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Abstract

Medical procedures have become a critical application area that makes sub-
stantial use of image processing. Medical image processing tasks mainly deal with
image restoration, image segmentation that bring out medical image details, mea-
sure quantitatively medical conditions etc. The diagnosis of a health problem is now
highly dependent on the quality and the credibility of the image analysis. The prac-
tical contributions of this thesis can be considered in many directions for medical
domain.
This manuscript addresses a 3D image analysis with variational methods and

wavelet transform in the context of medical image processing. We first survey the
second-order variational minimization model, which was proved that better than
the classical Rudin-Osher-Fatemi model. This method is considered in problems
associated to image denoising, image segmentation, that makes a short state of
the art on medical imaging processing techniques. Then we introduce the concept
of wavelet transform and present some algorithms that also used in this domain.
Experimental results show that these tools are very useful and competitive. The
core of this research is the development of new 3D representations, which are well
adapted to representing complicated medical data, and filament structures in 3D
volumes: the cerebellum and mice vessels network.
Each of these two based methods has advantages and disadvantages, we then

propose a new modified model that combines these schemes in the rest of the thesis.
In this situation we propose a new modified model that combines these schemes.
With the new decomposition model, in the reconstructed image, noise can be re-
moved successfully and contours, textures are well preserved. This leads to further
improvements in denoising performance.
Finally, the further part of the thesis is devoted to the description of contribution

to extend some classical contour closing methods, namely hysteresis thresholding
and contour closing based on chamfer distance transform, in the 3D context. The
thesis concludes with a review of our main results and with a discussion of a few of
many open problems and promising directions for further research and application.
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Résumé

L’imagerie médicale joue un rôle de plus en plus important avec le développe-
ment de nombreuses techniques d’acquisition. Il faut principalement pouvoir restau-
rer (débruiter) les images et en faire une segmentation. Ainsi toute l’information
qualitative et quantitative sera disponible pour affiner les diagnostics. Dans cette
thèse nous proposons une contribution à cette analyse dans un contexte 3D.
Nous étudions deux grands types de méthodes : les méthodes variationnelles et

les méthodes par ondelettes. Nous commençons par présenter les modèles variation-
nels du second ordre, qui s’avèrent plus performants que la classique méthode du
premier ordre de Rudin-Osher-Fatemi. Nous l’utilisons pour débruiter et segmenter
après avoir donné un bref état de l’art des procédés d’acquisition des images en
médecine. Nous introduisons ensuite la transformée en ondelettes et présentons des
algorithmes basés sur cette méthode. Les résultats numériques montrent que ces
méthodes sont performantes et compétitives.
Le cœur de notre travail est de développer des rerésentations 3D qui sont bien

adaptées à des données médicales complexes comme des images IRM sous échan-
tillonnées, peu contrastées (cervelets de souris) ou des images IRM d’angiographie
(cerveaux de souris).
Chaque technique a ses avantages et ses inconvénients. Aussi nous proposons

un modèle variationnel mixte second ordre / seuillage par ondelettes. Ce modèle se
comporte particulièrement bien : le bruit est correctement éliminé et les contours
et textures préservés.
Pour finir, nous adaptons plusieurs méthodes de fermeture de contours (hystéré-

sis et distance de chanfrein) dans un contexte 3D. Le mémoire se termine par une
synthèses des résultats et une présentation de futures directions de recherche.
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Chapter 1

Introduction

In five senses that consist of sight, hearing, touch, smell and taste, which humans
use to perceive their environment, the vision is the most powerful. In fact, more
than 99% of the human brain is involved in processing images from the visual cortex,
[22]. A visual image is rich in information. Therefore, images play a very important
role in handling, storage data and they are applied in almost fields of life.
Nowadays, the medical industry, astronomy, physics, chemistry... are just some

of the many fields that rely upon images to store, to display, and provide infor-
mation about the world around us. In addition, the use of images is necessary for
communication, transmitting information, and also for creation ... The challenge to
scientists (biomedical researchers, physicians, mathematicians), engineers and busi-
ness people is to quickly extract valuable information from raw image data. This is
the primary purpose of image processing - converting images to information.
Image enhancement is especially important in medical imaging because it allows

physicians to obtain a better visual interpretation, especially when viewing small
structures (e.g. thin vessels), and in looking for other numerous clinical applications.
Medical imaging is the technique and process used to create images of the human
body for seeking to diagnose or examine disease or the study of anatomy. Such
procedures are not usually referred to as medical imaging, but rather are a part of
pathology.
Medical images have a number of different dimensionalities (two, three, four -

dimensional), where three-dimensional, can be considered as an image stack of 2D
slices or directly spatial three-dimensional volume data. On the other hand, 3D can
be seen as a video which is composed from a lot of 2D slices that change every time
unit ∆t. We could compose a video as 2D+T model. Video refers to recording,
manipulating, and displaying moving images, especially in a format that can be
presented on a camera or device.
Here we pay attention that the 2D+T video model is different from the whole

directly spatial 3D volume data. Indeed, 2D+T video presents a visualization that
a sequence of images representing scenes in motion every time step ∆t, for the video
viewing a lot of images move very quickly so we can see that the objects in images
change during video playing. Contrary to the video model, the 3D data viewer
presents objects in reality at every direction. In short, 2D+T video is the spatio-
temporal viewing and direct 3D data can be considered in spatial viewing. And in
this thesis, we focus on the 3D viewer of data, the typical 3D data set is a group of
2D slice images acquired by a computed tomography, magnetic resonance imaging
or micro computed tomography scanner.
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With the growth of computing power and image technology, medical imaging has
greatly influenced the medical field. The diagnosis of a health problem is now highly
dependent on the quality and the credibility of the image analysis. Medical imaging
is considered as a part of biological imaging, which have been developed since 19th

century onwards. In 20th century, the mathematical principles behind tomographic
reconstruction have been understood, X-ray computed tomography (CT) have been
developed. Nuclear magnetic resonance has been using for imaging in magnetic
resonance imaging (MRI).
CT and/or MRI scans are specialized types of X-rays and/or magnetic field. The

scanners of both look like a large doughnut. Patient lies down on a moveable bed
that slides into the center of magnet. The bed moves slowly backwards and forwards
to allow the scanner to take pictures of the body, it does not touch the patient. Inside
the tunnel, computer collects the results and these results are translated into images
that look like a “slice” of a person.

Computed Tomography (CT)

Computed Tomography (CT) scans are used to image a wide variety of body struc-
tures and internal organs, it is great to look at the bones. CT scans uses multiple
X-rays to create cross-sectional pictures of the body. While traditional X-rays image
organs in two dimensions, with the possibility that organs in the front of the body are
superimposed over those in the back, CT scans allow for a more three-dimensional
effect , [62], [13].

(a) X-rays projections of CT on the body. Thanks
for the image from http://labspace.open.ac.uk.

(b) Parallel X-ray CT system.

Figure 1.1: CT systems working on a body. Many projections are obtained, then
they are combined in software using filtered backprojection to obtain an accurate
2D image of the section of the body.

The camera in CT machine moves around inside and takes pictures, it may make
some noise because of the movement during the scan.
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From the mathematical point of view, CT can be considered as an inverse prob-
lem which are related to Radon transform (RT), Discrete Fourier transform (DFT)
and inverse DFT [47].
In CT, thin X-ray parallel beams are transmitted across a section of the body

at a specific angle θ. When the beams end at the other side of body, we have the
representation of projection of the cross section at the angle θ, as in figure 1.1(b).
Next, the angle θ increases and another projection is obtained. Repeating this
process we will get the sequence of projections. This sequence of projections is then
used to reconstruct a 3D image of that section of body.

Magnetic Resonance Imaging (MRI)

Magnetic Resonance Imaging scans are used for looking at soft tissue. The MRI scan
uses magnetic and radio waves, there is no exposure to X-rays or any other damaging
forms of radiation. In the magnetic field, the effects of radio waves through the body
cause body’s tissue to resonate and take high-resolution pictures of your bones and
soft tissues. One of the great advantages of MRI is the ability to change the contrast
of the images. Moreover, MRI is able to change the imaging plane without moving
the patient, MRI machines can produce images in any planes [32], but the results
may be noisy.

Figure 1.2: MRI scanner cutaway, thanks for the image from [34].

One of the strengths of MRI compared to other imaging techniques (optical,
PET, CT,...) is the ability to obtain not only anatomical images in three dimensions
but also functional information with the implementation of new method of imaging
(fMRI, diffusion, perfusion,...), [19]. For this reason, MR images will be applied in
our studied.
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How does a MRI scan differ from a CT scan?

Because the MRI creates a magnetic field around person and the pulses radio waves
to the area of body to be pictured, MRI scan makes possible to take pictures from
almost every angles, whereas CT scans only shows pictures horizontally. While CT
scan is obtained using X-rays, the radiation is passed through the body and received
by a detector then integrated by a computer to obtain a cross sectional image that
is displayed on the screen, there is no X-rays involved in producing an MRI scan.
MRI most commonly used in radiology in magnetic field to visualize detailed internal
structure and limited function of the body, so MRI scans are generally more detailed
than CT scanner.

CT can outline bone inside the body very accurately, and MRI is more versatile
than X-rays, it is used to examine a large variety of medical conditions. MRI is
much higher detail in the soft tissues comparing with CT while CT provides good
details about bony structures more than MRI. Moreover, the time taken for total
testing and the cost range of CT scans are less than MRI scans.

CT and MRI scans are very important tools in visualizing body parts, especially
in clinical evaluation and treatment planning, CT and MRI scanners can be used
to create a volume by reconstructing a series of slicing images. CT and MRI scans
depend on what need to be visualized and the reason we need for the test. For
instance, in figure 1.3 below the normal and abnormal pericardium seen on CT and
MRI studies:

Figure 1.3: Normal and abnormal pericardium seen on computed tomography (CT)
and magnetic resonance imaging (MRI) studies. (A) CT scan of normal pericardium.
(B) CT scan of thickened pericardium. (C) MRI scan of normal thick pericardium
(arrows). (D) MRI scan of a thickened pericardium. Images are reproduced from
Breen on [29].
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The 3D MRI scans of Mouse Brain and Vessels of Mouse

Brain

Mouse is one of the major animal models for biomedical research. Mouse models are
helpful to link genes, since 80% of the genome is common with that of human being,
[19]. The development of magnetic resonance imaging (MRI) on mouse brain helps
to study human diseases. Here we investigate small animals which are completely
embedded in the magnetic field, namely, mice whose teeth are tied hanging up and
put on the magnetic field. The MRI camera takes pictures of the whole mouse’s
body. Biologists here want to consider MRI scans of the mouse brain without
killing the animal. Human intervention will be limited to minimum and the manual
handling will be greatly reduced.

The focus of the thesis is based on three-dimensional visualization of MRI scans,
specially the brain and vessels of transgenic mice brain. In Figure 1.4 we give these
two MRI examples, and moreover, we present arbitrary slices along xy, yz and xz
cross directions on each volume data in Figure 1.5.

The mouse brain volume is the stack of 110 MR images which size is 341× 110

pixels. The vessels of mouse brain volume is the stack of 51 MR images which size is
256×256. We thank J.C. Belœil, S. Même and F. Szeremeta, from CBM Laboratory
in Orléans, for the use of these two 3D volumes. Segmenting the mouse brain 3D
data is a difficult issue since the contrast between different objects is low. For
the vessels of mouse brain data, biologists want to recover the network of filament
structures, specially the small ones inside the noisy volume. In detail, we want to
know how to recover the real blood-vessels network (without noise). The problem is
to identify the noise, since thin structures can be considered as noise. Images have
to be positioned and oriented relative to one another and aligned exactly so that
vessels are continuous through slices. For such volume data, we want to consider
medical image processing from the mathematical point of view.

A very large part of image processing is devoted to image restoration. Image
restoration is the removal or reduction of unexpected elements that are involved
while the image is obtained. One of the main objectives in image restoration is
denoising and/or texture extraction. It is very difficult to diagnose a particular
disease for biomedical researchers because of noise that pollutes images. The noise
that degradate our image cannot be easily removed here. With noise statistical
property and frequency spectrum distribution rule actually calculated according to
image’s characterization, there are many methods to removing noises. Let us men-
tion, for example, PDE smoothing filters, total variation filter, adaptive filters (high
or low pass filters). We also have frequency domain filters or those using Wavelets,
Ridgelets, Beamlets and so on. For the denoising and/or texture identification tasks,
the goal is to remove noise and/or spurious details from a given corrupted image
but still maintain its essential features.

The general idea behind variational denoising methods is to regard a noisy image
f as being obtained by corrupting a noiseless image u. The desired image u is then
a solution of the corresponding inverse problem: which u could f be obtained from
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(a)

(b)

Figure 1.4: (a) Mouse brain, (b) Vessels of mouse brain.

by corruption? Moreover, because the classical filtering methods, such as high/low
pass filters, heat equation convolution ... do not preserve the contour shapes in
outcome image, another variational model may be considered. A classical approach
of image restoration consists in considering that image f can be decomposed into
two components u+v, where the first component u is well structured and represents
a simple geometrical information, the second component v containing the oscillating
patterns (which usually both textures and noise). The regularization term involves
only the homogeneous component u, while the remaining term v := f − u models
the noise that need to be minimized. These models were studied extensively the
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 1.5: Left: Brain of Mice volume, Right: Vessels of Mice Brain volume, (a-d)
xy cross direction, (b-e) yz cross direction and (c-f) xz cross direction.

past years. The general form is to minimize a functional energy:

F(u) = ‖f − u‖X +R(u), u ∈ Y ⊂ X (1.1)

where X, Y are (real) Banach spaces and R is a regularization operator.
One of the most successful algorithms is the Rudin-Osher-Fatemi (ROF) model,

[4], [50], [5] which uses total-variation regularization. Regard to this model, the
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observed image f contains two parts:

f = u+ v

where v represents the noisy component (v ∈ L2(Ω)) and u is the geometrical
component which models the homogeneous objects presented in the image. It usually
belongs to BV (Ω) - the space of bounded variation function.
In the ROF model we consider the functional energy:

F (u) =
1

2
‖f − u‖2L2(Ω) + λTV (u,Ω), u ∈ BV (Ω) ; (1.2)

where TV (u) stands for the total variation of u ∈ BV (Ω). We look for a solution
to:

inf
u∈BV (Ω)

F (u). (1.3)

This problem has a unique solution in BV (Ω). However, the ROF model has
some inconveniences: the use of BV norm implies perturbations. The computed
solution turns to be piecewise constant which is called the staircasing effect ([11]).
Artificial contours that do not exist in the original image appear. This staircasing ef-
fect is presented in detail of Appendix B. Therefore, though noise can be successfully
removed the solution is not satisfactory. This variational model can be improved
using different functional spaces. In [41] it is proposed to used the functional space
of second order bounded variation - the BV 2 space.

inf
u∈BV 2(Ω)

F (u); (1.4)

where

F (u) =
1

2
‖f − u‖2L2(Ω) + λTV 2(u,Ω), u ∈ BV 2 (Ω) . (1.5)

In this thesis, we generalize the ROF model to the functional space BV 2 in
three-dimensional framework. Mouse brain MRI images segmentation (Figure 1.4)
will be considered as an application. Besides variational methods, there also exist
many other techniques, for instance wavelet analysis or multifractal analysis ...
Each technique has its advantages and disadvantages, and wavelet technique is

one of recent approaches. In the thesis, this second-order variational method and
wavelet transform scheme are studied and compared.

The outline of this thesis is organized as follows:

Chapter 2

This chapter discusses variational models from the classical Rudin-Osher-Fatemi
(ROF) model to the second order model (ROF2), that deals with all disadvantages
of problem ROF. We first present theoretical definitions of the first TV and second-
order total variation TV 2, and describe the functional framework (BV and BV 2
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spaces). In [59], Bredies K. et al. gave another functional concept of total generalized
variation TGV and its second-order (TGV 2): The new regularization term was
then replaced to consider the other variational problems, that also overcome some
inconveniences problem (PROF ) brings us efficiently. In this chapter, the comparison
between theoretical definitions of TV 2 and TGV 2, between different variational
problems are also studied in the finite dimensional case.

Chapter 3

In this chapter, we especially deal with the three-dimensional models that have
been generically described in the previous chapter. The so-called isotropic model is
performed in details with the fixed point algorithm proposed by Chambolle A. [4]
and we also investigate the Nesterov type algorithm to speed up the method, see
Weiss P. [23], Piffet L. [41].
As previously mentioned, the observed image f can be divided into a regular

part u ∈ BV 2(Ω) and an oscillating part v := f−u. Observing solutions of problem
ROF2, we note that the model keeps geometrical information and removes almost
noise as well. However, a lot of geometrical information remains together with the
texture and noise in the oscillating part v.
In particular, the remainder term v := f − u contains together texture and/or

noise and a part of contour shapes. In this sequel, our goal is to locate texture
and/or noise and we do not need to work with the cartoon part u any longer. To
perform a full texture extraction, we hope to keep most of texture and noise in
the oscillating part while many contour shapes disappear. Based on Piffet L. [40],
a local anisotropic model is then performed. Moreover, we also sketch out in this
chapter two algorithms from Chambolle A. [4] and Nesterov [67], [23] and present
some MRI numerical tests in 3D.

Chapter 4

Wavelet analysis has been developed during the two past decades. Wavelets are used
successfully in many applications such as signal analysis, image analysis, communi-
cations systems, and other signal processing applications. The flexibility of wavelets
makes them appropriate for many special purposes. Wavelets are widely described
by Daubechies I. [26], Mallat S. [53], [54], [3], [8] and so on.
Among various denoising techniques, wavelet denoising is one of the most pop-

ular ones, using multiresolution representation and noise separation features, [51].
Roughly speaking, wavelet coefficients are calculated via a wavelet transform, and
it is possible to denoise by thresholding their coefficients. Image is subjected to
the wavelet transform, then the wavelet coefficients are found, the components with
coefficients below a threshold are replaced with zeros, and the image is then recon-
structed (inverse discrete wavelet transform).
One and two dimensions image texture extraction procedure can be further gen-

eralized to three dimensions. In 3D wavelet transform decomposition, a dataset vol-
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ume is decomposed into eight subbands occupying eight octants in the 3D wavelet
space. Inside the wavelet filter banks, the high-pass subbands collect the noise and
irregular features while the low-pass subbands contain the trend or approximation of
the original data, which removes or reduces noise. Therefore, throughout this chap-
ter, we are studying 3D wavelet transform in image restoration by using filter banks
for medical imaging applications. Besides the study of subsampled wavelet trans-
form (Mallat’s algorithm), we also give an understanding to undecimated wavelet
transform (called “à trous” algorithm) therein.
In this chapter, we study three-dimensional discretized wavelet transform that

includes wavelet decomposition and reconstruction strategies. In addition, it gives
some hints for 3D image denoising and contour detection applications that will be
considered in chapters 5 and 6.

Chapter 5

This chapter 5 is devoted to numerical tests for 3D image denoising and texture
extraction by both mathematical points of view: variational model and wavelet
technique discussed previously. In this chapter we consider how these methods
behave on 3D examples of video and MR images. Besides, the chapter also discusses
about texture extraction. It is an important task in many computer applications
of image detection. During denoising process, we do not want to loose some useful
information, that’s why the local anisotropic algorithm is performed to determine
the texture and/or contour information.
In the second part of the chapter, we shall discuss about the wavelet transform.

As previously studied in chapter 4, we have two different types of wavelet transform:
Mallat’s subsampled wavelet and the “à trous” unsubsampled wavelet transform.
Chapter 5 deals with detailed numerical performances for 3D volume examples. In
addition, we thank to [51] for the 3D wavelet proposed method that combined 2D
and 1D wavelet transform together in the later work on 3D image denoising. This
chapter also gives us the 3D denoising representation with fully automated at a high
speed of this 2D+1D wavelet technique.
To illustrate each method, we present some numerical results tested on the ex-

perimental examples arising in biomedical imaging. It is also provided a comparison
between considered methods, analysis of some experimental results and some eval-
uations, some conclusions about our approaches.

Chapter 6

Chapter 6 addresses the application to 3D image segmentation process that is
performed on a 3D image. In particular we locate the contour information of image
with both variational model and wavelet pyramid method. From a different point
of view, the contour detection is another application to the denoising application
in chapter 5. Here, we deal with contour detection simulations and compare some
experimental results by variational method and wavelet scheme. In particular, the
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difference between isotropic and local anisotropic results represent contour shapes in
variational method, on the other hand, the contour detection methods using wavelet
transform scheme is also studied to isolate the contour shapes of image, [55], [36],
[17].
Visual perception evolved in a world of objects many of which are bounded by

smooth closed contours. Especially with the three-dimensional dataset that need to
be marked the locations of filaments to get the region of interest. There also exist
other structures with high values (noise) or we may loose some information within
the vessels through contour detection process. That is the reason why we should
perform contour closing algorithms. Once the contour shapes are detected, we next
provide methods of contour closing implementation. This chapter also presents
two classical methods, which are applied to three-dimensional contour closing, the
hysteresis thresholding [48] and a local operator based on chamfer distances methods
[35], [9], [6].

Chapter 7

Throughout previous chapters, we have studied two based methods and their appli-
cations in image implementation, the second-order variational method and wavelet
transform simulated on three dimensional medical images. Because each method has
the advantages and disadvantages, BV 2-variational method gives good denoised re-
sults meanwhile the wavelet shrinkage technique reduces well edge/contour artifacts.
In this situation we propose a new modified model that combines these schemes,
we then have a reconstructed image that has fewer oscillations near edges and noise
is smoothed. A lot of references, for instance in [24], [25] etc, gave ideas of de-
noising algorithm based on a combination of these frameworks several years ago.
It permits us to improve another approach that employs variational framework, in
particular the minimization model (PROF2) plus the wavelet thresholding to reduce
oscillations, remove noise while maintain the sharpness of image.
The ideas introduced here can be considered to perform in this chapter and

use as a post-processing technique for image denoising application. Taking advan-
tages of both methods (variational method and wavelet based scheme) mentioned
previously, we apply them in a new model that combines two based methods; the
numerical results are well denoised and almost geometrical details are well preserved.
Therefore, here we propose a new small variational model for image denoising and
decomposition (so-called the “merged-problem“), which combines the second-order
total variational model of Rudin-Osher-Fatemi (PROF2) and the Wavelet transform.
In [66], Y. Meyer has introduced an image decomposition model to split an image

into two components: a geometrical components and texture (oscillatory) compo-
nent. Inspired by his work, numerical models have been developed to carry out the
decomposition of gray scale images. Other recent and related image decomposition
models combined from variational model and wavelet transform are well proposed.
In our approach, the considered model will decompose an image into several com-
ponents, where each of them is characterized by a special space of function. More
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precisely, the aim of work in this chapter is to construct a model which decompose
image into two components: the first one represents all geometrical information of
the image, the second one containing the oscillating structures of image. In the rest
of this chapter, we present some numerical results applied both (PROF2) and an
undecimated wavelet transform (the “à trous” algorithm) in order to deal with the
case of 3D noisy images.

Chapter 8

As previous description throughout this introduction part, we have given a small
introduction to the three-dimensional MRI model of vessel with the important role in
diagnosing diseases via trisomic mouse brain (cerebellum). Indeed, the quantitative
measurement of three dimensional vessel attributes as defined from high resolution,
MR images thus provides a new method of evaluating many types of disease. In the
rest of this thesis, we dedicate a special chapter 8 to describe and give a number of
issues surrounding this model. It can be said that this is a special image with the
difficulty on the difference in the contrast between the model objects, for instance
the contrast between vessels and the background is low, or inside vessel regions can
vary from region to region. The vessel’s attributes include not only vessel number
but also vessel morphological measures such as filament structure, tortuosity and
branching pattern etc. Moreover, the obtained MRI model captured during scanning
process contains a lot of noise, therefore it is necessary to apply some methods of
denoising while retain almost filament structures of vessel.
This chapter aims to justify our mathematical application and performance only

on the Vessels of mouse brain. This volume is a difficult issue because the original
datum we received from biologists is very noisy during MRI scanning. Biologists
want to recover the network of filament structures, specially the small filaments in-
side a noisy volume, which namely, we just want to know how to differentiate the real
network of this model without noise, the problem is to distinguish where the noise
is, where the real filament structures are. The noise of our image does not belong
to any known classification noise (Gaussian, Salt and Pepper etc), it is a challenge
to evaluate the results after noise reduction by our applied methods. In addition, it
is the difficulty when we did not have any standard compare to the original quality
image (for example, we already have such as Lena, Barbara or Cameraman image
in two-dimensions). The presence of noise not only produces undesirable visual
quality but also lowers the visibility of low contrast objects. In such situation it is
very difficult for biomedical researchers to diagnosis the particular disease. Noise
removal is essential in medical imaging applications in order to enhance and recover
fine details that may be hidden in the data, that is reason why reducing random
noise is a very active research area in medical image processing. Additionally, noise
reduction methods developed in other research fields find their usage in biomedical
applications, noise reduction must be carried out with extreme care to avoid sup-
pression of the important image content. For the volume of vessel data, it is truly a
challenge to highlight structures such as mouse brain vessels that otherwise would
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be difficult to delineate from their surroundings, the results of biomedical image
denoising should be consulted with medical experts.
The chapter sketches out the order of work as follows: image denoising perfor-

mance can be considered, we then applied the segmentation process to the vessels
based on some known methods that have been considered in previous chapters.
Since the given data of vessel contain noise, we firstly perform variational or wavelet
based methods to reduce noise without the appearance of staircase effect and contour
shapes are well retained in the numerical results. In our experience, some proposed
schemes introduced in chapter 6 could be applied to detect and close contours to
get the full systems of vessel fibres. They aim to facilitate the visualization of vessel
model by recovering volume prior to 3D reconstruction. Indeed, segmentation of
vessels is one of essential medical computing tools for clinical assessment of human
diseases, therefore it is challenging to perform this kind of image segmentation in
angiography.
Finally, the image decomposition model (P) is also performed to the vessel

volume data from the theoretical studying with some examples are implemented and
compared in the chapter 7. In the rest of this chapter, we present some experimental
results applied to the vessels image, in which the method gives very satisfactory
results of separation into geometrical objects and the oscillating component. This
process also confirms that our approach is well adapted to the 3D image of vessels
data, one of the most difficult issues in bio-medical research. The better numerical
results will be obtained with a more expensive computational work in the promising
future.

Conclusions and Further Works

Finally, we end the thesis with Conclusions and some of further works, where we
discuss some open questions related to subject matter. Further work is also analyzed
suggesting various ways through which the research may continue.
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This chapter discusses variational models from the classical Rudin-Osher-Fatemi
(ROF) model to the second order model (ROF2), that deals with all disadvantages
of problem ROF. We first present theoretical definitions of the first TV and second-
order total variation TV 2, and describe the functional framework (BV and BV 2

spaces). In [59], Bredies K. et al. gave another functional concept of total generalized
variation TGV and its second-order (TGV 2): The new regularization term was
then replaced to consider the other variational problems, that also overcome some
inconveniences problem (PROF ) brings us efficiently. In this chapter, the comparison
between theoretical definitions of TV 2 and TGV 2, between different variational
problems are also studied in the finite dimensional case.

2.1 Functional framework

2.1.1 The first order bounded variation space

Definition 1. [12] Let Ω ⊂ R
n be a generic open set and bounded, for (n ≥ 2),

u ∈ L1 (Ω). We say that u is the function of bounded variation in Ω if the weak

derivative in sense of distribution Diu of u a finite Radon measure, which namely,

if: ∫

Ω

u
∂ϕ

∂xi
dx = −

∫

Ω

ϕdDiu, ∀ϕ ∈ C∞0 (Ω;Rn) ; i = 1, 2, ..., n (2.1)

for some R
n-valued measure Diu = (D1u,D2u, ...,Dnu) in Ω. The vector space of

all functions of bounded variation is denoted by BV (Ω).
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Definition 2. [12] Total variation
Let u ∈ L1 (Ω). The total variation of u in Ω, which be denoted by TV (u,Ω), is

defined by:

TV (u,Ω) = sup





∫

Ω

u divϕ dx : ϕ ∈ C10 (Ω;Rn) , ‖ϕ‖∞ ≤ 1



 . (2.2)

where divϕ =
n∑

i=1

∂ϕ

∂xi
.

Definition 3. [41] Bounded Variation space

The space BV (Ω) of bounded variation functions is defined as:

BV (Ω) =
{
u ∈ L1 (Ω) : TV (u,Ω) < +∞

}
. (2.3)

Proposition 1. [12] The derivation in sense of distribution of every u ∈ BV (Ω) is

a bounded Radon measure, which be denoted Du, we have:

TV (u,Ω) = |Du| (Ω) , ∀u ∈ BV (Ω) . (2.4)

And its value on an open set U ⊆ Ω is:

TV (u, U) = |Du|(U) = sup





∫

U

udivϕdx : ϕ ∈ C10 (U ;Rn) , ‖ϕ‖∞ ≤ 1



 . (2.5)

Theorem 1. [41], [39] Banach properties

The space BV (Ω), endowed with the norm ‖u‖BV = ‖u‖L1 + Φ1(u) is a Banach

space, where Φ1(u) = |Du| (Ω) = TV (u,Ω).

Then, we give some useful properties of the functional bounded variation space
as in theorem below:

Theorem 2. [12] Assume that u ∈ BV (Ω). There exists a sequence of functions

ui ∈ C∞(Ω) ∩BV (Ω) such that:

(i) ui → u in L1(Ω) as i→∞;

(ii) |Dui|(Ω)→ |Du|(Ω) as i→∞, and TV (ui,Ω)→ TV (u,Ω) as i→∞;

Moreover,

(iii) if u ∈ BV (Ω) ∩ Lq(Ω), q < ∞, we can find functions ui such that u ∈ Lq(Ω)

and ui → u in Lq(Ω);

(iv) if u ∈ BV (Ω)∩L∞(Ω), we can find functions ui such that ‖ui‖∞ ≤ ‖u‖∞ and

ui → u in L∞(Ω) - weakly*.

Theorem 3. [12] Semi-continuous Property

Suppose that ui ∈ BV (Ω), i = 1, 2, ... and ui → u in L1
loc(Ω). Then,

|Du|(Ω) ≤ lim inf
i→∞

|Dui| (Ω) . (2.6)
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Theorem 4. [41], [12] Embedding Theorem

Let Ω be open and bounded subset of Rn, with boundary ∂Ω Lipschitz. Then, the

embedding BV (Ω) → L
n

n−1 (Ω) is continuous, and BV (Ω) → Lp(Ω) is compact for

all 1 ≤ p ≤ n

n− 1
.

As in [43], let us define BV0(Ω) as the space of bounded variational functions
that vanish on the boundary ∂Ω of Ω:

BV0(Ω) = {u ∈ BV (Ω) : u|∂Ω = 0} . (2.7)

More precisely as Ω is bounded and ∂Ω is Lipschitz, functions of BV (Ω) have
a trace of class L1 on ∂Ω, and the trace mapping T : BV (Ω) → L1(Ω) is linear,
continuous from BV (Ω) equipped with the strict convergence to L1(∂Ω) endowed
with the strong topology. The space BV0(Ω) is then defined as the kernel of T . It
is a Banach space, endowed with the introduced norm.

Theorem 5. [31] Poincaré inequalities

Let 1 ≤ p < +∞ and let Ω be a bounded open set. Then, there exists cp,Ω > 0 such

that

∀v ∈W 1,p
0 (Ω); cp,Ω. ‖v‖Lp(Ω) ≤ ‖∇v‖Lp(Ω) . (2.8)

Theorem 6. [43] Poincaré-Wirtinger inequality in BV (Ω)

Let Ω be a connected and Lipschitz open bounded subset of R
n. There exists a

constant CΩ > 0 such that:

∀u ∈ BV0(Ω) ‖u‖L1(Ω) ≤ CΩTV (u,Ω). (2.9)

2.1.2 The second order bounded variation space

Definition 4. [12] Second-order total variation

Let Ω be an open bounded subset of Rn, n ≥ 2, and for u ∈ W 1,1 (Ω), the second

order total variation of u can be defined as:

TV 2(u,Ω) = sup





∫

Ω

〈∇u, divφ〉
Rn : φ ∈ C2

0 (Ω) , ‖φ‖∞ ≤ 1



 . (2.10)

where

divφ = (divφ1, divφ2, ..., divφn)

with

φi : Ω→ R
n;φi =

(
φ1i , φ

2
i , ..., φ

n
i

)
∈ R

n, ∀i = 1, 2, ..., n.

Definition 5. [12],[41] Second-order bounded variation space

Let u ∈W 1,1(Ω), then u ∈ BV 2(Ω) if and only if TV 2(u,Ω) < +∞.

BV 2(Ω) =
{
u ∈W 1,1 (Ω) : TV 2 (u,Ω) < +∞

}
. (2.11)
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Proposition 2. [12] We have:

u ∈ BV 2 (Ω)⇔





u ∈W 1,1 (Ω) ;
∂u

∂xi
∈ BV (Ω) , ∀i ∈ {1, 2, ..., n} . (2.12)

Therefore,

BV 2 (Ω) =

{
u ∈W 1,1 (Ω) /∀i ∈ {1, 2, ..., n} : ∂u

∂xi
∈ BV (Ω)

}
. (2.13)

Proposition 3. [4],[41] The space BV 2 (Ω) is endowed with a norm:

‖u‖BV 2(Ω) = ‖u‖BV (Ω) + TV 2(u,Ω). (2.14)

is a Banach space.

Theorem 7. [39], [43] Structural properties of the derivative

Let Ω be an open subset of Rn with Lipschitz boundary.

- For every u ∈ BV (Ω), the Radon measure Du can be decomposed into Du =

∇udx + Dsu, where ∇u is the absolutely continuous part of Du with respect

to Lebesgue measure and Dsu is the regular part.

- We have the inequalities:

TV 2(u,Ω) ≤
n∑

i=1

TV

(
∂u

∂xi
,Ω

)
≤ nTV 2(u,Ω). (2.15)

Theorem 8. [41] Semi-continuous property

As the space BV (Ω), we also have the semi-continuity for BV 2(Ω). Let {ui}i∈N ∈
BV 2(Ω) which converges to u in W 1,1(Ω). Then,

|D2u|(Ω) ≤ lim inf
i→∞

∣∣D2ui
∣∣ (Ω) . (2.16)

Theorem 9. [41],[43],[39] For n > 1, then:

(i) BV 2(Ω) →֒ W 1,q(Ω), for q ≤ n

n− 1
with continuous embedding. Moreover,

the embedding is compact if q <
n

n− 1
;

(ii) BV 2(Ω) →֒ Lq(Ω), ∀q ∈ [1,+∞) if n = 2. In the sequel, if n = 2 and Ω

is a bounded, open, Lipschitz subset of R2, so that BV 2(Ω) ⊂ H1(Ω) with

continuous embedding and BV 2 ⊂W 1,1(Ω) with compact embedding.

We next define BV 2
0 (Ω) as the space of second bounded variational functions

that vanish on the boundary ∂Ω of Ω:

BV 2
0 (Ω) =

{
u ∈ BV 2(Ω) : u|∂Ω = 0

}
. (2.17)

Theorem 10. [43] Poincaré-Wirtinger inequality in BV 2(Ω)

Let Ω be a connected and Lipschitz open bounded subset of R
n. There exists a

constant CΩ > 0 we have:

∀u ∈ BV 2
0 (Ω) TV (u,Ω) = ‖∇u‖L1(Ω) ≤ CΩTV

2(u,Ω). (2.18)
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2.1.3 Relation to Second-order Total Generalized Variation

In [59], K. Bredies and al. proposed and analyzed the concept of Total Generalized
Variation (TGV), where the definition of order k follows:

Definition 6. [59] k-order Total Generalized Variation

Let Ω ⊂ R
n be a domain, n ≥ 1 and α0, ..., αk−1 > 0. Then, the total generalized

variation of order k with weight α = (α0, ..., αk−1) for u ∈ L1
loc(Ω) is defined as the

value of the functional

TGV k
α (u,Ω) = sup





∫

Ω

udivkvdx|v ∈ Ckc (Ω, Symk(Rn)),
∥∥∥divlv

∥∥∥
∞
≤ αl, l = 0, ..., k − 1



 .

(2.19)
with taking the value ∞ if the respective set is unbounded from above.

Here, Symk(Rn) denotes the space of symmetric tensors of order k with argu-
ments in R

n and αl > 0 are fixed parameters. Choosing k = 1 and α0 = 1 gives
the total variation functional. In this section we consider the case of k = 2, roughly
speaking the second order total generalized variation.

Definition 7. [59] Second order Total Generalized Variation

Let Ω ⊂ R
n be a bounded domain and α = (α0, α1) > 0. The functional assigning

to each u ∈ L1
loc(Ω) the value:

TGV 2
α (u,Ω) = sup





∫

Ω

udiv2vdx|v ∈ C2c (Ω, Sym2(Rn)), ‖v‖∞ ≤ α0, ‖divv‖∞ ≤ α1



 .

(2.20)
is called the Total Generalized Variation of second order.

Correspondingly, the space

BGV 2
α (Ω) =

{
u ∈ L1(Ω)|TGV 2

α (u,Ω) <∞
}
. (2.21)

equipped with the norm:

‖u‖BGV 2
α
= ‖u‖1 + TGV 2

α (u,Ω). (2.22)

is called the space of Bounded Generalized Variation functions of order 2. Indeed,
this second-order bounded generalized variation is slightly different from the second-

order bounded variation we mentioned in definitions 4 and 5. In [59], this type of

concept is also proposed in order to overcome the disadvantage of staircasing. They

similarly found properties and developed a based-variational model in applying to

image restoration and denoising. In this thesis, we do not give any comparisons be-

tween two different definitions, two different models in denoising, restoration image

point of views. We herein just only give a basic understanding of two theories and

try to find some relations between them.

