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CHAPTER 1

Context, motivations and objectives of the work

Sound processing techniques are employed over a wide area of research and
industrial applications: music first comes to mind, together with the community of
composers, producers and multimedia artists as well as the professionals of enter-
tainment; then we have speech, which is elaborated in many different ways in our
everyday life. Smartphones, tablets and any other kind of mobile devices, as well
as TVs and home theater set-ups, computers, digital equipment for music and film
studios: all of them deal with sound in digital format and come with different and
challenging needs, which rise many interesting research and technological issues.
Several fields other than music or speech exploit sound analysis, transformation and
synthesis: medical sciences, security instruments and communications, among others.

Traditional sound analysis methods, based on single sets of atomic functions like
Gabor windows or wavelets, offer limited possibilities concerning the flexibility of
their time-frequency precision. Moreover, fundamental analysis parameters have to be
set a-priori, according to the signal characteristics and the quality of the representation
required. Analyses with a non-optimal resolution lead to a blurring, or sometimes
even a loss of information about the original signal, which affects every kind of later
treatment.This problem concerns a large part of the technical applications dealing with
signals: visual representation, feature extraction and processing among others; the
community working on these issues is a very broad one, including telecommunica-
tions, sound and image processing as well as applied mathematics and physics. Our
main interest is focused on sounds, and our questions principally rise from the musical
and voice domains. The mainstream industrial fields more strictly related to this topic
are signal transformation, music production, speech processing, source separation
and music information retrieval, the latter covering a broad range of applications
from classification, to identification, feature extraction and information handling
about music: many of the algorithms applied within these processes rely on a given
time-frequency representation of the signal, inheriting its qualities and drawbacks,
and would therefore benefit from adapted analyses with optimized resolutions. This
motivates the research for adaptive methods, conducted at present in both the signal
and the applied mathematics communities: they lead to the possibility of analyses
whose resolution locally changes according to the signal features.

This thesis starts from the main idea that algorithms based on adaptive represen-
tations will help to establish a generalization and simplification for the application of
signal processing methods that today still require expert knowledge. An automatic

1



2 1. CONTEXT, MOTIVATIONS AND OBJECTIVES OF THE WORK

parameter selection would allow to achieve more robust methods with significantly
less human effort. Our attention is focused in particular on advanced signal processing
methods in applications designed for large communities: the need to provide manual
low level configuration is indeed one of the main problems. The possibility to dispose
of an automatic time frequency resolution drastically limits the parameters to set, with-
out affecting, and even ameliorating, the analysis quality: the result is an improvement
of the user experience with advanced signal processing techniques that require, at
present, a high expertise.

The first and fundamental objective of our project (Chapter 2) is thus the formal
definition of mathematical models whose interpretation leads to theoretical and algo-
rithmic methods for adaptive analysis. Gabor frames theory constitutes a very natural
mathematical context: one of its main subjects is the definition of redundant sets of
atoms in Hilbert spaces, generally larger than orthonormal bases, together with the
associated decomposition operators and their inverses. Actually, using that for sound
processing requires the possibility of reconstructing a signal from its analysis coeffi-
cients: thus we need an efficient way to find an inverse of the adaptive decomposition
operator, together with appropriate methods to manage adaptive analyses in order to
preserve and improve the existing sound transformation techniques.

The second objective (Chapter 3) is to make this adaptation automatic; we aim to
establish criteria to define the optimal local time-frequency resolution: we deduce such
criteria from the optimization of given sparsity measures. We take into account both
theoretical and application-oriented sparsity measures: entropies and other quantities
borrowed from information theory and probability belong to the first class. When
dealing with concrete sounds, information measures may not always be well-suited,
since some of their characteristics do not find a direct interpretation in the signal
domain. Thus, it is often useful to give application-driven definitions of sparsity,
depending on the particular features that the system should privilege.

This first chapter deals with the scientific and historical motivations of the work,
while Chapters 4 and 5 present the algorithms that we have realized, together with a
description of their properties, applications and results.

1.1. List of publications issued from this work

[Liuni et al., 2011c] M. Liuni, A. Röbel, M. Romito, X. Rodet, “Rényi information mea-
sures for spectral change detection,” in Proc. of ICASSP11, Prague, Czech Republic,
May 22-27, 2011
[Liuni et al., 2011a] M. Liuni, P. Balazs, A. Röbel, “Sound analysis and synthesis adap-
tive in time and two frequency bands,” in Proc. of DAFx11, Paris, France, September
19-23, 2011
[Liuni et al., 2010] M. Liuni, A. Röbel, M. Romito, X. Rodet, “A reduced multiple Gabor
frame for local time adaptation of the spectrogram,” in Proc. of DAFx10, Graz, Austria,
September 6-10, 2010, pp. 338 – 343
[Liuni et al., 2011b] M. Liuni, A. Röbel, M. Romito, X. Rodet, "An entropy based
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method for local time-adaptation of the spectrogram. In S. Ystad, M. Aramaki, R.
Kronland-Martinet and K. Jensen, editors, "Exploring Music Contents", volume 6684
of Lecture Notes in Computer Science, pages 60–75. Springer Berlin / Heidelberg.

1.2. Sounds and Music

In this section, a few historical guidelines are given: to make a computer deal
with sounds has been a challenge almost as soon as the first computers have been
conceived; a complete review of the pioneers’ different approaches is out of the scope
of this work (see [Chadabe, 1997] for a survey, including details about composers
and scientists mentioned in this section), but it is worth to mention some researchers
and composers who have delineated the fields of Sound Processing and Computer
Music where this thesis is inscribed. In particular, we focus on the origins of the
application of Fourier theory to the representation, transformation and synthesis
of sounds through computer programs: stationary sinusoids can be considered as
elementary stimuli, whose superpositions and modulations originate sounds of higher
complexity; from an engineering point of view, sinusoids could be easily generated,
either in the first electroacoustic studios by means of analogical oscillator, or by the first
computers with look up tables of a few points. Moreover, western music theory and
instruments are grounded on harmonic principles, whose interpretation can easily be
formulated in terms of superposed sinusoids. For all of these reasons, since the origins
of electroacoustic laboratories, Fourier-based representations have been adopted and
intensively experimented for sound analysis and synthesis.

The problem of conceiving a sound representation by means of a computer has first
been handled by scientists who were musicians, too: not all of them were composers,
but their work laid the foundations for a considerable part of the next generations
composers. Max Mathews and John Pierce worked at one of the first sound-generating
computer program, in the sixtieth of the past century: they both were scientists of the
Bell Telephone Laboratories (also known as Bell Labs), in Murray Hill New Jersey, and
originated the Music-N series of programs, whose principles are still adopted in many
real-time music softwares. Their work inspired several other people: Jean Claude
Risset, a composer and physician graduated at the École Normale Supérieure in Paris,
came to the Bell Labs for the first time in 1964. He was interested in the timbre of
musical instruments, and his first work at the Bel Labs was on the synthesis of trumpet
sounds: this is a hard task, disposing uniquely of an additive synthesis with a small
number of voices, that is, sinusoids to add together. His strategy consisted of three
main steps: the analysis of spectra from different trumpet samples, the experimental
deduction of a small number of relevant components, then the synthesis of a mixture
of sinusoids whose parameters were set according to the analytical results.

Risset’s method is an example of constructive approach to sound synthesis: a
complex spectrum is obtained as a sum of several basic components. John Chowning,
a composer graduated at Stanford University, read about Mathews’ research in the
same period, and started working with his programs too: his FM Synthesis technique
(Frequency Modulation), whose patent was issued in 1975 and licensed to Yamaha in



4 1. CONTEXT, MOTIVATIONS AND OBJECTIVES OF THE WORK

1977, came from his research about the generation of fast vibratos, and is an example
of alternative approach to sound generation, still in a constructive sense: complex
spectra are generated with a given model based on sinusoids and depending on a
few parameters, whose values determine a predictable structure of the synthesized
sound spectrum. In 1975, Chowning formed the CCRMA (Center for Computer
Research in Music and Acoustics) in Stanford, together with other researchers: James
A. Moorer, who was co-director and co-founder, developed advanced DSP tech-
niques for analysis and synthesis of musical sounds. A section of his PhD thesis
([Moorer, 1975]), presented in 1975, is dedicated to the Heterodyne filter, which is a first
example of improvement of the Fourier classic transform towards a time-frequency
varying representation: the input is a tone whose fundamental frequency is known,
the output is a series of sinusoids with amplitude and phase varying over time, which
are harmonics of the fundamental frequency. In a following paper ([Moorer, 1976]),
published in 1976, he introduces a class of synthesis techniques based on discrete
summations of time-varying sinusoids, whose capabilities and control are similar to
those of Chowning’s frequency modulation technique, with the advantage that the
signal can be exactly limited to a specified number of partials.
He also worked at improvements of the Phase Vocoder technique ([Moorer, 1978]):
originally introduced in 1966 ([Flanagan, 1966]) by Flanagan, working at the Bell
Labs, this technique is based on the STFT (Short Time Fourier Transform, see Section
1.5); it began to be widely exploited when the dedicated algorithms were made
computationally fast enough (see [Cooley and Tukey, 1965] for the Fast Fourier Trans-
form original algorithm, and [Portnoff, 1976] for an implementation of STFT taking
advantage of the FFT). The input of the STFT is a generic sound, the output is a set
of coefficients which allow a perfect reconstruction of the original sound in terms of
atomic signals, which are weighted modulated sinusoids. The advantage, here, is that
no knowledge about the fundamental frequency is needed, thus making the method
well suited for a broad range of sounds. On the other hand, the representation is no
longer related to sinusoids, so that they have to be deduced from the coefficients by
means of sinusoidal modeling techniques (see Section 1.3). Despite of its drawbacks, that
we detail in the words of a composer later in this section, a broad range of current
sound processing techniques are based on phase vocoder and its improvements (see
[Griffin and Lim, 1984, Laroche and Dolson, 1999] and the related bibliographies).

When his work about the phase vocoder was published, Moorer was working
at IRCAM (Institut de Recherche et Coordination Acoustique/Musique) in Paris,
France. The creation of the institute started in 1970, by Pierre Boulez, who received
the invitation of the French president Georges Pompidou; there was a continuity with
the activities and researches going on at Bell Labs and CCRMA, and Boulez entrusted
several people from these laboratories in charge of direction: Risset was the head of
the computer department, while Mathews was appointed scientific advisor in 1974.
From 1977 to 1979, Moorer had the role of scientific advisor and researcher. The official
opening was held in 1977, and by 1978 the IRCAM three levels underground building
included laboratories dedicated to the research activity, as well as recording studios,
an anechoic chamber and a concert hall with advanced possibilities for the design of
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the internal acoustic. The research about spectral processing techniques based on the
phase vocoder has been, and still is, a main topic for the computer department and the
Analysis/Synthesis Team: the latter has been created when the computer department
was divided in specialized branches. This research has lead to the SuperVP library 1, an
extended phase vocoder which is used by a large number of composers and integrated
in AudioSculpt 2, a software for viewing, analysis and processing of sounds.

Time-frequency analysis is a natural context for the modeling of time-evolving
spectra, thus in particular for sounds and music. Since their introduction, STFT-based
models for sound analysis and processing have been applied in a wide range of
musical communities, determining new paradigms of thinking sounds. An example
is given by the musical current of Spectralism, where time-frequency representations
of sounds become organizing principles for the structure, the formal articulation, and
the materials of a piece of music. Originated in early seventies by the works of Gérard
Grisey and Tristan Murail, spectralism constituted an attitude rather than a school:
from the analysis point of view, the main interests were a quantitative description of
sound spectra and a rigorous characterization of timbre; from the compositional one,
the attitude consists in the inference of rules and relations from the spectral analysis to
the orchestration and sound manipulation level.

Since the origins of the movement, many works of spectral music have been real-
ized at IRCAM, and have introduced compositional techniques shared by composers
not directly involved in the group: in Jonathan Harvey’s Mortuos Plango Vivos Voco
(1980, for computer elaborated concrete sounds, see [Harvey, 1981, Clarke, 2006]),
the sounds taken as analytical references are samples of the tenor bell of Winchester
Cathedral, and the voice of the composer’s child Dominic, who were a chorister
in the same cathedral. Assisted in the technical realization by Stanley Haynes and
Xavier Rodet, Harvey uses sound and voice synthesis together with manipulations
of the original samples, controlled and articulated by criteria deduced from the
spectral analysis: pitches, as well as the global structure and other parameters, are de-
duced from the analysis of a half-second fragment of the bell sample, right after the toll.

The peculiarity, in spectral music, is to establish relations between a sound analysis
and a musical score: an approach which moves from sound to formal choices. But on
a different level, the interest of time-frequency analysis and processing is to establish
relations between sounds themselves: a sound representation makes it easier to define
and work with classes of timbre, and to visualize sound components. Once defined
a target sound or effect to realize, this knowledge is a useful tool for the orientation
among the large range of processing and re-synthesis methods available. Several
composers have developed a deep musical experience of these techniques; among
them, the approach of Marco Stroppa gives a special outlook on the musical potential
offered by a complete framework for sound analysis, manipulation and re-synthesis:

1see http://anasynth.ircam.fr/home/english/software/supervp
2see http://anasynth.ircam.fr/home/english/software/audiosculpt

http://anasynth.ircam.fr/home/english/software/supervp
http://anasynth.ircam.fr/home/english/software/audiosculpt
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I use SuperVP as an instrument, like I use musical instruments; I know which are the notes
that can be played by a flute, as well as I know which sounds and transformations I can get with
SuperVP: if I have a piano playing many superposed fast notes in the low register, I know that I

will have a bad analysis with any fixed resolution, and therefore bad transformations.3

In his work Zwielicht (1994-99, for double bass, two percussions, electronics and 13-
D sound projection), the whole electronic material is obtained with AudioSculpt, elab-
orating uncommon instrumental sounds, that can rarely be heard in concerts because
they are too soft or too unpredictable to be reproduced: they appear when the edge
of a crotale is gently scrubbed with a knitting needle, or when a double bass phrase
is played using an extremely light, fast bow. The role of the elaboration is inspired by
alchemy, the science of transforming matter: here, matter is any sounds coming from
the various instruments, and the transformation is taking place in the electronic part
and in the sound projection.

1.3. Sound signals

Complex-valued functions of a real variable having finite energy form a Hilbert
space; this space is typically adopted as a model for physical quantities which change
in time, as sounds, which are called waveforms or signals. Thus, a signal is denoted as
f(t) ∈ L2(R), a potentially complex function of time with finite energy. This space is
formally obtained by choosing p = 2 in the following definition.

Definition 1.3.1. The space of complex-valued functions of a real variable having finite
norm ‖ · ‖p is indicated as Lp(R) ,

(1.3.1) Lp(R) =

{
f : R → C s.t. ‖f‖p =

(∫

R

|f(t)|pdt
) 1

p

<∞
}
.

In analogy with other wave fields, the energy in a unit time for a sound wave is
the signal squared |f(t)|2. Since power is the amount of work per unit time, it can
be called instantaneous power or energy density. So the energy in the time interval ∆t
is given by |f(t)|2∆t, and the total energy E is

∫
R
|f(t)|2dt = ‖f‖22. Similarly, we can

compute means with respect to time, defining the measure dT = |f(t)|2dt ; therefore,
the concepts of mean time 〈t〉 and standard deviation σt apply, the first in relation with
the time of highest energy density, the second with the time spread of the energy around
its mean time,

〈t〉 =
∫

R

t dT , σ2t =

∫

R

(t− 〈t〉)2 dT = 〈t2〉 − 〈t〉2 .

A frequency description of the signal leads to a deeper knowledge of its structure ac-
cording to our perception. Through the Fourier transform and expansion, a signal is
decomposed in terms of sinusoids of different frequencies. The Fourier transform or
spectrum of a function f(t) in L1(R) at the frequency ω is defined as follows,

(1.3.2) F (f)(ω) = f̂(ω) =

∫

R

f(t) e−2πiωt dt

3The quoted sentences are taken from a private interview with Marco Stroppa (author’s translation).
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while the Fourier expansion of f(t) is given by

(1.3.3) f(t) =

∫

R

f̂(ω) e2πiωt dω .

This definition can be extended to signals as L1(R) ∩ L2(R) is densely embedded in
L2(R) . Both the signal and the spectrum can be represented in the complex form,

(1.3.4) f(t) = a(t) eiφ(t) , f̂(ω) = b(ω) eiψ(ω) ,

where a(t) and b(ω) are the amplitude and spectral amplitude of the signal, while φ(t)
and ψ(ω) are its phase and spectral phase. In analogy with the time domain we consider
|f̂(ω)|2 as the spectral energy density per unit, and |f̂(ω)|2∆ω is the spectral energy in the
frequency interval ∆ω. From the Plancherel identity (see [Gröchenig, 2001b], Theorem
1.1.2), we have that the integral of the spectral energy density over all frequencies gives
the total energy of the signal,

(1.3.5) E =

∫

R

|f̂(ω)|2dω =

∫

R

|f(t)|2dt ;

finally, by writing dΩ = |f̂(ω)|2dω , the mean frequency 〈ω〉 and standard deviation σ2ω
of the spectral density can be defined as well,

〈ω〉 =
∫

R

ω dΩ , σ2ω =

∫

R

(ω − 〈ω〉)2 dΩ .

The simplest time-varying signal is the sinusoid, characterized by a constant ampli-
tude a and a constant frequency ω,

(1.3.6) f(t) = a sinωt ,

where the amplitude is the modulus of the minima and maxima of the oscillations,
while the frequency is the number of oscillations per unit time. This representation can
be extended to a larger class of signals, the functions whose time-varying amplitude
and frequency is expressed in the following form,

(1.3.7) f(t) = a(t) cosφ(t) ,

where the instantaneous frequency is given by the first derivative of the phase func-
tion φ(t). As seen in Section 1.2, one of the first general model to be adopted is
based on a representation of sounds as a sum of slowly time-varying functions of
type (1.3.7): the decomposition of audio spectra in sinusoids is used to improve
the results of signal manipulation algorithms. This model is not meaningful when
sounds present sharp onsets, as well as significative inharmonic or noise compo-
nents, which cannot be efficiently represented in such a form. An improved model
in this sense is given by the deterministic plus stochastic decomposition introduced in
[Serra and Smith, 1990, McAulay and Quatieri, 1986]: the signal is represented as a
sum of time-varying sinusoids plus a noise component,
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(1.3.8) f(t) =
P∑

p=1

ap(t) cos (φp(t)) + e(t) ,

where ap(t) and φp(t) are the instantaneous amplitude and phase of the p-th sinusoid,
while e(t) is the noise component at time t. This representation can be deduced by the
STFT of the signal f , as well as from other representations. Even if this model has been
largely integrated with further strategies to deal with nonstationary components (see
[Roads et al., 1997, Röbel, 2003] and the bibliography in the latter), it still constitutes
a reference for a wide range of efficient high-quality sound processing and parameter
estimation techniques. In this work, we aim to define representations which are well-
suited for sinusoidal models, thus providing optimal readability and separation of their
fundamental elements: sinusoidal components, transient attacks, noise.

1.4. Time-frequency representations and energy densities

Time-frequency representations (see [Cohen, 1995, Cohen, 1989, Mallat, 1999]
for the theory and the motivations beyond this approach), briefly indicated as TFR,
are employed for several different signals: sound, light, image, video, every kind
of phenomenon which is interpretable as a function with finite energy on a real or
complex space. The starting point of this prolific field is the work of the french
mathematician and physicist Jean Baptiste Fourier, together with the improvements
of computer science techniques for the fast application of models and tools stemming
from his results. The first goal of a signal representation is to increase its readability:
the spectrum of a sound is a fundamental characterization of its features in the
frequency domain, but it is not enough to have a local complete information; if we
consider a signal and its Fourier transform separately, we cannot observe the evolution
of its spectral content over the time. With TFRs, a further characterization is provided,
increasing the dimension of the representation domain: for a mono-dimensional
signal, a TFR is a two-dimensional space which jointly describes its time and frequency
content. In this section we investigate the relations between the physical and the
probabilistic concepts of density; in the approach we adopt, this motivates the idea of
the spectrogram (introduced in Section 1.5) as a time-frequency density and the use of
certain mathematical tools to analyze its features.

The spectrogram is an example of a TFR defined from a decomposition of the signal
within a set of elementary atoms. This strategy is largely employed in signal processing,
because the information is distributed among different basic functions, which are easier
to deal with: depending on the application, we can select only a few of them carrying
the most information we are interested in (data compression), or define a transforma-
tion of the atoms which determines a transformation of the original signal. Therefore,
the interest of the atoms resides in their capability to separate and make intelligible
basic properties and components of the signal: onsets, noise, sinusoids or resonant
structures for sounds; colors or edges for images.
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1.4.1. Densities and distributions. To define a probability density we consider the
real numbers R with the usual Borel σ-algebra and Lebesgue one-dimensional measure;
a probability density on R is a positive continuous function f such that

∫
R
f(x)dx =

1 . Given a probability density, a probability law based on such density is defined as a
positive function µ which associates to every Borel set A the number

µ(A) =

∫

A
f(x)dx .

The cumulative distribution F of µ is defined from R in [0, 1], as follows

F (x) = µ(]−∞, x]) ;

it verifies the following identity,

lim
h→0+

F (x+ h)− F (x)

h
= lim

h→0+

µ((x, x+ h])

h
,

that defines the value of a probability density in a point as the derivative of its cumu-
lative distribution. A first notational problem occurs: in signal processing applications
the cumulative distribution is not often employed; on the other hand, the term distribu-
tion is always used as a synonym of density. In this work, the term distribution indicate
the density, otherwise it will be specified. A second remark concerns the distinction
between the density function and the probability law that it defines; as our interest is
mainly focused on densities, many quantities and functions defined on the probability
law will be straightly related to the density itself.
Defining a probability density on R2, and generally speaking in Rd, requires noth-
ing more of what has just been observed, considering the multi-dimensional Borel σ-
algebra and Lebesgue measure. So let now f be a probability density in R2; thanks to
the Fubini theorem the following identities hold,

(1.4.1) f1(x) =

∫

R

f(x, y)dy , f2(y) =

∫

R

f(x, y)dx ,

and the functions f1, f2 are one-dimensional densities, called marginal densities or
marginals, while f is their joint density. If we consider now a TFR as a probability
density on R2, and interpret the two dimensions as time and frequency, we would like
to use the properties (1.4.1) to deduce the instantaneous energy and spectral density
per unit: in the following, we will give examples of TFR for which properties (1.4.1)
hold, and others, like the spectrogram (see Section 1.5), for which they do not hold.

1.4.2. Overview of some time-frequency transforms and distributions. After the
introduction of several different TFRs with specific features, a first general approach is
established by Cohen (see [Cohen, 1989, Cohen, 1995]): given a signal f(t), the Cohen’s
class is composed by time-frequency representations Cf such that,

(1.4.2) Cf (t, ω) =

∫∫

R2

Af (θ, τ)Φ(θ, τ) e
−2πi(θt+τω) dθdτ ;
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here, Af is the ambiguity function of f , defined as follows,

(1.4.3) Af (θ, τ) =

∫

R

f(t+
τ

2
)f∗(t− τ

2
) e2πiθt dt ,

while Φ and the product AΦ are called the kernel and the characteristic function of the
distribution, respectively. The bilinear distributions of Cohen’s class can be seen as the
2-D Fourier transform of a weighted version of Af , where the weighting function is
Φ; in the same way, the characteristic function is obtained as the inverse 2-D Fourier
transform of the distribution.

There exist TFRs (see [Cohen, 1995]) Cf (t, ω) whose marginal properties parallel
those of probability densities (1.4.1),

(1.4.4)
∫

R

Cf (t, ω)dω = |f(t)|2 ,
∫

R

Cf (t, ω)dt = |f̂(ω)|2 ,

(1.4.5)
∫∫

R2

Cf (t, ω)dtdω =

∫

R

|f(t)|2dt =: ‖f‖22 .

Consider, for instance, the Wigner distribution, defined as

(1.4.6) Wf (t, ω) =

∫

R

f(t+
τ

2
)f∗(t− τ

2
) e−2πiτω dτ .

The kernel of the Wigner distribution is the constant one function, and its characteristic
function is Af . This distribution verifies equations (1.4.4) and (1.4.5), making it
possible to deduce exact time or frequency information about the signal from the joint
representation. The disadvantage of the Wigner distribution is that the time-frequency
distribution may reveal components that do not correspond to the analyzed signal, the
so-called cross components (see Figure 1.1 for an example).
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FIGURE 1.1. Wigner distribution of a sum of complex sinusoids with linear
frequency modulation (linear chirps): we would expect the representation to
show only the two diagonals, the other white zones are interference components.



1.4. TIME-FREQUENCY REPRESENTATIONS AND ENERGY DENSITIES 11

The role of the kernel, in general distributions in the Cohen’s class, is to smooth
these interference components, giving a coherent representation of the signal. Con-
sidering a non constant kernel in the Wigner distribution, the so-called Pseudo Wigner
distribution is obtained (see [Martin and Flandrin, 1985]), with better robustness to
cross components, but which in general does not verify equations (1.4.4). Several
different approaches have been considered for the design of appropriate kernels,
leading to the conclusion that fixed kernels are in general well suited for limited class
of signals; in Section 1.6 we mention some adaptive strategies in this sense.

According to the marginal analogy, as well as others, between certain TFRs and
probability densities, it makes sense to investigate properties of TFRs by means
of probabilistic tools: we are interested in particular to entropy measures (see
[Baraniuk et al., 2001]). The Shannon entropy of a TFR Cf is given by the following
integral, considering a unit-energy signal f ,

(1.4.7) H(Cf ) := −
∫∫

R2

Cf (t, ω) log2Cf (t, ω)dtdω .

Rényi entropies (see [Rényi, 1961, Beck and Schlögl, 1993, Zibulski and Zeevi, 1997] for
its definition and general properties, and Section 3.2), which are an extension of the
Shannon one, can be calculated as well,

(1.4.8) Hα(Cf ) :=
1

1− α
log2

∫∫

R2

(Cf (t, ω))
αdtdω ,

given α > 0 , α 6= 1. These quantities are not defined for every TFR, in particular for
some of those which are not positive. In Chapter 3, we detail how entropies can be
used to measure the concentration of a spectrogram (see Section 1.5), considered as a
TFR: this information can then be used to set an automatic adaptive framework for the
analysis of a signal.

