
HAL Id: tel-00775857
https://theses.hal.science/tel-00775857

Submitted on 14 Jan 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Braided Objects: Unifying Algebraic Structures and
Categorifying Virtual Braids

Victoria Lebed

To cite this version:
Victoria Lebed. Braided Objects: Unifying Algebraic Structures and Categorifying Virtual Braids.
Category Theory [math.CT]. Université Paris-Diderot - Paris VII, 2012. English. �NNT : �. �tel-
00775857�

https://theses.hal.science/tel-00775857
https://hal.archives-ouvertes.fr


UNIVERSITE PARIS DIDEROT (Paris 7)

École Doctorale Paris Centre

Thèse de doctorat
Discipline : Mathématiques

présentée par

Victoria LEBED

Objets tressés :
une étude unificatrice de structures algébriques

et une catégorification des tresses virtuelles

dirigée par Marc ROSSO

Soutenue le 13 décembre 2012 devant le jury composé de :

M. Frédéric Chapoton Université Lyon 1 examinateur
M. Claude Cibils Université Montpellier 2 examinateur
Mme Muriel Livernet Université Paris 13 examinateur
M. Paul-André Melliès Université Paris 7 examinateur
M. Frédéric Patras Université Nice rapporteur
M. Marc Rosso Université Paris 7 directeur

Rapporteur absent lors de la soutenance :
M. Józef Przytycki George Washington University



2

Institut de Mathématiques de Jussieu
175, rue du Chevaleret
75013 Paris

École Doctorale Paris Centre
Case 188 4 place Jussieu
75252 Paris cedex 05



Aux sourires des gens qui m’entourent

The mathematical world is “connected”.

A.Connes. Advice to the beginner



4



Remerciements

En respectant les traditions des remerciements, devenus déjà un véritable genre lit-
téraire, je commence par exprimer ma profonde gratitude à mon directeur de thèse, Marc
Rosso, qui a accepté de me guider dans ce voyage initiatique à la recherche, sans que la
destination finale soit très claire pour aucun d’entre nous. Merci de m’avoir donné des
points de repère dans mon mouvement brownien de début de thèse, d’avoir su placer mes
avancements dans le système de coordonnées (à beaucoup de dimensions) des mathéma-
tiques actuelles, et, ce qui est moins banal que cela puisse paraître, de m’avoir soutenue
dans toutes les démarches administratives parfois bien enchevêtrées.

Je remercie d’autres mathématiciens qui m’ont inspirée, écoutée ou encouragée pendant
ce long trajet. Merci à Frédéric Patras et à Józef Przytycki pour le travail titanesque de
rapporter une thèse de 180 pages. Merci encore à Józef Przytycki pour l’occasion unique
de parler à Knots in Washington, et surtout pour la découverte, très rassurante, d’une
personne qui se pose des questions auxquelles je sais répondre, au moins partiellement.
Merci à Muriel Livernet d’avoir accepté de faire partie du jury, et d’organiser le séminaire
de topologie algébrique de Paris 13 avec tant de souplesse. Merci à Frédéric Chapoton pour
le double crédit de confiance témoigné en venant à ma soutenance à Paris et en m’invitant à
parler à Lyon. Merci à Paul-André Melliès pour cette ouverture vers le monde des logiciens,
qui a renforcé en moi la conviction que le monde mathématique est simplement connexe.
Merci à Claude Cibils pour la participation dans le jury et pour l’algèbre X. Merci à J.
Scott Carter pour son intérêt dans ma recherche et pour ses travaux qui m’ont souvent
inspirée. Merci à Bernhard Keller qui a encadré mon mémoire de maîtrise, et qui m’a
montré que les mathématiques peuvent être rigoureuses et accessibles même aux niveaux
avancés. Merci à David Hernandez de m’avoir montré que les anciens étudiants de Marc
Rosso réussissent parfaitement dans la vie mathématique et sociale, de m’avoir invitée
à parler au Séminaire d’algèbre et d’y inviter régulièrement des gens fort intéressants.
Merci à Christian Kassel et à ses livres attisant l’intérêt des jeunes mathématicien-ne-s
vers des sujets quantiques et tressés. Merci à Christian Blanchet pour son rôle dans la vie
topologique de Paris 7, et dans l’intégration des jeunes dans cette vie bien fascinante.

