
HAL Id: tel-00771937
https://theses.hal.science/tel-00771937

Submitted on 9 Jan 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Physics of natural nanoparticles - water interfaces:
chemical reactivity and environmental implications

Alejandro Fernandez-Martinez

To cite this version:
Alejandro Fernandez-Martinez. Physics of natural nanoparticles - water interfaces: chemical reactivity
and environmental implications. Mineralogy. Université de Grenoble, 2009. English. �NNT : �. �tel-
00771937�

https://theses.hal.science/tel-00771937
https://hal.archives-ouvertes.fr


 
OBSERVATOIRE DE GRENOBLE 

et 
LABORATOIRE DE GEOPHYSIQUE INTERNE ET TECTONOPHYSIQUE 

 
 

THESE 
 
 

Physics of natural nanoparticles – water interfaces: 
chemical reactivity and environmental implications 

 
 

présentée par 
 

Alejandro Fernández-Martínez 
 
 

pour obtenir le titre de 
Docteur de l’Université Joseph Fourier – Grenoble I 

 
Spécialité : Géochimie environnementale 

 
 
 
 
 
 
 
 
 
 

Composition du jury: 
 

Prof. Björn Winkler rapporteur    Universitat Frankfurt, Germany 
 
Prof. Neil T. Skipper  rapporteur    UCL, London, U.K. 
 
Dr. Jêrome Rose examinateur    CEREGE, Aix en Provence, France 
 
Dr. Victor F. Puntes examinateur    Institut Catalá de Nanotecnologia, 
      Barcelona, Spain 
 
Dr. Gabriel J. Cuello examinateur, co-directeur de thése  Institut Laue-Langevin, Grenoble, 
      France 
 
Prof. Laurent Charlet examinateur, co-directeur de thése  Université Joseph-Fourier Grenoble I,  
      France 



Abstract 
 

Precise structural studies of nano-crystalline minerals using diffraction techniques have been 

hindered by the broad diffraction peaks found in their diffraction patterns. In this thesis, I have 

applied molecular scale techniques such as High-Energy X-ray Diffraction and Molecular 

Dynamics simulations to study the structure and reactivity of two nano-minerals of important 

environmental significance: imogolite and schwertmannite. These minerals have nanotube or 

channel-like structures, and both are strong anion adsorbers. 

 

Imogolite is a nanotubular aluminosilicate present in the clay fraction of volcanic soils. It has 

high specific surface areas and it is one of the few minerals reactive towards anions and cations, 

which makes it a very important mineral in soils where it is found. However, the prediction of 

imogolite chemical reactivity is hindered by its nano-crystalline character.  Structural studies up 

to now have been restricted to X-Ray Diffraction and Electron Diffraction analyses, where the 

diffraction peaks were used mainly as fingerprints for the identification of the mineral. In this 

thesis I have performed a detailed structural characterisation of the structure of synthetic 

imogolite by Transmission Electron Microscopy (TEM), High-Energy X-ray and Molecular 

Dynamics methods. In addition, the structure of water at the imogolite / water interface has been 

investigated by theoretical and experimental methods. Using these structural inputs, I have 

developed a geochemical MUSIC model of imogolite, and compared it to the existing models 

for Gibbsite (planar equivalent of the external surface of imogolite), evaluating the effect of the 

curvature on geochemical reactivity. Parameters investigated include, the number of hydrogen 

bonds per surface adsorption site or the protonation constants of surface hydroxyl groups.  

 

Finally, these molecular-scale investigations have been linked to the biogeochemistry of 

Selenium in volcanic soils (andisols). Andisols are frequently rich in Selenium but 

controversially often low in bioavailable selenium. At the same time, imogolite is often found in 

the clay fraction of these soils. The adsorption of Selenium oxyanions at the Imogolite/water 

interface has been studied using X-ray Absorption Spectroscopy and DFT methods. 

 

In contrast to imogolite, schwertmannite structure is thought to be akin to that of akaganeite, 

with sulphate molecules substituting chlorine atoms in channels. The structure of the octahedral 

iron frame and the positions of the sulphate molecules within the structure have been object of 

an intense debate during the last 15 years. I present here a combined Pair-Distribution Function 

and X-ray Diffraction Study of the structure of schwertmannite. A structural model is proposed 

and discussed in terms of the retention of oxyanions. 



Contents 
 

1.- Introduction 1 

1.1.- Mineral nanoparticles.................................................................................... 1 

1.1.1.- Imogolite nanotubes............................................................................... 2 

1.1.2.- Nanoparticles in Acid/Rock Mine Drainage: Schwertmannite.............. 7 

1.2.- Selenium bioavailability in volcanic soils: relevance of imogolite 

nanotubes ............................................................................................................... 9 

1.3.- Diffraction techniques for structural studies of environmental 

nanoparticles........................................................................................................ 12 

 

2.- Experimental and theoretical methods 21 

2.1.- Pair Distribution Function technique .......................................................... 21 

2.2.- X-ray Absorption Spectroscopy .................................................................. 23 

2.3.- Simulations.................................................................................................. 26 

2.3.1.- Ab-initio DFT calculations .................................................................. 26 

2.3.2.- Classical Molecular Dynamics and Monte Carlo simulations............. 29 

2.3.2.1.- Molecular Dynamics method ....................................................... 30 

2.3.2.2.- Monte Carlo method..................................................................... 32 

 

3.- Selenite and selenate adsorption mechanisms at the synthetic and 

biogenic imogolite – water interface 37 

3.1.- Introduction ................................................................................................. 37 

3.2.- Selenite and selenate adsorption mechanisms at the imogolite – water 

interface ............................................................................................................... 43 

 

4.- Molecular dynamics investigation of the structure of water at the 

imogolite and gibbsite – water interfaces: effect of the curvature on the 

hydrophilicity and surface acidity 75 

4.1.- Introduction ................................................................................................. 75 

4.2.- Water structure and hydration properties of imogolite: ‘The nanotube 

effect’................................................................................................................... 79 

 



5.- The structure of schwertmannite, a nanocrystalline iron 

oxyhydroxysulfate 111 

5.1.- Introduction ............................................................................................... 111 

5.2.- The structure of schwertmannite, a nanocrystalline iron 

oxyhydroxysulfate ............................................................................................. 113 

 

6.- Conclusions 139 

 

Annex I. Multi-scale characterization of synthetic imogolite 145 

 

Annex II. Other publications 163 

 

 



 1

 

 

 

Chapter 1 

 

Introduction 
 

1.1.- Mineral nanoparticles 
This thesis is devoted to the study of two mineral nanoparticles commonly found in 

some environmental compartments. Imogolite, an aluminosilicate clay mineral with 

nanotubular structure, is commonly found in the clay fraction of volcanic soils or in 

spodosols. Schwertmannite, an iron oxyhydroxysulfate, forms in acid mine drainage 

sites where Fe2+-rich mine waters are mixed with oxygenated waters, forming Fe 

oxyhydroxide nanoparticles by hydrolysis. These two mineral nanoparticles are just a 

sample of a wide collection of nanoparticles present in the environment as a result of 

weathering, oxido-reduction, detoxification and microbial processes, between others. 

Mineral nanoparticles are usually formed in hydrous environments, and thus water is 

commonly found in their structures, determining many of their properties as, e.g., their 

aggregation, shape or their surface chemistry. Furthermore, they usually contain 

hydroxyl groups on their surfaces, which affect their hydrophilicity and thus their 

solubility. In addition, the disorder associated with the lack of long-range order in their 

structure challenges any structural study by classical methods as laboratory X-ray 

diffraction. This fact stress the need for new experimental and theoretical techniques 

that can be applied to the study of these challenging mineral nanoparticles structures. 

Some of the experimental and theoretical methods used in this thesis are commonly 

applied in other research areas. The Pair Distribution Function (PDF) technique is the 1-

D equivalent to the Patterson function technique, a method widely used in the field of 

protein crystallography. This method has been used during many years to structural 

studies of liquids and amorphous materials, and it has been only recently that its 

application to the study of engineered and natural nanoparticles is becoming very 

popular. The Molecular Dynamics (MD) technique is a theoretical method that has been 

largely applied to the study of clay minerals. However, the development of accurate sets 
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of potential parameters has made that its use to the study of mineral nanoparticles is 

starting only now. 

MD simulations have shed light to the water adsorption properties of imogolite. 

Imogolite has been found to be less hydrophilic than gibbsite –the planar equivalent of 

the imogolite’s external surface–. The curvature of the structure affects its water 

adsorption properties through changes in the hydrogen-bonding structure of surface 

hydroxyl groups. This result, stress the importance of the curvature in mineral surfaces, 

an effect that is commonly found in minerals with tubular or spherical shapes, or with 

high densities of edge sites, as in most mineral nanoparticles. 

In addition, a study of the retention mechanisms of selenium oxyanions on imogolite 

is presented, showing the environmental relevance of this mineral nanoparticle in the 

mobility and bioavailability of selenium in volcanic soils. 

 

1.1.1.- Imogolite nanotubes 

Imogolite (Al2(OH)3SiO3OH) is an aluminosilicate mineral commonly found in soil 

environments such as the clay fractions of volcanic ash soils or in spodosols (Dahlgren 

and Ugolini, 1989; Dahlgren and Ugolini, 1991; Ugolini and Dahlgren, 1991; Wada, 

1989). Imogolite has a nanotubular geometry, with an internal face dominated by silanol 

(>SIOH0) functional groups and an external face composed by a curved gibbsite 

(Al(OH)3), populated by neutral aluminol groups (>Al2OH0) (see Figure 1.1). 

 

 
Figure 1.1.- Two views of the structure of imogolite. Light blue polyhedra are aluminum 

octahedra. Dark blue are silicon tetrahedral. Red and white spheres are oxygen and hydrogen 

atoms respectively.  
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The presence of these amphoteric surfaces and the lack of isomorphic substitutions 

(which would act as centers of permanent charge) make imogolite a mineral with a 

variable charge only dependent on the pH of the solution. However, some authors have 

hypothesized the existence of a permanent charge, although this hypothesis has not been 

proved yet experimentally (Alvarez-Ramirez, 2007; Guimaraes et al., 2007; Gustafsson, 

2001). 

The surface charge of imogolite is complex. The presence of a double surface makes 

difficult its study by macroscopic wet chemistry methods. Potentiometric titrations of 

natural imogolite under different ionic strengths have been measured by (Tsuchida et 

al., 2004), revealing a Point of Zero Salt Effect (PZSE) at pH 6. The net adsorbed ion 

charge (∆q) in function of pH was determined by Karube et al., obtaining a Point of 

Zero Net Charge (PZNC) at pH 6 (Karube et al., 1992). The combination of both curves 

can be done in a Chorover plot (Figure 1.2) (Chorover and Sposito, 1995; Sposito, 

2004). The intercept of the linear regression of the data gives a value for the permanent 

structural charge (according to the equation ∆q = -∆H – ∆0) which is practically zero  

(∆0 = 16 ± 10 mmolc kg-1, to be compared, e.g., with 440 mmolc kg-1 of a synthetic 

montmorillonite (Gehin et al., 2007)). 

 

 
Figure 1.2. Plot of the net adsorbed ion charge against the net adsorbed proton charge for 

natural Imogolite. Data have been taken from Tsuchida et al. (2005). A specific surface of 818 

m2 g-1 has been considered. This value is the ‘crystallographic’ specific surface of Imogolite 

considering a hydration level of 15% (in mass). 
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This would indicate that imogolite bears no permanent structural charge. However, 

the geometry of imogolite makes that estimations made using this method could be 

erroneous. The fact that the double-layers of adsorption of the internal and external 

faces do not overlap makes that the total charge measured by macroscopic methods is 

the sum of the charges developed at both surfaces. These methods are thus not valid to 

ascertain the existence of a permanent charge at the imogolite surface. 

The hypothesis of a permanent charge was proposed by (Gustafsson, 2001). He 

proposed that the shortening of the outer (closer to the external surface) Al-O bond 

lengths caused by the curvature of the gibbsite-like atomic sheet leads to a slight 

oversaturation of the charge of O atoms (positive charge) (Gustafsson, 2001). Inversely, 

small elongations of the internal (closer to the internal surface) Al-O bond lengths 

would induce O undersaturation (negative charge). This hypothesis has been confirmed 

by DFT calculations that show a displacement of the electronic density towards the 

internal face of the imogolite nanotubes. If Gustafson’s hypothesis is right, and 

imogolite develops a positive charge at its external surface and a negative charge at its 

internal surface, the total effect of both charges would be cancelled out in any 

macroscopic measurement, as it has been mentioned previously. On the other hand, the 

fact that the Chorover plot does not reveal any permanent charge could be also 

explained if this charge is very small. This is the case of the charge calculated by DFT: 

calculated Mulliken charges are only 6% bigger for the inner H atoms than for the 

external ones. 

At the same time, while acid-base potentiometric titrations have shown that 

imogolite develops both positive and negative charges in function of the pH, 

electrophoretic mobility studies indicate that imogolite has only a positive charge 

(Karube et al., 1992; Su and Harsh, 1993; Tsuchida et al., 2004). Tsuchida et al. (2005) 

have shown that this discrepancy can be explained in terms of imogolite’s tubular 

geometry: they propose that the silanol groups (>SiOH0) present in the internal surface 

do not have any effect on the electrokinetic properties of imogolite, being only the 

external surface relevant for imogolite electrophoresis mobility measurements.  

However, the classically adduced explanation for the occurrence of a permanent 

charge and for the adsorption of anions at the imogolite − water interface is the presence 

of vacancies in aluminum octahedral sites. These vacancies would originate >AlOH-1/2 

surface groups whose pKa1 has been predicted to be at pKa1 = 10 (equation 1) 



 5

(Gustafsson, 2001), implying that these sites would be positively charged at solution pH 

values lower than 10, 

+−+ +>↔> HAlOHAlOH 2/12/1
2   (1) 

These two hypotheses would explain also the positive values of electrophoretic 

mobility found by some authors (Su and Harsh, 1993; Tsuchida et al., 2004) (see Figure 

1.3) 

2 4 6 8 10 12
-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

 imogolite
 gibbsite

 

 

E
M

 (µ
m

 s
-1
 / 

V 
cm

-1
)

pH

 
Figure 1.3.- Electrophoretic mobility of imogolite and gibbsite. Data for gibbsite is from 

(Rosenqvist et al., 2002), at an ionic strength of I = 0.1 M NaCl. Circles and squares represent 

data from (Harsh et al., 1992) at ionic strengths of I = 0.01 M NaCl and Squares are data at I = 

0.01 M CsCl respectively. Triangles are data from (Su and Harsh, 1993) at I = 0.01 M NaCl. 

 

Imogolite is an important component in the soils where it occurs. Its small size, with 

an external diameter of 2.2 nm and tube lengths in the order of the micron, and its poor 

crystallinity give it large specific surface areas. Brunauer, Emmett and Teller (BET) 

measurements using N2 before and after degassing at 275 ºC yielded 400 m2/g 

(Ackerman et al., 1993). It is important to note that these BET values are much smaller 

than the ideal crystallographic value of a dry imogolite nanotube, which would be of 

~1200 m2/g. Different reasons can be invoked to explain this difference: 

- Imogolite nanotubes form bundles, therefore reducing the accessible area for the 

adsorption of N2 molecules (Ackerman et al., 1993; Mukherjee et al., 2005). 



 6

- The formation of these bundles makes that imogolite develops porosity. 

Thermogravimetric analyses have shown that water is still present in these pores 

at the temperature where the dehydroxylation (and hence the collapse of the 

tubular structure) occurs (Annex I). Measured values of water content by 

Controlled Rate Thermal Analyses (Annex I) yield a weight fraction of 13% 

(w/w) at 275 ºC, equivalent to a water content of one hydration layer. This 

strongly adsorbed water contributes to reduce the specific surface area measured 

by BET methods. 

- The internal pore of imogolite has a diameter of ~1 nm (Cradwick et al., 1972). 

This small size and the high density of silanol groups on the surface create an 

environment with a high electrostatic potential, where water molecules may be 

very strongly adsorbed. This has been shown by Creton et al. (2008) who 

calculated values of the diffusion coefficients of the water molecules in the 

internal pore four times smaller than for bulk water (Creton et al., 2008a). 

Water is thus an important component of the imogolite structure. However, only few 

studies have focused on the structure and dynamics of water adsorbed on imogolite 

(Ackerman et al., 1993; Creton et al., 2008a; Creton et al., 2008b; Farmer et al., 1983). 

Creton et al. (2008a,b) performed Molecular Dynamics (MD) simulations of the water 

present in the inter-tube pores of hexagonal close-packed bundles of imogolite showing 

that water interacts with the silanol groups much strongly than with the aluminol groups 

on the external surface. This strong interaction and the reduced size of the internal pore 

(diameter ≈ 1 nm) difficult the diffusion of water along the tube axis (Zang et al., 2009), 

making the external imogolite surface the more relevant face from a geochemical point 

of view (Arai et al., 2006). 

Chapter 4 of this thesis presents a theoretical MD study of the water structure at the 

gibbsite and at the external imogolite surface. Adsorption energies and patching effects 

at the surface are discussed, and their impact on the surface chemistry of imogolite is 

discussed. MD simulations allow studying the behavior of water at the internal and 

external surfaces of imogolite separately. The use of some experimental methods, like 

thermogravimetry and infrared spectroscopy is presented in the Annex I, which stress 

the needs for other spectroscopic techniques to be applied in the study of water 

structure and dynamics on imogolite. 
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Although much advance has been done in the understanding of the charge behavior 

of mineral surfaces, the surface acidity constant –or protonation constant– is revealing 

as a much more dynamic concept than it was thought. The studies about the protonation 

constants of gibbsite are a good example of the evolution of this concept. Hiemstra et al. 

(1996) developed a MUSIC model for gibbsite reporting values for the first (pKa1) and 

second (pKa2) protonation constants of the (001) surface sites of 0 and 11.9, respectively 

(Hiemstra and VanRiemsdijk, 1996; Hiemstra et al., 1996). More recently other authors 

have applied ab-initio molecular modeling combined with a bond-valence analysis to 

the determination of intrinsic protonation constant values, showing the predicted 

dependence on the mineral surface charge (Bickmore et al., 2004; Schindler and 

Stumm, 1987). These authors have reported one value (pKa1 = 5.2) in a pH range of 

environmental relevance, and very similar to the experimental value of 5.9 ± 0.2 

reported by Gan et al. (2006) (Bickmore et al., 2004). The accurate determination of 

surface acidity constants seems then a difficult task. The new spectroscopic methods as 

the one described by Gan et al. (2006) are only applicable to the study of mineral 

surfaces with no defects and relatively large surfaces (in the order of the µm2). The 

determination of acidity constants for functional groups belonging to minerals with 

sizes in the nanoscale is thus very difficult to attain experimentally. 

In the case of imogolite, the big size of the unit cell prevents the use of ab-initio 

molecular dynamics techniques that could be applied in the same way as Bickmore et 

al. (2004) did for the surface of gibbsite. For this reason, in this thesis, we have chosen 

to use classical MD to study the hydrated surfaces of gibbsite and imogolite, and to 

evaluate the effect that the curvature of the imogolite surface has over the structure and 

energetics of adsorbed water. Simulations are also useful to constrain the number of 

hydrogen bonds per surface adsorption site, a parameter that is usually fitted in surface 

complexation models. 

 

1.1.2.- Nanoparticles in Acid/Rock Mine Drainage: Schwertmannite 

Schwertmannite is a poorly crystalline ferric oxyhydroxysulfate that forms ochreous 

coatings on sulfide-bearing rocks and soils. It also precipitates in streams and lakes 

receiving acid mine drainage where the weathering of iron sulfide minerals produces 

SO4 and Fe(II) acid solutions. When exposed to the atmosphere, bacterially mediated 

oxidation of Fe(II) occurs and large quantities of nanoparticulated Fe(III) phases may 
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form. Moreover, schwertmannite is a key solid in removing acidity in treatment systems 

where Fe(II) is rapidly oxidized by addition of alkalinity to acid mine drainage 

(Gagliano et al., 2004; Rotting et al., 2008). Further, in anoxic environments such as 

acid lakes, flooded soils and wetlands, schwertmannite particles can serve as electron 

acceptor for Fe(III) reducing bacteria, releasing the Fe(II) necessary for sulfate 

reduction and neoformation of iron sulfides (Burton et al., 2007). Schwertmannite forms 

aggregates of nanoparticles of typical hedge-hog morphology (see Figure 1.4) 

 

Figure 1.4. Scanning Electron Micrographs of schwertmanite aggregates, showing the 

typical hedge-hog morphology. Image courtesy of Carles Ayora (CSIC, Barcelona, 

Spain). 

 

Due to its high specific surface and positive charge in acid waters, schwertmannite 

efficiently removes oxyanions such as AsO4
3-, SeO4

2- and CrO4
2- from water (Carlson et 

al., 2002; Regenspurg and Peiffer, 2005; Waychunas et al., 1995). However, despite its 

ubiquity and its important geochemical role, schwertmannite was only recently 

recognized as a mineral (Bigham et al., 1994). Reasons for this late recognition include 

its poor crystallinity, its frequent association with more crystalline phases such as 

goethite and jarosite, and its metastable structure, which transforms into goethite and 

jarosite within months (Acero et al., 2006; Bigham et al., 1996). 

In this thesis, a combined study of Pair Distribution Functions, X-ray diffraction 

patterns and electronic structure calculations has been successfully applied to the 

resolution of the structure of schwertmannite. This structure has been a subject of 

debate since its discovery, 15 years ago, due to the lack of long-range order inherent to 

the structure. The use of PDF allows examining the local structure of the octahedral iron 

frame, and fitting it against a real space model, a possibility that it is hindered in the 
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reciprocal space by the broad reflections present in the diffraction patterns. On the other 

hand, the position of the sulphate molecules within the structure has been shown to have 

a big impact on the intensities of some diffraction peaks. Simulations of diffraction 

patterns have allowed us to discern the most probable positions of the sulphates within 

the structure. Results from electronic structure calculations support the proposed 

structure obtained from PDF. 

 

 
1.2.- Selenium bioavailability in volcanic soils: relevance of imogolite 

nanotubes 
Selenium has been identified during long time as a dangerous substance because of 

its toxicity and it has been only in the recent past that its physiological importance as a 

trace element fundamental to health has been assessed. (Schwarz and Foltz, 1957), 

linked the existence of liver, muscle and heart diseases with selenium deficit. The 

Kashin-Beck disease, an articulation disease found in children from the north of China, 

north of Korea and Siberia, was shown to be related to selenium deficit in soils (Stone, 

2009). Selenium is thus known as a ‘double-edged sword’ element, having one of the 

narrowest ranges between dietary deficiency (< 40 µg day-1) and toxic levels (> 400 µg 

day-1) (Levander and Burk, 2006). Therefore, it is essential to understand the physico-

chemical and biological processes that govern its bioavailability in the environment.  

The bioavailability of a trace element is related to the factors that make it available 

to an organism, that is, in a form that can be transported across the organism’s 

biological membrane (Reeder et al., 2006). However, this concept is not very precise, 

as, for instance, a substance could be adsorbed on a colloidal particle small enough to 

pass through this membrane. This has motivated the use of the term “bioaccessibility”, 

representing “the fraction of a substance that becomes soluble within the gut or lungs 

and therefore available for absorption through a membrane” (Reeder et al., 2006; Ruby 

et al., 1996; Ruby et al., 1999). Bioavailability and bioaccessibility rely then on a 

variety of entangled physico-chemical factors affecting mainly solubility of the 

substances, like speciation, ionic strength, pH or redox potential. 

 

Selenium speciation: its role on selenium bioavailability 

An example emphasizing the relevance of selenium bioavailability against high 

selenium concentrations has been provided by (Amweg et al., 2003). The authors have 
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studied the effects of an algae-bacterial selenium-reduction system applied to irrigation 

waters of the San Joaquin Valley (California, USA). The system helped to reduce 80% 

of the influent selenium in waters, but the concentration of selenite and organic 

selenium suffered an 8-fold increase. As a result of the water treatment, selenium 

concentrations in organisms increased 2-4 times due to the presence of these two forms 

of selenium, which are more bioavailable to biota than the original species. Speciation is 

thus a key factor in the fate of selenium species in the environment and in their 

availability to organisms. Usually, Se(0) is considered to have little toxicological 

significance to most organisms (Combs et al., 1996; Schlekat et al., 2000), although 

biological activity has been reported for elemental selenium nanoparticles (Zhang et al., 

2005). Selenite and selenate are both water soluble inorganic species typically found in 

aerobic water sources. Selenite is both more bioavailable and approximately 5 to 10 

times more toxic than selenate (Lemly, 1993). Organic selenium, in the form of 

selenide, Se(-II), is the most bioavailable form, and it is taken up by algae 1000 times 

more readily than inorganic forms (Lemly, 1993; Maier et al., 1993). Another example 

showing the importance of selenium speciation in soils on bioavailability is the case of 

selenium deficiency in the Zhangjiakou District of the Hebei province in China 

(Johnson et al., 2000). Soils from the Zhangjiakou District present an average of 0.15 

mg of selenium kg-1, which can be considered a low concentration, but not a critically 

low level. In this area, the Keshan disease, a heart disease, affects some part of the 

population. This disease had been usually attributed to a lack of selenium in diet. 

However, (Johnson et al., 2000) demonstrated that the prevalence of the disease is not 

correlated with a lack of selenium in the soil as might be expected. The cause for the 

selenium deficiency is rather a result of the fact that the soil-bound selenium is not in a 

form available for plants. These soils are rich in organic matter, which can be the 

responsible of the selenium immobilization, either through direct adsorption or through 

redox processes: reduction of selenate to selenite would favor the adsorption of the 

latter onto iron and aluminum oxyhydroxides. 

 

Role of adsorption processes on selenium bioavailability 

Apart from speciation, other factors have influence on selenium bioavailability, like 

the sorption properties of soils, sediments and aquifer substrates, the mobility of the 

different species and their solubility with respect to solid phases. Different processes at 

the mineral/water interface can be considered responsible for the selenium associations 
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with mineralogical soil components: adsorption, co-precipitation and surface 

precipitation processes, the two latter depending on solubility of the target solid phases. 

Adsorption is defined as ‘the process through which a chemical substance accumulates 

at the common boundary of two contiguous phases’ (Sposito, 2004). It highly depends 

on factors like ionic strength of the medium, which can reduce the adsorption properties 

of some minerals through the reduction of the size of Stern layer of adsorption (Sposito, 

2004). Competition effects are also an important factor which may reduce selenium 

adsorption, e.g., when fertilizers are applied on soils, like phosphates or nitrates. For 

instance, selenite sorption in Indian soils have been studied by (Dhillon and Dhillon, 

2000), showing that selenite adsorption is reduced by a 50% when phosphate anions are 

present as competitors. 

 

Selenium species can be adsorbed through two different mechanisms at the 

mineral/water interface (Balistrieri and Chao, 1987; Hansmann and Anderson, 1985; 

Neal et al., 1987a; Neal et al., 1987b): outer-sphere and inner-sphere complexation. 

Formation of outer-sphere complexes is an electrostatic-driven sorption mechanism, 

strongly dependent on surface charge and thus on solution ionic strength (Sposito, 

2004). Inner-sphere complexes form when an ion is adsorbed “specifically” on a 

“crystallographic site”, i.e., when covalent or ionic bonds are created with functional 

sites present on the mineral faces. These bonds have a stronger degree of covalence and 

are more stable than outer-sphere complex formation (Sposito, 2004). They are 

responsible in much cases of the long-term immobilization of ions at the mineral/water 

interface (Duc et al., 2003).  

 

Soils from volcanic regions, volcanic-ashes produced simultaneously to volcanic 

gases, and sediments developed from these ashes are usually rich in selenium (Byers et 

al., 1938; Davidson and Powers, 1959; Ihnat, 1989; Lakin, 1972). But, paradoxically, 

diseases related to selenium deficiency (i.e., ‘white muscle disease’) have been reported 

in regions of the world dominated by selenium-rich volcanic soils such as andosols 

(Rayman, 2000). In fact, andosols are the soils with higher selenium distribution 

coefficients (Nakamaru et al., 2005). The particle / solution distribution coefficient (Kd) 

of selenium in Japanese agricultural andosols are as high as 600-800 L kg-1. The origin 

in this apparent discrepancy is two folded: on one hand, it has been reported that the 

specific mineralogical characteristics of volcanic soils lead to the immobilization of 



 12

large quantities of organic matter (Wang and Chen, 2003); selenium associates with 

organic matter being immobilized and thus becomes unavailable to the biota (Wang and 

Gao, 2001). As stated above, clear difference should be made then between low 

bioavailability and deficiency, terms that have been used in a confusing way by some 

authors (Rayman, 2000; Reilly, 1997; Sirichakwal et al., 2005). On the other hand, little 

is known about the specific interactions of selenium oxyanions (predominant species of 

inorganic selenium in volcanic soils) and the mineralogical components specific to these 

soils (imogolite and allophane), which could be responsible of the low selenium 

bioavailability. Some studies have highlighted this possibility: sequential extractions 

performed on andosol samples have shown high correlation coefficients between 

occurrence of short-range-ordered aluminosilicates such as allophane, imogolite and 

active aluminum, and selenium Kd values (Nakamaru et al., 2005). Selenium 

bioavailability in these soils may be thus controlled by the adsorption of selenite and 

selenate, the two predominant species in those oxic soils, on mineral surfaces and 

organic matter. 

In Chapter 3 of this thesis a study of the adsorption mechanisms of selenite, SeO3
2-, 

and selenate, SeO4
2-, the two oxyanions present in aerated soils like andosols, on two 

different specimens of imogolite (synthetic and biogenic) will be presented. 

 
 
 
1.3.- Diffraction techniques for structural studies of environmental 

nanoparticles  
Nanosize minerals present structural features that difficult their study by classical 

diffraction analysis methods. Atoms in their surfaces are exposed to interactions with 

solvents and ionic species, which cause relaxation effects and so deviations from the 

bulk periodic structure. Moreover, the ratio of surface atoms vs. bulk atoms scales with 

1/R, being R the radius of the mineral nanoparticle (assuming spherical shape). This 

implies that for very small nanoparticle sizes relaxation effects will be very relevant to 

the average structure. On the other hand, reduced number of atoms in the bulk implies 

that only few atomic planes will be participating coherently in the diffraction. This 

translates into ill-defined Bragg peaks in the diffraction patterns, and a non-negligible 

diffuse scattering. 
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Classical diffraction analysis methods are limited under these conditions, as they 

rely on the Bragg peaks’ positions and intensity. This kind of analyses are performed 

usually in the reciprocal space, through the use of convolution methods as Rietveld 

refinement (Rietveld, 1969), pattern reconstruction through microstructural analyses 

(Lanson, 1997), or following de-convolution strategies, as the Warren-Averbach method 

(Warren, 1969). These methods have been applied to the study of environmental 

nanoparticles during the last 30 years. However, in most cases present in the literature, 

their use has been restricted to identification purposes. This is especially true in the 

cases of imogolite and schwertmannite. The diffraction patterns of these two 

environmental nanoparticles present very broad oscillations, which prevent the use of 

any convolution or de-convolution technique (Barham, 1997; Bigham et al., 1994; 

Farmer et al., 1983; Vandergaast et al., 1985; Wada, 1989). 

