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Abstract: The DFM (design for manufacturing) methods are used during technology alignment and 

adoption processes in the semiconductor industry (SI) for manufacturability and yield assessments. These 

methods have worked well till 250nm technology for the transformation of systematic variations into rules 

and/or models based on the single-source data analyses, but beyond this technology they have turned into 

ineffective R&D efforts. The reason for this is our inability to capture newly emerging spatial variations. It 

has led an exponential increase in technology lead times and costs that must be addressed; hence, objectively 

in this thesis we are focused on identifying and removing causes associated with the DFM ineffectiveness. 

The fabless, foundry and traditional integrated device manufacturer (IDM) business models are first analyzed 

to see coherence against a recent shift in business objectives from time-to-market (T2M) and time-to-volume 

towards (T2V) towards ramp-up rate. The increasing technology lead times and costs are identified as a big 

challenge in achieving quick ramp-up rates; hence, an extended IDM (e-IDM) business model is proposed to 

support quick ramp-up rates which is based on improving the DFM ineffectiveness followed by its smooth 

integration. We have found (i) single-source analyses and (ii) inability to exploit huge manufacturing data 

volumes as core limiting factors (failure modes) towards DFM ineffectiveness during technology alignment 

and adoption efforts within an IDM. The causes for single-source root cause analysis are identified as the (i) 

varying metrology reference frames and (ii) test structures orientations that require wafer rotation prior to the 

measurements, resulting in varying metrology coordinates (die/site level mismatches). A generic coordinates 

mapping and alignment model (MAM) is proposed to remove these die/site level mismatches, however to 

accurately capture the emerging spatial variations, we have proposed a spatial positioning model (SPM) to 

perform multi-source parametric correlation based on the shortest distance between respective test structures 

used to measure the parameters. The (i) unstructured model evolution, (ii) ontology issues and (iii) missing 

links among production databases are found as causes towards our inability to exploit huge manufacturing 

data volumes. The ROMMII (referential ontology Meta model for information integration) framework is then 

proposed to remove these issues and enable the dynamic and efficient multi-source root cause analyses. An 

interdisciplinary failure mode effect analysis (i-FMEA) methodology is also proposed to find cyclic failure 

modes and causes across the business functions which require generic solutions rather than operational fixes 

for improvement. The proposed e-IDM, MAM, SPM, and ROMMII
 
framework results in accurate analysis 

and modeling of emerging spatial variations based on dynamic exploitation of the huge manufacturing data 

volumes. 

Keywords: design for manufacturing, effective root cause analysis, information integration, metrology 

coordinates mapping and alignment 

  



 
16 
16 

 

 



 
17 

Table of Contents 

List of Tables ...................................................................................................................................... 21 

List of Figures .................................................................................................................................... 23 

List of Acronyms ................................................................................................................................ 27 

Chapter 1:   Introduction .................................................................................................................... 31 

1.1 Introduction to Semiconductor Industry (SI) ................................................................... 33 

1.2 Role of DFM and Economic Benefits .............................................................................. 35 

1.3 DFM Challenges and Limitations .................................................................................... 36 

1.4 Research Questions .......................................................................................................... 40 

1.5 Research Methodology and Schematic ............................................................................ 41 

1.6 Major Contributions ......................................................................................................... 44 

1.6.1 Analysis of Overall System and Industrial Contributions ....................................... 44 

1.6.2 Scientific Contributions ........................................................................................... 45 

1.7 Thesis Organization .......................................................................................................... 46 

1.8 Typographic Conventions ................................................................................................ 47 

Chapter 2:   Literature Review ........................................................................................................... 49 

2.1 Semiconductor Industry (SI): Background and Challenges ............................................. 51 

2.1.1 Historical Background ............................................................................................. 51 

2.1.2 Evolution of Semiconductor Industry ..................................................................... 52 

2.1.3 Role of Moore’s Law in Semiconductor Industry ................................................... 53 

2.1.4 Nanometer vs. Micrometer Semiconductor Technologies ...................................... 55 

2.1.5 Semiconductor Business Model and its Evolution .................................................. 56 

2.1.6 Trends in Semiconductor Industry .......................................................................... 57 

2.1.7 Challenges faced by Semiconductor Industry ......................................................... 58 

2.2 Role of DFM Methods in Semiconductor Industry and Evolution .................................. 61 

2.2.1 SI Challenges and Rise of Interest in DFM ............................................................. 62 

2.2.2 A Comparison of DFM Efforts in SI and Manufacturing Industries ...................... 62 

2.2.3 DFM Techniques (pre-1980 era) ............................................................................. 64 

2.2.4 Adaption and Diversification of DFM to SI (post-1980 era) .................................. 66 

2.2.5 DFM Challenges and ECAD/TCAD Tools ............................................................. 69 

2.2.6 Increasing Design Size and DFM Realization Challenges ...................................... 70 

2.2.7 Role of SI Business Models in DFM Evolution and Adaption ............................... 71 

2.2.8 Industry wide Understanding of the DFM Concept ................................................ 72 

2.3 Information Integration Challenges towards more Effective DFM methods ................... 74 

2.3.1 Data/Information Integration Issues ........................................................................ 75 

2.3.2 Ontology from Philosophy to Computer Science .................................................... 75 

2.3.3 Data/Information Integration ................................................................................... 75 

2.3.3.1 Metadata based data/information Integration approaches ...................... 76 

2.3.3.2 Ontology based data/information Integration approaches ...................... 76 

2.3.4 Ontology based Database-Integration Approaches ................................................. 77 

2.3.5 RDB Integration based on Schema Matching ......................................................... 78 



 
18 

2.3.6 RDB Schema to Ontology Mapping Approaches ................................................... 79 

2.3.7 Ontology Driven Data Extraction Tools ................................................................. 79 

2.4 Summary and Conclusions .............................................................................................. 80 

Chapter 3: An Extended IDM (e-IDM) Business Model  .................................................................. 83 

3.1 Introduction ...................................................................................................................... 85 

3.1.1 Strategic Planning and Analysis ............................................................................. 85 

3.1.2 SCAN Analysis ....................................................................................................... 86 

3.1.2.1  Ranking Business Objectives (Step-1) ..................................................... 86 

3.1.2.2  SWOT Analysis (Step-2) .......................................................................... 87 

3.2 SCAN Analysis: Part-1 (Top Ranked Business Objectives in SI)................................... 87 

3.3 Key Improvement Areas in IDM-fablite Business Model ............................................... 88 

3.4 Technology Derivative/Improvement Process Analysis ................................................. 90 

3.5 Key Challenges in Technology Derivative/Improvement Process .................................. 91 

3.5.1 Data Extraction Issues ............................................................................................ 91 

3.5.2 Variance Analysis Challenges ................................................................................ 92 

3.5.3 Silicon Based Correlation Limitations .................................................................... 92 

3.6 SWOT Analysis on IDM-fablite Business Model ........................................................... 92 

3.7 Proposed Extended IDM (e-IDM) Business Model ........................................................ 94 

3.8 Research Schematic and Advancements (e-IDM Model)............................................ 95 

3.9 Summary and Conclusions .............................................................................................. 97 

Chapter 4: I-FMEA Methodology for True DFM Challenges ........................................................... 99 

4.1 Introduction .................................................................................................................... 101 

4.2 Historical Evolution of FMEA Methodology ................................................................ 101 

4.2.1 FMEA Process and Evolution .............................................................................. 101 

4.2.2 Basic FMEA Vocabulary ...................................................................................... 102 

4.2.3 Benefits and Limitation of Traditional FMEA Approach .................................... 102 

4.3 Proposed Interdisciplinary FMEA (i-FMEA) Methodology ......................................... 103 

4.3.1 Comparison of i-FMEA with Traditional FMEA Approach ................................ 103 

4.3.2 i-FMEA Methodology and Thesis Schematic ...................................................... 104 

4.4 i-FMEA Methodology Results ...................................................................................... 104 

4.4.1 Step-2: Initial Failure Modes and Root Causes .................................................... 104 

4.4.1.1 Technology Derivative/Improvement Initiative ..................................... 106 

4.4.1.2 Fast Technology Transfer ...................................................................... 108 

4.4.2 Operational Fixes through Joint Projects .............................................................. 111 

4.4.3 Step-3: Cyclic Failure Modes and Root Causes ................................................... 113 

4.4.4 Generic R&D Solutions ........................................................................................ 115 

4.5 Research Schematic and Advancements (i-FMEA Methodology) ................................ 116 

4.6 Summary and Conclusions ............................................................................................ 118 

Chapter 5: Measurement Coordinates Mapping, Alignment and Positioning ................................. 119 

5.1 Introduction to Device/Interconnect Modeling.............................................................. 121 

5.2 Challenges in Multi-Source Data Analysis .................................................................... 124 

5.3 Site/Die Level Mismatch Problem ................................................................................. 126 



 
19 

5.4 Proposed Die/Site Level Mapping, Alignment and Qualification (MAM) Model ........ 128 

5.4.1 Site/Site or Die/Die Level Mapping and Alignment ............................................. 128 

5.4.2 Die/Site level Qualification ................................................................................... 131 

5.5 Test Structure Position Based Mapping and Alignment (SPM) Model ......................... 134 

5.5.1 SPM (spatial positioning) Problem (Source/Target  1*1) Context ................... 135 

5.5.2 Step-Circle based Basic Algorithm [Source/Target (1*1)] for Mapping .............. 135 

5.5.3 Example for Basic Step Circle Algorithm [Source/Target (1*1)] ......................... 136 

5.5.4 SPM (spatial positioning) Problem (Source/Target  1*n) Context ................... 138 

5.5.5 Optimized Step-Circle Based Algorithms (i*n) Problem ...................................... 139 

5.5.6 Example for Optimized Step Circle Algorithm [Source/Target (1*n)] ................. 139 

5.6 Data Model for Position Based Site/Site Mapping ........................................................ 140 

5.7 Research Schematic and Advancements (MAM and SPM Models) ............................... 142 

5.8 Summary and Conclusions ............................................................................................. 144 

Chapter 6: ROMMII and R&D Data Model for Information Integration ........................................ 145 

6.1 Introduction .................................................................................................................... 147 

6.2 Historical Evolution from Unstructured towards Structured Data Storage .................... 147 

6.2.1 Flat Files Database Era (1890 till 1968) ................................................................ 147 

6.2.2 Non-Relational Database Era (1968-1980) ........................................................... 148 

6.2.3 Relational Database Era (1970 till present) ........................................................... 148 

6.2.4 Dimensional Database Era (1990 till present) ....................................................... 148 

6.3 Existing Data/Information Integration Systems ............................................................. 149 

6.4 DWH-DM: Information Integration and Business Intelligence Platform ...................... 150 

6.4.1 Basic Definitions and Concepts ............................................................................ 150 

6.4.2 The DWH Architectures, Models and Schemas .................................................... 151 

6.4.3 Inmon and Kimbell DWH Philosophies ................................................................ 154 

6.4.4 The DWH Challenges ........................................................................................... 155 

6.5 Proposed R&D DWH Model ......................................................................................... 156 

6.6 Problem Context and Current Challenges ...................................................................... 162 

6.7 Proposed ROMMII Framework ..................................................................................... 162 

6.7.1 Use Case Diagram for ROMMII Platform ............................................................ 163 

6.7.2 Meta Model for ROMMII Platform ...................................................................... 164 

6.7.3 Activity and Sequence Diagrams against Use Cases ............................................ 165 

6.8 The Big Picture of ROMMII Platform ........................................................................... 176 

6.9 Research Schematic and Advancements (ROMMII and R&D Data Model) ................. 177 

6.10 Summary and Conclusions ............................................................................................. 179 

Chapter 7: Yield Aware Sampling Strategy (YASS) for Tool Capacity Optimization .................... 181 

7.1 Introduction .................................................................................................................... 183 

7.2 Metrology/Inspection and Production Tools Capacities Issues ..................................... 183 

7.2.1 Why do we need 100% inspection? ...................................................................... 183 

7.2.2 Why additional capacities? .................................................................................... 184 

7.2.3 What is wrong with the sampling strategies? ........................................................ 184 

7.3 Proposed 3-Step Yield Aware Sampling Strategy (YASS) ............................................ 185 



 
20 

7.3.1 Heuristic Algorithm for [PAM, PSM] Models [Step-1] ....................................... 186 

7.3.2 Example for [PAM, PSM] predictions ................................................................. 187 

7.3.3 Clustering and priority queue allocation [Step-2 and Step-3] .............................. 188 

7.4 Data model to Support [PAM, PSM] Models ................................................................ 190 

7.5 Research Schematic and Advancements (YASS Strategy) ............................................. 191 

7.6 Summary and Conclusions ....................................................................................... 193 

Discussions and Conclusions ........................................................................................................... 195 

Appendix A: List of Publications .................................................................................................... 199 

Appendix B:  Semiconductor Design, Mask and Manufacturing Processes ................................... 203 

Appendix C:  CMOS Inverter Design and Manufacturing (An Example) ...................................... 227 

Appendix D:   SMA (Spice Model Alignment) Tool ...................................................................... 237 

Appendix E:   BEOL (back-end-of-line) Variance Analysis Tool .................................................. 247 

Appendix F:   KLA-Ace Recipe for PT-Inline Correlation ............................................................. 253 

Appendix G:   EPP (Equipment, Product, Process) Life Cycle Tool .............................................. 255 

Appendix H:   ACM (Alarm Control Management) Tool ............................................................... 257 

References ........................................................................................................................................ 265 

Vita …………………………………………………………………………………………........ 275 

 

  



 
21 

List of Tables 

Table 2.1 – CMOS technology scaling and characteristics .............................................................................. 55 

Table 2.2 – Semiconductor business models .................................................................................................... 56 

Table 3.1 – List of SI objectives ....................................................................................................................... 87 

Table 4.1 – Device/Interconnect modeling FMEA result ............................................................................... 107 

Table 4.2 – Data extraction, alignment and pre-processing FMEA results .................................................... 109 

Table 4.3 – Fast technology transfer FMEA results ....................................................................................... 110 

Table 4.4 – FMEA results on cyclic failure modes and root causes ............................................................... 114 

Table 5.1 – Description of the MAM model variables ................................................................................... 130 

Table 5.2 – Description of the Die/Site qualification variables ...................................................................... 131 

Table 5.3 – Description of the Step-Circle (B) variables ............................................................................... 135 

Table 5.4 – Description of Step-Circle (O) algorithms .................................................................................. 139 

Table 6.1 – OLAP vs. OLTP systems ............................................................................................................ 149 

Table 6.2 – Comparison of DWH data models .............................................................................................. 152 

Table 7.1 - Description of [PAM, PSM] models variables............................................................................. 186 

Table 7.2 - Alarm matrix for equipment Ei [Good Yield] .............................................................................. 187 

Table 7.3 - Alarm matrix for equipment Ei [Bad Yield] ................................................................................ 188 

Table 7.4 - Alarm matrix for equipment Ei [Confusion] ................................................................................ 188 

Table 7.5 - Alarm matrix for equipment Ei, Wafer Wj .................................................................................. 188 

Table 7.6 -  Local and Global support for wafer Wj [54%, Good] ................................................................. 188 

 

 



 
22 
22 

 

 

  



 
23 

List of Figures 

Figure 1.1 - Global sales revenues of SI ........................................................................................................... 33 

Figure 1.2 - Global product and technology costs for SI .................................................................................. 34 

Figure 1.3 - Global sales revenues of SI ........................................................................................................... 34 

Figure 1.4 - The role of DFM and economic benefits ...................................................................................... 35 

Figure 1.5 - Cross section of an electronic chip (transistors and interconnects) .............................................. 36 

Figure 1.6 - Structure of the product wafer ...................................................................................................... 37 

Figure 1.7 - The role of DFM in SI .................................................................................................................. 37 

Figure 1.8 - Historical evolution of the DFM ................................................................................................... 38 

Figure 1.9 - Drifts in drawn features and printed images ................................................................................. 38 

Figure 1.10 - Lithography and feature size ....................................................................................................... 39 

Figure 1.11 - The role of DFM in technology alignment and adoption processes ........................................... 40 

Figure 1.12 - The Research schematic and contributions at a glance ............................................................... 42 

Figure 2.1 - Benchmarks in semiconductor technology evolution ................................................................... 52 

Figure 2.2 - Product based market structure ..................................................................................................... 52 

Figure 2.3 - Application segment based market structure ................................................................................ 53 

Figure 2.4 - Geographical position based market structure .............................................................................. 53 

Figure 2.5 - Circuit integration eras and reducing costs ................................................................................... 54 

Figure 2.6 - Diversification in Moore’s law [more Moore and more than Moore] .......................................... 55 

Figure 2.7 - Technology size scale, how small is small? ................................................................................. 56 

Figure 2.8 - Trends in semiconductor industry within last 50 years ................................................................ 58 

Figure 2.9 - Major design challenges faced by semiconductor industry .......................................................... 60 

Figure 2.10 - Comparison of the design flows in manufacturing industries and SI ......................................... 63 

Figure 2.11 -  DFMA (design for manufacturability and assembly) ................................................................ 65 

Figure 2.12 - Early semiconductor design flows with loop back ..................................................................... 66 

Figure 2.13 - Typical design flow within SI ..................................................................................................... 67 

Figure 2.14 - Manufacturability criteria for IC designs .................................................................................... 68 

Figure 2.15 - Integrated product development framework ............................................................................... 68 

Figure 2.16 Scope of design rules, DFM rules and DFM models .................................................................... 69 

Figure 2.17 - 4-dimensional innovation framework for unified agile DFM system ......................................... 73 

Figure 2.18 - Data-method-stat triangule ......................................................................................................... 74 

Figure 3.1 - Ranking of SI Business Objectives ............................................................................................... 88 

Figure 3.2 - IDM-fablite Business Model Operations ...................................................................................... 89 

Figure 3.3 - Technology derivative/improvement process ............................................................................... 90 

Figure 3.4 - SWOT Analysis Results ............................................................................................................... 93 

Figure 3.5 - Proposed extended IDM-fablite business (e-IDM) model ............................................................ 94 

Figure 3.6 - The Research schematic and advancement with e-IDM business model ..................................... 96 

Figure 4.1 - Traditional 5-step FMEA process ............................................................................................... 102 



 
24 
24 

Figure 4.2 - 4-step i-FMEA methodology ..................................................................................................... 103 

Figure 4.3 - 4-Step i-FMEA methodology and research thesis schematic .................................................... 105 

Figure 4.4 - The Research schematic and advancement with i-FMEA methodology ................................... 117 

Figure 5.1 - BEOL-Interconnect modeling process ....................................................................................... 121 

Figure 5.2 - The BEOL-Interconnect modeling process (tentative model) ................................................... 122 

Figure 5.3 - The BEOL-Interconnect modeling process (preliminary/pre-production models) .................... 122 

Figure 5.4 - The BEOL-Interconnect modeling process (production models) .............................................. 123 

Figure 5.5 - Proposed BEOL-Interconnect modeling process ....................................................................... 123 

Figure 5.6 - Multi-Source data analysis challenges ....................................................................................... 124 

Figure 5.7 - The BEOL – process for interconnections ................................................................................. 125 

Figure 5.8 - The BEOL – geometric computations in BEOL process ........................................................... 126 

Figure 5.9 - Metrology reference frames ....................................................................................................... 126 

Figure 5.10 - Site/Site level mismatches due to notch position ..................................................................... 127 

Figure 5.11 - Die/Die levels mismatches due to reference frames ................................................................ 127 

Figure 5.12 - Die/Site level qualifications and varying reference frames ..................................................... 128 

Figure 5.13 - Polar coordinates formulation and rotation .............................................................................. 128 

Figure 5.14 - Reference frame and notch position rotation and translation ................................................... 129 

Figure 5.15 - Generic formulation for reference frame and notch position rotation ..................................... 129 

Figure 5.16 - Reference frame and notch position rotation with translation example ................................... 131 

Figure 5.17 - Full map transformations ......................................................................................................... 131 

Figure 5.18 - Die/Site qualification, mask and wafer center and site counts ................................................. 132 

Figure 5.19 - Die/Site qualification example ................................................................................................. 133 

Figure 5.20 - Full map Die/Site qualification example ................................................................................. 134 

Figure 5.21 - Structure f wafer, sites and dies ............................................................................................... 134 

Figure 5.22 - Structure of wafer, sites and dies ............................................................................................. 135 

Figure 5.23 - The example of initialization variables (step-1) ...................................................................... 136 

Figure 5.24 - The example of Basic Step-Circle algorithm (step-2).............................................................. 136 

Figure 5.25 - The example of Basic Step-Circle algorithm (step-3).............................................................. 137 

Figure 5.26 - The SPM problem Source/Target (1*n) context ...................................................................... 138 

Figure 5.27 - Computational costs with increasing target parameters ........................................................... 138 

Figure 5.28 - Computational costs with increasing target parameters ........................................................... 140 

Figure 5.29(a) - The data model for SPM model ........................................................................................... 141 

Figure 5.29(b) - The data model for SPM model .......................................................................................... 141 

Figure 5.30 - The Research schematic and advancement with MAM and SPM models ............................... 143 

Figure 6.1 - Existing data extraction and analysis challenges ....................................................................... 147 

Figure 6.2 - OLAP cube architecture ............................................................................................................. 151 

Figure 6.3 - Slicing and dicing operations on OLAP cube ............................................................................ 151 

Figure 6.4 - Principle DWH architectures and frameworks .......................................................................... 152 

Figure 6.5 - DWH data models ...................................................................................................................... 152 



 
25 

Figure 6.6 - DWH schemas ............................................................................................................................ 153 

Figure 6.7 - Data warehouse Meta model for business intelligence ............................................................... 154 

Figure 6.8(a) - Proposed R&D data warehouse for knowledge capitalization ............................................... 158 

Figure 6.8(b) - Proposed R&D data warehouse for knowledge capitalization ............................................... 159 

Figure 6.9 - Meta model for knowledge capitalization................................................................................... 160 

Figure 6.10 - Flower schema for knowledge capitalization ........................................................................... 160 

Figure 6.11 - Current data extraction and analysis challenges ....................................................................... 162 

Figure 6.12 - Use Case diagram for ROMMII platform ................................................................................. 163 

Figure 6.13 - Meta model for ROMMII platform .......................................................................................... 164 

Figure 6.14 - Learning Meta model for new database, table and/or fields ..................................................... 165 

Figure 6.15 - Sequence diagram to learn Meta model use case ...................................................................... 166 

Figure 6.16(a) - Modification and synchronization activity diagram ............................................................. 168 

Figure 6.16(b) - Modification and synchronization activity diagram ............................................................. 169 

Figure 6.17 - Sequence diagram to modify and synchronize Meta model ..................................................... 170 

Figure 6.18 - Query validation and optimization Activity diagram ............................................................... 172 

Figure 6.19 - Query validation and optimization sequence diagram .............................................................. 173 

Figure 6.20 - Log File parsing and user statistics computation activity diagram ........................................... 174 

Figure 6.21 - Pre-Failure assessment activity diagram ................................................................................... 176 

Figure 6.22 - The Big picture with ROMMII platform .................................................................................. 177 

Figure 6.23 - The Research schematic and advancement with ROMMII and R&D model ........................... 178 

Figure 7.1 - Generic production process with existing sampling strategies ................................................... 184 

Figure 7.2 - Methodology with predictive state (PSM) and alarm (PAM) models ........................................ 185 

Figure 7.3 - Flow chart for clustering and queue allocations ......................................................................... 189 

Figure 7.4 - Data model to support [PAM, PSM] models .............................................................................. 190 

Figure 7.5: The Research schematic and advancement with YASS sampling strategy ................................. 192 



 
26 
26 



 
27 

List of Acronyms 

AAP Average Application Probability 

a.k.a. also known as 

BEOL Back-End-Of-Line  

BPR Business Process Reengineering  

CAP Current Application Probability 

CMOS Complementary Metal Oxide Semiconductor 

C&E Cost and Effect Matrix  

CTP Common Technology Platform  

DBMS Database Management Systems 

DFA Design for Assembly  

DFD Design for Design 

DFF Design for Fabrication Facilities 

DFM Design for Manufacturing 

DFMA Design for Manufacturability and Assembly  

DFMEA Design Failure Mode Effect Analysis  

DFP Design for Product 

DFR Design for Reliability 

DFSM Design for Semiconductor Manufacturing  

DFT Design for Test 

DFX Design for All 

DFY Design for Yield 

DL Description Logic 

DM Data Mart  

DMS Data-Method-Stat Triangle  

DOE Design of Experiment  

DRC Design Rule Check  

DRM Design Rule Manual  

DSP Digital Signal Processing 

DTD Document Type Definition  

DWH Data Warehouse  

EBR Edge Bevel Removal 

ECAD Electrical Computer Aided Design  

EDA Engineering Data Analysis 

EEPROM Electronically Erasable Programmable Read Only Memory 

EHF Equipment Health Factor 

ER Entity Relationship  

EWS Electrical Wafer Sort  



 
28 

FDC Fault Detection and Classification  

FE Focus Exposure  

FEOL Front-End-Of-Line  

FIS Federated Information System  

FMEA Failure Mode Effect Analysis 

FMECA Failure Mode Effect and Criticality Analysis  

GDS Graphic Design System 

HOLAP Hybrid Online Analytical Processing 

IA Impact Analysis  

IDM Integrated Device Manufacturer 

IO Input Output  

IP Intellectual Property 

IPD Integrated Product Development 

LIFO Last In First Out  

LSI Large Scale Integration 

LSL Lower Specification Limit  

LVS Layout versus Schematic  

MCU Micro Controller Unit  

MDD Manufacturing Driven Design  

MOLAP Multidimensional Online Analytical Processing  

MPU Micro Processing Unit  

MSI Medium Scale Integration 

ODS Operational Data Stores  

OEM Original Equipment Manufacturer  

OLAP Online Analytical Processing 

OLTP Online Transactional Processing  

OOC Out of Control 

OPC Optical Proximity Correction  

OWL Ontology Web Language  

PCM Process Control Monitor  

PCS Process Control Structures 

PDA Personal Digital Assistant 

PLC Product Life Cycle 

PMB Process Monitoring Box  

POP Package on Package 

PFMEA Process Failure Model Effect Analysis 

PLM Product Life Cycle Management  

PSM Phase Shift Masking  

QA Quality Assurance  



 
29 

QFD Quality Function Deployment  

RAM Random Access Memory 

RDF Resource Description Framework  

ROLAP Relational Online Analytical Processing 

ROM Read Only Memory 

RPN Risk Priority Number  

RTL Register Transfer Level 

SAE Society of Automotive Engineers  

SCAN Strategic Creative Analysis  

SI Semiconductor Industry 

SIP System in Package 

SIPOC Supplier, Input, Process, Output and Customer  

SOC System on Chip  

SPICE Simulation Program with Integrated Circuit Emphasis 

SSI Small Scale Integration 

SWFMEA Software Failure Mode Effect Analysis  

SWOT Strengths, Weakness, Opportunity and Threat Analysis  

TCAD Technology Computer Aided Design  

TRO Top Ranked Objective 

TSMC Taiwan Semiconductor Manufacturing Company  

T2D Technology to Design 

T2M Time to Market 

T2V Time to Volume 

T2Q Time to Quality 

ULSI Ultra Large Scale Integration 

UPT Unified Process Technology  

USL Upper Specification Limit  

VLSI Very Large Scale Integration 

WIP Work in Process 

 

 



 
30 
30 



 
31 

Chapter 1:   Introduction 

The objective of this chapter is to introduce readers with the problem background, research questions and 

methodology along with a brief description of the industrial and scientific contributions. We start with an 

introduction to the semiconductor industry (SI), current trends and challenges. The biggest challenge faced today is 

the increasing technology lead times and costs due to ineffective R&D efforts against newly emerging 

manufacturability and yield loss mechanisms. The design for manufacturing (DFM) approach being used against 

these issues is presented and discussed for its economic benefits and limitations. The single-source wafer/lot level 

analysis is found as the core limiting factor towards more effective DFM methods, resulting in extended lead times 

and costs. Based on this discussion, four research questions are formulated followed by a graphical representation of 

research methodology and timeline. The industrial and scientific contributions are also briefly presented to complete 

the improvement cycle and finally we conclude the chapter with typographic convention used throughout this thesis 

and the thesis organization. 
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1.1 INTRODUCTION TO SEMICONDUCTOR INDUSTRY (SI) 

The history of the semiconductor can be traced back to 1947 with the invention of first transistor by John Bardeen, 

Walter Brattain and William Shockley. The transistor acts like an on/off switch and is the basic building block for an 

electronic circuit where thousands of transistors are manufactured and interconnected on the silicon wafer to form an 

integrated circuit (IC) chip. The SI is responsible for an efficient and effective manufacturing of the IC chips and was 

borne with the invention of first integrated circuit in 1959. The first IC was developed by Jack Kilby at the Texas 

Instruments (TI) in 1959; however the Fairchild lab is credited for the invention of first commercial IC logic gate in 

1961 by Robert Noyce [Brinkman et al., 1997]. The first highly integrated circuit had 2300 transistors and it was 

manufactured by the Intel (4bit microprocessor 4004) in 1971 [Kumar, 2008]. Since then, the transistor count has 

exponentially increased till today. This potential growth was first predicted by Gordon E. Moore, cofounder of Intel, 

in 1965 who postulated that the transistor count shall double every 18-24 months at reduced cost, area and power 

[Moore, 1998]. This prediction along with the industrial slogan “smaller, faster and cheaper” has been accepted by 

the SI as a standard. The “smaller” means more transistors in the same area resulting in faster flow of current at 

reduced power and “cheaper” refers to continuously decreasing costs due to increasing yield. 

The semiconductor industry (SI) has revolutionized our daily lives with IC chips and on the average we are 

using more than 250 chips and 1 billion transistors per day per person. These chips are installed in almost all the 

equipments around us ranging from dish washers, microwave ovens and flat screens to office equipments. The use of 

semiconductors in cars, trains, aircraft and ships is constantly expanding and PCs, servers and pocket calculators also 

owe their existence to these chips. The global electronics business is 1.04T$ industry [Dummer, 1997] including 

300+ B$ share of the semiconductor manufacturing (2012) during last 50 years. The global semiconductor 

manufacturing (1998 till 2011) sales revenues characterize SI with the cyclic demand patterns and a +ve cumulative 

annual growth rate (CAGR) of 8.72% (Figure 1.1). This positive CAGR ensures that the demand driven downfalls 

follow a cumulative demand growth; hence, it motivates the SI to continuously invest in the R&D for a new 

technology to capture the maximum market share from cumulative growths. The R&D investment in SI is expected 

to reach 18% of the total revenues by the year 2012. It is evident that the success of SI lies in the effectiveness of 

these R&D efforts which has a strong impact on the lead times and costs associated with the new technology 

development, its derivative or simply the improvement initiatives.   

 

Figure 1.1 - Global sales revenues of SI1 

The SI has kept its pace as per Moore’s law with the continuous introduction of new technologies, every 2 

to 3 years. The increase in transistor count for new technologies has led exponential and linear increases in the 

technology and product development costs (Figure 1.2) respectively. As a matter of fact, we need new technology 

every 2 years to keep up the pace with the Moore’s law but doubling transistors count add manufacturing 

complexities that result in new manufacturability and yield loss mechanisms. The existing DFM methods do not 

                                                 
1 The data is collected from the well known technology research centers (i) Gartner {www.gartner.com} and (ii) isuppli {www.isuppli.com} 
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provide solution to these new yield loss mechanisms; hence, extensive R&D efforts along with innovation in the 

material, process and equipment are must for new technologies. It often results in increasing (i) technology costs and 

(ii) technology lead times. 

 

Figure 1.2 - Global product and technology costs for SI2 

The DFM (design for manufacturing) philosophy is a well known methodology for the yield and 

manufacturability assessments. It is subjectively focused on transforming systematic manufacturing variations into 

rules and/or models for their subsequent use in CAD simulations. The DFM methods play a significant role in the 

technology development; hence, it has got focus of the SI industry to help in coping up with the Moore’s law. These 

methods were adopted by the SI industry in 1980 as a yield enhancement strategy that worked very well till 250nm 

technology, but beyond it has turned into a high cost ineffective R&D effort. The DFM inefficiencies due to these 

ineffective R&D efforts are compensated by two means: (i) developing a technology in an alliance to share R&D 

costs for its timely introduction to the market and (ii) material, equipment and process based innovations. The 

success of the SI lies in their ability to quickly transfer this new technology in alliance partners’ business models and 

its subsequent continuous derivative and improvement initiatives followed by alignment (validation) and adoption 

(customization). The cyclic demand patterns and CAGR guarantees an equal opportunity to all the stake holders, 

resulting in R&D investments even in downtimes. The Samsung electronics is the best example where it raised 

revenues in just one year by 10.34B$ where 80% of these revenues came from DRAM and NAND flash memories 

(Figure 1.3) and it resulted from 32nm to 30nm technology derivative (alignment and adoption) efforts. 

 

Figure 1.3 - Global sales revenues of SI
2
 

The SI has followed the Integrated Device Manufacturer (IDM) business model since 1980 where 

products are designed and manufactured in the same facility. To address the increasing technology costs and 

lead times that often result in an opportunity loss, the SI has transformed into fablite and fabless business 

models. The fablite business model is similar to an IDM model with an exception that new technology is 

developed in an alliance and is transferred to alliance partners’ business models prior to its alignment and 

adoption. The fabless model advocates the design and production as specialized business function in the 

separate facilities with an objective to address the emerging manufacturability and yield loss mechanisms 

and to reduce the exponential increase in technology alignment and adoption costs. The IDM-fablite is 

known as the best SI business model in competitive environment because it is coherent to reduce the 

                                                 
2 The data is collected from the well known technology research centers (i) Gartner {www.gartner.com}, (ii) isuppli {www.isuppli.com} and (iii) 

International Business Strategies, Inc., report: Key trends in technology and supply for advanced features within IC industry (October 1, 2009) 
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technology alignment and adoption lead times (e.g. 30nm, Figure 1.3) and costs [Shahzad et al., 2011b]. The 

ineffective DFM methods are a big challenge for an IDM-fablite model and in this thesis we are focused on 

putting DFM back on track by removing the causes for ineffectiveness. 

In this thesis we are focused on (i) fast technology transfer from an alliance to the IDM-fablite business 

model and (ii) continuous technology alignment and adoption for its subsequent derivatives and improvements. It is 

based on the fact that an IDM-fablite business model provides coherent platform for knowledge capitalization based 

on production data exploitation and analysis (effective root cause analysis) for technology alignment and adoption 

lead times and costs improvements. The technology is generally defined by the minimum feature size that can be 

manufactured with it e.g. 250nm, 180nm, 130nm, 90nm, 65nm, 45nm, 32nm and 22nm. It comprises of the design 

flow, Simulation Programs with Integrated Circuit Emphasis (SPICE) models, Design Rules Manual (DRM), 

Computer Aided Design (CAD) tools, process flow, equipments, recipes, Statistical Process Control (SPC) and Run 

to Run (R2R) feed forward or feed backward strategies. The DRM includes the rules and/or models to address the 

manufacturability and yield loss mechanisms for a given technology. These rules and/or models are programmed in 

the form of process and DFM kits which are used during the CAD simulations to assess the final printed features and 

associated drifts. These drifts in the geometric shapes of the features are then analyzed with Critical Area (CAA) and 

hot spot Analyses to find manufacturability and yield limitations. It helps us in solving the yield issues early in design 

phase to avoid design respins and waste of resources during prototyping, which result in lead times and costs 

improvements. 

The technology alignment is a process to validate design, process and DFM kits and is equally applicable 

for new technology, its derivative or simple improvement initiatives. It has a strong impact on the reusability concept 

as all the design libraries (pre-designed circuits) need to be requalified which is not trivial. The technology adoption 

refers to the customization of base technology for each product to achieve target yield levels and it uses Advance 

Process (APC) and Equipment (AEC) Control techniques. The DFM methods are objectively focused on the 

manufacturability and yield but subjectively they are focused on finding root causes against deviations/drifts 

encountered during the technology alignment and adoption efforts. It can be concluded that the success of SI lies in 

the effective R&D efforts to identify root causes; hence, effective R&D is a key to improve existing ineffective DFM 

methods resulting in improved lead times and costs.  

1.2 ROLE OF DFM AND ECONOMIC BENEFITS  

The economic benefits associated with the DFM methods are presented in Figure 1.4, which are divided in 

technology alignment and/or adoption efforts and economic benefits. The green and red curves represent cumulative 

cash flows with and without DFM efforts. The DFM methods help in improving design, development and ramp-up 

periods (lead times) by quickly finding the root causes against newly emerging manufacturability and yield loss 

mechanisms. It results in cost reduction and provides an early penetration into the market with higher profit margins; 

however the biggest gain is the long selling period in the SI against the continuously shortening product life cycles.  

 

Figure 1.4 - The role of DFM and economic benefits 
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It is evident that in this competitive environment with continuously shortening product life cycles, we must 

focus and improve the technology lead times. This improvement results in the maximum market share in an equal 

opportunity 300+ B$ industry along with long selling periods. It is important to note that we are introducing new 

technologies at every 2-3 years at an exponentially increasing technology costs (Figure 1.2) and lead times where 

DFM ineffectiveness is attributed towards ineffective R&D efforts.  The ineffective DFM methods are compensated 

with the innovation in design, process, material and equipment which result in extended technology lead times and 

costs. These innovations are of course necessary for the changing requirements and to establish leader position, 

however local R&D efforts within IDM-fablite models for technology derivative and improvement alignment and 

adoption must be improved to achieve true DFM economic benefits. 

1.3 DFM CHALLENGES AND LIMITATIONS 

It is very important to start with the basic understanding of semiconductor design and manufacturing processes prior 

to discuss the DFM role and challenges in SI.  Let us start with the design side where an IC is characterized by 

electrical parameters (functions) where it undergoes a complex manufacturing process with approximately 200+ 

operations, 1100+ steps and 8 weeks of processing, however the number of steps and operations vary with the 

selected technology. A chip is designed using CAD tools and design libraries (reusable blocks of circuits). It follows 

the design simulation steps where design rules are validated and electrical and parasitic (unwanted) parameters are 

extracted using SPICE models and technology files. The drifts and variations are adjusted through layout 

optimization. The design is further simulated using DFM rules and/or models (CAA and hotspot analyses) to find out 

potential drifts in drawn features and printed images that could result in manufacturability and yield losses. These 

potential failures are addressed by either changing the design or layout optimization. Upon validation, the design 

moves to the mask preparation step. The masks are glass plates with an opaque layer of chrome carrying the target 

chip layout. For one product the mask set consists of 15 to 35 individual masks depending on the technology. They 

are used to fabricate thousands of transistors and a network of interconnected wires to form an electronic chip 

(Figure 1.5) on silicon wafer.  

 

Figure 1.5 - Cross section of an electronic chip (transistors and interconnects) 

The transistors and interconnects are the geometric shapes which are fabricated through repetitive sequence 

of deposition, lithography, etching, polishing, measurement, SPC etc. process operations. It is known that the process 

imperfection results in drift of geometric shapes of transistors a.k.a. devices and interconnects which can ultimately 

lead to the product failure. The DFM methods are focused on finding such potential drifts and its subsequent 

resolution by the designer before it enters in the production line. It is quite evident that the role of DFM methods is 

highly critical as it allows only manufacturable and yieldable designs to move on. In the design flow, we can simply 

say that the DFM rules and/or models are used to distort the drawn features followed by electrical characterization to 

ensure the product functionality. 

The DFM is inserted in the design flow upon circuit layout completion by the designer, where geometric 
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shapes are drifted based on the DFM rules and/or models for a given technology. The electronic design automation 

tools are then used to characterize and extract the electrical and parasitic parameters. The design and wire layout is 

optimized until these parameters comply with the technology and product specification. To ensure volume 

production, the DFM methods are used to optimize product masks where geometric shapes are compensated against 

process drifts to keep printed layout as close as possible to the optimized layout that passed the CAD simulations. 

A chip is manufactured on a wafer (Figure 1.6) made from silicon (Si). The wafer is divided in 

horizontal/vertical lines crossing each other known as the scribe lines. These scribe lines serve dual purpose: (i) they 

contain test structures used for metrology and/or inspection and (ii) they are used to cut the wafer and separate 

individual dies (chips). The notch is a cut in the wafer and it is used to describe the crystal orientation and wafer 

position during process and metrology operations. A site (field) is composed of individual dies whereas the number 

of dies in a site is characterized by the product mask. In order to monitor intra-die variations the test structures could 

be placed within the field at different positions. The electronic product undergoes metrology and inspection steps to 

ensure product quality where decisions are made based on the parametric yield to either scrap or move the wafer to 

next steps. These measurements are done on the test structures in scribe lines or fields; however, the product itself 

goes for a functional test at the end of the manufacturing process to sort the bad and good chips. 

 

Figure 1.6 - Structure of the product wafer 

Let us discuss the basic DFM concept and its evolution to the current challenges (Figure 1.7 and Figure 1.8). 

The designers design a new IC chip and send for manufacturing to assess its manufacturability. The design is then 

improved based on the recommendations by the manufacturing plant because process imperfection results in printed 

layout which is deviated from the drawn layout. It results in design respins, delays and costs. To avoid and/or 

minimize these respins, we simulate the designed chips using design rules and models on the manufacturability, yield 

and cost criteria. The design rules, DFM rules and models are extracted from the data collected across the production 

line against significant drifts and variations and this process is equally applicable for the technology alignment and 

adoption efforts. The success of SI lies in our ability to make the feedback loop more efficient and effective so that 

newly emerging spatial drifts and variations are quickly analyzed based on huge data volumes collected across the 

production lines. It shall help in the technology lead times and costs reduction. 

 

Figure 1.7 - The role of DFM in SI 
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The concept equivalent to “DFM” was coined by Mr. LeBlanc (French) and Mr. Eli Whitney (American) in 

1778 and 1788 respectively [Dummer, 1997] by proposing a system for the production of musket. It received an 

industry wide recognition as “producibility through interchangeable parts”. Mr. Roger W. Bolz is credited for 

organized DFM methodology [Bolz, 1958] as an alternative term for “producibility”, introduced in his book “The 

producibility handbook”; however Design for Manufacturability “DFM” received industry wide acceptance around 

1960 [Boothroyd, 1968]. Let us formally extend the DFM concept. In the SI it is defined as the ability to reliably 

predict downstream life cycle needs and issues during early phases of design [Herrmann et al., 2004]. It is focused on 

economic benefits from the volume production by trading off cost-quality-time triangle [Raina, 2006] and is 

classified as [Mehrabi et al., 2002] product DFM (producing manufacturable designs within defined processes) and 

process DFM (developing processes with less rework and high manufacturability). The most appropriate 

classification of DFM methods in the SI is physical and electrical DFM [Appello et al., 2004]. The physical DFM 

refers to the process variations that result in geometric shape drifts during manufacturing whereas electrical DFM is 

focused on the characterization of parametric and functional product yields. The parametric characterization refers to 

the extraction of key electrical and parasitic parameters whereas functional characterization mainly refers to the 

signal timing and delays that result in the faulty products to ensure product functionality. 

 

Figure 1.8 - Historical evolution of the DFM 

It is evident that most of the manufacturability and yield issues are related with the process imperfection 

and/or equipment drifts due to which we are not able to accurately print the design layout on silicon wafer (Figure 

1.9). Such drifts either result in electrical failures (electrical DFM) or physical failures (physical DFM) ultimately 

resulting in product failure. The process imperfection leads to the manufacturability and yield loss mechanisms 

which are classified as systematic or random. The random fault mechanisms can neither be modeled nor controlled 

but they can be minimized by following robust/recommended rules, however the systematic fault patterns can be 

transformed into rules and/or models for their subsequent use during CAD simulations. Please refer to section-B.6 of 

Annexure-B for detailed understanding of most common manufacturability and yield loss mechanisms. 

        

a) IC chip design           b) Design layout        c) printed layout 

Figure 1.9 – Drifts in drawn features and printed images 
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In 1980 the DFM concept was adapted as a yield enhancement strategy in the SI (Figure 1.8). It went very 

well till 250nm technology [Cliff, 2003 and Radojcic et al., 2009] but after that the increasing complexity of the 

circuit layout and shrinking sub wavelength lithography resulted in multiple respins and yield losses with 193nm 

stepper and 130nm node (Figure 1.10). The introduction of the compensation techniques like Optical Proximity 

Correction (OPC) and Resolution Enhancement Technique (RET) emerged as an extended design flow (DFM flow) 

to mitigate the yield loss mechanisms. These methods are used during the mask data preparation to ensure 

manufacturability and yield. Beyond this point the manufacturability and yield losses can only be controlled through 

process control and recipe adjustments, however new systematic drifts patterns in the printed design layouts resulting 

in parametric and functional yield losses can be modeled for the technology improvements. 

 

Figure 1.10 - Lithography and feature size [Radojcic et al., 2009] 

From above facts it is evident that stretching the CMOS technology below 45nm size is difficult without 

extending the traditional DFM methodology. The DFM has evolved from design rules to DFM rules like 

(layout/routing rules) and DFM models like Critical Area Analysis (CAA), Chemical Mechanical Polishing (CMP), 

Shape, Yield, Leakage and [McGregor, 2007] Statistical Static Timing Analysis (SSTA) to mitigate the potential 

yield losses. Our efforts are ideally focused to produce first time correct design that can be ramped without 

manufacturability issues and yield loss. The reasons behind the unsuccessful DFM implementation [Seino et al., 

2009] are lack of awareness on the importance of DFM by the product designers [Ahmed and Abdalla, 2000], less 

understanding of designs influence on the manufacturing, wrong variations analysis, inability to perform multi-

source root cause analyses and different perceptions of the engineers/managers. There is one thing common in these 

DFM methods and it is “Data“. 

In this thesis we are primarily focused on improving effectiveness of the R&D effort so that DFM can be 

put back on track in the technology alignment and adoption processes to exploit the economic benefits. Let us 

formally define the potential DFM challenges within technology alignment and adoption processes (Figure 1.11). In 

technology alignment we are focused on process alignment, based on test (representative) products, where data 

captured across the production line is analyzed using DFM methods (R&D efforts) to find root cause against the 

yield limitations and model to hardware gaps. These root causes are further classified as systematic or random and 

transformed into rules and/or models. New rules and/or models are fed back to the technology models for their 

subsequent use in CAD simulations; however processes are also improved to achieve the target yields. 

The design libraries are qualified as per new rules and models (design rules, DFM rules, models) for their 

subsequent use by the designers as reusable components to reduce the technology lead times. In technology adoption 

process, we use product prototypes and follow the process alignment link like the one we have seen in the 

technology alignment in the above paragraph. The data captured from the process is analyzed with Manufacturing 

For Design (MFD) methods a.k.a. APC/AEC methods to find causes against the drifts and yield losses. The MFD 

methods differ from the DFM in the sense that they are focused on the process, equipment or recipe adjustments to 

ensure the manufacturability of a given design whereas DFM provides us with new rules and/or models to ensure a 

first time correct design. The feedback to the process results in quick and rapid technology adoption for given yield 
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targets, however the feedback link to improve the technology do not exist because design kits are frozen at this stage 

and any proposed change shall need requalification of all design libraries which is costly and time consuming. 

 

Figure 1.11 - The role of DFM in technology alignment and adoption processes 

It is evident that the effectiveness of R&D efforts depends on the input data which at present is the single-

source (lot/wafer/site); hence, our engineers are not able to exploit the huge data volumes collected across the 

production line. The goal of this thesis is to find and remove the limiting factors associated with the single-source 

root cause analysis and provide generic scientific contributions to enable multi-source (lot/wafer/site/die) and test 

structure position based dynamic data exploitation. It shall result in efficient root cause analysis and effective DFM 

methods. If the analyses results are quickly transformed into rules and/or models followed by its inclusion in the 

technology models, the designs shall result in higher yield and manufacturability. It shall also result improvements in 

technology alignment and adoption lead times and costs. So in order to put DFM back on track we suggest (i) a shift 

from MFD to DFM efforts and (ii) single-source to multi-source site/die/position based root cause analysis within the 

technology alignment and adoption processes.  

1.4 RESEARCH QUESTIONS 

We have seen that the DFM ineffectiveness has resulted in an exponential increase in the technology lead times and 

costs. The 8.78% CAGR is the main reason behind increasing R&D investments in compliance with the Moore’s 

law and the industrial slogan smaller, faster and cheaper. It has resulted in the shift of SI business objectives from 

time-to-market (T2M) and time-to-volume (T2V) towards ramp-up rate a.k.a. time-to-quality (T2Q) to ensure 

economic benefits. The traditional IDM has transformed into IDM-fablite and fabless business models to achieve SI 

business objective by reducing technology lead times and R&D costs. This new structural transformation has 

ensured the introduction of new technologies every 2-3 years but it has highlighted ineffectiveness to continuously 

improve these technologies with local DFM efforts. It is because of the fact that besides the availability of huge data 

volumes and dimensions collected across production line, we are unable to find drift/variation patterns, classify them 

as systematic or random and transform them into rules and/or models against emerging manufacturability and yield 

loss mechanisms. So our first basic research question is to analyze the existing business models and find out if they 

are able to support the shift in the business objectives knowing that, at present we are not able to continuously 

improve new technologies which are developed in technology alliances. The formal first research question is 

presented below: 
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Q1:   What are the top ranked business objectives in the SI, today? What is the best strategy to achieve 

these top ranked objectives? Do we have a business model coherent to achieve these objectives, if no 

then what it should be? 

We have seen that new technology, which is developed in an alliance, is transferred into the business model 

where it follows technology alignment and adoption processes. The DFM methods can play a significant role in the 

alignment and adoption that has become ineffective resulting in increased lead times and costs. It depicts our 

inabilities to model the emerging drifts and variations, besides the availability of huge data volumes and dimensions 

(multi-source). We believe that if we can find and fix the limitations in multi-source data exploitation, it shall result 

in more effective DFM methods. So, the second research question is to identify the key limitations that result in our 

inability to dynamically exploit the production data sources for R&D purposes. The second research question is 

formally presented as under: 

Q2:   What are the true DFM challenges (limiting factors and failure modes) and respective root causes 

within technology alignment and adoption processes? 

The identified limitations are further investigated to find relevance with an organization or a domain; hence, 

the third research question is about generic solutions (scientific contributions) to solve the problems associated with 

dynamic exploitation of production data sources. The third research question is formally presented below: 

Q3:  What are the generic solutions to remove these root causes and put DFM back on track for the 

technology lead time and costs improvements?  

Finally, it is important to assess the potential industrialization and post industrialization challenges of proposed 

generic solutions. The proposed solutions provide an opportunity to exploit multi-source data; hence, it raises need 

for more metrology and inspection data for R&D purposes. It is likely to reduce the metrology/inspection capacities 

reserved for normal production. We cannot buy new tools to increase the capacities (fixed cost); hence, we need an 

intelligent way to spare metrology/inspection capacities for R&D purposes. The fourth research question is formally 

presented below: 

Q4:  What are the consequence of proposed solutions industrialization and how we can resolve it to allow 

smooth integration of the proposed solutions?  

1.5 RESEARCH METHODOLOGY AND SCHEMATIC 

In this section we graphically present the methodology and timeline (Figure 1.12) as a block diagram. It summarizes 

that how the research was carried out along with scientific and industrial contributions.
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Figure 1.12 - The Research schematic and contributions at a glance 
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We started with brainstorming sessions (A0) with engineers and managers at STMicroelectronics and 

highlighted potential business (T2M, T2V, ramp-up-rate) and technical (area, power, timing, leakage) objectives. 

The SCAN analysis (A1) resulted in leadership position and ramp-up-rate as the top ranked objectives and traditional 

IDM business model analysis (A2) resulted in the (i) fast technology transfer, (ii) manufacturing databases and (iii) 

effective root cause analysis (R&D) as key improvement areas. These findings were used as input in SWOT analysis 

(A3) and we agreed on the strategy to remove weaknesses and capitalize the knowledge.  As we know that the 

technology lead times and costs are the key factors for success in SI; hence, we analyzed technology derivative and 

improvement processes (A4) to find limitations within the scope of key improvement areas as identified in A2. The 

key failure modes were found as (i) data extraction, (ii) alignment and (iii) pre-processing due to ontology issues and 

missing database links. This analysis resulted in the proposition of an extended IDM-fablite (e-IDM) business model 

with integrated DFM methodology for quick ramp-up-rate and leadership position. The analyses blocks A0A4 

shows that existing IDM, IDM-fablite, fabless and foundry business models do not support recent shift in the 

business objectives (ramp-up rate); hence, we propose an extended IDM-fablite (e-IDM) business model to achieve 

quick ram-up rate. It also improves the internal manufacturing window while keeping intact its backward 

compatibility with technology, initially developed in an alliance. It provides an answer to the first research question. 

We have used a well known Failure Mode Effect Analysis (FMEA) methodology to find potential root 

causes against initially identified failure modes (A4). The initial root causes identified are ontology issues, missing 

links between databases, missing values and varying measurement reference coordinates that restrict our engineers to 

single-source root cause analysis. It is because of the fact that wafer is often rotated prior to site/die level 

measurements due to test structure orientation in the scribe lines and fields. This rotation changes the x, y coordinates 

resulting in varying measurement coordinates which requires an accurate alignment prior to perform multi-source 

site/die level analyses. We developed 5 tools (industrial contributions: ICs) (i) Spice Model Alignment (SMA) for 

fast technology transfer (IC1), (ii) BEOL-variance analysis to analyze parametric drifts in back-end-of-line 

interconnect modeling process (IC2), (iii) KLA-Ace recipe for the mapping and alignment of coordinates to enable 

multi-source site/die level analysis (IC3), (iv) Equipment, Product, Process (EPP) life cycle extraction tool to extract 

multi-source contextual data to support drift/excursion analysis (IC4) and (v) Alarm Control and Management 

(ACM) tool to extract, analyze and manage alarm data for tool capacity optimization (IC5). These tools were 

developed and provided at the disposition of Technology to Design (T2D), Equipment Engineering (EE) and 

European project IMPROVE teams, being crucial for the successful and quick technology derivative improvements 

with local DFM efforts. The objective was to find new failure modes which are not evident at this stage. 

While using these tools, the teams identified new failure modes that were taken into account and the tools 

were rectified and updated accordingly. This hybrid approach helped us to find the core failure modes: (i) 

unstructured data model evolutions, (ii) missing data dimensions and (iii) wrong correlation due to test structure 

positions. These failure modes are grouped as (i) ineffective root cause analysis (infield and scribe line test structure 

positions) and (ii) data extraction, mapping and alignment, were identified to propose generic solutions (A6 and A7). 

We also performed FMEA on the technology transfer step and found issues between SPICE model and measured 

electrical parameter relationship. The SPICE models are the mathematical equations used to extract the electrical 

parameters based on the transistors and interconnect geometries and process technology selected for the 

manufacturing. The name of the parameters in these SPICE models are generic whereas the names used by the test 

engineers while writing test programs for the test structure on the wafer are different; hence, the mismatch creates a 

significant problem and delays the model validation resulting in extended lead times. The initial root causes that were 

found are incorrect and error prone SPICE-PT parameter alignment due to manual data alignment and pre-

processing; hence, we initially developed SMA (spice model alignment) tool (IC1) that resulted in automation and 

removed the associated issues. The further use of this software tool identified unstructured naming conventions for 

the metrology parameters and varying formats of the CAD simulation results as the key root causes. These industrial 

contributions IC1 to IC6 are added in appendices for reference. The analysis blocks A6-A7 and industrial 

contributions IC1 IC5 partially answers the second question, established in section 1.4. 

A detailed FMEA analysis is performed on the (i) ineffective root cause analysis and (ii) data extraction, 
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mapping and alignment failure modes. The resulting root causes are used to propose generic solutions a.k.a. scientific 

contributions (SCs). The key root causes linked with “ineffective root cause analysis” failure modes are (i) missing 

and varying coordinate due to varying metrology reference frames, (ii) rotation of wafer prior to the measurement 

steps and (iii) the infield/scribe line test structure positions. A generic MAM (mapping and alignment) model (SC1) 

is proposed to remove die/site level mismatches and provide means for an accurate correlation. The SPM (spatial 

positioning) model (SC2) is also proposed to enable correlation between parameters, based on the shortest distance 

between test structures, used for metrology. The ROMMII (relational/referential ontology Metal model for 

information integration) framework (SC3) and R&D Data Warehouse (DWH) model (SC4) are proposed to address 

the causes identified against data extraction, mapping and alignment failure modes. The word mapping in this failure 

mode refers to the mapping between multiple databases (links). It provides the ability to perform pre-failure analysis 

on the potential impact of any structural change in data model over existing users and applications. These scientific 

contributions (SC1 to SC4) refer to the question-3 whereas the identified failure modes and root causes complement 

the answer to question-2. It is very important to note that root causes identified fall in different business functions and 

in our case it is Information Technologies (IT) and Engineering Data Analysis (EDA), so based on the experience 

during PhD, we have also proposed a 4-step i-FMEA (interdisciplinary failure mode effect analysis) approach (SC5) 

to capture true challenges that might fall in other business functions. The i-FMEA methodology completes our 

answer to question-2.  

At the end, a brain storming session on the industrialization of proposed scientific contributions highlighted 

potential impacts. It was found that it shall result in extended analysis and metrology demands by R&D engineers for 

an effective root cause analyses. It is likely to reduce inspection/metrology tools capacities for normal production 

lots; hence, to address this issue a yield aware sampling (YASS) strategy (SC6) is proposed which is based on 

information fusion (alarms, states and meters data) to intelligently predict the production lots with likely yield loss. 