Some basic properties of the second order total generalized variation are proposed

in [60]. We recall them in theorem 11 as following:



20 Chapter 2. Variational models

Theorem 11. [60] Total Generalized Variation of second order enjoys the following

properties:

1. TGV 2
α is a semi-norm on the Banach space BGV 2

α (Ω);

2. TGV 2
α (u,Ω) = 0 if and only if u is a polynomial of degree less than 2;

3. TGV 2
α and TGV 2

α̃ are equivalent for α̃ = (α̃0, α̃1) > 0;

4. TGV 2
α is rotationally invariant;

5. TGV 2
α is proper, convex and lower semi-continuous on each Lp(Ω), 1 ≤ p <∞.

Theorem 12. [60] Let Ω ⊂ R
n be a bounded Lipschitz domain. Then, there exist

constants 0 < c < C <∞ such that for each u ∈ BGV 2
α (Ω) there holds:

c ‖u‖BV ≤ ‖u‖1 + TGV 2
α (u,Ω) ≤ C ‖u‖BV . (2.23)

Lemma 1. Let Ω ⊂ R
n be a bounded Lipschitz domain. Then, there exists a constant

n > 0 such that for each u ∈W 1,1(Ω) such that:

TV 2(u,Ω) ≤ TV (∇u,Ω) ≤ nTV 2(u,Ω). (2.24)

Proof. From the definitions 2 and 4 of total variation (TV ) and the second total

variation (TV 2), we get:

TV (∇u,Ω) = sup





∫

Ω

〈∇u, divφ〉
Rn : φ ∈ C1

0 (Ω) , ‖φ‖∞ ≤ 1



 . (2.25)

TV 2(u,Ω) = sup





∫

Ω

〈∇u, divφ〉
Rn : φ ∈ C2

0 (Ω) , ‖φ‖∞ ≤ 1



 . (2.26)

Since C2
0 (Ω) ⊂ C1

0 (Ω), we get that TV
2(u,Ω) ≤ TV (∇u,Ω).

On the other hand, we analyze the TV (∇u,Ω) as following:

TV (∇u,Ω) = sup





∫

Ω

〈∇u, divφ〉
Rn : φ ∈ C1

0

(
Ω,Rn×n) , ‖φ‖∞ ≤ 1





= sup





n∑

i=1

∫

Ω

∂iu

∂xi
divvi; v ∈ C1

0

(
Ω,Rn×n) , ‖v‖∞ ≤ 1





≤
n∑

i=1

sup





∫

Ω

∂iu

∂xi
divvi; v ∈ C1

0

(
Ω, Rn×n) , ‖v‖∞ ≤ 1





=
n∑

i=1

TV

(
∂iu

∂xi
,Ω

)

≤ nTV 2(u,Ω)(by theorem 7).

(2.27)
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Theorem 13. Let Ω ⊂ R
n be a bounded Lipschitz domain. Then, there exist con-

stants 0 < M1 < M2 < ∞ such that for every u ∈ BV 2
0 (Ω) satisfying ∇u ∈

BGV 2
(1,1)(Ω) there holds:

M1 ‖u‖BV 2(Ω) ≤ ‖∇u‖BGV 2
(1,1)

(Ω) ≤M2 ‖u‖BV 2(Ω) . (2.28)

Proof. First, we consider the norm of ∇u in BGV 2
(1,1)(Ω):

‖∇u‖BGV 2
(1,1)

(Ω) ≤ C ‖∇u‖BV (Ω)

= C
(
‖∇u‖L1(Ω) + TV (∇u,Ω)

)

≤ C ‖∇u‖L1(Ω) + C.n.TV 2(u,Ω)

≤ C.n.
(
‖∇u‖L1(Ω) + TV 2(u,Ω)

)

≤M2. ‖u‖BV 2(Ω) .

(2.29)

On the other hand, we have:

‖u‖BV 2(Ω) = ‖u‖L1(Ω) + ‖∇u‖L1(Ω) + TV 2(u,Ω)

≤ ‖u‖L1(Ω) + ‖∇u‖L1(Ω) + TV (∇u,Ω)(by lemma 1)

≤ C.
(
‖∇u‖L1(Ω) + TV (∇u,Ω)

)
(by theorem 6)

= C ‖∇u‖BV (Ω)

≤M1. ‖∇u‖BGV 2
(1,1)

(Ω) .

(2.30)

2.2 Variational models

Variational models have been investigated by seminal work by Rudin et al in [18]

several years ago. One of the simple problems of image decomposition consists in

splitting an original image f into two components u and v. Component u contain

the geometrical information while v plays a role of oscillating pattern of f . The reg-

ularization term involves only the homogeneous component u, while the remaining

term v := f − u models the noise that need to be minimized. We are interested in

minimizing functional energies of the following type:

F(u) = ‖f − u‖X +R(u), u ∈ Y ⊂ X (2.31)

where X, Y are (real) Banach spaces and R is a regularization operator.

In this section, we first recall some models as the one by L. Rudin, S. Osher

and E. Fatemi [18], or Meyer [66] who gave a different decomposition model in the

space G(Ω) for textures in which the oscillating patterns have a small norm. L. Vese

and S. Osher have proposed an approach for the resolution of Meyer’s model [57]

etc. Then, our approach is introduced to carry out the mathematical study of the

second-order model ROF2.
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2.2.1 Rudin-Osher-Fatemi model (ROF)

The total variation regularization has been known as a great success in image pro-

cessing for a long time ago [18]. It is used in many applications of image processing as

for example image denoising, image deblurring, restoration and even image zooming

and so on. Image restoration model reads:

inf
u∈BV (Ω)

FROF (u); (PROF )

where

FROF (u) =

∫

Ω

|∇u|+ 1

2λ
‖f − u‖2L2(Ω) . (2.32)

Here, Ω is the image domain, a convex Lipschitz open set in R
2: the term

∫
Ω

|∇u| :=
TV (u,Ω) stands for the total variation of u and f is the observed image we want

to restore.

The minimizer of (PROF ) is the restored image u; and the parameter λ in (PROF )

is a weighting parameter which controls the amount of denoising. The choice of pa-

rameter λ affects how much the image is regularized. It can generally be approached

via an optimization process where λ is selected to optimize some approximate cri-

teria. We refer to [4], [28] for more details.

The numerical realization is not straightforward. The first idea has been pro-

posed by Chan and Golub [49], and Chambolle generalized the projection algorithm

in [4], [50]. This algorithm is now very popular because of the complete proof of

convergence: it is the first algorithm that exactly solves the total variation regu-

larization problem. However, the TV minimization, suffers from the so-called stair-

casing effect, namely, the transformation of smooth regions into piecewise constant

ones, which may produce undesirable blocky image. About the analysis of staircas-

ing effect, we can see in Appendix B, or in [42], [5], and [45]. In [42] the authors

prove the existence of a staircasing on TV flow; [5] gives a simple explanation to this

phenomenon in one-dimensional discrete case of TV minimization. The staircasing

in the Perona-Malik diffusion process is described in [45].

We may refer to A. Chambolle [4], [50] and references therein for the mathemat-

ical study of this ROF model.

2.2.2 Meyer’s model

Yves Meyer has investigated the Rudin-Osher-Fatemi model in 2001 [66], and pointed

out some limitations of this model. He proposed a different decomposition model.

Meyer introduced a space G to describe the oscillating component. This space is

very close to the dual space of BV space, [2]. The oscillating patterns have a small

G-norm. Let us introduce some definitions and useful properties of this space.

Let Ω be an open bounded subset of Rn, n ≥ 2 with Lipschitz boundary. The

total variation of f ∈ BV (Ω) is:

TV (f,Ω) =

∫

Ω

|∇f |. (2.33)
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Definition 8. [2],[66]

G is the Banach space composed of the distributions f which can be written f =

div(g) =
n∑

i=1
∂igi, where gi are in L

∞. The following norm is defined on G:

‖f‖G = inf
{
‖g‖L∞(Ω,Rn) |f = div(g)

}
. (2.34)

where ‖g‖L∞(Ω,Rn) = ess supx∈Ω

√
n∑

i=1
|gi|2(x) and g = (g1, g2, ..., gn).

The variational model that Meyer proposed stands:

inf
u∈BV (Ω)

TV (u,Ω) + α ‖f − u‖G. (PYM )

As Meyer pointed out in [66], the residual v = f − u in model (PROF ) can be

expressed as v = divg where g is a vector field given, in the sense of distributions,

satisfying g ∈ L∞(Ω). Therefore, the residual v = f − u in the model (PROF ) is

expressed, in the sense of distributions, as the divergence of a vetor field g ∈ L∞(Ω),

i.e. as a generalized function, and this also belongs to L2(Ω). Then, the space of

generalized functions G is given as:

G(Ω) = {v = divg, g = (g1, g2, ..., gn); gi ∈ L∞(Ω)} . (2.35)

In fact, G is exactly the space W−1,∞(Ω), the dual space of W 1,1
0 (Ω) [30], [2]. In

the discrete case ‖.‖G is conjugate of the semi-norm of TV (.) [2]. We refer to [66]

for the introduction of the space G to model patterns with strong oscillations from

the following lemma:

Lemma 2. [66]

Let fn, n ≥ 1 be a sequence of functions in L2(D) with the three following properties

(D is a disc centered at 0 with radius R):

1. There exists a compact set K such that the supports of the fn, n ≥ 1 are

embedded in K,

2. There exist q > 2 and C > 0 such that ‖fn‖Lq(Rn) ≤ C,

3. The sequence fn converges to 0 in the distributional sense.

Then ‖fn‖G converges to 0 when n tends towards infinity.

A function that belongs to G may have large oscillations and nevertheless have

a small norm. The decomposition model (PYM ) has been confirmed to be a good

space to model oscillating patterns, especially textures.
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2.2.3 Osher-Vese’s model

In [57], L. Vese and S. Osher proposed algorithms for the resolution following the

ideas of Y. Meyer [66]. They proposed a new model which combines the contour

preserving model of (PROF ), with the texture preserving model of Y. Meyer. Their

model, quite efficient for image denoising and keeping sharp contours, reads:

inf
(u,v)∈BV (Ω)×G(Ω)

∫

Ω

|∇u|+ λ ‖f − u− v‖2L2(Ω) + µ ‖v‖G(Ω). (POV )

where Ω is an open bounded set. To compute the solution, they approximate the

term ‖v‖G(Ω) by

∥∥∥∥∥

√
n∑

i=1
|gi|2

∥∥∥∥∥
p

where v = div(g1, g2, ..., gn).

2.2.4 Second order model ROF2 - Our approach

Going back to our approach in this section, we are not far away from decomposition

model. Given an original image, we split it into a geometrical component and

oscillating component (often containing texture, noise and possibly contours). The

model we propose is different from the one of Meyer; the oscillating component will

be a priori included in the remainder term v := f −u while u represents the cartoon
component. We perform a second order analysis to get the smooth component

while the oscillating component are not modelled a priori. We plan to introduce

this second-order model ROF2 as following.

The observed image f can be divided into two parts:

f = u+ v

where u represents the smooth component (that keeps almost geometrical informa-

tion of image), while v is the oscillating component. If the image f contains both

random noise and texture, then the component v will capture both the texture and

the noise. The same situation also happens in the ROF model and the others. For

image restoration purpose, ones look for the solution u + v for u ∈ BV 2(Ω) and

v ∈ L2(Ω). The regularization term involves the BV 2-part u, and the remaining

term v := f − u represents the noise that has to be minimized.

Let Ω ⊂ R
n is an open bounded set, we consider the function F as following:

FROF2 : BV 2(Ω)→ R
+

u 7→ FROF2(u)

which is defined by:

FROF2(u) =
1

2
‖f − u‖2L2(Ω) + λTV 2(u,Ω) + δ ‖u‖W 1,1(Ω) (2.36)

where f ∈ L2(Ω) and λ, δ > 0. We have the second order model (PROF2) reads:

inf
u∈BV 2(Ω)

FROF2(u). (2.37)
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We note that the term δ ‖u‖W 1,1(Ω) is needed for the existence of solution to

problem (2.37). However, we may avoid the use of penalization term δ ‖u‖W 1,1(Ω) if

we look for solutions in space BV 2
0 as:

BV 2
0 =

{
u ∈ BV 2(Ω) : u|∂Ω = 0

}
. (2.38)

because we use the Poincaré-Wirtinger inequalities to get an estimation of ‖u‖W 1,1 .

From now on, ones can solve the problem:

inf
u∈BV 2

0 (Ω)
FROF2(u). (PROF2)

Theorem 14. [43]

Assume that λ > 0 and δ = 0. Then the problem (PROF2) has at least a solution.

In this case we follow the proof of Bergounioux in [43].

Proof. Let un ∈ BV 2
0 (Ω) be a minimizing sequence of problem (PROF2), that is,

lim
n→+∞

FROF2(un) = inf
u∈BV 2

0 (Ω)
FROF2(u) < +∞. (2.39)

The sequence (un)n∈N is bounded in BV 2(Ω). Indeed, we have TV 2(un,Ω) is

bounded. With theorem 10, TV (un,Ω) is also bounded. Since un is L2-bounded it

is also bounded in W 1,1(Ω). Therefore, un is bounded in BV 2(Ω). From theorem

9, there is a subsequence of (un)n∈N in W 1,1(Ω) that converges strongly to u∗ in
L2(Ω). As in theorem 8 we get:

TV 2(u∗,Ω) ≤ lim inf
n→+∞

TV 2(un,Ω). (2.40)

which implies

F (u∗) ≤ lim inf
n→+∞

F (un) = min
u∈BV 2

0 (Ω)
F (u). (2.41)

Consequently, u∗ ∈ BV 2
0 (Ω). The continuity of the trace operator γ0 from W 1,2(Ω)

to L2(∂Ω) ⊂ H1/2(Ω) gives the result since γ0(un) = 0 for every n and un strongly

converges to u∗ in L2(Ω).
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In this chapter, we especially deal with the three-dimensional models that have

been generically described in the previous chapter. The so-called isotropic model is

performed in details with the fixed point algorithm proposed by Chambolle A. [4]

and we also investigate the Nesterov type algorithm to speed up the method, see

Weiss P. [23], Piffet L. [41].

As previously mentioned, the observed image f can be divided into a regular

part u ∈ BV 2(Ω) and an oscillating part v := f−u ∈ L2(Ω). Observing solutions of

problem ROF2, we note that the model keeps geometrical information and removes

almost noise as well. However, a lot of geometrical information remains together

with the texture and noise in the oscillating part v.

In particular, the remainder term v := f − u contains together texture and/or

noise and a part of contour shapes. In this sequel, our goal is to locate texture

and/or noise and we do not need to work with the cartoon part u any longer. To

perform a full texture extraction, we hope to keep most of texture and noise in

the oscillating part while many contour shapes disappear. Based on Piffet L. [40],

a local anisotropic model is then performed. Moreover, we also sketch out in this

chapter two algorithms from Chambolle A. [4] and Nesterov [67], [23] and present

some MRI numerical tests in 3D.
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3.1 Isotropic model

We consider that a three-dimensional image f can be decomposed into two compo-

nents u+ v, u ∈ BV 2(Ω) and v ∈ L2(Ω) where Ω ⊂ R
3 is an open bounded set. We

recall problem ROF2:

inf
u∈BV 2

0 (Ω)

1

2
‖f − u‖2L2(Ω) + λTV 2(u). (PROF2)

In next section, we are going to study problem (PROF2) in the discrete case.

3.1.1 Discretization process

In the sequel, we consider that n = 3 and the size of 3D image N1 ×N2 ×N3. The

generic component of u is denoted ui,j,k.

The space X = R
N1×N2×N3 is endowed with the inner product and norm:

〈u, v〉X =
∑

1≤i≤N1
1≤j≤N2
1≤k≤N3

ui,j,kvi,j,k and ‖u‖X =
√√√√√

∑

1≤i≤N1
1≤j≤N2
1≤k≤N3

u2i,j,k

and set Y = X ×X ×X.

(a) Discretization of the term TV (u)

We first compute the discrete gradient ∇u ∈ Y of the image u ∈ X:

(∇u)i,j,k = (∇u1i,j,k,∇u2i,j,k,∇u3i,j,k)

where

∇u1i,j,k =

{
ui+1,j,k − ui,j,k i < N1

0 i = N1

∇u2i,j,k =

{
ui,j+1,k − ui,j,k j < N2

0 j = N2

∇u3i,j,k =

{
ui,j,k+1 − ui,j,k k < N3

0 k = N3

then we have the first (discrete) total variation TV (u) is given by:

TV (u) ≃ J1(u) =
∑

1≤i≤N1
1≤j≤N2
1≤k≤N3

‖(∇u)i,j,k‖R3 . (3.1)

where ‖(∇u)i,j,k‖R3 =
√

(∇u1i,j,k)2 + (∇u2i,j,k)2 + (∇u3i,j,k)2.

(b) Discretization of the divergence operator

We also perform the discrete setting of divergence operator. We define the

continuous setting by div = −∇∗ where ∇∗ is the adjoint of ∇.
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For every p ∈ Y and u ∈ X we have:

〈−divp, u〉X = 〈p,∇u〉Y .

The discretization of divergence operator is given by:

(divp)i,j,k =





p1i,j,k − p1i−1,j,k 1 < i < N1

p1i,j,k i = 1

−p1i−1,j,k i = N1

+





p2i,j,k − p2i,j−1,k 1 < j < N2

p2i,j,k j = 1

−p2i,j−1,k j = N2

+





p3i,j,k − p3i,j,k−1 1 < k < N3

p3i,j,k k = 1

−p3i,j,k−1 k = N3

(c) Discretization of the term TV 2(u)

We first introduce the Hessian operator of u ∈ X, denoted by Hu, is defined:

(Hu)i,j,k =((Hu)11i,j,k, (Hu)
12
i,j,k, (Hu)

13
i,j,k, (Hu)

21,
i,j,k,

(Hu)22i,j,k, (Hu)
23
i,j,k, (Hu)

31
i,j,k, (Hu)

32
i,j,k, (Hu)

33
i,j,k).

where (Hu)mn
i,j,k can be discretized as follows:

For every i = 1, ..., N1, j = 1, ..., N2 and k = 1, ..., N3, the computation of Hu

gives:

(Hu)11i,j,k =





ui+1,j,k − 2ui,j,k + ui−1,j,k 1 < i < N1

ui+1,j,k − ui,j,k i = 1

ui,j,k − ui−1,j,k i = N1

(Hu)12i,j,k =





ui,j+1,k − ui,j,k − ui−1,j+1,k + ui−1,j,k 1 < i ≤ N1

1 ≤ j < N2

0 j = N2

0 i = 1

(Hu)13i,j,k =





ui,j,k+1 − ui,j,k − ui−1,j,k+1 + ui−1,j,k 1 < i ≤ N1

1 ≤ k < N3

0 i = 1

0 k = N3

(Hu)21i,j,k =





ui+1,j,k − ui,j,k − vi+1,j−1,k + ui,j−1,k 1 ≤ i < N1

1 < k ≤ N3

0 i = N1

0 k = 1

(Hu)22i,j,k =





ui,j+1,k − 2ui,j,k + ui,j−1,k 1 < j < N2

ui,j+1,k − ui,j,k j = 1

ui,j,k − ui,j−1,k j = N2
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(Hu)23i,j,k =





ui,j,k+1 − ui,j,k − ui,j−1,k+1 + ui,j−1,k 1 < j ≤ N2

1 ≤ k < N3

0 j = 1

0 k = N3

(Hu)31i,j,k =





ui+1,j,k − ui,j,k − ui+1,j,k−1 + ui,j,k−1 1 < k ≤ N3

1 ≤ i < N1

0 k = 1

0 i = N1

(Hu)32i,j,k =





ui,j+1,k − ui,j,k − ui+,j+1,k−1 + ui,j,k−1 1 ≤ j < N2

1 < k ≤ N3

0 j = N2

0 k = 1

(Hu)33i,j,k =





ui,j,k+1 − 2ui,j,k + ui,j,k−1 1 < k < N3

ui,j,k+1 − ui,j,k k = 1

ui,j,k − ui,j,k−1 k = N3

We have

〈∇u, divφ〉 = −
〈
φ,∇2u

〉
.

Then,

TV 2(u) ≃ J2(u) =
∑

1≤i≤N1
1≤j≤N2
1≤k≤N3

‖(Hu)i,j,k‖R9 . (3.2)

(d) Discretization for the adjoint operator of H

Let us consider H∗ : X9 → X is the adjoint operator of H, it can be defined

as follows:

For every p = (p11, p12, p13, p21, p22, p23, p31, p32, p33) ∈ X9,

(H∗p)i,j,k = σ11i,j,k + σ12i,j,k + σ13i,j,k + σ21i,j,k + σ22i,j,k

+ σ23i,j,k + σ31i,j,k + σ32i,j,k + σ33i,j,k

where

σ11i,j,k =





p11i+1,j,k − 2p11i,j,k + p11i−1,j,k 1 < i < N1

p11i+1,j,k − p11i,j,k i = 1

p11i−1,j,k − p11i,j,k i = N1

σ22i,j,k =





p22i,j+1,k − 2p22i,j,k + p22i,j−1,k 1 < j < N2

p22i,j+1,k − p22i,j,k j = 1

p22i,j−1,k − p22i,j,k j = N2

σ33i,j,k =





p33i,j,k+1 − 2p33i,j,k + p33i,j,k−1 1 < k < N3

p33i,j,k+1 − p33i,j,k k = 1

p33i,j,k−1 − p33i,j,k k = N3



3.1. Isotropic model 31

σ12i,j,k =





p12i+1,j,k i = 1, j = 1

−p12i+1,j−1,k i = 1, j = N2

p12i+1,j,k − p12i+1,j−1,k i = 1, 1 < j < N2

−p12i,j,k i = N1, j = 1

p12i,j−1,k i = N1, j = N2

p12i,j−1,k − p12i,j,k i = N1, 1 < j < N2

p12i+1,j,k − p12i,j,k 1 < i < N1, j = 1

p12i,j−1,k − p12i+1,j−1,k 1 < i < N1, j = N2

p12i,j−1,k − p12i,j,k − p12i+1,j−1,k + p12i+1,j,k 1 < i < N1, 1 < j < N2

σ13i,j,k =





p13i+1,j,k i = 1, k = 1

−p13i+1,j,k−1 i = 1, k = N3

p13i+1,j,k − p13i+1,j,k−1 i = 1, 1 < j < N3

−p13i,j,k i = N1, k = 1

p13i,j,k−1 i = N1, k = N3

p13i,j,k−1 − p13i,j,k i = N1, 1 < k < N3

p13i+1,j,k − p13i,j,k 1 < i < N1, k = 1

p13i,j,k−1 − p13i+1,j,k−1 1 < i < N1, k = N3

p13i,j,k−1 − p13i,j,k − p13i+1,j,k−1 + p13i+1,j,k 1 < i < N1, 1 < k < N3

σ21i,j,k =





p21i,j+1,k j = 1, i = 1

−p21i−1,j+1,k j = 1, i = N1

p21i,j+1,k − p21i−1,j+1,k j = 1, 1 < i < N1

−p21i,j,k j = N2, i = 1

p21i−1,j,k j = N2, i = N1

p21i−1,j,k − p21i,j,k j = N2, 1 < i < N1

p21i,j+1,k − p21i,j,k 1 < j < N2, i = 1

p21i−1,j,k − p21i−1,j+1,k 1 < j < N2, i = N1

p21i−1,j,k − p21i,j,k − p21i−1,j+1,k + p21i,j+1,k 1 < j < N2, 1 < i < N1
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σ23i,j,k =





p23i,j+1,k j = 1, k = 1

−p23i,j+1,k−1 j = 1, k = N3

p23i,j+1,k − p23i,j+1,k−1 j = 1, 1 < k < N3

−p23i,j,k j = N2, k = 1

p23i,j,k−1 j = N2, k = N3

p23i,j,k−1 − p23i,j,k j = N2, 1 < k < N3

p23i,j+1,k − p23i,j,k 1 < j < N2, k = 1

p23i,j,k−1 − p23i,j+1,k−1 1 < j < N2, k = N3

p23i,j,k−1 − p23i,j,k − p23i,j+1,k−1 + p23i,j+1,k 1 < j < N2, 1 < k < N3

σ31i,j,k =





p31i,j,k+1 k = 1, i = 1

−p31i−1,j,k+1 k = 1, i = N1

p31i,j,k+1 − p31i−1,j,k+1 k = 1, 1 < i < N1

−p31i,j,k k = N3, i = 1

p31i−1,j,k k = N3, i = N1

p31i−1,j,k − p31i,j,k k = N3, 1 < i < N1

p31i,j,k+1 − p31i,j,k 1 < k < N3, i = 1

p31i−1,j,k − p31i−1,j,k+1 1 < k < N3, i = N1

p31i−1,j,k − p31i,j,k − p31i−1,j,k+1 + p31i,j,k+1 1 < k < N3, 1 < i < N1

σ32i,j,k =





p32i,j,k+1 k = 1, 1 = 1

−p32i,j−1,k+1 k = 1, j = N2

p32i,j,k+1 − p32i,j−1,k+1 k = 1, 1 < j < N2

−p32i,j,k k = N3, j = 1

p32i,j−1,k k = N3, j = N2

p32i,j−1,k − p32i,j,k k = N3, 1 < j < N2

p32i,j,k+1 − p32i,j,k 1 < k < N3, j = 1

p32i,j−1,k − p32i,j−1,k+1 1 < k < N3, j = N2

p32i,j−1,k − p32i,j,k − p32i,j−1,k+1 + p32i,j,k+1 1 < k < N3, 1 < j < N2

In the isotropic model, we use the discretized canonical scalar product of X9

defined by:

〈v, u〉X9 =
∑

1≤i≤N1
1≤j≤N2
1≤k≤N3

(
v1i,j,ku

1
i,j,k + v2i,j,ku

2
i,j,k + ...+ v9i,j,ku

9
i,j,k

)
. (3.3)
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As in [41], [1], [4], using Legendre-Fenchel conjugate function, for every u ∈ X, we

have:

TV 2(u) = sup
p∈C

〈p,Hu〉X9 . (3.4)

where C =
{
p ∈ X9/ ‖pi,j,k‖X9 ≤ 1; 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3

}
.

We here adapt the proposition of Chambolle, [4] for the second order framework.

As we mentioned in section 2.2.1, for the finite dimensional optimization problem

from the discretization of problem (PROF ):

inf
u∈BV (Ω)

J1(u) +
1

2λ
‖f − u‖2X ; (dPROF )

in which the result holds:

Theorem 15. The solution of (dPROF ) is simply given by:

u = f − PλK1(f); (3.5)

where K1 := {divp | p ∈ Y : ‖pi,j,k‖R3 ≤ 1; ∀1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3}
and PλK1(f) is the orthogonal projector operator of f on λK1.

This theorem is well proved in [4] and [41] for the case of problem ROF. Moreover,

in order to approximate PλK1(f), Chambolle proposed to solve the problem:




min ‖λdivp− f‖2X
p ∈ X3

‖pi,j,k‖2R3 ≤ 1; 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3

(3.6)

In the case of second-order problem, we have the discretization of (PROF2) can

be defined as:

inf
u∈X

J2(u) +
1

2λ
‖f − u‖2X . (dPROF2)

As in [41], [4], [1], we obtain the theorem as following:

Theorem 16. [4], [41]

The solution to problem (dPROF2) verifies:

v = f − PλK2(f); (3.7)

where PλK2 be the orthogonal projector operator on λK2, and

K2 := {H∗p| p ∈ X9, ‖pi,j,k‖R9 ≤ 1; 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3}.

We refer to [41], [4] for the proof of theorem. Moreover, in order to approximate

the projection term PλK2(f) in theorem 16 to get the solution of (dPROF2), as in

[4] we have to solve the following problem:




min ‖λH∗p− f‖2X
p ∈ X9

‖pi,j,k‖2R9 ≤ 1, 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3

(3.8)
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3.1.2 Chambolle’s algorithm

In [4] Chambolle proposed a fixed point method for solving problem (dPROF ). We

generalize the 3D algorithm hereafter:

Algorithm 1 Approximate the projection operator PλK1(f)

1. p0 = 0; choose τ1 > 0.

2. Assume that pn is known, pn+1 can be given as:

pn+1
i,j,k =

pni,j,k − τ1
(
∇

[
div pn − f

λ

])

i,j,k

1 + τ1

∥∥∥∥∥

(
∇

[
div pn − f

λ

])

i,j,k

∥∥∥∥∥
R3

(3.9)

In addition, we may give a convergence result:

Theorem 17. Assume that τ1 satisfies τ1 ≤ 12. Then, (λdiv pn)n converges to

PλK1(f) as n→ +∞.

Proof. As in the proof of [4], let define κ1 = sup
‖p‖Y ≤1

‖div p‖ and the convergence

holds if we can show that τ1 ≤ 1/κ21.

First, we have:

‖div p‖2 =
∑

1≤i≤N1
1≤j≤N2
1≤k≤N3

(
p1i,j,k − p1i−1,j,k + p2i,j,k − p2i,j−1,k + p3i,j,k − p3i,j,k−1

)2

≤
∑

1≤i≤N1
1≤j≤N2
1≤k≤N3

[(
p1i,j,k

)2
+

(
p1i−1,j,k

)2
+

(
p2i,j,k

)2
+

(
p2i,j−1,k

)2
+

(
p3i,j,k

)2
+

(
p3i,j,k−1

)2]

≤ 12 ‖p‖2Y

.

Hence, κ21 ≤ 12 then τ1 has to satisfy τ1 ≤ 1/12 for the convergence of problem

(dPROF ).

Similarly, we also perform the 3D fixed point algorithm for second order problem

(dPROF2), algorithm 2:
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Algorithm 2 Approximate the projection operator PλK2(f)

1. Choose τ2 > 0.

2. Let p0 = 0, n = 0.

3. Suppose pn is known, we compute pn+1:

pni,j,k = pn+1
i,j,k + τ2

[(
H

[
H∗p− f

λ

])

i,j,k

+

∥∥∥∥∥

(
H

[
H∗pn − f

λ

])

i,j,k

∥∥∥∥∥
R9

pn+1
i,j,k

]

(3.10)

which implies:

pn+1
i,j,k =

pni,j,k − τ2
(
H

[
H∗pn − f

λ

])

i,j,k

1 + τ2

∥∥∥∥∥

(
H

[
H∗pn − f

λ

])

i,j,k

∥∥∥∥∥
R9

(3.11)

The parameter τ2 is related to norm of the adjoint operator H∗. We call it κ2
and give an estimation in lemma 3.

Lemma 3. The adjoint operator H∗ norm, κ2 satisfies κ2 ≤ 12.

Proof. Recall that κ2 = sup
‖p‖

X9≤1
‖H∗p‖.

As

‖H∗p‖X = sup
q∈B

X9 (0,1)

〈H∗p, q〉 (3.12)

∀p ∈ X9 : 〈H∗p, q〉X = 〈p,Hq〉X9 ≤ ‖Hq‖X9 ‖p‖X9 (3.13)

For all p ∈ X9,

‖Hq‖2X9 =
∑
i,j,k




(qi,j+1,k − qi,j,k − qi−1,j+1,k + qi−1,j,k)
2

+(qi+1,j,k − 2qi,j,k − qi−1,j,k)2
+(qi,j,k+1 − qi,j,k − qi−1,j,k+1 + qi−1,j,k)

2

+(qi+1,j,k − qi,j,k − qi+1,j−1,k + qi,j−1,k)
2

+(qi,j+1,k − 2qi,j,k + qi,j−1,k)
2

+(qi,j,k+1 − qi,j,k − qi,j−1,k+1 + qi,j−1,k)
2

+(qi+1,j,k − qi,j,k − qi+1,j,k−1 + qi,j,k−1)
2

+(qi,j+1,k − qi,j,k − qi,j+1,k−1 + qi,j,k−1)
2

+(qi,j,k+1 − 2qi,j,k − qi,j,k−1)2




≤ 9 ∗ 16 ‖q‖2X9

this implies ‖H∗p‖X ≤ 12 ‖p‖X9 , ∀p ∈ X9.

We deduce that κ2 ≤ 12.

Theorem 18. Let τ2 ≤ 1/122, then λ(H∗pn)n converges to PλK2(f) as n→∞.
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Proof. In [41], [4] it is pointed out that the τ2 in algorithm can be chosen as τ2 ≤
1/κ22, and from lemma 3 we get τ2 ≤ 1/122.

Hence, the approximate solution u can be computed with u = f − PλK2(f) as

in theorem 16 (section 3.1.1).

3.1.3 Nesterov type algorithm

In this section, we adapt the algorithm to compute PλK2(f) in problem (3.8). It has

been proved in [23] that it is faster than the previous method by Chambolle [1], [4].

We refer to Weiss [23], and Piffet [41] for references.

Definition 9. [23] L-Lipschitz differentiable function

Let K be a non empty closed convex subset of Rn. A function F defined on K is said

to be L-Lipschitz differentiable if it is differentiable on K and that ‖∇F (u1)−∇F (u2)‖2 ≤
L ‖u1 − u2‖2 for any (u1, u2) ∈ K2.

Nesterov, [67] has given a method to solve:

inf
u∈Q

E (u) (3.14)

where E is a convex and L-Lipschitz differentiable function, and Q is a closed convex

of BV 2(Ω).

Theorem 19. [67]

Consider the following algorithm to find solution x:

1. Set k = 0; G0 = 0; xk ∈ Q and L is the Lipschitz constant of ∇E.

2. k = k + 1, compute ηk = ∇E
(
xk

)
.

3. yk = argmin
y∈Q

{〈
ηk, y − xk

〉
X
+

1

2
L
∥∥∥y − xk

∥∥∥
2
}
.

4. Gk = Gk−1 +
k + 1

2
ηk.

5. zk = argmin
z∈Q

{
L

σ
d(z) +

〈
Gk, z

〉
X

}
.

6. Set xk =
2

k + 3
zk +

k + 1

k + 2
yk. Go back to 2 until k = N , the maximal number

of iterations.

Then,

0 ≤ E
(
yk

)
− E (u) ≤ 4Ld (u)

σ (k + 1) (k + 2)

where u is assumed to be the solution to problem (3.14), and d is a convex function

such that d(x) ≥ σ

2
‖x− x0‖2 for x0 ∈ Q, σ > 0.
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Proposition 4. [23],[67]

Choose d(x) =
1

2
‖x− x0‖22 where x0 ∈ Q, σ = 1. Then, step 3 reduces to yk =

PQ

(
xk − ηk

L

)
and step 5 reduces to zk = PQ

(
x0 −

Gk

L

)
(these projections are

described in Remark 1).

Back to problem (3.8), we are looking for PλK2(f), and need to write the problem

as in (3.14) to apply the Nesterov algorithm. Problem (3.8) can be rewritten:

min
{
‖λH∗p− f‖2X /p ∈ X9, ‖pi,j,k‖2R9 ≤ 1; 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3

}
.

(3.15)

In this case, the problem writes:

min
p∈E

F (p) (3.16)

where,

F (p) = ‖λH∗p− f‖2X , (3.17)

E =
{
p ∈ X9, ‖pi,j,k‖2R9 ≤ 1; 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3

}
. (3.18)

Next, let F (p) = ‖λH∗p− f‖2X = ‖λA(p)− f‖2X where A = H∗. Then,

∇F (p) = 2A∗λ2
(
A(p)− f

λ

)
. (3.19)

From that point, we get:

‖∇F (p1)−∇F (p2)‖2 = 2
∥∥A∗λ2A (p1 − p2)

∥∥
2

= 2λ2 ‖A∗A (p1 − p2)‖2
≤ 2λ2 ‖A‖2 ‖p1 − p2‖2
≤ 2λ2.122 ‖p1 − p2‖2
≤ 288λ2 ‖p1 − p2‖2

(3.20)

where we used the lemma 3 for the norm of H∗.

Finally, ‖∇F (p1)−∇F (p2)‖2 ≤ 288.λ2 ‖p1 − p2‖2 that is F is L-Lipschitz dif-

ferentiable, with L = 288.λ2. We apply theorem 19, and get the Nesterov type

algorithm for problem (3.16):
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Algorithm 3 Approximate the projection operator PλK2(f) - Nesterov type algo-

rithm
Inputs:

• N is the number of iteration.

• p0 ∈ E, usually be zeros.

Output: pN - the approximated solution for (3.16).

Steps:

• L is the Lipschitz constant of ∇F .

• i = 0 , G0 = 0.

• For i = 1 : N − 1

1. ηi = ∇F (pi).

2. yi = PE

(
pi − ηi

L

)
.

3. Gi = Gi−1 +
i+ 1

2
ηi.

4. υi = PE

(
p0 − Gi

L

)
.

5. pi+1 =
2

i+ 3
υi +

i+ 1

i+ 3
yi.

stop after N iterations to obtain an approximation of projection pN for problem

(3.16).

Remark 1. [23] L2-Projections on weighted l∞-balls
Inside the Nesterov algorithm above, for discretization of projections on weighted

l∞-balls that we used exactly in step 2 and 4.

Let K =
{
y ∈ X, |λ (y − f)|p ≤ α

}
, with λ ∈ [0,∞]n. The problem of projection on

K can be written analytically:

PK (x) = argmin
y∈K

(
‖y − x‖2L2

)
. (3.21)

Let ȳ denotes the solution of (3.21). A first important remark that holds for any

p is that if λi = 0, then ȳi = xi. If λi = ∞ then ȳi = fi. Thus in all projection

algorithms the first step is to set all those known values. This allows to restrict out

attention to the case λ ∈ ]0,∞[n.

The L2 projection on l∞-balls can be written from:

yi =





xi if |λi (fi − xi)| ≤ α,

fi +
xi − fi
|xi − fi|

α

λi
otherwise.
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So, the approximate solution u can be computed u = f −PλK2(f) as in theorem

16 section 3.1.1.