Like the spectrogram, several representations originated by time-frequency trans-
forms belong to the Cohen’s class; a typical way to define a linear time-frequency trans-
form is to set a dictionary of functions {φγ}γ∈Γ with a localized support, called atoms;
then, for every function f the corresponding time-frequency transform T is defined as

(1.4.9) Tf(γ) =

∫

Rd

f(t)φγ(t)dt.

As we are working with functions in the Hilbert space L2(R), we look to the case d = 1,
and the integral in the right side of equation (1.4.9) can be written as 〈f, φγ〉. From the
Parseval’s formula (see [Gröchenig, 2001b], Theorem 1.1.2) we know that

(1.4.10) Tf(γ) =

∫

R

f(t)φγ(t)dt =

∫

R

f̂(ω)φ̂γ(ω)dω ,

so we have that if φγ(t) is null outside a time interval, then 〈f, φγ〉 depends only on the
values taken by f in that interval. Similarly, if φ̂γ(ω) is null outside a frequency interval,
from the right side of (1.4.10) we have that 〈f, φγ〉 depends only on the values taken by
f̂ in that interval. As the target is to obtain strongly localized informations on f and f̂
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simultaneously, we would like to narrow both the intervals at once. In what follows,
we show the existing limit to the tightness we can get, that is to the information we can
deduce about f , using the coefficients of a time-frequency transform.

As seen, the information earned on f by the product 〈f, φγ〉 is related to a time-
frequency region whose dimensions depend on φγ(t) and φ̂γ(ω). If we suppose∫
R
|φγ(t)|2dt = 1 = ‖φγ‖2 , then |φγ(t)|2 can be seen as an energy distribution on R

whose central time τγ and spread around τγ are given, respectively, by the following
average and variance:

(1.4.11) τγ =

∫

R

t|φγ(t)|2dt , σ2t (γ) =
∫

R

(t− τγ)
2|φγ(t)|2dt .

Similarly, the central frequency ωγ and spread around ωγ of |φ̂γ |2 are given by

(1.4.12) ωγ =

∫

R

ω|φ̂γ |2dω , σ2ω(γ) =
∫

R

(ω − ωγ)
2|φ̂γ(ω)|2dω .

Thus we have that the information we can get on f through φγ(t) is concentrated in the
so-called Heisenberg box associated to the atom (see Figure 1.2), that is a rectangle in the
time-frequency plane, centered in (τγ , ωγ), whose time and frequency sides are σt(γ)
and σω(γ), respectively.
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FIGURE 1.2. Heisenberg box associated to the atom φγ centered in (τγ , ωγ),
whose sides are given by the time and frequency spreads σt(γ) and σω(γ), re-
spectively.
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Theorem 1.4.1 (Heisenberg principle). Let f be a function in L2(R) and f̂ its Fourier trans-
form. The temporal variance σ2t and the frequency variance σ2ω of f satisfy the inequality

(1.4.13) σ2t σ
2
ω ≥ 1

4
,

with equality if and only if there are (u, ξ, a, b) ∈ R2 × C2, with ℜb > 0, such that

f(t) = aeiξt−b(t−u)
2
.

Theorem 1.4.1 is a statement of the Heisenberg principle (see [Flandrin, 1999] for other
different ones); from the point of view of a signal analysis, it says that given an atom
φγ(t), the quantities σ2t (γ) and σ2ω(γ) limit the time and frequency precisions of the
information we can earn about the signal from the product 〈f, φγ〉. When the goal
is to increase the analysis precision, Theorem 1.4.1 is often cited as the main tie: the
more details we want to see in time, the coarser our resolution is bound to become
in frequency. The fact, that we can not simultaneously achieve arbitrarily high time-
and frequency-resolution of a particular signal component, is less troublesome, if we
are able to vary the time-frequency resolution over the time-frequency plane. Some
steps towards this idea have been made, as explained in Section 1.6. However, many
problems, both theoretical and practical, remain open, and constitute one of the main
interest of this work.

The Short Time Fourier Transform (STFT) is probably the most used dictionary-based
time-frequency transform in Computer Music and Sound Processing: we introduce in
more details the STFT and the related time-frequency distribution in Section 1.5, as it
is the tool we focus on, throughout this work. Another example of dictionary-based
transform is given by the Wavelet Transform (see [Daubechies, 1992, Daubechies, 1990,
Coifman et al., 1992]), largely exploited in Image and Video Processing, and in Sound
Processing, too. A wavelet is a function ψ ∈ L2(R) such that

∫
R
ψ(t)dt = 0, and we

can always assume ‖ψ‖2 = 1. The dictionary {ψa,b}(a,b)∈R+×R is obtained here with a
scaling and a time translation of factors a and b, respectively, given by

(1.4.14) ψa,b(t) =
1√
a
ψ

(
t− b

a

)
,

where ψ is called mother wavelet. The related time-frequency transform is thus defined
as follows,

(1.4.15) Wf(a, b) = 〈f, ψa,b〉 =
∫

R

f(t)
1√
a
ψ

(
t− b

a

)
dt .

If the admissibility condition (see [Mallat, 1999]) is fulfilled, that is if

(1.4.16) Cψ =

∫

R+

|ψ̂(ω)|2
ω

dω < +∞ ,

then the Wavelet transform admits an inversion formula which allows to reconstruct f
from the coefficients Wf(a, b).



14 1. CONTEXT, MOTIVATIONS AND OBJECTIVES OF THE WORK

Varying a and b the Heisenberg boxes related to the wavelets have different sides;
if ψ and ψ̂ are centered in 0 and ξ, respectively, with time spread σt and frequency
spread σω, then the Heisenberg box associated to ψa,b(t) is centered in (b, ξ/a), with
sides aσt and σω/a. Thus we see that different scalings of a wavelet determine different
boxes, with the same surface: that is, the global resolution is not increasing, but the
time or frequency resolutions can individually increase, to the detriment of the other.
In particular, when a is large, the box is located in a low frequency range, and provides
a lower frequency spread σω/a than the mother wavelet, that is a higher frequency
resolution; on the other hand, a small scaling factor a places the box in a high frequency
range, with a better time resolution (see Figure 1.3).
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FIGURE 1.3. Heisenberg boxes associated to two scaled wavelets, whose
mother wavelet is centered in (0, ξ) and has time and frequency spreads σt and
σω, respectively.

Our auditory system perceives sounds in a similar way, with a lower capability to
distinguish close tones when their frequencies grow. This characteristic is exploited,
for example, in some audio coding techniques (see [Painter and Spanias, 2000] for a
survey), which aim to reduce the digital size of an audio file for the purpose of efficient
transmission or storage: the MP3 (MPEG-1 Audio Layer III) audio codec is one of the
most popular. In most of these algorithms, a time-frequency transform of the signal
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is calculated, and only a few of its coefficients are selected to be stored, according to
specific criteria of perceptual relevance. The loss of information is thus controlled
in order to obtain a reconstructed signal perceptually close to the original one. The
varying-resolution property has shown to be well-suited for image processing, too:
here, colors play the role of frequency, and typical problems are related to contour
detection, preservation or reconstruction.

In this work, the purpose is not to reduce the size of the audio file through an
appropriate representation: we aim, instead, to define representations which increase
the readability of a sound, separating its elementary components, and making them
easier to manipulate. For this reason, we look for a representation whose coefficients
have a direct interpretation in terms of time-varying frequency spectrum, and we rather
adopt the STFT transform (Section 1.5) as a starting point.

1.5. The spectrogram of a sound

The time-frequency transform we focus on is an extension of the classical Fourier
transform, realized by first multiplying the signal by another function and then taking
the Fourier transform.

Definition 1.5.1. Given a function g 6= 0, the Short Time Fourier Transform (STFT) of a
function f is defined as

Vgf(t, ω) =
∫

Rd

f(x)g(t− x) e−2πiωx dx .

The function g is called window function and is used to localize the spectral infor-
mation given by the transform. When dealing with signals, we consider d = 1, f, g ∈
L2(R) with ‖g‖2 = 1 and g(t) = g(−t).
We introduce the time and frequency shifts operators,

(1.5.1) Txf(t) = f(t− x), Mωf(t) = e2πiωt f(t) ,

and consider time-frequency shifts of g as follows

(1.5.2) MξTxg = e2πiξt g(t− x) .

For every (x, ξ) ∈ R2 we have ‖MξTxg‖ = 1, and it is easy to see that the Heisenberg
box associated to the atom MξTxg is centered in (x, ξ) itself, with sides which do not
depend on x and ξ, as

σ2t (x, ξ) =

∫

R

(t− x)2|g(t− x)|2dt(1.5.3)

=

∫

R

t2|g(t)|2dt = σ2t (0, 0)

and

σ2ω(x, ξ) =

∫

R

(ω − ξ)2|ĝ(ω − ξ) e−2πix(ω−ξ) |2dω(1.5.4)

=

∫

R

ω2|ĝ(ω)|2dt = σ2ω(0, 0) .
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STFT is the time frequency transform corresponding to the dictionary {MξTxg}(x,ξ)∈R2 :
as we have seen, the Heisenberg box of an atom tells us the precision, in time and
frequency, of the information we get about the signal, when taking its scalar product
with that atom. We thus deduce that, unlike wavelets, in the STFT the precision of the
original window and those of its shifted and modulated versions are the same.

The following result ([Gröchenig, 2001b], Corollary 3.2.3) provides an inversion
formula for the STFT.

Theorem 1.5.2. Given g, h ∈ L2(Rd) such that 〈g, h〉 6= 0, for every f ∈ L2(Rd) we have

(1.5.5) f(t) =
1

〈g, h〉

∫∫

R2d

Vgf(x, ξ)MξTxh dξdx .

When working with signals, it states that every signal f ∈ L2(R) can be recon-
structed from its STFT; moreover, it shows that the window used for the reconstruction
may be different from the one used for the analysis, and nearly every synthesis window
is possible to still get perfect reconstruction.

As usual with time-frequency transforms, we can deduce a TFR taking the squared
modulus of the STFT; we obtain this way the spectrogram of the signal, that we indicate
as

(1.5.6) PSgf(t, ω) = |Vgf(t, ω)|2 ,
omitting the indication of the window function g if no ambiguity occurs. The spec-
trogram can be seen as a surface with finite energy, as PSf ∈ L2(R2); the following
proposition (see [Mallat, 1999]) shows that, on the other hand, not every Φ ∈ L2(R2) is
the spectrogram of a signal f ∈ L2(R).

Proposition 1.5.3. Let Φ ∈ L2(R2). There exists f ∈ L2(R) such that Φ(t, ω) = PSf(t, ω) if
and only if

(1.5.7) Φ(t, ω) =

∫∫

R2

Φ(x, ξ)K(t, x, ω, ξ)dxdξ ,

where

(1.5.8) K(t, x, ω, ξ) = 〈MωTtg,MξTxg〉 .
The function K is called reproducing kernel and it measures the time-frequency overlap
of the two atoms MωTtg and MξTxg. Its amplitude decays with t− x and ω− ξ at a rate
that depends on the energy concentration of g and ĝ. The characteristic function MPSf

of a spectrogram PSf is given by

MPSf (t, ω) =

∫∫

R2

PSf(τ, θ) e2πi(τt+θω) dτdθ(1.5.9)

= Af (t, ω)Ag(−t, ω) ,
where Af and Ag are the ambiguity functions of the signal and the window function,
respectively. Therefore, we deduce that the kernel of the spectrogram is the ambiguity
function of the window function; we can also deduce, by evaluating MPSf in (t, 0) and
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(0, ω), that if we consider the spectrogram as a joint distribution, the marginals are in
general different from |f(t)|2 and |f̂(ω)|2, and equations (1.4.4) do not hold; this is due
to the contribution of the window spectrum to the spectrum of the windowed signal;
and it shows that the information we can get from the spectrogram, about the energy
and the spectral energy of f , is necessarily altered by the window function.

1.5.1. The role of the window function. As we have seen, a window function g
identifies a corresponding rectangular area in the time-frequency plane, its Heisenberg
box; the dimensions of the box are determined by the time and frequency variance of
the window, and the minimum area is fixed by the Theorem 1.4.1, when g is a Gaussian.
Depending on the desired resolution of the analysis, the ratio between the box sides can
be changed. Let g be a function whose energy and spectral energy have variance σt and
σω, respectively. If we consider a scaling of g with a factor s ∈ R+,

(1.5.10) gs(t) =
1√
s
g

(
t

s

)
,

we obtain an atom whose time and frequency spread are sσt and σω
s , respectively. As

seen for wavelets, the area of the Heisenberg box associated to the scaled window gs
is the same as the one corresponding to g, but the sides have changed: the amount
of information we get from an STFT taken with gs or g is the same, but the time and
frequency precisions, considered separately, are different.

We now describe some features of the Fourier transform ĝ of a window function,
whose proofs are also given for completeness. The following classical theorem states
that they cannot both have a compact support.

Theorem 1.5.4. If g ∈ L1(R) is a not identically null function, then g and ĝ cannot both have
compact support.

PROOF. We prove the statement by contradiction. Suppose that ĝ has a compact
support [−ω0, ω0] and that g is null over the whole interval [t1, t2], which is a conse-
quence of assuming that g has compact support. Then,

(1.5.11) g(t) =

∫ ω0

−ω0

ĝ(ω) e2πiωt dω ;

consider t0 ∈ (t1, t2) ; by differentiating n times under the integral, we have

(1.5.12)
dn

dtn
g(t0) =

∫ ω0

−ω0

ĝ(ω)(2πiω)n e2πiωt0 dω = 0 .

Since

(1.5.13) g(t) =

∫ ω0

−ω0

ĝ(ω) e2πiω(t−t0) e2πiωt0 dω ,

developing e2πiω(t−t0) in t0 we have, for every t ∈ R,

(1.5.14) g(t) =

∞∑

n=0

[2πi(t− t0)]
n

n!
·
∫ ω0

−ω0

ĝ(ω)ωn e2πiωt0 dω = 0
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contradicting the assumption that g is not identically null.
�

In digital signal processing applications, the window function has a compact sup-
port by necessity: in this case, ĝ has an unlimited support; by the definition of Fourier
transform, considering the absolute value, we see that if g is positive, then |ĝ(ω)| has an
absolute maximum in ω = 0; moreover, as g is real, ĝ is symmetric. It is an oscillating
function (its first derivative has an infinite number of zeros), which decays to zero as
|ω| goes towards infinity, at a rate which is studied in the next proposition.

Proposition 1.5.5. Consider g ∈ L1(R); then g is p times continuously differentiable, g ∈
C p(R), p ≥ 1 if the following inequality holds,

(1.5.15)
∫

R

|ĝ(ω)|(1 + |ω|p)dω < +∞

PROOF. By the assumption on g we have that ĝ is defined, and

|g(t)| =

∣∣∣∣
∫

R

ĝ(ω) e2πiωt dω

∣∣∣∣(1.5.16)

≤
∫

R

|ĝ(ω)|dω <∞ ;

by the expression of the Fourier transform of the n-th derivative of a function,

(1.5.17) ĝ(n)(ω) = (2π)nωnĝ(ω) ,

we obtain

(1.5.18) |g(n)(t)| ≤ (2π)n ·
∫

R

|ĝ(ω)||ω|ndω <∞ ,

and the last inequality holds for every n ≤ p as a consequence of the hypothesis (1.5.15).
�

Remark 1.5.6. The result implies that a sufficient condition for g to be in C p(R) is that
there exist constants K and ǫ > 0 such that

(1.5.19) |ĝ(ω)| ≤ K

1 + |ω|p+1+ǫ
.

So the regularity of g depends on the decay of ĝ(ω) at infinity. As an example, if
r(t) = 1[−T,T ] the rectangular window, then r(t) is discontinuous in T and −T , and
|r̂(ω)| decays like |ω|−1 when ω tends to infinity. The proposition still holds taking ĝ
and the inverse Fourier transform, so the regularity of ĝ depends on the decay of g at
infinity. �

We assume now to work with windows g ∈ L2(R) with compact support; the char-
acteristics of ĝ tell us which is the biasing of the signal spectral information introduced
by the window. As seen, ω = 0 is the value where |ĝ(ω)| has its absolute maximum;
the value ĝ(0) identifies the so called main lobe of the window, and a main peak in
the spectrogram. Beside the absolute maximum, |ĝ(ω)| has an infinite number of local
maxima, which determine further peaks in the spectrogram on both sides of the central
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FIGURE 1.4. Fourier transform ĝ(ω) of a Hanning window with compact
support, g(t) = 2 ·cos2(πt)χ[− 1

2
, 1
2
]: the amplitude of the main lobe is ĝ(0), that

of the side lobes is A = |ĝ(ω0)| = |ĝ(−ω0)|, the root mean-square bandwidth is
∆ω.

frequency of the window (see Figure 1.4): they can be seen as a delocalization of the
spectral information, and if their amplitude is considerable they become hard to dis-
tinguish from main peaks. It is thus desirable that the ratio between the amplitudes of
the absolute maximum and those of local maxima is small. To measure this quantity,
as |ĝ(ω)| decays with oscillations, we can consider the two frequencies ±ω0 where the
first local maxima are reached: they are called side lobes, and the ratio of their amplitude
with the one at the main lobe is measured in decibels,

(1.5.20) A = 10 log10
|ĝ(ω0)|2
|ĝ(0)|2 .

Together with a small A, a measure of the spectral localization provided by the
window is given by the amount of energy concentrated within the main lobe. The root
mean-square bandwidth ∆ω is defined by

(1.5.21)
|ĝ(∆ω/2)|2
|ĝ(0)|2 =

1

2
,

and measure the width of the mainlobe (see Figure 1.4). A detailed comparison of
these features for different windows is out of the scope of this work (see [Mallat, 1999]
Section 4.2.2 for a comparison of the quantities considered here, and [Harris, 1978] for
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a complete survey in the discrete case): for the tests in Chapter 4, we choose a fixed
window function often adopted in the applications, the Hanning window with compact
support [−1

2 ,
1
2 ] ,

g(t) = cos2(πt)χ[− 1
2
, 1
2
] ;

it provides a good localization of the spectral energy, as A = −32dB and ∆(ω) = 1.44,
considering that ĝ(0) = 1

2 (see Figure 1.4, where 2ĝ(ω) is plotted, to enhance the lobes).

1.6. Adaptive time-frequency representations

STFT is often adopted in the sound processing domain as it closely reflects the
concept of time-varying spectrum: its coefficients give the local amplitudes and phases
of sinusoids, with a direct interpretation in terms of the sound components they refer
to. But as we have seen in Section 1.5, it is a transform with constant resolution over
the whole time-frequency plane. This is a limit, as the precision needed to separate
the information coming from different components of complex sounds may vary
significantly.
As a basic example, we can consider a percussion sample with fast sequences of tran-
sients, that we may want to fit for a different tempo than the original one; if the support
of the analysis window used is too large, it is possible that a given time-shift includes
several transients. From the analysis point of view, these components are indivisible,
which means that every treatment concerning their analysis frame applies to them all:
in the case of a time-stretch of the original sample, this is particularly inappropriate,
because it makes impossible to situate different transients independently.
A symmetric basic example is the case where a small analysis window is used with
instruments having close partials: as the frequency resolution of a function with short
compact support is low, the value of a frequency bin in the analysis may be influenced
by different partials, thus degrading the accuracy of spectral processing techniques
like a pitch-shift.

The concept of adaptivity is related to the the intrinsic flexibility of the model,
allowing to conceive set of atoms and operators which fulfill certain desired charac-
teristics. In particular, we look for methods that provide a flexible choice of the local
time-frequency resolution. As we have seen in Subsection 1.4.2, the classical wavelet
transform cannot be considered adaptive in the sense just mentioned, because the
resolution varies according to a fixed rule.

The limits about the fixed resolution of standard analysis methods have been
overcome following different approaches. We consider in particular the ones related
to Gabor Frame theory (Chapter 2), as this is the context where this work is included;
from the point of view of adaptive kernel design (see Subection 1.4.2), we refer to
[Jones and Baraniuk, 1994, Jones and Baraniuk, 1995] and the related bibliographies.

There are three main aspects we consider: first, the adaptivity as the possibility
to deal with different resolutions locally within a sound; then, a criterium to choose
the best local resolution which provides the adapted representation; and finally, the



1.7. CONTRIBUTIONS OF THIS WORK TO THE STATE OF THE ART 21

possibility to define a reconstruction method from the adapted analysis. The idea of
gathering a sparsity measure from information measures, and Rényi entropies in partic-
ular, is detailed in [Baraniuk et al., 2001]. In [Jaillet, 2005, Jaillet and Torrésani, 2007]
a local time-frequency adaptive framework is presented exploiting this concept:
automatic local adaptation and reconstruction are both developed, the latter being
realized through a recursive algorithm whose general convergence is not investigated.

The definition of multiple Gabor frames, which is comprehensively treated in
[Dörfler, 2002], provides Gabor frames with analysis techniques with multiple res-
olutions; an approach where sparse analyses are obtained through a regression
model is introduced in [Wolfe et al., 2001]. The nonstationary Gabor frames (see
[Jaillet et al., 2009, Balazs et al., 2011, Søndergaard et al., ] for their definition and
implementation) are a further development in this sense; they fully exploit theoret-
ical properties of the analysis and synthesis operator, and extend the painless case
introduced in [Daubechies et al., 1986]: if the analysis respect certain conditions,
they provide a class of FFT-based algorithms for analysis adaptation, in the time or
frequency dimension separately, together with perfect reconstruction formulas.
The technique developed in [Rudoy et al., 2010] belongs to this same class but presents
several novelties in the construction of the Gabor multi-frame, and in the method for
automatic local time-adaptation. In [Lukin and Todd, 2006] a time-frequency adaptive
spectrogram is defined considering a sparsity measure called energy smearing, without
taking into account the re-synthesis task.
The concept of quilted frame, recently introduced in [Dörfler, 2011], is a promising effort
to establish a unified mathematical model for all the various frameworks cited above.

1.7. Contributions of this work to the state of the art

We detail here the main contributions of this work, concerning the three aspects of
adaptation, automatic choice of the best resolution, and reconstruction from adapted
analyses. For the first two points, the strategy we adopt is the same as the one in
[Jaillet, 2005, Jaillet and Torrésani, 2007], giving new results on two main subjects:

in Section 3.3 we give new results on the existence of Rényi entropy mea-
sures of spectrograms in the continuous case, thus extending the results of
[Baraniuk et al., 2001]; in the same section, we give new results about the con-
vergence of discrete versions of these measures to their continuous one, when
the sampling grid becomes infinitely dense;
in Sections 3.4 and 3.6, we deduce some properties about the Rényi entropies
and the parameter they depend on, which are useful for the interpretation of
this parameter in applicative contexts; we define a novel method for spectral
change detection based on these properties, as well as a particular normaliza-
tion of the Rényi entropy detailed in Section 4.1, which is appropriate for the
comparison of the entropy of discrete finite TFRs with different dimensions.
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Concerning the reconstruction from adapted analyses, in Chapter 2 we focus on
methods allowing for FFT-based implementations, dividing the cases where they can
give perfect reconstruction or not:

if the resolution of the adapted analyses changes as a function of time only,
nonstationary Gabor frames are used, guaranteeing perfect reconstruction;
if the resolution of the adapted analyses changes depending on time and
frequency, we define in Sections 2.5 and 2.6 two new reconstruction methods
giving an approximation of the original signal: we analyze the reconstruction
error they give, by means of some tests, and provide a theoretical bound of the
error for the second one, the filter bank method.

We have implemented new Matlab code for the whole framework of analysis, auto-
matic adaptation and reconstruction; the different FFT-based reconstruction functions,
which vary depending on the time or time-frequency adaptation, are new extensions of
the existing ones (see [Balazs et al., 2011, Søndergaard et al., ]).



CHAPTER 2

Frame theory in sound analysis and synthesis

In Mathematics, Time-frequency Analysis is a branch of Harmonic Analysis that
characterizes functions and operators considering the structure of their translations
and modulations, that is time-frequency shifts. In the first decades of the last century,
it has originally been formulated in the field of quantum mechanics, while the work of
Dennis Gabor established its theoretical foundations in information theory and signal
analysis, some years later (see [Gabor, 1946] for the original formulation by Gabor, and
[Gröchenig, 2001b] for a survey about the origins of time-frequency analysis).

Typical problems of time-frequency signal processing, and in particular sound pro-
cessing and computer music, can be modeled in a formal mathematical framework.
Given a set of atomic functions in a Hilbert space, the related decomposition operator
is called Analysis operator, while an expansion one is the Synthesis operator. They are
the basic tools for a complete scheme for the analysis, transformation, and re-synthesis
of a sound, which can be sketched as follows:

(1) a representation is obtained decomposing the sound by means of a given set of
atoms, the result being a set of analysis coefficients;

(2) the analysis coefficients are interpreted to deduce information about the original
sound;

(3) the analysis coefficients are modified to transform specific features of the repre-
sentation;

(4) a new sound is constructed as an expansion of the modified coefficients within
a certain set of atoms, not necessarily the same used for the analysis.

The four points of the scheme concern several different applications: sound visu-
alization processes deal just with the first one, while feature extraction techniques
exploit the first two; more complicated processes, such as source separation or vocal
transformation, have to handle them all. One of the principal focus of our research
is making the scheme adaptive: the analysis and synthesis operators have to change
according to the characteristics of the signal.

In Chapter 1, we introduced several time-frequency representations with their
characteristics for sound analysis and reconstruction. We did it for the continuous
version of these TFRs, while real-world applications have to deal with discrete finite
TFRs. Frame theory (see [Gröchenig, 2001b, Christensen, 2003, Casazza, 1999] for
the general theory) is a general theoretical approach to the discretization of TFRs,
including both Wavelet and Short Time Fourier Transforms (see [Mallat, 1999] for
a comprehensive survey of theory and applications): it investigates, in particular,

23
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the conditions for the sampled analysis and synthesis operators to preserve perfect
reconstruction of the original signal.