So the objective is to inspect bad or suspected lots and allow good lots to move to the next production steps. The 

additional metrology and inspection capacities can be then used for the R&D purposes. This YASS strategy provides 

answer to the question-5. 

1.6 MAJOR CONTRIBUTIONS 

Let us summarize the major contributions made during this thesis. The contributions are divided in two categories as 

(i) industrial contributions and (ii) scientific contributions. 

1.6.1 Analysis of Overall System and Industrial Contributions 

We made 5 industrial contributions in the form of software tools for R&D engineers as (i) BEOL-variance analysis, 

(ii) KLA-Ace Recipe, (iii) EPP (equipment, product, process) life cycle tool, (iv) SMA (spice model alignment) tool 

and (v) ACM (alarm control and management) tool. A brief description of these contributions is presented as under: 
 

a) SMA (spice model alignment) Tool (IC1): This tool is developed as an operational fix for the 

process integration (PI) team, working for technology transfer, alignment and adoption. It is developed 

to remove the causes associated with the failure modes identified and presented in Chapter-4. It 

facilitates R&D engineers in aligning the SPICE model parameters against measured electrical 

parameters and generates SPECS based on manufacturing capabilities. 
 

b) BEOL Variance Analysis Tool (IC2): This tool is developed for Technology to Design (T2D) 

team to support the device/interconnect modeling process by quickly pre-processing data followed by 

parasitic variance analysis that result in the parametric and functional yield losses. The significant 

variations are further analyzed using KLA-ACE recipe for the PT-Inline site level correlations to find 

root causes against these drifts. 
 

c) KLA-Ace Recipe for PT-Inline Correlation (IC3): In this recipe we enable multi-source 

correlation using PT-Inline data sources by mapping the data at site levels. Both of the data sources, 

Parametric Tests (PT) and Inline measurements are captured at Site level. The PT is a type of electrical 
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measurements whereas Inline corresponds to the physical measurements. The PT database has site 

numbers and x,y coordinates against each measurement; however, the Inline data has only site number. 

These site numbers cannot be used for site level mapping because during measurements the Wafer is 

rotated based on the position of the test structure; hence, every measurement has different coordinates. 

It means that until and unless we have wafer position defined by notch (a cut on the wafer edge used 

for alignment) and its x,y coordinates, site level mapping cannot be performed; hence, multi-source 

root cause analysis is not possible. In this recipe we use the mask level information to normalize the 

site level identifiers so that quick mapping can be performed to provide engineers an ability to perform 

multi-source root cause analysis. 
 

d) EPP (Equipment, Product, Process) Life Cycle Tool (IC4): The results obtained from the BEOL 

and KLA-Ace recipe justify the parasitic drifts against geometric specification variations; however, it does not 

provide an answer if the drift was caused due to process or equipment variation. In order to perform an in 

depth analysis we developed this tool that exploits the manufacturing data sources and generates product and 

equipment life cycles. The EPP tool directly connects with the maintenance (TGV) and out of control (OOC) 

databases for the equipment related data extraction whereas product and process data is extracted from the 

process database using KLA-Ace recipes. All these data are input to the EPP tool that perform consistency 

checks and populates them into a multidimensional database. It provides a user friendly interface to extract 

customized equipment and product life cycles. 
 

e) ACM (Alarm Control and Management) Tool (IC5): This tool is developed for the lithography 

equipment engineering team. At present engineers do not have information about alarms categorization based 

on machine states; hence, we have linked INGENIO (equipment alarms) database with maintenance and 

process databases to classify alarms based on the machine state.  The extracted data is further used to develop 

predictive models for the likely yield loss across the production processes with an objective to skip good lots 

and inspect the lost with suspicion of bad yield. It is used in the YASS (yield aware sampling strategy) as 

presented in section 1.6.2e. 

 

These tools have helped us in finding true DFM challenges (failure modes) and associated root causes as a 

part of our proposed i-FMEA methodology. The brief description for these tools is presented in the appendices D to 

H. 

1.6.2 Scientific Contributions 

In this thesis, 6 scientific contributions are proposed as (i) MAM model, (ii) SPM Model, (iii) ROMMII platform and 

R&D DWH Model, (iv) i-FMEA methodology and (v) YASS strategy. A brief description is presented as under: 
 

a) MAM (mapping and alignment) Model (SC1): It is a generic model for site/site and die/die 

mapping of metrology data along with die/site qualification. The objective is to enable our R&D 

engineers to perform multi-source root cause analysis to find root cause against newly emerging 

spatial drifts and variations. It is presented and discussed in detail in Chapter-5. 
 

b) SPM (spatial positioning) Model (SC2): It is a fact that all metrology measurements are 

performed on test structure and these test structures are located in scribe lines and/or in the fields. To 

capture and better understand newly emerging spatial variations, it is likely to perform analysis using 

measurements coming from the test structures with shortest distance. This model performs mapping 

on different data sources based on the test structure position. 
 

c) ROMMII (referential ontology Meta model for information integration) Architecture 

and R&D Data Model (SC3 and SC4): The ROMMII architecture provide a strong control over 

unstructured data model evolution and at the same time flexibility to continuously evolve the data 
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models to include new data dimensions. The R&D data model is proposed to support the need of 

R&D engineers to ensure that 1 year R&D data is always available for analysis purposes. 
 

d) I-FMEA (Interdisciplinary failure mode effect analysis) Methodology (SC5): It is 4-step 

methodology which is primarily based on the traditional FMEA approach but subjectively focused on 

finding cyclic failure modes and root causes. We conclude that the cyclic failure modes and root 

causes must be addressed with the generic R&D solutions (SC1 to SC5) than operational fixes (IC1 to 

IC5). In our case, highlighted cyclic failure modes and root causes are classified as the true DFM 

challenges requiring generic R&D solutions. It enables the R&D engineers to extract accurate and 

timely value by dynamically exploiting the available huge data volumes and dimensions. The result is 

a shift from data driven ineffective DFM efforts towards information and knowledge driven DFM 

initiatives. 
 

e) YASS (yield aware sampling strategy) Strategy (SC6): This intelligent sampling strategy 

predicts the production lots as good, bad or suspected lots based on the predictive state and alarms 

model. These models are learned from data extracted using ACM tool. The objective is to increase the 

metrology capacities so that it can be spared for the R&D purposes. It is important to support the 

industrialization of our proposed generic scientific contributions because of the fact that ability to 

model abnormal drifts shall result in huge demand for more metrology for R&D analysis. 

1.7 THESIS ORGANIZATION 

This thesis is divided into 7 chapters and 8 appendixes.  The contents of this thesis are organized so that the readers 

do not have to read all the chapters to get the information they need. Therefore, some concepts are repeated across 

several chapters.  The following list briefly describes each chapter and appendix: 
 

 Chapter-2 [Literature Review]: We present a comprehensive literature review across 3 dimensions (i) 

semiconductor industry and challenges (ii) role of DFM methods in SI and (iii) information integration 

challenges. We suggest that readers with little or no background of semiconductor design must go through 

appendices B and C where we have discussed in detail the semiconductor design and manufacturing processes 

with an example of simple CMOS inverter design. The objective is to introduce the readers with potential 

design and manufacturing interface complexities and emerging manufacturability and yield loss mechanisms. 
 

 Chapter-3 [An Extended IDM (e-IDM) Business Model]: In this chapter, SI business models and 

objectives are analyzed followed by the identification of key improvement areas. The SCAN and SWOT 

analysis techniques are used to find a strategy to exploit opportunities. The technology development process is 

further analyzed for the identification of limiting factors that result in DFM ineffectiveness. The challenges 

found here along with the key improvement areas forms the basis for an extended IDM (e-IDM) business 

model with the improved DFM methods. 
 

 Chapter-4 [i-FMEA Methodology for True DFM Challenges]: The objective of this methodology is to 

identify true DFM challenges against those found in the literature review. A 4-step i-FMEA methodology is 

proposed to find root causes against failure modes in other business functions. The identified root causes are 

grouped as (i) ineffective root cause analysis and (ii) data extraction, mapping and alignment which serve as 

basis to remove DFM ineffectiveness and ensure the success of our proposed e-IDM business model. 
 

 Chapter-5 [MAM- SPM Models for Mapping, Alignment and Positioning]: In this chapter, the two 

groups of root causes “ineffective root cause analysis” and “mapping and alignment” are addressed that directly 

impacts DFM ineffectiveness and restrict R&D engineers to single-source wafer/die/site level analysis. The 

MAM and SPM models are proposed to remove die/site level mismatches and enable a multi-source die/site 

and position based root cause analysis. 
 

 Chapter-6 [ROMMII Architecture and R&D Data Model for Information Integration]: The second 

group of root causes “data extraction” is addressed here and ROMMII (referential/relational ontology Meta 
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model for information integration) framework is proposed that allows the data model evolution and enables us 

to exploit huge data volumes as well as inclusion of new data dimensions. The proposed R&D data model 

removes different data retention issues with multiple production databases. 
 

 Chapter-7 [YASS (yield aware sampling strategy) for tool capacity optimization]: The 

industrialization of proposed contributions (chapter-3, chapter-5 and chapter-6) does result in new demands for 

the additional metrology to capture and model variations. It is quite difficult in an IDM business model to spare 

metrology/inspection capacities for R&D purposes; hence, the YASS strategy spares tool capacities for R&D. 

The proposed strategy advocates and facilitates industrializations of e-IDM fablite, MAM, SPM and ROMMII 

contributions. 
 

We conclude our thesis with discussion and critical analysis on the proposed solutions against alternative solutions. 

We also present some industrial recommendations for SI on the potential industrialization of the proposed scientific 

contributions and end up with future research directions to improve the DFM methods. 

 Appendix A (Publications): provides a list of publications in international conferences and journals along 

with abstracts and keywords. 

 Appendix B (Semiconductor Design, Mask and Manufacturing Processes): provides a brief review 

on design, mask preparation and manufacturing processes along with key challenges and limitations and most 

common manufacturing and yield loss mechanisms. 
 

 Appendix C (CMOS Inverter Design and Manufacturing: practical example): simulates the 

CMOS inverter design, masks and manufacturing steps. 
 

 Appendix D (SMA-Tool): presents a brief description of SMA tool used by the PI team to support fast 

technology transfer efforts. 
 

 Appendix E (BEOL-Tool): presents a brief description of the BEOL-Tool for T2D team to support quick 

variance analysis during interconnects modeling process. 
 

 Appendix F (KLA-Ace Recipe): presents a KLA-Ace Recipe that uses the mask data to complement the 

missing x, y coordinates for inline data and enables PT/Inline site level correlation analysis.  
 

 Appendix G (EPP-Tool): presents brief description of the tool that provide product and equipment life cycle 

data extraction, used by IMPROVE project team for the computation of Equipment Health Factor (EHF). 
 

 Appendix H (ACM-Tool): presents brief description of the tool that provides extraction of alarms and states 

data to be used for PAM and PSM prediction models. It is used by the equipment engineers to analyze and 

manage the alarm controls to identify the alarms to be controlled on priority. 

This thesis ends with a list of references used during research and an index of important terms. To help the readers, 

the first paragraph of each chapter provides a synopsis of that chapter’s contents. 

1.8 TYPOGRAPHIC CONVENTIONS 

The typographic conventions are used in the thesis to improve users’ readability. A comprehensive list of acronyms 

that appear throughout this thesis is provided and if an acronym appear in the thesis, it is not emphasized in bold type 

e.g. DFM, IDM, etc. For the standard concepts, if an acronym appears very first time then its initial letters are put in 

capital with acronym in brackets, e.g. Design For Manufacturing (DFM); however for the proposed concepts the 

acronym precedes the description e.g. MAM (Mapping and Alignment Model) etc. The citations are shown in italic 

type and between the quotation marks (“”) e.g. “A data warehouse is a subject oriented, integrated, time-

variant, nonvolatile collection of data in support of management’s decisions”. 
 

We have tried to write each chapter as a whole so that they can be read independently; however there are 

situations in which we have referred or repeated contents to some extent that has previously appeared or that shall 

appear in the following chapter(s).
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 Chapter 2:   Literature Review 

The readers not familiar with the SI design and manufacturing flows are recommended to first read the appendices B 

and C. The appendix B provides a brief review on the design, mask preparation and manufacturing flows along with 

most common manufacturability and yield loss mechanisms. The appendix C presents a simulation of a simple 

CMOS inverter (2 transistors) design and manufacturing steps for an in depth understanding of the complexity in SI 

design and manufacturing processes. The literature review in this chapter is divided across 3 dimensions (i) the 

semiconductor industry and challenges (ii) the role of DFM methods in semiconductor industry and (iii) the 

information integration issues to support our methodology and scientific contributions. 
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 2.1 SEMICONDUCTOR INDUSTRY (SI): BACKGROUND AND CHALLENGES 

The Semiconductor industry (SI) is characterized by the fastest change in smallest period of time and has 

become a 300+ B$ industry in less than 60 years [Stamford, 2012 and Dale, 2012]. It has followed the 

industrial slogan smaller, faster and cheaper in compliance with Moore’s law that predicted the doubling of 

transistor every 18 to 24 months [Moore, 1998]. This miniaturization has led serious design and 

manufacturing challenges which are resolved with the continuous introduction of new technologies, 

processes and production equipments at the cost of huge R&D investments. The increasing R&D costs have 

been compensated by increasing wafer sizes and reducing technology alignment and adoption lead times. 

The SI has seen many circuit integration eras and series of technology nodes to manufacture more complex 

integrated circuits. The DFM methods were initially introduced around 1980 as a yield enhancement strategy 

that worked very well up until the 250nm technology node but beyond this it became a high cost R&D 

activity. The newly emerging variations have resulted in increasing the technology alignment and adoption 

lead times and associated costs. We need to reduce these lead times so that associated R&D costs are reduced 

and high profit gains with early penetration into the market. 

 The objective of this section is to briefly review the history of the semiconductor industry, evolution, 

business models, current trends and major challenges. It shall provide us with an overview of the market and 

its influence on the semiconductor industry, further we shall also see the evolution of technical and business 

challenges that led the structural transformation of the IDM structure into fablite and fabless business 

models. This section shall highlight the need to analyze the existing evolutions and find or propose a 

business model (see chapter-1, section 1.4) to achieve the new shift in objectives from T2M and T2V 

towards ramp-up rate a.k.a. Time-to-Quality (T2Q), essential for success [Carrillo and Franza, 2006]. 

2.1.1 Historical Background 

The electronics business is a trillion dollars industry that has developed over a 100 years in a number of steps. It 

started with the invention of 2 and 3 elements vacuum tubes by John Ambrose Flemming (1904) and Dr. Forest 

(1906) that led the development of radios and televisions, very first electronic products to be sold commercially 

[Dummer, 1997]. The invention of transistor (1947) and integrated circuits (1950s) revolutionized and led the 

industrial specialization as (i) consumer electronics and (ii) semiconductor industries [Braun and MacDonald, 

1982]. A transistor is a semiconductor device that is functionally equivalent to a vacuum tube but is smaller, robust, 

operates at lower voltages, consumes less power and produces less heat. It is the building block for integrated circuits 

(ICs) in SI that allows integration of several circuits and has pushed electronics industry towards miniaturization. The 

electronics industry started with a 200 million $ market share in 1927 [Dummer, 1997] and it has seen an 

exponential growth to 1.04 T$ including 300+ B$ from the semiconductor industry in 2012 [Lefkow, 2012]. We are 

focused on the SI that lives and dies with the industrial slogan: smaller, cheaper and faster. Being smaller is a key 

towards success as it increases the number of transistor per unit area and speed up the current flow due to transistors 

proximity, resulting in more circuits being manufactured at the higher performance but reduced cost. 

The emergence of the SI can be traced back to [Brinkman et al., 1997] John Bardeen, William Shockley 

and Walter Brattain that invented a solid-state transistor at Bell Telephone Laboratories (1947). In 1954, William 

Shockley set up Shockley Semiconductor Laboratory to industrialize the silicon transistors.  Gordon E. Moore (a 

chemist), joined Shockley Semiconductors in 1957 but a group of 8 engineers including Gorden E. Moore and 

Robert Noyce left Shockley Semiconductors in 1958. They offered the idea of silicon based semiconductors to 

Sherman Fairchild, the founder of the Fairchild Camera and Instrument. They set up a new division called Fairchild 

Semiconductor [Tuomi, 2004] and started its operations with $3,500 capital (1957). The first integrated circuit was 

developed by Jack Kilby at the Texas Instruments (TI) in 1959; however the Fairchild lab is credited for the 

invention of the first commercial IC logic gate in 1961 by Robert Noyce [Brinkman et al., 1997]. These 

benchmarked revolutions are presented in Figure 2.1. 
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  a) First Transistor (1947)                b) First IC Device (1959)                   c) Silicon IC Chip (1961) 

                                  Bell Labs                                           Texas Instruments                                           Fairchild Lab 
 

Figure 2.1 - Benchmarks in semiconductor technology evolution [Quirk and Serda, 2000] 

2.1.2 Evolution of Semiconductor Industry  

The demand for semiconductors is mainly driven by end-user markets: data processing, consumer 

electronics, communications, automotive industry and industrial sector [Ballhaus et al., 2009]. The SI forms 

a part of this complex interaction among multiple industrial sectors [Yoon et al., 2010 and Kumar, 2008]. In 

general, the semiconductors demands do not generate directly from end users, but it is determined by the 

related end-customer market. We can analyze the market supply and demand by dividing it on product type, 

application segments and geographical regions. 

Understanding market structure based on products is better understood as two categories as (i) non 

memory products and (ii) memory products (Figure 2.2). It is evident that memory is the biggest market in 

semiconductor till today. The Microprocessor (MPU) and Microcontroller (MCU) Units have lowest relative 

market demand but these products are classified as high value products; hence return on investment is also 

high on these products. 

 

Figure 2.2 – Product based market structure1 

The market structure with reference to the application segments is presented in Figure 2.3 that shows 

consumer electronics and wireless communication as one of the leading market segments, however 

automotive applications is the emerging market segment which is included in others category. At present, the 

automotive market is only 8% of the total SI market but is expected to dominate in the future.

                                                 
1  The data is used from International Business Strategies, Inc., report: Key trends in technology and supply for advanced features 

within IC industry (October 1, 2009), Gartner {www.gartner.com} and isuppli {www.isuppli.com} 
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Figure 2.3 – Application segment based market structure4 

The geographic position based segmentation (Figure 2.4) clearly shows a rising demand in China 

followed by North America. This geographic segmentation had influenced the semiconductor business model 

evolutions, to be discussed in section 2.2. 

 

Figure 2.4 – Geographical position based market structure5 

2.1.3 Role of Moore’s Law in Semiconductor Industry 

The technology scaling has been the primary driver behind improving the performance characteristics of IC’s. 

Gordon E. Moore made an observation in 1965 that the number of transistors shall double in logic circuits every 24 

months [Moore, 1998]. It was named as Moore's law of miniaturization by Caltech Professor Carver A. Mead; 

however this projection was altered by Gordon E. Moore himself in 1975 by changing the duration from 24 to 18 

months. This projection proved accurate and was accepted as an industrial standard. Robert Noyce (1977) proposed 

that miniaturization is less likely to be limited by the laws of physics then by the laws of economics and he named it 

as the Moore’s 2
nd

 law, however Mr. Ross in 1995 stated that Moore’s 2
nd

 law shall end around 2005 [Ross, 2003]. 

                                                 
4,2 The data is used from International Business Strategies, Inc., report: Key trends in technology and supply for advanced features 

within IC industry (October 1, 2009) , Gartner {www.gartner.com} and isuppli {www.isuppli.com} 
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We saw that this projection proved wrong and Moore’s 2

nd
 law still prevails; however the cost associated with new 

technologies is exponentially increasing. 

During last 50 years, the SI has followed the industrial slogan smaller, faster and cheaper that resulted in 

shrinking the device geometries, increasing chip sizes (Figure 2.5) and rapid improvements at reduced costs. The 

period from 1960 to 1970 is credited for the emergence of new technologies that lead the Small and Medium Scale 

Integrations (SSI, MSI) but actual competition started around 1970 with Large and Very Large Scale Integrations 

(LSI, VLSI) to capture maximum market share with the support of automation technologies that were introduced 

around 1980 [Quirk and Serda, 2000]. The circuit integration era beyond 1999 is marked as Ultra Large Scale 

Integration (ULSI) and is attributed to the start of volume production efforts [Kumar, 2008]. These circuit 

integration eras are attributed to the Moore’s law that has pushed the SI towards smaller, cheaper and faster devices. 

 

Figure 2.5 – Circuit integration eras and reducing costs (Chang and Sze, 1996)6 

The well-known Moore’s law has diversified into (i) equivalent scaling and (ii) functional scaling as 

presented in Figure 2.6 [Kahng, 2010]. The equivalent scaling is based on the principle of miniaturization that has led 

the emergence of System On Chip (SoC) where functionalities performed by different chips e.g. memory, IO (input 

output), processing unit etc. are put on the same chip to get higher performance at reduced area and cost. The major 

SoC application areas are information and digital contents processing e.g. memories (ROM, RAM, EEPROM, 

Flash) microcontrollers, microprocessors, Digital Signal Processors (DSP) etc. It has resulted in the design 

complexity and requires new technologies to be regularly introduced to cope up with the pace defined by Moore’s 

law. The functional scaling is an important area for the advancement of semiconductor technology. It is focused on 

grouping multiple functionalities (circuits systems) in a single chip (hetero-integration of digital and non-digital 

contents). These systems are also known as System in Package (SiP). The current trends include functional and 

equivalent scaling at the same time which has resulted in the emergence of new type of systems called Package on 

Package (PoP). Multiple chips are stacked on one another in the PoP which give rise to more complex design and 

manufacturing interface complexities (variations). The most common examples for such systems are the mobile 

phones, digital cameras and Personal Digital Assistants (PDA). These systems require innovation in terms of new 

devices as well as materials; hence results in the most complex manufacturing environment. 

                                                 
6 Redrawn from C. Chang and S. Size, McGraw-Hill, ULSI Technology, (New York: McGraw-Hill, 1996). 
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Figure 2.6 – Diversification in Moore’s law [more Moore and more than Moore] 

2.1.4 Nanometer vs. Micrometer Semiconductor Technologies 

The integrated circuit components (transistor, capacitors, resistors etc.) have different sizes, but it is of interest to 

define the technology based on the smallest feature (dimension) size that can be manufactured on the silicon wafer. It 

is called node and it has reduced since 1965 every 2 to 3 years. The node sequences successfully achieved till today 

(Table 2.1) are: 1.5 μm, 1 μm, 0.8 μm, 0.6 μm, 0.5 μm, 0.35 μm, 0.25 μm, 0.18 μm, 0.13 μm, 90 nm, 65 nm, 45 nm, 

32nn and 22nm. The two latest nodes are known as the leading edge, three immediately before as the mainstream 

and others as the oldest [Kumar, 2008]. 

 

Table 2.1 – CMOS technology scaling and characteristics 

The terms used to represent the technology sizes (nm or µm) are always confused and there are no set rules 

to follow or express it. The term nanotechnology was coined by the national science foundation (NSF) in USA 

which states that the technologies used to manufacture devices with at least one dimension in the range below 100 

nm shall be expressed and measured in nanometers. The micrometer scaled has been used to express the 

technologies till 0.13 μm but the important question is how small is the nanometer or micrometer? A comparative 

scale to imagine the size of the current technologies is presented in Figure 2.7. It can be seen that the smallest feature 

manufactured by the recent 32nm technology is even smaller than the length of a bacteria which is not visible with 

the naked eye [Jones, 2012]. 
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Figure 2.7 – Technology size scale, how small is small? [Jones, 2012] 

2.1.5 Semiconductor Business Model and its Evolution 

The SI has manufactured its own production equipments and products till 1980, however in 1980 these 

functions were separated into (i) Original Equipment Manufacturers (OEM) and (ii) Integrated Device 

Manufacturer (IDM) models to handle the increasing complexities and costs [Wu, 2003 and Hurtarte, 2007]. 

The DFM approach helped the SI to enhance the yield till 250nm but it has turned into an ineffective R&D 

activity with high costs. To address these increasing DFM costs and resulting increased technology adoption 

and alignment lead times, the IDM has transformed into fablite and fabless business models with an 

objective to integrated DFM within the design flow [Kumar, 2008 and Moore, 1998]. Let us analyze the 

value chain of the integrated circuits comprising of three major steps (i) IC design, (ii) manufacturing and 

(iii) assembly/test. The semiconductor business models in this value chain are classified as the (i) IDM, (ii) 

fablite, and (iii) fabless models (Table 2.2). The transformation of these models has resulted in the 

emergence of the Engineering Data Aanalysis (EDA)7 and Intellectual Property (IP) companies to help 

automate the design and manufacturing flows and integration of DFM in the design flow. These are the 

strategic decisions; however the objective is to reduce the increasing new technology lead times and 

associated costs.  

 

Table 2.2 – Semiconductor business models 

 Integrated Device Manufacturer (IDM) Model: The IDM’s are companies that operate along the 

entire value chain in the semiconductor manufacturing. An exponential increase in the technology R&D costs 

and production equipments has resulted in the transformation towards fablite business model where new 

technology is developed in a technology alliance to share high R&D costs and reduce the new technology lead 

times e.g. Intel etc. 
 

 Fablite Model: These are exactly similar in their operations with the traditional IDM models, however the 

new technology is developed in an alliance to share the high R&D costs and reduce the technology lead times. 

                                                 
7 The acronym EDA stands for engineering data analysis whereas electronic design automation is always written in full. 

IC Design Manufacturing Assembly / Test

IDM Yes Yes Yes

Fablite Yes Yes

Fabless Yes

Foundry Yes

EDA Yes Yes

IP Yes
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The production capacities are also outsourced to the technology alliance if required. It is a modern IDM model 

which is still holding the maximum market share e.g. Samsung, Toshiba, STMicroelectronics. 
 

 Fabless and Foundry Model: This model is being promoted by ITRS based on the fact that the new 

emerging technology challenges require strong collaboration in this competitive environment to reduce the 

lead times and costs. The fabless companies do not carry out the product development; they simply design the 

products based on the technology which is developed in an alliance. The designs produced are equally 

manufacturable in the technology alliance partners manufacturing facilities. These companies have been 

successful as there is no capital investment required but the success of these companies relies on IP circuits. In 

comparison to these fabless, the foundries mostly operate large and modern production facilities with high 

levels of capacity utilization e.g. TSMC, UMC etc. 
 

 EDA and IP Companies: The EDA companies are involved in the design phase of the value chain and 

they operate in strong collaboration with IDM, fabless and foundries. These companies devote themselves 

exclusively to licensing (intellectual property or IP companies) and they specialize in the design of certain 

modules and license the resulting intellectual property to their customers. Unlike fabless companies, IP 

companies do not have sales operations and license their design and development services exclusively to third 

parties. There are also companies that focus on electronic design automation. Compared with the other 

business models, the volume of sales generated by IP and EDA companies is a small part of the overall market 

but without any initial investment. 

The reasons behind structural transformations have been reported as potentially increasing technical and 

business challenges that have resulted in increasing technology lead times and costs. The objective is to capture the 

maximum market share; hence the shift in business objective from T2M and T2V towards ramp-up rate a.k.a. T2Q is 

attributed to be the key driver in this transformation. The fabless and foundry business models are being promoted 

since 1999 [Kumar, 2008] where design, manufacturing and electronic design automation are separated as the core 

business functions and emphasis is put on the collaboration and alliances to address the exponentially increasing 

costs. IDM business model has been demonstrated as the best business model in this competitive environment 

because it is coherent to reduce the technology alignment and adoption lead times [Shahzad et al., 2011a] and 

benefit from the cyclic demand patterns to capture maximum market share. We believe that success lies in our ability 

to quickly ramp-up the production that requires a mature technology and continuous improvements. The IDM 

platform provides R&D engineers with all the data to be used for the multi-source analysis. The problem today is 

that engineers - even with the availability of large data sets - are not able to exploit this data, resulting in ineffective 

DFM methods. Removing these challenges to utilize the data while performing the technology alignment and 

adoption activities will support the lead times and cost reduction efforts. 

2.1.6 Trends in Semiconductor Industry  

It is very important to analyze the important trends followed by the semiconductor industry in compliance with the 

Moore’s laws before moving towards the challenges faced by the industry (Figure 2.8). We have seen the transistor 

count doubling every 18 months in compliance with Moore’s law (Figure 2.8a). The first 1 billion transistor 

processor was developed by many manufacturers in early 2010, but Intel holds the distinction of 

manufacturing it with the latest technology and on the smallest area (Core i7 [6 core] Gulftown with 32nm 

and 240mm
2
). Intel holds the credit for 2 billion transistor processor in 2011 (Core i7 [6 core] Sandy Bridge-

E) with 32nm and 434mm
2
. The SI seems to lag behind from projected technology scaling and till today 

(2012) 32nm is not yet a mature technology for its compliance with quick ramp-up-rates (Figure 2.8b). 

To benefit from the technology scaling industry has shifted across different wafer sizes for the 

economies of volume production (Figure 19-c). The increase in wafer size can be seen almost every 10 to 12 

years that has played a significant role in the reduction of transistor costs (Figure 19-d). It gave rise to the 

notion of volume production to compensate the technology and higher entry costs of the chips. The curves 

for 200mm and 300 mm wafers present the clear gain in costs by just extended the wafer size. The 

production equipment costs (Figure 19-e) are continuously increasing because they are required to support 
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the technology scaling and the increasing wafer sizes. It is usually carried out in the equipment alliances to 

share R&D costs and provide the partners an early penetration in the market with new technologies and 

wafer sizes. It is evident that such high R&D costs even if shared, result in higher entry costs (Figure 19-f) 

for smaller chips but it is compensated with the volume production resulting from the increasing wafer sizes 

[Kumar, 2008 and Quirk and Serda, 2000]. 

 

Figure 2.8 – Trends in semiconductor industry within last 50 years 

2.1.7 Challenges faced by Semiconductor Industry  

The SI is characterized by the cyclic demand patterns (Figures 1.1, 2.2, 2.3, and 2.4) and there have been 

multiple downward dips, but it always came up with cumulative demand growth which is guaranteed by a 

positive CAGR rate. It motivates the SI for R&D investments to comply with Moore’s law where new 

technologies capture maximum market share and provide an equal opportunity for all stake holders. What 

now follows is a summary of the key challenges faced by the industry in an effort to its compliance with the 

Moore’s law. 
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Besides the cyclic downfalls, [International Business Strategies, 2009] investment in R&D within 

the SI has continuously increased and is expected to reach 18% of total revenues by the year 2012 (Figure 

2.9a). Major portion of these R&D costs is focused on the development of new technology platforms (2-7 

billion USD from 65nm to 22nm) and IP/library qualifications for predictable design/manufacturing 

interfaces. Major designs respin reasons (Figure 2.9b) faced by the SI are leakage (87%), I/O functionality 

(50%), verification bugs (27%), design rule violations (12%) and testability issues (8%). One of the 

important challenges faced by SI is exponentially increasing costs during technology derivative 

improvements (alignment) and adoption (product design/development) efforts (Figure 1.2). The 

design/debug periods for the 90nm, 65nm and 45/40nm are 44/9, 48/23 and 60/40 weeks respectively and 

prototype/volume production takes 8/10 weeks respectively for all nodes (Figure 2.9c).  

 

a) Continuously increasing R&D investments 

 

b) Design respin costs 
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c) Design, debug and prototype periods 

Figure 2.9 – Major design challenges faced by semiconductor industry [International 

Business Strategies, 2009] 

The IC industry is in a highly challenging phase and IC business continues to have many 

opportunities with IP (intellectual proprietary) and cell libraries (reusable circuit components) qualifications. 

These IPs and reusable components reduces the product design and development time subject to the ability to 

quickly adopt the given technology against new products. The key for success lies in the ability to quickly 

design, develop and ramp-up the production which at present is challenged by the manufacturing variations. 

The DFM (design for manufacturing) methods are the best tools to quickly model these manufacturing 

variations to reduce the technology alignment and adoption lead times for economic benefits (Figure 1.4). 

Let us conclude this section and formally propose the research question-1 (chapter-1, section 1.4). 

The market is characterized by the demand that depends on the population and economy. The world 

population and demands are continuously increasing whereas the demand patterns depend on economic 

cycles. The CAGR (+8.72%) guarantees a cumulative demand; hence the SI is obliged to respond to the 

growing market with new, faster and high value but low cost products. It has led a shift in business objective 

from T2M and T2V towards T2Q and the emergence of design and manufacturing interface complexities. 

The SI can only respond the market growth by introducing new technologies every 2 to 3 years, but the R&D 

cost for the development of new technologies has exponentially increased. In order to address the increased 

technology lead times and R&D costs, SI model (IDM) has transformed into a fablite and fabless business 

models. But still, IDM fablite model is reported to be the best models in terms of revenue generation. The 

IDM fablite model provides a coherent platform for the knowledge capitalization from production line and 

our ability to improve the challenges faced by the R&D engineers shall result in the continuous improvement 

efforts for the technology alignment or adoption within the business model. It shall reduce the lead times, 

associated costs along with an opportunity for early penetration in the market with higher profits. 

The SI is a 300+ B$ industry with an equal opportunity to capture maximum market for its stake 

holders. In order to maximize maximum share, the SI objectives need to be revisited and ranked to formulate 

a strategy that is truly in line with the top ranked objective. This can be accomplished by further analyzing 

the existing business models (IDM, Fablite and Fabless) to either find or propose an extension in the existing 
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models to get maximum market share in line with the top ranked business objectives. These arguments 

formulate the first research question, which is addressed in chapter-3.  

Readers who are not familiar with the SI design and manufacturing flows should read the appendices 

B and C before moving to section 2.2. These appendices provide a brief review on the design, mask 

preparation and manufacturing flows in the SI along with a CMOS inverter example that simulates these 

steps. The objective is to better understand manufacturability and yield limitations prior to investigate the 

DFM ineffectiveness beyond the 250nm node. It is to remember that the DFM ineffectiveness has resulted in 

an exponential increase in the technology development costs followed by their extended alignment and 

adoption lead times. It is a challenge towards accomplishing quick ramp-up rates with the existing SI 

business models. The next section reviews literature about DFM and its evolution in the SI to find reasons 

for the DFM ineffectiveness.  

2.2 ROLE OF DFM METHODS IN SEMICONDUCTOR INDUSTRY AND EVOLUTION 

The SI is a most complex, competitive and technologically fastest growing manufacturing domain. The 

success of the SI is attributed to the DFM methods that helped us to continuously move towards 

miniaturization at the reduced cost but beyond 250nm technology these methods have turned into a high cost 

ineffective R&D activity. It has resulted in the transformation of the business models and today a new 

technology is developed in an alliance to share the costs and reduce technology lead times. This strategy 

ensures timely introduction of the new technologies to cope up with the pace of Moore’s law in compliance 

with the industrial slogan smaller, faster and cheaper. In this section we shall analyze the scope and evolution 

of the DFM methods and shall try to establish key challenges and reasons that led this ineffectiveness.  

First, we provide a general understanding about few key words: design, manufacturing, DFM and 

MFD. A design comprises of conceptual/behavioural, embodiment/structural and detailed/layout design flow 

stages whereas manufacturing represent a manufacturing system [McGregor, 2007] as (i) Dedicated 

Manufacturing Lines (DML), (ii) Flexible Manufacturing Systems (FMS) and (iii) Reconfigurable 

Manufacturing System (RMS). The DFM refers to the intermittent operations focused on concurrent 

design/process selection and prototype development for the technical/economical design evaluation 

[Herrmann et al., 2004]; whereas MFD is an effort focused on controlling the repetitive operations dedicated 

to normal production using Advanced Process (APC) and Equipment (AEC) Control operations. The DFM 

objectively follows the design to manufacturing information flow but MFD focuses on the manufacturing to 

design information flow (process control). 

The DFM is defined as the ability to reliably predict downstream life cycle needs and issues during 

early phases of design (Committee on New Directions in Manufacturing 2004). It is focused on economic 

benefits from the volume production by trading off cost-quality-time triangle [Raina, 2006] and is classified 

as [Mehrabi et al., 2002] product DFM (producing manufacturable designs within defined processes) and 

process DFM (developing processes with less rework and high manufacturability). It is further classified as 

soft and hard DFM [Liebmann, 2008], where soft DFM is related to the existing technologies focused on 

design rule clean layouts and hard DFM focused on the design-technology co-optimization, ultra-regular 

layouts, extreme resolution enhancement techniques (RET) and process/device modeling. DFM is further 

classified as physical and electrical DFM [Appello et al. 2004] based on rules and models respectively. DFM 

in the manufacturing industry is also categorized on its intended purpose [Honma et al., 2009] like DFP 

(performance), DFD (design), DFF (fab), DFY (yield), DFR (reliability) and DFT (testability). One frequent 

DFM alternative (DFY) is focused on via/wire optimization, metal density uniformity and cell swapping in 

SI [Raina, 2006]. Manufacturing issues that cannot be predicted accurately without the product geometry and 

specifications gets more complicated when 60-80% components are outsourced [Rezayat, 2000], leaving 

designers and R&D engineers with limited data. 
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2.2.1 SI Challenges and Rise of Interest in DFM 

Initially DFM efforts were based on rough estimates of the downstream effects and rest was expected to be 

controlled through advanced process control (APC) and advanced equipment control (AEC). This worked 

well until 250nm but after that increasing complexity of circuit layout and shrinking sub wavelength 

lithography eventually resulted multiple respins and yield losses. The 130nm node is considered the cut-off 

point where the need for DFM was felt to tackle increasing feature and design limited yield losses [Cliff, 

2003]. From the designer's perspective, things are getting more difficult because the process windows they 

are getting back from manufacturing are so tight that they are having a hard time getting the design 

methodologies to work [Peters 2005 and Dauzere-Peres et al., 2011].  

The concept of DFM has emerged in a diversification of terms like DFY, DFV and DFT etc. but all 

terms come under the umbrella of DFM along the product life cycle (PLC) as DFX having similar objectives 

of cost, quality, yield and time-to-market [Anderson, 2006] where X refers to the various stages in Product 

Life Cycle (PLC). As the new Design For All (DFX) methods are being explored, the definition of DFM has 

become synonymous with DFX and [Herrmann et al., 2004] concurrent engineering (simultaneous 

development of a design and the supporting life cycle processes). These methods could be written rules or 

simulation tools for cost/performance estimation. The DFX tools are focused to provide designer, 

predictability information on multiple issues within down side of the product life cycle. These tools are 

applied directly on the CAD designs and the provide advice on the product performance (qualitative, 

quantitative and binary). 

The design and manufacturing interface modeling has been straightforward till 250nm node [Cliff, 

2003 and Radojcic et al., 2009]; however hardware to model gaps (variability) started increasing with the 

industrial shift towards 193nm stepper to manufacture features less than the wavelength of light source. The 

compensation techniques like OPC and RET emerged as an extended flow (DFM flow) to mitigate these 

manufacturability and yield loss mechanisms. The efforts to move towards 157nm wavelength light source 

have been abandoned; hence we have to live with 193nm stepper for the smaller process nodes e.g. 45nm, 

32nm, 22nm etc. It is one of the major causes for manufacturability and yield related issues and we have seen 

the rise of interest in DFM methods followed by aggressive use of compensation techniques like OPC, RET, 

Phase Shift Masking (PSM) and immersion lithography [Venkataraman, 2007] during design flow. 

From the above facts, it is evident that stretching CMOS technology for the smaller process nodes 

without extending the traditional DFM methods is not possible. It is important that we put DFM back on 

track because of the investments made in the equipment, material, process and design (IP/libraries) for 

economical benefits. The DFM methods in last two decades has evolved from design rules to DFM rules like 

(layout/routing) and DFM models like CAA, CMP, Shape, Yield, Leakage and SSTA to mitigate yield losses 

[McGregor, 2007]. The new business objective of the SI “ramp-up rate” links our success with the first time 

correct design or a design that could be ramped-up without yield loss. Increasing complexities and newly 

emerging spatial variations along with the associated costs has been the core reason for the structural 

transformation of the SI business models. We need to put DFM back on track for the future smaller nodes, 

otherwise the Moore’s 2
nd

 which was predicted to end in 2005 [Ross, 2003] shall become true now (see 

section 2.1.3).  

2.2.2 A Comparison of DFM Efforts in SI and Manufacturing Industries 

Let us start by comparing DFM efforts between manufacturing industries and the SI (Figure 2.10). The 

design stages in manufacturing industries (conceptual, embodiment and detail design) can be mapped 

partially to the extended design flow in SI (behavioral, structural/schematic and layout design) respectively. 

Extended design flow in addition to the design stages includes DRC/LVS checks based on timing/delay data 

from intended technology. Prototype and pre-production stages are present in both industries as a design 

verification stage prior to the normal production. Design flows are directly impacted by the CAD tools used 

to simulate design against cost, cycle time and manufacturability. Prototype and pre-production being 
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sensitive are evaluated against yield loss limiters and are strongly impacted by the Computer Aided / 

Integrated Manufacturing (CAM/CIM) tools and the manufacturing system (DML, FMS, RMS).  

 

 

Figure 2.10 - Comparison of the design flows in manufacturing industries and SI 

Within SI we have shifted from rule based to model based DFM (Figure 1.7, section 1.3) flow where 

DFM models are applied to perform hotspot analysis, CMP simulations and geometrical shape predictions. 

We can observe that both DFM and MFD efforts are present in the design and development stages. The DFM 

knowledge includes DRC/LVS to estimate the device behavior and manufacturability and the DFM flow 

(compensation techniques like RET, OPC, MEEF) to accurately predict and correct potential defect driven 

yield limiters. It is capitalized as predictive models to simulate designs whereas partial DFM efforts are 

applied to adapt the selected process for each product that might help in improving existing DFM 

knowledge. The design driven defects are spotted and corrected through design respins which is less costly, 

however additional steps in the DFM flow result gigabit designs which are computationally expensive in 

simulation time. The prototype and pre-production are the phases where partial DFM efforts are applied by 

the process engineering and integration teams to adapt the base process from the technology platform. Later 

stages in the PLC (growth, maturity and decline) include only MFD efforts (APC/AEC) to ensure the process 

target. During design and development phases technology platform (TP) serves as a base technology and its 

customization is ensured through process adoption at prototype and pre-production phases. Identification of 

the design/defect driven yield loss mechanisms provide an opportunity to improve the technology platform, 

shrink to new process node or to move towards a new technology platform and we argue that every abnormal 

drift or variation within manufacturing system is an opportunity to learn variability and to improve Design 

rules/DFM models. 

The DFM methodology seems quite different in the SI and manufacturing industries; let us make a 

brief comparison to understand the high level similarities and low level differentiations about DFM in these 

two domains. Both industries are subjectively focused on the integration of DFM early in the design flow 

[Vliet and Luttervelt, 2004] so that manufacturable products move to the production line. The correct 

geometries are one of the significant factors for the success of DFM methodology in both industries. 

Incorrect geometries and systematic physical defects in the ICs often result in the timing, signal and delay, 

leading to a functional failure. The SI manufacturing process requires 1100+ steps and 8 weeks of 
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processing; hence it is critical to find out the potential issues as early as possible in design flow to save the 

production and inspection capacities. The process based DFM initiatives in SI can be referred as a 

technology; however its maturity has a strong impact on the potential yield and manufacturability. A 

common approach in DFM philosophy as stated by [Das and Kanchanapiboon, 2009] is the use of parametric 

models and knowledgebase library which is similar to device and interconnects Simulation Program with 

Integrated Circuit Emphasis (SPICE) models and design rules. 

In manufacturing industry we are focused on integrating DFM efforts within the design flow to 

improve effectiveness of DFM philosophy [Vliet and Luttervelt, 2004]. It is exactly the same objective that 

we are following in SI to put DFM back on track against its emerging ineffectiveness, hence 

manufacturability and yield related issues can be attributed to incapable or ineffective DFM methods.  The SI 

is focused on building design libraries (pre-simulated circuit reusable components) that are used by the 

designers during the design process. It is assumed that all the manufacturing data is available [Myint and 

Tabucanon, 1998] for its use in the automated DFM evaluations but at present besides the huge data volume 

our engineers are not able to exploit it for the root cause analysis against newly emerging drifts or variation 

phenomenon. The biggest differences we can find between the semiconductor and manufacturing industries 

in the evolution of DFM methods are (i) the change of pace for the new technologies and in SI it is 

characterized by the fastest change in the smallest period of time and (ii) the inability to exploit the huge data 

volume and dimensions in SI that result in increased technology lead times. 

We can see that objectively both industries use the DFM philosophy to find manufacturing and yield 

related issues as early as possible. The SI is different than other manufacturing industries in the sense that it 

is characterized by the fastest change in the smallest period of time, hence our success lies in our ability to 

quickly analyze the emerging spatial variations and transform them into rules and/or models. It can be seen 

that DFM evaluations in both industries are supported with the automated CAD tools but in the SI, R&D 

engineers are not able to exploit huge data volume and dimensions to find root causes against new variations 

and drifts. This ineffectiveness in the DFM methods has resulted from our inability to exploit these sources 

and is resulting in high costs and extended technology lead times. 

2.2.3 DFM Techniques (pre-1980 era) 

The manufacturing industry has followed the motto "I designed it; you build it!" [Anderson, 2006] for a long 

time as a sequential design flow, before they shifted to the DFM/DFA approaches for the economic benefits. 

The DFM analyzes a design for potential cost and manufacturability prediction and evaluate its alternatives 

on yield, quality and performance; whereas Design For Assembly (DFA) is focused on reducing number of 

parts in an assembly to ultimately reduce cycle time. The DFM, being a bit older concept than DFA was 

focused at the component level by collecting material information and available processes with estimated 

costs but proved unfruitful in terms of assembly cycle time [Bolz, 1958]; hence DFA was established as a 

technique to simplify the product structure [Boothroyd and Dewhurst, 1990] before DFM can be applied for 

the cost and cycle time reductions. The manufacturing decision within DFM/DFA resides on 

production/assembly operations and factors that contribute to it are material, geometry and tolerance 

[Boothroyd, 1994 and Boothroyd and Dewhurst 1990]. The DFA provides an opportunity to trade-off 

potential improvements based on the type of assembly operation (manual, semi-automated and fully 

automated), evaluated on merging or separating the components or assembly. During the decade (1989-

1999), notion of DFM existed as a technology, a methodology and a philosophy. The DFM is applied across 

the design and development phases in order to achieve economical benefits, if it is applied accurately, it can 

directly reduce the design respin, time to market, development costs. Traditionally, DFA methods evaluate 

the ease of assembly and DFM methods evaluate the feasibility and cost of manufacturing the product 

[Anderson, 2006 and Bralla, 1998 and Corbett et al., 1991]. 

The design costs consume about 10% of the total product design and development budget, whereas 

70-80% of manufacturing costs are determined at the time of design [Boothroyd and Dewhurst 1990], 
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[Anderson, 2006]. The Sequential design flows are not appropriate for quality improvements and cost 

reduction, Design For Manufacturability and Assembly (DFMA) methodology with loopback option is a 

solution guaranteed for the reduction in cost, assembly time, parts in assembly and time to market. The term 

DFMA was coined by Boothroyd as a methodology [Boothroyd, 1994] and implemented as a simulation tool 

that proved beneficial for manufacturing industries in terms of cost, design spin and cycle time reduction. 

The generic DFMA flow (Figure 2.11) defines the scope of initial DFM efforts limited to simplify the 

product structure followed by material and process selection from the existing knowledge. It is important to 

note that accurate technical and economical prediction is not possible until the geometry and specification of 

the products are complete [Herrmann et al., 2004]; however during DFMA cycle, prototype validate such 

predictions and ensures smooth transition toward volume production. 

These facts are equally applicable to the SI as well, for example if we look at the IC design the CAA, 

Hotspot and SSTA analyses are applied only after the transistor level synthesis where the geometric shapes 

of the devices and interconnects are well defined. The cycle time reduction by simplifying the product 

structure is less applicable in SI, however layout optimization is performed in order to avoid manufacturbility 

and yield issues. We have seen that technology plays a critical role in lead times and costs and success 

depends on its matruity which can be attributed to DFM effectiveness.  

 

Figure 2.11 -  DFMA (design for manufacturability and assembly) [Herrmann et al., 2004] 

The product, process and cost models are proposed for a detailed manufacturability analysis 

[Ramana and Rao, 2002]. The product and process models describe product as design parameters (geometric 

and non geometric information) and process as the capabilities associated with geometric and non geometric 

parameters respectively. The cost models are classified as the scaling, activity-based and statistical models 

which provide precise cost estimation based on the detailed design. The measures for the manufacturability 

are classified as binary (0/1: if one or more DFM guidelines or rules are violated [Zuozhi and Jami, 2005], 

design is not manufacturable), qualitative (difficult, easy or moderate with an ordinal ranking among 

candidate designs) and quantitative (cycle time and cost against allocated budget and time). The 

manufacturability assessment is performed at two stages, high level (parametric matching) and detailed level 

(interpolation/extrapolation). The parametric matching system uses a large database of processes 

characterized by capabilities whereas matching is done while designers provide limits to the design attributes 

for appropriate candidate processes.  
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The manufacturing system palys the most important role in achieveing DFM objectives [Koren et 

al., 1999 and Mehrabi et al., 2002]. In production, the DML is a fixed automated line used to produce the 

core technology parts in volume with low cost per unit and is successful until demand exceeds supply. The 

FMS is focused on product variety with changeable volume/mix whereas RMS suport rapid change in system 

structure adjust for the production capacity in response to product mix. The DML and FMS are systems 

whereas RMS is a dynamic system that combines DML’s high throughput and FMS’s flexibility. In SI, all 

the equipments used fall in RMS category; however they are limited by the size of the wafer being used for 

production e.g. production lines for 200mm wafer and 300 mm wafers. In these production lines we can use 

multiple technologies by process and equipment adjustments. The production database are the key source for 

first hand knowledge to provide an accurate feeback to design, process and product engineers.  It provides 

means to find the root causes against abnormal behaviors. It can be concluded from the above discussion that 

DFM effectiveness depends on the ability to access and exploit production databases. Integrated DFM tools 

have also been proposed to benefit from the available manufacturing data because the relevant information 

extraction and availability to apply DFM is a challenging part [Eskelinen, 2001]. A universal data model 

with an open access technology is needed as design flows have turned up data-centric with the inclusion of 

extreeme RET [Cottrell and Grebinski, 2003] techniques. 

The above proposed solutions are industrialized and open access technologies are developed for the 

extraction of relevant information. These systems worked well and have led the emergence of EDA 

(engineering data analysis) companies to develop these technologies. The problem is that these tools become 

obselete quickly and the customers are required to purchase the new upgraded versions. New equipments and 

metrology techniques provide additional information on production processes, but propriatry nature of 

production data sources, extraction and analysis tools restricts our ability to include additional information in 

existing data analysis framework which results in ineffective DFM methods. 

2.2.4 Adaption and Diversification of DFM to SI (post-1980 era) 

The DFM concept existed in its mature form around 1980’s when SI started realizing associated benefits. In 

the early days of DFM adoption in SI, design flows included loop back option (Figure 2.12) for optimization 

focused on feeding back the manufacturing data as soon as it becomes available for new designs [Reid and 

Sanders, 2005].  

 

Figure 2.12 - Early semiconductor design flows with loop back [Reid, and Sanders, 2005] 
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Let us discuss the general IC design [Reddy, 2000] flow (Figure 2.13). It starts by transforming 

customers’ basic requirements into design specifications followed by behavioral description (interface and 

functional block diagrams) which is simulated to ensure target functionality. The most commonly used 

languages at this stage are Hardware Description Language (HDL) and Verilog that offers the advantage of 

concurrency over other high level programming languages. The design is further detailed out at functional 

and schematic levels by gate level synthesis using Register Transfer Level (RTL) language at 

structural/schematic levels. The netlist is generated in step-5 using automated EDA tools. It follows the 

timing and delay simulations on netlist where process, timing and delay models are taken from intended 

processes. The objective of the timing and delay simulations is to assess functionalities as well as 

manufacturability with Layout Versus Schematic (LVS) checks. The Design Rule Check (DRC) is 

performed before LVS to ensure the designs compliance with Design Rules (DR) for a given technology. It 

verifies spacing, shapes etc. of devices and interconnections to ensure manufacturability of a design during 

production. These steps are repeated until all DR violations are removed and the parametric performance is 

achieved. The final design is extracted in Graphic Database System (GDS) format, also known as tape-out. It 

is similar to netlist with additional information and it is generic enough to be used within any manufacturing 

facility for prototyping or production. 

 

Figure 2.13 - Typical design flow within SI [Reddy, 2000] 

The SI follows an extended design flow (traditional design flow and DFM flow) supported by design 

enablement (design rules), DFM rule and DFM models. Design rules ensure the potential manufacturability 

whereas DFM rules are an extension of design rules, classified as recommended or robust rules, to ensure 

yield. The DFM model kit refers to the process variation linked with the performance or capabilities of 

production facilities. The sub-wavelength lithography has resulted in increasing gap in model-to-hardware 

matching (gap between device layout as viewed by designer and final shape in silicon) due to the influence 

of the neighboring shapes and the precision with which geometries can be manufactured. 130nm node is the 

cut-off point where need for DFM was felt to tackle potentially increasing feature limited and design limited 

yield loss. OPC aware and OPC friendly design turned to be a specific focus, however Optical Rule Check 

(ORC) is the key for chip level analysis to ensure reliability and yield [Cliff, 2003 and Turakhia et al., 2009]. 

The knowledge based DFM systems (Figure 2.14), with product information base, manufacturing knowledge 
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base, expert system and concurrent system design elements; are developed with an objective to trade-off 

cost, quality and yield for the integrated product design and process selection [Yuyin et al., 1996]. 

 

Figure 2.14 - Manufacturability criteria for IC designs [Yuyin et al., 1996] 

The DFM is a key business strategy under timely driven market with cost reduction and continuous 

introduction of the new products [White et al., 1995 and Kasem, 1997 and Corbett et al., 1991). The Idea of 

Manufacturing Driven Design (MDD) as an information integration model is proposed to share design and 

manufacturing information across all design engineers [Cho and Hsu, 1997]. It is focused on capturing 

design and resources knowledge at all stages of the product design, modeling the relationship and putting 

them in a Meta database which provides information to all design engineers and is a similar approach to 

DRC used in SI industry. Integrated Product Development (IPD) was proposed to capture manufacturing 

data as the key competitiveness and strategic element (Figure 2.15): 

 

Figure 2.15 - Integrated product development framework [Cho and Hsu, 1997] 

Ultimate diversification of the DFM within IC industry has emerged as a yield improvement strategy 

focused on an ideal objective ‘first time correct design’ achieved by proactively mitigating design driven 

(sub-micron lithographic printability issues) and defect driven (process or technology issues) yield losses 

[Redford 2009 and Raina, 2006]. We need to proactively solve systematic defect driven yield related issues 

using DFM methodology in an efficient and effective manner from cell to chip level. These methodologies 

are based on data mining and are applied [Ouyang et al., 2000 and Schuermyer et al., 2005 and Appello et 

al., 2004] to learn yield limiters but the extent to which such methods can be applied on the production lines 

is still a question; however they highlighted features with high correlation and those which were predicted to 

have no correlation, turned up with strong correlation requiring correction in the models. The DFY elements 
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so far taken into consideration are grouped under physical DFM (via and wire optimization, metal density 

uniformity and cell swapping) whereas areas which require to be integrated are the electrical DFM (model 

based guidelines) to continue CMOS scaling [Raina, 2006]. 

 Before we proceed further, let us summarize the discussion by defining the scope of DFM rules and 

or models [DFM Dictionary, 2004] within design and manufacturing flows (Figure 2.16). The presented flow 

clearly demonstrates that once the design is ready, it moves to the mask data preparation step which is the 

second line of defense against the manufacturability and yield loss mechanisms. Both scribe and device level 

Boolean operations are performed along with aggressive RET compensation. The design moves to the 

production where it is controlled using the advanced process and equipment control methods (MFD). The 

design rules, DFM rules and model improvements are based on the data collected from the production lines. 

The analysis against the significant drift updates the rules and models to ensure manufacturability and yield 

gains. It can be concluded that this analyses is dependent on our ability to access and exploit the production 

databases which is useless if the data models are not updated continuously with new data dimensions. 

 

Figure 2.16 Scope of design rules, DFM rules and DFM models [DFM Dictionary, 2004] 

2.2.5 DFM Challenges and ECAD/TCAD Tools 

The OPC and RET techniques being used extensively at 90nm/65nm nodes with 193nm steppers turn 

100MB design data in several GB which is time consuming and complex when simulated [Hurat and Cote, 

2005]. The ECAD and TCAD (electrical and technology CAD) tools help designers through extended design 

flow [Radojcic et al., 2009 and Trybula, 1995], however the objective is to apply DFM methods in an 

organized way to compensate deficiencies from design layout (GDSII). Authors propose an idea of clear 

shape predictive model dynamically synchronized with the manufacturing data [Hurat and Cote, 2005]. 

[Honma et al., 2009] presented a DFM workflow focused on addressing downstream design and 

manufacturing issues. A similar methodology is proposed by [Hurat et al., 2006] as a Genuine DFM 

approach named as DFM0 (design rules), DFM1 (design guidelines like redundant vias etc.), DFM2 (new 

technology platform), DFM3 (RET/OPC) and DFM4 as an effort to solve issues in DFM3. Statistical 

metrology based on variability dissection in two directions was proposed to learn variability [Boning et al., 

2008]: (i) downstream across process flow (APC/AEC) with model based feedback and feed forward system 

to control manufacturing variations and (ii) upstream across design flow integrated with ECAD/TCAD tools 

as design rules, DFM rules or DFM models. Authors have proposed a web based 3-layer interface for 
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collaborative engineering and data flow between design and manufacturing [Morinaga et al., 2006]. 

