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Abstract

RSS and Atom are generally less known than the HTML web format, but they are omnipresent in many
modern web applications for publishing highly dynamic web contents. Nowadays, news sites publish thousands
of RSS/Atom feeds, often organized into general topics like politics, economy, sports, culture, etc. Weblog and
microblogging systems like Twitter use the RSS publication format, and even more general social media like
Facebook produce an RSS feed for every user and trending topic. This vast number of continuous data-sources
can be accessed by using general-purpose feed aggregator applications like Google Reader, desktop clients like
Firefox or Thunderbird and by RSS mash-up applications like Yahoo! pipes, Netvibes or Google News. Today,
RSS and Atom feeds represent a huge stream of structured text data which potential is still not fully exploited.
In this thesis, we first present ROSES –Really Open Simple and Efficient Syndication–, a data model and
continuous query language for RSS/Atom feeds. ROSES allows users to create new personalized feeds from
existing real-world feeds through a simple, yet complete, declarative query language and algebra. The ROSES
algebra has been implemented in a complete scalable prototype system capable of handling and processing
ROSES feed aggregation queries. The query engine has been designed in order to scale in terms of the number
of queries. In particular, it implements a new cost-based multi-query optimization approach based on query
normalization and shared filter factorization. We propose two different factorization algorithms: (i) STA, an
adaption of an existing approximate algorithm for finding minimal directed Steiner trees [CCC+98], and (ii)
VCA, a greedy approximation algorithm based on efficient heuristics outperforming the previous one with respect
to optimization cost. Our optimization approach has been validated by extensive experimental evaluation on
real world data collections.

Keywords: RSS, Atom, Data Stream Management Systems, publish/subscribe, continuous query processing,
multi-query optimization, shared filter factorization, Steiner tree problem
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Résumé

Les formats RSS et Atom sont moins connus du grand public que le format HTML pour la publication
d’informations sur le Web. Néanmoins les flux RSS sont présents sur tous les sites qui veulent publier des flux
d’informations évolutives et dynamiques. Ainsi, les sites d’actualités publient des milliers de fils RSS/Atom,
souvent organisés dans différentes thématiques (politique, économie, sports, société...). Chaque blog possède son
propre flux RSS, et des sites de micro-blogage comme Twitter ou de réseaux sociaux comme Facebook publient
les messages d’utilisateurs sous forme de flux RSS. Ces immenses quantités de sources de données continues sont
accessibles à travers des agrégateurs de flux comme Google Reader, des lecteurs de messages comme Firefox,
Thunderbird, mais également à travers des applications mash-up comme Yahoo! pipes, Netvibes ou Google
News.
Dans cette thèse, nous présentons ROSES –Really Open Simple and Efficient Syndication–, un modèle de
données et un langage de requêtes continues pour des flux RSS/Atom. ROSES permet aux utilisateurs de créer
des nouveaux flux personnalisés à partir des flux existants sur le web à travers un simple langage de requêtes
déclaratif. ROSES est aussi un système capable de gérer et traiter des milliers de requêtes d’agrégation ROSES
en parallèle et un défi principal traité dans cette thèse est le passage à l’échelle par rapport au nombre de requêtes.
En particulier, on propose une nouvelle approche d’optimisation multi-requête fondée sur la factorisation des
filtres similaires. Nous proposons deux algorithmes de factorisation: (i) STA, une adaptation d’un algorithme
d’approximation pour calculer des arbres de Steiner minimaux [CCC+98], et (ii) VCA, un algorithme glouton
qui améliore le coût CPU d’optimisation du précédant. Nous avons validé notre approche d’optimisation avec
un important nombre de tests sur des données réelles.

Mots clés : RSS, Atom, Système de Gestion de Flux de Données, PubSub, traitement de requêtes continues,
optimisation multi-requête, factorisation de filtres partagés, arbre de Steiner
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Introduction

In its origins the World Wide Web was in essence an evolving collection of semi-structured
(HTML) documents interconnected by hypertext links. Users could access and observe infor-
mation using a web browser for navigating from page to page or by querying a keyword-based
search engine. This vision has been valid for many years and the main effort for facilitating
access to and for publishing web information was invested in the development of expressive and
scalable search engines for retrieving pages relevant to user queries.

More recently, new Web content publishing and sharing applications built on modern soft-
ware (AJAX,Web Services) and hardware technologies (mobile handheld user devices) appeared
on the scene. These Web 2.0 technologies have transformed the Web from a publishing-only
environment into a vibrant information place where yesterday’s passive readers have become ac-
tive information collectors and content generators themselves. The contents published by Web
2.0 applications is generally evolving very rapidly in time and can best be characterized by a
stream of information entities. Google News, Facebook, Twitter are among the most popular
examples of such applications, but the list of web applications generating many different kinds
of information streams is increasing every day. This proliferation of content generating applica-
tions obviously yields many new opportunities to collect, filter, aggregate and share information
streams on the web. Given the amount and diversity of the information generated daily in Web
2.0, this is unprecedented and creates a vital need for efficient continuous information processing
methods which allow users to effectively follow personal-interesting information.

The Web Syndication formats (RSS and Atom) have emerged as a popular mean for timely
delivery of frequently updated Web content. RSS and Atom are standard formats for publish-
ing and aggregating information streams. Both formats can be considered as the continuous
counterpart of static HTML documents for encoding semi-structured data streams in form of
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dynamically evolving documents called feeds. They both use very similar data models and follow
the design principles of Web standards for generating advanced Web applications (openness,
simplicity, extensibility and genericity). In RSS/Atom Syndication, information publishers
provide brief summaries (i.e., textual snippets) of the content they deliver on the Web, while
information consumers subscribe to a number of RSS/Atom feeds (i.e., streams) and get in-
formed about newly published information items. Today, almost every personal weblog, news
portal, or discussion forum and user group employs RSS/Atom feeds for enhancing traditional
pull-oriented searching and browsing of web pages with push-oriented protocols of Web content.
Furthermore, social media (e.g., Facebook, Twitter, Flickr) also employ RSS for notifying users
about the newly available posts of their preferred friends (or followers).

Among the many different kinds of RSS applications, we can distinguish between three
main classes according to the producers 1: (1) professional newspapers and news agencies, (2)
personal blogs and discussion forums, and (3) social media platforms. First, RSS is widely
used by professional information publishers like journals and magazines for broadcasting news
on the Web. The particular nature of news with respect to other kinds of RSS streams, has
lead to the development of specialized news aggregators which offer an efficient way for the
personalized delivery of news. They automatically organize news into stories by appropriate
tagging, clustering and ranking techniques (e.g., Google News, Yahoo! News, AOL News or
MSN News). For example, the Google News service covers news articles appearing within the
past 30 days on various news websites. In total, Google News aggregates content from more
than 25,000 publishers in different languages (4,500 English language sites) and provides a
number of services (archiving, search, sort...) and is based on a PageRank-like score function for
promoting news stories (collections of articles related to some topic). Personalization consists
in creating personalized news categories containing all news satisfying a user defined full-text
search predicate.

The second important kind of RSS applications covers personal blogs, discussion forums
and user groups. While this kind of RSS sources exhibits usually a moderate publishing rate
compared to professional news sources, the myriad of feeds they produce unquestionably goes
above the number of newspapers producers. It is estimated that more than 60M blogs (without
considering discussion forums and user groups) actually exist.

The last type of RSS stream producers are social media platforms like Facebook, Twitter,
Flickr or YouTube. All these sites propose services for exchanging messages and sharing web
contents (web pages, images, videos) between users of different groups. Modest estimations

1. In the following we will use the term RSS for both formats, RSS and Atom.
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place the total number of user accounts on various social media around 230M. As in the news
scenario, RSS aggregators can be used to subscribe to RSS feeds for observing and aggregating
the activity of a particular user or a user group. On the other hand, news websites and blogs are
more and more complemented by social media platforms, which generate an abundant number
of text streams for promoting recently published contents.

Therefore, any user who wants to build a personalized information space by subscribing
to news feeds, blog feeds, etc. rapidly faces the problem of efficiently exploiting an increasing
number of feeds and news items. On the other hand, news search engines (or even blogs search
engines) enable content filtering without enforcing users to know a priori the information
sources offering RSS/Atom feeds. RSS/Atom intermediaries such as Google Reader 2, Yahoo!
Pipes 3 as well as several other aggregators (feedrinse.com, newsgator.com, bloglines.com or
pluck.com) allow users to assign a set of keywords to a specific RSS feed they have already
subscribed to. Whenever a new item is fetched for that specific feed, the aggregator tests if
all of the terms specified are also present in the item, and notifies the user accordingly. In a
similar way, Google Alerts 4 and Yahoo! Alerts 5 services enable to filter out syndicated content
that is not of interest to users and notify them by email.

Both of these two types of systems, RSS aggregators and alerters, provide content filtering
facilities on the items essentially in a pull mode by periodically downloading the corresponding
RSS documents (e.g., every 2-5 hours) according to a predefined refreshing policy. The main
difference between them is that existing RSS aggregators are essentially search engines for
RSS feeds and they build huge indexes over all RSS feeds, whereas RSS alerters periodically
evaluate content-based queries over these feeds to generate a stream of results. Clearly, this
functionality can be used only when the number of feeds is limited to a few authority sites (such
as news agencies and newspapers) and not to a myriad of feeds bounded to citizen journalism
(such as personal blogs, discussion forums and social media). Furthermore, storing web content
locally in a warehouse implies heavy intellectual property rights management, especially for
professional sources (e.g., press organizations) whose cost could be prohibiting for small and
medium enterprises. For these two reasons, the huge number of feeds and the copyright issues,
the approach based on continuously processing the user-defined queries becomes an interesting
solution.

2. www.google.com/reader
3. pipes.yahoo.com
4. www.google.com/alerts
5. alerts.yahoo.com
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Introduction

In this thesis we present ROSES, acronym for Really Open Simple and Efficient Syndication.
ROSES is a generic framework for large-scale content-based RSS feed continuous querying and
aggregation. Our framework relies on a data-centric approach, based on the combination of
standard database concepts like declarative query languages, view composition and multi-query
optimization techniques. ROSES enables the personalization by defining and publishing RSS
views over collections of news feeds. Each such view is defined by a declarative query capable
of merging and filtering RSS information items originating from a potentially large number
of source feeds (for example from all major French journals). ROSES supports expressive
continuous queries (selection, join, union, window) over textual and factual information streams.
Following the publish-subscribe principle, these views can be reused for building other streams
and the final result is an acyclic graph of union/filtering queries on all the involved feeds.
These query graphs generally grow very rapidly and call for efficient multi-query optimization
strategies to reduce their evaluation cost. This is one of the major issues tackled in this thesis.

ROSES is based on a simple but expressive data model and query language for defining
continuous queries on RSS streams. Combined with efficient web crawling strategies and multi-
query optimization techniques, ROSES can be used as a continuous RSS stream middle-ware
for dynamic information sources. For instance, a user interested in a precise topic may create
a new RSS feed through his Google Reader account aggregating thousands of different sources
(from economics feeds of general-purpose newspapers websites to specialized blogs). He may
then define a ROSES publication filtering the feed, that he has created through Google Reader,
in a specific topic (e.g., the Spanish risk premium and/or the capital stocks of a given company)
and aggregating it with other user-defined ROSES publications of his interest. Finally, he may
use the feed produced by his customized ROSES publication on Yahoo! Pipes, creating a new
feed (pipe) using any of the services furnished by Yahoo! (for instance, translating the item
contents of the ROSES feed). Figure 1 depicts such a scenario. This example clearly illustrates
the interoperability possibilities of web syndication due to the simple nature intrinsic to RSS
and Atom data models.

On the other hand, ROSES proposes a join operation which opens some interesting per-
spectives in the context of feed aggregation. A first usage of join is to define flexible filtering
and annotation of news feeds. Joining two feeds consists in filtering all items of a primary
feed according to some join predicate (text similarity on the title, description or the whole
item) with items present in a sliding window on a second feed. There is no restriction of how
this second feed is generated and in particular, it can be defined by the user itself to annotate
the items in the first feed. For example, a user might define a primary feed p aggregating a
collection of feeds produced by his friends on many different social platforms (twitter, facebook,
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Figure 1 – ROSES as a stream middle-ware

youtube, flickr), then he creates a secondary feed s aggregating another collection of feeds gen-
erated by different French newspapers and/or weblogs. He defines a sliding window w on the
secondary feed s (e.g., a time-based window of a few days) and a join between the primary feed
p and this window w (based on the keyword distance between the items from the primary feed
and the items of the window, for instance). The results produced by this query will contain
the items produced by the main feed p (the social platform items) enriched with the related
items previously published on the newspapers/blogs. Another interesting way of using joins,
is to join the items of a stream with all items published in the same stream during some time
period (autojoin). The result is a new stream where all items are regrouped with similar items
published before in the same stream according to the text similarity function used by the join
predicate.

A central goal of this framework is to enable RSS aggregation at large-scale, so we pro-
pose algorithms and data structures which are scalable in terms of the number of feeds and
aggregation queries (publications). Our approach is to revisit standard online RSS aggregation
services by applying traditional database concepts like declarative languages and views and by
extending current data stream management and continuous multi-query processing solutions.
Multi-query optimization [Sel88] is an important aspect of the ROSES System to achieve scala-
bility. Indeed, ROSES queries are translated into continuous multi-query execution plans which
are optimized using a new cost-based multi-query optimization strategy.
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In particular, our work on multi-query optimization focus on content filter factorization on
individual sources. The problem can be stated as follows: given a large set of filters which have
to be applied on a given source, we want to find the best factorization tree covering all filters
and according to a well-defined evaluation cost model. The best factorization tree corresponds
to the filtering tree with the lower evaluation cost w.r.t. the cost model. We show that the filter
factorization problem can be reduced to the (minimum) Steiner tree problem [HRW92] applied
on a filter subsumption graph. The general Steiner tree problem is defined as follows: given
a weighted graph G = (V,A,w(·)) and a set of nodes T appearing in the graph (T ⊆ V ) and
called terminal nodes, the Steiner tree corresponds to the minimal spanning tree that covers
at least all nodes in T , i.e. it may also contain other nodes, called Steiner nodes (S = V − T ).
The Steiner tree problem is a known NP-complete problem. Moreover, the subsumption graph
data-structure grows exponentially w.r.t. the number of queries and the number of atomic
filtering predicates.

Thus, we propose two algorithms (STA and VCA) and a data-structure (VCB) in order to
improve the filtering factorization process. First, we have adapted a general-purpose approxi-
mation algorithm due to Charikar et al. [CCC+98] in order to fit into our subsumption graphs
characteristics. We have then conceived the VCA (Very Clever Algorithm), a greedy algorithm
that decreases drastically the computation cost of STA. Finally, the VCB data-structure (Very
Clever Border) allows cutting down the space memory required by the subsumption graphs.
Thus, the VCA algorithm coupled with the VCB data-structure provides a clear amelioration
over the STA algorithm.

At a glance, the main contributions we present in this thesis are the following ones:
• A declarative RSS feed aggregation language for publishing large collections of structured

queries/views aggregating RSS feeds (Section 2.1),
• An extensible data model and stream algebra for building efficient continuous multi-query

execution plans for RSS streams (Section 2.2),
• A join operator called annotation-join that opens new interesting possibilities in the

context of news aggregation (Sections 2.1.2 and 2.2.2.1),
• A flexible and efficient cost-based multi-query optimization strategy for optimizing large

collections of publication queries (Section 3.4),
• A dynamic multi-query optimization technique for reoptimizing query evaluation graphs

at runtime (Section 3.5),
• A running prototype based on a multi-threaded asynchronous query plan execution model

(Chapter 4).
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This manuscript is organized in four chapters. In the first Chapter, the State-of-the-Art,
we conduct a survey on different types of systems related to ROSES, from existing real world
RSS aggregators, to scientific publish/subscribe systems and datastream management systems;
then we describe different existing multi-query optimization techniques for static and continu-
ous queries which influenced our work. In Chapter 2, we present the ROSES Query Language,
the data model and logical algebra, which represent first important contribution of this work.
Chapter 3 is the main chapter of this work and is devoted to our query processing engine and
our cost-based multi-query optimization approach. In this Chapter, we introduce our filter-
ing factorization technique based on searching minimal-cost Steiner trees in weighted filtering
subsumption graphs, we present the STA and VCA algorithms and the VCB data structure
for efficiently computing such trees and we evaluate them experimentally. In Chapter 4, we
describe the overall ROSES System architecture. Then we detail some interesting technical
issues encountered during the implementation of the ROSES Prototype, and we present the
prototype’s functionalities. Finally, a last Chapter concludes our work and discusses future
work.
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Chapter 1

State of the Art

In this thesis we are particularly interested in the problem of evaluating large sets of con-
tinuous queries on syndication feeds. ROSES queries are complex compositions of continuous
operators including selection, join, union and windowing. In this context user-defined queries
exhibit filter sharing, that is similar selection operators occurring in multiple queries. The aim
of the optimization is to minimize the total processing cost by factorizing selection predicate
evaluations across multiple queries. Although ROSES queries implement the publish/subscribe
principle, our problem is not the same as that addressed by publish/subscribe systems [YGM99],
which focus on special techniques for indexing a large number of queries (subscriptions) to iden-
tify which user subscriptions match incoming data as fast as possible.

This state-of-the-art is organized as follows. First we discuss existing commercial RSS ag-
gregation applications in Section 1.1. Then we make a survey on publish/subscribe systems in
Section 1.2. Section 1.3 presents and compares some of the most relevant Datastream Man-
agement Systems proposed in the literature (STREAM, Aurora, TelegraphCQ, etc.). Finally,
Section 1.4 analyses some related works on Multi-query Optimization Techniques (MQOT) close
to the one we propose in this thesis.

1.1 Existing RSS aggregation tools

A Feed Aggregator enables to register and follow many syndication feeds simultaneously.
It may be a local client software or a large-scale web application. We can find a large range
of dedicated RSS clients or desktop applications (most current web browsers and messaging
clients already incorporate RSS readers). Desktop RSS aggregators periodically crawl the feeds
subscribed by the user and store them locally. The advantage of web-based RSS aggregators
is that crawling and processing of feed sources is centralized for many different users, which
reduces bandwidth usage by efficient crawling strategies [HAA10] and opens many opportunities
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for sharing processing effort between different user subscriptions.
There exists a large number of tools and applications enabling RSS/Atom feed aggregation,

which can be classified according to many criteria. We underline the following ones: i) the
classification model of subscribed feeds, ii) feed discovery and feed search capabilities, iii) social
network integration and iv) other mash-up capabilities.

Google Reader Google Reader [URLa] is an RSS feed registry and feed reader which allows
Google users to create a personalized hierarchy of RSS feed collections. Feeds can be discovered
by keyword search and new feeds can be added manually. Feed collections can be searched for
keywords and be published as new RSS feeds representing the union of all feeds in the collection.
Google Reader also integrates the Google social network features for sharing and recommending
feeds.

Figure 1.1 shows a screenshot of Google Reader interface. Users can select a feed from the
left panel and visualize its contents on the main panel, or a collection of feeds (a folder) to
visualize all their items together. They can sort the items by date or by relevance. They can
add new feeds through the button at top left or search for other feeds via the search bar.

Figure 1.1 – Google Reader ’s screen dump
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Yahoo! Pipes Yahoo! Pipes [URLb], like ROSES, goes beyond the traditional concept
of feed aggregators. Users may build their own feeds (pipes) through a user-friendly visual
programming interface. A pipe is a sort of algebraic tree composed of customizable opera-
tors, including user inputs, union, filtering, count, rename, URL builders, translate, tokenizer,
replace, regex, etc. Pipes’ sources may also be of very different nature: RSS/Atom feeds,
WebServices, HTML, static text, Yahoo Search results, other users pipes, etc.

Figure 1.2 illustrates a pipe that searches the word “RSS” (parameter box on the right) in
the feed http://example.com/feeds (URL-builder). The URL-builder box defines which feed to
collect and how to fetch it. Then, the feed is fetched from the given URL of the URL-builder.
Finally the feed is sorted by the pubDate attribute of the item and outputted. The output can
be seen interactively by selecting the Pipe Output tab.

Figure 1.2 – Yahoo! Pipes’s screen dump

Yahoo! Pipes is an example of a more powerful mash-up system for the structural extraction
and composition of RSS feeds and other external web services. While Yahoo! Pipes offers a
similar functionality as the ROSES system, as far as we know (few information is publicly
available), they use a static execution approach, i.e. pipe queries are periodically evaluated or
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on user-demand. To our knowledge, each Yahoo! pipe is executed separately and Yahoo! Pipes
does not implement any multi-query optimization technique for reducing execution cost.

Digg Digg [URLc] is a social news website, its success lies in its simple yet original recom-
mendation system. Users may submit web content references for general consideration. Then
the other members of the community can vote news items up or down (digging or burying
respectively). Thus, items with more positive votes appear first in the main page of the user.

NetVibes NetVibes [URLd] is a popular feed aggregation portal providing a collection of
graphical widgets to compose a personalized information space. NetVibes is an example of
general mash-up system.

Feedzilla Feedzilla [URLe] is another RSS registry which collects and categorizes the content
of thousands of RSS feeds. Feedzilla supports the building of user interface widgets publishing
a chosen category of news personalized by some filter conditions.

NewsIsFree NewsIsFree [URLf] is a feed registry and feed reader where users can browse feed
contents by feed category, name, date or language. Feeds can be searched by keyword search
on the name and the description. Once the keyword entered, a list appears on the screen. The
user needs to copy and paste into the aggregator each web address for each web site he/she
wants to sign up to.

Table 1.1 shows a non exhaustive list of RSS registries classified according to four main
different classes of aggregation services. All these tools are generally based on a simple keyword
search on the item contents and a non-personalizable set of hierarchically organized categories
for describing and retrieving feeds. Aggregation is limited to the visual aggregation of widgets
in a web page (NetVibes, Feedzilla) or the creation of collections (Google Reader). Opposed to
graphical and procedural feed aggregation techniques, ROSES thoroughly exploits declarative
data and knowledge modeling for organizing, filtering and aggregating continuous RSS data in
a complex application domain.

1.2 Pub/sub systems

Publish/subscribe is a messaging paradigm where message senders (publishers) do not send
messages to specific receivers (subscribers) beforehand defined. Instead of that, published
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Aggregator Classification Feed Search Others

Google Reader topic hierarchy category, description social network, recommendation
Digg category list content social network, recommendation
Netvibes category list keyword widgets, mash-up
Feedzilla topic hierarchy category, keyword widget generator
NewsIsFree category keyword
Feedsee topic topic, keyword
Search4rss - keyword feed discovery
Syndic8 topic hierarchy keyword
Yahoo! Pipes - content, structured extensible mash-up algebra

Tableau 1.1 – RSS Feed Registries and Aggregators

messages are classified into categories to which receivers have subscribed. In our context we
can define the process of publish/subscribe as follows: a system publishes a stream of textual
information items (collected from one up to thousands of sources). Then users can subscribe
to this stream by defining different kinds of filtering queries.

The main problem we find in publish/subscribe systems is that we have to process thousands
of keyword-queries over a possibly high rate of message streams. In the context of DSMSs, this
problem might be seen as the problem of processing a unique very high rate datastream with
a huge number of filtering operators applied to this datastream.

There is a major line of research in the context of publish/subscribe systems, that is on sub-
scription indexing. The main goal of these indexes it to efficiently detect all subscriptions which
are relevant to an incoming published item. In most cases relevance is defined using a broad
matching semantics where the incoming item must contain all keywords in the subscription.
Some systems allow users to define more complex filtering predicates using conjunction and
disjunction. The literature mainly distinguishes between two indexing schemes for counting
explicitly vs implicitly the number of contained keywords: Count-based (CI) and Tree-based
(TI), respectively [HKC+12].

The Count-based indexes are usually implemented through inverted lists. Two models are
commonly adopted for subscriptions and items with inverted lists: a boolean model and a vector
space model. Inverted lists maintain a directory D of all words extracted from subscriptions
placed in a different cell D[i]. Each word D[i] is associated to an inverted list Li that contains
all subscriptions sij that contain this keyword. When a new item is received, we first extract
the different words qk (0 ≤ k < N) from the item. For each qk we retrieve the corresponding
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inverted list Lk, and the subscriptions that should be notified are subscriptions in ⋃0≤k<N Lk.
The whole technique is depicted in Figure 1.3 [CCdM+].

Figure 1.3 – Basic use of inverted lists in pub/sub

The Tree-based approaches (TI) propose tree structures based on a partial order defined by
containment relationships. Figure 1.4 illustrates an example of a prefix tree built on a set of
subscriptions. The root of the tree corresponds to the empty prefix. Each node n is the root
of a subtree that indexes all the subscriptions that start with the sequence corresponding to
the tree traversal until n. When a new item is received, a tree traversal allows determining the
set of matching subscriptions. We start by the root and read one event after another. Then
for each node n reached, the item is forwarded to its children if the input event match the
node predicate. At each node, if there are many subscriptions that correspond, a matching
notification is produced.

Figure 1.4 – Basic use of prefix tree in pub/sub

Since memory requirement is larger for TI than for CI systems, related works mostly rely
on CI schemes rather than on TI structures. For instance, Le Subscribe [PFL+00] system uses

14



1.3 Datastream Management Systems

a CI index on predicates where subscriptions are matched by counting the item keywords they
contain. In a naive solution all partially matching subscriptions are visited, so a goal is to reduce
the search space by grouping subscriptions according to their size. Aguilera et al. propose
in [ASS+99] a TI approach based a two phases matching technique for conjunctive subscriptions
assuming a fixed total ordering among subscription predicates. The pre-processing phase creates
a matching tree over the subscription predicates, in which nodes are predicates. This TI
matching time complexity is sub-linear, with respect to the number of indexed subscriptions.

Few Pub/Sub systems have been proposed for keyword-based subscriptions. The most
remarkable is the SIFT selective dissemination of text documents [YGM99]. Garcia-Molina et
al. propose alternative indexes based on disk implementations of the ranked key counter-less
inverted list, the regular trie and the regular ordered trie.