3.1.4 Comparison between algorithms

In order to compare algorithms 2 and 3, we propose to test the numerical results

for 3D vessels of mouse brain volume. As previously mentioned in chapter 1, this

is the stack of 51 2D MR images, which are noisy after scanning process. These

two algorithms are performed for image denoising on the same vessel volume. In

this case there is no ground truth to compare with, we approximate the ‘clean‘

volume u∗ := f −P ∗λK2
(f) by performing two algorithms for a large enough number

of iterations (in the practical model we run for 10000 iterations), where P ∗λK2
(f)

represents the approximate projection obtained from each algorithm 2 and 3. We

call u∗ the solution for each simulation, during the first 5000 iterations of the test,

we compute and save all norm values ‖uk − u∗‖L2 at every iterative step, plot them

inside the same figure.

Figure 3.1: Comparison about the norm ‖uk − u∗‖2 through 5000 iterations, tested

on algorithm 2 (Chambolle) and 3 (Nesterov).

In Figure 3.1, we show the comparison between the convergence speed of algo-

rithms 2 and 3 on the first 5000 iterations. For both algorithms, we expect that this

term of norm ‖uk − u∗‖L2 tends to zero. It can be seen from the Figure that the

algorithm 3 converges more quickly than algorithm 2. This shows that algorithm 2

(Chambolle) does not provide as good approximation for (PROF2) as the other one

(Nesterov).

Some two dimensional tests confirmed the same comparison between these two
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methods (see [41]). In this thesis, one can apply the improved algorithm 3 in our

3D medical models numerically. Algorithm 3 will be applied for 3D image denoising

and/or texture extraction (see the chapter 5).

3.2 Local Anisotropic model

3.2.1 Improvement

In the 2D case, L.Piffet has observed that removing horizontal/vertical coefficients

of hessian operator allows to get rid of contour lines corresponding to horizon-

tal/vertical directions in the oscillating part. For example, if we set Hu11 = 0

horizontal contours disappear, while with Hu22 = 0 we loose vertical contour lines

in texture part. Figures 3.2 give descriptions of local anisotropic tests for Bar-

bara image, Figure 3.2(c) represents oscillating part without horizontal and vertical

contour lines.

This method has been improved since there were two major inconveniences for

isotropic ROF2 model:

- First, the same transform is performed at every pixel, so that the image is

globally treated. All the vertical and horizontal axes are removed;

- Secondly, the transform depends on the chosen (fixed) cartesian axis and it is

not possible to remove contours that are not horizontal, vertical or diagonal

axes.

Therefore, the Hessian matrix is now locally transformed at every significant

pixel (pixels that belong to an edge for example). A rotation is performed such that

the gradient direction becomes one of the cartesian coordinate axis, for example the

x-axis. We then have the corresponding Hessian operator, and, after rotating we

get the new modified Hessian operator. The suitable coefficients are canceled as

(3.22) to get rid of the contours. Finally, we come back to the original axis with the

inverse rotation. (
H̄u

)
i,j

=
(
0, (Hu)12i,j , (Hu)

21
i,j , (Hu)

22
i,j

)
(3.22)

For each voxel (i, j, k) that marks a contour position, we compute the 3D Hessian

operator and respectively, perform two 3D rotations Rα and Rβ such that after

rotating, the gradient direction becomes parallel to x-axis for example. Then we get

the new modified Hessian operator H̄, which coefficients are removed with respect

to x-axis as follows:

(H̃u)i,j,k =




0 (H̄u)12i,j,k (H̄u)13i,j,k
(H̄u)21i,j,k (H̄u)22i,j,k (H̄u)23i,j,k
(H̄u)31i,j,k (H̄u)32i,j,k (H̄u)33i,j,k


 (3.23)

Finally we go back to the original axis with the inverse rotations R−β and R−α
with H̃, to obtain the modified Hessian matrix, called H ′. Let us detail the process:
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(a) Original 2D image - Barbara (b) Oscillating part after isotropic model

(c) Oscillating part without horizontal and
vertical contours

(d) Oscillating part without all contours

Figure 3.2: Effects of anisotropic improvement strategy.
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Figure 3.3: Definition of local axis and angles α and β

For example, take a voxel X0 = (x0, y0, z0). The angles α and β are defined at

point X0 = (x0, y0, z0) as follows: α is the angle between the gradient ∇u(x0, y0, z0)
and the z-axis, β is the angle between the orthogonal projection of:

∇u(x0, y0, z0) :=




ux
uy
uz


 (x0, y0, z0) (3.24)

(on the xOy plane) and the x-axis. Let us define the two rotations: Rα and Rβ

which matrices are:

Rα =




1 0 0

0 cosα − sinα

0 sinα cosα


 and Rβ =




cosβ − sinβ 0

sinβ cosβ 0

0 0 1


 , (3.25)

with

α = atan


 uz√

u2x + u2y


 (X0), β = atan

(
uy
ux

)
(X0) . (3.26)

Through two rotations Rα first, and next Rβ , the change of variables from the

fixed basis to the local one is given by:

X̄ = RβRαX, with X = (x, y, z) ∈ R
3 . (3.27)

Moreover,

X = (RβRα)
−1X̃ = R−1α R−1β X̄ = R−αR−βX̃ . (3.28)

We next consider the first and second order derivative of ũ :

∇ū =




∂ū

∂x̄
∂ū

∂ȳ
∂ū

∂z̄




and H̄ :=




∂2ū

∂x̄2
∂2ū

∂x̄∂ȳ

∂2ū

∂x̄∂z̄

∂2ū

∂ȳ∂x̄

∂2ū

∂ȳ2
∂2ū

∂ȳ∂z̄

∂2ū

∂z̄∂x̄

∂2ū

∂z̄∂ȳ

∂2ū

∂z̄2




.
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A short computation gives

∂ū

∂x̄
=
∂u

∂x

∂x

∂x̄
+
∂u

∂y

∂y

∂x̄
+
∂u

∂z

∂z

∂x̄
, (3.29)

Finally, we get

∇ū = Rα,β∇u . (3.30)

where Rα,β denotes results after rotating angles α and β respectively, and the Hes-

sian operator can be modified as:

H̄ = Rα,βH . (3.31)

As already mentioned, the idea is to cancel some terms of the Hessian matrix

to get rid of the contours. However, without performing the rotations, there would

be only few possible directions, for example vertical, horizontal and diagonal axes

in the 2D-case so that many contours are not considered.

Performing the change of variables allows to identify the gradient direction (that

is the orthogonal direction to the contour if the gradient is large enough) with the

z-axis and then cancel corresponding terms of the matrix H̄. Of course, we have to

get back to the original situation.

Let us denote L the (linear) transformation that assigns 0 to some coefficients

of H̄ (as in Figure 3.3, correspondingly H̄1,1, since the rotated gradient vector ∇ū
respect to the Ox coordinate).

The whole process is described by:

H
Rα,Rβ−−−−→ H̄

L−→ H̃
R
−β ,R−α−−−−−−→ H ′ (3.32)

that is

H → [R−αR−βLRβRα]H . (3.33)

The above rule is the theoretical rule which gives the transformation of the local

operator H at X0.

However, the algorithm computes the respective values of the texture and car-

toon parts at a voxel which center X0 is also the rotation around center.

Therefore performing the direct rotation Rα,β makes the image rotate (at least

locally) around X0. The computation of px0,y0,z0 is performed and it is not necessary

to “go back”, we refer to [41] for more details of this different rotation method.
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3.2.2 Local anisotropic Algorithm - Chambolle

Algorithm 4 Local anisotropic algorithm - Chambolle

• Choose τ > 0, µ > 0 is the threshold parameter, compute ∇u.

• Use a thresholding process to identify the contours (‖∇u‖ ≥ µ).

• Set Iµ the set of voxels corresponding to these “significant contours”.

1. For voxels in Iµ, modify as following:

H
Rα,Rβ−−−−→ H̄

L−→ H̃
R
−β ,R−α−−−−−−→ H ′

and compute (H ′)∗, where L denotes the (linear) transformation that

assigns 0 to some coefficients of corresponding Hessian matrix.

2. Same computation as the previous expression (3.11) isotropic algorithm

2, applied with H ′, we get pNL .

• Approximate solution: uN = f − λ
(
H∗pNL

)
.
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3.2.3 Local anisotropic Algorithm - Nesterov

Algorithm 5 Local anisotropic algorithm - Nesterov type

• For µ > 0 - the threshold parameter, λ and compute the L-Lipschitz constant

of ∇F (as in algorithm 3). Then, we identify the contours for (‖∇u‖ ≥ µ).

• For Iµ the set of voxels corresponding to these “significant contours”, we per-

form:

1. For voxels in Iµ, modify as following:

H
Rα,Rβ−−−−→ H̄

L−→ H̃
R
−β ,R−α−−−−−−→ H ′

and compute (H ′)∗, where L denotes the (linear) transformation that

assigns 0 to some coefficients of corresponding Hessian matrix.

2. Same as before isotropic algorithm 3, applied with H ′, for detail:

(a) i = 0, let G0 = 0, p0L = 0.

(b) ηi = ∇F (piL) = 2λ2H ′
(
(H ′)∗piL − f

)
.

(c) yi = PE

(
piL −

ηi

L

)
.

(d) Gi = Gi−1 +
i+ 1

2
ηi.

(e) υi = PE

(
p0L −

Gi

L

)
.

(f) pi+1
L =

2

i+ 3
υi +

i+ 1

i+ 3
yi.

we obtain the approximation of projection pNL for problem (3.8) after N

iterations.

• Approximate solution: uN = f − λ
(
H∗pNL

)
.
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Wavelet analysis has been developed during the two past decades. Wavelets

are used successfully in many applications such as signal analysis, image analysis,

communications systems, and other signal processing applications. The flexibility

of wavelets makes them appropriate for many special purposes. Wavelet theory and

implementation have been fully described by Daubechies I. [26], Mallat S. [53], [54],

[3], [8] and the others.

The ability of wavelets to separate noise from information contained in a signal

makes them one of the most popular denoising techniques [51]. Basically speaking,

wavelet coefficients of a signal or image are computed using a given wavelet transform

and are then thresholded. Wavelet coefficients below a threshold can be replaced by

zeros (hard thresholding procedure), and the signal or image is then reconstructed

using the inverse discrete wavelet transform.

One and two dimensional wavelet transforms can be further generalized to three

dimensions. In a 3D wavelet transform decomposition, a volume is decomposed into

eight subbands representing eight octants in the 3D wavelet space. After convolu-

tions in a filter bank, high-pass subbands collect noise and sharp transition features

while low-pass subbands contain the trend or approximation of the original data.

Therefore, throughout this chapter, we are studying 3D wavelet transform for image

restoration using filter banks for medical imaging applications. In addition to the

study of the decimated wavelet transform (pyramidal algorithm of Mallat), we also

give a presentation of a redundant undecimated wavelet transform (called “à trous”

algorithm) therein.

In this chapter, we study three-dimensional discretized wavelet transform that

includes wavelet decomposition and reconstruction strategies. In addition, it gives

some hints for 3D image denoising and contour detection applications that will be

considered in chapters 5 and 6.
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4.1 Discrete Wavelet transform - Algorithm of Mallat

4.1.1 3D Wavelet Decomposition

4.1.1.1 Theoretical scheme

Assuming that the 3D volume data can be mathematically represented by the

V (i, j, k) ∈ [0, ..., 255], for 1 ≤ i ≤ M, 1 ≤ j ≤ N, 1 ≤ k ≤ P . We denote V

as the 3D matrix with size M × N × P and V [i, j, k] gives the grey level at voxel

[i, j, k] of the volume.

3D Wavelet transform decomposes a 3D volume V into smaller sub-cubes, at

resolution level j. Here the original volume V is considered as in the resolution j = 0.

As j increases, the spatial resolution decreases and a “fine-to-coarse” multiresolution

decomposition is performed.

The subbanded octant decomposition involves seven separable 3D wavelets and

one separable 3D scaling function which can be obtained from one dimensional

scaling function φ(.) and wavelet function ψ(.) by:

Φ(x, y, z) = φ(x)φ(y)φ(z) (4.1)

Ψ1(x, y, z) = ψ(x)φ(y)φ(z) (4.2)

Ψ2(x, y, z) = φ(x)φ(y)ψ(z) (4.3)

Ψ3(x, y, z) = φ(x)ψ(y)φ(z) (4.4)

Ψ4(x, y, z) = ψ(x)φ(y)ψ(z) (4.5)

Ψ5(x, y, z) = ψ(x)ψ(y)φ(z) (4.6)

Ψ6(x, y, z) = φ(x)ψ(y)ψ(z) (4.7)

Ψ7(x, y, z) = ψ(x)ψ(y)ψ(z) (4.8)

The following theorem generates a wavelet family from translation and dilations

of a 3D scaling function Φ(x, y, z) and 3D wavelet functions Ψi(x, y, z) (i = 1, 2, ..., 7)

on (4.1)-(4.8). This is the 3D extension of the theorem in [53]:

Theorem 20. Let (Vj)j∈Z be the multi-resolution approximation of L2(R3), and Oj

be the orthogonal complement of Vj in Vj+1. Then the wavelet family is generated

by seven wavelet functions defined respectively as:

Ψ1

j,m1,m2,m3
(x, y, z) = 2−3j/2ψ

(
x− 2−jm1

)
φ
(
y − 2−jm2

)
φ
(
z − 2−jm3

)

Ψ2

j,m1,m2,m3
(x, y, z) = 2−3j/2φ

(
x− 2−jm1

)
φ
(
y − 2−jm2

)
ψ
(
z − 2−jm3

)

Ψ3

j,m1,m2,m3
(x, y, z) = 2−3j/2φ

(
x− 2−jm1

)
ψ
(
y − 2−jm2

)
φ
(
z − 2−jm3

)

Ψ4

j,m1,m2,m3
(x, y, z) = 2−3j/2ψ

(
x− 2−jm1

)
φ
(
y − 2−jm2

)
ψ
(
z − 2−jm3

)

Ψ5

j,m1,m2,m3
(x, y, z) = 2−3j/2ψ

(
x− 2−jm1

)
ψ
(
y − 2−jm2

)
φ
(
z − 2−jm3

)

Ψ6

j,m1,m2,m3
(x, y, z) = 2−3j/2φ

(
x− 2−jm1

)
ψ
(
y − 2−jm2

)
ψ
(
z − 2−jm3

)

Ψ7

j,m1,m2,m3
(x, y, z) = 2−3j/2ψ

(
x− 2−jm1

)
ψ
(
y − 2−jm2

)
ψ
(
z − 2−jm3

)

(4.9)



4.1. Discrete Wavelet transform - Algorithm of Mallat 49

and:

{
Ψ1

j

(
x− 2−jm

)
,Ψ2

j

(
x− 2−jm

)
, . . . ,Ψ7

j

(
x− 2−jm

)}
m=(m1,m2,m3)∈Z3

is an orthonormal basis of Oj.

Moreover, the

{
Ψ1

j

(
x− 2−jm

)
,Ψ2

j

(
x− 2−jm

)
, . . . ,Ψ7

j

(
x− 2−jm

)}
(j,m1,m2,m3)∈Z4

is an orthonormal basis of L2(R3), where x = (x, y, z), j = {1, 2, ...}.

We give hereafter an interpretation of expression (4.9). The formula (4.9) gives

dilated and translated version of the mother wavelet function Ψ and scaling func-

tion Φ. The variables j and m = (m1,m2,m3) are integers that scale and dilate the

functions φ, ψ for generating different wavelets. In three dimensions, the mother

wavelet Ψ and scaling functions Φ are here rescaled by a factor two (dyadic scaling),

and translated by integers. In particular, from (4.9), the scale at level j is 2−3j/2

(normalization of the L2 norm). As in theorem 20 we see that an original func-

tion of L2(R3) can be represented in terms of a wavelet expansion (using a linear

combination of its wavelet coefficients). Data processing like denoising or compres-

sion can then be performed using the corresponding wavelet coefficients. Of course,

the results will depend on the choice of wavelet adapted to the data (some type of

wavelet are presented in Appendix C).

By theorem 23 of Appendix A we have that for i = 1, 2, ..., 7:

P i
Oj
f (x) = 2−3j

+∞∑

n=−∞
n∈Z3

〈
f (u) ,Ψi

j

(
u− 2−jn

)〉
Ψi

j

(
x− 2−jn

)
(4.10)

Detail subband Di
j , as the details of f at the scale j, is given as follows:

D1
j f =

(〈
f (u) ,Ψ1

j

(
u− 2−jn

)〉)
n∈Z3 =

{
β1j,n

}
n∈Z3 (4.11)

D2
j f =

(〈
f (u) ,Ψ2

j

(
u− 2−jn

)〉)
n∈Z3 =

{
β2j,n

}
n∈Z3 (4.12)

D3
j f =

(〈
f (u) ,Ψ3

j

(
u− 2−jn

)〉)
n∈Z3 =

{
β3j,n

}
n∈Z3 (4.13)

D4
j f =

(〈
f (u) ,Ψ4

j

(
u− 2−jn

)〉)
n∈Z3 =

{
β4j,n

}
n∈Z3 (4.14)

D5
j f =

(〈
f (u) ,Ψ5

j

(
u− 2−jn

)〉)
n∈Z3 =

{
β5j,n

}
n∈Z3 (4.15)

D6
j f =

(〈
f (u) ,Ψ6

j

(
u− 2−jn

)〉)
n∈Z3 =

{
β6j,n

}
n∈Z3 (4.16)

D7
j f =

(〈
f (u) ,Ψ7

j

(
u− 2−jn

)〉)
n∈Z3 =

{
β7j,n

}
n∈Z3 (4.17)

As in one dimensional case Appendix A, we define Di
jf as:

Di
jf =

((
f (u) ∗Ψi

j (−u)
)
(2−jn)

)
n∈Z3 ; i = 1, 2, ..., 7 (4.18)
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In Figure 4.1, we describe an example of wavelet decomposition scheme per-

formed to one cubic. This volume is decomposed into different coefficients at the

level s = 2. At the first level s = 1, we have 8 octants/subvolumes are Di
1

(i = 1, 2, ..., 7) and A1. Approximation coefficient A1 is next decomposed to 8

octants A2 and Di
2 (i = 1, 2, ..., 7) at the second scale s = 2.

Figure 4.1: The 3D Wavelet Decomposition at first and second scale.

4.1.1.2 Discrete Transform and filter banks

A wavelet transform decomposes successively each approximation Ajf into a coarser

approximation Aj+1f and wavelet coefficients obtained by Di
j+1f . For a discrete

image, at scale j ∈ Z(j > 0), and for n = (n1, n2, n3) ∈ Z
3, we get the approximation

and the subband details as:

aj [n1, n2, n3] = 〈f,Φj,n1,n2,n3〉 (4.19)

dij [n1, n2, n3] =
〈
f,Ψi

j,n1,n2,n3

〉
, for i = 1, 2, ..., 7. (4.20)

correspondingly being the approximation of f and its details at the scale j.

We note 〈., .〉 as the inner product performed between two 3D functions (see

details in Appendix A).

A separable three-dimensional convolution can be factorized into one-dimensional

convolution along rows (x-direction), columns (y-direction) and images indices (z-

direction) of the 3D volume. The multiresolution analysis of f can be obtained using

filter banks as:

aj+1[n1, n2, n3] =
(
aj ∗ hx hy hz

)
[2n1, 2n2, 2n3]

d_hhg{j+1}[n1, n2, n3] =
(
aj ∗ hx hy gz

)
[2n1, 2n2, 2n3]

d_hgh{j+1}[n1, n2, n3] =
(
aj ∗ hx gy hz

)
[2n1, 2n2, 2n3]

d_hgg{j+1}[n1, n2, n3] =
(
aj ∗ hx gy gz

)
[2n1, 2n2, 2n3]

d_ghg{j+1}[n1, n2, n3] =
(
aj ∗ gx hy gz

)
[2n1, 2n2, 2n3]

d_ghh{j+1}[n1, n2, n3] =
(
aj ∗ gx hy hz

)
[2n1, 2n2, 2n3]

d_ggh{j+1}[n1, n2, n3] =
(
aj ∗ gx gy hz

)
[2n1, 2n2, 2n3]

d_ggg{j+1}[n1, n2, n3] = (aj ∗ gx gy gz) [2n1, 2n2, 2n3]

(4.21)
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where ∗ denotes the discrete convolution product, hx (or hy, hz) is the one-dimensional

low pass decomposition filters by x (or y, z)-direction, gx (or gy, gz) is the one-

dimensional high pass decomposition filters by x (or y, z)-direction. These filters

are linked to the chosen scaling function Φ and the wavelet function Ψ using the

two-scale equation(see [53]). We note the mirror filters:

h[n1, n2, n3] = h[−n1,−n2,−n3] (4.22)

g[n1, n2, n3] = g[−n1,−n2,−n3] (4.23)

This discrete decomposition algorithm is illustrated on Figure 4.2 below with

one multiresolution step of the wavelet decomposition.

Figure 4.2: Decomposition of a discrete approximation aj into the next scale j +

1, an approximation aj+1 and d_ggg{j+1}, d_hgh{j+1}, d_hgg{j+1}, d_ghg{j+1},
d_ghh{j+1}, d_ggh{j+1} and d_ggg{j+1} in the next scale.

The 3D wavelet decomposition is illustrated on the brain vessels volume data, a

3D MRI data that have been presented in chapter 1.

Figure 4.3 shows the original noisy MRI of vessel obtained from biologists (with-

out any pre-filtering step). More details will be given in chapter 8 , where all steps

will be detailed more precisely.
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(a) 3D Noisy volume. (b) One slice x-axis viewing.

(c) One slice y-axis viewing.

Figure 4.3: Noisy-original Vessel volume.
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(a) LxLyLz. (b) LxHyLz.

(c) HxLyLz. (d) HxHyLz.

(e) LxLyHz. (f) LxHyHz.

(g) HxLyHz. (h) HxHyHz.

Figure 4.4: Eight octants/subvolumes resulting from the first level 3D subsampled

wavelet decomposition of the MRI Mouse Brain Vessels volume.
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The wavelet decomposition scheme has been applied to the vessel volume for one

scale of decomposition. Figure 4.4 shows 8 sub-volumes obtained at the first level

of decomposition (1 approximation, 7 details). Each octant has a size divided by 2

compared to the original size of the processed volume. These octants were obtained

after one level 3D wavelet transform using the Haar basis, the simplest orthogonal

wavelet basis. We can observe that the detail octants show more textures and con-

tours than the low-pass one LxLyLz. The energy (visual vessel filament structures)

contained in the low-pass octant is higher than those of high-pass octants. After

one scale of decomposition along each direction, the new approximation subband is

decomposed further, producing the same number of samples in the subbands than

in the original finest resolution image.

4.1.2 3D Wavelet Reconstruction

4.1.2.1 Theoretical scheme

In the previous section, we have seen that the wavelet decomposition is complete.

It is then possible to recover the approximation Ad
2j

from the coarsest scale approx-

imation Ad
2j+1 and the other details Di

2j+1 , i = 1, .., 7, for j < 0. We show that

the original volume can also be reconstructed with a inverse pyramid transforma-

tion. The one-dimensional reconstruction is described in details in Appendix A. The

three-dimensional scheme is derived hereafter.

Since Oj is the orthogonal complement of Vj in Vj+1 as in theorem 20, then:
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is an orthonormal basis of Vj+1. The function Φj+1(x−2−j−1n) can be decomposed
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Φj+1

(
x− 2−j−1n

)
= 2−3j

∑
k

〈
Φj

(
u− 2−jk

)
,Φj+1

(
u− 2−j−1n

)〉
Φj

(
x− 2−jk

)

+2−3j
∑
k

〈
Ψ1

j

(
u− 2−jk

)
,Φj+1

(
u− 2−j−1n

)〉
Ψ1

j

(
x− 2−jk

)

+2−3j
∑
k

〈
Ψ2

j

(
u− 2−jk

)
,Φj+1

(
u− 2−j−1n

)〉
Ψ2

j

(
x− 2−jk

)

+2−3j
∑
k

〈
Ψ3

j

(
u− 2−jk

)
,Φj+1

(
u− 2−j−1n

)〉
Ψ3

j

(
x− 2−jk

)

+ . . .

+2−3j
∑
k

〈
Ψ7

j

(
u− 2−jk

)
,Φj+1

(
u− 2−j−1n

)〉
Ψ7

j

(
x− 2−jk

)

(4.25)



4.1. Discrete Wavelet transform - Algorithm of Mallat 55

Computing the inner product with f gives:
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where x = (x, y, z) ∈ R
3 and k = (k1, k2, k3) ∈ Z

3.

A2j+1f can be reconstructed from A2jf and Di
2j
f , for i = 1, ..., 7 by convolving

with the reconstruction filters H̃ and G̃ (see Appendix A).

4.1.2.2 Discrete reconstruction

The wavelet reconstruction enables to recover each A2jf from A2j+1f and Di
2j+1f .

As in (4.26), the discrete reconstruction can be processed quickly at the next scale

from eight sub-volumes of the previous scale using reconstruction filter bank. The

diagram 4.5 illustrates a one level wavelet reconstruction.

Figure 4.5: Reconstruction of an image Ad
2j+1f from Ad

2j
f and Di

2j
f . The x (y,

z)-direction samples are convolved with one dimensional filters H̃ and G̃.

In Figure 4.5, the approximation aj is recovered from a coarser scale approxima-

tion aj+1 and dij+1 (i = 1, ..., 7). Eight separable convolutions with reconstruction

filters along x, y, z-directions are shown. If no threshold on the wavelet coefficients

is applied, image reconstruction is performed without loss and enables to obtain the

original 3D image.
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4.2 Undecimated Wavelet transform - the “À trous” Al-
gorithm

In the previous section multiresolution analysis using the wavelet transform of Mal-

lat and al. [53]. The multiresolution analysis is a pyramidal analysis because of

the decimation step after each convolution. This decimation enables the analysis

not to be redundant, but it also implies that the multiresolution analysis is not

shift invariant, which is a drawback when denoising signals. Moreover, due to the

extension of 1D wavelet into 2D wavelets by tensor product, the analyzing wavelet

is not isotropic and favors horizontal and vertical orientations. In this section, we

introduce another type of wavelet transform without the decimation step as in the

discrete wavelet transform, which is called the “à trous” wavelet transform [56].

The “à trous” algorithm is a fast dyadic wavelet transform and is implemented

with filter banks. It is similar to a fast biorthogonal wavelet transform but without

subsampling. The “à trous” produces a single wavelet coefficient image or volume

at each decomposition level, and it allows the separation between low frequencies

(approximation image) from high frequencies (wavelet coefficient).

More precisely, in the “à trous” algorithm, for any scale level j ≥ 0, the approx-

imation aj and detail coefficient dj are obtained by:

aj [n,m, l] = 〈f(x, y, z), φj(x− n)φj(y −m)φj(z − l)〉 (4.27)

dj [n,m, l] = 〈f(x, y, z), ψj(x− n)ψj(y −m)ψj(z − l)〉 (4.28)

where discrete image values are assimilated to a0[n,m, l].

Similar to the DWT in the last section 4.1.1, this wavelet transform uses a filter

bank h and g. The set W = {d1, d2, d3, ..., dJ , aJ} is obtained, where dj are the

wavelet coefficients at the scale 0 ≤ j ≤ J and aJ are the coefficients at the coarsest

resolution.

A filter x[n] is dilated to make the filter xj [n] by inserting 2j−1−1 zeros between

the filter coefficients at each decomposition level j, [46]. Let us denote x̄j [n] =

xj [−n] and δ[n] the discrete Dirac function. In addition, h̄ is a low-pass filter

associated with the scaling function φ and ḡ is a high-pass filter associated with the

mother wavelet ψ.

For the practical implementation of the “à trous” algorithm, a 3D filter associated

to the scaling function is used. The scaling and wavelet functions φ and ψ are cubic

B-splines of order three that enable a nearly isotropic analysis of the 3D images,

and filters used are separable 1D filters. Spline functions, piecewise polynomials,

have good data approximation properties ([61]). If we choose a B3-spline for scaling

function, the coefficients of the convolution mask in one dimension is:

B3 =
1

16
[1, 4, 6, 4, 1] (4.29)

As in [64], the “à trous” algorithm can be applied in order to obtain wavelet

coefficients at one resolution from the previous approximations using the following
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(a) Approximation image.

(b) “À trous” wavelet coefficient.

Figure 4.6: Two coefficients from the first level 3D “à trous” wavelet decomposition

of the MRI of Mouse Brain Vessel volume.

equations (in three dimensions):

aj+1[n,m, l] =
(
h̄j h̄j h̄j ∗ aj

)
[n,m, l] (4.30)

dj+1[n,m, l] =
([
δδδ − h̄j h̄j h̄j

]
∗ aj

)
[n,m, l] (4.31)

where ∗ is the convolution operator, h̄j h̄j h̄j and δδδ are 3D filters obtained from h̄

and δ by tensor product.

Moreover, the reconstruction is given by summing the details at all scales and
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the last approximation:

a0[n,m, l] = aJ [n,m, l] +
J∑

j=1

dj [n,m, l] (4.32)

Using this decomposition process, this wavelet transform produces two volumes

of the same size, respectively called the approximation and the details. The undec-

imated wavelet decomposition has been applied on figure 4.6. While the approxi-

mation keeps all low frequencies, the detail coefficients contains high frequencies of
the volume (mostly contours and textures ).

The 3D “à trous” algorithm will be used for denoising 3D medical images in the

framework of the ROF2 model in the next chapters.
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This chapter 5 is devoted to numerical tests for 3D image denoising and texture

extraction by both mathematical points of view: variational model and wavelet

technique discussed previously. In this chapter we consider how these methods

bahave on 3D examples of video and MR images. Besides, the chapter also discusses

about texture extraction. It is an important task in many computer applications

of image detection. During denoising process, we do not want to loose some useful

information, that’s why the local anisotropic algorithm is performed to determine

the texture and/or contour information.

In the second part of the chapter, we shall discuss about the wavelet transform.

As previously studied in chapter 4, we have two different types of wavelet transform:

Mallat’s subsampled wavelet and the “à trous” unsubsampled wavelet transform.

Chapter 5 deals with detailed numerical performances for 3D volume examples. In

addition, we thank to [51] for the 3D wavelet proposed method that combined 2D

and 1D wavelet transform together in the later work on 3D image denoising. This

chapter also gives us the 3D denoising representation with fully automated at a high

speed of this 2D+1D wavelet technique.

To illustrate each method, we present some numerical results tested on the ex-

perimental examples arising in biomedical imaging. It is also provided a comparison

between considered methods, analysis of some experimental results and some eval-

uations, some conclusions about our approaches.
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5.1 Variational models

5.1.1 Application to 3D image denoising

In this section we recall the variational approach of the model (PROF2) that finds

out solution of the following problem:

inf
u∈BV 2(Ω)

1

2
‖f − u‖2L2(Ω) + λTV 2(u). (PROF2)

The discretized version stands:

inf
u∈X

J2(u) +
1

2λ
‖f − u‖2X (dPROF2)

where J2 has been given in (3.2). Solution u of problem (dPROF2) is the recov-

ered/denoised image that we expect to obtain.

In what follows we present some denoising numerical tests using this variational

approach. The tests are examples of a video moving disk and a small noisy cerebel-

lum data in three dimensions, respectively.

5.1.1.1 Numerical Tests on 2D+T Video - Moving Disk

We here describe the test on a video rendering of a moving disk, it sketches out the

movement of a circle from left to right. This visualized volume is the 2D+Time video

that composed from 64 slices with the size 128×128, in Figure 5.1. We describe the

video of moving and snapshot of this process each slice through 3D volume viewer

in Figure 5.1(b), we add the surface viewing of a cutting slice in video Figure 5.1(c)

to see how smooth the original version is.

In the sequel we focus on the denoising process, so we consider volumes that

are degraded with additive Gaussian noise throughout this section. The original

moving disk described on Figure 5.1 has been corrupted with a noise with different

standard deviation σ. We took examples for σ ∈ {5, 10, 25, 50}. The noisy volume

examples and their surface structures are described in Figure 5.2 two cases of σ = 10

and 50.

The algorithms for discretized problem (dPROF2) are applied to give an approx-

imate solution for different values of λ. The stopping criterion has been set to

maximal iteration itmax, which may be chosen large enough (this depends upon

the CPU processing speed).

In Figure 5.3 we present some numerical results from noisy volume in Figures 5.2,

for standard deviation σ = 50, up to the change of λ.

For a fixed σ, we could see that the model (dPROF2) is quite efficient for denoising
purpose. In Figure 5.3, since it may not be convenient to have good visualization in
3D viewer, we describe two arbitrary slices representation to observe what happens.
We note that, larger λ gives us a smoother solution. It makes blur precisely slice by
slice when parameter λ increases. Figure 5.4 represents the surface viewing of each
result up to λ in that case.
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(a) Original moving disk. (b) 3D viewer of the video.

(c) Surface data viewing, the 3rd slice.

Figure 5.1: Test on moving disk video.

The consideration of video that is degraded by some Gaussian noise with various
values of σ gives us some observed results by two Figures 5.3 and 5.4, we can see
that the model (PROF2) is quite efficient for image denoising aspect. Besides that,
the method keeps contour information better than the classical model Rudin-Osher-
Fatemi (PROF ). Figure 5.4 describes more of loosing staircase effects the model

(PROF2) brings us. Compare to the surface viewing of the original disk in Figure 5.1,

the noisy data (σ = 50), the result with λ ≥ 25 gives us acceptable denoised results.

As previously mentioned, λ plays an important role in denoising process because

it affects how much the image is regularized, balancing between removing the noise

and preserving the image content. As λ is small the TV 2 term plays a decreasingly

strong role, which forces the result to have smaller term of TV 2. Moreover, if λ is

too large, the TV 2 term is also large to give a well adapted denoised image, but

image details are almost lost. Thus, the choice of regularization parameter is critical

to achieve the right amount of noise removal. For the noisy moving disk example

(σ = 50), we visualize the result is acceptable for λ = 25. We get denoised image

with geometrical contents are well retained/preserved better than the other choice
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(a) σ = 10 (b) Surface viewing, σ = 10

(c) σ = 50 (d) Surface viewing, σ = 50

Figure 5.2: Adding noise video, for different σ, σ = 10, 50 and its cutting surface

viewing, the 3rd slice.

of λ.

Since noise removal techniques are designed to enhance the image quality, the

visualization of image is not enough to compare exactly, moreover we have a lot of

3D viewers of denoised volume data, then it’s necessary to perform more evaluation

of results. In fact, there is no good objective criterion available for measuring the

perceived image similarity. However, there are a number of common error measure-

ments, for instance the Mean Absolute Error (MAE), Mean Square Error (MSE)

and Peak Signal to Noise Ratio (PSNR). Firstly, we evaluate their performance re-

garding two criteria. Criterion 1 considers the quality of denoised image based on

its visual impression (MAE). Criterion 2 considers the quality of the removed noise

(MSE), that is the simplest of image quality measurement. MSE measures the av-

erage amount of difference between pixels of an image and its reconstructed image.

If the MSE is small, the reconstructed image looks like the original. Two of them
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(a) λ = 1. (b) λ = 5.

(c) λ = 10. (d) λ = 25.

(e) λ = 50. (f) λ = 100.

Figure 5.3: Solution obtained by (PROF2) model, input noisy data of moving disk,

standard deviation σ = 50.

are calculated as in expressions:

MSE =
1

MNP

M−1∑

m=0

N−1∑

n=0

P−1∑

p=0

[I(m,n, p)−K(m,n, p)]2 (5.1)
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(a) λ = 1. (b) λ = 5.

(c) λ = 10. (d) λ = 25.

(e) λ = 50. (f) λ = 100.

Figure 5.4: Cutting surface viewing of ROF2 disk denoising, one visual slice.

MAE =
1

MNP

M−1∑

m=0

N−1∑

n=0

P−1∑

p=0

|I(m,n, p)−K(m,n, p)| (5.2)

where I(m,n, p) and K(m,n, p) represent the original image and the denoised image

respectively; M,N,P is the discrete size of our 3D data.

We also perform the concept Peak-signal-to-noise ratio (PSNR) to estimate de-

noised volume. PSNR amount of useful data versus the amount of noise introduced

into the image. PSNR is defined in logarithmic scale, in dB (decibels):

PSNR = 20 log10

(
MAXI√
MSE

)
(5.3)

where MAXI is the maximum possible pixel value of the image I. When the pixels

are represented using 8 bits per sample, this is 255. The higher the number of

PSNR, the more accurate the reconstruction. Such a quality measurement is a

criterion that can make us confident about the hypothesis we are to consider. In

the experiment, the calculated PSNR between the initial images and reconstructed

images takes values around 30dB. In most cases, a PSNR greater than 30dB is
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considered as leading to a correctly reconstructed image and the image information

content is maintained when we have more than 30dB PSNR.

Table 5.1 gives us PSNR, MSE and MAE estimation on the video of moving disk

with respect to adding noise standard deviation σ = 50 and value of λ.

λ λ = 1 λ = 5 λ = 10 λ = 25 λ = 50 λ = 100

PSNR 38.11 39.11 34.97 30.80 28.29 25.90

MSE 10.04 7.98 20.73 54.11 96.40 167.09

MAE 2.37 0.49 0.68 1.14 1.78 2.81

Table 5.1: PSNR, MSE, MAE comparisons, the noisy video of moving disk for

σ = 50.

Have a look on this simple volume test, it can be seen that the smoothing process

is more efficient when λ increases. By evaluating the standard images (video of a
noisy moving disk) in terms of PSNR, MSE and MAE, experimental results prove
that our proposed method is efficient in denoising application. As λ increases, the
fainter results we get, the bad quality of solution gives us the small value of PSNR.
But in any case, the results of PSNR are near 30dB that could be acceptable for
image denoising. The values of MAE in 5.1 let us know how the noise is removed
more successfully with larger λ.
Moreover in the chapter, the PSNR criterion is taken into account to compare

with different testing on standard deviation σ, not only σ = 50. In the following

Table the performance evaluation is carried out in terms of PSNR between corre-

sponding denoised results and original image of moving disk video:

σ Input PSNR λ = 1 λ = 5 λ = 10 λ = 25 λ = 50 λ = 100

σ = 5 41.14 51.12 39.28 35.02 30.81 28.29 25.90

σ = 10 38.13 49.98 39.26 35.02 30.80 28.29 25.90

σ = 25 34.14 44.09 39.22 35.00 30.80 28.29 25.90

σ = 50 31.14 38.11 39.11 34.97 30.80 28.29 25.90

Table 5.2: PSNR estimation, the noisy video of moving disk for different values of

standard deviation σ of noisy video and λ.