Proposed architecture suggests distributed relational databases where interface layer is focused on providing 

the alternative naming conventions and data sharing across design and manufacturing flow. 

 Most semiconductor manufacturers expect 193nm immersion lithography to remain the dominant 

patterning technology at 32nm and 22nm technology nodes [Venkataraman, 2007]. The primary goal of 

DFM is to enlarge process yield window [Raina, 2006] while the primary goal of MFD (APC/AEC) is to 

keep the manufacturing process in that yield window. The RET to overcome diffraction effects including 

OPC, PSM and immersion lithography are being stretched, resulting in restrictions on layout and an 

explosive growth in the number of design rules being employed to enable manufacturable designs. The DFM 

techniques that analyze design content, flag areas of the design that limit yield, and make changes to improve 

yield are being developed and employed [Venkataraman, 2007]; however it is extremely difficult, if not 

impossible, to predict all the problems that are likely to occur and what impact they will have on a product. 

 From the above discussion, we extend our argument that we are objectively focused on fining 

challenges and limitations that resulted in DFM ineffectiveness followed by generic solutions to resolve 

these issues to put DFM back on track. In this thesis we are not working on improving the simulation time 

with extended design and DFM rules; however we are working on the extraction of these rules and 

improving the DFM models. Please refer to Figure 2.40, the feedback loop presented here is meant for the 

new technology which is frozen upon its transfer from an alliance and we are not authorized to change it. To 

be more competitive, we have to extend these feedback loops for the technology derivative or improvement 

initiatives (alignment) and product design and development (adoption). It requires efficient data access, 

dynamic exploitation and effective root cause analysis. 

2.2.6 Increasing Design Size and DFM Realization Challenges 

The Chip design at 32nm is capable of producing a billion-gate design; however most of the CAD tools we 

use do break at 100 million gates [Lapedus, 2008]. Shifts in various technology platforms led a test of fabless 

business model vs. IDM in terms of robust control over DFM. For example, Taiwan Semiconductor 

Manufacturing Company (TSMC) that has turned itself into a foundry in the Fabless business model, has 

made a very smart strategy by launching a new DFM methodology called unified DFM where clients are 

provided with the model based DFM design kit (lithography checker, CMP, CAA, OPC, hot spot …) and 

they can use the simulation resources of TSMC to quickly come up with the first design. It is a test for 

traditional IDMs as TSMC with such services to its customers has turned itself in a virtual IDM with no 

obligations but extended support and collaboration with the customer. 

The DFM information has traditionally existed as design rules (robust/recommended/ restrictive) 

[Mason, 2007]. The Design For Semiconductor Manufacturing (DFSM) system suggest circuit level 

simulations [White and Trybula, 1996] where DFM kits are integrated with the CAD simulation tools to 

simulate device physics, process physics, layout and interconnects. The role of electronic design automation 

has taken an utmost importance for the effective DFM integration in extended design flow to ensure design 

enablement [Radojcic et al., 2009] a.k.a. manufacturability and yield. The CAD tools being developed in 

view of design flow and DFM flow fall under the category ECAD and TCAD [Trybula, 1995]. The ECAD 

tools are used to design digital circuit and move through different phases in the design flow whereas TCAD 

tools are used during the DFM flow to verify the circuit against DFM methodologies like parasitic extraction, 

LVS, DRC etc. to assess its manufacturability and yield. One other classification of DFM tools [Wong et al., 

2008] do exists as the design and manufacturing side DFM tools and they can be mapped to the ECAD and 

TCAD tools respectively. The DFM tools can also be categorized based on the critical layers: cells, IP 

blocks, I/O, memory (metal1/poly/via/diffusion) and above metal1 taking full chip simulations mitigated by 

the DFM aware place and route tools. The Objective is to design using DFM compliant cells and IPs to avoid 

later corrections [Trybula, 1995] and faster first time correct design and this concept is equivalent to reusable 

components. 
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Factors that lead the realization of DFM concept are (i) the CAD/CAE tools to ensure proper 

linkage between the design and manufacturing, (ii) relational databases and computer networking 

capabilities for efficient and effective data exploitation, (iii) process health feedback (SPC) with possible 

preventive maintenance predictions and (iv) the yield/performance trade-off modeling and simulation tools. 

2.2.7 Role of SI Business Models in DFM Evolution and Adaption 

Besides above factors SI business model and its evolution has a strong impact on the knowledge 

capitalization through R&D activities. We have seen in the section 2.1 that the SI started as an IDM that 

designed, fabricated, marketed and manufactured equipment; however in mid 1970s they separated their 

business functions as IDM and equipment manufacturers [McGregor, 2007]. The downfall in SI around mid 

1980s forced IDMs to outsource low value production operations to the more efficient manufacturers. In late 

1980s the idea of fabless organization (design companies) emerged as a less resource and capital intensive 

business model focused on innovating new designs rather than solving manufacturing issues. It has shifted 

industry’s supply chain structure from centrally coordinated to vertically disintegrated configuration. Asian 

innovative semiconductor manufacturing companies turned into foundry business model (1980) in which 

foundry could possibly manufacture its own design or external design and share its manufacturing 

capabilities with innovative smaller design companies referred as fabless.  

To remain competitive, [Morinaga et al., 2006] SI need to send products quickly to the market with 

highest production yield whereas product cycles are getting shorter and shorter with each new process node 

and rapidly declining selling prices. The SI evolution is dependent on the competitiveness supported by 

technology platforms, equipment and materials. The DFM plays a significant role in technology development 

and continuous manufacturing process improvements. Technology platform (characterized by device and 

interconnect models) has turned up as a single factor capability index for competitiveness and requires 

continuous improvement; however cost for technology platform development is increasing (expected 32nm 

technology platform cost is 7 billion USD). Every new technology node should have 2x transistor density, 

ability to quickly ramp up for high volumes with multiple designs and yield to be as good as or better than 

previous node. We have seen that no changes can be made after the technology is released for production due 

to requalification of existing design libraries but Intel permits the change in design rules. They have 

demonstrated with a case study that almost 100% design rules got changed before chip tape out to ensure 

highest yield [Webb, 2008] resulting in the highest yield. The best explanation for this is that Intel primarily 

focus on the single product line i.e. Microprocessor which might permit the design rules changes. It could 

also be due to the fact that they are able to exploit production data source for quick knowledge capitalization. 

It can be concluded that effective knowledge capitalization is the key which can help us improving the 

existing technologies for better yield.  

The Common Technology Platform (CTP) is a new strategy adapted by the existing IDMs to share 

R&D efforts [McGregor, 2007] at lower process nodes (<90nm). IDMs also combine the manufacturing 

facilities to distribute production orders with established yield to support their business strategy as an 

intelligent move to share IPs, libraries and tools defining core competitiveness. Cost reduction per unit 

function with increased R&D costs is balanced by increasing yield through enhanced wafer area (4”-1975, 

5”-1985, 6”-1990, 200mm-1992, and 300mm-2002). Wafer manufacturers have planned to move to 450mm 

wafers but neither the industry nor the equipment are ready for this transition. Shifting to 450mm is going to 

be a big jump and precisely saying won’t be possible without moving towards predictive and prescriptive 

modeling. 

One axis that is strongly influenced by DFM competitiveness is technology axis characterized by 

process, material and equipment innovation. [Quirke et. al, 1992] demonstrated that change in the material 

for specific components could drastically impact the performance of critical parameters like cost and quality. 

Process or material change with the latest product generations has presented huge challenges to the industry 

and forced a close integration of design, layout, process, and manufacturing [James, 2009]. The SI under the 
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significant shifts of Moore, more Moore and more than Moore has benefited 5 technology shrinks from 

180nm to 45nm within last decade resulting from improvements in (i) Lithography (248 nm, 193 nm, 193 nm 

immersion) (ii) Materials (Al, Cu, low-k, high-k dielectrics, metal gate, resist chemistry) (iii) strain 

techniques (stress liners, embedded SiGe, shallow trench isolation) and (iv) Sensitivity to random 

effects/defects (dopant fluctuation, line edge roughness). In addition to this [Trybula 1995] electronic design 

automation has empowered industry with capabilities to bridge not only the increasing gap between design 

and manufacturing but also the cost reduction with computer aided design tools (ECAD/TCAD). The DFM 

efforts are beneficial if they exceed implementation costs like software license cost, process characterization 

and model calibration resources, loss of design efficiency and time to market opportunity and loss of layout 

density [Liebmann, 2008]. Variability has always been present in IC’s [Aitken et al., 2008], but the most 

advanced data analysis tool used to manage variability has been (and still is) “the spreadsheet”. There is no 

single DFM methodology integrated within EDA flow that can distribute residual variance; however authors 

do agree that DFM has evolved from rule based to model based (physical to electrical DFM) and is defined 

as broad set of practices that helps produce compelling products at high yield levels on a competitive 

schedule. 

It is evident from the above discussion that DFM is critical for the success of the SI but its 

effectiveness depends on our ability to exploit the production data source by continuously adding new data 

dimensions. In the SI business models engineers still use excel for a variety of analysis. It is an important 

question that even in the presence of advances and sophisticated GUI tools for data extraction and analysis, 

why R&D engineers are using excel as an intermediate tool. The most logical answer that we received from 

the engineers in the production line is that newly emerging variations need multi-source analysis, hence they 

use excel to align multi-source data which is captured at different levels (wafer/site/die). This methodology is 

not working, because they are not able to find root causes against abnormal drifts or variations.  

2.2.8 Industry wide Understanding of the DFM Concept 

Let us review how the DFM concept is viewed and understood by the engineers and managers in the SI. The 

survey conducted in 1989 on DFM success showed that companies have not been successful in implementing 

the DFM concept because engineers and managers had different perceptions.  The reasons are listed as lack 

of awareness on the importance of DFM by product designers, less understanding of design influence on 

manufacturing and improper variations analysis [Seino et al., 2009]. This study has proposed technology 

management methodology with suggestions to enlighten designers with the necessity of DFM providing 

appropriate manufacturing knowledge, establishing and providing design rules reflecting manufacturability 

and clarification/correction proposals from manufacturing to design. It is also important to note that the 

Industrial engineering methodologies cannot prove fruitful in case of outsourcing to the developing countries 

lacking production skills [Shingo and Dillion, 1989 and Young and Murray, 2007]. 

We have analyzed DFM scope/evolution in manufacturing and semiconductor industries and 

concluded that defect and design related yield limiters are the key focus to achieve T2M and T2V. IT 

revolution has lead significant improvements in DFM methodology to address Complementary Metal Oxide 

Semiconductor (CMOS) scaling challenges through CAD/CAE tools, databases and modeling; however 

industry needs to stretch CMOS till 22nm to justify investment made in equipment and process R&D. 

Industrial competitiveness has significantly shifted towards DFM compliant cells and IPs to avoid later 

corrections and faster first time correct design [Trybula, 1995] that limit design innovations. It is the key 

reason for freezing the technology once it is transferred to the business model because any change shall 

require requalification of the reusable design resources. 

Today competitiveness is defined as the ability to stretch CMOS through innovation i.e. process, 

equipment, material, design and EDA. The DFM information is traditionally stored as design rules and 

efforts these days within DFM are focused on simulation time resulting from gigabit designs [Mason 2007 

and Cliff, 2003]. The CAD simulation tools are helpful in this regard but yield related issues keep on 
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emerging with shrinking technologies. The overwhelming amount of manufacturing data is turning into a 

potential challenge where knowledge extraction is highly temporal and success lies in timely extraction. A 

potential solution requires focus not only on the data and its representation but also on the analysis 

methodologies to achieve benefits. Industry has to shift from data towards information and/or knowledge 

capitalization with descriptive, predictive and prescriptive models as proposed in this article. We believe that 

the IDM has an ideal structure to shift from data driven DFM towards information/knowledge driven DFM 

efforts in comparison with fabless to provide designers sufficient margins. 

From the above discussions we can summarize that DFM is focused on manufacturability and yield 

along with 4 improvement axis (Figure 2.17) as (i) technology (process, equipment and material 

innovations), (ii) product design (design driven yield loss) and (iii) manufacturing (defect driven yield loss) 

axes. The defect driven yield losses are controlled through APC/AEC (MFD) efforts characterized as 

descriptive models whereas design driven yield losses require data mining (DFM) efforts as being 

predictive/prescriptive models. The MFD efforts map to the horizontal axis (technology scale) whereas DFM 

efforts are focused on design and manufacturing (vertical axes) and partially technology axis (process and 

equipment engineering). The process, equipment and material axis constitute the technology scale whereas 

design and manufacturability axes correspond to the product and variability respectively. The MFD efforts 

when integrated with DFM, in a fully automated system, provide significant benefits not only in terms of 

yield improvement and robust process control but also in pattern learning while moving towards process 

improvements, techno shrink and future nodes. The technology scale directly impacts the design driven 

defects and design in turn challenge our computational capabilities for potential manufacturability and yield. 

To have an industry wide uniform understanding of the DFM concept, we can categorize it as (i) data driven, 

(ii) information driven and (iii) knowledge driven efforts that correspond to descriptive, predictive and 

prescriptive models.  

We can simplify the discussion by defining our objective to move from the data driven DFM efforts 

(as today) towards information and knowledge driven DFM initiatives. It requires dynamic exploitation of 

the production data sources to find systematic patterns that can be transformed into rules and/or models. The 

DFM effectiveness depends on the quality of the input data followed by information integration to generate 

knowledge. This argument forms the basis for our 2
nd

 and 3
rd

 research question that (i) what are the true 

DFM challenges, (ii) what are the limiting factors in the dynamic exploitation of the production data that has 

led DFM ineffectiveness and (ii) what are the generic solutions to address those limitations? The answers to 

these questions can be found in the chapters 4 and 5. 

 

Figure 2.17 - 4-dimensional innovation framework for unified agile DFM system 

Yield 
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2.3 INFORMATION INTEGRATION CHALLENGES TOWARDS MORE EFFECTIVE DFM METHODS 

From the above discussion we have established a unified understanding of the DFM concept based on the 

shift from data driven DFM efforts towards information and knowledge driven DFM initiatives. The unified 

DFM concept is based on the [Zeigler et al., 2000] knowledge models as (i) descriptive, (ii) predictive and 

(iii) prescriptive where transition among these models require a shift from data towards information and 

knowledge. The data analysis framework where engineers transform data into information and knowledge is 

best explained by the Data-Method-Stat (DMS) triangle (Figure 2.18). Data is generated from the methods 

(manufacturing processes) and is stored at three levels, (i) Operational Data Sources (ODS), (ii) Data 

Warehouse (DWH) and (iii) Data Marts (DM). The statistics includes data analysis methodologies that 

generate information from data and further transform it into knowledge with machine learning algorithms. 

The results from this analysis are used to control, align or fix the drifting process so that manufacturability 

and yield can be ensured. The DMS triangle follows a cyclic improvement pattern to transform data into 

information and knowledge. 

 

Figure 2.18 - Data-method-stat triangule 

The Online Transaction Processing (OLTP) and Online Analytical Processing (OLAP) are the key 

concepts around database management domain where enterprise wide information is stored at three levels 

ODS, DWH and DM. OLAP is further categorized as ROLAP (relational OLAP), MOLAP 

(multidimensional OLAP) and HOLAP (hybrid OLAP). The ODS is characterized by the relational database 

normalized for the insertion, deletion and updation anomalies whereas DWH comprises of Star and 

Snowflake schemas and DM’s are specialized single unrelated tables (views) for routine reports. The selected 

Database Management System (DBMS) plays a very important role in managing the architecture of the data 

storage and improving query responses by either indexing or creating views for frequently accessed data. 

In section 2.2, we have established that the potential cause for the DFM ineffectiveness is the input 

data, hence we need to find a way to accurately and efficiently integrate data/information so that it can be 

quickly transformed into information and knowledge. We have also seen that the SI is capable of huge data 

volume and dimensions, so integration among heterogeneous data sources shall result in effective multi-

source root cause analysis for DFM effectiveness. In this section, our objective is to analyse the existing data, 

information and database integration approaches so that if not best fit is found then an appropriate 

proposition in line with our scenario can be proposed. 
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2.3.1 Data/Information Integration Issues 

The database technology to store data/information was coined around 1960 and since then engineers have 

always been complaining about data volume and dimensions to perform accurate statistical analysis. Recent 

revolutions in IT technologies have enabled huge data volumes and dimensions along with decreasing 

storage and computational costs. It has raised the need for data integration and first integration approach was 

introduced in 1980 as Multibase [Landers and Rosenberg, 1982 and Hurson and Bright, 1991]. The data 

dimension here refers to a specific type of data and in technical terms a new table in the database. 

The data collected across the production line is of heterogeneous nature; hence it requires integration 

prior to multi-source analysis. The data integration is defined as unifying data that share common semantics 

but originates from different sources. It is expected to address 4 types of heterogeneities: (i) structural 

heterogeneity, involving different data models; (ii) syntactical heterogeneity, involving different languages 

and data representations; (iii) systemic heterogeneity, involving hardware and operating systems and (iv) 

semantics heterogeneity, involving different concepts and their interpretations [Gruber, 1993 and Busse et 

al., 1999]. The new database technologies have solved the syntactic and systematic heterogeneity but 

semantic and structural heterogeneities are still to be addressed. The semantic heterogeneity is mainly 

focused in research with reference to data/information integration and it deals with three types of concepts: 

(i) the semantically equivalent concepts, (ii) the semantically unrelated concepts, and (iii) the semantically 

related concepts [Cui and O’Brien, 2000]. The Ontology and Metadata are two approaches used till date to 

remove such type of heterogeneities for an efficient data and information integration. 

2.3.2 Ontology from Philosophy to Computer Science 

The term ontology has existed within the philosophy and computer domains (artificial intelligence, 

knowledge representation, databases etc.); however its first existence is traced to Bailey’s dictionary of 1721, 

that defines it as ‘an Account of being in the Abstract’ [Welty and Smith, 2001]. It was officially introduced 

by [Gruber, 1993] as an “explicit specification of conceptualization”. The conceptualization refers to an 

abstract model of how people commonly think about a real thing in the world; and explicit specification 

means that concepts and relationships of an abstract model get explicit names and definitions that can be 

used in an integration task to describe the semantics of the information sources. It also provides us 

vocabulary and the relationships between entities within the domain to address the semantic heterogeneity 

[Goh, 1997 and Cui and O’Brien, 2000].  

 The ontology in computer science is an agreed and shared understanding (i.e. semantics) of a certain 

domain with an objective to exchange information and ensure interoperability across autonomous and 

distributed applications [Tzitzikas et al., 2001 and Spyns et al., 2002]. This concept exist and has been 

applied in almost all domains e.g. E-commerce [Guarino and Persidis, 2003], Semantic Web [Glaser et al., 

2004], Database design [Guarino, 2002], Database integration [Wand et al., 1999], Information access and 

retrieval [Abdelali et al., 2003], Software engineering [Deridder and Wouters, 2000]. These applications can 

be grouped under the domains (i) artificial intelligence (for knowledge sharing) and (ii) database (semantic 

data models. The ontology development is referred to a group activity, especially in the environment where 

heterogeneous domains has emerged under a similar domain [Klein and Noy, 2003]. 

2.3.3 Data/Information Integration 

Information systems evolution (autonomous/heterogeneous/distributed/flexible) has driven the need for 

data/information integration shortly after the introduction of databases, over last three decades and it is an 

active research area [Wache et al., 2001]. Research in 80’s was focused on centralized databases in order to 

have integrated data/information model however the same converged in 90’s to combine data/information 

within multiple databases [Heimbigner and McLeod, 1985].Today focus has shifted towards loose or tight 

collaboration of databases under the title of federated database [Sheth and Larson, 1990]. Further it has given 

rise to the classification of information systems as centralized, distributed, heterogeneous and federated 
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information systems [Corcho and Gomez-Perez, 2000]. The federated information systems supported with 

federated database provides a tightly coupled federation layer between information system and federated 

databases, tightly coupled through schema matching (metadata) and single federated unified schema. 

Ontology has to deal with the all type of information like structured (databases), semi-structured (XML) and 

non-structured (web pages).  Increasing web based non-structured and semi-structured information have 

pushed all the concentration in ontology to focus on removing semantic heterogeneity for web resulting in 

significant developments like Web Ontology Language (OWL), Description Logic (DL), SPARKLE 

(ontology based language), Resource Description Framework (RDF), Document Type Definition (DTD) 

etc… 

2.3.3.1 Metadata based data/information Integration approaches 

The ontology (explicit specification of a conceptualization [Gruber, 1993]) and Metadata (explicitly managed 

data describing other data or system elements to support reusability and interoperation) based approaches to 

address semantic heterogeneity are very well circled research areas. The Metadata approach is further 

classified as [OMG, 1997 and Busse et al., 1999]: 

a) Technical metadata: provides technical access methods like protocol, speed of connection, cost 

of queries, query capabilities to address technical heterogeneity. 

b) Logical metadata: are schemas and logical relationships like data dictionaries in Relational 

Database (RDB), class diagrams in Object Oriented Database (OODB) and a global schema that 

captures relationships and dependencies between several schemas e.g. schema metadata in Federated 

Information Systems (FIS). 

c) Metamodels: metadata supports the interoperability of schemas in different data models and 

address data model heterogeneity. 

d) Semantic metadata: describe semantics of concepts (domain-specific descriptions) through 

ontologies. 

e) Infrastructure metadata: helps users to find relevant data through navigational aids like 

annotated bookmarks as well as a thesaurus structure.  

f) User-related metadata: describes responsibilities and preferences of information system users 

(user profiles). 

The ontologies and database schemas (semantic data model) are closely related [Cui and Brien, 

2001], with few tangible differences, but exceptions do hold. The key difference is that ontology represents 

common shared knowledge whereas schema is focused on the contents or data instances; hence, both schema 

and ontology are important for heterogeneous data/information integration. One common solution to address 

the ontology vs. schema approaches for integration is to use three layer storage architecture i.e. original data 

sources, data warehouses and data marts where information/analysis needs of the users are fulfilled from 

DWH and DM [Henderson, 1998]. They provide a limited solution, but it depends on the schema 

architecture designed to incorporate a solution for heterogeneity or be an aggregated information store.  

The semiconductor industry is high-tech with potentially growing volumes of temporal data and 

urgent need for data alignment, extraction and integration require a solution that includes remedy for 

semantic and structural heterogeneity with model evolution management. The important aspect to be noted 

here is that schema (metadata) based integration approaches have led to the development of technology 

standards like DTD and XML Schema which provides an opportunity for heterogeneous information 

integration. 

2.3.3.2 Ontology based data/information Integration approaches 

The ontology development, mapping and management are very well defined and matured domains 

demonstrated for the data/information integration. There are three major ontology architectures (i) single 
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ontology (global ontology for shared vocabulary for semantics e.g. SIMS [Arens et al., 1996]), (ii) multiple 

ontology (multiple ontologies no common shared vocabulary e.g. OBSERVER [Mena et al., 1996]) and (iii) 

hybrid ontology (multiple ontologies with shared vocabulary e.g. COIN [Goh, 1997]). It is also used as a 

global query schema, e.g. SIMS [Arens et al., 1996] user query is expressed in terms of ontology which is 

reformulated in respective sub-queries followed by results combination. The ontology acts as a global 

schema for query; hence it requires an automated tool otherwise it would be difficult for the user to formulate 

a query from this schema without knowing each and every detail of individual schema [Wache et al., 2001]. 

There are many languages for the representation of the ontology as: description logic (DL), terminological 

(T-Box: vocabulary of the application domain), non-terminological (A-Box: assertions about vocabulary) 

and Classical Frame based languages. 

[Buccella and Cechich, 2003] proposed a three step approach for data integration where first of all 

shared vocabulary is developed, followed by local ontology development and then associated mapping. This 

approach is only focused on reducing semantic heterogeneity. The case study from an automobile industry 

[Maier et al., 2003] demonstrates the benefits of using ontology for efficient and reliable data integration in 

Product Life Cycle Management (PLM). It is a 6-step methodology: (i) schema import (table is taken as 

concept), (ii) creating relations (logical relations between tables), (iii) create mappings (concept to concept, 

attribute to attribute and attribute to concept), (iv) business logic (deductive logic), (v) rule based modeling, 

(vi) inferencing and schema export. It is recommended as a beneficial methodology for heterogeneous data 

integration. 

[Buccella et al., 2005] compared 7 systems (SIMS, OBSERVER, DOME, KRAFT, Carnot, 

InfoSleuth and COIN) for ontology based distributed and heterogeneous data integration including structured 

and unstructured data sources (web). Framework used for evaluation purpose is architecture, semantic 

heterogeneity (semantically equivalent concepts, semantically unrelated concepts and semantically related 

concepts) and query resolution [Cui and Brien, 2000]. Many ontology based data-integration surveys can be 

found, that focus on ontology development and mapping whereas other focus on languages used to represent 

ontologies [Wache et al., 2001 and Corcho and Gomez-Perez, 2000].  

The query resolution is an important but neglected factor within ontology based data integration 

tools/systems, however optimization approaches could be paramount in overall ontology based system 

efficiency for integration. The SI have three-level storage architecture hence ODS is expected to store the 

measurement/observation time as transaction time whereas aggregated information is recorded through ETL 

routines in DWH and DM’s. Risk of database servers being overloaded due to heavy queries from users 

might result in temporal data mismatch resulting in an opportunity loss. It is necessary to find a solution for 

an efficient data extraction and integration considering temporal nature of data in such a way that scheduled 

ETL (extraction, transformation and loading) routines are least impacted. This 3-layer storage architecture 

provides an opportunity to handle temporal issue but still require semantic and structural heterogeneity to be 

addressed. 

2.3.4 Ontology based Database-Integration Approaches 

Let us move one step ahead and analyze ontology based approaches used for database integration. The 

database integration provides system interpretability and requires first of all mapping between schemas and 

then integration system to answer the user queries [Doan and Halevy, 2005 and Lenzerini, 2002]. The schema 

mapping provides a model that can also be used for inter-schema correspondence [Rahm and Bernstein, 

2001]. [Dou and Lependu, 2006] used two databases (Nwind and Store) from similar domain to first learn 

ontology from respective schema and then perform mapping "ontology merging" using TOOL called 

OntoGrate with a focus on optimizing query performance results. In this approach user queries are translated 

from WEB-PDDL to SQL and executed for faster results and methodology is named "inferential data 

integration". 
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[Aparício et al., 2005] has demonstrated that ontologies help us in addressing semantic heterogeneity 

better than building global schema, hence database integration if supported with building ontology (single or 

multiple) followed by query answering using global schema proves its benefits. In this approach the global 

schema is presented with database as SQL view to enhance the performance of system. [Fiedler et al., 2005] 

present a very interesting debate and argues that the solution heterogeneous databases integration is difficult 

but it can be achieved with assumptions; however they suggest that collaboration instead of integration is 

better approach in such scenarios. The idea is very simple, that global schema provides possible opportunities 

to merge the databases resulting in a global view for the global users. The coordination concept presented here 

is similar to the correspondence table between databases and provide means to communicate, coordinate and 

cooperate through SQL views. Such ideas can be tested with few small databases but serious problems shall 

arise in case of huge temporal databases with semantic heterogeneity.  

So far all above approaches talk about developing ontology and then using it to find similarities 

between schema for query model but no approach talk about possible real time live databases where schema 

or concepts could be added on as and when required basis; hence it results in the need for dynamic 

resynchronization. In our case, the scenario is quite complex, overall domain is semiconductor manufacturing, 

but diversity and heterogeneity in comparison to the evolution during last two decades, presents a challenge 

for information integration. In order to keep-up pace with the technological evolutions it has become 

important to push the concept of data/information integration and knowledge acquisition for competitive 

advantage. 

2.3.5 RDB Integration based on Schema Matching 

Schema matching is a critical step towards integration (RDB to data-warehouse and schema matching 

between heterogeneous data warehouses) but it differs from ontology in a sense that it is focused on explicit 

information contents whereas ontology provides unified concepts and associated attributes. Schema matching 

shall result in global schema to be used as query model and it is a difficult task. Till today there exist very few 

efforts on developing autonomous schema matching efforts and mostly it is done in a semi-automatic or 

manual fashion with the help of domain experts. Semantic common points identified within schema matching 

shall result as integration points not only for global schema but also for data integration [Palopoli et al., 2000]. 

The proposed approaches are automatic and semi-automatic based on large schema having 19-21 attributes 

but real time online applications where ODS and DWH schemas have 50-100 tables and 10-50 attributes each, 

results in a huge problem. It becomes more critical when added with temporal nature of data being stored 

through ETL routines using advanced automation systems. 

The ontology usage is increasing within the web applications (B2B, B2C & C2C) running 

(365*12*7) to search, navigate, browse and share knowledge, with scalability, availability, reliability and 

performance [Ramakrishnan and Gehrke, 2003 and Das et al., 2002]. The ontology management with 

increasing need to incorporate all emerging data sources has emerged as one critical research area that 

require special focus and attention not only on the security, best ontology and knowledge representation 

techniques but also on the storage and efficient querying mechanisms. The RDBMS are being used to 

achieve this performance level over OODBMS [Abernethy and Altman, 1998 and Stoffel et al., 1997]. Many 

ontology development environments have been proposed with varying strengths to address specific needs but 

most significant developments so far have been on the web for knowledge sharing across heterogeneous data 

sources.  

The ontology concepts have been applied in clinical research and medical domain with an effort for 

knowledge sharing and common vocabulary development. Manufacturing R&D industries like SI are 

competitors in terms of market share and associated sales revenues; hence the streamlined ontology concepts 

for the knowledge sharing on the web as presented in the literature are difficult to be used in the SI because 

of their conflicting business objectives. 
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2.3.6 RDB Schema to Ontology Mapping Approaches 

Due to increasing volume of data across web, relational database to ontology mapping has emerged as a 

significant domain for knowledge sharing and exchange of data [Konstantinou et al., 2006 and Liddle et al., 

2003 and Calvanese et al., 2001]. [Zuling and Hongbing, 2005] proposed a methodology to map relational 

databases (using MySQL) to ontology by mapping its schema and instances to T-BOX and A-BOX (using 

“Protégé” software) and then user request is parsed into RDQL (RDF query language) which is transformed to 

formulate SQL query for execution. There are certain questions which are still unanswered like in a situation 

if the instances are in the size of terabytes: are we obliged to bring database instances within the developed 

ontology domain where SPARKLE or any other web semantic query language can be used to answer user 

requests? Perhaps it is not a good solution as far as query performance and storage space is concerned. 

[Calvanese et al., 2001] proposed the notion of ontology of integration where we intend to develop a 

global ontology from local ontologies for information extraction. [Zuling and Hongbing, 2005] proposed an 

interesting idea to implement ontology database with user defined rule based querying and reasoning. 

[Astrova et al., 2007] propose to store the web ontologies into relational databases in order to benefit from 

computational efficiencies. [Curé, 2005] proposed DBOM (database to ontology mapping) framework for 

semantic web data integration. [Nyulas et al., 2007] developed a plug-in to be used with “protégé” to import 

database schema with first hand mapping to OWL and provides a strong feature where you can and cannot 

import data along with the schema, in case if data is not imported it can be accessed through OWL-database 

bridge. 

2.3.7 Ontology Driven Data Extraction Tools 

The ontology development and management environment (freeware and commercial) exploded as the interest 

in web information integration increased. It has resulted in the emergence of technologies like RDF, XML 

schema, DTD, OWL etc. Our focus is on data alignment, integration and extraction of temporal 

manufacturing data; hence we shall focus on the integrated environments developed for data/information 

extraction and integration based on 3-layer storage (ODS, DWH and DM). Two commercial and three 

freeware ontology tools are selected out of 100+ available based on storage schema (database) as under for 

possible integration and utilization of schema matching and ontology management [Youn and McLeod, 

2006]. 

a) Link-Factory Workbench (commercial tool): It is a 3-tier architecture for large medical 

ontologies, user interface is client-side application that is used to connect to the business tier 

(implemented as ontology server) to manage or query data-tier i.e. relational database. Input output 

formats supported are XML, RDF, OWL and multi user capabilities with information extraction 

whereas ontology stored in the database is just used for linking purpose. It does not support graphical 

output view. 

b) K-Infinity (commercial tool): Knowledge builder utility with two major components, graph and 

concept editors, facilitates the knowledge engineers to build objects, relations, network of knowledge, 

concepts, individual attributes and relations.  

c) Protégé 2000 (freeware): It is developed by Stanford University, USA and it is a freeware having 

a lot of functionalities. It is a graphical tool for domain ontology development and management 

supported with plug-ins to graphically view the tables and diagrams.  Further it can be used to learn 

ontology from relational database schema with and without importing instances. Query requests 

require an understanding of RDF and SPARKLE. The I/O format is RDF, XML Schema and Java 

[Arens et al., 1996, Mena et al., 1996 and Ramakrishnan and Gehrke, 2003]. 

d) WebODE (freeware): It is one of the powerful freeware developed to serve three purposes (i) 

ontology development, (ii) ontology integration (iii) ontology based application development, all 

three purposes are met through graphical user interface provided with its 3-tier ontology editor 
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WebODE. It is developed in JAVA; hence support CORBA, XML and RMI. It provides GUI, web 

and multi user support including prominent web formats. 

e) ICOM (freeware): It is a powerful tool in terms of capabilities of conceptual Entity Relation (ER) 

modeling with an objective to ensure the visualization of all constraints as one single conceptual 

model. It could also be used for the translation of ER conceptual models developed in ontologies for 

various purposes. ICOM tool reasons with (multiple) diagrams by encoding them in a single 

description logic knowledge base, and shows the result of any deductions such as inferred links, new 

constraints, and inconsistent entities or relationships. Theoretical results guarantee the correctness and 

the completeness of the reasoning process. 

One thing is apparent that ontology has evolved with a focus on sharing and exchanging web 

knowledge. There is no approach proposed so far that takes into account the model evolution and its dynamic 

synchronizations. In SI, the databases are growing at an immense pace in data volume and dimension; hence 

we are obliged to continuously restructure the data models so that new dimensions can be timely updated. Our 

success lies in our ability to dynamically exploit all data volumes and dimensions to find root causes against 

the abnormal drifts emerging from spatial variations. So we need an ontology based system that can pre-

assess the failures of potential changes in the data models. These assessments must be made at the application 

and user levels. Any potential changes must follow the compliance loop (updation) where end user 

application is affected by this change and end users must be informed for all structural changes in data 

dimensions. This argument complement 2
nd

 research question that how we can enable dynamic restructuring 

of data models to continuously support the addition and deletion of data dimensions? The answer to this 

question can be found in chapter-6. 

2.4 SUMMARY AND CONCLUSIONS 

In this chapter the literature has been analyzed across three dimensions (i) semiconductor industry background 

and its evolution, (ii) role of DFM methods and current challenges and (iii) information integration 

approaches for dynamic data exploitation. It is observed that the SI is characterized by the cyclic demand 

patterns with positive CAGR (+8.72%) that guarantees a cumulative demand; hence we are obliged to 

respond to the growing market with new, fast and high value but low cost products. It has led a shift in 

business objective (T2M, T2V to ramp-up rate) and emergence of new technical challenges (design and 

manufacturing interface complexities). The SI can only respond market growth by introducing new 

technologies every 2 to 3 years or quickly maturing the technology derivative and improvement efforts with 

local DFM efforts. The DFM methods had been adopted by the SI around 1980 as a yield enhancement 

strategy which worked well till 250nm technology node, but beyond this node DFM has resulted in high cost 

and ineffective R&D efforts, creating a challenge in accomplishing quick ramp-up rates with the existing SI 

business models. 

In order to address the increased technology lead times and R&D costs, the SI model (IDM) has 

structurally transformed into fablite and fabless business models. But still, IDM fablite model is reported to 

be the best models in terms of revenue generation. We argue that the IDM fablite model provides a coherent 

platform for the knowledge capitalization from production line and our ability to improve the challenges 

faced by the R&D engineers shall result in the continuous improvement efforts for technology alignment or 

adoption. It shall reduce technology lead times, associated costs along with an opportunity for early 

penetration in the market with higher profits. 

The SI is a 300+ B$ industry with an equal opportunity to capture maximum market for its stake 

holders. In order to get maximum share, it is necessary to revisit and rank the SI objectives so that a strategy 

can be formulated truly in line with the top ranked objective. The existing business models (IDM, Fablite and 

Fabless) must be analyzed to evaluate their potential to support the newly formulated business strategy. In 

case if none of the existing model is capable to support it, a new model or an extension to the existing 
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business models must be proposed to ensure its compliance with the new strategy in line with the top 

ranked business objectives. This argument formulates our first research question, which is addressed in 

chapter-3.  

The SI emerged as one of the most complex, competitive and technologically fastest growing 

manufacturing domain. From the literature review on the evolution of the DFM methods, it is evident that 

success lies in the ability to put DFM back to track. Few significant factors identified being major causes for 

DFM ineffectiveness (i) inability to exploit the production data for multi-source root cause analysis, (ii) 

improper analysis due to difficulties in data alignment because of the varying metrology coordinates and (iii) 

heterogeneous understanding of the DFM concept. In this chapter, a unified understanding of the DFM 

concept as the data driven R&D effort is proposed with an objective to shift these data centered efforts 

towards information and knowledge centered R&D initiatives. It requires dynamic exploitation of the 

production data sources to find systematic patterns that can be transformed into rules and/or models. The 

DFM effectiveness depends on the quality of input data followed by information integration and analysis to 

generate knowledge. This argument forms the basis for 2
nd

 and 3
rd

 research questions as presented in section 

1.4. They can be further divided into smaller questions as (i) what are the true DFM challenges, (ii) what are 

the limiting factors in exploitation of the production data sources that has led the DFM ineffectiveness and 

(ii) what are the generic solutions to address those limitations? The answers to these questions can be found 

in the chapters 4 and 5. 

The data analysis framework where engineers transform data collected across the production line 

into information and knowledge is best explained by the data-method-stat (DMS) triangle. The data is 

generated from methods (processes) and is stored at three levels, (i) operational data sources (ODS), (ii) data 

warehouse (DWH) and (iii) data marts (DM). The Statistics includes analysis methodologies that generate 

information from the data and further transform it into knowledge with advanced statistical and/or machine 

learning algorithms. The results from these analyses are used to control, align or fix the drifting processes so 

that manufacturability and yield can be ensured. The DMS triangle follows an improvement cycle to 

transform the data into information and knowledge. The online transaction (OLTP) and analytical processing 

(OLAP) are key concepts which are built around the methodologies to store and process the data to generate 

information and knowledge. The enterprise wide information is stored at three levels ODS, DWH and DM. 

The OLTP system is based on the relational databases where end-user queries are optimized for transactional 

processing (insert, delete, and update). In Comparison to the OLTP, OLAP systems are based on the DWH 

and DM concepts and are focused on the query performance and quick transformation of data into 

information and knowledge for decision making. The data is stored in a multidimensional array in the OLAP 

systems which results in fast slicing, dicing and drill up/down operations. The primary objective of the 

OLAP system is on fast data aggregation. In the SI, R&D engineers are primarily focused on multi-source 

analysis not for the purpose of aggregation but for mapping and alignment so that effective root cause 

analyses can be performed to correct the drifts processes. 

The above presented OLAP and OLTP systems do not match with the objectives of R&D engineers; 

however both systems offer interesting benefits which can be used to improve the R&D productivity. The 

OLAP system and multidimensional modeling can be used to quickly access multi-source data from multiple 

databases accumulate in huge volumes for the purpose of mapping and alignment instead of aggregation. The 

slicing, dicing and drill up/down are of very high interest which can help engineers to find root causes across 

multiple dimensions of the data sources. The OLTP systems offer transactional efficiency; hence we can use 

this quality to manage data model evolutions. The difficult part of the SI is that ODS and DWH data sources 

are of proprietary nature; hence they cannot be changed easily. It has resulted in serious issues about the 

inclusion of new data dimensions and huge data volumes. The consequence of this fact is that R&D 

engineers are not able to exploit the production data sources which indirectly contribute to the DFM 

ineffectiveness. 
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The data collected across the production line is of heterogeneous nature; hence it requires integration 

prior to multi-source analysis. The data integration is defined as unifying data that share common semantics 

but originates from the different sources. The SI being high-tech with potentially growing volumes of 

temporal data and urgent need for data alignment, extraction and integration require a solution that includes 

remedy for the semantic and structural heterogeneities with model evolution management. The ontology and 

Metadata based data, information and database integration approaches are used most commonly for the 

sharing and exchange of web data. These approaches neither support the huge data volumes nor the dynamic 

restructuring of data models.  

In SI, the databases are growing at an immense pace in data volume and dimensions; hence success 

lies in the ability to dynamically exploit huge data volumes and dimensions for an effective root cause 

analysis against the abnormal drifts emerging from the spatial variations. So we need an ontology based 

system that can pre-assess the failures of potential changes in the data models. These assessments must be 

made at the application and user levels. Any potential changes must follow the compliance loop (updation) 

where end user application is affected by this change and end users must be informed for all structural 

changes across all data dimensions. This argument helps us in complementing 2
nd

 research question that how 

we can enable dynamic restructuring of data models to continuously support the addition and deletion of new 

data dimensions? The answer to this question can be found in chapter-6.  
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Chapter 3: An Extended IDM (e-IDM) Business Model 8 

In this chapter, SI business models are analyzed for their support to a recent shift in the business objectives 

towards quick ramp-up-rate. The Strategic Creative ANalysis (SCAN) and Strength, Weakness, Opportunity 

and Threat (SWOT) analyses techniques are used in addition to the brain storming sessions to (i) identify key 

improvement areas in today’s most successful IDM-fablite business model and (ii) formulate business 

strategy to achieve maximum economic benefits. The technology development/improvement process is 

further analyzed to find the limitations that have led to the DFM ineffectiveness and extended ramp-up rates. 

The challenges found here along with the key improvement areas form the basis for the proposition of an 

extended IDM business (e-IDM) model with integrated DFM methodology.  
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 3.1 INTRODUCTION 

The traditional SI business model (IDM) has structurally transformed into IDM-fablite, fabless and foundry 

business models in order to share the exponentially increasing technology R&D costs and lead times. It is 

very important to understand that to cope with the cumulative demand growth (+8.78%), new IC 

technologies must be introduced every 2-3 years. The design and manufacturing interface complexities (new 

manufacturability and yield loss mechanisms) due to miniaturization are rising and being compensated with 

the design, process, material and equipment innovations. It requires more human resource and 

experimentations that give rise to technology development costs to ensure its timely introduction in the 

market. So it is evident from the above facts that structural transformation was just to share the increasing 

R&D costs. In the current situation an IDM-fablite is classified as the best model for associated economic 

opportunities. 

The recent shift in the SI business objectives from T2M and T2V towards the ramp-up rate needs to 

be reassessed in the context of potential opportunities associated with cumulative demand growth (+8.78 

CAGR). So in simple words, one needs to reconsider that the best IDM-fablite model is capable to sustain 

this growth in demand for maximum economic benefits. This assessment has been divided into three parts as 

(i) identify business strategy in compliance with increasing demands and economic opportunities, (ii) assess 

existing business model for possible compliance with the quick ramp-up objective and (iii) find key 

improvement areas and/or propose a business model. 

3.1.1 Strategic Planning and Analysis  

Strategic planning and analysis is a process in which the business environment, its operations, and its 

interactions are identified to formulate a strategy that can improve the organizational efficiency and 

effectiveness by increasing the organization’s capacity to deploy its resources intelligently [Worrall, 1998 

and Business-Directory, 2007]. There is a wide range of analytical models/tools that can be used for the 

formulation of a strategy including (i) SWOT analysis, (ii) PEST analysis, (iii) Porter’s five forces analysis, 

(iv) Four corner’s analysis, (v) Value chain analysis, (vi) Early warning scans, (vi) SCAN analysis and (vii) 

war gaming. It is highly important to select the most appropriate tool for the strategy formulation; hence each 

tool’s strengths and constraints are assessed as a first step. 
 

a) SWOT analysis: It is most widely used approach in which the Strengths, Weaknesses, 

Opportunities and Threats associated with the business activity are identified. The first step is to 

define business objective of the activity and find internal and external factors important to achieve 

the objectives. The strengths and weaknesses are usually internal whereas opportunities and threats 

are always external. It is a generic tool and has a wide application for the formulation of a business 

strategy to achieve the objectives [Mindtools, 2007]. 

b) PEST analysis: It is a tool used to understand the Political, Economic, Socio-cultural and 

Technological environment of the organization and is commonly used to analyze the market growth, 

decline or such factors to align the future business directions. The four PEST factors can be treated 

like opportunities and a threat as in SWOT analysis but its emphasis is more on the socio-economic 

factors. Its application is highly dependent on the type of business and or activity being analyzed 

[Businessballs, 2006]. 
 

c) Porter’s five forces: This concept is based on the five forces and is used to find out the power 

center in the current business situation. These five forces are (i) suppliers power, (ii) buyer power, 

(iii) competitive rivalry, (iv) threat of substitution and (v) threat of new entry. By understanding 

power center, this concept can also be used to find the areas of strength, to improve weaknesses and 

to avoid mistakes [Porter, 1996 and Porter, 1998]. 
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d) Four corners analysis: It is a predictive tool designed by Michael E. Porter that helps in 

determining a competitor’s course of action and is based on the basic principle of knowing what 

motivates the competitor. This dimension helps in finding a more accurate and realistic assessment 

of the competitors possible moves [Gilad, 2011]. The four corners are (i) motivation (drivers), (ii) 

motivation (management), (iii) actions (strategy) and (iv) actions (capabilities). 

e) Value chain analysis: It is based on the concept that all the activities in the organization create 

and add a value. This methodology is used to identify those activities which do not add value; hence 

they can either be removed or replaced with more efficient activities. Each value adding activity is 

considered a source of competitive advantage [Porter, 1996]. 

f) Early warning system: The purpose of strategic early warning system is to detect or predict 

strategically important events as early as possible. They are often used to identify the first strategic 

move from competitor or to assess the likelihood of a given scenario becoming reality. The seven 

components of this system are market definition, open systems, filtering, predictive intelligence, 

communicating intelligence, contingency planning and the cyclic process [Comai and Tena, 2007]. 

g) War gaming: This technique is used to find competitive vulnerabilities and wrong internal 

assumptions about competitors’ strategies. They are used for critical strategic decisions but depend 

on the correct assessment of the competitors moves [Treat et al., 1996]. 

h) SCAN: It is used for the formulation of business strategies by first identifying and listing the 

business objectives. These business objectives are ranked and then the top ranked business objective 

is selected for further investigation using SWOT analysis that result in potential set of strategies. The 

most appropriate strategy is selected and is always based on the strengths, weaknesses, opportunities 

and threats [Winer, 1993]. 

If above listed commonly used tools are analyzed for the formulation of a business strategy, it can be 

determined that early warning system, war gaming, four corner analysis and peters’ five forces system are 

specifically designed for marketing environment in which one is obliged to assess the moves of his 

competitors to take an appropriate action. Although they help in the formulation of strategic moves, they do 

not directly comply with our generic needs. The value chain analysis is an excellent tool used to identify 

inefficient activities so that they can be improved afterwards. But in this case, it is quite difficult to quantify 

the value against each activity; hence, value chain does not seem appropriate either. The PEST analysis 

emphasize on socio-economic elements for the business strategy which are not relevant in our case. The 

SCAN and SWOT analysis being generic for the business strategy formulation are applicable in our case. 

The SCAN analysis has an advantage over SWOT as it starts by ranking the objectives followed by SWOT 

analysis to formulate a business strategy in line with the top ranked objective. 

3.1.2 SCAN Analysis  

The SCAN analysis is the approach selected in this case based on its inherent ability to first rank the business 

objectives followed by the business strategy formulation based on the SWOT which is truly in line with the 

top ranked objective [Winer, 1993]. Below is a short description of the two steps in the SCAN analysis: 

3.1.2.1  Ranking Business Objectives (Step-1) 

Listing the objectives, being followed by organization, is the first step of the analysis. The SCAN analysis is 

primarily dependent on the selected objective(s); hence potential Top Ranked Objective (TRO) must be 

carefully selected. An objective is chosen from the list that seems to be an ultimate goal of the organization 

and then a question is posed: "Why is the organization pursuing this objective?”. The answer is to be found 

from the list of objectives and selected objective is placed at a higher ranking (level). This process continues 

until an answer cannot be found and this objective is called the top ranked objective. Once the TRO is found, 

the same process is repeated by asking the question, "How we can achieve this objective?" with TRO from 
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top to bottom. This step results in the readjustment of certain objectives. The conclusion is that by 

repeatedly asking the "Why and How?" questions, we find TRO which is the objective of SCAN Analysis. 

3.1.2.2  SWOT Analysis (Step-2) 

The business strategies are the means through which goals and missions are accomplished. A successful 

strategy focuses the four elements to generate competitive advantage as (i) strengths, (ii) weaknesses, (iii) 

opportunities and (iv) threats, a.k.a. SWOT analysis. It is believed to have started with the term SOFT 

(Satisfactory, Opportunity, Fault and Threat) that resulted from the research work on corporate planning 

conducted at Stanford Research Institute (SFI) from 1960-1970. It is known that SOFT analysis was 

presented in a seminar at Zurich in 1964 and Urick and Orr changed F to W and called it SWOT [Humphrey, 

2005] analysis. Its history can be accurately traced back to Ken Andrews in the early 1970s [Andrews, 1980] 

which was subsequently modified in the format of a 2*2 matrix, matching the internal factors (strengths and 

weaknesses) of an organization with its external factors (opportunities and threats) to systematically generate 

strategies [Weihrich, 1982]. 

 The SWOT analysis does not provide any guidelines that how the strengths and weaknesses can be 

identified; hence its accuracy is dependent on the manager’s perception. However it is an excellent tool to 

bring in line the business strategy with top ranked business objectives to quickly generate the competitive 

advantage. 

3.2 SCAN ANALYSIS: PART-1 (TOP RANKED BUSINESS OBJECTIVES IN SI) 

Keeping in view the objective to establish the business strategy that can comply with the recent shift in the 

business objective towards ramp-up rate, brainstorming sessions with engineers and managers were held to 

highlight the potential objectives. The prepared list of objectives includes technical as well as business 

objectives, independent of any specific technology. The list of candidate potential objectives and the ranking 

of business objectives are presented as under: 

 

Sr. Objective Statement Sr. Objective Statement 

1. Get leadership position for ST in SI 12. Introduce new technologies every 2 to 3 years 

2. Develop new technology alliances/partnerships 13. Reduce R&D costs for new technology development 

3. Improve sales revenues 14. Get maximum market share 

4. Quick ramp-up rate 15. Reduce technology alignment lead times 

5. Improve silicon based device model validation 16. Improve silicon based interconnect model validation 

6. Improve manufacturing flows 17. Improve design platform 

7. Improve DFM methods ineffectiveness 18. Improve R&D efforts efficiencies 

8. Achieve customer satisfaction 19. Reduce product cost 

9. Improve yield 20. Reduce time-to-market and time-to-volume 

10. Improve quality and reliability 21. Reduce technology adoption lead times and costs 

11. Improve MFD (APC/AEC) effectiveness 22. Improve root cause analysis 

Table 3.1 – List of SI Objectives 

The Initial SCAN analysis results are presented in the Figure 3.1 below. It is evident from the 

analysis results that “to get leadership position” is identified as a top ranked objective; however, other 

appropriate objective e.g. “quick ramp-up-rate” is also selected for further analysis to support the top ranked 

objective, using SWOT technique. 
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Figure 3.1 – Ranking of SI business objectives 

 In this analysis, the listed objectives are presented in rectangular boxes and they can be read either 

from bottom to top by asking question “why is this objective being pursued?” or from top to bottom by 

asking question “how can this objective be achieved?”. Answer to these questions can be found in terms of 

another objective on the end of the link. The starting question that was posed was why R&D efficiencies 

should be improved, and the answer is that they should be improved so that the DFM methods can be 

improved. The next question is: why DFM methods should be improved? The answer is that, it should be 

improved because the quick silicon based device and interconnect models validation are desirable. This 

process continues until the top ranked objective << to get a leadership position and quick ramp-up rate >> 

are reached. Now, looking at the example from top to bottom flow, a question is posed that how a leadership 

position for STMicroelectronics can be achieved, and the answer is that by introducing new technologies 

every 2-3 years, maximizing sales revenues and total customer satisfaction. The “how else” part supplements 

the answer by providing evidence for the additional objectives that can contribute towards the target 

objective. 

3.3 KEY IMPROVEMENT AREAS IN IDM-FABLITE BUSINESS MODEL 

Before moving towards the SWOT analysis (2
nd

 step in SCAN analysis) to formulate a business strategy, the 

IDM-fablite business model needs to be assessed for the strengths and weaknesses. A presentation of the 

IDM-fablite business model to analyze its key elements and operations is an appropriate first step (Figure 

3.2). 
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Figure 3.2 – IDM-fablite business model operations 

In the above IDM-fablite business model, it is evident that new technology a.k.a. technology 

platform is developed in an alliance where front-end and back-end (FE/BE) technologies are developed using 

DFM methods. The FE refers to the technology used for fabrication of transistors and interconnects whereas 

BE refers to the technology used for packaging and chip integration. It is to remember that every new 

technology explores the possible potential design, process, equipment and material innovations that give rise 

to extensive experimentation and R&D analysis and success of DFM methods depends on effective R&D 

efforts. The new technology is transferred into IDM business model where it is referred as Internal 

Technology Platform (ITP). This newly transferred technology is first aligned on the internal manufacturing 

resources; hence, it is identified as the first improvement area where our objective is the fast technology 

transfer. Its alignment requires huge R&D efforts to perform silicon based validation of device and 

interconnect models, design rules, DFM rules and DFM models. 

Once aligned, this technology is further used by the design groups to design new products. The next 

step is to make a decision that where this newly designed product shall be manufactured. It is based on 

criteria ITP > Common Technology Platform (CTP) which means that if ITP is more robust in terms of yield 

and reliability (indicators computed from the R&D efforts effectiveness) then the product is manufactured in 

our facilities (internal manufacturing window) otherwise it shall be manufactured in alliance partners 

facilities (external manufacturing window). To remain competitive, SI needs to send products quickly to the 

market with highest production yield and this is not possible without a robust/mature technology [Morinaga 

et al., 2006]. The success of this IDM-fablite models requires that every new technology should have 2x 

transistor densities, ability to ramp-up quickly (Design rules and DFM rules) and yield to be as good as or 

better [Webb, 2008] than previous nodes (trading off DFM constraints). 

The DFM plays a significant role in the new technology development; however it can also be equally 

used for the technology derivative and improvement initiatives with the support of the engineering 

information systems (EIS). The principle design of these EISs is coherent with the operational efficiencies 

and supports only the data driven DFM efforts (single-source root cause analysis). The objectives of an IDM-

fablite model are to (i) ensure ITPs’ backward compatibility with alliance partners’ CTP (keep intact outward 

manufacturing window) and (ii) continuously inject competitiveness by improving ITP (enlarge inward 

manufacturing window). In a technology alliance, partners have access to CTP, similar equipment and 

material but still one partner get more market share and enjoys high profit margins than others, why? Answer 

to this question is not trivial, so two questions are formalized and used within brain storming sessions during 

SWOT and use-case analyses as under: 
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a)  Do methods exist (Fig.3.2) to improve device and interconnect models (technology alignment) 

and product development process (technology adoption)? 

b)  Can manufacturing databases and EIS support continuous improvement in the ITP (Fig.3.2)? 

3.4 TECHNOLOGY DERIVATIVE/IMPROVEMENT PROCESS ANALYSIS 

In the context of above defined questions in section 3.3, technology derivative or improvement process is 

analyzed. The answers are further used during SWOT analysis for the formulation of a business strategy. The 

Integrated DEFinition (IDEF0) model for the said analysis is presented in Figure 3.3. In this process the 

method, business functions and sub-functions have been represented with different actors involved. The 

interactions between actors and functions are presented using arrows whereas interaction between functions 

and sub-functions are shown by <<uses>> and <<extends>> arrows. The <<uses>> type arrow defines the 

relationship that the function always uses the sub-function prior to its interaction with the actors defined in 

the IDEF0 model whereas the <<extends>> type refers to potentially extending the functionality of the 

source function/sub-function to the target function/sub-function. 

The Process Integration (PI), technology R&D, device engineering, Central CAD Design Solution 

(CCDS), DFM, Design, EDA and interconnect modeling teams are directly involved in the process. It can be 

seen that the need for FE technology development/improvement could arise as per company policy to move 

towards technology shrinks (55nm, 50nm, 40nm) or customer feedback for technology improvements. The 

technology shrink a.k.a. technology derivative is a process where new technology is derived from the 

existing technology and is capable of manufacturing smaller features (40nm is derived from 45nm, 55nm and 

50nm are derived from 65nm). These derived technologies are based on design, process and/or material 

innovations and result in the gain of area and costs. On the other hand, the technology improvement refers to 

the efforts fully dependent on process innovations that enable to manufacture same design in smaller area. 

These improvements enable to put features more closely but feature sizes are not reduced. 

 

Figure 3.3 – Technology derivative/improvement process 
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The device and interconnect modeling are the key processes in the technology derivative/ 

improvement initiatives where SPICE models (device and interconnect models) are developed through 

CAD simulations and validated based on the measured electrical (PT) results. This process starts with the 

definition of target values on critical and key parameters. The physical parametric stack is constructed based 

on the source technology design rule manual (DRM) and is simulated until the electrical and parasitic 

extraction satisfies the SPICE model corners. This stack is revised to validate until the electrical and parasitic 

parameters comply with SPICE models. The geometric stack is identified through CAD simulations which 

are validated through test products. 

