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Notations
Notations onerning sets:- R+ is the set {λ ∈ R, λ ≥ 0}.- R∗ is the set {λ ∈ R, λ 6= 0}.- Mn,m(R) denotes the set of real n×m matries.- Mn(R) denotes the set of real n× n matries.- Sn denotes the set of symmetri matries in Mn(R).- S+

n (resp. S+∗
n ) denotes the set of positive (resp. positive de�nite) symmetri matriesin Mn(R).- Co{Fi}i∈I , for given matries Fi ∈ Mn,m(R) and a �nite set of indexes I, denotes theonvex polytope in Mn,m(R) formed by the verties Fi, i ∈ I.- C0(X → Y ), for two metri spaes X and Y , is the set of ontinuous funtions from Xto Y .- L2 is the spae of square-integrable funtions from R+ to Rn.- λX , for a salar λ ∈ R and an R vetor spae X , represents the set {λx, x ∈ X}.- R∗x, with x ∈ Rn, is the set de�ned as {y ∈ Rn, ∃λ 6= 0, y = λx}.- |X|, is the ardinality of the �nite set X .- P(X) denotes the power set of a set X (i.e. the set of all subsets of X).Notations onerning matries:- MT stands for the transpose of M ∈ Mn,m(R).- M+ is the pseudoinverse of M ∈ Mn,m(R).- A � B (resp. A ≻ B) for matries A, B ∈ Mn(R) means that A−B is a positive (resp.de�nite positive) matrix.- I is the identity matrix (of appropriate dimension).- ∗, in a matrix, denotes the symmetri elements of a symmetri matrix.- diag(A1, · · · , Am) is the blok diagonal matrix designed by the square matries Ai, i ∈

{1, · · · , m}, of any dimension.- rank(M) is the rank of the matrix M ∈ Mn,m(R).15



Notations- λmax(M) (resp. λmin(M)) denotes the largest (resp. lowest) eigenvalue of a symmetrimatrix M ∈ Mn(R).- ρ(M) denotes spetral radius of M ∈ Mn(R).- |||.|||2 stands for the operator norm on Mn(R) assoiated to the norm ‖.‖2 on Rn: for amatrix M ∈ Mn(R), |||M |||2 = sup‖x‖2=1 ‖Mx‖2 =
√

ρ(MTM).Notations onerning vetors:- xT stands for the transpose of x ∈ Rn.- ‖.‖2 stands for the Eulidean norm on Rn: for a vetor x ∈ Rn, ‖x‖2 = √
xTx.Notations onerning salars:- ⌊x⌋ is the �oor of x ∈ R: the largest integer not greater than x: x− 1 < ⌊x⌋ ≤ x.- ⌈x⌉ is the eiling of x ∈ R: the smallest integer not less than x: x ≤ ⌈x⌉ < x+ 1.- sgn(x) denotes the sign of the salar x.- sat(x) denotes a salar that is equal to −1 if the salar x ≤ −1, 1 if x ≥ 1, and xotherwise.Notations onerning funtions:- xt (resp. ẋt) denotes the funtion in C0([−h̄, 0] → Rn), for a given maximal delay h̄ suhthat xt(θ) = x(t + θ), ∀θ ∈ [−h̄, 0] (resp. ẋt(θ) = ẋ(t + θ), ∀θ ∈ [−h̄, 0]).- ‖.‖L2 is the L2-norm on L2: for a funtion f ∈ L2, ‖f‖L2 =

(∫∞

0
‖f(t)‖22dt

)
1
2 .- ‖.‖H∞

is the H∞-norm on L2 → L2: for an operator ∆ : u ∈ L2 7→ v ∈ L2, ‖∆‖H∞
=

supw∈R+
‖∆(jw)‖, with ‖∆(jw)‖ = max

‖z‖2=1, z∈Cn

‖∆(jw)z‖2. It is equal to the L2-to-L2norm: ‖∆‖H∞
=‖∆‖L2→L2 = sup

u 6=0

‖v‖L2

‖u‖L2

.- A lass K funtion is a funtion ϕ : [0, a) → [0,+∞) that is stritly inreasing, and suhthat ϕ(0) = 0.- A lass K∞ funtion is a lass K funtion suh that a = +∞ and limt→+∞ ϕ(t) = +∞.- A C∞ funtion is a funtion that is in�nitely di�erentiable.- f(n) = O(g(n)) means that the growth-rate of the sequene f(n), n ∈ N, is dominatedby the sequene g(n), i.e. there exist N ∈ N and K ∈ R∗
+ suh that for all n ≥ N ,

|f(n)| ≤ K|g(n)|.Notations onerning logi:- ∧ de�nes the "AND" logi gate.- ∨ de�nes the "OR" logi gate.Other notations:- x ≡ y means that the term x is denoted as y, or that the term y is denoted as x.16



General introdutionUntil the 50s, most systems were ontrolled using analogial ontrollers. However, the fastdevelopment of omputers led to an inreasing use of digital ontrollers. This is espeiallydue to their omputational power and �exibility. Nowadays, digital ontrollers have be-ome omnipresent, and enabled the explosion of embedded systems and networked ontrolsystems. They o�er several advantages: low ost installation and maintenane, inreased�exibility and re-usability, redued wiring ost, and ease of programming. Furthermore,they o�er the possibility to ontrol more than one proess at a time.Unlike analogial ontrollers, digital ontrollers, due to their nature, introdue disrete-time signals and disrete-time dynamis, via sample and hold devies [Aström 1996℄.First, the information sent from the sensors to the ontroller is sampled, by meansof an analog-to-digital (A/D) onverter. Suh a onversion of an input signal x(t) into asampled signal x(sk), at sampling instants sk, k ∈ N is shown in Figure 1.
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Figure 1: Analog-to-digital onversionMoreover, sine the ontrol is omputed only at disrete instants, it is neessary to use17



General introdutiona digital-to-analog (D/A) onverter (a zero-order-hold), so as to hold the ontrol valuethat is sent to the atuators. The onversion of a sampled input signal u(sk) into apieewise-onstant signal u(t), is shown in Figure 2.

s
0

s
1

s
2
s

3
s

4
s

5
s

6
s

7
s

8
s

9
s

10
s

11
s

12
s

13
s

14
s

15
s

16
s

17

u

t

 

 
Sampled−data signal u(s

k
)

Piecewise−constant signal u(t)

Figure 2: Digital-to-analog onversionIn embedded ontrol appliations however, a disrete-time implementation may pro-due undesired e�ets suh as delays or aperiodi ontrol exeutions, due to the interationbetween ontrol tasks and real-time sheduler mehanisms [Hristu-Varsakelis 2005℄. Thee�ets of these disrete-time dynamis brought up new hallenges regarding the stabilityand stabilization, and new theories and tools have been developed for these sampled-datasystems. In partiular, in the last few years, two main problems have been of a greatimportane for ontrol theorists:P1) the stability of sampled-data systems with time-varying sampling;P2) the dynami ontrol of the sampling events.The new trend is to ontrol dynamially the sampling so as to enlarge the samplingintervals and redue the omputational and energeti osts.GoalsThe work presented in this thesis is onerned with these two problems P1) and P2).The main objetive is to design a sampling law that allows for reduing the sampling18



frequeny of state-feedbak ontrol for linear sampled-data systems while ensuring thesystem stability.In order avoid possible sheduling issues, the robustness with respet to time-varyingsampling will also be inluded. The robustness aspet with respet to exogenous pertur-bations or delays in the ontrol loop will be onsidered, so to take into aount phenomenaouring in the real-time ontrol of physial systems. Finally, a o-design of the ontrollerand sampling law is proposed. Here, in order to redue the onservatism, the ontrolgains and the sampling instants will be omputed jointly.Throughout the thesis, di�erent designs of sampling ontrol laws will be presented.They an be used to ompute a simple upper-bound for time-varying samplings, or todynamially ontrol the sampling intervals, using online or o�ine algorithms.Struture of the thesisThe thesis is organized as follows:Chapter 1The �rst hapter is a literature survey whih presents an overview of problems, hal-lenges, and reent researh diretions in the domain of sampled-data systems in ontroltheory. First, the notion of sampled-data systems is de�ned, and the main open prob-lems in the literature are presented. Then, some general stability onepts neessary tothe omprehension are realled. Finally, several researh diretions, theories, and resultsare presented onerning the stability analysis of sampled-data systems with onstant ortime-varying sampling, or onerning the dynami ontrol of the sampling. The strengthsand weaknesses of the di�erent approahes are analyzed, so as to highlight whih problemshave already been solved, and what still remains to be done or improved.Chapter 2In the seond hapter, a state-dependent sampling ontrol is designed for ideal LTI systemswith sampled-data. The goal is to design a sampling law that will take into aount thesystem's state, so as to enlarge the sampling intervals, or in other terms, to generate thesampling events as sparsely as possible. The proposed state-dependent sampling funtiontakes advantage of an o�ine design based on LMIs obtained thanks to a mapping of thestate spae, polytopi embeddings, and Lyapunov-Razumikhin stability onditions. 19



General introdutionChapter 3In the third hapter, the robustness aspet with respet to exogenous disturbanes isonsidered for the design of a state-dependent sampling law. As in the seond hapter,the approah is based on Lyapunov-Razumikhin stability onditions and polytopi embed-dings. After presenting the main stability results, four di�erent appliations are addressed.The �rst one onerns the robust stability analysis with respet to time-varying sampling.The other three appliations propose di�erent approahes to the dynami ontrol of thesampling with the objetive to enlarge the sampling interval. Event-triggered ontrol,self-triggered ontrol, and the newly introdued state-dependent sampling shemes arethen presented.Chapter 4In the fourth and last hapter, an extension to the stability analysis of perturbed time-delay linear systems is takled, and the stabilization issue is onsidered. The objetive hereis to design a ontroller along with the state-dependent sampling law, so as to stabilize theonsidered perturbed LTI sampled-data system, and enlarge even further the allowablesampling intervals. First, the ase of a lassi linear state-feedbak ontroller is onsidered.Then, a new ontroller is proposed, the gains of whih are swithing aording to thesystem's state. The o-design of both the ontroller and the state-dependent samplingfuntion is based on LMIs obtained thanks to the mapping of the state-spae presentedin the previous hapters, and thanks to a new lass of Lyapunov-Krasovskii funtionalswith matries swithing with respet to the system's state.Personal publiationsThe researh exposed in this thesis an be found in the following publiations:Journals� C. Fiter, L. Hetel, W. Perruquetti, and J.-P Rihard - A State Dependent Samplingfor Linear State Feedbak - Automatia, Volume 48, Number 8, Pages 1860-1867,August 2012. doi:10.1016/j.automatia.2012.05.063� C. Fiter, L. Hetel, W. Perruquetti, and J.-P Rihard - A Novel Stabilization Ap-proah for State-Dependent Sampling - International Journal of Control, provision-20



ally aepted.� C. Fiter, L. Hetel, W. Perruquetti, and J.-P Rihard - A Robust Stability Frameworkfor Time-Varying Sampling - Automatia, submitted.International onferenes� C. Fiter, L. Hetel, W. Perruquetti, and J.-P Rihard - State Dependent Sampling: anLMI Based Mapping Approah - 18th IFACWorld Congress, Milan, Italy, September2011.� C. Fiter, L. Hetel, W. Perruquetti, and J.-P Rihard - State-Dependent Sampling forPerturbed Time-Delay Systems - 51st IEEE Conferene on Deision and Control,Maui, Hawaii, USA, Deember 2012.� C. Fiter, L. Hetel, W. Perruquetti, and J.-P Rihard - A Robust Polytopi Ap-proah for State-Dependent Sampling - 12th European Control Conferene, Zurih,Switzerland, July 2013 - submitted.National onferenes� C. Fiter - Ehantillonnage Dépendant de l'Etat: une Approhe par CartographieBasée sur des LMIs - 4èmes Journées Dotorales MACS, Marseille, Frane, June2011.� C. Fiter, L. Hetel, W. Perruquetti, and J.-P Rihard - Éhantillonnage Dépendant del'État pour les Systèmes ave Perturbations et Retards - 8ème Colloque Franophonesur la Modélisation des Systèmes Réatifs, Villeneuve d'Asq, Frane, November2011. Journal Européen des Systèmes Automatisés, Volume 45, Number 1-2-3,Pages 189-203, 2011. doi:10.3166/jesa.45.189-203. Best young researher artileaward.
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Chapter 1Sampled-data systems: an overview ofreent researh diretionsIn this hapter, we intend to present several basi onepts and some reent researh di-retions about sampled-data systems. First, a short introdution of sampled-data systemswill be given, along with the main mathematial de�nitions and problematis. Then, somegeneral onepts of stability will be realled, and the sampled-data systems stability andstabilizability problems will be formulated. Finally, the main reent researh diretionsand results from the literature will be presented. They will be lassi�ed into three mainategories aording to their sampling type: onstant sampling, time-varying sampling,and dynami sampling ontrol.1.1 Introdution to sampled-data systems1.1.1 General sampled-data systemsSampled-data systems are dynami systems that involve both a ontinuous-time dynamisand a disrete-time ontrol. They are mathematially as follows:De�nition 1.1 (Sampled-data system)
ẋ(t) = f(t, x(t), u(t)), ∀t ≥ 0,

u(t) = g(x(sk), sk), ∀t ∈ [sk, sk+1), k ∈ N,
(1.1)where t is the time-variable, x : R+ → Rn the "state-trajetory", u : R+ → Rnu the"input", or "ontrol signal", and the salars sk, for k ∈ N, are the sampling instants23



Chapter 1. Sampled-data systems: an overview of reent researh diretionswhih satisfy 0 = s0 < s1 < · · · < sk < · · · and lim
k→+∞

sk = +∞.The sampling law is de�ned as
sk+1 = sk + τk, (1.2)where τk represents the kth sampling interval.Suh systems an be represented by the blok diagram in Figure 1.1, in whih thebloks A/D and D/A orrespond to an analog-to-digital onverter (a sampler) and adigital-to-analog onverter (a zero-order hold) respetively.

ẋ(t) = f(t, x(t), u(t))

x(t)u(t) = u(sk) SYSTEM
CONTROLLER A/DD/A x(sk)u(sk) = g(sk, x(sk))

sk+1 = sk + τkFigure 1.1: Sampled-data systemIt is important to note that with these systems, the disrete-time dynamis introduedby the (digital) ontroller implies that during the time between two sampling instantsthe system is ontrolled in open-loop (i.e. without updating the feedbak information).Therefore, the sampling period plays an important role in the stability of the system, andadapted tools have to be used.1.1.2 Sampled-data linear time-invariant systemsThe model of sampled-data systems provided in De�nition 1.1 is very general. In thisthesis, we will fous mainly on linear time-invariant sampled-data systems with state-feedbak, whih are de�ned as follows:De�nition 1.2 (Sampled-data linear time-invariant system)
ẋ(t) = Ax(t) +Bu(t), ∀t ≥ 0,

u(t) = −Kx(sk), ∀t ∈ [sk, sk+1), k ∈ N,
(1.3)24



1.1. Introdution to sampled-data systemswhere t is the time-variable, x : R+ → Rn the "state-trajetory", u : R+ → Rnu the"input", or "ontrol signal", and the salars sk, for k ∈ N, are the sampling instantswhih satisfy 0 = s0 < s1 < · · · < sk < · · · and lim
k→+∞

sk = +∞. A ∈ Mn(R) is the "statematrix", B ∈ Mn,nu
(R) is the "input gain matrix", and K ∈ Mnu,n(R) is the "ontrolgain matrix". The sampling law is de�ned as

sk+1 = sk + τk, (1.4)where τk represents the kth sampling interval.This de�nition presents the ase of "ideal" sampled-data LTI systems, in whih nodisturbane nor any other phenomenon is taken into aount. Throughout this thesishowever, additional phenomena will be onsidered like exogenous perturbations or delaysin the feedbak ontrol-loop for example. In that ase, when these lasses of systems areonsidered, the assoiated system equations will be provided.In the absene of perturbations, the evolution of the system's state between two on-seutive sampling instants sk and sk+1 is given by
x(t) = eA(t−sk)x(sk) +

∫ t−sk
0

eAsdsBu(sk)

= Ad(t− sk)x(sk) +Bd(t− sk)u(sk)

= [Ad(t− sk)− Bd(t− sk)K]x(sk)

= Λ(t− sk)x(sk), ∀t ∈ [sk, sk+1], k ∈ N,

(1.5)with the matrix funtions Ad, Bd, and Λ de�ned on R+ as
Ad(σ) = eAσ, Bd(σ) =

∫ σ

0

eAsdsB. (1.6)and
Λ(σ) = Ad(σ)− Bd(σ)K = eAσ −

∫ σ

0

eAsdsBK. (1.7)Using the notation τk in equation (1.4), for the sampling intervals, it is then possibleto obtain the following assoiated disrete-time model of the linear sampled-data systemat instants sk:
xk+1 = Ad(τk)xk +Bd(τk)uk = Λ(τk)xk, ∀k ∈ N, (1.8)with xk ≡ x(sk) and uk ≡ u(sk). Ad(τk) and Bd(τk) are alled the "state matrix" and the"input matrix" of the disrete-time model respetively, and Λ(τk) is alled the disrete-time "transition matrix". 25



Chapter 1. Sampled-data systems: an overview of reent researh diretions1.1.3 ProblematisFrom the ontrol theory point of view, due to the existene of both a ontinuous anda disrete dynamis, sampled-data systems bring up new hallenges. As in the moregeneral frameworks of delayed-systems [Rihard 2003℄, [Gu 2003℄, hybrid systems [derShaft 2000℄, [Zaytoon 2001℄, [Goebel 2009℄, [Prieur 2011℄, or reset systems [Nesi 2008℄,[Beker 2004℄, some problems are raised.- PROBLEM A: Determine if a sampled-data system is stable for any onstantsampling interval τk ≡ τ with values in a bounded subset Ω ⊆ R+?- PROBLEM B: Determine if the sampled-data system is stable for any time-varyingsampling interval τk with values in a bounded subset Ω ⊆ R+?Lately, an additional issue has been brought up to light. With the emergene of embed-ded and networked systems partiularly [Zhang 2001℄, [Hespanha 2007℄, [Rihard 2007℄,[Chen 2011℄, ontrol sientists realised that omputing the next ontrol at eah samplingtime has a ost [Buttazzo 2002℄, [Cervin 2002℄, [Brokett 2000℄, [Nair 2000℄. Indeed, theomputations for a new ontrol redues the limited proessor resoures, in the ase of em-bedded systems for example. In the ase of networked ontrol systems, the transmissionof the sampled-data requires bandwidth, whih is also limited. Therefore, a new problemarose:- PROBLEM C: Design a sampling law τk = τ(t, sk, x(sk), · · · ) that enlarges thesampling intervals while making the sampled-data system stable?In this thesis, we will mainly fous on �nding solutions to this last partiular problemwhih onerns the redution of the number of sampling instants (i.e. for partiularsystems with periodi sampling, the redution of the sampling frequeny). We will alsoadapt the proposed tools in order to further derive solutions to the other two problems.During this study, some stability performanes will be taken into aount, suh as thespeed of onvergene of the system's state, or the robustness with respet to possibleexogenous perturbations or delays.1.2 Classial stability oneptsBefore providing an overview of some works from the literature about sampled-data sys-tems, we reall some fundamental onepts about stability, and some lassi stability toolsthat will be used throughout the thesis.26



1.2. Classial stability onepts1.2.1 Some stability de�nitionsIntuitively, stability is a property that orresponds to staying lose to an equilibriumposition, when the state is puntually disturbed. Originally, stability is analyzed forsystems that are time-invariant and autonomous (i.e. for whih there is no ontrol, or fora losed-loop system with a given ontrol). Suh systems are de�ned as follows:De�nition 1.3 (Autonomous system) The ordinary di�erential equation:
ẋ(t) = f(x(t)), ∀t ≥ 0, (1.9)with f : Rn → Rn Lipshitz ontinuous1, is said to be autonomous if f(x(t)) does notdepend expliitely on the free variable t (often regarded as time).An "equilibrium point" xe represents a real solution of the equation f(x) = 0.De�nition 1.4 ( [Khalil 2002℄) An equilibrium point xe of the system (1.9) is� stable (in the sense of Lyapunov) if ∀ǫ > 0, ∃δ = δ(ǫ) > 0 suh that

‖x(0)− xe‖ < δ ⇒ ‖x(t)− xe‖ < ǫ, ∀t ≥ 0;� attrative if ∃ρ > 0 suh that
‖x(0)− xe‖ < ρ ⇒ lim

t→+∞
‖x(t)− xe‖ = 0;� asymptotially stable if it is stable and attrative;� exponentially stable if there exist three salars α, β, δ > 0 suh that

‖x(0)− xe‖ < δ ⇒ ‖x(t)− xe‖ ≤ α‖x(0)− xe‖e−βt.For suh a salar β, alled (exponential) "deay-rate", the equilibrium point is alsosaid to be "β-stable";� globally asymptotially stable if it is stable and ∀x(0) ∈ Rn,
lim

t→+∞
‖x(t)− xe‖ = 01Given two metri spaes (X, dX) and (Y, dY ), where dX denotes the metri on the set X and dY isthe metri on set Y , a funtion f : X → Y is alled Lipshitz ontinuous (or simply Lipshitz) if thereexists a real onstant K ≥ 0 suh that for all x1, x2 ∈ X , dY (f(x1), f(x2)) ≤ KdX(x1, x2). 27



Chapter 1. Sampled-data systems: an overview of reent researh diretionsNote that by using a translation of the origin, it is always possible to reformulate theproblem as a stability analysis around xe = 0. Therefore, all the results and stabilityproperties will now be written while taking xe = 0 as the studied equilibrium point.1.2.2 Seond Lyapunov methodThe most ommon stability tool is the Lyapunov stability approah. It is based on thefat that a system whih trajetory approahes the origin, loses its energy. The Lyapunovstability approah makes use of a funtion V : Rn → R+, alled "andidate Lyapunovfuntion", whih depends on the system's state, and symbolizes some sort of potentialenergy of the system, with respet to the origin. Very often, this funtion is hosen as anorm or a distane. The Lyapunov stability theory is desribed as follows [Khalil 2002℄.Theorem 1.5 Consider the autonomous system (1.9) with an isolated equilibrium point(xe = 0 ∈ Ω ⊆ Rn, with Ω a neighborhood of xe). If there exist a loally Lipshitz funtion
V : Rn → R+ with ontinuous partial derivatives and two lass K funtions2 α and β suhthat

α(‖x‖) ≤ V (x) ≤ β(‖x‖), ∀x ∈ Ω,then the origin x = 0 of the system is� stable (in the sense of Lyapunov) if
dV (x)

dt
≤ 0, ∀x ∈ Ω, x 6= 0;� asymptotially stable if there exists a lass K funtion ϕ suh that

dV (x)

dt
≤ −ϕ(‖x‖), ∀x ∈ Ω, x 6= 0;� exponentially stable if, moreover, there exist four salars ᾱ, β̄, γ, p > 0 suh that

α(‖x‖) = ᾱ‖x‖p, β(‖x‖) = β̄‖x‖p, ϕ(‖x‖) = γ‖x‖.In suh a ase, the equilibrium point xe allows a deay-rate equal to γ

p
.There also exists a disrete-time version of the Lyapunov stability theory.2A lass K funtion is a funtion ϕ : [0, a) → [0,+∞) that is stritly inreasing, and suh that ϕ(0) = 0.28



1.2. Classial stability oneptsTheorem 1.6 Consider the disrete-time autonomous system
xk+1 = f(xk), (1.10)with an isolated equilibrium point (xe = 0 ∈ Ω ⊆ Rn, with Ω a neighborhood of xe). Ifthere exist a loally Lipshitz funtion V : Rn → R+ with ontinuous partial derivativesand two lass K funtions α and β suh that

α(‖x‖) ≤ V (x) ≤ β(‖x‖), ∀x ∈ Ω,then the origin x = 0 of the system is� stable (in the sense of Lyapunov) if
∆V (xk) ≤ 0, ∀xk ∈ Ω, xk 6= 0where
∆V (xk) = V (xk+1)− V (xk)

= V (f(xk))− V (xk);� asymptotially stable if there exists a lass K funtion ϕ suh that
∆V (xk) ≤ −ϕ(‖xk‖), ∀xk ∈ Ω, xk 6= 0;� exponentially stable if there exist four salars ᾱ, β̄, γ, p > 0 suh that

α(‖x‖) = ᾱ‖x‖p, β(‖x‖) = β̄‖x‖p, ϕ(‖x‖) = γ‖x‖.Remark 1.7 The loal de�nitions of the above two theorems are globally valid if the givenfuntions are lass K∞ funtions3 and Ω = Rn.The funtion V : Rn → R+ that veri�es the properties in the previous theorems isalled a "Lyapunov funtion". By abuse of language, espeially in the ase of linearsystems, a system with a stable and unique equilibrium point is often alled a "stablesystem". Furthermore, if a system is not stable, we will say that it is "unstable".3A lass K∞ funtion is a lass K funtion suh that a = +∞ and limt→+∞ ϕ(t) = +∞. 29



Chapter 1. Sampled-data systems: an overview of reent researh diretions1.2.3 Properties of linear time-invariant systems with sampled-data ontrolVery interesting properties arise in the ontext of sampled-data LTI systems, onerningontinuous and disrete-time analysis approahes. One of the �rst onerns the equilib-rium's attrativity, and is formulated as follows:Theorem 1.8 (From [Fujioka 2009b℄) For a given sampled-data LTI system (1.3) withbounded sampling intervals and a given initial state x(0), the following onditions areequivalent:(i) limt→+∞ x(t) = 0,(ii) limk→+∞ x(sk) = 0.This property means that the attrativity of the ontinuous-time system (1.3) is equiv-alent to the attrativity of the disrete-time system (1.8).Further analysis [Hetel 2011a℄ allows for proving that the ontinuous-time system's(asymptoti) stability is equivalent to the disrete-time system's (asymptoti) stabil-ity, in the more general ase of reset ontrol systems ( [Nesi 2008℄, [Beker 2004℄ [Tar-bourieh 2011℄, [Zaarian 2005℄).Therefore, it is possible to use both a ontinuous or a disrete-time approah in orderto study the stability of sampled-data systems.In the following, we will present an overview of some results from the litteratureregarding the three main studies onerning sampled-data systems:� the stability analysis regarding a onstant sampling (Problem A);� the stability analysis regarding time-varying sampling (Problem B);� the dynami ontrol of the sampling (Problem C).1.3 Stability analysis under onstant samplingThe �rst and easiest way to study sampled-data systems is to onsider the ase when thesampling interval is onstant, for a given value T (see Figure 1.2).In this ase, the system's stability is usually analysed using the disrete-time LTImodel of the system:
xk+1 = Λ(T )xk. (1.11)30



1.3. Stability analysis under onstant sampling
ẋ(t) = Ax(t) +Bu(t)

x(t)u(t) = u(sk) SYSTEM
CONTROLLER A/DD/A x(sk)u(sk) = −Kx(sk)

sk+1 = sk + TFigure 1.2: Sampled-data system with a onstant sampling rateFor a given sampling period T , the most ommon approah to analyse the stability (theso-alled "Shur method") onsists in studying the eigenvalues of the transition matrix
Λ(T ). We all λmax(T ) the eigenvalue of Λ(T ) with the largest modulus. We then havethe following properties [Aström 1996℄.Theorem 1.9 The equilibrium xe = 0 of (1.11) is� Shur-stable (globally asymptotially stable) if and only if |λmax(T )| < 1. In thatase, Λ(T ) is alled a Shur matrix;� exponentially stable (globally) with a deay-rate α > 0 if and only if |λmax(T )| ≤e−αT .Equivalent Linear Matrix Inequality (LMI) stability onditions an also be obtainedusing the Lyapunov stability theory for disrete-time systems.Theorem 1.10 The onsidered system (1.11) is� stable (globally) if and only if there exists a matrix P ∈ S+∗

n suh that
Λ(T )TPΛ(T )− P � 0;� Shur-stable (globally asymptotially stable) if and only if there exists a matrix P ∈

S+∗
n suh that

Λ(T )TPΛ(T )− P ≺ 0; 31



Chapter 1. Sampled-data systems: an overview of reent researh diretions� exponentially stable (globally) with a deay-rate α > 0 if and only if there exists amatrix P ∈ S+∗
n suh that

Λ(T )TPΛ(T )− e−αTP � 0.The disrete-time analysis of sampled-data systems with a given onstant samplinghas sine long been solved. However, some problems still remain open, sine the proposedsolutions remain onservative regarding the ontinuous-time analysis of suh systems, orregarding the robustness with respet to exogenous perturbations. For more results re-garding robust stability and optimal ontrol of sampled-data systems both in ontinuous-time and disrete-time, we point to the handbooks [Chen 1991℄ and [Aström 1996℄. Inthe following setion, we will onsider the robustness aspet with respet to variations inthe sampling interval.1.4 Stability analysis under time-varying samplingIn the literature, there exist numerous studies about sampled-data systems with a on-stant sampling interval. In pratie however, it may atually be impossible to maintaina onstant sampling rate during the real-time ontrol of physial systems. Embeddedand networked systems for example are often required to share a limited amount of om-putational and transmission resoures between di�erent appliations. This may lead to�utuations of the sampling interval, beause of delays that ould appear during theomputation of the ontrol, during the transmission of the information, or beause ofsheduling issues [Zhang 2001℄, [Bushnell 2001℄, [Mounier 2003a℄. Suh systems are rep-resented by the blok diagram in Figure 1.3.1.4.1 Di�ulties and hallengesFrom the ontrol theory point of view, these variations in the sampling interval bring upnew hallenges sine they may have a destabilizing e�et if they are not properly takeninto aount [Wittenmark 1995℄, [Zhang 2001b℄, [Li 2010℄.Consider for example the system [Zhang 2001b℄:
ẋ(t) =

[

1 3

2 1

]

x(t) +

[

1

0.6

]

u(t), ∀t ≥ 0,

u(t) = −
[

1 6
]

x(sk), ∀t ∈ [sk, sk+1), k ∈ N.

(1.12)32



1.4. Stability analysis under time-varying sampling
ẋ(t) = Ax(t) +Bu(t)

x(t)u(t) = u(sk) SYSTEM
CONTROLLER A/DD/A x(sk)u(sk) = −Kx(sk)

sk+1 = sk + τkFigure 1.3: Sampled-data system with a time-varying samplingIn the ase of a onstant sampling rate, one an use a gridding on the sampling step
T and the stability onditions from Theorem 1.9, as shown in Figure 1.4, to �nd thatthe origin of the system is Shur-stable if T ∈ [0s, Tmaxonst = 0.5937s], and unstable for
T ∈ [Tmaxonst, 0.9s] (as well as for higher values).
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Figure 1.4: Evolution of the modulus |λmax(T )| of the maximum eigenvalue of the transi-tion matrix Λ(T ), depending on the sampling period TTherefore, for onstant sampling intervals T1 = 0.18s or T2 = 0.54s for example, thesystem is Shur-stable, as illustrated by Figure 1.5.However, if we sample using a sequene of sampling intervals T1 → T2 → T1 → T2 →
· · · , the system beomes unstable, as we an see in Figure 1.6.This is due to the fat that the Shur property of matries is not preserved under33



Chapter 1. Sampled-data systems: an overview of reent researh diretions
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Figure 1.5: Constant sampling rate with T1 = 0.18s (left) and T2 = 0.54s (right) - Stable
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Figure 1.6: Variable sampling intervals T1 = 0.18s → T2 = 0.54s → T1 → T2 → · · · -Unstable
matrix produt (i.e. the produt of two Shur matries is not neessarily Shur). Indeed,in this ase, the disrete-time equivalent system over two sampling instants an be writtenas

xk+2 = Λ(T2)Λ(T1)xk, ∀k ∈ 2N,whih an also be written as
xh+1 = Λ(T1, T2)xh, ∀h ∈ N,34



1.4. Stability analysis under time-varying samplingwith h representing the 2kth sampling, and the transition matrix
Λ(T1, T2) ≡ Λ(T2)Λ(T1) =

[

0.8069 −3.2721

0.6133 −2.1125

]

over two sampling intervals T1 and T2, whih is not Shur in this example.In the ase of sampled-data systems with a periodi sequene of sampling intervals,it is possible to design a stability domain that depends on the sampling sequene. Forinstane, Figure 1.7 presents the stability domain (in blue) obtained by using a griddingon the values of T1 and T2, in the ase of a periodi sequene of two sampling intervals,for the sampled-data system (1.43).
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Figure 1.7: Stability domain (allowable sampling interval) for a periodi sampling se-quene T1 → T2 → T1 → T2 → · · · - �rst exampleIn this �gure, one an see that there exist unstable sampling sequenes made of stablesampling intervals4, whih on�rms our earlier remark. Also, one an see that there existstable sampling sequenes made of both stable and unstable sampling intervals (with
T1 = 0.46s and T2 = 0.8s for example).4by "stable sampling interval", we mean that the transition matrix of the assoiated sampling intervalis Shur. 35



Chapter 1. Sampled-data systems: an overview of reent researh diretionsConsider now the example
ẋ(t) =

[

0 1

−2 0.1

]

x(t) +

[

0

1

]

u(t), ∀t ≥ 0,

u(t) = −
[

−1 0
]

x(sk), ∀t ∈ [sk, sk+1), k ∈ N,

(1.13)and its assoiated stability domain (see Figure 1.8). Here, one an see that there alsoexist stable sampling sequenes whih are omposed solely of unstable sampling intervals.
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Figure 1.8: Stability domain (allowable sampling interval) for a periodi sampling se-quene T1 → T2 → T1 → T2 → · · · - seond exampleLet us look at the sampling values T1 = 2.126s and T2 = 3.950s for example. Thesampled-data system (1.13) is unstable with both onstant samplings T1 and T2. However,as it is shown in Figure 1.9, the system's transition matrix Λ(T1, T2) is Shur-stable underthe periodi sampling T1 → T2 → T1 → T2 → · · · .Aording to the previous observations, it is lear that the existing stability tools forsampled-data systems with a onstant sampling will not provide any guarantee of stabilityfor sampled-data systems with unknown time-varying sampling that arises in real-timeontrol onditions. For this reason, onsidering the di�ulty of the problem, several worksin the last deades have been onerned with the stability analysis of sampled-data systems36



1.4. Stability analysis under time-varying sampling
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Figure 1.9: Variable sampling T1 = 2.126s → T2 = 3.950s → T1 → T2 → · · · - Stablewith time-varying samplings with bounded values [Mirkin 2007℄, [Naghshtabrizi 2008℄,[Hetel 2007℄, [Fujioka 2009b℄, [Seuret 2009℄, [Fridman 2010℄, and [Hetel 2011b℄. Veryoften, the sampling intervals that are onsidered an take any value in a bounded set
[τ , τ̄ ]. In the rest of this setion, we propose a short overview of various notable methodsregarding this issue.1.4.2 Time-delay approah with Lyapunov tehniquesOne of the approahes to deal with time-varying sampling was initiated in [Mikheev 1988℄,and onsists in onsidering the disrete-time dynamis indued by the digital ontrolleras a pieewise ontinuous delay (see Figure 1.10):

sk = t− (t− sk) = t− h(t), ∀t ∈ [sk, sk+1), k ∈ N,where h(t) ≡ t− sk is the indued delay. The LTI system with sampled-data (1.3) is thenre-modeled as an LTI system with time-varying delay
ẋ(t) = Ax(t) +Bu(t), ∀t ≥ 0,

u(t) = −Kx(t− h(t)), ∀t ≥ 0,
(1.14)and is studied with lassial tools designed for time-delay systems [Rihard 2003℄, [Frid-man 2003℄, [Zhong 2006℄, [Mounier 2003b℄ whih are de�ned by retarded funtional dif-ferential equations as follows: 37



Chapter 1. Sampled-data systems: an overview of reent researh diretionsDe�nition 1.11 (Time-delay system) A time-delay system is desribed by the follow-ing funtional di�erential equation:
ẋ(t) = f(t, xt), ∀t ≥ 0,

xs0(θ) = φ(s0 + θ), ∀θ ∈ [s0 − h̄, s0]
(1.15)where f : R+ × C0([−h̄, 0] → R

n) → R
n, φ ∈ C0([−h̄, 0] → R

n), with h̄ ≥ 0 the maximaldelay, and xt ∈ C0([−h̄, 0] → Rn), whih represents the state funtion5 and is de�ned by:
xt(θ) = x(t + θ), ∀θ ∈ [−h̄, 0]. (1.16)
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Figure 1.10: Sampling seen as a pieewise-ontinuous time-delayIt is assumed that there exists a unique solution to the above di�erential equation(some Lipshitz onditions for the existene and uniity of solutions for suh systems areprovided in [Gu 2003℄), and that there is a unique equilibrium point6: xe = 0 (as in thedelay-free ase, if the equilibrium point is not 0, we an ome down to it by using a simplehange of oordinates).In the general ase of time-delay systems, it is di�ult to apply the lassial Lyapunovstability theory from Theorem 1.5, beause the derivative dV (x)
dt

will depend on the pastvalues of the state: xt. To overome this issue, two di�erent stability approahes, bettersuited to time-delay systems, have been developped. Both of them make use of a widerlass of funtions or funtionals as Lyapunov andidates. The �rst approah is alledLyapunov-Razumikhin [Gu 2003℄, and makes use of a time-dependent "energy" funtion
V ≡ V (t, x(t)). The seond approah, alled Lyapunov-Krasovskii [Gu 2003℄, makes useof a funtional V ≡ V (t, xt) instead.5Note that x(t) is the value of the state at θ = 0: x(t) = xt(0).6Under existene and uniity of the solution, it an be shown [Dambrine 1994℄ that the equilibriumstate de�ned by ẋ(t) = 0 is a onstant funtion xt(θ) ≡ xe, thus the expression "equilibrium point" isjusti�ed.38



1.4. Stability analysis under time-varying sampling1.4.2.1 Lyapunov-Razumikhin approahIn this approah, it is onsidered a funtion V ≡ V (t, x(t)). The originality is to showthat it is not neessary to hek the ondition V̇ (t, x(t)) ≤ 0 along all the trajetoriesof the system. Indeed, it is possible to limit this test to solutions whih tend to leave aneighbourhood V (t, x(t)) ≤ c of the equilibrium point. The approah is formulated asfollows.Theorem 1.12 (Lyapunov-Razumikhin (from [Gu 2003℄)) Consider three ontin-uous non-dereasing funtions α, β, γ : R+ → R+, β stritly inreasing, suh that α(θ)and β(θ) are stritly positive for all θ > 0, and α(0) = β(0) = 0. Assume that the vetor�eld f from (1.15) is bounded for bounded values of its arguments.If there exists a ontinuously di�erentiable funtion V : R+ × Rn → R+ suh that:
α(‖x‖) ≤ V (t, x) ≤ β(‖x‖), ∀t ∈ R+, ∀x ∈ R

n, (1.17)with ‖.‖ any norm on Rn, and if the derivative of V along the solutions of (1.15) satis�es
V̇ (t, x(t)) ≤ −γ(‖x(t)‖) whenever V (t+ θ, x(t + θ)) ≤ V (t, x(t)), ∀θ ∈ [−h̄, 0], (1.18)then the origin of system (1.15) is uniformly stable.If, in addition, γ(θ) > 0 for all θ > 0, and if there exists a ontinuous non-dereasingfuntion p : R+ → R+ satisfying p(θ) > θ for all γ > 0, and suh that ondition (1.19) isstrengthened to
V̇ (t, x(t)) ≤ −γ(‖x(t)‖) whenever V (t+θ, x(t+θ)) ≤ p(V (t, x(t))), ∀θ ∈ [−h̄, 0], (1.19)then the funtion V is alled a Lyapunov-Razumikhin funtion, and the origin of system(1.15) is uniformly asymptotially stable.If in addition lims→+∞ α(s) = +∞, then the origin of system (1.15) is globally uni-formly asymptotially stable.In pratie, for simpliity, most existing works about Lyapunov-Razumikhin stabilityuse a linear funtion: p(θ) = qθ, with a salar q > 1. Moreover, the Lyapunov-Razumikhinandidates are very often taken as quadrati and time-invariant: V (x) = xTPx, where
P ∈ S+∗

n . Some works about the Lyapunov-Razumikhin approah for delayed systemsinlude [Jankovi 2001℄, [Wang 2007℄, [Stamova 2001℄, [Jiao 2005℄, and [Yu 2004℄. 39



Chapter 1. Sampled-data systems: an overview of reent researh diretionsOne of the advantages of the Lyapunov-Razumikhin stability theory is that it reduesthe onservatism with respet to the lassi Lyapunov stability theory, and it makesit possible to work with simple Lyapunov(-Razumikhin) funtions. Its main drawbakis that it may be di�ult to obtain hekable delay (or sampling interval)-dependentstability onditions, sine the delay (or sampling interval) is not expliitely introdued inthe equations. This will be a motivation for employing Lyapunov-Krasovskii tehniquesto be presented now.1.4.2.2 Lyapunov-Krasovskii approahThe Lyapunov-Krasovskii approah is an extension of the Lyapunov theory to funtionaldi�erential equations. Here, we are searhing for positive funtionals V ≡ V (t, xt) whihare dereasing along the trajetories of (1.15).Theorem 1.13 (Lyapunov-Krasovskii (from [Gu 2003℄)) Consider three ontinuousnon-dereasing funtions α, β, γ : R+ → R+, suh that α(θ) and β(θ) are stritly positivefor all θ > 0, and α(0) = β(0) = 0. Assume that the vetor �eld f from (1.15) is boundedfor bounded values of its arguments.If there exists a ontinuous di�erentiable funtional V : R+ ×C0([−h̄, 0] → R
n) → R+suh that

α(‖φ(0)‖) ≤ V (t, φ) ≤ β(‖φ‖C), (1.20)with ‖.‖ any norm on Rn, ‖.‖C its assoiated norm on C0([−h̄, 0] → Rn) de�ned by
‖φ‖C = maxθ∈[−h̄,0] ‖φ(θ)‖, and if

V̇ (t, φ) ≤ −γ(‖φ(0)‖), (1.21)then the origin of system (1.15) is uniformly stable.If in addition γ(θ) > 0 for all θ > 0, then the funtional V is alled a Lyapunov-Krasovskii funtional, and the origin of system (1.15) is uniformly asymptotially stable.If in addition lims→+∞ α(s) = +∞, then the origin of system (1.15) is globally uni-formly asymptotially stable.The funtionals that are being onsidered usually have the form [Kolmanovskii 1996℄:
V (t, φ) = φT (0)P (t)φ(0) + φT (0)

(

∫ 0

−h̄
Q(t, s)φ(s)ds

)

+
(

∫ 0

−h̄
φT (s)QT (t, s)ds

)

φ(0)

+
∫ 0

−h̄

∫ 0

−h̄
φT (s)R(t, s, p)φ(p)dsdp+

∫ 0

−h̄
φT (s)S(s)φ(s)ds, (1.22)40



1.4. Stability analysis under time-varying samplingwhere P, Q, R, and S ∈ Mn(R). P (t) and S(s) ∈ S+∗
n , and R satis�es R(t, s, p) =

RT (t, p, s).It was proved in [Kolmanovskii 1996℄ that the existene of suh a Lyapunov-Krasovskiifuntional is neessary and su�ient to ensure the system's stability in the ase of LTIsystems with time-varying delay (i.e. when the system (1.11) is onsidered with f(t, xt) =

Ax(t) +Adx(t− h(t))). An analytial desription of �tting matrix funtions Q, R and Shas also been presented in [Kharitonov 2003℄.In pratie (see [Niulesu 2001℄), these matrix terms are onsidered onstant, and wesearh for funtionals of the type:
V (t, φ) = φT (0)Pφ(0) + 2φT (0)

(

∫ 0

−h̄
Qφ(s)ds

)

+
∫ 0

−h̄
φT (s)Sφ(s)ds

+
∫ 0

−h̄

∫ 0

−h̄
φT (s)Rφ(p)dsdp.