Special mention should be made to [HKC+12] in the framework of the ROSES project.
Hmedeh et al. suggest three new indexing techniques based on inverted lists and on an ordered
trie called POT (a Patricia Trie). These indexes implement various counting techniques in
order to prune as early as possible non matching subscriptions. For small vocabularies POT’s
matching time is one order of magnitude faster than the best inverted-list index. While for
large vocabularies, both exhibit the same matching time order.

The ROSES system is based on the publish/subscribe mechanism, i.e. users can subscribe
to publications generated by ROSES queries. Nevertheless we go beyond the publish/sub-
scribe paradigm by allowing users to create their own publications through complex declarative
queries. This is why the ROSES fits better in the context of datastream management systems,
where we deal with the problem of generating optimal execution plans capable of processing
thousands of complex publication queries in parallel.

1.3 Datastream Management Systems

A DataStream Management System (DSMS) is a set of programs that provides the mainte-
nance and querying of continuous datastreams. A conventional database query executes once
and returns a set of results at a given point in time. In contrast, a continuous query is continu-
ously executed as new data enters the stream, and generate itself a continuous stream of items
as its result. In a more general sense, continuous queries can also be characterized as views
which continuously propagate the insertion of updates into a database.

Over the last fifteen years, many prototypical DSMSs have been developed by database
research groups, including MIT/Brown’s Aurora/Borealis [ACc+03], CAPE [RDS+04], Gigas-
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cope [CJSS03], PIPES [KS04], Stanford’s STREAM [MWA+02] and Berkeley’s TelegraphCQ
[CCD+03b] (based on the earlier CACQ System). Stream processing engines have also gained
recognition as commercial products. StreamBase Systems Inc. is a university spin-off from
M.I.T., Brown University and Brandeis University based on findings from the Aurora and
Borealis project, Gigascope is used at AT&T.

In this Section we give a survey of some DSMSs. We can classify them according to five
axes:

1. the kind of data they handle,

2. the type of language (visual/declarative) and operators they support (type of joins, win-
dowing...),

3. their theoretical foundations and formal semantics,

4. the execution model used to process queries, and

5. the kind of multi-query optimization they propose (at which execution level).

A key element of multi-query optimization is the semantics foundation of the concerned
continuous query language. Indeed, a continuous query language whose operators support
the snapshot-reducible property offers a larger level of optimization possibilities. Snapshot-
reducibility is a well-known concept from temporal databases that ensures that the properties
of the operators of the relational model are preserved in their continuous counterparts if we can
reduce the continuous operator to the corresponding relational operator. This makes possible
to export many rewriting rules from the relational model to a continuous model. Snapshot-
reducibility will be later defined in the logical algebra Section (2.2.2.2).

1.3.1 STREAM

In recent years various SQL-like query languages have been proposed to formulate con-
tinuous queries. CQL, used in the STREAM system, enriches native SQL with window con-
structs [ABW06]. One particularity of CQL is that streams are turned into time-varying re-
lations in order to apply traditional operators over these relations. Then after applying the
relational operators, the relations are transformed again into streams. For this, the authors
introduce two new operators: stream-to-relation and relation-to-stream operator.

We illustrate the use of these operators through a query example extracted from [ABW06]:

SELECT Istream(*)

FROM PosSpeedStr [RANGE Unbounded]

WHERE speed > 65;
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This query is defined on a stream called PosSpeedStr that contains different vehicle speed-
position measurements and whose schema is: (vehicleId, speed, xPos, dir, hwy), the vehicle id
and its speed, position and direction in a highway. The query is composed of three operators:
an unbounded window on the aforesaid stream (stream-to-relation), a relational filter opera-
tor (relation-to-relation) and an Istream operator defined on the result of the filter operator
(relation-to-stream). The semantics of the unbounded window is that at every time instant
τ , the window (the resulting relation) contains all speed-position measurements up to τ . The
semantics of the Istream operator is that every new tuple in the relation produced by the filter
operator is streamed out as the result of the query. Thus, this query defines a simple filtering
operator over PosSpeedStr.

While ROSES and STREAM differ little on the implementation and query execution model,
an important difference between them is the semantics of their query languages. STREAM relies
on a stream to relation logical model, while ROSES is based on a fully-streamed query execution
model. Moreover, the kind of data and operators are quite different. We consider structured
textual data and STREAM is conceived for relational structured data. On the other hand, both
systems converge on the execution model: a graph of physical operators, which are connected
by inter-operator queues and a scheduling process is in charge of ensuring the processing of
each operator. STREAM is implemented by a single thread for scheduling and the order of the
operator evaluation is determined by a scheduling strategy [BBMD03]. In contrast, ROSES
uses a multi-threaded architecture. Finally, the main difference between both systems is that
ROSES is conceived to define queries over large collections of text streams (big unions), while
STREAM is more data stream oriented.

1.3.2 Aurora

Aurora proposes an algebra called SQuAl. Instead of using textual query expressions, users
construct query plans through a graphical interface, where boxes represent operators, which are
connected via arrows indicating the dataflow [ACc+03]. An important difference with ROSES
is that stream elements are not uniform, i.e. they are tuples consisting of application-specific
data fields. SQuAl offers seven different operators: order-agnostic operators (filter, map and
union) and order-sensitive operators (join, aggregation, BSort and resample).

It is not easy to compare Aurora’s query semantics with ROSES, given that some operators
(such as BSort) would not fit into our algebra as its output stream might violate our ordering
requirement. Moreover, the majority of the SQuAl operators are not snapshot-reducible. As
a consequence, query optimization through query rewriting is almost not possible. Aurora’s
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main target is to satisfy user-defined QoS specifications. The Borealis project extends Aurora
towards distributed stream query processing.

1.3.3 PIPES

PIPES 1 is a library developed by Krämer et al. [Krä09] at the University of Marburg.
PIPES is a flexible infrastructure providing the fundamental building blocks to implement a
general-purpose query engine for datastreams. PIPES offers two ways to its users to create
new datastreams: via a GUI that enables users to specify data flows by combining operators
from its stream algebra in a procedural manner, or via a declarative query language close to
SQL. This query language enhances the basic SQL syntax with the window constructs defined
in SQL:2003 for OLAP functions. The PIPES algebra provides a stream-counterpart for every
operator in the extended relational algebra (except for the sorting operator). Besides, this
stream algebra furnishes a sliding window operator, which is the most frequently used type of
window in real world applications. So the window functionality is separated from the other
operators.

The authors are the first to apply the notion of snapshot-reducibility [SJS01] to the datas-
tream context. They show that each of their algebra operators is snapshot-reducible. This
property is the fundamental foundation of their query plan generation and query optimization
techniques. Query optimization in PIPES is based on the concept of plan equivalence, i.e., two
query plans or subplans are equivalent when they generate snapshot-equivalent results. So they
perform query plan optimization by applying traditional rewriting rules (e.g., join reordering,
selection push-down) to snapshot-reducible subplans.

Another important problem tackled by Krämer et al. [CKSV08] concerns the adaptive re-
source management. The stream characteristics and query workload of a DSMS vary over time,
thus DSMSs have to manage as well their resources adaptively. The approach they propose for
the adaptive resource management lies in adjusting the window sizes and time granularities to
keep the use of system resources within predefined bounds. Thus, the query language proposes
some extensions to define a Quality-of-Service range on the size of the windows and the time
granularity. The system then exploits the statistics extracted from runtime queries to maximize
the overall QoS while keeping window and granule sizes within these bounds.

1. for Public Infrastructure for Processing and Exploring Streams
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1.3.4 TelegraphCQ

TelegraphCQ is a continuous query processing system developed at the University of Berke-
ley [CCD+03a]. Its predecessors are Telegraph, CACQ and PSoup. TelegraphCQ primarily
addresses shared queries scheduling and resource management, adaptive query execution and
Quality of Service (QoS) support. Operators are called dataflow modules in TelegraphCQ. The
system proposes a module for every operator from the extended relational algebra, without
any windowing operator. Communication between the dataflow modules may be individually
configured to be synchronous (pull-based) or asynchronous (push-based).

The Telegraph’s query processing is not based on traditional query execution plans. The
query engine of Telegraph, called Eddies [AH00], employs adaptive routing modules to con-
trol dataflow tuples evaluation. The Eddies optimization strategy lies in continuously routing
dataflow tuples to query operators.

1.3.5 XML-stream query engines

Even if RSS/Atom feeds may be represented using the XML data format, they exhibit a
nearly flat structure, and it is more convenient to consider RSS/Atom items as textual relational
tuples. Below we describe several significative XML-stream DSMSs proposed in the literature.

NiagaraCQ Niagara system endeavours to answer queries over distributed XML documents
crawled across a large network [NDM+01]. It proposes an XML-based query language that
facilitates join specification over XML documents and the construction of complex results. The
NiagaraCQ subsystem [CDTW00] proposes some continuous queries sharing techniques based
on subquery grouping. In this project, Viglas and Naughton [VN02] introduce a cost model
based upon stream rates to enable query optimization over streaming data.

Niagara is conceived to process XML-streams of non-textual data, such as datastreams
generated by RFID sensors or stock market datastreams. We work with datastreams that have
a strong textual component. This difference in the type of handled data entails a substantial
difference on the type of operators and, consequently, the costs models for each system diverge
considerably.

OptimAX OptimAX is a project of the Gemo group at INRIA. The OptimAX system deals
with Active XML (AXML) query optimization in a distributed setting. An Active XML docu-
ment is a document including several WebService calls. These service calls are mainly XQuery
queries returning an asynchronous stream of XML results. Abiteboul et al. [AMZ07, AMZ08]
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have extended the AXML language with three new operators (newNode, send and receive).
AXML Web Services may include recursive Web Service calls, thus many call activation strate-
gies may be carried out. The authors propose a cost-based optimization model for AXML
documents computation. Their approach consists in building an initial AXML execution plan
and iteratively improving this plan through the use of different heuristics.

In [AM07] Abiteboul and Marinoiu propose a monitoring overlay for P2P networks. Their
system called P2P Monitor allows to handle streamed monitoring data across the P2P network.
Peers produce monitoring data that may be filtered and/or reused by other peers. In this article
the authors mainly propose an efficient filtering technique and a stream reuse mechanism. The
filtering technique is based on the Atomic Event Set (AES) [NACP01] and YFilter [DFFT02]
algorithms. AES is used in a first step to evaluate simple filtering conditions, afterwards YFilter
evaluates the complex queries if still needed.

While using a different approach in ROSES to optimize queries on continuous feeds, i.e. we
optimize large sets of queries by filtering factorization, OptimAX proposes interesting clues to
extend our optimization model to distributed settings.

ViP2P Another related project carried out at Gemo is the ViP2P project (Views in Peer-to-
Peer). In this project Manolescu et al. [MZ09, KKMZ12] present a platform, called ViP2P, for
the distributed and parallel dissemination of XML data in a peer-to-peer setting. They consider
the problem in the context of structured P2P networks indexed through a distributed hash table
(DHT). In such networks, the peers own XML documents which they share with each other.
The peers can define XPath-based views (subscriptions) on the top of the global collection of
documents, they can as well request ad-hoc queries on both the XML documents and the views.
The approach they propose lies in the use of a DHT to index the view definitions, which allows
to improve the processing of both subscriptions and ad-hoc queries. Moreover, after a view
lookup the queries are locally optimized by each peer using traditional optimization techniques
(push selections, join reordering...).

Both works, OptimAX and ViP2P, are strongly related to Pitoura’s works on XML data
management/dissemination in P2P networks [KP05, PAP+03]. For instance, in [LP08] Pitoura
and Lillis propose a cooperative caching system for XPath query results in DHT-based struc-
tured P2P networks. The authors introduce a new distributed index based on the prefixes of the
XPath queries. They consider two different approaches, a loosely-coupled index and a tightly-
coupled index. Documents that are frequently queried are indexed and can be easily located
by looking up the cache entries, while less popular documents are not indexed. The semantics
of user queries evolves with time, thus cached results must be periodically updated/replaced.
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Therefore they also propose a proactive cache replacement policy, such replacement policy is
based on a utilization value attached to the trie branches of the index and which is updated as
new queries arrive.

Xyleme Xyleme [NACP01] is a content-based management system for XML documents.
Xyleme uses a trigger-based evaluation of continuous queries in order to monitor changes in
HTML and XML documents. Similar to Tapestry [TGNO92], its continuous query semantics
derives from the periodic execution of one-shot queries.

1.4 Multi-query optimization problem

Multi-query optimization (MQO) has first been studied in the context of DBMSs where
different users could request one-shot queries simultaneously to a system. For instance, in a
system where various users can send different queries within the same time interval, one possible
execution strategy is batching the queries. However, a major problem with this approach
is the effect on the response time. It is unacceptable to delay a user’s query due to other
more expensive queries. A better approach should consider reusing shared intermediate results
between the queries [Sel88, SG90].

In the context of DSMS, MQO consists in exploiting the fact that a set of continuous queries
can be evaluated more efficiently together than independently, because queries often share
state and computation. Solutions using these observations are based on different mutualizing
methods:
• Predicate indexing: used for indexing subscriptions in publish/subscribe systems, e.g.

indexing by ranked posting lists [WGMB+09];
• Join interval indexing: used for sharing join computations, they index the intervals of

the predicate values on join queries (e.g., [AXYY09]);
• Sharing states in global NFA: used for sequence detection, e.g., with YFilter [DFFT02]

or with the pub/sub system Cayuga [DGH+06];
• Join graphs, e.g. [HDG+07], or Similarity joins hashing, e.g. [TRFZ07]; and finally,
• Sub-query factorization: with the HA algorithm [SG90], NiagaraCQ [CDTW00], Tele-
graphCQ [CCD+03a], STREAM [ABW06] and RUMOR [HRK+09]. 2

In ROSES, we have followed the factorization approach which appeared to be the most
promising for a cost-based multi-query optimization solution.

2. Table 1.2 summarizes these techniques and the systems using these techniques.
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Techniques Systems

Predicate indexing [WGMB+09]
Join interval indexing [AXYY09]
Sharing states in NFA YFilter [DFFT02],

Cayuga
Join graphs/ [HDG+07]

Similarity joins hashing [TRFZ07]
Sub-query factorization STREAM, NiagaraCQ,

TelegraphCQ, RUMOR

Tableau 1.2 – Multi-Query Optimization Techniques summary

The multi-query optimization through predicate factorization brings difficulties in identify-
ing similar operations with similar parameters. It might be seen like a “matching” problem
within a set of separate query plans where the goal consists in finding a good rewriting con-
taining a set of factorized sub-queries which are shared in the processing of the original queries.
This problem is known to be NP-hard [SG90] and has to be simplified to scale up those systems.

1.4.1 RUMOR

An interesting approach is that of the system RUMOR (RUle-based Multi-query Optimiza-
tion fRamework). Hong et al. [HRK+09] propose the use of multi-operators, grouping the
processing of similar operators and producing multi-streams, where the items are annotated
according to the operations that the item has validated. Figure 1.5 illustrates the use of multi-
operators and multi-streams. We consider two queries Q1 and Q2 defined on the same input
stream S with two selection operators σ1 and σ2 and one aggregation operator α1 (Figure (a)).
Both selection operators are grouped into a multi-operator σ1,2 producing two different streams
(Figure (b)). Then, both aggregation operators α1 are also merged into another multi-operator
α1,1, but now the selection multi-operator σ1,2 must produce a multi-stream instead of two
streams (Figure (c)). This multi-stream contains all items that have evaluated to true at least
one of the selection operators (σ1 or σ2), and they are tagged according to the predicates
they have validated. This allows removing one of the aggregation operators (α1). But new
multi-operator α1,1 must consider the tags of the items to perform the aggregation function.

The main difference with our approach is that by combining several operators in a single
operator, the processing of the subgraph corresponding to that set of operators requires to
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be synchronous, whereas with our approach the processing of the execution graph remains
completely asynchronous.

Figure 1.5 – Query plans in RUMOR [HRK+09]

1.4.2 Widom et al.

Another interesting approach is the one proposed by Widom et al. in [MSW07]. They
propose a greedy optimization algorithm for continuous queries with expensive filters (e.g.,
filters on image or video datastreams). They restrict to queries with conjunctive filters, thus
a query is resolved once one of its filters evaluates to false or all its filters are true. Their
query execution model consists in evaluating the query filters one-by-one in a given ordering
such that all queries may be resolved as soon as possible. This ordering can be determined
by a fixed strategy or an adaptive strategy. In the fixed strategy, the evaluation ordering is
determined before the evaluation starts, whereas in an adaptive strategy the next evaluated
filter is dynamically chosen in function of results of preceding filters on the evaluated item. The
adaptive strategy is based on a decision tree composed of all the filtering predicates. So the
best evaluation ordering corresponds to a path from the root of this tree to one of its leaves.
The size of such decision tree is exponential in the number of queries and the number of filters,
so they have proposed an algorithm to partially precompute it. An adaptive strategy involves
an execution overhead on the evaluation process for finding at each step the appropriate filter
to be evaluated next. In spite of this execution overhead, the adaptive strategy allows reducing
the overall cost of resolving all queries for an item. Widom et al. have proved theoretically and
experimentally that despite this overhead their adaptive strategy based on the precomputed
decision tree is twice as fast as the fixed strategy.

The cost model proposed by the authors is based on three factors: i) filter cost, ii) selectivity
and iii) participation (i.e., the number of queries that contain a given filter). While in ROSES
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we consider all filtering predicates to have a uniform cost (we only consider textual predicates),
our optimization approach is general enough to integrate filtering predicates with variable costs.
That is, our factorization technique can also incorporate this factor without problems, it keeps
correct and optimal. On the other hand, in the same way as Widom et al. ([MSW07]) we
consider the selectivity and participation factors in the optimal filtering tree building. This
corresponds to our benefit function, detailed in Section 3.4.2.2. Finally, while their multi-query
optimization technique is limited to simple conjunctive predicates, ROSES can handle any
kind of boolean expressions as query predicates and take into account disjunctive and negation
predicates on the optimization process. Another difference w.r.t. our approach is that their
execution model is mono-threaded, while we take advantage of parallel predicate evaluation
thanks to our multi-threaded architecture. In conclusion, the approach proposed by Widom
et al. ([MSW07]) is similar to our approach except that they consider a setting with very
expensive filters and we handle less expensive textual predicates.

1.4.3 Liu et al.

Yet another recent work similar to previous one is that of Liu et al. in [LPRY08]. The
authors present two new algorithms, a greedy and a randomized harmonic algorithm, based
on the well-known edge cover problem, with improved performance compared to the previous
work [MSW07]. They view the shared filter ordering problem as an edge-coverage problem over
a bipartite graph whose partitions are i) the set of queries and ii) the set of all filters appearing
in the queries. Edges represent the containment of a filter in a query and all edges must be
covered. However the difference with the classic edge-coverage problem is that once an edge
is covered (i.e., a filter is evaluated), a subset of queries might be resolved, thus a subset of
edges is removed dynamically during the execution of the algorithm. The goal is to define an
ordering of filters such that at each step (evaluation of a filter) we remove as much edges as
possible. Like in previous work, the authors consider filter costs, filter selectivities and filter
popularities (participation of a filter in the set of queries) in a unit-price function, used to
determine the next filter to evaluate. They also prove that both algorithms they propose are
near-optimal approximation algorithms with provably-good performance guarantees. Finally,
they have experimentally evaluated these algorithms and show that the edge-coverage based
greedy algorithm performs a 17% better than the greedy algorithm proposed by Widom et al.
[MSW07].

Although focusing only on expensive conjunctive queries like [MSW07], an interesting point
of this work is that the harmonic algorithm decides which filter will be evaluated next randomly,
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thus filters associated with disjoint sets of queries could be executed in parallel. This opens the
door to concurrent filtering evaluation.

1.4.4 Conclusion

Our approach addresses an original multi-query optimization technique (MQOT) by focusing
on maximizing efficiently the Steiner Minimal-Cost Tree (SMT) approximation in a multi-query
graph, by maximizing subsumption of predicates. Since web queries provide a large amount of
similar predicates, this solution brings an efficient technique to decrease CPU and memory use
with a finer factorization than previous techniques.

The Steiner Minimal-Cost Tree is an NP-hard problem [CD02, HRW92] for which it is known
that unless P = NP , it is impossible to produce by a polynomial-time algorithm an approxima-
tion factor better than (1 + ε) for some constant ε (called ε-approximation algorithms [Ihl91b]).
Several approximation algorithms have been proposed in the literature for directed and undi-
rected graphs [KMB81, Win87, Ihl91a, CCC+98, LCVA02, ZK02, DXYW+07, FKM+07] for
various application contexts (e.g. computer networks, VLSI design, keyword-based database
queries). These algorithms come with different memory requirements and approximation guar-
antees depending on the way they prune the search space for SMT solutions (e.g. distance
network heuristics, spanning and cleanup techniques, dynamic programming, linear program-
ming reductions, local search heuristics) and the general characteristics of the graph they are
applied (e.g. directed or undirected, cyclic or acyclic, weighted edges/nodes). The VCA algo-
rithm we propose is a local search algorithm for acyclic edge-weighted graphs which exploits
the peculiarities of predicate subsumption graphs and in particular the ROSES cost model for
expanding or shrinking the Steiner Tree computed in each iteration step. See Section 3.4 for
more details.
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Chapter 2

ROSES Query Language and Logical Algebra

In this Chapter we introduce the ROSES Query Language and the Logical Algebra that
holds up this language. This is the first contribution of our work, since to the best of our
knowledge, there is no proposal of a declarative query language for RSS/Atom feeds. The
closest language was that of Yahoo! Pipes, which is in fact not a declarative language but a
visual programming language.

The Chapter is organized as follows: the next Section (2.1) presents the Query Language
and each one of its statements, after that Section 2.2 discusses first the ROSES Data Model
and then the Logical Algebra and the properties of its different operators.

2.1 ROSES query language

The ROSES Language provides three kinds of statements: two DML 1 instructions (to regis-
ter new data sources and to subscribe user-defined publications) and one query-like instruction
(to create a new publication through a continuous query). Namely, we have:

1. REGISTER statements, to register new information sources in the system (in order to be
used later by the publication language and by the subscription language),

2. CREATE statements, to define new publications, and

3. SUBSCRIBE statements, to define subscriptions to registered sources and/or to created
publications.

In this Section, we describe all three languages (registration, publication and subscription),
we focus however on the publication language since we are interested in the optimization pos-
sibilities of the publication queries.

1. Data Manipulation Language
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2.1.1 Registering sources

ROSES allows users to register any kind of XML data sources which are continuously pro-
ducing new information items. These sources may be (1) external sources: existing RSS/Atom
feeds on the Web, Web Service request calls (executed periodically), or database queries; and
(2) internal sources, i.e. internally user-defined publications.

The registered sources are transformed by a crawler (see Section 4.1) into continuous streams
of items (see Section 2.2.1 for the ROSES Data Model). In the case of RSS and Atom sources
this transformation is straightforward since the ROSES Data Model largely follows the RSS
standard. For other kinds of data sources, transformations have to be defined by the user
through the use of XSLT style-sheets.

We illustrate register instructions with three examples. The first example illustrates the
most frequent case where a user registers an RSS syndication feed (The New York Times) by
defining the URL of the feed and associating a name which can be used instead of the the URL
for defining publications:

REGISTER FEED "http://feeds.nytimes.com/nyt/rss/HomePage" AS nytimes;

The second one allows to define a weather WebService as a data source. In this example
we call a Yahoo! Developer WebService providing weather information for a given location
w = 615702 (Paris) and in a given format u = c (Celsius):

REGISTER FEED "http://weather.yahooapis.com/forecastrss?w=615702&u=c" EVERY 4 HOURS

APPLY "yahooweather2roses.xsl" AS WeatherInParis;

The XML document returned by this call contains many data in a custom format (see
below). Thus, we transform (wrapping) the data of this XML document into the ROSES
format through the style-sheet yahooweather2roses.xsl. Furthermore, the user can explicitly
specify the refresh frequency of the WebService (every 4 hours).

<item>

...

<geo:lat>48.86</geo:lat>

<geo:long>2.34</geo:long>

<yweather:condition text="Fair" code="34" temp="25" date="Mon, 23 Jul 2012 7:30 pm CEST" />

<yweather:forecast day="Mon" date="23 Jul 2012" low="16" high="25" text="Clear" code="31" />

<yweather:forecast day="Tue" date="24 Jul 2012" low="17" high="28" text="Sunny" code="32" />

</item>
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The last example shows how to materialize an existing ROSES publication featuring a
transformation. This transformation may extract the items referenced by an annotation join
and insert them into the description field of the item:

REGISTER FEED QueryWithJoinOperation APPLY "annotation2description.xsl"

AS FinalPublication;

2.1.2 Publication language

The ROSES publication language has been designed to fulfill the following three desiderata:
• to be expressive but simple to use,
• to facilitate most common aggregation and filtering operations, and
• to support real scale web syndication systems.
In RSS/Atom syndication, the most frequently used form of aggregation queries is to collect

and filter items originating from a large number of RSS/Atom feeds. A unique feature of the
ROSES publication language is its ability to (semi-)join items of different feeds by keeping track
of the matching items under the form of annotations.

Users can formulate queries using four types of operations: selection, union, window
and join. We have excluded transform operations from publication query language in order to
simplify the query optimization process. In fact, transform operators imply a strong constraint
when trying to reformulate query execution plans. Transform operators rarely exhibit commu-
tativity with the other operators, which makes it difficult to move them within the query plan.
So, transform operations may only be performed at registration or subscription level.

The publication queries are composed by three parts for (i) naming the new feed, (ii) defining
the input feeds and (iii) applying some filtering conditions. Let’s consider the following two
query examples for illustration:

CREATE FEED NewsOfSyria

FROM nytimes | cnn | telegraph

WHERE title CONTAINS "syria" OR title CONTAINS "assad";

This query defines a new publication NewsOfSyria as a feed containing all items of the
registered feeds nytimes, cnn and telegraph, whose title contains either the word syria or the
word assad. This is an example of queries corresponding to the large class of queries handled by
publish/subscribe systems. The main difference between ROSES and pub/sub systems like Le
Subscribe [PFL+00] is that in ROSES users subscribe to feeds generated by publication queries,
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whereas in pub/sub systems users define complex filtering subscriptions on a unique stream of
items generated by a predefined feed collection.

