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Abstract 
Process optimization for 3D sequential integration of FDSOI CMOS transistors 

 
 Low temperature (LT) process is gaining interest in the frame of 3D sequential 

integration where limited thermal budget (<650 ºC) is needed for top FET to preserve bottom 
FET from any degradation and also in the standard planar integration for achieving ultra-thin 
EOT and work function control with high-k metal gate without gate-last integration scheme.  
In this work, LT Solid Phase Epitaxial Regrowth (SPER) has been investigated for reducing 
the most critical thermal budget which is dopant activation.  

From previous works, LT activated devices face several challenges: First, higher junction 
leakage limits their application to high performance devices. Secondly, strong deactivation of 
the metastable activated dopants was observed with post anneals. Thirdly, the dopant weak 
diffusion makes it difficult to connect the channel with S/D.  

In this work, it is shown that the use of FDSOI enables to overcome junction leakage and 
Boron deactivation issues thanks to the defect cutting off and sinking effect of buried oxide. 
As a consequence, dopant deactivation in FDSOI devices is no longer an issue. Finally, 
implants conditions of LT transistors have been optimized to reach similar performance than 
its standard high temperature counterparts.  

 
Keywords: 3D sequential integration, Solid Phase Epitaxial Regrowth, low temperature 

process, deactivation, fully depleted devices.  
 

Résumé 
Optimisation du procédé de réalisation pour l'intégration séquentielle 3D des transistors 
CMOS FDSOI 
 

L’activation à basse température est prometteuse pour l’intégration 3D séquentielle où le 
budget thermique du transistor supérieur est limité (<650 ºC) pour ne pas dégrader le 
transistor inférieur, mais aussi dans le cas d’une intégration planaire afin d’atteindre des EOT 
ultra fines et de contrôler le travail de sortie de la grille sans recourir à une intégration de type 
« gate-last ». Dans ce travail, l’activation par recroissance en phase solide (SPER) a été 
étudiée afin de réduire le budget thermique de l’activation des dopants.  

L’activation à basse température présente plusieurs inconvénients. Les travaux 
précédents montrent que les fuites de jonctions sont plus importantes dans ces dispositifs. 
Ensuite, des fortes désactivations de dopants ont été observées. Troisièmement, la faible 
diffusion des dopants rend difficile la connexion des jonctions source et drain avec le canal.  

Dans ce travail, il est montré que dans un transistor FDSOI, l’augmentation des fuites de 
jonctions et la désactivation du Bore peuvent être évités grâce à la présence de l’oxyde enterré.  

De plus les conditions d’implantation ont été optimisées et les transistors activés à 
650  ºC atteignent les performances des transistors de référence.  

Mots-clés: Intégration 3D séquentielle, recroissance en phase solide, procédés à faible 
budget thermique, désactivation, transistors totalement déplétés.  
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Chapter I : Introduction 
 

Abstract- The MOSFET scaling is vital for the unprecedented development of 

integrated circuits (IC). However, the scaling of MOSFET has been suffering from the short-

channel effect (SCE) and the increasing interconnection delay. Another difficulty for further 

scaling is the increasing production cost from technologies for achieving small dimension. 

One attractive way to alleviate these challenges and to continue Moore’s law would be 3D 

integration i.e. stacking devices on top of each other.  

In this introduction chapter, we will recall the challenges of device scaling and explain 

why 3D integration is interesting. In the second section, different approaches of 3D 

integration (3D parallel/sequential integration) will be reviewed and compared, and the 

advantages of 3D sequential integration will be highlighted. In the third section, the 

challenges of 3D sequential integration will firstly be reviewed. Then solutions achieved in 

the previous work will be reviewed. In the end, the remaining challenges at the beginning of 

this PhD project and the motivations of this work will be described. 
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I.1 Why 3D? 

In last few decades, life has been dramatically changed in various aspects by the 

development of electronic devices, such as the personal computer, digital camera, cell phone 

and multimedia players, which have been getting faster, more portable, more functional, 

without increasing the cost [Haselman’10]. All of these are realized based on the scaling of 

the metal-oxide-semiconductor field-effect-transistor (MOSFET) which constitutes the basic 

unit of the integrated circuits (IC). Since the 1960s, the physical dimensions of MOSFET 

have been continuously scaled down following Moore’s law (Fig.I.1), which predicts that the 

number of transistors per IC is doubled every 18 months [Moore’65].  

 
Fig.I.1 Trends in digital electronics [Schwierz’10]. The evolution of MOSFET gate length in 
production-stage integrated circuits (filled red circles) and International Technology Roadmap 
for Semiconductors (ITRS) targets (open red circles). As gate lengths have decreased, the 
number of transistors per processor chip has increased (blue stars). 

The further scaling of MOSFET on 2D IC is impeded by the following limitations:  

(I) Device performance: Short Channel Effect (SCE) of scaled MOSFET tends to be 

more serious, which will strongly increase the leakage current and power 

consumption [Roy’03, Yang’08]. To continue the miniaturization of MOSFET, 

introduction of new technologies has been necessary (Fig.I.2): (a) high-k/metal gate, 

strained silicon, gate-last structure have been needed [Kuhn’12, Nishikawa'09]; (b) 

some changes are now required in the MOS architecture for better electrostatic 

control: fully depleted silicon-on-insulator (SOI) [Skotnicki’11, Planes’12, 

Khakifirooz’12, Faynot’10] and multi-gates structures [Bohr’11] are brought up into 

production; (c) and high mobility materials for enhanced carrier mobility are 

forecasted to keep up with the performance increase requirements [Kuhn’12].  
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(II) Fabrication limitations: In front end of line (FEOL) process, the miniaturization of 

device feature requires more complex photolithography and etching systems, raising 

the production cost [Khorram’12]. Reliability and variability [Kuhn’11, Mazurier’11] 

are also becoming serious concerns as device scales down. 

(III) System performance: Device engineers have been boosting device performance at 

the cost of device leakage [Haensch’08]. Moreover, the interconnection length is 

getting longer and longer. As a result, the power consumption and RC delay increase 

dramatically.  

Fig.I.2. Scaling trend and evolution of technologies projected by ITRS 2011 [ITRS’11]. 

To push the limits of Moore’s law, 3D integration is very 

attractive [Iyer’09]. 3D integration can help to shorten the long 

horizontal interconnections into vertical connections, which can help to 

reduce power dissipation and RC delay. In addition, depending on the 

3D integration approach, 3D integration might offer the following 

benefits: increased performance, reduced power, small form factor, 

reduced packaging, increased yield and reliability, reduced overall cost, 

multi-functionality and flexible heterogeneous integration [Lu’09]. As 

shown in Fig.I.3, future 3D integration enables multi-functionalities IC 

with high integration density. 

Fig.I.3 A vision of 
future 3D hyper-
integration [Lu’09].
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I.2 How to obtain 3D? 

In this thesis, we focus on the wafer level 3D integration with crystalline Si on both 

bottom and top layer. The basic concept of 3D integration is to stack multiple 2D active layers 

to achieve higher integration density and shorter interconnections. Based on this concept, 

there are different manufacturing technologies to realize 3D integration: (I) 3D parallel 

integration where the chips/wafers are firstly preprocessed, followed by the bonding and 

connections between layers; (II) 3D sequential integration where the active layers and the 

devices on different active layer are fabricated sequentially one after the other.  

I.2.1 3D Parallel integration  

In the parallel 3D integration, multiple 2D chips are firstly fabricated in parallel by 

standard CMOS processes. Considering the realization of bonding and connection of different 

layers, there are different techniques. Through-Silicon-Via (TSV) is one interesting way. 

There are mainly four integration schemes for TSV, e.g. via first, via middle and via last 

[Knickerbocker’08]. A schematic plot of 3D integration by via middle is shown in Fig.I.4. 

Carrier Wafer

Carrier WaferCarrier WaferCarrier Wafer

1. FEOL                  2. Cu via                          3. BEOL               4. Attach to Carrier

5. Wafer thinning6. Wafer Backside
Processing

7. Align and Bond to 
Bottom Layer

8. Remove 
Temporary Carrier

Carrier Wafer

Carrier WaferCarrier WaferCarrier Wafer

1. FEOL                  2. Cu via                          3. BEOL               4. Attach to Carrier

5. Wafer thinning6. Wafer Backside
Processing

7. Align and Bond to 
Bottom Layer

8. Remove 
Temporary Carrier

 
Fig.I.4. Schematic view of the 3D stack fabricated by 3D parallel integration process with via 
middle scheme [I-micronews]. 

3D parallel integration is challenged by the following factors:  

(I) The interconnection density is limited by the alignment precision of bonding 

[Koyanagi’09]. In 3D parallel integration the best bonding alignment reported is 
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in the range of 0.18 μm [Topol’05] to 0.5 μm [Chen’07, Koyanagi’09]. Even for 

an alignment of 0.1 μm, the maximum TSV density is limited to be around 2x108 

vias/cm2, which is much lower than 1010 contacts/cm2, the contact density in 

planar integration of 45 nm node [Batude’09a]. So the highest integration density 

and yield achievable in a 3D design are limited, due to the large landing area 

required to yield the 3D vias [Steen’07].  

(II) The TSV trench has extremely high aspect ratio (up to 10) [Wolf’08] and thus 

imposes challenges on the fabrication processes, such as dry etching, deposition 

and filling of vias.  

(III) TSV generates stress which can degrade the carrier mobility, reliability and 

variability of transistors in the vicinity of the TSV [Ryu’12]. To avoid these 

degradations, devices should be located outside the Keep Out Zone (KOZ) 

surrounding each TSV [Ryu’12, Mercha’10]. In [Mercha’10], KOZ of TSVs with 

5.3 μm diameter and 40 μm depth are studied: KOZ is demonstrated to be 20 μm 

for a single TSV and increases to  200 μm for a large TSV matrix for analog 

FETs with 0.5% ΔIdsat threshold. This seriously limits utilization of the third 

dimension. 

I.2.2 3D Sequential integration  

Unlike 3D parallel integration, in 3D sequential integration, the devices on different 

layers are fabricated sequentially. As illustrated in Fig.I.5, the bottom devices are firstly 

fabricated (Fig.I.5-a). Then, Inter Layer Dielectric (ILD) and top active layer are realized 

(Fig.I.5-b). Thirdly, top FETs are fabricated.  

BOX
S D

S D

Si
BOX

S D

Si

(a) Bottom FET                   (b) ILD deposition &   (c) Top FET
top active layer realization

BOX
S D

Si

Salicide
Poly
MG
HK

ILD

c-Si

BOX
S D

S D

Si
BOX

S D

Si

(a) Bottom FET                   (b) ILD deposition &   (c) Top FET
top active layer realization

BOX
S D

Si

Salicide
Poly
MG
HK

ILD

c-Si

Fig.I.5. Schematic plot of 3D sequential integration: (a) fabrication of bottom FETs; (b) 
deposition of Inter Layer Dielectric (ILD) and realization of top active layer;  and (c) 
fabrication of top FETs. 
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Depending on how the top crystalline active layer is achieved, there are mainly two 

approaches of 3D sequential integration: the concept will be briefly introduced in the 

following sub-sections. In [Batude’09a], detailed review of the history of 3D sequential 

integration is made. In 3D sequential integration, the alignment between top and bottom 

layers is limited by lithography. Alignment around 10 nm can be achieved, which is much 

better than that of 3D parallel integration [Batude’11b]. 

I.2.2.1 Top active layer: Seed Window based 
Recrystallization/Epitaxy 

Seed Window (SW) based techniques 

mainly have two groups:  

(I) SW based recrystallization 

(Fig.I.6):  (a) Seed Window 

formation; (b) Deposition 

of amorphous Si (a-Si); (c) 

re-crystallization (by laser 

anneal [Jung’10] or RTP @ 

600°C [Kumar’01]) with 

the seed information 

through SW.  

(II) SW based epitaxial regrowth (Fig.I.7): (a) Seed Window growth; (b) 

formation of Damascene channel and epitaxy growth of crystalline Si (c-Si); 

(c) Planarization of top active c-Si. The SW based epitaxial regrowth can also 

be applied to achieve top Ge layer [Feng’06]. 

Fig.I.7 Vertical Schematics of the formation of single-crystalline Si layer on Inter Layer 
Dielectrics (ILD) [Jung’07]. 

Fig.I.6. Vertical schematic illustrations and 
TEM image of a laser-crystallized single-
crystalline Si layer on ILD [Jung’10]. 
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The main disadvantages of SW methods are summarized below:  

(I) The integration density is limited. Since seed windows are needed for the 

recrystallization of the amorphous layer, and grain boundaries [Jung’10] exist in 

the middle of two seed windows, the coverage of top active layer over the 

bottom substrate is limited. 

(II) The control of thickness of top active layer is poor. As a consequence, this 

approach is not suitable for the fabrication of Fully Depleted Silicon On Insular 

(FDSOI) devices. 

(III) The quality of top active layer is poor. Defects have been observed in the 

regrown top Si layer between two seed window [Jung’10] and the regrown Ge 

layer in the seed window region [Feng’06]. 

I.2.2.2 Top active layer: Molecular bonding 

To overcome the limitation of the former approach for realizing top active layer, 

molecular bonding is a promising technique. CEA-LETI has demonstrated molecular bonding 

for the realization of top active layer with high crystalline quality, as illustrated in Fig.I.8 

[Batude’11b].  

2-Hydrophilic bonding & anneal (200°C)

Si

1-CMP planarization

BOX
Si

SiO2

BOX
Si

BOX
Si

Bonding
interface

3-Initial substrate removal

Wafer bonding process flow

2-Hydrophilic bonding & anneal (200°C)

SiSi

1-CMP planarization

BOX
Si

SiO2

BOX
Si

BOX
Si

Bonding
interface

3-Initial substrate removal

Wafer bonding process flow

Fig.I.8.Description of  the process flow of molecular wafer bonding in 3D sequential 
integration at CEA-LETI [Batude’11b].  

 

Firstly, after the fabrication of the bottom MOSFET using the standard FDSOI process, 

inter layer dielectric is deposited and then planarized by chemical mechanical polishing. 

Secondly, hydrophilic bonding of SOI substrate is carried out, a low temperature annealing 

(200 ºC) was performed to strengthen the bonding interface. Then, the initial substrate (handle 

wafer) is removed by selective etching, and top active layer with high crystalline quality is 

realized for the fabrication of top FET. Also, molecular bonding offers the possibility to co-
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integrate different surface and channel orientations such as <100> for bottom active layer and 

<110> for top layer without any additional process challenges [Vinet’11]. 

I.2.3 Why 3D sequential integration with wafer bonding for top 
active layer? 

Considering the realization of top active layer, the molecular bonding technique can offer 

the following advantages with respect to the recrystallization/regrowth technique:  

(I) SW is avoided and higher integration density can be achieved. 

(II) The bonded top active layer offers better thickness control and better quality than 

that of top active layer by the recrystallization/regrowth technique. In addition, 

the film thickness can be accurately controlled. 

(III) It allows independent optimization of pFETs and nFETs by fabricating them on 

different layers, through different choices on channel orientation/material and 

strain options [Vinet’11].  

(IV) The process temperature is much lower. The thermal budget of the molecular 

bonding is 200 ºC, which avoids degrading the performance of bottom devices. 

 

Comparing to 3D parallel integration, 3D sequential integration with wafer bonding for 

top active layer offers the following advantages: 

(I) It offers higher integration density thanks to its much higher alignment (~10 nm 

with respect to 0.5 μm).  

(II) In addition, 3D sequential integration allows the interconnection at transistor 

scale and thus makes full use of the third direction.  

(III) The fabrication of TSV with high aspect ratio is avoided.  

3D sequential integration with the top active layer by wafer bonding is the best candidate 

for high density 3D IC integration [Batude’09a, Batude’11b]. Bottom and top FETs scaled 

down to 50 nm with an ultrathin ILD of 23 nm have been demonstrated (Fig.I.9) [Batude’11a]. 

The transfer voltage characteristic of functional 3D inverter with a pFET (LG=50 nm) stacked 

on top of an nFET (LG=50 nm) is shown in Fig.I.10, which stands for the inverter with the 

smallest transistors achieved in 3D sequential integration scheme [Batude’11a].  
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Fig.I.9 TEM cross-sections of stacked 
transistors with record LG=50 nm and ultra 
thin interlayer dielectric TILD=23 nm, 
TSi=10 nm [Batude’11a]. 

Fig.I.10 Inverter transfer voltage characteristic 
with pFET (LG=50 nm) stacked over nFET 
(LG=50 nm) [Batude’11a]. 

 

I.3 Challenges of 3D sequential integration 

Compared to 3D parallel integration, 3D sequential integration faces some challenges in 

fabrication. The bottom FETs have to go through the realization of top active layer and the 

fabrication of top FETs, whose thermal budget can degrade the bottom transistor:  

(I) The silicide of bottom FETs can be degraded. As shown in Fig.I.11, after 

annealing at 650 ºC anneal for 10 minutes, NiSi agglomerates and the sheet 

resistance is greatly increased (Fig.I.11).  

(II) Extra dopants diffusion in bottom transistor can be induced, which will result in 

serious short channel effect in consequence.  

In the previous work at CEA-LETI [Batude’09a], efforts to overcome the challenges 

have been made mainly in two aspects: 

(I) Improving the thermal stability of silicide: NiSi has been stabilized up to 40 

minutes anneal at 650 ºC, by Platinum incorporation together with the Fluorine 

and Tungsten implantation (Fig.I.11). The thermal stability of NiSi sets the 

maximum temperature allowed for top FET fabrication to be 650 ºC.  So for the 

realization of top active layer and the fabrication of top FET, the processing 

temperature should remain below 650 ºC. 

(II) Using low thermal budget process for the realization of top active layer and the 

fabrication of top FET: (a) The molecular bonding of top active layer has been 
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realized with a maximum thermal budget of 200 ºC; (b) Considering the 

fabrication of standard FDSOI FETs, the highest thermal budget is the 

source/drain dopants activation (>1000 ºC). To avoid such a high thermal 

budget, Low Temperature (LT @ 600 °C) Solid Phase Epitaxial Regrowth 

(SPER) has been applied to replace conventional spike anneal which features a 

peak temperature above 1000 ºC. 
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Fig.I.11 Evolution of silicide sheet resistance with annealing 
duration at 650 ºC (a) and SEM observations of (b) NiSi after 
(650 ºC, 10 minutes) anneal and (c) NiSi+Pt+W+F after (650 ºC, 
40 min) anneal [Batude’08]. 

 

However, with the introduction of LT SPER for dopants activation of top FETs, 3D 

sequential integration faces new challenges which will be discussed in the following section. 

I.4 Remaining challenges at the beginning of this PhD 

At the beginning of this PhD project, 3D sequential integration faces the challenges of 

optimizing LT SPER process.  

LT SPER activation has the following properties: 

(a) Low diffusion which allows shallow junction; 

(b) High dopant activation above solid solubility at thermal equilibrium; 

(c) Residual End Of Range (EOR) defects. 

Due to the specific properties of LT SPER, the main challenges of its application for FDSOI 

device fabrication are:  

(1) Full pre-amorphization of the active Si layer, which can prevent the amorphous layer 

from recrystallization during LT SPER anneal; 
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(2) Source/drain to gate overlap might not be achieved, due to the weak diffusion of LT 

SPER activation. This tends to degrade the access resistance and ION performance in 

consequence;  

(3) High Gate Induced Drain Leakage (GIDL) current can be induced either due to the 

abrupt junction or due to the residual defects;  

(4) The LT SPER activated dopants are not thermally stable and tend to deactivate 

during post activation anneals. In addition, this deactivation can be enhanced by the 

residual EOR defects. 

In this work, we have focused on overcoming the challenges above and the context of 

this work will be introduced in the following section. 

I.5  Context of this work 

In Chapter II, the mechanism and process flow of LT SPER will firstly be introduced, 

followed by the review of the properties of LT SPER and the challenges for its application for 

FDSOI fabrication. 

After that, process optimization of n&p FDSOI FETs will be discussed to overcome the 

first two challenges: to avoid full pre-amorphization of active layer and to obtain source/drain 

to gate overlap in LT SPER process. The modification of effective work function of metal 

gate during activation anneal will be compared in LT and HT processed devices. This can 

help to gain some insight into the possibility of using LT SPER activation with gate first 

integration scheme for the fabrication of small scale transistors, instead of using gate-last 

integration which increases the complexity and cost of fabrication process. 

In Chapter III, the third challenge of high GIDL current in LT SPER will be discussed. 

Firstly, it is shown that, for devices on thick SOI, the minimum drain current achievable of LT 

activated devices is 1.5 decades higher than that on conventional spike activated devices. The 

higher leakage can be induced either by the higher EOR defects density or by the higher 

junction abruptness. Then, an improved method is proposed for distinguishing the dominant 

generation mechanisms of higher GIDL current in LT SPER activated transistors: the EOR 

defects are found to play a major role. After that, GIDL performance of LT SPER activated 

FDSOI devices on extremely thin SOI will be compared to its HT counterparts. 
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In Chapter IV, the forth challenge, about deactivation of LT SPER activated dopants, 

will be discussed. To gain insight into the possibility of applying LT SPER activation in 3D 

sequential integration for both bottom and top FETs, the deactivation of LT SPER activated 

boron and arsenic on SOI samples with different Si thickness was studied.  

In the end, the conclusions of our work and perspectives of 3D sequential integration will 

be shown. 
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Chapter II : Optimization of LT FDSOI transistors 
 

Abstract- As discussed in Chapter I, in the 3D sequential integration scheme, the top 

FET can not be fabricated with conventional FDSOI process, due to its high thermal budget. 

In conventional FDSOI fabrication, the most critical thermal budget is the dopant activation 

anneal. Generally, the dopants are activated by spike anneal with a peak temperature around 

1050 ºC. If conventional FDSOI process is applied for top FET, the bottom FETs will suffer 

from the high thermal budget of top FET. As a consequence, the bottom FET performance 

will be degraded. Particularly, a salicide agglomeration is expected to occur and degrade the 

access resistance seriously. Moreover, the dopants of bottom FET will diffuse, which will 

deteriorate the SCE control. 

To avoid such a high thermal budget of top FET, High Temperature (HT, ~1050 ºC) 

dopant activation has been replaced by Low Temperature (LT, <650°C) Solid Phase Epitaxial 

Regrowth (SPER). 

In this chapter, the mechanism and properties of LT SPER are briefly introduced in the 

first section. In the second section, the challenges of applying LT SPER for dopant activation 

of top FDSOI devices will be discussed in detail. In the third section, for both nFET and pFET, 

we will present the process optimizations required to reach similar performance to standard 

high temperature process: (1) The influence of LDD implant tilt on the trade-off between IOFF-

ION and SCE control will be analyzed for optimization; (2) The influence of activation anneals 

on the quality of gate to channel interface will be studied, proposals are also given to optimize 

device performance. In addition, in terms of effective work function modification and 

threshold voltage tuning, the additional advantage of LT SPER activation will be analyzed. 

This allows the further application of gate first integration scheme for the fabrication of high 

performance FDSOI at 20 nm node. Conclusions are given in the fourth section. 
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II.1 LT SPER activation 

In standard MOSFETs, conventional high temperature activation is applied for dopant 

activation. However, as devices scale down, conventional HT anneal is facing the following 

challenges:  

(I) The diffusion of dopant atoms during the activation anneal can degrade the short 

channel effect (SCE) control [Falepin’05];  

(II) Dopant activation level is limited by the solid solubility, which confines the 

optimization of access resistance and ION performance [Foggiato’06];  

(III) For scaled transistors, higher equivalent oxide thickness (EOT) is induced by the 

regrowth of interfacial SiO2, consequently SCE control and ION are further 

degraded [Batude’09c, Gusev’06];  

(IV) Challenge of threshold voltage (VTH) tuning: during HT (700-900 ºC) 

[MacKenzie’07] anneal, the effective work function of metal gate tends to 

migrate towards mid-gap, which imposes challenges to achieve high 

performance devices with low VTH [Wen’05, Hasan’07].  

To overcome the challenges of HT anneal described above, LT SPER activation appears 

to be a promising alternative technique. In this section, the mechanism and properties of LT 

SPER activation will be described. As illustrated in Fig.II.1, LT SPER includes 3 steps 

[Olson’88, Colombeau’04a]:  

BOX

a/c int.

(a) Pre-amorphize       (b) Dopant implant        (c) Anneal @ 600°C

BOX

a/c int.
Si                                   Si Si

BOX

EORa-Si

BOX

a/c int.

(a) Pre-amorphize       (b) Dopant implant        (c) Anneal @ 600°C

BOX

a/c int.
Si                                   Si Si

BOX

EORa-Si

Fig.II.1 Schematic plot of LT SPER process: (a) the active layer is partially pre-amorphized; 
(b) dopant atoms are implanted into the semiconductor layer; (c) low temperature activation 
anneal (500-600 ºC), the pre-amorphized region recrystallizes and dopant atoms get activated. 
a/c int.: amorphous-crystalline interface. EOR: End Of Range defects. 

 

(a) Pre-Amorphization- During ion implantation into single crystalline Si, the implanted 

ions tend to lose energy initially through elastic collisions with electrons of Si atoms 
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(electronic stopping), and then through inelastic collisions with the nuclei of Si atoms (nuclear 

stopping) [Ziegler’98]. During nuclear collision, if the energy transferred to a lattice Si atom 

exceeds a certain value (displacement energy for Si), the lattice Si atom will be displaced, 

meanwhile, a Si interstitial and a vacancy are generated and named as “Frenkel pair” 

[Nastasi’96]. Not only the primary implanted ions, but also the recoiled lattice atoms can 

collide with lattice atoms and introduce Frenkel pairs, this process is called collision cascade. 

In the collision cascade, many Frenkel pairs are recombined and only a fraction of the Frenkel 

pairs remain. The number of Si interstitials and vacancies that remain after ion implantation is 

dependent on the implant conditions (ion mass/dose, wafer temperature, and implantation 

dose rate). Higher defect density is expected for higher ion masses, energies and doses. 

In the surface region of the implanted Si layer, when the generated defects accumulate 

into successive cascades, the highly damaged c-Si would become amorphous [Pelaz’04]. 

Generally, heavy atoms (e.g. Si, Ge) are used for Pre-Amorphization Implant (PAI). However, 

for heavy dopant atoms, (e.g. BF2, As), pre-amorphization implant is not applied, since the 

dopant implant itself can amorphize the active layer. 

(b) Dopant implant- Following pre-amorphization, dopant atoms are implanted into the 

active region. Thanks to the pre-amorphization implant, channeling effect is avoided. As a 

result, a shallower dopant profile can be achieved after the implant. 

(c) LT SPER anneal- During the LT anneal, in order to minimize the free energy, the 

amorphous Si layer re-crystallizes, taking the underlying crystalline Si layer as a seed. Also, 

in the previous amorphous region, dopant atoms take the substitutional lattice position and 

become activated, as shown in Fig.II.2 (b). Frenkel pairs tend to recombine during the LT 

SPER anneal. In the crystalline Si region, the amount of Si vacancies is not enough to 

recombine with all the Si interstitials, so a band of Sii.remains just below the previous a-c 

interface. During LT SPER anneal, the Sii agglomerate into larger extended defects (such as 

defects clusters, {311}, dislocation loops) which are more stable [Claverie’02, 

Colombeau’04a, Kah’08]. Due to the facts that defect agglomeration/nucleation is faster than 

the LT SPER rate and self-diffusivity of Si is smaller in a-Si than in c-Si, the residual defects 

after LT SPER are located just below the former a/c interface, in the “end of range” region of 
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the pre-amorphization implant [Colombeau’04a, Pawlak’04a]. The residual defects are named 

End Of Range (EOR) defects. 

Fig.II.2 Defects and dopant profile evolution during LT SPER process. (a) Distribution of 
dopant, Si vacancies (Siv) and Si interstitials (Sii) after PAI and dopant implants. (b) During 
LT SPER anneal, with the bottom c-Si as a seed, a-Si recrystallizes towards its surface. (c) 
After LT SPER, dopants are highly activated and EOR defects are left below the former a/c 
interface [Cowern’05]. a/c int.: amorphous-crystalline interface. EOR defects: End Of Range 
defects. 