(1.23)Although more onservative, this form of Lyapunov-Krasovskii funtionals with onstantmatries allows to derive LMI stability onditions, whih makes it easier to look forsolutions (see [Fridman 2004℄ for instane).In reent works onerning time-delay systems, the onservatism has been redued byonsidering pieewise-onstant matrix funtions P, Q, R, and S [Fridman 2000℄, [Frid-man 2006℄, [Gu 1997℄, [Gu 2003℄.In the general ase of time-delay systems, one of the drawbaks of the Lyapunov-Krasovskii approah is that the derivative dV (t,xt)
dt

depends on the delay-derivative, whih isoften unknown. In the ase of sampled-data systems [Fridman 2004℄, [Naghshtabrizi 2008℄,[Fridman 2010℄, [Seuret 2012℄, there is no suh issue sine the indued delay has a knownderivative ḣ(t) = 1, for all t ∈ [sk, sk+1), k ∈ N. This partiularity enables to simplify thefuntionals that are onsidered and to derive less onservative stability onditions. Forexample, it has been shown in [Fridman 2010℄ that the standard time-independent term
∫ 0

−h̄

∫ 0

t+θ
xT (s)Rx(s)dsdθ used in [Fridman 2004℄ or [Park 2007℄ an be advantageouslyreplaed by the term (sk+1− t)

∫ t

sk
ẋT (s)Rẋ(s)ds, whih provides time-dependent stabilityonditions.One of the advantages of the Lyapunov-Krasovskii approah is that it enlarges, in anessential manner, the lass of Lyapunov andidates. It was shown (in [Driver 1977℄ for theonstant delay ase, and in [Kolmanovskii 1999℄ for the general time-varying delay ase)that the existene of a Lyapunov-Razumikhin funtion (LRF) implies the existene of aLyapunov-Krasovskii funtional (LKF). Furthermore, it makes it possible to expliitelyintrodue the delay (or the sampling intervals) in the equations and to obtain delay (or41



Chapter 1. Sampled-data systems: an overview of reent researh diretionssampling interval)-dependent stability onditions. Last, reent advanes [Fridman 2010℄are spei�ally tuned for sampled-data systems and re-open LKF tehniques in a waythat they an hallenge small-gain approahes, whih will be presented in the next sub-setion. One of the drawbaks, however, is that the design of the Lyapunov-Krasovskiifuntionals may not be very intuitive, whih makes it di�ult to identify the soure ofonservatism of the approah. Also, additional onservatism inherent to this tehnique isintrodued through (sometimes heavy) upper-bounding tehniques. These upper-boundsare introdued when heking the sign of the derivative V̇ , so to ondition the problem ina tunable and solvable way (e.g. tuning nonlinear into linear matrix inequalities). How-ever, the approah may be easily extended to ontrol design and to the ase of systemswith parameter unertainties and perturbations.1.4.3 Small-gain approahThe idea of the small-gain approah is to onsider the in�uene of the sampling as aperturbation with regard to the ontinuous ontrol law (w(t) = K(x(t)− x(sk))), and torewrite the system (1.3) as an interonnetion between the system
G : Rnu → Rnu

w 7→ z,de�ned as
G :

{

ẋ(t) = Alx(t) +Bw(t)

z(t) = Cx(t) +Dw(t)
(1.24)where

Al = A− BK, C = −KA, and D = −KB,and the operator
∆ : Rnu → Rnu

z 7→ w,de�ned by
w(t) = (∆z)(t) ≡ −

∫ t

sk

z(θ)dθ, ∀t ∈ [sk, sk+1), k ∈ N. (1.25)The stability of the obtained interonneted system (represented in Figure 1.11), anthen be guaranteed by applying the small gain theorem:Theorem 1.14 ( [Khalil 2002℄) Assume that the interonneted system (G, ∆) is well-42



1.4. Stability analysis under time-varying sampling
∆(s)

G(s)

zw

Figure 1.11: Interonneted systemposed and that ‖∆‖H∞
‖G‖H∞

< 1. Then, the losed-loop system is internally stable.This approah requires the analysis of the properties of the operator ∆. The �rstimportant property of ∆ is that it is norm-bounded by a salar δ0,
‖∆‖H∞

≤ δ0, (1.26)that depends on the upper-bound on the sampling interval τ̄ . In [Cao 1998℄, it wasshown that δ0 ≤ τ̄ . In [Mirkin 2007℄, a better approximation of the upper-bound wasfound using the lifting tehnique: δ0 ≤ 2
π
τ̄ . This last upper-bound an be shown to beexat sine it is attained for a onstant sampling interval τk = sk+1 − sk = τ̄ . Otherproperties of the operator ∆ an be exploited, suh as its ommutativity with any linearmap W = Rnu → Rnu ,

W∆ = ∆W. (1.27)With these properties, the small-gain theorem allows for writing stability onditionsof the form:
‖WGW−1‖H∞

<
1

δ0
, for any linear map W = W T ≻ 0, (1.28)where W an be seen as a free variable. By invoking the Kalman-Yakubovih-Popovlemma [Rantzer 1996℄, it is then possible to derive hekable stability onditions underthe form of LMIs [Cao 1998℄, [Mirkin 2007℄, [Fujioka 2009b℄.Moreover, it is possible to take into aount other properties of the operator ∆ suhas its passivity property for example:

< ∆z, z >≡
∫ +∞

0

zT (θ)(∆z)(θ)dθ ≤ 0, ∀z ∈ L2, (1.29)as in [Fujioka 2009b℄. In this ase, the LMI stability onditions an be obtained throughthe use of Integral Quadrati Constraints [Megretski 1997℄. Taking into aount more43



Chapter 1. Sampled-data systems: an overview of reent researh diretionsproperties of the operator ∆ may lead to less onservative results sine it may add someother free variables in the obtained LMI stability onditions. This is why in this approah,an important part of the researhes are direted to �nding new properties of this ∆operator.The small-gain approah for the stability analysis of sampled-data systems with time-varying sampling is intuitive, and bene�ts from a large literature about the small-gainappliations in robust ontrol. The soures of onservatism from this approah are alsowell identi�ed. Today however, �nding new properties for the operator ∆ or a better wayto rewrite the sampled-data system as an interonneted system has proved to be di�ult,and researhes are still under progress.Although no apparent link exists between the Lyapunov-Krasovskii approah and thesmall-gain approah, an interesting observation has been made in [Zhang 2001a℄ (in thegeneral ontext of LTI systems with delay), and more reently in [Mirkin 2007℄ (in thepartiular ontext of LTI systems with sampled-data systems): in some ases, both ap-proahes may lead to the same LMI stability onditions.1.4.4 Convex-embedding approahThe onvex-embedding approah [Hetel 2006℄, [Fujioka 2009a℄, [Cloosterman 2010℄, [Gie-len 2010℄, is based on the property (1.5) desribing the evolution of the system's state
x(t) with respet to the sampled-state x(sk) and the time t− sk:

x(t) = Λ(t− sk)x(sk), ∀t ∈ [sk, sk+1), k ∈ N,and on the study of the transition matrix operator Λ de�ned in (1.7). In the ase ofsampled-data LTI systems (1.3) with time-varying sampling intervals with values in [τ , τ̄ ],
τ > 0, the lassi Lyapunov theory in disrete-time an be used with a simple quadratiLyapunov funtion V (x) = xTPx, so to obtain su�ient stability onditions under theform of parameter-dependent LMIs:

Λ(σ)TPΛ(σ)− P ≺ 0, ∀σ ∈ [τ , τ̄ ]. (1.30)These stability onditions involve an in�nite number of LMIs, sine they depend on aparameter σ that takes values in the line segment [τ , τ̄ ]. The idea of the onvex-embeddingapproah is to redue these onditions down to a �nite number, by designing a polytopi44



1.4. Stability analysis under time-varying samplingover-approximation of the operator Λ. The set of matries:
Λ ≡ {Λ(τ)|τ ∈ [τ , τ̄ ]}, (1.31)an be over-approximated as follows:

Λ ⊆ Co{Fi}i∈{1,··· ,N} =















N
∑

i=1

αiFi|α =









α1...
αN









∈ A















, (1.32)where Fi ∈ Mn,nu
, i ∈ {1, · · · , N} are suitably onstruted matries, N is the number ofverties in the polytopi over-approximation, and:

A =

{

α ∈ R
N |αi ≥ 0, ∀i ∈ {1, · · · , N}, and N

∑

i=1

αi = 1

}

. (1.33)The properties of the over-approximating onvex set Co{Fi}i∈{1,··· ,N} makes it possibleto derive a �nite number of su�ient stability onditions from (1.30), by writing simpleLMIs over the polytope verties:
F T
i PFi − P ≺ 0, ∀i ∈ {1, · · · , N}. (1.34)Reently, a ontinuous-time approah to the stability analysis of sampled-data systemsbased on onvexi�ation arguments has been proposed in [Hetel 2011b℄. It is based onthe parameter-dependent LMI:

[

Λ(σ)

I

]T [

ATP + PA −PBK

∗ 0

][

Λ(σ)

I

]

≺ 0, ∀σ ∈ [τ , τ̄ ], (1.35)and the same onvexi�ation tools.Several over-approximation methods to design the polytope verties Fi from (1.32)an be found in the literature. The main tehniques are based on gridding and norm-bounding [Donkers 2009℄, [Fujioka 2009a℄, [Skaf 2009℄, Taylor series expansion [Hetel 2006℄,[Hetel 2011b℄, [Hetel 2007℄, real Jordan form deomposition [Olaru 2008℄, [de Wouw 2010℄,[Cloosterman 2010℄, or the Cayley-Hamilton theorem [Gielen 2010℄, [Goebel 2009℄. Ashort omparison on numerial examples of these di�erent approahes an be found in[Heemels 2010℄.The main advantages of the onvex-embedding approah for the stability analysis of45



Chapter 1. Sampled-data systems: an overview of reent researh diretionssampled-data systems is that it is intuitive, and not very onservative when ompared toother methods. Also, it was proved that onvex embeddings allow for approahing thestability ondition (1.30) as lose as desired, by inreasing the omputational omplexityof the over-approximating algorithm. The main drawbak of the method is that it isomplex to apply, and it may be omputationally demanding, depending on the hosennumerial preision.1.5 Dynami ontrol of the sampling: a short surveyIn the previous setion, whih onerned sampled-data systems with time-varying sam-pling, it was shown that using a sequene of stable onstant sampling intervals may desta-bilize the system, while using a sequene of unstable onstant samplings may stabilize it.This partiular behaviour [Wittenmark 1995℄, [Zhang 2001b℄, [Li 2010℄, very similar tothe one observed in swithed systems [Liberzon 1999℄, has been intensively studied overthe past deade. In the ontext of embedded systems and networked ontrol systems par-tiularly, it raised the following problem: how to ontrol the sampling in order to reduethe number of sampling instants while stabilizing the system?In the last few years, an inreasing attention has been brought to this question, anda number of works regarding this issue have been made. Their objetive is to redue thequantity of information sent from the sensors to the atuators, by ontrolling the samplingthrough a sampling law (see Figure 1.12):
sk+1 = sk + τ(t, sk, x(sk), · · · ), ∀k ∈ N. (1.36)In the literature, two main approahes overing this issue an be found:� In the �rst approah, the event-triggered ontrol (also alled event-based on-trol or event-driven ontrol in the literature) [Tabuada 2007℄, [Cogill 2007℄,[Heemels 2008℄, [Lunze 2010℄, [Mazo Jr. 2011℄, [Cervin 2007℄, [Velaso 2009℄, [Al-bert 2004℄, [Wang 2008℄, [Frazzoli 2012℄, the sampling is performed only when ertainevents our. These events are usually generated when the system's state rosses afrontier in the state spae. It may be generated for example when the state is leav-ing some neighbourhood of the origin, or when the error between the sampled-state

x(sk) and the urrent state x(t) exeeds a ertain bound. A dediated hardware isrequired in order to monitor the plant and generate suh events.46



1.5. Dynami ontrol of the sampling: a short survey� The seond approah, the self-triggered ontrol [Lemmon 2007℄, [Wang 2009℄,[Wang 2010℄, [Mazo Jr. 2009a℄, [Mazo Jr. 2010℄, [Anta 2010℄, [Anta 2009℄, [Anta 2012℄,[Dimarogonas 2010℄, [Araujo 2011℄, [Tiberi 2010℄, aims at emulating event-triggeredontrol without dediated hardware, by omputing at eah sampling instant a lower-bound of the next admissible sampling interval (i.e. an estimation of the next timean event is going to be generated).
ẋ(t) = Ax(t) +Bu(t)

x(t)u(t) = u(sk) SYSTEM
CONTROLLER A/DD/A x(sk)u(sk) = −Kx(sk)

sk+1 = sk + τ(t, sk, x(sk), · · · )Figure 1.12: Sampled-data system with a dynami sampling ontrolAlthough these two approahes have beome very popular in the ontrol ommunity,it is important to note that there exist other ways of dealing with the dynami ontrolof the sampling, using tools from the omputer siene ommunity. We an mentionthe approahes based on adaptive sheduling strategies suh as the sheduling (m, k)-�rm [Feliioni 2006℄, [Feliioni 2008℄, or the ontrol aware omputing strategy [Simon 2012℄for example.In the following, we present a brief overview of the most notable results of event-triggered ontrol and self-triggered ontrol from the literature. Note that although thesetwo approahes are tehnially very di�erent regarding their real-time implementation,their aims are the same: the redution of the sampling rate. That is the reason why inthe following, we will mix both approahes, and present the self-triggered ontrol shemes(when they exist) as extensions or improvements of their assoiated event-triggered ontrolshemes. 47



Chapter 1. Sampled-data systems: an overview of reent researh diretions1.5.1 Deadband ontrol approahThe main idea of the �rst event-triggered ontrollers was that it is not neessary to updatethe ontrol of the system when its state is lose enough to the equilibrium point. In theseworks (see [Otanez 2002℄, or [Cervin 2007℄ for example), the ontrol is updated only whenthe state leaves (or also enters, in some works suh as [Cervin 2007℄) some neighbourhoodof the origin. Suh neighbourhood (say ‖x(t)− x0‖ ≤ ē) is alled a deadband.The system generally onsidered in this approah is:
ẋ(t) = Ax(t) +Bu(t) + Ew(t), ∀t ∈ R+,

z(t) = Cx(t),
(1.37)with z ∈ R the ontrolled output of the system, and u a saturated ontrol input.(A,B)and (A,C) are assumed to be respetively stabilizable and detetable. In [Cervin 2007℄ forexample, the authors aim at designing a ontroller that redues the number of atuations,while guaranteeing that the state stays in a neighbourhood of the origin. In order toensure that the disturbanes will not make the output drift away from zero, on the onehand, the ontrol outside the deadband is designed as follows:

u(t) = −sgn(z(t)), ∀t ≥ 0. (1.38)On the other hand, inside the deadband, the ontrol is:
u(t) = −sat(Kx̂(t)), ∀t ≥ 0, (1.39)and is based on a simulation of the ideal evolution of the system, obtained thanks to thefollowing reset observer (plaed on the atuators):

˙̂x(t) = Ax̂(t) +Bu(t), ∀t ∈ R+,

x̂(sk) = x(sk).
(1.40)In this deadband approah, the reset observer's state is updated only at time sk whenthe ontrolled output z exeeds a ertain threshold zmax: the event x̂(t) = x(t) is generatedwhen |z(t)| = zmax.The ontroller gain K is designed to assign the losed-loop matrix A−BK the desiredeigenvalues. Note that this observer, whih resets the estimated state aording to theatual state value x(sk), suggests a full state-feedbak ontrol.48



1.5. Dynami ontrol of the sampling: a short surveyFigure 1.13 presents the ontrolled output z and the ontrol input u with this event-triggered ontrol sheme for the double integrator [Cervin 2007℄:
ẋ(t) =

[
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]

x(t)

[
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]

u(t)
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]

w(t),

z(t) =
[

1 0
]

x(t),with a ontroller gain K =
[

1 2
], a threshold zmax = 1, and a perturbation w onsid-ered as a white noise proess of intensity 0.01. Note that in the absene of exogenousdisturbane, the system is loally asymptotially stable.
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Figure 1.13: Event-triggered ontrol from [Cervin 2007℄ applied on a double integratorOne of the advantages of this approah lays in its easy implementation. It guaranteesthe ultimate-boundedness of the system in the presene of bounded perturbations, andits asymptoti stability in their absene. Also, when the system is well known and theperturbations stay small, the number of updates to be sent to the atuator will also bevery small. Indeed, in that ase, the observer will take the role of a preditor. Thedrawbaks of the approah are that it is di�ult to estimate the instants when the stateleaves or enters the deadband (therefore the self-triggered implementation is not obvious),and that only ultimate-boundedness is ensured in the presene of perturbations. Also,dediated hardware has to be used at both the atuator and sensor's sides, to ompute49



Chapter 1. Sampled-data systems: an overview of reent researh diretionsthe estimation of the state used in the ontrol input, and to monitor the plant's state inreal-time.1.5.2 Lyapunov funtion levels approahAnother approah to event-triggered ontrol onsists in updating the ontrol only when ahosen Lyapunov funtion rosses some predetermined energy levels: V (x(t)) = V(t, x(sk)).The main idea of the approah is desribed in [Velaso 2009℄, in whih it is onsidereda nonlinear sampled-data system:
ẋ(t) = f(x(t), u(t)), ∀t ≥ 0,

u(t) = −g(x(sk)), ∀t ∈ [sk, sk+1), k ∈ N,
(1.41)with an event generator de�ned by some levels of a Lyapunov funtion V :

V (x(t)) = ηV (x(sk)), (1.42)for some given salar 0 < η < 1.In order to ensure the stability of the system with suh an event generator, it isneessary to guarantee that after eah sampling instant sk there will be a time t > skfor whih the event-triggering ondition (1.42) will be satis�ed. Otherwise, it means thatthere will be no more sampling, and therefore the system will be ontrolled in open-loopand may beome unstable (in the best ase, it will be stable, but it will not be attrative).To guarantee that there will be an in�nite number of sampling using the generator (1.42),the method proposed in [Velaso 2009℄, onsists in omputing an upper-bound η∗ of theminimal admissible η (i.e. η∗ is suh that if η satis�es 0 < η∗ ≤ η < 1, then for all
x(sk) ∈ Rn, there exists t > sk suh that (1.42) is satis�ed). In the linear ase, a methodbased on a gridding of the state spae an be used to estimate suh η∗.To better understand the approah, onsider again the double integrator [Velaso 2009℄:

ẋ(t) =
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(1.43)For a value of η = 0.8 (see Figure 1.14, left), one sees that the sampling sequene doesnot stop, and that the state x =

[

x1

x2

] onverges to the equilibrium point. For a value of50



1.5. Dynami ontrol of the sampling: a short survey
η = 0.65 (see Figure 1.14, right) on the ontrary, the sampling sequene stops (the event-triggering ondition is not satis�ed anymore) and the equilibrium beomes unstable.
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Figure 1.14: Lyapunov funtion levels approah to dynami sampling ontrol [Ve-laso 2009℄ - η = 0.8 ≥ η∗, stable (left) and η = 0.65 < η∗, unstable (right)The main advantage of suh an event-triggered ontrol sheme is that it is easy tounderstand the ontrol proess and to guarantee the stability of the system. Furthermore,the approah an be used in the ontext of nonlinear sampled-data systems, although nomethod is proposed to ompute the value of η∗ in that ase. The main drawbaks arethat it is still an open problem to hoose or ompute a suitable Lyapunov funtion, andthat the trigger ours when entering (and not leaving) the region V (x(t)) ≤ ηV (x(sk)),whih means that the sampling ours unneessarily.1.5.3 Perturbation rejetion approahIn the literature, one may also �nd event-triggered ontrol shemes whih intend totake into aount exogenous perturbations in the ontrol [Lunze 2010℄, [Lehmann 2011℄[Stöker 2011℄. These works aim at ontrolling the disturbed sampled-data systems, whileestimating and rejeting the perturbations, and at the same time enlarging the samplingintervals. In this ase, the sensors usually need to inlude an observer whih estimatesthe perturbation, and a pieewise ontinuous ontrol is used. The event-generator usedfor this kind of ontroller is similar to the one used for deadband ontrol (i.e. informationis sent from the sensors to the atuators only when the state leaves a neighbourhood ofthe origin), exept that, here, the error generating the trigger is omputed with respetto the estimated state, instead of the equilibrium point. The events are thus generated51



Chapter 1. Sampled-data systems: an overview of reent researh diretionswhen the measured state x(t) leaves the viinity
Ω(x̂(t)) = {x|‖x− x̂(t)‖ ≤ ē} (1.44)of the estimated state x̂(t), for a given threshold ē.In [Lunze 2010℄ for instane, it is onsidered a perturbed sampled-data LTI system:
ẋ(t) = Ax(t) +Bu(t) + Ew(t), (1.45)with a bounded disturbane ‖w(t)‖ ≤ wmax. The disturbane is estimated at eah sam-pling instant sk as a pieewise onstant funtion:

ŵ0 = 0,

ŵk = ŵk−1 +
(

A−1
(eA(sk−sk−1) − I

)

E
)+ (

x(sk)− x̂(s−k )
)

,
(1.46)and an observer estimates the state while onsidering a ontinuous ontrol feedbak u(t) =

−Kx(t) and the estimated disturbane ŵk:
˙̂x(t) = Alx̂(t) + Eŵk, ∀t ∈ [sk, sk+1), k ∈ N,

x̂(sk) = x(sk), ∀k ∈ N,
(1.47)with Al = A− BK, the losed-loop state matrix of the system.This estimated state serves as a referene, as the "ideal" system (i.e. ontinuous ontroland disturbane known), and is used to de�ne the surrounding (1.44) and to generate theevents.Then, the ontrol input is designed so as to estimate the "ideal" ontrol input u(t) =

−Kx(t) (i.e. when the state is ontinuously available at the atuator):
u(t) = −KeAl(t−sk)x(sk)−KA−1l (eAl(t−sk) − I

)

Eŵk. (1.48)The main advantage of this approah is that the perturbation is estimated and takeninto aount in the ontrol, whih means that if the system is well known and the pertur-bation is onstant or slowly varying, the sampling will be very sparse. Also, unlike mostof the event-triggered approahes whih do not take into aount the perturbation in theontrol, this sheme allows the state to onverge to its equilibrium even in the ase oflarge (slowly varying) perturbations. However, these advantages have a ost: the systemrequires dediated hardware sine it is needed to ompute the ontrol input in real time,52



1.5. Dynami ontrol of the sampling: a short surveyit is required to monitor the plant in real time to hek if the system's state does notleave the surrounding (1.44); besides, it is needed to estimate the state in real time, bothat the atuator and at the sensor's sides; last, beause of the omplexity of the ontrollerand the observers, no method has yet been able estimate the instants when the eventsare generated. Therefore, there does not exist any self-triggered ontrol sheme adaptedto this approah.1.5.4 ISS-Lyapunov funtion approahISS Lyapunov funtions onstitute another popular dynami sampling ontrol approahin the literature, used to perform both event-triggered and self-triggered ontrol. It wasinitiated by [Tabuada 2007℄, and further developed in [Mazo Jr. 2010℄, [Anta 2010℄),[Anta 2009℄ and [Anta 2012℄.In the general approah proposed in [Tabuada 2007℄, it is onsidered a nonlinearsampled-data system:̇
x(t) = f(x(t), g(x(sk))), ∀t ∈ [sk, sk+1), k ∈ N, (1.49)rewritten as the reset system
{

ẋ(t) = f(x(t), g(x(t)− e(t))), ∀t ≥ 0,

e(sk) = 0,
(1.50)where e : R+ → Rn is the measurement error between the urrent state and the lastsampled state (e(t) = x(t)− x(sk)). The onsidered system is supposed to be ISS-stablewith respet to the measurement error e. The following de�nition is used, derived fromthe one of the general Input-to-State Stability from [Sontag 2004℄.De�nition 1.15 (Input-to-State Stability, [Tabuada 2007℄) A smooth funtion V :

Rn → R+ is said to be an ISS Lyapunov funtion for the losed-loop system (1.50) if thereexist four lass K∞ funtions α, ᾱ, α, and γ satisfying
α(‖x‖) ≤ V (x) ≤ ᾱ(‖x‖),

∂V
∂x
f(x, g(x+ e)) ≤ −α(‖x‖) + γ(‖e‖),

(1.51)for some norm ‖.‖ on Rn. The losed-loop system (1.50) is said to be ISS with respet tothe measurement error e ∈ R
n if there exists an ISS Lyapunov funtion for (1.50). 53



Chapter 1. Sampled-data systems: an overview of reent researh diretionsLet us assume that V is an ISS-Lyapunov funtion for the system (1.50). The basiidea of the approah is that if we ensure that:
γ(‖e(t)‖) ≤ cα(‖x(t)‖), ∀t ≥ 0, (1.52)for some 0 < c < 1, then we have:

∂V

∂x
f(x, g(x+ e)) ≤ (1− c)α(‖x‖), (1.53)whih guarantees the asymptoti stability of the system. Therefore, in order to ensurethis stability property, one will want to enfore inequality (1.52) by updating the ontrolwhen
γ(‖e(t)‖) = cα(‖x(t)‖). (1.54)Given some additional assumptions on the funtions f , g, α and γ, one an prove that thereexists a lower-bound τ on the sampling interval suh that γ(‖e(sk+σ)‖) < cα(‖x(sk+σ)‖),for any σ ∈ [0, τ ]. In the linear ase (1.3 ), the ISS stability onditions are:
a‖x‖22 ≤ V (x) ≤ ā‖x‖22,

∂V
∂x
((A− BK)x−BKe) ≤ −b‖x‖22 + c‖e‖2‖x‖2,

(1.55)and it is possible to ompute a lower-bound estimation τ of the sampling interval suhthat γ(‖e(sk + σ)‖) < cα(‖x(sk + σ)‖), for any σ ∈ [0, τ ], by analyzing the evolution ofthe term ‖e‖2
‖x‖2

. The event generator in the linear ase is similar to the one obtained in thenonlinear ase (1.54). It is de�ned as:
b‖x(t)‖2 = c‖e(t)‖2. (1.56)[Anta 2010℄ proposed an extension to homogeneous systems, state-dependent homo-geneous systems, and polynomial systems. The idea is that for these lasses of systems,it is possible to de�ne the sampling funtion τ : Rn → R by using saling laws along thehomogeneous rays of the state-spae. The priniple for the "simple" homogeneous ase isthe following. Consider a system:

ẋ = f(x, u), (1.57)suh that the ontrol u = g(x) renders the losed-loop system homegeneous of degree
d ∈ R+. Then, one an show that the sampling funtion τ de�ned by the event generator54



1.5. Dynami ontrol of the sampling: a short survey(1.56) sales aording to the law:
τ(λdx) = λ−dτ(x), ∀λ ∈ R. (1.58)The proedure proposed in [Anta 2010℄ for designing the sampling funtion τ for homo-geneous and polynomial ontrol systems is based on three steps: �rst, one needs to designa linear system whih trajetories upper-bound the trajetories of the nonlinear systemaround the origin; seond, ompute a lower-bound estimation of the maximal allowablesampling for the linear system, using the results from [Tabuada 2007℄ for example; third,use the proposed saling law (1.58) for the nonlinear system.Further developments are proposed in [Anta 2009℄ and [Anta 2012℄, where the notionof isohronous manifolds is used to design the saling laws. In these reent works, thelinear over-approximation is not designed over a ball around the system origin, but oversubmanifolds of the state-spae ontaining the states for whih the exeution times remainonstant.One of the advantages of this ISS-Lyapunov funtion approah is to make it possible toompute in advane an estimation of the future maximal allowable sampling times, thusallowing to use a self-triggered ontrol. Also, [Anta 2009℄, [Anta 2010℄, and [Anta 2012℄have shown easy extensions to a wide lass of systems, inluding linear, homogeneous,or polynomial systems. However, up to now, no method has been proposed to omputethe ISS-Lyapunov funtion V so as to optimize the sampling intervals with this sheme,even in the linear ase. Also, no perturbation is taken into aount in this approah,exept for potentially onstant delay in [Tabuada 2007℄. Finally, note that the lower-bound estimation of the maximal allowable sampling interval obtained in the linear aseis onstant. It does not depend on the state, whih means that in the linear ase, thisapproah will at best provide results similar to a robust analysis with respet to time-varying sampling.1.5.5 Upper-bound on the Lyapunov funtion approahIn the approah presented in [Mazo Jr. 2009b℄ and [Mazo Jr. 2010℄, the sampling instantsour when a Lyapunov funtion rosses a predetermined boundary around the system'sorigin. Unlike the Lyapunov funtion levels approah, here the sampling ours when thestate moves away from the equilibrium point. The boundary is hosen as an exponentiallydereasing funtion, so as to ensure the system's exponential stability. The approah aims55



Chapter 1. Sampled-data systems: an overview of reent researh diretionsat designing a sampling funtion τ : Rn → R∗
+ that enlarges the sampling intervals

sk+1 − sk = τ(x(sk)), (1.59)for perturbed LTI sampled-data systems:
ẋ(t) = Ax(t) +Bu(t) + w(t), ∀t ∈ R+

u(t) = −Kx(sk), ∀t ∈ [sk, sk+1), k ∈ N,
(1.60)with a disturbane w(t) assumed to be essentially bounded, while ensuring the exponentialinput-to-state stability.In the unperturbed ase, the idea is as follows. Let V be a Lyapunov funtion withexponential deay-rate λ0 for the losed-loop system with ontinuous feedbak ẋ(t) =

(A − BK)x(t), and de�ne the map δc(x(sk), t) ≡ V (x(t)) − V (x(sk))e−λ(t−sk), for some
0 < λ < λ0. By enforing:

δc(x(sk), t) ≤ 0, ∀t ∈ [sk, sk+1], k ∈ N, (1.61)the system's exponential stability is ensured in the absene of perturbation w. Therefore,the proposed event generator ideally beomes:
δc(x(sk), t) = 0. (1.62)In pratie however, this ondition an not be heked, and therefore the sampling mapis disretized into δd(x(sk), i) ≡ δc(x(sk), i∆+ sk), with ∆ the step of disretization, andthe new ondition beomes:

δd(x(sk), i) ≤ 0, ∀i ∈
[

0,

⌈

sk+1 − sk

∆

⌉]

. (1.63)Then, in order to predit (thanks to the new disretized map) when the event shouldour, one needs to ompute the maximal i suh that (1.63) holds:
i(x) = max

i∈N
{i|δd(x, s) ≤ 0, ∀s ∈ {0, · · · , i}}, (1.64)and design the sampling funtion as:

τ(x) = i(x)∆. (1.65)56



1.5. Dynami ontrol of the sampling: a short surveyThe main advantage of this approah is that it allows to perform a self-triggered on-trol for perturbed linear systems whih is less onservative than most of the self-triggeredworks in the literature. It is based on the disretization of the ondition (1.61) whihmakes it unneessary to study the Lyapunov funtion's derivative, through onservativeupper-bounds. One of the drawbaks is that no method is proposed to hoose the Lya-punov funtion, sine it is only required to render the unperturbed losed loop system(exponentially) stable. Therefore, neither the perturbations nor the sampling is taken intoaount by the Lyapunov funtion. Furthermore, the sampling funtion τ is omputedonline, during the real-time ontrol of the system, and, depending on the disretizationstep ∆, the omputations may beome very heavy.1.5.6 L2-stability approahOne last approah, developed in [Wang 2009℄ and [Wang 2010℄, allows one to performboth event-triggered ontrol and self-triggered ontrol while taking into aount bothexogenous perturbations and delays. It is based on the notion of L2-stability [Khalil 2002℄and involves algebrai Riati equations.It is onsidered a perturbed, delayed, sampled-data system:
ẋ(t) = Ax(t) +Bu(t) + Ew(t), ∀t ∈ R+,

u(t) = −BTPx(sk), ∀t ∈ [tk, tk+1), k ∈ N,
(1.66)where sk and tk denote the kth sampling and atuation times respetively, with a distur-bane w ∈ L2, and a matrix P ∈ S+∗

n satisfying the H∞ algebrai Riati equation
0 = PA+ ATP − PBBTP + I +

1

γ2
PEETP, (1.67)for some onstant γ > 0.The aim of the approah is to enlarge the sampling intervals while guaranteeing the

L2-stability [Khalil 2002℄ of the system.De�nition 1.16 (L2-stability) A linear system F is said to be �nite-gain L2-stable from
w to Fw with an indued gain less than γ if F is a linear operator from L2 to L2 and ifthere exist positive real onstants γ and ξ suh that for all w ∈ L2,

‖Fw‖L2 ≤ γ‖w‖L2 + ξ. (1.68)57



Chapter 1. Sampled-data systems: an overview of reent researh diretionsIn order to analyze the L2-stability of system (1.66), we onsider a positive semi-de�nite quadrati funtion V : Rn → R+ de�ned as V (x) = xTPx, with the matrix Psolution of the Riati equation given in (1.67). It is possible to show that this partiularfuntion satis�es the property:
V̇ (x(t)) ≤ −β2‖x(t)‖22 + γ2‖w(t)‖22 + eT (t)Me(t)− xT (sk)Nx(sk), (1.69)for all t ∈ [tk, tk+1) and all k ∈ N, for any salar β ∈ (0, 1], with the measurement error

e(t) = x(t)− x(sk), and matries M and N de�ned as:
M = (1− β2)I + PBBTP,

N = 1
2
(1− β2)I + PBBTP.