Mes remerciements chaleureux vont également à tous les mathématiciens qui organisent
les olympiades de mathématiques en Biélorussie et qui préparent notre équipe pour les
compétitions internationales. Ce sont eux qui m’ont appris le principe que je suis toujours,
élégamment formulé par Michael Atiyah : “search for beauty and find truth along the
way”. Merci ensuite aux nombreux professeurs de l’ENS et de Paris 7 qui par leur façon
d’enseigner ont confirmé ce principe, entre autres à Marc Rosso, Patrick Dehornoy, Michel
Broué, Ivan Marin, Bernhard Keller, Christian Blanchet, Julien Marché.

J’ai une pensée particulière pour Stéphane Vassout et Olivier Bokanowski qui ont ac-
compagné mes premiers pas en enseignement et ont partagé avec moi leur riche expérience
pédagogique. Merci également à mes élèves qui m’ont certainement appris bien plus sur
l’enseignement que j’ai pu leur apprendre sur les mathématiques.

5



6

Mes remerciements vont aux thésards que j’ai côtoyés à l’IMJ pour la bonne ambiance
mathématique, pour tous les groupes de travail plus ou moins formels qu’on a organisés,
et pour le soutien permanent dans les moments difficiles. Un merci particulier va à Xin
Fang, mon “frère de thèse”, pour toutes les questions posées pendant mes exposés.

Je voudrais terminer la partie “mathématique” de ces remerciements en évoquant le
nom de Jean-Louis Loday qui nous a quittés récemment. Sans avoir eu le bonheur de
le connaître personnellement, j’ai toujours eu l’impression d’avoir un contact avec lui à
travers ses travaux, où je retrouvais souvent mes idées récentes, mais en plus beau, plus
développé et plus éclairci.

Pour éviter une liste interminable des gens que je voudrais remercier dans la partie
“non-mathématique” de ce texte, je vais simplement évoquer quelques endroits où cette
thèse a été ruminée et rédigée, et où j’ai pu puiser constamment des forces pour accomplir
ce travail. Les gens qui y sont associés se reconnaîtront.

L’IMJ est sans doute le premier endroit à mentionner, avec une vie mathématique
bouillonnante, avec des secrétaires capables de résoudre des problèmes a priori insolubles
(là je ne peux pas m’empêcher d’évoquer un nom – celui de Pascal Chiettini, notre “secré-
taire universel”), avec des pauses thé ou café à volonté, avec la cantine et son personnel
accueillant et toujours prêt pour une blague. Mes co-bureaux de 8C24 et 7C8, mes co-
couloirs, et les gens du 3ème qu’on appelle quand on a faim, sont bien sûr à évoquer ici.
Je vous remercie pour les croissants secrets du mercredi / jeudi matin (chut), pour les
leçons de français et de jeux de mots à la française, pour mon anniversaire le jour où je
le veux ;) , pour les délires du vendredi après-midi, pour toutes les créations collectives
plus ou moins artistiques et plus ou moins podes ;) , pour mon plaid bien chaud, pour mes
plantes qui pouvaient toujours squatter à Chevaleret en vacances sans mourir de soif, pour
les matches de foot du dimanche, et par-dessus tout pour les sourires, car sans cela la vie
n’est pas marrante. Bon courage et beaucoup de patience à ceux d’entre vous qui ne se
sont pas encore posé les questions incontournables de la composition du jury, du pot de
thèse, de la couleur de la couverture etc. Et bonne chance à ceux qui sont, comme moi,
en quête de poste pour l’année prochaine.

Je tiens à mentionner ici l’Institut de Mathématiques de Toulouse où j’ai pu travailler
occasionnellement dans de très bonnes conditions ; Gwatt-Zentrum en Suisse ; notre petit
appartement familial à Minsk presque sans Internet – ce qui invite bien à la méditation
scientifique ; le chalet de ma belle-famille aux Rousses, avec les maths entre le ski et un
bon repas façon “mamie” ; la maison de mes beaux-parents à Thionville, avec un jardin
propice au travail ; et l’aéroport de Moscou, où, grâce aux prises électriques, on peut bien
travailler même si on y reste coincé toute une nuit :) . Des parties de ma thèse viennent de
tous ces endroits éclectiques, et je suis reconnaissante à tous les gens qui m’y ont entourée.