The focus here is on interconnect modeling where key sub-processes are listed as (i) data extraction, 

(ii) drift analysis and (iii) silicon based correlation. The test products undergo the manufacturing process 

flow and the data is collected across the production line. The first step in silicon based validation of the 

interconnect models is the extraction of the data from multiple data sources for analysis purposes. These 

measured parameters are benchmarked against the simulated results and significant deviations are 

highlighted (single-source analysis). Any significant deviations are further investigated for the root cause 

analysis (multi-source analysis) to find the source cause followed by model corrections. In this process, 

success lies in the ability to quickly resolve the conflicts that arise from the stack validated vs. simulated 

results that shall reduce the respins and technology lead times. These results are used to revise the device and 

interconnect models in the DRM. 

The DFM teams are focused on identifying the manufacturability and yield loss mechanisms where 

the drifts/variations leading to parametric or functional yield loss are further investigated for their 

classification as systematic or random mechanisms. These drifts and variations are transformed into rules 

and/or models for inclusion in the DFM kits and subsequent use during CAD simulations. The design and 

DFM kits are used by the designers in addition to the design libraries to quickly design, simulate and assess 

its manufacturability and yield as a first time correct design. The similar process is required in the device 

modeling; hence, they result in a chain reaction of improvements ultimately leading to a new technology 

derivative/improvement effort (alignment or adoption) with reduced lead times and costs.  

3.5 KEY CHALLENGES IN TECHNOLOGY DERIVATIVE/IMPROVEMENT PROCESS 

The IDEF0 model is followed in case of (i) a new technology transfer from an alliance (alignment), (ii) local 

technology derivative and improvement initiatives (alignment), and  (iii) during the product design and 

development (adoption). The success lies in the ability to capitalize the manufacturing knowledge by 

dynamically exploiting the data collected across the production line to quickly identify the significant 

drifts/variations followed by its root causes. Let us answer the two questions proposed in section 3.3. The 

answer to our first question is quite evident that in an IDM-fablite business model we have methods and 

processes for quick technology alignment and adoption but answer to the second question is not trivial 

because at present lead times associated with technology alignment and adoption are increasing which is the 

biggest challenge towards ramp-up rate. So to find an answer to this question, a common project was 

conducted with the T2D group to better understand the limitations faced by the R&D engineers and to assess 

that why they are not able to quickly validate the SPICE models and find root causes against the drifts and 

variations. In this project a back-end-of-line variance analysis tool (BEOL-tool)9 was developed and 

deployed to analyze the limitations. The results are presented on sub-process basis in the following sub-

sections: 

3.5.1 Data Extraction Issues 

It was found that there are 6+ data sources and 11+ engineering data analysis tools being used to support this 

technology derivative/improvement process (Figure 3.3). The following very interesting observations were 

also made: 

                                                 
9 The complete UML model, GUI, Algorithms and experimental results can be found in Appendix-E 
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a) Multiple manufacturing data sources (relational databases) are dedicated to operational 

excellence and do not support DFM/MFD efforts; hence, engineers spend a lot of time in 

extraction, cleaning and alignment before analysis and in most cases, it results in zero value 

addition. 
 

b) Manufacturing data resources have serious ontology issues (same parameter with different 

semantics in different databases), as a consequence it becomes difficult to align and correlate 

multi-source data resulting in a missed opportunity. 
 

c) Unstructured evolution of local databases has resulted missing links which are the key to 

perform a multivariate or predictive modeling. 

It is evident from these observations that multi-source data extraction has serious issues which 

restrict engineers to find root causes using single source analysis resulting in extended lead times and in most 

cases no improvements. 

3.5.2 Variance Analysis Challenges 

The variance analysis is the first step towards root cause analysis and provides initial signals about potential 

drifts or variations. It is based on the electrical parametric data collected across the production line. The key 

observations made during this project are listed as under: 

a) R&D engineers may apply ± σ filters during single-source data extraction to remove outliers that 

could possibly highlight a significant drift. The resulting data when checked against its 

compliance with the normality law, is often found in compliance. 

b) Excel is the widely used tool in SI besides multiple advanced statistical tools but engineers 

prefer excel because they could easily handle and manipulate data in excel that might result in 

misleading conclusions 

c) The data collected across the production line is huge and the tools being used for the data pre-

processing are too slow to handle it because of their relational database limitations. 

It is evident from these observations that when different analysis tools are used, including excel, they 

are like black boxes in terms of the algorithm used for the computation of statistics. It was found that the 

same data when used for certain statistics computation with different tools, often result in slight variation that 

might be misleading. If the data is filtered then it is not possible to improve or go for a technology derivative. 

3.5.3 Silicon Based Correlation Limitations 

This sub-process is not yet implemented because R&D engineers are not able to align the extracted data at 

site/die and test structure position levels. It means that it is not possible to perform multi-source analysis to 

find root causes against drifts/variations. It can simply be concluded that the knowledge capitalization is at 

its minimum in this sub-process. Now there exists sufficient information about the strengths and weaknesses 

of an IDM-fablite business model to move towards SWOT analysis so that an appropriate business strategy 

can be agreed prior to propose modification in the business model to ensure its compliance with a recent shift 

in the business objective i.e. ramp-up rate. 

3.6 SWOT ANALYSIS ON IDM-FABLITE BUSINESS MODEL 

The SWOT analysis is focused on the top ranked objective <<to achieve leadership position in SI and quick 

ramp-up rate>> and the 2*2 box diagram is presented in Figure 3.4. In addition to this objective, ramp-up 

rate, technology alignment and adoption have also been taken up as key objectives to achieve leadership 

position. 

Questionnaire and brainstorming were used with technology R&D, device engineering and process 

integration teams in this regard. It has resulted in the proposition of four strategies as under: 
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a) Strength/Opportunity Option: This option suggests joint ventures with top ranked IDMs, 

foundries and fabless companies to best exploit the strengths e.g. intellectual capital, state of the art 

equipment, data and methods against potential opportunities (high revenues and market share). 

 

Figure 3.4 – SWOT analysis results 
 

b) Strength/Threat Option: This option suggest focus on the design, process, equipment and 

material innovation to mitigate threats like limiting physics laws, technology platform development 

and backward compatibility and dynamic customer requirements.  
 

c) Weakness/Opportunity Option: The ontology issues, missing database links, usage of excel for 

data analysis, minimum knowledge capitalization (correlation between geometric and electrical 

measurements) are characterized as the core weaknesses; hence, in order to exploit the opportunities 

there must be a focus on the knowledge capitalization and improved coordination between R&D 

functions. 
 

d) Weakness/Threat Option: This option suggests mitigating the threats by eliminating 

weaknesses: ontology issues, establishing missing links between database and tuning EIS by 

transforming relational data sources to multidimensional data structures coherent for advanced 

statistical analysis. 
 

The strategies a & b are already deployed at the STMicroelectronics where joint ventures with the 

top ranked IDMs’ to share R&D costs and intellectual capital are established. The significant number of PhD 

students in strong collaboration with LABS and industrial partners are inducted to carry out latest research. 

The main objective is to best utilize the strengths and equal opportunity SI behavior to exploit potential 

opportunities emerging from cumulative growth in demand that cannot be achieved without removing the 

weaknesses. It has been discussed above that success lies in the ability to quickly exploit huge manufacturing 

data for the root cause analysis; hence added value come from the weakness mitigation. It shall strengthen 

opportunity window by minimizing threats; hence strategies c & d are adopted. The ontology issues and 

missing links need to be removed and silicon (results from the wafer measurement) knowledge capitalization 

needs to be increased.  

SWOT Analysis for TRO

“Achieve leadership position in SI”

INTERNAL

Strength Weaknesses

• Intellectual Capital in R&D

• State of the art equipment

• Quality standards & procedures

• Huge manufacturing Data

• Product/test chip 

characterization, FDC, APC, 

Device and Interconnect modeling 
methodologies

• 11+ EDA tools & 6+ databases

• Ontology Issues

• Missing links between 

Databases

• Excel (widely used) + Data 

Filtering

• Interconnect & Device 
modelling based on previous 

DRM 

• Min knowledge capitalization

E

X

T

E

R

N

A

L

Opportunities SO Options:

“Establish joint venture with 
TOP IDM’s to reduce R&D costs 

and capitalize knowledge for 
higher revenues and profits.”

WO Options:

“Capitalize local production 
knowledge & improve 

coordination b/w R&D 
functions to understand 

information needs”

Environmental Factors

• Huge demand increase is 
expected

• Higher revenues with high 

value products

• TCAD Alliances to reduce 
R&D Costs

Competitive Factors

• Capitalize methodological 
knowledge

• Stretch CMOS to the limits

• Strength of Euro in comparison 

with Dollar & other currencies

Threats ST Options:

“Innovation in material, design 
& process along with efficiency 

and effectiveness at 
methodologies”

WT Options:

“Remove ontology issues,  
missing DB links & base 

device & interconnect 
modelling on Si Data”

<< DFM is a solution >>

Environmental Factors

• Dynamic customer 
requirements

• Physics laws are limiting to 

answer variability

• Fabless business model

Competitive Factors

• Technology Platform 

development & competitiveness

• Backward compatibility with 

common technology platform

• ITRS Pressure

Technology

Alignment 
+ Adoption

T2M

T2V T
2

Q

TRO TRO

TROTRO



 
94 

3.7 PROPOSED EXTENDED IDM (E-IDM) BUSINESS MODEL  

It can be concluded that multi-source data extraction, alignment and mapping is critical to improve the 

effectiveness of DFM and MFD efforts during new technology transfer (alignment), technology derivative 

and improvement efforts (alignment) and product design and development (adoption). Based on these facts 

and business strategies (c & d) it can also be concluded that existing IDM-fablite mode is not coherent with 

the recent shift in the business objective (ramp-up rate). So an extended IDM-fablite business model has 

been proposed which provides true coherence with recent shift in business objectives (ramp-up rate) and top 

ranked SI objective (Figure 3.5). 

 
 

Figure 3.5 – Proposed extended IDM-fablite business (e-IDM) model 

The DFM efforts are normally applied to find manufacturability and yield loss mechanisms. It is 

computationally and financially expensive in terms of measurement data and experimentation; hence, they 

are restricted to be used during the new technology development efforts in technology alliance. In the e-IDM 

model  the integration of DFM and MFD efforts have been proposed because both are based on the R&D 

efforts (Figure 1.11) and need multi-source data for an effective root causes analysis. This integration gives 

rise to the need for efficient data extraction, mapping and alignment which means that engineering 

information systems must be tuned for effective data exploitation. 

On the basis of business strategies c & d and the key challenges identified in technology 

derivative/improvement process, scientific contributions (i) MAM (mapping and alignment model), (ii) SPM 

(spatial positioning model) and the (iii) ROMMII (referential ontology Metal model for information 

integration) have been proposed in chapters 5 and 6. The proposed contributions enables R&D engineers to 

perform multi-source root cause analysis at site/die and the test structure position based analysis. It shall 

result in the fast technology transfer from an alliance followed by continuous technology 

derivative/improvement initiatives for alignment purposes. The product development lead times (technology 

adoption) shall also significantly reduce along with an opportunity to improve the technology, based on any 

indentified yield loss mechanism. 

The most remarkable thing about this proposed model is that it is not structurally very different than 

traditional IDM-fablite model but it offers a shift from single-source data driven R&D efforts to multi-source 

information and knowledge driven initiative. It enables swift silicon based knowledge capitalization. In the 

previous IDM-fablite model the inward manufacturing window has never existed but the proposed model 

ensures the inward manufacturing window where one can get orders from alliance partners design centers 

based on the fact that internal technology is robust in yield and reliability than the common technology 

platform. This inward manufacturing window shall serve the organization in downtimes as well. A very good 
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example of inward manufacturing window is recently witnessed when the revenues of STMicroelectronics 

dropped by 6% whereas the worldwide sales revenues have increased. The reason was that Nokia fired 5000 

employs and it had a significant impact on the sales orders for STMicroelectronics. 

3.8 RESEARCH SCHEMATIC AND ADVANCEMENTS (E-IDM MODEL) 

The research schematic as presented in Figure 3.6, is used to demonstrate the logical flow and sequence of 

activities performed that resulted in the proposed scientific contributions. This chapter has addressed the 

blocks A0 to A4. The blocks A0 and A1 have resulted in the identification of TRO as <<to achieve the 

leadership position in SI and quick ramp-up rate>> which is not possible without introducing new 

technologies every 2-3 years, quick ramp-up rate and technology alignment and adoption efforts. Next, A2 

was followed where three key improvement areas were identified as (i) fast technology transfer, (ii) database 

issues and (iii) technology alignment and adoption. Further block A3 was considered because it is necessary 

to identify the strengths and weaknesses to be used within SWOT analysis. The weaknesses identified in 

technology derivative/improvement are (i) data extraction, (ii) mapping and (iii) alignment. It restricts 

engineers to single-source root cause analysis which is not sufficient in the context of newly emerging spatial 

drifts/variations. The SWOT analysis is performed based on the input gathered from the blocks A0, A1, A2 

and A3. Three strategies have been identified, however strategies adopted focus the removal of weaknesses 

to mitigate threats and exploit the opportunities associated with the cumulative demand growth. An extended 

IDM-fablite business model has been proposed which removes these weaknesses from the technology 

alignment and adoption efforts. 

 This proposed e-IDM model shall serve as the basis for whole thesis. The next chapters shall identify 

the key root causes associated with the challenges identified in block A3 in the context of three identified key 

improvement areas. Based on the root causes identified, further generic scientific contributions MAM, SPM 

and ROMMII frameworks have been proposed to enable this e-IDM business model.  
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Figure 3.6 - The research schematic and advancement with e-IDM business model 
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3.9 SUMMARY AND CONCLUSIONS 

This chapter has analyzed the most successful IDM-fablite business model from the SI to assess its support 

towards a recent shift in the business objectives “to achieve leadership position and quick ramp-up rate”. The 

first step was the identification of business (T2M, T2V, ramp-up-rate) and technical (area, power, timing, 

leakage) objectives using brainstorming sessions held with engineers and managers, followed by their 

subsequent ranking using SCAN analysis. The top ranked business objective “to achieve leadership position 

and quick ramp-up rate” and key improvement areas as the (i) fast technology transfer, (ii) manufacturing 

databases and (iii) effective root cause analysis (R&D) from IDM-fablite model, are further investigated 

using SWOT analysis. The objective is to align business strategy to assess its potential compliance with 

IDM-fablite business model against identified TROs. The technology development/improvement process 

was further investigated to assess potential challenges faced during its compliance with the TROs and (i) data 

extraction, (ii) alignment and (iii) pre-processing due to ontology issues and (iv) missing database links are 

found as key failure modes.  

The conclusions highlighted that the existing IDM-fablite model do not fully support the TRO 

objective. It is because of the fact that our R&D engineers are not able to exploit multi-source data collected 

across production line for the root causes analysis which has led ineffectiveness in the DFM methods. The 

DFM methods play a critical role in technology development, alignment and/or adoption. It is important to 

improve technology alignment and adoption lead times and associated costs; hence an extended IDM-fablite 

(e-IDM) business model is proposed with the integrated DFM efforts. The proposed model provides 

compliance with TROs and enhances inward manufacturing window while maintaining its backward 

compatibility with the technology developed in alliance. 

In next chapter we shall find out true DFM challenges within the proposed e-IDM model so that 

associated failure modes and root causes against DFM integration are removed. The objective is to ensure the 

success of proposed e-IDM model so that recent shift in business objectives quick-ramp-up rate is achieved 

for potential economic benefits and leadership position.
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Chapter 4: I-FMEA Methodology for True DFM Challenges10 

In the previous chapter, an extended IDM-fablite (e-IDM) model is presented with DFM integration to continuously 

improve the technology derivative/improvement alignment and adoption. The propose i-FMEA methodology helps 

in identifying and removing true DFM challenges, which are critical for the success of e-IDM model. The i-FMEA is 

different than traditional FMEA as it searches failure modes and root causes across business functions. It is applied 

on two groups of failure modes as (i) ineffective root cause analysis (infield and scribe line test structure positions) 

and (ii) data extraction, mapping and alignment. It has been seen that most of the cyclic root causes (repeating 

causes) are traced back to IT and EDA business functions. The identified root causes form the basis for generic 

scientific contributions as (i) MAM, (ii) SPM, (iii) ROMMII and (iv) YASS. The experience learned during the 

identification of true DFM challenges has led the proposition of 4-step i-FMEA methodology which is capable of 

finding cyclic failure modes and root causes, which require generic solutions rather than operational fixes. 
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4.1 INTRODUCTION 

The previous chapter has proposed an extended IDM-fablite (e-IDM) business model to address the recent 

shift in business objectives “ramp-up rate” in compliance with top ranked business objective “to achieve the 

leadership position”. The success of the proposed model depends on the ability to remove DFM 

ineffectiveness across three key improvement areas: (i) fast technology transfer, (ii) ineffective root cause 

analysis and (iii) extraction, mapping and alignment to improve technology alignment and adoption efforts. 

In this chapter, the objective is to identify true failure modes and root causes for the DFM ineffectiveness for 

generic solutions rather than operational fixes. The proposed i-FMEA methodology is based on well known 

approach used for the concept, design and process known as Failure Mode Effect Analysis (FMEA). This 

approach is limited by the expert’s knowledge and scope because failure modes and root causes are searched 

at system/subsystem/ component levels. The root causes associated with the failure modes are removed with 

operational fixes, which are not permanent solution. The proposed 4-step interdisciplinary FMEA (i-FMEA) 

methodology is superior to the traditional FMEA, because it searches for cyclic failure modes and root 

causes across all the business functions. It is objectively focused on the continuous scanning of business 

environment for any potential change followed by the identification of key challenges and failure modes with 

cyclic causes. The results are very promising as the key failure modes and root causes identified were never 

thought to be the source of the problem. 

4.2 HISTORICAL EVOLUTION OF FMEA METHODOLOGY 

The FMEA approach was initially proposed by US military in the standard MIL-P-1629, about 60 years ago, 

with an objective to identify different failure modes of system components, evaluate their effect on the 

system and propose proper counter-measures. Besides the military based applications, it was first adopted by 

the aerospace industry and was named as the failure effect analysis technique (MIL-18372). The earliest 

formal description as the failure mode effect analysis (FMEA) was given by New York Academy of Sciences 

[Coutinho, 1964]. The FMEA approach was further extended as the Failure Mode Effect and Criticality 

Analysis (FMECA) by NASA to ensure the desired reliability of the space systems [Jordan, 1972]. A lot of 

diversifications in the traditional FMEA methodology have been seen [Reifer, 1979] e.g. Software Failure 

Mode and Effects Analysis (SWFMEA), industry-wide FMEA standard J-1739 issued by the Society of 

Automotive Engineers (SAE), etc. 

4.2.1 FMEA Process and Evolution  

The traditional 5-step FMEA process is presented in Figure 4.1. It starts with the clear description of the 

scope e.g. design, product or process, followed by the identification of important functions for further 

analysis (step-1). The most commonly used methods for this step are as (i) SIPOC (Supplier, Input, Process, 

Output and Customers) and process maps for the scope definition, and (ii) QFD (Quality Function 

Deployment) and C&E (Cost-Effect) matrix for functional analysis. A cross functional team is established 

based on the scope definition and functional analysis results. The potential failure modes, effects and root 

causes are identified and listed along with occurrences, severity and detection (step-2). The brainstorming 

method is the most widely used technique at this step along with a likert scale from 1-10 to quantify potential 

risk against occurrences, severity and detection. The Risk Priority Number (RPN) is computed by 

multiplying the severity, occurrence and detection (step-3). A threshold RPN value is used as criteria to 

initiate operational fixes against a particular failure. The failure modes with RPN value above than the 

threshold value are focused and operational fixes are applied to remove the respective root causes (step-4). 

Finally the operational fixes effectiveness is reviewed and cycle is repeated until the RPN number falls 

below the threshold value. 
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Figure 4.1 – Traditional 5-step FMEA process 

The FMEA approach has received an industry wide acceptance and applicability; hence, it is very 

common to find diversified standards in each domain. The most common forms of FMEA are: (i) DFMEA: 

FMEA applied in the product design a.k.a. design FMEA, (ii) PFMEA: FMEA applied in the process a.k.a. 

process FMEA, (iii) S/C FMEA: FMEA applied in a system or a concept a.k.a. system or concept FMEA, 

(iv) SWFMEA: FMEA applied in software development or information system a.k.a. software FMEA, etc. 

[Ireson et al., 1996]. It is not in the scope of this thesis to discuss and compare FMEA evolutions across 

different domains; hence, this discussion restricts itself to the traditional FMEA approach to benchmark it 

against the proposed i-FMEA methodology. 

4.2.2 Basic FMEA Vocabulary 

Let us discuss some basic vocabulary [Dhillon, 1999] to better understand the traditional FMEA approach 

and its comparison with our proposed i-FMEA methodology as presented in section 4.3. 

Failure mode: It is defined as the ways or modes in which something might fail and could be any potential 

or actual errors or defects. 

Criteria: It is the objective, one wants to achieve and for which a non compliance results in a failure. 

Failure Effect: It is simply referred as the consequences of the failures. 

Failure Cause: These are the reasons for the failures that start the drift and end up in a failure. 

Severity:   It is the failure mode’s consequence based on the worst case scenario. 

Occurrence:   It is the frequency of the occurrence of a failure mode or a cause. 

Detection:   It refers to the existing controls ability to detect potential failures. 

4.2.3 Benefits and Limitation of Traditional FMEA Approach  

The FMEA approach is focused on identifying potential risk that might lead to the product, process and/or a 

system failure. It is a continuous improvement process; however, success lies in the ability to accurately 

identify the scope and functional analysis. It do not provide a thorough and systematic analysis and it is 

limited by the scope and selected functions based on the expert’s knowledge. The estimation of frequencies 

and severity from the users input and identification of operational fixes are not trivial. The biggest advantage 

of FMEA approach is that it can be applied in any context to assess potential risks and apply operational 

fixes to avoid failures. The most important FMEA applications are: (i) when product, process or service is 
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being designed or redesigned, (ii) when an existing product, process or service is being applied in different 

way, (iii) when developing control plans for new or modified process, (iv) when improving the existing 

products, processes or services, (v) when analyzing failures of an existing process and (vi) periodically 

throughout life of process, product or service. 

4.3 PROPOSED INTERDISCIPLINARY FMEA (I-FMEA) METHODOLOGY 

The i-FMEA approach is proposed to overcome the limitations of traditional FMEA approach as discussed in 

section 4.2.3. The proposed methodology is presented in Figure 4.2 and is based on the existing FMEA 

approach.  

 

 

Figure 4.2 – 4-step i-FMEA methodology 

It is a 4-step methodology and is based on the continuous scanning of business environment for any 

potential change (step-1). Upon the detection of a potential change, the SCAN analysis (step-2) is performed 

to find potential areas with key challenges. These areas along with challenges are further reviewed prior to 

move towards step-3. This step in the i-FMEA methodology is exactly same as the traditional FMEA 

approach, where we find potential failure modes, root causes and their detectability along with the estimation 

of severity, occurrence and detection on 1-10 likert scale. The potential risk is computed as RPN and 

operational fixes are applied. In i-FMEA methodology, operational fixes are developed in joint projects with 

respective end users based on expert’s knowledge. These fixes are continuously monitored and reviewed 

because they often lead to the failure modes with cyclic causes which are input for the step-4. If no cyclic 

causes exist then one can loop back to steps 1 and 2. The cyclic failure causes are the converged failure 

mechanisms that emerge from the initial failure modes through operational fixes. These cyclic causes require 

in depth investigation similar to step-2 followed by its RPN value based prioritization. The generic R&D 

solutions are the only permanent option against cyclic failure modes and causes. 

4.3.1 Comparison of i-FMEA with Traditional FMEA Approach 

The comparison between traditional FMEA and proposed i-FMEA approaches is presented below: 

a) The traditional FMEA is a 5-step approach used to identify potential failure modes based on the 

criticality assessment whereas i-FMEA is a 4-step methodology which is based on the traditional 

FMEA approach but it is focused on finding the cyclic failure modes and causes that have the 

potential to become causes for other failure modes. 
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b) The success of traditional FMEA depends on our ability to precisely define the scope and functional 

analysis before applying the basic steps. It requires expert’s knowledge and could easily lead to the 

waste of time and resources; however, i-FMEA methodology continuously analyze the business 

environment for any potential change followed by SCAN analysis to find out critical processes that 

might get effected. This methodology is a better approach as it emphasizes to align all business 

functions to quickly respond to any potential change in the business environment. 

c) The traditional FMEA approach is subjectively focused on applying operational fixes to improve the 

design, process or system imperfection but i-FMEA methodology is focused on identifying failure 

modes with cyclic causes followed by generic R&D fixes so that any chances for associated causes 

to become causes for other failure modes can be eliminated. 

The above discussed potential differences clearly defines the advantages of our proposed i-FMEA 

methodology over traditional FMEA approach, which is primarily/subjectively focused on aligning the 

business processes to quickly respond to business environmental changes for maximum market share and 

higher profits. 

4.3.2 i-FMEA Methodology and Thesis Schematic 

The proposed i-FMEA methodology can be easily identified from the thesis schematic as presented in Figure 

4.3 below. The same schematic is used as presented in chapter-1 to highlight the activities grouped into 4-

steps of i-FMEA methodology. The business environment scanning in this thesis highlighted a shift in the SI 

business objective from T2M and T2V towards ramp-up rate, increasing R&D costs, ineffective DFM 

methods and exponentially increasing technology lead times. In the step-2 the business model has been 

analyzed using the SCAN analysis to find out the key challenges and this step resulted in the technology 

development process as the key challenging area (A0, A1, A2 and A4). In the step-3 the initially identified 

failure modes (A3) are found as (i) data extraction, (ii) data mapping and (iii) data alignment. The 

operational fixes (IC1, IC2, IC3, IC4 and IC5) are provided for the root causes identified against these failure 

modes in the joint projects. 

The operational fixes in terms of industrial tools further resulted in three failure modes as: (i) fast 

technology transfer issues, (ii) ineffective spatial correlation and (iii) mapping and alignment issues (step-4). 

The cyclic root causes identified against these failure modes emerged across all the teams using developed 

operational fixes. The generic solutions are then proposed as (i) MAM model, (ii) SPM Model, (iii) 

ROMMII platform and (iv) R&D data model. These generic scientific contributions (SC1, SC2, SC3 and 

SC4) provide us means to remove weaknesses from our existing processes so that they are aligned to quickly 

respond to the changes in business environment. 

4.4 I-FMEA METHODOLOGY RESULTS 

The step-1 results have been presented in chapter-3.  The industrial contributions (operational fixes) are 

presented in appendices D to H whereas generic scientific contributions (i) MAM and (ii) SPM models are 

presented in chapter-5 and (iii) ROMMII platform and (iv) R&D data model are presented in chapter-6. In 

this section the results of failure mode analysis with initial and cyclic causes are presented. 

4.4.1 Step-2: Initial Failure Modes and Root Causes 

The step-1 of the proposed i-FMEA methodology has resulted technology derivative/improvement process as 

the key area which is impacted by a recent shifts in the business environment. In this process, the technology 

derivative and improvement initiatives and fast technology transfer have been identified as the core business 

functions. These sub-processes shall be investigated with the core functions using traditional FMEA 

approach to find initial failure modes and subsequent causes for the operational fixes. 
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Figure 4.3 – 4-Step i-FMEA methodology and research thesis schematic 
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4.4.1.1 Technology Derivative/Improvement Initiative 

This process comprises of four sub-processes: (i) device/interconnect modeling, (ii) data extraction and pre-

processing, (iii) variance analysis and (iv) PT-Inline correlation. The traditional FMEA results are presented 

in tables 4.1 and 4.2. Let us discuss the FMEA results of device/interconnect modeling (Table 4.1) where 

sub-processes are benchmarked as (i) to generate typical stack, (ii) to generate stack for corner models, (iii) 

QA and impact analysis, (iv) design impact analysis, (v) variance analysis and (vi) model validation. The 

cutoff value for RPN based prioritization is taken as 200. It is known that (i) variance analysis and (ii) model 

validation are the critical sub-processes; hence, the discussion will be restricted to these two critical sub-

processes. The simulated target and corner models against typical and corner stack definitions are validated 

where significant deviations are further investigated to find root causes so that the process, equipment or 

SPICE models can be adjusted. The variance analysis and model validation steps are then the most important 

tasks that have direct impact on the technology lead times and associate costs. 

 The most important and critical root causes identified are incorrect tool, incorrect statistics, incorrect 

measurements, wrong data pre-processing and site level data alignment for the electrical and physical 

geometric measurements. The fact that the extracted data is not understandable by the R&D engineers makes 

it almost impossible to analyze the variances and/or model validations. If the preventions and proposed 

actions are closely analyzed, it can be easily concluded that the biggest challenge is data extraction in right 

format.  

The critical causes highlighted in device/interconnect modeling are as (i) data extraction, (ii) 

alignment and (iii) pre-processing, which are further investigated as presented in the table 4.2 to ascertain the 

proposed corrections. It can be concluded that these sub-processes are very critical for device/interconnect 

model variance analysis in technology derivative/improvement initiatives based on the fact that computed 

RPN values are above the cutoff value (200). These critical elements are further discussed as under: 

a) Data Extraction Sub-Process 

The SI production line data is stored in 4-layer data storage architecture: (i) flat files, (ii) operational data 

sources or stores (ODS), (iii) data warehouses (DWH) and (iv) data marts (DM). The higher storage layers 

(DWH and DM) represent aggregation and integration of the data from lower layers (flat files and ODS). The 

industry normally uses multiple data extraction tools which are classified as single-source or multi-source 

data extraction and analysis utilities. More often it is found that either data is not available or users are not 

able to properly extract it using these utilities. In both cases neither variance analysis nor model validation 

could be performed, which result in high severity. The most apparent root causes identified against these 

limitations are: (i) the databases have different data retention periods and (ii) users are not able to use 

multiple tools due to training issues. The users use multiple tools for data extraction from different data 

sources that result in data incoherencies and pose severe data alignment issues because ODS have longer data 

retentions than DWH and DM. It is often seen that, multi-source data extracted by end users has varying 

formats and is not understandable due to different vocabulary used in different databases. The databases are 

often not supported with up-to-date data dictionaries to present semantics of data and dimensions. All of 

these limitations result in data alignment; hence, the single-source variance analysis is likely possible but 

multi-source analysis due to data alignment issues is almost impossible. The proposed solutions could be to 

either change DWH/DM databases or develop automated data extraction tools.  
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Table 4.1 – Device / Interconnect modeling FMEA result
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a) Data Alignment Sub-Process 

The multi-source data alignment has emerged as a core limiting factors in finding root causes where missing 

common shared identifiers, identifiers with different names and insufficient identifiers are the key failure 

modes resulting in the data misalignment. The missing data dictionaries, inconsistent ETL routines, ontology 

issues (same concept with different semantics in different data sources) and database up gradation are the key 

root causes. Unfortunately there is no prevention possible until an overall database up-gradation is 

performed, which is not a practical solution; hence, the proposed solutions include: (i) database audits to find 

potential links between multiple data source, (ii) ETL routines audit to ensure accurate and complete data 

population in data sources, (iii) upgrade data sources to remove ontology issues and (iv) add more data 

dimensions along with an automated data extraction and alignment process. 

b) Data Pre-Processing Sub-Process 

Besides the fact that data is perfectly extracted, the incorrect data pre-processing might destroy the value 

within data. The root cause analysis is performed with an objective to quickly get the value from data as it 

degrades with time. The above proposed data extraction and alignment solutions do contribute in timely 

extraction of the value. The key failure modes in pre-processing are outliers skipping, inaccurate filtering and 

inappropriate data transformations, which refer to the inability to select and apply correct outlier detection 

and removal process. It requires an automated process or good end user training so that accurate value can be 

quickly extracted from the data.  

4.4.1.2 Fast Technology Transfer 

The fast technology transfer into SI business model provides an opportunity for early penetration into the 

market; however, success depends on the ability to quickly align new technology SPICE models against 

manufacturing resources. It is important to understand the difference between front-end (FE), back-end (BE), 

front-end-of-line (FEOL) and back-end-of-line (BEOL) technologies. The FE and BE technologies 

correspond to the manufacturing processes related with the fabrication of ICs and their packaging and 

assembly operations respectively whereas FEOL and BEOL operations are FE processes for the 

manufacturing of transistors and their interconnections respectively. In this fast technology transfer, the 

focus is put on FE technology; however BE technology is not different then FE operations. In FE technology, 

further emphasis is put on the SPICE model alignment which is one of the key steps in technology 

alignment. It is focused on the identification of PT parametric specifications (LSL, Target and USL). The 

FMEA results are presented in table 4.3. 

 It can be noted that the computed RPN values are above the cutoff value, so this function is critical 

for the success of fast technology transfer; hence, an appropriate method must be used to remove the 

associated causes. The principle objective is to find L/W for the geometries, which when simulated using 

newly received SPICE models gives us target and corners within the model specifications. It is further 

validated using the test products and comparing measured PT parametric results against simulated 

specifications. The data extraction, alignment and pre-processing again becomes critical for the success of 

this particular step. 

The key failure modes identified are: (i) missing SPICE simulation results, (ii) varying simulation 

output formats and (iii) wrong simulation results. The first cause is identified as the missing geometries in 

the simulated files which do not allow us to go for either variance analysis or correlation purposes. The 

wrong test simulation conditions is an often encountered cause which is very hard to detect in normal 

procedure and has the worst effects on the SPICE model alignment efforts. The simulated parametric scale is 

often different than the measurement scale on production line; hence appropriate normalization formula is to 

be applied to analyze appropriate drifts.
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Table 4.2 – Data extraction, alignment and pre-processing FMEA Results



 
110 

 

 

 

 

 

 

 

                                                                               Table 4.3 – Fast technology transfer FMEA results 
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The most critical root cause is the misalignment of PT and SPICE model parameters that result in 

inaccurate PT-Specs. The PT and SPICE model parameters are the same electrical parameters but they have 

different names because SPICE models are developed in new technology alliance and then are transferred to 

partners’ alliance manufacturing facilities for alignment. It is the responsibility of the receiving plant to 

maintain the PT-SPICE parametric relationship against each revision or maturity level of the model. The LW 

scaling refers to different geometries and potential shrink due to process imperfection. The L/W 

(length/width) of geometries requires expertise in the Design of Experiment (DOE) which might be an issue 

without proper training and competence. The proposed solution is an automated software tool that removes 

the human intervention and generates PT aligned specs as accurately as possible. It results in quick alignment 

and validation of the SPICE (device and interconnect) models and technology lead times and costs are 

significantly improved.  

From the above discussion, it can be concluded that the core limitations are associated with the 

ability to extract, align and pre-process the production line huge data volumes and dimensions. It is an 

important step prior to variance analysis and model validation steps during technology alignment adoption 

efforts. The proposed solutions as the operational fixes are the automated data extraction, alignment and pre-

processing utilities that provide clean aligned data for the root cause analysis. 

4.4.2 Operational Fixes through Joint Projects 

Five operational fixes have been made through joint projects with the teams working in the technology 

derivative/improvement initiatives. These operational fixes are the automated software tools that provide end users 

with unified and agreed format based multi-source data extraction, alignment and pre-processing facilities for 

accurate root cause analysis, which is critical for DFM effectiveness. The developed software tools are: (i) BEOL-

variance analysis, (ii) KLA-Ace Recipe, (iii) EPP (equipment, product, process) life cycle, (iii) SMA (spice model 

alignment) and (v) ACM (alarm control and management) tools. A brief description of these tools, is presented as 

under; however, detail description can be found in the appendices D to H a.k.a. industrial contributions (IC1, IC2, 

IC3, IC4 and IC5). 
 

a) SMA (spice model alignment) Tool (IC1) 
 

This tool is developed for the process integration team that actively participates in the technology transfer and its 

subsequent alignment and validation steps. The primary responsibility of the engineers in this team is to validate the 

SPICE models for the new technology or its derivative. They perform characterization using CAD simulations for 

different geometric specifications (test structures) using SPICE models provided by the technology alliance. These 

simulated parametric results are validated against the metrology and inspection results from the production line. This 

step is likely error prone and time consuming as the SPICE model and metrology parameters does not follow the 

same naming nomenclature and units. It makes it quite difficult for the PI team to compare them with the simulated 

SPICE parameters. The simulation results have format issues that result in the data which is either not usable or lead 

to incorrect results. On average, each technology has 2000+ parameters to be controlled and monitored and an 

engineer is given the responsibility of 200 parameters. Till now this process is manual and the R&D engineers 

maintain relationship files between SPICE and test program files and excel is the most likely tool being used for 

analysis. 
 

Our proposed tool facilitates engineers in computing and aligning the SPICE parameters with the simulated 

and measured electrical parameters for different technologies. It is a network driven utility being shared by multiple 

engineers and it supports them to change normalization formulas on geometric specification variations to analyze the 

potential impact in the simulated results. This tool has highlighted two significant failure modes (i) unstructured 

naming conventions and (ii) varying file format output.  
 
 

b) BEOL Variance Analysis Tool (IC2) 
 

This tool is developed for T2D team to analyze and identify significant parasitic components; resistance (R) 

capacitance (C) and RC, during the BEOL interconnect modeling process. It takes input, the measured parasitic 
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elements and computes, inter die, intra die and scribe line inter metal layer variances. The R&D engineers use excel 

to analyze the data and it is found that they apply ± σ filter while data extraction. This step screens out the significant 

deviations which are potential suspects; hence the resulting data closely follow the normal distribution which is not 

the case. A multi-dimensional data model has been proposed to perform requisite computations along with a 

comparison of results obtained with and without filters. This tool has resulted in the identification of missing values, 

wrong filters and missing coordinates to compute the geometric specifications of interconnect metal lines as the 

causes to our inability to model the newly emerging spatial variations or finding an answer to the yield drifts or 

excursions. The proposed tool has significantly reduced the processing time and resulted in error free computations.
  
 

c) KLA-Ace Recipe for PT-Inline Correlation (IC3) 
 

The results obtained from the BEOL-Tool highlight significant parasitic variations which are further 

investigated for the root causes. The most probable justification for these variances could be the variations in 

the geometric specifications and/or defectivity. So it is needed to perform multi-source root cause 

(correlation) analysis at the site levels to answer the newly emerged behavior, an uncontrolled process or 

equipment drifts. It requires measurement coordinates so that transistors or interconnects geometries can be 

computed for the correlation purposes. It is found that electrical data is measured at site level with site 

number and (x, y) coordinates but physical measurements in database are supported with only site numbers. 

It is not possible to compute geometries because the wafers are rotated during the metrology steps based on 

the test structure orientation; hence same site number allotted to two different measurements is not likely to 

be the same site on the surface of silicon wafer. The information from MASK data is used to develop KLA-

ACE recipe for the coordinates generation followed by its mapping with the PT data. The analysis further 

highlighted that there are a lot of missing values because there are certain metrology steps where only 9 sites 

are tested due to time constraints. In such case there are only 9 sites data available to perform statistical 

inference which cannot be trusted; hence it is recommend that 17 sites metrology must be ensured, otherwise 

effective root cause analysis might not give correct results. This recipe enables R&D engineers to perform an 

effective root cause analysis to find answers against variations at the site levels. The said tool has further 

highlighted the need to extend the data alignment from site to die levels and its scope from PT and Inline 

data to defectivity and EWS (electrical wafer sort) data. The multi-source root cause analysis requires 

capturing and modeling newly emerging spatial variations.  
 

d) EPP (Equipment, Product, Process) Life Cycle Tool (IC4) 
 

The results obtained from the BEOL and KLA-Ace recipe justify the parasitic drifts against geometric specification 

variations, however it does not provide an answer if the drift was caused due to process or equipment variation. In 

order to perform an in depth analysis, the proposed tool exploits the manufacturing data sources and generate product 

and equipment life cycles. This tool equally serves the WP3 (work package-3) in the European project IMPROVE 

where Equipment Health Factor (EHF) can be computed to predict maintenance events prior to its failure. This EHF 

indicates if the equipment was in good condition when a particular process step was performed. The EPP tool 

directly connects with the maintenance (TGV) and Out of Control (OOC) databases for the equipment related data 

extraction whereas product and process data is extracted from the process database using KLA-Ace recipes. All these 

data are input to the EPP tool that perform consistency checks and populates it into a multidimensional database. It 

provides a user friendly interface to extract customized equipment and product life cycles. This tool provided us a 

real insight to the limitations while processing data across multiple databases and serious ontology issues, missing 

links, unstructured data model evolutions and the huge data volumes are found as significant limiting failure modes.  
 

e) ACM (Alarm Control and Management) Tool (IC5) 
 

This tool is developed for the Lithography equipment engineering team. At present engineers do not have 

information about alarms categorization based on machine states; hence INGENIO (equipment alarms) database is 

linked with maintenance and process databases to classify alarms based on the machine state. It reduces number of 

alarms as well as unnecessary corrective actions that might cause serious issues in the normal production. This tool 

provides engineers an opportunity to classify and extract only relevant tools and respective lot, wafer, process and 

SPC information. It also enables our engineers to generate alarms and states data on the equipment at module levels 
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to be used in the predictive alarms (PAM) and states (PSM) models. These models are the heart of the YASS 

strategy (SC6, Chapter-7) because they predict likely yield loss for each production lot. The lots predicted bad or 

suspected are inspected to control the bad lots passing to the next steps. It results in the availability of additional 

metrology and inspection tools capacities to be used for R&D purposes. 

The above presented tools were deployed as operational fixes in technology derivative improvement/ 

initiatives in an anticipation of problem resolution, but they further highlighted cyclic failure modes and root causes 

that require generic R&D solutions. These cyclic failure modes and root causes are presented in section 4.4.3. The 

complete UML models for these tools (operational fixes) along with data models are presented in the appendices D 

to H for reference. 

4.4.3 Step-3: Cyclic Failure Modes and Root Causes 

The fast technology transfer is not further included for the investigation of cyclic failure modes and causes 

because of the fact that new technology is transferred to alliance partners’ manufacturing facilities where 

success lies in our ability for its quick alignment and subsequent adoptions. It can be said that it is about 

understanding the manufacturability and yield loss mechanisms and its quick modeling so that first time 

correct design can be achieved. In step-2 of the i-FMEA methodology, 5 operational fixes have been applied 

based on initial failure modes and associated root causes. These tools further highlighted and converged into 

cyclic failure modes and root cause that require generic R&D solutions. The step-3 is performed on (i) 

effective root cause analysis and (ii) data extraction, mapping and alignment and results are presented in 

Table 4.4. 

 The failure modes and root cause identified here are called cyclic because of the fact that besides the 

operational fixes they are repeated on regular basis; hence it requires a generic R&D solution so that we can 

empower our engineers with the ability to dynamically exploit the huge production data volumes and 

dimension. The analysis on the effective root cause analysis function resulted that besides site/site level 

mapping for PT and Inline data sources we are not able to find the root causes against significant drifts. In 

order to address this situation we need to enlarge the scope of multi-source root cause analysis from PT and 

Inline towards defectivity and EWS data sources. It further highlighted the issues of die to die mapping and 

die to site qualification because PT and Inline data is captured at site level but defectivity and EWS data is 

available at die level with no site information that we can use to map it with site level data sources. Besides 

these facts it is a fact that all metrology measurements during the process are made on the test structures 

which might be present in the scribe lines or fields; hence to rightly capture the spatial variations it is 

important to shift our analysis based on the test structure position and mapping is done based on the test 

structures with shortest distances. It is highly critical to capture the spatial variations emerging in new 

technologies whereas excursions, drifts and variations require site/die level correlation analysis. The generic 

model SPM (spatial position modeling) is proposed for this purpose which is presented and discussed in 

chapter-5.  

The multisource data extraction, mapping and alignment are the other functions where we have 

encountered cyclic failure modes and root causes. The root causes identified are inconsistent data models, 

unstructured data models, missing data dimensions (insufficient identifiers) and data retention periods. The 

tools that we deployed for different R&D teams were reported no more working after some period and we 

found that IT people have changed the data model without any analysis of its potential impact on existing 

data extraction and analysis tools. We were obliged to develop new versions of the tools so that engineers 

can continuously use the tools for multi-source data extraction in unified format. We faced huge difficulties 

in finding the changes made by the IT people and we encountered that unstructured data model evolution is 

the biggest issue today. 
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Table 4.2 – Device / Interconnect Modeling Traditional FMEA Results 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.4 – FMEA results on cyclic failure modes and root causes 
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We also noted that with the new revolution in IT technology, new metrology equipment are capable 

of providing new additional data dimensions which are not updated or included in the existing data models 

based on the fact that those databases are of proprietary nature and managed by the external companies. It 

has resulted in inconsistent data models with a lot of missing dimensions that might help engineers in 

effective root cause analysis as well as means to effectively bridge the missing links between databases. The 

size of the database is the biggest issue not because of the cost or storage capacities but subsequent data 

exploitation. It is the reason that data retention period in ODS is longer than the DWH and DM. The ODS 

hold single source data; hence our R&D engineers spend huge amount of time in data extraction using 

single-source data sources followed by manual mapping and alignment. One more convincing reason is that 

today the production and R&D engineers’ use same data sources where they have different data needs. The 

production and process engineers do not need data more than the product life cycle which is 8-12 weeks 

whereas R&D engineers’ need data for at least 1 year. We can conclude that today’s engineering and 

production databases, data extraction tools and analysis utilities are tuned to support production and process 

engineers whereas R&D engineers also try to benefit from the same source but without success. It requires a 

separate R&D data source which is designed and controlled by our internal IT section and we can structure 

its evolution on as and when need basis without impacting the performance of existing R&D data extraction 

tools. This situation shall persist until and unless a generic R&D solution is searched and applied. 

 The cyclic root causes as discussed above are true challenges that result in ineffectiveness of the 

DFM methods. Generic solutions have been proposed as (i) ROMMII (referential ontology Meta Model for 

information integration) and (ii) R&D data model to address inconsistent data model, unstructured evolution 

and data retention period issues. These solutions are presented and discussed in detail in the chapter-6. 

4.4.4 Generic R&D Solutions 

The brief description of proposed generic R&D solutions a.k.a. scientific contributions (SC) is presented as under: 
 

a) MAM (mapping and alignment) Model (SC1) 
 

There are four types of metrology data which is most commonly used by the R&D engineers to perform root cause 

analysis. It includes electrical (PT), physical (inline), EWS and defectivity data. The PT and inline data is captured at 

the site level from the test structures in scribe lines whereas defectivity and EWS data is measured at the die levels. 

The varying metrology coordinates for these measurements and missing die to site references make it almost 

impossible to perform accurate multi-source root cause analysis. A generic MAM model is proposed to resolve these 

die/site level mismatches. The polar coordinate system has been used as a principle to develop the said model. It 

enables our engineers to accurately compute the geometries of transistors and interconnect metal lines followed by 

correlation against drifts and excursions. 
 

The proposed model have resulted in a dream come true for the engineers because till now they have been 

trying to find causes against newly emerging spatial variations using single-source wafer, site or die level analyses 

that contributed towards the inefficient DFM methods. These inefficiencies are being compensated in the technology 

alliances that result in exponential increase in the technology costs and extended technology adoption and alignment 

lead times. The proposed MAM model enables the local DFM efforts for continuous technology derivative 

alignment and adoption improvements. It removes the die/site level mismatches as well as generates die to site 

qualification for multi-source die/site level effective root cause analyses. 
 

b) SPM (spatial positioning) Model (SC2) 
 

The results obtained from the MAM model enables us to base our root cause analysis at die or site levels. It is 

important to note that the parameters are measured using scribe line or infield test structures. These test structures are 

not true products but are taken as the representatives of the actual products and are spread across the surface and 

scribe lines. The newly emerging drifts are due to spatial variations; hence root cause analyses performed based on 

the die/site level might not accurately capture these spatial variations. The SPM model is proposed to perform 



 
116 

correlation based on the shortest distance between test structures used for the measurements, to ensure that spatial 

variations are well taken into consideration.  It computes the shortest distance and identifies the parameters along 

with coordinates for the correlation purposes. It is important to note that with the increasing number of parameters 

and test structures the computational cost increases exponentially. An optimized algorithm is presented that improves 

the efficiency by 50%. This model is important for the technology alignment and adoption efforts specially when 

improving the yield excursions. 
 

c) ROMMII (referential ontology Meta model for information integration) Architecture 

and R&D Data Model (SC3 and SC4) 

The proposed architecture enables us to remove the limitation associated with the unstructured evolutions of data 

models. It allows us to add new data dimensions when needed to ensure that engineers are provided with up-to-date 

dimension for an accurate root cause analysis. This platform learns the Meta model for the R&D data model and 

performs an accurate versioning against all potential evolutions. Any data query spanning over multiple periods is 

divided into sub-queries to avoid errors and resulting data is merged prior to its distribution to end user. 

The R&D data model (SC4) is proposed to avoid the inconsistencies in the retention periods for different 

databases. The growth in the data sources often result in archiving the old data, however the archived data can be 

uploaded to the respective databases if needed. To make it more convenient for the engineers, the database must hold 

12 months data. Today, the production databases are used for R&D purposes; hence 12 months period data retention 

is not likely possible due to volume and performance issues. It must also be noted that most of the existing 

production databases are of proprietary nature, hence any structural change is to be requested that further delays our 

efforts as well increases the costs. This R&D data model is to be maintained in house by IT or R&D people to allow 

its evolution and restructuring on as per need basis under quality control loop. 

The algorithms with this ROMMII platform perform pre-failure analysis upon any potential structural 

change in the data model. It computes statistics at application and user levels and upon any potential change 

performs a risk analysis on the likely impacted users and applications. The potential users are also intimated about 

the newly added data dimension to ensure that all users are aware of any new changes. 

4.5 RESEARCH SCHEMATIC AND ADVANCEMENTS (I-FMEA METHODOLOGY) 

The research schematic is presented in Figure 4.4 to show the advancement. The proposed i-FMEA 

methodology holds most of the advancements except the YASS (yield aware sampling strategy). The block 

A0 correspond to step-1 of the proposed methodology and blocks A1 to A4 correspond to the step-2. These 

blocks have already been discussed in the chapter-3 where based on the analysis results an extended IDM (e-

IDM) fablite model is proposed. The blocks A5 and A6 present the traditional FMEA results (step-3) along 

with 5 industrial contributions a.k.a. operational fixes from IC1 to IC5. These operational fixes are 

highlighted as screen shots of the developed and deployed software tools. The blocks A7 and A8 correspond 

to the step-4 which is focused on identifying the cyclic failure modes and root causes followed by generic 

solutions a.k.a. R&D fixes as SC1 to SC4. The SC5 (i-FMEA) is the scientific contribution summarized and 

presented in this chapter to find cyclic failure modes and root causes.
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Figure 4.4 - The research schematic and advancement with i-FMEA methodology
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4.6 SUMMARY AND CONCLUSIONS 

In this chapter we used our proposed i-FMEA approach to find true DFM challenges. In this approach, the first and 

second steps are attributed to chapter-2 where the top ranked business objectives are identified as the “leadership 

position and quick ramp-up rate” along with data extraction, alignment and pre-processing as initial failure modes. 

The initial root causes identified are ontology issues, missing links between databases, missing values and varying 

measurement reference frames that restrict engineers to the single-source root cause analysis. We have developed 5 

different tools (i) BEOL-variance analysis to analyze parametric drifts in back-end-of-line interconnect modeling 

process, (ii) KLA-Ace recipe for the mapping and alignment of coordinates to enable multi-source site level analysis, 

(iii) EPP (equipment, product, process) life cycle extraction tool to extract multi-source contextual data to support 

drift/excursion analysis and (iv) ACM (alarm control and management) tool to extract, analyze and manage alarm 

data for the tool capacity optimization. These tools address the above initially identified root causes. The objective is 

to either confirm the existing or identify new failure modes and it was surprising to find new failure modes as: (i) 

unstructured data model evolutions, (ii) missing data dimensions and (iii) wrong correlation due to test structure 

positions. 

These failure modes were grouped as (i) ineffective root-cause analysis (infield and scribe line test structure 

positions) and (ii) data extraction, mapping and alignment, which need generic solutions. A detailed FMEA analysis 

on these two grouped failure modes was performed and resulting root causes were used to propose generic solutions. 

The new root causes linked with the ineffective root cause analysis failure mode are found as missing and varying 

coordinates due to varying metrology reference frames, rotation of the wafer prior to measurement steps and 

infield/scribe line test structure positions. It is very important to note that the root causes identified could fall in 

different business function and in our case these are IT and EDA.  

The FMEA is also performed on the technology transfer that resulted in issues between SPICE model and 

PT parameters relationship. The names of the parameters in these SPICE models are generic whereas the names used 

by the test engineers are customized; hence the mismatch creates a significant problem. The initial root causes that 

were found are incorrect and error prone results because of manual data alignment and pre-processing; hence, we 

developed SMA (spice model alignment) tool that resulted in automation and removed the associated inefficiencies. 

The further use of this software tool identified unstructured naming convention for the metrology parameters and the 

varying format for the CAD simulation results as key root causes.  

The generic scientific contributions have been proposed based on the identified root causes. The generic 

solutions are presented in chapters 5 and 6 as (i) MAM and SPM models and (ii) ROMMII and R&D DWH model. 

The proposed i-FMEA approach has evolved based on the experience through these phases where it is noted that true 

failure modes and root causes can be traced to other business functions. These steps are formulated into 4-step i-

FMEA methodology as (i) identify initial failure modes using FMEA, (ii) identify cyclic failure modes through joint 

projects, (iii) identify root causes against failure modes and (iv) propose generic R&D solutions. In the next chapter 5 

and 6 we present (i) MAM and SPM models and (ii) ROMMII platform and R&D DWH model respectively as 

generic solutions.   
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Chapter 5: Measurement Coordinates Mapping, Alignment and Positioning 
11,12,13,14 

 

All the measurements during production processes are performed on the test structures, which are placed in the 

scribe lines and/or in the fields. The wafer position is marked by its notch position and it is rotated prior to 

measurements depending on test structures orientation; hence, measurement coordinates potentially vary with each 

metrology step. It is critically important to map and align the multi-source measurement data prior to the root cause 

analysis. At present, engineers spend huge amount of time in data alignment because of the missing x,y coordinates 

for measurements in the database, issues with metrology reference frames and missing identifier between site and die 

levels data. A generic MAM (mapping and alignment) model for site/site and die/die levels coordinates mapping and 

alignment followed by die/site qualification is proposed. In order to capture newly emerging spatial variations, it is 

important to perform correlation analysis based on the position of the test structure used to measure the source and 

target parameters. The SPM (spatial positioning) model is also presented that perform mapping based on the shortest 

distance between test structures on the wafer surface. 
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5.1 INTRODUCTION TO DEVICE/INTERCONNECT MODELING 

It is seen that the success of SI lies in our ability to quickly align and adopt new technology transfer 

followed by continuous technology derivative/improvement efforts. The device and interconnect modeling 

have (section 3.4, Figure 3.3) been demonstrated as the key processes. In chapter-3 and 4, a detailed 

discussion is done on the data extraction, alignment and pre-processing limitations but here interconnect 

modeling process will be analyzed to highlight the data mapping and alignment problem. The basic 

interconnect modeling process is presented in the Figure 5.1. 

 

Figure 5.1 – BEOL - Interconnect modeling process 

This process consists of 5 maturity levels defined for the SPICE models to ensure its potential 

manufacturability and yield robustness. It starts with tentative model step where interconnect stack is defined against 

the typical and corner models (Figure 5.2). The typical model refers to the target electrical and parasitic value 

whereas the corner models refer to slow and fast devices and their respective permissible parasitic or electrical 

parametric values to ensure the product functionality. The stack defines the geometric specifications of the metal 

lines and vias used to interconnect the devices on silicon surface. These stacks are simulated using SPICE (device 

/interconnect) models. The electrical parameters and parasitic are extracted for the validation purposes. This process 

is repeated until the geometric interconnect stack is found that fulfills the SPICE models target and corner 

specifications. The Quality Assurance (QA) is performed using defined stacks against the test product and results are 

benchmarked against SPICE target and corner models. The Technology to Design (T2D) team is responsible for the 

design Impact Analysis (IA) using an IP from the existing design libraries to ensure the manufacturability and yield 

related issues prior to prototyping. The approval committee approves the results and the model for its inclusion in the 

Unified Process Technology (UPT) database where the SPICE models and technology definitions are stored along 

with maturity levels.  

A well known Business Process Reengineering (BPR) methodology is used to identify non value added 

activities. The objective is to propose efficient and effective process modifications. It can be noted that most of thee 

activities are classified as non value added activities as there is no transformation of the data into information. The 

model corner step is the most important step to be focused as it has 1...n frequency with transformation of data but no 

value is added. These repetitions often result in the technology lead times and waste of resources. The search of 

previous Design Rule Manual (DRM) values to start the basic stack definition step, DRM freezing meeting, typical 

and corner model correction, acceptance meeting and the model production approval steps being non value added 

steps besides data transformation must be improved or removed for the overall process efficiency. 

