus not be affected by phase
disturbances that are close to the receiver. Therefore, a largely divergent beam is appropriate as a probe because
it will poorly probe this region of space while still properly probing turbulence close to the emitter. On the
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other hand, the forward propagating beam (from emitter to receiver) will be a collimated beam to insure that a
maximum of the energy is collected through the receiver. For the rest of the paper a w0 = 10cm beam will be
chosen. Figure 8 presents the system configuration.

Figure 9 plots the evolution of the correction as a function of the pupil diameter. In the strongest turbulence

Figure 9. Performance of a phase-only dissymmetric beam correction as a function of pupil diameter. Propagation length:
10km, λ = 1.5µm. Statistics calculated on 300 propagations. Left: mean normalized power in the bucket (< I >); right:
normalized fluctuations of power in the bucket ( σI

<I>
).

studied case (i.e. C2
n = 1.10−14m−2/3), mean power in the bucket increases from 0.3 to 0.46 and brings normalized

intensity fluctuations from 0.52 to 0.25. A typical realization of a phase-only correction utilizing dissymmetric
beams is presented Figure 10.

Figure 10. Typical energy repartition of a phase-only dissymmetric beam correction in the receiver plane. Left: No
correction; right: correction. Circle represent a 30cm pupil. Propagation length: 10km, λ = 1.5µm. C2

n = 1.10−14m−2/3.
These two figures have been obtained under the same atmospheric turbulence conditions. Logarithmic scaling.

A summary of the different correction types is presented Table 1 where optimal, iterative phase-only and
dissymmetric phase-only corrections can be compared. Although the dissymmetric phase-only precompensation
gives poorer results than optimal iterative correction, it still provides a clear amelioration. For example: normal-
ized intensity fluctuations are halved and mean power in the bucket is multiplied by 1.5 for C2

n = 1.10−14m−2/3.

Until now the exact phase has been used to perform the correction. Phase analysis problems have so far
been discarded. WFS’s are known to function poorly in strong scintillation regimes (see Figure 10). The next
paragraph addresses the use of such a phase measurement.

4.2 Shack-Hartman Based Correction : noiseless case

A noiseless SH WFS is used to measure the phase of the back-propagating laser probe beam. The simulated
SH is composed of 7 by 7 lenslets. Slopes are estimated from lenslet images. The correction is performed
by a DM correcting 38 Zernike modes. Figure 11 illustrates the correction effectiveness as a function of pupil
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C2

n
[m−2/3] < I > σI C2

n
[m−2/3] < I > σI

1.10−16 0.99 0.001 Phase-Only 1.10−16 0.99 0.0007
No Correction 1.10−15 0.92 0.04 Iterative 1.10−15 0.96 0.01

1.10−14 0.31 0.5 Correction 1.10−14 0.64 0.15
Optimal 1.10−16 0.99 0.0003 Phase-Only 1.10−16 0.98 0.0006
Iterative 1.10−15 0.97 0.007 Dissymmetric 1.10−15 0.93 0.01

Correction 1.10−14 0.72 0.07 Correction 1.10−14 0.46 0.25
Table 1. Comparative table of correction efficiency. Statistics are calculated from 300 propagations. Wavelength 1.5µm,
propagation distance: 10km, pupil diameter: 30cm.

diameter. Surprisingly under certain conditions of turbulence strength and pupil diameters the noiseless SH
based correction can lead to better performances than with a perfect dissymmetric phase-only correction. The
difference is small and this slight gain can be explained by the spatial filtering performed by each lenslet. This
spatial filtering actually filters modes that deteriorate the quality of correction.

Figure 11. Performance of a phase-only dissymmetric beam correction as a function of pupil diameter. The phase
measurement is performed by a noiseless 7 by 7 Shack-Hartmann WFS. Propagation length: 10km, λ = 1.5µm. Statistics
are calculated on 300 propagations. Left: mean normalized power in the bucket (< I >); right: normalized fluctuations
of power in the bucket: ( σI

<I>
).

5. CORRECTION BY MODEL-FREE PHASE MODULATION

As previously shown, strong scintillation conditions deteriorate the accuracy of phase reconstruction. This
leads to poor correction quality. Alternative methods, like phase modulation, avoiding the use of wavefront
measurements, have been proposed in the early developments of AO [9, 10]. The main drawback of this technique
lies in the convergence time of the correction. For this study, we use a segmented mirror in which each element
can be driven in piston. Figure 12 illustrates a typical segmented mirror used for the simulations with addresses
for each mirror segment. Phase modulation precompensation technique needs both a low data-rate feedback and
an ultra-fast DM.

5.1 Sequential Perturbations

Optimization is done sequentially by addressing one mirror segment at a time. The figure of merit is estimated
for the 21 positions of each segment. We keep the mirror element in the position that maximizes the received
energy in the bucket. After having addressed all mirror segments, another round is performed. The first round
of optimization gives excellent results and demonstrates that, when using a sequential perturbation correction,
it is unnecessary to continue any further [11]. Figure 13 shows the evolution of both metrics as a function of
addressed mirror segment.
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LASER
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Mirror

Figure 12. Left: sketch of segmented mirror and address of each mirror element for a 6 by 6 mirror. Numbers represent
the address of each element. Right: Configuration of a phase modulation precompensation device. The real time computer
(RTC) updates the mirror surface by knowing metric J.

The correction is performed with a 7 by 7 segments mirror, that is with roughly the same number of degrees
of correction as in the previous case (probe plus WFS). The correction performed by a sequential perturbation
correction yields similar results. Nonetheless, under strong turbulence conditions, phase modulation seems to
perform even better. The evolution curves as a function of the segment number evolves slowly at the beginning

Figure 13. Performance of a sequential perturbations correction. Precision of piston steps: λ/21. Vertical dashed lines
design when all segments have been addressed; another round of correction is then performed starting by element number
1. Propagation length: 10km, λ = 1.5µm, pupil diameter: 30cm. Statistics are performed on 150 propagations. Left:
mean normalized power in the bucket (< I >); right: normalized fluctuations of power in the bucket ( σI

<I>
). Number of

segments for the deformable mirror: 7 ∗ 7.

and slowly at the end of a cycle. Only the middle part, progressing by steps, seems to evolve rapidly. This is
due to the way we address the mirror segments. The mirror segments located at the center correspond to the
most energetic part of the beam.