CREATE FEED MessiFeed

FROM (eurosport AS $e | fcbarcelonaBlog) AS $u | facebookMessi

WHERE $e[author <> "diego"] AND

$u[title CONTAINS "messi"];

This second example shows the nesting possibilities of the union operation, as well as the
possibility of using variables to refer to individual feeds or groups of feeds. It defines a new feed
(MessiFeed) that contains all items of Messi’s facebook newsfeed, and all items talking about
Messi on eurosport and fcbarcelonaBlog sources, except those published by Diego on eurosport.

Users can define publication queries on registered sources (as in the two previous examples)
or directly on URLs (sources are implicitly registered with a default name). Users also can
use existing publications to define new publications, such a mechanism of feed composition is
illustrated on the following example:

CREATE FEED FrenchSports

FROM FrenchFootball | FrenchRugby | FrenchBasket;

The following example finally illustrates an original way of generating new items combining
the information of several different items (through a join-window query):

CREATE FEED MyMovies

FROM allocine AS $a

JOIN LAST 3 WEEKS ON MyFriendsTweets

WITH $a[title SIMILAR WINDOW.title]

WHERE $a[description NOT CONTAINS "julia roberts"];

This query defines a join operation between two feeds, allocine and MyFriendsTweets. In
fact, the latter one (MyFriendsTweets) is already a ROSES publication aggregating a collection
of feeds: the RSS feeds produced by several friends of a given user on Twitter. The query
defines: (1) a window of three weeks on MyFriendsTweets and then a join between allocine
and this window (on MyFriendsTweets) based on the similarity between the titles of their
corresponding items; and (2) a filter on the allocine feed (description does not contain “julia
roberts”). MyFriendsTweets items are stored in the window during three weeks. We note I the
set of items stored in the window at some moment. When the feed allocine publishes a new
item inew, we evaluate the join predicate on this item and every item i appearing in the window
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(i ∈ I). When the join predicate evaluates to true, the item of allocine (inew) is annotated
with the corresponding item i. This way this query allows to enrich a given feed (allocine) with
items coming from a social network (Twitter). We show in Table 2.1 an example of the items
that may produce this query.

Another example of join query is the next one:

CREATE FEED MyFriends

FROM (TwitterFriend1 | FlickrFriend1 | TwitterFriend2 | BlogFriend2 | ...) AS $friends

JOIN LAST 2 WEEKS ON (MyTwitter | MyFlickr | ...)

WITH $friends[item CONTAINS WINDOW.keywords];

In this query the user defines a window on a collection of feeds produced by himself in many
different social services (Twitter, Flickr . . . ). Then he joins the contents of the window with
another collection of feeds corresponding to different feeds produced by his friends. Thus, this
user may be automatically notified when one of his friends publishes anything related to one
of his recent posts.

In summary, publication queries contain three clauses:
• A mandatory FROM clause, where users specify the input feeds (called primary feeds) that

produce the items of the output feed. Feeds are composed by union and it is possible to
define named unions of feeds which can be referenced in the JOIN and WHERE clauses of
the expression.
• Zero, one or more JOIN clauses, each one specifying a join with a secondary feed, defined

in the same way as in the FROM clause. Joins are always defined between a single feed or
a feed union and a window over secondary feeds. That is, in a JOIN clause users define
a secondary feed and they apply a windowing operation on this feed, then they define
a join predicate between one feed (or feed group) appearing in the FROM clause and the
aforementioned window. We define two kinds of windows, time-based windows (e.g., LAST
3 WEEKS) and count-based windows (e.g., LAST 50 ITEMS). Finally, join predicates are
binary atomic predicates, which relate one attribute of primary feed’s items to one at-
tribute of window’s items (e.g., title SIMILAR WINDOW.title). In this way, secondary
feeds only produce annotations (no output) to primary feeds’ items. Each item of a pri-
mary feed is annotated by all items in the secondary feed window which satisfy the join
condition. The annotation join behaves as an inner-join: if no such secondary items
exist, the item is removed from the result.
• An optional WHERE clause, that enables users to define filtering conditions on the primary

and secondary feeds, defined in the FROM and JOIN clause respectively. Filtering predicates
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AlloCiné feed
...
<item>
<roses:id>1000</roses:id>
<title>The Dark Knight Rises</title>
<link>http://www.allocine.fr/film/fichefilm_gen_cfilm=132874.html</link>
<description>Il y a huit ans, Batman a disparu dans la nuit : lui qui était un
héros est alors devenu un fugitif. S’accusant de la mort du procureur-adjoint
Harvey Dent, le Chevalier Noir...</description>

<pubDate>Tue, 24 Jul 2012 22:00:00 GMT</pubDate>
</item>

MyFriendsTweets feed
...
<item>
<roses:id>885</roses:id>
<title>carnage à la premiere de the dark knight</title>
<description>carnage à la premiere de the dark knight</description>
<pubDate>Sat, 21 Jul 2012 16:07:11 +0000</pubDate>
<link>http://twitter.com/andresiniesta8/statuses/223448426682138624</link>

</item>
...
<item>
<roses:id>860</roses:id>
<title>the dark knight la semaine prochaine !!</title>
<description>the dark knight la semaine prochaine !!</description>
<pubDate>Tue, 17 Jul 2012 22:11:29 +0000</pubDate>
<link>http://twitter.com/chavezcandanga/statuses/226439212038242304</link>

</item>
...

MyMovies feed
...
<item>
<roses:id>1000</roses:id>
<title>The Dark Knight Rises</title>
<link>http://www.allocine.fr/film/fichefilm_gen_cfilm=132874.html</link>
<description>Il y a huit ans, Batman a disparu dans la nuit : lui qui était un
héros est alors devenu un fugitif. S’accusant de la mort du procureur-adjoint
Harvey Dent, le Chevalier Noir...</description>

<pubDate>Tue, 24 Jul 2012 22:00:00 GMT</pubDate>
<roses:annotations>
<roses:annotation join-id="530" item-id="885" />
<roses:annotation join-id="530" item-id="860" />

</roses:annotations>
</item>

Tableau 2.1 – An example of MyMovies’s input feeds and result
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are boolean expressions formed by atomic predicates on the item values, see Data Model
in Section 2.2.1, (=, <>, <, CONTAINS...) using the logical operators NOT, AND and OR.

We give in Table 2.2 a simplified version of ROSES Query Language’s grammar in EBNF 2

notation. The complete language grammar is presented in Appendix A.1.

<publication-query> ::= "CREATE" "FEED" <publication-name>
"FROM" <union>
( <join-clause> )*
[ <where-clause> ]

<union> ::= <flow> ( "|" <flow> )*
<flow> ::= ( <url> | <source-name> | <publication-name> | "(" <union> ")" )

( "[" <selection-predicate> "]" )*
[ "AS" <variable> ]

<join-clause> ::= "JOIN" <window-predicate> "ON" <union>
"WITH" <join-operation>

<join-operation> ::= <variable> "[" <join-predicate> "]"
<where-clause> ::= "WHERE" <selection-operation> ( "AND" <selection-operation> )*

<selection-operation> ::= <variable> "[" <selection-predicate> "]"

Tableau 2.2 – Simplified grammar of the ROSES publication language

2.1.3 Subscription language

The ROSES subscription language is used for declaring subscriptions to existing source or
publication feeds. A subscription essentially specifies a feed, a notification mode (RSS, mail,
SMS, etc.), a frequency (depending on the notification mode) and optional item transformations
expressed also by XSLT style-sheets. Unlike transformations during feeds’ registration, the
output format on subscription transformations is free.

The following examples depict two subscriptions. The first one is an e-mail subscription
to the NewsOfSyria publication, the second one is a subscription to the MyMovies publication
using a transform operation:

SUBSCRIBE TO NewsOfSyria OUTPUT MAIL "Jordi.Creus@lip6.fr" EVERY 12 HOURS;

SUBSCRIBE TO MyMovies APPLY "annotation2description.xsl";

2. Extended Backus−Naur Form
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2.2 Data model and logical algebra

The ROSES Data Model and Operator Algebra borrow from state-of-the-art datastream
models and in particular from that proposed by Krämer in [Krä07], with specific modeling
choices adapted to RSS/Atom syndication and aggregation. In this Section we first introduce
the ROSES Data Model. Afterwards we describe the Logical Algebra accompanied by its
operator properties, which will be used later in the normalization and optimization processes.

2.2.1 Data model

The ROSES Algebra A
ROSES

is defined by a domain of data D and a set of operations O:
A

ROSES
= (D,O). D contains two types of data: streams (S) and windows (W): D = (S,W).

We define a ROSES stream as a full-fledged datastream of annotated ROSES items. More
precisely, a ROSES stream S ∈ S is a (possibly infinite) set of ROSES elements e = (t, i, A),
where:
• t is a timestamp: t belongs to a discrete time domain T (as proposed in [BDE+97]) and

represents the System acquisition timestamp of item i. For simplicity and without loss of
generality, we map this timestamp discrete domain to the set of natural numbers N (T =
N), i.e. to successive system acquisition moments we associate successive timestamps
values in N [SW04].
• i is a ROSES item, which will be described in more detail below.
• A is an annotation set, referring to all items that have been joined with item i. More

formally, a ROSES annotation is a set of couples (j, I), where j is a join identifier and I
is a set of items. Annotations are produced by join operations, thus streams not resulting
from joins have an empty annotation set. The semantics of annotation join is further
detailed in the next Section.

Moreover, a ROSES stream presents the following two properties:
• the set of elements e for a given timestamp t is finite, and
• i behaves as a key in the set of elements e = (t, i, A) for a given stream S, i.e.

∀(t, i, A) ∈ S : @(t′, i, A′) ∈ S, t 6= t′

Before defining the ROSES item, we define the ROSES feed. A ROSES feed corresponds to
either an existing RSS/Atom (source feed) published on the Web, or to a virtual feed published
through ROSES publication queries. Formally, a registered feed F is a couple F = (d, S),
where d is a feed descriptor and S is a stream of ROSES items as previously defined. Feed
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descriptor d is a tuple, representing usual RSS/Atom feed properties: title, description, URL,
etc. Thus, ROSES feeds may be placed at a “meta-model” level.

The ROSES items represent the information content conveyed by RSS/Atom items. Despite
the adoption of an XML syntax, RSS and Atom formats are mainly used with flat text-oriented
content. Extensions and deeper XML structures are very rarely used, therefore we made the
choice of a flat representation, as a set of typed attribute-value couples, including common
RSS/Atom item properties like title, description, link, author, publication date, etc. Extensi-
bility may be handled by including new, specific attributes to ROSES items –this enables both
querying any feed through the common attributes and addressing specific attributes (when
known) of extended feeds.

A ROSES window captures subsets of a stream’s items that are valid over various time
periods. More precisely, a window W ∈W on a stream S is a set of couples (t, I), where t is a
timestamp and I is a (finite) set of items of S. We say that I is the set of items valid at time
instant t in window W . Note that, in this representation, (i) a timestamp may occur only once
in W , and (ii) I contains only items that occur in S before (or at) timestamp t. We note W (t)
the set of items in W for timestamp t. We may yet use an “unnested” representation where
window W is defined as a (possibly infinite) set of couples (t, i). In this case i is not a key and
each item in W appears exactly once during a continuous time period (all couples (t, i) for a
given i must be consecutive in time). So:

1. W ⊂ T× I, and

2. ∀(t, i), (t′, i) ∈ W, t ≤ t′ : ∃(t, i), (t+ 1, i), ..., (t′, i) ∈ W

Finally, windows are used in ROSES only for computing joins between streams. ROSES
uses time-based (last n units of time) and count-based (last n items) sliding windows.

The unnested definition of ROSES streams and windows facilitates the definition of opera-
tors with snapshot-reducible semantics, as we will see in the next Section.

2.2.2 Logical algebra

The ROSES query language is based on five operators for composing streams of ROSES
items. We distinguish between conservative operators and altering operators:
• four conservative operators including selection, union, window and join: we call them

conservative because they do not produce new items or change the contents of input
items (join operators do not modify the items, they only add annotation references to the
item), and
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• one altering operator: transform which transforms the item contents and structure (sim-
ilar to the relational projection).

A central design choice for the ROSES language is to rely only on conservative operators
in the publication queries and to allow information transformation only during the registration
of new sources and the subscriptions to publications. This choice is justified by the fact that
conservative operators dispose of good query rewriting properties (commutativity, distributiv-
ity, etc.) and thus favor both query optimization and language declarativeness (any algebraic
expression can be rewritten in a normalized form corresponding to the declarative clauses of
the language). Publication queries are then translated to filtering, union, windowing and join
operators. Next, transformation can be applied over materialized virtual feeds. Notice that
transformations may use join annotations and consequently enrich (indirectly) the expressive
power of joins.

The publication queries (for which subscriptions exist) are translated into algebraic expres-
sions as shown in Figures 2.1 and 2.2 for MessiFeed and MyMovies publications:

Figure 2.1 – A possible query execution plan for MessiFeed publication

The logical operators are defined in the next Subsection, finally their algebraic properties
are described in Subsection 2.2.2.2.

2.2.2.1 Logical operators

The set of operations O of the ROSES Algebra is a set of functions defined over streams
and windows. For instance, selection operator is defined as a function that has one stream as
input and another as output (σ : S → S), while windowing operator has a stream as input
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Figure 2.2 – A MyMovies’ query plan

and produces one window as output (ω : S → W). We describe next all ROSES operators,
for each one we give an informal and a formal definition, and a small example. For simplicity,
annotation field A is omitted from the examples when its presence is irrelevant, this means all
cases except join operator.

Selection

The filtering operation σ : S→ S outputs only the elements of its input stream whose item
satisfies a given selection predicate pred:

σpred(S) := {(t, i, A)|(t, i, A) ∈ S ∧ pred(i)} where: pred : I→ B (2.1)

The selection predicates are boolean expressions (using conjunction, disjunction and nega-
tion) of atomic selection predicates that express a condition on an item attribute. Thus, de-
pending on the attribute type, these atomic predicates may be:
• for simple types: comparison with a value (equality, inequality),
• for date/time: comparison with date/time values (year, month, day, etc.),
• for text: operations contains (word(s) contained into a text attribute) and similar (text

similar to another text),
• for links: operations references/extends (link references/extends an URL or host) and
shareslink (attribute contains a link to one of the URLs in a list).

Note that ROSES allows applying text and link predicates to the whole item, in this case
the predicate considers the whole text or all links in the item’s attributes. Observe also that it
is not possible to filter stream elements by their timestamp t or annotation attributes A, but
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only on the item content.
The next example shows the contents of a stream S at different timestamps t (annotations

are omitted). The right column shows the contents of a stream S ′ produced by a selection
operator with a given predicate pred on S, i.e., S ′ = σpred(S). We can see that the contents
of S ′ at every timestamp t represent a subset of the set of items corresponding to S (∀t ∈ T :
S ′(t) ⊆ S(t)):

t S(t) σpred(S)
1 i1, i2, i3 i1, i3

2 i4, i5 i5

3 i6, i7, i8, i9 i6, i7

Union

The union operator ∪ : S× · · · × S→ S returns all elements in its input streams preserving
the timestamp ordering:

S1 ∪ · · · ∪ Sn := {(t, i, A)|(t, i, A) ∈ S1 ∨ · · · ∨ (t, i, A) ∈ Sn} (2.2)

t S1(t) S2(t) S1 ∪ S2

1 i1, i2, i3 j1, j2, j3, j4 i1, i2, i3, j1, j2, j3, j4

2 i4, i5 j5, j6 i4, i5, j5, j6

3 i6, i7, i8, i9 j7, j8, j9 i6, i7, i8, i9, j7, j8, j9

Transformation

The transformation operator µ : S → S modifies each input element following a given
transformation function map:

µmap(S) := {(t, i′, A)|(t, i, A) ∈ S ∧ i′ = map(i)} where: map : I→ I (2.3)

Thismap function may, for instance, translate the content of every item’s field. µ is the only
altering operator, whose use is limited to produce subscription results or new source feeds, as
explained in previous Section (2.1).
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t S(t) µmap(S)
1 i1, i2, i3 i′1, i

′
2, i
′
3

2 i4, i5 i′4, i
′
5

3 i6, i7, i8, i9 i′6, i
′
7, i
′
8, i
′
9

Windowing

The windowing operator is a function that takes a stream as input and produces a window
in output (ω : S→W). Windowing produces a time-based or a count-based sliding window on
the input stream according to the window specification.

Time-based windows Time-based windowing is defined as follows:

ωtimew (S) := {(t′, i)|(t, i, A) ∈ S ∧ t ≤ t′ < t+ w} where: w is window’s size (2.4)

w is a time interval expressing an upper bound on the items publication date (3 months, 2
weeks, etc).

t S(t) ωtime3 (S)
1 i1, i2, i3 i1, i2, i3

2 i4, i5 i1, i2, i3, i4, i5

3 i6, i7, i8, i9 i1, i2, i3, i4, i5, i6, i7, i8, i9

4 i10, i11 i4, i5, i6, i7, i8, i9, i10, i11

5 i6, i7, i8, i9, i10, i11

Count-based windows Our stream model is time oriented, thus time-based windows ωtime

can be defined naturally. However, it is impossible to well define count-based windows ωcount.
As stated by Arasu in [Ara06], count-based windows may cause ambiguous semantics: they
may produce a nondeterministic output because the window size has to be exactly N elements,
but multiple elements in the input stream may have the same timestamps.

In fact the problem is that in these models items are ordered by timestamp, but many items
may share the same timestamp, thus we ignore the ordering of the items within the timestamp.
That is why it may be impossible to determine which is the N th last item. The solution that
we propose is to consider all last timestamps until we reach the value of N items. Thus, we
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avoid to do undeterministic crops within timestamps and this makes our solution deterministic.
More formally, we define our count-based windowing operator as follows:

ωcountN (S) := {(t′, i)|(t, i, A) ∈ S ∧ t ≤ t′ ≤ te∧

te = max{t′e ∈ T||{(t′′, i′′, A′′) ∈ S|t ≤ t′′ ≤ t′e}| ≤ N}+ 1} (2.5)

t S(t) ωcount5 (S)
1 i1, i2, i3 i1, i2, i3

2 i4, i5 i1, i2, i3, i4, i5

3 i6, i7, i8, i9 i4, i5, i6, i7, i8, i9

4 i10, i11 i6, i7, i8, i9, i10, i11

5 i6, i7, i8, i9, i10, i11

We can see in previous example that for t = 2 there is no problem, the window contains all
5 items appearing in t = 1 and t = 2. In contrast, for t = 3 there is no way to know which is
last 5th item (i4 or i5), thus we take both of them, as a result the window contains 6 elements,
and so on.

Join

The join operator takes a primary stream S and a window on a (secondary) stream W

as input and generates a stream S ′ as output (./: S ×W → S). ROSES uses a conservative
variant of the join operation, called annotation join, that acts like a semi-join (primary stream
filtering based on the window contents), but keeps trace of the joining items under the form of
an annotation entry. A join S ./predJ W of identifier jid returns the elements in S for which
the join predicate predJ is satisfied by a non-empty set I of items in window W , enriched by
the annotation entry (jid, I). More precisely,

S ./predJ W := {(t, i, A′)|(t, i, A) ∈ S ∧ A′ = A ∪ {(jid, I)}∧

I = {i′|(t, i′) ∈ W ∧ predJ(i, i′)}} (2.6)

where: predJ : I× I→ B

jid is the join identifier
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t S(t) W (t) S ./predJ W

1 (i1,∅), (i2,∅), (i3,∅) j1, j2, j3, j4 (i2, {(jid, {j2, j3})}), (i3, {(jid, {j4})})

2 (i4,∅), (i5,∅) j1, j2, j3, j4, j5, j6 (i4, {(jid, {j1, j2, j5})})

3 (i6,∅), (i7,∅), (i8,∅), (i9,∅) j1, j2, j3, j4, j5, j6, j7, j8, j9 (i7, {(jid, {j1})}), (i8, {(jid, {j6, j7, j9})}),
(i9, {(jid, {j4, j9})})

4 (i10,∅), (i11,∅) j5, j6, j7, j8, j9, j10, j11 (i10, {(jid, {j5, j7})})

5 j7, j8, j9, j10, j11

2.2.2.2 Snapshot-reducibility and rewriting rules

The snapshot-reducibility is a well-known concept in the temporal database community
[SJS00]. It guarantees that the semantics of a relational, non-temporal operator is preserved in
its more complex, temporal counterpart. In other words, a temporal operator may be emulated
by applying its relational counterpart at every time instant. More precisely, for all t ∈ T the
set of items associated to time t and produced by a temporal operator is equal to the set of
items produced by the analogous relational operator on the set of the input items associated
to the same t [BBJ98]:

if opT (S) = S ′ and ∀t ∈ T : S ′(t) = opR(S(t))⇔ opT is snapshot-reducible (2.7)

Our temporal operators of selection, union and join are snapshot-reducibles, thus the alge-
braic properties they have in the relational model may be exported to the temporal one. Recall
that our annotation join operator do not alter the content of its input items, but it only add
the references to the matching items. Further, the predicates of the selection operators do not
concern the items annotated by joins, this makes it possible to commute joins and selections.
Table 2.3 lists some of the algebraic equivalences derived from the extended relational model.
We will see later their interest in order to normalize the publication queries (in Section 3.3),
and then to reorganize the query execution plans and find the optimal ones (in Section 3.4).
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Selection cascading σpred1(σpred2(S)) = σpred1∧pred2(S)
Union commutativity S1 ∪ S2 = S2 ∪ S1

Union associativity (S1 ∪ S2) ∪ S3 = S1 ∪ (S2 ∪ S3) = S1 ∪ S2 ∪ S3

Selection distributivity over union σpred(S1 ∪ S2) = σpred(S1) ∪ σpred(S2)
Selection-join commutativity σpred(S ./predJ W ) = σpred(S) ./predJ W

Join distributivity over union (S1 ∪ S2) ./predJ W = (S1 ./predJ W ) ∪ (S2 ./predJ W )

Tableau 2.3 – Rewriting rules of algebraic trees
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Multi-query Processing and Optimization

There are two possible approaches we may consider in order to process the kind of queries
we have seen in previous Chapter: by periodic processing or by continuous processing. The
first one consists in crawling and storing the streams in regular databases, which afterwards are
queried by periodically triggered (traditional one-shot) queries. In the continuous approach,
a long-running global query execution plan is built, using the appropriate algebraic operators,
connected by inter-operator queues. This query plan is able to process/evaluate the new items
continuously arriving into the system.

This second approach enables to improve the system performances, since we do not store
the data and thereby we do not need to access the disk. Moreover, the algebraic approach we
have adopted offers important factorization opportunities. However, the processing of contin-
uous queries entails many different challenges when we consider a large volume of queries. In
particular, we underline two of these challenges: (1) the optimization of the operator scheduling
techniques, and (2) the optimization of the overall query execution plan itself. In this work we
mainly focus on the second problem which yields in turn many other problems: (i) the static
optimization of a large number of continuous queries, or (ii) the dynamic optimization of a
multi-query graph, i.e., the reoptimization of the physical query graph at runtime.

This Chapter corresponds to the main contribution of this work. In the first Section (3.1),
we introduce the concept of multi-query graphs, we describe the query engine of the ROSES
system and we present our cost model. Section 3.2 describes the multi-query optimization
problem and sketches our optimization approach which is based on filtering factorization. Sec-
tion 3.3 is devoted to the query normalization, we introduce a formal definition of a ROSES
query and of a normal form query, finally we present the concept of the global normal query
graph. In Section 3.4, we describe our multi-query factorization technique for a static set of
queries. We present our simplified cost model for the factorization of filtering predicates, and
we introduce the concept of the predicate subsumption graph. Then, we present our different

43



Chapter 3. Multi-query Processing and Optimization

factorization algorithms and data-structures (Section 3.4.2). In Section 3.5, we introduce our
runtime optimization strategy. Finally, Section 3.6 presents our Generator of ROSES queries
and the results obtained by the experimental evaluation we have conducted on the different
algorithms we propose.

3.1 Query processing and cost model

In this Section we describe the ROSES evaluation model, in particular Section 3.1.1 intro-
duces the notion of Multi-Query Graph through a graphic example, in Section 3.1.2 we describe
the query execution engine, then we introduce the notion of flow rate in ROSES and present
our execution cost model.

3.1.1 Multi-query graphs

In ROSES, query processing consists in continuously evaluating a collection of publication
queries. This collection is represented by a multi-query plan composed of different physical
operators reflecting the algebraic operators presented in Section 2.2.2 (union, selection, join,
window and transformation). ROSES adopts a standard execution model for continuous queries
[ABW06, CKSV08]. This query execution model is based on a pipe-lined execution model
where a query plan is transformed into a graph connecting sources, operators and publications
by inter-operator queues or by window buffers (in the case of join operations).

A query plan for a set of queries Q can then be represented as a directed acyclic graph G(Q)
as shown in Figure 3.1. Graph in Figure 3.1 illustrates one out of the several possible physical
query plans for the following three publication queries p1, p2 and p3 over six sources s1, s2, s3,
s4, s5 and s6: 1

• p1 = σ1(s1 ∪ s2)
• p2 = (s3 ∪ s4) ./1 ω1(s5)
• p3 = σ2(p1 ∪ s6)
As we can see, the root of the graph is a dispatcher which generates for each source a

read/write buffer which can be used by the different operators. Window operators produce
a different kind of output, namely window buffers, which are consumed by join operators.
Publication (view) composition by publish/subscribe pattern is illustrated by an arc connecting
a publication operator to an algebraic operator (p1 is used as input by publication p3). Observe
also that all transform operations are applied after the publication query evaluation.

