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Résumé

Cette étude propose une unification des formulations mono- et multi-moments de la 

distribution granulométrique des pluies (DSD pour « drop size distribution ») 

proposées dans la littérature dans le cadre des techniques de mise à l’échelle 

(scaling). On considère dans un premier temps que la DSD normalisée par la 

concentration en gouttes (Nt, moment d'ordre 0 de la DSD) peut s’écrire comme une 

fonction de densité de probabilité (ddp) du diamètre normalisé par un diamètre 

caractéristique (Dc). Cette ddp, notée g(x) avec x=D/Dc, aussi appelé distribution 

générale, semble être bien représentée par une loi gamma à deux paramètres. Le 

choix d’un diamètre caractéristique particulier, le rapport des moments d’ordre 4 et 3, 

conduit à une relation d’auto-consistance entre les paramètres de la fonction g(x).

Deux méthodes différentes, fondées sur 3 moments particuliers de la DSD (M0, M3

et M4) ou bien sur des moments multiples (de M0 à M6) sont proposées pour 

l’estimation des paramètres et ensuite évaluées sur 3 ans d’observations de DSD 

recueillies à Alès dans le cadre de l'Observatoire Hydrométéorologique 

Méditerranéen Cévennes-Vivarais (OHMCV). Les résultats révèlent que: 1) les deux 

méthodes d’estimation des paramètres ont des performances équivalentes; 2) 

malgré la normalisation, une grande variabilité de la DSD est toujours observée dans 

le jeu de données mis à l’échelle. Ce dernier point semble résulter de la diversité des 

processus micro-physiques qui conditionnent la forme de la DSD.

Cette formulation est ensuite adaptée pour une mise à l’échelle avec un ou deux 

moments de la DSD en introduisant des modèles en loi puissance entre des moments 

dits de référence (par exemple l’intensité de la pluie R et / ou le facteur de 

réflectivité radar Z) et les moments expliqués (concentration en gouttes Nt, diamètre 

caractéristique Dc). Par rapport aux formulations antérieures présentées dans la 

littérature, notre approche tient compte explicitement des préfacteurs des modèles 

en loi puissance pour produire une distribution uniforme et sans dimension, quel(s) 

que soit le(s) moment(s) de référence pris en considération. De manière analogue à 

la première partie du travail, deux méthodes fondées sur 1) l’établissement de 

modèles en loi de puissance ou 2) l’utilisation de moments multiples (de M0 à M6), 

sont proposées pour estimer des paramètres climatologiques des DSD mises à 

l’échelle par un ou deux DSD moment(s). Dans les deux cas, il est tenu compte des 

relations d’auto-consistance résultant du fait que la DSD dépend du ou des 

moments(s) de référence qui est(sont) fonction lui(eux)-même(s) de la DSD. Les 



résultats montrent que: 1) la méthode d'estimation a un impact significatif pour la 

formulation de mise à l'échelle par un seul moment; 2) le choix du moment de 

référence dépend des objectifs d’étude: par exemple, le modèle mis à l'échelle par 

des moments d'ordre élevé produit une bonne performance pour les grosses gouttes 

mais pas pour les petites; 3) l’utilisation de deux moments au lieu d’un seul améliore 

significativement la performance du modèle pour représenter les DSD.

Le modèle de mise à l’échelle de la DSD est ensuite appliqué pour analyser la 

variabilité inter- événementielle selon trois paramètres (Nt, Dc et , ce dernier 

paramètre µ décrivant la forme de la fonction gamma). Différentes séquences de 

pluie ont été identifiées de façon subjective pour l’événement pluvieux intense des 

21-22 octobre 2008 par des changements brusques des moments et/ou paramètres 

dans les séries temporelles correspondantes. Ces phases de pluie sont liées à des 

processus météorologiques différents. Une relation préliminaire est établie entre les 

observations radar et la variation des paramètres des DSD au sol telle que mesurée 

par le disdromètre. Les formulations de mise à l’échelle sont également appliquées 

pour des estimations des densités de flux d’énergie cinétique des précipitations à 

partir de l'intensité de la pluie et / ou de la réflectivité radar. Les résultats confirment 

que l’utilisation de deux moments (R et Z) améliore significativement les 

performances de ces modèles, malgré les caractéristiques d'échantillonnage très 

différentes des radars et des pluviomètres. Cette application ouvre des perspectives 

intéressantes pour la spatialisation de l’énergie cinétique des pluies dans le cadre des 

études sur le pouvoir érosif des pluies.
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Abstract

This study offers a unified formulation for the single- and multi-moment

raindrop size distributions (DSD), which were proposed in the framework

of scaling analysis in the literature. The key point is to consider the DSD

scaled by drop concentration (Nt, 0
th order DSD moment), as a probability

density function (pdf) of raindrop diameter scaled by a characteristic diame-

ter (D/Dc). TheDc is defined as the ratio of the 4th to the 3rd DSDmoment.

A two-parameter gamma pdf model, with a self-consistency relationship, is

found to be suitable for representing the scaling DSD formulation. For

the purpose of parameter estimation, two different methods, based on three

DSD moments (0th, 3rd and 4th moments) and multiple DSD moments (from

0th to 6th moments), are proposed and then evaluated through the 3-year

DSD observations, collected at Alès within the activities of the Cévennes-

Vivarais Mediterranean Hydrometeorological Observatory (CVMHO). The

results reveal that: 1) the scaled DSD model parameterized by three mo-

ments (0th, 3rd and 4th moments) possesses a similar performance compared

to that constructed by multiple DSD moments; 2) regardless the application

of scaling technique, large variation is still exhibited in the climatological

scaled DSD dataset.

The scaled DSD formulation is, in a second step, adapted to the one-

and two-moment scaling DSD formulations by introducing single and dual

power-law models between the reference moments (e.g. rain rate R and/or

radar reflectivity factor Z) and the explained moments (total concentra-

tion Nt, characteristic diameter M4/M3). Compared with previous DSD

formulations presented in the literature, the presented approach explicitly

accounts for the prefactors of the power-law models to produce a uniform

and dimensionless scaled distribution, whatever the reference moment(s)



considered. In the same manner, two methods based on 1) single or dual

power-law models and 2) multiple DSD moments (from 0th to 6th moments),

are proposed to estimate the climatological parameters in the one- and two-

moment scaling DSD formulations. The results show that: 1) the estima-

tion method has a significant impact on the climatological DSD formulation

scaled by one moment; 2) the choice of the reference moment to scale DSD

depends on the objectives of the research: e.g. the DSD model scaled by

high order moment produces a good performance for large drops at the cost

of a poor performance for the small ones; 3) using two scaling moments im-

proves significantly the model performance to represent the natural DSD,

compared to the one-moment DSD formulation.

In terms of applications of scaling DSD model, the analysis of the inter-

event variability is performed on the basis of the scaling formulation con-

taining three parameters (Nt, Dc and µ describing the shape of the gamma

function). Different rain phases can be identified by the sudden shifts of mo-

ments and parameters in time series. It is found that these rain phases are

well linked to different weather processes. And a preliminary relationship

is established between the radar observations and DSD parameters.

The climatological scaling DSD formulations are also used for the DSD

reconstitutions and for rainfall kinetic energy flux density estimations by

rain intensity and/or radar reflectivity factor. The results confirm that the

application of two scaling moments (R and Z) improves significantly the

performance of these models, regardless the different sampling characteris-

tics between radar and raingauge.
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pensables dans cette étude. Je souhaite évidement remercier les personnes
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répondu à mes questions scientifiques très rapidement; Pierre-Alain Ayral

de l’Ecole des Mines d’Alès qui a assuré la maintenance du disdromètre.
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Transports et du Logement
Nt Raindrop concentration in m−3

N(D) Distribution of the drop number as a function of diameter
in mm−1m−3

PCA Principal component analysis
PCi ith principal component
pdf Probability density function
r Coefficient correlation
R rain rate in mmh−1

SDPRM Sous-Direction de la Prévention des Risques Majeurs
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Chapter 1

Introduction

Water is one of the most precious natural resources for the development of human

society. But sometimes, the excessive water causes also serious damages to humanity

and civilization. Rain, which deposits most of the fresh water on the Earth’s surface,

has been studied since the dawn of humanity. However, the complexity of micro-

structure of rainfall is still a challenge to improve our understanding and prediction of

hydrological disasters. This thesis deals with the heavy rainfall, or more precisely, the

microphysical and dynamic characteristics of intense rainfall in the Cévennes-Vivarais

region, which is located in the southeast of France. The general scientific context and

motivation of this study are presented in this first chapter.
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1. INTRODUCTION

1.1 The Cévennes-Vivarais region

1.1.1 Description of the Cévennes-Vivarais region

The word Cévennes refers to a range of successive mountains which run from southwest

(Montagne Noire) to northeast (Monts du Vivarais) in the south of France. These

mountains are a part of the Massif Central and covers parts of the French administrative

departments of Ardèche, Lozère, Haute-Loire, Gard, Hérault. The highest point is Mont

Lozère (1702 m). Another notable peak in this region is the Mont Aigoual (1567 m)

where the French Rivers Authority and Forestry Commission built a meteorological

observatory in 1887.

Figure 1.1: Topographic map of the Cévennes-Vivarais region in Southern

France. - The figure shows the topography of the Cévennes-Vivarais region in the Lambert-

2 projection.
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1.1 The Cévennes-Vivarais region

The Cévennes-Vivarais region defined in our study is showed in Fig.1.1. It includes

some steep mountains with narrow valleys. The altitude can vary from sea level up

to 1500 m over roughly 30 km. Godart et al. (2009) identified this region into three

sectors: a lower terrace (altitude below 200 m); a hilly sector (altitude between 200

and 500 m) and a mountainous sector (altitude above 500 m).

The location of the Cévennes-Vivarais region and its orographic feature are ex-

tremely favorable for heavy rainfall events. Especially in autumn, the temperature of

the Mediterranean Sea is still high, while the cold air masses originating in high lat-

itudes begin to move toward low latitudes. The transfer of heat and moisture from

the Mediterranean Sea colliding with northern cold air creates favorable conditions for

heavy precipitation (Nuissier et al., 2008). The orography which lifts the airflow plays

an important role to generate and trigger the convective cells as well. All these con-

ditions lead to heavy Mediterranean rainfall (Smith, 1979) occurring regularly in the

Cévennes-Vivarais region, which also gives its name, in French, to the meteorological

and orographic effect for the intense precipitation, called “épisodes cévenols”.

1.1.2 Flooding vulnerability

According to the climatological rainfall database of Météo-France (Fig.1.2.), the Cévennes-

Vivarais is one of the regions most affected by heavy rainfall events in France. The

heavy amount of precipitation, with the steep topography, leads often to flash floods

over small watershed. The rapid rise of the water level in rivers, with little or no ad-

vanced warning, causes major damages to human lives and property. The Ministry

of Ecology, Sustainable Development, Transport and Housing (MEDDTL) reported

135 natural disasters that occurred in France between 1900 and 2010. There were 70

events associated with flood disasters, among which 41 occurred in the south of France.

Detailed information for eight serious flood disasters is selected in Table.1.1.

One of the most severe floods in the Cévennes-Vivarais region occurred on 8 and

9 September 2002. An intense thunderstorm dumped more than 300 mm rain in the

department Gard during 48 hours. The maximum daily rainfall recorded by the rain-

gauge reached to 687 mm. 24 people were killed during the disaster and the economic

damage was estimated at 1.2 billion e (Huet et al., 2003).

For the purpose of a better understanding of the intense Mediterranean precipita-

tion, the current thesis on ≪microphysical and dynamic characteristics of rainfall in the

3



1. INTRODUCTION

Figure 1.2: Number of heavy rain days during the recent 30 years (1979-2008)

for each French department. - The heavy rainy days is defined by the daily precipitation

higher than 200 mm. Météo-France (2009) http://pluiesextremes.meteo.fr
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1.1 The Cévennes-Vivarais region

Date Department Meteorological

comments

Socio-economic

impacts

20 and 21

September

1890

Gard, Lozère 828 mm rain mea-

sured during 24

hours at the foot of

Mont Aigoual

28 bridges dam-

aged in Ardèche,

about 50 deaths

28 and 29

September

1900

Gard, Hérault 950 mm rain mea-

sured during 10

hours at the foot of

Mont Aigoual

No reference

Autumn 1958 Gard, Hérault,

Ardèche, Vau-

cluse

2 successive events.

Each event produced

200 to 300 mm rain

during 24 hours

35 deaths in Gard

1 to 5 Novem-

ber 1963

Ardèche,

Lozère, Gard

832 mm rain ob-

served at Mont-

Aigoual

1 death

6 to 8 Novem-

ber 1982

Languedoc-

Roussillon,

PACA et

Corse

300 to 400 mm in

Gard, more than 500

mm in Cévennes re-

gion

13 deaths, 0.3 bil-

lion e of damages

3 October 1988 Gard 420 mm rain ob-

served at Nı̂mes

10 deaths, 0.5 bil-

lion e of damages

21 September

1992

Gard, Hérault,

Ardèche,

Drôme

300 mm rain ob-

served in Gard

47 deaths, 0.5 bil-

lion e of damages

8 and 9

September

2002

Gard, Hérault,

Vaucluse,

Lozère

More than 300 mm

rain measured in

Gard

419 “communes”

are affected by

the flood, causing

24 deaths and 1.2

billion e of dam-

ages

Table 1.1: Recent flooding disasters occurred in Cévennes-Vivarais region. -

(SDPRM 2007, http://www.prim.net/).
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1. INTRODUCTION

atmosphere and its impacts on soil surface erosion≫ was proposed by LTHE (Labora-

toire d’étude des Transferts en Hydrologie et Environnement) at the end of 2008. This

document is aimed to present the main research and findings of this study.

1.2 Microstructure of rain

1.2.1 Raindrop size distribution (DSD)

Above the Earth’s surface, the concentration of atmospheric water vapor into drops

makes it heavy enough to fall under gravity. The amount of rainfall has a dramatic

effect on agriculture and water resources management. The first known records of

rainfalls were kept by the Ancient Greeks about 500 Before Christ. These records were

then used as a basis for land taxes. Today, the quantity of rainfall becomes a standard

meteorological observation defined by the World Meteorological Organization.

However, the quantity of water fallen from the sky is not enough to describe total

characteristics of rain. A detailed measurement should be focused on each raindrop. For

the same quantity of rainfall, the rain can be composed of a large number of raindrops

with small averaged drop size, or a few raindrops with large drop size. In order to obtain

a detailed measurement, the raindrop size distribution (DSD) is proposed to quantify

precisely the microstructure of rainfall. We denote the DSD by N(D) [mm−1m−3]

which represents the number of raindrops per unit volume per unit size interval (D to

D +∆D).

The measurement of N(D) is important in meteorological research for two main

reasons: 1) spatial and temporal variability of DSD reflects the physics of rain evolution

processes; 2) the macroscopic rainfall quantities, such as rain rate (R), liquid water

content (LWC) and radar reflectivity factor (Z) are directly related to the DSD. A

fundamental variable in our study, named the DSD moment, is defined as,

Mk =

∫

∞

0
N(D)DkdD, (1.1)

where Mk represents the kth order of the DSD moment. Each macroscopic rainfall

quantity (observation) is proportional to a particular DSD moment. The expressions

of common macroscopic rainfall quantities based on the DSD are listed in Table.1.2.
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1.2 Microstructure of rain

Macroscopic rain

property

Symbol Unit Relationship

Raindrop concentration Nt m−3 M0

Total surface area of

raindrops

S mm2m−3 πM2

Total volume of rain-

drops

V mm3m−3 πM3/6

Liquid water content LWC gm−3 10−3πM3/6

Radar reflectivity Z mm6m−3 M6

Kinetic energy flux KE Jm−2h−1 5.09× 10−2M5

Rain rate R mmh−1 7.12× 10−3M3.67

Table 1.2: Expressions of macroscopic rainfall quantities based on the DSD.

Note that the assumed relationship (Atlas and Ulbrich, 1977) between raindrop

terminal fall speed (v in ms−1) and raindrop diameter (D in mm)

v = 3.78D0.67 (1.2)

is taken into account to derive the expressions of kinetic energy flux (KE) and rain rate

(R). It is worth to mention that the raindrop fall velocity plays an important role in

determining the disdrometer resolution volumes and the conversion of the rainfall flux

variables, such as R and KE, into the state variables, such as N(D) and Z (Salles and

Creutin, 2003). It is generally assumed that the raindrops have reached their terminal

velocities when they hit the ground. Previous theoretical and experimental studies

showed that the terminal velocity can be expressed as a function of the drop diameter.

Power-law and exponential model have been proposed to represent physically-based

v(D) models e.g. (Beard, 1976) or data-fitted models (Atlas and Ulbrich, 1977; Best,

1950; Gossard et al., 1992; Gunn and Kinzer, 1949). In addition, Erpul et al. (2002)

showed that the vertical wind speed has significant effects on the raindrops velocity (up-

drafts, downdrafts). This would be a motivation for using measured velocities instead

of a velocity model depending on the diameter. However, several authors (Jaffrain and

Berne, 2011; Tokay et al., 2003) claimed that the DSD measurement device we have

been using in this study (the Parsivel disdrometer) does not provide accurate velocity

measurements; their results are consistent with our observations. In the present study,
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1. INTRODUCTION

we therefore use the well-known power-law model proposed by Atlas and Ulbrich (1977),

which has been already considered in many previous studies, to calculate the terminal

velocity of raindrops.

1.2.2 Parameterization of the DSD

The raindrop size distribution is a fundamental property to understand the rainfall be-

cause its variation reflects the physics of rain formation processes. In order to describe

this distribution by several parameters, several authors have proposed in the past dif-

ferent mathematical expressions to parameterize the DSD. Marshall and Palmer (1948)

proposed an exponential DSD model expressed in the form of

N(D) = N0exp(−λD) (1.3)

with two parameters N0 and λ. Based on the experimental observations, the parameter

N0 was fixed and equal to 8000 mm−1m−3 and λ [mm−1] was linked to the rainfall

intensity R [mmh−1] by λ = 41R−0.21. Later, Waldvogel (1974) observed so-called

“N0 jumps” during some rain events and suggested that the variation in N0 was re-

lated to the type of rainfall (convective and stratiform). Thanks to the development

of instrumental technology, more accurate DSD measurements revealed that the expo-

nential DSD model overestimated the number of small drops. Joss and Gori (1978);

Liu (1993) found that the exponential model is merely a statistical average of many

“instantaneous” size distributions. To better describe the DSD, a 3-parameter gamma

DSD model was proposed by Ulbrich (1983) as

N(D) = N0D
µexp(−λD), (1.4)

where N0 [mm−1−µm−3], µ [-] and λ [mm−1] are the intercept, shape and slope pa-

rameters, respectively. This model allows additional flexibility for the DSD fit with

respect to the exponential model, which is a special case of the gamma model with

µ=0. Recent observations (Atlas et al., 2000; Tokay and Short, 1996) confirmed that

the gamma function is a good approximation for the representing of natural DSD.

Although the gamma model generally provides good fits of observed DSDs, one

of its drawbacks is associated with the units of N0 which depends on the parameter

µ. In addition, the three parameters of gamma function have no physical meanings:

several authors have studied the relationships between pairs of parameters to reduce the

8



1.2 Microstructure of rain

number of free parameters, e.g. Ulbrich (1983) displayed a linear relationship between

ln(N0) and µ; Brandes et al. (2003); Chu and Su (2008); Zhang et al. (2003) carried out

an investigations of a 2nd order polynomial relationship between µ and λ. However, the

physical meaning and the domain of validity of such relationships have been questioned

by several authors (Chandrasekar and Bringi, 1987; Moisseev and Chandrasekar, 2007;

Smith, 2009).

An alternative way to model DSDs is based on the concept of normalization. To

our knowledge, Sekhon and Srivastava (1970) were the first authors proposing to nor-

malize the exponential distribution and Willis (1984) further developed this concept for

a gamma DSD model. The normalization concept refers to the scaling analysis which

describes DSDs as a combination of one or several DSD moment(s) and a scaled distri-

bution g(x) of a normalized diameter x. This scaled distribution g(x) is often named

the “general distribution” in the literature, as it is supposed with less variability com-

pared to the moment(s). The aim of the scaling analysis is to normalize the variability

of the DSD by the moment(s). Consequently the general distribution (g(x)) remains

stable, or at least, independent to the scaled moment(s). Sempere Torres et al. (1994)

proposed a one-moment normalization procedure, with:

N(D) = Mαi

i g(x) with x = DM−βi

i , (1.5)

where αi and βi are two parameters andMi is the i
th moment of the DSD. Sempere Tor-

res et al. (1994) argued that most of the previously published DSD models could be

considered as particular cases of such a formulation. However, Sempere Torres et al.

(1998) found that the variability of the general distribution remains significant and

seems to depend on the type of rain (convective or stratiform) and the geographic loca-

tion as well. To better constrain the general distribution, various authors introduced a

second moment into the normalization procedure. For instance, Illingworth and Black-

man (2002) and Testud et al. (2001) developed normalization formulations with respect

to liquid water content (LWC) and a mean volume diameter defined as the ratio of the

4th to the 3rd moments of the DSD. A further clarification was proposed by Lee et al.

(2004), who reviewed previous works and formulate an approach to normalize DSDs by

any pair of two moments Mi and Mj as:

N(D) = M
(j+1)/(j−i)
i M

(i+1)/(i−j)
j g(x) with x = DM

1/(j−i)
i M

−1/(j−i)
j . (1.6)

9



1. INTRODUCTION

It is noteworthy that the exponents in this 2-moment formulation are strictly defined

by the order i and j of the chosen scaling moments.

Both g(x) functions in (1.5) and (1.6) are called the general distribution. But one

may note that the prefactor Mαi

i and the argument DM−βi

i of the g(x) function in

(1.5) have unpractical units of [L]α(i−3) and [L]1+β(i−3), respectively (L stands for a

length scale). Even if (1.6) is more satisfactory from the point of view of units, its

numerical values indeed depend on the order of the scaled moments. This leads to

different and “non-universal” general distributions which depend on the order of the

scaled moment(s) and prevents the comparison of the g(x) functions established by

different moments in the one- or two-moment normalization frameworks. Therefore

some work still needs to be done to cope with these problems and to harmonize the

single- and two-moment normalization frameworks.