Je pense aussi à la salle de sport de l’ENS qui a vu des matchs de basket Biélorussie-
Chine (passons sous silence qui gagnait tout le temps :) ), à toutes les écoles de danse
que j’ai découvertes à Paris, à tous les voyages chez des/entre amis, aux sorties escalade,
aux sorties culturelles, à toutes sortes de découvertes culinaires. Merci à tous ceux qui ont
partagé ces moments de joie et de détente avec moi. Mes remerciements particuliers vont
à mes chères colocataires pour avoir une oreille et une tasse de thé toujours prêtes ;) .

Je termine, toujours en respectant les traditions du genre, par un grand merci à mon
chéri qui a su supporter une femme qui trouve toujours des contre-exemples à ses idées
mathématiques :p, qui lui donne à corriger son anglais et français (y compris dans ces
remerciements :) ) et en plus corrige sans cesse son russe, qui dérive souvent vers la
question mathématique la plus interdisciplinaire : “À quoi ça sert ?..”, et qui n’arrive pas
à admettre que dans la vie on ne peut pas atteindre la perfection mathématique.



Résumé

Résumé

Dans cette thèse on développe une théorie générale des objets tressés et on l’applique
à une étude de structures algébriques et topologiques.

La partie I contient une théorie homologique des espaces vectoriels tressés et mod-
ules tressés, basée sur le coproduit de battage quantique. La construction d’un tressage
structurel qui caractérise diverses structures – auto-distributives (AD), associatives, de
Leibniz – permet de généraliser et unifier des homologies familières. Les hyper-bords de
Loday, ainsi que certaines opérations homologiques, apparaissent naturellement dans cette
interprétation.

On présente ensuite des concepts de système tressé et module multi-tressé. Appliquée
aux bigèbres, bimodules, produits croisés et (bi)modules de Hopf et de Yetter-Drinfel′d,
cette théorie donne leurs interprétations tressées, homologies et actions adjointes. La no-
tion de produits tensoriels multi-tressés d’algèbres donne un cadre unificateur pour les
doubles de Heisenberg et Drinfel′d, ainsi que les algèbres X de Cibils-Rosso et Y et Z de
Panaite.

La partie III est orientée vers la topologie. On propose une catégorification des groupes
de tresses virtuelles en termes d’objets tressés dans une catégorie symétrique (CS). Cette
approche de double tressage donne une source de représentations de V Bn et un traitement
catégorique des racks virtuels de Manturov et de la représentation de Burau tordue. On
définit ensuite des structures AD dans une CS arbitraire et on les munit d’un tressage. Les
techniques tressées de la partie I amènent alors à une théorie homologique des structures
AD catégoriques. Les algèbres associatives, de Leibniz et de Hopf rentrent dans ce cadre
catégorique.

Mots-clefs

objet tressé ; homologie algébrique ; caractère ; module tressé ; algèbre de battage quan-
tique ; complexe de Koszul ; homologie de quandle/rack ; homologie de Hochschild ; algèbre
de Leibniz ; hyper-bord de Loday ; système tressé ; produit tensoriel multi-tressé ; produit
croisé ; module de Yetter-Drinfel′d ; (bi)module de Hopf ; double de Heisenberg ; double
de Drinfel′d ; algèbre X ; R-matrice ; groupes de tresses virtuelles ; rack virtuel ; auto-
distributivité catégorique ; représentation de Burau (tordue) ; structures auto-distributives
libres.
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Braided Objects: Unifying Algebraic Structures and
Categorifying Virtual Braids

Abstract

This thesis is devoted to an abstract theory of braided objects and its applications to
a study of algebraic and topological structures.

Part I presents our general homology theory for braided vector spaces and braided mod-
ules, based on the quantum co-shuffle coproduct. The construction of structural braidings
characterizing different algebraic structures – self-distributive (SD) structures, associative
/ Leibniz algebras, their representations – allows then to generalize and unify familiar
homologies. Loday’s hyper-boundaries and certain homology operations are efficiently
treated via our braided tools.

We further introduce a concept of braided system and multi-braided module over it.
This enables a thorough study of bialgebras, crossed products, bimodules, Yetter-Drinfel′d
and Hopf (bi)modules: their braided interpretation, homologies and adjoint actions. A
theory of multi-braided tensor products of algebras gives a unifying context for Heisenberg
and Drinfel′d doubles, the algebras X of Cibils-Rosso and Y and Z of Panaite.