1. Observe that p3 queries the stream generated by query p1.
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Figure 3.1 – Architecture of the ROSES evaluation engine
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3.1.2 Query processing and cost model

This Section presents the query graph processing and the underlying cost model.
As explained in the previous Section, a set of publication queries is translated into a physical

multi-query plan. Such a multi-query plan is a graph composed of physical operators connected
by read/write queues (we call them inter-operator queues) and by window buffers (used by join
operators). New items are continuously arriving to this graph (in a asynchronous way) and
have to be consumed by the different operators. We have adopted a multi-threaded pipelining
execution model which is a standard approach in continuous query processing architectures. In
an ideal frame, each operator could be allocated to its own execution thread. However, with
a big number of operators to be evaluated, the naive solution of attaching one thread to each
operator rapidly becomes inefficient/impossible due to thread management overhead or system
limitations 2. Therefore only a subset of all the operators can be executed concurrently. We
have adopted a Thread Pool approach. Thread pools, widely used in the context of web server
applications, allow a number of tasks to be concurrently executed by a fixed number of threads.
Task allocation consists in dynamically maintaining a waiting list defining an order over the
tasks to be executed by the Thread Pool.

The query graph is observed by a scheduler that continuously decides which operators
(tasks) must be executed (see Figure 3.1). This scheduler has at its disposal a pool of threads
for executing in parallel a fixed (or barely varying) number of tasks. The choice of an inactive
operator to be evaluated is influenced by different factors depending on the input buffer of each
operator (the number and/or age of the items in the input queue). These factors correspond
to different strategies that may be applied by the scheduler. A good calibration of these
parameters is essential to achieve the best evaluation performance. We have implemented two
different scheduling strategies in the ROSES Prototype (a randomized strategy and a round-
robin strategy). Both strategies avoid starving, a detailed description is given in Section 4.1.2.
It is not difficult to adopt other allocation strategies, but that issue is outside the scope of this
thesis.

In this setting, we rely on a cost model for estimating the resources (memory and/or pro-
cessor) necessary for the execution of a query plan. Compared to the cost estimation of a
snapshot query plan which is based on the size of the input data, the estimation parameters of
a continuous query plan must reflect the streaming nature of the data. Thus our cost model
leans on the rate of the flows produced by the different type of operators that compose the
query graph. We define rate(v) as follows:

2. Besides, current programming languages restrict the number of threads that can be created by process.
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Definition 3.1. We denote by rate(v), the number of items produced per time unit (publication
rate) by the vertex v of the graph.

Table 3.1 sums up the different rates associated to each vertex type. This cost model
describes the cost associated to the physical operators, which present a few differences w.r.t
the logical operators introduced in Section 2.2.2.1. Namely, our physical union operator do not
remove duplicate items from its input streams. Another difference with the logical operators
concerns count-based windows. The physical operator implementing the count-based window
produces a window buffer with exactly last N items, as opposed to its logical counterpart that
was defined as returning a bounded window of at least N items.

v rate(v)
s rate(s)

σpred(v′) selectivity(pred) · rate(v′)
v1 ∪ · · · ∪ vn

∑n
i=1 rate(vi)

ω∗(v′) Null
v1 ./predJ v2 selectivity(predJ) · rate(v1)

p(v′) rate(v′)

Tableau 3.1 – Production rate for each kind of operator

We have adapted the model presented in [CKSV08] and we define the cost of each operator
v as a function of the publishing rate rate(v′) of its direct predecessor/s v′ in the query graph.
Each operator has three kinds of cost associated, read cost, evaluation cost and write cost. As
we can see in Table 3.2, the cost of each operator mainly depends on the publishing rate of the
input buffer/s of the operator. Thus, we define the total cost of a query graph costTotal(G) as
the sum of read, evaluation and write costs of all operators composing the graph 3:

costTotal(G) =
∑

v∈V (G)

(
costRead(v) + costEval(v) + costWrite(v)

)
Selection. The output rate of the selection operator corresponds to the rate of its input

buffer reduced by the selectivity factor selectivity(pred) ∈ [0, 1], depending on the selection
predicate pred. Selection operator processes only one item at a time. Function costEval(pred)
represents the average cost of evaluating a given predicate pred on a single item. This cost
function depends solely on the complexity of the predicate and we assume that it is independent

3. We will see later that we search for globally minimizing this cost function in order to optimize the global
query plan.
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Vertex Read cost Evaluation cost Write cost
v costRead(v) costEval(v) costW rite(v)

s 0 0 0
σpred(v′) rate(v′) costEval(pred) · rate(v′) selectivity(pred) · rate(v′)

v1 ∪ · · · ∪ vn

∑n
i=1 rate(vi) 0

∑n
i=1 rate(vi)

ωtime
w (v′) rate(v′) rate(v′) rate(v′)

ωcount
N (v′) rate(v′) 0 rate(v′)

v1 ./predJ ωtime
w (v2) rate(v1) · rate(v2) · w costEval(predJ) · costRead(v) selectivity(predJ) · costRead(v)

v1 ./predJ ωcount
N (v2) rate(v1) ·N costEval(predJ) · costRead(v) selectivity(predJ) · costRead(v)

p(v′) rate(v′) 0 0

Tableau 3.2 – Read, evaluation and write costs of the different operator types

of the item contents/size. A more precise model could take account of the size of each item,
but since items are, in general, small text fragments of similar size we ignore this detail in our
model.

Union. The union operator generates an output buffer with an output rate corresponding
to the sum of its input buffer rates. Our union does not remove duplicates from flows. A union
operator implementing a distinct operation (i.e. removing duplicates) should be implemented
using a sliding window of a fixed size. Then the union operator should check for each incoming
item if it already appears in that window. So, without duplicate removal we assume that union
has zero evaluation cost since each union operator is simply implemented by a set of buffer
iterators, one for each input buffer. Reader may refer to Section 4.2 for a detailed explanation
on these consumption iterators.

Window. The window operator transforms its input stream into a window buffer, where
the size depends on (i) the time-interval w and the input buffer rate rate(v′), for time-based
windows, or on (ii) the specified number of items N , for count-based windows. The only
difference between the two types of windows is that when a time-based window is executed
it must additionally detect and remove all out-of-date items from the corresponding window
buffer. We consider that this buffer is sorted by timestamp and that the rate of items entering
the buffer is roughly the same as the rate of those leaving the buffer. This means that the
number of out-to-date items to check in the buffer is the same as those entering the buffer,
i.e. a cost of rate(v′). Count-based windows avoids this problem by using a fixed sized FIFO
queue, for instance, a circular buffer in which each new item is written into the next cell, thus
with a zero evaluation cost.

Join. The join operator generates an output buffer with a publishing rate of selectivity(predJ)·
rate(v1), where rate(v1) is the publishing rate of the primary input stream and selectivity(predJ) ∈
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[0, 1] corresponds to the probability that an item produced by v1 joins with an item in window
v2 using join predicate predJ . This is due to the behavior of the annotation join: an item is
produced by the join operator when a new item inew arrives on the main stream and matches at
least one item in the window. The resulting item is generated by annotating the main item inew

with all matching window items. The processing cost of the join operator (read + evaluation
+ write costs) depends on the kind of window it is attached to. It also depends on the imple-
mentation of the physical operator. We assume a naive implementation of this operator (using
a nested loop), however more sophisticated join implementations might reduce this processing
cost like in [OU05], where inverted files are used in order to reduce similarity join’s cost.

It is easy to see that the global cost of the execution plan (the sum of the costs of all
operators) is strongly influenced by the operator ordering and the input buffer rate of each
operator. We will describe in the following how we can reduce this cost function by pushing
selection and join operators towards the source feeds of the global query plan.

3.2 Multi-query optimization problem

One of the main goals of our system is to scale in terms of number of publications. This
means the system to be able to manage and process thousands of publication queries simultane-
ously. Query logs show that users frequently ask similar publications, i.e., user-defined queries
often share some computation and merging these computations enables the system to reduce
computing costs substantially and thus increase the number of handled publication queries.

We say that two queries are similar if they share some of their sources and/or they have
similar filtering predicates. Formally:

Definition 3.2. Similarity. Two publication queries q1, q2 are similar if:

• the intersection between their source sets is not empty (sources(q1)∩ sources(q2) 6= ∅) 4,
and/or
• at least one selection predicate of one query subsumes a selection predicate of the other

one 5 (∃ predi ∈ q1, predj ∈ q2 | predi |= predj ∨ predj |= predi) 6.
For instance, let pub1, pub2 be two publication queries with the following algebraic expres-

sions:
4. We denote by sources(q) the set of sources used to define the query q.
5. The Predicate Subsumption algorithm is fully detailed in Listing 3.3.
6. We say that pred ∈ q if query q contains a selection operator with predicate pred.

49



Chapter 3. Multi-query Processing and Optimization

• pub1 = σpred3(σpred1(src1 ∪ src2) ∪ σpred2(src3 ∪ src4))
• pub2 = σpred2∧pred4(src1 ∪ src3 ∪ src5)
As we can see in Figure 3.2, both publications pub1 and pub2 are defined on sources src1

and src3, and both of them have similar filtering predicates defined on these sources (pred2

and pred2 ∧ pred4). So, we can “merge” them somehow in order to reduce computation costs
and memory usage. The problem really arises when we have a large query set and we want to
merge all similar publications. On the other hand, filtering conditions can appear anywhere
in the query plans, which makes the matching problem still harder. Thus, we have defined a
normal form for queries in order to facilitate matching research between queries.

Figure 3.2 – Example of two similar publications

We separate the optimization problem into two subproblems: i) optimization of selection
operators and ii) optimization of join and window operators. As mentioned before, our opti-
mization strategy is based on the classical heuristics that selections and joins should be applied
as early as possible in order to reduce the global cost of the query graph. Nevertheless, this
work does not address the problem of the join optimization.

The main novelty of our framework with respect to other multi-query optimization solutions
lies in the explicit integration of a cost model for continuous queries. This makes it more
expressive than other approaches without cost model.

The ROSES cost model (Table 3.2) indicates that the execution cost of most operators
is proportional to the input rate. We exploit two main ideas, common to other optimization
approaches, but guided in ROSES by the cost model: (i) rapidly decrease the input rate by
first applying filtering conditions, and (ii) factorize common operators among publications.

The optimization process can be decomposed into two main phases:

1. a normalization phase which applies rewriting rules for pushing all filtering operators
towards their source feeds and for distributing joins over union, and
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2. a factorization phase where we find for each source an optimal filter plan based on a new
cost-based factorization technique.

As we can see in Figure 3.2, the items of a source can be filtered by several similar selection
operators. We search to factorize these operators in order to get a selection operator tree of
minimal cost. This must be done for every source appearing in the query graph, therefore the
result produced by this factorization operation will be a forest of trees containing exactly one
tree for each source of the graph and where the root of each tree is the source itself and its
children are selection operators.

Listing 3.1 gives a general overview of the whole optimization process. Given a query set Q,
we first normalize all queries and construct a Global Normal Query Graph from the normalized
queries. Then for each source feed si, we get all selection predicates Predi depending on si and
generate its subsumption graph SG(si). This subsumption graph contains all filtering predicates
in Predi as well as all their subsuming predicates and the subsumption arcs among them. All
arcs in the graph SG(si) are annotated according to our Cost Model (each arc from a vertex
v1 to a vertex v2 is labeled by the cost of vertex v2) and finally we look for a minimal Steiner
tree on the subsumption graph. A minimal Steiner tree is a minimum tree spanning at least a
given subset of vertices called terminal vertices that correspond to the initial set of predicates
Predi.

Algorithm 3.1 Optimization Algorithm Overview
Input: a set of queries Q
Output: an optimal query graph G∗
1: QN ← normalize all publication queries
2: GN ← build a Global Normal Query Graph
3: for all source si ∈ GN do
4: SGi ← generate a subsumption graph for the selection predicates of si
5: populate SGi with the corresponding processing costs
6: Ti ← seek a minimal Steiner tree on the subsumption graph
7: insert Ti in G∗ for source si
8: end for

We will describe the normalization process in the following Section (3.3), then the factor-
ization process and its different algorithms in Section 3.4. Experimental results are presented
in Section 3.6. Finally, Section 3.5 concludes this chapter with a description of our dynamic
multi-query optimization strategy performed at runtime.
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3.3 Query normalization

The first problem that we have when we try to find a good matching among several pub-
lication queries is that the number of possible execution plans per query is too large to try to
explore all the matching possibilities among all the possible query plans for each query. This
problem can be simplified through the use of normal forms, actually transforming the queries to
a unique normal form enables to reduce the search space for the matching process. Thus, query
normalization addresses the problem of the complexity of factorizing two or more arbitrary
query plans. Normalization corresponds to the first step of the optimization process allowing
to compare and match the filtering conditions of two and more queries.

Our normalization process is built upon the operator properties from the extended relational
algebra [DGK82]. We have seen in Section 2.2.2 that these properties hold in the operators of
the ROSES Algebra due to the snapshot-reducibility of our operators. We use the following
Rewriting Rules for algebraic expressions:
• distributivity of selection operators over unions,
• flattening cascading selections into a single selection,
• join distributivity over union,
• commutativity between join and selection, and
• publication (view) decomposition.
We will give a formal definition of these five rules later in Section 3.3.1. The aim of the

normalization process is to use these rules in order to (a) push selection and join operators
towards the query sources, and (b) decompose the publications. This is possible by iteratively
applying aforementioned rewriting rules.

It is possible to show that under snapshot semantics and by applying these rewriting rules
we can obtain an equivalent query plan which is a four level graph, where:
• the first level (leaves) of the graph are the source feeds involved in the query,
• the second level nodes involve the filtering operators which have to be applied to each

source feed (leaf),
• the third level comprises the window/join operators evaluated over the results of the

selections, and
• the final (fourth) level have the unions evaluated over the results of the selections and/or

windowed-joins to build the final results.
Normalization also flattens all cascading filtering paths into elementary filtering predicates

under a Conjunctive Normal Form (CNF).
In the following sections we will formally define the normalization process: we first introduce
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a formal logical model for general queries (i.e., in any form), as well as a logical model for
normalized queries. These models are presented in the next Section (3.3.1). Then, Section 3.3.2
introduces the concept of Global Normalized Query Graph.

3.3.1 Query logical model and query normalization

Let NS be a set of Source Names and NP a set of Publication Names (N = NS ∪ NP ). We
define a ROSES query q as a triple (U, S, J), where:

1. U (as Union) is a set of streams {si}, and a stream si is:
• either a source name nS ∈ NS,
• or a publication name nP ∈ NP ,
• or a subquery q′ = (U ′, S ′, J ′),

2. S (as Selection) is a set of predicates {predi}, and predi is a selection predicate, and

3. J (as Join) is a set of join operations {ji}, and a join operation ji is a 4-tuple (Ũ , S̃, predW , predJ),
where:

1. Ũ is a set of joinless streams {s̃i}, and a joinless stream s̃i is:
• either a source name nS ∈ NS,
• or a publication name nP ∈ NP ,
• or a joinless subquery q̃ = (Ũ ′, S ′),

2. S̃ is again a set of selection operations { ˜predi},

3. predW is a windowing predicate applied on Ũ , and

4. predJ is a join predicate between fields U and Ũ .

Observe that with this model, window operators may only be applied on secondary streams
(Ũ) and never on a primary stream (U) of a query. This constraint is due to the fact that
ROSES joins are always defined between a stream and a window (see Section 2.2.2). Note also
that this logical query model ensures that all constraints enforced by the syntax of the ROSES
Query Language in Section 2.1 are satisfied.

Example: Suppose two publication queries, one containing only union and selection oper-
ators, and a second one composed only by union and join/window operators:

CREATE FEED Publication1

FROM ((source1 | source2) AS $var1 | (source3 | source4) AS $var2) AS $var3

WHERE $var1[pred1] AND $var2[pred2] AND $var3[pred3];
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CREATE FEED Publication2

FROM (source1 | source2) AS $var1

JOIN predW1 ON (source3 | source4)

WITH $var1[predJ1]

JOIN predW2 ON (source5 | source6)

WITH $var1[predJ2];

Figure 3.3 shows a graphical representation of a ‘syntactic’ query plan for both publication
queries.

Figure 3.3 – ‘Syntactic’ query plans for publications pub1 and pub2

The logical representation of these queries according to our query model shall be the fol-
lowing:

q1 =
({(
{src1, src2}, {pred1},∅

)
,
(
{src3, src4}, {pred2},∅

)}
, {pred3},∅

)

q2 =
(
{src1, src2},∅,

{(
{src3, src4},∅, predW1 , predJ1

)
,
(
{src5, src6},∅, predW2 , predJ2

)})

The query normal form

A ROSES query q = (U, S, J) is in normal form iff :

1. U is a set of subqueries {q′i}, and for each subquery q′i = (U ′, S ′, J ′):

1. U ′ is a singleton set containing exactly one element, either a source name nS ∈ NS,
or a publication name nP ∈ NP , i.e. U ′ = {n} where n ∈ N = NS ∪ NP ,
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2. S ′ is also a singleton set containing a selection predicate in CNF, i.e. S ′ = {predCNF} 7,
and

3. J ′ is a set of join operations {ji}, and for each join operation ji = (Ũ , S, predW , predJ):

1. Ũ is a set of joinless subqueries {q̃j}, and for each joinless subquery q̃j = (Ũ ′, S ′):

1. Ũ ′ is a singleton set containing either a source name or a publication name:
Ũ ′ = {n′}, and

2. S ′ is also a singleton set containing a selection predicate in CNF, S ′ =
{pred′CNF};

2. S is an empty set (S = ∅), since selection operations are not allowed after
unions,

3. predW the windowing predicate, and

4. predJ the join predicate;

2. S is an empty set (S = ∅), since selection operations are not allowed after unions, and

3. J is also an empty set (J = ∅), since join operations are not allowed after unions.

Nevertheless, the properties of the normal form allow a simpler modeling of ROSES nor-
malized queries. Thus we can also describe a normalized publication query as a set of triples
{(n, predCNF , J)}, where:

1. n is either a Source Name, or a Publication Name: n ∈ N = NS ∪ NP ,

2. predCNF is a selection predicate in Conjunctive Normal Form, and

3. J is a set of joins {ji}, where ji is now a triple (U, predW , predJ) and:

1. U is a set of pairs {(n′, pred′CNF )},

2. predW is a windowing predicate and

3. predJ is the join predicate between n and U

The following five rewriting rules are sufficient for transforming any publication query into
the normalized form. The first four rules (3.1, 3.2, 3.3, 3.4) allow to normalize the query itself
(i.e. the composition of its operators), while the last rule (3.5) enables normalization of the
selection predicates appearing in the query:

7. We may have no selection operator associated to that source/publication, in this case we consider
predCNF = true
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Selection distributivity over union

σpred(S1 ∪ S2) 7→ σpred(S1) ∪ σpred(S2) (3.1)

This rule enables to push selection operators towards the sources through union operators
in both cases, in main and secondary streams.

Selection-join commutativity

σpred(S ./predJ W ) 7→ σpred(S) ./predJ W (3.2)

Observe that commutativity of selection with join is possible because of the particular
nature of our annotation joins which do not modify the input items and guarantee that all
subsequent selections only apply to these items (i.e., filtering operations cannot be applied on
the annotations generated by join operators).

Join distributivity over union

(S1 ∪ S2) ./predJ W 7→ (S1 ./predJ W ) ∪ (S2 ./predJ W ) (3.3)

With this rule we push join operators towards the sources through union operators splitting
the join operator over each stream.

Selection cascading

σpred1(σpred2(S)) 7→ σpred1∧pred2(S) (3.4)

This rule enables to aggregate all consecutive selection operators into a single selection.
Normalization of selection predicates

σ¬¬A(S) 7→ σA(S) double negative law (3.5a)

σ¬(A∧B)(S) 7→ σ¬A∨¬B(S) De Morgan’s laws (3.5b)

σ¬(A∨B)(S) 7→ σ¬A∧¬B(S) (3.5c)

σA∨(B∧C)(S) 7→ σ(A∨B)∧(A∨C)(S) distributive laws (3.5d)

σ(A∧B)∨(A∧C)(S) 7→ σA∧(B∨C)(S) (3.5e)

Finally, the equations 3.5a-3.5e enable to normalize all selection predicates appearing in the
query into the Conjunctive Normal Form.
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Iteratively applying these rewriting rules (3.1-3.5) till fixed point allows normalizing all
ROSES queries. So, if we apply query normalization to the two preceding queries, we get these
Normal Forms for pub1 and pub2:

NF (q1) =
{(
nS1 , pred1 ∧ pred3,∅

)
,
(
nS2 , pred1 ∧ pred3,∅

)
,(

nS3 , pred2 ∧ pred3,∅
)
,
(
nS4 , pred2 ∧ pred3,∅

)}

NF (q2) =
{(
nS1 , true, {j1, j2}

)
,
(
nS2 , true, {j1, j2}

)}
where: j1 =

({
(nS3 , true), (nS4 , true)

}
, predW1 , pred

J
1

)
j2 =

({
(nS5 , true), (nS6 , true)

}
, predW2 , pred

J
2

)

A graphical representation of these normal forms is shown in Figure 3.4.

Figure 3.4 – Graphical representation of the Normal Form of queries pub1 and pub2

3.3.2 Global normal query graph

We create the Normal Graph of Queries GN by merging all normalized queries. If we define
a ROSES publication p as a pair (nP , q) (i.e., a named query), given a set of publication queries
P we can define a normal query graph GN as a set of quadruplets {(nS, predCNF , J, nP )}, where
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nP is the name of the publication. More formally:

GN(P ) = {(nS, predCNF , J, nP ) | p ∈ P ∧ p = (nP , q) ∧ (nS, predCNF , J) ∈ NF (q)} (3.6)

We illustrate our approach by a simple example without join operations. Assume we have
the following three publications:
• pub1 = σa∧b(src1 ∪ src2)
• pub2 = σc(pub1 ∪ src3)
• pub3 = σd(σb∧c(src2 ∪ src3) ∪ src4)
A graphical representation of the corresponding query plans is given in Figure 3.5. We can

see that src2 is used by all three publications: src2 is used directly by queries pub1 and pub3

and indirectly by publication pub2 (through query composition). In this case (without join), the
normalization process consists only in pushing all filtering operations through the publication
tree to the sources for obtaining a normalized query plan as shown in Figure 3.6.

Figure 3.5 – Three publications using all of them source src2

Figure 3.6 – Global Normal Query Graph for the query set {pub1, pub2, pub3}
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It should be stressed that normalization might increase the cost of the resulting query graph
with respect to the original one. However, as we will see later, this cost increase is temporary
and will be amortized by the subsequent factorization phase. Our algorithm guarantees to
produce optimized plans with equal or lower cost than the original plan.

3.4 Factorization algorithms

In this Section we tackle the last step of the optimization process, i.e., the query factoriza-
tion. First we introduce a few preliminary concepts used during the factorization phase: the
subsumption graphs and a simplified version of the cost model (Section 3.4.1). Afterwards we
present in Section 3.4.2 our three factorization algorithms: STA, VCA with subsumption graph
and VCA with VCB.

3.4.1 Query factorization

In this thesis we focus on filtering factorization. The most common type of queries defined by
the users in our context involve filtering a large collection of sources, thus filtering factorization
becomes a really effective optimization technique. As in oneshot queries, first filtering leads
to optimal solutions, and in our context the probability to find similar user-defined filters is
higher than the one for similar join operations. 8

The normalization process generates a global query planGN (obtained through Formula 3.6),
where each source srci is filtered by a set of selection predicates Pred(srci). The factoriza-
tion considers each source separately and consists in building for each such set of predicates
Pred(srci) an optimized filtering plan with respect to our cost model. To find the best operator
factorization we proceed in two steps: we first generate for each source feed srci a Predicate
Subsumption Graph GS(srci) which contains all predicates subsuming the set of predicates in
Pred(srci). The weight of each subsumption edge in this graph corresponds to the output rate
of the node it originates (source or filtering operation) and expresses the cost of the node it
targets. It is easy to see that any sub-tree of this graph covering the source srci (root) and all
predicates in Pred(srci) corresponds to a filtering plan that is equivalent to the original one.
The cost of this plan is the sum of the costs of the tree edges.

The second step consists in finding a Steiner Minimal-Cost Tree (SMT) rooted at srci which
covers Pred(srci), given a directed edge-weighted graph G = (V,E,w), a root srci ∈ V , and a
subset T ⊆ V of required vertices (corresponding to Pred(srci)). A Steiner Tree is a tree t in G

8. We do not tackle the join optimization issue in this work.
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with srci as the root and that spans all vertices of T . The optimization problem associated with
Steiner trees is to find a minimal-cost Steiner tree. Observe that if all nodes in the graph are
required (i.e. T = V ), a minimal-cost Steiner tree corresponds to a minimum-weight spanning
tree of G.

The Predicate Subsumption Graph construction may be done using the following approach:

1. In a first step, we recursively generate all sub-predicates for each selection predicate ap-
pearing in Pred(srci). Given a predicate predji in Pred(srci), the set of sub-predicates of
predji might be defined as the power set on the clauses that predji consists of. For instance,
if predji = (a ∨ b) ∧ c ∧ (d ∨ e), the sub-predicates would be: (a ∨ b) ∧ c, (a ∨ b) ∧ (d ∨ e),
(a∨b), c∧(d∨e), etc. This decomposition must be done recursively till the literal/disjunc-
tion level. Given that, after the normalization process, all predicates are in conjunctive
normal form, sub-predicate generation may be just done by computing a power set on
the and operation. We give in Listing 3.2 an efficient algorithm to compute all possible
sub-predicates from a conjunctive selection predicate. This algorithm offers the best pos-
sible order of complexity (O(2n)), since we need to generate 2n possible combinations of
predicates (where n is the number of clauses in the conjunctive predicate). We compute
all possible sub-predicates for each predicate predji appearing in Pred(srci) and a new
node is created for every sub-predicate. So, the total cost of this step corresponds to
O(2n ·m), where m is the number of predicates in Pred(srci).