5.2 Parallel Perturbations: SPGD

The main drawback of phase modulation is its response time. To diminish the time of convergence, an algorithm
based on stochastic parallel gradient descent (SPGD) has been proposed [6, 12]. For each mirror segment, an
elementary perturbation ǫ is applied; this perturbation has a given amplitude but a random sign δuI = ∓ǫ. The
obtained power in the bucket after precompensation and propagation through turbulence is given by I+. Next,
the exact opposite of the previous elementary perturbations is applied and the obtained power in the bucket is
then noted I−. Let un

I be the mirror position at iteration n. Correction updates of mirror segments at step n+1
is done according to the rule [12]:

un+1

I = un
I + γ(In

+ − In
−)sign(δun

I ) , (5)

where γ can either be a constant or a variable. A constant γ has been used. A variable γ has been proposed
[13] to increase the convergence speed of the SPGD algorithm and this issue is currently being address by the
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authors. We can observe that the results obtained are comparable to those obtained by sequential perturbations.
Only a ten or so iterations seem necessary to converge to a good correction quality, as compared to a few hundred
for sequential perturbations.

Figure 14. Performance of a SPGD perturbations correction. Precision of piston steps: λ/21. Vertical dashed lines
designateq when all segments have been addressed; another round of correction is then performed starting by element
number 1. Propagation length: 10km, λ = 1.5µm, pupil diameter: 30cm. Statistics are performed on 150 propagations.
Left: mean normalized power in the bucket (< I >); right: normalized fluctuations of power in the bucket ( σI

<I>
). Number

of segments for the deformable mirror: 7 ∗ 7.

6. DISCUSSION

We studied the impact of different correction strategies for a Free-Space optical communication system. These
strategies were compared to an optimal correction based on iterative phase conjugation precompensation. These
correction types comprise of a phase-only iterative correction, a dissymmetric phase-only correction and a phase
modulation correction. It has been shown that a simple correction implementing a single mirror and thus a
phase-only correction is possible. Moreover it has been shown that both dissymmetric and phase modulation
can produce good correction quality. Nevertheless, none of these techniques is a clear winner. The turbulence
coherence time is of the order of 5ms to 10ms for classical turbulence strength and medium wind speed (≈ 10m/s)
for the case studied here. In order to use a phase modulation correction, the deformable mirror will have to be
frequently updated during the lifetime of atmospheric turbulent cells. On the other hand techniques based on
SH-WFS are not robust and lose accuracy in strong turbulences.

A pupil of approximately 30cm has been shown to be sufficient to enable good correction quality. If the
correction needs to be improved further (even longer distances, stronger turbulence) then it will be necessary to
implement at least a two mirror precompensation. A test bench is currently under development at ONERA to
study phase modulation correction.
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[Baykal-a-09] Y. BAYKAL , H. T. EYYUBOĞLU, ET Y. CAI , Scintillationsof partially
coherentmultiplegaussianbeamsin turbulence, Appl. Opt., 48(10):1943–
1954, 2009.

[Begley-p-02] D. BEGLEY, "free-spacelasercommunications:ahistoricalperspective",
vol. 2, LEOS, Proc IEEE, Nov. 2002, pp. 391–392 vol.2.

[Bell-a-1880] A. G. BELL, Thephotophone, Science, 1:130–134, September 1880.

[Belmonte-a-97] A. BELMONTE, A. COMERÓN, J. A. RUBIO, J. BARÁ , ET E. FER-
NÁNDEZ, Atmospheric-turbulence-inducedpower-fadestatistics for a
multiapertureopticalreceiver, Appl. Opt., 36(33):8632–8638, 1997.

[Bissonnette-a-79] L. R. BISSONNETTE ETP. L. WIZINOWICH, Probabilitydistributionof
turbulentirradiancein asaturationregime, Appl. Opt., 18(10):1590–1599,
1979.

[Bloom-a-03] S. BLOOM, E. KOREVAAR, J. SCHUSTER, ET H. WILLEBRAND ,
Understandingthe performanceof free-spaceoptics [invited], J. Opt.
Netw., 2(6):178–200, June 2003.

[Borgnino-a-92] J. BORGNINO, F. MARTIN , ET A. Z IAD , Effectof finite spatial-coherence
outerscaleon thecovariancesof angle-of-arrivalfluctuations, Opt. Com-
mun., 91, 1992.

[Bouchet-l-04] O. BOUCHET, H. SIZUN , C. BOISROBERT, F. DE FORNEL, ET

P. FAVENNEC, Optiquesansfils, Hermès - Lavoisier, Collection Tech-
nique et Scientifique des Télécommunications, Paris, 2004.

te
l-0

07
71

27
6,

 v
er

si
on

 1
 - 

8 
Ja

n 
20

13



BIBLIOGRAPHY 219

[Breguet-a-1880] B. ANTOINE, Le photophonede bell, J. Phys. Theor. Appl, 9:369–375,
1880.

[Bruesselbach-a-95] H. BRUESSELBACH, D. C. JONES, D. A. ROCKWELL, R. C. LIND ,
ET G. VOGEL, Real-time atmosphericcompensationby stimulated
brillouin-scatteringphaseconjugation, J. Opt. Soc. Am. B, 12:1434–1447,
August 1995.

[Buffington-a-77] A. BUFFINGTON, F. S. CRAWFORD, R. A. MULLER, A. J. SCHWEMIN,
ET R. G. SMITS, Correction of atmospheric distortion with an
image-sharpeningtelescope, J. Opt. Soc. Am. A, 67(3):298–303, 1977.

[Cai-a-08] Y. CAI , H. T. EYYUBOGLU , ET Y. BAYKAL , Scintillationof astigmatic
darkhollow beamsin weakatmosphericturbulence, J. Opt. Soc. Am. A,
25(7):1497–1503, July 2008.

[Carbon-p-03] M. CARBON, Laser beam shaping in space using adaptive optics,
vol. 5087, Proc. Soc. Photo-Opto. Instrum. Eng., 2003, pp. 83–86.

[Churnside-a-90] J. H. CHURNSIDE ET R. J. LATAITIS , Wanderof anopticalbeamin the
turbulentatmosphere, Appl. Opt., 29(7):926–930, 1990.

[Clifford-a-74] S. F. CLIFFORD, G. R. OCHS, ET R. S. LAWRENCE, Saturationof optical
scintillation by strongturbulence, J. Opt. Soc. Am. A, 64(2):148–154,
1974.

[Clifford-l-78] S. F. CLIFFORD, The clasicaltheoryof wavepropagationin a turbulent
medium, Springer-Verlag, Berlin, 1978, pp. 9–43.

[Davis-p-02] C. C. DAVIS ET I. I. SMOLYANINOV , Effectof atmosphericturbulenceon
bit-error ratein anon-off-keyedopticalwirelesssystem, vol. 4489, Proc.
Soc. Photo-Opto. Instrum. Eng., 2002, pp. 126–137.