Part III is topology-oriented. We start with a hom-set type categorification of virtual
braid groups in terms of braided objects in a symmetric category (SC). This double braiding
approach provides a source of representations of V Bn and a new categorical treatment
for Manturov’s virtual racks and the twisted Burau representation. We then define SD
structures in an arbitrary SC and endow them with a braiding. The associativity and
Jacobi identities in an SC are interpreted as SD conditions. Hopf algebras enter in the SD
framework as well. Braided techniques from part I give a homology theory of categorical
SD structures.

Keywords

braided object; algebraic homology; character; braided module; quantum shuffle al-
gebra; Koszul complex; rack/quandle homology; Hochschild homology; Leibniz algebra;
Loday’s hyper-boundaries; braided system; multi-braided tensor product; crossed product;
Yetter-Drinfel′d module; Hopf (bi)module; Heisenberg double; Drinfel′d double; algebra
X; R-matrix; virtual braid groups; virtual rack; categorical self-distributivity; (twisted)
Burau representation; free (virtual) shelf; free (virtual) quandle.
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Chapter 1

Introduction

This thesis is devoted to several rather unexpected (at least to the author) interactions
between the vast concepts of algebraic structure and braiding, their virtual and categorical
versions, and homological applications.

In the first part, our starting point is the following procedure, which is at the heart of
the homological algebra and which has become omnipresent in modern mathematics:

algebraic structure  chain complex.

Figure 1.1: Homology of algebraic structures

The step  is far from being canonical, and can be dictated by motivations of very
different nature: one can think in terms of

ú structure deformations and obstructions (in the sense of M.Gerstenhaber, cf. [28]),
ú or classification questions (of the derivations of an algebra for instance),
ú or derived functors (the famous Ext and Tor functors for example),
ú or generalizations of the “hole-counting” homologies of topological objects (for in-

stance, regarding the notion of algebra as a generalization of the algebra of functions
on a space),

ú or topological applications (trying to devise a state-sum knot invariant using the
fundamental quandle of a knot, cf. [11]).

Here we propose to forget all these motivations and to regard the step from a purely
combinatorial viewpoint, in the spirit of operad theory. The complexes one associates in
practice to basic algebraic structures on a vector space V usually have the same flavor:
they are all signed sums dn =

∑n
i=1(−1)i−1dn;i : V ⊗n → V ⊗(n−1) of terms of the same

nature dn;i, one for each component 1, 2, . . . , n of V ⊗n.

The examples we have in mind are the following:

vector space  Koszul complex,
associative algebra  bar and Hochschild complexes,

Lie algebra  Chevalley-Eilenberg complex,
self-distributive structure  rack complex.

Verifying that one has indeed a differential, i.e. dn−1 ◦ dn = 0, can be reduced to
checking some local algebraic identities (which mysteriously coincide with the defining
properties for our algebraic structure!) coupled with a sign manipulation, no less myste-
rious.

11



12 CHAPTER 1. INTRODUCTION

For many algebraic structures, their chain complexes can be refined by introducing a
(weakly) (pre)(bi)simplicial structure on T (V ) (see section 3.2 or J.-L.Loday’s book [46]
for the simplicial vocabulary). Moreover, the degree −1 differentials can be generalized
to Loday’s hyperboundaries of arbitrary degree (see the definitions from section 3.3,
or exercise E.2.2.7 in [46], from which this notion takes inspiration). Certain homology
operations, similar for different algebraic structures, are also to be mentioned here. Some
of such common features are presented, for the example of associative and self-distributive
structures, in J.Przytycki’s paper [67].

In this work, we propose to interpret and partially explain these parallels (typed in
bold letters above) and mysteries by adding a new step to the scheme in figure 1.1:

algebraic structure
case by case
 pre-braiding

theorem 2
 chain complex.

