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2 INTRODUCTION

Il est une quête interminable en géométrie riemannienne, qui consiste à tenter de dé-
montrer que l’objet le plus naturel d’une variété riemannienne, sa courbure, est assez puis-
sant pour pouvoir déterminer la structure de la variété sous-jacente, et en particulier sa
topologie.

Cette quête pourrait avoir commencé par la découverte de la formule de Gauss-Bonnet,
qui exprime la caractéristique d’Euler d’une variété riemannienne uniquement à l’aide de
sa courbure, et a certainement été influencée par le théorème fondamental suivant :

Théorème 0.1. Si (Mn, g) est une variété riemannienne complète à courbure sectionnelle

constante égale à 1, 0 ou −1, alors elle est respectivement isométrique à un quotient de

Sn, Rn ou Hn munis de leur métrique standard.

La “méthode de Bochner” a révélé de nombreux exemples de situations dans lesquelles
la géométrie détermine la topologie des variétés riemanniennes. Elle est nommée d’après
S. Bochner, qui a démontré en 1948 que la dimension du premier groupe de cohomologie
d’une variété riemannienne, compacte, de dimension n, à courbure de Ricci positive ou
nulle, est plus petite que n. Si, de plus, la courbure de Ricci est strictement positive en un
point de la variété, alors son premier groupe de cohomologie s’annule.

Le résultat de S. Bochner a été étendu aux groupes de cohomologie d’ordre plus grand
lorsqu’un certain opérateur de courbure est positif, et en 1975 S. Gallot et D. Meyer ont
démontré que les nombres de Betti d’une variété riemannienne compacte à opérateur de
courbure positif ou nul sont inférieurs à ceux du tore de même dimension ([GM75]). Si de
plus l’opérateur de courbure est strictement positif en un point, alors ils s’annulent tous.

Le théorème de la sphère pour les variétés à courbure 1/4-pincée, conjecturé par
H. Rauch en 1951, constitue un autre exemple emblématique des liens qui existent en-
tre la topologie et la géométrie des variétés riemanniennes. Il affirme qu’une variété rie-
mannienne compacte ayant toutes ses courbures sectionnelles dans l’intervalle ]1/4, 1] est
difféomorphe à un quotient de la sphère. W. Klingenberg, M. Berger et H. Rauch ont dé-
montré qu’une telle variété est homéomorphe à un quotient de la sphère, et la conjecture
complète est une conséquence d’un résultat de S. Brendle et R. Schoen ; en 2007, ils ont
montré qu’une variété dont la plus petite courbure sectionnelle est, en chaque point, stricte-
ment positive et supérieure à un quart de la plus grande courbure sectionnelle, admet une
métrique à courbure sectionnelle constante et strictement positive.

La preuve de ce dernier résultat utilise le flot de Ricci, introduit en 1982 par R. Hamil-
ton. Dans [Ham82], R. Hamilton a montré que le flot de Ricci normalisé, partant d’une
variété riemannienne compacte à courbure de Ricci strictement positive, existe pour tous
temps, et converge vers une métrique à courbure sectionnelle constante et positive. Il s’en-
suit que toute variété compacte de dimension trois qui admet une métrique à courbure de
Ricci strictement positive est difféomorphe à un quotient de la sphère.

Le flot de Ricci est devenu un outil fondamental en géométrie riemannienne, et le ré-
sultat de [Ham82] a été étendu aux dimensions plus grandes, pour différentes notions de
positivité de la courbure. Par exemple, R. Hamilton a démontré qu’en dimension quatre,
le flot de Ricci normalisé partant d’une métrique à opérateur de courbure strictement posi-
tif converge vers une métrique à courbure sectionnelle constante et positive. Ce résultat a
récemment été étendu à toutes les dimensions par C. Böhm et B. Wilking. En particulier, il
complète le théorème de S. Gallot et D. Meyer lorsque l’opérateur de courbure est stricte-
ment positif ; la variété est alors non seulement une sphère homologique (c.-à-d. que tous
les groupes de cohomologie sont triviaux), mais est de plus difféomorphe à un quotient de
la sphère.

Pour démontrer de tels résultats de rigidité pour des variétés à courbure pincée avec le
flot de Ricci, la stratégie consiste à prouver que le pincement est préservé le long du flot
à l’aide du principe du maximum, et que dans un certain sens, le pincement s’améliore le
long du flot. On montre alors que le flot existe pour tous temps positifs et converge vers une
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métrique à courbure sectionnelle constante. Cette stratégie a été appliquée avec succès pour
différentes hypothèses de pincement, en invoquant des arguments de plus en plus élaborés.

Afin d’énoncer d’autres généralisations du théorème de R. Hamilton, on rappelle la
décomposition orthogonale suivante de l’opérateur de courbure agissant sur les 2-formes
d’une variété riemannienne (Mn, g) :

Rmg =Wg + Zg + Sg,

où Wg est la courbure de Weyl, Zg ne dépend que de la partie sans trace de la courbure de
Ricci :

◦
Ricg = Ricg −

1

n
Rg g,

et Sg est un multiple de la courbure scalaire Rg que multiplie l’opérateur identité. On a de
plus les identités suivantes :

|Zg|2=
1

n− 2

∣∣ ◦
Ricg

∣∣
2

et |Sg|2=
1

2n(n− 1)
R2

g,

les normes étant prises en considérant les opérateurs de courbure comme des opérateurs
symétriques sur les formes différentielles. On a par exemple, en utilisant la convention de
sommation d’Einstein,

|W |2= 1

4
WijklW

ijkl et |Ric|2= RicijRic
ij .

La partie sans aucune trace Wg s’annule systématiquement en dimensions deux et
trois, et elle s’annule en dimension n ≥ 4 si et seulement si la métrique est localement
conformément plate. Une métrique pour laquelle la partie sans trace de la courbure de Ricci
s’annule est appelée métrique d’Einstein. De plus, une métrique est à courbure sectionnelle
constante si et seulement si elle est à la fois d’Einstein et localement conformément plate,
donc si et seulement si elle vérifie

Wg = Zg = 0.

En 1985, G. Huisken a démontré le résultat de rigidité suivant ([Hui85]) :

Théorème 0.2. Si (Mn, g) est une variété riemannienne compacte à courbure scalaire

strictement positive telle que pour tout point x ∈Mn,

|Wg(x)|2 + |Zg(x)|2< δn |Sg(x)|2,
avec δn une constante explicite (par exemple δ4 = 1

5 ), alors le flot de Ricci normalisé

partant de g existe pour tous temps positifs et converge en topologie C∞ vers une métrique

à courbure sectionnelle constante et positive.

En particulier, Mn est difféomorphe à un quotient de la sphère Sn.

En 1998, C. Margerin a amélioré la constante δ en dimension quatre, obtenant le
théorème optimal suivant ([Mar98]) :

Théorème 0.3. Si (M4, g) est une variété riemannienne compacte à courbure scalaire

strictement positive telle que pour tout point x ∈M4,

(0.1) |Wg(x)|2 + |Zg(x)|2< |Sg(x)|2,
alors le flot de Ricci normalisé partant de g existe pour tous temps positifs et converge en

topologie C∞ vers une métrique à courbure sectionnelle constante et positive.

En particulier, M4 est difféomorphe à la sphère S4 ou à l’espace projectif réel RP4.

Ce théorème est optimal ; les seules variétés pour lesquelles l’égalité est atteinte dans
(0.1) sont isométriques à CP2 muni de la métrique de Fubini-Study, ou à un quotient du
produit riemannien S3 × S1.

Tous ces résultats on en commun d’apporter une information d’ordre topologique sur
les variétés qui admettent une métrique dont la courbure satisfait à un certain pincement
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en chaque point. Certains de ces théorèmes sont en fait toujours vrais si l’on suppose
seulement le pincement “en moyenne”, c’est-à-dire en remplaçant le pincement ponctuel
par un pincement intégral. On remplace alors l’hypothèse de courbure scalaire strictement
positive par celle, plus faible, de constante de Yamabe strictement positive. La constante de
Yamabe d’une variété riemannienne compacte (Mn, g) peut se définir de la façon suivante :

Y(M, [g]) = inf
g̃∈[g]

{
1

Vol(M, g̃)1−
2
n

∫

M

Rg̃ dvg̃

}
,

où [g] =
{
e2fg, f ∈ C∞(M)

}
est la classe conforme de g. Elle est strictement positive

si et seulement si il existe une métrique g̃ = e2fg dans la classe conforme de g dont la
courbure scalaire est strictement positive. De plus, on peut toujours trouver une métrique
g̃ ∈ [g] telle que

1

Vol(M, g̃)1−
2
n

∫

M

Rg̃ dvg̃ = Y(M, [g]).

Une telle métrique est appelée métrique de Yamabe. Sa courbure scalaire est constante et
égale à

Rg̃ =
Y(M, [g])

Vol(M, g̃)
2
n

.

En utilisant l’inégalité de Hölder, on remarque qu’on a toujours

Y(M, [g]) ≤‖Rg‖Ln2 ,
avec égalité si et seulement si g est une métrique de Yamabe.

Un exemple de ces résultats de pincement intégral est une généralisation du théorème
de Bochner en dimension quatre, démontrée par M. Gursky dans [Gur98] et [Gur00], et
qui peut s’énoncer de la manière suivante :

Théorème 0.4. Soit (M4, g) une variété riemannienne compacte et orientée à constante

de Yamabe positive.

i) Si la partie sans trace de la courbure de Ricci satisfait à

(0.2) ‖Zg‖2L2≤
1

24
Y(M4, [g])2,

– soit son premier nombre de Betti b1(M
4) s’annule,

– soit l’égalité est atteinte dans (0.2), b1 = 1, g est une métrique de Yamabe

et (M4, g) est conformément équivalente à un quotient du produit riemannien

S3 × R.

ii) Si la courbure de Weyl satisfait à

(0.3) ‖Wg‖2L2≤
1

24
Y(M4, [g])2,

– soit son second nombre de Betti b2(M
4) s’annule,

– soit l’égalité est atteinte dans (0.3), b2 = 1 et (M4, g) est conformément dif-

féomorphe à CP2 muni de la métrique de Fubini-Study.

En dimension quatre, sur une variété compacte (M4, g), la formule de Gauss-Bonnet
affirme que

‖Wg‖2L2 − ‖Zg‖2L2 + ‖Sg‖2L2= 8π2χ(M4),

où χ(M4) est la caractéristique d’Euler deM4. On peut donc réécrire le pincement intégral

(0.4) ‖Wg‖2L2 + ‖Zg‖2L2< ‖Sg‖2L2 ,

et le remplacer par
‖Wg‖2L2< 4π2χ(M),

qui lui est équivalent et qui est invariant par changement conforme. Ainsi, si une variété
compacte orientée de dimension quatre à constante de Yamabe strictement positive satisfait
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au pincement (0.4), on peut supposer que g est une métrique de Yamabe, et le Théorème 0.4
permet d’affirmer que ses groupes de cohomologie sont triviaux.

Dans [CGY03], A. Chang, M. Gursky et P. Yang ont démontré qu’une variété qui
satisfait à ces conditions est en fait difféomorphe à un quotient de la sphère ; ils ont prouvé
l’extension suivante du Théorème 0.3 :

Théorème 0.5. Si (M4, g) est une variété riemannienne compacte à constante de Yamabe

strictement positive telle que

(0.5) ‖Wg‖2L2 + ‖Zg‖2L2< ‖Sg‖2L2 ,

alors elle est difféomorphe à la sphère S4 ou à l’espace projectif réel RP4.

De plus, ce théorème est optimal, puisque les seules variétés pour lesquelles l’égalité
est atteinte sont conformément équivalentes à CP2 muni de la métrique de Fubini-Study,
ou à un quotient du produit riemannien S3 × R.

Les preuves de ces résultats de pincement intégral reposent sur des arguments de
géométrie conforme. L’idée générale est qu’en effectuant un bon changement conforme
sur la métrique, on peut retrouver un pincement ponctuel de la courbure. On peut ensuite
appliquer une technique de Bochner ponctuelle pour obtenir le Théorème 0.4, et le résultat
ponctuel de C. Margerin (Théorème 0.3) permet d’obtenir le Théorème 0.5.

L’objet de cette thèse est d’explorer de nouvelles approches pour obtenir des résultats
de rigidité sur les variétés à courbure intégralement pincée.

On étudie tout d’abord une classe de flots de courbure d’ordre quatre, qui contient les
flots de gradient de fonctionnelles quadratiques en la courbure. Une propriété essentielle
de ces flots de gradient est qu’ils préservent, et améliorent, des pincement intégraux de la
courbure. Comme application de cette étude, nous présentons une nouvelle preuve d’une
partie du Théorème 0.5 (c.-à-d. avec une hypothèse de pincement plus restrictive), qui
repose entièrement sur l’étude d’un flot géométrique, et qui ne dépend pas de la version
ponctuelle du théorème, due à C. Margerin.

On obtient ensuite des résultats de pincement intégral en combinant une formule de
Weitzenböck avec l’inégalité de Sobolev induite par la positivité de la constante de Ya-
mabe. Nous appliquons ce principe général pour démontrer un résultat de rigidité pour les
singularités de nos flots d’ordre quatre. Grâce à cela, nous démontrons la convergence de
ces flots sous une hypothèse de pincement intégral sur la métrique initiale.

Dans un travail en collaboration avec G. Carron, nous appliquons également cette
méthode de Bochner intégrale pour généraliser les théorèmes classiques de Bochner-Weitzen-
böck aux variétés dont la courbure est intégralement pincée, et en particulier, nous redé-
montrons et étendons le Théorème 0.4 aux degrés et dimensions supérieurs.



6 INTRODUCTION

1. From curvature pinching to topological information

There is a never ending quest in Riemannian geometry, which consists in trying to
prove that the most natural object of a Riemannian manifold, its curvature, is powerful
enough as to determine the structure of the underlying manifold, and especially its topol-
ogy.

The quest may have been initiated by the discovery of the Gauss-Bonnet formula,
which determines the Euler characteristic of a Riemannian manifold only by means of its
curvature, and has certainly been marked by the following fundamental theorem:

Theorem 0.1. If a complete Riemannian manifold (Mn, g) has constant sectional curva-

ture 1, 0 or −1, then it is respectively isometric to a quotient of the standard Sn, Rn or

Hn.

The so-called “Bochner technique” has led to several examples of situations where the
curvature determines the topology of Riemannian manifolds. It is named after S. Bochner,
who proved in 1948 that the dimension of the first cohomology group of a closed n-
dimensional Riemannian manifold with nonnegative Ricci curvature is smaller than n.
And if furthermore the Ricci curvature is positive somewhere, then its first cohomology
group must vanish.

S. Bochner’s result has been extended to higher-order cohomology groups when some
curvature-related operator is nonnegative, and in 1975, S. Gallot and D. Meyer proved
that the Betti numbers of a closed n-dimensional Riemannian manifold with nonnegative
curvature operator are smaller than those of the torus of dimension n ([GM75]). If in
addition the curvature operator is positive somewhere, then they must all vanish.

The sphere theorem for 1/4-pinched Riemannian manifolds, conjectured by H. Rauch
in 1951, is another emblematic example of the deep connections between the topology
and the geometry of Riemannian manifolds. It asserts that a closed Riemannian manifold
whose sectional curvatures lie in (1/4, 1] is diffeomorphic to a quotient of the sphere.
W. Klingenberg, M. Berger and H. Rauch proved that such a manifold is homeomorphic to
a quotient of the sphere, and the full conjecture is a consequence of a result of S. Brendle
and R. Schoen: in 2007, they proved that if at each point the lowest sectional curvature
is positive and larger than one quarter of the largest sectional curvature, then the manifold
carries a metric of positive constant sectional curvature.

Their proof uses the Ricci flow, introduced in 1982 by R. Hamilton. In [Ham82] he
proved that the normalized Ricci flow starting on a closed three-dimensional Riemannian
manifold with positive Ricci curvature exists for all time and converges to a metric of
positive constant sectional curvature. Therefore, any closed three-dimensional manifold
carrying a metric of positive Ricci curvature is diffeomorphic to a quotient of the sphere.

The Ricci flow has become a very powerful tool in Riemannian geometry, and the re-
sult of [Ham82] has been extended to higher dimensions and to various notions of positive
curvature. For instance, R. Hamilton proved that in dimension four, the normalized Ricci
flow starting from a metric of positive curvature operator converges to a metric of positive
constant sectional curvature. This result has been recently extended to all dimensions by
C. Böhm and B. Wilking. In particular, it completes the theorem of S. Gallot and D. Meyer
when the curvature operator is positive: the manifold is not only an homological sphere
(i.e. all its cohomology groups vanish), but is actually diffeomorphic to a quotient of the
sphere.

The strategy to prove rigidity results for manifolds with pinched curvature by using the
Ricci flow consists in proving with the maximum principle that the pinching is preserved
along the flow, and that in some sense, it becomes better and better along the flow. Then
one proves that the normalized flow exists for all time and converges to a metric of constant
sectional curvature. This has been done for different pinching assumptions by using more
and more elaborate arguments.
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There have been other generalizations of R. Hamilton’s result. To state them, we recall
the following orthogonal decomposition of the curvature operator, acting on the 2-forms of
a Riemannian manifold (Mn, g):

Rmg =Wg + Zg + Sg,

where Wg is the Weyl curvature, Zg only depends on the traceless part of the Ricci curva-
ture

◦
Ricg = Ricg −

1

n
Rg g,

and Sg is a multiple of the scalar curvature Rg times the identity operator. Moreover, we
have

|Zg|2=
1

n− 2

∣∣ ◦
Ricg

∣∣
2

and |Sg|2=
1

2n(n− 1)
R2

g.

The norms are taken by considering curvature operators as symmetric operators on differ-
ential forms. For instance, with the Einstein summation convention, we have

|W |2= 1

4
WijklW

ijkl and |Ric|2= RicijRic
ij .

The totally trace-free partWg always vanishes in dimension 2 and 3, and in dimension
n ≥ 4, it vanishes if and only if the metric is locally conformally flat. A metric for which
the traceless Ricci part Zg vanishes is called an Einstein metric. Moreover, a metric has
constant sectional curvature if and only if it is both Einstein and locally conformally flat,
therefore if and only if

Wg = Zg = 0.

In 1985, G. Huisken proved the following rigidity result ([Hui85]):

Theorem 0.2. If (Mn, g) is a closed Riemannian manifold with positive scalar curvature

such that for all x in Mn,

|Wg(x)|2 + |Zg(x)|2< δn |Sg(x)|2,
with δn an explicit constant, e.g. δ4 = 1

5 , then the solution of the normalized Ricci flow

starting from g exists for all time and converges as t goes to +∞ to a metric of positive

constant curvature in the C∞ topology.

In particular, Mn is diffeomorphic to a quotient of the sphere.

In 1998, C. Margerin improved the constant in dimension four, and obtained the fol-
lowing optimal theorem ([Mar98]):

Theorem 0.3. If (M4, g) is a closed Riemannian manifold with positive scalar curvature

such that for all x in M4,

(0.6) |Wg(x)|2 + |Zg(x)|2< |Sg(x)|2,
then the solution of the normalized Ricci flow starting from g exists for all time and con-

verges as t goes to +∞ to a metric of positive constant curvature in the C∞ topology.

In particular, M4 is diffeomorphic to the sphere S4 or to the real projective space

RP4.

The theorem is optimal as the only manifolds for which equality holds in (0.6) are
isometric either to CP2 with the Fubini-Study metric or to a quotient of the Riemannian
product S3 × S1.

The common feature of all those results is to give topological information on a man-
ifold that carry a metric whose curvature satisfy a certain pinching at each point. It has
appeared that some of those theorems are still true if one only requires the curvature to be
pinched in an “average” sense, that is when replacing the pointwise pinching by an integral
pinching. In these results, the assumption of positive scalar curvature will be replaced by
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the weaker one of positive Yamabe constant. The Yamabe constant of a closed Riemannian
manifold (Mn, g) can be defined by

Y(M, [g]) = inf
g̃∈[g]

{
1

Vol(M, g̃)1−
2
n

∫

M

Rg̃ dvg̃

}
,

where [g] =
{
e2fg, f ∈ C∞(M)

}
is the conformal class of g. It is positive if and only

if there exists a metric g̃ = e2fg in the conformal class of g which has positive scalar
curvature.

Moreover, we can always find a metric g̃ ∈ [g] such that

1

Vol(M, g̃)1−
2
n

∫

M

Rg̃ dvg̃ = Y(M, [g]).

Such a metric is called a Yamabe minimizer, and has a constant scalar curvature equal to

Rg̃ =
Y(M, [g])

Vol(M, g̃)
2
n

.

Using the Hölder inequality, we see that we always have

Y(M, [g]) ≤‖Rg‖Ln2 ,
with equality if and only if g is a Yamabe minimizer.

One example of these integral pinching results is a generalization of the Bochner the-
orem in dimension four proven by M. Gursky in [Gur98] and [Gur00], and can be stated
as follows:

Theorem 0.4. Assume that (M4, g) is a closed oriented Riemannian manifold with posi-

tive Yamabe constant.

i) If the traceless part of the Ricci curvature satisfies

(0.7) ‖Zg‖2L2≤
1

24
Y(M4, [g])2,

– either its first Betti number b1(M
4) vanishes,

– or equality holds in (0.7), b1 = 1, g is a Yamabe minimizer and (M4, g) is

conformally equivalent to a quotient of the Riemannian product S3 × R.

ii) If the Weyl curvature satisfies

(0.8) ‖Wg‖2L2≤
1

24
Y(M4, [g])2,

– either its second Betti number b2(M
4) vanishes,

– or equality holds in (0.8), b2 = 1 and (M4, g) is conformally equivalent to

CP2 endowed with the Fubini-Study metric.

On a four-dimensional closed manifold (M4, g), the Gauss-Bonnet formula asserts
that

‖Wg‖2L2 − ‖Zg‖2L2 + ‖Sg‖2L2= 8π2χ(M4),

where χ(M4) is the Euler characteristic of M4. Consequently, the integral pinching

(0.9) ‖Wg‖2L2 + ‖Zg‖2L2< ‖Sg‖2L2 ,

is equivalent to the conformally invariant one

‖Wg‖2L2< 4π2χ(M).

Therefore, if a closed oriented four-dimensional manifold with positive Yamabe constant
satisfies (0.9), we can suppose that g is a Yamabe minimizer, and it follows from Theo-
rem 0.4 that its cohomology groups must vanish.

In [CGY03], A. Chang, M. Gursky and P. Yang proved that a manifold which sat-
isfy these conditions is actually diffeomorphic to a quotient of the sphere; they gave the
following extension of Theorem 0.3:
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Theorem 0.5. If (M4, g) is a closed Riemannian manifold with positive Yamabe constant

such that

(0.10) ‖Wg‖2L2 + ‖Zg‖2L2< ‖Sg‖2L2 ,

then it is diffeomorphic to the sphere S4 or to the real projective space RP4.

Moreover, this theorem is optimal, as the only manifolds for which equality holds are
conformally equivalent to CP2 endowed with the Fubini-Study metric or to a quotient of
the Riemannian product S3 × R.

The proofs of those integral pinching results are based on conformal geometry argu-
ments. The general idea is to show that a good conformal change can be made on the
metric in order to recover a pointwise pinching on the curvature. Then, one can apply a
pointwise Bochner method to obtain Theorem 0.4, and the pointwise result of C. Margerin
(Theorem 0.3) leads to Theorem 0.5.

The purpose of this thesis is to explore other approaches to obtain rigidity results for
manifolds with integral pinched curvature.

We first study a class of fourth-order curvature flows, which contains the gradient flows
of quadratic curvature functionals. An essential feature of those gradient flows is that they
are defined in such a way that they preserve, and actually improve integral pinchings on the
curvature. As an application of this study, we give a new proof of a part of Theorem 0.5 (i.e.
with a stronger pinching assumption), which is entirely based on the study of a geometric
flow, and doesn’t rely on the pointwise version of the theorem, due to C. Margerin.

We then obtain integral pinching results by combining a Weitzenböck formula with
the Sobolev inequality induced by the positivity of the Yamabe constant. We apply this
general principle to prove a rigidity theorem for the singularities of our fourth-order flows.
This is what allows us to prove the convergence of the flows under a pinching assumption
on the initial metric.

In a joint work with G. Carron, we also applied this integral Bochner method to gener-
alize classical Bochner-Weitzenböck theorems to manifold with integral pinched curvature,
and in particular, we reprove and extend Theorem 0.4 to higher degrees and dimensions.

2. On some fourth-order curvature flows

According to [Per02], the Ricci flow can be seen as the gradient flow for a modified
Einstein-Hilbert functional

Fm(g) =

∫

M

Rm
g dm,

where m is a fixed measure on M and Rg is a scalar curvature modified by the measure.
Moreover, the critical points of Fm are gradient Ricci solitons, which are the manifolds
arising when performing a blow-up at a singular time. An essential property of the Ricci
flow is that it is invariant (up to diffeomorphisms) by a change of measure m. This fact
combined with the monotonicity of Fm leads to the noncollapsing result of G. Perelman.

In order to preserve integral pinchings on the curvature, we will consider gradient
flows for quadratic curvature functionals, linear combination of:
(0.11)

FRm(g) =

∫

M

|Rmg|2 dvg, FRic(g) =

∫

M

|Ricg|2 dvg and FR(g) =

∫

M

R2
gdvg,

or equivalently of
(0.12)

FW (g) =

∫

M

|Wg|2 dvg, F ◦
Ric

(g) =

∫

M

∣∣ ◦
Ricg

∣∣
2

dvg and FR(g) =

∫

M

R2
gdvg.

These gradient flows involve four space derivatives of the metric, and therefore do not
share as much properties as an heat equation like the Ricci flow does. For example, the
maximum principle doesn’t apply.
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Several other higher-order geometric gradient flows have been successfully carried
out during the last decade, among which the Calabi flow on surfaces in [Chr91], general
gradient flows on curves and surfaces in [Pol96, Pol97], the Willmore flow in [Sim01,
KS01, KS02], flows of fourth and higher-order on immersed hypersurfaces in [Man02], a
fourth-order equivalent of the Yamabe conformal flow introduced in [Bre03], the Calabi
flow on Kähler manifolds in [CH08].

As for the gradient flows of the quadratic functionals we are interested in, Y. Zheng
has considered the gradient flow of FRic in dimension three in [Zhe03], and J. Streets has
studied the gradient flow of FRm in dimension four in [Str08]. They both proved short-
time existence and integral estimates for their respective flows. In [Str09] and [Str10b],
J. Streets proved long-time existence and convergence for his flow when it starts from a
metric with a curvature very close to a constant one (in the L2 sense). He proved similar
results in dimension three in [Str12]. Unfortunately, the number ǫ which quantify how
close the metric should start is non-explicit and results in a intricate way from a number of
curvature estimates.

The first difficulty in the study of these fourth-order flows is that the metric could a
priori collapse with bounded curvature at a singularity. It is a very classical fact about the
Ricci flow that the curvature must blow up at a singular time. Indeed, if the curvature could
stay bounded, then all the derivatives of the curvature would be bounded, and the solution
would extend beyond the singular time. This fact results either from pointwise estimates
on the curvature, obtained by the maximum principle, or as it was done in [Ham82], by
remarking that a bound on the curvature induces a bound on the time derivative of the
metric ∂tg, which implies that the Sobolev constant stays bounded. Then, one can prove
pointwise estimates from integral estimates by Sobolev inclusions.

For fourth-order curvature flows, neither does the maximum principle apply, nor does
a curvature bound induce a control on the metric or on a Sobolev constant. Therefore,
the fact that the curvature must blow-up at a singular time becomes non-trivial, and was
only proven by J. Streets in [Str11], by showing pointwise curvature estimates using a
contradiction argument.

The second difficulty arises when one wants to make a blow-up analysis at a singular
time. Since the curvature blows up, one can define a sequence of normalized flows with
bounded curvature. The existence of a limit for a subsequence of those manifolds comes
from classical precompactness results when the injectivity radius is uniformly bounded
from below by a positive constant. Whether such a lower bound exists or not depends on
a noncollapsing property, which was proved for the Ricci flow by G. Perelman ([Per02]),
but remains unattainable in general for fourth-order flows.

In this thesis, we deal with this issue by controlling the Yamabe constant. When we
assume a positive lower bound on it, we can prove a noncollapsing property similar to the
one of G. Perelman. As a consequence, we can always find a sequence of manifolds near a
singular time which converges to a “singularity model”.

Given a Riemannian manifold (Mn, g0), the evolution equations we consider are given
by: {

∂tg = P (g)

g(0) = g0,
EP (g0)

where P : S2
+(M) → S2(M) is a smooth map of the form

(0.13) P (g) = δδ̃Rmg + a∆Rgg + b∇2Rg +Rmg ∗Rmg,

with a and b two real numbers.
The notation S2(M) denotes the space of symmetric (2, 0)-tensors, S2

+(M) the space
of metrics, and S ∗ T denotes any linear combination (with coefficients independent of the
metric) of terms obtained from S⊗T by taking tensor products with g and g−1, contracting
and permuting indices. The operators δ and δ̃ are defined in Appendix B. In particular we
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have

δδ̃Rmij = ∇α∇βRmiαjβ ,

and we recall that

δδ̃Rmg = ∇∗∇Ricg +
1

2
∇2Rg +Rmg ∗Rmg.