2. Once all nodes created, the second step consists in computing and adding all the subsump-
tion relationships among all these nodes. Listing 3.3 gives the Subsumption algorithm for
all different predicates in CNF. It provides a complete list of syntactic rules for producing
all subsumption relationships between any pair of predicates in CNF (if it exists): atoms,
negation of atoms, disjunction and conjunction.

Note that in Section 3.4.2.3, we will present a data structure which avoids the computation
of the whole Predicate Subsumption Graph.

Finally, the Subsumption Graph 9 is weighted according to our cost model. However, as
long as our optimization approach consists in reducing the input/output rate between the
operators and we do not optimize the operators themselves but the structure of the operator
plan, that cost model may be simplified. Indeed, we are interested in optimizing a tree of
selection operators. In this case, read and write costs may be neglected if we compare them to
the evaluation cost of the filtering operators, thus the processing (total) cost of a filtering tree
is proportional to its evaluation cost. This leads us to the Simplified Cost Model we summarize

9. We use Subsumption Graph as a short name for Predicate Subsumption Graph in the rest of the document.
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Algorithm 3.2 PowerSet: Sub-predicate set computation
Input: a conjunctive selection predicate originalPredicate
Output: the set of all sub-predicates of originalPredicate
1: sets← ∅
2: if originalPredicate = ∅ then
3: return sets
4: end if
5: list← listOfClauses(originalPredicate)
6: head← list[0]
7: rest← toSet(subList(list, 1, size(list)))
8: for all pred ∈ PowerSet(rest) do
9: newPred← head ∧ pred
10: sets← sets ∪ newPred ∪ pred
11: end for
12: return sets

in Table 3.3. Thus, Subsumption Graph’s arcs are weighted according to the corresponding
source rate and the predicate selectivity of the destination node of the arc.

Operator Output rate Memory cost Processing cost
op rate(op) costMem(op) costProc(op)

σpred(ioq) selectivity(pred) · rate(ioq) const costEval(pred) · rate(ioq)
ioq1 ∪ · · · ∪ ioqn

∑n
i=1 rate(ioqi) 0 0

ωtimew (ioq) 0 w · rate(ioq) rate(ioq)
ωcountN (ioq) 0 N 0

ioq ./predJ win selectivity(predJ) · rate(ioq) const rate(ioq) · size(win)

Tableau 3.3 – Simplified Cost Model: memory and processing costs

Example. Figure 3.7 illustrates the subsumption graph for the source feed src2 of the
example used in previous Section (3.3.2). The filtering operators involving src2 were: σa∧b,
σa∧b∧c and σb∧c∧d (see Figure 3.6). We include one more operator σd∧e in order to improve the
example. Thus, the subsumption graph is composed of these four required predicates (shown in
blue), as well as of all their sub-predicates: a, b, c, d, e, a∧ c, b∧ c, b∧ d and c∧ d (in yellow),
while the edges express subsumption between predicates: a→ a ∧ b, b→ a ∧ b, b→ b ∧ c ∧ d,
etc. Note that direct subsumption arcs are represented in Figure 3.7 by straight black lines, in
fact the graph also includes arcs from the transitive closure of the subsumption relation, e.g.,
b → b ∧ c ∧ d. These last arcs are depicted by dashed gray lines. The arc weight represents
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Algorithm 3.3 Subsumption of Predicates
All predicates are in CNF, i.e., either an atom, or the negation of an atom, or a
disjunction/conjunction of literals, or yet a conjunction of disjunctions of literals.

In the following A and B denote atomic predicates, Li denotes a literal (an atom or a
negated atom), and Di denotes a disjunction of literals.

Atoms:

A subsumes B ⇔ A = B
A subsumes ¬B ⇔ false
A subsumes (L1 ∨ · · · ∨ Ln)⇔ ∀Li : A subsumes Li
A subsumes (D1 ∧ · · · ∧Dn)⇔ ∃Di : A subsumes Di

Negation:

¬A subsumes B ⇔ false
¬A subsumes ¬B ⇔ A = B
¬A subsumes (L1 ∨ · · · ∨ Ln)⇔ ∀Li : ¬A subsumes Li
¬A subsumes (D1 ∧ · · · ∧Dn)⇔ ∃Di : ¬A subsumes Di

Disjunction:

(L1 ∨ · · · ∨ Ln) subsumes A⇔ ∃Li : Li subsumes A
(L1 ∨ · · · ∨ Ln) subsumes ¬A⇔ ∃Li : Li subsumes ¬A
(L1 ∨ · · · ∨ Ln) subsumes (L′1 ∨ · · · ∨ L′m)⇔ ∀Li : Li subsumes (L′1 ∨ · · · ∨ L′m)

or ∀Li : ∀L′j : Li subsumes L′j
(L1 ∨ · · · ∨ Ln) subsumes (D1 ∧ · · · ∧Dm)⇔ ∀Li : Li subsumes (D1 ∧ · · · ∧Dm)

or ∀Li : ∃Dj : Li subsumes Dj

Conjunction:

(D1 ∧ · · · ∧Dn) subsumes A⇔ ∀Di : Di subsumes A
(D1 ∧ · · · ∧Dn) subsumes ¬A⇔ ∀Di : Di subsumes ¬A
(D1 ∧ · · · ∧Dn) subsumes (L1 ∨ · · · ∨ Lm)⇔ ∀Di : Di subsumes (L1 ∨ · · · ∨ Lm)

or ∀Di : ∀Lj : Di subsumes Lj
(D1 ∧ · · · ∧Dn) subsumes (D′1 ∧ · · · ∧D′m)⇔ ∀Di : Di subsumes (D′1 ∧ · · · ∧D′m)

or ∀Di : ∃D′j : Di subsumes D′j
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the selectivity of the originating predicate, proportional to the rate of items coming from the
source feed (>).

In our example, the rate of items produced by src2 is equal to 1 and the selectivity for
each atomic predicate is given in Table 3.4. Thus the weight of arc (a, a ∧ b) is selectivity(a) ·
rate(src2) = 0.2 and the weight of (a ∧ b, a ∧ b ∧ c) is equal to selectivity(a) · selectivity(b) ·
rate(src2) = 0.2 · 0.1 · 1.

Figure 3.7 – Predicate Subsumption Graph for src2 with its weights

Predicate a b c d e

Selectivity 0.2 0.1 0.15 0.05 0.1

Tableau 3.4 – Atomic predicate selectivities for source feed src2

As we can see in Figure 3.8, several Steiner trees (in red) might be computed for each
subsumption graph, each one with a different cost. In our example, the second tree is the
minimal one with an estimated cost of 2.12.

We can easily observe that the resulting filtering plan is less costly than the initial one. And
this is true despite the fact that normalization can increase the cost of the filtering plan since it
replaces cascading selection paths by a conjunction of all predicates on the path. As a matter
of fact, it can be demonstrated that the subsumption graph regenerates all these paths and the
original plan is always a sub-tree of this graph. Since the Steiner tree is a minimal sub-tree
for evaluating the initial set of predicates, its cost will be at most the cost of the initial graph.
For example, the filtering cost for source src2 in the original plan (Figure 3.5) roughly is three
times the publishing rate of src2 (if we suppose that selection σd∧e is directly defined over src2,
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(a) Tree cost = 2.23 (b) Tree cost = 2.12

(c) Tree cost = 2.22

Figure 3.8 – Different Steiner trees with different tree costs

all three selections σa∧b, σb∧c and σd∧e are applied to all items produced by src2). This cost
is reduced by a 2/3 factor in the final Steiner tree (Figure 3.8b) by introducing the additional
filter σd.

3.4.2 The factorization algorithms

This Section describes our factorization algorithms. First we present STA, an adaption of
an existing approximate algorithm due to Charikar et al. [CCC+98]. STA performs a near
exhaustive search on the subsumption graphs, which makes this algorithm to provide optimal
solutions, but at the expense of a lengthy computation time (see Section 3.4.2.1). Then we
present in Section 3.4.2.2 the VCA predicate factorization algorithm. VCA is a greedy algorithm
that takes advantage of some properties inherent to our subsumption graphs. VCA outperforms
STA’s computation cost, nevertheless we still require an expensive memory usage to store the
subsumption graph, this is why we have developed a second version of VCA. This second version
uses an optimized dynamic data structure called VCB, which is described in Section 3.4.2.3.
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3.4.2.1 The STA algorithm

The Steiner Minimal-cost Tree (SMT) problem is known to be NP-complete [HRW92, CD02]
and many approximation algorithms have been proposed in literature. We have initially im-
plemented in ROSES a modified version of the algorithm introduced in [CCC+98] for edge-
weighted directed graphs. The algorithm proposed by Charikar et al. in [CCC+98] reaches
an approximation ratio of i · (i − 1) · k1/i in time O(ni · k2i) for any fixed i > 1, where k is
the number of terminal nodes. Thus setting i = log k, they obtain an O(log2 k) approximation
ratio in quasi-polynomial time.

Our variation of this general-purpose SMT algorithm lies on the fact that predicate sub-
sumption graphs in ROSES are acyclic (all equivalent predicates are merged into a single node).
In fact, the approximation factor of the algorithm proposed by Charikar depends on the search
depth of the algorithm. If we consider cyclic graphs, the search depth is unbounded. However
our subsumption graphs are acyclic, thus our variant of the algorithm can apply infinite search
depth and produce an optimal result.

Despite this simplification, our Algorithm 3.4 still needs to exhaustively search Steiner-trees
of minimal cost for various possible subsets of the query predicates and thus do not scale for
large predicate graphs (see also our experimental evaluation in Section 3.6).

In Algorithm 3.4, Graph is a directed labeled graph where each node n ∈ Nodes(Graph) is
labeled by a filtering predicate λ(n) and there exists an arc (a, b) ∈ Arcs(Graph) between two
nodes a and b if and only if λ(a) subsumes λ(b). We assume that Graph is acyclic (all logically
equivalent nodes are represented by a single node in Graph) and closed under subsumption: for
any node a ∈ Graph and any predicate pred subsuming λ(a), either pred ≡ λ(a) or there exists
an ancestor b of a in Graph such that λ(b) ≡ pred (for the root root of Graph: λ(root) ≡ true).

The labeling function ωS : Arcs(Graph) → < returns for each edge (a, b) ∈ Arcs(Graph)
a weight which corresponds to the selectivity of a on source feed S. The weight ωS(T ) of a
tree T is the sum of the weights of its edges. The principle of Algorithm 3.4 is to recursively
iterate over all successors for each vertex in the graph in order to find an optimal sub-tree of
Graph with respect to the weight function. The choice of a sub-tree T ′ in the inner loops not
only takes account of the weight of T ′, but also of the number of terminals covered by T (tree
density). Remind that the set of terminal nodes Term corresponds to the set of initial selection
predicates applied on the source S.
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Algorithm 3.4 STA
Input: a directed acyclic labeled weighted graph Graph, a current tree root root, a set of

terminal nodes Term ⊆ Nodes(Graph), and the minimum number of terminals k that
must be satisfied

Output: A tree Tree rooted at root that spans at least k terminals in Terminals
1: Tree← ∅
2: k ← |Term| // size of Term
3: while (k > 0) do
4: // Tree does not cover all terminals
5: Treebest ← ∅
6: density(Treebest)←∞
7: for all vertex ∈ Nodes(Graph) do
8: for all k′, 1 ≤ k′ ≤ k do
9: Tree′ ← STA(Graph, vertex, Term, k′)
10: Tree′ ← Tree′ ∪ {(root, vertex)} // add root root
11: density(Tree′)← ωS(Tree′)/|Nodes(T ′) ∩ Term|
12: if (density(Treebest) > density(Tree′)) then
13: Treebest ← Tree′

14: end if
15: end for
16: end for
17: Tree← Tree ∪ Treebest
18: Term← Term−Nodes(Treebest)
19: k ← |Term|
20: end while
21: return Tree
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3.4.2.2 The VCA predicate factorization algorithm

The need to exhaustively search for minimal Steiner subtrees makes previous algorithm
unviable on large subsumption graphs. For this reason we have devised a new approximate al-
gorithm for minimal-cost Steiner Trees, called VCA (Very Clever Algorithm), see Algorithms 3.5
and 3.6. This algorithm takes into account the peculiarities of predicate subsumption graphs
and the corresponding cost-model in ROSES. VCA is a greedy algorithm, iteratively improv-
ing an existing filter plan according to a local heuristic which estimates the benefit of adding
new intermediate predicates. VCA starts from an initially correct plan where the root (pred-
icate true) is directly connected to each predicate in the set Preds of target predicates, e.g.
Preds = {a ∧ b, a ∧ b ∧ c, b ∧ c ∧ d, d ∧ e} in Figure 3.7. This corresponds to a plan where all
filtering predicates are evaluated independently on the source feed and whose cost is propor-
tional to the number of predicates (the selectivity of root true multiplied by the number of
filter predicates).

We note Border the set of children of the root in the current plan, i.e. Border = Preds at
the beginning. The Border essentially contains the set of vertices to be potentially factorized
at each iteration step of the VCA algorithm. For each Border we consider a set of candidates
for predicate factorization, denoted by Cands, containing nodes that subsume at least two
predicates in the current border. Note that the intersection between Border and Cands is not
necessarily empty, e.g., in Figure 3.7 a∧ b belongs at the beginning to both Border and Cands
(it subsumes border nodes a ∧ b, itself, and a ∧ b ∧ c).

Based on these two sets, VCA iteratively tries to replace with some node in Cands all the
nodes it subsumes in current Border. Namely, VCA checks if adding a node n ∈ Cands in the
tree is beneficial. In such case, the algorithm replaces by n all the nodes in the Border that are
subsumed by n. The cost of the final tree obviously depends on the choice of these candidates
and it is guided by two measures:

1. the selectivity of the candidate predicates and

2. the number of existing predicates they factorize.

More formally, we define a benefit function benefit(n1, n2) estimating the benefit of adding
n1 as a child of an existing node n2 in the tree, where k is the number of children of n2 which
are also subsumed by n1. Inserting n1 means replacing arcs from n2 to the k children with
(1) an arc from n2 to n1 and (2) arcs from n1 to the k children. We depict this operation in
Figure 3.9, where we see that node n2 subsumes node n1, which in turn subsumes nodes n3,
n5 and n6 (k = 3). Thus, if the benefit function of adding n1 is positive, we remove the arcs
(n2, n3), (n2, n5) and (n2, n6), and we insert an arc between n2 and n1 and the arcs (n1, n3),
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(n1, n5) and (n1, n6). We define this operation as expansion.

Figure 3.9 – Benefit of adding a node n1 as a child of n2

benefit(n1, n2) = (k − 1) · selectivity(n2)− k · selectivity(n1) (3.7)

This function expresses the difference between the costs of the filter trees before and after the
insertion of n1. A positive benefit means the filter tree is improved by the insertion of node n1,
a negative one means the plan may be improved by deleting n1. This information is exploited
by VCA in two ways. First, during the expansion phase, benefit is used to decide whether a
candidate node should be inserted in the current filter tree, and moreover, to select the one with
the maximal benefit. However, computing the benefit for all candidates includes computing the
number of border predicates each candidate subsumes, which increases the computation cost
of the algorithm. In fact, it is not necessary to compute all candidates, but only the border
of the most selective ones or those with the highest benefit. We exploit this idea in the VCB
data structure that we introduce in the following Section (3.4.2.3). As verified experimentally
in Section 3.6, we can quickly obtain a good approximation of the minimal Steiner tree by
choosing candidates only based on their selectivity.

In each step of the expansion phase, a candidate node replaces one or several nodes in
the border with a positive benefit on the total cost. However, adding new nodes changes the
context of existing ones, whose utility may be rediscussed. For instance, consider that a filter
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plan contains a node n1, that has been added with benefit(n1, true) > 0. A new node n3 is
inserted as a parent of n1. If the selectivities of n1 and n3 are close, it is possible that the
benefit of n3 to be the parent of n1 becomes negative (benefit(n1, n3) < 0), i.e., the plan cost
improves if n1 is discarded and n3 is directly connected to n1’s children. This is the second
use of the benefit function, during what is called the reduction phase. It is also noteworthy
that reduction has not to be performed recursively, since the weight of the edges monotonically
decreases with the depth of the predicate subsumption graph. Indeed, if the children of n1 have
not been reduced when n1 was added, they will also not be reduced by the n3 node because
selectivity(n3) > selectivity(n1).

VCA always stops after a finite number of iterations: at each iteration step either the
best candidate replaces at least one more specific (selective) node in the border or is removed
from the border. Hence, the border corresponds to a bottom-up traversal of the subsumption
predicate graph and since this graph is acyclic, the algorithm always ends with the trivial
border: {true}.

3.4.2.3 Finding the best candidates with VCB

VCA reduces drastically the computation cost of the factorization process while offering
similar quality to that of the general-purpose SMT algorithm of [CCC+98]. Whereas we have
no theoretical guarantees about the approximation error of VCA (compared to existing approx-
imate SMT algorithms), our experiments show that the cost of the filter plans obtained by the
different algorithms are very similar for different query workloads.

One last open issue concerns the construction cost of the candidate set and the identification
of the best candidate nodes in this set. A straightforward way to do this is to build the
subsumption graph in order to find the most selective predicate subsuming at least two nodes
in the border. There are two major drawbacks here. First, building the complete subsumption
graph is inefficient, since most subsumption links are never accessed by the algorithm. Second,
the candidate list is recomputed at each update of the border (FindCandidates()) without
considering previous computations. To reduce this cost we have designed a data structure,
called VCB (Very Clever Border), which:

1. computes on the fly the minimal number of subsumption links at each iteration step for
choosing the most selective predicate, and

2. updates the list of candidates in an incremental way (the candidates for each node are
computed at most once).

The main idea of VCB is to generate in advance for each border node the list of its subsuming
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Algorithm 3.5 VCA
Input: a set of filtering predicates Preds and a selectivity function selS which returns the

selectivity of any predicate on source S
Output: minimal-cost filtering plan Tree for predicates Preds on source S
1: // build an initial filter plan where each predicate is evaluated independently
2: Tree← {(true, pred)| pred ∈ Preds}
3: Border ← Preds
4: // Cands : all predicates p subsuming at least two predicates in Border
5: Cands← FindCandidates(Border)
6: while (Cands 6= {true}) do
7: // bestCand : the most selective candidate
8: bestCand← arg mincand∈Cands selS(cand)
9: // Factorized: all predicates in the Border subsumed by bestCand
10: Factorized← {p| p ∈ Border ∧ p |= bestCand}
11: if benefit(bestCand, true) > 0 then
12: // Expand : insert bestCand as child of the root
13: if bestCand /∈ Border then
14: Tree← Tree ∪ {(true, bestCand)}
15: end if
16: for all fact ∈ Factorized− {bestCand} do
17: // fact becomes a child of bestCand
18: Tree← (Tree− {(true, fact)}) ∪ {(bestCand, fact)}
19: Tree← Reduce(fact, bestCand, Tree, Preds)
20: end for
21: Border ← Children(true) // recompute Border
22: Cands← FindCandidates(Border) // recompute Cands
23: else
24: Cands← Cands− {bestCand} // remove bestCand from Cands
25: end if
26: end while
27: return Tree
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Algorithm 3.6 Reduce
Input: an intermediate filtering plan Tree, the set of filtering predicates Preds and a couple

of nodes node1, node2 ∈ Tree that may be collapsed
Output: the filtering tree Tree with node2 collapsed into node1 if prompted by the benefit

function
1: k ← outdegree(node2)
2: if node2 /∈ Preds ∧ k 6= 0 ∧ benefit(node2, node1) < 0 then
3: // Reduce : replace node2 by node1 as parent of all children of node2
4: Tree← Tree− {(node1, node2)}
5: for all child ∈ Children(node2) do
6: Tree← (Tree− {(node2, child)}) ∪ {(node1, child)}
7: end for
8: end if
9: return Tree

candidate predicates. This list is ordered by the selectivity of the corresponding candidates and
continuously evolves without re-computing the set of candidates at each iteration step. We will
detail its behavior through an example.

Figure 3.10 – Very Clever Border

Consider a source feed src which is associated with four filtering predicates: a ∧ b ∧ c,
b ∧ c ∧ d, a ∧ e, e ∧ f (see Figure 3.10). Initially, we generate for each filtering predicate predi
in the border the list of candidates CandList(predi). To find the most selective candidate
we traverse each list to find the first candidate subsuming at least another predicate in the
border (predj 6= predi). This candidate will be called the best candidate for predi, denoted
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bestCand(predi). In our example, the best candidate for node a∧b∧c is b∧c (a∧b and a∧c can
safely be removed from the CandList(a∧ b∧ c). Additionally, we store for each best candidate
bestCand(predi) the list of nodes in the border which are subsumed by bestCand(predi) (σ1

and σ2 for best candidate of a ∧ b ∧ c).
Symmetrically, we also compute for each predicate predi the list of nodes whose best can-

didate subsumes predi. This list is called the sibling list of predi. For instance, node σ1 is
subsumed by the best candidates of nodes σ1, σ2, σ3. This list is used later to notify all nodes
who should update their best candidate if predi is removed from the border.

The best candidates found for each border predicate are inserted in a list of best candidates
which is sorted by their selectivity. In our example b∧ c is more selective than a, which is more
selective than e. Finally, the first best candidate in this list (b∧ c) is chosen in order to perform
the expand operation. The node σ5 (b∧ c) is generated, nodes σ1 and σ2 are removed from the
border and σ5 is added to the border. Then the siblings of σ1 and σ2 are notified to update
their candidate list (σ3). Indeed, σ1 is not anymore in the border, so a (the best candidate of
σ3) subsumes now only one node, himself. The new best candidate of σ3 will be: e, subsuming
σ3 and σ4. So, the next step of the iteration restarts with the updated new border.

3.5 Runtime optimization

The factorization algorithms we have proposed in previous Section (3.4) enable to produce
optimal (STA) or near-optimal (VCA and VCB) filtering trees given a static set of queries. In
particular, our VCA algorithm allows finding near-optimal solutions with a very good trade-
off between optimality and optimization cost. However, this is only a partial solution for a
dynamic system where publication queries are continuously created and removed by the users
of the system, and where the publication behavior (term frequencies) of sources is not constant
but evolving over time. For instance, a given term or word may suddenly become a trending
topic, this makes its selectivity to vary and, thus, strongly degrade the execution cost of on
running query plans.

In the first case, each time a publication query is created or deleted, the filtering trees of all
sources involved in this query should be recomputed dynamically in order to maintain query
graph optimality. This is unfeasible due to the cost of optimization algorithms. We do not
want to reoptimize the filtering trees over and over but only when it is necessary, i.e., when
recomputing the filtering tree provides a substantial gain w.r.t. the ongoing query execution
plan.
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3.5.1 Runtime optimization strategy

In this Section we present our approach to handle this problem that we call runtime opti-
mization.

In our context, the two main factors that may lead filtering trees to degrade are the following
ones:
• query arrival/departure: the arrival of new publication queries as well as the suppression

of ongoing queries, and
• selectivity changes: the evolution of selection predicate selectivities bred by changing term

frequencies.
We have seen that the publishing rate of sources plays an important role in the static

optimization process. In the same way that the term frequency on incoming items evolves over
time, the publishing rate of the sources is not constant. with respect to their optimal plans. In
some cases, behavior changes of some sources may be unpredictable. However, given that every
source filtering tree is optimized independently, the dynamicity of the publishing rates do not
affect the overall query graph optimality. Consequently, we do not need to take into account
the source rates in the runtime optimization process.

The runtime optimization approach we propose is the following one: when new queries
arrive (existing queries leave) we insert (remove) them into the current query graph in the
best possible place of the existing filtering plan. We define the best possible place through the
concept of the best direct ancestor.

Definition 3.3. The best direct ancestor of a predicate prednewx is the predicate predoldy ∈ Ti
that:

1. subsumes prednewx (predoldy |= prednewx ), and

2. has the lowest selectivity factor in the filtering tree Ti.

This semi-naive strategy for query insertion obviously leads to graph degradation, thus we
estimate periodically the need of reoptimizing the filtering trees through some heuristics. When
this estimation exceeds a given threshold we recompute the corresponding trees.

We can summarize our runtime optimization strategy as follows:

1. Closest ancestor query insertion: in a first phase, once a new query is submitted into
the system, it is normalized and for each new selection predicate predi we insert it into
the corresponding filtering tree T (srci). New predicate insertion is done as follows: Ti is
traversed in order to find the closest ancestor, i.e., the most selective predicate subsuming
predi, then predi is inserted as its child (if it does not already exist in the tree). Query
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removal is trivial since it consists simply in checking if the removed predicates are not
used by other queries, i.e., they do not have any child and there is no other publication
query associated to that predicate.

2. Filtering tree reoptimization: in a second phase, once the degradation of any filtering tree
surpass a fixed threshold, we recompute the factorization tree and we replace on runtime
the physical filtering tree by new one.

Example. We illustrate our approach through a simple example that allows showing the
degradation of the filtering trees and the need of periodically reoptimizing them. Suppose a
filtering tree Ti attached to a source srci. This filtering tree is composed of three terminal
predicates (a ∧ b, b ∧ c and a ∧ d) and an intermediate predicate (b), see Figure 3.11a. When
a new query qnew is registered into the system, we first normalize it to get a new query 10:
qnewN = σprednew

1
(src1) ∪ · · · ∪ σprednew

n
(srcn). After normalization, suppose qnew comes with a

new predicate prednewi = b∧ d for srci, to be inserted into its filtering tree. So, we traverse the
filtering tree Ti and we insert prednewi as a child of its best direct ancestor. The new predicate b∧d
is inserted as child of intermediate predicate b. Nevertheless, new factorization opportunities
appear with new queries and the evaluation performances decreases with time. As we can see
in Figure 3.11b, with this new set of predicates we can obtain a better factorization tree, with
a lower evaluation cost.

(a) Tree cost after in-
sertion = 2.3

(b) New tree cost = 2.24

Figure 3.11 – Runtime Optimization example

Listing 3.7 details our algorithm step by step for the insertion of new queries. We can see
that we maintain for each source a list of its predicates ordered by selectivity. This enables to

10. We consider only queries without join operators
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quickly reach the closest predicate that subsumes the new one.