In some cases, the use of these techniques has led to incorrect or incomplete results, 

generating debates that are still open today. It is the case of the structures of the 

mackinawite and ferrihydrite nanoparticles (Michel et al., 2005; Michel et al., 2007a; 

Michel et al., 2007b; Wolthers et al., 2003). The first analysis of fresh precipitates of 

mackinawite presented by Wolthers et al. (2003) proposed a structure composed by two 

different tetragonal phases with different lattice parameters, one of them corresponding 

to the lattice planes closer to the surface of the nanoparticle. However, the analysis 

relied on peak fitting of very broad reflections. Recently, a paper by Michel et al. (2007) 

showed using real-space analysis of PDF functions that only one phase was necessary to 

describe its local atomic ordering. Interestingly, the resulting lattice parameters from the 

PDF analysis coincided with the lattice parameters of bulk mackinawite (Lennie et al., 

1995) meaning that, in this system, relaxation effects at the surface and structural strains 

do not affect the nanoparticle structure. The structure of ferrihydrite has been a subject 

of debate over the last 20 years. The most widely accepted idea is that it is formed by 

three different phases: major defect-free crystallites, minor defective crystallites and 

ultradisperse hematite (Manceau and Gates, 1997). In a recent paper, Michel et al. 

(1997) have proposed a structure with the Baker-Figgis δ-isomer of the Al13-Keggin 

structure as its structural motif. The PDF analyses reported in this paper show a perfect 

match between the real space structures of the experimental and the proposed Al13-

Keggin structure for ferrihydrite. However, some authors have reported that, although 

the short-range structure is well reproduced, there is a lack of agreement in the 

diffraction pattern, with one diffraction peak absent, indicative of a different long-range 
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ordering (Rancourt and Meunier, 2008). This result highlights the complementarity of 

short-range real-space studies with long-range diffraction pattern analyses. 

This complementarity is highlighted in the Chapter 5 of this thesis, devoted to the 

study of the structure of schwertmannite, a nanocrystalline iron oxyhydroxysulfate. 

While the presence of sulfate cannot be discerned from PDF measurements due to the 

dominant signal of Fe-Fe and Fe-O correlations, variations in sulfate concentration in 

the samples are responsible of strong variations in the intensity of the (101) reflection in 

the X-ray diffraction pattern of schwertmannite. This result indicates that, although 

schwertmannite has a small coherent domain size, there is an underlying long range 

order in the structure. 

The use of PDF analysis (presented in Chapter 2), in combination with other 

techniques, has revealed thus as a powerful technique to the study of mineral 

nanoparticles, with diffraction patterns dominated by diffuse scattering that are very 

difficult to analyze by reciprocal-space methods. 
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Chapter 2 

 

Experimental and Theoretical Methods 
 

 

This chapter briefly presents some of the experimental and theoretical methods used 

in this work, obviating explanations of other widely used techniques as transmission 

electron microscopy, infrared spectroscopy or wet chemical methods that will be 

explained in the chapters where their use is presented. The experimental techniques 

presented here include X-ray absorption spectroscopy and X-ray Pair Distribution 

Function. Key ideas behind ab-initio DFT calculations and Molecular Dynamics 

simulations will be presented too. The purpose of this chapter is to provide some basic 

information about the methods to the reader not used to them, allowing him to 

understand the results obtained within the thesis. 

 

2.1.- Pair Distribution Function technique 
The PDF is a diffraction technique which involves the use of (1) high energy 

radiation (high energy X-rays, electrons or hot neutrons) and (2) a real-space analysis of 

the data mediated by a Fourier transformation of the interference function or S(Q). The 

theoretical basis of the PDF technique will be explained here in terms of neutron and X-

ray scattering, the two types of radiation used in this thesis. 

The diffracted amplitude of neutrons or X-rays after interacting with a sample can be 

expressed in terms of the like this: 

 ∑=
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where Q
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, a vector in the reciprocal space, is the scattering or diffraction vector, or the 

momentum transfer, nxr  is the atomic position, bn is the scattering amplitude of the atom 
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being iQ
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 the momenta of the incident and scattered radiation respectively, λ the 

wavelength of the incident and scattered radiation (we consider only elastic processes) 

and θ is the half the angle between iQ
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 and fQ
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In equation 2.1, ...  represents a compositional average: 
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being cα the concentration of element α and N the number of atoms in the sample. 

Equation 2.1 relates the positions of the atoms in a sample with the scattered amplitude 

through a Fourier transformation. The inconvenient to solve crystallographic problems 

using this equation is that the scattered amplitude )(QA
r

 is not available experimentally. 

Instead, we can measure the intensity, or what is the same, the square of the magnitude 

of )(QA
r

: 
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where: 

 xdvrxrxP )()()( rrrr += ∫ ρρ  (2.6) 

is the electron density autocorrelation function, or the Patterson function. If we 

normalize the function )(QI N

r
 by the number of atoms in the system N, and by the 

square of the average atomic form factor or scattering amplitude (or scattering length), 

we have the definition of the interference function: 
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In isotropic or randomly oriented systems as powders or nanoparticles, the so-called 

‘isotropic approximation’ can be made (Cuello, 2007), yielding the ‘Debye equation for 

diffraction’ (Debye, 1915): 
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Equation 2.8 links the observed scattered intensity, IN, with a sum over all the pairs of 

atoms in the sample, rij. S(Q) is called the ‘static structure factor’, being Q the norm of 

the scattering vector. A real-space analysis of this intensity distribution in series of sinus 

functions can be made through a Fourier transformation: 

 ∫
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The function g(r) is called the Pair Distribution Function (PDF). It is proportional to the 

probability of finding two atoms separated by a distance of r. In contrast with the 

partial-PDF obtained with other spectroscopic methods such as Extended X-ray 

Absorption Fine Structure (EXAFS), the PDF function obtained from diffraction 

experiments is not chemically selective, thus giving a structural description of the local 

order around all the atoms in the structure. 

More details about this technique can be found in (Egami and Billinge, 2003). 

 

2.2.- X-ray Absorption Spectroscopy 
X-ray absorption spectroscopy (XAS) is a probe of the local structure around 

selected atom species in solids, liquids and molecular gases (Kelly et al., 2008; Teo, 

1986). For atoms in a condensed system, the observed X-ray absorption spectrum is not 

a smooth function of energy but oscillates for several hundreds eV above the absorption 

edge. The details of these oscillations, called EXAFS (Extended X-ray Absorption Fine 

Structure), depend strongly on the local atomic environment of the absorbing atom, with 

a few nearest neighboring atoms accounting for essentially all the observed variations in 

the absorption. 

X-ray absorption spectroscopy is a useful complement to X-ray diffraction which 

provides accurate long-range information about the structure of crystalline materials. In 

a typical XAS experiment, performed in transmission geometry, the intensity I(x, E) of 

transmitted X-rays through a sample of thickness x is measured as a function of energy. 

The loss of X-ray intensity is given by the exponential Lambert-Beer attenuation law:  

 xEe
EI
ExI )(

),0(
),( µ−=  (2.15) 

where µ(E) is the linear absorption coefficient. As well as depending on the energy of 

the incident beam, µ also depends on the composition of the irradiated sample. The 
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absorption coefficient µ(E) is well approximated by a sum of the absorption coefficients 

of individual atoms, proportional to the x-ray absorption cross section σ(E). 

In the X-ray region (below 50 keV approximately), the cross section for the 

interaction of radiation with matter is dominated by photo-electric excitation processes 

which manifest themselves as sharp rises in the absorption, usually termed edges (i.e. K, 

L1, L2 and L3), when the incident photon has an energy equal to the binding energy of 

a core-level electron (i.e. 1s, 2s, 2p1/2 and 2p3/2). Clear oscillations of the absorption 

coefficient are observed in a wide energy region above the edge (of about 1000 eV). 

The absence of such modulations in low density systems and gases points to a strict 

relationship between EXAFS oscillations and the presence of neighboring atoms. 

EXAFS and its local nature are best understood in terms of wave-behavior of the 

photo-electron created in the absorption process. The wave associated with the photo-

excited electron can be scattered by neighboring atoms as shown in Figure 2.1 and 

returns to the photo-absorber. The interference between the outgoing and backscattered 

components leads to modulations of the final state wave-function as a function of the 

electron energy. This in turn modulates the absorption coefficient µ (E) producing the 

EXAFS oscillations.  

 
Figure 2.1. Schematic view of the radial component of the outgoing (continuous line) and 

backscattered parts (dashed lines) of the photo-electron wave in a condensed system. The 

interference between these two components leads to modulations of the final state. 

 

The X-ray absorption spectrum is traditionally divided into two regimes: X-ray 

Absorption Near Edge Structure (XANES) and Extended X-ray Absorption Fine 
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Structure (EXAFS). Though the two regions overlap and have the same physical origin, 

this distinction is convenient for the interpretation: 

• XANES region: (within about 50-100 eV above the absorption edge) the 

photoelectron is strongly scattered by the atoms surrounding the photo-absorber 

and the amplitude of the multiple scattering is important. The shape of the XAS 

spectra in this region is strongly sensitive to the formal oxidation state and 

coordination chemistry of the absorbing atom; 

• EXAFS region: (from about 80 eV above the edge) the photo-electron 

has sufficient energy for treating the multiple scattering in terms of distinct two-, 

three-, …, n-body contributions. Nevertheless, the two-body contributions are 

generally the dominant terms. 

The EXAFS function is defined as: 
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where )(2
02 EEmk −=

h
is the wave-vector is the wave-vector of the photo-electron 

(E0 is the core binding energy) and µ0 is a smooth, atomic-like, background absorption 

of an “embedded atom", in the ideal absence of neighboring scatterers. 

In the following we report the simple analytic form of the EXAFS signal χ(k) 

obtained from the Diffusion Theory (Rehr and Albers, 2000). It assumes both the 

approximation of spherical waves for the wave-function associated to the outgoing and 

backscattered photo-electrons and the single scattering approximation (meaning that it 

considers only two-body contributions). Even though this formulation assumes the rude 

single scattering approximation to the problem, it is useful at present because it provides 

an easy general comprehension of XAS. The final analytic form for equation 2.16 is 

expressed as: 

 [ ]∑ −−Φ+=
j

krk
jjj

jjj eerkkrkrAk )(/22 22

),(2sin),()( λσ
χ  (2.17) 

where 

- The sum over j involves all the coordination shells around the photo-

absorber atom. 

- The amplitude factor A(rj, k) is proportional to Nj , i.e., the number of 

atoms in the j-th shell and it is inversely proportional to k·rj
2 (rj is the distance 

between the photo-absorber site and the atoms in the j shell). 
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- The 
222 kje σ− term is similar to the diffraction Debye-Waller factor and it is 

related to the thermal disorder, with the difference that in EXAFS σj
2 is the 

mean-square relative displacement (MSRD) of j atom (or shell) with respect to 

the absorber atom: 

ρσσσσσ jajaja 2222 −+=− , 

being the a index a reference of the photo-absorber atom, and ρ a correlation 

factor with values -1 ≤ ρ ≤ 1. 

- The )(/2 kr jje λ−  term describes the inelastic processes during the propagation 

of the photo-electron and  λj(k) is the limited mean-free-path of the electron. 

- Φj(k, r) is the phase shift due to photo-electron diffusion from the photo-

absorber site and from the neighboring atoms. 

 

2.3.- Simulations 
In this section we shortly describe the principle of the ab-initio Density Functional 

Theory (DFT) approximation adopted by the Vienna Ab-initio Simulation Package 

(VASP) (Kresse and Hafner, 1993; Kresse and Hafner, 1994) and DMol3 (Delley, 

2000), which were the codes employed in this work. We will give some basics about the 

Molecular Dynamics and Monte Carlo simulations (Frenkel and Smit, 2002) performed 

with the LAMMPS (Plimpton, 1995) and Sorption (Accelrys Inc.) codes, respectively. 

 

2.3.1.- Ab-initio DFT calculations 

In physics and chemistry, a calculation is said to be ab-initio, or from first 

principles, if it starts directly at the level of established laws of physics. Nevertheless, 

some approximations are needed to make achievable such calculations as discussed 

below. This method provides the main tools for the understanding of the properties of 

matter, in all its possible states, by solving the fundamental equations for electrons. 

In quantum mechanics a system is described by a wave function Ψ which is 

determined by the solution of the Schrödinger equation describing the nuclear and 

electronic motions: 
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where r and R correspond to the positions of the Ne electrons and Ni ions, eT̂  and iT̂  are 

the electronic and nuclear kinetic energies and iiV −
ˆ , eeV −

ˆ  and eiV −
ˆ  are the ion-ion, 

electron-electron and ion-electron coulombic interactions, respectively. 

Due to the impossibility of solving exactly this equation when dealing with many 

body particles some approximations are needed. In the following we briefly describe the 

approximations adopted during this work: 

 

• Adiabatic (or Born-Oppenheimer) approximation: as the general electronic 

velocities are much larger than the nuclear ones, hence, the nuclear and electronic 

motions can be decoupled and treated separately. In particular, the Schrödinger 

equation for the system can be decomposed as: 

 )()(),( RrRr R Φ=Ψ ψ  (2.19) 

where the electronic wave-function, ψR(r), is only parametrically depending on the 

nuclear position variable R. Hence, each electronic structure calculation is 

performed for a fixed nuclear configuration. 

 

• DFT: within this approximation the electronic properties of a system of many 

interacting particles can be viewed as a functional of the ground state density ρ(r). 

The modern formulation of density functional theory originated in a famous work 

written in 1964, where Hohenberg and Kohn provided the proofs for the existence 

of such a functional (Hohenberg and Kohn, 1964). 

 
Kohn-Sham equations 

Subsequently, Kohn and Sham (Kohn and Sham, 1965), starting from the 

variational principle established by Hohenberg and Kohn, proposed to replace the 

original many-body problem by an “auxiliary" independent particle problem. The 

ansatz of Kohn and Sham assumes that the ground state density of the original 
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interacting system is equal to that of some chosen non-interacting system. This 

leads to independent particle equations that are exactly solvable with the many-

body terms incorporated into an exchange-correlation functional of the density. 

The Kohn-Sham (KS) equations for the auxiliary system of N non-interacting 

electrons are: 

 iiieff rv ψεψ =
⎭
⎬
⎫

⎩
⎨
⎧ +∇− )(

2
1 2  (2.20) 

and 
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where ρ(r) is the electronic density of the system, veff(r) is an effective potential 

resulting from the external potential, the Hartree electronic interaction and the 

exchange and correlation potential [ ])(rExc ρ  (which is discussed below); εi 

(multipliers of the KS equations) are related, in first approximation, to the energy 

levels occupied by the interacting electrons. The procedure to obtain the total 

energy of the system is completely autoconsistent. The solution of equation 2.20 

produces the wave functions ψi and then the electronic density from equation 2.21 

which is used to define the effective potential in equation 2.20. This process is 

repeated until the tolerance imposed on the difference between the input and the 

output density is reached. 

 

Exchange and correlation energy 

The Local Density Approximation (LDA) holds when ρ(r) is a smooth 

function of r. In this case, the exchange and correlation functional [ ])(rExc ρ  is 

approximated by an integral over space of the exchange and correlation energy 

which is assumed to be the same as in a homogeneous electron gas of ρ(r) density. 

On the other hand, for very inhomogeneus systems the Generalized-Gradient 

Approximation (GGA), which depends on the density and on its gradient, is 

preferably used. In this work we have used the GGA approximation.  

 

• Pseudopotentials: the physical properties of solids are dependent on the 

valence electrons to a much greater degree than on the tightly bound core 

electrons. This approximation uses this fact to replace the complicated effects of 
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the motion of the core electrons of an atom or ion and its nucleus with an effective 

potential, or pseudopotential. This fictitious potential acts in the internal region of 

the atoms, reproducing the screening effect of the core electrons within the core 

region. The “all-electron", i.e., the exact wave-functions, are replaced by pseudo-

wavefunctions. The pseudopotential is then generated by fulfilling the following 

requirements: 

- The corresponding pseudo-wavefunctions and the all-electron agree beyond a 

chosen core radius Rc. 

- Pseudo- and all-electron eigenvalues agree for a chosen atomic reference 

configurations meaning that the pseudopotential must describe the valence 

properties in a different environment including atoms, ions, molecules and 

condensed matter (transferability). 

- The logarithmic derivatives of the pseudo and the all-electron wavefunctions 

agree at Rc. 

- The integrated charge inside Rc for each wavefunction agrees meaning that 

the pseudo- and the all-electron wavefunctions have the same norm (norm-

conserving pseudopotential). 

• Basis set expansion: in order to solve the 2.20 and 2.21 KS equations it is 

necessary to reduce the problem to a finite number of variables. This is done by 

expanding the unknown ψi(r) wavefunctions in terms of known basis function. 

The most common basis function sets are plane waves and localized atomic 

orbitals. In this work we have used two different codes, each of one using a 

different type of functions: VASP uses plane waves (Kresse and Hafner, 1993; 

Kresse and Hafner, 1994) and DMol3 uses numerical orbitals (Delley, 1990; 

Delley, 2000) that have been obtained from calculations performed on isolated 

atoms. 

 

2.3.2.- Classical Molecular Dynamics and Monte Carlo simulations 

In Molecular Dynamics and Monte Carlo simulations, macroscopic properties of a 

system are studied through microscopic simulations. The connection between 

microscopic simulations and macroscopic properties is made via statistical mechanics 

which provides the rigorous mathematical expressions that relate macroscopic 

properties to the distribution and motion of the atoms and molecules of the N-body 
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system. Some definitions of concepts of statistical mechanics are given here (Frenkel 

and Smit, 2002): 

The thermodynamic state of a system is usually defined by a small set of 

parameters, for example, the temperature, T, the pressure, P, and the number of 

particles, N. Other thermodynamic properties may be derived from the equations of state 

and other fundamental thermodynamic equations. 

The mechanical or microscopic state of a system is defined by the atomic positions, 

q, and momenta, p. These can also be considered as coordinates in a multidimensional 

space called phase space. For a system of N particles, this space has 6N dimensions. A 

single point in phase space, denoted by G, describes the state of the system. 

An ensemble is a collection of points in phase space satisfying the conditions of a 

particular thermodynamic state. 

In a molecular dynamics simulation a sequence of points in phase space is generated 

as a function of time, in a deterministic manner. These points belong to the same 

ensemble, and they correspond to the different conformations of the system and their 

respective momenta. In a Monte Carlo simulation the sequence of points in phase space 

are generated in a stochastic way. 

In this work we have used two different ensembles: 

• Canonical Ensemble (NVT): It is a collection of all systems whose 

thermodynamic state is characterized by a fixed number of atoms, N, a fixed 

volume, V, and a fixed temperature, T.  

• Isobaric-Isothermal Ensemble (NPT): This ensemble is characterized by 

a fixed number of atoms, N, a fixed pressure, P, and a fixed temperature, T. 

In order to connect the macroscopic system to the microscopic system, time-

independent statistical averages are often introduced, which rely on the Ergodic 

hypothesis: 

 MD: 
timeensemble

AA =  (2.22) 

 MC: 
ionsconfiguratensemble

AA =  (2.23) 

This hypothesis states that if one allows the system to evolve in time indefinitely 

(MD) or to generate a big enough number of microscopic configurations, the system 

will eventually pass through all possible states. One goal, therefore, of a MD and MC 

simulation is to generate enough representative conformations such that this equality is 

satisfied. 
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2.3.2.1.- Molecular Dynamics method 

The molecular dynamics simulation method is based on Newton’s second law or the 

equation of motion, F = m · a, where F is the force exerted on the particle, m is its mass 

and a is its acceleration. From the knowledge of the force acting on each atom, it is 

possible to determine its acceleration in the system. Integration of the equations of 

motion then yields a trajectory that describes the positions, velocities and accelerations 

of the particles as they vary with time. From this trajectory, the average values of 

properties can be determined. Therefore, to calculate a trajectory, one only needs the 

initial positions of the atoms, an initial distribution of velocities and the acceleration, 

which is determined by the gradient of the potential energy function. 

The equations of motion are deterministic, i.e., the positions and the velocities at 

time zero determine the positions and velocities at all other times, t. The initial positions 

can be obtained from experimental structures, such as the X-ray crystal structure. In our 

case, all the atoms of the imogolite and gibbsite structures are allowed to move. We 

have chosen to use a flexible system because both systems have surfaces populated by 

OH functional groups, whose positions and orientations determine their ability to form 

H-bonds with water molecules. Furthermore, the force-field (set of parameters 

determining the potential) used in the simulations, CLAYFF (Cygan et al., 2004), has 

been calibrated using the gibbsite structure (between others) and thus it reproduces well 

the crystal structure of our systems. 

The initial distribution of velocities have been determined from a random 

distribution with the magnitudes conforming to the required temperature and corrected 

so there is no overall momentum, i.e.: 
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The velocities, vi, are have been chosen randomly from a Maxwell-Boltzmann 

distribution at room temperature, which gives the probability that an atom i has a 

velocity vx in the x direction at a temperature T: 
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The temperature can be calculated from the velocities using the relation: 
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where N is the number of atoms in the system. 

Integration Algorithms 

The potential energy is a function of the atomic positions (3N) of all the atoms in the 

system. Due to the complicated nature of this function, there is no analytical solution to 

the equations of motion, they must be solved numerically. We have chosen to use the 

Verlet algorithm as implemented in the code LAMMPS (Plimpton, 1995), the MD code 

used in our simulations. 

All the integration algorithms assume the positions, velocities and accelerations can 

be approximated by a Taylor series expansion: 
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where r is the position, v is the velocity (the first derivative with respect to time), a is 

the acceleration (the second derivative with respect to time), etc. To derive the Verlet 

algorithm one can write: 
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Summing these two equations, one obtains: 

 2)()()(2)( ttattrtrttr δδδ +−−=+  (2.29) 

The Verlet algorithm uses positions and accelerations at time t and the positions 

from time t-δt to calculate new positions at time t+δt. 

 

Time averages 

In order to extract thermodynamic information from the microscopic trajectories 

generated using the MD method, the Ergodic hypothesis is applied. An example is given 

here showing the calculation of the average potential energy of the system: 
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where M is the number of microscopic configurations in the simulation and Vi is the 

potential energy of each configuration. 

 

2.3.2.2.- Monte Carlo method 

A Monte Carlo simulation consists of some physical or mathematical system that 

can be described in terms of probability distribution functions, f(xN), being xN the 

coordinates of the N particles composing the system. The f(xN) describes the evolution 

of the overall system, whether in space, or energy, or time, or even some higher 

dimensional phase space. The goal of the Monte Carlo method is to simulate the 

physical system by random sampling from the f(xN) and by performing the necessary 

supplementary computations needed to describe the system evolution. In essence, the 

physics and mathematics are replaced by random sampling of possible states from f(xN) 

that describe the system (Frenkel and Smit, 2002): 
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where Z is the partition function of the system: 
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The central task of a MC simulation is to randomly generate points in the 

configuration space according to this probability distribution f(xN). This means that, on 

average, the number of points generated per unit volume around a point xN is equal to L 

· f(xN), where L is the total number of points that we have generated. Once we generate 

this distribution f(xN), a thermodynamic average of a magnitude A is calculated: 
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The MC simulations used in this work have been used to load water molecules on a 

fixed sorbent (imogolite and gibbsite) in the canonical ensemble (NVT). This was 

accomplished by a random series of insertion steps and equilibration moves (only 

moves that do not change the loading were permitted) until the specified loading was 

reached. 
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The Metropolis algorithm was used to generate the configurations. The acceptance 

probability from an m to an n configuration in the NVT ensemble is given by: 

 
⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡ −
=

Tk
EE

P
B

mn
nm exp,1min,  (2.34) 

where Em is the total energy of configuration m and En is the total energy of 

configuration n. In other words, transitions to a configuration of lower energy (En < Em) 

are always accepted, but transitions to high energy configurations (En > Em) are only 

accepted with a probability which decreases exponentially with the difference in energy 

to zero. As such, high energy configurations are unlikely to be sampled, precisely what 

the probability density of the canonical ensemble dictates. 

The Metropolis Monte Carlo method implemented in the Sorption code provides 

three step types for a canonical ensemble: rotation, translation and re-growth. A step 

type is selected at random, using the weights as specified at the start of the Sorption run. 

The selected step type is applied to a random sorbate as follows: 

• Rotation: The selected sorbate is rotated about its center of geometry by 

an angle of δθ about an axis, C. The rotation δθ is drawn from a uniform 

distribution between -∆r and ∆r, where ∆r is the maximum rotation amplitude as 

specified at the start of the Sorption run. The axis C is the vector from a random 

point on a sphere to its origin. 

• Translation: The selected sorbate molecule is translated by a distance of 

δr along an axis, C. The translation δr is drawn from a uniform distribution 

between 0 and ∆t, where ∆t is the maximum translation amplitude as specified at 

the start of the Sorption run. The axis C is the vector from a random point on a 

sphere to its origin. 

• Re-growth: The selected sorbate molecule is removed and a new sorbate 

is inserted at a random position in the sorbent with a random orientation. 
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Chapter 3 

 

Selenite and selenate adsorption mechanisms at the 

synthetic and biogenic imogolite – water interface 
 

3.1.- Introduction 
Three main processes are considered responsible for the selenium associations with 

mineralogical soil components at the mineral−water interface: adsorption, co-

precipitation and surface precipitation. The two latter depend on the solubility of the 

target solid phases. Adsorption is defined as ‘the process through which a chemical 

substance accumulates at the common boundary of two contiguous phases’ (Sposito, 

2004). It highly depends on factors like ionic strength of the medium, which can reduce 

the adsorption properties of some minerals through the reduction of the size of Stern 

layer of adsorption (Sposito, 2004), or the solution pH. Competition effects are also an 

important factor which may reduce selenium adsorption, e.g., when fertilizers are 

applied on soils, like phosphates or nitrates. For instance, selenite sorption in Indian 

soils have been studied by (Dhillon and Dhillon, 2000), showing a decreasing of 50% 

when phosphate anions are present as competitors. 

Two different mechanisms are responsible for the adsorption of selenium species 

(Balistrieri and Chao, 1987; Hansmann and Anderson, 1985; Neal et al., 1987a; Neal et 

al., 1987b): outer-sphere and inner-sphere complexation. Formation of outer-sphere 

complexes is an electrostatic-driven sorption mechanism, strongly dependent on surface 

charge and thus on solution ionic strength (Sposito, 2004). Inner-sphere complexes form 

when an ion is adsorbed “specifically” on a “crystallographic site”, i.e., when covalent 

or ionic bonds are created with functional sites present on the mineral faces. These 

bonds have a stronger degree of covalence and are more stable than outer-sphere 

complex formation (Sposito, 2004). They are responsible in much cases of the long-

term immobilization of ions at the mineral/water interface (Duc et al., 2003). 
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Selenium associations with iron, aluminum and manganese oxides and hydroxides, 

carbonates and organic matter have been widely reported (Selim and Sparks, 2001). Iron 

and aluminum oxides have surfaces with a variable charge in function of the solution 

pH, which implies a higher sorption process of selenite and selenate at low pH, where 

the positive charge is developed in the mineral surface (Yu, 1997). For instance, selenite 

and selenate species adsorb onto ferric oxy-hydroxides, the affinity of these solids for 

selenate being generally smaller than for selenite (Balistrieri and Chao, 1987; Hayes et 

al., 1987; Lo and Chen, 1997; Su and Suarez, 2000; Zhang and Sparks, 1990). This 

behavior may be related to differences in the nature of respective surface complexes, 

and to geometrical factors that may affect the extent of inner-sphere complexation. In 

general, selenite is sorbed by inner-sphere complexation, although the exact 

coordination (mono- or bi- dentate) depends on the mineral structure and surface 

charge. Ferric oxy-hydroxides whose surface reactivity toward selenium species has 

been studied include: goethite (Balistrieri and Chao, 1987; Hayes et al., 1987; Hiemstra 

and Van Riemsdijk, 1999; Lo and Chen, 1997; Manceau and Charlet, 1994; Parida et 

al., 1997; Peak and Sparks, 2002; Su and Suarez, 2000; Zhang and Sparks, 1990) HFO 

(Hydrous Ferric Oxide) (Davis and Leckie, 1980; Hayes et al., 1987; Lo and Chen, 

1997; Manceau and Charlet, 1994; Peak and Sparks, 2002; Su and Suarez, 2000), other 

iron oxy-hydroxide polymorphs (Parida et al., 1997) and hematite (Peak and Sparks, 

2002). A list of the different complexes formed on the surfaces of these solids is given 

in Table 3.1. 

 

The application of X-ray Absorption Spectroscopy (XAS) to the study of adsorbed 

complexes at the mineral-water interface has helped to explain striking macroscopic 

observations. It is the case of selenate oxyanions sorption on goethite and HFO. Some 

authors had pointed out that the sorption of selenate showed an ionic strength 

dependence, which was been traditionally attributed to the occurrence of an outer-

sphere (electrostatic) mechanism of adsorption (Hayes et al., 1987). (Manceau and 

Charlet, 1994), demonstrated using XAS that selenate binds onto the goethite and HFO 

structures by forming inner-sphere complexes. In this case, the influence of humidity 

and drying processes in the sample conditioning was the responsible for the different 

conclusions.  
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Species Adsorbent Surface complex Technique used Reference 

EXAFS Hayes et al. (1987) 

Manceau and Charlet 

(1994) 

α-FeOOH (Goethite) Bidentate inner-sphere 

DRIFT Su and Suarez (2000) 

α-Fe2Ο3 Bidentate inner-sphere X-ray Standing 

Waves 

(Catalano et al., 2006) 

am-Fe(OH)3 Bidentate inner-sphere DRIFT Su and Suarez (2000) 

Hydrous Ferric Oxide Bidentate inner-sphere EXAFS Manceau and Charlet 

(1994) 

Hydroxy Aluminum 

Polymer 

Bidentate inner-sphere 

Outer-sphere 

EXAFS, XANES Peak (2006) 

Hydrous Manganese 

Oxide 

Bidentate inner-spherea 

Monodentate inner-sphere 

EXAFS 

 

(Foster et al., 2003) 

Hydroxy 

Aluminosilicate 

Polymer 

Bidentate inner-sphere 

Outer-sphere 

EXAFS, XANES Peak (2006) 

Outer-sphere EXAFS (Charlet et al., 2007) 

SeO3
2- 

(selenite) 

Montmorillonite 

Bidentate inner-sphere EXAFS, XANES Peak (2006) 

am-Fe(OH)3 Bidentate inner-sphere ATR-FTIR, 

DRIFT 

Su and Suarez (2000) 

α-Al2Ο3 Monodentate inner-sphere EXAFS, XANES Peak (2006) 

γ-Al2Ο3 Inner-sphere EXAFS (Boyle-Wight et al., 

2002) 

Monodentate inner-sphere 

(at pH < 6) 

Outer-sphere (at pH > 6) 

Raman, ATR-

FTIR 

(Wijnja and 

Schulthess, 2000) 

Outer-sphere  Hayes et al. (1988) 

α-FeOOH (Goethite) 

Bidentate inner-sphere EXAFS Manceau and Charlet 

(1994) 

SeO4
2- 

(selenate) 

Hydrous Ferric Oxide Bidentate inner-sphere EXAFS Manceau and Charlet 

(1994) 
a The authors raise some concerns about the possibility that the observed Se(IV)-Mn(II) complex belongs 
to a surface precipitate and not to an adsorbed complex. 
 