1.2.3 Evolution of the DSD and microphysics processes

A better understanding of the DSD, or the parameters in the DSD formulation, is

essential to gain the knowledge of physical processes of rainfall. The characteristic

of a drop size distribution depend on many factors, e.g. meteorological conditions,

orographic condition and various microphysical processes. In this subsection, we will

present an overview of influences of physics and environmental conditions on the DSD.

Precipitation is generally considered to be of two clearly distinguishable types–stratiform

and convective (Houze, 1993). The major difference between them is the vertical air

velocity. Within convective rain clouds, the vertical air velocity has the same order of

magnitude as the horizontal air velocity, as compared to the stratiform clouds which

are composed of broader layers of slowly rising air. Convective clouds are often asso-

ciated with severe, short-duration weather phenomena, such as thunderstorm, heavy

rain, snow shower and hail, whereas the light, widespread rain is generally produced

by stratiform clouds.

Stratiform raindrops are principally generated by the melting snowflakes, the grau-

pel and the rimed particles in the melting layer. A layer of enhanced radar reflectivity

near the 0 ◦C melting layer (hereafter referred to as the bright band) within stratiform

clouds is usually observed by weather radar (Browne and Robinson, 1952; Hooper and

Kippax, 1950). This bright band is associated with the ice particles or snow flakes
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1.2 Microstructure of rain

enclosed by liquid water producing high reflectivity echoes. From a microphysical per-

spective, a strong bright band reflects melting of large, low density and dry snowflakes

into relatively larger raindrops whereas a weak bright band reflects melting of tiny,

compact graupel or rimed snow particles (Fabry and Zawadzki, 1995).

Regarding convective rainfall, the heavy precipitation is typically produced by two

mechanisms: 1) the riming of ice crystals falling back through the super cooled water

in the updraft and 2) the collection of cloud water by raindrops. The second process is

dominant during the early stages of convection development while the first one is more

important during the later convective development stage (Li et al., 2002). Several

studies showed that riming in the updraft region is the main process determining the

form of the DSD in convective clouds, and aggregation is the most important process

in stratiform DSD formation (Atlas and Ulbrich, 2000; Gamache, 1990).

Each microphysical process has a different influence on the DSD measured on the

surface of the Earth. Waldvogel (1974) modeled the DSD by the exponential distri-

bution (1.3) and discovered that the sudden decrease of N0 indicates the transition

of rainfall type from convective to stratiform. Other studies (Martner et al., 2008;

Tokay and Short, 1996) confirmed that the stratiform rainfall is characterized, for a

given rainrate, by less small drops and more large drops, as compared to the convective

rain. This property may be explained by the aggregation process producing large drops

within or under the melting layer in stratiform clouds, while the heavy riming process

generates small raindrops in convective clouds (Waldvogel et al., 1993). However, one

should pay attention to the fact that such argument is derived from the comparison of

convective and stratiform rain at a similar rain rate. Some large drops which exceed 2

to 3 mm in diameter are also observed in tropical intense thunderstorms (Willis, 1984;

Willis and Tattelman, 1989). For weak precipitation, Johnson et al. (1986) and Beard

et al. (1986) showed the existence of large raindrops as well. They supposed that the

large drops are generated by i) the large aerosol particles acting as nuclei (Johnson,

1982) and ii) the re-circulation of the small raindrops from the edge of the downdrafts

into updrafts with large numbers of cloud drops (Rauber et al., 1991).

The investigation of squall-lines has been highlighted by several studies because

they contain the stratiform and convective rain clouds at the same time. Maki et al.

(2001) investigated tropical continental squall-lines based on a gamma DSD model (1.4)
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1. INTRODUCTION

and found that the convex upward shape of DSD for the convective rain and more ex-

ponential for the stratiform rainfall. Another squall-line system in northern Mississippi

was studied by Uijlenhoet et al. (2003b) who showed that the leading convective line

is characterized by large raindrop concentrations, large mean raindrop sizes and wide

raindrop size distributions as compared to the following stratiform squall-line region.

Besides the convective and stratiform precipitation, the orographic precipitation

is a third type of rainfall generated by a forced upward movement of air confronting

by mountains. Ideally, a drizzle with large drops concentrations will be dominant at

top of the precipitated cloud. The drizzle continues to coalesce with other drizzle and

cloud drops into raindrops along the fall distance from the cloud top. For the shallow

orographic clouds, the main variation in the DSD is associated to the evolution of the

drops concentration, while the change of the mean drops size is bounded by the limited

vertical fall distance along which they can grow (Rosenfeld and Ulbrich, 2003). It should

be noted that the orographic rainfall is not totally independent to the convective and

stratiform classification. The terms of stratiform orographic precipitation was used

by Pradier et al. (2004). And Smith (1979) suggested the orographic effects on the

airflow can generate the very active convective cells. Recent observation programs,

such as the Intermountain Precipitation Experiment (IPEX; Schultz et al. (2002)) and

the Mesoscale Alpine Program (MAP; Bougeault and Coauthors (2001)), were carried

out in order to understand the microphysical growth processes of precipitation. With

Doppler and polarimetic radar, Pujol et al. (2005) highlighted the contribution of the

ice phase to heavy precipitation during a particular orographic rain event in the Alps

(MAP IOP3). Therefore, it seems difficult to summarize a general DSD feature for

the orographic precipitations due to the presence of various different microphysical

processes and local surface properties (mountain elevation, slope, vegetation, lakes

etc.)

A further way to categorize rain clouds is done by distinguishing their maritime or

continental origin. The maritime rain is usually associated with the warm rain pro-

cesses, for which the accretion and coalescence are dominant, whereas the continental

rain originate mainly in ice processes. Rosenfeld and Lensky (1998) used the observa-

tion data during TRMM (Tropical Rainfall Measuring Mission) to retrieve the different

microstructure between the maritime and continental rains. They found that two types

of DSD are well separated with continental clouds producing greater concentrations of

12



1.2 Microstructure of rain

large drops and small concentrations of small drops, compared to maritime rainfalls.

Rosenfeld and Ulbrich (2003) explain the large drops in the continental rainfall by the

presence of the ice hydrometeors which can grow indefinitely without breakup in the

cold rain process.

Although numerous studies dealing with the rainfall classification and DSD have

been carried out, it seems difficult to conclude about unique and general DSD char-

acteristics for a particular type of rainfall (convective, stratiform, orographic etc. . . ).

Chapon et al. (2008) showed the abrupt changes and the stability for several hours of

the scaled DSD within one rain event (Fig.1.3), and highlighted the importance of the

intra-event DSD variability.

In the same manner, Lee and Zawadzki (2005) analyzed the DSD variability at

different scales (climatological, daily, within one day, between physical processes and

within a physical process). Their work showed that the DSD variability is more the

result of complex dynamic, thermodynamic and microphysical processes within rainfall

systems, which can hardly be reduced to a simple convective-stratiform classification.

Hence the character of the DSD should be better associated to each particular micro-

physical process, rather than to the type of rain.

Rosenfeld and Ulbrich (2003) illustrated each microphysical process with its influ-

ence on the gamma DSD (1.4 1.5) in schematic diagrams. The following discussion is

a summary of their works.

• Coalescence (Fig.1.4 a)

decreases the numbers of small drops and total number concentration

increases the numbers of large drops and averaged diameter

increases the shape parameter µ as a function of the coalescence process

• Break-up (Fig.1.4 b) decreases the numbers of large drops and averaged diameter

increases the numbers of small drops and the total number concentration decreases

slightly the shape parameter µ

• Coalescence and break-up combined (Fig.1.4 c) break-up for large drops, coales-

cence for small drops both processes acting together increase µ substantially

• Accretion (Fig.1.4 d) increases the sizes of all particles without increasing their

numbers

13



1. INTRODUCTION

Figure 1.3: Intra-variability of the DSD within one rain event. - The figure

illustrates the evolution of the DSD associated with scaled distribution within 7 rain phases

(Chapon et al., 2008).
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1.2 Microstructure of rain

Figure 1.4: Schematic diagrams illustrating the effects on the raindrop size

distribution 1. - The diagram illustrates the (a) raindrop coalescence, (b) raindrop

break-up, (c) coalescence and break-up acting simultaneously and (d) accretion of cloud

droplets (Rosenfeld and Ulbrich, 2003).
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Figure 1.5: Schematic diagrams illustrating the effects on the raindrop size

distribution 2. - The diagram illustrates the (a) evaporation, (b) updraft, (c) accelerated

downdraft and (d) size-sorting (Rosenfeld and Ulbrich, 2003).
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1.2 Microstructure of rain

• Evaporation (Fig.1.5 a) decrease the number of small drops, increase the shape

parameter µ

• Updraft (Fig.1.5 b) eliminates the smallest drops at the lower levels produces

similar effects to the evaporation on the DSD

• Downdraft (Fig.1.5 c) yields complex influence on the DSD, as an example showed

in (Fig.1.5 c).

• Size-sorting (Fig.1.5 d) makes the DSD narrower and decrease the total concen-

tration of drops.

Each microphysical process leaves a particular signal in the DSD on the assumption

that everything else is held constant. However, one should note that, in reality, the

variability of the DSD is controlled by the combination of several processes together,

which makes it difficult to understand the spatial-temporal behavior of the DSD.

1.2.4 Relationships among the DSD moments

Since the first application of radar in the meteorological field, intense scientific efforts

have focused on rainfall estimation. Meteorological radar reflectivity factor (Z) pro-

vides potentially widespread rainfall data (R) with high temporal and spatial resolution,

which is essential for meteorological and hydrological research. The radar reflectivity

factor (Z) and rain intensity (R) obey a power-law relationship, often called Z-R rela-

tionship

Z = aRb (1.7)

In fact, the Z-R relationship is a particular case of the moment relationship which

links the ith to the jth DSD moment. Depending on the DSD formulation, different

moment relationship can be established. For example, based on the exponential DSD

model (1.3), two general moment relationships are derived by eliminating N0 or λ,

respectively, as:

Mi =
Γ(i+ 1)

Γ(j + 1)
λj−iMj = 140.35

Γ(i+ 1)

Γ(4.67)
λ3.67−iR (1.8)

Mi =
N0Γ(i+ 1)

[N0Γ(j + 1)](i+1)/(j+1)
M

i+1

j+1

j =
N0Γ(7)

[N0Γ(4.67)](i+1)/4.67
(140.35R)

i+1

4.67 (1.9)
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The distinction between the linear moment relationship (1.8) and the power-law

relationship (1.10) is a result of the dependence between the moment Mj and the

parameters in DSD model (1.3). Marshall and Palmer (1948) discovered a strong power-

law relationship (λ = 4.1R−0.21) between the rain intensity (R) and the parameter λ.

Considering their propositions: λ = 4.1R−0.21 or N0 = 8000mm−1m−3, we obtain two

Z-R relationships as

Z = 255R1.5, (1.10)

Z = 237R1.5. (1.11)

One may note that, in these two cases, the exponents of the Z-R relationship are

equal to 1.5. Only the prefactor is linked to the variation in the DSD. The gamma

DSD model (1.4) provides further flexibility for the DSD adjustment at the cost of

an additional form parameter µ which can be used to explain the variability of the

exponent in the Z-R relationships. The moment relationships based on the modified

gamma model was investigated by Steiner et al. (2004). In the same manner as the

exponential model, the different dependence of the parameters yields different form of

Z-R relationships. They distinguished three typical rainfall situations: 1) a linear Z-R

relationship for the number controlled situation which suggests that the mean drop

size (D0) and distribution shape (µ) remain constant and the variation in the raindrop

size distribution is due to variations in drop number density (Nt); 2) a power-law Z–R

relationship with exponent b=1.63 for the so-called “size controlled situation” which is

the consequence of a constant drop number concentration (Nt) and distribution shape

(µ), while the variability of the drop spectrum is accommodated through variations in

mean drop size (D0); 3) a power-law Z–R relation where the exponent depends on the

drop size distribution shape parameter (µ), and the prefactor is determined by µ and

N0 together.

The number controlled situation is usually occurring within the steady or equilib-

rium rainfall generated from the opposing forces of coalescence and break-up for rain

rates higher than 50 mmh−1 (Zawadzki and De Agostinho Antonio, 1988). Most rain-

fall situations, however, exhibit a variability of drop spectra that correspond to a mix of

variations in drop size and number density, from which produce intermediate power-law

Z–R relationships between the number controlled and size controlled situation.
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1.2 Microstructure of rain

Many studies focused on the Z-R relationship have been carried out over the years.

Various Z-R relationships are proposed for the different particular rain type applica-

tions or meteorological context. We summarize and compared these Z-R relationships

in Table.1.3 and 1.4.

The first remark on these Z-R relationships is an inverse dependence of the pref-

actor on exponent, that is, large a corresponds to small b. Regarding the variation in

a and b, there have been many attempts to relate the Z-R laws to the meteorological

conditions. However, as we mentioned in the previous subsection, there is a great lack

of consistency in the drop size distribution for meteorological classification (convective

or stratifrom, continental or maritime). Even when the convective conditions appear

to be similar within a rain event, the drop size distributions can be widely different

from one phase to another. Nevertheless, based on long-term DSD observations during

Tropical Oceans Global Atmosphere Coupled Ocean-Atmosphere Response Experiment

(TOGA COARE), large prefactor (200 to 370) and moderate exponent are generally

associated with stratiform rain system, while a small prefactor (120 to 175) is found for

the convective rainfalls. This feature may be explained by the different characteristics

of rain microstucture with stratiform rain possessing more large drops compared to

convective rainfall. An exception is found for some thunderstorms, where the number

controlled situation occurs with large prefactor and exponent equal to 1 .The opera-

tional Z-R relationships used in NOAA highlight the geographic locations playing also

an important role in determining perfactors and exponents. However, it is worth noting

the limitation of Z-R relationship comparison, because the Z-R laws listed in Table.1.3

and 1.4 have been established with different techniques and models, eventually with a

variety of sensors, which make them hardly comparable in fact.

The scaling DSD formulations provide a possibility to explain the variation in Z-R

relationship. Integrating the one- (1.5) or two-moment (1.6) scaling DSD formulations,

one obtains two general moment relationships:

Mk = M
α+β(k+1)
i

∫

∞

0
xkg(x)dx, (1.12)

Mk = M
(j−k)/(j−i)
i M

(k−i)/(j−i)
j

∫

∞

0
xkg(x)dx, . (1.13)

The expression (1.12) suggests that the prefector of Z-R relationship is controlled by

the form of the general distribution g(x) while the exponent is controlled by the scaling
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Z-R relation Condition Reference

Z = 830R1.5 Continental thunderstorms observed at

Swiss Locarno
Joss and Waldvogel (1970)

Z = 316R1.36 Moderate and continental thunder-

storms observed at Oklahoma
Petrocchi and Banis (1980)

Z = 261R1.43 Coastal, moderate maritime thunder-

storms observed at PurtoRico
Ulbrich (1999)

Z = 85R1.5 Summer thunderstorm measured in

Locarno-Monti, Switzerland
Waldvogel (1974)

Z = 350R1.5 Summer widespread rain measured in

Locarno-Monti, Switzerland
Waldvogel (1974)

Z = 139R1.43 Equatorial maritime convective sys-

tems
Tokay and Short (1996)

Z = 367R1.30 Equatorial maritime stratiform sys-

tems
Tokay and Short (1996)

Z = 148R1.55 Convective rain TRMM
Schumacher and Houze

(2003)

Z = 276R1.49 Stratiform rain TRMM
Schumacher and Houze

(2003)

Z = 44R1.91 Coastal no bright band rain observed

in winter in northern California
Martner et al. (2008)

Z = 168R1.58 Coastal bright band rain observed in

winter in northern California
Martner et al. (2008)

Z = 600R1.19 Tropical Convective rainfall phase
Sharma et al. (2009)

Z = 248R1.41 Tropical Transition rainfall phase
Sharma et al. (2009)

Z = 567R1.10 Tropical Stratiform rainfall phase
Sharma et al. (2009)

Z = 369R1.35 Mediterranean Convective rainfall

phase
Chapon et al. (2008)

Z = 494R0.77 Mediterranean Transition rainfall

phase
Chapon et al. (2008)

Z = 84R1.43 Mediterranean Stratiform rainfall

phase
Chapon et al. (2008)

Table 1.3: Different Z-R relationships presented in the literature 1.
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1.2 Microstructure of rain

Z-R relation Condition Reference

Z = 240R1.48 Mount Fuji, at height of 1300 m
Fujiwara and Yanase

(1968)

Z = 88R1.28 Mount Fuji, at height of 2100 m
Fujiwara and Yanase

(1968)

Z = 48R1.11 Mount Fuji, at height of 3400 m
Fujiwara and Yanase

(1968)

Z = 200R1.5 USA, General stratiform rain NOAA (Morin et al., 2003)

Z = 130R2.0 Winter stratiform/orographic rain for

the east of continental divide of USA

NOAA (Morin et al., 2003)

Z = 75R2.0 Winter stratiform/orographic rain for

the west of continental divide of USA

NOAA (Morin et al., 2003)

Z = 300R1.4 Summer deep convection NOAA (Morin et al., 2003)

Z = 250R1.2 Topical convective systems NOAA (Morin et al., 2003)

Z = 600R Equilibrium DSD – number controlled

rainfall
Hu and Srivastava (1995)

Table 1.4: Different Z-R relationships presented in the literature 2.
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parameters (α and β). Uijlenhoet et al. (2003a) investigated the DSD corresponding to

rain rate exceeding 100 mmh−1 based on the one-moment scaling formulation. They

found that the extreme rain tends to be associated with number-controlled rain con-

dition, under which the drop size scaling parameter β is equal to 0, and the number

scaling parameter α is equal to 1 through the self-consistency relationship. Conse-

quently a linear Z-R relationship was proposed to characterize this rainfall.

A curious character of the two-moment scaling framework can be seen in the moment

relationship (1.13) in which the exponents of the double power-law relationship are

determined by the chosen orders of moments. Therefore, only the prefactor depends on

the general distribution g(x). Recent studies (Illingworth and Blackman, 2002; Testud

et al., 2001) showed the advantage in moment estimation based on double power-

law relationship (1.13), compared to the simple moment relation (1.12). However,

the variation in the general distribution remains to be investigated to determine the

prefactor.

Besides the floods caused by the heavy rain fall, soil erosion due to rain is also a

major issue in the fields of agriculture and water management. The determination of

the rain kinetic energy (KE) by the remote sensing technique is also an interesting

aspect in hydro-meteorological studies. In fact, both the Z-R and KE-Z relations can

be derived from the DSD formulation. The variation in the moment relation is strongly

associated with the variability of the DSD, or in other words, with the microphysical

processes occurring in the rain cloud. Hence, the DSD formulation plays the role of

the bridge linking the moment relation to the rain physics. That is the reason why a

better knowledge of the DSD formulation is essential to improve the understanding of

the rainfall microphysical processes and the moment estimates (such as the KE and R

estimations).

1.3 Meteorological observations of intense precipitation

1.3.1 Cévennes-Vivarais Mediterranean Hydro-meteorological Obser-

vatory

The Cévennes-Vivarais Mediterranean Hydro-meteorological Observatory (CVMHO)

is dedicated to long-term observation and modeling of hydrometeorological extremes

in the Mediterranean region. This project was set up in 2000 and since then, many
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1.3 Meteorological observations of intense precipitation

researchers with different background (meteorologists, hydrologists, etc.) have been

collaborating together to cope with a better understanding of extreme rain and flash

floods events occurred in the Cévennes-Vivarais region. The observatory focuses on a

160 × 200 km2 window (Fig.1.6), in which the observation system includes (i) three

operational weather radars belonging to the Météo-France ARAMIS network; (ii) 400

daily rain gauges and 160 hourly rain gauges provided by three organizations (Météo-

France, Service de Prévision des Crues du Grand Delta, Electricité de France); (iii) 45

water level and discharge stations; (iv) 2 laser optical “Parsivel” disdrometers (Delrieu

et al., 2005). The low-cost disdrometer “Parsivel” became commercially available in

2005, and is widely used since them to measure the DSD in hydrometeorological research

(Chapon et al., 2008; Gultepe and Milbrandt, 2010; Yuter et al., 2006). It detects the

different precipitations by a flat, horizontal laser beam, with a sampling area equal to 54

cm2. For each 10 seconds, the measured hydrometeos are described by a 32 x 32 matrix

(32 drop-size and 32 velocity bins). The CVMHO is also supported by the Météo-France

meteorological datasets (such as radio soundings, analyses of the operational models).

An online system (www.ohmcv.fr) for data extraction and visualization was designed

and supported by LTHE (Boudevillain et al., 2011).

1.3.2 Description of the meteorological dataset

The whole meteorological dataset used in this study is collected from the CVMHO. Most

discussion concerned with the rain microstructure is based on the observations of the

Parsivel disdrometer installed at Alès in 2004. This laser optical disdrometer measures

continuously the DSDs at 10-second interval since 2006. And the DSD observations

from the September 2006 to the December 2008 are available for this study. Next to

the disdrometer (2 m), a tipping-bucket rain gauge was set up to check the disdrometer

measurement. In order to remove the fake raindrops, the disdrometer data were filtered

based on the theoretical relationship between measured fall velocity and the diameter

of raindrops with a tolerance of 60% (Jaffrain and Berne, 2011). The 10-second interval

DSD data are then integrated into 1-min and 5-min time intervals. The 1-min data are

used to investigate the DSD variability at a fine temporal scale and the 5-min data are

used to coincide with the weather radar observations. All 1-minute DSD spectra with

rain intensities less than 1 mm h−1, and 5-minute DSD spectra with rain intensities
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Figure 1.6: Location of the CVMHO Cévennes–Vivarais window in France. -

The shaded map presents the terrain elevation data and the main Cévennes rivers. The

light gray box delineates the region affected by the 8–9 Sep 2002 rain event. (Delrieu et al.,

2005)
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1.3 Meteorological observations of intense precipitation

less than 0.5 mm h−1 are removed from the samples to avoid the influence of the

uncompleted DSD spectrum.