The preliminary and pre-production models (Figure 5.3) follow the same process and steps as the 

tentative mode. The only difference is that in the preliminary models 1 lot of 25 wafers is used and in pre-

production model 3 lots are used to validate the SPICE models. The design respins often exist and the 

interconnect stacks are redefined until it complies with target and corner model specifications. In these sub-

processes, model correction is the most critical step as R&D engineers needs data to answer drifts and 

variations but they have limited access due to which at this process we are unable to find root causes and 

correct models. It results in lead time delays, costs and waste of resources. 
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Figure 5.2 – The BEOL - Interconnect modeling process (tentative model) 

 The production model (Figure 5.4) is the last phase in interconnect modeling process where test 

structures (PCM: process control monitors, PCS: process control structure) are finalized that shall be used to 

capture the process and metrology information during normal production time line. A comparison between 

simulated and measured electrical and parasitic parameters is carried out with a formal report. This report is 

based on the results and analysis received from the PI team on 3 lots. 

 

Figure 5.3 – The BEOL-Interconnect modeling process (preliminary/pre-production models) 

 On the basis of above interconnect modeling process description it is evident that most of the 

business value and real value are added during preliminary and pre-production models where the data 

extracted from the production line is analyzed to find root cause against drifts. The model correction loops 
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for both typical and corner models are time consuming tasks that directly increase the technology lead times. 

The improved process is presented in Figure 5.5. 

 

Figure 5.4 – The BEOL - Interconnect modeling process (production models) 

 The new process includes R&D data model with data retention period of +1 years. It acts as a 

knowledge capitalization repository where root causes and correlations against variance and drifts analysis 

are capitalized. It is further included during phase-0 (P0) where initial stacks are defined and simulated 

against the SPICE models. The second proposed improvement is to be made at the effective root cause 

analysis during model correction and validation steps. The proposed MAM model in this chapter provides us 

site and die levels coordinate mapping and alignment to support effective R&D efforts in the interconnect 

modeling. This ability shall reduce technology lead times and associated costs. 

 

Figure 5.5 – Proposed BEOL - Interconnect modeling process 
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5.2 CHALLENGES IN MULTI-SOURCE DATA ANALYSIS 

The SI manufacturing operations are grouped as Front-End-Of-Line (FEOL) and Back-End-Of-Line (BEOL) 

operations to manufacture the transistors and interconnections between them respectively. The production 

line data is classified as the contextual and inspection data. The contextual data includes maintenance, 

process recipe, Fault Detection and Classification (FDC), Work in Progress (WIP) and Out of Control (OOC) 

data. The inspection data comprises of PT, Inline, Electrical Wafer Sort (EWS) and defectivity data. The 

FEOL and BEOL operations can be divided into 1 to n operations where defectivity and inline data is 

collected across all operations whereas the PT data is collected at the end of metal-1 and metal-7 when 

contacts are manufactured for subsequent use of electrical tests. The EWS data is collected at the end of all 

processes to sort dies (chips) into good and bad dies. The most commonly used type of data during root cause 

analysis is the inspection data. The overall process is presented in the Figure 5.6. 

 

Figure 5.6 – Multi-Source data analysis challenges 

 The BEOL process is presented in Figure 5.7 for the manufacturing of a simple CMOS 

(complementary metal oxide semiconductor) inverter circuit with two transistors. The CMOS is a technology 

that enables the manufacturing of P-type and N-type transistors together on the same silicon wafer. The 

BEOL interconnections can be divided in three distinct parts as metal-1, metal-2 to metal-5 and metal-6 to 

metal-7. All the metal lines undergo the repetitive steps of geometric stack deposition, patterning (vias and 

lines), etching and metal filling. The number of metal lines depends on process technology being used and 

number of transistors in the circuit. 

To ensure the product quality, metrology, defectivity, parametric and the inspection steps are added 

in production processes. The collected data enables us to compute geometric stack variations and physical 

interconnect geometries (width and thickness) followed by its correlation with PT (electrical) and defectivity 

(inspection) data as shown in the Figure 5.8 The parametric (PT) data is measured at metal2 and metal7 and 

is used to analyze the product functional compliance. It is important to note that increase in the transistor 

density requires more interconnect wires resulting in an exponential increase in the global interconnect 

length for the same chip area. These multi-step metal lines are separated by a dielectric, so they offer 

resistance to the current flow and act as a capacitor to cause signal delays. The parasitic 

(resistance/capacitance) drifts must be quickly analyzed to find root causes so that the drifts can be modeled 

to avoid the product failures and reduce the respins. 
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Figure 5.7 – The BEOL – process for interconnections 

The possible type of multi-source root cause analysis could be easily classified based on the levels 

on which they are collected across the production lines. The PT and Inline data is collected at site level 

whereas defectivity and EWS data are collected at die levels (Figure 5.6). The potential root cause analysis 

could be performed at the site/site, die/die and die/site levels. The further investigation on existing 

production data sources highlight that all PT measurements are supported with the x,y coordinates and 

indices whereas inline data is supported only with the site numbers. It is also seen in the chapters 1 and 4 that 

wafers are rotated prior to the measurements based on the position of the test structure on the wafer. It is 

because of the fact that metrology equipment cannot move right or left to align itself with the test structure 

input pins or pads. It is evident that PT and Inline data collected across the wafer cannot be mapped because 

the site numbers present in both measurements correspond to different coordinates. In the absence of x,y 

coordinates for inline data it can be concluded that site level mapping is not highly difficult, time consuming 

and error prone. The die level x,y coordinates do exist in the source data files, however neither these values 
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nor the position of the wafer are uploaded in the database; hence it is highly difficult for the R&D engineers 

to perform even die/die level correlation analysis. The die/site level analysis is also not possible because 

there do not exist common identifiers that can be used for die/site level mapping. 

 

Figure 5.8 – The BEOL – geometric computations in BEOL process 

It is seen that critical measurement information as (i) wafer position, (ii) x,y coordinates are either 

not available or they are not uploaded in the databases for the end users. The reason is that existing data 

analysis approaches are based on single-source data analysis but even if this information is made available to 

the engineers they are not able to deal with the level of complexity involved while performing coordinates 

normalization. It is because of the fact that the reference frames used during measurement operations are 

specific to the equipment and its manufacturer. In order to improve the productivity of the R&D engineers, 

these missing data dimensions must be uploaded in the data sources by restructuring the data models. The 

generic R&D solutions are required to perform die and site level mapping and alignment so that effective 

multi-source root cause analysis can be enabled to improve DFM ineffectiveness. 

5.3 SITE/DIE LEVEL MISMATCH PROBLEM 

The data is measured at the predefined site/die positions on the wafer using one of the four potential 

reference frames as presented in Figure 5.9. These reference frames are defined and fixed by original 

equipment manufacturer (OEE). The wafer rotation in addition to these reference frames makes the situation 

very complex to resolve site/die level mismatches for the accurate computation of geometries and its 

correlation with the drifts and inspection data. 

 

Figure 5.9 – Metrology reference frames 
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The reference frames used for the metrology can be shifted from one to another by a clockwise 

rotation to accurately map source and target site/die level measurements. The site/site level mismatches are 

presented in the Figure 5.10 where PT and inline measurements with notches at bottom and right respectively 

follow the 1
st
 reference frame. Hence, notch position of the inline measurement is rotated by 270° 

anticlockwise to shift its notch position downwards for site/site mapping. 

 

Figure 5.10 – Site/Site level mismatches due to notch position 

Similar mismatches can also be found at die/die level measurements as presented in Figure 5.11 

where the measurement coordinates of electrical wafer sort (EWS) and defectivity (inspection) data vary in 

their reference frames and notch positions. It is required to rotate the measurement coordinates of defectivity 

data by 270° clockwise to change reference frame from 3rd to 2nd frame and then 270° anticlockwise to 

move its notch position down for the die/die level mapping. 

 

Figure 5.11 – Die/Die levels mismatches due to reference frames 

The die/site qualification is another problem that restricts our ability to perform the correlation 

between PT or Inline (site level) and EWS or defectivity (die level) data. It is presented with an example in 

the Figure 5.12 where inline (site) and EWS (die) data follow the 1st and 2nd reference frames with the 
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different notch positions and missing die/site level qualification data. First of all, it is required to rotate the 

die level wafer data by 270° clockwise and 270° anticlockwise to bring it to the 1st reference frame with 

notch position at the bottom. The x and y components of sites (inline data) associated with each die in EWS 

data must be found (Figure 5.12) for the die/site qualification. 

 

Figure 5.12 – Die/Site level qualifications and varying reference frames 

5.4 PROPOSED DIE/SITE LEVEL MAPPING, ALIGNMENT AND QUALIFICATION (MAM) MODEL 

From the problem context discussed above in section-3, the problem is separated in two parts as (i) site/site, 

die/die mapping and alignment and (ii) die/site qualification. Let us first start with the site/site, die/die 

mapping and alignment issue. 

5.4.1 Site/Site or Die/Die Level Mapping and Alignment 

Our proposed mapping and alignment model is based on the transformation of the polar into Cartesian 

coordinates where each point is represented by its x and y coordinates and the rotation angle as presented 

below (Figure 5.13). 

 

Figure 5.13 – Polar coordinates formulation and rotation 

Any point P(x,y,φ) in the polar coordinates is represented in Cartesian coordinates as under: 

          (1) 

          (2) 

If this point P(x,y,φ) is further rotated with reference to the same origin by θ° to P′(x’,y′, φ+θ) then it can be 

represented as under: 

    (3) 

    (4) 

r cos(φ)

r sin(φ)

φ

P (x, y)

r

P’ (x’, y’)

θ

r



 129 

The new coordinates of the point P′(x’,y′,φ+θ) with the substitution can be rewritten in the matrix notation 

as under: 

        (5) 

        (6) 

       (7) 

In site/site and die/die mapping and alignment problem each site/die within the source and target 

wafers is taken as a point located in different reference frames with different notch positions. So the above 

presented concept is used to always rotate the coordinates of our sites and dies to the 1st reference frame 

with notch at bottom. In the proposed model  is taken as the clockwise angle between two reference frames 

and  as an anticlockwise angle that rotates the sit/die level coordinates to move the notch position at bottom. 

To better understand the steps involved in this proposed formulation let us present an example as 

shown in the Figure 5.14 where a wafer is located in the 2nd reference frame and the 4th quadrant so all die 

or site level coordinates are known with reference to its origin. It is important to find these coordinates with 

reference to the origin located in the 1
st
 reference frame. The original coordinates of the wafer are rotated by 

 = - 270º to get new coordinates in the 1st reference frame. The resulting wafer is found in 4th quadrant and 

1st reference frame but to move the notch position at bottom the wafer is further rotated around its center by 

θ = 90º followed by its translation to center. 

 

Figure 5.14 – Reference frame and notch position rotation and translation 

The problem is generalized such that the point  is located in the 2nd reference frame and the 

coordinates of this point are known with reference to its origin .We have to find the coordinates of 

the point  with reference to the new origin  located in the target reference frame where this 

point shall be further rotated by the angle  to get the notch position at bottom. Finally it shall be translated 

to the center of the reference frame. This formulation is presented in Figure 5.15. 

 

Figure 5.15 – Generic formulation for reference frame and notch position rotation 
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The points , and  can be represented as vectors. The said point  

is known with reference to the point and our objective is to compute the same point  with 

reference to . The both origins and have x and y coordinates as (0,0) and are 

superimposed on one another hence the angle between them is taken as 0. The new coordinates of the point 

 with reference to  can be found by taking a vector sum as under: 

       (8) 

In this formulation the  is a vector between points  and  ,  is a vector between points  

and  and  is a vector between points  and  . The matrix representation of the vector sum based on 

the Cartesian coordinates (transformed polar coordinates) is as under: 

     (9) 

 

   (10) 

In this formulation  and  shall rotate the reference frame and the notch position respectively 

followed by its translation to centre given by  and  a.k.a. alignment factor. 

Now the algorithm developed to normalize the given wafer coordinates is presented below. Let us start with 

the description of the variables (Table 5.1). 

 Table 5.1 – Description of the MAM model variables 

The proposed generic 4-step algorithm for site/site or die/die mapping and alignment is presented as 

under: 

Step-1:    Initialize   
 

Step-2:   Compute   ( ), , , 

 

 

Step-3:   For all measurements points in source and target, 

 

Step-4:   Add  and  to x,y coordinates of target wafer 
 

The step-4 is very important to be focused as it provides an adjustment if the centers of the 

source/target wafer are different due to different number of dies/sites on their x and y axes. After this 

adjustment, they shall exactly map on one another. Now we present an example to validate the proposed 

model (Figure 5.16). In this example the source wafer is in the 3rd reference frame and is required to be 

Notations Description Notations Description 

 S  source, t  target  Reference frame for metrology 

 Computed wafer center  Notch position 

 No of sites/dies on x-axis  No of sites/dies on y-axis 

 
Rotation angle for Notch 

position 
 Rotation angle for Reference frame 
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transformed to the 1st reference frame followed by its rotation of the notch position at bottom and translation 

towards the center. We shall transform P(-4,2) ’ P’(x’,y’) [  = -180, = 90]. 

 

 

 

 

 

Figure 5.16 – Reference frame and notch position rotation with translation example 

After transformation of all the coordinates, the results are presented in the Figure 5.17. 

 

Figure 5.17 – Full map transformations 

5.4.2 Die/Site level Qualification 

 The metrology and inspection data are captured at site and die levels, hence more robust and effective root 

cause analysis requires the need for die to site qualification so that an accurate correlation between die and 

site level data is possible. There are two distinct steps in the proposed algorithm for die to site qualifications 

(i) compute the maximum site index on both X and Y axes and (ii) perform die to site qualification. The 

description of the variables used in the proposed algorithm is presented below (Table 5.2): 

Table 5.2 – Description of the Die/Site qualification variables 

The product mask provides us a set of basic information like x and y dimensions of the site (Step-X, 

Step-Y), number of dies on the Step-X and Step-Y and Shift-X and Shift-Y (Figure 5.18). It is important to 

note that the center of the central die/site is not always the center of the wafer; hence shift (x,y) is used to 

Notations Description Notations Description 

 
x,y components to compute 

wafer center 
 Site x,y dimensions 

 
min, max [x,y] distance of 

central site 
 Site count along x,y axes 

EBR Edge bevel removal  Diameter of the wafer 
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find the exact wafer center followed by X,Y (min/max) distances from this computed wafer center in the 

central site/die. It is the key information to accurately count the number of sites or dies along X+, X-, Y+ and 

Y- axes. The step-1 to step-3 in the algorithm corresponds to these computations. The counted sites and dies 

are further used to find the X and Y site components for each die as per step-4 and step-5 in the algorithm. 

 

Figure 5.18 – Die/Site qualification, mask and wafer center and site counts 

Step-1:   Compute the center of the wafer in site source 

If then   

  

else   

Step-2:   Initialize  0 

Step-3:   Compute  

   While ,  

 ,   

   While ,  

 ,   

   While ,  

 ,   
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   While ,  

 ,   

Step-4: Die to Site Qualification for X component 

 

  

   

   Update  

   

  

 

 
 

Step-5: Die to Site Qualification for Y component 

 

  

   

   Update  

   

 

 

 

The Edge Bevel Removal (EBR) plays a very critical role during production and is defined as the 

outer most area on the wafer surface which is not used during production, so this area must be excluded prior 

to any computations. It can be seen in the Figure 5.19 below as the distance between the outer solid and 

dotted lines. The above algorithm takes an assumption that source and target wafers are already mapped and 

aligned to the 1st reference frame with notch position at bottom based on our model as presented in section 

4.1. To validate the proposed die/site qualification algorithm, we start with an example (Figure 5. 18) where 

site (x, y) and shift (x, y) have the coordinates (10, 15) and (3.5, 6.5) respectively. The wafer under 

consideration has a 300 mm diameter and 3mm (EBR) edge base removal. The shift (x,y) is used to compute 

the center of the central die/site from the actual wafer center; hence the wafer center is simply defined by 

shift(-x,-y) as (-3.5,6.5). This wafer center is used to compute the minimum and maximum distances along x 

and y axes as Min(x)=1.5, Max(x)=8.5, Min(y)=14 and Max(y)=1. The number of sites along x and y axes 

are computed with reference to the wafer center as per step-3 of the algorithm.  

 

 

Figure 5.19 – Die/Site qualification example 
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We use double loop to assign site x and y components to each die in the target wafer data. The full 

map die/site qualification from the proposed algorithm is presented in Figure 5.20. 

 

Figure 5.20 – Full map Die/Site qualification example 

5.5 TEST STRUCTURE POSITION BASED MAPPING AND ALIGNMENT (SPM) MODEL 

Let us review the structure of the wafer, sites and dies as presented in Figure 5.21. A site is referred by its 

respective x and y coordinates and can contain multiple dies defined by product mask. The dies itself are also 

referred by x and y coordinates. The reference coordinates x and y for the site and die as presented in the 

figure appears normalized as 0
th
 row is always at the center but in actual practice it is not the case. Site A is 

expanded in the Figure 5.20 and it can be noted that Process Control Monitors (PCM), Process Control 

Structure (PCS) and Process Monitoring Box (PMB) test structures are placed on horizontal/vertical scribe 

lines and inside the dies as well. The flat and notch position are commonly used to align the wafer during 

production processes and as we said earlier the orientation of the test structure defines the rotation of the 

wafer prior to metrology steps. 

There are thousands of test structures on a single wafer and are used for different types of inspections 

e.g. PT, Inline, Defectivity, EWS etc. It is also seen that multiple inline measurements must be mapped to 

compute geometric specifications which can be further correlated with PT, EWS or defectivity data to find 

root causes and drifts. The site and die level mapping, alignment and qualification Model (MAM) is provided 

which exactly fulfill the need for R&D engineers. We have discussed above that test structure might be 

placed in horizontal or vertical scribe lines and inside dies. It is a fact that all the tests before final test are 

performed on these test structures, hence it is highly likely possible that die/site level mapping might not 

provide accurate results because of the fact that test structures used to measure the parameters are placed at 

distance. The newly emerging spatial variations can be more accurately modeled if mapping and alignment is 

based on the shortest distance between test structures. 

 

Figure 5.21 – Structure f wafer, sites and dies  
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5.5.1 SPM (spatial positioning) Problem (Source/Target  1*1) Context 

At present test structure position based multi-source correlation is not possible because of the fact that test 

structure positions are not available in the databases. Upon further investigation it was found that source files 

either directly or through an alternative data model can be effectively used for the position based mapping 

and alignment. The problem description for one source and one target is presented in the Figure 5.22. 

The Figure 5.22(a) shows a simple site in the wafer with both infield and scribe lines test structures. 

The 5.22(b) shows the source and target parameters that must be mapped based on the site level mapping and 

alignment. The position of the test structures with reference to the center point is known; hence the shortest 

distance between source and target parameters can be easily computed as presented in 5.22(c). In an 

anticipation of alternative mapping, a step-circle is drawn and distance between source parameter of source 

site ‘E’ is computed with all the sites in step circle as shown in 5.22(d) and 5.22(e). Based on the shortest 

distance formulae the source parameter of source site ‘E’ is mapped with the target parameter of site ‘F’. It is 

more realistic in an anticipation of tracking the spatial variations emerging especially in the development of 

new technologies. 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 5.22 – Structure of wafer, sites and dies  

5.5.2 Step-Circle based Basic Algorithm [Source/Target (1*1)] for Mapping 

Let us start with the variable description used in the proposed algorithm as presented in the Table 5.3. 

 

 

 

 

 
 

 

 Table 5.3 – Description of the Step-Circle (B) Variables 

Notations Description Notations Description 

 Wafer Min/Max on X-Y axes  X,Y dimensions of Site 

 
X,Y coordinates of target 

parameter(s) w.r.t site center 
Results[] Results matrix 

 Source to target distance  S  source, t  target 

 
X,Y coordinates w.r.t. site 

center of source parameter 
 

Source or target site x and y 

components 
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The step-circle based basic algorithm for site to site mapping is presented as under: 

Step-1:   
 

Step-2:   

 
 

                    
 

 
 

 
 

                                          ,  

 
 

 
 

 

Step-3:   

5.5.3 Example for Basic Step Circle Algorithm [Source/Target (1*1)] 

The example starts with the presentation of basic information that center is at the center of the site and 

coordinates for the source and target parameters are SP (-4.5, -7.0) and TP (-3.5, 6.5) respectively (Figure 

5.23). The step x, y are taken as 10 and 15 respectively and we focused on the source site ‘A’. 

 

Figure 5.23 – The example of initialization variables (step-1) 

The step-2 navigates through all the sites on wafer surface as source site. The two first ‘for’ loops 

generate the step-circle as presented in Figure 5.24.  

 

Figure 5.24 – The example of basic step-circle algorithm (step-2) 
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The next step is to compute the distance between source and target parameters in the source site 

followed by the distance computation with target parameters across all sites in the step circle. The sample 

computation of distance between source and target parameters for the source site A (-2, 2) are presented as 

under: 

       (11) 

        (12) 

  = 13.536      (13) 

 

The graphical description of this computation is presented in the Figure 5.25(a). The computation of 

source and target distance between source site and target step-circle sites is presented in Figure 5.25(b), 

5.25(c), 5.25(d) and 5.25(e). All computed distances are presented in the Figure 5.25(f). The Step-3 of the 

proposed algorithm finds the shortest distance resulting in mapping of the source site (-2, +2) and target site 

(-2, +1). 

  
(a) (b) 

  
(c) (d) 

 

 

 

(e) (f) 

Figure 5.25 – The example of basic step-circle algorithm (step-3) 
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5.5.4 SPM (spatial positioning) Problem (Source/Target  1*n) Context 

In this section, the effectiveness of step-circle based basic algorithm will be analyzed in the context of one 

source and multiple target parameters. The example to demonstrate the level of complexity by increasing 

multiple targets is presented in Figure 5.26. It is evident from the figure that the coordinates of the source 

and target parameters are known with reference to the center of the site. The number of computations 

significantly increases even for a single site. 
 

 

   

(a) (b) (c) 

Figure 5.26 – The SPM problem source/target (1*n) context 

 The computational costs associated with increasing number of target parameters are presented in 

Figure 5.27(a) and 5.27(b) for both site/die levels which strongly highlight the need for optimization.  

 
(a) 

 
(b) 

Figure 5.27 – Computational costs with increasing target parameters 

(Site Level)

(Die Level)
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5.5.5 Optimized Step-Circle Based Algorithms (i*n) Problem 

 The variable declaration in the table 5.3 for the basic algorithms hold valid in this section, however 

additional variables are presented as under in Table 5.4. 

Table 5.4 – Description of step-circle (O) algorithms 

 The proposed algorithm is presented as under: 
 

Step-1:   
 

Step-2:      

 

  

Step-3:        

  

 

 

 

 

 
 

Step-4:   

 

Step-5: Compute Distance  

 

,  

 

5.5.6 Example for Optimized Step Circle Algorithm [Source/Target (1*n)] 

We start with the same example as presented in Figure 5.22. The proposed algorithm is functionally similar 

to basic step-circle algorithm; however it is more intelligent and finds the potential direction of the likelihood 

of target parameters. The step-2 in proposed algorithm computes the coordinates of the four corners of the 

source site a.k.a. TL (top left), TR (top right), BL (bottom left) and BR (bottom right). Once these 

coordinates are available, the distance from our source parameter to these corners is computed. These steps 

can be seen in the presented Figure 5.28(a), 5.28(b) and 5.28(c). The shortest distance is computed among 

them which define the directionality for the step-circle. The step-3 in this algorithm computes directional 

Notations Description Notations Description 

 
Distance from the source parameter to the 

top left (TL), bottom left (BL), top right 

(TR) and bottom right (BR) corners  
 Direction of traversing 
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semi step-circle based on the identified directionality as shown in the Figure 5.28(d) and 5.28(e). The 

distance computations from the step-4 and step5 clearly result in the 50% reduction in computational efforts. 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 5.28 – Computational costs with increasing target parameters 

5.6 DATA MODEL FOR POSITION BASED SITE/SITE MAPPING 

To support an automated process for position based site/site mapping, a data model is presented which is 

populated using the existing source files generated by inspection equipments, test program specifications and 

test structure layout files. The data model is presented in two parts (Figures 5.29 a & b) for the purpose of 

description and understanding. 

 Let us start with the presentation of data model proposed to support PT-Inline (site level) and EWS-

Defectivity (die level) data based spatial variation modeling. We can see that a lot is composed of wafers and 

every wafer is further composed of site level wafer map (site_full_map class) that includes the sites used for 

the PT and Inline measurements. An association class die_full_map provides die level coordinates for each 

wafer against a wafer and a site level wafer map to ensure die to site qualification for PT and Inline 

measurements against EWS and Defectivity data. Further, it can be seen that each lot is composed of 1 or 

many products (multi product wafer), however each product is associated with a mask set where we find all 

the key information to compute the actual center of the wafer and its die and site level coordinates with TL 

(top left), BL (bottom left), TR (top right), BR (bottom right) information. The x,y coordinates and 

associated site nos. as found in the measurements class might be different based on the test type, hence 

mes_coordinates class and test_type classes support the identification of actual x, y coordinate and generic 

site numbers for PT-Inline measurements. Measurement class holds the PT-Inline measurements performed 

against the metrology within the wafer_steps class. The defects and yield classes hold the EWS and 

Defectivity measurements (die level) associated with the wafer steps and the product tests where product 

tests are defined at the product level. To compute the positions of the test structures on the wafer for spatial 

variation modeling the test_structure_map class provides the accurate position. One of the biggest issues in 

the spatial variation modeling is to find the parameters being measured with the specific test structures so, a 

test_program_specs class is added the holds information of all the EWS parameters along with their 

specification limits and bin definition in the bin_defination_program class for each test structure defined in 

test_structure_map class. We have also presented class_lookup and defects classes. The defectivity 

measurements class holds the list of defects to be measured against defectivity steps in wafer_steps class. 
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The proposed data model fully supports the spatial variation modeling on the wafer surface for PT, Inline, 

EWS and defectivity measurements data. 

 

Figure 5.29(a) – The data model for SPM model 

 

Figure 5.29(b) – The data model for SPM model 
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5.7 RESEARCH SCHEMATIC AND ADVANCEMENTS (MAM AND SPM MODELS) 

The research schematic and advancement is presented in Figure 5.30. The MAM (SC1) and SPM (SC2) 

models are key generic contributions made in this thesis which lead us towards a shift from data driven 

ineffective DFM efforts towards information and knowledge driven efficient DFM efforts. The proposed 

generic scientific contributions address the cyclic failure modes and root causes identified in the step-3 of i-

FMEA methodology presented in chapter-4. Our proposed i-FMEA methodology has significant advantages 

as it helps in identifying the 

Cyclic failure modes and root cause which are repeated until and unless they are fixed with generic 

solutions. The proposed MAM and SPM models ate the partial contributions in solving the issues associated 

with data extraction, mapping and alignment during technology alignment and adoption efforts. 
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Figure 5.30 - The research schematic and advancement with MAM and SPM models 
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5.8 SUMMARY AND CONCLUSIONS 

In this chapter, we have analyzed the traditional interconnect modeling process being one of the critical 

processes in technology alignment and adoption initiatives. The key objective is to analyze the effect of 

cyclic failure modes and causes as: (i) data extraction, (ii) pre-processing and (iii) multi-source root cause 

analysis, so that generic R&D solutions can be proposed. The BPR analysis on the interconnect modeling 

process has resulted that the cyclic failure modes and root causes have a significant influence on the model 

correction and interconnect stack definitions steps that lead to an exponential increase in technology lead 

times and associated costs. We have proposed a revised interconnect modeling process by adding a 

knowledge base, which provides an initial feedback for the first time correct stack definition followed by 

quick model correction based on effective root cause analysis. 

 The effective root cause analysis is the key to improve existing ineffectiveness in the DFM methods 

and is defined as the ability to analyze data to find answers against drifts and/or variations. These drifts and 

variations are further classified as systematic or random for their transformation into rules and/or models. At 

present, engineers are facing huge difficulty in the data mapping and alignment to perform multi-source 

analyses based on fact that the measurements result in varying coordinate system due to test structure 

orientations. The wafer is rotated prior to the metrology steps and its position is monitored using notch or flat 

positions. The varying coordinates issue is further complicated with different metrology reference frames. 

These issues have a significant impact on stack definition, model correction and validation steps. 

 We have proposed mapping and alignment (MAM) model and spatial positioning (SPM) model. The 

MAM model is capable of performing site/site, die/die and die/site levels data mapping and alignment. It is 

highly important in correlation analysis because inspection data are captured at different levels (PT and 

Inline are captured at Site and defectivity and EWS data are captured at die levels). The proposed MAM 

model enables multi-source root cause analysis resulting in quick knowledge capitalization. We know that 

during production the wafers undergo multiple inspection steps and all the tests are performed on test 

structures placed inside the field and/or scribe lines. To accurately capture the spatial variations we have 

proposed SPM model, which enables the mapping of source and target parameters based on distance between 

tests structures used for measurements. The analyses results are more accurate and help us in capturing the 

spatial variations emerging due to miniaturization. The MAM model is suggested for mapping and alignment 

during technology adoption efforts whereas SPM model is a best fit during technology alignment initiatives. 

 We concluded the chapter with a data model, which is filled using source metrology, test program 

specifications and layout files, provided by the Reticule Assembly Teams (RAT). The data model provides 

an efficient way of internal processing prior to data mapping and alignment. The solution for missing data 

dimensions and continuous data models restructuring for the successful evolutions is provided in next 

chapter, which results in a generic solutions, focused on removing weaknesses and improving DFM 

effectiveness. It enables an effective multi-source root cause analyses for the R&D and/or 

product/process/equipment engineers.
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Chapter 6: ROMMII and R&D Data Model for Information Integration15 

In this chapter, the cyclic failure modes and root causes associated with multi-source data extraction function are 

addressed. The key causes are identified as (i) unstructured data model evolution, (ii) ontology issues and (ii) data 

retention periods. The ROMMII platform is presented to address unstructured data model and ontology issues where 

the R&D model provides an efficient solution to data retention issues easing production data sources. The ROMMII 

platform enables us to exploit huge data volumes and dimensions by removing (i) model inconsistencies, (ii) pre-

failure assessments to avoid extraction and analysis utilities failures, and (iii) information diffusion to perspective end 

users about the inclusion of new data dimensions. The R&D data model resolves the issue of different data retention 

periods in existing production sources and proprietary constraints associated with multiple production data sources. 
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6.1 INTRODUCTION 

Looking at the historical evolution of data needs by R&D engineers as presented in Figure 6.1, it can be seen 

that in past engineers have been complaining about few data volumes and dimensions for their inability to 

capitalize knowledge. The memory and computational costs were high in comparison to the performance and 

efficiency. However recent revolutions in the IT technologies have resulted in continuous reduction in the 

memory and computational costs, and increase in the computation power. It is because of this fact that today 

we are able to store large data volumes and can exploit them at high efficiency BUT R&D engineers are still 

complaining and this time it is not about the volume and dimensions but their inability to exploit these huge 

volumes and dimensions. As a consequence, the productivity of our R&D engineers is low which impacts the 

competitiveness of SI resulting in extended technology alignment and adoption lead times, so it is necessary 

to work on solutions to facilitate engineers in their efforts to quickly transform the data into information and 

then knowledge for technology lead times and costs reductions. 

 

Figure 6.1 – Existing data extraction and analysis challenges 

6.2 HISTORICAL EVOLUTION FROM UNSTRUCTURED TOWARDS STRUCTURED DATA STORAGE 

The data is defined as the collection of raw facts and figures and it is processed in a specific context by 

engineers, middle manager and managers to generate information. The data is collected across the production 

process and is classified as the (i) process and (ii) contextual data (Figure 5.6) where the process data is used 

to control the product quality and the contextual data serves diverse purposes ranging from planning to 

equipment control and engineering. The database is defined as a structured way of storing the data and 

information for an efficient response through a query language; however the evolution of data storage 

architectures can be broadly classified as (i) flat files (ii) relational and (iii) dimensional eras as discussed in 

the following sub-sections. 

6.2.1 Flat Files Database Era (1890 till 1968) 

The flat file databases are defined as the files containing delimited records of varying lengths in the form of 

rows and columns with no relationship or link between records or fields. The concept of flat files can be 

traced back to Herman Hollerith who conceived the idea of storing census data in holes punch-card for the 

tabulation purposes; hence, the census of 1890 was completed by the US Census Bureau with punch-card 

systems. Herman Hollerith left US census bureau in 1896 and started his company that is known today by the 

name of IBM [Blodgett and Schultz1969]. The most common data storage medium was the magnetic tape 
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with sequential, indexed and random access methods. The third generation programming languages (e.g. 

COBOL, BASIC) were used to write programs to read, write, delete and update the data in these file. These 

file systems are still used today for the system configuration files but they are not being used for commercial 

purpose because of the limitations as (i) weak security, (ii) no sharing, (iii) likely duplication and (iv) high 

maintenance costs for data consistency and access controls [Impagliazzo, 2012]. 

6.2.2 Non-Relational Database Era (1968-1980) 

In this era the emphasis was to overcome the limitations associated with the initial file systems and IBM 

again took lead and proposed the first non-relational databases management system called IMS (information 

management system). The IMS is a hierarchical database with a tree like storage architecture having parent-

child as one-to-many relationship. It was developed in a joint project with Rockwell and Caterpillar (1966-

1968) to manage large bill-of-material (BOM) for the Apollo space shuttle. The network database model has 

an advantage of efficient searching over flat file databases. It also results in less data redundancy, security 

and integrity; however the biggest disadvantage is the difficulty in implementing the many-to-many 

relationships [Blackman, 1998]. 

The second major contributions in this era are the network database models the (i) CODASYL 

DBTG and (ii) IDS model. The CODASYL (conference on data systems languages) also credited for the first 

general purpose business programming language (COBOL) in 1968. The database task group (DBTG) 

proposed the specifications for the network database model in 1969 along with interfaces in the COBOL 

language for data definition (DDL) and data manipulation languages (DML). The network database model 

(IDS at Honeywell) uses directed acyclic graph with nodes as records and edges as relationships [Bachman, 

1973]. It has the similar advantages like IMS with many-to-many relationship; however, it lacks structural 

independence [Blackman, 1998]. 

6.2.3 Relational Database Era (1970 till present) 

The relational database is the first major breakthrough of the century that has changed the way in which data 

could be stored and used for the decision support systems. There is no doubt that the rich database efforts in 

terms of hierarchical and network based databases resulted the relational databases. The idea of relational 

database model was initially proposed by Ted Codd at IBM in 1970 [Codd, 1970]. This model provides 

advantages over all above discussed database models as (i) no redundancy, (ii) security and integrity, (iii) all 

types of possible relations and (iv) the economies of scale whereas, the only associated advantage is the size 

and cost of the DBMS. It has also led the emergence of object oriented database management systems 

(OODBMS) around 1985; however, it has resulted in little success because the conversion cost is too high 

for the billions of bytes of data [Blackman, 1998]. The examples of the RDBMS in this era are (i) Ingress 

which ended into Informix and (ii) System R by IBM which resulted in DB2. 

6.2.4 Dimensional Database Era (1990 till present) 

The revolution in the database technology for efficient data storage and subsequent retrievals was supported 

with the decreasing memory and computational costs. It has resulted in the availability of huge volume of 

data. The drawback of size associated with the relational databases has resulted in the inefficient data 

exploitation with rise of interest in the methods for quicker response queries. The dimensional database era 

started (1990) with the emergence of enterprise resource planning (ERP) and management resource planning 

(MRP) concepts. The biggest advantage is that data is stored in multi-dimensional cubes which results in 

quicker aggregation and faster response to the end user queries [Blackman, 1998]. 

The above discussion on the evolution from flat-files towards dimensional databases indicates that 

the driving force behind all these efforts is the ability to efficiently store and exploit data resources with the 

security and integrity. In today’s competitive environment where knowledge is the key for success, it is 

needed to transform data into information and knowledge so that varying processes and business strategies 

can be reformulated for competitive gains. We hypothesize that the principle objective is data/information 



 149 

integration for the knowledge capitalization. Now we shall focus in detail on the dimensional database 

systems in order to assess its appropriateness for our proposed e-IDM business model (section 3.7, chapter-

3).  

6.3 EXISTING DATA/INFORMATION INTEGRATION SYSTEMS 

The existing information systems used for the data/information extraction/integration efforts are classified as 

online transaction processing (OLTP) and online analytical process (OLAP) systems. The OLTP systems are 

supported with the relational databases and are focused on efficient insert, update and delete queries whereas 

OLAP systems require DWH/DM architecture with emphasis on data retrieval. It is also important to note 

that all business intelligence (BI) tools require the ability to quickly aggregate, dice and slice data for 

decision making purposes using OLAP cubes which are built from the DWH/DM databases. A brief 

comparison is presented below for reference: 

Table 6.1 – OLAP vs. OLTP Systems 

The OLAP systems are further classified as MOLAP, ROLAP and HOLAP. Let us briefly review these 

systems: 

 MOLAP: The MOLAP based BI tools generates cubes which are aggregated from multi-

dimensional database (DWH). These tools generate quick reports because data is already pre-

aggregated. The MOLAP cubes are disconnected with the underlying DWH, hence the drill down is 

not possible. 
 

 ROLAP: The ROLAP based BI tools also generate cubes from DWH, but they are supported with 

underlying relational database structures. It allows end users to perform drill down operations and 

accurately search the relevant information. 
 

 HOLAP: It overcomes the disadvantages associated with both MOLAP and ROLAP systems as 

discussed above and provides an aggregated OLAP cube and access to the transactional data from 

the DWH databases. 

It is evident from the above discussion that DWH and DM databases are the core of the BI tools. These tools 

are subjectively focused on converting data into information and knowledge for quick decision making. The 

OLAP cube along with drill down features facilitates the engineers to find most relevant and accurate 

information. We shall analyse in depth the DWH and DM architecture in the next section; however, it can be 

easily concluded that the relational databases can be equally used for OLAP like features but at the cost of 

OLAP Systems (DWH Database) OLTP Systems (Relational Databases) 

It uses dimensional database structures It uses normalized databases 

Designed for analysis of business measures by 

category and attributes 

These systems are design for real time 

(transactional) business operations 

It supports few concurrent connections 
It supports multiple concurrent connections and 

database operations 

The consistent and validated data is bulk loaded for 

large, complex and unpredictable queries 

The database is optimized for the validation of data 

and transactional processes 

The query response is optimized with multiple 

indices with few joins 

It uses few indices as the emphasis is on the 

accurate transactions with many joins 

It follows periodic updates through extraction, 

transformation and loading (ETL) routines with few 

frequent modifications 

It requires frequent modifications 

It operates with huge data volumes and  large data 

aggregations 

It operates on small data volumes and  few 

aggregations 
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performance and efficiency. The DWH and DM can be implemented using relational database management 

systems (e.g. Oracle, SQL Server) or purely dimensional database management systems (e.g. TeraData). The 

relational database systems provide additional utilities to build OLAP cubes whereas dimensional database 

systems provide an edge on relational databases in terms of query performance and ability to treat huge data 

volumes. 

6.4 DWH-DM: INFORMATION INTEGRATION AND BUSINESS INTELLIGENCE PLATFORM 

The growth in the availability of huge data volumes and technologies to store and process them has resulted 

significant challenges in the integration. The DWH and DM databases as discussed above provide us an 

opportunity to efficiently store and exploit the huge data volumes. The latest BI tools use the DWH and/or 

DM architecture to quickly respond to the varying information needs of R&D engineers. The DWH and DM 

are defined as under: 

 DWH: The DWH is a subject oriented, integrated, non-volatile and time-variant collection of data 

to support management decisions [Inmon, 2005]. It is a relational database that uses ETL routines to 

populate the DWH with historical data which is collected and validated from multiple data sources. 

It takes off the processing load from the transactional databases (OLTP) for in-depth but 

computationally expensive analysis. 
 

 DM: The DM can be simply defined as a smaller version of a DWH with the data from one source 

e.g. sales. The data stored in the data marts is highly or partially summarized. 

Let us start with the basic definitions and concepts prior to discuss the new database architecture for 

DWH and DM. 

6.4.1 Basic Definitions and Concepts 

Let us start with basic concepts and definitions to better understand the problem and further discuss the topic: 

o Facts: It is a type of table in the dimensional database which includes two types of columns (i) facts 

(quantitative measures) and (ii) foreign keys to dimension tables.  The facts are numerical 

measurements of a certain business process and they are aggregated in the OLAP cubes e.g. 

aggregated sales volume against country, region or city. 
 

o Dimensions: The dimensions are the tables that store records related to the particular dimension. 

These are the attributes by which the facts in the fact table are grouped. The dimensions that change 

over time are referred as slowly changing dimensions and can be treated by (i) overwriting the old 

value, (ii) adding a new column and (iv) adding new row and version. The dimensions are classified 

as confirm dimensions if it is linked to multiple fact tables whereas the single dimensions, with few 

attributes having yes/no values, are referred as junk dimensions. They are grouped into single 

dimension to reduce number of referred dimensions in respective fact tables. 
 

o Attribute: It refers to the fields within fact and dimensions tables. 
 

o Hierarchy: The dimensions are further decomposed into sub-dimensions and it is referred to as 

dimensional hierarchy e.g. time dimension (year, quarter, and month) and geographic dimension 

(country, sales region, state, city and store). 
 

o Drill up/down: The drill up/down are specific operations applied on the OLAP cube where 

the data is presented at higher or lower hierarchies based on the dimensions. It requires either 

ROLAP or HOLAP cubes (see section 6.3). 
 

o OLAP Cube: It is defined as a multidimensional representation of data from the fact and dimension 

tables. The internal storage of OLAP cube is different but efficient as show below. 
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Figure 6.2 – OLAP cube architecture 

o Slicing and Dicing: The slicing operation is defined as the process of retrieving data from 

OLAP cube by filtering it on a given dimension whereas dicing operation filters the original 

cube data across all dimensions as show below. 

 

 

 

 

 

 

Figure 6.3 – Slicing and dicing operations on OLAP cube 

6.4.2 The DWH Architectures, Models and Schemas 

In order to better understand the advantages associated with the DWH and DM databases, it is important to 

discuss its potentially possible architectures, models and schemas as under: 

 DWH Architectures/Frameworks: The most commonly used DWH architectures are as (i) 

basic DWH architecture (Figure 6.4a), (ii) DWH with staging (Figure 6.4b) and (iii) DWH and DM 

with staging (Figure 6.4c). In the basic DWH structure, the data from different data sources is 

directly moved to the data warehouse through ETL routines and end users are provided with direct 

access over the DWH through OLAP based data extraction and analysis utilities. The disadvantage 

associated with this architecture is the inconsistencies in the ETL routines; hence, data validation 

could raise serious issues during subsequent analysis by end users. The staging is a temporary 

storage which is used for the validation of data prior to its permanent storage in the DWH; hence, it 

overcomes the drawbacks associated with the basic DWH architecture (Figure 6.4 b & c). The 

typical DWH architecture being used in most of the BI tools, where data from the DWH is further 

aggregated to the DM and end users are provided with access to these data marts for efficient query 

responses (Figure 6.4c). 
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c)   DWH and DM with Staging Architecture 

Figure 6.4 – Principle DWH architectures and frameworks 

 DWH Models: The DWH follows three modelling levels as the (i) conceptual, (ii) logical and (iii) 

physical models (Figure 6.5). The conceptual model provides the highest level of abstraction where 

only names of entities and their relationships are considered. The logical level in comparison to 

conceptual level describes the system in much more detail; however, the physical implementation is 

still an abstraction. It includes identification of attributes and primary and foreign keys followed by 

normalization process. The physical model takes into account the target database management 

system (Oracle, SQL Server, MySQL, Access etc.) constraints and data types and domains are 

detailed for each attribute. The physical model can be demoralised at this level based on the user 

requirements. 

 

 
a) Conceptual      b)    Logical      c)    Physical 

Figure 6.5 – DWH data models 

A tabular comparison of three levels of DWH models is presented as under in Table 6.2 that clearly 

represents that moving from conceptual towards physical models minimizes and finally removes 

abstraction. 

Function Conceptual Logical Physical 
Entities Yes Yes - 

Relations Yes Yes - 

Attributes - Yes - 

Primary Keys - Yes Yes 

Foreign Keys - Yes Yes 

Data Types - - Yes 

Data Domains - - Yes 

Data Lookup - - Yes 

Constraints - - Yes 

Table 6.2 – Comparison of DWH data models 
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 DWH Schemas: The data warehouse design and development use three commonly used schemas 

as (i) Star, (ii) Snowflake and (iii) Constellation Schemas. The Star schema (Figure 6.6a) consists of 

fact and dimension tables; however, there are no hierarchies for dimensions or the fact tables. The 

fact tables do hold quantitative or additive facts because primarily the DWH is focused on 

aggregation on different dimensions and periods. These are huge tables with millions of records 

where dimensions are used to build OLAP cubes which are further sliced, dices or drilled up/down to 

search relevant information. The queries used within the OLAP cube are SQL queries with multiple 

joins. It is very important to note down that as the number of joins increases, queries performance 

degrades but DWH architecture has a multi-dimensional storage with multiple indices for fast query 

results. The major difference between Star and Snowflake schemas is that the snowflake schema 

allows hierarchical dimensions; however, all dimensions are linked to the central fact table (Figure 

6.6b). The advantage is that multi-dimensional hierarchy results in data aggregation at multiple 

levels where information is sliced and/or diced with the precise granularity. The multiple 

fact/dimension tables’ joins affect the query performance but such limitations are compensated with 

additional indexing. The third most commonly used DWH schema is the Constellation schema 

(Figure 6.6c) which is also called the hybrid of Star and Snowflake schemas. In this schema, the 

facts tables are divided in multiple fact tables and hierarchical dimensions are shared by these fact 

tables.  

 

 
 

        a) Star Schema                               b) Snowflake Schema                                  c) Constellation Schema 

Figure 6.6 – DWH schemas 

In the above schemas, it can be seen that it is a data warehouse about sales data. In star schema, the 

sales fact table is connected with three dimensions as (i) time, (ii) product and (iii) store. The primary keys of 

dimensions are accumulated in the fact table where they act either as composite key or simply foreign keys. 

In case, if they are selected as foreign keys then the fact table ID can be added as a primary key; however, it 

is not necessary. In the snowflake schema, the store dimensions is further hierarchically divided into state 

and region sub-dimensions and similarly the product dimension follows two levels sub-dimensions as (i) 

model and (ii) marker. The presented snowflake schema allows aggregating sales at regional and state levels 

through multiple join SQL queries. The constellation schema is an improved form of Snowflake schema, that 

allows the dimensions to be linked to multiple fact tables and as a result sales can be aggregated at the region 

and state levels with more efficiency. 

The above DWH schemas can be implemented in the traditional relational database management 

systems e.g. Oracle and SQL server. These DBMSs are designed for the OLTP systems to optimize 

transactional processing; however, the vendors have added additional OLAP modules that can be used to 

implement the DWH as a relational database. These modules provide users with interfaces that can be used 
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to build OLAP cubes and subsequent query processing. The newly emerged DBMS ‘Teradata’ is a special 

database system which is designed only for the DWH and DM databases; hence, it is obvious that it has 

significant advantages over traditional RDBMS in terms of storage and query response. The major portion of 

work within DWH management is to monitor the ETL routines and ensure its consistencies with the DWH 

data model. 

A generic Meta model for the data warehouse (Figure 6.7) and its schemas is presented [Darmont, et 

al., 2007] as under. It can be seen that a data warehouse is composed of multiple fact tables where each fact 

table can have multiple dimensions. The hierarchy levels are associated with the dimensions which are 

shared between the fact tables. Each table has attributes (fields) and extend to tuples (records) where tuples 

and attributes are linked with the values. All of the above defined schemas can be easily derived from the 

proposed Meta model. 

 

Figure 6.7 – Data warehouse Meta model for business intelligence [Darmont et al., 2007] 

6.4.3 Inmon and Kimbell DWH Philosophies 

William Inmon and Ralph Kimball are well known in the domain of information management for decision 

support and have played a pivotal role in changing the information management concept. Mr. William Inmon 

is known as the father of data warehousing and is credited for proposing the concept and term ‘Data 

Warehouse’ in 1991. Mr. Ralph Kimball is known as the father of business intelligence and is credited for 

the concept ‘Data Marts’, star schema and snowflake schema. These legends have contributed most to the 

domain of data warehousing and business intelligence tools. In order to better understand the contributions of 

these great people let us define the term business intelligence (BI) as BI = Inmon’s Corporate DWH + 

Kimball’s Data Marts + Data Mining. It can be said that both subjectively focus on developing means 

(DWH+DM) to efficiently exploit the huge data volumes to ultimately support the decision making process. 

 Inmon’s advocates that it is necessary to start building large enterprise wide data warehouse 

followed by multiple data marts to meet with the customized or specific needs of different business functions 

within the organization. In comparison to this philosophy, Kimball proposes that we must start by building 

data marts to serve data analysis requirements of respective organizational business functions followed by its 

virtual integration for enterprise wide data warehouse. These approaches by Inmon and Kimball can be stated 

as the ‘top down’ and ‘bottom up’ philosophies respectively; however, both are based on the dimensional 

modeling. 
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 The Kimball approach is more realistic and follows the natural sequence of enterprise information 

evolution where departments started modeling and managing their information needs as per business 

requirements and later the need to interlink these information sources resulted in the enterprise wide 

information systems. The Inmon’s approach is difficult to follow because of the fact that it is difficult to 

potentially forecast the information needs in advance; hence, even if historical data/information is stored we 

are not sure, if it shall ever be used? In comparison, Kimball’s method is more practical as it give rise to the 

evolution of the real information needs and once modeled as DWH and DM serve the basis for business 

intelligence. The only threat to this approach is that constantly changing business requirements and needs 

requires frequent modification in the data models which results in high level of complexity because of cross 

version queries. The Inmon’s model in longer run requires fewer changes and can come up as a robust and 

reliable source for analyses purposes. 

6.4.4 The DWH Challenges 

The interest in DWH and BI has risen in the last decade especially in the domains with continuously growing 

data volumes. The organizational success lies on our ability to efficiently analyse the data volumes and 

formulate business strategies. The DWH/DM architectures along with three schemas enable efficient data 

mining capabilities to generate information and knowledge from data sources. There is no doubt that in 

present information era, BI tools and DWH/DM architectures are playing a critical role in the knowledge 

capitalization but let us look at the challenges faced by BI/DWH projects: 

 The DWH project is thought to be a magic trick. It is expected to resolve all the varying information 

needs of the organization, which is not true. The DWH project has an average of 3 years of duration 

where business requirements changes significantly; hence, the success of the BI/DWH project 

depends on the clear identification of business objectives. 
 

 The changing business requirements must be addressed quickly. It requires frequent changes in the 

DWH data model and associated ETL routines. These changes can be addressed during the DWH 

project development resulting in higher costs and lead times. 
 

 These changes might emerge after the deployment of DWH project, if so then any change in the 

DWH model might result in severe consequences on existing historical data. The most common 

changes are the modifications of dimension tables which are addressed by (i) overwriting the old 

value, (ii) adding a new column or (iv) adding new row and version. The complexity arises 

afterwards when there are different versions of DWH data model and a cross version query arrives. 

The schema versioning and cross schema version queries have been very well treated in the literature 

[Johann et al., 2002 and Matteo et al., 2006]. 
 

 It is also highly important to analyse and assess the need for a DWH and BI. We have seen that 

industries are adopting these solutions without proper pre-assessments but the results are not justified 

against the project costs.  
 

 Inappropriate user interfaces to exploit (slice, dice and drill up/down) the OLAP cube data by the end 

users might lead to the failure of a DWH project. 

It is evident that the common failure arises when we fail to assess the need for BI/DWH project and the 

changing business requirements which lead to DWH model evolutions. These evolutions are well addressed 

with schema versioning and cross version OLAP queries for accurate results. The BI tools are supported with 

the outstanding ETL routines for the validation and transformation of input data prior to its storage into 

DWH. It is important to note that moderate level BI needs can be easily addressed using summary tables 

within the relational databases, however increasing volumes and unstructured data model evolution in the 

relational databases are the limiting factors which give rise to the interest in DWH projects. It is known that 

the relational databases are designed and developed for transactional processing (OLTP) optimization and 

they are subjectively focused on efficient insertion, deletion and modification of the records. These relational 
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databases are not built for the fast retrieval of summarized data from huge data collection; hence, even upon 

the implementation of summary tables, retrieval efficiency cannot be compared with DWH projects. The 

DWH projects are focused on fast data aggregation and analyses across multiple dimensions to fulfil the 

varying information needs. 

6.5 PROPOSED R&D DWH MODEL 

In this section, the SI scenario and its varying information needs is presented along with its growing data 

volumes. We shall further assess the need for DWH project and the possibility to add summary tables within 

existing relational databases against the growing information needs for the R&D engineers. The objective is 

to justify the choice with reasons to go for one of the above proposed solutions. 

The SI has grown to 300+ B$ industry in last 60 years with a cumulative +ve growth rate of 8.73%. 

This positive growth rate suggests that we must continuously invest in the R&D efforts even in the 

downtimes to prepare ourselves for the good times. The objective is early penetration in the market resulting 

in maximum market share which cannot be achieved without robust technology. In this thesis we are focused 

on technology derivative/improvement efforts because new technology is developed in the technology 

alliance to share exponentially increasing R&D costs and reduce the lead times. Upon the transfer of this new 

technology into alliance partners manufacturing facilities require quick alignment and adoption followed by 

subsequent technology derivative/improvement alignment and adoption with local R&D efforts. Today the 

local R&D efforts have turned into high cost activities; hence, the root causes for this ineffectiveness are 

identified as (i) unstructured data model evolution and (ii) missing links between databases which restrict 

R&D engineers from multi-source root cause analysis. These ineffective R&D efforts are key for DFM 

ineffectiveness, so we need to remove these limitations.  

 It is important to note that both contextual and process data collected across the production line is 

stored in more than 6 operational data stores (ODS) which are proprietary databases. The end users and R&D 

engineers are provided with single-source data extraction and analyses utilities to control the respective 

production process to ensure product quality. The root cause analysis requires multi-source data analysis 

which is not possible because of the missing links between databases. The data retention in these RDBS is 

more than one year and they store the production as well as engineering and R&D data. R&D engineers are 

not able to extract data from 6+ databases because (i) they do not have access to those databases and (ii) they 

are not familiar with the other domains data and the extraction tool. Beside the RDBS, there are also data 

warehouses but data analysis utilities provided to the end users are difficult to use and often crashes against 

complex queries. The granularities of the stored data are not accurately captured at site/die levels; hence, 

die/site or test structure position based data analysis is almost impossible with the existing data resources. 

 The biggest issues to be addressed are the (i) retention period and (ii) multi-source data extraction 

issues. The RDBS and DWH are implemented using Oracle, Ingress and SQL Server; however, existing 

DWH do not carry data from all dimensions. There are two possible solutions (i) design and deploy a 

separate R&D relational database for analysis purpose supported with summary tables for efficient query 

responses and (ii) design and develop R&D DWH for fast data retrieval. The first option is likely possible 

solution but in this case summary table will not help us because during correlation analyses, accurately 

mapped and aligned data is required instead of aggregated information. The relational databases are designed 

for efficient insert, delete and update operations; hence R&D relational data model shall not solve the issues. 

The DWH is primarily focused on fast data aggregations across dimensions and efficient query 

performances. The R&D DWH is suggested as the best solution where inherent architecture with facts and 

dimensions shall be used to exploit huge data volumes to extract, map and align multiple-sources data 

instead of aggregation. In this case, the DWH structure can be evolved and modified in order to take into 

account the new business needs. The selection of DWH architecture is not based on efficient aggregation but 

on the efficient exploitation of huge data volumes for multi-source data mapping and alignment. 
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 The proposed R&D data warehouse is presented as under in the Figure 6.8 a & b. The basic concepts 

of facts and dimensions tables and DWH architecture are used in the context of multi-source data extraction, 

mapping and alignment from huge data volumes. It is very important to note that at present, there are a 

number of excellent data analysis tools based on advanced data mining and artificial intelligence techniques 

but they cannot give results until they have multi-source input data in the correct format. The concept of 

multiple fact tables linked together like hierarchical dimensions has been proposed with an objective to 

accurately map and align different facts for further analyses. 

The presented schema is the logical representation of DWH model without cardinalities and 

associations because as per our best knowledge till now there do not exist a standard modelling language for 

the DWH/DM schemas. The above presented DWH model is partial representation of actual schema because 

of confidentiality issues with contextual facts and dimensions, however, the above model is sufficient to 

present and demonstrate the concept. In this representation, [S.D], [D], [C.F] and [M.F] notations are used 

for sub-dimension, dimension, contextual facts and measure facts respectively. The product dimension has 

product_type, mask_set, process and mask sub-dimensions. The process dimension summarizes the process 

information for the given product and can be used for further exploitation. The mask_set and mask sub-

dimensions provide critical information about wafers’ structural description with quantitative measures. The 

process_plan dimension is composed of brick, operation, EDC_plan (engineering data collection) and step 

sub-dimensions. It provides complete description of the total steps including process and measurement 

during production operations for each product. The measurement steps are linked with the EDC plan which 

further links it with the test_program dimension to list out parameters to be measured in this respect. The 

lot_wafer dimension provides the list of effected lots and names of the wafers included in the lot. The 

chamber-tracking and run are the additional contextual facts linked to the lot_wafer_steps central contextual 

fact. The lot_wafer_steps is the central contextual fact which provides the actual execution of each 

production process step in detail for slicing/dicing operations during root cause analysis and knowledge 

capitalization efforts. 

