L. Ambrosio, N. Fusco, and D. Pallara, Functions of bounded variation and free discontinuity problems, Oxford mathematical monographs, 2000.

H. Attouch, G. Buttazzo, and G. Michaille, Variational analysis in Sobolev and BV spaces : applications to PDEs and optimization, MPS-SIAM series on optimization, 2006.
DOI : 10.1137/1.9781611973488

M. Bergounioux and L. Piffet, A second-order model for image denoising , Set-Valued Analysis and Variational Analysis, pp.3-4, 2010.

M. Bergounioux, On Poincaré-Wirtinger inequalities in spaces of functions of bounded variation, 2010.

A. Chambolle, An algorithm for total variation minimization and applications, Journal of Mathematical Imaging and Vision, vol.20, pp.89-97, 2004.

F. Demengel, FonctionsàFonctions`Fonctionsà hessien borné, Annales de l'institut Fourier, pp.155-190, 1984.
DOI : 10.5802/aif.969

URL : http://archive.numdam.org/article/AIF_1984__34_2_155_0.pdf

R. Echegut and L. Piffet, A variational model for image texture identification, Recent Advances in Optimization and its Applications in, 2010.

L. C. Evans and R. Gariepy, Measure theory and fine properties of functions, 1992.

L. Piffet, Modèles variationnels du second ordre pour l'extraction de textures 2D, 2010.

P. Weiss, L. Blanc-fraud, and G. Aubert, Efficient Schemes for Total Variation Minimization Under Constraints in Image Processing, SIAM Journal on Scientific Computing, vol.31, issue.3, pp.2047-2080, 2009.
DOI : 10.1137/070696143

URL : https://hal.archives-ouvertes.fr/inria-00166096

M. P. Tran, R. Péteri, and M. Bergounioux, Denoising 3D Medical Images Using a Second Order Variational Model and Wavelet Shrinkage, Lecture Notes in Computer Science, vol.7325, pp.138-145
DOI : 10.1007/978-3-642-31298-4_17

URL : https://hal.archives-ouvertes.fr/hal-00682783

A. Chambolle, An algorithm for total variation minimization and applications, Journal of Mathematical Imaging and Vision, vol.20, pp.89-97, 2004.

M. Holschneider, R. Kronland-martinet, J. Morlet, and P. Tchamitchian, A real time algorithm for signal analysis with the help of the wavelet transform, Wavelets, Time-Frequency Methods and Phase Space, pp.286-297, 1989.

A. Chambolle and P. L. Lions, Image recovery via total variation minimization and related problems Numerische Mathematik, Journal of Mathematical Imaging and Vision, pp.167-188, 1997.
DOI : 10.1007/s002110050258

T. Chan, S. Esedoglu, F. Park, and A. Yip, Total Variation Image Restoration: Overview and Recent Developments, 2004.
DOI : 10.1007/0-387-28831-7_2

C. Louchet, Variational and Bayesian models for image denoising: from total variation towards non-local means, 2008.
URL : https://hal.archives-ouvertes.fr/tel-00371438

I. Ekeland and R. Remam, Analyse convex et problemes variationnels, Etudes Mathematiques . Dunod, 1974.

. Jean-francois, Aujol and Antonin Chambolle Dual norms and image decomposition models, pp.85-104, 2005.

L. Piffet, Décomposition d'image par modèles variationnels -Débruitage et extraction de texture, 2010.

M. Bergounioux and M. P. Tran, A Second Order Model for 3D-Texture Extraction, Mathematical Image Processing. Springer proceedings in Mathematics, vol.5, 2011.
DOI : 10.1007/978-3-642-19604-1_2

URL : https://hal.archives-ouvertes.fr/hal-00530816

J. Starck, E. J. Candes, and L. David, Donoho The Curvelet transform for Image Denoising, IEEE Transactions on image processing, vol.11, issue.6, 2002.