In this chapter, we focus on Gabor frames; in the Gabor transform (see [Gabor, 1946]
for the original article), the analysis atoms are obtained with time-frequency shifts
of a Gaussian function, which provides for an optimal time-frequency localization
(see Theorem 1.4.1); along with this approach, the STFT (Section 1.5) is the continuos
version of the Gabor transform, with a generic symmetric window function. In the
nineties of the last century, a different approach has led to the Wavelet Transform (Sub-
section 1.4.2), where a new paradigm is introduced; symmetric windows are replaced
by wavelets, and the related analyses are not expressed within the time-frequency
plane: the related two-dimensional space is indicated as time-scale (see [Flandrin, 1999]
and [Mallat, 1999] for a comprehensive review of the two models). As detailed in
Subsection 1.4.2, the main difference lays in the different resolution offered by the two
bases: while the elements of a stationary Gabor frame have all the same time-frequency
concentration, the different atoms in a wavelet set vary their concentration depending
on their position in the time-scale space.

The first and fundamental objective of this thesis is the formal definition of mathe-
matical models whose interpretation leads to theoretical and algorithmic methods for
adaptive analysis. Such models have to take into account the necessity of reconstructing
the original signal from the analysis coefficients, thus the problem of re-synthesis. We
deal with two principal cases, both dealing with compactly supported analysis atoms:
when the atoms change depending on their time location, with nonstationary Gabor
frames it is possible to define efficient reconstruction methods giving a perfect recon-
struction of the original signal (see Subsection 2.2.1); when the atoms change depend-
ing on both their time and frequency locations, the reconstruction cannot in general be
made with efficient procedures, as it requires the inversion of an operator which may
not have any regular structure. For this case, we define in Sections 2.4, 2.5 and 2.6 two
new approximation methods extending the approach adopted for time adaptation. In
Section 4.4 we measure the reconstruction error by means of several applications, while
in Section 2.6 we give theoretical bounds for the error performed by the method that
we indicate as filter bank approach.

2.1. Frame theory: basic definitions and results

The Fourier representation of a signal is based on sinusoids: these functions have
an unbounded time support, which is not well-suited when we are interested in the
local behavior of the signal. Moving from this drawback of the classical Fourier trans-
form, frame theory enlarges the possible choices of bases and decomposing systems in
a Hilbert space. Here we summarize the basic definitions and theorems, which are use-
ful to the introduction of Gabor frames with multiple resolutions (see [Dörfler, 2002]
Chapter 3 for a comprehensive survey).
Given a separable Hilbert space H , with its structure of vector space on C and its own
scalar product 〈·, ·〉 , we consider a set of vectors {φγ}γ∈Γ in H , where the index set Γ is
countable and may be infinite, and γ can also be a multi-index.
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Definition 2.1.1. The sequence {φγ}γ∈Γ is a frame for H if there exist two positive non
zero constants A > 0 and B <∞, called frame bounds, such that for all f ∈ H ,

(2.1.1) A‖f‖2 ≤
∑

γ∈Γ

|〈f, φγ〉|2 ≤ B‖f‖2 .

If A = B the frame is tight; moreover, this definition includes orthonormal basis, as
withA = B = 1 equation (2.1.1) is the Plancherel identity (see [Gröchenig, 2001b], The-
orem 1.1.2). The frame bounds A and B are the infimum and supremum, respectively,
of the eigenvalues of the frame operator S, defined as follows.

Definition 2.1.2. Given a set {φγ}γ∈Γ, the analysis operator Cφ is given by

(2.1.2) Cφf = {〈f, φγ〉, γ ∈ Γ} ,
while for every sequence c = (ck)k∈Γ, the synthesis operator Dφ is defined as

(2.1.3) Dφc =
∑

γ∈Γ

cγφγ ,

and for every f ∈ H the frame operator S is given by

(2.1.4) Sf =
∑

γ∈Γ

〈f, φγ〉φγ .

The synthesis operator is the adjoint of the analysis one, Dφ = Cφ
∗, and the frame

operator S = Cφ
∗Cφ = DφDφ

∗ is a positive invertible operator. For any frame {φγ}γ∈Γ
there exist dual frames {φ̃γ}γ∈Γ, such that for all f ∈ H we have

(2.1.5) f = D
φ̃
(Cφf), = Dφ(Cφ̃f) ,

so that given a frame it is always possible to perfectly reconstruct a signal f using the
coefficients of its decomposition through the frame. The inverse of the frame operator
allows the calculation of the canonical dual frame, given by

(2.1.6) φ̃γ = S−1φγ

which provides the minimal-norm analysis coefficients, in the ℓ2-sense. The frame
operator for the frame {φ̃γ}γ∈Γ is S−1.

We are interested in the case H = L2(R), as it represents the standard situation
where a signal f is decomposed through a countable dictionary of atomic functions
{φk}k∈Z. In particular, a Gabor system is obtained by time-shifting and frequency-
transposing a real window function g, such that g(t) = g(−t) and ‖g‖2 = 1, according
to a regular lattice Λ = aZ× bZ. We say that the Gabor system G(g, a, b) is a Gabor frame
if it satisfies the frame condition (2.1.1). We will also indicate such a frame as station-
ary, since the window used for the time-frequency shifts does not change. For a Gabor
frame, the reconstruction formula (2.1.5) takes the following form,

(2.1.7) f =
∑

(l,k)∈Z2

〈f,MbkTalg〉MbkTalg̃ =
∑

(l,k)∈Z2

Vgf(al, bk)MbkTalg̃ ,

thus we see that using a Gabor frame G(g, a, b) we are able to perfectly reconstruct
the signal f from a discrete sampling of its STFT with window g, according to the
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Ω

t

b

a

FIGURE 2.1. Time-frequency centers for a stationary Gabor frame G(g, a, b)
with time and frequency steps a and b, respectively.

nodes of the lattice Λ: indeed, given a time step a and a frequency step b, the sequence
(al, bk) with (l, k) ∈ Z2 generates the nodes of the time-frequency lattice Λ for the frame
{gk,l}(k,l)∈Z2 defined as

(2.1.8) gk,l(t) =MbkTalg = g(t− al) e2πibkt ,

where the nodes are the centers of the Heisenberg boxes associated to the windows in
the frame (Figure 2.1). We use in what follows a compact form of the reconstruction
formula (2.1.7), to focus on the analysis and synthesis operator,

(2.1.9) f = Dg̃(Cgf) ,

specifying the lattice when ambiguity occurs.

Given a window g, the lattice has to satisfy certain conditions for {gk,l} to be a frame;
the basic principle, that will be further analyzed in Section 3.3, is that if g is sufficiently
regular, then G(g, a, b) is a Gabor frame as long as a and b are small enough: that is,
if the sampling is sufficiently dense. Theorem 2.1.3 and 2.1.5 (see [Daubechies, 1992,
Daubechies, 1990]), which follow, give necessary and sufficient conditions on a and b
for G(g, a, b) to be a frame for L2(R).

Theorem 2.1.3. The Gabor system G(g, a, b) is a frame for L2(R) only if ab ≤ 1. The frame
bounds A and B necessarily verify the following inequalities

(2.1.10) A ≤ 1

ab
≤ B,
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(2.1.11) ∀t ∈ R, A ≤ 1

b

∑

l∈Z

|g(t− al)|2 ≤ B,

(2.1.12) ∀ω ∈ R, A ≤ 1

a

∑

k∈Z

|ĝ(ω − bk)|2 ≤ B,

thus we have that a Gabor frame G(g, a, b) is an orthonormal system for L2(R) only
if ab = 1. The following theorem (see [Daubechies, 1990]) further characterize this
particular case, showing that, in these hypotheses, g cannot provide a good time-
frequency localization of the associated transform.

Theorem 2.1.4 (Balian - Low - Coifman - Semmes). If G(g, a, 1a) is a Gabor frame, then

either tg /∈ L2(R), or ωĝ /∈ L2(R).

We show now sufficient conditions for G(g, a, b) to be a frame for L2(R).

Theorem 2.1.5. Define

β(u) = sup
0≤t≤a

∑

l∈Z

|g(t− al)||g(t− al + u)| ,

∆(b) =
∑

k ∈ Z

k 6= 0

[
β

(
k

b

)
β

(
−k
b

)]1/2
.

If a and b are such that

A0 =
1

b

(
inf

0≤t≤a

∑

l∈Z

|g(t− al)|2 −∆(b)

)
> 0

and

B0 =
1

b

(
sup

0≤t≤a

∑

l∈Z

|g(t− al)|2 +∆(b)

)
< +∞ ,

then G(g, a, b) is a frame for L2(R) ; A0 is the upper bound for the lower frame bound A, and
B0 is the lower bound for the upper frame bound B.

Remark 2.1.6. Theorems 2.1.3 and 2.1.5 are classical density results proved by Ingrid
Daubechies; several other conditions have been given later, for a Gabor system to be
a frame (see [Gröchenig, 2001b]); in particular, if ϕ is a Gaussian window, a stronger
result exists (see Theorem 7.5.3 in the previous reference) proving that a necessary and
sufficient condition for G(ϕ, a, b) to be a frame is that ab < 1. �

In some particular cases, which are often adopted in standard applications, the
frame operator takes the form of a multiplication, as stated in the following theorem
(see [Daubechies et al., 1986] for the original formulation).
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Theorem 2.1.7. Consider g ∈ L∞(R) with supp(g) ⊂ [0, L]; if a ≤ L, b ≤ 1
L , then G(g, a, b)

is a Gabor frame, and the frame operator S is the following multiplication operator,

(2.1.13) Sf(t) =

(
b−1

∑

l∈Z

|g(t− al)|2
)
f(t) .

The hypotheses of Theorem 2.1.7 define the painless case, where the dual window g̃ is
easy to calculate by means of a multiplication of the original one,

(2.1.14) g̃(t) = S−1g(t) =
g(t)

b−1
∑

l∈Z |g(t− al)|2 .

Remark 2.1.8. As we see from formula (2.1.7), the atoms needed for the reconstruction
of f are the time-frequency shifts of g̃ according to the lattice Λ. From the identity
(2.1.14) which expresses g̃ in the painless case, we have that in these conditions
the whole analysis-reconstruction scheme can be implemented with fast FFT-based
methods: the input for transform to take is a short one, as both the analysis and recon-
struction steps are limited to the short-length support of the window g. Throughout
the work, we will indicate as fast those algorithms whose computational order is due
to the FFT of short-length signals. �

2.2. Extensions of stationary Gabor frames

The limit of stationary Gabor frames is that the decomposing atoms are defined
from the same original function, thus constraining the type of information we can
deduce from the analysis coefficients; if we were able to consider frames where several
families of atoms coexist, than we would have an analysis with variable information,
at the price of a higher redundancy. In our adaptive framework, we look for a method
to achieve analyses with multiple resolutions, combining the information coming from
the decompositions of a signal in several frames with different window functions.
Multi-window Gabor frames have been introduced in [Zibulski and Zeevi, 1997] to
provide the original Gabor analysis with more flexible multi-resolution techniques:
given a finite set of index S and different Gabor frames G(gs, as, bs) with s ∈ S,
a multi-window Gabor frame is obtained as the union of the single given frames.
Similarly, the analysis operator C is given by the union of the analysis coefficients
obtained with the individual frames G(gs, as, bs).

The different gs do not necessarily share the same type or shape: a typical strategy
inspired by the wavelet approach is to scale an original window with a finite number
of scaling,

(2.2.1) gs(t) =
1√
s
g

(
t

s

)
;

therefore, in such a multi-window frame the signal is analyzed with several different
tradeoff between time and frequency resolution. The disadvantage is that a significant
redundancy is introduced, which lowers the readability of the analysis. Moreover,
each individual frame give coefficients over the whole time-frequency space, while we
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would like to locally select coefficients from a unique analysis. This approach has been
introduced with quilted frames (see [Dörfler, 2011]): in these systems, the choice of the
analysis window in the STFT depends on both the time and the frequency location
of the considered coefficient. If this strategy is plain from the analysis point of view,
for a quilted frame there is not a general painless case for the inversion of the frame
operator: this implies that finding the dual frame for the reconstruction can be difficult,
and dedicated algorithms are in general computationally expensive.

In this work, we focus on analysis methods providing an analytic fast computation
of a dual frame, in the sense of Remark 2.1.8: when such methods are not theoretically
achievable, we consider strategies for a good approximation of the dual frame, still
using fast algorithms. The rest of this section and the next ones describe the details of
our approach.

2.2.1. Nonstationary Gabor frames. A strategy to get an adaptive framework
preserving a fast reconstruction method, in the sense of Remark 2.1.8, is given
by Nonstationary Gabor frames (NGF, see [Jaillet et al., 2009, Balazs et al., 2011,
Søndergaard et al., ]): we first consider the so-called time case, where the starting point
is a set of different window functions. A unique analysis window is chosen depend-
ing on the time location of the coefficient, originating a globally irregular lattice Λ (see
Figure 2.2): for each time index l, a window gl is chosen among the different set consid-
ered, which is centered at time al; then gl is modulated according to a frequency step,
indicated with bl as it depends on the time index l, too; therefore, Λ is irregular over
time, with regular frequency sampling at each time position.
We have a similar configuration for NGF in the frequency case, where the analysis win-

dow is chosen depending on the frequency location of the coefficient, thus originating
a lattice Λ which is irregular over time, with regular time sampling at each frequency
point (see Figure 2.3).

Referring to the time case, a nonstationary Gabor frame is thus given by the atoms

(2.2.2) gk,l(t) =Mblkgl(t) = gl(t) e
2πikblt , (l, k) ∈ Z

2 ,

where bl is the frequency step associated to the window gl. For NGFs there exist a pain-
less case for the calculation of the dual, whose conditions are detailed in the following
theorem ([Balazs et al., 2011], Theorem 1).

Theorem 2.2.1. Suppose that the windows gl ∈ L2(R) have compact support, supp(gl) ⊆
[cl, dl], and that the frequency steps bl are chosen such that dl− cl ≤ 1

bl
; then the frame operator

S is the following multiplication operator,

(2.2.3) Sf(t) =

(∑

l∈Z

1

bl
|gl(t)|2

)
f(t) .

As a consequence, if there exist two constants C,D such that

(2.2.4) 0 < C <
∑

l∈Z

1

bl
|gl(t)|2 < D <∞ ,
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FIGURE 2.2. Time-frequency centers for a Nonstationary Gabor frame in the
time case, with variable time locations al and frequency steps bl, depending on
the time index l.
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FIGURE 2.3. Time-frequency centers for a Nonstationary Gabor frame in the
frequency case, with variable frequency locations bk and time steps ak, depend-
ing on the frequency index k.
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then the set (2.2.2) is a frame whose dual frame is given by

(2.2.5) g̃k,l(t) =
gl(t) e

2πikblt

∑
l∈Z

1
bl
|gl(t)|2

.

Having an expression of the dual frame, it is now possible to define a reconstruction
formula; we can still make use of the compact form,

(2.2.6) f = Dg̃l(Cglf) ,

appropriately considering the window and lattice variations at each time location. As
we see from the expression of the dual frame, this formula can be implemented with a
fast FFT-based algorithm.

2.3. Gabor Multipliers

In the Gabor framework described till now, the analysis and synthesis operator are
the only elements considered; that is, the analysis coefficients are not modified before
the reconstruction. Spectral processing techniques are based on analysis manipulations,
which determine the desired effect in the re-synthesized signal. Gabor multipliers (see
[Feichtinger and Nowak, 2002] for a complete survey) provide a mathematical model
to manipulate the analysis coefficients by means of multiplications, and to define op-
erators in the signal domain from a modeling in the analysis domain. We consider the
definition of Gabor multiplier in L2(R), which can be generalized to the L2(Rd) general
case.

Definition 2.3.1. Let g1, g2 be two functions in L2(R), Λ a time-frequency lattice and
m = (mλ)λ∈Λ a complex-valued sequence; the Gabor multiplier Gg1,g2

m,Λ , with upper symbol

m, is given by

(2.3.1) G
g1,g2

m,Λ (f) = Dg2(m · Cg1f) ,

where m · Cg1f is the pointwise multiplication of m and Cg1f .

In particular, if G(g, a, b) is a Gabor frame with Λ = aZ× bZ, and m ∈ ℓ∞(Λ), then
the frame condition implies that Gg,g̃

m,Λ is a bounded operator.

2.3.1. Weighted Frames. The definition of spectral manipulations can be also ap-
proached from the point of view of the decomposing atoms; in [Balazs et al., 2010], the
concept of weighted frame is introduced.

Definition 2.3.2. Consider a separable Hilbert space H and a set of atoms {φγ}γ∈Γ in
H , and a sequence (wγ)γ∈Γ of complex numbers. The set {wγφγ}γ∈Γ is a weighted frame
for H if there exist two positive non zero constants A and B such that for all f ∈ H ,

(2.3.2) A‖f‖2 ≤
∑

γ∈Γ

|〈f, wγφγ〉|2 ≤ B‖f‖2 .
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FIGURE 2.4. Visual representation of time-frequency centers for a weighted
stationary Gabor frame Gw(g, a, b): here, the weighting sequence (wλ)λ∈Λ is a
function of frequency, and is sketched through the points size.

If a Gabor frame G(g, a, b) forms a weighted frame with a sequence (wλ)λ∈Λ, we
indicate with G

w(g, a, b) the corresponding weighted Gabor frame (see Figure 2.4 for
a graphical representation). If we indicate with Cwg the analysis operator associated to
G
w(g, a, b) and consider m = (wλ)λ∈Λ , then we can write

(2.3.3) G
g,g̃
m,Λf = Dg̃(C

w
g f) ,

showing the relation between a Gabor multiplier and a weighted Gabor frame. In the
following Lemma (Lemma 4.3 in [Balazs et al., 2010]), the structure of the dual of a
weighted frame is considered, when there exist constants 0 < E ≤ F such that the
sequence (wλ)λ∈Λ verifies E ≤ |wλ| ≤ F for every λ (such sequences are called semi-
normalized).

Lemma 2.3.3. Let (wγ)γ∈Γ be a semi-normalized sequence with bounds E,F . If {φγ}γ∈Γ is a
frame with bounds A and B, then {wγφγ}γ∈Γ is also a frame with bounds E2A and F 2B. The

sequence {w−1
γ φ̃γ}γ∈Γ is a dual frame of {wγφγ}γ∈Γ.

The reconstruction formula for a weighted frame is therefore the standard one given
in (2.1.5), with non weighted atoms. In Section 2.5, we define an approximation method
allowing the weighting sequences to be non semi-normalized, and to have zero values
in particular: this reflects the standard technique of suppressing spectral component by
setting to zero the corresponding analysis coefficients before the re-synthesis.
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2.4. Sound transformation and re-synthesis by means of adaptive representations

Having defined adaptive analyses, there are two major problems to solve: the
interpretation for the individual coefficients, and the definition of a reconstruction
method. For the former, we choose to develop our framework in the Gabor analysis
context to take advantage of the STFT interpretation of the coefficients, as motivated
in Chapter 1; but still, having analyses with varying resolution require changes of
the standard spectral processing techniques: if the lattice is irregular along frequency,
for instance, phase relations between different bins have to be interpreted, locally,
considering their variable spacing. In this work, spectral processing techniques are
not extensively treated, but the algorithms we develop are designed to allow reimple-
mentations of existing methods, such the ones available in the phase vocoder approach.

For the reconstruction task, we have to distinguish two cases: if the analysis
window varies depending on time or frequency individually, or if it depends on
them both. For the first case, nonstationary Gabor frames provide fast reconstruction
algorithms within the painless conditions (see Subsection 2.2.1). In particular, we use
windows with compact support, thus forming NGF in the time case, and we pro-
vide the adaptive framework with the automatic decision routine detailed in Chapter 4.

In several situations, the optimal resolution to separate independent sound com-
ponents varies locally, both depending on time and frequency (this case has been
detailed in [Dörfler, 2011] among others): for instance, if a bass and a drum are playing
together, we wish to use a better frequency resolution at low frequencies, where most
of the bass partials lay; on the other hand, in spectral regions where bass harmonics are
negligible, we would like to privilege time resolution for a more precise identification
of drum hits; but if we have zones where one of the two instruments plays alone,
then time or frequency resolution should be privileged over the whole spectrum. In
such cases, fast methods guaranteeing a perfect recover of the original signal are in
general not possible. The difficulties arise when we want to define a fast FFT-based
reconstruction formula merging the different analysis coefficients: we would like
to separate and use them depending on their band of pertinence. On the contrary,
reconstructing a limited time-frequency portion of the signal, we are not allowed to
neglect the contribution coming from far coefficients: analysis windows with compact
time support cannot have a compactly supported Fourier transform; from the analysis
point of view, this means that a spectrogram coefficient affects the signal reconstruction
across the whole frequency dimension. If the coefficients outside a certain band are
neglected, the reconstruction error comes mainly from the fact that we are setting
to zero the contribution of atoms whose Fourier transforms spread into the band of
interest. We can limit such an influence with a choice of well-localized time-frequency
atoms: even if their frequency support is not compact, they have a fast decay outside
a certain compact region; therefore, if the atoms are well-localized, only a few of the
far coefficients actually are involved. Thus, fast methods provide a reconstruction error
which should be kept small in order to preserve a perceptual perfect reconstruction:
that is, the re-synthesis does not exactly recover the original sound, but the error
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remains perceptually negligible.

Even in cases where the resolution changes both depending on time and frequency,
if no information is lost, frame theory provides synthesis methods with perfect recon-
struction; however, this is a typical case where the calculation of the dual frame for
the signal reconstruction cannot, in general, be achieved with a fast algorithm: thus a
choice must be done between a slow analysis/re-synthesis method guaranteeing per-
fect reconstruction and a fast one giving an approximation with a certain error. We
consider two different approaches to obtain fast algorithms, which are sketched in the
following subsections.

2.4.1. Filter bank. The signal is first filtered with an invertible bank of P pass band
filters, to obtain P different band limited signals; for each of these bands a different
nonstationary Gabor frame {gpk,l} of windows with compact time support is used: the
index k may thus indicate different time centers depending on the individual NGF, and
the time-dependent window functions gpk, p = 1, ..., P , may also be different . The other
members of the frame are time-frequency shifts of gpk,

(2.4.1) gpk,l = gpk(t) e
2πibp

k
lt ,

where k, l ∈ Z and bpk is the frequency step associated to the p-th NGF at the time
index k. We always assume to be in the time painless case, so each band-limited signal
is perfectly reconstructed with an FFT-based expansion of the analysis coefficients in
the dual frame {g̃k,lp}. Note that by this notation we denote the dual frame for a fixed p.

By summing the reconstructed bands, we obtain a perfect reconstruction of the orig-
inal signal. An important remark is that the reconstruction of the individual filtered
signals is perfect as long as all the frequency coefficients within all the P analyses are
used. On the other hand, for every analysis we are interested in considering only the
coefficients within the corresponding frequency band, thus introducing a reconstruc-
tion error (see Figure 2.5). The results detailed in [Matusiak and Eldar, 2010] provide
a useful tool: they give an exact upper bound of the reconstruction error when re-
constructing a compactly supported and essentially band-limited signal from a certain
subset of its analysis coefficients within a Gabor frame (see Section 2.6).

2.4.2. Analysis–weighting. The signal is first analyzed with P different NGFs
{gpk,l} of windows with compact time support . Each analysis is associated to a certain
frequency band, and its coefficients are weighted to match this association. We look
for a reconstruction formula to minimize the reconstruction error when expanding the
weighted coefficients within the union of the P individual dual frames ∪Pp=1{g̃k,lp} (see
Example 2.4.1).

Example 2.4.1. To give a visual interpretation of the analysis-weighting approach, we
consider the basic example where P = 2 and the frames are stationary. Thus, we can
think of associating a certain frame G(g1, a1, b1) to the lower frequency band, and an-
other frame G(g2, a2, b2) to the upper one. The association is realized by means of
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FIGURE 2.5. Block diagram detailing the steps of the filter bank approach
(see Subsection 2.4.1): the signal is first filtered with a bank of P band-pass
filters; the filtered signals are analyzed with P NGFs; the coefficients in the
analyses are selected depending on the corresponding frequency band; the fil-
tered signal are approximated with expansions of the selected coefficients with
the corresponding dual frames; the reconstructed signals are summed to give an
approximation of the original signal.

weighting sequences depending on the frequency location of a coefficient: on top of
Figure 2.6, two complementary binary masks are used, setting to zero the coefficients
which do not belong to the appropriate frequency band; at the bottom, the frequency
supports of the weighting sequences have a certain overlap. �

2.5. Extended weighted frames approach

In [Liuni et al., 2011a], we propose a first intuitive solution for the reconstruction
task outlined in Section 2.4, adapting the analysis window in time and frequency. We
focus here on the analysis-weighting approach, in the basic case of two bands; so we
split the frequency dimension into high and low frequencies, with P = 2. The two cor-
responding NGFs are given by the automatic adaptation routine described in Chapter
4. The analysis-weighting method is treated with an extension of the weighted Gabor
frames approach, which will give us a closed reconstruction formula.
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FIGURE 2.6. Visual representation of time-frequency centers for the analysis-
weight approach (see Example 2.4.1): the coefficients of the two Gabor frames
are represented with different colors and shapes, their size is related to the value
of the corresponding weight functions w1(ω) and w2(ω); ωNyq is the Nyquist
frequency, ωcut is the cut frequency for the binary masks (on top), ω1 and ω2

are the bound of the frequency overlap between the two weights (at the bottom).

2.5.1. Reconstruction from Weighted Frames. Let P ∈ N and {gpk,l} be different
NGFs, p = 1, . . . , P , where k and l are the time and frequency index, respectively.
We consider weight functions 0 ≤ wp(ν) ≤ ∞: for every p, they only depend on the
frequency location ν. The idea is to set to zero the coefficients not belonging to the
frequency portion which the p-th analysis has been assigned to; in this way, every anal-
ysis just contributes to the reconstruction of the signal portion of its pertinence: when
P = 2, we divide the plane into two portions, high and low frequencies. For each NGF
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{gpk,l}, we write cpk,l = wp(bpkl)〈f, g
p
k,l〉 to indicate the weighted analysis coefficients, and

we consider the following reconstruction formula:

(2.5.1) f̃ = F
−1


 1

p(ν)
F




P∑

p=1

∑

k,l

r(p, k, l)




 ,

where p(ν) = ♯{p : wp(ν) ≥ ǫ} and for every ǫ > 0, r(p, k, l) is 0 if wp(bpkl) < ǫ, else

(2.5.2) r(p, k, l) =
(
wp(bpkl)〈f, g

p
k,l〉
) 1

wp(bpkl)
g̃k,l

p .