Table 3.1. Surface complexes of selenium oxyanions adsorbed at the mineral/water interface of 

various iron, aluminum and manganese oxides and clays, whose structures have been described 

by spectroscopic methods. 
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A recent paper by (Fukushi and Sverjensky, 2007), in which an extended triple layer 

model taking into account the electrostatics of water dipole desorption during ligand 

exchange reactions has predicted these differences in behavior. 

The lower ionic strength and higher surface coverage used by (Hayes et al., 1988) is 

predicted to favor an outer-sphere selenate species, whereas the higher ionic strength 

used by (Manceau and Charlet, 1994), is predicted to favor an inner-sphere selenate 

species, as suggested also by (Peak and Sparks, 2002). This implies a high effect of the 

electrostatic potential of the mineral surface on the surface complexation mechanisms, 

as confirmed by (Hiemstra and Van Riemsdijk, 1999). These authors were able to fit the 

data of Hayes et al. (1988) assuming the formation of only a bidentate inner-sphere 

complex (Hiemstra and Van Riemsdijk, 1999). 

Other studies focusing on the adsorption mechanisms of selenium oxyanions include 

the works of (Peak and Sparks, 2002), who employed Extended X-ray Absorption Fine 

Structure (EXAFS) and Attenuated Total Reflectance-Fourier Transform Infrared 

(ATR-FTIR) spectroscopies to determine selenite bonding mechanisms on hematite, 

goethite, and hydrous ferric oxide (HFO). They also showed that selenate forms only 

inner-sphere surface complexes on hematite, but it forms a mixture of outer- and inner-

sphere surface complexes on goethite and HFO. This continuum of adsorption 

mechanisms is strongly affected by both pH and ionic strength. 

Aluminum oxide reactions to selenite and selenate have been studied to a lower 

extent than their iron oxides counterparts. The sorption properties and mechanisms are 

however very similar. Concerning selenite, (Papelis et al., 1995), showed using EXAFS 

that inner-sphere complexes are formed on gibbsite, fact corroborated by the ionic 

strength independent behavior of the adsorption. Same results were found by 

(Schulthess and Hu, 2001). (Peak, 2006), showed that selenite forms a mixture of outer-

sphere and inner-sphere bidentate-binuclear (corner-sharing) surface complexes on 

Hydrous Aluminum Oxides (HAO) and selenate forms primarily outer-sphere surface 

complexes on HAO. An interesting result shows that selenate forms outer-sphere 

surface complexes on corundum at pH 3.5 but inner-sphere monodentate surface 

complexes at pH 4.5 and above, on the same surface. This difference in behavior may 

be related to proton-promoted structural changes in the surface of corundum or to the 

co-existence of outer-sphere and inner-sphere complexes at low pH, which would be 

affecting the intensity of the EXAFS signal. Changes in the protonation state of the 
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selenate molecule are not expected due to the low pKa2 of the selenate molecule (pKa2 = 

1.8) (Peak, 2006). 

 

Following these works, we present here a combined theoretical and spectroscopic 

study of the selenite and selenate adsorption mechanisms at the imogolite − water 

interface. As it has been stated in Chapter 1.2, knowledge of the adsorption mechanisms 

of selenium oxyanions on imogolite is necessary to correctly understand the processes 

controlling selenium bioavailability in volcanic soils. Synthetic and biogenic imogolite 

samples have been used in this study. There is a general agreement in the literature than 

both synthetic and natural imogolite have similar atomic arrangements (Alvarez-

Ramirez, 2007; Bursill et al., 2000; Farmer et al., 1983). Only differences in the bundle 

structure of the nanotubes have been reported, that could be partly explained supposing 

that synthetic imogolite has a slightly bigger diameter (2.2-2.4 nm) (Farmer et al., 1983) 

than natural imogolite (2.0 nm) (Cradwick et al., 1972). In this study, we have used 

synthetic and natural biogenic samples in order to assure that the studies performed on 

synthetic imogolite correctly mimic the processes that can be found in nature. 
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ABSTRACT 

The adsorption mechanisms of selenate and selenite at the external surface of 

synthetic and biogenic natural samples of imogolite –a nanotubular aluminosilicate 

present in the clay fraction of andisols and spodosols– have been studied using X-ray 

Absorption Spectroscopy and molecular modeling. Both oxyanions form inner-sphere 

complexes at the imogolite surface. This specificity of imogolite for selenate and 

selenite affects the geochemical cycling of selenium in volcanic environments, and is 

proposed as one of the geochemical pathways influencing the deficiency of selenium in 

organisms living in volcanic soils.  
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INTRODUCTION 

Selenium is an essential element for nutrition of capital importance in the human 

biology. Nutrition scientists proclaim the year 1957 as the date when selenium started to 

be considered as an essential nutrient (Schwarz and Foltz, 1957). After its discovery by 

Berzelius, several episodes have underlined the importance of selenium in the human 

body. In 1935, 57 people from Keshan county (Heilongjiang province, China) died after 

a degenerative cardiac illness, related to the ‘white muscle disease’ suffered by animals 

(Gu, 1987). These illnesses were known to be related to a selenium deficit (Stone, 

2009). Another sickness, the Kashin-Beck disease, responsible for a disorder of the 

bones and joints of the hands and fingers, elbows, knees, and ankles of children and 

adolescents mainly from the regions of North China, North Korea and Siberia, has been 

related to a deficit in selenium (Moreno-Reyes et al., 1998; Stone, 2009). Soil selenium 

content analyses have shown an important deficit in these regions, which implies a daily 

dietary consumption less than 10 µg day-1 (Kohrle et al., 2000; Moreno-Reyes et al., 

1998). 

Soils from volcanic regions, volcanic-ashes produced simultaneously to volcanic 

gases, and sediments developed from these ashes are usually rich in selenium (Byers et 

al., 1938; Davidson and Powers, 1959; Ihnat, 1989; Lakin, 1972). But, paradoxically, 

diseases related to selenium deficiency (i.e., ‘white muscle disease’) have been also 

reported in regions of the world dominated by selenium-rich volcanic soils such as 

andosols (Rayman, 2000). In fact, andosols are the soils with higher selenium 

distribution coefficients (Nakamaru et al., 2005). The particle / solution distribution 

coefficient (Kd) of selenium in Japanese agricultural andosols are as high as 600-800 L 

kg-1. The origin in this apparent discrepancy is two folded: on one hand, it has been 

reported that the specific mineralogical characteristics of volcanic soils lead to the 

immobilization of large quantities of organic matter (Wang and Chen, 2003); selenium 

associates with organic matter being immobilized and thus becomes unavailable to the 

biota (Wang and Gao, 2001). Clear difference should be made then between low 

bioavailability and deficiency, terms that have been used in a confusing way by some 

authors (Rayman, 2000; Reilly, 1997; Sirichakwal et al., 2005). On the other hand, little 

is known about the specific interactions of selenium oxyanions (predominant species of 

inorganic selenium in volcanic soils) and the mineralogical components specific to these 

soils (imogolite and allophane), which could be responsible of the low selenium 

bioavailability. Some studies have highlighted this possibility: sequential extractions 
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performed on andosol samples have shown high correlation coefficients between 

occurrence of short-range-ordered aluminosilicates such as allophane, imogolite and 

active aluminum, and selenium Kd values (Nakamaru et al., 2005). Selenium 

bioavailability in these soils may be thus controlled by the adsorption of selenite and 

selenate −the two predominant species in those oxic soils− on mineral surfaces and 

organic matter. 

Imogolite (Al2(OH)3SiO3OH) is an aluminosilicate mineral commonly found in 

some of these volcanic soil environments, such as the clay fraction of andosols (Ugolini 

and Dahlgren, 1991; Wada, 1989). It is a poorly-crystalline mineral of nanotubular 

structure, with an internal face dominated by silanol (>SiOH0) functional groups and an 

external face composed by a curved gibbsite (Al(OH)3), populated by neutral aluminol 

groups (>Al2OH0) ((Cradwick et al., 1972), see Figure 1). 

 

 

 

Figure 1. Side view of the structure of imogolite. 

Light blue polyhedra are aluminum octahedral, dark 

blue polyhedra are silicon tetrahedral, red and white 

spheres are oxygen and hydrogen atoms respectively. 

 

 

 

The nanotubes have diameters of di ≈ 1nm (internal) and de ≈ 2.2 nm (external), and 

lengths in the order of the micrometer (Bursill et al., 2000; Cradwick et al., 1972; 

Vandergaast et al., 1985). The presence of amphoteric surfaces and the lack of 

isomorphic substitutions (which would act as centers of permanent charge) make 

imogolite a mineral with a variable charge only dependent on the pH of the soil 

solution. Permanent charge at the imogolite surface, and hence its ability to adsorb 

anions, has always been attributed to the presence of vacancies in its structure (Wada, 

1989), although some authors have hypothesized a permanent charge that would be 

originated by the undersaturation of surface oxygen atoms due to the strain induced by 

the curvature (Alvarez-Ramirez, 2007; Guimaraes et al., 2007; Gustafsson, 2001). The 

high specific surface areas of these volcanic soils components, up to 800 m2/g, and the 

positive charges that they develop may be the responsible for their high affinity of 
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selenium. Other soil components with high affinity for selenium are iron-humus 

complexes (Ihnat, 1989) and poorly crystalline iron oxides such as ferrihydrite, as e.g. 

for New Zealand soils (John et al., 1975). 

While different pedogenetic processes have been proposed to explain the formation 

of imogolite in spodsols (Dahlgren and Ugolini, 1989; Wang et al., 1986), there is 

general agreement that imogolite is precipitated in-situ in B horizons of andosols, where 

there is a low content of Al-complexing organic compounds and where the low-leaching 

rate favors the polymerization of Al and its co-precipitation with monomeric Si (Ugolini 

and Dahlgren, 1991). More recently, other authors have proposed a biotic route for the 

formation of imogolite directly from plagioclase (Tazaki et al., 2006). These authors 

observed the development of bio-films containing imogolite at the surface of incubated 

pumice grains, suggesting that imogolite bio-mineralization may be another pathway for 

the formation of imogolite on volcanic environments. 

In this study we explore the adsorption mechanisms of selenite, SeO3
2-, and selenate, 

SeO4
2-, two oxyanions present in aerated soils like andosols, on two different specimens 

of imogolite: synthetic and biogenic. Adsorption isotherms have been performed on the 

synthetic samples prior to the spectroscopic experiments. The local environment of the 

selenium oxyanions adsorbed on imogolite has been studied using X-ray Absorption 

Spectroscopy (XAS) and molecular simulations. Knowledge of the mechanisms of 

retention of selenium oxyanions at mineral surfaces is essential to understand the 

processes controlling the biogeochemical cycling of selenium in volcanic soils, and to 

correctly assess its deficit and any potential selenium supplementation strategy that may 

be applied in these environments. 

 

MATERIALS AND METHODS 

Synthetic samples 

Imogolite was synthesized following the procedure described by (Denaix et al., 

1999). Aluminum nitrate (99.999%, Alfa Aesar) and Tetraethyl orthosilicate (99.999%, 

Alfa Aesar) were mixed in ultra pure water (MilliQ) at an Al/Si ratio of 2 and aluminum 

concentration of 0.002 M. Dilute NaOH (0.1 M) was injected at a rate of 2 mL/min 

under vigorous stirring, until reaching an hydrolysis ratio OH/Al of 1. After injection, 

the solution was stirred for 12h to avoid the polymerization of aluminum hydroxides. 

The solutions were heated at 95ºC during 5 days in closed Teflon bottles. To remove 

excess alcohol, Na+ and NO3
- ions from solution, the solutions were dialyzed against 



 48

ultra pure water (MilliQ) during 15 days, using a molecular weight cut-off membrane of 

2000 Da (Spectra/Por® membranes, Carl Roth). After dialyzing, part of the imogolite 

solution was freeze-dried and other part was concentrated using a roto-evaporation 

method, avoiding the formation of flocks. 

 

Natural samples 

Pumice rocks were collected from the Kurayoshi pumice layer in Kurayoshi, 

Tottori, Japan. They were rinsed ten times with distilled water to remove fine particles. 

The washed grains were incubated at room temperature under distilled water in a 

covered baker with a glass plate inside. They were incubated during one year during 

which solution pH, Eh and dissolved oxygen were monitored using a HORIBA portable 

spectrometer. After the incubation period, transparent films that were identified as 

imogolite developed on the grain surfaces and covered the glass plate. Transmission and 

Scanning Electron Microscopy (SEM) reveal the presence of Gram-negative bacteria 

and of imogolite films in close contact with the bacterial cell wall. More details about 

the incubation experiments and characterization of the resulting imogolite films have 

been published elsewhere (Tazaki et al., 2006). SEM images of biogenic imogolite are 

presented in Figure 2. 

 

 
Figure 2. SEM images of the entangled network of imogolite and biofilm developed over pumice 

grains. 

 

Fourier Transform Infrared Spectroscopy (FTIR) 

FTIR spectra of the imogolite freeze-dried powders were taken to characterize the 

product obtained after the synthesis. Transmission FTIR spectra were obtained using a 

Bruker HYPERION 3000 FTIR microscope in the transmission mode. KBr pellets (1 
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mg of imogolite in 100 mg of KBr) were used. One hundred scans taken using a 

resolution of 2 cm-1 were averaged to obtain spectra in the range 4000–370 cm-1.  

 

Adsorption experiments 

Sorption experiments of selenite, SeO3
2-, on synthetic imogolite were conducted in a 

N2 atmosphere glove box (Jacomex) in which the oxygen partial pressure (pO2) was 

monitored continuously with a Jacomex O2 sensor. The O2 content never exceeded 

1 ppm in the glove box atmosphere, corresponding to a maximum solute O2 

concentration of 0.13 µmol/L. In these experiments, the sorption of SeO3
2- was studied 

as a function of pH on a short reaction time scale. Experiments were carried out in 

closed 350 ml glass reactors with three inputs, one for the pH electrode and the two 

others for stock solution/suspension addition and sample extraction, respectively. An 

aliquot of imogolite stock suspension in the form of gel containing 200 mg of imogolite 

was added to 0.001 M NaNO3 ionic background solution samples. The suspension was 

basified with NaOH to pH 9 overnight (approximately 16 h), and then a solution 

containing selenite was added until a total concentration of 0.008 mmol/L was reached 

in the reactor. The sorption experiments proceeded by decreasing the pH incrementally 

with successive additions of HNO3. After each addition, the suspension was allowed to 

equilibrate. Once the pH drift was less than 0.02 pH unit/10 min, a 10 ml sample of 

suspension was filtered through a 0.22 µm pore size membrane and analyzed for 

selenium concentration by induced coupled plasma atomic emission spectrometry (ICP-

AES). Samples at pH 4, 7 and 9 were filtered using 0.22 µm pore size membranes and 

loaded into sample-holders for XAS measurements and sealed with Kapton tape. These 

sample-holders were introduced into small plastic boxes that were taken out of the glove 

box and immediately shock-frozen in liquid nitrogen. The samples were transported to 

the beamline in a Dewar filled with liquid nitrogen. At the beamline, the samples were 

transferred within 2 min from the Dewar to the He atmosphere of the closed-cycle He 

cryostat and cooled to 15 K within less than 20 min. 

The same procedure used to obtain the selenite adsorption isotherm on synthetic 

imogolite was repeated for selenate under the hood, without the need of anoxic 

conditions. Samples at pH 3 and 4 were filtered and loaded into the XAS sample-

holders. The selenate samples were measured at the FAME beamline of the ESRF 

(Grenoble, France). No special caution was taken in the transport of the samples, due to 

their inertness to oxygen. 
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Biogenic transparent films of imogolite were recovered using a spatula from the 

surfaces of pumice rock grains, after incubation for one year, as indicated above. 25 mg 

of imogolite biogenic films were added to a solution containing 8 mmol/L of selenate. 

The pH was fixed to pH 5 using HNO3. After two hours, the solutions were filtered and 

the biogenic samples were loaded into XAS sample-holders. 

 

X-ray absorption spectroscopy 

Two different experimental set-ups were used to acquire selenium K-edge Extended 

X-ray Absorption Fine-Structure (EXAFS) spectra. EXAFS spectra of samples of 

selenite adsorbed on synthetic imogolite were collected at the Rossendorf Beamline at 

ESRF (Grenoble, France). The energy of the X-ray beam was tuned by a double crystal 

monochromator operating in channel-cut mode using a Si(111) crystal pair. Two 

platinum-coated Si mirrors before and after the monochromator were used to collimate 

the beam into the monochromator and to reject higher harmonics. A 13-element high 

purity germanium detector (Canberra) together with a digital signal processing unit 

(XIA) were used to measure reaction samples in fluorescence mode. Reference samples 

were measured in transmission mode using Oxford ionization chambers (300 mm) filled 

with 95% N2 and 5% Ar (I0) and with 100% Ar (I1 and I2). Spectra were collected at 15 

K using a closed cycle He cryostat with a large fluorescence exit window and a low 

vibration level (CryoVac). Photoinduced redox reactions were effectively prevented by 

the cold temperature, since the absorption edges remained stable during short-term 

exposure (10 min) as well as during the EXAFS measurements which took up to 5 h. 

For energy calibration, a gold foil (K-edge at 11919 eV) was chosen because of its 

greater inertness in comparison to Se. Dead time correction of the fluorescence signal, 

energy calibration and the averaging of single scans were performed with the software 

package SixPack. 

EXAFS spectra of samples of selenate adsorbed on synthetic and biogenic imogolite 

were collected at the FAME beamline (Proux et al., 2005) at ESRF (Grenoble, France). 

The energy of the X-ray beam was tuned by a double crystal monochromator using a 

Si(220) double-crystal. The spectra were acquired using fluorescence mode with a 

germanium 30-element detector. The experiments were performed at room temperature. 

Normalization, transformation from energy into k space, and subtraction of a spline 

background was performed with WinXAS using routine procedures (Ressler, 1998). 

The EXAFS data were fitted with WinXAS using theoretical backscattering amplitudes 
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and phase shifts calculated with FEFF 8.2 (Ankudinov et al., 2002). The fits were 

performed in the real space. This method provides a precision of ±0.01 Å for shell 

distances and a resolution of about ±0.1 Å for neighboring shells. The error of 

coordination numbers is ± 25%. 

 

DFT calculations 

Geometry optimizations of selenium complexes adsorbed of imogolite clusters were 

performed using DMol3 (Delley, 2000). Prior to the imogolite calculations, a calibration 

step was performed in order to optimize the parameters of the calculations. For this 

purpose we have selected to use the structure of Al2(SeO3)3·6H2O, reported by (Morris 

et al., 1992) from X-ray data. Different approximations of the DFT were tried. First, 

calculations using the Local Density Approximation and the Perdew and Wang 

exchange functional (Perdew and Wang, 1992) were performed, resulting in an 

underestimation of the bond lengths and a poor description of the hydrogen bonding. 

For this reason the Perdew–Burke–Ernzerhof (PBE) exchange correlation functional 

(Perdew et al., 1996) of the Generalized Gradient Approximation (GGA) was chosen to 

calculate the exchange-correlation energy. The PBE approximation reproduced well the 

lattice parameters of the Al2(SeO3)3·6H2O structure, within a 5%. The bond lengths 

were slightly overestimated by the same percentage. GGA-PBE was the approximation 

providing the best behavior of water hydrogen bonding. A Double Numerical plus 

Polarization (DNP) set (Delley, 1990) was used as basis set to describe the atomic 

orbitals. 

An atomic cluster formed by 13 aluminum octahedra and 3 silicon tetrahedra 

extracted from a 1 × 1 × 3 structure of imogolite was used in the cluster calculations of 

selenium complexes. The size of the cluster was chosen to have at least four central 

aluminum octahedra coordinated with the same coordination found the structure of 

imogolite. 

Three different complexes of selenite adsorbed at the surface of this cluster were 

simulated. Explicit water was introduced on the >SiOH0 surface in order to prevent the 

formation of hydrogen bonds between adjacent silanol groups at the internal surface, 

which creates a distortion in the structure. After optimization, all the clusters preserved 

the curvature of the structure. 
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RESULTS 

FTIR of synthetic imogolite 

In Figure 3, structural bands belonging to imogolite can be recognized at 

frequencies 423, 560, 937 and 3500 cm-1, characteristic of imogolite structure (Farmer 

et al., 1979; Parfitt et al., 1980). The position of the band at 995 cm-1 corresponding to 

Si-O stretching depends on the Al:Si ratio. A low Al:Si ratio shifts the band towards 

higher wavenumbers (Henmi et al., 1981). The peak at 995 cm-1 is indicative of a 

structure with a 2:1 Al:Si ratio, as in the structure of imogolite. 

 

 
Figure 3. FTIR spectra of synthetic imogolite. The band marked with an asterisk (*) 

corresponds to nitrate. 

 

Adsorption isotherms 

The characteristic disordered texture of freeze-dried imogolite is that of an 

entangled network of nanotubes, forming aggregates (flocks) that are very difficult to 

re-disperse in solution. For this reason, adsorption experiments were performed using 

imogolite in the form of gel instead of freeze-dried powder. This allows maximizing the 

surface area available for adsorption. Figure 4 shows the results of the adsorption 

isotherms of selenate and selenite on imogolite. 
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Figure 4. Adsorption isotherms of selenite (left) and selenate (right) in function of the solution 

pH. The protonation state of both oxyanions is indicated at the bottom of both graphs. The 

vertical lines indicate the values of pKa for both oxyanions. Green circles indicate the samples 

that have been measured using X-ray absorption spectroscopy. 

 

The dependence of the adsorption on the ionic strength has been used classically as 

a test to discern the mechanism of adsorption by which a molecule is adsorbed at the 

mineral/water interface (Hayes et al., 1987). Formation of outer-sphere complexes is an 

electrostatic driven sorption mechanism, strongly dependent on surface charge and thus 

on solution ionic strength (Sposito, 2004). On the other hand, inner-sphere complexes 

form when an ion is adsorbed ‘‘specifically’’ on a ‘‘crystallographic site’’, i.e., when 

covalent or ionic bonds are created with functional sites present on the mineral faces. 

These bonds have a stronger degree of covalence and are more stable than outer-sphere 

complex formation (Sposito, 2004). The results at INaNO3 = 0.001 M and INaNO3 = 0.01 M 

show an adsorption behavior independent of the ionic strength, which would indicate 

that an adsorption process involving a specific inner-sphere mechanism is taking place. 

However, lower percentages of adsorption are attained at INaNO3 = 0.1 M. Two different 

facts could explain this difference: (1) the isotherms are dependent on the ionic strength, 

being the dependency indistinguishable in the case of lower INaNO3 values, and (2) at 

high INaNO3 values, the flocculation of the imogolite nanotubes takes place, reducing 

their specific surface area. Imogolite is known to form liquid crystals, whose structure 

varies in function of the imogolite concentration, the ionic strength and of the solution 

pH (Donkai et al., 1993). When the ionic strength increases, the liquid crystal phase is 

no longer stable, and flocculation of the imogolite tubes takes place, lowering the 

surface area available for adsorption.  
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The sorption isotherms for both oxyanions show an adsorption edge at about pH 5 

and different percentages of adsorbed selenium depending on the ionic strength (INaNO3) 

and the pH of the solution. At high solution pH values (pH 10) around ~69% of the 

selenite has adsorbed onto the imogolite surface. The adsorption of selenate at this pH is 

lower, showing percentages of ~53% at INaNO3 = 0.1 M and ~58% at INaNO3 = 0.01 M 

and INaNO3 = 0.001 M. Also, no positive charge is expected to develop at these high 

solution pH values by protonation of aluminol or silanol functional groups. Considering 

the behavior of the external surface charge as similar to that of gibbsite, the values of 

the protonation constant for the doubly-coordinated neutral aluminol groups would be 

pKa1 ~ 5.5 log units (Bickmore et al., 2004; Gan and Franks, 2006), or even pKa1 ~ 0.0 

log units (Hiemstra et al., 1996). This would indicate that at pH 10 the external surface 

of imogolite would be neutral, which would prevent the adsorption of anions. Reactivity 

of hydroxylated silica surfaces has been studied reporting pKa1 values for silanol 

deprotonation from 2 (Brinker and Scherer, 1990) to 5 (Arai et al., 2006), also 

indicating a neutral or negatively charged internal surface at pH 10. The high 

percentages of selenite and selenate adsorbed at high solution pH values could be then 

explained by two different hypotheses, or by the combination of both: (1) the presence 

of a small permanent positive charge at the external surface of imogolite, as it has been 

predicted by (Gustafsson, 2001); (2) the presence of vacancies at the octahedral layer, 

composed by aluminum octahedra. These vacancies would originate >AlOH-1/2 sites 

whose pKa1 has been predicted to be at pKa1 = 10 (equation 1), implying that these sites 

would be positively charged at solution pH values lower than 10: 

 +−+ +>↔> HAlOHAlOH 2/12/1
2  (1) 

These two hypotheses would explain also the positive values of electrophoretic 

mobility found by some authors (Su and Harsh, 1993; Tsuchida et al., 2004). 

The presence of a positive charge would explain any possible electrostatic 

mechanism of adsorption. However, the formation of inner-sphere complexes, already 

observed for gibbsite, cannot be excluded. Inner-sphere complexes originate by the 

structural affinity of the sorbent with the sorbates (Sposito, 2004). 

 

Selenite X-ray Absorption Spectroscopy and DFT modeling 

In order to discern the mechanisms of adsorption responsible for the immobilization 

of selenium oxyanions at the imogolite-water interface, EXAFS experiments were 
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performed on six samples prepared at different solution pH values and at INaNO3 = 0.001 

(see green circles in Figure 4). The Fourier transformations of the EXAFS signal 

reproduce the local environment around the selenium atoms. This function is usually 

called the Radial Distribution Function (RDF). The RDFs of the selenite samples 

(Figure 7) show the presence of a first shell centered at r1 = 1.70 Å, corresponding to 

the three oxygen atoms forming the selenite molecule, HSeO3
2-, and a second shell with 

lower intensity. The presence of a second shell in the RDF is indicative of the formation 

of a surface complex, in the case that the solution is not saturated with respect any solid 

phase of selenium which could eventually precipitate. The concentrations used in this 

work are low enough to prevent the formation of other solid phases. 

In order to understand the origin of the second shell cluster-type DFT calculations of 

selenite complexes at the imogolite surface have been performed. The optimization of 

the geometry of these clusters allows obtaining a reliable structure that can be used as 

input in the analysis of the EXAFS data. Three different structures were optimized (see 

Figure 5), considering the formation of two different selenite inner-sphere complex 

linked to the surface through bidentate ligands, and of an outer-sphere complex forming 

hydrogen bonds with three >Al2OH0 groups from the surface. 

In a first try, a cluster of atoms including a shell of adsorbed water (one water 

molecule for each oxygen surface atom) was included in a calculation containing a 

selenite molecule forming an inner-sphere complex with a bidentate ligand. The result 

of the calculation showed that the geometry of the selenite complex changed depending 

on the structure of the hydrogen bonds formed between water molecules and the 

oxygens of the ligand and of the selenite molecule. For this reason, simpler structures 

containing only one water molecule were performed, in order to reduce the degrees of 

freedom of the system. It has been shown that the inclusion of explicit water in DFT 

simulation of adsorbed complexes strongly affects the charge distribution between a 

sorbent and a sorbate, influencing vibrational properties and the stability of surface 

complexes (Hiemstra et al., 2007; Kubicki et al., 2007). In order to evaluate the effect of 

water on the complexes studied, we have included a water molecule in some of the 

calculations, oriented with an OH pointing perpendicular to the surface and donating a 

hydrogen bond to a surface oxygen atom. This water molecule orientation has been 

observed in simulations of the imogolite − water interface, being the most stable 

configuration of water at the imogolite surface (Creton et al., 2008). 
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Figure 5. Optimized models of selenite complexes at the imogolite cluster. Colors are the 

same as in Figure 1. The green sphere is the selenium atom. Complexes 1 and 2 are inner-

sphere selenite complexes with mononuclear bidentate ligands. In complex 1 the selenite 

hydrogen atom forms a hydrogen bond with a surface oxygen atom. The inclusion of a water 

molecule forming a hydrogen atom with one of the oxygen atoms belonging to the ligand forces 

the selenite molecule to adopt an orientation with its basal plane perpendicular to the surface, 

as in complex 2. Complex 3 is an inner-sphere complex in which the three selenite oxygen atoms 
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form hydrogen bonds with the surface over an octahedral vacant site. Complex 2 shows a very 

good agreement with the EXAFS data. 

 

Figure 5 shows the DFT-optimized structures of the selenite complexes. The 

resulting distances are shown in Table 1. In complex 1 the water molecule was initially 

placed far from the selenite molecule. The optimized structure shows the formation of a 

hydrogen bond between the hydrogen atom of selenite with a surface oxygen atom. The 

complex 2 shows a water molecule giving a hydrogen bond to a surface atom. In this 

case, the presence of the water molecule affects the orientation of the selenite molecule, 

whose basal plane (formed by the three oxygen atoms) is almost perpendicular to the 

surface due to a weak hydrogen bond between the water oxygen atom and the selenite 

hydrogen atom. This water molecule affects also the geometry of the selenite molecule. 

The strong hydrogen bond formed between the water molecule and the surface makes 

that the non-bonded oxygen atom from the selenite molecule is repelled. The selenite 

molecule is then highly deformed, with one O-Se-O angle of almost 180°, and with no 

symmetry (C1), which is very unrealistic (see right part of Figure 6). Energetically, this 

deformation is not favorable, being the difference in energy with the complex 1 of ∆U = 

5.44 eV.  

 
Figure 6. View of complexes 1 and 2. The position of the water molecule influences strongly the 

geometry of the adsorbed selenite molecule. In complex 1 the water molecule is far from the 

selenite. In complex 2 the water molecule donates a hydrogen bond to one of the oxygen atoms 

participating in the ligand, distorting the selenite. 

 

The decreasing of the selenite symmetry from C2ν to C1 would affect its vibrational 

properties, generating new modes of vibration that could be observed using FTIR 

spectroscopy. The observation of these modes on a selenite molecule adsorbed at the 

mineral−water interface with C1 symmetry has never been observed, to our knowledge. 
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Only (Wang and Zhang, 2002) reported a C1 symmetry for the HSO3 molecule, but they 

did not reported its origin. This fact and the disagreement with the Se-Al distances 

observed by EXAFS make that the presence of complex 2 at the imogolite−water 

interface is very unlikely. 