S. Mallat, A wavelet tour of signal processing, 1998.

Y. Jin and E. Angelini, Andrew Laine Wavelets in medical image processing: denoising, sementation and registration

G. Steidl, J. Weickert, T. Brox, P. Mrzek, and M. Welk, On the Equivalence of Soft Wavelet Shrinkage, Total Variation Diffusion, Total Variation Regularization, and SIDEs, SIAM Journal on Numerical Analysis, vol.42, issue.2, 2003.
DOI : 10.1137/S0036142903422429

J. F. Aujol, G. Aubert, L. Blanc-féraud, and A. Chambolle, Image Decomposition into a Bounded Variation Component and an Oscillating Component, Journal of Mathematical Imaging and Vision, vol.15, issue.3, pp.71-88, 2005.
DOI : 10.1007/s10851-005-4783-8

URL : https://hal.archives-ouvertes.fr/hal-00202001

J. F. Aujol and A. Chambolle, Dual Norms and Image Decomposition Models, International Journal of Computer Vision, vol.19, issue.3, pp.85-104, 2005.
DOI : 10.1007/s11263-005-4948-3

URL : https://hal.archives-ouvertes.fr/inria-00071453

A. Bultheel, Wavelets with applications in signal and image processing, 2006.

A. Chambolle, An algorithm for total variation minimization and applications Special issue on mathematics and image analysis, J. Math. Imaging Vision, vol.20, issue.18, pp.89-97, 2004.

T. Chan, S. Ezsedoglu, F. Park, and A. Yip, Total Variation Image Restoration: Overview and Recent Developments, 2004.
DOI : 10.1007/0-387-28831-7_2

E. Thiel and A. Montanvert, Discrete approximation of the euclidean distance for image analysis: improvement of chamfer distances

C. Qiang, M. Philippe, S. S. Quan, A. H. Peng, D. Shen et al., Adaptive total variation denoising based on difference curvature, Image and Vision Computing, vol.28, 2010.

A. S. Yakovlev and . Russia, Window fourier and wavelet transforms. properties and applications of wavelets. Department of Computational Physics

B. Goldlucke, Saddle point problems: Definition, properties and the tv ? L 2 model. Variational methods in Computer Vision II, pp.105-106, 2010.

F. Li, C. Shen, J. Fan, and C. Shen, Image restoration combining a total variational filter and a fourth-order filter, Journal of Visual Communication and Image Representation, vol.18, issue.4, pp.322-330, 2007.
DOI : 10.1016/j.jvcir.2007.04.005

C. Louchet, Variational and Bayesian models for image denoising: from total variation towards non-local means, 2008.
URL : https://hal.archives-ouvertes.fr/tel-00371438

L. Ambrosio, N. Fusco, and D. Pallara, Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs, pp.15-17, 2000.

. Dr, D. C. Boreham, and . Tomography, Medical Physics 779, Radiation Health Risks and Benefits

B. Erhan, N. Ghadarghadar, and D. Erdogmus, Automated extraction of blood vessel netwroksfrom 3d microscopy image stacks via multi-scale principal curve tracing, pp.1-4

D. Frederic, A non-maxima suppression method for edge detection with subpixel accuracy. INRIA Rapport de recherche, p.2724

J. L. Starck, E. J. Candes, and D. L. Donoho, The curvelet transform for image denosing, IEEE Trans Image Processing, vol.11, pp.131-141, 2002.

J. Petrova and E. Hostalkova, Edge detection in medical image using the wavelet transform, Report of Research, vol.89, p.11

L. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D: Nonlinear Phenomena, vol.60, issue.1-4, pp.259-268, 1992.
DOI : 10.1016/0167-2789(92)90242-F

A. Almhdie, P. Lopes-pereira, and S. Même, Chan-vese based method to segment mouse brain mri images: Application to cerebral malformation analysis in trisomy 21, 17th European Signal Processing Conference, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00608092

D. C. Dobson and F. Santosa, Recovery of Blocky Images from Noisy and Blurred Data, SIAM Journal on Applied Mathematics, vol.56, issue.4, pp.1181-1198, 1996.
DOI : 10.1137/S003613999427560X

G. Borgefors, Distance transformations in arbitrary dimensions Computer vision, Graphics and Image Processing, pp.321-345, 1984.