 

Regrowth speed- LT SPER can occur at temperatures as low as 500 °C [Suni’82]. The 

regrowth rate is independent on the energy of pre-amorphization implant. However it is 

dependent on annealing temperature, crystal orientation and dopant incorporation. The 

regrowth rate increases with annealing temperature, as illustrated in Fig.II.3 [Johnson’07]. It 

is reported that for undoped crystalline Si, the regrowth rate is about 2.5 times higher in 

<001> Si than that in <110> Si [Csepregi’75]. Considering the influence of dopant 

incorporation, boron (B), arsenic (As), phosphorus (P) and aluminum (Al) are all shown to 

enhance SPER rate (Fig.II.3). And the incorporation of boron is shown to induce the strongest 

enhancement of SPER rate (Fig.II.3) [Johnson’07].  
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Fig.II.3 Arrhenius plot showing the 
temperature dependence of the SPER rate for 
intrinsic and uniformly doped a-Si layers. The 
incorporation of aluminum (Al), arsenic (As), 
phousphorous (P) and boron (B) increases the 
regrowth speed [Johnson’07]. 

Fig.II.4 Arsenic-enhanced SPER rates for 
the front interfaces of buried a-Si layers 
normalized to the corresponding intrinsic 
SPER rate from [McCallum’99]. 

 

What’s more, it is reported that the enhancement of the regrowth rate increases with the 

dopant concentration (Fig.II.4) and implanted dose (Table.II.1). In our LT FDSOI process, to 

ensure the successful regrowth of an entire a-Si layer around 20 nm, LT SPER anneal is 

carried out at 600 ºC for 1 minute. 

Table.II.1 Comparison of regrowth rates after 1·1015 cm-2 Ge PAI implants in Bulk Si and 
SOI, both without and with 500 eV boron implants with doses from 2·1013 cm-2 to 2·1015 cm-2 
[Hamilton’05b]. 

Regrowth rate (Å/sec)

Boron dose 
(cm-2)

8KeV Ge 
Bulk

8KeV Ge 
SOI

20KeV Ge 
SOI

20KeV Ge 
SOI

0 N/A N/A 2.7 2.6

2x1013 3.5 3.7 3.7 3.9

2x1014 4.0 4.2 4.0 4.4

2x1015 5.2 4.8 5.2 5.0

Boron dose
increases

Regrowth rate
increases

 

Advantages of LT SPER- Considering the junction, LT SPER offers the following two 

advantages:  
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(I) Abrupt junction can be achieved by optimizing the PAI implant and dopant 

implant. Thanks to the low diffusion of dopants at this temperature (500-600 ºC), 

the activated dopants are mainly confined in the previous amorphous region 

[Jin’02];  

(II) High dopant activation is introduced by the non-thermal equilibrium activation 

process. The activated dopant atoms are in the metastable phase and high 

activation level, above solid solubility, can be achieved [Lindsay’04a]. 

Moreover, at device level, LT SPER activation is promising for two additional 

advantages:  

(III) Smaller EOT has been reported, thanks to the lower regrowth of interfacial SiO2 

during the lower thermal budget anneal [Batude’09c] [Ragnarsson’06];  

(IV) Better work function control is expected, thanks to its low thermal budget 

[MacKenzie’07]. By replacing the high temperature thermal anneal, the 

migration of effective work function towards mid gap can be avoided. Thus, a 

wider choice of materials is expected for effective work function tuning. 

The advantages above make LT SPER a great candidate for ultra-shallow junction 

formation in advanced CMOS nodes [Lindsay’04b, Ragnarsson’06]. 

Disadvantage of LT SPER- However, the drawback of LT SPER is that due to the low 

thermal budget, End OF Range (EOR) defects can not be fully healed out after LT SPER 

anneal. As shown in Fig.II.5, the residual EOR defects are located just below the former a/c 

interface [Colombeau’04a].  

Fig.II.5 XTEM micrographs of SPER isothermally annealed at 600 ºC [Colombeau’04a]. 
After LT SPET anneal, EOR defects are left below the a/c interface. 

During post anneal, the EOR defects evolve and act as a source of Si interstitials (Sii) 

[Hamilton’07, Hamilton’05a]. The presence of Sii can influence the dopant profile and device 

performance in three aspects: 
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(I) Dopant deactivation: The LT SPER activated dopants are in a meta-stable state 

[Lindsay’04a] and tend to deactivate during post activation anneals. As a result, 

LT SPER might lose its advantage in terms of high dopant activation. For 

activated boron atoms, due to the formation of Boron Interstitial Clusters (BICs), 

the activated boron atoms can be deactivated [Colombeau'04b]. The deactivation 

of boron in the temperature range of 700-900 ºC has been widely reported 

[Hamilton’06b, Hamilton’07, Pawlak’04b]. The activated arsenic atoms tend to 

become deactivated through the formation of As-Si vacancy clusters. Arsenic 

deactivation has been observed at temperatures around 550 ºC over 20hours 

[Nobili’99]. 

(II) Transient Enhanced Diffusion (TED): TED is a transient effect observed during 

the initial stage of post implantation anneals, and the diffusion coefficient is 

much higher than the typical value [Claverie’96, Claverie’03]. As shown in 

Fig.II.6, the TED of boron mainly occurred very quickly. After the initial 35 

minutes, the dopant profile is stabilized and the diffusion during the following 

145 minutes is negligible [Michel’87].  It has been proven that the TED of boron 

is induced by the emission of Si interstitials from EOR defects [Eaglesham’94], 

which poses one challenge to the formation of ultra-shallow junction.   

 
Fig.II.6  Isothermal anneals of B in Si showing transient effect of transient enhanced diffusion 
[Michel’87]. The TED of boron mainly occurs during the initial post anneal, and the boron 
diffusion after the initial 35 minutes can be neglected. 

 

(III) Leakage increase: The EOR defects might induce higher leakage through the trap 

assisted tunneling and SRH generation [Chang’95]. On the other hand, thanks to 
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the low thermal budget of LT SPER, very abrupt junction can be achieved. 

However, the abrupt junction might induce higher electric field and increase the 

band to band tunneling leakage [Endoh’90]. 

In this section, the general challenges of LT SPER anneal on bulk device have been 

reviewed. In the following section, the specific challenge of LT SPER for FDSOI fabrication 

will be discussed. 

II.2 Challenges of LT SPER FDSOI 

II.2.1 Full pre-amorphization of Si 

For scaled FDSOI devices, channel thickness should be decreased to maintain good 

electrostatic control of gate over channel and to suppress short channel effect. For a gate 

length of 20 nm, the Si thickness (TSi) should be below 6 nm. Since the activated dopants are 

confined in the amorphous region, the active region should be amorphized as deep as possible 

(Fig.II.7), to improve access resistance and ION performance as a consequence.  

BOX

6nm
>1nm

As deep 
as poss.Ta-Si

Tseed

BOX

6nm
>1nm

As deep 
as poss.Ta-Si

Tseed

Fig.II.7 Schematic plot of a-Si and seed layer after LDD implant for access resistance 
reduction . 

 

However, it is mandatory to avoid full pre-amorphization of the implanted active region. 

In our work, it is demonstrated that, for successful regrowth of the amorphous layer, the 

minimum crystalline Si seed thickness allowed is 1 nm [Xu’10]. As shown in Fig.II.8, lateral 

recrystallization is unable to promote S/D regrowth. In Fig.II.9, the sheet resistance of arsenic 

doped (3keV through 3 nm SiO2) Si film is plotted as a function of Si thickness (TSi) for 

several doses. Sheet resistance follows the theoretical 1/TSi law up to a critical thickness 

(dependent on the dose) for which the film is fully amorphized during implantation, leading to 
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a dramatic increase of sheet resistance. From these data and atomistic Crystal TRIM (CTRIM) 

[Posselt’94] simulations providing amorphization thickness, it is deduced that the minimum 

silicon thickness required for efficient recrystallization is around 1 nm. 

 

[Å][Å]

Fig.II.8 XTEM of a FDSOI FET after 
amorphizing implantation and 600 °C 
annealing. No lateral recrystallization is 
observed outside the gate. 

Fig.II.9 Sheet resistance as a function of 
Silicon thickness of a As implanted (3keV 
through 3 nm screen oxide) SOI film. 

Thus the scaling down of FDSOI imposes challenges to the integration of LT FDSOI, 

especially when LDD is implanted before Raised Source and Drain (RSD) epitaxy. To 

overcome this challenge, the integration scheme should be modified [Grenouillet’11]. One 

way is extension last, that is to do amorphization implant after RSD epitaxy. The other way is 

extension first, in which amorphization implant is made before RSD epitaxy, but with a SiN 

capping layer on top of the active region. However, for both integration schemes, it is 

necessary to carry out accurate CTRIM or KMC (Kinetic Monte Carlo [Mok’07]) simulations 

to predict the amorphous Si thickness and to define the proper LDD implant energy. 

II.2.2 LDD to gate underlap 

In conventional high temperature FDSOI process, extension last is applied. As shown in 

Fig.II.10-(a), the LDD implant is carried out after the fabrication of first spacer and RSD 

fabrication, with a tilt of 20 º. During the following HT activation anneal, the dopant atoms 

get activated and diffuse towards the channel. In consequence, LDD to gate overlap is formed 

(Fig.II.10-(b)). However, in LT FDSOI process, due to the low diffusion of LT SPER 
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activation, LDD to gate underlap can occur, as illustrated in Fig.II.10-(c). The underlap will 

degrade the access resistance and ION performance in consequence. 

BOX

Underlap

BOX

overlap

BOX

(a) As implanted                     (b) HT anneal              (c) LT SPER anneal 

Tilt 20°

BOX

Underlap

BOX

overlap

BOX

(a) As implanted                     (b) HT anneal              (c) LT SPER anneal 

Tilt 20°

Fig.II.10 Schematic of as implanted dopant profile (a), LDD to gate overlap achieved in HT 
activation anneal (b), and LDD to gate underlap occurred in LT SPER activation anneal (c).  

 

To overcome the challenge above, there are two possible solutions. The first possible 

solution is extension first: make LDD implant with low tilt of 7/10 º before first spacer and 

RSD epitaxy (Fig.II.11-(a)). However, SCE control might be degraded due to the lateral 

spreading of implanted dopant atoms. In addition, the gate stack tends to be damaged due to 

the amorphization implant. The second possible solution is extension last, where higher tilt is 

applied to achieve wider as-implanted profile in the lateral direction [Shibahara’07, 

Kentaro’07]. Thus LDD to gate overlap may be achieved after LT SPER anneal, as shown in 

Fig.II.11 (b). In addition, the gate stack can be protected from being damaged by the LDD 

implant. 

BOX BOX

(a) Extension first                             (b) Extension last  

Low tilt:7° Higher Tilt:20-30°

BOX BOX

(a) Extension first                             (b) Extension last  

Low tilt:7° Higher Tilt:20-30°

Fig.II.11 Schematic plots of possible solutions to maintain LDD to gate overlap with LT 
SPER activation process: (a) LDD implant before the first spacer; (b) LDD implant with 
higher tilt between 20 ° and30 º after RSD epitaxy. 



Chapter II: Optimization of LT FDSOI transistors 

~ 30 ~ 
 

II.3 LT FDSOI performance optimization 

The goal of this work is to get over the challenges above and find process conditions for 

achieving HT device performance with a LT (<650 ºC) process. In this section, we will focus 

on surmounting the two challenges of LT process: full pre-amorphization of active Si and 

LDD to gate underlap. The fabrication and optimization of LT nFETs and LT pFETs will be 

discussed in III.3.1 and III.3.2, respectively.  

II.3.1 nFET performance optimization 

II.3.1.1 nFET Fabrication 

The full process flow of LT/HT FDSOI nFETs (TSi~6 nm) is presented in Fig.II.12. The 

gate stack includes SiO2(0.8 nm, plasma oxidation)/HfSiON(~1.9 nm)/TiN(5 nm, atomic 

layer deposition). The HfSiON layer is obtained by plasma nitridization (at 950 ºC) of atomic 

layer deposited HfSiO. The first SiN spacer is about 8 nm. Arsenic only LDD implant is 

applied, since arsenic can self-amorphize the implanted active region. To overcome the first 

challenge (full amorphization of active Si layer), arsenic implant is made after Si RSD epitaxy. 

Also, the implant energy has been optimized with KMC simulation, to ensure a residual seed 

thickness about 2 nm. Generally, LDD implant tilt of 20 º is used for HT process. However, to 

solve the second challenge of LT SPER (LDD to gate underlap), higher tilt might be required. 

So in LT splits, a split with LDD implant tilt of 30 º is processed in addition to the split with 

LDD tilt of 20 º. Considering dopants activation anneal, standard HT spike anneal with a peak 

temperature of 1080 °C is applied in standard HT process, whereas, in LT integration scheme, 

dopants are activated using LT SPER anneal at 600 °C for 1 minute.  
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SOI with TSi=6nm

SiO2/HfSiON (950°C)/TiN

HDD implant (As 3KeV 2E15 cm-2 tilt 7°)

Activation anneal 600°C/1080°C

18 nm Si RSD epitaxy (750°C)

8nm offset SiN spacer (750°C)

LDD implant (As 9KeV 1E15 cm-2 tilt 20°/30°/20° T=-100°C)

Second spacer (625°C,2h)

Salicidation and BEOL

LT / HT nFET

Activation anneal 600°C/950°C

SOI with TSi=6nm

SiO2/HfSiON (950°C)/TiN

HDD implant (As 3KeV 2E15 cm-2 tilt 7°)

Activation anneal 600°C/1080°C

18 nm Si RSD epitaxy (750°C)

8nm offset SiN spacer (750°C)

LDD implant (As 9KeV 1E15 cm-2 tilt 20°/30°/20° T=-100°C)

Second spacer (625°C,2h)

Salicidation and BEOL

LT / HT nFET

Activation anneal 600°C/950°C

Fig.II.12 Process flow of LT/HT FDSOI 
nFETs. 

Fig.II.13 TEM coross section of LT FDSOI 
nFET with Si RSD. The TEM is taken after 
the salicidation step. The nFET features a 
gate length (LG) of 30 nm, and the Si 
thickness (TSi) in the channel is about 6 nm.

TEM cross section of LT nFET is shown in Fig.II.13. The nFET features a gate length of 

around 30 nm and a Si channel thickness around 6 nm. Also, the TEM figure shows good 

quality of RSD, which indicates the successful regrowth of amorphous Si layer during LT 

SPER activation. 

Considering the electrical performance, for LT/HT nFETs with the same LDD implant 

tilt of 20° and LG/W=30 nm/10 μm, ID-VG and ID-VD performances are firstly compared. For 

intuitive comparison, ID-VG and ID-VD curves of LT/HT devices with close VTH are shown in 

Fig.II.14 and Fig.II.15, respectively. There are two phenomena unexpected: (I) The IDmin of 

LT/HT devices are close to each other, unlike the 1.5 decade higher IDmin in our former LT 

devices [Xu’10]; (II) For LG/W=30 nm/10 μm, the LT activated devices overtake their HT 

counterparts. This is more obvious from the comparison of ID-VD curves at different gate bias 

overdrive (Fig.II.15). This indicates that the S/D can be connected to channel without 

increasing the implant tilt.  

As we discussed in section II.2, due to the low diffusion of LT SPER activation, higher 

LDD implant tilt might be required to maintain the LDD to gate overlap. However, it is 

observed that without increasing the LDD implant tilt, even better performances are achieved 

in LT process. So, what is the optimized implant tilt for LT activation? To find the solution 
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and gain more insight into these phenomena, in the following sections, we will statistically 

analyze the electrical performance of different splits in detail. 
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Fig.II.14 ID-VG curves of LT/HT nFETs 
(tilt=20 º, LG=30 nm/W=10 μm), with LDD 
implant tilt of 20 º, at |VD|=0.05/0.9 V. Similar 
device performances are achieved. 

Fig.II.15 ID-VD characteristics of LT/HT 
nFETs (tilt=20 º, LG=30 nm/W=10 μm) at 
different gate bias overdrive. LT nFET 
outperforms its HT nFET counterpart. 

II.3.1.2 IOFF-ION and SCE control 

To optimize the LDD implant tilt of LT FDSOI nFETs, statistical analysis of IOFF-ION 

and SCE control of different LT/HT nFETs will be carried out in this section. 

Fig.II.16-(a) shows the statistical IOFF-ION characteristic of LT/HT nFETs with various 

gate length and implant tilt. LT nFETs feature a better ION/IOFF ratio than HT nFETs.  
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Fig.II.16 IOFF-ION trade-off of HT/LT nFETs with W=10 μm, LG between 30 nm and 10µm in 
(a). For W=10 μm, LG=30 nm, the IOFF-ION trade-off is highlighted in (b). At a constant IOFF of 
10-9 A/µm, ION of LT nFETs are ~ 10% higher than that of HT nFETs.  
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For a constant IOFF of 10-9 A/µm, ION of LT nFETs are about 10% higher than that of 

HT nFETs. Fig.II.16-(b) highlights the 10% improvement of IOFF-ION trade-off of LT splits 

with LG=30 nm, W=10 μm. 

To gain more insight into the trade-off between access resistance (Raccess) and SCE 

control, the RTOT (VD/ID at |VD|=50 mV/|VG-VTH|=0.8V) vs. DIBL trade-off of LT/HT nFETs 

is compared in Fig.II.17. The LT/HT splits show similar Raccess and SCE control trade-off, 

which indicates that the LDD extension is overlapped to gate for LT nFET splits with implant 

tilts of 20 º and 30 º.  

Fig.II.17 RTOT-DIBL of HT/LT nFETs with 
W=10 μm, LG between 30 nm and 100 nm. 
LT nFETs show similar RTOT-DIBL trade-
off as that of HT nFETs. 

Fig.II.18 Subthreshold swing (SS) versus LG 
roll-off for LT/HT nFETs with W=10 μm. 
Similar SS-LG are observed for LT/HT nFETs 
with LDD implant tilt of 20 º. LT with higher 
tilt of 30 º induce higher extension to gate 
overlap and degrade the SS. 

However, the two comparisons above are not sufficient to conclude about which 

implant tilt (20 º or 30 º) is better optimized for LT nFETs. In order to find the optimized 

LDD implant tilt, the SCE control of different nFET splits need to be compared and discussed 

in detail.  

From the subthreshold swing (SS) versus LG plot (Fig.II.18), threshold voltage (VTH) 

versus LG plot (Fig.II.19) and DIBL-LG plot (Fig.II.20), it is observed that similar SCE 

control is achieved in LT/HT nFETs with the same implant tilt of 20 º. The LT nFETs with 

higher tilt of 30 º degrades the SCE seriously, as indicated by the higher SS (Fig.II.18), 

degraded VTH roll-off (Fig.II.19) and higher DIBL (Fig.II.20). This degradation can be 

explained by the higher lateral spreading of as-implanted profile, which induces higher LDD 
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to gate overlap and shorter effective gate length. In addition, as discussed previously, for the 

two LT splits with tilt 20 º and 30 º, the increase of tilt does not improve the ION-IOFF trade-off. 

So we can conclude that, contrarily to our initial expectation, to achieve the same Raccess and 

SCE control trade-off as its HT counterparts, there is no need to increase the LDD implant tilt 

in LT nFETs. 
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Fig.II.19 VTH versus LG roll-off for LT/HT 
nFETs with W=10 μm. Similar VTH-LG are 
observed for LT/HT with tilt 20 º. For LT split 
with higher tilt of 30 º,  VTH roll-off is degraded 
due to the higher LDD to gate overlap. 

Fig.II.20 DIBL versus LG roll-off of 
LT/HT nFETs with W=10 μm. With the 
same LDD tilt of 20 º, similar DIBL-LG 
are observed for LT/HT nFETs. For LT 
splits, higher LDD implant tilt of 30 º 
degrades the DIBL-LG characteristic, 
which indicates that higher LDD to gate 
overlap is obtained. 

 

II.3.1.3 LG dependence of device performance 

Very interesting LG dependence of device performance has been observed. In Fig.II.21 

and Fig.II.22, the maximum conductance (Gmax) at VD=50 mV and IDlin (@ VD=0.05V, VG= 

0.9 V) are plotted as a function of LG, respectively. It is observed that for LG>70 nm, the HT 

split shows better device performance than the LT split. However, for LG≤70 nm, Gmax and 

IDlin of LT nFETs overtake that of HT nFETs. As highlighted in Fig.II.21 and Fig.II.22, for 

LG=30 nm, 17% and 13% enhancement of Gmax and IDlin are obtained on LT splits. 
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Fig.II.21 Gmax(@VD=50 mV)-LG plot of 
LT/HT nFET with the same tilt of 20 º. For 
LG≤70 nm, Gmax of LT split outperforms that 
of HT split. 

Fig.II.22 IDlin (ID at VG=0.9 V and 
VD=50 mV) versus LG plot of LT/HT nFETs 
with the same LDD implant tilt of 20 º. For 
LG≤70 nm, IDlin of LT nFETs outperforms that 
of HT nFETs. 

What are the possible causes of this interesting phenomenon? On one hand, considering 

the different device performance of long transistors in LT split, there might be two reasons: 

(I) Due to a difference in the access resistance achieved by LT/HT activation; 

(II) Due to a difference in the interface quality and carrier mobility; 

On the other hand, considering the performance enhancement of LT short transistors, a third 

possible cause related to the regrowth of interfacial SiO2 layer might be responsible for the 

performance improvement on LT short transistors. 

(III) As discussed in section II.2, LT SPER activation is expected to offer better 

control of the interfacial SiO2 regrowth, which tends to increase the EOT of 

short transistors. As a consequence, device performance enhancement is 

expected on LT short transistors.  

In the following sections, the three aspects above will be discussed in detail. 

II.3.1.4 Access resistance analysis 

To understand why the ON state performance of LT long devices (LG>80 nm) is not as 

good as their HT counterparts, the analysis and comparison of access resistance (Raccess) offer 

an interesting insight. Using Y function method [Ghibaudo’88], the extraction of Raccess of 

LT/HT nFETs is plotted in Fig.II.23. It is observed that the access resistances values are 

270Ω.μm and 280Ω.μm for HT and LT process, respectively. The difference of Raccess 

between HT and LT splits is not large enough to explain the gate length dependence of device 
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performance. Also, it is confirmed that, in LT SPER activation, LDD extension is overlapped 

to gate without increasing the LDD implant tilt.  

Fig.II.23 Extraction of access resistance of LT/HT 
nFETs with tilt 20 º. Close access resistance are 
obtained in LT SPER and conventional HT process. 
This extraction is based on Y function method 
[Mourrain’00, Ghibaudo’88], where β is the 
transconductance gain and θ1 is the mobility 
attenuation factor acounting for the mobility 
decrease with the tranverse electric field. 

II.3.1.5 Gate to channel interface quality 

The activation anneal can also influence the gate to channel interface quality and carrier 

mobility in consequence. The effective carrier mobility (μeff) versus effective field (Eeff) plot 

is very useful to analyze whether the interface quality and the transport of carriers are 

degraded. 

Based on the measurement of Cgc-VG and ID-VG curve at low VD, μeff can be extracted as 

a function of Eeff, the extracted μeff of LT/HT nFETs (LG=W=10 μm) are compared in 

Fig.II.24. It is found that at an Eeff value 0.1 MV/cm, μeff of LT split is decreased by 30%. 

This decrease might be induced by higher remote Coulomb scattering, which might indicate 

higher interface state density (Dit) in LT split. 

To confirm the hypothesis above, the Dit value of LT/HT splits are extracted and 

compared using the conductance method. Dit of LT and HT split is about 9.5x1011 cm-2 and 

2x1011 cm-2, respectively. The higher Dit of LT split is in agreement with the conclusions from 
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μeff analysis above (Fig.II.24). In addition, the higher Dit can explain the higher SS of LT 

splits. As shown in Fig.II.25, for LG>100 nm, SS of LT nFETs are about 5 mV/dec higher 

than that of HT nFETs. 

Fig.II.24 Extracted μeff-Eeff plot using the 
split C-V method. The μeff of LT nFET is 
degraded due to higher remote Coulomb 
scattering, which is consistent with the 
higher Dit of LT split.  

Fig.II.25 SS-LG plot of LT/HT splits of long 
transistors with LG>100 nm. The subthreshold 
swing of LT devices are about 5 mV/dec 
higher than that of HT devices. 

 

In LT process, the lack of HT activation anneal degrade the gate to channel interface 

quality, mobility and SS performances as a consequence. For our future study, to further 

improve the gate to channel interface quality, forming gas anneal (FGA) should be optimized. 

Indeed, higher pressure FGA with pure H2/D2 anneal has been reported to be effective to 

reduce Dit [Diouf’12, Park’05]. 

However, for the LT SPER activated splits, the better performance of short transistors 

can not be explained by its similar access resistance and degraded interface state quality, 

compared to its HT counterparts. In the following section, EOT of LT and HT activated splits 

will be compared. 

II.3.1.6 EOT-LG extraction 

There is standard capacitance-voltage method for EOT extraction on big transistors. 

However, for short transistors, accurate EOT extraction is very challenging, due to the lack of 

exact gate length and the enhanced influence of parasitic capacitance. In this section, an 
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improved method will firstly be introduced and then applied experimentally for the extraction 

of EOT on small FDSOI transistors. 

II.3.1.6.1 Theory of EOT extraction on small FDSOI transistors 

Firstly, a brief introduction about different components of gate to channel capacitance 

(Cgc) will be given. As illustrated in Fig.II.26, the main contributions include [Balestra’10, 

Lacord’12]: 

BOX

VG (AC)
Ground

CoxCifCov

Cof

BOX

VG (AC)
Ground

CoxCifCov

Cof

Fig.II.26 Identification of the contributions 
to gate to channel capacitance (Cgc) of a 
metal gate SOI MOSFET. 

Fig.II.27 Identification of the parasitic 
capacitance components in the inversion and 
accumulation region of FDSOI nFET. 

 

Cox: gate capacitance, due to gate dielectric. Cox depends on the thickness of gate 

dielectric and its dielectric constant. Also, quantum effect can decrease the gate capacitance 

slightly. 

Cov: total contribution of the overlap capacitance, due to the overlap between S/D 

extension and gate. The overlap is strongly dependent on the integration process (LDD 

implant tilt/energy, thermal process and so on). Cov is independent on LG, however it is 

inversely proportional to EOT. Cov is proportional to W and Lov. Since VG can change the 

charge state of the overlap region, Cov also varies with VG. 

Cof: total contribution of the outer fringing capacitance, due to fringing fields between 

gate and RSD/SDE, through the vertical spacers and filling oxide. Cof is independent on LG 

and EOT. Also, it does not vary with VG since the RSD region is highly doped and can be 

taken as a metal layer. 
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Cif: total contribution of the inner fringing capacitance, which is due to the fringing fields 

between gate and SDE through the semiconductor. For bulk nFET, in the inversion and 

accumulation region, Cif is shielded to zero due to the electron/hole gas. However, as 

illustrated in Fig.II.27, for FDSOI nFETs under accumulation bias, due to the lack of hole 

source, there is no hole gas in the channel and the contribution of Cif can not be neglected. So, 

for FDSOI devices in accumulation the total parasitic capacitance (Cpar) includes Cov, Cof and 

Cif. In the inversion region, Cif disappears due to the existence of electron gas, Cpar includes 

Cov and Cof only [Ben Akkez’11, Ben Akkez’12]. Cif is also influenced by EOT of gate stack. 

The different dependence of Cox, Cov, Cof, Cif on VG, LG, EOT, W and Lov (LDD to gate 

overlap length) are summarized in Table.II.2. All 4 components are proportional to gate width. 

Table.II.2Dependence of Cox, Cov, Cof, Cif on VG, LG, EOT, W and Lov (LDD to gate overlap 
length). 

 
EOT can be extracted by fitting between measured Cox-VG curves and simulated Cox-VG 

curves with quantum effect taken into consideration. For devices with long LG (e.g. 10 μm) 

and wide W (e.g. 10 μm), LG and W can be taken as equal to the mask defined gate length 

(LGmask) and gate width (Wmask). Neglecting the contribution of Cif in the minimum 

capacitance of the full Cgc-VG cuve (Cmin) and the dependence of Cov on VG, the gate 

capacitance normalized by the gate area (Cox_A) can be calculated using the following 

equation:  

maskGmask

gc
ox WL

CC
AC

×
−

= min_  (Eq.II.1) 

However, for small scale transistors (LG<100 nm), the lack of knowledge on the exact 

value of LG can introduce huge errors on the calculation of Cox_A. Especially for our samples, 

where gate stack trimming (wet etching) is carried out to get the targeted gate length. The 
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inaccurate Cox_A calculation will in turn induce errors in EOT extraction. In addition, the 

contribution of Cif in Cmin and the dependence of Cov on VG can not be neglected anymore. 