The gradient flows for most of the quadratic functionals generated by those in (0.11)
or (0.12) are of this type (see Section 2 of Chapter 2 for details).

We first prove short-time existence for this class of flows when a < 1
2(n−1) . Since

P is invariant by diffeomorphisms, it is not elliptic. We can proceed as for the Ricci
flow, and apply the DeTurck trick to obtain an equation that doesn’t possess that geometric
invariance. We show in Section 1 of Chapter 2 that it is possible to make P become strongly
elliptic if and only if a < 1

2(n−1) . In that case, the flow exists and is unique on a small time
interval, thus we obtain:

Theorem A (Short-time existence). Let (M, g0) be a closed Riemannian manifold. When

a < 1
2(n−1) , there exists a unique maximal solution (gt) of EP (g0) defined on some time

interval [0, T ), with T positive.

In the sequel of the introduction, we will assume that P is a smooth map of the form
(0.13), with a < 1

2(n−1) . The next step is to show that the curvature must blow up at
the time T of maximal existence, by proving curvature estimates. In [Bou10] we prove
pointwise estimates on the curvature from integral one when the Yamabe constant remains
uniformly positive along the flow. Here, we will use the method of [Str11], which doesn’t
need this hypothesis. Moreover, we improve the method of J. Streets with a point selection
argument to prove local estimates when the curvature is locally bounded. In particular, we
obtain the following property at a singular time:

Theorem B (Curvature blow-up). Let (Mn, g0), n ≥ 3, be a closed Riemannian manifold

and let g(t), t ∈ [0, T ) be the maximal solution of EP (g0). If T < ∞, then the curvature

blows up at T :

lim
t→T

‖Rmgt‖L∞= ∞.

Moreover, if T < ∞, the curvature blows up faster than 1
(
√
T−t)q

for any q < 1: we can

find sequences tk → T and xk ∈M such that

∣∣Rmg(tk)

∣∣ (xk) ≥
k

(√
T − tk

)1− 1
k

.

When in addition we have a uniform positive lower bound on the Yamabe constant,
we obtain local estimates when the curvature is locally bounded in Lp with respect to the
space variable, and in Lq with respect to the time variable, with n

2p +
2
q = 1 (Theorem 2.7).

In particular we obtain the following result when p = n
2 and q = ∞, which shows that the

curvature must concentrate in the Ln/2 sense at a singularity:

Theorem C. For all α > 0, k ∈ N and n ≥ 3, there exists a constant ǫ(α, k, n, P ) such

that if g(t), t ∈ [0, T ], are complete metrics on a manifold Mn which are solution to EP ,

that satisfy

inf
[0,T ]

Y(M, [gt]) > 0,

and such that for some x0 ∈M and 0 < r < T 1/4

sup
[0,T ]

(∫

Bg(x0,r)

|Rmg|
n
2 dvg

)
≤ ǫ,
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then for all t ∈ (0, T ] and x ∈ Bg(t)(x0,
r
2 )

k∑

j=0

∣∣∇jRmg

∣∣ 2
2+j≤ α

(
1

r2
+

1√
t

)
.

When the Yamabe constant remains uniformly positive along the flow, we can also
obtain a model of the singularity by taking a limit of dilations of the metric near a singular
time and a singular point. More precisely, if we take sequences of times ti → T and points
xi ∈ M such that the curvature at (xi, ti) blows up, and if we renormalize the metric at
time ti such that the curvature is bounded by 1, a subsequence of these dilated metrics
converges. Hence, we obtain the following general behavior of the flows EP :

Theorem D. Let (Mn, g0), n ≥ 3, be a closed Riemannian manifold. Let g(t), t ∈ [0, T )
be the maximal solution of EP (g0). Suppose that inf

[0,T )
Y(M, [gt]) > 0. Then one of the

following situations occurs:

1) The flow exists for all time with uniform Ck curvature bounds and a uniform lower

bound on the injectivity radius.

2) A finite or infinite time singularity occurs, where the curvature blows up:

lim
t→T

‖Rmgt‖L∞= ∞.

In that case, there exist sequences ti → T and xi ∈ M such that
∣∣Rmg(ti)(xi)

∣∣→ ∞
and the renormalized metrics

(
M,
∣∣Rmg(ti)(xi)

∣∣ g(ti), xi
)

converge to a non-flat complete Riemannian manifold in the pointed C∞ topology.

The situation is particularly interesting in dimension four, which is the only dimension
for which the functionals in (0.11) and (0.12) are scale-invariant. Moreover, in dimension
four, thanks to the Gauss-Bonnet formula, a positive lower bound on the Yamabe constant
exists as soon as the Yamabe constant is positive and the mean Q-curvature is positively
bounded from below (where the Q-curvature is defined by Qg = 1

6∆Rg+ |Sg|2 − |Zg|2).
We show that these conditions are satisfied for the gradient flows of a number of quadratic
functionals, when assuming a bound on the initial energy. More precisely, for λ ≥ 0, we
consider the functionals

Fλ(g) = (1− λ)

∫

M

|Wg|2 dvg + λ

∫

M

|Zg|2 dvg,

and the corresponding gradient flows:
{

∂tg = −2∇Fλ(g)

g(0) = g0,
Eλ(g0)

on a closed Riemannian manifold (M4, g0). Short-time existence is supplied by Theo-
rem A as soon as λ > 0, and according to the Gauss-Bonnet formula, the case λ = 1
corresponds to the gradient flow of 1

2FRm.
For that class of gradient flows, and when the initial value of the functional Fλ is

less than (1− λ)8π2χ(M), we prove that blow-up sequences possess a converging subse-
quence, and it happens that the limit is critical for the given functional, and is actually a
complete Bach-flat (i.e. critical for the functional F0) manifold with zero scalar curvature:

Theorem E. Let λ be in (0, 1). Let (M4, g0) be a closed Riemannian manifold with

positive Yamabe constant such that

(0.14) Fλ(g0) ≤ (1− λ)8π2χ(M).

If g(t), t ∈ [0, T ) is the maximal solution of Eλ(g0), then one of the following situations

occurs:
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1) The flow exists for all time and for any sequence ti → ∞, a subsequence of g(ti)
converges in the C∞ topology to a metric g∞, which is critical for Fλ.

2) A finite or infinite time singularity occurs, where the curvature blows up:

lim
t→T

‖Rmgt‖L∞= ∞.

In that case, there exist sequences ti → T and xi ∈ M such that
∣∣Rmg(ti)(xi)

∣∣→ ∞,

and the renormalized metrics
(
M,
∣∣Rmg(ti)(xi)

∣∣ g(ti), xi
)

converge to a non-flat complete non-compact Riemannian manifold in the pointed C∞

topology, which is Bach-flat and scalar-flat.

Remarks 0.6. 1) The condition (0.14) is equivalent to the following integral pinching
between the scalar curvature and the traceless Ricci tensor:

‖Zg0‖2L2≤ (1− λ) ‖Sg0‖2L2 .

2) When λ = 1, the theorem remains true but becomes useless, as the assumption (0.14)
is only satisfied by Einstein metrics, which are critical for the functional.

To show long-time existence and convergence for the flow, we prove a rigidity result
for those non-compact Bach-flat manifolds modeling the singularity. This is done by using
an integral Bochner technique, and is explained in the next section. It allows us to rule out
the formation of singularities when the initial energy is less than an explicit bound.

3. An integral Bochner technique

When some tensor satisfies an elliptic equation (an harmonic form, a Killing vector
field, an harmonic curvature tensor, the curvature of critical metrics of a given functional),
a Weitzenböck formula often implies that the norm of the tensor satisfy a certain elliptic
inequality depending on a curvature term.

When the curvature term satisfies a pointwise pinching, the classical Bochner tech-
nique consists in applying the maximum principle to show that the tensor must vanish.

When the curvature term satisfies the right integral pinching with some Sobolev con-
stant, we can integrate the inequality over the manifold to show that the tensor vanishes.

This technique has been used by E. Hebey and M. Vaugon in [HV96] to prove rigidity
results for closed manifolds with harmonic Weyl curvature which satisfy an integral pinch-
ing with the Yamabe constant, or by G. Carron in [Car99] to prove the vanishing of L2

cohomology groups on complete manifolds.
In Section 3 of Chapter 1, we present a general pinching theorem based on this idea.

When we apply it to manifolds with harmonic curvature, we recover a number of results of
[HV96], and extend them to non-compact manifolds. We also apply it to critical metrics
for quadratic curvature functionals in dimension four, in order to rule out singularities of
fourth-order flows, and to harmonic forms, in order to prove the vanishing of Betti numbers
under optimal integral pinchings.

3.1. Application to critical metrics. We prove the following rigidity result for the
singularity models of our flows:

Theorem F. Let (M4, g) be a complete Riemannian manifold with positive Yamabe con-

stant and let λ be in [0, 1]. Suppose that Rg is in L2(M). If λ = 0, suppose that Rg is

constant.

If g is a critical metric of Fλ with

(0.15) ‖Wg‖2L2 +
1

2
‖Zg‖2L2<

1

8× 24
Y(M, [g])2,

then g is of constant sectional curvature.
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As a consequence, no singularity can occur along the flow when the initial value of the
functional is less than a given constant. Indeed, the bound on the functional is preserved
along the flow, and correspond to an integral pinching on the curvature, satisfied by every
metric in the flow. Since the singularity model is obtained as limit of dilated metrics at a
singular time, this limit manifold also satisfies some integral pinching on the curvature. For
the right value of the initial bound, this integral pinching is exactly (0.15), and Theorem F
implies that the manifold modeling the singularity must be flat. This implies that there is
actually no singularity. As a consequence, the flow exists for all time, and converges to a
metric which is critical for the functional, and satisfies (0.15), hence to a spherical space
form.

Theorem G. Let λ be in (0, 1). If (M4, g0) is a closed Riemannian manifold with positive

Yamabe constant such that





λ ≤ 4

13

Fλ(g0) < 2λπ2χ(M)
or





λ ≥ 4

13

Fλ(g0) <
8

9
(1− λ)π2χ(M),

then the solution ofEλ(g0) exists for all time and converges in theC∞ topology to a metric

of constant positive curvature. In particular, M4 is diffeomorphic to the sphere S4 or the

real projective space RP4.

If we take λ = 4
13 in the previous theorem, then according to the Gauss-Bonnet for-

mula we obtain the following result:

Corollary H. If (M4, g0) is a closed Riemannian manifold with positive Yamabe constant

such that

‖Wg0‖2L2 +
5

8
‖Zg0‖2L2<

1

8
‖Sg0‖2L2 ,

then the flow of F4/13 exists for all time and converges to a metric of constant positive

curvature. In particular, M4 is diffeomorphic to the sphere S4 or the real projective space

RP4.

Under those stronger hypotheses, it provides an alternative proof of Theorem 0.5.

3.2. Application to harmonic forms (with G. Carron). This integral Bochner tech-
nique can also be applied to harmonic differential forms. With G. Carron, we prove in
[BC12] an integral Bochner-Weitzenböck theorem. Thanks to this, we deduce the van-
ishing of Betti numbers under integral pinching assumptions in several situations, and we
characterize the equality cases.

The first example of these integral pinching results is an integral version of the Bochner-
Weitzenböck theorem of S. Gallot and D. Meyer ([GM75]). If we let −ρg be the lowest
eigenvalue of the traceless curvature operatorWg+Zg of a Riemannian manifold (Mn, g),
this Bochner-Weitzenböck theorem can be stated as follows:

Theorem 0.7. If a closed Riemannian manifold (Mn, g) has a nonnegative curvature op-

erator, i.e. if

(0.16) ρg ≤ 1

n(n− 1)
Rg,

then for all 1 ≤ k ≤ n
2 ,

– either its kth Betti number bk(M
n) vanishes,

– or equality holds in (0.16), 1 ≤ bk ≤
(
n
k

)
and every harmonic k-form is parallel.

We prove that a large part of the theorem remains true if we only make the assumption
in an integral sense:
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Theorem I. If (Mn, g), n ≥ 4, is a closed Riemannian manifold such that

(0.17) ‖ρg‖Ln2 ≤
1

n(n− 1)
Y(Mn, [g]),

then for all 1 ≤ k ≤ n−3
2 or k = n

2 ,

– either its kth Betti number bk(M
n) vanishes,

– or equality holds in (0.17) and (up to a conformal change in the case k = n
2 ) the

pointwise equality ρg = 1
n(n−1)Rg holds, 1 ≤ bk ≤

(
n
k

)
, every harmonic k-form is

parallel and g is a Yamabe minimizer.

Remark 0.8. In Theorem I, as well as in the other theorems of this section, the two cases
are not mutually exclusive, i.e. equality can hold in (0.17) while a number of Betti numbers
vanish.

We also obtain an alternative proof of Theorem 0.4, and several generalizations of
this result to higher dimensions and higher degrees. In particular, we prove the following
extension to higher dimensions of the first part of Theorem 0.4:

Theorem J. If (Mn, g), n ≥ 5, is a closed Riemannian manifold with positive Yamabe

constant such that

(0.18)
∥∥Zg

∥∥2
L
n
2
≤ 1

n(n− 1)(n− 2)
Y(Mn, [g])2,

– either its first Betti number b1(M
n) vanishes,

– or equality holds in (0.18), b1 = 1, and there exists an Einstein manifold (Nn−1, h)
with positive scalar curvature such that (Mn, g) is isometric to a quotient of

(Nn−1 × R, h+ (dt)2).

We prove an analogue of the second part of Theorem 0.4 in dimension 6:

Theorem K. If (M6, g) is a closed Riemannian manifold with positive Yamabe constant

such that

(0.19) ‖Wg‖2L3≤
1

40
Y(M6, [g])2,

– either its third Betti number b3(M
6) vanishes,

– or equality holds in (0.19), b3 = 2, and there exist two positive numbers a and b
such that (M6, g) is conformally equivalent to a quotient of

(
S
3 × S

3, a gS3 + b gS3
)
.

These rigidity results with a pinching involving the norm of a curvature tensor are
deduced from an integral Bochner-Weitzenböck theorem with a pinching on the lowest
eigenvalue of the traceless Bochner-Weitzenböck curvature. We characterize the situations
were such pinching theorems based on the norm of curvature tensors can be obtained,
and prove the following result (the constants an,k and bn,k are defined in Section 2.1 of
Chapter 4):

Theorem L. If (Mn, g) is a closed Riemannian manifold with positive Yamabe constant

such that for some integer 1 ≤ k ≤ n
2 , k 6= n−1

2 , the following pinching holds:

(0.20)

(
an,k ‖W‖2n

2
+bn,k

∥∥ ◦
Ric
∥∥
2

n
2

) 1
2

≤ k(n− k)

n(n− 1)
Y(M, [g]),

– either its kth Betti number bk(M
n) vanishes,

– or n = 4 and equality holds in Theorem 0.4,

– or k = 1 and equality holds in Theorem J,

– or k = 2, n ≥ 7 and (Mn, g) is isometric to a quotient of: a
(
S2 × 1

n−5S
n−2
)

.
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– or k = 3, n = 6 and equality holds in Theorem K.

Finally, we prove an extension of Theorem J to non-compact manifolds:

Theorem M. Let (Mn, g), n ≥ 4, be a complete non-compact Riemannian manifold

with positive Yamabe constant. Assume that the lowest eigenvalue of the Ricci curvature

satisfies Ric− ∈ Lp for some p > n
2 , and assume that the scalar curvature is in L

n
2 . If

(0.21)
∥∥ ◦
Ricg

∥∥
L
n
2
+

n− 4

4
√
n(n− 1)

‖Rg‖Ln2 ≤
n

4

1√
n(n− 1)

Y(Mn, [g]),

– either H1
c (M,Z) = {0} and in particular M has only one end,

– or equality holds in (0.21), and there exists an Einstein manifold (Nn−1, h) with

positive scalar curvature and α > 0 such that (Mn, g) or one of its two-fold cover-

ings is isometric to
(
Nn−1 × R, α cosh2(t)

(
h+ (dt)2

))
.

In particular, this theorem gives interesting information on the singularities of the
gradient flows Eλ in dimension four. Indeed, it implies that a complete non-compact
Bach-flat manifold (M4, g) with zero scalar curvature which satisfies the pinching

∥∥Zg

∥∥2
L2<

1

24
Y(M4, [g])2

has only one end. Under the additional assumption

‖Wg‖2L2< 4π2,

the Gauss-Bonnet formula shows that (M4, g) is simply connected at infinity. Then, ac-
cording to the work of G. Tian and J. Viaclovsky ([TV05]) and of J. Streets ([Str10a]),
(M4, g) can be conformally compactified to a smooth Bach-flat manifold by adding a
point at infinity.
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The Yamabe constant and the Bochner technique
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Dans ce chapitre, on montre un certain nombre de résultats liés à la constante de Ya-
mabe, qui seront utilisés dans les chapitres suivants. En particulier, on introduit un invariant
de Yamabe modifié, on explicite le lien entre la positivité de la constante de Yamabe, les
inégalités de Sobolev et le non-effondrement des variétés riemanniennes, et on démontre
une version abstraite de la méthode de Bochner intégrale utilisée dans les chapitres trois et
quatre.

1. The Yamabe constant

The Yamabe constant can be defined by

Y(M, g) = inf
u∈C∞

0 (M)
u 6=0

∫
M

(
4(n−1)
n−2 |du|2 +Rgu

2
)
dvg

(∫
M
u

2n
n−2 dvg

)n−2
n

.

It is conformally invariant: if f is a smooth function, then

Y(M, g) = Y
(
M, e2fg

)
,

thus it only depends on the conformal class [g] of the metric g.
According to the work of H. Yamabe, N. Trudinger, T. Aubin and R. Schoen, when M

is closed, there always exists a positive smooth function u such that

(1.1)
∫

M

(
4(n− 1)

n− 2
|du|2 +Rgu

2

)
dvg = Y(M, [g]), and

∫

M

u
2n
n−2 dvg = 1.

Moreover, since C∞
0 is dense in H2

1 (M) (see [Aub98]), the infimum defining the Yamabe
constant can also be taken over H2

1 (M), and any function u ∈ H2
1 (M) with ‖u‖

L
2n
n−2

= 1

attaining the infimum is smooth, positive and solution to the Yamabe equation

(1.2)
4(n− 1)

n− 2
∆gu+Rgu = Y(M, [g])u

n+2
n−2

(see [Aub98]). We can also write that equation

Lg(u) = Y(M, [g])u
n+2
n−2 ,

where Lg denotes the conformal laplacian

Lg =
4(n− 1)

n− 2
∆g +Rg,

and satisfies the following conformal covariance property: if g̃ = ϕ
4

n−2 g with ϕ a smooth
positive function, then

ϕ
n+2
n−2Lg̃(u) = Lg(ϕu).

It follows in particular that

ϕ
n+2
n−2Rg̃ =

4(n− 1)

n− 2
∆gϕ+Rgϕ.

Therefore, if u is a positive smooth solution of (1.2), then the metric g̃ = u
4

n−2 g is a
Yamabe minimizer.

1.1. The modified Yamabe constant. For β ≥ 0, we introduce the modified Yamabe
constant

(1.3) Yg(β) = inf
u∈C∞

0 (M)
u 6=0

∫
M

(
4(n−1)
n−2 |du|2 +βRgu

2
)
dvg

(∫
M
u

2n
n−2 dvg

)n−2
n

.
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In particular, for β = 1, this modified Yamabe constant is the Yamabe constant:

Yg(1) = Y(M, [g]).

The function β → Yg(β) is an infimum of affine functions of β, hence it is concave and
for all β ∈ [0, 1] we obtain

(1− β)Yg(0) + βY(M, [g]) ≤ Yg(β).

When (M, g) is closed, Yg(0) = 0 and we have:

Proposition 1.1. If (Mn, g) is a closed Riemannian manifold, then

(1.4) βY(M, [g]) ≤ Yg(β).

If β ∈ (0, 1), then equality holds in this inequality if and only if g is a Yamabe minimizer,

and the only functions attaining the infimum in (1.3) are constant functions.

Proof. Since β → Yg(β) is concave, it is equal to its chord βY(M, [g]) at an interior
point β ∈ (0, 1) if and only if it is affine. Then, if for some u and some β ∈ (0, 1), equality
is attained in (1.3), the affine function of β corresponding to u is above the function Yg

and is equal to Yg(β) at β, hence it must be equal to Yg on [0, 1]. Therefore the function
u realizes the infimum in (1.3) for all β ∈ [0, 1]. Taking β = 0 yields

∫
M

|du|2 dvg = 0,
hence u is constant. Then, taking β = 1 shows that g is a Yamabe minimizer. �

1.2. The Yamabe constant on complete non-compact manifolds. We still define
the Yamabe constant by

Y(M, g) = inf
u∈C∞

0 (M)
u 6=0

∫
M

(
4(n−1)
n−2 |du|2 +Rgu

2
)
dvg

(∫
M
u

2n
n−2 dvg

)n−2
n

and we still have for any smooth function f :

Y(M, g) = Y(M, e2fg).

The Yamabe functional

Fg(u) =

∫
M

(
4(n−1)
n−2 |du|2 +Rgu

2
)
dvg

(∫
M
u

2n
n−2 dvg

)n−2
n

is also well-defined when Rg is in L
n
2 (M, g), u is in L

2n
n−2 (M, g) and du is in L2(M, g).

Moreover, when g is complete, C∞
0 (M) is dense in the space

H = {u ∈ L
2n
n−2 (M, g), |du|∈ L2(M, g)}.

Therefore, we also have
Y(M, [g]) = inf

H
Fg,

and any function in H with ‖u‖
L

2n
n−2

= 1 attaining the infimum is a weak solution to the

Yamabe equation (1.2). If in addition u is in C0,α, then by classical regularity theorems u
is smooth, and by maximum principle it is positive (see [Aub98]).

2. Yamabe, Sobolev and noncollapsing

We recall the following definition:

Definition 1.2. We say that a Riemannian manifold (Mn, g) is κ-noncollapsed if every
ball B of radius r such that |Rmg|≤ 1

r2 on B, has volume at least κrn.

We easily see that the property of being κ-noncollapsed is scale invariant. If we scale a
κ-noncollapsed metric so that the curvature is bounded by 1, then according to the follow-
ing lemma, its injectivity radius is bounded from below by some positive constant δ(n, κ):
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Lemma 1.3 (Cheeger, see [Pet98], Lemma 4.5). For all C > 0 and κ > 0 there exists

δ(n,C, κ) > 0 such that the following property is true:

If (Mn, g) is a complete Riemannian manifold such that Vol(B(x, 1)) ≥ κ for all x
in M and sup

M
|Rmg|≤ C, then injg(M) ≥ δ.

Therefore, the class of pointed k-noncollapsed manifolds with curvature bounded by
1 is precompact in the pointed Cα topology.

We now prove the following proposition:

Proposition 1.4. Any complete Riemannian manifold (Mn, g), n ≥ 3, with positive Ya-

mabe constant is κ-noncollapsed, where

κ =

(
Y(M, [g])

2n+5n(n− 1)

)n
2

.

If (Mn, g), n ≥ 3, is a complete Riemannian manifold, and U ⊂ Mn is an open set,
we define the Sobolev constant of U by

sg(U) = inf{C ∈ R, ‖u‖
L

2n
n−2

≤ C (‖du‖L2 + ‖u‖L2) , ∀u ∈ C∞
0 (U)},

with the convention inf(∅) = +∞. When M is closed, we always have the inclusion
H2

1 (M) ⊂ L
2n
n−2 (M), hence sg(M) <∞.

Lemma 1.5. If (Mn, g), n ≥ 3, is a complete Riemannian manifold with positive Yamabe

constant, then for all open set U ⊂Mn

sg(U)2 ≤ 1

Y (M, [g])
max

(
sup
U

|Rg|,
4(n− 1)

n− 2

)
.

Proof. Let u be in C∞
0 (U). By definition of the Yamabe constant, we have

‖u‖2
L

2n
n−2

≤ 1

Y(M, [g])

(
4(n− 1)

n− 2
‖du‖2L2 +

∫

M

Rgu
2dvg

)

≤ 1

Y(M, [g])

(
4(n− 1)

n− 2
‖du‖2L2 + ‖Rg‖L∞‖u‖2L2

)

≤ 1

Y(M, [g])
max

(
4(n− 1)

n− 2
, sup

U
|Rg|

)
(‖du‖L2 + ‖u‖L2)

2
.

�

We recall the following lemma:

Lemma 1.6 (G. Carron, see [Heb96], Lemma 3.2). Let (Mn, g) be a complete Riemannian

manifold. For any ball B ⊂Mn of radius 1,

Volg(B) ≥
(
2
n
2 +2

sg(B)
)−n

.

We can now prove Proposition 1.4. Let (M, g) be a complete manifold with positive
Yamabe constant and B a ball of radius r such that |Rmg|≤ 1

r2 on B. If we consider the
metric ĝ = r−2g, which has the same Yamabe constant as g (since the Yamabe constant
is conformally invariant, thus also scale invariant), we can suppose that r = 1, and that
|Rmg|≤ 1 on B. Then, according to Lemma 1.5, we have

sĝ(B)2 ≤ 1

Y (M, [g])
max

(
2n(n− 1),

4(n− 1)

n− 2

)
=

2n(n− 1)

Y (M, [g])
,

and according to Lemma 1.6, we obtain

Volĝ(B)
2
n ≥ 1

2n+4 sg(B)2
≥ Y(M, [g])

2n+5n(n− 1)
.
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Therefore
Volg(B) ≥ κrn.

�

We finally recall the following fact:

Lemma 1.7. If (M, g) is a complete Riemannian manifold such that the volume of unit

balls is uniformly bounded from below:

inf
x∈M

Volg(B(x, 1)) > 0,

then M is compact if and only if (M, g) has finite volume.

Proof. If M is compact, it has finite volume. Suppose that M is not compact and choose
x in M . We can find a sequence of points (xk) such that xk is in B(x, k + 1) r B(x, k).
Then the balls B(x3k, 1) are two by two disjoint, and thus

Volg(M) ≥
∑

k≥0

Volg(B(x3k, 1)) = ∞.

�

And we prove the following Lemma, inspired by [CH02, Proposition 2.3]:

Lemma 1.8. If (M, g) is a complete non-compact Riemannian manifold with positive Ya-

mabe constant and scalar curvature in L
n
2 , then it has infinite volume and satisfies the

following Sobolev inequality:

(1.5) ‖ϕ‖2
L

2n
n−2

≤ C ‖dϕ‖2L2 ,

for some C > 0 and for all ϕ ∈ C∞
0 (M).

Proof. Let fix some ball B(x0, r) ⊂ M . Since Y(M, [g]) > 0 and by using the Hölder
inequality, for any smooth functions with support outside the ball B(x0, r), we have

‖ϕ‖2
L

2n
n−2

≤ 1

Y(M, [g])


4(n− 1)

n− 2
‖dϕ‖2L2 +

(∫

M\B(x0,r)

|Rg|n/2 dvg
) 2
n

‖ϕ‖2
L

2n
n−2


 .

Since Rg is in L
n
2 (M, g), we can take r such that

(∫

M\B(x0,r)

|Rg|n/2 dvg
) 2
n

≤ Y(M, [g])

2
,

and we obtain the Sobolev inequality on M \ B(x0, r).
According to Lemma 1.6, there exists a uniform bound from below on the volume of

any ball B(y, 1) ⊂M \ B̄(x0, r). And since B̄(x0, r) is compact, it is true for any unit ball
in M . According to Lemma 1.7, the volume of (M, g) is infinite.

Therefore, according to [Car98, Proposition 2.5], there exists C ′ such that the Sobolev
inequality (1.5) holds on M . �

3. Integral Bochner technique: a general setting

We consider a tensor T satisfying a condition of the following type:

(1.6) 〈∇∗∇T | T 〉 +λRg |T |2≤ a |T |2,
for some λ ∈ R and a ∈ C∞(M).

When T is solution of a second-order elliptic equation, a Weitzenböck formula often
provides a linear equation on T of the following form

(1.7) ∇∗∇T +A(T ) = 0.
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In that case, we get (1.6) with −a the lowest eigenvalue of

A− λRg Id .

The classical Kato inequality asserts that for any smooth tensor T on a Riemannian mani-
fold (Mn, g),

|d |T ||2≤|∇T |2 .
When T is in the kernel of an elliptic operator of degree one, this Kato inequality can often
be refined to

(1.8) (1 + δ) |d |T ||2≤|∇T |2,
for some δ > 0.

By combining the Weitzenböck formula with the Sobolev inequality induced by the
positivity of the Yamabe constant, we obtain:

Theorem 1.9. Let (Mn, g) be a closed Riemannian manifold and let T be a tensor which

satisfy (1.6) and (1.8) for some a ∈ C∞(M), λ > 0 and δ ≥ 0. If 0 < λ(1− δ) < n−2
4(n−1)

and if

(1.9) ‖a‖
L
n
2
≤ λY(M, [g]),

then

– either T vanishes on M ,

– or equality holds in (1.9), g is a Yamabe minimizer, T is parallel and the pointwise

inequality a = λRg holds on M .