As we know, the less difference of two images is, the larger PSNR we got. And

with the large value of σ we will have the small input PSNR, respectively. Generally,

for λ ≥ 10 we have the difference between denoised image and the original one is

virtually unchanged with a fixed σ.

5.1.1.2 Numerical Tests on 3D original Volume - MRI Cerebellum data

MRI of mouse brain image (cerebellum) often consists of random noise that does not

come from tissues but from other sources in the scanner machine during acquisition.

The noise of an image gives it a gray appearance and mainly the noise is evenly

spread and more uniform. In such a situation it is very difficult to diagnose the
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particular disease for biomedical researchers, so it is necessary to remove the noise
from the image.

We previously described this special MRI model in chapter 1, biologists give us
a full 3D MRI volume of cerebellum. It is the stack of 104 MR images with size
341× 110 pixels, that have been introduced in the chapter 1.

(a) Small cutting cerebellum data. (b) Surface data, the 5th slice.

Figure 5.5: MRI noisy mouse brain data (cerebellum).

In this case, the “original” brain volume is noisy. We performed numerical tests
for ROF2 model with different values of λ and the stopping criterion has been set to

a maximal number of iterations itmax = 5000. These algorithms are implemented

with MATLAB software version R2011.

For more details, we performed a test also on the small part of this brain volume

(which is shown originally in the Figure 5.5(a)). Experimental results are presented

in Figure 5.6. Looking at the numerical results in Figures 5.6, similarly to the

previous noisy moving disk tests, we can note that as the more λ is larger, the

fainter we obtain. For this 3D volume, we get the same visual evaluation as the

video of moving disk. However, the noisy cerebellum is well denoised with isotropic

method (section 3.1 chapter 3).
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(a) λ = 1. (b) λ = 5.

(c) λ = 10. (d) λ = 25.

(e) λ = 50. (f) λ = 100.

Figure 5.6: Approximated solutions, smooth component of MRI Cerebellum data.

Tested for different λ.
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The delicate point is the tuning of parameter λ. Obviously if λ is too small we

may not remove enough noise. In Figure 5.6, the value of λ = 1 is not a good choice.

On the other hand, if λ is too large, the scheme will remove too many features of the

image. The larger next λ presented smooth results, but the visualized solutions give

more and more faint feeling than expected. Since in practice, there is no ground

truth image to compare to, tuning the parameter λ is time consuming. Tuning λ

often relies on experience and visual inspection. We do not have yet any automatic

way for choosing λ as far as we know, so we choose λ in a reasonable range without

being precise about the choice. For the consideration of this cerebellum volume of

medical images, this is a very significant issue.

By far there is no criterion of image quality evaluation that can be accepted

generally by all. In the context we validate the comparison of cerebellum by eval-

uating the standard images in terms of PSNR, MSE and MAE. The performance

of different values of λ testing is compared by computing the error criteria MSE,

MAE and PSNR of the noisy image and the denoised image. Table 5.3 gives us the

parametric evaluation for different values of λ, experimental results prove that our

variational method is efficient. In the sequel, we note that all values PSNR, MSE
and MAE in the Table are computed on the whole brain volume.

λ λ = 1 λ = 5 λ = 10 λ = 25 λ = 50 λ = 100

PSNR(dB) 40.07 34.33 32.61 30.96 30.20 29.82
MSE 6.39 24.00 35.67 52.13 62.16 67.80
MAE 1.97 3.32 3.93 4.74 5.21 5.46

Table 5.3: PSNR, MSE and MAE comparisons of ROF2 isotropic method, the
cerebellum, up to λ.

On Table 5.3, we perform comparison after denoising with isotropic algorithm
for different values of λ in problem (PROF2). As mentioned previously, we do not

have original image of cerebellum to perform comparisons. Therefore, some denoised

quality measurements are computed with the original volume (reference image) we

received from biologists. Our obtained results are computed and evaluated relatively

in this case. It can be seen that the mathematical results obtained from the PSNR

computation and the experimental results shown in the Figure outputs 5.6 match

closely, and while λ increases arbitrarily, the smoothing processing is more efficient.
By the compared PSNR Table 5.3 we could choose some suitable values λ = 25 or
50 with PSNR measurements around 30dB.

In addition, the Figure 5.7 shows us an arbitrary slice taken from denoised
volume. We present the cutting surface comparison for different values of λ. We

have seen that the larger value of λ gives the smoother surface.



5.1. Variational models 69

(a) λ = 1. (b) λ = 5.

(c) λ = 10. (d) λ = 25.

(e) λ = 50. (f) λ = 100.

Figure 5.7: Cutting surface viewings of cerebellum results in Figure 5.6, the 5th

slice.

The second order variational model via BV 2 space is quite efficient for image
denoising, and it seems a good application to 3D MRI volumes. Although our
methods are still slow, obtained numerical solutions are acceptable. As in [38], this
model is much better than the classical ROF model (PROF ), it makes stair-casing
effect disappear, contour shapes are well preserved than other denoising methods ...

5.1.2 Application to 3D image texture extraction

While extracting texture, we hope to keep most of texture and noise in the oscillating
part while many contour shapes disappear. Based on the idea from [40], a local
anisotropic model is then performed.

The so-called “isotropic” method ROF2 is applied to numerical results for differ-

ent values of λ, we then choose the λ large enough to remove noise, preserve contour

and texture in the oscillating part. Then a gradient calculation can be applied on

the smooth image or any classical contour detector. The local anisotropic algorithm

is then applied to make contour shapes disappear from the oscillating component.

This section presents some numerical results that we get from local anisotropic al-
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gorithm 4 or 5, performed on 2D+Time moving disk model and small cerebellum

volume of 3D mouse brain data sets.

5.1.2.1 Numerical Tests on 2D+T Video - Moving Disk

A quite simple test is performed in order to give a quick comparison between

isotropic and local anisotropic algorithms. We tested with λ = 20 and 5000 it-

erations (that should be increased in future). Figure 5.8 gives results for the test

without adding noise into the video.

(a) BV 2-isotropic part. (b) BV 2-local anisotropic part.

(c) L2-isotropic part. (d) L2-local anisotropic part.

Figure 5.8: ROF2 test on moving disk video without noise, λ = 20.

It can be seen that contour shapes on BV 2 component are well preserved us-

ing the local anisotropic scheme. For example the simple video moving disk, the

isotropic method gives oscillating component that contains geometrical information.

In this case we just have contours because the original image does not include noise

and texture information. For the local anisotropic method, it helps us to save these

geometrical characteristics to the cartoon component. After defining contour po-

sitions step, we perform the hessian operator rotation and anisotropic algorithm

is applied locally, and we obtain result on Figure 5.8(d). We then get rid of all
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horizontal/vertical and diagonal treated contour shapes in the L2-component. This

example is performed just only for λ = 20, proves how to extract contour from

oscillating component, namely they appear in the BV 2-component meanwhile the

isotropic algorithm gives the opposite thing.

Testing on video of moving disk convinces us to perform next our MRI volumes

in that case. In practice, we have difficulties with these MRI data: they contain
noise, texture and contour shapes together in the oscillating component. This is
a truly challenge for our research. Each model can be specially considered that
expressed in the very next section.

5.1.2.2 Numerical Tests on 3D original Volume - MRI Cerebellum data

Similar to the method used for the video of disk before, we perform the local
anisotropic algorithm to our cerebellum 3D images. We extract the textures from
the whole noisy volume. We show again cerebellum data from different directions

in Figure 5.9.

(a) The whole 3D volume.

(b) Through x-axis.

(c) Through y-axis.

(d) Through z-axis.

Figure 5.9: Noisy volume of cerebellum data.

For the cerebellum data, the isotropic algorithm ((PROF2) model) is applied to

original image with λ = 25. It is difficult for us to view how the whole volumes
represent during process, so the cross-direction of each numerical result can be
performed for better visualization, Figure 5.5.
We see on Figure 5.10 that the contour shapes on BV 2 component are preserved

using local anisotropic model. Oscillating part after isotropic method presents a lot
of remaining dynamic information. And they disappear after local texture modifi-
cation of the anisotropic method.
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(a) Smooth solution, isotropic model. (b) Smooth solution, local anisotropic
model.

(c) Oscillating term, isotropic model. (d) Oscillating term, local anisotropic
model.

Figure 5.10: Compare solutions (visual criterion), λ = 25.

Pay attention that the difference between these two methods is emphasized as

in the contour shapes (as we mentioned the testing of moving disk in Figure 5.8).

That’s why here, although BV 2-model keeps the contour information much better

than BV -model (ROF problem) [41]; the local anisotropic algorithm gives us the

more efficient contour shapes than isotropic algorithm. We may check what happens
precisely on the oscillating component of an arbitrary slice taken from these 3D
results, which are shown as in Figures 5.11 below.

In fact, in the process of finding contour positions within the cerebellum, there
are too many positions that are found: it’s more than 1.000.000 contour voxels that
should be performed one by one in the algorithm of section 3.2.3. Therefore, to
save the CPU processing time with so many voxels, each contour voxel was only
performed by the isotropic algorithm with very small number of iterations, in this
case is itmax is equal to 10 with every voxel performance. For this reason, the results
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(a) Smooth solution, isotropic
model.

(b) Smooth solution, local
anisotropic model.

(c) Oscillating part, isotropic
model.

(d) Oscillating part, local
anisotropic model.

Figure 5.11: One visual slice, for λ = 25.

are not optimal. We can see the oscillating parts Figures 5.11(d): some contour
shapes are not preserved successfully. This should be improved in the future so that
almost the contour shapes are well preserved, each contour voxel being performed
with enough increasing itmax, depending on the CPU time process.

Moreover, the process of finding contour positions is also important. The thresh-
old parameter selection step to determine contour position by hard or soft thresh-
olding function also affect our results. In the case of local anisotropic application

for the video of moving disk and volume of cerebellum above, we have used here

very simple methods, where the threshold parameter is chosen small enough and

hard thresholding step are included in the algorithm. Some methods for contour

shape determination are included in the thesis as a useful application: we give more

details in Chapter 6. We also refer to some methods of threshold determination in

the Appendix D.

In the rest of this chapter, we present some conclusions about 3D texture extrac-

tion strategies. The local anisotropic method is promising in texture identification.

We hope to keep all the textures while many contour shapes of image disappear

in the oscillating part. In what follows, the dynamic of image is included in the

BV 2-term together with contour shapes. We emphasized here that we did not want

to compare these two methods in denoising process: the point is that we want to

recover the textures as much as possible.

The local anisotropic method gives very promising results in texture extraction

process [41], some disadvantages remain behind. Texture component still contains a

lot of geometric information: this comes from the thresholding step before applying

rotation the Hessian operator. Moreover, the contour shapes we recover also depends

on this thresholding process, especially in the case where the image is very noisy. It

is difficult to get rid of all geometrical information and avoid loosing texture part in
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order to get the results without noise, even when we perform locally to locate texture
inside it. Furthermore, future works will include the development of this algorithm,
which can be deduced by considering other MRI images, other 3D volumes.

5.2 Wavelet Transform and Denoising

5.2.1 3D Inverse Discrete Wavelet Transform - Mallat’s Algorithm

As in the chapter 4 of wavelet description, we summarize here the idea of the discrete
wavelet transform (DWT) again. Three dimensional DWT decomposes the image
in first level into eight sub-volumes represented by the approximation and detail
coefficients. The next level (denoted by j > 0) of DWT decomposition is available
from the approximation coefficient Ad

j at the lower level. The approximation con-
tains information of lower frequency components meanwhile the detail coefficients
represent information of high frequency components in 7 spatial directions.
Once we get the discrete wavelet coefficients, we need to reconstruct them back

into the original image. In order to do this, we utilize the inverse wavelet transform.
In this section, we shall study how to get the discrete inverse wavelet transform
(IDWT) from the DWT using filter bank theory.
For the purpose of denoising image, a synthesized volume V ∗ should remove high-

frequency while preserving edge information as much as possible, if we compare with
the noisy data V . The use of wavelet transform to denoise data is accomplished by
applying a wavelet transformation to the noisy data, thresholding the resulting co-
efficients which are below some values in magnitude, and then inverse transforming
to obtain a smoother version of the original data. This procedure is shown as follows:

Wavelet Denoising Procedure:

The general denoising procedure involves three steps. The basic version of pro-
cedure follows the steps described below:

1. Decompose: Calculate the wavelet transform of the noisy image

• Choose a wavelet basis.
• Choose a scale s (s ≥ 1); the original image is supposed to be at the scale
s = 0.

• Compute the wavelet decomposition of image at the scale s, as in sec-
tion 4.1.1.2.

• Output: All the approximation coefficients and detail coefficients of im-
age at every scale j, 1 ≤ j ≤ s.

2. Thresholding: Modify the noisy wavelet coefficients according to
some rule
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To manipulate all coefficients of wavelet octants, we must perform this op-
eration. Hard thresholding deletes all coefficients that are smaller than the
threshold t and keeps the others unchanged. The coefficients whose absolute
values are lower than the threshold are set to zero. On the other hand, the
soft thresholding deletes the coefficients under the threshold, but scales the
ones that are left. In practice, hard threshold or soft threshold is applied, they
can be expressed as following, by functions V soft and V hard respectively:

V soft
t (x) = sign(x)(|x| − t)V (|x| > t) (5.4)

V hard
t (x) = xV (|x| > t) (5.5)

During the modification of wavelet coefficient, the threshold t selection is im-
portant. One of the most well-known rules for the second step is soft thresh-
olding. The main idea is to substract the threshold value t from all wavelet
coefficients larger than t, arising from the standard discrete wavelet transform
and to set all other coefficients to zero.

Threshold plays an important role in the denoising process. A small threshold
value will retain the noisy coefficients whereas a large threshold value leads to
the loss of coefficients that carry image details. Normally, hard thresholding
and soft thresholding techniques are used for such denoising process. Hard
thresholding shrinks the coefficients above the threshold in absolute value.
This thresholding step is a nontrivial task. We shall discuss more details in
Appendix D.1.

Output: All new detail coefficients after thresholding performance at every
scale j, 1 ≤ j ≤ s.

3. Reconstruction: Compute the inverse transform using the modified
coefficients

Compute wavelet reconstruction using the original approximation coefficients
of scale s and the modified detail coefficients of scales from 1 to s. We also per-
form similarly to the discrete 3D wavelet reconstruction scheme/diagram 4.5
in section 4.1.2.2.

Output: After this step, we obtain the denoised result is reconstructed by
wavelet transform.

5.2.2 3DWavelet Denoising =“2DWavelet Denoising + 1DWavelet
Denoising”

Regarding to experimental demonstration from [51], the 3D wavelet denoising can
also be implemented by 2D wavelet denoising on slices followed by 1D wavelet denois-
ing. A volumetric denoising technique is then performed by a separable 3D wavelet
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transform (WT), namely, a “2D WT plus 1D WT scheme”. Since 2D wavelet trans-
form is readily available in [33], the “2D wavelet transform plus 1D wavelet trans-
form” scheme is aimed to be more efficient than three 1D wavelet transforms (3D
Wavelet Transform performance).
The separable 3D wavelet transform can be carried out by sequentially applying

2D wavelet transform to the slice images (at transaxial planes) of the volume data
set, followed by 1D wavelet transform on the columns (along the transaxial axis) of
the reassembled 3D array. They proposed another method for wavelet reconstruction
(wavelet denoising), and the scheme is referred to be “2D Wavelet transform + 1D
Wavelet transform” which is sketched in Figure 5.12 follows, its implementation
involves manipulation of the 2D data slices and 1D data columns.

Figure 5.12: 3D wavelet denoising by a “2D WT plus 1D WT”; scheme reproduced
from [51].

In the scheme, 2D wavelet denoising was applied to z-axis slices firstly. Then,
the denoised slices were stacked, which was followed by 1D denoising along the
stacking direction. Next, the soft or hard thresholding strategies can be performed
for denoising processes. Let find out more details of the scheme.
Let denote again V (i, j, k) is the 3D noisy volume data that need to be recon-

structed; Sk(i, j) represents the 2D image of kth slice in volume and Cm,n(k) denote
the (i, j) column in the 3D array V (i, j, k).
As wavelet scheme described in Figure 5.12 we express:

1. Sk(i, j) = V (i, j, k) at k is fixed;

2. S′k(i, j) = 2D denoised image of Sk(i, j);
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3. V ′(i, j, k) = stack of all S′k(i, j) for 1 ≤ i ≤ P ;

4. Cm,n(k) = V ′(i, j, k) at (m,n) are fixed pixels;

5. C ′m,n(k) = 1D denoised image of Cm,n(k);

6. V ∗(i, j, k) = stack of all C ′m,n(k) for all 1 ≤ m ≤M ; 1 ≤ n ≤ N .

We need to give explanations for step 2 and 5. They are the one (two) dimen-
sional wavelet denoising operator, which is performed respectively steps:

• Wavelet Decomposition (1D or 2D): to get the coefficients.

• Coefficient Thresholding.

• Wavelet Reconstruction.

These processes can be applied simply because they are readily available in
MATLAB Wavelet toolbox [33]. These are the ones which the Wavelet denoising
procedure in section 5.2.1 can be implemented in a similar way for the whole 3D
volume data.

During this method, adaptive threshold calculated from the slice images, namely,
in step 2, thresholds for 2D wavelet transform are chosen dependently on each 2D
slice, and the same for 1D wavelet transform in step 5. We cite here Appendix D to
adopt threshold selection for the coefficient thresholding step.

As previously mentioned, in [51] this 3D denoising scheme, it is based on the
assumption of separable wavelets of “2D plus 1D” scheme. The non-separable 3D
wavelet in section 5.2.1 may improve the result but it is more computation complex-
ity. This gives us the 3D volumetric denoising and multi-resolution representation
with fully automated at a high speed.

5.2.3 3D Inverse Discrete Wavelet Transform - “À trous” Wavelet
Transform

As already mentioned in chapter 4, the “à trous” algorithm computes the low pass

filter at each level by inserting zeros between each of the filter’s coefficients. The
high pass coefficients are then computed as the difference between the low pass

images from the two consecutive levels.
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Figure 5.13: Wavelet-based filtering scheme. Example for two scales à trous wavelet

transform.

To compute the inverse transform, the detail coefficients from all levels are added

to the final low-resolution image. While inefficient in implementation, the “à trous”

algorithm provides additional insight into the redundant discrete wavelet transform.

In the descibed Figure 5.13 below, an example of two scales scheme is presented for

illustrating “à trous” wavelet algorithm. Differs from the Mallat’s algorithm, there

are just two coefficients for unsubsampled decomposition transform: approximation

and the details coefficients (the size of our image does not change in these steps).

In the scheme 5.13, the “à trous” algorithm is characterized by three steps similar to

the Mallat’s algorithm in section 5.2.1: decomposition of image to coefficients until

the final scale, thresholding the detail coefficients and apply the filter to the new

coefficients (B3-spline in this case), finally perform the wavelet reconstruction until

the coarsest scale to obtain the new modified image.
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5.2.4 Numerical Tests

5.2.4.1 Mallat’s algorithm

In the sequel, the Mallat’s method is proposed for implementing image denoising

using wavelet transform. The image is transformed into the orthogonal coefficients,

the detail wavelet coefficients are modified according to the shrinkage algorithm.

Finally, inverse wavelet transform is taken to reconstruct the denoised image. The

algorithm has been implemented using the tools given by the source of MATLAB,

the wavelet toolbox. A forthcoming update of this tool will contain all the modules

used to obtain the following experiments, so that everyone will be able to reproduce

the results and perform additional experiments [33].

The wavelet transform is first implemented to the video of moving disk, note

that we test on image by adding noise, for standard deviation σ = 10, the noisy

image and its surface plot are shown in Figure 5.2(a) and (b) respectively. It is also

remarkable here that results tested with the same threshold parameter choice for all

types of wavelet bases. This step is very effective because denoised results depend

completely on the threshold in wavelet denoising process. In the thesis domain, the

threshold is chosen from iterative method (we mention in detailed Appendix D), the

selected threshold T ≃ 20.

The Peak-signal-to-noise ratio is then computed corresponding to each type of

wavelet bases, it is clearly shown on the Table 5.4 compared between PSNRs eval-

uation. From the Table, we choose some bases that give large PSNR in order to

present results, such as daubechies-9, symlets-10 and the coiflets-5. See the Fig-

ure 5.14 to see how the video is denoised associated to these wavelet bases. The

ability of the discrete wavelet transform to reduce distortion reconstructed video

volume while retaining all the significant features present in the image volume is

displayed in Figure 5.14.

Wavelet bases PSNR Wavelet bases PSNR Wavelet bases PSNR

haar 25.6985 db9 26.7245 sym8 26.7556

db2 26.0985 db10 26.6975 sym9 26.6964

db3 26.5120 sym2 26.0985 sym10 26.8740
db4 26.4972 sym3 26.5120 coif1 26.1183

db5 26.6577 sym4 26.6009 coif2 26.6237

db6 26.7152 sym5 26.5968 coif3 26.7330

db7 26.6336 sym6 26.7794 coif4 26.7548

db8 26.6742 sym7 26.8663 coif5 26.7836

Table 5.4: PSNR comparison between different wavelet types, the tested noisy video

of moving disk, σ = 10.
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(a) Haar. (b) Daubechies-9.

(c) Symlets-10. (d) Coiflets-5.

Figure 5.14: Wavelet denoising tests, on the video of moving disk, σ = 10. We

present some chosen wavelet bases that have a good PSNR evaluation: haar, db-9,

sym-10 and coif-5.

In addition, the volume of cerebellum is also taken to test and compare between

some types of wavelet orthogonal bases: Haar, Daubechies-p, Symlets-p and Coiflets-

p. And the said method is evaluated using the quality measure PSNR. The Table 5.5

we have the results compared in terms of PSNR, MSE and MAE.
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Wavelet bases PSNR MSE MAE Wavelet bases PSNR MSE MAE

haar 30.51 57.82 4.31 sym4 31.33 47.83 4.30

db2 31.04 51.18 4.39 sym5 31.26 48.69 4.20

db3 31.13 50.11 4.44 sym6 31.43 46.77 4.23

db4 31.18 49.51 4.38 sym7 31.32 47.97 4.36

db5 31.20 49.27 4.29 sym8 31.22 49.05 4.36

db6 31.07 50.88 4.44 sym9 31.20 49.29 4.31

db7 31.01 51.55 4.43 sym10 31.33 47.84 4.37

db8 31.13 50.16 4.33 coif1 31.08 50.71 4.34

db9 30.65 55.94 4.57 coif2 31.33 47.82 4.34

db10 30.69 55.48 4.61 coif3 31.32 47.99 4.36

sym2 31.04 51.18 4.38 coif4 31.27 48.49 4.38

sym3 31.13 50.11 4.38 coif5 31.26 48.60 4.39

Table 5.5: PSNR, MSE and MAE comparison with the small cerebellum, tested for

different wavelet bases.

In Figures 5.15 and 5.16, some numerical tests are performed on the MRI cerebel-

lum data, in full 3D volume and one sample visual slice respectively. The proposed

3D discrete wavelet denoising algorithm has been evaluated on the noisy volume,

by visual inspection and by computing quantitative measures of the similarity be-

tween the reference image and the denoised image. The performance of the different

wavelets is compared by computing the error criteria MSE, MAE and PSNR of the

noisy image and the denoised image.

From the PSNR estimation on Tables 5.5 tested for the cerebellum data, we

choose some examples with the large computed PSNR: Daubechies-5 (among all

Daubechies-p), Symlets-6 (among all Symlets-p) and Coiflets-2 (among all Coiflets-

p) and the simplest wavelet basis Haar. In all the cases, the sym6 wavelet outper-

forms other wavelets as can be seen from the increase of the PSNR values.

Since the algorithm of WT coding allocates more bits to the low frequencies

areas, for which human eye is more sensitive, thus after decoding the high frequencies

images have a low PSNR. The higher value of PSNR gives the better images. The

MSE, MAE values must be low for a better quality images. Large values of PSNR

and small values of MSE indicate less noise power in an image irrespective of the

degradation undergone.
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(a) Haar. (b) Daubechies-5.

(c) Symlet-6. (d) Coiflet-2.

Figure 5.15: Wavelet denoising tests, on the 3D cerebellum data.

(a) Haar. (b) Daubechies-5.

(c) Symlet-6. (d) Coiflet-2.

Figure 5.16: One visual slice of denoised images, tested on the cerebellum data.

Results in Table 5.5 obtained with the popular Daubechies (db), Symlets (sym)
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and Coiflets (coif ), we can clearly see that the Haar basis (haar) is not appropriate

for image denoising since the computed PSNR is smallest compared to all wavelet

bases. Otherwise, results we have reached with the Symlets wavelet bases have a

good visualisation with the large obtained PSNR. They are quasisymmetric exten-

sion of Daubechies, which make them more suitable than the classical Daubechies.

About Coiflets, they are another extension of Daubechies, with vanishing moment

conditions both for the wavelets and the scaling functions. They are also more sym-

metrical than the classical Daubechies. All these characteristics make them a little

more efficient than Symlets, [44].

5.2.4.2 “À trous” algorithm

As in the scheme described in 5.13, the “à trous” wavelet transform is also performed

to the cerebellum with the same input threshold value of the subsampled wavelet

described previously. The tested noisy moving disk, for standard deviation σ = 10

gives us the result of PSNR=24.8838. Table 5.4 give an objective PSNR evalua-

tion that compared to this algorithm, we have the small value of ratio gives a bad

denoised image compared with the Mallat’s algorithm. The Figure 5.17(a) below

shows denoised video considered relatively with results in the Figure 5.14.

And in the rest of testing on cerebellum, we take a small space for displaying

these results, in the Figures 5.17 as following. The reason we choose the same inputs

to this type of wavelets is to compare with all above wavelet bases. However, the

“à trous” wavelet does not give desirable results; in detail we got PSNR=28.56 with

MSE=90.51 and MAE=6.35. In Figure 5.17(b), denoised volume of cerebellum gives

us the blurry feeling of eyes and the smooth surface viewing in the second Figure also

confirms the same visualisation. Results from “à trous” algorithm do not preserve

edge information as in subsampled algorithm performed previously.

(a) Denoised moving disk, σ =

10.
(b) Denoised Cerebellum. (c) One visual slice of denoised

cerebellum.

Figure 5.17: The “à trous” wavelet transform, results tested on the noisy disk and

the cerebellum.

In the comparison that we could perform to this MRI volume image denoising

using DWT is analyzed. The experiments are conducted to study the suitability

of different wavelet bases. Figures in 5.18 sketch out the surface viewing of each
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result corresponding to wavelet types (haar, daubechies-5, symlets-6 and coiflets-2 ),

compared to the result obtained by the the “à trous” algorithm in Figure 5.17.

(a) Noisy original cerebellum. (b) Haar.

(c) Daubechies-5. (d) Symlet-6.

(e) Coiflet-2. (f) By the “à trous” algorithm.

Figure 5.18: Surface viewing of the original and denoised image by wavelet trans-

form, tested with the Mallat’s and the “à trous” algorithm.
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5.3 Comparisons

Wavelet transform, compare to the denoised variational methods, the PSNR Ta-

bles 5.3 and 5.5 both give us how good the visual quality of results are. Although

more subjective in nature, the Figures 5.15 show that wavelet denoising frame is

also superior. Inside the section we have an effective approach in terms of PSNR

and visual quality. The variational method (that based on the isotropic and/or

local anisotropic model from solving problem (PROF2)) and wavelet techniques are

the different algorithms that we have to compare based on different design and

computational strategies.

The wavelet transform provides high PSNR values and can remove noise very

efficiently, meanwhile the variational methods of (PROF2) also remove noise suc-

cessfully, but in that case the result quality depends on the chosen value λ, this

regularization parameter decides how much noise can be reduced. Comparing model

(PROF2) with wavelet denoising is delicate, as there are free parameters of the al-

gorithm which can affect their performance. Namely, the choice of λ is critical, we

have verified experimentally that λ is large enough for the smooth solution but not

too small to guarantee the denoising process.

Wavelet-based methods hold the current state of the art in image processing. A

key feature of wavelet-based method is their ability to remove noise while keeping

important image detail, such as contours. Whereas, our variational methods of

model (PROF2) denoising is able to reduce noise, but does so while preserving image

contour information, which are important.

In this section we provide some examples to illustrate the comparison between

these methods therein. The first example is for testing with the video of moving

disk adding Gaussian noise inside, artificial noise is added to a clean video that is

described in Figure 5.1, and the density of noise is large by choosing σ = 50. In the

Figures 5.19 we show some numerical solutions of the variational models and wavelet

thresholding schemes, inside problem (PROF2) we choose a fixed fitting parameter

λ = 10 large enough, meanwhile wavelet denoising tests can be performed with

Daubechies-8 bases. We note here that the threshold is selected to reach the best

PSNR performance, the same threshold are used for standard thresholding hard/soft

schemes therein.
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(a) Noisy disk video, Gaussian noise

σ = 50.

(b) Isotropic model (PROF2), λ = 10 -

PSNR=25.26.

(c) Wavelet hard thresholding-db8,

PSNR=23.67.

(d) Wavelet soft thresholding-db8,

PSNR=25.56.

Figure 5.19: One visual slice extracted from the video of moving disk tests.

In the second example, we test for the original MRI brain, which appears quite

noisy. In the previous section 5.2.4 we choose the good wavelet denoised result that

returns the best PSNR, which is performed with Symlets-6 bases. A conventional

criterion is that larger PSNR signifies better performance. From Figures 5.20, it is

remarkable that the obtained PSNRs of our methods are acceptable for denoising

application, the hard thresholding gives better PSNR performance, however the

soft thresholding gives better visual quality. Because in the case of MRI volumes

we introduced at the beginning chapter 1, we cannot judge the performance by

examining the PSNR as we do not have a noise-free image in which we can compare.

Remind that we just have a noisy original data and try to remove noise while keeping

geometrical structures significantly. However, by visual inspection it is evident that

the denoised image, while removing a substantial amount of noise, suffers virtually

no degradation in sharpness and details.

We have also carried out a detail experimental comparison of (PROF2) model
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(a) Original slice. (b) Isotropic model (PROF2), λ = 10,

PSNR=32.61.

(c) Wavelet hard thresholding, sym6,

PSNR=35.60.

(d) Wavelet soft thresholding, sym6,

PSNR=31.43.

Figure 5.20: One visual slice extracted from the noisy cerebellum scan tests.

versus wavelet denoising. With variational model (PROF2), we can see that in order

to obtain good denoised results (for λ is large enough), our images become to be

faint, almost geometrical elements (containing texture and contours) are lost in the

cartoon component. On the other hand, the approximation of wavelet performance

keeps more features in denoised images, with the well chosen value of threshold

parameter T (which depends upon the considered image).

Figure 5.21 gives the representation of difference between original (noisy) and

approximated data, we highlight that our methods include removing noise, restoring

sharper edges and geometric features, which cannot be reflected through PSNR

values. However, it seems that the wavelet soft thresholding scheme gives better

edges are restored than variational model, also soft thresholding is better than hard

thresholding. In addition, we use visual inspection to compare the performance in

preservation of geometrical information, which is not reflected through the PSNR

measurement. The work carried out here can be extended to speech denoising for

sentences recorded in varies noisy environment also it can be extended for the real

time image denoising. Wavelet package transform can be implemented further to

achieve good performance.

In the section, we were studying the denoising application separately the varia-

tional method of model (PROF2) and wavelet thresholding schemes. Because each

method has the advantages and disadvantages, BV 2-variational method gives good

denoised results meanwhile the wavelet shrinkage technique reduces well edge/contour

artifacts. In this situation we propose a new modified model that combines these

schemes, we then have a reconstructed image has fewer oscillations near edges and

noise is smoothed. A lot of references, for instance in [24], [25] etc, gave ideas of

denoising algorithm based on a combination of these frameworks several years ago.

It permits us to improve another approach that employs variational framework, in

particular the minimization model (PROF2) plus the wavelet thresholding to re-
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(a) Isotropic model (PROF2), λ = 10.

(b) Wavelet hard thresholding, sym6.

(c) Wavelet soft thresholding, sym6.

Figure 5.21: One visual slice of the difference between original and denoised volumes

tested on the cerebellum.

duce oscillations, remove noise while maintain the sharpness of image. The ideas

introduced here can be considered to perform in the chapter 7 and use as a post-

processing technique for image denoising application. Taking advantages of both

two methods (variational method and wavelet based scheme) mentioned previously,

we apply them in a new model that combines two based methods the numerical

results are well denoised and almost geometrical details are well preserved.
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Chapter 6 addresses the application to 3D image segmentation process that is

performed on a 3D image. In particular we locate the contour information of image

with both variational model and wavelet based method. From a different point of

view, the contour detection is another application to the denoising application in

chapter 5. Here, we deal with contour detection simulations and compare some

experimental results by variational method and wavelet scheme. In particular, the

difference between isotropic and local anisotropic results represent contour shapes in

variational method, on the other hand, the contour detection methods using wavelet

transform scheme is also studied to isolate the contour shapes of image, [55], [36],

[17].

Visual perception evolved in a world of objects many of which are bounded by

smooth closed contours. Especially with the three-dimensional dataset that need to

be marked the locations of filaments to get the region of interest. There also exist

other structures with high values (noise) or we may loose some information within

the vessels through contour detection process. That is the reason why we should

perform contour closing algorithms. Once the contour shapes are detected, we next

provide methods of contour closing implementation. This chapter also presents two

classical methods, which be applied for three-dimensional contour closing, the hys-

teresis thresholding [48] and a local operator based on chamfer distances methods

[35], [9], [6]. We try to give an understanding of the original derivation and motiva-

tion of each algorithm.
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6.1 Contour Detection strategy

Human can easily extract the contours of any objects by watching their defining

set of points, but this simple and almost trivial action for the human being is a

quite difficult task to be automatically performed, [52]. As a simple understanding,

contour detection strategy is a general scheme of contours extraction carried out

in the computer vision community. In [27], contours are distinguished from edges

as follows. Edges are variations of intensity level in a gray level image whereas

contours are salient coarse edges that belong to objects and region boundaries in

the image. From that point of view, the contours/edges detection scheme is driven

by the structure of our images. In the case of three dimensional medical images, a

local context of a contour significantly affects the global saliency of the contours.

In this section, we shall study two simple contour detection methods by applying

computationally variational model and the wavelet technique, that have been studied

in previous chapters. Classically, there are a lot of known contour detection methods

that have been developed during the past decade, however in the thesis discussion

we have just focused on the methods coming from our scope of researches, that are

inspired by the 3D second order variational model (PROF2) and the wavelet based

scheme. These methods mentioned in the thesis maybe do not give better results

comparing with some other proposed methods, however we could point out their

applications in the contour detection process, and especially for three dimensional

medical images, our research of interest.

6.1.1 Variational model

As the description in variational performance of model (PROF2), it is easy to recog-

nize the contour shapes represented by the difference between smooth components

of isotropic and local anisotropic algorithms. Indeed, the isotropic algorithm gives

that the observed image f can be combined by:

f = C1︸ ︷︷ ︸
Smooth component
without geometrical contour

+ T1︸ ︷︷ ︸
Oscillating component
contains geometrical contour

(6.1)

On the other side, the local anisotropic algorithm transfers the contour elements

(geometrical information) successfully from oscillating component to the smooth

component, f is then represented by:

f = C2︸ ︷︷ ︸
Smooth Component
contains geometrical contour

+ T2︸ ︷︷ ︸
Oscillating Component
without geometrical contour

(6.2)

Hence, the “geometrical contour” of our 3D image can be extracted as:

“Geometrical Contour” = |C2 − C1| = |T1 − T2| (6.3)

The contour detection process of “geometrical contour” component is next ob-

tained as a binary image with a simple thresholding step. This step classifies pixels

into two categories:
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- Those for which some properties measured from the image falls below a thresh-

old parameter T , and those for which the property equals or exceeds T .

- Thresholding creates a binary image, which only contains values 0 and 1, for

instance, the object pixels (pixels of interest region) are given a value of 1 and

the background pixels (pixels of the others) are given a value of 0. Binary

image is created by coloring each pixel white or black depending on pixels’

value.

In a fixed thresholding (or global thresholding) step, the threshold value is held

constant throughout the image. This makes the choice of threshold value be the

most important feature in segmentation process. The determination of a single

threshold value by treating each pixel is independent of its neighborhood: a too low

threshold parameter will imply a loss of information, meanwhile a too high one we

will provide an image involving undesirable elements.

Several different methods for choosing threshold exist, for instance automatic

thresholding, Otsu’s method, Bayesian method, histogram shape-based method and

so on ... In Appendix D.1, we introduce some thresholding methods that we used

for the segmentation process. The choice of global (local) threshold depends on the

image’s region or the adaptive contour detector method.

Back to the contour detection process with the variational second order methods

(PROF2), we perform a thresholding strategy of “geometrical contour” to get the

exact contour. During the segmentation process, we chose a fixed threshold value

for every contour detection method. Table 6.1 gives the threshold parameter T

computation by two classical methods: Histogram shaped-based and Automatic

thresholding algorithms.

Data Video of Moving disk Cerebellum

Histogram shaped-based method T = 80.00 T = 15.00

Automatic method T = 54.96 T = 8.85

Table 6.1: Threshold Computation for the variational model.