Therefore, Eq.II.1 is not applicable to calculate Cox_A of small scale transistors.  

For two short devices with close gate length (L1, L2, ΔL~10 nm) and same gate width, 

EOT of the two devices are close to each other and the influence of threshold mismatch can 

be neglected [Romanjek’04]. As a result, the parasitic capacitances and their dependence on 

VG can be taken as the same, and the gate capacitance can be calculated using the following 

equation: 
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)12(
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12

 (Eq.II.2) 

In this method, due to the limitation of C-V test equipment, Wmask should be as high as 

possible.  

II.3.1.6.2 Experimental extraction of EOT  

In our experiment, Cgc-VG of devices with different LG (30/40/50/60/70/80 nm and 

10 μm) and 10 μm gate widths are measured. To improve the measurement accuracy, long 

integration time is applied for short devices with LG≤80 nm. The extracted EOT of LT/HT 

devices with different LG are plotted in Fig.II.28.  

 
Fig.II.28 Extracted EOT as a function of LG in LT/HT 
nFETs. As device scales down, the EOT regrowth is 
smaller for LT process. 
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It is obvious that for both LT and HT devices, there is an increase of EOT as devices 

scale down, which is consistent with the assumption that the SiO2 regrows mainly in the 

boundary of the gate to channel interface. However, the EOT increment of LT split is lower 

than that of HT split. This phenomenon is consistent with the better control of interfacial SiO2 

regrowth in LT process [Batude’09c, Ragnarsson’06].  

II.3.1.7 Explanation of performance dependence on LG 

To summarize, the LG dependent performance can be explained by the joint influence of 

EOT, mobility and their dependence on gate length. Firstly, for LT long transistors, the 

slightly higher EOT (Fig.II.28) and much lower carrier mobility result in smaller Gmax and ION 

than that of HT split. Secondly, as LG decreases to less than 80 nm, EOT of LT transistors are 

smaller than that of HT nFET (Fig.II.28), which can help to improve the conductance of LT 

device relatively. However, still the influence of lower mobility of LT device due to higher Dit 

is dominant, so Gmax and ION of LT devices are still lower than that of HT devices. Thirdly, for 

LT nFETs with LG≤70 nm, the benefits of lower EOT dominates over the drawback of higher 

interface state density and the performance of LT devices outperforms that of HT split in 

consequence. 

II.3.2 LT FDSOI optimization: pFETs 

II.3.2.1 pFETs fabrication 

Fig.II.29 shows the fabrication of LT/HT FDSOI pFETs (TSi~6 nm). For HT split, the 

gate stack consists of SiO2(0.8 nm, plasma oxidation)/HfSiON(1.9 nm)/TiN(5 nm, ALD). The 

HfSiON layer is achieved by plasma nitridization (950 ºC° of HfSiO. However, in LT splits, 

the plasma nitridization is suppressed and HfSiO layer is used. The first spacer is about 8 nm, 

followed by the epitaxy of SiGe (30%) raised source and drain. Then, Ge pre-amorphization 

implant is carried out with optimized energy to avoid full amorphization of active region. 

After that, B LDD implant is followed. Considering the LDD implant tilt of LT splits, two 

implant tilts of 30 º and 20 º are used. While only the one split of tilt 20 º is used for standard 

HT pFET. After second spacer fabrication and HDD implant, activation anneal is made. Spike 
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anneal (peak T=1050 °C) is applied in standard HT pFET, while LT SPER anneal (600 °C/1 

min) is used for LT pFET splits. 

Fig.II.30 illustrates the TEM cross section of FDSOI pFET with SiGe RSD. The TEM is 

made after LDD implant. On this batch, the Si channel is around 6 nm. However, due to the 

weak selectivity of SiGe epitaxy, SiGe has grown not only above the c-Si in the S/D region, 

but also above the poly-Si of gate. In consequence, there is a SiGe “mushroom” on top of the 

gate. The black capping layer on top of the SiGe mushroom and RSD is introduced during 

TEM sample preparation. As we can see from Fig.II.30, the SiGe mushroom introduces an 

additional layer above the original gate stack and the fist spacer. As a consequence, more 

serious shadow effect and much larger shadow area [Kim’00, Jeong’07] are expected in the 

LDD implant with tilt, than the case without SiGe mushroom.  

SOI with TSi=6nm

SiO2/HfSiO(N)/TiN

Activation anneal 600°C/1050°C

18 nm SiGe (30%) RSD epitaxy (650°C, 11min)

First SiN spacer (750°C)

LDD implant Ge+B tilt 20°/30°/20°

Second spacer (TEOS 625°C +SiN 590°C)

Salicidation and BEOL

LT / HT pFET

HDD implant

SOI with TSi=6nm

SiO2/HfSiO(N)/TiN

Activation anneal 600°C/1050°C

18 nm SiGe (30%) RSD epitaxy (650°C, 11min)

First SiN spacer (750°C)

LDD implant Ge+B tilt 20°/30°/20°

Second spacer (TEOS 625°C +SiN 590°C)

Salicidation and BEOL

LT / HT pFET

HDD implant TSi 6nm

LG 30nm

c-Si 2nm

Mushroom

Gate
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Due to sample 
preparation

θ
θ

Shadow effect: w/ SiGe mushroom

Shadow effect: w/o SiGe mushroom
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c-Si 2nm

Mushroom
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SiGe RSD

Due to sample 
preparation

θ
θ

Shadow effect: w/ SiGe mushroom
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Fig.II.29 Process flow of LT/HT FDSOI 
pFETs. Ge PAI is carried out before dopant 
implant. boron atoms in the LT split are 
activated by LT SPER anneal at 600 ºC. 

Fig.II.30 TEM coross section of FDSOI 
device with SiGe (30%) RSD. The TEM is 
made after LDD implant.  

 

For pFETs with LG of 30 nm, ID-VG and ID-VD curves of LT (tilt 30 º) and HT (tilt 20 º) 

pFETs are compared in Fig.II.31 and Fig.II.32, respectively. It is observed that the ID-VG and 

ID-VD performances of LT pFET are similar to that of HT pFET. 
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Fig.II.31 ID-VG curves of LT (tilt 30 º) and HT 
(tilt 20 º) pFETs with LG/W=30 nm/80 nm at 
|VD|=0.05/0.9 V. Similar ID-VG performances 
are achieved. 

Fig.II.32 ID-VD (@different gate overdrive) 
of LT (tilt 30 º) and HT (tilt 20 º) pFETs 
(LG/W=30/80 nm).Similar performances of 
LT/HT pFETs are demonstrated. 

To optimize the LDD implant tilt of LT pFETs, the trade-off between IOFF-ION and SCE 

control of different splits have to be statistically analyzed. Firstly, the IOFF-ION performances 

of LT/HT pFETs are compared in Fig.II.33. Similar IOFF-ION trends have been demonstrated 

for LT (tilt 20 º/30 º) and HT (tilt 20 º) pFETs. However, from the RTOT-DIBL plot (Fig.II.34), 

it is observed that LT splits degrade the RTOT of devices, especially for the LT split with lower 

tilt of 20 º. For LT pFETs with higher LDD tilt of 30 º, the RTOT-DIBL performance is closer 

to that of HT pFETs.  

Fig.II.33 IOFF-ION trade-off of LT/HT pFETs 
with LG between 30 nm and 100 nm, 
W=80 nm. Similar performances are achieved 
in LT (tilt 30 º) and HT (tilt 20 º) pFETs. 

Fig.II.34 RTOT-DIBL of LT/HT pFET with 
LG between 30 nm and 100 nm, W=80 nm. 
LT devices show higher RTOT than 
conventional HT split. 

Secondly, to analyze the dependence of SCE on process parameters, the SS-LG and 

DIBL-LG characteristics of different splits are compared in Fig.II.35 and Fig.II.36, 
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respectively. It is shown that similar SCE control is achieved in LT pFETs with LDD implant 

tilt of 30 ºand HT pFETs with LDD tilt of 20 º. 

Fig.II.35 Subthreshold swing (SS) versus LG 
roll-off for LT/HT pFETs. Similar SS-LG are 
observed for LT tilt 30 º and HT tilt 20 º.  

Fig.II.36 DIBL versus LG roll-off for LT/HT 
pFETs. Similar DIBL-LG are observed for 
LT tilt 30 º and HT tilt 20 º.  

 

Taking both IOFF-ION and SCE control into consideration, for LT pFETs, higher tilt of 

30 º is required to get similar device performance as its HT counterparts. However, in this 

batch, there is a SiGe “mushroom” on top of the gate, which induces serious shadow effect 

during LDD implant. In our future work, LT SiGe epitaxy with good selectivity is mandatory. 

In such a case, getting rid of the strong shadow effect due to the “mushroom”, the optimized 

LDD tilt required for LT SPER activated pFETs should be lower than 30 º. 

II.3.2.2 Gate stack quality  

The activation anneal might influence the gate to channel interface quality. For LT/HT 

splits, the distribution of interface states are extracted using the charge pumping method. As 

shown in Fig.II.37, LT splits show higher Dit than HT splits, however, the energy level of the 

interface states are mainly located close to the conduction band. Dit values for interface states 

close to the valence band are very low and close to each other.  

The effective mobility of holes are also extracted and compared in Fig.II.38. It is 

observed that the μeff of LT splits is slightly degraded compared to that of HT split. For pFETs 

under inversion gate bias, only the interface states with energy level close to the valence band 

can influence the effective mobility of holes. The slight degradation of μeff in LT process 
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might be related to the fact that the high-k dielectrics in LT/HT splits are different and the 

charge state in them might be different. 

Fig.II.37 Dit distribution as a function of trap 
energy on LT/HT pFETs. The mean Dit value of 
LT/HT process are 2.0x1012 eV-1 cm-2 and 
6.7x1011 eV-1 cm-2. 

Fig.II.38 Extracted effective mobility 
(μeff) of holes as a function of effective 
electric field of LT/HT pFETs.  

II.3.3 Work function engineering for VTH tuning 

In the gate first integration scheme, the HT dopants activation anneal tends to move the 

effective work function of metal gate towards mid-gap. As a result, it is very challenging to 

modify the threshold voltage for High Performance (HP) application, especially for pFET. 

Thus, the possibility of tuning VTH with different metal gate materials is limited. To overcome 

this challenge and broaden the range of material choices for effective work function tuning, 

gate-last is proposed [Veloso’11]. However, gate-last process is more complex, the removal 

and replacement of dummy gate stack and the deposition of the metal fill in narrow gate 

trench opening have presented challenges [Maszara’05, Young’11]. LT activation anneal is 

attractive for its compatibility with the thermal budget requirement of HK/MG 

[Girginoudi’08]. It might enable the continuous application of gate first integration scheme 

for HP FDSOI device for future advanced technology node. 

Our experiment is summarized in Fig.II.39. 0.8nm interfacial SiO2 is achieved by plasma 

oxidation. In LT/HT processes, HfSiO/HfSiON is used as high-k dielectrics, respectively. 

5 nm TiN is realized by atomic layer deposition. 
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SOI with TSi=6nm

SiO2/HfSiO(N)/TiN

Activation anneal 600°C/1050°C

18 nm SiGe (30%) RSD epitaxy (650°C, 11min)

First SiN spacer (750°C)

LDD implant (As for nFET, Ge+B for pFET)

Second spacer (TEOS 625°C +SiN 590°C)

Salicidation and BEOL

LT / HT n&pFET

HDD implant

SOI with TSi=6nm

SiO2/HfSiO(N)/TiN

Activation anneal 600°C/1050°C

18 nm SiGe (30%) RSD epitaxy (650°C, 11min)

First SiN spacer (750°C)

LDD implant (As for nFET, Ge+B for pFET)

Second spacer (TEOS 625°C +SiN 590°C)

Salicidation and BEOL

LT / HT n&pFET

HDD implant

Fig.II.39 The process flow of LT/HT 
n&pFETs. In HT split, HfSiON is used, while 
HfSiO is applied for LT split.  

Fig.II.40 Cumulative distribution of VTH of 
LT/HT n&p FETs (LG=W=10 μm). Compared 
to HT devices, VTH of LT devices migrate 
towards positive direction: +50 mV for pFET, 
and +100 mV for nFET. 

 

The metal gate consists of 5 nm TiN by ALD. The VTH of LT/HT n&p FETs are 

compared in Fig.II.40. It is found that, for HT n&p FET, the VTH distribution is symmetric. 

This indicates that, in HT process, the work function of metal gate is close to mid-gap. 

However, for LT n&p FET, it is found that VTH moves towards the positive direction: 

+50 mV for LT pFET and +100 mV for LT nFET. This indicates that the effective work 

function of TiN metal gate with LT process is higher than that with HT process. For LT nFET, 

the VTH migration is 50 mV higher than that of LT pFET. This might be explained by the Dit 

distribution (Fig.II.37). We assume that above mid-gap, Dit is uniform with a concentration of 

2.1x1012 eV-1 cm-2 (Dit_LT) and 6.7x1011 eV-1  cm-2 (Dit_HT) for LT and HT devices. The 

influence of different Dit distribution on VTH of nFETs can be calculated by: 

( )
AC

EgHTDLTDq
V

ox

itit

TH _
2

__ ×−×
=Δ  (Eq.II.3) [Cristoloveanu’95] 

where q stands for elementary electric charge, Eg the Si band gap. THVΔ  is calculated to be 

about 52 mV, which corresponds to the amplitude difference in VTH migration. Since the Dit 

close to the valence band is very low, its influence on VTH migration of pFETs can be 

neglected.  

So we can conclude that, the effective work function of LT process is 50 mV higher than 

that of HT process, which explains the 50 mV higher VTH of LT pFETs. With LT SPER 

activation, the metal gate work function moves less towards the mid-gap, this increases the 
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possibility of VTH tuning by allowing more material choices for metal gate. Also LT SPER 

offers the possibility of maintaining gate first integration scheme, which can help to reduce 

the integration cost. 

II.4 Conclusions 

In this chapter, we have reviewed the mechanism and properties of LT (<600 ºC) SPER 

anneal. For the application of LT SPER in FDSOI fabrication, the challenges are discussed in 

detail: (1) Full amorphization of active region; (2) LDD to gate underlap due to the weak 

diffusion of LT SPER; (3) Leakage increase due to EOR defects; (4) Dopant deactivation 

during post activation anneals . Considering the first two challenges, possible solutions are 

explored to achieve similar device performance (IOFF-ION and SCE control) in LT/HT devices: 

Firstly, to avoid the first challenge, making LDD implant after RSD regrowth together with 

accurate prediction of implant energy by CTRIM or KMC simulations is efficient. 

Considering the second challenge, the modification of LDD implant tilt is shown to be an 

effective way to modify the LDD to gate overlap.  

With the two approaches above, we obtain LT n&p FETs (LG=30 nm) with similar 

performances as its HT counterparts. Similar IOFF-ION and SCE control can be achieved by 

optimizing the LDD implant tilt.   

For nFET, there is no need to increase the LDD implant tilt in LT split. For LT/HT 

nFETs with the same LDD implant of 20 º, similar IOFF-ION and SCE control are achieved. 

Also, it is found that LT SPER anneal can help to control the regrowth of interfacial SiO2 and 

to improve the device performance of small scale devices. However, for the same gate stack 

(SiO2/HfSiON/TiN), LT SPER activation induces higher interface state density. As a result, in 

LT nFET, the effective mobility of electrons is seriously degraded. However, thanks to the 

low thermal budget, better EOT control are experimentally observed on LT split with short 

gate length, which accounts for their better performance than that of its HT counterparts.. 

 For LT pFET with 8 nm first spacer and SiGe “mushroom” on top of gate, a higher LDD 

implant tilt of 30° is required to get similar performance as for HT pFET. For further 

optimization, selective SiGe epitaxy at low temperature is required. Then, the shadow effect is 

expected to be weakened and the optimized LDD tilt required for LT pFET might be lower 
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than 30 º. In addition, for LT/HT pFETs, LT splits show much higher Dit, but the interface 

states mainly locate close to the conduction band. Similar distributions of interface states 

close to the valance band are observed. 

In LT process, to further improve the quality of gate to channel interface, further 

improvements of forming gas anneal (e.g. higher pressure forming gas anneal) are interesting. 

In addition, it is observed that the LT SPER activation helps to avoid the problem of 

effective work function modification during HT process, which is one of the main reasons 

why gate-last technology is raised. This allows us to broaden the metal gate material choice 

for work function tuning for different applications and increase the possibility of maintaining 

gate first integration scheme. 
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Chapter III : GIDL optimization of LT transistors 
 

Abstract- As discussed in Chapter II, LT SPER anneal can offer highly doped abrupt 

junction, but EOR defects are left below the previous a/c interface. These two properties can 

introduce challenges to maintain the gate induced drain leakage (GIDL) at a low level. On one 

hand, the abrupt junction can induce high electric field and high band to band tunneling 

leakage as a consequence. On the other hand, the residual EOR defects can increase trap 

induced leakage. 

In this chapter, we will firstly briefly remind the definition of the GIDL current and the 

generation mechanisms of GIDL. Then, we will show that, for FDSOI MOS transistors on 

thick SOI, LT SPER activated devices show much higher GIDL than standard HT activated 

devices. To improve the leakage performance, it is mandatory to figure out the dominant 

mechanism responsible for the GIDL increase of LT SPER activated devices. As a 

consequence in the second section, we will review the traditional method for GIDL 

mechanism discrimination. However, the traditional method is limited by the lack of accurate 

tunneling model and knowledge of electric field. In this work, one novel approach will be 

proposed to distinguish the dominant GIDL mechanism. This method is theoretically verified. 

However, to apply it on FDSOI, there are additional challenges. So, a detailed methodology 

for GIDL extraction will be derived specifically for FDSOI MOS transistors.  

By using the GIDL analysis method, it is found that, for LT SPER activated FDSOI 

MOS transistors on 25 nm SOI, the higher GIDL is induced by the residual EOR defects. 

Defect engineering has to be made to further improve GIDL performance of LT SPER 

activated devices. In the end, we will show that by thinning the Si thickness in the channel, 

the EOR defects density and GIDL leakage in consequence can be reduced. This 

improvement is introduced by the enhanced defect cutting off effect and defect sinking effect 

of BOX. 
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III.1 Gate Induced Drain Leakage (GIDL) 

In this section, we will firstly recall what GIDL is and how GIDL influences device 

performance. Then the GIDL generation mechanism will be reviewed in detail. 

III.1.1 GIDL and its generation mechanisms 

The gate induced drain leakage was firstly studied in MOSFET in the late 80s by the 

Berkeley group [Chan’87, Chen’87]. For a MOSFET under accumulation bias (Fig.III.1), 

GIDL arises from the gate to drain overlap region. GIDL mainly impacts the device 

performance by limiting the minimum drain current achievable (IDmin), as shown in Fig.III.2 

[Xu’10].  

BOX

VG>0V

VD<0V

P+ drainP+ source

BOX

VG>0V

VD<0V

P+ drainP+ source

Fig.III.1 Schematic plot of GIDL occurrence 
in the gate to drain overlap region of a pFET 
under accumulation bias. 

Fig.III.2 Schematic plot of GIDL and its 
influence on the drain current vs. gate voltage 
characteristic. The minimum ID achievable 
(IDmin) is limited by GIDL. 

Fig.III.3 shows the generation mechanisms of GIDL. With the downscaling of 

MOSFETs, the gate dielectric thickness is decreased and the drain doping concentration is 

increased [ITRS’11, Wang’98]. As a consequence, in the gate to drain overlap region, the 

electric field is enhanced both in the vertical and lateral direction. On one hand, under strong 

electric field, the surface of the overlap region is deeply depleted. As shown in Fig.III.3-(b), 

electron-hole pairs can be generated by Band To Band Tunneling (BTBT), Trap Assisted 

Tunneling (TAT) and Shockley-Read-Hall (SRH) recombination in the vertical direction 

[Wang’98, Yuan’07, Chen’89]. On the other hand, under large |VDG| bias, the channel and 

drain forms one reverse biased p-n junction in the lateral direction. BTBT, TAT and SRH 
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recombination in the space charge region can also contribute to gate induced drain leakage 

(Fig.III.3-(c)) [Yuan’07, Huang’97, Chang’95].  

Fig.III.3 Schematic of the location of lateral channel to drain junction and vertical gate to 
channel junction in the gate to drain overlap region (a). Band diagram of band to band 
tunneling, trap assisted tunneling and SRH recombination in the vertical gate to drain 
extension overlap (b) and lateral channel to drain junction (c).  

 

Table.III.1 Dependence of BTBT, TAT and SRH recombination on Temperature (T), electric 
field and junction quality (abruptness/trap density). 

Trap densitydependentinsensitiveTAT

Trap densityinsensitivedependentSRH Recombination

AbruptnessdependentinsensitiveBTBT

Junction qualityField (F)Temperature (T)Mechanisms

Trap densitydependentinsensitiveTAT

Trap densityinsensitivedependentSRH Recombination

AbruptnessdependentinsensitiveBTBT

Junction qualityField (F)Temperature (T)Mechanisms

GIDL is influenced by the temperature, electric field and junction quality. As 

summarized in Table.III.1, BTBT, TAT and SRH recombination have different dependence 

on temperature (T), electric field (F) and junction quality (abruptness and defect density). 

BTBT is insensitive to temperature. However, BTBT increases dramatically with electric field 

[Kane’60], which is larger for more abrupt junction [Czerwinsk’03]. As a consequence, 

BTBT is stronger for more abrupt junction. Similar as BTBT, TAT is independent on T and 

dependent on F. However, as the influence of junction quality is concerned, TAT generation 

is strongly dependent on the trap density [Weber’06]. Unlike BTBT and TAT, SRH 

recombination is very sensitive to temperature and insensitive to electric field. Also, SRH 

recombination is more influenced by the trap density [Hurkx’92]. 
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III.1.2 Influence of LT SPER on GIDL 

In our experiment, p&n FDSOI MOS transistors were fabricated on thin SOI wafers (TSi 

around 25 nm) with an HfO2/TiN metal gate stack. The process flow is shown in Fig.III.4. 

Process splits are summarized in Fig.III.5-(a). In processes A and B, dopants were activated at 

600 ºC through LT SPER. Process A is used for the fabrication of top FET in 3D monolithic 

integration (Fig.III.5-b), in order to protect bottom transistors (Process C) from any 

degradation. In process C, dopants were activated by means of a standard HT spike anneal 

with a peak temperature around 1050 ºC. Processes A/C and B respectively feature a 5 nm 

and 3 nm dielectric thickness. Also, the HfO2/TiN/Poly-Si gate stack was processed below 

600 ºC in order to ensure that the overall thermal budget of the LT transistors is kept below 

600 °C. 

25nm Si FDSOI
HfO2/TiN patterning

Salicidation

Low T spacers
LDD/Halo implant

HDD implant
HT 1050℃/ LT 600 ℃

25nm Si FDSOI
HfO2/TiN patterning
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Low T spacers
LDD/Halo implant

HDD implant
HT 1050℃/ LT 600 ℃
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Fig.III.4 Process flow of LT/HT FDSOI 
devices on 25 nm Si. 

Fig.III.5 (a) Table of samples with process 
splits (b) MEB cross section of devices with 
process A (top FET) and C (bottom FET). 

 

As discussed in Chapter II, the drain junction of LT SPER activated device has two 

properties: (1) highly doped abrupt junction; (2) EOR defects left below the junction. As a 

result, LT SPER can increase GIDL [Xu’10]. On one hand, the highly doped and abrupt 

junction results in high electric field and high BTBT leakage consequently. On the other hand, 

the residual EOR defects can increase the GIDL leakage by enhancing TAT and SRH 

recombination. 
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In this experiment on 25nm SOI, LT SPER activated devices show much higher GIDL 

than standard HT activated devices. Fig.III.6 shows typical ID-VG curves of LT/HT activated 

n&p FETs in the saturation region. It is obvious that LT SPER activated devices show much 

higher GIDL current. Fig.III.7 shows the statistical plot of IDmin (at |VD|=1 V). It is found that 

IDmin of LT SPER activated devices are about 1.5 decades higher than HT activated devices. 

To decrease the leakage, it is mandatory to identify the dominant GIDL mechanism (trap 

induced leakage or tunneling leakage). 
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Fig.III.6 ID-VG (@|VD|=1V) curves of LT 
SPER/HT spile activated n&p FETs with 
LG=150 nm. The Si thickness in the channel 
is about 25 nm. 

Fig.III.7 Statistical IDmin at room temperature 
of n&p FETs activated by RTP and LT 
SPER. IDmin is the smallest ID achieved at 
|VD|=1V. 

 

III.2 Discrimination of GIDL mechanism 

In this section, we will firstly review the traditional method for GIDL generation 

mechanism analysis and its limitations. Secondly, a new method will be proposed for proper 

analysis of GIDL generation mechanism.  

III.2.1 Traditional method  

The analysis of GIDL generation mechanism has two main challenges: (1) BTBT 

modeling is still under debate, and it is often difficult to link comprehensive but complex 

numerical simulations with simple current based electrical extraction [Chen’01]; (2) BTBT is 
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a strong field dependent mechanism [Kane’60, Keldysh’58]. However, little is known about 

the actual electric field in the device. 

To cope with these two difficulties, conventional extraction methods proceed with two 

main assumptions: (I) analytical model of GIDL current; (II) model of the electric field in the 

analytical expression of GIDL current.  We will firstly review the assumption about GIDL 

current model. The local generation rate of tunneling component can be expressed by the 

following equation [Kane’60, Keldysh’58]: 
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where A’ is the tunneling pre-exponential constant dependent on the effective mass of 

electron/hole and the energy band gap of Si [Kane’60]. F(x,y) stands for the local electric 

field. The unknown/unsure constants, σ and Γ, are used to reflect the overall disagreement of 

the literature on the form of the pre-exponential factor. σ is reported to be -0.5 in [Kane’61] or 

-1.75 in [Keldysh’58, Tanaka’94]. Considering the value of Γ: for BTBT, 2 and 3 are reported 

in [Kane’61] and [Schenk’93], respectively; For TAT, 2.5 in [Keldysh’58, Tanaka94] or 3.5 

in [Schenk’93] are reported. 

A large consensus has been obtained on the exponential term in Eq.III.1. B is a 

parameter proportional to the effective band gap raised to 1.5 [Keldysh’58, Tanaka’94], 

Kane’61]. For band to band tunneling, B is proportional to Eg
1.5, and its theoretical value is 

about 21 MV/cm for silicon [Chan’87]. However, for trap assisted tunneling, B is a constant 

proportional to (Eg-Et)1.5, where Et is the energy level of traps. Compared to band to band 

tunneling, a smaller B value is expected in trap assisted tunneling [Chang’95]. The extraction 

of B value is taken as an effective way to gain some insight into the generation mechanism, 

and especially to discriminate BTBT and TAT. 

Despite the discrepancies about the values of σ and Γ, the total GIDL current is obtained 

from the double integral of Eq.III.1 over space: 

∫ ∫= dxdyRI TunnelGIDL   (Eq.III.2) 

However, there is no a priori information on the 2D electric field. The electrical 

extraction of B must rely on a more simple expression of GIDL current. Normally, F is 
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assumed to be a constant independent on space and GIDL current is simply expressed as 

[Chan’87, Chen’87, Endoh’90, Yuan’08]: 
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where F is the effective electric field, independent of space. The value of γ differs between 

literatures. Indeed, γ=1 is used in [Chan’87, Endoh’90, Jomaah’96], while γ=4 was used in 

[Bouhdada’97].  For the extraction of B, the following equation can be obtained based on 

Eq.III.3: 

( )  )(lnln
F
BTAE

F
I

g
GIDL −=⎟

⎠
⎞

⎜
⎝
⎛

Γ
σ   (Eq.III.4) 

Assuming a given value of Γ (Eq.III.1), B can be obtained from the derivative of the left hand 

side of (Eq.III.4) with respect to 1/F.  

