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"To my dearest parents, my loving siblings, and my sweet fiancée, Nabeela" conditions under which the derived algorithms are optimal, and explore some bounds on the sub-optimality of the algorithms if these conditions are not satisfied.

Then, we study resource allocation for services with stringent delay constraints, and consider joint power control and rate adaptation for video streaming in multinode wireless networks with interference. This is a challenging problem where the nodes demand for better video quality with stringent delay constraints while their channels and interferences have a time-varying nature. In addition, there should be some fairness criterion among nodes for utilizing the limited network resources. In this thesis, we develop a cross-layer optimization framework that performs instantaneous power control at the PHY/MAC layer and average video rate adaptation at the APPLICATION layer jointly. To this end, we model the power and the rate variations of the nodes as linear stochastic dynamic equations, and formulate a risk-sensitive control problem that captures the hard delay constraints of the video services, and a given fairness criterion for resources utilization.

Finally, in order to deal with the aforementioned channel imperfections, we adapt a new approach. Unlike the traditional approach of dealing with these imperfections at the transmitter, we deal with them at the receiver/user terminal at the channel quality indicator (CQI) reporting level. Using stochastic control theory, we design a novel best-M CQI reporting scheme for multi-carrier and multiuser systems that accommodates the impact of the channel imperfections in the computation of the CQIs. Instead of reporting the erroneous estimation of the CQIs, each user reports so-called adapted CQIs that accommodate the impact of estimation error and feedback delay. The adapted CQIs are computed such that the deviation between the allocated rate by the transmitter and the actual channel rate is minimized. These adapted CQIs are then directly used for resource allocation at the transmitter. Moreover, in the traditional best-M CQI reporting scheme, the number M of reported CQIs is fixed for all users while the wireless environment is dynamic. Therefore, by using some tools from game theory, we ix develop a so-called dynamic best-M scheme which dynamically determines the efficient number M of CQIs that should be reported by each user to the transmitter. The dynamic scheme improves the system performance without increasing the system's overall feedback overhead.

x xi

Résumé

Au cours de cette thèse, nous nous sommes d'abord intéressés à l'optimisation des ressources et à la modulation adaptative dans les systèmes utilisant la technique d'accès multiple SC-FDMA (" Single Carrier Frequency Division Multiple Access "), choisie pour les transmissions en voix montante pour le standard 3GPP-LTE. Cette technique suppose qu'une sous-porteuse ne peut être assignée qu'à un seul utilisateur, et que les sous-porteuses multiples attribuées à un utilisateur doivent être consécutives. Suite à ces deux contraintes, l'optimisation des ressources devient un problème combinatoire à complexité de calcul exponentielle. Afin de pallier à cette difficulté, nous avons proposé une nouvelle approche d'allocation de ressources et de modulation adaptative basée sur la théorie de la dualité canonique récemment développée. Grâce à notre méthodologie, la complexité du problème d'optimisation devient polynômiale et cela en constitue une remarquable amélioration. A travers des calculs analytiques, nous avons mis en évidence que sous certaines conditions, l'approche proposée est optimale mais qu'au cas où ces conditions ne sont pas satisfaites, l'optimalité ne pourrait pas être assurée. Cependant, nos résultats numériques prouvent que la solution obtenue par notre développement est très proche de la solution optimale. Dans cette perspective, nous avons établi quelques bornes pour évaluer la performance de la solution proposée lorsque les conditions d'optimalité ne sont pas satisfaites.

Nous avons ensuite étudié la problématique complexe de l'allocation de ressources pour le "Streaming Vidéo" dans les réseaux sans fil, où il est nécessaire d'assurer une transmission vidéo de haute qualité en présence de canaux et de brouillages variables au cours du temps. Pour ce type d'applications, un critère d'équité parmi les noeuds du réseau s'impose lors de l'utilisation des ressources limitées disponibles. Dans ce contexte, nous avons proposé une nouvelle méthode d'allocation de puissance conjointement à l'adaptation du débit vidéo. L'approche proposée exploite la diversité temporelle des canaux, en répondant aux contraintes strictes de délai associées aux applications vidéo, et en respectant un xii critère d'équité spécifique. Selon notre approche, l'allocation des ressources au niveau de la couche PHY/MAC est effectuée dans le but d'atteindre un SINR (" Signal to Interference and Noise Ratio ") cible tout en minimisant le délai entre l'arrivée et le départ des paquets. Cette allocation tient compte des débits variables attribués à la couche APPLICATION, de manière à assurer la qualité de vidéo demandée par les nIJuds selon le critère d'équité et l'état de leurs canaux.

Pour ce faire, nous avons adopté une approche de la théorie de contrôle, intitulée " Risk-Sensitive Control ".

Nous avons dédié la troisième partie de la thèse à la conception d'une nouvelle stratégie " best-M " pour le renvoi du CQI (" Channel Quality Indicator ") pour les systèmes multi-utilisateurs et multi-porteuses. Dans les stratégies " best-M " existantes, l'erreur d'estimation du CQI ainsi que son délai de renvoi sont gérés au niveau de la station de base. Sachant que toutefois, les utilisateurs ont une meilleure connaissance des conditions de leurs canaux, l'erreur d'estimation et le délai de renvoi du CQI seraient mieux traités au niveau des utilisateurs. Ainsi, notre nouvelle stratégie " best-M " suppose que la gestion de ces problèmes est confiée aux utilisateurs. Chacun parmi eux renvoie des " CQIs adaptés ", calculés à partir de la résolution d'un problème de contôle stochastique, tel que l'écart entre le débit alloué par la station de base et le débit réel du canal soit minimal. D'autre part, en utilisant certains outils de la théorie des jeux, nous avons développé une stratégie "best-M " dynamique, permettant de déterminer le nombre efficace de CQIs devant être renvoyés par chaque utilisateur, de manière dynamique. Cette stratégie se distingue des méthodes actuelles, selon lesquelles ce nombre est fixé pour tous les utilisateurs. De ce fait, la performance du système se trouve améliorée sans que son débit de signalisation ne soit augmenté en voix montante. Maximisation du somme des utilitiés (SUmax) . . 

Introduction

Les progrès récents dans les technologies de communication sans fil et leur capacité de fournir des débits élevés ont révolutionné la façon dont la société moderne fonctionne. En plus de la transmission de la voix, la communication sans fil moderne permet des services/applications diverses telles que la transmission de données, messagerie électronique, le streaming vidéo en haute résolution, etc.

Ces services sont associés à des besoins différents en termes de qualité de service (QoS), exprimée en débits de données, délais de transmission, taux d'erreur, etc.

Les systèmes modernes de communication sans fil sont capables de supporter ces services diverses et variés, mais ils doivent garantir des besoins différents de QoS. Ceci est difficile, premièrement à cause de la limitation des ressources de communication sans fil (fréquences, puissance, etc.), et deuxièmement à cause de la non-fiabilité de la capacité du canal sans fil, dûe à plusieurs phénomènes comme les variations temporelles du canal, la propagation par trajets multiples et les interférences mutuelles parmi plusieurs transmissions simultanées.

Il est nécessaire de développer des stratégies dynamiques/adaptatives d'allocation de ressources afin de fournir la QoS demandée tout en utilisant les ressources de communication disponibles de manière efficace. Certes, la variabilité (dans le domaine temporel) des canaux sans fil pose certaines limites, mais elle permet d'atteindre un débit de données élevé par l'exploitation de la diversité temporelle pour l'allocation des ressources. L'allocation adaptative des ressources exploite aussi la diversité des utilisateurs/noeuds et la diversité fréquentielle.

Cependant, la conception de telles stratégies requiert la connaissance de la qualité du canal sans fil. Ainsi, le développement de stratégies renvoyant ce type d'information (" feedback ") est essentiel pour permettre une allocation efficace des ressources. Comme son nom l'indique, le but principal de l'allocation adaptative des ressources est de répartir les ressources de manière dynamique parmi plusieurs utilisateurs/noeuds selon la qualité de leurs canaux. Certains noeuds dans le réseau sont susceptibles de demander des services diverses, qui peuvent avoir des besoins différents en termes de QoS. En effet, certains utilisateurs peuvent demander des services "non-temps réel" ou applications tolérantes aux délais (transfert de fichiers, contrôle d'e-mails, etc.) tandis que d'autres peuvent demander des services "temps réel" ou applications à contraintes de délai fortes (communication vocale, streaming vidéo, etc.). Les stratégies d'allocation de ressources pour des applications "temps-réel" ou des services avec contraintes de délai fortes doivent aussi respecter les exigences de délai en plus de l'allocation efficace des ressources. La conception de ces stratégies doit alors prendre en compte les services/applications demandés. Dans ce contexte, cette thèse se focalise sur plusieurs aspects concernant l'allocation des ressources dans les systèmes multi-utilisateurs utilisant le SC-FDMA.

Dans un premier temps, on analyse cette allocation ainsi que la modulation adaptative sans tenir compte des contraintes sur le délai de transmission et en supposant la connaissance parfaite des informations sur les canaux d'émission au niveau de la station de base / émetteur. Dans un deuxième temps, on aborde le problème en considérant dans le réseau des applications / services à contraintes fortes de délai. Pour ce faire, on développe d'abord une approche d'allocation de ressources pour le cas particulier de l'application " vidéo streaming " dans un réseau sans fil quelconque, dans l'objectif de la généraliser pour l'ensemble des systèmes SC-FDMA. Toutefois, en raison de la durée limitée de la thèse et de la complexité de la problématique de gestion des ressources dans les systèmes SC-FDMA, l'atteinte de cet objectif s'inscrit dans les perspectives des travaux accomplis. Dans un troisième temps, on présente une nouvelle approche pour le traitement des imperfections de l'information sur le canal disponible à l'émetteur (expliqué dans les précédents paragraphes). Cette méthode se distingue des approches classiques puisqu'elle permet de faire face à ces imperfections au niveau des renvois du CQI au lieu de la station de base / émetteur. Etant donnée la nature multi-porteuse de la technique SC-FDMA, on propose dans cette thèse une stratégie de renvoi du CQI adaptée aux systèmes multi-porteuses et multiutilisateurs et qui prend en considération l'erreur d'estimation du canal ainsi que le délai de renvoi du CQI. Les indicateurs sont alors calculés comprenant l'effet des différentes imperfections et sont ensuite renvoyés à la station de base pour pouvoir être directement utilisés pour l'allocation des ressources. La stratégie proposée a un caractère générique et pourrait donc être adaptée à plusieurs types de systèmes de communication sans fil multi-porteuses et multi-utilisateurs.

Dans les prochains paragraphes, on présentera une à une les trois problématiques étudiées pendant cette thèse. On y détaille les solutions respectives proposées, ainsi que les résultats obtenus pour mettre en évidence les principales contributions des travaux réalisés. Dans une dernière partie, on récapitulera les conclusions de la thèse et on donnera quelques perspectives de recherche qui en découlent.

Allocation des ressources et modulation adaptative dans les Systèmes SC-FDMA

Dans cette partie, nous considérons l'allocation des ressources et la modulation adaptative dans les systèmes appelés " Localized SC-FDMA ". Nous traitons deux aspects: D'une part, le problème de maximisation de la somme des utilités 

Formulation des Problèmes

Dans cette sous-chapitre, nous formulons les deux problèmes et leurs formes BIP équivalentes.

Maximisation du somme des utilitiés (SUmax)

Nous cherchons à maximiser la somme des utilités sous contrainte de la puissance totale d'émission par chaque utilisateur, désigné par P max k . A cette contrainte s'ajoute une contrainte sur la puissance crête appelée P peak k,n . En effet, la puissance crête émise sur chaque sous-porteuse par un utilisateur quelconque ne doit pas dépasser P peak k,n , à condition de maintenir le PAPR à une valeur basse [START_REF]Technical Specification Group Radio Access Network; Physical layer aspects for evolved Universal Terrestrial Radio Access (UTRA)[END_REF]. En outre, toutes les sous-porteuses attribuées à un utilisateur doivent avoir la même puissance (c.f. standard LTE [START_REF]Technical Specification Group Radio Access Network; Physical layer aspects for evolved Universal Terrestrial Radio Access (UTRA)[END_REF]), de manière à conserver un niveau faible de PAPR [START_REF] Myung | Single carrier fdma for uplink wireless transmission[END_REF]. L'utilité de l'utilisateur k, dénotée U k (γ k ), est une fonction arbitraire monotone croissante du SNR de l'utilisateur k (désigné par γ k ). Le problème global d'allocation des ressources peut être formulé comme suit: Dans chaque groupe, nous mettons 1 si une sous-porteuse est attribuée à un utilisateur et mettons 0 dans le cas contraire. Ainsi, compte tenu de la contrainte de consécutivité des sous-porteuses, l'ensemble réalisable de groupes de sous-porteuses pour l'utilisateur k peut être exprimé sous la forme matricielle suivante :

max K k=1 U k (γ k ) (1.1) s.t.
A k =         0 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 1 0 1 1 1 0 0 0 1 0 0 1 1 1 1 1 0 0 0 0 1 0 0 1 0 1 1        
où chaque ligne correspond à l'indice de la sous-porteuse et chaque colonne correspond au groupe de sous-porteuses. Il est à noter que la matrice de paternes est identique pour tous les K utilisateurs. Nous définissons un vecteur indicateur 

de taille KJ, i = [i 1 , ..., i K ] T où i K = [i k,1
max i P(i) = K k=1 J j=1 i k,j U k,j (γ ef f k,j ) (1.2) s.t. K k=1 J j=1 i k,j A k n,j = 1, ∀n (1.2a) J j=1 i k,j = 1, ∀k (1.2b) i k,j ∈ {0, 1}, ∀k, j (1.2c) où U k,j (γ ef f k,j
) est une fonction monotone croissante de SNR effectif γ ef f k,j qui signifie l'utilité de l'utilisateur k lorsque le groupe j est choisi et A k n,j désigne l'élément de la matrice A k correspondant à n ième ligne et j ième colonne.

Le SNR effectif est défini par équation suivante:

γ ef f k,j =       1 1 N k,j n∈N k,j min P peak k,n , P max k N k,j G k,n 1+min P peak k,n , P max k N k,j G k,n -1       -1
(1.3)

Modulation adaptative conjointe avec minimisation de la somme des coûts (JAMSCmin)

Ce problème peut être formulé comme suit: 

min K k=1 C k (P max k , P k ) (1.4) s.t. R k ≥ R T k , ∀k P k,n = P k,l , ∀k, n, l γ k ≥ Γ * m , ∀k, m |M k ∩ M | = 1, ∀k N k ∩ N j = ∅, ∀k = j n ∩ K j=1,j =k N j = ∅ | n ∈ {n 1 , n 1 + 1, ..., n 2 -1, n 2 } , ∀k Dans (1.4), C k (P max k , P k ) = -exp [P max k -P k ], R k et R T k représentent

Forme BIP équivalante du problème JAMSCmin

Les groupes de sous-porteuses consécutives et la matrice correspondante sont exactement les mêmes que ceux exprimés pour le problème SUmax. Cependant, étant donné que le problème JAMSCmin tient compte de phénomène de l'adaptation de la modulation conjointement à l'allocation des ressources, nous introduisons le sélection de modulation dans la matrice des groupes de sousporteuses. Cette matrice (pour l'exemple susmentionné avec K = 2 et N = 4) sans sélection de modulation pour l'utilisateur k est donnée comme suit :

B k =        0 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 1 0 1 1 1 0 0 0 1 0 0 1 1 1 1 1 0 0 0 0 1 0 0 1 0 1 1       
Comme le nombre de sous-porteuses nécessaires pour émettre un nombre de bits donné dépend de la technique de modulation utilisée, nous affinons la matrice B k selon les techniques de modulation. Par exemple, le nombre minimum de sousporteuses par TTI (Transmit Time Interval) nécessaire pour R T k = 140kbps est 3 pour QPSK, 2 pour 16QAM et 1 pour 64QAM. Nous rappelons qu'un TTI est égal à 0.5msec et que chaque sous-porteuse contient 12 sous-canaux. La matrice des groupes de sous-porteuses pour la modulation QPSK peut être alors écrite sous la forme suivante:

B k 1 =        1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1        où l'indice m dans B k
m correspond à la modulation m. Cette matrice revèle que pour R T k = 140kbps, le nombre de sous-porteuses attribué à l'utilisateur k doit être au minimum égal à 3 si la modulation QPSK est choisie. La même approche peut être utilisée pour définir les matrices correspondants aux modulations 16QAM et 64QAM. Nous définissons un vecteur indicateur de taille KM J,

ℓ = [ℓ 1,1 , ..., ℓ K,M ] T où ℓ k,m = [ℓ k,m,1 , ..., ℓ k,m,J ] T . Les entrées ℓ k,m,j ∈ {0, 1} in- diquent si un groupe j correspondant à B k
m est attribué à un utilisateur k ou non. Á partir de ces notations, on établit le lemme ci-aprés. Lemme 1.2.2. Le problème JAMSCMin peut être exprimé sous la forme BIP comme suit:

min ℓ g(ℓ) = K k=1 M m=1 J j=1 ℓ k,m,j C k,j,m (P max k , P k,m,j ) (1.5) s.t. K k=1 M m=1 J j=1 ℓ k,m,j B k m,n,j = 1, ∀n (1.5a) M m=1 J j=1 ℓ k,m,j = 1, ∀k (1.5b) ℓ k,m,j ∈ {0, 1}, ∀k, m, j (1.5c) où B k m,n,j désigne l'élément de la matrice B k m correspondant à n ième ligne et j ième colonne, P k,m,j = f (γ ef f k,m,j , R T k , Γ * m ) est la puissance transmise par l'utilisateur k quand le j ième groupe de sous-porteuses correspondant à B k m est choisi et C k,m,j (P max k , P k,m,j ) = -exp [P max k -P k,m,j ].
Les paramètres γ ef f k,m,j et P k,m,j indiquent le SNR et la puissance émise par l'utilisateur k quand le groupe j et la modulation m sont choisis. Ainsi γ ef f k,m,j est défini par:

γ ef f k,m,j = 1 1 N k,m,j n∈N k,m,j P k,m,n G k,n 1+P k,m,n G k,n -1 -1 (1.6)
avec N k,m,j de cardinalité N k,m,j l'ensemble des sous-porteuses attribué à l'utilisateur k lorsque le groupe j est choisi de B k m . Les entités P k,m,j 's sont obtenues avant l'allocation des ressources en résolvant les équations suivantes: 

n∈N k,m,j P k,m,j G k,n N k,m,j + P k,m,j G k,n - N k,m,j Γ * m 1 + Γ * m = 0, ∀k, m, j (1.7) 

Approche canonique pour la solution des problèmes BIP

I f = i ∈ I a ⊂ R K×J | K k=1 J j=1 i k,j A k n,j = 1, ∀n; J j=1 i k,j = 1, ∀k; i k,j ∈ {0, 1}∀k, j (1.8) 
Le problème dual canonique associé au problème SUmax est obtenu comme suit :

max f d (ǫ * , λ * , ρ * ) | (ǫ * , λ * , ρ * ) ∈ χ * ♯ (1.9)
Où χ * ♯ désigne le domaine dual défini par :

χ * ♯ = {(ǫ * , λ * , ρ * ) ∈ χ * a | ǫ * > 0, λ * > 0, ρ * > 0} (1.10) 
Et f d (ǫ * , λ * , ρ * ) est la fonction duale canonique associée au problème BIP correspondant : 

f d (ǫ * , λ * , ρ * ) = - 1 4 K k=1 J j=1      U k,j + ρ * k,j -λ * k -N n=1 ǫ * n A k n,j 2 ρ * k,j      - N n=1 ǫ * n - K k=1 λ * k (1.
(Théorème 1.2.2). Théorème 1.2.1. Si (ǫ * , λ * , ρ * ) ∈ χ * ♯ est le point stationnaire de f d (ǫ * , λ * , ρ * ), tel que: i = [i 1,1 , ..., i K,J ] T avec i k,j = 1 2ρ * k,j U k,j + ρ * k,j -λ * k - N n=1 ǫ * n A k n,j
, ∀k, j (1.12)

est le point KKT du problème BIP et 

f(i) = f d (ǫ * , λ * , ρ * ). ( 1 
f(i) = min i∈I f f(i) = max (ǫ * ,λ * ,ρ * )∈χ * ♯ f d (ǫ * , λ * , ρ * ) = f d (ǫ * , λ * , ρ * ). (1.14)
Preuve. Annexe A.2.

Forme duale canonique pour le problème JAMSCMin et conditions d'optimalité

La fonction objective g(ℓ) exprimée au problème (1.5) est une fonction réelle linéaire définie sur L a = ℓ ⊂ R K×M ×J avec domaine de faisabilité définie par :

L f = ℓ ∈ L a | K k=1 M m=1 J j=1 ℓ k,m,j B k m,n,j = 1, ∀n; M m=1 J j=1 ℓ k,m,j = 1, ∀k; ℓ k,m,j ∈ {0, 1}, ∀k, m, j (1.15) 
Le problème canonique dual associé au problème JAMSCMin est obtenu comme suit :

ext g d (ξ * , µ * , ̺ * ) | (ξ * , µ * , ̺ * ) ∈ Y * ♯ (1.16)
Où Y * ♯ est le domaine dual défini par :

Y * ♯ = (ξ * , µ * , ̺ * ) ∈ R N × R K × R KM J | ξ * > 0, µ * > 0, ̺ * > 0 (1.17)
En outre, la fonction duale canonique associée au problème BIP correspondant [START_REF] Boyd | Convex Optimization[END_REF].

g d (ξ * , µ * , ̺ * ) : R N × R K × R KM J → R est défini par: g d (ξ * , µ * , ̺ * ) = - 1 4 K k=1 M m=1 J j=1      ̺ * k,m,j -C k,m,j -µ * k -N n=1 ξ * n B k m,n,j 2 ̺ * k,m,j      - N n=1 ξ * n - K k=1 µ * k (1.
∂f d ∂ǫ * n = K k=1 J j=1 1 2ρ * k,j U k,j + ρ * k,j -λ * k - N n=1 ǫ * n A k n,j A k n,j -1 = 0, ∀n (1.19 
)

∂f d ∂λ * k = J j=1 1 2ρ * k,j U k,j + ρ * k,j -λ * k - N n=1 ǫ * n A k n,j -1 = 0, ∀k (1.20) ∂f d ∂ρ * k,j = U k,j -λ * k -N n=1 ǫ * n A k n,j ρ * k,j 2 -1 = 0, ∀k, j (1.21) 
Pour résoudre ce système, nous proposons un algorithme itératif basé sur la méthode du sous-gradient [START_REF] Boyd | Convex Optimization[END_REF]. Celui-ci est donné par la Table 3.1.

Sous-optimalité de l'algorithme

Si les conditions d'optimalité sont satisfaites (c'est-à-dire, si (ǫ * , λ * , ρ * ) ∈ χ * ♯ ), l'algorithme proposé est optimal mais au cas où ces conditions ne sont pas satisfaites, l'optimalité ne pourrait pas être assurée. Dans cette perspective, nous étudions l'écart entre la solution optimale et la solution obtenue en utilisant notre algorithme proposé. Nous commençons cette analyse en introduisant un problème dual canonique modifié dont la solution optimale n'est pas nécessaire et qui ne remplacera pas notre problème réel, mais qui est uniquement utilisé pour étudier l'écart d'optimalité de notre algorithme. Dans notre analyse, d'abord, nous trouvons la solution du problème modifié. Ensuite, nous montrons dans le Théorème 1.2.1 que la solution de ce problème modifié est équivalente à la solution optimale du problème primal avec des valeurs d'utilités U k,j légèrement différentes.

Enfin, en Corollaire 1.2.1, nous montrons que sous certaines conditions, la solution du problème dual canonique obtenue en utilisant notre algorithme fournit une solution au problème primal qui est très proche de l'optimum.

Théorèm 1.2.1. Pour U k,j = U k,j -2θ k,j ρ *
k,j avec θ k,j ∈ {-1, 0, 1}, ∀k, j; il existe un problème primal f(i) avec les utilités U k,j , et qui peut être résolu de façon optimale en utilisant l'algorithme donné par la Table 3

.1. Preuve. Annexe A.3. Corollaire 1.2.1. Si ρ * k,j << U k,j
, ∀k, j; alors, la solution obtenue du problème dual canonique en utilisant l'algorithme proposé (Table 3.1) fournit une solution au problème primal qui est très proche de la solution optimale.

Preuve. Annexe A.4.

Résultats de l'algorithme pour N → ∞

Nous également étudions la performance de l'algorithme proposé lorsque le nombre de sous-canaux est très élevé. Dans ce cas, on peut montrer que ρ * k,j << U k,j , ∀k, j. Par conséquent, la solution obtenue en utilisant l'algorithme proposé est très proche de la solution optimale.

Stratégie de modulation adaptive pour SUmax

Soit Γ * m le SNR minimum nécessaire pour garantir un BLER (Block Error Rate) cible au récepteur si la m ième technique de modulation est utilisée. La meilleur modulation pour l'utilisateur k est déterminé en fonction de γ ef f k , de la manière suivante:

m * (k) = arg min m∈M (γ ef f k -Γ * m )| Γ * m ≤γ ef f k (1.22)
où m est l'indice de modulation et M = {QPSK, 4QAM,16QAM}.

Algorithme de modulation adaptative conjointe à l'allocation de ressources pour JAMSCmin

Un système d'équations non-linéaires et un algorithme itératif pour ce problème peuvent être obtenus d'une manière similaire à celle adoptée pour le problème SUMax. 

Résultats numériques

γ k,j (t + 1) = {1 -β k,j }γ k,j (t) + β k,j γ * k,j (t) + n g (t) (1.
γ f k,j (t + 1) = {1 -ǫ k,j }γ f k,j (t) + ǫ k,j (t)γ max + n g (t) (1.
γ * k,j (t + 1) = γ * k,j (t) + ξ k,j (t) γ f k,j (t) -γ * k,j (t) +ξ k,j (t) f T k,j -f k,j (t) γ * k,j (t) + δt n t (t) (1.25)
où le pas ξ k,j (t) est défini comme suit : 

ξ k,j (t) =    1 if t = mW T 0 elsewhere (1.
z k,j (t) = [γ * k,j (t) γ k,j (t) γ f k,j (t)] T (1.27)
En combinant (1.23), (1.24) et (1.25), nous obtenons le modèle d'état ci-dessous :

z k,j (t + 1) = Âk,j (t)z k,j (t) + f k,j (t) + nk,j (t) (1.28) Où f k,j (t) = [0 0 ǫ k,j γ max ] T , nk,j (t) = δt n t (t) n g (t) n g (t) T et Âk,j (t) =      1 -ξ k,j (t) + ξ k,j (t) f T k,j -f k,j (t) 0 ξ k,j (t) β k,j 1 -β k,j 0 0 0 1 -ǫ k,j     
Par ailleurs, nous introduisons un vecteur du contrôle ûk,j (t) = [u * k,j (t) u p k,j (t) 0] T dans (1.28) afin d'assurer que γ k,j (t) tend vers γ * k,j (t) défini comme suit :

z k,j (t + 1) = Âk,j (t)z k,j (t) + f k,j (t) + Bû k,j (t) + nk,j (t) (1.29)
où B est la matrice identité en trois dimensions. Le modèle d'état ci-dessus peut être écrit sous la forme classique suivante:

x k,j (t + 1) = A k,j (t)x k,j (t) + Bu k,j (t) + n k,j (t) (1.30) où x k,j (t) =   z k,j (t) 1   , A k,j (t) =   Âk,j (t) f k,j (t) 0 1   , B =   B 0 0 0   , u k,j (t) =   ûk,j (t) 0   , et n k,j (t) =   nk,j (t) 0   .

Formulation de la fonction du coût

La fonction du coût quadratique est définir par:

J k,j = τ t=1 x T k,j (t)Qx k,j (t) + u T k,j (t)Ru k,j (t) (1.31) où R =   R 0 0 1   est une matrice définie positive, Q =   Q 0 0 0   , et où R est la
matrice identité en quatre dimensions et Q est la matrice donnéé par:

Q =         1 -1 0 0 -1 1 0 0 0 0 0 0 0 0 0 0        
Le choix ci-dessus de Q engendre le résultat suivant :

x T k,j (t)Qx k,j (t) = γ * k,j (t) -γ k,j (t) 2 (1.32)
La minimisation de l'entité exprimée en (1.32) est l'objectif principal du problème d'automatique évoqué ci avant. Puisque nous traitons la transmission vidéo, nous construisons la fonction du coût exponentielle suivante :

J k,j = E {exp(J k,j )} (1.33)
L'introduction de la fonction de coût exponentiel a pour but d'amplifier l'effet de l'écart de taux ( γ * k,j (t)γ k,j (t)

2 ). Dans cette situation, le régulateur visera à garder J k,j très faible, ce qui minimise l'écart de taux et réduit alors la gigue dans la transmission vidéo. Nous améliorons la fonction de coût exponentielle par la définition d'une fonction de coût plus générale appelée " Risk-Sensitive " [START_REF] Whittle | Risk-Sensitive Optimal Control[END_REF].

Cette fonction a un paramètre appelé " Risk-Sensitive ", dont la variation change la fonction du coût. En particulier, une valeur élevée de ce paramètre rends la 

V k,j = E e µJ k,j (1.34) 
où µ > 0 est le paramètre " Risk-Sensitive ". Par application d'une transformation logarithmique, nous obtenons :

W k,j = inf {u k,j (0)...,u k,j (T )} 1 µ log V k,j (1.35) 
Notre problème devient alors de trouver la séquence de commandes {u k,j (0), ..., u k,j (T )} minimisant la fonction du coût ci-dessus. 

P t = Q + A T t+1 P t+1 A t+1 -A T t+1 P t+1 B R + B T P t+1 B -1 B T P t+1 A t+1 ; P T = 0
(1.36)

P µ t = Q + A T t+1 Pµ t+1 A t+1 -A T t+1 Pµ t+1 B R + B T Pµ t+1 B -1 B T Pµ t+1 A t+1 ; Pµ T = 0 (1.37) Pµ t+1 = P µ t+1 + P µ t+1 1 µ I -P µ t+1 -1 P µ t+1 (1.38)
La valeur optimale de la fonction du coût est donnée par:

W (x t ) = 1 2 x T t P µ t x t + 1 µ log F t ; 1 µ I -P µ t+1 ≥ 0, ∀t (1.39) 
où F t est égal à:

F t = F t+1 |(I -µP µ t+1 ) -1 |; F T = 1 (1.40)
La commande optimale est donnée par :

u µ (x t ) = -R + B T Pµ t+1 B -1 B T Pµ t+1 A t x t (1.41)
L'état à chaque instant t peut être obtenu comme suit:

x t = A t-1 (x t-1 ) -B R + B T Pµ t B -1 B T Pµ t A t-1 x t-1 + n t (1.42)
Nous rappelons que l'état x t est déterminé par 

x t = [γ * k,j (t) γ k,j (t) γ f k,j (t) 1] T où γ * k,j (t), γ k,j (t) et γ f k,j ( 

Résultats numériques

Les résultats numériques sont illustrés aux figures, 4.2 à 4.7 (voir le chapitre 4).

On voit à partir de ces figures que notre approche proposée de "Risk-Sensitive" donne des meilleures performances que l'approche LQG. Par ailleurs, les figures montrent que les résultats de notre approche s'améliorent proportionnellement au paramètre "Risk-Sensitive".

Méthodes robustes pour le renvoi du CQI dans les systèmes multi-porteuses et multi-utilisateurs

Dans cette partie, nous considérons la stratégie nommée "best-M " de renvoi du CQI (Channel Quality Indicator) pour les systèmes multi-porteuses et multi- 

x t+1 k,n = x t k,n + w t k,n (1.47) 
y t k,n = x t k,n + v t k,n (1.48) 
x t k,n = [x t k,n x t k,n ] T y t k,n = [y t k,n y t k,n ] T u t k,n = [0 u t k,n ] T x t k,n = [w t k,n w t k,n ] T v t k,n = [v t k,n ǫ 0 v t k,n ] T
La représentation finale d'état (combinée pour le débit réel et le CQI adapté) peut alors être écrite selon les deux équations suivantes: 

x t+1 k,n = x t k,n + u t k,n + w t k,n (1.53) 
y t k,n = x t k,n + v t k,n (1.54) 
Lk = T t=1 N n=1 x t k,n 2 
Q + u t k,n 2 
Q =   1 -1 -1   Le choix de R et Q ci-dessus implique le résultat suivant : x t k,n 2 
Q + u t k,n 2 R = x t k,n -x t k,n 2 + u t k,n 2 (1.56) 
Minimiser la fonction de coût quadratique est alors équivalent à minimiser la quantité x t k,nx t k,n , ce qui est notre objectif principal. Les équations (1.53), (1.54) et (1.55) représentent un problème d'automatique stochastique linéaire à temps discrets [START_REF] Baser | H-Infinity Optimal Control and Related Minimax Design Problems: A Dynamic Game Approach[END_REF].

Nous proposons une solution au problème évoqué ci-dessus à travers deux approches différentes. Premièrement, nous supposons que le débit de données x t k,n varie selon une distribution gaussienne et ainsi, le bruit w t k,n est considéré comme gaussien [START_REF] Chen | Admission control schemes for wireless communication networks with adjustable transmitter powers[END_REF]- [START_REF] Leung | A kalman-filter method for power control in broadband wireless networks[END_REF]. Dans ce cas, la solution est obtenue en utilisant la commande Linéaire Quadratique Gaussienne (LQG) [START_REF] Astrom | Introduction to Stochastic Control Theory[END_REF][START_REF] Kailath | Linear Estimation[END_REF]. Pour la deuxième approche, nous abordons le problème d'une manière plus réaliste où la distribution de probabilité du bruit est imprévisible. Dans ce cas, nous proposons une solution basée sur la méthode d'optimisation H ∞ [START_REF] Baser | H-Infinity Optimal Control and Related Minimax Design Problems: A Dynamic Game Approach[END_REF].

Sélection des meilleurs M k CQIs et leur renvoi

En utilisant les méthodes ci-dessus (commande LQG et méthode H ∞ ) , chaque utilisateur calcule des CQIs adaptés pour l'ensemble de ses N sous-porteuses.

Chaque utilisateur k, choisit ensuite ses meilleurs M k sous-porteuses et renvoie un CQI (x t k,n ) correspondant à chacune parmi elles. Un seul CQI pour les sousporteuses restantes N -M k est renvoyé par l'utilisateur, ceci est obtenu en calculant une valeur moyenne des CQIs des N -M k sous-porteuses restantes (i.e., 

x t k,m = 1 N -M k N n=M k +1 x t k,n ).
χ k = {i t k , j t k ∈ {0, 1} N | j t k,m = 1, ∀m = N -M k ; j t k,m = 0, ∀N -M k +1 ≤ m < N -M k } (1.59)
Á partir de ces paramètres, nous définissons l'écart instantané de débit pour l'utilisateur k comme suit:

L t k = N n=1 i t k,n x t k,n 2 
Q + N m=1 j t k,m m xt k,m 2 Q (1.60) où x t k,n 2 
Q = x t k,n -x k,n 2 , xt k,m 2 
Q = xt k,m -x k,m 2 ; et où x t k,n , x t k,n et x t k,m sont définis de la même manière qu'au sous-chapitre précédent et xt k,m = 1 N -M k N n=M k +1
x k,n . Nous rappelons que ces derniers sont obtenus grâce à l'approche d'automatique stochastique proposée précédemment.

Selon cette méthode, les utilisateurs déterminent leurs M k s de manière dynamique. Par conséquent, pour ne pas diminuer le débit utile en liaison montante (utilisateurs vers station de base), nous introduisons la contrainte suivante:

Pr K k=1 N n=1 i t k,n ≤ M K ≥ (1 -ε) (1.61)
Cette contrainte signifie que la probabilité que le nombre total de CQIs renvoyés à la station de base soit inférieure ou égal à M K est supérieure ou égale à (1ε),

avec 0 << (1 -ε) < 1.
Nous pouvons ainsi mettre en équation notre problème d'optimisation comme suit: 

min E K k=1 N n=1 i t k,n x t k,n 2 Q x t k,n + N m=1 j t k,m m xt k,m 2 Q x t m,n (1.62) s.t. Pr K k=1 N n=1 i t k,n ≤ M K ≥ (1 -ε) (1.63) i t k,n , j t k,m ∈ χ k , ∀k, n, m (1 
S = i t ∈ {0, 1} KN | K k=1 N n=1 i t k,n ≤ M K (1.65) Pour l'utilisateur k soit 1 {i t k ∈S} l'indicateur égal à 1 si i t k = [i t k,1 , ..., i t k,N ]
T ∈ S et 0 sinon. Définissons alors le coût moyen de l'utilisateur k à l'instant t par :

L t k = E N n=1 i t k,n x t k,n 2 Q x t k,n + N m=1 j t k,m m xt k,m 2 Q x t m,n (1.66) 
Le problème relaxé peut alors être décrit de la maniére suivant: si i t ∈ S (i.e. la contrainte commune K k=1 N n=1 i t k,n ≤ M K est satisfaite), donc chaque utilisateur minimise l'écart de son débit L t K . Si la contrainte commune n'est pas satisfaite, alors nous introduisons un coût de pénalité Ψ k . La valeur de ce dernier sera choisie élevée si l'écart du débit de l'utilisateur est faible et s'il est souhaitable de changer sa configuration au prochain instant, et vice versa. Cette nouvelle fonction de coût que chaque utilisateur doit minimiser peut être écrite sous la forme : 

L t k = L t k 1 {i t k ∈S} + (Ψ k ) 1 {i t k ∈S} (1.