After the threshold determination step, a hard thresholding is performed to

detect the contours. We give next examples, namely the video of a moving disk and

3D stack of MRI cerebellum images (Figures 5.1 and 5.5). Results are shown in

Figures 6.1, 6.2 respectively. The experimental segmentation results of variational

model depend on the thresholding step. In the “geometrical contour” viewing of

Figure 6.1(a) and 6.2(a), it is well known that the gradient terms can detect the

boundary very well for sharp edges.

Examining 3D images of moving disk video and the cerebellum, it is clear that

two segmentation methods find almost the true image contours and not respond to

other image features. With automatic thresholding method, we get a good contour

information; however, the detected contour is smoother and thicker than histogram

shaped-based method. Although the acceptable results obtained with moving disk

video in 6.1(d)-(e)-(f), we see the difficulties when used on the cerebellum images
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(a) Geometrical contour. (b) Binary image of con-

tour, thresholding by his-

togram shape-based method.

(c) Binary image of con-

tour, thresholding by auto-

matic method.

(d) Geometrical con-

tour, one visual slice.

(e) Histogram shape-

based method; one

visual slice.

(f) Automatic method;

one visual slice.

Figure 6.1: Contour detection for the variational method - The moving disk video:

3D and one visual slice viewing.

in 6.2(d)-(e)-(f). Since the histogram shape-based threshold is globaly selected, it

seems that the value of T is not small enough for contour determination process

and we loose a part of segmented information, see Figures 6.2(d)-(e). With the

contour maps obtained using the difference between two smooth components from

the variational model (PROF2), we may conclude that the proposed contour detection

scheme is well performing since it is able to identify the in depth, curved and linear

contours efficiently. However, the obtained contour shapes can be either quite thick

or thin depending on the intensity across the contour and how much the image

was blurred. Therefore, the non-maximum principle should be performed to reduce

thick contours response to thin shapes. The non-maximum suppression section is

presented in the Appendix E.
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(a) Geometrical contour. (b) Binary image of con-

tour, thresholding by his-

togram shape-based method.

(c) Binary image of con-

tour, thresholding by auto-

matic method.

(d) Geometrical contour, one

visual slice.

(e) Histogram shape-based

method; one visual slice.

(f) Automatic method; one

visual slice.

Figure 6.2: Contour detection for the variational method of cerebellum test.

6.1.2 Contour Detection methods with Wavelet Transform

In this section, we investigate contour detection methods related to wavelet trans-

form. Mallat et. Al [55] studied detection using wavelet transform by Modulus

Maxima Method in two dimensional case. This method is based on finding local

maxima of horizontal and vertical wavelet coefficients at the first level of wavelet

decomposition, and the method was simulated with a lot of wavelet functions to

improve results of edge detection. Mathematical principles and applications of Mal-

lat’s method should be studied to three dimensional mentioned MRI images in the

future works.

In addition, the wavelet analysis of images makes it possible to extract a new

image from which we can isolate the contours [36]. The general idea of contour

detection using wavelet transform is illustrated below:

• Choose a suitable wavelet function;

• Use the function to transform images into decomposition scales;

• The wavelet detailed coefficients containing significant noisy energy are filtered

out;

• Finally contours are detected from the filtered detailed coefficients.

In the wavelet decomposition scheme, while the approximation coefficients con-

tain most of low-frequencies of the image, detail coefficients represent contours. A
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proper modification of approximation coefficients is one of the easiest way to de-

tect contours. For the three-dimensional point of view, we deal with some simple

methods of contour detection using wavelet transform such as replacing approxima-

tion coefficients by zeros and by the modified approximation coefficients of Canny

detector.

6.1.2.1 Approximation coefficients replaced by zeros

This is the simplest method of contour detection with wavelet methods. The de-

scribed 3D wavelet transform scheme in 5.2.1 can also be applied similarly. However,

in the reconstruction strategy, the approximation coefficients are replaced by zeros.

In fact, the wavelet decomposition separates the image into eight parts at the first

level, each of them containing different informations: detail coefficients represent

high-frequencies, which contain contours information while the approximation co-

efficients represent low-frequencies. This method removes all low-frequencies from

the image as well and high-frequencies are kept to extract contours.

(a) Haar. (b) Db8. (c) Sym8. (d) Coif5.

(e) Haar. (f) Db8. (g) Sym8. (h) Coif5.

Figure 6.3: A test on the original moving disk video, contours found by replacing

approximation coefficients by zeros and using some different wavelet basis (haar,

db8, sym8 and coif5 ). The first row: 3D viewing of data. The second row: one slice

is taken.

The results of this method are shown in Figures 6.3 and 6.4. Experimental

tests are performed with the original video of moving disk and the cerebellum MRI

scan, respectively. We notice here that the taken input cerebellum for the proposed

algorithm is well denoised applying isotropic variational model (PROF2) of section

3.1.2 (λ = 25. In these tests, different kinds of wavelet basis are taken into account:

Haar, Daubechies (8 vanishing moments), Symlets (8 vanishing moments) and the

Coiflets (5 vanishing moments). Then a simple threshold operation is used to identify
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(a) Haar. (b) Db8. (c) Sym8. (d) Coif5.

(e) Haar. (f) Db8. (g) Sym8. (h) Coif5.

Figure 6.4: A test on the denoised volume of MRI scan of cerebellum (denoised

results is performed by variational model (PROF2)), contours found by replacing

approximation coefficients by zeros and using different wavelet basis (haar, db8,

sym8 and coif5 ). The first row: 3D viewing of data. The second row: one slice is

taken.

the contours.

In the test of moving disk, the contour shapes are well extracted. Haar basis

provide undesired edge features extraction while the others give better continuous

edges. In the medical image of cerebellum, there is a lot of textures in the image

background that makes the task ambiguous. This is more difficult when seeing

just one visual slice extraction Figure 6.4 (e)-(h). However, main contours are well

detected by four testing types of wavelet bases. We see that replacing by zeros

in wavelet contour detection gives bad results. In particular, all results provide

contour shapes which are nor closed, nor continuous, nor retaining enough segmented

details compared to results in Figures 6.1 and 6.2. These results are comparable

to the previous contour shapes obtained with variational method (figures 6.1 and

6.2). Therefore the variational method gives better results than this wavelet based

method.

6.1.2.2 Modification of Approximation coefficients by Canny detector

The Canny algorithm is a well-known edge detection algorithm. It is a multi step

detector which performs smoothing and filtering, non-maxima suppression, followed

by a connected-component analysis stage to detect contours, while suppressing non

edge filter responses. The Canny edge detector is widely used in computer vision

to locate sharp intensity changes and to find object boundaries in an image. In

this section we give an outlook of the three dimensional Canny detector description

(that is fully described in the Appendix E). A typical implementation of the Canny

detector follows the steps below:

1. Smoothing : Smooth /filter the image to remove noise with an appropriate

Gaussian filter;
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2. Finding gradients : Determine gradient magnitude and gradient direction at

every pixel;

3. Non-maximum suppression: Only local maxima should be used to link edge

points and deal out non-edge points, i.e., if the gradient magnitude at a pixel

is larger than those at its two neighbors in the gradient direction, mark the

pixel as an contour, otherwise, mark the pixel as the background.

In this subsection, we present another wavelet based method for contour/edge

detection. This is a modification of approximation coefficients by the Canny detec-

tor. This kind of detector is applied to the approximation coefficients that are ob-

tained at the first level of wavelet decomposition. Then, the wavelet reconstruction

is performed from all remaining coefficients and modified approximation coefficients.

Next step is a thresholding step applied to the reconstructed results. The results of

the proposed method are shown in Figures 6.5 and 6.6. The numerical results show

that the proposed algorithm, that combines wavelet transform and canny operator,

accurately detects contours. We also remark that the input data of cerebellum for

this method is denoised applying isotropic variational model (PROF2), is similar to

the wavelet based approximation zeros replacement in previous section.

(a) Haar. (b) Db8. (c) Sym8. (d) Coif5.

(e) Haar. (f) Db8. (g) Sym8. (h) Coif5.

Figure 6.5: A test on the original moving disk video, contours found by Canny

detector applied to the approximation coefficients and using different wavelet basis:

haar,daubechies-8,symlets-8 and coiflets-5. The first row: 3D viewing of data. The

second row: one slice is taken.

These results prove that the proposed wavelet based contour detector gives com-

parable results to Canny detector in the case of noiseless images (contour location

and thickness). Results are the same with different wavelet basis. Comparing to

the contour maps produced by zeros approximation replacement (previous section
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(a) Haar. (b) Db8. (c) Sym8. (d) Coif5.

(e) Haar. (f) Db8. (g) Sym8. (h) Coif5.

Figure 6.6: A test on the denoised volume of MRI scan of cerebellum (denoised re-

sults is performed by variational model (PROF2)), contours found by Canny detector

applied to the approximation coefficients and using some examples wavelet bases:

haar,daubechies-8,symlets-8 and coiflets-5. The first row: 3D viewing of data. The

second row: one visual slice is taken.

6.1.2.1), the one produced by Canny algorithm provides more detail information. It

is clear that the zeros replacing method cannot detect every edge of the image.

In video moving disk test, the original shape is obtained with a good balance

between details and the contour localization accuracy is also good. The visual

performance of the proposed method is clearly perceptible from Figures 6.5. The

behavior of the proposed algorithm in presence of cerebellum is evaluated in Figures

6.6. The segmented results show a quite good detection of sharp contours. For both

examples (moving disk video and the cerebellum) main objects and fine textures

are perfectly detected. Compare to the results by variational methods, this method

gives sharper contours better than the canny algorithm could do. Consequently, the

proposed schemes play a very useful role in performance improvement.

6.2 Contour Closing Methods

Considering the three-dimensional angiography dataset for example, we need to re-

cover the locations of blood-vessels. A simple global thresholding, based on gradient

edge detection will give us poor results even when if we choose an optimal threshold

value. Indeed, there exist many other structures with high grey level values. Global

thresholding may keep noise if threshold parameter is too low. We may loose some

information if threshold parameter is too large (as very thin vessels). That is the

reason why we have to perform contour closing algorithms.

Here we describe two algorithms to be applied for 3D contour closing: the hys-

teresis thresholding and a local operator based on the so-called chamfer distance

transformation. We give a quick overview of the original philosophy and motivation

of each algorithm.
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6.2.1 Hysteresis Thresholding

Hysteresis thresholding, is also called double thresholding, which is usually adopted

in the Canny detector. Using the gradient gives a first approximation of image

contours; however, some parts of contours may not be emphasized enough. On

the other hand we may get contours which are not continuous. With hysteresis

thresholding, the obtained object boundaries given are usually more complete and

continuous than those given by pixel based techniques. This is challenging when

considering images involving filaments structures as angiography supported vessels

or skin medical image for human disease study. This is why hysteresis thresholding

is proposed as a method filling gaps in image contours, [48].

Let f be a grayscale input image. We choose two intensity threshold parameters

θ1 (high threshold) and θ2 (low threshold), where θ1 > θ2 can be set such that

minx f(x) ≤ θ1, θ2 ≤ maxx f(x): θ1 and θ2 are upper and lower thresholds used in

the hysteresis process. We construct two sets of pixels:

H = {x ∈ R
n|f(x) ≥ θ1} (6.4)

L = {x ∈ R
n|f(x) ≥ θ2} (6.5)

which can be used to produce binary masks such that all pixels above the threshold

are “in” and all others are “out”. We now wish to obtain C such that H ⊂ C ⊂ L.

6.2.1.1 Principle

In our case, for closing contour objective, the hysteresis thresholding is performed

after the step contour detection, then we will search the extreme points of the

contour (if it is discontinuous) and try to extend them.

Consider Figure 6.7 below: two points A and B are two extremes of an edge

after detection for contour curves, the closing contour method suggests to search in

their respective neighborhoods V (A) and V (B) the corresponding remaining parts

(or closest approximation) of image contours. This means that the pixels in the

neighborhood close to A are not in the outline after the first threshold. So we apply

a more permissive threshold on this neighborhood. Consequently, the contours will

be gradually completed.

Figure 6.7: Hysteresis thresholding
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6.2.1.2 Algorithm

The algorithm for hysteresis thresholding is performed by using two thresholds Thigh
and Tlow (Thigh > Tlow). Consider an image f , we also denote ∇f the gradient

operator of f . For contour-detection one usually uses a thresholding of gradient

norm ‖∇f‖.

1. Step 1: First thresholding: The image I(m,n, p) is the binary image,

which value is 1 if pixel (i, j, k) satisfies ‖∇f(i, j, k)‖ ≥ Thigh and 0 other

wise.

2. Step 2: Local thresholding: For every pixel C that belongs to the image

contour, we consider a neighborhood. If there exists a neighbor pixel C ′ of C
such that I(C ′) = 0 and ‖∇f(C ′)‖ >= Tlow, then, we set I(C

′) = 1. Therefore

C ′ is involved in the contour set.

3. Step 3: Iteration: Step 2 is iterated up to convergence.

4. Step 4: Selection: Outlines of few pixels are removed to keep only the

relevant contours. Test the result and choose the suitable threshold parameter.

In the case we could choose Thigh = 2Tlow, then the image from Thigh contains

fewer contours but has gaps in the contours, meanwhile the image from Tlow has

many false contours. We combine result from Thigh and Tlow to link the contour

shapes of Thigh until we reach a gap and link contour from Thigh with contour pixels

from a Tlow contour until a Thigh contour is found again.

6.2.1.3 Examples

In figures 6.8 and 6.9, we give examples to describe the hysteresis thresholding

method performed on 2D images. We consider the test of cerebellum in Figure

6.8: one slice is extracted from the denoised image after the variational method of

(PROF2) for λ = 25 in particular (3D visual image is shown in Figure 5.6). Then we

perform a thresholding to detect contour (Figure 6.8(b)). Two threshold parameters

are selected and the hysteresis thresholding algorithm is applied: numerical result

is shown in Figure 6.8(c). The difference between the two contours is presented

in 6.8(d). The segmentation is done by hysteresis thresholding. However, the two

thresholds have to be computed by an efficient fast rule. In the case of cerebellum,

finding closed contours highly depends on the quality of the image.
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(a) One slice of cerebellum

test (denoised from varia-

tional model (PROF2)).

(b) Detected contour by a

simple thresholding step.

(c) Contour found by hystere-

sis thresholding.

(d) Difference between the in-

put (b) and closed contours

(c).

Figure 6.8: An example of 2D visual slice test on the denoised volume of MRI scan of

cerebellum (denoised results is performed by variational model (PROF2)), contours

found by hysteresis thresholding closing method.

(a) 2D example of origi-

nal blood vessel.

(b) Detected contour by

a simple thresholding

step.

(c) Closed contour

found by hysteresis

thresholding.

(d) Difference between

the input (b) and closed

contours (c).

Figure 6.9: An example of 2D blood vessel test, contours found by hysteresis thresh-

olding closing method.
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The hysteresis thresholding method has been also used to close contours of the

“blood-vessel” test (Figure 6.9 ) on a 2D slice. We describe comparable the vessel

contours shown in 6.9(b), (c). The method we have described performs well. How-

ever, it gives some false features of blood vessels. Some unexpected details make

closed contours not accurate. In particular, two threshold values determination cre-

ates a lot of false pixels around vessels contour lines. In addition, the hysteresis

thresholding method should be improved. Indeed, threshold upper and lower val-

ues should be found automatically. We report results obtained on a larger data set

(volume in three dimensions) in the near future, chapter 8.

6.2.2 Chamfer Distances Transformation

We now study another local operator that has been proposed to close contours.

The method is described in [35]. The “chamfer” distance measures distance between

elements.

In what follows a contrast point is a point where the image intensity gradient is

high. Contour points are constrast points if we precisely define what “high” means.

The basic idea of the method of [35] is the following:

(a) Generate a distance Table where the intensity (grey level) of a point is replaced

by the distance to nearest contrast point.

(b) Find the saddle-points of the intensity function .

(c) Eliminate the points which associated distance is too large;

(d) Add those saddle points to contrast points and repeat steps (a), (b), (c) and

(d) as far as possible;

(e) Remove the contour points that do not close any the “meaningful” area.

Therefore the first step is the contrast points extraction. In this section, the

concept of distance transformation and some of their properties, applications are

described. We start with the two dimensional distance transform (DT), and the

generation of distance transform to higher dimensions (three dimensions in partic-

ular) will be given. The distance transform was described in [21] and we just give

hereafter some discrete definitions and implementations of DT.

6.2.2.1 Two-dimensional Distance Transformation

Definition 10. [35], [21] Discrete Distance
Let E = Z

N , N ≥ 2. An image I is an application defined on E.

We call d : E× E→ N the discrete distance if it verifies: ∀A,B,C ∈ E

1. d(A,B) ≥ 0; d(A,B) = 0⇔ A = B: positive;

2. d(A,B) = d(B,A): symmetric;
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(a) Telephone - Original im-

age

(b) Telephone - Binary image (c) Telephone - Distance im-

age (Euclidean)

Figure 6.10: A 2D example for distance transformation.

3. d(A,B) ≤ d(A,C) + d(C,B): triangular inequality.

Definition 11. [35], [21] Distance Transformation
Let d be a distance on R

2, I be 2D binary image and O ⊂ I. For each pixel in the

background Ō := I\O, the distance transformation image denoted DT is defined as

following:

DT : p 7→ DT (p) = min
{
d (p, q) , q ∈ Ō

}
.

In other terms, the value assigned at any point p is the shortest distance from p to

all points in O.

Depending upon various applications, the distance function may be defined in

different ways, some most important kinds of function that are included in [21].

For example, the n-neighbor distances, they are 4- and 8-neighbor distance (for two

dimensional case) and 6−, 18− and 26−neighbor distance (for three dimensional
case), the Euclidean distance, octagonal distance, and the chamfer distance ... In

this thesis, we are interested in choosing of chamfer distances map for a binary image

respectively.

In two dimensions, each pixel has two kinds of neighbors. The first kind is 4

horizontal/vertical neighbors, the neighbors joined by a line. The second kind is the

4 diagonal neighbors, the neighbors joined only by a point. The global distance is

computed from the local distances between neighbors. The distance between hori-

zontal/vertical neighbors is denoted d1, and the distance between diagonal neighbors

is denoted d2.

For example, in [21], with 4-neighbors distance we have d1 = 1 and d2 = ∞
(this means that all sums including d2 can be ignored), the discs of this distance are

diamonds; for 8-neighbors distance d1 = 1 and d2 = 1, the discs of this distance are

squares.

The (2D) chamfer distance transform has real values based on d1 (horizontal)

and d2 (vertical) as well. The name of this distance transform comes from the two-

pass process for obtaining the distances, which is known as chamfering. However, in

most applications real numbers are not desirable. The good integer approximations

of the optimal values are found, d1 = 2, d2 = 3, the incremental distance values of
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2 and 3 provide relative distances that approximate the Euclidean distances 1 and

the square root of 2. This is why it is an euclidian pseudo-distance.

Position j − 1 j j + 1

i− 1 +d2 +d1 +d2
i +d1 0

0 +d1 i

+d2 +d1 +d2 i+ 1

j − 1 j j + 1 Position

Table 6.2: The forward pass (left) and backward pass (right) from I(i, j), by chamfer

algorithm.

The algorithm for distance transformation can be described by masks in Table

6.2. Inside these masks, two passes over the picture are necessary:

• During the forward pass the mask starts at the upper left corner of the picture,

moves row-by-row to perform computation on image I from left to right, and

from top to bottom to find the partial distance value d(i, j) for every pixel

(i, j). The local distances, d1 and d2, in the maskpixels are added to the pixel

values in I, and new value of the zero pixel is the minimum of five sums.

During the forward pass, the optimal distance for the pixel (i, j) of the mask

is updated by the formula:

d (i, j) = min





d (i, j) ;

d (i, j − 1) + d1;

d (i− 1, j − 1) + d2;

d (i− 1, j) + d1;

d (i− 1, j + 1) + d2





. (6.6)

• Similarly, in the backward pass the mask starts in the lower right corner,

executes from right to left, and from bottom to top to find the second partial

distance value d(i, j) for each pixel (i, j). The distance for pixel (i, j) of the

mask can be calculated in terms of:

d (i, j) = min





d (i, j) ;

d (i, j + 1) + d1;

d (i+ 1, j − 1) + d2;

d (i+ 1, j) + d1;

d (i+ 1, j + 1) + d2





. (6.7)

Table 6.3 gives an example, shows the results of different settings of 2D distance

transformation for a certain 5× 5 image where the black pixel is the object.

6.2.2.2 Three-dimensional Distance Transformation

Three-dimensional elements that are corresponding to two-dimensional case, are

usually called voxels, and there are 6−, 18− or 26−neighbor distances may be

considered. For instance, with 26−neighbor distance, voxel has 26 neighbors of

three different kinds. The first, closest, kind of neighbors is the 6 ones joined to the
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3 2 3 4 5

2 1 2 3 4

1 0 1 2 3

2 1 2 3 4

3 2 3 4 5

2 2 2 2 3

1 1 1 2 3

1 0 1 2 3

1 1 1 2 3

2 2 2 2 3

5 4 5 6 8

3 2 3 5 7

2 0 2 4 6

3 2 3 5 7

5 4 5 6 8

Table 6.3: Results of different settings distance transformations. From left to right:

the first Table is the 5× 5 image with black pixel is an object; the second one is the

result after 4-neighbor distance; next after 8-neighbor distance and the last one is

result after chamfer distance transformation.

voxel by a plane, the second kind is the 12 neighbors joined by a line, and the third

kind is the 8 neighbors joined by only a point. The three different local distances

are denoted d1, d2 and d3. As in two dimensions, the algorithm can be illustrated

+d3 +d2 +d3
+d2 +d1 +d2
+d3 +d2 +d3

+d2 +d3 +d3
+d1 0

0 +d1
+d2 +d1 +d2

+d3 +d2 +d3
+d2 +d1 +d2
+d3 +d2 +d3

Table 6.4: The forward pass (first row) and backward pass (second row) in 3D case,

by chamfer algorithm.

by the same masks as in Table 6.4 by using d1, d2 and d3, and two passes over the

volume are needed. The forward mask is moved over the volume left to right, top

to bottom, and front to back. The backward mask is moved in the opposite way. In

each position, the sum of the local distance in each maskvoxel and the value of the

voxel it covers is computed, and the new value of the zero voxel is the minimum of

these sums.

As remarked before in two-dimensions, the values of d1, d2 and d3 are set de-

pendently on which kind of distance transformation. For example, in [21] we have:

• 6−neighbor distance: d1 = 1, d2 = d3 =∞.

• 18−neighbor distance: d1 = 1, d2 = 1 and d3 =∞.

• 26−neighbor distance: d1 = d2 = d3 = 1.

• Chamfer distance: as 2D case, it is often desirable to use only integers. A

very good integer approximation of the optimal local chamfer distances is

d1 = 3, d2 = 4, and d3 = 5. We can refer to [35] for a detailed explanation,

and this chamfer (3, 4, 5) distance is used in this chapter.
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6.2.3 Contour Closing - A local operator based on Chamfer Dis-
tance Transformation

6.2.3.1 Saddle points determination

Definition 12. [9] Let f : V ×W → R ∪ {∞} be a function defined on V ×W ,

where V and W are vector spaces. A point (a, b) ∈ V ×W is called a saddle point

of f if: 



a ∈ argmin
x∈V

f (x, y)

b ∈ argmax
y∈W

f (x, y)

Proposition 5. [9] The point (a, b) is a saddle point of f if and only if:

min
x

max
y

f (x, y) = max
y

min
x
f (x, y) = f (a, b) (6.8)

Proof. Recall the definition, ∀(x0, y0) we have:

max
y

f (x0, y) ≥ f (x0, y0) ≥ min
x
f (x, y0) (6.9)

We can conclude the proposition since the above inequality still holds when we move

to min and max on the left and right, so the saddle point definition is equivalent to:

max
y

f (x0, y) ≥ f (x0, y0) ≥ min
x
f (x, y0) (6.10)

We give thereafter equivalent formulations:

Definition 13. [35] Let f(x, y) be a real function of two variables defined over a

real open subspace Ω ⊂ R
2 and differentiable with respect to these two variables on

Ω. We say that the point (a, b) ∈ Ω is the saddle point of f if:

(a)
∂f

∂x
(a, b) =

∂f

∂y
(a, b) = 0,

(b) (a, b) is neither a local maximum nor a local minimum of f .

Definition 14. [35] Consider now an open bounded subset K of Ω (K will play the

role of contour points in our saddle point method). Let a function fK : Ω → R be

defined as:

fK (x, y) = min {d ((x, y) , (u, v)) | (u, v) ∈ K} = d ((x, y) ,K)

We say that P ∈ Ω is a saddle point if there exist two directions d1 and d2 in R
2

such that f(P ) is the maximum in direction d1 and the minimum in d2 :

∃d1, d2 ∈ R
2, ∃r > 0, ∀λ : |λ| ≤ r ⇒

{
f (P + λd1) < f (P )

f (P + λd2) > f (P )



106 Chapter 6. Application to 3D Image Segmentation Process

(a) Example for the 1st and 2nd def-

inition of Saddle point, with z =

x2
−y2, M(0, 0) is the saddle point.

(b) The 3rd definition of Saddle point.

Figure 6.11: The saddle point example presentations.

Proposition 6. [9], [35]

Let K be a finite union of segments in space and A,B be two end (distinct) points

of two segments in K. Let P be the medium of (A,B) and r = d(A,P ) = d(B,P ).

We denote D(M, t) the closed disk with center M and radius t.

Suppose that we have:

(a) D(P, t) ∩K = {A,B}.

(b) ∃ε > 0, D (P, r + ε) ∩K = {(A,A′) , (B,B′)}.

Then, P is the saddle point of fK , that means:

• fK(P ) is the local minimum respect to direction d1.

• fK(P ) is the local maximum respect to direction d2.

This proposition is well proved in [35].

6.2.3.2 Discretized Saddle Points

We now consider the 2D discrete case corresponding to a scanned image (the whole

Ω) and a set of contour points (the points of contrast). In this case, we look for the

discretized saddle points y using 8-neighbor pixels of pixel P .

The point P is called a (discretized) saddle point if there exists four points

I, J,Q,R such that:

(1) I, J and P are aligned.

(2) Q,R and P are aligned.

(3) The segments (I, J) and (Q,R) intersect each other.

(4) fK(I) ≤ fK(P ) and fK(J) ≤ fK(P ).
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(5) fK(Q) ≥ fK(P ) and fK(R) ≥ fK(P ).

(6) At least three of the inequalities represented by (4) and (5) are strict.

Let us give an example in Table 6.5:

I → 1 4 2

Q→ 4 3 5 → R

7 4 2 → J

I

3 3 3

R→ 4 4 5 → Q

3 3 3

J

Table 6.5: Some example of a 2D discretized saddle point.

6.2.3.3 Algorithm

Let K0 the set of all contrast points that need to be updated, and f0(M) =

fK0(M) = d(M,K0) (we want to consider if M is the saddle point or not).

1. Step 1: K = K0.

2. Step 2: Compute P(fK), is the set of all saddle points of image fK .

3. Step 3: If P(fK) = ∅ then go to step 4. If not, update K = K ∪ P(fK) and

repeat step 2.

4. Step 4: Stop.

The process of found and replaced saddle points by the contour positions is

iterated until a contour is reached or until a fixed number of iterations is attained.

Let consider an example in Table as following, which represents two segments. We

obtain how this algorithm performs for closing them.

10 10 10 10 10 8 6 5 3 2 0

8 8 8 8 9 7 5 3 2 0 2

6 6 6 6 7 6 4 2 0 2 3

4 4 4 4 5 6 5 3 2 3 5

2 2 2 2 3 5 6 5 4 5 6

0 0 0 0 2 4 6 7 6 7 8

4 2 2 2 3 5 7 9 8 9 10

∞ 4 4 4 5 6 8 10 10 11 12

Table 6.6: Left: Object that need to be closed with two black segments. Right: The

chamfer distance transformation of the object.
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10 10 10 10 10 8 6 5 3 2 0

8 8 8 8 9 7 5 3 2 0 2

6 6 6 6 7 6 4 2 0 2 3

4 4 4 4 5 6 0 3 2 3 5

2 2 2 2 3 0 6 5 4 5 6

0 0 0 0 2 4 6 7 6 7 8

4 2 2 2 3 5 7 9 8 9 10

∞ 4 4 4 5 6 8 10 10 11 12

Table 6.7: Closing result of the object in Table 6.6 after one iteration, two saddle

points are found and replaced.

10 10 10 10 10 8 6 5 3 2 0

8 8 8 8 9 7 5 3 2 0 2

6 6 6 6 5 3 2 0 0 2 3

4 4 4 4 3 2 0 0 2 3 5

2 2 2 2 0 0 2 3 4 5 6

0 0 0 0 0 2 3 5 6 7 8

4 2 2 2 3 4 5 6 8 9 10

∞ 4 4 4 5 6 8 10 10 11 12

Table 6.8: Closing result of the object in Table 6.6 after two iterations, four next

saddle points are found and replaced. At this time we have P(fK) = ∅, we stop.

6.2.3.4 Examples

In this section, we give examples (cerebellum and blood vessel) as previously done

in hysteresis section. The 2D closed contours are shown in figures 6.12 and 6.13.

Numerical results show that the chamfer distance based method is slightly better

than the hysteresis thresholding one. The efficiency has been also evaluated in
Figures 6.12(c) and 6.13(c). In particular, a lot of the contour pixels which were
not detected in the hysteresis thresholding method are found now. It requires little
computation. The presence of a saddle point is taken during a second scan of the
image. The obtained results are good and allow the closure of a majority of gaps
of 5 and 10 pixels after a few iterations. This method can be used to perform
preprocessing during image segmentation operations. It is more efficient than the
hysteresis thresholding method.

The chamfer distance operator could be applied for closing contours after con-
tour extraction step. Moreover, this step-contour-detector is well-suited to extract
contour shapes, especially our three-dimensional medical images consideration. In
the next chapter 8, an experimental application will be performed for the 3D vessel
of mouse brain data. We shall briefly discuss the method and algorithm we used.
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(a) One slice of cerebellum test

(denoised from variational model

(PROF2)).

(b) Detected contour by a simple

thresholding step.

(c) Contour found by Chamfer-

distance.

(d) Difference between the input

(b) and closed contours (c).

Figure 6.12: An example of 2D visual slice test on the denoised volume of MRI
scan of cerebellum (denoised results is performed by variational model (PROF2)),
contours found by chamfer-distances closing method.
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(a) 2D example of original blood

vessel.

(b) Detected contour by a simple

thresholding step.

(c) Contour found by Chamfers

distance.

(d) Difference between the input

(b) and closed contours (c).

Figure 6.13: An example of 2D blood vessel test, contours found by chamfers dis-
tance closing method.

Remark 2. Because of the discretization process, there are some cases with false

detection. This problem can be resolved by making two types of filtering at each

iterations.

• When these false detections occur for distant points of the contours, it can be

carried out by setting a minimum distance of intervention of the operator;

• Assuming that the contours separate regions homogeneous grayscale, false saddle-

points do not correspond to contrast points. Gradient variations at these points

are low, this can be used to not validate them.

Figure 6.14 shows false detected pixels of contour shapes during the saddle points
finding process. Therefore, it is proposed to catch neighboring pixels that mark
contours. Finally, we perform a selection process of contour positions accurately to
find all true contours.
In Figure 6.15 below, we display again the closed contour results that have been

performed by two based methods: the closing by hysteresis thresholding and by the
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(a) One 2D visual slice of cerebellum. (b) 2D blood vessel testing.

Figure 6.14: False detections occur when finding closed contours by Chamfer-
distances, described in remark 2.

chamfer distance transform. We may see that the method based on chamfer distance
is worth comparing to the hysteresis, while this method provides contour details are
more efficiently than another.
The method has been successfully tested on 2D examples of MRI scan (one vi-

sual denoised slice of cerebellum and a vessel model with thin structures). As we
know, the Canny detector is a successful method in contour detection which is avail-
able in MATLAB toolbox. But in this section, we do not perform any comparison
between Canny detector and proposed methods that only give a basic understand-
ing of each closing methods (by hysteresis thresholding and the chamfer distance
transform) and compare between them together. Some experimental tests give us
an evaluation to compare two closing methods. Final results of chamfer distance
based method present more accuracy than the hysteresis thresholding method. As a
comparison, hysteresis follows the ridges of the gradient norms, it creates more false
edges and small regions in fibers of contours meanwhile this local proposed method
that prolongs/suppresses contours with the candidate along the path.
We also need to prove that such algorithm is able to segment any type of image,

even if it includes textured or non-textured areas. Further testing on more demand-
ing tasks such as vessel of mouse brain segmentation are being conducted, especially
in the case of three dimensional space.
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(a) Closed contour of denoised cerebellum

found by hysteresis thresholding.

(b) Closed contour of denoised cerebellum

found by Chamfer-distance.

(c) Closed contour of blood-vessel found by

hysteresis thresholding.

(d) Closed contour of blood-vessel found by

Chamfers distance.

Figure 6.15: A comparison between two based methods: hysteresis thresholding and
the chamfer distance contour closing. On the first row: tested on one visual slice of
cerebellum data. The second row: tested on the 2D blood vessels image.
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Throughout previous chapters, we have studied two based methods and their
applications in image implementation, the second-order variational method and
wavelet transform simulated on three dimensional medical images. Because each
method has the advantages and disadvantages, BV 2-variational method gives good
denoised results meanwhile the wavelet shrinkage technique reduces well edge/contour
artifacts. In this situation we propose a new modified model that combines these
schemes, we then have a reconstructed image which has fewer oscillations near edges
and noise is smoothed. A lot of references, for instance in [24], [25] etc, gave ideas of
denoising algorithm based on a combination of these frameworks several years ago.
It permits us to improve another approach that employs variational framework, in
particular the minimization model (PROF2) plus the wavelet thresholding to reduce
oscillations, remove noise while maintain the sharpness of image.
The ideas introduced here can be considered to perform in this chapter and use

as a post-processing technique for image denoising application. Taking advantages
of both two methods (variational method and wavelet based scheme) mentioned
previously, we apply them in a new model that combines them; the numerical results
are well denoised and almost geometrical details are well preserved. Therefore, here
we propose a new small variational model for image denoising and decomposition
(the so-called “merged-problem“), which combines the second-order total variational
model of Rudin-Osher-Fatemi (PROF2) and the Wavelet transform.
In [66], Y. Meyer has introduced an image decomposition model to split an image

into two components: a geometrical components and texture (oscillatory) compo-
nent. Inspired by his work, numerical models has been developed to carry out the
decomposition of gray scale images. Other recent and related image decomposition
models combined from variational model and wavelet transform are well proposed.
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In our approach, the considered model will decompose an image into several com-
ponents, where each of them is characterized by a special space of function. More
precisely, the aim of work in this chapter is to construct a model which decompose
image into two components: the first one represents all geometrical information of
the image, the second one contains the oscillating structures of image. In the rest
of this chapter, we present some numerical results applied both (PROF2) and an
undecimated wavelet transform (the “à trous” algorithm) in order to deal with the

case of 3D noisy images.

7.1 Introduction of the model

The goal of the proposed method is to split a 3D image f into two components,

f = u + v. The first component is TV 2 minimization term so that u is the second

order bounded variation component of the original image f . The BV 2-model is well

adapted because of the good geometrical information identification and a better

contours preservation than the BV model. The second term gives the v component

containing the oscillating part of the image, namely textures and noise.

In [2], the authors propose a model to decompose an image into two parts; one

of them is the structure of image, characterized by the BV space, and another part

of image is defined as the oscillating patterns. Their assumption is to consider noise

as a distribution modelized by the Besov space Ḃ∞−1,∞, with the standard setting

s = −1, p = q =∞ for the Besov space Ḃp
s,q; we can refer to [66], [2] some references

of the Besov space.

We denote the E here is a dual space to model oscillating patterns. Ḃ1
1,1 is the

usual homogeneous Besov space and the dual space of Ḃ1
1,1 is the Banach space

E = Ḃ∞−1,∞. The Besov space Ḃ
∞
−1,∞ is adapted to modelize the noise.

This decomposition has been proposed by Aujol et al. in [2] and is computed by

minimizing a convex functional which depends on two variables (u, v) as following:

inf
(u,v)∈X2

J2(u) +B∗(v/δ) +
1

2λ
‖f − u− v‖2X (P)

where X is the discretized space and J2 represents the discretization of the second

total variation term TV 2, see chapter 3 mentioned in the section 3.1.1. In this case,

the solution v ∈ Eδ is defined by:

Eδ =
{
ω ∈ Ḃ∞−1,∞/ ‖ω‖Ḃ∞

−1,∞
≤ δ

}
. (7.1)

The termB∗(·) is the indicator function on Eδ defined in the following expression:

B∗
(ω
δ

)
= χ{‖ω‖E≤δ}(ω) =

{
0 if ‖ω‖E ≤ δ,

+∞ otherwise.
(7.2)

As the principle proposed by Aujol F. [2], in order to solve the problem (P), one
considers to solve the two following problems and discretize their solutions:
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1. v being fixed, look for u as a solution to problem:

inf
u∈X

J2(u) +
1

2λ
‖f − u− v‖2X , (7.3)

2. u being then fixed, look for v as a solution to:

inf
v∈δBE

‖f − u− v‖2X . (7.4)

The solution to problem (7.3) is given by:

u∗ = f − v − PλK2(f − v). (7.5)

(we applied the theorem 16), where PλK2 is the orthogonal projector operator on

λK2. We could apply the Chambolle or Nesterov-type algorithm described in chap-

ter 3 to obtain the approximated solution to this problem (7.3).

Solution of (7.4) is given by:

v̂ = PδBE
(f − u) (7.6)

As in [2], in order to compute this term of projection, we need to consider and

solve the dual problem of (7.4) as:

inf
ω∈X

1

2
‖f − u− v‖2X + δ ‖ω‖Ḃ1

1,1
. (7.7)

The approximated solution to this problem (7.7) is obtained by using the univer-

sal threshold δ during the iteration process [2] on an undecimated wavelet transform,

the ’à trous’ algorithm (details are illustrated in the section 4.2 chapter 4). The so-

lution is ω̂ = UWT (f − u, δ). Consequently, the solution to problem (7.4) can be

written v∗ = PδBE
(f − u) = f − u − UWT (f − u, δ), where UWT denotes the

undecimated wavelet thresholding.