[Dios-a-08] F. DIOS, J. RECOLONS, A. RODRIGUEZ, ET O. BATET, Temporal
analysis of laser beam propagation in the atmosphere using
computer-generatedlong phase screens, Opt. Express, 16(3):2206–
2220, February 2008.

[Eardley-p-95] P. EARDLEY ET D. WISELY, 1gbit/sopticalfreespacelink operatingover
40 m systemandapplications, vol. 143, Proc IEEE, Dec 1996, pp. 330–
333.

[Eyyuboglu-a-06] H. T. EYYUBOGLU , ÇAGLAR ARPALI, ET Y. K. BAYKAL , Flat
toppedbeamsandtheir characteristicsin turbulentmedia, Opt. Express,
14(10):4196–4207, 2006.

te
l-0

07
71

27
6,

 v
er

si
on

 1
 - 

8 
Ja

n 
20

13



220 BIBLIOGRAPHY

[Fante-p-75] R. L. FANTE, Electromagneticbeam propagationin turbulent media,
vol. 63, IEEE Proceedings, December 1975, pp. 1669–1692.

[Flatte-a-94] S. M. FLATTÉ , C. BRACHER, ET G.-Y. WANG, Probability-density
functionsof irradiancefor wavesin atmosphericturbulencecalculatedby
numericalsimulation, J. Opt. Soc. Am. A, 11(7):2080–2092, 1994.

[Frehlich-a-00] R. FREHLICH, Simulationof laserpropagationin aturbulentatmosphere,
39:393–397, January 2000.

[Fried-a-66] D. L. FRIED, Optical resolution through a randomly inhomogeneous
mediumfor very long and very short exposures, J. Opt. Soc. Am. A,
56:1372–1379, 1966.

[Fried-a-67] , Apertureaveragingof scintillation, J. Opt. Soc. Am. A, 57:169–175,
1967.

[Fried-a-72] D. L. FRIED ET H. T. YURA, Telescope-performancereciprocity for
propagationin a turbulentmedium, J. Opt. Soc. Am. A, 62(4):600–602,
1972.

[Fried-a-82] D. L. FRIED, Anisoplanatismin adaptiveoptics, J. Opt. Soc. Am. A,
72(1):52, January 1982.

[Fried-a-92] D. L. FRIED ET J. L. VAUGHN, Branchcutsin thephasefunction, Appl.
Opt., 31(15):2865–2882, 1992.

[Gagliardi-l-76] R. M. GAGLIARDI ET S. KARP, Opticalcommunications, 1976.

[Gendron-a-07] E. GENDRON, F. POUPLARD, F. VIDAL , Z. HUBERT, D. PERRET,
ET G. ROUSSET, A new linear optical differentiationwavefrontsensor
for laser tomographyon elts, in Adaptive Optics: Analysis and Meth-
ods/Computational Optical Sensing and Imaging/Information Photon-
ics/Signal Recovery and Synthesis Topical Meetings on CD-ROM, Optical
Society of America, 2007, p. ATuB4.

[Giggenbach-p-02] D. GIGGENBACH, F. DAVID , R. LANDROCK, K. PRIBIL , E. W. FIS-
CHER, R. G. BUSCHNER, ET D. BLASCHKE, Measurementsat a61-km
near-groundoptical transmissionchannel, vol. 4635, Proc. Soc. Photo-
Opto. Instrum. Eng., 2002, pp. 162–170.

[Gochelashvily-a-71] K. S. GOCHELASHVILY ET S. V. I., Laserbeamscintillationbeyonda
turbulentlayer, Journal of Modern Optics, 18:131–320, 1971.

[Gonsalves-a-82] R. A. GONSALVES, Phaseretrievalanddiversityin adaptiveoptics, Opti-
cal Engineering, 21:829–832, Oct. 1982.

te
l-0

07
71

27
6,

 v
er

si
on

 1
 - 

8 
Ja

n 
20

13



BIBLIOGRAPHY 221

[Goodman-l-85] J. W. GOODMAN, StatisticalOptics, Wiley-Interscience, 1985.

[Gracheva-a-65] M. E. GRACHEVA ET A. S. GURVICH, Strongfluctuationsin theintensity
of light propagatedthroughtheatmospherecloseto earth, Soviet Radio-
physics, 8:511–515, 1965.

[Hardy-a-77] J. W. HARDY, J. E. LEFEBVRE, ET C. L. KOLIOPOULOS, Real-time
atmosphericcompensation, J. Opt. Soc. Am. A, 67(3):360–369, 1977.

[Hardy-p-78] J. W. HARDY, Active optics: a new technologyfor the control of light,
vol. 66 of Proc. IEEE, 1978, pp. 651–697.

[Henderson-p-08] B. G. HENDERSON ET J. D. MANSELL, Laser beam shapingwith
membranedeformablemirrors, vol. 7093, Proc. Soc. Photo-Opto. Instrum.
Eng., 2008, p. 70930I.

[Hufnagel-p-74] R.-E. HUFNAGEL, Variationsof atmosphericturbulence, in Proc. of Top-
ical Meeting on Optical Propagation through the Turbulence, 1974.

[Hutchinson-l-08] D. P. HUTCHINSON ET R. K. RICHARDS, All-weatherlong-wavelength
infrared free spaceoptical communications, in Majumdar et Ricklin
[Majumdar-l-08], pp. 407–417.

[Khalighi-a-09-b] M.-A. KHALIGHI , N. SCHWARTZ, N. AITAMER, ET S. BOURENNANE,
Fadingreductionby apertureaveragingand spatialdiversity in optical
wirelesssystems, J. Opt. Commun. Netw., 1(6):580–593, 2009.

[Kiasaleh-a-06] K. KIASALEH, On the scintillation index of a multiwavelengthgaussian
beamin a turbulentfree-spaceoptical communicationschannel, J. Opt.
Soc. Am. A, 23:557–566, 2006.

[Killinger-a-02] D. KILLINGER, Freespaceoptics for lasercommunicationthroughthe
air, Opt. Photon. News, 13(10):36–42, 2002.

[Kim-p-97] I. I. K IM , H. HAKAKHA , P. ADHIKARI , E. J. KOREVAAR, ET

A. K. M AJUMDAR, Scintillation reductionusing multiple transmitters,
vol. 2990, Proc. Soc. Photo-Opto. Instrum. Eng., 1997, pp. 102–113.

[Kolmogorov-a-41] A. N. KOLMOGOROV, Local structureof turbulencein incompressible
fluids with very high reynolds number, Dokl. Akad. Nauk. SSSR,
30(4):301–305, 1941.