We see that non-zero weights cancel each other: this reconstruction formula still makes
sense, as the goal is exactly to find a reconstruction as an expansion of the cpk,l. We give
now an interpretation of the introduced formula. If wp is a semi-normalized sequence
for each p, that is there exist constants mp, np and ǫ > 0 such that

(2.5.3) ǫ < mp ≤ wp(bpkl) ≤ np <∞
for all p, then p(ν) = p and the equation (2.5.1) becomes

(2.5.4) f̃ =
1

P

P∑

p=1

∑

k,l

(
wp(bpkl)〈f, g

p
k,l〉
) 1

wp(bpkl)
g̃k,l

p = f .

Here, the perfect reconstruction is guaranteed, as detailed in Subsection 2.3.1 about
weighted frames: indeed, in the hypothesis of semi-normalization the sequence
wp(bpkl)g

p
k,l is a frame, with 1

wp(bp
k
l)
g̃k,l

p as one of its dual.
For weights which are not bounded from below, but still non-zero, the reconstruc-
tion still works for ǫ = 0 : the sequences wp(bpkl) · gpk,l are not frames anymore
(for each p), but complete Bessel sequences (also known as upper semi-frames
[Antoine and Balazs, 2011]). This reconstruction can be unstable, though.

In our case, these hypotheses are not verified, as we need to set to zero a certain
subset of the coefficients within both of the analyses; thus the equation (2.5.1) will in
general give an approximation of f . In Section 4.4 we give several examples of recon-
struction following this approach, evaluating the reconstruction error depending on:

the signal spectral features at frequencies ν where p(ν) > 1 ;
the features of the wp sequences and the p(ν) function.

A first natural choice for the weights wp is a binary mask, as the reconstruction
formula takes the very simple form detailed in equation (2.5.6), allowing a direct inter-
pretation of the contributions coming from the two bands; moreover, a fast implemen-
tation can be deduced from the general full band algorithm. So we consider P = 2 and
ωc a certain cut value, then

w1(ν) =

{
1 if ν ≤ ωc
0 if ν > ωc(2.5.5)
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and w2(ν) = 1 − w1(ν). In this case p(ν) = 1 for every frequency ν and the equation
(2.5.1) becomes

(2.5.6) f̃ =
∑

bp
k
l≤ωc

〈f, g1k,l〉g̃k,l1 +
∑

bp
k
l>ωc

〈f, g2k,l〉g̃k,l2 .

The reconstruction error in this case will in general be large at frequencies correspond-
ing to coefficients close to the cut value ωc; depending on the sound spectral features,
a way to reduce this error is to allow the wp weights to have an overlap (see Section
4.4); this implies that more coefficients from different analyses contribute to the recon-
struction of a same portion of signal, thus weakening their interpretation. There are
still several open problems in this sense, a basic one being how to display a representa-
tion of the signal such the one described; there are, at least, two possibilities involving
weighted means of the coefficients at a certain time-frequency location:

dk,l =
1∑
p w

p ·∑
p
cpk,l , displaying |dk,l|, or

d
(A)
k,l = 1∑

p w
p ·
√
∑
p

∣∣∣cpk,l
∣∣∣
2
.

The second one is the one we adopt (see Section 4.4); as our algorithm keeps the
original coefficients in memory, we can still use the reconstruction scheme (2.5.1). If the
original coefficients were not available, a further question would be how to reconstruct
the signal from an expansion of the dk,l or d(A)k,l coefficients. If d(A)k,l is used, we also
have to address the problem of the phase. This approach is useful when dealing with
representations where the phase information is lost, as with reassigned spectrogram
or spectral cepstrum. A solution could be to use an iterative approach, like the one
described in [Griffin and Lim, 1984] adapted to frame theory, or use a system with a
high redundancy (see [Balan et al., 2006]).

From a computational point of view, we are interested in limiting the size of the
signal for the direct and inverse Fourier transforms in (2.5.1), as this would largely
improve the efficiency of the algorithm. An equivalent form of the formula (2.5.1) in
this sense is the following,

(2.5.7) f̃ =
∑

p,k,l

cpk,lF
−1

(
1

p(ν)
F

(
g̃k,l

p

wp(bpkl)

))
.

As the weights depend only on frequency, so does the normalizing function p(ν): the
approximate dual frames for the expansion in (2.5.7) are thus calculated only once,
with Fourier direct and inverse transforms limited to the short-length normalization
and window functions: therefore, the computational cost due to the approximation of
the dual frame is small, and the reconstruction formula (2.5.7) has the same complexity
order as the standard fast inversion of NGFs.

2.6. Filter bank approach

In this section, we define a second new approximation method based on analyses
with resolution changing in time and frequency, together with theoretical bounds
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for the reconstruction error. In Subsections 2.6.1 and 2.6.3, we extend the results in
[Matusiak and Eldar, 2010] to the case of filtered signals, obtaining the approach we
indicate as filter bank in both the cases of stationary and nonstationary Gabor frames.
This part of the work is the result of a collaboration with Ewa Matusiak and Monika
Dörfler.

In Subsection 2.6.2, we extend the estimates obtained in the stationary case, defin-
ing a different version of the introduced approximation method: Gabor multipliers are
used instead of filters, leading to the analysis-weighting approach implemented in our
adaptive framework (See Section 4.4).

We consider here a finite duration signal f supported on the interval [−β/2, β/2] ,
and ǫΩ-bandlimited to the interval [−Ω/2,Ω/2], β,Ω ∈ R+, which is the case we are
interested in when working with music signals; this implies that |f̂(ω)| < ǫΩ for every
ω /∈ [−Ω/2,Ω/2]. We first want to reconstruct f using different STFTs of a certain
number of its filtered versions; in particular, we use different window functions for
each different version, and compute the reconstruction error based on the estimates in
[Matusiak and Eldar, 2010].

2.6.1. Filter bank approach with stationary Gabor frames. Given P ∈ N, consider
the functions ψp, p = 1, ..., P , which are the impulse responses of P filters with finite
time supports [−Tp/2, Tp/2] ,whose essential frequency supports are [Ω1

p,Ω
2
p] and cover

the essential bandwidth of f . We assume also that at most two essential frequency
supports of ψ̂p overlap at the same time, and that they satisfy ψ̂1(ω)+ ...+ ψ̂P (ω) = 1 on
[−Ω/2,Ω/2]. We consider P windows gp compactly supported on [−Wp/2,Wp/2] such
that ‖gp‖2 = 1 and the STFT of the signal f ,

(2.6.1) Vpf(t, ω) =
∫

R

f(τ)gp(τ − t) e−2πiωτ dτ ,

using the compact form Vpf(t, ω) = 〈f,MωTtg
p〉. We denote by fp a filtered version of

f , fp = f ∗ ψp and f̂ =
∑

p f̂p on [−Ω/2,Ω/2]. Each one of the fp filtered versions is
a finite duration signal, supported on the interval [−β/2 − Tp/2, β/2 + Tp/2] , and ǫp-
bandlimited to the interval [Ω1

p,Ω
2
p] .

Now, if we consider P stationary Gabor frames G(gp, ap, bp), we obtain a sampling of
Vpfp composed by the values

(2.6.2) cpk,l = 〈fp,MbpkTaplg
p〉 , (k, l) ∈ Z

2 ;

here, the time step ap and the frequency step bp depend on the window function, and
are chosen in order for the sampled analysis to be more redundant than the criti-
cal case, apbp < 1 : the goal is to have a stable frame with well concentrated win-
dows, hence overcompleteness is necessary. In these hypotheses, the estimates in
[Matusiak and Eldar, 2010] allow to approximate fp with a finite expansion involving
the sampled analysis coefficients and the dual window. In particular, if we indicate
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with g̃p the dual of gp, then for every ǫ > 0 there exist two finite sets Kp, Lp ⊂ Z such
that the truncated expansion fp, given by

(2.6.3) fp =
∑

k∈Kp

∑

l∈Lp

cpk,lMbpkTaplg̃
p ,

verifies the following inequality,

(2.6.4)
∥∥fp − fp

∥∥
2
≤ Cp(ǫp + ǫ)‖fp‖2 ,

where Cp = (1 + 1/ap)(1 + 1/bp)‖g̃p‖S0‖gp‖S0 and ‖g‖S0 = ‖Vg0g‖1 with g0 Gaussian.
The set Lp contains the time positions lap for which support of fp overlaps with support
of gp shifted by lap; the set Kp contains the frequency positions kbp for which essential
support of f̂p overlaps with essential support of ĝp shifted by kbp . Then the cardinality
of Lp equals

(2.6.5) |Lp| = 2

⌈
β + Tp +Wp

2ap

⌉
− 1 ;

if gpc is a [−αp/2, αp/2]−bandlimited approximation of gp in S0, meaning ‖gp − gpc‖S0 ≤
ǫ‖g‖S0 , then the cardinality of Kp equals

(2.6.6) |Kp| =
⌈
Ω2
p − Ω1

p + αp

bp

⌉
.

Given these estimates, we want to approximate the original signal summing the trun-
cated expansions; therefore, the reconstruction error we obtain is bounded by the sum
of the error bounds for the filtered components. We indicate with CP and ǫP the max-
ima over all Cp and ǫp, respectively. We can thus determine an upper bound directly
from equation (2.6.4): for every ǫ > 0 , with the appropriate sets and constants we have

∥∥∥∥∥f −
∑

p

fp

∥∥∥∥∥
2

≤
∥∥∥∥∥f −

∑

p

fp

∥∥∥∥∥
2

+

∥∥∥∥∥
∑

p

f −
∑

p

fp

∥∥∥∥∥
2

≤ ǫΩ‖f‖2 + CP (ǫP + ǫ)
∑

p

‖fp‖2 .(2.6.7)

We want to express the error as a function of ‖f‖2 : by applying triangle inequality, we
have that

∑
p ‖fp‖2 ≤ ‖f‖2 ·P maxp ‖ψ̂p‖∞ ; so, writing Cψ = P ·maxp ‖ψ̂p‖∞ , we have

(2.6.8)

∥∥∥∥∥f −
∑

p

fp

∥∥∥∥∥
2

≤ (ǫΩ + CψCP (ǫP + ǫ)) ‖f‖2 .

Remark 2.6.1. The choice of the ψp functions has an influence on the error we obtain:
assuming to work with S0 windows (introduced in Subsection 2.6.3), that have "nice"
time-frequency properties guaranteed, the ǫp constant, which concerns the essential
frequency support of f̂p , depends on the regularity of ψp : the smoother it is, the faster
f̂p decays of out of its essential support, and then the smaller ǫp.
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On the other hand, ǫ depends on the number of coefficients used in the expansion
(2.6.3); obviously, considering more frequency coefficients we obtain a better ap-
proximation, reducing ǫ. In this sense, an interesting perspective is to implement an
automatic method to determine the number of coefficients needed to achieve a desired
precision, given the analysis parameters. �

2.6.2. Filter bank approach and Gabor multipliers. Spectral processing tech-
niques often avoid manipulations in the signal domain, privileging modifications of
the analysis coefficients, followed by the re-synthesis. Therefore, we look for an esti-
mate like the one in equation (2.6.7) when working with Gabor multipliers instead of

filters. In particular, we want to replace each filter ψp with a Gabor multiplier Ggp,g̃p

mp,Λp
,

whose symbol mp does not depend on time, and matches the frequency response ψ̂p
of the filter, mp(t, ω) = ψ̂p(ω) . We thus obtain weighted versions of the STFTs of the
signal f ,

(2.6.9) Wpf(t, ω) = Vpf(t, ω)mp(t, ω).

Our aim is to replace Vpfp(t, ω) by the weighted analyses Wpf(t, ω), and we write their
sampling according to the lattices Λp as follows,

(2.6.10) dpk,l =Wp(apl, bpk) ;

indeed, if we write g(τ − t) = gt(τ), we see that

(2.6.11) Vpfp(t, ω)(t, ω) = ((f̂ · ψ̂p) ∗ ĝpt )(ω) , Wpf(t, ω) = (f̂ ∗ ĝpt )(ω) · ψ̂p(ω) ;

therefore, the difference depends on how similar multiplication and convolution with
the atoms are, if their roles are switched. To quantify this difference, we need to
clarify the relation between a time invariant filter and a Gabor multiplier. Hilbert-
Schmidt operators, as well as a larger class of operators called underspread, can be
well approximated by means of Gabor multipliers (see [Dörfler and Torrésani, 2007,
Dörfler and Torresani, 2010, Matz and Hlawatsch, 1998]): given an underspread oper-
ator H , its best approximation by a Gabor multiplier Gg1,g2

m,Λ can be calculated, with an
error depending on the spreading function ηH of H and Vg1g2 . Time invariant convo-
lution operators, such as filters, are not underspread; but still, we envisage that it is
possible to estimate the error when approximating a convolution operatorAwith a Ga-
bor multiplier G of the type we are considering: this result is the object of an ongoing
collaborative work (see [Engelputzeder, 2011, Balazs et al., 2012]). Knowing that the
Hilbert-Schmidt norm of the difference ‖A −G‖HS is conveniently small, the aim is to
deduce a pointwise inequality for the sampled analyses we work with, that is for each
(k, l) ∈ Z2, the following inequality must hold for a small ǫ∗p,

(2.6.12) |cpk,l − dpk,l| ≤
ǫ∗p

PKL
,
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where KL is the number of coefficients in the expansion (2.6.3); here, we assume this
inequality to hold. Using the coefficients dpk,l in the same expansion, we obtain

(2.6.13) f∗p =
∑

k∈Kp

∑

l∈Lp

dpk,lMbpkTaplg̃
p ,

and

(2.6.14) ‖fp − f∗p ‖2 ≤
ǫ∗p
P

· ‖g̃p‖2 .

We can thus estimate the further approximation error introduced by considering the

Gabor multiplier Ggp,g̃p

mp,Λp
instead of the filter ψp,

(2.6.15)
∥∥fp − f∗p

∥∥
2
≤ Cp(ǫp + ǫ)‖fp‖2 +

ǫ∗p
P
‖g̃p‖2 .

Writing ǫ∗P = maxp ǫ
∗
p and ‖g̃P ‖2 = maxp ‖g̃p‖2 , we can rewrite the estimate (2.6.8) as

follows,

(2.6.16)

∥∥∥∥∥f −
∑

p

f∗p

∥∥∥∥∥
2

≤ CψCP (ǫP + ǫ)‖f‖2 + ǫ∗P ‖g̃P ‖2 .

As we are working with Gabor frames in the painless case, we can further specify the
estimation without need to calculate the dual, as we know that ‖g̃‖2 ≤ ‖g‖2

Ap
, for each

p, where Ap is the lower frame bound. In Section 4.4, we provide examples of the
reconstruction error obtained for given choice of the above functions.

2.6.3. Filter bank approach with nonstationary Gabor frames. We want now to
extend the inequality (2.6.7) to the case of nonstationary Gabor frames. We consider a
signal f c bandlimited to the interval [−Ω/2,Ω/2] , such that

(2.6.17) ‖f − f c‖2 ≤ ǫΩ‖f‖2.
For each filtered version f cp we consider now P different NGTs {gpk,l} with windows gpk
compactly supported in time (painless case). Each one of the filtered versions can be
written as follows,

(2.6.18) f cp =
∑

k∈Z

∑

l∈Z

zpk,lg̃
p
k,l ,

where zpk,l = 〈f cp ,MbpkTaplg
p〉 are the coefficients of the p-th analysis. As done before,

we would like to approximate this function only with the relevant coefficients, those
that correspond to the frequency support of f cp , meaning

(2.6.19) f cp ≈ f cp =
∑

k∈Z

∑

l∈Ip
k

zpk,lg̃
p
k,l ,

where the sets Ipk are finite and depend on the time index k. In the case of stationary
Gabor frames, the sets Ipk are the same for all k ∈ Z. These sets store the ℓ indexes of
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Gabor coefficients that correspond to the relevant frequency bands. Before specifying
Ipk we need to introduce a norm on the family of Gabor atoms. Define

(2.6.20) S0 = {f ∈ L2(Rd) : Vg0f ∈ L1(R2d)};
here, d = 1, and g0 = e−π‖t‖

2
is the Gaussian function; we observe that the

S0 norm ‖·‖S0 is the L1 norm of Vφ(·) in R2 , hence usual compactly-supported
smooth functions belong to S0 (a complete characterization of this space is given in
[Feichtinger and Strohmer, 1998], Chapter 3). For a fixed family of functions {gpk,l}k,l∈Z
we define a norm ‖·‖V as

(2.6.21) ‖gp‖V = max



supk∈Z‖g

p
k‖S0 ,

∥∥∥
∑

k,l∈Z

|Vφgpk,l|
∥∥∥
∞



 ,

where φ ∈ S0; different φ give rise to equivalent norms. Let ‖g‖V denote the maxi-
mum over all ‖gp‖V , and similarly, ‖g̃‖V to be the maximum over all ‖g̃p‖V . To achieve
a good reconstruction we assume that for every gpk ∈ S0 there exists a band-limited
approximation hpk ∈ S0 such that

(2.6.22) ‖gp − hp‖V ≤ ǫp‖gp‖V .
Let ǫP be the maximum over all ǫp . Let [θ1p,k, θ

2
p,k] denote the bandwidths of hpk. Define

(2.6.23) Ipk = {l ∈ Z : [Ω1
p,Ω

2
p] ∩ [θ1p,k + bkl, θ

2
p,k + bkl] 6= ∅} ,

that is the set of those ℓ for which the shifts of the essential bandwidth of gpk overlap the
bandwidth of f cp . Then,

(2.6.24) ‖f cp − f cp‖2 ≤ ‖gp − hp‖V ‖g̃p‖V ‖f cp‖2 ≤ ǫp‖gp‖V ‖g̃p‖V ‖f cp‖2 .
Therefore,

‖f c −
∑

p

f cp‖2 ≤
∑

p

‖f cp − f cp‖2 ≤
∑

p

ǫp‖gp‖V ‖g̃p‖V ‖f cp‖2

≤ ǫP ‖g‖V ‖g̃‖V
∑

p

‖f cp‖2 ≤ 2ǫP ‖g‖V ‖g̃‖V ‖f c‖2 ,

and

(2.6.25) ‖f −
∑

p

f cp‖2 ≤ (2ǫP ‖g‖V ‖g̃‖V + ǫΩ)‖f‖2.





CHAPTER 3

Entropy and sparsity measures

Chapter 2 has detailed the concept of adaptivity in sound analysis and synthesis,
from a frame theory point of view. This one concerns the way that the adaptation is
performed in our framework, the challenge being to realize an automatic process: our
research is focused on models and tools for the local automatic adaptation of the atoms
used in the decomposition of the signal. By defining appropriate measures to evaluate
the local concentration of a given time-frequency representation, the sparsest analysis
can be automatically achieved with less parameters to be specified; and most of all,
without any a-priori knowledge of the signal properties.

The main point about adaptation is to understand what we are adapting to, and
why: the concept of optimal resolution is highly signal- and application-dependent.
This is, actually, the aspect that requires the highest care and expertise coming from the
sound processing and musical worlds: we mainly need to define adaptation criteria
matching the envisaged application, and to give formal definitions of the optimal
time-frequency resolution we are interested in. We deduce such criteria from the
optimization of specific sparsity measures. We take into account both theoretical and
application-oriented sparsity measures: entropies and other quantities borrowed from
information theory and probability belong to the first class; they provide the adaptive
framework with a decisional structure whose mathematical properties are defined
regardless of the specific application: hence we look for sufficiently flexible tools,
whose parameters may be set in order for the measure to match the required concept
of sparsity.

When dealing with real-world sounds, the characteristics of information measures
may not find a direct interpretation in the signal domain. Human voice, for instance,
has a periodic nature given by sequences of glottal pulses: depending on the applica-
tion, we may be interested in privileging partials or pulses, thus considering as best
representation the one where the desired component is more readable. These two cases
determine different concepts of time-frequency concentration, which is not straight-
forward to express in terms of entropy-based sparsity measures. As an alternative to
information measures, we give an application-driven definition of sparsity, depending
on the particular features that the system should privilege: this measure is based on the
classification of the sound components into sinusoids and noise, which is deduced from
a time-frequency representation of the sound; disposing of several analyses, and given
the ratio between the energies of sinusoids and noise according to this classification,
we define the best analysis resolution to be the one maximizing this ratio. This choice
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determines an adaptive model privileging analyses with a stronger sinusoidal con-
tent, designed to be optimal in most of the applications dealing with sinusoidal models.

3.1. Sparse problems and algorithms

Since the main goal of a representation is to increase the readability of the observed
phenomenon, the concept of sparsity (see [Gribonval and Nielsen, 2007] and the
related bibliography for a comprehensive survey) plays an important role: it concerns
the efficiency of a given representation, when certain features have to be optimized.
The definition of a sparsity measure depends on the problem: for sparse approxima-
tion, the optimal analysis is the one with the minimum number of coefficients still
allowing an approximation of the original signal within a certain tolerated error. In
other kind of inverse problems (see later in this section), instead of taking the minimal
ℓ0-norm of the analysis coefficients, sparsity is defined from ℓp-norms, as well as
different types of measures. The main open problems are of three different orders:
the choice of the analysis atoms, the quantity to be optimized among the possible
representations, the efficiency of the algorithm to obtain the sparsest solution (see
[Tošić and and Frossard, 2011] for a complete survey, and [Tropp, 2004] for several
algorithms exploiting different approaches).

Let f be a signal in an Hilbert space H, and Γ an index set; a dictionary D for H
is a collection of vectors {φγ}γ∈Γ, called atoms, which spans the whole space, that is,
every signal can be represented as a linear combination of atoms in the dictionary; D is
overcomplete when its atoms are linearly dependent. The problem of representing f in
a dictionary D of atoms may be approached decomposing f , through the usual scalar
product 〈f, φλ〉 in H, with all of the atoms in the dictionary. A dual approach is to look
for a vector of coefficients c such that f can be written as a linear combination of the
atoms weighted by the coefficients,

(3.1.1) f =
∑

γ∈Γ

cγφγ .

In this formulation, the signal f has to be perfectly reconstructed by means of a linear
combination of the atoms: the representation is sparse if the number of non-zero coeffi-
cients ‖c‖0 in the expansion is much smaller than the dimension of f in H. The general
sparse representation problem is defined as follows,

(3.1.2) min
c

‖c‖0 s.t.
∥∥∥f −

∑

γ∈Γ

cγφγ

∥∥∥
2
≤ ǫ ,

where the target is to minimize the number of atoms keeping the reconstruction error
ǫ small. This problem is known to be NP-hard, but there exist several polynomial
time algorithms which give suboptimal solutions: a first possible relaxation consists
in the iterative selection of appropriate atoms from the dictionary, until the desired
precision is reached; the Matching Pursuit, as well as its orthogonal variation, and
the Basis Pursuit belong to this class of algorithms, which are known as greedy (see
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[Davis et al., 1997, Chen, 1998]).

A different strategy is the convex relaxation of the ℓ0 minimization, adopted by
algorithms like LASSO (see [Tibshirani, 1994]), solving the problem

(3.1.3) min
c

(∥∥∥f −
∑

γ∈Γ

cγφγ

∥∥∥
2
+ λ‖c‖1

)
,

where λ is a regularization parameter: its value determines if the optimal solution priv-
ileges the sparsity or the quality of the reconstruction. If we a replace the ℓ1 norm with
the ℓp one, for p > 0, we obtain a general form for the sparse approximation problem:
when 0 < p < 1 the norm is not convex, therefore local minima are searched; when
p > 1, the problem admits a global optimum. There exist a further form of the mini-
mization (3.1.3), used to solve inverse problems: here, the original signal f is unknown,
and the target is to obtain its sparse approximation disposing of the output f∗ of a
known operator A, with Af = f∗. The problem takes the following form,

(3.1.4) min
h

(∥∥∥Ah− f∗
∥∥∥
2
+ λ‖h‖p

)
.

The main assumption, here, is that sparse solutions guarantee the unicity of the
representation, so that (Ah1 = Ah2) ⇒ (h1 = h2); in this sense, if f admits a sparse
representation within the dictionary, then the solution h is a sparse approximation of f .

There is a large range of applications taking advantage of sparse representation,
including relevant up-to-date topics in music industry or telecommunications (see
[Plumbley et al., 2010]). We formulate our automatic selection of the best local resolu-
tion in terms of sparsity: the dictionary we use is composed of time-frequency shifts of
a finite number of window functions; these windows are obtained as scalings of a same
window. The solutions we look for are highly structured, as we adopt STFT-based
reconstruction formulas: this implies that the choice of a certain atom, at a given
time-frequency location, influences the effect of a large number of close atoms. For this
reason, even if we define a sparsity criterium, our problem would not benefit of the
sparse algorithms machinery to find optima: a direct comparison of the sparsity of all
the finite possible solutions remains efficient.

Instead of minimizing the ℓp norm of the coefficients vector, we use entropy-based
and application-oriented measures (see Section 3.2 and 3.7), whose properties are
well-suited to the kind of sparsity we look for: in our framework, a representation
is sparse if the elementary components of the analyzed signal are resolved within the
representation. The concept of elementary signal is mathematically ill-posed, as it
includes classes whose characteristics may be completely different: sinusoids as well
as instantaneous events, for instance. On the other hand, most of the sound processing
techniques we deal with have a precise operational definition of elementary signal: the
main interest is thus to define a sparsity measure which reflects the needs of sound
spectral processing, using a flexible mathematical framework.
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3.2. Rényi entropies as sparsity measures

We first restate some definitions given in Chapter 1 and 2, to introduce a more
convenient notation for the proofs in the following. Given a window function g 6= 0 ,
the STFT of a function f with respect to g is defined as follows,

Vgf(t, ω) = 〈f, gt,ω〉 =
∫

Rd

f(s)g(s− t) e−2πiωs ds ,

while the spectrogram of f with window g is the squared modulus of the STFT,

(3.2.1) PSgf(t, ω) = |Vgf(t, ω)|2 = |〈f, gt,ω〉|2 .
Given a set Γ ⊂ Z2d, a sequence {gγ}γ∈Γ ⊂ L2(Rd) is a frame for L2(Rd) if there are two
constants 0 < AΓ ≤ BΓ, called frame bounds, such that for every f ∈ L2(Rd),

(3.2.2) AΓ‖f‖2L2 ≤
∑

γ∈Γ

|〈f, gγ〉|2 ≤ BΓ‖f‖2L2

In the following we shall consider only sets Γ which are lattices, and in particular the
lattices Λa,b = aZd × bZd, for a, b > 0; these systems are called Gabor systems, and we
shall indicate them with G(g, a, b). A Gabor system defines a discrete version of the
STFT and the spectrogram of a signal, as sampling of their continuous versions; so a
discrete spectrogram is given by

(3.2.3) PSgf [n, k] = |Vgf(an, bk)|2 ,
and we omit to indicate the window g if ambiguity does not occur.