(1.70)
From the inequality (1.69), we an see that if we enfore that:

eT (t)Me(t) ≤ xT (sk)Nx(sk), ∀t ∈ [tk, tk+1), k ∈ N, (1.71)then we have:
V̇ (x(t)) ≤ −β2‖x(t)‖22 + γ2‖w(t)‖22, ∀t ∈ R+, (1.72)whih guarantees the L2-stability of the system, with an L2-gain less than γ

β
.Therefore, the system (1.66) with the event generator eT (t)Me(t) = xT (sk)Nx(sk) is

L2-stable. Furthermore, by analyzing the evolution of the term eT (t)Me(t) for t ≥ tk,it is possible to ompute at eah sampling instant a lower-bound estimation of the nextallowable sampling interval, and thus perform a self-triggered ontrol sheme.The main advantages of this dynami sampling ontrol approah are to ensure the L2-stability of LTI sampled-data systems in the presene of both perturbations and delaysand to allow for estimating the next allowable sampling interval at eah sampling instant.However, the analytial equations used to estimate the next sampling intervals are veryonservative with respet to the proposed event-triggered onditions. Also, it is importantto note that the Lyapunov funtion, whih is obtained thanks to the Riati equation(1.67), does not take into aount the sampling nor the delay, and may therefore lead toonservative results, even in the ase of event-triggered ontrol.58



1.6. Conlusion1.6 ConlusionThis hapter has exposed some reent problems enountered in the ontext of sampled-data systems, and provided an overview of some important stability and stabilizationresults from the literature regarding time-varying sampling and dynami ontrol of thesampling.The studies onerning robust stability with respet to time-varying sampling are notwell �tted for the redution of the number of sampling instants: they assume that thesampling law is undergone by the system, disregarding the information oming from thesensors. In the works about the dynami ontrol of the sampling, several issues alsoremain open. Event-triggered ontrollers, for instane, require a dediated hardware toonstantly monitor the plant and generate the events in real-time. In the ase of self-triggered ontrol works, whih are based on Lyapunov funtions, no method has beenproposed yet to optimize the Lyapunov funtion while taking into aount the e�ets ofthe sampling (nor the perturbations in most approahes in the ase of perturbed systems,nor the delays in the ase of delayed systems). Furthermore, the lower-bound estimationsof the next maximal allowable sampling intervals are omputed online, during the real-time ontrol of the system, whih often requires a heavy proessor load.In the following hapters we intend to solve these problems by proposing a novelapproah to the dynami ontrol of the sampling, that we all "state-dependent sampling".Our point of view is to de�ne a state-dependent sampling law (i.e. a map τmax : Rn → R∗
+)that allows for enlarging the sampling intervals, following some sampling law

sk+1 − sk = τ(t, x(sk)) ∈ [τ−, τmax(x(sk))].This map is to be omputed o�ine so as to redue the online omputational ost. It alsomust ensure the stability of the sampled-data system, with some additional onvergeneor robustness performanes. The proposed tehniques will make it possible to omputethe Lyapunov funtions that are used so as to enlarge the lower-bound τ ∗ of the state-dependent sampling map (i.e. the maximal sampling that an be used in the worst ase,whih an be onsidered as a state-independent sampling upper-bound), just as in theworks about robust stability analysis regarding time-varying sampling. The robustnessaspets with respet to exogenous disturbanes or delays will also be onsidered.
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Chapter 1. Sampled-data systems: an overview of reent researh diretions
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Chapter 2A polytopi approah to dynamisampling ontrol for LTI systems: theunperturbed aseIn this hapter, we present a new state-dependent sampling ontrol that allows one toenlarge the sampling intervals of state-feedbak ontrol, in the ase of ideal7 LTI systemswith sampled-data.The objetive of our approah is to ombine the advantages of the works regardingtime-varying sampling:� maximization of an upper-bound for (state-independent) time-varying sampling;� design of the Lyapunov funtion;� o�ine omputations;with the advantages of the works regarding dynami sampling ontrol, espeially self-triggered ontrol:� ontrol of the sampling;� onsideration of the sampled-state in the sampling design;� estimation of the next maximal allowable sampling interval.Computationnally speaking, the approah we introdue here remains tratable, sineit is grounded as an LMI optimization obtained thanks to:7The next hapters will onsider more omplex lasses.61



Chapter 2. A polytopi approah to dynami sampling ontrol for LTI systems: the unperturbed ase� a mapping of the state-spae, allowing the design of a maximal state-dependentsampling funtion;� a polytopi embedding design adapted to a ontinuous-time stability analysis, al-lowing one to take into aount the inter-sample behaviour;� Lyapunov-Razumikhin-type stability onditions guaranteeing exponential stabilityof LTI sampled-data systems for a given deay-rate.The hapter is organized as follows. To begin with, the next setion starts by desribingthe system and stating the issue. Then, Setion 2.2 provides some generi preliminaryresults, while Setion 2.3 presents the main tools, and the main stability results. InSetion 2.4 we desribe an algorithm that allows for maximizing the state-dependentsampling funtion. In Setion 2.5, the results are illustrated with numerial examplesfrom the literature, and for whih the number of atuations is shown to be redued withrespet to the periodi sampling ase, before we onlude in Setion 2.6.The proofs of the various propositions, lemmas and theorems an be found in theAppendix A.1, while the design of the polytopi embedding and the mapping of thestate-spae an be found in Appendies C.2 and B respetively.
2.1 Problem statementConsider the linear time invariant (LTI) system

ẋ(t) = Ax(t) +Bu(t), ∀t ∈ R+

x(t) = x0, ∀t ≤ 0,
(2.1)where x : R → Rn and u : R+ → Rnu represent the system state and the ontrol funtion,and the matries A and B are onstant and of appropriate dimensions. The ontrol is apieewise-onstant state feedbak

u(t) = −Kx(sk), ∀t ∈ [sk, sk+1), (2.2)62



2.1. Problem statementwhere K is �xed and suh that A−BK is Hurwitz8, and where 0 = s0 < s1 < · · · < sk <

· · · are the sampling instants satisfying lim
k→∞

sk = ∞ and de�ned by
sk+1 = sk + τ(x(sk)), ∀k ∈ N, (2.3)with a state-dependent sampling funtion τ : Rn → R+. To ensure the well-posednessof the system, the funtion is assumed to be lower-bounded by some salar δ > 0. Thisguarantees that there is no Zeno phenomenon. The existene of suh a lower-bound forour partiular design will be proven in Remark 2.6. We denote by S the losed-loopsystem {(2.1), (2.2), (2.3)}. For a given sampling funtion τ , the solution of S with initialvalue x0 is denoted by x(t) = ϕτ (t, x0).In this hapter, our main objetive is to provide a way to enlarge as muh as possiblethe state-dependent sampling funtion τ in (2.3) while ensuring the system's β-stability,for a hosen deay-rate β.In order to hek the system's β-stability, we use a method based on the Lyapunov-Razumikhin approah [Kolmanovskii 1992℄.Proposition 2.1 Given salars α > 1, σ̄ > 0, and 0 < β ≤ ln(α)

2σ̄
, if there exist aquadrati funtion V (x) = xTPx, P = P T ≻ 0 ∈ Mn(R), and a funtion τ : Rn → R+,

0 < δ ≤ τ(x) ≤ σ̄, suh that(C1): for all x ∈ Rn, for all σ ∈ [0, τ(x)], V̇ (ϕτ (σ, x)) + 2βV (ϕτ (σ, x)) ≤ 0 whenever
αV (ϕτ (σ, x)) ≥ V (x),then the origin of S is globally β-stable.Remark 2.2 Note that α an be seen as a design parameter that an be freely hosen to�t some performanes. The smaller α is, the less restritive the stability ondition will be.When α tends to the in�nity, one gets a usual Lyapunov stability ondition dV

dt
< 0 witha quadrati Lyapunov funtion V (x) = xTPx. When α tends to 1, the stability onditionis relaxed and tends to be su�ient for ensuring stability, but not attrativity.Remark 2.3 Note that if β = 0 and the inequality V̇ (ϕτ (σ, x)) ≤ 0 in (C1) is reinforedto be strit, then the lassial Lyapunov-Razumikhin [Kolmanovskii 1992℄ theory ensuresthe system's asymptoti stability.It is also important to note that all the stability properties in this paper an beextended to state-dependent time-varying samplings sk+1 = sk + τ̃ (sk, x(sk)), ∀k ∈ N,8a Hurwitz matrix (also alled asymptotially stable matrix) is a real square matrix, eah eigenvalueof whih has a stritly negative real part. 63



Chapter 2. A polytopi approah to dynami sampling ontrol for LTI systems: the unperturbed asewith a time-varying sampling funtion τ̃ : R+×Rn → R+. The losed-loop system {(2.1),(2.2)} with suh a sampling law is denoted S̃. Then, Proposition 2.1 beomes:Proposition 2.4 If there exist funtions V and τ satisfying ondition (C1) in Proposition1, then the origin of S̃ is globally β-stable for any time-varying sampling funtion τ̃ :

R+ × Rn → R+ satisfying 0 < δ ≤ τ̃(t, x) ≤ τ(x) for all t ∈ R+ and for all x ∈ Rn.These two propositions are proven in the Appendix A.1. Throughout this hapter, wewill fous on solving two main problems. The �rst problem onerns the design of thesampling funtion and is formulated as:Problem 1: For a given system {(2.1),(2.2)} and a given Lyapunov-Razumikhinfuntion (LRF) V , we denote τVopt(x) the maximal sampling funtion suh that (C1) holds:
τVopt(x) = max τ(x).Find a lower-bound approximation of this optimal funtion, τVsub(x) ≤ τVopt(x), as large aspossible.In that formulation, the LRF is supposed to be given, whih makes us wonder if thereis a way to hoose it. Sine the objetive is to sample as few times as possible, one willalso want to make sure the minimal sampling interval is as large as possible by solvingthe following problem:Problem 2: For a given system {(2.1),(2.2)}, we denote τ ∗opt the maximal lower-bound of the sampling funtions satisfying (C1): τ ∗opt = max infx∈Rn τ(x).Find an LRF V ensuring (C1) for a sampling funtion with a lower-bound τ ∗sub ≤ τ ∗opt aslarge as possible.2.2 A generi stability propertyIn order to provide tratable stability onditions from Proposition 2.1, we �rst introduethe following Lemma:Lemma 2.5 Given salars α > 1, σ̄ > 0, and 0 < β ≤ ln(α)

2σ̄
, if there exist a matrix

P = P T ≻ 0 ∈ Mn(R), a salar ε ≥ 0, and a funtion τ : Rn → R+, 0 < δ ≤ τ(x) ≤ σ̄,suh that for all x ∈ Rn, for all σ ∈ [0, τ(x)],
xTΦ(σ)x ≤ 0, (2.4)64



2.2. A generi stability propertywith
Φ(σ) =

[

Λ(σ)

I

]T

Ω

[

Λ(σ)

I

]

, (2.5)
Ω =

[

ATP + PA+ εαP + 2βP −PBK

∗ −εP

]

, (2.6)and
Λ(σ) = I +

∫ σ

0

esAds(A−BK), (2.7)then the origin of S is globally β-stable.Remark 2.6 At the sampling instants, Φ(0) = (A−BK)TP +P (A−BK)+ε(α−1)P +

2βP . If the matrix P is suh that (A− BK)TP + P (A− BK) ≺ 0 (there exists suh Psine A − BK is Hurwitz), we an �nd ε and β as small as needed suh that Φ(0) ≺ 0.Sine the funtion that assoiates the eigenvalues of Φ(σ) with eah time σ is ontinuouson [0, τ(x)], there exists a salar δ > 0 suh that Φ(σ) � 0 for all σ ∈ [0, δ]. Therefore,with these parameters, there always exist sampling funtions τ that satisfy Lemma 2.5onditions, and whih are lower-bounded by some salar δ > 0, hene avoiding any Zenophenomenon issue.Remark 2.7 The use of Lyapunov-Razumikhin type stability onditions is suggested bythe delayed nature of the system, sine it uses a Zero-Order-Hold ontrol [Fridman 2004℄.This method is proved to be less onservative than the usual Lyapunov theory, and the sta-bility onditions using a quadrati funtion an be easily omputed. Similar stability ondi-tions an also be derived from ommon quadrati Lyapunov funtions (see [Fiter 2011℄),input-to-state stable Lyapunov funtions, or Lyapunov-Krasovskii funtions. All the re-sults that will follow in this hapter an be reformulated for suh funtions: all the stabilityonditions an be expressed in the form xTΦ(σ)x ≤ 0, and only the matrix funtion Φ willhange aording to the type of Lyapunov funtion used.Remark 2.8 The onditions of Lemma 2.5 are the same for a state x 6= 0 and for λx,
λ ∈ R∗. Therefore, it is su�ient to work with homogeneous state-dependent samplingfuntions of degree 0 (i.e. satisfying τ(λx) = τ(x) for all x ∈ Rn, λ ∈ R∗) and to hekLemma 2.5 stability onditions on the unit n-sphere. 65



Chapter 2. A polytopi approah to dynami sampling ontrol for LTI systems: the unperturbed ase2.3 Main stability resultsLemma 2.5 gives some preliminary stability onditions for a state feedbak ontrol systemwith a state-dependent sampling. However, one an see that there is an in�nite numberof inequalities to hek beause of both temporal and spatial dependenies in the stabilityonditions.2.3.1 Tehnial toolsTo derive a �nite number of stability onditions from Lemma 2.5, a two-step tratablemethodology is proposed:2.3.1.1 Coni overing of the state-spaeFirst of all, the state-spae is overed by a set of q oni regions
Rs = {x ∈ R

n, xTΨsx ≥ 0}, Ψs = ΨT
s ∈ Mn(R), (2.8)for whih sampling intervals τs > 0 are assoiated. We onsider state-dependent samplingfuntions of the form

τ(x) = max
s∈{1,··· ,q} s.t. x∈Rs

τs, for all x ∈ R
n. (2.9)The advantage of suh a onstrution is that it allows to redue the number of stabilityonditions from Lemma 2.5 regarding the state variable x to a �nite number, by allowingto hek some onditions for the �nite number of regions instead of heking them for all

x ∈ Rn.The hoie of this oni overing is motivated by the homogeneity brought up inRemark 2.8, whih says that the only arateristi about the state that should be takeninto aount to design the maximal allowable sampling interval τ(x) is its diretion in thestate-spae. An illustration of these regions in R2 is shown in Figure 2.1.Two possible onstrutions of suh regions are presented in Appendix B.� Isotropi overing (see Appendix B.1): the �rst onstrution is based on the spherialoordinates of the state, and is alled "isotropi overing" sine it onsiders q oniregions with the same angle values. For instane, in dimension 2 (see Figure 2.1 fora graphi representation), the angles of the q oni regions have all the same value π
q
.This overing an be designed o�ine, one for all, so that its online implementation66



2.3. Main stability results
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Figure 2.1: Covering the state-spae of dimension 2 with q oni regions Rsdoes not need muh omputational power (only to ompute the spherial oordinatesof the state at eah sampling instant).� Anisotropi overing (see Appendix B.2): the seond onstrution is alled "anisotropiovering" and is based on the disrete-time model behaviour of the system. It is alsodesigned o�ine, but its real-time implementation needs some more omputations inorder to evalate the position of the state position with respet to the regions.Eah of these two onstrutions has its own advantages and drawbaks. The advantageof the isotropi overing is that the online omputations are redued and do not dependon the number of regions whih are onsidered. The drawbak is that, for a given levelof preision, the number of o�ine omputations inreases exponentially along with thesystem's dimension. Conerning the anisotropi overing, the situation is reversed: theo�ine omputations for the anisotropi overing depend linearly on the system's dimen-sion, whih means that it is better suited for systems of high dimension, but the numberof online omputations is larger, and is linearly dependent on the number of regions.It is important to understand that sine the sampling funtion is de�ned as onstanton these regions (see (2.9)), the preision of the sampling funtion is linked to the ho-sen number of oni regions. Therefore, although the system's stability is guaranteedindependently of the number of regions, one needs to �nd a tradeo� between the o�ine(in the ase of an isotropi overing) or online (in the ase of an anisotropi overing)67



Chapter 2. A polytopi approah to dynami sampling ontrol for LTI systems: the unperturbed aseomputational omplexity, and the preision of the state-dependent sampling funtion.2.3.1.2 Convex embedding aording to timeLet s ∈ {1, · · · , q}. The matrix funtion Φ(σ) is ontinuous on the ompat set [0, τs].Therefore, it is possible to build a onvex polytope de�ned by a �nite set of verties Φκ,s,
κ ∈ Ks (a �nite set of indexes), suh that for any x ∈ Rs,

(

xTΦκ,sx ≤ 0, ∀κ ∈ Ks

)

⇒
(

xTΦ(σ)x ≤ 0, ∀σ ∈ [0, τs]
)

. (2.10)To illustrate the general idea of the approah, a 2D representation of suh a onvexpolytope is presented in Figure 2.2. Note that in reality, this design is not performed overa 2D spae, as shown in the �gure, but over the spae of n× n matries: Mn(R).
Φ(σ), σ ∈ [0, τs]

Φ1,s

Φ2,s

Φ3,s

· · ·

Φ|Ks|−1,s

Φ|Ks|,s

Figure 2.2: 2D representation of a onvex polytope around the matrix funtion Φ overthe time interval σ ∈ [0, τs]Similarly to the state-spae overing, this onstrution allows to redue the number ofstability onditions from Lemma 2.5 regarding the time variable σ to a �nite number, byallowing to hek some onditions on the polytope verties instead of for all σ ∈ [0, τs].Note that the form of the matrix funtion Φ given by (2.5) enables to build theseverties as linearly dependent on P , and dependent on the parameters α, ε, β, and σ̄,whih will be very helpful to derive LMI stability onditions later on.One possible onstrution of a onvex polytope satisfying (2.10) is provided in Ap-pendix C.2, Lemma C.2 (equations (C.1) to (C.7)). It makes use of the onvexi�ationtehnique proposed by [Hetel 2006℄ (presented in Appendix C.1), whih allowed to build68



2.3. Main stability resultsonvex hulls around exponential matrix funtions using Taylor polynomials. Here, themajor di�ulty omes from the fat that the exponential unertainty Λ(σ) appears in abilinear manner in the stability onditions from Lemma 2.5:
xT

[

Λ(σ)

I

]T

Ω

[

Λ(σ)

I

]

x ≤ 0, ∀x ∈ R
n and σ ∈ [0, τ(x)]. (2.11)The design of this onvex polytope being quite tehnial and omplex, it has been left tothe Appendix C.2 in order to improve the readability of the manusript, after presentingthe onvex polytope tools from [Hetel 2006℄, in Appendix C.1.2.3.2 Stability results in the ase of state-dependent samplingUsing these steps, we derive the following Theorem that guarantees the system's β-stability for a given sampling funtion τ .Theorem 2.9 Let a matrix P = P T ≻ 0 ∈ Mn(R), and salars ε ≥ 0, α > 1, σ̄ > 0,and 0 < β ≤ ln(α)

2σ̄
be given.Consider the oni regions (2.8), sampling intervals τ1, · · · , τq satisfying 0 < τs ≤ σ̄, andmatries Φκ,s satisfying (2.10), for all s ∈ {1, · · · , q}, κ ∈ Ks. Let the sampling funtion

τ : Rn → R+ be de�ned as τ(x) = τs for all x ∈ Rs and s ∈ {1, · · · , q}.If there exist salars εκ,s ≥ 0 suh that the LMIs
Φκ,s + εκ,sΨs � 0 (2.12)are satis�ed for all s ∈ {1, · · · , q} and κ ∈ Ks, then the origin of S is globally β-stable.Theorem 2.9 provides su�ient onditions for Lemma 2.5, whih enables to omputea lower-bound approximation of the optimal sampling funtion τVopt (i.e. a solution toProblem 1).Remark 2.10 From Theorem 2.9 and Proposition 2.4, similar results an be obtained forany time-varying sampling funtion τ̃ : R+ × Rn → R+ satisfying 0 < δ ≤ τ̃(t, x) ≤ τ(x)for all t ∈ R+ and for all x ∈ Rn.2.3.3 Stability results in the ase of time-varying samplingThe following orollary proposes a method to analyse the stability in the ase of (state-independent) time-varying sampling. It will be used so as to design the LRF, in order to69



Chapter 2. A polytopi approah to dynami sampling ontrol for LTI systems: the unperturbed aseoptimize the lower-bound of the sampling funtion.Corollary 2.11 Consider a overing of the state-spae omposed of one single region
R = Rn. Consider ε ≥ 0 a tuning parameter. Let salars α > 1, σ̄ > 0, and 0 < β ≤ ln(α)

2σ̄
,and matries Φκ satisfying (2.10), with κ ∈ K (the indexes s denoting the regions in (2.10)are dropped sine we onsider only one region: R = Rn). Let us assume that the samplingfuntion τ : Rn → R+ satis�es τ(x) = τ ∗ for all x ∈ Rn, for a given salar 0 < τ ∗ ≤ σ̄.If there exists a matrix P = P T ≻ 0 ∈ Mn(R) suh that the LMIs Φκ � 0 are satis�ed forall κ ∈ K, then the origin of system (2.1) is globally β-stable regarding the ontrol (2.2)for any time-varying sampling bounded by τ ∗.Remark 2.12 For a given value of ε, one an ompute the maximal τ ∗ (denoted τ ∗ε ) forwhih the stability onditions from Corollary 2.11 are satis�ed, by using a line searhalgorithm on the variable τ ∗ and LMI solvers. Another line searh algorithm is then usedon the variable ε so as to ompute an estimation of the largest upper-bound for time-varying samplings: τ ∗sub = supε≥0 τ

∗
ε .Remark 2.13 The state-independent Corollary 2.11 an be used to ompute: an upper-bound estimation τ ∗sub for time-varying samplings as in the framework of robust ontroltehniques (i.e. guaranteeing β-stability for any time-varying sampling bounded by τ ∗sub),whih is also a lower-bound estimation of τ ∗opt (i.e. a solution to Problem 2); the LRF

V (x) = xTPx used for the state-dependent sampling design (in Theorem 2.9).2.4 General algorithm to design the sampling funtionTheorem 2.9 and Corollary 2.11 may be used to solve Problems 1 and 2 respetively.While Corollary 2.11 gives a way to ompute the LRF parameters P and ε maximizing anestimation of the lower-bound τ ∗ of the sampling funtion τ under the stability onditionsof Proposition 2.1, Theorem 2.9 gives a way to approximate the sampling funtion τVopton state regions, for given P and ε. A method to apply the proposed tehnique is thefollowing:Step 1: First, use Corollary 2.11 and the polytopi desription (C.2) with ν = 0. Then,the researh for P is an LMI problem, and we may optimize the searh of a lower-boundestimate τ̂ ∗sub of τ ∗opt as well as its assoiated ε using the tehnique proposed in Remark2.12.70



2.5. Numerial examplesStep 2: Next, we ompute the value ν assigned to the obtained P and ε, and weevaluate the matrix inequalities Φκ � 0 in Corollary 2.11 so as to obtain the value τ ∗sub ≤
τ̂ ∗sub whih satis�es the stability onditions.Step 3: Finally, the LMI onditions from Theorem 2.9 are used with the omputedvalues of P , ε and ν to approximate the maximal state-dependent sampling funtion τVopt(i.e. τVsub(x) = max τs, ∀x ∈ Rs, s ∈ {1, · · · , q}, suh that the LMIs (2.12) hold). Notethat it is possible to solve the LMIs to maximize the sampling times τs on eah regionseparately.Remark 2.14 This algorithm provides a pratial method to build a lower-bound approx-imation τVsub of the optimal sampling funtion τVopt. As most of the numerial methods,there is no a priori evaluation of the gap between the obtained funtion and the optimalfuntion. However, the bene�ts of this tehnique are shown for some benhmarks from theliterature in Setion 2.5.2.5 Numerial examples2.5.1 Example 1Consider the following system from [Hetel 2011b℄:

ẋ(t) =

[

−0.5 0

0 3.5

]

x(t)−
[

1

1

]

Kx(sk),

K =
[

−1.02 5.62
]

.After setting the polynomial approximation degree term N = 5, the number of polytopisubdivisions l = 100, and the number of equal oni regions q = 100 (isotropi overingon the unit sphere x = eiθ, θ ∈ [−π, π], see Appendix B.1), we an obtain a mapping ofthe state-spae that gives the maximal allowable sampling interval for eah state for agiven deay rate β > 0 thanks to Corollary 2.11 and Theorem 2.9. For eah β, after �xing
σ̄, we set the LRF performane parameter α > 1 (see Remark 2.2) as small as possibleand suh that β ≤ ln(α)

2σ̄
. The state-dependent sampling funtions obtained o�ine andensuring the β-stability of the system for di�erent deay rates β are presented in Figure2.3.For a onstant sampling greater than Tmaxonst = 0.469s the disrete-time dynami matrixis not Shur anymore, so the system beomes unstable. However, with the proposed71



Chapter 2. A polytopi approah to dynami sampling ontrol for LTI systems: the unperturbed ase
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Figure 2.3: Example 1: State-angle dependent sampling funtion τ for di�erent deayrates βtehnique, we an go beyond the limit Tmaxonst for some regions of the state-spae (up to 1sfor β = 0).Figure 2.4 (resp. Figure 2.5) shows simulation results with β = 0 (resp. β = 0.05) anda random initial state. It �rst shows the sampling intervals (the blue pieewise-onstanturve), with the lower-bound of the o�ine omputed state-dependent sampling funtion(the red horizontal line), and the limit Tmaxonst of the periodi ase (the green horizontalline), before showing the LRF evolution. The sampling times are represented by the reddots on eah graph. Note that the evolution of the LRF illustrates the onservatism of the(su�ient) stability onditions from Theorem 2.9. For β = 0, for instane (see Figure 2.4),the triggering ondition from Proposition 2.1 should be V (x(t)) = V (x(sk))
α

≃ V (x(sk)),when V̇ (x(t)) > 0 (α was set to 1.001). Thus, the gap between V (x(sk)) and V (x(t)) atthe triggering instants in the simulation represents the onservatism of the method.In Figure 2.4 (β = 0), one an see that the number of atuations over the 20s timeinterval is 31 instead of 43 with Tmaxonst. For any (tested) initial ondition in the simulation,the average sampling time onverges to Taverage ≃ 0.726s ≃ 155%Tmaxonst.For a given deay-rate β > 0, the maximal onstant sampling ensuring β-stability isgiven by Tmaxonst(β) = argmax{T > 0,− ln(|λmax|)
T

≥ β
}

< Tmaxonst, where λmax is the eigen-value of Ad(T ) with greatest modulus. In the simulation of Figure 2.5 (β = 0.05), we anobserve that Taverage over 20s(β = 0.05) = 0.486s > Tmaxonst = 0.469s > Tmaxonst(β = 0.05) =

0.457s.This means that it is possible to sample less in average than with the maximal periodisampling Tmaxonst while still ensuring asymptoti or exponential stability. Although we an72



2.5. Numerial examples
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Figure 2.4: Example 1: Inter-exeution times τ(x(sk)) and LRF V (x) = xTPx for a deayrate β = 0
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Figure 2.5: Example 1: Inter-exeution times τ(x(sk)) and LRF V (x) = xTPx for a deayrate β = 0.05not guarantee that this will always be the ase, the state-dependent sampling presentssome advantages ompared to periodi sampling:- It ensures some onvergene performane (β-stability for a given deay-rate β, or asymp-toti stability if β = 0), whereas onstant sampling with Tmaxonst only ensures marginalstability and doesn't give any hint about the inter-sampling state behaviour. 73



Chapter 2. A polytopi approah to dynami sampling ontrol for LTI systems: the unperturbed ase- It guarantees robustness regarding possible �utuations of the sampling period, whihis inherent to pratial appliations (due to sheduling issues for example). The state-dependent sampling approah ensures the system's β-stability for any time-varying sam-pling period satisfying 0 < δ ≤ τ̃ (t, x) ≤ τ(x), for all t ∈ R+ and for all x ∈ Rn (seeRemark 2.10).Note that in many numerial examples, the lower-bound τ ∗sub of the sampling funtionis usually not far from the value of Tmaxonst. In the worst ase senario, we an take a onstantsampling interval equal to τ ∗sub. Also, sine Remark 2.10 ensures asymptoti stability forany time-varying sampling bounded by the designed funtion τ with β = 0 (i.e. any time-varying sampling with values under the blue urve in Figure 2.3), it is also interesting toompare the lower-bound τ ∗sub = 0.329s (omputed using Corollary 2.11) of the designedstate-dependent sampling funtion with the maximum upper-bounds obtained in reentpapers about (state-independent) time-varying sampling, as shown in Table 2.1.[Naghshtabrizi 2008℄ [Seuret 2009℄ [Fujioka 2009b℄ [Fridman 2010℄ Corollary 2.11
0.165s 0.198s 0.204s 0.259s 0.329sTable 2.1: Example 1: Maximum upper bounds τ ∗sub for time-varying samplings, allowableon the whole state spae2.5.2 Example 2Consider the Bath Reator system from [Mazo Jr. 2009a℄:
ẋ(t) =













1.38 −0.20 6.71 −5.67

−0.58 −4.29 0 0.67

1.06 4.27 −6.65 5.89

0.04 4.27 1.34 −2.10













x(t) +













0 0

5.67 0

1.13 −3.14

1.13 0













u(t),

K =

[

−0.1006 0.2469 0.0952 0.2447

−1.4099 0.1966 −0.0139 −0.0823

]

.We use the same parameters N = 5 and l = 100 as in the previous example, along with
σ̄ = 1s and q = 30 oni regions built using the method proposed in the Appendix B.2,and design the mapping of the state-spae for β = 0. Figure 2.6 shows a representationof this mapping with respet to the angular oordinates of the state. This state-spaemapping (in dimension 3 if we onsider only the angular oordinates and omit the radiusof the state) provides a preise knowledge of the sampling funtion τ (whih varies from74



2.5. Numerial examples
τ ∗sub = 0.4409 to 0.9883 ≤ σ̄). In omparison, the value of the maximal allowable onstantsampling Tmaxonst is 0.5534s. Using this mapping, we obtain the simulations shown in Figure2.7.
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Chapter 2. A polytopi approah to dynami sampling ontrol for LTI systems: the unperturbed ase
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Figure 2.7: Example 2: Inter-exeution times τ(x(sk)) and LRF V (x) = xTPx for a deayrate β = 0The number of atuations over the �rst 10s time interval (see Figure 2.7) is 17, whihan be ompared to the number of updates presented in [Mazo Jr. 2009a℄ (32 in the bestpresented ase), and the obtained average sampling time is Taverage = 0.5898 > Tmaxonst.This example an also be treated via the isotropi oni overing presented in AppendixB.1. With 8000 oni regions, one obtains 21 updates over the �rst 10s.2.6 ConlusionIn this hapter, we have introdued an LRF based design for a state-dependent samplingfuntion τ ensuring the exponential stability with a given deay-rate for ideal LTI sampled-data systems. The proposed method an be seen both as an o�ine self-triggered ontrolsheme and as a new time-varying sampling analysis leading to a state-dependent samplingdesign. A lower-bound estimation of the maximal sampling funtion is proposed. Themethod presents several advantages:� It makes it possible to maximize the lower-bound τ ∗ of the proposed funtion;� It provides the assoiated LRF parameters;� The real-time implementation takes advantage of an o�ine designed mapping of thenext sampling interval with respet to the past sampled-state value.76



Chapter 3A polytopi approah to dynamisampling ontrol for LTI systems: theperturbed aseIn the previous hapter, it was presented a state-dependent sampling ontrol for idealLTI sampled-data systems, and it was shown the bene�ts of the polytopi embedding ap-proah for some benhmarks from the literature. In pratie however, during the real-timeontrol of a dynamial system, perturbations may appear: exogenous unknown inputs,parametri unertainties, measurement noises, omputation and atuation delays, un-modeled dynamis, et. Suh disturbanes may destabilize the system, and thus it isneessary to analyse this robustness aspet. In this hapter, we will propose methods forrobust stability with respet to perturbations in ontinuous-time, using onvex embed-dings. Note that although a large amount of works have been presented on onvex embed-dings [Donkers 2009℄, [Fujioka 2009a℄, [Skaf 2009℄, [Hetel 2006℄, [Hetel 2011b℄, [Hetel 2007℄,[Olaru 2008℄, [de Wouw 2010℄, [Cloosterman 2010℄, [Gielen 2010℄, [Goebel 2009℄, none ofthem has inluded robustness with respet to perturbations. In fat, inluding exogenousunknown perturbations in the stability analysis is not a simple matter.In this hapter, we propose to inlude this robustness aspet with respet to un-known exogenous perturbations that are state-bounded (i.e. the perturbation w satis�es
‖w(t)‖2 ≤ W‖x(tk)‖2, for some onstant salarW ), and we provide tools to perform robuststability analysis regarding time-varying sampling, event-triggered ontrol, self-triggeredontrol, and state-dependent sampling. For eah of these appliations, we ensure thesystem's β-stability for a given deay-rate β, thanks to Lyapunov-Razumikhin stabilityonditions and onvexi�ation arguments. 77



Chapter 3. A polytopi approah to dynami sampling ontrol for LTI systems: the perturbed aseThe hapter is organized as follows. First, we state the problem in Setion 3.1 andpropose the main stability analysis in Setion 3.2. Then, Setions 3.3 to 3.6 provide toolsfor the robust stability analysis regarding time-varying sampling and for the design ofthe di�erent dynami sampling ontrollers. Finally, some simulation results are shown inSetion 3.7 before onluding in Setion 3.8. As in the previous hapter, all the proofsare given in the Appendix A.2, and the proposed tehnial onstrution for the onvexembedding an be found in Apendix C.3.3.1 Problem statementIn this hapter, we onsider the perturbed LTI system
ẋ(t) = Ax(t) +Bu(t) + Ew(t), ∀t ∈ R+, (3.1)where x : R+ → Rn, u : R+ → Rnu, and w : R+ → Rnw represent respetively the systemstate, the ontrol funtion, and the exogenous disturbanes. The matries A, B, and Eare onstant with appropriate dimensions.Similarly to the ase presented in Chapter 2, the ontrol is assumed to be a pieewise-onstant state feedbak
u(t) = −Kx(sk), ∀t ∈ [sk, sk+1), ∀k ∈ N, (3.2)where K is �xed and suh that A− BK is Hurwitz9 (i.e. it is assumed that the system(3.1) without perturbation is asymptotially stable with the ontinuous state feedbak

u(t) = −Kx(t)).Moreover, the sampling instants 0 = s0 < s1 < · · · < sk < · · · verify lim
k→∞

sk = ∞, andthe sampling intervals are set to satisfy
sk+1 − sk = τ(sk, x(sk)) ≡ τk ∈ [δ, τmax(x(sk))], ∀k ∈ N, (3.3)with a salar δ > 0 that ensures the well posedness of the system (no Zeno phenomenonissue), a sampling funtion τ : R+×R

n → R+, and a maximal sampling map τmax : Rn →
R+. This sampling map de�nes the upper-bound of the sampling intervals and an beseen as a maximal time-invariant sampling funtion.9a Hurwitz matrix (also alled stable matrix) is a real square matrix for whih eah eigenvalue has astritly negative real part.78



3.1. Problem statementThe exogenous disturbane is assumed to be state-bounded in a similar way as in[Wang 2009℄:
∃W ≥ 0, ‖w(t)‖22 ≤ W‖x(sk)‖22, ∀t ∈ [sk, sk+1), ∀k ∈ N. (3.4)Suh a perturbation an represent model unertainties, loal nonlinearities, or measure-ment noise for example.We denote by S the losed-loop system {(3.1), (3.2), (3.3), (3.4)}. For given samplingfuntion τ and disturbane w, the solution of S with initial value x0 is denoted by

x(t) = ϕτ,w(t, x0). (3.5)Our main objetive is to provide a way to enlarge as muh as possible the maximalsampling map τmax from (3.3) while ensuring the the system's β-stability for a hosendeay-rate β.In order to hek the β-stability of S, as in the unperturbed ase, we use a Lyapunov-Razumikhin approah [Kolmanovskii 1992℄ whih we formulate for a wider lass of per-turbed systems as:
Proposition 3.1 Consider the swithed nonlinear system

ẋ(t) = fk(t, x(t), x(sk), w(t)), ∀t ∈ [sk, sk+1), ∀k ∈ N, (3.6)with swithing instants sk satisfying (3.3), and an unknown exogenous perturbation w :

R+ → Rnw whih is supposed to be loally essentially bounded [Manilla-Aguilar 2005℄.The funtions fk : R+ × Rn × Rn × Rnw → Rn are assumed to be loally Lipshitz withrespet to their seond variable, x(t). For given sampling funtion τ and disturbane w,the solution of system {(3.3),(3.6)} with initial value x0 is denoted by x(t) = φτ,w(t, x0).Consider salars α > 1, r > 0, σ̄ > 0, and 0 < β ≤ ln(α)
rσ̄

, and a map τmax : Rn → R+,
0 < δ ≤ τmax(x) ≤ σ̄. If there exist a ontinuously di�erentiable funtion V : Rn → R+,and salars 0 < γ ≤ γ̄ suh thatFor all x ∈ R

n, γ‖x‖r2 ≤ V (x) ≤ γ̄‖x‖r2, (H1)79



Chapter 3. A polytopi approah to dynami sampling ontrol for LTI systems: the perturbed aseand For all x ∈ Rn, for all σ ∈ [0, τmax(x)],
V̇ (φτmax,w(σ, x)) + rβV (φτmax,w(σ, x)) ≤ 0 whenever αV (φτmax,w(σ, x)) ≥ V (x), (H2)then the origin of the swithed nonlinear system {(3.3),(3.6)} is globally β-stable.Note that if β = 0 and the inequality V̇ (φτmax,w(σ, x)) ≤ 0 in (H2) is reinfored to bestrit, then the lassial Lyapunov-Razumikhin [Kolmanovskii 1992℄ theory ensures thesystem's asymptoti stability.For simpliity, in this hapter, we will only onsider the ase of quadrati LRF V (x) =

xTPx, for whih we derive the following stability ondition:Proposition 3.2 Consider salars α > 1, σ̄ > 0, 0 < β ≤ ln(α)
2σ̄

, and W ≥ 0, and a map
τmax : Rn → R+, 0 < δ ≤ τmax(x) ≤ σ̄. If there exists a quadrati funtion V (x) = xTPx,
P ∈ S+∗

n suh that For all x ∈ Rn, for all σ ∈ [0, τmax(x)],
V̇ (ϕτmax ,w(σ, x)) + 2βV (ϕτmax,w(σ, x)) ≤ 0 whenever αV (ϕτmax ,w(σ, x)) ≥ V (x), (H3)then the system S is globally β-stable.As in the unperturbed ase presented in the previous hapter, we will fous on solvingtwo main problems. The �rst problem onerns the design of the LRF V and is formulatedas: Problem 1: Given the system {(3.1),(3.2),(3.4)}, �nd an LRF V suh that thereexists a sampling map τmax satisfying (H3) with a minimum value τ ∗ = infx∈Rn τmax(x) aslarge as possible.The objetive of Problem 1 overs the ones in the works about robust analysis regardingtime-varying sampling (see Chapter 1, Setion 1.4), sine it is about searhing for an LRFthat allows for a larger upper-bound τ ∗ on (state-independent) time-varying sampling.The seond problem onerns the design of the sampling map τmax and is formulated as:Problem 2: Given the system {(3.1),(3.2),(3.4)} and an LRF V , design a lower-bound approximation of the optimal sampling map τVopt(x) = max τmax(x) suh that (H3)holds.This formulation overs the problems of most works about dynami sampling ontrol(see Chapter 1, Setion 1.5).80



3.2. Main stability resultsBy ombining the results from these two problems (i.e. designing the sampling mapof Problem 2 thanks to the LRF designed in Problem 1), it is possible to design a robustsampling law for whih the lower bound of the sampling map (i.e. the maximal samplingin the worst ase senario) is optimized. Note that although the works in the literatureabout dynami sampling ontrol bring a partiular attention to prove the existene ofa stritly positive lower-bound on the sampling map, they do not address this issue ofmaximization of the lower-bound.3.2 Main stability resultsIn this setion, our aim is to derive su�ient stability onditions from Proposition 3.2that depend solely on the time variable σ and on the sampled-state x.First, we introdue the dynamis of the studied system S in (H3) and propose onditionsthat are equivalent to the ones of Proposition 3.2. It represents an extension of Lemma2.5 to the ase with perturbations.Lemma 3.3 Consider salars α > 1, σ̄ > 0, 0 < β ≤ ln(α)
2σ̄