In the proof, we use the modified Yamabe invariant Yg(β) with β = λ(1− δ) 4(n−1)
n−2 .

When β = 1, i.e. when λ(1− δ) = n−2
4(n−1) , we cannot apply Proposition 1.1, and we don’t

get such a strong characterization of the equality case:

Theorem 1.10. Let (Mn, g) be a closed Riemannian manifold and let T be a tensor which

satisfy (1.6) and (1.8) for some a ∈ C∞(M), 0 ≤ δ < 1 and λ = 1
1−δ

n−2
4(n−1) . If

(1.10) ‖a‖
L
n
2
≤ λY(M, [g]),

then

– either T vanishes on M ,

– or equality holds in (1.10) and the metric g̃ =|T | 1
λ(n−1) g is a Yamabe minimizer.

However, when β = 1, the vanishing result can be extended to non-compact mani-
folds:

Theorem 1.11. Let (Mn, g) be a complete Riemannian manifold and let T be a tensor

which satisfy (1.6) and (1.8) for some a ∈ C∞(M), 0 ≤ δ < 1 and λ = 1
1−δ

n−2
4(n−1) .

Suppose that for some x0 ∈M we have Vol(x0, R)
δ
2 = O(R) when R→ ∞. If

(1.11) ‖a‖
L
n
2
≤ λY(M, [g]),

then

– either T vanishes on M ,

– or equality holds in (1.11), and if furthermore Rg is either nonnegative or in L
n
2 ,

then u =|T | 1
λ(n−1) is in Ln/2(M, g) and the metric g̃ = u

‖u‖
Ln/2

g has constant

scalar curvature equal to Y(M, [g]).

Remark 1.12. According to [Gal88, Theorem 1], the assumption on the growth of balls is
in particular satisfied when the lowest eigenvalue Ric− of the Ricci curvature is in Lp for
some n

2 < p ≤ 1
δ .

When the Yamabe constant is positive, and when the curvature is in L
n
2 and satisfies

an elliptic equation
∇∗∇Rmg = Rmg ∗Rmg,
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(for instance when the curvature is harmonic, i.e. when δRmg = 0), then according to
Lemma 1.8 and by De Giorgi-Nash-Moser iterative scheme, the curvature is uniformly
bounded. The curvature is therefore in L

n
2 ∩ L∞, hence it is in Lp for all n

2 ≤ p ≤ ∞.
By a refinement of the method, the same is true if the curvature satisfies and elliptic

equation
∇∗∇Ricg = Rmg ∗Ricg,

for instance if the metric is critical for a quadratic curvature functional and has constant
scalar curvature (see [And05, TV05]).

We now prove Theorems 1.9, 1.10 and 1.11. The general idea is the following: we
multiply the Weitzenböck inequality (1.6) by some power of |T | and integrate over the
manifold. When the power of |T | is well chosen, the left size of the inequation, which
involves the derivative of |T |, can be interpreted as the value for the function |T |1−δ of the
functional involved in the definition of the modified Yamabe invariant Yg(β) (see (1.3)).
By using this fact, we obtain an inequality between Yg(β) and ‖a‖

L
n
2

.
For ε > 0 we introduce

fε =
√
|T |2 + ε2.

Elementary computations lead to

fε∆fε− |dfε|2=〈∇∗∇T | T 〉 − |∇T |2,
and for 0 < p ≤ 2 we get

∆fpε = pfp−2
ε

(
fε∆fε − (p− 1)|dfε|2

)

= pfp−2
ε

(
〈∇∗∇T, T 〉 − |∇T |2 + (2− p)|dfε|2

)

≤ pfp−2
ε

(
〈∇∗∇T, T 〉 − (1 + δ) |d|T ||2 + (2− p)|dfε|2

)
.

Note that we have

|dfε|2 =
|T |2 |d|T ||2
|T |2 + ε2

≤ |d|T ||2 .

Therefore if 0 ≤ δ < 1, by taking p = 1− δ, and β = λ(1− δ) 4(n−1)
n−2 , we obtain

(1.12) ∆f1−δ
ε + β

n− 2

4(n− 1)
Rgf

−(1+δ)
ε |T |2≤ (1− δ)af−(1+δ)

ε |T |2 .

If (M, g) is closed, by multiplying this inequality by f1−δ
ε and integrating over M , we

obtain∫

M

∣∣df1−δ
ε

∣∣2 dvg + β
n− 2

4(n− 1)

∫

M

Rgf
−2δ
ε |T |2 dvg ≤ (1− δ)

∫

M

a f−2δ
ε |T |2 dvg.

We define v =|T |1−δ . Since f−2δ
ε |T |2≤|T |2(1−δ), by Fatou’s Lemma we see that v is in

H2
1 (M), and by letting ε go to zero, we get by Lebesgue’s dominated convergence theorem

that ∫

M

|dv|2 dvg + β
n− 2

4(n− 1)

∫

M

Rgv
2dvg ≤ (1− δ)

∫

M

a v2dvg.

Consequently, if 0 ≤ β ≤ 1, i.e. if

0 ≤ λ(1− δ) ≤ n− 2

4(n− 1)
,

we have
n− 2

4(n− 1)
Yg(β) ‖v‖2

L
2n
n−2

≤ (1− δ)

∫

M

av2dvg,

then according to the Hölder inequality,

n− 2

4(n− 1)
Yg(β) ‖v‖2

L
2n
n−2

≤ (1− δ) ‖a‖
L
n
2
‖v‖2

L
2n
n−2

,
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Therefore, either v vanishes on M , or

n− 2

4(n− 1)
Yg(β) ≤ (1− δ) ‖a‖

L
n
2
.

According to Proposition 1.1, in that case we obtain

β
n− 2

4(n− 1)
Y(M, [g]) ≤ (1− δ) ‖a‖

L
n
2
,

hence
‖a‖

L
n
2
≥ λY(M, [g]).

If inequality (1.9) holds and v doesn’t vanish on M , then equality must hold everywhere.
In particular, when λ(1 − δ) < n−2

4(n−1) , then 0 < β < 1, we have Yg(β) = βY(M, [g]),
and the function v attains the infimum in (1.4). According to Proposition 1.1, g is a Yamabe
minimizer and v is constant, hence T has constant norm. Since equality must hold in the
Kato inequality, T must be parallel. According to (1.6), the pointwise inequality λRg ≤ a
holds on M , and as ‖a‖

L
n
2
= λY(M, [g]), the equality λRg = a holds on M .

When λ = 1
1−δ

n−2
4(n−1) , i.e. β = 1, the function v is a minimizer for the Yamabe

functional, hence it is a smooth positive solution of the Yamabe equation

4(n− 1)

n− 2
∆gv +Rgv = Y(M, [g])v

n+2
n−2 ,

and the metric g̃ = v
4

n−2 g is a Yamabe minimizer.
If M is complete, but not compact, and if χ is a Lipschitz function with compact

support and u a smooth function, we have the integration by parts formula
∫

M

|d (χu)|2 dvg =

∫

M

[
|dχ|2 u2 + χ2u∆u

]
dvg.

By multiplying inequality (1.12) by χ2f1−δ
ε and integrating over M , we obtain

∫

M

∣∣d(χf1−δ
ε )

∣∣2 dvg + β
n− 2

4(n− 1)

∫

M

Rgf
−2δ
ε |T |2 χ2dvg

≤ (1− δ)

∫

M

a f−2δ
ε |T |2 χ2dvg +

∫

M

|dχ|2 f2(1−δ)
ε dvg.

If we define v =|T |1−δ and we let ε go to zero, we get by Fatou’s Lemma and Lebesgue’s
dominated convergence theorem that
(1.13)∫

M

|d(χv)|2 dvg+
n− 2

4(n− 1)

∫

M

Rg(χv)
2dvg ≤ (1−δ)

∫

M

a (χv)2dvg+

∫

M

|dχ|2 v2dvg.

hence

n− 2

4(n− 1)
Y(M, [g]) ‖χv‖2

L
2n
n−2

≤ (1− δ)

∫

M

a(χv)2dvg +

∫

M

|dχ|2 v2dvg,

and according to the Hölder inequality,

n− 2

4(n− 1)
Y(M, [g]) ‖χv‖2

L
2n
n−2

≤ (1− δ)

(∫

χ>0

|a|n2 dvg
) 2
n

‖χv‖2
L

2n
n−2

+ ‖dχ‖2
L

2
δ
‖T‖

2
1−δ

L2 ,

thus

(1.14)

(
λY(M, [g])−

(∫

χ>0

|a|n2 dvg
) 2
n

)
‖χv‖2

L
2n
n−2

≤ (1− δ) ‖dχ‖2
L

2
δ
‖T‖

2
1−δ

L2 ,
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For R > 0, we introduce the functions

φR(t) =





1 on [0, R]

2− x
R on [R, 2R]

0 on [2R,∞)

and χR(x) = φR(d(x0, x)) where x0 ∈M is a fixed point. Then

‖dχR‖2
L

2
δ
≤ 1

R2
Vol(B(x0, 2R))

δ.

If we let R go to ∞, we see that if v doesn’t vanish, then
(
λY(M, [g])− ‖a‖

L
n
2

)
≤ 0.

We now characterize the equality case. We first prove that v is in L
2n
n−2 . For 0 < 2r < R,

we introduce the functions

φr,R(t) =





0 on [0, r]
t
r − 1 on [r, 2r]

1 on [2r,R]

2− x
R on [R, 2R]

0 on [2R,∞)

and χr,R(x) = φr,R(d(x0, x)). Then

‖dχr,R‖2
L

2
δ
≤ 1

r2
Vol(B(x0, 2r))

δ +
1

R2
Vol(B(x0, 2R))

δ.

Since a is in L
n
2 , we can take r > 0 such that

(∫

M\B(x0,r)

|a|n2 dvg
) 2
n

< λY(M, [g]).

From the assumption on the growth of the volume of balls, we get that

lim
R→∞

‖dχr,R‖2
L

2
δ
≤ 1

r2
Vol(B(x0, 2r))

δ.

Therefore, according to (1.14) and by Fatou’s Lemma, v is in L
2n
n−2 .

Then,
∫
M
a(χRv)

2dvg goes to
∫
M
av2dvg according to Lebesgue’s dominated con-

vergence theorem. If we suppose that Rg is nonnegative or in L
n
2 , then by Fatou’s Lemma

or Lebesgue’s dominated convergence theorem, we obtain from (1.13) that the function v
satisfies ∫

M

|dv|2 dvg +
n− 2

4(n− 1)

∫

M

Rgv
2dvg ≤ (1− δ)

∫

M

a v2dvg.

We can now proceed as in the compact case. If equality holds and v doesn’t vanish, then
v is a minimizer of the Yamabe functional, hence v

‖v‖
L

2n
n−2

satisfies the Yamabe equation

and since v ∈ C0,1−δ , it is smooth and positive. Then the metric g̃ =

(
v

‖v‖
L

2n
n−2

) 4
n−2

g

has constant scalar curvature equal to Y(M, [g]).
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Dans ce chapitre, on étudie une classe de flots de courbure d’ordre quatre. On montre
en particulier l’existence en temps court et des estimées sur la courbure.

1. Short-time existence

On a Riemannian manifold (Mn, g0), we consider the following class of evolution
equations: {

∂tg = P (g)

g(0) = g0,
EP (g0)

where P : S2
+(M) → S2(M) is a smooth map of the form

P (g) = δδ̃Rmg + a∆Rgg + b∇2Rg +Rmg ∗Rmg,

with a and b two real numbers.
We show that we can prove short-time existence by using the DeTurck trick if and

only if a < 1
2(n−1) . In particular, we prove:

Theorem A. Let (M, g0) be a closed Riemannian manifold. When a < 1
2(n−1) , there

exists a unique maximal solution (gt) of EP (g0) defined on some time interval [0, T ), with

T positive.

As it is invariant by diffeomorphisms, the differential operator P is not elliptic. We
use the DeTurck trick to fill the n-dimensional subspace in the kernel of σξP ′

g induced by
this geometric invariance.

We use the notation T (p, q)M for the space of (p, q)-tensors. We will sometimes raise
or lower indices in the following way:

Ti1...i...ip = gijT
j

i1... ...ip
,

to identify T (p+1, q)M and T (p, q+1)M .
We denote the Lie derivative along some vector fieldX by LX . By extension, if V is a

section of T ∗M , we denote by LV the Lie derivative along the vector field V # associated
to V . We recall that the Lie derivative of the metric g is given by

(LV g)ij = ∇iVj +∇jVi.

We say that a differential operator F : S2
+(M) →T (p, q)M is geometric if it is invari-

ant by diffeomorphisms, i.e. if for all metrics g and all diffeomorphisms φ :M →M ,

F (φ∗g) = φ∗F (g).

This is in particular the case for the curvature operators and their derivatives with
respect to the Levi-Civita connection.

We recall that if L : h 7→ Lk(∇kh) + · · · + L0(h) is a linear differential operator of
order k, its principal symbol σξL is defined for all ξ in T ∗M by

σξL(h) = Lk(ξ ⊗ · · · ⊗ ξ ⊗ h).

We say that L is elliptic if σξL is an isomorphism for all ξ 6= 0.
We say that L is strongly elliptic if k = 2k′ and (−1)k

′+1σξL is uniformly positive,
i.e. if there exists α > 0 such that for all h,

(−1)k
′+1 〈σξL(h) | h〉≥ α |ξ|k|h|2 .

If g is a metric and ξ is in T ∗M , let define

Rξ(g) = ξ ⊗ ξ− |ξ|2 g.
If g and g0 are two metrics, let define

(γg,g0)i =
1

2
giδg

αβ(Γδ
αβ(g)− Γδ

αβ(g0)).
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Proposition 2.1. Let P : S2
+(M) → S2(M) be smooth map of the form

P (g) = δδ̃Rmg + a∆Rgg + b∇2Rg +Rmg ∗Rmg,

and let V : S2
+(M) → T ∗M be defined by Vg = −∇∗∇γg,g0 + 2(b−a)−1

4 dRg . Then

σξ(P − LV )
′
g = −1

2
|ξ|4 IdS2(M) + a 〈Rξ | ·〉 Rξ,

and

– If a < 1
2(n−1) , then P − LV is strongly elliptic.

– If a = 1
2(n−1) , then P − LW is not elliptic, for any W : S2

+(M) → T ∗M .

– If a > 1
2(n−1) , then P − LW is not strongly elliptic, for any W : S2

+(M) → T ∗M .

Proof. Since δ̃Rm = −DRic (Proposition B.1) and δD(Rg g) = ∆Rg g+ D̃DRg (Propo-
sition B.2), we see that

P − LV = −δDRic+ L∇∗∇γ·,g0
+ 1

4dR
+ aδD(R · ),

then Proposition A.3 shows that

σξ(P − LV )
′
g = −1

2
|ξ|4 IdS2(M) + a 〈Rξ | ·〉 Rξ.

Let compute

|Rξ|2=|ξ|4 −2
〈
ξ ⊗ ξ | |ξ|2 g

〉
+n |ξ|4= (n− 1) |ξ|4 .

Moreover, for all W : S2
+(M) → T ∗M , the image of σξ(LW )′g lies in R⊥

ξ :
〈
σξ(LW )′g | Rξ

〉
=
〈
ξ ⊗ σξW

′
g + σξW

′
g ⊗ ξ | ξ ⊗ ξ− |ξ|2 g

〉

= 2 |ξ|2
〈
ξ | σξW ′

g

〉
−2 |ξ|2

〈
ξ | σξW ′

g

〉

= 0.

If a < 1

2(n−1) , then

−
〈
σξ(P − LV )

′
g(h) | h

〉
=

1

2
|ξ|4|h|2 −a |〈Rξ | h〉|2

≥ 1

2
(1− 2a+(n− 1)) |ξ|4|h|2,

and P − LV is strongly elliptic.
If a = 1

2(n−1) , then σξ(P − LV )
′
g is the orthogonal projection on R⊥

ξ . In particular,
〈
σξ(P − LW )′g(h) | Rξ

〉
=
〈
σξ(P − LV )

′
g(h) | Rξ

〉
+
〈
σξ(LV−W )′g(h) | Rξ

〉

=
1

2
|ξ|4〈Rξ | h〉 −a |ξ|2|Rξ|2〈Rξ | h〉

= 0,

i.e. the image of σξ(P − LW )′g is included in R⊥
ξ , therefore P − LW is not elliptic.

If a > 1

2(n−1) , then for ξ 6= 0

−
〈
σξ(P − LW )′g(Rξ) | Rξ

〉
= −

〈
σξ(P − LV )

′
g(Rξ) | Rξ

〉
+
〈
σξ(LV−W )′g(Rξ) | Rξ

〉

=
1

2
(1− 2a(n− 1)) |ξ|4|Rξ|2

< 0.

Consequently, P − LW is not strongly elliptic. �

According to Proposition A.2, we obtain short-time existence and uniqueness of a
solution of EP as soon as a < 1

2(n−1) .
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2. Gradient flows for geometric functionals

If T : S2
+(M) →T (p, q)M is smooth map, we define the functional

FT (g) =

∫

M

|T (g)|2g dvg,

and if F : S2
+(M) → R is a smooth functional, its gradient ∇F is defined by

F ′
g(h) =(∇F(g) | h)L2 .

Then we define the gradient flow of F starting from g0 by the following evolution equation:
{

∂tg = −2∇F(g)

g(0) = g0.

As we immediately get ∂tF(gt) = −2
∫
M

|∇F(gt)|2 dvgt , we see that F decreases along
the flow.

We recall that the curvature tensor has the following orthogonal decomposition:

Rmg =Wg +
1

n− 2
g.

◦
Ricg +

1

2n(n− 1)
Rg g.g,

where u.v is the Kulkarni-Nomizu product of u and v in S2(M) defined by

(u.v)ijkl = uikvjl + ujlvik − uilvjk − ujkvil.

It follows that

FRm(g) = FW (g) +
1

n− 2
F ◦

Ric
(g) +

1

2n(n− 1)
FR(g).

The gradients of the quadratic curvature functionals are given by (see [Bes87], chapter
4.H)

∇FRm = −δδ̃Rm− 1

2
Rm ∨Rm+

1

2
|Rm|2 g,

∇(FRic −
1

4
FR) = −δδ̃Rm−Ric ◦ (Ric− 1

2
Rg)−

◦
Rm(Ric) +

1

2
(|Ric|2 −1

4
R2)g,

∇FW = −δδ̃W − 1

n− 2

◦
W (

◦
Ric)− 1

2
(W ∨W− |W |2 g),

∇FR = 2δD(Rg)− 2R(Ric− 1

4
Rg),

where for a symmetric (2, 2) double-form T and an endomorphism u we wrote

(T ∨ T )ij = TαβγiT
αβγ

j and (
◦
Tu)ij = Tαiβju

αβ .

If we note Ag = Ricg − 1
2(n−1)Rg g the Weyl-Schouten tensor, and

σ2(Ag) =
1

2
(tr(Ag)

2− |Ag|2)

the second symmetric function of the eigenvalues of Ag , we define the functional

F2(g) =

∫

M

σ2(Ag)dvg.

We have

F2(g) =
n

8(n− 1)
FR(g)−

1

2
FRic(g),

and its gradient is given by

∇F2 = −1

2
δDA+

1

2

◦
W (

◦
Ric) +

n− 4

2(n− 2)
(A ◦ (Ric− 1

2
Rg) + σ2g).
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From the relations between the derivatives of the curvature given in Propositions B.1
and B.2, it follows that for β in [0, 1], the gradient flow of the functional

1− β

2
FRm +

β

2
(FRic −

1

4
FR)−

a

4
FR

is of the form EP with

P (g) = δδ̃Rmg + a∆Rgg + a∇2Rg +Rmg ∗Rmg.

As a result, short-time existence is assured for these flows when a < 1
2(n−1) (Theorem A).

For n ≥ 4, we can also write that for β in [0, 1], the gradient flow of the functional

n− 2

2(n− 3)
βFW − (1− β)F2 +

α

8(n− 1)
FR

is of the form EP with

P (g) = δδ̃Rmg +
1− α

2(n− 1)
(∆Rg g +∇2Rg) +Rmg ∗Rmg.

Short-time existence is assured when α is positive.
In low dimensions, additional relations between the curvature tensors allow us to write

it in an easier way:
In dimension 3: We have

FW (g) = 0 and FRm = FRic −
1

4
FR.

The gradient flow of −F2 +
α
16FR is of the form EP with

P (g) = δδ̃Rmg +
1− α

4
(∆Rg g +∇2Rg) +Rmg ∗Rmg,

and the flow exists for a short-time as soon as α is positive.
In dimension 4: We have

F2 =
1

24
FR − 1

2
F ◦

Ric
,

and the Gauss-Bonnet formula gives us the following relation between the functionals:

FRm(g)−F ◦
Ric

(g) = FW (g) + F2(g) = 8π2χ(M).

It follows that

∇FRm = ∇(FRic −
1

4
FR) and ∇FW (g) = −∇F2(g).

The gradient flow of FW + λ
24FR is the same as the gradient flow of

Fλ = (1− λ)FW +
λ

2
F ◦

Ric
,

and is of the form EP with

P (g) = δδ̃Rmg +
1− λ

6
(∆Rg g +∇2Rg) +Rmg ∗Rmg.

Theorem A supplies short-time existence when λ is positive.
Moreover, since W ∨ W− |W |2 g = 0 (see [Bes87]), the gradient of the Weyl

functional FW , which is called the Bach tensor, takes the following shorter form:

∇FW = −∇F2 = −δδ̃W − 1

2

◦
W (

◦
Ric),

and can also be written

(2.1) ∇FW = 2δ̃δW+ −
◦

W+
g (

◦
Ricg) = 2δ̃δW− −

◦
W−

g (
◦

Ricg),

where W = W+ +W− is the orthogonal decomposition of the Weyl tensor with respect
to the splitting of Λ2T ∗M into self-dual forms and anti-self-dual forms.
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On a four-dimensional manifold of positive Euler characteristic, we have the following
control on the Yamabe constant when the functional Fλ = (1−λ)FW + λ

2F ◦
Ric

is not too

large:

Lemma 2.2 (M. Gursky, [Gur94], see also [Str10b]). Let (M4, g) be a closed Riemannian

manifold. For all λ ≥ 0

Y(M, [g])2 ≥ 24
(
(1− λ)8π2χ(M)−Fλ(g)

)
.

Proof. If g̃ ∈ [g] is a Yamabe metric, it has constant scalar curvature and we get

Y(M, [g̃])2 = Volg̃(M)−1

(∫

M

Rg̃dvg̃

)2

=

∫

M

R2
g̃dvg̃

≥ 24

(
1

24
FR(g̃)−

1

2
F ◦

Ric
(g̃)

)
= 24F2(g̃).

Since Y(M, [g]) and F2 are conformal invariants, it follows that the inequality is still true
for g. Then

Y(M, [g])2 ≥ 24F2(g)

= 24(λF2(g) + (1− λ)(8π2χ(M)−FW (g)))

≥ 24((1− λ)8π2χ(M)−Fλ(g)).

�

We finally prove the following proposition, which shows that we can use Theorem F
when the energy Fλ is not too large:

Proposition 2.3. Let (M4, g) be a closed Riemannian manifold and let λ be in (0, 1). If

there exists ǫ > 0 such that





λ ≤ 4

13

Fλ(g) ≤ 2λ(π2χ(M)− ǫ)
or





λ ≥ 4

13

Fλ(g) ≤ 8

9
(1− λ)(π2χ(M)− ǫ),

then g satisfies

FW (g) +
1

4
F ◦

Ric
(g) ≤ 1

8× 24
Y(M, [g])2 − ǫ.

Proof. If λ ≤ 4
13 , then 4

13λ ≥ 9
13(1−λ) , so using the assumption on Fλ, we can write:

9

13
FW +

2

13
F ◦

Ric
≤ 4

13λ
Fλ ≤ 8

13
(π2χ(M)− ǫ).

In the same way, if λ ≥ 4
13 , then 9

13(1−λ) ≥ 4
13λ , and using the assumption on Fλ, it

follows that

9

13
FW +

2

13
F ◦

Ric
≤ 9

13(1− λ)
Fλ ≤ 8

13
(π2χ(M)− ǫ).

Consequently,

FW (g) +
1

4
F ◦

Ric
(g) ≤ 1

8
(8π2χ(M)−FW (g))− ǫ

≤ 1

8× 24
Y(M, [g])2 − ǫ,

according to Lemma 2.2 with λ = 0. �
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3. Bando-Bernstein-Shi estimates

Let P : S2
+(M) → S2(M) be a smooth map of the form

P (g) = δδ̃Rmg + a∆Rgg + b∇2Rg +Rmg ∗Rmg,

with a < 1
2(n−1) and b ∈ R.

In this section, we prove the following estimates:

Theorem 2.4. Let 0 ≤ s ≤ 2. If (gt), t ∈ [0, T ), are solution of EP (g0) on a manifold

Mn and if ϕ ∈ C∞
0 (M, [0, 1]) is a function with compact support which satisfy

sup
[0,T ]

(
‖dϕ‖2∞ + ‖∇dϕ‖∞

)
≤ β and sup

[0,T ]×{ϕ>0}
(|Rmg| ϕs) ≤ β

then for all k ∈ N, there exists a constant c(n, k, β, P, T ) such that for all t ∈ (0, T ],

∫

M

∣∣∇kRmg

∣∣2 ϕ2(k+2+s)dvg ≤ c

t
k
2

sup
[0,T ]

(∫

ϕ>0

|Rmg|2 ϕ2sdvg

)
.

For tensors T, T1, . . . , Tj and nonnegative integers j and k, let write

Pm(T1, . . . , Tj) =
∑

k1+···+kj=m

∇k1T1 ∗ · · · ∗ ∇kjTj ,

Pm,k(T1, . . . , Tj) =
∑

k1+···+kj=m
k1,...,kj≤k

∇k1T1 ∗ · · · ∗ ∇kjTj ,

and

P(j)
m (T ) =

∑

k1+···+kj=m

∇k1T ∗ · · · ∗ ∇kjT,

P(j)
m,k(T ) =

∑

k1+···+kj=m
k1,...,kj≤k

∇k1T ∗ · · · ∗ ∇kjT.

We write lot(k)g (φ) for terms in the linear span of
∫

M

P(3)
2k+2,k+2(Rmg) φ dvg,

∫

M

P(4)
2k,k(Rmg) φ dvg,

∫

M

P(2)
2k+3,k+2(Rmg) ∗∇φ dvg and

∫

M

P(2)
2k+2,k+2(Rmg) ∗∇2φ dvg.

(2.2)

Those terms can be controlled by
∫
M

∣∣∇k+2Rmg

∣∣2 φ dvg (see Proposition 2.6) and all the
lower order terms appearing in the integral estimates on the curvature are of this form:

Proposition 2.5. For all integers k ≥ 0, we have

(∫

M

∣∣∇kRm
∣∣2 φ dv

)′

g

(Pg) +

∫

M

(∣∣∇k+2Rmg

∣∣2 −a
2

∣∣∇k+2Rg

∣∣2
)
φ dvg = lot(k)g (φ),

(∫

M

∣∣∇kR
∣∣2 φ dv

)′

g

(Pg) + (1− 2a(n− 1))

∫

M

∣∣∇k+2Rg

∣∣2 φ dvg = lot(k)g (φ),

where the coefficients of the lower-order terms only depend on n, k and P .
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Proof. We have

(∫

M

∣∣∇kRm
∣∣2 φ dv

)′

g

(Pg) = 2

∫

M

〈
(∇kRm)′g(Pg) | ∇kRmg

〉
φ dvg

+

∫

M

〈
∇kRmg ∗ ∇kRmg | Pg

〉
φ dvg +

1

2

∫

M

∣∣∇kRmg

∣∣2 tr(Pg)φ dvg,

(∫

M

∣∣∇kRm
∣∣2 φ dv

)′

g

(Pg) = 2

∫

M

〈
(∇kRm)′g(Pg) | ∇kRmg

〉
φ dvg + lotk(g).

According to Proposition B.2, we have

a∆Rgg + b∇2Rg = aδD(Rgg) + (b− a)D̃DRg.

According to Proposition C.7, we have

∫

M

〈
(∇kRm)′g(δδ̃Rmg) | ∇kRmg

〉
φ dvg

= −
∫

M

〈
∇∗2∇k+2Rmg | ∇kRmg

〉
φ dvg + lotk(g),

= −
∫

M

∣∣∇k+2Rmg

∣∣ φ dvg − 2

∫

M

〈
∇k+2Rmg | ∇φ⊗∇k+1Rmg

〉
dvg

−
∫

M

〈
∇k+2Rmg | ∇2φ⊗∇kRmg

〉
dvg + lotk(g),

= −
∫

M

∣∣∇k+2Rmg

∣∣2 φ dvg + lotk(g).