In complex 3 the selenite molecule is placed over a vacant octahedral site, with its 

basal plane oriented parallel to the surface. The three selenite oxygen atoms are 

receiving hydrogen bonds from surface OH groups, stabilizing the position of the 

molecule. 
Complex Atoms N R (Å) 

<Se-O>* 3 1.768 

Se-Al1 1 2.43 

Se-Al2 1 3.46 

1 

Se-Al3 1 3.60 

<Se-O>* 3 1.84 

Se-Al1 1 2.39 

Se-Al2 1 3.40 

2 

Se-Al3 1 3.50 

<Se-O>* 3 1.778 

Se-Al1 1 4.19 

3 

Se-Alx - > 5 
* The average Se-O distance has been reported in order to compare to the EXAFS data, where the 

resolution is not high enough to allow resolving the differences between the three Se-O distances 

expected in the HSeO3
- molecule. 

 

Table 1. Interatomic distances obtained from DFT geometry optimizations of the complexes 

shown in Figure 5. In complex 3 most of the Se-Al distances are longer than 5 Å, and thus not 

observable by EXAFS. The deformation of the selenite pyramidal geometry in complex 2 yields 

very long Se-O distances. 

 

The fits of the RDF functions are shown in Figure 7. Resulting interatomic 

distances, coordination numbers and Debye-Waller factors are given in Table 2. The 

results for selenite are similar for the samples at the three pH values (4, 7 and 9), all of 

them revealing a two-shell structure. The fitting procedure has been as follows: EXAFS 

phases and amplitudes have been generated for the three structural models optimized by 

DFT using FEFF8.2. Each model was tested and the best model was selected in view of 

the agreement between theoretical and experimental interatomic distances. The best fit 

results are found using the structure of complex 1 as initial structure. In this complex 
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(see Figure 6), apart from the three O atoms at <dSe-O> = 1.768 Å, one Al atom is 

placed at a distance of dSe-Al1 = 2.43 Å and two more at dSe-Al2 = 3.46 Å and dSe-Al3 = 3.60 

Å. The distances and coordination numbers obtained after fitting of the RDF functions 

are in excellent agreement with the structure of complex 1. The small values of the 

Debye-Waller factors are indicative of the goodness of the structural model, revealing 

low structural disorder apart from the effect of the low temperature at which the 

experiments were performed. 

 
Species pH S0

2 E0 (eV) Atoms R (Å) N σ2 (Å2) 

Se-O 1.701 ± 0.006 3* 0.001 ± 0.0005 

Se-Al1 2.41 ± 0.03 0.65 ± 0.15 0.005 ± 0.002 

Se-Al2 3.39 ± 0.03 1* 0.001 ± 0.001 

Se(IV) 4 0.90 14.45 

Se-Al3 3.57 ± 0.04 1* 0.001 ± 0.001 

Se-O 1.687 ± 0.003 3* 0.001 ± 0.0004 

Se-Al1 2.36 ± 0.02 0.85 ± 0.20 0.001 ± 0.001 

Se-Al2 3.36 ± 0.02 1* 0.006 ± 0.001 

Se(IV) 7 0.90 11.50 

Se-Al3 3.58 ± 0.04 1* 0.002 ± 0.001 

Se-O 1.688 ± 0.006 3* 0.002 ± 0.001 

Se-Al1 2.35 ± 0.03 1.05 ± 0.25 0.002 ± 0.001 

Se-Al2 3.37 ± 0.02 1* 0.005 ± 0.002 

Se(IV) 9 0.90 16.65 

Se-Al3 3.70 ± 0.03 1* 0.007 ± 0.002 
* All the coordination numbers have been fixed to their theoretical values (see Table 1) 

except for the first shell of aluminum atoms. 

 

Table 2. Interatomic distances (R), coordination numbers (N) and mean-square relative 

displacements (σ2) obtained from EXAFS data analyses. 

 

In addition, tests of the stability of these results have been done by trying to fit the 

RDFs using the same EXAFS paths with different initial distances. The results always 

converged to the structure of complex 1, indicating the accuracy of the optimized 

model. However, the fitted value of the coordination number of the first shell of Al, at 

dSe-Al1 ~ 2.40 Å, characteristic of a mononuclear bidentate ligand, deviates significantly 

from the expected theoretical value of N2-DFT = 1, falling to values of N2-EXAFS = 0.65 ± 

0.15. For this reason we have evaluated a possible structure where the Al shell at dSe-Al1 

~ 2.40 Å is not present (complex 1B, see Figure 8; the vacant site is marked with an X). 

This complex has a mononuclear bidentate ligand over an octahedral vacant site. In this 
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case the Se-Al distances match perfectly those of the complex 1 (see Table 2), the first 

Al shell not being present in the structure. Nevertheless, the best fit is found when this 

first Al shell is included in the data refinement, giving the values reported in Table 2. 

This fact could indicate that complexes 1 and 1B are occurring simultaneously and thus 

that vacancies are present in the structure of imogolite. 

Optimization of complex 3 yields distances to the Al atoms that are too long in 

comparison with the distances observed in the EXAFS data. All the tests trying to fit the 

data with this model failed, which led us to disregard it as a candidate to explain selenite 

adsorption mechanisms. Other complex evaluated was an inner-sphere complex with a 

trinuclear bidentate ligand, arranged in the same way as the orthosilicate molecules at 

the internal imogolite surface. However, the distances between apical oxygen atoms of 

neighboring aluminum octahedra are too long to form this complex.  

 

 
Figure 7. EXAFS signals (left) and their Fourier transformations (RDFs, right) of selenite 

[Se(IV)] adsorbed on synthetic imogolite. Experimental data are represented by points; fits by 
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solid lines. The arrows indicate the shoulder corresponding to the second shell in the EXAFS 

signal and its corresponding effect in the RDFs. 

 

Selenate X-ray Absorption Spectroscopy and DFT modeling 

The three selenate samples studied, (two synthetic and one biogenic) show a RDF 

composed of two shells indicating the presence of a well ordered structure around the 

selenate ion (see Figure 10). The second shell is more pronounced than in the case of 

selenite. In order to obtain a structural model from which to generate the phases and 

amplitudes for the EXAFS data analysis, a structural model was constructed. The 

model, optimized using DFT calculations, represented an inner-sphere complex of 

selenate (Figure 9). 

 

 
Figure 8. Left: complex 1. Right: complex 1B with one vacant octahedral aluminum site. The 

selenium atom is represented by a yellow sphere. 

 

After visual examination of the RDFs obtained from EXAFS data, we decided to 

construct a complex with a bidentate mononuclear ligand. The interatomic distances of 

the geometry optimized selenate complex are given in Table 3.  

In the optimized structure two of the Se-O distances are longer than in the aqueous 

selenate molecule, where they have values of dSe-O = 1.65 Å (Manceau and Charlet, 

1994). This elongation is caused by the mismatching of distances between oxygen 

atoms from the aluminum octahedron, with values of dO-O ~ 2.85 Å, longer than the O-O 

distances in the selenate molecule (dO-O ~ 2.72 Å); the formation of an inner-sphere 

complex makes that the Se-O distances of the selenate molecules increase, decreasing 

the symmetry of the molecule from Td to Cs, a symmetry group including a mirror 
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plane. The local structure of the selenium atoms includes three shells of aluminum 

atoms placed at distances of dSe-Al1 = 2.25 Å, dSe-Al2 = 3.17 Å and dSe-Al3 = 3.67 Å. 

 
Complex Atoms N R (Å) 

<Se-O>* 3 1.725 

Se-Al1 1 2.25 

Se-Al2 1 3.17 

1 

Se-Al3 1 3.67 
* The average Se-O distance has been reported in order to compare to the EXAFS data, where the 

resolution is not high enough to allow resolving the differences between the four Se-O distances expected 

in the adsorbed SeO4
2- molecule. 

 

Table 3. Interatomic distances obtained from DFT geometry optimizations of the selenate 

complex. 

 

 

 
Species pH S0

2 E0 (eV) Atoms R (Å) N* σ 2(Å2) 

Se-O 1.68 ± 0.01 4 0.001 ± 0.001 

Se-Al1 2.33 ± 0.04 1 0.005 ± 0.001 

Se-Al2 3.16 ± 0.03 1 0.004 ± 0.002 

Se(VI) 3 0.90 14.45 

Se-Al3 3.61 ± 0.03 1 0.005 ± 0.001 

Se-O 1.703 ± 0.003 4 0.001 ± 0.001 

Se-Al1 2.26 ± 0.03 1 0.002 ± 0.001 

Se-Al2 3.09 ± 0.06 1 0.004 ± 0.002 

Se(VI) 4 0.90 11.50 

Se-Al3 3.52 ± 0.02 1 0.003 ± 0.001 

Se-O 1.689 ± 0.006 4 0.004 ± 0.002 

Se-Al1 2.35 ± 0.04 1 0.008 ± 0.003 

Se-Al2 3.17 ± 0.02 1 0.004 ± 0.001 

Se(VI) 

on 

biogenic 

imogolite 

5 0.90 17.26 

Se-Al3 3.69 ± 0.02 1 0.002 ± 0.002 
* All the coordination numbers have been fixed to their theoretical values (see Table 3). 

Table 4. Interatomic distances (R), coordination numbers (N) and mean-square relative 

displacement (σ2) obtained from EXAFS data analyses of selenate adsorbed of synthetic and 

biogenic imogolite. 
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Figure 9. View of the DFT-optimized inner-sphere selenate complex with the interatomic 

distances to aluminum atoms. 

 

The results of the fits are shown in Table 4 and in Figure 10. The three samples 

show very similar local structures that are in very good agreement with the optimized 

selenate complex. In the fits all the coordination numbers have been fixed to their 

theoretical values. Values of the Debye-Waller factors are higher than for selenite due to 

the effect of the temperature (selenate samples have been measured at room 

temperature). The fits are very stable, and the Debye-Waller factors relatively small, 

which indicates the goodness of the structural model used as input to analyze the data. 

 

DISCUSSION 

EXAFS analyses reveal the occurrence of inner-sphere complexes for both oxyanions 

and on both synthetic and biogenic imogolite samples. In the case of selenite, DFT 

simulations reveal the existence of a competition between water molecules and selenite 

ions for surface adsorption sites: the formation of a hydrogen bond between a water 

molecule and an oxygen atom participating in the complex strongly affects the 

symmetry of the complex, deforming the selenite molecule to an unphysical geometry. 

The occurrence of this adsorption site for water molecules at the surface of imogolite 

has been reported by some authors (Creton et al., 2008), (Fernández-Martínez et al., in 

preparation), who have indicated that these sites accept hydrogen bonds from water 

molecules, providing very stable adsorption sites with strong adsorption energies. 

This same site for water adsorption has been reported to occur in the surface of 

gibbsite (Wang et al., 2006) with even higher adsorption energies for water than 
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imogolite (Fernández-Martínez et al., in preparation). The adsorption of selenite 

molecules upon removal of these strongly adsorbed water molecules reveals a high 

specificity of the imogolite surface for the inner-sphere complexation (or 

chemisorption) of selenite molecules. 

 

 
 

Figure 10. EXAFS signals (left) and their Fourier transformations (RDFs, right) of selenate 

[Se(VI)] adsorbed on synthetic and biogenic imogolite. Experimental data are represented by 

points; fits by solid lines. The presence of a second shell can be clearly distinguished in the 

RDFs. 

 

The variability in the coordination number of the first shell indicates the possibility 

that the selenite molecules could be adsorbing over a vacant octahedral aluminum site. 

This hypothesis and the high pKa1 of singly coordinated >AlOH2
+1/2 sites present on 

unsaturated oxygen atoms at vacancy sites (pKa1 = 10) would explain the development 
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of a surface charge at high solution pH values, as reported by electrophoretic 

measurements (Su and Harsh, 1993; Tsuchida et al., 2004). 

In the case of selenate a similar inner-sphere complexation takes place. Both selenite 

and selenate have mononuclear bidentate ligands, making that an Al atom is relatively 

close to the selenium atom, at distances of dSeAl1 = 2.38 Å and dSeAl1 = 2.30 Å for 

selenite and selenate, respectively. These distances match very well the distances 

obtained from the DFT calculations. Some authors have reported short second shell 

distances for selenate complexes adsorbed on goethite (Manceau and Charlet, 1994). 

These authors discussed the plausibility of selenate ion pairing formation at the goethite 

surface, which would give a second shell formed by another selenium atom, 

indistinguishable by EXAFS from iron atoms. The authors denied this possibility, 

arguing that this formation of selenate ion pairs has never been observed neither in 

solution nor in the bulk of selenium compounds (Manceau and Charlet, 1994). In the 

case of selenite, the formation of diselenite groups is encountered in compounds 

containing transition metals as VOSe2O5 (Meunier et al., 1974), CoSe2O5 (Hawthorne et 

al., 1987) or ZnSe2O5 (Meunier and Bertaud, 1974). However, the existence of this ion 

pairing at the imogolite surface would give different EXAFS signals, as the EXAFS 

technique is sensitive enough to distinguish backscatterers as Al (Z = 13) and Se (Z = 

34). This allows us disregarding the formation of ion pairs to explain the second shell 

observed in our calculations. On the other hand, the Se-Al distances observed in this 

study are much shorter than the distances observed between Se(VI) and Fe(III) atoms in 

selenate inner-sphere complexes on goethite, with dSe-Fe = 2.76 Å. This fact can be 

explained by the smaller ionic radius of the Al(III) ions (0.53 Å) in comparison to the 

ionic radius of Fe(III) (0.64 Å). The existence of this first shell of aluminum atoms 

seems then plausible from a structural point of view. 

The formation of a structured shell of adsorbed water at mineral surfaces, especially 

on mineral surfaces populated by hydroxyl groups, has a high influence on the ion 

adsorption. Some authors have revealed that adsorbed water at the curved external 

surface of imogolite has a similar structure than on the planar surface of gibbsite 

(Creton et al., 2008). However, the curvature causes that adsorbed water on imogolite 

has lower adsorption energies and forms less structured shells of water. Peak et al. 

(2006) reported outer-sphere complexation of selenate ions at the Hydrous Aluminum 

Oxide (HAO) − water interface. The structure of the HAO surface is, in some way, 

similar to that of an ‘amorphous’ gibbsite, with alternation of single and doubly-
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coordinate >AlOH2
+1/2 and >Al2OH0 groups. (Papelis et al., 1995) reported outer-sphere 

complexation of selenate ions at the gibbsite surface. The ability of selenate to form 

inner-sphere complexes at the surface of imogolite reveals then differences in the 

surface chemistry between gibbsite and imogolite that could be related to the fact that 

water is less structured on the imogolite surface than on other planar hydroxylated 

aluminum oxide surfaces. 

The formation of these complexes has a great relevance in the biogeochemical 

cycling of selenium in environments dominated by volcanic formations, where 

imogolite develops in the soils’ clay fraction. The mobility of oxyanions like selenate 

and selenite is greatly influenced by the formation of complexes at mineral−water 

interfaces. The formation of inner-sphere complexes (chemisorbed molecules) is then a 

very important process controlling the concentration of selenium in soil solutions of 

volcanic soils, like andosols. 

 

CONCLUSIONS 

The combined use of molecular modeling and spectroscopic methods has allowed us 

to describe the formation of inner-sphere complexes of selenium oxyanions (selenate 

and selenite) at the surface of imogolite. DFT calculations of selenite complexes have 

revealed the important role played by water molecules in the stability of the complexes. 

The formation of a hydrogen-bond between a water molecule and a surface oxygen 

atom participating in the inner-sphere complex greatly affects the geometry of the 

selenite molecule, deforming it to unrealistic conformations. The fact that selenite forms 

strong complexes at the imogolite – water interface reveals the stronger affinity of 

imogolite for selenite, a specificity strong enough to be able to remove a water molecule 

prior to the formation of the complex. 

The different behavior for the complexation of selenate at the gibbsite and imogolite 

− water interfaces (according to (Papelis et al., 1995) selenate forms outer-sphere 

complexes at the gibbsite – water interface) reveals the importance of the curvature on 

the surface chemistry of imogolite. Fernández-Martínez et al (in preparation, 2009) have 

shown that the shell of adsorbed water at the imogolite surface is less structured than at 

the surface of gibbsite, the orientations of the hydroxyl groups having an important 

effect on the imogolite adsorption properties of water. In addition, these authors have 

reported the formation of ‘patches’ or ‘dry regions’ at the imogolite and gibbsite 
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surfaces. Further studies on the influence of these patches on the adsorption of ions 

should be performed to clarify their role in interfacial phenomena. 

Finally, the formation of selenium inner-sphere complexes at the imogolite – water 

interface is a very relevant finding which will help to clarify the geochemical cycling of 

selenium in volcanic soils. Inner-sphere complexes involve the formation of covalent 

bonds, and thus they are expected to reduce the mobility of selenium and its 

bioavailability to biota. More studies focusing on de-sorption and competition effects 

will help to better understand the importance of the complexes reported here over the 

selenium deficiency problems that are affecting volcanic regions. 

 

ACKNOWLEDGEMENTS 

Kideok K. Kwon (LBL, Berkeley, USA) is gratefully acknowledged for fruitful 

discussions about the DFT modeling of selenite complexes at the imogolite surface. 

Adéline Chabry is thanked for her technical assistance during a stage of 3 months 

performing selenium adsorption isotherms. Andre Rossberg and Harald Funke (BM20, 

ESRF, Grenoble, France) are acknowledged for their help with XAS spectra acquisition. 

A.F.-M. acknowledges the Région Rhône-Alpes for the finantial support received 

through an Explora’DOC fellowship for a 6-months stay at the University of California, 

Berkeley. G.R.-R. and L.C. acknowledge partial funding from E.U. Project 

AQUATRAIN. 

 
 
REFERENCES 

 
Alvarez-Ramirez, F. (2007) Ab initio simulation of the structural and electronic 

properties of aluminosilicate and aluminogermanate natotubes with imogolite-

like structure. Physical Review B, 76(12). 

Ankudinov, A.L., Bouldin, C.E., Rehr, J.J., Sims, J., and Hung, H. (2002) Parallel 

calculation of electron multiple scattering using Lanczos algorithms. Physical 

Review B, 65(10), 11. 

Arai, Y., McBeath, M., Bargar, J.R., Joye, J., and Davis, J.A. (2006) Uranyl adsorption 

and surface speciation at the imogolite-water interface: Self-consistent 

spectroscopic and surface complexation models. Geochimica et Cosmochimica 

Acta, 70(10), 2492-2509. 



 68

Balistrieri, L.S., and Chao, T.T. (1987) Selenium Adsorption by Goethite. Soil Science 

Society of America Journal, 51(5), 1145-1151. 

Bickmore, B.R., Tadanier, C.J., Rosso, K.M., Monn, W.D., and Eggett, D.L. (2004) 

Bond-Valence methods for pK(a) prediction: critical reanalysis and a new 

approach. Geochimica et Cosmochimica Acta, 68(9), 2025-2042. 

Boyle-Wight, E.J., Katz, L.E., and Hayes, K.F. (2002) Spectroscopic studies of the 

effects of selenate and selenite on cobalt sorption to gamma-Al2O3. 

Environmental Science & Technology, 36(6), 1219-1225. 

Brinker, C.J., and Scherer, G.W. (1990) Sol-gel Science: The Physics and Chemistry of 

Sol-Gel Processing. Academic Press, Inc., New York. 

Bursill, L.A., Peng, J.L., and Bourgeois, L.N. (2000) Imogolite: an aluminosilicate 

nanotube material. Philosophical Magazine a-Physics of Condensed Matter 

Structure Defects and Mechanical Properties, 80(1), 105-117. 

Byers, H.G., Miller, J.T., Williams, K.T., and Lakin, H.W. (1938) Selenium occurrence 

in certain soils in the United States with a discussion of related topics. Third 

Report U.S.D.A. Tech. Bul. 601., US. 

Catalano, J.G., Zhang, Z., Fenter, P., and Bedzyk, M.J. (2006) Inner-sphere adsorption 

geometry of Se(IV) at the hematite (100)-water interface. Journal of Colloid and 

Interface Science, 297(2), 665-671. 

Charlet, L., Scheinost, A.C., Tournassat, C., Greneche, J.M., Gehin, A., Fernandez-

Martinez, A., Coudert, S., Tisserand, D., and Brendle, J. (2007) Electron transfer 

at the mineral/water interface: Selenium reduction by ferrous iron sorbed on 

clay. Geochimica Et Cosmochimica Acta, 71(23), 5731-5749. 

Cradwick, P.D., Wada, K., Russell, J.D., Yoshinag.N, Masson, C.R., and Farmer, V.C. 

(1972) Imogolite, a hydrated aluminum silicate of tubular structure. Nature-

Physical Science, 240(104), 187-&. 

Creton, B., Bougeard, D., Smirnov, K.S., Guilment, J., and Poncelet, O. (2008) 

Molecular dynamics study of hydrated imogolite - 2. Structure and dynamics of 

confined water. Physical Chemistry Chemical Physics, 10(32), 4879-4888. 

Dahlgren, R.A., and Ugolini, F.C. (1989) Formation and stability of imogolite in a 

tephritic spodosol, Cascade Range, Washington, USA. Geochimica et 

Cosmochimica Acta, 53(8), 1897-1904. 



 69

Davidson, D.F., and Powers, H.A. (1959) Selenium content of some volcanic rocks 

from Western United States and Hawaiian Islands. Bulletin of the Geological 

Survey of U.S., 1084-C, 69-81. 

Davis, J.A., and Leckie, J.O. (1980) Surface-Ionization and Complexation at the Oxide-

Water Interface .3. Adsorption of Anions. Journal of Colloid and Interface 

Science, 74(1), 32-43. 

Delley, B. (1990) An all-electron numerical method for solving the local density 

functional for polyatomic molecules. Journal of Chemical Physics, 92(1), 508-

517. 

-. (2000) From molecules to solids with the DMol(3) approach. Journal of Chemical 

Physics, 113(18), 7756-7764. 

Denaix, L., Lamy, I., and Bottero, J.Y. (1999) Structure and affinity towards Cd2+, 

Cu2+, Pb2+ of synthetic colloidal amorphous aluminosilicates and their 

precursors. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 

158(3), 315-325. 

Dhillon, S.K., and Dhillon, K.S. (2000) Selenium adsorption in soils as influenced by 

different anions. Journal of Plant Nutrition and Soil Science-Zeitschrift Fur 

Pflanzenernahrung Und Bodenkunde, 163(6), 577-582. 

Donkai, N., Hoshino, H., Kajiwara, K., and Miyamoto, T. (1993) Lyotropic mesophase 

of imogolite. 3. Observation of liquid-crystal structure by scanning electron and 

novel polarized optical microscopy. Makromolekulare Chemie-Macromolecular 

Chemistry and Physics, 194(2), 559-580. 

Duc, M., Lefevre, G., Fedoroff, M., Jeanjean, J., Rouchaud, J.C., Monteil-Rivera, F., 

Dumonceau, J., and Milonjic, S. (2003) Sorption of selenium anionic species on 

apatites and iron oxides from aqueous solutions. Journal of Environmental 

Radioactivity, 70(1-2), 61-72. 

Farmer, V.C., Adams, M.J., Fraser, A.R., and Palmieri, F. (1983) Synthetic imogolite - 

Properties, synthesis and possible applications. Clay Minerals, 18(4), 459-472. 

Farmer, V.C., Fraser, A.R., and Tait, J.M. (1979) Characterization of the chemical 

structures of natural and synthetic aluminosilicate gels and sols by infrared 

spectroscopy. Geochimica et Cosmochimica Acta, 43(9), 1417-1420. 

Foster, A.L., Brown, G.E., and Parks, G.A. (2003) X-ray absorption fine structure study 

of As(V) and Se(IV) sorption complexes on hydrous Mn oxides. Geochimica et 

Cosmochimica Acta, 67(11), 1937-1953. 



 70

Fukushi, K., and Sverjensky, D.A. (2007) A surface complexation model for sulfate and 

selenate on iron oxides consistent with spectroscopic and theoretical molecular 

evidence. Geochimica Et Cosmochimica Acta, 71(1), 1-24. 

Gan, Y., and Franks, G.V. (2006) Charging behavior of the Gibbsite basal (001) surface 

in NaCl solution investigated by AFM colloidal probe technique. Langmuir, 

22(14), 6087-6092. 

Gu, B.Q., Cheng, T. O. (1987) The International Textbook of Cardiology. 14 p. 

Pergamon, New York. 

Guimaraes, L., Enyashin, A.N., Frenzel, J., Heine, T., Duarte, H.A., and Seifert, G. 

(2007) Imogolite nanotubes: Stability, electronic, and mechanical properties. 

Acs Nano, 1(4), 362-368. 

Gustafsson, J.P. (2001) The surface chemistry of imogolite. Clays and Clay Minerals, 

49(1), 73-80. 

Hansmann, D.D., and Anderson, M.A. (1985) Using Electrophoresis in Modeling 

Sulfate, Selenite, and Phosphate Adsorption onto Goethite. Environmental 

Science & Technology, 19(6), 544-551. 

Hawthorne, F.C., Groat, L.A., and Ercit, T.S. (1987) Structure of a cobalt diselenite. 

Acta Crystallographica Section C-Crystal Structure Communications, 43, 2042-

2044. 

Hayes, K.F., Papelis, C., and Leckie, J.O. (1988) Modeling Ionic-Strength Effects on 

Anion Adsorption at Hydrous Oxide Solution Interfaces. Journal of Colloid and 

Interface Science, 125(2), 717-726. 

Hayes, K.F., Roe, A.L., Brown, G.E., Hodgson, K.O., Leckie, J.O., and Parks, G.A. 

(1987) In-situ X-Ray Absorption Study of Surface Complexes - Selenium 

Oxyanions on Alpha-FeOOH. Science, 238(4828), 783-786. 

Henmi, T., Tange, K., Minagawa, T., and Yoshinaga, N. (1981) Effect of SiO2-Al2O3 

ratio on the thermal reactions of allophane. 2. Infrared and X-ray powder 

diffraction data. Clays and Clay Minerals, 29(2), 124-128. 

Hiemstra, T., Rietra, R., and Van Riemsdijk, W.H. (2007) Surface complexation of 

selenite on goethite: MO/DFT geometry and charge distribution. Croatica 

Chemica Acta, 80(3-4), 313-324. 

Hiemstra, T., and Van Riemsdijk, W.H. (1999) Surface structural ion adsorption 

modeling of competitive binding of oxyanions by metal (hydr)oxides. Journal of 

Colloid and Interface Science, 210(1), 182-193. 



 71

Hiemstra, T., Venema, P., and VanRiemsdijk, W.H. (1996) Intrinsic proton affinity of 

reactive surface groups of metal (hydr)oxides: The bond valence principle. 

Journal of Colloid and Interface Science, 184(2), 680-692. 

Ihnat, M. (1989) Occurence and distribution of Selenium. 354 p. CRC Press, Boca 

Raton, Florida. 

John, M.K., Saunders, W.M.H., and Watkinson, J.H. (1975) Selenium adsorption by 

New Zealand soils. I. Relative adsorption of selenite by representative soils and 

their relationship to soil properties. New Zealand Journal of Agricultural 

Research, 19, 143-151. 

Kohrle, J., Brigelius-Flohe, R., Bock, A., Gartner, R., Meyer, O., and Flohe, L. (2000) 

Selenium in biology: Facts and medical perspectives. Biological Chemistry, 

381(9-10), 849-864. 

Kubicki, J.D., Kwon, K.D., Paul, K.W., and Sparks, D.L. (2007) Surface complex 

structures modelled with quantum chemical calculations: carbonate, phosphate, 

sulphate, arsenate and arsenite. European Journal of Soil Science, 58(4), 932-

944. 

Lakin, H.W. (1972) Selenium Accumulation in Soils and Its Absorption by Plants and 

Animals. Geological Society of America Bulletin, 83(1), 181-189. 

Lo, S.L., and Chen, T.Y. (1997) Adsorption of Se(IV) and Se(VI) on an iron-coated 

sand from water. Chemosphere, 35(5), 919-930. 

Manceau, A., and Charlet, L. (1994) The Mechanism of Selenate Adsorption on 

Goethite and Hydrous Ferric-Oxide. Journal of Colloid and Interface Science, 

168(1), 87-93. 

Meunier, G., and Bertaud, M. (1974) Crystal chemistry of selenium (+IV). 2. Crystal 

structure of ZnSe2O5. Acta Crystallographica Section B-Structural Science, B 

30(DEC15), 2840-2843. 

Meunier, G., Bertaud, M., and Galy, J. (1974) Crystal chemistry of selenium (+IV) .1. 

VSe2O6, a structure with 3 independent (VO5)6N-N parallel strings connected by 

(Se2O)6+ groups. Acta Crystallographica Section B-Structural Science, B 

30(DEC15), 2834-2839. 

Moreno-Reyes, R., Suetens, C., Mathieu, F., Begaux, F., Zhu, D., Rivera, M.T., 

Boelaert, M., Neve, J., Perlmutter, N., and Vanderpas, J. (1998) Kashin-Beck 

osteoarthropathy in rural Tibet in relation to selenium and iodine status. New 

England Journal of Medicine, 339(16), 1112-1120. 



 72

Morris, R.E., Harrison, W.T.A., Stucky, G.D., and Cheetham, A.K. (1992) On the 

structure of Al2(SeO3)3 6H2O. Journal of Solid State Chemistry, 99(1), 200-200. 

Nakamaru, Y., Tagami, K., and Uchida, S. (2005) Distribution coefficient of selenium 

in Japanese agricultural soils. Chemosphere, 58(10), 1347-1354. 

Neal, R.H., Sposito, G., Holtzclaw, K.M., and Traina, S.J. (1987a) Selenite Adsorption 

on Alluvial Soils .1. Soil Composition and Ph Effects. Soil Science Society of 

America Journal, 51(5), 1161-1165. 

-. (1987b) Selenite Adsorption on Alluvial Soils .2. Solution Composition Effects. Soil 

Science Society of America Journal, 51(5), 1165-1169. 

Papelis, C., Brown, G.E., Parks, G.A., and Leckie, J.O. (1995) X-Ray-Absorption 

Spectroscopic Studies of Cadmium and Selenite Adsorption on Aluminum-

Oxides. Langmuir, 11(6), 2041-2048. 

Parfitt, R.L., Furkert, R.J., and Henmi, T. (1980) Identification and structure of two 

types of allophane from volcanic ash soils and tephra. Clays and Clay Minerals, 

28(5), 328-334. 

Parida, K.M., Gorai, B., Das, N.N., and Rao, S.B. (1997) Studies on ferric oxide 

hydroxides .3. Adsorption of selenite (SeO3
2-) on different forms of iron 

oxyhydroxides. Journal of Colloid and Interface Science, 185(2), 355-362. 