With an appropriate normalization both the continuous and discrete spectrogram
can be interpreted as probability densities. Thanks to this interpretation, some
techniques belonging to the domains of probability and information theory can be
applied to our problem: in particular, the concept of entropy can be extended to
give a sparsity measure of a time-frequency density. The approach we adopt (see
[Baraniuk et al., 2001] for the original formulation) takes into account Rényi entropies,
a generalization of the Shannon entropy: the application to our problem is related to
the concept that minimizing the complexity, or information, of a set of time-frequency
representations of a same signal, is equivalent to maximizing the concentration,
peakiness, and therefore the sparsity of the analysis. Thus we consider as best analysis
the sparsest one, according to the minimal entropy evaluation.

Definition 3.2.1. Given a finite discrete probability density P = (P1, ..., PN ) and a real
number α ≥ 0, α 6= 0, the Rényi entropy of P is defined as follows,

(3.2.4) Hα[P ] =
1

1− α
log2

N∑

k=1

Pαk ,

where P is in square brackets to indicate that discrete densities are considered.
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Among the general properties of Rényi entropies (see [Rényi, 1961],
[Beck and Schlögl, 1993] and [Zyczkowski, 2003]) we recall in particular those
directly related with our problem. It is easy to show that for every finite discrete
probability density P the entropy Hα[P ] tends to the Shannon entropy of P as the order
α tends to one. Moreover, Hα[P ] is a non increasing function of α, so

(3.2.5) α1 < α2 ⇒ Hα1 [P ] ≥ Hα2 [P ] .

When working with finite discrete densities, the case α = 0 can also be considered,
which simply gives the logarithm of the number of elements in P ; as a consequence
H0[P ] ≥ Hα[P ] for every admissible order α.
A third basic fact is that for every order α the Rényi entropy Hα is maximum when P
is uniformly distributed, while it is minimum and equal to zero when P has a single
non-zero value.

All of these results give useful information on the values of different measures on
a single density P , while the relations between the entropies of two different densities
P and Q are in general hard to determine analytically; in our problem, P and Q are
two spectrograms of a same signal, based on two window functions with different scal-
ing as in equation (2.2.1). Therefore, we first need to extend the entropy definition to
continuous densities, and in particular to the spectrogram.

Definition 3.2.2. Given a signal f and its spectrogram PSf as in equation (3.2.1), the
Rényi entropy of PSf is defined for an order α > 0, α 6= 1 as follows,

(3.2.6) HRα (PSf) =
1

1− α
log2

∫∫

R

(
PSf(t, ω)∫∫

R PSf(t′, ω′)dt′dω′

)α
dtdω ,

where R ⊆ R2d and we omit its indication if equality holds.

In general terms, our problem can be written as follows,

(3.2.7) min
s∈S

Hα(PSsf)

where S is a certain set of indexes for the window functions gs, and PSsf is the spec-
trogram of f with window gs. The optimal choice of g depends on the signal f , and the
search for analytical solutions would imply limitations on the signal domain. We give
in the following subsection a simple example where this is achievable, but in general we
are not interested in the analytical solutions of the problem: we rather focus our inves-
tigation on the solutions provided by the algorithm we have developed, to verify that
the optimal choice determined by the measure gives the desirable resolution in terms
of sound processing. This is one of the reason why the Rényi entropies are considered:
by the dependence on the order α, they constitute a class of different sparsity measures,
determining a particular concept of sparsity for each value of α. We thus can refine the
choice of the best solution depending on the specific application requirements, keeping
the framework unaltered. The relation between the solutions to problem (3.2.7) and the
entropy order α is detailed in Section 3.4.
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3.2.1. Best window for stationary sinusoids. For some basic stationary signals, it
is possible to find the solution to the problem (3.2.7) analytically: for example, let f
be a complex stationary sinusoid f(t) = e2πiω0t and g a window function of compact
support; then

Vgf(t, ω) = e−2πi(ω−ω0)t ·ĝ(ω − ω0) , PSf(t, ω) = |ĝ(ω − ω0)|2 ,

and PSf is therefore time-independent. We choose now a bounded set S of positive
scaling factors; the spectrogram PSsf taken with a scaled window gs (see (2.2.1)) is
thus given by

PSsf(t, ω) = s · |ĝ(s · (ω − ω0))|2 ,
therefore the following relation holds for every s ∈ S ,

(3.2.8) Hα(PSsf) = Hα(PSf)− log2 s .

The solution to the problem (3.2.7) is given by the window minimizing the entropy
measure: we deduce from equation (3.2.8) that it is the one obtained with the largest
scaling factor available, therefore with the largest time-support. This is coherent
with our expectation: the information of a stationary signal, such as a sinusoid, is
completely determined by its frequency spectrum, which is time-independent, and is
thus best represented with the highest possible frequency resolution. Moreover, this
is true for any order α used for the entropy calculus. Symmetric considerations apply
whenever the spectrogram of a signal does not depend on frequency, as for impulses.

3.3. Rényi entropy measures of a spectrogram

We now look closer to the problem of the existence of the measure defined in
(3.2.6) with regard to the signal f , the window g and the order α. Our results about
the STFT and the spectrogram complete the ones presented in [Baraniuk et al., 2001],
where only integer values of α are considered. For the class of signals and win-
dows typically considered in real-world applications, by the regularity of the STFT
operator, which is investigated in Subsection 3.3.1, we see that the Rényi entropy of
a spectrogram is well-defined for every α ≥ 1

2 . As we have to deal with discrete
spectrograms, we also have to define a discrete version of the measure in (3.2.6), and
find the dependance of the discretized measure on the sampling procedure: when
comparing the entropies of discrete spectrograms with different sampling lattices,
this aspect is fundamental to understand if the comparison makes sense. Therefore,
we prove as well some results about the convergence of the discrete Rényi entropies
of a spectrogram: we show in Subsections 3.3.3 and 3.3.4 that as the sampling grid
increases its density, the discrete entropy converges to its continuos version (3.2.6); we
obtain similar results for the Shannon entropy, which is the limit case when α tends to 1.

The proofs of these results are based on frame theory, and we first introduce an
important class of window functions: they are useful to verify the existence of Gabor
frames and to investigate the properties of discretized STFTs with varying lattices. A
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function g ∈ L∞(Rd) belongs to the Wiener amalgam space W =W (Rd) if

(3.3.1) ‖g‖W =
∑

k∈Zd

ess supt∈Q |g(t+ k)| <∞ ,

where Q = [0, 1]d is the unit cube. Bounded functions with compact support belong
to W , which is therefore a dense subspace of Lp(Rd), 1 ≤ p < ∞; in particular, S0
(introduced in Subsection 2.6.3) is a proper subspace of W .

The basic idea is, if the chosen window g is sufficiently regular, then G(g, a, b) is a
Gabor frame whenever ab > 0 is small enough. To formally state this general concept
we consider the following theorem (by Walnut, [Walnut, 1992]), whose proof is based
on the properties of the correlation function, defined as

(3.3.2) G(a,b)
n (t) =

∑

k∈Zd

g(t− n

b
− ak)g(t− ak) .

Theorem 3.3.1. Suppose that g ∈W and that a > 0 is chosen such that for constantsC,D > 0

(3.3.3) C ≤
∑

k∈Zd

|g(t− ak)|2 ≤ D <∞ a.e.

Then there exist a value b0 = b0(a) > 0 such that G(g, a, b) is a Gabor frame for all b ≤ b0.
Moreover, b0 can be chosen such that G(g, a, b) is a frame for all b ≤ b0 with frame bounds

(3.3.4) A = b−d


C −

∑

n 6=0

‖G(a,b)
n ‖∞




and

(3.3.5) B = b−d
∑

n∈Zd

‖G(a,b)
n ‖∞

where G
(a,b)
n is the correlation function defined in (3.3.2)

The hypotheses of Theorem 3.3.1 are satisfied by the windows used in most part of
the applications: for example, if |g(t)| ≥ c > 0 on a cube t0+Qa0 = t0+[0, a0]

d for some
t0 ∈ Rd , then condition (3.3.3) is verified for every a with 0 < a < a0 . In what follows,
we need the following corollary of this theorem.

Corollary 3.3.2. Suppose that g ∈ W satisfies the hypotheses of Theorem 3.3.1 for every a <
a′, a′ ∈ (0, 1]; then there exists a positive constant c such that for every 0 < a ≤ a′ the system
G(g, a, b) is a Gabor frame for 0 < b ≤ b0(a), whose upper frame bound Bab verifies

(3.3.6) (ab)dBab ≤ c .

PROOF. By equation (3.3.5) we have that Bab = b−d
∑

n∈Zd ‖G(a,b)
n ‖∞, and by the

properties of the correlation function G(a,b)
n ([Gröchenig, 2001a, Lemma 6.3.1]) we have

(3.3.7)
∑

n∈Zd

‖G(a,b)
n ‖∞ ≤

(
1

a
+ 1

)d
(2b+ 2)d ‖g‖2W ,
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so that

(3.3.8) (ab)dBab ≤ (1 + a)d(2b+ 2)d‖g‖2W ≤ c ,

with c = 23d‖g‖2W . �

Given a window g which satisfies the hypotheses of Corollary 3.3.2, we denote as
Ψg the surface of R2 obtained as follows,

(3.3.9) Ψg =
∏

0<a≤a′

(0, b0(a)] ,

and we see that (0, 0) belongs to the closure Ψg of this set.

3.3.1. Regularity of V. We denote byUCb(Rd) the space of bounded uniformly con-
tinuous functions defined on Rd.

Lemma 3.3.3. Let 1 ≤ p ≤ ∞ and consider f ∈ Lp(Rd), g ∈ Lq(Rd), where q is the Hölder
conjugate exponent of p. Then Vgf ∈ UCb(R

2d) and

(3.3.10) ‖Vgf‖∞ ≤ ‖f‖Lp‖g‖Lq .

PROOF. The inequality follows easily from the Hölder inequality ([Brezis, 1983,
Theorem IV.6]). We prove that Vgf is uniformly continuous. Fix (t1, ω1) and (t2, ω2)
and set τ = t2 − t1 and θ = ω2 − ω1; let 1 < p < ∞, then using again the Hölder
inequality,

(3.3.11)

|Vgf(t2, ω2)− Vgf(t1, ω1)| ≤
∣∣∣
∫

Rd

f(s)g(s− t2)
(
e−2πiω2·s− e−2πiω1·s

)
ds
∣∣∣+

+
∣∣∣
∫

Rd

f(s)
(
g(s− t2)− g(s− t1)

)
e−2πiω1·s ds

∣∣∣

≤ ‖g‖Lq

(∫

Rd

|f(s)|p| e2πiθ·s−1|p ds
) 1

p
+

+ ‖f‖Lp

(∫

Rd

|g(s− τ)− g(s)|q ds
) 1

q
.

The right–hand side of the inequality above depends only on τ , θ and not explicitly on
(t1, ω1) and (t2, ω2), hence it is sufficient to show that it converges to 0 as τ → 0 and
θ → 0. For the first term of the right–hand side this follows from Lebesgue’s theorem,
for the second it follows from Beppo Levi’s theorem [Brezis, 1983, Theorem IV.2 and
IV.1, respectively].
For p = 1 and p = ∞, we develop the right–hand side of (3.3.11) similarly, and the
conclusion follows, respectively, by the fact the ess sups∈Rd(g(s − τ) − g(s)) tends to 0

as τ tends to 0, and ess sups∈Rd(f(s)(e2πiθ·s−1)) tends to 0 as θ tends to 0. �

Lemma 3.3.4. Let 1 ≤ p ≤ ∞ and consider f ∈ Lp(Rd), g ∈ Lq(Rd), where q is the Hölder
conjugate exponent of p. Then Vgf ∈ Lmax(p,q)(R2d) and there exists a constant cp > 0 such
that

(3.3.12) ‖Vgf‖Lmax(p,q) ≤ cp‖f‖Lp‖g‖Lq .
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In particular, if p = q = 2,

(3.3.13) ‖Vgf‖L2 = ‖f‖L2‖g‖L2

Finally, Vgf ∈ Lp
′

(R2d) for every p′ ∈ [max(p, q),∞].

PROOF. Assume first 1 < p < 2, then max(p, q) = q and, since Vgf(t, ω) =
̂f(·)g(· − t)(ω), where ·̂ denotes the Fourier transform, the sharp Hausdorff-Young in-

equality (see [Babenko, 1962, Beckner, 1975]) yields

(3.3.14) ‖Vgf‖qLq =

∫

Rd

‖ ̂f(·)g(· − t)‖qLq dt ≤ cp

∫

Rd

dt
(∫

Rd

|f(s)|p|g(s− t)|p ds
) q

p
,

and, using the Hölder inequality with exponents q/p and q/(q − p),

(3.3.15) ‖Vgf‖qLq ≤ ‖f‖q−pLp

∫

Rd

dt

∫

Rd

|f(s)|p|g(s− t)|q ds ≤ ‖g‖qLq‖f‖qLp

If 2 < p < ∞ the inequality follows from the previous computations and the fact
that Vgf(t, ω) = e−2πiωt Vfg(−t,−ω). If p = 1 or p = ∞, the inequality is straight-
forward, and if p = q = 2 the identity follows easily from Plancherel identity (see
[Gröchenig, 2001b], Theorem 1.1.2). The last statement of the lemma is an immediate
consequence of interpolation and the previous lemma. �

Example 3.3.5. When p < 2, the hypotheses of Lemma 3.3.4 are not sufficient to guar-
antee Vgf ∈ Lp(R2d). As an example, take f(x) = 1[0,1](x) the indicator function of
the interval [0, 1] ⊂ R, and g(x) = 1(x) the constant one function. Then, f ∈ L1(R)
and g ∈ L∞(R), but Vgf(t, ω) = − e−2πiω , and for any fixed t ∈ R the function
F (ω) = Vgf(t, ω) is not in L1(R). Thus we conclude that Vgf /∈ L1(R2). �

3.3.2. Convergence of the sampled entropies. Given α > 0, with α 6= 1, we have
defined in equation (3.2.6) the Rényi entropy of a spectrogram,

Hα(PSf) =
1

1− α
log

∫∫ ( |Vgf(t, ω)|2∫∫
|Vgf(t′, ω′)|2 dt′ dω′

)α
dt dω

and we write as well the Shannon entropy of a spectrogram,

(3.3.16) H1(PSf) =

∫∫
φ
( |Vgf(t, ω)|2∫∫

|Vgf(t′, ω′)|2 dt′ dω′

)
dt dω,

where φ(t) = −t log t. Fix a (discrete) lattice Λ ⊂ R2d and consider the sampled entropy

(3.3.17) HΛ
α [PSf ] =

1

1− α
log

∑

(t,ω)∈Λ

( |Vgf(t, ω)|2∑
(t′,ω′)∈Λ |Vgf(t′, ω′)|2

)α
+ d log(ab) ,

for α 6= 1, and

(3.3.18) HΛ
1 [PSf ] =

∑

(t,ω)∈Λ

φ
( |Vgf(t, ω)|2∑

(t′,ω′)∈Λ |Vgf(t′, ω′)|2
)
,
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for α = 1, where φ is defined as above. The entropies Hα, HΛ
α can be reformulated, at

least for α 6= 1, in terms of functional norms. To this end, given a, b > 0, define for a
function h : R2d → Rd the function (h)a,b as

(3.3.19) (h)a,b(t, ω) =
∑

k,n∈Zd

h(ka, nb)1a,bk,n(t, ω),

where 1a,bk,n = 1Ek,n(a,b) is the indicator function of the cube

Ek,n(a, b) =
{
(t, ω) ∈ R

d × R
d : |ti − kia| ≤

a

2
, |ωi − nib| ≤

b

2
, i = 1, . . . , d

}
.

It is easy to see that for p ≥ 1,

(3.3.20)
∑

k,n∈Zd

|h(ak, bn)|p = (ab)−d‖(h)a,b‖pLp .

For α 6= 1, it is easy to verify that

Hα(PSf) =
1

1− α
log
(‖Vgf‖L2α

‖Vgf‖L2

)2α
,

and

H
Λa,b
α [PSf ] =

1

1− α
log
(
(ab)d(1−α)

‖(Vgf)a,b‖2αL2α

‖(Vgf)a,b‖2αL2

)
,

where Ha,bα [PSf ] = H
Λa,b
α [PSf ]. It turns out that, in order to prove that the discrete

entropy Ha,bα [PSf ] is convergent to Hα(PSf), it is sufficient to show that (Vgf)a,b con-
verges to Vgf in L2(R2d) and in L2α(R2d). We investigate first, in the following lemma,
the convergence in L2(R2d) and we postpone to the following sections the convergence
in L2α(R2d).

Lemma 3.3.6. If g ∈ W and (a, b) ∈ Ψg , then for every f ∈ L2(Rd), ‖(Vgf)a,b‖L2 →
‖Vgf‖L2 as (a, b) → (0, 0) within Ψg .

PROOF. By proceeding as in [Sun, 2010, Lemma 2.5], we get that if ϕ ∈ C∞
c (Rd),

then for every (a, b) ∈ Ψg ,

‖Vgϕ− (Vgϕ)a,b‖L2 ≤ c1(a+ b)‖ϕ‖⋆,
where ‖ϕ‖2⋆ =

∑
α,β∈{0,1}d ‖xαDβϕ‖L2 . Let f ∈ L2(Rd) and fix ǫ > 0. Let ϕ ∈ C∞

c (Rd)

be such that ‖f − ϕ‖L2 ≤ ǫ, then ‖Vgf − Vgϕ‖L2 = ‖g‖L2‖f − ϕ‖L2 ≤ ‖g‖L2ǫ and, by
(3.3.20), the frame inequality (3.2.2) and (3.3.6),

‖(Vgf)a,b − (Vgϕ)a,b‖L2 = ‖(Vg(f − ϕ))a,b‖L2 ≤ (ab)
d
2B

1
2
a,b‖f − ϕ‖L2 ≤ c2ǫ.

In conclusion

‖Vgf − (Vgf)a,b‖L2 ≤
≤ ‖Vgf − Vgϕ‖L2 + ‖Vgϕ− (Vgϕ)a,b‖L2 + ‖(Vgϕ)a,b − (Vgf)a,b‖L2 ≤

≤
(
c2 + ‖g‖L2

)
ǫ+ c1(a+ b)‖ϕ‖⋆,

and in the limit a, b → 0, lim sup ‖Vgf − (Vgf)a,b‖L2 ≤ (c2 + ‖g‖L2)ǫ. By choosing ǫ
arbitrarily small, the lemma follows. �
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3.3.3. The case α > 1.

Proposition 3.3.7. If α > 1, g ∈ W and (a, b) ∈ Ψg, then for every f ∈ L2(Rd) the Rényi

entropy Hα(PSf) and its discrete version Ha,bα [PSf ] on the lattice Λa,b = aZd × bZd are finite.

Moreover, Ha,bα [PSf ] → Hα(PSf) as (a, b) → (0, 0) within Ψg .

PROOF. The continuous entropy Hα(PSf) is well–defined by Lemma 3.3.4. The
discrete entropy H

Λa,b
α [PSf ] is well–defined by the frame inequality (3.2.2), indeed, for

p = 2α > 2,
∑

k,n∈Zd

|Vgf(ka, nb)|p ≤
( ∑

k,n∈Zd

|Vgf(ka, nb)|2
) p

2 ≤ B
p

2
a,b‖Vgf‖

p
L2 ,

where Ba,b = BΛa,b
.

We prove the convergence of (Vgf)a,b to Vgf in Lp(Rd). We know by Lemma 3.3.3
that Vgf ∈ UCb(R

2d), hence |Vgf(t1, ω1) − Vgf(t2, ω2)| ≤ w(a + b) if |t1 − t2| ≤ a and
|ω1−ω2| ≤ b, wherew is the (uniform) modulus of continuity of Vgf . With this position,

‖(Vgf)a,b − Vgf‖pLp ≤
∫∫ ∑

k,n∈Zd

|Vgf(ka, nb)− Vgf(t, ω)|p1a,bk,n(t, ω) dt dω

≤ wp−2(a+ b)p−2

∫∫ ∑

k,n∈Zd

|Vgf(ka, nb)− Vgf(t, ω)|21a,bk,n(t, ω) dt dω

≤ 2wp−2(a+ b)p−2
( ∑

k,n∈Zd

(ab)d|Vgf(ka, nb)|2 + ‖Vgf‖2L2

)

≤ c‖f‖2L2‖g‖2L2w
p−2(a+ b)p−2,

where we have used Lemma 3.3.4, the frame inequality (3.2.2) and the fact that (ab)dBa,b
is uniformly bounded (see the inequality (3.3.6)). �

3.3.4. The case 1
2 ≤ α < 1. We now recall the definitions of two fundamental func-

tion spaces; considering the Schwartz space S and its dual S ′, if g ∈ S , the modulation
space Mp,q

m (Rd) is given by

Mp,q
m (Rd) = {f ∈ S ′(Rd) : Vgf ∈ Lp,qm (R2d)};

the amalgam space W (Lp,qm (R2d)) is defined as

W (Lp,qm (R2d)) = {F ∈ L∞
loc(R

2d) :
∑

k∈Zd

(∑

n∈Zd

ank(F )
pm(n, k)p

) q

p
<∞},

where ank(F ) = ess sup
(t,ω)∈[−

1
2 ,

1
2 )

2d+(n,k)
|F (t, ω)| (see [Gröchenig, 2001a] for further

details); in both the definitions, we write only p if p = q.

Proposition 3.3.8. If α ∈ [12 , 1), if g ∈ S0 and (a, b) ∈ Ψg, then for every f ∈ M2α
1 the

Rényi entropy Hα(f) and its discrete version Ha,bα on the lattice Λa,b = aZd × bZd are finite.

Moreover, Ha,bα → Hα(f) as (a, b) → (0, 0) within Ψg .
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Before proving the theorem, we give an elementary result which, together with the
regularity properties of Vg, will prove the above theorem.

Lemma 3.3.9. Let p ≥ 1 and h ∈W (Lp1(R
2d)) ∩ UC(R2d), then

‖(h)a,b − h‖Lp(R2d) −→ 0,

as (a, b) → (0, 0).

PROOF. We prove the lemma in two steps.
Step 1. Assume that h ∈ UC(R2d) has compact support, then

|(h)a,b(t, ω)− h(t, ω)| ≤
∑

n,k∈Zd

|h(tk, ωn)− h(t, ω)|1[k,k+1)×[n,n+1)(t/a, ω/b),

and by uniform continuity the above term is small when a ∨ b is small. The compact
support ensures that the sum is over a finite number of indices. In conclusion (h)a,b → h

uniformly on R2d and in particular in every Lp.
Step 2. Assume now that h ∈ W (Lp1(R

2d)) ∩ UC(R2d) and consider the family of
truncations (ηǫ)ǫ>0 defined as ηǫ(x) = η(ǫ|x|) for x ∈ R2d, where η ∈ C∞([0,∞)) with
0 ≤ η ≤ 1, η ≡ 1 on [0, 1] and η ≡ 0 on [2,∞). We have that

‖h− (h)a,b‖Lp ≤ ‖h− hηǫ‖Lp + ‖hηǫ − (hηǫ)a,b‖Lp + ‖(hηǫ)a,b − (h)a,b‖Lp

= 1 + 2 + 3 .

By the definition of ηǫ it follows that

1 ≤ ‖h1{ǫ|x|≥1}‖Lp

which converges to 0 as ǫ→ 0, since h ∈W (Lp1(R
2d)), hence h ∈ Lp(R2d). Likewise,

3 = ‖(h− hηǫ)a,b‖Lp ≤ ‖h− hηǫ‖W (Lp
1)

≤ ‖h1{ǫ|x|≥1}‖W (Lp
1)
,

which again converges to 0 (uniformly in a, b) as ǫ→ 0. Hence, by the first step,

lim sup
(a,b)→(0,0)

‖h− (h)a,b‖Lp ≤ ‖h1{ǫ|x|≥1}‖Lp + ‖h1{ǫ|x|≥1}‖W (Lp
1)
,

and the statement of the lemma follows by taking the limit ǫ→ 0. �

Remark 3.3.10. Lemma 3.3.9 actually holds for p > 0 : when 0 < p < 1, the inequalities
for 1 and 3 are the same, while

lim sup
(a,b)→(0,0)

‖h− (h)a,b‖Lp ≤ K(‖h1{ǫ|x|≥1}‖Lp + ‖h1{ǫ|x|≥1}‖W (Lp
1)
) ,

for some K > 1, as ‖ · ‖Lp is not a norm but a quasi-norm. �

PROOF OF PROPOSITION 3.3.8. By [Gröchenig, 2001a, Theorem 12.2.1] we have
that if g ∈ M1

v (R
d) and f ∈ Mp,q

m (Rd), where m and v are two weights such that
m(t1+t2) ≤ Cv(t1)m(t2) forC > 0 and all t1, t2 in R2d, then Vgf ∈W (Lp,qm (R2d)). Hence
under the assumptions of the proposition, it follows that Vgf ∈ W (L2α

1 ). It is easy to
check that W (L2α

1 (R2d)) ⊂ L2α(R2d), therefore the Rényi entropy Hα(PSf) is finite. The
fact that the discrete entropy Ha,bα [PSf ] is finite follows almost immediately from the
definition of the space W (L2α

1 (R2d)). Indeed, the summands in equation (3.3.17) can be
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grouped with respect to the larger cells of the lattice Zd × Zd (here we think a, b small)
and each big cell contains at most (2 + [ 1a ])(2 + [1b ]) evaluation points from the smaller
cells, where [·] denotes the integer part. It follows that
∑

k,n

|Vgf(tk, ωn)|2α ≤ (2 + [ 1a ])(2 + [1b ])
∑

n,k

akn(Vgf)
2α ≤ (2 + [ 1a ])(2 + [1b ])‖Vgf‖2αW 2α

1
,

which is finite.
Finally, by Lemma 3.3.3 we also know that Vgf ∈ UC(R2d), hence the previous

lemma (applied with p = 2α and h = Vgf ) ensures the convergence. �

3.4. Biasing spectral coefficients through the α parameter

The α parameter in equation (3.2.6) introduces a biasing on the spectral coefficients,
which gives them a different relevance in the entropy evaluation of the representation;
this means that different values of α determine different concepts of sparsity: in this
section we propose two tests to give a qualitative description of this biasing.