General Introduction

The recent advances in wireless communication technologies and their capabilities of providing high data rates have revolutionized the way the modern society functions. In addition to voice transmission, the modern day wireless communication permits diverse services/applications such as data transmission, electronic email, high resolution video streaming, etc. These services have different Quality-of-Service (QoS) requirements that are characterized in terms of data rates, delays, error rates, etc. However, being capable of supporting these diverse services, the modern wireless communication systems face the challenging problem of ensuring the diverse QoS requirements of the services. The reason is twofold: the wireless communication resources e.g., bandwidth, power, etc, are scarce; and the capacity of the wireless channel is unreliable due to the timevarying nature of the channel, multi-path propagation, and mutual interference among multiple simultaneous transmissions.

In order to provide the required QoS as well as efficiently utilize the limited available communication resources, adaptive channel aware resource allocation strategies are needed. Though the time-varying nature of the wireless channels poses some limitations, it provides the opportunity to achieve high data rate by exploiting the time diversity at the resource allocation level. In addition, the multi-nodes/users diversity and the frequency diversity of the wireless fading channels can be exploited by resource allocation schemes. However, the design of any adaptive resource allocation scheme is not possible without having the knowledge of the wireless channel. Thus, there is also a need of developing the channel quality reporting schemes that help the resource allocation unit in efficiently allocating the resources.

The principle objective of adaptive resource allocation as obvious from its name is to efficiently allocate the resources among multiple nodes/users in accordance to their channel conditions. However, the multiple nodes sharing the same network may demand for different services with different QoS requirements. In the same network, some of the users may be using non-real time services or delay tolerant services e.g., file transfer/email checking while others may demand for applications with stringent delay requirements like video streaming, etc. Resource allocation schemes for real time applications or services with stringent delay constraint should also guarantee the delay requirements of the applications in addition to efficiently allocating the resources. Thus, the design of any adaptive resource allocation schemes for wireless network should also consider the service/application demanded by the nodes/users.

Another factor which should be considered in adaptive resource allocation is the information on the wireless channel conditions of the nodes/users. In general, each end node/user in the wireless networks estimates its channel, computes an indicator for its channel quality, and reports it to the transmitter/base station. The resource allocation unit at the transmitter/base station uses this channel quality indicator (CQI) for resource allocation. However, the CQI arrived at the transmitter may be outdated due to feedback delay and my not be a perfect indicator/measure of the current channel anymore. In addition, it may happen that due to time-varying interference, etc., there is an error in the CQI measurement/estimation at the end node or the feedback channel used for reporting the CQI is noisy, and the CQI reported to the transmitter/base station is an imperfect measure of the actual channel. Thus, it is essential to consider these issues of imperfect knowledge of the channel quality in adaptive resource allocation. The traditional approach used is to deal with the possible channel imperfections at the transmitter/base station. However, the more accurate is the CQI available at the transmitter, the more efficient is the resource allocation performed. Thus, another interesting approach could be dealing with these issues at the CQI reporting level and providing the transmitter with such robust CQI that has already accommodated the aforementioned imperfections. The transmitter will then directly use this robust CQI for resource allocation.

Adaptive resource allocation in multi-user systems has been extensively stud- In this thesis, first we consider resource allocation and adaptive modulation in SC-FDMA systems without considering any delay constraint on the transmission of users' packets and assuming the availability of perfect channel state information at the transmitter/base station. Then, while aiming to study the resource allocation for SC-FDMA with delay constrained application/services, we develop a general resource allocation framework for video streaming in a wireless networks. The main goal was to first develop a framework for wireless video streaming in a general multi-node network and then extend this framework to the SC-FDMA systems. However, due to the time limitation and the difficult nature of resource management in SC-FDMA systems, the extension of this framework to SC-FDMA systems has been left as a future work. In this thesis, the general framework is presented. Finally, in order to deal with the imperfections in the channel information available at the transmitter, we adapt a new approach. Unlike the traditional approach of dealing with the channel imperfections at the transmitter, we deal with them at the CQI reporting level. Keeping in view the multi-carrier nature of SC-FDMA, we develop a CQI reporting scheme in multi-carrier and multi-user systems that takes into account the feedback delay and the error in the channel quality measurement at the CQI reporting level. In this scheme, the CQI are computed and reported in such a manner that they accommodate the impact of the aforementioned imperfections and when arrived at the transmitter can directly be used for resource allocation. The proposed scheme is more general and can be adapted for any multi-carrier and multi-user system.

The rest of this chapter is organized as follows. The remainder of this section introduces the SC-FDMA, the video streaming in multi-node wireless networks, and the CQI reporting in multi-carrier and multi-user systems. Section 2.2 provides a detailed overview of the problems considered in this thesis. The sate of the art is provided in Section 2.3 and the thesis organization and contributions are provided in Section 2.5.

Single Carrier Frequency Division Multiple Access (SC-FDMA)

SC-FDMA is a multiple access scheme for the uplink communication in high data rate cellular systems such as the Third Generation Partnership Project Long Term Evolution (3GPP-LTE) standard [START_REF]Technical Specification Group Radio Access Network; Physical layer aspects for evolved Universal Terrestrial Radio Access (UTRA)[END_REF]. Like Orthogonal Frequency Division Multiple Access (OFDMA) scheme, it is based on orthogonal frequency division multiplexing (OFDM) technique [START_REF] Nee | OFDM for Wireless Multimedia Communications[END_REF][START_REF] Bingham | Multicarrier modulation for data transmission: an idea whose time has come[END_REF]. In OFDM, the total frequency band is divided into a number of narrow orthogonal sub-bands called sub-carriers or sub-channels. The information data in OFDM systems is divided into parallel streams where these streams are transmitted simultaneously by transmitting a single stream on each sub-channel, and thus, can achieve very high bit rates. In addition, it inherits the immunity to inter-symbol-interference (ISI) in frequency selective fading channel and offers good flexibility and performance for a reasonable complexity. Due to these advantages OFDM is employed in wireless LANs based on the IEEE 802.11a and IEEE 802.11g standards. These remarkable advantages of OFDM have also motivated the wireless communication so-ciety to use it as a multiple access scheme called OFDMA where the users of a same cell are multiplexed in frequency, each user's data being transmitted on a subset of the sub-channels of an OFDM symbol. OFDMA has been adopted for both uplink and downlink air interfaces of WiMAX fixed and mobile standards, namely IEEE802.16d and IEEE802.16e respectively [START_REF]Part 16: Air interface for fixed broadband wireless access systems[END_REF][START_REF]Part 16: Air interface for fixed and mobile broadband wireless access systems[END_REF] and more recently for the downlink air interface of the 3GPP-LTE standard [START_REF]Technical Specification Group Radio Access Network; Physical layer aspects for evolved Universal Terrestrial Radio Access (UTRA)[END_REF].

Although OFDMA has numerous advantages, it suffers from high envelope fluctuation in the time domain thus leading to high peak-to-average-power ratio (PAPR). This high PAPR nature of the signals results in non-linear distortion. To deal with this problem and achieve the linearity, the power amplifiers have to operate at very high power, and thus, suffer from poor power efficiency. Thus, given the power limitations at the mobile terminal, OFDMA is not a good candidate for the uplink transmission. In addition, the non-linear distortion of signals also effects the orthogonality of sub-channels, and thereby causing inter-channel interference.

In order to overcome the aforementioned disadvantages of OFDMA, SC-FDMA is currently attracting a lot of attention as an alternative to OFDMA in the uplink.

Its low PAPR feature has the potential to benefit the mobile terminals in term of transmit power efficiency. In fact, SC-FDMA is a single carrier multiple access technique which utilizes single carrier modulation and frequency domain equalization. Its overall structure and performance are similar to that of OFDMA system. Unlike the parallel transmission of the orthogonal sub-channels in OFDMA, the sub-channels are transmitted sequentially in SC-FDMA. This sequential transmission of sub-channels considerably reduces the envelope fluctuation in transmitted waveform and results in low PAPR [START_REF] Myung | Single carrier fdma for uplink wireless transmission[END_REF]. However, very efficient in terms of PAPR, SC-FDMA signals suffer substantial inter-symbol interference at the base station due to severe multi-path propagation. This necessitates employing adaptive frequency domain equalization at the base station to cancel out this interference. Though it costs complex signal processing at the base station, frequency domain equalization is far more better than using high power linear amplifiers at the mobile terminal.

There are two types of SC-FDMA: localized-FDMA (L-FDMA) in which the sub-channels assigned to a user are adjacent to each other, and interleaved-FDMA (I-FDMA) in which users are assigned with sub-channels distributed over the entire frequency band [START_REF] Myung | Single carrier fdma for uplink wireless transmission[END_REF]. Though L-FDMA and I-FDMA both are better than OFDMA with respect to PAPR, L-FDMA with channel-dependent scheduling can achieve multi-user diversity, and has the potential for higher capacity in terms of number of users than I-FDMA [START_REF] Myung | Single carrier fdma for uplink wireless transmission[END_REF]. In 3GPP-LTE standard [START_REF]Technical Specification Group Radio Access Network; Physical layer aspects for evolved Universal Terrestrial Radio Access (UTRA)[END_REF], the current working assumption is to use OFDMA for downlink and localized SC-FDMA for uplink.

In this thesis, we focus on adaptive resource allocation in L-FDMA specific to 3GPP-LTE uplink.

Video Streaming in Wireless Networks

Video streaming is the transmission of video content/multimedia data from a streaming server to an end node where the end node is capable of playing the transmitted video content before being completely downloaded. The capabilities of modern wireless communication technologies to provide the nodes/users with high data rates (e.g., in 1xEV-DO and HSDPA) have motivated video streaming over multi-node wireless networks and its application is increasing very rapidly (e.g., see [START_REF] Etoh | Advances in wireless video delivery[END_REF][START_REF] Hanzo | Wireless Video Communications: Second to Third Generation and Beyond[END_REF][START_REF] Sun | Compressed Video Over Networks[END_REF]). However, video streaming over multi-node wireless networks faces the challenge of providing the same video service to multiple nodes/recievers with different channel characteristics. These multiple nodes demand the same video while the bit rate they can support and the packet loss they experience may be different due to their different channel conditions. In addition, the data rate requirement for transmitting video contents is very high, the end nodes demand for better quality videos, and the wireless communication resources shared among the nodes are limited. It is thus essential that the data rate of the video stream is adapted to nodes' channel conditions as well as the network resources are efficiently utilized and shared among the nodes.

In wireless video streaming, in order that the video transmission rate is adapted to the individual channel condition of each node, one of the following five principle rate adaption methods can be used. In the first method called encoder rate control, the video encoder at the application layer adapts the frame rate or quantization parameters to achieve a given target rate that depends on the packet loss estimation and the round trip time (e.g., [START_REF] Haratcherev | Optimized video streaming over 802.11 by cross-layer signaling[END_REF][START_REF] Lin | Bit-rate control using piecewise approximated rate-distortion characteristics[END_REF]). The second method consist in selecting one among several non-scalable bitstreams with different bit rates (and off course with different quality) associated to the same video [START_REF] Ozcelebi | Minimum delay content adaptive video streaming over variable bitrate channels with a novel stream switching solution[END_REF][START_REF] Stockhammer | Optimized h. 264-based bitstream switching for wireless video streaming[END_REF][START_REF] Xie | Fast bitstream switching algorithms for real-time adaptive video multicasting[END_REF]. This method is referred to as bitstream switching where the choice of bitstream for each node is made according to its demanded/promised quality and its bit rate support capability. The third rate adaptation method uses a single high quality bitstream which during streaming is converted into another bitstream with a transcoder to match the node's requirements [START_REF] Ahmad | Video transcoding: an overview of various techniques and research issues[END_REF][START_REF] Kumar | A protocol with transcoding to support qos over internet for multimedia traffic[END_REF][START_REF] Liu | Joint temporal-spatial rate control for adaptive video transcoding[END_REF]. The fourth method is called packet pruning where a single encoded video stream is available and the rate adaptation is performed by intelligently dropping the pre-encoded video packets [START_REF] Li | Joint powerplayout control for media streaming over wireless links[END_REF][START_REF] Chan | Receiver-based optimization for video delivery over wireless links[END_REF]. In the fifth method called the scalable video streaming, the video is encoded once in a single scalable bitstream that can be adapted to the node's channel condition [START_REF] Ohm | Advances in scalable video coding[END_REF]. More specifically, this method use scalable coding technique wherein a video is encoded into a single bitstream with a base layer and several enhancement layers. The base layer is non-scalable and is necessary for decoding the video stream, whereas the enhancement layers that improves its quality are scalable and can be truncated at any point to meet the quality-of-service (QoS) requirement and bit rate supporting constraint of each node. This method has small storage requirements, and provide more simplicity and flexibility in terms of bitstream truncation/switching [START_REF] Sun | An overview of scalable video streaming[END_REF]. One among the above mentioned methods which is more suitable according to some given preferences, and limitations, can be chosen for video streaming in multi-node wireless networks.

In multi-node wireless video streaming, in addition to video rate adaptation, resource optimization across different protocol layers is very essential so that the limited available bandwidth and the power is efficiently utilized. Adaptive/channel aware resource allocation can overwhelmingly improve the net-work performance. Since the multiple nodes demand for better video quality while sharing the same communication resources, the resource allocation for multinode video streaming should also consider the competition among them for communication resources.

Channel Quality Indicator (CQI) Reporting in Multi-carrier and Multi-user Systems

Multi-carrier/multi-channel transmission techniques in multi-user wireless communication system significantly improve the system performance by exploiting the frequency diversity and the multi-user diversity of the system [START_REF] Knopp | Multiple-accessing over frequency-selective fading channels[END_REF][START_REF] Goldsmith | Variable-rate variable-power mqam for fading channels[END_REF][START_REF] Wong | Multiuser ofdm with adaptive subcarrier, bit, and power allocation[END_REF].

This can be achieved by performing channel-aware modulation and coding scheme adaptation, and resource allocation (powers, sub-channels and slots) among users based on the so-called channel quality indicators (CQIs) reported to the transmitter/base station. A CQI is nothing but a parameter that represent the wireless channel condition e.g., a quantized signal-to-noise ratio (SNR) measurement, etc.

In fact, each user should estimate/measure its channels conditions, and feed the CQIs back to the transmitter/base station, so that the transmitter can determine the appropriate modulation and coding schemes, and can perform efficient resource allocation. However, reporting CQIs to the transmitter/base station needs a feedback link as well as transmission resources. In multi-carrier systems, the total bandwidth is divided into a number of sub-carrier/sub-channels with independent physical layer transmission on each sub-carrier/sub-channel. Thus, reporting the CQI on each sub-carrier/sub-channel may lead to prohibitively high feedback overhead that may not be feasible for portable devices. On the other hand in order to enable the transmitter/base station to adapt the appropriate modulation and coding schemes, and to efficiently allocate the resources, maximum information on the sub-channels should be reported. The above two objectives are thus conflicting and there is a risk in achieving one at the expense of the other. Therefore, a trade-off between the system performance and the feedback overhead should be achieved while designing a CQIs reporting scheme.

There are two major classes of techniques used for feedback overhead reduction. The first one that exploits the correlation of the CQI between adjacent sub-channels and time instants, consists in feeding back a compressed version of the CQIs of all the sub-channels by each user. This may either be CQI quantization in which the discrete quantized values of the channel state are reported (e.g., [START_REF]Mimo broadcast channels with finite-rate feedback[END_REF][START_REF] Sanayei | Opportunistic downlink transmission with limited feedback[END_REF][START_REF] Al-Harthi | Multiuser diversity with quantized feedback[END_REF]), or a discrete cosine transform (DCT) based feedback in which the dominant terms of the DCT of the per-subchannel signal to interference plus noise ratio (SINR) are reported to the transmitter (e.g., [START_REF] Van De Beek | Wlc09-2: Channel quality feedback schemes for 3gpp's evolved-utra downlink[END_REF]). In the second class, the CQIs of those users or/and sub-channels are reported which have high SNR compared to the other users/sub-channels or a given threshold. The second class has two groups: the threshold based CQI reporting, and the best-M based CQI reporting. In threshold based feedback schemes, a user only reports its CQI if its SNR is greater than a pre-defined threshold. In the best-M based CQI reporting, a user reports either the full individual CQIs values or an average CQI value of its best M sub-channels, and an average CQI value of the remaining sub-channels.

Increasing the feedback interval can also help to reduce the feedback overhead when the mobility is low [START_REF] Sun | Multi-user scheduling for ofdm downlink with limited feedback for evolved utra[END_REF].

Since a user in multi-carrier and multi-user systems is most likely to be allocated with the sub-carriers/sub-channels having good channel conditions, the best M CQIs reporting is quite a good choice. It is shown that the best-M scheme is an appropriate scheme for multi-user OFDM and multi-carrier CDMA systems [START_REF] Svedman | Opportunistic beamforming and scheduling for ofdma systems[END_REF][START_REF]3GPP, Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures[END_REF][START_REF] Kolehmainen | Channel quality indication reporting schemes for utran long term evolution downlink[END_REF][START_REF] Park | On scheduling for multiple-antenna wireless networks using contention-based feedback[END_REF]. The best M CQIs scheme has been adapted as the reporting scheme for Third Generation Partnership Project (3GPP) for the Long Term Evolution (LTE) systems [START_REF]3GPP, Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures[END_REF].

Problems considered in this thesis

Resource Allocation and Adaptive Modulation in SC-FDMA

Systems

Concerning adaptive resource allocation in multi-user multi-channel systems, most of the previous work has focused on power and sub-channel allocation in OFDMA systems, and a quite rich literature exist in this area of research (e.g., [START_REF] Wong | Multiuser ofdm with adaptive subcarrier, bit, and power allocation[END_REF][START_REF] Jang | Transmit power adaptation for multiuser ofdm systems[END_REF][START_REF] Rhee | Increase in capacity of multiuser ofdm system using dynamic subchannel allocation[END_REF][START_REF] Kim | On the use of linear programming for dynamic subchannel and bit allocation in multiuser ofdm[END_REF][START_REF] Seong | Optimal resource allocation for ofdma downlink systems[END_REF]). On the other hand, adaptive resource allocation problem in SC-FDMA systems has rarely been considered by researcher. This lack of consideration of SC-FDMA resource allocation problem is due to its prohibitively difficult nature. Like the mutual exclusivity restriction on sub-channel allocation in OFDMA, a sub-channel in SC-FDMA can be allocated to one user at most. In addition, the multiple sub-channels allocated to a user in localized SC-FDMA must be consecutive as well. These constraints render the resource optimization problem a prohibitively difficult combinatorial problem. Moreover, in OFDMA, the signal-to-noise-ratio (SNR) on each sub-channel is independent from the other sub-channels and the allocation of each sub-channel among the users and the allocation of power to each sub-channel is independent from other sub-channels.

On the other hand in SC-FDMA, the use of frequency domain equalization in SC-FDMA over all the sub-channels makes the SNR expression much more complicated where the power allocation to any sub-channels of a user is dependent on all the other allocated sub-channels of that user. This further increases the difficulty of the resource allocation problem in SC-FDMA. Though the resource allocation problem in OFDMA systems is also a very difficult combinatorial problem due to the exclusive allocation of sub-channels among the users, some optimal/nearly optimal algorithms have already been discovered. The common approach used for resource allocation in OFDMA is to formulate the mutual exclusivity restriction on sub-channels allocation as binary-integer constraint, solve the problem to get an approximated solution in continuous domain, and then discretize the continuous values into the closest binary values. But in SC-FDMA resource allocation, this approach cannot be employed. The reason is that if the problem is solved by relaxing the 0-1 constraint, then, during discretization of the continuous domain solution, the adjacency constraint on sub-channels allocation cannot be assured.

Though very difficult combinatorial problem, some efforts are still made towards the solution of resource allocation problem in SC-FDMA. However, almost all the exiting solutions are greedy sub-optimal, and most of them are not complete in all respects. Some of the proposed resource allocation frameworks do not respect the adjacency constraint on the sub-channel allocation, whereas the others do not consider any constraint on the transmit power. Being a very difficult combinatorial problem, the greedy and sub-optimal nature of the existing proposed solutions is still reasonable but sacrificing the adjacency constraint on sub-channel allocation which is the important physical layer requirement of the localized SC-FDMA is not a realistic approach at all. Moreover, all the previous work is based on rate/capacity maximization and no work to the best of our knowledge has considered power minimization joint with adaptive modulation in uplink SC-FDMA systems. Since the mobile terminals have limited energy, energy-economization is needed and fast power control should be considered while allocating the resources to the users in the uplink.

In this thesis, we consider resource allocation and adaptive modulation in localized SC-FDMA systems. We consider two optimization problems: sum-utility maximization (SUmax), and joint adaptive modulation and sum-cost minimization (JAMSCmin). Both these problems are combinatorial in nature whose optimal solutions are exponentially complex in general. The performance metric considered in the SUmax problem is the total utility of the system. Utility is basically an economics concept that reflects the user satisfaction in the system. We assume that each user in the system has an associated utility function, and the objective is to maximize the sum-utility in the system while respecting all the constraints of localized SC-FDMA systems specific to the LTE uplink. The user utility function specific to this thesis is defined as an arbitrary function that is monotonically in-creasing in user's SNR. The performance of the system can be further enhanced by choosing an efficient modulation scheme for each user. Therefore, based on the resource allocation, we also consider adaptive modulation scheme, wherein an appropriate modulation is chosen for each user depending upon its effective SNR. The cost associated to each user in the JAMSCmin problem is a function that is monotonically increasing in the transmit power of that user. The objective of the JAMSCmin is to propose a low-complexity framework that jointly allocates the transmit powers, sub-channels and the modulation schemes to the users in order to minimize the total transmit power while ensuring the individual target data rates of the users as well as capturing the basic constraints of the localized SC-FDMA systems. The joint adaptive modulation in the JAMSCmin problem is important due to the fact that in order to ensure the target data rate of the users, the powers and sub-channels allocation should take into account the modulation schemes used by the users.

Joint Power Control and Rate Adaptation for Video Streaming in Wireless Networks

Video streaming over wireless networks is a challenging task. The main reasons are the time varying nature of the wireless channel, the better video quality (high data rate) demand of the multiple nodes, the hard transmission delay constraints of the streaming applications (i.e., the packets in the buffer of the transmitting node should be delivered to the receiving node within a small period of time), and the limited available communication resources (e.g., bandwidth, transmission power, etc.). Due to the different characteristics of the time-varying channels of the multiple nodes, the bit rate they can achieve and the packet loss they experience is different which in turn does not allow broadcasting a single video stream with constant bit rate to all receiving nodes. The reason is that if a video stream with high data rate is chosen, then, the nodes that have bad channel condition and that can not support this data rates will be unable to decode the video content successfully. On the other hand if the video stream is broadcasted in accordance to the receiver nodes with bad channel qualities, all the other receiver nodes are essentially reduced to the performance of the worst nodes. Thus, in order to support video streaming over multi-node wireless networks, a video bitstream with appropriate data rate must be adapted for each node in accordance to the bit rate supporting capability of its wireless channel. Moreover, the transmission of multiple nodes in wireless networks are interdependent. This interdependency occurs due to the competition among the multiple nodes for the limited available network resources, and the interference caused to the nodes due to the simultaneous transmissions in the network. Each node in the network tries to utilize the network resources to the maximum in order to have a good quality video. The increased use of resources by a node not only deprives the other nodes from network resources but the increase in its transmit power also results in an increased level of interference to other nodes which in turn reduces their achieved data rates, and increases the transmission delay of these nodes. Thus, in order to satisfy the stringent delay constraints of the streaming applications, intelligent resource allocation and scheduling policies must be designed that performs a fair sharing of the bandwidth among the multiple nodes, and efficiently allocate the power to them in different time slots. The fair distribution of the bandwidth can overwhelmingly improve the network performance by making sure that each node is provided with a promised QoS streaming service/application. Adjusting the transmit power according to the node's allocated/demanded bit rate and its channel quality is not only efficient in term of its power consumption but will also help in reducing the interference caused to the neighbor nodes. However, unfortunately, the interdependent nature of the multi-node transmissions renders the design of such resource allocation and scheduling policies extremely difficult. In addition, the video bitstream/rate adaptation is performed at the APPLICATION layer whereas the resource allocation/scheduling is performed at the PHY/MAC and thus a cross-layer design is needed which is a challenging task.

The temporal variations of the wireless fading channels can be exploited by optimally controlling the power in different time slots, and adapting the video bitstream/rate in different video sessions. However, in order to develop an optimal power control and rate adaptation scheme, channel gain values and packet arrival rates for current and future time slots are required. Unfortunately, the information about future channel and arrival processes is not available which makes this problem very challenging. Generally, the existing work on resource allocation for video streaming in wireless networks does not consider the competition among multiple nodes for communication resources. In addition, the underlying approach is to simplify the resource allocation problem by assuming no background interference at all or assume a constant value for interference which is an unrealistic approach. This is a crucial issue which should be accounted for in resource allocation.

Furthermore, the power control at the PHY/MAC layer should be performed instantaneously so that an instantaneous target SINR corresponding to the given video rate is achieved. On the other hand due to the interdependent nature of the video frames in video streaming, the video rate at the APPLICATION layer should be adapted in an average manner after a long enough time. Thus, it is even difficult to formulate a framework that allows instantaneous power control at the PHY/MAC layer, and average video rate adaptation at the APPLICATION layer jointly.

In this thesis, we consider the above challenging problem of joint video bitstream/rate adaptation and dynamic power control for video streaming in a multinode wireless networks where the multiple nodes cause interference to each other.

The interference is assumed to be time-varying and the nodes compete for network resources where each node opt to have a better quality video. We design a cross-layer optimization framework that performs instantaneous power control at the PHY/MAC, and adapts the video rate in an average manner at the APPLICATION layer jointly. In our optimization framework, we also introduce a certain fairness/satisfaction criterion among the multiple nodes so that each node is assured of getting its share of the network resources. The joint cross-layer framework provides all the nodes with good quality video for minimum power consumption such that the strict delay constraints of the streaming applications are satisfied and the fairness/satisfaction criterion among the nodes is respected.

CQI Reporting in Multi-carrier and Multi-user Systems with

Imperfect Channel Knowledge

The problem of efficient CQI reporting in multi-carrier and multi-user systems as expected has been quite well studied. However, the underlying assumption in the previous work is to report the CQIs to the transmitter/base station without considering the impact of error in their measurement and the feedback delay on the CQIs values received at the transmitter/base station. In general, there always occurs a time delay between the estimation of the CQIs and their utilization for resource management at the transmitter/base station. It is possible that the characteristics of the channel are significantly changed during this delay/feedback interval and the corresponding CQI received at the transmitter/base station is not relevant anymore. In addition, due to time-varying interferences etc., the CQI estimation/measurement at the user terminal may not be perfect, and consequently, the value of the corresponding CQIs will be erroneous. Performing resource allocation on the basis of these delayed and erroneous CQIs may severely degrade the system performance. Though not being ignored by the wireless communication society, these issues are generally dealt with at the resource allocation level at the transmitter/base station (e.g., [START_REF] Souryal | Adaptive modulation with imperfect channel information in ofdm[END_REF][START_REF] Yao | Rate-maximizing power allocation in ofdm based on partial channel knowledge[END_REF][START_REF] Caire | Optimum power control over fading channels[END_REF][START_REF] Leke | Impact of imperfect channel knowledge on the performance of multicarrier systems[END_REF][START_REF] Wong | Optimal resource allocation in the ofdma downlink with imperfect channel knowledge[END_REF]). Moreover, these works assume simple imperfection models e.g., assuming some statistical distribution for channel imperfections, and that the transmitter knows, at each time, the estimated CQIs and the distribution of imperfections for all sub-channels. This is an unrealistic approach, since due to the different levels of interferences caused to different sub-channels and due their time-varying nature, the covariances of the noise for different sub-channels are different as well as time-varying.

Considering the impact of feedback delay and imperfect CQI estimation on resource allocation at the base station makes sense if the CQIs of all the subchannels for each user are reported. But reporting the CQIs of all the sub-channels for each user in a multi-user system is not appropriate due to the resulting prohibitively increased overhead. On the other hand the use of the best-M CQIs scheme reduces the overhead but it makes difficult to efficiently allocate the resources and to cope with the CQI imperfections at the transmitter. In a realistic scenario where the best-M reporting scheme is used, the transmitter cannot know the channel statistics for all the sub-channels since only M (which is a small number e.g., 4 or 5 for 3GPP-LTE) imperfect and delayed CQIs are available at each time. Moreover, during resource allocation at the transmitter, it may happen that the sub-channels corresponding to the individually reported M best CQIs of a user are not allocated to that user but other sub-channels whose individual CQIs are not reported are allocated. In multi-carrier systems, different sub-channels have different channel conditions and have different noise covariances due to different levels of interferences caused to them. Therefore, it is unrealistic to treat all the sub-channels in a similar way. Moreover, it is inefficient to let the transmitter solve alone the problem of resource allocation and rate assignment, and deal with the imperfections in CQIs. Since the users have an estimation of the CQI for each sub-channel, they can contribute to solve the above problem if a feedback scheme is developed which takes care of the imperfections in the CQIs at the reporting level at the user terminals. In this way, the CQIs available at the transmitter would have already accommodated the impact of imperfections, and can directly be used for resource allocation.

Furthermore, in wireless standards such as 3GPP-LTE, M is assumed to be fixed, and the same for all users. In practice if M increases the deviation between the allocated rate and the actual achieved/experienced rate decreases. However, this deviation depends also upon the channel conditions of each user e.g., users near the base station will have lower deviations than users at the cell border. Thus adapting the value of M for each user according to its channel quality can further improve the system performance. Though looking very interesting, adapting the value of M dynamically is a challenging task. In addition, there is a risk that the total system overhead hugely increases compared to the traditional scheme with fixed value of M.

In this thesis, we consider a more realistic scenario where a multi-carrier and multi-user system uses the M-best CQI reporting scheme, and a feedback delay occurs as well as the CQIs estimation at the user terminal are not perfect. In addition to employing the common approach of assuming some statistical distribution for the imperfections in CQIs we also view the problem realistically and consider the case when the distribution of the CQI imperfections is completely unknown. We consider a novel M-best CQI reporting scheme which should deal with the feedback delay and CQI estimation error at the CQIs reporting level while retaining the property of feedback overhead reduction. In other words, the impact of these imperfections on the CQIs values, and consequently on the possible future allocated rate at the transmitter is considered at the user terminal prior to CQIs reporting. By utilizing the same framework, we also develop a so-called dynamic M-best CQIs reporting scheme in which the value of M is not fixed and equal for all users but is adapted for each user individually according to its current channel quality while respecting the system's cumulative feedback overhead.

State of the art 2.3.1 Resource Allocation in SC-FDMA Systems

The key feature of the multi-channel and multi-user wireless systems is their inherit frequency, time, and multi-user diversities. Resource allocation techniques can be used to take advantage of these diversities of the system in order to optimize the use of the available resources. These techniques exploit the available channel state information (CSI) at the transmitter side for accomplishing adaptive modulation, and sharing the resources (powers, sub-channels, slots, etc.) among the users.

Most of the previous work on resource allocation in multi-channel and multiuser systems has focused on power and sub-channels allocation in downlink OFDMA systems (e.g., [36, 46-49, 55, 56]). One of the well known approaches for solving the OFDMA resource allocation problem is exploiting its time-sharing property [START_REF] Yu | Dual methods for nonconvex spectrum optimization of multicarrier systems[END_REF]. Based on this property, it is shown in [START_REF] Seong | Optimal resource allocation for ofdma downlink systems[END_REF], and [START_REF] Yu | Dual methods for nonconvex spectrum optimization of multicarrier systems[END_REF] that for practical number of sub-channels, the resource allocation problem in OFDMA systems can be solved by Lagrange multipliers method with zero duality gap. However, none of above is directly applicable to uplink SC-FDMA. This is due to the fact that in localized SC-FDMA in addition to the restriction of allocating a sub-channel to one user at most, the multiple sub-channels allocated to a user should be adjacent to each other as well. Furthermore, a frequency domain equalizer is used in SC-FDMA over all the sub-channels allocated to the user which makes the signal to noise ratio (SNR) expression much more complicated than in OFDMA where the SNR on each sub-channel is independent from the other sub-channels. This further adds to the difficulty of the resource allocation problem.

In most of the previous work on SC-FDMA, the implementation problems in the physical layer are studied (e.g., [START_REF] Myung | Peak-to-average power ratio of single carrier fdma signals with pulse shaping[END_REF][START_REF] Schnell | Application of ifdma to mobile radio transmission[END_REF][START_REF] Dinis | A multiple access scheme for the uplink of broadband wireless systems[END_REF][START_REF] Shi | Capacity of single carrier systems with frequency-domain equalization[END_REF][START_REF]Simulation methodology for EUTRA UL: IFDMA and DFT-Spread-OFDMA[END_REF]). In [START_REF] Myung | Peak-to-average power ratio of single carrier fdma signals with pulse shaping[END_REF], a comparative analysis of the PAPR characteristics of OFDMA, I-FDMA, and L-FDMA is peformed. In [START_REF] Schnell | Application of ifdma to mobile radio transmission[END_REF], the authors have proposed maximum likelihood detection for I-FDMA system and have investigated that in comparison with multi-carrier code-division multipleaccess it has better performance with some additional advantages. In [START_REF] Dinis | A multiple access scheme for the uplink of broadband wireless systems[END_REF], SC-FDMA is considered as the multiple access scheme for the uplink of broadband wireless systems that allows users to transmit simultaneously with different data rates. In [START_REF] Shi | Capacity of single carrier systems with frequency-domain equalization[END_REF], the capacity behavior of single carrier modulation with frequency domain equalization is studied. The effective signal to interference and noise ratio (SINR) for SC-FDMA with frequency domain equalizers is derived in [START_REF]Simulation methodology for EUTRA UL: IFDMA and DFT-Spread-OFDMA[END_REF].

The resource allocation problem in uplink SC-FDMA has also been addressed in a number of publications. In [START_REF] Al-Rawi | Opportunistic uplilnk scheduling for 3G LTE systems[END_REF], a heuristic opportunistic scheduler for allocating frequency bands to the users in the uplink of 3G LTE systems is proposed.

In [START_REF] Lim | Channel-dependent scheduling of uplink single carrier fdma systems[END_REF], the authors have proposed a greedy sub-optimal schedular for uplink SC-FDMA systems that is based on marginal capacity maximization. In [START_REF] Lim | Proportional fair scheduling of uplink single-carrier fdma systems[END_REF], the authors revise the same framework used in [START_REF] Lim | Channel-dependent scheduling of uplink single carrier fdma systems[END_REF] for developing a proportional fair scheduling scheme. However, in addition to being sub-optimal, the proposed schedulers in both [START_REF] Lim | Channel-dependent scheduling of uplink single carrier fdma systems[END_REF] and [START_REF] Lim | Proportional fair scheduling of uplink single-carrier fdma systems[END_REF] do not consider the sub-channels adjacency constraint which is an important physical layer requirement for localized SC-FDMA.