Figure 1.7: Cumulative precipitation measured by raingauge and disdrometer

during October 2008. - The comparison shows good agreements of cumulative rainfall

measured between the raingauge and disdrometer.

As an example, the disdrometer and rain gauge data measured during October 2008

are selected to illustrate the quality of the DSD data (Fig.1.7). The rain gauge recorded

248.6 mm of rainfall, which is in good agreement with 241.4 mm and 252.7 mm of rain

derived from the 1-min and 5-min DSD dataset, respectively. The difference between

these two DSD datasets is principally caused by the higher cutoff rain value (1 mmh−1)

for the 1-min dataset.

It should be mentioned that the measurement error of small drops can not be

revealed by this comparison. As we will illustrate in Section 2.2.5, the small drops (D

< 0.5 mm) contribute a small part of rain rate. Thus, the variability of small raindrops

concentration is nearly ignored in the comparison based on rain intensity. Although this

measurement error may not be essential for investigations of Z-R relationships, a robust
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measurement of small drops is still important to understand the rainfall microphysical

processes.

1.3.3 Recent remote-sensing technologies

In 2008, a dual-polarization S-band weather radar was set up at Nı̂mes. The preliminary

observations will be used, in a qualitative manner, to discuss the evolution of the DSD

time series. The basic polarimetric radar products available in this study include: the

copolar-correlation (ρhv), the differential reflectivity (Zdr) and the specific differential

phase (Kdp).

The copolar-correlation (ρhv) is defined as the measure of how similarly the hor-

izontally and vertically polarized signals are behaving within a pulse volume. This

correlation (ρhv) is unit less and its value can be from -1 to 1. When different types

of hydrometeors are present within a pulse volume, the ρhv will decrease toward 0.

In practice, the non-meteorological and meteorological echoes are clearly discriminated

by the ρhv with a threshold of about 0.8. The non-uniform meteorological echoes such

as hail and melting snow produce ρhv values between 0.8 and 0.97. And for the fairly

uniform meteorological echoes such as rain and snow, the horizontal and vertical pulses

change in similar manners resulting in ρhv greater than 0.97.

Differential reflectivity (Zdr) is defined as the difference between the horizontal and

vertical reflectivity factors (1.14). In most cases, its value can range from -7.9 to +7.9

in units of dB. Since Zdr is a ratio of powers, it is immune to the radar calibration.

Zdr = 10 log10(Zh/Zv). (1.14)

The physical interpretation of Zdr is related to the ratio of horizontal to vertical

axis of hydrometeors. If the mean drop shape is spherical, such as for drizzle and

small hail, Zdr will be close to 0 dB. And if the mean hydrometeor is horizontally

oriented, such as for rain or melting hail, Zdr will be positive because the horizontal

reflectivity factor will be greater than the vertical reflectivity. Conversely, Zdr will

be negative for the vertical oriented hydrometeors, such as the vertically oriented ice

crystals. Zdr possesses a potential advantage for raindrop observation thanks to the

strong relationship between raindrop diameter and shape. Smaller raindrops tend to

be spherical and larger drops tend to be oblate. This relationship leads to another

relationship between the Zdr value and the mean raindrop size within a pulse volume.
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1.3 Meteorological observations of intense precipitation

For example, Wakimoto and Bringi (1988) showed the typical Zdr values for various

raindrops (Table.1.5).

Major axis diameter (mm) Zdr(dB)

Smaller than 0.3 mm 0.0 dB

1.35 mm 1.3 dB

1.75 mm 1.9 dB

2.65 mm 2.8 dB

2.90 mm 3.3 dB

3.68 mm 4.1 dB

4.00 mm 4.5 dB

Table 1.5: Relationships between the major axis diameter of raindrop and the

Zdr values.

Bringi and Chandrasekar (2001) indicated that Zdr values are linked to the mass-

weighted mean diameter (Dm) for S-band radar, with

Dm = 1.619Zdr0.485, (1.15)

where the mass-weighted mean diameter Dm is the ratio of the 4th DSD moment to

the 3rd DSD moment, defined as,

Dm =

∫

∞

0 N(D)D4dD
∫

∞

0 N(D)D3dD
. (1.16)

In terms of phase measurement, the propagation of the horizontal and vertical

pulses is also affected by the asymmetry of hydrometeors. Due to the different shapes

of hydrometeors, the attenuation of horizontal and vertical pulses yield a phase shift.

Unlike Zdr, this phase shift is not only affected by the hydrometeors form, but also

related to the hydrometeor concentration. The more hydrometeors present in a pulse

volume, the more differential phase shifting will occur. One should note also the phase

shifting is accumulated through the propagation distance. In order to remove the

distance impact, the specific differential phase (Kdp) shift is used in the literature,

which is defined as the range derivative of the differential phase shift with the unit

deg/km. Its possible values range from -2 to 7 deg/km. A relationship between Kdp

and rainfall variables was proposed by Bringi and Chandrasekar (2001), as

Kdp ≈ C(180/Λ)10−3LWC(0.062Dm) (1.17)
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where C ≈3.75 is dimensionless. Λ and LWC is radar wavelength and rainwater

content, respectively. The specific differential phase, the differential reflectivity and

the reflectivity factor provide 3 independent observations of microstructure of rainfall.

Recent studies have already showed the advantages of these observations for retrieving

the DSD parameters (Bringi et al., 2002; Kim et al., 2010).

1.4 Objectives of this thesis

It has been demonstrated that all physical properties of rain are linked to the mi-

crostructure of rainfall. A better understanding of the variation in the raindrop size dis-

tribution is essential to investigate the rainfall physical processes and the DSD moment

relationships. Although many individual contributions (single- or two-moment(s) scal-

ing DSD formulations) have been made since the beginning of the radar-meteorological

research, a general framework for the harmonization of these contributions is still lack-

ing. It is the aim of this thesis to provide a unified DSD formulation synthesizing the

single- and multi-moment scaling formulations, in the context of Mediterranean intense

rainfall. A framework for parameter estimation procedure is proposed associated to the

DSD formulation.

Once the robust formulation is established, we are able 1) to investigate the intra-

event DSD variability to understand the microstructure of the Mediterranean intense

rainfall; 2) to derive the DSD moments relationships for the rain variables estimations

(such as the Z-R, KE-Z relationships) based on different DSD formulations.

To achieve the goals of this thesis, in Chapter 2, considering a well-defined “general

distribution” g(x) as the probability density function (pdf) of the raindrop diameter

scaled by a characteristic diameter (Dc), a scaling DSD formulation is proposed to

parameterize the natural raindrop size distribution. Different parameterization aspects,

such as the estimation methods, the truncation effects, are studied to produce a robust

model for each individual DSD spectrum, based on the 3-year observations of the

disdrometer.

The formulation is then adapted to the one- and two-moment scaling parameter-

ization, in Chapter 3, by introducing single and dual power-law models between the

reference (or predictor) moment(s) and the explained moments (total concentration,
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characteristic diameter). Compared with previous formulations presented in the lit-

erature, this approach explicitly accounts for the prefactor of the power-law models

to yield a homogeneous and dimensionless general distribution g(x) whatever the pre-

dictor moment(s) considered. A series of the DSD spectra are required to establish

the power-model between the reference moment(s) and the explained moments so it

is impossible to parameterize each DSD spectrum under this context. The associated

parameter estimation procedures are proposed; the rain rate (R) and the radar reflec-

tivity factor (Z) are applied separately and jointly to show examples of the one- and

two-moment scaling formulations, respectively.

Three applications of the scaling formulation are then illustrated in Chapter 4. The

first application is concerned by the investigation on intra-event DSD variability for

a typical Mediterranean rain event by the multiple polarimetric and Doppler radar

(reflectivity factor, differential reflectivity, specific differential phase, Doppler velocity)

and in-situ observations (disdrometer and meteorological observations). A preliminary

discussion about the DSD variation reflected by remote observations is provided. Next,

the reconstitution of the DSD by remote and in-situ observation is performed based on

the climatological scaling formulation. The third application will be devoted to study

how to estimate the rain fall kinetic energy from the observed DSD moments, such as

Z and R.

Finally, the main findings of this study are concluded in Chapter 5, with a broad

perspective for future DSD research. The entire manuscript is organized from theoret-

ical concepts to practical applications. The next chapter will introduce the basis of the

scaling technique in the DSD parameterization framework.
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Chapter 2

Scaling technique and DSD

formulation

The raindrop size distribution (DSD) is the key to understand the physical rainfall

processes and to improve the estimates of moments and the relationships between mo-

ments, such as the Z-R relationship. Instead of dealing directly with the raindrops

counts in each diameter-size class, the analytical formulation provides a convenient so-

lution to describe the whole spectrum by some parameters. In this chapter, a scaled

DSD formulation based on the probability density function will be presented. The ob-

jective is to propose a general scaled DSD model, with physical meaningful parameters,

making full use of the self-consistency relationships.
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2. SCALING TECHNIQUE AND DSD FORMULATION

2.1 Degrees of freedom in the DSD

2.1.1 Number of free parameters in DSD formulations

Basically, the exponential and gamma DSD formulations described in Section 1.2.2

express the DSD as a mathematical function of the drop diameter (D). The approx-

imation of the DSD by these functions means the drop number in each diameter-size

interval cannot be totally independent. The number of small drops is, in some manner,

linked to that of the large drops. In fact, a totally random drop size distribution is

impossible to be represented by an analytical function. The exponential and gamma

DSD formulations reflect the inherent constraint on the rain drop counts in different

diameter-size intervals. And thanks to this constraint, the variation in the DSD spec-

trum is able to be analytically described by several (one to three) parameters.

The scaling technique provides another way to parameterize the DSD. In its most

general acceptance, this approach doesn’t assume any analytical function on the DSD

spectrum. The variation in the DSD spectra is supposed to be only determined by

the DSD moment(s). Therefore, one can scale the DSD by different moment(s) to

obtain a constant and inherent distribution (the so-called general distribution), which

is independent to the DSD moments. In fact, The scaling technique is, under the same

objective as the parametrization by analytical expression, to reduce the variability of

DSDs into evolutions of several moments. One can imagine that a parameterization

of a totally random DSD spectrum with n diameter-size intervals, needs n parameters

in the analytical expression, or n DSD moments in the scaling processes. Hence, the

number of free parameters required in the analytical expression, is in some manners,

related to the number of moments needed in the scaling process.

How many free parameters or moments are required in the DSD parameterization is

a core question. The exponential DSD formulation describes the variation in DSDs by

two parameters (N0 and λ), while the gamma function adds the third shape parameter

(µ). Studies indicate that the three parameters in the gamma function are not totally

independent. Hence, the number of the required free parameters in the DSD analytical

expression is expected to be between 2 and 3. Regarding the scaling technique, the

successful representation of the DSD by a two-moment normalization (Lee et al., 2004)

suggests that two moments are probably enough to represent the whole DSD spectrum.

However, the same problem is that these two moments are not totally independent
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2.1 Degrees of freedom in the DSD

either. In order to determine the degrees of freedom of the DSD, a robust statistic

method, the principal component analysis (PCA) is applied in the beginning section of

this chapter.

2.1.2 Principal component analysis on the DSD moments

Salles (1995) applied the principal component analysis (PCA) on the raindrop size

distribution investigation. He found that the first 3 principal components explain 90%

of total DSD variability. However, the direct implementation of the PCA on the DSD

has some major shortcomings. For example, it is well recognized that the relationship

between N(D1) and N(D2) (D1 6= D2) is non-linear, while the PCA is more convenient

in the analysis for linear systems. Thus a better PCA implementation should be on the

logarithmic-transformed DSDs. But such a transformation is inappropriate for some

uncompleted DSD spectra (some diameter-size intervals have no raindrop).

As regard to the DSD moments, Haddad et al. (1997) parameterized the DSD by

rain intensity (R), mass-weighted mean drop diameter (Dc) and a shape parameter

(s′). The advantage of their parameterization is that the three parameters (R, Dc

and s′) are statistically independent. However, a slight correlation is exhibited for

rain exceeding 12 mm h−1 (Haddad and Rosenfeld, 1997). DSD studies confirm the

presence of multiple power law relationship among the DSD moments (Lee et al., 2004).

Following their ideas, the PCA is envisaged here to analyse the log-transformed DSD

moments, to 1) obtain the independent explaining parameters; 2) respect the multiple

power law relationships among the DSD moments.

The 5-min DSD observations described in Section 1.3 are integrated into 13 suc-

cessive moments (0th, 0.5th, 1st . . . . . . 6th). These moment values are transformed

by the logarithm function (log10). Before the PCA analysis, the boxplot shows the

statistical features of each log-transformed moment (Fig.2.1). The log-transformation

reduces significantly the distinction of the variability among different moments. The

medians and quartiles of all moments are between 2 and 3. This transformation insures

the homogeneous weight of each moment for the principal component analysis. The

cumulative variability explained by the principal components is showed in Fig.2.2. 85%

of total variability is explained by the first component. The percentage increases to

99.5% if the second component is taken into account. And the first three principal

components explain nearly 100% of the variance.
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Figure 2.1: Boxplot of the log-transformed DSD moments for the 5-min data.

- The boxplot shows the comparable variation among the DSD moments after the log-

transformation.
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Figure 2.2: Cumulative variability explained by the principal components. -

The first two principal components explain 99% variability of the whole log-transformed

DSD moments.
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2.1 Degrees of freedom in the DSD

The result of PCA shows the significant increase of the explained variance if the sec-

ond (independent) principal component is used. The introduction of the third principal

component yields a perfect representation of the original variation, but its improvement

is relatively limited. The first three coordinates of the PCA are showed in Fig.2.3, il-

lustrating three basic patterns of the log-transformed DSD moments. The first and

second coordinates exhibit quasi linear patterns, while the third pattern is represented

by a non-linear function. In the basis of the PCA theory, any log-transformed DSD mo-

ments can be reconstituted by the linear combination of these patterns. Selecting the

1st, 1st and 2nd or 1st 2nd and 3rd principal component(s), respectively, we reconstitute

the DSD moments (M0 to M6) in Fig.2.4 to Fig.2.6. The reconstituted expressions of

the DSD moments are written as:

M0 = PC0.133
1 PC−0.455

2 PC0.498
3 (2.1)

M1 = PC0.156
1 PC−0.375

2 PC0.099
3 (2.2)

M2 = PC0.193
1 PC−0.264

2 PC−0.206
3 (2.3)

M3 = PC0.244
1 PC−0.127

2 PC−0.332
3 (2.4)

M4 = PC0.304
1 PC0.027

2 PC−0.248
3 (2.5)

M5 = PC0.368
1 PC0.189

2 PC0.023
3 (2.6)

M6 = PC0.434
1 PC0.352

2 PC0.430
3 (2.7)

where the exponents of PC1, PC2 and PC3 correspond to the first three patterns shown

in Fig.2.3. Regarding the reconstitution by the first principal component (Fig.2.4), the

middle order moments, such as M4 and M5, are well reconstituted, while the recon-

stitutions of the low and high moments, e.g. M0 and M6, produces a large error and

bias. The introduction of the second principle component reduces significantly the

reconstituted error both for the high and low order moments. And a nearly prefect

reconstitution is produced if the third principle component is further used. In fact,

the improved qualities of reconstitutions agree well with the variance explained by the

principle components. More variance explained by principle components, better quality

of DSD moments reconstituted by their combinations.
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Figure 2.3: First three patterns of the DSD in the PCA. - Three major patterns

correspond to the first three principle components.

Figure 2.4: Reconstitution of log-transformed DSD moments based on the first

principal component. - The measured moments ( 0th to 6th) are plotted against the

reconstitutions ( Mrecon
i ) in figures (a) to (g), respectively.

36



2.1 Degrees of freedom in the DSD

Figure 2.5: Reconstitution of log-transformed DSD moments based on the first

two principal components. - The measured moments ( 0th to 6th) are plotted against

the reconstitutions ( Mrecon
i ) in figures (a) to (g), respectively.
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Figure 2.6: Reconstitution of log-transformed DSD moments based on the first

three principal components. - The measured moments ( 0th to 6th) are plotted against

the reconstitutions ( Mrecon
i ) in figures (a) to (g), respectively.
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2.1 Degrees of freedom in the DSD

2.1.3 Interpretation of the principal components

The previous discussions suggest that 3 principle components are largely enough to

represent the variability of the DSD moments. It will be interesting to further investi-

gate the physical meanings of these principal components. The correlation coefficient

between each principal component and log-transformed moments are calculated in Ta-

ble.2.1, which indicate a perfectly linear relationship between the first principal compo-

nent and the log-transformed values of the middle order moment (M4). It means that

the information of such moment is largely contained in the first principle component.

This feature explains the robust reconstitution of the middle order moments by the first

principle component (Fig.2.4) , and also implies the rain intensity (R) to be a good

candidate as a scaled moment in the normalized framework.

PC M0 M1 M2 M3 M4 M5 M6

PC1 0.57 0.71 0.87 0.97 1.00 0.98 0.95

PC2 -0.80 -0.70 -0.49 -0.21 0.04 0.21 0.32

PC3 0.16 0.03 -0.07 -0.10 -0.06 0.00 0.07

Table 2.1: Coefficients of cross correlations between principal components and

log-transformed moments.

The introduction of the second principle component brings the information of low

moment into the reconstitution. The high negative correlation coefficient between PC2

and M0 suggests that the second principle component is likely related to the DSD

concentration. This inference can be easily verified by the reconstitution showed in

Fig.2.5. Regarding the third principle component, no physical dependency is found

in the current study. Its interpretation needs further investigations with more precise

DSD measurements.

Based on the result of the PCA, it seems that the middle and low order moments

are essential to determine the variation in the DSD. The combination of the low and

middle moments should be a good candidate for the DSD scaling process because these

two type moments contain most variances of the total DSD moments. This idea will

be respected in the following discussion in order to propose a robust and meaningful

scaling DSD formulation.
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2. SCALING TECHNIQUE AND DSD FORMULATION

2.2 DSD formulation scaled by concentration and charac-

teristic diameter

2.2.1 DSD formulation

As pointed out by Uijlenhoet et al. (2003a,b) a raindrop size distribution is in fact a

mixture of two different notions, namely that of the concentration Nt within a unit

air volume (expressed in [m−3]) and that of the probability distribution function (pdf)

p(D) [mm−1] of the rain drop diameter D [mm], with:

N(D) = Nt · p(D). (2.8)

In order to work with a dimensionless probability density function, denoted by g(x)

hereafter, Porrà et al. (1998) suggested introducing a characteristic diameterDc [mm−1]

in (2.8), to yield:

N(D) =
Nt

Dc
g(x) with x =

D

Dc
. (2.9)

Contrary to previous authors (e.g., Sempere Torres et al. (1994); Testud et al. (2001)),

we impose a priori in this work the function g(x) [-] to be a true pdf . Among the

available models for pdfs, and due to the usual shapes of DSDs, we have selected the

two-parameter gamma pdf (Mood et al., 1974) for modeling the g(x)-function:

g(x;λ, µ) =
λµ+1

Γ(µ+ 1)
xµexp(−λx). (2.10)

Note that if µ=0, this model reduces to the one-parameter exponential pdf :

g(x;λ) = λexp(−λx). (2.11)

As suggested by Lee et al. (2004), the three-parameter generalized gamma pdf could

provide further flexibility for the DSD adjustment at the cost of the estimation of an

additional parameter c:

g(x;λ, µ, c) =
cλc(µ+1)

Γ(µ+ 1)
xc(µ+1)−1exp [−(λx)c] . (2.12)

Nevertheless, introducing (2.10) in (2.9) yields:

N(D) =
Nt

Dc
g(x;λ, µ) =

Nt

Dc

[

λµ+1

Γ(µ+ 1)

(

D

Dc

)µ

exp

(

−λ
D

Dc

)]

. (2.13)
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2.2 DSD formulation scaled by concentration and characteristic diameter

Although more complex than classical DSD models (exponential, gamma) and less gen-

eral than (2.12), the DSD formulation (2.13) has several definite advantages since: (i)

the term between square brackets is the pdf of the scaled diameter x = D/Dc with, by

definition,
∫

∞

0
λµ+1

Γ(µ+1)x
µexp(−λx)dx = 1; (ii) the two parameters λ and µ are dimen-

sionless; (iii) besides the two parameters λ and µ, the DSD depends on two physical

variables, namely the total concentration of drops Nt and the characteristic diameter

Dc; (iv) if we consider Dc/λ as one parameter, the DSD formulation (2.13) contains

effectively only three free parameters. As we will show in the following subsection, a

self-consistency relationship can be found between λ and µ depending on the choice of

Dc. Based on the concept of normalization, the general distribution g(x) is expected

to characterize an intrinsic shape of the scaled DSD, ideally independent of Nt and Dc.

The variability of λ and µ is hoped to depend on the meteorological conditions which

govern the evolution of the raindrop concentration and the characteristic diameter in

time and/or space.

Introducing (2.13) into the expression of the kth order moment of the DSD yields:

Mk =

∫

∞

0
N(D)DkdD =

Γ(µ+ k + 1)

Γ(µ+ 1)

NtD
k
c

λk
. (2.14)

Equation (2.14) allows us to estimate any moment Mk by Nt, Dc and the two param-

eters of the gamma pdf model: µ and λ. Another point to be addressed here before

considering DSD moments and bulk variables is that the raindrop diameters extend

over a range of values Dmin and Dmax which depend both on rainfall processes and

on instrumental limitations. Dmin and Dmax do have to be considered as additional

parameters of the DSD model and this undoubtedly makes the modeling more complex.

For the sake of clarity, we assume Dmin = 0 and Dmax = ∞ for the main discussion of

this study. The detail truncation problem will be address in the subsection 2.2.3.