We first consider a collection of vectors composed by a variable amount of large
and small coefficients. We realize a vector D of length N = 100 generating numbers
between 0 and 1 with a normal random distribution; then we consider the vectors
DM , 1 ≤M ≤ N such that

DM [k] =

{
D[k] if k ≤M
D[k]
20 if k > M(3.4.1)

and then normalize to obtain a unitary sum. We then apply Rényi entropy measures
with α varying between 0 and 3: as detailed in Chapter 4, these are the values we use
in our adaptive framework for the entropy evaluation. These vectors are a simplified
model of spectrogram frames, with coefficients whose amplitudes vary around two
main values: the vectors are not necessarily frames of the spectrogram of a real signal,
the scope of the test being to represent a limit case; actually, such a configuration may
represent more general situations, as the entropy measure is permutation-invariant, so
that the order of the coefficients in a vector does not modify its entropy value.

As we see from Figure 3.1, there is a relation between the number of large coeffi-
cients M and the slope of the entropy curves for the different values of α. For α = 0,
H0[DM ] is the logarithm of the number of non-zero coefficients and it is therefore con-
stant; when α increases, we see that densities with a small amount of large coefficients
gradually decrease their entropy, faster than the almost flat vectors corresponding
to larger values of M . This means that by increasing α we emphasize the difference
between the entropy values of a peaky distribution and that of a nearly flat one. The
sparsity measure we consider, privileges analyses with minimal entropy, so reducing
α rises the probability of less peaky distributions to be chosen as sparsest: in principle,
this may be desirable, as considering only large peaks lower the importance of weaker
signal components, such as partials, which have to be taken into account in the sparsity
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FIGURE 3.1. Rényi entropy evaluations of the DM vectors with varying
α; the distribution becomes flatter as M increases. Therefore increasing
α favors a representation with a few large peaks(see text).

evaluation.

The second example we consider shows that the just mentioned principle should
be applied with care, as a small coefficient in a spectrogram could be determined by a
partial as well as by noise; with an extremely small α, the best window selected could
vary without a reliable relation with spectral concentration, depending on the noise
level within the sound. We illustrate how noise has to be taken in account when tuning
the α parameter by means of another model of spectrogram: taking the same vector
D considered previously, and two integers 1 ≤ Npart, 1 ≤ Rpart, we define DL like
follows:

DL[k] =





1 if k = 1

D[k]
Rpart

if 1 < k ≤ Npart

D[k]
Rnoise

if k > Npart .
(3.4.2)

where Rnoise =
Rpart

L , L ∈ [ 116 , 1]; then we normalize to obtain a unitary sum. This vec-
tors are a simplified model of the spectrogram frames, whose coefficients correspond to
one main peak, Npart partials with amplitude reduced by Rpart, and some noise, whose
amplitude varies proportionally to the L parameter, from a negligible level to the same
one of the partials. Applying Rényi entropy measures with α varying between 0 and 3,
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we obtain the figure 3.2, which shows the impact of the noise level L on the evaluations
with different values of α.
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FIGURE 3.2. Rényi entropy evaluations of the DL vectors with varying
α, Npart = 5 and Rpart = 2; the entropy values rise differently as L
increases, depending on α: this shows that the impact of the noise level
on the entropy evaluation depends on the entropy order (see text).

The increment of L corresponds to a strengthening of the noise coefficients, causing
the rise of the entropy values for any α. The key point is the observation of how they
rise, depending on the α value: the convexity of the surface in figure 3.2 increases as
α becomes larger, and it describes the impact of the noise level on the evaluation; the
stronger convexity when α is around 3 denotes an higher robustness, as the noise level
needs to be high to determine a significant entropy variation. Our tests show that, as a
drawback, in this way we lower the sensitivity of the evaluation to the partials, and the
measure keeps almost the same profile for every Rpart > 1.
On the other hand, when α tends to 0 the entropy growth is almost linear in L, showing
the significant impact of noise on the evaluation, as well as a finer response to the
variation of the partials amplitude. As a consequence, the tuning of the α parameter
has to be performed according to the desired tradeoff between the sensitivity of the
measure to the weak signal components to be observed, and the robustness to noise.

3.5. Rényi entropy evaluation of weighted spectrograms

The representation we take into account is the spectrogram of a signal f , as
defined in equation (3.2.1), so PSgf(t, ω) = |Vgf(t, ω)|2. Given a Gabor frame {gk,l}
we obtain a sampling of the spectrogram coefficients considering zk,l = |〈f, gk,l〉|2. We
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have seen that, with an appropriate normalization, both the continuous and sampled
spectrogram can be interpreted as probability densities. The new idea introduced
in [Liuni et al., 2011a] is to use Rényi entropies as sparsity measures for weighted
time-frequency distributions: if we consider a weight function 0 ≤ w(k, l) ≤ ∞, we
can weight here the discrete spectrogram obtaining a new distribution z∗k,l = w(k, l)zk,l
which is not necessarily the spectrogram of a signal: nevertheless, by the definition of
w(k, l), its entropy can still be evaluated from (3.6.7). This value gives an information
of the concentration of the distribution within the time-frequency area emphasized
by the specific weight function: as we show in the Subsection 5.2, this can be useful
for the customization of the adaptation procedure, mainly for sound analysis purposes.

3.6. Spectral change detection in audio streams by means of Rényi entropies

In this section, we exploit the possibility of modeling spectral measures by means
of the Rényi entropy, appropriately varying the α parameter; together with another
basic property of entropies, which we discuss in Subsection 3.6.2, the possibility to
bias spectral coefficients is used here to detect changes within an audio stream: this
is an important task in several domains, such as classification and segmentation of
a sound or of a music piece, as well as indexing of broadcast news or surveillance
applications (we give several references fot this topic later in this section). The two
novel methods for spectral change detection introduced in [Liuni et al., 2011c], that
we detail here, are both based on the evaluation of information measures deduced by
the Rényi entropy, and applied to the spectrogram: we show that they allow refined
results compared to those obtained with standard divergences. These methods provide
a low computational cost and are well-suited as a support for higher level analysis,
segmentation and classification algorithms.

The detection of spectral changes within an audio signal can be performed accord-
ing to many different criteria, depending on the applications; the key point is what
kind of spectral change has to be considered significant. A typical problem in audio
classification is to identify signal segments with different contents, for example when
analyzing a radio stream to separate speech, music or mix of them; another type of
problem is speaker change detection, which typically occurs when indexing audio
recording of conferences, interviews or lectures. In either case we have to perform a
segmentation and a classification, but the interesting spectral changes are completely
different. The point of view we consider is at the signal level, without any assumption
about the input sound and its content.

The use of information measures to evaluate the features of a time-frequency rep-
resentation of a signal is frequent in the literature: Shannon entropy is applied to eval-
uate the concentration of the representation seen as a probability distribution, and the
derived divergence measures [Lin, 2002] are employed to identify variations within
the representation. The representation we consider is the spectrogram of the signal:
through a normalization which gives a unitary sum, we consider the discrete spectro-
gram in a finite time interval as a probability distribution, and we can apply typical
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information measures to evaluate its concentration in the time-frequency plane. Fixing
the signal f , we write

(3.6.1) PSm = {PSf(m, k), k = 1, ..., N}
to indicate the m-th normalized analysis frame in the discrete spectrogram PSf , where
the FFT size N is the finite number of sample frequencies considered.

The Kullback I and J divergence measures are derived from the Shannon entropy
[Rényi, 1961] as follows, where we assume 0 log 0 = 0 and log 0

0 = 0 . The I directed
divergence is

(3.6.2) I(PS1,PS2) =

N∑

k=1

PS1[k] log
PS1[k]

PS2[k]
,

which is nonnegative and additive but not symmetric; a symmetric extension of this
measure is given by

(3.6.3) J(PS1,PS2) =

N∑

k=1

(PS1[k]− PS2[k]) log
PS1[k]

PS2[k]
,

where PS1 has to be absolutely continuous with respect to PS2 for I to be defined while
PS1 and PS2 have to be equivalent in the definition of J . The K directed divergence
[Lin, 2002] is an alternative well suited for difference measures; it is defined as

(3.6.4) K(PS1,PS2) =

N∑

k=1

PS1[k] log
PS1[k]

1
2PS

1[k] + 1
2PS

2[k]
,

so we have K(PS1,PS2) ≥ 0 and the equality is attained only if PS1 = PS2. The
last two measures are both derived from the I one, as J(p, q) = I(p, q) + I(q, p) and
K(p, q) = I(p, 12p+

1
2q).

Given two normalized analysis frames PS1 and PS2, the K divergence is usually
employed to have a measure of their difference: a spectral change is detected whenever
K(PS1,PS2) is larger than a chosen threshold. A refinement of this method (see for
example [Basu, 2003]) provides a better robustness to false alarms defining a mean
spectrum PSmean and comparing its divergence with the new analysis frame.

The first method we introduce is a straight extension of the one just described:
we consider the divergence measure derived from the Rényi entropy [Rényi, 1961]
instead of the K directed divergence, allowing a tuning of the detection criteria thanks
to the dependance of the measure on a parameter. The second method is not based
on divergence but on Rényi entropy itself, exploiting one of its fundamental property:
the entropy of a union of probability distributions can be evaluated considering the
entropy values of the individual distributions. Since we do consider analysis frames as
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probability distributions, this property can be used to establish the expected entropy
value of a certain signal segment when the following frame is added: if the actual
value differs significantly from the expected one, the last frame is considered to contain
a spectral change.

This kind of algorithm does not need acoustic models to refer to, nor data training:
a certain metric is evaluated in a given space [Kemp et al., 2000]. The information
measures we take into account can be applied on several different representation of the
signal: in [Siegler et al., 1997] the K divergence is used in a GMM framework instead
of on the spectrogram. In several approach, for example in [Foote, 2002], difference
measures are calculated as a first step which gives a suitable analysis for segmentation
and classification purposes: for all these algorithms, the class of measures we introduce
could ameliorate the detection performances as they allow a further parameter of
choice, while still including the K divergence for a given value of the parameter.

In this section we discuss the methods introduced, while a technical description of
the algorithms and examples are given in Section 5.4

3.6.1. Rényi information measures. We have seen that given a finite probability
density P and a rational number α ≥ 0, the Rényi entropy of P is defined as in equation
(3.2.4),

(3.6.5) Hα[P ] =
1

1− α
log2

N∑

k=1

Pαk ;

given a second finite probability density Q of the same length, if P and Q have exactly
the same zeros the Rényi information [Rényi, 1961] is defined as follows,

(3.6.6) Iα(Q,P ) =
1

α− 1
log2

N∑

k=1

Qαk
Pα−1
k

,

and it tends to the Kullback I divergence [Lin, 2002] as α tends to one. We can thus
consider this class of measures to obtain different divergences as for the Kullback I
one, and apply them to the spectrogram frames: as long as we can give an interpreta-
tion to the α parameter, this class of measures offers a more detailed information about
the time-frequency representation of the signal.
The biasing introduced on the spectral coefficients by the α parameter have been in-
terpreted by means of the simplified models in (3.4.1) and (3.4.2): looking at the first
one, for α = 0, H0[DM ] is the logarithm of the number of non-zero coefficients and it
is therefore constant; when α increases, we see that densities with a small amount of
large coefficients gradually decrease their entropy. This means that increasing α we
emphasize the difference between the entropy values of a peaky distribution and that
of a nearly flat one. In the next subsection we give an example of the exploiting of
this property, still considering that the smaller is the α parameter, the less the change
detection is robust to noise level.
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3.6.2. The entropy prediction method. The second method we introduce is not
based on a divergence criterium, but on entropy itself. We first give the definition of
Rényi entropy for the case of distribution obtained with a discretization of their contin-
uous version [Baraniuk et al., 2001]: let PSf be a normalization with unitary sum of a
discrete spectrogram, then the Rényi entropy of PSf is

(3.6.7) Hα[PSf ] =
1

1− α
log2

∑

n,k

(PSf [n, k])
α + log2(ab) ,

where k varies between 1 and the FFT size N while n varies in the time interval where
the evaluation has to be performed, according to the time grid. The term log2(ab)
takes into account the time and frequency steps a and b of the lattice Λ used to sam-
ple the continuous spectrogram: this guarantees the stability of the discrete entropy
when changing the hop and the FFT sizes, as long as the sampling grid is dense
enough in the time-frequency plane. For the entropy of a single analysis frame we
write Hα[PSf ] = Hα[PSm] as above, where m is the time index of the analysis frame
considered; for L different analyses frames, we write Hα[PSf ] = Hα[PSm, ...,PSm+L] to
focus on the individual vectors. The following properties are straightforward by the
definitions.

Proposition 3.6.1 (Rényi entropy prediction). Consider a spectrogram PSf and a rational
number α ≥ 0.

(i) Let PSm be an analysis frame in PSf ; if PSk is obtained rearranging the elements of
PSm, then

(3.6.8) Hα[PSm] = Hα[PSk] = H ,

(3.6.9) Hα[PSm,PSk] = H + 1 .

(ii) In general, if PSm+1, ...,PSm+L are obtained rearranging the elements of PSm, than

(3.6.10) Hα[PSm, ...,PSm+L] = H + log2(L+ 1) .

As a rearrangement we mean a reordering of the frame coefficients, thus including
the case of equality between frames. The idea of our method is that given the entropy
of a certain signal segment Hα(PSm, ...,PSm+L) composed by L contiguous frames, we
can predict Hα(PSm, ...,PSm+L+1) supposing the new frame to be spectrally coherent
and thus iso-entropic with the previous ones. If on the other hand the entropy value
of the new segment largely differs from the predicted value, we assume the new frame
to be incoherent with the previous and so a spectral change is detected. There is here a
strong assumption concerning the equivalence between the concept of spectral coher-
ence and the fact that two frames are obtained with a rearrangement of their elements;
according to the specific needs in the applications, the detection criteria can be based
on variations of the property (3.6.10) to take into account different definitions of spec-
tral coherence: for example, considering a set of admissible operations on the analysis
coefficients in relation with the entropy variation that they provide.
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3.7. A sparsity measure based on sinusoidal peaks

In Section 1.3 we have introduced the deterministic plus stochastic decomposition
(1.3.8) of a signal, which requires the separation of sinusoidal and non-sinusoidal
components in its Fourier spectrum. This model serves as a base for several parameter
estimation and signal manipulation techniques, where the two parts are treated with
different methods: their quality largely relies on the accuracy of the separation. Several
approaches have been proposed for the classification of spectral coefficients, whose
purpose is to establish which values of the representations are related to sinusoidal,
or non-sinusoidal parts of the signal (see [Wells and Murphy, 2010] for a comparative
survey).

We aim to deduce an optimization problem based on the separation task, which
would provide our adaptive framework with a sparsity measure related to the sinu-
soidal modeling of the signal. Consider as before a set of indexes S and window func-
tions gs, s ∈ S, which are scalings of a same window function g; a discrete STFT Vsf is
calculated with each window gs, determining a different decomposition in sinusoidal
and noise components for each s in S,

(3.7.1) f = f ssin + f snoise .

We need now a criterium to privilege a certain decomposition among the ones ob-
tained. For applications based on sinusoidal modeling, most of the manipulations is
performed on the sinusoidal components: once fixed the classification algorithm and
given the different decompositions in (3.7.1), a natural choice for an optimal represen-
tation is to look for the maximum of the ratio between the energies of the sinusoidal
and noise detected parts,

(3.7.2) max
s∈S

‖f ssin‖2
‖f‖2

.

The problem is well-posed, in the sense that the maximum is in general unique, and
varies depending on the analyzed signal; indeed, the classification changes depending
on the frequency resolution of the analysis, and on the amplification of the noise level
determined by the window function: both of these quantities change when varying the
window size.

The criterium will favor sparse representations, in the sense that a maximum
of energy is represented by the sinusoidal components, which are the ones that we
consider significative, while the minimum is in the residual. The advantage of such a
model-based measure is that it provides, by its definition, the best application-oriented
criterium for the adaptation of the STFT window. On the other hand, a characterization
of the measure heavily relies on the classification algorithm, thus determining a certain
lack of generality. In Section 4.2, we discuss the tests about the local adaptation of
the STFT with this criterium, by comparing them with the ones obtained with the
entropy-based measure.
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For the classification algorithm, we consider the approach in [Röbel et al., 2004];
the signal spectra are decomposed by means of classifying individual spectral peaks.
Different descriptors are defined on individual peaks of a discrete STFT, considering
the following quantities in relation with the individual bins of an analysis frame:
mean time, duration, mean frequency, bandwidth (these quantities correspond to
〈t〉 , σt , 〈ω〉 , σω, as defined in Section 1.3), group delay (see [Cohen, 1995]) and reas-
signed frequency (see [Auger and Flandrin, 1995]); then a decision tree is established,
and each peak is associated to the sinusoidal, sidelobe, or noise class.

The choice of another classification algorithm would lead to a possibly different
measure, and this makes the whole framework application-dependent. Our choice is
motivated by the aim to conceive a system that can be used in quasi real-time: that is,
the computational complexity of the sparsity evaluation has to to be of the same order
than the one of the spectral analysis system. The algorithm in [Röbel et al., 2004] (as
well as the others analyzed in [Wells and Murphy, 2010]) is a frame-by-frame system,
where the classification is performed on the audio for a single analysis frame, without
the need for subsequent frames to be acquired; therefore, considering its accuracy and
computational complexity, it constitutes an appropriate candidate.





CHAPTER 4

Algorithms and tests

We have realized several algorithms based on the theoretical framework detailed
in the previous chapters: our first focus has been on the design of analyses, with a
variable and automatically adapted time-frequency resolution, to privilege the read-
ability of the sound representation. We have then considered the problem of defining
synthesis operators associated to the analyses introduced: we have conceived different
reconstruction methods extending the classical FFT-based approach, looking for algo-
rithms which guarantee a perfect reconstruction of the original sound, as long as it is
theoretically achievable, or an approximation within a predictable small error.

4.1. Automatic selection of the window size

We first consider the problem of choosing an optimal window size out of a given fi-
nite set; for the tests we take into account in the following, the window type is fixed: the
choice of a specific family of windows is principally a matter of the envisaged applica-
tion and of the desired representation features. Nevertheless, the theoretical framework
developed in the previous chapters includes all of the common window types adopted
in the applications: thus we expect that the results obtained for a given window type
still hold, with the appropriate adaptations, for all the compactly supported, symmetric
and sufficiently regular windows. Because of its good properties (see Subsection 1.5.1),
the spectrograms we use are obtained from different scalings of a Hanning window

(4.1.1) g(t) = cos2(πt)χ[− 1
2
, 1
2
] ,

with χ the indicator function of the specified interval.

Each size we consider is obtained with a scaling of the same original window: there-
fore we have a finite set S of positive scaling factors, and different scaled version of a
compactly supported, symmetric window g,

(4.1.2) gs(t) =
1√
s
g

(
t

s

)
.

Given a signal f , a discrete spectrogram PSsf is calculated for every window gs. Each
PSsf is a time-frequency representation of the signal, whose sparsity can be evaluated
according to a chosen measure, thus defining an optimization problem whose solutions
indicate the windows we consider as best. The problem thus takes the following form,

(4.1.3) min
s∈S

HRα [PSsf ]

67
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where R is a certain rectangle in the time-frequency plane, α ≥ 0, α 6= 1 and HRα is the
Rényi entropy defined in equation (3.2.6), whose discrete form is deduced in equation
(3.3.17). We use a modified version of the measure, better suited for our problem: in the
discrete finite case, each PSsf is a matrix in Rm×Rn, where m and n vary for each s; to
compare the different entropy values, we thus need to investigate the dependance of the
measure on m and n. We impose the basic requirement that, given a spectrogram with
identical rows or columns (even if this is not necessarily the spectrogram of any signal),
the measure must not depend on m and n, respectively: this implies, for instance, that
for any window gs and any stationary sound f , the entropy value Hα[PSsf ] does not
depend on the number of analysis frames considered. From equation (3.6.10) and its
analogous in the frequency dimension, we deduce a normalizing term that we add in
equation (3.3.17), as follows,

(4.1.4) Ha,bα [PSsf ] =
1

1− α
log
∑

(l,k)

( PSsf(l, k)∑
(l′,k′) PSsf(l

′, k′)

)α
+ log

ab

mn
,

where l and k are the row and column indexes of the matrix PSsf , while a and b are the
time and frequency steps used for the discrete spectrogram. Throughout the work, we
refer to the measure in (4.1.4) as the normalized discrete Rényi entropy, to distinguish it
from the discrete Rényi entropy in (3.3.17): the two measures show different properties
of stability, that we detail in the following subsection.

By fixing a value of α, the sparsest local analysis is defined to be the one with min-
imum Rényi entropy: thus the optimization is performed on the scaling factor s, and
the best window is defined consequently, with a similar approach to the one developed
in [Jaillet and Torrésani, 2007].

4.1.1. Entropy evaluation for basic signals. We give here some examples of solu-
tions for the problem (4.1.3) with f a basic signal of finite duration: a random noise,
the sum of stationary sinusoids, a sinusoidal burst, and a sinusoid with sinusoidal
frequency modulation; we perform here a global evaluation of the entropy, that is R
coincides with the whole time-frequency support of f . This will give an insight of the
selection realized by the sparsity measure we have defined, when the evaluation is
taken on a subset of the signal support: indeed, even if music and instrumental sounds
are much more complicated than the signals we consider here, their local behavior can
show similarities with these elementary examples. For all of the tests in this subsection,
we use the normalized entropy measure (4.1.4).

We first consider the case of a L-point random noise, whose samples respect a
standard normal distribution, obtained with the function randn in Matlab: here, the
solution for the problem (4.1.3) is random, regardless of L and the scaling factors in S.
This is a first property that holds for the normalized discrete entropy, but not for the
standard one: in our problem, this is an advantage, because if a best analysis window
were established for random noise, this would lower the interpretability of the best
window selection for a deterministic signal embedded in noise. On the other hand, the
standard discrete Rényi entropy (3.3.17) would rather privilege the largest window size.
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Test 4.1.1. In this test, f is a single stationary sinusoid embedded in random noise with
variable SNR (signal to noise ratio); as we have seen in Subsection 3.2.1, without noise
it is not hard to provide an analytical solution, which is that the largest window size is
the best. We can thus interpret the following measures as the robustness of the solution
to noise. Consider the following setup:

f is a 5000 points sinusoid with normalized frequency 0.01;
the sizes lens of the windows gs are the even numbers from 512 to 4096;
the spectrograms PSsf are taken with FFT sizes equal to lens, and the time step
is lens

4 .

Figure 4.1 contains the Rényi entropy measures of PSsf as a function of lens; the α
parameter is set to 3, and we see that the solution is definitively robust, as it becomes
aleatory when the noise level is much higher than the sinusoid one. The cyclic oscilla-
tion we see for all the SNR values is due to the discrete finite dimension of the signals,
and thus of PSsf : as we fixed a constant signal length for all the different windows
gs, there are several different spectrogram matrices with a same number of columns
(analysis frames), given by

(4.1.5) ns =

⌊
L− lens + as

as

⌋
,

where ⌊·⌋ is the integer part function; the oscillation in the curves thus depends on the
discontinuities of ns when s varies. Moreover, this implies that different spectrograms
are obtained analyzing different portions of the signal: in Section 4.3 we detail the
solution we adopt to reduce this oscillation.

Figure 4.2 is obtained with the same setup, but α is set to 0.1; as discussed in Section
3.4, small values of the α parameter raise the influence of the noise component in the
entropy evaluation: as the best window for random noise, in the entropy sense, is
random, the measure starts taking random values at a higher SNR than in the previous
case.

We have extended the test to the sum of stationary sinusoids with different
frequencies and same constant amplitudes: as the analytical results suggest (see
[Baraniuk et al., 2001], the measure is stable as long as the sinusoids are well separated:
that is, the difference between any two of their frequencies is larger than the maximum
frequency step of the windows gs. When this separation does not hold, the measure
is hard to predict, and the solution of problem (4.1.3) is not necessarily given by the
largest lens. �

Test 4.1.2. We consider now a sinusoidal burst, that is a short-duration signal obtained
with an exponentially-decaying amplitude modulation of a sinusoid: this is a simplified
model of a percussive sound, where the tone component is given by the vibrating mem-
brane. For a readable analysis of such a signal, the time precision has to be privileged,
as the information is strongly localized in time and relatively spread in frequency; the
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FIGURE 4.1. Entropy values for different spectrograms of a single stationary
sinusoid embedded in noise, as detailed in Test 4.1.1: the signal to noise ratio
SNR is indicated for each figure, the entropy order is α = 3 and the abscissa
represents the length lens of the windows gs used for the spectrogram.

shortest window size available is the one providing the best localization of the tran-
sient. We consider the same setup of Test 4.1.1, with the only difference about the input
signal:

f is a 5000 points signal containing a sinusoidal burst of 1500 points, the
sinusoid normalized frequency is 0.25 (see the signal and its spectrum plots, on
top of Figure 4.3).