Algorithm 3.7 closest_ancestor_query_insertion
Input: a logical Query Plan QP , a new query q
Output: the Query Plan QP with new query q
1: qN ← normalize(q) // qN = σpred1(src1) ∪ · · · ∪ σpredn(srcn)
2: for all predi ∈ qN do
3: predicate_list← get_ordered_predicate_list(QP, srci)
4: // predicate_list is ordered by descending selectivity
5: if predi /∈ predicate_list then
6: found← false
7: j ← 0
8: while ¬found do
9: if subsumes(predicate_list[j], predi) then
10: parenti ← predicate_list[j]
11: found← true
12: else
13: j ← j + 1
14: end if
15: end while
16: add_arc(QP, parenti, predi)
17: end if
18: end for
19: u← create_union_operator()
20: for all predi ∈ qN do
21: add_arc(QP, predi, u)
22: end for
23: return QP

3.5.2 When to recompute the filtering trees

So far we have explained how dynamic query optimization works in the ROSES system.
But a fundamental question is still not answered: how do we decide to recompute a filtering
tree? In this Section we present the heuristics we use to measure the degradation of filtering
trees for taking this decision.

Given the filtering tree Ti of source srci at time t, defined as Ti(t), we define T ′i (t′) as the fil-
tering tree produced by successively applying the preceding closest_ancestor_query_insertion
algorithm (3.7) on Ti for queries arrived between t and t′. We define T ∗i (t′) as the filtering tree
produced by rerunning the optimization algorithm on the set of predicates of srci existing at
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time instant t′. Theoretically, our goal is to recompute every filtering tree Ti once the ratio
between the tree cost of T ′i and T ∗i exceeds a fixed relative threshold θ (e.g., 80 %):

cost(T ∗i (t′))
cost(T ′i (t′))

≤ θ (3.8)

However, as we have already said before it is not feasible to recompute the best filtering
tree every time, i.e., recompute T ∗i (t′) at each plan modification, therefore we have to estimate
cost(T ∗i (t′)) without computing T ∗i . To this purpose we use a heuristic based on the following
observation: we have seen that the selectivity of a predicate and its popularity (i.e. the number
of predicates that may reuse its results) are the two key factors in order to find the best
factorization tree. We can then define the cost divergence ∆ for a given filtering tree Ti between
two time instants t and t′ as follows:

∆cost(Ti, t, t′) =
∑
n∈T ′

i

|outdegree(n, t) · selectivity(n, t)− outdegree(n, t′) · selectivity(n, t′)|

(3.9)
where outdegree(n, t) is equal to zero for all nodes added to Ti between t and t′ (new

predicates). Respectively, outdegree(n, t′) = 0 for all nodes removed from Ti between t and
t′. This heuristic allows considering both topological tree modification (this is arrival/removal
of operators) and predicate selectivity changes. Moreover, cost divergence is easy to maintain
incrementally (independently of the filter tree size).

We can now replace Equation 3.8 by a new equation comparing the cost divergence obtained
over some period with the real plan cost at the beginning of the period. So, once the ratio
between this cost divergence and the real cost of Ti observed at t exceeds a given threshold,
tree refactorization is done.

∆cost(Ti, t, t′)
cost(Ti(t))

≥ τ (3.10)

This gain estimation test is done periodically, its periodicity may be defined through two
different strategies:
• globally: either after a fixed number of query arrivals/departures into the system, or

impacting a given source,
• locally: or when a source has produced a fixed number of items.
The first strategy might be enough if predicate selectivities were constant in time, i.e., if

we only have topological modifications of the filtering trees. The second strategy enables to
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include both degradation factors. We decided to apply only the second criteria, i.e. we check
the estimated gain after a source produces a given number of items. This has as a side effect
that a source with a high publication rate (and high cost) will be checked very often, while
a source with a lower rate (lower cost) is checked less often. However, this difference in the
frequency of reoptimizing sources is not an issue since sources with low rates have less impact
on the evaluation costs. Consequently, the system maintains for each source an item counter
for automatically triggering the cost divergence computation every N items published by the
source.

Estimating the selectivities

To estimate the cost divergence of a filtering tree Ti between two time instants t and t′, we
also must estimate the selectivities for all predicates appearing in Ti. We use an exponential
smoothing function in order to update the selectivities:

selectivity(op, t′) = α · selectivity(op, t) + (1− α) · m
N

(3.11)

where m is the number of items produced by filter op between t and t′, N corresponds to the
estimation periodicity in terms of number of items (m

N
represents the selectivity of the operator

between t and t′), and α (α ∈ [0, 1]) is the smoothing factor. We use exponential smoothing in
order to take into account past selectivity behavior. For instance, if in the past the selectivity
of a given operator have been more or less constant, and at time t′ it changes drastically, α
parameter enables to smooth this punctual behavior by increasing its value.

Listing 3.8 shows the method run by the the system for each source operator.

3.6 Experimental evaluation

We have conducted an experimental evaluation on our multi-query optimization approach
which is detailed in this Section. Thus, first we describe in Section 3.6.1 the synthetic query
generator we have implemented to generate an extensive workbench of queries. Then Sec-
tion 3.6.2 presents the results obtained by the different experiences we have carried out in an
increasing order of complexity.
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Algorithm 3.8 run_source
1: loop
2: item← poll(input_queue)
3: put(output_queue, item)
4: produced_items(srci)← produced_items(srci) + 1
5: if produced_items(srci) ≥ K then
6: δ ← cost_divergence(Ti)
7: cost_ratio← δ

cost(Ti(t))
8: if cost_ratio ≥ τ then
9: T ∗i ← recompute_best_filtering_tree(srci)
10: replace_physical_query_plan(srci, T ∗i )
11: else
12: produced_items(srci)← 0
13: update_statistics(Ti) // performs the selectivity smoothing for each op in Ti
14: end if
15: end if
16: end loop

Algorithm 3.9 cost_divergence
Input: a filtering tree Ti
Output: cost divergence δ of Ti between t and t′
1: δ ← 0
2: for all n ∈ T ′i do
3: δ ← δ + |outdegree(n, t) · selectivity(n, t)− outdegree(n, t′) · selectivity(n, t′)|
4: end for
5: return δ
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3.6.1 The ROSES query generator

An important issue for the experimental evaluation of our factorization algorithm was the
generation of large collections of filtering queries over RSS feeds. We have developed a cus-
tomizable ROSES query generator based on an existing RSS Subscription Generator. This
generator follows the heuristics that the probability (frequency) of a term to appear in a search
query is strongly related to its document frequency 11 (which also corresponds to the selectivity)
in the searched document collection. This hypothesis fits particularly in the context of RSS
feeds, where users are mainly interested in recent news. News items are mostly characterized
by the words that exhibit a higher frequency, in the same way user-defined queries contain
usually these same words.

The queries generated by our query generator follow the following format which corresponds
to the most simple kind of aggregation queries applying a filter to a union of sources:

CREATE FEED PublicationName

FROM (src1 | src2 | src3 | ... | srcN) AS $var

WHERE $var[predicate];

We wanted that the queries produced by our generator were as realistic as possible. Thus,
the first we have done is crawling a collection of more than 1300 RSS news feeds during a
month, we have stored in a database all the items they have published (approximately 190.000
items), and we have extracted a representative collection of about 300 keywords for each RSS
feed along with their document frequencies (i.e. the percentage of items which contain the
keyword). These keyword distributions are used by the query generator for generating the
filtering predicates of the queries. The output of the generator is a query script, a text file
containing a collection of ROSES queries (like SQL scripts). The generation of one query is
done as follows: first of all the generator chooses a random set of RSS feeds from the database,
after that it merges the keyword distributions of these sources, this defines the probability of a
term to appear in the query. Then the generator produces the filtering predicate of the query,
which contains the most frequent terms of the chosen sources.

Besides the collection of sources and their statistics, the generator can be parametrized with
other parameters controlling:
• the number of query scripts,
• the number of sources used in the generated scripts (|S|),
• the number of generated queries in the scripts (|Q|),

11. the probability for a word to appear in a document of the collection
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• the number of sources for each query (qS ∈ [qminS , qmaxS ]),
• the syntactic form of the filtering predicates, and
• the percentage of most frequent keywords per source.
All the generated filtering predicates are in conjunctive normal form (CNF). They are

composed of a random number d of disjunctive clauses (length of the conjunction) picked from
a range [dmin, dmax], where each disjunctive clause contains a random number a ∈ [amin, amax]
of atoms (length of the disjunctions). This allows finally to generate all kinds of scenarios:
• general filters in CNF,
• simple conjunctive queries (with amin = amax = 1) and
• simple disjunctive queries (with dmin = dmax = 1).
This technique also allows us to simulate scenarios where users define queries with predicates

in disjunctive normal forms (DNF). We know that DNF to CNF transformation leads to an
exponential explosion of the predicate size which can be simulated by some extent by defining
big maximum limits (dmax, amax).

3.6.2 Experiments

In the following we will describe some experimental results concerning the scalability and
effectiveness of our optimization approach. Our experiments are run on a 3.06 GHz computer
with 4 physical cores and with 11.8 Gb of memory.

3.6.2.1 Experience I: Conjunctive queries

The first experimentation scenario evaluates and compares the performance of our approx-
imate Steiner algorithm (STA), the VCA algorithm with subsumption graph and the VCA
algorithm with the VCB data structure. Our particular interest concerns the scaling behavior
in the number of queries. We know that the number of sources involved in the optimization
process is independent of the quality of the solutions (due to the normalization process, each
source is factorized independently). Therefore we have generated different sets of queries over
a single source:

|Q| ∈ {10, 20, . . . 100, 200, . . . 1000, 2000, . . . 10 000}

We limited the filtering predicates to simple conjunctions of one to three atomic filters, a
realistic scenario for search engines (dmin = 1, dmax = 3, amin = amax = 1). Remind that these
predicates are generated according to the distribution of 300 keywords in the filtered feed.

80



3.6 Experimental evaluation

The obtained results are shown in Figure 3.12.

Figure 3.12 – CPU time & Cost of trees for experience I

The figure on the left side shows the evolution of the optimization cost with respect to the
number of predicates. We can see that the STA algorithm does not even reach the number of
1000 queries in a reasonable time period (15 minutes). The VCA algorithm with subsumption
graph is limited to 3000 queries, whereas VCA algorithm + VCB scales well and is able to
optimize 10000 queries in two minutes. On the right figure, we can see that the filter plans
generated by all three algorithms have a similar evaluation cost. We might expect that both
versions of VCA (with graph and with VCB) should generate the same multi-query plans. We
explain the difference between the plan costs by the non-determinism of the choice of the best
candidate based on its selectivity.

We have also measured the memory usage of both structures in these settings: the subsump-
tion graph and the VCB. The size of the VCB data structure decreases during the execution
of the factorization algorithm. Thus, memory cost for the VCB data structure is measured
for first step of the factorization algorithm. Figure 3.13 shows that memory usage with VCB
clearly is divided by a factor of 3.

We observe an asymptotic behavior in the subsumption graph curve. This is due to the
fact that the number of keywords per source is limited to 300. Thus, at some moment the
maximum number of conjunctive predicates of size 3 is reached and the subsumption graph
attains its saturation state, i.e., all possible predicates are already present in the graph.
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Figure 3.13 – Memory cost for experience I

3.6.2.2 Experience II: Complex queries

In the second experiment we examine the scalability of the algorithms in function of the
length of the filter predicates of the queries. For this purpose we have fixed the number of
queries per script (|Q|) to 1000 and generated five sets of queries with an increasing number of
disjunctive clauses per predicate (dmax goes from 1 to 5). Meanwhile the maximum length of
these disjunctive clauses is fixed to 5. In other words: dmin = dmax = 1, amin = 1, amax = 5 for
the first test; dmin = 1, dmax = 2, amin = 1, amax = 5 for the second on, and so on.

Our results are shown in Figure 3.14.

Figure 3.14 – CPU time & Cost of trees for experience II

In the left figure, we can see that the cost of VCA with VCB scales with the predicate

82



3.6 Experimental evaluation

complexity, while VCA with subsumption graph does note scale (STA already is out of the
displayed limits for the most simple queries). The right figure shows the evaluation cost of the
obtained filtering plans which are again close. We also can see that an increasing number of
conjunctions results in an increasing number of factorizations and the reduction of the obtained
evaluation cost.

3.6.2.3 Experience III: Multiple sources

Our third experiment corresponds to a more realistic scenario where queries are defined
on multiple sources. We have generated a workload of 10 000 queries over a fixed set of 500
sources, where each publication query is defined on a random number qS of sources (qS ∈ [1, 10]).
Filtering predicates associated to each query are defined as conjunctive predicates of random
length d ∈ [1, 3]. However, in order to reduce the generation of empty filtering conditions
(selectivity = 0), we have used the top 5% of the most frequent keywords in each source.
Figure 3.15 shows the CPU cost associated to the normalization process for workload subsets
of different size, while Figure 3.16 illustrates the optimization cost and the query plan cost for
each factorization algorithm.

Figure 3.15 – CPU time of Normalization algorithm for experience III

First, we can see that the CPU cost of the normalization process (Figure 3.15) grows linearly
with the number of queries. For 10 000 queries we observe a normalization cost of 2.5 seconds.

On the other hand, we can see in Figure 3.16 that the optimization cost is lower than in
previous experiments (with one source only) for the same number of queries. This is due to the
fact that each query only concerns a limited number of sources, which decreases the average
number of filters for each source (optimization cost is exponential w.r.t. the number of filtering
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Figure 3.16 – CPU time & Cost of trees for experience III

predicates and linear in the number of sources). We can see that the resulting query plan costs
obtained by all three algorithms are very close (in the right graph).

In conclusion, for a workload of queries aggregating many heterogeneous sources and with
different conjunctive predicates, our experimental evaluation shows that all three algorithms
produce very close results (the filtering trees they generate have similar evaluation costs), but
VCA+VCB factorization finishes much faster than the others.

3.6.2.4 Experience IV: Cost model validation

Finally, our last experiment searches to validate the cost model that we have proposed. This
is why we have developed an RSS Publishing Emulator. This emulator may replay the item
publication history of a given set of RSS sources. It respects the original time elapsed between
two item publications, however it may be tweaked in order to speed up the whole emulation
process.

We use our Emulator to reproduce the RSS publication history that we have crawled during
a month. This allows computing the CPU time spent by the query graph and its operators when
processing real items produced by the emulator. In this experience, we reuse the parameter
settings of the preceding experience, except for the number of queries that goes until 50 000.
Table 3.5 summarizes this configuration settings.

Thus, we have replayed our one-month feed experience through our system without query
graph optimization first, and then with optimization. The “without optimization” experience
means that query plans follow the syntactic form of the queries, i.e., first union operators and
then the corresponding filtering operator. In the “with optimization” experience we have used
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|Q| 50 000
|S| 500
qS ∈ [1, 10]
d ∈ [1, 3]
a 1
top 5% most frequent keywords per source

Tableau 3.5 – Experience IV parameter configuration

the VCA + VCB algorithm. We have measured the CPU usage for all operators composing
the query graph for each experience. Figure 3.17 shows the results we have obtained.

Figure 3.17 – CPU time of the Query Graph execution with & without optimization

The red line (+ symbol) corresponds to CPU usage of both the selection (×) and union
(∗) operators. Respectively, the violet line (� symbol) corresponds to the sum of the cyan
(selection) and brown (union) lines. We can see that the gain reached by the optimization
grows with the number of queries.

Finally, Figure 3.18 shows the theoretical cost estimated by our cost model (red line) as well
as the real CPU cost measured through this experience (green). Theoretical cost considers only
the estimated cost of selection operators, this is the sum of arc weights of the filtering trees
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generated by the optimization algorithm. Thus real cost considers only CPU usage of selection
operators (i.e. it corresponds to the cyan line (�) on Figure 3.17). We can see that the curve
of the estimated cost fits the CPU cost measured by the system.

Figure 3.18 – Estimated number of evaluated items by our Cost model vs. real cost
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Chapter 4

ROSES System Architecture and Prototype

The processing and optimization principles presented in this thesis have been validated by
the implementation of a prototype of the ROSES system. In this Chapter, we first describe
the architecture of the ROSES system (Section 4.1). Then, Section 4.2 presents some of the
difficulties arisen during the development of the ROSES prototype and how we have addressed
them. Finally we give an overview of the prototype and the implemented functionalities in
Section 4.3.

4.1 ROSES system architecture

The ROSES System is composed of five modules responsible for processing RSS feed queries
and managing meta-data about users, publications and subscriptions. As shown in Figure 4.1,
RSS feeds are processed by a three layered architecture where the top layer (Acquisition) is in
charge of crawling the set of RSS and Atom feeds used by the publication queries (the source
feed set) and to detect and transmit new items to the Evaluation module. The second layer
(Evaluation) maintains a continuous query plan which comprises all publication queries and it
is responsible for the processing and optimization of such query plan. Finally, the third layer
(Dissemination) deals with publishing the results according to the registered subscriptions. The
remaining two modules (Catalog and System Manager) provide meta-data management services
for storing, adding, updating and deleting source feeds, publication queries and subscriptions.

4.1.1 Acquisition module

The Acquisition module is responsible for crawling the sources used by the user-defined
queries. These sources may be of very different kind: Syndication Feeds (RSS and Atom), Web
Services, periodic database queries, etc. 1 Thereby the ROSES System enables the definition

1. Only RSS and Atom crawling has been implemented.
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Figure 4.1 – ROSES System Architecture

of wrappers for each kind of source. These wrappers transform the crawled items into a ho-
mogeneous format (the ROSES item, see Section 2.2.1), which is used thereafter by the rest of
modules.

The main issue handled by the Acquisition module is to detect new items published by
external sources using a refresh protocol in pull mode. This protocol has to estimate the date
of the next update for every source. In fact, every RSS feed has a different update periodicity
and the crawler must progressively adapt the crawling to the frequency of each source, in order
to guarantee the completeness of the source without unnecessarily requesting them too often.
This means: minimize the data loss rate as well as minimize the bandwidth usage for requesting
the sources.

An efficient refresh strategy optimizing the bandwidth usage can be found in [HAA10],
where the authors propose a best-effort strategy for refreshing RSS documents under limited
bandwidth and introduce the notion of saturation for reducing information loss below a certain
bandwidth threshold.

4.1.2 Evaluation module

The core of the ROSES System is an algebraic multi-query plan encoding all registered
publication queries. As presented in Chapter 3, the evaluation of this query plan follows an
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Figure 4.2 – Acquisition Layer overview

asynchronous pipe-lined execution model where the Evaluation module:
• continuously evaluates the set of algebraic operations according to the incoming stream

of ROSES items, and
• manages the addition, modification and deletion of publication queries.
We can see in Figure 3.1 an overall image of this module. Here, the query graph is composed

of three simple publications: p1 = σ1(src1 ∪ src2), p2 = (src3 ∪ src4) ./1 (ω1(src5)) and
p3 = σ2(p1 ∪ src6). Notice that publication p3 is defined on another publication (p1), that is
why publication operators forward their input items to both (i) the Dissemination module and
(ii) to an intermediate queue in order to be used by operators of other publications. Notice
as well that the kind of queue between the operators ω1 and ./1 is different from the rest of
queues. A detailed description of the query engine module is given in previous Section 3.1 and
later in Section 4.2.

The black boxes with rounded corners represent the threads that are continuously executed.
The Dispatcher component retrieves new items detected by the Acquisition module and pushes
them in the corresponding source queue of the query graph.

The query graph itself is processed by continuously executing its constituent operators. Our
query execution approach is based on a multi-threaded model where every operator is processed
by a different thread asynchronously. Technical constraints make it unfeasible to assign a thread
to each operator, since the number of operators in the query graph is generally much larger
than the number of threads that might be run simultaneously (ROSES is implemented in Java
which is limited to about a thousand threads per process). Thus, we have resorted to a Thread
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Pool mechanism.
An operator Scheduler continuously observes the operator graph and decides which operator

should be evaluated next and sends it to the thread pool’s task queue. Executing an operator
consists in creating an execution task which is sent to the Thread Pool. A Thread Pool contains
a variable number of threads bounded by a minimum and maximum value. Each thread of the
Thread Pool may be either running a task or idle. Tasks are inserted into a waiting list (FIFO)
and executing a task consists in assigning it to a waiting thread. When an idle thread exceeds a
fixed time-to-live, the thread is removed from the Thread Pool. Respectively, when all available
threads are running some task and the waiting list exceeds a given size, the system automatically
creates new threads (in the pool) to process the waiting tasks.

When an operator is picked by the scheduler, it is immediately marked as active, and it
remains in this state until it is taken by one thread of the thread pool and completely processed.
Then it is marked back to passive. An active operator can not be selected again by the scheduler
even if it is not being executed but just waiting in the task queue. This allows to prevent that
two different threads simultaneously run the same operator, which might entail (a) altering
item’s ordering on the feeds, or (b) read/write conflicts on its input/output inter-operator
queues. In Figure 3.1, red colored operators represent the active operators, i.e. those operators
that are currently executed by a thread; orange operators represent the operators scheduled to
be executed and waiting for a free thread; and blue operators represent the passive ones. This
approach enables an asynchronous graph processing.

We have implemented two different scheduling strategies for assigning operators to tasks, a
Random and a Round-robin strategy:
• Under the Random strategy the Scheduler picks a random passive operator from the

physical query graph and verifies if its input inter-operator queue has items to evaluate,
before sending it to the thread pool. This trivial approach guarantees that all query
graph operators are uniformly evaluated at a given moment.
• The Round-robin strategy chooses the next operator to evaluate in a fixed order deter-

mined by the operator arrival in the query graph. However, this strategy may be used
to implement a priority evaluation ordering, where operators are processed in function
of different criteria, e.g. the number of items in the operator’s input queue or the time
elapsed since last operator execution.

The Manager component handles the insertion, suppression and update of publication
queries in the operator graph. Graph updates are done online during graph processing, namely
graph evaluation is not stopped in order to insert/delete queries. In fact, query insertion is
performed through the smallest ancestor algorithm presented in Section 3.5.
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Finally, the Runtime Optimizer is in charge of updating the operator graph in order to keep
it optimized. The query plan efficiency/optimality degrades over time due to: (1) the contin-
uous arrival of new publication queries and/or removal of existing queries, (2) the changing
publication rate of the sources and (3) the predicate selectivity variation over time. For this
purpose, the system must periodically reoptimize the query plan at runtime. In Section 3.5 we
have presented our runtime optimization technique.

4.1.3 Dissemination module

The Dissemination module is in charge of notifying users with new items produced by the
publications that they have subscribed. Users can define several subscription types: by SMS,
email, RSS/Atom feed..., as well as the notification frequency 2. In an analogous manner to the
Acquisition module, this module has a different Diffuser for every type of subscription, so once
new items are produced by a publication, the system checks which subscriptions are concerned
by those items and it dispatches them to the appropriate Diffusers.

4.2 Prototype implementation details

The ROSES Prototype is composed of a server and a client and has been implemented on
Java 6, it makes extensive use of java generics and the new concurrent thread-safe objects
introduced in this java version. The ROSES Prototype is composed of 231 classes and more
than 25 900 lines of code. Both, the ROSES server and the client, are publicly available on the
ROSES Website 3 and can be downloaded from http://www-bd.lip6.fr/roses/doku.php?
id=prototypes.

Inter-operator queues

A first technical problem we faced in the development of the ROSES prototype concerns
inter-operator queues, the buffers connecting physical operators and which enable the asyn-
chronous execution model of our system. Our inter-operator queues do not obey the classic
behavior of multi-threaded queues, i.e., with multiple producers and multiple consumers and
where each element of the queue is processed by just one of the consumers. Instead our inter-
operator queues have always one unique producer operator and multiple consumers but every

2. Only RSS/Atom subscription output has been implemented.
3. http://www-bd.lip6.fr/roses/
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element of the queue must be processed by every consumer. Java’s concurrent queues rely on
first kind of queues (multiple producers and consumers), furthermore they add a processing
overhead due to the synchronization of threads on push and poll operations. We wanted our
queues to be as fast as possible since they are a crucial component of our evaluation module.
Thus we have implemented them ourselves.

The particular behavior of our inter-operator queues avoids thread synchronization overhead
by exploiting the fact that: (1) only one thread (the producer operator) may add items to the
queue, and (2) each consumer thread may access the queue separately through the use of
independent iterators. Figure 4.3 depicts a schema of our inter-operator queues. They are

Figure 4.3 – Consumer iterators schema

implemented as linked lists with a pointer to the tail (where new items are added) used by the
producer operator, and every consumer has its own iterator with its pointer to some node of
the queue. With this implementation when a new consumer is added on-runtime to the queue
(a new selection operator for instance), its iterator will point to the tail node, and when an
item has been evaluated by all queue consumers, its node will be automatically removed by
java’s garbage collector.

Time-based window queues

Another interesting issue concerns the time-based window buffers, i.e., the time-varying
buffers produced by time-based window operators. These buffers vary over time in function of
the publishing rate of the corresponding input feed and the window length specification. As
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well as for inter-operator queues, we wanted to avoid conflicts between threads accessing this
queue, i.e. the thread running the window operator and any thread running a join operator on
this window. Figure 4.4 illustrates the schema of a window-join operation.

Figure 4.4 – Window-join schema

We have implemented time-based window
queues also as linked-lists, with both pointers
head and tail. The tail pointer is only modi-
fied by the window thread when adding new
items to the queue. The head pointer (point-
ing the oldest item in the queue) must be peri-
odically updated in order to throw away items
already out-of-date. Thus, join evaluation is
performed as follows: when a thread runs a
join operator, it first updates the head pointer
of the corresponding window queue, that is it
shifts the pointer until the first valid queue
node according to the current time. Then for
each item of the join’s input queue the window
iterator traverses the window queue from the
current head to the current tail and evaluates
the join predicate on the corresponding input
item and each window item. This evaluation
model guarantees that any thread involved in
the execution of a join (i.e. the thread run-
ning the window operator and any thread running a join operator on that window) accesses
different parts of the window queue. Thereby they can not incur in an access conflict.