In [START_REF] Lee | Proportional fair frequency-domain packet scheduling for 3gpp lte uplink[END_REF], a set of greedy sub-optimal proportional fair algorithms for localized SC-FDMA systems is proposed in the frequency-domain setting. This work respects the sub-channels adjacency constraint but does not consider any constraint on the power. The authors, in [START_REF] Nwamadi | Dynamic subcarrier allocation for single carrier-fdma systems[END_REF] use the so-called Hungarian algorithm to propose dynamic sub-carrier allocation algorithm for SC-FDMA but it has very high computational complexity and does not consider power allocation. In [START_REF] Anas | Uplink Radio Resource Management for QoS Provisioning in Long Term Evolution: With Emphasis on Admission Control and Handover[END_REF], radio resource management for QoS provisioning in LTE with emphasis on admission control and handover is studied. Similarly, a case study of LTE for scheduling and link adaptation for uplink SC-FDMA Systems is performed in [START_REF] Calabrese | Scheduling and Link Adaptation for Uplink SC-FDMA Systems: A LTE Case Study[END_REF]. The works in both [START_REF] Anas | Uplink Radio Resource Management for QoS Provisioning in Long Term Evolution: With Emphasis on Admission Control and Handover[END_REF] and [START_REF] Calabrese | Scheduling and Link Adaptation for Uplink SC-FDMA Systems: A LTE Case Study[END_REF] are simulation based works that do not provide any analytical model for resource management. In [START_REF] Wong | Optimal resource allocation in uplink sc-fdma systems[END_REF], a weighted-sum rate maximization in localized SC-FDMA systems is considered where the problem is formulated as a pure binary-integer program. Though the proposed binary-integer programming framework captures all the basic constraints of the localized SC-FDMA and allows to perform resource allocation without resorting to exhaustive search, it is still not the best solution as the 0-1 requirement turns the problem into combinatorial with exponential complexity. Thus, keeping in view the computational complexity of the binary-integer programming, the authors have also proposed a greedy sub-optimal algorithm that is similar in spirit to the approach in [START_REF] Lim | Channel-dependent scheduling of uplink single carrier fdma systems[END_REF] with an additional constraint on the adjacency of the allocated sub-channels. In [START_REF] Sokmen | Uplink resource allocation algorithms for singlecarrier fdma systems[END_REF], some greedy sub-optimal resource allocation algorithms are proposed that are inspired from that work carried out in [START_REF] Wong | Optimal resource allocation in uplink sc-fdma systems[END_REF]. A chunk based greedy sub-optimal resource allocation framework is proposed in [START_REF] Pao | Chunk allocation schemes for sc-fdma systems[END_REF] where the sub-channels are divided into chunks with equal number of sub-channels and the total number of chunks equal to the number of users. Each user is then assigned with a single chunk such that the sum-rate is maximized. In [START_REF] Noh | Distributed sc-fdma resource allocation algorithm based on the hungarian method[END_REF], a Hungarian method based distributed SC-FDMA resource allocation for multi-cell network is proposed. However, this work could not prove the convergence of the proposed algorithm, and its proximity to the global optimal solution; and these issues are left for future work.

All the cited work is limited to simplifying this exponentially complex problem by taking some assumptions, and proposing some greedy sub-optimal solutions. None of the above works has solved this problem optimally or provided analytical investigation for the proximity of the proposed solution to the optimal solution. The only work where the problem is attacked from optimal solution perspective is formulating the problem as a binary-integer program [START_REF] Wong | Optimal resource allocation in uplink sc-fdma systems[END_REF]. However, due to the exponential complex solution of the binary-integer program, the authors of [START_REF] Wong | Optimal resource allocation in uplink sc-fdma systems[END_REF] are also reverted to proposing a greedy sub-optimal iterative algorithm.

Resource Allocation for Video Streaming in Wireless Networks

Resource allocation for wireless video streaming has attracted a lot of attention in recent years, and a rich literature exists in this area. Most of the existing work on rate allocation or power control has been performed from the individual user point of view. Some of the studies have considered the rate and power allocation based on the users groups where each group is treated as a single entity. However, resource allocation for video streaming in multi-node wireless networks that takes into account the inter-dependency of the transmissions of the multiple nodes and the competition among them for network resources is an area that still needs considerable work.

An efficient bit allocation algorithm for scalable video transmission is proposed in [START_REF] Cheung | Bit allocation for joint source/channel coding of scalable video[END_REF] which distributes the source bites, and the channel bits between the source and channel codecs so that the resulting distortion is minimized. A low-power multimedia communication system for indoor multimedia applications specially for image transmission is investigated in [START_REF] Goel | A low-power multimedia communication system for indoor wireless ap-plications[END_REF]. In [START_REF] Zhang | Power-minimized bit allocation for video communication over wireless channels[END_REF], a scheme for bit allocation between source and channel coders is proposed that minimize the total power consumption of a single user or a group of users in the cell. A general approach for power-optimized joint source-channel coding for scalable video streaming over wireless channel is proposed in [START_REF] Zhang | A power-optimized joint source channel coding for scalable video streaming over wireless channel[END_REF]. A joint source coding and transmit power minimization under distortion and delay constraints for wireless video communication is considered in [START_REF] Eisenberg | Joint source coding and transmission power management for energy efficient wireless video communications[END_REF]. In [START_REF] Zhang | Channel-adaptive resource allocation for scalable video transmission over 3g wireless network[END_REF], a channel-aware distortion/power-minimized bit-allocation scheme for scalable video transmission over third generation (3G) wireless networks is proposed which optimally distributes the bits among source coding, forward error correction, and ARQ.

In [START_REF] Nguyen | Multiple sender distributed video streaming[END_REF], the authors propose a framework for video streaming in which multiple mirror sites transmit simultaneously to a single receiver in order to achieve higher throughput. An aggregate utility maximization based rate control for multi-rate multi-cast real-time sessions is proposed in [START_REF] Kar | Optimization based rate control for multirate multicast sessions[END_REF] where the network is divided into a number of multi-cast groups with each group containing a set of receivers.

The rate of transmission for each receiver in each multi-cast group is chosen in such a way that the sum-utility of that multi-cast session is maximized.

In [START_REF] Talukdar | Rate adaptation schemes in networks with mobile hosts[END_REF], the tradeoff between the network overhead, and the fairness property of the rate adaptation schemes in mobile host supporting multimedia networks is investigated. In [START_REF] Sampath | Power control and resource management for a multimedia cdma wireless system[END_REF], power control and resource management for the uplink of a single cell CDMA system is investigated. This work first consider sum-power minimization with constraints on the users' achieved data rates, and then considers sum-rate maximization with constraints on the transmit power of each user. In [START_REF] Liu | An end-to-end adaptation protocol for layered video multicast using optimal rate allocation[END_REF], the end-to-end QoS support for layered multi-cast video communication over internet is studied where the rate allocation is performed in such a manner that the expected fairness index for all the receivers in a session is maximized. In [START_REF] Kwon | Bandwidth adaptation algorithms for adaptive multimedia services in mobile cellular networks[END_REF], the authors propose bandwidth adaptation algorithms for multimedia services in cellular networks that are based on the layered coding ap-proach where the bandwidth of a multimedia session can take a set of discrete values, and the coding is adapted at the base station. According to these algorithms if there is no congestion in the cell, the base station transmits the full multimedia stream i.e., the whole set of layered coding to the mobile terminals. On the hand when congestion occurs, only a subset of layered coding in accordance to the level of congestion in the cell is transmitted to the mobile terminals. A framework for joint adaptation of source coding and packet priority assignment for maximizing the system performance is presented in [START_REF] Zhai | Joint source coding and packet classification for real-time video transmission over differentiated services networks[END_REF]. In [START_REF] Zhao | Joint error control and power allocation for video transmission over cdma networks with multiuser detection[END_REF], the authors consider error control and power allocation for transmitting wireless video over CDMA networks in which a small number of CDMA channels is dedicated to video transmission while assuming fixed powers on all the remaining channels in the network. In [START_REF] Yoo | Cross-layer design for video streaming over wireless ad hoc networks[END_REF], a joint link capacities and traffic flows allocation framework for wireless ad-hoc networks is proposed where the multimedia data is partitioned into various classes for adaptive transmission. A QoS mapping architecture that addresses cross-layer QoS issues for video delivery over wireless networks is presented in [START_REF] Kumwilaisak | A cross-layer quality-of-service mapping architecture for video delivery in wireless networks[END_REF]. In this work, the time-varying characteristics of the wireless channel are assumed to follow a discrete-time Markov model where each state represents the transmission rate under current channel conditions. In [START_REF] Van Der Schaar | Optimized scalable video streaming over ieee 802.11 a/e hcca wireless networks under delay constraints[END_REF],

the authors propose some methods for maximizing the number of admitted stations/users by creating multiple sub-flows from one video and giving them different priorities according to their importance. In [START_REF] Hillestad | Adaptive h.264/mpeg-4 svc video over ieee 802.16 broadband wireless networks[END_REF], a mechanism to perform rate adaptation based on monitoring changes to the amount of traffic flow in the network at any time, and exploiting the layered bitstream of H.264/AVC scalable video coding scheme is proposed. In [START_REF] Zhu | Distributed rate allocation policies for multihomed video streaming over heterogeneous access networks[END_REF], a framework for rate allocation among multiple video streams sharing multiple heterogeneous access networks is proposed that performs rate allocation on the basis of observed network conditions, and the video distortion rate. A joint capacity, flow and rate allocation scheme for multi-user video streaming in Ad-hoc wireless networks which aims to minimize the trad-off between encoded video quality of all users versus overall network congestion is proposed in [START_REF] Adlakha | Joint capacity, flow and rate allocation for multiuser video streaming over wireless ad-hoc networks[END_REF]. In [START_REF] Ahmad | Unequal power allocation for scalable video transmission over wimax[END_REF], an unequal power allocation scheme is proposed for the transmission of scalable video coded packets in a

WiMax system where the base layer packets are allocated more power compared to enhancement layer packets. A joint source adaptation, and resource allocation framework for video streaming in CDMA networks is presented in [START_REF] Huang | Joint source adaptation and resource allocation for multi-user wireless video streaming[END_REF]. However, in this work, for the uplink transmission, the interference and the maximum received power values are assumed to be not changing frequently which is not a realistic approach for wireless networks. The authors in [START_REF] Ji | Scheduling and resource allocation for svc streaming over ofdm downlink systems[END_REF] propose a gradient-based scheduling and resource allocation algorithm for multi-user scalable video streaming over OFDM downlink system which maximizes the average peak-signal-to-noise-ratio (PSNR) of all video users under a total downlink transmission power constraint. However, this work is carried out for a single cell network with orthogonal users and is based on the assumption that there is no inter-cell interference which is practically not true. In [START_REF] Subramanian | Joint rate and power control algorithms for wireless networks[END_REF], a Linear Quadratic Gaussian (LQG) control approach is employed for power and flow-rate control for wireless networks. In [START_REF] Leung | Power control by interference prediction for broadband wireless packet networks[END_REF], a so-called Kalman-filter method for power control for broadband packet-switched TDMA wireless networks is proposed. This method determines the transmit power from the predicted interference and estimated path gain between the transmitter and the receiver, in order to achieve a target SINR.

CQI Reporting in Multi-Carrier and Multi-User Systems

Multi-carrier and multi-user systems like OFDMA and SC-FDMA are capable to bring significant performance improvement in terms of throughput, latency, and resource optimization. However, the performance improvement can be obtained by deploying proper link adaptation, and developing efficient resource management techniques that exploit the multi-user diversity in both time and frequency domains. In order to exploit these diversities, the users need to feedback the channel quality indicator (CQI) values to the transmitter/base station.

However, this may lead to overwhelmingly high control signaling overhead and there is a need of designing low overhead CQI reporting schemes. In addition, ideally speaking, these CQIs should accurately represent the channel quality but unfortunately due to some error in the CQI estimation and the feedback delay, the CQI may get corrupted and can affect severely the overall system performance.

Thus, to be able to improve the system performance, these inaccuracies in the CQIs should also be taken into account.

The CQIs reporting is an active area of research, and has been well studied in the past. A straightforward method of reducing the feedback overhead is CQI quantization wherein the discrete quantized values of the channel state are reported to the transmitter/base station. The effect of CQI quantization on the throughput of multi-user systems is studied in [START_REF] Johansson | Benefits of multiuser diversity with limited feedback[END_REF], and [START_REF] Floren | The effect of feedback quantization on the throughput of a multiuser diversity scheme[END_REF] where the authors conclude that a 1-bit quantization may be good enough in most of the cases if the average SNR of each user is known. On the other hand, if the average SNR of each user is not known then a 2-bit quantization is needed for achieving the same throughput performance. In [START_REF] Johansson | Diversity-enhanced equal access-considerable throughput gains with 1-bit feedback[END_REF], the authors improve the fairness and robustness of their scheme proposed in [START_REF] Johansson | Benefits of multiuser diversity with limited feedback[END_REF] by using 1-bit quantization with online adapted individual quantization thresholds. It is shown that in a multi-user system with a judicious choice of the 1-bit quantizer for CQI feedback, the growth rate of achievable throughput with the number of users is the same as that for the unquantized case [START_REF] Sanayei | Exploiting multiuser diversity with only 1bit feedback[END_REF]. Though a very simple approach for reducing the feedback rate, the CQI quantization is not appropriate for multi-carrier systems with multiple sub-carriers as the 1 bit per SNR value of the minimum achievable rate is still very high [START_REF] Eriksson | Compression of feedback for adaptive transmission and scheduling[END_REF]. In addition, the optimal quantization thresholds are dependent on the number of active users in the system whereas the ready availability of that number is not possible if the users are entering and leaving the system rapidly.

The data compression techniques that exploit the correlation in time (due to doppler effect), and frequency (due to multi-path delay spread) of the SNR are also used to reduce the data rate needed for CQIs feedback. In [START_REF] Cheon | Adaptive multicarrier system with reduced feedback information in wideband radio channels[END_REF], an adaptive multi-carrier system with reduced feedback information is proposed that exploits the time correlation of the SNR and performs encoding of the differential bit-loading vectors for feedback information reduction. The bit-loading vectors represent the way the bits are divided among the multiple sub-carriers of the multi-carrier systems, and depend on the modulation adapted for each subcarrier which in turn depends on the corresponding SNR. Similarly, the authors in [START_REF] Nguyen | Compression of bit loading power vectors for adaptive multi-carrier systems[END_REF] propose a scheme based on the compression of the bit-loading power vectors for feedback rate reduction in multi-carrier systems which is shown to perform well for slowly moving nodes. In [START_REF] Eriksson | Compression of feedback in adaptive ofdmbased systems using scheduling[END_REF], a feedback scheme for OFDM system that is based on compression of the real valued SNR values is proposed.

In [START_REF] Jimenez | An adaptive mimo -ofdm system: Design and performance evaluation[END_REF], a feedback scheme that is based on Huffman coding for MIMO-OFDM system is proposed. In addition, this work also studies the effect of feedback errors on the throughput of the system. The authors in [START_REF] Haghighat | Full-band cqi feedback by haar compression in ofdma systems[END_REF] use Haar compression in OFDMA system to compress the CQIs, and show that CQIs reporting with Haar compression performs well compared to Discrete Cosine Transform (DCT)

based schemes for slow moving terminals. In [START_REF] Gao | Compression of cqi feedback with compressive sensing in adaptive ofdm systems[END_REF], a CQI feedback scheme for OFDM systems is proposed that exploits the correlation in frequency, and uses compressive sensing (CS) technique for CQI compression. This work shows that the reconstructed CQIs from CS compression are more accurate than those from DCT compression. Generally, the compression based feedback schemes reduce the feedback rate but for multi-carrier systems with high number of sub-carriers the overhead of these schemes is still very high.

In [START_REF] Gesbert | How much feedback is multi-user diversity really worth?[END_REF], a selective multi-user diversity scheme is proposed in which a user only report its CQI if its SNR is higher than a threshold value. This work is based on the max-SNR scheduling policy where the transmitter/base station transmits to the users with high SNR and thus, the feedback of the users with low SNR is useless. If the SNRs of all the users are less than the the given threshold than a random user is scheduled for transmission. This scheme is improved by allowing all the users to report their CQIs in case when the SNR of all of them is less than the threshold value [START_REF] Hassel | Rate-optimal multiuser scheduling with reduced feedback load and analysis of delay effects[END_REF], however, with increased overhead. In [START_REF] Vicario | Robust exploitation of spatial and multiuser diversity in limited-feedback systems[END_REF], the above scheme is adopted for exploring the spatial vs. multi-user diversity trade-offs in a cellular system with limited feedback for a multi-antenna system with space-time block coding. In [START_REF] Hassel | Exploiting multiuser diversity using multiple feedback thresholds[END_REF], instead of a single SNR threshold, a selective multi-user diversity scheme with multiple SNR thresholds is proposed. According to this scheme, if no user has SNR higher than the threshold, the threshold is updated to the next lower value from a list of SNR thresholds, and so on. A transmit time selection diversity scheme where the downlink transmission is suspended if the instantaneous received SNR in the mobile station falls below a given threshold is proposed in [START_REF] Hamalainen | Performance of multiuser diversity in the presence of feedback errors[END_REF]. It is shown that this scheme outperforms the selective multiuser diversity scheme when feedback is erroneous. Although the threshold based schemes can reduce the feedback overhead, they have got the serious drawback of consistently ignoring the users having low SNR values e.g., the users near the cell edge/boarder.

In [START_REF] Aggarwal | Ofdma downlink resource allocation via arq feedback[END_REF], instead of using the CQIs fed back by the traditional schemes, Automatic Repeat reQuest (ARQ) is used for resource allocation at the PHY/MAC layer in OFDMA downlink systems. This work highlights the potential of the existing ARQ scheme to replace the conventional forms of limited feedback, thereby reducing both the feedback overhead and the overall system complexity. In [START_REF] Svedman | A simplified opportunistic feedback and scheduling scheme for ofdm[END_REF],

an opportunistic feedback scheme for OFDM system is proposed that divides and groups the OFDM sub-carriers into clusters of adjacent sub-carriers where each user then feeds back information about the clusters that are instantaneously strong. A similar approach for a single-user, multi-carrier channel feedback is used in [START_REF] Agarwal | Multi-carrier transmission with limited feedback: Power loading over sub-channel groups[END_REF] where the entire set of sub-channels is divided into smaller groups of sub-channels, and the receiver requests the use of a particular group if the channel gain of every sub-channel in that group is greater than a threshold. It is shown in [START_REF] Svedman | Opportunistic beamforming and scheduling for ofdma systems[END_REF] that as in multi-user OFDM systems a user is most likely to be assigned with good channel quality sub-channels, the M-best CQIs reporting can improve the system performance. Moreover, the feedback overhead of the compression based CQIs reporting is very high compared to that of the best-M scheme when the number of CQIs is high, and thus the best-M scheme is an appropriate scheme for multi-user OFDM and multi-carrier CDMA systems [START_REF] Svedman | Opportunistic beamforming and scheduling for ofdma systems[END_REF][START_REF]3GPP, Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures[END_REF][START_REF] Kolehmainen | Channel quality indication reporting schemes for utran long term evolution downlink[END_REF][START_REF] Park | On scheduling for multiple-antenna wireless networks using contention-based feedback[END_REF]. The compression of CQIs can also be introduced into the best-M scheme in order to further reduce the feedback overhead. The 3rd Generation Partnership Project for the Long Term Evolution (3GPP-LTE Advanced) systems use the M-best technique in conjunction with CQIs compression where each user reports the compressed individual CQIs values of its best M sub-channels, and a compressed average CQI value of the remaining sub-channels to the transmitter [START_REF]3GPP, Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures[END_REF][START_REF] Kolehmainen | Channel quality indication reporting schemes for utran long term evolution downlink[END_REF].

Thesis Organization and Contributions

The main contribution of this thesis are contained in Chapter 3, 4 and 5. Chapter 3 presents the resource allocation and adaptive modulation in SC-FDMA systems. In Chapter 4, a cross-layer optimization framework for joint power control, and rate adaptation for video streaming in multi-node wireless networks is presented. Chapter 5 presents the design of CQI reporting schemes for multi-carrier and multi-user wireless systems with imperfect channel knowledge. Finally, in Chapter 6, the concluding remarks, and the future perspectives are contained.

Chapter 3

In this chapter, we consider resource allocation and adaptive modulation in localized SC-FDMA systems specific to the LTE uplink. A sum-utility maximization (SUmax), and a joint adaptive modulation and sum-cost minimization (JAM-SCmin) problems are considered. Both these problems are combinatorial in nature whose optimal solutions are exponentially complex in general. We propose a novel optimization framework for the solution of these problems that is inspired from the recently developed canonical duality theory [START_REF] Gao | Duality Principles in Nonconvex Systems: Theory, Methods and Applications[END_REF]. In our optimization framework, first we formulate the optimization problems as binary-integer programming problems. We then transform the binary-integer programming problems into canonical dual problems in continuous space that are concave maximization problems under certain conditions. Based on the canonical dual problems, we then develop resource allocation algorithms that perform power and sub-channel allocation for SUmax problem, and power and sub-channel allocation joint with adaptive modulation for JAMSCmin problem. We also develop an adaptive modulation scheme for SUmax problem. We provide the global optimality conditions under which the solution to each dual canonical problem is identical to the solution of the corresponding primal problem. Our proposed framework has polynomial complexity. The major contributions of this chapter are as follows.

-Framework: This chapter presents a novel framework for sum-utility maximization and a joint adaptive modulation and sum-cost minimization problems which performs power and sub-channels allocation, and modulation adaption in localized SC-FDMA systems. The problems are converted into binary-integer programming problems, and a novel canonical duality based approach is used to transform these exponential complex problems into continuous space concave maximization problems whose solution is extremely easy compared to the corresponding primal binary-integer programs.

-Algorithm: Resource allocation algorithm that is based on the solution of the continuous space concave maximization problem is developed. The algorithm solves the problems in continuous domain and provide exact integer solution to the corresponding binary-integer programs.

-Performance Evaluation: The optimality of the proposed algorithm is thoroughly studied and conditions under which the algorithms optimally solve the corresponding primal problems are provided. Some bounds on the suboptimality of the algorithm when the optimality conditions are not satisfied are also explored. It is shown through simulations that the proposed algorithm outperforms the existing algorithms in the literature and provides optimal solution to the primal problems most of the times and if not optimal, it is always very close to the optimal solution. In addition, the computational complexity of the solution of the primal problem is exponential whereas our proposed framework has polynomial complexity which is a remarkable improvement.

Chapter 4

In this chapter, we consider the challenging problem of joint dynamic power control and video bitstream/rate adaptation for video streaming in multi-node wireless networks with interference. The main objective is to jointly control the power at the PHY/MAC layer and the video rate at the APPLICATION layer such that all the nodes are provided with good quality video while consuming the minimum possible transmit power, and achieving the stringent delay constraints of the video applications. Unlike the underlying approach of assuming no interference at all or assuming it to be fixed in many of the available solution for resource allocation in wireless networks, we approach this problem realistically when the wireless channel and the interference gains of the nodes are both time-varying. Since we consider a network with interference, the increase of power of a given node will result in an increase of interference exerted by this node on the other nodes. This will reduce the rates achieved by the other nodes and increase the delay of these nodes. Consequently, the power allocation should consider the interference and satisfy the delay constraints of all the nodes. Moreover, the power control at the PHY/MAC layer should be performed instantaneously whereas the video rate at the APPLICATION layer should be adapted in an average manner after a long enough time. Due to these constraints, even the formulation of a joint dynamic power control, and video rate adaptation framework is a challenging task. In this chapter, we address these issues, and formulate a cross-layer optimization framework that takes care of the time-varying interferences, exploits the time-varying nature of the channels; and performs instantaneous power control, and average video rate adaptation jointly. In addition to exploiting the time-varying nature of the channels, we also introduce a fairness/satisfaction criterion among the nodes so that irrespective of its channel condition, each node can get a promised share in system total resources/capacity which is a challenging goal.

In order to solve the above joint power control and rate adaptation problem, we analyze the Channel to Interference and Noise Ratio (CINR) distribution, and model the power control and rate adaptation for each node as linear stochastic dynamic equations and write the problem as a dynamic stochastic control problem. We then formulate a risk-sensitive control problem that jointly performs power control and rate adaptation for all nodes while satisfying the stringent delay constraints of the streaming applications, and respecting the nodes' fairness/satisfaction criterion. We provide the optimal solution of the above control problem, and provide simulation results to illustrate the performance of the proposed framework. The major contributions of this chapter are highlighted as follows.

-Framework: A cross-layer optimization framework which considers joint instantaneous power control at the PHY/MAC layer, and average video rate adaptation at the APPLICATION layer for multi-node wireless video streaming (an application with stringent delay constraints) is presented.

-Time-Varying Interference Consideration: In addition to the wireless channel, the time-varying nature of the interferences is also taken into account.

-Risk-Sensitive Control Approach: The power control and rate adaptation are modeled as linear stochastic dynamic equations, the optimization problem is formulated as a control problem, and a risk-sensitive control approach is used to optimally solve this problem.

Chapter 5

In this chapter, first we consider the best-M CQIs reporting technique in which each user estimates its channel conditions on all sub-channels, measures/estimates the CQI values for all its sub-channels, and reports the full CQIs values of the best M sub-channels, and an average CQI value for the remaining sub-channels. We approach this problem realistically where a delay between the estimation/observation of the CQIs at the user terminal and their use at the transmitter/base station occurs. Though the main objective here is to deal with the feedback delay, we also consider the error in the CQI estimation at the user terminal. Moreover, the imperfections are dealt with at the CQIs reporting level at the user termi-nals. We model the CQI variations from one time slot to another as a stochastic discrete time linear dynamic system with an imperfect (stochastic) measurement/observation. Instead of transmitting directly the estimated CQIs, the users will compute so-called adapted CQIs taking into account the feedback delay and the imperfect observation of the CQI, and will feed them back to the transmitter/base station. An adapted CQI represents a rate that implicitly accommodates the impact of feedback delay and the imperfections in the CQI observation, and is obtained by using stochastic linear control theory in such a way that the deviation between the actual achieved rate and the allocated rate by the transmitter is minimum. To obtain/regulate the optimal adapted CQIs in the presence of these imperfections, we use two different approaches: the Linear Quadratic Gaussian (LQG) based solution [START_REF] Astrom | Introduction to Stochastic Control Theory[END_REF][START_REF] Kailath | Linear Estimation[END_REF], and the H ∞ controller based solution [START_REF] Baser | H-Infinity Optimal Control and Related Minimax Design Problems: A Dynamic Game Approach[END_REF]. The LQG approach can optimally solve the above regulating problem when the imperfections varies according to Gaussian distribution. The H ∞ controller has the ability to provide a robust solution to the above problem without knowing the distribution of the CQI imperfections. These adapted CQIs are then reported to the transmitter where they are directly used in the resource allocation.

We then consider the dynamic value of M that may not be the same for all users and develop a stochastic framework that optimize the value of M per user such that the probability that the sum of the CQIs reported by all users does not exceed a certain value (e.g., the total signalling overhead of the system should not exceed that of the case where the value of M is fixed and equal for all the users) is greater then or equal to 1ǫ where 0 << (1ǫ) < 1. Since the transmitter does not know the CQIs of all sub-channels, the stochastic framework should be implemented at the user terminal. Each user separately determines its own value of M in order to provide enough information to transmitter about its CQIs while respecting the system's total signalling overhead constraint. To this end, we propose an efficient distributed constrained interactive trial and error algorithm which hugely improves the system performance both in terms of signalling overhead and rate deviation. We prove that the proposed algorithm converges to an equilibrium. The major contributions of this chapter are highlighted as follows.

-Framework: The main feature of this work is to design a CQIs reporting schemes that deals with the feedback delay and CQI estimation error at the CQIs reporting level. The framework is implemented at the user terminals whereas the transmitter receives the CQIs in which the impact of imperfections has already been accommodated, and can be used directly in the resource management.

- -Dynamic best-M CQIs Scheme: In dynamic best-M scheme, in addition to dealing with the feedback delay and CQI estimation error, a dynamic value of M that depends on the channel quality of each user is also considered.

This scheme has the potential to improves the system performance without increasing the feedback overhead.

Notations

The following notations are used throughout this thesis. Uppercase and lowercase boldface letters denote matrices, and vectors respectively. Superscripts denote the stationary, and extremum point of the function f(x) respectively. The Euclidean norm of a vector is denoted by . whereas x 2 Y stands for the weighted norm of the vector x given as x H Yx. The mathematical expectation of a variable is represented by E{.}, and Pr(.) stands for probability. The spectral radius of a matrix is denoted by ρ(.).

Chapter 3 Resource Allocation and Adaptive

Modulation in SC-FDMA Systems

Introduction

In this chapter, we consider resource allocation and adaptive modulation in localized SC-FDMA systems. We formulate two problems: A sum-utility maximization (SUmax) problem, and a joint adaptive modulation and sum-cost minimization (JAMSCmin) problem. The SUmax problem aims at maximizing the sum of the users' utilities under constraints on the maximum transmit power of each user and the peak power transmitted on each sub-channel. The objective of the JAMSCmin problem is to minimize the sum of users' powers under constraints on the achieved data rates of the users. In SC-FDMA, like in OFDMA, a sub-channel is allowed to be allocated to one user at most. However, in localized SC-FDMA, in addition to the restriction of allocating a sub-channel to one user at most, the multiple sub-channels allocated to a user should be consecutive as well. Moreover, due to employing the frequency domain equalization over all sub-channels, the SNR expression for SC-FDMA user is very complicated than that of OFDMA user, and the power allocation on any sub-channel is dependent on all the sub-channel allocated to that user. This structure renders the SC-FDMA resource allocation problem prohibitively difficult and the computational complexity of finding its optimal solution is exponential. The resource allocation schemes developed for OFDMA systems are not applicable to SC-FDMA system. Moreover, the standard optimization tools (e.g., Lagrange dual approach widely used for OFDMA, etc.) can not help towards its optimal solution. In this chapter, we develop a novel optimization framework for the solution of these problems that is inspired from the recently developed canonical duality theory. We first formulate the optimization problems as binary-integer programming problems and then transform these binary-integer programming problems into continuous space canonical dual problems. The canonical dual problems are concave maximization problems and their solution is very easy. Based on the solution of its corresponding continuous space dual problem, we derive power and sub-channel allocation algorithm for SUmax problem. An adaptive modulation scheme for SUmax problem is also developed that based on the power and subchannel allocation performed by the proposed algorithm selects an appropriate modulation scheme for each user. Similarly, based on its corresponding canonical dual problem, a joint power, sub-channel and adaptive modulation algorithm for JAMSCmin is also developed. Both the algorithms have polynomial complexities which is a significant improvement over exponential complexity. We provide certain optimality conditions under which the proposed algorithms are optimal.

We also provide some bounds on the sub-optimality of our algorithms if the optimality conditions are not satisfied. We perform simulations in order to assess the performance of the proposed algorithms and compare them with the existing algorithms in the literature.

System Model

We consider the uplink of a single cell model that utilizes localized SC-FDMA.

The generalization to multi-cell scenario is straightforward by considering the inter cell interference in the signal-to-interference-plus-noise ratio (SINR) expression. We make it clear that this work does not study inter-cell interference reduc-tion/mangement but aims to optimize the resources in each cell by an efficient resource allocation algorithm. In the cell, K users are summed to be simultaneously active. The total bandwidth B is divided into N sub-channels each having 12 sub-carriers. The channel is assumed to be slowly fading or in other words assumed to exhibit block fading characteristics. The coherence time of the channel is greater than the transmission-time-interval (TTI) so that the channel stays relatively constant during the TTI (in 3GPP-LTE, TTI = 0.5msec). The users' channel gains are assumed to be perfectly known.

In the following, all signals are represented by their discrete time equivalents in the complex baseband. Assume that N k be the number of consecutive subchannels allocated to user k (since a sub-channel cannot be allocated to more than one user simultaneously, 

K k=1 N k = N ). Let s k = [s k,1 , ..., s k,N k ] T be
D k (n, q) =    1 n = k-1 j=1 N j + q 0 elsewhere (3.1)
The transmitted signal is then

x k = F H N D k F N k s k (3.2)
At the receiver, the received signal is transformed into the frequency domain via a N -point DFT. The received signal vector for user k assuming perfect sample and symbol synchronization, is given as

y k = H k F H N D k F N k s k + z k (3.3)
where

H k = diag(h k,1 , ..., h k,N ) and z k = [z k,1 , ..., z k,N ]
T are respectively the diagonal channel response matrix and the diagonal Additive White Gaussian Noise (AWGN) vector in the frequency domain. A frequency domain equalizer is then used in order to mitigate the ISI. The equalized symbols are transformed back to the time domain via an N k -point IDFT, and the detection takes place in the time domain. Let P k,n , and σ 2 z denote the transmit power of user k on sub-channel n, and the ambient noise variance at the receiver for user k respectively. After several manipulations, the effective SNR for user k can be obtained as follows [START_REF]Simulation methodology for EUTRA UL: IFDMA and DFT-Spread-OFDMA[END_REF]: Unlike OFDMA where a different constellation can be adopted for each subchannel, in SC-FDMA a single constellation is chosen for each user depending upon its channel quality. This is due to the fact that the transmit symbols directly modulate the sub-channels in OFDMA whereas in SC-FDMA, the transmit symbols are first fed to the FFT block and the output discrete Fourier terms are then mapped to the sub-channels. In 3GPP LTE, the constellation for each user is chosen from the set M = {QPSK, 16QAM, 64QAM}.

γ ZF k = 1 N k N k n=1 1 P k,n G k,n -1 , γ M M SE k =   1 1 N k N k n=1 P k,n G k,n 1+P k,n G k,n -1   -1 (3.

Problems Formulation

In this section, we formulate the two optimization problems and their equivalent binary-integer programming (BIP) problems respectively. The formulation of the problems as equivalent binary integer programs is an intermediate step towards its solution which are then approached by the canonical dual method.

Sum-Utility Maximization (SUmax)

SUmax Problem Formulation

We want to maximize the sum-utility subject to constraint on the total transmit power of each individual user P max k . We also have per sub-channel peak power constraint, P peak k,n

i.e., the peak power transmitted on each sub-channel by any user should not exceed P peak k,n so that the PAPR is kept low [START_REF]Technical Specification Group Radio Access Network; Physical layer aspects for evolved Universal Terrestrial Radio Access (UTRA)[END_REF]. In addition, in SC-FDMA for LTE uplink, the power on all the sub-channels allocated to a user should be equal [START_REF]Technical Specification Group Radio Access Network; Physical layer aspects for evolved Universal Terrestrial Radio Access (UTRA)[END_REF], so that the low PAPR benefits could retain [START_REF] Myung | Single carrier fdma for uplink wireless transmission[END_REF]. The utility of user k denoted as U k (γ k ) is an arbitrary function that is monotonically increasing in user's SNR γ k . The overall resource allocation problem can be formulated as

max K k=1 U k (γ k ) (3.5) 
s.t.

n∈N k P k,n ≤ P max k , ∀k P k,n ≤ P peak k,n , ∀k, n P k,n = P k,l , ∀k, n, l N k ∩ N j = ∅, ∀k = j n ∩ K j=1,j =k N j = ∅ | n ∈ {n 1 , n 1 + 1, ..., n 2 -1, n 2 } , ∀k
where N k with cardinality N k is the set of sub-channels allocated to users k, n 1 = min(N k ) and n 2 = max(N k ). The fourth constraint determines that each sub-channel is allowed to be allocated to one user at most while the last constraint ensures that the sub-channels included in the set N k are consecutive. The optimization problem (3.5) is combinatorial in nature. There is a twofold difficulty in solving this problem, that is in addition to the exclusivity restriction on the sub-channel allocation, the allocated sub-channels to any user should be adjacent as well. For example, for K = 10 users and N = 24 sub-channels, the optimal solution requires a search across 5.26 × 10 12 possible sub-channel allocations [START_REF] Wong | Optimal resource allocation in uplink sc-fdma systems[END_REF],

which is not practical.

Equivalent BIP Problem for SUmax problem

As an intermediate step towards its solution, we transform the problem to a binary-integer programming where the decisions are made on the basis of feasible set of sub-channel allocation patterns that satisfies the exclusivity and adjacency constraints and not on the basis of individual sub-channels. In other words, we form groups of contiguous sub-channels which will be optimally allocated among the users while respecting the exclusive sub-channels allocation constraint. The idea of allocation of sub-channel patterns is the same as in [START_REF] Wong | Optimal resource allocation in uplink sc-fdma systems[END_REF].

We elaborate the general idea of forming the feasible sub-channel patterns with a small example. Let us suppose that we have K = 2 users and N = 4 subchannels. In any allocation pattern, we put 1 if a sub-channel is allocated to a user, and put 0 if it is not allocated to the user. Thus, keeping in view the subchannel adjacency constraint, the feasible set of sub-channel patterns for user k can be summarized in the following matrix.

A k =         0 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 1 0 1 1 1 0 0 0 1 0 0 1 1 1 1 1 0 0 0 0 1 0 0 1 0 1 1        
where each row corresponds to the sub-channel index, and each column corresponds to the feasible sub-channel allocation pattern. Note that all the K users have the same allocation patterns matrix. We define a KJ indicator vector i = [i 1 , ..., i K ] T where i k = [i k,1 , ..., i k,J ] T , and where J is the total number of allocation patterns. Each entry i k,j ∈ {0, 1} which indicates whether a sub-channel pattern j is allocated to a user k or not. Since a single sub-channel pattern can be allocated to each user, maximizing the users' sum-utility is equivalent to maximizing the sum-utility of all users over all sub-channel allocation patterns such that each user is assigned a single pattern while respecting the exclusive sub-channel allocation constraint. Based on this analysis we have the following lemma.