, and W ≥ 0, and a map
τmax : Rn → R+, 0 < δ ≤ τmax(x) ≤ σ̄. If there exist a matrix P ∈ S+∗

n and a salar ε ≥ 0suh that for all x ∈ Rn, and all σ ∈ [0, τmax(x)],
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≤ 0, (3.7)with the matries
Λ(σ) = I +

∫ σ

0

esAds(A−BK), (3.8)
Jw(σ) =

∫ σ

0

eA(σ−s)Ew(s)ds, (3.9)and
Ω =









ATP + PA+ εαP + 2βP −PBK PE

∗ −εP 0

∗ ∗ 0









, (3.10)then the system S is globally β-stable.Note that in (3.7) appear the sampled state x(sk) ≡ x and the time t − sk ≡ σ, butalso other terms that result from the unknown exogenous disturbane, w(σ) and Jw(σ),81



Chapter 3. A polytopi approah to dynami sampling ontrol for LTI systems: the perturbed aseand whih need to be removed. Ideally, the aimed stability onditions have the form
xTΠ(σ)x ≤ 0, ∀x ∈ Rn, ∀σ ∈ [0, τmax(x)]. Suh a form is adapted for the four onsideredtehniques:� For robust stability analysis with respet to time-varying sampling, this form al-lows for removing the state-dependeny and derive a parameter-dependent matrixinequality Π(σ) � 0.� For event-triggered ontrol, it makes it possible to derive a simple event-generatorthat an be heked in real-time, of the form x(sk)

TΠ(t− sk)x(sk) = 0.� For self-triggered ontrol, it allows one to ompute at eah sampling instant ska lower-bound estimation of the next maximal sampling interval, by studying theevolution of the term x(sk)
TΠ(t− sk)x(sk).� For state-dependent sampling, the form xTΠ(σ)x � 0 is adequate to provide astability analysis over oni regions of the state-spae.In the following theorem, we derive the entral stability onditions by bounding thee�ets of the perturbations on the system's evolution, using the assumption (3.4).Theorem 3.4 Consider salars α > 1, σ̄ > 0, 0 < β ≤ ln(α)

2σ̄
, and W ≥ 0, and a map

τmax : Rn → R+, 0 < δ ≤ τmax(x) ≤ σ̄.Then, the system S is globally β-stable if there exist salars ε ≥ 0, η ≥ 0, and µ ≥ 0,matries P , Φ1, Φ2 ∈ S+∗
n , and Φ3 ∈ S+∗

nw
, suh that

0 � M1 + Φ1 + Φ2 � µI,

[

Φ3 − ηI MT
3

∗ −Φ2

]

� 0, (3.11)and
xTΠ(σ)x ≤ 0, ∀x ∈ R

n, ∀σ ∈ [0, τmax(x)], (3.12)with
Π(σ) = Λ(σ)TM1Λ(σ)− Λ(σ)TPBK −KTBTPΛ(σ)− εP

+M2(σ)
TΦ−1

1 M2(σ) +M4(σ)
TΦ−1

3 M4(σ) +WηI + σWµλmax(ETE)fA(σ)I,(3.13)where
M1 = ATP + PA+ εαP + 2βP, M2(σ) = −PBK +M1Λ(σ),

M3 = PE, M4(σ) = ETP TΛ(σ),
(3.14)82



3.3. Robust stability analysis with respet to time-varying sampling - Optimization of the parametersand
fA(σ) =







1
λmax(A+AT )

(eλmax(A+AT )σ − 1
) if λmax(A+ AT ) 6= 0,

σ otherwise. (3.15)The su�ient stability onditions from Theorem 3.4 will be used as a stability basisthroughout the rest of the work, for robust stability analysis with respet to time-varyingsampling, event-triggered ontrol, self-triggered ontrol, and state-dependent sampling.They involve a few LMIs (3.11) as well as the more omplex set of onditions: xTΠ(σ)x ≤
0, ∀x ∈ Rn, ∀σ ∈ [0, τmax(x)].Remark 3.5 In Theorem 3.4, P orresponds to the LRF matrix, ε omes from the appli-ation of the S-proedure to rewrite in a more onvenient way the LRF stability onditions,and the salars η and µ, as well as the matries Φi orrespond to degrees of freedom usedin the majorations of the perturbations w(σ) and Jw(σ) from Lemma 3.3. One easy wayto deal with these free matries would be to use identity matries. However, this wouldremove the degrees of freedom that were gained, and it ould well result in overly on-servative stability onditions. In the next setion, an algorithm to e�iently ompute allthese parameters will be presented.Remark 3.6 Similarly to the unperturbed ase, for any given state x 6= 0, the ondition(3.12) from Theorem 3.4 remains the same for any state y = λx, λ ∈ R∗. Therefore, it issu�ient to work with homogeneous sampling maps of degree 0 (i.e. satisfying τmax(λx) =
τmax(x) for all x ∈ R

n, λ ∈ R
∗) and to hek ondition (3.12) over the unit n-sphere.In the next setions, we show how to adapt the obtained stability onditions and howto redue their number, so as to perform a robust analysis with respet to time-varyingsampling, or a dynami ontrol of the sampling.3.3 Robust stability analysis with respet to time-varyingsampling - Optimization of the parametersIn this setion, we study the stability for (state-independent) time-varying samplings andprovide tools to ompute the parameters that appear in Theorem 3.4. We onsider aonstant (i.e. state-independent) sampling map:
τmax(x) = τ (global)max , ∀x ∈ R

n, (3.16)83



Chapter 3. A polytopi approah to dynami sampling ontrol for LTI systems: the perturbed aseand look for a stability analysis and an algorithm that allow us to ompute:� a state-independent upper-bound estimation τ
(global)max = τ ∗ for time-varying samplingas in the framework of robust ontrol tehniques (i.e. guaranteeing β-stability forany time-varying sampling bounded by τ ∗),� the assoiated LRF V (x) = xTPx (as well as additional parameters Φ1, Φ2, Φ3, ε,

η and µ), thus solving Problem 1.With this aim in mind, we need to redue the number of onditions from (3.12) inTheorem 3.4 from an in�nite number in both the time σ and state x variables, to a�nite number that is independent of the state x. Also, in order to ompute the variousparameters, we want to remove the inverse terms Φ−1
1 and Φ−1

3 , and write this �nitenumber of onditions in the form of LMIs.Lemma 3.7 The ondition (3.12) in Theorem 3.4, with the sampling map (3.16), issatis�ed if and only if the parameter-dependent LMI
∆(σ) =









R(σ) M2(σ)
T M4(σ)

T

∗ −Φ1 0

∗ ∗ −Φ3









� 0 (3.17)is satis�ed for all σ ∈ [0, τ
(global)max ], with

R(σ) = Λ(σ)TM1Λ(σ)− Λ(σ)TPBK −KTBTPΛ(σ)− εP

+WηI + σWµλmax(ETE)fA(σ)I.
(3.18)In order to redue the number of onditions regarding the time-variable, we proposethe following onvex embedding method:Convex embedding aording to time: The matrix funtion ∆ is ontinuous on theompat set [0, τ (global)max ]. Therefore, similarly to the unperturbed ase, given τ

(global)max ≤ σ̄,it is possible to build a onvex polytope de�ned by a �nite set of verties around ∆(σ), for
σ ∈ [0, τ

(global)max ]. For the sake of generality, and to de�ne notations that an also be usedin the other appliations presented in this hapter, we will onsider the set of verties asa funtion of the maximum sampling interval onsidered
∆̄κ : [0, σ̄] → M2n+nw

(R)

τ
(global)max 7→ ∆̄κ(τ

(global)max ).84



3.3. Robust stability analysis with respet to time-varying sampling - Optimization of the parametersSimilarly, we onsider the set of indexes for the verties as a funtion of the time
K : [0, σ̄] → P(K̄)

τ
(global)max 7→ K(τ

(global)max ),where K̄ is a �nite set of indexes. In that desription, P(K̄) denotes the power set of K̄and means that K(τ
(global)max ) ⊆ K̄, for all τ (global)max ∈ [0, σ̄].Figure 3.1 presents a 2D illustration of suh a polytopi design for two di�erent valuesof τ (global)max : σ∗

1 and σ∗
2 (0 < σ∗

1 < σ∗
2 ≤ σ̄). Here, one an see that the number of vertiesas well as their value/position hanges with respet to the value of τ (global)max . Rememberthat this �gure shows only an intuitive representation of the onvex embedding, sine thefuntion ∆ evolves in the (2n + nw) × (2n + nw) matries spae, and thus an not berepresented in a 2D spae.
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Chapter 3. A polytopi approah to dynami sampling ontrol for LTI systems: the perturbed aseWith these notations, and for a given τ
(global)max , we an build the onvex embeddingsuh that the following property is satis�ed:

(

∆̄κ(τ
(global)max ) � 0, ∀κ ∈ K(τ

(global)max )
)

⇓
(

∆(σ) � 0, ∀σ ∈ [0, τ
(global)max ]

)

.

(3.19)Note that the form of the matrix funtion ∆ given by (3.17) enables to build theseverties ∆̄κ(τ
(global)max ) as linearly dependent on P , Φ1, Φ3, η, and µ, and dependent on theparameters α, ε, β, and σ̄. One possible onstrution of a onvex polytope satisfying(3.19) is provided in the Appendix C.3.This onvex embedding approah allows for obtaining the following theorem.Theorem 3.8 Consider ε ≥ 0 a tuning parameter. Let a salar 0 < τ

(global)max ≤ σ̄ and theonstant sampling map de�ned in (3.16). Let salars α > 1, σ̄ > 0, 0 < β ≤ ln(α)
2σ̄

, and
W ≥ 0, and matries ∆̄κ(τ

(global)max ) satisfying (3.19), with κ ∈ K(τ
(global)max ).If there exist matries P , Φ1, Φ2 ∈ S+∗

n , Φ3 ∈ S+∗
nw
, and salars η ≥ 0 and µ ≥ 0, suhthat the LMIs (3.11) and ∆̄κ(τ

(global)max ) � 0 are satis�ed for all κ ∈ K(τ
(global)max ), then thesystem (3.1), subjet to perturbations (3.4), is globally β-stable with respet to the ontrol(3.2) for any time-varying sampling bounded by τ

(global)max .Remark 3.9 This theorem provides a stability analysis for systems with time-varyingsampling upper-bounded by τ
(global)max . The tuning parameter ε an be optimized by using aline-searh algorithm and LMI solvers. The idea is the following.For a given value of ε, one an ompute the maximal τ (global)max (denoted τ

(global)max (ε)) for whihthe stability onditions from Theorem 3.8 are satis�ed, by using a line searh algorithmon the variable τ
(global)max and LMI solvers. Then, another line searh algorithm is used onthe variable ε so as to ompute an estimation of the largest upper-bound for time-varyingsampling intervals: τ ∗ = supε≥0 τ

(global)max (ε).Using the following algorithm, it is possible to ompute a lower-bound estimate ofthe maximal allowable sampling interval for time-varying sampling. Here, we use thepolytopi desription (C.14) (in Appendix C.3), whih is based on Taylor series approx-imations. This approximation indues an estimation error whih an be upper-boundedby a salar ν, de�ned in (C.21).Algorithm:86



3.4. Event-triggered ontrolStep 1: First, we use Theorem 3.8 and the polytopi desription (C.14) onsideringthat the upper-bound on the estimation error ν = 0. The searh for P , Φ1, Φ2, Φ3, η and
µ is then an LMI problem, and we may optimize the searh of the largest τ (global)max (denoted
τ̂ ∗) and its assoiated parameter ε by using the method proposed in Remark 3.9.Step 2: Then, we ompute the value of the upper-bound ν that orresponds to theobtained parameters P , ε, Φ1, Φ2, Φ3, η and µ. Using this value, it beomes possibleto evaluate the matrix inequalities ∆̄κ(τ

(global)max ) � 0 in Theorem 3.8 so as to obtain anestimation of the largest upper-bound for time-varying samplings τ ∗ ≤ τ̂ ∗ whih satis�esthe stability onditions.Step 3: The maximal sampling map is then de�ned as
τmax(x) = τ ∗, ∀x ∈ R

n.Remark 3.10 Using the LRF V (x) = xTPx together with the parameters ε, Ψ1, Ψ2, Ψ3,
η, µ and ν obtained thanks to this algorithm allows for designing sampling maps that arelower-bounded by τ ∗ in the ase of dynami sampling ontrol (i.e. event-triggered ontrol,self-triggered ontrol, and state-dependent sampling).3.4 Event-triggered ontrolIn event-triggered ontrol, the sampling ours when some event is generated by thesystem's smart sensors. In this setion three di�erent event-triggered ontrol shemes arepresented. The �rst one is based on the stability onditions from Theorem 3.4, whihwill be used to design the self-triggered ontrol and state-dependent sampling shemes.The last two approahes, less onservatives, allow to take into aount the e�ets of theperturbation on the system while taking advantage of the results from the previous setion,about robust stability analysis with respet to time-varying sampling.3.4.1 Over-approximation based event-triggered ontrol shemeThe �rst event-triggered ontrol sheme is based on Theorem 3.4, whih allows to de�nethe event-generator ondition for the (k + 1)th sampling as

(t ≥ sk + τ ∗) ∧
((

x(sk)
TΠ(t− sk)x(sk) = 0

)

∨ (t = sk + σ̄)
)

, 87



Chapter 3. A polytopi approah to dynami sampling ontrol for LTI systems: the perturbed asewith parameters P , ε, Φ1, Φ2, Φ3, η, µ and ν obtained with the algorithm reported inSetion 3.3. This event-generator enables to design a maximal sampling map
τmax(x) = min

(

min{σ ≥ τ ∗| xTΠ(σ)x = 0}, σ̄
)during the real-time ontrol of the system.Note that there is no need to hek the event-generator's ondition during the timeinterval [sk, sk + τ ∗] sine Theorem 3.8 ensures that x(sk)

TΠ(t − sk)x(sk) ≤ 0 for all
t ∈ [sk, sk + τ ∗]. Also, note that this event-triggered ontrol sheme does not take intoaount the real evolution of the perturbed system S sine it is based on the onditionsfrom Theorem 3.4, whih are set to be satis�ed for any perturbation satisfying (3.4). Thissheme will be used as a referential for a omparison, in order to hek the onservatismintrodued in the self-triggered ontrol and state-dependent sampling shemes.Sine event-triggered ontrol allows to monitor the system's state at all time (and thustake into aount the e�et of the exogenous disturbane on the system's state evolution),we present two other approahes. One is based on the stability onditions from Lemma3.3 (obtained before the majorations dealing with the exogenous perturbations), and theother one is based diretly on the Lyapunov funtion for the disrete model of the system.
3.4.2 Perturbation-aware event-triggered ontrol shemeThe seond event-triggered ontrol sheme we present is based on the following stabilityproperty, wih is derived from Lemma 3.3:Lemma 3.11 Consider W ≥ 0, α > 1, σ̄ > 0, 0 < β ≤ ln(α)

2σ̄
, ε ≥ 0, and P ∈ S+∗

n . If
[

x(t)

x(sk)

]T

Ω̄

[

x(t)

x(sk)

]

≤ 0, ∀t ∈ [sk, sk+1], k ∈ N, (3.20)with
Ω̄ =

[

ATP + PA+ εαP + 2βP + PEETP −PBK

∗ −εP +WI

]

, (3.21)then the sampled-data system {(3.1),(3.2),(3.4)} with sampling intervals satisfying sk+1−
sk ∈ [δ, σ̄] is globally β-stable.88



3.5. Self-triggered ontrolIn order to guarantee the stability onditions from Lemma 3.11, the event-triggered gen-erator ondition for this sheme is thus de�ned as
(t ≥ sk + τ ∗) ∧









[

x(t)

x(sk)

]T

Ω̄

[

x(t)

x(sk)

]

= 0



 ∨ (t = sk + σ̄)



 ,with parameters P and ε omputed with the algorithm given in Setion 3.3. Note thatunlike the previous event-triggered sheme, here we use the value of the state x(t), andthus take into aount the e�et of the perturbations on the system's state evolution from
sk to t. Also, unlike the previous sheme, this sheme does not enable to design a maximalmapping during the real-time ontrol of the system sine the event generator onditioninvolve x(t), whih evolution also depends on the perturbation.3.4.3 Disrete-time approah event-triggered ontrol shemeThe third event-triggered ontrol sheme fully takes into aount the perturbations onthe system, and thus allows to redue the onservatism even more, with respet to theprevious shemes. It is based on a disrete-time analysis of the system. The event-generator ondition for the (k + 1)th sampling is de�ned as

(t ≥ sk + τ ∗) ∧
(

V (x(t)) = e−2β(t−sk)V (x(sk))
)

,with the LRF V omputed with the algorithm in Setion 3.3. Note that just like theprevious sheme, this sheme does not enable to design a maximal mapping during thereal-time ontrol of the system sine the event generator ondition does not depend onlyon the time variable and on the sampled state, but also on the perturbation and itsevolution.3.5 Self-triggered ontrolSelf-triggered ontrol aims at emulating event-triggered ontrol without resorting to ded-iated hardware to monitor the plant, by omputing at eah sampling instant a lower-bound estimation of the next maximal allowable sampling interval. In this setion, wepresent a self-triggered ontrol sheme derived from the stability onditions in Theorem3.4 with the onvexi�ation arguments (3.19).This self-triggered ontrol sheme is based on an interesting property of the onvex89



Chapter 3. A polytopi approah to dynami sampling ontrol for LTI systems: the perturbed aseembedding design with polytopi subdivisions we have proposed in (C.13) and (C.14) (inthe Appendix C.3) for the matrix funtion ∆ (see equation (3.17)). We reall that in thisdesign, whih is based on Taylor series approximations, it was onsidered two integers Nand l, whih represent the order of the Taylor approximations, and the number onsideredof subintervals of [0, σ̄] of length σ̄
l
respetively.The partiular property of this design is that the set of indexes in this design isexpanding along with the value of the sampling interval upper-bound:

∀(σ∗
1, σ

∗
2) ∈ [0, σ̄]2, σ∗

1 ≤ σ∗
2 ⇒ K(σ∗

1) ⊆ K(σ∗
2),whih means in partiular that

∀σ∗ ∈ [0, σ̄], K(σ∗) ⊆ K(σ̄) = {0, · · · , N} × {0, · · · , l − 1} ≡ K̄.Furthermore, for ertain disrete values of the sampling interval upper-bound, the asso-iated polytope verties an be obtained diretly from verties designed for σ∗ = σ̄:
∀σ∗ = j̄+1

l
σ̄ ∈ [0, σ̄], for some integer j̄ ∈ {0, · · · , l − 1},

∆̄κ(σ
∗) = ∆̄κ(σ̄), ∀κ ∈ K(σ∗) = {0, · · · , N} × {0, · · · , j̄} ⊆ K̄.Figure 3.2 illustrates these points. Indeed, one an see that for any integer j̄ ∈

{0, · · · , l − 1}, the onvex polytope Co(i,j)∈{0,··· ,N}×{0,··· ,j̄}{∆̄(i,j)(σ̄)} embeds the matrixfuntion ∆(σ) for all values of σ in [0, j̄+1
l
σ̄].This property is interesting beause it shows that with only one set of verties ∆̄κ(σ̄),with κ ∈ K̄ = K(σ̄), it is possible to hek the stability for di�erent values of the upper-bound on the sampling interval (namely σ∗ ∈ { σ̄

l
, · · · , (l−1)σ̄

l
, σ̄}), by omputing the maxi-mal index j∗ for whih the LMIs ∆̄(i,j) are satis�ed for all (i, j) ∈ {0, · · · , N}×{0, · · · , j∗}.If suh a j∗ is found, the stability is ensured for any time-varying sampling in [0, σ∗ =

j∗+1
l

σ̄]. Otherwise, if no suh j∗ an be omputed, one an not onlude with the stability(this may be the ase for small values of l, i.e when the onsidered subdivisions of theinterval [0, σ̄] are too large).It is important to note that unlike the situation of the robust stability analysis withrespet to time-varying sampling in Setion 3.3, whih was a state-independent analysis,here we need to use equations in whih the state x expliitely appears, like (3.12). Tothis aim, the onvex embedding will be designed around the matrix funtion Π (equation(3.13)) instead of∆ (equation (3.17)). As it will be shown however, suh a onvex polytope90



3.5. Self-triggered ontrol
∆(σ), σ ∈ [0, σ̄]

· · ·

· · ·
σ ∈ [0, σ̄

l
] σ ∈ [ σ̄

l
, 2σ̄

l
] σ ∈ [ (l−1)σ̄

l
, σ̄]

∆̄(0,0)(σ̄)

∆̄(1,0)(σ̄) · · ·

∆̄(N−1,0)(σ̄)
∆̄(N,0)(σ̄)

∆̄(0,1)(σ̄)∆̄(1,1)(σ̄)
· · ·

∆̄(N−1,1)(σ̄)
∆̄(N,1)(σ̄) ∆̄(0,l−1)(σ̄)

∆̄(1,l−1)(σ̄)

· · ·

∆̄(N−1,l−1)(σ̄)

∆̄(N,l−1)(σ̄)

. . .σ ∈ [0, 2σ̄
l
]

σ ∈ [0, σ̄]Figure 3.2: Illustration of the property of the onvex embedding design with subdivisionsfrom Appendix C.3 around the matrix funtion ∆an be obtained by a simple adaptation of the one presented for ∆ in the Appendix 3.3.In a more general ontext than with the partiular onvex embedding design presentedin the Appendix C.3, one may use the following property in order to design a self-triggeredontrol sheme.Theorem 3.12 Consider salars α > 1, σ̄ > 0, 0 < β ≤ ln(α)
2σ̄

, W ≥ 0, ε ≥ 0, η ≥ 0,
µ ≥ 0, a sampling map τmax, 0 < δ ≤ τmax(x) ≤ σ̄, and matries P , Φ1, Φ2 ∈ S+∗

n ,
Φ3 ∈ S+∗

nw
, suh that the LMIs (3.11) hold.Assume that there exist matries Πκ ∈ Mn(R), with κ ∈ K̄ a �nite set of indexes, and afuntion K̃ : Rn → P(K̄) suh that for all x ∈ Rn,

(

xTΠκx ≤ 0, ∀κ ∈ K̃(x)
) (3.22a)

⇓
(

xTΠ(σ)x ≤ 0, ∀σ ∈ [0, τmax(x)]) . (3.22b)Then, if the triggering ondition (3.22a) is satis�ed for all x ∈ R
n, the system S with91



Chapter 3. A polytopi approah to dynami sampling ontrol for LTI systems: the perturbed asethe sampling map τmax is globally β-stable.Remark 3.13 The main advantages of suh a formulation are that the triggering ondi-tions for a given sampled state x are redued to a �nite number (see (3.22a)), and thatthe matries Πκ do not depend on x, and an be thus omputed o�ine, for all κ ∈ K̄, oneand for all.In the following, we provide one possible method to design the di�erent elementsinvolved in this theorem, and propose an adapted self-triggered ontrol sheme. Thismethod is based on the polytopi embedding that was proposed previously for the robuststability analysis (see Appendix C.3), and whih was designed thanks to Taylor seriesapproximations. We all N the order of the approximation, and we onsider that theinterval [0, σ̄] is divided into l subintervals of length σ̄
l
.Step 1: First, in order to maximize the value of τ (global)max (i.e. the lower-bound of thesampling map) up to τ ∗, we onsider the parameters P , ε, Φ1, Φ2, Φ3, η, µ and ν obtainedusing the algorithm in Setion 3.3.Step 2: Then, we ompute the matries ∆̄κ(σ̄), with κ ∈ K(σ̄) using the polytopionstrution (C.13) and (C.14) (in the Appendix C.3). Note that these matries take theform

∆̄κ(σ̄) =









∆
(1,1)
κ ∆

(1,2)
κ ∆

(1,3)
κ

∗ ∆
(2,2)
κ 0

∗ ∗ ∆
(3,3)
κ









.Step 3: Now, we design the matries Πκ as
Πκ = ∆(1,1)

κ −∆(1,2)
κ [∆(2,2)

κ ]−1[∆(1,2)
κ ]T −∆(1,3)

κ [∆(3,3)
κ ]−1[∆(1,3)

κ ]T , (3.23)and we onsider a set of indexes funtion K̃ : Rn → P(K̄), with K̄ = K(σ̄) = {0, · · · , N}×
{0, · · · , l − 1}, of the form:̃

K(x) = {0, · · · , N} × {0, · · · , j∗(x)} , (3.24)with
j∗(x) =







max
{

j̃ ∈ J̃ (x)
} if J̃ (x) 6= ∅,

−1 otherwise ,and
J̃ (x) =

{

j̃ ∈
{⌊

τ∗l
σ̄

⌋

, · · · , l − 1
}

|xTΠ(i,j)x ≤ 0,

∀(i, j) ∈ {0, · · · , N} ×
{⌊

τ∗l
σ̄

⌋

, · · · , j̃
}}

.92



3.6. State-dependent samplingHere, the indexes of K̃ are omposed a pair of parameters. The �rst parameter is linkedto the Taylor approximation, whereas the seond one is linked to the interval subdivisiononsidered. For a given state x, the aim is to searh for j∗(x), whih represents thehighest subdivision for whih the inequalities xTΠ(i,j)x ≤ 0 are satis�ed for all (i, j) ∈
{0, · · · , N} × {0, · · · , j∗(x)}.Step 4: Following this onstrution, the sampling map for the proposed self-triggeredontrol sheme is designed as

τmax(x) = max

(

j∗(x) + 1

l
σ̄, τ ∗

)

. (3.25)Using arguments similar to the ones used to prove that (3.19) is satis�ed with theverties (C.14) (see Lemma (C.3)), one an show that the matries Πκ de�ned in (3.23),with the set of indexes K̄ = K(σ̄) = {0, · · · , N} × {0, · · · , l − 1}, and the set of indexesfuntion K̃ de�ned in (3.24) satisfy (3.22), with the sampling map (3.25).Remark 3.14 With this onstrution, the self-triggering ondition during the real-timeontrol of the system amounts to omputing the value of the integer j∗(x) for eah sampled-state x. Note that with the parameters onsidered in Step 1, Theorem 3.8 ensures that if
⌊

τ∗l
σ̄

⌋

≥ 1, then Π(i,j) ≤ 0 for all (i, j) ∈ {0, · · · , N} ×
{

0, · · · ,
⌊

τ∗l
σ̄

⌋

− 1
}, whih explainswhy it is not neessary to hek the inequatilies xTΠ(i,j)x ≤ 0 for j <
⌊

τ∗l
σ̄

⌋.Remark 3.15 The preision of the sampling map τmax is linked to the value of the integer
l, whih de�nes the number subdivisions of the time interval [0, σ̄] used in the onstrutionof the onvex polytope (C.14): the larger the integer l, the more preise the sampling map.The number of online omputations required to ompute j∗(x) is upper-bounded by n(n+

1)(N +1)
(

l −
⌊

τ∗l
σ̄

⌋) multipliations and (n+1)(n− 1)(N +1)
(

l −
⌊

τ∗l
σ̄

⌋) additions. Theonline omplexity is in O(n2Nl). It is omparable to the one obtained in the self-triggeredontrol sheme from [Mazo Jr. 2010℄ for example. Here some omputations are savedthanks to the optimization in Step 1 of the lower-bound τ ∗ of the sampling map (seeRemark 3.14).3.6 State-dependent samplingThe state-dependent sampling aims, as introdued in the previous hapter, at emulatingself-triggered ontrol while trading online omputations for o�ine omputations, thusreduing the proessor load during the real-time ontrol of the system. 93



Chapter 3. A polytopi approah to dynami sampling ontrol for LTI systems: the perturbed aseIn this formulation, the sampling map is de�ned over regions of the state-spae as
τmax(x) = τ (s)max, ∀x ∈ Rs, ∀s ∈ {1, · · · , q}. (3.26)Here, the homogeneity brought up in Remark 3.6, whih is due to the linearity of thesystem, motivates us for working with oni regions of the form

Rs = {x ∈ R
n, xTΨsx ≥ 0}, Ψs = ΨT

s ∈ Mn(R). (3.27)Possible onstrutions of these oni regions using the spherial oordinates of the stateor the disrete-time behaviour of the system, are presented in the Appendix B. We havethe following stability property:Theorem 3.16 Let a matrix P ∈ S+∗
n , and salars ε ≥ 0, α > 1, σ̄ > 0, 0 < β ≤ ln(α)

2σ̄
,and W ≥ 0 be given. Let matries Φ1, Φ2 ∈ S+∗

n , Φ3 ∈ S+∗
nw
, and salars η ≥ 0 and µ ≥ 0,suh that the LMIs (3.11) are satis�ed. Consider the sampling map (3.26) de�ned ononi regions (3.27), with sampling intervals τ

(1)max, · · · , τ (q)max satisfying 0 < δ ≤ τ
(s)max ≤ σ̄.Assume there exist matries ∆̄κ(τ

(s)max), with κ ∈ K(τ
(s)max) a �nite set, satisfying for all

s ∈ {1, · · · , q}, and ρs ≥ 0,
(

∆̄κ(τ
(s)max) + [ρsΨs 0

∗ 0

]

� 0, ∀κ ∈ K(τ
(s)max))

⇓
(

∆(σ) +

[

ρsΨs 0

∗ 0

]

� 0, ∀σ ∈ [0, τ
(s)max]) ,

(3.28)
with ∆(σ) introdued in (3.17).If there exist salars ρs ≥ 0 suh that the LMIs ∆̄κ(τ

(s)max) + [ρsΨs 0

∗ 0

]

� 0 are satis�edfor all s ∈ {1, · · · , q} and κ ∈ K(τ
(s)max), then the system S is globally β-stable.Theorem 3.16 provides su�ient onditions for Theorem 3.4, whih enable to analysethe stability of the system for a given sampling map τmax de�ned on oni regions.One possible onstrution for the matries ∆̄κ(τ

(s)max), κ ∈ K(τ
(s)max), is the one proposedin (C.13) and (C.14), in the Appendix C.3. Indeed, one an show, using the same proofas the one used in Lemma C.3, that these matries satisfy the ondition (3.28) for all

s ∈ {1, · · · , q} and ρs ≥ 0.94



3.7. Numerial exampleA method to ompute a lower-bound approximation of the optimal sampling map,solution of Problem 2, is proposed. The idea is to use the LMI onditions from Theorem3.16 (with the values of P , ε, Φ1, Φ2, Φ3, η, µ and ν omputed using the algorithm inSetion 3.3), in order to maximize the sampling intervals τ
(s)max on eah region, using aline searh algorithm. Then, we design a lower-bound estimation of the optimal samplingmap τVopt as proposed in (3.26):

τmax(x) = τ (s)max, ∀x ∈ Rs, s ∈ {1, · · · , q}.Remark 3.17 The online omplexity of the state-dependent sampling approah dependson the design of the oni overing. With the anisotropi overing proposed in Ap-pendix B.2, the online omplexity is O(qn2) (at most (q − 1)n(n + 1) multipliationsand (q − 1)(n − 1)(n + 1) additions). It an be shown that for the same preision, thenumber of omputations in that ase is divided by N ompared to the self-triggered on-trol ase (Setion 3.5). With the isotropi overing proposed in Appendix B.1, the onlineomplexity beomes O(n) (9n − 7 elementary operations (additions, multipliations anddivisions), 1 square-root, n − 1 arosine, and n − 2 sine), whih allows for saving evenmore omputational power. Additionally, in that latter ase, the online omplexity doesnot depend on the number of regions (i.e. on the preision).3.7 Numerial exampleConsider the system from [Tabuada 2007℄:
ẋ(t) =

[

0 1

−2 3

]

x(t)−
[

0

1

]

Kx(sk) +

[

1 0

0 1

]

w(t),

K =
[

−1 4
]

.In the following, we set the polynomial approximation degree term N = 5 and the num-ber of polytopi subdivisions l = 100. For a given β, after �xing σ̄, we set the LRFperformane parameter α > 1 (see Proposition 3.2) as small as possible and suh that
β ≤ ln(α)

2σ̄
. Then, we use the algorithm proposed in Setion 3.3 to perform a robust sta-bility analysis with respet to time-varying sampling for di�erent values of parameters βand W . The obtained upper-bounds for time-varying samplings τ ∗ (see the set of valuesprovided in Figure 3.3, as well as the ones in Table 3.1, whih presents a omparison withsome upper-bounds obtained in the literature, without perturbation) an then be used as95



Chapter 3. A polytopi approah to dynami sampling ontrol for LTI systems: the perturbed aselower-bounds to the designed maximal sampling maps for the dynami sampling ontrol.[Naghshtabrizi 2008℄ [Seuret 2009℄ [Fujioka 2009b℄ [Fridman 2010℄ Theorem 3.8
β = 0 0.2740s 0.3122s 0.3316s 0.4221s 0.5402s
β = 0.1 - 0.2795s - 0.3934s 0.4404s
β = 0.3 - 0.1778s - 0.3350s 0.3709sTable 3.1: Maximum upper-bounds τ ∗ for time-varying samplings, for di�erent deay-rates β, without perturbation (W = 0)Sine the sampling maps for event-triggered ontrol and self-triggered ontrol are builtonline, we only show the ones obtained for state-dependent sampling, whih are builto�ine. First, we set a number q = 100 of equal oni regions (isotropi partition on theunit sphere x = eiθ, θ ∈ [−π, π], see the design in Appendix B.1). Using the methodproposed in Setion 3.6, we build the maximal sampling maps for di�erent parameters

β and W , as shown in Figure 3.3. Reall that for eah parameter set, β-stability isensured for eah state-dependent sampling (potentially time-varying) with values underthe respetive urve in Figure 3.3 (i.e. satisfying (3.3)). In the �gure, the obtained upper-bounds τ ∗ for time-varying samplings (i.e. the lower-bounds of the sampling maps) arealso provided for eah parameter set.For a onstant sampling greater than Tmaxonst = 0.5947s the disrete-time dynamimatrix of the ideal system (without perturbation) is not Shur anymore, so the systembeomes unstable. However, with the proposed sampling maps, we an go beyond thelimit Tmaxonst for some regions of the state spae (up to 1.2s for β = 0 and W = 0, or 0.9sfor β = 0.3 and W = 0 for example). Figure 3.4 shows that it is even possible to samplein average less than with the onstant sampling Tmaxonst = 0.5947s (whih only ensuresmarginal stability), and still guarantee exponential stability. It presents simulation resultsobtained for a given a deay rate β = 0.3, without perturbations (W = 0). It �rst showsthe sampling intervals (in blue), with the lower-bound of the o�ine designed samplingmap (in red), and the limit Tmaxonst of the periodi ase (in green), before showing the LRFevolution. The sampling times are represented by the red dots on the graph. The averageinter-sampling time during this 20s simulation is Taverage = 0.7203s = 121%Tmaxonst (thereare 28 updates, while there would be 34 updates with Tmaxonst).Finally, in Figure 3.5, we present the inter-exeution times obtained in simulationsfor β = 0.1, W = 0.04 (i.e. with perturbations ‖w(t)‖2 ≤ 20%‖x(sk)‖2), and an initialondition x(0) =

[

5

3

], with the �rst event-triggered ontrol sheme, the self-triggered96



3.7. Numerial example
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Chapter 3. A polytopi approah to dynami sampling ontrol for LTI systems: the perturbed ase
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event−triggered control 1 − 67 updates − T
average

= 0.2952s

self−triggered control − 69 updates − T
average

= 0.2904s

state−dependent sampling − 70 updates − T
average

= 0.2872s

Figure 3.5: Inter-exeution times τmax(x(sk)) for a deay rate β = 0.1 and W = 0.04(‖w(t)‖2 ≤ 20%‖x(sk)‖2) - First event-triggered ontrol sheme, self-triggered ontrol,and state-dependent samplingThese simulations show that all the proposed methods have very lose results, althoughthey are very di�erent in their appliation. This illustrates the low onservatism intro-98



3.8. Conlusiondued by the onvex-embeddings (3.19) (used in both the self-triggered ontrol shemeand the state-dependent sampling sheme) and the oni regions (3.27) (used in the state-dependent sampling sheme).The seond and third event-triggered ontrol shemes, whih both take into aountthe real value of the perturbation, provide naturally less updates (and therefore a largeraverage inter-exeution time). With the same simulation onditions, we obtain 42 updateswith the seond event-triggered sheme (Taverage = 0.4581s), and 33 updates with the thirdevent-triggered sheme (Taverage = 0.6027s).3.8 ConlusionWe have introdued a Lyapunov-Razumikhin-based design for a maximal state-dependentsampling map τmax ensuring the exponential stability with a given deay-rate for perturbedlinear state feedbak systems. The proposed method an be used to perform:� a robust stability analysis with respet to time-varying sampling,� an event-triggered ontrol sheme,� a self-triggered ontrol sheme,� a state-dependent sampling sheme.For eah of these approahes, lower-bound estimation of the maximal sampling map isproposed. As in the unperturbed ase, the method presents several advantages.� It makes it possible to maximize the lower-bound τ ∗ of the proposed map, whateverthe sampling tehnique.� It provides the assoiated LRF parameters.� The state-dependent map of the next maximal sampling interval with respet to thepast sampled state value an be designed o�ine (state-dependent sampling), whihhelps reduing the proessor load.
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Chapter 4A Lyapunov-Krasovskii approah todynami sampling ontrolIn the previous two hapters, it was onsidered the problem of designing a sampling lawthat enlarges the sampling intervals while guaranteeing the stability of LTI sampled-datasystems for a given ontroller. In this hapter, we want to go further and design at thesame time a ontroller that will stabilize the onsidered LTI sampled-data system, withthe objetive to enlarge the sampling intervals in mind.First of all, in the framework set in the previous hapters, we onsider the stabil-ity issue, and design a state-dependent sampling funtion that maximizes the samplingintervals under some L2-stability onditions for perturbed linear sampled-data systems,for a given ontroller. An extension to systems with delays in the feedbak loop is alsoproposed. Then, in the delay-free ase, it will be proposed an algorithm for the design ofthe stabilizing feedbak gain matrix either as a onstant K, or as a state-dependent one
K(xk).The proposed design has the same advantages as the state-dependent sampling ontrolspresented in the previous two hapters. Indeed, unlike the self-triggered ontrol approah,it makes it possible:� to redue the number of sampling instants obtained in the worst ase senario, i.e.to inrease the lower bound τ+ of the largest state-independent admissible samplinginterval while taking into aount the perturbations and the sampling (and thedelays in ase of time-delay systems),� to design o�ine, one for all, the state-dependent sampling funtion τmax(x) ≥

τ+, x ∈ R
n maximizing the sampling intervals for eah state of the state spae.101