Similarity predicate on join operators

We have implemented a similarity predicate for join operators that allows to evaluate if two
textual fields of different items are similar or not (e.g. items’ titles or descriptions). To this
purpose, we have made use of the SimMetrics library 4, an open-source library developed at the
University of Sheffield by Sam Chapman that furnishes a complete collection of string distance
functions: Jaccard Similarity, Q-grams distance, Levenshtein distance, Overlap coefficient, etc.,
through different string tokenizers: simple whitespace tokenizer, 2-gram and 3-gram tokenizer.

4. http://www.aktors.org/technologies/simmetrics/
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After some experimentation on real newspapers feeds, we found that the overlap coefficient
metric used on 3-gram tokenized strings performs well (in quality and time) on short RSS item
titles (two or three words), while this same metric function but with the whitespace tokenizer
is more appropriate (and faster) for longer titles. On the other hand for items’ description
fields, usually much longer than title attributes, we use the Q-grams distance with the 3-gram
tokenizer since it appeared to produce better results than the rest.

This kind of join predicate allows to easily aggregate items published by different feeds but
talking about the same topic into a single item, for instance, when users are interested in seeing
how different newspapers talk about the same current affairs.

Feed refresh strategy of the Acquisition module

An important piece of the Acquisition module is the RSS/Atom Crawler and its feed refresh
scheduler. We have adapted an RSS/Atom Crawler provided by 2or3things, an industrial
partner of the ROSES Project, in order to fit into our requirements 5. The main problem with
feeds’ refreshing it that each source feed has a different refresh frequency and furthermore there
is no uniform way to update RSS/Atom files:
• Sometimes they are updated by entirely replacing the file by a new one with new items.
• At other times new items are directly added to current file and older items are periodically

removed.
• Sometimes items are listed in ascending order in the XML document and sometimes in

descending order or even with no order at all.
Another problem is that the GUID of RSS items is not mandatory on RSS Specification 6

and often is missing in RSS files. Thus, we have created our own identifier based on the MD5
hashcode of the title of the item, its publishing date and the guid (if present), in order to
uniquely identify feed items. This identifier is used therefore every time we refresh a source
feed, in fact, along with other statistics and metadata, we store the identifier of last crawled item
for each source. This enables to rapidly identify if last crawled item is still in the RSS/Atom
file the next time that we refresh the source, and avoid sending it twice in the corresponding
stream.

On the other hand, the feed refresh strategy has to continuously adapt the estimated time
of the next RSS/Atom file update for each feed, in order to fit as well as possible to real feed
updates. To this purpose, we have defined a simple yet effective feed update estimation based

5. Thanks to Nicolas TRAVERS from CNAM
6. http://www.rssboard.org/rss-specification
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on the number of new items found at every feed refresh. Thus we define the estimated duration
δ between two source updates as follows:

δnew =



δold · 1.5 if error

δold · 1.35 if no new items

δold if between 1 and 5 new items

δold · 0.33 if all items are new

At each refresh of a given source src, we reestimate the time interval δnew we will run the
next refresh. This estimation depends on the old refresh interval δold and the source behavior
observed at the refresh instant. So the next refresh date is delayed when an error is encountered,
for instance if the RSS file is not currently available. Otherwise, it is modified in order to
accommodate itself to the real update frequency of the feed. If the source feed has no new
items, we increase the refresh time interval. When it provides 1 to 5 new items, we leave the
interval value untouched. Otherwise we decrease it if all items are new.

Inter-module communication

All three modules composing the ROSES System (Acquisition, Evaluation and Dissemina-
tion) are coupled via large thread-safe java concurrent queues. The Acquisition and Evaluation
modules are connected through the items to evaluate queue and the Evaluation and Dissemina-
tion modules through items to publish queue (see Figure 4.1). Despite the processing overhead
of these synchronized queues, we were compelled to use these data structures since they enable
multiple threads to access them concurrently on write mode (in both cases, Acquisition and
Evaluation modules). In the Acquisition module, multiple threads may run feed refresh tasks
in parallel and, thus, send their results to the items to evaluate queue, while in the Evalu-
ation module multiple threads may run the ultimate operator of a query and, hence, access
concurrently to the items to publish queue.

Whereas the use of these queues might be seen as a bottleneck in the System, the advantage
of such an approach is that these modules may be entirely uncoupled and hence be run in a
distributed environment, where every peer might run different modules. For instance, in a
peer-to-peer environment a subset of peers might be in charge of the acquisition tasks, another
subset of peers might be responsible for the evaluation of the query graph, and a last subset of
the dissemination of the resulting publications.
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Replacing filtering trees

During the runtime optimization process a delicate issue is the replacement of the currently
running filtering tree by a new tree produced by the optimizer. Given an existing filtering tree
Ti and a new optimized tree T ∗i , first we have to do is blocking the item production of its source
operator srci. Then all filtering operators from Ti are forced to consume all current items in
their inter-operator queues. Once all items consumed, all filtering operators appearing in Ti

may be removed and replaced by T ∗i . Then srci item production can be resumed. A detailed
algorithm is given next in Listing 4.1.

Algorithm 4.1 replace_physical_filtering_tree
Input: a source srci, the new optimal plan T ∗i
Output: physical filtering tree T ′i of source srci is safely replaced by new T ∗i
1: pause(srci) // blocks srci
2: force_operator_execution(T ′i ) // all op ∈ T ′i are executed until their queues are empty
3: remove_all(T ′i )
4: generate_physical_operators(T ∗i )
5: resume(srci) // unblocks srci

Finally, we also must take care that filtering tree replacement is not performed at the same
time that we try to insert/remove a new/existing predicate on the same filtering tree. That
is closest ancestor query insertion algorithm (3.7) and replace physical filtering tree algorithm
(4.1) may enter in conflict if executed in parallel. This may be easily addressed through a
synchronization strategy. These tasks can be scheduled in order to execute them separately.

4.3 Overview of the ROSES client functionalities

The ROSES Client graphical interface has been realized with the IBM’s Standard Widget
Toolkit 7, a widget toolkit alternative to java’s AWT and Swing that performs faster than its
java competitors by using native operating system (OS) widgets.

Figure 4.5 shows a screenshot of ROSES Client main window. It is composed of three panels.
The left panel lists all available feeds (sources and publications). When a user double-clicks
one feed, a new tab is open in the main panel. This new tab contains different information
about the feed depending on whether it is a source or a publication. Source tabs show a
description of the source including its ID, name, URL, set of keywords, last update date and
the next scheduled refresh date, as well as an embedded browser displaying the contents of the

7. http://www.eclipse.org/swt/
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source feed (see Figure 4.6). Concerning publication tabs, its description panel includes the
publication ID, its name, the query that defines the publication, the creation date and the URL
of the feed generated by the query. Users may directly visualize the contents of the feed thanks
to the embedded browser, furthermore, the publication tab contains a visual representation of
the logical query plan corresponding to the query (see Figure 4.7).

Figure 4.5 – Main window screenshot of ROSES client Prototype

Apart from the source and publication tabs, the main panel contains other fixed tabs such
as the terminal or the physical graph tabs. On the physical graph tab, users can visualize the
currently running physical operator graph which comprises all publication queries. Physical
graph visualization, as well as single logical query plan visualization, has been implemented
using dot, an AT&T ’s GraphViz tool 8. dot enables to easily generate pretty visual graphs
through the DOT Language 9 without worrying about graph layout issues.

8. http://www.graphviz.org
9. http://www.graphviz.org/content/dot-language
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Figure 4.6 – Browsing ABC ’s source feed con-
tents

Figure 4.7 – Visualizing logical query plan for
enriched_social_feed publication

On the other hand, the terminal tab enables users to directly interact with the ROSES
server. In fact, users can submit new publication queries to the System through the little panel
situated at the bottom of the client’s window. The new query is parsed and, when everything
is fine, the publication is inserted into the system and its physical query plan is inserted into
the query graph; then a confirmation message is shown into the terminal. Otherwise, when
there is any syntactic or semantic problem with the query or any other error (e.g., there already
exists a publication with the same name, or there is an unknown source feed in the query), the
corresponding error message is displayed into the terminal.

Users can also register new sources into the system via a simple form dialog, where they
give the name and URL of the feed, and some optional descriptive keywords (Figure 4.8).

Figure 4.8 – Registering a new source feed

Another functionality implemented in the ROSES prototype is the possibility to import
roses scripts through the File menu. A roses script is a text file containing ROSES queries.
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Once the user chooses the corresponding file, all queries are parsed and dynamically inserted
into the execution engine. Again, error messages are displayed within the terminal if necessary.

Finally, all the parameters concerning the ROSES Prototype can be adjusted through an
XML file. This file, listed in Appendix A.2, allows defining for instance the back-end database
used by the prototype (MySQL or H2), the evaluation thread-pool characteristics, the scheduling
strategy, the type of files produced by ROSES publications (RSS, XML, text, etc.), or yet the
factorization algorithm used by the optimizer.

4.3.1 The ROSES Query Builder web application

Besides our desktop application, we have developed a web application that implements an
easy-to-use ROSES Query Builder. This ROSES Query Builder enables users with no knowledge
on declarative languages to create complex publication queries by means of an easy-to-use visual
programming interface.

Figure 4.9 shows a screenshot of the ROSES Query Builder ’s main page. This web interface
has been developed using Google’s GWT (Google Web Toolkit) 10, a novel paradigm on AJAX
programming introduced by Google Developers. GWT allows developers to implement complex
interactive AJAX applications with no need to write a line of AJAX. GWT applications are
written in Java and afterward transformed into HTML and JavaScript files thanks to the
GWT’s Java-to-JavaScript compiler. Furthermore, AJAX applications produced by GWT
ensure cross-platform, cross-browser and javascript code obfuscation and optimality.

The ROSES Query Builder web application implements multi-user access: once a user
connects to the system, he can see his own sources/publications. He can see as well the public
sources/publications shared by other users. Sources and publications can be easily filtered out
through the adaptive filter implemented above the feed list (e.g., all French feeds within the
sports category). Then the user can create a new publication defined on the resulting source list
(he can also fine-tune the resulting source list by manually choosing the feeds he is interested
in). After that, he can define filter and/or join operations on the union of the selected feeds
(e.g., filter out all those feed items whose title contains ’Raymond Domenech’, or join all selected
sources with the RSS feed of his own blog). He may repeat these steps in order to compose the
different operators and build more complex publications. Finally, when the user validates the
publication, the corresponding ROSES query is generated, the publication is inserted into the
ROSES query engine and he can already begin to check the first publication results.

10. https://developers.google.com/web-toolkit
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Figure 4.9 – The ROSES Query Builder web interface
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Conclusion and Future Research Directions

In this thesis we have presented ROSES, a large-scale RSS feed aggregation system. Our
main contributions are a simple but expressive aggregation language and algebra for RSS
feeds combined with an efficient cost-based multi-query optimization technique. The whole
ROSES architecture, feed aggregation language and continuous query algebra have been im-
plemented. This prototype includes as well the Steiner tree-based multi-query optimization
algorithms described in Section 3.4 and the dynamic multi-query optimization strategy de-
scribed in 3.5 [TATV11]. We have illustrated experimentally that the system is able to manage
thousands of publications within reasonable system requirements and that the optimization
phase scales well with respect to the number of queries and filtering predicates.

The ROSES System is not a closed framework and it might be easily adapted to other con-
tinuous data management environments like, for instance, RFID monitoring systems. Further,
it provides a modular and extensible framework, enabling new multi-query optimization tech-
niques to be developed and incorporated incrementally into the system (e.g., efficient evaluation
techniques for selection or join physical operators).

There exist many avenues for future work. First of all, we intend to conduct an experimental
evaluation on the runtime optimization approach proposed in Section 3.5. These experiments
would have to evaluate both kinds of events changing the global cost of a multi-query plan, i.e.,
(i) the insertion and removal of queries and, specially, the arrival of new selection predicates
with a high selectivity rate, and (ii) the evolution of feed contents changing the selectivity
rates of existing filtering predicates. In both cases, when a new very selective predicate arrives
or an existing predicate with a low selectivity becomes very selective (and vice versa), an
existing optimal filtering tree may become obsolete and has to be replaced by a new tree which
might have a completely different structure. Thus our runtime optimization strategy should be
evaluated on a set of sources whose keywords present a changing frequency over the time.
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On the other hand, in this work we mainly focus on the generation of optimal query plans,
statically or dynamically, independently of the underlying operator scheduling policy. Whereas
this is sufficient for a large class of filtering queries, it does not take account of more complex
operators like windows and joins. One type of approach in this direction is to study in more
detail different kinds of operator scheduling strategies for reducing memory cost and processing
overload. A good scheduling strategy could take into account many criteria: queries defined
on sources with a higher publication rate could take priority over others where, at the same
time, publication queries subscribed by a large number of users (or used by other publication
queries) could be given as well a higher priority. At the physical level we may translate this by
allocating different priorities to the operators in function of these parameters: (1) the number
of items in the input queue of the operator, (2) the elapsed time since last execution of the
operator, or (3) the number of subscriptions to a publication that depends on the operator.
The scheduling strategy should consider all these parameters together and find the optimal
calibration of each one.

Yet another interesting challenge, we are currently working on, is the optimization of the
query graphs in a distributed setting. The processing of the overall query graph in a distributed
environment allows indeed to improve the scalability of the system. The main idea is that the
global query graph is evaluated in a distributed environment, a P2P network for instance. In
this context there are two possibilities for distributing a global plan, (i) either the query graph
is partitioned and each peer handles its own partition, i.e., there are not replicated computa-
tions, or (ii) computing replication is allowed, which might make sense on large networks with
geographically distant peers. Anyhow, in both cases our cost model should be extended in
order to include the communication costs between peers as well as the workload capabilities of
each peer which would ensure an optimal load-balancing within the system. We are currently
working on the design of a variant of the greedy algorithm VCA that enables to incorporate
the fact that an operator may be executed in different peers.
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A.1 Complete extended-BNF grammar for ROSES query
language

<publication-query> ::= "CREATE" "FEED" <publication-name>

"FROM" <union>

( <join-clause> )*

[ <where-clause> ]

<union> ::= <flow> ( "|" <flow> )*

<flow> ::= ( <url> | <source-name> | <publication-name> | "(" <union> ")" )

( "[" <selection-predicate> "]" )*

[ "AS" <variable> ]

<url> ::= ’"’ url ’"’

<source-name> ::= identifier

<publication-name> ::= identifier

<variable> ::= "$" identifier

--------------------------------------------------------------------------------

<join-clause> ::= "JOIN" <window-predicate> "ON" <union>

"WITH" <join-operation>

<window-predicate> ::= <time-based>

| <count-based>

<time-based> ::= "LAST" integer <time-unit>

<count-based> ::= "LAST" integer "ITEMS"
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<time-unit> ::= "SECONDS"

| "MINUTES"

| "HOURS"

| "DAYS"

| "WEEKS"

| "MONTHS"

<join-operation> ::= <variable> "[" <join-predicate> "]"

--------------------------------------------------------------------------------

<where-clause> ::= "WHERE" <selection-operation> ( "AND" <selection-operation> )*

<selection-operation> ::= <variable> "[" <selection-predicate> "]"

--------------------------------------------------------------------------------

<selection-predicate> ::= <selection-disjunction>

<selection-disjunction> ::= <selection-conjunction> ( "OR" <selection-conjunction> )*

<selection-conjunction> ::= <selection-literal> ( "AND" <selection-literal> )*

<selection-literal> ::= <selection-atom>

| "NOT" <selection-atom>

<selection-atom> ::= <contains>

| ...

| "(" <selection-predicate> ")"

<contains> ::= <attribute> "CONTAINS" ’"’ string ’"’

<attribute> ::= "title"

| "link"

| "description"

| "author"

| "category"

| "pubDate"

| "keywords"

--------------------------------------------------------------------------------

<join-predicate> ::= <join-disjunction>

<join-disjunction> ::= <join-conjunction> ( "OR" <join-conjunction> )*

<join-conjunction> ::= <join-literal> ( "AND" <join-literal> )*
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<join-literal> ::= <join-atom>

| "NOT" <join-atom>

<join-atom> ::= <similar>

| ...

| "(" <join-predicate> ")"

<similar> ::= <attribute> "SIMILAR" <window-attribute>

| <window-attribute> "SIMILAR" <attribute>

<window-attribute> ::= "WINDOW" "." <attribute>

A.2 properties.xml: the ROSES configuration file
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">

<properties>

<comment>ROSES Configuration file</comment>

<!-- DB: MySQL webia roses -->

<entry key="Catalog.dbms">mysql</entry>

<entry key="Catalog.driver">com.mysql.jdbc.Driver</entry>

<entry key="Catalog.connection">jdbc:mysql://webia.lip6.fr/roses</entry>

<entry key="Catalog.host">webia.lip6.fr</entry>

<entry key="Catalog.database">roses</entry>

<entry key="Catalog.user">roses</entry>

<entry key="Catalog.password">XXX</entry>

<entry key="ItemsToEvaluate.blockingQueue">LinkedBlockingQueue</entry>

<entry key="ItemsToEvaluate.poll.timeout">1</entry>

<entry key="ItemsToEvaluate.poll.timeUnit">SECONDS</entry>

<entry key="Dispatcher.pauseTime">1000</entry>

<entry key="Source.pauseTime">10000</entry> <!-- physical operator -->

<entry key="ThreadPool.corePoolSize">4</entry>

<entry key="ThreadPool.maximumPoolSize">10</entry>

<entry key="ThreadPool.keepAliveTime">20</entry>
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<entry key="ThreadPool.timeUnit">SECONDS</entry>

<entry key="ThreadPool.queuingStrategy">Unbounded queues</entry>

<!-- Random | RoundRobin -->

<entry key="Scheduler">RoundRobin</entry>

<entry key="Scheduler.ralentiTime">1</entry>

<entry key="Scheduler.pauseTime">1000</entry>

<entry key="BufferedQueue.bufferSize">1000</entry>

<entry key="Publication.packetSize">1000</entry>

<entry key="ItemsToPublish.blockingQueue">LinkedBlockingQueue</entry>

<entry key="ItemsToPublish.poll.timeout">1</entry>

<entry key="ItemsToPublish.poll.timeUnit">SECONDS</entry>

<!-- TXT | XML | RSS | LOG | NOOP -->

<entry key="Outputter">RSS</entry>

<entry key="Outputter.directory">/web/creusj/public_html/roses/output</entry>

<entry key="Outputter.url">http://webia.lip6.fr/~creusj/roses/output</entry>

<entry key="Outputter.xsl">http://webia.lip6.fr/~creusj/roses/xsl/htmljoin.xsl</entry>

<entry key="XMLizer.directory">xml</entry>

<entry key="GraphMLizer.directory">graphml</entry>

<!-- Yes | No -->

<entry key="dottify">Yes</entry>

<entry key="DotGenerator.directory">dot</entry>

<entry key="GraphViz.dot">/usr/bin/dot</entry>

<!-- None | Steiner | VCA | OVCA -->

<entry key="Optimizer.algorithm">VCA</entry>

<entry key="SubsumptionGraph.feedRate">1</entry>

<entry key="CostEstimator.unknownSelectivity">0.01</entry>
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<entry key="DynamicTaskExecutor.pauseTime">1000</entry>

<entry key="RuntimeOptimizer.checkTreeCostDivergenceEvery">10</entry>

<entry key="RuntimeOptimizer.smoothingFactor">0.5</entry>

<entry key="RuntimeOptimizer.divergenceThreshold">0.2</entry>

<!-- All | OnlyConcernedSources | OnlyConcernedSourcesIfDontHaveNewPredicates -->

<entry key="Reoptimizer.strategy">All</entry>

<entry key="UserSimulator.ralentiTime">1000</entry>

</properties>

A.3 Résumé en français

Les nouvelles technologies Web 2.0 ont transformé le Web en un espace vivant de partage
d’information où les internautes sont devenus eux-mêmes collecteurs et créateurs de données.
Le contenu du Web 2.0 évolue rapidement et produit en continu de grandes quantités de flux
d’information. La prolifération de contenus générés par les applications Web 2.0 donne de
nouvelles opportunités de collecte, de filtrage, d’agrégation et de partage de ces flux. Au vu de
la quantité et de la diversité d’informations générées quotidiennement par le Web 2.0, il devient
indispensable de développer des outils pour traiter de manière efficace les données et pour
permettre aux utilisateurs de filtrer et d’agréger des informations intéressantes et personnalisées.

Les formats de syndication RSS et Atom ont émergé comme un moyen standardisé pour
délivrer « en temps réel » les mises-à-jour du contenu du Web. Le format RSS (ou Atom)
représente les flux d’information sous forme de documents XML contenant une liste de simples
résumés textuels (items) avec des liens vers le contenu publié. En souscrivant aux ressources
RSS/Atom, les lecteurs rafraîchissent régulièrement ces documents et reçoivent ainsi des flux
d’items qui leur permettent de rester informés en continu. La plupart des blogs personnels, des
portails d’actualités ou des forums de discussions utilisent les flux RSS/Atom pour compléter la
recherche par mots-clés et la navigation entre les pages Web avec un mode de diffusion plus ciblé
et efficace. De plus, les réseaux sociaux (ex : Facebook, Twitter, Flickr) utilisent également RSS
pour notifier les utilisateurs de nouvelles informations publiées par leurs amis (ou followers).

Les agrégateurs RSS/Atom comme GoogleReader 1, Yahoo! Pipes 2, ainsi que feedrinse.com,

1. www.google.com/reader
2. pipes.yahoo.com
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newsgator.com, bloglines.com, ou pluck.com permettent aux utilisateurs de personnaliser leurs
souscriptions avec un ensemble de mots-clés. De la même manière, les systèmes d’alerte de
Google 3 et de Yahoo! 4 permettent de filtrer et de notifier par courriel le contenu auquel
ils ont souscrit. Toutefois, tous les agrégateurs RSS/Atom existants réalisent ce filtrage d’une
manière non continue, soit en interrogeant un moteur de recherche sous-jacent où en interrogeant
directement les flux au moment où l’utilisateur se connecte. Ce fonctionnement ne permet pas
de garantir une diffusion performante et équilibrée des milliards de flux produits par le Web2.0.
On estime ainsi qu’il existe plus de 60 millions de blogs (sans compter les forums), comparé
aux 5000 sources d’information professionnelle qui sont rafraîchies périodiquement par Google
et Yahoo!. De plus, des estimations officielles récentes donnent un total de presque 1 milliard
de comptes utilisateurs sur des réseaux sociaux comme Facebook. Ces chiffres gigantesques
illustrent le besoin croissant d’outils nouveaux et performants qui soient capables de traiter en
temps réel des millions de flux d’informations sur le web.

Dans cette thèse, nous présentons ROSES (Really Open Simple and Efficient Syndication),
un cadre générique pour l’interrogation et l’agrégation de flux RSS basés sur leur contenu. Il
repose sur une approche orientée données, capable de supporter des expressions de requêtes
continues (sélections, jointures, unions) sur des informations provenant de flux textuels et
factuels. ROSES permet également de publier des vues RSS fusionnant et filtrant un grand
nombre de flux. Ces vues peuvent être réutilisées pour construire de nouveaux flux et le
résultat est un graphe acyclique avec des requêtes d’unions et de filtrages sur les flux impliqués.
La taille de ces graphes de requêtes peut croître très rapidement (en nombre de sources et
d’opérateurs), ce qui nécessite des stratégies d’optimisation multi-requête efficaces pour réduire
le coût d’évaluation.

ROSES se base sur un modèle de données simple et sur un langage de requêtes expressif
pour définir des requêtes continues sur des flux RSS. Combiné à des stratégies de récupération
de données efficaces et des techniques d’optimisation multi-requête, ROSES peut être utilisé
comme un intergiciel de flux RSS continus produisant des sources dynamiques d’information.
Les principales contributions de ce travail sont :
• Un langage déclaratif pour l’agrégation et la publication de larges collections RSS sous

forme de requêtes/vues ;
• Une algèbre RSS extensible pour construire des plans d’exécution multi-requête continus

pour les flux RSS ;
• Une stratégie d’optimisation multi-requête efficace et passant à l’échelle en termes de

3. www.google.com/alerts
4. alerts.yahoo.com
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sources et de publications ;
• Un prototype d’exécution basé sur un moteur d’exécution multi-processus asynchrone.
Le langage et l’algèbre que nous proposons dans cette thèse ont fortement été influencés

par les travaux de [GÖ03] sur lesquels nous proposons un cadre plus flexible et plus adapté au
contenu de la syndication du Web, ainsi qu’un nouvel opérateur de jointure d’annotation que
nous introduisons par la suite. Quant à la stratégie d’optimisation multi-requête efficace, elle
se base sur les travaux de [SG90] avec l’algorithme de factorisation HA, et sur l’optimisation
d’arbres de Steiner [CD02] qui nous a amené à proposer les algorithmes VCA et VCA+VCB
que nous développons lors de la factorisation des requêtes ROSES.

A.3.1 Le langage ROSES

Les principales fonctionnalités offertes par le langage de manipulation de données ROSES
sont l’enregistrement de nouveaux flux sources (flux de données produits par le module d’acquisi-
tion), la publication de flux virtuels définis par des requêtes et la souscription à des flux (flux
produit par manipulation et transformation d’autres flux). Nous présentons en premier lieu
le langage de publication de flux, suivi d’une brève présentation de la manière dont on peut
enregistrer des flux sources et souscrire à des flux sources ou virtuels.

Le langage de publication ROSES a été conçu pour atteindre plusieurs objectifs : être ex-
pressif mais simple d’utilisation, faciliter l’expression des opérations d’agrégation et de filtrage
les plus courantes, tout en étant adapté à l’optimisation, afin de supporter des systèmes de syn-
dication web à grande échelle. La forme d’agrégation utilisée le plus souvent est l’union d’items
issus d’un grand nombre de flux RSS, filtrés ensuite par des conditions booléennes concernant
surtout le contenu textuel. En dehors de ces opérations, une caractéristique originale du lan-
gage de publication ROSES est la possibilité d’exprimer des (semi-)jointures entre les items
de différents flux, tout en gardant la trace des items correspondants sous forme d’annotations.
En résumé, une requête de publication contient trois clauses : (a) Une clause from obligatoire,
qui spécifie les flux primaires, c’est-à-dire les flux d’entrée qui vont produire les items du flux
virtuel ainsi défini ; (b) Zéro, une ou plusieurs clauses join, chacune spécifiant une jointure
avec un flux secondaire ; (c) Une clause where optionnelle pour les conditions de filtrage sur
les flux primaires ou secondaires.