We also have
∫

M

〈
(∇kRm)′g(δD(Rgg)) | ∇kRmg

〉
φ dvg

=

∫

M

〈
g.(D∇∗∇k+1

D̃Rg) | ∇kRmg

〉
φ dvg + lotk(g),

=

∫

M

〈
D∇∗∇k+1

D̃Rg | ∇kRicg

〉
φ dvg + lotk(g),

=

∫

M

〈
∇k+1

D̃Rg | ∇δ∇kRicg

〉
φ dvg + lotk(g),

By commuting ∇ and δ (see (C.12)), we have

δ∇kRicg = ∇kδRicg+ P(2)
k−1(Rmg)= −1

2
∇k

D̃Rg+ P(2)
k−1(Rmg) .

Therefore
∫

M

〈
(∇kRm)′g(δD(Rgg)) | ∇kRmg

〉
φ dvg = −1

2

∫

M

∣∣∣∇k+1
D̃Rg

∣∣∣
2

φ dvg + lotk(g),

= −1

2

∫

M

∣∣∇k+2Rg

∣∣2 φ dvg + lotk(g).

And we have
∫

M

〈
(∇kRm)′g(D̃DRg) | ∇kRmg

〉
φ dvg = lotk(g).
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Finally, according to Proposition C.7,
(∫

M

∣∣∇kR
∣∣2 φ dv

)′

g

(Pg) = 2

∫

M

〈
(∇kR)′g(Pg) | ∇kRg

〉
φ dvg + lotk(g)

= −(1− 2a(n− 1))

∫

M

〈
∇∗2∇k+2Rg | ∇kRg

〉
φ dvg + lotk(g)

= −(1− 2a(n− 1))

∫

M

∣∣∇k+2Rg

∣∣2 φ dvg + lotk(g).

�

Proposition 2.6. Let 0 ≤ s ≤ 2. If (M4, g) is a Riemannian manifold andϕ ∈ C∞
0 (M, [0, 1])

is a function which satisfy

‖dϕ‖2L∞ + ‖∇dϕ‖L∞≤ β and sup
{ϕ>0}

(|Rmg| ϕs) ≤ β

then for all k ∈ N, there exist a constant ck such that

lot(k)g (ϕ2(k+2+s)) ≤ 1

2

∫

M

∣∣∇k+2Rmg

∣∣2 ϕ2(k+2+s)dvg + ckβ
k+2

∫

ϕ>0

|Rmg|2 ϕ2sdvg.

Moreover, the constant ck only depends on the coefficients in the linear combination defin-

ing lot
(k)
g (ϕ2(k+2+s)) and on the dimension n.

Proof. We use Corollary D.8 and Lemma D.6 to estimate each term in (2.2). There exist
constants C1(n, k), . . . , C5(n, k) such that
∫

M

∣∣∣P(3)
2k+2,k+2(Rmg)

∣∣∣ ϕ2(k+2+s)dvg

≤
∫

M

∣∣∣P(3)
2k+2,k+2(Rmg)

∣∣∣ ϕ2k+2+3sdvg

≤ 1

2

∫

M

∣∣∇k+2Rmg

∣∣2 ϕ2(k+2+s)dvg + (1 + C1)β
k+2

∫

ϕ>0

|Rmg|2 ϕsdvg,

∫

M

∣∣∣P(4)
2k,k(Rmg)

∣∣∣ ϕ2(k+2+s)dvg

≤
∫

M

∣∣∣P(4)
2k,k+2(Rmg)

∣∣∣ ϕ2k+4sdvg

≤ 1

2

∫

M

∣∣∇k+2Rmg

∣∣2 ϕ2(k+2+s)dvg + (1 + C2)β
k+2

∫

ϕ>0

|Rmg|2 ϕsdvg,

‖dϕ‖∞
∫

M

∣∣∣P(2)
2k+3,k+2(Rmg)

∣∣∣ ϕ2k+3+2sdvg

≤ 1

2

∫

M

∣∣∇k+2Rmg

∣∣2 ϕ2(k+2+s)dvg + (1 + C3)β
k+2

∫

ϕ>0

|Rmg|2 ϕsdvg,

‖∇dϕ‖∞
∫

M

∣∣∣P(2)
2k+2,k+2(Rmg)

∣∣∣ ϕ2k+3+2sdvg

≤ β

∫

M

∣∣∣P(2)
2k+2,k+2(Rmg)

∣∣∣ ϕ2k+2+2sdvg

≤ 1

2

∫

M

∣∣∇k+2Rmg

∣∣2 ϕ2(k+2+s)dvg + (1 + C4)β
k+2

∫

ϕ>0

|Rmg|2 ϕsdvg,
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‖dϕ‖2∞
∫

M

∣∣∣P(2)
2k+2,k+2(Rmg)

∣∣∣ ϕ2(k+1+s)dvg

≤ 1

2

∫

M

∣∣∇k+2Rmg

∣∣2 ϕ2(k+2+s)dvg + (1 + C5)β
k+2

∫

ϕ>0

|Rmg|2 ϕsdvg.

�

We can now prove Theorem 2.4. Let define a curvature term of order k, which involves
the full Riemann tensor and an additional scalar curvature term:

Ak(g) =

∫

M

∣∣∇kRmg

∣∣2 ϕ2(k+2+s)dvg +
a+

1− 2a+(n− 1)

∫

M

∣∣∇kRg

∣∣2 ϕ2(k+2+s)dvg,

where a+ = max(a, 0), and let define the constant

ca =
1− 2a+(n− 1)

2
.

There exists c′k(n, P ) such that for all integers k ≥ 0,

(Ak)
′
g(Pg) + caAk+2(g) ≤ c′kβ

k+2

∫

ϕ>0

|Rmg|2 ϕsdvg.

Indeed, we can write

(Ak)
′
g(Pg) + caAk+2(g)

= −(1− ca)

∫

M

∣∣∇k+2Rmg

∣∣2 ϕ2(k+2+s)dvg

− 1

2
(a+ − a)

∫

M

∣∣∇k+2Rg

∣∣2 ϕ2(k+2+s)dvg + lot(k)g (ϕ2(k+2+s))

≤ −1

2

∫

M

∣∣∇k+2Rmg

∣∣2 ϕ2(k+2+s)dvg + lot(k)g (ϕ2(k+2+s))

≤ c′kβ
k+2

∫

ϕ>0

|Rmg|2 ϕsdvg according to Proposition 2.6.

Now, if we define the polynomial

fk(t) =

k∑

j=0

cjat
j

j!
A2j(gt),

we see that it satisfies the following differential inequation:

f ′k(t) =
k−1∑

j=0

cjat
j

j!

(
(A2j)

′
gt(Pgt) + caA2j+2(gt)

)
+
ckat

k

k!
(A2k)

′
gt(Pgt)

≤
k∑

j=0

cjat
j

j!
c′2jβ

2(j+1)

∫

ϕ>0

|Rmg|2 ϕsdvg

≤ C ′(1 + t)k
∫

ϕ>0

|Rmg|2 ϕsdvg,

with C ′ = C ′(n, k, β, P ). It follows by integration that

∫

M

∣∣∇2kRmg

∣∣2 ϕ2(2k+2+s)dvg ≤ A2k(gt)

≤ k!

ckat
k
fk(t)

≤ c

tk

∫

ϕ>0

|Rmg|2 ϕsdvg.
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And using Corollary D.3 with q = 2 and ε = t
1
4 ‖∇ϕ‖L∞ , we have

(∫

M

∣∣∇kRmg

∣∣2 ϕ2(k+2+s)dvg

) 1
2

≤ t
1
4

(∫

M

∣∣∇k+1Rmg

∣∣2 ϕ2(k+3+s)dvg

) 1
2

+
C(1 + T

1
4 ‖dϕ‖L∞)

t
1
4

(∫

M

∣∣∇k−1Rmg

∣∣2 ϕ2(k+1+s)dvg

) 1
2

,

hence the result is also true for k odd. �

4. Local estimates on the curvature

Let P : S2
+(M) → S2(M) be a smooth map of the form

P (g) = δδ̃Rmg + a∆Rgg + b∇2Rg +Rmg ∗Rmg,

with a < 1
2(n−1) and b ∈ R.

In this section, we prove the following local estimates for solutions of EP :

Theorem 2.7. For all α > 0, k ∈ N and n ≥ 3, there exist a constant ǫ(α, k, n, P ) such

that if g(t), t ∈ [0, r4], are complete metrics on a manifold Mn which are solution of

EP (g0) and satisfy one of the following conditions:

i) for some x0 ∈M and r > 0
∫ r4

0

(
sup

Bgt (x0,r)

|Rmgt |2
)
dt ≤ ǫ,

ii) inf
[0,r4]

Y(M, [gt]) > 0 and for some x0 ∈M and r > 0,

sup
[0,r4]

(∫

Bg(x0,r)

|Rmg|
n
2 dvg

)
≤ ǫ,

iii) inf
[0,r4]

Y(M, [gt]) > 0 and for some x0 ∈M , r > 0 and p > 1,



∫ r4

0

(∫

Bgt (x0,r)

|Rmgt |
np
2 dvgt

) 4
n(p−1)

dt




p−1
2p

≤ ǫ,

then for all t ∈ (0, r4] and x ∈ Bg(t)(x0,
r
2 ),

k∑

j=0

∣∣∇jRmg

∣∣ 2
2+j≤ α√

t
.

It implies:

Theorem C. For all α > 0, k ∈ N and n ≥ 3, there exists a constant ǫ(α, k, n, P ) such

that if g(t), t ∈ [0, T ], are complete metrics on a manifold Mn which are solution to EP ,

that satisfy

inf
[0,T ]

Y(M, [gt]) > 0,

and such that for some x0 ∈M and 0 < r < T 1/4

(2.3) sup
[0,T ]

(∫

Bg(x0,r)

|Rmg|
n
2 dvg

)
≤ ǫ,

then for all t ∈ (0, T ] and x ∈ Bg(t)(x0,
r
2 )

(2.4)
k∑

j=0

∣∣∇jRmg

∣∣ 2
2+j≤ α

(
1

r2
+

1√
t

)
.
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Proof. The assumption (2.3) remains true on any subinterval of [0, T ]. We can hence apply
Theorem 2.7 on subintervals of [0, T ] of length r4.

On (0, r4], the result is a direct consequence of Theorem 2.7, since the assumption ii)
is satisfied and since

α√
t
≤ α

(
1√
t
+

1

r2

)
.

Then, for any t0 between 0 and T − r4, we apply Theorem 2.7 to g(t0 + t) for t in
[0, r4]. For x in B(x0, r) and t in (0, r4], we obtain

k∑

j=0

∣∣∇jRmg(t0+t)

∣∣ 2
2+j≤ α√

t
,

which gives at time t = r4

k∑

j=0

∣∣∇jRmg(t0+r4)

∣∣ 2
2+j≤ α

r2
.

Since t0 is arbitrary, we obtain (2.4) for t in [r4, T ]. �

It also implies the following global estimates:

Corollary 2.8. For all α > 0, k ∈ N and n ≥ 3, there exists a constant β(α, k, n, P )
such that if g(t), t ∈ [0, T ], are complete metrics on a manifold Mn which are solution of

EP (g0) and satisfy

(2.5) sup
[0,T ]×M

|Rmg|≤ K,

then for all t ∈ (0, T ]

sup
M




k∑

j=0

∣∣∇jRmg

∣∣ 2
2+j


 ≤ α√

t
+ βK.

Proof. We proceed in the same way: the curvature assumption (2.5) remains true on sub-
sets of [0, T ] × M . We apply Theorem 2.7 i) on balls of radius r and time intervals of
length r4, with r well chosen.

Let take r4 = ǫ
K2 in Theorem 2.7. We have for all x ∈M

∫ r4

0

(
sup

Bg(t)(x,r)

|Rmg|2
)
dt ≤ ǫ,

hence we have on M × [0, ǫ
K2 ]:

k∑

j=0

∣∣∇jRmg

∣∣ 2
2+j≤ α√

t
,

and in particular, if we take β = α
ǫ , we obtain at time ǫ

K2 :

k∑

j=0

∣∣∇jRmg

∣∣ 2
2+j

( ǫ

K2

)
≤ βK.

But this is also true for g(t0 + t), solution of EP (gt0) for t in [0, ǫ
K2 ], thus we have on

M × [ ǫ
K2 , T ]:

k∑

j=0

∣∣∇jRmg

∣∣ 2
2+j≤ βK.

�
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If g(t) is an evolving metric defined on M × [0, r4], we define for 1 < p <∞:

N p
x,r(Rmg) =

(∫ r4

0

‖Rmg‖
2p
p−1

L
np
2 (Bg(t)(x,r))

dt

) p−1
2p

,

for p = 1:

N 1
x,r(Rmg) = sup

[0,r4]

(
‖Rmg‖Ln2 (Bg(t)(x,r))

)
,

and for p = ∞:

N∞
x,r(Rmg) =

∫ r4

0

(
sup

Bg(t)(x,r)

|Rmg|2
)
dt.

Those quantities are invariant under a rescaling of the flow: if ĝ(t) = α g
(

t
α2

)
, then

N p
x,
√
α r

(Rmĝ) = N p
x,r(Rmg).

We will need the following Lemma:

Lemma 2.9. Let M be a smooth manifold, let x0 ∈ M and ρ > 0. If g(t), t ∈ I , is a

smooth family of metrics on M such that

sup
t∈I

x∈Bg(t)(x0,ρ)

|∂tgt|gt≤ A,

then for all s, t ∈ I and ρ ≥ 0,

Bgs

(
x0, e

−A
2 |t−s|ρ/2

)
⊂ Bgt(x0, ρ).

Proof. Let fix s ∈ I and let consider

J = {t ∈ I, ∀r ∈ [t, s], Bgs

(
x0, e

−A
2 |t−s|ρ/2

)
⊂ Bgr (x0, ρ)}.

J is an interval containing s. Let prove that it is open and closed. If t belong to the closure
of J , then for all r ∈ (t, s],

Bgs

(
x0, e

−A
2 |r−s|ρ/2

)
⊂ Bgr (x0, ρ),

hence on Bgs

(
x0, e

−A
2 |t−s|ρ/2

)
× (t, s], we have |∂tgt|gt≤ A. Using Lemma A.4, we

can prove that

Bgs

(
x0, e

−A
2 |t−s|ρ/2

)
⊂ Bgt(x0, ρ/2).

Indeed, if x is in the first ball, and if γ is a geodesic from x0 to x of length less than
e−

A
2 |t−s|ρ/2 for gs, then it is of length less than ρ/2 for gt. Therefore, we see that a

neighborhood of t is in J . Then J is open and closed in I , thus I = J . �

We will now prove Theorem 2.7. We can suppose that k ≥ 3. By taking

ǧ(t) =
1

r2
g
(
r4t
)
,

we can also suppose that r = 1. We define

C(k)
g =

k∑

j=0

∣∣∇jRmg

∣∣ 2
2+j .

We will prove that for all x ∈ Bg(t)(x0, 1),

C(k)
g(t)(x) ≤

α

4(1− rg(t)(x))2
√
t

where rg(t)(x) = dg(t)(x0, x).
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Suppose that there exists gi(t) complete solutions of EP on manifolds Mi and points
xi ∈Mi such that

N p
xi,1

(Rmgi) ≤
1

i
,

and that

(2.6) max
t∈[0,1]

x∈Bgi(t)(xi,1)

((
1− rgi(t)(x)

)2 √
t C(k)

gi(t)
(x)
)
>
α

4
.

Let take ti ∈ (0, 1] and yi ∈ Bgi(t)(xi, 1) for which the maximum is attained. Then for all

t ∈ [ ti2 , ti] and x ∈ Bgi(t)

(
yi,

1−rgi(t)(yi)

2

)
,

C(k)
gi(t)

(x) ≤
(
1− rgi(t)(yi)

1− rgi(t)(x)

)2√
ti
t
C(k)
gi(ti)

(yi)

≤ 4
√
2 C(k)

gi(ti)
(yi)

We define λi = C(k)
gi(ti)

(yi) and the renormalized flows

ĝi(t) = λigi

(
ti +

t

λ2i

)
.

Then ĝi are complete solutions of Ep, satisfy C(k)
ĝi(0)

(yi) = 1 and for all t ∈ [−λ2i ti, 0] and

for all x ∈ Bĝi(t)

(
yi,

√
λi

1−rgi(t)(yi)

2

)
, we have the following control on the curvature:

(2.7) C(k)
ĝi(t)

(x) ≤ 4
√
2.

Moreover, according to (2.6), we have

λi(1− rgi(t)(yi))
2
√
ti >

α

4
,

hence
λi(1− rgi(t)(yi))

2 >
α

4
and λi

√
ti >

α

4
.

Inequality (2.7) is in particular true for t ∈ [−α2

16 , 0] and x ∈ Bĝi(t)

(
yi,

√
α
2

)
. According

to Lemma 2.9, we can find δ(α) such that for all t ∈ [−α2

16 , 0],

Bĝi(0) (yi, δ(α)) ⊂ Bĝi(t)

(
yi,

√
α

2

)
.

Furthermore, we can take δ(α) ≤
√

n(n−1)

8π . Then, according to the Rauch comparison
theorem, the exponential map expĝi(0) is a covering map from B = BRn(O, δ(α)) to
Bĝi(0) (yi, δ(α)). Hence we can lift the evolving metrics to B and obtain

g̃i(t) = exp∗ĝi(0)ĝi(t)

on [−α2

16 , 0]×B which are solution of EP , satisfy C(k)
g̃i(0)

(O) = 1 and the bound

C(k)
g̃i(t)

(x) ≤ 4
√
2.

According to R. Hamilton’s result [Ham95, Corollary 4.11], up to reducing δ, all the met-
rics g̃i(0) satisfy

(2.8)
1

2
geucl ≤ g̃i(0) ≤ 2geucl.

And according to Lemma A.4, there exists a constant C(α) such that for all t ∈ [−α2

16 , 0]
and i ∈ N,

(2.9) e−Cgeucl ≤ g̃i(t) ≤ eCgeucl.
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Now, if we take a cut-off function ϕ ∈ C∞
0 (Rn, [0, 1]) such that

{
ϕ ≡ 0 on Rn \B
ϕ ≡ 1 on 1

2B,

by Lemma A.5, there exists β(α) such that

sup
[−α2

16 ,0]

(
‖dϕ‖2∞ + ‖∇dϕ‖∞

)
≤ β.

Moreover, by the Bishop-Gromov comparison theorem, the volume of B is bounded by
a constant depending only on n. Hence, according to the estimates of Theorem 2.4, the
metrics g̃i(t) have their curvature bounded in H2,s

k (ϕ), uniformly on [−α2

32 , 0], for all
2 ≤ s ≤ 4 and all k ∈ N. And because of (2.9), the Sobolev constants sg of all the
metrics g̃i(t) are uniformly bounded. Hence, by the Sobolev inequalities Proposition E.1,
all derivatives of the curvature of the metrics g̃i(t), t ∈ [−α2

32 , 0] are uniformly bounded on
1
2B.

Finally, according to [Ham95, Corollary 4.11], all space derivatives of the metrics
g̃i(0) with respect to the euclidean metric are uniformly bounded for the euclidean metric,
then by Lemma A.6, it is actually true on [−α2

32 , 0] × 1
2B. Since the metrics are solution

of EP , their time derivatives are uniformly bounded as well. Therefore, we can extract a
subsequence converging in C∞([−α2

32 , 0]× 1
2B) to a limit g∞(t).

If p = ∞, the lifted metrics g̃i(t) satisfy the bound

N∞
O,δ(α)(Rmg̃i) ≤

1

i
,

hence the limit metric must be flat, which is in contradiction with the fact that

C(k)
g̃i(0)

(O) = 1.

If p ∈ [1,∞) and if Y(M, [gi(t)]) ≥ Y0 > 0, then the renormalized metrics also satisfy
Y(M, [ĝi(t)]) ≥ Y0 > 0. According to Proposition 1.4 and Lemma 1.3, the injectivity
radius of ĝi(0) is uniformly bounded from below by some positive constant δ0. We can
assume that δ(α) ≤ δ0, then expĝi(0) is an isometry on B and the lifted metrics g̃i(t)
satisfy the bound

N p
O,δ(α)(Rmg̃i) ≤

1

i
,

hence the limit metric must be flat, and we obtain the same contradiction. �
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Dans ce chapitre, on étudie les singularités pouvant apparaître le long des flots de
courbure introduits dans le chapitre précédent. On prouve en particulier des résultats de
rigidité pour les métriques modélisant ces singularités, et on en déduit la convergence de
flots de gradients lorsque la courbure de la métrique initiale est intégralement pincée.

1. Compactness results

In order to perform a “blow-up” at a singular time, we need a compactness result for
solutions of our equations. Once we have the estimates of Corollary 2.8, we can proceed
as R. Hamilton in [Ham95] and use the following theorem:

Theorem 3.1 (R. Hamilton, [Ham95]). Let (Mi, gi, xi)i∈I be a sequence of pointed com-

plete Riemannian manifolds with uniformC0 bounds on all the derivatives of the curvature.

If the injectivity radius of gi at xi is uniformly bounded from below by a positive constant,

we can find a converging subsequence in the pointed C∞ topology.

We can prove a version of [Ham95, Theorem 1.2] for solutions of EP :

Theorem 3.2. Let (gi(t), xi) be pointed solutions of EP on a Riemannian manifold M
and a time interval (−α, ω] containing 0. Suppose that the curvature of the metrics gi
are uniformly bounded on (−α, ω] ×M and that the injectivity radius of gi(0) at xi are

uniformly bounded from below by a positive constant. Then there exists a subsequence of

(M, gi(t), xi) which converges in the pointed C∞ topology to a pointed complete solution

(M∞, g∞(t), x∞) of EP .

Proof. We proceed exactly as in [Ham95]. By a diagonalization argument, we can suppose
that α > −∞. Then according to Corollary 2.8, all the derivatives of the curvature are
bounded on (−α+ε, ω]. According to Theorem 3.1 we can find a convergent subsequence
of (Mi, gi(0), xi) to a complete manifold (M∞, g∞, x∞). Then, we can define the metrics
gt on M∞ by the diffeomorphisms. All the derivatives of the curvature of gi are bounded
for gi, hence also for a fixed metric g, according to Lemma A.6. Therefore we can find a
subsequence converging smoothly to a limit g∞(t) on (−α+ǫ, ω]×M∞. A diagonalization
argument provides the converging subsequence on (−α, ω]×M∞. The convergence being
smooth, the limit metrics g∞(t) satisfy the equation EP . Finally, according to Lemma 2.9,
we see that the balls at time t 6= 0 are precompact, hence the metrics g∞(t) are complete.

�

Remark 3.3. If we only assume a bound on the curvature, and no bound from below on the
injectivity radius, we still have a weaker precompactness result. Indeed, as it was pointed
out by J. Streets in [Str11], the precompactness results of D. Glickenstein [Gli03, Theorem
3] and J. Lott [Lot07, Theorem 1.4] only use the Ricci flow through the curvature estimates
it brings, and thus extend to our flows. A sequence of solutions with such an assumption
can collapse, and will subconverge to a metric space which is not necessarily a manifold.

2. Understanding singularities

In this section, we prove Theorems B, D and E.

2.1. Curvature blow-up and concentration of the curvature at a singular time.

Theorem 2.7 implies that the curvature must blow up at a singular time, and that it must
blow up at least at a certain rate: if in a neighbourhood of some time T , the curvature
satisfies the following condition for some 0 < q < 1:

‖Rmg‖L∞= O

(
1

(T − t)
q
2

)
,

then for all x ∈M and sufficiently small r, the solution g(T − r4 + t) satisfy

N∞
x,r(Rmg) ≤ ǫ,
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hence all the derivatives of the curvature of g(t) are bounded on [T − r4/2, T ]. According
to Lemma A.6, all the space and time derivatives of g(t) are bounded with respect to a
fixed metric. Hence the solution extend beyond T .

Consequently, if T is a singular time, then we can find sequences tk → T and xk ∈M
such that

∣∣Rmg(tk)

∣∣ (xk) ≥
k

(√
T − tk

)1− 1
k

.

If the Yamabe constant remains uniformly positive along the flow, then the same is
true if the curvature satisfies for some n

2 < p ≤ ∞ and 0 < q < 1 − n
2p the following

condition:

‖Rmg‖Lp= O

(
1

(T − t)
q
2

)
.

Moreover, according to Theorem C, there is a concentration phenomenon in the L
n
2

sense: there exist ǫ > 0 and sequences of times tk → T and xk → x∞ ∈M such that
∫

Bg(tk)(xk, 1k )

∣∣Rmg(tk)

∣∣n2 dvg(tk) ≥ ǫ.

2.2. Blow-up at a singular time. If g(t) is a solution of EP (g0) on a compact man-
ifold M and a time interval [0, T ), with 0 < T ≤ ∞, and if the curvature blows up at T ,
i.e. lim

t→T

∥∥Rmg(t)

∥∥
L∞= ∞, then we can choose a sequence ti → T such that

∥∥Rmg(ti)

∥∥
L∞= sup

t≤ti

∥∥Rmg(t)

∥∥
L∞ and

∥∥Rmg(ti)

∥∥
L∞→ ∞.

Let define λi =
∥∥Rmg(ti)

∥∥
L∞ and the rescaled flows

gi(t) = λig

(
ti +

t

λ2i

)
.

Then for all i ∈ N, gi is a solution of EP on
[
−λ2i ti, λ2i (T − ti)

)
.

Let choose any α > 0. For i big enough, gi is a solution of EP on [−α, 0]. Moreover,
it has been rescaled in such a way that its curvature is uniformly bounded by 1 on M ×
[−α, 0], and that it satisfies

∥∥Rmgi(0)

∥∥
L∞= 1.

If the Yamabe constant of the initial flow is uniformly bounded from below by a posi-
tive constant:

Y(M, [gt]) ≥ Y0 > 0,

then as the Yamabe constant is scale invariant, the same is true for the rescaled flows gi(t).
According to Proposition 1.4 and Lemma 1.3, the injectivity radii of gi(t) are uniformly
bounded from below by a positive constant.

We take xi ∈ M such that
∣∣Rmg(ti)(xi)

∣∣= λi, and we can apply the compactness
theorem 3.2 to show that a subsequence of (M, gi(t), xi) converges in the pointed C∞

topology to a complete pointed solution (M∞, g∞(t), x∞), t ∈ [−α, 0]. By a diagonaliza-
tion argument, g∞(t) is actually defined on (−∞, 0], and if T = ∞, g∞(t) is defined on
R. Moreover, since

∣∣Rmg∞(0)(x∞)
∣∣= 1, the limit manifold (M∞, g∞(0)) is not flat.

If no singularity occurs, i.e. if the flow exists for all time with a uniform bound on the
curvature, then according to Corollary 2.8, all the derivatives of the curvature are bounded
on M × [0,∞), and since the Yamabe constant is uniformly positive, the injectivity radius
has a positive lower bound on M × [0,∞). According Theorem 3.2 for any sequences
ti → ∞ and xi ∈M , the sequence of pointed flows (M, gi(t), xi) (where gi(t) = g(ti+t))
defined on M × (−ti,∞) has a subsequence converging to a limit flow (M∞, g∞(t), x∞)
defined on M∞ × R.
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2.3. Blow-up analysis for gradient flows in dimension four. For a closed Riemann-
ian manifold (M, g0), we consider g(t), t ∈ [0, T ), the maximal solution of Eλ(g0).

If Fλ(g0) < (1− λ)8π2χ(M) then the inequality remains true on [0, T ), since Fλ is
decreasing along its negative gradient flow. If moreover Y(M, [g0]) > 0, then according
to Lemma 2.2, Y(M, [gt]) ≥ Y0, with

Y0 =

(
2

3

(
(1− λ)8π2χ(M)−Fλ(g0)

)) 1
2

> 0.

If equality holds: Fλ(g0) = (1− λ)8π2χ(M), since

∂tFλ(gt) = −2

∫

M

∣∣∇Fλ(gt)
∣∣2 dvgt ,

either g0 is a critical point of Fλ, and the solution of Eλ(g0) is constant, or the inequality
becomes immediately strict for t > 0 and we can replace g0 by gε for a small ε.

For all t in [0, T ), we have
∫ t

0

∥∥∇Fλ(gs)
∥∥2
L2 ds = Fλ(g0)−Fλ(gt),

therefore ∫ T

0

∥∥∇Fλ(gs)
∥∥2
L2 ds ≤ Fλ(g0) <∞.

If gi are rescaled flows:

(3.1) gi(t) = λig

(
ti +

t

λ2i

)
,

then by a change of variable, we obtain
∫ 0

−α

∥∥∇Fλ(gi(t))
∥∥2
L2 dt =

∫ ti

ti− α

λ2
i

∥∥∇Fλ(g(t))
∥∥2
L2 dt,

and since
∥∥∇Fλ(g(t))

∥∥
L2 is in L2 ([0, T )), if λi → ∞ and ti → T , then

∫ 0

−α

∥∥∇Fλ(gi(t))
∥∥2
L2 dt→ 0.