Several possibilities are suggested in the literature concerning the choice of the

characteristic diameter Dc: the mean diameter Dm = M1/M0, the median volumetric

diameter Dv defined as
∫ Dv

0 N(D)D3dD =
∫

∞

Dv
N(D)D3dD, or, as a generalization of

the mean diameter, the ratio of two successive moments

Dk+1,k =
Mk+1

Mk
. (2.15)

Due to classical observation problems of small raindrops and our interest for high order

moments of the DSD (from k=3 for the liquid water content up to k=6 for the radar
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2. SCALING TECHNIQUE AND DSD FORMULATION

reflectivity factor, typically), we have chosen as Testud et al. (2001) the following

characteristic diameter hereafter:

Dc = D4,3 =
M4

M3
. (2.16)

We must emphasize that the function g(D/Dc) obviously depends on the definition of

the diameter Dc. For the choice made herein, considering successively k=4 and k=3 in

(2.14) and taking their ratio yields a so-called self-consistency relationship:

λ = µ+ 4, (2.17)

which corresponds to a deterministic constraint between the two parameters µ and λ.

Similarly, setting k=0 in (2.14) yields Nt = M0, indicating very naturally that the

0th order moment is a priori the best estimator for the total concentration. However,

observation problems associated with the tiny raindrops may limit the validity of this

result in practice.

2.2.2 Parameter estimation procedures

Assuming Nt = M0, Dc = M4/M3, only one parameter, µ or λ in the DSD formulation

(2.13) remains to be estimated. In this subsection, two estimation procedures are

proposed, based on three moments (M0, M3 and M4) and on all moments (M0, M0.5,

M1 . . . . . . M6), respectively. Considering the three moments used to define Nt and

Dc, we express M4 and M3 through (2.14) as

M4 =
Γ(µ+ 5)M0(M4/M3)

4

Γ(µ+ 1)λ4
(2.18)

M3 =
Γ(µ+ 4)M0(M4/M3)

3

Γ(µ+ 1)λ3
. (2.19)

Combination of equations (2.18) and (2.19) so as to eliminate λ yields,

M
1/4
4

M
1/3
3

=
Γ(µ+ 1)1/3Γ(µ+ 5)1/4M

1/4
0

Γ(µ+ 1)1/4Γ(µ+ 4)1/3M
1/3
0

. (2.20)

A non-linear algorithm is applied to solve for the DSD shape parameter (µ) in (2.20).

A second method which is called “the ratio estimator” is proposed. Hazenberg

et al. (2011) demonstrated its advantages in estimating parameters for the one-moment
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2.2 DSD formulation scaled by concentration and characteristic diameter

scaling DSD formulation. Based on the moment relationship (2.14), the ratio of two

successive moments for each DSD spectrum can be expressed as

Mk+1

Mk
=

Dc

λ
(µ+ 1) +

Dc

λ
k. (2.21)

Hence, µ and λ of each spectrum can be derived from a linear regression of all ratios

of successive moment (Mk+1/Mk) on k. The slope and intercept in (2.21) produce

independently the value of µ and λ, which are showed in Fig.2.7. The plot of the two

parameters is in good agreement with the self-consistency relationship (2.17).

In order to compare the two estimators, the values of µ estimated by three moments

through the non-linear relationship (2.20), and by all successive moments through the

linear relationship (2.21), are plotted in Fig.2.8. The three-moment estimator produces

larger values of µ compared to that estimated by all-moment estimator, especially for

the high µ values. An evaluation of estimators will be addressed in Subsection 2.2.4,

which shows that the scaling model fitted by 3 moments is robust enough to represent

the natural DSD variability.
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Figure 2.7: Relationship between the two parameters (µ and λ). - The two

parameters are derived independently from a linear regression of all ratios of successive

moment, for the climatological 5-min DSD dataset.
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Figure 2.8: Comparison of µ derived from different estimators for the clima-

tological 5-min DSD dataset. - The µ3 is derived from the three DSD moments (M0,

M3 and M4), while the µall is obtained from a linear regression of all ratios of successive

moment.

2.2.3 Effects of the DSD truncation

Due to rain microphysical processes and the instrumental limitations, the true rain

moments are truncated at lower and upper drop diameters, denoted by Dmin and

Dmax, respectively,

MTrun
k =

∫ Dmax

Dmin

N(D)DkdD. (2.22)

The approximation of the truncated moment (MTrun
k ) by the complete moment (Mk)

yields a bias in the parameters estimation. This problem was well studied by several

previous works, such as Sekhon and Srivastava (1970); Ulbrich (1985, 1992), on as-

sumption of different DSD formulations. Their findings indicated significant influences

of truncation on the retrievals of the DSD parameters for the exponential and gamma

DSD formulations. Hence, a special investigation on the truncation effect is addressed

here for the scaled DSD formulation.

Considering the truncation effect, we define the truncated general distribution gt(x)
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2.2 DSD formulation scaled by concentration and characteristic diameter

as,

gt(x) =
g(x)

∫ xmax

0 g(x)dx−
∫ xmin

0 g(x)dx
, (2.23)

where xmax and xmin are the upper and lower scaled diameters. They can be calculated

by

xmax = Dmax/Dc, xmin = Dmin/Dc. (2.24)

In order to derive a simple mathematical expression, the lower incomplete gamma

function is defined as:

γ(s, x) =

∫ x

0
ts−1e−tdt. (2.25)

Introducing the g(x) expression (2.10) and the incomplete gamma function (2.25)

into (2.23) yields the expression of the general truncated distribution:

gt(x) =
xµexp(−λx)

γ(µ+1,λxmax)
λµ+1 −

γ(µ+1,λxmin)
λµ+1

. (2.26)

Then the truncated DSD can be expressed as:

N(D) =
Nt

Dc

λµ+1xµexp(−λx)

γ(µ+ 1, λxmax)− γ(µ+ 1, λxmin)
with

Dmin

Dc
< x <

Dmax

Dc
. (2.27)

Integrating this DSD formulation (2.27) with respect to the Dk, any truncated DSD

moment is written as

MTrun
k =

NtD
k
c

λk

γ(µ+ k + 1, λxmax)− γ(µ+ k + 1, λxmin)

γ(µ+ 1, λxmax)− γ(µ+ 1, λxmin)
. (2.28)

Similar to the previous section, the deterministic constraint between λ and µ can

be found through the following self-consistency relationship,

λ =
γ(µ+ 5, λxmax)− γ(µ+ 5, λxmin)

γ(µ+ 4, λxmax)− γ(µ+ 4, λxmin)
. (2.29)

One may note that the constraint (2.29) simplifies to the simple self-consistency

relationship (2.17) if xmin = 0 and xmax = ∞. The combination of equations (2.28)

and (2.29) is then used to determine the DSD parameters for each DSD spectrum, by

settingMTrun
k = M0, M3 orM4 in (2.28). A non-linear algorithm based on the modified

Powell hybrid method (Powell, 1964) is applied to retrieve the DSD parameters. The

values of the µ and λ estimated by 3 complete moments in previous section are used as

the initial guess of parameters. In practice, due to the complexity of incomplete gamma
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2. SCALING TECHNIQUE AND DSD FORMULATION

function (2.28), the solving algorithm cannot converge for some particular scaled DSD

spectra under the considered algorithm precision (< 10−10). Most of these particular

scaled spectra possess a convex downward shape distribution with a negative µ. In

order to simplify the calculations, the values of the µ and λ parameters estimated by

complete moments are used for these spectra, which account for 3.77% of total 5-min

spectra.
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Figure 2.9: Relationship between the two parameters (µ and λ) derived from

the three truncated moments for the 5-min DSD dataset. - A non-linear algorithm

based on the modified Powell hybrid method (Powell, 1964) is applied to retrieve the DSD

parameters based on (2.28) and (2.29), using M0, M3 and M4.

In Fig.2.9, the relation (2.29) between µTrun and λTrun is illustrated, with a solid

line representing λ = µ + 4. Regardless the incomplete moments are considered, the

relationship (2.29) is still similar to the simple self-consistency relationship (2.17). Some

scatter can be found when the shape parameter µ is around zero. That means that the

truncation effects play an important role on the µ−λ relationship for the spectra when

the shape parameter (µ) is small. Fig.2.10 represents the contours of λ as a function of
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2.2 DSD formulation scaled by concentration and characteristic diameter

xmin and xmax for two special cases: µ = 1 and µ = 10 based on the µ−λ relationship

(2.29). It confirms that the truncation effect becomes significant to alter the simple

µ− λ relationship (2.17) if the DSD spectrum has small upper scaled diameter xmax (

xmax <1.5) and small shape parameter µ (e.g. the area of contours between λ=4.5 and

5 for the µ = 1 is smaller than that of contours between λ=13.5 and 14 for µ = 10). On

the contrary the Dmin/Dc has little influence on the µ − λ relationship. A histogram

of the xmax is illustrated in Fig.2.11 for the total 5-min DSD spectra with a mode

equal to 2.2, which explains that the truncation has an insignificant effect on the µ−λ

relationship for the most 5-min DSD spectra in our study case.
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Figure 2.10: Truncation effects on the self-consistency relationship (2.29) be-

tween µ and λ. - The contours represent the values of λ for the case of (a) µ=1 and (b)

µ=10.

The comparison of the µ estimated by truncated and by complete moments is

illustrated in Fig.2.12. It seems that neglecting truncation effects will yield an overesti-

mation of the µ parameter, especially for the scaled spectra with a high µ-value. As we

have seen in Fig.2.9 that the truncation effect has insignificant influence on the µ − λ

relationship, this departure should be explained by the truncated moment relationship

(2.28). A special evaluation in the following subsection will be addressed to compare

the model performances regarding the truncated and complete DSD modes. The results
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Figure 2.11: Histogram of the upper scaled diameter (x = Dmax/Dc) for the

5-min DSD. - Most DSD spectra possess a upper scaled diameter between 1.5 and 3.0.

will show this distinction can be neglected in the DSD reconstitutions.

2.2.4 Evaluation of the DSD model scaled by Nt and Dc

Recent investigations made by (Cao and Zhang, 2009; Handwerker and Straub, 2011;

Smith et al., 2009) showed that the errors in the estimates of the DSD parameters are

usually larger when higher-order moments are employed. All of these works indicate the

estimator based on M2, M3 and M4 produces the smallest errors compared to other

moments. Hence, we consider the classical gamma model N(D) = N0D
µexp(−λD)

(Ulbrich 1983), taking into account the effect of truncation based on the 2nd, 3rd and

4th order moments (MODTgamma234) as a reference. Table.2.2 lists the scaled DSD

models associated with different estimators described in previous subsections.

Each DSD spectrum is parameterized by four formulations (Ga234T, Gx034T,

Gx034, Gxall). Fig.2.13 illustrates the comparisons of the different model fits for 6 in-

dividual 5-min DSD which presents contrasting shapes. At the first sight, four models

are generally well suited to represent the natural raindrop size distribution. Fig.2.13a

shows a special DSD with multiple peaks. The representations of four DSD models
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Figure 2.12: Comparison of µ estimated by the three truncated and complete

moments. - This results illustrates that neglecting truncation effects will yield an overes-

timation of the µ parameter.

DSD formulation Estimator Abbreviation

Ulbrich Gamma model (1.4) Truncated M2 M3 M4 Ga234T

Scaled DSD model (2.27) Truncated M0 M3 M4 Gx034T

Scaled DSD model (2.13) Complete M0 M3 M4 Gx034

Scaled DSD model (2.13) Complete all moments Gxall

Table 2.2: Summary of DSD models with different estimators.
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are less satisfactory for this multimodal spectrum. The consideration of the trunca-

tion effects improves the model performance for the small raindrops (Fig.2.13b and c),

but produces sometimes significant errors for the large raindrops (Fig.2.13d). For the

other cases (Fig.2.13e and f), the four scaling models provide similar fits. The detailed

model parameters are listed in Table. 2.3. One may note that the shape parameter µ

produced by Ga234T is similar to the Gx034T, which supports the fact that the shape

parameter of the DSD can not be normalized by the scaling techniques. Note also that

λ in the scaling formulation is different from the one in the gamma model because the

latter contains the Dc. A slight overestimation of µ for the Gx034 compared to the

Gx034T, confirms the results plotted in Fig.2.12. This overestimation is then slightly

corrected by using all moments (Gxall) in the estimate procedure.

DSD
Ga234T

Nt Dc

Gx034T Gx034 Gxall

N0 µ λ µ λ µ λ µ λ

a 5061 -0.45 3.58 520 1.03 0.79 4.97 2.7 6.7 1.09 4.51

b 6836 1.08 2.72 669 1.86 1.38 5.36 1.92 5.92 1.67 5.58

c 8385 1.47 4.24 213 1.27 2.03 5.95 3.1 7.1 2.77 6.68

d 361502 3.06 8.14 356 0.85 3.06 6.94 5.56 9.56 5.42 9.46

e 27031153 7.64 10.4 833 1.12 7.59 11.59 8.31 12.31 7.47 11.42

f 1010 11.1 16.8 737 0.9 11.59 15.58 13.17 17.17 11.22 15.14

Table 2.3: Parameters of different DSD model fits for 6 individual 5-min DSDs,

which are showed in Fig.2.13

Based on all 5-min DSD dataset, the global performance of the DSD scaling models

is assessed by two criteria (bias and correlation coefficient) calculated between the

measured and modeled DSD spectra, defined as,

bias =
N(D)MOD

N(D)OBS

, (2.30)

r =

∑n
i=1 (N(D)iOBS −N(D)OBS)(N(D)iMOD −N(D)MOD)

√

∑n
i=1 (N(D)iOBS −N(D)OBS)

2

√

∑n
i=1 (N(D)iMOD −N(D)MOD)

2
. (2.31)

A common DSD evaluation problem is related to the variability of the raindrop concen-

trations in the various diameter classes. For most DSDs, the small raindrops account

for a large number of total raindrops. As a result, a global statistical assessment of DSD
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Figure 2.13: Comparisons of modeled DSDs derived from different estimators

to the observations. - Six individual DSDs observations are separately fitted by different

models, showed in (a) to (f).
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spectra will be significantly influenced by small drops. In order to avoid this impact,

the assessment procedure is performed as a function of the drop diameters. Raindrops

belonging to each diameter-size interval are separately evaluated.

Ga234T
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Figure 2.14: Evaluation of different DSD models by N(D). - The correlation

coefficient in (a) and bias in (b) between modeled and observed DSDs are illustrated as

function of diameter (D) for different models.

Fig.2.14 shows that Gxall and Gx034 have a similar performance compared to

Ga234T. The raindrops with the diameter between 1.5 mm and 4.5 mm are well re-

constituted by these two models. However, all four models produce large bias for the

small raindrops (D<0.4 mm). This bias can be slightly reduced by the introduction of

the M0 in the scaling formulations (Green line). But it is worth mentioned that this

improvement does not really make sense due to the instrumental uncertainty for the

tiny raindrops. For the middle-diameter drops (0.4 mm < D <5 mm), the truncated

scaling formulation Gx034T produces a significant underestimation with a relative poor

correlation coefficient, while the other models yield better performances. These results

imply that the scaling formulation Gx034 is good enough to represent the natural

variation in the DSD.

The estimation of the DSD moments provides an alternative way to assess the DSD

formulations. If the analytical expression is a good approximation of natural DSD spec-
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2.2 DSD formulation scaled by concentration and characteristic diameter

tra, its derived moment relationship should be able to reconstitute the different DSD

moments. As a further assessment of the proposed DSD models for each 5-minute spec-

trum, we present in Table.2.5 and 2.4, the bias and the correlation coefficient (similar to

the definition in (2.30) and (2.31)) calculated between the observed and reconstituted

moments (from 0 to 6) according to the four DSD models. The moment reconstituted

relationships can be derived from (2.14) for complete moment consideration, and from

(2.28) for truncated moment consideration. Before the evaluation, some spectra with

the shape parameter (µ) smaller than -1 are removed from the 5-min DSD dataset to

avoid the negative gamma function in the M0 reconstitution. These spectra take up to

4.38% of total DSD spectra.

DSD formulation M0 M1 M2 M3 M4 M5 M6

Ga234T 0.9920 0.9991 1.0000 0.9999 0.9992 0.9951 0.9832

Gx034T 1 0.9984 0.9973 0.9973 0.9977 0.9972 0.9924

Gx034 1 0.9980 0.9995 1.0000 1.0000 0.9995 0.9952

Gxall 1 0.9947 0.9968 0.9994 0.9998 0.9997 0.9987

Table 2.4: Correlation coefficients between the observed moments and the

estimated moments based on different DSD formulation.

DSD formulation M0 M1 M2 M3 M4 M5 M6

Ga234T 1.0208 1.0049 0.9994 0.9991 0.9969 0.9897 0.9776

Gx034T 1 0.9980 1.0013 1.0053 1.0054 1.0022 0.9981

Gx034 1 0.9897 1.0084 1.0192 1.0170 1.0194 1.0574

Gxall 1 0.9792 0.9866 1.0011 0.9997 0.9926 1.0028

Table 2.5: Bias between the observed moments and the estimated moments

based on different DSD formulation.

Fig.2.15 illustrates the comparison of the criteria listed in Table.2.5 and 2.4. We

note that, due to the fitting technique, the calibrated moments which are used to

adjust the models are well reconstituted. The truncated scaling DSD formulation fitted

by 3 moments (Gx034T) produces the best performance in bias, but a poor score in

correlation coefficient. Similar to the previous evaluation, the complete moment model

Gx034 yields a performance as good as the truncated one. Its correlation coefficients

remain high for all the DSD moments. A slight bias is found for high moments (6% for
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2. SCALING TECHNIQUE AND DSD FORMULATION

the 6th moment). This error is probably linked to the truncation effect. Nevertheless,

based on the evaluations showed in Fig.2.14 and 2.15 for the purpose of simplicity of

the calculation, the scaling model based on the complete moments is selected to study

the microphysical characteristics of Mediterranean rainfalls in the following study.
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Figure 2.15: Evaluation of different DSD models by moments. - The correlation

coefficient in (a) and bias in (b) between modeled and observed DSD moments (from 0th

to 6th) are illustrated for different models.

2.2.5 Climatological characteristics of the DSD

The previous discussion showed a good performance of the scaling DSD formulation

(2.13) fitted by M0, M3 and M4. Based on this model, an overview of the climatological

characteristics of the 5-min DSD spectra observed in the Cévennes-Vivarais region is

addressed in this subsection.

For the whole observed DSD, the maximum 5-min rainfall intensity reached 132.2

mmh−1. The DSD spectra with rain intensity less than 5 mmh−1, 10 mmh−1 and 20

mmh−1 take up to 79.51%, 91.32% and 96.73% of total DSD spectra, respectively. The

averaged rain intensity for the 5-min DSD spectra is 4.15 mmh−1. A histogram of rain

intensity is showed in Fig.2.16. It should be noted that theses statistic rain intensity

values depend significantly on the rain filter (0.5 mmh−1) described in Section 1.3.2.
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Figure 2.16: Histogram of the rain intensity derived from the 5-min DSD

measured at Alès. - Whole 5-min DSDs are used to obtained the Histogram of the R.

Fig.2.17 shows the averaged spectra as function of the rain intensity. Except for

the DSDs with high rain intensity values, most averaged 5-min DSD spectra possess

the form of the “gamma” function. The peaks of the distributions are found around

D=0.5 mm. The high-intensity DSDs are characterized by a broad distribution with

large raindrops. In fact, the contribution of the tiny raindrops to the rain intensity is

relatively small regardless their large numbers. Fig.2.18 shows the percentages of the

contributions to the cumulative rainfall and radar reflectivity factor as a function of

the drop diameter. The rain intensity depends clearly on the number of the middle-

size raindrops (between 1 and 2 mm), while the radar reflectivity factor is mainly

contributed by the large raindrops (between 2 and 4mm). Therefore, the climatological

Z-R relationship reflects the fact that some intrinsic relationships should exist between

the middle and large size raindrops.

Each 5-min DSD is parameterized by the scaling DSD formulation (2.13) with M0,

M3 and M4. Three parameters (Nt, Dc and µ) are then used to study the DSD

climatological characteristics.

Fig.(2.19) and Fig.(2.20) show the histograms of the concentration (Nt) and the
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Figure 2.17: Averaged 5-min DSD as a function of the rainfall intensity. - The

figure shows the average 5-minute DSD spectra for various rain rate classes (dashed lines),

and two individual DSD spectra with the maximum (132.2 mm h−1) and the minimum

(0.5 mm h−1) rain rate.
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Figure 2.18: Percentages of the contributions to the cumulative rainfall depth

and radar reflectivity factor. - The contributions to the R in (a), and Z in (b), are

illustrated as a function of the drop diameter D.

characteristic diameter (Dc) derived from the 5-min DSD dataset. For most of the

5-min samples, the number of raindrops is less than 1000 m−3 with characteristic

diameters (Dc = M4/M3) between 1.0 and 1.5 mm. The averaged concentration and

characteristic diameter is 486 m−3 and 1.33 mm, respectively. The very large value

of Dc (Dc >4 mm, taking up 0.3% of total DSDs) corresponds to the discontinued

or multiple peaks spectra, which cannot be well parameterized by the scaling DSD

formulation (2.13).

Fig.(2.21) shows the histograms of µ derived from the estimator (2.20). The distri-

bution is positively skewed, containing a mode of µ equal to 2.5, and a limited fraction

of negative (5%) and high µ-values (less than 15% for µ >10). The mode of histogram

suggests that most of the 5-min scaled DSDs possess the gamma function shape, rather

than the exponential distribution. The variation in shape parameter is still large after

the scaling procedure. In order to understand the variation in Nt, Dc and µ, a physical

interpretation of these parameters is further needed to be clarified.

57



2. SCALING TECHNIQUE AND DSD FORMULATION

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

0.0016

0.0018

0 1000 2000 3000 4000 5000 6000 7000 8000

F
re

qu
en

ce

Figure 2.19: Histogram of the concentration (Nt) derived from the all 5-min

DSD dataset. - The concentration is equal to the 0th moment.
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Figure 2.20: Histogram of the characteristic diameter (Dc) derived from the

all 5-min DSD dataset. - The characteristic diameter is equal to the ratio of 4th to 3rd

DSD moment.
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Figure 2.21: Histogram of shape parameter (µ) derived from the all 5-min DSD

dataset. - The estimator (2.20) is applied on each 5-min DSD spectra to obtain a µ value.
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2.3 Interpretation of parameters in the DSD formulation

scaled by Nt and Dc

2.3.1 Interpretation of parameters

The DSD scaling formulation (2.13) contains three parameters (Nt, Dc and µ). The

concentration (Nt) describes the number of raindrops present in a unit air volume. It

is equal to the 0th moment of the DSD. The variation in the concentration depends

largely on the number of small drops. Many microphysical processes, such as break-up,

coalescence, have direct impacts on the concentration. The concept of the number-

controlled rainfall situation was well documented by Uijlenhoet et al. (2003a). In this

case, the DSDs variation is totally controlled by the drop concentration, while the other

parameters are constant.