Lemma 3.3.1. The sum-utility maximization problem can be written as the following binary-integer programming problem:

max i P(i) = K k=1 J j=1 i k,j U k,j (γ ef f k,j ) (3.6) s.t. K k=1 J j=1 i k,j A k n,j = 1, ∀n (3.6a) 
J j=1 i k,j = 1, ∀k (3.6b) i k,j ∈ {0, 1}, ∀k, j (3.6c) 
where U k,j (γ ef f k,j ), a monotonically increasing function of the effective SNR γ ef f k,j is the utility of user k when allocation pattern j is chosen, and A k n,j denotes the element of matrix A k corresponding to nth row and jth column.

Proof. The proof is simple and follows from the following illustration. The effective SNR γ ef f k,j of user k for pattern j is defined as:

γ ef f k,j =       1 1 N k,j n∈N k,j min P peak k,n , P max k N k,j G k,n 1+min P peak k,n , P max k N k,j G k,n -1       -1 (3.7)
where N k,j is the number of sub-channels allocated to user k when allocation pattern j is chosen. The constraint (3.6a) ensures the exclusive sub-channel allocation i.e., any two sub-channel patterns allocated to two different users must not have any sub-channel in common. The constraint (3.6b) means that at most one allocation pattern is chosen for each user. The per-user total power, the per subchannel peak power and the allocated sub-channels power equality constraints are all implicitly accommodated in γ ef f k,j .

Joint Adaptive Modulation and Sum-Cost Minimization (JAM-

JAMSCmin Problem Formulation

We now formulate the joint resource allocation and adaptive modulation problem. The objective is to allocate powers and sub-channels, and to choose the modulation scheme for each user in order to minimize the sum-cost while satisfying the the target data rate constraint of all the users (i.e., R T k , ∀k). For a modulation m ∈ M to be chosen, the effective SNR of the user should not be less than a minimum value Γ * m that guarantees a target Block Error Rate (BLER) at the receiver. In addition, the power on all the sub-channels allocated to a user should be equal [START_REF]Technical Specification Group Radio Access Network; Physical layer aspects for evolved Universal Terrestrial Radio Access (UTRA)[END_REF]. In the uplink the users terminals are more sensitive to transmit power due to their batteries's power limitations. Therefore, we introduce in the JAMSCmin formulation a user's cost which is function of its transmit power and has to be minimized. We define the following cost function for each user k

C k (P max k , P k ) = -exp [P max k -P k ] (3.8)
where P max k is the maximum power a user can transmit, and P k = n∈N k P k,n is the sum of powers transmitted by user k on its allocated set of sub-channels N k . The cost function is monotonically increasing in P k whereas it is monotonically decreasing in P max k . With this choice of cost function, the JAMSCmin problem will not only minimize the sum-power of the users but will also ensure that each user's transmit power is minimized in accordance to its P max k level. In other words, a user with small P max k will transmit small power compared to another user with high P max k , and vice versa. The joint optimization problem can now be formulated as follows

min K k=1 C k (P max k , P k ) (3.9) s.t. R k ≥ R T k , ∀k P k,n = P k,l , ∀k, n, l γ k ≥ Γ * m , ∀k, m |M k ∩ M | = 1, ∀k N k ∩ N j = ∅, ∀k = j n ∩ K j=1,j =k N j = ∅ | n ∈ {n 1 , n 1 + 1, ..., n 2 -1, n 2 } , ∀k
where R k is the kth user achieved data rate, M k is a non-empty one element set that contains the modulation chosen for kth user; and where N k , n 1 , and n 2 are the same as defined for SUmax problem. The fourth constraint reflects that a single modulation scheme is chosen for each user from the set M . In addition to its inherent difficulty due its combinatorial nature as explained for the SUmax problem, the joint adaptive modulation in addition to resource allocation renders the optimization problem (3.5) far more difficult to be solved.

We now formulate this joint optimization problem as an equivalent BIP problem in the following.

Equivalent BIP for JAMSCmin Problem

The sub-channel allocation patterns matrix is exactly the same as that for the SUmax problem. However, as the JAMSCmin problem considers joint adaptive modulation and resource allocation, we integrate the modulation selection into the sub-channel allocation patterns matrix. The sub-channel allocation patterns matrix (for the example with K = 2 and N = 4) without modulation selection for user k is denoted by

B k =        0 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 1 0 1 1 1 0 0 0 1 0 0 1 1 1 1 1 0 0 0 0 1 0 0 1 0 1 1       
Since the number of sub-channels needed for transmitting a certain number of bits depends on the modulation scheme used, we refine the feasible allocation pattern matrix according to the modulation schemes. For example, the minimum number of sub-channels/TTI needed for R T k = 140kbps is 3, 2 and 1 for QPSK, 16QAM and 64QAM respectively. We recall that a TTI = 0.5msec, and each sub-channel contains 12 sub-carriers. Thus, the kth user's feasible matrix of sub-channels allocation patterns for QPSK can be written as 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

B k 1 =        1 1
1 1 1 1 1 1 1 0 1 1       
where the subscript m in B k m corresponds to the modulation index. This matrix reflects that for the given R T k , the number of sub-channels allocated to user k should not be less than 3 if QPSK is chosen. The same approach can be used to define kth user's sub-channels allocation patterns matrices for 16QAM and 64QAM.

Depending upon their target data rates, the sub-channels allocation patterns matrices can be defined for all users on all modulation schemes. We define a KM J

indicator vector ℓ = [ℓ 1,1 , ..., ℓ K,M ] T where ℓ k,m = [ℓ k,m,1 , ..., ℓ k,m,J ] T ,
and where J is the total number of columns in the allocation pattern matrices. Each entry ℓ k,m,j ∈ {0, 1} which indicates whether a sub-channel pattern j corresponding to pattern allocation matrix B k m is chosen or not. Since a single sub-channel pattern and a single modulation scheme can be chosen for each user, minimizing the users' sum-cost is equivalent to minimizing the sum-cost of all users over all subchannel allocation pattern matrices such that each user is assigned a single pattern and a single modulation scheme while respecting the exclusive sub-channel allocation constraint. Proof. The transmit power P k,m,j is a function of R T k , Γ * m , and the effective SNR γ ef f k,m,j of user k for jth pattern of B k m . Let P k,m,n be the power for user k on subchannel n when modulation m is chosen, then γ ef f k,m,j is given by

γ ef f k,m,j = 1 1 N k,m,j n∈N k,m,j P k,m,n G k,n 1+P k,m,n G k,n -1 -1 (3.11)
where N k,m,j with cardinality N k,m,j is the set of sub-channels allocated to user k when jth pattern from B k m is chosen. The power allocation values P k,m,j 's are obtained prior to resource allocation by solving the following equations:

n∈N k,m,j P k,m,j G k,n N k,m,j + P k,m,j G k,n - N k,m,j Γ * m 1 + Γ * m = 0, ∀k, m, j (3.12) 
which are obtained by setting γ ef f k,m,j = Γ * m and P k,m,n = P k,m,j N k,m,j and hence the per user minimum SNR and the allocated sub-channels powers equality constraint are implicitly accommodated in P k,m,j . The per-user target data rate constraint is already implicitly accommodated in the definition of allocation patterns and hence in the calculation of P k,m,j . The constraint (3.10a) reflects the mutual exclusivity restriction on the sub-channels allocation and constraint (3.10b) means that at most one allocation pattern and one modulation scheme is chosen for each user.

We recall that the formulation of the problems as equivalent binary-integer programs is an intermediate step towards their solution. Although the BIP problems may look simple compared to the primal problem but unfortunately, their solutions are exponentially complex due to their combinatorial nature. A similar binary-integer programming solution was proposed for weighted-sum rate maximization problem in [START_REF] Wong | Optimal resource allocation in uplink sc-fdma systems[END_REF] but as mentioned before it is exponentially complex which is not practical. In the following section, we propose a polynomialcomplexity framework for the solution of both the above problems that is inspired from the canonical dual transformation method. The main idea of our proposed approach is to transform each binary-integer programming problem into a canonical dual problem in the continuous space whose solution is identical to the corresponding binary integer program under certain conditions.

Canonical Dual Approach for Solving the BIP Problems

Under certain constraints/conditions, the canonical duality theory [START_REF] Gao | Duality Principles in Nonconvex Systems: Theory, Methods and Applications[END_REF] can be used to reformulate some non-convex/non-smooth constrained problem into certain convex/smooth canonical dual problems with perfect primal/dual relationship. However, this theory does not provide any general strategy for the solution of non-convex/non-smooth problems. The constraints under which the canonical dual problem could be perfectly dual to its primal problem is purely dependent on the nature of the primal problem under consideration and should be studied for each specific problem anew. This theory comprises of canonical dual transformation, an associated complementary-dual principle, and an associated duality theory. The canonical dual transformation can be used to convert the nonsmooth problem into a smooth canonical dual problem; the complementary-dual principle can be used to study the relationship between the primal and its canonical dual problems; and the associated duality theory can help to identify both local and global extrema. Comprehensive details about this theory, and its application to an unconstrained 0-1 quadratic programming problems can be found in [START_REF] Gao | Duality Principles in Nonconvex Systems: Theory, Methods and Applications[END_REF], and [START_REF] Fang | Canonical dual approach for solving 0-1 quadratic programming problems[END_REF] respectively. Due to the presence of additional constraints, our problems are far more difficult compared to that described in [START_REF] Fang | Canonical dual approach for solving 0-1 quadratic programming problems[END_REF].

By using the aforementioned theory, we transform each of the SUmax and JAMSCmin primal problems into a continuous space canonical dual problem in the following. We then study the optimality conditions, and prove that under these conditions, the solution of each canonical dual problem is identical to that of the corresponding primal problem.

Canonical Dual Problem and Optimality Conditions for SUmax Problem

The objective function, P(i) in problem (3.6) is a real valued linear function defined on I a = i ⊂ R K×J with feasible space defined by

I f = i ∈ I a ⊂ R K×J | K k=1 J j=1 i k,j A k n,j = 1, ∀n; J j=1 i k,j = 1, ∀k; i k,j ∈ {0, 1}∀k, j (3.13) 
We start our development by introducing new constraints i k,j (i k,j -1) = 0, ∀k, j which means that any i k,j can only take an integer value from the set {0, 1}.

This approach is used for the solution of a 0-1 quadratic programming problem in [START_REF] Fang | Canonical dual approach for solving 0-1 quadratic programming problems[END_REF]. However, the problem considered in [START_REF] Fang | Canonical dual approach for solving 0-1 quadratic programming problems[END_REF] is a simple unconstrained 0-1 quadratic programming problem while our problem is combinatorial in nature with additional constraints. In other words, in addition to the binary-integer constraint on i k,j 's, we have the mutual exclusivity restriction on the sub-channel patterns allocation (i.e., {i k,j × i l,j = 0|k = l, ∀k, l ∈ {1, ..., K}}), and the mutual exclusivity constraint on the sub-channel allocation i.e., K k=1 J j=1 i k,j A k n,j = 1, ∀n. Furthermore, at most one sub-channel pattern can be allocated to a user i.e., J j=1 i k,j = 1, ∀k. Note that the mutual exclusivity restriction on the sub-channel patterns allocation is accommodated implicitly in the formulation of the primal problem and does not show up explicitly. We temporarily relax the new constraints i k,j (i k,j -1) = 0, ∀k, j, and the equality constraints (3.6a-3.6b) to inequalities and transform the primal problem with these inequality constraints into continuous domain canonical dual problem. We will then solve the canonical dual problem in the continuous space and chose the solution which lies in I f as defined by (3.13). Furthermore, for our convenience, we reformulate our primal problem as an equivalent minimization problem. The primal problem with these inequality constraints can now be written as follows.

min i f (i) = - K k=1 J j=1 i k,j U k,j (3.14) 
s.t. K k=1 J j=1 i k,j A k n,j ≤ 1, ∀n J j=1 i k,j ≤ 1, ∀k i k,j (i k,j -1) ≤ 0, ∀k, j i k,j ∈ {0, 1}, ∀k, j
where U k,j is used to denote U k,j (γ ef f k,j ) and will be used in the remainder of this chapter.

The temporary relaxation of the constraints to inequalities is needed for developing the canonical dual framework. We prove later that the solution of the canonical dual problem achieves the binary-integer constraints i.e., i k,j (i k,j -1) = 0, ∀k, j and all the other constraints with equality. As a first step towards its transformation into a canonical dual problem, we relax the primal problem ( [START_REF] Gao | Duality Principles in Nonconvex Systems: Theory, Methods and Applications[END_REF][START_REF] Fang | Canonical dual approach for solving 0-1 quadratic programming problems[END_REF]).

To this end, we define the so-called canonical geometrical operator x = Λ(i) for the above primal problem as follows:

x = Λ(i) = (ǫ, λ, ρ) : R KJ → R N × R K × R KJ (3.15)
which is a vector-valued mapping and where ǫ =

K k=1 J j=1 i k,j A k 1,j -1 , .. .., K k=1 J j=1 i k,j A k N,j -1 T is an N-vector, ρ = [i T 1 (i 1 -1), ..., i T K (i K -1)] T is a KJ-vector with i T k (i k -1) = [i k,1 (i k,1 -1), ..., i k,J (i k,J -1)] T , and λ = J j=1 i 1,j -1 , ..., J j=1 i K,j -1 T is a K-vector ρ = [i T 1 (i 1 -1), ..., i T K (i K -1)] T is a KJ-vector with i T k (i k -1) = [i k,1 (i k,1 -1), ..., i k,J (i k,J -1)] T . Let χ a be a convex subset of χ = R N × R K × R KJ defined as follows χ a = x = (ǫ, λ, ρ) ∈ R N × R K × R KJ | ǫ ≤ 0, λ ≤ 0, ρ ≤ 0 (3.16)
We introduce an indicator function V : χ → R ∪ {+∞}, defined as

V (x) =    0 if x ∈ χ a , +∞ otherwise. (3.17)
Thus, the inequality constraints in the primal problem (3.14) can now be relaxed by the indicator function V (x), and the primal problem can be written in the following canonical form [START_REF] Fang | Canonical dual approach for solving 0-1 quadratic programming problems[END_REF]:

min i V (Λ(i)) - K k=1 J j=1 i k,j U k,j | i k,j ∈ {0, 1}∀k, j (3.18) 
We now define the canonical dual variables and the canonical conjugate function associated to the indicator function in order to proceed with the transformation of the primal problem into canonical dual. Since V (x) is convex, lower semicontinuous on χ, the canonical dual variable

x * ∈ χ * = χ = R N × R K × R KJ is defined as: x * ∈ ∂V (x) =    (ǫ * , λ * , ρ * ) if ǫ * ≥ 0 ∈ R N , λ * ≥ 0 ∈ R K , ρ * ≥ 0 ∈ R KJ , ∅ otherwise. (3.19)
By the Legendre-Fenchel transformation, the canonical super-conjugate function of V (x) is defined by

V ♯ (x * ) = sup x∈χ x T x * -V (x) = sup ǫ≤0 sup λ≤0 sup ρ≤0 ǫ T ǫ * + λ T λ * + ρ T ρ * =    0 if ǫ * ≥ 0, λ * ≥ 0, ρ * ≥ 0, +∞ otherwise. (3.20)
The effective domain of V ♯ (x) is given by

χ * a = (ǫ * , λ * , ρ * ) ∈ R N × R K × R KJ | ǫ * ≥ 0 ∈ R N , λ * ≥ 0 ∈ R K , ρ * ≥ 0 ∈ R KJ (3.21)
Since both V (x) and V ♯ (x) are convex, lower semi-continuous, the Fenchel supduality relations

x * ∈ ∂V (x) ⇔ x ∈ ∂V ♯ (x * ) ⇔ V (x) + V ♯ (x * ) = x T x * (3.22)
hold on χ × χ * . The pair (x, x * ) is called the extended / Legendre canonical dual pair on χ × χ * , and the functions V (x) and V ♯ (x) are called canonical functions [START_REF] Gao | Duality Principles in Nonconvex Systems: Theory, Methods and Applications[END_REF]. The optimal solution of our primal problem can be obtained if and only if

x = I f ∈ χ a , i.e., along with the satisfaction of the binary-integer constraints, all the other constraints must be achieved with equality. Thus, we need to study the conditions under which the canonical dual variables x * ∈ χ * a can ensure that x = I f ∈ χ a . By the definition of sub-differential, the canonical sup-duality relations (3.22) are equivalent to the following:

x ≤ 0, x * ≥ 0, x T x * = 0 (3.23)
From the complementarity condition x T x * = 0, for x * > 0, we have x = 0 (i.e., ǫ = 0, λ = 0, ρ = 0) and consequently x = I f ∈ χ a . This means that for

x * > 0, all the constraints of the primal problem (3.14) are achieved by equality (with i k,j ∈ {0, 1}, ∀k, j which comes from ρ = 0). Thus, the dual feasible space for the primal problem is an open positive cone defined by

χ * ♯ = {(ǫ * , λ * , ρ * ) ∈ χ * a | ǫ * > 0, λ * > 0, ρ * > 0} (3.24)
The so-called total complementarity function (see [START_REF] Gao | Duality Principles in Nonconvex Systems: Theory, Methods and Applications[END_REF][START_REF] Fang | Canonical dual approach for solving 0-1 quadratic programming problems[END_REF] for definition), Ξ(i, x * ) :

χ × χ * ♯ → R associated with the primal problem (3.14) can be defined as follows.

Ξ(i, x * ) = Λ(i) T x * -V ♯ (x * ) - K k=1 J j=1 i k,j U k,j (3.25) 
which is obtained by replacing V (Λ(i)) in (3.18) by Λ(i) T x * -V ♯ (x * ) from Fenchel sup-duality relations (3.22). From the definition of Λ(i) and V ♯ (x * ), the total complementarity function takes the form:

Ξ(i, ǫ * , λ * , ρ * ) = K k=1 J j=1 ρ * k,j i 2 k,j + λ * k -ρ * k,j -U k,j + N n=1 ǫ * n A k n,j i k,j - N n=1 ǫ * n - K k=1 λ * k (3.26)
Similar to [START_REF] Fang | Canonical dual approach for solving 0-1 quadratic programming problems[END_REF], the canonical dual function f d (ǫ * , λ * , ρ * ) associated to our primal problem for a given (ǫ * , λ * , ρ * ) ∈ χ * ♯ can be defined as

f d (ǫ * , λ * , ρ * ) = sta {Ξ(i, ǫ * , λ * , ρ * ) | i ∈ I a } (3.27)
where sta{f (x)} stands for finding the stationary points of f (x). The complementarity function is a quadratic function of i ∈ I a , and has therefore a unique stationary point with respect to it for a given (ǫ * , λ * , ρ * ) ∈ χ * a . The stationary points of Ξ(i, ǫ * , λ * , ρ * ) over i ∈ I a occurs at i(x * ) with

i k,j (x * ) = 1 2ρ * k,j U k,j + ρ * k,j -λ * k - N n=1 ǫ * n A k n,j
, ∀k, j

Replacing i k,j by i k,j (x * ) in (3.26), we have

f d (ǫ * , λ * , ρ * ) = - 1 4 K k=1 J j=1      U k,j + ρ * k,j -λ * k -N n=1 ǫ * n A k n,j 2 ρ * k,j      - N n=1 ǫ * n - K k=1 λ * k (3.29)
which is a concave function in χ * ♯ . The canonical dual problem associated with the primal problem (3.14) can now be formulated as follows

ext f d (ǫ * , λ * , ρ * ) | (ǫ * , λ * , ρ * ) ∈ χ * ♯ (3.30)
where the notation ext {f (x)} stands for finding the extremum values of f (x).

We have the following canonical duality theorem (Complementary-Dual Principle) on the dual relationship between the primal and its corresponding canonical dual problem.

Theorem 3.4.1. If (ǫ * , λ * , ρ * ) ∈ χ * ♯ is the stationary point of f d (ǫ * , λ * , ρ * ), such that i = [i 1,1 , ..., i K,J ] T with i k,j = 1 2ρ * k,j U k,j + ρ * k,j -λ * k - N n=1 ǫ * n A k n,j
, ∀k, j

(3.31)
is the KKT point of the primal problem, and 

f(i) = f d (ǫ * , λ * , ρ * ). ( 3 
f(i) = min i∈I f f(i) = max (ǫ * ,λ * ,ρ * )∈χ * ♯ f d (ǫ * , λ * , ρ * ) = f d (ǫ * , λ * , ρ * ). (3.33) 
Proof. See Appendix A.2.

Canonical Dual Problem and Optimality Conditions for JAM-SCmin Problem

The objective function, g(ℓ) in problem (3.10) is a real valued linear function defined on L a = ℓ ⊂ R K×M ×J with feasible space defined by

L f = ℓ ∈ L a | K k=1 M m=1 J j=1 ℓ k,m,j B k m,n,j = 1, ∀n; M m=1 J j=1 ℓ k,m,j = 1, ∀k; ℓ k,m,j ∈ {0, 1}, ∀k, m, j (3.34) 
By introducing the additional constraint ℓ k,m,j (ℓ k,m,j -1) ≤ 0, ∀k, m, j, and temporarily relaxing the equality constraints to inequalities, the primal JAMSCmin problem (3.10) takes the following form:

min ℓ g (ℓ) = K k=1 M m =1 J j=1 ℓ k,m,j C k,m,j (3.35) s.t. K k=1 M m=1 J j=1 ℓ k,m,j B k m,n,j ≤ 1, ∀n M m=1 J j=1 ℓ k,m,j ≤ 1, ∀k ℓ k,m,j (ℓ k,m,j -1) ≤ 0, ∀k, m, j ℓ k,m,j ∈ {0, 1}, ∀k, m, j
where C k,m,j is used to denote C k,m,j (P max k , P k,m,j ), and will be used in the rest of this chapter. By following the same steps of canonical dual transformation as followed for the SUmax problem, the total complementarity function can be derived as

Ω(ℓ, ξ * , µ * , ̺ * ) = K k=1 M m=1 J j=1 ̺ * k,m,j ℓ 2 k,m,j + µ * k -̺ * k,m,j + C k,m,j + N n=1 ξ * n B k m,n,j ℓ k,m,j - N n=1 ξ * n - K k=1 µ * k (3.36)
Accordingly, the canonical dual problem associated to the above primal problem (3.35) can be formulated as follows:

ext g d (ξ * , µ * , ̺ * ) | (ξ * , µ * , ̺ * ) ∈ Y * ♯ (3.37)
where Y * ♯ is the associated dual feasible space defined as

Y * ♯ = (ξ * , µ * , ̺ * ) ∈ R N × R K × R KM J | ξ * > 0, µ * > 0 ∈, ̺ * > 0 (3.38)
The canonical dual function

g d (ξ * , µ * , ̺ * ) : R N × R K × R KM J → R is defined as follows: g d (ξ * , µ * , ̺ * ) = - 1 4 K k=1 M m=1 J j=1      ̺ * k,m,j -C k,m,j -µ * k -N n=1 ξ * n B k m,n,j 2 ̺ * k,m,j      - N n=1 ξ * n - K k=1 µ * k (3.39)
which is a concave function on Y * ♯ . Moreover, the following results on the primal/dual relationship and the global optimality conditions follow.

Theorem 3.4.3. If (ξ * , µ * , ̺ * ) ∈ Y * ♯ is the stationary point of g d (ξ * , µ * , ̺ * ), such that ℓ = [ℓ 1,1,1 , ..., ℓ K,J,M ] T with ℓ k,m,j = 1 2̺ * k,m,j ̺ * k,j -C k,m,j -µ * k - N n=1 ξ * n B k m,n,j , ∀k, m, j (3.40)
is the KKT point of the primal problem, and

g(ℓ) = g d (ξ * , µ * , ̺ * ). (3.41)
then the canonical dual problem (3.37) is dual to the primal problem (3.10).

Proof. This theorem can be proved by a similar procedure used for the proof of 

g(ℓ) = min ℓ∈L f g(i) = max (ξ * ,µ * ,̺ * )∈Y * ♯ g d (ξ * , µ * , ̺ * ) = g d (ξ * , µ * , ̺ * ). (3.42)
Proof. The proof of this theorem parallels to that of theorem 3.4.2.

Based on the above mathematical analysis, we provide resource allocation (with joint adaptive modulation for JAMSCmin) algorithms in the following section. An adaptive modulation scheme for SUmax problem is also proposed since unlike the JAMSCmin problem, it does not capture the adaptive modulation implicitly in the problem formulation. The proposed adaptive modulation is based on the powers and sub-channels allocated to each user by the proposed resource allocation algorithm.

Resource Allocation and Adaptive Modulation Algorithms

Resource Allocation Algorithm for SUmax

The proposed algorithm is based on the solution of canonical dual problem which according to theorem 4.2 provides the optimal solution to the primal problem if the given global optimality conditions are satisfied. Since the dual problem is a concave maximization problem over χ * ♯ , it is necessary and sufficient to solve the following system of equations for finding the optimal solution [START_REF] Boyd | Convex Optimization[END_REF].

∂f d ∂ǫ * n = K k=1 J j=1 1 2ρ * k,j U k,j + ρ * k,j -λ * k - N n=1 ǫ * n A k n,j A k n,j -1 = 0, ∀n (3.43) 
∂f d ∂λ * k = J j=1 1 2ρ * k,j U k,j + ρ * k,j -λ * k - N n=1 ǫ * n A k n,j -1 = 0, ∀k (3.44) 
∂f d ∂ρ * k,j = U k,j -λ * k -N n=1 ǫ * n A k n,j ρ * k,j 2 -1 = 0, ∀k, j (3.45) 
We propose a sub-gradient based iterative algorithm for the above system of nonlinear equations that is equivalent to solving f d (ǫ * , λ * , ρ * ) using gradient-decent method [START_REF] Boyd | Convex Optimization[END_REF]. The interest of using the sub-gradient method is its ability to use the decomposition technique that allows to simplify the solution by using a distributed method. The iterative algorithm is given in Table 3.1 where each of q, s and t denotes the iteration number and β ρ * , β λ * and β ǫ * denote the step sizes for the sub-gradient update. For an appropriate step size, the sub-gradient method is always guaranteed to converge [START_REF] Boyd | Convex Optimization[END_REF]. The algorithm starts by initializing the variables. Then, for the given ǫ * (0) and λ * (0) , the solution to the set of equations (3.45) i.e., ρ * (q) is obtained in step 1. The operation

ρ * (q) ← Π χ ρ * ρ * (q-1) + β ρ * ζ (q-1) :=    ρ * k,j (q) = ρ * k,j (q-1) + sgn ρ * k,j (q-1) η if (ρ k,j * (q-1) + β ρ * k,j ζ k,j (q-1) ) = 0, ∀k, j ρ * (q) = ρ * (q-1) + β ρ * ζ (q-1)
otherwise. (3.46) in step 1 is the projection of ρ * onto the space χ * ρ * = {ρ * ∈ R KJ |ρ * = 0}, since the canonical dual objective function is not defined at ρ * = 0. In (3.46), sgn stands for sign/signum function and 0 < η << 1. According to the above projection, if the updated value of ρ * in the current iteration occurs to be zero, it is projected to the negative domain if its value was positive in the previous iteration, and vice versa. This projection have no impact on the convergence, since the sign of ρ * does not change the direction of the gradient (see equation (3.45)). Step 2 finds λ * (s) that solves equations' set (3.44) for the given ǫ * (0) and ρ * (q) . These values of ρ * (q) and λ * (s) are then used to solve the set of equations (3.43) by updating ǫ * (0) to ǫ * (t) in step 3. Step 4 checks whether | ∂f d ∂λ * | ≤ δ for ρ * (q) , λ * (s) and the updated ǫ * (t) where δ → 0 is the stopping criterion for sub-gradient update.

If | ∂f d ∂λ * | > δ, steps 2 through 4 are repeated until both | ∂f d ∂λ * | ≤ δ and | ∂f d ∂ǫ * | ≤ δ. In step 6, ζ (q)
is recomputed for ρ * (q) , and the updated λ * (s) and ǫ * (t) . If |ζ (q) | ≤ δ, the algorithm is stopped otherwise steps 1 through 6 are repeated until convergence. The resource allocation vector i is then obtained from the dual solution (ǫ * , λ * , ρ * ) in step 8.

The canonical dual problem is a concave maximization problem over χ * ♯ , the proposed algorithm is then surely optimal if (ǫ * , λ

* , ρ * ) ∈ χ * ♯ . However, if (ǫ * , λ * , ρ * )
is not inside the positive cone χ * ♯ , then the canonical problem is not guaranteed to be concave. Consequently, the proposed algorithm may not find the optimal solution. From our simulation results, we have observed that for moderate number of sub-channels the proposed algorithm works well, and the canonical dual solution is very close to the optimal solution. In subsection 3.5.4, we study the optimality gap between the optimal solution and the obtained solution using the above algorithm.

Adaptive Modulation Scheme for SUmax

By knowing perfectly the effective SNR of each user from the powers and subchannels allocation performed according to the previous subsection, we propose an adaptive modulation scheme in this subsection. The proposed adaptive modulation scheme is based on the criterion of target Block Error Rate (BLER) at the 

Initialize (ǫ * (0) , λ * (0) , ρ * (0) ) ∈ χ * ♯ 1. Compute ζ (q) = ∂f d ∂ρ * | ρ * (q) . If |ζ (q) | ≤ δ, go to step 2. • Set ρ * (q+1) ← Π χ ρ * ρ * (q) + β ρ * ζ (q) .
• Set q ← q + 1, and repeat step 1.

Compute η

(s) = ∂f d ∂λ * | λ * (s) . If |η (s) | ≤ δ, go to step 3. • Set λ * (s+1) ← λ * (s) + β λ * η (s) .
• Set s ← s + 1, and repeat step 2.

Compute υ

(t) = ∂f d ∂ǫ * | ǫ * (t) . If |υ (t) | ≤ δ, go to step 4. • Set ǫ * (t+1) ← ǫ * (t) + β ǫ * υ (t) .
• Set t ← t + 1, and repeat step 3.

Recompute η

(s) = ∂f d ∂λ * | λ * (s) .

Repeat steps 2 through 4 until |η

(s) | ≤ δ, and |υ (t) | ≤ δ 6. Recompute ζ (q) = ∂f d ∂ρ * | ρ * (q) 7. Repeat steps 1 through 6 until |ζ (q) | ≤ δ, |η (s) | ≤ δ, and |υ (t) | ≤ δ

Compute i according to (3.31).

receiver used for the SUmax problem. According to this approach, for a modulation m ∈ M to be chosen, the effective SNR of the user should not be less than a minimum value Γ * m that guarantees a target BLER at the receiver. Since the effective SNR of users are perfectly known from the the powers and sub-channels allocation performed according to the previous subsection, we adopt the modulation for each user which maximizes its individual utility. Thus, depending upon γ ef f k , the efficient modulation for user k is determined as follows:

m * (k) = arg min m∈M (γ ef f k -Γ * m )| Γ * m ≤γ ef f k (3.47)
Note that the above approach is similar in spirit to the approach used in [START_REF] Liu | Power allocation and adaptive modulation for ofdm systems with imperfect csi[END_REF] where adaptive modulation in OFDM system is considered and an efficient constellation is chosen for each sub-channel.

Joint Adaptive Modulation and Resource Allocation Algorithm for JAMSCmin

The dual function g d (ξ * , µ * , ̺ * ) is a concave function over (ξ * , µ * , ̺ * ) ∈ Y * ♯ . Thus, the corresponding dual problem is a concave maximization problem over

Y *
♯ where the joint adaptive modulation and resource allocation can be obtained by solving the following set of equations:

∂g d ∂ξ * n = K k=1 M m=1 J j=1    ̺ * k,m,j -C k,m,j -µ * k -N n=1 ξ * n B k m,n,j B k m,n,j 2̺ * k,m,j    -1 = 0, ∀n (3.48) ∂g d ∂µ * k = M m=1 J j=1    ̺ * k,m,j -C k,m,j -µ * k -N n=1 ξ * n B k m,n,j 2̺ * k,j    -1 = 0, ∀k (3.49) 
∂g d ∂̺ * k,m,j = -C k,m,j -µ * k -N n=1 ǫ * n B k m,n,j ̺ * k,m,j 2 -1 = 0, ∀k, m, j (3.50) 
A similar procedure of sub-gradient is proposed where an iterative algorithm can be derived that is similar in spirit to that derived for the SUmax problem.

Since it uses a similar procedure and has a similar sequence of steps as that for the algorithm given in Table 3.1, the latter can be adopted to the JAMSCmin problem, and we do not reproduce it in this thesis.

Complexity of the algorithm

Complexity of the algorithm for SUmax problem

In each iteration for ρ * , we compute KJ variables. The number of variables computed in each iteration for λ * is K and that for ǫ * is N . Assume that the number of iterations required for optimal ρ * , λ * and ǫ * are I ρ * , I λ * and I ǫ * respectively, then the algorithm has an overall complexity of O(I ρ * KJ + I λ * K + I ǫ * N ).

Complexity of the algorithm for JAMSCmin problem

The complexity of the proposed algorithm adopted to the JAMSCmin problem is O(I ̺ * KM J + I µ * K + I ξ * N ) where I ̺ * , I µ * and I ξ * are the numbers of iterations needed for finding the optimal values of KM J variables ̺ * , K variables µ * and the N variables ξ * respectively.

On the Optimality of the Algorithm

In this subsection, we analyze the gap between the optimal solution and the solution obtained by using our proposed sub-gradient based algorithm. We perform the analysis for SUmax problem which is equally applicable to the JAM-SCmin problem, and we will not repeat it in this paper. We start the analysis by introducing a modified problem whose optimal solution is not necessary and will not replace our actual problem but is used only to study the optimality gap of our proposed algorithm. In our analysis, first we find the solution of the modified problem (which is a stationary point and may not be necessarily the optimal solution of this modified problem). Then, we show in Theorem 3.5.1 that the solution of this modified problem is equivalent to the optimal solution of the primal problem with a slightly different values of the utilities U k,j 's. Finally, in Corollary 3.5.1 we show that under certain conditions, the solution of the canonical dual problem obtained using the algorithm in Table 3.1 provides the optimal solution to the primal problem. Let us consider the following modified problem

(P) : max ǫ * ,λ * ,ρ * f d (ǫ * , λ * , ρ * ) (3.51) s.t. ǫ * ≥ c (3.51a) λ * ≥ d (3.51b) where (c, d) ∈ (R N + , R K + ).
We solve this problem using the standard Lagrangian technique. Let (ǫ * , λ * , ρ * ) be the obtained solution. The corresponding Lagrangian can be defined as

L(ǫ * , λ * , ρ * , σ ǫ * , σ λ * , σ ρ * ) = f d (ǫ * , λ * , ρ * ) -(ǫ * T -c T )σ ǫ * -σ λ * (λ * T -d T ) (3.52)
where (σ ǫ * , σ λ * ) ∈ (R N , R K ) are the Lagrange multipliers associated to the constraints (3.51a-3.51b) respectively. The corresponding KKT conditions are:

∂L ∂ǫ * = 0 ⇒ K k=1 J j=1 1 2ρ * k,j U k,j + ρ * k,j -λ * k - N n=1 ǫ * n A k n,j A k n,j = 1 + σ ǫ * n , ∀n (3.53) ∂L ∂λ * = 0 ⇒ J j=1 1 2ρ * k,j U k,j + ρ * k,j -λ * k - N n=1 ǫ * n A k n,j = 1 + σ λ * k , ∀k (3.54) ∂L ∂ρ * = 0 ⇒ U k,j -λ * k -N n=1 ǫ * n A k n,j ρ * k,j 2 -1 = 0, ∀k, j (3.55) 
The above equations can be solved using the sub-gradient based algorithm in Table 3.1. Moreover, in order to ensure that the solution of (3.55) is obtained for positive ρ * , we can use the following projection in the update of ρ * :

ρ * (q) ← Π χ ρ * Φ (q-1) :=    ρ * k,j (q) = arg min ρ * k,j ∈χ * ♯ Φ (q-1) k,j -ρ * k,j if Φ k,j (q-1) ≤ 0, ∀k, j ρ * k,j (q) = Φ k,j (q-1)
otherwise. (3.56) where Φ (q-1) = ρ * (q-1) +β ρ * ∂L ∂ρ * | ρ * (q-1) denotes the sub-gradient update, and where β ρ * is the step size. The above projection ensures the positivity of ρ * . Theorem 3.5.1. For U k,j = U k,j -2θ k,j ρ * k,j with θ k,j ∈ {-1, 0, 1}, ∀k, j; there exists a primal problem f(i) with utilities U k,j replaced for U k,j that can be solved optimally using the algorithm in Table 3.1. The solution (ǫ * ,λ * ,ρ * ) of f(i) obtained using Table 3.1 is equal to the solution of the modified problem Proof. See Appendix A.3 for the proof.