In this model we have included 4 measure fact tables as (i) PT_Measure, (ii) EWS_Measure, (iii) 

Inline_measure and (iv) Defectivity_Measure facts. Each measure fact is linked with the fact in the 

lot_wafer_steps fact table. The defectivity_measure fact is linked with the defectivity_program dimension 

and class_lookup and class programs sub-dimensions. The facts collected in this case are at the die levels and 

it can be seen that there are no traces of site level information at this level. The PT, EWS and Inline measure 

facts have the test_program dimension and test_bin_def, test_bin_relation, test_program_specs, 

test_structure_map and parameter sub-dimensions. The test_bin and test_program_specs provide list of 

parameters that can be tested against the given test_program along with specification limits. The 

test_structure-map sub-dimension is critical because it provides us access to the test structures and their 

location which are used during the measurement of the parameters. The additional contextual facts and 

dimensions which are helpful in establishing effective R&D efforts e.g. fault detection and classification 

(FDC) information is not presented in the above model being highly confidential. This and similar 

information can be added any time in the similar structure using our proposed Meta model for knowledge 

capitalization (Figure 6.8). 
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Figure 6.8(a) – Proposed R&D data warehouse for knowledge capitalization 

While designing the R&D DWH model, there were two options as (i) the measured fact data could 

be treated prior to its storage for coordinates mapping and alignment using our proposed MAM and SPM 

models or (ii) store data in original shape with supplement or missing information like notch position, 

measure reference frame and wafer structural information and treat the data upon its extraction. The second 

option was chosen because it is believed that the data should be kept in its original format and end users must 

be given an option to transform it on as required basis. The advantage is that data is in its original shape and 

it can be used for different transformations as per choice of the end users. The proposed R&D DWH model is 

implemented using relational databases (MS Access); however, the rise of data volume for R&D and 

engineering tasks dictates us to select a commercial RDMS like Oracle, SQL Server or TeraData. The end 

users can use the above model to start the analysis from individual measured facts (PT, Inline, EWS, and 

Defectivity) and subsequently move towards its correlation with other measured facts and contextual facts. It 

is not possible to accurately define the potential size of the database to justify the use of commercial database 

management systems, but for the R&D and engineering initiatives, the estimated size for one year R&D data 

is expected to rise above 1.5 TB (tera bytes). 
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Figure 6.8(b) – Proposed R&D data warehouse for knowledge capitalization 

 The above presented data model for R&D DWH is a simple logical presentation with notations as 

[S.D], [D], [C.F] and [M.F] and without the declaration of primary and foreign keys. It is done on purpose to 

highlight that to the best of our knowledge there do not exist a standard DWH modelling language like UML. 

The DWH data model is not normalized and to certain extent duplication of the data is allowed to improve 

data retrieval efficiency. If a DWH is implemented in RDBMS then indexing and views can be used to 

improve the data retrieval efficiency; however, the best way is to use OLAP tools provided by the respective 

vendors to slice/dice and drill up/down the OLAP cubes for knowledge capitalization. It is also important to 

note that no primary or foreign keys are added or highlighted because duplication is allowed. The fact tables 

include keys from dimensional tables (foreign keys). They are used as composite key in the fact tables; 

however, if required, a simple identifier can be added within the fact tables. The same rule is also applicable 

for the dimension tables. 

A Meta model could be extracted (Figure 6.9) for the knowledge capitalization from the above 

presented R&D DWH model to improve R&D effectiveness. In this schema, there are central fact tables that 

hold the contextual data whereas child fact tables associated with the respective central fact table are the 

quantitative measured facts. The central and child fact tables are connected in a star formation whereas the 

dimensions are shared across these fact tables and they are placed in hierarchal association resulting in the 

formation of flower schema. This schema has commonalities with star and constellation schemas as (i) star 

schema and (ii) shared hierarchal dimensions. The major differences in existing and proposed schemas are 

that in our proposed schema (i) contextual data is placed in central fact tables and (ii) quantitative measures 

or facts are stored in child tables in the star schema. The objective of the proposed flower schema is to enable 
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huge data volume exploitation for the purpose of mapping and alignment across multiple dimensions for 

effective root cause analyses (knowledge capitalization) but existing schemas are focused on efficient and 

fast aggregation of quantitative measures. 

 

Figure 6.9 – Meta model for knowledge capitalization 

In this proposed Meta model for knowledge capitalization a data warehouse is composed of multiple 

data marts which are further composed of multiple facts and dimensions tables. The fact tables are classified 

as contextual and measure fact tables. The contextual fact tables exist in the parent/child relationship and are 

supported with many measure fact tables. These tables are further supported with multiple dimensions. A 

table can have multiple attributes of the measure or context types. If we formulate a DWH from the above 

Meta model with generous extensions, we shall get the schema as presented below (Figure 6.10). We have 

used C.F, M.F, D and S.D notations for the contextual fact, measure fact, dimension and sub-dimension 

tables. The resulting logical structure of facts and dimensions is quite similar to flower; hence, we have 

proposed its name as flower schema that supports knowledge capitalization from huge data volumes across 

multiple dimensions. 

 

 

 

 

 

 

 

 

 

Figure 6.10 – Flower schema for knowledge capitalization 
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The above proposed R&D DWH architecture and respective Meta model demonstrates that multi-

dimensional modelling concepts can also be used for multi-source data mapping and alignment in addition to 

the aggregation over huge data volumes. It is biggest advantage is that it lies next to relational data models 

and provide us with an ability to extract multi-source data for an effective root cause analysis. We have full 

control over its structural evolution and it can be modified on as per need basis in terms of new dimensions 

and facts. The scope of proposed R&D DWH is not limited to R&D teams as it can be equally used by all 

engineering teams. Its final implementation using relational or dimensional databases is left on the discretion 

of end users; however, based on the fact that focus has been put on mapping and aligning data, its 

implementation in relational database shall be equally good at reduced cost and effort. 

Let us present two end user requests for the extraction of PT and EWS data based on (i) site and die 

levels and (ii) based on test structure positions. The end users are concerned with the lot QS93005 and wafer 

QS93005.5 for PT and EWS measurements carried out against metrology steps (i) 

CUMEAS_PARAMETRIC_T1-01 and (ii) TEST_PRO45V1_T1-01 respectively. The step (i) is performed 

at metal-2 and step (ii) is performed at the end of metal-7. The electrical tests performed at metal-2 are 

known as PT tests whereas these tests when performed at the end metal-7 are called EWS tests. Now the 

above presented DWH model (Figure 6.7) with the SQL queries will be used to extract the relevant data for 

further processing using MAM and SPM models. 

a) Site and Die Level PT and EWS Data extraction: 
 

Select Lot_Wafer_Steps.Lot_Wafer_Steps_ID, Lot_Wafer_Steps.Process_Plan_ID, Process_Plan.Step_ID, 

PT_Measure.* From Lot_Wafer_Steps (Inner Join Lot_Wafer ON (Lot_Wafer_Steps.Lot_Wafer_ID = 

Lot_Wafer.Lot_Wafer_ID ) Where Lot_Wafer.Lot_ID = 'QS93005' and Lot_Wafer.Wafer_ID = 'QS93005.5') Inner Join 

Process_Plan On (Lot_Wafer_Steps.Process_Plan_ID = Process_Plan.Process_Plan_ID) Inner Join Steps On 

(Steps.Step_ID = Process_Plan.Step_ID) Where Process_Plan.Step_ID IN ('CUMEAS_PARAMETRIC_T1-01', 

'TEST_PRO45V1_T1-01') Inner Join PT_Measure ON (Lot_Wafer_Steps.Lot_Wafer_Steps_ID = 

PT_Measure.Lot_Wafer_Steps_ID) 
  

 The above SQL multiple join query shall result all PT and EWS parameters IDs and values. 
  

b) Test Structure Position Based PT and EWS Data Extraction: 

Select Lot_Wafer_Steps.Lot_Wafer_Steps_ID, Lot_Wafer_Steps.Process_Plan_ID, Process_Plan.Step_ID, 

PT_Measure.*, Test_Program.Test_Program_Spec_ID, Test_Program_Specs.*, Test_Structure_Map.* From 

Lot_Wafer_Steps (Inner Join Lot_Wafer ON (Lot_Wafer_Steps.Lot_Wafer_ID = Lot_Wafer.Lot_Wafer_ID ) Where 

Lot_Wafer.Lot_ID = 'QS93005' and Lot_Wafer.Wafer_ID = 'QS93005.5') Inner Join Process_Plan On 

(Lot_Wafer_Steps.Process_Plan_ID = Process_Plan.Process_Plan_ID) Inner Join Steps On (Steps.Step_ID = 

Process_Plan.Step_ID) Where Process_Plan.Step_ID IN ('CUMEAS_PARAMETRIC_T1-01', 'TEST_PRO45V1_T1-01') 

Inner Join PT_Measure ON (Lot_Wafer_Steps.Lot_Wafer_Steps_ID = PT_Measure.Lot_Wafer_Steps_ID) Inner Join 

Test_Program On (PT_Measure.Test_Program_ID = Test_Program.Test_Program_ID) Inner Join On 

(Test_Program.Test_Program_Spec_ID = Test_Program_Specs.Test_Program_Spec_ID ) Inner Join 

Test_Structure_Map On (Test_Structure_Map.Test_Structure_ID = Test_Program_Specs.Test_Structure_ID) 
 

The above example returns the same PT and EWS data at die and site levels but along with the test 

structure positions. These test structure positions are further used in the SPM models to perform accurate 

mapping based on site and die levels generated through MAM model. The key is that this data model 

provides and generates all type of measured and contextual data needs. The data extracted is further 

processed using MAM and SPM models for the coordinate normalizations. The above presented SQL queries 

are not the only set of queries, stored procedures can also be built as per user needs which can be further 

supported with user define SQL functions for slicing, dicing and drill up/down operations. The size of one 

year’s data storage is estimated to be 1.5 TB which means that multiple join queries are likely to crash; 

hence, OLAP supported RDBS (Oracle, SQL Server) or purely dimensional DBMS as TeraData are needed 

for efficient and fast query results. To best serve the end users, it is suggested that based on this R&D DWH 
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model, customized data extraction utilities must be developed and provided to R&D engineers for the 

productivity and improvement. 

6.6 PROBLEM CONTEXT AND CURRENT CHALLENGES 
Let us discuss current challenges in the data extraction and analyses framework (Figure 6.11) where there are 

multiple engineering and R&D teams working for the technology derivative/improvement 

alignment/adoption and process control efforts and initiatives. The R&D efforts by these teams require data 

extraction and analysis for which there exist a large number of customized applications CA1, CA2 … CAn. 

The end users use these applications to access the data which is stored in 3-level storage architecture (i) 

ODS, (ii) RDBS and (iii) DWH and DM. The data extraction requests are classified as single-source or 

multi-source data analysis initiatives. At present, the single-source data extraction and subsequent analysis is 

likely possible and is being carried out but multi-source data extraction is not possible because of the missing 

database links, missing values, incompatible data formats and users’ inability to use multi-source data 

extraction utilities. The IT revolutions have resulted in huge data volumes and availability of new facts 

which must be constantly updated in existing data resources to improve the R&D effectiveness. This is not 

possible because of the fact that the operational data sources are of proprietary nature and its structure cannot 

be changed. It results in a situation where multi-source analysis is never possible and often results in the 

waste of time and resources when engineers try to align and map the data using excel sheets. 

 

Figure 6.11 – Current data extraction and analysis challenges 

The proposed R&D DWH solution to exploit huge data volumes for mapping and alignment is 

sufficient to provide means for effective root cause analyses; however, it does not provide solution for 

unstructured evolution of data models that have been established as critical factor for effective R&D efforts. 

6.7 PROPOSED ROMMII FRAMEWORK 

The proposed R&D DWH does not provide solution for the relational data model evolution because they are 

proprietary databases and changing the database structure shall result in crashing end-user applications. It is 

also not possible to redesign and developing the existing relational databases and applications; hence, we 

have proposed ROMMII (Relational/Referential Ontology Meta Model for Information Integration) 

framework to bridge the gap. This framework provides a high level Meta model to implement the ontology 

for information integration without changing the structure of existing data sources. It is implemented as a 

relational database instead of using ontology based languages. This is because of the fact that SQL query 

performance for the validation and optimization of the end-user requests is much higher if manipulated as a 
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relational model. The relational database is also easy to manage and control against the rapid and frequent 

modifications. 

 The proposed framework is called Meta Model because it precisely defines specifications of the 

relational model which is used to track the modifications and missing links between databases. It is referred 

as ontology because of the fact that it offers a shared collection of missing knowledge across the databases 

for subsequent use during query pre-processing and its reformulation for the query optimization. The word 

“information integration” represents the objective of the proposed framework besides different semantics and 

syntaxes through alias, feed forward and feed backward transformation functions. The objective is to 

optimally use the existing relational data resources supplemented with additional relational or DWH 

databases to provide end users with updated and correct information for knowledge capitalization. 

6.7.1 Use Case Diagram for ROMMII Platform 

The use case diagram for ROMMII platform is presented in the Figure 6.12. The proposed system is 

composed of 4 main use cases as (i) learn Meta model, (ii) modify Meta model, (iii) execute query and (iv) 

compute user statistics. The “learning Meta-model” is the first step in the proposed framework and is to be 

carried out by the IT administrator because this step requires the definition of feed forward and feed 

backward functions to establish potential and missing links between databases. The “modify data model” 

allows the IT administrators to evolve the data models on need basis which imperatively uses ‘learn Meta 

model’ and pre-failure assessment functions. The pre-failure assessment function can be initiated by the data 

administrators with an objective to identify the potentially effected applications, users and concerned 

application and IT administrators. In this use case diagram the roles of IT and data administrators have been 

differentiated. The data administrator is responsible for all the data, its structure, format and storage within 

organization whereas IT administrators are responsible for the efficient management of data sources.  

  

Figure 6.12 – Use case diagram for ROMMII platform 
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The end users execute the SQL queries in search of data/information but these queries must be 

validated against the evolved model for consistencies. The ‘synchronize data model’ function ensures that 

upon any modification the end user applications are properly updated by application administrators. The 

query optimization function extend its services to ‘validate query’ function where SQL query is reformulated 

for (i) retrieval efficiency, (ii) exclusion of deleted fields/tables and (iii) inclusion of new fields if they are 

not synchronized with end user applications. The ‘compute user statistics’ function computes and updates the 

user statistics based upon the data queries executed by end users through respective applications. It is 

important to note that based on ROMMII platform, customized end user data extraction applications are 

suggested. 

6.7.2 Meta Model for ROMMII Platform 

The Meta model for ROMMII platform is presented in Figure 6.13. In this Meta model ‘database’ is 

composed of tables and can have 1 or many database versions. Each new ‘database version’ (a) results from 

the sequence of structural ‘modifications’ (b) like, addition, deletion or modification of tables/fields. The 

‘tables’ are further composed of ‘fields’ which can be either ‘key’ or ‘non-key’ attributes. The fields have 

multiple ‘sample’ values which are used in identifying fields that can be potentially used to establish a 

‘relation’ between tables. These relations are classified as potential missing links between databases. The 

‘fields’ are associated with the domain and can have multiple ‘alias’ that could likely be a part of ‘potential 

links’ (c) between ‘tables’. The ‘relation’ between tables is associated with the ‘transformation rules’ (d) 

which are classified as feed forward or feed backward. The ‘user statistics’ (e) is based on historical patterns 

of the query execution by end users through applications. The potential risk is computed and stored in 

‘users_risk_summery’ based on type of queries executed by the end users and associated risk levels defined 

in ‘query_risk_levels’. The data model constructed from the Meta model below is not presented here due to 

confidentiality reasons. The data model corresponding to the Meta model for ROMMII platform is referred 

as the Metabase in this chapter. 

 

Figure 6.13 – Meta model for ROMMII platform 
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6.7.3 Activity and Sequence Diagrams against Use Cases 

In this section, the activity diagrams against uses cases are presented as (i) learn Meta model, (ii) 

synchronize Meta model, (iii) query validation and optimization, (iv) log file parsing and users statistics 

computations and (v) pre-failure assessments. The modify data model structure (model evolution) use cases 

are based on the pre-failure assessment and learn Meta model use cases; hence, they are included in the 

sequence diagrams but not in the activity diagrams.  

 

a) Learn Meta Model 
 

The objective of this use case is multifold; it learns the Meta model for selected database and allows 

subsequent inclusion of other databases. The new database addition or modification requires Meta 

model learning and synchronization sub-processes. The activity and sequence diagrams for the 

“learning Meta model” use, case are presented in Figures 6.14 and 6.15 respectively. 

 

Figure 6.14 – Learning Meta model for new database, table and/or fields 
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The learn Meta model activity starts with a choice for the database/data administrators and 

redirects itself  based on the choices made as the database, table or field. A list if attributes and paths for 

each selected database is prepared. We loop through each database and verify its duplication from 

existing Metabase. The databases with duplication are skipped and we proceed to the next database in 

list. If the database is not in the Metabase, then the database and its version info is generated and added 

to the Metabase. A list of tables in t heselected database is prepared and looped followed by the addition 

of its version info into Metabase. At this stage, a list of all fields from the Metabase is generated 

excluding the table being processed for the identification of potential missing links. We, then start by 

first adding information of each field in the table being processed, into Metabase along with alias, local 

and global similarity indices. If the similarity index computed on two fields is > 50%, then they are 

suspected to have potential link. The data/database administrators make decisions about the inclusion of 

this as a potential link, if accepted, the potential link info along with feed forward and/or feed backward 

transformation functions are developed and added by the database administrators.We continue until all 

fields, tables or databases are looped through and added into Metabase for query validation and 

optimizations efforts. The role of each participant in the ROMMII platform is explained in their relevant 

activity diagram. 
 

 

Figure 6.15 – Sequence diagram to learn Meta model use case 

The interactions between data/database administrators and the system objects are presented 

above in the Figure 6.15. The data/database administrators identify themselves with a UID (user 

identifier) and PWD (password) to get appropriate rights for the execution of “learn Meta model” use 
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case. The presented sequence diagram is compatible with the activity diagram and is self 

explanatory. It is important to note that potentially identified links between databases and/or tables 

are pointed by the system whereas their inclusion in the Metabase is always at the discretion of the 

administrators. All potential links are further supported with the identification of feed forward and/or 

feed backward transformation rules, which are programmed as internal database functions to 

improve query performance. 

i) Synchronize Meta Model 

The “synchronize Meta model” is an important use case that extends its services to modify the data 

models. It uses “pre-failure assessment” and “computes user statistics” use cases. The basic objective 

of this use case is to manage and resolve all the inconsistencies that exist between the end user 

applications used for data extraction and the Metabase. It happens when application administrators 

fail to comply with the notifications from ROMMII for the application modifications. This use case 

can be initiated by the application administrators to synchronize model modifications and ensure that 

no failures are associated with respective user applications. The activity and sequence diagrams are 

presented in the Figure 6.16 and 6.17 respectively. 

 In the Figure 6.16(a), database/data administrators are provided with an option to modify 

table or field. The table option further requires the selection of modification type as add, delete or 

modify the table. The modify table option is similar to the modify field option because in both cases 

users can add, delete or modify the fields. The modify field or table options are presented in Figure 

6.16(b). The table deletion is the most simple process where the table status is set to deleted in the 

Metabase along with start and end valid times. The table is not deleted physically from the Metabase 

which help us in SQL query optimization. This step requires similar deletion of corresponding alias, 

domains, samples, potential links, relations and transformation rules. The add table option is simple 

as it requires just new entries. It starts with the generation of table properties and its version info 

which are then added to the Metbase. The “all-field-table” is generated from the Metabase which is 

further used to find out potential links with the table fields being added into the Metabase. The table 

fields are added to the Metabase with alias, potential links, relations and transformation rules. These 

rules help us to remove data type and/or semantic inconsistencies.  

The modify table option requires to check if the table exists in Metabase otherwise the next 

table is selected. The modification in the table is classified as addition, deletion or modification of 

field type. The addition and modification of field type requires deletion of their current versions 

along with addition of new information and version. The new field is then checked against the 

existing fields for potential links and relations. All these changes are recorded in the Metabase which 

generates new database version. The actions performed are stored against each new database version 

which can be easily explored and reversed to generate the previous database versions.  
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Figure 6.16(a) – Modification and synchronization activity diagram 
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Figure 6.16(b) – Modification and synchronization activity diagram
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Figure 6.17 – Sequence diagram to modify and synchronize Meta model 

ii) Query Validation and Optimization 

This is one of the most important and key use case in the ROMMII platform where all the end users 

queries for data extraction are first validated followed by its optimization. It is important to note that user 

express their data needs through complex GUI (graphical user interfaces) where upon the user selections, a 

complex SQL query is generated at the back end. This query is required to be validated to ensure that it 

shall return valid results. If inconsistencies at this level are found then optimization algorithm reformulates 

SQL query to avoid the application crashes. It provides an opportunity to move towards application agility; 

however all the queries might not be optimized e.g. if the inner join or where clause criteria involves a 

table or field which have been deleted or modified. The activity and sequence diagrams for this use case 



 
171 

are presented in the Figures 6.18 and 6.19 respectively. In the proposed ROMMII platform, the focus is on 

data manipulation language (DML) which includes select, insert, update and delete SQL queries with 

‘inner joins’ and ‘where’ clauses; however, it can be equally upgraded to include data definition (DDL) 

and control (DCL) languages. 

 The primary objective of this use case is to validate and optimize query prior to execution. It can be 

seen in Figure 6.17 that we start by parsing the SQL query in three lists as (i) where_fields, (ii) 

inner_join_fields and (iii) select_fields lists. These lists hold the respective fields in the format of 

‘database.table.field’. The tables from where_fields and inner_join_fields are checked in the latest database 

and respective table versions. It is important to note that if ‘where’ and ‘inner join’ clauses have wrong or 

deleted fields the execution of the SQL query shall result in a failure. If any of these tables are missing then 

we do not proceed and inform the user about non executable SQL query; however, if all the tables are 

traced back in the Metabase then list of all the fields from the select_fields list is prepared. These fields are 

checked against the latest field versions in respective database; however if a field is missing it is traced 

back in the older versions. The fields not found in the older databases versions are removed from the SQL 

queries whereas traced fields are kept for “select” type SQL queries. The traced fields are removed for 

insert/update and delete queries. The SQL query is updated with the fields, which were newly added in the 

current version besides the fact that they were not selected in user defined queries. Finally the numbers of 

fields in the validated and optimized SQL query are computed. If the field count is < 1 then user is 

informed and query execution is aborted but for field count >=1, end users are provided with the requested 

data. The optimization in this process is defined as steps (i) remove missing fields, (ii) keep fields not 

found in current version but available in the older versions and (iii) add new fields in current version from 

the previous version. It is referred as optimization because it ensures that the SQL query is executed even if 

it includes previous version fields. It provides end users with additional fields which are recently added in 

new versions but not selected by the end user for reference. 

 The sequence diagram for the query validation and optimization is presented in Figure 6.18. It is 

initiated by the end-user where he selects the data as per his need and requirement through a GUI. Based 

on this selection, the SQL query is automatically generated with “where” and “inner join” clauses, which 

requires the validation and optimization before execution. This sequence diagram includes only two 

objects (i) tables and (ii) fields, and is quite efficient in its execution; however, database and database 

version objects can also be included if multiple database query is to be executed. In our case, it is assumed 

that the users are working with single flexible DWH database. The execution flow is almost similar as 

explained above. 

   The list of excluded fields from the SQL query are also reported back to the end user along with 

the inclusion of new fields in the current version to ensure that end users are familiar with new type of data 

for its potential use during analysis efforts. This activity diagram complements the “pre-failure assessment” 

use case as it provides means to compute potential failure in terms of RPN (risk priority number) using 

‘query risk levels’ object from the Metabase. The RPN is not used to prioritize the potential failures but for 

the relative comparison of gains achieved through ROMMII platform.
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Figure 6.18 – Query validation and optimization activity diagram 
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Figure 6.19 – Query validation and optimization sequence diagram
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iii) Log file Parsing and Users Statistics Computations 

The “log file” parsing and “user statistics computation” use cases generate knowledge that shall be 

used during pre-failure assessments. The log files are generated by database server on 24 hours basis 

using automated routine and accordingly user statistics are updated. These log files can be adjusted 

by database/data administrators on weekly basis e.g. if it is changed to weekly basis the log files are 

still generated on 24 hours being sequenced as 1 to 7 for the given week. The activity diagram for 

these use cases is presented in the Figures 6.20; however, sequence diagram does not seem to 

contribute or elaborate the working of proposed ROMMII platform so we have restricted ourselves 

to the activity diagram only. 

 

Figure 6.20 – Log File parsing and user statistics computation activity diagram 
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 In the above presented activity diagram (Figure 6.21), we start by importing log files. The 

distinct users and applications lists are computed by parsing log files one by one along with 

database, table and field level frequencies. From this step, we follow two parallel flows as (i) 

application level statistics and (ii) user level statistics. In application level statistics, we compute 

database, table and field level frequencies followed by the computation of current application 

probability (CAP). This step follows an average application probability (AAP) computation where 

simple average of the two computed statistics is taken. These steps are repeated for each application 

identified from the current log file being processed. The CAP and AAP are computed for user level 

statistics against all distinct users identified from the log file. These computations are repeated until 

all the log files are processed. 
 

iv) Pre-failure assessments 

The “pre-failure assessment” is another important use case in the ROMMII platform, where 

situations can be identified when end user requests for the data cannot be fulfilled. This use case 

supports the “modify data model” and “synchronize” use cases. The activity diagram is presented in 

Figures 6.21. The pre-failure assessment is quite similar to the query validation and optimization 

activity diagrams with the only difference that upon a non-executable SQL query the RPN is 

computed and reported to the users; however, in case if optimized query is executable then excluded 

field list and initial count of select_fields list is used to compute the probabilistic occurrence instead 

of fetching it from the Metabase. The risk is reported to the user and can be used in many possible 

ways. It is important to note that SQL query is not executed in this use case. The sequence diagram 

has been purposefully excluded as it is an extension of the sequence diagram in the Figure 6.19. The 

only difference is the addition of ‘query risk levels’ object for the computation of RPN (risk-priority-

number). The RPN number provides an idea about the potential pre-failure; however, the real value 

added is the optimized query and excluded list of fields. 

The implementation of proposed methodology is not trivial because the existing data sources might 

have been implemented in heterogeneous database management systems. The learning Meta model, log file 

parsing and query optimization and validation are the use cases which require in depth knowledge and 

understanding of the internal database architecture.  

Let us summarize the contributions made in this section. The ROMMII platform has been presented 

to address challenges of agility. The increasing heterogeneous data needs of the engineers require continuous 

evolution of data models which is not possible at present because any change in data model results in the 

failure of front-end user applications. One of the biggest reasons is the proprietary nature of the data sources 

and front-end applications, which restricts us from data model evolutions in accordance with the change in 

organizational data needs. We have seen the decreasing prices for storage and computation of data, which 

has made possible the exploitation of huge data volumes with data dimensions. To take full advantage of the 

present opportunities, the ROMMII platform is proposed that provides ontology based Meta model to 

manage structural evolutions. The proposed platform ensures backward compatibility of data extraction and 

analysis tools to meet with the multi-source data extraction needs of engineers. The proposed platform is 

tested using MS Access 2003, but implementation is not made public due to confidentially reasons. 
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Figure 6.21 – Pre-failure assessment activity diagram 

6.8 THE BIG PICTURE OF ROMMII PLATFORM 

The big picture for the ROMMII platform is presented below in Figure 6.22. It can be seen that ROMMII 

platform is responsible to manage the proposed R&D data model which is supported with the MAM and 

SPM models to ensure multi-source data extraction, mapping and alignment for analyses purposes. The 

proposed R&D data model is populated using existing data sources through data wrappers. The data 

wrappers are ETL routines used to populate DWH from existing data sources. The R&D data model 

addresses the issue of data retention period and provides one year storage across multiple data sources. The 

proposed ROMMII platform allows the restructuring of R&D DWH, because it is not proprietary and we 

simply need to adjust data wrappers against the structural changes in data models. The ROMMII can also 

include the additional data structures including existing operational, DWH and DM data sources. This 

architecture advocates that we must move towards customized user applications to address the specific needs 

of R&D engineers to improve productivity. 
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Figure 6.22 – The Big picture with ROMMII platform 

6.9 RESEARCH SCHEMATIC AND ADVANCEMENTS (ROMMII FRAMEWORK AND R&D DWH 

DATA MODEL) 

The research schematic and advancement are presented in the Figure 6.23. The ROMMII (SC3) platform and 

R&D data model (SC4) models are the key generic contributions made in this thesis which enable us to 

exploit huge data volumes and dimensions, and continuously evolve the existing data models for the 

inclusion of new dimensions. The significance of these contributions is that it performs pre-failure 

assessments on the existing single or multi-source data extraction and analyses utilities against potential 

structural changes in the data models. It ensures that all the appropriate measures are taken prior affecting the 

model evolution, resulting in the agility of existing utilities. In addition to this, it also ensures that all 

structural changes are well communicated to potentially interested users based on the user and application 

historical statistics. The ability to exploit huge data volumes and dimensions along with our proposed MAM 

and SPM models shall ensure timely value extraction and knowledge capitalization, which is a key to 

improve technology alignment and adoption lead times and costs.
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Figure 6.23 - The research schematic and advancement with ROMMII platform and R&D DWH model



 
179 

6.10 SUMMARY AND CONCLUSIONS 

The R&D engineers have always been complaining about the availability of insufficient data and dimensions 

to perform statistical analysis due to high storage and computational cost. The recent IT revolutions have 

resulted in decreasing storage and computational costs at higher performance. It has ensured the availability 

of huge data volumes and dimensions for R&D engineers, but they are still complaining that besides the 

availability, now they are not able to exploit these huge data volumes due to inconsistent data models and 

their unstructured evolutions. It is because of the fact that root cause analysis has shifted from the single-

source to multi-source analyses and if multiple data sources have ontology issues and missing common 

identifiers then it is not possible to extract, map and align the multi-source data for effective root cause 

analysis. The production databases have converged to data archiving due to increasing data volumes; hence, 

they have varying data retention periods. It results in a big issue for the R&D engineer, because they need at 

least one year’s data for the R&D analyses. The reason is that existing production data resources are equally 

being used for the R&D as well as production management and engineering purposes. Moreover they are of 

proprietary nature; hence, we do not have the right to alter or modify the data models. Any such effort 

directly results in the failure of associated data extraction and analysis tools. 

 The proposed ROMMII platform shifts unstructured data model evolutions towards structured 

evolutions and provides a pre-failure assessment upon any intended potential change in the data models. The 

impact of potential change is computed at the end users and application administrator levels and they are 

respectively intimated for potential changes in the applications to avoid failures and for information 

purposes. The application administrators comply with the potential changes and evolutions in the model and 

change the application to support extraction and analysis efforts to avoid potential failures. It also ensures 

that new data dimensions are always available for the engineers and moreover they are intimated upon any 

inclusion or exclusions of data dimensions. To avoid the data retention and proprietary issues, we have 

proposed R&D DWH data model, which motivates customized application development for engineering 

teams. 

 The proposed R&D DWH data model is a multi-dimensional data warehouse whereas the ROMMII 

model is implemented as a relational database. The ROMMII platform is modeled and presented using the 

UML and process flow diagrams. Its industrialization is highly specific to the type of database management 

system being used for the R&D data model and existing databases. It leads to a new research area as well 

that, how the agility provided by our proposed ROMMII and R&D data model can be extended, if R&D data 

model comprises of different databases for the efficiency and performance. 

 The potential industrialization of proposed generic solutions as (i) MAM, (ii) SPM and (iii) 

ROMMII model, is likely to result in increasing demand for metrology/inspection of engineering and R&D 

lots. It has direct impact on the existing metrology/inspection tools capacities, which are dedicated for the 

production lots. It is unlikely that we shall purchase new metrology equipments; hence, we need to spare the 

tool capacities if we want smooth integration of the proposed generic solutions. In next chapter, we present a 

yield aware sampling strategy, which spares the inspection capacities to be used for engineering and R&D 

purposes.
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Chapter 7: Yield Aware Sampling Strategy (YASS) for Tool Capacity 

Optimization16 

In the previous chapters, generic R&D solutions are proposed as the (i) MAM and SPM Models and (ii) ROMII 

Platform and R&D DWH model. The potential industrialization of these proposed models in an IDM-fablite 

business model shall result in additional requests for R&D lots metrology and inspection. It is highly likely that the 

measurement capacities run out because production lots have the priority to use these capacities to ensure product 

quality. In order to ensure that proposed solutions are industrialized, IDM-fablite business model must be provided 

with the methodology to generate additional measurement capacitates. The existing metrology/inspection strategies 

are being optimized using static, dynamic and smart sampling strategies based on the risk and associated delays. In 

this chapter we have proposed a yield aware sampling strategy, which is objectively focused on finding and 

inspecting the bad lots while moving the good lots to the next production steps. The equipment used in the SI are 

highly sophisticated and hold three different key levels of information as (i) alarms, (ii) states and (iii) meters data. 

This data provides key information about potential health of the equipment while it was processing production lot(s); 

hence, this data could easily be used to learn the predictive models for subsequent predictions. These reliable 

predictions in comparison with the static, dynamic and smart sampling strategies shall result in additional capacities 

to be used for R&D purposes. 
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7.1 INTRODUCTION 

The proposed solutions as (i) MAM model, (ii) SPM Model, (iii) ROMMII Platform and (iv) R&D data model 

exactly match with the needs of the R&D engineers. It provides an opportunity for our engineers to perform accurate 

root cause analysis taking into account the newly emerging spatial variations. To best capitalize this opportunity, 

additional dies/sites must be inspected in addition to the existing 9-17 sites metrology/inspection strategy. This 

additional metrology requires more inspection tools or the available capacities that primarily serve to control 

production lots in an e-IDM business model. As a result we have two options: (i) either purchase new 

metrology/inspection tools or (ii) optimize the inspection capacities. It must be noted that the inspection/metrology 

tools in an IDM primarily serve the production to control the product quality with 100% inspection at each step 

hence, inspection tools quickly run out of capacities resulting in the production cycle delays. These equipments are 

costly and add up fixed cost, which is not welcomed. To best utilize the available inspection capacities, we use 

sampling strategies (static, dynamic and smart), which are based on the risk, delays and capacities. Industrialization 

of such blind strategies is still a big question that might result in skipping bad lots to move to the next production 

steps, resulting in waste of resources and customer dissatisfaction.  

The industrialization and success of proposed generic R&D solutions depend on the additional inspection 

capacities; hence, in order to generate these inspection capacities we move one step ahead and propose a yield aware 

sampling strategy that predicts all production lots as good, bad or suspected lots. These predictions are made based 

on the likely yield loss with predictive state (PSM) and alarm (PAM) models. The steps involved in this strategy are: 

(i) classify potentially suspected lots, (ii) cluster and/or populate suspected lots in the priority queues and (iii) apply 

Last in First Out (LIFO) to optimize capacities. It provides sufficient spare metrology/inspection capacities that can 

be used for extended R&D purposes. 

7.2 METROLOGY/INSPECTION AND PRODUCTION TOOLS CAPACITIES ISSUES 

The SI has revolutionized our daily lives with electronic chips that can be found in almost all the equipments 

around us and follows the slogan smaller, faster and cheaper driven by Moore’s law [Moore, 1998]. It 

postulates that the number of transistors shall double in every 18 to 24 months at reduced cost and power. 

Since then the SI has kept its pace as per Moore’s law by continuously investing in R&D for the new 

technologies. New equipments are being manufactured to support and keep up with the emerging demands 

and the pace defined by the Moore’s law. The equipments are highly expensive; hence, decisions to purchase 

new production equipments are based on business strategy and estimated ROI (return on investment). The 

metrology/inspection tools carry fixed costs and often phase out or need changes to cope up with new 

technologies; hence, capacity optimization strategies are used to balance inspection load instead of 

purchasing new metrology/inspection tools.  

7.2.1 Why do we need 100% inspection? 

The IC chip manufacturing has become a complex but expensive production process resulting in process 

control challenges to find lots with yield issues before they consume the expensive production resources. An 

electronic chip undergoes approximately 200 operations, 1100+ steps and 8 weeks of processing prior to 

packaging and assembly.  To ensure the product quality, metrology /inspection steps are added within the 

manufacturing flow, almost after every manufacturing step. The design of an economical control for a 

production process has always been an interesting research area that was initiated by [Duncan, 1956] but it 

lacks robust results and requires a balance between controls and their costs. Hsu proposed a control plan with 

the concept of skipping by decreasing control frequency as compared to a 100% inspection plan that 

indirectly added risk of skipping bad lots to the next steps [Hsu, 1977]. Reynolds et al, (1988) presented, that 

sampling size and frequency as two levels of controls are the better solution to quickly identify the issues 

while minimizing the cost of errors [Reynolds et al., 1988]. Sanos introduced the concept of SPC in the 

semiconductor industry that served as the basis for an updated control plan [Spanos, 1991]. Many approaches 

have been proposed for an adaptive control: (i) sampling strategy based on the number of wafers passed on 

metrology tools [Raaij and Verhallen, 2005], (ii) updating control plan based on process excursions [Mouli 
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and Scott, 2007] and (iii) updating control plan based on risk encountered during productions. Coledani and 

Tolio have designed a buffer for control machines taking into account the quality and cycle time expectations 

and it is the latest contribution in research regarding control plans [Colledani, 2008] and [Colledani and 

Tolio, 2009]. 

7.2.2 Why additional capacities? 

It is known that inspection tools have limited capacities; hence, optimal capacity utilization in a high product 

mix is a key for success. There are some critical steps as well where the delay due to inspection capacity 

limitation might have a strong impact on the next production step, so these priority products must be 

inspected before other products in queue. Limited metrology/inspection tools capacities has a strong impact 

on the production cycle times; hence, an efficient sampling and control strategy is required to optimize the 

capacities and exploit economic benefits. In addition to this, there is also a strong need for the additional 

metrology/inspection capacities based on the shift from MFD to local DFM efforts in our proposed extended 

IDM (e-IDM) model. The objective is to capture newly emerging spatial variations and model the systematic 

variations and drifts into rules and/or models for subsequent use during CAD simulations to assess yield and 

manufacturability.  

7.2.3 What is wrong with the sampling strategies? 

The existing strategies are classified as static and dynamic where static sampling [Lee, 2002] selects the 

same numbers of lots but dynamic sampling [Raaij and Verhallen, 2005] selects the number of lots for 

inspection, based on the overall production. Smart sampling is a new approach that samples lots by taking 

into account the risk associated with production tools, inspection tools capacities and delays to dynamically 

minimize the wafers at risk [Dauzere-Peres et al., 2011and Sahnoun et al., 2011]. It is a better approach than 

the static and dynamic strategies. In this strategy, if a lot in the waiting queue is controlled and it passes the 

inspection step then all lots in the waiting queue, processed before this lot are removed with a confidence 

that they are good lots. However none of them provide an evidence for a likely yield loss against sampled 

lots resulting in skipping the suspected lots to move to the next process steps. We need a yield aware strategy 

to classify good, bad and suspected lots to reduce the inspection load significantly followed by an 

optimization strategy that exploits the production resources against limiting inspection tools capacities. 

A generic production process is presented in Figure 7.1 where lots are processed, controlled and/or 

skipped at the production and inspection tools to avoid bad lots moving to the next steps. The sampling and 

scheduling strategies in this production process are focused on priority queues and lots are sampled based on 

the risk levels associated with the product or process. These strategies are an effort to balance the difference 

between production and inspection tools capacities. These strategies can be viewed as a blind strategy with a 

high risk of skipping bad lots to the next steps. Our proposed YASS strategy empowers the control with PSM 

and PAM models to filter good and bad lots followed by capacity optimization. We argue that the focus 

should be shifted to find and control bad products rather than inspecting 100% product using blind inspection 

strategies that do not differentiate between bad/good products. 

 

Figure 7.1 - Generic production process with existing sampling strategies 
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It is evident that the inspection capacity allocation problem is linked with the process control plans in 

the semiconductor industry. If mistakes are committed like skipping the bad lots to the next production steps 

then the consequences are evident in terms of customer dissatisfaction and costs. It is due to the fact that 

existing approaches do not provide any evidence of the likely yield loss. The additional capacities can be 

spared from the production control if a reliable inspection strategy is adopted that avoids the inspection of 

good lots. The existing sampling strategies do not guarantee a likely yield loss; hence, to ensure smooth 

integration of the scientific contributions (SC1, SC2 and SC3) in the e-IDM model a 3-step yield aware 

sampling strategy is presented that provides us with the additional inspection capacities. In this strategy, the 

focus is on the identification of bad or suspected lots while moving good lots to the next production steps. It 

shall not only increase the optimal utilization of the inspection capacities, but also provide us additional 

capacities for the R&D purposes. Our proposed yield aware 3-step strategy uses the predictions made by the 

PSM and PAM models. Based on the predictive output combinations, lots are either added to the priority 

inspection queues or moved to the next production steps followed by the capacity optimization. 

7.3 PROPOSED 3-STEP YIELD AWARE SAMPLING STRATEGY (YASS) 

The proposed yield aware sampling strategy is based on the principle that good lots are skipped for the next 

production steps and bad lots are strictly controlled to avoid resource wastage and customer dissatisfaction. 

We start with the classification of production lots as good, bad or suspected and only bad or suspected lots 

are potentially inspected while permitting the good lots to move to the next production steps. The waiting 

queues are established and LIFO based optimization is applied on the lots, which are clustered based on the 

product type and process recipe within the queues. If a potential lot results in a bad lot, then all lots in the 

same cluster manufactured before the inspected lots are scraped.  

The proposed strategy is presented in Figure 7.2. In our scenario, the equipment is composed of 1...n 

modules in the parent child relationship. These modules are further classified as critical/non-critical and 

shared/non-shared elements. All the modules are characterized by meters, alarms and states, which are 

recorded in the databases during the production operations. The alarms are generated at the module level; 

however, based on these alarms the automation system changes the states of the child and parent modules. 

The changes in the states of the child modules serve as the basis for change in the state of parent modules. It 

represents the equipment health and such information can accurately predict a likely yield loss in production 

due to unpredictable equipment behavior. The meter data triggers the preventive maintenance operations; 

however, the module level meter data shall be included in the future to compute the weighted probabilities 

for the state and alarm level predictions. The alarms and states data represents the status of the production 

process and equipment health respectively; hence, they are used to learn predictive alarm [PAM] and state 

[PSM] models. 

Figure 7.2 - Methodology with predictive state (PSM) and alarm (PAM) models 

We have used only the states and alarms data; however, the module level meter data shall be 

included in the future to compute the weighted probabilities to refine the state and alarm level predictions. 

The first step in the inspection strategy is to classify the good, bad and/or suspected lots. In this step, we start 
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with the exploitation of the historical equipment states, alarms and SPC (statistical process control) data from 

the process, maintenance and alarms databases to build predictive state [PSM] and alarm [PAM] models. 

These models [PSM, PAM] are then used to classify the new production lots as good and/or bad lots and 

generate four possible outputs: (i) [good, good], (ii) [good, bad], (iii) [bad, good] and (iv) [bad, bad].  

The good production lots [good, good] are moved to the next production steps without metrology 

and bad lots [bad, bad] undergo the 100% inspection and their results are used to update the prediction 

[PAM] and [PSM] models. The suspected lots [good, bad] or [bad, good] are clustered (2nd step) based on 

the equipment, product and recipe. It is followed by a priority queue allocation algorithm (3rd step) that 

enters the suspected lot clusters into priority queues for further optimization based on LIFO (last in first out) 

principle. It states that if a suspected lot defies the prediction upon inspection then all the lots in the same 

cluster shall be subjected to 100% inspection otherwise, the cluster members are skipped. The predictive 

state and alarm models [PSM, PAM] are updated with the feedback against all coherent and incoherent 

predictions as good and/or bad examples. It provides us an intelligent way to reliably sample only bad or 

potentially suspected lots followed by priority queuing and optimization for the economic benefits. The step-

1, where predictive [PSM, PAM] models are learned, is implemented with a heuristic algorithm as presented 

in section 7.4. These models classify new production lots as good, bad or suspected lots. These PAM and 

PSM models correspond to the step-1 of the proposed methodology. The success of this approach depends on 

the accuracy of learning and classification algorithm for PSM and PAM models. We propose two heuristics, 

first for the PSM and PAM models and second to cluster the suspected lots and applying the queue 

optimization. A tuning parameter is also provided at the discretion of the user to control the PSM and PAM 

prediction confidence levels.  

7.3.1 Heuristic Algorithm for [PAM, PSM] Models [Step-1] 

The alarms and states data collected from the equipment is not trivial to use with the existing classification 

and pattern sequence learning algorithms; hence, a heuristic algorithm is proposed to predict the given wafer 

Wj as a good or bad. The time required for a production operation varies from 30 minutes to 4 hours and 

during operation a series of a set of equipment states and alarms are generated. It is evident that data 

collected is a matrix of sets of alarms and states. Our proposed algorithm is simple and is based on 

probabilistic likelihood with the previous inspections. We start with the presentation of the variables used in 

the algorithm as under (Table 7.1): 

Table 7.1 - Description of [PAM, PSM] models variables 

The T[Ei] is a tuning parameter and is defined by the user to tighten the prediction and it is used to 

optimize the inspection capacities utilization, if required. For example, if user sets its value to 50%, it means 

that computed likelihood shall be compared with this target prior to [good, bad] predictions. It is also 

important to note that the historical data shall be used to populate alarms and states matrixes for all 

equipments; however, a confusion matrix [C] shall consist of duplicated states and alarms sets found in both 

good and bad matrixes. 

 

Variable Description Variable Description 

 
G  good, B  Bad, C  

Confusion 
 

Ei  Equipment (i),  Wj 
 Wafer 

(j) 

 

Matrixes of [G, B, C] alarms or 

states data for all equipment E1.n 

and Wafers W1.n  
 

Global Support of alarms and 

states for equipment Ei and wafer 

Wj 

 
Local Support for each set of 

alarms and states in the Matrix for 

equipment Ei and wafer Wj 
 

Target defined by the user for 

each equipment  Ei to be used for 

model predictions 

 
Matrix for alarms and states, 

historical data for equipment  Ei  
Matrix of alarms or states 

sequence for equipment Ei and 

wafer Wj  
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Proposed algorithm for the prediction of [PSM, PAM] model is as under. We start with the 

predictive model learning by computing good, bad and confusion matrixes of alarms and states sequence sets 

for all equipments as shown in step-1. It shall be used during the computation of the local support. In Step-2, 

the local support for each set of alarms and states sequence for a given wafer Wj is computed by counting the 

similar set of alarms or states sequences in [G,B,C] matrixes. This count is divided by the respective count of 

sequences in [G,B,C] matrixes to get the local support values for each sequence of alarms and states in wafer 

Wj . Further global support for the wafer Wj is computed by multiplying the local supports computed for 

each set of alarms and states sequence against [G,B,C] matrixes with the sum of computed local supports. 

The results are summed at [G,B,C] level for the prediction by comparing it against the T[Ei] in step-4. If the 

global support is smaller than the T[Ei] then the benefit of the doubt is given to the prediction by adding the 

global support for [C]. Said algorithm for [PSM, PAM] models is presented as under: 
 

Step-1: Compute for state and alarms data for each equipment E
i
  

 

Step-2: Compute local support for each set of alarms/states sequences for a given wafer W
j
 and equipment E

i 

 

 

Step-3:  Compute global support for a given wafer W
j
 and equipment E

i 

 

Step-4:   Predict [PSM, PAM] output for the given wafer W
j
  

 

 

 

 

             

7.3.2 Example for [PAM, PSM] predictions 

To demonstrate the said algorithm, a simple example is presented with [G,B,C] matrixes for alarms. The 

tables 7.2 and 7.3 present an example of the alarms matrix for equipment Ei for good and bad yield 

respectively. The table 7.4 presents a confusion matrix that accumulates alarms found in both good and bad 

yield; hence, they cannot be directly used during the prediction of good or bad lots.  

Alarm Matrix for Equipment Ei [Good Yield] 
T_ID Module1 Module2 Module3 Module4 

1 107(0x6B)       

2 384(0xF04)       

3   384(0xA04)   988(0xA04) 

4   384(0xA04)     

5   384(0xC04)     

6         

7 384(0xF04) 384(0xD04)     

8       84(0xC09) 

9 384(0xF04) 384(0xD04)   38(0xF14) 

10 384(0xF04) 384(0xD04)   38(0xF14) 

Table 7.2 - Alarm matrix for equipment Ei [Good Yield] 
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Alarm Matrix for Equipment Ei [Bad Yield] 

T_ID Module1 Module2 Module3 Module4 
1 107(0x6B) 384(0xA04)     

2 384(0xF04)     84(0xC09) 

3   388(0xA04)   988(0xA04) 

4   374(0xA04)     

5 14(0xC09) 384(0xC04)   24(0xC09) 

6         

7 384(0xF04) 312(0xD04)     

8       84(0xC09) 

9 384(0xF04) 172(0xD04)   38(0xF14) 

10       34(0xF22) 
 

Table 7.3 - Alarm matrix for equipment Ei [Bad Yield] 

 

Alarm Matrix for Equipment Ei [Confusion] 
T_ID Module1 Module2 Module3 Module4 

1 107(0x6B)     988(0xA04) 

2   384(0xF04) 988(0xA04)   

3       988(0xA04) 

4 38(0xF04)       

5 
 

384(0xC04)     

6         

7 384(0xF04)     312(0xD04) 
 

Table 7.4 - Alarm matrix for equipment Ei [confusion] 

 

Alarm Matrix for Equipment Ei, Wafer Wj 

T_ID Module1 Module2 Module3 Module4 

1 384(0xF04) 172(0xD04)   38(0xF14) 

2   384(0xA04)   988(0xA04) 

3   384(0xC04)     

4 38(0xF04)     84(0xC09) 

5       34(0xF22) 

6   384(0xC04) 988(0xA04)   
 

Table 7.5 - Alarm matrix for equipment Ei, wafer Wj 

These tables are constructed to be further used by the PAM and PSM models during predictions, local and 

global support computations. The computed results against the potential lot Wj for prediction are detailed in 

Table 7.5 with 54% likelihood of the lot being a good lot (Table 7.6). The computation of global support for 

the PSM prediction is same as the PAM model. 

Local Support Global Support 
[G] [B] [C] [G] [B] [C] 

0.2 0 0 0.27     

0.1 0 0 0.13     

0.1 0 0 0.13     

0 0.1 0   0.13   

0 0.1 0   0.13   

0 0 0       

0 0 0.143     0.19 

Total = 0.743 0.54 0.27 0.19 
 

Table 7.6 -  Local and global support for wafer Wj [54%, Good] 

7.3.3 Clustering and priority queue allocation [Step-2 and Step-3] 

Based on the predictions from [PSM, PAM] models (section 3.1), we follow the 2nd and 3rd step in the 

proposed yield aware inspection strategy where suspected lots are clustered and added to the priority queues 

followed by LIFO optimization. It is presented with a simple flow chart (Fig.5). All production lots with 
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prediction combination [PSM’Good and PAM’Good] are simply skipped whereas other lots are populated in 

the priority queues P1, P2 and P3 where P1>P2>P3. Lots with the combination [PSM’Bad] and PAM’Bad] 

are first clustered based on the similarity of product, technology and recipe followed by the population of last 

lot from each cluster in P1. If an inspected lot from the P1 validates the model prediction then its respective 

cluster members are simply scrapped; otherwise, each member of the cluster is inspected and the predictive 

[PSM, PAM] models are updated. In case of differences in the model predictions, lots are declared as 

suspected and are populated in the priority queues P2 [PSM’Good and PAM’Bad] and P3 [PSM’Bad and 

PAM’Good]. The lots from P2 are sequentially inspected; if it defies the models then all lots processed 

before the inspected lot in P2 are given the benefit of the doubt and are skipped. If a lot inspected from the 

P3 defies the model then all the respective cluster members are inspected and predictive [PSM, PAM] 

models are updated for coherences and incoherencies. 

It is evident from the above discussion that the [PAM] predictions have higher priority than the 

[PSM] predictions based on the two facts, (i) child modules influence the statesof their parent modules, 

hence prediction model developed at the module level might have a dual impact and (ii) alarms count and 

duration result in the change of state of the modules. The states data is an aggregation of the alarms data at 

module level; hence, alarms data provide more low level detailed information with no influence on the 

alarms of parent modules. Based on these facts in this proposed methodology we have given higher priority 

to PAM prediction while performing information fusion of modules alarms and states data. The [PSM, PAM] 

prediction weights shall be defined in the future by including the meter data. The meter data is very critical 

because the values of the meters initiate the preventive maintenance actions on modules. We believe that it 

shall play a pivotal role in defining the prediction accuracies of the PAM model. The alarms and resulting 

prediction shall get more weight when meter data falls within the distribution of previous preventive 

maintenance actions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.3 - Flow chart for clustering and queue allocations 
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7.4 DATA MODEL TO SUPPORT [PAM, PSM] MODELS 

The biggest challenge in building and deploying these PAM and PSM predictive models is the multi-source 

data extraction, alignment and preprocessing from SPC, maintenance, process and alarms data sources. To 

facilitate this, a data model (Fig.6) is proposed with the ASCM (Alarm and State Control Management) tool 

that allows engineers a quick extraction and alignment of the data. In this data model, the equipment 

(equipment class) is composed of modules (module class) and every module has a state (state_history class) 

and alarms (module_alarms class) history. The usage meter data is also available (usagemeter class) but in 

this paper this data has not been used. The parent-child associations between modules are captured by the 

parent_child_relation class. A product (product class) is manufactured using multiple lots (lot class) but 

follows a single process plan (process_plan class). The process plan has multiple operations 

(process_operation) and each operation can have multiple steps (process_steps). The process step undergoes 

different step runs (step_run class) as the production or metrology runs. The production step runs are 

associated with the equipment that has the capability (equipment_capability class) to perform the process 

steps. This data model is translated into a relational database, which is implemented using SQL server to 

support the ASCM tool (IC5, Appendix F). 

 

 
 

Figure 7.4 - Data model to support [PAM, PSM] models  
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7.5 RESEARCH SCHEMATIC AND ADVANCEMENTS (YASS STRATEGY) 

The research schematic and advancement is presented in Figure 7.5. The YASS strategy is the key 

contribution made in this chapter with an objective to generate additional measurement capacities. The 

YASS is a 4-step methodology and it is supported by PSM and PAM predictive models. These models 

predict each and every production lot as good, bad or suspected and based on proposed clustering and queue 

optimization algorithms, we skip, inspect, scrap or partially control production lots. The skipped lots are the 

good ones and this strategy is based on the simple principle that we should find and inspect the bad lots 

whereas good lots must be pushed up to the next processing steps to reduce cycle times. In addition to cycle 

time gains we get additional inspection capacities that shall be used to support the industrialization of our 

proposed generic R&D models. The success of this strategy depends on the accuracy of PSM and PAM 

models. These models are learned in the due course of production. We have full inspection load in the start 

of the production because PSM and PAM models have minimum accuracy but as more and more production 

lots are processed, we get accurate PSM and PAM models, that result in additional inspection capacities. The 

granularity of the PSM and PAM models are still to be determined. At present we have hypothesized that 

PSM and PAM models shall be learned at production step level for each equipment; however, in future the 

similarity between production plans can also be used to cluster these PSM and PAM models. 
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Figure 7.5: The research schematic and advancement with YASS sampling strategy



 193 

7.6 SUMMARY AND CONCLUSIONS  

The YASS strategy has significant advantages over existing static, dynamic and smart sampling strategies as it 

identifies the production lots with likely yield loss; hence, good lots are skipped to next production steps resulting in 

additional tools capacities. This strategy also provides a confidence and is directly linked with the alarms and states 

data coming from the equipment. The alarms and states data describes a precise equipment condition and evolution; 

hence, it could be easily linked with its impact on the yield. The advantage is not limited to additional capacities but 

it also provides an optimized utilization of the inspection capacities. The T
[Ei]

 (tuning) parameter provides a 

control to the end users if they want to tighten the sampling or decrease the sampling rates in good periods. 

It has one disadvantage of granularity of the prediction models, which we believe has to be at the product 

and equipment levels. In the start these models are blank; however, they can be used for rough predictions based on 

the equipment and process similarities. The product plays a significant role; hence, these models need to be adopted 

for each new product. So in all cases to adopt these models we need to start with 100% inspection till the maturity of 

the models. The long term benefit for the capacities optimization can be utilized by the R&D engineers. To extend 

the proposed approach in future, we believe that equipment must be made capable with built-in modules to 

automatically learn and manage these models at the product level and as soon as a product finishes a process step, it 

is tagged for inspection or a skip. 
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Discussions and Conclusions 

The semiconductor industry is the most fragile, fastest growing and most competitive manufacturing domain. 

It is characterized by the cyclic demand patterns with a positive CAGR (+8.72) that guarantees cumulative 

demand growth. It motivates us to continuously invest in R&D efforts so that we are ready to respond to the 

growing market with new, fast and high value but low cost products. The SI, since its birth, has followed the 

industrial slogan << smaller, faster and cheaper >> driven by Moore’s law that postulates doubling transistor 

density every 18-24 months. This miniaturization trend has led the emergence of technical (design and 

manufacturing interface) challenges that often result in serious manufacturability and yield level issues. It 

has also resulted in the shift of business objectives from time-to-market and time-to-volume towards ramp-

up-rate, which can be achieved by introducing (i) new technologies every 2 to 3 years, (ii) technology 

derivative(s) and/or (iii) current technology improvements.  