The characteristic diameter (Dc) is defined by the ratio of the 4th to the 3rd DSD

moment. Compared to the averaged diameter (D0) defined by the ratio of the 1st to

the 0th DSD moment, Dc is more sensitive to the middle and large raindrops. It is

hoped that Dc is less influenced by the instrument uncertainty in the measurement

of small drops. Fig.2.22 plots the characteristic diameters (Dc) versus the averaged

diameters (D0). It can be seen that the characteristic diameter is systematically larger

than the averaged diameter. In fact, this distinction can be explained by the moment

relationship (2.14). Taking the expression of D0, a theoretical relationship is written

as
Dc

D0
=

µ+ 4

µ+ 1
. (2.32)

Hence, the relationships between the Dc and D0 are principally controlled by the

parameter µ which describes the variation of the shape in the scaled DSD. In the case

of a scaled DSD spectrum following the exponential function (µ=0), Dc is theoretically

four times greater than D0. In the case of the scaled DSD spectrum following the

extreme gamma function (µ = ∞), the value of Dc is the same as D0. One can note

that the scatter showed in Fig.2.22 is limited by these two extreme situations.

The dimensionless µ is a shape parameter which is linked to the intercept of the

scaled distribution (λ) by a self-consistency relationship. Taking the expression of the

scaled gamma distribution model (2.10), one can write the mean (meang) and standard
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Figure 2.22: Relationship between the characteristic diameters (Dc) and the

averaged diameters (D0). - Two solid lines represent Dc = D0 and Dc = 4D0
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deviation (σg) for a determined DSD as

meang =
1 + µ

λ
, (2.33)

σg =
(1 + µ)0.5

λ
. (2.34)

From a statistic point of view, the shape parameter µ is associated with the coefficient of

variation (CV ), which is a normalized measure of dispersion of the scaled distribution,

expressed as

CVg =
σg

meang
= (1 + µ)−0.5. (2.35)

For example, the standard deviation of an exponential distribution (µ=0) is equal to its

mean, thus its coefficient of variation (CV ) is always equal to 1. The shape parameter

reflects the combination of the mean value and standard deviation of scaled distribution.

A large value of µ indicates a narrow scaled distribution with a large averaged diameter,

while the small or negative shape parameter suggests usually a broad scaled distribution

with a large number of small drops. And the self-consistency relationship (2.17) reflects

the instinct constraint between mean and standard deviation of the scaled DSD.

2.3.2 Links between scaling DSD formulation and the classical gamma

model

To obtain some further idea of the parameter interpretations, the comparison between

the classical gamma model N(D) = N0D
µexp(−λD) proposed by Ulbrich (1983) and

the scaling formulation will be discussed. Replacing N0 by the concentration in the

classical gamma model yields

N(D) = Nt
λ
µg+1
g

Γ(µg + 1)
Dµgexp(−λgD). (2.36)

The subscript “g” is used to distinguish the parameters of the classical gamma

models and those of the scaling formulation. Assuming that λg = λ/Dc and µg = µ,

one obtains the same expression as the scaling formulation (2.13). This implies the

shape parameter in the scaling formulation is the same as that in the gamma function.

However, the introduction of the characteristic diameter (Dc) in the DSD formulation

switches the intercept parameter (λg) into a dimensionless parameter (λ), which is

linked to the shape parameter (µ) by a simple self-consistency relationship.
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Another advantage of reforming the gamma function by the scaling formulation

(2.13) will be shown in the next chapter: the scaling formulation (2.13) can be easily

extended to the generic DSD formulations scaled by any DSD moment(s), based on the

same probability density function representing the general scaled distribution. This

framework can provide a comparison between general distributions scaled by different

moment(s) and a better understanding of the variation in the scaled distribution.
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Chapter 3

Practical DSD formulations

based on scaling technique

As we have demonstrated in the previous chapter, the gamma probability density

function (pdf) with three DSD parameters (concentration, characteristic diameter and

the shape parameter) is suitable to model each individual scaling DSD spectra. A

complication comes from the fact that the concentration (Nt) and the characteristic

diameter (Dc) can only be measured by the disdrometer at ground level, while other

DSD moments (e.g. rain rate, radar reflectivity factor etc.) can be measured with a

variety of in situ (e.g. raingauge) and remote sensing instruments (e.g. weather radar)

over much wider spatial and temporal domains and scales. It is the purpose of the

present study is to extend the scaling DSD model proposed in the previous chapter to

a generic DSD model scaled by any one or two “measurable” moment(s), also termed

as predictor moments in the following. Hence, this chapter is devoted to construct

a bridge linking purely DSD formulation study to operational hydro-meteorological

applications.
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3. PRACTICAL DSD FORMULATIONS BASED ON SCALING
TECHNIQUE

3.1 Two-moment scaling DSD formulation

3.1.1 Formulation

In order to construct the two-moment scaling DSD formulation, the concentration (Nt)

and the characteristic diameter (Dc) are expressed as double power-law relationships

of the predictor moments Mi and Mj , with:

Nt = CijM
αi

i M
αj

j , (3.1)

Dc = KijM
βi

i M
βj

j . (3.2)

Replacing Nt and Dc in the scaling DSD formulation (2.13) by the above power-law

relationships yields the expression of the two-moment scaling DSD formulation as,

N(D) =
CijM

αi

i M
αj

j

KijM
βi

i M
βj

j

λµ+1

Γ(µ+ 1)
(

D

KijM
βi

i M
βj

j

)µexp(−λ
D

KijM
βi

i M
βj

j

). (3.3)

Integrating the two-moment scaling formulation (3.3) with respect to Dk, one obtains

the expression of the kth order moment expression:

Mk =
Γ(µ+ k + 1)

Γ(µ+ 1)
CijK

k
ij

Mαi+kβi

i M
αj+kβj

j

λk
. (3.4)

There are 8 parameters in the two-moment scaling formulation (3.3). However, these

parameters are not totally independent. In an analogous manner as Chapter 2, setting

k = i and k = j in (3.4), one obtains the following six self-consistency relationships to

reduce the number of parameters in the DSD formulation (3.3):

αi + iβi = 1, (3.5)

αj + iβj = 0, (3.6)

αi + jβi = 0, (3.7)

αj + jβj = 1, (3.8)

Γ(µ+ i+ 1)

Γ(µ+ 1)
Cij(

Kij

λ
)i = 1, (3.9)

Γ(µ+ j + 1)

Γ(µ+ 1)
Cij(

Kij

λ
)j = 1. (3.10)
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3.1 Two-moment scaling DSD formulation

Through (3.5) – (3.8), an interesting feature of the two-moment scaling DSD formula-

tion can be obtained as already demonstrated by Lee et al. (2004): the exponents of

the double power-law models only depend on the predictor moment orders, with:

αi = −
j

i− j
(3.11)

αj =
i

i− j
(3.12)

βi =
1

i− j
(3.13)

βj = −
1

i− j
(3.14)

Expression of the ratio M4 to M3 as a function of the predictor moments M3 and

M4 using (3.4) yields the seventh self-consistency constraint λ = µ + 4, identical to

that mentioned in (2.17). As a consequence, only one free parameter remains to be

estimated in the two-moment scaling formulation.

3.1.2 Parameter estimation procedure

In theory, the free parameter can be easily estimated either from the regression (3.1)

or (3.2). Application of such regressions linking the predictor moments (Mi and Mj)

into the explanatory variables (Nt and Dc) makes the main difference on the scaling

formulations presented in previous and current chapter. In contrast to the DSD scaling

model developed in Chapter 2, which parameterizes each individual DSD, the two-

moment scaling DSD formulation (3.3) is applied over a series of DSD spectra. In

the current study, the whole 5-min DSD data are used to estimate a climatological

parameter for the two-moment scaling DSD formulation.

As mentioned before, only one regression relationship is required to determine the

scaling DSD formulation. The choice of the relationship (3.1) or (3.2) depends on

the quality of the regressions. Fig. 3-1 shows a first plot of concentration against the

combination of M3 and M6, and a second plot of concentration against the combination

of rain rate (R) and reflectivity factor (M6). Below these two figures, Fig. 3-2 shows

the relationships between the combinations of predictor moments and the characteristic

diameter (Dc). Because of the uncertainty in the measurement of Nt and the poor

relationship between the concentration (Nt) and the predictor moments (R and M6),
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the regression based on the characteristic diameter (3.2) is selected in the estimation

procedure to obtain Kij . The other parameters, such as Cij , λ and µ, can be easily

determined using the self-consistency relationships (3.9), (3.10) and (2.17).
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Figure 3.1: Relationship between the concentration and the predictor moments

- Poor relationships are showed between the concentration and the combination of M3-M6

in (a); between the concentration and the combination of R-M6 in (b).

In an analogous manner as Chapter 2, an estimation method using all DSD moments

is proposed to compare with the result obtained from the regression. The estimate

procedure is the following:

• We firstly establish the multiple power-law relationships Mk = aijkM
bki
i M

bkj
j

based on (3.4), between all moments Mk (k=0 to 6) and predictor moments Mi,

Mj by forcing the exponent bki and bkj equal to appropriate values through (3.11)

- (3.14).

• With the self-consistency relationship (2.17) and the moment expression 3.4, we

can determine the values of Kij , λ and µ from a linear regression analysis on the

ratio of consecutive coefficients aij,k+1 and aij,k, as a function of k

θk =
aij,k+1

aij,k
= (µ+ 1)

Kij

λ
+ k

Kij

λ
. (3.15)

68



3.1 Two-moment scaling DSD formulation

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

0 1 2 3 4 5 6
0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

5 10 15 20 25 30 35 40 45 50

Figure 3.2: Relationship between the characteristic diameter and the predictor

moments - Good relationships are showed between the characteristic diameter and the

combination of M3-M6 in (a); between the characteristic diameter and the combination of

R-M6 in (b).

• Cij can then be determined either by the self-consistency relationship (3.9) or

by (3.10). This step allows us to verify our theory by the comparison of the Cij

values derived from the 2 different self-consistency relationships.

Fig.3.3 demonstrates the relationship between the ratio of consecutive coefficients

(aij,k+1/aij,k) as a function of order (k) for the DSD formulation scaled by the rain

intensity (R) and reflectivity factor (Z). A linear relationship agreeing well to the

theory (3.15) is obtained. The Kij , λ and µ are then determined by the intercept and

slope together with the self-consistency relation (2.17).

The parameter values estimated by the regression (3.2) and by all moments using

(3.15) are listed in Table.3.1. For the reason of simplicity, M3.67 (mm3.67m−3) instead

of rain intensity (R: mm/h) is used as the predictor moment for the following studies.

A simple linear relationship between the M3.67 and R is

M3.67 = R/0.0071251. (3.16)
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Figure 3.3: Linear relationship between the ratio of consecutive coefficients

(aij,k+1/aij,k) and the order k. - The slope and intercept are used to estimate parameters

in the two-moment scaling DSD formulation.

Estimators αi αj βi βj Cij C∗

ij Kij µ λ

(3.2) 2.575 -1.575 -0.429 0.429 6.457 0.831 2.439 6.439

(3.15) 2.575 -1.575 -0.429 0.429 6.720 6.698 0.829 2.306 6.305

Table 3.1: Parameters of DSD formulation scaled by (M3.67) and radar reflec-

tivity factor (Z) by two estimation methods. Cij can then be determined either

by the self-consistency relationship (3.9) or by (3.10).
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Both estimation methods produce similar parameter values in the DSD formulation.

The climatological shape parameter (µ) for the whole DSD series scaled by M3.67 and

M6 is around 2.4, which is very closed to the mode of the µ-histogram for the previous

DSD formulation scaled by Nt and Dc. Introducing these climatological parameters

(Kij , Cij , αi, αj , βi and βj) into (3.3) and then inversing the DSD formulation, we

obtain an expression of the scaled DSD function as

g(x) = N(D)/
CijM

αi

i M
αj

j

KijM
βi

i M
βj

j

with x =
D

KijM
βi

i M
βj

j

. (3.17)

The expression (3.17) provides the second way to illustrate the scaled distribution.

Each 5-min DSD spectrum is scaled by M3.67 and M6 through (3.17) with the climato-

logical values of Cij and Kij listed in Table.3.1. The averaged spectrum of these scaled

DSDs is then plotted in Fig.3.4 to compare with the scaled distribution modeled by

the gamma function with the shape values (µ). The scaled distribution derived from

the regression (3.2) is shown on the left hand side and the one derived from all DSD

moments (3.15) is shown on the right hand side. The two scaled distributions are very

similar. The two modeled g(x) are generally in good agreement with the averaged

scaled spectra, except for a slight underestimation for x < 0.5 and overestimation for

x > 3.0. These biases are possibly related to the measurement errors concerned with

tiny rain drops, and the sampling error related to large drops. The low standard devi-

ation indicates the good performance of scaling technique for the scaled spectra with

0.5 < x < 2.0.

Two climatological moments relationships can be derived from equation (3.4) based

on the climatological DSD parameters listed in Table.3.1,

Mk =
2.077Γ(3.439 + k)

0.129−k
(

R

7.125× 10−3
)2.575−0.429k(Z)−1.575+0.429k, (3.18)

Mk =
2.489Γ(3.306 + k)

0.131−k
(

R

7.125× 10−3
)2.575−0.429k(Z)−1.575+0.429k. (3.19)

One may note that these two DSD moments relationships are very similar. In fact,

because the two estimators produce very similar parameters listed in Table.3.1, it is

expected that there is no fundamental difference between the DSD models calibrated

by the regression (3.2) and by all moments using (3.15).
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Figure 3.4: Averaged scaled distribution (points) with the DSD model scaled

by M3.67 and Z. - The models adjusted by the regression relationship (3.2) and (3.15) are

illustrated in (a) and (b), respectively. The vertical bars represent the standard deviation

in logarithmic scale of the scaled distribution.

3.1.3 Evaluation of the two-moment formulation

Similarly to the evaluated methods presented in Section 2.2.4, two evaluation proce-

dures are performed in this subsection. The first evaluation is based on the comparison

between the modeled and the observed DSD, while the second one is to assess the

quality of reconstituted moments. A detailed description of the evaluation process can

be found in Section 2.2.4.

The correlation and bias between the modeled and observed DSD are displayed in

Fig.3.5. As expected, the two models have nearly the same performance. The models

are well correlated with the observations for the raindrop diameter range 1 mm < D <5

mm. But the performance decreases rapidly for the raindrops less than 1 mm. This

is explained by the fact that both the rain rate and the radar reflectivity factor are

high order moments, quite insensitive to the small raindrop counts. Fig.3.6 shows

the quality of reconstituted moments. The high order (M3.67 to M6) moments are

well estimated by the scaling DSD models, while the low order moments are seriously

overestimated. Comparing to the results presented in Fig.2.15, one can easily note
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3.2 One-moment scaling DSD formulation

the difference between the DSD models scaled by R-Z, and by Nt-Dc. The latter

model produces a good performance both for the low and high order moments. This

result highlights the limitation of high-order moments for the estimation of low-order

moments. The estimation of low order moments, sensitive to small raindrops counts,

is still a challenge in the future research.
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Figure 3.5: Evaluation of reconstituted DSDs based on the 2-moment (M3.67

and M6) DSD formulations. - Two climatological DSD models derived from different

estimators are evaluated by correlation coefficient in (a) and bias in (b).

3.2 One-moment scaling DSD formulation

3.2.1 Formation

If only one DSD moment is available, the concentration (Nt) and the characteristic

diameter (Dc) may be expressed as power-law relationships of the predictor moment

Mi, with

Nt = CiM
αi

i , (3.20)

Dc = KiM
βi

i . (3.21)
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Figure 3.6: Evaluation of reconstituted moments based on the 2-moment (M3.67

and M6) DSD formulations. - Reconstituted moments based on two climatological DSD

models are separately evaluated by correlation coefficient in (a) and bias in (b).

Similarly, replacing Nt and Dc in (2.13) by the above power-law relationships yields

the one-moment scaling DSD formulation:

N(D) =
CiM

αi

i

KiM
βi

i

λµ+1

Γ(µ+ 1)
(

D

KiM
βi

i

)µexp(−λ
D

KiM
βi

i

) (3.22)

Introducing the one-moment DSD formulation in the expression of the kth order mo-

ment yields:

Mk =
Γ(µ+ k + 1)

Γ(µ+ 1)
CiK

k
i

Mαi+kβi

i

λk
. (3.23)

There are 6 parameters in the one-moment scaling DSD formulation (3.22). By setting

k = i in (3.23), one obtains two self-consistency constraints as

αi + iβi = 1, (3.24)

Γ(µ+ i+ 1)

Γ(µ+ 1)
Ci(

Ki

λ
)i = 1. (3.25)

In addition, it can be verified that the self-consistency constraint (2.17) related to the

choice of the characteristic diameter (Dc) holds by the expression the ratio (M4/M3)

as a function of the predictor Mi using (3.23). As a consequence, there are three free

parameters that remain to be specified for the one-moment scaling DSD formulation.
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3.2 One-moment scaling DSD formulation

3.2.2 Parameter estimation procedure

In order to illustrate an implementation of the one-moment scaling DSD formulation,

we have chosen to consider in this section the M3.67 or M6, to scale the 5-min DSD

spectra.

Similar to the two-moment scaling DSD formulation, a series of DSD observations

are required to obtain the DSD parameters. In theory, three free DSD parameters

can be obtained from the linear regression analysis (3.20) and (3.21) with respect to

the log-transformed DSD moments. Fig.3.7 and Fig.3.8 show the plots of explained

moments (Nt and Dc) against predictor moments (M3.67 or M6). As expected, the

relationship between the total concentration (Nt) and the predictor moment (M3.67 or

M6) is rather weak (Fig.3.7). It becomes even weaker in the Z-scaling case due to

the poor correlation between drop concentration and the highest order moment. These

results show the difficulty in estimating Nt by the commonly observed moments, such

as R or Z. Hence, we propose to rely on the statistical relationship between Dc and

the predictor moment (3.21) for estimating the parameters Ki and βi, and then to rely

on the self-consistency relationships for estimating Ci and αi.
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Figure 3.7: Relationships between the DSD concentration and the predictor

moment. - The relationship between Nt and M3.67 is illustrated in (a); relationship

between Nt and M6 is illustrated in (b).
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Figure 3.8: Relationships between the DSD characteristic diameter and the

predictor moment. - The relationship between Dc and M3.67 is illustrated in (a); rela-

tionship between Dc and M6 is illustrated in (b).

In practice, Ki and βi are determined from the regression analysis of log-transformed

Dc versus the log-transformed Mi. Next, αi can be calculated from the self-consistency

relationship (3.24) and, in a third step, Ci is estimated by forcing the exponent in (3.20)

to be equal to αi. Finally, considering the self-consistency relation (2.17), µ and λ can

be derived from (3.25). However, a serious shortcoming of this estimation procedure

is related to the unreliable regression (3.20). To partly overcome this problem, an

alternative method based on all observed DSD moments is proposed and described

below:

• Establish the power law relationships Mk = aikM
bik between all moments Mk

(k=0 to 6) and the predictor moment Mi (i = 3.67 or i = 6) to derive aik and

bik.

• Estimate αi and βi by the method proposed by Sempere Torres et al. (1998)

based on the linear relationship between the exponent values bik (k=0 to 6) and

moment order k.

• Through the self-consistency relationship (2.17), determine the values of Ki, λ
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3.2 One-moment scaling DSD formulation

and µ from a linear regression analysis on the ratios of consecutive coefficients

ai,k+1 and ai,k following the method proposed by Hazenberg et al. (2011)

θk =
ai,k+1

ai,k
= (µ+ 1)

Ki

λ
+ k

Ki

λ
. (3.26)

• Calculate the value of Ci from the self-consistency relationship (3.25).
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Figure 3.9: Estimation of the parameters in the DSD formulation scaled by

M3.67. - Relationship between the exponent bi and the moment order k is showed in (a);

the ratios of consecutive coefficients (θk) and the moment order k is showed in (b).

Fig.3.9a and 3.10a display the exponent bik as a function of the moment order k, for

DSD formulations scaled by M3.67 and M6, respectively. In both cases, a good linear

relationship is found, except for the low order moment. This is probably explained

by: (i) the uncertainty associated with the measurement of small raindrops, which

is essential to determine the low order moments; (ii) the inherent uncertainty in the

power-law relationships (Mk = aikM
bik
i ) between the low and the high order moments.

Hence, the 0th moment is neglected in the regression analysis to estimate

Fig.3.9b and 3.10b show the relationships between the ratios of consecutive coeffi-

cients (θk = ai,k+1/ai,k) and the moment order k, for DSD formulation scaled by M3.67

and M6, respectively. As expected from the theoretical relationship (3.26), a linear
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Figure 3.10: Estimation of the parameters in the DSD formulation scaled by

M6. - Relationship between the exponent bi and the moment order k is showed in (a); the

ratios of consecutive coefficients (θk) and the moment order k is showed in (b).

behavior is exhibited between θk and k. This linear relation is then used to estimate

Ki, λ and µ based on the linear expression (3.26). Note that, after the estimation

of αi and βi, the exponents bik in Mk = aikM
bik are slightly changed. It was found

numerically important to adapt the values of the coefficients aik to coincide with the

shift of exponent values (bik). Once Ki, λ and µ are determined, Ci can be derived

from the self-consistency relationship (3.25).

The two estimation methods (based on simple regressions (3.20) - (3.21), or on all

DSD consecutive moments) are performed to obtain the climatological parameters for

the DSD formulation scaled by M3.67 and by M6, respectively. All parameters in these

formulations are listed in Table.3.2.