Moreover, we have the following result which is the corollary of Theorem 3.5.1.

Corollary 3.5.1. If ρ * k,j << U k,j , ∀k, j; then the solution of the canonical dual problem obtained using the sub-gradient based algorithm (Table 3.1) provides a solution to the primal problem which is very close to the optimal solution. Proof. See Appendix A.4 for the proof.

Analysis of the algorithm's results for N → ∞

It can be seen from the KKT equation (3.44) 

that U k,j -λ * k -N n=1 ǫ * n A k n,j = ρ * k,j
when a pattern j is allocated to user k, and

U k,j -λ * k -N n=1 ǫ * n A k n,j = -ρ * k,j
, otherwise. When the number of sub-channel is very high, there are several patterns that have nearly equal utilities U k,j 's for each user. This is due to the fact that for high number of sub-channels, the per sub-channel utility will be very small, and since the difference of sub-channels in the patterns with high number of subchannels will be less, their utilities will have very small difference. Furthermore, the difference between the summation term N n=1 ǫ * n A k n,j for several patterns of user k will be very small. This means that the term U k,jλ * k -N n=1 ǫ * n A k n,j for several patterns of user k will be nearly equal, as λ * k is the same for all the patterns of that user.

Let us assume that a pattern j is allocated to user k. Consequently, U k,j -

λ * k -N n=1 ǫ * n A k n,j = ρ * k,j whereas U k,j ′ -λ * k -N n=1 ǫ * n A k n,j ′ = -ρ * k,j ′ for all j ′ = j. Moreover, in view of the above discussion, the difference between U k,j -λ * k - N n=1 ǫ * n A k n,j and U k,j ′ -λ * k -N n=1 ǫ * n A k
n,j ′ will be very small for j and j ′ with high number of sub-channels. Thus, being equal to

U k,j -λ * k -N n=1 ǫ * n A k n,j and -U k,j ′ + λ * k + N n=1 ǫ * n A k n,j ′ respectively, ρ *
k,j and ρ * k,j ′ will both be very small compared to U k,j and U k,j ′ respectively.

Simulation Results

We consider a system with 5MHz of bandwidth (i.e. LTE) divided into N = 25 sub-channels each having a bandwidth of 180kHz. We assume that K = 10 uniformly distributed users are simultaneously active in a cell of 500m. The scenario assumed is urban canyon macro which exists in dense urban areas served by macro-cells. A frequency selective Rayleigh fading channel is simulated where the channel gain has a small-scale Rayleigh fading component and a large-scale path loss and shadowing component. Path losses are calculated according to Cost-Hata Model [118] and shadow fading is log-normally distributed with a standard deviation of 8dBs. Time is divided into slots where the duration of each slot is 0.5ms. The carrier frequency is assumed to be 2.6 GHz. The power spectral density of noise is assumed to be -174dBm/Hz. The per sub-channel peak power constraint is P peak k,n =10mW, and the per user maximum power constraint is P max k =200mW.

Sum-utility maximization

In simulations, we assume that the utility of the user is equal to its weighted rate where the rate is defined by Shannon's formula. In other words, the SUmax problem is equivalent to weighted-sum rate maximization. 

Joint Adaptive Modulation and Resource Allocation

The minimum effective SNR for each modulation Γ * m that ensures a target Block Error Rate at the receiver is determined from the link-level performance curves (e.g., see [START_REF]3rd Generation Partnership Project, Technical Specification Group Radio Access Network; Feasibility study for Orthogonal Frequency Division Multiplexing (OFDM) for UTRAN enhancement (Release 6)[END_REF]). trates the comparison of the CDF's corresponding to our proposed resource allocation algorithm when joint AM and RA is performed and when RA is performed without AM, the binary-integer programming (BIP) based solution adopted to joint AM and RA problem, and RA without AM, and the round robin scheme in which an equal number of consecutive sub-channels are allocated to each user in turn and minimum possible power is allocated to the users while ensuring their target data rates. The round robin scheme is used as a baseline scheme for comparison. The RA without AM scenario considers 16QAM as the modulation scheme. The proposed RA with fixed modulation outperforms the round robin scheme which is not unexpected. The figure shows that the joint AM and RA results in a significant performance improvement over the RA without AM. The performance of the proposed algorithm can be depicted from the fact that the results of the proposed algorithm nearly overlap with that of the BIP based solution both for joint AM and RA, and RA with fixed modulation scheme. We recall that the BIP based solution is the optimal solution.

Conclusion

This chapter studies resource allocation and adaptive modulation in uplink SC-FDMA systems. Sum-utility maximization, and joint adaptive modulation and sum-cost minimization problems are considered whose optimal solutions are exponentially complex in general. A polynomial-complexity optimization framework that is inspired from the recently developed canonical duality theory is derived for the solution of both the problems. Based on the resource allocation performed by the proposed framework, an adaptive modulation scheme is also proposed for the sum-utility maximization problem that determines the best constellation for each user. The optimization problems are first formulated as binary-integer programming problems and then, each binary-integer problem is transformed into a canonical dual problem in the continuous space which is a concave maximization problem. The transformation of the problem in continuous space significantly improves the performance of the system in terms of complexity. The proposed continuous space optimization framework has a polynomial complexity that is a significant improvement over exponential complexity. It is proved analytically that that under certain conditions, the solution of the canonical dual problem is identical to the solution of the primal problem. How-ever, if the dual solution does not satisfy these conditions then the optimality can not be guaranteed. Some bounds on the sub-optimality of the proposed algorithms if these conditions are not satisfied are also explored. The performance of the proposed canonical dual framework is assessed by comparing it with the existing algorithms in the literature. The numerical results show that the proposed framework provides integer solution to each problem which is very close to that obtained by solving its equivalent binary-integer program.

Chapter 4 Joint Power Control and Rate

Adaptation for Video Streaming in

Wireless Networks

Introduction

In this chapter, we consider a cross-layer optimization framework for joint power control and rate adaptation for video streaming in wireless networks with interference. We assume that in the network, each node demand for better quality video while its channel and the interference caused to it by the other nodes are both time-varying. Since video streaming has stringent delay requirements, the packets arrived in the queue of a node should be transmitted in a given target number of slots otherwise they will be dropped. In addition, there should be a fairness/satisfaction criterion for faire utilization of the network resources among the multiple nodes. In order to exploit the time diversity of the timevarying channels, the video rate of each node should be adapted in accordance to its channel conditions. Moreover, the transmit power of each node should be controlled in order to efficiently utilize the power. The power control is not only efficient in terms of power consumption but with the decrease in the transmit power of a node, the interference caused to other nodes will also reduce. How-ever, the power control should be performed instantaneously whereas the video rate adaptation in video streaming should be performed in an average manner after a long enough time. This difference in time scale renders the joint power control and rate adaptation very challenging.

In this chapter, we develop an optimization framework that enables to perform instantaneous power control at the PHY/MAC layer and average rate adaptation at the APPLICATION layer jointly. This joint framework takes advantage of the time diversity of the time varying channels, satisfies the hard delay constraints associated to nodes' video applications, and respects a certain fairness/satisfiction criterion among the nodes. The proposed framework performs power allocation at the PHY/MAC layers to achieve a certain target SINR such that the difference between the arrival and the departure rates at the queues is very small as well as performs video rate adaptation at the APPLICATION layer according to the nodes demanded video quality, their channel conditions, and a given fairness criterion . To this end, we model the power and the rate variations of the nodes as linear stochastic dynamic equations, and formulate a risksensitive control problem that captures the hard delay constraints of the video services, and the fairness criterion for resources utilization. We provide the optimal solution of the above control problem, and provide simulation results to illustrate the performance of the proposed framework.

System Model and Problem Statement

We consider video streaming in wireless network where the network conditions are dynamic. The wireless network model we assume may be a multi-cell network where each cell has multiple nodes with a master node/base station that controls the cell, or it may be a wireless network where a geographical area has video transmitters and receivers nodes. The network scenario with multiple video receiver and transmitter nodes is called an arbitrary network in this thesis. In the multi-cell network, the video transmission may be downlink or uplink where all the nodes act as receivers or transmitters respectively. In the arbitrary network setup with multiple transmitter and receiver nodes, some of the nodes act as video transmitters while the other act as receivers where a node can receive multimedia data from a single transmitter during a video session. Moreover, it is assumed that the transmitter node may be the actual video source or there may be a remote video source/server whose multimedia data arrives at the transmitter node which is then transmitted to the corresponding receiver. We also assume that all the transmitters in both the network scenarios use the same bandwidth which cause interference to the receiver nodes. Thus, the achieved rate at each receiver node not only depends on its channel conditions, and allocated resources but also depends on the interference caused due the other nodes. In the downlink of multi-cell network, the total interference caused to any receiver node is composed of the intra-cell and inter-cell components while in the uplink the interference occurs due to the other nodes in the same cell or the surroundings without any differentiation between the intra-cell and inter-cell interference. The interference caused to any receiver node in the arbitrary network scenario is similar to that of the uplink in multi-cell network i.e., it is the interference exerted by all the other transmitters in the area.

It is assumed that the video source/transmitter node can provide several bitstreams of the same video with different rates. Each particular rate corresponds to a given QoS level. The higher the quality of the video, the higher the bit rate is needed for its transmission.

We denote the video bitstream intended to be sent to node k by another node j at tth time slot by r * k,j (t) that denotes the APPLICATION layer data rate of that particular stream and we will call it the arrival rate in the remainder of this chapter. This arrival data rate does not denote the actual APPLICATION layer data rate but denotes an equivalent physical layer data rate required for transmitting the corresponding bitstream. We denote by r k,j (t) the actual transmitted/acheived rate at time t from node j to node k. The SINR corresponding to r k,j (t) called the actual SINR is denoted by γ k,j (t). The downlink SINR for node k connected to base station j in the multi-cell network is defined as

γ k,j (t) = p k,j (t)G k,j (t) η + K j k ′ =1,k ′ =k p k ′ ,j (t)G k,j (t) + J l=1,l =j p l (t)G k,l (t) (4.1) 
where, for each time slot t, p k,j is the power transmitted by the base station j to node k, p l is the power transmitted by the base station l, G k,j is the path gain including shadowing effect between the nodes j and k, η is the power of white noise at the receiver k, K j is the number of receiver nodes in the cell j, and J is the number of interfering base stations/cells. Similarly, the uplink SINR at the base station k for node j in the multi-cell network, and the SINR at receiver node k for the signal transmitted to it by node j in the arbitrary network can be defined as

γ k,j (t) = p k,j (t)G k,j (t) η + K l=1,l =j p l (t)G k,l (t) (4.2) 
where, for each time slot t, p k,j is the power transmitted by node j to node (base station for cellular network) k, p l is the power transmitted by node l, G k,j is the path gain including shadowing effect between the nodes j and k, η is the power of white noise at the receiver node (base station for cellular network) k and K is the total number of interfering nodes.

It is obvious that the delay is a function of the deviation between the arrival and the actual data rates i.e., r * k,j (t)r k,j (t). In order to satisfy the stringent delay requirements of the streaming application, each r k,j (t) should approach to the corresponding r * k,j (t) where r * k,j is the arrival rate that depends on the QoS of video streaming. This arrival rate is ideally the traffic arrived to the queue of the transmitter (e.g., in the case of base station) or the video source rate. As we consider video streaming in multi-node network, in addition to satisfying the stringent delay constraint, we also opt to adapt each node's video bitstream (i.e., r * k,j (t)) according to its time varying channel and interference gains, and the available communication resources. Since r * k,j (t) is the APPLICATION layer parameter while r k,j (t) is the PHY layer parameter and both should be optimized dynamically, we shall propose a cross-layer optimization framework which will enable to perform joint power control, and rate adaptation.

We also assume that each node can have a different quality-of-service (QoS) requirement with a different level of best quality video. So, corresponding to its best quality video, a maximum arrival rate is associated with each node. Since each node is promised to be provided with a certain QoS (bitstream/rate) despite having very bad channel conditions, we also introduce a satisfaction/faireness criterion among the nodes such that each node is provided with a certain portion of system resources and a certain data rate which are functions of its promised maximum arrival rate and the system total capacity/resources. To this end, we introduce an instantaneous satisfaction parameter s k,j (t), an instantaneous fairness parameter f k,j (t), and a target fairness parameter f T k,j for each node defined as follows.

Definition 4.2.1. Let r max k,j be the maximum possible arrival rate of node k that corresponds to the best quality video the node can be provided with and r * k,j (t) be its arrival rate at time t, then the node's satisfaction parameter at time t is given by

s k,j (t) = r * k,j (t) r max k,j (4.3) 
Definition 4.2.2. The instantaneous fairness parameter of node k at time t is given by

f k,j (t) = s k,j (t) K l=1 s l,j (t) (4.4) 
which denotes the actual achieved fairness of the node k at time t.

Definition 4.2.3. Let w k,j be a weight for node k that corresponds to its priority among the nodes, then the target fairness parameter of node k is given as follows

f T k,j = w k,j r max k,j K l=1 w l,j r max l,j (4.5) 
The main objective now is to jointly control the power, and adapt the arrival rate such that the stringent delay constraints associated to nodes' streaming applications are satisfied as well the fairness criterion is met. In the following section, we model the power, the actual transmit rate and the arrival rates of each nodes as linear stochastic dynamic equations.

Stochastic Framework for Joint Power Control and

Rate Adaptation

We start our analysis by proving that the probability distribution function of the Channel to Interference and Noise Ratio (CINR), g k,j (t) can be approximated by a lognormal distribution. The relation between CINR and SINR is given by γ k,j (t) = p k,j (t)g k,j (t). We then use this result to formulate the dynamics of the node's power and data rate as stochastic linear equations. Proof. The proof and evaluation of the mean and variance of the corresponding lognormal distribution are given throughout this section.

CINR Probability Distribution Function

We start our analysis by writing the expression of the CINR. The corresponding CINR value at tth time slot between nodes k and j is determined as follows:

g k,j (t) = G k,j (t) η + K j k ′ =1,k ′ =k p k ′ ,j (t)G k,j (t) + J l=1,l =j p l (t)G k,l (t) (4.6) 
In general, G k,j (t) is proportional to d -µ k,j 10 s k,j /10 |h k,j (t)| 2 where d k,j is the distance between user k and base station j, µ is the path loss slope (µ = 3, 4 in macro cell and µ = 2 in micro cell) and 10 s k,j /10 corresponds to Lognormal shadowing. The variable s k,j has then a Gaussian distribution (10 s k,j /10 is lognormal) with zero mean and standard deviation σ s (σ 2 s between 8 and 12 dB) [START_REF] Proakis | Digital Communication[END_REF]. The coefficient h k,j (t) denotes the fast fading at tth time slot for the channel between node k and base station j. Since we consider the instantaneous CINR, the time index t will be ignored in this analysis for simplicity. The CINR inverse is then given by

1 g k,j = J l=1,l =j p l ( d k,l d k,j ) -µ 10 s k,l /10 |h k,l | 2 10 s k,j /10 |h k,j | 2 + η d -µ k,j 10 s k,j /10 |h k,j | 2 + k ′ =k P k ′ ,j
Let us consider the variable y k,l = 10 s k,l /10 |h k,l | 2 . The variable y k,l is then the product of two variables, lognormal and chi-square (|h k,j | 2 has a central Chi-Square distribution with two degrees of freedom since |h k,j | has a rayleigh distribution). The probability distribution function of y k,l is then given by

pdf (y k,l ) = ∞ 0 e -y k,l /z 1 z 1 √ 2πθσ k,j z e - (log(z)-θµs) 2 2θ 2 σ 2 s dz (4.7) 
where θ = ln(10)/10. Using the following approximation (from [START_REF] Stuber | Principles of Mobile Communication[END_REF])

∞ 0 e -g/z 1 z 1 √ 2πθσ s z e - (log(z)-θµs) 2 2θ 2 σ 2 s dz ≃ 1 √ 2πσ f g e - (log(g)-µ k,l ) 2 2σ 2 k,l (4.8) 
Note that this approximation is valid for some values of the variance of lognormally distributed variable 10 s k,j /10 . The distribution of y k,l is then given by

pdf (y k,l ) = 1 √ 2πσ k,l y k,l e - (log(y k,l )-µ k,l ) 2 2σ 2 k,l (4.9) 
where

µ k,l = -C + θµ s = -C and σ 2 k,l = ζ(2) + θ 2 σ 2 s .
C is the Euler Constant (C=0.5772) and ζ(2) = π 2 /6 is the Riemann-Zeta function. This approximation results from the fact that the product or the sum of a log-normal variable with other variables of sharper frequency distributions (e.g., exponential, Chi-square, etc.) is dominated at the higher order moments by the log-normal distribution with largest logarithm variance [START_REF] Janos | Tail of the distribution of sums of log-normal variates[END_REF]. Similarly, y k,j = 10 s k,j /10 |h k,j | 2 can be approximated by a lognormal variable with parameters µ k,j = -C + θµ s = -C and

σ 2 k,j = ζ(2) + θ 2 σ 2
s (y k,j can then be written as e s ′ k where s ′ k is a gaussian variable with mean µ s ′ k = µ k,j and variance σ 2

s ′ k = σ 2 k,j ). We now consider X k = η d -µ k,j + J l=1,l =j p l ( d k,l
d k,j ) -µ 10 s k,l /10 |h k,l | 2 which can be written as follows

X k = J l=1,l =j ( η (J-1)d -µ k,j + p l ( d k,l d k,j ) -µ 10 s k,l /10 |h k,l | 2 )
The variable ( η

(J-1)d -µ k,j + p l ( d k,l d k,j ) -µ 10 s k,l /10 |h k,l | 2 ) has a lognormal distribution with mean value E k,l = η (J-1)d -µ k,j +p l ( d k,l d k,j ) -µ e µ k,l +σ 2 k,l /2 and variance V k,l = p 2 l ( d k,l d k,j ) -2µ (e σ 2 k,l -
1)e 2µ k,l +σ 2 k,l . Therefore, X k is the sum of independent lognormal variables. According to [START_REF] Fenton | The sum of log-normal probability distributions in scatter transmission systems[END_REF], using the approximation of Fenton-Wilkinson, the sum of a finite number of independent log-normal variables can be approximated by a log-normal variable. The first two order moments (respectively u [START_REF]Technical Specification Group Radio Access Network; Physical layer aspects for evolved Universal Terrestrial Radio Access (UTRA)[END_REF] k and u

(2) k ) of the equivalent log-normal variable can be computed, using the Fenton-Wilkinson (FW) approximation, as follows [START_REF] Fenton | The sum of log-normal probability distributions in scatter transmission systems[END_REF] [124]: 

u (1) k = J l=1,l =j E k,l (4.10) u (2) 
k = J l=1,l =j (E 2 k,l + V k,l ) + 2 J-1 l=1,l =j J l ′ =l+1,l ′ =j E k,l E k,l ′ (4.11) Therefore, X k = η d -µ k,j + J l=1,l =j p l ( d k,l d k,j ) -µ 10 s k,l /
µ s ′′ k = 2 ln(u (1) 
k ) -

1 2 ln(u (2) 
k ) (4.12)

σ 2 s ′′ k = ln(u (2) k ) -2 ln(u (1) k ) (4.13) 
The CINR expression can then be written as:

g k,j = 1 k ′ =k p k ′ ,j + e (s ′′ k -s ′ k ) (4.14) 
e (s ′′ k -s ′ k ) has also a lognormal distribution with mean µ k and variance σ 2 k given by

µ k = µ s ′′ k -µ s ′ k (4.15) σ 2 k = σ 2 s ′′ k + σ 2 s ′ k (4.16)
The probability distribution function of CINR is then approximated by a lognormal distribution with parameters µ f and σ 2 f given respectively by

µ f = 1 2 ln   k ′ =k p k ′ ,j + e µ k +σ 2 k /2 2 + e σ 2 k -1 e 2µ k +σ 2 k   -2 ln k ′ =k p k ′ ,j + e µ k +σ 2 k /2 σ 2 f = ln   k ′ =k p k ′ ,j + e µ k +σ 2 k /2 2 + e σ 2 k -1 e 2µ k +σ 2 k   -2 ln k ′ =k p k ′ ,j + e µ k +σ 2 k /2
This completes the proof.

Proposition 4.3.2. The probability distribution function of the CINR for the arbitrary network and for the uplink in the multi-cell network can be approximated by lognormal distribution Proof. The CINR value at tth time slot between nodes k and j is given as follows:

g k,j (t) = G k,j (t) η + J l=1,l =j p l (t)G k,l (t) (4.17) 
By performing a similar procedure as performed for the analysis of the downlink CINR, and by similar arguments, the inverse of the CINR (4.17) is given by

1 g k,j = J l=1,l =j p l ( d k,l d k,j ) -µ 10 s k,l /10 |h k,l | 2 + η d -µ k,j 10 s k,j /10 |h k,j | 2 (4.18)
The time index t is ignored for simplicity. Furthermore, the variables d -µ k,j , s k,j , etc., have the same definitions as in the previous subsection. The denominator term in (4.18) as proved in the previous subsection can be approximated by lognormal distribution with parameter µ k,j , and σ 2 k,j defined therein; and it (the denominator term) can be written as e s ′ k where s ′ k, is a Gaussian variable with mean µ s ′ k = µ k,j , and variance σ 2

s ′ k = σ 2 k,j .
Similarly, it is proved in the previous subsection that the term in the nominator of (4.18) has a lognormal distribution with given values of mean E k,l , and variance V k,l ; and can be modeled as e s ′′ k where s ′′ k, has Gaussian distribution with mean µ s ′′ k , and variance σ 2

s ′′ k
. By using the Fenton-Wilkinson approximation, and following a similar procedure to that of the previous subsection, it can be established that the probability distribution function of the CINR (4.17) can be approximated by a lognormal distribution with parameters µ f , and

σ 2 f given respectively by µ f = µ s ′ k -µ s ′′ k (4.19) σ 2 f = σ 2 s ′ k + σ 2 s ′ k (4.20)
This completes the proof of the proposition.

Stochastic Linear Dynamic Model for Power Control

In this subsection, we develop a stochastic linear dynamic framework for adaptive power control.

Proposition 4.3.1. The fast power control can be written by the following linear stochastic dynamic equation:

γ k,j (t + 1) = {1 -β k,j }γ k,j (t) + β k,j γ * k,j (t) + n g (t) (4.21) 
where β k,j is a given step size, n g (t) is a zero mean noise term, and the notation (.) stands for 10 log(.).

Proof. We provide here that how the above linear dynamic equation is obtained.

Let γ * k,n (t) denotes the target SINR that corresponds to the arrival rate which should be achieved at the receiver so that the video bitstream is successfully decoded with a given target bit error rate. Moreover, in order that the actual data rate approaches the arrival rate, the only parameter that can be controlled is the power such that the actual SINR γ k,n (t) approaches the target SINR γ * k,n (t). This is due to that γ k,n (t) = p k,n (t)g k,n (t) where g k,n (t) is channel dependent and can not be controlled. Since controlling the power is equivalent to controlling the SINR, we will perform our analysis in terms of SINR values throughout this chapter. To this end, we proceed as follows. In view of the Shannon capacity formula, the actual data rate r k,j (t) can be related to the SINR γ k,j (t) as follows

r k,j (t) = 1 2 log 2 (1 + γ k,j (t)) (4.22) 
Since video streaming requires high data rate r k,j (t), the corresponding SINR γ k,j (t) should be high during normal network operation. Therefore, we assume that the network operates in high SINR regime where for successfully decoding the video bitstream, the receiver node's achieved SINR >> 1. Let x = 10 log x that denotes the decibel (dB) value of the variable x. Thus, for γ k,j (t) >> 1, the rate r k,j (t) is proportional to γ k,j (t).

In order to find the p k,j (t) such that the actual SINR γ k,j (t) approaches the target level γ * k,j (t), we will model the power variation from one time slot to another as a stochastic linear dynamic equation. To this end, we use the adaptive power control algorithm proposed in [START_REF] Subramanian | Joint rate and power control algorithms for wireless networks[END_REF] which is inspired from [START_REF] Aldajani | Adaptive predictive power control for the uplink channel in ds-cdma cellular systems[END_REF]. We will then introduce an artificial control u p k,j (t) to this power control algorithm in order to drive γ k,j (t) towards γ * k,j (t). The introduction of this control term will be performed later in Section 4.4. In [START_REF] Aldajani | Adaptive predictive power control for the uplink channel in ds-cdma cellular systems[END_REF], an adaptive predictive power control algorithm is developed which is based on the known idea of power control in wireless communication where the receiver compares its achieved SINR to its target and sends a one bit power signal to the transmitter for updating the transmit power accordingly. Thus, we assume that each node adapts its power from one time slot to another according to the following power control algorithm

p k,j (t + 1) = ψ b k,j (t) k,j p k,j (t) (4.23) 
where ψ k,j > 1 is a parameter between 1 and 3 and may vary from one node to another, and

b k,j (t + 1) = sgn[γ * k,j (t) -γ k,j (t)] (4.24) 
where sgn stands for sign/signum function. By taking the logarithm of both sides of (4.23), and then multiplying it by 10, we arrive at

p k,j (t + 1) = p k,j (t) + ψ k,j {γ * k,j (t) -γ k,j (t)} (4.25) 
where p k,j (t) = 10 log(p k,j (t)), ψ k,j (t) = 10 log(ψ k,j (t)), and where the notation log(.) means the common logarithm i.e., logarithm to base 10. As logarithm is a monotonically increasing function, an equivalent power control algorithm can be written as follows

p k,j (t + 1) = p k,j (t) + β k,j {γ * k,j (t) -γ k,j (t)} (4.26) 
where γ * k,j (t) = 10 log(γ * k,j ), and β k,j is a given step size that may vary from one node to another. We now transform the power terms in the above power control equation into respective SINR terms as follows. As γ k,j (t) = p k,j (t)g k,j (t) then in decibel scale we have

γ k,j (t) = p k,j (t) + g k,j (t) (4.27) 
where g k,j (t) = 10 log(g k,j (t)). As g k,j (t) has lognormal distribution, g k,j (t) has then gaussian distribution and its variation can be modeled as follows

g k,j (t + 1) = g k,j (t) + n g (t) (4.28) 
where n g (t) is zero mean gaussian noise term. By combining (4.26), and (4.28), the power control algorithm is then given in the form of an equivalent actual SINR variation model as follows

γ k,j (t + 1) = {1 -β k,j }γ k,j (t) + β k,j γ * k,j (t) + n g (t) (4.29) 
In the above power control algorithm we have not introduced any notion of power constraint. Since by increasing its power, a node may severely affect other nodes by causing them high level of interference, it should be assured that at any time instant the nodes does not increase their power above a certain feasible level. We assume that each node should choose its power from a given feasible set of powers p k,j (t) ≤ p max where p max is the maximum acceptable power a node can transmit and it is the amount of power for which the SINR level of that node reaches a given value γ max . Since the channels and interference gains are time varying, the corresponding value of maximum feasible power will also vary for each node and will be different for different nodes. Thus, in order to formulate this power constraint, we introduce a new variable p f k,j (t) called the feasible power which denotes the maximum power a node j can transmit at time slot t.

Let γ f k,j (t) denotes the value of SINR level when p f k,j (t) is transmitted, then, we have the following result on the feasible power variation. Proposition 4.3.2. The feasible power varies according to the following linear stochastic dynamic model

γ f k,j (t + 1) = {1 -ǫ k,j }γ f k,j (t) + ǫ k,j (t)γ max + n g (t) (4.30) 
where ǫ k,j is a given step size.

Proof. The feasible power variation can be modeled as follows

p f k,j (t + 1) = p f k,j (t) + ǫ k,j {γ max -γ f k,j (t)} (4.31) 
where ǫ k,j is a given step size, and the notations (.) denote the decibel values.

By using a similar argument used for the transformation of (4.26) into (4.29), the above feasible power variations can be written in terms of SINR level (in dBs) as follows

γ f k,j (t + 1) = {1 -ǫ k,j }γ f k,j (t) + ǫ k,j (t)γ max + n g (t) (4.32) 
In order to ensure that p k,j (t) ≤ p f k,j (t) at any time slot t, the arrival rate r * k,j (t) should be adapted such that γ * k,j (t) ≤ γ f k,j (t). The procedure of integrating the notion of feasible power into arrival rate adaptation is provided in the following subsection.

Stochastic Linear Dynamic Model for Rate Adaptation

Proposition 4.3.3. The video rate/arrival rate can be adapted using the following stochastic linear equation

γ * k,j (t + 1) = γ * k,j (t) + ξ k,j (t) γ f k,j (t) -γ * k,j (t) +ξ k,j (t) f T k,j -f k,j (t) γ * k,j (t) + δt n t (t) (4.33) 
where ξ k,j (t) is a given step size and δt , and n t (t) are small positive numbers.

Proof. As in video streaming, the video bitstream (i.e., r * k,j (t)) for each node should be chosen by truncating/switching the bitstream according to its varying channel conditions and the available system resources, we now develop a stochastic linear dynamic model for arrival rate adaptation. We recall that the so-called arrival rate r * k,j (t) is not the actual application layer data rate but denotes an equivalent physical layer data rate required for the corresponding bitstream. Due to the inter-dependent nature of the video frames in video transmission, the video quality can be better determined by the total resource allocation during a time window, which should be long enough for the user to determine the best bitstream for the video that could be supported by the physical layer. One way of dealing with this sort of problems is to consider a time average model for resource allocation such that the average actual/achieved data rate during the given time window approaches to the average arrival rate. This time average model is suitable for video rate adaptation but we aim to perform the power control instantaneously joint with the video rate adaptation by developing a joint framework. Thus, we will propose a model for arrival rate adaptation which will allow us to formulate a joint power control and arrival rate adaptation framework that will enable to adapt the arrival rate in an average sense while allowing the power control instantaneously. We will also integrate the satisfaction/faireness criterion among the nodes to our arrival rate adaptation model. We start by writing the arrival rate adaptation model that is based on time average values and will then convert it into an equivalent instantaneous model. We denote by r f k,j (t) the feasible data rate that corresponds to γ f k,j (t). Let denote the time average of a variable x(t) by x(t) = 1 W T t τ =t 0 x(τ ) where W T = tt 0 is the time segment called the time window during which the arrival rate should not change. Then, our time average model for arrival rate adaptation is given as

follows r * k,j (t + 1) = r * k,j (t) + ρ k,j {r f k,j (t) -r * k,j (t)} + ρ k,j {f T k,j -fk,j (t)}r * k,j (t) + n t (t)(4.34)
where ρ k,j is a given positive step size. The second term to the R.H.S of the above equation ensures that the average arrival rate of the node should be in the feasible region such that the power transmitted does not exceed the maximum value of its feasible power in average where as the third term ensures the fairness among users. If both the feasible power constraint and fairness constraints are satisfied, the arrival rate is still increased by n t (t) which has a very small value. This reflects the desire of each receiver node to have the best possible quality video, and will drive the system to converge at high possible arrival rates. The term n t (t) can be assumed as a Gaussian-distributed variable of a positive mean and a very small variance so that its value is always positive.

In order to be able to develop a joint framework which adapts the arrival rate in average sense while performs instantaneous power control, we propose an equivalent model for arrival rate adaptation as given by

r * k,j (t + 1) = r * k,j (t) + ξ k,j (t){r f k,j (t) -r * k,j (t)} +ξ k,j (t){f T k,j -f k,j (t)}r * k,j (t) + δ t n t (t) (4.35) 
where δ t = 1/W T is a small number, and ξ k,j (t) is a time varying step size defined as

ξ k,j (t) =    1 if t = mW T 0 elsewhere (4.36)
With the above choice of step size, for a positive integer m, the arrival rate will vary at t = mW T in the real sense whereas its variation between t 1 = mt, and

t 2 = mt + W T -1 is negligible.
The idea of defining the above arrival rate control approach is that in video streaming the rate/bitstream is updated after large enough time. Moreover, the above arrival rate control approach ensures that the rate is adapted according to nodes's varying channel and its promised share of system's total resources jointly. In other words, even having a very bad channel, a node will be provided with enough resources to utilize its promised portion of the system capacity. On the other hand, a node with very good channel will be forced to reduce its arrival rate in order not to deprive the nodes with bad channels from system resources.

Similar to the power control algorithm, we write the arrival rate adaptation algorithm (4.35) in terms of SINR levels (in dBs) as follows

γ * k,j (t + 1) = γ * k,j (t) + ξ k,j (t) γ f k,j (t) -γ * k,j (t) +ξ k,j (t) f T k,j -f k,j (t) γ * k,j (t) + δt n t (t) (4.37) 
where δt = 20δ t / log 2 [START_REF] Leung | Power control by interference prediction for broadband wireless packet networks[END_REF].

The main objective now is to develop a joint framework for dynamically adapting γ f k,j (t), and γ * k,j (t), and adjusting the power such that γ k,j (t) approaches to γ * k,j (t).

In the following section, we formulate the above three dynamic equations (4.29), (4.32), and (4.37) as a risk-sensitive control problem in order to provide a dynamic solution to the above joint power control, and rate adaptation problem for each node.

Risk-sensitive Control Problem and its Optimal Solution

In this section, we formulate the above design problem as a risk-sensitive control problem with exponential cost function. We then provide the optimal solution to the problem.

State Space Equation

The above problem is not a standard control problem. Thus, we transform the problem, and formulate it as a linear stochastic problem in standard form. To this end, we introduce a three-dimensional state vector defined as

z k,j (t) = [γ * k,j (t) γ k,j (t) γ f k,j (t)] T (4.38) 
Now, by combining (4.29), (4.32), and (4.37) we have the following state-space model

z k,j (t + 1) = Âk,j (t)z k,j (t) + f k,j (t) + nk,j (t) (4.39) 
where f k,j (t) = [0 0 ǫ k,j γ max ] T , nk,j (t) = δt n t (t) n g (t) n g (t)

T , and

Âk,j (t) =      1 -ξ k,j (t) + ξ k,j (t) f T k,j -f k,j (t) 0 ξ k,j (t) 
β k,j 1 -β k,j 0 0 0 1 -ǫ k,j     
Furthermore, we introduce a control vector ûk,j (t) = [u * k,j (t) u p k,j (t) 0] T into (4.39) in order to drive γ k,j (t) towards γ * k,j (t) and is given as follows

z k,j (t + 1) = Âk,j (t)z k,j (t) + f k,j (t) + Bû k,j (t) + nk,j (t) (4.40) 
where B is a three-dimensional identity matrix. The above state space model can be written in standard form as follows

x k,j (t + 1) = A k,j (t)x k,j (t) + Bu k,j (t) + n k,j (t) (4.41) 
where

x k,j (t) =   z k,j (t) 1   , A k,j (t) =   Âk,j (t) f k,j (t) 0 1   , B =   B 0 0 0   , u k,j (t) =   ûk,j (t) 0   , and n k,j (t) =   nk,j (t) 0   .

Cost Function Formulation

We now define the following quadratic cost function for node k:

J k,j = τ t=1
x T k,j (t)Qx k,j (t) + u T k,j (t)Ru k,j (t) (4.42) where

R =   R 0 0 1   which is a positive definite matrix, Q =   Q 0 0 0   , and
where R is a three-dimensional identity matrix, and

Q =      1 -1 0 -1 1 0 0 0 0     
The above choice of Q results in

x T k,j (t)Qx k,j (t) = γ * k,j (t) -γ k,j (t) 2 (4.43)
whose minimization is the main objective of the above control problem. One can see that minimizing E(J k,j ), where E(.) is the expectation over time of J k,j , will minimize the average rate deviation (as SINR deviation is equivalent to rate deviation) defined in (4.43) and is suitable for non real time data transmission. In our case, we deal with video transmission and therefore construct the following exponential cost function,

J k,j = E {exp(J k,j )} (4.44)
The purpose of introducing the exponential cost function is to ensure that the rate deviation is minimum so that the video quality changes smoothly with almost zero jitter. The main idea is that due to the exponential cost, the impact of rate deviation will be amplified and the controller will try to keep J k,j very small which will minimize the rate deviation and hence reduce the jitter in the video transmission.