By Fatou’s Lemma, this implies that the limit of rescaled flows at a singular time is critical
for the functional Fλ, and in particular is a constant flow.

Note that the volume remains constant along the flow:

∂t Volg(M) =

∫

M

1

2
tr(Pg)dvg = 0,

hence, the volume of rescaled flows satisfies Volgi(M) = λ
n
2
i Volg(M) and goes to infin-

ity. Moreover, according to Lemma 1.4 there exists a positive constant κ > 0 such that for
all i ∈ N,

inf
x∈M

Volgi(B(x, 1)) ≥ κ,

hence the same is true for (M∞, g∞). According to Lemma 1.7, the volume of (M∞, g∞)
is infinite. Therefore, the limit manifold cannot be compact, since it would be diffeomor-
phic to M by the definition of the pointed C∞ topology, and of infinite volume.

Now, by taking the trace of ∇Fλ(g∞(0)) = 0, since tr(∇Fλ) = λ
4∆R, we see that

the scalar curvature of g∞ is harmonic. Since it has a bounded L2 norm by Fatou’s Lemma,
it has to be constant (see [Yau76, Theorem 3]), and as (M, g∞) has infinite volume, the
limit manifold is scalar-flat. Then ∇Fλ(g∞(0)) = ∇FW (g∞(0)), so g∞ is also Bach-flat.
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On the other hand, if no singularity occurs, then for any sequence ti → ∞, let take
λi = 1 in (3.1). Since

∥∥∇Fλ(g(t))
∥∥
L2 is in L2 ([0,∞)), we obtain

∫ 0

−α

∥∥∇Fλ(gi(t))
∥∥2
L2 dt→ 0.

Therefore, if we note gi(t) = g(ti + t), the limit of the pointed flows (M, gi(t), xi) is
critical for the functional Fλ.

Moreover, the limit manifold (M∞, g∞) has finite volume, thus is compact according
to Lemma 1.7. This implies that M∞ is diffeomorphic to M .

3. Rigidity results for critical metrics

In this section, we apply the results of Section 3 of Chapter 1 to prove pinching re-
sults for manifolds whose curvature satisfy an elliptic condition. In particular, we prove
a rigidity result in dimension four for manifolds which are critical for a functional Fλ

(Theorem F). We also obtain a number of pinching results for manifolds with harmonic
curvature, that were already known in the compact case ([HV96, Gur00]).

Lemma 3.4. If (Mn, g), n ≥ 3, is a Riemannian manifold with constant scalar curvature,

then

δD
◦

Ricg = ∇∗∇
◦

Ricg +
1

n− 1
Rg

◦
Ricg −

◦(
Wg +

n

2
Zg

)
(

◦
Ricg) +

1

2

∣∣ ◦
Ricg

∣∣
2

g.

Proof. According to Proposition B.2, we have

δD
◦

Ricg = ∇∗∇Ricg +
1

2
D̃DRg +Ricg ◦

◦
Ricg −

◦
Rmg(

◦
Ricg)

= ∇∗∇
◦

Ricg +Ricg ◦
◦

Ricg −
◦

Rmg(
◦

Ricg),

as we assumed Rg constant. Using the relation
◦

(g.u) v =〈u | v〉 g + (trv)u− u ◦ v − v ◦ u,
we easily get that

◦
Rm(

◦
Ricg) =

◦
W (

◦
Ricg)−

2

n− 2

◦
Ricg ◦

◦
Ricg +

1

n− 2

∣∣ ◦
Ricg

∣∣ g − 1

n(n− 1)
Rg

◦
Ricg,

and we obtain the result by writing
◦

(g.
◦

Ricg) (
◦

Ricg) =
∣∣ ◦
Ricg

∣∣ g − 2
◦

Ricg ◦
◦

Ricg.

�

Corollary 3.5. If (M4, g) is a Riemannian manifold with constant scalar curvature, then

∇Fλ(g) =
1

2
∇∗∇

◦
Ricg − (

◦
Wg + Zg)(

◦
Ricg) +

1

4

∣∣ ◦
Ricg

∣∣
2

g +
2− λ

12
Rg

◦
Ricg.

Proof. We recall that Fλ = (1−λ)FW + λ
2F ◦

Ric
. According to the Gauss-Bonnet formula,

we can also write Fλ = FW + λ
24FR − λ8π2χ(M). Consequently (see Section 2 of

Chapter 2),

∇Fλ(g) = −δδ̃Wg −
1

2

◦
W g(

◦
Ricg) +

λ

12
δD(Rg g)−

λ

12
Rg

◦
Ricg,

and we obtain the formula since Rg is constant and δ̃Wg = − 1
2DAg = − 1

2D

◦
Ricg (Propo-

sition B.1). �

We will use the following estimate, which is very close to Lemma 3.4 in [Hui85]:



48 3. SINGULARITIES AND PINCHING RESULTS

Lemma 3.6. On a Riemannian manifold (Mn, g), for ǫ ∈ {+,−, } and α ∈ R, we have

∣∣∣∣
〈
W ǫ

g + αg.

◦
Ricg |

◦
Ricg .

◦
Ricg

〉∣∣∣∣≤
√

2(n− 2)

n− 1

∣∣ ◦
Ricg

∣∣
2 (∣∣W ǫ

g

∣∣2 +
2(n− 2)

n
α2
∣∣ ◦
Ricg

∣∣
2) 1

2

.

Proof. Let write the orthogonal decomposition

◦
Ricg .

◦
Ricg = T + V + U,

where

U =
1

2n(n− 1)
tr

2(
◦

Ricg .
◦

Ricg)g.g = − 1

n(n− 1)

∣∣ ◦
Ricg

∣∣
2

g.g

V =
1

n− 2
g.

(
tr(

◦
Ricg .

◦
Ricg)−

1

n
tr

2(
◦

Ricg .
◦

Ricg)g

)

= − 2

n− 2
g.

(
◦

Ricg ◦
◦

Ricg −
1

n

∣∣ ◦
Ricg

∣∣
2

g

)
.

Then
∣∣∣∣
〈
W ǫ

g + α
◦

Ricg .g |
◦

Ricg .
◦

Ricg
〉∣∣∣∣

2

=

∣∣∣∣
〈
W ǫ

g + αg.
◦

Ricg | T + V
〉∣∣∣∣

2

=

∣∣∣∣∣
〈
W ǫ

g + α

√
2

n
g.

◦
Ricg | T +

√
n

2
V
〉
∣∣∣∣∣

2

≤
∣∣∣∣∣W

ǫ
g + α

√
2

n
g.

◦
Ricg

∣∣∣∣∣

2∣∣∣∣T +

√
n

2
V

∣∣∣∣
2

=

(∣∣W ǫ
g

∣∣2 +
2(n− 2)α2

n

∣∣ ◦
Ricg

∣∣
2)(

|T |2 +
n

2
|V |2

)
.

Using the fact that |u.v|2=|u|2|v|2 + 〈u | v〉2 −2 〈u ◦ u | v ◦ v〉, we obtain

∣∣ ◦
Ricg .

◦
Ricg

∣∣
2

= 2
∣∣ ◦
Ricg

∣∣
4

−2
∣∣ ◦
Ricg ◦

◦
Ricg

∣∣
2

,

|U |2 =
2

n(n− 1)

∣∣ ◦
Ricg

∣∣
4

,

|V |2 =
4

n− 2

(∣∣ ◦
Ricg ◦

◦
Ricg

∣∣
2

− 1

n

∣∣ ◦
Ricg

∣∣
4)

.

Therefore

|T |2 +
n

2
|V |2=

∣∣ ◦
Ricg .

◦
Ricg

∣∣
2

+
n− 2

2
|V |2 − |U |2= 2(n− 2)

n− 1

∣∣ ◦
Ricg

∣∣
4

.

�

If a four-dimensional manifold satisfies δW+
g = 0, it satisfies the following Weitzen-

böck formula:

Lemma 3.7 (Derdziński ([Der83])). Let (M4, g) be a complete oriented Riemannian man-

ifold with δW+ = 0. Then

〈
∇∗∇W+

g |W+
g

〉
+
1

2
Rg

∣∣W+
g

∣∣2≤
√
6
∣∣W+

g

∣∣3,

with equality if and only if the spectrum of W+ is {−ν,−ν, 2ν}.
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Proof. We have the Weitzenböck formula (see [Bes87], 16.73):

−1

2
∆
∣∣W+

g

∣∣2=
∣∣∇W+

g

∣∣2 +
1

2
Rg

∣∣W+
g

∣∣2 −18 detW+
g .

And since the maximum of λ1λ2λ3 under the constraints{
λ1 + λ2 + λ3 = 0

λ21 + λ22 + λ23 = 1

is obtained for −λ1 = −λ2 = 2λ3 = 1√
6

and is equal to 1
3
√
6

, we get

〈
∇∗∇W+

g |W+
g

〉
=

1

2
∆
∣∣W+

g

∣∣2 +
∣∣∇W+

g

∣∣2≤ −1

2
Rg

∣∣W+
g

∣∣2 +
√
6
∣∣W+

g

∣∣3

�

We can hence apply Theorem 1.10 or Theorem 1.11 to W+
g and obtain:

Proposition 3.8. Let (M4, g) be a complete oriented Riemannian manifold with constant

scalar curvature and δW+ = 0. If

∥∥W+
g

∥∥2
L2<

1

24
Y(M, [g])2,

then W+
g = 0.

Remark 3.9. In the compact case, M. Gursky proved a slightly better result in [Gur00] by
using the same technique, but with a modified Yamabe constant.

Proof. We have the refined Kato inequality (see [GL99]):

5

3

∣∣∇
∣∣W+

∣∣∣∣2≤
∣∣∇W+

∣∣2

According to (2.1)

4δ̃δW+ = 2δ̃δW +
◦

W+
g (

◦
Ricg)−

◦
W−

g (
◦

Ricg),

and if the scalar curvature is constant, then since δW = − 1
2 D̃Ag = − 1

2 D̃Ricg (Proposi-
tion B.1) and δ̃D̃Ricg = δDRicg = ∇∗∇Ric+Rm ∗Ric (Proposition B.2), we obtain

∇∗∇Ric+Rm ∗Ric = 0.

The result then comes from Theorem 1.10 and Theorem 1.11 with δ = 2
3 , λ = 1

2 and
a =

√
6 |W+|. �

Using Lemma 3.4 and Lemma 3.6, we can apply the same technique to
◦

Ricg and
obtain:

Proposition 3.10. Let (M4, g) be a complete oriented Riemannian manifold with constant

scalar curvature and δW+ = 0. If

1

2

∥∥W+
g

∥∥2
L2 +

∥∥Zg

∥∥2
L2<

1

24
Y(M, [g]),

then
◦

Ricg = 0.

Proof. Since δW+
g = 0 and the scalar curvature is constant, we have the following refined

Kato inequality (see [TV05, Lemma 5.1]):

3

2

∣∣∇
∣∣ ◦
Ricg

∣∣∣∣
2

≤
∣∣∇

◦
Ricg

∣∣
2

.

And we have

0 = 4δ̃δW+ = 2δ̃δW +
◦

W+
g (

◦
Ricg)−

◦
W−

g (
◦

Ricg),
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hence, writing that δ̃δWg = δ̃D̃Ricg = δDRicg and with Lemma 3.4,

0 = δDRicg −
◦

W+
g (

◦
Ricg) +

◦
W−

g (
◦

Ricg)

= ∇∗∇
◦

Ricg +
1

3
Rg

◦
Ricg −

◦(
W+

g + g.
◦

Ricg

)
(

◦
Ricg) +

1

2

∣∣ ◦
Ricg

∣∣
2

g.

Finally, according to Lemma 3.6, and since
〈 ◦
Tu | v

〉
=〈T | u.v〉, we have

〈
∇∗∇

◦
Ricg |

◦
Ricg

〉
+
1

3
Rg

∣∣ ◦
Ricg

∣∣
2

≤ 2√
3

(∣∣W+
g

∣∣2 +
∣∣ ◦
Ricg

∣∣
2) 1

2 ∣∣ ◦
Ricg

∣∣
2

.

The result follows by taking δ = 1
2 and λ = 1

3 . �

By combining the two last propositions, and taking a two sheeted covering if (M, g)
is not orientable, we obtain:

Proposition 3.11. Let (M4, g) be a complete Riemannian manifold with harmonic curva-

ture. If

‖Wg‖2L2 +
∥∥Zg

∥∥2
L2<

1

24
Y(M, [g])2,

then (M4, g) is of constant nonnegative sectional curvature.

In dimension n ≥ 5, we recover the following result ([HV96, Theorem 2]):

Proposition 3.12. Let (Mn, g), n ≥ 5, be a closed Riemannian manifold with harmonic

curvature. If

‖Wg‖2Ln2 +
n

2

∥∥Zg

∥∥2
L
n
2
<

1

2(n− 1)(n− 2)
Y(M, [g])2,

then
◦

Ricg = 0.

If equality is attained, then the metric is a Yamabe minimizer and the Ricci curvature

is parallel.

Proof. The Weitzenböck formula comes from Lemma 3.4 and Lemma 3.6, and we can
apply the refined Kato inequality for Codazzi tensors [HV96, Lemma] and take δ = 2

n . �

For non-compact manifolds, by taking δ = 0 and λ = n−2
4(n−1) , we obtain:

Proposition 3.13. Let (Mn, g), n ≥ 5, be a complete Riemannian manifold with harmonic

curvature and zero scalar curvature. If

‖Wg‖2Ln2 +
n

2
‖Zg‖2Ln2 <

1

2(n− 1)(n− 2)
Y(M, [g])2,

then
◦

Ricg = 0.

We finally prove:

Theorem F. Let (M4, g) be a complete Riemannian manifold with positive Yamabe con-

stant and let λ be in [0, 1]. Suppose that Rg is in L2(M). If λ = 0, suppose that Rg is

constant.

If g is a critical metric of Fλ with

‖Wg‖2L2 +
1

2
‖Zg‖2L2<

1

8× 24
Y(M, [g])2,

then g is of constant sectional curvature.
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We know that according to the Gauss-Bonnet formula, ∇Fλ = ∇FW + λ
24∇FR.

Consequently,

tr(∇Fλ) =
λ

24
tr(∇FR)

=
λ

12
tr(δD(Rgg)) (see Section 2 of Chapter 2)

=
λ

12
tr(∆Rgg + D̃DRg) (according to Proposition B.2)

=
λ

4
∆Rg

Hence, if λ 6= 0 and if g is a critical point of Fλ, then Rg is harmonic. If M is
compact, then Rg is a positive constant (since Y(M, [g]) > 0). If M is not compact,
since Rg is harmonic and in L2(M), it is also constant (see [Yau76], Theorem 3). As
Y(M, [g]) > 0, it is nonnegative.

According to Corollary 3.5,

∇Fλ(g) =
1

2
∇∗∇

◦
Ricg − (

◦
Wg + Zg)(

◦
Ricg) +

1

4

∣∣ ◦
Ricg

∣∣
2

g +
2− λ

12
Rg

◦
Ricg,

and since
〈 ◦
Tu | v

〉
=〈T | u.v〉, we have

0 =
〈
∇Fλ(g) |

◦
Ricg

〉

=
1

2

〈
∇∗∇

◦
Ricg |

◦
Ricg

〉
−
〈
Wg +

1

2

◦
Ricg .g |

◦
Ricg .

◦
Ricg

〉
+
2− λ

12
Rg

∣∣ ◦
Ricg

∣∣
2

,

hence
〈
∇∗∇

◦
Ricg |

◦
Ricg

〉
+
1

6
Rg

∣∣ ◦
Ricg

∣∣
2

≤ 2
〈
Wg +

1

2

◦
Ricg .g |

◦
Ricg .

◦
Ricg

〉

≤ 4√
3

(∣∣W+
g

∣∣2 +
1

4

∣∣ ◦
Ricg

∣∣
2) 1

2 ∣∣ ◦
Ricg

∣∣
2

.

Therefore, with δ = 0 and λ′ = 1
6 in Theorems 1.10 and 1.11, we obtain that

◦
Ricg = 0.

Then the curvature is harmonic, thus of constant nonnegative sectional curvature according
to Proposition 3.11.

4. Integral pinching results

In this section, we use the rigidity result for critical manifolds (Theorem F) to prove:

Theorem G. Let λ be in (0, 1). If (M4, g0) is a closed Riemannian manifold with positive

Yamabe constant such that




λ ≤ 4

13

Fλ(g0) < 2λπ2χ(M)
or





λ ≥ 4

13

Fλ(g0) <
8

9
(1− λ)π2χ(M),

then the solution ofEλ(g0) exists for all time and converges in theC∞ topology to a metric

of constant positive curvature. In particular, M4 is diffeomorphic to the sphere S4 or the

real projective space RP4.

We begin with the following lemma:

Lemma 3.14. If (Mi, gi, xi) converges to (M∞, g∞, x∞) in the pointed C∞ topology,

then

Y(M, [g∞]) ≥ lim
i→∞

Y(M, [gi]).
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Proof. There exists diffeomorphisms φi : Ui ⊂ M∞ → Vi ⊂ Mi, with {Ui} an exhaus-
tion of M∞, such that φ∗i gi converges to g∞.

Let u be in C∞
0 (M∞) with

∫
M

|u| 2n
n−2 dvg∞ = 1. Since it has compact support,

supp(u) ⊂ Ui for i big enough. Let define ui ∈ H2
1 (M) by ui = u ◦ φ−1

i on Vi and 0
outside Vi.

Then,
∫

M∞

4(n− 1)

n− 2
|du|2φ∗gi

+Rφ∗giu
2dvφ∗gi

=

∫

M

4(n− 1)

n− 2
|dui|2gi +Rgiu

2
i dvgi

≥ Y(M, [gi])
(∫

M

|ui|
2n
n−2 dvgi

)n−2
n

= Y(M, [gi])
(∫

M

|u| 2n
n−2 dvφ∗gi

)n−2
n

,

therefore ∫

M∞

4(n− 1)

n− 2
|du|2g∞ +Rg∞u

2dvg∞ ≥ lim
i→∞

Y(M, [gi]),

and since C∞
0 (M∞) is dense in H2

1 (M∞, g∞), it follows that

Y(M, [g∞]) ≥ lim
i→∞

Y(M, [gi]).

�

Since Fλ(g) is decreasing along its gradient flow, if the initial metric satisfies the
hypotheses of Theorem G, then all the manifolds (M, gt) satisfy the bound

Fλ(gt) ≤ Fλ(g0) ≤ 2λ(π2χ(M)− ǫ) if λ ≤ 4

13
or

Fλ(gt) ≤ Fλ(g0) ≤
8

9
λ(π2χ(M)− ǫ) if λ ≥ 4

13
for some ǫ > 0.

Then, according to Proposition 2.3, all the manifolds (M, gt) satisfy the inequality

FW (gt) +
1

4
F ◦

Ric
(gt) ≤

1

8× 24
Y(M, [gt])

2 − ǫ,

and since FW , F ◦
Ric

and Y are scale invariant, if T is a singular time, then the rescaled

manifolds (M, gi) satisfy the same inequality.
Consequently, according to Lemma 3.14, the limit manifold (M∞, g∞) satisfy

FW (g∞) +
1

4
F ◦

Ric
(g∞) ≤ lim

i→∞

(
FW (gi) +

1

4
F ◦

Ric
(gi)

)

≤ lim
i→∞

(
1

8× 24
Y(Mi, [gi])

2 − ǫ

)

≤ 1

8× 24
Y(M, [g∞])2 − ǫ.

But (M∞, g∞) is non-flat, Bach-flat, scalar-flat, and satisfies

Y(M, [g∞]) ≥ lim
i→∞

Y(M, [gi]) ≥ Y0 > 0,

and ∫

M∞

R2
g∞dvg∞ ≤ 24(8π2χ(M) +

1

λ
Fλ(g0)),

so Theorem F with λ = 0 asserts that it is flat, a contradiction.
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Therefore, the flow exists for all time, and for all sequences ti, a subsequence of
(M, gti) converges to (M, g∞), with g∞ a critical metric for Fλ such that

FW (g∞) +
1

4
F ◦

Ric
(g∞) ≤ 1

8× 24
Y(M∞, [g∞])2 − ǫ,

and
Y(M, [g∞]) ≥ lim

i→∞
Y(M, [gi]) ≥ Y0 > 0.

According to Theorem F, g∞ is a metric of positive constant curvature (since its Yamabe
constant is positive). Let (N, h) be the the sphere of volume Volg0(M) if χ(M) = 2, or
the real projective space of volume Volg0(M) if χ(M) = 1, endowed with its standard
metric. Then (M, g∞) is isometric to (N, h).

We have proven that for any sequence ti, a subsequence of (M, gti) converges to
(N, h) in the C∞ topology. Hence (M, gt) converges to (N, h) as t→ ∞.
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Dans ce chapitre, on applique la méthode de Bochner intégrale aux formes différen-
tielles harmoniques des variétés riemanniennes. On en déduit plusieurs théorèmes de type
Bochner-Weitzenböck, et on caractérise les cas d’égalité.

1. The Bochner-Weitzenböck formula

Let (Mn, g) be a Riemannian manifold, and ξ be a smooth k-form. If ξ is harmonic,
i.e. closed and co-closed:

dξ = d∗ξ = 0,

then it satisfies the Bochner-Weitzenböck formula

(4.1) ∇∗∇ξ +Rkξ = 0,

where the Bochner-Weitzenböck curvature

Rk(x) : Λ
kT ∗

xM → ΛkT ∗
xM

is a symmetric operator which can be expressed by using the curvature operator. The trace
of Rk is given by

tr (Rk) =
(
dimΛkT ∗

xM
) k(n− k)

n(n− 1)
Rg.

We let −rk be the lowest eigenvalue of the traceless part of the Bochner-Weitzenböck
curvature. Then, since the nonnegativity of Rk is equivalent to

rk ≤ k(n− k)

n(n− 1)
Rg,

the classical Bochner-Weitzenböck theorem can be stated as follows:

Theorem 4.1. Let (Mn, g), n ≥ 2, be a closed Riemannian manifold. If

(4.2) rk ≤ k(n− k)

n(n− 1)
Rg,

then

– either its kth Betti number bk(M
n) vanishes,

– or equality holds in (4.2), 1 ≤ bk ≤
(
n
k

)
and every harmonic k-form is parallel.

We will prove the following integral version of Theorem 4.1:

Theorem 4.2. If (Mn, g), n ≥ 4, is a closed Riemannian manifold such that for some

integer 1 ≤ k ≤ n−3
2 or k = n

2 the following pinching holds:

(4.3) ‖rk‖Ln2 ≤
k(n− k)

n(n− 1)
Y(M, [g]),

then

– either its kth Betti number bk(M
n) vanishes,

– or equality holds in (4.3) and (up to a conformal change in the case k = n
2 ) the

pointwise equality rk = k(n−k)
n(n−1)Rg holds, 1 ≤ bk ≤

(
n
k

)
, every harmonic k-form is

parallel and g is a Yamabe minimizer.

According to [GM75], for all 1 ≤ k ≤ n − 1, we have rk ≤ k(n − k)ρg , thus
Theorem I is a direct consequence of this result.

In dimension four, if we let w+
g be the largest eigenvalue of the self-dual part W+

g of
the Weyl curvature and b+2 be the dimension of the self-dual harmonic 2-forms, we obtain
the following result, which was already obtained by M. Gursky in [Gur00]:

Theorem 4.3. If (M4, g) is a compact oriented Riemannian manifold such that

(4.4)
∥∥w+

g

∥∥
L2≤

1

6
Y(M4, [g]),

then
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– either b+2 (M
4) = 0,

– or equality holds in (4.4), 1 ≤ b+2 ≤ 3 and for every self-dual harmonic 2-form ω,

there is a Yamabe minimizer g̃ in [g] such that ω is Kähler for g̃.

Conversely, according to [Der83], for any metric conformally equivalent to one which
is Yamabe and Kähler, equality holds in (4.4).

1.1. Examples of manifolds for which equality holds in (4.3). Equality holds in
(4.3) for any metric with nonnegative Rk which is a positive Yamabe minimizer, as soon as
bk ≥ 1. According to [GM75], we can construct examples of manifolds with nonnegative
Rk by taking products of manifolds with nonnegative curvature operators. According to
[BE87, IV.2], if the product is an Einstein manifold, it will be a Yamabe minimizer.

Let (Mn, g) be a product of round spheres and projective spaces

(Sn1 , g1)× · · · × (Snp , gp)× (CPm1 , h1)× · · · × (CPmq , hq),

with ni ≥ 2. Then (M, g) has a nonnegative curvature operator. For (M, g) to be Einstein,
we have to take Rgi = αni

n and Rhi = α 2mi

n for some α > 0.
If for some 0 ≤ p′ ≤ p and 0 ≤ m′

j ≤ mj

p′∑

i=1

ni + 2

q∑

j=1

m′
j = k,

then bk ≥ 1 and equality holds in (4.3). Hence, for all k ≥ 2, there exist manifolds for
which equality holds in (4.3).

For k = 1, according to [Sch89], the quotients of Sn−1 ×R by a group of transforma-
tions generated by isometries of Sn−1 and a translation of parameter T > 0 are Yamabe
minimizing if and only if T 2 ≤ 4π2

n−2 . For those manifolds, equality holds in (4.3) and in
(0.18).

1.2. The integral Bochner-Weitzenböck Theorem. We will now prove Theorem 4.2
and Theorem 4.3. Let (Mn, g) be a Riemannian manifold. From (4.1), we get that any har-
monic k-form ξ satisfies

(4.5) 〈∇∗∇ξ | ξ〉 +k(n− k)

n(n− 1)
Rg |ξ|2≤ rk |ξ|2 .

Moreover, for k ∈ [0, n/2], the Kato inequality can be refined as

(4.6)
n+ 1− k

n− k
|d|ξ||2 ≤ |∇ξ|2 ,

(see [Bou90], and [Bra00, CGH00] for the computation of the refined Kato constant).
We take δ = 1

n−k , λ = k(n−k)
n(n−1) and β = 4k(n−1−k)

n(n−2) , and we have




0 < β < 1 when 1 ≤ k ≤ n−3
2 ,

β = 1 when k = n−2
2 or k = n

2 ,

β > 1 when k = n−1
2 .

hence if k 6= n−1
2 , we can apply Theorem 1.9 or Theorem 1.10 and obtain that if ξ is a

non-trivial harmonic k-form, then

(4.7) ‖rk‖Ln/2≥
k(n− k)

n(n− 1)
Y(M, [g]).

If furthermore equality holds and 1 ≤ k ≤ n−3
2 , then g is a Yamabe minimizer and

rk =
k(n− k)

n(n− 1)
Rg.

By Theorem 4.1, every harmonic k-form is parallel and bk ≤
(
n
k

)
.
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If equality holds and k = n
2 , then g̃ =|ξ| 4

n g is a Yamabe minimizer. Moreover, the
form ξ is still harmonic for g̃ but has constant g̃−length

|ξ|g̃= 1.

And since the traceless Bochner-Weitzenböck curvature Wn
2

only depends on the Weyl
curvature (see (B.1)), the pinching is conformally invariant and equality also holds for g̃.

Then, since equality must hold in the Kato inequality, ξ must be parallel. According
to (4.5), the pointwise inequality rn/2(g̃) ≤ n

4(n−1) Y(M, [g̃]) holds on M , and as

∥∥rn/2(g̃)
∥∥
Ln/2

=
n

4(n− 1)
Y(M, [g̃]),

the equality rn/2(g̃) = n
4(n−1)Rg̃ holds on M . By Theorem 4.1, every g̃-harmonic n/2-

form is g̃-parallel and bn/2 ≤
(

n
n/2

)
.

For the middle degree n/2 when n/2 is even, the Hodge star operator ∗ induces a

parallel decomposition Λ
n
2 T ∗M = Λ

n
2
+T

∗M⊕Λ
n
2
−T

∗M . And since the traceless Bochner-
Weitzenböck curvature Wn

2
commutes with ∗, it admits a decomposition

Wn
2
= W+

n
2
⊕W−

n
2
.

If ξ is a non-trivial harmonic self-dual form, (i.e. ∗ξ = ξ), and if −r+n/2 is the lowest

eigenvalue of W+
n/2, we get

〈∇∗∇ξ | ξ〉 + n

4(n− 1)
Rg |ξ|2≤ r+n/2 |ξ|2 .

Hence Theorem 1.10 yields
∥∥r+n/2

∥∥
Ln/2

≥ n

4(n− 1)
Y(M, [g]).

In dimension 4, this inequality becomes

(4.8)
∥∥w+

∥∥
L2=

1

2

∥∥r+2
∥∥
L2≥

1

6
Y(M, [g]),

and if equality holds, then there is a Yamabe minimizer g̃ ∈ [g] such that ξ is g̃-parallel
with |ξ|2g̃= 2. Consequently, ξ is a Kähler form on (M, g̃).

2. Pinching involving the norm of the curvature

In this section, we prove theorems 0.4, J, K and L.