It seems that the choice of the estimation method has a significant influence on

the shape parameter (µ). The “all moments” method produces a low shape parameter

(µ=1.595) in the DSD formulation scaled by M3.67, in opposite to a high shape pa-

rameter produced by the regression (3.20) - (3.21). On the contrary, the “all moment”

produce a higher shape parameter in the DSD formulation scaled by M6. The other

parameters, such as Ci, βi and αi, depend more on the order of the scaling moment.
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Scaling Moment Estimators αi βi Ci Ki µ λ

M3.67 Regression 0.271 0.199 93.84 0.405 2.266 6.266

M3.67 All Moment 0.304 0.190 77.91 0.450 1.595 5.595

M6 Regression -0.0028 0.167 496.1 0.414 1.699 5.699

M6 All Moment 0.0417 0.160 363.6 0.420 2.823 6.823

Table 3.2: Parameters of DSD formulation scaled by rain intensity (R) or radar

reflectivity factor (Z) by two estimated methods.

The scaling process by high order moment yields a lower αi and a higher Ci, compared

to that scaled by low order moment.

In the same manner as the two-moment scaling formulation, we introduce the cli-

matological parameters (Ki, Ci, βi and αi) into (3.22) and reform the DSD formulation

to obtain the expression of the scaled distribution as,

g(x) = N(D)/
CiM

αi

i

KiM
βi

i

with x =
D

KiM
βi

i

. (3.27)

Each 5-min DSD spectrum is scaled by the predictor moment (M3.67 or M6) based on

the expression (3.27). The averaged spectrum of these scaled DSD spectra is plotted in

Fig.3.11 and Fig.3.12 for the M3.67- and M6-scaled DSD formulations, respectively, to

compare with their modeled scaled distributions calculated from the shape parameter

(µ). For each moment scaled spectrum, the scaled distributions estimated by the

“simple regression” and by the “all-moments” are displayed separately. Regardless

the choice of the estimation method, the M3.67-model yields a slight overestimation

for x < 0.5 and an underestimation for x > 2.0 (Fig.3.11). This bias is significantly

reduced in the DSD spectra scaled by M6, especially when the “simple regression”

method is used to estimate the DSD parameters (Fig.3.12a). It seems that the choice

of parameters estimator depends on which moment is used in the scaling procedure. The

model scaled byM3.67 derived from “all-moment” exhibits a slightly better performance

compared to that derived from “regression”, while the “regression” estimator is better

than the estimator based on “all-moment” for the DSD model scaled by M6. The

detailed model performance will be evaluated in the next subsections.

Substituting the climatological DSD parameters listed in Table.3.2 into the moment

relationship (3.23) yields expressions of any moment Mk as a function of R and Z,

respectively. The expressions (3.28) and (3.30) are obtained based on the “regression”
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Figure 3.11: Averaged scaled distribution (points) with the DSD model scaled

by M3.67. - The models adjusted by the regression relationships and by “all-moment” are

showed in (a) and (b), respectively. The bars represent the standard deviation of the scaled

distributions.
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Figure 3.12: Averaged scaled distribution (points) with the DSD model scaled

by M6. - The models adjusted by the regression relationships and by “all-moment” are

showed in (a) and (b), respectively. The bars represent the standard deviation of the scaled

distributions.
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estimator, and the (3.29) and (3.31) are obtained based on “all moments” estimator.

All these expressions are under the form of power-law relationships, the exponent is

related to the parameter α and β, and the general distribution has a direct impact on

the prefactor of the power-law relationship.

Mk =
36.216Γ(3.266 + k)

0.0657−k
(

R

7.125× 10−3
)0.271+0.199k, (3.28)

Mk =
57.717Γ(2.595 + k)

0.0805−k
(

R

7.125× 10−3
)0.304+0.190k, (3.29)

Mk =
321.45Γ(2.699 + k)

0.0726−k
(Z)−0.0028+0.167k, (3.30)

Mk =
75.349Γ(3.828 + k)

0.0616−k
(Z)0.0417+0.160k. (3.31)

These relationships which link any DSD moment (Mk) to the predictor moment are

totally based on the estimated DSD parameters. The model evaluations carried out in

the next section are devoted to select the better DSD models, so as the better moment

relationships, which provide the possibility to derive the climatological Z-R and KE-R

relationships.

3.2.3 Evaluation of one-moment formulations

The same criteria (bias and correlation coefficient) defined in (2.30) and (2.31) are used

to evaluate the scaling DSD model (3.22). Fig.3.13 shows the performance of the DSD

formulation scaled by the M3.67 as a function of raindrop diameter.

As the middle order moment (M3.67) is applied in the DSD formulation, the middle-

size raindrops are rather well reconstituted. The correlation coefficient between the

modeled and measured drops numbers reaches 0.9 for drops with 2 mm < D <4

mm. But the correlation degrades rapidly for the small and large drops. A significant

bias (20%) is evidenced by the evaluation. And the bias becomes even larger for the

drops with D <0.3 mm and D >4 mm. Regarding the different estimators, the DSD

estimated by “all moments” reduces slightly the bias for the large raindrops. And the

correlation coefficients of the two estimators are nearly identical.

Fig.3.14 shows the performance of the DSD formulation scaled by M6 as a function

of the drop diameter. Compared to the formulation scaled by M3.67, this model yields

a good performance for the large drops at the cost of a low correlation coefficient for
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Figure 3.13: Evaluation of DSD model scaled by M3.67. - The correlation coefficient

and bias between the modeled and observed N(D) are showed in (a) and (b). The black

and blue curves represent the DSD models parametrized by “regression” and “all-moment”

methods, respectively.
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Figure 3.14: Evaluation of DSD model scaled by M6. - The correlation coefficient

and bias between the modeled and observed N(D) are showed in (a) and (b), The black

and blue curves represent the DSD models parametrized by “regression” and “all-moment”

methods, respectively.
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the small drops. This behavior is explained by the weak relationships between the

number of small drops and the high order moment (M6). A significant bias (+- 20%)

is produced by this model as well. However, in this case, the model parameterized by

the “simple regression” approach seems to be less biased than the one estimated by the

“all moments” approach.

The reconstituted moments based on the M3.67- and M6- scaling DSD formulations

are evaluated in Fig.3.15 and Fig.3.16, respectively. As mentioned before, the predictor

moment which is used to scale the DSD formulation is well reconstituted. For the

moment relationships with the predictor moment M3.67, both the “simple regression”

and “all-moment” estimators produce the same correlation coefficients. Note that the

“all-moment” estimation reduces significantly the bias for the high order moments, at

the cost of an underestimation at the low order moments. The high order moments

are potentially important for the following studies, such as investigations of KE-R and

Z-R relations. Thus the estimator based on “all moments” is selected for the DSD

formulation scaled by the rain rate.
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Figure 3.15: Evaluation of reconstituted moments based on the DSD model

scaled by M3.67. - The correlation coefficient and bias between the reconstituted and

observed Mi are showed in (a) and (b). The black and blue curves represent the DSD

models parametrized by “regression” and “all-moment” methods, respectively.
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Figure 3.16: Evaluation of reconstituted moments based on the DSD model

scaled by M6. - The correlation coefficient and bias between the reconstituted and ob-

served Mi are showed in (a) and (b). The black and blue curves represent the DSD models

parametrized by “regression” and “all-moment” methods, respectively.

Regarding the moment estimation made by Z (Fig.3.16), the “simple regression”

and “all moments” estimators exhibit totally different behaviors. The moments esti-

mated by Z based on “all moments” are higher than the observations (up to 12%),

while a significant underestimation (up to 18%) of middle and large order moments

is produced by the DSD model based on “simple regression”. For the same reason

(potential importance of the high order moment), the “simple regression” estimator is

selected in the following investigations concerning the DSD formulation scaled by Z.

To conclude, a comprehensive evaluation of DSD models scaled by M3.67 or M6 has

been presented in this subsection. Different from the case of two-moment DSD model,

the choice of the estimators (“regression” or “all moments”) has a direct impact on

the estimation of parameters contained in the one-moment formulation. Regarding the

model performance, it seems that the coefficient correlation is less influenced by the

estimators, compared to the model bias. And it is hard to conclude which parameter-

estimator produce less bias to another. All depends on the moments or the raindrop

diameters that we focus on. In this study, the estimator “all-moment” and “regression”

are selected for the DSD formulations scaled by R and Z, respectively, for the purpose
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of the better estimation of high order moments.

3.3 DSD scaled by different moment(s)

3.3.1 Comparison of the climatological g(x) scaled by different mo-

ment(s)

As mentioned before, the two- and one-moment scaling DSD formulations come from

the same DSD formulation scaled by Nt and Dc. With respect to previous work e.g.

Lee et al. (2004), the two parameters (K and C) are accounted for in the formulation to

remove the impact of the scaling moment(s) on the scaled distributions. Hence, it will

be interesting to compare the distributions obtained in the different scaling frameworks,

and notably the g(x) functions. Because the DSD model scaled by Nt and Dc is devoted

to parameterize the individual spectrum, while the g(x) in the one- and two-moment

DSD model is related to the climatological scaled distribution for whole 5-min DSD

spectra, the mode of the shape parameter (µ=2.5) in the histogram 2.21 is considered as

an average value for the DSD model scaled by Nt and Dc. Shape parameters describing

Scaling Moment(s) Estimators µ

Nt and Dc Mode of µ estimated by M0, M3 and M4 2.5

M6 and M3.67 Regression (3.2) 2.439

M6 Regression (3.20) and (3.21) 1.699

M3.67 All Moments (3.26) 1.596

Table 3.3: Shape parameter (µ) obtained in different scaling frameworks.

the scaled distributions are listed in Table.3.3. The value of µ varies from 1.5 to 2.5

among different scaling frameworks. It seems that the distributions scaled by one

moment are characterized by a smaller µ, compared to those scaled by two moments.

One should note that the parameters for one-moment DSD formulation are issued

from the evaluation focused on reconstitutions of high order moments, otherwise, one

may obtain a totally different estimate of shape parameters (µ=2.266 and 2.823 for the

DSD model scaled by M3.67 and M6, respectively, see previous subsection and Table.3.2

for details). Nevertheless, the values listed in Table.3.3 are considered as the “best”

estimate for the climatological DSD parameters in current study.
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Figure 3.17: Averaged scaled g(x) distributions (points) with the appropriate

modeled gamma functions in different scaling framework. - The averaged dis-

tributions and gamma models scaled by Nt-Dc, M6-M3.67, M6 and M3.67 are showed in

(a), (b), (c) and (d), respectively. The bars represent the standard deviation of the scaled

distributions.
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3.3 DSD scaled by different moment(s)

Four averaged and modeled g(x) distributions scaled by Nt-Dc, M6-M3.67, M6 and

M3.67, respectively, are displayed in Fig.3.17. The distributions showed in Fig.3.17b, c

and d are identical to those showed in Fig.3.4a, Fig.3.11b and Fig.3.12a. The modeled

scaled distribution displayed in Fig.3.17a is based on the mode of the shape parameters

distribution (µ=2.5). Each figure displays the standard deviation of the scaled distri-

butions by the black bars as. It is hoped that the variation of the g(x) function could

be reduced as much as possible by the scaling procedure.

As a general comment regarding the standard deviation of the scaled spectra, one

may consider the vertical bars at the different diameters for the different moment

scaling formulations. As expected, accounting for Nt in the DSD formulation reduces

significantly the variability of scaled distribution for x <0.5. The M3.67-scaled process

reduces the variability of the scaled distribution for the medium scaled diameter range

(0.5< x <1.8). And theM6-scaled process allows a significant reduction of the standard

deviation for the upper x values (x ≈ 2.0) at the cost of an increased variability for the

small scaled diameters (x <0.5). The scaling technique using M3.67 and M6 together

yields the reduction of the variation both for the small and large scaled diameter (0.5<

x <2.5). It is worth mentioning that the four averaged scaled distributions are similar

to each other, which is in good agreement with the concept of the DSD formulation as

the product of a concentration multiplied by a unique probability density function of

the raindrop diameter scaled by a characteristic diameter.

3.3.2 Climatological Z-R relationships

The moment relationships (3.29) and (3.30) are able to link various rainfall variables

to measurable DSD moments. Investigation of Z-R relationship is an application with

particular interests in hydrometeorological research. Setting k=6 in the M3.67-scaling

moment relationships (3.29), or k=3.67 in the M6-scaling moment relationships (3.31)

produces two climatological Z-R relationships

Z = 338.8R1.44, (3.32)

and

Z = 249.9R1.64. (3.33)

Equation (3.32) comes from the DSD formulation scaled by rain rate, which means

that the reflectivity factor is expressed as a function of the rain rate, while equation
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(3.33) is derived from the DSD formulation scaled by radar reflectivity factor, which

implies that the rain rate is reconstituted by the reflectivity factor (this is the general

case in radar hydrology). This result is analogous to standard regression analyses e.g.

Chapon et al. (2008) that could be performed on the (Z, R) pairs derived from each

single spectra, by considering successively Z and R as the explanatory variable.

Fig.3.15 and Fig.3.16 display preliminary evaluations of these two Z-R relationships

by comparing reconstituted and observed Z and M3.67 values. Both of them have

good coefficient correlations (>0.9), with 10% underestimation of Z for (3.32) and 10%

underestimation of R for (3.33). In order to further evaluate these two climatological

Z-R relationships, four criteria (coefficient correlation, bias, Nash coefficient and root

mean square deviation) calculated between the estimated and observed rainfall are

calculated for the Z = aRb relationships with prefactor (a) ranging from 50 to 350

and exponent (b) ranging from 1.0 to 3.0, based on the whole 5-min DSD data. The

contours in Fig.3.18 show the statistical criteria as a function of prefactor and exponent.

The cross (+) and (x) pictograms represent the Z-R relationship (3.32) and (3.33),

respectively.

Fig.3.18 confirms the good performance of two Z-R relationships regardless their

different prefactor and exponent. The Z-R relationship (3.33) produces 10% underes-

timation of rainfall, which is slightly improved in the (3.32). Except for this underes-

timation, the other statistical criteria indicate that the relationship (3.33) is slightly

better than (3.32) for the rainfall estimation. In any case, this example illustrates the

impact of the scaling procedure on the prefactor and exponent of the Z-R relationship.
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Figure 3.18: Statistical criteria calculated between estimated and observed

rainrates as a function of the exponent and prefactor in the Z-R relationship,

for the climatological 5-min DSD data. - The coefficient correlation, bias, Nash

coefficient and root mean square deviation are showed in a, b, c and d. The cross (+) and

(x) pictograms represent the Z-R relationship (3.32) and (3.33), respectively.
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Chapter 4

Application of scaling DSD

formulation

In the previous chapter, a general framework has been developed to extend the

DSD formulation scaled by Nt and Dc to general DSD formulations scaled by any one

or two moment(s). This chapter will be devoted to illustrate three typical applications

of scaling DSD formulations: 1) understanding the intra-event variability of rainfall

based on the variation in the DSD; 2) reconstitution of DSDs by available observed

DSD moments and 3) estimation of the rainfall kinetic energy for soil erosion studies.

Instead of using the reflectivity factor and rain rate derived from the disdrometer, the

operational weather radar and rain gauge measurement are used in this chapter. The

objective is to show the performance of the scaling DSD formulation in the practical

rain event analysis.
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4. APPLICATION OF SCALING DSD FORMULATION

4.1 Investigation of the intra-event variability through the

scaling DSD formulation

4.1.1 Rain event description

In order to investigate the intra-event DSD variability, one rain event, mixing high

and low intensity rain rate occurred during the night of October 22, 2008 is studied

in this section. This intense rain event was characterized by the arrival of a cold

front on the Mediterranean south moisture flow. During the daytime of 21 October,

southeastern France was covered by a stable moisture flow from the Mediterranean

Sea which generated some local convective systems in the Cévennes-Vivarais region. A

frontal disturbance moved from the northeast to the southwest and converged to the

convective systems in the Cévennes-Vivarais region at midnight on 22 October (See

Fig.4.1). The largest rainfall occurred over the foothills of the Cévennes on the evening

of 21 October. Daily maximum rainfall reached 470 mm at La Grand Combe (about

10 kilometers to the north of Alès) (Vincendon et al., 2011). The raingauge installed at

Alès measured 86.6 mm rainfall during 17 hours (22:00 21 October-17:00 22 October).

This heavy rainfall led to a significant rise of the water level of the Gardons, Cèze and

Ardèche rivers.

Fig.4.2 shows the intensity of rain measured by the disdrometer and rain gauge

for each 5-minute interval. The maximum intensity of precipitation (about 50 mm

h−1) occurred between 2:30 and 4:30 of the 22 October, when the frontal disturbance

arrived in the Cévennes-Vivarais region. Strong radar echoes (>=50 dBZ) were also

obtained during this period. It is worth mentioning that the rain intensities measured

by raingauge and disdrometer, the reflectivity factor observed by weather radar and

disdrometer are in good agreement.

Fig.4.3 illustrates the evolution of the meteorological observations (temperature,

wind speed, wind direction and humidity) during this event. The temperature decreased

by 7 ◦C after the cold front passage. A sudden cooling occurred in the morning (08:00-

11:00) of 22 October associated with the passage of the cold front. The measurement of

the wind revealed more details about the cold frontal disturbance. A stable southeast

wind blew until the arriving of the cold front at around 2:00. During the passage of

the cold front (2:00 to 6:00), the wind speed decreased between 4:00 and 5:00. And

then, a moderate north wind (5 ms−1) was observed after the passage of the cold front.
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Figure 4.1: Reflectivity images observed by the Bollène radar at 0.8 degree

elevation, for the rain event of the 21-22 October 2008. - Radar observation

reveals a passage of the cold font.
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Figure 4.2: Comparison of Radar reflectivity factor derived from disdrometer

at Alès and observed by the Nı̂mes radar in (a); rain intensity observed by

the disdrometer and raingauge in (b) for the event of the 22/10/2008. - Good

agreements are found among different instruments.
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Figure 4.3: Meteorological observations for the rain event of the 22/10/2008. -

The figure shows the time series of temperature, wind speed, wind direction and humility

measured by a meteorological station near Alès.
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The upper air observations by the radiosonde at Nı̂mes (about 40 km away from Alès)

are presented in Fig.4.4. The red, continued blue and dashed blue curves represent the

temperature, the wet bulb potential temperature and the dew point curves, respectively.

The latter two terms are used to infer the amount of moisture in the air. The freezing

level was found at 3100 m before the front passage and 2800 m after the front passage.

A narrow thermal inversion layer was situated between 3500 m and 4000 m with a

rapid decrease of humidity. This layer is likely to be associated with the production of

the precipitating hydrometeors.

Figure 4.4: Radiosounding observed at Nı̂mes, at 00:00 and 12:00 of the 22

October 2008. - (www.meteocenter.com)

Some numerical model studies for this event have been carried out by several au-

thors. Vié et al. (2011) performed a rainfall forecasting based on the operational

AROME model. The rainy location forecasting by the numerical model approximately

matched the observed precipitation area but the convective part was underestimated

in terms of both spatial extent and maximum rain intensity. Duffourg and Ducrocq

(2011) highlighted the role of the moisture flow from the Mediterranean Sea during the

initiation and mature phase of the rain event. This moisture flow was raised to the top

of the troposphere (10 km) in the core of the convective parts.
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Figure 4.5: Disdrometer observations for the rain event of the 22/10/2008.

- The y-axis represents the size of the raindrop, and the color refers to the number of

raindrops.
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4.1.2 Variation of the DSD and rain phases within the event

Fig.4.5 shows the time-evolution of the DSD for this rain event with a 5-min resolution.

The y-axis represents the size of the raindrop, and the color refers to the number of

raindrops. Different DSD characteristics can be distinguished before, during and after

the passage of the cold front. The 5-min DSD spectra have been parameterized based

on the scaling DSD formulation presented in Section 2.2. The three time-series of Nt,

Dc and µ are shown in Fig.4.6.
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Figure 4.6: Time series of the DSD parameters for the rain event of the

22/10/2008. - (a) concentration; (b) characteristic diameter and (c) the scaling DSD

shape parameter µ.

Five intra-event rain phases are subjectively distinguished considering the radar

images (Fig.4.1), the meteorological observations (Fig.4.3) and the DSD time-series
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(Fig.4.6) together. The event started with a light rain between 22:00 and 23:55 (phase

1). The cold front was still far away. A strong convective system had already developed

close to Alès. Its maximum reflectivity reached 60 dBZ. The disdrometer was located

at the edge of the convective system. A few small raindrops (diameter around 1 mm)

were observed at that time (Fig.4.5). From 00:00 to 02:25 (phase 2), the cold front

was approaching. At the same time, the convective system began to move to the east.

More and more raindrops are detected by the disdrometer. A significant increase of Dc

and decrease of µ was observed during this phase. However, the concentration of the

drops (Nt) remained limited to 1000 m−3. After 02:30 (phase 3), the cold front merged

with the convective system, and eventually enhanced the convection. At this moment,

the center of the convective system arrived at Alès and produced the majority of the

rainfall. The most remarkable variation in the DSD observations was the increase of

the raindrop concentration to 2000 m−3, while the Dc and µ remained relatively steady

with respect to the previous phase. The rainfall began to decrease at 4:30 (phase 4)

and finally stopped at 6:00 in the morning. This dissipating phase was characterized

by the rapid decrease of Nt and Dc together.

The fifth (last) rain phase occurred in the daytime of the 22 and lasted for several

hours. The light rainfall consisted of many small raindrops. The concentration of drops

reached up to 3500 m−3. The characteristics of this phase correspond to the typical

drizzle precipitation, which is usually seen at either the front or tail end of convective

systems.

Fig.4.7 illustrates the DSD spectra scaled by Nt and Dc in each rain phase. As

predicted by the evolution of the shape parameter (µ), two contrasting shapes are found

between the strong convective phases (such as the phases 2 and 3) and weak convective

phases (such as the phases 1 and 5). The strong convective phase is characterized

by a broad scaled distribution with a µ near zero, while the non-convective phase is

characterized by a narrow distribution with a high value of µ.

The DSD is scaled by M3.67-M6, M6 and M3.67 in Fig.4.8, 4.9 and 4.10, respectively.