[Lee-p-69] R. LEE ET J. HARP, Correctionto "weak scatteringin randommedia,
with applicationsto remoteprobing", vol. 57, Nov. 1969, pp. 2094–2094.

[Li-p-05] Y. L I, Gaussianto annularbeamshaping, vol. 5876, Proc. Soc. Photo-
Opto. Instrum. Eng., 2005, p. 587609.

te
l-0

07
71

27
6,

 v
er

si
on

 1
 - 

8 
Ja

n 
20

13



222 BIBLIOGRAPHY

[Linnick-a-57] V. P. LINNICK , Onthepossibilityof reducingtheinfluenceofatmospheric
seeingon theimagequality of stars(in russian), Optics and Spectroscopy,
3:401–402, 1957.

[Lipsett-a-69] M. LIPSETT, C. MCINTYRE, ET R. LIU, Spaceinstrumentationfor laser
communications, Quantum Electronics, IEEE Journal of, 5(6):348–349,
Jun 1969.

[Loizos-p-06] D. LOIZOS, P. SOTIRIADIS, ET G. CAUWENBERGHS, A robust
continuous-timemulti-ditheringtechniquefor lasercommunicationsusing
adaptiveoptics, Proc. IEEE, 2006, p. 3629.

[Lucy-a-68] R. F. LUCY ET K. LANG, Opticalcommunicationsexperimentsat6328
and10.6µ, Appl. Opt., 7(10):1965–1970, 1968.

[Lukin-a-02] V. P. LUKIN ET B. V. FORTES, Phase-correctionof turbulentdistortions
of an optical wave propagatingunder conditions of strong intensity
fluctuations, Appl. Opt., 41(27):5616–5624, 2002.

[Lutomirski-a-71] H. T. LUTOMIRSKI, R. F. AND . YURA, Propagationof a finite optical
beamin aninhomogeneousmedium, Appl. Opt., 10(7):1652–1658, 1971.

[Mahe-p-00] F. MAHÉ, V. M. G. ROUSSET, ET J.-M. CONAN, Scintillationeffectson
wavefrontsensingin therytov regime, in Propagation through the Atmo-
sphere IV, M. Roggemann, ed., vol. 4125, Bellingham, Washington, Aug
2000, Proc. Soc. Photo-Opto. Instrum. Eng., pp. 77–86.

[Mahe-t-00] F. MAHÉ, Application d’un modèle atmosphériqueà l’étude des
fluctuationsd’indice de réfractiondansla couchelimite. Influencede la
scintillationsur l’analysedefront d’onde, Thèse de doctorat, Université
de Nice-Sophia Antipolis, France, February 2000.

[Majumdar-l-08] A. MAJUMDAR ET J. RICKLIN , eds.,Free-SpaceLaserCommunications,
PrinciplesandAdvances, vol. 2, Springer, Berlin, 2008.

[Majumdar-p-07] A. K. MAJUMDAR, C. E. LUNA , ET P. S. IDELL, Reconstructionof
probabilitydensityfunctionof intensityfluctuationsrelevantto free-space
lasercommunicationsthroughatmosphericturbulence, vol. 6709, Proc.
Soc. Photo-Opto. Instrum. Eng., 2007, p. 67090M.

[Manor-a-03] H. MANOR ET S. ARNON, Performanceof an optical wireless
communicationsystemasafunctionof wavelength, Appl. Opt., 42:4285–
4294, 2003.

[Mansell-p-06] J. D. MANSELL, Beamshapingfor relay mirrors, vol. 6290, Proc. Soc.
Photo-Opto. Instrum. Eng., 2006, p. 62900K.

te
l-0

07
71

27
6,

 v
er

si
on

 1
 - 

8 
Ja

n 
20

13



BIBLIOGRAPHY 223

[Martin-a-88] J. M. MARTIN ET S. M. FLATTÉ, Intensity imagesandstatisticsfrom
numerical simulation of wave propagationin 3-d media, Appl. Opt.,
11:2111–2126, 1988.

[McAulay-p-99] A. D. MCAULAY ET J. LI, Improvingbandwidthfor line-of-sightoptical
wirelessin turbulentair by usingphaseconjugation, vol. 3850, Proc. Soc.
Photo-Opto. Instrum. Eng., 1999, pp. 32–39.

[McCall-a-77] S. L. MCCALL , T. R. BROWN, ET A. PASSNER, Improvedopticalstellar
imageusing a real-timephase-correctionsystem: initial results, Astro-
physical Journal, 211:463–468, Jan. 1977.

[McGlamery-p-76] B. L. MCGLAMERY, Computersimulationstudiesof compensationof
turbulencedegradedimages, Proc. Soc. Photo-Opto. Instrum. Eng., 1976,
pp. 225–233.

[Miller-a-94] W. B. MILLER, J. C. RICKLIN , ET L. C. ANDREWS, Effects of the
refractiveindex spectralmodelon the irradiancevarianceof a gaussian
beam, J. Opt. Soc. Am. A, 11(10):2719–2726, 1994.

[Mironov-l-81] V. L. M IRONOV, Laser beam propagationin turbulenceatmosphere,
Nauka, Moscow, 1981.

[Monin-a-54] A. S. MONIN ET A. M. OBUKHOV, Basicregularityin turbulencemixing
in the surfacelayer of the atmosphere, Trad. Geophys. Inst. ANSSSR,
p. 163, 1954.

[Mugnier-l-06] L. M. MUGNIER, A. BLANC, ET J. IDIER, Phasediversity: a technique
for wave-frontsensingandfor diffraction-limited imaging, in Advances
in Imaging and Electron Physics, P. Hawkes, ed., vol. 141, Elsevier, 2006,
ch. 1, pp. 1–76.

[Nelder-a-65] J. NELDER ET R. MEAD, A simplexmethodfor functionminimization,
Computer Journal, 7:308–313, 1965.

[Nicolle-a-04] M. NICOLLE, T. FUSCO, G. ROUSSET, ET V. M ICHAU, Improvement
of shack-hartmannwave-frontsensormeasurementfor extremeadaptive
optics, Opt. Lett., 29(23):2743–2745, 2004.

[Noll-a-76] R. J. NOLL, Zernikepolynomialsandatmosphericturbulence, J. Opt. Soc.
Am. A, 66:207–211, March 1976.