G. Dougherty, Digital Image Processing for Medical Applications. California State University, Channel Islands, 2009.

P. Weiss, L. Blanc-féraud, and G. Aubert, Efficient Schemes for Total Variation Minimization Under Constraints in Image Processing, SIAM Journal on Scientific Computing, vol.31, issue.3, pp.2047-2080, 2009.
DOI : 10.1137/070696143

URL : https://hal.archives-ouvertes.fr/inria-00166096

T. F. Chan and H. M. Zhou, Total Variation Wavelet Thresholding, Journal of Scientific Computing, vol.7, issue.2, pp.315-341, 2007.
DOI : 10.1007/s10915-007-9133-0

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.117.732

Y. Wang and H. M. Zhou, Total Variation Wavelet-Based Medical Image Denoising, International Journal of Biomedical Imaging, vol.2, issue.1, pp.1-6, 2006.
DOI : 10.1016/j.acha.2005.01.004

URL : http://doi.org/10.1155/ijbi/2006/89095

I. Daubechies, Orthonormal Bases of Compactly Supported Wavelets II. Variations on a Theme, SIAM Journal on Mathematical Analysis, vol.24, issue.2, pp.499-519, 1993.
DOI : 10.1137/0524031

G. D. Joshi and J. Sivaswamy, A simple scheme for contour detection, Image Analysis, pp.236-242, 2006.

J. F. Aujol, Some First-Order Algorithms for Total Variation Based Image Restoration, Journal of Mathematical Imaging and Vision, vol.33, issue.2, pp.307-327, 2009.
DOI : 10.1007/s10851-009-0149-y

URL : https://hal.archives-ouvertes.fr/hal-00260494

J. F. Breen, Imaging of the Pericardium, Journal of Thoracic Imaging, vol.16, issue.1, 2001.
DOI : 10.1097/00005382-200101000-00007

A. A. Robert and J. J. Fournier, Sobolev spaces, Pure and Applied Mathematics, vol.140, 2003.

E. Alexandre and J. L. Guermond, Theory and practice of finite elements, of Applied Mathematical Sciences, 2004.

R. H. Knop, J. A. Frank, D. Hyams, and J. L. Doppman, Magnetic resonance imaging versus computed tomography in the valuation of soft tissue of the extremities

M. Misiti, Y. Misiti, G. Oppenheim, and J. M. Poggi, Wavelet toolbox user's guide. The Mathwoks Inc, pp.76-77, 1996.

J. P. Hornak, Basics of MRI, 1996.

M. Milgram and J. P. Cocquerez, Fermeture des contours par un opérateur local, pp.105-106, 1986.

A. Kaur and K. Singh, Wavelets for edge detection in noisy images, National Conference on Computational Instrumentation NCCI 2010, pp.184-186

J. Savagey and K. Chen, On multigrids for solving a class of improved total variation based pde models, pp.1-20

M. Bergounioux and L. Piffet, A second-order model for image denoising. Set-Valued Var, Anal, vol.18, pp.3-4277, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00440872

M. Bergounioux and L. Piffet, A full second order variational model for multiscale texture analysis, Computational Optimization and Applications, vol.18, issue.1???2, p.16, 2011.
DOI : 10.1007/s10589-012-9484-9

L. Piffet, A Locally Anisotropic Model for Image Texture Extraction, Mathematical image processing of Springer Proc. Math, pp.141-158
DOI : 10.1007/978-3-642-19604-1_8

L. Piffet, Decomposition d'image par modeles variationnels -Debruitage et extraction de texture, pp.40-43, 2010.
URL : https://hal.archives-ouvertes.fr/tel-00598289

F. Andreu, V. Caselles, J. I. Diaz, and J. M. Mazon, Some Qualitative Properties for the Total Variation Flow, Journal of Functional Analysis, vol.188, issue.2, pp.516-547, 2002.
DOI : 10.1006/jfan.2001.3829

M. Bergounioux, On poincare-wirtinger inequalities in spaces of functions of bounded variation, p.17, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00515451

F. Luisier, B. Thierry, B. Forster, and M. Unser, Which wavelet bases are the best for image denoising?, Wavelets XI
DOI : 10.1117/12.614999

R. T. Whitaker and S. M. Pizer, A multi-scale approach to nonuniform diffusion, CVGIP: Image Understanding, vol.57, issue.1, pp.99-110, 1993.
DOI : 10.1006/ciun.1993.1006

N. M. Abbasi, The application of fourier analysis in solving the computed tomography (ct) inverse problem, Report of work, 2010.