Chapter 4. A Lyapunov-Krasovskii approah to dynami sampling ontrolHowever, this new design also has its own advantages, sine it makes it possible:� to design a ontroller adapted to state-dependent sampling,� to design a state-dependent sampling funtion even for some systems whih are bothopen-loop and losed-loop (with ontinuous feedbak) unstable,� to adapt the ontroller gains depending on the state spae region, to allow evenlarger samplings.The stability analysis and stabilization tools in this hapter are based on a new lassof Lyapunov-Krasovskii funtionals (LKF) with state-dependent matries. Just as weompute the maximal sampling τmax(x) depending on the sampled state xk, the matriesof the LKF will swith in relation to the state spae region that ontains this sampled state.The obtained LMI onditions allow to ompute the LKF swithing matries ensuring thelargest state-dependent sampling intervals.The robustness study onsiders an exogenous perturbation w in L2. Note that noother assumption is made. In partiular, the perturbation is not required to be boundedor state-bounded (i.e. there is no need for a salar δ > 0 suh that ‖w(t)‖2 ≤ δ or
‖w(t)‖2 ≤ δ‖x(t)‖2), as it was assumed in the previous hapter.In the ase of systems with time-delay, we assume that the ontrol inputs are reeivedby the atuator in the order they are sent (or that the pakets are rearranged uponreeption, as proposed in [?℄ for instane). However, no additional assumption regardingthe atuation times is needed. In partiular, the atuation times are not required to ourbefore the next sampling times, whih means that the transmission delays an be largerthan the sampling intervals, unlike in [Wang 2009℄ or [Wang 2010℄.Conerning the stabilization issue, we design the state feedbak gain so as to allowlarger sampling intervals. An extension to the stabilization problem with a more gen-eral lass of swithing pieewise-linear ontrollers (with matrix gains that are swithingaording to the system's state) is also provided.The hapter is organized as follows: First, Setion 4.1 formulates the problem. Then,Setion 4.2 presents the stability results, while Setion 4.3 provides the stabilization re-sults. An algorithm allowing to build o�-line the adequate state-dependent samplingfuntion is provided in both of these setions. Finally, Setion 4.4 shows some simulationresults, and Setion 4.5 summarizes the ontributions in this hapter.102



4.1. Problem formulation4.1 Problem formulationWe onsider the linear time-invariant system
ẋ(t) = Ax(t) +Bu(t) + Ew(t)

z(t) = Cx(t) +Du(t)

}

, ∀t ≥ 0, (4.1)where x(t) ∈ Rn is the state vetor, w(t) ∈ Rnw is an exogenous disturbane in L2,
u(t) ∈ Rnu is the ontrol input, and z(t) ∈ Rnz is the ontrolled output. A, B, C, D,and E are onstant matries of appropriate dimensions. The ontrol is designed as apieewise-onstant state feedbak:

u(t) = −Kx(sk), ∀t ∈ [tk, tk+1), (4.2)with K a given feedbak matrix gain, and with sk and tk the kth sampling time and the
kth atuation time respetively.For now, it is onsidered the ase where there is no delay between the sampling andthe atuation times, and thus that tk = sk. Later, in Subsetion 4.2.2, the robustnessaspet with respet to unknown time-varying delays h(t) in the feedbak ontrol loop willbe treated.The sequene of sampling times (sk)k≥0 is assumed to satisfy 0 = s0 < s1 < · · · < sk <

· · · and lim
k→∞

sk = ∞, and the sampling law is de�ned as
sk+1 = sk + τk, (4.3)with a variable sampling step τk we aim to ontrol. We denote S, the losed-loop system

{(4.1),(4.2),(4.3)}.Due to the unknown exogenous disturbanes, the system S is studied from the L2-stability point of view, whih is realled in the following de�nition:De�nition 4.1 A linear system F is said to be �nite-gain L2-stable from w to Fw withan indued gain less than γ if F is a linear operator from L2 into L2 and there existpositive real onstants γ and ξ suh that for all w ∈ L2,
‖Fw‖L2 ≤ γ‖w‖L2 + ξ. (4.4)The work in the present hapter aims at designing, o�-line, a state-dependent sampling103



Chapter 4. A Lyapunov-Krasovskii approah to dynami sampling ontrolfuntion τmax : Rn −→ R+ whih enlarges the sampling intervals
sk+1 − sk ≡ τk = τmax(x(sk)), (4.5)while ensuring the �nite-gain L2-stability of S from w to z, with a gain less than a �xed

γ ≥ 0.To this aim, we will use the following lemma:Lemma 4.2 Assume there exist a real onstant γ ≥ 0 and a positive de�nite ontinuousfuntion V : t ∈ R+ → V (t) ∈ R+, di�erentiable for all t 6= tk, k ∈ N, that satisfy
V̇ (t) + zT (t)z(t)− γ2wT (t)w(t) ≤ 0 (4.6)along S. Then, S is L2-stable from w to z with a gain less than γ.Proof: Let t ≫ 0 and N ∈ N suh that t ∈ [tN , tN+1). Integrating (4.6) over [0, t] gives

V (t)− V (tN ) + V (t−N)− V (tN−1) + · · ·+ V (t−0 )

−V (0) +
∫ t

0

(

zT (s)z(s)− γ2wT (s)w(s)
)

ds ≤ 0.Sine V (t) ≥ 0 and V (tk) = V (t−k ) for all k ∈ N (V is assumed to be ontinuous), we get:
∫ t

0

zT (s)z(s)ds ≤ γ2

∫ t

0

wT (s)w(s)ds+ V (0).Using the positivity of zT (s)z(s), one an show that z = Sw ∈ L2, and by having t → ∞one an see that the L2-stability ondition (4.4) is satis�ed, with ξ =
√

V (0).As in the previous hapters, in the framework of state-dependent sampling ontrol, weassume that the state spae is overed by a set of q oni regions (not neessarily disjoint)
Rσ = {x ∈ R

n, xTΨσx ≥ 0},Ψσ ∈ Sn, σ ∈ {1, · · · , q}, (4.7)for whih maximal sampling intervals τ+σ will be de�ned. The two possible onstrutionspresented in the previous hapters, and desribed in the Appendix B, may be used todesign these oni regions.Here, the sampling interval sequenes (τk = sk+1 − sk)k≥0 are set to satisfy the ondi-tion:
∀k ∈ N, ∃σ ∈ I(x(sk)), τ− ≤ τk ≤ τ+σ , with I(x) = {σ ∈ {1, · · · , q}, x ∈ Rσ}, (4.8)104



4.2. Main L2-stability resultswith a given minimal sampling interval τ− > 0 (this guarantees that there is no Zenobehaviour). I(x) denotes the set of the regions Rσ in whih x belongs. Note that sinethe regions Rσ are not neessarily disjoint, x an belong to more than one region at atime. The ondition on the samplings (4.8) ensures that at eah sampling instant sk, thereis at least one region in σk ∈ I(x(sk)) for whih the next sampling interval τk satis�es
τ− ≤ τk ≤ τ+σk

.Our objetive in this hapter is to ompute the largest sampling intervals τ+σ for eahsubspae Rσ, σ ∈ {1, · · · , q} whih ensure the expeted L2-stability for a �xed γ ≥ 0.The state-dependent sampling funtion (4.5) will then be built from:
τmax(x) = max

σ∈I(x)
τ+σ , ∀x ∈ R

n. (4.9)We will �rst provide a stability analysis of the system for a given feedbak matrix gain
K and a given sampling funtion τmax (with an extension to systems with delays in thefeedbak ontrol loop), before proposing a stabilization method to ompute a feedbakmatrix gain K adapted to ensure stability for a given sampling funtion τmax (with anextension to the design of ontrol laws with matrix gains that are swithing aording tothe system's state).In both analysis and design, we provide algorithms that allow to maximize both thelargest admissible state-independent sampling interval τ+ = minσ∈{1,··· ,q} τ

+
σ and the state-dependent sampling funtion τmax (4.9) aording to the obtained stability or stabilizationonditions.All these studies are based on a quite general lass of LKF (with state-dependentmatries), whih take into aount the delays (in the ase of delayed systems), the pertur-bations and the sampling. The proposed algorithms allow to ompute the LKF matriesso as to optimize the state-dependent sampling funtion τmax (4.9).4.2 Main L2-stability resultsIn this setion, we start by proposing in Subsetion 4.2.1 a stability analysis of system Sfor a given feedbak matrix gain K and samplings satisfying (4.8). Then, in Subsetion4.2.2, we give an extension to systems with delays in the feedbak ontrol loop. Finally,in Subsetion 4.2.3, we provide an algorithm to enlarge the sampling funtion τmax, underthe obtained stability onditions. 105



Chapter 4. A Lyapunov-Krasovskii approah to dynami sampling ontrol4.2.1 Stability analysis of the perturbed systemWe onsider the following LKF, whih depends on the sampled-state value x(sk), theatual state x(t), and the delayed derivatives of x, ẋt (de�ned for a maximal delay h̄ as
ẋt(θ) = ẋ(t + θ), ∀θ ∈ [−h̄, 0]):
V (t, x(t), ẋt, k) = xT (t)Px(t) + (sk+1 − t)

[

x(t)

x(sk)

]T

Ωσk

[

x(t)

x(sk)

]

+(sk+1 − t)
∫ t

sk
ẋT (s)Uσk

ẋ(s)ds+ (sk+1 − t)(t− sk)x
T (sk)Sσk

x(sk),(4.10)de�ned for all t ∈ [sk, sk+1) and k ∈ N, with the matries Ωσ, σ ∈ {1, · · · , q} de�ned as:
Ωσ =

[

Xσ+XT
σ

2
−Xσ +X1,σ

∗ −X1,σ −XT
1,σ +

Xσ+XT
σ

2

]

. (4.11)Matries P , Uσ, Sσ, Xσ, X1,σ are of appropriate dimensions, and parameter σk an beany element σ ∈ I(x(sk)) satisfying τ− ≤ τk ≤ τ+σ .The new aspet of the LKF (4.10) ompared to previous works on systems with time-varying samplings ( [Fridman 2010℄, [Seuret 2009℄, [Jiang 2010b℄) is the fat that it involveselements that are swithing aording to the system state. Indeed, note that the matrixterm Uσk
is swithing at times sk aording to the region the sampled state x(sk) belongsto (σk ∈ I(x(sk))). This state-dependent swith is possible thanks to the fat that thefuntional V is ontinuous at times sk: V (sk, x(sk), ẋsk , k) = limt→s−

k

V (t, x(t), ẋt, k − 1) =

xT (sk)Px(sk).This new type of swithed LKF is well adapted to the stability analysis of systems withstate-dependent sampling, but it also provides some advantages regarding the stabilityanalysis of systems with (state-independent) time-varying sampling, as it will be shownin the Example 2 of the Numerial Examples Setion 4.4.2.In the following, as in [Fridman 2010℄, we denote
V̄ (t) = V (t, x(t), ẋt, k), for all t ∈ [sk, sk+1), k ∈ N. (4.12)The L2-stability analysis is based on Lemma 4.2 and is divided into two main steps.� First, we prove that V̄ is ontinuous over R+ and di�erentiable for all t ∈ [sk, sk+1),and provide onditions for its positive de�niteness.� Then, we di�erentiate V̄ , upper-bound the obtained result and derive the L2-106



4.2. Main L2-stability resultsstability onditions.4.2.1.1 Continuity, pieewise di�erentiability, and positivity onditions of theLyapunov-Krasovskii FuntionalTo begin with, we propose the following lemma, whih ensures the funtion's ontinuity,pieewise di�erentiability, and positivity properties.Lemma 4.3 The funtion V̄ de�ned in (4.12) is ontinuous over R+ and di�erentiablefor all t 6= sk, k ∈ N. If its matrix parameters satisfy P ∈ S+∗
n , Uσ, Sσ ∈ S+

n , Xσ,
X1,σ ∈ Mn,n(R), and if there exist q salars εσ ≥ 0 suh that, for all σ ∈ {1, · · · , q}:

[

P 0

0 0

]

+ τ+σ Ωσ − εσ

[

0 0

0 Ψσ

]

≻ 0, (4.13)then V̄ is also positive de�nite, and there exists a salar β > 0 suh that V̄ (t) ≥ β‖x(t)‖22for all t ≥ 0.Proof: V̄ , is de�ned on R+, di�erentiable over eah time interval [sk, sk+1), and isdesigned to satisfy V̄ (sk) = limt→s−
k

V̄ (t) = x(sk)
TPx(sk) for all k ∈ N. It is thereforeontinuous on R+ and di�erentiable over R+\{sk, k ∈ N}.Now, assume that Uσ, Sσ ∈ S+

n , with σ ∈ {1, · · · , q}. V̄ is positive de�nite if, and onlyif, for all k ∈ N, t ∈ [sk, sk+1):
[

x(t)

x(sk)

]T [[

P 0

0 0

]

+ (sk+1 − t)Ωσk

][

x(t)

x(tk)

]

≥ 0, (4.14)with equality if and only if x(t) = x(sk) = 0.Note that 0 ≤ sk+1− t ≤ τ+σk
. Remarking that the middle matrix term in the left partof (4.14) is linear with respet to λ = sk+1− t, one an use Theorem D.8 (in the AppendixD) and show that a su�ient ondition for V̄ to be positive de�nite is that, for all k ∈ N,

t ∈ [sk, sk+1):
xT (t)Px(t) > 0, for all x(t) 6= 0, (4.15)and

[

x(t)

x(sk)

]T [[

P 0

0 0

]

+ τ+σk
Ωσk

][

x(t)

x(sk)

]

> 0, for all [ x(t)

x(sk)

]

6= 0. (4.16)107



Chapter 4. A Lyapunov-Krasovskii approah to dynami sampling ontrol(4.15) is ensured by assuming that P is positive de�nite. Sine x(sk) ∈ Rσk
(i.e.

xT (sk)Ψσk
x(sk) ≥ 0), the lossless version of the S-proedure [Boyd 1994℄ (see TheoremD.3 in Appendix D) ensures that (4.16) is ful�lled for all k ∈ N if and only if there exist

q salars εσ ≥ 0 suh that (4.13) is satis�ed for all σ ∈ {1, · · · , q}.Furthermore, if P ≻ 0 and the ondition (4.13) is satis�ed for all σ ∈ {1, · · · , q}, thenthere exists q salars βσ > 0, σ ∈ {1, · · · , q}, suh that for all k ∈ N and t ∈ [sk, sk+1),
[

P 0

0 0

]

+(sk+1−t)Ωσk
≻ βσk

[

I 0

0 0

], and thus V̄ (t) ≥ βσk
‖x(t)‖22, for all t ∈ [sk, sk+1) and

k ∈ N. Therefore, there exists a salar β = minσ∈{1,··· ,q} βσ > 0, suh that V̄ (t) ≥ β‖x(t)‖22for all t ≥ 0, whih ends the proof.4.2.1.2 L2-stability onditionsConditions to ensure V̄ 's ontinuity, di�erentiability, and positivity have been proposed.In order to analyse the L2-stability of system S, we will now refer to Lemma 4.2. It isneeded to provide onditions to satisfy
˙̄V (t) + zT (t)z(t)− γ2wT (t)w(t) ≤ 0, ∀t 6= sk, ∀k ∈ N. (4.17)In order to analyse this L2-stability ondition, we study the restrition of ˙̄V on any interval

[sk, sk+1), k ∈ N. We ompute:
˙̄V (t) = 2ẋT (t)Px(t) + ((sk+1 − sk)− 2(t− sk))x

T (sk)Sσk
x(sk)

−
[

x(t)

x(sk)

]T

Ωσk

[

x(t)

x(sk)

]

+ 2(sk+1 − t)ẋT (t)Ω1,σk

[

x(t)

x(sk)

]

+(sk+1 − t)ẋT (t)Uσk
ẋ(t)−

∫ t

sk
ẋT (s)Uσk

ẋ(s)ds,

(4.18)with
Ω1,σk

=
[

Xσ
k
+XT

σk

2
−Xσk

+X1,σk

]

. (4.19)Using the Jensen inequality [Gu 2003℄ (see Theorem D.4 in Appendix D), we ompute anupper bound of the integral term:
−
∫ t

sk

ẋT (s)Uσk
ẋ(s)ds ≤ −(t− sk)ν

T (t)Uσk
ν(t), (4.20)with

ν(t) =
1

t− sk

∫ t

sk

ẋ(s)ds =
x(t)− x(sk)

t− sk
. (4.21)108



4.2. Main L2-stability results
ν(t) is well de�ned by ontinuity in t = sk, sine when t → sk, ν(t) → ẋ(sk). Usingmajoration (4.20) in equation (4.18) leads to

˙̄V (t) + zT (t)z(t)− γ2wT (t)w(t) ≤ 2ẋT (t)Px(t) + zT (t)z(t)− γ2wT (t)w(t)

−
[

x(t)

x(sk)

]T

Ωσk

[

x(t)

x(sk)

]

+ 2(sk+1 − t)ẋT (t)Ω1,σk

[

x(t)

x(sk)

]

+ (sk+1 − t)ẋT (t)Uσk
ẋ(t)

−(t− sk)ν
T (t)Uσk

ν(t) + ((sk+1 − sk)− 2(t− sk))x
T (sk)Sσk

x(sk). (4.22)Let us introdue the augmented state vetor φ(t) ∈ R3n+nw :
φT (t) = [xT (t), xT (sk), νT (t), wT (t)]. (4.23)Then, there exist matries Mi and Nj suh that

[

x(t)

x(sk)

]

=

[

M1

M2

]

φ(t) = N3φ(t), ν(t) = M3φ(t), w(t) = M4φ(t),

ẋ(t) = (AM1 − BKM2 + EM4)φ(t) = N1φ(t), z(t) = (CM1 −DKM4)φ(t) = N2φ(t).(4.24)Using these notations, we an rewrite (4.22) as
˙̄V (t) + zT (t)z(t) − γ2wT (t)w(t) ≤ φT (t)[NT

1 PM1 +MT
1 PN1 + (sk+1 − t)NT

1 Uσk
N1

−(t− sk)M
T
3 Uσk

M3 + ((sk+1 − sk)− 2(t− sk))M
T
2 Sσk

M2

−NT
3 Ωσk

N3 + 2(sk+1 − t)NT
1 Ω1,σk

N3 +NT
2 N2 − γ2MT

4 M4]φ(t). (4.25)The relation (4.21) between ν(t), x(t), and x(sk) an be written as H(t)φ(t) = 0 with
H(t) = (t − sk)M3 −M1 +M2. Therefore, by applying the Finsler's lemma [Fang 2004℄(see Theorem D.2 in Appendix D) one an inlude this relation into (4.25) and obtainthat for any matries Yσk

∈ M3n+nw,n(R):
˙̄V (t) + zT (t)z(t) − γ2wT (t)w(t) ≤ φT (t)[NT

1 PM1 +MT
1 PN1 + (sk+1 − t)NT

1 Uσk
N1

−(t− sk)M
T
3 Uσk

M3 + ((sk+1 − sk)− 2(t− sk))M
T
2 Sσk

M2

−NT
3 Ωσk

N3 + 2(sk+1 − t)NT
1 Ω1,σk

N3 +NT
2 N2 − γ2MT

4 M4

+Yσk
((t− sk)M3 −M1 +M2) + ((t− sk)M3 −M1 +M2)

TY T
σk
]φ(t). (4.26)Sine equation (4.26) is linear in the variable t, it is possible to redue the number ofonditions to be heked to a �nite number by applying Theorem D.8 (in the AppendixD), with the variable λ = t ∈ [sk, sk+1]. Then, the two obtained inequalities are both linear109



Chapter 4. A Lyapunov-Krasovskii approah to dynami sampling ontrolin the variable sk+1 − sk. Thus we an use one again Theorem D.8 (in the Appendix D)with the variable λ = sk+1− sk ∈ [τ−, τ+σk
] to prove that if the 4 inequalities ξTΞi,jσk

ξ ≤ 0are satis�ed for all ξ ∈ R3n+nw , with Ξi,j,σk
de�ned as

Ξi,1,σ = Ξσ + Ti,σ

[

NT
1 UσN1 +MT

2 SσM2 +NT
1 Ω1,σN3 +NT

3 Ω
T
1,σN1

]

, (4.27)
Ξi,2,σ = Ξσ + Ti,σ

[

−MT
3 UσM3 −MT

2 SσM2 + YσM3 +MT
3 Y

T
σ

]

, (4.28)
Ξσ = NT

1 PM1 +MT
1 PN1 +NT

2 N2 − γ2MT
4 M4

+Yσ(−M1 +M2) + (−M1 +M2)
TY T

σ −NT
3 ΩσN3,

(4.29)with
T1,σ = T1 = τ− and T2,σ = τ+σ , (4.30)then ˙̄V (t) + zT (t)z(t)− γ2wT (t)w(t) ≤ 0 for all t ∈ [sk, sk+1).Note that here, we onsidered any sampling sequene satisfying τk = sk+1 − sk ∈

[τ−, τ+σk
]. Therefore, the L2-stability results we will obtain will be valid for any samplingsequene satisfying (4.8).Eventually, sine we know that x(sk) ∈ Rσk

(i.e. we have xT (sk)Ψσk
x(sk) ≥ 0), wean use the lossless version of the S-proedure [Boyd 1994℄ (see Theorem D.3 in AppendixD) on eah of the 4 obtained inequalities to show that, if there are salars εi,j,σ ≥ 0 suhthat the LMIs

Ξi,j,σ + εi,j,σM
T
2 ΨσM2 � 0, (4.31)hold for σ = σk, then ondition (4.17) is satis�ed. Therefore, we have the followingtheorem:Theorem 4.4 Consider salars γ ≥ 0 and τ−, and a set of q oni regions overing thestate spae Rσ = {x, xTΨσx ≥ 0}, Ψσ ∈ Sn, σ ∈ {1, · · · , q}, with maximal samplingintervals τ+σ .The perturbed system S is �nite-gain L2-stable from w to z with a gain less than γ forany sampling sequene satisfying (4.8) if there exist matries P ∈ S+∗

n , Uσ, Sσ ∈ S+
n , Xσ,

X1,σ ∈ Mn,n(R), Yσ ∈ M3n+nw,n(R), and salars εi,j,σ ≥ 0 suh that (4.13) and (4.31)are satis�ed for all σ ∈ {1, · · · , q} and (i, j) ∈ {1, 2}2.Remark 4.5 If w satis�es zT (t)z(t)−γ2wT (t)w(t) ≥ 0, and if the LMIs (4.31) are strit,the sampled-data system S is asymptotially stable for any sampling sequene satisfying(4.8). Indeed, in suh a ase, ˙̄V is negative de�nite and there is a β > 0 suh that
V̄ (t) ≥ β‖x(t)‖22 for all t ≥ 0, k ∈ N and x ∈ R

n. In the unperturbed ase w(t) = 0, it is110



4.2. Main L2-stability resultssu�ient to verify that ˙̄V (t) < 0, and thus the term zT (t)z(t) = φT (t)NT
2 N2φ(t) and therows/olumns orresponding to w(t) are removed from the LMIs (4.31).Remark 4.6 When searhing for solutions of LMIs (4.13) and (4.31), one needs to re-move the zero rows/olumns that may appear in (4.31) sine LMI solvers searh for stritsolutions. Indeed, one an see that Ξi,j,σ is independent of ν if j = 1 or Ti,σ = 0.Theorem 4.4 provides stability onditions for the perturbed system S with a givenstate feedbak matrix K and samplings satisfying (4.8). However, in a large variety ofontrol implementations, delays are present in the feedbak ontrol loop. They may beindued by network ommuniations, heavy omputations, or various physial phenomena.As it has been shown in numerous works, these delays may render the system unstable.Therefore, in order to propose a state-dependent sampling law that is robust to thesekind of disturbanes, we propose in the following subsetion an extension of the presentstability results for this large lass of systems.4.2.2 Stability analysis of the perturbed system with delaysHere, we onsider systems inluding a delay in the feedbak ontrol loop. The ontrol lawis now de�ned as:

u(t) = −Kx(sk), ∀t ∈ [tk, tk+1), (4.32)with a onstant feedbak matrix gain K, sk the kth sampling time (when the kth inputis omputed) and tk the kth atuation time (when the kth omputed input is reeived bythe atuators).The sampling and atuation times are linked by the relation
sk = tk − h(tk), (4.33)with a delay h(t) assumed to satisfy:

∀t ≥ 0, h(t) ∈ [h1, h2], and ḣ(t) ∈ [e1, e2], (4.34)for given salars 0 ≤ h1 ≤ h2 and e1 ≤ e2 < 1.Note that sine sk+1 − sk > 0, it implies that tk+1 − tk ≥ sk+1−sk
1−e1

> 0, due to e1 < 1and thus the ontrol inputs are reeived by the atuator in the same order as they aresent.The losed-loop system {(4.1),(4.32),(4.3),(4.33),(4.34)} will be denoted Sd. 111



Chapter 4. A Lyapunov-Krasovskii approah to dynami sampling ontrolHere, we onsider the LKF:
Vd(t, xt, ẋt, k) = V1(t, xt, ẋt) + V2(t, xt, ẋt, k), (4.35)de�ned for all t ∈ [tk, tk+1) and k ∈ N, with

V1(t, xt, ẋt) =
∫ t

t−h1
xT (s)Q1x(s)ds+

∫ t−h1

t−h(t)
xT (s)Q2x(s)ds+

∫ t−h(t)

t−h2
xT (s)Q3x(s)ds

+
∫ t

t−h(t)
ẋT (s)(R1 + (h(t)− t + s)R2)ẋ(s)ds

+
∫ 0

−h2

∫ t

t+θ
ẋT (s)R3ẋ(s)dsdθ +

∫ −h1

−h2

∫ t

t+θ
ẋT (s)R4ẋ(s)dsdθ, (4.36)onsisting of lassial terms used for delay systems [Fridman 2001a℄, [Rihard 2003℄,[Jiang 2010a℄, [Jiang 2010b℄, and an additional term

V2(t, xt, ẋt, k) = ηT (t)Pη(t) + (tk+1 − t)

[

η(t)

η(tk)

]T

Ωσk

[

η(t)

η(tk)

]

+(tk+1 − t)
∫ t

tk
η̇T (s)Uσk

η̇(s)ds+ (tk+1 − t)(t− tk)η
T (tk)Sσk

η(tk),(4.37)similar to the swithing LKF used in the non-delayed ase, with the vetor η(t):
η(t) =

[

x(t)

x(t− h(t))

]

, (4.38)and the matries Ωσ, σ ∈ {1, · · · , q} de�ned as:
Ωσ =

[

Xσ+XT
σ

2
−Xσ +X1,σ

∗ −X1,σ −XT
1,σ +

Xσ+XT
σ

2

]

. (4.39)The matries P , Q1, Q2, Q3, R1, R2, R3, R4, Uσ, Sσ, Xσ, X1,σ have appropriatedimensions, and the parameter σk an be any element σ ∈ I(x(sk)) satisfying τ− ≤ τk ≤
τ+σ (there exists at least one, aording to assumption (4.8)).Similar to what we had with the previous simple LKF, we note that the term (4.37)is omposed of matrix terms Ωσk

, Uσk
, and Sσk

whih are swithing at times tk aordingto the region x(sk) belongs to. This state-dependent swith is possible thanks to the fatthat V2(tk, xtk , ẋtk , k) = limt→t−
k

V2(t, xt, ẋt, k − 1) = 0, whih ensures the ontinuity of
V2. This funtion with state-dependent matries is a natural extension of the works withLKFs on systems with delays [Fridman 2001a℄, [Rihard 2003℄, [Jiang 2010a℄, sampling[Fridman 2010℄, [Seuret 2009℄, or both delays and sampling [Jiang 2010b℄.112



4.2. Main L2-stability resultsJust as we did in the delay-free ase, we analyse the system's L2-stability by hekingthe onditions of Lemma 4.2 with the funtion
V̄d(t) = Vd(t, xt, ẋt, k), for all t ∈ [tk, tk+1) and k ∈ N, (4.40)with Vd de�ned in (4.35). Before providing the lemma ensuring this funtion's ontinuity,di�erentiability, and positivity, as in the non-delayed ase, we introdue the followingsalars

T1,σ = T1 = max
{

τ− + h1 − h2,
τ−

1−e1

}

,

T2,σ = min
{

τ+σ + h2 − h1,
τ+σ

1−e2

}

,
(4.41)whih are set to satisfy for any atuation step k ∈ N:

T1,σk
≤ tk+1 − tk ≤ T2,σk

. (4.42)Indeed, sine tk+1− tk = (sk+1−sk)+(h(tk+1)−h(tk)), one has τ−+h1−h2 ≤ tk+1− tk ≤
τ+σk

+ h2 − h1. Also, sine e1(tk+1 − tk) ≤ h(tk+1)− h(tk) ≤ e2(tk+1 − tk) and e1 ≤ e2 < 1,one has τ−

1−e1
≤ tk+1 − tk ≤ τ+σk

1−e2
, whih ends the proof.Lemma 4.7 The funtion V̄d de�ned in (4.40) is ontinuous over R+ and di�erentiablefor all t 6= tk, k ∈ N. If its matrix parameters satisfy P ∈ S+∗

2n , Q1, Q2, Q3, R1, R2, R3,
R4 ∈ S+

n , Uσ, Sσ ∈ S+
2n, Xσ, X1,σ ∈ M2n,2n(R), and if there exist q salars εσ ≥ 0 suhthat, for all σ ∈ {1, · · · , q}:

[

P 0

0 0

]

+ T2,σΩσ − εσ

[

0 0

0 Ψσ

]

≻ 0, (4.43)then V̄d is also positive de�nite, and there exists a salar β > 0 suh that V̄d(t) ≥ β‖x(t)‖22for all t ≥ 0.Proof: The proof is very similar to the one in the non-delayed ase. The new term
V̄1 is obviously di�erentiable and positive provided that the matrix terms in the integralsare positive.We introdue the matries Mi∈{1,··· ,11} ∈ Mn,11n+nw

(R) and M12 ∈ Mnw,11n+nw
(R):

[

MT
1 · · · MT

12

]

= I, (4.44)113



Chapter 4. A Lyapunov-Krasovskii approah to dynami sampling ontroland de�ne the matries Nj∈{1,··· ,7}:
N1 = AM1 − BKM4 + EM12, N7 = CM1 −DKM4,

N2 =

[

M1

M2

]

, N3 =

[

N1

M7

]

, N4 =

[

M3

M4

]

, N5 =

[

N2

N4

] , and N6 =

[

M8

M9

]

.
(4.45)The use of these matries is very similar to the one in the previous simpli�ed ase andwill be explained in (4.62) and (4.63).The following theorem provides L2-stability onditions for the system Sd. They takethe form of (11n+nw)× (11n+nw) LMIs that depend on the LKF (4.35) matries, on theoni regions desription (4.7), and on some salars (εσ, εi,j,l,o,σ) and matries (Y1,σ, Y2,σ,

Y3,σ) resulting from the use of the S-proedure [Boyd 1994℄ (see Theorem D.3 in AppendixD) and Finsler's Lemma [Fang 2004℄ (see Theorem D.2 in Appendix D) respetively.Theorem 4.8 Consider salars γ ≥ 0, h1, h2, e1, e2, τ−, and a set of q oni regionsovering the state spae Rσ = {x, xTΨσx ≥ 0}, Ψσ ∈ Sn, σ ∈ {1, · · · , q}, with maximalsampling intervals τ+σ . The perturbed and delayed sampled-data system Sd is �nite-gain
L2-stable from w to z with a gain less than γ for any sampling sequene satisfying (4.8)if there exist matries P ∈ S+∗

2n , Q1, Q2, Q3, R1, R2, R3, R4 ∈ S+
n , Uσ, Sσ ∈ S+

2n, Xσ, X1,σ ∈
M2n,2n(R), Y1,σ ∈ M7n,2n(R), Y2,σ, Y3,σ ∈ M7n,n(R) and salars εσ, εi,j,l,o,σ ≥ 0 suh that(4.43) and (4.46) are satis�ed for all σ ∈ {1, · · · , q} and (i, j, l, o) ∈ {1, 2}4:

Ξi,j,l,o,σ + εi,j,l,o,σM
T
4 ΨσM4 � 0, (4.46)with

Ξi,j,l,1,σ = Ξi,j,σ + Tl,σ

[

NT
4 SσN4 +NT

3 UσN3 +NT
3 Ω1,σN5 +NT

5 Ω
T
1,σN3

]

, (4.47)
Ξi,j,l,2,σ = Ξi,j,σ + Tl,σ

[

−NT
4 SσN4 −NT

6 UσN6 + Ȳ1,σN6 +NT
6 Ȳ

T
1,σ

]

, (4.48)
Ξi,j,σ = NT

3 PN2 +NT
2 PN3 +MT

1 Q1M1 +MT
5 (Q2 −Q1)M5 −MT

6 Q3M6

+NT
1 (R1 + hjR2 + h2R3 + (h2 − h1)R4)N1 − 1

1−e1
MT

7 R1M7

+(1− ei)M
T
2 (Q3 −Q2)M2 − 1

h1
(M1 −M5)

T ((1− ei)R2 +R3)(M1 −M5)

−(hj − h1)M
T
10((1− e2)R2 +R3 +R4)M10 − (h2 − hj)M

T
11(R3 +R4)M11

−NT
5 ΩσN5 +NT

7 N7 − γ2MT
12M12 + Ȳ1,σ(−N2 +N4) + (−N2 +N4)

T Ȳ T
1,σ

+Ȳ2,σ((hj − h1)M10 −M5 +M2) + ((hj − h1)M10 −M5 +M2)
T Ȳ T

2,σ

+Ȳ3,σ((h2 − hj)M11 −M2 +M6) + ((h2 − hj)M11 −M2 +M6)
T Ȳ T

3,σ, (4.49)114



4.2. Main L2-stability results
Ω1,σ =

[

Xσ+XT
σ

2
−Xσ +X1,σ

]

, (4.50)
Ȳ1,σ =

[

Y1,σ

0

]

∈ M11n+nw,2n(R), and Ȳa,σ =

[

Ya,σ

0

]

∈ M11n+nw,n(R), a ∈ {2, 3}. (4.51)Proof: Lemma 4.7 ensures that V̄d is positive de�nite and satis�es the required onti-nuity and di�erentiability properties. As in the non-delayed ase, we only need to verifythat the onditioṅ̄
Vd(t) + zT (t)z(t)− γ2wT (t)w(t) ≤ 0, ∀t 6= tk, ∀k ∈ N, (4.52)from Lemma 4.2 is satis�ed in order to ensure the system's L2-stability. In order to doso, we study the restrition of ˙̄Vd on any interval [tk, tk+1), k ∈ N. We ompute

˙̄Vd(t) + zT (t)z(t)− γ2wT (t)w(t) = I1 + I2 + I3 + I4 + zT (t)z(t)− γ2wT (t)w(t)

+2η̇T (t)Pη(t) + xT (t)Q1x(t) + xT (t− h1)(Q2 −Q1)x(t− h1)− xT (t− h2)Q3x(t− h2)

+(1− ḣ(t))xT (t− h(t))(Q3 −Q2)x(t− h(t))− (1− ḣ(t))ẋT (t− h(t))R1ẋ(t− h(t))

+ẋT (t)(R1 + h(t)R2 + h2R3 + (h2 − h1)R4)ẋ(t) + ((tk+1 − tk)− 2(t− tk))η
T (tk)Sσk

η(tk)

+(tk+1 − t)η̇T (t)Uσk
η̇(t)−

[

η(t)

η(tk)

]T

Ωσk

[

η(t)

η(tk)

]

+ 2(tk+1 − t)η̇T (t)Ω1,σk

[

η(t)

η(tk)

]

, (4.53)where
I1 = −

∫ t

tk
η̇T (s)Uσk

η̇(s)ds,

I2 = −(1 − ḣ(t))
∫ t

t−h(t)
ẋT (s)R2ẋ(s)ds,

I3 = −
∫ t

t−h2
ẋT (s)R3ẋ(s)ds,

I4 = −
∫ t−h1

t−h2
ẋT (s)R4ẋ(s)ds.

(4.54)Using the Jensen inequality [Gu 2003℄ (see Theorem D.4 in Appendix D), we an omputean upper bound of I1:
I1 = −

∫ t

tk

η̇T (s)Uσk
η̇(s)ds ≤ −(t− tk)ν

T
1 (t)Uσk

ν1(t), (4.55)with
ν1(t) =

1

t− tk

∫ t

tk

η̇(s)ds =
η(t)− η(tk)

t− tk
. (4.56)For an upper bound on the other integral terms, one writes:

I2 + I3 + I4 = J2 + J3 + J4, (4.57)115



Chapter 4. A Lyapunov-Krasovskii approah to dynami sampling ontrolwith
J2 = −

∫ t

t−h1
ẋT (s)((1− ḣ(t))R2 +R3)ẋ(s)ds,

J3 = −
∫ t−h1

t−h(t)
ẋT (s)((1− ḣ(t))R2 +R3 +R4)ẋ(s)ds,

J4 = −
∫ t−h(t)

t−h2
ẋT (s)(R3 +R4)ẋ(s)ds.

(4.58)Then, using the Jensen inequality [Gu 2003℄ (see Theorem D.4 in Appendix D), oneobtains
J2 ≤ − 1

h1
νT
2 (t)((1− ḣ(t))R2 +R3)ν2(t),

J3 ≤ −(h(t)− h1)ν
T
3 (t)((1− ḣ(t))R2 +R3 +R4)ν3(t)

≤ −(h(t)− h1)ν
T
3 (t)((1− e2)R2 +R3 +R4)ν3(t),

J4 ≤ −(h2 − h(t))νT
4 (t)(R3 +R4)ν4(t),

(4.59)with:
ν2(t) = x(t)− x(t− h1),

ν3(t) =
1

h(t)−h1

∫ t−h1

t−h(t)
ẋ(s)ds = x(t−h1)−x(t−h(t))

h(t)−h1
,

ν4(t) =
1

h2−h(t)

∫ t−h(t)

t−h2
ẋ(s)ds = x(t−h(t))−x(t−h2)

h2−h(t)
.

(4.60)Note that ν1(t) (respetively ν3(t) and ν4(t)) is well de�ned by ontinuity in t = tk(respetively h(t) = h1 or h(t) = h2) sine when t → tk (respetively h(t) → h1 or h(t) →
h2), one has ν1(t) → η̇(tk) (respetively ν3(t) → −ẋ(t− h1) and ν4(t) → −ẋ(t− h2)).Using majorations (4.55) and (4.59) in equation (4.53) leads to
˙̄Vd(t) + zT (t)z(t)− γ2wT (t)w(t) ≤ zT (t)z(t)− γ2wT (t)w(t)

+2η̇T (t)Pη(t) + xT (t)Q1x(t) + xT (t− h1)(Q2 −Q1)x(t− h1)− xT (t− h2)Q3x(t− h2)

+(1− ḣ(t))xT (t− h(t))(Q3 −Q2)x(t− h(t))− (1− ḣ(t))ẋT (t− h(t))R1ẋ(t− h(t))

+ẋT (t)(R1 + h(t)R2 + h2R3 + (h2 − h1)R4)ẋ(t) + ((tk+1 − tk)− 2(t− tk))η
T (tk)Sσk

η(tk)

+(tk+1 − t)η̇T (t)Uσk
η̇(t)−

[

η(t)

η(tk)

]T

Ωσk

[

η(t)

η(tk)

]

+ 2(tk+1 − t)η̇T (t)Ω1,σk

[

η(t)

η(tk)

]

−(t− tk)ν
T
1 (t)Uσk

ν1(t)− 1
h1
νT
2 (t)((1− ḣ(t))R2 +R3)ν2(t)

−(h(t)− h1)ν
T
3 (t)((1− e2)R2 +R3 +R4)ν3(t)− (h2 − h(t))νT

4 (t)(R3 +R4)ν4(t). (4.61)We introdue the augmented state vetor φ(t) ∈ R11n+nw :
φT (t) = [ηT (t), ηT (tk), xT (t− h1), xT (t− h2),

(1− ḣ(t))ẋT (t− h(t)), νT
1 (t), νT

3 (t), νT
4 (t), wT (t)],

(4.62)116



4.2. Main L2-stability resultsand use the notations (4.44) and (4.45) to write
η(t) =

[

x(t)

x(t− h(t))

]

=

[

M1φ(t)

M2φ(t)

]

= N2φ(t),

η(tk) =

[

x(tk)

x(sk)

]

=

[

M3φ(t)

M4φ(t)

]

= N4φ(t),

x(t− h1) = M5φ(t), x(t− h2) = M6φ(t),

(1− ḣ(t))ẋ(t− h(t)) = M7φ(t),

ν1(t) =

[

M8

M9

]

φ(t) = N6φ(t), ν2(t) = (M1 −M5)φ(t),

ν3(t) = M10φ(t), ν4(t) = M11φ(t), w(t) = M12φ(t),

ẋ(t) = (AM1 − BKM4 + EM12)φ(t) = N1φ(t),

η̇(t) =

[

ẋ(t)

(1− ḣ(t))ẋ(t− h(t))

]

=

[

N1φ(t)

M7φ(t)

]

= N3φ(t),

[

η(t)

η(tk)

]

=

[

N2φ(t)

N4φ(t)

]

= N5φ(t),

z(t) = (CM1 −DKM4)φ(t) = N7φ(t).