We then go further and improve the exponential cost function by defining a more general cost function called risk-sensitive. In fact, in [START_REF] Whittle | Risk-Sensitive Optimal Control[END_REF], the authors introduces a so-called risk-sensitive parameter to the above exponential function whose variation can change the cost function and for a large value can make the cost function infinite irrespective of the control strategies. In context to our problem this parameter is a design parameter which can be varied according to a desired criterion and which in turn can give less or more weight to the rate deviation term in the cost function. The problem with exponential cost and the risk-sensitive parameter is then called risk-sensitive control problem. We therefore re-formulate our problem as a risk-sensitive control problem where the value function is defined as

V k,j = E e µJ k,j (4.45) 
where µ > 0 is the risk-sensitive parameter. Then by applying the logarithmic transformation we have

W k,j = inf {u k,j (0)...,u k,j (T )} 1 µ log V k,j (4.46) 
Our problem becomes then to find the sequence of control {u k,j (0)..., u k,j (T )} that minimizes the above cost function subject to the linear stochastic state equation (4.41).

In the following two subsections, we provide a better interpretation of the use of risk-sensitive control in our context and the solution of our risk-sensitive control problem.

Intuitive View of the Risk-Sensitive Criterion

In order to have an intuitive view of the risk-sensitive criterion, let

R µ := 1 µ log E e µJ k,j ,
we look at Taylor expansion of R µ at µ close to zero. Then, it leads to

R µ = E{J k,j } + µ 2 var(J k,j ) + o(µ 2 )
This means that the risk-sensitive takes not only the expectation but also the variance!. In other words, by minimizing the cost function W k,j , one will minimize the average value of J k,j (i.e. the average rate deviation) and the variance of the rate deviation. Besides, one can notice the following, -If µ -→ 0, our problem becomes a risk-neutral. In other words, the minimization of W k,j is equivalent to the minimization of the average delay.

-If µ > 0, our problem is a risk-averse, i.e. depending on the value of µ, one will increase or decrease the sensitivity of the system to the delay. One can then optimize the system by varying the value of µ. Notice that the cost W k,j is not linear in µ.

Notice also that, in general, the risk-sensitive criterion is in the form

F -1 [E{F(classical cost criterion)}] .
where F is a bijective and continuous function.

Solution of the Problem

In the following, the receiver and transmitter indices k, and j will be dropped for simplicity and the subscript of any variable will denote the time index. The optimal solution of the control problem (4.41)-(4.46) can be obtained by the solution of the following Riccati equations [START_REF] Campi | Nonlinear discrete-time risk-sensitive optimal control[END_REF]:

P t = Q + A T t+1 P t+1 A t+1 -A T t+1 P t+1 B R + B T P t+1 B
-1 B T P t+1 A t+1 ; P T = 0 (4.47)

P µ t = Q + A T t+1 Pµ t+1 A t+1 -A T t+1 Pµ t+1 B R + B T Pµ t+1 B -1 B T Pµ t+1 A t+1 ; Pµ T = 0 (4.48) Pµ t+1 = P µ t+1 + P µ t+1 1 µ I -P µ t+1 -1 P µ t+1 (4.49)
The optimal value of the cost function is given as follows

W (x t ) = 1 2 x T t P µ t x t + 1 µ log F t ; 1 µ I -P µ t+1 ≥ 0, ∀t (4.50) 
where F t is given by

F t = F t+1 |(I -µP µ t+1 ) -1 |; F T = 1 (4.51)
The optimal control law is:

u µ t = -R + B T Pµ t+1 B -1 B T Pµ t+1 A t x t (4.52)
The state at each time t is then obtain using:

x t = A t-1 (x t-1 ) -B R + B T Pµ t B -1 B T Pµ t A t-1 x t-1 + n t (4.53)
We recall that the state

x t = [γ * k,j (t) γ k,j (t) γ f k,j (t) 1]
T where γ * k,j (t), γ k,j (t), and γ f k,j (t) are the target, the actual, and the feasible SINR's respectively. Thus, the SINR values corresponding to the arrival, the actual transmit, and the feasible data rates are obtained from which the corresponding arrival rate and power allocation can be determined.

Implementation

The proposed controller for the joint power and rate allocation is implemented at the base station in the cellular network and at the video transmitter nodes in the arbitrary network. Each receiver node estimates its actual SINR (i.e., channel quality) and feeds it back to the baste station/video transmitter node. Depending upon the SINR of the receiver node and its target and instantaneous fairness, a given target bit error rate criterion, and the maximum acceptable/feasible transmit power level, each base station/video transmitter node solves the above control problem. The base station/video transmitter node, thus, gets the desired value of the video rate (video quality), and the transmit power needed for video transmission at this rate. In the case of cellular network where there is a remote video server, the base station adapts its transmit power and communicates the desired video rate with the remote video server which adapts its video quality and rate accordingly. Fig. 1 illustrates the implementation of the controller and Since the power adaptation is instantaneous which is performed at the base station, and the video rate/quality is updated after a long time segment i.e., W T , the signaling delay between the remote server and the base station has negligible impact on the video transmission to the receiver node. In the case of the arbitrary network, the transmitter node is the video source and there is no signaling delay like the cellular network except for the signaling delay between the receiver and transmitter nodes which is very small.

Simulation Results

We consider a network with 14 nodes uniformly distributed in a region of 1Km radius. The nodes are working in pairs where half of them act as videosources/transmi-tters while the remaining half act as receivers. The transmitters are assumed to use the same bandwidth of 1MHz where a transmitter's multimedia data is destined to only one receiver. Each node has a peak power constraint p max which corresponds to the amount of power that results in its SINR value reaches to 20 dBm. We consider a frequency selective Rayleigh fading channel where the channel gain has a small-scale Rayleigh fading component and a largescale path loss and shadowing component. Path losses are calculated according to Cost-Hata Model [118] and shadow fading is log-normally distributed with a standard deviation of 8dBs. The time space is divided into slots where the duration of each slot is 1ms. The nodes are assumed to be stationary and the distance between the transmitter and the receiver is assumed to remain constant.

The power spectral density of noise is -174 dBm/Hz. The rate and power are updated jointly. Since the power update is not explicit and is performed in the shape of SINR, the nodes then adapt their transmit powers according to (4.23).

In iation between the target and the actual SINR levels. We compare our results to the case of linear cost i.e., when a Linear Quadratic Gaussian (LQG) controller as used in [START_REF] Subramanian | Joint rate and power control algorithms for wireless networks[END_REF], [START_REF] Leung | Power control by interference prediction for broadband wireless packet networks[END_REF] is employed. A LQG controller only minimizes the average SINR deviation whereas the RS controller minimizes the variance of the SINR deviation in addition to minimizing its average. The smaller the cost incurred for the controller, the better its performance, since the cost is a function of the deviation between the target and the actual SINR levels. The figure shows that the proposed RS approach outperforms the LQG approach. In addition, the figure also highlights the performance improvement of the RS approach by varying the value of the risk-sensitive parameter. where each TTI is equal to 1ms. The figure shows that the RS approach outperforms the LQG solution and its performances is better for higher values of risksensitive parameter. The results in the figure provides guidelines for choosing the appropriate value of the risk-sensitive parameter for achieving a given target delay constraint.

The figures,

Conclusion

In this chapter, we studied the challenging problem of power allocation, and video bitstream adaptation for video streaming in multi-node wireless networks with interference. We developed a cross-layer optimization framework that performs instantaneous power control at the PHY/MAC layer joint with video rate adaptation (in an average manner) at the APPLICATION layer. The proposed joint power control and rate adaption framework exploits the time diversity of the nodes' channels, takes into account the stringent delay constraints of the video services, and fairly distributes the limited available resources among the users. In view of the time varying channels and interferences, stringent delay constraints, and a certain fairness/satisfiction criterion, we modeled our problem as a stochastic control problem. We then developed a risk-sensitive control approach for this problem by introducing a non-linear cost function called risk-sensitive cost function. We then provided the optimal solution to the risk-sensitive problem and provided simulation results to assess the performance of our proposed framework.

tion error, and are reported to the base station where their observations are used for resource allocation. The computation of the adapted CQIs is performed in such a way that based on the available adapted CQIs at the base station, the rate allocated to a user at any time is as close as possible to its actual experienced rate at that time.

First, we develop a best-M scheme where each user reports the individual adapted CQIs of its best M sub-channel/sub-carriers, and an average adapted CQIs value for the remaining sub-channels. In this scheme, the value of M may vary from user to another but like the traditional best-M scheme, it is fixed for each user. In order to obtain the adapted CQIs, we model the CQI variations as a discrete time linear dynamic system, formulate a stochastic control problem with quadratic cost function, and use stochastic control theory to solve this problem.

The quadratic cost function is formulated in such a way that its minimization results in obtaining the adapted CQIs for which the deviation between the user's actual experienced rate and the allocated rate at the base station is minimized. In our stochastic framework, first we assume that the imperfections caused due to feedback delay and CQI estimation error are Gaussian distributed. In this case, we model the CQI variations as a discrete time linear dynamic system with Gaussian noise, and use the Linear Quadratic Gaussian (LQG) controller to obtain the adapted CQIs for each user. Then, we consider the more realistic scenario where the distribution of the aforementioned imperfections is not known. In this case, we model the CQI variations as a discrete time dynamic system with a noise whose distribution is unknown. We then use H ∞ controller to solve the corresponding stochastic problem for obtaining the adapted CQIs. The H ∞ controller does not need information about the distribution of the noise.

Then, we develop another scheme called dynamic best-M CQI reporting scheme which like the aforementioned scheme takes into account the feedback delay and the estimation error at the CQIs reporting level, and dynamically determines the efficient number M of adapted CQIs that should be reported by each user to the base station. This scheme uses the same approach of stochastic control theory for obtaining the adapted CQIs as used in the aforementioned best-M scheme with fixed M. However, in addition, we develop a stochastic framework for obtaining the efficient number M of the CQIs that should be reported by each user. Based on this stochastic framework, we develop an efficient distributed constrained interactive trial and error algorithm that is implemented at the user terminal. Based on its channel conditions, using the distributed algorithm, each user separately finds the efficient number of CQIs that should be reported by him/her. This algorithm also ensures that the system's overall feedback overhead does not exceed a given value. We prove the convergence of our distributed algorithm using stochastic game theory.

We perform simulations in order to assess the performance of the proposed schemes. The major contribution of this chapter are: the design of CQI reporting schemes that deal with feedback delay and estimation error at CQI reporting level, the formulation of the problem as a stochastic control problem both with Gaussian distributed noise and an unknown noise, and the development of a distributed algorithm for determining the efficient value of M for each user.

System Description and Problem Statement

We consider a multi-carrier and multi-user system with N sub-channels, and K simultaneously active users around the base station. A sub-channel is expected to experience specific propagation and interference levels and thus a specific channel conditions. In such a system, there are KN CQIs to be reported by the users to the base station at each time. This hugely increases the signalling overhead in the uplink and reduces the useful uplink data throughput especially for high number of users K which is the case in practice. In the existing work on the signalling overhead reduction in multi-carrier and multi-user system e.g., the 3GPP-LTE standard, the solution adapted is the best-M CQI reporting scheme where each user feeds back the individual CQIs of its best M sub-channels where the value of M is equal to 4 or 5, and an average CQI value for the remaining and J is the number of interfering cells. The term J l=1,l =j P n l G j k,l (t) denotes the total interference caused to user k on sub-channel n.

In the following two sections, we develop two novel CQI reporting schemes which address both the overhead reduction and the imperfection ( feedback delay and CQI estimation error) issues jointly.

Robust best-M CQI Reporting Scheme

In this section, we develop a robust best-M CQI reporting scheme in which the value of M is fixed for each user, and which takes into account the impact of the estimation error and the feedback delay. In this scheme, first, each user computes the so-called adapted CQIs for all its sub-channels. Then, each user selects the best M adapted CQIs among its all N computed adapted CQIs and reports them individually while reports an average value for the remaining N -M adapted CQIs. We start our CQI reporting scheme development by formulating the user's achieved data rate variations as a linear discrete time stochastic equation. To this end, we proceed as follows.

Let φ n k,j (t) = σ 2 + J l=1,l =j P n l G j k,l (t) denote the interference plus noise term in the SINR expression (5.1). It is known from [START_REF] Chen | Admission control schemes for wireless communication networks with adjustable transmitter powers[END_REF][START_REF] Subramanian | Joint rate and power control algorithms for wireless networks[END_REF][START_REF] Gudmundson | Correlation model for shadow fading in mobile radio systems[END_REF][START_REF] Leung | Power control by interference prediction for broadband wireless packet networks[END_REF][START_REF] Leung | A kalman-filter method for power control in broadband wireless networks[END_REF] that the interference plus noise φ n k,j (t) can be modeled as

φ n k,j (t + 1) = φ n k,j (t)q n k,j (t) (5.2) 
where q n k,j (t) is a unit mean noise term that models the interference fluctuations. Likewise, the dynamics of the total interference, and the useful received power gain can be modeled as [START_REF] Gudmundson | Correlation model for shadow fading in mobile radio systems[END_REF][START_REF] Leung | Power control by interference prediction for broadband wireless packet networks[END_REF]:

φ n k,j (t + 1) + P n j G n k,j (t + 1) = φ n k,j (t) + P n j G n k,j (t) s n k,j (t) (5.3) 
where s n k,j (t) is a unit mean random variable which is correlated with q n k,j (t). Let x n k,j (t) be the achieved bit rate of user k on the nth sub-channel at time t. To define this rate, we use the Shannon's upper bound for the achievable rate:

x n k,j (t) = log 2 (1 + g n k,j (t)) = log 2 φ n k,j (t) + P n j G n k,j (t) φ n k,j (t) 
(5.4)

From equations (5.2) and ( 5.3), we get

x n k,j (t + 1) = x n k,j (t) + log 2 (s n k,j (t)) -log 2 (q n k,j (t)) = x n k,j (t) + w n k,j (t) (5.5) 
where ω n k,j (t) = log 2 (s n k,j (t))log 2 (q n k,j (t)) is a zero mean disturbance of some variance with some probability distribution. Since the above analysis is valid for all cells, the subscript j will be omitted in the rest of this chapter, and the rate for user k on the nth sub-channel at time t will be denoted by x t k,n . The rate and the CQI are used in this chapter to denote the same quantity.

Reporting Scheme Design

We consider that the value of M may vary from one user to another and therefore denote it by M k . The user does not know the actual rate x t k,n that the channel can support but has an estimation/observation of the actual rate denoted by xt k,n as given by

xt k,n = x t k,n + ϑ t k,n (5.6) 
where ϑ t k,n denotes a zero mean estimation/obervation error. This estimation / observation error in the rate may reflect the error in the SINR measurement due to variations in the interference, etc. Moreover, due to feedback delay, the rate allocated at time t at the base station will depend on the rate estimation at user terminal at time tτ where τ is the feedback delay. In other words, the CQI available at time t at the base station which the base station assumes to be computed based on xt k,n is actually the CQI corresponding to xt-τ k,n . From the base station point of view, the impact of feedback delay at the user terminal can be formulated as follows

xt k,n = xt-τ k,n + ν t k,n (5.7) 
where ν t k,n is a zero mean error term that reflects the impact of feedback delay. The formulation of (5.7) and the introduction of the impact of the feedback delay as a zero mean error follows from the rate variation model given by (5.5) where the rates between two time instants varies by a zero mean noise. By combining (5.6), and (5.7), we have

xt-τ k,n = x t k,n + v t k,n (5.8) 
where v t k,n = ϑ t k,n -ν t k,n accommodates the estimation error and the impact of feedback delay. As xt-τ k,n is the observation/estimation which should be exploited for computing the CQI that will be used for rate allocation at time t, we will denote it by y t k,n . Note that this change of notation changes nothing but is performed for avoiding confusions while formulating our problem as a standard control problem. The above equation now becomes

y t k,n = x t k,n + v t k,n (5.9) 
Using the aforementioned analysis, the rate variations can be written according to the following discrete time linear state space dynamic system

x t+1 k,n = x t k,n + w t k,n (5.10) 
y t k,n = x t k,n + v t k,n (5.11) 
In our scheme, user k will not feed back the actual CQI but an intelligently computed CQI/rate denoted by x t k,n that is called the adapted CQI in this thesis. The main idea of introducing the so-called adapted rate/CQI is to accommodate for the impact of the imperfections (i.e., feedback delay and CQI estimation error) on the user's achievable rate. Due to feedback delay the adapted CQI computed at time tτ will arrive to the base station at time t where the observation of this delayed CQI is then used for resource allocation. In view of its use at time t for resource allocation at the base station and in order to avoid confusion in the problem formulation, we will use superscript t instead of t-τ and will denote the adapted CQI/rate computed at time tτ by x t k,n . The user will compute x t k,n in such a way that it accommodates the impact of both estimation error at the user terminal and the feedback delay, and is as close as possible to x t k,n . Similar to that of x t k,n , the time variations of x t k,n can be modeled as follows

x t+1 k,n = x t k,n + w t k,n (5.12) 
where ω t k,n is a zero mean noise. This adapted CQI is then reported to the base station where its observation is used for resource allocation. We propose a control theoretic approach to regulate/control the adapted rate/CQI such that it approaches the actual rate, and consequently the rate allocated at the base station is very close to the actual experienced rate. The objective of our work is to make x t k,nx t k,n (i.e., the deviation between the allocated and the actual experienced rate) as small as possible. In order to achieve this objective, we use linear control theory with quadratic cost. To this end, we will model our problem as a standard linear control problem, and define a quadratic cost function which will minimize the rate deviation x t k,nx t k,n . The dynamic system (5.10-5.11) has imperfect observation/measurement where x t k,n in (5.12) is perfectly known. Thus, in order to formulate both the dynamic systems (5.10-5.11), and (5.12) as a standard discrete time dynamic system, we assume that we have an imperfect observation for x t k,n given by

y t k,n = x t k,n + ǫ 0 v t k,n (5.13) 
where 0 < ǫ 0 <<< 1 (i.e., almost equal to zero). With this value of ǫ 0 , the so-called observation y t k,n is almost equal to x t k,n . Moreover, as x t k,n is the variable that shall be controlled so that it approaches the actual rate x t k,n , we introduce a control u t k,n into (5.12), and model the adapted CQI/rate variations as the following space state dynamic model

x t+1 k,n = x t k,n + u t k,n + w t k,n (5.14) 
y t k,n = x t k,n + ǫ 0 v t k,n (5.15) 
In order to proceed with the problem formulation, we combine (5.10) with

(5.14), and (5.11) with (5.15). To this end, we introduce the following two-dimensional state, observation, control, and noise vectors defined as

x t k,n = [x t k,n x t k,n ] T y t k,n = [y t k,n y t k,n ] T u t k,n = [0 u t k,n ] T x t k,n = [w t k,n w t k,n ] T v t k,n = [v t k,n ǫ 0 v t k,n ] T
The combine state space dynamic model for actual rate and adapted CQI/rate can now be written as follows

x t+1 k,n = x t k,n + u t k,n + w t k,n (5.16 
)

y t k,n = x t k,n + v t k,n (5.17) 
Equation (5.16) represents the state while equation (5.17) represents the observation/measurement of a discrete time dynamic system affected by disturbance/noise of some probability distribution. For each user, we get N linear state equations.

We then seek a control sequence { u t k,n } that minimizes for each user the following stochastic quadratic cost function

Lk = T t=1 N n=1 x t k,n 2 
Q + u t k,n 2 R (5.18)
where the notation b 2 S denotes the weighted norm of the vector b given as b H Sb, R is a two dimensional identity matrix, and

Q =   1 -1 -1  
The above choice of R, and Q results in

x t k,n 2 
Q + u t k,n 2 R = x t k,n -x t k,n 2 + u t k,n 2 
(5. [START_REF] Etoh | Advances in wireless video delivery[END_REF] which is equivalent to minimizing x t k,nx t k,n , and that is the main objective. Thus, (5.16), (5.17), and (5.18) represents a linear discrete time imperfect-state measurement disturbance attenuation problem [START_REF] Baser | H-Infinity Optimal Control and Related Minimax Design Problems: A Dynamic Game Approach[END_REF]. above state space model (5.20,5.21) can be written as

z t+1 k = Az t k + Bu t k + D t 1 γ t k (5.22) z t k = Cz t k + D t 2 ψ t k (5.23)
where the covariance matrices of both γ t k and ψ t k are now equal to an identity matrix. The quadratic cost can now be written as

L k = T t=1 z t k 2 Q + u t k 2 R (5.24)
where R and Q are weighting matrices with R an identity matrix of dimension 2N , and Q a square matrix of dimension 2N defined as

Q =        Q 0 ... 0 0 Q ... 0 .......... 0 0 ... Q       
In this problem formulation, weighting matrix R is assumed to be an identity matrix. However, a more general cost function can be obtained by appropriate scaling of the weight matrix R.

LQG based solution

In this case, we assume that the noise has Gaussian distribution [START_REF] Chen | Admission control schemes for wireless communication networks with adjustable transmitter powers[END_REF]- [START_REF] Leung | A kalman-filter method for power control in broadband wireless networks[END_REF]. The above problem (5.22-5.24) is then a standard discrete time linear control problem with Gaussian noise and quadratic cost. The solution to this problem is known as the LQG solution [START_REF] Astrom | Introduction to Stochastic Control Theory[END_REF][START_REF] Kailath | Linear Estimation[END_REF]. As defined earlier, the matrices D t 1 , and D t 2 are time-varying. Thus, in order to use the standard LQG solution with constant covariance matrices of the noises, we transform the state space model (5.22,5.23) into the following equivalent model:

z t+1 k = Az t k + B t u t k + γ t k (5.25) z t k = C t z t k + ψ t k (5.26)
N variables x t k,n for all the N sub-channel of the user k which are the adapted CQIs/rates. The user then reports the individual values of the best M k adapted CQIs and an average value for the remaining N -M k adapted CQIs given by

x t k,m = 1 N -M k N n=M k +1
x t k,n to the base station.

H ∞ Controller Based Solution

We now approach the problem more realistically where the probability distribution of the noise is unknown. In this case, we propose an H ∞ controller based solution [START_REF] Baser | H-Infinity Optimal Control and Related Minimax Design Problems: A Dynamic Game Approach[END_REF] for problem (5.22-5.24) for which we proceed as follows.

From (5.24), the instantaneous objective function can be written as

L t k = z t k 2 Q + u t k 2 R (5.35)
This is now a discrete time linear dynamic system modeled as a control problem which is disturbed by an unknown noise process. The robust solution to this control problem can be obtained by assuming the worst case noise. Therefore instead of minimizing the cost function (5.24), one should consider the following cost function [START_REF] Baser | H-Infinity Optimal Control and Related Minimax Design Problems: A Dynamic Game Approach[END_REF] J

π = T t=1 (L t k -π 2 γ t k 2 ) (5.36)
where π 2 is the level of attenuation. The cost function (5.36) can be viewed as the cost function of a minimax optimization problem in which the cost is minimized over the maximum value of the unknown disturbance. This minimax problem can also be viewed as a zero sum game of two players. In this game, cost J π is minimized by the first player which is the controller u t k while it is maximized by the second player which is the noise γ t k . The optimal solution is obtained at the appropriate value of the attenuation level π 2 . One can refer to [START_REF] Baser | H-Infinity Optimal Control and Related Minimax Design Problems: A Dynamic Game Approach[END_REF] for more general class of discrete time zero-sum games, with various information patterns, where sufficient conditions for the existence of a saddle point are provided when the information pattern is perfect and imperfect state.

With this insight the minimax optimization problem for a given value of π 2 can now be written as

min u t k max γ t k J π (5.37)
where J π is defined in (5.36) and z t k evolves according to (5.22). The solution to this problem can be obtained according to the following theorem [START_REF] Baser | H-Infinity Optimal Control and Related Minimax Design Problems: A Dynamic Game Approach[END_REF]. Theorem 5.3.1. [START_REF] Baser | H-Infinity Optimal Control and Related Minimax Design Problems: A Dynamic Game Approach[END_REF] Consider the problem described by (5.22), (5.23), (5.24), and (5.36), then for a given attenuation π 2 there exists for all t a state feedback controller u t k such that

u t k = -(M t+1 ) -1 + I -π -2 D t 1 (D t 1 ) T -1 I -π -2 Σ t M t -1 žt k (5.38)
where M t , Σ t and state estimate vector žt k are defined/given as, 1) M t is a minimal non-negative definite solution obtained by the following Riccati Recursion

M t = Q + M t+1 + I -π -2 D t 1 (D t 1 ) T -1 ; M T +1 = 0 (5.39) such that M t+1 -π -2 D t 1 (D t 1 ) T > 0 (5.40)
2) Σ t is a minimal non-negative definite solution obtained by the following Riccati Recursion

Σ t+1 = D t 2 (D t 2 ) T + (Σ t ) -1 + D t 2 (D t 2 ) T -1 -π -2 Q -1 ; Σ 1 = Q 0 (5.41)
such that Q 0 is positive definite and

(Σ t ) -1 -π -2 Q > 0 (5.42)
2) the state estimate žt k is generated by,

žt k = I + Σ t D t 2 (D t 2 ) T -1 -π -2 Σ t M t -1 zt k + Σ t D t 2 (D t 2 ) T -1 z t k (5.43) and 
zt+1 k = zt k + u t k + (Σ t ) -1 + D t 2 (D t 2 ) T -1 -π -2 Q -1 × (π -2 Qz t k + D t 2 (D t 2 ) T -1 ( z t k -zt k ) ; z1 k = 0 (5.44)
In addition, the following constraint on the spectral radius of Σ t M t , i.e., ρ(Σ t M t ) < π 2 , should also be satisfied.

The above theorem states the existence of a controller u t k . This controller is called the H ∞ controller and is obtained for a given value of π 2 .

Note that the matrices D t 1 , and D t 2 are time-variant, T is finite, and the problem defined above is time-variant finite-horizon problem. If D t 1 , and D t 2 like A, B and C are time-invariant and T → +∞, then the problem is called time-invariant infinite horizon problem whose solution is more simple. This case corresponds to the circumstances when the users mobility is low and the system is operating in conditions close to steady state. For a given attenuation π 2 , the solution of our problem for infinite horizon case can be obtained according to the following theorem [START_REF] Baser | H-Infinity Optimal Control and Related Minimax Design Problems: A Dynamic Game Approach[END_REF]. Theorem 5.3.2. [START_REF] Baser | H-Infinity Optimal Control and Related Minimax Design Problems: A Dynamic Game Approach[END_REF] Consider the problem described by (5.22), (5.23), (5.24), and (5.36), then for T → +∞ and a given attenuation π 2 there exists for all t a state feedback controller u t k such that

u t k = -M -1 + I -π -2 D 1 D T 1 -1 I -π -2 ΣM t -1 žt k (5.45)
where M, Σ, D 1 , and D 2 are all time-invariant; and where M, Σ, and state estimate vector žt k are defined/given as, 1) M is a minimal non-negative definite solution of the following Riccati Algebraic Equation (ARE)

M = Q + M + I -π -2 D 1 D T 1 -1 (5.46) such that M -π -2 D 1 D T 1 > 0 (5.47)
2) Σ is a minimal non-negative definite solution of the following Riccati Algebraic Equation (ARE)

Σ = D 2 D T 2 + (Σ) -1 + D 2 D T 2 -1 -π -2 Q -1 (5.48) such that Σ -1 -π -2 Q > 0 (5.49)
2) the state estimate žt k is generated by,

žt k = I + Σ D 2 D T 2 -1 -π -2 ΣM -1 zt k + Σ D 2 (D T 2 -1 z t k (5.50) and zt+1 k = zt k + u t k + Σ -1 + D 2 D T 2 -1 -π -2 Q -1 × (π -2 Qz t k + D 2 D T 2 -1 ( z t k -zt k ) ; z1 k = 0 (5.51)
In addition, the following constraint on the spectral radius of ΣM, i.e., ρ(ΣM) < π 2 , should also be satisfied.

Thus, for each user and at each time t, we get the optimal control vector u t k and the estimate for the state vector z t k . In other words, we get the estimates of N variables x t k,n for all the N sub-channel of the user k which are the adapted CQIs/rates.

Selection and Reporting of the Best M k CQIs

By using the above methods i.e., the LQG and the H ∞ approaches, each user computes the so-called adapted CQIs for all its N sub-channels. Each user k then selects its best M k sub-channels and reports an individual CQI (i.e., x t k,n ) on each of these M k best sub-channels. A single CQI for the remaining N -M k subchannels is reported by each user which is obtained by calculating an average value of the remaining N -M k CQIs (i.e., x t k,m = 1

N -M k N n=M k +1 x t k,n
). The observations of these adapted CQIs/rates at the base station are then used in the resource allocation.

Dealing with Noisy Feedback Channels

The CQI reporting scheme developed in this section considers the CQI/rate estimation error at the user terminal, and the impact of the delay occurring between the computation of the CQIs and their use at the base station. However, the feedback channel may be noisy, and the CQIs received at the base station may have an additional noise term which is not studied in our scheme design. In this subsection, we study the impact of the noisy feedback channel on the design of our CQI reporting scheme. For simplicity purposes, we perform this analysis for a single CQI reporting whose generalization to the above designed scheme is straight forward.

We recall that the actual CQI/rate at time t is denoted by x t k,n . Moreover, x t k,n denotes the adapted CQI/rate thats accommodates the impact of estimation error and feedback delay, and which is computed at time tτ , and are used for resource allocation at the base station at time t. The observation of x t k,n is then used for resource allocation at time t. By assuming that the feedback channel is noisy, the observation of this adapted CQI at the base station can be written in the following form

ŷt k,n = x t k,n + n t k,n (5.52) 
where n t k,n is a zero mean noise term with some variance. The base station will perform resource allocation on the basis of this noisy observation, thus, the deviation between x t k,n and ŷt k,n should be made as small as possible. This deviation minimization can be formulated as the following minimization problem

θ k,n = min E ŷt k,n -x t k,n 2 
(5.53)

By putting (5.52) in (5.53), we arrive at

θ k,n = min E x t k,n + n t k,n -x t k,n 2 = min E x t-τ k,n -x t k,n 2 + E{ n t k,n 2 } -2E{x t k,n -x t k,n }E{n t k,n } = min E x t k,n -x t k,n 2 + E{ n t k,n 2 } = min E x t k,n -x t k,n 2 
(5.54) which is the same as the CQI/rate deviation minimization objective of our CQI reporting scheme. The last equality results due to the fact that as we have a zero mean noise so the term with E{n t k,n } is equal to zero, and E{ n t k,n 2 } is a term that can not be controlled, and has therefore considered as constant.

According to the above analysis, the best that can be done at the user terminal in order to provide more accurate CQIs to the base station is to deal with the CQI/rate estimation error and the feedback delay in the design of the CQI reporting scheme.

CQIs are not reported to the base station for user k at time t: (5.56)

j t k,m =          1 
The letter m in the subscript of j t k,m denotes the total number of individually non-reported sub-channels and should not be confused with the letter n in the subscript of i t k,n which denotes the index of the nth best sub-channel for user k. Since the total number of individually non-reported sub-channel for any user k is equal to N -M k with M k = N n=1 i t k,n , we define its set of the feasible indicators as follows

χ k = {i t k , j t k ∈ {0, 1} N | j t k,m = 1, ∀m = N -M k ; j t k,m = 0, ∀N -M k +1 ≤ m < N -M k } (5.57) 
We now define the instantaneous deviation between the users' actual experienced rates and the adapted rate/CQI reported to the base station. The rate deviation for user k at time t is defined as

L t k = N n=1 i t k,n x t k,n 2 
Q + N m=1 j t k,m m xt k,m 2 Q 
(5.58)

where x t k,n 2 
Q = x t k,n -x k,n 2 , xt k,m 2 
Q = xt k,m -x k,m 2 
; and where

x t k,n , x t k,n and x t k,m = 1 N -M k N n=M k +1
x k,n are the same as defined in the previous section, and

xt k,m = 1 N -M k N n=M k +1 x k,n .
As it is explained in the previous section that in order to improve the efficiency of the CQIs reporting scheme, the above rate deviation should be made as small as possible. Since

xt k,m 2 
Q represents the difference between the value of the average actual rate/CQI and the average adapted rate/CQI over m sub-channel, it is multiplied by m in (5.58) in order that the impact of the total rate deviation for the m sub-channels is accounted for in the design of the reporting scheme.

In addition, we impose restrictions on the total sum of the CQIs reported by all users to the base station since the objective of our work is not only to develop an efficient reporting scheme but also to reduce the signalling overhead in the uplink. Since in the traditional best-M CQI reporting scheme the total number of CQIs reported by all the K user is equal to M K, we choose this figure as our performance metric. In our framework, we introduce a constraint on the total number of reported CQIs which ensures that this number is less than or equal to M K most of the time and is defined by

Pr K k=1 N n=1 i t k,n ≤ M K ≥ (1 -ε) (5.59)
which determines that the probability that this constraint is satisfied is greater then (1ε) where 0 << (1ε) < 1.

We now construct our optimization framework as follows

min E K k=1 N n=1 i t k,n x t k,n 2 Q x t k,n + N m=1 j t k,m m xt k,m 2 Q x t m,n (5.60) 
s.t. Pr K k=1 N n=1 i t k,n ≤ M K ≥ (1 -ε) (5.61) i t k,n , j t k,m ∈ χ k , ∀k, n, m (5.62) 
where

x t k,n 2 
Q = x t k,n -x k,m , and xt k,m 2 
Q = xt k,m -x k,m
are obtained by using the solution of the linear dynamic control problem presented in the previous section. The actual value of the rate deviation for a good quality sub-channel may be higher than that for bad quality sub-channel, thus, in order to avoid the selection of bad quality sub-channels, the normalization in the objective function of the above minimization problem is performed. The above optimization problem is a stochastic binary integer problem that should be solved separately by each user (i.e., in a distributed way).

Distributed solution

In order to develop a distributed solution, we first transform our constrained framework into an unconstrained relaxed problem as follows. Let S be the set of i t k,n 's that satisfy the common constraint K k=1 N n=1 i t k,n ≤ M K and is defined as follows

S = i t ∈ {0, 1} KN | K k=1 N n=1 i t k,n ≤ M K (5.63)
Let 1 {i t k ∈S} be an indicator for user k that is equal to 1 if i t k = [i t k,1 , ..., i t k,N ] T ∈ S and 0 otherwise. Let denote the average cost of a user k at time t by

L t k = E N n=1 i t k,n x t k,n 2 Q x t k,n + N m=1 j t k,m m xt k,m 2 Q x t m,n (5.64) 
The relaxed problem can now be described as follows: if i t ∈ S i.e., if the common constraint K k=1 N n=1 i t k,n ≤ M K is satisfied then each user aims to minimize his/her rate deviation L t k as defined by (5.64) and which is called the cost function hereafter. If the common constraint is not satisfied, then we add a penalty cost Ψ k which is big enough compared to L t k . The new cost function that each user has to minimize can now be written as

L t k = L t k 1 {i t k ∈S} + (Ψ k ) 1 {i t k ∈S} (5.65) 
The main objective now is that each user separately minimize its cost as defined above in a distributed manner. The above cost that each user k has to minimize separately, depends upon the common constraint. Since the common constraint not only depends upon the value of M k chosen by user k but also on the values of M k 's for all the other K -1 users, all the users are completely interdependent in minimizing their individual costs. Thus, it is a distributed control problem where the users are coupled by the common constraint but do not interact with each other directly for their decisions on M k 's. In this setting, it is thus impossible for the common constraint to be satisfied all the times. In the following, we efficiently approach this distributed control problem by using some results from game theory.

Efficient Interactive Trial and Error Learning Algorithm

We develop an efficient interactive trial and error learning algorithm which solves the above distributed constrained problem optimally with high proportion of time. The unconstrained version of the algorithm has been recently studied in game theory (see [START_REF] Young | Learning by trial and error[END_REF] and the references therein). In our setting, the problem is constrained and the number of actions is exponential. We consider a discrete time space where the time variable t is defined at discrete values with unit discretization step {1, 2, 3, . . .}. In the constrained trial and error learning, users occasionally try out new configurations i t k , j t k ∈ χ k i.e., the values of M k 's and accept them if and only if they lead to a lower cost. If the common constraint is violated, then the users get a very high cost and they will change their configurations in the next step. We assume that each user makes decisions to minimize its own objectives in response to its own observations of L t k and of the common constraint. Based on this observation about the current value of the cost, each user k updates his/her configuration: adapts a new configuration with probability q k that increases with the realized gain in cost compared to the previous cost if the common constraint was satisfied previously, and adopts a new configuration with probability p k that decreases with the realized level of cost if the common constraint was not satisfied previously. This defines a Markov process over the set {0, 1} KN . We denote by Lt k the current reference which is the current cost of user k (as performance) and L t k the received cost which is the new cost if configuration is changed. Based on the above Markov process, and the observed values of Lt k and L t k , we propose an efficient interactive trial and error algorithm as given in Table 5.1.