As we see in Figure 4.3, without noise the Rényi entropy measure is lower for
shorter window sizes. We would expect a concave curve, while we see steps and
local convexities: they can be explained with similar considerations to those for the
oscillation in the previous test. Nevertheless, the overall concavity ensures a satisfying
stability of the solution of problem (4.1.3), in the noiseless case, given by the shortest
window size. When noise is added, we see that even with α = 3 the measure rapidly
becomes unstable, which is normal considering the short duration of the signal
compared to that of the introduced random noise. �



4.1. AUTOMATIC SELECTION OF THE WINDOW SIZE 71

!"" #""" #!"" $""" $!"" %""" %!"" &"""
('

((

()

(!
*+,-.-/01

2/0342-5/67

7
0
89
4
:
;

!"" #""" #!"" $""" $!"" %""" %!"" &"""
($<!%

($<!$

($<!#

($<!
*+,-.-#$3=

2/0342-5/67

7
0
89
4
:
;

!"" #""" #!"" $""" $!"" %""" %!"" &"""
($<%!

($<%&

($<%%

($<%$
*+,-.-)3=

2/0342-5/67

7
0
89
4
:
;

!"" #""" #!"" $""" $!"" %""" %!"" &"""

($<#>

($<#'!

($<#'

($<#(!
*+,-.-"3=

2/0342-5/67
7
0
89
4
:
;

!"" #""" #!"" $""" $!"" %""" %!"" &"""

($<#$!
($<#$
($<##!
($<##
($<#"!

*+,-.-()3=

2/0342-5/67

7
0
89
4
:
;

!"" #""" #!"" $""" $!"" %""" %!"" &"""
($<">$

($<">

($<"''

($<"')
*+,-.-(#$3=

2/0342-5/67

7
0
89
4
:
;

FIGURE 4.2. Entropy values for different spectrograms of a single stationary
sinusoid embedded in noise, as detailed in Test 4.1.1: the signal to noise ratio
SNR is indicated for each figure, the entropy order is α = 0.1 and the abscissa
represents the length lens of the windows gs used for the spectrogram.

Test 4.1.3. The last test we consider here is a sinusoid with sinusoidal frequency mod-
ulation: this will give an insight of the values taken by the entropy measure on vibrato
sounds. We consider again the setup of Test 4.1.1, with the following input signal:

f is a 10000 points sinusoid with sinusoidal modulation: the normalized
frequency starts at 0.034, varying between 0.036 and 0.032.

If we suppose a sample rate of 44.1kHz, this corresponds to a 1500Hz sinusoid
modulated of about a semitone, and could thus represent a partial of an instrumental
note played with a vibrato effect. Different modulation periods are taken, along with
the common perception of a vibrato effect, which is between 4 and 8 Hertz: if the
frequency variation is fast, compared to the window length, this gives a frequency
smearing within the analysis frame; we expect the measure to prevent this case,
choosing a shorter window as best. As we see from Figure 4.4, this requirement is
conveniently fulfilled by the entropy measure. �
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FIGURE 4.3. Entropy values for different spectrograms of a sinusoidal burst
embedded in noise, see Test 4.1.2: on top, the signal plot and its frequency
spectrum one; in the other six plots, the entropy values are shown: the signal to
noise ratio SNR is indicated for each figure, the entropy order is α = 3 and the
abscissa represents the length lens of the windows gs used for the spectrogram.
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FIGURE 4.4. Entropy values for different spectrograms of a sinusoid with
sinusoidal frequency modulation, see Test 4.1.3: the signal length is L = 10000
points, the modulation period T is indicated for each figure as a multiple of L;
the entropy order is α = 3 and the abscissa represents the length lens of the
windows gs used for the spectrogram.

4.1.2. Time-frequency sampling steps. We now consider the solutions of the
problem (4.1.3) when varying the time and frequency step a and b used for the
discretization of the spectrogram. For discrete finite signals, the Hilbert vector space
we consider is CL, where L is the signal length. Given the set S with the scaling factors,
the window functions gs have lengths lens much smaller than L, thus determining the
number of non-zero values of the FFT input vector, at each time step of the STFT. The
FFT size is the number of points in the output vector: indicate with Fs the FFT size of
the STFT with window gs, which is the number of frequency coefficients of the signal
transform, then the frequency step is given by bs = L

Fs
.

In the discrete finite case, the painless condition is verified when lens ≤ Fs: when
equality holds, all of the information available in the windowed signal is exploited, as
the output vector is given by an expansion whose coefficients are the non-zero input
entries. If a larger number of input points is considered, then some zeros are included,
and further frequency values are obtained as an interpolation between the ones in the
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equality case (this technique is known as zero-padding, or frequency-oversampling). We
consider that the frequency redundancy of the s-th analysis is given by redfs = L

bs
= Fs;

together with the one in time, that we are going to define as redts, this quantity allows
to measure the overall redundancy of the analysis.

With regard to the time step, the results proved in Chapter 3 show that as long as
the sampling lattice becomes denser, the discrete entropy (3.3.17) of a spectrogram con-
verges to its continuos version: we would hence expect that over a certain redundancy,
discrete entropy measures are robust to lattice variations. As a bound for the frequency
step is implicitly fixed by the window size and the painless condition, which we re-
quire to be verified in all the analyses, the critical redundancy concerns the time step
a. If we write the time redundancy of the s-th analysis as redts = L

as
, then the global

redundancy reds of the spectrogram PSsf is given by the following expression,

(4.1.6) reds =
redts · redfs

L
=

L
as

· Lbs
L

=
L
as

· Fs
L

;

in particular, reds = 1 when the standard FFT is calculated, without windowing: in
this case, the hop step is as = L, while the output vector has L points, so that bs = 1.

We have conducted several experiments to verify the stability of the normalized
and standard entropy measures to frequency oversampling and time step, that are
resumed in the following test.

Test 4.1.4. We consider here a single window g, and verify how the discrete entropy
measures change depending on the frequency oversampling and the time step; thus we
focalize on a single spectrogram, and check the stability of the entropy values when
varying its redundancy. Consider the following setup:

three different signals: a 5000 points random noise, and the signals defined in
the Tests 4.1.1 and 4.1.2 (sinusoid, sinusoidal burst, without noise);
a single window function g of 1024 points;

(a) in a first configuration, the three signals are analyzed with a constant hop size
of 256 points and variable FFT size, from 1024 to 8192 points;

(b) in a second configuration, the three signals are analyzed with a constant FFT
size of 1024 points and variable hop size, from 64 to 512 points.

Figure 4.5 shows the results of the test, considering the standard discrete entropy
measure (3.3.17) with α = 3: the first configuration corresponds to the plots in the left
column; the redundancy grows as the FFT size increases, because the frequency step
b is inversely proportional to the frequency oversampling. The second configuration
corresponds to the plots in the right column; the redundancy grows as the hop size
decreases, as it coincides with the time step. In both cases, we see that the discrete
entropy measure (3.3.17) is definitively stable when redundancy grows, given that the
painless conditions are satisfied.
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FIGURE 4.5. Entropy values for the spectrograms of different signals, obtained
varying their hop size and FFT size (see Test 4.1.4).

Concerning the normalized discrete entropy measure (4.1.4), we deduce that
it is not stable to redundancy variations, as it is obtained from the standard one,
subtracting the logarithm of the spectrogram matrix dimensions, logmn . Therefore,
when comparing analyses with different windows and redundancies, the choice of the
measure should take into account the type of stability required. �

As a consequence of the tests shown in this section, the redundancies of the
different spectrograms influence the interpretation of the comparison between their
entropy values: therefore, we limit our investigation to the cases where analyses share
the same redundancy, defining two different strategies.

In a first version of our algorithm, the different spectrograms are calculated with
the same time step a and frequency step b; this implies that, for each signal segment an-
alyzed, the different frames have Heisenberg boxes whose centers lay on a same lattice
on the time-frequency plane, as illustrated in Figure 4.6. Given N the finite number of
scaling factors in the set S, the window lengths are ordered such that len1 ≤ ... ≤ lenN ,
and the same holds for the FFT sizes Fs. To guarantee that all the scaled windows con-
stitute a frame when translated and modulated according to this global lattice, the time
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step a must be set with the hop size assigned to the smallest window, which is a1. On
the other hand, to guarantee the painless condition for all of the analyses, the frequency
step b has to be determined by the FFT size of the largest window, that is FN : for the
smaller ones, zero-padding is performed. In these hypotheses, all the spectrograms
have the same redundancy, given by

red =
L

a1bN
;

moreover, the spectrogram matrices have the same number of rows and columns m
and n: therefore, the discrete measure we use for the entropy evaluation is the standard
one (3.3.17), as the normalized version would simply subtract a constant quantity to
each evaluation.

As seen, a first strategy to obtain analyses with a common redundancy is to take the
same time and frequency steps, defining a common lattice which is the narrowest in
time and frequency among the ones of the individual analyses. A second strategy is to
take the same time and frequency oversampling: in a further version of our algorithm,
the window sizes lens and the lattices Λs are automatically defined, given the smallest
and largest lengths len1, lenN , and the overall redundancy required for the analyses;
in particular, the time steps are as = c · lens, while the FFT sizes are Fs = d · lens, where
the parameters c and d, with 0 < c < 1 and d ≥ 1, define the redundancy shared by all
the spectrograms,

red =
d

c
.

Figure 4.7 shows the configuration of the time centers for a given choice of S and c.
In this case, the spectrogram matrices have different numbers of rows and columns m
and n, so the discrete measure we use for the entropy evaluation is the normalized one
(4.1.4). The redundancy of the analyses considered in the first version of the algorithm,
with the same analysis parameters and windows, would be

red =
d

c
· lenN
len1

,

which is in general much higher than d
c .

The analyses in the first algorithm are oversampled versions of the ones in the sec-
ond, and we refer to the latter as standard: depending on the window length lens, the
time and frequency steps of a standard analysis are reduced of a certain factor, adding
rows and columns to the corresponding spectrogram matrix. For each s, the number
of rows added is proportional to lens

len1
, while the number of columns added is propor-

tional to lenN

lens
; therefore, the ratio between the matrix dimension in the oversampled

and standard sampling, given by

rs =
mNn1
msns

,

is approximatively the same for all the values of s, up to a discretization term.
This implies that the solutions of the problem (4.1.3), considering the normalized
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FIGURE 4.6. Time centers in the spectrograms calculated by the first version
of the algorithm, for a given choice of window lengths: the time step a1 is deter-
mined by the time redundancy of the smallest window (see Subsection 4.1.2).
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FIGURE 4.7. Time centers in the spectrograms calculated by the second ver-
sion of the algorithm, for a given choice of window lengths and redundancy: the
time step as = c · lens is a function of the window length lens (see Subsection
4.1.2).
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entropy measure, are essentially the same with both the standard and oversampled
spectrograms. This is a key point, as it guarantees that the sparsity measure obtained
allows a total independence between the hop and FFT sizes of the different analy-
ses, provided that the redundancy is the same: with the implementation of proper
structures to handle multi-hop STFTs, we have obtained a more efficient algorithm
in comparison with those imposing a fixed hop and FFT size, as the one proposed in
[Lukin and Todd, 2006]; the computation saved is determined by the smaller number
of FFTs required for the larger windows, which are the more expensive. For the
experiments we show in the following sections and in the next chapter, this second
version of the algorithm is used.

4.2. Adaptation of the STFT based on sinusoidal modeling

In the previous section we have conducted several tests to characterize the solutions
of problem (4.1.3); here, a similar characterization for the solutions of the maximization
problem (3.7.2) is given: as expected, when working with sums of stationary sinusoids,
the best window size is chosen according to the frequency resolution guaranteeing the
separation of the individual sinusoids. On the other hand, the results with an indi-
vidual stationary sinusoid and a random noise show unexpected solutions, which are
discussed in the following tests.

Test 4.2.1. Consider the following setup:

f is a 20000 points random noise;
the sizes lens of the windows gs are the powers of 2 between 256 and 8192, both
included;
the spectrograms PSsf are taken with FFT sizes equal to 4lens, and the time
step is lens

4 .

For every spectrogram, the classification between sinusoidal and non-sinusoidal
peaks is performed, as detailed in Section 3.7; then the best window chosen is the
solution of problem (3.7.2), which maximizes the energy of the sinusoidal component.
The test is repeated 100 times with different realization of the random noise, and Figure
4.8 (on top) shows the occurrences of the different windows as optimal solution: as
no sinusoidal peaks are present in the signal, we would expect the best solution to be
randomly chosen: we see that the obtained distribution does not reveal any significant
concentration, as expected.

We obtain similar results with a variation of the test; with the same setup, con-
sider the case where f is a stationary sinusoid: for each one of the 100 repetitions, the
normalized frequency randomly varies between 0 and 0.5: here, a single sinusoidal
peak is present, which is classified as sinusoidal using any one the different windows.
Therefore, we would again expect the best solution to be randomly chosen, which is
confirmed by Figure 4.8 (at the bottom). �
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FIGURE 4.8. Best window choice made by the classification-based sparsity
measure, 100 different evaluations are realized for each signal type (see Test
4.1.2): the number of occurrences of a given window size as the best one is
plotted.

Even if, theoretically, the optimal resolution for a stationary sinusoid should be the
highest one, from the point of view of the classification all the windows are good, as
they all behave correctly with a unique sinusoidal peak. A further test is provided,
detailing the solutions to the maximization problem (3.7.2) when f is a sum of two
stationary sinusoids.

Test 4.2.2. The basic property required by the classification-based measure we have
introduced is to privilege window sizes which resolve sinusoids; in this test we discuss
the optimum defined by the measure when f is a sum of two stationary sinusoids
with close frequencies. Consider the analysis setup of Test 4.2.1; choosing a frequency
oversampling, a limit on the resolution of the windows is imposed: two sinusoids
whose normalized frequencies difference is lower than fres(s) = 2

lens
, are associated to

a same frequency coefficient in the analysis with window gs; the value fres(s) indicates
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the frequency resolution determined by gs, as it is the lower frequency distance at
which two sinusoids are properly resolved.

The signal f is a sum of stationary sinusoids, whose frequency separation is dif :
a first normalized frequency is randomly chosen. We realize |S| = 6 repetitions of
the evaluation, fixing the second normalized frequency such that dif < fres(s) at the
repetition s. Therefore, as s increases, the sinusoids are closer: at each step s, only the
windows with index larger than s resolve the sinusoids, so we expect the maximum
to hold at values higher than the current index. In Figure 4.9, we see that at each step
a discontinuity of the measures occurs, at the index corresponding to the analysis
window which does not resolve the sinusoids anymore, where the measure has its
absolute minimum: at each step, the new window which does not separate the sinu-
soids is penalized. On the other hand, we see that reducing the frequency difference,
the left part of the curves presents a decreasing slope, and smallest windows are not
always penalized, even in some cases where they do not separate the two sinusoids:
this effect is due to the fact that, when the frequency difference is below its frequency
resolution, the sum of two stationary sinusoids is analyzed as a single sinusoid with
sinusoidal amplitude modulation. In the classification algorithm, such a peak is
classified as sinusoidal depending on the modulation rate and the window size: in par-
ticular, for smaller windows the energy of the signal is as well classified as sinusoidal.�

These two tests show that the classification-based measure allows a precise inter-
pretation of the variation induced by unresolved sinusoids: the solutions to problem
(3.7.2) are thus, in general, more easy to motivate in terms of signal processing consid-
erations, compared to the ones obtained from the entropy minimization. The different
solutions for the two problems, for instance in the limit case of single stationary
sinusoids, show that two distinct sparsity criteria are defined, as expected. As a future
perspective for this research, further experiments on appropriate classes of signals
should show the characteristics of the different solutions in real music contexts. This
would clarify the applications where one of the two measures should be preferred, as
a criterium for the local adaptation of the analysis resolution.

4.3. Adaptive analysis

We have seen in Chapter 2 that it is possible to define time-frequency represen-
tations of a signal with variable resolution, moving from the classic Fourier-based
approach. Then, in Chapter 3, we have established a rule to determine an optimal
resolution out of a finite set of choices, and provided two methods of global adaptation
in Sections 4.1 and 4.2. Here, we merge these concepts in a procedure for the local
adaptation of the time-frequency resolution of the spectrogram. The sparsity criterium
we adopt is the entropy-based one.

Given a finite set S of positive scaling factors, we consider different scaled versions
gs of a window g, as in equation (4.1.2). We know that each gs, together with an
appropriate lattice Λs defined by a time step and a frequency step, forms a frame
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FIGURE 4.9. Best window choice made by the classification-based sparsity
measure: the signal is a sum of 2 stationary sinusoids whose normalized fre-
quencies difference is progressively reduced, depending on the frequency reso-
lutions of the analysis windows, as indicated in the titles of the subplots (see
Test 4.2.2).

for our space of signals. Associating the analysis coefficients to the points of the
lattice, we can represent the discrete spectrogram PSsf by means of the lattice Λs.
A local evaluation of a sparsity measure takes into account a certain subset of the
analysis coefficients, depending on the envisaged localization: when f is a sound,
its time frequency support can be inscribed in a rectangle R, whose horizontal and
vertical sides are the time support of f and its essential frequency support, respectively.

The localization we are interested in, is realized by choosing a rectangle R in
the time-frequency plane, whose time-frequency shifts cover R; the area inside R
corresponds to the analysis coefficients considered for the sparsity evaluation, and
thus for the adaptation procedure: for each shift of R a best resolution is chosen and
assigned to that portion of plane (see Figure 4.10).

For a better understanding of the type of localization obtained, we have to consider
the relation between the analyzed coefficients and the signal segment they correspond
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FIGURE 4.10. Graphic representation of a step of the evaluation procedure:
for a given spectrogram PSsf and a time-frequency shift of the rectangle R, the
Rényi entropy of the coefficients within R is calculated (see Section 4.3).

to: because of the windowing, each coefficient in PSsf is referred to a supp(gs)-long
segment of f . Therefore, for the evaluation to be performed on rectangles containing
at least one coefficient of each PSsf , we take R such that the temporal supports of the
scaled windows gs is inside R, i.e. supp(gs) ⊆ R for any s ∈ S.

At each step of our algorithm, the rectangle R is shifted in the time-frequency
plane with a certain overlap with the previous position. Within the area of the shifted
R, the best coefficients are defined as the ones which belong to the spectrogram
PSsf providing the lowest Rényi entropy; in the overlapping regions, the decision is
updated at each step of the algorithm. The adaptive global analysis is thus obtained
as an union of the best local analyses selected by the algorithm. The parameters and
the essential steps performed by the algorithm are represented in Figure 4.11, and will
be detailed in the following subsections: examples of its application are provided in
Chapter 5.

4.3.1. Time adaptation. The entropy evaluation is recursively performed on
segments of the signal, taking into account the whole frequency spectrum. Each
signal segment identifies a time-frequency rectangle R for the entropy evaluation:
the horizontal side is the time interval of the considered segment, while in this case
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FIGURE 4.11. Graphic representation of the main steps performed by the al-
gorithm for the automatic local adaptation of the spectrogram window size (see
Section 4.3).

the vertical one is the whole frequency lattice. For each spectrogram, the rectangle R
defines a subset of coefficients belonging to R itself. Because of the discrete setting, the
coefficients identified byR over the different lattices Λs do not correspond in general to
the same part of signal, as window lengths lens and hop sizes c · lens have to be integers
(see Figure 4.12); moreover, different windows determine different amplification of the
signal segment extremes. Therefore, we perform a preliminary weighting before the
calculations of the local spectrograms, consisting of a multiplication of the extreme
left and right sides of the signal segment, by the left half and right half of the largest
window, respectively: this step reduces the variation of the entropy calculus coming
from the signal segment extremes.

After the pre-weighting, we calculate the normalized discrete entropy of every
spectrogram PSsf as in (4.1.4). Having the |S| entropy values corresponding to the
different local spectrograms, the sparsest local analysis is defined as the one with
minimum Rényi entropy: the window associated to the sparsest local analysis is
chosen as best window for all the time points contained in R.
The global time adapted analysis of the signal is finally realized with a further spec-
trogram calculation of the unweighted signal, employing the best windows selected at
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FIGURE 4.12. Graphic representation of the signal segments analyzed by the
different windows, at a given step of the algorithm. We choose a time interval
corresponding to one frame of the window gN (rectangle at the bottom); then we
take the coefficients associated to time-shifts of the window gN−1, whose sup-
ports are included in the time interval: as we see, the signal segment analyzed
with the window gN−1 (rectangle on top) is not in general the same of the one
analyzed with the window gN .

each time location.

4.3.2. Time adaptation with different masks. This variation of the algorithm is
particularly useful for analysis purposes: music signals have often dense spectra, for
which a global frequency adaptation is not meaningful. With the weight functions
introduced in Section 2.5, we are able to limit the frequency range of the rectangle R at
each time location: consider a weight function 0 ≤ wan(ω) ≤ 1, and weighted versions
of the spectrograms wan(ω) · PSsf ; if we evaluate the entropy of these distributions,
this corresponds to the selection, or the biasing, of certain frequency bands of the
signal, before the entropy evaluation step of the algorithm. We use the notation wan

for the analysis weights, to distinguish them from the weighting functions w for the
reconstruction step, which may in general be different (see Section 4.4).

As done in the time case, the local best window at each time location is assigned to
all the frequency points individuated by the time range of R. With this technique, we
can, for instance, adapt the global analysis at each time location, according to the best
local resolution required by a certain instrument.

4.3.3. Time-frequency adaptation. Extending the approach based on frequency
masks, we introduce a further method for the time-frequency adaptation of the
analysis resolution: chosen a certain number P of frequency bands, we perform a time
adaptation with a mask for each one of them. For this purpose, P different binary
masks wanp (ω), p = 1, ..., P are considered, matching the different bands, and such that
for every ω we have

∑
pw

an
p (ω) = 1. At the step p of the algorithm, the spectrograms
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wanp (ω) · PSsf are used for the entropy evaluation.

This means that the rectangle R is iteratively modified: at each entropy evaluation,
its frequency range is given by the band considered. In this way, the resolution at
each point of the adapted time-frequency lattice is determined by its time location
and the frequency band which it belongs to. At the end of the algorithm, P different
time-adapted spectrograms are calculated, corresponding to the same number of
nonstationary Gabor frames in the time painless case.

4.4. Re-synthesis from adaptive analyses

In Sections 2.2.1, 2.5.1 and 2.6 we have treated three different reconstruction
methods based on adaptive analyses; the first is used if the analysis resolution is
uniquely time-dependent: in this case, the decomposing atoms form a nonstationary
Gabor frame whose dual gives a re-synthesis formula with perfect reconstruction.
Here, we focus on the two new approximation methods introduced, considering two
frequency bands, so P = 2: both of the methods are defined from weighted analyses,
the difference concerning the approximated dual frame used by the synthesis operator.

Given the signal f and its reconstruction frec, we measure their precision by means
of the maximum of the absolute value of the error peak = ‖f − frec‖∞ , and the RMS
(Root Mean Square) of the error, that is

(4.4.1) rms =

√∑L
n=1(f [n]− frec[n])2

L
,

where L is the signal length. We first consider our implementation of the nonstationary
Gabor frames reconstruction formula: for the music signals in Section 5.1, with
the time-adapted analyses realized by our algorithm, we obtain peak ≃ 10−15 and
rms ≃ 10−16: the sound files are in standard cd format, stored with .wav extension 16
bit PCM, with amplitude range between -1 and 1.

We refer now to the approximation methods based on weighted analyses. We first
detail our approach in terms of stationary Gabor frames, which is also the case which
the estimates in Subsection 2.6.2 refer to. Then, we will extend the methods to the
nonstationary case, which is used in our framework.

Using the notation introduced in Chapter 2, and Subsection 2.3.1 in particular,
we consider two weight functions wp, depending only on the frequency ω, such that
w1(ω) + w2(ω) = 1 for every ω. Given two window functions g and h, we want to as-
sociate the Gabor frame G(g, a1, b1) to the first frequency band, and G(h, a2, b2) to the
other. We do this by means of the weight functions, whose supports have to coincide
with the two bands, eventually considering an overlap. In particular, the method we
indicate as analysis-weight is given by the filter bank approach with Gabor multipliers
(see Subection 2.6.2), and the reconstruction formula is given by
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(4.4.2) frec = Dg̃(C
w
g f) + D

h̃
(Cw

h f) .

Therefore, each weighted analysis is used in the expansion with the original dual
window, without calculating the exact dual of the global composed frame.

The second reconstruction method we use is formula (2.5.7) with stationary Gabor
frames, that we indicate as extended weight, for the case P = 2. The reconstruction error
given by the two methods is detailed here by means of two tests, and is applied on a
music signal in Section 5.3.

Test 4.4.1. We first want to quantify the error obtained when the weight functions wp
are binary masks, and f is a basic signal whose spectral energy is concentrated at the
cut frequency. Therefore, we consider a stationary sinusoid, with the following setup:

f is a sinusoid sampled at 44.1kHz with frequency 11.025kHz;
the functions wp are two binary masks, the cut frequency ωcut corresponds to
the sinusoid frequency;
the windows g and h are Hanning windows of size 512 and 4096 samples.

With the same setup, we then define different weights with a certain frequency
overlap, and check if the obtained error is reduced. We define wp as follows, given
ω1 = 10.05kHz, ω2 = 12kHz and Ny = 22.05kHz the Nyquist frequency,

w1(ω) =





0 if 0 ≤ ω ≤ ω1
ω−ω1
ω2−ω1

if ω1 ≤ ω ≤ ω2

1 if ω2 ≤ ω ≤ Ny

and w2 = 1 − w1 ; therefore, the two masks realize a linear cross fade, in frequency,
between the two sets of analysis coefficients. The reconstruction error we obtain is
resumed in the Table 4.1.

We see that, as expected, if the spectral energy of the signal is included within the
overlap of the wighting functions, then the reconstruction error is definitively small,
compared to the one obtained with a simple binary mask. �

Test 4.4.2. We now consider a signal whose spectral energy oscillates: taken a sinusoid
with sinusoidal frequency modulation, we want to measure the reconstruction error
with binary masks, and the reduction obtained allowing the masks for an overlap.
Therefore, f is a sinusoid sampled at 44.1kHz with frequency modulation: the start
frequency is 350Hz and the modulation varies between 130Hz and 570Hz with a
period of half a second; given ωcut = 350Hz, ω1 = 200Hz and ω2 = 500Hz, we consider
the same masks used in Test 4.4.1. The aim is to show that the reconstruction error
obtained with the two methods can be reduced, appropriately choosing the overlap of
the two masks, according on the signal spectral energy.
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TABLE 4.1. Reconstruction error when f is a stationary sinusoid: the masks
are indicated on the left, together with their frequency significant values (see
Test 4.4.1).