(4.63)

Using these notations, one an see that the equations (4.56) and (4.60) about ν1, ν3,and ν4 an be written as Hi(t)φ(t) = 0 with H1(t) = (t − tk)N6 − N2 + N4, H3(t) =

(h(t)−h1)M10−M5+M2 and H4(t) = (h2−h(t))M11−M2+M6, respetively. Therefore,by applying the Finsler's lemma [Fang 2004℄ (see Theorem D.2 in Appendix D) to inludethese relations in (4.61), one obtains that for any matries Y1,σk
∈ M7n,2n(R), Y2,σk

, and
Y3,σk

∈ M7n,n(R):
˙̄Vd(t) + zT (t)z(t)− γ2wT (t)w(t) ≤
φT (t)[NT

3 PN2 +NT
2 PN3 +MT

1 Q1M1 +MT
5 (Q2 −Q1)M5 −MT

6 Q3M6

+(1− ḣ(t))MT
2 (Q3 −Q2)M2 +NT

1 (R1 + h(t)R2 + h2R3 + (h2 − h1)R4)N1

− 1
1−e1

MT
7 R1M7 −NT

5 Ωσk
N5 − 1

h1
(M1 −M5)

T ((1− ḣ(t))R2 +R3)(M1 −M5)

−(h(t)− h1)M
T
10((1− e2)R2 +R3 +R4)M10 − (h2 − h(t))MT

11(R3 +R4)M11

+(tk+1 − t)(NT
3 Uσk

N3 +NT
3 Ω1,σk

N5 +NT
5 Ω

T
1,σk

N3)

+((tk+1 − tk)− 2(t− tk))N
T
4 Sσk

N4 − (t− tk)N
T
6 Uσk

N6 +NT
7 N7 − γ2MT

12M12

+Ȳ1,σk
((t− tk)N6 −N2 +N4) + ((t− tk)N6 −N2 +N4)

T Ȳ T
1,σk

+Ȳ2,σk
((h(t)− h1)M10 −M5 +M2) + ((h(t)− h1)M10 −M5 +M2)

T Ȳ T
2,σk

+Ȳ3,σk
((h2 − h(t))M11 −M2 +M6) + ((h2 − h(t))M11 −M2 +M6)

T Ȳ T
3,σk

]φ(t).

(4.64)
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Chapter 4. A Lyapunov-Krasovskii approah to dynami sampling ontrolAs in the delay-free ase, we obtain a stability ondition under the form of a parametriequation (4.64), whih is linear in the variables ḣ(t), h(t), t and tk+1 − tk. In order toredue the number of onditions to be heked to a �nite number, we use Lemma D.8(Appendix) on (4.64) with, suessively, the variables λ = ḣ(t) ∈ [e1, e2], λ = h(t) ∈
[h1, h2], λ = t ∈ [tk, tk+1], and λ = tk+1 − tk ∈ [T1,σk

, T2,σk
], to show that if the 16inequalities ξTΞi,j,l,o,σk

ξ ≤ 0 are satis�ed for all ξ ∈ R11n+nw , with Ξi,j,l,o,σk
de�ned in(4.47) and (4.48), then ˙̄Vd(t) + zT (t)z(t)− γ2wT (t)w(t) ≤ 0 for all t ∈ [tk, tk+1).Sine we know that x(sk) ∈ Rσk

(i.e. xT (sk)Ψσk
x(sk) ≥ 0), we use one again thelossless version of the S-proedure [Boyd 1994℄ (see Theorem D.3 in Appendix D) on eahof the 16 obtained inequalities to show that, if there are salars εi,j,l,o,σk

≥ 0 suh that(4.46) holds for σ = σk, then ondition (4.52) is satis�ed. Therefore, if (4.46) is satis�edfor all σ ∈ {1, · · · , q}, (4.52) and Lemma 4.2 allow for onluding the proof.Remark 4.9 Setting h1 = 0 redues the size of the LMIs and the number of variables,sine the state x(t−h1), the matries Q1 and R4, and the integral term J2 (in (4.57)) arenot needed anymore.Remark 4.10 Similar to the delay-free ase, if w satis�es zT (t)z(t) − γ2wT (t)w(t) ≥ 0,and if the LMIs (4.46) are strit, the delayed sampled-data system Sd is asymptotiallystable for any sampling sequene satisfying (4.8). In the unperturbed ase w(t) = 0, it issu�ient to verify that ˙̄V (t) < 0, and thus the term zT (t)z(t) = φT (t)NT
7 N7φ(t) and therows/olumns orresponding to w(t) are removed from the LMIs (4.46).Remark 4.11 As in the non-delayed ase, when searhing for solutions of LMIs (4.43)and (4.46), one needs to remove the zero rows/olumns that may appear in (4.46) sineLMI solvers searh for strit solutions. Indeed, one an see that Ξi,j,l,o,σ is: independentof ν1 if o = 1 or Tl,σ = 0; independent of ν3 if j = 1; independent of ν4 if j = 2.4.2.3 Algorithm to design the state-dependent sampling funtion

τmax for a given feedbak matrix gain KFigure 4.1 provides a three-step algorithm to build a state-dependent sampling funtionmaximizing the sampling intervals using the stability onditions from Subsetions 4.2.1and 4.2.2. This algorithm is based on a omputation of the Lyapunov-Krasovskii Fun-tional in two steps.118



4.2. Main L2-stability results� First, we ompute the onstant ("global") LKF matries, that allow to maximizethe lower bound τ+ of the sampling funtion, whih leads to a lassi robust anal-ysis of perturbed (and possibly delayed) sampled-data systems with time-varyingsamplings.� Then, we ompute the swithing ("loal") LKF matries so as to maximize theallowable sampling intervals τ+σ for eah region, whih leads to a self-triggeringalgorithm exept that all omputations are made o�ine, and that the swithingpart of the LKF is omputed at the same time as the maximal samplings τ+σ .Keep in mind that all steps in the algorithm are made o�-line.STEP 1
⋄ Work with a single region R

n, or q oni regions Rσ overing the state spae
⋄ Fix the minimal sampling τ−Theorem 4.4 (resp. 4.8 with delays) LMIs +

⋄ Compute the largest admissible state-independent sampling τ+ (ommon to every region)
⋄ Compute the onstant (i.e. global) LKF matrix P(as well as the matries Q1, Q2, Q3, R1, R2, R3, R4 in the delayed ase)STEP 2

⋄ Work with q oni regions Rσ overing the state spae
⋄ Use the same minimal sampling τ− as in Step 1

⋄ Use the LKF matrix P , (as well as the other global matries Q1, Q2, Q3,
R1, R2, R3, R4 in the delayed ase) omputed in Step 1Theorem 4.4 (resp. 4.8 with delays) LMIs +

⋄ Design the mapping of the largest admissible sampling τ+σ ≥ τ+ for eah region Rσ
⋄ Compute the swithing (i.e. loal) LKF matries Uσ, Sσ, Xσ , X1,σ, for eah region RσSTEP 3Design of the state-dependent sampling funtion

τmax(x) = maxσ∈I(x) τ
+
σ ≥ τ+,∀x ∈ R

n

line searh algorithm on τ+

line searh algorithm on τ+σfor eah region Rσ

Figure 4.1: Algorithm to design the state-dependent sampling funtion τmax(x) for a givenfeedbak matrix gain KNote that one an ompute the largest admissible state-independent sampling τ+(Step 1) by working with a single region (Rn), and using the proposed LKF with onstant119



Chapter 4. A Lyapunov-Krasovskii approah to dynami sampling ontrolmatries, or by working with more regions Rσ, and using the LKF with state-dependentmatries swithing aording to the sampled state. Although the seond hoie is moreomplex, it an greatly redue the onservatism, as it will be illustrated in Example 2.For the same reason, if the �rst step was proeeded with only one region Rn, it is possiblethat one obtains in the seond step minσ∈{1,··· ,q} τ
+
σ > τ+, whih means that even thelargest state-independent sampling obtained an be inreased by using the LKF withstate-dependent matries.Also, note that very often the works are arried with a minimal sampling interval τ−set to 0, as in [Wang 2009℄, [Wang 2010℄ or [Fujioka 2009b℄, or as in the polytopi approahpresented in the previous two hapters. Enabling τ− > 0 allows to onsider systems whihare unstable with a ontinuous feedbak ontrol, but whih are stable with sampling inter-vals that are lower bounded (see Example 3 for an illustration). Furthermore, enabling alarger minimal sampling makes it possible to inrease the obtained maximal sampling τ+σwith the proposed tehnique, sine the stability onditions we obtained ensure stabilityfor any sampling satisfying (4.8): τ− ≤ τk ≤ τ+σk

.The �nal step of the algorithm to design the state-dependent sampling funtion dealswith the possible regions overlapping issue, sine the regions Rσ are not neessarily dis-joints.Remark 4.12 Unlike with the polytopi method presented in the previous two hapters,it is very di�ult to design an event-triggered or a self-triggered ontrol sheme with thisLKF approah. This is due to the fat that here, the stabilty onditions are obtainedthrough the use of an augmented state in whih appear both the delays and the statederivatives. Therefore, it is di�ult to isolate the sampled-state x(sk) along with thetime-variable t− tk in the otained stability onditions.Remark 4.13 Unlike with the polytopi approah, here it is simple to inlude the minimalsampling interval τ− in the stability onditions. Although it would still be possible withthe previous approah (in the delay-free ase), the omplexity would be very high. Indeed,one would have to design a polytope with respet to the variable t ∈ [sk, sk+1], whih wouldresult in N+1 verties with the onvex embedding approah presented in the Appendix C.1(N being the order of the Taylor series approximation), and for eah of these verties, onewould need to build another polytope with respet to the variable sk+1 − sk ∈ [τ−, τmax(x)],whih would result in a omplex design of (N + 1)2 verties.120



4.3. Main L2-stabilization results4.3 Main L2-stabilization resultsIn this setion, we propose a way to design the ontrol input, allowing to enlarge even morethe state-dependent sampling funtion τmax. Remember that the objetive of this workis double: we want to maximize both the lower bound τ+ of the state-dependent sam-pling funtion (whih ensures stability for any state-independent time-varying samplingsequene in [τ−, τ+]), and the sampling funtion τmax itself.In Subsetion 4.3.1, we onsider the ase of a lassial pieewise-onstant feedbakontrol u(t) = −Kx(sk) and provide tools to ompute an adequate feedbak gain Kallowing to enlarge the lower bound τ+ of the sampling funtion. This analysis an beseen as a robust stabilization method regarding state-independent time-varying sampling.One this feedbak gain is omputed, it is possible to build its assoiated optimal samplingfuntion τmax using the algorithm presented in Subsetion 4.2.3.In Subsetion 4.3.2, we go a step further and design a pieewise-onstant feedbakontrol with matries that swith aording to the sampled state (u(t) = −Kσk
x(sk)),whih allows to enlarge even further the sampling funtion τmax (4.9). Indeed, with thistype of ontroller, one an design the feedbak gains Kσ so as to enlarge the maximalallowable sampling τ+σ for eah region Rσ.Eventually, in Subsetion 4.3.3, we provide an algorithm to be used with either ob-tained stabilization results, to enlarge the sampling funtion τmax while omputing theadequate ontroller matrix K (or matries Kσ).For simpliity, in this setion we assume that D = 0.4.3.1 Stabilization using a pieewise-onstant feedbak ontrol

u(t) = −Kx(sk)Here, we want to ompute the feedbak matrix K that maximizes the lower-bound τ+ ofthe sampling funtion. we provide the following stabilization theorem:Theorem 4.14 Consider salars γ ≥ 0, and 0 < τ− ≤ τ+. The perturbed system S(with D = 0) is �nite-gain L2-stabilizable from w to z with a gain less than γ for anysampling sequene with values in [τ−, τ+] if there exist matries P̃ ∈ S+∗
n , Ũ , S̃ ∈ S+

n ,
Q ∈ Mn,n(R) invertible, M ∈ Mnu,n(R), Ỹ1, Ỹ2, Ỹ3, X̃, X̃1 ∈ Mn,n(R), and a salar δsuh that the inequalities

[

P̃ 0

0 0

]

+ τ+

[

X̃+X̃T

2
−X̃ + X̃1

∗ X̃+X̃T

2

]

≻ 0 and Ξ̂i,j � 0 (4.65)121



Chapter 4. A Lyapunov-Krasovskii approah to dynami sampling ontrolare satis�ed for all (i, j) ∈ {1, 2}2, with
Ξ̂1,j =



















L̂1,1 L̂1,2 + TjZ̃ L̂1,3 E QTCT

∗ L̂2,2 + TjŨ L̂2,3 + Tj(−X̃ + X̃1) δE 0

∗ ∗ L̂3,3 + TjS̃ 0 0

∗ ∗ ∗ −γ2I 0

∗ ∗ ∗ ∗ −I



















, (4.66)
Ξ̂2,j =























L̂1,1 L̂1,2 L̂1,3 Tj Ỹ
T
1 E QTCT

∗ L̂2,2 L̂2,3 Tj Ỹ
T
2 δE 0

∗ ∗ L̂3,3 − TjS̃ Tj Ỹ
T
3 0 0

∗ ∗ ∗ −TjŨ 0 0

∗ ∗ ∗ ∗ −γ2I 0

∗ ∗ ∗ ∗ ∗ −I























, (4.67)
L̂1,1 = −Ỹ T

1 − Ỹ1 + AQ +QTAT − Z̃, L̂1,2 = P̃ − Ỹ2 −Q+ δQTAT ,

L̂1,3 = −BM + Ỹ T
1 − Ỹ3 + X̃ − X̃1, L̂2,2 = −δQT − δQ,

L̂2,3 = Ỹ T
2 − δBM, L̂3,3 = Ỹ T

3 + Ỹ3 + Z̃1 − Z̃,

(4.68)
Z̃ =

X̃ + X̃T

2
, and Z̃1 = X̃T

1 + X̃1. (4.69)The stabilizing feedbak matrix gain is provided by K = MQ−1.Proof: We work with a single region: Rn and with the LKF (4.10) designed for thedelay-free ase. Using arguments very similar to the ones used to obtain equation (4.26),whih leads to Theorem 4.4, we an show that
˙̄V (t) + zT (t)z(t) − γ2wT (t)w(t) ≤ 2ẋT (t)Px(t) + (sk+1 − t)ẋT (t)Uẋ(t)

−(t− sk)ν
T (t)Uν(t) −

[

x(t)

x(sk)

]T

Ω

[

x(t)

x(sk)

]

+ 2(sk+1 − t)ẋT (t)Ω1

[

x(t)

x(sk)

]

+((sk+1 − sk)− 2(t− sk))x
T (sk)Sx(sk) + xT (t)CTCx(t)− γ2wT (t)w(t)

+2(xT (t)Y T
1 + ẋT (t)Y T

2 + xT (sk)Y
T
3 )((t− sk)ν(t)− x(t) + x(sk)),

(4.70)
for any matries Y1, Y2, Y3 ∈ Mn,n(R).We use Finsler's lemma [Fang 2004℄ (or the desriptor method [Fridman 2001b℄) toinlude the relation ẋ(t) = Ax(t)−BKx(sk)+Ew(t), (by adding the term 0 = 2(xT (t)P T

2 +

ẋT (t)P T
3 )(−ẋ(t)+Ax(t)−BKx(sk)+Ew(t)) to the previous inequality) and the augmented122



4.3. Main L2-stabilization resultsstate vetor
φ̄T (t) = [xT (t), ẋT (t), xT (sk), νT (t), wT (t)], (4.71)to show that if the matrix inequalities

Ξ̄i,j � 0 (4.72)are satis�ed, with̄
Ξ1,j =













L̄1,1 L̄1,2 + TjZ L̄1,3 P T
2 E

∗ L̄2,2 + TjU L̄2,3 + Tj(−X +X1) P T
3 E

∗ ∗ L̄3,3 + TjS 0

∗ ∗ ∗ −γ2I













, (4.73)
Ξ̄2,j =



















L̄1,1 L̄1,2 L̄1,3 TjY
T
1 P T

2 E

∗ L̄2,2 L̄2,3 TjY
T
2 P T

3 E

∗ ∗ L̄3,3 − TjS TjY
T
3 0

∗ ∗ ∗ −TjU 0

∗ ∗ ∗ ∗ −γ2I



















, (4.74)
L̄1,1 = CTC − Y T

1 − Y1 + P T
2 A+ ATP2 − Z, L̄1,2 = P − Y2 − P T

2 + ATP3,

L̄1,3 = −P T
2 BK + Y T

1 − Y3 +X −X1, L̄2,2 = −P3 − P T
3 ,

L̄2,3 = Y T
2 − P T

3 BK, L̄3,3 = Y T
3 + Y3 + Z1 − Z,

(4.75)
Z =

X +XT

2
, Z1 = XT

1 +X1, (4.76)and matries P2, P3, Y1, Y2, Y3 ∈ Mn,n(R), then the stability ondition (4.6) is alwayssatis�ed.We need to ompute a feedbak matrix gain K satisfying these onditions. In or-der to do so, we onsider the ase where P3 = δP2, with P2 invertible, and δ ∈ R.Then, we multiply the previous matrix inequalities by diag(P−T
2 , · · · , P−T

2 , I) to the left,and diag(P−1
2 , · · · , P−1

2 , I) to the right, and use the Shur omplement [Boyd 1994℄ (seeTheorem D.1 in Appendix D) to obtain Theorem 4.14 stabilization onditions (wherethe notation Q denotes P−1
2 , and the notation F̃ denotes the multipliation of a matrix

F ∈ Mn(R) from left and right by P−T
2 and P−1

2 : F̃ ≡ P−T
2 FP−1

2 ).Remark 4.15 Note that the seond inequality in (4.65) is not an LMI. It an be solvedby LMI solvers however, by inluding a line searh algorithm on the variable δ. 123



Chapter 4. A Lyapunov-Krasovskii approah to dynami sampling ontrolRemark 4.16 It is possible to inlude onstraints to avoid having an unaeptable highgain K = MQ−1. In order to do this, one an add the LMIs
[

−κMI MT

∗ −I

]

� 0 and [Q I

∗ κQI

]

� 0, (4.77)whih ensure that |||K|||2 ≤
√
κMκQ.Indeed, using the Shur omplement, one an show that the LMIs in (4.77) imply that

MTM � κMI, and { Q−1 � κQI

Q−T � κQI
, (4.78)and thus

|||M |||2 =
√

ρ(MTM) ≤ √
κM , and |||Q−1|||2 =

√

ρ(Q−TQ−1) ≤
√

ρ(Q−T )ρ(Q−1) ≤ κQ.(4.79)Therefore, sine K = MQ−1 and the property of the matrix norm |||.|||2 ensures that
|||K|||2 ≤ |||M |||2|||Q−1|||2, one has |||K|||2 ≤

√
κMκQ.Using this theorem, it is possible to ompute the feedbak matrix gain maximizing thelower bound τ+ of the state-dependent sampling funtion. The algorithm to ompute theoptimal gain K along with the assoiated sampling funtion τmax is proposed in 4.3.3.4.3.2 Stabilization using a swithing pieewise-onstant feedbakontrol u(t) = −Kσk

x(sk)The previous theorem enables to ompute a feedbak matrix gain K that maximizes thelower bound of the state-dependent sampling funtion τmax. However, it seems naturalto think that it may be better to adapt the ontrol gain aording to the value of thestate, in order to enlarge even further the state-dependent sampling funtion τmax. Here,therefore, we work with a more general feedbak ontrol law
u(t) = −Kσk

x(sk), (4.80)with feedbak matrix gains Kσ that swith aording to the region of the state spae thesampled state is in (at eah sampling step, σk is set to satisfy (4.8)). Using the previousstability and stabilization analysis, we an extend the obtained results to this lass ofsystems and to show the following theorem:124



4.3. Main L2-stabilization resultsTheorem 4.17 Consider salars γ ≥ 0 and τ− > 0, matries P ∈ S+∗
n , P2, P3 ∈

Mn,n(R), and a set of q oni regions overing the state spae Rσ = {x, xTΨσx ≥ 0},
Ψσ ∈ Sn, σ ∈ {1, · · · , q}, with maximal sampling intervals τ+σ . The perturbed system S(with D = 0) with ontrol input (4.80) is �nite-gain L2-stabilizable from w to z with again less than γ for any sampling sequene satisfying (4.8) if there exist salars εi,j,σ ≥ 0and matries Uσ, Sσ ∈ S+

n , Y1,σ, Y2,σ, Y3,σ, Xσ, X1,σ ∈ Mn,n(R), and Kσ ∈ Mnu,n(R)suh that the LMIs (4.13) and Ξ̄i,j,σ � 0 are satis�ed for all (i, j) ∈ {1, 2}2, with
Ξ̄1,j,σ =













L̄1,1,σ L̄1,2,σ + Tj,σZσ L̄1,3,σ P T
2 E

∗ L̄2,2,σ + Tj,σUσ L̄2,3,σ + Tj,σ(−Xσ +X1,σ) P T
3 E

∗ ∗ L̄3,3,σ + Tj,σSσ + ε1,j,σΨσ 0

∗ ∗ ∗ −γ2I













, (4.81)
Ξ̄2,j,σ =



















L̄1,1,σ L̄1,2,σ L̄1,3,σ Tj,σY
T
1,σ P T

2 E

∗ L̄2,2,σ L̄2,3,σ Tj,σY
T
2,σ P T

3 E

∗ ∗ L̄3,3,σ − Tj,σSσ + ε2,j,σΨσ Tj,σY
T
3,σ 0

∗ ∗ ∗ −Tj,σUσ 0

∗ ∗ ∗ ∗ −γ2I



















, (4.82)
L̄1,1,σ = CTC − Y T

1,σ − Y1,σ + P T
2 A+ ATP2 − Zσ, L̄1,2,σ = P − Y2,σ − P T

2 + ATP3,

L̄1,3,σ = −P T
2 BKσ + Y T

1,σ − Y3,σ +Xσ −X1,σ, L̄2,2,σ = −P3 − P T
3 ,

L̄2,3,σ = Y T
2,σ − P T

3 BKσ, L̄3,3,σ = Y T
3,σ + Y3,σ + Z1,σ − Zσ, (4.83)

Zσ =
Xσ +XT

σ

2
, Z1,σ = XT

1,σ +X1,σ, (4.84)The stabilizing feedbak matrix gains are diretly provided as the LMI variables Kσ, withthe swithing law σ satisfying (4.8).Proof: The proof is very similar to the one in the non-swithing ase to get the matrixinequalities (4.72), exept that we are now using the LKF (4.10) with matries swithingon the oni regions de�ned in (4.7).Remark 4.18 Here again, one an inlude onstraints to avoid having unaeptable highgains Kσ by adding the LMIs
[

−κI KT
σ

∗ −I

]

� 0 (4.85)whih ensure that |||Kσ|||2 ≤ κ. 125



Chapter 4. A Lyapunov-Krasovskii approah to dynami sampling ontrolIndeed, using the Shur omplement, one an show that the LMI (4.85) imply that
{

Kσ � κI

KT
σ � κI

, (4.86)and thus
|||Kσ|||2 =

√

ρ(KT
σ Kσ) ≤

√

ρ(KT
σ )ρ(Kσ) ≤ κ. (4.87)Remark 4.19 Here, the matrie P from the LKF and the matries P2 and P3 introduedby the appliation of Finsler's Lemma (or the desriptor method) in the proof of Theorem4.14 are supposed to be given, (omputed using Theorem 4.14 for example, whih wouldgive P2 = Q−1, P3 = δP2, and P = P T

2 P̃P2). It is neessary to use a two-steps algorithm(one to ompute P2, P3, and one to ompute the matries Kσ) beause one an not searhfor P2 and P3 at the same time as the matries Kσ. Indeed, the inequalities Ξ̄i,j,σ � 0 fromTheorem 4.17 would then result in BMIs, and the triks used in the proof of Theorem 4.14would leave us with a term QTΨσQ whih an not be removed using a Shur omplementfor example, beause of the non-positivity and non-negativity of Ψσ.4.3.3 Algorithm to design the state-dependent sampling funtion
τmax and its assoiated feedbak matrix gain K (or gains
Kσ)Figure 4.2 provides a four-step algorithm to build a state-dependent sampling funtionenlarging the sampling intervals using the stabilization onditions from Subsetions 4.3.1and 4.3.2 while omputing the adequate LKF funtion (4.10) and ontroller gain K (orgains Kσ). Keep in mind that all steps are made o�-line.Remark 4.20 Step 2 in the ase of swithing matrix gains provides less onservativeresults than Step 1, sine the ondition P3 = δP2 assumed in theorem 4.14 is not validanymore. Indeed, in Step 2, the obtained P2 and P3 an be any matries in Mn,n(R).Remark 4.21 Similar stabilization tools and algorithm an be obtained in the ase ofdelayed systems suh as the ones presented in Subsetion 4.2.2. We hose not to presentthis study however beause it onludes with LMIs of size (13n+ nw)× (13n+ nw), whihare too large.
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4.3. Main L2-stabilization resultsSTEP 1
⋄ Work with a single region R

n

⋄ Fix the minimal sampling τ−Theorem 4.14 LMIs + line searh algorithm on δline searh algorithm on τ+

⋄ Compute the largest admissible state-independent sampling τ+

⋄ Compute the assoiated (global) feedbak matrix gain KSTEP 2
→ Case u(t) = −Kx(sk): use Algorithm from Subsetion 4.2.3 with the omputed K and stop

→ Case u(t) = −Kσk
x(sk):

⋄ Work with a single region R
n, or q oni regions Rσ overing the state spae

⋄ Use the same minimal sampling τ− as in Step 1
⋄ Use the feedbak matrix gain K omputed in Step 1Theorem 4.17 LMIs + line searh algorithm on τ+

⋄ Compute a better value for τ+
⋄ Compute the assoiated (global) matries P , P2 and P3STEP 3

⋄ Work with q oni regions Rσ

⋄ Use the same minimal sampling τ− as in Step 1
⋄ Use the matries P , P2, P3 omputed in Step 2Theorem 4.17 LMIs + line searh algorithm on τ+σ

⋄ Design the mapping of the largest admissible sampling τ+σ ≥ τ+ for eah region Rσ
⋄ Compute the swithing (i.e. loal) LKF matries Uσ, Sσ, Xσ , X1,σ, for eah region Rσ

⋄ Compute the optimal matrix gain Kσ for eah region RσSTEP 4Design of the ontroller's swithing law
σk = argmaxσ∈I(x(sk))τ+σand of the state-dependent sampling funtion

τmax(x) = maxσ∈I(x) τ
+
σ ≥ τ+,∀x ∈ R

n (τmax(x(sk)) = τ+σk
)Figure 4.2: Algorithm to design the state-dependent sampling funtion τmax(x) and itsassoiated feedbak matrix gain K (or gains Kσ)

127



Chapter 4. A Lyapunov-Krasovskii approah to dynami sampling ontrol4.4 Numerial examples4.4.1 Example 1 - State dependent sampling for systems withperturbations and delaysWe onsider the system:
ẋ(t) =

[

−3 0

0 1

]

x(t)−
[

1

1

]

Kx(sk) + w(t), for t ∈ [tk, tk+1), with K =
[

−1 4
]

,

z(t) = x(t).The state-dependent sampling funtion (4.9) will be designed in four suessive ases:1. no delay nor perturbations (w = 0, h = 0, asymptoti stability);2. perturbations on the delay-free system (w 6= 0, h = 0, L2-stability with γ =
√
10);3. unperturbed system with delays h(t) ∈ [10−4, 10−1] and ḣ(t) ∈ [−0.2, 0.6] (w = 0,

h 6= 0, asymptoti);4. perturbed system with the same lass of delays (w 6= 0, h 6= 0, γ =
√
10).We set a number of q = 100 oni regions Rσ, take τ− ≃ 0, and use the algorithmof Subsetion 4.2.3 to build the mapping that maximizes the sampling interval for eahstate. We work with the isotropi overing desribed in the Appendix B.1, and design theoni regions using the polar oordinates (ρ, θ) of the state x = ρeiθ, for the partiularvalue ρ = 1 (the unit irle). Computed o�-line in eah of the 4 ases, Figure 4.3 presentsthe admissible sampling interval as a funtion of the state angle θ ∈ [−π, π). The longeststate-independent sampling intervals (the lower bound of the state-dependent samplingfuntion) we found in the four ases are presented in Table 4.1.

w = 0, h = 0 w 6= 0, h = 0 w = 0, h 6= 0 w 6= 0, h 6= 0
0.535s 0.445s 0.169s 0.145sTable 4.1: Example 1: Lower-bound τ+ of the state-dependent sampling funtionNote that sine τ− has been �xed near to zero, the system L2-stability (or asymptotistability) is guaranteed for any sampling intervals less than τ+. This result orrespondsto that of a lassi robust stability analysis regarding (state-independent) time-varyingsampling. Thanks to the mapping we built (in eah of the four ases), we an extend that128



4.4. Numerial examples
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Figure 4.3: Example 1: Mapping of the maximal admissible sampling intervals τ+σ withor without perturbations w and/or delays hstability result to any state-dependent time-varying sampling with values bounded by theobtained sampling funtion τmax (i.e. with values below the urve presented in Figure4.3), whih allows for larger sampling intervals.Figure 4.4 shows simulation results for a system with or without time-varying delays,with a sinusoidal disturbane w(t) set to satisfy ‖w(t)‖2 = 1
γ
‖z(t)‖2 ≃ 32%‖z(t)‖2. Itpresents the state x(t), the sampling intervals τk = τmax(x(sk)) and the delays hk = h(tk)(in the delayed ase).

4.4.2 Example 2 - Conservatism redution thanks to the swithedLKFTo show the onservatism redution brought by the LKF with state-dependent matries,we onsider the system from [Hetel 2011b℄:
ẋ(t) =

[

−0.5 0

0 3.5

]

x(t)−
[

1

1

]

Kx(sk), for t ∈ [sk, sk+1), with K =
[

−1.02 5.62
]

,

z(t) = x(t). 129



Chapter 4. A Lyapunov-Krasovskii approah to dynami sampling ontrol
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Figure 4.4: Example 1: Left side: delayed ase (delays up to 0.1s). Right side: delay-freease. In both sides, the perturbation satis�es ‖w(t)‖2 = 1
γ
‖z(t)‖2 ≃ 32%‖z(t)‖2We set τ− ≃ 0. Considering the results given by the step 1 of the algorithm desribed inSubsetion 4.2.3 and taking only one region R

n, the longest state-independent samplinginterval τ+ (i.e. admissible no matter the state) obtained is equal to 0.267s, whereas weobtain 0.309s with q = 100 regions Rσ. This orresponds to a robust stability bound thatan be ompared to the ones obtained in the literature, as shown in Table 4.2.[Naghshtabrizi 2008℄ [Seuret 2009℄ [Fujioka 2009b℄ [Fridman 2010℄ Algorithm Setion 4.2.3
0.165s 0.198s 0.204s 0.259s 0.309sTable 4.2: Example 2: Maximum upper bounds τ+ for time-varying samplings, allowableon the whole state spae

4.4.3 Example 3 - State-dependent sampling for systems whihare both open-loop and losed-loop (with a ontinuous feed-bak ontrol) unstableHere, we onsider a system from [Gu 2003℄:
ẋ(t) =

[

0 1

−2 0.1

]

x(t)−
[

0

1

]

Kx(sk), for t ∈ [sk, sk+1), with K =
[

−1 0
]

,

z(t) = x(t).130



4.4. Numerial examplesThis system is asymptotially stable for a onstant sampling step τmaxonst = 0.25s. However,it is unstable in open-loop, and unstable in losed-loop with a ontinuous state feedbak(A and A− BK are both not Hurwitz).The stability tools proposed in Setion 4.2 an not provide any solution for a minimalsampling interval τ− that is too small, sine the system is unstable for small samplingintervals. However, for larger values of τ−, the proposed algorithms �nd solutions andallow to build state-dependent sampling funtions, whih is not possible in lassial self-triggered works for this lass of ontinuous losed-loop unstable sytems. The samplingfuntions presented in Figure 4.5 (on the left) have been obtained with a number q = 100oni regions and di�erent values for the minimal sampling inverval τ−. On the right ofthe �gure are shown simulation results obtained for τ− = 0.25.
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Figure 4.5: Example 3: Mapping of the maximal admissible sampling intervals for di�erentminimal sampling intervals τ− (on the left) and simulation results using the samplingfuntion obtained with τ− = 0.25 (on the right)4.4.4 Example 4 - State-dependent sampling ontroller for per-turbed systemsHere, we onsider a system from [Tabuada 2007℄ to whih we added a swithing ontroller:
ẋ(t) =

[

0 1

−2 3

]

x(t)−
[

0

1

]

Kσk
x(sk) + w(t), with z(t) = x(t), for t ∈ [sk, sk+1).The feedbak gain matriesKσ are omputed along with the maximal admissible samplingintervals τ+σ for every oni region of the state spae using the algorithm proposed in131



Chapter 4. A Lyapunov-Krasovskii approah to dynami sampling ontrolSubsetion 4.3.3. Figure 4.6 presents the sampling funtions obtained for various L2 gains
γ with the proposed ontroller with swithing matries Kσ, and with a lassi ontrollerwith a onstant matrix gain K. It shows the advantages of the swithing rule on theontroller. These results have been obtained with q = 100 oni regions (isotropi designfrom Appendix B.1), and a lower bound on the samplings τ− ≃ 0.
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Figure 4.6: Example 4: Mapping of the maximal admissible sampling intervals for di�erent
L2 gains γ, with or without swithing ontrollerUsing the mapping we designed for both the maximal sampling intervals τ+σ and thefeedbak gain matries Kσ, we an run the simulations presented in Figure 4.7.4.5 ConlusionThis hapter has proposed both a stability and a stabilization analysis allowing to designa state-dependent sampling that redues the number of atuations, while ensuring the L2-stability for perturbed linear state feedbak systems. Extensions to the stability analysisof delayed systems, and to the stabilization analysis for systems with swithing feedbakmatrix gains are also provided.The study is based on a new lass of Lyapunov-Krasovskii funtionals with state-dependent matries that redue the onservatism for both state-dependent sampling and132



4.5. Conlusion
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Figure 4.7: Example 4: State x(t) and sampling intervals τk = τmax(x(sk)) for the on-trolled system without perturbation (on the left) and with a perturbation satisfying
‖w(t)‖2 = 1

γ
‖z(t)‖, γ = 2 (on the right)time-varying (state-independent) sampling.The proposed method an be used as a self-triggered ontrol, as a new time-varyingsampling analysis leading to a state-dependent sampling design, and as a stabilizing tool.We think it presents three main advantages, sine it makes it possible:� to ompute the matrix gain K (or matrix gains Kσ along with the swithing rule σin the ase of swithing matrix gains) adapted to the system and sampling;� to maximize the minimal sampling interval τ+ = infx∈Rn τmax(x) of the state-dependent sampling funtion, and to ompute the assoiated Lyapunov-Krasovskiifuntion matries that ensure the system L2-stability;� to design o�-line a mapping of the state spae with a maximum allowable sam-pling time for eah subspae. Therefore, as in most ontributions in this thesis, noadditional omputation is required online during the ontrol of the system.
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Chapter 4. A Lyapunov-Krasovskii approah to dynami sampling ontrol
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General onlusionThis PhD thesis was dediated to the robust stability analysis and stabilization of systemswith time-varying sampling. A partiular attention was given to the dynami ontrol ofthe sampling events. Its main objetive was to design sampling laws that allow for reduingthe number of sampling instants of state-feedbak ontrol for LTI sampled-data systems.In this work, we have provided the foundations to a novel approah for the dynamiontrol of the sampling, whih we alled "state-dependent sampling". It onsists in ano�ine design of a state-dependent sampling funtion enlarging the sampling intervals ofstate-feedbak ontrol, thanks to LMIs based on a mapping of the state-spae. One ofthe main advantages of this o�ine design is that it allows for reduing the number of on-line omputations required to estimate in real-time the next maximal allowable samplinginterval. Furthermore, it makes it possible to optimize the lower-bound of the samplingfuntion by omputing the optimal Lyapunov parameters, meaning that the maximal sam-pling allowed in the worst ase will be optimized. This lower-bound of the state-dependentsampling funtion an be used as an upper-bound for the lassial problem onerningthe robust stability with arbitrary time-varying sampling.First, the ase of ideal LTI sampled-data systems was onsidered. In this ontext,an extension of the ommon Lyapunov-Razumikhin theory to guarantee the exponentialstability of sampled-data systems was proposed. A onvex embedding design adapted to theontinuous-time stability analysis was then applied to derive the LMIs used in the designof the state-dependent sampling funtion. The approah was illustrated by numerialexamples from the literature for whih the number of atuations is shown to be reduedwith respet to the periodi sampling ase. This shows that our state-dependent samplingombines the robustness property (sine shorter time intervals also stabilize the system)with some realism (remember that periodi sampling onstitutes an idealisti assumptionin real-time ontrol situations).Seond, the robustness aspet with respet to exogenous disturbanes was introdued.In this ontext, the method was developed so as to allow the use of the onvex-embedding135