Figure 1.2: Homology of algebraic structures via pre-braidings

After a short reminder on braided structures in chapter 2, we proceed to describing
in detail the right part of this new scheme. More precisely, given a vector space endowed
with a pre-braiding σ : V ⊗V → V ⊗V satisfying the Yang-Baxter equation (=YBE)

(σ ⊗ IdV ) ◦ (IdV ⊗σ) ◦ (σ ⊗ IdV ) = (IdV ⊗σ) ◦ (σ ⊗ IdV ) ◦ (IdV ⊗σ) ∈ End(V ⊗3),

we associate in theorem 2 a bidifferential on T (V ) to any couple of braided charac-
ters (= elements of V ∗ “respecting” the pre-braiding σ) ǫ and ζ, using quantum co-
shuffle comultiplication techniques (cf. M.Rosso’s pioneer papers [71],[72]). We call
such (bi)differentials braided.

In theorem 3 we refine these braided bidifferential structures: we show that they come
from a pre-bisimplicial structure on T (V ), completed to a weakly bisimplicial one if V is
moreover endowed with a “nice” comultiplication ∆ (= coassociative, σ-cocommutative,
and compatible with σ). This is done using the graphical calculus (in the spirit of J.C.Baez
[2], S.Majid [53] and other authors), appearing naturally due to our use of “braided”
techniques. For us, the graphical calculus is an illustrating tool, a convenient method of
presenting some proofs and also an important source of inspiration. Here are for example
the components of the weakly bisimplicial structure from the theorem (all diagrams are
to be read from bottom to top here):

dn;i =

ǫ

σ

σ

1
...

i
... n

d′n;i =

ζ

σ

σ

1
...

i
... n

sn;i = ∆

i
.

Figure 1.3: Weakly bi-simplicial structure for braided homology

See table 3.1 for a comparison of the quantum co-shuffle and the graphical approaches to
braided differentials.

Note that we never demand σ to be invertible, which is emphasized by the prefix
pre-braiding. Rare in literature, this elementary generalization of the notion of braiding
allows interesting examples.
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Armed with this general homology theory for pre-braided vector spaces, we are now
interested in the left part of figure 1.2. Unfortunately we do not know any systematic way
of associating a pre-braiding to an algebraic structure. So we do it by hand in chapter 4
for each of the four structures in the above list. In each case, the “structural” pre-braiding
σ we propose encodes surprisingly well the structure in question, in the sense that

3 YBE for σ is equivalent to the defining relation for the structure (e.g. the associa-
tivity for an algebra), under some mild assumptions concerning units;

3 the invertibility condition for σ, when this makes sense, translates important alge-
braic properties (e.g. the rack condition);

3 usual characters for these structures become braided characters for σ;

3 the comultiplication necessary for constructing the degeneracies turns out to be quite
characteristic of the structures;

3 morphisms respecting the structural braidings are essentially the same as morphisms
preserving the original structure.

Thus the left part of the scheme in figure 1.2 can be informally stated in a stronger way:

“algebraic structure = pre-braiding”.

Note that the pre-braidings we propose vary from well-known ones (that for self-
distributive structures) to original ones (that for associative algebras).

Our braided complexes form a unifying framework for studying homologies of
different algebraic structures. Besides its generality, this approach has other advantages:

⊞ Our construction produces two compatible differentials – a left and a right one
– for each braided character, these differentials often being compatible even for
different characters. One can combine these differentials, obtaining a family of
homology theories for the same algebraic structure. A nice illustration is given
by self-distributive structures, with

(a) usual shelf (or one-term distributive; cf. [68], [67]), rack ([27]) and quandle
([11]) homology theories;

(b) the partial derivatives of M.Niebrzydowski and J.Przytycki ([63]);

(c) and the twisted rack homology of J.S.Carter, M.Elhamdadi and M.Saito ([9]).

⊞ The technical sign manipulation (especially heavy for the Chevalley-Eilenberg com-
plex) is controlled either by using the negative pre-braiding −σ in the quantum
co-shuffle comultiplication, or by counting the number of intersections in the graph-
ical interpretation.

⊞ The identities dn−1 ◦ dn = 0, which are of “global” nature, are replaced with the
YBE for the corresponding pre-braiding, which is “local” and thus easier to verify.

⊞ The decomposition dn =
∑n

i=1(−1)i−1dn;i becomes natural when one reasons in
terms of braids and strands.

⊞ So do some homology operations – for instance, the generalizations of the homology
operations for shelves, defined by M.Niebrzydowski and J.Przytycki in [63].

⊞ Subscript chasing (in the relations defining simplicial structures for example) is sub-
stituted with the more transparent “strand chasing” (cf. remark 3.2.4).