The second assumption made by these methods is a consequence of (Eq.III.4). To 

experimentally extract B value, an assumption is required on the modeling of the electric field 

under different gate and drain bias (VG, VD). Also, the extracted B value is strongly dependent 

on the calculation of the electric field. Since tunneling can happen in both the vertical gate to 

channel junction and the lateral channel to drain p-n junction, different equations have been 

used to model F in the vertical and lateral direction. In the literature, F is widely taken as the 

maximum electric field in the vertical [Chen’87, Chan’87] and lateral direction [Yuan’08]:  

EOT
F DG

vertical 3
VV

max_
Δ−

=    (Eq.III.5) 

)(qN0
max_ biDG

Si
lateral VVF +=

ε
  (Eq.III.6) 

In equation (Eq.III.5) and (Eq.III.6), EOT is the equivalent oxide thickness, q the electron 

charge, N0 the doping concentration in the channel and Vbi the built-in potential of the 

junction, VDG is the drain to gate voltage difference. ΔV correspond to the potential difference 

required to obtain corresponding states in the valence and conduction band and thus enable 

BTBT. ΔV is often taken constant and equal to 1.2 V in the early papers [Chen’87, Chan’87]. 

However, this expression does not take the flat band voltage and doping profile in the overlap 
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region into consideration. Much work has been done to improve the electric field calculation. 

Considering the influence of the flat band voltage and assuming that the drain doping profile 

is uniform [Chen’01], the maximum vertical electric field could be expressed as: 

EOT
V

F SfbDG
vertical 3

V
max_

ψ−−
=   (Eq.III.7) 

where Vfb is the flat band voltage in the overlap region. ψS is the surface potential in the 

overlap region expressed by: 
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where ND is the drain doping concentration in the gate to drain extension overlap region. This 

method offers more accurate calculation of vertical electric filed [Chen’01]. However, 

experimentally, it is difficult to get accurate information about the doping profile in the 

overlap region. The doping profile in the drain to gate overlap region is assumed to be 

uniform, which can also introduce errors. 

To summarize, the traditional method for B extraction is limited by the assumptions on 

the tunneling model and electric field model. For accurate extraction of B value, the 

inaccurate assumption about γ should be overcome. Also, it is necessary to improve the 

extraction of electric field under different gate and drain biases, which is the purpose of next 

section [Rafhay’11, Rafhay’12]. 

III.2.2 Improved approach  

The aim of the new approach proposed in this work is to minimize the assumptions made 

on the GIDL current. The basic equivalence of (Eq.III.1) and (Eq.III.2) will be kept. However, 

the model of F(VG,VD) will be experimentally tested instead of being assumed as an a priori 

and the value of γ will be extracted experimentally. 

Prior to the extraction of B, the test of the field model is carried out using the activation 

energy of the leakage current. In many papers [Tieman’63, Rosar’00, Jang’99, Saino’00, 

Eneman’09, Weber’06, Czerwinski’03], activation energy (Ea) of GIDL has been used to 

discriminate or identify the mechanisms involved in junction leakage or tunneling current.  

The activation energy of GIDL current is defined by: 
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It is well known that SRH current is characterized by a large activation energy (a few 

hundreds of meV, i.e. close to Eg/2) [Rideau’10]. On the contrary, the activation energy of 

BTBT is small (below 0.1eV), like most tunneling mechanisms [Saino’00, Eneman’09]. 

These phenomena have been well observed [Jang’99] and modeled in MOS tunneling diodes 

[Lin’01], where both mechanisms have been found to occur at different regime. To further 

illustrate this discrepancy, the activation energy of field enhanced SRH [Weber’06, Hurkx’92] 

and BTBT [Kane’61] have been calculated as a function of electric field Fig.III.8-(a). For 

field enhanced SRH recombination [Weber’06], the activation energy is calculated by: 
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where                                      
( )
hq

Tkm
F b

3*24
=Γ   (Eq.III.11), 

with  kB being Boltzmann’s constant,  T the absolute temperature, m* the effective tunneling 

mass, q the elementary electron charge and ħ the reduced Plank’s constant. For BTBT, the 

activation energy is calculated based on Kane’s model, with the dependence of Si energy band 

gap on temperature taking into account (Eq.III.3).  
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Fig.III.8 (a) Activation energy (Ea) of field enhanced SRH current [Weber’06] and BTBT 
[Kane’61] as a function of the electric field. (b) Inverse of Ea of BTBT [Kane’61] as function 
of the electric field. 
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In the case of tunneling dominated GIDL, the activation energy can be calculated from 

(Eq.III.3) and (Eq.III.9), as: 

[ ]
( )

[ ]
( )

[ ]
( ) ( ) DGDG V,V

bbb
V,V

b

GIDL
a T1/kF

1
T1/k

Eg(T)lnσ
T1/k

AFln
T1/k
(T)Iln

E
∂

∂
+

∂
∂

−
∂
∂

−=
∂

∂
−=

Bγ

 (Eq.III.12) 

If we assume that the electric field is independent on temperature, then (Eq.III.12) can be 

simplified as: 
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For tunneling dominated GIDL current, the activation energy can be approximated by the 

following equation: 

( ) DG V,V
b

a T1/kF
1E
∂

∂
≈

B   (Eq.III.14) 

Therefore, for tunneling dominated GIDL, the left hand side term in (Eq.III.14), which can be 

obtained from I-V-T measurements, is inversely proportional to the field F, as illustrated in 

Fig.III.8-(b). Hence, the dependency of the electric field with the external bias could be 

deduced from plot of the inverse of Ea versus F, VG or VDG. If a linear dependency of 1/Ea 

with VG or VDG is obtained, this suggests that F follows equation (Eq.III.5). In this case, the 

ΔV parameter of (Eq.III.5) could be extracted from the measurement, instead of being fixed to 

an arbitrary value [Chan’87, Chen’87]. This can help to reduce the error made on the field 

modeling. Other field model could also be adjusted using this approach. However, note that 

an absolute extraction of F is not possible unless a hypothesis on B is made. Since the aim of 

the extraction method is to determine B, only relative bias trends could be extracted from the 

inverse of the active energy. 

After the partial validation of the field model presented above, we can write (Eq.III.3) as: 
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which can also be written as: 
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γ and B can be extracted respectively from the slope and the intercept of the straight line 

obtained by plotting the left hand side term in (Eq.III.16) as a function of the field F. Hence, 

contrary to the previous method, this approach does not make any assumption on γ to extract 

B. The following section will illustrate the influence on B extraction of an a priori assumption 

on γ, as done in the conventional method. 

III.2.3 Theoretical variation of the new approach  

In this section, the robustness of the new approach presented in section III.2.2 will be 

tested and benchmarked with the extraction methods proposed in the literature [Chan’87, 

Chen’87, Endoh’90, You’99, Jomaah’96].  

To this end, the GIDL current will be calculated using (Eq.III.1) and (Eq.III.2). Two 

simple field profiles will be considered for the double integral (Eq.III.2) of BTBT generation 

rate: a constant one and a linearly varying one. The extraction of B will then be carried out on 

the calculated currents, using either the conventional (Eq.III.4) or the new approach (Eq.III.14) 

and (Eq.III.16). 

Firstly, a constant field is considered. Fig.III.9 shows the relative errors between the set 

value of B in (Eq.III.1) and the extracted value of B by (Eq.III.4) and (Eq.III.16), as a 

function of the set values of B. As expected, in the constant field case, the GIDL currents are 

the same in (Eq.III.2) and (Eq.III.3). As a result, both methods manage to accurately extract B 

and the relative errors of extracted B equals to zero (Fig.III.9). Using the slope of 

(dln(IGIDL)/dF)·F², the new method also enables to extract the accurate value of γ used for the 

calculation of BTBT generation rate (Eq.III.1). When Γ in (Eq.III.1) is set to 2, γ of (Eq.III.3) 

has been extracted to be 2 (other Γ value gave the same agreement between set and estimated 

values). 

Then, a linearly varying field (parabolic potential) is considered for the integral in 

(Eq.III.2). In this case, (Eq.III.2) is no longer equal to (Eq.III.3). In addition, a particular 

choice of field value must be performed to use the extraction methods. It appears that using 

the maximum field of the profile, as done in [Chan’87, Chen’87], ensures the best extraction 
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of B with the new approach (Eq.III.16). However, an overestimation of B has been obtained 

when using the conventional methods (Fig.III.9). 

In these conditions, the γ value extracted with the slope of (dln(IGIDL)/dF)·F² is not 

strictly equal to Γ of (Eq.III.1), due the double integral over space of (Eq.III.2). For example, 

if Γ is set 2, the γ extracted is found equal to 2.5. This difference between the Γ field exponent 

of the BTBT generation rate and the γ one of the GIDL current has already been underlined in 

[Bouhdada’97]. Therefore, γ depends not only on the physics of the constant field BTBT 

generation rates, but also on complex 2D field profile in the device. As this field profile is 

unknown and differs between technologies, the experimental extraction of γ is hence 

compulsory. In particular, this slight difference between Γ and γ causes a significant 

overestimation of B by the conventional method, as illustrated in Fig.III.9. 
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Fig.III.9 Relative error of B extraction as a 
function of  B values set in (Equ.III.1). 

 

Fig.III.10 (a) Relative errors on the ΔV 
extraction as a function of the set ΔV. (b) 
Relative error on the B extraction assuming 
5% error on ΔV. 

 

The small extraction error obtained with the new method tends to confirm that (Eq.III.2) 

can be approximated by (Eq.III.3) provided that the maximum field of the profile is used (e.g. 

instead of a mean field). In other terms, weak fields do not significantly contribute to the 

GIDL current compared to the maximum one, because of the steep exponential GIDL 

dependence with field. 

Also, the extraction of ΔV is tested by assuming a constant field, defined as in (Eq.III.5). 

Fig.III.10-(a) plots the error between the ΔV set in (Eq.III.5) and the one extracted using the 
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inverse of Ea, as a function of the set ΔV. It shows that, although the field is constant, the 

extraction of ΔV is not strictly exact. An error of 5 % can be obtained if ΔV = 0.8 V. This is a 

consequence of the approximation carried out in (Eq.III.4) where σ·dln(Eg(T))/d(1/kbT) has 

been neglected. 

Finally, the consequence on the extraction of B with a 5 % error on ΔV, is shown in 

Fig.III.10-(b). It can be seen that the overestimation of B is kept below 5%, which indicates 

that the new method does not amplify the error made on the field on the extraction of B. 

III.3 Experimental GIDL mechanism discrimination in SOI 

The new approach proposed for GIDL analysis is very attractive. However, compared to 

bulk devices, to make GIDL mechanism analysis on FDSOI MOS transistors, there are 

additional challenges. In this section, firstly, for FDSOI devices, the flow of GIDL generated 

carriers will be compared to that of bulk devices. Then, the additional challenges for GIDL 

analysis on FDSOI will be discussed. A practical methodology will be proposed to overcome 

the additional challenges enabling the new approach to be properly used for GIDL mechanism 

analysis on FDSOI MOS transistors. 

III.3.1 Specific challenges of SOI 

III.3.1.1 Gate current identification 

Compared to bulk device, the GIDL current on SOI devices can not be measured directly 

as there is no contact to the body. For thin gate oxide MOSFETs biased in the accumulation 

regime, the apparent GIDL may contain a certain amount of tunneling current through the 

gate. Fig.III.11 compares the different carrier flows on bulk and SOI pFETs under 

accumulation bias. In bulk devices, the GIDL current can be easily identified by substrate 

current measurements, since tunneling generated electrons naturally flow through the reverse 

biased drain-to-substrate junction, toward the substrate. However, in FDSOI MOS transistors, 

the generated electrons can either recombine with holes injected from the source and gate, or 

tunnel through the gate.  
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Fig.III.11 Schematic plot of electron and hole flows under accumulation bias, on bulk (a) and 
FDSOI device (b). 

 

To investigate this effect in FDSOI, full current-voltage (I-VG) measurements have been 

performed on pFET samples of A and B. Fig.III.12-(a) shows the I-V characteristics of all 

three terminals (source, drain and gate) for sample A, which features a 5 nm thick HfO2 layer. 

It shows that drain current (ID) is equal to source current (IS) in the accumulation regime, 

while gate current (IG) is at least two decades smaller. IG contribution to ID can therefore be 

neglected and drain current is hence dominated by carrier generation at the junction. To 

confirm that IG contribution to ID can be neglected, the dependence of gate current with gate 

voltage overdrive (VG – VTG), is compared at different VD Fig.III.13-(a). It is found that, at 

the same gate voltage overdrive (VG – VTG), IG at different VD are the same, which indicates 

that contribution of IG in GIDL current can be neglected. 

Fig.III.12 Absolute drain (ID), source (IS) and gate (IG) current for pFETs from process A with 
5 nm HfO2 (a) and B with 3 nm HfO2 (b). The source is grounded and the drain is biased at -
0.2 V to -1.2 V, with a step of -0.2 V. 
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The same analysis was carried out on sample B which features a thinner HfO2 layer of 

3 nm. The I-V characteristics are shown in Fig.III.12-b. For large VG, IG gets closer to ID and 

IS begins to depart from ID. Fig.III.13-b plots IG against VG-VTG for sample B. For (VG – 

VTG) > 0.5 V, IG increases if VD decreases (|VD| increases). This increase of IG corresponds to 

the contribution of electrons that are generated at the junction and flow through the gate. 
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Fig.III.13 Gate current (IG) versus gate voltage overdrive (VG-VTG) of samples A and B. VTG 
is defined as the gate voltage where the gate current equals one critical gate current (5x10-13 
and 1x10-12 A/µm for sample A and Sample B, respectively) 

 

To gain more insight into this effect, the source currents were plotted as a function of 

gate voltage for different values of VD in Fig.III.14. Source current is the sum of a positive 

GIDL component with a negative gate tunneling component. Therefore IS can be negative if 

dominated by gate tunneling or positive if dominated by GIDL carrier generation at the 

junction. From Fig.III.14-(a), it is clear that in device A, the source current is always 

dominated by the positive tunneling GIDL component. However, in device B (Fig.III.14-(b)), 

for intermediate VD values (-0.4 or -0.6 V), source current is first dominated by the tunneling 

GIDL at low VG values (current takes positive values). At higher VG, this positive 

contribution is then decreased by gate tunneling: this confirms that in this thin oxide device, 

for the bias conditions highlighted in Fig.III.14-(b), part of the GIDL generated electrons can 

then tunnel through the thin gate oxide or be recombined by holes injected from the gate if the 

vertical field is large enough. 
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Fig.III.14 IS-VG characteristics of (a) sample A (HT pFET, 5 nm HfO2) and (b) sample B (LT 
pFET, 3 nm HfO2). 

In conclusion, to ensure correct extraction of the GIDL parameter B, it is first mandatory 

to determine the bias conditions (VG, VD) where ID is dominated by the GIDL current. 

Plotting IG(VG-VTG,VD) and IS(VG) is an effective and simple way to determine these bias 

ranges.  In our experiment, sample B can not be used for GIDL mechanism analysis due to the 

contribution of gate tunneling leakage. 

III.3.1.2 SRH identification 

In both the traditional approach and new approaches, it is assumed that GIDL is 

dominated by tunneling contributions (BTBT and TAT). However, the apparent GIDL current 

can be dominated by field enhanced SRH current [Weber’06], instead of tunneling current. 

The presence of field enhanced SRH generation can cause severe errors on the extraction of B. 

In order to distinguish between SRH and tunneling (BTBT and TAT), it is useful to extract 

the activation energy of currents. As discussed before, SRH current is strongly dependent on 

temperature [Czerwinski’03], contrary to BTBT even when trap assisted [Eneman’09]. As 

shown in Fig.III.8-(a) before, to quantify this discrepancy, the activation energies of BTBT 

[Kane’60] and field enhanced SRH [Weber’06] have been calculated as a function of the 

electric field. The universal shape of these curves shows that, at low field (lower than 

0.9 MV/cm), activation energy is much larger for the SRH process than for BTBT. In contrast, 

at higher field (larger than 0.9 MV/cm), the activation energy of BTBT is smaller than the 
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field enhanced SRH one. Therefore, if the value of activation energy is larger than around 

0.1 eV, it can be conclude that GIDL current is dominated by field enhanced SRH. While for 

Ea values smaller than 0.1 eV, GIDL current is dominated by BTBT [Weber’06, 

Czerwinskia’03, Eneman’09].  

In conclusion, B extraction should be extracted in the regimes where the activation 

energy is smaller than 0.1 eV, in order to ensure that field enhanced SRH is negligible 

compared to tunneling. 

III.3.2 Experimental results on FDSOI 

In our experiment, we have focused on the GIDL mechanism discrimination of sample A 

and C with 5 nm HfO2, where the gate tunneling components can be neglected. ID(VG) 

measurements at different VD and different temperatures were carried out (Fig.III.15).  
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Fig.III.15 Drain current versus gate voltage (ID-VG) 
characteristics of a pMOSFET from process A at different 
temperature (T). 

On this device, IG has been confirmed to be much lower than ID and independent on VD, 

as in Fig.III.12. After a required threshold voltage shift, which eliminates the field 

dependence with temperature, activation energies have been calculated and plotted in 

Fig.III.16, as a function of VGS (a) or VDG (b) for different VD. At low VGS or VDG, i.e. in low 

field conditions, the activation energy is found to be larger than 0.1 eV and to strongly 

decrease with increasing VG and |VD|. At higher bias (i.e. higher field), Ea was smaller than 

0.1 eV. According to the models used in Fig.III.8-a, it is thus concluded that the current is 
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governed by field enhanced SRH for VDG values below 1.2 V and by tunneling for larger 

values. Extraction of B has therefore been carried out above 1.2 V. 

0.0 -0.5 -1.0 -1.5 -2.0 -2.5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

 

A
ct

iv
at

io
n 

En
er

gy
 E

a (e
V)

Drain to gate voltage VDG (V)

 VD=-0.2V
 VD=-0.4V
 VD=-0.6V
 VD=-0.8V
 VD=-1.0V
 VD=-1.2V
 VD=-1.4V

FE SRH              Tunneling
(a)                                                            (b)

0.0 0.5 1.0 1.5 2.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6
Sample A: HfO2 5nm

 

 

A
ct

iv
at

io
n 

En
er

gy
 E

a (e
V)

VG (V)

 VD=-0.2V
 VD=-0.4V
 VD=-0.6V
 VD=-0.8V
 VD=-1.0V
 VD=-1.2V
 VD=-1.4V

0.0 -0.5 -1.0 -1.5 -2.0 -2.5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

 

A
ct

iv
at

io
n 

En
er

gy
 E

a (e
V)

Drain to gate voltage VDG (V)

 VD=-0.2V
 VD=-0.4V
 VD=-0.6V
 VD=-0.8V
 VD=-1.0V
 VD=-1.2V
 VD=-1.4V

FE SRH              Tunneling
(a)                                                            (b)

0.0 0.5 1.0 1.5 2.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6
Sample A: HfO2 5nm

 

 

A
ct

iv
at

io
n 

En
er

gy
 E

a (e
V)

VG (V)

 VD=-0.2V
 VD=-0.4V
 VD=-0.6V
 VD=-0.8V
 VD=-1.0V
 VD=-1.2V
 VD=-1.4V

Fig.III.16 Activation energy (Ea) versus (a) gate voltage (VG) (b) drain to gate voltage (VDG) 
plotted for different VD biases (pFET).  

 

Following the identification of the suitable range of bias voltages for B extraction, the 

inverse of the activation energy has been used to study the dependence of the field with VDG. 

In most cases, Ea
-1 has been found to be a linear function of VDG, as shown in Fig.III.17. 

These results suggest that the field model F= (VDG–ΔV)/3EOT used by conventional methods 

[Chan’87, Endoh’90] is correct, provided that ΔV is extracted from the intercept of Ea
-1 with 

the VDG axis for each VD and each temperature. This procedure is illustrated in Fig.III.17.  

The (dln(ID)/dF)·F² function has been calculated using the field obtained with the 

extracted ΔV. The results are shown in Fig.III.18 for pFETs of sample A and C. The 

parameter B has been found equal to 11 MV/cm for LT pFET and 20 MV/cm for HT pFET. 

Also, for nFETs the same analysis is carried out on LT/HT nFET with 25 nm Si channel 

(Fig.III.19 and Fig.III.20). Also, B value (12 MV/cm) of LT nFET is found to be lower than 

that of HT nFET (25 MV/cm). 

As discussed before, the value of B is proportional to the effective band gap raised to 1.5, 

thus the lower B value of LT process indicates that the effective band gap has been lowered 

by the traps. This is in accordance with our expectation: in LT SPER activation, EOR defects 

are not fully healed out due to the low thermal budget, leaving a higher density of residual 

EOR defects below the LT SPER junction. This suggests the presence of a larger defect 
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density in LT SPER junctions. In contrast, B takes an almost ideal value in HT activated 

devices, confirming the absence of defects for the standard high temperature spike anneal. 
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Fig.III.17. Extraction of ΔV using the inverse 
of EA versus drain-to-gate voltage (VDG) plot 
(pFETs with 25 nm Si channel). 

Fig.III.18. Extraction of B from the 
d(ln(ID))/dF·F2 versus F characteristic (pFETs 
with 25 nm Si channel). 
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Fig.III.19. Extraction of ΔV using the inverse 
of EA versus drain-to-gate voltage (VDG) plot 
(nFETs with 25 nm Si channel). 

Fig.III.20. Extraction of σ and B from the 
d(ln(ID))/dF·F2 versus electric field 
characteristic (nFETs with 25 nm Si channel).

III.4 GIDL improvement by defect engineering 

As shown in the section above, for LT SPER activated device, higher GIDL leakage is 

induced by the EOR defects. To control the GIDL current in LT SPER activated devices, 

defect engineering has to be carried out to reduce the residual EOR defects density. The use of 

extremely thin SOI (ETSOI), i.e. with a thickness around 10 nm and below, is an effective 

way to reduce the EOR defects density.  

It has been reported that SOI can help to reduce the EOR defect density by two effects. (I) 

Defect profile is cut off effect thanks to the BOX [Hamilton’07, Fazzini’08a, Saavedra’02]: 
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compared to bulk sample, on SOI samples, after implantation, part of Si interstitials (Sii) go 

into the BOX and get blocked there. Thus, the initial Si interstitials available for the formation 

of EOR defects is lower, and less EOR defects are formed after EOR activation anneal. (II) 

Defect sinking effect of BOX during the post activation anneals [Fazzini’08b, Aboy’07, 

Bazizi’10, Hamilton’06a]: During the post activation anneals, the EOR defects will evolve as 

a source of Sii. On bulk sample, the Sii tend to move toward the top surface of active Si layer, 

which acts as a defect sink. However, for SOI samples, the BOX can act as an additional 

defect sink, competing with the top surface of active Si layer. As a result, the EOR defect 

density is expected to be lower in LT SPER SOI process. Moreover, for the same implant, the 

defect cut off effect and defect sinking effect can be enhanced by thinning the thickness of 

SOI. This offers us one interesting way to reduce defect density in LT SPER process. 

In our experiment, GIDL performance of LT SPER is greatly improved on ETSOI of 

6 nm. As shown in Fig.III.21, similar cumulative distribution of IDmin is obtained on LT/HT 

nFETs. The GIDL improvement on ETSOI might indicate lower EOR defects density than 

that on 25 nm SOI. To confirm this hypothesis, the B value has been extracted to figure out 

the dominant GIDL generation mechanism. As shown in Fig.III.22, B is extracted to be 

18 MV.cm-1 and 12 MV.cm-1 for 6 nm and 25 nm SOI, respectively. Compared to the nFET 

on 25 nm SOI, the higher B value of ETSOI (6 nm) indicates that the effective band gap is 

higher, which in turn indicates that the EOR defects density has been greatly reduced. 
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Fig.III.21. Cumulative distribution of the 
IDmin value for LT and HT devices with 6 nm 
Si channel. 

Fig.III.22. GIDL current parameter B 
extraction of different HT/LT nFETs with 
different Si channel thickness. 
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This phenomenon is in accordance with the KMC process simulations [Sklénard’12]. 

With 2D KMC simulations, it is observed that, after LT SPER activation, the EOR defects 

density on 6 nm ETSOI is much lower than that on 25 nm SOI. The reduction is explained by 

the enhanced defect cutting off effect of BOX on ETSOI [Sklénard’12].  

 

Fig.III.23 Schematic plot showing (a, d) implantation induced surface 
amorphization (a-Si layer) and Sii distribution before LT SPER, (b, e) available Sii 
for EOR formation  and (c, f) recrystallized surface and residual EOR defects after 
LT SPER anneal, for bulk and SOI samples, respectively. In SOI, part of Sii are 
blocked by BOX (as shown by the dashed line in (e)), the initial number of Sii 
available for EOR formation is lower, and less EOR defects are formed (f) than that 
on bulk samples (c).  

Compared to bulk sample, the BOX on SOI sample can cut off the as implanted profile 

of Si interstitials. As shown in Fig.III.23-(e), part of Si interstitials go into the BOX and are 

blocked within the BOX. As a result, the Sii available for the formation of EOR defects are 

less than that of bulk, and lower EOR defect density can be achieved after LT SPER 

activation anneals. Compared to bulk, LT SPER on SOI samples offers the benefits of lower 

EOR defects for the same pre-amorphization implant [Fazzini’08a, Fazzini’08b, Saavedra’02]. 
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For the same amorphization implant, the defect cutting off effect is enhanced with the 

decrease of Si thickness. 

III.5 Conclusions 

In this chapter, the definition of gate induced drain leakage is firstly recalled. Then , the 

three possible mechanisms of GIDL current are reviewed: band to band tunneling, trap 

assisted tunneling and SRH recombination. Experimentally, LT SPER devices on 25 nm SOI 

show higher GIDL than HT activated devices. Theoretically, this increase can be induced by 

either the higher EOR defects density or the abrupt junction from LT SPER. For the 

optimization of GIDL leakage on LT SPER devices, it is very important to analyze the 

dominant leakage mechanism on LT SPER devices. 

Considering the method for GIDL mechanism analysis, firstly the limits of traditional 

characterization of GIDL were reviewed, namely the lack of accurate model of GIDL current 

and the inaccurate calculation of electric field. An improved approach has been proposed for 

GIDL mechanism analysis that overcomes these limitations by proposing an experimental 

determination of the electrical field.  Relying on the determination of γ and ΔV, which are 

significant modeling parameters of the GIDL current, the new approach proposed in this work 

has been found to lead to weaker error than the previously proposed methods. To properly 

apply the new approach for GIDL analysis to FDSOI MOS transistors, a detailed 

methodology of the correct extraction conditions has been proposed: simple and efficient 

ID(VG), IS(VG) and IG(VG) curves are used to identify the devices, bias ranges and 

temperatures for which the GIDL current is dominated by tunneling. The application of this 

methodology has shown that GIDL characterization can provide a relevant and effective 

feedback about junction quality. With the extraction of the parameter B, we can distinguish 

whether GIDL is dominated by TAT or BTBT. 

Using the new approach with the methodology proposed, we were able to demonstrate 

that the B value of LT SPER devices is lower than that of HT devices. It indicates that the 

effective band gap is reduced by the defects and LT SPER activation results in a larger defect 

density which is responsible for the higher GIDL. 



Chapter III: GIDL optimization of LT transistors 

~ 71 ~ 
 

 To reduce the EOR defects density and device leakage of LT SPER activated device, 

ETSOI is demonstrated to be an effective way. This improvement is due to the enhanced 

defect cutting off effect and defect sinking effect of BOX by locating the EOR defect band as 

close to the BOX as possible. Same IDmin performance has been achieved on LT/HT nFETs 

with 6 nm SOI. Extraction of B is consistent with IDmin improvement in LT SPER devices on 

ETSOI. Indeed, B of LT SPER activated devices on ETSOI (6 nm) devices is much higher 

than that on 25 nm SOI. The higher B value of LT ETSOI devices is consistent with the 

higher effective band gap and lower defect density expected. 
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Chapter IV : Deactivation of LT SPER activated dopants 
 

Abstract- In 3D sequential integration, LT dopant activation of top FET is mandatory to 

protect bottom FET. LT SPER is a suitable technique for the activation of top FET. As shown 

in Chapter II, similar device performance has been achieved by optimizing the LDD 

implantation conditions: implant tilt and implant energy. As detailed in Chapter III, by using 

the defect cutting off effect and defect sinking effect of BOX, similar leakage performance 

can be achieved with LT activated device as with HT devices. In addition, thanks to its low 

thermal budget, LT process also shows better EOT regrowth control [Batude’09c, 

Ragnarsson’06, Sklénard’12] and allows more material choices for threshold voltage tuning 

[MacKenzie’07]. So, it is very interesting to use LT activation for dopant activation not only 

of top FETs, but also of bottom FET. 