Before proving the optimality of the proposed algorithm, we provide two useful definition that are necessary to understand the game properties of our learning process. Definition 1. A game G is interdependent if any proper subset P of players can influence the payoff of at least one player not in P by some joint choice of actions. More precisely, G is interdependent if, for every proper subset P and every action a, ∃ i ∈ P, ∃ a ′ p = a p such that u i (a ′ p , a -p ) = u i (a p , a -p ) Definition 2. A state set Z is a stochastically stable state set if it is the minimal subset of states such that, given any small δ, there is a number ǫ δ > 0 such that whenever ǫ ∈ [0, ǫ δ ], the Markov chain will visit the set Z at least 1δ proportion of all time t. and error algorithm, a pure Nash equilibrium will be visited by high proportion of time (i.e., with probability greater than or equal to 1-δ) and the problem defined in (5.60-5.62) will be optimally solved.

i) If L t+1 k > Lt k , set Lt+1 k = Lt k = L t k , i t+1 k = i t k , and j t+1 k = j t k ii) If L t+1 k < Lt k iia) With probability q k , set Lt+1 k = L t+1 k , update i t k to i t+1 k , and j t k to j t+1 k iib) With probability 1 -q k , set Lt+1 k = Lt k = L t k , i t+1 k = i t k , and j t+1 k = j t k 1B) At time t + 1 set I t+1 k,n = I t k,n , with probability (1 -ǫ δ ) > 0 iii) If L t+1 k = Lt k , keep the configuration unchanged iv) If L t+1 k < Lt k then at time t + 2 do as: iva) If L t+2 k ≤ Lt k , set Lt+1 k = L t+2 k , update i t+1 k to i t+2 k , and j t+1 k to j t+2 k ivb) If L t+2 k > Lt k , set Lt+1 k = Ψ k , v) If L t+1 k > Lt k then at time t + 2 do as: va) If L t+2 k ≤ Lt k , set Lt+1 k = L t+2 k , update i t+1 k to i t+2 k , and j t+1 k to j t+2 k vb) If L t+2 k > Lt k , set Lt+1 k = Ψ k , 2. If Lt k = Ψ k (i.
Proof. See Appendix B.1.

Simulation Results

We consider a multi-carrier and multi-user system with K = 20 users and N = 50 sub-channels. The users are uniformly distributed in a cell of radius 500m.

We assume that the bandwidth of each sub-channel is 200 kHz such that the can choose any distribution other than Gaussian since the objective here is to illustrate the the results of our scheme for non Gaussian noise. The figures show that our proposed scheme outperforms the scheme used in LTE for the H ∞ based solutions. The performance of the LQG solution is worse than that of the scheme used in LTE which is not unexpected since the LQG controller is specifically designed for Gaussian distributed noise where it performs well compared to H ∞ controller. It can be seen from the figure that the H ∞ based solution brings a significant performance improvement for both Rayleigh and exponential noises (though the controller is oblivious to the distribution of the noise), and the corresponding costs are respectively 38% and 34% less than that for the scheme used in LTE. This shows that the dynamic best-M scheme is not only capable of hugely reducing the cost i.e., the rate deviation but also respects the total signalling overhead constraint of the system.

Conclusion

In this chapter, we developed two novel best-M CQI reporting schemes for multi-carrier and multi-user wireless systems that deal with the feedback delay and the imperfect CQI/rate estimation at the user terminal prior to CQIs reporting. By modeling the CQI variations as a discrete time linear dynamic system, we developed a best-M scheme in which each user reports adapted CQIs instead of reporting the estimated CQIs which is the approach used in the traditional best-M schemes. In our framework, the CQI variations are modeled in two different ways. First, the CQI variations are modeled as a discrete time linear dynamic system with Gaussian noise. Then, we consider a realistic scenario for the CQI variations where the distribution of the noise is completely unknown. For these two models, we respectively used a Linear Quadratic Gaussian (LQG) controller and an H ∞ controller in order to obtain the adapted CQIs for each user by simply solving a corresponding discrete time linear control problem such that for each user the rate deviation between the allocated rate by the base station and the actual experienced rate is reduced. Moreover, in the existing M-best scheme, the number M of CQIs to be fed back is fixed for each user while its rate deviation depends on the wireless channel conditions which is dynamic. Therefore, we also developed a stochastic framework called dynamic best-M scheme that dy-namically determines the efficient number M of CQIs that should be reported by each user to the base station without increasing the system's cumulative feedback overhead. To this end, we developed a distributed constrained interactive trial and error algorithm that is conducted separately by each user to determine the efficient number of its best CQIs. We proved the convergence of our algorithm.

Results show that both our proposed schemes result in a huge reduction of the rate deviation compared to the existing scheme used in the wireless standards.

Chapter 6 Conclusion

In modern wireless communication systems, adaptive resource allocation is essential for the efficient utilization of the limited resources and supporting the QoS requirements of the services. The design of resource allocation schemes should consider the service type, since different services have different QoS demands that are characterized in terms of data rates, delays, error rates, etc. Moreover, the availability of only erroneous and outdated channel estimations at the transmitter should also be considered while developing any resource allocation scheme.

This thesis addresses three resource allocation problems in wireless communication systems:

-A resource allocation and adaptive modulation framework that is based on the recently developed canonical duality theory is presented for uplink SC-FDMA systems.

-To study resource allocation for delay constrained applications, a framework for joint power control at the PHY/MAC layer and rate adaptation at the APPLICATION layer for video streaming in wireless networks is developed. is a remarkable improvement over exponential complexity. We developed an iterative power and sub-channel allocation algorithm for SUmax problem that is based on the solution of its corresponding canonical dual problem. A modulation adaption scheme for SUmax is also developed that based on the power and sub-channel allocation performed by the iterative algorithm (i.e., the effective SNR value of the users) chooses the appropriate modulation scheme for each user. In a similar way, an iterative power and sub-channel allocation algorithm joint with adaptive modulation for the JAMSCmin problem was also developed.

Performing modulation adaptation joint with power and sub-channel allocation in JAMSCmin is essential for ensuring the target data rates achievement of the users. The proposed iterative algorithms finds exact integer solutions to the corresponding binary-integer programs. We thoroughly studied the optimality of the proposed algorithms, and proved analytically that under certain conditions, the obtained solutions are optimal. If these optimality conditions are not satisfied, then the obtained solution may or may not be optimal. Therefore, we also explored some bounds on the sub-optimality of the algorithm when the optimality conditions are not satisfied. However, the numerical results show that the solution is optimal most of the times, and if not optimal, it is very close to the optimal solution. The numerical results also show that the proposed algorithm outperforms the existing algorithms in the literature.

Then, we considered a cross layer optimization framework for joint power control and video rate adaptation for video streaming in wireless networks with time-varying channel and interference. This is a challenging problem, since the multiple nodes in the network demand for better quality video that needs high data rate, the video applications have stringent delay requirements, the communication resources (bandwidth, power, etc.) are limited, and the wireless channel and interferences are time-varying. Due to the different, and time-varying characteristics of the wireless channel for different nodes in multi-node wireless networks, the video rate for each node should be adapted in accordance to its channel conditions for video streaming. In addition, the multiple nodes com-pete for network resources among them where the increased use of resources by a node will not only deprive the other users from resources but its increased transmit power will also increase the interference caused to the other nodes and consequently decrease their achieved rate. Thus, the transmit power of each node should be controlled as well as there should be a fairness criterion for sharing the resources among the nodes. Moreover, the power control should be performed instantaneously at the PHY/MAC layer while the video rate adaptation should be done at the APPLICATION layer in an average manner. This difference of time scale renders even the formulation of the joint framework very difficult.

In order to approach the above problem, we started by formulating a crosslayer framework that allows joint instantaneous power control at the PHY/MAC layer and average video rate adaptation at the APPLICATION layer. Moreover, in order that the nodes fairly share the network resources among them, we introduced a fairness/satisfaction criterion into the optimization framework. Then, in view of the time-varying channels and interferences, stringent delay constraints of the video applications, and the given fairness criterion, we modeled our problem as a stochastic control problem by modeling the nodes' power and rate variations as linear discrete time dynamic system. In the formulation of stochastic control problem, we used risk-sensitive control approach and introduced a nonlinear cost function called risk-sensitive cost function. We provided the optimal solution to the above control problem and conducted numerical study to assess the performance of the proposed framework.

Finally, we considered the best-M CQI reporting scheme in multi-carrier and multi-user systems assuming imperfect channel estimation/observation at the user terminal and the feedback delay occurred in estimating/observing the CQIs and reporting them to the transmitter/base station. Each user in the multi-user system estimates/observes its channel conditions on all sub-carriers and reports the CQIs corresponding to its best M sub-carrier and an average CQI value for the remaining sub-carriers to the transmitter/base station where they are used for resource allocation. However, the channel estimation/observation at the user terminal may not be perfect, and the CQI reported on the basis of these imperfect channel estimations will be erroneous. Furthermore, due to the feedback delay the CQI reported at any time t are used at time t + τ where τ is the feedback delay. Using these erroneous and delayed/outdated CQIs for resource allocation can badly degrade the system performance. Unlike the underlying approach of dealing these imperfections at the base station, we developed a novel framework for the best-M CQI reporting that takes into account these imperfections at the user terminal. This new framework considers the channel imperfection at the CQI reporting level, and reports the CQIs that have already accommodated for the errors in the channel estimation and the feedback delay. To this end, unlike the traditional approach of reporting the estimated/observed CQIs, so-called adapted CQIs are reported. The adapted CQIs are computed in such a manner that the deviation between the actual allocated rate by the base station based on these adapted CQIs and the actual experience rate is minimized. In order to obtain the adapted CQIs, we modeled the CQI variations as a discrete time linear dynamic systems, formulated a corresponding control problem, and used stochastic control theory to solve this problem. In our framework, we modeled the CQI variations in two different ways. First, assuming the channel imperfections as Gaussian distributed, the CQI variations were modeled as a discrete time linear dynamic system with Gaussian noise, and the Linear Quadratic Gaussian (LQG) controller was used to obtain the adapted CQIs for each user.

Then, we considered a more realistic scenario where the probability distribution of the channel imperfections is not known. In this case, the CQI variations were modeled as a discrete time dynamic system where the probability distribution of the noise is unknown, and an H ∞ controller was used for obtaining the adapted CQIs.

In the traditional best-M CQI reporting scheme, the number M of CQIs to be reported is fixed for each user. In practice, the more the number of CQIs reported, the less the rate deviation and the better the system performance. However, the rate deviation also depends upon the channel conditions of each user. For the same number of CQIs reported, the users having good channel conditions will have lower rate deviation compared to the users with relatively bad channel conditions. Thus, adapting the value of M (i.e., the number of CQIs to be reported) for each user according to its channel conditions can further improve the system performance. Therefore, in addition to developing the best-M scheme with fixed M, we also developed a so-called dynamic best-M scheme that takes into account the channel imperfections, and dynamically finds the efficient number of CQIs that should be reported by each user according to his/her channel quality in a distributed manner. This scheme uses the same approach of reporting the adapted CQIs obtained by using the stochastic control theory as mentioned earlier. Since this is a distributed scheme where each user optimizes the number of its CQIs to be reported, there is a risk that more users will send more number of CQIs which will increase the feedback overhead. Thus, in order not to increase the feedback overhead, we have introduced a probabilistic constraint that the sum of the CQIs reported at any time by all users in the system should not exceed a certain value.

The proposed dynamic M-best ensures that this constraint on the sum of the CQIs reported at any time by all users is satisfied with a very high probability (nearly equal to 1). Numerical results show that both the proposed schemes outperform the traditional best-M CQI reporting scheme while our dynamic best-M scheme without increasing the system's overall feedback overhead performs better than our M-best scheme with fixed M for each user.

Future Work

The research carried out in this thesis suggests several interesting directions/ problems that need to be explored. In the following, we summarize a number of them, and highlight some directions for future research.

The resource allocation and adaptive modulation framework for SC-FDMA proposed in this thesis assumes that the users' wireless channels conditions are perfectly known to the transmitter/base station. However, due to errors in chan-nel estimation at the user terminal, noisy feedback channels, and the delay in channel reporting, the channel state information available at the base station may be erroneous or/and outdated. Thus, there is a need to accommodate the impact of imperfect channel knowledge in the resource allocation. To this end, we have developed robust CQI reporting schemes that deals with these channel imperfections at the CQI reporting level. However, the traditional approach of dealing the channel imperfections at the base station can also be used which is not studied in this thesis. Due to the intervention of the statistical notions (the probability distribution of the channel imperfection, etc.) necessary for including the impact of channel imperfections, resource allocation and adaptive modulation with channel imperfection needs a thorough study. Nevertheless, the proposed resource allocation framework in this thesis can be used as a baseline framework for the optimal resource allocation and adaptive modulation with imperfect channel knowledge.

Moreover, the proposed resource allocation framework for SC-FDMA is a centralized framework wherein the power and sub-channel allocation among the users and the modulation selection are performed at the transmitter/base station and these decision are then communicated with the users. Since the users better know their channel conditions, it is quite logical to perform resource allocation at the users terminals in a distributed manner. The paradigm explored in this thesis can be extended to a distributed framework where the decisions on resource allocation are taken at the user terminals.

The joint power and rate adaption framework for video streaming proposed in this thesis is based on the assumption that all the nodes use the same wide frequency band for transmission. The main aim of this work was to first develop a resource allocation framework for a general wireless network and then extend this framework to SC-FDMA systems. However, due to the time limitations the extension of the general framework to SC-FDMA system was left as a future work. Thus, an equivalent framework for multi-node wireless systems with multi-carrier multiple access schemes like SC-FDMA and OFDMA can also Although the utilities are changed from U k,j to U k,j = U k,j -2θ k,j ρ * k,j , the solution of the above equations provide integer solution to i k,j 's. We now apply this change in utilities to the equations (3.53-3.54). The KKT equations (3.54) can be written as Replacing U k,j for U k,j -2θ k,j ρ * k,j , the above equations become: There exist θ k,j 's such that J j=1 θ k,j = σ λ * k , then we have

J j=1 1 2ρ * k,j U k,j + ρ * k,j -λ * k - N n=1 ǫ * n A k n,j = 1, ∀k (A.22)
This implies that there exist another problem with a different set of utilities for which the above solution ensures that a single pattern will be allocated to each user. By using a similar procedure for the KKT equations (3.53), we get which enures that a sub-channel will be allocated to a single user at most when K k=1 J j=1 θ k,j A k n,j = σ ǫ * n , and the utilities are changed from U k,j to U k,j = U k,j -2θ k,j ρ * k,j . The above analysis shows that the solution of the problem P, namely (ǫ * , λ * , ρ * ) that lies in the positive cone, is the solution of the above KKT equations (A. 19, A.22, and A.23). Moreover, the KTT equations (A. 19,A.22,A.23) give the stationary point of a slightly modified problem fd (ǫ * , λ * , ρ * ) which the canonical dual of a slightly modified primal problem with utilities U k,j = U k,j -2θ k,j ρ * k,j . Since the solution (ǫ * , λ * , ρ * ) is positive and using Theorems 4.1 and 4.2, the proposed sub-gradient based solution proposed in Table 3.1 optimally solves a corresponding primal problem with utilities U k,j 's and an objective function f(i). Note also entation of new configurations. 

b) Selection of the efficient outcomes

To proceed with the proof, we now present the main result of the proposed interactive trial and error learning algorithm. Our learning process will be most of time in a stochastically stable state [START_REF] Pradelski | Learning efficient nash equilibria in distributed systems[END_REF]. Furthermore, our learning process has the property of the interdependent game since each of the users can make a change in the cost of the other users by changing its configuration. We also recall that a pure Nash equilibrium of a finite game is a configuration such that no user can improve its payoff by deviating unilaterally. A pure Nash equilibrium in our context corresponds to a configuration where the states are content, the costs are the references and are Nash equilibrium costs.

Based on the chain constructed, and the interdependency and the stochastically stable sets properties of our learning process, we can establish that if each user follows our learning process, a pure equilibrium will be visited by high proportion of time. Moreover, every stochastically stable state minimizes the sum function k L t k i.e, the system cumulative cost. This result follows directly from Theorem 1 and Theorem 2 in [START_REF] Young | Learning by trial and error[END_REF] which completes the proof of our theorem.
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  'information sur la qualité du canal des différents noeuds/utilisateurs du réseau est un paramètre supplémentaire à considérer dans l'allocation adaptative des ressources. D'une manière générale, chaque noeud/utilisateur estime son canal et renvoie à la station de base/émetteur un indicateur de qualité de canal (CQI : " Channel Quality Indicator ") qui sera utilisé par l'unité d'allocation de ressources. Toutefois, le CQI au niveau de la station de base/émetteur risque d'être imparfait suite à une erreur dans son estimation par le noeud. L'imperfection du CQI peut être aussi engendrée par son délai de renvoi et dans ce cas précis, il ne représente pas le canal actuel. Par conséquent, ce phénomène lié au CQI ne doit pas être négligé dans l'élaboration des stratégies adaptatives d'allocation de ressources. Selon les méthodes actuelles, ces imperfections sont compensées au niveau de la station de base/émetteur. Etant donné que l'allocation de ressources est plus efficace quand la connaissance du CQI au niveau de la station de base/émetteur est plus correcte, et que les utilisateurs ont une connaissance plus complète des CQIs, une autre approche intéressante serait donc de traiter les imperfections du canal au niveau des utilisateurs/noeuds. Ceux-ci renvoient alors vers la station de base/émetteur des CQIs robustes (c'est-à-dire incluant les imperfections évoquées précédemment) qui seront directement utilisés pour l'allocation des ressources. Le problème de l'allocation adaptative des ressources dans les systèmes multiutilisateur a été largement étudié jusqu'à présent. Plusieurs techniques d'allocation pour ce type de systèmes ont été traitées dans de précédents travaux, à l'image de la technique OFDMA (" Orthogonal Frequency Division Multiple Access ") et de la technique CDMA (" Code Division Multiple Access "). Toutefois, l'allocation des ressources dans les systèmes utilisant la technique SC-FDMA (" Single Carrier Frequency Division Multiple Access") n'a pas été abordée d'une manière approfondie à l'heure actuelle et de ce fait, l'étude de cette problématique requiert des travaux de recherche considérables.

(

  "SUmax : Sum-Utility Maximization"), et d'autre part, le problème d'adaptation de la modulation conjointement à minimisation de la somme des coûts ("JAM-SCmin : Joint Adaptive Modulation and Sum-Cost Minimization"). La SUmax vise à maximiser la somme des utilités des utilisateurs sous contraintes de puissance maximale d'émission de chaque utilisateur et de valeur crête de la puissance émise sur chaque sous-porteuse. Par ailleurs, la JAMSCmin cherche à minimiser la somme des puissances émises par les utilisateurs sous contraintes de débits de données atteints par les utilisateurs. A l'image de l'OFDMA, une sousporteuse dans un système SC-FDMA est attribuée à un seul utilisateur. Dans le cas des systèmes " Localized SC-FDMA ", les sous-porteuses multiples attribuées à chaque utilisateur doivent être consécutives en plus de la restriction de l'allocation de chaque sous porteuse à un utilisateur unique. Par ailleurs, l'expression du SNR (Signal to Noise Ratio) d'un utilisateur dans un système SC-FDMA est plus compliquée que celle d'un utilisateur OFDMA (Orthogonal Division Multiple Access) en raison de l'égalisation dans le domaine fréquentiel sur toutes ses sousporteuses. Par conséquent, l'allocation de puissance pour chaque sous-porteuse d'un utilisateur dépend de l'ensemble des sous-porteuses attribuées à cet utilisateur. Cette structure du SNR rend le problème d'allocation des ressources extrêmement difficile dont la complexité de trouver une solution optimale est exponentielle. Les stratégies d'allocation des ressources développées pour les systèmes OFDMA ne sont pas applicables aux systèmes SC-FDMA. En plus, on ne peut pas se servir des outils classiques d'optimisation (telle que l'approche Lagrangienne largement utilisée pour OFDMA, etc.) pour trouver une solution optimale à ce problème. Ainsi, dans cette partie du manuscrit, nous développons une nouvelle technique d'optimisation pour résoudre les deux problématiques evoquées précédemment. Cette technique est inspirée par la théorie de la dualité canonique récemment développée. D'abord, nous formulons les deux problèmes d'optimisation sous forme des problèmes BIP (Binary-Integer Programming). Ensuite, nous exprimons les deux problèmes BIP sous forme duale canonique dans R. Les problèmes duales canoniques sont des problèmes de maximisation concave dans certains cas et leur solution est donc très simple. Concernant la problématique SUmax, nous proposons un algorithme d'allocation de puissance et de sousporteuses basé sur la solution du problème dual canonique correspondante. Une stratégie de modulation adaptative pour le problème SUmax est aussi développée. Selon la répartition de la puissance et des sous-porteuses effectuée par l'algorithme proposé, cette stratégie permet de choisir une technique de modulation appropriée pour chaque utilisateur. De manière analogue, nous proposons également un algorithme d'allocation de puissance et de sous-porteuses conjointement à la modulation adaptative pour le problème JAMSCmin. La complexité du calcul des deux algorithmes est polynômiale. Cela représente une amélioration significative par rapport à la complexité exponentielle. Nous avons prouvé analytiquement que sous certaines conditions, les algorithmes proposés sont optimaux. Nous indiquons également quelques bornes de sous-optimalité de nos algorithmes dans le cas où les conditions d'optimalité ne sont pas satisfaites. A travers plusieurs simulations, nous évaluons la performance des algorithmes proposés tout en les comparant aux algorithmes existants dans la littérature.
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 1212 n ≤ P peak k,n , ∀k, n P k,n = P k,l , ∀k, n, lN k ∩ N j = ∅, ∀k = j n ∩ K j=1,j =k N j = ∅ | n ∈ {n 1 , n 1 + 1, ..., n 2 -1, n 2 } , ∀k où N k de cardinalité N k est l'ensemble des sous-porteuses attribuées à l'utilisateur k, N 1 = min(N k ) et N 2 = max(N k ).La quatrième contrainte signifie que chaque sous-porteuse ne peut pas être attribuée qu'à un seul utilisateur et la dernière contrainte assure que les sous-porteuses incluses dans l'ensemble N k sont consécutives. Du fait de ces contraintes, le problème d'optimisation (1.1) est combinatoire. Par exemple, pour K = 10 utilisateurs et N = 24 sous-porteuses, la solution optimale nécessite une recherche parmi 5,26×10 12 choix possibles d'allocation des sous-porteuses [3], ce qui n'est pas réalisable en pratique. Problème BIP équivalant du problème SUmax Nous formulons le problème sous forme d'un problème BIP où des groupes de sous-porteuses consécutives sont formés et alloués de manière optimale parmi les utilisateurs (au lieu d'allouer des sous-porteuses d'une manière individuelle) tel que les contraintes sur la répartition des sous-porteuses sont satisfaites. Nous présentons l'idée générale de la formation des groupes des sous-porteuses avec un exemple simple. Supposons que K = 2 utilisateurs et N = 4 sous-porteuses.

  le débit de données atteint et le débit de données cible de l'utilisateur k, respectivement. Par ailleurs M k est un ensemble à cardinalité 1, indiquant la modulation choisie pour l'utilisateur k et N k , n 1 et n 2 sont les mêmes que ceux définis pour le problème de SUmax. La quatrième contrainte signifie qu'une seule technique de modulation est choisie pour chaque utilisateur de l'ensemble M .

  ied. A rich literature on resource allocation in multi-user systems like Orthogonal Frequency Division Multiple Access (OFDMA), and Code Division Multiple Access (CDMA) exists. However, resource allocation in Single Carrier Frequency Division Multiple Access (SC-FDMA) systems has not been well studied and needs a considerable work.

  Modeling the Channel Dynamics and the Control Theoretic Solution: The CQI variations are modeled as a linear discrete state space model, and the CQIs determination problem is formulated as a control problem. Two cases for the CQI imperfection are considered: when the statistical distribution of the imperfection is Gaussian, and when the distribution of the imperfection is unknown. The problems corresponding to these two cases are then approached by using a LQG based solution and an H ∞ controller based solution respectively.

(

  .) T , and (.) H stand for transpose, and Hermitian of a vector or a matrix respectively. The notation diag(.) represents the diagonal elements of a matrix, and I N denotes an identity matrix of dimension N . The cardinality of a set is denoted by | . | whereas O(.) stands for "Big O". The expression x ≥ 0 means that all the elements of the vector x are non-negative. The notations sta{f(x)}, and ext{f(x)}

  the modulated symbol vector of the kth user, and F N and F H N denote an N -point DFT and an N -point Inverse DFT (IDFT) matrices respectively. The assignment of the data modulated symbols s k to the user specific set of N k sub-channels can be described by a N k -point DFT precoding matrix F N k , a N * N k mapping matrix D k and an N -point IDFT matrix F H N . The mapping matrix D k represents the blockwise sub-channel allocation where the elements D k (n, q) for n = 0, ..., N -1 and q = 0, ..., N k -1 are given by

2 z.

 2 4) where γ ZF k is the SNR when ZF equalizer is used and γ M M SE k is the SNR when MMSE equalizer is used, and where G k,n = |h k,n | 2 σ The optimization framework developed in this chapter assumes an MMSE frequency domain equalization at the receiver. Nevertheless, the proposed framework is equally applicable for ZF equalization at the receiver.
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 332 The joint resource allocation and adaptive modulation problem can be written as the following BIP problem: k,m,j = 1, ∀k (3.10b) ℓ k,m,j ∈ {0, 1}, ∀k, m, j (3.10c) where B k m,n,j denotes the element of matrix B k m corresponding to nth row and jth column, P k,m,j = f (γ ef f k,m,j , R T k , Γ * m ) is the power transmitted by user k when jth subchannels allocation pattern corresponding to B k m is chosen, and C k,m,j (P max k , P k,m,j ) = exp [P max k -P k,m,j ].

theorem 3 . 4 . 1 .Theorem 3 . 4 . 4 .

 341344 This theorem shows that by using the canonical dual transformation the binaryinteger programming problem (3.6) is converted into a dual problem in continuous domain which is perfectly dual to it. Moreover, the KKT point of the primal problem can be obtained from that of the dual problem. The sufficient conditions for the global optimality are provided by the following theorem. If (ξ * , µ * , ̺ * ) ∈ Y * ♯ , then ℓ defined by (3.40) is a global minimizer of g(ℓ) over L f and (ξ * , µ * , ̺ * ) is a global maximizer of g d (ξ * , µ * , ̺ * ) over Y * ♯ , and
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 31 Figure 3.1: Empirical CDF of sum-utility

Figure 3 . 2 :

 32 Figure 3.2: Empirical CDF of sum-cost

Proposition 4 . 3 . 1 .

 431 The probability distribution function of CINR for the downlink in the multi-cell network can be approximated by a Lognormal distribution.

Figure 4 . 1 :

 41 Figure 4.1: Illustration of Controller Implementation and Signaling between Nodes

Figure 4 . 2 ,

 42 the cost versus time for several values of risk-sensitive parameter µ is plotted which illustrates the performance of the proposed Risk-Sensitive (RS) approach in terms of the cost incurred that is a function of the difference/dev-

Figure 4 . 2 :

 42 Figure 4.2: Cost for the proposed Risk-Sensitive (RS) scheme with different values of risk-sensitive parameter µ, and Cost for LQG solution

Figure 4 . 3 to

 43 Figure 4.5 illustrate the performance of LQG and RS approaches in tracking the target SINR.

Figure 4 .

 4 3 plots the SINR deviation for LQG controller whereas Figure 4.4 and Figure 4.5 plots the SINR deviation forRS with different values of risk-sensitive parameter. The figures show that the RS approach is much better then the LQG, and its performance improves with increasing value of the risk-sensitive parameter.
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 43 Figure 4.3: Difference between target and actual SINR levels for LQG solution
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 4445 Figure 4.4: Square of the difference between target and actual SINR levels for the proposed Risk-Sensitive solution with risk-sensitive parameter, µ = 0.15

Figure 4 . 6 :

 46 Figure 4.6: Variance of SINR deviation

Figure 4 . 7 :

 47 Figure 4.7: Probability that the actual delay occurred is greater than the given target delay

  If the number of individually non-reported CQIs of userk is equal to m 0 Otherwise.

Theorem 5 . 4 . 1 .

 541 probability (1p k ), the user rejects the new configuration and sets Lt+1 k = Ψ k Based on the Markov process which is the basis for the proposed algorithm and on the properties of our distributed control problem, we have the following theorem on the optimality of our proposed algorithm. If each user follows the above distributed constrained interactive trial

Figure 5 . 1 :Figure 5 . 2 :Figure 5 . 3 :

 515253 scheme used in LTE and to our proposed scheme both for LQG, and H ∞ based solutions. The value of M = 5 for each user. The figure shows that our proposed scheme results in 48% improvement for the LQG solution whereas 43% improvement for the H ∞ based solution. The good performance of the LQG solution over H ∞ based solution when the noise is Gaussian is not unexpected. This difference in the cost occurs due to the fact that H ∞ controller does not take into account

Figure 5 .

 5 Figure 5.4 compares the per-user average cost incurred for various values of M when our proposed scheme is used. Though the simulations are performed for different value of M but the value of M is the same for all users during each

(A. 6 )Ui 2 k=A. 2 Proof of Theorem 3 . 4 . 2 - 1 sA. 3 1

 622342131 i k,j -1 + δ ǫ * n = 0, ∀n (A.3)∂L ∂λ * = 0 ⇒ J j=1 i k,j -1 + δ λ * k = 0, ∀k (A.4)∂L ∂ρ * = 0 ⇒ i k,j (i k,j -1) + δ ρ * k,j = 0, ∀k, j (A.5)(δ ǫ * , δ λ * , δ ρ * ) ≤ 0, (ǫ * , λ * , ρ * ) > 0, ǫ * T δ ǫ * = 0, λ * T δ λ * = 0, ρ * T δ ρ * = 0 From the KKT condition (A.2), we get i k,j = 1 2ρ * k,j U k,j + ρ * k,jλ * k -N n=1 ǫ * n A k n,j .According to complementarity conditions (A.6), the Lagrange multipliers(δ ǫ * , δ λ * , δ ρ * ) = 0 for (ǫ * , λ * , ρ * ) > 0 and conditions (A.3-A.5) become j -1 = 0, ∀k (A.8) i k,j (i k,j -1) = 0, ∀k, j (k,j + ρ * k,jλ * k -N n=1 ǫ * n A k n,jfor i k,j in (A.7-A.9) leads toU k,j + ρ * k,jλ * k -U k,j + ρ * k,jλ * kfact the KKT conditions of the canonical dual problem, f d (ǫ * , λ * , ρ * ).This proves that for (ǫ * , λ * , ρ * ) ∈ χ * ♯ being the KKT point of f d (ǫ * , λ * , ρ * ), i given by(3.31) is the KKT point of the primal problem. This establishes the first part of the theorem.According to(3.25), the total complementarity function at the KKT point (i, x * ) can be written asΞ(i, ǫ * , λ * , ρ * ) = Λ(i) T x * -V ♯ (x * )j U k,j = f(i) (A.13)which is obvious from the fact that V ♯ (x * ) = 0 for (ǫ * , λ * , ρ * ) > 0, and where equations (A.7-A.9) imply that Λ(i) = 0. Similarly from (3.26), we haveΞ(i, ǫ * , λ * , ρ * ) = ,j + λ * kρ * k,j -U k,j + f d (ǫ * , λ * , ρ * ) (A.14)This shows that the canonical dual problem is dual to the primal problem. This completes the proof.The total complementarity function Ξ(i, ǫ * , λ * , ρ * ) is convex in i and concave (linear) in ǫ * , λ * and ρ * . Therefore, the stationary point(i, ǫ * , λ * , ρ * ) is a saddle point of Ξ(i, ǫ * , λ * , ρ * ). Furthermore, f d (ǫ * , λ * , ρ * ) is defined by Ξ(i, ǫ * , λ * , ρ * )with i being a stationary point of Ξ(i, ǫ * , λ * , ρ * ) with respect to i ∈ I a . Consequently, f d (ǫ * , λ * , ρ * ) is concave on χ * ♯ and the KKT point (ǫ * , λ * , ρ * ) ∈ χ * ♯ must be its global maximizer. Thus, by the saddle mini-max theorem:f d (ǫ * , λ * , ρ * ) = max ǫ * >0 max λ * >0 max ρ * >0 f d (ǫ * , λ * , ρ * ) , ǫ * , λ * , ρ * ) ) + ǫ T ǫ * + λ T λ * + ρ T ρ * ) + ǫ T ǫ * + λ T λ * + max i k,j (i k,j -.t. i k,j (i k,j -1) = 0, ∀k, j j A k n,j -1 s.t. i k,j (i k,j-1)= 0, ∀k, j; ) s.t. i k,j (i k,j -1) = 0, ∀k, j; i k,j (i k,j -1)has a finite solution in the open domain χ ♯ if and only if i k,j (i k,j -1) = 0, ∀k, j.By a similar argument, the solution of max λ * k,j A k n,j -1 leads to the last equation(A.15). This shows that the KKT point (ǫ * , λ * , ρ * ) maximizes f d (ǫ * , λ * , ρ * ) over χ * ♯ if and only if i is the global minimizer of f(i) over I f . This completes the proof. Proof of Theorem 3.5.By using sub-gradient method with projection defined by (3.56) ensures the positive solution of KKT equation (3.55) which implies that the corresponding i k,j

  U k,j -2θ k,j ρ * k,j + 2θ k,j ρ * k,j + ρ * k,jλ * k -

  U k,j + ρ * k,jλ * kj = 1 + σ λ * k , ∀k (A.21)

  U k,j + ρ * k,jλ * k -

  c1 : A user can decide to experiment a new configuration or not. The user experiments with probability ǫ > 0 and receives a cost L t+1 k . If L t+1 k > Lt k , then the reference is the same: Lt+1 k = Lt k and the user keeps the same configuration and stays at the state denoted by c1. If L t+1 k < Lt k then the chain of user k can go in a probabilistic manner to any of the two state c2 or c3 explained as follows.c2 : Accept the new references and configurations with probabilityq k = e -β k G k (-L t+1 k + Lt k )whereβ k > 0 and G k is decreasing function which belongs to [0, 1 2 ] [128]. This state of user's chain is now denoted by c2. c3 : Reject the new references and configurations with probability 1q k and stay at state c3. c4 : A user does not perform experimentation with probability (1ǫ). In this case, if L t+1 k = Lt k then the chain stays at c. If L t+1 k < Lt k the chain goes to c+ and if L t+1 k > Lt k the chain of user k goes to c -. • Transitions from discontent state "c+": At state c+ the user compares the new cost and the reference. If L t+2 k ≤ Lt k , the chain goes back to c and the reference Lt+1 k = L t+2 k . If L t+2 k > Lt k the chain goes to c -. • Transitions from discontent state "c-": At state c-the user compares again the new cost and the reference. If L t+2 k < Lt k , the chain goes back to c+, if L t+2 k = Lt k the chain goes to c and if L t+2 k > Lt k then the chain of user k goes to the discontent state d. • Transitions from discontent state "d": At state d, the user randomly picks a configuration and receives L t k . The user accepts these new references with probability p k = e -β k F k (-L t k ) where F k is a decreasing function such that KF k ∈ [0, 1/2], the chain goes to content state c. The user rejects the new references with probability 1p k and the chain stay at d.
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.3 Algorithmes d'allocation de ressources et d'adaptation de modulation 1.2.3.1 Algorithme d'allocation de ressources pour SUmax L

  18) cette fonction est une fonction concave dans Y * ♯ . Les résultats sur la dualité entre le problème BIP et son correspondant canonique et les conditions d'optimalité globale sont obtenues d'une manière similaire à celle adoptée pour le problème 'algorithme proposé est basé sur la solution du problème dual canonique qui, d'après du théorème 1.2.2 fournit la solution optimale (si les conditions d'optimalité correspondantes sont satisfaites). Puisque le problème dual est un problème de maximisation concave sur χ

	SUmax.
	1.2

* ♯ , il est nécessaire et suffisant de résoudre le système d'équations suivant pour trouver la solution optimale

3 Contrôle de puissance conjointe à l'adaptation du débit pour le streaming vidéo dans les réseaux sans fil

  noeud doivent être transmis pendant une durée fixée au delà de laquelle ils seront rejetés. Par ailleurs, un critère d'équité entre les noeuds devrait être établi pour l'utilisation des ressources limitées du réseau. Afin d'exploiter la diversité temporelle des canaux, le débit vidéo de chaque noeud doit être adapté conformément à ses conditions de canal. En outre, la puissance d'émission de chaque noeud doit être contrôlée pour utiliser l'énergie de manière efficace. Le contrôle de puissance est efficace pas seulement du point de vue de consommation d'énergie, mais ainsi du point de vue de gestion d'interférences. En effect, la réduction de la puissance d'émission d'un noeud engendre la réduction des in-

	Nous considérons une approche d'optimisation inter-couches pour le contrôle
	de puissance conjointement à l'adaptation du débit pour le streaming vidéo dans
	les réseaux sans fil. Dans le scénario que nous supposons d'étudier, il faut assurer

Les figures, 3.1 et 3.2 (voir le chapitre 3) représentent la performance de nos algorithmes proposés pour SUmax et JAMSCmin, respectivement. Á partir des résultat, on constate que ces algorithmes donnent de meilleurs résultats que les algorithmes existants et les solutions obtenues sont très proches des solutions optimales correspondantes. 1.une transmission vidéo à haute qualité pour chaque noeud du réseau sachant que son canal et l'interférence varient dans le domaine temporel. Comme le streaming vidéo a des exigences fortes de délai, les paquets arrivés dans la file d'attente d'un terférences causées à d'autres noeuds. Cependant, le contrôle de puissance doit être réalisé instantanément alors que l'adaptation du débit de données en streaming vidéo doit être effectuée par moyennage sur une durée assez longue. Cette différence dans l'échelle temporelle rend le contrôle de puissance conjointement à l'adaptation du débit très difficile. Dans cette section, nous proposons une approche d'optimisation qui permet d'effectuer de contrôle de la puissance instantané à la couche PHY/MAC conjointement avec l'adaptation du débit moyen à la couche APPLICATION. L'approche évoquée exploite la diversité temporelle des canaux en satisfaisant les contraintes fortes sur le délai associées aux applications vidéo, et en respectant un critère d'équité précis pour l'allocation des ressources parmi les noeuds. L'allocation des ressources au niveau de la couche PHY/MAC est effectuée dans le but d'atteindre un SINR (Signal to Interference and Noise Ratio) cible et à condition de minimiser le délai entre l'arrivée et le départ des paquets. Cette allocation est réalisée en variant le débit attribué à la couche AP-PLICATION de manière à assurer la qualité de la vidéo demandée par les noeuds selon l'état de leurs canaux et le critère d'équité. Dans ce contexte, nous modélisons les variations de puissance et celles du débit vidéo des noeuds par des équations dynamiques linéaires stochastiques. Ensuite, nous les formulons sous la forme d'un problème de commande optimale. Une approche de la théorie d'automatique intitulée " Risk-Sensitive Control " est adoptée pour résoudre ce problème d'allocation de puissance et d'adaptation du débit vidéo. Nous four-nissons, ainsi, la solution optimale de ce problème, et nous évaluons la performance de l'approche proposée à travers plusieurs simulations.