2.1. Comparison between the first eigenvalue and the norm of curvature opera-

tors. In order to obtain estimates on rk, we will use the following lemma:

Lemma 4.4. IfA : E → E is a traceless self-adjoint endomorphism on a Euclidean space

E of dimension d, then its lowest eigenvalue a satisfies

a2 ≤ d− 1

d
|A|2,

and equality holds if and only if the spectrum of A is {−ν, 1
d−1ν} with ν ≥ 0 and 1

d−1ν of

multiplicity d− 1.

Proof. By a simple Lagrange multiplier argument, we see that
(
inf
{
λ1 ,

d∑

i=1

λ2i = 1 and
d∑

i=1

λi = 0
})2

=
d− 1

d

�
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For 1 ≤ k ≤ n−1
2 , let define the constants an,k and bn,k by

an,k =
((

n
k

)
− 1
)k(n− k)

n(n− 1)

4(k − 1)(n− k − 1)

(n− 2)(n− 3)
,

bn,k =
((

n
k

)
− 1
)k(n− k)

n(n− 1)

(n− 2k)2

(n− 2)2
.

Lemma 4.5. If 1 ≤ k ≤ n−1
2 , then

r2k ≤ an,k |W |2 +bn,k
∣∣ ◦
Ric
∣∣
2

and equality holds if and only if there exists a k-form u and a real number λ such that

Rk = λ Id−u⊗ u.

Proof. We apply Lemma 4.4 to Wk + Zk, and use the fact that for a traceless operator T
on k-forms ∣∣∣∣

gj

j!
.T

∣∣∣∣=
1

j!

〈
cj
gj

j!
.T |T

〉
=

(
n− 2k

j

)
|T |2 .

�

When k = n/2 we can refine this inequality by using the fact that the Hodge star
operator commutes with Rn/2 and the fact that the square of the Hodge star operator on
n/2-forms is (−1)n/2 Id.

Let Λn/2
± T ∗

xM be the eigenspaces of the Hodge star operator and R±,n/2 be the re-

striction of the Bochner-Weitzenböck curvature to Λ
n/2
± T ∗

xM .
We define

an,n/2 =





n(n−2)
4(n−1)(n−3)

((
n

n/2

)
− 2
)

if n/2 is even
n(n−2)

8(n−1)(n−3)

((
n

n/2

)
− 2
)

if n/2 is odd.

Lemma 4.6.

(4.9) r2n/2 ≤ an,n/2 |W |2

and equality holds if and only if

– when n/2 is odd: there exists a n/2-form u and a real number λ such that

Rn/2 = λ Id−u⊗ u− ∗u⊗ ∗u,
– when n/2 is even: there is ε ∈ {−,+} such that W−ε = 0 and there exists a

n/2-form u such that ∗u = εu and a real number λ such that

Rε,n/2 = λ Id−u⊗ u.

Proof. When n/2 is odd, all the eigenspaces of the Bochner-Weitzenböck curvature are
stable by the Hodge star operator hence they come with an even multiplicity. And when
n/2 is even we obtain that rn/2 is less than the lowest eigenvalue of Rε,n/2. �

2.2. Characterization of the equality case. An important feature of the Bochner-
Weitzenböck curvature is that it satisfies the first Bianchi identity. Seeing once again Rk

as a symmetric operator
Rk : Λ

kT ∗
xM → ΛkT ∗

xM,

the first Bianchi identity asserts that if (θi)i is an orthonormal basis of (T ∗
xM, g) then

∀α ∈ Λk−1T ∗
xM,

∑

i

θi ∧Rk (θi ∧ α) = 0.

We now assume that there exists a real number λ and a k-form u ∈ ΛkT ∗
xM such that

Rk = λ Id−u⊗ u.
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We get that for any orthonormal basis (ei)i, if we let (θi)i be its dual basis, then (see
[Kul72]) ∑

i

u ∧ θi ⊗ eixu = 0.

We introduce the orthogonal decomposition TxM = V ⊕ V ⊥ where

V ⊥ = {v, vxu = 0},
and choose an orthonormal basis (ei)i of TxM diagonalizing the quadratic form

v 7→ |vxu|2,
and such that (ei)1≤i≤ℓ is a basis of V . Then {eixu}1≤i≤ℓ is an orthogonal family of
Λk−1T ∗M .

From the identity ∑

i

u ∧ θi ⊗ eixu = 0,

we deduce that i ∈ {1, . . . , ℓ} ⇒ u ∧ θi = 0. Hence ℓ = k and

u = |u| θ1 ∧ . . . θk = |u|dvV .
We can go one step further. Indeed if k ∈ [2, n−1

2 ], the curvature operator is uniquely de-
termined by the Bochner-Weitzenböck curvature: the components of the curvature operator
can be expressed by taking contractions of Rk (see [Lab06, Theorem 4.4]).

We first see that if TxM = V ⊕ V ⊥ and u = dvV then

tr(u⊗ u) = ∗V gV ,
where tr is the contraction operator defined in [Lab05], gV is the metric on V viewed as a
double (1, 1)-form on V and

∗V : Λ(1,1)V ∗ → Λ(k−1,k−1)V ∗

is the Hodge star acting on double forms of V . The computations of [Lab06, theorem 4.4]
imply that the traceless part of trk−1(Rk) is proportional to the traceless part of the Ricci
curvature, hence the Ricci curvature is a linear combination of gV and gV ⊥ ; we also get
that trk−2(Rk) is a linear combination of g.Ric, of g2 and of the curvature operator. Hence
in our case, we easily get that there are numbers α = α(x), β = β(x) and γ = γ(x) such
that the curvature operator at x is

α
g2V
2

+ β
g2V ⊥

2
+ γ

g2

2
.

Hence, using the orthogonal decomposition

ΛkT ∗M̃ =

k⊕

j=0

Λk−jV ∗ ⊗ Λj
(
V ⊥)∗ ,

we find that the eigenvalues of the Bochner-Weitzenböck curvature Rk are

αj(k − j) + βj(n− k − j) + γk(n− k),

with multiplicity
(
k
j

)(
n−k
j

)
, where j ∈ {0, . . . , k}. But the assumption asserts that Rk has

only two eigenvalues and that the lowest one has multiplicity 1. The only possible case is
k = 2 and α = (n − 5)β. Moreover, β ≥ 0, since the lowest eigenvalue of the traceless
part of Rk is a negative multiple of β. Consequently we have:

Proposition 4.7. If there is a non-zero k-form u such that

Rk(x) = λId− u⊗ u

then k = 2 and TxM has an orthogonal decomposition

TxM = V ⊕ V ⊥,
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with V ⊥ = {v, vxu = 0} of codimension 2. Moreover, u is colinear to the volume form of

V , and the curvature operator is of the form

(n− 5)β
g2V
2

+ β
g2V ⊥

2
+ γ

g2

2
,

with β ≥ 0.

When n/2 is odd, we use the complex structure given by the Hodge star operator on
n/2-forms and obtain:

Proposition 4.8. If n/2 is odd and if there is a non-zero n/2-form u such that

Rn/2 = λ Id−u⊗ u− ∗u⊗ ∗u,
then TxM has an orthogonal decomposition

TxM = V ⊕ V ⊥,

with V = {v, v ∧ u = 0} and V ⊥ = {v, vxu = 0} of dimension n/2.

Moreover, u is colinear to the volume form of V and ∗u is colinear to the volume form

of V ⊥.

Indeed, with the same orthogonal decomposition TxM = V ⊕ V ⊥ as before, with

V ⊥ = {v, vxu = 0},
we get that for any vector w ∈ V ⊥,

w♭ ∧ ∗u = ∗(wxu) = 0.

Hence there is a (ℓ− n/2)-form ψ ∈ Λℓ−n/2V ∗ such that ∗u = ψ ∧ dvV ⊥ and u = ∗V ψ.
The Bianchi identity implies that

0 =

ℓ∑

i=1

∗V ψ ∧ θi ⊗ eix∗V ψ ±
ℓ∑

i=1

ψ ∧ dvV ⊥ ∧ θi ⊗ eix(ψ ∧ dvV ⊥).

Because (eix∗V ψ)1≤i≤ℓ ∪ {eix(ψ ∧ dvV ⊥))1≤i≤ℓ is an orthogonal family, we conclude
that ℓ = n/2 and ψ = 1.

And when n/2 is even, we have:

Proposition 4.9. Assume that n/2 is even, that for ε ∈ {−,+} we have W−ε = 0 and

that there is a non-zero n/2-form u such that ∗u = εu and

Rε,n/2 = λ Id−u⊗ u.

Then n = 4 and u is colinear to g(J., .) where J is an unitary complex structure on TxM .

Indeed, we obtain that the Bianchi operator applied to u⊗u is a multiple of the Bianchi
operator applied to the Hodge star operator. But the Bianchi operator applied to the Hodge
star operator is a multiple of the Hodge star operator. Hence, if (ei) is a orthonormal basis
of TxM then (eixu)i is a basis of Λn/2−1T ∗

xM .
This can only occur when n = 4 and when u = |u|g(J., .), where J is an unitary

complex structure on TxM .

2.3. The pinching results. On a closed manifold, according to (4.7) and the inequal-
ities of Section 2.1, if bk 6= 0, we have

(4.10)

(
an,k ‖W‖2n

2
+bn,k

∥∥ ◦
Ric
∥∥
2

n
2

) 1
2

≥‖rk‖Ln/2≥
k(n− k)

n(n− 1)
Y(M, [g]).
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We will now characterize the equality case in (4.10).

For one-forms in dimension greater than 5. If b1 6= 0 and if
∥∥ ◦
Ric
∥∥
L
n
2
=

1√
n(n− 1)

Y(M, [g]),

then according to Theorem 4.2, Ricg is nonnegative with b1 zero eigenvalues which corre-
spond to b1 parallel vector fields. According to the DeRham splitting theorem, the universal
cover of (M, g) splits as a Riemannian product (Nn−b1 × Rb1 , h+ (dt)2). But according
to Lemma 4.5, Ricg has only two distinct eigenvalues, hence b1 = 1 and (N, h) is Einstein
with positive scalar curvature.

For one-forms in dimension 4. If equality holds, equality must also hold in the refined
Kato inequality for ξ. Then according to Proposition F.1, M possess a normal cover

M̂ = N3 × R

with a warped product metric
ĝ = η2(t)h+ (dt)2,

where for some T > 0, η is a T -periodic function and the deck transformation group is
generated by

γ(x, t) = (φ(x), t+ T ),

with φ : N → N a h-isometry.
We can write that ĝ is isometric to g̃ = e−2f(s)(h+ ds2). Then,

◦
Ricg̃ =

◦
Rich +

1

2
(1− f ′′ − (f ′)2)

(
h− 3ds2

)
.

Since equality holds in the inequality between the first eigenvalue and the norm of
◦
Ricg̃ ,

we have
◦
Ricg̃ = r1e

−2f

(
ds2 − 1

3
h

)
,

then
◦
Rich =

(
r1e

−2f +
1

2
(1− f ′′ − (f ′)2)

)(
3ds2 − h

)

and by taking the trace on TN ⊂ TM̂ , we see that it must vanish. Thus (N3, h) is Einstein
hence of constant sectional curvature, and (M, g) is conformally equivalent to a quotient
of S3 × R. We recover Theorem 0.4 i).

Remarks 4.10. i) If the translation parameter T is too large the the product metric can-
not be a Yamabe minimizer. Indeed the second variation of the Yamabe functional has a
negative eigenvalue at the product metric when

T 2 >
4π2(n− 1)

Rh
.

Conversely, on Sn−1 × S1, the product metric is a Yamabe minimizer as soon as

(4.11) T 2 ≤ 4π2

n− 2

(cf. [Sch89]). Therefore, in dimension 4, if b1 6= 0, equality holds in (0.7) if and only
if (M, g) is conformally equivalent to a quotient of S3 × R with translation parameter
satisfying (4.11).

ii) If (M, g) satisfies the pinching
∫

M

∣∣ ◦
Ricg

∣∣
2

dvg ≤ 1

12

∫

M

R2
gdvg
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which is conformally invariant according to the Gauss-Bonnet formula, we can suppose
(up to a conformal change) that g is a Yamabe minimizer and satisfies (0.7).

For two-forms in dimension 4. If equality

‖Wg‖L2=
1

2
√
6
Y(M, [g]),

holds and b2 6= 0, then by taking a two-fold covering if M is not orientable and choosing
the right orientation, we have equality in (4.8), b+2 (M) = 0 and W−

g = 0. Hence (M, g)
is conformally equivalent to a Kähler self-dual manifold with constant scalar curvature.
According to [Bou81, Der83], (M, g) is conformally equivalent to CP2 endowed with the
Fubini-Study metric, and we recover Theorem 0.4 ii).

In degree k ∈ [2, n−2

2
] when n ≥ 7. If equality holds in (4.10) and if there exists a

non-trivial harmonic k-form, then according to Proposition 4.7 we must have k = 2.
When n ≥ 7, we have k ≤ n−3

2 , and according to Theorem 4.2, the metric g is a
Yamabe minimizer and ξ is parallel. According to Proposition 4.7, we obtain a parallel
decomposition T ∗M = V ⊕V ⊥, and the universal cover of (M, g) splits as a Riemannian
product

π : M̃ = X1 ×X2 →M

where X1 has dimension 2 and π∗ξ is colinear to λdvX1
. Still from Proposition 4.7, we

see that γ = 0, that X2 has constant positive sectional curvature, that we can normalize to
be 1, and that X1 has constant sectional curvature, hence is a 2-sphere of curvature n− 5.

For 2-forms in dimension 6. We consider a closed manifold (M6, g) with b2 6= 0 which
satisfies

‖r2‖L3=
4

15
Y(M, [g])

and

|r2|2 = a6,2 |W |2 +b6,2
∣∣ ◦
Ric
∣∣
2

.

In this case, there is an harmonic 2-form ξ for which equality holds in the refined Kato
inequality, and the curvature operator is

β

(
g2V
2

+
g2V ⊥

2

)
+ γ

g2

2
,

where at each point
TxM = V ⊕ V ⊥.

Following the computations done in [Car10], we introduce a local orthonormal frame
(e1, e2, e3, . . . , e6) and its dual frame (θ1, . . . , θ6), with V = Vect(e1, e2). We can write
that

d|ξ| = ρ|ξ|θ1 and ξ = |ξ|θ1 ∧ θ2.
The computation leads to

∇e1ξ = ρξ, ∇e2ξ = 0 and ∇ejξ = −1

4
ρ|ξ|θj ∧ θ2,

for j ≥ 3. Hence, writing Ω = ξ
|ξ| , we obtain ∇e1Ω = ∇e2Ω = 0,

R(e1, e2)Ω = (β + γ)Ω and R(e1, e2)Ω = −∇[e1,e2]Ω.

This implies that
[e1, e2] ∈ V = Vect(e1, e2).

Hence ∇[e1,e2]Ω = 0 and thus β + γ = 0. However, the scalar curvature of g is

Rg = 14β + 30γ = −16β.
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This is not possible, since β ≥ 0 and since we have assumed that the Yamabe constant of
(M, g) is positive.

The middle degree. We consider a closed manifold (Mn, g) with bn
2
6= 0 and such that

the following equality holds

an,n/2 ‖Wg‖Ln/2=
n

4(n− 1)
Y(M, [g]).

If n/2 is even, by Proposition 4.9 we must have n = 4 and (M, g) conformally equiv-
alent to CP2 endowed with the Fubini-Study metric.

If n/2 is odd, then according to Section 1.2, up to a conformal change g̃ = |ξ| 4
n g on

the metric, we can suppose that g is a Yamabe minimizer and that ξ is parallel.
According to Proposition 4.8, the universal cover of (M, g) splits as a Riemannian

product X1 × X2 where X1 and X2 have dimension n/2. Moreover, in the orthogonal
decomposition

Λ
n
2 T ∗(X1 ×X2) =

n
2⊕

j=0

ΛjT ∗X1 ⊗ Λ
n
2 −jT ∗X2,

the Bochner-Weitzenböck curvature has the decomposition

Rn
2
=

n
2∑

j=0

(
RX1

n
2 −j ⊗ IdΛjT∗X2

+Id
Λ
n
2

−jT∗X1
⊗RX2

j

)
.

Hence for j ∈ {0, . . . , n2 } , RX1
n
2 −j and RX2

j are multiple of the identity. In particular

RX1
n
2 −2 and RX2

2 are multiple of the identity, and by [Tac73] or [Lab06], it implies that X1

and X2 have constant sectional curvature.
Moreover, the eigenvalues of Rn

2
are

j
(n
2
− j
) Rg

n(n− 1)
,

with multiplicity
(
n/2
j

)2
, where j ∈ {0, . . . , n2 }. The only possibility to have 2 eigenvalues

is when n = 6. Then X1 and X2 are two round spheres.

Remark 4.11. If X1 and X2 are two round spheres of the same radius, then the product is
Einstein. According to [BE87] it is a Yamabe minimizer, and thus equality really holds in
(0.19).

3. The non-compact case

We will prove the following result, which implies Theorem M:

Theorem 4.12. Let (Mn, g), n ≥ 4, be a complete non-compact Riemannian manifold

with positive Yamabe constant. Assume that the lowest eigenvalue of the Ricci curvature

satisfies Ric− ∈ Lp for some p > n
2 , and assume that Rg ∈ L

n
2 . If

(4.12)
∥∥r1
∥∥
L
n
2
+
n− 4

4n
‖Rg‖Ln2 ≤

1

4
Y(M, [g]),

then

– either H1
c (M,Z) = {0} and in particular M has only one end.

– or equality holds in (4.12) and there exists an Einstein manifold (Nn−1, h) with

positive scalar curvature and α > 0 such that (Mn, g) or one of its two-fold cover-

ing is isometric to
(
Nn−1 × R, α cosh2(t)

(
h+ (dt)2

))
.
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According to Lemma 1.8, there exists C such that the following Sobolev inequality
holds:

(4.13) ∀ϕ ∈ C∞
0 (M) ‖ϕ‖2

L
2n
n−2

≤ C ‖dϕ‖2L2 .

Then, according to [CP04, Proposition 5.2], if H1
c (M,Z) 6= {0}, then M or one of its

two-fold covering has at least two ends.
If M has at least two ends, then according to [CSZ97, Theorem 2], we can find a

compact set K ⊂M with
M \K = Ω− ∪ Ω+,

and with both Ω− and Ω+ unbounded, and an harmonic function Φ: M 7→ (−1, 1) such
that dΦ ∈ L2,

lim
x→∞
x∈Ω−

Φ(x) = −1 and lim
x→∞
x∈Ω+

Φ(x) = 1.

In particular ξ = dΦ is an L2 harmonic 1-form on (M, g).
If M has only one end and π̌ : M̌ →M is a two-fold covering of M with at least two

ends, then (M̌, π̌∗g) satisfies the Sobolev inequality (4.13), and we can find a compact set
K ⊂ M such that Ω = M \ K is connected and M̌ \ π−1(K) = Ω̌− ∪ Ω̌+ with Ω̌−
and Ω̌+ unbounded. Then we can find an harmonic function Φ̌ : M̌ → (−1, 1) such that
dΦ̌ ∈ L2,

lim
x→∞
x∈Ω̌−

Φ̌(x) = −1 and lim
x→∞
x∈Ω̌+

Φ̌(x) = 1.

Moreover this function is unique by maximum principle, hence the image of Φ̌ by a deck
transformation of π̌ : M̌ → M is either Φ̌ or −Φ̌. In particular, the function |ξ|=|dΦ̌| is
well defined on M and is in L2(M, g).

The harmonic 1-form ξ satisfies

〈∇∗∇ξ | ξ〉 +1

4
Rg |ξ|2≤

(
r1 +

n− 4

4n
Rg

)
|ξ|2

and
n

n− 1
|d |ξ||2≤|∇ξ|2 .

Moreover, sinceRic− = −r1+Rg
n ,Ric− is inLn/2∩Lp for some p > n/2, and according

to [Gal88, Theorem 1], we have

VolB(x0, R) = O
(
R2(n−1)

)
.

Therefore, we can apply Theorem 1.11 and we obtain

(4.14) ‖r1‖Ln2 +
n− 4

4n
‖R‖

L
n
2
≥
∥∥∥∥r1 +

n− 4

4n
R

∥∥∥∥
L
n
2

≥ 1

4
Y(M, [g]).

If furthermore equality holds, then the function v =|ξ|
n−2
n−1 is in L

2n
n−2 (M, g) and we can

suppose that ‖v‖
L

2n
n−2

= 1. Then v satisfies the Yamabe equation

4(n− 1)

n− 2
∆gv +Rgv = Y(M, [g])v

n+2
n−2 .

Since equality must hold in the refined Kato inequality, according to Proposition F.1, M or
one of its two-fold covering is isometric to N × R endowed with a metric

ĝ = η2(t)h+ dt2.

If we take the new coordinate s =
∫ t

0
η−1(τ)dτ , we can write that

ĝ = e−2f(s)(h+ ds2),
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where s is in (s−, s+), with

s+ =

∫ +∞

0

dt

η(t)
and s− =

∫ −∞

0

dt

η(t)
.

Since v = e(n−2)f is a solution of the Yamabe equation for the metric ĝ, the function
w = e

n−2
2 f is solution to the Yamabe equation for the metric h+ (ds)2, hence satisfies

(4.15) − 4
n− 1

n− 2
w′′(s) +Rhw(s) = Y(M, [g])w(s)

n+2
n−2 .

In particular, we see that Rh only depends on s, hence is constant.
Moreover, since Ric− is in Lp for some p > n/2, and since

∆|ξ| ≤ −Ric−|ξ|,
we get by DeGiorgi-Nash-Moser iterative scheme (see for instance [Yan92, Theorem B.1])
that ξ is in L∞, and that

(4.16) lim
x→∞

|ξ| = 0.

We can now prove that s+ = +∞. Recall that

|ξ| = η1−n = e(n−1)f = w2n−1
n−2 .

If s+ is finite, then because of (4.16), we get

lim
s→s+

w = 0.

The differential equation (4.15) implies that w′ must have a non-zero limit when s → s+.
Hence there exists c > 0 such that

w ∼
s→s+

c(s+ − s).

And since the metric ĝ = w− 4
n−2 (h+ ds2) is complete, we must have
∫ s+

0

w(s)−
2

n−2 ds = +∞,

hence n = 4. But according to (1), when n = 4, the scalar curvature of ĝ satisfies

1

w3
Rĝ = −6

(
1

w

)′′
+

1

w
Rh,

hence Rĝ goes to −12c2 when s→ s+, and therefore is not in Ln/2(M, ĝ). Consequently,
s+ = +∞, and the same argument shows that s− = −∞.

From (4.15), we deduce that there is a constant c such that

−4
n− 1

n− 2
(w′)2 +Rhw

2 =
n− 2

n
Y(M, [g])w

2n
n−2 + c.

Since lims→±∞ w = 0, we must have c = 0. Moreover, since Y(M, [g] is positive, and w
is a positive function we must also have Rh > 0. Up to a change of time variable and a
scaling on ĝ, we can suppose that

Rh = (n− 2)(n− 1).

Let ϕ = e−f = w− 2
n−2 . We obtain

−(ϕ′)2 + ϕ2 =
Y(M, [g])

4n(n− 1)
.

Therefore, for some s0, we have

ϕ(s) =

√
Y(M, [g])

4n(n− 1)
cosh(s− s0) .
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Conversely, if (Nn−1, h) is a closed manifold with positive scalar curvature

Rh = (n− 2)(n− 1),

and if
(M, g) =

(
Nn−1 × R, α cosh2(t)

(
h+ (dt)2

))
,

then

Rg = (n− 1)(n− 4)
1

α cosh4(t)
◦
Ricg =

◦
Rich + 2

n− 2

n

(
h− (n− 1)ds2

)

We see that the lowest eigenvalue of
◦
Ricg satisfies

r1(g) =
1

α cosh4(t)

(
r1(h) +

2(n− 2)(n− 1)

n

)
,

and thus we obtain

‖r1‖Ln2 +
n− 4

4n
‖Rg‖Ln2 =

C

4
Y(M, [g]),

with

C =
n(n− 1) + 4r1(h)

Y(M, [g])
Vol((N, h))

2
n

(∫

R

dt

coshn(t)

) 2
n

=

(
1 +

4r1(h)

n(n− 1)

)(
Vol((N, h))

Vol(Sn−1)

) 2
n Y(Sn)

Y(N × R, [h+ dt2])
.

According to [AB03, Proposition 2.12], we always have
(
Vol((N, h))

Vol(Sn−1)

) 2
n Y(Sn)

Y(N × R, [h+ dt2])
≥ 1.

Hence, for C to be equal to 1, r1(h) must vanish, i.e. h must be Einstein. Then, according
to [Pet09, Corollary 1.3], we have

(
Vol((N, h))

Vol(Sn−1)

) 2
n Y(Sn)

Y(N × R, [h+ dt2])
= 1,

hence equality holds in (4.12). �





APPENDIX A

Classical results about geometric flows

We first recall the first variation formula for metrics perturbated by an evolving dif-
feomorphism, on which the DeTurck trick is based:

Lemma A.1. Let (gt) be a smooth family of metrics and let (φt) be a smooth family of

diffeomorphisms. Then

∂t(φ
∗
t gt) = φ∗t (∂tgt + LVtgt),

where Vt = ∂tφt ◦ φ−1
t .

Proof.

∂t(φ
∗
t gt)|t0 = ∂t(φ

∗
t0gt)|t0 + ∂t(φ

∗
t gt0)|t0

= φ∗t0

(
∂tgt|t0

)
+ φ∗t0

(
∂t(φt ◦ φ−1

t0 )∗gt0 |t0

)

= φ∗t0

(
∂tgt|t0 + L∂tφt|t0

◦φ−1
t0

gt

)
.

�

Proposition A.2 (DeTurck trick). Let (M, g0) be a closed Riemannian manifold.

Let P : S2
+(M) → S2(M) and V : S2

+(M) → TM be geometric differential opera-

tors such that (P − LV )
′
g0 is strongly elliptic. Then

{
∂tg = P (g)

g(0) = g0
EP (g0)

admits a unique maximal solution on an open interval [0, T ), T positive.

Proof. Since (P −LV )
′
g0 is strongly elliptic, it follows from the theory of parabolic equa-

tions that {
∂tg = P (g)− LVgg

g(0) = g0
(DT (g0))

admits is a unique maximal solution g̃(t), t ∈ [0, T ) with T > 0 (see [MM10]).
Let φt, t ∈ [0, T ) be the flow of V (g̃t):

{
∂tφt = V (g̃t) ◦ φt,
φ0 = IdM .

Let show that

(gt)t∈[0,T1) is a solution of EP (g0) ⇐⇒ T1 ≤ T and ∀t ∈ [0, T1) gt = φ∗t g̃t.

It will gives short-time existence and uniqueness for EP (g0).
Let gt = φ∗t g̃t. Then g(0) = g0 and by Lemma A.1, for all t in [0, T ),

∂tg = φ∗t (∂tg̃ + LVg̃ g̃) = φ∗tP (g̃) = P (g).

So gt is solution of EP (g0) on [0, T ).
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Now, let gt be a solution of EP (g0) on [0, T1). Let ψt, t ∈ [0, T1) be the flow of −Vgt .
Then ψ∗

t gt is solution of (DT (g0)) on [0, T1):

∂t(ψ
∗
t gt) = ψ∗

t (∂tg − LVgg)

= ψ∗
t P (g)− ψ∗

tLVgg)

= P (ψ∗
t g)− LVψ∗

t g
ψ∗
t g.

Therefore, T1 ≤ T and for all t in [0, T1), ψ∗
t gt = g̃t.

Moreover, for all t in [0, T1), ψ
−1
t = φt:

∂t(ψ
−1
t ) = −ψ∗

t (−Vgt) ◦ ψ−1
t = Vg̃t ◦ ψ−1

t ,

and ψ−1
0 = IdM , so ψ−1

t is the flow of Vg̃t . It follows that gt = φ∗t g̃t. �

We now compute the principal symbols of the operators we will use. With

Rξ(g) = ξ ⊗ ξ− |ξ|2 g,
and

(γg,g0)i =
1

2
giδg

αβ(Γi
αβ(g)− Γi

αβ(g0)),

we have:

Proposition A.3. For all metrics g and all ξ in T ∗M , we have

σξ(LV )
′
g = ξ ⊗ σξV

′
g + σξV

′
g ⊗ ξ,

σξR
′
g =〈Rξ | ·〉,

σξ(Ric− Lγ·,g0
)′g = −1

2
|ξ|2 IdS2(M),

σξ(δD(R · ))′g =〈Rξ | ·〉 Rξ,

σξ(δDRic− L∇∗∇γ·,g0+
1
4dR

)′g =
1

2
|ξ|4 IdS2(M).

Where the operators δ and D are defined in Appendix B and V : S2
+(M) → T ∗M is any

differential operator of degree at least one,

Proof. We recall that the Lie derivative of a metric is given by

(LV g)ij = ∇iVj +∇jVi,

then by Lemma C.5,

(LV )
′
g(h)ij = ∇iV

′
g(h)j +∇jV

′
g(h)i +∇h ∗ V,

and as V is of degree at least one,

σξ(LV )
′
g(h)ij = ξiσξV

′
g(h)j + ξjσξV

′
g(h)i.