However, one challenging issue for LT SPER is that the activated dopants are metastable 

and tend to deactivate during the post anneal: the activated dopants tend to form clusters with 

defects and become deactivated [Pawlak’04b]. In 3D sequential integration, for top FET, the 

activated dopants will endure the thermal budget of salicidation (450 ºC) and Back End Of 

Line (BEOL) process (400 ºC). For bottom FETs, the activated dopants will endure the 

following thermal budget: (1) BEOL of bottom FETs (400 ºC); (2) Wafer bonding (200 ºC); 

(3) Top FET fabrication (600 ºC); (4) BEOL of top FETs (400 ºC). One of the main 

challenges of LT SPER is the dopant deactivation during post activation anneal, which will in 

turn degrade the access resistance and ION in consequence. So, to apply LT SPER for dopant 

activation, it is necessary to study the deactivation of dopants in the temperature range of 

400 ºC to 600 ºC. 

In this chapter, we will firstly review the defect evolution and dopant (boron and arsenic) 

deactivation mechanisms. Then, compared to bulk devices, the possible advantage of BOX in 

FDSOI will be discussed. In the third section, the design of experiments for deactivation 

analysis will be shown. In the forth section, we will compare the activation of dopants in 

LT/HT activation. In the end, the deactivation of boron and arsenic on SOI and its 

dependence on the distance between EOR defects and BOX will be analyzed. 
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IV.1 Defect evolution and dopant deactivation 

The thermal stability of LT SPER activated dopants is strongly related to the existence of 

EOR defects after LT SPER anneal [Solmi’02, Colombeau’04]. In this section, we will firstly 

review how the defects evolve during the post activation anneal. Then, the deactivation 

mechanisms of boron and arsenic will be reviewed, respectively. 

IV.1.1 Defect evolution during post activation anneal 

As discussed in the former chapters, due to the low thermal budget of LT SPER, EOR 

defects are left below the previous a-c interface after the LT SPER activation anneal. During 

the post activation anneals, the EOR defects tend to evolve with the emission of Si interstitials 

(Sii) [Hamilton’06a].  

Fig.IV.1 Sii concentrantion during post activation anneal on bulk [Hamilton’06a] (a) and SOI 
[Fazzini’08a] (b) samples. On bulk sample, most of the Sii flows to the top surface, whereas 
the Sii can flow either to the Si top surface or the Si/BOX interface on SOI sample. 

The Si interstitials can migrate towards the available defect sinks, like the Si top surface 

and Si bottom surface on bulk samples, as shown in Fig.IV.1-(a). The migration of Sii is 

dependent on the distance between the EOR defects band and the defect sink, which 

influences the supersaturation gradient of Sii. For very thick bulk samples, most of the Sii 

diffuse towards the top surface, which is located closer to the EOR defects band and results in 

a higher defects gradient, compared to the bottom Si surface. However, for SOI samples, the 

Si interstitials can move towards either the Si surface or the BOX (Fig.IV.1-(b)). The fluxes 

of Si interstitials flowing towards the Si top surface and Si/BOX interface is dependent on 

their distances to the EOR defects band, respectively [Hamilton’06b]. A model for calculating 
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the Si interstitial fluxes towards the two defect sinks has been proposed in [Fazzini’08a]. The 

flux of Si interstitials towards the closer defect sink is higher. 

IV.1.2 Dopant deactivation mechanisms 

During LT SPER anneal, high dopant activation level, above solid solubility, can be 

achieved. However, the activated dopants are in a metastable state and tend to become 

deactivated via the formations of clusters with defects. In this section, we will first introduce 

the solid solubility of impurity at different temperatures. Then the deactivation mechanism of 

boron and arsenic will be reviewed respectively. 

IV.1.2.1 Solid solubility  

At a given temperature, there is 

an upper limit to the amount of an 

impurity which can be absorbed by 

silicon, which is called the solid 

solubility limit for the impurity. In 

addition, at a given temperature, there 

is also an upper limit to the amount of 

an impurity which can be electrically 

activated in Si, which is called the 

solid solubility of electrically active 

dopant. In Fig.IV.2, for boron, 

phosphorus, antimony and arsenic, the 

solid solubility of dopant atoms and 

electrically active dopant atoms are 

plotted as a function of diffusion 

temperature, in the temperature range 

of 900-1200 °C [Fair’77]. When the 

temperature is below 1000 °C, smaller solid solubility of both dopant atoms and electrically 

Fig.IV.2 Solid solubility and electrically active 
impurity concentration limits in silicon for arsenic 
(As), phosphorus (P), boron (B) and antimony (Sb) 
[Fair’77]. 
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active dopant atoms are expected as temperature decreases. In [Vick’69], it is reported at 

700 °C, the solid solubility of active boron in c-Si is approximated 2.0x1019 cm-3. 

IV.1.2.2 Boron deactivation mechanism 

For boron, high activation levels around 1.5-2x1020 cm-3 have been reported by LT 

SPER [Duffy’04, Cristiano’04, Lerch’05, Aboy’05]. This activation level is well above the 

equilibrium solid solubility. In [Cristiano’04], for LT SPER anneal at 650 °C, boron 

activation around 1.5x1020 cm-3 has been demonstrated which is a decade higher than the 

solid solubility of boron in Si at 650 °C (1.5x1019 cm-3). The boron concentration above the 

activation level is electrically inactive even after full recrystallization by LT SPER. The 

inactive boron atoms exist in the form of immobile Boron Interstitial Clusters (BICs) which 

are formed during the regrowth of the amorphized layer [Aboy’06, Pelaz’09, Aboy’11]. 

Even though high activation level can be achieved, the activation state realized during 

LT SPER is metastable. There is a high risk that the activated boron atoms in the regrown Si 

layer tend to deactivate during the post activation anneals. After post anneal at 700 °C for 

100 seconds, 40% deactivation of SPER activated boron has been observed [Mokhberi’02].  

There is one important question raised: how do the active boron atoms get deactivated 

during the post activation anneal? As discussed in section IV.1.2, during the post activation 

anneal, Sii are emitted from EOR defects and move towards the top surface of Si, going 

through the highly activated boron region (Fig.IV.3). During this process, inactive BICs are 

formed and part of the activated boron atoms is deactivated. The reaction can be written as: 

BICSiB i ⇔+   (Eq.IV.1) 

The deactivation process will continue until the concentration of Sii drops to its 

equilibrium values at the anneal temperature. Then the dissolution of BICs start to be 

dominant, with the emission of active boron atoms (boron reactivation) [Aboy’06]. 

Consequently the dose of active boron starts to increase. The critical post anneal when the 

BICs dissolution becomes dominant depends on many process parameters: the implant, the 

post anneal duration and temperature. It has been reported that for one specified implant, as 
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the anneal temperature decreases, a longer anneal duration is required for the BICs dissolution 

to occur [Aboy’06, Cristiano’06], as illustrated in Fig.IV.4. 

 

Fig.IV.3 Schematic of EOR defects 
evolution and of Sii flux for LT SPER 
activated boron on bulk sample during post 
activation anneal. Sii flow towards the Si top 
surface and deactivate boron through the 
formation of inactive BICs. Reducing Sii 
flux towards Si top surface is thus important 
to prevent boron deactivation. 

Fig.IV.4 Time evolution of the Rs of a 
0.5keV, 1015 cm−2 boron implant during 
annealing at different temperatures ranging 
from 750 to 900 °C subsequent to SPER 
[Aboy’06]. Experimental data (symbols) are 
taken from [Lerch’05]. 

 

Compared to bulk samples, SOI structure offers the possibility to control the deactivation 

of LT SPER activated boron. On one hand, as illustrated in Fig.III.23, part of the defect 

profile is cut off by the BOX. So the initial number of Sii is lower and the EOR density after 

SPER is lower than that in bulk [Hamilton’07, Fazzini’08, Saavedra’02]. On the other hand, 

the Si/BOX interface can also act as a defect sink (Fig.IV.1 and Fig.IV.5), competing with the 

Si top surface [Ferri’07, Aboy’07, Bazizi’10]. For both the Si top surface and the Si/BOX 

interface, the defect sinking efficiency is dependent on its distance to the EOR defects band: 

the smaller the distance is, the stronger the sinking effect will be [Hamilton’07, Bazizi’10]. 

Theoretically, by locating the EOR as close to the BOX as possible, the Sii flux flowing to the 

Si/BOX interface can be increased. As a consequence, the net Sii flux moves towards the top 

Si surface is smaller and boron deactivation get decreased. As shown in the literature, boron 

deactivation has been widely studied in the temperature range of 700 °C to 900 °C 

[Hamilton’07, Fazzini’08, Aboy’07, Bazizi’10]. 
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Fig.IV.5 Schematic of EOR defects evolution and of Sii flux for LT SPER activated boron 
on SOI during post activation anneal. Sii can flow either to the Si top surface or to the 
Si/BOX interface. In the doped region, boron is deactivated through inactive BICs 
formation with the Sii flowing to the Si top surface.  

 

However, in the case of 3D sequential integration, the temperatures of interest are much 

lower than that in the previous works. For the top FETs, the post activation anneals 

correspond to LT salicidation anneal (450 °C) and back end processing (~400 °C). For the 

bottom FETs, the maximum processing temperature is reached during LT top FET dopant 

activation (~600 °C). In this work, boron deactivation was studied between 400 °C and 

600 °C, in order to verify the possibility of using LT SPER in 3D sequential integration for 

bottom and top pFETs. Moreover, the sheet resistance of boron doped LT SPE junction will 

be analyzed to figure out the potential of using LT SPER for ultra-shallow (~10 nm) junction 

formation.  

IV.1.2.3 Arsenic deactivation mechanism 

With the continuous scaling down of device dimensions, highly doped, abrupt junctions 

are needed. Arsenic has been widely used for the fabrication of nFET, thanks to its low 

diffusivity and good solid solubility. As devices scales down, high arsenic activation is 

required to reduce the access resistance. This might be achieved by using non-equilibrium 

activation techniques (e.g. flash or laser anneal, LT SPER) [Giubertoni’10, Martinez-

Limia’08]. 



Chapter IV: Deactivation of LT SPER activated dopants 

~ 78 ~ 
 

LT SPER anneal after an amorphizing arsenic implant is a viable alternative to 

conventional spike anneal thanks to its high activation above active solid solubility and low 

dopant diffusion [Martinez-Limia’08]. In [Lietoila’80, Lietoila’81], after LT (560 °C) SPER 

anneal for 4 minutes, the concentration of active arsenic reaches 5x1020 cm-3 which is more 

than 2 decades higher than 2x1018 cm-3 (calculated according to [Nobili’99]), the solid 

solubility of electrically active arsenic in Si at 560 °C. In addition, the LT SPER activated 

arsenic atoms mainly locate in the former amorphous Si region thanks to its weak dopant 

diffusion. 

After LT SPER, in the former a-Si region, arsenic atoms exist mainly in three forms: (1) 

activated arsenic (As+); (2) inactive AsV clusters; (3) inactive SiAs precipitates 

[Giubertoni’10].  In [Martinez-Limia’08, Pichler’08], a model has been proposed to describe 

the three different forms of arsenic atoms in the previous a-Si region (Fig.IV.6):  

α<1

β>1

α<1

β>1

 
Fig.IV.6 Activation state after SPER. Csol

As+ and Csol
As,tot are the active 

solubility concentration and the solid solubility concentration for the 
SPER temperature, respectively [Martinez-Limia’08, Pichler’08]. 

(I) Active As+: its concentration is well above the limiting value for equilibrium 

conditions, which is named as the active solubility concentration (CAs+
sol).  

(II) Inactive AsV clusters: they exist for arsenic concentration above the As+, up to a 

concentration exceeding the solid solubility (α>1). 

(III) Inactive SiAs precipitates: which exist at even higher concentrations than the 

AsV clusters and As+. 

The solid solubility (Csol
As,tot) and active solid solubility of arsenic (Csol

As+) can be expressed 

by the following equations: 
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where kT is in eV [Nobili’99].  

However, as for boron after LT SPER, the highly activated arsenic by LT SPER is not 

thermally stable and will deactivate towards the active arsenic solubility at equilibrium during 

the subsequent anneals [Giubertoni’10, Nobili’99]. In [Lietoila’81], for LT SPER samples 

annealed at 570 °C for 4 minutes, an additional anneal of 36 minutes at 560 °C introduces 

24% deactivation of the initial active arsenic dose. So the deactivation of LT SPER activated 

dopants is a critical challenge for its application in nFET fabrication. For the metastable 

activated arsenic above the equilibrium solid solubility, deactivation tends to continue until 

reaching the solid solubility at thermal equilibrium. In [Nobili’99], the deactivation of the 

laser annealed arsenic is studied: High arsenic activation above 1020 cm-3 was achieved and 

the implantation induced defects ware removed by high power laser anneal. It is found that 

the deactivation of arsenic lasts for more than 160 hours during post anneal at 500 ºC towards 

the thermal equilibrium solid solubility. 

The dominant deactivation mechanism is the formation of As-Vacancy (V) clusters with 

the injection of Sii [Rousseau’98, Tsamis’05]. Theoretical studies have suggested that AsV, 

As2V, As3V, As4V, As2V2 and As3V2 all may play a role in arsenic deactivation [Harrison’04]. 

However, most of the As-Vacancy clusters exist in the form of As2V, As3V and As4V, which 

are more energetically favored [Kong’08, Skarlatos’07, Pinacho’05]. The deactivation 

mechanism can be described by the following macroscopic reaction: 

in SiVAsnAs +⇔   (Eq.IV.4) 

where n stands for the arsenic atoms participating in the clusters with values between 2 and 4 

[Tsamis’05, Skarlatos’07]. As shown in (Eq.IV.4), Si interstitials are injected during the 

deactivation, which has been experimentally reported in [Rousseau’98, Tsamis’05, 

Skarlatos’07].  
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In order to figure out the possibility of applying LT SPER activation for the fabrication 

of FDSOI nFETs, it is important to confirm that high activation of arsenic is achieved not 

only after LT SPER but also after the subsequent annealing during the further processing of 

device. However, until now, there is little study on the deactivation of LT SPER activated 

arsenic on ETSOI.  

During the LT SPER, residual EOR defects are left below the previous a-c interface and 

tend to act as a source of Si interstitials during post activation anneal. From (Eq.IV.4), it 

might be expected that the super-saturation of Si interstitials tends to make the reaction move 

backward and delay arsenic deactivation. On the opposite, if there is a lack of Si interstitials, 

the deactivation reaction might tend to move forward, resulting in the decrease of carrier 

concentration and the increase of sheet resistance. As discussed in Section.IV.2, on SOI 

samples, thanks to the defects cutting effect and defect sinking effect of BOX, by locating the 

EOR band close the BOX: less EOR defects will be formed after LT SPER and the Sii flux 

towards the Si top surface is reduced during post anneal. Does this lower Si interstitial flux 

enhance the arsenic deactivation on SOI compared to bulk? Does arsenic deactivation limit 

the application of LT SPER? 

In the following sections, we will compare the sheet resistances of boron/arsenic doped 

junctions by LT SPER and conventional HT process, to figure out the possibility of using LT 

SPER to replace conventional HT process. Also we will analyze the influence of Si/BOX 

interface on the deactivation of LT SPER activated arsenic during the post activation anneal 

between 400 °C and 600 °C, to study the possibility for using SPER for the fabrication of top 

and bottom nFETs in 3D sequential integration. Boron and arsenic will be discussed in 

section IV.2 and IV.3, respectively. 

IV.2 Boron activation and deactivation: Experiment and results 

IV.2.1 Experiment 
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Fig.IV.7 Schematic representation of the experimental P splits with Ta-Si the 
amorphized Si thickness and Tseed the residual crystalline Si layer(which will 
act as a seed layer during the following SPER anneal). 

 
SOI wafers with a BOX of 145 nm and different Si thickness (Tsi) are used in the 

experiment. Different pre-amorphization implantations are used to achieve different 

amorphous Si thickness (Ta-si) and seed thickness (Tseed). The splits are schematically 

summarized in Fig.IV.7. For LT SPER activated splits, the EOR defects are located just 

below the a-c interface, so the distance from the top of EOR band to the BOX (TEOR_BOX) can 

be approximated taken as Tseed.  

To compare boron activation between LT SPER and HT spike anneal, samples of type (a) 

were fabricated (Fig.IV.7). In spike split, BF2 (9 kev/1x1015 cm-2) is implanted. In SPER split, 

a 1x1015 cm-2 dose of Ge was implanted at 11 kev, to pre-amorphize 20 nm Si. In order to 

obtain the same as-implanted boron profile as spike split, boron (2 kev/1x1015 cm-2) was 

implanted for SPER split. Then the samples were activated by either LT SPER (600 °C for 

1 min in N2) or HT spike (1050 °C). 

To study the thermal stability of LT activated dopants and its dependence on the distance 

between the EOR defects layer and the BOX, experiments were carried out on SOI samples 

(Fig.IV.7-(b)), with three different Si thicknesses (1240 nm, 20 nm, and 15 nm). To pre-

amorphize 10 nm Si, Ge (4 kev/1x1015 cm-2) was implanted, followed by boron implant 

(1 kev/1x1015 cm-2). As shown in Fig.IV.7-(b), there are three different crystalline Si seed 

thicknesses (1230 nm, 10 nm and 5 nm). LT SPER anneal is applied to activate the boron 

atoms. All the samples were post-annealed in N2. Different temperatures (400 °C, 500 °C, 

600 °C) and anneal durations (0, 2, 10 hours) have been experimented.  
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The sheet resistance (Rs) of each sample was measured by four point probe method. 

Moreover, active dopant dose and carrier mobility were extracted independently from Hall 

measurements. 

IV.2.2 Boron activation study 

Post Anneal: NO 400°C/2h  500°C/2h 600°C/2hPost Anneal: NO 400°C/2h  500°C/2h 600°C/2h  
Fig.IV.8 Rs comparison of LT SPER and HT spike 
activation for the same as-implanted boron profile. In LT 
SPER split, 20 nm of Si was pre-amorphized on 25 nm SOI. 

 

The Rs values of SPER and spike activated samples are compared in Fig.IV.8. It is 

shown that, in both the initial activated and post annealed samples, LT SPER samples of 

group (a) always show lower Rs than HT spike samples. Our implant condition is close to the 

LDD implant in standard FDSOI device, and we can conclude that LT SPER can provide 

similar or even slightly lower sheet resistance as the standard HT process at CEA-LETI. In 

conventional HT process, BF2 is implanted, and the boron profile is overlapped to that of F, 

boron tend to form clusters with F and become deactivated [Cowern’05, Harrison’07].  

 

For one of the samples in group (b), 10 nm was pre-amorphized on 15 nm SOI (Fig.IV.7-

(b)). From Hall Effect measurement, the active boron dose is about 3.3x1014 cm-2, and the 

average active boron concentration value is around 2x1020 cm-3, which is in accordance with 

the literature [Jain’04]. To conclude, for the fabrication of ultra-shallow junction, LT SPER 

Boron is suitable for the fabrication of FDSOI pFETs. 
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IV.2.3 Boron deactivation study 

To analyze boron deactivation, Rs values before and after post activation anneals were 

compared. In Fig.IV.9, sheet resistance values are plotted as a function of post activation 

anneal duration at 400 °C and shown to be stable at this temperature. This means that the 

access resistance of LT top pFETs in 3D sequential integration is stable through the back end 

process. 

Fig.IV.9  Sheet resistance evolution of 
boron doped junction as a function of anneal 
time at 400 ºC. Boron is shown to be stable 
at this temperature. 

Fig.IV.10 Sheet resistance evolution of boron 
doped junction as a function of anneal time at 
500 °C. During the initial phase of anneal, Rs 
increases for TEOR_BOX =1230 nm and 10 nm, 
whereas it decreases for TEOR_BOX=5 nm. 

 

However, at 500 °C, it is shown in Fig.IV.10 that an increase of Rs is observed during 

the first 2 hours of the post anneal for high TEOR_BOX (1230 nm and 10 nm) samples, while a 

decrease was observed for the low TEOR_BOX (5 nm) samples. To gain more insight on this 

phenomenon, Fig.IV.11 plots Rs as a function of anneal temperature for the same 2 hours 

duration. For TEOR_BOX=1230 nm or 10 nm, Rs starts to increase with anneal temperature 

above 500 °C. In contrast, for TEOR_BOX=5 nm, smaller Rs values can be reached after a post 

activation anneal at 500 °C or 600 °C for 2 hours.  
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Fig.IV.11 For boron doped junctions by LT 
SPER activation, sheet resistance evolution 
with boron doped junction with 2 hours 
annealing. Above T=500 °C, Rs start to 
increase with T for TEOR_BOX=1230 nm or 
10 nm, while it decreases slightly for 
TEOR_BOX=5 nm. 

Fig.IV.12 For boron doped junctions by LT 
SPER activation, the active dose and carrier 
mobility extracted from Hall effect tests and 
plotted as a function of post activation anneal 
temperature (annealing time t=2hours). 

 

Indeed, sheet resistance can be expressed by [Cristiano'04]: 

( ) ( )∫
= Xj

0
dxxCxμq

1Rs         (Eq.IV.5) 

where Xj is the junction depth, C(x) the carrier concentration along depth direction x, µ(x) the 

concentration dependent carrier mobility and q the electronic charge. According to (Eq.IV.5), 

Rs reduction can result from either higher carrier concentration or higher carrier mobility. 

To distinguish between the two possible causes of Rs variation, Hall Effect 

measurements were performed to extract active dose Ns and carrier mobility µ (Fig.IV.12). 

For TEOR_BOX=5 nm, higher Ns and slightly lower μ were observed after anneal at 500 °C or 

600 °C for 2 hours. The higher Ns is an indication of boron reactivation. Our interpretation is 

that low TEOR_BOX samples benefit from two phenomena (Fig.IV.13): (i) the initial EOR 

defects density is lower than that of thicker samples due to the defects profile cutting effect of 

BOX, and (ii) EOR defects are located closer to the BOX, so that the sinking effect of 

Si/BOX interface is stronger than that of Si top surface. As a result, most Sii are absorbed by 

the BOX, and the concentration of Sii is decreased. As a consequence, the boron deactivation 

reaction (Eq.IV.1) is reversed, and boron get reactivated.  
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Fig.IV.13 For the same pre-amorphization, Sii flux during post anneal 
on LT SPER boron samples with high (a) and low TEOR_BOX (b). 

 

As TEOR_BOX=5 nm corresponds to the LDD implant in our LT FDSOI process, we can 

conclude that LT boron SPER activation is compatible with the fabrication of top and bottom 

FDSOI pFETs in LT 3D sequential integration. Compared to boron deactivation on thick TSi 

samples, FDSOI offers one solution to overcome the challenge of boron deactivation, which 

is challenging for the LT fabrication of scaled pFETs. 

IV.3 Arsenic activation and deactivation: Experiment and results 

IV.3.1 Experiment 

Schematic plots of N splits are summarized in Fig.IV.14. Same as boron splits discussed 

in the section above, SOI wafers with 145 nm BOX and different Si thickness (TSi) are used in 

the experiment. In group (a), arsenic (10kev/1E15cm-2) implantations are used for Ta-si=20 nm. 

While in group (b), for Ta-si=10 nm, arsenic self-amorphization (4kev/1E15cm-2) is used. Then 

the samples are activated by either LT SPER (600 °C/1min/N2) or spike (1080 °C). After 

activation, to study the thermal stability of the activated dopants, the samples are post-

annealed at 400/500/600 °C for 2h and 400/500 °C for 10h in N2. 
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Fig.IV.14 Schematic representation of the experimental N splits 
with Ta-Si the amorphized Si thickness and Tseed the residual 
crystalline Si layer(which will act as a seed layer during the 
following LT SPER anneal). 

 

IV.3.2 Arsenic activation: LT SPER versus spike 
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Fig.IV.15 Rs comparison of LT SPER and HT spike activation 
for samples with the same arsenic implantation. 20 nm of Si 
was pre-amorphized on 25 nm SOI. 

 

In Fig.IV.15, the sheet resistance values of LT SPER and spike activated samples are 

compared, before and after different post activation anneals. It is found that the sheet 

resistance of LT SPER and HT spike samples are similar, both just after the activation (no 

post anneal) and after post activation anneals. Since this implant condition is close to the LDD 

implant in standard FDSOI nFETs, and we can conclude that LT SPER can provide similar or 
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even slightly lower sheet resistance as the standard HT FDSOI nFETs process at CEA-LETI. 

LT SPER activation of arsenic is applicable for the fabrication of FDSOI nFETs in 3D 

sequential integration.  

IV.3.3 Deactivation of LT SPER arsenic on SOI 

For LT SPER activated arsenic, as shown in Fig.16, it is found that arsenic is stable at 

400 °C. So LT SPER activated arsenic is suitable for the fabrication of top nFETs, for it can 

survive to the back end process of top FET. However, for post activation anneal at 500 °C 

(Fig.IV.17), Rs increases with anneal duration which indicates dopant deactivation. In 

addition, it is observed that the deactivation increases with anneal temperature (Fig.IV.17). 

Fig.IV.16 Rs of arsenic doped junction as a 
function of post activation anneal time at 
400 ºC. Arsenic is stable at 400 ºC. 

Fig.IV.17 Rs as a function of post activation 
anneal time at 500 ºC. Rs increases with 
anneal duration. 

 

Also, from Fig.17 and Fig.IV.18 it is found that Rs increase is even higher for the case of 

lower TEOR_BOX. This might be interpreted by the fact that arsenic deactivation is caused by 

the formation of AsV clusters with the emission of Si interstitials. On samples with lower 

TEOR_BOX: (I) the initial EOR defects density is lower thanks to the stronger defects cutting-off 

effect; (II) the concentration of Si interstitial is even lower due to the stronger defect sinking 

effect of the Si/BOX interface. As a consequence, the arsenic activation reaction (Eq.IV.4) 

might tend to move in the forward direction and arsenic deactivation is enhanced on samples 

with smaller TEOR_BOX. 
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Fig.IV.18 For As doped junction activated with LT SPER, from T=500 °C, 
Rs increases with T, for the same anneal duration of 2 hours. 

We can conclude that LT SPER activated arsenic are not stable during post anneal at 

500-600 ºC. In contrast with boron, on ETSOI samples, deactivation of LT SPER activated 

arsenic is enhanced. However, as shown in Section.IV.3.2, we still managed to achieve 

similar sheet resistance in LT SPER samples and standard HT process, which allows us to use 

LT SPER in 3D sequential integration for FDSOI nFETs on both the top and bottom layers in 

3D sequential integration. 
 

IV.4 Conclusions 

In this Chapter, to gain insight on the possibility the activation and thermal stability of 

LT SPER activated dopants (both boron and arsenic) is compared to that of conventional HT 

processes. 

For boron:  

It is found that the LT SPER activated boron is stable at 400 °C and suitable for the 

fabrication of top FDSOI pFETs in 3D sequential integration. 

Based on the analysis of Rs result and Hall effect test results, we can conclude that, for 

the application of LT SPER on SOI, boron deactivation are well controlled and boron 

reactivation is observed after 500 °C/600 °C anneal for 2 hours. This is obtained by locating 

the EOR band as close to the Si/BOX interface as possible: the Sii cutting off effect of BOX 
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and strong defect sinking effect of the Si/BOX interface is enhanced, which help to well 

control boron deactivation and make reactivation to be the dominant reaction. 

In addition, for the implantation into 25 nm SOI structure, which is similar to the LDD 

implant in FDSOI: it is observed that the sheet resistance of LT SPER activated junction is 

similar to that of conventional spike activated junction, both initially after the activation 

anneal and after post activation anneal between 400 °C and 600 °C.  

So we can conclude that LT SPER activated boron is suitable for the fabrication of both 

top and bottom FDSOI pFETs in the 3D sequential integration scheme. 

 

For arsenic: 

Unlike boron, since arsenic is deactivated through the formation of As-Vacancy clusters, 

arsenic deactivation can not be reduced by reducing TEOR_BOX and even higher arsenic 

deactivation is observed for smaller TEOR_BOX.  

However, considering the activation of arsenic in the case of FDSOI application, LT 

SPER activated junctions show similar sheet resistance as that of conventional spike activate 

junctions, both initially after the activation anneal and after the post activation anneal in the 

temperature range between 400 °C and 600 °C. So the LT SPER activated arsenic can be 

applied for the fabrication of bottom and top FDSOI nFETs in the 3D sequential integration 

scheme. 
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Chapter V : Conclusions and perspectives 
V.1 Conclusions 

3D sequential integration with wafer bonding of top active layer is the only solution to 

make full use of the third dimension. It can help to reduce the length of interconnection wire, 

RC delay and power dissipation. It also allows independent optimization of top and bottom 

transistors for improving system performance.  