⊞ J.-L.Loday’s hyper-boundaries of degree −i arise naturally in the co-shuffle inter-
pretation: one simply replaces the V ⊗n → V ⊗ V ⊗(n−1) component of the quantum
co-shuffle comultiplication with the V ⊗n → V ⊗i ⊗ V ⊗(n−i) component.
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We thus recover all the common features of different algebraic homology theories ob-
served above. Moreover, we obtain a simplified and conceptual way of proving d2 = 0, as
well as of “guessing” the right boundary map.

As an illustration to the last remark, note that the “braided” considerations have
naturally lead us to lifting the Chevalley-Eilenberg complex from the external to the tensor
algebra of a Lie algebra, and to observing that this construction works even for Leibniz
algebras (= “non-anticommutative Lie algebras”). We thus reinterpret the results of
C.Cuvier and J.-L.Loday (cf. [16], [17], [46],[47],[48]) and recover for Leibniz algebras
the braiding studied in the Lie algebra case by A.Crans (cf. [15], [8]). In particular, one
automatically obtains the signs and the element positions in the lift of Chevalley-Eilenberg
differential, which are otherwise difficult to guess.

The only approaches to homologies of braided spaces we have found in literature are:

1. the homology theory for solutions to the set-theoretic Yang-Baxter equation, devel-
oped by J.S.Carter, M.Elhamdadi and M.Saito in [10];

2. the braided-differential calculus of S.Majid ([50]);

3. M.Eisermann’s Yang-Baxter cochain complex ([22]).

We recall them briefly in this work, explaining how our constructions generalize the first
two approaches. As for the last one, in spite of being of different nature, it seems (in a
sense still obscure for us) connected to our braided homology theory.

The structural pre-braidings allow to define a unifying notion of modules over pre-
braided spaces. Concretely, a braided module over a pre-braided space (V, σ) is a space
M equipped with a linear map ρ : M ⊗ V →M, satisfying

ρ ◦ (ρ⊗ IdV ) = ρ ◦ (ρ⊗ IdV ) ◦ (IdM ⊗σ) : M ⊗ V ⊗ V →M.

One recovers the usual notions of modules over associative/Leibniz algebras and other
familiar structures in the examples above. These braided modules are natural candidates
for coefficients in the braided complexes, leading to braided homologies with coeffi-
cients, studied in chapter 6. As usual, this braided construction allows to recover familiar
algebraic homologies with coefficients.

In an attempt to interpret homology theories for bialgebras, Hopf (bi)modules and
Yetter-Drinfel′d modules in terms of braided complexes (the well-known pre-braiding σY D

on the category of Yetter-Drinfel′d modules being very suggestive of such an interpre-
tation), one feels that the formalism of pre-braided vector spaces does not have enough
flexibility for encoding all the complexity of these structures. The tool we propose in part
II is the notion of pre-braided system of vector spaces. It consists of a finite collection
of spaces V1, V2, . . . , Vr endowed with morphisms

σi,j : Vi ⊗ Vj −→ Vj ⊗ Vi ∀ 1 6 i 6 j 6 r,

satisfying the YBE on all the tensor products Vi ⊗ Vj ⊗ Vk with 1 6 i 6 j 6 k 6 r. The
notion of braided module generalizes to that of multi-braided module over a pre-braided
system in a natural way. Braided complexes (including complexes with coefficients) also
generalize to the setting of pre-braided systems.

We present pre-braided systems encoding the structures of bialgebra, module-algebra
and Yetter-Drinfel′d (=YD) module, automatically recovering their homology theories.
Only finite-dimensional bialgebras (or graded and finite-dimensional in every degree) are
considered here, since we need their dual bialgebras as well. Note that the existence of the
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antipode is equivalent to the invertibility of one of the components of the pre-braiding
for bialgebras.

As a by-product of the braided interpretation of YD modules, we naturally recover
two definitions of tensor products of YD modules, proposed by L.A.Lambe and
D.E.Radford in [44].

As for Hopf (bi)modules, they are treated as multi-braided modules over appropriate
pre-braided systems. The same is done for YD modules, giving an alternative “braided”
viewpoint on this structure (the first one being that of a part of a pre-braided system).