[Northcott-p-07] M. J. NORTHCOTT, A. MCCLAREN, J. E. GRAVES, J. PHILLIPS,
D. DRIVER, D. ABELSON, D. W. YOUNG, J. E. SLUZ , J. C. JUAREZ,
M. B. A IROLA , R. M. SOVA , H. HURT, ET J. FOSHEE, Long distance
lasercommunicationsdemonstration, vol. 6578, Proc. Soc. Photo-Opto.
Instrum. Eng., 2007, p. 65780S.

te
l-0

07
71

27
6,

 v
er

si
on

 1
 - 

8 
Ja

n 
20

13



224 BIBLIOGRAPHY

[Obukhov-a-49] A. M. OBUKHOV, Structureof thetemperaturefield in aturbulentcurrent,
Izvestiya Akademia Nauk SSSR, Series Goegraficheskaya i Geografich-
eskaya, 13(6):58–69, 1949.

[Omeara-a-77] T. R. OMEARA, Themultiditherprinciple in adaptiveoptics, J. Opt. Soc.
Am. A, 67:306–315, March 1977.

[Parzen-a-62] P. E.,Estimationof a probability density fonction and its mode, Ann.
Math. Statist., 33, 1962.

[Peleg-a-06] A. PELEG ET J. V. MOLONEY, Scintillationindexfor two gaussianlaser
beamswith differentwavelengthsin weakatmosphericturbulence, J. Opt.
Soc. Am. A, 23(12):3114–3122, 2006.

[Plett-t-07] M. L. PLETT, Free-spaceoptical communication link across 16
kilometersto a modulatedretro-reflectorarray, Thèse de doctorat, Uni-
versity of Maryland, College Park, 2007.

[Polynkin-a-07] P. POLYNKIN , A. PELEG, L. KLEIN , T. RHOADARMER, ET

J. MOLONEY, Optimized multiemitter beams for free-spaceoptical
communicationsthroughturbulentatmosphere, Opt. Letters, 32(8):885–
887, April 2007.

[Poyneer-a-03] L. A. POYNEER, Scene-basedshack-hartmannwave-front sensing:
Analysisandsimulation, Appl. Opt., 42(29):5807–5815, 2003.

[Prasad-l-08] P. S. N.,Optical communicationsin the mid-wave ir spectralband, in
Majumdar et Ricklin [Majumdar-l-08], pp. 347–391.

[Press-l-86] W. PRESS, B. FLANNERY, S. TEUKOLSKY, ET W. VETTERLING,
NumericalRecipes:the Art of ScientificProgramming, Cambrigde Uni-
versity Press, New York, 1986.

[Primmerman-a-91] C. A. PRIMMERMAN , D. V. MURPHY, B. G. ZOLLARS, ET H. T. BAR-
CLAY , Compensationof atmosphericoptical distortionusing a synthetic
beacon, Nature, 353(6340):141–143, September 1991.

[Primmerman-a-95] C. A. PRIMMERMAN , T. R. PRICE, R. A. HUMPHREYS, B. G. ZOL-
LARS, H. T. BARCLAY, ET J. HERRMANN, Atmospheric-compensation
experimentsin strong-scintillationconditions, Appl. Opt., 34(12):2081–
2088, April 1995.

[Ragazzoni-a-96] R. RAGAZZONI, Pupil planewavefrontsensingwith anoscillatingprism,
Journal of Modern Optics, 43:289–293, Fev. 1996.

te
l-0

07
71

27
6,

 v
er

si
on

 1
 - 

8 
Ja

n 
20

13



BIBLIOGRAPHY 225

[Razavi-p-05] M. RAZAVI ET J. SHAPIRO, Wireless optical communicationsvia
diversity receptionand optical preamplification, Wireless Communica-
tions, IEEE Transactions on, 4(3):975–983, May 2005.

[Ricklin-l-08] J. C. RICKLIN , S. M. HAMMEL , F. D. EATON, ET S. L. LACHINOVA ,
Atmosphericchanneleffectson free-spacelaser, in Majumdar et Ricklin
[Majumdar-l-08], pp. 9–56.

[Roddier-a-88] F. RODDIER, Curvaturesensingand compensation:a new conceptin
adaptiveoptics, Appl. Opt., 27:1223–1225, 1988.

[Roddier-a-97] F. RODDIER ET C. RODDIER, Stellarcoronographwith phasemask, Pub-
lications of the Astronomical Society of the Pacific, 109:815–820, juillet
1997.

[Roddier-l-99] F. RODDIER, Adaptiveoptics in astronomy, Adaptive Optics in Astron-
omy, 1999.

[Roggemann-a-98] M. C. ROGGEMANN ET D. J. LEE, Two-deformable-mirrorconcept
for correctingscintillation effects in laserbeamprojectionthroughthe
turbulentatmosphere, Appl. Opt., 21:4577–4585, 1998.

[Rousset-a-90] G. ROUSSET, J. C. FONTANELLA , P. KERN, F. GIGAN , ET E. A . LENA,
P.,Firstdiffraction-limitedastronomicalimageswith adaptiveoptics, As-
tron. Astrophys., 230:L29–L32, 1990.

[Rousset-l-99] G. ROUSSET, Wave-frontsensors, [Roddier-l-99], pp. 91–130.

[Ruillier-a-01] C. RUILLIER ET F. CASSAING, Coupling of large telescopesand
single-modewaveguides:applicationtostellarinterferometry, J. Opt. Soc.
Am. A, 18:143–149, 2001.

[Rytov-l-87] S. RYTOV , Y. KRAVTSOV, ET V. TATARSKII , eds.,Principlesof statistical
radiophysics:Wavepropagationthroughrandommedia, vol. 4, Springer-
Verlag, Berlin, 1960.

[Sandalidis-a-08] H. SANDALIDIS , T. TSIFTSIS, G. KARAGIANNIDIS , ET M. UYSAL,
Berperformanceof fso links overstrongatmosphericturbulencechannels
with pointing errors, Communications Letters, IEEE, 12(1):44–46, Jan-
uary 2008.

[Schmidt-p-09] J. D. SCHMIDT ET J. A. LOUTHAIN, Integratedapproachto free-space
opticalcommunication, vol. 7200, Proc. Soc. Photo-Opto. Instrum.Eng.,
2009, p. 72000I.

te
l-0

07
71

27
6,

 v
er

si
on

 1
 - 

8 
Ja

n 
20

13



226 BIBLIOGRAPHY

[Schwartz-p-09] N. H. SCHWARTZ, N. VÉDRENNE, V. M ICHAU , M.-T. VELLUET, ET

F. CHAZALLET , Mitigation of atmosphericeffectsby adaptiveopticsfor
free-spaceopticalcommunications, vol. 7200, Proc. Soc. Photo-Opto. In-
strum. Eng., 2009, p. 72000J.