However, LT (<600 °C) process is mandatory for the fabrication of top FET. Low 

temperature solid phase epitaxial regrowth is an interesting candidate for dopants activation 

thanks to its following advantages: (1) High dopants activation level above the solid solubility 

limit at thermal equilibrium; (2) Abrupt and ultra-shallow junctions induced by its low 

diffusion; (3) Its low thermal budget broadens the choice of materials for metal gate work 

function tuning. 

So, it is interesting to apply the LT SPER activation technique for the fabrication of 

FDSOI devices on both the bottom and the top layers in 3D sequential integration scheme. 

However, it is also very challenging. In this thesis, we have reviewed the challenges and 

found the solutions to overcome the main challenges. 

In Chapter II, the mechanism and properties of LT SPER anneal is firstly reviewed. 

Then, we focused on solving two of the challenges for its application for FDSOI FETs. 

(I) Preventing full pre-amorphization of active layer: Crystalline seed layer is 

necessary for successful recrystallization of the previous amorphized layer. For 

FDSOI, the active layer is very thin, integration scheme and implant conditions 

should be optimized. In our work, the following two ways were successfully 

applied to avoid the full amorphization of the thin active Si layer of FDSOI 

devices: (a) LDD implant is carried out after the epitaxy of raised source and 

drain; (b) Accurate prediction of implant energy by KMC simulation. 

(II) Preventing LDD to gate underlap: Due to the low diffusion of LT SPER, LDD 

and gate might be underlapped, the access resistance and device performance 

might be degraded. The modification of LDD implant tilt is expected to be an 

efficient way to adjust the LDD to gate overlap. In our work, similar 



Chapter V: Conclusions and perspectives 

~ 91 ~ 
 

performances are achieved on LT and HT devices with short gate length 

(LG=30 nm). Similar IOFF-ION and SCE control can be achieved by optimizing 

the LDD implant tilt. 

(1) For LT FDSOI nFETs, the LDD implant tilt does not need to increase. 

With the same LDD implant of 20 º, similar IOFF-ION and SCE 

control are achieved. Thanks to the low thermal budget of LT SPER 

activation, it is found that the regrowth of interfacial SiO2 at the 

boundary of gate to channel interface is well controlled. This helps to 

improve the device performance of small scale devices in LT process. 

However, higher interface state density is found in LT SPER process.  

(2) For pFETs with 8 nm first spacer and a SiGe “mushroom” on top of 

gate, a higher LDD implant tilt of 30° is required for similar device 

performance of LT and HT pFETs. For further optimization, LT SiGe 

epitaxy with high selectivity is mandatory to whittle the shadow effect 

of gate stack. Consequently, the optimized LDD tilt required for LT 

pFET might be lower than 30 º. In addition, LT splits show higher mean 

value of Dit which mainly locate close to the conduction band. 

In addition, it is observed that the LT SPER activation might help to avoid the problem of 

effective work function migration during HT activation. This allows us to broaden the choice 

of metal gate materials for work function tuning of different applications.  

In Chapter III, the possible mechanisms of GIDL current are firstly reviewed. Then the 

experimental observation and possible causes of 1.5 decades higher GIDL current of LT 

SPER devices on thick SOI (25 nm) are introduced: higher trap assisted tunneling due to the 

higher EOR defects density or higher band to band tunneling due to the abrupt junction. It is 

important to distinguish the mechanism responsible for the leakage increase of LT activated 

devices. To do this, one interesting way is to extract GIDL parameter B, which is dependent 

on the effective band gap of Si. And smaller B vale is expected for trap induced leakage. 

Then, the limits of traditional mechanism analysis of GIDL are reviewed: the lack of 

accurate model of GIDL current and the inaccurate calculation of electric field. An improved 

approach is proposed for GIDL mechanism analysis, overcoming the limitations of traditional 

method by experimental determination of the electrical field. To properly apply the new 
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approach for GIDL analysis to FDSOI devices, a detailed methodology for proper extraction 

conditions has been proposed: ID(VG, T), IS(VG, T) and IG(VG, T) curves are used to identify 

the devices, bias ranges and temperatures for which the GIDL current is dominated by 

tunneling and the contribution of gate leakage is neglectable. 

For devices on 25 nm SOI, using the new approach with the methodology proposed it is 

found that the high GIDL current of LT transistors is due to the residual EOR defects. 

Compared to HT devices, lower B value is observed on LT devices, which indicates that the 

effective band gap is reduced due to the existence of residual EOR defects which attribute to 

the GIDL generation. 

To reduce the EOR defects density and the GIDL leakage of LT SPER transistors on SOI, 

extremely thin SOI is demonstrated to be an efficient way. On extremely thin SOI, the defect 

cutting off effect and defect sinking effect of BOX can be enhanced, the density of residual 

EOR defects is much lower than that on thick SOI. Same IDmin performance has been achieved 

on LT/HT nFETs with 6 nm SOI. Extraction of the GIDL parameter B is consistent with IDmin 

reduction in LT SPER devices. B value of LT SPER activated devices on ETSOI (6 nm) is 

much higher than for 25 nm SOI, which indicates the higher effective band gap and lower 

EOR defect density on ETSOI. 

In Chapter IV, the activation and thermal stability of LT SPER activated boron and 

arsenic is studied. To confirm whether LT SPER activation is compatible with the 3D 

sequential integration scheme, we explored the deactivation of LT SPER activated dopants in 

the temperature range of 400 °C to 600 °C.  

Considering the thermal stability of LT SPER activated dopants on SOI samples: 

For boron, it is found that by locating the EOR band as close to the Si/BOX interface as 

possible, boron deactivation is well controlled and boron reactivation is observed after 

500 °C/600 °C anneal for 2 hours. On one hand, the EOR defects density is lower thanks to 

the Si interstitial cutting off effect of BOX. On the other hand, the defect sinking effect of the 

Si/BOX interface is stronger, which helps to limit the boron deactivation and to make 

reactivation to be the dominant reaction.  
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On the contrast, since arsenic is deactivated through the formation of As-Vacancy 

clusters, arsenic deactivation can not be reduced by reducing TEOR_BOX and slightly higher 

deactivation is observed for smaller TEOR_BOX.  

However, in the case of FDSOI source drain fabrication, for both boron and arsenic, it is 

observed that the sheet resistances of LT SPER and HT activated junction are similar, both 

initially after the activation anneal or after the post activation anneals at different temperatures 

between 400 °C and 600 °C. So LT SPER appears to be suitable for the fabrication of both 

bottom and top FDSOI transistors. 

V.2 Perspectives 

Based on the working experience of the author, future works in the following aspects are 

proposed, for the goal of applying LT SPER for the fabrication of sub-22nm devices: 

(I) Considering the gate stack: Higher interface state density has been observed in 

the LT splits. To further improve the performance of LT SPER activated devices, 

it is necessary to improve the quality of gate to channel interface in LT process. 

Further optimization of forming gas anneal (higher pressure/longer duration or 

pure H2) are interesting. This is very critical for achieving LT fabricated devices 

with good reliability. In addition, there is lack of research about VTH tuning with 

different metal gate materials in LT process for different applications. This can 

help to optimize the systemic performance of 3D sequential integration, e.g. 

matched VTH of nFET and pFET are critical to ensure good static noise margin 

performance of SRAM. 

(II) Considering junction profile: On LT SPER activated nFETs, surprisingly, it is 

found that LT S/D are overlapped to gate without increasing the LDD tilt, 

compared to that in HT process. This might be caused by the transient enhanced 

diffusion of arsenic towards the channel? It is very interesting to quantify the 2D 

dopant profile. Also, accurate TCAD simulation of LT SPER processed 

MOSFET is interesting for offering guideline to optimize process parameters. 
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(III) Considering LT FDSOI pFETs, to ensure high hole mobility and low device 

leakage, optimization of LT SiGe RSD epitaxy with high selectivity is required 

for high quality of the interface between SiGe RSD and Si channel. 



Résumé en français 

~ 95 ~ 
 

Résumé en français 

Chapitre I: Introduction 
L'augmentation de densité d'intégration des technologies CMOS est vitale pour 

poursuivre le développement des circuits intégrés (IC). Cependant, la réduction des 

dimensions du transistor MOS se heurte à l'augmentation des effets canal court (SCE, pour 

Short Channel Effects), à l'allongement des délais d'interconnexion et à la croissance des coûts 

de production. Un bon moyen de remédier à ces défis et de poursuivre la loi de Moore serait 

l'intégration 3D, qui consiste à empiler les composants les uns au dessus des autres. 

Nous expliquons comment une intégration 3D séquentielle, mettant en jeu une technique 

de collage de plaques pour réaliser la couche active supérieure, est la seule solution pour tirer 

pleinement parti de la troisième dimension. Elle peut aider à réduire la longueur des lignes 

d'interconnexions, les constantes de temps RC associées et la dissipation de puissance. Elle 

permet également d'optimiser indépendamment les transistors supérieur et inférieur pour 

améliorer les performances du système. 

Toutefois, avec cette approche, il est indispensable d'utiliser des procédés de fabrication 

à basse température (<600 °C) pour fabriquer les transistors de la couche supérieure. La 

recroissance épitaxiale en phase solide (SPER, pour Solid Phase Epitaxial Regrowth) à basse 

température (LT) est une technique intéressante pour l'activation des dopants. Elle présente 

les avantages suivants: (1) bonne activation des dopants, au-dessus de la limite de solubilité 

solide à l'équilibre thermique, (2) faible diffusion des dopants permettant la réalisation de 

jonctions abruptes ultra fines; (3) faible bilan thermique, élargissant le choix des matériaux 

pour l'ajustement du travail de sortie de la grille métallique. 

En raison de ses propriétés spécifiques, les principaux défis posés par l'utilisation de la 

technique LT SPER pour la fabrication de transistors SOI totalement désertés (FDSOI) sont 

les suivants: 

(1) En cas d'amorphisation complète du film SOI, il peut être impossible de recristalliser 

correctement la couche amorphe pendant le recuit SPER à basse température;  
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(2) Du fait de la fable diffusion des dopants pendant l’activation SPER à basse température, il 

peut être nécessaire de redimensionner les étapes de réalisation des régions dopées de 

source/drain pour assurer leur recouvrement par la grille, sous peine de dégrader la 

résistance d'accès et la performance ION du transistor;  

(3) En raison de la raideur des jonctions ou de la présence de défauts résiduels, on risque 

d'observer de forts courants de fruite, et en particulier du GIDL (pour Gate Induced Drain 

Leakage, fuite de drain induite par la grille); 

(4) Les dopants activés par LT SPER ne sont pas dans des états thermodynamiquement 

stables et tendent à se désactiver lors des recuits ultérieurs. La désactivation peut en outre 

être renforcée par la présence résiduelle de défauts d'implantation enterrés (défauts EOR, 

pour End Of Range) non recuits. 

Dans ce travail, nous avons cherché à résoudre les quatre défis ci-dessus. 

Chapitre II: Optimisation des transistors FDSOI activés à basse 

température 
Dans ce chapitre, nous rappelons les mécanismes mis en jeu pendant le recuit LT SPER. 

Nous nous concentrons ensuite sur la résolution des deux premiers défis mentionnés plus haut 

pour l'application de cette technique à la fabrication de transistors FDSOI. 

(I) Pré-amorphisation de la couche active: En FDSOI, la couche active est très mince. La 

méthodologie d'intégration et les conditions d'implantation doivent être optimisées pour 

en éviter l'amorphisation complète. Dans notre travail, nous avons combiné avec succès 

les deux méthodes suivantes: (a) l'implantation LDD est effectuée après l'épitaxie des 

source et drain surélevés; (b) l'énergie d'implantation est prédite avec exactitude par 

simulation KMC (Kinetic Monte-Carlo). 

(II) Recouvrement de grille: l'objectif est d'assurer le recouvrement des zones de source et 

drain par la grille.. L'ajustement de l'angle d'implantation LDD (pour Lightly Doped 

Drain, zones faiblement dopées de source et drain) devrait être un moyen efficace pour 

régler le recouvrement de grille. Dans notre travail, nous avons obtenu des 

performances similaires pour des composants LT et HT à grille courte (LG=30 nm). 

L'optimisation de l'angle d'implantation LDD permet d'atteindre des performances 

similaires en termes de compromis IOFF-ION et de contrôle des effets de canal court. 
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(1) Pour les transistors nFET FDSOI activés à basse température, il n'est pas 

nécessaire d'augmenter l'angle d'implantation LDD. Avec la même implantation 

LDD à 20º, on atteint des IOFF-ION et un contrôle SCE similaires à basse et haute 

température (Fig.1 et Fig.2). L'analyse détaillée des résultats a permis d'identifier 

la raison de ce résultat inattendu. On constate que, grâce à son faible bilan 

thermique, l'activation SPER, permet de mieux contrôler la recroissance de SiO2 

à l'interface entre canal et diélectrique de grille. Cela contribue à améliorer les 

performances des dispositifs à grille courte réalisés à basse température. 

Cependant, on obtient des densités d'états d'interface plus élevées avec le 

procédé LT SPER. 

  

Fig.1 Compromis IOFF-ION pour les nFETs, 
de largeur W=10 μm, et de longueur de 
grille LG comprise entre 30 nm et 10 µm. A 
courant IOFF donné, de 10-9 A/µm, ION est 
environ 10% plus grand dans les nFETs LT 
que dans les nFETs HT. 

Fig.2 Dérive du DIBL à faible longueur de 
grille pour les nFETs LT et HT. W=10 μm. 
Pour un même angle d'implantation de 20 º, 
on obtient des courbes DIBL-LG similaires 
pour les deux types de transistors. Pour les 
dégroupages à basse température, la 
caractéristique DIBL-LG est dégradée par 
l'utilisation d'un angle d'implantation de 30 º, 
ce qui est le signe d'un recouvrement de grille 
plus important (canal plus court). 

 

(2) Pour les transistors pFET, qui avaient été réalisés avec un premier espaceur de 

8 nm de largeur, et présentaient une excroissance SiGe en forme de champignon 

sur le dessus de la grille, un angle d'implantation LDD de 30° a été nécessaire 

pour obtenir des transistors pFET LT présentant des performances similaires aux 

pFETs HT. Pour poursuivre l'optimisation, il sera nécessaire de recourir à une 

épitaxie à basse température de SiGe, avec une sélectivité plus grande que dans 

le procédé actuel, afin de limiter l'effet d'ombrage de l'empilement de grille. 

L'angle optimal d'implantation LDD des pFETs LT pourra alors être 



Résumé en français 

~ 98 ~ 
 

éventuellement inférieur à 30º. Par ailleurs, pour les transistors LT, on a obtenu 

une densité d'états d'interface (Dit) supérieure, principalement localisée près de la 

bande de conduction. 

En outre, on a constaté que l'activation LT SPER pourrait aider à éviter le problème de la 

migration du travail de sortie effectif vers le milieu de la bande interdite qui est observée lors 

de l'activation HT. Cela nous permet d'élargir le choix des matériaux pour le réglage du travail 

de sortie de la grille métal, en fonction des applications. 

Chapitre III: Optimisation du GIDL dans les transistors activés à basse 

température 
Dans ce chapitre, nous passons d'abord en revue les mécanismes susceptibles de 

provoquer l'apparition d'un courant de fuite GIDL. Les résultats expérimentaux font apparaître 

un courant GIDL plus grand de 1,5 ordres de grandeur dans les transistors réalisés par SPER 

LT sur SOI épais (25 nm). Nous en analysons les causes possibles: augmentation du courant 

tunnel assisté par pièges en raison de la densité de défauts EOR plus élevée ou augmentation 

du courant tunnel bande à bande en raison de la jonction abrupte. Il est important d'identifier 

le mécanisme responsable de cette augmentation des fuites dans les dispositifs LT. Pour ce 

faire, une technique intéressante consiste à extraire l'un des paramètres du courant GIDL, le 

paramètre B (équation Eq.III.1 de la page 54), qui dépend de la largeur de bande effective de 

silicium. Un courant tunnel assisté par pièges se traduit par une plus petite valeur de B. 

Ensuite, les limites de l'analyse traditionnelle du mécanisme de GIDL sont examinées: 

manque de précision du modèle de courant et calcul imprécis du champ électrique. Une 

méthodologie détaillée a été mise en place pour déterminer les conditions d'extraction 

appropriées: dans le cas des composants FD-SOI, l'ensemble des courbes ID(VG, T), IS(VG, T) 

et IG(VG, T) sont utilisées pour identifier les composants, plages de tension et gammes de 

température pour lesquels le courant de fuite de drain est dominé par le courant GIDL et la 

fuite directe de grille est négligeable. Nous proposons pour l'analyse du mécanisme de GIDL 

une approche améliorée qui surmonte les limites de la méthode traditionnelle pour la 

détermination expérimentale du champ électrique. 
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Pour les dispositifs sur SOI 25 nm, la nouvelle méthodologie proposée montre que le 

courant GIDL élevé observé dans les transistors LT est dû à des défauts EOR résiduels. Par 

rapport aux dispositifs HT, on extrait pour B des valeur inférieures dans les composants LT 

(Fig. 3), ce qui indique que la largeur de bande effective est réduite en raison de l'existence de 

défauts EOR résiduels qui contribuent à la génération GIDL. 
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Fig.3. Extraction du paramètre B du courant 
GIDL pour des transistors nFETs HT et LT 
présentant des épaisseurs de canal (épaisseur 
du film SOI) différentes. 

Fig.4. Fonction de répartition du courant de 
drain minimum IDmin pour des transistors 
nFETs HT et LT sur film SOI de 6 nm 
d'épaisseur. 

 

Pour réduire la densité de défauts EOR et le courant de fuite GIDL des transistors 

activité par LT SPER, l'utilisation de films SOI extrêmement minces SOI s'avère un moyen 

efficace. Sur SOI très mince, l'oxyde enterré coupe une partie de la distribution des défauts 

ponctuels générés lors de l'implantation et joue le rôle de surface recombinante pour les 

défauts pendant les recuits. La densité de défauts EOR résiduels qui en résulte est 

significativement plus faible que sur SOI épais. De fait, sur des films SOI de 6nm d'épaisseur, 

il a été possible d'atteindre les même performances en termes de courant IDmin pour des NFET 

LT et HT (Fig.4). La valeur extraite pour le paramètre B du GIDL est compatible avec la 

réduction de IDmin pour ces dispositifs SPER LT sur SOI mince. En effet, la valeur de B 

extraite pour les dispositifs LT activés par SPER sur ETSOI (6 nm) est beaucoup plus grande 

que pour un SOI épais de 25 nm (Fig. 3). Cette valeur plus élevée de B est le signe d'une plus 

grande largeur de bande effective et d'une plus faible densité de défauts EOR sur ETSOI. 
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Chapitre IV: Désactivation des dopants activé par LT SPER 
Dans ce chapitre, nous étudions l'activation et la stabilité thermique du bore et de 

l'arsenic après activation par LT SPER. Pour vérifier si l’activation LT SPER est compatible 

avec le schéma d'intégration 3D séquentielle, nous avons exploré la désactivation des dopants 

activés par LT SPER dans une gamme de température allant de 400 °C à 600 °C, plus faible 

que celle généralement étudiée dans la littérature, mais qui est celle pertinente pour notre 

technologie. 

En ce qui concerne la stabilité thermique des dopants activés par LT SPER sur des 

échantillons SOI, nous avons obtenu les résultats suivants: 

Pour le bore, on constate qu'en localisant la zone de défauts EOR aussi près que possible 

de l'interface Si / BOX, la désactivation du bore est bien contrôlée. On peut même observer 

une réactivation pour des recuits de 2 heures à des températures supérieures à 500 °C-600 °C 

(Fig.5). L'explication proposée est la suivante. D'une part, la densité de défauts EOR est 

inférieure du fait que le BOX tronque la distribution spatiale des atomes Si interstitiels. 

D'autre part, l'effet recombinant de l'interface Si/BOX est d'autant plus fort que cette interface 

est proche des défauts EOR, favorisant ainsi le flux des interstitiels vers le BOX plutôt que 

vers la surface supérieure de la zone dopée. Sachant que le mécanisme principal de 

désactivation du bore est lié à la formation d'agglomérats bore-interstitiel (BIC, pour Boron 

Interstitial Clusters), on comprend que cette modification de la direction du flux d'interstitiels 

permet de limiter la désactivation du bore, voire de le réactiver. 

En revanche, l'arsenic est désactivé par la formation d'agglomérats As-lacune. De ce fait, 

la désactivation d'arsenic ne peut pas être réduite en diminuant la distance TEOR_BOX entre 

défauts EOR et BOX. On observe une désactivation légèrement plus élevée pour les petits 

TEOR_BOX (Fig.6). 
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Fig.5 Résistivité (en Ω/carré) pour une 
jonction dopée bore, activée par SPER LT 
puis recuite pendant 2h à différentes 
températures. 

Fig.6 Résistivité (en Ω/carré) pour une 
jonction dopée As, activée par SPER LT puis 
recuite pendant 2h à différentes températures. 
L'abscisse à l'origine correspond à la 
résistivité après activation. 

Dans tous les cas, tant pour le bore que pour l'arsenic, on observe que la résistance de 

couche mesurée pour des jonctions source/drain FD-SOI activées par SPER LT est similaire à 

celle obtenue par activation HT, aussi bien au début, juste après le recuit d'activation, qu'après 

des recuits post-activation à différentes températures entre 400°C et 600°C. En conséquence, 

la SPER LT semble convenir pour la fabrication des transistors FDSOI des couches inférieure 

et supérieure. 

Chapitre V: Conclusions et perspectives 
L’activation à basse température est prometteuse pour l’intégration 3D séquentielle, où le 

bilan thermique du transistor supérieur est limitée (<650 °C) pour ne pas dégrader le transistor 

inférieur, mais aussi dans le cas d’une intégration planaire afin d’atteindre des épaisseurs 

équivalentes d'oxyde (EOT) ultra fines et de contrôler le travail de sortie de la grille sans 

recourir à une intégration de type « gate-last ». Dans ce travail de thèse, l’activation par 

recroissance en phase solide (SPER) a été étudiée afin de réduire le bilan thermique de 

l’activation des dopants.  

L’activation à basse température présente plusieurs inconvénients. Les travaux 

précédents montrent que les fuites de jonctions sont plus importantes dans ces dispositifs. 

Ensuite, des fortes désactivations de dopants ont été observées. Troisièmement, la faible 
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diffusion des dopants peut rendre difficile la connexion des jonctions source et drain avec le 

canal.  

Nous avons montré que, dans un transistor FDSOI, l’augmentation des fuites de jonction 

et la désactivation du bore peuvent être évités grâce à la présence de l’oxyde enterré. De plus 

les conditions d’implantation ont été optimisées et les transistors activés à 650 °C atteignent 

les performances des transistors de référence.  

Enfin, les perspectives d'optimisation que nous proposons pour la suite de ce travail 

concernent notamment la qualité de l'interface, l'optimisation du profil de jonction et 

l'utilisation d'une épitaxie de SiGe à basse température pour réaliser les source et drain 

surélevés.



References 

~ 103 ~ 
 

References 
 [Aboy’05] M. Aboy, L. Pelaz, L. A. Marques, P. Lopez, J. Barbolla, and R. Duffy, 

“Atomistic analysis of the evolution of boron activation during 
annealing in crystalline and preamorphized silicon,” Journal of Applied 
Physics, vol. 97, p. 103520, 2005. 

[Aboy’06] M. Aboy, L. Pelaz, P. Lopez, L. A. Marques, R. Duffy, and V. C. 
Venezia, “Physical insight into boron activation and redistribution 
during annealing after low-temperature solid phase epitaxial regrowth,” 
Applied physics letters, vol. 88, p. 191917, 2006. 

[Aboy’07] M. Aboy, L. Pelaz, J. Montserrat, F. J. Bermúdez, and J. J. Hamilton, 
“Boron diffusion and activation in SOI and bulk Si: The role of the 
buried interface,” Nuclear Instruments and Methods in Physics Research 
Section B: Beam Interactions with Materials and Atoms, vol. 257, pp. 
152 - 156, 2007. 

[Aboy’11] M. Aboy, L. Pelaz, E. Bruno, S. Mirabella, and S. Boninelli, “Kinetics of 
large B clusters in crystalline and preamorphized silicon,” Journal of 
Applied Physics, vol. 110, p. 073524, 2011. 

[Balestra’10] F. Balestra,  “Nanoscale CMOS: Innovative Materials, Modeling and 
Characterization,”  (London: Wiley-ISTE), 2010 

[Batude’08] P. Batude, M. Vinet, A. Pouydebasque, L. Clavelier, C. LeRoyer, C. 
Tabone, B. Previtali, L. Sanchez, L. Baud, A. Roman, V. Carron, F. 
Nemouchi, S. Pocas, C. Comboroure, V. Mazzocchi, H. Grampeix, F.  
Aussenac, and S. Deleonibus, “Enabling 3D Monolithic Integration,” 
ECS Transactions, vol. 16, pp. 47-54, 2008. 

[Batude’09a] P.Batude, “Intégration à trois dimensions séquentielle :Etude, fabrication 
et caractérisation”, PhD thesis, Institut National Polytechnique de 
Grenoble, 2009. 

[Batude’09b] P. Batude, M. Vinet, A. Pouydebasque, C. Le Royer, B. Previtali, C. 
Tabone, L. Clavelier, S. Michaud, A. Valentian, O. Thomas, O. Rozeau, 
P. Coudrain, C. Leyris, K. Romanjek, X. Garros, L. Sanchez, L. Baud, 
A. Roman, V. Carron, H. Grampeix, E. Augendre, A. Toffoli, F. Allain, 
P. Grosgeorges, V. Mazzochi, L. Tosti, F. Andrieu, J.-M. Hartmann, D. 
Lafond, S. Deleonibus, and O. Faynot, “GeOI and SOI 3D monolithic 
cell integrations for high density applications,” Proceedings of the 2009 
VLSI Technology Symposiumin, pp. 166 -167, 2009. 

 



References 

~ 104 ~ 
 

 [Batude’09c] P. Batude, M. Vinet, A. Pouydebasque, C. Le Royer, B. Previtali, C. 
Tabone, J.-M. Hartmann, L. Sanchez, L. Baud, V. Carron, A. Toffoli, F. 
Allain, V. Mazzocchi, D. Lafond, O. Thomas, O. Cueto, N. Bouzaida, D. 
Fleury, A. Amara, S. Deleonibus, and O. Faynot, “Advances in 3D 
CMOS sequential integration,” Proceedings of the 2009 International 
Electron Devices Meeting, pp. 1 -4, 2009. 

[Batude’11a] P. Batude, M. Vinet, C. Xu, B. Previtali, C. Tabone, C. Le Royer, L. 
Sanchez, L. Baud, L. Brunet, A. Toffoli, F. Allain, D. Lafond, F. 
Aussenac, O. Thomas, T. Poiroux, and O. Faynot, “Demonstration of 
low temperature 3D sequential FDSOI integration down to 50 nm gate 
length,” Proceedings of the 2011 VLSI Technology Symposium, pp. 158 -
159, 2011. 

[Batude’11b] P. Batude, M. Vinet, B. Previtali, C. Tabone, C. Xu, J. Mazurier, O. 
Weber, F. Andrieu, L. Tosti, L. Brevard, B. Sklenard, P. Coudrain, S. 
Bobba, H. Ben Jamaa, P. Gaillardon, A. Pouydebasque, O. Thomas, C. 
Le Royer, J. Hartmann, L. Sanchez, L. Baud, V. Carron, L. Clavelier, G. 
De Micheli, S. Deleonibus, O. Faynot, and T. Poiroux, “Advances, 
challenges and opportunities in 3D CMOS sequential integration,” 
Proceedings of the 2011 International Electron Devices Meeting, pp. 
7.3.1 -7.3.4, 2011. 

[Bazizi’10] E.M. Bazizi, P.F. Fazzini, A. Pakfar, C. Tavernier, B. Vandelle, H. 
Kheyrandish, S. Paul, W. Lerch and F. Cristiano, “Modeling of the effect 
of the buried Si-SiO2 interface on transient enhanced boron diffusion in 
silicon on insulator,” Journal of Applied Physics, vol 107, pp. 074503 - 
074503-4, 2010. 

[Ben Akkez’11] I. Ben Akkez, A. Cros, C. Fenouillet-Beranger, P. Perreau, A. Margain, 
F. Boeuf, F.  Balestra, and G. Ghibaudo, “Characterization and modeling 
of capacitances in FD-SOI devices,” Proceedings of the 2011 
International Conference on Ultimate Integration of Silicon (ULIS 
2011), pp. 1 -4, 2011. 