Peak, D. (2006) Adsorption mechanisms of selenium oxyanions at the aluminum 

oxide/water interface. Journal of Colloid and Interface Science, 303(2), 337-345. 

Peak, D., and Sparks, D.L. (2002) Mechanisms of selenate adsorption on iron oxides 

and hydroxides. Environmental Science & Technology, 36(7), 1460-1466. 

Perdew, J.P., Burke, K., and Ernzerhof, M. (1996) Generalized gradient approximation 

made simple. Physical Review Letters, 77(18), 3865-3868. 

Perdew, J.P., and Wang, Y. (1992) Accurate and simple analytic representation of the 

electron-gas correlation energy. Physical Review B, 45(23), 13244-13249. 

Proux, O., Biquard, X., Lahera, E., Menthonnex, J.J., Prat, A., Ulrich, O., Soldo, Y., 

Trevisson, P., Kapoujyan, G., Perroux, G., Taunier, P., Grand, D., Jeantet, P., 

Deleglise, M., Roux, J.P., and Hazemann, J.L. (2005) FAME: A new beamline 

for X-ray absorption investigations of very-diluted systems of environmental, 

material and biological interests. Physica Scripta, T115, 970-973. 

Rayman, M.P. (2000) The importance of selenium to human health. Lancet, 356(9225), 

233-241. 



 73

Reilly, C. (1997) Selenium in food and health. 360 p. Blackie Academic & Professional, 

London. 

Ressler, T. (1998) WinXAS: a program for X-ray absorption spectroscopy data analysis 

under MS-Windows. Journal of Synchrotron Radiation, 5, 118-122. 

Schulthess, C.P., and Hu, Z.Q. (2001) Impact of chloride anions on proton and selenium 

adsorption by an aluminum oxide. Soil Science Society of America Journal, 

65(3), 710-718. 

Schwarz, K., and Foltz, C.M. (1957) Selenium as an integral part of Factor 3 against 

dietary necrotic liver degeneration. Soc, 79, 3292-3293. 

Selim, H.M., and Sparks, D. (2001) Heavy metals release in soils. 264 p. CRC Press, 

Boca Raton, FL. 

Sirichakwal, P.P., Puwastien, P., Polngam, J., and Kongkachuichai, R. (2005) Selenium 

content of Thai foods. Journal of Food Composition and Analysis, 18(1), 47-59. 

Sposito, G. (2004) The surface chemistry of natural particles. 242 p. Oxford University 

Press, New York. 

Stone, R. (2009) A Medical Mystery in Middle China. Science, 324(5933), 1378-1381. 

Su, C.M., and Harsh, J.B. (1993) The electrophoretic mobility of imogolite and 

allophane in the presence of inorganic anions and citrate. Clays and Clay 

Minerals, 41(4), 461-471. 

Su, C.M., and Suarez, D.L. (2000) Selenate and selenite sorption on iron oxides: An 

infrared and electrophoretic study. Soil Science Society of America Journal, 

64(1), 101-111. 

Tazaki, K., Morikawa, T., Watanabe, H., Asada, R., and Okuno, M. (2006) Microbial 

formation of imogolite. Clay Science, 12(Supplement 2), 245-254. 

Tsuchida, H., Ooi, S., Nakaishi, K., and Adachi, Y. (2004) Effects of pH and ionic 

strength on electrokinetic properties of imogolite. 3rd International Conference 

on Interfaces Against Pollutions, p. 131-134, Julich, GERMANY. 

Ugolini, F.C., and Dahlgren, R.A. (1991) Weathering environments and occurrence of 

imogolite and allophane in selected andisols and spodosols. Soil Science Society 

of America Journal, 55(4), 1166-1171. 

Vandergaast, S.J., Wada, K., Wada, S.I., and Kakuto, Y. (1985) Small-angle X-ray 

powder diffraction, morphology and structure of allophane and imogolite. Clays 

and Clay Minerals, 33(3), 237-243. 



 74

Wada, K. (1989) Allophane and imogolite. In J.B. Dixon, and S.B. Weed, Eds. Minerals 

in soil environments, p. 1051-1087. 

Wang, C., McKeague, J.A., and Kodama, H. (1986) Pedogenic imogolite and soils 

environments - Case study of spodosols in Quebec, Canada. Soil Science 

Society of America Journal, 50(3), 711-718. 

Wang, J.W., Kalinichev, A.G., and Kirkpatrick, R.J. (2006) Effects of substrate 

structure and composition on the structure, dynamics, and energetics of water at 

mineral surfaces: A molecular dynamics modeling study. Geochimica et 

Cosmochimica Acta, 70(3), 562-582. 

Wang, L.M., and Zhang, J.S. (2002) Ab initio calculation on thermochemistry of 

CH3SOxH (x=1-3) and H2SOy (y=2,3). Journal of Molecular Structure-

Theochem, 581, 129-138. 

Wang, M.C., and Chen, H.M. (2003) Forms and distribution of selenium at different 

depths and among particle size fractions of three Taiwan soils. Chemosphere, 

52(3), 585-593. 

Wang, Z.J., and Gao, Y.X. (2001) Biogeochemical cycling of selenium in Chinese 

environments. Applied Geochemistry, 16(11-12), 1345-1351. 

Wijnja, H., and Schulthess, C.P. (2000) Vibrational spectroscopy study of selenate and 

sulfate adsorption mechanisms on Fe and Al (hydr)oxide surfaces. Journal of 

Colloid and Interface Science, 229(1), 286-297. 

Yu, T.R. (1997) Chemistry of variable charge soils. 520 p. Oxford University Press, 

New York. 

Zhang, P.C., and Sparks, D.L. (1990) Kinetics of Selenate and Selenite Adsorption 

Desorption at the Goethite Water Interface. Environmental Science & 

Technology, 24(12), 1848-1856. 

 

 



 75

 

 

 

Chapter 4 

 

Molecular dynamics investigation of the structure of water 

at the imogolite and gibbsite – water interfaces: effect of 

the curvature on the hydrophilicity and surface acidity 
 

 

4.1.- Introduction 
Adsorption at mineral surfaces plays an important role in both agricultural and 

environmental science because many reactions between soils and aqueous solutions, and 

all reactions between rocks and aqueous solutions, involve mineral surfaces. These 

reactions affect life-sustaining processes such as plant nutrition and growth, as well as 

life-threatening processes such as contaminant transport. As a result, soil science and 

environmental science require an accurate knowledge of mineral surface adsorption 

behavior in order to understand processes important to the well-being of our 

environment and the development of our resources. The modeling of adsorption 

processes at mineral-water interfaces is done using Surface Complexation Models 

(SCMs) (Hiemstra et al., 1989; Hiemstra and VanRiemsdijk, 1996; Sposito, 2004). 

These models are helpful for understanding the behavior of adsorption in a qualitative 

way, but most of them present some important drawbacks: (1) usually, there are too 

many adjustable parameters in the models, such as the number of surface sites, the 

Helmholtz layer capacitances or the surface acidity constants and (2) most of these 

models are macroscopic in nature, and thus do not take into account the ‘molecularity’ 

of the mineral surfaces. For instance, macroscopic assumptions considering mineral 

surfaces as flat charged planes with only one type of adsorption site are usually made, 

an assumption that is far from the actual atomic-scale roughness of a mineral surface 

(Sposito, 2004). A great leap ahead in this field was the development by Hiemstra et al. 

of the MUSIC model, a multi-site SCM in which the surface acidity constants are 
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calculated using a bond-valence approach based on a structural description of the 

surface sites (Brown, 2002; Hiemstra et al., 1989; Hiemstra and VanRiemsdijk, 1996). 

This model accounts for differences on the surface density of adsorption sites of 

different faces of minerals. The CD-MUSIC model, a variation of the original one, 

includes the effects of hydrogen bonding on the charge saturation of each particular site 

(Hiemstra and VanRiemsdijk, 1996). It is thus a SCM that provides more molecular 

scale detail than the previous ones (Davis et al., 1978). Furthermore, the advent of new 

spectroscopic techniques enable the mineral/water interface to be described with atomic 

resolution and the development of powerful computational methods as the Density 

Functional Theory, allow constraining some parameters used in SCMs using structural 

considerations (Machesky et al., 2008; Villalobos et al., 2009). 

 

However, while these models and spectroscopic techniques have been widely 

applied to the study of crystalline minerals, more difficulties are associated with the 

study of minerals with crystallite sizes in the nanoscale. The small coherent domains of 

these nanoparticles make difficult the application of conventional diffraction techniques 

to their study. Their high surface-to-bulk ratios, with surfaces dominated in some cases 

by relaxation effects prevent the use of scattering techniques like X-ray reflectivity or 

X-ray standing waves, that have been demonstrated as very powerful in the study of 

densities of water and adsorbed ions above well-crystallized, planar mineral surfaces 

like those of mica, calcite, rutile or quartz (Catalano et al., 2009; Fenter et al., 2006a; 

Fenter et al., 2008; Fenter et al., 2006b; Fenter and Sturchio, 2004; Geissbuhler et al., 

2004; Zhang et al., 2004). As described in the previous chapter, imogolite is a 

nanocrystalline aluminosilicate with a nanotubular shape that falls in the category of 

nanoscale minerals. For these reasons, when modeling the adsorption behavior of the 

external face of imogolite, authors who have developed SCMs have made use of 

geochemical parameters corresponding to the (001) gibbsite face, which is the 

imogolite’s planar equivalent (Arai et al., 2006; Gustafsson, 2001). Gibbsite, Al(OH)3, 

is ubiquitous in soil environments and has a large specific surface area, which gives it a 

high potential as an adsorbent of ions (Sposito, 2008). It is a platy, pseudo-hexagonal 

mineral dominated by a basal (001) plane and two edge (100) and (110) crystal faces. 

The surface (001) face of gibbsite is dominated by doubly-coordinated neutral aluminol 

groups (>Al2OH0) at a surface density of 13.7 nm-2. The edge faces have singly 

coordinated >AlOH-1/2 groups, at a surface density of 8.1 nm-2 (Saalfeld and Wedde, 
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1974). The protonation constant of these functional groups is the key parameter 

controlling the adsorption of ions at the gibbsite – water interface, as it determines the 

development of charge as a function of the pH of the soil solution.  

 

The accurate determination of surface acidity constants is a difficult task. Titration 

experiments have been routinely used to obtain surface pKa values during the last 30 

years (Schindler and Stumm, 1987). The use of new spectroscopic methods as a 

complement to titration experiments, as the one described by Gan et al. (2006), are only 

applicable to the study of mineral surfaces with no defects and relatively large surfaces 

(in the order of the µm2). Regarding the (001) surface of gibbsite, Hiemstra et al. (1996) 

developed a MUSIC model reporting values for the first (pKa1) and second (pKa2) 

protonation constants of the (001) surface sites of 0 and 11.9 log units respectively. 

More recently other authors have applied ab-initio Molecular Dynamics combined with 

a bond-valence analysis to the study of intrinsic protonation constants (Bickmore et al., 

2006; Bickmore et al., 2004). It is known that values for the intrinsic pKa of surface 

groups have different values than for their corresponding aqueous species (Schindler 

and Stumm, 1987). Bickmore et al. (2004) have shown that these variations are strongly 

influenced by relaxation effects at the surface due to protonation or de-protonation 

processes, which affect the pKa of the surrounding sites in a strong and non-linear way, 

the differences being of several log units (Bickmore et al., 2004). These authors 

reported several values for the protonation constant of neutral aluminol sites, with one 

of them (pKa1 = 5.2) in a pH range of environmental relevance, and very similar to the 

experimental value of pKa1 = 5.9 ± 0.2 reported by Gan et al. (2006) (see Table 4.1). 

In the case of imogolite, no study has yet been reported determining values of the 

protonation constants. In addition, the big size of the imogolite unit cell prevents the use 

of ab-initio Molecular Dynamics techniques that could be applied in the same way as 

Bickmore et al. (2004) did for the surface of gibbsite. For this reason we have chosen to 

use classical MD to study the hydrated surfaces of gibbsite and imogolite, and to 

evaluate the effect that the curvature of the imogolite surface has over the structure and 

energetics of adsorbed water. The results of classical MD simulations rely on the quality 

of the force-field used to describe the Hamiltonian of the system. 
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Reaction pKa Reference 

0 Hiemstra et al. (1996) 

5.2 

10.8 

-1.6 

-0.4 

2.3 

-5.1 

Bickmore et al. (2004) >Al2OH2
+ ↔ >Al2OH0 + H+ 

5.9 ± 0.2 Gan et al. (2006) 

>Al2OH2
+ + Cl- ↔ >Al2OH + H+ + Cl- 8.49 ± 0.01 

>Al2O-Na+ + H+ ↔ >Al2OH0 + Na+ -9.62 ± 0.01 
Rosenqvist et al. (2002) 

 

Table 4.1. Reported values for the first protonation constant of doubly coordinated neutral sites 

at the gibbsite – water interface. Values falling in a pH range of environmental relevance are 

highlighted in bold. The values reported by Rosenqvist et al. (2002) correspond to a reaction 

involving complexation of electrolyte ions, Na+ and Cl- (Rosenqvist et al., 2002). 

 

In this case, we will use a force-field that has been calibrated for bulk systems 

(gibbsite being one of them) and for bulk water (Cygan et al., 2004). For this reason, we 

do not attempt to extract absolute values of the protonation constants, but to evaluate the 

relative values of these constants in the cases of a planar system (gibbsite) and a 

cylindrical system (imogolite). The lack of accuracy of the force-field used becomes 

then less important, as the systematic errors will affect equally the results obtained for 

both systems. Simulations will be used to obtain the number of hydrogen bonds per 

surface adsorption site, a parameter that is usually fitted in the SCMs, and that will be 

used as an input in a CD-MUSIC model of both surfaces. ‘Patching’ effects of water on 

both surfaces will be described and their relevance evaluated in terms of hydrophobicity 

and surface chemistry. 
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ABSTRACT 

The effect of the curvature of two mineral surfaces with the same composition −the 

external surface of imogolite and the (001) surface of gibbsite− on their surface 

chemistry has been explored comparing a curved surface –imogolite– with a planar one 

–gibbsite–. MD simulations have shown that water molecules adsorb on both surfaces 

adopting similar orientations. However, the curvature of the imogolite surface prevents 

the formation of some H-bonds between surface OH groups, preventing the adsorption 

of A-type water molecules, which are strongly adsorbed at the surface of gibbsite. These 

differences in H-bonding affect the hydrophilicity of both mineral surfaces, making the 

imogolite surface more hydrophobic, with a minimum in the enthalpy of water 

adsorption shifted by ∆∆G = +2.19 kcal/mol with respect to gibbsite. The different 

arrangement of surface H-bonds affects the bond valences of surface oxygen atoms due 

to H-bonds with water molecules, which results in a shift of the imogolite >Al2OH2
+ 

pKa1 of almost one log unit towards acidic values. 
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INTRODUCTION 

Imogolite (Al2(OH)3SiO3OH) is an aluminosilicate mineral commonly found in soil 

environments such as the clay fractions of volcanic ash soils or spodosols (Dahlgren and 

Ugolini, 1989; Dahlgren and Ugolini, 1991; Ugolini and Dahlgren, 1991; Wang et al., 

1986). Imogolite has a nanotubular geometry, with an internal face dominated by silanol 

(>SiOH0) functional groups and an external face composed by a curved gibbsite 

(Al(OH)3), with neutral aluminol groups (>Al2OH0) on its surface (see Figure 1). The 

nanotubes are highly anisotropic, with diameters of di ≈ 1nm (internal) and de ≈ 2.2nm 

(external), and lengths in the order of the micrometer (Wada and Yoshinaga, 1969). The 

presence of amphoteric surfaces and the lack of isomorphic substitutions (which would 

act as centers of permanent charge) make imogolite a mineral with a variable charge 

only dependent on the pH of the soil solution. Permanent charge at the imogolite surface 

has always been attributed to the presence of vacancies in its structure, although some 

authors have hypothesized a permanent charge that would be originated by the 

undersaturation of surface oxygen atoms due to the strain induced by the curvature 

(Alvarez-Ramirez, 2007; Guimaraes et al., 2007; Gustafsson, 2001). 

 
Figure 1. View of the imogolite and gibbsite structures. The external surface of imogolite is a 

curved gibbsite layer. The (001) plane of gibbsite correspond to the basal plane of one layer. 

The white spheres are hydrogens from surface hydroxyl groups (OHs). The orientations of 

imogolite OHs have been chosen to be perpendicular to the surface. The orientations of gibbsite 

OHs are the same than in bulk gibbsite (Balan et al., 2006). 

 

Imogolite is an important component in the soils where it occurs. Its small size, with 

an external diameter of 2.2 nm and tube lengths in the order of the micrometer, and its 

poor crystallinity give it large specific surface areas. Some studies have highlighted the 
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relevance of imogolite and allophane (another nano-crystalline aluminosilicate) in the 

transfer of metallic cations in soil profiles (Abdelfattah and Wada, 1981; Levard et al., 

2009; Rahman et al., 1996). This transfer is controlled by different processes, like the 

adsorption of ions at the mineral/water interfaces (Sposito, 2004), which is usually 

described in terms of surface complexation models (SCMs). To date, only a few studies 

have applied SCMs to the study of ion adsorption at the imogolite/water interface: Arai 

et al. developed a Triple Layer Model (TLM) to explain the complexation of uranyl at 

the external imogolite surface (Arai et al., 2006). However, these authors used the 

acidity constants for gibbsite’s aluminol groups reported by Sverjensky (Sverjensky, 

2005), assuming that, in terms of surface chemistry, imogolite would behave equally to 

gibbsite. Gustaffson developed a MUSIC model in which he introduced a permanent 

charge (Gustafsson, 2001), assuming that the number of hydrogen bonds between water 

and functional OH groups at the gibbsite and imogolite surfaces would be the same and 

would have identical arrangements. The number of H-bonds formed by a surface 

oxygen atom is a parameter usually fitted in SCMs, and with high influence in the 

calculation of the protonation constants of surface sites (Hiemstra and VanRiemsdijk, 

1996). Some authors have used Molecular Dynamics (MD) simulations to constrain this 

number (Machesky et al., 2008). In this work, we have employed MD to ascertain the 

effect of hydrogen bonding on the protonation constants of surface hydroxyl groups at 

the surfaces of gibbsite and imogolite. This comparison is very interesting due to the 

same nature of the external imogolite and (001) gibbsite surfaces. The study of these 

two systems in parallel reveals the effect that the curvature has on the interactions of 

water with the mineral surface. 

The hydrophilicity – hydrophobicity of a mineral surface has usually been related to 

the presence or not of a surface charge (Sposito et al., 1998), and determined 

experimentally by the measurement of contact angles (Abraham, 1978; Good, 1973; 

Prestidge and Ralston, 1995) or immersion techniques (Cantrell and Ewing, 2001; 

Michot et al., 1994) and theoretically by the determination of water density profiles or 

water contact angles (Cruz-Chu et al., 2006; Wang et al., 2006). Wang et al. determined 

the different degree of hydrophilicity – hydrophobicity of mineral surfaces through the 

study of water density profiles and hydration energies (Wang et al., 2006). They showed 

that hydrophobic mineral surfaces like talc act as ‘hard-walls’ (Abraham, 1978; Yu et 

al., 1999) or non-interacting barriers, the water density profiles showing different 

maxima at regular distances from the surface, indicative of the formation of a standing-
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wave-like distribution of water. Siloxane surfaces present at basal planes of 2:1 clay 

minerals are an example of loosely-interacting mineral surfaces (Sposito et al., 1998), 

that would act as ‘hard-walls’ if they were isolated. However, the presence in clay 

minerals of a hydroxyl group at the center of the siloxane cavity, and bonded to the 

central octahedral sheet, affects the reactivity of siloxane cavities, which act as mild 

charge donors. Nevertheless, the main effect on the reactivity of these surfaces is due to 

the presence of isomorphic substitutions in the octahedral and tetrahedral sheets. These 

substitutions create a permanent negative charge, which makes possible the interaction 

of water with the mineral surface, creating a shell of adsorbed and ordered water. 

Another consequence of the presence of these isomorphic substitutions is the formation 

of cationic complexes adsorbed at the clay interlayer, and with adsorbed water shells 

that remain usually un-distorted. These cations contribute to create a hydrophilic 

environment in the clay interlayer, although, as noted before, the siloxane cavities are in 

principle hydrophobic. 

Mineral surfaces populated by hydroxyl groups are more hydrophilic, even in the 

absence of isomorphic substitutions (Wang et al., 2006). Hydroxyl groups interact with 

water forming hydrogen-bonds, and in some cases providing very strong adsorption 

sites for the water molecules, which form highly structured layers. This is the case of 

imogolite and gibbsite surfaces. The internal surface of imogolite is dominated by 

silanol groups that, in conjunction with the small pore diameter, contribute to the 

formation of a very strong structure of water (Creton et al., 2008a). The external 

surface, similar to the (001) gibbsite surface, is expected to have a hydrophilic behavior 

as gibbsite does. As shown by Wang et al., the structure and energetics of adsorbed 

water molecules are affected by the structure of mineral surfaces, being the positions 

and orientations of the hydroxyl groups the important parameters determining their 

relative hydrophilicity (Cruz-Chu et al., 2006; Wang et al., 2006). In this respect, little is 

known about the effect that the curvature of a mineral layer could have over the 

arrangement of surface hydroxyl groups. 

The wetting of a mineral surface –its ability to maintain contact with water– 

strongly depends on the hydrophilicity of the mineral surface. This wetting ability has 

traditionally been considered as a property uniform over the surface. However, 

experimental results have shown heterogeneities in the wetting properties of some 

mineral surfaces. Beaglehole et al. determined using ellipsometry that water wets mica 

incompletely, arriving at a film thickness of between one and two nanometers at 
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saturation (Beaglehole and Christenson, 1992). They inferred a water coverage value of 

one statistical monolayer at 75% relative humidity. Similar ‘patching’ effects were 

described experimentally by other authors using infrared spectroscopy (Baltrusaitis et 

al., 2007; Goodman et al., 2001), sum frequency generation (Liu et al., 2005; Xu et al., 

2006) or atomic force spectroscopy (Kendall and Martin, 2007) in other more complex 

mineral surfaces with such as SiO2 or α-Al2O3. The occurrence of this patching effect at 

the (001) surface of gibbsite and at the imogolite external surface will be described in 

this work, and its effect on the calculation of the protonation constants discussed. 

 

 

THEORETICAL METHODS 

Molecular models of hydrated gibbsite and imogolite 

Models for the gibbsite mineral/water interface were constructed by cleaving the 

gibbsite structure reported by Saalfeld and Wedde (Saalfeld and Wedde, 1974) along 

the (001) plane. A simulation box of 17.368 Å × 15.234 Å × 75 Å (a × b × c) containing 

two layers of gibbsite was used in all the calculations. Imogolite models were 

constructed from the structure obtained from Pair Distribution Function refinements. A 

simulation box of 50 Å × 50 Å × 25.29 Å containing three units of the imogolite 

nanotube along the c axis was used in all the simulations. A nanotube with ten 

molecular Al2(OH)3SiO3OH units along the circumference, similar to the reported 

structure of natural imogolite (Cradwick et al., 1972) was chosen. 

The CLAYFF force-field was used in all the calculations. CLAYFF is an 

electrostatic force-field whose hamiltonian includes a 6-12 Lennard-Jones term to 

reproduce Van der Waals and short-range repulsion interactions, a bond stretching term 

for surface and water OH bonds and a three-body angular term to reproduce water angle 

bending modes (Cygan et al., 2004). CLAYFF has been successfully applied in studies 

of a variety of minerals (Cygan et al., 2009; Wander and Clark, 2008; Wang et al., 

2006). Gibbsite was one of the minerals used for its parametrization, and thus its 

structure is reproduced with high accuracy, the difference with the experimental lattice 

constant being less than 4.1% (Wang et al., 2006). The structure of imogolite is also 

well reproduced as it is shown in the diffraction patterns generated from snapshots of 

the MD trajectories (not shown here). 
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CLAYFF uses a flexible SPC model to reproduce water interactions. This simple 

model has been extensively used to evaluate water structure and properties (Wang et al., 

2006) and for the interaction of water with hydroxide mineral surfaces (Creton et al., 

2008a; Creton et al., 2008b; Creton et al., 2008c; Cygan et al., 2009). As it will be 

shown later, the SPC model successfully reproduces the two adsorption sites for water 

molecules at the gibbsite (001) surface reported by Veilly et al. using DFT methods 

(Veilly et al., 2008). For this reason, and in spite of the lack of agreement between the 

values of some dynamic properties of SPC water and the experimental ones (Creton et 

al., 2008b), we think that the use of SPC water fits perfectly our requirements for the 

study of structural differences of adsorbed water at the imogolite and gibbsite interfaces 

with water. 

Molecular dynamics (MD) simulations were carried out using the code LAMMPS 

(Plimpton, 1995). The dry models were first equilibrated during 50 ps using MD 

calculations in the canonical ensemble. Water was then loaded by means of Monte 

Carlo (MC) simulations in the canonical ensemble. MC simulations were performed 

using the Sorption module of Materials Studio 4.3 (Accelrys Inc.). One million MC 

steps were run to equilibrate the water molecules on the surface of the minerals. After 

loading, the hydrated structures were equilibrated during 500 ps using MD simulations. 

Production runs were performed in the canonical ensemble and MD simulations were 

run during 500 ps. All MD runs were performed on the NERSC supercomputer 

Franklin. MC runs were performed at the Linux cluster of the Computer for Science 

Group of the Institut Laue-Langevin. Analyses of the trajectories were performed using 

home-made codes written in Fortran 95. 

The combination of MD and MC is very useful in the studies of mineral surfaces 

with surface OH functional groups. MC simulations allow the loading of water 

molecules on imogolite, where the positions of all the atoms (including the OHs) are 

fixed. This allows building a hydrated structure that is not far from an energy minimum. 

Using this MC equilibrated structure as the starting point MD simulations allow 

relaxing the positions and orientations of surface OHs, providing a method to stabilize 

the H-bonds formed between water molecules and the mineral surface. 

Ab-initio geometrical optimizations of the hydrated structures (with one water layer) 

of imogolite and gibbsite were performed using the Vienna Ab-initio Simulation 

Package (VASP) (Kresse and Hafner, 1993; Kresse and Hafner, 1994). The imogolite 

model used in these ab-initio calculations consisted on one imogolite unit cell, with 
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dimensions 35 Å × 35 Å × 8.43 Å. A vacuum layer of 15 Å existed between the 

periodical images along the a and b directions, the tube being periodic along the c 

direction. A supercell of gibbsite containing 2 × 3 unit cells along the a and b directions 

(17.37 Å × 15.23 Å × 75 Å) and two layers of gibbsite (001) planes separated by a 

vacuum layer of 67 Å were used. The calculations were performed at the Gamma point 

(k = 0), using projector augmented wave (PAW) pseudopotentials (Kresse and Joubert, 

1999) with a plane wave cutoff of 209 eV and the Perdew-Burke-Ernzerhof (PBE) 

functional of the generalized gradient approximation (GGA). 

 

 

RESULTS AND DISCUSSION 

Hydration energies 

A series of calculations with different hydration levels were performed with the goal 

of examining possible differences between the hydrophilicity−hydrophobicity of the 

external face of imogolite and the (001) surface of gibbsite. For this purpose, only the 

external surface of imogolite was hydrated, and the internal pore was totally dry. The 

energy of water adsorption (∆UH) was calculated using the following expression (Smith, 

1998): 

 [ ] NUNUU H /)0()( −=∆  (1) 

where U(N) is the potential energy of the hydrated surface, U(0) is the potential energy 

of the dry surface and N is the number of water molecules. The average corresponds to a 

time average over all the production run. This method to calculate hydration energies 

has been successfully applied by Wang et al. (Wang et al., 2006) to study the energy of 

water adsorption on brucite, hydrotalcite, muscovite, talc and gibbsite. Their results for 

muscovite show a very good agreement with experimental values. These authors also 

discussed the non inclusion of the P∆V term in the energy expression, arguing that these 

effects are very small at ambient pressures and thus can be safely neglected. Also, as it 

will be shown here, water is structured in similar ways on both surfaces. This fact has 

led us to make the assumption that entropic effects are playing a minor role here. We 

can thus make the approximation of equation (2) (Whitley and Smith, 2004):  

 21 SS ∆=∆  (2) 

 ( ) ( ) 211111 UUSTUSTUG ∆−∆=∆−∆−∆−∆=∆∆  (3) 

 



 87

In view of equations (2) and (3), the calculated increment in enthalpy of surface 

water adsorption would be equivalent to the Gibbs energy of surface water adsorption. 

 

 
Figure 2. Hydration energies as a function of surface water coverage of the gibbsite (001) and 

imogolite external surfaces. The dotted line corresponds to the Gibbs free energy of a water 

molecule in SPC bulk water. 

 

The results are presented in Figure 2. The surface water coverage (φ) is defined as 

the ratio between the number of water molecules and the number of surface oxygen 

atoms. The constant (dashed line) at ∆UH = -9.81 kcal/mol indicates the potential 

energy of a water molecule in bulk SPC water. The curves for the two minerals show a 

similar behavior: both show a minimum and tend asymptotically to the energy of bulk 

water at high surface coverage. The fact that both curves lie below the SPC water 

constant value of potential energy indicate that the surfaces are hydrophilic. The surface 

of gibbsite is more hydrophilic than the surface of imogolite, presenting a deeper 

minimum at ∆UH = -13.30 kcal/mol, placed at a φ ≈ 0.5, the same values reported by 

Wang et al. (Wang et al., 2006). The hydration energy curve for imogolite has a 

minimum of ∆UH = -11.11 kcal/mol placed at a surface coverage value of φ ≈ 1, higher 

than that of gibbsite. The difference in potential energy is significative, indicating that 

the surface of imogolite is more hydrophobic than the (001) surface of gibbsite. The 

occurrence of the minimum can be explained by considering the different interactions 

that a water molecule suffers when it is adsorbed at a mineral surface. At very low water 

coverages the water molecules interact uniquely with a surface OH, the interaction 

being very loose and far from the desired tetrahedral coordination that a water molecule 



 88

would adopt in bulk SPC water (Bernal and Fowler, 1933). For this reason, at the φ → 0 

limit all the hydration curves tend to a value higher than the energy of SPC water. As 

more water is introduced into the system, small aggregates start to form around the 

adsorbed molecules, and the coordination of water molecules approaches in number and 

geometry the coordination of a water molecule in bulk water, lowering its potential 

energy. The same reasoning is valid for the surface of gibbsite. The difference between 

both surfaces comes then from their relative ability to form H-bonds with water. In 

order to explain this behavior and the relative hydrophobicity of imogolite compared to 

gibbsite, a structural analysis of the water H-bonding behavior to both surfaces will be 

presented in the next sections. 

 

Orientation of surface OH groups 

The projections of the O and H atoms onto the (001) surface of gibbsite and onto the 

external surface of imogolite are presented in Figure 3.  