O. Wirjadi, Survey of 3d image segmentation methods. Models and Algorithms in Image Processing, p.11

T. F. Chan, H. Golub-;-gene, and P. Mulet, A Nonlinear Primal-Dual Method for Total Variation-Based Image Restoration, SIAM Journal on Scientific Computing, vol.20, issue.6, pp.1964-1977, 1999.
DOI : 10.1137/S1064827596299767

A. Chambolle and P. L. Lions, Image recovery via total variation minimization and related problems numerische mathematik, Journal of Mathematical Imaging and Vision, vol.76, pp.167-188, 1997.
DOI : 10.1007/s002110050258

Z. Chen and R. Ning, Breast volume denoising and noise characterization by 3D wavelet transform, Computerized Medical Imaging and Graphics, vol.28, issue.5, pp.674-693, 1989.
DOI : 10.1016/j.compmedimag.2004.04.004

D. S. Angel, Efficient closed contour extraction from range image's edge points, Proceedings of the 2005 IEEE, International Conference on Robotics and Automation, p.10

S. Mallat, A wavelet tour of signal processing, pp.149-150, 1998.

S. Mallat, A theory for multiresolution signal decomposition: The wavelet representation. Computerized Medical Imaging and Graphics, pp.235-246, 2004.

S. Mallat and S. Zhong, Characterization of signals from multiscale edges, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.14, issue.93, p.11

J. Mark and . Shensa, The discrete wavelet transform: Wedding the a trous and mallat algorithms, IEEE Transaction on Signal Processing, vol.40, issue.10, 1992.

L. A. Vese and S. J. Osher, Modeling textures with total variation minimization and oscillating patterns in image processing, Special issue in honor of the sixtieth birthday of Stanley Osher. (Cited on pages 21 and 24, pp.553-572, 2003.
DOI : 10.1023/A:1025384832106

L. A. Vese and S. J. Osher, Modeling textures with total variation minimization and oscillating patterns in image processing Special issue in honor of the sixtieth birthday of Stanley Osher, Journal of Scientific Computing, vol.19, issue.1/3, pp.553-572, 2003.
DOI : 10.1023/A:1025384832106

K. Bredies, K. Kunisch, and T. Pock, Total Generalized Variation, SIAM Journal on Imaging Sciences, vol.3, issue.3, pp.492-526, 2010.
DOI : 10.1137/090769521

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.378.6330

K. Bredies and T. Valkonen, Inverse problems with second-order total generalized variation contraints. Supported by the Austrian Science Fund (SFB) F32, p.19, 2009.

G. Strang and T. Nguyen, Wavelets and filter banks, 1996.

D. Ganguly, S. Chakraborty, and T. H. Kim, A cognitive study on medical imaging, International Journal of Bio-Science and Bio-Technology, vol.3, issue.3, 2010.

S. Changming and V. Pascal, Fast Linear Feature Detection Using Multiple Directional Non-Maximum Suppression, 18th International Conference on Pattern Recognition (ICPR'06)
DOI : 10.1109/ICPR.2006.548

N. Unaldi and V. K. Asari, Undecimated Wavelet Transform-Based Image Interpolation, pp.474-483, 2010.
DOI : 10.1007/978-3-642-17277-9_49

L. A. Monzon, G. Beylkin, and W. Hereman, On almost interpolating and nearly linear phrase compactly supported wavelets (Coiflets) Boulder CO 80309-0526 and Department of mathematical and Computer sciences, Colorado School of Mines, 1877.

Y. Meyer, Oscillating patterns in image processing and in some nonlinear evolution equations. The fifteen Dean Jacquelines B. Lewis Memorial Lectures, pp.11-24, 2001.

Y. Nesterov, Gradient methods for minimizing composite. CORE, Discussion paper, pp.36-37, 2007.

T. L. Daniel and . Yamamoto, Wavelet analysis: Theory and application, pp.44-52, 1994.