[Shack-a-71] R. B. SHACK ET B. R. PLATT , Productionand use of a lenticular
hartmannscreen, J. Opt. Soc. A, 61, 1971.

[Shannon-l-49] C. E. SHANNON ET W. WEAVER, The Mathematical Theory of
Communication, Illinois Press, Urbana, IL, 1949.

[Sova-p-06] R. M. SOVA , J. E. SLUZ , D. W. YOUNG, J. C. JUAREZ, A. DWIVEDI ,
N. M. I. DEMIDOVICH , J. E. GRAVES, M. NORTHCOTT, J. DOUGLASS,
J. PHILLIPS, J. DRIVER, A. MCCLARIN , ET D. ABELSON, 80 gb/s
free-spaceopticalcommunicationdemonstrationbetweenanaerostatand
agroundterminal, vol. 6304, Proc. Soc. Photo-Opto. Instrum. Eng.,2006,
p. 630414.

[Tatarski-l-61] V. I. TATARSKII , WavePropagationin aTurbulentMedium, Dover Pub-
lications Inc., New York, 1961.

[Tatarski-l-71] , The effects of the turbulent atmosphereon wave propagation,
Jerusalem: Israel Program for Scientific Translations, 1971, 1971.

[Tyson-a-03] R. K. TYSON ET D. E. CANNING, Indirect measurementof a laser
communicationsbit-error-ratereductionwith low-order adaptiveoptics,
Appl. Opt., 42(21):4239–4243, 2003.

[Tyson-p-05-b] R. K. TYSON, J. S. THARP, ET D. E. CANNING, Measurementof
the bit-error rate of anadaptiveoptics,free-spacelasercommunications
system,part 2: multichannelconfiguration,aberrationcharacterization,
andclosed-loopresults, Optical Engineering, 44(9):096003, 2005.

[Vedrenne-t-08] N. VEDRENNE, Propagationoptiqueet correctionen forte turbulence,
Thèse de doctorat, Université de Nice-Sophia Antipolis, 2008.

[Vellekoop-a-07] I. M. VELLEKOOP ET A. P. MOSK, Focusingcoherentlight through
opaquestronglyscatteringmedia, Opt. Lett., 32:2309–2311, 2007.

[Velluet-p-07] M.-T. VELLUET, V. M ICHAU , T. FUSCO, ET J.-M. CONAN, Coherent
illuminationfor wavefrontsensingandimagingthroughturbulence, in At-
mospheric Optics: Models, Measurements, and Target-in-the-Loop Propa-
gation, S. M. Hammel, A. M. J. van Eijk, M. T. Valley, et M. A. Vorontsov,
eds., vol. 6708, 2007.

[Viterbi-l-79] A. J. VITERBI ET O. J. K., Principlesof Digital Communicationand
Coding, McGraw-Hill, New York, 1979.

te
l-0

07
71

27
6,

 v
er

si
on

 1
 - 

8 
Ja

n 
20

13



BIBLIOGRAPHY 227

[Voelz-p-04] D. VOELZ ET K. FITZHENRY, Pseudo-partiallycoherentbeam for
free-spacelasercommunication, vol. 5550, Proc. Soc. Photo-Opto. In-
strum. Eng., 2004, pp. 218–224.

[Voitsekhovich-a-01] V. V. VOITSEKHOVICH, V. G. ORLOV, ET L. J. SANCHEZ, Influenceof
scintillationson the performanceof adaptiveastronomicalsystemswith
hartmann-likewavefront sensors, Astron. Astrophys., 368:1133–1136,
mar 2001.

[Vorontsov-a-00] M. A. VORONTSOV, G. W. CARHART, M. COHEN, ET G. CAUWEN-
BERGHS, Adaptive optics based on analog parallel stochastic
optimization: analysisand experimentaldemonstration, J. Opt. Soc.
Am. A, 17(8):1440–1453, 2000.

[Vorontsov-a-02] M. A. VORONTSOV, Decoupledstochasticparallel gradient descent
optimization for adaptiveoptics: integratedapproachfor wave-front
sensorinformationfusion, J. Opt. Soc. Am. A, 19:356–368, 2002.

[Vorontsov-a-97] M. A. VORONTSOV, G. W. CARHART, ET J. C. RICKLIN ,
Adaptive phase-distortioncorrectionbasedon parallel gradient-descent
optimization, Opt. Lett., 22(12):907–909, June 1997.

[Wakamori-a-07] K. WAKAMORI , K. KAZAURA , ET I. OKA , Experimenton regional
broadbandnetwork using free-space-opticalcommunicationsystems, J.
Lightwave Technol., 25(11):3265–3273, 2007.

[Weyrauch-a-01] T. WEYRAUCH, M. VORONTSOV, T. BIFANO, J. HAMMER, M. COHEN,
ET G. CAUWENBERGHS, Microscaleadaptiveoptics:wave-frontcontrol
with aµ-mirror arrayanda VLSI stochasticgradientdescentcontroller,
Appl. Opt., 40:4243–4253, 2001.

[Weyrauch-a-05] T. WEYRAUCH ET M. A. VORONTSOV, Atmosphericcompensationwith
a specklebeaconin strongscintillationconditions:directedernergyand
lasercommunicationapplications, Appl. Opt., 44:6388–6401, 2005.

[Weyrauch-l-08] , Free-spacelasercommunicationswith adaptiveoptics:Atmospheric
compensationexperiments, in Majumdar et Ricklin [Majumdar-l-08],
pp. 247–271.

[Wheelon-l-01] A. D. WHEELON, ElectromagneticScintillation, vol. 1 of Geometrical
Optics, Cambridge University Press, Cambridge, 2001.

[Wilson-p-05] S. WILSON, M. BRANDT-PEARCE, Q. CAO, ET M. BAEDKE, Optical
repetition mimo transmissionwith multipulse ppm, Selected Areas in
Communications, IEEE Journal on, 23(9):1901–1910, Sept. 2005.

te
l-0

07
71

27
6,

 v
er

si
on

 1
 - 

8 
Ja

n 
20

13



228 BIBLIOGRAPHY

[Wright-a-08] M. W. WRIGHT, J. ROBERTS, W. FARR, ET K. W ILSON, Improved
opticalcommunicationsperformancecombiningadaptiveopticsandpulse
positionmodulation, Optical Engineering, 47(1), 2008.

[Wyngaard-a-71] J. WYNGAARD , Y. IZUMI , ET C. S.A., Behavior of the
refractive-index-structureparameter near the ground, J. Opt. Soc.
Am. A, 61:1946, 1971.