 

 
Figure 3. Projections of surface OH groups onto the (001) gibbsite surface (left) and the 

external imogolite surface (right). The orange circles represent the positions of surface O 

atoms. The blue regions indicate the more probable positions for hydroxyl H atoms. Red arrows 

indicate OH groups perpendicular to the surface. Green arrows indicate OH groups parallel to 
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the surface. The position of the empty octahedral site is placed between three O atoms, at the 

end of the green arrows in the left figure. 

 

Two orientations for the OH groups are found on the (001) surface of gibbsite, 

which are similar to the orientations described in Wang et al (Wang et al., 2006): one in 

which 5/6 of the OH groups point towards the empty octahedral site of gibbsite (green 

and red arrows in the left of Figure 3) and another one in which 1/6 of the OH point 

perpendicularly to the (001) surface. On imogolite, the curvature prevents the formation 

of H-bonds between surface OH groups along the circumference of the nanotube.  

Thus, only 1/3 of the OHs are parallel to the surface, with their direction lying along 

the c axis, where there is no curvature. As it will be shown in the next section, these 

different orientations of the OH groups cause differences in the structure of water 

adsorbed on these mineral surfaces. 

 

Structure of adsorbed water at the mineral / water interface 

The normalized density profiles of water computed at the gibbsite and imogolite – 

water interfaces are shown in Figure 4. Similar behaviors are found for both surfaces, 

indicating that they exert similar influences over the structure of adsorbed water. A 

difference in the width of the first peak, broader in the water profile of imogolite, 

indicates a less ordered first shell. The simplest explanation for this difference is the 

geometrical effect caused by the curvature of the imogolite surface: according to the 

Poisson-Boltzmann equation (Sposito, 2004), the decay of the electrostatic potential 

with the distance from the surface is more pronounced for a cylindrical surface than for 

a planar one1. However, although this explanation offers a qualitative idea of the effect 

of a charged surface over a charged particle (or dipole, like water), it assumes that the 

surface is uniformly charged, with no ‘atomic roughness’.  

The existence of two surface sites of adsorption for water molecules on both 

surfaces can be discerned from the angular distributions of water molecules at the 

surface (Figures 6 and 7). Two angles are needed to describe the orientation of a water 

molecule. We have defined θ as the angle between the water dipole vector and the 

vector normal to the mineral surface, and α the angle between the vector joining the two 

                                                 
1 Solving the Poisson-Boltzmann equation within the Debye-Hückel approximation it can be shown that 
the electrostatic potential exhibits an exponential decay with increasing distance from the surface that is 
more pronounced for a cylindrical surface. The Poisson-Boltzmann equation for a charged cylinder does 
not have an analytical solution out of the Debye-Hückel approximation. 
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water hydrogen atoms and a vector normal to the mineral surface. The choice of the 

origin of the 
→

HH vector is irrelevant, as the angle α is α = α’ for α’ < 90° and α = 180° 

- α’ for α’ > 90°. The occurrence of the two adsorption sites is confirmed by looking at 

the distribution of the θ angle at the gibbsite and imogolite surfaces at low water 

coverage, and is more clearly distinguishable in the case of gibbsite (Figure 6). 

 
Figure 4. Normalized water density profiles at the (001) gibbsite surface and at the external 

imogolite surface. The origin is placed at the positions of the surface O atoms.  

 

Two peaks can be distinguished in the first shell (d ≈ 2.5 Å) of all the histograms: 

one centered at θ ≈ 122º and another at an angle of θ ≈ 75º. In the case of gibbsite, this 

second peak shifts its position towards lower angle values as the water coverage 

increases. Figure 7 shows the angular distribution of the α angle. A careful examination 

of the angular distributions allows the orientations of the adsorbed water molecules to 

be described. In gibbsite, a first orientation (A: θ = 120º, α = 45º), corresponds to a 

water molecule with an OH pointing towards the surface and donating a hydrogen bond 

to a surface oxygen. In a second orientation (B: θ = 55º, α = 90º), a water molecule 

accepts a hydrogen bond from the surface (see Figure 5). These two sites were 

described first by Wang et al. (Wang et al., 2006) in their study of the gibbsite surface. 

In addition, in the θ maps of gibbsite it can be seen that the peak intensity corresponding 

to the A orientation (θ = 120º) does not increase when increasing water coverage, 

meaning that the additional molecules adsorb on the surface in the B orientation. The 

same orientations for water molecules are found at the imogolite surface (Creton et al., 

2008a). However, and contrary to gibbsite, the A site is not saturated at a surface water 

coverage of  φ = 0.5. 
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Figure 5. A-type and B-type water molecules. The hydrogen bonds with the surface are 

indicated by dotted lines. The A-type water molecule gives a hydrogen bond to a surface 

oxygen, while the B-type water molecule receives a hydrogen bond from a surface oxygen. The 

green polyhedra are aluminum octahedra and the white spheres are hydrogen atoms. 

 

This trend, also observed in the evolution of the water atomic density profiles, can 

be followed in the evolution of the peak at θ = 120º, which keeps growing from φ = 0.5 

to φ = 1. Creton et al., also reported the occurrence of the site A on imogolite, but they 

did not discuss the second site (B) (Creton et al., 2008a). Their work focused on the 

existence of a third site (C) in which the water dipole vector points away from the 

surface, and that may occur in positive charged planar regions of the imogolite surface 

predicted by the vibrational breathing mode (Creton et al., 2008a).  

Regarding the second shell (d ≈ 5 Å) the angular maps for gibbsite show better 

defined orientations of θ and α, the orientational distribution of the water molecules 

being centered at θ ≈ 130º, α ≈ 90º. Again, the effect of the curvature is seen in the 

orientational distribution of the second shell of imogolite, which is poorly defined and 

much less structured than the second shell at the surface of gibbsite. 

 

Water hydrogen bonds with the surface 

An analysis of the hydrogen bonding of surface OH groups with water provides 

further explanation about the mechanisms of water adsorption. Histograms of the 

number of hydrogen bonds donated/accepted by an OH group to/from a water molecule 

are given in Figure 8. 
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Figure 6. Histograms of the θ orientations of water molecules at the surfaces of imogolite (up row) and gibbsite (low row) as a function of water coverage 

(numbers on the top). Blue color indicates a low probability of finding a certain orientation, and red represents the maximum probability. It can be observed 

that both mineral surfaces induce similar structures of water. A difference is seen in the second shell, much more structured in the case of gibbsite.
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Figure 7. Histograms of the α orientations of water molecules at the surfaces of imogolite (up row) and gibbsite (low row) as a function of water coverage 

(numbers on the top). Blue color indicates a low probability of finding a certain orientation, and red represents the maximum probability. Similar behaviors 

are observed.
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The criteria for defining an hydrogen bond has been set as following: a water 

molecule has been considered to be H-bonded if it is contained within the first peak of 

the OH pair correlation function, which extends to 2.2 Å in the case of a receiving H-

bond from water, and to 2.3 Å for H-bonds donated to water, similar to the distances 

found by Machesky et al. (Machesky et al., 2008) (pair correlation functions not shown 

here). The results confirm one of the hypotheses considered previously: the number of 

accepting hydrogen bonds at the gibbsite surface is constant within all the φ range. On 

the other hand, the number of accepting hydrogen bonds at the imogolite surface 

increases, reaching a plateau at φ = 1. This fact reflects the difference in energetics of 

the two surfaces: the surface oxygen atoms with OH parallel to the surface (see Figure 

3) are high energy sites of adsorption of type-A water molecules, and thus they are 

saturated at any surface coverage beyond φ = 0.5 (Figure 8). At the imogolite surface, 

2/3 of the OH groups point perpendicularly to the surface, making the adsorption of 

type-A water molecules more difficult. The relative importance of type-A hydration 

water molecule goes from 22% at φ = 0.5 to 35% at φ = 4. In contrast, the percentage of 

type-A water molecules at the gibbsite (001) surface has a constant value of 32% 

throughout the whole φ range. Regarding the number of hydrogen bonds donated to 

water molecules as a function of surface coverage, the number increases on both 

surfaces reaching a plateau at φ = 1.5 and values of 57% of the OH sites giving a H-

bond on imogolite, and 43% on gibbsite. 

 

 
Figure 8. Percentages of surface OH groups receiving/donating 0 or 1 H-bonds from/to water 

molecules. All the curves reach a plateau at φ = 1-1.5, indicating that saturation has been 

reached. 
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This analysis shows the effect of curvature, i.e., the effect of the orientations of 

surface OH groups on the adsorption of water molecules. The imogolite surface is 

dominated by OH groups pointing perpendicularly to the surface, preventing the 

adsorption of type-A water molecules. The most common orientation for water is thus 

that of type-B (57%), which is less stable energetically. The gibbsite surface has surface 

OH groups pointing parallel to the surface, allowing the adsorption of type-A water 

molecules, which are more stable. This causes the total potential energy to decrease to a 

lower value than in the case of imogolite. 

In Figure 9 the percentage of OH sites forming 0, 1 or 2 H-bonds with water is 

shown. It is interesting to note that, although most of the surface OH sites are forming 

H-bonds, all curves reach a plateau, meaning that a significative number of surface sites 

remain ‘dry’ or ‘hydrophobic’even at high surface coverage values. 

 
Figure 9. Percentages of surface OH groups forming 0, 1 or 2 H-bonds with water molecules. 

About a 15% of the sites are able to form 2 H-bonds with water molecules, in comparison with a 

2% in gibbsite. A significative number of surface OH do not form any H-bond with water, 

indicating the presence of ‘patching’ effects of water at the surface. 

 

Several authors have reported a similar behavior on other mineral surfaces. 

Rahaman et al., who used the term ‘surface patch’ to describe this uneven repartition of 

water over the mineral surface, studied this patching effect at the )4110(  surface of 

calcite (Rahaman et al., 2008). They described a dynamic process of adsorption in 

which the formation of a stable multilayer of water molecules at the mineral surface is 
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attained after 6 ns reaction time. This time may depend on the nature of the mineral 

surface: ionic solids (such as calcite) may have longer reaction times, since their non-

dissociative interaction with water molecules is weaker than for mineral surfaces 

populated by OH groups that form strong hydrogen bonds with water molecules. Our 

simulations show that equilibrium was reached at 1 ns (the occurrence of a plateau in 

Figure 9 is conclusive evidence that equilibrium was attained, even if tests on 

adsorption dynamics have not been performed), probably due to the previous 

equilibration of water using Monte-Carlo simulations. This behavior is striking, and has 

important conceptual implications in the field of geochemistry. Most geochemical 

SCMs assume uniform surfaces where the wetting is uniform (Davis et al., 1978; 

Hiemstra et al., 1989; Hiemstra and VanRiemsdijk, 1996; Sposito, 2004). These effects 

should be included in any molecular description of the electric double-layer and taken 

into account in SCMs. As a first step towards this, they will be evaluated in terms of the 

protonation constants of surface hydroxyl groups at the (001) surface of gibbsite and at 

the external surface of imogolite. 

 

Effect of the curvature on the pKa 

The (001) surface of gibbsite is dominated by >Al2OH0 functional groups. The pKa1 

value for these groups has been subject of debate over the last 20 years. A MUSIC 

model reported by Hiemstra et al. (Hiemstra and VanRiemsdijk, 1996) concluded that 

these functional groups are not reactive in the pH range of environmental relevance (3-

11), with pKa1 = 0.0. More recently, other authors have recently reported experimental 

values of pKa1 = 5.9 ± 0.2 (Gan and Franks, 2006), that agree with a theoretical study by 

Bickmore et al. (2004) in which several values are reported for this type of doubly-

coordinated neutral sites (Bickmore et al., 2004). In a more recent study, Bickmore et 

al. (personal communication) have revised the concept of protonation constant, 

suggesting that the protonation of a site produces relaxation effects in the bond lengths 

of the surrounding sites, affecting the pKa values in a dramatic way (several log units). 

This finding has important conceptual implications, as the pKa of a site can not longer 

be considered constant: its value changes as a function of protonation of the sites around 

it. This was already the central concept of the constant capacitance surface 

complexation model, where the pKa value was linearly diverging from the intrinsic pKa 

value as a function of the absolute value of the proton surface charge of the particle 

(Schindler and Stumm, 1987). Bickmore et al. have used a method that makes use of 
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ab-initio molecular dynamics (AIMD) simulations to calculate the average bond lengths 

of surface sites over time (Bickmore et al., 2004). They start with a totally de-

protonated surface with >Al2O- sites and a shell of hydration water; then a proton is 

added to one site of the oxygens, the bond-lengths are measured and the pKa calculated. 

Each site is then protonated step-by-step, tracking the bond lengths and recalculating the 

pKa at each step. It is important to note that an explicit water shell was introduced in the 

simulations, allowing the presence of relaxation effects originated by changes in the H-

bonding that affect the number of hydrogen bonds per surface oxygen, and thus the pKa. 

The method to calculate the pKa is the same as the one presented in Bickmore et al. 

(2004). While this method seems to predict with accuracy the pKa values obtained 

experimentally by Gan et al. (2006), its major drawback is the high amount of 

computational work it requires. For this reason its application to the surface of imogolite 

is not feasible with the computational resources available nowadays, due to the big unit 

cell required by the imogolite unit cell to be simulated. In order to establish the effect 

that the different hydrogen-bond and water structure has on the acidity of imogolite, 

compared to that of gibbsite, we opted for using the CD-MUSIC model. In this model, 

the pKa is calculated using this expression: 
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where A, equal to +19.8, is a constant that has been obtained from fits relating the log 

Ka of different known solution monomers with their calculated charge undersaturation 

(Hiemstra and VanRiemsdijk, 1996). This model introduces the effect of hydration by 

considering a part of the valence shared with the hydrogen-bond: 

 ( )[ ]HHOAl
j

j snmsssV −++−=−≠ −∑ 1  (5) 

where V is the valence of oxygen (-2), sj is the valence associated with all the bonds 

reaching the oxygen atom, sAl-O is the bond valence of the Al-O bonds, sH is the valence 

of the (m) H donating bonds, and (1-sH) the valence of the (n) accepting ones. The CD-

MUSIC model uses a constant sH value of 0.8 for each strong bond with a hydrogen 

atom and a constant 0.2 1-sH value for each H-bond accepted from a water molecule 

(Hiemstra and VanRiemsdijk, 1996). In our study we have chosen to make use of the 

bond valence approach to calculate the actual valence of the donor O-H bonds and of 

the H-bonds accepted by surface oxygen. The following known expression for bond 
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valence calculations calibrated by (Brown and Altermatt, 1985) from thousands of 

structures from the International Crystal Structure Database is used: 
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where sO-H is the bond valence, rj is the O-H bond length (including H-bonded water 

molecules) and r0 and B are fitted parameters specific of each anion-cation pair. For the 

O-H bonds the following set of parameters will be used:  

 

rO-H range (Å) r0 (Å) B 

< 1.05 0.907 0.28 

1.05 ≤ rO-H ≤ 1.70 0.569 0.94 

> 1.70 Å 0.99 0.59 

 

Table 1. Values of the parameters r0 and B used to calculate the bond-valence of surface OH 

bonds, O…H and O…H2O hydrogen bonds. 

 

The value of SO-H decreases with the rO-H distance, tending asymptotically to zero 

for large rO-H distances. This allows the sum in equation 4 to be performed over all the 

water molecules around a surface site, in opposition to the analysis presented before in 

which the number of H-bonds was quantified using a distance cut-off value as a 

criterion. The inclusion of all the water molecules in the bond-valence sum was 

suggested by Brown et al. (Brown, 2002), who observed that interactions of water 

molecules in bulk water placed at long distances from each other should be considered 

if proper valence sums were to be maintained. 

Equation 2 can be then expressed in the following terms: 

 [ ]( )∑∑ −− +−+−= HOOAl srrVAK
m
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Our study has been restricted to the protonation constant of the doubly coordinated 

>Al2OH0 groups present at the (001) gibbsite surface and at the external surface of 

imogolite. As it was shown before, the curvature of imogolite affects its H-bonding 

structure. This effect is reflected in the values of the bond-valences corresponding to 

accepting hydrogen bonds from water and from other surface hydrogen atoms to surface 

oxygens (see Figure 10). 
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Figure 10. Bond valences of surface oxygen sites due to H-bonding with water molecules (red) 

and with other surface OH groups + direct OH bonding (black). The blue curve indicates the 

total bond valence received by surface O atoms  

 

The fact that most of the OH groups at the gibbsite surface (5/6) form strong 

hydrogen bonds with other surface groups is reflected in the bond valence values 

corresponding to accepted hydrogen bonds plus the bonded hydrogen atoms (black 

squares in Figure 10), with values around 0.88 valence units. In the case of imogolite, 

the high percentage (2/3) of OH groups pointing perpendicularly to the surface results in 

less oxygens accepting hydrogen bonds from neighboring OH groups, their bond 

valence having values of 0.83 valence units. Regarding the interactions with water, 

oxygen atoms at the imogolite surface receive more charge from water hydrogens (≈ 

0.23 valence units) in comparison to gibbsite, whose value remains constant at a value 

of 0.19 valence units practically over the whole range of surface coverage. 

Values of the protonation constants of the neutral >Al2OH0 sites calculated by the 

CD-MUSIC model are very sensitive to small variations of the metal-oxygen bond 

lengths. We have constrained the bond valence values due to H-bonding of surface sites 

with water molecules and OH groups. However, in order to obtain these protonation 

constants using expression (5), values for the Al-O bond lengths have to be determined. 

Different techniques can be used (Pair Distribution Function, X-ray Absorption 

Spectroscopy) to obtain interatomic distances from bulk structures, but it is still very 
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difficult to obtain experimental values of interatomic distances from interfacial atoms. 

For these reasons, we have used ab-initio calculations of gibbsite and imogolite−water 

interfaces to obtain an estimation of the average Al-O bond lengths. In Figure 11, the 

Al-O bond lengths have then been used as a variable, and the sAl-O bond valences were 

calculated using equation (6), with B = 0.37 and r0 = 1.651 Å.  

 
Figure 11. Calculated pKa1 values for surface OH groups according to equation (5), in function 

of the Al-O bond lengths. The scale in the top abscissa indicates the total bond valence due to 

the two Al-O bonds. The error bars (gray and pink areas) have been calculated from the errors 

in the sO-H bond valences. An estimation of the absolute pKa1 values has been done using <rAl-O> 

distances obtained from ab-initio calculations. 

 

Both pKa1 values show a decreasing behavior towards lower values as long as the 

Al-O distances increase. The rAl-O bond lengths obtained from ab-initio calculations 

give an estimation of the pKa1 for each surface. For imogolite we obtained an average 

value of <rAl-O> = 1.95 Å which yields a pKa1-Imogolite = -0.92 ± 0.24. The value obtained 

for the gibbsite groups is of <rAl-O> = 1.94 Å, yielding a pKa1-Gibbsite = -0.05 ± 0.50. The 

acidity constant for imogolite doubly coordinated neutral groups is shifted towards more 
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acidic values by a ∆pKa1 = 0.87 ± 0.75. The value for gibbsite is in close agreement 

with the value reported by Hiemstra et al. (1996) using the CD-MUSIC model (pKa1 = 

0.0), and in disagreement with the more recent results by Gan et al. and Bickmore et al., 

who proposed values at pKa1-Gan = 5.9 ± 0.2 and pKa1-Bickmore = 5.2 (Bickmore et al., 

2004; Gan and Franks, 2006).  

 

 

CONCLUSIONS AND GEOCHEMICAL IMPLICATIONS 

The effect of the curvature of two mineral surfaces with the same composition −the 

external surface of imogolite and the (001) surface of gibbsite− on their surface 

chemistry has been explored comparing a curved surface –imogolite– with a planar one 

–gibbsite–. MD simulations have shown that water molecules adsorb on both surfaces 

adopting similar orientations. However, the curvature of the imogolite surface prevents 

the formation of some H-bonds between surface OH groups, preventing the adsorption 

of A-type water molecules, which are strongly adsorbed at the surface of gibbsite. These 

A-type orientations, correspond to water molecules donating an hydrogen bond to a 

surface oxygen. At the gibbsite surface, the surface sites of adsorption of A-type water 

molecules are saturated at low water coverage (φ < 0.68), whereas the surface of 

imogolite accepts water molecules in the same orientation still at water coverages φ > 

0.68. Water Gibbs free energies of adsorption have been calculated, revealing a 

hydrophilic behavior in both surfaces, but with a difference of ∆∆G = -2.19 kcal/mol 

between them, the surface of imogolite being more hydrophobic. 

This relative imogolite hydrophobicity could be related to several properties that 

have been classically described as specific of this mineral. One of them, the formation 

of stable organo-mineral complexes, has been largely reported in the soil science 

literature as a characteristic of the soils where imogolite (and other allophanic clays) are 

present (Basile-Doelsch et al., 2005; Chevallier et al., 2007; Egli et al., 2008; Theng and 

Yuan, 2008; Wilson et al., 2008). The formation of organo−mineral complexes can be 

facilitated by the high density of surface functional groups at the surface of imogolite. 

However, prior to specific interactions with functional groups, the organic molecule has 

to be approached to the imogolite surface. The hydrophobic (or less hydrophilic) 

character of imogolite would be beneficial for this first step, as water is less structured 

in its surface than in other minerals (Wang et al., 2006), and the absence of isomorphic 
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substitutions makes that there is no permanent charge on its surface. Further 

investigations of this property should be made in the future to correctly assess the 

retention of organic matter by imogolite. Our simulations shed light on another 

important property of imogolite: its tendency to form bundles. It has been shown using 

MD simulations that the free energy profile of aggregation of two mineral particles is 

governed by the energy barriers created upon the formation of a shell of highly ordered 

water between the mineral surfaces (Spagnoli et al., 2008). In the case of imogolite this 

shell of adsorbed water is less structured, and a lower energy barrier is expected to 

occur, thus facilitating the aggregation between different nanotubes. MD simulations 

exploring these effects are on going. 

These two properties (formation of bundles and adsorption of organic matter) are 

related to the ‘patching’ behavior observed in our MD simulations. The presence of 

‘dry’ or ‘hydrophobic’ surface sites can be understood in terms of the low affinity of the 

surface for water molecules. Interfacial water have a tendency to form aggregates 

(Creton et al., 2008a) at the surface of imogolite in which the tetrahedral coordination of 

bulk water can be better satisfied (Bernal and Fowler, 1933). The formation of these 

‘dry islands’ or ‘patches’ can promote the adsorption of organic molecules or the 

aggregation of different nanotubes. The presence of these dry sites has also implications 

in the concept of protonation constant. Models developed up to date including 

molecular descriptions of the mineral−water interfaces do not account for differences in 

wetting behavior, assuming that the water surface coverage is uniform over the mineral 

surface. New simulations and experimental studies of these patching effects are needed 

to determine (1) residence times of water molecules on specific sites and (2) the effect 

of these dry sites on the adsorption of ions and molecules. The proton transfer processes 

that occur upon the protonation or de-protonation of a surface site, in the femtosecond 

range (Rini et al., 2003), are very fast in comparison with the residence times of the 

order of picoseconds (Creton et al., 2008a) of water molecules on some mineral 

surfaces. For this reason the presence of patches can be considered a mechanism non-

coupled to the proton transfer. The patches can be then understood as a ‘static’ property 

of the surface, only affecting to the surface area that has to be considered. More 

research in this direction has to be performed in order to address the relevance of these 

patches on the complexation of ions and molecules at mineral surfaces. 

Finally, the structure of the water H-bonding at imogolite and gibbsite−water 

interfaces has been evaluated in terms of the protonation constants. MD simulations 
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reveal a more ordered and stronger network of H-bonded surface OH groups at the 

surface of gibbsite. The curvature of imogolite prevents the formation of some H-bonds 

between surface OH groups. This yields different values of the bond valences attributed 

to bonds between surface O atoms and water molecules, which result in more acidic 

pKa1 values for imogolite doubly-coordinated neutral sites by ∆pKa1 = 0.87 ± 0.75. The 

absolute values of the protonation constants reported in this work coincide with those 

reported by Hiemstra et al, who used the same CD-MUSIC model, but are in 

disagreement with the values reported by others. Spectroscopic studies focused on the 

exploration of the atomic structures at mineral−water interfaces are needed in order to 

obtain better structural descriptions allowing to develop reliable surface chemistry 

models. 
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Chapter 5 

 

The structure of schwertmannite, a nanocrystalline iron 

oxyhydroxysulfate 
 

 

5.1.- Introduction 
The uncontrolled release of acid effluents into streams and lakes from abandoned mines, 

commonly known as ‘acid mine drainage’, is the responsible of the precipitation of poorly 

crystalline mineral phases that fix and mobilize trace contaminants such as arsenate, 

chromate or selenate (Carlson et al., 2002; Regenspurg and Peiffer, 2005). Natural 

processes, as the oxidative dissolution of iron sulphides, are also responsible of the drainage 

of acidic waters into the environment. One of these mineral phases, schwetmannite, is 

commonly found in acidic (pH 2-4) sulphate-rich waters where iron phases precipitate. 

Schwertmannite, Fe8O8(OH)8-x(SO4)x, was first reported and named by Bigham et al. 

(1994), who characterized it as having a structure akin to that of akaganeite. Akaganeite is 

composed by an octahedral iron frame into which chloride ions are adsorbed. A similar iron 

structure hosting sulphates in the place of chloride atoms has been proposed by many 

authors (Barham, 1997; Bigham et al., 1990; Waychunas et al., 2001; Waychunas et al., 

1995). Laboratory experiments performed by Bigham et al. (1990) confirmed this 

hypothesis: they reported the existence of a poorly crystallized oxyhydroxysulfate of iron 

when FeCl3 was hydrolysed in the laboratory in the presence of 1000  µg/mL of sulphate. 

The diffraction pattern of this precipitate showed a characteristic 8-lines profile that was 

similar to that observed in natural waters. The diffraction pattern showed some similarities 

to that of akaganeite, with the absence of the (110) reflection (note that another notation will 

be used in this chapter). Soon, other characterization techniques were applied. Bigham et al. 

(1990) confirmed using Mössbauer spectroscopy that all the iron in the structure was 

present as Fe3+. 
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One of the battle horses in the study of the schwertmannite structure has been the 

variable chemistry reported, with sulphate concentrations ranging from 1 to 1.86 (Yu et al., 

1999). Many studies have reported different complexation mechanisms for sulphate onto the 

akaganeitic structure of schwertmannite (Waychunas et al., 2001; Waychunas et al., 2005; 

Regenspurg and Peiffer, 2005). In particular, FTIR studies have reported different 

conformations, ranging from purely outer-sphere complexation to bidentate inner-sphere 

complexation. The use of other spectroscopic techniques like EXAFS has been unsuccessful 

in the unequivocal positioning of the sulfate groups in the structure. 

In this study we report a combined X-ray Pair Distribution Function (PDF), X-ray 

diffraction analysis and molecular modeling study of the structure of schwertmannite.  
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ABSTRACT 

Schwertmannite is a poorly crystalline mineral that forms ochre rusts and precipitates in 

acid mine environments. Despite its ubiquity and its role as scavenger of important 

contaminants such as arsenic or selenium, its structure has not been yet determined. Here, 

the structure for schwertmannite is presented based on Pair Distribution Function (PDF) 

data, X-ray Diffraction (XRD) analyses and Density Functional Theory (DFT) calculations. 

We propose a structure formed by a deformed frame of iron octahedra similar to that of 

akaganeite. Simulations of X-ray diffraction patterns unveil the presence of long-range 

order associated with the position of the sulfate molecules, providing a useful way to 

discern two types of sulfate complexes in the structure. Knowledge of the positions of the 

sulfates in the structure will help to better understand their exchange processes with 

oxyanions of trace contaminants such as arsenate, chromate or selenate, strongly 

influencing their biogeochemical cycling in mining ecosystems.  
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INTRODUCTION 

Schwertmannite is a poorly crystalline ferric oxyhydroxysulfate that forms ochreous 

coatings on sulfide-bearing rocks and soils. It also precipitates in streams and lakes 

receiving acid mine drainage where the weathering of iron sulfide minerals produces SO4 

and Fe(II) acid solutions. When exposed to the atmosphere, bacterially mediated oxidation 

of Fe(II) occurs and large quantities of nanoparticulated Fe(III) phases may form. 

Moreover, schwertmannite is a key solid in removing acidity in treatment systems where 

Fe(II) is rapidly oxidized by addition of alkalinity to acid mine drainage (Gagliano et al., 

2004; Rotting et al., 2008). Further, in anoxic environments such as acid lakes, flooded soils 

and wetlands, schwertmannite particles can serve as electron acceptor for Fe(III) reducing 

bacteria, releasing the Fe(II) necessary for sulfate reduction and neoformation of iron 

sulfides (Burton et al., 2007). Schwertmannite forms aggregates of nanoparticles of typical 

hedge-hog morphology. 

Due to its high specific surface and positive charge in acid waters, schwertmannite 

efficiently removes oxyanions such as AsO4
3-, SeO4

2- and CrO4
2- from water (Carlson et al., 

2002; Regenspurg and Peiffer, 2005; Waychunas et al., 1995). However, despite its ubiquity 

and its important geochemical role, schwertmannite was only recently recognized as a 

mineral (Bigham et al., 1994). Reasons for this late recognition include its poor 

crystallinity, its frequent association with more crystalline phases such as goethite and 

jarosite, and its metastable structure, which transforms into goethite and jarosite within 

months (Acero et al., 2006; Bigham et al., 1996). 

The chemical composition of schwertmannite is also object of controversy. Bigham et al 

(Bigham et al., 1994) first proposed the chemical formula as Fe8O8(OH)8-x(SO4)x, with x 

varying from 1 to 1.75. Yu et al. (Yu et al., 1999) later estimated x to vary from 1.74 to 

1.86. Uncertainty on the range of x values may be caused by the different location of the 

sulfate groups in the structure. The first approach to the structure of a “poorly crystalline 

sulfate oxyhydroxide” was given by Bigham et al. (Bigham et al., 1990), who synthesized 

akaganeite-like materials with different concentrations of sulfate, that reproduced the 8-

diffraction lines characteristic of schwertmannite, suggesting similarities between the 

octahedral iron frame of schwertmannite and akaganeite. Although some authors have 

proposed a ferrihydrite-like structure (Loan et al., 2004), there is more general agreement in 

the literature about this idea of schwertmannite structure being akin to that of akaganeite, 

with a channel-like iron octahedral frame to which sulfate molecules are bound (Barham, 

1997; Bigham et al., 1990; Waychunas et al., 2001; Waychunas et al., 1995). However, no 
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clear experimental evidence on the structure of the iron octahedra or the positions of the 

sulfates has been reported yet. Since trace element oxyanions like AsO4
3-, SeO4

2-
 or CrO4

2- 

replace SO4
2-, knowing the allocation of the sulfate groups in the structure is essential to 

understand the retention of the oxyanions in the solid phase.  