Throughout the section of introduction, we do not give a very detailed descrip-

tion of decomposition model, because it has recently studied through a lot of ref-

erences, for instance, Meyer Y. in [66] , and Aujol F. [2] etc ... We herein just

follow their works in which the second-order bounded variation BV 2 takes place in-

stead of the first order variational space BV inside the considered two components

decomposition model. We could refer to these works in [58], [2], and [66].

7.2 Algorithm

Image decomposition model is solved by the following iterative algorithm:
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Algorithm 6 Image decomposition u+ v model

1. Initialization: u0 = v0 = 0,

2. Iterations on n:

un+1 = f − vn − PλK2(f − vn) (7.8)

vn+1 = f − un+1 − UWT (f − un+1, δ) (7.9)

the threshold parameter δ is updated associated to f − un+1 as n increases.

3. Stopping test: if the following condition is fullfilled:

max (|un+1 − un|, |vn+1 − vn|) ≤ ǫ (7.10)

7.3 Numerical results

In this section, we present numerical results obtained with the proposed new model.

Numerical results for image denoising, image decomposition and texture discrimi-

nation, show that the new model performs decomposition of a possible noisy given

image, into a cartoon and oscillating term.

The 3D image decomposition method is applied to 3D medical data (mentioned

throughout the thesis): the MRI of cerebellum. The model is tested for different

values of regularizing parameter λ. Since in practice, there is no denoised volume

to compare to, tuning of parameter λ often relies on visual inspection. The stop-

ping criterion has been set to a maximal number of iterations which can be chosen

arbitrary large.

It can be seen that the new algorithm is good for denoising and texturing image

purposes. Based on two separable methods: variational method and the wavelet

shrinkage, the model is well adapted to combine the advantages of each method

that we mentioned in chapter 5. The second-order total variational method gives

good denoised results and the wavelet shrinkage technique reduces well edge/contour

artifacts. Therefore, the framework based on both of them is a good approach and

it clearly outperforms numerical results better than each classical models.

One can observe that the algorithm is able to separate the initial MRI image into

several parts; for instance the component u that contains the regularized (denoised)

image, the remaining noises (oscillating patterns) are included in the v component.

We then compute the last term ω = f − u − v and see that this contains mostly

textures and contours information of our image, Figure 7.1.

The good ability to denoise the initial 3D image is confirmed on Figure 7.2, which

shows one slice on the 3D image represented as a 2D surface, its regularized com-

ponent u (λ = 10). Experimental results show that the proposed model give better

denoised solution than the model (PROF2). From the Figure 7.2, this model makes

fewer visible edges/contours in the texture component v and more edges/contours

information in the cartoon component u compared with the ROF2 model.
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Original image u (λ = 1) u (λ = 10) u (λ = 50) u (λ = 100)

v (λ = 1) v (λ = 10) v (λ = 50) v (λ = 100)

ω (λ = 1) ω (λ = 10) ω (λ = 50) ω (λ = 100)

Figure 7.1: Numerical tests on the cerebellum data, one visual slice viewing. De-

composition model considers original image f to the u that contains geometrical

information (the first row), v represents the oscillating component (second row).

We then compute the remaining term ω = f − u − v and plot them on the third

row. Comparison of the u+ v decomposition for different values λ = 1, 10, 50, 100.
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(a) u component observed by the (P)

model.

(b) u component observed by the (PROF2) model.

(c) v component observed by the (P)

model.

(d) v component observed by the (PROF2) model.

Figure 7.2: Surface representation of one slice of the original 3D cerebellum volume

(top), the u component (the second row) and v component (the third row). Tests

illustrated for λ = 10.

One can conclude that the proposed model gives the best visual effects. A com-

parison using the same decomposition model without undecimated wavelet shrinkage

has also been performed (using the same value for λ = 10). It can be noticed on

Figure 7.2 (right column), that the u component is a bit oversmoothed and thus

region borders are blurred.

In addition, one sees on the Figure 7.3 the comparison between restored results

observed by our model (P) and two previous strategies we have studied: the ap-
plied (PROF2) only, the wavelet denoising scheme applied “à trous” algorithm. The

restored image of cerebellum by our approach has been more regularized than two

remaining classical methods. Moreover, almost geometrical details of image are well

preserved while noise is removed, too. This new approach combines the advantages

of our two methods: second-order variational minimization model and the wavelet

thresholding scheme. Once the model (PROF2) is very promising in denoising, the

applied wavelet thresholding provides geometrical details are well preserved.
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(a) u by

(PROF2) model

only.

(b) u by

wavelet ’à

trous’ only.

(c) u by (P)

model.

(d) v by

(PROF2) model

only.

(e) v by wavelet

’à trous’ only.

(f) v by (P)

model.

Figure 7.3: Cerebellum data. One visual slice comparison between different compo-

nents, cartoon component u and the oscillating component v observed by the model

(PROF2) only, for λ = 10 (the first column), the wavelet ’à trous’ algorithm only

(scale=3) (the second column) and compared to the image decomposition model

(P), for λ = 10.

Consequently, in this chapter, we have tried to introduce the general framework

which combines both previous approaches: second-order variational minimization



120

Chapter 7. Image Decomposition model based on variational method

and wavelet transform

and wavelet thresholding scheme. The studied applied method can perform an

image in which noise can be removed successfully and contours, textures are better

preserved. It can be seen that this model is particularly well adapted to denoise

textured images or even images with complicated structures inside (vessel of brain

for example). Throughout the next chapter 8 we shall give a performance of this

model applied to the vessel of mouse brain image, in which they give very interesting

and promising results.

In conclusion, we have illustrated that the proposed method gives better results

than those obtained by two previous models. And our approach seems very promis-

ing in many practical situations, where we want to split image into two or more

components, each of them being characterized associated to a transform or recon-

struction. This will be investigated in near future, follows by testing more types of

images, more iterations enough (that depends on the CPU speed of process) etc...,

and this proposed method can be also seen as a specific case of a more general

approach in future work.
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In chapter 1, we have given an introduction to the three-dimensional MRI images

of mice brain : the first example deals with trisomic mice cerebellum and the second

one with brain vessels network. We now focus on the second case: indeed, the

quantitative measurement of three dimensional vessel network is now possible and

MRI images provide a new method of evaluating many types of disease from the

network geometry. We dedicate this special chapter 8 to the results description

and give many issues concerning this model. These are particular images where the

difficulties lie on the difference in the contrast between the different objects: for

instance the contrast between vessels and the background is low, or inside vessel

regions can vary from one region to another. The vessel’s attributes include not

only vessel number but also vessel morphological measures such as fibre structure,

tortuosity and branching pattern etc. Moreover, the obtained MRI images contain

a lot of noise. Therefore it is necessary to apply denoising methods while retain

almost fiber structures of vessel.

We thank J.C. Belœil, S. Même and F. Szeremeta, from CBM Laboratory1 in

Orléans, for using the data. The vessels of mouse brain stack is composed of 51

two dimensional MRI slices. In this case, biologists want to recover the network of

filament structures, especially the small ones inside a noisy volume. We want to to

1http://cbm.cnrs-orleans.fr/spip.php?rubrique48
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differentiate the real network from the noise: the problem is to find where the noise

is and where the interesting structures are. The images need to be positioned and

oriented relative to one another and aligned exactly so that vessels are continuous

through slices.

We here display again the 3D vessels volumes that have already been described in

chapter 7 in Figure 8.1. The MRI images of vessels of Figure 8.1 are often affected by

(a) 3D noisy Vessels data. (b) Noisy volume, along xy cross direction.

(c) Noisy volume, along yz cross direction. (d) Noisy volume, along xz cross direction.

(e) Surface plot of noisy Vessels model.

Figure 8.1: Original 3D vessel volume, MRI scans obtained from biologists
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random noise arising in the image acquisition process. Because the noise of our image

does not belong to any known classification noise (Gaussian, Salt and Pepper etc),

it is a challenge to evaluate the results after noise reduction. In addition, we cannot

compare our results to a ground truth image as it is the case for benchmark images

as the famous “Lena”, “Barbara” or “Cameraman” images in two-dimensions. The

presence of noise does not only produce undesirable visual quality but also affects the

visibility of low contrast objects. In such a situation it is very difficult for biomedical

researchers to diagnosis a particular disease effect. Noise removal is essential in

medical imaging applications to enhance and recover fine details that may be hidden

in the data. This why reducing random noise is a very active research in medical

image processing. Additionally, noise reduction methods developed in other research

fields find their usage in biomedical applications. However, noise reduction must be

carried out very carefully to avoid suppression of important image components.

For the vessels data volume, it is a hard challenge to highlight structures such as

mouse brain vessels that otherwise would be difficult to delineate their surroundings.

Anyway, the results of biomedical image denoising has to be validated by experts.

The chapter sketches out the order of work as follows: first image denoising

performance are considered. Then we apply the segmentation process to the vessels

with the methods we have been previously considering. Since the data are very

noisy, we first perform variational or wavelet based methods to reduce noise without

staircasing and contour shapes are well indentified in numerical results. The schemes

introduced in chapter 6 have been applied to detect and close contours to get the

full vessels network. This makes the visualization easier by recovering volume prior

to 3D reconstruction. Segmentation of vessels is essential for clinical assessment

of human diseases, therefore it is challenging to perform image segmentation in

angiography.

At last, the image decomposition model (P) has been performed as well taking
into account the theoretical studying of chapter 7. In the rest of this chapter, we

present experimental results where the method gives very satisfactory results of

separation into geometrical objects and the oscillating component. This process

also confirms that our approach is well adapted to the 3D image of vessels data.

Better numerical results will be obtained with more expensive computational work

in the future.

8.1 Application to Denoising

8.1.1 Denoising with variational method

In this section, we briefly recall how the variational second order model is applied

to remove noise. This has been extensively described in chapters 2 and 3. We want

to solve the following

inf
u∈BV 2

0 (Ω)

1

2
‖f − u‖2L2(Ω) + λTV 2(u). (PROF2)
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The “isotropic” algorithm (withous any local anisotropy strategy) is first consid-

ered to computed the (denoised) solution to problem (PROF2). We use the Nesterov

type algorithm (section 3.1.3 chapter 3) because its higher computation speed. We

test different values of λ and the stopping criterion has been set to a maximal num-

ber of iterations can be chosen arbitrary large, here we have chosen itmax = 5000.

It is of course possible to make the stopping criterion sharper, using for example

the difference between two consecutive iterates of the minimizing sequence or the

cost functional. However, we decided to work with the “original” Nesterov stopping

criterion. The method is easy to implement and applicable to multidimensional

images. It requires the user to view the resulting images and edit experimentally

until obtaining the appropriate parameters. The automatic tuning of parameters is

a hard task which is still widely opened. We first have to deeply understand the

mathematical model behavior.



8.1. Application to Denoising 125

(a) λ = 1. (b) λ = 5.

(c) λ = 10. (d) λ = 25.

(e) λ = 50. (f) λ = 100.

Figure 8.2: Denoised results performed by the isotropic algorithm for different value

of λ.

From images of Figure 8.2, we see the influence of λ parameter. Image recon-

struction is much more robust with respect to changes of the regularization pa-
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rameter λ, which is an important condition when considering application in clinical

practice. The larger λ gives us the smoother solution of vessel. Conversly, if λ is

too small we may not remove enough noise. The value of λ = 1 is not the good

choice, two next values λ = 5 and 10 give us the clear geometric information of

vessel structure image without noise, the result is more satisfactory with λ is near

to 10.

On the other hand, if λ is too large the scheme will remove too many features

of the image. The larger next λ ≥ 10 presented smooth results, but the visualized

solutions give more and more blur feeling than expected, and the vessel filaments

are very thick. Since there is no original image to compare to, tuning the parameter

λ is time consuming since it often relies on experience and visual inspection. We

do not have any automatic way for choosing λ as far as we know, so we choose

λ in a reasonable range without being precise about the choice. Especially with

the consideration of this vessel volume of medical images, this is a very significant

issue. However, the choice of λ is dependent on the level noise. If we had the SNR

information (from acquisition process for example) this would be helpful for the λ

tuning.

Slices are displayed in Figure 8.3 to see the smoothing effect. Here we may

conclude that the variational model (PROF2) removes noise significantly and almost

contour shapes are well preserved in the smooth component. In addition, the TV 2

minimization scheme offers the best combination of noise removal and feature preser-

vation. Moreover, surface viewing plots in Figures 8.3 show that stair-casing effect

does not occur.

We give next the Peak-signal-to-noise ratio (PSNR), Mean Squared Error (MSE)

or Mean Absolute Error (MAE). Table 8.1 performs comparison between these stan-

dard evaluations depending on λ. Consequently, as λ increases, the more blur we

get and the bad quality of solutions gives a small value of PSNR. However, the

PSNRs are near 30dB that could be acceptable, while MSEs and MAEs give the

same conclusion.

In what follows, it is suggested to compute the ε, stands for the relative error

between two consecutive iterates after n = 5000 iterations, in order to evaluate the

results after our applied algorithm:

ε =
‖un+1 − un‖L2

‖un‖L2

(8.1)

λ λ = 1 λ = 5 λ = 10 λ = 25 λ = 50 λ = 100

PSNR 38.66 31.39 30.08 27.45 25.32 23.85

MSE 8.86 47.23 63.78 117.07 191.08 268.15

MAE 2.34 5.21 5.83 6.81 7.74 8.46

ε 8.27e-10 1.02e-06 2.32e-06 4.65e-06 7.77e-06 1.31e-05

Table 8.1: Comparisons of PSNR, MSE, MAE for denoising (PROF2), for different

value of λ. The error values ε are included in.
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(a) λ = 1. (b) λ = 5.

(c) λ = 10. (d) λ = 25.

(e) λ = 50. (f) λ = 100.

Figure 8.3: Surface plots of denoised results performed by the isotropic algorithm,

test on the 3D MRI volume of vessel data, for different value of λ.

8.1.2 Denoising with wavelet based method

In the subsection we use the wavelet thresholding method described in section 5.2

chapter 5. We perform comparisons between different wavelet basis. The PSNR,

MSE and MAE are reported in the following Table 8.2.

The numerical experimentation is performed to study the suitability of different

wavelet basis. Results show that the wavelet scheme preserves details and offers

a slightly high PSNR in the reconstruction. The proposed 3D discrete wavelet

denoising algorithm has been evaluated on the noisy volume, by visual inspection

and by computing quantitative measures of the similarity between the reference

image and the denoised image The performance of the different wavelets is compared

by computing the error criteria MSE, MAE and PSNR of the noisy image and the

denoised image.

From Table 8.2 and the PSNR estimates we chose Daubechies-5, Symlets-8 and

Coiflets-3 to display denoised results. Since the higher value of PSNR and small
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Wavelet basis PSNR MSE MAE Wavelet basis PSNR MSE MAE

haar 30.53 57.53 4.90 sym4 30.86 53.30 4.93

db2 30.80 54.14 4.83 sym5 30.72 55.03 4.98

db3 30.78 54.39 4.91 sym6 30.86 53.30 4.84

db4 30.97 52.01 4.93 sym7 30.86 53.31 4.84

db5 31.06 50.99 4.83 sym8 30.88 53.04 4.94

db6 30.82 53.82 4.86 sym9 30.69 55.48 5.00

db7 30.73 54.91 5.05 sym10 30.87 53.24 4.88

db8 30.58 56.90 5.08 coif1 30.83 53.70 4.94

db9 30.76 54.64 4.93 coif2 30.93 52.47 4.92

db10 30.55 57.33 4.96 coif3 30.96 52.15 4.91

sym2 30.80 54.14 4.83 coif4 30.94 52.40 4.92

sym3 30.78 54.39 4.91 coif5 30.94 52.40 4.92

Table 8.2: Comparisons of PSNR, MSE and MAE, wavelet scheme testing on 3D

MRI volume of Vessel model, for different wavelet basis.

MSE indicate less noise power in the images, these wavelet basis are promising.

In addition, most of wavelet basis reported in the Table 8.2 give a PSNR greater

than 30dB which is considered as leading to a correctly reconstructed image. It

is remarkable that for the vessel volume wavelet denoising strategy, the threshold

parameter may be chosen by the histogram shape-based method (Appendix D), in

which T = 30 for all wavelet basis implementation shown in Table 8.2.

Experimental results are displayed in Figures 8.4, 8.5, 8.6 and 8.7 respectively,

where the Haar, Daubechies-5, Symlets-8 and Coiflets-3 are used. Denoised volumes

are shown in detailed as three-dimensional viewing and through xy, yz and xz cross

directions as well. Haar basis (Figure 8.4) gives the worst results: some piecewise

effects appear in the results, that is not amazing because of the basis discontinuities.

Moreover, the Haar gives lowest PSNR among all wavelet bases. The db5, sym8 and

coif3 wavelet basis, gave satisfying denoised images. However, the Daubechies-5

basis gives good results and less MSE values compared to others namely Symlets-8

and Coiflets-3. We may conclude that Haar waveles arer not suitable. Higher order

Daubechies basis have been tested and found to be more suitable.

The original image of vessel appears quite noisy. We cannot judge the perfor-

mance by examining the PSNR as we do not have a noise-free image with which we

can compare. However, by visual inspection it is evident that the denoised image,

while removing a substantial amount of noise, suffers virtually no degradation in

sharpness and details.
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(a) The 3D Haar bases denoised data. (b) One visual slice of xy cross direction.

(c) One visual slice of yz cross direction. (d) One visual slice of xz cross direction.

Figure 8.4: Denoising results using wavelet Haar basis.

(a) The 3D Daubechies − 5 bases de-

noised data.

(b) One visual slice of xy cross direc-

tion.

(c) One visual slice of yz cross direc-

tion.

(d) One visual slice of xz cross direc-

tion.

Figure 8.5: Denoising results using wavelet Daubechies-5 basis.
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(a) The 3D Symlets−8 bases denoised

data.

(b) One visual slice of xy cross direc-

tion.

(c) One visual slice of yz cross direc-

tion.

(d) One visual slice of xz cross direc-

tion.

Figure 8.6: Denoising results using wavelet Symlets-8 basis.

(a) The 3D Coiflets−3 bases denoised data. (b) One visual slice of xy cross direction.

(c) One visual slice of yz cross direction. (d) One visual slice of xz cross direction.

Figure 8.7: Denoising results using wavelet Coiflets-3 basis.
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8.2 Application to Texture Extraction

Observing the results derived from the variational model (PROF2) in Figure 8.2, we

see that part of the geometrical information remains together with texture and noise

in the oscillating component. In the sequel, our goal is to locate texture and/or noise

so that we do not need to work with the cartoon part once it has been identified.

We hope that we are able to keep most of texture and noise in the oscillating part

while many contour shapes disappear. This the point we consider now, investigating

the local anisotropic model for texture extraction.

In this section, we recall details from section 5.1.2 chapter 5 for the local anisotropic

algorithm. An important feature of the (PROF2) local anisotropic model is that it

takes the geometrical information of original images into account and keeps signif-

icant edges in the cartoon part. In fact significant contours are sharpened. Our

consideration focuses on the volume of vessel data to compare with the previous

isotropic algorithm efficiently. Inside the test, we set λ = 10. We report results in

Figure 8.8. The examples running with λ = 10 gives us that 90% of vessel network is

moved in the local anisotropic component, compared to the isotropic one. However,

as we have tested with a limited number of iterations, there exists still (few) contour

information inside oscillating part. This should be improved in the near future.

From the experimental results, we can see that a lot of geometrical informa-

tion contour shapes of isotropic solution that remains in the oscillating part, while

performing local anisotropic strategy let this geometrical information move to the

cartoon part. Both schemes offer a goof combination of noise removal and fea-

ture preservation. In addition, oscillating views show that result after anisotropic

algorithm is sharp whereas the fibre structures of vessel model are well located.

In Figures 8.9 and 8.10 we compare results for one visual slice of cartoon and os-

cillating components, respectively. It is clear that the oscillating part after isotropic

method presents a lot of dynamic information remaining inside, meanwhile it has

been removed after local texture modification of the second method.

As in the local anisotropic algorithm (section 3.1.3 chapter 3), thresholding pro-

cess plays an important role. It decides if the method transfers well contour shapes

or not and it may make us loose part of texture or keep some noise during determina-

tion contours process. The point is now to choose the optimal threshold parameter

in this case, so that we may apply one of thresholding selection methods described

in Appendix D.
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(a) Isotropic cartoon component. (b) Local anisotropic cartoon component.

(c) Isotropic oscillating component. (d) Local anisotropic oscillating component.

Figure 8.8: Comparisons between the local anisotropic and isotropic algorithms,

tested for a fixed λ = 10.
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(a) Isotropic cartoon, xy cross direction. (b) Local anisotropic cartoon, xy cross direc-

tion.

(c) Isotropic cartoon, yz cross direction. (d) Local anisotropic cartoon, yz cross direc-

tion.

(e) Isotropic cartoon, xz cross direction. (f) Local anisotropic cartoon, xz cross direc-

tion.

Figure 8.9: Comparison between isotropic and local anisotropic algorithms. Car-

toon component- viewing in 3 crossing directions of a slice, λ = 10.
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(a) Isotropic oscillating part, xy cross direc-

tion.

(b) Local anisotropic oscillating part, xy

cross direction.

(c) Isotropic oscillating part, yz cross direc-

tion.

(d) Local anisotropic oscillating part, yz

cross direction.

(e) Isotropic oscillating part, xz cross direc-

tion.

(f) Local anisotropic oscillating part, xz

cross direction.

Figure 8.10: Comparison between isotropic and local anisotropic algorithms. Os-

cillating component- viewing in 3 crossing directions of a slice λ = 10.
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8.3 Contour Detection

Biologists’ interest to the vessel model after filtering is the structure of the network.

Analysis of vessel networks in the brain is particularly important in improving our

models and understanding of the relationships between blood structures. The seg-

mentation process is “naturally” performed in the vessel system. So we expect to

detect patterns, lines, edges, shapes based upon the visual information of our model.

Many segmentation algorithms exist. However, we limit ourselves to using the vari-

ational model (PROF2) and wavelet based scheme in the segmentation procedure.

These methods differ from previously known ones in that they use local and global

vessel features cooperatively to segment the vessel network, [27], [14]...

We have already performed numerical tests in the previous chapter 6 on some

3D volumes,. In this section, we show that our methods are quite general and

can be applied to any another type of medical images, e.g. MRI with different

biological structures. Here we focus on the network of blood vessels structures

that we want to recover. The network is reconstructed with segmentation from a

huge three dimensional data set which can be very large (up to thousand pixels in

each direction) to give a very good resolution in every two dimensional slice. The

vessel tree is represented by a graph where each vessel keeps information about its

relationship to other vessels. In addition, the images need to be positioned and

oriented relative to one another and aligned exactly so that vessels are continuous

through slices.

8.3.1 Contour Detection with variational methods

The contour shapes are computed from the difference between of two computed

solutions: one comes from the variational isotropic algorithm and the other one

from local anisotropic algorithm. Indeed, the local anisotropic improvement makes

the contours moves from the oscillating component to the cartoon one. We note

that contours are well identified and a threshold parameter is used to obtain a

binary segmented image. Binary results are shown in Figure 8.11. They have been

computed via a thresholding technique, where the histogram shape based method

was applied to determine the threshold T .

The method has been tested on 3D vessels, with very good results. In the test,

selected threshold is T = 5. For a small value of threshold, modified contours show

well reconstructed vessel structure and topology inside. In Figure 8.11 we see that

the vessel’s network is almost recovered though the structures are not connected

enough. We can observe that contour obtained with variational method are not

continuous through slices. Vessels contrast is detected with a remarkable robustness,

and most structures of vessel networks are preserved.
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(a) 3D volume (b) xy cross direction

(c) yz cross direction (d) xz cross direction

Figure 8.11: Contour shapes detected by the variational method, for λ = 10

8.3.2 Contour Detection with wavelet modification

8.3.2.1 Approximation coefficients replaced by zeros

(a) 3D volume (b) xy cross direction

(c) yz cross direction (d) xz cross direction

Figure 8.12: Contour shapes detected by the wavelet transform, approximation

replaced by zeros, with Symlets-8 basis

We present here the results we obtain with the method of section 6.1.2.1 chapter

6.We recall that the method is based on wavelet transform and that approximation

coefficients are replaced by zeros before reconstruction. In this case, we use the
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Symlets-8 wavelet basis and the result is displayed respectively in the Figure 8.12.

One sees that this zeros replacement can find only few contours. This detection

method is not efficient though it is simple to implement. We may loose some contour

details while getting rid of the approximation coefficients process. There are some

small fragments and significant contour points cannot be found. In the Figure 8.11

we could see in their corresponding axial, sagittal and coronal views.

8.3.2.2 Modification of Approximation coefficients by Canny detector

As in the method described in section 6.1.2.2 chapter 6, the canny detector scheme

can be used during the wavelet reconstruction process. This method provides good

results: the use of Canny detector for approximation coefficients gives better re-

sults than in the previous algorithm, see Figure 8.13, where the orientation space

represents at multiple directions.

(a) 3D volume (b) xy cross direction

(c) yz cross direction (d) xz cross direction

Figure 8.13: Contour shapes detected by the wavelet transform and modification of

approximation coefficients by the Canny detector, test with Haar base.

The algorithm has a good behavior but the obtained results are not acceptable.

Some problems occur with corners and junctions, it seems that there are a lot of

wrong branches that not belong to the vessel networks. The corner pixels look in

the wrong directions with respect to its neighbors, leaving open ended edges, and

missing junctions. It can be seen that, the vessel tree is represented from a lot of
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branches. This makes the original vessel structure deformed. From Figure 8.13(b),

main branches of vessels are not detected and distinguished from other tributaries.

In addition, 3D viewer of segmented vessels in this figure does not give us a good

visualisation.

8.4 Contour Closing

8.4.1 Hysteresis Thresholding

We have seen that once the binary transformation is performed contours are not

clsoe. So we have to perform a contour closing method to get acceptable contours.

Hysteresis procedures are described in section 6.2.1 of chapter 6. Here, thresholding

is done using a double thresholding technique. We try to close available contours of

vessel in Figure 8.11 obtained by the variational method. Therefore, the comparison

is measured between vessel contour detected by variational model and proposed

closing methods (see section 6.2.1). By this thresholding method, the connected

pixels are selected, and then added to networks. In this case, the choice of two

thresholds are established rather heuristically, and in this case their choice is Tlow =

2;Thigh = 5 respectively.

(a) 3D volume (b) xy cross direction

(c) yz cross direction (d) xz cross direction

Figure 8.14: Variational method closing contours by hysteresis thresholding, for

λ = 10.
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The algorithm is simple but requires improvements on the detection and thresh-

old determination. Of course, in three dimensional visualization, this method does

not give a good closed detected contour. Indeed, the vessel model is incorporated

and some vessel properties such as the position and size of section and the curvature

of the segment are shown in the formal structure model. However, this method de-

scribes a better closed visual measurement compared to the only one thresholding

contours performance, see Figure 8.11. Consequently, results almost depend upon

the two chosen thresholding. Threshold adaptation is governed by a learning algo-

rithm that is based on the curve and consistency measurements around the pixels.

That would be improved in the future further work with more accurate and more

automatic techniques.

8.4.2 Local operator based on Chamfer Distance transformation

Depending on the success of our current strategy in two dimensions, we are opti-

mistic that we will be able to achieve closed contours in three dimensions. In this

section we test with the vessel contours that were detected in section 8.3. Fig-

ures 8.15 display closed contours of the local operator based on Chamfer distance

transformation performance.

(a) 3D volume (b) xy cross direction

(c) yz cross direction (d) xz cross direction

Figure 8.15: Variational method closing contours based on Chamfer distance trans-

formation, for λ = 10.
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Numerical experiments show that the proposed frame based model performs

successfully closed segmentations of vessels. Three crossing directions xy, yz and

xz in Figure 8.15 show closed contours that make the vessel network continuous. It

can be seen that the discontinuous contour shapes in Figure 8.11 are well resumed.

If we compare this method to the hysteresis thresholding procedure in Figure

8.14, some small vessel structures are prolonged what the hysteresis contour closing

method did not provide. We conclude that such algorithm based on Chamfer dis-

tance transformation is able to extend the contours along the gradient norm with

candidate belonging to the vessel path.

Throughout segmentation processes performed on vessels model, we did present

a survey of vessel extraction techniques and algorithms. From that point, we can

see the importance of vessel segmentation algorithms in some medical applications,

such as radiological diagnostic systems, creating anatomical visualization, computer-

aided surgery ... and other approaches. In the chapter, we have reviewed a few of

segmentation methods focused on the vessels network.

8.5 Image Decomposition model

In this section, we recall the decomposition that was proposed in chapter 7. We

have to solve the problem:

inf
(u,v)∈X2

J2(u) +B∗(v/δ) +
1

2λ
‖f − u− v‖2X . (P)

The algorithm 6 is next applied to our exampe. It produces two components u

(that contains geometrical information), v (that stands for the oscillating patterns)

and the remaining term ω = f − u− v. In Figure 8.16 below, we present results we

obtained with λ = 10. Compared to numerical results obtained by the methods of

previous sections 8.1.1 and 8.1.2, we note that the proposed new method produces

better results. This was expected: the method gives very satisfactory results of

separation into geometrical objects and the oscillating components.

We see in Figure 8.16 that the proposed model successfully decomposes the

vessels. Considering the cartoon image u, it is evident that the geometric regions

remain smooth. In that case, the component v contains most of the image noise.

However, because of the limited number of iterations in the algorithm (N = 500)

and the high computing cost with respect to CPU time and memory allocation

for 3D data, we see that details of the texture that should be contained in ω still

appear in v with noise component (see Figures 7.1 and 8.16). This will be further

implemented in the near future, when the number of iterations is large enough to

transfer all the details of the texture and geometrical information of the image need

to be denoised.
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(a) Original image f (b) Component u

(c) Component v (d) Component ω = f − u− v

Figure 8.16: Numerical test on the vessel of mouse brain, for λ = 10.

(a) xy-direction

(b) yz-direction

(c) xz-direction

Figure 8.17: Three cross-directions of the denoised image u, results from figure

8.16(b).
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The image decomposition model separates the image into two components, one of

them represents almost geometrical objects and the remaining component contains

oscillating elements. The model automatically adapts to the local image information

while preserving textured images. For instance, it is well adapted to our data (see

figure 8.17 to evaluate the structure of denoised vessels). One can conclude that

our approach seems very promising in many practical situations, where we want to

separate two or more components. This will be investigated in the near future.



Chapter 9

Conclusions and Further Works

Conclusions

Ongoing work focuses on some examples of 3D medical MRI images that are dealt

throughout the thesis: the mouse brain (cerebellum) volume and the vessels of

mouse brain volume. As previously described, these obtained MRI models captured

during scanning process contain a lot of noise, therefore it is necessary to apply some

methods of denoising while almost dynamic geometrical information are preserved.

Work of segmenting the mouse brain 3D data (cerebellum) is a difficult issue

since the contrast between different objects is low. On the other hand, for the ves-

sels of mouse brain data, biologists want to recover the network of filament struc-

tures, especially the small ones inside a noisy volume. We want to know how to

recover the real blood-vessels network (without noise). The problem is to identify

the noise, since thin structures can be considered as noise as well. Images have to be

positioned and oriented relative to one another and aligned exactly so that vessels

are continuous through slices. For such volume data, we want to consider medical

image processing from the mathematical point of view.

Our work is based on two methods: a second-order variational minimization

model and the wavelet transform, which applications in image processing are im-

age restoration, segmentation, decomposition strategies and so on. In addition,

by considering these methods applied to our noisy MRI images, we can give some

conclusions, comparisons, evaluations of advantages/disadvantages of each method.

This helps to find the the most appropriate method for dedicated image process-

ing. The principal contributions and conclusions of this work are summarized in

the following paragraphs. We have included at the end of each chapter an extended

summary and a short discussion of experimental results from the previous chapters

is also detailed.

Usually, the considered variational model is the total-variation minimization

model (that called the Rudin-Osher-Fatemi)(PROF ). Because of the use of the total

variation minimization the solution turns to be piecewise constant and geometrical

elements, contours are not well preserved during the denoising process. It has been

proposed to apply a second-order variational model (PROF2) that overcome these

obstacles. In such situation, this promising model is highlighted in the thesis.

Observing many convincing results within the thesis, one can conclude that

the second-order variational minimization model (PROF2) is quite efficient in image

denoising. With the second-total regularization, the observed image will be divided

into two components: one of them contains dynamic geometrical information and

the other one is the oscillating component. Numerical solutions to problem (PROF2)
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show that the model keeps geometrical information and removes almost noise as

well. Refer to [41], it is proved that this method keeps contour information in the

cartoon componnent better than the classical model (PROF ). However, this method

also has some disadvantages in the implementation process. It strongly depends on

the weighting parameter λ, which affects how much noise can be removed, and (as

usual) implementation parameters (stopping criteria for example). In addition, the

original “isotropic” algorithm is quite slow, especially in the context of 3D images

with large size. In addition it is memory consuming and we have to develop a

parallel implementation strategy.

Applying the “isotropic” algorithm of (PROF2) model, many contours remains

together with the texture and noise in the oscillating part. That is the reason why

we need a sharper variant called “local anisotropic” algorithm. With this new model

we can keep most of texture and noise elements in the oscillating part while most

of contour shapes are moved to the cartoon part. Based on s experimental results

of video moving disk, cerebellum testing, it can be seen that the method helps us

to save geometrical characteristics to the cartoon component. The method is very

efficient to deal with the difficult vessels volume example: 90% of vessels network is

reported in the anisotropic component (compared to the isotropic one). For instance,

in section 8.2 of chapter 8, it is clear that the oscillating part after isotropic method

present a lot of dynamic information remaining inside, while they disappear after the

local texture modification of the second method. However, similar to the isotropic

algorithm, the local anisotropic algorithm has also disadvantages since it depends

on the choice of parameters. Besides that, the process of finding contour positions

can affect our results. Indeed, the contour shapes depends on the thresholding

process applying before the Hessian rotation step, specially in the case where the

image is noisy. Another disadvantage of this local anisotropic algorithm in the 3D

context lies in the fact that there are too many contour positions that can be found

(maybe more than 1000.000 contour voxels for a 3D volume data). They should be

performed one by one, this makes us have to choose very small number of iterations

for every pixel processing. Thus, in the oscillating results there are some contour

shapes which are not preserved successfully. This should be improved in the future,

where each contour voxel is performed with enough increasing itmax, depending on

the CPU time process.

Besides variational models, wavelet bases methods also play an important role in

image processing today. Wavelets are used successfully in many applications such as

multiresolution signal analysis, image analysis, communications systems, and other

signal processing applications. The flexibility of wavelets makes them appropriate

for many special purposes. This thesis deals with wavelet transform scheme and its

several applications to image processing.

As we know, wavelet denoising uses multiresolution representation and noise

separation features. By wavelet decomposition process, the wavelet coefficients are

calculated. It is then possible to denoise by thresholding the coefficients, and the

denoised image is reconstructed by the wavelet reconstruction process. Throughout

this thesis, besides the study of subsampled wavelet transform (Mallat’s algorithm),
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we also give an understanding to undecimated wavelet tranform (“à trous” algorithm)

therein. In chapter 5 and 8, some numerical results are performed with different

wavelet bases: Haar, Daubechies-p, Symlets-p and Coiflets-p. We have successfully

tested on the 3D cerebellum and vessels of brain models. The Wavelet package

transform can be implemented further to achieve good performance. Ones can

conclude that some wavelet applications in image denoising as follows:

• Based on the visualization image quality and Peak-Signal-to-Noise ratio (PSNR)

measurements of cerebellum (in chapter 5) and the vessels model (chapter 8):

The Mallat’s algorithm gives better denoised results than the “à trous” algo-

rithm.

• Among all types of wavelet basis, including Haar, Daubechies-p, Symlets-p

and Coiflets-p, it can be seen that Haar gives us the worst denoised result

compared to remaining basis.

• Based on the PSNR evaluation, we can conclude which wavelet basis is the

best for image denoising, but this depends on the considered images. The

higher value of PSNR gives better images. For the 2D+Time video of moving

disk, the symlets-10 gives better results than the other wavelet basis. For the

cerebellum data denoising, the best wavelet basis is symlets-6 and finally with

the vessels model, we choose best basis as the daubechies-5.

• Although the wavelet hard-thresholding gives better PSNR performance, the

wavelet soft-thresholding gives better image visual quality.

Using wavelet scheme to denoise image also has some disadvantages that can af-

fect during denoising process. Wavelet procedure depends on thresholding selection

step, a small threshold value will retain noisy coefficients whereas a large threshold

values leads to the loss of coefficients that carry image details. Moreover, with our

3D large data, MATLAB wavelet toolbox need a long time to process results and

compare them together. The work carried out here must be extended for the real

time image denoising. Wavelet package transform can be implemented further to

achieve good performance.

This thesis has focused on the studying of some applications to variational

method of model (PROF2) and wavelet thresholding schemes separately. The main

conclusions were that the (PROF2) model is outperformed by recent state of the

art wavelet denoising methods but performs competitively with order wavelet meth-

ods. For the denoising criterion, outperformed results are well given but we have

the blurry feeling of variational model (PROF2) more than the wavelet schemes.

However, the approximation of wavelet performance keeps more features as well as

eliminating most of the edges oscillations than the standard TV 2 denoising.

Each method has advantages and disadvantages: BV 2-variational method gives

good denoised results meanwhile the wavelet shrinkage technique reduces well con-

tour artifacts. In this situation we propose a new modified model that combines
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these schemes. It permits us to improve another approach that employs varia-

tional framework, in particular the minimization model (PROF2) plus the wavelet

thresholding to reduce oscillations, remove noise while maintain the sharpness of

image. We have a reconstructed image has fewer oscillations near edges and noise is

smoothed. Taking advantages of both two methods (variational method and wavelet

based scheme) mentioned previously, we combine them in a new model. The nu-

merical results show good denoising and preservation of most geometrical details.