By Proposition B.4,

R′
g(h) = δ̃δh+∆trh− 〈Ric | h〉,

then
σξR

′
g(h) =〈ξ ⊗ ξ | h〉 − |ξ|2 tr h =〈Rξ | h〉,

therefore, as δD(Rg g) = ∆Rg g + D̃DRg (Proposition B.2),

σξ(δD(R · )′g = ξ ⊗ ξ σξR
′
g− |ξ|2 σξR′

g g =〈Rξ | ·〉 Rξ.

It follows of Lemma B.3 that

(γ·,g0)
′
g(h)i =

1

2
(∇αhαi −

1

2
∇itr h)−

1

2
giδh

αβ(Γδ
αβ(g)− Γδ

αβ(g0)),

(γ·,g0)
′
g(h) = −1

2
(δh+

1

2
D̃trh) + h ∗ (Γ(g)− Γ(g0)),
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and by Proposition B.4,

Ric′g(h) =
1

2
(∇∗∇h− D(δh+

1

2
D̃trh))− D̃(δ̃h+

1

2
Dtrh) + h ∗Rm.

It follows that its principal symbol is

σξRic
′
g(h) = −1

2
|ξ|2 h+ ξ ⊗ σξγ

′
g(h) + σξγ

′
g(h)⊗ ξ,

so

σξ(Ric− Lγ·,g0
)′g = −1

2
|ξ|2 IdS2(M).

Finally,

σξ(∆Ric)
′
g(h) = − |ξ|2 σξRic′g(h)

= −1

2
|ξ|4 h+ ξ ⊗ (− |ξ|2 σξγ′g(h)) + (− |ξ|2 σξγ′g(h))⊗ ξ,

and then, since δDRicg = ∇∗∇Ricg + 1
2 D̃DRg +Rm ∗Rm (Proposition B.2),

σξ(δDRic− L∇∗∇γ+ 1
4dR

)′g = σξ(∇∗∇Ric− L∇∗∇γ)
′
g = −1

2
|ξ|4 IdS2(M).

�

We recall the following basic estimate:

Lemma A.4. Let I ∈ R be an interval and g(t), t ∈ I be a smooth family of metrics

defined on some finite dimensional vector space.

sup
I

|∂tgt|gt≤ A,

then for all s, t ∈ I ,

(A.1) e−A|t−s|gs ≤ gt ≤ eA|t−s|gs.

This inequality is easily proved by integration (see for instance [CK04, Lemma 6.49]).
We can also estimate the C2 norm of a fixed cut-off function ϕ:

Lemma A.5. If g(t), t ∈ I is a smooth family of metrics on a manifold Mn such that

sup
t∈I

‖∂tgt‖C1(M,gt)
≤ A,

and if ϕ ∈ C∞
0 (M), then for all s, t ∈ I ,

‖dϕ‖C1(M,gs)
≤

√
2 eA|t−s| ‖dϕ‖C1(M,gt)

Proof. We have

∂t

(
|dϕ|2

)
≤|∂tg||dϕ|2,

then ∇2
ijϕ = ∂i∂jϕ− Γk

ij∇kϕ, hence according to Lemma B.3,

∣∣∂t(∇2ϕ)
∣∣≤ 3

2
|∇∂tg||dϕ|

and
∂t

(∣∣∇2ϕ
∣∣2
)
≤ 2 |∂tg||∇dϕ|2 +3 |∇∂tg||dϕ|

∣∣∇2ϕ
∣∣

therefore
∂t

(
|dϕ|2 +

∣∣∇2ϕ
∣∣2
)
≤ 2A

(
|dϕ|2 +

∣∣∇2ϕ
∣∣2
)
,

and by integration, we obtain

‖dϕ‖2C1(M,gs)
≤ 2e2A|t−s| ‖dϕ‖2C1(M,gt)

.

�
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The following Lemma is an adaptation of [Ham95, Lemma 2.4] to higher-order cur-
vature flows:

Lemma A.6. Let (M, g) be a Riemannian manifold and let N, k ∈ N. Let K denote a

compact subset of M and I ⊂ R a closed interval with 0 ∈ I . Let gi be a sequence

of metrics defined on open neighborhoods of I × K, and solutions to a (k + 2)th-order

equation

(A.2) ∂tgt =
∑

0≤i1≤···≤ij≤k

∇i1
gtRmgt ∗ · · · ∗ ∇ij

gtRmgt ,

If the following conditions are satisfied:

(i) There is a constant C so that the metrics gi(0) are uniformly equivalent to g on K,

i.e.

(A.3) e−Cg ≤ gi(0) ≤ eCg.

(ii) For all 1 ≤ j ≤ N , the jth g-derivative of gi(0) is uniformly bounded on K, i.e.

(A.4) sup
K

∣∣∇j
g(gi(0))

∣∣
g
≤ Cj .

(iii) For all 1 ≤ j ≤ N + k, the jth gi-derivative of Rmgi is bounded with respect to gi
on I ×K, i.e.

(A.5) sup
I×K

∣∣∇j
gi(Rmgi)

∣∣
gi
≤ C ′

j .

Then the metrics gi are uniformly equivalent to g on I ×K, and for all 1 ≤ j ≤ N the jth

g-derivative of gi is uniformly bounded on I ×K, i.e.

sup
I×K

∣∣∇j
g(gi)

∣∣
g
≤ cj ,

and the constants cj only depend onCj , C
′
j , the dimension, the length of I and the equation

(A.2).

Proof. According to Lemma A.4, for any i, the metrics gi(t), t ∈ I are uniformly equiv-
alent to gi(0), hence to g by (A.3). The bounds will be taken for any of these equivalents
metrics.

Since for any tensor T we have

∇gT = ∇giT + (Γgi − Γg) ∗ T = ∇giT + gi ∗ ∇g(gi) ∗ T,
we obtain by induction on j ≤ N that

(A.6) ∇j
g(∂tgi) =

∑

p,q≥1

∑

0≤i1,...,ip≤j
0≤j1,...,jq≤k+j

∇i1
g gi ∗ · · · ∗∇ip

g gi ∗∇j1
giRmgi ∗ · · · ∗∇jq

giRmgi .

Because of the bounds (A.5), there exists a polynomial Q such that∣∣∂t∇j
g(gi)

∣∣=
∣∣∇j

g(∂tgi)
∣∣≤ Q

(
|∇g(gi)|, . . . ,

∣∣∇j
g(gi)

∣∣) .
Hence, by induction on j and integration on I , the derivatives ∇j

g(gi)for j ≤ N are uni-
formly bounded on I ×K. �



APPENDIX B

Operators on double-forms

We use the formalism of double-forms of Labbi (see [Kul72] and [Lab05, Lab06,
Lab08]). If for some r, E = (T ∗M)r is the bundle of (r, 0) tensors on M , we denote
by Λ(p, q)(E) the bundle of (p, q) forms with values in E , i.e. Λ(p, q)(E)= End(ΛpT ∗M ⊗
ΛqT ∗M, E). For example, symmetric endomorphisms of T ∗M can be seen as real valued
(1, 1)-forms and curvature operators as real valued (2, 2)-forms.

We define the contraction and the multiplication of a double-form by the metric (which
is a particular case of the Kulkarni-Nomizu product) as follows:

tr :Λ(p+1, q+1)(E)→Λ(p, q)(E) by (trT )i1...ip|j1...jq = gαβTαi1...ip|βj1...jq ,

g. :Λ(p, q)(E)→Λ(p+1, q+1)(E) by (g.T )i0...ip|j0...jq =
p∑

k=0

q∑

l=0

Ti0...îk...ip|j1...ĵl...jq ,

If S and T are in Λ(p, q)(E), we define their scalar product by

〈S | T 〉= 1

p!q!
gi1k1 · · · gipkpgj1l1 · · · gjqlq

〈
Si1...ip|j1...jq | Tk1...kp|l1...lq

〉
E .

In the space of double-forms, g. is the adjoint of tr for this scalar product.
The curvature tensor has the orthogonal decomposition

Rmg =Wg + Zg + Sg,

where

Zg =
1

n− 2
g.

◦
Ricg, and Sg =

Rg

2n(n− 1)
g.g.

The Bochner-Weitzenböck curvature Rk can be seen as a real valued (k, k)-form (see
[Bou81, Lab06]) and has the following orthogonal decomposition:

(B.1) Rk = Wk + Zk + Sk

where for k ∈ [2, n− 2],

Wk = −2
gk−2

(k − 2)!
.Wg, Zk =

n− 2k

n− 2

gk−1

(k − 1)!
.

◦
Ricg, Sk =

k(n− k)

n(n− 1)
Rg IdΛkT∗M .

On 1-forms, we have

R1 = Ricg =
◦

Ricg +
Rg

n
g.

We also define the following differential operators (we point out that our definition of
D and D̃ differs by a sign from that of [Lab08]):

δ :Λ(p+1, q)(E)→Λ(p, q)(E) by (δT )i1...ip|j1...jq = −∇αTαi1...ip|j1...jq ,

δ̃ :Λ(p, q+1)(E)→Λ(p, q)(E) by (δ̃T )i1...ip|j1...jq = −∇αTi1...ip|αj1...jq ,

D :Λ(p, q)(E)→Λ(p+1, q)(E) by (DT )i0...ip|j1...jq =
p∑

k=0

(−1)k∇ikTi0...îk...ip|j1...jq ,

D̃ :Λ(p, q)(E)→Λ(p, q+1)(E) by (D̃T )i1...ip|j0...jq =
p∑

k=0

(−1)k∇jkTi1...ip|j0...ĵk...jq .
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In the space of double-forms, D is the formal adjoint of δ and D̃ is the formal adjoint of δ̃.
Moreover, we have:

tr δT = −δ trT g.DT = −D (g.T )(B.2)

trD+ Dtr = −δ̃ trD̃+ D̃tr = −δ,(B.3)

g.δ + δg. = −D̃ g.δ̃ + δ̃g. = −D.(B.4)

The second Bianchi identity leads to:

Proposition B.1.

DRmg = D̃Rmg = 0 δ̃Ricg = −1

2
DRg,

δ̃Rmg = −DRicg δ̃Wg = −n− 3

n− 2
DAg.

(with Ag = Ricg − 1
2(n−1)Rgg the Weyl-Schouten tensor)

Proposition B.2.

δD(Rg g) = ∆Rg g + D̃DRg,

δDRicg = ∇∗∇Ricg +
1

2
D̃DRg +Ric ◦Ric−

◦
Rm(Ric),

δDRicg = δ̃D̃Ricg = δδ̃Rmg = δ̃δRmg.

Proof. For the first one, we have

δD(g.Rg) = −δ(g.(DRg)) = g.(δDRg) + D̃DRg,

For the second one, in coordinates,

(DRic)ij|k = ∇iRicj|k −∇jRici|k,

therefore,

(δDRic)j|k = −∇α∇αRicj|k +∇α∇jRicα|k

= ∇∗∇Ricj|k −∇j(δRic)k +Rmα
jα

βRick|β +Rmα
jk

βRicα|β

= ∇∗∇Ricj|k +
1

2
∇j∇kR+ (Ric ◦Ric)j|k −

◦
Rm(Ric)j|k.

Finally, δDRicg = δ̃D̃Ricg since both Ricg and δDRicg are symmetric according the
above formula, and the other part results from Proposition B.1. �

We recall that:

Lemma B.3. For all g in S2
+(M) and h in S2(M),

dv′g(h) =
1

2
tr(h)dvg,

(gij)′(h) = −hij ,

Γ′
g(h)

k
ij =

1

2
gkα(∇j hαi +∇i hαj −∇αhij).

The first variation of the curvature tensors are given by:

Proposition B.4. For all g in S2
+(M) and h in S2(M),

Rm′
g(h)ij|kl = −1

2
(DD̃hij|kl +Rmijk

αhαl +Rmij
α
lhkα),(B.5)

Ric′g(h) =
1

2
(δ̃D̃h+ DtrD̃h−Ric ◦ h−

◦
Rm(h)),(B.6)

R′
g(h) = trδ̃D̃h− 〈Ric | h〉= δ̃δh+∆tr h− 〈Ric | h〉 .(B.7)
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We can also write

Ric′g(h) =
1

2
(∇∗∇h− D(δh+

1

2
D̃trh))− D̃(δ̃h+

1

2
Dtrh) + h ∗Rm.

Proof. The first one is proved in [Lab08, Lemma 4.1]. Then, by using the formulas (B.3)
and (B.4):

Ric′g(h) = trRm′
g(h)−

◦
Rm(h) = −1

2
(trDD̃h+Ric ◦ h−

◦
Rm(h))

=
1

2
(δ̃D̃h+ DtrD̃h−Ric ◦ h+

◦
Rm(h))

=
1

2
(δ̃D̃h− Dδh− DD̃trh−Ric ◦ h+

◦
Rm(h))

and since DD̃(trh) = D̃D(trh) and ∇∗∇ = δ̃D̃+ D̃δ̃ +Rm∗ · (see Lemma C.1),

Ric′g(h) =
1

2
(∇∗∇h− D(δh+

1

2
D̃trh))− D̃(δ̃h+

1

2
Dtrh) + h ∗Rm.

By tracing (B.6), we obtain

R′
g(h) = trRic′g(h)− 〈Ric | h〉= 1

2
(trδ̃D̃h+ trDtrD̃h)− 〈Ric | h〉

=
1

2
(trδ̃D̃h− δ̃trD̃h)− 〈Ric | h〉

= trδ̃D̃h− 〈Ric | h〉 .
And we also have

R′
g(h) = −δ̃trD̃h− 〈Ric | h〉

= δ̃D̃trh+ δ̃δh− 〈Ric | h〉
= ∆tr h+ δ̃δh− 〈Ric | h〉 .

�





APPENDIX C

Derivative commuting

A double-form T ∈Λ(p, q)(E) can be seen as a p-form with values in ΛqTM ⊗ E , and
the operators D and δ are the classical differential operators defined on p-forms. It can also
be seen as a q-form with values in ΛqTM ⊗ E with the corresponding operators D̃ and δ̃.
We recover the following commuting formulas for tensor-valued forms:

Lemma C.1. On the space of double-forms, the following identities hold:

D
2 = Rm ∗ · , D̃

2 = Rm ∗ · ,(C.1)

δ2 = Rm ∗ · , δ̃2 = Rm ∗ · ,(C.2)

∇∗∇ = δD+ Dδ +Rm ∗ · , ∇∗∇ = δ̃D̃+ D̃δ̃ +Rm ∗ · .(C.3)

By commuting derivatives, we obtain:

Lemma C.2. For j, k ∈ N and all tensors T ,

(∇)k(∇∗∇)j+1T = (∇∗∇)j+1(∇)kT+ Pk+2j(Rm,T ) .(C.4)

(∇∗∇)2T = (∇∗)2∇2T+ P2(Rm,T ) .(C.5)

Proof. Let show that

∇(∇∗∇)T = (∇∗∇)∇T+ P1(Rm,T ) .

Indeed, we have

∇i(∇∗∇)T = ∇i∇α∇αT

= ∇α∇i∇αT +Rm ∗ ∇T
= ∇α∇α∇iT +∇(Rm ∗ T ) +Rm ∗ ∇T
= (∇∗∇)∇iT+ P1(Rm,T ) .

Then (C.4) holds by induction.
By contracting the two first indices of (C.4) for j = 0 and k = 1, we obtain

∇∗(∇∗∇)T = (∇∗∇)∇∗T+ P1(Rm),

then we get (C.5) by applying this equality to ∇T . �

By changing the order of derivatives, we also get the following formulas:

Lemma C.3. On the space of double-forms, the following identities hold:

DD̃ = D̃D+Rm ∗ · δδ̃ = δ̃δ +Rm ∗ ·(C.6)

D̃δ = δD̃+Rm ∗ · Dδ̃ = δ̃D+Rm ∗ ·(C.7)

∇D = D∇+Rm ∗ · ∇D̃ = D̃∇+Rm ∗ ·(C.8)

∇δ = δ∇+Rm ∗ · ∇δ̃ = δ̃∇+Rm ∗ ·(C.9)

(∇∗∇)D = D(∇∗∇)+ P1(Rm, · ) (∇∗∇)D̃ = D̃(∇∗∇)+ P1(Rm, · )(C.10)

Then by induction we obtain:
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Lemma C.4. For all k ∈ N and all tensors T ,

(∇)k+1
DT = D(∇)k+1T+ Pk(Rm,T )(∇)k+1

D̃T = D̃(∇)k+1T+ Pk(Rm,T ),

(C.11)

(∇)k+1δT = δ(∇)k+1T+ Pk(Rm,T ) (∇)k+1δ̃T = δ̃(∇)k+1T+ Pk(Rm,T ) .

(C.12)

And for the first variation of tensors, we have:

Lemma C.5. For all positive integers k and all tensors T ,

(C.13) (∇kT )′g(h) = ∇kT ′
g(h)+ Pk−1(∇h, T ) .

Proof. In coordinates, we have

∇iT
j1...jq
i1...ip

= ∂iT
j1...jq
i1...ip

−
p∑

l=1

Γα
iil
T

j1...jq
i1...α...ip

+

q∑

l=1

Γjl
iαT

j1...α...jq
i1...ip

,

therefore,

∇T ′
g(h)

j1...jq
i i1...ip

= ∇iT
′
g(h)

j1...jq
i1...ip

−
p∑

l=1

Γ′
g(h)

α
iil
T

j1...jq
i1...α...ip

+

q∑

l=1

Γ′
g(h)

jl
iαT

j1...α...jq
i1...ip

= ∇iT
′
g(h)

j1...jq
i1...ip

+∇h ∗ T,

then by induction, if (∇kT )′g(h) = ∇kT ′
g(h)+ Pk−1(∇h, T ),

(∇k+1T )′g(h) = ∇(∇kT )′g(h) +∇h ∗ ∇kT

= ∇k+1T ′
g(h) +∇ Pk(h, T ) +∇h ∗ ∇kT

= ∇k+1T ′
g(h)+ Pk(∇h, T ) .

�

Proposition C.6.

Rm′
g(δδ̃Rmg) = −1

2
(∇∗∇)2Rmg+ P(2)

2 (Rmg),

Rm′
g(δD(Rgg)) = −1

2
g.DD̃(∆Rg)+ P(2)

2 (Rmg),

Rm′
g(D̃DRg) =P(2)

2 (Rmg),

and

R′
g(δδ̃Rmg) = −1

2
∆2Rg+ P(2)

2 (Rmg),

R′
g(δD(Rgg)) = (n− 1)∆2Rg+ P(2)

2 (Rmg),

R′
g(D̃DRg) =P(2)

2 (Rmg) .

Proof. Since Rm′
g = − 1

2DD̃+Rmg∗ · (Proposition B.4), we obtain

Rm′
g(δδ̃Rmg) = −1

2
DD̃δδ̃Rmg+ P(2)

2 (Rmg)

= −1

2
DδD̃δ̃Rmg+ P(2)

2 (Rmg) by commuting D̃ and δ

= −1

2
∇∗∇D̃δ̃Rmg +

1

2
δDD̃δ̃Rmg+ P(2)

2 (Rmg)
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(according to the Weitzenböck formula (C.3))

= −1

2
(∇∗∇)2Rmg +

1

2
δD̃Dδ̃Rmg+ P(2)

2 (Rmg) by (C.3) since D̃Rmg = 0

= −1

2
(∇∗∇)2Rmg+ P(2)

2 (Rmg) by commuting D and δ̃, since DRmg = 0.

Then we have

Rm′
g(δD(Rgg)) = −1

2
DD̃δD(Rgg)+ P(2)

2 (Rmg)

=
1

2
DD̃δ(g.DRg)+ P(2)

2 (Rmg) by commuting g. and D

= −1

2
DD̃(g.(δDRg))−

1

2
DD̃D̃DRg+ P(2)

2 (Rmg)

(by using (B.4), since D̃
2 = Rm∗·)

= −1

2
g.DD̃(∆Rgg)+ P(2)

2 (Rmg) by commuting g. and D, D̃.

And

Rm′
g(D̃DRg) = −1

2
DD̃D̃DRg +Rmg ∗ D̃DRg =P(2)

2 (Rmg),

since D̃
2 = Rmg∗·.

Using that R′
g = δ̃δ +∆tr +Rm∗ · (Proposition B.4), we find

R′
g(δδ̃Rmg) = ∆trδδ̃Rmg+ P(2)

2 (Rmg) since δ2 = Rm∗·
= ∆δδ̃Ricg+ P(2)

2 (Rmg)

= −1

2
∆2Rg+ P(2)

2 (Rmg) by the Bianchi identity (Proposition B.1).

and

R′
g(δD(Rgg)) = ∆trδD(Rgg)+ P(2)

2 (Rmg) since δ2 = Rm∗·
= ∆δDtr(Rgg) + ∆δδ̃(Rgg)+ P(2)

2 (Rmg)

(by commuting tr and δ and using (B.3))

= (n− 1)∆2Rg+ P(2)
2 (Rmg) .

and
R′

g(D̃DRg) = trδ̃D̃D̃DRg +Rmg ∗ D̃DRg =P(2)
2 (Rmg),

since D̃
2 = Rmg∗·. �

Proposition C.7. For all k ∈ N, we have

(∇kRm)′g(δδ̃Rmg) = −1

2
∇∗2∇k+2Rmg+ P(2)

k+2(Rmg),

(∇kRm)′g(δD(Rgg)) =
1

2
g.(D∇∗∇k+1

D̃Rg)+ P(2)
k+2(Rmg),

(∇kRm)′g(D̃DRg) =P(2)
k+2(Rmg),

and

(∇kR)′g(δδ̃Rmg) = −1

2
∇∗2∇k+2Rg+ P(2)

k+2(Rmg),

(∇kR)′g(δD(Rgg)) = (n− 1)∇∗2∇k+2Rg+ P(2)
k+2(Rmg),

(∇kR)′g(D̃DRg) =P(2)
k+2(Rmg) .
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Proof. According to Lemma C.5, we obtain

(∇kRm)′g(δδ̃Rmg) = ∇kRm′
g(δδ̃Rmg)+ P(2)

k+2(Rmg)

= −1

2
∇k(∇∗∇)2Rmg+ P(2)

k+2(Rmg) according to Proposition C.6

= −1

2
(∇∗∇)2∇kRmg+ P(2)

k+2(Rmg) by commuting ∇ and ∇∗∇ (C.4)

= −1

2
(∇∗)2∇k+2Rmg+ P(2)

k+2(Rmg) by (C.5),

and

(∇kRm)′g(δD(Rgg)) = ∇kRm′
g(δD(Rgg))+ P(2)

k+2(Rmg)

= −1

2
g.(∇k

DD̃∆Rg)+ P(2)
k+2(Rmg) according to Proposition C.6

= −1

2
g.∇k

D(∇∗∇)D̃Rg+ P(2)
k+2(Rmg)

(by commuting D̃ and ∇∗∇ (C.10))

= −1

2
g.D∇k(∇∗∇)D̃Rg by commuting ∇ and D (C.11)

= −1

2
g.D∇∗∇k+1

D̃Rg by (C.5),

and also

(∇kRm)′g(D̃D(Rgg)) = ∇kRm′
g(D̃D(Rgg))+ P(2)

k+2(Rmg)=P(2)
k+2(Rmg) .

Then, we have

(∇kR)′g(δδ̃Rmg) = ∇k(R′
g(δδ̃Rmg))+ P(2)

k+2(Rmg)

= −1

2
∇k(∇∗∇)2Rg

= −1

2
(∇∗∇)2∇kRg+ P(2)

k+2(Rmg) by commuting ∇ and ∇∗∇ (C.4)

= −1

2
(∇∗)2∇k+2Rg+ P(2)

k+2(Rmg) by (C.5).

and

(∇kR)′g(δD(Rgg)) = ∇k(R′
g(δD(Rgg))+ P(2)

k+2(Rmg)

= (n− 1)∇k(∇∗∇)2Rg

= (n− 1)(∇∗)2∇k+2Rg+ P(2)
k+2(Rmg),

and finally,

(∇kR)′g(D̃D(Rgg)) = ∇kR′
g(D̃D(Rgg))+ P(2)

k+2(Rmg)=P(2)
k+2(Rmg) .

�



APPENDIX D

Interpolation inequalities

For ϕ ∈ C∞
0 (M) a nonnegative function and T a tensor, we define the following

weighted semi-norms:

‖T‖Lp,s(ϕ) =‖Tϕs‖Lp=
(∫

ϕ>0

|T |p ϕsp dvg

) 1
p

‖T‖ ◦
Hp,s
k (ϕ)

=
∥∥∇kT

∥∥
Lp,s+k

+ ‖dϕ‖k∞‖T‖Lp,s
‖T‖Hp,s

k (ϕ) =‖T‖ ◦
Hp,s
k (ϕ)

+ ‖T‖Lp,s .

We have the following interpolation inequalities:

Proposition D.1. Let k ∈ N, p ∈ [2,∞], q ∈ [2,∞) and s ≥ 0. There exists a constant

C(n, k, p, q, s) > 0 such that for all tensors T and for all 0 ≤ j ≤ k,

‖T‖ ◦
H
rj,s

j (ϕ)
≤ C ‖T‖1−

j
k

Lp,s(ϕ)‖T‖
j
k
◦
Hq,s
k (ϕ)

‖T‖
H
rj,s

j (ϕ)
≤ C ‖T‖1−

j
k

Lp,s(ϕ)‖T‖
j
k

Hq,s
k (ϕ)

.

where
1

rj
=

1− j/k

p
+
j/k

q
.

The second one is a direct consequence of the first one and the usual Hölder inequality.
We will now prove the first one by a method taken in [KS01].

Lemma D.2. Let p ∈ [1,∞], q ∈ [1,∞), r ∈ [2,∞) with 1
r = 1

2p + 1
2q and let s > 0.

There exists C(n, r, s) > 0 such that for all tensors T ,

‖∇T‖2Lr,s+1≤ C ‖T‖Lp,s(ϕ)

(∥∥∇2T
∥∥
Lq,s+2 + ‖dϕ‖L∞‖∇T‖Lq,s+1

)
.

Proof. Integrating by part, we obtain

‖∇T‖rLr,s+1 =

∫

ϕ>0

〈
∇T | |∇T |r−2 ∇T

〉
ϕ(s+1)rdvg

≤ C
(∫

ϕ>0

|T |
∣∣∇2T

∣∣|∇T |r−2
ϕ(s+1)rdvg

+ ‖dϕ‖L∞

∫

ϕ>0

|T ||∇T ||∇T |r−2
ϕ(s+1)r−1dvg

)

≤ C
(
‖Tϕs‖Lp

∥∥∇2Tϕs+2
∥∥
Lq

∥∥∇Tϕs+1
∥∥r−2

Lr

+ ‖dϕ‖L∞‖Tϕs‖Lp
∥∥∇Tϕs+1

∥∥
Lq

∥∥∇Tϕs+1
∥∥r−2

Lr

)

= C ‖T‖Lp,s(ϕ)‖∇T‖
r−2
Lr,s+1

(∥∥∇2T
∥∥
Lq,s+2 + ‖dϕ‖L∞‖∇T‖Lq,s+1

)
.

where we used the Hölder inequality with

1

p
+

1

q
+
r − 2

r
= 1.
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�

Corollary D.3. Let k ∈ N, q ∈ [2,∞) and s ≥ 0. There exists a constant c(n, q, s) > 0
such that for all tensors T and all ε > 0,

(D.1)

‖dϕ‖L∞

∥∥∇kT
∥∥
Lq,s+k(ϕ)

≤ ε
∥∥∇k+1T

∥∥
Lq,s+k+1(ϕ)

+ck
1 + ε

ε
‖dϕ‖k+1

L∞ ‖T‖Lq,s(ϕ) .

Proof. Applying Lemma D.2 with p = q = r, we obtain

‖dϕ‖L∞‖∇T‖Lq,s+1 ≤
√
C ‖dϕ‖L∞‖T‖

1
2

Lq,s(ϕ)

(∥∥∇2T
∥∥
Lq,s+2 + ‖dϕ‖L∞‖∇T‖Lq,s+1

) 1
2

≤
√
C ‖dϕ‖L∞‖T‖

1
2

Lq,s(ϕ)

(∥∥∇2T
∥∥ 1

2

Lq,s+2 + ‖dϕ‖
1
2

L∞‖∇T‖
1
2

Lq,s+1

)

≤ ε

2

∥∥∇2T
∥∥
Lq,s+2 +

1

2
‖dϕ‖L∞‖∇T‖Lq,s+1

+

(
C

2ε
+
C

2

)
‖dϕ‖2L∞‖T‖Lq,s ,

so we obtain (D.1) for k = 1:

‖dϕ‖L∞‖∇T‖Lq,s+1≤ ε
∥∥∇2T

∥∥
Lq,s+2 +

C(1 + ε)

ε
‖dϕ‖2L∞‖T‖Lq,s .