X-ray diffraction studies have been limited by the reduced size of schwertmannite 

crystallites, which give broad diffraction peaks making thus difficult to perform a detailed 

crystallographic analysis of the structure. In the recent years, the Pair Distribution Function 

(PDF) technique, classically known as the Patterson function technique (Guinier, 1994), has 

been used to study poorly crystalline precipitates of environmental relevance like 

mackinawite (Michel et al., 2005; Scheinost et al., 2008), magnetite (Scheinost et al., 2008) 

or ferryhydrite (Michel et al., 2007a; Michel et al., 2007b). This technique relies on a 

Fourier transform of the whole diffraction pattern, and it is thus particularly well suited to 

the study of poorly crystalline phases of reduced crystallite size, where diffuse scattering 

has a significant contribution to the diffraction pattern. In this study, we present a combined 

high-energy X-ray diffraction and theoretical study of the structure of schwertmannite. 

 

MATERIALS AND METHODS 

Two types of schwertmannite specimens were used in this study: natural and synthetic. 

Natural samples were taken as fresh precipitates from the acid drainage in Monte Romero 

mine (Iberian Pyrite Belt), Spain. Synthetic schwertmannite was precipitated by adding 

ferric chloride to sodium sulfate solutions. The produced suspension was held at 60° C for 

12 minutes and then cooled at room temperature and dialysed for a period of 30 days 

(Schwertmann and Cornell, 1991). Samples of natural schwertmannite were dried following 

two different procedures: air-dried, and freeze-dried. This allowed us to check for any 

possible effect of the drying mechanism on the observed structure. Once dried, the powder 

samples were loaded into 0.8 mm diameter polymide capillaries which were sealed with 

wax. 

 

High-energy X-ray total scattering experiments were performed at beamline ID15B of 

the European Synchrotron Radiation Facility, Grenoble, France. Scattering data were 

collected with a Pixium 4700 detector (Daniels and Drakopoulos, 2009) using the Rapid-

Acquisition pair Distribution Function technique (Chupas et al., 2003). Measurements of the 

samples, empty capillary, and the background were made at ambient temperature in a q-

range of 0 – 25 Å-1. The X-ray wavelength was refined using a Ni standard (λ = 0.14252 Å). 
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Corrections for sample-detector distance, tilt angle of the detector with respect to the 

direction of the incident radiation and polarization were performed using Fit2D 

(Hammersley et al., 1995). Total scattering structure functions and Pair Distribution 

Functions (PDF) were obtained using the PDFGetX2 software (Qiu et al., 2004). A 

crystalline standard (LaB6) was measured and used to calculate the instrumental resolution 

effect on the PDF (Toby and Egami, 1992). Fits of the PDFs were performed using the 

PDFGui software (Farrow et al., 2007). In a PDF, the partial pair correlation functions 

between two atoms i and j, gij(r), are weighted by a function, wij(r) (Egami and Billinge, 

2003): 

 2f
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ci and cj being the concentrations of the elements i and j and fi and fj their atomic form 
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Only the x and z coordinates of the iron atoms were refined during the fitting procedure. 

The reason for this is two-folded: (1) we expect the changes in the structure coming from 

changes in the a and c lattice parameters, or from changes in the value of the β angle, and 

(2) as shown in Figure 1, the correlations between Fe-Fe and Fe-O atom pairs are the 

dominant contributions in the PDF of schwertmannite. The atomic form factor fi is 

proportional to the atomic number Z. Of all the elements present in the structure of 

schwertmannite, iron is the one with higher atomic number (ZFe = 26), which makes that the 

weighting factors of the atomic pair-correlations (equation 1) including iron atoms are 

higher. The goodness of the refinements was checked using the weighted agreement factor 

Rw (Egami and Billinge, 2003). 

 

All the geometry optimizations were performed using the DFT code CASTEP (Clark et 

al., 2005). The calculations were performed using Vanderbilt ultrasoft pseudopotentials, 

with a plane-wave basis set energy cut-off of 760 eV and the Revised Perdew-Burke-

Ernzerhof functional (Perdew et al., 1996) of the Generalized Gradient Approximation 
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(GGA). Brillouin zone integrations were done at special k-points determined according to 

the Monkhorst-Pack method, which gave 6 special k points. Preliminary calculations were 

performed on akaganeite structure (Post et al., 2003) with the aim of tuning the convergence 

in k-points, pseudopotentials and energy cut-off. The obtained cell parameters show good 

agreement with the experimental values, within 1% (see Table 2). 

 

Diffraction patterns of the resulting models of schwertmannite were generated using the 

code FORCITE (Accelrys Inc.). In this code the diffraction pattern is calculated using the 

Debye formula of diffraction: 

 ( )∑
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where rnm is the distance between two pair of atoms n and m. A cutoff of 40 Å was used, 

meaning that only pairs of atoms placed at a distance rnm < 40 Å were included in the 

calculation. 

 

The structure of akaganeite is composed of double chains of iron (95% occupancy) or 

nickel (5% occupancy) oxide (or hydroxide) octahedra, which share corners to form squared 

tunnels (see Figure 2) (Post et al., 2003). Each unit cell has two identical tunnels, with 

centers in the points of fractional coordinates (0, 0, 0) and (0.5, 0.5, 0.5) of the akaganeite 

unit cell. The research strategy followed in this work is as follows: the structure of 

akaganeite was modified replacing all the nickel atoms by iron atoms. A supercell 1×2×1 

was created, and the chlorine atoms were substituted by two sulfate molecules forming 

bidentate inner-sphere complexes on the internal surface of akaganeite’s channel (this 

model will be called from now on ‘sulfate-doped akaganeite’). The PDF of the sulfate-

doped akaganeite structure was simulated in order to figure out the sensitivity of the X-ray 

PDF technique to determine the relative positions of the different atoms within the unit cell. 

As it can be seen it Figure 1, the result of the simulation shows that the PDF technique is 

mostly sensitive to the relative positions of Fe and O atoms only. The contribution of the 

sulfate molecules to the total PDF is very low, as it could be expected from previous 

theoretical estimations done using equations (1-3). This structure was used as the initial 

model for the fitting of the PDF data. In parallel, the sulfate-doped akaganeite was 

optimized using DFT in order to understand the some trends observed in the structures 

obtained in the PDF refinements. Charge equilibration was ensured in the unit cells by 

adjusting the number of hydrogen atoms present in the structures as OH groups so the total 
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charge is zero. In addition, powder diffraction patterns of the refined and other structures 

were simulated to check the consistency between the short-range order revealed by PDF 

analyses and the long-range order underlying the diffraction patterns. 

 
Figure 1. Simulated PDF of sulfate-doped akaganeite with its partial PDFs. The partial PDFs are 

weighted by their weighting functions, wij. 

 

RESULTS AND DISCUSSION 

Octahedral iron frame 

PDFs of the natural and synthetic schwertmannite samples and simulated PDFs of the 

akaganeite (Post et al., 2003) and sulfate-doped akaganeite structures are presented in 

Figure 3. No major differences can be found between the PDFs of air-dried and freeze-dried 

samples, meaning that the schwertmannite structure does not suffer any structural 

modifications when freeze-dried, as found, for instance, for ferrihydrite (Greffie et al., 

2001). The main difference is a slight increase in the intensity of the first peak in the PDF of 

natural freeze-dried schwertmannite. However, we do not think this is a structural effect nor 

a consequence of the drying procedure, as (1) the intensity of this peak is affected by 

vibrational correlations (Egami and Billinge, 2003) and (2) we do not observe the same 
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effect in the freeze-dried synthetic schwertmannite. A comparison with the PDF of the 

crystalline standard LaB6 (not shown) allows estimating the size of the coherent domains of 

schwertmannite. The decay in the intensity of the PDF of LaB6 at high r values can be 

ascribed to the effect of instrumental resolution (Toby and Egami, 1992). Instead, a more 

pronounced decay (within the instrumental resolution) is found in the PDF of the 

schwertmannite samples. Fits of this decay with a function reproducing particles of 

spherical shape (Gilbert, 2008), yield an average particle diameter of 3-4 nm (see Table 1). 

The small size of the coherent domains contrasts with that of schwertmannite aggregates, 

which are usually described as having hedgehog-like morphologies with needles in the 

range of the micrometer. 

 

The PDFs of akaganeite and schwertmannite structures reveal very similar local 

structures. Common structural features can be identified in the region from 1 to 7 Å: the 

position of the first peak at ~1.98 Å is the same for both structures. It corresponds to the Fe-

O distance of Fe3+ in octahedral coordination. The presence of sulfates in sulfate-doped 

akaganeite and in schwertmannite can be discerned from a small peak appearing at a 

distance of ~1.64 Å, which corresponds to the S-O distance. The peaks at ~3 Å and ~3.45 

Å, better resolved in the modeled PDFs of akaganeite, correspond to Fe-Fe distances of 

different types of edge-sharing iron octahedra: the distance at ~3 Å is originated by two iron 

octahedra lying on the  

same equatorial plane, while the distance at ~3.45 Å comes from edge-sharing iron 

octahedra with different equatorial planes. The next three peaks (4.75 Å, 5.45 Å, 6.33 Å) 

correspond to Fe-Fe and Fe-O correlations. Although there are some small differences, their 

positions and intensities are very similar. The main differences between these two structures 

arise from correlations in the region 7 Å < r < 10 Å. A significant decrease in the intensity 

of the peak at r = 7.5 Å is observed in the PDF of the schwertmannite samples. This peak is 

originated by correlations between iron atoms placed on opposite sides of the akaganeite’s 

channel (atoms Fe1 and Fe2 in Figure 2). However, its intensity is affected by the presence 

of sulfate molecules in the structure, as can be observed in the case of sulfate-doped 

akaganeite, where it has lower intensity. 

 

Fitting of the PDF data was performed with the aim of explaining the differences 

observed between the theoretical PDFs of akaganeite and sulfate-doped akaganeite, and the 
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experimental PDFs of schwertmannite. The structure of sulfate-doped akaganeite was used 

as initial model in the refinements. The results of the refinements are presented in Figure 4. 

 

 

 Natural air-

dried 

Natural freeze-dried Synthetic 

freeze-dried 

LaB6 

a (Å) 10.368 (0.097) 10.4974 (0.060) 10.5279 (0.072) 4.1594 (0.0004) 

b (Å) 6.05 (0.04) 6.03597 (0.045) 6.03025 (0.025) 4.1594 (0.0004) 

c (Å) 10.75 (0.17) 10.752 (0.15) 10.7657 (0.12) 4.1594 (0.0004) 

β (º) 87.87 (1.3) 86.70 (0.88) 87.19 (0.83) 90 

Vol (Å3) 674.8 (0.3) 680.1 (0.3) 682.6 (0.2) 71.9602 (0.0012) 

UFe (Å2) 0.003 (0.002) 0.002 (0.001) 0.003 (0.002)  

UO (Å2) 0.008 (0.006) 0.009 (0.005) 0.01 (0.01)  
1US (Å2) 0.0015 0.015 0.015  

ULa (Å2)    0.0044 (0.0004) 

UB (Å2)    0.0107 (0.002) 

d (Å) 44.15 (0.04) 30.91 (0.05) 37.95 (0.06)  ∞ 
2σq (Å-1) 0.0309 0.0309 0.0309 0.0309 (0.0014) 

Rw (%) 25.98 26.01 21.71 17.85 
1 US was fixed to an estimated value of US = 0.015 Å2. 
2 The value of the dampening factor was calculated for the LaB6 standard and kept constant 

during the refinements of the schwertmannite PDFs. 

 

Table 1. Results of the PDF refinements. U stands for the isotropic thermal displacement 

contributing to the Debye-Waller factor, σq is the instrumental dampening factor of the PDFs 

originated by the limited q-resolution, d is the diameter of the coherent domain size (spherical 

approximation) and Rw is the weighted agreement factor. 

 

All the fits converged yielding a structure where the initial akaganeite unit cell was 

deformed, with values of the β angle around β ≈ 87º (Table 1). This deformation was 

observed in all the fits performed. We found a monoclinic unit cell, with three different 

values for the parameters a, b and c (see lattice parameters in Table 1). The unit cell 

parameters obtained differ from those proposed by Bigham et al., (Bigham et al., 1994), 
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who proposed a tetragonal unit cell with lattice parameters a = c = 10.66 Å and b = 6.04 Å. 

A note has to be made here about the indexation of the akaganeite and schwertmannite 

structures. Bigham and co-workers have used an indexation in which the direction of the 

channel of akaganeite’s structure lies on the c axis. However, we used to build our models 

the akaganeite structure published by Post (Post et al., 2003), in which the channel extends 

along the b axis of akaganeite’s unit cell. From now on the notation of Post et al. (2003) will 

be used in the text. 

 
Figure 2. Structure of akaganeite. The octahedra are formed by iron (95%) or nickel (5%) atoms 

(blue) surrounded by six oxygen atoms (red). The tunnel structure is occupied by chlorine atoms 

(green). The distance between atoms Fe1 and Fe2 is equal to d = 7.5 Å, and can be clearly 

distinguished in the PDF of akaganeite (Figure 3). 

 

The different values found for the lattice parameters a and b provide a partial 

explanation for the decreasing of the intensity of the correlation at r = 7.5 Å. A splitting of 

this distance into several distances in the range between 7.4 - 7.8 Å is found in the refined 

structures. This splitting is reflected in the PDF of schwertmannite by a decrease in the peak 

intensity and a broadening of its width. As shown in Figure 3, the presence of sulfates in the 

structure affects the intensity of this peak too. Two different configurations for the iron 

atoms within the unit cell of schwertmannite resulted from the PDF refinements. In a first 

model, (called Model 1 from now on), the distortion of the β angle causes that the distance 

between some adjacent iron atoms (Fe1 and Fe2 in Figure 5) is too long to form two corner-

sharing iron octahedra (d ~ 4.3 Å). This model was obtained after the fitting procedure of 
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the PDF of the natural freeze-dried schwertmannite sample. The second model (Model 2) 

yielded a structure where the Fe1 octahedron is turned by 90 degrees, sharing an edge with 

another iron octahedron from the neighbor frame (Figure 6). 

 
Figure 3. Simulated PDFs for akaganeite and sulfate-doped akaganeite, and experimental PDFs of 

schwertmannite samples. The decay in the intensity seen at high r in the schwertmannite PDFs has 

been taken into account in the simulated PDFs by using the instrumental dampening factor obtained 

from the refinement of the LaB6. 

 

This second structure resulted from the fitting of the natural air-dried and synthetic 

freeze-dried schwertmannite samples. The fact that the PDFs of the three samples are 

almost identical and that the agreement factors of the three fits lie in the same range (Table 

1) tells us about the no-uniqueness of the result. Both models are then possible within the 

experimental resolution of our data. 
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In order to better understand the origin of the deformation, we performed DFT-based 

geometry optimization of the structure of sulfate-doped akaganeite. This structure has two 

sulfate molecules forming bidentate inner-sphere complexes (C2υ symmetry). The optimized 

and non-optimized structures are shown in Figure 7, and their cell parameters are given in 

Table 2. 

 

Structure a (Å) b (Å) c (Å) α (º) β (º) γ (º) Volume (Å3) 

DFT-optimized 

akaganeite  

10.45 3.07 10.45 90.00 90.25 89.91 337 

Experimental 

akaganeite 

10.58 3.03 10.52 90 90.03 90 337 

DFT-optimized 

sulfate-doped 

akaganeite 

10.55 6.03 1 10.59 90.47 87.39 89.40 674 

 
1 The structure of sulfate-doped akaganeite was formed from a supercell 1×2×1 of akaganeite. This 

is the reason why the b parameter and the volume are almost double than for akaganeite. 

 

Table 2. Unit cell parameters and volume of the optimized and experimental akaganeite structures 

(Post et al., 2003) and of the optimized sulfate-doped akaganeite structure. 

 

 

 
Figure 7. Structure of sulfate-doped akaganeite before (left) and after (right) being optimized using 

DFT-based calculations. 
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A similar deformed structure to the observed experimentally, with β ≈ 87º was obtained. 

The volume of the optimized cell (V = 674 Å3) is slightly smaller than the experimental 

value for schwertmannite reported by Bigham et al. V = 687 Å3 (Bigham et al., 1994), and it 

is in the same order of magnitude of the experimental values found by PDF analysis (see 

Table 1). The deformation of the unit cell can be monitored by looking at the values of the 

stress tensor calculated by CASTEP at the first optimization step. The presence of the 

sulfate molecules in the structure makes that the off-diagonal elements σXZ and σZX have 

values higher than zero, indicating a shear stress which leads to the deformation of the angle 

β of the unit cell (see Table 3). The non-zero values of the diagonal elements (σXX, σYY and 

σZZ) are responsible for changes in the lattice parameters and thus do not induce 

deformations of the unit cell angles. The fact that this deformed structure fits well the 

experimental PDF data supports thus the hypothesis, suggested by FTIR data (Jonsson et al., 

2005; Peak et al., 1999), that these inner-sphere complexes, with sulfates having C2υ 

symmetry, actually exist in the schwertmannite structure. 

 

Position of the sulfate molecules 

It is important to note that the PDF of schwertmannite is dominated by correlations 

involving iron and oxygen atoms (see Figure 1). This implies that only the short-range order 

of the octahedral iron frame is refined in the PDF fitting procedure, rendering impossible 

the determination of (1) the number of sulfates, (2) their exact positions and (3) their 

orientations within the unit cell of schwertmannite from PDF data analysis. In addition, 

PDF analysis gives information only about the local or short-range order of the 

schwertmannite structure. Information about the long-range order can be extracted by 

analyzing the powder diffraction pattern. This kind of analysis has been hindered by the 

broad diffraction peaks found in the schwertmannite diffraction patterns. For this reason, the 

use of X-ray diffraction for structural studies has been limited in the schwertmannite 

literature, serving mainly as a fingerprint for identification purposes. In contrast to these 

data collected by laboratory X-ray sources, synchrotron powder diffraction data have a 

higher resolution, and allow us to use it as a reference to compare our modeled powder 

diffraction patterns. 

The fitting range used in our PDF analyses extended from 1 to 30 Å, which is longer 

than the three lattice parameters of the structural models used as input in the analyses. This 

implies that the long-range order arising from repetitions along the unit cell axes is already  
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Figure 4. Experimental PDF data (black circles) fitted by the refined model PDF (red line). A 

difference plot (blue line) is included beneath each data set. 

 

 

 σij (GPa) x y z 

x 2.93 -0.29 2.40 

y -0.29 12.36 0.64 

z 2.40 0.64 3.2 

 

Table 3. Stress tensor calculated at the initial step of the DFT-geometry optimization of the sulfate-

doped akaganeite structure. The off diagonal elements σxz and σzx indicate a shear stress responsible 

of the deformation of the angle β. 
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Figure 5. 2×1×2 supercell of the Model 1 obtained after PDF fitting. Only the positions of the iron 

atoms were refined. The distance from Fe1 to Fe2 is too long to form two corner-sharing octahedral 

(illustrated with dotted line).  

 

 

 
 

Figure 6. 2×1×2 supercell of the Model 2 obtained after PDF fitting. Only the positions of the iron 

atoms were refined. The Fe1 octahedron is turned by 90º, sharing two edges with two neighbouring 

iron atoms. 
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taken into account in the PDF analysis, and thus the resulting structure should reproduce 

both short-range and long-range order along the three directions of space. In order to check 

this consistency we have calculated theoretical powder diffraction patterns of the refined 

structures, varying the number and positions of the sulfates molecules within the unit cell. 

 

The calculated diffraction patterns of schwertmannite Models 1 and 2 are presented in 

Figure 8, and compared to the experimental patterns. Positions and intensities of the 

diffraction lines are given in Table 4. It is important to note that, due to the different a and c 

lattice parameters, originally single peaks of akaganeite are split into two or more different 

peaks (see Table 4). However, due to the small coherent domain sizes of schwertmannite, 

these split reflections overlap, being impossible to accurately determine their positions and 

intensities. This high degree of overlapping has made impossible the application of analysis 

techniques as Le Bail fits, which would be very useful to precisely determine the cell 

parameters. From now on, we will continue to use the original notation of akaganeite when 

referring to the diffraction lines, even though some of them are composed by several 

overlapping reflections (see Table 4 for a complete list of reflections of Model 1). 

 
Figure 8. Diffraction patterns of (a) Natural air-dried schwertmannite. (b) Natural freeze-dried 

schwertmannite. (c) Synthetic freeze-dried schwertmannite. (d) Model 1. (e) Model 2. 
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There are only small differences between the two models, the most significative being a 

higher intensity in the (042) and (524) reflections of Model 2, which agrees better with the 

observed experimentally. The calculated patterns are in quite good agreement with the 

experimental ones, except for the intensities of some lines. The (040) reflection is lower in 

the Model 1 and 2 patterns than in the experiments and the (200) and (101) reflections have 

higher intensity in the models. This is especially true for the (101) reflection, which is 

absent in the experimental patterns. Bigham et al. (Bigham et al., 1990) observed how the 

intensity of this reflection decreased proportionally to the amount of sulfate added during 

the precipitation of akaganeite. They found that schwertmannite was the only precipitation 

product formed when the synthesis was made in the presence of 2000 ppm of sulfate. The 

precipitate showed the typical 8 diffraction lines characteristic of schwertmannite, with the 

akaganeite (101) reflection absent. We have checked this correlation between the intensity 

of the (101) line and the unit cell sulfate content by generating a series of diffraction 

patterns of the schwertmannite structure obtained from the PDF analysis loaded with 

different amounts of sulfate molecules. Only two different kind of sulfate molecules were 

considered: (1) a bidentate inner-sphere complex placed sharing two oxygens with the iron 

frame, as shown in Figure 9a (the shared oxygens were chosen so they have same x and z 

coordinates, but placed at a different y coordinate), and (2) an outer-sphere complex placed 

in the center of the channel, as shown in Figure 9a. All the calculations were performed 

using the structure of Model 1 for the octahedral iron frame. The results are presented in 

Figure 9, b. Only the intensities of the reflections (101), (200), (301), (023), (042) and (524) 

are sensitive to the concentration of sulfate molecules in the structure and to their positions 

within the unit cell. The most important variations of intensity are found for the diffraction 

peaks (101), (200) and (301), as shown in Figure 9, c-e. The intensity of the (101) peak 

decreases as long as more sulfates are introduced in the channel of the octahedral iron frame 

of schwertmannite, as reported by Bigham (Bigham et al., 1990). The best result, with the 

(101) reflection practically absent, is found when four sulfates forming outer-sphere 

complexes are present in the structure. The evolution of the (200) and (301) intensity shows 

opposite behaviors, being the intensity of these two peaks dependent on the positions of the 

sulfate within the structure. Their relative peak intensities have been calculated using the 

intensity of line (221) (the more intense in the experimental patterns), and are presented in 

Table 5. 
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h k l dhkl (Å) 2-theta (º) I / Imax 
1 0 1 7.6013 1.0743 36.08 
1 0 -1 7.3252 1.1148 87.6 
0 0 2 5.3742 1.5195 100 
2 0 0 5.1804 1.5763 25.04 
1 0 2 4.8444 1.6857 11.32 
1 0 3 3.4254 2.3841 11.76 
1 0 -3 3.348 2.4392 11.65 
3 0 1 3.324 2.4568 14.89 
3 0 -1 3.2532 2.5103 14.85 
0 0 4 2.6871 3.0393 15.61 
4 0 0 2.5902 3.153 24.15 
1 2 2 2.5659 3.1828 11.67 
1 -2 2 2.5659 3.1828 12.84 
2 2 1 2.5494 3.2035 15.43 
2 -2 1 2.5494 3.2035 15.6 
1 -2 -2 2.5438 3.2105 6.21 
1 2 -2 2.5438 3.2105 5.25 
4 0 1 2.5396 3.2158 10.9 
3 0 3 2.5338 3.2232 4.59 
2 -2 -1 2.5276 3.231 18.38 
2 2 -1 2.5276 3.231 20.49 
3 0 -3 2.4417 3.3447 10.51 
0 2 3 2.3114 3.5334 9.03 
0 2 -3 2.3114 3.5334 8.84 
1 2 -4 1.9621 4.1626 5.83 
1 -2 -4 1.9621 4.1626 6.26 
4 2 1 1.9451 4.1992 5.46 
4 -2 1 1.9451 4.1992 5.77 
0 0 6 1.7914 4.5596 13.99 
6 0 0 1.7268 4.7302 7.57 
2 2 5 1.6753 4.8756 6.86 
2 -2 5 1.6753 4.8756 6.44 
2 -2 -5 1.6449 4.9658 11.51 
2 2 -5 1.6449 4.9658 11.43 
5 -2 2 1.6437 4.9696 6.71 
5 2 2 1.6437 4.9696 6.73 
5 2 -2 1.6149 5.0581 6.39 
5 -2 -2 1.6149 5.0581 6.28 
5 2 3 1.5615 5.2311 4.8 
5 -2 3 1.5615 5.2311 4.82 
0 4 0 1.5126 5.4006 19.42 
5 2 4 1.4627 5.5847 2.96 
5 -2 4 1.4627 5.5847 2.96 
0 4 -2 1.456 5.6106 2.58 
0 4 2 1.456 5.6106 2.1 
7 0 2 1.4407 5.6703 3.15 
5 -2 -4 1.4228 5.7415 4.95 
3 0 7 1.4227 5.7419 2.58 

Table 4. X-ray powder reflections of structural ‘model 1’ of schwertmannite. Only the reflections 

with I / Imax > 2 are presented. The 2-theta is related to our experimental conditions, with 

wavelength λ = 0.14252 Å. 
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A maximum intensity for the (200) reflection is found when four inner-sphere 

complexes are present in the structure. On the other hand, a maximum is found for the (301) 

peak for the structure with four outer-sphere complexes. The relative intensities of these two 

peaks can thus be used to evaluate the sulfate content and the binding mechanisms to the 

structure, by comparison to the experimental values (see Table 5). Simulations of structures 

where sulfates are present both as inner and outer-sphere complexes were then performed in 

order to better reproduce the experimental data. The results are presented in Figure 10, and 

compared with the experimental data. Relative intensities are reported in Table 5. 

 

Structure I(101)/I(221) I(200)/I(221) I(301)/I(221) 

No SO4 1.28 0.78 0.48 

1 SO4 IS 1.06 0.79 0.42 

2 SO4 IS 0.93 0.81 0.37 

1 SO4 OS 0.78 0.59 0.57 

4 SO4 IS 0.69 0.88 0.28 

2 SO4 OS 0.43 0.42 0.68 

4 SO4 OS 0.05 0.13 0.95 

Natural air-dried schwertmannite 0.04 0.08 0.28 

2 SO4 IS + 2 SO4 OS 0.29 0.38 0.52 

4 SO4 IS + 2 SO4 OS 0.20 0.48 0.41 

2 SO4 IS + 2 SO4 OS + 8 H2O 0.11 0.26 0.47 

 

Table 5. Values of the relative intensity of the (101), (200) and (301) reflections for different 

structures with Inner-Sphere (IS) and Outer-Sphere (OS) sulfate complexes. The intensity of the 

(221) reflection is used as reference. The best agreement is highlighted in bold fonts. 

 

If only sulfates are considered to be present, none of the combinations made match the 

relative intensities found in the experimental patterns (see, for example, the intensity ratios 

of the structure with 4 outer-sphere SO4 complexes in Table S3, which yield good I(101)/I(221) 

and I(200)/I(221) but very bad agreement for the I(301)/I(221)). For this reason, we have 

considered the case where water is present in the structure. This hypothesis is supported by 

thermo-gravimetric data of Yu et al. (1999), who reported a range of 8.5 to 8.9 water 

molecules per unit cell, and it seems to be very reasonable in view of the exchange 

processes taking place between sulfates and other oxyanions, which are hydrated species. 



 132

 
Figure 9. Diffraction patterns of Model 1 loaded with different amounts of sulfate molecules. 

 

Preliminary calculations including 9 molecules per cell do improve the agreement with 

the experimental XRD pattern (see Figure 10). The determination of the exact positions of 

the water molecules within the unit cell is challenging, especially using X-ray radiation as 

experimental probe. The use of DFT calculations is also limited by the fact that there are 

many degrees of freedom in the system, and it becomes thus difficult to explore all the 

possibilities of the positions of water molecules and outer-sphere sulfate molecules. For 

these reasons, the water molecules were placed in the structure with the only care that the 

minimum distance between atoms from different water molecules was 1.8 Å, as expected 

from hydrogen bonded water molecules. The best agreement with the experiment, as 

reported in Table 5, is found for the structure containing two outer-sphere and two inner-

sphere complexes with 8 water molecules per unit cell. This explains the range of 

stoichiometry reported for the mineral formula, with SO4 varying from 2 to 3.72 each 16 Fe 

atoms (Bigham et al., 1994; Yu et al., 1999). The lower limit is coincident with the number 

of inner-sphere complexes in the structure, whereas the rest corresponds to outer-sphere 

complexes. This result suggests that the variability in the sufate content may come from the 
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different amounts of outer-sphere sulfate complexes, which may be energetically less stable 

than inner-sphere complexes. 

 

 
Figure 10. Diffraction patterns of natural air-dried schwertmannite and of Model 1 loaded with 

different amounts of sulfate and water molecules. 

 

 

CONCLUSIONS 

During the last 15 years, the structure of schwertmannite was supposed to be similar to 

the akaganeite structure, due to the similarities of the diffraction patterns of both minerals. 

However, the poor crystallinity of schwertmannite has hindered any detailed structural 

analysis. Here, a structure for the octahedral iron frame of schwertmannite is proposed 

based on PDF data. The PDF technique is sensitive to the correlations between iron atoms. 

We have found that a structure with a slightly distorted unit cell (β ≈ 87º) fits well the 

experimental PDF. DFT calculations support the occurrence of this deformation, suggesting 

that inner-sphere complexes of sulfate molecules are responsible for the deformation.  

The simulations of X-ray diffraction patterns presented here explore different variables 

as the amount and positions of sulfates within the unit cell, that are determinant to get a 

good agreement between experimental and calculated patterns. The occurrence of a mixture 

of outer-sphere and inner-sphere complexes of sulfate is needed to get a good agreement 
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with the relative intensities of the (200) and (301) diffraction peaks. The total number of 

sulfates is inversely proportional to the intensity of the (101) reflection, which is not present 

in schwertmannite. Other experimental values, like a maximum number of sulfates of 3.72 

sulfates per unit cell, provide a constraint to our models, suggesting that some water 

molecules have to be present in the structure to get better agreement with the experimental 

relative intensities. For this reason, we propose a structure where two sulfates form 

bidentate inner-sphere complexes, other two form outer-sphere complexes and eight water 

molecules are present. This structure is in good agreement with FTIR observations (Bigham 

et al., 1994), which suggest the presence of inner-sphere sulfate complexes, and with the 

suggestion by Waychunas et al. (Waychunas et al., 2001) that both outer and inner-sphere 

complexes are present in the structure. 