The new technology is developed in an alliance to share R&D costs and model emerging design and 

manufacturing complexities, supported with innovation in design, material, process and equipment. The cost 

and lead times involved in a new technology are 5-7 B$ and 2-3 years respectively, as modeling design and 

manufacturing issues are highly complex and has turned into a high cost R&D activity. The competitiveness, 

however requires a quick technology alignment and/or adoption whether it is the new technology, technology 

derivatives or improvements. The manufacturing data collected across the production line is the key towards 

technology derivatives and improvement efforts success, besides new technologies. It requires dynamic and 

effective production data exploitation so that the new technology derivatives and improvements can be 

quickly aligned and adapted at reduced costs.  

The design for manufacturing (DFM) is a well-known approach in the manufacturing domain where 

manufacturing variations are transformed into rules and/or models for subsequent use during CAD 

simulations to assess potential manufacturability and yield prior to prototyping or production. It helps us in 

finding the first time correct design, which effectively reduces the lead times and avoids design respin costs. 

It was adopted by SI in 1980 as a yield enhancement strategy that worked very well till 250nm technology, 

but beyond this it has become ineffective. The ineffectiveness means that it is difficult to classify 

manufacturing drifts and variations as random or systematic patterns followed by their transformation into 

rules and/or models. There is nothing wrong with the DFM methods, rather, the issues lies with the quality of 

input data, which is fed to these methods. So, if we can improve the quality of the data, we can put DFM 

back on track to help us in reducing the lead times and costs associated with the technology derivatives and 

improvement initiatives for the competitive advantage. 

The above discussion highlights the need for literature review across three domains as (i) the SI 

business model evolutions and challenges, (ii) role of DFM methods in the success of SI and (iii) information 

integration needs to enable dynamic exploitation of the manufacturing data collected across the production 

line. We found transformation of traditional IDM business model into fabless and fablite models to capture 

maximum market share in the SI market demand with a positive CAGR. This transformation is truly in line 

with shifts in business objectives to address the growing market needs but recent shift towards the ramp-up-

rate needs its realignment. The miniaturization driven by Moore’s law has resulted in the emergence of new 

design/manufacturing interface complexities. The spatial variation on the wafer surface is a recent 

phenomenon, which is critical to the ineffectiveness of the DFM methods. The data collected across the 

production line is categorized as measurement data (PT, Inline, EWS and Defectivity, etc.) and contextual 

data (WIP, product/equipment life cycle, SPC, etc.). The existing DFM methods are based on the single 

source analyses, which are insufficient to capture the spatial variations; hence, the need to shift from single 

to multi-source data analyses to improve DFM effectiveness. It is to be further strengthened by moving from 

the site level analyses towards die and test structure position based analyses as well. The wafer orientation 

due to test structure positions and measurement reference frames often results in varying site/die level 

coordinates, which requires a generic solution because engineers spend huge amount of time in mapping and 

aligning site/die level data. It often results in bad alignment, which adds to the DFM ineffectiveness. The 
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DFM methods cannot be improved in the present emerging spatial variations until the shift from single to 

multi-source data analysis at site, die and test structure position based analyses. The methodology for data 

mapping and alignment cannot work alone until it is supported with the data. The recent revolutions in IT 

have enabled low cost storage and exploitation of huge data volumes. It provided the opportunity to 

continuously restructure the data models so that new data dimensions can be added to be further used during 

analyses. 

This thesis is objectively focused in putting DFM back on track. There has been a transformation of 

SI business models and shift in business objectives based on market dynamics; hence, the need to first 

analyze the existing business models against a recent shift towards ramp-up-rate. The objective is to propose 

an extension in the existing business models to support the new objective as well as a methodology to 

synchronize the business models with the future shifts in business objectives. The SCAN analysis is selected 

as the methodology to identify the top rank objectives followed by its alignment with SI business model 

based on extension or modification. The SCAN analysis highlighted the leadership position and quick ramp-

up-rate as the top ranked objectives. The SWOT analysis resulted in the adoption of strategies to mitigate 

weaknesses and exploit the opportunities. The best known IDM-fablite business model is bench marked to 

assess its potential success against the shift in business objectives and we identified (i) fast technology 

transfer, (ii) manufacturing databases and (iii) effective root cause analysis (R&D) as the key improvement 

areas for its compliance with recent shift in business objectives along with strategy to mitigate weaknesses. 

The analysis was further extended to technology development process, which highlighted the (i) data 

extraction, (ii) alignment and (iii) pre-processing due to ontology issues and (iv) missing database links as 

the key weaknesses for mitigation. These weaknesses are classified as the main reasons for DFM 

ineffectiveness based on the fact that due to these challenges R&D engineers are not able to exploit 

manufacturing data sources besides huge data volumes and dimensions. The proposed e-IDM fablite business 

model is an extension of existing IDM-fablite model where these weaknesses are removed and engineers can 

potentially exploit the production resources to perform multi-source site/die/position based root cause 

analyses. 

 Compliance with the proposed e-IDM business model necessitated finding root causes against 

respective identified weaknesses (failure modes) grouped as (i) ineffective root-cause analysis (infield and 

scribe line test structure positions) and (ii) data extraction, mapping and alignment. We have proposed and 

used i-FMEA approach to identify the cyclic root causes against these failure modes. The proposed 4-step 

methodology helps identify the cyclic root causes that result in failure and need generic R&D solutions 

instead of operational fixes as proposed by traditional FMEA approach. The root causes clearly demonstrate 

the inability of R&D engineers to exploit huge volumes of data and allow the inclusion of new data 

dimensions in existing data models. The proposed i-FMEA approach helps in tracing back the potential root 

causes in other business functions. The key cyclic root causes identified are the (i) data format issues, (ii) 

unstructured evolution of data models and (iii) missing database links and dimensions that need generic 

R&D fixes. The SCAN and i-FMEA methodologies are suggested to be used upon the detection of any 

change in the business environment to quickly align the business model and find weaknesses along with 

respective root causes for, which generic R&D solutions are critical. 

The effective root cause analysis is the key to improve the existing ineffectiveness in the DFM 

methods and can be defined as the ability to analyze the data to find answers against drifts and/or variations. 

These drifts and variations are further classified as systematic or random for their transformation into rules 

and/or models. At present, engineers are facing huge difficulties in data mapping and alignment to perform 

multi-source analyses. It is based on the fact that measurements result in varying coordinate systems due to 

test structure orientation on the wafer. The wafer is rotated prior to the metrology steps and its position is 

monitored using notch or flat positions. The varying coordinates issue is further complicated with the 

different metrology reference frames. These issues have a significant impact on stack definition, model 

correction and validation steps during the interconnect modeling process. 
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The proposed generic R&D solutions include MAM and SPM models, which take into account the 

information from the wafer, its mask and test structure positions, and normalize the site (PT and Inline) and 

die (EWS and Defectivity) level measurements. The MAM model provides fixes to sites and dies level 

measurements so that they can be used for the correlation purposes. The SPM model provides ability to 

correlate parameters based on the position of the respective test structures whereas proposed die/site 

qualification model enables R&D engineers to perform site/die level root cause analyses. The above generic 

models remove all inconsistencies with the measurement coordinates so that engineers could perform multi-

source root causes analysis. Recent IT technologies have enabled huge data volumes storage and 

exploitation. The engineers need multi-source data coming from multiple data sources for effective root 

cause analysis; hence, the biggest challenge faced at this level is to allow restructuring of data models. 

The SPM model is highly efficient; however, there is still room for improvement to obviate 

computing the positions w.r.t. each wafer for all the test structures. The structural position map can be 

computed and saved as a search pattern, which can be used for mapping and alignment of measurement data 

prior to data analyses. We can apply a similar search pattern based idea for the MAM model based on the 

fact that wafer position and measurement reference frame have discrete values, which can be used as a 

reference for mapping and alignment in an effort to reduce the computational costs and efforts. 

The R&D engineers have always been complaining about the availability of insufficient data 

volumes and dimensions to perform statistical analysis due to storage and computational cost issues. The 

recent IT revolutions have resulted in decreasing storage and computational costs at higher performance. It 

has enabled the availability of huge data volumes and dimensions to the R&D engineers, but they are still 

complaining that besides the availability, they are not able to exploit huge data volumes and dimensions due 

to unstructured data model evolutions and inconsistent data models. It is because of the fact that root cause 

analysis has shifted from single-source analysis to multi-source analysis. If multiple data sources have 

ontology issues and missing common identifiers then it is not possible to extract multi-source data for the 

root cause analysis. The production databases have converged to data archiving due to increasing data 

volumes; hence, they have different retention periods. It causes a big issue for the R&D engineer because 

they need at least one year’s data available all the time for the R&D purposes. The reason is that existing 

production data resources are equally being used for the R&D and moreover they are of proprietary nature; 

hence, the inability or right to alter or modify the model. Any such effort directly results in the failure of 

associated data extraction and analysis tools, which is not less than a disaster. 

The proposed ROMMII platform shifts unstructured model evolutions towards structured evolutions 

and provides a pre-failure assessment upon any intended potential change in the data model. The impact of 

potential change is computed at end users and application administrator levels and they are respectively 

intimated for potential changes in the applications to avoid failures and for information purposes. The 

application administrators comply with potential change, and evolution in the model is ensured to support the 

extraction and analysis utilities to avoid failures. It also ensures that all new data dimensions are available at 

all times for the R&D engineers and moreover, they are intimated of any inclusion or removal of data 

dimension from the R&D data sources. To avoid the data retention period and proprietary issues, we have 

proposed an R&D data model, which shall result in the customized application development for each R&D 

group. It shall be managed and controlled by ROMMII framework where we are able to manage the data 

dimensions. 

The R&D data model is a multi-dimensional data warehouse whereas the ROMMII model is 

implemented as a relational database. The ROMMII platform is modeled and presented using the UML and 

process flow diagram. A simple database with three tables is used to present the potential results; however, 

its industrialization is highly specific to the type of database management system being used for the R&D 

data model; hence, its industrialization requires the brainstorming sessions on the choice of DMS first. It 

leads to a new research area as well, that how the agility provided by proposed ROMMII platform can be 

extended if R&D data model comprises of different databases. 
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In this thesis we have demonstrated that the existing IDM-fablite business model does not support 

the recent shift in the business objective i.e. ramp-up-rate; hence, we have proposed the e-IDM fablite 

business model to fully comply with the new business objectives. The root causes against weaknesses found 

during the business model analysis are identified using our proposed i-FMEA methodology. The generic 

R&D solutions as the MAM, SPM, ROMMII and R&D DWH model are proposed instead of operational 

fixes. The industrialization of these solutions shall result in extended requests from the R&D engineers for 

additional measurements at site and/or die levels. It shall challenge the production and inspection capacities 

of an IDM. The proposed solutions can only be industrialized if they do not add additional fixed cost; hence, 

we have further analyzed the inspection capacities and existing strategies to assess if we could spare 

inspection capacities for R&D purposes. The existing static, dynamic and smart sampling strategies for the 

inspection are blind strategies and are based on the risk, delay and capacities. The proposed 3-step YASS 

strategy uses PAM and PSM prediction algorithms based on alarms and states data. The alarms and states 

patterns likely predict the potential bad or suspected lots and reduce inspection load. The additional 

capacities generated can be used for R&D purposes to support the smooth industrialization of proposed 

scientific contributions. 

It is highly important to note that in the present organizational structure the role of IT is limited to 

database management where control and administration of these resources are outsourced. The proprietary 

nature of database resources further complicates the issue with regards to data models restructuring to add 

new dimensions. The proposed ROMMII framework suggests the need for the role of data administrator to 

be created in parallel to IT. The administrator must be responsible for all data sources in the organization 

along with data dictionaries and any potential change must pass through this role to ensure consistency of 

concepts and new data dimension along with naming standards and description. The proposed solutions 

suggest the development of customized data extraction and analysis utilities for different teams in order to 

improve the productivity of R&D engineers. These customized applications must be updated upon the 

request of the end user for additional data analysis capabilities. These utilities must be able to use the data 

analysis algorithms developed and tested by the local R&D teams. The proposed solutions in this thesis are 

critical for the IDM-fablite business models to maintain their leadership position by capturing maximum 

market share, which can be achieved by putting DFM back on track. It requires enhancing the productivity of 

R&D engineers by enabling them to use and exploit the huge production data volumes for effective root 

cause analyses. 
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Appendix A: List of Publications 

We have published scientific contributions in the well known international conferences and 

journals. The count for these publications includes Journal (1), Conference (7) and others (2). In this 

section we present the list of the articles published/accepted/submitted along with the abstract for 

the readers’ interest. 

A.1  Journal Publications: 

1. Shahzad M.K., Siadat A., Tollenaere M. and Hubac S. (2012), Towards more effective DFM 

methods in Semiconductor Industry (SI), International Journal of Production Research, (submitted) 

TPRS-2012-IJPR-0638 
 

Abstract: The DFM methods are used during the technology alignment and adoption processes in 

the semiconductor industry (SI) for manufacturability and yield assessments. These methods have 

worked well till 250nm technology for the transformation of systematic variations into rules and/or 

models based on single-source analysis but afterwards they have become ineffective R&D efforts. 

The site/die level mismatches due to metrology reference frames and test structure orientations are 

the main causes for this ineffectiveness. It restricts us from modeling newly emerging spatial 

variation resulting from miniaturization that often results in increasing the yield losses and lead 

times. The purpose of this paper is to improve the DFM effectiveness; hence we present a generic 

coordinates mapping, alignment and qualification model to remove the site/die level mismatches. It 

provides us an accurate computation of the physical dimensions followed by correlation against the 

electrical and inspection data at site/die levels. This ability shall effectively transform the newly 

emerging spatial variations into DFM rules and/or models, based on the multi-source root cause 

analysis. The presented model is further integrated in BEOL (back-end-of-line) interconnect 

modeling and an extended BEOL (e-BEOL) process is proposed for the yield and lead time 

improvements based on effective DFM methods. 
 

Keywords: design for manufacturing (DFM); coordinates mapping and alignment; BEOL 

interconnect modeling and root cause analysis 

A.2  International Conference Publications: 

1. Shahzad M.K., Hubac S., Siadat A., Tollenaere M., An Extended Business Model to Ensure Time-

to-Quality in Semiconductor Manufacturing Industry, International Conference on Enterprise 

Information Systems, 2011, Portugal 
 

Abstract: Semiconductor manufacturing industry (SMI) has shifted from an IDM (integrated device 

manufacturer) to a fabless structure where technology is developed in an alliance to share high R&D 

costs and address time to market and time to volume challenges. In this fabless structure, electronic 

design automation has emerged as a key stake holder to model increasing design and manufacturing 

interface complexities and its integration within design flow, but collaboration within alliances have 

resulted information sharing and technology transfer as the key challenges. We argue that IDM 

model is superior to a fabless structure due to its inherent ability for faster/superior knowledge 

capitalization. We benchmarked and analyzed a world reputed IDM with use-case and SWOT 

(strength, weakness, opportunity, threat) analyses to identify the limiting factors that led this 

transformation and found data and statistics as the core issues. We have proposed an extended IDM 

business model where engineering information systems (EIS) are tuned for design for 

manufacturability (DFM) compliance to achieve time to quality (time to volume, time to market) and 

yield ramp up rate at low cost but effective R&D efforts. 
 

http://www.springerlink.com/content/q1p2128044052670/
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Keywords: SMI business model; time-to-market (T2M); time-to-volume (T2V); design for 

manufacturing (DFM); yield ramp-up rate 

2. Shahzad M.K., Tollenaere M., Hubac S., Siadat A., Extension des Méthodes DFM pour 

l’industrialisation de produits microélectroniques, 9e Congrès Internationale de Génie Industriel 

Montréal, 2011, Canada 
 

Abstract : Semiconductor manufacturing industry (SMI) is characterized by the fastest change in 

smallest period of time; hence to address time-to-market and time-to-volume challenges, DFM was 

included in design flow (1980) as a yield enhancement strategy. It has become an industrial standard 

to assess yield/manufacturability of the design. Test chip is used to validate the geometric stack 

against resulted specs and models are frozen and distributed to the CAD department for inclusion in 

design and DFM kits. This paper proposes a DFM methodology to include geometric measurements, 

which could impact significantly electrical test results making it difficult to adapt the target models. 

It requires site to site mapping on the wafer, which is not trivial because wafer center is different 

than the mask center and the test structures PCS/M (process control/monitoring structure) could be 

present in the horizontal or vertical scribe lines. A case study on the interconnect modeling is 

performed in a top ranked SMI and an extended methodology to rapidly align local interconnect 

models on target the source specs is proposed. BPR (business process reengineering) and IDEF0 are 

used for analysis and newly proposed methodology along with a data model, which is implemented 

in a tool for R&D engineers. 
 

Keywords: design for manufacturing (DFM), manufacturing for design (MFD), time to market, 

(T2M), time to volume (T2V) and time to quality (T2Q), engineering data analysis (EDA) 
 

3. Shahzad M.K., Hubac S., Siadat A., Tollenaere M., An Interdisciplinary FMEA methodology to 

find true DFM challenges, 12th European APCM Conference, Grenoble France, 2012 
 

Abstract: The FMEA (failure mode effect analysis) is a widely used and well known approach for 

the concept, design and process improvements; however it is limited by the expert’s knowledge and 

its scope. In this article we have used the FMEA approach to identify and remove root causes from 

the DFM (design for manufacturing) inefficiencies for faster technology improvements and 

derivatives, resulting in a quick ramp-up-rate. We propose a 4-step interdisciplinary FMEA (i-

FMEA) methodology to find root causes across the business functions based on the fact that 

performance of a function depends on inputs, which are outputs from other functions. A case study is 

conducted in a reputed IDM (integrated device manufacturer) and results are the causes that we have 

never considered as the limiting factors. 
 

Keywords: deisgn for manufacturing (DFM) challenges, effective root cause analysis, FMEA 

approach 
 

4. Shahzad M.K., Hubac S., Siadat A., Tollenaere M., MAM (mapping and alignment model) for 

inspection data in semiconductor industry, 12th European APCM Conference, Grenoble France, 

2012 
 

Abstract: Increasing model to hardware gaps has turned technology development process into a 

high cost R&D activity, hence a new technology is developed in an alliance which is transferred, 

aligned and adapted for every product. Our engineers are focused on reducing the technology 

adaption and alignment lead times based on an efficient and effective root cause analysis but they 

spend significant amount of time in data extraction, mapping and alignment because available 

inspection data vary in format and coordinate system depending on tool and vendor. Today we have 

a huge volume of data in multiple dimensions but database issues (Shahzad et. al, 2011) limit our 

capabilities leading to an opportunity loss. In this article we present MAM (mapping and alignment 

model) for inspection data to ensure site to site mapping between PT and Inline data, die to die 
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mapping and alignment between EWS and defectivity data and die to site qualification between 

PT/Inline and EWS/Defectivity data. It empowers our engineers to quickly find the root causes, 

classify them as systematic or random and transform them into rules and models for the faster ramp-

up-rate. 
 

Keywords: coordinates mapping and alignment, effective root cause analysis, knowledge 

capitalization 
 

5. Shahzad M.K., Hubac S., Siadat A., Tollenaere M., ROMMII (referential ontology meta model for 

information integration) Architecture for Dynamic Restructuring of DWH models, 12th European 

APCM Conference, Grenoble France, 2012 
 

Abstract: Semiconductor industry (SI) is facing difficulties in data/information integration while 

deploying DFM (design for manufacturing) methods for an efficient root cause analysis. Recent IT 

developments have resulted in the availability of huge volume of data across multiple dimensions, 

however we are still unable to fully exploit data for a knowledge discovery. The database 

technologies have addressed platform heterogeneity and efficiency BUT unstructured data model 

evolution, ontology issue, missing links and the risk of failure of a single source and/or multi source 

data analysis tool are the key limitations towards an efficient root cause analysis. In this article we 

present a software framework supported with ROMMII architecture to address these key challenges 

and ensure dynamic restructuring of the data model against varying needs to ensure the availability 

and access of every single data element without any risk of the tool failures. 
 

Keywords: data model evolution, software agility, multi-source root cause analysis 

 

6. Shahzad M.K., Hubac S., Siadat A., Tollenaere M., SPM (spatial positioning model) model to 

improve DFM methods, 12th European APCM Conference, Grenoble France, 2012 
 

Abstract: Scribe line and infield test structures are used to model the design and manufacturing 

interface complexities resulting from technology scaling, manufacturing and fundamental limitations 

(Duane et. al, 1997 and Duane and James, 1996). The biggest challenge in accurately capturing 

these model to hardware gaps is our inability to accurately map, align and position the inspection 

data (PT, Inline, EWS, Defectivity) collected at die and field levels. The test structures are assumed 

to be the true representative of the products and are physically located at different positions, hence 

mapping and alignment do not capture the spatial variations which could answer even the random 

drifts. In this article we focus the challenge faced by the engineers in implementing DFM with the 

spatial variation based on test structures positions and the shortest distance between test structures 

measuring inspection parameters. We propose the SPM model that computes the test structure 

positions across the wafer and our intelligent algorithm find the target test structure in closest 

vicinity for spatial correlations. SPM model shall directly impact the productivity of engineers and 

empower engineers for an effective multi source correlation. 

Keywords: spatial variation analysis, yield management, design for manufacturing (DFM) 

 

7. Shahzad M.K., Thomas C., Hubac S., Siadat A., Tollenaere M., A yield aware sampling strategy 

for inspection tools capacity optimization, International Conference on Artificial Intelligence, USA 

2012 
 

Abstract: The product quality in semiconductor manufacturing is ensured with 100% inspection at 

each process step; hence inspection tools quickly run out of capacities resulting in the production 

cycle delays. To best utilize the production and inspection capacities, existing sampling (static, 

dynamic and smart) strategies are based on the risk and delays. These strategies, however do not 

guarantee a reliable lot sample that represents a likely yield loss and there is a high risk of moving a 
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bad production lot to next production steps. We present a 3-step yield aware sampling strategy to 

optimize inspection capacities based on the likely yield loss with the predictive state (PSM) and 

alarm (PAM) models as: (i) classify potentially suspected lots, (ii) cluster and/or populate suspected 

lots in the priority queues and (iii) apply last in first out (LIFO) to optimize capacities. This strategy 

is implemented with two heuristics. We also present a data model with ASCM (Alarm and State 

Control Management) tool for the multisource data extraction, alignment and pre-processing to 

support the validation of [PSM, PAM] predictive models. 
 

Keywords: sampling strategy, tool capacity optimization, yield prediction 

A.3  Other Publications: 

1. Shahzad M.K. and Hadj-Hamou K., Supply chain configuration modeling under the influence of 

product family architecture, INCOM, 2009  
 

Abstract: Supply chain partners strive hard for operational business excellence, enhanced 

integrated value chain and sustainable competitive advantage under mass-customization/ 

globalization challenges. In this paper new notions, GBOP (generic bill-of-product: set of product 

family variants), GBOP/GSCS (generic supply chain structure) interface and GBOP architectural 

constraints have been introduced that shall empower supply chain the flexibility to rapidly 

reconfigure under business environmental dynamism and quickly respond to the varying customer 

needs with economies of scope. Further a mathematical model is proposed to investigate the 

influence of GBOP on supply chain configuration, relationship between GBOP and GSCS 

architectures, optimal redefinition of GBOP/GSCS and decisions related to opening or closing of 

market segments under cost minimization and profit maximization objectives. 
 

Keywords: supply chain management (SCM); integer linear programming; quantitative modeling 

of facility design 

 

2. Shahzad M.K. and Hadj-Hamou K., Integrated supply chain and product family architecture 

under highly customized demand, Journal of Intelligent Manufacturing DOI: 10.1007/s10845-012-

0630-0. 
 

Abstract : Mass customization efforts are challenged by an unpredictable growth or shrink in the 

market segments and shortened product life cycles which result in an opportunity loss and reduced 

profitability; hence we propose a concept of sustainable mass customization to address these 

challenges where an economically infeasible product for a market segment is replaced by an 

alternative superior product variant nearly at the cost of mass production. This concept provides 

sufficient time to restructure the product family architecture for the inclusion of a new innovative 

product variant while fulfilling the market segments with the customer delight and an extended 

profitability. To implement the concept of sustainable mass customization we have proposed the 

notions of generic-bill-Of-products (GBOP: list of product variants agreed for the market segments), 

its interface with generic-supply-chain-structure and strategic decisions about opening or closing of a 

market segment as an optimization MILP (mixed integer linear program) model including logistics 

and GBOP constraints. Model is tested with the varying market segments demands, sales prices and 

production costs against 1 to 40 market segments. Simulation results provide us an optimum GBOP, 

its respective segments and decisions on the opening or closing of the market segments to sustain 

mass customization efforts. 
 

Keywords : Supply chain configuration; Mass customization; Product family architecture;  

Generic-bill-of-products 
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Appendix B:  Semiconductor Design, Mask and Manufacturing Processes 

We briefly introduce the design, mask and manufacturing process flows followed by key challenges and associated 

manufacturability and yield limiting phenomenon. It is important because the DFM methods are focused on 

modeling and transforming these challenges into rules and/or models. The resulting solutions are also discussed to 

provide a better understanding about the design rules (DR), DFM rules and models which are used during the CAD 

simulations to pre-assess the manufacturability and yield. In order to provide more clarity and in depth understanding 

to the reader, we have taken an example of a simple CMOS inverter and simulated the design, mask and 

manufacturing steps. This example is presented in Appendix-C; however the readers with good understanding on 

these processes can continue to chapter-2, section 2.2.  

B.1 Electronic Circuits and its Elements 

An electronic circuit is all about regulating and controlling the flow of current (electrons). These electrons are the 

atomic particles around the nucleolus of an atom and carries negative charge; hence the flow of electrons refers to the 

flow of negative electrical charge (current). It is driven by difference in the positive and negative charge (a.k.a. 

potential measured in voltages [v]) between two locations and follows the positive to negative direction. The 

materials that allow this flow are referred as the conductors whereas the materials blocking the flow are called 

insulators. The resistance offered to the flow of electrons is called resistance and it defines the conductivity or 

resistivity of the materials. In comparison to this simplest definition, an integrated circuit (IC) is a collection of 

thousands of transistors fabricated and interconnected with one another in a semiconductor material whereas the 

purpose remains the same i.e. to regulate and control the flow of electrons. The semiconductor materials fall within 

the category of conductors and insulators and their properties can be altered between conductors and insulators. 

These materials are transformed into n-type and p-type semiconductors by doping (adding or removing) electrons 

from the semiconductor material respectively. Such materials when brought in contact with one another forms a 

difference in potential and starts conducting the electrical current.  

These electronic circuits can be classified as either analog or digital circuits. The analog circuits regulate and 

control the flow of electrons that varies continuously over a range of voltage, current and power values. The digital 

circuits in comparison to the analog circuits operate at two distinct voltage levels (high and low). The components 

used in the electronic circuits fall in the category of active and passive structures. The passive components conducts 

electrons regardless how they are connected e.g. resistors and capacitors whereas the active components control the 

direction of current flow and also act as an amplifying device e.g. diodes and transistors. The diodes are different 

than transistor in an aspect that they allow the current flow only in one direction where transistors can direct and 

regulate the current in both directions. A diode is formed when n-type and p-type semiconductor material are brought 

in contact, an initial flow of current due to potential difference results in depletion region that results in a barrier 

voltage (threshold voltage) which is required prior to the current flow. 

 At present there are three types of transistor technologies being used in the integrated circuit manufacturing 

[Quirk and Serda, 2000] as (i) bipolar junction transistor (BJT), (ii) field-effect transistors (FET) and (iii) a mix of 

BJT and FET a.k.a. BiCMOS (Figure B.1). The transistors in the BJT technology have two PN junctions that can be 

configured as NPN or PNP transistors a.k.a. current amplifying device. Here P refers to the semiconductor material 

region, which is in deficit of electrons and N defines the abundance of electrons. These regions are created using a 

doping process that adds or removes the electrons from a region. The FETs are the voltage amplifying devices and 

are more compact and power efficient than BJT devices. They are further classified as n-MOS and p-MOS where 

MOS (metal oxide semiconductor) refers to the thin oxide gate located above the depletion regions to control the 

flow of current. These MOSFET devices have converged into complementary metal oxide semiconductor (CMOS) 

technology that enables the use of both n-MOS and p-MOS devices in the same circuit and since 1980, it has been 

the most prominent technology to manufacture integrated circuits. The BiCMOS technology uses the best features of 

both BJT and CMOS. 
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Figure B.1 – Bipolar and FET transistors structure [Quirk and Serda, 2000] 

B.2 Reusability and modularity in electronics Design 

Like other manufacturing domains, the concept of modularity and reusability do exist in the electronics circuit 

designing with an objective to reduce the design time. It is for sure that all the electronic circuits are composed of 

thousands and thousands of active components (n-MOS and p-MOS transistors) and passive components (resistors, 

capacitors). The devices (n-MOS and p-MOS) are integrated to construct reusable circuits that further integrate to 

form gates, modules and systems (Figure B.2). When a designers starts a new designs based on the design 

specifications, he selects these predesigned, simulated and qualified circuits to design a new chip. It is important to 

note that designers use automated CAD tools for the circuit designing that enable a quick design. 

 
Figure B.2 – Reusability and modularity concept in electronics circuits 

B.3 Integrated Circuit Design Process 

The design flow is the sequence of steps in designing an IC (Integrated Circuit) chip where almost all steps 

are automated with the CAD tools [Sagar2001]. These flows are specific for each technology (0.18μm, 

0.13μm …) and vary with the design companies. The integrated circuit design process starts with design 

specifications provided from the customers and follows (i) conceptual design, (ii) physical design and (iii) 

validation phases. The design flow also vary depending on the type the integrated circuit (analog or digital), 

however we present a generic digital design flow that takes into account the major steps in the conceptual 

and physical design phases (Figure B.3). 

Based on the design specifications the design team starts with a general block diagram that contains 

the major functional blocks, this step do not require the usage of CAD tools [Sagar, 2001and Tiri, 2006 and 

Tomas, 1997]. During high level synthesis (HLS) step, the design team uses a hardware description language 

(HDL) to model and simulate the block diagram. This model is a high level abstraction of the functional 

description for each block to ensure the integrity of design idea. The commonly used programming 

languages at this step are C, vHDL etc. The structural description step goes in the detail of each functional 

block and circuit is drawn at the logic gates and standard cells level. This step is still the conceptual design 

phase; hence the details of these components are still conceptual (function based) and independent of the 

technology. These are modeled and simulated using “verilog” language to ensure intended design outputs. 

The transistor level synthesis (TLS) is the first step towards physical design where the electronics 
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components modeled using verilog in the previous step are replaced by the reusable components with 

physical description from a given technology. This information is used to take into account the effect of the 

technology against timing, delay and power estimations. The floor and power planning, and place and route 

(P&R) are the steps where the physical positioning of the electronic components are readjusted and 

optimized against the added constraints. The extraction of electrical parameters is based on the SPICE 

Models provided by the chosen technology. The SPICE models are the mathematical equations that use the 

physical geometries of the electrical components to compute the target indicators (timing, delay and power). 

The validation phase uses the variation models to compute the unwanted parameters (resistance and 

capacitance). The design rules check (DRC) and layout versus schematic (LVS) steps ensure the design 

manufacturability against the given technology. The design is finally tapped out in the GDSII format and is 

referred as the netlist , which is used during the mask preparation phase prior to manufacturing. 

 

Figure B.3 – Generic design flow for an integrated circuit 

It is important to note that these steps are supported by CAD tools from different companies e.g. 

Cadence, Mentor, Synopsys etc. These tools are plugged with SPICE Models, design, process and DFM kits. 

The netlist is simulated using SPICE models to characterize the integrated circuits against defined timing, 

power and delay indicators. The design goes through the DRC simulation and all violations are either 

exempted or removed by the designer by optimizing the circuit layout. The critical area (CAA) and Hotspot 

analyses are performed on the circuits’ netlist using DFM rules and models to find potential 

manufacturability and yield issues. These kits are developed and maintained for each technology but as we 

know that a new technology is developed in a technology alliance, hence these kits are defined and managed 

at the technology level.  

The new technologies are designed and developed in alliances using test products because it is not 

possible to test all potentially possible designs; hence these kits are developed based on the data analysis 

from these test products. We also know that the same customer specifications can be met with multiple 

designs so every new product designed and developed using a given technology might result in drifts, 

variations and model to hardware gaps. If we properly analyze these variations and transform them into rules 

and/or models then it shall result in our ability to continuously update the design and DFM kits. In the 

normal practice, the new technology from the alliance is transformed to the alliance partners’ business 

models where it is declared as frozen and changes are not authorized (section 1.3, Figure 1.10). The reason is 

that the general purpose and standard cell libraries are developed and qualified for each technology, if this 

improvement link is authorized then all these existing design libraries are again qualified and validated, 
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which is expensive and time consuming. It might result in significant delays. The designers are willing to 

accept any potential changes recommended through local DFM efforts if they are supported with the gains in 

parametric and functional yields. 

 More often the process integration teams come up with the changes in the design kits based on the 

analysis of the parametric data collected from production line. The proposed changes are not supported 

because they are not supported with the gains in parametric or functional yields. We need to provide our 

engineers the ability to support their proposed changes in the design and DFM kits along with respective 

yield improvements or degradation results. It shall extend our knowledge capitalization ability to support the 

technology alignment and adoption improvement efforts. 

B.4 Mask Preparation Prior to Manufacturing 

The masks a.k.a. reticles are high precision plates containing microscopic images of electronic circuits or 

optical devices (“geometries”).  They are made from very flat pieces of glass with a layer of chrome on one 

side.  They are used in wafer fabrication, mostly to build IC’s (integrated circuits) but also to make flat panel 

displays, microsystems and optical devices. These masks are used in photolithography process (Figure B.4) 

to project photo mask image on wafer and if image is projected several times side to side on wafer 

(stepping), then mask is called a reticle [Hwaiyu, 2005 and Quirk and Serda, 2000]. 

 

Figure B.4 - The mask layout and its use in photolithography 

The reticle manufacturing process is divided in the front-end and back-end flows as presented in 

Figure B.5. The front end flow is responsible for both scribe lines as well as device data preparation. In this 

step the GDSII is converted to MEBES (accepted by most litho equipment) format a.k.a. fracturing process. 

In this process the customer’s data is converted into “write tool language” using basic shapes rectangles and 

trapezoids and it is also known as OPC. The back-end flow follows the physical manufacturing of masks as 

well as their inspection and repairs as an iterative activity.  

 

Figure B.5 - mask fabrication flow 

When a tapeout is complete, GDSII is sent to two groups in Mask Data Prep. Group 1 prepares the 

mask data for the device itself while Group 2 prepares the Scribe Frame that surrounds the device (Figure 

B.6). During fabrication, the scribe frame holds the process manufacturing information and after fabrication 

the wafer is cut along scribe lines to cut these die from wafer. Mask layers are derived from the GDSII 

drawing layers via resizing and Boolean operations. Dummy metal fill is added to open areas not already 
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filled by chip assembly and RET is performed to improve litho printability and device is verified with Litho 

rule (LRC) and mask rule (MRC) checks [Luo, 2010]. 

 

Figure B.6 – Mask data preparation flow 

The manufacturing process steps in the mask preparation back-end flow are further detailed as under 

(Figure B.7). The steps 0 to 5 represent resist flow, used to etch the geometric shapes on the surface of photo 

mask followed by metrology, clean and inspection steps from 6 to 19. 

 

Figure B.7 - back-end mask manufacturing flow 

The most common defects for the masks are chrome (Cr) spots, extensions, bridging, pinholes, clear 

extensions and breaks etc. (Figure B.8) 
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Figure B.8 - mask manufacturing defects 

The mask data preparation is the last step where we can put our efforts to improve the design for 

manufacturability and yield issues. This step if not properly addressed shall result in worst yield issues. The 

no of masks to be used depends and are defined by the technology being used; hence the rules are applied on 

both integrated circuit designs (devices and interconnects) and scribe frames. As we know that the biggest 

challenge faced today is the sub wavelength manufacturing so a mask provides us a safeguard against those 

yields limiting factors by ensuring the devices against litho and mask rule checks. The SRAF features are 

special features, which are added to the hot spots to avoid the effects during lithography, etching or CMP 

operations. The reasons to apply OPC due to lithography issues are presented in the Figure B.9a. It is evident 

that due to sub wavelength lithography we are not able to exactly fabricate the shapes as described in design 

layout; hence OPC rules must be defined to ensure a clean design layout (Figure B.9b). The OPC based 

layout is presented in Figure B.9c where bleu shapes are after etch targets, grey shapes are after litho target 

and green correspond to actual mask layout [Chiang, 2010 and Orshansky, 2008 and Wong, 2008]. 

                
a) Lithography effects and OPC                  b)   OPC Rules for effective layouts 

 
c) Lithography effects and OPC 

Figure B.9 - mask manufacturing defects 

It is also evident that the emergence of new technologies has added to the complexities and resulted 

in increasing number of mask count. The increasing use of OPC methods highlights the complexity on rise 

with every new technology (Figure B.10). 
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Figure B.10 - Mask manufacturing defects 

B.5 Semiconductor manufacturing process 

The semiconductor material used in the manufacturing of ICs is the key; hence let us start by 

summarizing the semiconductor materials, which are being used and those that can be potentially used during 

the manufacturing. 

B.5.1 What is a Semiconductor? 

The semiconductor is a material that falls between the conductors and insulators and it can change its properties if 

electrons are added or removed using doping operation. It can be used for the manufacturing of active as well as 

passive components in the electronic circuits. The highly refined silicon is used for wafer fabrication and is 

termed as semiconductor or electronic grade silicon. The ultra-high purity of semiconductor-grade silicon is 

obtained from a multi-step process referred to as the Siemens process. The silicon makes up about 25% of 

the earth's crust by weight and it is the second most abundant element. The crystalline silicon was first prepared 

by Deville in 1854 and it has metallic luster and a grayish color. It is positioned in Group IV-A of the periodic 

table as shown in Figure B.11. The other elements in group IV-A are carbon (C), germanium (Ge), tin (Sn), 

and lead (Pb). The carbon is strictly nonmetallic, silicon is essentially metallic, germanium is a metalloid, 

and tin and lead are true metals [Quirk and Serda, 2000]. 

 
Figure B.11 – The silicon in the periodic table 

The group IV elements are elemental semiconductors whereas group V and III elements are n-type and p-type 

dopants used to change the properties of the silicon. The silicon is preferred over other metals due to its superiority in 

terms of melting point (1415ºC) and accurate oxidation properties. This oxidation layer is used as a dielectric for the 

transistor gate to control and regulate the flow of current within transistors. 

B.5.2 The MOSFET Transistors Structure and Operations? 

We have seen n and p type MOSFET transistor (Figure B.1), let us discuss their structure and how does they 

Operate? The structural and operational description of the npn and pnp transistors is presented in the figures B.12 and 

B.13 respectively. It consists of a substrate, source, drain and a gate. The current flows from the source towards drain 

based on the capacitor environment formed by the gate, substrate and their internal dielectric (gate oxide). When a 

charge is applied on the gate it either pulls or pushes the electrons in the substrate across the channel length. These 
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electrons if accumulated towards the gate cannot jump into gate because of the oxide shield, however depletion 

region is extended that ultimately allows the flow of electrons. 

The npn MOSFET is presented in Figure B.12 with its two operation modes. The npn transistor shall work 

as an electronic switch if we are able to establish a conductive path between the source and drain under the gate. A 

battery (3v) is connected to a small lamp with external wires. If there is no voltage applied on the gate then there is 

no flow of the current between source and drain resulting in the open gate situation and the bulb remains off, 

however a small voltage at the gate is all what is need to turn it on. The gate to source voltage (Vgs) is applied on the 

gate that creates an electrical field, which pulls electrons from the source, drain and substrate. These electrons get 

collected underneath the gate oxide a.k.a. the depletion region. This depletion region gets extended as Vgs is 

increased and when it reaches the threshold voltage (Vth) the depletion regions extends to the source and drain 

resulting in the flow of drain to source current (Ids). The flow of current from drain to source results in the completion 

if the circuit and the lamp is turned on. The depletion region in npn transistor is referred as n-channel resulting in 

drain to source current flow. 

 

Figure B.12 – npn MOSFET structure and current flow [Quirk and Serda, 2000] 

The structural and operational mode for the pnp MOSFET is presented in Figure B.13. The open gate 

situation prevails until no voltage is applied on the gate and there is no current flow between drain and source. When 

we apply a negative voltage on the gate then electrons are pushed back from the gate oxide resulting in the 

accumulation of holes underneath the oxide. As soon as the applied voltage reaches the threshold level, the depletion 

region gets extended towards drain and source resulting in flow of current from source to drain. This depletion region 

is also known as the p-channel and current flow is attributed to the flow of positive charges. 

 

Figure B.13 – pnp MOSFET structure and current flow [Quirk and Serda, 2000] 

B.5.3 An Overview of Semiconductor Manufacturing 

The high level semiconductor manufacturing process can be divided in 5 steps (i) wafer or substrate 

manufacturing and processing, (ii) fabrication of integrated circuits on the wafer, (iii) probing or testing, (iv) 

packaging and (v) final test. 

a) Wafer or Substrate manufacturing (Figure B.14): The wafers or substrates manufacturing 

starts from the crystal growth using Czochralski (CZ) process. It is grown in the cylindrical shape 

and then this cylinder is sliced into wafers. To smoothen the sliced surface and the edges we perform 



 211 

wafer lapping, etching and polishing operations. It follows cleaning of the surface, inspection and 

packaging of the wafers for shipment to the SI [Hwaiyu, 2005and Quirk and Serda, 2000 and 

Rakesh, 2008]. 

   

a) Generic wafer manufacturing process          b)   5-step wafer preparation 

Figure B.14 – Wafer manufacturing wafer processing 

b) Fabrication of the integrated circuit: The major tasks used in the manufacturing of a transistor 

are presented in the table B.1 [Michael, 2004].  
 

 

This is the first step in the IC manufacturing where an oxide layer 

is grown on the silicon wafer surface in horizontal or vertical 

furnaces at about 1100ºC using dry/wet operations. It is grown 

using chemical reaction between Si and Oxygen as SiO2. 

 

The photo resist coating follows surface treatment to drive off 

moisture, coating of small amount of photo resist (mm) and pre-

bake that stabilizes the film prior to pattern transfer step in 

lithography process. The +ive and –ive photo resists become 

soluble and insoluble upon exposure to light. We use spin, spray, 

dip or roller coating processes for this key step in patterning on the 

silicon wafer. 

 

 

The exposure step transfers the pattern from the mask to photo 

resists coating on wafer surface. The mask patterns are 5x or 4x 

larger than features being manufactured. These features are 

optically shrunk before reaching the surface of wafer. The mask 

and misalignment errors are the key challenges faced by the 

industry that often result in the physical defects (functional 

failures). 

 

The exposure results the photo resists material soluble or insoluble 

resulting in the features being transferred to the silicon wafer 

surface. 

 

This step dissolves the area exposed to light more quickly in +ive 

photo resist and dissolves the area not exposed to the light for the 

–ive photo resist material. The objective is to prepare the pattern 

to follow etch and Ion implantation steps. 

 

Initial etching operation used wet etch (isotropic) process which is 

based on the liquid chemicals. It etches material in all directions at 

the same rate, hence while etching down a film it etches 

underneath the edge of photo resist as well. This process worked 

very well when the line widths were large but shrinking of the 

features has resulted in serious defects. Now the industry has 

moved towards dry etching technique that uses ionized gases to 

perform etching which is faster and directional. It is also referred 

as an anisotropic etching. The ionized gases used during dry etch 

operations are tetrafluoromethane (CF4), pertluoropropane (C3F3) 

or fluoroform (CHF3). In this process we use high frequency 

energy to split up the gas molecules in a low pressure chamber 

that creates reactive products. 
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These gate oxidation and poly silicon depositions (thin films) are 

very critical operations a.k.a. thin films; hence it results in the 

formation of gate oxide that acts as a dielectric between gate and 

wafer substrate. It plays an important role in the formation of 

channel between source and drain regions. The poly silicon results 

in gate formation and is used to switch the transistor on and off. 

The most important challenge faced today is the uniformity while 

reducing the thickness of these thin films. 

 

 

This step is used to transfer the mask pattern for the gate with 

photolithography operation followed by etching. The poly silicon 

gate is a key element in whole operation of the MOSFET 

transistors. We have resolved the issues of isotropic etching, but 

under etch and over etch issues are still a big challenge for the 

R&D engineers. 

 

The ion implantation step is used to change the substrate so that 

they can act as n-type or p-type source and drain regions. It is 

alternative to diffusion. In diffusion, dopant atoms are moved from 

surface into silicon substrate by thermal means and in ion 

implantation they are forcefully moved into the surface with 

ionized beams. 

 

The active regions are those regions on the surface of silicon 

substrate where poly gates are formed along with sources and 

drains. The operations used for the active regions are called front-

end-of-line (FEOL) operations. 

 

By this time the transistor is ready and we move towards 

metallization process (inter connections) a.k.a. back-end-of-line 

(BEOL) operations. This film is deposited to save the interaction 

between two layers of operations (FEOL and BEOL). 

 

This step is the start of the BEOL operations and first step 

involves creating contacts to the source, drain and the gate so that 

potential can be applied at the transistor level to turn it act like a 

switch. Here again we follow the photo lithography and etch 

operations. It is known as Metal1. 

 

These steps involve repeating the photo and etch operations to 

construct vias and metal lines starting from the contact (BEOL). 

The number of metal lines may vary depending on technology, 

however reduction in the geometric specifications are serious 

challenges against potential defects. 

Table B.1 – Steps in transistor manufacturing process 

Let us analyze the production flow in the semiconductor manufacturing plant where the 

production line is divided in different bays and these bays might contain production equipments from 

different manufacturers. It takes about 1100+ operations and 8 weeks of processing. The flow and 

movement of the wafers within these production bays are presented in the Figure B.15. 
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Figure B.15 – Steps in transistor manufacturing process [Michael, 2004] 

It acts as a second line of defense against manufacturability and yield issues and we use 

manufacturing for design (MFD) efforts to put yield drifts and excursions back on track. It can be 

noted that every production bay is supported with the inspection/metrology equipments, so the 

products leaving the production are inspected for defects or drifts. There are two major type of tests 

performed at this level (i) defectivity (inspections) and (ii) metrology (geometric measurements). 

These measurements are performed on the process control monitors (PCM) and the data is available 

at the site level, however the defectivity is performed on sampled locations throughout the wafer and 

is available at die levels. These measurements are tagged with x,y coordinates for the die or site with 

reference to the wafer notch position. The analysis against drifts and excursions at wafer level is 

possible, but due to emerging spatial variation components engineers need die and site level analysis. 

Such type of multi-source root cause analysis is not possible at the moment due to varying 

coordinate systems. It has significantly contributed to DFM ineffectiveness and is based on the fact 

that root cause analysis provides reasons for drifts and systematic occurrences are further 

transformed into rules and/or models. 

a) Probing and Testing: In this phase, wafer is tested and electrical measurements are made at wafer 

level for the specifications compliance. There are 5 types of electrical tests performed (i) IC design 

verification, (ii) in-line parametric test, (iii) electrical wafer sort, (iv) reliability tests and (v) final 

tests [Hwaiyu2005, Quirk and Serda, 2000]. 

The parametric tests are performed early in the manufacturing phase at metal1 right after the 

composition of the transistors. They are performed on the test structures (a.k.a. PCM: process control 

monitors) located within circuit and scribe lines. They measure different parameters (e.g. leakage 

current, critical dimensions, threshold voltage, resistance, etc.) to identify process problems, 

establish wafer pass/fail criteria, collect data, assess special tests and obtain wafer level reliability 

data. These tests are performed using probe card that interfaces with test structures (Figure B.16) and 

the test equipments a.k.a. automated test equipments (ATE). The coordinates for each measurement 

are stored and depends on the orientation of the wafer prior to its measurements. These 

measurements on individual basis are used to perform wafer level variations analysis but 

computation of new parameters from the measurements and multivariate analysis is not possible. The 

R&D engineers first align the data having different measurement coordinates so that analysis can be 

performed at the site and die levels instead of wafer level. 
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Figure B.16 – Probe interface card and electrical tests 

The objectives of EWS test are the chip functionality and sorting good and bad dies, so 

evidently this test is performed at die level. The test results are categorized by assigning different bin 

numbers to the wafers. It includes continuity test, output checks and functional tests. The only issue 

with this type of test is the time required, hence fault models are used to sort the dies and optimize 

the time. Few reasons for the bad products has been identified as the larger wafer diameters, 

increased die size, increase in number of process steps, shrinking features, process maturity and 

crystal defects. It is really interesting to note that R&D engineers are specially struggling in 

performing reverse engineering to trace back the root cause for bad product yield and variation in the 

drifts. 

b) Assembly and Packaging: In this phase, the good dies are separated from the wafer, assembled 

and are packaged. The assembly involves backgrind, die separation, die attach and wire bonding. 

The backgrind reduces the wafer thickness and die separation cuts each die from the wafer and it is 

followed by physical attachment on the substrate. Wirebonding finally attaches wires from die 

bonding pads to the lead frame of the substrate for the external connections [Quirk and Serda, 2000 

and Scotten, 2012]. 

The traditional packaging consists of plastic or ceramic packaging. The ceramic packaging is 

used for the state of the art ICs that require a maximum reliability or high power. The two main types 

of ceramic packaging are either a refractory (high temperature) ceramic or ceramic DIP (CERDIP) 

technology. The main objective is to protect the dies from environment, interconnections, physical 

support and heat dissipation. The new packaging designs are being introduced to provide more 

reliable, faster and higher-density circuits at lower cost. The most common technology is the ball 

grid array (BGA). It uses ceramic/plastic substrate with an array of solder balls to connect substrate 

to the circuit (Figure B.17). 

 

Figure B.17 – Probe interface card and electrical tests (Scotten, 2012) 

c) Final Test: It is likely that during packaging the die may have been damaged and its failure due 

to packaging issues is more than 1%. The final test is 100% on all assembled and packaged chips 

to insure that any IC improperly packaged is not shipped. 
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B.6 Key Manufacturing Processes and Challenges 

Before we move to the role of DFM in the semiconductor industry, let us rapidly summarize the key 

manufacturing processes (i) oxidation, (ii) photolithography, (iii) etch, (iv) ion implantation, (v) chemical 

vapor deposition (CVD) for thins layer and (vi) polishing a.k.a. CMP. 

i) Oxidation: It is a batch process where multiple wafer (200+) are processed together and SiO2 is 

grown on the silicon wafer surface between 900ºC and 1200ºC in the oxidation furnace.  The wafers 

are heated in the furnaces containing oxidant (process gas), usually O2, steam or N2O that result in 

the formation of thin deposition of oxide. The schematic of the oxidation furnace is presented in 

Figure B.18 [Hwaiyu, 2005 and Michael, 2000]. 

 

Figure B.18 – Structural description of the oxidation furnace 

ii) Photo Lithography: It is one of the mostly used steps in the manufacturing process. The structural 

schematic description of litho stepper equipment is presented in Figure B.19. The wafers in this 

process undergo the resist coat followed by the soft or hard bake steps depending on resist type being 

used. The transfer sections are responsible for the transfer of wafers to/from alignment exposure 

sections and resist coat and development sections. These wafers are loaded back to the wafer cassette 

(Lot) which is a box that carries 25 wafers at a time [Hwaiyu, 2005]. 

 

Figure B.19 – Structural description of the lithography equipment 
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 This operation is very critical to insure the manufacturability and yield issues due to mask 

misalignment errors. The most common errors associated with this process are grouped into focus 

exposure misalignment (Table B.2) and illumination (Table B.3) errors. 

 

Defocus: The defocus conditions denote simulation conditions where 

the light from the stepper’s projection system are not at the nominal 

focal point. There are three types of defocus conditions (i) negative 

focus where the focal point is above the plane of best focus for the resist 

development, (ii) nominal focus where the focal point is directly on the 

plane of best focus and have best contrast between illuminated and non-

illuminated resists and (iii) positive defocus where the focal point is 

below the plane of best focus. The circuit features with significant 

height, such as poly gates of transistors or interconnect structures cannot 

have all the features at Nominal Focus. The positive or negative defocus 

errors often result in the resist material left undeveloped or resulting in 

damaging the surface below the resist material. 

 

Focus Exposure Matrix (FEM): The nominal condition FoEo for 

FEM is at location (0,0) and different FE conditions are denoted by their 

row and column position. The number of FE conditions in the FE matrix 

is variable with 5, 9 and 15 conditions specified in the FE matrix as the 

most common qualification set. The qualified process windows for each 

technology is defined and used as a reference to trace back the 

deviations. 

 

Mask Misalignment Error (Overlay Error): During fabrication 

there is an error distribution for Mask Misalignment a.k.a. Overlay 

Error between the two consecutive masks that must be overlaid to 

produce a circuit feature. The overlay errors are called H (X) Shift and 

V (Y) Shift which denote the relative mask misalignments to each other. 

This misalignment is critical that often result in coverage issues in 

contact and vias formation. 

Table B.2 – important focus exposure misalignment factors [DFM Dictionary, 2004] 

 Sub wavelength: Shortly after the turn of the century, a stepper using 

248nm illumination wavelength (λ) was able to produce 130nm features 

on the silicon wafer and193nm λ illumination produced 90nm features. 

Aggressive RET enabled feature sizes less than half of the wavelength 

of the illumination, but as silicon features continued to shrink, the sub-

wavelength challenge resulted in added complexity. The 193nm node 

has become the end of the road for optical wavelength reduction. The 

efforts to build 157nm λ stepper system were abandoned due to the 

technical problems and the steppers shifted towards immersion 

technology and water instead of air, at the interface between the lens 

and wafer. 
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Mask Error Enhancement Factor (MEEF): It is because of the 

fact that wavelength of light used to expose resist is larger than the 

feature size; hence edge placement errors (EPE) are amplified. So, 

during OPC modeling, an edge movement on a mask feature can result 

in a larger edge movement on the silicon image. The change in the edge 

placement on the mask is reduced by the reduction ratio (R) of the 

projection system and amplified by MEEF so that a 2 nm edge shift on 

the mask, even reduced by 4X can result in a 1 nm shift on the wafer.  

 

 

 

Reduction Factor: Projection stepper systems typically reduce the 

image on the mask (reticle) by 4X or 5X before exposing the resist on 

the wafer. The image reduction by the lens in the projection system 

allows the patterns on a mask to be 4X to 5X larger than the images 

realized on the wafer. The Numerical Aperture of the Project System is 

NAO = NALENS (1 + 1/R) where R > 1.  

 

 

 

 

 

 

 

 

 

Numerical Aperture (NA): It is a measure of total light projection 

power of the stepper lens system. It is equal to the maximum half-angle 

of light that can make it through the projection lens system multiplied 

by the real index of refraction (n) of the medium at the lens and resist 

interface. The half-angle Θ is half of the angle from the focal point to on 

the wafer to the edge of the stepper lens. It is computed as N.A = 

n.sinΘ. A moderate half-angle of 450 produces a NA = 0.70 (= 1.0 · sine 

45) with an air interface. An aggressive Θ of 72O produces a NA = 0.95 

(= 1.0 · sine 72) for an air interface and NA = 1.36 (= 1.4 · sine 72) for a 

water interface. 

Table B.3 – Important illumination factors [DFM Dictionary, 2004] 

iii) Etch: It is the process step which is repeated with photolithography and is critical in controlling 

geometries of the features. The plasma etching is the most commonly used technique as it provides a 

combination of chemical and physical etching. The physical component provides good anisotropy 

with little undercutting and chemical component provides good selectivity. The low plasma density 

operates at a relatively high chamber pressure between 1 and 100 Pascal (CCP). In contrast, the high 

density plasma provided by ICP has an upper pressure limit of 1 Pascal to keep the etch rates across 

the wafer consistent (Figure B.20).  

 

a) Etch equipment and process 

 

 

Heater 1 

Heater 2 
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b) Plasma as Etch gas 

Figure B.20 – Structural description of the Etch process 

 This step in combination with lithography is responsible for most of the errors and defects 

during manufacturing, however the most common defect related phenomenon [Hwaiyu, 2005 and 

Orshansky, 2008 and Wong, 2008) are presented as under (Table B.4): 

 

Etch Macro-Loading: Macroscopic loading occurs when 

the etch rate varies across large distances (1 – 1000 mm) such 

as the wafer position in the reactor or with the die position on 

the wafer. When more wafers are in the reactor or more total 

area is exposed by the mask pattern the etchant species may 

become depleted lowering the overall etch rate. For example, 

with the high plasma density, when the gas pressure is too high 

the etch rate can vary 50% from the center of the wafer to the 

edge. Macro-loading is difficult to control.  

 

    

Etch Micro-loading: It is defined as the phenomenon in 

which the etch rate varies across small distances (0.1um – 

10um) due to variations in the resist pattern such as feature 

widths, aspect ratios and area densities. The narrow wires have 

higher aspect ratios than wider wires and slower etch rate a.k.a. 

Aspect Ratio Dependent Etching (ARDE). The probability of 

the etchant species making it all the way down to surface is 

lower. A dense patterned area may locally deplete etchant 

species which lowers the etch rate but isolated patterns which 

have plenty of etchant species located around them may 

become over etched. 

   
 

Etch Anisotropy: Etch Anisotropy is determined by the ratio 

of the lateral and vertical etch rates of a single layer whereas 

isotropic etch is non-directional so etchlat = etchvert which 

means etchlat / etchvet = 1 and the Anisotropy of the etch is 

equal to 0. A physical etch process, using ion bombardment, is 

highly directional (anisotropic) but it has poor selectivity since 

the ions etch all materials at similar rates. In contrast, a 

chemical etch processes is highly selective but it is also very 

non-directional (isotropic). 
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Etch Selectivity: Etch selectivity is determined by the ratio 

of the etch rates of two different materials. For example, the 

selectivity of a chemical etch for silicon dioxide compared to 

silicon is 20x times faster. In the example on left, we need to 

etch through the silicon dioxide down to silicon substrate. 