[Ben Akkez’12] I. Ben Akkez, A. Cros, C. Fenouillet-Beranger, P. Perreau, A. Margain, 
F. Boeuf, F. Balestra, and G. r. Ghibaudo, “Characterization and 
modeling of capacitances in FD-SOI devices,” Solid-State Electronics, 
vol. 71, pp. 53 - 57, 2012. 

[Bohr’11] M. Bohr, “The evolution of scaling from the homogeneous era to the 
heterogeneous era,” Proceedings of the 2011 International Electron 
Devices Meeting, pp. 1.1.1 -1.1.6, 2011. 

[Bouhdada’97] A. Bouhdada, S. Bakkali, and A. Touhami, “Modelling of gate-induced 
drain leakage in relation to technological parameters and temperature,” 
Microelectronics Reliability, vol. 37, pp. 649 - 652, 1997. 



References 

~ 105 ~ 
 

[Chan’87] T. Y. Chan, J. Chen, P. K. Ko, and C. Hu, “The impact of gate-induced 
drain leakage current on MOSFET scaling,” Proceedings of the 1987 
International Electron Devices Meeting, pp. 718 – 721, 1987. 

[Chang’95] T.-E. Chang, C. Huang, and T. Wang, “Mechanisms of interface trap-
induced drain leakage current in off-state n-MOSFET’s,” IEEE 
Transactions on Electron Devices, vol. 42, pp. 738 -743, Apr 1995. 

[Chen’87] J. Chen, T. Y. Chan, I. C. Chen, P. K. Ko, and C. Hu, “Subbreakdown 
drain leakage current in MOSFET,” IEEE Electron Device Letters, vol. 
8, pp. 515 - 517, Nov 1987. 

[Chen’89] I.-C. Chen, C. W. Teng, D. J. Coleman, and A. Nishimura, “Interface 
trap-enhanced gate-induced leakage current in MOSFET,” IEEE 
Electron Device Letters, vol. 10, pp. 216 -218, May 1989. 

[Chen’01] J.-H. Chen, S.-C. Wong, and Y.-H. Wang, “An analytic three-terminal 
band-to-band tunneling model on GIDL in MOSFET,” IEEE 
Transactions on Electron Devices, vol. 48, pp. 1400 -1405, Jul 2001. 

[Chen’07] C. K. Chen, K. Warner, D. R. W. Yost, J. M. Knecht, V. Suntharalingam, 
C. L. Chen, J. A. Burns, and C. L. Keast, “Scaling Three-Dimensional 
SOI Integrated-Circuit Technology,” Proceedings of the 2007 
International SOI Conference, pp. 87 -88, 2007. 

[Christel’81] L. A. Christel, J. F. Gibbons, and T. W. Sigmon, “Displacement criterion 
for amorphization of silicon during ion implantation,” Journal of 
Applied Physics, vol. 52, pp. 7143-7146, 1981. 

[Claverie’96] A. Claverie, C. Bonafos, M. Omri, B. De Mauduit, G. Ben Assayag, A. 
Martinez, D. Alquier and D. Mathiot (1996). “Transient Enhanced 
Diffusion of Dopants in Preamorphised Si Layers,” MRS Proceedings, 
vol. 438, 3, Dec 1996. 

[Claverie’02] A. Claverie, F. Cristiano, B. Colombeau, E. Scheid, and B. De Mauduit, 
“Thermal evolution of interstitial defects in implanted silicon,”. 
Proceedings of the 14th International Conference on Ion Implantation 
Technology, 2002, pp. 538 -543. 

[Claverie’03] A. Claverie, B. Colombeau, B. De Mauduit, C. Bonafos, X. Hebras, G. 
Ben Assayag and F. Cristiano, “Extended defects in shallow implants,”. 
Appl. Phys. A, vol. 76, pp.1025–1033, 2003. 

[Colombeau’04a] B. Colombeau, A.J. Smith, N.E.B. Cowern, B.J. Pawlak, F. Cristiano, R. 
Duffy, A.Claverie, C.J. Ortiz, P. Pichler, E. Lampin, C. Zechner, 
“Current understanding and modeling of B diffusion and activation 
anomalies in preamorphized ultra-shallow junctions,” in Mat. Res. Soc. 
Symp. Proc. 810 C3.6.1, 2004. 



References 

~ 106 ~ 
 

[Colombeau’04b] B. Colombeau, A. J. Smith, N. E. B. Cowern, W. Lerch, S. Paul, B. J. 
Pawlak, F. Cristiano, X. Hebras, D. Bolze, C. Ortiz, and P. Pichler, 
“Electrical deactivation and diffusion of boron in preamorphized 
ultrashallow junctions: interstitial transport and F co-implant control,” 
Proceedings of the 2004 International Electron Devices Meeting, pp. 
971 – 974, 2004. 

[Colombeau’07] B. Colombeau, K. R. C. Mok, S. H. Yeong, F. Benistant, M. Jaraiz, and 
S. Chu, “Predictive Simulations and Optimization of Advanced Ultra-
Shallow Junction formation for Nano-CMOS devices,” Proceedings of 
the 7th International Workshop on Junction Technology (IWJT 2007), 
pp. 17 -22, 2007. 

[Colombeau’09] B. Colombeau, T. Thanigaivelan, E. Arevalo, T. Toh, R. Miura, and H. 
Ito, “Ultra-shallow Carborane molecular implant for 22-nm node p-
MOSFET performance boost,” Proceedings of the 9th International 
Workshop on Junction Technology (IWJT 2009), pp. 27 -30, 2009. 

[Cowern’05] N. E. B. Cowern, B. Colombeau, J. Benson, A. J. Smith, W. Lerch, S. 
Paul, T. Graf, F. Cristiano, X. Hebras, and D. Bolze, “Mechanisms of B 
deactivation control by F co-implantation,” Applied physics letters, vol. 
86, p. 101905, 2005. 

[Cristiano’04] F. Cristiano, N. Cherkashin, P. Calvo, Y. Lamrani, X. Hebras, A. 
Claverie, W. Lerch, and S. Paul, “Thermal stability of boron electrical 
activation in preamorphised ultra-shallow junctions,” Materials Science 
and Engineering: B, vol. 114–115, pp. 174 - 179, 2004. 

[Cristiano’06] F. Cristiano, Y. Lamrani, F. Severac, M. Gavelle, S. Boninelli, 
N. Cherkashin, O. Marcelot, A. Claverie, W. Lerch, S. Paul, N. Cowern, 
“Defects evolution and dopant activation anomalies in ion implanted 
silicon” Nuclear Instruments and Methods in Physics Research. B, 253, 
pp. 68–79, 2006. 
 

[Cristoloveanu’95] S. Cristoloveanu and S. S. Li, “Electrical Characterization of SOI 
Materials and Devices,” Boston, MA: Kluwer, 1995 

[Csepregi’75] L. Csepregi, J. W. Mayer, and T. W. Sigmon, “Chaneling effect 
measurements of the recrystallization of amorphous Si layers on crystal 
Si,” Physics Letters A, vol. 54, pp. 157 - 158, 1975. 

[Czerwinski’03] A. Czerwinski, E. Simoen, A. Poyai, and C. Claeys, “Activation energy 
analysis as a tool for extraction and investigation of p--n junction 
leakage current components,” Journal of Applied Physics, vol. 94, pp. 
1218-1221, 2003. 



References 

~ 107 ~ 
 

[Duffy’04]  R. Duffy, V. C. Venezia, A. Heringa, B. J. Pawlak, M. J. P. Hopstaken, G. 
C. J. Maas, Y. Tamminga, T. Dao, F. Roozeboom, and L. Pelaz, “Boron 
diffusion in amorphous silicon and the role of fluorine,” Applied physics 
letters, vol. 84, pp. 4283-4285, 2004. 

[Diouf’12] C. Diouf, A. Cros, P. Morin, S. Renard, X. Federspiel, M. Rafik, A. 
Bianchi, J. Rosa, and G. Ghibaudo, “On the understanding of the effects 
of high pressure deuterium and hydrogen final anneal,” Proceedings of 
the 13th International Conference on Ultimate Integration on Silicon 
(ULIS 2012), pp. 9 -12, 2012. 

[Eaglesham’94] D. J. Eaglesham, P. A. Stolk, H.-J. Gossmann, and J. M. Poate, 
“Implantation and transient B diffusion in Si: The source of the 
interstitials,” Applied physics letters, vol. 65, pp. 2305-2307, 1994. 

[Endoh’90] T. Endoh, R. Shirota, M. Momodomi, and F. Masuoka, “An accurate 
model of subbreakdown due to band-to-band tunneling and some 
applications,” IEEE Transactions on Electron Devices, vol. 37, pp. 290 -
296, Jan 1990. 

[Eneman’09] G. Eneman, B. De Jaeger, E. Simoen, D. P. Brunco, G. Hellings, J. 
Mitard, K. De Meyer, M. Meuris, and M. M. Heyns, “Quantification of 
Drain Extension Leakage in a Scaled Bulk Germanium PMOS 
Technology,” IEEE Transactions on Electron Devices, vol. 56, pp. 3115 
-3122, Dec 2009. 

[Fair’77] R. B. Fair, “Recent Advances in Implantation and Diffusion Modeling 
for the Design and Process Control of Bipolar ICs,” ECS Silicon 
Symposium pp.968. 41, 1977  

[Falepin’05] A. Falepin, T. Janssens, S. Severi, W. Vandervorst, S. B. Felch, V. 
Parihar, and A. Mayur, “Ultra shallow junctions formed by sub-melt 
laser annealing,” Proceedings of the 13th IEEE International 
Conference on Advanced Thermal Processing of Semiconductors, pp. 
87-91, 2005. 

[Faynot’10] O. Faynot, F. Andrieu, O. Weber, C. Fenouillet- Béranger, P. Perreau, J. 
Mazurier, T. Benoist, O. Rozeau, T. Poiroux, M. Vinet, L. Grenouillet, 
J.-P. Noel, N. Posseme, S. Barnola, F. Martin, C. Lapeyre, Cassé, M. , X. 
Garros, M.-A. Jaud, O. Thomas, G. Cibrario, L. Tosti, L. Brevard, C. 
Tabone, P. Gaud, S. Barraud, T. Ernst, and S. Deleonibus, “Planar Fully 
depleted SOI technology: A powerful architecture for the 20nm node 
and beyond,” Proceedings of the 2010 International Electron Devices 
Meeting, pp. 3.2.1 -3.2.4, 2010. 

[Fazzini’08a] P. F. Fazzini, F. Cristiano, C. Dupré, A. Claverie, T. Ernst, and M. 
Gavelle, “Defect evolution after germanium preamorphization in silicon 
on insulator structures,” Journal of Vacuum Science \& Technology B: 
Microelectronics and Nanometer Structures, vol. 26, pp. 342-346, 2008.



References 

~ 108 ~ 
 

[Fazzini’08b] P. F. Fazzini, F. Cristiano, C. Dupré, S. Paul, T. Ernst, H. Kheyrandish, 
K. K. Bourdelle, and W. Lerch, “Evolution of end-of-range defects in 
silicon-on-insulator substrates,” Materials Science and Engineering: B, 
vol. 154–155, pp. 256 - 259, 2008. 

[Feng’06] J. Feng, Y. Liu, P. B. Griffin, and J. D. Plummer, “Integration of 
Germanium-on-Insulator and Silicon MOSFETs on a Silicon Substrate,” 
IEEE Electron Device Letters, vol. 27, pp. 911 -913, Nov 2006. 

[Ferri’07] M. Ferri, S. Solmi, D. Giubertoni, M. Bersani, J. J. Hamilton, M. Kah, 
K. Kirkby, E. J. H. Collart, and N. E. B. Cowern, “Uphill diffusion of 
ultralow-energy boron implants in preamorphized silicon and silicon-on-
insulator,” Journal of Applied Physics, vol. 102, p. 103707, 2007. 

[Foggiato’06] J. Foggiato and W. S. Yoo, “Implementation of flash technology for ultra 
shallow junction formation: Challenges in process integration,” Journal 
of Vacuum Science and Technology B: Microelectronics and Nanometer 
Structures, vol. 24, pp. 515-520, Jan 2006. 

[Ghibaudo’88] G. Ghibaudo; “New method for the extraction of MOSFET parameters,”  
Electronics Letters, vol. 24, No. 9, pp. 543-545, 1988. 

[Girginoudi’08] D. Girginoudi and C. Tsiarapas, “Impact of fluorine co-implantation on 
B deactivation and leakage currents in low and high energy Ge 
preamorphised p+n shallow junctions,” Materials Science and 
Engineering: B, vol. 154â€“155, pp. 268 - 274, 2008. 

[Giubertoni’10] D. Giubertoni, G. Pepponi, M. A. Sahiner, S. P. Kelty, S. Gennaro, M. 
Bersani, M. Kah, K. J. Kirkby, R. Doherty, M. A. Foad, F. Meirer, C. 
Streli, J. C. Woicik, and P. Pianetta, “Deactivation of submelt laser 
annealed arsenic ultrashallow junctions in silicon during subsequent 
thermal treatment,” Journal of Vacuum Science and Technology B: 
Microelectronics and Nanometer Structures, vol. 28, pp. C1B1-C1B5, 
Jan 2010. 

[Grenouillet’11] L. Grenouillet, S. Ponoth, N. Loubet, V. Destefanis, Y. Le Tiec, S. 
Mehta, A. Kumar, Q. Liu, B. Haran, K. Cheng, N. Berliner, J. Fullam, J. 
Kuss, G. Shahidi, O. Faynot, B. Doris, M. Vinet, “Enabling epitaxy on 
ultrathin implanted SOI,” Proceedings of the 2011 International 
Conference on Solid State Devices and Materials (SSDM), 2011. 

[Gusev’06] E. P. Gusev, V. Narayanan, and M. M. Frank, “Advanced high-k 
dielectric stacks with polySi and metal gates: recent progress and 
current challenges,” IBM J. Res. Dev., vol. 50, pp. 387-410, July 2006. 

[Haensch’08] W. Haensch, “Why should we do 3D integration?,” Proceedings of the 
45th Design Automation Conference (DAC 2008), pp. 674 -675, 2008. 



References 

~ 109 ~ 
 

[Hamilton’05a] J. J. Hamilton, E. J. H. Collart, B. Colombeau, M. Bersani, D. 
Giubertoni, J. A. Sharp, N. E. B. Cowern, and K. J. Kirkby, 
“Understanding the role of buried Si/SiO2 interface on dopant and 
defect evolution in PAI USJ,” Materials Science and Engineering: B, 
vol. 124–125, pp. 215 - 218, 2005. 

[Hamilton’05b] J. J. Hamilton, E. J. H. Collart, B. Colombeau, C. Jeynes, M. Bersani, D. 
Giubertoni, J. A. Sharp, N. E. B. Cowern, and K. J. Kirkby, “Electrical 
activation of solid-phase epitaxially regrown ultra-low energy boron 
implants in Ge preamorphised silicon and SOI,” Nuclear Instruments 
and Methods in Physics Research Section B: Beam Interactions with 
Materials and Atoms, vol. 237, pp. 107 - 112, 2005. 

[Hamilton’06a] J. J. Hamilton, B. Colombeau, J. A. Sharp, N. E. B. Cowern, K. J. 
Kirkby, E. J. H. Collart, M. Bersani, and D. Giubertoni, “Effect of 
buried Si/SiO2 interface on dopant and defect evolution in 
preamorphizing implant ultrashallow junction,” Journal of Vacuum 
Science and Technology B: Microelectronics and Nanometer Structures, 
vol. 24, pp. 442 -445, Jan 2006. 

[Hamilton’06b] J. J. Hamilton, N. E. B. Cowern, J. A. Sharp, K. J. Kirkby, E. J. H. 
Collart, B. Colombeau, M. Bersani, D. Giubertoni, and A. Parisini, 
“Diffusion and activation of ultrashallow B implants in silicon on 
insulator: End-of-range defect dissolution and the buried Si/SiO2 
interface,” Applied physics letters, vol. 89, pp. 042111 -042111-3, Jul 
2006. 

[Hamilton’07] J. J. Hamilton, N. E. B. Cowern, K. J. Kirkby, E. J. H. Collart, M. 
Bersani, D.  Giubertoni, S.0 Gennaro and A. Parisini, “Boron 
deactivation in pre-amorphised silicon-on-insulator: Efficiency of the 
buried oxide as an interstitial sink,” Applied Physics Letters, vol. 91, 
pp.92122-92122-3, aug 2007. 

[Harrison’07] S. A. Harrison, T. F. Edgar, and G. S. Hwang, “Prediction of B-Sii-F 
complex formation and its role in B transient enhanced diffusion 
suppression and deactivation,” Journal of Applied Physics, vol. 101, p. 
066102, 2007. 

[Hasan’07] M. Hasan, H. Park, J. M. Lee, M. Jo, and H. Hwang, “Band-edge metal 
gate materials for atomic-layer-deposited HfO2 for future CMOS 
technology,” Microelectronic engineering, vol. 84, pp. 2205 - 2208, 
2007. 

[Haselman’10] M. Haselman and S. Hauck, “The Future of Integrated Circuits: A 
Survey of Nanoelectronics,” Proceedings of the IEEE, vol. 98, pp. 11 -
38, Jan 2010. 

[Huang’97] L. Huang, P. T. Lai, J. P. Xu, and Y. C. Cheng, “Mechanism analysis of 
gate-induced drain leakage in off-state n-MOSFET,” Proceedings of the 
1997 International Electron Devices Meeting, pp. 94 -97, 1997. 



References 

~ 110 ~ 
 

[Hurkx’92] G. A. M. Hurkx, D. B. M. Klaassen, and M. P. G. Knuvers, “A new 
recombination model for device simulation including tunneling,” IEEE 
Transactions on Electron Devices, vol. 39, pp. 331 -338, feb 1992. 

[I-micronews] http://www.i-micronews.com/upload/Rapports/3D%20flyer.pdf 

[ITRS’11] http://www.itrs.net/Links/2011ITRS/Home2011.htm 

[Iyer’09] S. S. Iyer, T. Kirihata, M. R. Wordeman, J. Barth, R. H. Hannon, and R. 
Malik, “Process-design considerations for three dimensional memory 
integration,” Proceedings of the 2009 VLSI Technology Symposium, pp. 
60 -63, 2009. 

[Jain’04] S. H. Jain, P. B. Griffin, J. D. Plummer, S. Mccoy, J. Gelpey, T. Selinger, 
and D. F. Downey, “Metastable boron active concentrations in Si using 
flash assisted solid phase epitaxy,” Journal of Applied Physics, vol. 96, 
pp. 7357-7360, 2004. 

[Jang’99] S.-A. Jang, I.-S. Yeo, and Y.-B. Kim, “Junction leakage characteristics in 
modified LOCOS isolation structures with a nitride spacer,” IEEE 
Transactions on Electron Devices, vol. 46, pp. 145 -150, Jan 1999. 

[Jeong’07] U. Jeong, Z.Y. Zhao, B.N. Guo, G. Li, and S. Mehta, “Requirements and 
Challenges in Ion Implanter for Sub-100nm CMOS Device 
Fabrication”, Proceedings of the 17th international Conference of 
Application of Accelerators in Research and Industry, Denton, TX, , 
pp.697-700, Nov 2003. 

[Jin’02] J.-Y. Jin, J. Liu, U. Jeong, S. Mehta, and K. Jones, “Study of reverse 
annealing behaviors of p+/n ultrashallow junction formed using solid 
phase epitaxial annealing,” Journal of Vacuum Science and Technology 
B: Microelectronics and Nanometer Structures, vol. 20, pp. 422-426, Jan 
2002. 

[Johnson’07] B. C. Johnson and J. C. McCallum, “Dopant-enhanced solid-phase 
epitaxy in buried amorphous silicon layers,” Phys. Rev. B, vol. 76, p. 
045216, Jul 2007. 

[Jomaah’96] J. Jomaah, G. Ghibaudo, and F. Balestra, “Band-to-band tunnelling 
model of gate induced drain leakage current in silicon MOS transistors,” 
Electronics Letters, vol. 32, pp. 767 -769, Apr 1996. 

[Jung’07] S.-M. Jung, H. Lim, C. Yeo, K. Kwak, B. Son, H. Park, J. Na, J.-J. 
Shim, C. Hong, and K. Kim, “High Speed and Highly Cost effective 
72M bit density S3 SRAM Technology with Doubly Stacked Si Layers, 
Peripheral only CoSix layers and Tungsten Shunt W/L Scheme for 
Standalone and Embedded Memory,” Proceedings of the 2007 VLSI 
Technology SymposiumVLSI Technology, pp. 82 -83, 2007. 



References 

~ 111 ~ 
 

[Jung’10] S.-M. Jung, H. Lim, K. H. Kwak, and K. Kim, “A 500-MHz DDR High-
Performance 72-Mb 3-D SRAM Fabricated With Laser-Induced 
Epitaxial c-Si Growth Technology for a Stand-Alone and Embedded 
Memory Application,” in IEEE Transactions on Electron Devices, vol. 
57, pp. 474 - 481, 2010. 

[Kah’08] M. Kah, A. J. Smith, J. J. Hamilton, J. Sharp, S. H. Yeong, B. 
Colombeau, R. Gwilliam, R. P. Webb, and K. J. Kirkby, “Interaction of 
the end of range defect band with the upper buried oxide interface for B 
and BF2 implants in Si and silicon on insulator with and without 
preamorphizing implant,” Journal of Vacuum Science and Technology 
B: Microelectronics and Nanometer Structures, vol. 26, pp. 347 -350, 
Jan 2008. 

[Kane’60] E. O. Kane, “Zener tunneling in semiconductors,” Journal of Physics 
and Chemistry of Solids, vol. 12, pp. 181 - 188, 1960. 

[Kane’61] E. O. Kane, “Theory of Tunneling,” Journal of Applied Physics, vol. 32, 
pp. 83-91, 1961. 

[Keldysh’58] L. V. Keldysh, “Behavior of Non-Metallic Crystals in Strong Electric 
Fields,” Soviet Journal of Experimental and Theoretical Physics, vol. 6, 
p. 763, 1958. 

[Kentaro’07] S. Kentaro and M. Nobuhide, “Gate-Extension Overlap Control by Sb 
Tilt Implantation(Junction Formation and TFT Reliability, <Special 
Section> Fundamentals and Applications of Advanced Semiconductor 
Devices),” IEICE transactions on electronics, vol. 90, pp. 973-977, 
2007. 

[Khakifirooz’12] A. Khakifirooz, K. Cheng, T. Nagumo, N. Loubet, T. Adam, A. 
Reznicek, J. Kuss, D. Shahrjerdi, R. Sreenivasan, S. Ponoth, H. He, P. 
Kulkarni, Q. Liu, P. Hashemi, P. Khare, S. Luning, S. Mehta, J. Gimbert, 
Y. Zhu, Z. Zhu, J. Li, A. Madan, T. Levin, F. Monsieur, T. Yamamoto, S. 
Naczas, S. Schmitz, S. Holmes, C. Aulnette, N. Daval, W. 
Schwarzenbach, B.-Y. Nguyen, V. Paruchuri, M. Khare, G. Shahidi, and 
B. Doris, “Strain engineered extremely thin SOI (ETSOI) for high-
performance CMOS,” Proceedings of the 2012 VLSI Technology 
Symposiumin, pp. 117 -118, 2012. 

[Khorram’12] H. R. Khorram, K. Nakano, N. Sagawa, T. Fujiwara, Y. Iriuchijima, T. 
Sei, T. Takahiro, K. Nakamura, K. Shiraishi, and T. Hayashi, “Cost of 
Ownership/Yield Enhancement of High Volume Immersion Lithography 
Using Topcoat-Less Resists,” IEEE Transactions on Semiconductor 
Manufacturing, vol. 25, pp. 63 -71, Feb 2012. 



References 

~ 112 ~ 
 

[Kim’00] 
 
 
 
 
 

N.-S. Kim, I.-G. Kim, S.-H. Ok, D.-C. Kim, S.-J. Choi, J.-H. Choi, H.-
Y. Kwen, D.-Y. Park, and J.-B. Kim, “Optimization of n-junction 
through ion beam shadowing and buffering effect by tilt implantation 
with rotation for improving the retention time,” Proceeding of the 
international conference on  Ion Implantation Technology, pp. 50 -53, 
2000. 

[Knickerbocker’08] J.U. Knickerbocker, P.S. Andry, B. Dang, R.R. Horton, C.S. Patel, R.J. 
Polastre, K. Sakuma, E.S. Sprogis, C.K. Tsang, B.C. Webb, S.L. 
Wright, “3D silicon integration,” Proceedings of 58th Electronic 
Components and Technology Conference, pp. 538–543, 2008. 

[Kong’08] N. Kong, T. A. Kirichenko, Y. Kim, M. C. Foisy, and S. K. Banerjee, 
“Physically based kinetic Monte Carlo modeling of arsenic-interstitial 
interaction and arsenic uphill diffusion during ultrashallow junction 
formation,” Journal of Applied Physics, vol. 104, p. 013514, 2008. 

[Koyanagi’09] M. Koyanagi, “New 3D integration technology and 3D system LSIs,” 
Proceedings of the 2009 VLSI Technology Symposium, pp. 64 -67, 2009.

[Kuhn’11] K. J. Kuhn, M. D. Giles, D. Becher, P. Kolar, A. Kornfeld, R. Kotlyar, S. 
T. Ma, A. Maheshwari, and S. Mudanai, “Process Technology 
Variation,” IEEE Transactions on Electron Devices, vol. 58, pp. 2197 -
2208, Aug 2011. 

[Kuhn’12] K. J. Kuhn, “Considerations for Ultimate CMOS Scaling,” IEEE 
Transactions on Electron Devices, vol. 59, pp. 1813 -1828, July 2012. 

[Kumar’01] M. Kumar, H. Liu, J. K. O. Sin, J. Wan, and K. L. Wang, “A 3-D 
BiCMOS technology using selective epitaxial growth (SEG) and lateral 
solid phase epitaxy (LSPE),” Proceedings of the 2001 International 
Electron Devices Meeting, pp. 33.2.1 -33.2.4, 2001. 

[Lacord’12] J. Lacord, G. Ghibaudo, and F. Boeuf, “Comprehensive and Accurate 
Parasitic Capacitance Models for Two- and Three-Dimensional CMOS 
Device Structures,” IEEE Transactions on Electron Devices, vol. 59, pp. 
1332 -1344, May 2012. 

[Lerch’05] W. Lerch, S. Paul, J. Niess, F. Cristiano, Y. Lamrani, P. Calvo, N. 
Cherkashin, D. Downey, and E. Arevalo, “Deactivation of solid phase 
epitaxy-activated boron ultrashallow junctions,” Journal of the 
Electrochemical Society, vol.152, pp. G787-G793, 2005. 

[Lietoila’80] A. Lietoila, J. F. Gibbons, and T. W. Sigmon, “The solid solubility and 
thermal behavior of metastable concentrations of As in Si,” Applied 
physics letters, vol. 36, pp. 765-768, 1980. 



References 

~ 113 ~ 
 

[Lietoila’81] A. Lietoila, R. B. Gold, J. F. Gibbons, T. W. Sigmon, P. D. Scovell, and 
J. M. Young, “Metastable As-concentrations in Si achieved by ion 
implantation and rapid thermal annealing,” Journal of Applied Physics, 
vol. 52, pp. 230-232, 1981. 

[Lin’01] C.-H. Lin, B.-C. Hsu, M. H. Lee, and C. W. Liu, “A comprehensive 
study of inversion current in MOS tunneling diodes,” IEEE Transactions 
on Electron Devices, vol. 48, pp. 2125 -2130, Sep 2001. 

[Lindsay’04a] R. Lindsay, K. Henson, W. Vandervorst, K. Maex, B. J. Pawlak, R. 
Duffy, R. Surdeanu, P. Stolk, J. A. Kittl, S. Giangrandi, X. Pages, and K. 
van der Jeugd, “Leakage optimization of ultra-shallow junctions formed 
by solid phase epitaxial regrowth,” Journal of Vacuum Science & 
Technology B: Microelectronics and Nanometer Structures, vol. 22, pp. 
306-311, 2004. 