This proposed structure allows interpreting an eventual transformation to goethite in 

structural terms. Goethite has an orthorhombic unit cell, with a rectangular pore extending 

along the c axis. The transformation of schwertmannite to goethite should include at least 

two steps: (1) the release of the sulfate molecules from the structure and (2) the release of 

two iron octahedra, leading to the transformation of the squared schwertmannite channel to 

the rectangular one present in goethite. The loosening of the interactions between the iron 

octahedra observed experimentally in this work (Figure 2) makes that the step (2) would be 

facilitated. 

The small size of the coherent domain found in the fits of the PDFs adds further 

complexity to the analyses and interpretations of the structure. It can be interpreted in two 

ways: as a result of structural disorder (vacancies, strains…) or as a real limit of a less 

defective nanoparticle. In the last case, the occurrence of adsorption sites at the external 

surface of the nanoparticle would influence the symmetry of the sulfate complexes. We 

have limited our analysis to the bulk phase, not considering schwertmannite crystallites’ 

external surfaces. Further spectroscopic studies would be required to complete the 

information presented in this work and to get more precise constraints for the symmetry of 

sulfate within the structure of schwertmannite. 

 

SUPPLEMENTARY INFORMATION 

PDF-refined structures of the octahedral iron frame of schwertmannite are provided in 

accompanying .cif files. 
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Chapter 6 

 

Conclusions 

 

The research activity carried out during this thesis work was aimed to explore the 

external mineral – water interface of imogolite nanotubes, the ability of imogolite to 

form strong complexes with selenium oxyanions, and the structure of schwertmannite 

nanoparticles.  

The application of Molecular Dynamics (MD) techniques to the study of water 

adsorption onto gibbsite and imogolite has revealed differences in the strength of the 

interactions on both surfaces. The planar structure of gibbsite allows the formation of 

strong hydrogen bonds between adjacent surface hydroxyl groups. On gibbsite, 5/6 of 

the surface hydroxyl groups are parallel to the surface, allowing the adsorption of a 

water molecule donating a hydrogen bond to a surface oxygen atom. This water 

molecule (A-type) is oriented with a OH pointing perpendicularly to the surface, and it 

is strongly adsorbed. The curvature of imogolite makes that only 1/3 of the surface 

hydroxyl groups are parallel to the surface, preventing the adsorption of A-type water 

molecules, and making the imogolite surface less hydrophilic than that of gibbsite. The 

curvature of the surface is thus a key parameter controlling the orientation of the 

hydroxyl groups and thus the hydrophilicity of the mineral surfaces. This result has 

important implications in the reactivity of natural nanoparticles. Usually, the ‘nano’ 

effect is expected to come from atomic surface relaxation processes, as it happens for 

instance in gold nanoparticles, with structures very different than their bulk counterparts 

(Gilbert et al., 2004). This study shows that, even in the absence of atomic structural 

relaxations, the reactivity of mineral nanoparticles with surfaces populated by hydroxyls 

groups can be very different from the reactivity expected from minerals with large 

crystal faces. 

The curvature effect can also be observed on the formation of a less structured 

second shell of water at the imogolite surface with respect to gibbsite. This effect can 
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have implications in the adsorption properties of imogolite. The formation of a 

structured shell of adsorbed water, as the one observed on the gibbsite surface, can be 

understood as a new pseudo-layer to which ions can adsorb, forming outer-sphere 

complexes. MD simulations studying the free energy profiles of adsorption as a function 

of the distance to the mineral surface will be useful to study this effect. 

In addition, patching effects similar to those described by other authors on the surfaces 

of calcite have been described (Rahaman et al., 2008). Little is known today about the 

importance of these patches regarding the adsorption properties of ions. It is interesting 

to note that in this study, gibbsite has been reported to have a higher percentage of 

surface sites non-coordinated to water molecules than imogolite (26% on gibbsite vs. 

19% on imogolite). But, at the same time, selenate ions have been reported to form 

inner-sphere complexes at the surface of imogolite (Chapter 3), while they only form 

outer-sphere complexes at the gibbsite (001) surface (Papelis et al., 1995). These two 

results could indicate that the patching effects do not have any influence on the 

adsorption of selenate ions. New studies focusing on the reactivity of these ‘dry’ sites 

should be performed in the future. 

Water Gibbs free energies of adsorption have been calculated revealing a 

hydrophilic behavior for both surfaces, with a difference of ∆∆G = -2.19 kcal/mol 

between them, being the surface of imogolite more hydrophobic. The ability of 

allophanic Andosols to accumulate organic matter is well known (Basile-Doelsch et al., 

2005; Dynes and Huang, 1997). The relative hydrophobicity of imogolite provides a 

favorable environment for the adsorption of organic molecules, prior to the formation of 

inner-sphere complexes between the imogolite surface hydroxyl groups and the 

carboxyl groups present in organic compounds. Our simulations shed light to another 

important property of imogolite: its tendency to form bundles. It has been shown using 

MD simulations that the free energy profile of aggregation of two mineral particles is 

governed by the energy barriers created upon the formation of a shell of highly ordered 

water between the mineral surfaces (Spagnoli et al., 2008). In the case of imogolite this 

shell of adsorbed water is less structured, and a lower energy barrier is expected to 

occur, thus facilitating the aggregation between different nanotubes. MD simulations 

exploring these effects are ongoing. 

The finding of inner-sphere complexation for the two selenium oxyanions at the 

imogolite – water interface has important implications for the correct assessment of 

selenium deficit causes and effects in volcanic environments. The formation of inner-
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sphere complexes involves the formation of covalent bonds, immobilizing the selenium 

oxyanions at the surface of imogolite. This strong mechanism of retention can affect the 

uptake of selenium oxyanions by plants, limiting the concentrations of selenium 

entering the food chain. This adsorption mechanism is thus proposed as responsible (at 

least in part) for the low bioavailability of selenium in volcanic soils, a problematic 

reported by some authors (Reilly, 1997; Stone, 2009). The use of molecular modeling 

has allowed us to describe a competition for the adsorption site between the A-type 

water molecules and the selenite molecules. The adsorption of selenite molecules has to 

be preceded by the removal of water from the adsorption sites. 

The structure of the water H-bonding at imogolite and gibbsite−water interfaces has 

been evaluated in terms of the protonation constants. MD simulations reveal a more 

ordered and stronger network of H-bonded surface OH groups at the surface of gibbsite. 

The curvature of imogolite prevents the formation of some H-bonds between surface 

OH groups. This yields different values of the bond valences attributed to bonds 

between surface oxygen atoms and water molecules, which result in more acidic pKa1 

values for imogolite doubly-coordinated neutral sites by ∆pKa1 = 0.87 ± 0.75. The 

absolute values of the protonation constants reported in this work coincide with those 

reported by (Hiemstra and VanRiemsdijk, 1996), who used the same CD-MUSIC 

model, but are in disagreement with the values reported by others. Spectroscopic studies 

focused on the exploration of the atomic structures at mineral−water interfaces are 

needed in order to obtain better structural descriptions allowing to develop reliable 

surface chemistry models. 

During the last 15 years, the structure of schwertmannite was supposed to be similar 

to the akaganeite structure, due to the similarities of the diffraction patterns of both 

minerals. However, the poor crystallinity of schwertmannite had hindered any detailed 

structural analysis. The use of the PDF technique has allowed us to describe the 

structure of the octahedral iron frame of schwertmannite. The PDF technique is 

sensitive to the correlations between iron atoms. We have found that a structure with a 

slightly distorted unit cell (β ≈ 87º) fits well the experimental PDF. DFT calculations 

support the occurrence of this deformation, suggesting that inner-sphere complexes of 

sulfate molecules are responsible for the deformation.  

The simulations of X-ray diffraction patterns presented here explore different 

variables as the amount and positions of sulfates within the unit cell, that are 

determinant to get a good agreement between experimental and calculated patterns. The 
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occurrence of a mixture of outer-sphere and inner-sphere complexes of sulfate is needed 

to get a good agreement with the relative intensities of the (200) and (301) diffraction 

peaks. The total number of sulfates is inversely proportional to the intensity of the (101) 

reflection, which is not present in schwertmannite. Other experimental values, like a 

maximum number of 3.72 sulfates per unit cell, provide a constraint to our models, 

suggesting that some water molecules have to be present in the structure to get better 

agreement with the experimental relative intensities. For this reason, we propose a 

structure where two sulfates form bidentate inner-sphere complexes, other two form 

outer-sphere complexes and eight water molecules are present. This structure is in good 

agreement with FTIR observations (Bigham et al., 1994), which suggest the presence of 

inner-sphere sulfate complexes, and with the suggestion by Waychunas et al. 

(Waychunas et al., 2001) that both outer and inner-sphere complexes are present in the 

structure. 
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Annex I 

 

Multi-scale characterization of synthetic imogolite 

 

Since the development of the first methods for the synthesis of imogolite by (Farmer 

et al., 1977; Wada et al., 1979) many works have reported the existence of a certain 

diameter polydispersity (Barrett et al., 1991; Farmer et al., 1983; Wada, 1987; Wada et 

al., 1979). There is general agreement that natural imogolite has smaller external 

diameters than the synthetic one (de-natural = 2 nm vs. de-synthetic = 2.1 – 2.4 nm) (Barrett et 

al., 1991; Ohashi et al., 2004; Wada, 1987). Imogolites with different diameters are 

supposed to be composed of different number of (Al2(OH)3SiO3OH)n molecular units, 

being n = 20 for natural imogolite and n = 24 – 28 for synthetic imogolite. (Wada, 1987) 

synthesized imogolite at 25°C, and reported diameters similar to those of the natural 

material. He proposed that the elongation of the Si-O bond lengths during high 

temperature synthesis at high temperature (most syntheses are done at 95°C) is the 

responsible of the formation of imogolite with longer diameters. On the other hand, 

studies using theoretical ab-initio and classical molecular mechanics techniques have 

reported minimum values for the total energy at diameters corresponding to n = 24 

(Guimaraes et al., 2007; Konduri et al., 2006), n = 32 (Tamura and Kawamura, 2002). 

Synthetic and natural imogolite is usually found forming bundles composed of 

several tubes. These meso-structures have been studied by different authors using the 

low-angle part of diffraction patterns, and reporting a variety of different inter-tube 

distances. For instance, (Barrett et al., 1991) proposed a perfect hexagonal packing 

using synthetic imogolite, while (Mukherjee et al., 2005) proposed a quasi-hexagonal 

structure with a monoclinic cell in which γ = 78°, and (Alvarez-Ramirez, 2007) 

proposed, using theoretical methods, a value of γ = 64°. 

The hydrophilic character of imogolite and the fact that it is formed under humid 

conditions (synthetic imogolite is formed through a sol-gel procedure) makes water an 

important component of imogolite. However, only few studies have focused on the 
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structure and dynamics of water adsorbed on imogolite (Ackerman et al., 1993; Creton 

et al., 2008a; Creton et al., 2008b; Farmer et al., 1983). Creton et al. (2008) performed 

Molecular Dynamics (MD) simulations of the water present in the inter-tube pores of 

hexagonal close-packed bundles of imogolite showing that water interacts with the 

silanol groups much strongly than with the aluminol groups on the external surface. It 

has been also shown that this strong interaction and the reduced size of the internal pore 

(diameter ≈ 1 nm) makes difficult the diffusion of water along the tube axis (Zang et al., 

2009). (Farmer et al., 1983) reported results from a dehydration experiment, showing 

that when passing from 100°C to 200°C an irreversible collapse of the inter-tubular 

structure is found, with the diffraction maxima corresponding to the center-to-center 

distance passing from 2.7 to 2.3 nm. They reported a partial breakdown of the structure 

at 300°C and the start of dehydroxylation and a phase transition to an amorphous state 

at 350°C. 

In addition to the characterization studies of synthetic imogolite already presented in 

Chapter 3, we have performed other experimental studies of this material. In this 

appendix, X-ray Pair Distribution Function (PDF) and Transmission Electron 

Microscopy (TEM) studies of synthetic imogolite will be presented. In addition, the 

amount of water present at the imogolite structure will be quantified using Controlled 

Rate Thermal Analysis (CRTA) and Fourier Transform Infrared Spectroscopy (FTIR). 

 

MATERIALS AND METHODS 

High energy X-ray Pair Distribution Function 

High-energy X-ray total scattering experiments were performed at beamline ID15B 

of the European Synchrotron Radiation Facility, Grenoble, France. Scattering data were 

collected with a Pixium 4700 detector (Daniels and Drakopoulos, 2009) using the 

Rapid-Acquisition pair Distribution Function technique (Chupas et al., 2003). 

Measurements of the samples, empty capillary, and the background were made at 

ambient temperature in a Q-range of 0 – 25 Å-1. The X-ray wavelength was refined 

using a Ni standard (λ = 0.14252 Å). Corrections for sample-detector distance, tilt angle 

of the detector with respect to the direction of the incident radiation and polarization 

were performed using Fit2D (Hammersley et al., 1995). Total scattering structure 

functions and Pair Distribution Functions were obtained using the PDFGetX2 software 

(Qiu et al., 2004). A crystalline standard (LaB6) was measured and used to calculate the 
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instrumental resolution effect on the PDF (Toby and Egami, 1992). Fits of the PDFs 

were performed using the PDFGui software (Farrow et al., 2007).  

 

Transmission Electron Microscopy 

TEM investigations were carried out on a Philips CM 200 microscope operating at 

200 kV. Prior to observation, the powders were immersed in an aqueous solution. A 

droplet of this solution was deposited on a copper grid. TEM observations were made 

after evaporation of the solvent. 

 

Fourier Transform Infrared Spectroscopy 

FTIR spectra of the imogolite freeze-dried powders were taken to characterize the 

product obtained after the synthesis. Transmission FTIR spectra were obtained using a 

Bruker HYPERION 3000 FTIR microscope in the transmission mode. KBr pellets (1 

mg of imogolite in 100 mg of KBr) were used. One hundred scans taken using a 

resolution of 2 cm-1 were averaged to obtain spectra in the range 4000–370 cm-1. The 

measurements were done using a home-made cell consisting of a vacuum chamber with 

a resistance heater controlled by an external unit.  

 

Controlled-Rate Thermal Analyses (CRTA) 

This technique allows performing a water desorption experiment controlling the 

desorption rate using a mass spectrometer at the exit of the vacuum pump. In this 

technique, the heating rate is controlled by the sample and it depends on the rate of 

desorption of adsorbed species. When desorption occurs, molecules leave the surface. 

This leads to a pressure increase over the sample. In order to keep the pressure constant, 

the heating is stopped and the system remains at constant temperature until the 

desorption starts to decrease. The temperature is then increased again until another 

significant desorption process begins. For a constant rate of vapor loss, the temperature 

vs. time data may be converted immediately into the temperature vs. mass loss. The use 

of a feedback system to control the temperature allows obtaining a significant 

enhancement of the resolution. 

Dehydration experiments were performed using a home-made apparatus (LEM, 

Nancy) equipped with a turbo-molecular vacuum pump TMH 071P and a membrane 

vacuum pump MVP 012 (Pfeiffer). Vacuum is controlled by a PKR 251 (Pfeiffer) 
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gauge. The mass spectrometer is a Balzers (QMS, QMA and QME 200 Pfeiffer 

Vacuum). 

 

RESULTS 

Structural analyses 

TEM images are shown in Figure 1. The bundle structure can be appreciated, with 

associations of 5 or more nanotubes arranged in parallel. Distances between tubes have 

been measured yielding an average value of <d = 2.2 nm>. In the central image of 

Figure 1, lengths up to 200 nm can be observed for some tubes. The image at right is an 

enlargement of the central one showing the structure of five tube’s edges. The circular 

section of the tubes is appreciated, confirming that the nanotubes are open on the edges. 

 

 
 

Figure 1.- TEM micrographs of synthetic imogolite. 
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Figure 2. TEM micrographs of oriented films of synthetic imogolite. 

 

Figure 2 shows a sample of synthetic imogolite dried following a roto-evaporation 

procedure. The roto-evaporation is done in a spherical glass containing the imogolite 

solution is put after the dialysis. The glass is rotated at 40 turns per minute, and it is 

immersed in water at 50°C, making that water from the imogolite solution is 

evaporated. During this process, films of oriented imogolite nanotubes are formed 

(Figure 2, right). 

The diffraction pattern of freeze-dried imogolite obtained using high-energy X-ray 

radiation is shown in Figure 3 and compared with diffraction patterns from other 

studies. The abscissa scale has been converted to momentum transfer, Q, using equation 

(1) in order to compare with the results from other authors. 

 
λ

θπ )sin(4
=Q  (1) 

where λ is the wavelength of the X-rays and θ is half the diffraction angle (2θ). The 

signal at low-Q has been enlarged in the inset of Figure 3. The diffraction pattern can be 

separated in two regions, the limit between them being at 1.25 Å-1 (corresponding to 

interatomic distances d > 5 Å). The first region contains the low-Q part of the pattern, 

and describes the inter-tube structure. The pattern obtained in this study only contains 

one peak centered at 0.66 Å, that is also present in the diffraction patterns of (Ohashi et 

al., 2004). Peaks at lower Q values are not present due to the effect of the beam-stop, 

optimized to acquire signal from high Q values. The second region, from 1.25 Å-1 

corresponds to the intra-tubular structure and is very similar in the three samples. 
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Figure 4 shows the experimental PDF of synthetic imogolite. High frequency 

oscillations are observed in the signal, due to the truncation effect affecting the Fourier 

transform (Toby and Egami, 1992). The intensity of the PDF shows a decay, getting to 

zero at distances of 22 Å. Some authors have attributed this decay to the finite size of 

the nanoparticles (Gilbert, 2008; Michel et al., 2007a; Michel et al., 2007b; Scheinost et 

al., 2008), a decay that can be fitted using size models to obtain the diameter of the 

nanoparticle. However, this result is somehow striking in the PDF of imogolite. The 

nanotubular structure of imogolite makes that correlations between atoms along the tube 

axis are expected to appear at r > 8.4 Å, the repetition unit along the tube axis. The lack 

of these correlations has to be interpreted then differently. Actually, what is seen in the 

PDF is the size of the coherent domain. A hypothesis that could explain this effect is the 

occurrence of strains in the structure. Strains may induce the formation of coherent 

nano-domains, whose size could fluctuate due to vibration modes. Vacant sites could be 

also responsible for the formation of these domains.  

 

0 1 2 3 4 5 6 7 8 9 10

In
te

ns
ity

 (a
.u

.)

Q (Å-1)

 Synth. This study
 Nat. Ohashi (2004)
 Synth. Mukherjee (2005)
 Synth. Ohashi (2004)

0.25 0.50 0.75 1.00 1.25 1.50

 

  

 
Figure 3. Diffraction patterns of synthetic (Synth) and natural imogolite (Nat) obtained in this 

and other studies (Mukherjee et al., 2005; Ohashi et al., 2004). Positions of the peaks at Q 

values higher than 1.25 Å-1 are similar for all the samples. The signal at low Q (inset) shows 

differences between the samples. Peaks at low Q values contain information about the packing 

and the bundle structure, as shown by Mukherjee et al., (2005). The diffraction pattern obtained 

in this study has been truncated at Q = 10 Å-1, although it reaches a Qmax=23.5 Å-1. It does not 
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contain data at low Q due to the effect of the beam-stop used in the PDF experiments, which 

shields the low-Q signal. 

 

Fits of the PDF are presented in Figure 5. The fits were performed using a model of 

imogolite constructed containing 20 molecular units, as it has been reported by 

(Cradwick et al., 1972) for natural imogolite. A unit cell of 30 Å × 30 Å × 8.4 Å was 

used. During the fits, lattice parameters, thermal displacement factors, Al and Si atomic 

positions and some parameters related to the resolution of the instrument were refined 

(see Table 1). The use of a whole section of imogolite involves the refinement of many 

atomic parameters (> 100). For this reason, the obtained structure after PDF fitting was 

compared to that reported by Cradwick et al., (1972). No significant deviation from the 

initial structure was observed, which indicates that the model proposed by Cradwick et 

al., (1972) for natural imogolite fits well the structure of synthetic imogolite. However, 

the Rw parameter is probably too small due to the high number of parameters allowed to 

refine. Fits including smaller repetition units were tried without success. The cylindrical 

symmetry group makes more difficult the fit of the PDF. Further investigations are on 

going. 
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Figure 4. PDF of synthetic imogolite. High frequency oscillations are due to a truncation effect 

affecting the Fourier transform. 
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Figure 5. PDF of synthetic imogolite. Experimental, fitted and difference curves are shown 

together with the value of the Rw parameter, which indicates the goodness of the refinement. 

 

 

a (Å) b (Å) c (Å) UAl (Å2) USi (Å2) UO (Å2) d (Å) σq (Å-1) Rw (%) 

29.98(11) 30.13(15) 8.449(14) 0.00092 0.0007 0.002 15.05(50) 0.027 18.48 

 

Table 1. Results of the PDF refinements. U stands for the isotropic thermal displacement 

contributing to the Debye-Waller factor, σq is the instrumental dampening factor of the PDFs 

originated by the limited q-resolution, d is the diameter of the coherent domain size (spherical 

approximation) and Rw is the weighted agreement factor. The value of the dampening factor was 

calculated for the LaB6 standard and kept constant during the refinements of the imogolite 

PDF. 

 

The 20-molecular-units structural model used to fit the PDF corresponds to an 

imogolite with a small diameter, as it has been found for natural imogolite (Cradwick et 

al., 1972; Farmer et al., 1983). However, the structure of synthetic imogolite has been 

reported to have bigger diameters (Farmer et al., 1983; Ohashi et al., 2004; Wada, 

1987). This discrepancy is due to the fact that the changes in diameter cause only very 

subtle changes in the local-order of imogolite, within the PDF experimental resolution. 

Also, the big size of the unit cell and the many parameters involved in the fitting 

procedure allows small differences to be fitted. Other techniques are better suited to the 

study of the diameter sizes and polydispersity. (Creton et al., 2008b) suggested using 
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molecular modeling techniques that the radial breathing mode of imogolite can be 

observed using Raman spectroscopy, the frequency of this vibrational mode being 

affected by changes on imogolite diameter. Diffraction techniques (electron and X-ray) 

reveal also details about the bundle structure. 

The structure of synthetic imogolite has been fitted in this work using a structural 

model of natural imogolite. As indicated above, only the positions of Al and Si atoms 

have been fitted, the O atoms being fixed. After visual inspection of the resulting 

structure no significant changes have been observed. In order to check the consistency 

of the results, we have generated a diffraction pattern of the fitted structured, and 

compared it with the measured using high-energy X-rays (Figure 6). 

 

 
Figure 6. Experimental and theoretical patterns of the imogolite sample and of the PDF-fitted 

structure.  

 

Although some small differences can be appreciated in the positions of the peaks, 

overall the intra-tube structure is well reproduced. Some authors had reported 

differences in the structure between natural and synthetic imogolite (Kogure et al., 

2003). From this study we can conclude that the local structure of synthetic imogolite is 

identical to that of natural imogolite. The structure proposed by (Cradwick et al., 1972) 

is thus valid also for synthetic imogolite. Differences in diameter and in packing 

properties of imogolite bundles have not been studied here. 
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Water desorption 

Results from CRTA experiments are shown in Figure 7 (blue curve). Weighting the 

sample before and after the water desorption experiment allows quantifying the weight 

loss. The use of a mass spectrometer has allowed confirming that the observed weight 

loss is due to desorption of water molecules. Quantification of the water desorbed at 

selected temperatures is shown in Table 2. Three peaks can be observed in the water 

desorption curve (blue curve, Figure 7) of the CRTA spectra, indicating the presence of 

(at least) three different environments for water. Colors in Figure 7 indicate the 

temperature ranges in which water from the different environments is desorbed. 

(Ackerman et al., 1993) proposed the existence of three different pores in bundles of 

imogolite: (1) the internal pore of the nanotube; 

 
Figure 7. Results of the CRTA experiment. The blue curve is the water intensity at the mass 

spectrometer as a function of the temperature. Integration of the blue curve and substraction 

from the initial mass yields the black curve, which is the weight loss. 

 

(2) pores formed between the tubes of a same bundle and (3) the pores between 

different bundles. The first peak in the desorption curve can be assigned then to bulk-

like water present in pore (3). This type of water is desorbed under vacuum conditions 

at room temperature, indicating that low adsorption energies are binding it to the 

structure. Bulk-like water accounts for a 26 % of the total weight of freeze-dried 

imogolite. Drying procedures are expected to play an important role on the formation of 

these pores. As it has been shown in Figure 2, imogolite powders with different textures 
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can be synthesized by only changing the drying method. Differences in hydration levels 

between natural samples have been ascribed by other authors to differences in tube 

alignment (Farmer et al., 1983; Yoshinaga, 1968). (Farmer et al., 1983) reported that 

better aligned tubes exhibit more intense inter-tube X-ray diffraction diffraction 

maxima, lower hydration levels and lower dehydroxylation temperatures (shifted by 

50°C). Further diffraction studies using the imogolite films and freeze-dried powders 

shown in Figures 1 and 2 are on-going. The second peak in the desorption curve 

indicates the presence of adsorbed water molecules, probably in the inter-tubular 

spacing. Integration of the desorption intensity up to a temperature of 150°C (the 

position of the minimum between the second and third peaks) yields a weight loss of 

33%. The water remaining in the structure at this temperature represents a 27% of the 

weight, resulting in a number of 149 water molecules per unit cell of imogolite. 

According to the model of (Cradwick et al., 1972) a unit cell of imogolite contains an 

internal surface where 20 oxygen atoms are exposed to water, forming hydroxyl groups, 

and an external surface with 60 oxygen atoms also forming hydroxyl groups. If we 

define a surface coverage of one water layer as the presence of one adsorbed water 

molecule per surface oxygen atom, this would mean that 80 water molecules are needed 

to cover both surfaces of imogolite with one layer of water. However, this description is 

not entirely correct. Some authors (Creton et al., 2008a)(Fernandez-Martinez, in 

preparation) have shown that the internal pore of imogolite is more hydrophilic than the 

external surface. Monte Carlo molecular simulations would be then needed to reproduce 

the water adsorption isotherms in order to ascertain which pores have adsorption sites 

with higher adsorption energies. Nevertheless, the water content in the sample after 

desorption at 150°C, equivalent to 149 water molecules per unit cell, is equivalent, at 

least, to the formation of two shells of water on each surface. 

 

Temperature 
(°C) Weight loss (%) Remaining 

stoichiometry 
Remaining H2O per 
imogolite unit cell φ 

27 26 Al2SiO7H4 · 9H2O 184 2.3 
150 33 Al2SiO7H4 · 7H2O 150 1.87 
287 47 Al2SiO7H4 · 4H2O 72 0.9 
350 51 Al2SiO7H4 · 2H2O 48 0.6 

 
Table 2. Weight loss, stoichiometry of imogolite after degassing, number of water molecules per 

unit cell after degassing and surface coverage (φ). φ is defined as the ratio between the number 

of water molecules and the number of surface oxygen atoms. 
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Integration of the water desorption intensity present in the third peak is complicated 

due to two effects: (1) it has been reported by several authors that the dehydroxylation 

of the surface starts at ∼350°C (Farmer et al., 1983). This temperature falls in the middle 

of the long tail observed at temperatures between 300°C and 600°C. This tail can thus 

be explained by two effects: (1) imogolite dehydroxylation occurs breaking the structure 

of the nanotube, creating holes in the structure from where adsorbed water inside the 

nanotube pore can desorb, and (2) desorption of water from the nanotube pore is 

restricted by an steric effect due to the small size of the nanotube pore and to the highly 

ordered structure of water inside it (Creton et al., 2008a).  

The integration of all the desorption curve of water yields a total water content of 

54%. This implies that the stoichiometry for synthetic freeze-dried imogolite is 

Al2SiO7H4 · 16H2O, or a water content of 320 water molecules per unit cell.  

 

Infrared spectroscopy 

FTIR spectra have been taken under a vacuum of 10-3 bar, at three different 

temperatures. Results highlighting the stretching vibational mode of water O-H bonds 

are presented in Figure 8 (left). The stretching band shows a large peak with a long tail 

extending to lower frequency values. This broad peak is characteristic of confined 

water. The maximum of the peak is shifted towards higher frequency values as long as 

the temperature increases. The shape of the band shows a discontinuity when passing 

from 150°C to 300°C, the signal at 300°C having a sharper shape, indicating that 

different environments are present for water in imogolite. Differences between the FTIR 

signals at different temperatures have been done and are shown in Figure 8 (right). The 

green curve corresponds to the signal of water desorbing from the structure in the 

temperature range 35°C to 150°C. A similar subtraction has been done between the 

signal at temperatures 150°C and 300°C (magenta curve). Both curves show a stretching 

band with similar shape, with a maximum at ∼3400 cm-1 and shape very different to the 

band of water at 300°C, cenetered at 3550 cm-1. The black curve (300°C) includes also 

the vibrations of structural hydroxyl groups that overlap with the signal from water 

adsorbed in the internal pore of imogolite. 
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Figure 8. FTIR spectra showing the stretching vibational mode of water adsorbed on imogolite 

at different temperatures. Left: FTIR spectra at four temperatures (one during the cooling). 

Right: differences between signals at different temperatures. 

 

The hysteresis effect reported by (Farmer et al., 1983) has been observed during the 

cooling of the imogolite sample. Prior to the cooling, the vacuum over the sample was 

broken, allowing its rehydratation under ambient moisture conditions (75%). FTIR 

spectra taken at a temperature of 75°C during the cooling shows a band with a 

maximum centered at an intermediate position between the signals of the 150°C and 

300°C taken during the heating. This indicates that part of the desorbed water during the 

heating is not adsorbed back to the sample. Farmer et al., (1983) attributed a similar 

effect to the irreversible collapse of the bundle structure. The presence of hydroxyl 

groups at the surface facilitates the formation of strong hydrogen bonds between the 

nanotubes, if the water residing in the inter-tubular pores is evacuated. 

 

CONCLUSIONS 

Different techniques have been applied to the characterization of synthetic 

imogolite. TEM observations have allowed identifying the presence of open tube edges. 

The internal surface of the nanotube is thus accessible for the diffusion of water and the 

ion exchange between the external and internal surfaces. X-ray PDF measurements have 

revealed a local structure similar to that of natural imogolite. More studies focusing on 

the diameter polydispersity of synthetic imogolite should be performed to clarify the 

effect of the different synthesis procedures over the sizes of the final products. 

Comparisons between low-Q X-ray diffraction patterns show differences in the packing 

structure of synthetic imogolite nanotubes whose origin is not understood. 
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The water content of imogolite has been studied experimentally using a combination 

of CRTA and FTIR spectroscopy. CRTA reveals the presence of three types of 

adsorbing water that may be adsorbed onto the three pores suggested by Ackerman et al. 

(1993). Desorption experiments reveal the existence of a steric effect during the 

desorption of water at high temperatures, corresponding to water from the internal pore 

of the nanotubes. This steric effect may be due to the long lengths and restricted 

diffusion of water along the internal imogolite pore. FTIR spectra of the stretching 

mode of adsorbed water show the existence of two different types of water. FTIR taken 

during the cooling and at ambient humidity conditions reveal the collapse of the bundle 

structure. 
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