In chapter 7, we applied the method with images which noise can be removed suc-

cessfully and contours, textures are well preserved. This model is particularly well

adapted to denoise textured images or even images with complicated structures in-

side (vessel of brain for example). Throughout chapter 8 we gave a performance of

this model applied to the vessel of mouse brain image, which give very interesting

and promising results.

Second, in image segmentation, contour detection was also discussed in our work.

We can perform it using these two methods. One concludes that the variational

method gives us better results than the wavelet based method. The proposed con-

tour detection scheme performs well since it is able to identify the curved and linear

contours efficiently. However, the obtained contours can be either very thick or very

narrow depending on the intensity across the contour and how much the original

image was blurred. Moreover, some found contours are not closed and we may loose

information of contours during thresholding process. This thesis contributes to ex-

tend some classical contour closing methods described in chapter 6 namely hysteresis

thresholding and contour closing based on chamfer distance transform, in the 3D

context. The chamfer based method is better than the hysteresis thresholding. This

method can be used successfully to make preprocessing of the image segmentation

operations.

Further Works

The work presented in this thesis proposes the following subjects for further research:

• Further study of the second-order total variation TV 2 and the second-order

bounded variation space BV 2. It should be considered and found some rela-

tions between our proposed model with second-order total generalized varia-

tion TGV 2 and its corresponding space. In [59], this type of concept is also

proposed in order to overcome the disadvantage of staircasing from problem

(PROF ). Also, the study of this new model increases the knowledge of varia-

tional minimization problems and application to image denoising.

• In the (PROF2) model in theoretical studying, there is a lot of open ques-

tions that have to be found: the existence an uniqueness solution without

penalization terms has to be investigated together with a sharp analysis of the

continuous model.

• Discuss again about algorithms applied to our variational model (PROF2) (the
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fixed point and Nesterov-type algorithm), since our applied algorithms are

still slow to implement, it is necessary to contribute another better algorithm,

which provides a good solution, gives a acceptable speed of convergence and

saves the CPU time performance.

• With the model of applying local anisotropic algorithm, each considered voxel

has to be performed with a large number of iteration itmax. This depends on

the CPU speed and time process with MATLAB software. In future, the work

can be transfered into the language C or C++ to perform with larger data.

• On the other hand, in numerical point of view, our codes should be optimized

in applied algorithms. We can choose another stopping criteria instead of the

large number of iterations itmax. There are several ways to choose stopping

criteria, one can focus on the choice of error ε between our solution at every

step: ‖un+1 − un‖. That should be performed in the future.

• To compare the obtained experimental results together (in image denoising

for example), we almost use visual inspection to compare the performance in

preservation of geometrical information. Is is necessary to have other criteria

to evaluate and compare these results which are not only reflected through the

PSNR measurement.

• Besides the image denoising, considering image segmentation produces a sig-

nificant amount of outliers. Therefore, the study of other segmented methods,

should be considered and compared with our proposed methods.

• For representing the image data sets, we have used wavelet transform, a very

basic and simple scheme. This possibilities can be further extended by other

transforms, which is better than wavelet should be studied in future, such

as: curvelets, beamlets transform and so on. This would be promising when

considering our 3D medical image data.

• This thesis also describes a new 3D decomposition method which separates

a 3D image into two components: the first one containing the geometrical

structure of the image, the second one containing the noise. The proposed

method is based on a second order variational model and an undecimated

wavelet thresholding operator. The numerical implementation is described,

and an experiment for denoising a 3D MRI image of cerebellum and vessels

of mouse brain have been successfully performed in the rest of the thesis. It

is promising in the future that we focus on extending this model to a more

general approach, where image is divided into several components, in which

each of them is characterized by a special functional space. Moreover, this will

be investigated in near future, follows by testing more types of images, more

iterations enough (that depends on the CPU speed of process) etc ...

• Moreover with the 3D data decomposition model, instead of using wavelet

thresholding in the step of algorithm, we would like to try with another apply-

ing transform, such as: curvelet, beamlets. Because such kind of thresholding
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transform is proved that represents edges/contours better than wavelet, spe-

cially in 3D, [16], therefore they should be performed for better results in the

near future.

The research subject should be studied with the aim of improving proposed mod-

els, especially applied in medical imaging, one of the most promising and interesting

fields of scientific investigation in image processing in future.

There still remains a lot of work to be done. It would be nice if the thesis has

inspired its readers to contribute to the solution of some of the remaining open

problems.



Appendix A

Wavelet Analysis

Throughout this Appendix, we shall recall the wavelet multiresolution representa-

tion, that mentioned by Mallat S., in [53], [54] since 1989. We recall and prove again

some ideas about wavelet decomposition and representation theoretically.

A.1 Orthogonal Wavelet Bases

Definition 15. [53], [54] Multiresolution Analysis (MRA)

Let f(x) ∈ L2(RN ), for N ≥ 1. A MRA of L2(RN ) is a pair ((Vj)j∈Z, ϕ), where
Vj is a closed subspaces of L

2(RN ) and ϕ is a function of L2(RN ), that satisfies the

following properties:

1. ∀j ∈ Z: Vj ⊂ Vj+1 (increasing),

2. ∀j ∈ Z: f(x) ∈ Vj ⇔ f(2x) ∈ Vj+1 (scaling),

3.
+∞⋂

j=−∞
Vj = {0} (separability),

4.
+∞⋃

j=−∞
Vj = L2

(
R
N
)
(density),

5. The family
{
ϕ (.− k) , k ∈ Z

N
}
is an orthonormal basis of V0.

Definition 16. [53], [54] Multiresolution Approximation of L2(RN )

Let A2−jf be the operator which approximates of function f ∈ L2(RN ) at reso-

lution 2−j, for N ≥ 1, which has properties as:

1. A2−jf(x) is the function which is the most similar to f(x).

2. A2−j is a linear function. The operator A2−j is thus a projection operator

on a vector space Vj ⊂ L2(RN ). The vector space Vj - a set of all possible

approximations at resolution 2−j of functions in L2(RN ).

We call any set of vector spaces (Vj)j∈Z which satisfies all properties of MRA a

multiresolution approximation of L2(RN ).

Remark 3. To avoid confusing between the resolution 2−j and the scale 2j , in

the rest of this section from now, the notation of resolution is dropped and we

denote simply Ajf for the approximation of f at scale 2j , also for space Vj the

multiresolution approximation.
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A.2 Wavelet Multiresolution transform for Signal Rep-
resentation

Theorem 21. [53], [54] The existence of scaling function

Let (Vj)j∈Z be a multiresolution approximation of L2(R), N = 1 in this case.

Then, there exists a function Φ ∈ L2 (R) is called a scaling function and the family{√
2−jΦ2j

(
x− 2−jn

)}
n∈Z

is an orthonormal basis of Vj, where Φ2j (x) = 2jΦ(2jx)

is the dilation of Φ(x) by 2j, for j ∈ Z. Moreover, all translations of Φ, can be

defined as Φ′(x) = Φ(x−m), m ∈ Z also satisfy the properties of Φ above.

This theorem is proved in [54]. By the second confirmation of theorem 21,

the existence of scaling function Φ is not unique. It is simple to check that the

function Φ′ defined in theorem 21 verifies all properties of Φ. We point out this

is true for j = 0, and we can prove similarily for another j. We then have the

{Φ1(x− n)}n∈Z is the orthonormal basis of V0. As defined in theorem 21, form ∈ Z,

the Φ′1(x− n) = Φ1(x− n−m) = Φ1(x− (n+m)). Therefore, the {Φ′1(x− n)}n∈Z
is also the orthonormal basis of V0.

In Appendix C, we will point out different kinds of scaling function that are

applied in Wavelets Transform scheme for image processing.

By theorem 21, the orthogonal projection on Vj can be computed by decomposing

f on the orthonormal basis. We have:

∀f(x) ∈ L2(R), Ajf(x) = 2−j
+∞∑

n=−∞
n∈Z

〈
f (x) ,Φ2j

(
u− 2−jn

)〉
Φ2j

(
x− 2−jn

)
(A.1)

where n ∈ Z .

Let us denote

Ad
jf =

(〈
f (u) ,Φ2j

(
u− 2−jn

)〉)
n∈Z (A.2)

and we call Ad
jf the discrete approximation of f at level j.

Remark 4. [54]
The inner product can be interpreted as a convolution as:

〈
f (u) ,Φ2j

(
u− 2−jn

)〉
=

+∞∫

−∞

f (u) Φ2j
(
u− 2−jn

)
du = (f (u) ∗ Φ2j (−u))

(
2−jn

)

and we can rewrite Ad
jf :

Ad
jf =

(
(f (u) ∗ Φ2j (−u)) (2−jn)

)
n∈Z (A.3)

A.2.1 How to compute the next Ad
jf from Ad

j+1f , for j < 0?

Let (Vj)j∈Z be a multiresolution approximation and Φ(x) the corresponding scaling

function. As in theorem 21, we have family
{√

2−j−1Φ2j+1

(
x− 2−j−1n

)}
n∈Z

is an
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orthonormal basis of Vj+1, so:

Φ2j
(
x− 2−jn

)
= 2−j−1

+∞∑

k=−∞
k∈Z

〈
Φ2j

(
u− 2−jn

)
,Φ2j+1

(
u− 2−j−1k

)〉
Φ2j+1

(
x− 2−j−1k

)

(A.4)

Hence,

〈
f (u) ,Φ2j

(
x− 2−jn

)〉
= 2−j−1

+∞∑

k=−∞
k∈Z

〈
Φ2j

(
u− 2−jn

)
,Φ2j+1

(
u− 2−j−1k

)〉
〈
Φ2j+1

(
x− 2−j−1k

)
, f (u)

〉

(A.5)

We consider the inner product:

2−j−1
〈
Φ2j

(
u− 2−jn

)
,Φ2j+1

(
u− 2−j−1k

)〉

=

+∞∫

−∞

2−j−1.2jΦ
(
2ju− n

)
2j+1Φ

(
2j+1u− k

)
du

=

+∞∫

−∞

2jΦ
(
2ju− n

)
Φ
(
2j+1u− k

)
du

=

+∞∫

−∞

Φ (v) Φ (2v + 2n− k) dv

=

+∞∫

−∞

1

2
Φ
(u
2

)
Φ (u+ 2n− k) du

= 〈Φ2−1 (u) ,Φ (u− (k − 2n))〉

By changing variables in the inner product integral, one can show that:

〈
f (u) ,Φ2j

(
x− 2−jn

)〉
=

+∞∑

k=−∞
k∈Z

〈Φ2−1 (u) ,Φ (u− (k − 2n))〉
〈
f (u) ,Φ2j+1

(
u− 2−j−1k

)〉 (A.6)

Therefore, by (A.6) we can easily calculate the approximation Ad
jf , for j < 0

from the previous one Ad
j+1f .

Let H be the discrete filter whose impulse response is:

∀n ∈ Z, h(n) = 〈Φ2−1 (u) ,Φ (u− n)〉

and h̃(n) = h(−n). We will have:

Ad
jf =

{〈
f (u) ,Φ2j

(
u− 2−jn

)〉}
n∈Z = {αj,n}n∈Z (A.7)

where

αj,n =
∑

k
k∈Z

h̃ (2n− k)
〈
f (u) ,Φ2j+1

(
u− 2−j−1k

)〉
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Theorem 22. [53], [54]
Let Φ(x) a scaling function and let h be a discrete filter with impulse response

h(n) = 〈Φ2−1(u),Φ(u− n)〉. Let H(ω) be the Fourier series defined by:

H (ω) =

+∞∑

n=−∞
n∈Z

h (n) e−inω

H(ω) satisfies:

|H(0)| = 1 (A.8)

|H(ω)|2 + |H(ω + π)|2 = 1. (A.9)

Conversely, let H(ω) be a Fourier series satisfies (A.8) and (A.9) and such that

H(ω) 6= 0 for ω ∈ [0, π/2]. Then, the function Φ̂(ω) =
+∞∏
p=1

H (2−pω) is the Fourier

transform of a scaling function.

A.2.2 How to extract the difference of information between Aj+1f

and Ajf?

As in [54], the approximation of f at level j + 1 and j are respectively equal to

its orthogonal projection on Vj+1 and Vj . The difference of information is called

detail signal at level j. We point out that this difference is given by the orthogonal

projection of the original signal on the orthogonal complement of Vj in Vj+1, which

is denoted by Oj :

Oj ⊕ Vj = Vj+1. (A.10)

In order to compute the orthogonal projection of function f on Oj , we also need

to construct an orthonormal basis of Oj .

Theorem 23. [53], [54]
Let (Vj)j∈Z the multiresolution approximation, Φ the scaling function and H the

corresponding conjugate filter, we define another filter G by G (ω) = e−ωH (ω + π).

Let Ψ is the function whose Fourier Transform is given by:

Ψ̂ (ω) = G
(ω
2

)
Φ̂
(ω
2

)
(A.11)

and let Ψ2j = 2jΨ(2jx) denote the dilation of Ψ(x) by 2j. Then,
{√

2−jΨ2j
(
x− 2−jn

)}
n∈Z

is an orthonormal basis Oj. Moreover, we have
{√

2−jΨ2j
(
x− 2−jn

)}
(n,j)∈Z2

is an

orthonormal basis of L2(R). The function Ψ is called orthogonal wavelet function.

Then, we define POj
is the orthogonal projection on space Oj . By theorem 23

this term can be written:

POj
f (x) = 2−j

+∞∑

n=−∞
n∈Z

〈
f (u) ,Ψ2j

(
u− 2−jn

)〉
Ψ2j

(
x− 2−jn

)
(A.12)
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As in the previous section, we define Djf as the detail of f at the scale j, as

follows:

Djf =
(〈
f (u) ,Ψ2j

(
u− 2−jn

)〉)
n∈Z =

(
(f (u) ∗Ψ2j (−u))

(
2−jn

))
n∈Z (A.13)

A.2.3 How to compute the next Di
jf from the Ad

j+1f , for j < 0?

For any n ∈ Z, the function Ψ2j (x − 2−jn) ∈ Oj ⊂ Vj+1, it can be expanded in

orthonormal basis of Vj+1 as:

Ψ2j
(
x− 2−jn

)
= 2−j−1

+∞∑

k=−∞
k∈Z

〈
Ψ2j

(
u− 2−jn

)
,Φ2j

(
u− 2−j−1k

)〉
Φ2j+1

(
x− 2−j−1k

)

(A.14)

As in (A.6), by changing variables we obtain:

2−j−1
〈
Ψ2j

(
u− 2−jn

)
,Φ2j

(
u− 2−j−1k

)〉
= 〈Ψ2−1 (u) ,Φ (u− (k − 2n))〉 (A.15)

Taking the inner product of f(u) both sides in (A.14) gives,

〈
f (u) ,Ψ2j

(
u− 2−jn

)〉
=

+∞∑
k=−∞
k∈Z

〈
Ψi

2−1 (u) ,Φ (u− (k − 2n))
〉 〈
f (u) ,Φ2j+1

(
u− 2−j−1k

)〉

(A.16)

Let G be the filter with impulse response:

g (n) = 〈Ψ2j (u) ,Φ (u− n)〉 (A.17)

and G̃ be the symmetric filter with impulse response g̃(n) = g(−n), we get:

Djf =
{〈
f (u) ,Ψ2j

(
u− 2−jn

)〉}
n∈Z = {βj,n}n∈Z (A.18)

where

βj,n =
+∞∑

k=−∞
k∈Z

g̃ (2n− k)
〈
f (u) ,Φ2j+1

(
u− 2−j−1k

)〉
. (A.19)

Therefore, we can easily compute Djf by convolving Ad
j+1f , j < 0. The orthog-

onal wavelet representation of a discrete approximation Ad
0f can be computed by

successively decomposing Ad
j+1f into Ad

jf and Djf .

Finally, we summarize as follows:

Ad
Jf : j = −J ← j = −J + 1← · · · ← j = −2← j = −1← j = 0 : Ad

0f.
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Staircasing Effect

The Staricasing effect is a concept that appeared first in [20]. It is also observed on

images denoised by TV minimization, for example the Rudin-Osher-Fatemi (ROF)

model. The corresponding differential equation (PDE) of ROF problem is a second-

order equation. Although the ROF model does an excellent job in removing noise, it

often causes undesirable staircase effects since it favors solutions that are piecewise

constant. Let us cite the definition of this staircasing from [11].

Let Ω be a measurable subset of Rn, n ≥ 1. We define the connectedness of a

set Ω1 ⊂ Ω by the 4-pixel neighborhoods. One speaks of staircasing effect in the

denoised version û of a noisy image u if there exists at least one connected region

Ω1 ⊂ Ω containing at least two pixels, such that:

∀x ∈ Ω1, ∀x′ ∈ Nx, x
′ ∈ Ω1 ⇒ û(x) = û(x′) (B.1)

where Nx denotes a neighborhood of the pixel x (both in the discrete and continuous

settings).

The staircasing effect can be shown in figures in one and two-dimensions as

follows:

(a) Initial clean signal. (b) Gaussian noise with stan-

dard deviation 0.5, mean 0.

(c) Recover from ROF

model, SNR= 41.52db.

Figure B.1: One-dimensional ROF denoising, signal reproduced from [10].

Here, with staircase effect, smooth regions with noise are processed into piecewise

constant regions after using the ROF model. ROF’s solution fails to satisfy the eye

and they can develop false edges that do not exist in the true image. Therefore, it

is believed to develop another better approximation to a natural image than ROF

variational model. We may get more examples and more details about "staircasing

effect" as in [41], [11], [10].

In order to overcome this difficulty, some works have been proposed to reduce the

staircasing effect seen in image denoised during TV regularization. In most cases



156 Appendix B. Staircasing Effect

(a) Original image. (b) Noisy image. (c) Restoration by ROF

model.

Figure B.2: Two-dimensional ROF denoising. A part of Lena image is emphasized

to compare, reproduced from [10].

the emphasis is on designing new suitable regularization functionals which reduce

staircasing as well as recover edges via retaining some form of TV regularization.

A natural approach is to make the ROF model more convex in regions of moderate

gradient (away from the edges), [7]. Another popular way to reduce staircasing is to

introduce in some way higher order derivatives into the regularization term [37]...



Appendix C

Some types of Wavelet Bases

In this Appendix, we shall present some classical Wavelet bases that we used in

Wavelet Denoising and Segmentation applications: Haar, Daubechies, Symlets and

Coiflets, their scaling and mother wavelet functions in one-dimensional context.

C.1 Haar

Any discussion on wavelets begins with Haar wavelet, the first oldest and simplest

one. Suppose that Φ(t) is a “hat” function satisfying:

Φ (t) =

{
1 if 0 ≤ t ≤ 1,

0 otherwise.

If we define the function Ψ(t) = Φ(2t)− Φ(2t− 1), we can obtain the following

function:

Ψ(t) =





1 if 0 ≤ t ≤ 1/2,

−1 if 1/2 ≤ t ≤ 1,

0 otherwise.

The function Φ(t) is the Haar scaling function, and Ψ(t) is the Haar mother

wavelet. Then, the family:

Ψj,n(t) = 2j/2Ψ(2jt− n), j, n ∈ Z. (C.1)

constitutes an orthonormal basis for L2(R). It means that, for any function f ∈
L2(R), we have:

f (t) =

+∞∑

n=−∞
n∈Z

〈f,Ψj,n〉Ψj,n (t) (C.2)

where the inner product in (C.2) is defined on interval [0, 1].

To let the Haar series converge, the total number of data points is a power of 2.

The basis functions are given by:

Ψ2k [n] =

{
1√
2

n = 2k; 2k + 1,

0 otherwise,
and Ψ2k+1 [n] =





1√
2

n = 2k,

− 1√
2

n = 2k + 1,

0 otherwise.
(C.3)

The Haar wavelet is not continuous and looks like a step function. Moreover

it has the shortest support among all orthogonal wavelets. It is not well adapted

to approximating smooth functions because it has only one vanishing moment. It

represents the same wavelet as Daubechies db1.



158 Appendix C. Some types of Wavelet Bases

Figure C.1: Haar Wavelet.

C.2 Daubechies Wavelet

Ingrid Daubechies, in [68], invented what are called compactly supported orthonor-

mal wavelets, thus making discrete wavelet analysis practicable. Daubechies wavelets

are the most popular wavelets. They represent the foundations of wavelets and are

used in numerous applications. Except for Haar basis, all of example of orthonor-

mal wavelet bases consist of infinitely supported functions. Ingrid Daubechies con-

structed an orthonormal wavelet in which Ψ is compactly supported. The way to

ensure compact support for the wavelet Ψ is to choose a scaling function Φ with

compact support. Daubechies wavelets have a support of minimum size for any

given number p of vanishing moments.

The names of the Daubechies family wavelets are written dbp, where p is the

order of the wavelet. The db1 wavelet, as mentioned above, is the same as Haar

wavelet.

First of all, find a sequence {αk : k ∈ Z} satisfying the following four conditions
for all integer N ≥ 2:

αk = 0 if k < 0 or k > 2N (C.4)

∞∑

k=−∞
αkαk+2m = δ0m for all integer m (C.5)

∞∑

k=−∞
αk =

√
2 (C.6)

∞∑

k=−∞
βkk

m = 0, 0 ≤ m ≤ N − 1, (C.7)

where βk = (−1)kα−k+1.

If N = 1, then α0 = α1 = 1, corresponding to the Haar basis. Therefore, the

Haar basis is a simple case of Daubechies wavelet.
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We can find a compactly supported scaling function Φ(t) from the above pro-

gression {αk}. The function Φ(t) is one solution of a functional equation:

Φ (t) =
∞∑

k=−∞
αk

√
2Φ (2t− k). (C.8)

It is continuous and compactly supported and satisfies

∫
Φ (t) dt = 1 for any

integer N and the corresponding sequence {αk}. The support of Φ(t) is [0, 2N − 1].

Furthermore, if βk is defined in condition (C.7), the function Ψ(t) satisfies the

functional equation:

Ψ(t) =
∞∑

k=−∞
βk
√
2Φ (2t− k). (C.9)

Figure C.2: Daubechies-p Wavelet.

C.3 Symlets

The Symlets are symmetrical, orthogonal and biorthogonal wavelets proposed by

Daubechies as modifications to the db family. The resulting wavelets still have a

minimum support [−p+1, p] with p vanishing moments but they are more symmetric.

And the properties of the two wavelet families Symlets and Daubechies are similar.

C.4 Coiflets

In 1989, R. Coifmann suggested the designed of orthonormal wavelet systems with

vanishing moments for both the scaling and wavelet functions. They were first

constructed by I. Daubechies in [26] and named Coiflets. A family of wavelets Ψ
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Figure C.3: Symlets-p Wavelet.

have p vanishing moments and a minimum size support, but the scaling function

also satisfy:
+∞∫

−∞

Φ (t) dt = 1

and
+∞∫

−∞

tkΦ (t) dt = 0, ∀1 ≤ k < p.

The wavelet function has 2p moments equal to 0 and the scaling function has

2p− 1 moments equal to 0.

Figure C.4: Coiflets-p Wavelet.

The interesting property of this kind of wavelets is the interpolating character-

istic of their associated scaling functions. This characteristic is due to the fact that

both Coiflets and their scaling functions moments vanish. We can find more details

about Coiflets in [65].

The wavelet equation produces different wavelet families, such as Morlet, Meyer,

Shannon wavelets etc... Wavelets are classified into a family by the number of

vanishing moments p. Within each family of wavelets there are wavelet subclasses

distinguished by the number of coefficients and by the level of iterations. The filter
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lengths and the number of vanishing moments for the four different wavelet families

are tabulated in table C.1.

Wavelet family Filter length Number of vanishing moments p

Haar 2 1

Daubechies p 2p p

Coiflets p 6p 2p− 1

Symlets p 2p p

Table C.1: Wavelet families and their properties.





Appendix D

Threshold Determination methods

Throughout this context, we keep a 3D volume in mind to define an image f over

its domain Ω ⊂ R
3:

f : Ω→ R

x 7→ f (x)

where Ω is a discrete three dimensional space, indexing the grid points (voxels) on

which gray levels f(x) are observed.

Thresholding is an operation that converts a gray-scale image into a binary image

where the two levels are assigned to pixels that are below or above the specified

threshold value. Finding the correct threshold value to separate an image into

desirable parts is a very important step in image processing. Thresholding method

gives us the binary images, for they are restricted to values 0 and 1, indicating image

background and object, respectively.

There exists a large number of gray level based segmentation methods using

either global or local image information. In both cases, we can consider only one

threshold for the whole image (global thresholding) or on the contrary we can es-

tablish different thresholds for each sub-region of the original image.

In thresholding, one assumes that the object can be characterized by its bright-

ness, which is often a valid assumption for 3D datasets.

The most widely used of all possible segmentation method is the choice of value

T such that min
x
f (x) ≤ T ≤ max

x
f (x), and the segmented image is denoted g on

Ω, can be defined:

g (x) =

{
1 ; if f (x) ≥ T,

0 ; otherwise.

The problem (question) in this context is, how to select the value T , and whether

there exists an optimal threshold value. There are a lot of different solutions to

this threshold selection problem, each being based on different model assumptions.

They have been studied extensively and a large number of thresholding methods

have been published. Generally, with the wavelet denoising scheme, for images

with Gaussian noise, the threshold can be approximated to T = σ
√
2 log2(MNP )

where M ×N × P is the image’s size, [2]. In our consideration of medical datasets

(cerebellum and vessels of mouse brain), we do not have the value of σ, so the

thresholding determination process is non-trivial step. In the works of Aujol [2],

the value of σ can be estimated directly on the wavelet coefficients at the final

scale. However, this estimation process should be studied and applied in the further

works. In the scope of this Appendix section, we discuss about some these methods

in thresholding selection. For instance, we mention two threshold choosing methods

which are Iterative method and the Optimal method from histogram analyze.
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D.1 Histogram shape-based method

Histogram based algorithms have been studied extensively. Regions with uniform

intensity give rise strong peaks in the histogram.

Histogram shape can be useful in locating the threshold. It is the most direct

and meaningful statistics of an image. In bi-level thresholding, the histogram of

the image is usually assumed to have one valley between two peaks, the peaks

representing background and objects, respectively.

In general, a good threshold can be selected if the histogram peaks are tall,

narrow, symmetric and separated by deep valleys. Choosing a threshold in the

valley between two overlapping peaks and inevitably some pixels will be incorrectly

classified by the thresholding. A refinement of this technique is to recursively apply

Figure D.1: Threshold histogram choice.

the histogram-seeking method to clusters in the image in order to divide them into

smaller clusters. This is repeated with smaller and smaller clusters until no more

clusters are formed. One disadvantage of the histogram-seeking method is that

it may be difficult to identify significant peaks and valleys in the image. In this

technique of image classifications distance metric and integrated region matching

are familiar.

Histogram-based approaches can also be quickly adapted to occur over multiple

frames, while maintaining their single pass efficiently. The histogram can be done

in multiple fashions when multiple frames are considered. The same approach that

is taken with one frame can be applied to multiple, and after the results are merged,

peaks and valleys that were previously difficult to identify are more likely to be

distinguishable.

Histogram can also be applied on a per pixel basis where the information results

are used to determine the most frequent color for the pixel location. This approach

segments based on active objects and a static environment, resulting in a different

type of segmentation is useful in video tracking.

Histogram shape can be useful in locating the threshold. However, it is not

reliable for threshold selection when peaks are not clearly resolved, a "flat" object

with no discernible surface texture, and no color variation will give rise to a relatively

narrow histogram peak.

The determination of peaks and valleys is non-trivial problem, then in 3D sit-

uation we could estimate the threshold values dependently on histogram shapes.

In figures D.2, D.3, D.4 following we show some examples that choosing threshold

values T by histogram shape-based.
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(a) (b)

Figure D.2: (a) Barbara 512× 512, (b) The histogram of Barara.

(a) (b)

Figure D.3: (a) Lena 512× 512. (b) The histogram of Lena.

(a) (b)

Figure D.4: (a) Cameraman 256× 256. (b) The histogram of Cameraman.
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D.2 Automatic Thresholding method (Iterative Thresh-
old selection)

Method for automatic thresholding is the iterative isodata method, which is actually

an application of the more general isodata clustering algorithm to the gray values

of an image. This simple method would be to choose the mean or median value, the

rational being that if the object pixels are brighter than the background, they should

also the brighter than the average. In a noiseless image with uniform background

and object values, the mean or median will work well as the threshold, however this

will generally not be the case.

Given an initial threshold T 0 for example half of the maximum gray value or the

average intensity of the image, the isodata algorithm can be stated as follows:

1. At the iteration i, generate binary image gi from f using T i.

2. Calculate the mean grey value µi0 and µ
i
1 of the object and background voxels,

respectively, we get the partitions R1 and R2.

3. Partition the image into two groups R1, R2 using threshold T
i.

4. Select a new threshold:

T i+1 =
1

2

(
µi0 + µi1

)
. (D.1)

5. Repeat step 2-4 until the mean values µ0 and µ1 in successive iterations do

not change; we got the convergence.

In the table D.1 we present some thresholding values by applying this algorithm

with 5000 iterations.

Images Size Threshold

Lena 512× 512 T = 21.7810

Cameraman 256× 256 T = 51.3943

Barbara 512× 512 T = 32.0270

3D Mouse Brain 341× 110× 100 T = 14.8756

3D Small Cerebellum 45× 87× 56 T = 40.2392

3D Vessel 256× 256× 64 T = 18.5776

Table D.1: Thresholding values by iterative methods.
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Non-Maximum Suppression and

3D Canny Detector

E.1 Non-Maximum Suppression

Non-maximum suppression is a process for marking all pixels whose intensity is not

maximal as zero within a certain local neighborhood. Non-maximum suppression is

often used with contour detection. After applying some contour detection methods,

the obtained contour shapes can be either very thick or very thin depending on the

intensity across the contour and how much the image was previously blurred.

Images are scanned along image gradient direction, and if pixels are not part of

local maxima they are set to zero. This removes all image information that is not

part of local maxima. For given estimates of image gradients, a search is carried out

to determine if the gradient magnitude assumes a local maximum in the gradient

direction.

With a computed gradient magnitude at every pixel in 3D image, the local neigh-

borhood can be performed that depends on the gradient angle (or pair of angles in

3D case; see Figure E.1). This neighborhood can be a linear window at different di-

rections. Figure E.2 shows examples of linear windows at angles of 0o, 45o, 90o and

135o in two-dimensional space. Additional directions, such as 22.5o, 67.5o, 112.5o

and 157.5o could be rounded to one of four directions above. Obviously, 180o := 0o,

225o := 45o, etc. This means angle θ in the ranges [−22.5o...22.5o] and [157.5o...202.5o]

would be rounded to θ = 0o, and so on..., we could see more information in [63] and

[15].

Figure E.1: A pair of angles (α, β) in three-dimensional space.

On the other hand, for 3D images the linear windows need to be oriented as in
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figure E.3. A pair of angles (α, β) in figure E.1 could be computed and value of

0o, 45o, 90o and 135o are kept; 3D case can be extended from 2D case. We detail in

figure E.3 the union of different linear windows.

Figure E.2: 2D linear orientations, the × marked the pixel (x, y).

Figure E.3: 3D linear orientations.

The non-maximum suppression step keeps only pixels with the highest gradient

magnitude. These maximal magnitudes should occur right at the contour boundary,

and the gradient magnitude should fall off with distance from the contour shape.

In the 3D case, two angles of direction α (angle between gradient direction and

its projection on plane Oxy), β (angle between this projection and Ox-axis) are

described. As in figure E.3 we take the three pixels in a 3 × 3 × 3 around pixel

(x, y, z), and the principle for choosing neighbor pixels of (x, y, z) as follows:

• for α(x, y, z) = 0o, ∀β(x, y, z) ∈ {0o, 45o, 90o, 135o}: the pixels (x, y, z −
1); (x, y, z); (x, y, z + 1) are examined.

• for α(x, y, z) = 45o;β(x, y, z) = 0o: the pixels (x − 1, y, z − 1); (x, y, z); (x +

1, y, z + 1) are examined.

• for α(x, y, z) = 45o;β(x, y, z) = 45o: the pixels (x−1, y−1, z−1); (x, y, z); (x+

1, y + 1, z + 1) are examined.

• for α(x, y, z) = 45o;β(x, y, z) = 90o: the pixels (x, y−1, z−1); (x, y, z); (x, y+

1, z + 1) are examined.

• for α(x, y, z) = 45o;β(x, y, z) = 135o: the pixels (x−1, y+1, z+1); (x, y, z); (x+

1, y − 1, z − 1) are examined.
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• for α(x, y, z) = 90o;β(x, y, z) = 0o: the pixels (x−1, y, z); (x, y, z); (x+1, y, z)

are examined.

• for α(x, y, z) = 90o;β(x, y, z) = 45o: the pixels (x− 1, y − 1, z); (x, y, z); (x+

1, y + 1, z) are examined.

• for α(x, y, z) = 90o;β(x, y, z) = 90o: the pixels (x, y−1, z); (x, y, z); (x, y+1, z)

are examined.

• for α(x, y, z) = 90o;β(x, y, z) = 135o: the pixels (x− 1, y+1, z); (x, y, z); (x+

1, y − 1, z) are examined.

• for α(x, y, z) = 135o;β(x, y, z) = 0o: the pixels (x− 1, y, z + 1); (x, y, z); (x+

1, y, z − 1) are examined.

• for α(x, y, z) = 135o;β(x, y, z) = 45o: the pixels (x−1, y−1, z−1); (x, y, z); (x+
1, y + 1, z + 1) are examined.

• for α(x, y, z) = 135o;β(x, y, z) = 90o: the pixels (x, y−1, z+1); (x, y, z); (x, y+

1, z − 1) are examined.

• for α(x, y, z) = 135o;β(x, y, z) = 135o: the pixels (x−1, y+1, z−1); (x, y, z); (x+
1, y − 1, z + 1) are examined.

Then, if the pixel (x, y, z) has the highest gradient magnitude of the three pixels

examined, it is kept as a contour. If one of the two other pixels but pixel (x, y, z)

has a higher gradient magnitude, the pixel (x, y, z) is not on the center of contour

and should not be classified as a contour pixel.

Consequently, non-maximal suppression method reduce thick contour responses

to thin shapes. We could apply this step after the contour detection strategies to

require a fixed number of comparisons per pixel regardless on suppression neighbor-

hood size.

E.2 The 3D Canny Detector

In the past two decades several algorithms were developed to extract the contour in

image, a lot of attention is focused to contour detection. Classically, the first stage

of edge detection (the gradient operator, Robert, Sobel and the Prewitt operator)

is the evaluation of derivatives of the image intensity). Smoothing filter and surface

fitting are used as regularization techniques to make differentiation more robust

to noise. Canny detector had the best performance and the best robustness in

convergence. It is one of the faster executing detectors. It is a multi step detector

which performs smoothing and filtering, non-maxima suppression, followed by a

connected-component analysis stage to detect edges, while suppressing non edge

filter responses.

The Canny edge detector was deviced to be an optimal edge detector, which

satisfies all of the three performance criteria. The first and most obvious is low
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error rate. It is important that edges occurring in images should not be missed and

that there should be no responses to non-edges. The second criterion is that the

edge points be well localized. In other words, the distance between the edge pixels as

found by the detector and the actual edge is to be at a minimum. The third criterion

is to have only one response to a single edge. This was implemented because the first

two were not substantial enough to completely eliminate the possibility of multiple

responses to an edge.

Based on these criteria, the Canny detector first smoothes the image to elimi-

nate noise. It then finds the image gradient to highlight regions with high spatial

derivatives. The algorithm then tracks along these regions and suppresses any pixel

that is not at the maximum (non maximum suppression). The gradient array is now

further reduced by hysteresis (as in the chapter 6). Hysteresis is used to track along

the remaining pixels that not been suppressed. Hysteresis uses two thresholds and

if the magnitude is below the first threshold, it is set to be zeros (not contours),

else if the magnitude is above the high threshold, it is kept an contour. And if the

magnitude is between 2 thresholds, then it is set to zero unless there is a path from

this pixel with a gradient above the low threshold.

The Canny edge detection algorithms is typically used as a two-dimensional edge

detector, but has been generalized to three dimensions to detect surfaces. The Canny

algorithm involves first a noise-reducing and edge-detecting operator to the image,

then locally eliminates all but the maximal pixel or voxel outputs, then performs a

hysteresis function to continue strong edges through areas of weak response.

A typical implementation of the Canny detector follows the steps below:

1. Smoothing : Canny algorithm first convolves an image with a filter that smooths

the image or blurs image to eliminate noise. There are many possible vari-

ations of filters which effectively accomplish both tasks, with an appropriate

Gaussian filter to reduce desired image details;

2. Finding gradients : Determine gradient magnitude and gradient direction at

each pixel;

3. Non-maximum suppression: Once the appropriate operator is applied to the

image, voxels with locally non-maximal intensity are eliminated. Only local

maxima should be used to link edge points and deal out non-edge points, i.e.,

if the gradient magnitude at a pixel is larger than those at its two neighbors

in the gradient detection, mark the pixel as an contour, otherwise, mark the

pixel as the background.

4. Contour tracking by hysteresis : remove the weak contours by hysteresis thresh-

olding, namely, final contours are determined by suppressing all contours that

are not connected to a very certain (strong) contour.

Each step can be described more details in the following subsections.
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E.2.1 Smoothing - Noise reduction

It is inevitable that all images taken from a camera will contain some amount of

noise. To present that noise is mistaken for edges, noise must be reduced. The first

step is to filter out any noise in the original image before trying to locate and detect

any edges. Because the Gaussian filter can be computed using a simple mask, it is

used exclusively in the Canny algorithm.