Considérons par exemple que Bob souhaite organiser une sortie avec ses amis pour aller à
un concert rock. Il publie un flux virtuel appelé RockConcertStream, avec des items à propos de
concerts, issus des flux publiés par ses amis (FriendsFacebookStream et FollowedTwitterStream),
ainsi que des annonces de concerts rock publiées par le flux EventAnnounces. À noter que la
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clause from permet de construire des groupes imbriqués de flux (unions identifiées par des
variables), qui peuvent être référencés dans la clause where pour y attacher des conditions de
filtrage. Ici, les conditions de filtrage sont exprimées sur le flux individuel EventAnnounces,
représenté par la variable $ca (title contains “rock”), et sur le groupe de tous les flux de la
clause from représenté par la variable $r (description contains “concert”) :

create feed RockConcertStream

from (FriendsFacebookStream | EventAnnounces as $ca | FollowedTwitterStream) as $r

where $ca[title contains "rock"] and $r[description contains "concert"];

Ensuite Bob, qui est un fan du groupe rock Muse, publie un flux virtuel MusePhotoStream
avec des items à propos de ce groupe, annotés avec les photos correspondantes. Les items
viennent des flux RockConcertStream (ceux parlant de “Muse”) et MuseNews, tandis que les
photos sont issues de deux flux secondaires : FriendsPhotos, avec des photos publiées par ses
amis et MusicPhotos (seulement pour la catégorie “rock”).

L’annotation de flux est réalisée par l’opération de jointure ; dans notre exemple, chaque
item du flux principal ($main) est annoté avec les photos des items des trois derniers mois du
flux secondaire ayant des titres similaires. À noter que la jointure spécifie une opération de
fenêtrage sur un groupe de flux secondaires, un flux principal (à travers une variable) et un
prédicat de jointure.

create feed MusePhotoStream

from (RockConcertStream as $r | MuseNews) as $main

join last 3 months on (MusicPhotos as $m | FriendsPhotos)

with $main[title similar window.title]

where $r[description contains "Muse"] and $m[category = "rock"];

Le langage d’enregistrement ROSES permet de décrire des flux sources issus soit de flux
RSS/Atom existant sur le Web, soit de la matérialisation interne de flux virtuels. En particulier,
pour les flux virtuels publiés à travers des requêtes il est également possible d’utiliser des
feuilles de style XSLT pour transformer la structure des items. Les transformations peuvent
aussi utiliser les annotations produites par les jointures, par exemple pour inclure au moment
de la matérialisation les liens correspondants vers les photos du flux MusePhotoStream. Afin
de simplifier l’optimisation, les opérations de transformation n’ont pas été incluses dans le
langage de publication ROSES pour définir des flux virtuels. L’exemple suivant illustre la
façon d’enregistrer dans ROSES un flux source (http://muse.mu/rss/news) et de matérialiser
un flux virtuel (MusePhotoStream) modifié par une transformation (“IncludePhotos.xsl”).
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register feed http://muse.mu/rss/news as MuseNews;

register feed MusePhotoStream apply "IncludePhotos.xsl" as MuseWithPhotos;

Le langage de souscription ROSES permet de déclarer des souscriptions à des flux sources ou
virtuels. Une souscription spécifie essentiellement un flux, un mode de notification (RSS, mail,
etc.), une périodicité et éventuellement une transformation d’items. Comme pour les transfor-
mations à l’enregistrement de flux virtuels matérialisés, les transformations à la souscription
sont également exprimées par des feuilles de style XSLT, mais à la différence des premières
le format de sortie est libre. L’exemple suivant présente deux souscriptions à la publication
RockConcertStream : la première extrait les titres des items (transformation “Title.xsl”) et les
envoie par mail toutes les trois heures, la seconde produit simplement un flux RSS réactualisé
toutes les dix minutes.

subscribe to RockConcertStream apply "Title.xsl" output mail "me@mail.org"

every 3 hours;

subscribe to RockConcertStream output file "RockConcertStream.rss" every 10 minutes;

A.3.2 Modèle de Données et Algèbre

Le modèle de données ROSES s’inspire des modèles de flux de données de l’état de l’art,
tout en proposant des choix spécifiques de modélisation adaptés à la syndication RSS/Atom et
à l’agrégation.

Un flux ROSES correspond soit à un flux source RSS/Atom existant sur le Web, soit à
un flux virtuel publié à travers une requête dans ROSES. Formellement, un flux enregistré
est un couple f = (d, s), où d est le descripteur de flux et s est le flux d’items ROSES. Le
descripteur de flux d est un n-uplet représentant les propriétés habituelles des flux RSS/Atom:
titre, description, URL, etc. Les items ROSES représentent le contenu d’information diffusée
par les flux RSS/Atom. Malgré l’adoption d’une syntaxe XML, les formats RSS et Atom
sont utilisés essentiellement avec du contenu textuel non-imbriqué. Comme les extensions et
la structuration XML imbriquée sont très rarement utilisées, nous avons fait le choix d’une
représentation “à plat”, sous forme de couples typés attribut-valeur, incluant les propriétés
usuelles des items RSS/Atom, comme le titre, la description, le lien, l’auteur, la date de publi-
cation, etc. L’extensibilité peut être gérée par l’inclusion d’attributs nouveaux, spécifiques aux
items ROSES, ce qui permet à la fois d’interroger tous les flux à travers les attributs communs
et d’accéder aux attributs spécifiques (quand ils sont connus) pour les flux étendus.

Un flux d’items ROSES est un flux de données au sens général composé d’items ROSES an-
notés. Formellement, un flux d’items ROSES est un ensemble (éventuellement infini) d’éléments
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ROSES e = (t, i, a), où t est une estampille temporelle, i est un item ROSES et a une anno-
tation, l’ensemble d’éléments pour une estampille donnée étant fini.

L’annotation a fait référence à tous les items des flux secondaires qui ont été joints avec
l’élément e : une annotation est un ensemble de couples (j, A), où j est un identifiant de jointure
et A un ensemble d’items. La sémantique de l’annotation sera détaillée par la suite lors de la
description de l’opérateur de jointure.

Une fenêtre ROSES regroupe des sous-ensembles des items du flux qui sont valides à dif-
férents moments. Formellement, une fenêtre w sur le flux s est un ensemble fini de couples
(t, I), où t est une estampille temporelle et I est l’ensemble d’items de s valides au moment t.
À noter que (i) une estampille temporelle ne peut apparaître qu’une seule fois dans w et (ii)
I contient seulement des items qui apparaissent dans s avant (ou au moment de) l’estampille
temporelle t. On note w(t) l’ensemble d’items de w pour l’estampille temporelle t. Les fenêtres
sont utilisées dans ROSES seulement pour calculer des jointures entre flux. ROSES utilise deux
types de fenêtres glissantes : basées sur le temps (les dernières n unités de temps) et basées sur
le nombre (les derniers n items).

Les requêtes de publication de flux virtuels sont basées sur cinq opérateurs de composition
de flux d’items ROSES. On distingue les opérateurs conservateurs (filtrage, union, fenêtrage,
jointure), qui ne produisent pas de nouveaux items et ne changent pas le contenu des items
d’entrée, des opérateurs altérants d’items (transformation). Un choix central dans la concep-
tion du langage de publication ROSES est de se limiter à des opérateurs conservateurs. Ce
choix est justifié par le fait que les opérateurs conservateurs possèdent de bonnes propriétés
de réécriture (commutativité, distributivité, etc.) et favorisent ainsi à la fois l’optimisation des
requêtes et le caractère déclaratif du langage (toute expression algébrique pouvant être réécrite
en une forme normalisée correspondant aux clauses déclaratives du langage). Les requêtes de
publication sont donc traduites en opérations de filtrage, union, fenêtrage et jointure. Ensuite,
des transformations peuvent être introduites, mais seulement lors de la matérialisation de flux
virtuels, qui constitueront de nouveaux flux sources. À noter que les transformations peuvent
utiliser les annotations de jointure et enrichir ainsi (indirectement) le pouvoir d’expression des
jointures. Les requêtes de publication (pour lesquelles il existe des souscriptions) sont traduites
en des expressions algébriques, comme illustré par l’exemple suivant pour RockConcertStream
et MusePhotoStream (pour des raisons de place, nous utilisons des noms de flux abrégés et une
syntaxe simplifiée).
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RCS := σ′concert′∈des(FFS ∪ σ′rock′∈titleEA ∪ FTS)

MPS := (σ′Muse′∈desRCS ∪MNs) on
title∼w.title

ωlast 3m(σcat=′rock′MP ∪ FP )

L’opérateur de filtrage σP produit en sortie seulement les éléments du flux d’entrée qui
satisfont le prédicat d’item P :

σP (s) = {(t, i, a) ∈ s| P (i)}

Un prédicat d’item P est une expression booléenne (utilisant des conjonctions, des disjonc-
tions et des négations) composée de prédicats d’item atomiques, qui expriment une condition
sur un attribut de l’item. En fonction du type d’attribut, les prédicats atomiques peuvent être :
• Pour des types simples : comparaison avec une valeur (égalité, inégalité) ;
• Pour des dates/temps : comparaison avec des valeurs date/temps (ou année, mois, jour,

etc.) ;
• Pour du texte : opérateurs contains (mot(s) contenu(s) dans un attribut textuel), similar

(texte similaire à un autre texte) ;
• Pour des liens : opérateurs references/extends (le lien référence/étend une URL ou un

site), shareslink (l’attribut contient un lien vers un des URL dans une liste).
À noter que ROSES permet d’appliquer les prédicats de texte ou de liens à tout l’item –

dans ce cas le prédicat considère tout le texte ou tous les liens des différents attributs de l’item.
À remarquer aussi qu’il n’est pas possible de filtrer les éléments du flux par leur estampille
temporelle ou par les annotations.

L’union produit en sortie tous les éléments des flux d’entrée :

⋃
(s1, ..., sn) = {i| i ∈ s1 ∨ ... ∨ i ∈ sn}

Le fenêtrage produit une fenêtre glissante sur le flux d’entrée, basée sur le temps ou sur le
nombre d’items, suivant la définition de la fenêtre :

ωspec(s) = {i| i ∈ s ∧ spec(i, s)}

où spec exprime l’estampille temporelle limite des items (fenêtres basées sur le temps), respec-
tivement la position limite des items dans le flux (fenêtres basées sur le nombre d’items).

La jointure prend en entrée un flux principal et une fenêtre sur un flux secondaire. ROSES
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utilise une variante conservative de l’opération de jointure, appelée jointure d’annotation, qui
agit comme une semi-jointure (le flux principal est filtré suivant le contenu de la fenêtre), mais
qui garde la provenance des items du flux secondaire qui joignent l’item principal, sous la
forme d’une entrée d’annotation. À chaque jointure, on associe un identifiant qui permet de la
référencer dans une annotation. Une jointure onj

P (s, w) d’identifiant j produit ainsi en sortie
tout élément de s pour lequel le prédicat de jointure P est satisfait pour un sous-ensemble
non vide I des items de la fenêtre w. La jointure rajoute à l’élément de sortie une entrée
d’annotation (j, I). Plus précisément :

onj
P (s, w) = {(t, i, a ∪ {(j, I)}) | (t, i, a) ∈ s ∧

I = {i′ ∈ w(t)| P (i, i′)} ∧ |I| > 0}}

La transformation modifie chaque élément d’entrée suivant une fonction de transformation
donnée :

µT (s) = {T (t, i, a)| (t, i, a) ∈ s}

µT est le seul opérateur altérant, dont l’utilisation est limitée à la production des résultats de
souscription ou à la matérialisation de flux virtuels, comme expliqué ci-dessus.

A.3.3 Évaluation de Requêtes

L’exécution de requêtes ROSES consiste en une évaluation continue d’une collection de
requêtes de publication. Cette collection est représentée par un plan multi-requêtes composé
de différents opérateurs physiques qui reflètent les opérateurs algébriques présentés dans la
Section A.3.2 (filtrage, union, jointure et fenêtrage). ROSES adopte un modèle standard
d’exécution de requêtes continues [ABW06, CKSV08], où un plan d’exécution est transformé
en un graphe de sources, opérateurs et publications interconnectés à l’aide de files d’attente ou
par des tampons de fenêtrage.

À partir d’un ensemble de requêtes Q, un plan d’exécution peut donc être représenté sous
la forme d’un graphe dirigé acyclique G(Q). La Figure A.1 illustre un des plans d’exécution
possibles pour trois publications p1 = σ1(s1 ∪ s2), p2 = (s3 ∪ s4) ./1 ω1(s5), p3 = σ2(p1 ∪ s6).
On peut remarquer que les opérateurs de fenêtrage produisent une sortie de type différent, les
tampons de fenêtrage, consommés par des opérateurs de jointure. La composition de vues par
publication/souscription est illustrée par un arc qui connecte un opérateur de publication à
un opérateur algébrique (p1 est utilisé comme entrée par la publication p3). À noter aussi que
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Figure A.1 – Architecture du moteur d’évaluation de requêtes ROSES

toutes les transformations sont appliquées après la publication.
Un plan multi-requêtes est composé d’opérateurs connectés par des files d’attente de lec-

ture/écriture ou par des tampons de fenêtrage. De nouveaux items arrivent continuellement
dans ce graphe et doivent être consommés par les différents opérateurs. À cet égard, nous avons
adopté un mode d’exécution multi-tâche et en pipe-line des requêtes continues. L’exécution des
requêtes est réalisée de la façon suivante. Le graphe de requêtes est surveillé par un ordon-
nanceur, qui décide en permanence quels opérateurs (tâches) doivent être exécutés (voir la
Figure A.1). L’ordonnanceur dispose d’une réserve de threads pour exécuter en parallèle un
nombre fixe de tâches 5. La décision d’activation d’un opérateur pour son évaluation est influ-
encée par différents facteurs dépendants du tampon d’entrée de chaque opérateur (le nombre
et/ou l’âge des items dans la file d’attente d’entrée).

Dans ce contexte, nous nous basons sur un modèle de coût pour estimer les ressources
(mémoire, processeur) nécessaires à l’exécution du plan. Comparés au coût estimé d’un plan
classique, qui est basé sur la taille des données d’entrée, les paramètres d’estimation pour une

5. La solution naïve d’associer un thread à chaque opérateur devient rapidement inefficace/impossible à cause
du surcoût de gestion des threads ou des limitations du système.
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requête continue doivent refléter les caractéristiques de type flux. Nous adaptons une version
simplifiée du modèle présenté dans [CKSV08] et définissons le coût de chaque opérateur op
comme une fonction du débit de publication R(b) dans son (ses) tampon(s) d’entrée b (et de la
taille S(w) de la fenêtre d’entrée w, pour les opérateurs de jointure).

Opérateur Débit de sortie Mémoire Coût de traitement
σp(b) sel(p)×R(b) const const×R(b)
∪(b1, ..., bn) ∑

1≤i≤nR(bi) 0 0
onp (b, w) sel(p)×R(b) const R(b)× S(w)
ωd(b) 0 S = const ou S = d×R(b) const

Tableau A.1 – Le modèle de coût ROSES

Comme on peut le constater dans le tableau A.1, le coût de chaque opérateur dépend
principalement du débit de publication R(b) dans son (ses) tampon(s) d’entrée b (bi). Nous
considérons un coût d’exécution constant par item (indépendant du contenu de l’item) pour
l’opérateur de filtrage, puisque les items sont des petits fragments de texte de tailles similaires.
Le coût mémoire du filtrage est également constant, car un seul item est traité à la fois. Le
débit de sortie de l’opérateur de filtrage correspond au débit d’entrée réduit par le facteur de
sélectivité sel(p) ∈ [0, 1], dépendant du prédicat de filtrage p.

L’union génère un débit de sortie égal à la somme des débits d’entrée 6. Nous considérons
ici des coûts mémoire et de traitement nuls car l’union, comparée aux autres opérateurs, est
implémentée simplement par un ensemble d’itérateurs, un pour chaque tampon d’entrée.

L’opérateur de jointure génère un débit de sortie de sel(p) × R(b), où R(b) est le débit du
flux primaire d’entrée et sel(p) ∈ [0, 1] correspond à la probabilité qu’un item de b joigne un
item de la fenêtre w par le prédicat de jointure p. Ceci est la conséquence du comportement de
la jointure d’annotation : un item est produit par l’opérateur de jointure quand un nouvel item
arrive dans le flux principal et correspond à au moins un des items de la fenêtre. Ensuite, l’item
est annoté avec tous les items correspondants dans la fenêtre. Ainsi, le coût de traitement de
l’opérateur de jointure est R(b)× S(w), où S(w) est la taille de la fenêtre de jointure w.

L’opérateur de fenêtrage transforme le flux en un tampon de fenêtre dont la taille dépend
du nombre d’items spécifié (fenêtres basées sur le nombre) ou de la durée d et du débit d’entrée
R(b) (fenêtres basées sur le temps).

6. Dans l’implémentation courante l’union n’élimine pas les doublons. Pour éliminer les doublons, nous
devons rajouter une fenêtre glissante de taille fixe et vérifier pour chaque nouvel item s’il apparaît déjà dans
cette fenêtre.
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On remarque aisément que le coût global du plan d’exécution (la somme des coûts de tous
les opérateurs) est influencé principalement par l’ordre des opérateurs et par le débit d’entrée
de chaque opérateur. Nous décrivons dans la section suivante la façon de réduire ce coût en
poussant les filtrages et les jointures vers les flux sources du plan d’exécution.

A.3.4 Optimisation de requêtes

La principale originalité de notre approche par rapport à d’autres solutions d’optimisation
multi-requêtes consiste en l’utilisation explicite d’un modèle de coût pour requêtes continues.
Le modèle de coût ROSES (Tableau A.1) montre que le coût d’exécution de la plupart des
opérateurs est proportionnel au débit d’entrée. Nous exploitons deux idées principales, com-
munes à d’autres approches d’optimisation, mais guidées dans ROSES par le modèle de coût :
(i) diminuer rapidement le débit d’entrée en appliquant tout d’abord le filtrage (ensuite la
jointure) et (ii) factoriser les opérations communes parmi les publications.

Le processus d’optimisation est décomposé en deux phases principales :
• Une phase de normalisation, qui applique les règles de réécriture pour pousser tous les

opérateurs de filtrage vers leurs flux sources ;
• Une phase de factorisation des prédicats de filtrage de chaque source, grâce à une nouvelle

technique de factorisation basée sur le coût.
Le processus complet d’optimisation est décrit ci-dessous.

Normalisation des requêtes : Le but de la première phase est d’obtenir un plan d’exécu-
tion normalisé, où tous les filtrages sont évalués d’abord pour chaque source, avant d’évaluer
les jointures et les unions. Ceci est possible en appliquant itérativement (a) la distributivité des
sélections par rapport aux unions et (b) la commutativité entre filtrage et jointure (à remarquer
que les opérations de filtrage ne peuvent pas être appliquées aux annotations générées par les
jointures). On peut démontrer que sous une sémantique “snapshot-reducible” et en appliquant
les règles de réécriture (a) et (b), on peut obtenir pour chaque requête (publication) un plan
d’exécution équivalent sous forme d’un arbre à quatre niveaux. Le premier niveau de l’arbre
(feuilles) est constitué des flux sources impliqués dans la requête, les nœuds de deuxième niveau
sont les filtrages à appliquer à chaque flux source, le troisième niveau contient les opérateurs
de fenêtrage/jointure évalués sur les résultats des filtrages et le niveau final (quatrième) est
constitué des unions évaluées sur les résultats des filtrages et des jointures. La normalisation
aplatit également tous les chemins de filtrage en cascade en prédicats élémentaires de filtrage
en forme normale conjonctive. Il faut souligner que la normalisation peut augmenter le coût du
graphe d’exécution résultant par rapport à celui initial. Toutefois, comme nous le verrons par la
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Figure A.2 – Un plan d’exécution pour les publications p1, p2 et p3

Figure A.3 – Plan d’exécution normalisé dans ROSES

suite, ceci est temporaire, car la phase suivante de factorisation disposera de plus d’opportunités
d’optimisation.

Un exemple simple de normalisation de trois publications sans jointures est montré dans
les Figures A.2 et A.3. La publication p3 (p3 = σd(p2 ∪ s5)) est définie à partir d’une autre
publication p2, avec une opération de filtrage (σa∧c), tandis que les deux autres publications
p1 et p2 sont définies sur des flux sources. Ici le processus de normalisation consiste à pousser
toutes les opérations de filtrage à travers l’arbre de la publication vers les sources pour obtenir
un plan normalisé tel que montré dans la Figure A.3.

Factorisation des requêtes : La factorisation des filtrages est la technique d’optimisation
la plus efficace dans notre contexte. La normalisation génère un plan d’exécution global où
chaque source s est connectée à un ensemble de prédicats de filtrage P (s). La factorisation
considère chaque source séparément et construit un plan de filtrage efficace pour chacune.

Pour trouver la meilleure factorisation on procède en deux étapes : tout d’abord on génère
pour chaque flux source s un graphe de subsomption de prédicats qui contient tous les prédicats
subsumant l’ensemble de prédicats P (s). Le poids de chaque arc de subsomption dans ce graphe
correspond au débit de sortie du nœud d’origine (source ou opérateur de filtrage) et exprime le
coût du nœud destination. On constate aisément que tout sous-arbre de ce graphe, couvrant
la source s (racine) et tous les prédicats de P (s), correspond à un plan de filtrage équivalent au
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Figure A.4 – Graphe de subsomption pour s2 et arbre de Steiner

plan initial. Le coût de ce plan est la somme des coûts des arcs de l’arbre.
Le problème d’optimisation dans ce contexte est de trouver un arbre de Steiner de coût

minimal de racine s qui couvre P (s), étant donné un graphe pondéré sur les arcs G = (V,E,w)
et un sous-ensemble S ⊆ V de nœuds obligatoires (correspondant à P (s)). Un arbre de Steiner
est un arbre t dans G qui relie tous les nœuds de S. Le problème d’optimisation associé aux
arbres de Steiner est de trouver un arbre de Steiner de coût minimal. Si S = V , un arbre de
Steiner de coût minimal correspond à un arbre couvrant de G de poids minimal.

La Figure A.4 illustre un graphe de subsomption pour le flux source s2 (les arcs transitifs
ne sont pas montrés) et un arbre de Steiner minimal de ce graphe (en gras).

Les opérateurs de filtrage concernant s2 sont σa∧b, σa∧c, σa∧c∧d (voir la Figure A.3). Le
graphe de subsomption est composé de ces trois opérateurs, ainsi que de toutes leurs sous-
expressions : σa, σb, σc, σd, σa∧d et σc∧d, tandis que les arcs expriment la subsomption entre
prédicats: σa → σa∧b, σb → σa∧b, etc. À noter que seuls les arcs de subsomption “directs”
sont représentés dans la Figure A.4, bien que le graphe inclut aussi les arcs de la fermeture
transitive de la relation de subsomption, par exemple σa → σa∧c∧d. Le poids des arcs représente
la sélectivité des prédicats d’origine, proportionnelle au débit des items arrivant de la source.

On remarque facilement que le plan de filtrage résultant est moins coûteux que le plan
d’origine, malgré la normalisation qui augmente le coût du plan de filtrage en remplaçant les
chemins de filtrage en cascade par une conjonction de tous les prédicats du chemin. En réalité,
il peut être démontré que le graphe de subsomption régénère tous ces chemins et que le plan
d’origine est toujours un sous-arbre de ce graphe. Puisque l’arbre de Steiner choisi est un
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sous-arbre minimal pour l’évaluation de l’ensemble de prédicats initial, son coût sera au pire
le coût du graphe d’origine. Par exemple, le coût de filtrage pour la source s2 dans le plan
d’origine (Figure A.2) est à peu près le double du débit de s2 (les deux filtrages σa∧b et σa∧c
sont appliqués à tous les items générés par s2). Ce coût est réduit à la moitié dans l’arbre de
Steiner final en introduisant le filtrage supplémentaire σa.

A.3.5 Conclusion et Perspectives

Dans cette thèse nous avons présenté ROSES, un système d’agrégation de flux RSS à large
échelle basé sur le traitement multi-requêtes en continu et son optimisation. Nos principales
contributions sont un langage d’agrégation simple et expressif et une algèbre pour RSS, que
nous avons combiné à une optimisation multi-requêtes efficace. L’intégralité de l’architecture
de ROSES, le langage d’agrégation de flux et l’algèbre de requêtes continues ont été implémen-
tés [CATV10]. Ce prototype intègre également la stratégie d’optimisation multi-requêtes basée
sur l’arbre de Steiner que nous avons décrit dans la section A.3.4.

Il existe des nombreux défis pour les travaux futurs. Actuellement, nous sommes en train
de travailler sur l’optimisation des graphes de requêtes dans des environnements répartis. Le
traitement du graphe global dans un environnement réparti permet d’améliorer le passage
à l’échelle du système. L’idée principale est que le graphe de requêtes est évalué dans un
environnement réparti comme un réseau pair-à-pair. Dans ce contexte, il y a deux possibilités
pour répartir un plan global, (i) soit par partitionnement du graphe de requêtes et dans ce cas
chaque pair gère sa propre partition, c.-à-d., il n’y a pas de la duplication, (ii) soit en permettant
la duplication des traitements, qui devient intéressant dans des réseaux très larges où les pairs
sont très éloignés les uns des autres. Dans les deux approches, nous devrons étendre notre
modèle de coût pour inclure le coût de communication entre les pairs, mais aussi la charge de
travail de chaque pair. Ceci est nécessaire pour garantir un équilibrage de charge optimal dans
tout le système.
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