[Lindsay’04b] R. Lindsay, S. Severi, B. J. Pawlak, K. Henson, A. Lauwers, X. Pages, 
A. Satta, R. Surdeanu, H. Lendzian, and K. Maex, “SPER junction 
optimisation in 45 nm CMOS devices,” Proceedings of the 4th 
International Workshop on Junction Technology (IWJT 2004), pp. 70 – 
75, 2004. 

[Lu’09] J.-Q. Lu, “3-D Hyperintegration and Packaging Technologies for Micro-
Nano Systems,” Proceedings of the IEEE, vol. 97, pp. 18 -30, Jan. 2009.

[MacKenzie’07] M. MacKenzie, A. Craven, D. McComb, S. D. Gendt, F. Docherty, C. 
McGilvery, and S. McFadzean, “Advanced nanoanalysis of a Hf-based 
high-k dielectric stack prior to activation,” Electrochemical and Solid 
State Letters, vol. 10, pp. G33-G35, 2007. 

[Martinez-Limia’08] A. Martinez-Limia, P. Pichler, W. Lerch, S. Paul, H. Kheyrandish, A. 
Pakfar, and C. Tavernier, “Experimental investigations and simulation of 
the deactivation of arsenic during thermal processes after activation by 
SPER and spike annealing,” in Mat. Res. Soc. Symp. Proc., pp.211-215, 
2008. 

[Maszara’05] W. P. Maszara, “Fully Silicided Metal Gates for High-Performance 
CMOS Technology: A Review,” Journal of The Electrochemical Society, 
vol. 152, pp. G550-G555, 2005. 

[Mazurier’11] J. Mazurier, O. Weber, F. Andrieu, F. Allain, L. Tosti, L. Brevard, O. 
Rozeau, M.-A. Jaud, P. Perreau, C. Fenouillet-Beranger, F. A. Khaja, B. 
Colombeau, G. De Cock, G. Ghibaudo, M. Belleville, O. Faynot, and T. 
Poiroux, “Drain current variability and MOSFET parameters 
correlations in planar FDSOI technology,” Proceedings of the 2011 
International Electron Devices Meeting, pp. 25.5.1 -25.5.4, 2011. 



References 

~ 114 ~ 
 

[McCallum’99] J. C. McCallum, “The kinetics of dopant-enhanced solid phase epitaxy 
in H-free amorphous silicon layers,” Nuclear Instruments and Methods 
in Physics Research Section B: Beam Interactions with Materials and 
Atoms, vol. 148, pp. 350 - 354, 1999. 

[Mercha’10] A. Mercha, G. Van der Plas, V. Moroz, I. De Wolf, P. Asimakopoulos, N. 
Minas, S. Domae, D. Perry, M. Choi, A. Redolfi, C. Okoro, Y. Yang, J. 
Van Olmen, S. Thangaraju, D. S. Tezcan, P. Soussan, J. H. Cho, A. 
Yakovlev, P. Marchal, Y. Travaly, E. Beyne, S. Biesemans, and B. 
Swinnen, “Comprehensive analysis of the impact of single and arrays of 
through silicon vias induced stress on high-k / metal gate CMOS 
performance,” Proceedings of the 2010 International Electron Devices 
Meeting,  pp. 2.2.1 -2.2.4, 2010. 

[Michel’87] A. E. Michel, W. Rausch, P. A. Ronsheim, and R. H. Kastl, “Rapid 
annealing and the anomalous diffusion of ion implanted boron into 
silicon,” Applied physics letters, vol. 50, pp. 416-418, 1987. 

[Mok’07] K. R. C. Mok, B. Colombeau, F. Benistant, R. S. Teo, S. H. Yeong, B. 
Yang, M. Jaraiz, and S.-F. S. Chu, “Predictive Simulation of Advanced 
Nano-CMOS Devices Based on kMC Process Simulation,” IEEE 
Transactions on Electron Devices, vol. 54, pp. 2155 -2163, Sept. 2007. 

[Mokhberi’02] A. Mokhberi, L. Pelaz, M. Aboy, L. Marques, J. Barbolla, E. Paton, S. 
McCoy, J. Ross, K. Elliott, J. Gelpey, P. B. Griffin, and J. D. Plummer, 
“A physics based approach to ultra-shallow p+-junction formation at the 
32 nm node,” Proceedings of the 2002 International Electron Devices 
Meeting, pp. 879 – 882, 2002. 

[Monolithic3d] http://www.monolithic3d.com/2/post/2012/01/fine-grain-3d-integration-
why-how.html 

[Moore’65] G. E. Moore, “Cramming More Components Onto Integrated Circuits”;  
Electronics Magazine; Vol. 38,  No. 8, pp. 114-117; 1965   

[Mourrain’00] C. Mourrain, B. Cretu, G. Ghibaudo, and P. Cottin, “New method for 
parameter extraction in deep sub-micrometer MOSFETs,” Proceedings 
of 2000 International. Conference on Microelectronic Test Structure 
(ICMTS 2000), Kobe, Japan, 2000, pp.181–186. 

[Nastasi’96] M.Nastasi, J.Mayer, and J.Hivonen , Cambridge Solid State Science 
Series: Ion-Solid Interactions, 1996. 

[Nishikawa’09]  M. Nishikawa, K. Okabe, K. Ikeda, N. Tamura, H. Maekawa, M. 
Umeyama, H. Kurata, M. Kase, and K. Hashimoto, “Successful 
integration scheme of cost effective dual embedded stressor featuring 
carbon implant and solid phase epitaxy for high performance CMOS,” 
Proceedings of the 2009 International Symposium on VLSI Technology, 
Systems and Applications, pp. 26 -27, 2009. 



References 

~ 115 ~ 
 

[Nobili’99] D. Nobili, S. Solmi, M. Merli, and J. Shao, “Deactivation Kinetics in 
Heavily Arsenic-Doped Silicon,” Journal of The Electrochemical 
Society, vol. 146, pp. 4246-4252, 1999. 

[Olson’88] G. L. Olson and J. A. Roth, “Kinetics of solid phase crystallization in 
amorphous silicon,” Materials Science Reports, vol. 3, pp. 1 - 77, 1988. 

[Park’05] H. Park, M. S. Rahman, M. Chang, B. B. Lee, M. Gardner, C. D. Young, 
and H. Hwang, “Effect of high pressure deuterium annealing on 
electrical and reliability characteristics of MOSFETs with high-k gate 
dielectric,” Proceeding of the 43rd International Reliability Physics 
Symposium, pp. 646 – 647, 2005. 

[Pawlak’04a] B. J. Pawlak, R. Lindsay, R. Surdeanu, B. Dieu, L. Geenen, I. Hoflijk, 
O. Richard, R. Duffy, T. Clarysse, B. Brijs, W. Vandervorst, and C. J. J. 
Dachs, “Chemical and electrical dopants profile evolution during solid 
phase epitaxial regrowth,” Journal of Vacuum Science & Technology B: 
Microelectronics and Nanometer Structures, vol. 22, pp. 297-301, 2004.

[Pawlak’04b] B. J. Pawlak, R. Surdeanu, B. Colombeau, A. J. Smith, N. E. B. Cowern, 
R. Lindsay, W. Vandervorst, B. Brijs, O. Richard, and F. Cristiano, 
“Evidence on the mechanism of boron deactivation in Ge-
preamorphized ultrashallow junctions,” Applied physics letters, vol. 84, 
pp. 2055 -2057, mar 2004. 

[Pelaz’04] L. Pelaz, L.A. Marqués and J. Barbolla, "Ion-beam-induced 
amorphization and recrystallization in silicon", Journal of Applied 
Physics, vol. 96, pp. 5947-5976, 2004.  

[Pelaz’09] L. Pelaz, L.A. Marqués, M. Aboy, P. López, and I. Santos, “Front-end 
process modeling in silicon,” The European Physical Journal B - 
Condensed Matter and Complex Systems, vol. 72, pp. 323-359, 2009. 

[Pichler’08] P. Pichler, A. Martinez-Limia, C. Kampen, A. Burenkov, J. Schermer, S. 
Paul, W. Lerch, J. Gelpey, S. McCoy, H. Kheyrandish, A. Pakfar, C. 
Tavernier, and D. Bolze, “Process models for advanced annealing 
schemes and their use in device simulation,” Proceedings of the 8th 
International Workshop on Junction Technology (IWJT 2008), pp. 120 -
125, 2008. 

[Pinacho’05] R. Pinacho, M. Jaraiz, P. Castrillo, I. Martin-Bragado, J. E. Rubio, and J. 
Barbolla, “Modeling arsenic deactivation through arsenic-vacancy 
clusters using an atomistic kinetic Monte Carlo approach,” Applied 
physics letters, vol. 86, pp. 252103 -252103-3, jun 2005. 



References 

~ 116 ~ 
 

[Planes’12] N. Planes, O. Weber, V. Barral, S. Haendler, D. Noblet, D. Croain, M. 
Bocat, P.-O. Sassoulas, X. Federspiel, A. Cros, A. Bajolet, E. Richard, 
B. Dumont, P. Perreau, D. Petit, D. Golanski, C. Fenouillet-Beranger, N. 
Guillot, M. Rafik, V. Huard, S. Puget, X. Montagner, M.-A. Jaud, O. 
Rozeau, O. Saxod, F. Wacquant, F. Monsieur, D. Barge, L. Pinzelli, M. 
Mellier, F. Boeuf, F. Arnaud, and M. Haond, “28nm FDSOI technology 
platform for high-speed low-voltage digital applications,” Proceedings 
of the 2012 VLSI Technology Symposium, pp. 133 -134, 2012. 

[Posselt’94] M. Posselt, “CRYSTAL-TRIM AND ITS APPLICATION TO 
INVESTIGATIONS ON CHANNELING EFFECTS DURING ION-
IMPLANTATION,” Radiation Effects and Defects in Solids,Vol. 130-
131, pp. 87-119, 1994. 

[Rafhay’12] Q. Rafhay, C. Xu, P. Batude, M. Mouis, M. Vinet, and G. Ghibaudo, 
“Revisited approach for the characterization of Gate Induced Drain 
Leakage,” Solid-State Electronics, vol. 71, pp. 37 - 41, 2012. 

[Ragnarsson’06] L.-A. Ragnarsson, S. Severi, L. Trojman, K. D. Johnson, D. P. Brunco, 
M. Aoulaiche, M. Houssa, T. Kauerauf, R. Degraeve, A. Delabie, V. S. 
Kaushik, S. De Gendt, W. Tsai, G. Groeseneken, K. D. Meyer, and M. 
Heyns, “Electrical characteristics of 8-/spl Aring/ EOT HfO/sub 2//TaN 
low thermal-budget n-channel FETs with solid-phase epitaxially 
regrown junctions,” IEEE Transactions on Electron Devices, vol. 53, pp. 
1657 -1668, July 2006. 

[Rideau’10] D. Rideau, V. Quenette, D. Garetto, E. Dornel, M. Weybright, J. P. 
Manceau, O. Saxod, C. Tavernier, and H. Jaouen, “Characterization & 
Modeling of Gate-Induced-Drain-Leakage with complete overlap and 
fringing model,” Proceedings of 2010 International Conference on 
Microelectronic Test Structures, March 22-25, Hiroshima, Japan. pp. 
210 -213, March.2010. 

[Romanjek’04] K. Romanjek, F. Andrieu, T. Ernst, and G. Ghibaudo, “Improved split C-
V method for effective mobility extraction in sub-0.1 μm Si MOSFETs,” 
IEEE Electron Device Letters, vol. 25, pp. 583 - 585, Aug 2004. 

[Rosar’00] M. Rosar, B. Leroy, and G. Schweeger, “A new model for the 
description of gate voltage and temperature dependence of gate induced 
drain leakage (GIDL) in the low electric field region [DRAMs],” IEEE 
Transactions on Electron Devices, vol. 47, pp. 154 -159, Jan 2000. 

[Rousseau’98] P. M. Rousseau, P. B. Griffin, W. T. Fang, and J. D. Plummer, “Arsenic 
deactivation enhanced diffusion: A time, temperature, and concentration 
study,” Journal of Applied Physics, vol. 84, pp. 3593-3601, 1998. 

[Roy’03] K. Roy, S. Mukhopadhyay, and H. Mahmoodi-Meimand, “Leakage 
current mechanisms and leakage reduction techniques in deep-
submicrometer CMOS circuits,” Proceedings of the IEEE, vol. 91, pp. 
305 - 327, Feb 2003. 



References 

~ 117 ~ 
 

[Ryu’12] S.-K. Ryu, K.-H. Lu, T. Jiang, J.-H. Im, R. Huang, and P. S. Ho, “Effect 
of Thermal Stresses on Carrier Mobility and Keep-Out Zone Around 
Through-Silicon Vias for 3-D Integration,” IEEE Transactions on 
Device and Materials Reliability, vol. 12, pp. 255 -262, June 2012. 

[Saavedra’02] A. F. Saavedra, J. Frazer, K. S. Jones, I. Avci, S. K. Earles, M. E. Law, 
and E. C. Jones, “Influence of the surface Si/buried oxide interface on 
extended defect evolution in silicon-on-insulator scaled to 300 Å,” 
Journal of Vacuum Science Technology B: Microelectronics and 
Nanometer Structures, vol. 20, pp. 2243 -2247, Nov 2002. 

[Saino’00] K. Saino, S. Horiba, S. Uchiyama, Y. Takaishi, M. Takenaka, T. Uchida, 
Y. Takada, K. Koyama, H. Miyake, and C. Hu, “Impact of gate-induced 
drain leakage current on the tail distribution of DRAM data retention 
time,” Proceedings of the 2000 International Electron Devices Meeting,  
pp. 837 -840, 2000. 

[Schenk’93] A. Schenk, “Rigorous theory and simplified model of the band-to-band 
tunneling in silicon,” Solid-State Electronics, vol. 36, pp. 19 - 34, 1993. 

[Schwierz’10] F. Schwierz, “Graphene transistors,” Nature Nanotechnology, pp. 487 -
496. may 2010. 

[Shibahara’07] K. Shibahara and N. Maeda, “Gate-Extension Overlap Control by Sb 
Tilt Implantation,” IEICE TRANSACTIONS on Electronics, Vol.E90-
C  No.5  pp.973-977, 2007. 

[Skarlatos’07] D. Skarlatos and C. Tsamis, “Modeling of low energy-high dose arsenic 
diffusion in silicon in the presence of clustering-induced interstitial 
generation,” Journal of Applied Physics, vol. 102, p. 043532, 2007. 

[Sklénard’12] 
 

B. Sklénard, C. Xu, P. Batude, B. Previtali, C. Tabone, Q. Rafhay, B. 
Colombeau, F.-A. Khaja, Martín-Bragado, J. Berthoz, F. Allain, A. 
Toffoli, R. Kies, M.-A. Jaud, P. Rivallin, S. Cristoloveanu, C. Tavernier, 
O. Faynot and T. Poiroux, “FDSOI devices: a solution to achieve low 
junction leakage with low temperature processes (≤ 650ºC)”, 
Proceedings of the 2012 International Conference on Ultimate 
Integration of Silicon (ULIS 2012), pp.169-172, 2012 

[Skotnicki’11] 
 

T. Skotnicki,  “Competitive SOC with UTBB SOI”. SOI Conference 
(SOI), 2011 IEEE International, pp. 1-61,2011. 

[Solmi’02] S. Solmi, M. Attari, and D. Nobili, “Effect of vacancy and interstitial 
excess on the deactivation kinetics of As in Si,” Applied physics letters, 
vol. 80, pp. 4774-4776, 2002. 

[Steen’07] S. E. Steen, D. LaTulipe, A. W. Topol, D. J. Frank, K. Belote, and D. 
Posillico, “Overlay as the key to drive wafer scale 3D integration,” 
Microelectronic engineering, vol. 84, pp. 1412 - 1415, 2007. 



References 

~ 118 ~ 
 

[Stolk’97] P. A. Stolk, H.-J. Gossmann, D. J. Eaglesham, D. C. Jacobson, C. S. 
Rafferty, G. H. Gilmer, M. Jaraiz, J. M. Poate, H. S. Luftman, and T. E. 
Haynes, “Physical mechanisms of transient enhanced dopant diffusion 
in ion-implanted silicon,” Journal of Applied Physics, vol. 81, pp. 6031 -
6050, may 1997. 

[Suni’82] I. Suni, G. Göltz, M.-A. Nicolet, and S. S. Lau, “Effects of electrically 
active impurities on the epitaxial regrowth rate of amorphized silicon 
and germanium,” Thin Solid Films, vol. 93, pp. 171 - 178, 1982. 

[Tanaka’94] S. Tanaka, “A unified theory of direct and indirect interband tunneling 
under a nonuniform electric field,” Solid-State Electronics, vol. 37, pp. 
1543 - 1552, 1994. 

[Tiemann’63] J. J. Tiemann and H. Fritzsche, “Temperature Dependence of Indirect 
Interband Tunneling in Germanium,” Phys. Rev., vol. 132, pp. 2506-
2514, Dec 1963. 

[Topol’05] A. W. Topol, D. C. La Tulipe, L. Shi, S. M. Alam, D. J. Frank, S. E. 
Steen, J. Vichiconti, D. Posillico, M. Cobb, S. Medd, J. Patel, S. Goma, 
D. DiMilia, M. T. Robson, E. Duch, M. Farinelli, C. Wang, R. A. Conti, 
D. M. Canaperi, L. Deligianni, A. Kumar, K. T. Kwietniak, C. D’Emic, 
J. Ott, A. M. Young, K. W. Guarini, and M. Ieong, “Enabling SOI-based 
assembly technology for three-dimensional (3d) integrated circuits 
(ICs),” Proceedings of the 2005 International Electron Devices Meeting,  
pp. 352 -355, 2005. 

[Tsamis’05] C. Tsamis, D. Skarlatos, G. BenAssayag, A. Claverie, W. Lerch, and V. 
Valamontes, “Interstitial injection in silicon after high-dose, low-energy 
arsenic implantation and annealing,” Applied physics letters, vol. 87, p. 
201903, 2005. 

[Veloso’11] A. Veloso, L.-A. Ragnarsson, M. J. Cho, K. Devriendt, K. Kellens, F. 
Sebaai, S. Suhard, S. Brus, Y. Crabbe, T. Schram, E. Rohr, V. Paraschiv, 
G. Eneman, T. Kauerauf, M. Dehan, S.-H. Hong, S. Yamaguchi, S. 
Takeoka, Y. Higuchi, H. Tielens, A. Van Ammel, P. Favia, H. Bender, A. 
Franquet, T. Conard, X. Li, K.-L. Pey, H. Struyf, P. Mertens, P. P. Absil, 
N. Horiguchi, and T. Hoffmann, “Gate-last vs. gate-first technology for 
aggressively scaled EOT logic/RF CMOS,” Proceedings of the 2011 
VLSI Technology Symposium, pp. 34 -35, 2011. 

[Vick’69] G. L. Vick and K. M. Whittle, “Solid Solubility and Diffusion 
Coefficients of Boron in Silicon,” Journal of The Electrochemical 
Society, vol. 116, 1969. 



References 

~ 119 ~ 
 

[Vinet’11] M. Vinet, P. Batude, C. Tabone, B. Previtali, C. LeRoyer, A. 
Pouydebasque, L. Clavelier, A. Valentian, O. Thomas, S. Michaud, L. 
Sanchez, L. Baud, A. Roman, V. Carron, F. Nemouchi, V. Mazzocchi, H. 
Grampeix, A. Amara, S. Deleonibus, and O. Faynot, “3D monolithic 
integration: Technological challenges and electrical results,” 
Microelectronic engineering, vol. 88, pp. 331 - 335, 2011. 

[Wang’98] T. Wang, C. F. Hsu, L. P. Chiang, N. K. Zous, T. S. Chao, and C. Y. 
Chang, “Voltage scaling and temperature effects on drain leakage 
current degradation in a hot carrier stressed n-MOSFET,” Proceedings 
of the 36th International Reliability Physics Symposium, 1998, pp. 209 -
212, 1998. 

[Weber’06] A. Weber, A. Birner, and W. Krautschneider, “Retention Tail 
Improvement for Gbit DRAMs through Trap Passivation confirmed by 
Activation Energy Analysis,” Proceedings of the 36st European Solid-
State Device Research Conference (ESSDERC 2006), pp. 250-253, 
2006. 

[Wen’05] H.-C. Wen, K. Choi, P. Majhi, H. Alshareef, C. Huffman, and B. H. Lee, 
“A systematic study of the influence of nitrogen in tuning the effective 
work function of nitrided metal gates,” Proceedings of the 2005 
International Symposium on VLSI Technology, Systems and 
Applicationsin, pp. 105 – 106, 2005. 

[Witters’11] L. Witters, J. Mitard, A. Veloso, A. Hikavyy, J. Franco, T. Kauerauf, M. 
Cho, T. Schram, F. Sebai, S. Yamaguchi, S. Takeoka, M. Fukuda, W.-E. 
Wang, B. Duriez, G. Eneman, R. Loo, K. Kellens, H. Tielens, P. Favia, 
E. Rohr, G. Hellings, H. Bender, P. Roussel, Y. Crabbe, S. Brus, G. 
Mannaert, S. Kubicek, K. Devriendt, K. De Meyer, L.-A. Ragnarsson, 
A. Steegen, and N. Horiguchi, “Dual-channel technology with cap-free 
single metal gate for high performance CMOS in gate-first and gate-last 
integration,” Proceedings of the 2011 International Electron Devices 
Meeting, pp. 28.6.1 -28.6.4, 2011. 

[Wolf’08] M. J. Wolf, P. Ramm, A. Klumpp, and H. Reichl, “Technologies for 3D 
wafer level heterogeneous integration,” in Design, Test, Integration and 
Packaging of MEMS/MOEMS, 2008. MEMS/MOEMS 2008. Symposium 
on, 2008, pp. 123 -126. 

[Xu’10] C. Xu, P. Batude, C. Rauer, C. Le Royer, L. Hutin, A. Pouydebasque, B. 
Previtali, M. Mouis, and M. Vinet, “Ion-Ioff performance analysis of 
FDSOI MOSFETs with low processing temperature,” Proceedings of the 
2010 International Conference on Solid State Devices and Materials 
(SSDM), Tokyo, Japan, p. 01-02, 2010. 

[Yang’08] J.-H. Yang, G.-F. Li, and H.-L. Liu, “Off-state leakage current in nano-
scale MOSFET with Hf-based gate dielectrics,” Proceeding of the 2nd 
International Nanoelectronics Conference (INEC 2008), pp. 1189 -1192.



References 

~ 120 ~ 
 

[Yoshinaga’10] T. Yoshinaga, M. Nomura, “Trends in R&D in TSV Technology for 3D 
LSI packaging”, QUARTERLY REVIEW, pp. 26-39, No. 3 7; 2 0 1 0 

[Young’11] T. Young, H. Yin, Q. Xu, C. Zhao, J. F. Li, and D. Chen, “Dummy Poly 
Silicon Gate Removal by Wet Chemical Etching,” ECS Transactions, 
vol. 34, pp. 361-364, 2011. 

[Yuan’08] X. Yuan, J.-E. Park, J. Wang, E. Zhao, D. C. Ahlgren, T. Hook, J. Yuan, 
V. Chan, H. Shang, C.-H. Liang, R. Lindsay, S. Park, and H. Choo, 
“Gate-Induced-Drain-Leakage Current in 45-nm CMOS Technology,” 
IEEE Transactions on Device and Materials Reliability, vol. 8, pp. 501 -
508, sept. 2008. 

[Ziegler’98] J. F. Ziegler, “Ion Implantation: Science and Technology,” Boston 
Academic Press, 2nd Edition, 1998. 



Publications 

~ 121 ~ 
 

Publications 
[1] 
 

C. Xu, P. Batude, C. Rauer, C. Le Royer, L. Hutin, A. Pouydebasque, B. Previtali, M.
Mouis, and M. Vinet, “Ion-Ioff performance analysis of FDSOI MOSFETs with low 
processing temperature,” Proceedings of the 2010 International Conference on Solid 
State Devices and Materials (SSDM), Tokyo, Japan, pp. 01 -02, 2010. 

[2] 
 

C. Xu, P. Batude, K. Romanjek, C. Le Royer, C. Tabone, B. Previtali, M. Jaud, X. 
Garros, M. Vinet, T. Poiroux, Q. Rafhay, and M. Mouis, “Improved extraction of 
GIDL in FDSOI devices for proper junction quality analysis,” Proceedings of the 41st
European Solid-State Device Research Conference (ESSDERC 2011), pp. 267 -270, 
2011. 

[3] 
 

C. Xu, P. Batude, B. Sklenard, M. Vinet, M. Mouis, B. Previtali, F. Y. Liu, J. 
Guerrero, K. Yckache, P. Rivallin, V. Mazzocchi, S. Cristoloveanu, O. Faynot, and T. 
Poiroux, “FDSOI: A solution to suppress boron deactivation in low temperature 
processed devices,” Proceedings of the 12th International Workshop on Junction 
Technology (IWJT 2012), pp. 69 -72, 2012. 

[4] 
 

C. Xu, P. Batude, M. Vinet, M. Mouis, M. Casse, B. Sklenard, B. Colombeau, Q. 
Rafhay, C. Tabone, J. Berthoz, B. Previtali, J. Mazurier, L. Brunet, L. Brevard, F. A. 
Khaja, J. Hartmann, F. Allain, A. Toffoli, R. Kies, C. Le Royer, S. Morvan, A. 
Pouydebasque, X. Garros, A. Pakfar, C. Tavernier, O. Faynot, and T. Poiroux, 
“Improvements in Low Temperature (<625°C) FDSOI Devices down to 30nm gate 
length,” Proceedings of the 2012 International Symposium on VLSI Technology, 
Systems and Applications, pp. 1 -2, april.2012. 

[5] 
 

Q. Rafhay, C. Xu, P. Batude, M. Mouis, M. Vinet, and G. Ghibaudo, “Revisited 
approach for the characterization of Gate Induced Drain Leakage,” Solid-State 
Electronics, vol. 71, pp. 37 - 41, 2012. 

[6] 
 

B. Sklénard, C. Xu, P. Batude, B. Previtali, C. Tabone, Q. Rafhay, B. Colombeau, F.-
A. Khaja, Martín-Bragado, J. Berthoz, F. Allain, A. Toffoli, R. Kies, M.-A. Jaud, P. 
Rivallin, S. Cristoloveanu, C. Tavernier, O. Faynot and T. Poiroux, “FDSOI devices: a 
solution to achieve low junction leakage with low temperature processes (≤ 650ºC)”, 
Proceedings of the 2012 International Conference on Ultimate Integration of Silicon 
(ULIS 2012), pp.169-172, 2012 

[7] P. Batude, M. Vinet, C. Xu, B. Previtali, C. Tabone, C. Le Royer, L. Sanchez, L. Baud, 
L. Brunet, A. Toffoli, F. Allain, D. Lafond, F. Aussenac, O. Thomas, T. Poiroux, and 
O. Faynot, “Demonstration of low temperature 3D sequential FDSOI integration down 
to 50 nm gate length,” Proceedings of the 2011 VLSI Technology Symposiumin, pp. 
158 -159, 2011. 

[8] P. Batude, M. Vinet, B. Previtali, C. Tabone, C. Xu, J. Mazurier, O. Weber, F. 
Andrieu, L. Tosti, L. Brevard, B. Sklenard, P. Coudrain, S. Bobba, H. Ben Jamaa, P. 
Gaillardon, A. Pouydebasque, O. Thomas, C. Le Royer, J. Hartmann, L. Sanchez, L. 
Baud, V. Carron, L. Clavelier, G. De Micheli, S. Deleonibus, O. Faynot, and T. 
Poiroux, “Advances, challenges and opportunities in 3D CMOS sequential 
integration,” Proceedings of the 2011 International Electron Devices Meeting, pp. 
7.3.1 -7.3.4, 2011. 



Publications 

~ 122 ~ 
 

[9] 
 

L. Hutin, M. Cassé, C. Le Royer, J.-F. Damlencourt, A. Pouydebasque, C. Xu, C. 
Tabone, J.-M. Hartmann,  V. Carron, H. Grampeix, V. Mazzocchi, R. Truche, O. 
Weber, P. Batude, X. Garros, L. Clavelier, M. Vinet, and O. Faynot, “20nm Gate 
Length Trigate pFETs on Strained SGOI for High Performance CMOS”, Proceedings 
of the 2010 VLSI Technology Symposiumin, pp.37-38, 2010. 

 


	Cover page_new jury.pdf
	XU thesis V26_title1.pdf


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