This step will give us image reduced desirable amount of image details and

noise, it optimizes the trad-off between noise filtering and contour localization. A

convolution mask is usually much smaller than the actual image. As a result, the

mask is slid over the image, manipulating one square of pixels at time. The larger

the width of the Gaussian mask, the lower is the detector’s sensitivity to noise. The

localization error in the detected contours also increases slightly as the Gaussian

width is increased.

E.2.2 Finding Gradient Magnitude and Angles

After smoothing the image and eliminating the noise, the next step is to find the

contour strenth by taking the gradient of image at each pixel. We compute the

derivatives Dx(x, y, z), Dy(x, y, z) and Dz(x, y, z) of the image in the x, y and z

directions.

Then, compute the gradient magnitude:

D(x, y, z) =
√
D2

x(x, y, z) +D2
y(x, y, z) +D2

z(x, y, z). (E.1)

The direction of the contour shapes is computed using the gradient in x, y and

z directions, the angles α and β in three-dimensional case, which are desbribed in

figure E.1, can be calculated at every pixel:

α(x, y, z) = arctan


 Dz(x, y, z)√

D2
x(x, y, z) +D2

y(x, y, z)


× 180

π
, (E.2)

β(x, y, z) = arctan

(
Dy(x, y, z)

Dx(x, y, z)

)
× 180

π
. (E.3)

We next perform these angles into their rounded values that correspond to 8

possible directions when describing the surrounding pixels, which are well illustrated

in figure E.3, then our angles α, β ∈ {0o, 45o, 90o, 135o}.

E.2.3 Non-Maximum Suppression

After the contour directions are known, non-maximum suppression now has to be

applied. Non-maximum suppression is used to trace along the contour direction

and suppress any pixel value that is not considered to be a contour shape; this

principle has been studied as in section E.1 before. Here we could summarize how

to implement. If the gradient magnitude at a pixel is larger than those at its two
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neighbors in the gradient derection, mark the pixel as a major contour. If the

gradient magnitude at the pixel is larger than those pixels adjacent to it in any

direction, mark the pixel as a minor contour. Otherwise, mark the pixel as the

background.

This step partition the minor contours at the branch points, remove all branches

that do not contain a major contour. Then rename as major contours the portions

of minor contours that are deliminated by major contours. Combine newly obtained

major contours with previously obtained major contours.

E.2.4 Contour tracking by Hysteresis thresholding

Some of the contour shapes detected by step 1−3 will not be actually valid, but will

just be the noise. We would like to filter this noise out. Eliminating pixels whose

gradient magnitude D falls below some threshold removes the worst of this problem,

but it introduces a new problem. Because, selecting a good value of threshold T is

difficult, some false contour shapes will remain if T is too low, some contours will

disappear if T is too high.

A simple threshold then may actually remove valid parts of a connected contour

leaving a disconnected final contour image. This happens in regions where the

gradient magnitude fluctuates between just above and just below the threshold.

Hysteresis is one way of solving this problem.

Instead of choosing a single threshold, two thresholds Thigh and Tlow are used

(Tlow < Thigh). Pixels with a gradient magnitude D < Tlow are discarded immedi-

ately. However, pixels with Tlow ≤ D < Thigh are only kept if they form a continuous

contour shapes with high gradient magnitude (i.e. above Thigh). We could apply

the hysteresis thresholding algorithm in section 6.2.1 for this step.
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Abstract In this paper we present the 3D-implementation of a second-order model

for texture extraction that has been fully described in [4]. Numerical experimenta-

tion has been performed for 2D-images. We generalize the discrete model to the

3D case. In particular we describe the whole discretization process. In addition, we

add an algorithmic modification that improves texture extraction using a modified

Hessian matrix. We end with numerical examples arising in biomedical imaging

1 Introduction

In this paper we present the 3D- implementation of a second-ordermodel for texture

extraction that has been fully described in [4]. Numerical experimentation was per-

formed for 2D-images.We generalize the discrete model to the 3D case. In particular

we describe the complete discretization scheme. In addition, we add an algorithmic

modification that improves texture extraction significantly using a modified Hessian

matrix. This is also a generalization of the 2D-case (see Piffet [10, 11]). First, we

recall the main definitions and present the generic second order variational model.

Section 2 is devoted to the 3D-discretization and implementation. Then we present

an “anisotropic” improvement of the algorithm which takes into account the (local)

contours to compute the second-order derivative. We end with numerical examples

arising in biomedical imaging, namely angiographyMRI images.

Université d’Orléans, Laboratoire MAPMO - UMR 6628, Fédération Denis-Poisson, BP 6759,

F-45067 Orléans Cedex 2, France e-mail: maitine.bergounioux@univ-orleans.fr
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1.1 Bounded Variation Spaces of first and second order

Let Ω ⊂ R
n (n ≥ 2) be an open bounded set. The space of functions of bounded

variation, BV(Ω) is well known. We refer to [1, 2, 4] for example. We denote by
TV (u) the total variation of u ∈ BV(Ω) :

TV (u) = sup

{

∫

Ω
udivϕ dx : ϕ ∈ C 10 (Ω),‖ϕ‖∞ ≤ 1

}

(1)

Following Demengel [8] and Piffet [10] we may define the space of functions of

bounded second-order variation (or hessian bounded) as

BV 2(Ω) := {u ∈W 1,1(Ω) | TV2(u)<+∞ } .

Here the second-order total variation is defined as

TV2(u) := sup

{

∫

Ω
〈∇u,div(ϕ)〉

Rn
|ϕ ∈ C 2c (Ω ,Rn×n), ‖ϕ‖∞ ≤ 1

}

(2)

where

div(ϕ) = (div(ϕ1),div(ϕ2), · · · ,div(ϕn)),

with

∀i, ϕi = (ϕ1i ,ϕ
2
i , . . . ,ϕ

n
i ) ∈R

n and div(ϕi) =
n

∑
k=1

∂ϕki
∂xk

.

The space BV 2(Ω) endowed with the norm

‖u‖BV2(Ω) = ‖u‖W 1,1(Ω)+TV2(Ω)

is a Banach space. Moreover, it has been proved in [10] that

BV 2(Ω) =

{

u ∈W 1,1(Ω) | ∀i ∈ {1,2, · · · ,n} :
∂u

∂xi
∈ BV (Ω)

}

.

1.2 The abstract second-order model

We recall the variational model described in [4]. We refer to this paper for a pre-

cise motivation of this second-order model. Let Ω ⊂ R
n be an open bounded set

(smooth enough, for example with Lipschitz boundary). We consider the following

functional:
F : BV 2(Ω)→R

+

(v) 7→ F(v)

F(v) =
1

2
‖ud− v‖

2
L2(Ω)+λTV2(v)+ δ ‖v‖W 1,1(Ω)
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where ud ∈ L
2(Ω) and λ ,δ ≥ 0 and we are looking for a solution to the optimization

problem:

inf
v∈BV2(Ω)

F(v) (3)

It has been proved in [4] that problem (3) has a unique solution for λ > 0 and

δ > 0. However, this result is still true for the discretized problem even with δ = 0.
Moreover, in [4] we prove that the existence result still holds true for the infinite

dimensional problem if the function v satisfies
∂v

∂n |∂Ω
= 0 and Ω =

n

∏
i=1

]ai,bi[ is a

square subset ofRn. In what follows, we investigate the finite-dimensional problem,

so we assume that δ = 0.

1.3 Discretization of the 3D - problem

In [4] the problem has been discretized in the case of 2D images and numerical tests

have been performed. Here we generalize this work to the 3D-case and extend the

anisotropic correction of the algorithm of [11] . In the sequel, n = 3 and the image
size is N1×N2×N3 . The generic component of u is ui, j,k and we denote similarly the
continuous function (previous section) and the corresponding (discretized) tensor.

We denote X = R
N1×N2×N3 endowed with inner product and norm

〈u,v〉X = ∑
1≤i≤N1
1≤ j≤N2
1≤k≤N3

ui, j,kvi, j,k and ‖u‖X =
√

√

√

√

√

∑
1≤i≤N1
1≤ j≤N2
1≤k≤N3

u2i, j,k

and set Y = X×X×X .

(a) We first compute the discrete gradient∇u ∈Y of the image u ∈ X :

(∇ui, j,k) = (∇u1i, j,k,∇u
2
i, j,k,∇u

3
i, j,k)

where

∇u1i, j,k =

{

ui+1, j,k− ui, j,k i< N1
0 i= N1

∇u2i, j,k =

{

ui, j+1,k− ui, j,k j < N2
0 j = N2

∇u3i, j,k =

{

ui, j,k+1− ui, j,k k < N3
0 k = N3

(b) Discretization of the term TV2(v).
We have

〈∇u,divφ〉=−
〈

φ ,∇2u
〉

.

Then,
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TV2(v)≃ ∑
1≤i≤N1
1≤ j≤N2
1≤k≤N3

∥

∥(Hv)i, j,k
∥

∥

R9

where

(Hv)i, j,k =(Hv11i, j,k,Hv
12
i, j,k,Hv

13
i, j,k,Hv

21,
i, j,k

Hv22i, j,k,Hv
23
i, j,k,Hv

31
i, j,k,Hv

32
i, j,k,Hv

33
i, j,k).

For every i= 1, ...,N1, j= 1, ...,N2 and k= 1, ...,N3, the computation ofHv gives

(Hv)11i, j,k =







vi+1, j,k− vi, j,k+ vi−1, j,k 1< i< N1
vi+1, j,k− vi, j,k i= 1
vi, j,k− vi−1, j,k i= N1

(Hv)12i, j,k =















vi, j+1,k− vi, j,k− vi−1, j+1,k+ vi−1, j,k 1< i≤ N1
1≤ j < N2

0 j = N2
0 i= 1

(Hv)13i, j,k =















vi, j,k+1− vi, j,k− vi−1, j,k+1+ vi−1, j,k 1< i≤ N1
1≤ k < N3

0 i= 1
0 k = N3

(Hv)21i, j,k =















vi+1, j,k− vi, j,k− vi+1, j−1,k+ vi, j−1,k 1≤ i< N1
1< k ≤ N3

0 i= N1
0 k = 1

(Hv)22i, j,k =







vi, j+1,k− vi, j,k+ vi, j−1,k 1< j < N2
vi, j+1,k− vi, j,k j = 1
vi, j,k− vi, j−1,k j = N2

(Hv)23i, j,k =















vi, j,k+1− vi, j,k− vi, j−1,k+1+ vi, j−1,k 1< j ≤ N

1≤ k < N3
0 j = 1
0 k = N3

(Hv)31i, j,k =















vi+1, j,k− vi, j,k− vi+1, j,k−1+ vi, j,k−1 1< k ≤ N3
1≤ i< N1

0 k = 1
0 i= N1

(Hv)32i, j,k =















vi, j+1,k− vi, j,k− vi+, j+1,k−1+ vi, j,k−1 1≤ j < N

1< k ≤ N3
0 j = N2
0 k = 1
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(Hv)33i, j,k =







vi, j,k+1− vi, j,k+ vi, j,k−1 1< k< N3
vi, j,k+1− vi, j,k k = 1
vi, j,k− vi, j,k−1 k = N3

1.4 Numerical computation of the solution of (3)

Let us consider H∗ : X9→ X defined as follows (H∗ is the adjoint of operator H):

for every p = (p11, p12, p13, p21, p22, p23, p31, p32, p33) ∈ X9,

(H∗p)i, j,k = σ11i, j,k+σ12i, j,k+σ13i, j,k+σ21i, j,k+σ22i, j,k

+σ23i, j,k+σ31i, j,k+σ32i, j,k+σ33i, j,k

where

σ11i, j,k =















p11i+1, j,k− 2p
11
i, j,k+ p11i−1, j,k 1< i< N1

p11i+1, j,k− p11i, j,k i= 1

p11i−1, j,k− p11i, j,k i= N1

σ22i, j,k =















p22i, j+1,k− 2p
22
i, j,k+ p22i, j−1,k 1< j < N2

p22i, j+1,k− p22i, j,k j = 1

p22i, j−1,k− p22i, j,k j = N2

σ33i, j,k =















p33i, j,k+1− 2p
33
i, j,k+ p33i, j,k−1 1< k < N3

p33i, j,k+1− p33i, j,k k= 1

p33i, j,k−1− p33i, j,k k= N3

σ12i, j,k =























































































p12i+1, j,k i= 1, j = 1

−p12i+1, j−1,k i= 1, j = N2

p12i+1, j,k− p12i+1, j−1,k i= 1,1< j < N2

−p12i, j,k i= N1, j = 1

p12i, j−1,k i= N1, j = N2

p12i, j−1,k− p12i, j,k i= N1,1< j < N2

p12i+1, j,k− p12i, j,k 1< i< N1, j = 1

p12i, j−1,k− p12i+1, j−1,k 1< i< N1, j = N2

p12i, j−1,k− p12i, j,k− p12i+1, j−1,k+ p12i+1, j,k 1< i< N1,1< j < N2
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σ13i, j,k =























































































p13i+1, j,k i= 1,k = 1

−p13i+1, j,k−1 i= 1,k = N3

p13i+1, j,k− p13i+1, j,k−1 i= 1,1< j < N3

−p13i, j,k i= N1,k = 1

p13i, j,k−1 i= N1,k = N3

p13i, j,k−1− p13i, j,k i= N1,1 < k< N3

p13i+1, j,k− p13i, j,k 1< i< N1,k = 1

p13i, j,k−1− p13i+1, j,k−1 1< i< N1,k = N3

p13i, j,k−1− p13i, j,k− p13i+1, j,k−1+ p13i+1, j,k 1< i< N1,1< k < N3

σ21i, j,k =























































































p21i, j+1,k j = 1, i= 1

−p21i−1, j+1,k j = 1, i= N1

p21i, j+1,k− p21i−1, j+1,k j = 1,1< i< N1

−p21i, j,k j = N2, i= 1

p21i−1, j,k j = N2, i= N1

p21i−1, j,k− p21i, j,k j = N2,1< i< N1

p21i, j+1,k− p21i, j,k 1< j < N2, i= 1

p21i−1, j,k− p21i−1, j+1,k 1< j < N2, i= N1

p21i−1, j,k− p21i, j,k− p21i−1, j+1,k+ p21i, j+1,k 1< j < N2,1< i< N1

σ23i, j,k =























































































p23i, j+1,k j = 1,k = 1

−p23i, j+1,k−1 j = 1,k = N3

p23i, j+1,k− p23i, j+1,k−1 j = 1,1< k < N3

−p23i, j,k j = N2,k = 1

p23i, j,k−1 j = N2,k = N3

p23i, j,k−1− p23i, j,k j = N2,1< k < N3

p23i, j+1,k− p23i, j,k 1< j < N2,k = 1

p23i, j,k−1− p23i, j+1,k−1 1< j < N2,k = N3

p23i, j,k−1− p23i, j,k− p23i, j+1,k−1+ p23i, j+1,k 1< j < N2,1< k< N3
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σ31i, j,k =























































































p31i, j,k+1 k = 1, i= 1

−p31i−1, j,k+1 k = 1, i= N1

p31i, j,k+1− p31i−1, j,k+1 k = 1,1< i< N1

−p31i, j,k k = N3, i= 1

p31i−1, j,k k = N3, i= N1

p31i−1, j,k− p31i, j,k k = N3,1< i< N1

p31i, j,k+1− p31i, j,k 1< k < N3, i= 1

p31i−1, j,k− p31i−1, j,k+1 1< k < N3, i= N1

p31i−1, j,k− p31i, j,k− p31i−1, j,k+1+ p31i, j,k+1 1< k < N3,1< i< N1

σ32i, j,k =























































































p32i, j,k+1 k = 1,1= 1

−p32i, j−1,k+1 k = 1, j = N2

p32i, j,k+1− p32i, j−1,k+1 k = 1,1< j < N2

−p32i, j,k k = N3, j = 1

p32i, j−1,k k = N3, j = N2

p32i, j−1,k− p32i, j,k k = N3,1 < j < N2

p32i, j,k+1− p32i, j,k 1< k < N3, j = 1

p32i, j−1,k− p32i, j−1,k+1 1< k < N3, j = N2

p32i, j−1,k− p32i, j,k− p32i, j−1,k+1+ p32i, j,k+1 1< k < N3,1< j < N2

It is straightforward to prove that
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Theorem 1. The solution to problem (3) verifies:

v= ud−PλK(ud)

where PλK is the orthogonal projector operator on λK and

K := {H∗p | p ∈ X9, ‖pi, j,k‖R9 ≤ 1, 1≤ i≤ N1,1≤ j ≤ N,1 ≤ k≤ N3}.

Proof. It is quite similar to the 2D-case proof. We refer to [4].

To compute PλK(ud) we have to solve the following problem:















min‖λH∗p− ud‖
2
X

p ∈ X9

‖pi, j,k‖
2
R9
≤ 1, 1≤ i≤ N1,1≤ j ≤ N2,1≤ k ≤ N3

Following [6] and [4] we use the following algorithm to compute PλK(ud)

Algorithm

Choose τ > 0

1. Let p0 = 0,n= 0.
2. Suppose pn is known, we compute pn+1 as follows:

pni, j,k = pn+1i, j,k+ τ
[

(H
[

H∗p−
ud

λ

]

)i, j,k+
∥

∥

∥(H
[

H∗pn−
ud

λ

]

)i, j,k

∥

∥

∥

R9
pn+1i, j,k

]

which implies:

pn+1i, j,k =
pni, j,k− τ(H

[

H∗pn−
ud

λ

]

)i, j,k

1+ τ
∥

∥

∥(H
[

H∗pn−
ud

λ

]

)i, j,k

∥

∥

∥

R9

Theorem 2. Let τ ≤ 1/83, then λ (H∗pn)n converges to PλK2(ud) as n→ ∞.

Proof. Once again the proof is quite technical but similar to the 2D-case proof ([4]).

2 Introducing anisotropy

L. Piffet [8, 10, 11] has observed (in the 2D-case) that cancelling one or more co-

efficients of the Hessian matrix permits to get rid of the contours along the corre-

sponding direction.
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(a) Original image (Barbara)

(b) Texture part without anisotropic strategy (c) Texture part without horizontal and vertical

contours

Fig. 1 Effects of anisotropic improvement strategy

We give a 2D-example in Figure 1 : here the coefficients (Hv)1,1 and (Hv)2,2 = 0
have been globally set to 0. We can see that horizontal and vertical contours are not

involved in the texture part any longer. This method has been improved since there

were two major inconveniences :

- First, the same transform is performed at every pixel, so that the image is globally

treated. All the vertical and horizontal lines are removed;

- Second, the transform is depended on the chosen (fixed) cartesian axis and it is

not possible to remove contours that are not horizontal, vertical or diagonal.

Therefore, the Hessian matrix is now locally computed at every pixel. First , a ro-

tation is performed so that the gradient direction is the new y-axis (or x-axis). The
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corresponding Hessian matrix is computed and suitable coefficients are canceled.

Then the inverse rotation is performed. For more details on can refer to [10, 11].

We compute the (local) 3D- Hessian matrix at a voxel (i, j,k) using this tech-
nique. We have to perform two rotations rα and rβ to compute an modified hessian

matrix H ′. More precisely, we perform a change of variables (with the rotations) to

compute the Hessian matrix and the adjoint matrix as in the previous section: the

local axis (with the gradient vector as z-axis) are considered instead of the original

fixed cartesian axis. Then, we may cancel the Hessian matrix terms corresponding

to the gradient direction (for example), to get rid of the corresponding contour (if it

is significant) in the extracted texture. Finally we go back to the original axis with

the inverse rotations. Let us detail the process :

Fig. 2 Definition of local axis and angles α and β

The angles α and β are defined at point Xo = (xo,yo,zo) as follows : α is the

(azimuthal) angle between the gradient ∇u(xo,yo,zo) and the z-axis . β is the angle
between the orthogonal projection of

∇u(xo,yo,zo) :=





ux
uy
uz



(xo,yo,zo)

(on the xOy plane) and the x -axis. Note that we can perform this transformation

with axis Ox or Oy instead of Oz . Let us define the two rotations : rα and rβ which

matrices are :

Rα =





1 0 0

0 cosα −sinα
0 sinα cosα



 and Rβ =





cosβ −sinβ 0
sinβ cosβ 0

0 0 1



 ,
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with

α = atan





uz
√

u2x+ u2y



(Xo), β = atan

(

uy

ux

)

(Xo) .

The change of variables from the fixed basis to the local one is given par

X̃ = RβRαX , with X = (x,y,z) ∈ R
3 .

Moreover

X = (RβRα)
−1X̃ = R−1α R−1

β
X̃ = R−αR−β X̃ .

In the sequel, we set ũ(X̃) := u(X) and Rα ,β
de f
:= R−αR−β and we compute the first

and second order derivative of ũ :

∇ũ=

















∂ ũ

∂ x̃

∂ ũ

∂ ỹ

∂ ũ

∂ z̃

















and H̃ :=



















∂ 2ũ

∂ x̃2
∂ 2ũ

∂ x̃∂ ỹ

∂ 2ũ

∂ x̃∂ z̃

∂ 2ũ

∂ x̃∂ ỹ

∂ 2ũ

∂ ỹ2
∂ 2ũ

∂ ỹ∂ z̃

∂ 2ũ

∂ x̃∂ z̃

∂ 2ũ

∂ ỹ∂ z̃

∂ 2ũ

∂ z̃2



















.

A short computation gives

∂ ũ

∂ x̃
=
∂u

∂x

∂ x̃

∂x
+
∂u

∂y

∂ ỹ

∂x
+
∂u

∂ z

∂ z̃

∂x
= ∇u ·

∂ X̃

∂x
= ∇u ·R(:,1) ,

where · denotes the R3 scalar product and R(:,1) is the first column of R. Finally,
we get

∇ũ= Rα ,β∇u . (4)

Now we compute H̃; we set ṽ=
∂ ũ

∂ x̃
and estimate ∇ṽ as above : this will be the first

column of H̃.

∇ṽ= Rα ,β∇v= Rα ,β



















∂ 2u

∂x2

∂ 2u

∂y∂x

∂ 2u

∂ z∂x



















.

Finally

H̃ = Rα ,βH . (5)

As already mentioned, the idea is to cancel some terms of the Hessian matrix to get

rid of (or to keep) the contours. However, without performing the rotations, there

would be only few possible directions, for example vertical, horizontal and diagonal
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in the 2D-case so that many contours are not considered. Performing the change of

variables allows to identify the gradient direction (that is the contour direction if the

gradient is large enough) with the z-axis and then cancel corresponding terms of the

matrix H̃. Of course, we have to get back to the original situation. Let us denote

by L the (linear) transformation that assigns 0 to some coefficients of H̃ (this is a

projection). The whole process is described by

H→ H̃ = R−αR−βH →L (H̃) := H̃ ′→ [Rα ,β ]
−1
L (H̃) = RβRαL (H̃) ,

that is

H →
[

RβRαL R−αR−β
]

H . (6)

So, algorithm p.48 is modified as follows

Algorithm

Choose τ > 0,µ > 0 and compute ∇u. Use a threshold process to iden-
tify the contours (‖∇u‖ ≥ µ) . Set Iµ the set of voxels corresponding to

these“significant contours”.

1. Let p0 = 0,n= 0.
For voxels in Iµ , modify H with the following rule

H→ H̃ = R−αR−βH →L (H̃) = [L R−αR−β ]H := H ′

and compute (H ′)∗

2. Same as before p.48 with H ′ instead of H.

3 Numerical examples

Numerical experimentation has been done in the context of biomedical imaging. We

consider a stack of 50 MRI images of the vessel network of brain mice.1 The chal-

lenge is to identify the network to get structural informations. Using 2D segmenta-

tion and interpolation methods is not possible, since the slices are not exploitable

(see Figure 3. )

1 We thank J.C. Belœil, S. Même and F. Szeremeta, from CBM Laboratory in Orléans, for the use

of these images, http://cbm.cnrs-orleans.fr/.
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Fig. 3 2D slices example (slices 10 and 25)

Therefore we have to deal with the complete 3D information. We consider that

noise and very small vessels effect is texture. Extracting texture gives the remainder

part, the so-called “cartoon” (smooth part). We expect that the contours are kept in

the cartoon part which in the cleaned image in some sense. Then classical segmen-

tation methods (as threshold for example) can be used. The following results have

been obtained without any anisotropic strategy. Indeed, computational time is large

and we still have to improve the speed of algorithm. However, we present a com-

parison between the two methods with and without anisotropy strategy. The results

show that the anisotropy technique is quite efficient and we have good hope to keep

the whole contour information contour in the cartoon part.

We have tested many values for λ and the maximum number of iterations. We

present some results to show the influence of λ (images have been contrasted). We
shall speed up the method in the future using (for example) Nesterov algorithms as

in [12] .

(a) Original Image (b) Image with threshold at grey value = 210

Fig. 4 3D angiography image
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(a) Cartoon (b) Texture

Fig. 5 No anisotropy strategy : λ = 1 and 5 000 iterations - The choice of small λ allows to
denoising the image quite efficiently : here the texture is the noise and the cartoon the denoised

image

(a) Cartoon (b) Texture

Fig. 6 No anisotropy strategy :λ = 10 and 5 000 iterations

(a) Cartoon (b) Texture

Fig. 7 No anisotropy strategy : λ = 50 and 10 000 iterations -The contours and the vessel network
are recovered in the texture.
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We have tested the algorithm with and without anisotropy strategy. We give be-

low results for λ = 10 and 5000 iterations. As the 3D cartoon and texture pictures
are not easy to compare we give pictures of the difference as well.

(a) Cartoon without anisotropy strategy (b) Texture without anisotropy strategy : con-

tours are involved in the texture

(c) Cartoon with anisotropy strategy (d) Texture with anisotropy strategy : contours

are not involved in the texture any longer

Fig. 8 Comparison between the two strategies for λ = 10 and 5 000 iterations
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(a) Difference between cartoons

(b) Difference between textures

Fig. 9 Absolute value of the difference for λ = 10 and 5 000 iterations . The vessel-network which
is alternatively included in the cartoon (when no anisotropy strategy is performed) or in the texture

in the other case, so that the respective differences of cartoons and textures are the same and give

the vessel network.
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Laboratoire Mathématiques, Image et Applications

EA 3165
F-17000 La Rochelle, France
renaud.peteri@univ-lr.fr

Abstract. The aim of this paper is to construct a model which de-
composes a 3D image into two components: the first one containing the
geometrical structure of the image, the second one containing the noise.
The proposed method is based on a second order variational model and
an undecimated wavelet thresholding operator. The numerical implemen-
tation is described, and some experiments for denoising a 3D MRI image
are successfully performed. Future prospects are finally exposed.

Keywords: Image Decomposition, Image Denoising, Undecimated wavelet
Shrinkage, Second order variational model, 3D medical image

1 Introduction

Medical images obtained from MRI (Magnetic-Resonance-Imaging) are now a
very common tool for diagnosing human diseases. These images are often af-
fected by random noise arising during the acquisition process. Moreover, medical
images constituted of low-contrast objects are a major challenge for biomedical
researchers. The noise highly affects the visual interpretation of medical images,
but also most of the segmentation or clustering algorithms. Therefore, denoising
medical images is an important pre-step for medical image analysis.

Image denoising is one of the classical problems in image processing, and has
been studied for several years due to its important role in various applications.
Its goal is to remove noise and/or spurious details from a given corrupted image
while maintaining its important features. Many denoising methods have been
developed, such as methods based on variational methods, rank filters, frequency
domain filters or sparse representations (curvelets, beamlets,...).

The general idea behind variational denoising methods is to considered an
observed image f as a corrupted version of a noiseless image u. In denoising mod-
els, image u is then the solution of an inverse problem. One of the most successful
variational algorithms is the Rudin-Osher-Fatemi (ROF) model ([2, 4, 5]) which
uses Total-Variation regularization. The observed image to recover/denoise f is
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split into two components u and v, giving f = u+v, where u is the cartoon part
(the smooth component), the remaining term v := f − u being the noise. The
functional energy F on bounded variation space is:

F (u) =
1

2
‖f − u‖

2
L2(Ω) + λTV (u), u ∈ BV (Ω) (1)

where TV (u) represents the total variation of u ∈ BV (Ω) [10], and λ ≥ 0 is a
regularization parameter. Solving this problem leads to the minimisation of the
following expression:

inf
u∈BV (Ω)

F (u) (PROF )

It has been shown that this problem has a unique solution in BV (Ω) ([9, 1]).
However, the use of the BV -norm in the ROF model favours piecewise constant
solutions, causing unsatisfying ’staircasing effects’ [6]. This variational model has
been improved by using different functional spaces. In [9] it has been proposed
to use the second order functional space of bounded variation - the BV 2 space.
This model leads to the minimisation of the following expression:

inf
u∈BV 2(Ω)

F2(u) (PROF2)

where

F2 (u) =
1

2
‖f − u‖

2
L2(Ω) + λTV 2(u), u ∈ BV 2 (Ω) (2)

In the following section, we generalize the model ROF to the new functional space
BV 2 for 3D signals using second order total variation TV 2 [10]. The problem is
considered in the BV 2 discrete space.

2 Three-dimensional ROF2 model

2.1 Functional framework

Let Ω ⊂ R
3 be an open bounded set, we consider the finite-dimensional problem

where function FROF2:

FROF2 : BV 2(Ω) → R
+

u 7→ FROF2(u)

is defined by:

FROF2(u) =
1

2
‖f − u‖

2
L2(Ω) + λTV 2(u)

Solving the second order model (ROF2) leads to the minimisation of the following
expression:

inf
u∈BV 2(Ω)

1

2
‖f − u‖

2
L2(Ω) + λTV 2(u) (PROF2)

Theorem 1. [9] If λ > 0, it has been shown that the problem has an unique

solution.



3D medical image decomposition 3

2.2 Discretization of the ROF2 model

In the sequel, we denote by X the Euclidean space R
N1×N2×N3 and Y = X ×

X ×X. The space X is endowed with the inner product:

〈u, v〉X =
∑

1≤i≤N1

1≤j≤N2

1≤k≤N3

ui,j,kvi,j,k

In the case of the ROF2 model, the second order total variation term TV 2(u)
can be discretized to J(u) (more details can be found in [9, 10]). The discretiza-
tion of the ROF2 model (PROF2) can be then defined as:

inf
u∈X

J(u) +
1

2λ
‖f − u‖

2
X (d-PROF2)

where J(u) stands for the discrete TV 2. The following theorem comes from the
convex duality theory [7], and gives the approximated solution:

Theorem 2. The solution to problem ROF2 verifies:

u = f − PλK(f)

where PλK is the orthogonal projector operator on λK, and

K := {H∗p | p ∈ X9, ‖pi,j,k‖R9 ≤ 1; 1 ≤ i, j, k ≤ N1, N2, N3}.

H is the Hessian operator and H∗ its adjoint. We refer to [9, 2] for the proof of
this theorem. Moreover, in order to approximate the projection term PλK(f) of
theorem 2, the following problem has to be solved [2] :















min ‖λH∗p− f‖2X

p ∈ X9

‖pi,j,k‖
2
R9 ≤ 1; 1 ≤ i, j, k ≤ N1, N2, N3

(3)

This problem can be solved by a fixed point method with an iterative scheme
on the solution p: p0 = 0 and

pn+1
i,j,k =

pni,j,k − τ

(

H

[

H∗pn −
f

λ

])

i,j,k

1 + τ

∥

∥

∥

∥

∥

(

H

[

H∗pn −
f

λ

])

i,j,k

∥

∥

∥

∥

∥

R9

(4)

The discretization of the three-dimensional Hessian operator H and its ad-
joint operator H∗ as well as a sufficient condition ensuring the convergence of
the algorithm can be found in [10].

Theorem 3. [10] Let τ ≤ 1/122, then λ(H∗pn)n converges to PλK(f) as n →
∞.
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3 3D Image Decomposition Model using Undecimated

Wavelet Shrinkage

In this section, a decomposition model based on the second order variational
model ROF2 is presented. Following the work of [15, 8], an undecimated wavelet
transform (the ’a trous’ algorithm) is introduced in order to better separate
geometry from noise during the iteration process.

3D decomposition model. The proposed method aims at dividing a 3D image
f into two components: the first component u ∈ BV 2 represents the geometrical
information (smooth part) while the second component v contains the noise,
with f = u + v. This decomposition model has been proposed in [8] and is
computed by minimizing a convex functional which depends on two variables
(u, v) as following:

inf
(u,v)∈X2

J(u) +B∗(v/δ) +
1

2λ
‖f − u− v‖

2
X (P)

where B∗(v/δ) is the Legendre-Fenchel transform of B of the noise component
v, [8]. Furthermore, let us denote δBE = {z/‖z‖E ≤ δ}. In order to solve the
problem (P), one considers to solve the two following problems:

1. v being fixed, we find u as solution of problem:

inf
u∈X

J(u) +
1

2λ
‖f − u− v‖

2
X (5)

2. u being then fixed, we search for v as the solution of:

inf
v∈δBE

‖f − u− v‖
2
X (6)

The solution of problem (5) is given by u∗ = f − v − PλK(f − v).
Solution of (6) is obtained using the universal threshold T during the iteration
process [8] on an undecimated wavelet transform, the ’à trous’ algorithm. So-
lution can be written v∗ = f − u − UWT (f − u, T ), where UWT denotes the
undecimated wavelet thresholding operator that is detailed in the next section.

The “ à trous” algorithm . The ’à trous’ algorithm [3] is a fast dyadic wavelet
transform and is implemented with filter banks. It is similar to a fast biorthogo-
nal wavelet transform but without subsampling. In our 3D implementation, the
scaling and wavelet functions φ and ψ are a cubic B-splines that enable a nearly
isotropic analysis of the 3D image, and filters are separable 1D filters.
For any resolution level j ≥ 0, the approximation aj and the details dj (wavelet
coefficients) are:

aj [n,m, l] =< f(x, y, z), φ2j (x− n)φ2j (y −m)φ2j (z − l) > (7)

dj [n,m, l] =< f(x, y, z), ψ2j (x− n)ψ2j (y −m)ψ2j (z − l) > (8)
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and discrete image values are assimilated to a0[n,m, l].
A filter x[n] is dilated to make the filter xj [n] by inserting 2j−1 zeros (’trous’)
between each sample. Let us denote x̄j [n] = xj [−n] and δ[n] the discrete Dirac.
h̄ is a low-pass filter associated with the scaling function φ and ḡ is a high-pass
filter associated with the mother wavelet ψ.
The “à trous” algorithm then enables to compute the fast dyadic wavelet trans-
form in the following way:

aj+1[n,m, l] = (h̄j h̄j h̄j ∗ aj)[n,m, l], (9)

dj+1[n,m, l] = ([h̄j h̄j h̄j − δδδ] ∗ aj)[n,m, l] (10)

where h̄j h̄j h̄ and δδδ are 3D filters obtained from h̄ and δ by tensor products.

As there is no downsampling of the original image, all the approximation and
wavelet images have the same size. The undecimated wavelet thresholding op-
erator UWT used for computing v∗ perform the 3D ’à trous’ decomposition of
the image, applies the universal threshold T on each 3D wavelet images and
reconstructed the 3D thresholded image by summing the details and the last
approximation.

Proposed Algorithm. Consequently, our decomposition model is solved by
the following iterative algorithm:

1. Initialization: u0 = v0 = 0,
2. Iterations on n:

un+1 = f − vn − PλK(f − vn) (11)

vn+1 = f − un+1 − UWT (f − un+1, T ) (12)

3. Stopping test: if the following condition is fullfilled:

max (|un+1 − un|, |vn+1 − vn|) ≤ ǫ (13)

4 Application to 3D medical image denoising

The proposed method has been applied on the MRI of a trisomic mouse (Fig.
1). The mouse brain volume is the stack of 104 MRI images. This is a difficult
case because the contrast between different objects in the brain is low, and there
is moreover some acquisition noise (see top image of figure 3).

Our 3D image decomposition method has been applied to this data, for dif-
ferent values of regularizing parameter λ (see figure 2). Since in practice there
is no denoised volume to compare to, tuning of parameter λ often relies on vi-
sual inspection. The stopping criterion has been set to a maximal number of
iterations which can be chosen arbitrary large.

One can observe that the algorithm is able to separate the initial MRI image
into a component u that contains the regularized (denoised) image, and a com-
ponent v that contains mostly noise with some texture and contours information.
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Fig. 1. Original 3D MRI of a Mouse Brain.

Original image u (λ = 1) u (λ = 10) u (λ = 50)

v (λ = 1) v (λ = 10) v (λ = 50)

Fig. 2. Comparison of the u+ v decomposition for different value of regulizer λ.

The good ability to denoise the initial 3D image is confirmed on figure 3, which
shows one slice on the 3D image represented as a 2D surface, its regularized
component u and its noise component v (λ = 10). In figure 3, component v can
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be viewed as a very highly oscillating function. In addition, one can notice in the
denoise part that edges are not oversmoothed. Moreover, its behaviour is quite
stable with respect to λ (for a large value of λ = 100, geometric details appear
in the noise component v).

Fig. 3. Surface representation of one slice of the original 3D volume (top). The u com-
ponent (middle row) and its v component (bottom row). The proposed decomposition
model with undecimated wavelet shrinkage (left column) and a comparison with no
wavelet shrinkage (right column).

A comparison using the same decomposition model without undecimated
wavelet shrinkage has also been performed (using the same value for λ = 10).
It can be noticed on Fig. 3 (right column), that the u component is a bit over-
smoothed and thus region borders are blurred.

5 Conclusion

This article describes a new 3D decomposition method which separates a 3D
image into two components: the first one containing the geometrical structure of
the image, the second one containing the noise. The proposed method is based
on a second order variational model and an undecimated wavelet thresholding
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operator. The numerical implementation is described, and an experiment for
denoising a 3D MRI image of a mouse brain has been successfully performed.
In future works, we shall focus on extending this model to a three component
model f = u+ v + w, which could discriminate between geometrical structures
(u), textures (v) and noise (w). Application of this method to video is also under
consideration.
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