However, the center area of silicon dioxide is 100nm (= h1 ) 

higher than the left or right edges. Removing all of the oxide in 

the center means the other areas will be over etched. If the etch 

rate of silicon is 20X less than silicon dioxide, the silicon 

valley V2 (shown on the right) will only be over etched by 5 

nm (= 100/20).  

Table B.4 – Important etch phenomenon [DFM Dictionary, 2004] 

iv) Ion Implantation: The Ions a.k.a. charged molecules or atoms are created by a strong 

electrical field that strips away the electron resulting in an Ion [Hwaiyu, 2005 and Wong, 2008]. 

These Ions are filtered (lighter Ions are separated) and then accelerated towards a target wafer 

(Figure B.21). The depth of implantation depends on the acceleration energy (voltage).  

 

Figure B.21 – Structural description of the Etch process 

This process is used in parallel with the diffusion step, but it offers a precise control of the 

dose and is quite fast (a wafer can take 6 seconds) and multi energy implants.  It has certain 

disadvantages as well e.g. deep and shallow profiles are difficult, often uses toxic gas sources 

(arsine, phosphine) and it is quite expensive. 

v) Chemical Vapor Deposition (CVD): The CVD is a critical process which is used to deposit 

thin film, high purity and high performance layers. The precursor gases (often diluted in carrier 

gases) are delivered into the reaction chamber at ambient temperatures. As they pass over or 

come into contact with a heated substrate, they react or decompose into solid phase which are 

deposited on substrate. The substrates temperature is critical and can influence what reactions 

will take place. The structural process is presented in Figure B.22 [Michael, 2004]. 

 

Figure B.22 – Structural description of the CVD process. 
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vi) Chemical Mechanical Polishing (CMP): The CMP process is very important in the 

metallization and BEOL interconnects process for the planarization of wafers using slurry 

(alumina/silica plus metal oxidizer chemicals). We need to smooth the surface to allow more 

layers to be deposited on top. In this process the water interacts with the glass forming a 

hydroxyl bond (Si-OH) which decreases oxide hardness. The mechanical motion also decreases 

the oxide strength and abrasive particulates grind off the surface glass. In this process the metal 

is first oxidized using NH4OH (for Cu) forming Cu(OH)2 and then slurry abrades the new oxides 

from surface. The CMP mechanism is presented in Figure B.23 as under [Orshansky, 2008 and 

Wong, 2008]. 

   
 

 
 

 

Figure B.23 – CMP mechanism 

The most commonly used metal for metallization is copper a.k.a. soft metal. The wide 

wires can experience copper dishing in the center of metal lines which is removed during 

polishing. A similar problem called erosion occurs on the dielectric oxide that separates wires, 

hence the dishing is related with the wire widths and erosion is related to difference in wire 

density (Figure B.24).  

 

Figure B.24 – Dishing and erosion mechanisms. 

The metal thickness and oxide thickness can vary by -30% to +30% without additional 

routing rules. DFM aware routers provide a greater uniformity of metal widths and keep the 

routing density within a {min max} density range. If we follow the DFY, the routing guidelines 

can reduce reduces the thickness variation by 3X to produce a ~ 10% lower variation in the 

copper and/or oxide thickness. 

B.7 Most Common DFM and Yield Limiting Mechanisms 

We have seen that the key behaviors within the IC manufacturing processes (section B.6) might 

result in significant geometric variations with strong impact on the parametric and functional yields. We also 

know that, SPICE models (Appendix B.1) need geometric dimensions in addition to process technology 

parameters to extract the electrical and parasitic components. So, it is the right time to introduce the design 

rule manual (DRM) and DFM Rules and Models. The DRM is the bible for the designers and contains design 

rules for given technology. These design rules (geometric specifications and allowed variations) are 

programmed into design kits which are used during CAD simulations to verify their compliance (DRC). It 
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ensures the product functionality against the given specification; hence any deviation from these defined 

design rules shall result in product functional yield loss. In comparison to the DRM, the DFM rules are 

basically an extension to the design rules and are focused on insuring the printability of the features on 

silicon wafer. The DFM models are used to perform CAA and hotspot analyses to identify the printability 

issues in the design layout and the compensations are added to result the design layout which is more 

manufacturable with less yield issues. These compensations are added to the mask which acts as an interface 

between design and manufacturing processes. 

An electronic product (chip) is characterized by electrical parameters; hence an unexpected 

drift/variation (beyond model corners) is to be investigated for its root causes. The major cause for these 

drifts can be traced to uncontrolled variations in the geometric shapes but it is not always the case and such 

variations might present the newly emerging (spatial) behaviors, not included in the SPICE models, design 

rules, DFM rules or DFM models. Our success lies in the ability to quickly analyze and transform these new 

variations into models and/or rules during technology transfer and technology derivative initiatives 

(alignment) and product design and development (adoption) efforts to reduce the technology lead times and 

associated costs.  

Let us summarize different yield and manufacturability issues faced by R&D engineers on daily 

basis arising from the key manufacturing variation mechanisms (section B.6). If we do not come up with the 

correct response then we are obliged to increase the area of the design layout to insure the product 

functionality which is against the industrial slogan smaller, faster and cheaper. The most common DFM 

issues are classified as systematic or random defects. The random defects cannot be controlled; however the 

systematic defects can be easily controlled and modeled. Before proceeding into the role of DFM challenges 

in SI, let us quickly summarize the most well-known DFM defects and respective rules and/or models used 

in the CAD simulations.  

B.7.1 Manufacturability Issues 

The most common manufacturability issues irrespective of the technology are discussed in order to 

demonstrate the impact of the key process behaviors on the resulting IC chips. The SPICE models take into 

account the effect of geometric feature variations and predict its influence on the electrical parameters of the 

product. In the example below, at the F1 E1 condition, the images are printed larger than normal because of 

the higher light intensity with greater diffusion exposes more of the resist and the opposite occurs at the F1 

E-1 condition (Figure B.25). It is also likely possible that contact over the via is misaligned and totally 

misses the metal resulting in a functional failure [Hwaiyu, 2005). 

 

  

a) Worst case for exposure focus b) Overlay error resulting misalignment 

Figure B.25 – Extreme process conditions 

 

These worst process conditions when supported with varying etch conditions, unreliable depth of 

focus and CMP effect; often result in systematic manufacturability issues (Table B.5): 
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Transistor end cap extension: The gate poly of the transistor must 

extend beyond the active area to make sure that there are no current leakage 

issues. This extension is known as end cap extension and the mask, overlay 

and exposure focus error often result in the reduction of end cap extensions. 

 

Gate Length: The Transistor gate length is a critical factor for both 

timing and power. The gateLengthMin and gateLengthMax checks measure 

the transistor's gate lengths at several places along the transistor's channel 

and trigger the detector if the measurements fall within the specified {min 

max) measurement range. 

 

Via and contact coverage issues: The coverage is defined as the area 

of overlap, which can range from 0% to 100%, depending on the 

intersection of the two images on each layer. We can see in example that 

these errors often or might result in missing contact and vias causing 

serious issues in interconnection and contact formation steps. The tOC and 

tLE_E refers to outer corner and line end extension and are known as 

feature fragments. 

  

Bridging and necking: These are defined as if the space between two 

images or width of an image falls within a specified {min, max} range. It 

must be a positive value to avoid opens or shorts that result in functional 

product failure. The red lines represent the drawn features after OPC 

whereas the bleu lines represent the silicon image printed on the silicon. 

  

Open and short: The open defect is said to be formed if the distance 

across an image falls within the range of {0, max} and a short is formed 

when the distance between two or more images is greater than 0. It has to 

be a positive distance at the nominal focus exposure (FE) conditions. 

 

 

Space and width defect: The Feature Space is the distance from an edge 

fragment outward to nearest feature whereas the feature width is the 

shortest distance across an image from an Image Edge to the opposite 

Image Edge. The feature edges are composed of several different Fragment 

Types e.g. tE (edge), tOC (outer corner), tIC (inner corner) and tLE_E (line 

end edge) where tLE_E > tOC > tIC>tE. 

 

Line end edge issues: If image pushes out beyond the feature it is 

called Line-End Push Out (LEPO) whereas shrinking is referred as Line-

End Pull Back (LEPB). These issues can become swear if not controlled 

specially for the contact and vias and current leakage. 

 

   

Random particles: The incidental particles are the major causes for 

opens and shorts on the layer being fabricated. They can randomly fall 

anywhere on the integrated circuit resulting in its functional failure are 

called random defects whereas systematic defects (hot spots) can be easily 

modeled and controlled.  

Table B.5 – Systematic and random manufacturing defects [DFM Dictionary, 2004] 
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The deviations between intended and realized physical pattern(s) on silicon are called physical faults 

resulting in the functional failure of the product and deviations in the electrical characteristics are referred as 

the electrical faults. The physical deviations often result from the imperfection in manufacturing processes 

and the mechanisms behind these are classified as incidental and base line. The incidental mechanisms (gap 

fills, linear deposition etc.) can be resolved and controlled whereas the baseline mechanisms (flakes, particles 

in/on resist, incomplete develop etc.) are very hard to model.  

We have discussed in chapter-1, section 1.2 that technology alignment and adoption lead times are 

critical for the success of SI; hence it is our ability to analyze and model the faults and associated 

mechanisms (Table B.6) that result in the success or failures. Let us summarize generic approaches 

(rules/models) adopted to avoid these manufacturability issues and yield limiters prior to discuss the role of 

DFM in the evolution of SI.  

 

 

 

Minimum Number of Via Cuts: In order to avoid the coverage 

issues that mismatches in the metal contacts, the min number of via cut 

rules are defined for each technology. Multiple metal contacts ensure 

current carrying capacity and reliability; however besides this fact 

multiple vias help us in avoiding the voids that migrate towards vias 

due to thermal stresses trapped in fabrication processes. In case of 

multiple vias, a single via can trap the void preventing its further 

migration to other vias that provide the interlayer connection. 

  

 

Redundant Via Type: According to the position of the redundant 

via, we categorize redundant vias by their order of redundancy and 

their orientation. In the example, we list the names for double 

redundant vias. The naming scheme is easily extensible to triple 

redundant vias or via arrays. Its orientation can be (i) horizontal right, 

(ii) horizontal left, (iii) vertical right and (iv) vertical left. 

 

 

SRAF (sub-resist assist) Features: These features provide a good 

control over the fabrication of the critical features and are used against 

the limitations of the lithography. They are very small in size and do 

not get printed on the silicon wafer; however they are added to the 

mask. These features diffract the light such that the illumination for the 

main feature turns out to be dense resulting in higher printability. The 

width, type and space of these SRAF features define the light intensity 

required for accurate feature printing. These feature are small in size 

and space is adjust so that they are not printed at all but the depth of 

focus of the illumination system becomes dense resulting in improved 

feature printing. 

 
 

 

Critical Area: The wires in example have a 100nm width and a 

200nm pitch. The Critical Area for a 120 nm defect can be determined 

by growing the area around a wire by 60nm (the radius of the defect) 

in all directions. The result is a 20nm overlap between the two grown 

areas. If the center of a 120nm defects falls anywhere in this area, a 

short between the wires occurs. If the defect center is outside of the 

critical area, the defect doesn’t cause a short. The Critical Area for a 

140nm defect is larger than a 120nm defect because the overlap area is 

wider. 
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Process and Proximity Compensation: The model based Optical 

Proximity Correction (OPC) and Process and Proximity Compensation 

(PPC), both rely upon physical models to identify the faults that occur 

during pattern transfer from a mask (reticle) to the wafer. A Black Box 

model lumps all these non-idealities in a single, multi-dimensional 

model. Unfortunately, the effects of one parameter change (a mask 

error, defocus condition, over exposure condition, under etch 

condition) can either compensate or multiply the effects of another 

parameter change. Physics based models; calculate these effects 

separately in the sequential flow. The various process models are 

calibrated with both measured and/or simulated data within a 

predefined range. 

Table B.6 – Generic approaches to address failure mechanisms [DFM Dictionary, 2004] 

The above list is just a summary of key failures and remedies (Table B.5 and Table B.6) from an 

exhaustive list. It is evident that engineers are always focused on addressing these manufacturing and yield 

limiting factors as discussed above. We have also seen that the efforts to address these issues either result in 

some rules (design/DFM rules) and/or models (SI2007). Let us take an example of a circuit and follow the 

most common techniques as discussed above to improve silicon features printability on the silicon image 

using OPC (Table B.7). 

a) The end of Line (EOL) extension improves Line 

End Push Out (LEPO) 

b) Hammer Head improves Line End Pull Back 

(LEPB) 

 
 

c) Inner Corners (IC) have a negative offset to 

improve corner spill 

d) Outer Corners (OC) do not have excessive corner 

fill 

 
 

 

e) Via Coverage (Two Layer Overlap Area) is 

symmetric 

f) Long straight lines have been biased correctly so 

OPC is required 
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Table B.7 – Layout improvement efforts using OPC technique [DFM Dictionary, 2004] 

The DFM optimization helps to make layouts more robust against both systematic and random yield 

loss mechanisms. Robustness against systematic yield loss mechanisms is particularly relevant to help avoid 

unforeseen design-process marginalities, especially during technology alignment and adoption efforts. The 

ramp-up experience has shown that design-process marginalities occur almost exclusively at layout 

configurations that are exactly at minimum design rule; hence they can be strongly reduced by designing just 

slightly (5-10%) above minimum design rule, where possible. The minor corrections can make a major 

difference for systematic yield.  

The robustness against random yield loss mechanisms is relevant in volume production, where a 

small yield difference on a large number of lots represents a significant financial value. The defect density 

distribution is commonly used in conjunction with critical area models for yield predictions. The practical 

DFM implication is that minor corrections also give minor effects where random yield is concerned; hence 

the DFM corrections should be fairly large: via doubling, metal width/space > +30%, etc. It must be noted 

that the DFM actions for random yield should not lead to an increase in chip area, because an improvement 

in random yield will almost never outweigh the gross die decrease. 

B.8 Summary and Conclusion 

In this section we have reviewed that the semiconductor design, mask and manufacturing processes in detail. 

It provides us clear evidence that design CAD simulations, mask preparation and process control are the 

three lines of defense against manufacturability and yield losses. If the design and DFM kits are mature 

enough we can easily detect the manufacturability and yield issues as early as possible in the design phase. 

The mask provides us an interface between design and manufacturing where process imperfections is 

compensated to address potential yield losses; however mask errors could cause serious issues. We have also 

seen that design and DFM rules are never perfect because the DRM is developed during the new technology 

development in an alliance using test products. It is frozen upon its transfer to alliance partners’ business 

models and changes are not authorized within the existing IDM fablite model. It is a potential opportunity 

where we can simply feedback rules and/or models from the newly emerging spatial variations to technology 

derivatives and improvement initiatives (alignment) and product design/development (adoption) efforts. 

Besides the fact that, any potential change in the DRM requires requalification of design libraries, the design 

engineers are ready to accept these changes if they are supported with the gains and/or losses in the potential 

yield.
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Appendix C:  CMOS Inverter Design and Manufacturing (An Example) 

We have briefly reviewed the SI design and manufacturing process in Chapter-2 to provide users a glimpse 

of complexity involved in the integrated circuits. In order to strengthen the IC design and manufacturing 

knowledge and for the readers who wish to see those processes in more detail, we took a simple CMOS 

inverter (a circuit with 2 transistors) example and completed the design, mask and manufacturing steps. The 

important phenomenon that might raise the DFM challenges are also discussed and commented to improve 

the understanding of the DFM methods and their evolution. 

C.1 The CMOS Inverter Design  

The objective of this section is to go through the design and manufacturing steps of a simple CMOS 

inverter circuit and identify the major challenges being faced by the engineers at all steps. The inverter is 

truly the nucleus of all digital designs and is the basis of logic gates for complex electronics functions for the 

digital and analog designs. It is composed of n-MOS and p-MOS transistors together and its basic function is 

to inverse the signal. Before proceeding with the example, let us first simplify the operations of n-MOS and p-MOS 

transistors (Figure C.1). It is easy to interpret that when a voltage (potential) is applied to the gate, p-MOS results in 

an open circuit i.e. no current flows from the drain to source whereas in case of no voltage the current do flow. 

  

a) p-MOS operation              b)   n-MOS operation 

Figure C.1 – n-MOS and p-MOS current flows 

The structure of the CMOS inverter is presented below (Figure C.2) along with its corresponding cross 

section of npn and pnp transistors for the manufacturing propose. In this inverter the output received is the inverse of 

the input.  So we shall use CMOS technology to manufacture this CMOS inverter later. We shall not put emphasis 

on its design life cycle as it is a simple inverter. Our objective is not to pass through the whole design process but to 

highlight the key challenges faced by the designers, manufacturers and R&D engineers. It is also important to note 

that the design flow changes with the process technology and comprises of CAD tools and the sequence of these 

tools to simulate the design prior to manufacturing. The SPICE models are the key for the CAD simulations of the 

design. These models are defined at the device level and are composed of mathematical equations to compute the 

electrical parameter to characterize the functionality of the design. If we minutely look at the function of an 

electronic circuit, we can simply conclude that it is all about flow of current. The physical defects, parasitic 

(unwanted resistance and capacitance) and uncontrolled variations in the geometries of the devices and interconnects 

are the key reasons for the manufacturability and yield issues.  

A simple example of the SPICE model for a device is the mathematical equation that computes the Ion and 

Ioff currents. Ion is the current that flows from source to drain when threshold voltage (Vth) is applied on the gate 

and Ioff is the amount of the current flowing through source and drain even when there is not voltage at the gate. It is 

also called leakage current that consumes unwanted power. The amount of these currents depends on the gate oxide 

thickness (w), poly gate length (L) and the Ion implantation. The W and L are controllable parameters whereas 

implantation is not completely systematic. The general equation for the Ion and Ioff computation is presented below 

in Figure C.3. These and like equations used in the SPICE models are totally technology dependent and are delivered 

with each new technology. We can see that Ion and Ioff are proportional to W/L ratio, typically L is kept to the 
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minimum dimension allowed in the technology and is to be drawn as indicated in the schematic but W is allowed 

vary. The µo, q, K are the process technology constants. 

 

Figure C.2 – CMOS inverter structural presentation 

The design is simulated using these SPICE models and process variations that might affect 

the geometric shapes, resulting in likely significant drifts. The computed parameters are analyzed 

against the target specifications and corrections are made until these parameters fall within the 

model corners, which is essential for the correct operation of the design. 

 

Figure C.3 – Ion and Ioff currents and trade off 

Let us analyze the design of the CMOS inverter according to the design phases defined in 

Chapter-2, section 2.2.3. The schematic (logical) design and intended simulated functionality of the 

CMOS inverter is presented in Figure C.4. It is self explanatory that if 1 is applied at the input, the 

output is inversed (0) and visa versa. 

          
 

 a)  CMOS inverter with input 1              b) CMOS inverter with input 0 

Figure C.4 - Structure of the CMOS inverter and operational outputs 
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Let us now define symbols to be used in the CAD design for the above [Lee, 2005] CMOS inverter 

(Figure C.5). 

  

Figure C.5 – Colors and notations for CMOS inverter CAD design 

We start with two potential physical designs of the CMOS inverter. The design as presented in 

Figure C.6a uses the p and n diffusion layers for the formation of n and p MOS transistors and p-type 

substrate whereas the design presented in C.6b uses the diffusion and p-implant in the structure of the 

inverter.  

 
 

 

a) CMOS inverter with p-diffusion 
 

b) CMOS inverter with p-implant 

Figure C.6 – Physical design of CMOS inverter [Lee, 2005] 

Both physical designs (Figure C.6) are different in construction but they refer to the same CMOS 

inverter schematic (logical design). The next step as per design flow is the optimization of this layout and 

extraction of the electrical parameters. It is the good time to introduce the concept of DRM (design rule 

manual) which is referred as the bible for designers. The DRM includes all the physical design layout rules 

for active, passive components and metal interconnections at each layer (BEOL). These design rules are 

included in the design kits specific for each technology and new product designs are simulated to find design 

rules violations. If a design is constructed using design libraries where reusable circuits are already qualified 

against these rules, then design passes the DRC test easily. The power, timing and area constraints force 

modification in the design manually that requires the extraction of parasitic/electrical parameters to ensure its 

functionality, manufacturability and yield. It is also evident from the design (Figure C.6) that source, target 

and gate are covered with maximum contacts; it is because of the fact that the mask misalignment could lead 

to a missing contact resulting in failure of the circuit; hence maximum coverage as contacts is a normal 

practice. It helps us in reducing the resistance between the contacts and diffusion as well as increasing the 

flow of current. 

The DRM for the technology is a confidential document, so we cannot present here the DRM itself; 

however some generic design rules are presented here to demonstrate how a design is improved throughout 

the physical design phase. We start with a generic transistor example (Figure C.7) with 0.2µm channel length 

(L) and 20µm width (W). The layout optimization starts by adding maximum number of contacts for the 

source and drain as shown in C.7a. The second improvement made in the transistor layout is about its aspect 

ratio (ratio of length to width of the feature), so we divide this transistor into four transistors (connected 

parallel and 5um width) to ensure good aspect ratio that is manufacturable with fewer defects. The transistor 
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2 and 4 from left to right are flipped to have reversed their sources and drains to transform the transistor 

layout into a compact transistor as shown in the figures C.7b and C.7c respectively. 

 

Figure C.7 – Layout optimization of CMOS inverter [Lee, 2005] 

We know that the layout cannot be fabricated exactly as drawn in the layout due to mask 

misalignments and manufacturing processes imperfection. The objective of the DFM methods is to capture 

these limitations and put them in the DRM so that during CAD simulation low yield and impossible to 

manufacture layouts can be identified and corrected. The main parameters of these transistor model (e.g. see 

Ion and Ioff current equations at Figure C.3) variations are DW and DL that shows the delta difference of 

drawn width and length from the effective width and length. 

Now let us discuss another example where a design layout is qualified/validated to ensure its 

functionality, manufacturability and yield. This is an example where imperfect process could result in 

effective channel length variations, ultimately affecting the speed of the current that cause serious timing 

delays and/or power losses (Figure C.8). Such variations often result in fast or slow devices that might have 

very serious impact on the circuit timing.  

 

Figure C.8 – Delta in drawn length (DL) and width (DW) of transistor [Lee, 2005] 

Let us consider an example where DL is 0.015um and DW is 0.045um. The fast transistor is 

simulated with narrower L and wider W (negative DL, -0.015um) whereas the slow transistor is modeled 

using a wider L and smaller W (negative DW, -0.045um). The following table (Table C.1) shows L and W of 

the transistors from the first and second optimization efforts, and the geometric variations at the slow, typical 

and fast corners that emulate the manufacturing process tolerances. 

 Fast Typical Slow 

Maximum 

Contacts 

L(um) 0.185 0.200 0.215 

W(um) 20.045 20.000 19.955 

Compact 

Transistor 

L(um) 0.185 0.200 0.215 

W(um) 20.180 20.000 19.820 

         Table C.1 – Model corners for fast, typical and slow devices 
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The impact of layout optimization techniques do not seem to have a strong variation in the two 

optimization steps on width; however the length undergoes significant variation due to under or over etch 

and a compact transistor formation. The impact of the length variation (0.18um) between slow or fast corner 

against typical corner is 4x in comparison to the one without compact transistor. This could pose a circuit 

performance deviation for the circuit designers if left unaccounted. The designers perform Monte Carlo 

simulation by adding small statistical variation to W and L of every transistor in the circuit with an objective 

to center design for the yield improvement. The layout can be challenging for the circuit designer to optimize 

it for better yield. 

The subsequent layout optimizations methods applied on the circuit layout are (i) Speed up the 

transistor with higher frequency response by reducing the parasitic components (resistance and capacitance), 

(ii) clean up the substrate disturbances from minority carrier and coupling noise, (iii) balancing area, speed 

and noise, (iii) stress relief (insert dummy transistors), (iv) protect the gate (control charge accumulation at 

the poly gate a.k.a. antenna effect) and (v) improve yield (avoiding single via or contact, spacing, end-of-line 

variations, metal coverage of contacts and vias). All these optimization efforts result in design rules 

programmed into design kits. 

In this section we have drawn the logical circuit (schematic) for CMOS inverter followed by its 

transformation into physical design. The CAD simulation using technology based SPICE Models for the 

extraction of electrical parameters ensure manufacturability and functionality. The physical (transistor level 

synthesis) requires further simulations based on manufacturability variations. It is based on the fact that we 

are not able to manufacture the geometric shapes like they are drawn in the schematic; hence layout 

optimization is required followed by the CAD simulation to ensure timing, power and leakage. We have not 

physically simulated the logical and physical designs because it shall result in more than 2000+ electrical 

parameters; however we have presented and introduced the whole process. We have optimized the layouts 

manually whereas other optimization techniques are listed for reference. The CAD simulations follow an 

automated process using software tools which are supported with design kits, process kits and DFM kits. It is 

also important to note that we have not included discussion on the BEOL interconnections but the CAD 

simulation flow is exactly similar with the only difference of SPICE models. The validated designs result in 

the generation of netlist which is used as an input for the mask preparation. 

C.2 Mask Set for CMOS Inverter 

Transistors are interconnects are manufactured using masks, hence these masks act as an interface 

between design and manufacturing domains. They are the second line of defense against yield limiting 

defects after CAD simulations. The mask numbers are technology dependent and are manufactured with very 

high precision. The structural frame of the mask is presented in Figure C.9 where most crucial, from the data 

analysis point of view, are the metrology and test patterns. They are added on the mask in horizontal and 

vertical scribe lines which means that wafer rotation is a must prior to the measurements, which result in 

varying coordinates. The coordinates provided by the machine offer coherent platform for a single-source 

analysis but multi-source analysis is impossible by the R&D engineers. 

 

Figure C.9 – Frame structure of a mask 
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The most important issues towards manufacturing and yield are printability (lithography), polishing 

and etching (under/over etch) issues that result in geometric shape variations. It directly impacts the electrical 

parameters (2000+) resulting in functional or parametric yield losses. The cross section view of the CMOS 

inverter fabrication is presented in Figure C.10. In this circuit, Vdd refers to the drain voltage and GND is the 

ground connection. The y is the field oxide that separates two transistors and A refers to the poly gate 

contacts. 

 

Figure C.10 – CMOS inverter’s structural cross section view 

A specific technology flow being highly confidential cannot be presented, however a generic flow is 

presented as under that shall help us understanding the corresponding mask requirements. This process 

includes (i) creation of the well formation, (ii) field and gate oxide growths, (iii) deposit and pattern 

polysilicon layer, (iv) implant source, drain regions, substrate and (v) create metal contact and (vi) create 

metal1 to metal 7 interconnects [James, 2000]. We shall need at least 6 masks for this CMOS inverter 

(Figure C.11).  

 

a)  Individual masks for CMOS inverter manufacturing 

 
b)   Combined masks and resulting CMOS inverter structure 

Figure C.11 – Mask set for CMOS inverter 
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C.3 CMOS Inverter Manufacturing Steps  

We start with a raw wafer and first manufacturing process step is the oxidation step (Figure C.12) 

where SiO2 (dielectric) is grown on the wafer surface at 1200ºC in an oxidation furnace with H2O and O2. 

The principle objective here is to protect the surface of the wafer from the subsequent manufacturing steps. 

The wafers are heated in the furnaces containing oxidant, usually O2, steam or N2O resulting in the 

deposition layer of an oxide. It is important to note that no mask is used during this step. 

 

Figure C.12 – Oxidation layer on the raw wafer 

 The next step in the manufacturing flow is the deposition of the photoresist material of about 1mm 

thickness. The positive photoresist material is normally used for this step while transferring the patterns from 

mask to wafer (Figure C.13). The n-well mask is used for the light exposure that transfers the pattern of n-

well on the photoresist. 

 

a) Photoresist layer deposited prior to light exposure 

 

b) n-Well mask is used for the pattern transfer 

           Figure C.13 – Photolithography for n-Well 

 We etch the SiO2 so that the patterned area can be used for diffusion or implantation to form the n-

well in our CMOS inverter. We use etch oxide with hydrofluoric acid (HF) that seeps through SiO2 (oxide) 

but it attacks only where resist has been exposed (Figure C.14a). We strip off remaining photoresist using 

mixture of acids called piranha etch (Figure C.14b). The n-well is formed by placing the wafer in furnace 

with arsenic gas and heating until atoms diffuse into exposed Si. The Ion implantation is performed with 

beam of As (arsine) ions that enter only the Si exposed are and are blocked by SiO2 (Figure C.14c). The last 

step is stripping off the oxide layer for the next operations (Figure C.14d). 

 

a) Etching of SiO2 for n-Well diffusion 
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b) Stripping off the photoresist material 

 

c) N-well diffusion and/or ion implantation 

 

 

d) Stripping Oxide layer 

      Figure C.14 – n-Well formation 

The next step is the polysilicon deposition (Figure C.15) using Mask 2. We start by 

depositing a very thin layer of gate oxide < 20 Å (6-7 atomic layers) in the furnace. This step follows 

the Chemical Vapor Deposition (CVD) for the deposition of polysilicon. The wafer is placed in 

furnace with Silane gas (SiH4) that forms many small crystals called polysilicon.  

 

 

a) Gate oxide and polysilicon 

 

b) Lithography process for polysilicon 

Figure C.15 – n-Well formation 

The n+ diffusion step is a self aligned process where we repeat the oxide (Figure C.16a) and masking 

steps for n+ dopants diffusion to form nMOS source, drain and n-well contact (Figure C.16b). The 

polysilicon step is better than the metallization step for self aligned gates because it does not melt during 

processing. The n+ diffusion is made (Figure C.16c) using diffusion process where impurities are absorbed 

on and beneath the wafer surface using heat. It is replaced with the ion implantation due to better control but 

for the source and drain regions it is still called diffusion. The oxide is stripped off to complete the patterning 

step (Figure C.16d). 
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a) Oxidation layer 

 

b) p-well mask and pattern transfer 

 

c) n+ diffusion and source, drain and n-well contact 

 

d) stripping off oxide layer 

             Figure C.16 – n+ diffusion layer 

The next step is a p+ diffusion that forms the regions for pMOS source, drain and substrate contact 

(Figure C.17). 

 

          Figure C.17 – p+ diffusion layer 

The final step includes the deposition of contacts and metallization to wire the devices n-

MOS and p-MOS transistors. The chip is covered with thick field oxide and the contacts are etched 

(Figure C.18a). The aluminum is sputtered over the whole wafer and patterned to remove excess 

metal leaving behind the wires (Figure C.18b). 
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b) line metallization 

Figure C.18 – Contacts and metallization steps 

C.5  Summary and Conclusion 

In this section we have simulated a simple CMOS inverter (2 transistor circuit) example against the design, 

mask and manufacturing steps with an objective to provide an overview of the design and manufacturing 

lows. It is a very simple example, however in reality designers and engineers use sophisticated tools to 

accomplish their tasks. 
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Appendix D:   SMA (Spice Model Alignment) Tool 

The proposed Spice Model Alignment (SMA) tool is focused on helping R&D engineers for new front-end 

(FE) technology transfer, developed in the international semiconductor development alliance (ISDA). The 

use case diagram for technology transfer is presented in Figure D.1 where ISDA, technology R&D, process 

integration (PI) and design groups are the key stake holders. The ISDA alliance develops new technology 

and defines the perimeters. These perimeters are the key technology parameters along with their target and 

specification limits. The technology R&D group in the receiving plant is responsible for alignment of these 

parameters which is further classified as the technology maturity levels 10, 20, 30 etc. The PI team plays a 

key role during the alignment of these parameters which includes process flow, design rule check, and design 

rule manual alignment against device and interconnect SPICE model parameters. The design group develops 

design kits taking into account the manufacturing variations encountered during the alignment process to 

ensure manufacturability and yield during prototyping and normal production. 

 

 
 

Figure D.1 - New front-end (FE) Technology Transfer 

 
The scope of SMA tool is around the process flow alignment against the SPICE model parametric 

alignment by the ISDA alliance. The device and interconnect SPICE models maturity requires respective 

technology parameters alignment against the changes made by the ISDA alliance. It includes the 

management of standard and special conditions to be used during design CAD simulations of technology 

parameters using test product. The test structures a.k.a. vehicles are used during these simulations and are 

specially designed to represent the complexity of the target products to be developed using this technology. 

The process starts with the definition of device geometries [W, L] scaling to be tested through simulations 

for its compliance against target technology parameters and subsequent validation by manufacturing on 

silicon wafers. The simulated SPICE parameters computation often requires normalization in order to format 

the simulated results into unified measurement units. These SPICE model parameters are then related with 
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the PT parameters to generate PT specs. These generated PT specs are used for the process alignment. It is 

very important to normalize the SPICE models’ simulated parameters because the PT specs measured on the 

production line have specific formats depending on the type of metrology equipment used. The lower part of 

the use case diagram is the part of proposed system where during process alignment any drifts or variations 

from the simulated parameters are further investigated using correlation between geometric shape variations. 

The challenges faced within this process are as under: 

a) The names of SPICE model parameters from the simulations are not standard; hence PT-SPICE 

parameter correlation is to be manually controlled for each technology and each maturity level of 

SPICE models. Every technology has almost 2000+ parameters and normally engineers are 

allotted with 200 parameters each to manage and control the maturity and respective process 

alignment. 
 

b) The computation of SPICE parameters using SPICE Models result in the tab limited data files 

(dat, csv etc.) file formats. These simulation files are hard to manipulate and engineers spend 

huge amount of time because multiple spice parameters are used and normalized to compute 

technology parameters. The varying file format of simulation files is a big issue along with the 

computation and normalization. 

In order to address these issues and help PI and Technology R&D engineers, the SMA tool is 

developed and deployed to achieve following objectives which result in quick technology transfer and 

alignment. 

 Manage SPICE-PT parameter relationship 

 Generate PT-SPECS applying normalization and choice of corners 

 Simulate parameters and edit normalization formulas 

The sequence diagrams, data model and deployment diagrams are not presented here, however the 

tool is explained through different functionalities using GUIs. The reason for this is the confidentiality as 

well as space restrictions in the thesis. The SMA tool is versioned (X.Y.Z) upon each modification requested 

by the engineers where X  Major Version, Y  Minor Version and Z  Revisions. It is developed using 

Visual Basic 6.0 professional edition and MS-Access 2003 for prototyping. It is 2-tier, multi-user database 

application where all users are connected to the central shared database for authentication and profile 

management. It is a relational database and also serves as the share point for pre-simulated SPICE 

parameters among the application users. If the engineers requested SPICE parametric simulation results are 

in the parameters which are shared then those parameters are directly extracted and are not simulated. The 

functionality of the tool is presented through GUI explanations. The proposed tool is unique in the sense that 

based on the functionality selected; the local database is dynamically generated where analysis results are 

stored until and unless it is removed by the end users. The end users can share the simulation results in the 

central database for the other tool users. 
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Figure D.2 – SPICE Model Maturity and Process Alignment 

The first GUI is presented in Figure D.3 (a & b) where end users can browse simulation result files 

(SPICE parameters) by selecting the folder. The files are listed with the description of each file in 

folder/subfolders with its extensions and size. These files can be selected by double clicking on the files 

which are then added to the list box on the right; however user can select all files by clicking the button << 

Select All >>. The PT specs file is required to be browsed by each engineer for his own set of SPICE 

parameters which provide relationship between SPICE and PT parameters along with the normalization and 

computation formulas. Once selected, users import these relationships by clicking the button << import >>. 

The end users are also provided with option to filter Spice parameters, devices and PT parameters by 

selecting from the respective list boxes. 
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Figure D.3 (a) – SMA Tool Main GUI 

 

 

Figure D.3 (b) – SMA Tool Main GUI with Options 

 
 The PT-SPICE relationship file when loaded is presented in the Figure D.4 (a) where model file and 

description refers to the SPICE parameters along with respective PT parameter name and units. The Figure 

D.4 (b) presents formulae for PT parameters along with normalization. The users can change these formulas 

at any time where respective results are computed instantly based on the new formulas. The changes made 

can be made permanent for future. The normalization formulas do include the units and can be easily 

modified to ensure the final resulting units for compliance with the measure PT parameters. The user can 

double click on any of the listed formulas where he is provided option as a text box along with previous 

formulae for change. Once the changes are made, they can be made permanent by clicking the enter key. The 

users are required to select option “yes’ from the message box to save it permanently, however these changes 

are made in the dynamic data base created on the local computer of the user. If user want to keep the 

relationship file as an excel sheet, he can extract the whole file by clicking the button on the bottom << 

Export >>. 
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Figure D.4 (a) – Import of PT-SPICE Relationship File 

 

 

Figure D.4 (b) – Normalization Formulas and Instant Changes 

One of the important algorithms implemented in SMA tool, is computation of the PT specs based on 

one or multiple simulated SPICE parameters. The implemented algorithm is based on the concept of 

“STACK” data structure which is traversed on last in first out (ILFO) principle. The algorithm cannot be 

presented, however simulation of the algorithm with an example formulae, is presented below in Figure D.5 

(a & b). The formulae is presented in infix format as (1 + (2 * ((3 + (4 * 5)) * 6))) which is first converted 

into postfix notation as 1 2 3 4 5 * + 6 * * +. This post fix notation is then loaded into a stack and traversed 

for the computation of formulae. This algorithm has two steps as (i) infix to postfix notation and (ii) 

computation of postfix notation expression.  The infix notation computation is presented in Figure D.5 (a) 

where we search for the inner most parentheses and transform it into post fix notation.  The algorithm 

continues until the parentheses are finished. The parentheses are removed from the final post fix notation 

which is used in the expression evaluation presented in Figure D.5 (b). 
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Figure D.5 (a) – Normalization Formulas and Instant Changes 
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(c) (d) 
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(d) (e) 

  
(f) (g) 

  

(h) (i) 
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(j) (k) 

 
 

(l) (m) 

  
(n) (o) 

Figure D.5 (b) – Stack Structure based Expression Evaluation 
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The Figure D.5 (b) describes the sequence in which postfix notation based mathematical formula is 

read and evaluated. In the Figure D.4 (a) the options << customized corners >> and << default corners >> 

provide users to define the scope based on what PT specs are generated. The SPICE parameters are simulated 

based on the model corners as SS (slow), FF (fast) and TT (target). The ST prefix stands for 

STMicroelectronics where respective model used for the simulation is the company’s internal model. The 

notations SSF and FFF stands for slow-fast and fast-fast corners. The user clicks on the button << Show 

Results >> to compute PT specs as LSL, Target and USL. The target PT spec is the target computed from the 

simulated SPICE parameters whereas LSL and USL specs corresponds to the minimum and maximum model 

corners as shown in Figure D.6 (a). 

 

Figure D.6(a) – Computed PT Specs LSL, Target and USL 

The users can extract the computed specs as whole or by selecting few lines by clicking in the buttons 

<<ExportS>> and <<Export>> where “ExportS” stands for the selected export as shown in Figure D.7. In 

addition to these functions the SMA tool has a lot of other interesting functionalities which cannot be 

presented here for space limitation; however the key algorithm and functions are briefly explained. The 

computed PT specs are used to analyze the PT measurement made during the prototyping on the test 

structures. If significant deviations are found, they are investigated prior to the adjustments in the process or 

equipment. 

 

Figure D.7 – Computed PT Specs LSL, Target and USL
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Appendix E:   BEOL (back-end-of-line) Variance Analysis Tool 

The BEOL variance analysis tool is developed for T2D aples team who is primarily responsible for the PT-

variance analysis followed by silicon correlation to answer drifts and excursions. The IDEF model at two 

levels is presented in Figure E.1 below. 

 

Figure E.1 – IDEF0 Model for BEOL Variance Analysis Tool 

The most import tasks in this process are (i) PT data extraction (A1) followed by (ii) PT variance 

analysis a.k.a. BEOL parasitic variability analysis (A3). The physical parametric data extraction and 

variability analysis (A3 and A4) refers to the geometric measurements made on the silicon wafer which leads 

to the possibility of Si correlation analyses (A5). The BEOL variance analysis tool addresses the challenges 

faced by the T2D aples team during the steps A1 and A3. The data extracted using data extraction utilities; 

hence we do not find any format issues but data volume is quite high. The end users also filter data upon its 

extraction; hence the resulting data is normally distributed and do not exhibit significant variation. The 

engineers apply manual filter i.e. delete by hand certain values as outliers which might remove the potential 

drifts. The computation of different PT correlations based on scribe line and metal layers, is tedious job and 

engineers spend huge amount of time in data extraction and analysis to find the drifts which can be further 

investigated to find root causes. 

The proposed tool offer following advantages to the R&D engineers: 

a) It verifies the data format and completeness issues 

b) perform filtered and non filtered data analysis 

c) generate PT variance analysis graphs to be used for further investigation 

 
The BEOL-Variance analysis tool is presented with its GUIs due to confidentiality issues, however it 

uses multidimensional data model at the back end to improve the computational efficiency. It has reduced the 

hectic work of weeks into 5 minutes processing and as a result, engineers focus on the analysis and 

interpretation for decision making rather than pre-processing and generating graphs. The tool starts with the 

user authentication as presented in Figure E.2. 
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Figure E.2 – Users Login and Authentication Step 
 

The first step is to browse the capacitance and resistance scribe and field files. The users can validate 

the selected files against the format, syntax and completeness by clicking on the button << Verify Data >>. 

The basic input file characteristics are computed and displayed to user for reference (Figure E.3). 
 

 
 

Figure E.3 – Input File Validation and Characteristics 
 

Upon files validation, the users move to the next step where they first restore the data by clicking on 

the button << Restore Data >>. It reads data from validated tab delimited input file formats and then restore 

it to the multidimensional data model implemented using MS Access 2003. It is performed prior to data 

processing to avoid lengthy computation times. The restoration progress bar highlights the completed task 

along with messages upon the completion of the task. 
 

 
 

 

Figure E.4 – Input data Restoration to Multidimensional Data Model 
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 At this level, users have two options to compute different statistics as (i) use excel or (ii) built-in 

functions. This option is provided to demonstrate that algorithms used for computation of statistics do result 

in slightly different statistics which might be misleading. The B/I functions are programmed in this tool 

based on the standard algorithms. The successfully computed results are highlighted as done under the data 

processing statistics block and user moves to BEOL analysis results tab (Figure E.5).  
 

 

 
 

 

Figure E.5 – Computation of Statistics with Excel and Built-in Functions 

 
The results are saved at users selected paths in an excel sheet as presented in Figure E.6 (a). The 

parasitic element based analysis using excel and built-in functions are presented in the Figure E.6 (b). It can 

be seen that the role of algorithms in statistics computation is highly critical. The results provide a 

comparison of no filter, LSL-USL filter and LVL-UVL filters and it can be seen that when filters are applied 

and number of counts are less the difference between the computed statistics using excel and built-in 

functions is quite significant.  

 

 
 

Figure E.6 (a) – Computation of Statistics with Excel and Built-in Functions 
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Figure E.6 (b) – Parasitic Elements (Resistance/Capacitance) Analysis 

The Figures E.6 (c & d) presents the graphs generated by tool as the box whisker plots for scribe line 

or field metal resistances and capacitances. As it is said earlier that significant variation or drifts are further 

investigated for their root causes. The first and prime suspect of these drifts is the variation in geometric 

shapes of transistors; hence we need to further correlate the PT drifts against these geometric variations. This 

PT-Inline correlation needs site level information that shall act as a pivot for multi-source data analysis for 

root cause analysis. It is presented in appendix F, however proposed solution (KLA-ACE recipe) takes into 

account the site level information for both PT and Inline data and also provides the end users to create new 

variable to be used during analyses. 

 

Figure E.6 (c) – Parasitic Elements (Resistance/Capacitance) Analysis  
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Figure E.6 (d) – Parasitic Elements (Resistance/Capacitance) Analysis  
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Appendix F:   KLA-Ace Recipe for PT-Inline Correlation 

The objective of PT-Inline correlation is to find root causes against PT drifts and variations. This section is 

the continuation of the appendix-E where we are focused on finding PT variance analysis using our proposed 

BEOL-Variance analysis tool followed by root cause analysis against drifts. We have developed KLA-ACE 

Recipe that follows the following activity diagram for the mapping and alignment of multi-source data at site 

levels. The KLA-ACE is a well-known multi-source data analysis tool used in the semiconductor industry. It 

is a commercial product by KLA Tencor which is based on workflow engine concept. The end users create 

recipes using different data extraction, pre-processing and alignment nodes. These recipes are created offline 

but when executed in one go or steps results in designed analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure F.1 – PT-Inline Mapping Flow Chart 

The workflow for the recipe as presented above is self explanatory; however for the convenience to 

read and understand, the logical functions are group together. The flow runs parallel for PT-Inline data 

extraction (for pt-inline data extraction from databases) until we use Mask data to merge these two. Within 

PT flow we perform R, C, RC variance analysis followed by computation of different statistics and 

graph/chart analysis options. In parallel action user is provided variance analysis and graph/chart options for 

the inline data. The next step is to apply site normalization and use this to merge pt-inline site-to-site mapped 

data. Users are provided with an option for the basic predictive modelling using KLA-Ace pre-defined and 

built-in nodes. 

  The comparison of the proposed KLA-ACE recipe and BEOL-tool is very important at this stage. 

The KLA-ACE database is limited by the amount of data retained. It offers only three months of data 
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whereas we can use the BEOL tool on any period of data. The BEOL tool helps us quickly finding out 

significant drifts as we do not always need KLA-ACE recipe to perform correlations. The KLA-ACE recipe 

is very important when we need to further investigate excursions or drifts as it requires site level mapping of 

multi-source data. At present the PT data extracted from databases have x, y coordinates along with site 

indices whereas the inline data accompanies the site indices. The x, y coordinates along with notch position 

are missing at this level; hence site level mapping for correlation is not possible as shown in the Figure F.2. 

 

 
Figure F.2 – Site Level PT-Inline Mapping 

We use mask level information to find site level coordinates of the sites tested for geometric 

measurements (inline). These x,y coordinates are then helpful in performing site level mapping for 

correlation purposes as show in the Figure F.3. The proposed method is almost similar to the hard coded 

methods for the mapping and alignment. The need for generic model for the site and die level mapping and 

die to site qualification was felt very badly when we observed varying measurement reference frames and 

notch positions for different metrology tests which often result in varying site and die level x,y coordinates. 

We then propose MAM and SPM models as presented in chapter-5 for generic site/die level mapping and 

alignment, and die to site qualification for accurate analyses. The said recipe is still valid and being used for 

PT-Inline site level correlation analyses. 

 
Figure F.3 – Site Level PT-Inline Mapping 

 

 The said core flow as presented in Figure F.1 also provides the end users with the ability to 

create new variables from existing variables. It is very important function because the width and 

height against a geometric shape are computed from multiple inline parameters. It facilitates users 

with variety of correlations.
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Appendix G:   EPP (Equipment, Product, Process) Life Cycle Tool 

The EPP tool is primarily developed for the IMPROVE (Implementing Manufacturing Solutions to Increase 

Equipment Productivity and FAB Performance) project. The main objective is to provide contextual data to 

support effective root cause analyses efforts. It is a 2-tier and multi-user database application developed 

using VB6.0 professional and SQL Server 2008. This EPP is developed with a multi-dimensional database, 

however in this appendix the data model and detailed UML model are not presented due to confidentiality 

and space limitations. The proposed application is presented using the GUIs. 

 The EPP starts with users’ authentication with id and password. This application during its startup 

identifies the best resolution and adjusts all objects on the GUIs accordingly (Figure G.1). The users start by 

selecting the duration of the data extraction, however default period is of recent one week. It is important to 

note that output of this tool is classified as the product life cycle or equipment life cycle.  

 

Figure G.1 – User Authentication in EPP Tool  
 

The users do have an option to select type of workshop, equipment or module(s). The modules are 

considered as the sub-equipments which are associated with the parent equipment in parent-child 

relationship. This tool is directly connected with the maintenance data warehouse sp we start by clicking the 

<< Import >> button. It fetches data from data warehouse into local multidimensional database (Figure G.2). 

The data comprises of “Equipment States”, “Equipment Failure to Work Request/Order” and “Equipment 

Checklist Steps”. The << Process >> button aligns data and generate equipment life cycle for the given 

period which is presented in the Tab << Equipment Life Cycle Data >>. The users have an option to scroll 

and go through other data sets generated in three tabs. The option “Arrange Columns” automatically adjusts 

the length and width of the columns for user readability. 

 The internal algorithm which aligns and generates the equipment life cycle is not presented here 

because of the confidentiality reasons as it involves the internal data warehouse schema. The equipment life 

cycle data is objectively focused on tracing the equipment states, respective failure modes which lead to the 

work request/order and information about the check list tasks performed as corrective or preventive 

maintenance against these work orders. This data provides us a possible connection with OOC (out of 

control) production lots to assess whether equipment health is related to the yield loss or not. It also helps us 

in building models for predictive maintenance to avoid the expensive corrective maintenances. 

The << WIP (Lots) >> button generates the list of the production lots which were being processed 

when the equipment was undergoing different states, failures and actions. This list of production lots helps us 

to extract product life cycle from the process data warehouse. Three KLA-ACE recipes are developed to 

extract WIP, Metrology and Out of control data from the process, metrology and OOC databases. The data 

extracted from these databases is linked to generate the product life cycle which is highly useful for 

modeling different aspects. We start by running the KLA-ACE recipe to extract WIP and Metrology 

information of the production lots; however OOC information is selected based on the duration directly from 
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the OOC database. The extracted WIP and Metrology data files (csv extracts) are browsed by the users as 

presented in the GUI at Figure G.3. The users select all the files by clicking on button << Select All >> or by 

clicking on individual files in the file list. The << Import >> button extracts the information into 

multidimensional database to improve processing times. The << Process >> button extracts OOC data and 

generates the product life cycle information which is presented to the user in the “Product Life Cycle Data” 

tab, however the source data can be found in other three tabs. The “Autosize” option adjust the column 

widths and heights for readability and this data can be exported in the csv format. 

 

Figure G.2 – Equipment Life Cycle Data 

  
 

Figure G.3 – Equipment Life Cycle Data 

We have presented the basic functionality of the tool regarding product and equipment life cycle 

generation. It is contextual data which helps a lot in establishing the root cause against drifts and variations. 

The other functionalities like data mining, security and help are not presented here because of the space 

limitations. The said tool serves not only the IMPROVE project but also all the engineering and R&D 

departments. 
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Appendix H:   ACM (Alarm Control Management) Tool 

The proposed ACM tool is subjected to the equipment engineering teams with an objective to help 

them in equipment alarms management to reduce unnecessary equipment stops. The goals of the proposed 

tool are to (i) improve equipment engineers’ efficiency and (ii) empower equipment engineers to learn 

changing equipment behavior. The objectives targeted with this tool are as under: 

a) Analyze, Manage and Control Alarms and Warning coming from TOOL 

b) Learn Alarm Patterns linked with Product, Process or Equipment 

c) Predict Cost and Yield related risk against significant Alarm Patterns 

The ACM tool links the proprietary databases of the individual equipments with the other data 

sources as presented in Figure H.1 below. The automation system collects the alarms generated by 

equipment and stores them into alarms database. The ACM tools provides slicing, dicing and drill down/up 

operations on the data extracted from these proprietary databases. The data collected from the production 

line, stored in multiple data sources, is linked with the alarms generated by the equipments to build the PAM 

and PSM models as presented in chapter-7. The objective is to learn the alarm patterns linked with bad and 

good yields for subsequent use in the prediction to spare the capacities. 

 
 

Figure H.1 – Scope of ACM Tool 

 

 The ACM tool is developed using VB 6.0 professional and MS SQL server and it is a 2-tier multi-

user database application. The database used at backend is a dimensional data warehouse and OLAP queries 

are implemented as simple SQL queries. The query responses are optimized through views and indexing @ 

the cost of space. The key features of the tools are presented as under: 
 

a) Input Alarm files, pre-process and filter Alarms in the database 

b) Provide user Global Pareto and Best/Worst equipment statistics based on weekly and overall 

basis 

c) Alarm pre-processing prior to analysis on historical data 

d) Generate Pareto on Count/Duration 

e) Display Missing geometries within each simulation 

f) Export the SPICE parameters, PT specs and model output to excel 

g) Export selected SPICE/Model output parameter to excel 

 

The tool is not presented as UML model due to space limitation; however a brief description is 

presented through key and important GUIs. The users have an option to connect directly to the equipment 

alarms proprietary database or input the alarms data from the alarms data extracted through data extraction 

utilities. The duplicate records if found are separated during data input step. The main GUI is presented at 

Figure H.2(a). The “Litho-Tool” name presents the type of equipment family under processing. The users 

browse the input files which are then selected for import. The files with background color as green are 

Equipment
Alarms 

Database

FDC

WIP

Maint

Metro

Automation

ACM
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already pre-processed files. The button << Import >> results in importing raw data along with pre-processing 

into multidimensional data warehouse. The alarms data in its raw format needs processing to find out its start 

and end times for the computation of duration. The right side statistics presents the historical evolution of 

alarms on the basis of error count and duration. The best and worst tools are highlighted for special 

consideration of equipment engineer.  

 

 Figure H.2 (a) – Input Alarms Data for ACM Tool 

The similar data input which is directly connected with the equipment alarms database is presented at 

Figure H.2(b). The user selects the duration, tool family, tool and module(s). The users in this interface have 

the option to memorize the data extraction configuration. The pre-filter option is an excellent criterion to 

filter out the alarms when the equipment was under the maintenance or qualification. The chart configuration 

can be used to analyze the historical error count or duration at multiple granularities e.g. days, hours, 

minutes. The chart can also be sliced to the type of alarms e.g. productive which means the alarms when the 

equipment was in the state of production. The algorithms implemented at the back end of the tool provide us 

an opportunity to slice/dice the alarms data into different charts along with the assessment of best and worst 

tool. The tool offers two types of key statistics about the best and worst tool as (i) overall statistics computed 

among all tools across the historical data and (ii) last week statistics. If the data extraction period selected by 

the user overlaps the existing data in the dimensional database then the duplicate records are filtered out in 

respective tabs. The available tabs are (i) extracted and filtered alarm data, (ii) excluded alarm data, (iii) 

deleted alarms data and (iv) filtered alarms data. The filters are managed separately where user groups in 

different alarms so that during the data extraction they are filtered out being non significant. Te users do have 

an option to delete different alarms or filter them as per need, however no alarm data is physically deleted 

but its status is changed for subsequent analyses. 

It is very important to filter out and manage the alarms which we do not want to include because they 

are insignificant and have very high count but very small durations. Te users can select the tool family to 

group the excluded and included alarms. The users can use the buttons >>> and <<< to exclude and include 

the alarms respectively. The filtered alarms are internally stored and used during new data extractions. 
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Figure H.2 (b) – Input Alarms Data for ACM Tool 

 

 
Figure H.3 – Input Alarms Data for ACM Tool 

The users can right click on the graphs and can select full screen view for better visibility. The alarm 

information is highlighted as tool tip when user scrolls his mouse over the equipment alarms line as shown in 

the Figure H.4. 
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Figure H.4 – Chart Options with Tool Tip Information 

An example of data extraction is presented at Figure H.5 where user is informed upon the data 

extraction about alarms exclusions, duplications and deletion. The users also have the option to filter and 

further exclude, delete and/or include the alarms using alarm levels as error, warning or others. Te option 

export to database is very critical as it allows the engineers to export the data as presented in the flexgrid into 

the database whereas the same data can be exported to an excel sheet by clicking on the button << Save to 

Excel >>. The data filtered across 4 tabs can be moved around by right clicking and then selecting the 

options as delete, exclude, include or filter. 

 

 

Figure H.5 – An Example of Data Extraction for ACM Tool 

The data extracted into excel sheet from the GUI is presented at Figure H.6 below. It can be seen that 

the extracted data is properly formatted when extracted. 
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Figure H.6 – An Example of Data Extraction in Excel Sheet 

 The data extracted can be further used during data mining and similar operations using data mining 

options as presented below in Figure H.7. The data can be filtered on multiple time dimensions and status of 

the alarms. 
 

 

Figure H.7 – Data Mining Alarms Data with ACM Tool 

The historical data analysis is very important for equipment engineers to monitor the equipment 

performance. The data extracted using GUI at Figure H.7 is further used for graphical analysis as presented 

at Figure H.8. The users have multiple options as the graphical analysis can be sliced at the tool(s), 

module(s) or alarm(s) levels. It can also be switched to error count or duration levels along with the historical 

trends. The individual data used along with the chart can be exported to excel as presented at Figure H.9. The 

slicing and dicing operations can be dropped to the level of location. It can be switched from alarms count to 

the alarms duration with similar options. 
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Figure H.8 – Graphical Analysis with Slicing and Dicing Options 

 

Figure H.9 – Exporting Individual Data with Charts 

The historical report option provides users with the alarms and counts over last 13 weeks. If user 

clicks on any of the tool then sub chart is generated along with data in the bottom as presented at Figure 

H.10. The data with graph can be exported into excel sheet (H.11). The user, however has the slicing, dicing 

and drill down/up options and can analyze data in a variety of different ways for equipment management.
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Figure H.10 – Historical Reporting for Alarms Count and Duration 

 

 
 

Figure H.11 – Exporting Historical Alarms Data into Excel 
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