Weight Parameters peak rms

method

Binary ωcut = 11025 0.3492 0.032

mask

Linear ω1 = 10050Hz 0.0207 0.019

cross ω2 = 12000Hz

Linear ω1 = 5050Hz 0.0034 0.0032

cross ω2 = 17000Hz

Extended ω1 = 10050Hz 0.0078 4.58·10−4

weight ω2 = 12000Hz

Extended ω1 = 5050Hz 0.0014 8.4771·10−5

weight ω2 = 17000Hz

In Table 4.2 we have the errors obtained: as we can see, with the overlap 200-500Hz,
which does not include the whole modulation range, then the reduction we obtain
in the rms error is limited with the analysis-weight: this is due to the fact that, as a
consequence of the weighting, many coefficients are set to 0, and therefore are not
considered in the expansion (2.6.13); as we are considering too few coefficients for the
reconstruction of the two individual bands, then the error on the global reconstruction
is still considerable. For the extended weight method, the rms error increases; as we
see from the expansion (2.5.1), for this method the non-zero weights cancel, and a
large overlap is the only possibility to reduce the error: on the other hand, for limited
overlap the error obtained is comparable to the one with binary weights.

TABLE 4.2. Reconstruction error when f is a sinusoid with sinusoidal modu-
lation: the masks are indicated on the left, together with their frequency signifi-
cant values (see Test 4.4.2).

Weight Parameters peak rms

method

Binary ωcut = 350Hz 0.5102 0.0967

mask

Linear ω1 = 200Hz 0.1856 0.0725

cross ω2 = 500Hz

Extended ω1 = 200Hz 0.4708 0.1445

weight ω2 = 500Hz

Linear ω1 = 50Hz 0.0576 0.0262

cross ω2 = 650Hz

Extended ω1 = 50Hz 0.0392 0.0104

weight ω2 = 650Hz
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In the last two lines of Table 4.2, we see that, as expected, increasing the overlap of
the weights we get a considerable reduction of the error. In particular, if the weights
are positive (overlap over the all frequency dimension), then the extended weight
give perfect reconstruction (as shown in Section 2.5), while the analysis-weight with
linear cross gives approximations with rms error lower than 10−5, depending on the
absolute maxima and minima of the weights. The drawback is that analyses with
such an overlap are hard to be interpreted, as all the different atoms employed give
contributions at every time frequency point. In particular, it would be extremely hard
to conceive sound processing techniques dealing with all of the different resolutions at
the same time.

Finally, in Figure 4.14 we see the composed spectrogram obtained with the binary
masks, and the consequent reconstruction error. The same, in Figure 4.13, for the
analysis-weight method with linear cross, and overlap 50-650Hz. We thus see that the
spectral energy of the error with overlapping weights is lower, and more uniformly
distributed. �

The tests we have shown are obtained with two stationary Gabor frames, each one
associated to a frequency band. In our framework, we extend this methods to non-
stationary Gabor frames. With the different scalings gs of a same window function,
and appropriate lattices Λs, we realize the analyses Vgsf and their weighted versions
Vgsf(t, ω)wp(ω). These weighted analyses are used for the reconstruction, after the au-
tomatic adaptation detailed in Subsection 4.3.3: at the end of the optimization proce-
dure, the frequency band p is associated to the nonstationary Gabor frame {gpk,l} of the
best windows at the corresponding time-frequency points: if we indicate with Cp and
Dp the analysis and synthesis operators associated to the p-th frame and its canonical
dual, then the analysis-weight method implemented in our framework takes the fol-
lowing form,

(4.4.3) frec = D1(C
w

1 f) + D2(C
w

2 f) ,

while the extended weight reconstruction is given in formula (2.5.7).
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FIGURE 4.13. Composed spectrogram of a sinusoid with sinusoidal frequency
modulation: the signal is analyzed with two different windows, the spectrogram
coefficients are weighted with two binary masks and then summed together (see
Test 4.4.2). On top, the reconstruction error obtained with the analysis-weight
method, and its spectrogram.
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FIGURE 4.14. Composed spectrogram of a sinusoid with sinusoidal frequency
modulation: the signal is analyzed with two different windows, the spectrogram
coefficients are weighted with the wp masks, with overlap 50-650Hz, and then
summed together (see Test 4.4.2). On top, the reconstruction error obtained
with the analysis-weight method, and its spectrogram.



CHAPTER 5

Applications and examples

One of the main interest of this work is to establish a concrete bridge, between
adaptive techniques for time-frequency analysis and state-of-the-art sound processing
methods. In this chapter, we show several examples of applications on real music
signals, detailing the improvements we get in their viewing and manipulations.

5.1. Time adaptation

When a music sample contains fast transients together with dense harmonic parts,
the choice of a fixed resolution determines a loss in time or frequency precision within
the analysis (see Example 5.1.1). In most cases, we can obtain a higher precision by
varying the resolution along the time dimension: we would thus choose a smaller
window for the analysis of fast transients, and a larger one for dense harmonic parts.

This type of adaptation is achievable with our algorithm, by means of an automatic
procedure, with no need of supervision by the user. In music signals, we find several
situation where fast transients are alternated with dense harmonic parts: a typical case
is when percussions are played together with solo instruments, but even others, as
shown in the following example.

Example 5.1.1. Here, we take a guitar solo excerpt of the Flamenco song Sera Tu
Misma Conciencia by Antonio Fernandez Diaz, played by Paco De Lucia (sound file
ex_DeLucia_2.wav, standard cd format). Consider the following setup:

N = 8, and the window lengths varies between len1 = 1024 and lenN = 4096
points;
c = 0.15 and d = 2, and for every window gs the analysis is calculated with hop
size c · lens and FFT size d · lens;
the Rényi entropy order considered is α = 0.3;
R covers all the frequency support, and includes 3 time shifts of the largest
window gN ; this corresponds to 6144 points and about 0.139 seconds, as the
sampling rate SR is 44.1kHz;
at each step of the algorithm, R is shifted in time, the overlap with the previous
position including 2 time shifts of the window gN ; that is, 5120 points and
about 0.116 seconds.

In Figure 5.1 we see two spectrograms of the sound considered, calculated with
different fixed resolutions, corresponding to the window g1 and gN together with their

91
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FIGURE 5.1. Spectrograms of a solo guitar sample (see Example 5.1.1): the
two Hanning windows used have lengths 1024 and 4096 points; in both cases
the hop size is a quarter of the window length and the FFT size is twice the
window length.

analysis parameters listed above. With the largest window, we see that the fast note
repetitions before the two chords are not properly separated: together with the visual
blur, this problem affects all the spectral manipulations of the sound. In this and the
following examples, we consider in particular time dilatations of the analyzed sounds,
performed with a state of the art library, the extended phase vocoder SuperVP 1. In this
case, the different notes are not individually perceivable in the dilated sound, originat-
ing an artifact (sound file ex_DeLucia_2_stand _4096_3.5.wav). On the other hand, the
smallest window has a low frequency resolution, which determines the fusion of close
sinusoids in zones with a dense spectrum, like chords; the phase vocoder treats two
unresolved sinusoids as a single sinusoid with sinusoidal amplitude modulation: in
the dilated sound, the modulation is slowed and a new modulated tone is perceived,
thus introducing harmonic distortions (sound file ex_DeLucia_2_stand_1024_3.5.wav).

Figure 5.2 shows the adaptive spectrogram automatically calculated by our algo-
rithm, with the parameters specified above: as we see, the window choice at each time
location fulfills the need of time or frequency precision, according to zones with tran-
sients or harmonic content. The matrix with the best windows selected corresponding
to their time location is then used for the same sound dilatation performed with fixed

1see http://anasynth.ircam.fr/home/english/software/supervp

http://anasynth.ircam.fr/home/english/software/supervp
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FIGURE 5.2. Adaptive analysis of a solo guitar sample (see Example 5.1.1);
the frequency range is limited to enhance readability: on top, the best window
selected by the automatic algorithm is shown for each time location, in corre-
spondence to the part of adaptive analysis that it determines (at the bottom).

window, which is possible thanks to the advanced options in SuperVP (sound file
ex_DeLucia_2_adapt_ts3.5.wav). �

A further situation, where a music sample requires a time-varying resolution, is
given by an ensemble with a solo instrument, playing with vibrato in the high fre-
quency range. Here, the density of the ensemble texture requires in general a large
window, to provide a good frequency resolution; nevertheless, a window which is too
large discretizes the fast frequency modulation, breaking the vibrato.

Example 5.1.2. Here, we take an excerpt from the work by Gerard Grisey Quatre chants
pour franchir le seuil, for soprano and ensemble, sung by Catherine Dubosc: the excerpt
starts at 5’25" of the first track, Prélude I. La mort de l’ange (sound file ex_Grisey_2.wav,
standard cd format). Consider the same setup of Example 5.1.1: as before, in Figure 5.3
we see two spectrograms with the smallest and largest fixed resolutions considered.
With the smallest window, we can properly view the frequency modulation for all
the partials of the singing voice; in the spectrogram with the largest window, this
information is nearly lost for frequencies higher than 10kHz. On the other hand, the
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FIGURE 5.3. Spectrograms of an excerpt of the work for soprano and ensemble
(see Example 5.1.1): the two Hanning windows used have lengths 1024 and
4096 points; in both cases the hop size is a quarter of the window length and the
FFT size is twice the window length.

smallest window does not provide a sufficient frequency resolution on the instrumen-
tal part. To verify the quality of these analyses, we consider again dilatations of the
analyzed sound: with the largest window, the vibrato is separated into alternating
close notes (sound file ex_Grisey_2_stand _4096_3.5.wav); on the other hand, the
smallest window introduces harmonic distortions, in particular on the initial percus-
sive sound (sound file ex_Grisey_2_stand_1024_3.5.wav). A further treatment with an
intermediate window size is proposed (sound file ex_Grisey_2_stand_2048_3.5.wav),
which represents a compromise to partially reduce the two different artifacts.

Figure 5.4 shows the adaptive spectrogram automatically calculated by our algo-
rithm: the window choice is chosen at each time location depending on the frequency
modulation rate, either on the glissando and the vibrato; but when the voice is not
modulated, then the highest frequency resolution is privileged. The improvements
in the analysis quality can also be heard in the dilatation with adapted window size
(sound file ex_Grisey_2_mod1_adapt_ts3.5.wav). �
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FIGURE 5.4. Adaptive analysis of an excerpt of the work for soprano and en-
semble (see Example 5.1.2): on top, the best window selected by the automatic
algorithm is shown for each time location, in correspondence to the part of adap-
tive analysis that it determines (at the bottom).

5.2. Time adaptation with different masks

When a music signal presents different components at the same time, the choice of
an individual resolution, only depending on the time position, may not be sufficient to
resolve them. As an example, we consider a sound sample (sound file ex_b66_1.wav,
standard cd format) where a tabla is playing, an Indian percussion instrument of the
membranophone family; at time 2.22" a sitar also plays, a plucked stringed instrument.
The tabla presents, at once, fast transients and long tones in the mid-low frequency
range, even with fast frequency modulations played by the thumb on the larger drum.
Together with the melody played on the metal strings of the sitar, the music which
is originated has a highly heterogeneous spectrum: the best resolution to resolve
individual components varies with both the time and the frequency localization of the
analysis atom (see Figure 5.5 for the spectrograms with fixed resolutions).

For analysis purposes, a possible choice is to privilege the readability of the
harmonic structures; with the procedure described in Sections 4.3.1 and 4.3.2, we can
use a binary mask to select the frequency region considered in the adaptation routine.
Figure 5.6 shows the adapted spectrogram we obtain analyzing this sound with the
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FIGURE 5.5. Spectrograms of a sound sample with tabla and sitar (see Section
5.2): the two Hanning windows used have lengths 1024 and 4096 points; in
both cases the hop size is a quarter of the window length and the FFT size is
twice the window length.

same setup of Example 5.6; the difference is that al the spectrograms are weighted with
a binary mask setting to 0 the coefficients above 1kHz before the entropy evaluation.
The chosen mask rises a window choice adapted to the frequency area where the first
harmonics of the two instruments are predominant. Nevertheless, we see that within
the parts where fast transients are predominant, or exclusive, the best window selected
is still small, as required: this is a major advantage with respect to analysis methods
where different windows are a priori associated to certain region depending on the
frequency renge.

5.3. Time-frequency adaptation

The music sample considered in the previous section, where a tabla and a sitar play
together, is an example of the need for spectral processing techniques with variable
time-frequency resolution: a fixed resolution, or a time-dependent resolution like the
one we have introduced, would not be appropriate in certain frequency regions. The
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FIGURE 5.6. Adaptive weighted analysis of a sound sample with tabla and
sitar (see Section 5.2): the binary mask for the adaptation set to 0 the coeffi-
cients above 1kHz; the frequency range is limited to enhance readability: on
top, the best window selected by the automatic algorithm is shown for each time
location, in correspondence to the part of adaptive analysis that it determines
(at the bottom).

SuperVP library 2 provides an advanced automatic adaptation of the window size,
which is based on a previous estimation of the fundamental frequency of the analyzed
sound (see [Vinet and al, 2011]): in this case, such an estimation is not possible, as the
sound is not monophonic.

The adaptation we introduce here is based on the method detailed in Subection
4.3.3: in particular, we consider, for the adaptation routine, two complementary bi-
nary masks with cut frequency at 1kHz. The adaptive analysis obtained on the low
frequency band has been shown in Figure 5.6; the complementary analysis, where the
window selection is adapted to the higher frequency band, is shown in Figure 5.7.

We see that the overall profile remains the same, in particular on the fast transients
part at the beginning; but there are some important differences; in particular, the
frequency modulation of the first sitar note, at time 2.5". When high frequencies are
masked, the partials of the sitar taken into account are the first ones, for which the
modulation range is limited: a large window is chosen, privileging the frequency
precision, but still guaranteeing the continuity of the modulation below 1kHz; but

2see http://anasynth.ircam.fr/home/english/software/supervp

http://anasynth.ircam.fr/home/english/software/supervp
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FIGURE 5.7. Adaptive weighted analysis of a sound sample with tabla and
sitar (see Sections 5.2 and 5.3): the binary mask for the adaptation set to 0 the
coefficients below 1kHz; the frequency range is limited to enhance readability:
on top, the best window selected by the automatic algorithm is shown for each
time location, in correspondence to the part of adaptive analysis that it deter-
mines (at the bottom).

as we see in the upper part of Figure 5.6, the modulation is highly blurred at the
frequencies above. On the other hand, the continuity of the modulation is conveniently
provided by the complementary analysis, where a small window is chosen, as seen
in Figure 5.7. Other differences concern the way the transients are treated in the two
cases, providing a higher time or frequency precision depending on the considered
mask. The resulting composed analysis with variable time-frequency resolution is
shown in Figure 5.8.

Table 5.1 shows the reconstruction error obtained on this music signal, with the
analysis-weight and extended weight methods detailed in Section 4.4. Here, we see
that even with a larger overlap the reduction of the error is soft, as the overlap is chosen
regardless of the local spectral energy: further developments of this framework should
aim to an efficient method to adaptively deal with overlaps; once individuated a de-
sired frequency band, the optimal limits should be chosen, within a certain frequency
range, in order to minimize the signal spectral energy where the first coefficients are
set to 0.
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FIGURE 5.8. Adaptive analysis of a sound sample with tabla and sitar (see
Section 5.3); the frequency range is limited to enhance readability: the resolu-
tion is adapted in time and in two frequency bands, above and below 1kHz.

The sound file rec_ex_b66_1.wav is reconstructed with the analysis-weight
method, from weighted analysis with linear frequency cross fade at 750-1250Hz. The
reconstruction error (sound file er_ex_b66_1_42dB.wav, amplified by 42dB) and its
spectrogram are shown in Figure 5.9: comparing this figure with the ones of the
adapted analyses for the two different bands (Figures 5.6 and 5.7), we see that the error
energy is concentrated at the time location where the window choice differs within the
two bands, and within a frequency range determined by the overlap of the two masks.

Even if the error is quite small, fast FFT-based methods, like the ones we define,
cannot reduce it till the perfect reconstruction: but still, as the aim of these repre-
sentations is to ameliorate sound processing algorithms, the perceived quality of
the reconstruction is determinant, rather than an objective error measure. Therefore,
further investigations should characterize the error from a perceptive point of view,
performing tests on the perceived quality of the reconstruction.

At present, there are no common sound processing techniques dealing with time-
frequency adapted analyses like the ones we introduce: therefore, for this case it is
not possible to give examples based on sound manipulations. Nevertheless, our meth-
ods are conceived to allow for extensions of existing algorithms: the processing should
simply be done iteratively on the different frequency bands, according to the weighted
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TABLE 5.1. Reconstruction error when f is a sound sample with tabla and
sitar: the masks are indicated on the left, together with their frequency signifi-
cant values.

Weight Parameters peak rms

method

Binary ωcut = 1kHz 0.0047 4.0864·10−04

mask

Linear ω1 = 750Hz 0.0034 2.3890·10−04

cross ω2 = 1.25kHz

Extended ω1 = 750Hz 0.0197 0.0018

weight ω2 = 1.25kHz

Linear ω1 = 500Hz 0.0037 1.9932·10−04

cross ω2 = 1.5kHz

Extended ω1 = 500Hz 0.0162 0.0013

weight ω2 = 1.5kHz
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FIGURE 5.9. Spectrogram of the reconstruction error given by the analysis-
weight approach, on a sound sample with tabla and sitar (see Section 5.3); the
frequency range is limited around the overlap of the weighting masks, from
750Hz to 1.25kHz.

analyses; then, the fundamental task would be to conceive appropriate strategies to
treat the overlapping zones, depending on the specific sound treatment. The interest
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of these analyses is thus related to the improvements achievable with processing tech-
niques fully exploiting them: the optimal local time-frequency resolution guarantees a
solid ground to develop adaptive high-quality transformations.

5.4. Spectral change detection algorithm

We show here an application of the detection algorithms with the measures de-
fined: the first algorithm we analyze has the same operations for the K divergence and
Rényi information (3.6.6): we calculate the spectrogram of a signal with a 1024-samples
Hamming window, 768-samples overlap and 2048-points FFT size; we obtain a mean
spectrum taking the first 20 analysis frames, and calculate the divergence of the
next frame with respect to the mean spectrum. Once we have the first divergence
value, we shift the mean spectrum of one analysis frame and consider the following
20 frames, then calculate the divergence between the new mean spectrum and the
following frame. At this point, if the ratio between the last divergence value and
the previous exceeds a certain threshold, a change is detected at the incoming frame;
otherwise the procedure goes on. The second algorithm is a variation of the first
one based on entropy prediction: once obtained the spectrogram of the signal, we
calculate the Rényi entropy of the vector composed of its first 6 analysis frames; then
we consider the next frame and set the predicted entropy value according to (3.6.10).
We calculate the actual entropy of the vector obtained adding the new frame to the
previous ones, and if the ratio between this value and the predicted one exceeds a cer-
tain threshold, a change is detected. Then the procedure goes on as in the previous case.

The Rényi prediction shows a slightly better accuracy at the price of a higher com-
putational cost; this is due to the larger dimensions of the vectors managed in the en-
tropy calculus. The tuning of the α parameter gives interesting results: as seen in figure
3.1, higher values rise the difference between the entropies of a peaky distribution and
a flat one; thus we expect in general a more refined detection increasing α, leaving
the threshold unchanged. The signal we analyze is a speech fragment of a mail voice
in French language, Vénitienne et lui suce la bouche un quart d’heure. We assume two
references: an automatic phoneme segmentation for French language based on Hidden
Markow Model [Lanchantin et al., 2008], and a voiced-unvoiced classification obtained
with a PSOLA-based algorithm [Mattheyses et al., 2006]: they identify the major spec-
tral changes in this kind of signal, so we expect our detection to confirm them. We
are not interested in whether a marker belongs to one selection or the other, as this
could be established in a later classification step. As we see at the top of figure 5.10,
the Rényi prediction with α = 0.2 identifies all the voiced-unvoiced transitions in both
senses except at time 2.5, and a large part of phonemes. If we need a less refined detec-
tion, setting the α parameter to 0.05 (bottom of figure 5.10) preserves the detection of
all the unvoiced-voiced transitions, while discarding all the phonemes and the voiced-
unvoiced transitions. Both the measures provide a better detection with respect to the
K divergence, which shows a higher number of unexpected markers.
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FIGURE 5.10. Detections obtained with different methods on a speech frag-
ment in French language; cross markers: Rényi entropy prediction method,
on top with α = 0.2, at the bottom with α = 0.05; square markers: K diver-
gence; diamond markers: HMM-based phoneme segmentation method; bold
line: PSOLA voiced-unvoiced classification, 0 is unvoiced.



CHAPTER 6

Conclusions and outlooks

In Section 1.7 we have listed the main original contributions of this work to the
state of the art; here, we focus on each one of them, summarizing the major novelties
we introduce and the perspectives they outline. In general terms, this work traces
a straight line, starting from advanced results of Gabor frames theory and going
to high-quality sound processing techniques: the automatic framework we realize,
which is based on adaptive representations and the related reconstruction methods,
is a concrete base to provide time-frequency sound transformations with adaptive
strategies. Starting from the straightest algorithm we design, which is the automatic
time-adaptation of the window size for the STFT, some of the introduced methods will
be computationally optimized and integrated within AudioSculpt 1.

6.1. Automatic adaptation of the spectrogram

The adaptation we define is based on the choice of best local resolutions: the
strategy we adopt is the same of [Jaillet, 2005, Jaillet and Torrésani, 2007], comparing
different spectrograms and selecting the one which locally gives the minimal Rényi
entropy. Concerning this measure, in Section 3.3 we give new results on the existence
of Rényi entropy measures of spectrograms in the continuous case, extending the
results of [Baraniuk et al., 2001]; we give also new results about the convergence of
discrete versions of these measures to their continuous one, when the sampling grid
becomes infinitely dense. The formulation of these results is given for Rényi entropies,
but they apply more generally to all measures based on time-frequency integrals of
real powers of the STFT.

The nodal point for the entropy-based adaptation criterium is the dependance on
the α parameter: in Sections 3.4 and 3.6, we deduce some properties about the Rényi
entropies and the parameter they depend on, which are useful for its interpretation
in applicative contexts. For the applications we have shown in Chapter 5, different
values between 0 and 1 are considered, which increase the importance of smaller
spectral coefficients for the entropy evaluation. The characterization we give is mainly
application-oriented, giving a useful insight on the tuning of α when entropy measures
are applied to the spectrogram: a complete theoretical investigation on its role, when
dealing with larger classes of TFRs, still needs to be established.

1see http://anasynth.ircam.fr/home/english/software/audiosculpt
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As an alternative to the entropy-based criterium, in Section 3.7 we introduce a
further measure to determine the best local resolution of a spectrogram, based on the
classification algorithm in [Röbel et al., 2004]: its features are analyzed by means of
some tests in Section 4.2, showing that it constitutes a valid and interpretable strategy
for the spectrogram adaptation. An appropriate validation of this method requires a
further experimentation stage: the efficient communication between the classification
algorithm and our adaptive framework will need major implementation changes, and
is thus left as a task for future research activities in this direction.

6.2. Reconstruction from adapted analyses

In Chapter 2 we propose two novel reconstruction methods, for adaptive analyses
with resolution varying among both time and frequency: the two approaches are
indicated as extended weight and filter bank (see Sections 2.5 and 2.6). For the latter, an
upper bound for the reconstruction error is analytically determined, in both the cases
of analyses based on stationary or nonstationary Gabor frames; in Subsection 2.6.2, we
then define a further variation of this method, considering Gabor multipliers instead of
filters. In this case, the estimate (2.6.16) on the reconstruction error needs to be further
refined: most of all, the positive lower bound of the error should be determined,
depending on the windows and lattices used. We envisage that the ongoing work
(an article is in preparation in this sense [Engelputzeder, 2011, Balazs et al., 2012]),
about the approximation of convolution operators by means of Gabor multipliers,
could clarify the relation between the error due to the truncation expansion of the
filter-bank approach, and the one introduced by the approximation of filters with
Gabor multipliers.

The latter algorithm, that we indicate as analysis-weight approach, and the extended
weight one are implemented in our adaptive framework: in Section 4.4, they are
applied on several basic signals, while in Section 5.3 a real-world sound is treated.

We have implemented new Matlab code for the whole framework of analysis, auto-
matic adaptation and reconstruction; the different FFT-based reconstruction functions,
for the extended weight and analysis-weight cases, are new extensions of the existing
ones (see [Balazs et al., 2011, Søndergaard et al., ]).

6.3. Spectral change detection

Our investigation of the Rényi entropies properties has lead to a further appli-
cation, in the domain of spectral change detection in audio streams: in Section 3.6,
we define a novel method with promising results in the automatic segmentation of
a spoken voice (see Section 5.4). Like all the algorithms in this work, this method
allows a fast implementation, whose main computational cost is due to the FFT of the
windowed signal. This speed, which guarantees a segmentation in pseudo-real time,
has the disadvantage of a low robustness to noise, speaker’s timbre and audio quality;
moreover, being based on Rényi entropies, the dependance of the segmentation on
the α parameter has to be taken into account. An ongoing research stage within
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the Analysis/Synthesis Team at IRCAM, focused on unsupervised real time syllabic
segmentation of spoken voice, is extending this method in several directions:

a refined segmentation could be obtained by imposing rules defined by the
target: that is, a set of constraints on the possible segmentations, deduced by
the characterization of syllables in the considered language;

with several parallel calls of the algorithm, on a same signal with different
parameters, we could analyze the different outputs obtained, and deduce a
final output exploiting the information coming from the individual ones;

Rényi entropies are defined for probability distributions: instead of applying
them on a spectrogram, we could define distributions by an appropriate collec-
tion of audio descriptors, better suited for the speech; then, the change detection
would take place at a descriptor level, and the single coefficients in the distri-
butions would have a more readable relation with the analyzed signal.
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