The last interpretations can make one think of the common treatment of “complicated”
structures over (bi)algebras as “simple” algebra module structures over more “compli-
cated” associative algebras:

“complicated” structure corresponding “complicated” algebra

bimodule over an algebra A enveloping algebra A⊗Aop

YD module over a bialgebra H Drinfel′d double D(H) := H∗⊗Hop

Hopf module over a bialgebra H Heisenberg double H (H) := H∗⊗H

Hopf bimodule over a Hopf algebra H algebras X (H), Y (H) and Z (H)

Table 1.1: Algebras encoding Hopf and Yetter-Drinfel′d (bi)module structures

The algebra
X (H) := (H∗)op⊗H∗⊗Hop⊗H

was introduced by C.Cibils and M.Rosso in [14], and its isomorphic versions Y (H) and
Z (H) were suggested by F.Panaite in [65]. These interpretations were efficiently used by
R.Taillefer ([77] and [78]) in a comparison of different homology theories for bialgebras
and Hopf bimodules.

Note that the algebra structures on all the tensor products above are not the usual
ones, but the braided ones, with carefully chosen pre-braidings. Namely, the multiplication
on the tensor product of algebras (A,µA) and (B,µB) endowed with a linear map σB,A :
B ⊗A→ A⊗B is defined by

µA⊗B := (µA ⊗ µB) ◦ (IdA⊗σB,A ⊗ IdB) : (A⊗B)⊗ (A⊗B)→ A⊗B,

with an obvious generalization for a tensor product of r algebras A1, . . . , Ar endowed with
r(r−1)

2 maps. We call the resulting algebra the multi-braided tensor product of the
algebras A1, . . . , Ar.

This braided tensor product construction is at the heart of the braided geometry, intro-
duced by S.Majid in a long series of papers in the 1990’s (cf. for example [50], [51], [52]).
S.Majid’s motivation was to develop an algebra analogue of the product of spaces in non-
commutative geometry. A pleasant consequence of his work was the construction of new
examples of non-commutative non-cocommutative Hopf algebras via the bicrossproduct
construction (which is a particular case of braided tensor product).

Returning to the multi-braided tensor products, we interpret in theorem 7 the com-
patibilities of the maps σAi,Aj

, necessary for the unambiguity of the definition of the
multi-braided tensor product on A1 ⊗ · · · ⊗Ar and for its associativity, in terms of YBEs
making out of the σAi,Aj

’s a pre-braiding on the system Ar, . . . , A1. We recover in par-
ticular the results of P.Jara Martínez, J.López Peña, F.Panaite and F. van Oystaeyen,
cf. [32] (their notion of iterated twisted tensor product coincides with our notion of multi-
braided tensor product). The category of modules over a multi-braided tensor product of
algebras is then shown to be equivalent to the category of multi-braided modules over the
corresponding pre-braided system. Schematically, these results can be summarized as
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“multi-braided ⊗ of algebras = pre-braided system of algebras”,
ModA1⊗···⊗Ar ≃ Mod(Ar,...,A1).

We also prove that in general one can permute the factors Vi and Vi+1 of a pre-braided
system if σi,i+1 is invertible, with a suitable change in the pre-braiding of the system. In
the case of a pre-braided system of algebras, this results in an explicit algebra isomorphism
(note the inverse order of subscripts)

IdA1⊗...⊗Ai−1 ⊗σ
−1
i+1,i ⊗ IdAi+2⊗...⊗Ar ,

inducing an equivalence of their representation categories. In particular, one automatically
gets explicit isomorphisms between the algebra X (H), Y (H) and Z (H), including them
into a family of 4! = 24 pairwise isomorphic braided tensor products of algebras, since all
the σj,i’s from the corresponding pre-braiding with j > i are invertible.

Another application of the pre-braided system theory proposed here is a study of the
generalized two-sided crossed products A◮<C>◭B, defined by D.Bulacu, F.Panaite
and F.Van Oystaeyen in [5].

Combining the “braided” vision of Hopf bimodules with the theory of adjoint mod-
ules which we develop in the multi-braided settings, one gets pleasant homological con-
sequences. In particular, we recover, without tedious verifications, the Hopf bimodule
structure on the bar complex of a bialgebra with coefficients in a Hopf bimodule. This
structure was used by R.Taillefer for defining a cohomology theory of a pair of Hopf bi-
modules ([77], [78]).