[Xiao-p-07] X. XIAO ET D. VOELZ, Toward optimizing partial spatially coherent
beamsfor freespacelasercommunications, vol. 6709, Proc. Soc. Photo-
Opto. Instrum. Eng., 2007.

[Xu-a-09] F. XU, M.-A. KHALIGHI , P. CAUSSÉ, ET S. BOURENNANE, Channel
coding and time-diversity for optical wireless links, Opt. Express,
17(2):872–887, January 2009.

[Xu-p-08] , Performanceof codedtime-diversityfree-spaceoptical links, June
2008.

[Xu-p-09] F. XU, M. KHALIGHI , ET S. BOURENNANE, Pulsepositionmodulation
for fso systems:Capacityand channelcoding, in Telecommunications,
2009. ConTEL 2009. 10th International Conference on, June 2009,
pp. 31–38.

[Yaglom-a-49] A. M. YAGLOM, On the local structureof the temperaturefield in a
turbulentflow, Doklady Acad. Nauk. SSSR Ser. Geograf. Geofiz., p. 73,
1949.

[Yang-a-09] H. YANG, X. L I , C. GONG, ET W. JIANG, Restoration of
turbulence-degradedextendedobjectusingthestochasticparallelgradient
descentalgorithm:numericalsimulation, Opt. Express, 17(5):3052–3062,
2009.

[Young-p-07] D. W. YOUNG, J. E. SLUZ , J. C. JUAREZ, M. B. A IROLA , R. M. SOVA ,
H. HURT, M. NORTHCOTT, J. PHILLIPS, A. MCCLAREN, D. DRIVER,
D. ABELSON, ET J. FOSHEE, Demonstrationof highdataratewavelength
division multiplexedtransmissionover a 150 km free spaceoptical link,
Oct. 2007, pp. 1–6.

[Yu-a-04] M. YU ET M. A. VORONTSOV, Compensationof distantphase-distorting
layers.i. narrow-field-of-viewadaptivereceiversystem, J. Opt. Soc. Am.
A, 21:1645–1658, September 2004.

[Yu-p-03] M. YU ET M. A. VORONTSOV, Multi-conjugateadaptiveopticalsystems
basedon decoupledstochasiticparallel gradientdescenttechnique, in
Conference on Lasers and Electro-Optics/Quantum Electronics and Laser
Science, Opt. Soc Am., 2003.

te
l-0

07
71

27
6,

 v
er

si
on

 1
 - 

8 
Ja

n 
20

13



BIBLIOGRAPHY 229

[Yura-a-74] H. T. YURA, Physicalmodelfor strongoptical-amplitudefluctuationsin
a turbulentmedium, J. Opt. Soc. Am. A, 64(1):59–67, 1974.

[Zhao-p-08] Z. ZHAO, S. LYKE , ET M. ROGGEMANN, Adaptive optical
communicationthrough turbulent atmosphericchannels, May 2008,
pp. 5432–5436.

[Ziad-a-04] A. ZIAD , M. SCHÖCK, G. A. CHANAN , M. TROY, R. DEKANY, B. F.
LANE, J. BORGNINO, ET F. MARTIN, Comparisonof measurementsof
the outer scaleof turbulenceby threedifferent techniques, Appl. Opt.,
43(11):2316–2324, 2004.

te
l-0

07
71

27
6,

 v
er

si
on

 1
 - 

8 
Ja

n 
20

13


	 Warning
	Introduction
	I Context
	1 Free-Space Optical Communications
	1.1 Optical Communications
	1.1.1 History of Optical Communications
	1.1.2 Principle and Characteristics of Atmospheric Optical Link
	1.1.3 Free-Space Optics Challenges

	1.2 Endo-Atmospheric Optical Links
	1.2.1 Short-Range FSOs
	1.2.2 Long-Range FSOs
	1.2.3 Wavelength Selection
	1.2.4 Modulation
	1.2.5 The Fortune43G Project


	2 Optical Propagation through Turbulence
	2.1 Atmospheric Turbulence
	2.1.1 Physical Phenomenon
	2.1.2 Air Refraction Index
	2.1.2.1 Refraction Index Fluctuations
	2.1.2.2 Inertial Domain
	2.1.2.3 Inner and Outer Scales
	2.1.2.4 Spectral Density of Refractive Index Fluctuations
	2.1.2.5 Cn2 Vertical Profile Models


	2.2 Optical Propagation in Turbulent Media
	2.2.1 Electromagnetic Wave Propagation Equations
	2.2.1.1 Helmholtz Equation
	2.2.1.2 Helmholtz Equation Paraxial Approximation

	2.2.2 Spatial Coherence of the Propagated Field
	2.2.3 Weak Perturbation: Analytical Resolution of the Helmholtz Equation
	2.2.3.1 The Rytov Approximation
	2.2.3.2 Weak Perturbations Limit
	2.2.3.3 Field Properties in Weak Perturbation Regimes

	2.2.4 Strong Perturbations
	2.2.5 Propagation Simulation by Phase Screens
	2.2.5.1 Modelling Principle
	2.2.5.2 Temporal Effects Modelling


	2.3 Turbulence Effects on Laser Propagation
	2.3.1 Properties and Conventions for Gaussian Beams
	2.3.2 Turublence Effects on Propagation
	2.3.2.1 Beam Wander and Beam Spreading
	2.3.2.2 Intensity Fluctuations and Power in the Bucket
	2.3.2.3 Strong Turbulence Regime


	2.4 Nominal Conditions


	II The Optical Channel
	3 Atmospheric Turbulence Effects
	3.1 Telecommunication Link Characterisation
	3.1.1 Bit-Error Rate
	3.1.1.1 Transmission Channel Capacity
	3.1.1.2 Bit-Error Rate in Absence of Turbulence
	3.1.1.3 Bit-Error Rate in Turbulence

	3.1.2 Intensity Statistical Properties
	3.1.2.1 Intensity Density Probability Function Estimation
	3.1.2.2 The Gamma ?Gamma Law
	3.1.2.3 Aperture Averaging

	3.1.3 Terrestrial Link
	3.1.4 Estimation of FSO Link in Simulations

	3.2 Turbulence Effects Attenuation Methods
	3.2.1 Diversity Methods
	3.2.1.1 Wavelength Diversity
	3.2.1.2 Multiple Input and Multiple Output Diversity
	3.2.1.3 Temporal Diversity

	3.2.2 Beam Shaping
	3.2.2.1 Static Case
	3.2.2.2 Dynamical Case


	3.3 Conclusion

	4 Precompensation Methods
	4.1 An Introduction to Adaptive Optics
	4.1.1 Adaptive Optics Principle
	4.1.2 Wavefront Sensing
	4.1.3 Weak Perturbations: Modal Analysis of Turbulent Phase
	4.1.3.1  Zernike Polynomials
	4.1.3.2 Phase Statistical Properties and Zernike Polynomials