General onlusionapproah in the presene of unknown perturbations. Several possible ases of samplingfuntions were proposed, eah of whih was leading to a di�erent kind of appliation.The �rst appliation onerned the robust stability analysis with respet to time-varyingsampling, whih allows one to ompute an estimation of the maximal allowable upper-bound of time-varying sampling, while taking into aount both sampling and perturbations.The other three appliations proposed di�erent approahes to the dynami ontrol of thesampling with the objetive to enlarge the sampling interval: event-triggered ontrol,self-triggered ontrol, and the newly introdued state-dependent sampling. Eah of theproposed dynami sampling ontrol shemes takes advantage of the results about the robuststability analysis with respet to time-varying sampling, sine it allows to optimize thelower-bound of the sampling funtion in eah ase.Finally, an extension to the stability analysis of perturbed time-delay linear systemswas proposed, and the stabilization issue was onsidered. In this ontext, we developedseveral tools to design a ontroller along with the state-dependent sampling law, so as tostabilize the onsidered perturbed LTI sampled-data system, and enlarge even furtherthe allowable sampling intervals. Two di�erent ontrollers were proposed: a lassi linearstate-feedbak ontroller, and a new ontroller for whih the gains are swithing aord-ing to the system's state. The o-design of both the ontroller and the state-dependentsampling funtion was based on LMIs obtained thanks to a mapping of the state-spae,in the framework of state-dependent sampling, and thanks to a new lass of Lyapunov-Krasovskii funtionals with matries swithing with respet to the system's state. Thisstate-dependent swith on the funtional matries allows for adapting the Lyapunov-Krasovskii funtional to eah region of the state-spae, and thus enables to redue theonservatism in the design of the state-dependent sampling funtion. Moreover, this newlass of Lyapunov-Krasovskii funtionals may also redue the onservatism even in thease of state-independent time-varying sampling, as it is shown with a numerial example.We are onvined that the perspetives that emerge from the works presented in thisthesis are multiple.First of all, an interesting researh diretion would be the extension of the proposedresults to a larger lass of sampled-data systems, like homogeneous systems or polyno-mial systems for example. In that ase, the dynami sampling ontrol would then takeadvantage of both the state-dependent sampling approah presented in the linear asein this thesis, and of saling properties for the sampling funtion like the ones expressedin [Anta 2010℄ for example, whih are partiular to the lasses of systems onsidered.Another researh diretion would be to extend the results obtained with the proposed136



state-dependent sampling approah to a larger lass of ontrol types and ontrol perfor-manes. For instane, extensions to output-feedbak ontrol or observer-based ontrolwould be very useful for a wide variety of systems for whih using a state-feedbak on-troller is not physially possible. As well, the design of a perturbation-rejetion ontrolwould also be interesting, so as to allow the onvergene of the system state toward theequilibrium point in the ase of systems with onstant or slowly varying perturbations.Finally, it would be interesting to extend the stability and stabilization results pre-sented for systems with a state-dependent sampling to the ase of systems with state-dependent delays. The study of suh systems is mainly motivated by appliations thatmay arise in Networked Controled Systems (see [Briat 2010℄ for the modeling of internetongestion, and [Donkers 2009℄ for the interation between ontrol tasks and shedulingalgorithms for example). In this ontext, it would be interesting to design stability toolswith respet to a known state-dependent delay τ(x), or even to propose sheduling toolsthat would allow for ontrolling this state-dependent delay so as to obtain the stability.
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Résumé étendu en français
Introdution généraleJusqu'au milieu des années 50, la plupart des systèmes étaient ommandés au moyen deontr�leurs analogiques. Cependant, le développement rapide des ordinateurs à ette péri-ode poussa à une utilisation de plus en plus importante des ontr�leurs numériques. Cenouvel essor était dû notamment à la puissane de aluls de es derniers, ainsi qu'à leur�exibilité, et leur failité de mise en ÷uvre. De nos jours, les ontr�leurs numériques sontdevenus omniprésents, et ont permis la naissane et le développement de nouveaux sys-tèmes de ommande, tels les systèmes embarqués et les systèmes ommandés par réseaux.Ils o�rent de nombreux avantages: faible oût d'installation et de maintenane, �exibilitéarue, possibilité d'utilisation pour di�érents types d'appliations, oût de âblage ré-duit, et failité de programmation. Ils o�rent de plus la possibilité de ommander plusieurssystèmes à la fois.Contrairement aux ontr�leurs analogiques, les ontr�leurs numériques introduisentnaturellement des signaux et des dynamiques en temps disret, de par la présene de mé-anismes tels que des éhantillonneurs-bloqueurs (sample and hold devies) [Aström 1996℄.Ainsi, durant la ommande de systèmes en temps-réel, de nouveaux phénomènes font leurapparition.Tout d'abord, l'information transmise par les apteurs au ontr�leur est éhantillonnée,à l'aide d'un onvertisseur analogique numérique (A/N). Une telle onversion d'un signald'entrée x(t) en un signal éhantillonné x(sk), aux instants d'éhantillonnage sk, k ∈ N,est montrée dans la Figure 1. De plus, puisque la ommande est alulée seulement àdes instants disrets, il est néessaire d'utiliser un onvertisseur numérique analogique(N/A) (un bloqueur d'ordre zéro), de sorte que la valeur de la ommande qui est envoyéeaux ationneurs reste onstante entre deux éhantillonnages. La onversion d'un signald'entrée éhantillonné u(sk) en un signal onstant par moreaux u(t), est montrée dansla Figure 2. 139



Résumé étendu en français
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Figure 1: Conversion analogique numérique
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Figure 2: Conversion numérique analogiqueDans les appliations de ommande embarquée ependant, une implémentation entemps disret peut provoquer l'apparition d'e�ets indésirables tels que des retards, ouune exéution apériodique de la ommande, dûs à l'interation entre les tâhes de om-mandes, et les méanismes d'ordonnanement temps-réel [Hristu-Varsakelis 2005℄. Lese�ets de es dynamiques en temps-disret ont donné naissane à de nouveaux dé�s en equi onerne la stabilité et la stabilisation de tels systèmes, et de nouvelles théories ainsique de nouveaux outils ont été développés spéialement pour es systèmes dits éhan-140



tillonnés. En partiulier, es dernières années, deux problèmes prinipaux ont retenul'attention des automatiiens:P1) la stabilité des systèmes éhantillonnés ave un pas d'éhantillonnage variable;P2) le ontr�le dynamique des instants d'éhantillonnage.La dernière tendane onerne le ontr�le dynamique de l'éhantillonnage dans le butd'élargir les intervalles d'éhantillonnage, et ainsi réduire les oûts en termes de harge dealul, de bande passante de réseau, ou de onsommation d'énergie.ObjetifsLe travail présenté dans ette thèse se onentre sur la résolution de es deux problèmesP1) et P2). L'objetif prinipal est de modéliser une loi d'éhantillonnage qui permette deréduire la fréquene d'éhantillonnage pour les systèmes linéaires à temps invariant dansle temps (LTI) ommandés par retour d'état, tout en assurant leur stabilité, et ertainsritères de performane.Pour éviter tout problème d'ordonnanement, la robustesse vis-à-vis de la variationdu pas d'éhantillonnage sera également onsidérée. Les aspets de robustesse vis-à-vis de perturbations extérieures ou de retards dans la boule de ommande seront demême onsidérés, de sorte à prendre en ompte des phénomènes qui apparaissent lorsdu ontr�le en temps-réel de systèmes physiques. En�n, un o-design du ontr�leuret de la loi d'éhantillonnage sera proposé. Ii, pour réduire le onservatisme et of-frir des pas d'éhantillonnage enore plus longs, les gains du ontr�leur et les instantsd'éhantillonnage seront alulés en même temps.Tout au long de ette thèse, di�érentes lois de ontr�le de l'éhantillonnage serontproposées. Elles peuvent être utilisées pour aluler une simple borne supérieure del'éhantillonnage, dans le as d'un éhantillonnage variable dans le temps, ou pour on-tr�ler dynamiquement l'éhantillonnage, au moyen d'algorithmes pouvant être mis enplae soit hors-ligne, soit en-ligne.Struture de la thèseLe doument est organisé omme suit: 141



Résumé étendu en françaisChapitre 1Le premier hapitre présente une vue d'ensemble des di�érents problèmes, dé�s, et réentsaxes de reherhe dans le domaine des systèmes éhantillonnés en automatique. Toutd'abord, la notion de système éhantillonné est dé�nie, et les prinipaux problèmes ou-verts dans la littérature sont présentés. Ensuite, quelques onepts de stabilité générauxnéessaires à la ompréhension du travail sont rappelés. En�n, de nombreux axes dereherhe, théories, et résultats sont présentés onernant l'analyse de stabilité des sys-tèmes éhantillonnés ave éhantillonnage à pas onstant ou variable dans le temps, ouonernant le ontr�le dynamique de l'éhantillonnage. Les fores et faiblesses des dif-férentes approhes sont analysées, de façon à mettre en lumière les problèmes qui ontdéjà été résolus, et eux qu'il reste enore à résoudre, ou enore les points qu'il reste àaméliorer.Chapitre 2Dans le deuxième hapitre, un ontr�le par éhantillonnage dépendant de l'état est présentépour le as de systèmes LTI dé�nis par
ẋ(t) = Ax(t) +Bu(t), ∀t ∈ R+,

u(t) = −Kx(sk), ∀t ∈ [sk, sk+1).L'objetif est de onevoir une loi d'éhantillonnage qui va prendre en ompte l'état x(sk)du système, de manière à élargir les intervalles d'éhantillonnage, ou en d'autres termes,de générer les évènements d'éhantillonnage aussi peu fréquemment que possible. Pourelà, on onsidère la loi d'éhantillonnage
sk+1 − sk = τ(sk, x(sk)) ≡ τk ∈ (0, τmax(x(sk))], ∀k ∈ N,où τmax(x) représente l'éhantillonnage maximal assoié à l'état x, ave une fontiond'éhantillonnage dépendant de l'état τmax : Rn → R∗

+ que l'on va herher à maximiser.L'intérêt de ette formulation est qu'ii, l'éhantillonnage onsidéré peut être ontr�lé (ildépend de l'état), mais il peut aussi varier en fontion du temps. Ainsi, la stabilité estgarantie pour tout pas d'éhantillonnage variable dans le temps, et borné par la fontiond'éhantillonnage τmax. Notons que dans le as partiulier où la fontion d'éhantillonnageest onstante (τmax(x(sk)) = τ ∗), l'étude se résume à une analyse de stabilité robustelassique vis-à-vis d'un éhantillonnage variable.142



L'objetif est alors double: nous allons herher à maximiser la borne inférieure dela fontion d'éhantillonnage maximal τmax, qui orrespond à une borne supérieure destabilité robuste dans le as d'éhantillonnage variable, mais non dépendant de l'état, etnous allons aussi herher à maximiser la fontion d'éhantillonnage pour toute valeur del'état x(sk).La fontion d'éhantillonnage dépendant de l'état que nous proposons béné�ie d'uneonstrution hors-ligne basée sur des LMIs obtenues grâe à une artographie de l'espaed'état réalisée par un reouvrement de régions oniques Rs = {x ∈ Rn, xTΨsx ≥ 0} (voirFigure 3).
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Figure 3: Reouvrement de l'espae d'état de dimension 2 par q régions oniques RsLa fontion d'éhantillonnage est alors onstruite sur haune des régions, de par laloi
τmax(x) = τs, ∀x ∈ Rs, s ∈ {1, · · · , q}.Les outils utilisés dans la oneption de ette fontion d'éhantillonnage dépendantde l'état sont l'approhe par polytopes onvexes [Hetel 2006℄ adaptée pour permettrel'analyse de stabilité du système en temps ontinu, et la théorie de stabilité de Lyapunov-Razumikhin adaptée pour garantir la stabilité exponentielle pour le as de systèmes éhan-tillonnés, ave un taux de onvergene donné.Grâe à des exemples lassiques de la littérature, nous montrons qu'il est possibleave ette nouvelle approhe d'éhantillonnage dépendant de l'état d'éhantillonner moins143



Résumé étendu en françaissouvent en moyenne qu'ave un éhantillonnage périodique, tout en garantissant des per-formanes supplémentaires de stabilité, ou de rapidité de onvergene.Chapitre 3Dans le troisième hapitre, l'aspet de robustesse vis-à-vis de perturbations extérieures estonsidéré pour la oneption de la loi d'éhantillonnage dépendant de l'état. On onsidèrealors le système
ẋ(t) = Ax(t) +Bu(t) + Ew(t), ∀t ∈ R+,

u(t) = −Kx(sk), ∀t ∈ [sk, sk+1),ave une perturbation w supposée bornée en norme par rapport à l'état du système:
‖w(t)‖22 ≤ W‖x(sk)‖22, ∀t ∈ [sk, sk+1).Comme dans le deuxième hapitre, l'approhe est basée sur des onditions de stabilitéexponentielle de type Lyapunov-Razumikhin et des polytopes onvexes.Après avoir présenté les résultats de stabilité prinipaux, quatre appliations dif-férentes sont proposées.� La première onerne l'analyse de stabilité robuste vis-à-vis des variations du pasd'éhantillonnage.� Les trois autres appliations proposent di�érentes approhes de ontr�le dynamiquede l'éhantillonnage, ave pour objetif l'élargissement du pas d'éhantillonnage.Ces approhes sont présentées ave un degré de onservatisme roissant.� La moins onservative, mais la plus oûteuse en pratique en terme de alulen ligne est la tehnique dite d'event-triggered ontrol. Dans ette approhe,les instants d'éhantillonnage ont lieu lorsqu'une ertaine ondition analytiquen'est plus satisfaite. Pour assurer la stabilité du système ependant, il estnéessaire de véri�er ette ondition en temps réel, e qui néessite un matérieldédié pour analyser l'état du système en temps quasi-ontinu.� La deuxième approhe de ontr�le dynamique de l'éhantillonnage que l'onpropose est l'approhe dite de self-triggered ontrol, dans laquelle on essaied'estimer en ligne à haque pas d'éhantillonnage le prohain pas maximaladmissible.144



� En�n, le troisième et dernier algorithme proposé est le nouveau ontr�le paréhantillonnage dépendant de l'état, dans lequel une fontion estimant le prohainpas d'éhantillonnage maximal admissible en fontion de l'état du système estonstruite hors ligne, grâe à des LMIs, pour réduire le nombre de aluls enligne.Chaune de es appliations de ontr�le dynamique de l'éhantillonnage béné�-ie des résultats de l'analyse de stabilité robuste vis-à-vis des variations du pasd'éhantillonnage, puisque les pas d'éhantillonnage obtenus dans haune de estrois approhes sont minorés par la borne supérieure de stabilité robuste aluléedans le as de système ave éhantillonnage variable mais non dépendant de l'état.Il est montré grâe à des exemples de la littérature que la méthode proposée réduit leonservatisme par rapport aux travaux les plus réents, et que les résultats obtenus parles ontr�les de type event-triggered, self-triggered, et d'éhantillonnage dépendant del'état que nous proposons, sont très prohes, bien qu'ils soient de degrés de onservatismeroissant.Chapitre 4Dans le quatrième et dernier hapitre, une extension à l'analyse de stabilité pour lessystèmes perturbés ave des retards variables est traitée. Le système onsidéré (présentédans la Figure 4) est dé�ni par
ẋ(t) = Ax(t) +Bu(t) + Ew(t),

z(t) = Cx(t) +Du(t) ∀t ∈ R+,ave un ontr�le éhantillonné retardé
u(t) = −Kx(sk), ∀t ∈ [tk, tk+1).Les instants d'éhantillonnage sk et d'atuation tk sont liés par la loi

sk = tk − h(tk),ave un retard h(t) borné, et à dérivées bornées.Tout d'abord, une loi d'éhantillonnage dépendant de l'état assurant la stabilité L2 dusystème éhantillonné perturbé et retardé est onstruite, grâe à des LMIs, de la même145



Résumé étendu en français
ẋ(t) = Ax(t) + Bu(t) + Ew(t)

x(t)
u(t)

w(t) SYSTÈMECONTRÔLEUR A/NN/A
x(sk)

u(tk) = −Kx(sk)

sk+1 = sk + τ(sk, x(sk))

RÉSEAURÉSEAU Retard hkFigure 4: Système LTI éhantillonné ave perturbations et retards
manière que dans les deux préédents hapitres.Ensuite, le problème de stabilisation dans le as non retardé est onsidéré. L'objetifii est de onevoir un ontr�leur en parallèle ave la loi d'éhantillonnage dépendant del'état, de sorte à stabiliser le système LTI éhantillonné perturbé, et élargir enore plusles pas d'éhantillonnage admissibles. Tout d'abord, le as d'un ontr�le par retour d'étatlinéaire lassique est envisagé:

u(t) = −Kx(sk), ∀t ∈ [sk, sk+1).Puis, un nouveau ontr�leur dont les gains vont ommuter en fontion de l'état du systèmeest proposé:
u(t) = −Kσ(x(sk))x(sk), ∀t ∈ [sk, sk+1).Le o-design du ontr�leur et de la fontion d'éhantillonnage dépendant de l'état estbasé sur des LMIs obtenues grâe à la artographie de l'espae d'état présentée dansles préédents hapitres, et grâe à une nouvelle lasse de fontionnelles de Lyapunov-Krasovskii dont les matries ommutent en fontion de l'état du système:

Vσk
(t, xt, ẋt) = xT (t)Px(t) + V1(t, xt, ẋt) + V2,σ(x(sk))(t, xt, ẋt),ave un terme prenant en ompte le retard,

V1(t, xt, ẋt) =

∫ t

t−h(t)

ẋT (s)Rẋ(s)ds+ · · · ,146



et un terme prenant en ompte l'éhantillonnage,
V2,σ(x(sk))(t, xt, ẋt) = (tk+1 − t)

∫ t

tk

ẋT (s)Uσ(x(sk))ẋ(s)ds+ · · · ,ave des matries dépendantes de l'état.Il est important de noter que ette nouvelle lasse de fontionnelles de Lyapunov-Krasovskii réduit le onservatisme introduit pour le as d'éhantillonnage dépendant del'état, mais aussi dans le as d'éhantillonnage variable mais non dépendant de l'état,omme il est montré dans un des exemples traités.Conlusions et perspetivesCette thèse a été dédiée à l'analyse de stabilité robuste et à la stabilisation de systèmesave des pas d'éhantillonnage variables. Une attention partiulière a été donnée auontr�le dynamique du pas d'éhantillonnage. L'objetif prinipal était de onstruire deslois d'éhantillonnage permettant de réduire le nombre d'instants d'éhantillonnage pourles systèmes LTI ontr�lés par retour d'état linéaire.Dans e travail, nous avons proposé une toute nouvelle approhe de ontr�le dynamiquede l'éhantillonnage, que nous avons appelée "éhantillonnage dépendant de l'état". Elleonsiste en la onstrution hors-ligne d'une fontion d'éhantillonnage dépendant de l'étatqui permet d'élargir les pas d'éhantillonnage de la ommande par retour d'état, grâeà des LMIs basées sur une artographie de l'espae d'état. Un des avantages majeursde ette onstrution hors-ligne est qu'elle permet de réduire le nombre de aluls en-ligne néessaires pour estimer en temps-réel le prohain pas d'éhantillonnage maximaladmissible. De plus, ette approhe permet d'optimiser la borne inférieure de la fontiond'éhantillonnage en alulant les paramètres de Lyapunov optimaux, e qui signi�e quele pas d'éhantillonnage maximal alulé dans le pire des as sera optimisé. Cette borneinférieure de la fontion d'éhantillonnage dépendant de l'état peut aussi être utiliséeomme une borne supérieure pour le problème lassique de stabilité robuste de systèmeséhantillonnés ave un pas d'éhantillonnage variant dans le temps.Tout d'abord, le as de système éhantillonné LTI idéal (sans auune forme de per-turbations ni d'inertitudes) a été onsidéré. Dans e ontexte, une extension de lathéorie lassique de Lyapunov-Razumikhin pour garantir la stabilité exponentielle des sys-tèmes éhantillonnés a été proposée. Une onstrution d'enveloppe onvexe adaptée pourl'analyse de stabilité en temps ontinu a ensuite été appliquée a�n d'obtenir les LMIs util-147



Résumé étendu en françaisisées dans la onstrution de la fontion d'éhantillonnage dépendant de l'état. L'approhea été illustrée par des exemples numériques tirés de la littérature pour lesquels il a étémontré que le nombre de mises à jour de la ommande est réduit par rapport au asd'éhantillonnage périodique. Un autre avantage est que l'éhantillonnage dépendant del'état que nous proposons assoie des propriétés de robustesse (puisque des intervallesd'éhantillonnage plus ourts stabiliseraient également le système) ave du réalisme (nousrappelons que l'éhantillonnage périodique est une hypothèse idéaliste, et impossible àréaliser dans les situations de ontr�le temps-réel).Ensuite, l'aspet de robustesse vis-à-vis de perturbations externes a été introduit.Dans e ontexte, la préédente méthode a été améliorée et développée de façon à per-mettre l'utilisation d'une approhe par polytopes onvexes en présene de perturbations.Plusieurs fontions d'éhantillonnage ont alors été proposées, haune étant assoiée à untype d'appliation partiulière. La première appliation onsiste en une analyse robuste destabilité vis-à-vis d'un éhantillonnage à pas variable dans le temps, qui permet de alulerune estimation de la borne maximale admissible de l'éhantillonnage dans le as d'un paséhantillonnage aléatoire variant dans le temps, tout en prenant en ompte la présene deperturbations. Les trois autres appliations proposent di�érentes approhes de ontr�le dy-namique de l'éhantillonnage, ave pour objetif d'élargir les intervalles d'éhantillonnage:event-triggered ontrol, self-triggered ontrol, et le nouvel éhantillonnage dépendant del'état. Chaune de es approhes de ontr�le dynamique de l'éhantillonnage pro�te desrésultats obtenus grâe à l'analyse de stabilité robuste vis-à-vis d'un éhantillonnage à pasvariable dans le temps, puisque es derniers permettent d'optimiser la borne inférieure dela fontion d'éhantillonnage dans haune des trois appliations proposées.En�n, une extension à l'analyse de stabilité des systèmes LTI ave perturbations etretards a été proposée, et la question de la stabilisation a été traitée. Dans e ontexte,nous avons développé plusieurs outils permettant de onstruire un ontr�leur en parallèleave la fontion d'éhantillonnage dépendant de l'état, de manière à stabiliser le systèmeLTI perturbé et à retard onsidéré, et élargir enore plus les intervalles d'éhantillonnageadmissibles. Deux ontr�leurs di�érents ont été proposés: un ontr�leur lassique parretour d'état linéaire, et un nouveau ontr�leur dont les gains ommutent en fontion del'état du système. Le o-design du ontr�leur et de la fontion d'éhantillonnage dépendantde l'état est basé sur des LMIs obtenues grâe à une artographie de l'espae d'état,dans le adre de la méthode d'"éhantillonnage dépendant de l'état" proposée, et grâeà une nouvelle lasse de fontionnelles de Lyapunov-Krasovskii (LKF) dont les matriesommutent en fontion de l'état du système. Cette ommutation sur les matries de la148



fontionnelle permet d'adapter la LKF à haque région de l'espae d'état. De plus, ettenouvelle lasse de LKF permet également de réduire le onservatisme même dans le asd'une analyse de stabilité robuste vis-à-vis d'un éhantillonnage à pas variable, mais nedépendant pas de l'état, omme ela est montré à l'aide un exemple numérique.Pour onlure, nous sommes onvainus que les perspetives qui émergent des travauxprésentés dans ette thèse sont multiples.Tout d'abord, un axe de reherhe intéressant serait l'extension des résultats pro-posés à une lasse plus large de systèmes éhantillonnés, omme les systèmes homogènesou polynomiaux par exemple. Dans e as, le ontr�le dynamique de l'éhantillonnagepourrait béné�ier à la fois des avantages de l'approhe par éhantillonnage dépendantde l'état présentée dans le as linéaire dans ette thèse, et des avantages des propriétésd'homogénéité (ou de mise à l'éhelle, suivant la lasse de système onsidérée) des fon-tions d'éhantillonnage dévoilées dans [Anta 2010℄ par exemple.Un autre axe de reherhe qu'il serait intéressant d'étudier serait l'extension des ré-sultats proposés sur l'éhantillonnage dépendant de l'état à une plus large lasse de on-tr�leurs, ou en inluant d'autres types de performanes de ommande. Par exemple, desextensions aux as de ontr�le par retour de sortie ou de ontr�le basé observateur seraienttrès utiles pour une large variété de systèmes pour lesquels un ontr�le par retour d'étatn'est physiquement pas possible. De même, la mise en plae d'un ontr�le ave rejet deperturbations serait très intéressante, pour permettre la stabilisation de l'état d'un sys-tème vers le point d'équilibre dans le as de systèmes ave des perturbations onstantesou à variation lente.En�n, il serait intéressant d'étendre les résultats de stabilité et de stabilisation présen-tés pour les systèmes ave un éhantillonnage dépendant de l'état aux systèmes ave re-tards dépendant de l'état. L'analyse de tels systèmes est prinipalement motivée parles appliations qui apparaissent dans le adre des systèmes ommandés par réseaux(voir [Briat 2010℄ pour la modélisation de la ongestion sur internet, et [Donkers 2009℄pour l'interation entre les tâhes de ommande et les algorithmes d'ordonnanement parexemple). Dans e ontexte, il serait intéressant de onstruire des outils pour analyser lastabilité vis-à-vis d'un retard dépendant de l'état τ(x), ou même de proposer des algo-rithmes d'ordonnanement qui permettraient de ontr�ler e retard dépendant de l'état,de façon à obtenir la stabilité.
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Appendix AProofs
A.1 Proofs from Chapter 2Proof of Propositions 2.1 and 2.4: Let α > 1, σ̄ > 0 and β > 0 be given. Ifthere exist a quadrati funtion V (x) = xTPx, P = P T ≻ 0 ∈ Mn(R) and a funtion
τ : Rn → R+, 0 < δ ≤ τ(x) ≤ σ̄, satisfying the onditions of Proposition 2.1, thenthe usual LRF theory [Kolmanovskii 1992℄ adapted to sampled data systems ensures theasymptoti stability of the system origin for both Propositions 2.1 and 2.4.Let us take suh parameters satisfying (C1), and onsider a time-varying samplingfuntion τ̃ : R+ × R

n → R+ de�ning sampling instant sequenes by the law sk+1 =

sk + τ̃(sk, x(sk)), k ∈ N and satisfying 0 < δ ≤ τ̃ (t, x) ≤ τ(x) for all t ∈ R+ and x ∈ R
n.During a sampling interval [0, τ̃(0, x)) with initial state x, two ases may our.� The �rst ase is that during that time interval, V (ϕτ (σ, x)) never goes below V (x)

α
.Then, the di�erential inequality V̇ (ϕτ (σ, x)) + 2βV (ϕτ (σ, x)) ≤ 0 is satis�ed for all

σ ∈ [0, τ̃(0, x)) aording to (C1) and therefore V (ϕτ(τ̃ (0, x), x)) ≤ e−2βτ̃(0,x)V (x).� In the other ase, V (ϕτ (σ, x)) manages to go below V (x)
α

during that time interval.Aording to (C1), V̇ (ϕτ (σ, x)) ≤ 0 over the set Υx = {y ∈ Rn, V (y) ≥ V (x)
α

},and one an show as in the framework of [Blanhini 1999℄ that the set Ῡx = {y ∈
Rn, V (y) ≤ V (x)

α
} is positive invariant. Therefore, if V (ϕτ (σ, x)) goes below V (x)

α
,one will have V (ϕτ (τ̃(0, x), x)) ≤ V (x)

α
. Moreover, if β satis�es β ≤ ln(α)

2σ̄
, then weget V (ϕτ (τ̃(0, x), x)) ≤ e−2βσ̄V (x) ≤ e−2βτ̃(0,x)V (x).Therefore, for any initial state x0, for any t ∈ R+, t ∈ [sk, sk+1) for some k ∈ N, onehas V (x(t)) ≤ V (x(sk)) ≤ e−2β

∑

k−1
i=0 τ̃(si,x(si))V (x0) = e−2βskV (x0) ≤ e−2β(t−σ̄)V (x0). As151



Appendix A. Proofsa onsequene, one an show that ‖x(t)‖2 ≤
(√

λmax(P )
λmin(P )

eβσ̄) e−βt‖x0‖2, whih proves the
β-stability of both Propositions 2.1 (with τ̃(t, x) = τ(x) for all t ∈ R+ and x ∈ R

n) and2.4.Proof of Lemma 2.5: Let us take a quadrati funtion V (x) = xTPx, P = P T ≻
0 ∈ Mn(R), salars α > 1, σ̄ > 0, and 0 < β ≤ ln(α)

2σ̄
, and a funtion τ : Rn → R+upper-bounded by σ̄, and let us rewrite the propositions used in the stability ondition ofProposition 2.1.Rewrite αV (ϕτ (σ, x)) ≥ V (x) as [ϕτ (σ, x)

x

]T [

−αP 0

0 P

][

ϕτ (σ, x)

x

]

≤ 0, and V̇ (ϕτ (σ, x))+

2βV (ϕτ (σ, x)) ≤ 0 as [ϕτ (σ, x)

x

]T [

ATP + PA+ 2βP −PBK

−KTBTP 0

][

ϕτ (σ, x)

x

]

≤ 0. Usingthe lossless version of the S-proedure [Boyd 1994℄ (see Theorem D.3), the stability on-dition from Proposition 2.1 is satis�ed if and only if there exists ε ≥ 0 suh that
[

ϕτ (σ, x)

x

]T

Ω

[

ϕτ (σ, x)

x

]

≤ 0, with Ω given in (2.6). One an �nally derive Lemma2.5 stability onditions after expressing the evolution of the system state: ϕτ (σ, x) =
(

I +

∫ σ

0

esAds(A−BK)

)

x = Λ(σ)x.Proof of Theorem 2.9: Let x be in R
n. There exists a region Rs as in (2.8) suhthat x ∈ Rs and τ(x) = τs. Using the lossless version of the S-proedure [Boyd 1994℄(see Theorem D.3), one an see that for any κ ∈ Ks the ondition xTΦκ,sx ≤ 0, x ∈ Rs issatis�ed if and only if there exists a salar εκ,s ≥ 0 suh that Φκ,s+εκ,sΨs � 0. Therefore,if the ondition Φκ,s + εκ,sΨs � 0 is satis�ed for all s ∈ {1, · · · , q} and κ ∈ Ks, thenfor all x ∈ Rn, for all σ ∈ [0, τ(x)], xTΦ(σ)x ≤ 0, aording to (2.10), and the stabilityonditions from Lemma 2.5 are satis�ed.Proof of Corollary 2.11: This omes naturally from Theorem 2.9 and Proposition2.4 when working with a single region: Rn itself.A.2 Proofs from Chapter 3Proof of Proposition 3.1: Consider salars α > 1, r > 0, σ̄ > 0 and 0 < β ≤ ln(α)

rσ̄
,a map τmax : Rn → R+, 0 < δ ≤ τmax(x) ≤ σ̄, and a sampling funtion τ : R+ ×

Rn → R+ satisfying (3.3). Consider a ontinuously di�erentiable funtion V : Rn →
R+ and salars 0 < γ ≤ γ̄ satisfying (H1) and (H2). Assuming that the funtions
fk are loally Lipshitz in their seond variable and that the perturbation w is loally152



A.2. Proofs from Chapter 3essentially bounded guarantees the existene and uniqueness of solution for the di�erentialequation (3.6) (see the framework of [Manilla-Aguilar 2005℄). The usual LRF theory[Kolmanovskii 1992℄ then ensures the asymptoti stability of the onsidered swithednonlinear system.In order to analyse the onvergene rate of the system's state, we analyse the evolutionof V (x(t)) over eah time interval [sk, sk+1) between two onseutive swithes. During suha time interval, one has x(t) = φτ,w(t, x0) = φτ,w(t−sk, x(sk)) = φτ,w(σ, x) = φτmax,w(σ, x),with the notations σ = t− sk and x = x(sk). With these notations, studying V (x(t)) for
t ∈ [sk, sk+1) amounts to studying V (φτmax,w(σ, x)) for σ ∈ [0, τ(sk, x)). During that timeinterval, two ases may our.� In the �rst ase, αV (φτmax,w(σ, x)) > V (x) for all σ ∈ [0, τ(sk, x)). Aordingto (H2), sine τ(sk, x) ≤ τmax(x), the di�erential inequality V̇ (φτmax,w(σ, x)) +

rβV (φτmax,w(σ, x)) ≤ 0 is then satis�ed for all σ ∈ [0, τ(sk, x)), and thus, one willhave V (φτmax,w(σ, x)) ≤ e−rβσV (x), for all σ ∈ [0, τ(sk, x)).� In the seond ase, there exists σ ∈ [0, τ(sk, x)) suh that αV (φτmax,w(σ, x)) ≤
V (x). Let us denote σ∗ = inf{σ ∈ [0, τ(sk, x))|αV (φτmax,w(σ, x)) ≤ V (x)}. For
σ ∈ [0, σ∗), using the same arguments as in the previous ase allows for proving that
V (φτmax,w(σ, x)) ≤ e−rβσV (x). Let us now see what happens for σ ∈ [σ∗, τ(sk, x)).Aording to (H2), V̇ (φτmax,w(σ, x)) ≤ 0 over the set Υx = {y ∈ Rn, αV (y) ≥ V (x)},and one an show as in the framework of [Blanhini 1999℄ that the set Ῡx = {y ∈
Rn, αV (y) ≤ V (x)} is positively invariant. Therefore, for σ ∈ [σ∗, τ(sk, x)), one has
αV (φτmax,w(σ, x)) ≤ V (x). Then, sine β ≤ ln(α)

rσ̄
, and with the assumption thatthe sampling map is upper-bounded by σ̄ (and thus σ ≤ σ̄), one an show that

V (φτmax,w(σ, x)) ≤ e−rβσ̄V (x) ≤ e−rβσV (x).Therefore, for any initial state x0, for any t ∈ R+ (t ∈ [sk, sk+1) for some k ∈ N), onehas V (x(t)) ≤ e−rβ[(
∑

k−1
i=0 τ(si,x(si)))+(t−sk)]V (x0) = e−rβtV (x0). As a onsequene, using(H1), one an show that ‖x(t)‖2 ≤ ( γ̄

γ

)
1
r e−βt‖x0‖2, whih proves the β-stability.Proof of Proposition 3.2: This is a partiular ase of Proposition 3.1, with thesampled-data system S whih an be seen as a sublass of the swithed nonlinear system{(3.3),(3.6)}, with the assumption (3.4) whih ensures the perturbation w is loally essen-tially bounded, and with V (x) = xTPx, P ∈ S+∗

n , r = 2, γ = λmin(P ), and γ̄ = λmax(P ).153



Appendix A. ProofsProof of Lemma 3.3: Consider a quadrati funtion V (x) = xTPx, P ∈ S+∗
n , salars

α > 1, σ̄ > 0, and 0 < β ≤ ln(α)
2σ̄

, and a sampling map τmax : Rn → R+ upper-bounded by
σ̄. Let us rewrite the propositions from (H3) using the dynamis of the system S.Rewrite αV (ϕτmax,w(σ, x)) ≥ V (x) as [ϕτmax,w(σ, x)

x

]T [

−αP 0

∗ P

][

ϕτmax,w(σ, x)
x

]

≤ 0,and V̇ (ϕτmax,w(σ, x)) + 2βV (ϕτmax,w(σ, x)) ≤ 0 as 


ϕτmax,w(σ, x)
x

w(σ)









T

Ω̃









ϕτmax,w(σ, x)
x

w(σ)









≤ 0,with Ω̃ =









ATP + PA+ 2βP −PBK PE

∗ 0 0

∗ ∗ 0









. Now note that the evolution of the statesatis�es
ϕτmax,w(σ, x) = ϕτmax,0(σ, x) + Jw(σ), (A.1)where the term ϕτmax,0(σ, x) = Λ(σ)x, with Λ(σ) de�ned in (3.8), orresponds to the evo-lution of the state without perturbations, and where the term Jw(σ), de�ned in (3.9),represents the e�et of the disturbane on the system's evolution.Using these notations, one an use the lossless version of the S-proedure [Boyd 1994℄ (seeTheorem D.3) to show that the stability ondition (H3) from Proposition 3.2 is satis�ed ifand only if there exists ε ≥ 0 suh that (3.7) is satis�ed for all x ∈ Rn and σ ∈ [0, τmax(x)].Proof of Theorem 3.4: Consider a quadrati funtion V (x) = xTPx, P ∈ S+∗

n , salars
α > 1, σ̄ > 0, 0 < β ≤ ln(α)

2σ̄
, and W ≥ 0, and a sampling map τmax : Rn → R+ upper-bounded by σ̄.The idea of the proof is to �nd an upper-bound independent of the perturbation w forthe left part of equation (3.7). The left part of equation (3.7) is equal to

Gw(σ, x) ≡ xT (Λ(σ)TM1Λ(σ)− Λ(σ)TPBK −KTBTPΛ(σ)− εP )x

+Jw(σ)
TM1Jw(σ) + Jw(σ)

TM2x+ xTMT
2 Jw(σ)

+Jw(σ)
TM3w(σ) + w(σ)TMT

3 Jw(σ) + w(σ)TM4x+ xTMT
4 w(σ).

(A.2)In order to upper bound this term independently of the perturbation, we use the inequality
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A.2. Proofs from Chapter 3in Theorem D.5, whih shows that for any matries Φ1, Φ2 ∈ S+∗
n , and Φ3 ∈ S+∗

nw
, we have

Gw(σ, x) ≤ xT
[

Λ(σ)TM1Λ(σ)− Λ(σ)TPBK −KTBTPΛ(σ)

−εP +M2(σ)
TΦ−1

1 M2(σ) +M4(σ)
TΦ−1

3 M4(σ)
]

x

+w(σ)T
[

MT
3 Φ

−1
2 M3 + Φ3

]

w(σ) + Jw(σ)
T [M1 + Φ1 + Φ2] Jw(σ).