It can be seen that, for each rain phase, the shapes of distributions scaled by different

moment(s) are approximately similar to each other. Regardless the moment(s) used in

the scaling procedure, the strong convective phase is always characterized by a broad

distribution while a narrow distribution is exhibited for the weak convective phases.
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Figure 4.7: DSDs scaled by the concentration and characteristic diameter for

each rain phase. - The black curve represents the mean scaled spectrum of each rain

phase, based on the average µ value.
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Figure 4.8: Distributions scaled by the M3.67 and M6 for each rain phase. - The

black curve represents the modeled scaling distribution.
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Figure 4.9: Distributions scaled by the M6 for each rain phase. - The black curve

represents the modeled scaling distribution.
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Figure 4.10: Distributions scaled by the M3.67 for each rain phase. - The black

curve represents the modeled scaling distribution.
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4.1.3 Investigation of the rain phases based on remote sensing obser-

vations

Assuming that the front system is stationary, the disdrometer captured the principle

DSD characteristics belonging to different parts of the convective system. The raindrops

in the edge of system (phase 2) are dominated by some large raindrops with a low

concentration. This implies that the collision-coalescence of the raindrops plays an

important role in this phase. The core of convective system (phase 3) is characterized

by the increase of concentration, and more particularly, the increase of the number of

small drops. This phenomenon is probably explained by the weak evaporation, under

the condition of the updraft which supplies enough moisture in the column of air. A

typical drizzle occurred after the passage of the cold front. This precipitation type

indicates usually the presence of a relatively stable air preventing continued vertical

development of convection in atmosphere.

Fig.4.11 shows the evolution of the vertical reflectivity profile and the air vertical

velocity profile above Alès derived from the Doppler radars. It can be seen that the

phase-separation based on the surface DSD characteristics corresponds well with the

distinct property of the vertical profiles observed in the atmosphere. In the leading and

ending edge of the convective system (phases 1 and 4), the reflectivity factor extends

vertically to 10 km, with the maximum reflectivity factor around 35 dBZ. The low

vertical velocity implies weak convection in these phases. The main precipitation fell

down in the phases 2 and 3. In phase 2, the reflectivity factor increases suddenly

compared to that in phase 1. The 30 dBZ reflectivity factor can be found at 5 km in

altitude, with a vertical velocity between 1 and 2 m/s. The phase 3 corresponds to

the strongest convection in this rain event. The convective system extending to a high

altitude (30 dBZ is found at 7 km) produces an intense rainfall at Alès. The air vertical

velocity reaches up to 3 m/s at the same time. And in the last drizzle phase, the low

radar reflectivity factor (<25 dBZ) extending to about 4 km in altitude, with a stable

and low vertical air velocity is found in Fig.4.11. The combination of Fig.4.11, 4.6

and 4.5 reveals the correspondence among the characteristic of the DSD, the vertical

extension of the convective system, the maximum radar reflectivity factor and the

vertical velocity of air.

Fig.4.13 shows the evolution of the vertical cross section passed through Alès (Fig.4.12)

during the second and third rain phases. A very strong convective system located 10
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Figure 4.11: Vertical reflectivity (dBZ) profile (top) and air vertical velocity

(m/s) profile (bottom) above Alès derived from the Doppler radars. - The

velocity profile is provided by Olivier Bousquet (Météo-France).
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4. APPLICATION OF SCALING DSD FORMULATION

Figure 4.12: Illustration of the position of the East-West vertical cross section.

- The cross section extends to 120 km from the East to the West.
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4.1 Investigation of the intra-event variability through the scaling DSD
formulation

Figure 4.13: Evolution of the vertical cross section of radar reflectivity factor,

shown in Fig.4.12, during the convective rain phases 2 and 3. - The figure shows

the evolution at 1-hour interval.
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km to the west of Alès has developed before midnight (within the phase 1). In fact,

as mentioned by Vincendon et al. (2011), the maximum rainfall intensity of this event

was found over these mountainous areas. During the second phase, Alès was always at

the leading edge of the convective system until the arriving of the cold front driving

the convective system to the east. Our disdrometer observed the core of the convective

system in the phase 3, and the zone of convection dissipated gradually during its mov-

ing. The vertical cross section of reflectivity factor confirms that the increase of the

concentration at the end of phase 2 is associated with the arriving of the convective

system.

The products of polarimetric radar are under evaluation by Météo-France. The

high noise contained in the polarimetric observations is still a challenge for the rain-

fall estimations. Fig.4.14 shows the differential reflectivity (Zdr) and the correlation

coefficient (ρhv) observed by the polarimetric radar at Nı̂mes. Some high Zdr values,

found in the phases 2 and 3, suggest the presence of large raindrops. Phase 5 is char-

acterized by some negative Zdr values at about 2 km altitude. The low reflectivity

factors with negative Zdr values suggests the presence of drizzle in this layer. The

significant decrease of the correlation coefficient at around 3 km altitude, which is just

near the freezing lever, is probably explained by the mixing of the solid and liquid

drops. However, due to the noise of the current polarimetric products, the polarimetric

observation will not be discussed in detail here. The following study will be focused on

the reflectivity factor.

As we have shown in Fig.4.11, the maximum reflectivity factor and the convec-

tive system extension in the vertical extension are two important variables apparently

linked with the DSD measured at the surface. Fig.4.15 displays the time series of

(1) the altitude where the reflectivity factor attains 30 dBZ and (2) the maximum

vertical reflectivity factor values. In comparison with the evolution of Dc shown in

Fig.4.6, the maximum vertical reflectivity values are well correlated with the character-

istic diameters. A high maximum Z-value in the atmospheric column implies a large

characteristic diameter measured at the surface. Fig.4.16 shows a plot of maximum

vertical reflectivity factor versus the characteristic diameter. The 30 dBZ was found to

be an appropriate limitation to separate the DSD spectra into two groups with Dc >1

mm and Dc <1 mm, respectively. For the first group, the maximum vertical reflec-
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Figure 4.14: Differential reflectivity and correlation coefficient above Alès ob-

served by the polarimetric radar at Nı̂mes. - High noise is contained in these results.

tivity factors increases simultaneously with Dc, while in the second group, such simple

relationship between Z and Dc is not evident.

Regarding the concentration, its signature on the reflectivity factor is complex.

The increase of the concentration at the end of the phase 2 is probably linked with

the vertical extension of the 30 dBZ-isograms. However, no signal is identified for

the fifth drizzle phase with very high drop concentration. In fact, as already stated,

the reflectivity factor is not an appropriate variable to represent the tiny raindrop

concentration. Fig.4.16b plots the relationship between the altitudes of the 30 dBZ-

isograms and the raindrop concentration. A lot of high concentration DSD records with

a low radar reflectivity factor (<30 dBZ) can be found in the figure.

To summarize, the detailed analysis of the rain event of 22/10/2008 based on mul-

tiple observations showed that: 1) the whole rain event can be segregated into 5 rain

phases through the evolutions of the scaling DSD parameters (Nt, Dc and µ); 2) the

same shifting-phase signals can be found both in DSD variations and in reflectivity

factor profile above Alès. It seems that the maximum value of the reflectivity factor

profile is related to the characteristic diameter measured on surface, especially when the
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Figure 4.15: Time series of (a) the altitudes where the reflectivity factor attains

30 dBZ; (b) the maximum vertical reflectivity factor values. - The 30 dBZ reflects

the vertical extension of the precipitated system, and the maximum Z is an indicator of

the convective activity.
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Figure 4.16: Relationships between (a) the maximum vertical reflectivity factor

values and the characteristic diameter; (b) the altitudes of the 30 dBZ isograms

and the raindrop concentration. - The maximum vertical reflectivity factor value seems

to relate to the characteristic diameter.

maximum factor exceeds 30 dBZ. However, the deduction of the DSD concentration

from the radar observations is still a challenge to overcome in the future.

4.2 Reconstitution of the DSD by the observed moments

4.2.1 Reconstitution of the DSD

In Section 3.1.2, the climatological DSD formulations scaled by rain rate (R) and radar

reflectivity factor (Z) together are obtained. Substituting the estimated parameters

values listed in Table.3.1 to the two-moment scaling DSD expression (3.3), the clima-

tological DSD formulation scaled by M3.67 and Z can be derived as

N(D) = 1511M3
3.67M

−2
6 (

D

0.831M−0.429
3.67 M0.429

6

)2.439exp(−
7.748D

M−0.429
3.67 M0.429

6

). (4.1)

In the same manner, substituting the appropriate climatological parameters listed in

Table.3.2 to the one-moment scaling DSD expression (3.22), one obtains two DSD
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4. APPLICATION OF SCALING DSD FORMULATION

formulations, scaled by the M3.67 and Z, respectively, as

N(D) = 10600M−1.6
3.67 (

D

0.450M0.19
3.67

)1.595exp(−
12.43D

M0.19
3.67

), (4.2)

N(D) = 85109M−0.17
6 (

D

0.414M0.167
6

)1.699exp(−
13.77D

M0.167
6

). (4.3)

These expressions suppose that the variation in the DSD is totally controlled by

the rain rate and/or radar reflectivity factor. The evaluations have been performed

to compare the reconstituted DSDs with observations based on the whole 5-min DSD

dataset in the Section 3.1.3 and 3.2.3. A good agreement between the disdrometer

observations and reconstituted DSD can be found in the Fig.3.5, Fig.3.13 and Fig.3.14.

However, these evaluations were made in the context of a pure DSD studies in which

both the Z and R are derived from the DSD as well. Hence, one may question the

performance of these DSD models based on the real weather radar and raingauge ob-

servations. The next section will be devoted to address this question and illustrate the

DSD reconstitutions for the 2008/10/22 rain event.

4.2.2 Application of the DSD reconstitution on a rain event

We recall the good agreements on the reflectivity factor measured by radar and dis-

drometer, and the rain rate measured by raingauge and disdrometer, shown in Fig.4.2.

Four 5-min DSD spectra are preliminary selected to illustrate the DSD reconstitutions

by the climatological DSD formulations (4.1) to (4.3). Fig.4.17, Fig.4.18 and Fig.4.19

illustrate the reconstituted DSDs by R-Z, by R and by Z, respectively. The R and/or

Z derived from disdrometer, or observed by radar and/or raingauge, are separately

applied in the scaling procedure.

In comparison to the disdrometer observations, the second (top-right) and the fourth

(bellow-right) DSDs are well reconstituted by the rain intensity and radar reflectivity

factor, regardless the multiple-peak distribution exhibited in the fourth DSD. For these

two DSDs, there are good agreements among the different instruments (radar, raingauge

and disdrometer). A different case is showed in the first DSD (top-left). Using the Z

and R derived from the disdrometer leads a good reconstitution of the DSD, while the

introduction of the reflectivity factor observed by radar produces a large error due to the

discrepancy between the reflectivity observed by radar and derived from disdrometer.
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4.2 Reconstitution of the DSD by the observed moments

Figure 4.17: Reconstitutions of 4 DSDs by the rain intensity and reflectivity

factor. - The rain intensity and reflectivity factor are derived from the disdrometer (black

lines) and derived from radar and raingauge observations (blue lines). The crosses represent

the DSD observed by the disdrometer.
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4. APPLICATION OF SCALING DSD FORMULATION

Figure 4.18: Reconstitutions of 4 DSDs by the rain intensity. - The rain intensity

are derived from the disdrometer (black lines) and derived from raingauge observations

(blue lines). The crosses represent the DSD observed by the disdrometer.
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4.2 Reconstitution of the DSD by the observed moments

Figure 4.19: Reconstitutions of 4 DSDs by the reflectivity factor. - The reflec-

tivity factor are derived from the disdrometer (black lines) and derived from radar (blue

lines). The crosses represent the DSD observed by the disdrometer.
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4. APPLICATION OF SCALING DSD FORMULATION

It seems that the sampling error of the radar becomes significant in this case. The

third (bellow-left) DSD shows the advantage of the combination of R and Z together.

Both the DSDs reconstituted by R or by Z separately overestimate the N(D), while

the reconstitution by R and Z together significantly reduces the bias between the DSD

model and observation.

The whole event is then reconstituted based on the scaled DSD models (4.1) to

(4.3). Four criteria (Bias, Nash, RMSD and R) are used to evaluate the DSD models

as a function of the drop diameter. In order to reduce the influence of the sampling

error on the evaluation process, only the 5-min DSD records meeting the constraint that

the three instruments detect the rainfall simultaneously are retained to evaluate the

performance of the models. The moment(s) derived from the disdrometer and observed

by the radar and raingauge are evaluated separately. Fig.4.20 shows the performance

of DSD models reconstituted by the moments derived from the disdrometer. Similar to

the results shown in Section 3.2.3, the DSD formulation scaled by two moments yields

the best performance compared to that scaled by one moment. And the DSD model

reconstituted by the reflectivity factor produces a better performance for the raindrops

larger than 3 mm compared to the DSD model scaled by the rain intensity.

When the observations of rain gauge and/or radar are applied for the DSD recon-

stitution, similar behaviors of performance (Fig..4.21) are obtained. Radar reflectivity

factor shows again an advantage in the reconstitution of large drops (D >3.5 mm)

compared to the rain intensity. It seems that the combination of R and Z improves

significantly the correlation between model and observations, but a large bias still exists

due to the sampling and model error.

4.3 Estimation of the rainfall erosion energy

4.3.1 Introduction of the soil erosion by rainfall

Soil erosion due to rain is a major issue in the fields of agriculture, environment and

water management. All studies on soil erosion have suggested that increased rainfall

amounts and intensities will lead to greater rates of erosion e.g. Parry et al. (2007).

In particular, rainfall kinetic energy has often been suggested as an indicator of rain-

fall erosivity (Fornis et al., 2005). Over the past decades, many numerical models of

erosion processes have been developed, such as the Water Erosion Predicting Project
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Figure 4.20: Evaluation of the DSD model reconstituted by Z, R and by R and

Z together. - Coefficient correlation, Nash, Bias and RMSD are used to evaluate the

modeled and observed N(D). The Z and R are derived from the disdrometer.
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Figure 4.21: Evaluation of the DSD model reconstituted by Z, R and by R

and Z together. - Coefficient correlation, Nash, Bias and RMSD are used to evaluate

the modeled and observed N(D). The Z and R are observed by radar and raingauge,

respectively.
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4.3 Estimation of the rainfall erosion energy

model (WEPP, Laflen et al. (1997)) and the European Soil Erosion model (EUROSEM,

Morgan et al. (1998)). These models require rainfall time series with moderate to high

temporal and spatial resolution (Van Dijk et al., 2005) which is a restriction due to the

large rain variability and the limitation of rain gauge observations. The most common

approach to estimate rainfall kinetic energy is by means of an empirical relationship

between the kinetic energy flux density (KE) and rain intensity (R) (Kinnell, 1973;

Mihara, 1951; Sempere Torres et al., 1992). Various mathematical expressions and

parameterizations for the KE-R relationship have been presented in the literature. In

order to study the physical interpretation behind different KE-R relationships, several

mathematical distribution have been introduced to account for the variation in raindrop

size distribution. Uijlenhoet and Stricker (1999) developed an approach to link KE to

R based on the exponential DSD. Mualem and Assouline (1986) proposed a Weibull dis-

tribution with two parameters to derive the KE-R relationship. Their approach shows

the advantages in the KE estimations for the light rainfall. In addition, the Weibull

distribution conforms to the assumption that the DSD is determined mainly by breakup

process rather than the initial DSD (Assouline and Mualem, 1989). Later, Salles et al.

(2002) proposed a KE-R relationship based on the one-moment scaling formulation of

the DSD. Their work suggested that the varying character of the DSD, which depends

on the type of rain (convective or stratiform) and the geographical location, are the

main factors explaining the variability of KE-R relationships. Fox (2004) investigated

the theoretical KE-R relationships based on the gamma distribution (Ulbrich, 1983)

and pointed out that the KE-R relationship is poorly defined unless some assumptions

about the parameters of the gamma distribution are made. He also found that the

assumption of an exponential DSD leads to an overestimation of the kinetic energy flux

density. Additionally, to overcome the limitation of a rain gauge observation network,

Steiner and Smith (2000) showed the potential advantage of radar reflectivity factor

(Z) for estimating KE, which can provide detailed spatial and temporal information

about rain storms.

The purpose of the current study is to investigate the KE-R, KE-Z and the KE-

RZ relationships using the one-moment and two-moment scaling DSD formulations

presented in the previous chapter. It is hoped that the radar reflectivity factor in

combination with the rain rate can improve the estimation of rainfall kinetic energy.
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4. APPLICATION OF SCALING DSD FORMULATION

In the literature, there are two raindrop kinetic energy variables proposed. One is

the kinetic energy flux density per unit area per unit time, denoted KE hereafter, with

units of Jm−2h−1, which expressed the rainfall energy on a unit surface during a unit

time; the other is the kinetic energy flux density per unit area per unit depth (denoted

KEmm hereafter, with units of Jm−2mm−1), which is defined as the ratio between

KE and the rain intensity R. Although the latter is most widely used in soil erosion

studies, Salles et al. (2002) suggested that both from a theoretical and a practical point

of view, the KE-R relationship should be used instead of the KEmm-R relationship.

They explained the preference for KEmm in past studies by the non-automatic DSD

observation techniques. Following Salles et al. (2002), we express the kinetic energy

flux density per unit area per unit time (KE, Jm−2h−1) as

KE = 3× 10−7ρπ
∑

i

X(Di)D
3
i v

2
t (Di), (4.4)

where ρ is the water density (kg m−3) in standard conditions; X(Di) (drops m−2s−1)

is the number of raindrops of diameter Di (mm) falling on a unit surface (1 m2) during

a unit time interval (1 s) and vt(Di) (ms−1) is the terminal velocity of a raindrop of

diameter Di. Converting the raindrop flux X(D) into the raindrop concentration in a

unit volume N(D)dD (m−3, with N(D) in mm−1m−3 and dD in mm) through

X(D) = N(D)vt(D)dD (4.5)

and integrating over the raindrop diameter range yields

KE = 3× 10−7ρπ

∫

∞

0
N(D)D3v3t (D)dD. (4.6)

The power law expression v = 3.78D0.67 (1.2) discussed in Chapter 1 is considered in

calculating the KE. Replacing the velocity by (1.2) yields a final formulation for the

kinetic energy flux density as

KE = 5.09× 10−2

∫

∞

0
N(D)D5.01dD, (4.7)

which indicates KE is roughly proportional to the 5th order moment of the DSD. This

feature shows the potential advantages of the rain rate, proportional to the 3.67th order

moment, and the radar reflectivity factor, equal to the 6th order moment, in estimating

the KE separately or in conjunction.
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4.3 Estimation of the rainfall erosion energy

4.3.2 Estimation of the KE based on DSD data

Considering the climatological expressions of moment relationships (3.18), (3.29) and

(3.30), we obtain three KE estimators:

KE = 0.391R0.43Z0.57, (4.8)

KE = 10.45R1.254, (4.9)

KE = 0.0912Z0.832. (4.10)

Salles et al. (2002) derived a similar expression as (4.9) and pointed out the range of

possible exponents is between 1.0 and 1.4. They suggested the variation in the exponent

is linked to the type of rain (convective or stratiform). Steiner and Smith (2000)

obtained a climatological KE-Z relationship as KE = 0.0536Z0.909 for the Northern

Mississippi. It seems that the climatological KE-Z relationship is still related to the

local characteristics of different regions.
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Figure 4.22: Reconstitutions the KE by the radar reflectivity factor and/or

rain rate. - The KE, R and Z are derived from the 5-min DSD spectra.

Fig.4.22 displays the relationship between KE and predictor moment(s) (R and/or

Z). One can immediately note the improvement in the estimation of KE when R and Z

are used jointly. The three estimators (4.8), (4.9) and (4.10) are represented by the blue
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4. APPLICATION OF SCALING DSD FORMULATION

lines in Fig.4.22, agreeing well with the observations. We recall that the kinetic energy

is proportional to the 5th moment of the DSD. Therefore the statistical evaluations of

KE estimators based on the DSD dataset have been shown in the previous chapter in

Fig.3.6, 3.16 and 3.15. The detailed criteria are listed in the Table.4.1. Generally, the

three criteria exhibit the same trend. The two-moment estimator KE-RZ yields the

best estimation of theKE. Concerning single-moment estimation, the radar reflectivity

factor Z provides a better estimation than the rain rate R. This is mainly because the

kinetic energy flux density is nearly proportional to the 5th order moment, which is

closer to the radar reflectivity factor (6th order moment). The near perfect quality of

the estimation from R and Z jointly shows the potential advantage of combining two

moments that are widely accessible in hydrometeorological observation networks with

radars and rain gauge.

Estimators Bias RMSD (Jm−2h−1) Nash r

KEZ-KEDSD 0.962 39.47 0.974 0.987

KER-KEDSD 0.985 70.23 0.917 0.960

KEZR-KEDSD 1.000 5.49 0.999 1.000

Table 4.1: Evaluation of the KE reconstituted by rain rate and/or radar re-

flectivity factor. The KE, R and Z are derived from the disdrometer.

Based on the scaled DSD formulations, three robust KE climatological estimators

are obtained. However, only the disdrometer data measured by the disdrometer has

been considered so far. Both the rain rate and radar reflectivity factor are calculated

from the DSD. In order to illustrate a real application of the KE estimators, the

following section is devoted to the KE estimation during a real rain event.

4.3.3 Application of the KE estimators on a rain event

Taking all types of errors (instrument error, sampling error, theoretical error, etc.) into

account, one may question the performance of the estimated models in the operational

application. To answer this question, the heavy rain event described and analyzed in

Chapter 2 is selected to test threeKE estimators. The disdrometer data, as a reference,

serves only to calculate the kinetic energy flux density. The rain gauge and weather

radar data are employed to estimate KE through the relationships (4.8), (4.9) and
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4.3 Estimation of the rainfall erosion energy

(4.10). We illustrate the comparisons of estimated and observed KE time series in

Fig.4.23. The estimated KEs are in good agreement with the observations.
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Figure 4.23: Time series of KE estimated by the radar reflectivity factor and/or

rain rate. - The KE is derived from the 5-min DSD spectra, R and Z are obtained from

the rain gauge and radar observations, respectively.