	4.1.4 Adaptive Optics Limitations in Strong Perturbations
	4.1.4.1 Scintillation Effects
	4.1.4.2 Branch Points
	4.1.4.3 Anisoplanatism


	4.2 FSO Precompensation by Adaptive Optics
	4.2.1 Correction on Counter-Propagating Beam
	4.2.1.1 Principle
	4.2.1.2 Implementation Strategies
	4.2.1.3 Limitations

	4.2.2 Phase Modulation Correction
	4.2.2.1 Principle
	4.2.2.2 Implementation for FSOs
	4.2.2.3 Limitations

	4.2.3 Optimale Correction
	4.2.3.1 Optimal Phase and Amplitude Correction
	4.2.3.2 Sub-optimal Phase Correction


	4.3 Conclusion

	5 Rationale

	III Precompensation by Adaptive Optics
	6 Optimal and Sub-Optimal Correction
	6.1 Optimal Correction: Towards a Propagation Mode
	6.1.1 Modelling Principle
	6.1.2 Optimal Correction in Absence of Turbulence
	6.1.3 Performance as a Function of Turbulence Strength
	6.1.3.1 Short-Exposure Energy Distribution
	6.1.3.2 Influence of Turbulence Strength
	6.1.3.3 Average Error Rate

	6.1.4 Pupil Diameter Influence
	6.1.5 Probability Density Function
	6.1.6 Influence of Pupil Geometry
	6.1.6.1 Absence of Turbulence: an Adapted Propagation Mode
	6.1.6.2 In Presence of Turbulence
	6.1.6.3 Conclusion


	6.2 Sub-Optimal Correction
	6.2.1 Modelling Principal
	6.2.2 Optimisation of the Emitted Intensity Distribution
	6.2.2.1 Without Turbulence
	6.2.2.2 Impact of Atmospheric Turbulence

	6.2.3 Performances Function of Turbulence Strength
	6.2.3.1 Correction Effect on Energy Distribution
	6.2.3.2 Influence of Turbulence Strength
	6.2.3.3 Average Error Rate

	6.2.4 Pupil Diameter Influence on Performance
	6.2.5 Probability Density

	6.3 Conclusion

	7 Correction on Counter-Propagating Laser beam Probe
	7.1 Counter-Propagating Beam Correction using True Phase
	7.1.1 Laser Beam Geometry
	7.1.1.1 Probe Beam
	7.1.1.2 Optimisation of Telecom Beam Parameters

	7.1.2 Influence of Pupil Diameter
	7.1.2.1 Example of Correction Efficiency
	7.1.2.2 Influence of Pupil Diameter


	7.2 Correction Using A Counter-Propagating Beam: Shack-Hartmann Case
	7.2.1 Description of the Correction System
	7.2.1.1 Errors Analysis
	7.2.1.2 Selection of the Wavefront Sensor
	7.2.1.3 Wavefront Sensor Geometry
	7.2.1.4 Wavefront Reconstruction

	7.2.2 Wavefront Sensing on Counter-propagating Laser Beam Probe
	7.2.2.1 Optimisation of Telecom Laser Beam Parameters
	7.2.2.2 Influence of the Pupil Diameter
	7.2.2.3 Conclusion


	7.3 Correction Using a Counter-Propagating Beam: Multi-Probe Analysis
	7.3.1 Correction Principal
	7.3.2 Optimal Seperation Distance Between Laser Probes
	7.3.3 Signal-to-Noise Ratio
	7.3.4 Performances as Function of the Distance Between Beam Probes
	7.3.5 Probability Density Function
	7.3.6 Influence of the Number of Corrected Modes
	7.3.7 Correction Stability to Temporal Variation

	7.4 Phase-Only Iterative Correction
	7.4.0.1 Influence of the Pupil Size
	7.4.0.2 Probability Density Functions
	7.4.0.3 Impact of the Adaptive Optics Loop Sampling Frequency


	7.5 Conclusion

	8 Correction by Phase Modulation
	8.1 Sequential Phase Perturbations
	8.1.1 Principle
	8.1.2 Influence of the Number of Correction Elements

	8.2 Performances with Central Obscuration
	8.2.1 Simulation Conditions
	8.2.2 Hierarchical Algorithm
	8.2.3 Conclusion

	8.3 Stochastic Parallel Gradient Descent Optimisation
	8.3.1 Introduction
	8.3.2 Correction Efficiency: An Example
	8.3.3 Impact of Turbulence Strength
	8.3.4 Impact of Pupil Geometry
	8.3.5 Impact of Transverse Wind
	8.3.6 Noise Sensibility Study
	8.3.7 Initialisation of the Correction Phase
	8.3.7.1 Principle
	8.3.7.2 Initialisation with Geometric Phase and Phase in the Pupil


	8.4 Conclusion

	9 Practical Implementation of Pseudo-Phase Conjugation
	9.1 Phase and Amplitude Correction Using Two Deformable Mirrors
	9.1.1 Introduction
	9.1.2 Tip-Tilt Correction
	9.1.2.1 Correction Principle
	9.1.2.2 Impact of Beam Waist


	9.2 Influence of Wavelength and Field Sampling
	9.2.1 Principle
	9.2.2 Performance Function of Sampling
	9.2.3 Influence of Wavelength on Optimal Correction
	9.2.3.1 Impact of Turbulence Strength
	9.2.3.2 Impact of Pupil Diameter
	9.2.3.3 Density Probability
	9.2.3.4 Impact of Sampling

	9.2.4 Conclusion

	9.3 Iterative Conjugation by Injection into a Waveguide
	9.3.1 Correction Principle
	9.3.2 Injection into a Single-Mode Waveguide
	9.3.3 Numerical Simulation Conditions
	9.3.4 Performance Without Turbulence
	9.3.5 Impact of the Total Pupil Diameter
	9.3.5.1 Impact of Diameter D for d=1cm 
	9.3.5.2 Impact of Diameter D for d=2cm 
	9.3.5.3 Impact of Diameter D for d=3cm 
	9.3.5.4 Conclusion

	9.3.6 Impact of the Pupil Filling Ratio

	9.4 Conclusion

	Conclusion
	Appendix
	A Reminder
	A.1 Error Function
	A.2 Calculating BER by counting
	A.3 Conditional Probability

	B Mitigation of Atmospheric Effects by Adaptive Optics for Free-Space Optical Communication
	C List of Publications
	Bibliography