(A.3)Using a lassi inequality and assumption (3.4), the term w(σ)T
[

MT
3 Φ

−1
2 M3 + Φ3

]

w(σ)from equation (A.3) an be bounded as follows:
w(σ)T

[

MT
3 Φ

−1
2 M3 + Φ3

]

w(σ) ≤ λmax(MT
3 Φ

−1
2 M3 + Φ3)w(σ)

Tw(σ)

≤ Wλmax(MT
3 Φ

−1
2 M3 + Φ3)x

Tx.
(A.4)Let a salar η ≥ 0 be suh that [Φ3 − ηI MT

3

∗ −Φ2

]

� 0, as assumed in (3.11). Usingthe Shur omplement, one an show that this is equivalent to MT
3 Φ

−1
2 M3 + Φ3 � ηI.Therefore, (A.4) leads to

w(σ)T
[

MT
3 Φ

−1
2 M3 + Φ3

]

w(σ) ≤ WηxTx. (A.5)We denote Q = M1+Φ1+Φ2. The other term from (A.3), Jw(σ)
TQJw(σ), an be writtenas

Jw(σ)
TQJw(σ) =

(
∫ σ

0

eA(σ−s)Ew(s)ds

)T

Q

(
∫ σ

0

eA(σ−s)Ew(s)ds

)

.Let us assume that Q � 0 (we an hoose Φ1 and Φ2 so as to satisfy this ondition. UsingJensen's inequality (Theorem D.4), one gets
Jw(σ)

TQJw(σ) ≤ σ

∫ σ

0

w(s)TET
(eA(σ−s)

)T
Q
(eA(σ−s)

)

Ew(s)ds.Then, using the inequality in Theorem D.6 along with some other lassi inequalities, aswell as assumption (3.4), one gets
Jw(σ)

TQJw(σ) ≤ σλmax(Q)
∫ σ

0
w(s)TET

(eA(σ−s)
)T (eA(σ−s)

)

Ew(s)ds

≤ σλmax(Q)
∫ σ

0
e(σ−s)λmax(A+AT )w(s)TETEw(s)ds

≤ σλmax(Q)λmax(ETE)
∫ σ

0
e(σ−s)λmax(A+AT )‖w(s)‖22ds

≤ σWλmax(Q)λmax(ETE)
(

∫ σ

0
eλmax(A+AT )sds

)

‖x‖22
= σWλmax(Q)λmax(ETE)fA(σ)x

Tx, 155



Appendix A. Proofswith fA(σ) de�ned in (3.15). If Q also satis�es Q � µI, for a ertain µ ≥ 0, then one has:
Jw(σ)

TQJw(σ) ≤ σWµλmax(ETE)fA(σ)x
Tx. (A.6)Implementing inequalities (A.5) and (A.6) in (A.3), it is lear that Gw(σ, x) ≤ xTΠ(σ)x,with Π(σ) de�ned in (3.13), and therefore, if xTΠ(σ)x ≤ 0 for all x ∈ Rn and for all

σ ∈ [0, τmax(x)], then the stability onditions from Lemma 3.3 are satis�ed, whih endsthe proof.Proof of Lemma 3.7: Sine the sampling map is state-independent, one an removethe state-dependeny in (3.12) by rewriting the inequality under the form of a parameter-dependent LMI: Π(σ) � 0, ∀σ ∈ [0, τ
(global)max ]. Then, applying the extended version of theShur omplement allows to remove the inverse terms Φ−1

1 and Φ−1
3 that appear in theequation (3.13) of Π(σ) and ensures the equivalene between Π(σ) � 0 and (3.17).Proof of Theorem 3.8: If the ondition ∆̄κ(τ

(global)max ) � 0 is satis�ed for all κ ∈
K(τ

(global)max ), (3.19) ensures that ∆(σ) � 0 for all σ ∈ [0, τmax(x)]. Therefore, by usingthe result from Lemma 3.7, we show that the stability onditions from Theorem 3.4 aresatis�ed, and thus the system S is globally β-stable.Proof of Lemma 3.11: It is lear that for the sampled-data system {(3.1),(3.2),(3.4)}with sampling intervals satisfying sk+1 − sk ∈ [δ, σ̄], the stability onditions from Lemma3.3 an be adapted by replaing in their statement x by x(sk), ϕτmax,w(σ, x) by x(t), and
σ by t − sk, and by verifying the onditions for all t ∈ [sk, sk+1] and k ∈ N instead ofveryfying them for all x ∈ Rn and σ ∈ [0, τmax(x)]. From this, by rewriting the inequality(3.7) from Lemma 3.3, one an see that the studied system is globally β-stable if for all
t ∈ [sk, sk+1], k ∈ N,

[

x(t)

x(sk)

]T [

ATP + PA+ εαP + 2βP PBK

∗ εP

][

x(t)

x(sk)

]

+ x(t)TPEw(t) + w(t)TETPx(t) ≤ 0.Using the same tools (Theorem D.5) as in the proof of Theorem 3.4, it is possible to upper
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A.2. Proofs from Chapter 3bound the rossed term in the left part of this expression as follows:
x(t)TPEw(t) + w(t)TETPx(t) ≤ x(t)TPEΦ−1ETPx(t) + wT (t)Φw(t)

≤ x(t)TPEΦ−1ETPx(t) +Wλmax(Φ)xT (sk)x(sk),with any matrix Φ ∈ S+∗
nw
. Setting Φ = I and using this majoration shows that if (3.20)is satis�ed, then the system is globally β-stable.Proof of Theorem 3.12: If the sampling map τmax and the funtion K̃ : Rn → P(K̄)are suh that he assertion (3.22) and the triggering ondition (3.22a) are satis�ed for all

x ∈ Rn, it is lear that the ondition (3.12) from Theorem 3.4 is satis�ed for all x ∈ Rnand all σ ∈ [0, τmax(x)]. Then, the other assumptions and onditions guarantee that allthe stability onditions from Theorem 3.4 are satis�ed.Proof of Theorem 3.16: Consider salars ρs ≥ 0 suh that the LMIs ∆̄κ(τ
(s)max) +

[

ρsΨs 0

∗ 0

]

� 0 are satis�ed for all s ∈ {1, · · · , q} and κ ∈ K(τ
(s)max). Let x ∈ Rn. Thereexists s ∈ {1, · · · , q} suh that x ∈ Rs. Aording to (3.28), one has∆(σ)+

[

ρsΨs 0

∗ 0

]

� 0for all σ ∈ [0, τ
(s)max]. Thus, using the onstrution of ∆ (equation (3.17)) and the Shuromplement, we get that Π(σ) + ρsΨs � 0 for all σ ∈ [0, τ

(s)max], with Π de�ned in (3.13).Sine x ∈ Rs = {x ∈ Rn, xTΨsx ≥ 0}, the S-proedure [Boyd 1994℄ (see Theorem D.3)then ensures that xTΠ(σ)x � 0 for all σ ∈ [0, τ
(s)max = τmax(x)]. Therefore, one an see thatthe onditions from Theorem 3.4 are satis�ed, whih ends the proof.
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Appendix B
Constrution of the oni regionsovering

B.1 Isotropi state-overing: using the spherial oor-dinates of the stateThe �rst oni overing onsists in designing setors that desribe entirely the unit n-sphere. Here, the parametrization we propose uses the generalized spherial oordinatesof the state x in Rn: (r, θ1, · · · , θn−1), provided by the relations
r = ‖x‖2,
x1 = rosθ1,
x2 = rsinθ1osθ2,...
xn−1 = rsinθ1 . . . sinθn−2osθn−1,

xn = rsinθ1 . . . sinθn−2sinθn−1,with θ1, θ2, . . . , θn−2 ∈ [0, π], and θn−1 ∈ [−π, π]. Eah region Rs of the overing isassoiated to some range of the (n− 1) angular oordinates θi:
(x ∈ Rs) ⇔

(

∀i ∈ {1, · · · , n− 1}, θi ∈ [θ−i,s, θ
+
i,s]
)

.An illustration of suh oni regions in R2 is shown in Figure B.1.Then, in order to build the matries Ψs de�ning these regions Rs (2.8), one an use159



Appendix B. Constrution of the oni regions overing
x1

x2

R1

τ1
R2

R3Rq−1

Rq

R1

R2

R3 Rq−1

Rq

τ2

τ3
τq−1

τq

· · ·

· · ·

Figure B.1: Covering the state-spae of dimension 2 with q oni regions Rssome geometri arguments: if x ∈ Rs, then for θ−+
i,s ∈ [0, π

2
),

∀i ∈ {1, · · · , n− 2},
{

x2
i tan

2 θ−i,s ≤ x2
i+1 + · · ·+ x2

n

x2
i tan

2 θ+i,s ≥ x2
i+1 + · · ·+ x2

n

, (B.1)and
{

xn−1 ≥ tan θ−n−1,sxn

xn−1 ≤ tan θ+n−1,sxn

. (B.2)Similar onditions an be obtained for θ−+
i,s ∈ (π

2
, π]. The design of the oni forms Ψsfrom (B.1) and (B.2) is then trivial.Note that with this overing, the state position is haraterized by its only n − 1angular oordinates θ1, · · · , θn−1. Thus, situating x ∈ R

n in this oni overing is easy,whih is important sine it has to be done in real-time. The omputational omplexityto alulate the angular oordinates and �nd the right region is linear in the system'sdimension (O(n)), and does not depend on the number of regions. More preisely, onean show that 9n− 7 elementary operations are required (additions, multipliations anddivisions), added to 1 square-root, n − 1 arosine, and n − 2 sine. Also, note that thesmaller the ranges [θ−i,s, θ+i,s] of eah oni region, the loser the obtained state-dependentsampling funtion will be from the optimal sampling funtion.A drawbak of this overing tehnique is that the number of regions to be onsidered160



B.2. Anisotropi state-overing: using the disrete-time behaviour of the systemexponentially inreases with the dimension n of the system. If one divides eah angularoordinate range in m equal setors (what we all "isotropi overing"), this provides apreision of π
m
rad for eah angle and one needs mn−1 oni regions. This means that atradeo� between the o�ine omputational omplexity and the auray of the approxi-mation has to be ahieved. Furthermore, there is a link between the onservatism of theproposed solution and the auray of approximation.B.2 Anisotropi state-overing: using the disrete-timebehaviour of the systemA seond overing tehnique involves the dynamis of the disrete-time system. Assumethat the onditions from Corollary 2.11 are satis�ed for a given τ ∗ = τ ∗sub. Then, thereexists a matrix P = P T ≻ 0 suh that

xT (ΛT (τ ∗)PΛ(τ ∗)− e−2βτ∗P )x ≤ 0 (B.3)is satis�ed for all x ∈ Rn, with Λ the transition matrix funtion de�ned in (2.7).The oni regions will be obtained by using the regions desribed by (B.3) for valuesof τ larger than τ ∗. For a given salar σ̄ > τ ∗, onsider the following set of sampling times
Ts = τ ∗ + (s− 1) σ̄−τ∗

q−1
, s ∈ {1, · · · , q} (τ ∗ ≤ Ts ≤ σ̄), and design the oni regions as:

Rs = {x ∈ R
n, xT (ΛT (Ts)PΛ(Ts)− e−2βTsP )x ≤ 0}.Suh regions ensure that the funtion V (x) = xTPx is dereasing at sampling times alongthe solutions of the disrete-time model

xk+1 = Λ(τ(xk))xk, sk+1 = sk + τ(xk),when τ(x) = maxs∈{1,··· ,q} s.t. x∈Rs
Ts, ∀x ∈ Rn.Using Theorem 2.9 allows us to guarantee the deay of the Lyapunov-Razumikhinfuntion suh as in Proposition 2.1 for the solution of the ontinuous-time model S. Notethat the ase s = 1 orresponds to R1 = Rn.In this onstrution, the division is ahieved on the time-variable Ts rather than onangular oordinates. The advantage is that the number of regions does not depend onthe dimension of the system and is proportional to the numerial preision, whereas in161



Appendix B. Constrution of the oni regions overingthe previous overing onstrution, it was an exponential funtion. The drawbak is thatmore online omputation is needed for situating the sampled state in its orrespondingoni region: the inequalities xT (ΛT (Ts)PΛ(Ts) − e−2βTsP )x = xT (−Ψs)x ≤ 0 have tobe heked. Thus, with this seond onstrution, the tradeo� moves to o�ine/onlineomputational e�ort. At eah sampling instant, the number of additions required to �ndthe region is at most (q − 1)(n− 1)(n+ 1), and the number of multipliations is at most
(q − 1)n(n+ 1). The omputational omplexity is in O(qn2).
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Appendix C
Contrution of a polytopi embeddingbased on Taylor polynomials

C.1 General ontrution for polynomial matrix fun-tionsThe polytopi embedding approah used in this thesis is based on the results from[Hetel 2007℄ and [Hetel 2006℄, for whih onvex polytopes are designed around matrixexponentials using their Taylor polynomial approximation. The onstrution for polyno-mial matrix funtions is based on the following property:Theorem C.1 ( [Hetel 2007℄) Consider the matrix polynomial funtion
L(σ) = L0 + L1σ + · · ·+ LNσ

Nsuh that the variable σ is bounded and positive: 0 ≤ σ ≤ σ ≤ σ̄.Then we an �nd a onvex polytope formed by N +1 verties whih enveloppes the matrixpolynomial funtion L(σ), i.e. there exists an indexed family of salars µi(σ) > 0, i ∈
{0, · · · , N}, verifying N

∑

i=1

µi(σ) = 1, and suh that
L(σ) =

N
∑

i=1

µi(σ)Ui163



Appendix C. Contrution of a polytopi embedding based on Taylor polynomialswhere the matries Ui represent the verties of the polytope and are given by
U0 = L0 + σL1 + σ2L2 + · · ·+ σNLN

U1 = L0 + σ̄L1 + σ2L2 + · · ·+ σNLN

U1 = L0 + σ̄L1 + σ̄2L2 + · · ·+ σNLN...
UN = L0 + σ̄L1 + σ̄2L2 + · · ·+ σ̄NLNC.2 Case of unperturbed LTI systems (Chapter 2)Here, we propose a onstrution of the onvex polytope satisfying (2.10) for the ideal LTIsampled-data system (2.1). Let s ∈ {1, · · · , q} be the index of the onsidered region of thestate-spae. The polytope design we propose is based on a Taylor series approximation oforder N performed on l subdivision intervals of [0, σ̄]. The idea behind these subdivisionsis to build small onvex polytopes loally for eah time interval subdivision, in order tore�ne the preision of the onvex embedding. A 2D representation of the proposed onvexpolytope design is shown in Figure C.1. Note that eah loal polytope subdivision is om-posed of N+1 verties, sine eah of them is designed using a Taylor series approximationof order N .

Φ(σ), σ ∈ [0, τs]
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Figure C.1: 2D representation of the onvex polytope design using polytopi subdivisionsaround the matrix funtion Φ over the time interval σ ∈ [0, τs]164



C.2. Case of unperturbed LTI systems (Chapter 2)In this onstrution, we de�ne the set of vertex indexes
Ks = {0, · · · , N} ×

{

0, · · · ,
⌊

τsl

σ̄

⌋}

, (C.1)with integers N ≥ 0 and l ≥ 1, and design the verties Φ(i,j),s as
Φ(i,j),s = Φ̂(i,j),s + νI, (C.2)with







Φ̂(i,j),s =
(

∑i
k=0 Lk,j

(

σ̄
l

)k
) if j < ⌊ τsl

σ̄

⌋

,

Φ̂(i,j),s =
(

∑i

k=0 Lk,j

(

τs − jσ̄

l

)k
) otherwise, (C.3)

L0,j = ΠT
3,jΠ1Π3,j − εP −ΠT

3,jΠ2 − ΠT
2Π3,j ,

L1,j = ΠT
4,j(Π1Π3,j −Π2) + (ΠT

3,jΠ
T
1 −ΠT

2 )Π4,j,

Lk≥2,j = ΠT
4,j

(Ak−1)T

k!
(Π1Π3,j − Π2) + (ΠT

3,jΠ
T
1 − ΠT

2 )
Ak−1

k!
Π4,j

+ΠT
4,j

(

∑k−1
i=1

(Ai−1)T

i!
Π1

Ak−i−1

(k−i)!

)

Π4,j ,

(C.4)
Π1 = ATP + PA+ εαP + 2βP, Π2 = PBK,

Π3,j = I +Mj(A−BK), Π4,j = Nj(A− BK),
(C.5)

Mj =

∫ j σ̄

l

0

eAsds, Nj = AMj + I, (C.6)and an upper-bound of the approximation error
ν ≥ max

σ′∈[0, σ̄
l
],

r∈{0,··· ,l−1}

λmax (Φ(σ′ + r
σ̄

l

)

− Φ̄N,r(σ
′)
)

, (C.7)de�ned with the funtion
Φ̄N,j(σ

′) =

N
∑

k=0

Lk,jσ
′k, σ′ ∈ [0,

σ̄

l
]. (C.8)Lemma C.2 Consider a vetor x ∈ Rn, a salar σ̄ > 0, integers N ≥ 0 and l ≥ 1,parameters P = P T ≻ 0 ∈ Mn(R), α > 1, 0 < β ≤ ln(α)

2σ̄
, and ε ≥ 0, and a samplinginterval τs > 0. If the ondition xTΦ(i,j),sx ≤ 0 is satis�ed for all (i, j) ∈ Ks (with

Φ(i,j),s and Ks de�ned in (C.2) and (C.1) respetively), then for all σ ∈ [0, τs], one has
xTΦ(σ)x ≤ 0, with Φ de�ned in (2.5).Proof: 165



Appendix C. Contrution of a polytopi embedding based on Taylor polynomials1. First, we divide the time interval [0, σ̄] into l subdivisions and take a time σ ≤ τsinto one of these subdivisions. The aim of this step is to make preparations toompute a preise estimation of the matrix funtion Φ by building l small onvexembeddings around it instead of building one big one, as shown in Figure C.1.2. Then, we ompute a polynomial approximation of Φ for the hosen time intervalsubdivision.3. Afterwards, we bound the error term from this polynomial approximation with aonstant term.4. Finally, we build a onvex polytope around the polynomial approximation and theerror term bound, using the method proposed in [Hetel 2006℄ (desribed in theAppendix C.1), to obtain the desired �nite number of onditions.Step (1): Let us divide the time interval [0, σ̄] into l subdivisions [j σ̄
l
, (j + 1) σ̄

l
],with j ∈ {0, · · · , l − 1}. Let σ ∈ [0, τs]. There exists j ∈ {0, · · · ,

⌊

τsl
σ̄

⌋

} suh that
j σ̄
l
≤ σ ≤ (j + 1) σ̄

l
. Then de�ne σ′ = σ − j σ̄

l
(σ′ ∈ [0, χ], with χ = σ̄

l
if j <

⌊

τsl
σ̄

⌋, and
χ = τs − jσ̄

l
otherwise).Step (2): We de�ne Π1 = ATP +PA+ εαP +2βP and Π2 = PBK. From equations(2.5) and (2.6), we dedue that

Φ(σ) = Λ(σ)TΠ1Λ(σ)− ΛT (σ)Π2 −ΠT
2Λ(σ)− εP. (C.9)In order to derive a useful expression of Λ(σ) (de�ned in (2.7)) as a funtion of σ′, we usethe property expressed in Theorem D.7

∫ a+b

0

eAsds =

∫ a

0

eAsds+

∫ b

0

eAsds

(

A

∫ a

0

eAsds+ I

)

,whih is satis�ed for any salars a and b, to obtain
Λ(σ) = I +

(

Mj +
∫ σ′

0
eAsdsNj

)

(A− BK)

= Π3,j +
∫ σ′

0
eAsdsΠ4,j,

(C.10)with Mj =
∫ j σ̄

l

0
eAsds, Nj = AMj + I, Π3,j = I +Mj(A−BK), and Π4,j = Nj(A−BK).Then, note that

∫ σ′

0

eAsds =
∞
∑

i=1

Ai−1

i!
σ′i. (C.11)166



C.3. Case of perturbed LTI systems (Chapter 3)Combining equations (C.9), (C.10) and (C.11), one gets Φ(σ) =
∑∞

k=0 Lk,jσ
′k, with thematries Lk,j de�ned in (C.4). It is then possible to express a polynomial approximationof order N of Φ on the interval [j σ̄

l
, (j + 1) σ̄

l
] as

Φ̄N,j(σ
′) =

N
∑

k=0

Lk,jσ
′k, σ′ ∈ [0,

σ̄

l
]. (C.12)Step (3): Let us denote the approximation error term RN,j(σ

′) = Φ(σ) − Φ̄N,j(σ
′). Ifwe an ompute a bound with a salar ν independent of σ′ suh that RN,j(σ

′) � νI thenthe ondition xT (Φ̄N,j(σ
′) + νI)x ≤ 0 will imply that xTΦ(σ)x ≤ 0. Sine RN,j(σ

′) =

Φ(σ) − Φ̄N,j(σ
′) is symmetri, then if we denote λσ′ the maximal eigenvalue of RN,j(σ

′),we have RN,j(σ
′) � λσ′I. As a onsequene, RN,j(σ

′) � νI with ν a onstant de�ned in(C.7).Step (4): Sine the funtion Φ̄N,j(.) + νI : [0, χ] → Mn(R) is polynomial, we anuse the onvex polytope envelope given in [Hetel 2006℄ (desribed in the Appendix C.1),to prove that if xTΦ(i,j),sx ≤ 0 for all i ∈ {1, · · · , n}, with Φ(i,j),s =
(

∑i

k=0Lk,jχ
k
)

+ νI,then xT (Φ̄N,j(σ
′) + νI)x ≤ 0 and therefore xTΦ(σ)x ≤ 0.

C.3 Case of perturbed LTI systems (Chapter 3)Here, we propose a onstrution of the onvex embedding satisfying (3.19) that is basedon the results from [Hetel 2007℄, for the perturbed LTI system (3.1).Consider a salar 0 ≤ σ∗ ≤ σ̄. In this onstrution, we de�ne the set of vertex indexes
K(σ∗) = {0, · · · , N} ×

{

0, · · · ,
⌊

σ∗l

σ̄

⌋}

, (C.13)with integers N ≥ 0 and l ≥ 1, and design the verties ∆̄(i,j)(σ
∗) for all (i, j) ∈ K(σ∗), as:

∆̄(i,j)(σ
∗) = ∆̂(i,j)(σ

∗) + νI, (C.14)with






∆̂(i,j)(σ
∗) =

(

∑i
k=0 ∆̃(k,j)

(

σ̄
l

)k
) if j < ⌊σ∗l

σ̄

⌋

,

∆̂(i,j)(σ
∗) =

(

∑i

k=0 ∆̃(k,j)

(

σ∗ − jσ̄

l

)k
) otherwise, (C.15)167



Appendix C. Contrution of a polytopi embedding based on Taylor polynomials
∆̃(0,j) =









L0,j −KTBTP + ΓT
1,jM

T
1 ΓT

1,jPE

∗ −Φ1 0

∗ ∗ −Φ3









,

∆̃(k≥1,j) =









Lk,j ΓT
2,j

(Ak−1)T

k!
MT

1 ΓT
2,j

(Ak−1)T

k!
PE

∗ 0 0

∗ ∗ 0









,

(C.16)
Γ1,j = I +Nj(A− BK), Γ2,j = N ′

j(A−BK),

Nj =
∫ j σ̄

l

0
eAsds, N ′

j = ANj + I,
(C.17)and

L0,j = ΓT
1,jM1Γ1,j − εP +WηI − ΓT

1,jPBK −KTBTPΓ1,j + L̃0,j ,

L1,j = ΓT
2,j(M1Γ1,j − PBK) + (ΓT

1,jM
T
1 −KTBTP )Γ2,j + L̃1,j ,

Lk≥2,j = ΓT
2,j

(Ak−1)T

k!
(M1Γ1,j − PBK) + (ΓT

1,jM
T
1 −KTBTP )A

k−1

k!
Γ2,j

+ΓT
2,j

(

∑k−1
i=1

(Ai−1)T

i!
M1

Ak−i−1

(k−i)!

)

Γ2,j + L̃k,j.

(C.18)
If λmax(A+ AT ) = 0, the matries L̃k,j are de�ned as

L̃0,j = Wµλmax(ETE)
(

j σ̄
l

)2
I,

L̃1,j = 2Wµλmax(ETE)j σ̄
l
I,

L̃2,j = Wµλmax(ETE)I,

L̃k≥3,j = 0.

(C.19)
Otherwise, if λmax(A + AT ) 6= 0, they are de�ned as

L̃0,j = Wµ
λmax(ETE)
λmax(A+AT )

j σ̄
l

(eλmax(A+AT )j σ̄

l − 1
)

I,

L̃1,j = Wµ
λmax(ETE)
λmax(A+AT )

(eλmax(A+AT )j σ̄

l

(

1 + j σ̄
l
λmax(A+ AT )

)

− 1
)

I,

L̃k≥2,j = Wµ
λmax(ETE)
λmax(A+AT )

eλmax(A+AT )j σ̄

l

(

j σ̄
l

(λmax(A+AT ))k

k!
+ (λmax(A+AT ))k−1

(k−1)!

)

I.

(C.20)Finally,
ν ≥ max

σ′∈[0, σ̄
l
],

r∈{0,··· ,l−1}

λmax(∆(σ′ + r
σ̄

l

)

−
N
∑

k=0

∆̃(k,r)σ
′k

)

. (C.21)Lemma C.3 Consider a salar 0 ≤ σ∗ ≤ σ̄. The verties ∆̄(i,j)(σ
∗) de�ned in (C.14)satisfy the property (3.19): if the ondition ∆̄(i,j)(σ

∗) � 0 is satis�ed for all (i, j) ∈
K(σ∗) = {0, · · · , N} ×

{

0, · · · ,
⌊

σ∗l
σ̄

⌋}, then ∆(σ) � 0 for all σ ∈ [0, σ∗].168



C.3. Case of perturbed LTI systems (Chapter 3)Proof: The idea of the proof is similar to the one used in the onstrution of theonvex polytopes in the unperturbed ase, in the Appendix C.2. It follows the followingsteps:1. First, we divide the time interval [0, σ̄] into l subdivisions and take a time σ ≤ σ∗into one of these subdivisions. The aim of this step is to make preparations toompute a preise estimation of the matrix funtion ∆ by building l small onvexembeddings around it instead of building one big one.2. Then, we ompute a polynomial approximation of ∆ for the hosen time intervalsubdivision.3. Afterwards, we bound the error term from this polynomial approximation with aonstant term.4. Finally, we build a onvex polytope around the polynomial approximation and theerror term bound, using the method proposed in [Hetel 2006℄ (see Appendx C.1),to obtain the desired �nite number of onditions.Step (1): Let us divide the time interval [0, σ̄] into l subdivisions [j σ̄
l
, (j + 1) σ̄

l
], with

j ∈ {0, · · · , l − 1}. Let σ ∈ [0, σ∗]. There exists j ∈ {0, · · · ,
⌊

σ∗l
σ̄

⌋

} suh that j σ̄
l
≤ σ ≤

(j + 1) σ̄
l
. Then de�ne σ′ = σ − j σ̄

l
(σ′ ∈ [0, χ], with χ = σ̄

l
if j <

⌊

σ∗l
σ̄

⌋, and χ = σ∗ − jσ̄

lotherwise).Step (2): In this step, as in the unperturbed ase, we want to ompute the Taylorexpansion of the matrix funtion ∆(σ) de�ned in (3.17) and (3.18) in order to designthe onvex polytope. Note that it is possible ompute the Taylor approximation aroundthe matrix funtion ∆ blo by blo, by using the following property: for any C∞ matrixfuntions of appropriate dimensions F , G, H and L, the Taylor expansion of the matrixfuntion [F G

H L

] an be written as
[

F (σ) G(σ)

H(σ) L(σ)

]

=

∞
∑

k=0

[

Fk(σ) Gk(σ)

Hk(σ) Lk(σ)

]

σk =

[

∑∞
k=0 Fkσ

k
∑∞

k=0Gkσ
k

∑∞
k=0Hkσ

k
∑∞

k=0Lkσ
k

]

. (C.22)Therefore, in order to ompute the Taylor expansion of ∆ de�ned in (3.17), one needsto ompute the Taylor expansions of R de�ned in (3.18), as well as the ones of MT
2 and

MT
4 , de�ned in (3.14). 169



Appendix C. Contrution of a polytopi embedding based on Taylor polynomialsAll three funtions involve the term Λ(σ) de�ned in (3.8). As in the unperturbed ase,we use the property expressed in Theorem D.7 to rewrite this term as a funtion of σ′:
Λ(σ) = I +

(

Nj +
∫ σ′

0
eAsdsN ′

j

)

(A−BK)

= Γ1,j +
∫ σ′

0
eAsdsΓ2,j

= Γ1,j +
∑∞

i=1
Ai−1

i!
σ′iΓ2,j,

(C.23)with Nj =
∫ j σ̄

l

0
eAsds, N ′

j = AMj + I, Γ1,j = I +Nj(A−BK), and Γ2,j = N ′
j(A− BK).Therefore, one has:

M2(σ)
T = −KTBTP + Λ(σ)TM1

= −KTBTP + ΓT
1,jM1 +

∑∞
i=1 Γ

T
2,j

(Ai−1)T

i!
M1σ

′i,
(C.24)

M4(σ)
T = Λ(σ)TPE

= ΓT
1,jPE +

∑∞
i=1 Γ

T
2,j

(Ai−1)T

i!
PEσ′i,

(C.25)and
R(σ) = Λ(σ)TM1Λ(σ)− Λ(σ)TPBK −KTBTPΛ(σ)− εP

+WηI + σWµλmax(ETE)fA(σ)I

=
∑∞

k=0Lk,jσ
′k,

(C.26)with the matries Lk,j de�ned as
L0,j = ΓT

1,jM1Γ1,j − εP +WηI − ΓT
1,jPBK −KTBTPΓ1,j + L̃0,j , (C.27)

L1,j = ΓT
2,j(M1Γ1,j − PBK) + (ΓT

1,jM
T
1 −KTBTP )Γ2,j + L̃1,j , (C.28)and

Lk≥2,j = ΓT
2,j

(Ak−1)T

k!
(M1Γ1,j − PBK) + (ΓT

1,jM
T
1 −KTBTP )A

k−1

k!
Γ2,j

+ΓT
2,j

(

∑k−1
i=1

(Ai−1)T

i!
M1

Ak−i−1

(k−i)!

)

Γ2,j + L̃k,j.
(C.29)The matries L̃k,j that appear in the previous equations ome from the Taylor expan-sion of the term σWµλmax(ETE)fA(σ)I. Two ases may our.In the �rst ase, λmax(A + AT ) = 0, and thus

σWµλmax(ETE)fA(σ)I = Wµλmax(ETE)I
(

j σ̄
l
+ σ′

)2

= Wµλmax(ETE)I
(

j σ̄
l

)2
+ 2Wµλmax(ETE)Ij σ̄

l
σ′

+Wµλmax(ETE)Iσ′2.

(C.30)170



C.3. Case of perturbed LTI systems (Chapter 3)Therefore, one has
L̃0,j = Wµλmax(ETE)I

(

j σ̄
l

)2
,

L̃1,j = 2Wµλmax(ETE)Ij σ̄
l
,

L̃2,j = Wµλmax(ETE)I,

L̃k≥3,j = 0.

(C.31)In the seond ase, λmax(A+ AT ) 6= 0, and thus
σWµλmax(ETE)fA(σ)I

= Wµ
λmax(ETE)
λmax(A+AT )

I
(

j σ̄
l
+ σ′

)

(eλmax(A+AT )j σ̄

l eλmax(A+AT )σ′ − 1
)

= Wµ
λmax(ETE)
λmax(A+AT )

I
[

j σ̄
l

(eλmax(A+AT )j σ̄

l − 1
)

+
(eλmax(A+AT )j σ̄

l

(

1 + j σ̄
l
λmax(A + AT )

)

− 1
)

σ′

+
∑∞

k=2 eλmax(A+AT )j σ̄

l

(

j σ̄
l

(λmax(A+AT ))k

k!
+ (λmax(A+AT ))k−1

(k−1)!

)

σ′k
]

.

(C.32)
Therefore, one has

L̃0,j = Wµ
λmax(ETE)
λmax(A+AT )

Ij σ̄
l

(eλmax(A+AT )j σ̄

l − 1
)

,

L̃1,j = Wµ
λmax(ETE)
λmax(A+AT )

I
(eλmax(A+AT )j σ̄

l

(

1 + j σ̄
l
λmax(A+ AT )

)

− 1
)

,

L̃k≥2,j = Wµ
λmax(ETE)
λmax(A+AT )

Ieλmax(A+AT )j σ̄

l

(

j σ̄
l

(λmax(A+AT ))k

k!
+ (λmax(A+AT ))k−1

(k−1)!

)

.

(C.33)Using the obtained equations, one an write that ∆(σ) =
∑∞

k=0 ∆̃(k,j)σ
′k, with thematries ∆̃(k,j) de�ned in (C.16).With this, a polynomial approximation of order N of ∆ on the interval [j σ̄
l
, (j + 1) σ̄

l
]an be expressed as

Ξ(N,j)(σ
′) =

N
∑

k=0

∆̃(k,j)σ
′k, ∀σ′ ∈

[

0,
σ̄

l

]

. (C.34)Step (3): The approximation error term R(N,j)(σ
′) = ∆(σ)−Ξ(N,j)(σ

′) an be boundedusing the relation R(N,j)(σ
′) � νI, with ν a onstant salar de�ned in (C.21). With thismajoration, it is lear that if Ξ(N,j)(σ

′) + νI � 0, then ∆(σ) � 0.Step (4): Sine the funtion Ξ(N,j)(.) + νI : [0, χ] → Mn(R) is polynomial, we anuse the onvex embedding design from [Hetel 2006℄ (see Appendx C.1), to prove thatif ∆̄(i,j)(σ
∗) � 0 for all i ∈ {1, · · · , n}, with ∆̄(i,j)(σ

∗) =
(

∑i
k=0 ∆̃(k,j)χ

k
)

+ νI, then
Ξ(N,j)(σ

′) + νI � 0, and therefore ∆(σ) � 0.
171



Appendix C. Contrution of a polytopi embedding based on Taylor polynomials

172



Appendix DSome useful matrix propertiesTheorem D.1 (Shur omplement [Boyd 1994℄) Let Q and R be symmetri matri-es. Then, the following are equivalent:(i) [Q S

∗ R

]

≻ 0 (resp. [Q S

∗ R

]

� 0),(ii) R ≻ 0, Q− SR−1ST ≻ 0 (resp. R � 0, Q− SR+ST � 0, S(I − RR+) = 0),where R+ is the pseudo-inverse of R.Theorem D.2 (Finsler's Lemma [Fang 2004℄) Let x ∈ Rn, Q ∈ Sn(R), and B ∈
Mn,m(R) suh that rank(B) < n. The following statements are equivalent.(i) xTQx < 0 (resp. xTQx ≤ 0) for all Bx = 0, x 6= 0,(ii) B⊥T

QB⊥ ≺ 0 (resp. B⊥T

QB⊥ � 0),(iii) there exists a salar µ ∈ R suh that Q− µBTB ≺ 0 (resp. Q− µBTB � 0),(iv) there exists a matrix X ∈ Mn,m(R) suh that Q + XB + BTX T ≺ 0 (resp. Q +

XB +BTX T � 0),where B⊥ is a basis for the null spae of B (i.e. all x 6= 0 suh that Bx = 0 is generatedby some z 6= 0 in the form x = B⊥z).Theorem D.3 (S-proedure [Yakubovih 1977℄, [Boyd 1994℄) Let Fi ∈ Mn(R),
i ∈ {0, · · · , p}. Then, if 173



Appendix D. Some useful matrix properties(i) there exist salars εi ≥ 0, i ∈ {1, · · · , p}, suh that F0 −
p
∑

i=1

εiFi > 0 (resp. F0 −
p
∑

i=1

εiFi ≥ 0),then(ii) ξTF0ξ > 0 (resp. ξTF0ξ ≥ 0) for any ξ ∈ Rn satisfying ξTFiξ ≥ 0 for all
i ∈ {1, · · · , p}.For p = 1, these two statements are equivalent.Theorem D.4 (Jensen's Inequality [Gu 2003℄) For any matrix R ∈ S+∗

n , salar r >
0 and vetor funtion ω : [0, r] → R

n suh that the onerned inequalities are well de�ned,one has
(
∫ r

0

ω(s)ds

)T

R

(
∫ r

0

ω(s)ds

)

≤ r

(
∫ r

0

ω(s)TRω(s)ds

)

. (D.1)Theorem D.5 ( [Cao 1998℄) For any matrix R ∈ S+∗
n and any salars (x, y) ∈ Rn×Rn,

xTy + yTx ≤ xTR−1x+ yTRy. (D.2)Theorem D.6 ( [Loan 1977℄) For any matrix R ∈ Mn(R) and salar t ≥ 0, one has
|||eRt|||2 ≤ eλmax( (R+R

T )
2

)

t
. (D.3)Theorem D.7 ( [Fujioka 2008℄) Consider salars a, b ∈ Rn, and a matrix A ∈ Mn(R).Then, the following equality holds:

∫ a+b

0

eAsds =

∫ a

0

eAsds+

∫ b

0

eAsds

(

A

∫ a

0

eAsds+ I

)

. (D.4)Theorem D.8 (Adapted from [Boyd 1994℄) Consider x ∈ Rn, two matries Γ1 and
Γ2 in Sn and two salars λ− < λ+. The following statements are equivalent:(i) ∀λ ∈ [λ−, λ+], xT (Γ1 + λΓ2)x ≤ 0,(ii) xT (Γ1 + λ−Γ2)x ≤ 0 and xT (Γ1 + λ+Γ2)x ≤ 0.Proof: Let x ∈ R

n and λ ∈ [λ−, λ+]. Remarking that Γ1 + λΓ2 = λ+−λ
λ+−λ−

(Γ1 + λ−Γ2) +
λ−λ−

λ+−λ−
(Γ1 + λ+Γ2) ahieves the proof sine λ+−λ

λ+−λ−
and λ−λ−

λ+−λ−
are positive.174
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RésuméCette thèse est dédiée à l'analyse de stabilité des systèmes à pas d'éhantillonnage variable et à la om-mande dynamique de l'éhantillonnage. L'objetif est de onevoir des lois d'éhantillonnage permettantde réduire la fréquene d'atualisation de la ommande par retour d'état, tout en assurant la stabilité dusystème.Tout d'abord, un aperçu des réents dé�s et axes de reherhe sur les systèmes éhantillonnés est présenté.Ensuite, une nouvelle approhe de ontr�le dynamique de l'éhantillonnage, "éhantillonnage dépendantde l'état", est proposée. Elle permet de onevoir hors-ligne un éhantillonnage maximal dépendant del'état dé�ni sur des régions oniques de l'espae d'état, grâe à des LMIs.Plusieurs types de systèmes sont étudiés. Tout d'abord, le as de système LTI idéal est onsidéré. Lafontion d'éhantillonnage est onstruite au moyen de polytopes onvexes et de onditions de stabilitéexponentielle de type Lyapunov-Razumikhin. Ensuite, la robustesse vis-à-vis des perturbations est in-luse. Plusieurs appliations sont proposées: analyse de stabilité robuste vis-à-vis des variations du pasd'éhantillonnage, ontr�les event-triggered et self-triggered, et éhantillonnage dépendant de l'état. En-�n, le as de système LTI perturbé à retard est traité. La onstrution de la fontion d'éhantillonnage estbasée sur des onditions de stabilité L2 et sur un nouveau type de fontionnelles de Lyapunov-Krasovskiiave des matries dépendant de l'état. Pour �nir, le problème de stabilisation est traité, ave un nouveauontr�leur dont les gains ommutent en fontion de l'état du système. Un o-design ontr�leur/fontiond'éhantillonnage est alors proposé.Mots-lés: Système ommandé par réseau, système éhantillonné, système à retard, éhantillonnagevariable, éhantillonnage dépendant de l'état, self-triggered ontrol, stabilité/stabilisation, inégalité ma-triielle linéaire AbstratThis PhD thesis is dediated to the stability analysis of sampled-data systems with time-varyingsampling, and to the dynami ontrol of the sampling instants. The main objetive is to design samplinglaws that allow for reduing the sampling frequeny of state-feedbak ontrol for linear systems whileensuring the system's stability.First, an overview of the reent problems, hallenges, and researh diretions regarding sampled-datasystems is presented. Then, a novel dynami sampling ontrol approah, "state-dependent sampling", isproposed. It allows for designing o�ine a maximal state-dependent sampling map over oni regions ofthe state spae, thanks to LMIs.Various lasses of systems are onsidered throughout the thesis. First, we onsider the ase of ideal LTIsystems, and propose a sampling map design based on the use of polytopi embeddings and Lyapunov-Razumikhin exponential stability onditions. Then, the robustness with respet to exogenous pertur-bations is inluded. Di�erent appliations are proposed: robust stability analysis with respet to time-varying sampling, as well as event-triggered, self-triggered, and state-dependent sampling ontrol shemes.Finally, a sampling map design is proposed in the ase of LTI systems with perturbations and delays.It is based on L2-stability onditions and a novel type of Lyapunov-Krasovskii funtionals with state-dependent matries. Here, the stabilization issue is onsidered, and a new ontroller with gains that swithaording to the system's state is presented. A o-design ontroller/sampling map is then proposed.Keywords: Networked ontrol system, sampled-data system, time-delay system, time-varying sampling,state-dependent sampling, self-triggered ontrol, stability/stabilization, linear matrix inequality
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