Let prove Corollary D.3 by induction on k. We apply the inequality above to ∇kT , s + k
and ε

2 :

‖dϕ‖L∞

∥∥∇k+1T
∥∥
Lq,s+k+1≤

ε

2

∥∥∇k+2T
∥∥
Lq,s+k+2 +

2C(1 + ε)

ε
‖dϕ‖2L∞

∥∥∇kT
∥∥
Lq,s+k

,

We take c = 16C and we can suppose that 4C ≥ 1. By the induction assumption with
ε

4C(1+ε) ,

‖dϕ‖2L∞

∥∥∇kT
∥∥
Lq,s+k

≤ ε

4C(1 + ε)
‖dϕ‖L∞

∥∥∇k+1T
∥∥
Lq,s+k+1

+ 2ck
4C(1 + ε)

ε
‖dϕ‖k+2

L∞ ‖T‖Lq,s .

Combining the two last inequalities, we obtain (D.1) for k + 1. �

Lemma D.4. Let k ∈ N, p ∈ [2,∞], q ∈ [2,∞) and s ≥ 0. There exists a constant

C(n, k, p, q, s) > 0 such that for all tensors T ,

‖T‖2◦
Hr,s
k+1(ϕ)

≤ C ‖T‖ ◦
Hp,s
k (ϕ)

‖T‖ ◦
Hq,s
k+2(ϕ)

,

where 1
r = 1

2p + 1
2q .

Proof. According to Lemma D.3, we have

‖dϕ‖L∞

∥∥∇k+1T
∥∥
Lq,s+k+1≤ 2ck+1 ‖T‖ ◦

Hq,s
k+2

.

Therefore, Lemma D.2 applied to ∇kT gives
∥∥∇k+1T

∥∥2
Lr,s

≤ C
∥∥∇kT

∥∥
Lp,s

‖T‖ ◦
Hq,s
k+2

≤ C ‖T‖ ◦
Hp,s
k

‖T‖ ◦
Hq,s
k+2

.

And by the Hölder inequality, we have

‖T‖2Lr,s≤‖T‖Lp,s‖T‖Lq,s≤‖T‖ ◦
Hp,s
k

‖T‖ ◦
Hq,s
k+2

.

Combining the two inequalities gives the result.
�

We can now apply the following Lemma to prove Proposition D.1:
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Lemma D.5 ([Ham82] Corollary 12.5). Let k be a positive integer.

If f : {0, 1, . . . , k} → R satisfies

∀ 0 < j < k f(j) ≤ Cf(j − 1)1/2f(j + 1)1/2,

where C is a constant, then

∀ 0 ≤ j ≤ k f(j) ≤ Cj(k−j)f(0)1−
j
k f(k)

j
k .

Let define
f(j) =‖T‖ ◦

H
rj,s

j (ϕ)
.

Since 1
rj

= 1
2rj−1

+ 1
2rj+1

, Lemma D.4 shows that there exists C(n, k, p, q, s) such
that

f(j) ≤ Cf(j − 1)1/2f(j + 1)1/2,

then Lemma D.5 gives Proposition D.1.
Thanks to this, we can know estimate the integral of tensor products, such as the

lower-order terms appearing in the Bando-Bernstein-Shi estimates on the curvature. We
begin with the following Lemma:

Lemma D.6. For all tensors of the form S ∗ T , there exists a constant C depending only

on the dimension and the coefficients in the expression such that

|S ∗ T |≤ C |S||T | .
Proof. By Cauchy-Schwarz inequality, the norm of a tensor with contracted indices is not
more than the norm of the tensor multiplied by a power of the dimension:

(gαβTαβ)
2 ≤ n TαβT

αβ .

Then,

|S ∗ T |≤ C(n)
∣∣S ⊗ T ⊗ g⊗j ⊗ (g−1)⊗k

∣∣≤ C(n)n
j+k
2 |S||T | .

�

Proposition D.7. Let j, k and m be positive integers and let Fg : T → R be a map such

that for all tensors T ,

Fg(T ) =P(j)
m,k(T ) .

Let s ≥ 0, let p ∈ [2,∞] and q ∈ [2,∞) such that

j −m/k

p
+
m/k

q
= 1,

There exists a constant C(n, k, p, q, s, F ) such that for all tensors T ,
∫

M

|Fg(T )| ϕm+jsdvg ≤ C ‖T‖j−
m
k

Lp,s(ϕ)‖T‖
m
k
◦
Hq,s
k (ϕ)

.

Proof. Let consider one term in Fg(T ), that can be written ∇k1T ∗ · · · ∗∇kjT with ki ≤ k
and k1 + · · ·+ kj = m. By Lemma D.6 and the Hölder inequality, we have

∫

M

∣∣∇k1T ∗ · · · ∗ ∇kjT
∣∣ ϕm+jsdvg ≤ C ′

∫

M

∣∣∇k1T
∣∣ · · ·

∣∣∇kjT
∣∣ ϕm+jsdvg

≤ C ′ ∥∥∇k1T
∥∥
Lr1,s+k1

· · ·
∥∥∇kjT

∥∥
Lrj,s+kj

≤ C ′ ‖T‖ ◦
H
r1,s

k1

· · · ‖T‖ ◦
H
rj,s

kj

,

where
1

ri
=

1− ki/k

p
+
ki/k

q
,
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with
j∑

i=1

1

ri
=
j −m/k

p
+
m/k

q
= 1.

According to Proposition D.1, we get∫

M

∣∣∇k1T ∗ · · · ∗ ∇kjT
∣∣ ϕm+jsdvg ≤ C ‖T‖j−

m
k

Lp,s(ϕ)‖T‖
m
k
◦
Hq,s
k (ϕ)

.

The result follows since Fg(T ) is a linear combination of such terms. �

Corollary D.8. Let j, k and m be positive integers such that j ≥ 2 and m ≤ 2k, let s ≥ 0
and let Fg : T → R be a map such that for all tensors T ,

Fg(T ) =P(j)
m,k(T ) .

There exists a constant C(n, k, s, F ) such that for all tensors T and real number α > 0,

α

∫

M

|Fg(T )| ϕm+jsdvg ≤ 1

2

∥∥∇kT
∥∥2
L2,k+s +

(
‖dϕ‖2kL∞ +C

(
α ‖T‖j−2

L∞,s

) 2k
2k−m

)
‖T‖2L2,s .

Proof. According to Proposition D.7, we have

α

∫

M

|Fg(T )| ϕm+jsdvg ≤ C ′α ‖T‖j−
m
k

Lp,s(ϕ)‖T‖
m
k
◦
H2,s
k (ϕ)

with p = 2 jk−m
2k−m , and it follows that

α

∫

M

|Fg(T )| ϕm+jsdvg ≤ 1

4
‖T‖2◦

H2,s
k

+Cα
kp

kj−m ‖T‖pLp,s

≤ 1

2

∥∥∇kT
∥∥2
L2,s +

(
‖dϕ‖kL∞ +Cα

kp
kj−m ‖T‖p−2

L∞,s

)
‖T‖2L2,s

=
1

2

∥∥∇kT
∥∥2
L2,s +

(
‖dϕ‖kL∞ +Cα

2k
2k−m ‖T‖

2k(j−2)
2k−m

L∞,s

)
‖T‖2L2,s .

�



APPENDIX E

Weighted Sobolev inequalities

In this chapter, we will prove the following Sobolev inequality:

Proposition E.1. Let (Mn≥3, g) be a Riemannian manifold. Let k ∈ N and s > 0. There

exists C(n, k, s) such that for all function ϕ ∈ C∞
0 (M, [0, 1]) and all tensors T ,

∥∥∇kT
∥∥
L∞,[n

2
]+k+1+s(ϕ)

≤ C s
n/2
g ‖T‖H2,s

[n
2

]+k+1
(ϕ) .

We first give a proof of the following classical multiplicative Sobolev inequalities:

Proposition E.2. Let (Mn≥3, g) be a complete Riemannian manifold and let q ≥ 2. There

exists C such that for all u ∈ Hq
1 (M),

‖u‖Lp≤ C s
α
g ‖u‖1−α

Lm (‖du‖Lq + ‖u‖Lq )α,
with 2 ≤ m ≤ p and

if q < n p ≤ nq

n− q
and C = C(n, q),

if q = n p <∞ and C = C(m, p),

if q > n p ≤ ∞ and C = C(n,m, q)

and

α =

1
m − 1

p
1
m − 1

q + 1
n

.

Proof. Let consider the function u1+τ for τ > 0. We have du1+τ = (1+τ)uτdu, therefore∥∥du1+τ
∥∥
L2≤ (1 + τ) ‖uτ‖

L
2q
q−2

‖du‖Lq . It follows that

∥∥u1+τ
∥∥
L

2n
n−2

≤ sg

(
(1 + τ) ‖uτ‖

L
2q
q−2

‖du‖Lq +
∥∥u1+τ

∥∥
L2

)

≤ (1 + τ)sg

(
‖u‖τ

L
2qτ
q−2

‖du‖Lq + ‖u‖1+τ
L2(1+τ)

)

≤ (1 + τ)sg ‖u‖τ
L

2qτ
q−2

‖u‖Hq
1
.

Hence we have

(E.1) ‖u‖1+τ

L
(1+τ) 2n

n−2
≤ (1 + τ)sg ‖u‖τ

L
2qτ
q−2

‖u‖Hq
1
.

For all p 6= n, let define p∗ = np
n−p .

If q < n: We first suppose that q > 2 and we choose

τ = q∗
q − 2

2q
=

1
2 − 1

q
1
q − 1

n

.

Then

1 + τ =
1
2 − 1

n
1
q − 1

n

=
q∗

2∗
,

and by (E.1),

‖u‖1+τ
Lq∗ ≤ (1 + τ) sg ‖u‖τLq∗ ‖u‖Hq

1
.
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It follows that

‖u‖Lq∗≤
q∗

2∗
sg ‖u‖Hq

1
,

which is also true when q = 2. Then, as 1
p = 1−α

m + α( 1q − 1
n ), we have

‖u‖Lp≤‖u‖1−α
Lm ‖u‖αLq∗≤

q∗

2∗
s
α
g ‖u‖1−α

Lm ‖u‖αHq
1
.

If q ≥ n: Let define

γ = 2∗
q − 2

2q
=

1
2 − 1

q
1
2 − 1

n

.

We define a sequence (τk) by

τ0 = m
q − 2

2q
and τk+1 = γ(1 + τk).

Then, according to (E.1),

‖u‖τk+1

L
2q
q−2

τk+1
≤ (1 + τk)

γ ‖u‖γτk
L

2q
q−2

τk
s
γ
g ‖u‖γHq

1
.

It follows by induction that

‖u‖τk+1

L
2q
q−2

τk+1
≤ (1 + τk)

γ · · · (1 + τ0)
γk+1 ‖u‖γ

k+1τ0
Lm

(
sg ‖u‖Hq

1

)γ(1+γ+···γk)
.

If q = n: Then γ = 1, τk = τ0 + k, and it follows that

‖u‖τk
L

2q
q−2

τk
≤ τkτk−1 · · · τ0 ‖u‖τ0Lm s

k
g ‖u‖kHn

1
,

and thus

‖u‖
L

2q
q−2

τk
≤ τ

k+1
τk

k ‖u‖
τ0
τk

Lm s

k
τk
g ‖u‖

k
τk

Hn
1
.

Now, choose a positive integer k such that p q−2
2q < τ0+k ≤ p, and let θ = τk

k α. Then

p ≤ 2q
q−2τk and

1

p
=

1− α

m
=

1− θ

m
+
τ0
m

θ

τk
=

1− θ

m
+

θ
2q
q−2τk

,

thus

‖u‖Lp ≤‖u‖1−
τk
k α

Lm ‖u‖
τk
k α

L
2q
q−2

τk

≤ τ
k+1
k α

k s
α
g ‖u‖1−α

Lm ‖u‖αHn
1

≤ p2αsαg ‖u‖1−α
Lm ‖u‖αHn

1
.

If q > n: Then γ > 1, τk = γk(τ0 +
γ

γ−1 )−
γ

γ−1 and we can write

‖u‖
L

2q
q−2

τk+1
≤
( k∏

j=0

(1 + τj)
γk−j

1+τk

)
‖u‖

γk+1τ0
τk+1

Lm

(
sg ‖u‖Hq

1

) γ
γ−1

γk+1−1
τk+1 ,

and since τk ∼ cγk, the product is convergent:

ln
( k∏

j=0

(1 + τj)
γk−j

1+τk

)
=

k∑

j=0

γk−j

1 + τk
ln(1 + τj) ≤

∞∑

j=0

1

τ0γj
ln
(
γj(τ0 +

γ

γ − 1
)
)
.

By letting k → ∞, we obtain

‖u‖L∞≤ C(n,m, q) ‖u‖
τ0

τ0+
γ
γ−1

Lm

(
sg ‖u‖Hq

1

) γ
γ−1

τ0+
γ
γ−1 ,
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where C(n,m, q) =
∏∞

j=0(1 + τj)
γk−j

1+τk and we check that

γ
γ−1

τ0 +
γ

γ−1

=
1

1 +m( 1n − 1
q )

=
1
m

1
m − 1

q + 1
n

,

which gives the result when p = ∞.
Finally, by the Hôlder inequality, we obtain

‖u‖Lp ≤‖u‖
m
p

Lm‖u‖
1−m

p

L∞

≤ C(n,m, q) ‖u‖
1−

1
m

− 1
p

1
m

− 1
q
+ 1
n

Lm

(
sg ‖u‖Hq

1

) 1
m

− 1
p

1
m

− 1
q
+ 1
n .

�

Lemma E.3. Let p ≥ 2, s > 0 and j, k ∈ N. There exists C(n, p, k, j, s) such that for all

tensor T and all nonnegative function ϕ ∈ C∞
0 (M),

(1+ ‖dϕ‖k) ‖T‖Hp,s
j (ϕ) ≤ C ‖T‖Hp,s

k+j(ϕ)(E.2)
∥∥∇jT

∥∥
Hp,s+j
k (ϕ)

≤ C ‖T‖Hp,s
k+j(ϕ)(E.3)

Proof. According to Proposition D.1, we have

‖T‖Hp,s
j (ϕ)≤ c ‖T‖

k
j+k

Lp,s(ϕ)‖T‖
j
j+k

Hp,s
k+j(ϕ)

hence

(1+ ‖dϕ‖k)
∥∥∇jT

∥∥
Lp,s+j(ϕ)

≤ c

(
k

j + k
(1+ ‖dϕ‖k) j+kk ‖T‖Lp,s(ϕ) +

j

j + k
‖T‖Hp,s

k+j(ϕ)

)

≤ 2c ‖T‖Hp,s
k+j(ϕ)

To prove (E.3), we write
∥∥∇jT

∥∥
Hp,s+j
k (ϕ)

=
∥∥∇k+jT

∥∥
Lp,s+j+k(ϕ)

+(1+ ‖dϕ‖k)
∥∥∇jT

∥∥
Lp,s+j(ϕ)

,

According to (E.2),

(1+ ‖dϕ‖k)
∥∥∇jT

∥∥
Lp,s+j(ϕ)

≤ (1+ ‖dϕ‖k) ‖T‖Hp,s
j (ϕ)≤ C ′ ‖T‖Hp,s

k+j(ϕ),

hence ∥∥∇jT
∥∥
Hp,s+j
k (ϕ)

≤ (C ′ + 1) ‖T‖Hp,s
k+j(ϕ) .

�

We now take ϕ ∈ C∞
0 (M, [0, 1]). We have the following Sobolev inequality:

Lemma E.4. Let q ≥ 2 and ϕ ∈ C∞
0 (M, [0, 1]). There exists C such that for all tensor T ,

‖T‖Lp,s+1(ϕ)≤ C s

n(p−q)
pq

g ‖T‖Hq,s
1 (ϕ)

with p ≥ 2 and

if q < n p ≤ nq

n− q
and C = C(n, q, s),

if q = n p <∞ and C = C(n, p, s),

if q > n p ≤ ∞ and C = C(n, q, s)
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Proof. According to Proposition E.2 with q = m and α = n(p−q)
pq , we have

‖T‖Lp,s+1(ϕ)=
∥∥Tϕs+1

∥∥
Lp

≤ C s
α
g

(∥∥∇(|T | ϕs+1)
∥∥
Lq

+
∥∥Tϕs+1

∥∥
Lq

)
,

and by the Kato inequality,
∣∣∇(|T | ϕs+1)

∣∣ ≤|∇ |T || ϕs+1 + (s+ 1) |T ||dϕ| ϕs

≤|∇T | ϕs+1 + (s+ 1) |T ||dϕ| ϕs,

hence we obtain

‖T‖Lp,s+1(ϕ) ≤ C s
α
g

(∥∥|∇T | ϕs+1
∥∥
Lq

+(s+ 1) ‖dϕ‖L∞‖Tϕs‖Lq +
∥∥Tϕs+1

∥∥
Lq

)

≤ (s+ 1)C s
α
g ‖T‖Hq,s

1 (ϕ)

�

Lemma E.5. Let k, l ∈ N and q ≥ 2 such that l < n
q and let p = nq

n−lq . There exists

C(n, k, q, s) such that for all tensors T ,

‖T‖Hp,s+l
k (ϕ)≤ Cslg ‖T‖Hq,s

k+l(ϕ) .

Proof. According to Lemma E.4 with 1
p = 1

q − 1
n and (E.3), we have

∥∥∇kT
∥∥
Lp,s+k+1(ϕ)

≤ C sg

∥∥∇kT
∥∥
Hq,s+k

1 (ϕ)

≤ C ′
sg ‖T‖Hq,s

k+1(ϕ)

and we also have

‖T‖Lp,s+1(ϕ)≤ C sg ‖T‖Hq,s
1 (ϕ)

therefore, according to (E.2),

(1+ ‖dϕ‖k) ‖T‖Lp,s+1(ϕ)≤ C ′
sg ‖T‖Hq,s

k+1(ϕ)

By adding the two inequalities we get the result when l = 1. But we also have

‖T‖Hr,s+k+l
k+l (ϕ)≤ Csg ‖T‖Hq,s

k+l+1(ϕ) .

with 1
r = 1

q − 1
n , hence, with 1

p = 1
r − l

n , we have 1
p = 1

q − l+1
n and the result holds by

induction on l. �

We can now prove Proposition E.1. From Lemma E.4, it follows that there exists
C1(n, s) such that

‖T‖
L∞,s+[n

2
]+1≤ C1s

1/2
g ‖T‖

H
2n,s+[n

2
]

1

.

If n=2l+1: Applying Lemma E.5 with q = 2, we get C2(n, s) such that

‖T‖H2n,s+l
1

≤ C2s
l
g ‖T‖H2,s

l+1
,

and since l = [n2 ], we obtain

‖T‖
L∞,s+[n

2
]+1≤ Csn/2g ‖T‖H2,s

[n
2

]+1
.

If n=2l+2: Applying Lemma E.4, we get

‖∇T‖L2n,s+l+2 ≤ C3s
1/2
g ‖∇T‖Hn,s+l+1

1

≤ C ′
3s

1/2
g ‖T‖Hn,s+l

2
.
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by (E.3), and

(1+ ‖dϕ‖L∞) ‖T‖L2n,s+l+1 ≤ C4s
1/2
g (1+ ‖dϕ‖L∞) ‖T‖Hn,s+l

1

≤ C ′
4s

1/2
g ‖T‖Hn,s+l

2
.

by (E.2). Hence we have

‖T‖H2n,s+l+1
1

≤ C ′
s
1/2
g ‖T‖Hn,s+l

2
.

According to Lemma E.5 with q = 2, we have

‖T‖Hn,s+l
2

≤ C ′′
s
l
g ‖T‖H2,s

l+2
,

and since l = [n2 ]− 1, we obtain

‖T‖
L∞,s+[n

2
]+1≤ Csn/2g ‖T‖H2,s

[n
2

]+1
.

Finally, we get the result by applying this inequality to ∇kT and by using (E.3). �





APPENDIX F

The refined Kato inequality for 1-forms.

Assume that (Mn, g) is a complete Riemannian manifold and that ξ ∈ C∞(T ∗M) is
an harmonic 1-form. The refined Kato inequality asserts that

(F.1) |d |ξ||2≤ n− 1

n
|∇ξ|2 .

Suppose that equality holds almost everywhere in (F.1). We can locally find a primitive Φ
of ξ:

dΦ = ξ.

Then Φ is an harmonic function and in this case, the refined Kato inequality is in fact
the Yau inequality for harmonic functions ([Yau75, Lemma 2]). Moreover, passing to the
normal covering π : M̂ →M associated to the kernel of the homomorphism

γ ∈ π1(M) 7→
∫

γ

ξ,

we have π∗ξ = dΦ for an harmonic function Φ ∈ C∞(M̂) (see for instance [Hat02]). We
will review the proof of a result of P. Li and J. Wang ([LW06]).

Proposition F.1. Assume that (Mn, g) is a complete Riemannian manifold carrying a

non-constant harmonic function Φ such that almost everywhere

|d|dΦ||2 =
n− 1

n
|∇dΦ|2 .

Then there exists a complete Riemannian manifold (Nn−1, h) such that (Mn, g) is isomet-

ric to Nn−1 × R endowed with a warped product metric η2(t)h+ (dt)2. Moreover, there

are constants c1, c2 such that

Φ(x, t) = c1 + c2

∫ t

0

dr

η(r)n−1
.

Proof. We assume that on U = {x ∈Mn, dΦ(x) 6= 0}

|d|dΦ||2 =
n− 1

n
|∇dΦ|2 .

Moreover, we add a constant to Φ such that the set

N = {x ∈ U,Φ(x) = 0}
is not empty.

The equality case in the Yau’s inequality implies that there is a function a : U → R

such that if we let ~ν = ∇Φ
|∇Φ| , then in the orthogonal decomposition TxMn = ker(dΦ) ⊕

R~ν, we have

∇dΦ =

(
a Id 0
0 −(n− 1)a

)
.

Therefore, we see that

~u ∈ ker(dΦ) ⇒ d~u
(
|dΦ|2

)
= 0.
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Hence the length of dΦ is locally constant on the regular level sets of Φ. Moreover, we
have

∇~u(~ν) =
1

|dΦ| (∇~u(∇Φ)− 〈∇~u(∇Φ) | ~ν〉 ~ν) ,

and since ∇~ν(∇Φ) is in R~ν, ∇~ν(~ν) = 0 and the integral curves of the vector field ~ν are
geodesics.

We consider the map E : N × R →Mn given by

E(x, t) = expx(t~ν(x)).

For x ∈ N , and ~u ∈ ~ν⊥, ∇~uE(x, t) is a Jacobi field along E(x, t), hence is orthogonal to
~ν for all t ∈ R. Consequently, Φ(E(x, t)) only depends on t and there exists a function
ψ : R → R such that ψ(0) = 0 and for all (x, t) ∈ N × R,

Φ(E(x, t)) = ψ(t).

We fix K ⊂ N a compact subset, and we let (α, ω) be the maximal open set containing 0
such that E : K× (α, ω) →Mn is a local diffeomorphism. Then, on K× (α, ω), we have

E∗ (∇dΦ) = ψ′′dt⊗ dt+ ψ′∇dt.
Consequently,

ψ′′ = −(n− 1)(a ◦ E) and ψ′∇dt = (a ◦ E) (E∗g) .

Hence a ◦ E only depends on t, and the hypersurfaces K × {t} ⊂ (K × (α, ω), E∗g) are
totally umbilical. Therefore, we get that on K × (α, ω),

E∗g = η2(t)h+ (dt)2,

with

(F.2) a ◦ E =
η′

η
and ψ(t) = c

∫ t

0

dr

η(r)n−1
.

Now, if ω is finite, then for some x ∈ K, (E∗g)(x,w) is not invertible, hence we must have
limt→ω η(t) = 0. According to (F.2), we also have limt→ω η

′(t) = 0, thus η(t) = o(w−t)
and

ψ(w) = c

∫ ω

0

dr

η(r)n−1
= +∞,

which is not possible. Hence ω = +∞ and the same argument shows that α = −∞.
Therefore, E : N × R → Mn is an immersion. Since dΦ is locally constant on the

level sets of Φ, N is a connected component of the closed set {x ∈ M,φ(x) = 0}, thus is
closed. Then, as E is a local isometry, E(N × R) is complete, hence closed in Mn, and
open, thus E is a surjection.

Moreover, if E(x, s) = E(y, t), then ψ(s) = ψ(t) hence s = t, and following the
flow of −~ν from E(x, t) or E(y, t) for a time t, we see that x = y. Therefore, E is also
injective. �
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available at http://arxiv.org/abs/1002.0062.

[Ber02] M. Berger, A panoramic view of Riemannian Geometry, Springer, Berlin Heidelberg New York,
2002.

[Bes87] A. L. Besse, Einstein Manifolds, Springer, Berlin Heidelberg New York, 1987.

[Bou10] V. Bour, Fourth order curvature flows and geometric applications (2010), available at http://
arxiv.org/abs/1012.0342.

[BC12] V. Bour and G. Carron, Optimal integral pinching results (2012), available at http://arxiv.
org/abs/1203.0384.

[Bou90] J.-P. Bourguignon, The “magic” of Weitzenböck formulas, Variational methods (Paris, 1988), Progr.
Nonlinear Differential Equations Appl., vol. 4, Birkhäuser Boston, Boston, MA, 1990, pp. 251–271.

[Bou81] , Les variétés de dimension 4 à signature non nulle dont la courbure est harmonique sont

d’Einstein, Inventiones Mathematicae 63 (1981), no. 2, 263–286.

[BE87] J.-P. Bourguignon and J.-P. Ezin, Scalar curvature functions in a conformal class of metrics and

conformal transformations, Transactions of the American Mathematical Society 301 (1987), no. 2,
723–736.

[Bra00] T. P. Branson, Kato constants in Riemannian geometry, Mathematical Research Letters 7 (2000),
no. 2-3, 245–261.

[Bre03] S. Brendle, Global existence and convergence for a higher order flow in conformal geometry, Annals
of Mathematics (2) 158 (2003), 323–343.

[CCD+10] M. Caldarelli, G. Catino, Z. Djadli, A. Magni, and C. Mantegazza, On Perelman’s dilaton, Geome-
triae Dedicata 145 (2010), 127–137.

[CGH00] D. M. J. Calderbank, P. Gauduchon, and M. Herzlich, Refined Kato inequalities and conformal

weights in Riemannian geometry, Journal of Functional Analysis 173 (2000), no. 1, 214–255.

[CSZ97] H.-D. Cao, Y. Shen, and S. Zhu, The structure of stable minimal hypersurfaces in R
n+1, Mathemat-

ical Research Letters 4 (1997), no. 5, 637–644.

[Car98] G. Carron, Une suite exacte en L2-cohomologie, Duke Mathematical Journal 95 (1998), no. 2, 343–
372.

[Car99] , L2-cohomologie et inégalités de Sobolev, Mathematische Annalen 314 (1999), no. 4, 613–
639.

93

http://arxiv.org/abs/1010.4287
http://arxiv.org/abs/1002.0062
http://arxiv.org/abs/1012.0342
http://arxiv.org/abs/1012.0342
http://arxiv.org/abs/1203.0384
http://arxiv.org/abs/1203.0384


94 BIBLIOGRAPHY

[Car10] , Rigidity and L2 cohomology of hyperbolic manifolds, Annales de l’Institut Fourier 60

(2010), no. 7, 2307–2331.

[CH02] G. Carron and M. Herzlich, The Huber theorem for non-compact conformally flat manifolds, Com-
mentarii Mathematici Helvetici 77 (2002), no. 1, 192–220.

[CP04] G. Carron and E. Pedon, On the differential form spectrum of hyperbolic manifolds, Annali della
Scuola Normale Superiore di Pisa. Classe di Scienze. Serie V 3 (2004), no. 4, 705–747.

[CD10] G. Catino and Z. Djadli, Conformal deformations of integral pinched 3-manifolds, Advances in Math-
ematics 223 (2010), 393–404.

[CGY02a] S.-Y. A. Chang, M. J. Gursky, and P. C. Yang, An a priori estimate for a fully nonlinear equation on

four-manifolds, Journal d’Analyse Mathématique 87 (2002), 151–186.

[CGY02b] , An equation of Monge-Ampère type in conformal geometry, and four-manifolds of positive

Ricci curvature, Annals of Mathematics (2) 155 (2002), no. 3, 709–787.

[CGY03] , A conformally invariant sphere theorem in four dimensions, Publications Mathématiques de
L’IHÉS 98 (2003), 105–143.

[CGY06] , Conformal invariants associated to a measure, Proceedings of the National Academy of
Sciences of the USA 103 (2006), 2535–2540.

[CH08] X. X. Chen and W. Y. He, On the Calabi flow, American Journal of Mathematics 130 (2008), no. 2,
539–570.

[Cha04] S.-Y. A. Chang, Non-linear elliptic equations in conformal geometry, European Mathematical Soci-
ety, Zurich, 2004.

[Che70] J. Cheeger, Finiteness Theorems for Riemannian Manifolds, American Journal of Mathematics 92

(1970), 61–74.

[CK04] B. Chow and D. Knopf, The Ricci flow : an introduction, American Mathematical Society, Provi-
dence, 2004.
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