Detailed statistical comparison has been carried out. Due to different samplings and

sensibilities of these instruments, a preliminary analysis focuses on the intermittency of

rain intervals. We display a contingency table (Table.4.2), containing frequency counts

of time steps in rain and no-rain categories, measured by different instruments. Overall,

a good agreement can be found among these three instruments in consideration of the

5-minute time intervals. Because of the different sampling size, the weather radar

measures more rain steps than the disdrometer. And the artificial rain steps observed

by raingauge should be linked to the defect of interpolation model which constructs a
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continue time series of rain intensity with the discrete tipping bucket rain gauge data.

In order to simplify the comparison, only the 5-min intervals when all three instruments

detect rainfall are taken into account in the following evaluation.

Rain gauge >0 Rain gauge =0

Radar reflectivity >0 106 17

Radar reflectivity =0 23 50

Disdrometer >0 Disdrometer =0

Radar reflectivity >0 104 19

Radar reflectivity =0 14 59

Disdrometer >0 Disdrometer =0

Rain gauge >0 104 25

Rain gauge =0 14 53

Table 4.2: Contingency of time steps in rain and no-rain categories, measured

by radar, raingauge and disdrometer.

In order to understand the errors in KE estimators, the DSD moments derived from

the disdrometer and observed from the instruments (radar, raingauge) are evaluated in

Table.4.3 and Table.4.4 for the rain event of 21-22 October 2008, respectively. The dif-

ference of the performance listed between Table.4.1 and Table.4.3 should be explained

by the DSD model error. The application of the climatological DSD formulation on

a particular intense rain event introduces the model error into the KE estimations.

Nevertheless, except for the bias (0.912) when reflectivity factor is used in the esti-

mation, the other criteria listed in Table.4.3 are similar to those listed in Table.4.1,

which suggests that the main estimation error may be not caused by the model. From

the Table.4.3 to Table.4.4, the sampling error is added in the estimation procedure.

In addition, the comparisons of the rain rate provided by disdrometer and raingauge,

as well as the reflectivity factor provided by disdrometer and radar, are demonstrated

in Table.4.4 as well. Similar to the results presented in 4.3, the radar also yields an

underestimation of KE (0.828), compared to that estimated by the rain gauge (1.022).

One may note the negative bias (0.903) in the comparison of Z provided by the radar

and by the disdrometer. It seems that the bias of the radar reflectivity with respect to

the disdrometers reflectivity is amplified by the non-linear KE-Z relationship, while a

slightly better agreement is obtained for the KE-R relationships. The improved perfor-
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4.3 Estimation of the rainfall erosion energy

mance of the KE-R relationships may be explained by the proximity and the sampling

characteristics of the disdrometer and the rain gauge, while the reflectivity measure-

ments come from two very different sensors and resolution volumes. Nevertheless, in

this case again, the KE-ZR relationship yields the better performance evaluated by

the r and Nash statistical criteria.

Estimators Bias RMSD (Jm−2h−1) Nash r

KEZ-KEDSD 0.912 52.95 0.982 0.998

KER-KEDSD 0.978 48.17 0.985 0.994

KEZR-KEDSD 1.002 4.22 1.000 1.000

Table 4.3: Evaluation of the KE reconstituted by rain rate and/or radar reflec-

tivity factor derived from the disdrometer, for the rain event of 21-22 October

2008.

Estimators Bias RMSD (Jm−2h−1) Nash r

KEZ-KEDSD 0.828 131.10 0.887 0.953

KER-KEDSD 1.022 93.97 0.942 0.972

KEZR-KEDSD 0.933 77.97 0.960 0.981

ZDSD-Z 0.903 7964.70 0.903 0.952

RDSD-R 1.020 2.81 0.956 0.983

Table 4.4: Evaluation of the KE reconstituted by rain rate and/or radar reflec-

tivity factor measured by the raingauge and weather radar, for the rain event

of 21-22 October 2008.

4.3.4 Toward the spatialization of rainfall kinetic energy flux density

We have considered in the previous section one of the most intense events out of the 28-

month time series which occurred on 22 October 2008. However, only the disdrometer

data at one point have been considered so far. Hereafter, (i) we illustrate the potential

of weather radar to deliver high resolution KE maps thanks to the radar reflectivity

factor fields, (ii) then we compare the statistical distributions of the KE values derived

from the three climatological relationships (4.8), (4.9) and (4.10) using weather radar

data (Z) and/or the rain rate (R) provided by the 5-min raingauge network.
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A direct conversion of the 5-min radar reflectivity available for the 22 October 2008

rain event using (4.10) yields high-resolution images (1 km2, 5-min) of KE values such

as those displayed in Fig.4.24 during the most intense part of this rain event. The large

spatial and temporal variability of the kinetic energy are particularly remarkable for

this event. Used in conjunction with GIS layers concerning topography, soil proper-

ties and land-use, we believe such KE images to have a strong potential for a better

understanding of erosion processes.

As part of the available raingauge network supported by the French Flood Fore-

casting Service SPC-GD, we were able to collect 5-min rain rate time series for the

12 raingauges indicated in Fig.4.24. Not that the KE value derived form each 5-min

rain rate value through (4.9) is used to define the color of the raingauge pictogram in

accordance with the KE scale. The four selected images in Fig.4.24 show a good overall

agreement between the radar- and raingauge-derived KE values, with some exceptions

that may be due, among many other reasons, to timing problems and sampling issues

for such fine scale comparisons.
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4.3 Estimation of the rainfall erosion energy

Figure 4.24: Maps of the kinetic energy flux density KE (Jm−2h−1) derived

from Z in the region of Alès, at 0245UTC, 0250UTC, 0255UTC and 0300UTC,

22/10/2008. - The raingauge pictograms are colored as a function of the KE values

derived from the observed rain rate.
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Chapter 5

Conclusion and prospective

The DSD is a fundamental descriptor both for the rain microphysical processes

and the macroscopic physical properties in order to characterize different precipitation

systems and determine the macroscopic rain variables relationships for quantitative

rainfall remote sensing. A comprehensive framework for parameterizing the raindrop

size distribution has been presented in this PhD thesis. In this chapter, we summarize

and comment the main results obtained, before discussing the prospective of this work.
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5.1 Investigation of the intra-event variability through the

scaling DSD formulation

The principle component analysis (PCA) was preliminarily performed on the log-

transformed DSD moments. The results highlighted the need for at least two inde-

pendent variables to describe the variation of the raindrop size distribution (99.5% of

the variance is explained by the first two PCAs). The interpretation of the two first

PCAs suggested the importance of the middle and low order moments (such as M4 and

M0) for the representation of the DSD variability.

Next, the DSD scaling formulation was introduced by considering the DSD as the

product of the number concentration Nt times a probability density function, denoted

g(x), of the diameter scaled by a characteristic diameter (x=D/Dc). A gamma model

with two dimensionless parameters was used to model the so-called general distribu-

tion g(x). Choosing a particular characteristic diameter as the ratio of the 4th and 3rd

order moments of the DSD results in a self-consistency relationship between the two

parameters λ and µ of the gamma pdf model. The general distribution is thus prac-

tically parameterized by a single dimensionless shape parameter (µ). The parameter

estimation was performed by using (1) three appropriate moments M0, M3 and M4, or

(2) by using the whole observed moments from M0 to M6 (the so-called“all-moments

estimator”). The scaling formulation associated with the two parameter estimators

was implemented over a 3-year DSD observations corresponding to a large variety of

convective types of precipitation (shallow convection forced by orography, thunder-

storms, mesoscale convective systems). Note that the the 3-moment estimator can be

implemented both for individual spectrum and for a series of DSD spectra

The results showed the DSD scaling model with the gamma pdf is in good agree-

ment with the disdrometer observations, both for individual spectrum and for series

of spectra. As a refinement, the truncation of the DSDs for minimum and maximum

diameters, Dmin and Dmax, was studied and did not prove to be a very sensitive matter

For series of spectra, the parameters estimated by two estimators are similar to each

other. However, the 3-year general distribution exhibit a very large variability which

can be partly explained by the shape parameter (µ). This suggests that variation in

the DSD shape cannot be reduced by the current scaling technique and that the shape

parameter µ may be related to physical processes.
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5.2 Extension of the scaling DSD formulation to include the one- and
two-moment parameterization

The climatological DSD characteristics of the Cévennes rainfall are revealed by the

histograms of three DSD parameters. For most of the 5-min DSD spectra, the number

of raindrops is less than 1000m−3 with characteristic diameters (Dc = M4/M3) between

1.0 and 1.5 mm. Regarding the shape parameter, (1) the distribution of µ is positively

skewed, with a mode equal to 2.5, and (2) a limited fraction of negative (5%) and high

µ-values (less than 15% for µ >10) is observed.The first point suggests that most of the

5-min scaled DSDs possess the gamma convex shape, rather than an exponential one. In

addition, it was found that the number concentration is independent of both the Dc and

the µ parameters. This is an important result regarding the DSD scaling formulation

as the product of two independent terms (concentration and size distribution).

5.2 Extension of the scaling DSD formulation to include

the one- and two-moment parameterization

The scaling DSD formulation based on Nt, Dc and µ was extended to account for the

one- and two-moment DSD formulations proposed in a rather “unorganized” way in the

literature. This was done by introducing single and dual power-law models between ref-

erence (or explanatory) moments (e.g. rain rate and/or radar reflectivity factor) and the

explained moments (total concentration, characteristic diameter). In a way analogous

to the (Nt, Dc, µ) DSD formulation, two parameter estimators based on 1) regression

analyses of single and dual power-law models (the so-called “regression estimator”) and

2) multiple DSD moments from the 0th to 6th moments (the so-called “all-moment esti-

mator”). In both procedures, we made the best use of the self-consistency relationships

which exist due to the fact that the moments are function of the DSD which is itself

parameterized as a function of moments. Compared to the most elaborated DSD formu-

lations presented in the literature, our approach explicitly accounts for the prefactors

of the power-law models to produce a uniform and dimensionless scaled distribution,

whatever the reference moment(s) considered.

The evaluation performed using the 3-year disdrometer dataset yields the following

conclusions. Firstly, the two estimators have similar performance for the two-moment

scaling DSD formulation. Regarding the one-moment scaling DSD formulation, the

estimator has a significant impact on parameters. The “all-moments” estimator under-

estimates the shape parameter (µ) in R-scaling DSD formulation, but overestimates it
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in the Z-scaling DSD formulation, compared to the “regression” estimator. However,

the evaluation indicates that there is no preference to select any estimator to construct

a climatological scaling DSD formulation. In this investigation, the “all-moment” esti-

mator and the “regression” estimator were selected for R- and Z-scaling formulation,

respectively, because of our interests for high order moments of the DSD. Secondly,

the choice of the scaling moment(s) has a direct influence on DSD model performance.

The model scaled by radar reflectivity factor yields a good performance for the large

drops (3 mm < D <5 mm) at the cost of a poor correlation for the small drops (D <2

mm), while the model scaled by rain intensity is able to better represent the variation

of middle size drops (1 mm < D <4 mm). Finally, a significant improvement of the

model performance is obtained if two reference moments are considered in the scaling

formulation. For the DSD formulation scaled by R and Z jointly, the variation of the

raindrops between 1 mm and 5 mm are well represented by the model.

Thanks to the definition and the parameter estimators of the general distribution,

our approach provides the possibility to compare the g(x) functions obtained by differ-

ent moment(s). A rather good agreement was observed whatever the moment(s) used,

even in the case of the climatological dataset which, as already mentioned, exhibit a

large variability. Applying the methods to more homogeneous DSD spectra proved to

be very efficient in terms of convergence of the estimators, whatever the moment(s)

used. Obviously, the spectra with large drops seem to be better scaled by the high

order moment and the variation in small raindrops is reduced if low order moments are

considered in the scaling process.

5.3 Applications of the scaling DSD formulations

The improvement of the two-moment DSD model performance was confirmed by an

investigation of a rain event in which weather radar data and raingauge observations

were available. This suggests the advantage of using two observations (moments) jointly

in DSD studies regardless the different sampling characteristics of different instruments.

The scaling DSD formulation with three parameters (concentration, characteristic

diameter and shape parameter) was applied to analyze the intra-event DSD variability

of an intense rainfall event which occurred in October 2008. It was found that the

variation in the DSD is well linked to the weather processes. The DSD in the edge of the
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convective system possessed a different behavior compared to that in the center of the

convective area. Hence, the movement of the convective system towards the disdrometer

led to different DSD phases recorded in time series. Three typical rain phases were

identified during the rain event: 1) a DSD with high concentration (1000 mm−3) and

large characteristic diameter (2.0 mm) in the forward edge of convective system; 2) a

DSD with higher concentration (1500 mm−3) and larger characteristic diameter (2.0

mm) in the center of convective area; 3) a drizzle precipitation with the highest number

concentration (3000 mm−3) but a small Dc (0.5 mm). The scaled distribution exhibits

different behaviors in these phases. It seems that the shape parameter decreases with

the intensity of the convective activity.

The intra-event variation in DSD is well associated with the weather radar signals.

The vertical reflectivity profile, the Doppler vertical velocity are good indicators for

the identification of rain phases. In particular, the maximum value of the reflectivity

factor as a function of the altitude was found to be approximately linearly related

with the characteristic diameter for Dc >1 mm. However, the detailed polarimetric

measurement did not prove to be useful for the considered event due to the high noise

contained in the signals.

This study presents also the estimation of rainfall kinetic energy flux density (KE)

from rain intensity and/or radar reflectivity factor based on climatological DSD scaling

formulations. In the case of one-moment estimation, as Z (the 6th order moment) is

close to KE (which is proportional to the 5th order moment), Z theoretically yields

better estimation than the KE-R relationship. However, for the considered radar-

raingauge dataset, due to radar sampling problems and/or calibration problems and

the fact that the raingauge is collocated with the disdrometer, the performance of

KE-R relationship was better than that of the KE-Z relationship. The performance

of the estimation can be improved when rain gauge data are used jointly with radar

reflectivities in the estimation. Here again, the KE estimate highlights the advantage

of combining two observations to estimate a third DSD moment.
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5.4 Prospective

5.4.1 Improving the DSD formulation

The research described in this thesis has shown that the gamma probability function

is suitable to parameterize the DSD scaled by the concentration. As already evoked

by Lee et al. (2004), a generalized gamma pdf distribution (2.12) could provide an

increased flexibility for the DSD fitting at the cost of having to estimate an additional

shape parameter.

The 0th order moment is known to be measured with quite a large uncertainty due

to the instrumental error for the small drops. Two potential solutions are provided

for the further research: The concentration could be substituted by the liquid water

content per unit air volume LWC (kgm−3) through the moment relationship (2.14), as

LWC =
πρ

6
M3 =

πρ

6

Γ(µ+ 4)

Γ(µ+ 1)

NtD
3
c

λ3
. (5.1)

Substituting the expression of Nt derived from (5.1) into the original scaling DSD

formulation (2.12) yields

N(D) =

[

6Γ(µ+ 1)λ3

πρΓ(µ+ 4)

LWC

D4
c

] [

λµ+1

Γ(µ+ 1)
(D/Dc)

µexp(−
λD

Dc
)

]

(5.2)

Besides the diameter D and the two parameters µ and λ, the DSD depends now on

two physical variables, namely the liquid water content LWC and the characteristic

diameter Dc, which are related to the 3rd and 4th order moments of the DSD. These

two moments are assumed to be better measured by the disdrometer compared to

M0. However, this formulation has one disadvantage: the first term of equation (5.2)

contains also the parameter µ, which is somewhat opposite to the concept that the

DSD is the product of two independent terms (the concentration and the pdf of the

scaled diameter). So practically, the M0 measurement problem would be replaced by

an “increased confidence” in the modeling and a possible ”built-dependence” between

the concentration and the size distribution.

An alternative solution is to change the definition of the raindrop size distribution.

Instead of the drop concentration as a function of the diameter, one may consider the

distribution of another moment Mi as a function of the diameter (D) and a new general

distribution may be defined as

Mi(D) = (Mi/Dc)f(D/Dc) (5.3)
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In fact, N(D) can be considered as a particular case of Mi(D) when i=0. Based on

the results shown in Fig.2.18, the gamma function may no longer be able to represent

the f(x) function if i >0. It may be interesting to review the current formulation based

on N(D) for the Mi(D) case.

5.4.2 Hydrometeorological applications

At the end of this thesis, a large amount of work remains to be done about the estab-

lishment of a climatology of the DSD in the Cévennes region and about the subsequent

derivation of relationships between the rain intensity and various radar measurables,

to be conditioned on the weather regimes. Both the 3D conventional and polarimetric

radar data may help in this prospective. Thanks to the physically meaningful parame-

ters used in the scaling DSD formulation, one can expect improved retrieval algorithms

for the further DSD research. One of the issues to be addressed will be the “change of

scale” problem between the sampling volume of the disdrometer to that of the radar.

We hope the scaling formulation to be an efficient approach for this difficult problem.

The experiments to be realized in the CVMHO pilot site during the HyMeX enhanced

observation period will provide (hopefully) the detailed datasets to progress on these

critical issues.

In addition, following the work realized about the kinetic energy, we believe that

an interesting work can be done regarding the high-resolution spatial and temporal

estimation of KE based on R and Z measurements using geostatistical techniques such

as Kriging with external drift. Utilizing such rainfall estimations to force distributed

hydro-sedimentary models with a detailed description of the landscapes (topography,

lithology, land-use) of the watershed is likely to provide a new impetus to erosion

studies. Enhanced validation will be possible in the context of the HyMeX EOP thanks

to the high-resolution DSD measurements which will be collected both in the Cévennes

and the Alpine regions.
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Sempere Torres, D., J. M. Porrà, and J. D. Creutin, 1998: Experimental evidence of a general

description for raindrop size distribution properties. J. Geophys. Res., [Atmos.], 103 (D2),

1785–1797. 9, 76

142



REFERENCES

Sempere Torres, D., C. Salles, J. D. Creutin, and G. Delrieu, 1992: Quantification of soil

detachment by raindrop impact : performance of classical formulae of kinetic energy in

Mediterranean storms. Erosion and sediment transport monitoring programs in river basin,

IASH Publ., 210, 115–124. 119

Sharma, S., M. Konwar, D. K. Sarma, M. C. R. Kalapureddy, and A. R. Jain, 2009: Character-

istics of rain integral parameters during tropical convective, transition, and stratiform rain

at Gadanki and its application in rain retrieval. J. Appl. Meteor. Climatol., 48, 1245–1266.

20

Smith, J. A., E. Hui, M. Steiner, M. L. Baeck, W. F. Krajewski, and A. A. Ntelekos, 2009:

Variability of rainfall rate and raindrop size distributions in heavy rain. Water Resour. Res.,

45 (4), W04 430. 48

Smith, P. L., 2009: Comments on “an investigation of the slope-shape relation for gamma

raindrop size distribution”. J. Appl. Meteor. Climatol., 48 (9), 1994–1995, doi:10.1175/

2009JAMC2157.1. 9

Smith, R. B., 1979: The influence of mountains on the atmosphere. Adv. Geophys., 21, 87–230.

3, 12

Steiner, M. and J. A. Smith, 2000: Reflectivity, rain rate, and kinetic energy flux relationships

based on raindrop spectra. J. Appl. Meteorol., 39 (11), 1923–1940. 119, 121

Steiner, M., J. A. Smith, and R. Uijlenhoet, 2004: A microphysical interpretation of radar

reflectivity-rain rate relationships. J. Atmos. Sci., 61 (10), 1114–1131. 18

Testud, J., S. Oury, R. A. Black, P. Amayenc, and X. K. Dou, 2001: The concept of “normal-

ized” distribution to describe raindrop spectra: A tool for cloud physics and cloud remote

sensing. J. Appl. Meteorol., 40 (6), 1118–1140. 9, 22, 40, 42

Tokay, A. and D. A. Short, 1996: Evidence from tropical raindrop spectra of the origin of rain

from stratiform versus convective clouds. J. Appl. Meteorol., 35 (3), 355–371. 8, 11, 20

Tokay, A., R. Wolff, P. Bashor, and O. Dursun, 2003: On the measurement errors of the Joss-

Waldvogel disdrometer. 31st Int. Conf. on Radar Meteorology, Seattle, WA, Amer. Meteor.

Soc., 437–440. 7

Uijlenhoet, R., J. A. Smith, and M. Steiner, 2003a: The microphysical structure of extreme

precipitation as inferred from ground-based raindrop spectra. J. Atmos. Sci., 60 (10), 1220–

1238. 22, 40, 60

Uijlenhoet, R., M. Steiner, and J. A. Smith, 2003b: Variability of raindrop size distributions in

a squall line and implications for radar rainfall estimation. J. Hydrometeor., 4 (1), 43–61.

12, 40

143



REFERENCES

Uijlenhoet, R. and J. N. M. Stricker, 1999: A consistent rainfall parameterization based on the

exponential raindrop size distribution. J. Hydrol., 218 (3-4), 101–127. 119

Ulbrich, C., 1983: Natural variations in the analytical form of the raindrop size distribution. J.

Climate Appl. Meteor., 22 (10), 1764–1775. 8, 9, 62, 119

Ulbrich, C. W., 1985: The effects of drop size distribution truncation on rainfall integral pa-

rameters and empirical relations. J. Climate Appl. Meteor., 24 (6), 580–590. 44

Ulbrich, C. W., 1992: Effects of drop-size-distribution truncation on computer-simulations of

dual-measurement radar methods. J. Appl. Meteorol., 31 (7), 689–699. 44

Ulbrich, C. W., 1999: Radar properties of tropical rain found from disdrometer data at Arecibo,

Puerto Rico. The 29th Conference on Radar Meteorology, Amer. Meteor. Soc., P4.15. 20

Van Dijk, A. I. J. M., A. G. C. A. Meesters, J. Schellekens, and L. A. Bruijnzeel, 2005: A

two-parameter exponential rainfall depth-intensity distribution applied to runoff and erosion

modelling. J. Hydrol., 300, 155–171. 119
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