1.3.1 Approche stochastique

Soit γ k,j (t) = p k,j (t)g k,j (t) le SINR instantané du noeud k qui reçoit des données multimédia envoyées par noeud j, où g k,j (t) signifie le CINR (Channel to Interference plus Noise Ratio) et P k,j (t) est la puissance émise par le noeud j. Pour formuler notre problème sous forme d'un problème de commande stochastique, nous avons prouvé que la densité de probabilité de g k,j (t) peut être approximée par une densité log-normale sous certaines contraintes. Nous utilisons ensuite ce résultat intermédiaire pour décrire la variation de puissance et celle de débit des noeuds par des équations linéaires stochastiques.

Notons que le contrôle de puissance est équivalant au contrôle du SINR (γ k,j (t)) puisque γ k,n (t) = p k,n (t)g k,n (t) sachant que g k,n (t) dépend du canal et ne peut pas être contrôlé. Par conséquent, nous effectuerons notre analyse en termes de valeurs du SINR. Soit x = 10 log x la valeur de la variable x en décibels (dB). En utilisant la formule de débit suivante r k,j (t) = 1 2 log 2 [1 + γ k,j (t)], pour γ k,j (t) >> 1 (c'est le cas en streaming vidéo), le débit de données est proportionnel à γ k,j (t).

Soit γ * k,j (t) le SINR cible (c'est à dire, le SINR correspondant au débit vidéo cible). Nous avons alors la proposition suivante pour le contrôle de puissance.

Proposition 1.3.1.

  Le contrôle de puissance peut être écrit sous la forme suivante:

  Soit γ f k,j (t) la valeur du SINR lorsque p f k,j (t) est émise.Nous avons alors le résultant suivant concernat la variation de puissance faisable.

	Proposition 1.3.2. La puissance faisable varie selon le modèle dynamique linéaire stochas-
	tique suivant:

[START_REF] Lin | Bit-rate control using piecewise approximated rate-distortion characteristics[END_REF] 

où β k,j est un pas donné et n g (t) est un bruit d'espérance nulle.

Dans l'algorithme de contrôle de puissance ci-dessus, nous n'avons pas encore introduit de contrainte par rapport à la puissance maximale d'émission.

Comme les canaux et les interférences varient au cours du temps, la valeur correspondante de la puissance maximale faisable d'émission varie aussi pour chaque noeud. Par conséquent, nous introduisons une nouvelle variable p f k,j (t) appelée la puissance faisable qui dénote la puissance maximale d'un noeud j qui pourrait émise à l'instant t.

2 Problème de commande " Risk-Sensitive " et sa solution optimale

  k,j (t) dans une manière conjointe et dynamique, et en ajustant la puissance tel que γ k,j (t) tend vers γ * k,j (t).

	1.3.Dans cette partie, nous exprimons dans un premier temps les trois équations
	dynamiques (1.23), (1.24) et (1.25) sous forme d'un problème de commande "

26)

W T est la durée pendant laquelle le débit vidéo (taux de l'arrivé) doit être fixe, m est un nombre entier positif, et δt et n t (t) sont des petits nombres positifs.

Selon la définition ci-dessus de ξ k,j (t), pour m ∈ N (tout entier naturel), le taux d'arrivée varie à t = mW T alors que sa variation sera négligeable entre les

instants t 1 = mt et t 2 = mt + W T -1.

L'approche du contrôle du taux d'arrivée se base sur l'idée que pour le streaming vidéo, le débit de données est mis à jour après une période de temps suffisamment large. Par ailleurs, selon cette approche le taux d'arrivée est adapté en fonction du canal associé au noeud. L'objectif principal est maintenant de développer une méthode permettant d'adapter γ f k,j (t) et γ * Risk-Sensitive " afin de fournir une solution dynamique au problème du contrôle de puissance conjointement à l'adaptation de taux d'arrivée au niveau de chaque noeud.

1.3.2.1 Équation d'état

Afin de formuler notre problème sous forme d'un problème classique d'automatique stochastique, nous introduisons un vecteur d'état en trois dimensions défini par :

  fonction du coût infinie indépendamment des stratégies de régulation. Dans notre problème, ce paramètre peut être choisi selon le critère souhaité, ce qui peut attribuer une pondération plus ou moins importante à l'écart de débit dans la fonction du coût. Le problème ainsi formulé est appelé problème d'automatique "

Risk-Sensitive ". Nous reformulon dans un deuxième temps notre problème sous forme d'un problème d'automatique " Risk-Sensitive " où la fonction du coût est définie par:

1.3.2.3 Solution du problème

  

	Dans la suite, les indices k et j (représentant le récepteur et l'émetteur, respec-
	tivement) seront omis pour la simplication et l'indice des variables indiquera le
	temps. La solution optimale du problème d'automatique (1.30) -(1.35) peut être
	obtenue selon la solution des équations de Riccati suivantes [6]:

fectué de telle manière que le débit alloué à un utilisateur au niveau de la station de base (en fonction des CQIs adaptés) est le plus proche possible de son débit

  

	utilisateurs. Nous considérons un scénario réaliste où un délai existe entre le résoudre. La fonction de coût quadratique est formulée de telle façon que sa min-
	calcul des CQIs et leurs utilisation pour l'allocation des ressources au niveau de imisation entraîne des CQIs adaptés pour lesquels l'écart entre le débit réel de
	la station de base/émetteur. Nous supposons aussi que les utilisateurs n'ont pas l'utilisateur et le débit qui lui est attribué par la station de base est minimal. Lors
	de mesure de la qualité réelle de leur canaux (la capacité réelle que les canaux du développement de notre approche stochastique, d'abord, nous supposons que
	peuvent supporter) et qu'ils disposent seulement d'une estimation/observation les imperfections causées par le délai de renvoi et l'erreur d'estimation du CQI
	bruitée. Cela peut se produire à cause de l'erreur de mesure du SINR suite aux ont des distributions Gaussiennes. Dans ce cas, nous modélisons les variations
	de variations temporelles des interférences, etc. Nous proposons deux stratégies du CQI par un système linéaire stochastique dynamique à temps discrets avec
	de type " best-M " pour le renvoi du CQI, tous deux traitant le délai de renvoi un bruit Gaussien et nous utilisons la commande Linéaire Quadratique Gaussi-
	du CQI et l'estimation imparfaite du CQI au niveau des utilisateurs. Pour la pre-enne (LQG) pour obtenir les CQIs adaptés au niveau de chaque utilisateur. Par
	mière stratégie, le nombre de CQIs renvoyés par chaque utilisateur est fixe tandis la suite, nous considérons un scénario plus réaliste dans lequel la distribution
	que pour la deuxième stratégie, le nombre de CQIs renvoyés par un utilisateur est des imperfections susmentionnées est inconnue. Dans ce cas, nous modélisons
	déterminé par celui-ci d'une manière dynamique. Au lieu de renvoyer des CQIs les variations du CQI par un système dynamique à temps discrets avec un bruit
	estimés (le cas pour la stratégie " best-M " classique), les stratégies proposées dont la distribution est inconnue. Nous utilisons alors la théorie de la commande
	traitent les imperfections susmentionnées au niveau de renvoi des CQIs et elles H ∞ pour résoudre ce problème stochastique afin d'obtenir des CQIs adaptés.
	renvoient des CQIs "adaptés". Les CQIs adaptés sont calculés au niveau des util-
	isateurs en tenat compte de l'effet du délai de renvoi et de l'erreur d'estimation.
	Les CQIs adaptés sont ensuite envoyés à la station de base où leurs observations
	sont utilisées pour l'allocation des ressources. Le calcul des CQIs adaptés est ef-
	réel.
	D'abord, nous développons une stratégie " best-M " où chaque utilisateur
	renvoie un CQI adapté pour chacun de ses meilleures M sous-porteuses et une
	valeur moyenne des CQIs adaptés correspondant au reste des sous-porteuses.
	Selon cette stratégie, la valeur de M peut varier d'un utilisateur à un autre, mais
	comme dans la stratégie "best-M " classique sa valeur est fixé pour chaque utilisa-
	teur. Afin d'obtenir des CQIs adaptés, nous modélisons d'abord les variations du
	CQI sous la forme d'un système linéaire dynamique à temps discrets. Ensuite,
	nous formulons un problème de commande stochastique avec une fonction de
	coût quadratique et nous utilisons la théorie de commande stochastique pour le

1.4.1 Conception de la méthode robuste "best-M" de renvoi du CQI Supposons que M k indique le nombre de CQIs renvoyés par utilisateur k et qui pourrait varier d'un utilisateur à l'autre. Nous représentons le SINR et le débit de données réel (capacité de Shannon) de l'utilisateur k sur le sous-porteuse

  

	où ϑ t k,n est l'erreur d'estimation d'espérance nulle. Par ailleurs, en raison du délai
	de renvoi, le débit attribué à l'instant t au niveau de la station de base dépendra
	de l'estimation du débit au niveau de l'utilisateur à l'instant t -τ où τ représente le délai de renvoi. En d'autres termes, le CQI disponible à l'instant t au niveau
	de la station de base laquelle suppose que le CQI est calculé en fonction de xt k,n
	est en réalité le CQI correspondant à xt-τ k,n . Du point de vue de la station de base,
	l'effet du délai de renvoi au niveau de l'utilisateur peut être traduit par l'équation
	suivante:	
	xt k,n = xt-τ k,n + ν t k,n	(1.45)
	où ν t k,n est une erreur d'espérance nulle indiquant l'effet du délai de renvoi, selon
	le modèle de variation du débit de données (1.43) dans lequel le débit entre deux
	instants varie par un bruit d'espérance nulle. En combinant (1.44) et (1.45) nous
	obtenons:	
	xt-τ k,n = x t k,n + v t k,n	(1.46)
	où v t k,n = ϑ t k,n -ν t k,n répresente l'effet du délai de renvoi et de l'erreur d'estimation. En dénotant xt-τ k,n par y t k,n , les variations du débit de données peuvent être écrites
	sous forme de représentation d'état (pour un système linéaire dynamique à temps
	discrets:	
	n à l'instant t par g t k,n et x t k,n = log 2 (1 + g t k,n ), respectivement. Les variations du
	débit de données peuvent être modélisées comme suit [7-11] :	
	x t+1 k,n = x t k,n + w t k,n	(1.43)
	où w t k,n est une perturbation/bruit d'espérance nulle ayant une distribution de
	probabilité quelconque. Dans cette thèse, le CQI représente le débit de données.
	Nous considérons que l'utilisateur ne connaît pas le débit réel x t k,n du canal
	mais qu'il dispose d'une estimation/observation de ce débit designée par xt k,n :
	xt k,n = x t k,n + ϑ t k,n	(1.44)

1.4.2 Méthode robuste dynamique " best-M " de renvoi du CQI

  

	Dans cette partie, nous concevons une méthode robuste de type "best-M" dans
	laquelle le nombre des CQIs renvoyés M k n'est pas fixé pour chaque utilisa-
	teur mais il est déterminé de manière efficace et dynamique. Chaque utilisateur
	calcule les CQIs adaptés pour toutes ses sous-porteuses en utilisant l'approche
	d'automatique stochastique proposée dans la sous-section précédente (commande
	LQG/H ∞ ). Ensuite, selon les conditions de ses sous-porteuses, chaque utilisateur
	détermine de manière dynamique le nombre efficace de CQIs qu'il doit renvoyer
	à la station de base.

1.4.2.1 Approche pour la détermination de M k

  

	base à l'instant t: j t k,m =  1 Si pour utilisateur k, le nombre de CQIs individuels     0 Sinon.     non-renvoyés est égal à m	(1.58)
	Puisque le nombre total de CQIs non-renvoyés de l'utilisateur k est égal à N -M k (lorsque M k = n n=1 i t k,n ) son ensemble d'indicateurs faisables est défini par la
	forme suivante:	
	Nous supposons que chaque utilisateur trie ses sous-porteuses par ordre décrois-
	sant selon leurs valeurs de CQIs. Nous définissons alors un vecteur indicateur de
	taille KN , i t = [i t 1 , ..., i t K ] T avec i t k = [i t k,1 , ..., i t k,N ] T . L'élément i t k,n indique si le CQI
	correspondant à la sous-porteuse n de l'utilisateur k à l'instant t est renvoyé à la
	station de base ou non. L'expression de i t k,n est alors donnée par:	
	i t k,n =	  	1 Si le CQI pour la sous-porteuse n de l'utilisateur k est renvoyé 0 Sinon.	(1.57)
	Par ailleurs, nous introduisons un autre vecteur indicateur j t = [j t 1 , ..., j t K ] T avec
	j t k = [j t k,1 , ..., j t k,N ] T . L'élément j t k,m indique le nombre total m de sous-porteuses
	de l'utilisateur k dont les CQIs individuels ne sont pas renvoyés à la station de

.2.2 Solution distribuée et algorithme "Efficient Interactive Trial and Error Learning"

  

	Il s'agit donc d'un problème binaire stochastique dont la résolution se fait d'une
	manière distribuée, c'est à dire séparément par chaque utilisateur.
	1.4Nous formulons d'abord notre problème initial par un problème relaxé. Soit
	S l'ensemble des i t k,n 's respectant la contrainte commune K k=1 Cet ensemble est donnée par:	N n=1 i t k,n ≤ M K.
		.64)

1.4.3 Résultats numériques

  

	contrainte commune mais n'interagissent pas directement entre eux pour la prise
	de décision sur leurs M k . Dans ce situation, il est donc impossible de satisfaire en
	permanence la contrainte commune.
	Pour résoudre ce problème de manière efficace, nous proposons un algorithme
	de type "Efficient Interactive Trial and Error Learning" utilisant des résultats de la
	théorie des jeux. L'algorithme est donné par la Table 5.1. Cet algorithme choisit
	la valeur de M k de manière efficace pour chaque utilisateur k en satisfaisant la
	contrainte commune avec une trés grande probabilité. On obtient le théorème
	suivant qui concerne l'optimalité de l'algorithme proposé.
	Théorème 1.4.1. Si chaque utilisateur emploie l'algorithme proposé, un équilibre pur de
	Nash sera visité avec une probabilité supérieure ou égale à 1-δ (0 < δ < 1) et le problème
	défini par (1.62-1.64) sera résolu de façon optimale.
	Preuve. Annex B.1.
	Les résultats de simulation sont présentés aux figures, 5.1 à 5.6 (voir le chapitre
	5). Afin d'évaluer sa performance, nous comparons notre approche à la méthode
	LQG et à l'algorithme existant utilisé dans le standard LTE. Les résultats mon-
	trent que la performance de notre approche (avec une valeur fixe de M k ) est dans
	tous les cas nettement meilleur (35%-40%) que l'algorithme utilisé dans le stan-
	dard LTE. Quand la probabilité de la distribution du bruit est inconnue, la per-
	formance de l'approche LQG peut être moins bonne que l'algorithme utilisé dans
	67) le LTE. Par ailleurs, les simulations montrent que les résultats de notre approche
	Le coût ci-dessus que chaque utilisateur k minimise séparément dépend de la s'améliorent proportionnellement au nombre de CQIs renvoyés. On remarque
	contrainte commune. Comme la contrainte commune ne dépend pas seulement aussi que la performance de la stratégie "best-M" dynamique est meilleure que
	de la valeur de M k choisie par l'utilisateur k mais aussi des valeurs des M k des notre stratégie avec une valuer fixe de M k . En plus, les résultats montrent que
	cette stratégie dynamique ne augmente pas la signalisation total au niveau de la autres (K -1) utilisateurs, tous les utilisateurs sont interdépendants dans la min-imisation de leurs coûts individuels. Ainsi, le problème se présente comme un liaison montante du système.
	problème distribué d'automatique dans lequel les utilisateurs sont couplés par la

1.5 Conclusion et perspectives

  

	SC-FDMA, ce qui n'a pas été considérée dans cette thèse.
	Par ailleurs, l'approche d'allocation de ressources proposée pour le système Dans cette thèse nous avons traité trois problématiques différentes d'allocation SC-FDMA est une approche centralisée selon laquelle la répartition de puissance de ressources dans les systèmes de communication sans fil: et de sous-porteuses parmi les utilisateurs ainsi que le choix de modulation sont -Une approche d'allocation de ressources et de modulation adaptative, basée décidées au niveau de la station de base et ces décisions sont ensuite commu-sur la théorie de la dualité canonique récemment développée, est proposée niquées aux utilisateurs. Le paradigme exploré dans cette thèse peut être étendu à pour les systèmes SC-FDMA. une approche distribuée où les décisions d'allocation de ressources seraient prises -Une nouvelle approche de contrôle de puissance à la couche PHY/MAC aux niveaux des utilisateurs. conjointe à l'adaptation du débit au niveau de la couche APPLICATION L'approche d'allocation de ressources pour le streaming vidéo proposée dans pour le streaming vidéo dans les réseaux sans fil est établie. Pour ce faire, cette thèse est fondée sur l'hypothèse que tous les noeuds utilisent la même bande la théorie de commande " Risk-Sensitive " a été appliquée. large pour la transmission. Cette étude peut être étendue aux systèmes sans fil -Á partir de certains outils de la théorie de commande stochastique et de multi-porteuses et multi-utilisateurs, à l'image des systèmes SC-FDMA et OFDMA. la théorie des jeux, deux nouvelle stratégies " best-M " de renvoi du CQI D'autre part, le critère d'équité pour l'allocation de ressources concernant le (Channel quality Indicator) pour les systèmes multiporteuses et multiutilis-streaming vidéo est basé sur le débit de données vidéo des noeuds. D'autres ateurs tenant compte du délai de renvoi et de l'erreur d'estimation du canal critères d'équité comme la valeur moyenne du PSNR (Peak Signal to Noise Ra-sont proposées. Dans le cadre de première stratégie, un nombre M fixe tio) ou le taux de distorsion vidéo des noeuds peuvent aussi être incorporés dans des meilleures CQIs pour chaque utilisateur est renvoyé. Alors que dans l'approche proposée. En outre, les SNRs des noeuds sont représentés d'une manière la deuxième stratégie appelé " best-M " dynamique, le nombre des CQIs approximative comme des variables aléatoires de distribution log-normale. Un qui doivent être renvoyés par chaque utilisateur est déterminé de manière scénario plus réaliste où la distribution du SNR est inconnue ou plus réaliste distribuée et dynamique par l'utilisateur en question. pourrait également être envisagé. Les travaux menés dans cette thèse mettent en évidence plusieurs problématiques Les approches proposées dans cette thèse tendent à optimiser les ressources au intéressantes qui devraient être explorées à l'avenir. Dans ce qui suit, nous en niveau de l'émetteur en négligeant l'état des paquets arrivés au niveau du récep-évoquons un certain nombre et nous mettrons en évidence quelques perspectives teur. Puisque les canaux/liens sans fil ne sont pas fiables, certains protocoles de pour le futur proche. retransmission des paquets erronés, (e.g. ARQ (Automatic Repeat reQuest), etc.) L'allocation de ressources et la modulation adaptative pour le système SC-doivent être également intégrés dans l'allocation des ressources, afin d'assurer la FDMA étudiées dans cette thèse supposent que la station de base connaît par-réussite de la transmission des paquets. faitement les conditions des canaux des utilisateurs servis. Pour étudier l'effet Les stratégies de renvoi des CQIs proposées dans cette thèse ne considèrent du délai de renvoi et de l'erreur d'estimation du canal, nous avons développé pas le phénomène compression des CQIs. Toutefois, dans l'objectif de réduire des stratégies robustes de renvoi du CQI traitant ces imperfections. L'effet de ces d'avantage le débit de renvoi des CQIs, des versions compressées des meilleurs imperfections pourrait traiter au niveau de la station de base pour les Systèmes M CQIs pour chaque utilisateur peuvent être renvoyées.

Table 3 .

 3 1: Resource Allocation Algorithm

  10 can be modeled/represented by e s ′′ k where s ′′ k has now a gaussian distribution with mean µ s ′′ k and variance σ 2

	s ′′ k
	given by

Table 5 .

 5 

	1: Iterative Trial and Error Algorithm
	1. If Lt k = L t k (i.e., i t k ∈ S) then 1A) At time t + 1, with probability ǫ δ > 0, user k tries randomly
	a new configuration i t k , j t k ∈ χ k and gets L t+1 k
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Chapter 5

Robust CQI Reporting Schemes for Multi-carrier and Multi-user Systems

Introduction

In this chapter, we consider the best-M channel quality indicator (CQI) reporting scheme for a multi-carrier and multi-user system. We consider a realistic scenario where a feedback delay occurs between the computation of the CQIs and their use for resource allocation at the transmitter/base station. In addition, we also consider that the users do not have the actual quality measures of the channels (the actual capacity that the channels can support) but have only a noisy estimation/observation at their disposal. This may occur due to the error in SINR measurement due to the time-varying interferences, etc. We develop two novel best-M CQI reporting schemes that consider the impact of the feedback delay and the imperfect CQI estimation at the user terminal. In the first scheme, the number of CQIs reported by each user is fixed whereas in the second scheme, the number of CQIs to be reported by a user is determined dynamically by that user. Unlike the traditional best-M scheme, instead of reporting the estimated CQIs, the proposed schemes deal with the aforementioned imperfections at the CQI reporting level and report so-called adapted CQIs. The adapted CQIs are computed at the user terminals by accommodating the impact of both feedback delay and estima-N -M sub-channels to the base station. Moreover, in traditional schemes, the users estimate/observe the CQIs, and feed these estimations/observations back to the base station which are used for resource allocation. However, due to feedback delay, the CQI reported by users at time t will be used for resource resource allocation at time t + τ where τ is the feedback delay. Since the channel is timevarying, the channel conditions at t + τ may be completely different from that at time t. In addition, due to the time-varying interferences, etc., the CQIs estimation/observation at the user terminal may not be perfect. Thus, at each time t, the base station has delayed and imperfect estimates of CQIs at its disposal. Therefore, having only this erroneous and outdated CQIs, it is difficult for the base station to efficiently allocate the resources among the users and which in turn may overwhelmingly degrade the system performance. Since the users have an estimation of the CQI for each sub-channel, they can contribute to solve the above problem if a CQI reporting scheme is designed which deals with the estimation error and the feedback delay at the CQI reporting level at the user terminal.

In the traditional best-M CQI reporting scheme, the number M of CQIs reported by all users is the same and fixed. The more the number of CQIs reported for a user, the less the deviation between its actual experienced rate and the rate allocated at the base station. In addition, for the same number of CQIs reported, this rate deviation is less for users with good channel conditions compared to users with relatively bad channel conditions. Thus, adapting the value of M (i.e., the number of CQIs to be reported) for each user according to its channel conditions can further improve the system performance.

The SINR at time t associated with the nth sub-channel for the kth active user connected to the jth base station is determined as follows

(5.1)

where P n j is the power transmitted by the jth cell on the nth sub-channel, G j k,l is the path gain (including shadowing and fast fading) between the lth base station and the kth user connected to the jth base station, σ 2 is the receiver noise power, In the following, we solve the above linear control problem by using two different approaches. First, we assume that the rate x t k,n varies according to gaussian distribution where the noise w t k,n can be assumed to be Gaussian distributed [START_REF] Chen | Admission control schemes for wireless communication networks with adjustable transmitter powers[END_REF]- [START_REF] Leung | A kalman-filter method for power control in broadband wireless networks[END_REF]. In this case, we solve the above problem using Linear Quadratic Gaussian (LQG) controller [START_REF] Astrom | Introduction to Stochastic Control Theory[END_REF][START_REF] Kailath | Linear Estimation[END_REF]. Then, we approach the problem more realistically where the probability distribution of the noise is unpredictable. In this case, we approach the above linear control problem by developing an H ∞ controller based solution [START_REF] Baser | H-Infinity Optimal Control and Related Minimax Design Problems: A Dynamic Game Approach[END_REF].

Solution of the above Linear Control Problem

In order to proceed with the solution of the above linear control problem, we define the following vectors:

where each of the above vector is of size 2N . We get the following linear state vector system

where A, B, C, D, and E are all identity matrices each of dimension 2N . The covariance matrices of the noise vectors w t k and v t k are both time-varying. We introduce two other matrices D t 1 , and D t 2 which are both 2N dimensional timevarying diagonal matrices. Each diagonal entry of D t 1 is equal to the square root of the corresponding diagonal entry of the covariance matrix of w t k . Similarly, each diagonal entry of D t 2 is equal to the square root of the corresponding diagonal entry of the covariance matrix of v t k . With these definitions of D t 1 and D t 2 , the where

In view of the above transformation, the corresponding cost function now becomes:

where Q t is a time-varying matrix of dimension 2N defined as

Let denote the covariance matrices of the noise vectors γ t k , and ψ t k by W k , and V k respectively:

The solution of the problem (5.25-5.27) is given by the following iterative algorithm [START_REF] Astrom | Introduction to Stochastic Control Theory[END_REF][START_REF] Kailath | Linear Estimation[END_REF]:

where D t c and D t p are given respectively by

where I is an identity matrix of dimension 2N ; and P t and P t c are the solutions obtained by the following Riccati Recursion:

(5.33)

Thus, for each user and at each time t, we get the optimal control vector u t k and the state vector z t k from which z t k is obtained. In other words, we get the

Dynamic M-best CQI Reporting Scheme

In the previous section, we designed the reporting scheme while assuming that the value of M k is fixed for each user. In this section, we integrate a stochastic framework to the adapted CQI reporting framework developed in the previous section in order to dynamically determine the efficient M k per user. Although the value of M k 's are dynamic in this scheme, the idea of reporting the adapted rates/CQIs and their determination by the LQG/H ∞ Controller proposed in the previous section remains the same. Each user has the estimates of all its subchannels and will compute the adapted CQIs for all his/her sub-channels by using the stochastic control approach developed in the previous section. Then, based on his/her channel conditions, each user will dynamically determine the efficient number of CQIs that should be reported to the base station. To this end, we use stochastic potential game theory and develop a distributed framework for finding the efficient number of the best sub-channels that should be reported for each user.

M k Determination Framework

We assume that each user sorts the sub-channels in decreasing order of their CQI values (from the best CQI to the worst CQI). The order of sub-channels for different users is therefore not the same. We define a KN indicator vector

indicates that whether at time t, the individual CQI of sub-channel n for user k is reported to the base station or not, and that is defined as

If the CQI for nth sub-channel of the kth user is reported 0 Otherwise.

(5.55)

We then introduce another indicator vector j t = [j t 1 , ..., j t K ] T where j We now consider our dynamic M-best scheme where the value of M is not fixed but is adapted by each user in a distributed manner. Figure 5.5 plots the empirical cumulative distribution function (CDF) of the per-user average cost for the scheme used in LTE and our proposed scheme with fixed M, and our dynamic M-best scheme. It is clear from the figure that the proposed dynamic M-best scheme not only brings remarkable performance improvement over the scheme used in LTE but also outperforms the proposed scheme with fixed value of M. In order to have a deep insight into the results, one can see as an example that the probability that the user's average cost is less than or equal to 20 is 0.35 for our proposed scheme with fixed M whereas this probability is equal to 0.65 for the proposed dynamic M-best scheme which is a remarkable improvement. for our dynamic best-M scheme In order to illustrate the feedback signaling overhead incurred by using the dynamic best-M scheme, we plot in Figure 5.6, the empirical CDF of the value of KM k i.e., the total number of individually reported CQIs by all user. The baseline value for M k was taken as M b = 5 which is the number of individual CQIs reported by each user in the LTE standard. The dynamic distributed algorithm is -In order to deal with the channel estimation error and feedback delay, two novel best-M channel quality indicator (CQI) reporting schemes for multicarrier and multi-user systems are developed that consider these issues at the CQI reporting level.

In the following, we summarize the major contributions of this thesis, and highlight some future research directions.

Contributions

In this thesis, first we considered resource allocation and adaptive modulation in SC-FDMA systems. Two different constraint optimization problems are formulated: A sum-utility maximization (SUmax) problem that aims at maximizing the sum of users's utilities in the system under constraints on the per-user and per sub-channel transmit powers, and a joint adaptive modulation and sum-cost minimization (JAMSCmin) problem whose objective is to minimize the sum of transmitted power by all the users in the system under constraints on the user's achieved data rates. The solution of these problems needs joint power and subchannel allocation where a sub-channel is allowed to be allocated to a single user at most, and the multiple sub-channels allocated to a user should be consecutive. These constraints on the sub-channel allocation render these problems prohibitively difficult combinatorial problems where the computational complexity of finding the optimal solution is exponential.

In order to solve these problems, we developed a polynomial-complexity optimization framework that is inspired from the recently canonical duality theory.

To this end, we first transformed the primal optimization problems into equivalent binary-integer programming problems. Then, each binary-integer programming problem was transformed into a continuous domain canonical dual problem that is a concave maximization problem. The computational complexity of the solution of the continuous space canonical dual problem is polynomial which be developed.

In this thesis, the satisfaction/fairness criterion in resource allocation for video streaming is based on the video/arrival data rate (i.e., the quality of the video) of the nodes. Any other satisfaction/fairness criterion like the average peak-signalto-noise (PSNR) or video distortion rate of the nodes can also be incorporated into the resource allocation framework proposed in this thesis. In addition, the nodes' SNRs are approximated as log-normal distributed random variables. A more realistic scenario where the distribution of the SNR is unknown can also be considered.

The resource allocation schemes developed in this thesis optimize the resources at the transmitter side without considering the status of packets arrived at the receiver. The wireless channels/links are unreliable, and it may happen that the receiver has not received the packets or they are erroneous whose re-transmission is needed. Therefore, to ensure the successful transmission of packets, some protocols for acknowledgement/error notification from other layers/sub-layers e.g., Automatic Repeat reQuest (ARQ), etc., should also be integrated into the resource allocation framework.

The CQI reporting schemes developed in this thesis do not consider any compression of the CQIs. However, in addition to reducing the feedback overhead by sending only the M best CQIs for each user, the feedback data rate can be further reduced by sending the compressed versions of the CQIs. In view of the recent advances in data compression technology, using a compression technique in conjunction to the best-M CQI reporting scheme is quite a compelling approach. The CQIs reporting schemes proposed in this thesis has the potential to accommodate any CQI compression technique for the further reduction of the feedback overhead.

Appendix A Appendix chapter 2 A.1 Proof of Theorem 3.4.1

The proof of this theorem can be directly obtained from the proof given in [START_REF] Fang | Canonical dual approach for solving 0-1 quadratic programming problems[END_REF] but we provide it for the completeness of the chapter. We introduce Lagrange multipliers to relax the strict inequality constraints (ǫ * , λ * , ρ * ) > 0 in χ * ♯ . We recall that the canonical dual method is different from the Lagrange dual method and the Lagrange multipliers has nothing to do with the formulation of the canonical dual problem but are used here to prove that the primal and the corresponding conical dual problem have the same KKT points. Let (δ ǫ * , δ λ * , δ ρ * ) ∈ (R N , R K , R KJ ) be the Lagrange multipliers associated to the inequality constraints (ǫ * , λ * , ρ * ) > 0, then the Lagrangian associated to the complementarity function Ξ(i, ǫ * , λ * , ρ * ) can be defined as follows:

The KKT conditions of the primal problem are:

is binary integer. However, respecting the positivity constraint on λ * , equation (3.54) can not ensure that a single sub-channel pattern is allocated to each user but 1 + σ λ * k number of patterns will be allocated to each user k. Similarly, ensuring that ǫ * > 0, equation (3.53) means that a sub-channel can be allocated to more than one users.

In the following, we discuss that we can find another approximate problem for which the above KKT equations not only provide binary integer solution but also ensure that a user will be assigned with a single sub-channel pattern and a sub-channel will be allocated to a single user. To this end, we proceed as follows. However, respecting the positivity constraint on λ * , equation (3.54) can not ensure that a single sub-channel pattern is allocated to each user but 1 + σ λ * k number of patterns will be allocated to each user k. Similarly, ensuring that ǫ * > 0, equation (3.53) means that a sub-channel can be allocated to more than one users.

In the following, we discuss that we can find another approximate problem for which the above KKT equations not only provide binary integer solution but also ensure that a user will be assigned with a single sub-channel pattern and a sub-channel will be allocated to a single user. To this end, we proceed as follows.

The KKT equation (3.55) can be written as

We introduce KJ new variables θ k,j 's defined as follows

From the above definition of θ k,j , equations (A.16) can be written as

Let U k,j = U k,j -2θ k,j ρ * k,j , then the above equations take the form:

that the canonical dual fd (ǫ * , λ * , ρ * ) is concave (since the KKT solution is in the positive cone). However, how far the solution of the modified problem will be from that of the primal problem (3.5) depends upon the values of ρ * k,j 's.

A.4 Proof of Corollary 3.5.1

For ρ * k,j << U k,j , ∀k, j, the solution of the equations (A.19,A.22,A.23) is very close to that of equations (3.43,3.44, 3.45). Furthermore, the solution of (A. 19,A.22,A.23) is the optimal solution of the corresponding primal problem with utilities U k,j (which is very close to the optimal solution of the primal problem with utilities U k,j ). Consequently, the dual canonical problem obtained using the sub-gradient based algorithm (Table 3.1) will provide solution to the primal problem which is very close to the optimal solution. This completes the proof. We start our proof by constructing a Markov chain for our proposed learning process. Then we study the properties of our learning process according to Definition 1 and 2. Finally, by using some results from [START_REF] Young | Learning by trial and error[END_REF] [128], we complete our proof.

Each user has its own Markov chain which is interdependent with the Markov chains of the other users via their decisions. This interdependency leads to an interactive learning. In our framework a user is always in one of the four main states denoted by c, c+, c-, and d. When the common constraint is not violated and a user has to minimize his/her own cost i.e., rate deviation, then the user is said to be "content" and this state is represented by c. The state d represents a "discontent" state where the common constraint is not satisfied and a user gets very high cost. The states c+ and c-are intermediary states before transitions to discontent state d. We denote by Lt k the current reference which is the current cost of user k (as performance) and L t k the received cost which is the new cost if configuration is changed. Next we describe the transitions of the Markov chains.

a) Transitions of the Markov chains

• Transitions from content state"c": In "c", we have four different cases. The cases c1-c3 are dedicated for experimentation and the state c4 is for non-experim-