Table 1.2 presents braided structures encoding the algebraic structures mentioned
above, and the familiar complexes recovered as particular cases of our braided complexes.
Let us note the importance of these concrete examples: for us they were a guideline for
building the braided homology theory. On the other hand, the developed theory allowed
the author to recover several homology structures she was not aware of, for example that
for Leibniz algebras or that for YD modules.

In the table, the component σH,H∗ of the pre-braided system encoding the bialgebra
structure is inspired by the pre-braiding for YD modules. Explicitly,

σH,H∗ = τ ◦ (IdH ⊗ev ⊗ IdH∗) ◦ (∆⊗ µ∗) : H ⊗H∗ → H∗ ⊗H,

where the flip τ simply transposes the components H and H∗, and ev : H ⊗H∗ → R is
the usual evaluation map.

structure pre-braiding invertibility braided characters

vector flip τ : τ−1 = τ any ǫ ∈ V ∗

space V v ⊗ w 7→ w ⊗ v

unital σµ: no algebra character:
associative v ⊗ w 7→ inverse ǫ(µ(v ⊗ w)) = ǫ(v)ǫ(w),

algebra (V, µ,1) 1⊗ µ(v ⊗ w) in general ǫ(1) = 1
unital σ[,]: Lie character:

Leibniz v ⊗ w 7→ w ⊗ v ∃ σ−1
[,] ǫ([v, w]) = 0,

algebra (V, [, ],1) +1⊗ [v, w] ǫ(1) = 1
shelf (S,⊳), σ⊳ : ∃ σ−1

⊳ iff shelf character:
V := kS (a, b) 7→ (b, a⊳ b) S is a rack ǫ(a⊳ b) = ǫ(a)
bialgebra (H,H∗) iff H is εH &

H σµ, σ∆∗ , σH,H∗ a Hopf algebra εH∗

YD module M (H,M,H∗) iff H is εH &
over H σµ, σ∆∗ , σH,H∗ , σY D a Hopf algebra εH∗
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structure braided module ∆ complexes

vector space endowed with – Koszul
space commutative operators
unital algebra module: bar,

associative m · µ(v ⊗ w) = ∆(v) = 1⊗ v Hochschild
algebra (m · v) · w
unital Leibniz module ([46]): ∆(v) = Leibniz,

Leibniz m · [v, w] = v ⊗ 1 + 1⊗ v, Chevalley-
algebra (m · v) · w − (m · w) · v ∆(1) = 1⊗ 1 Eilenberg

shelf module ([13]): shelf ([67],[68]),
shelf (m · a) · b = ∆(a) = (a, a) rack ([27]),

(m · b) · (a⊳ b) quandle ([11])
bialgebra right-right – Gerstenhaber-Schack ([29]),

Hopf module Panaite-Ştefan ([66])
YD module – – Panaite-Ştefan ([66])

Table 1.2: Main braided homology ingredients in concrete algebraic settings

Besides the pre-braiding on the category of YD modules, another popular source of
concrete pre-braidings (and thus, potentially, of braided homologies) is the one on the
representation category of a quasi-triangular Hopf algebra H. We show in section 7.7 that
the second pre-braiding is a particular case of the first one. This fact is probably well-
known, but the author has not found it in literature. Concretely, one has a pre-braided
category inclusion

iR : HMod →֒ HYDH ,

(M,λ) 7→ (M,λ, δR),

where the pre-braiding on HMod is given by the R-matrix R, and the comodule structure
δR is defined using R and the module structure λ. Moreover, a weak version of the notion
of R-matrix on H is shown to suffice for iR to be a well-defined functor (not monoidal in
general) and to respect the pre-braidings.

Our braided homology theory, as well as the pre-braidings for associative and Leibniz
algebras, are raised to the categorical level in chapter 5; from that chapter on, we mostly
work in the categorical setting. Several typical applications of the categorical approach
are presented, obtained by changing the underlying category or using different types of
categorical dualities:

3 Leibniz superalgebra homology;

3 cohomology theories for pre-braided objects;

3 (co)chain complexes for dual structures (e.g. cobar and Cartier complexes for
coalgebras);

3 right-left duality for braidings;

3 right-left duality for braided differentials.

An important feature of our categorification of the notion of braiding, besides relaxing
the invertibility condition, is its “local” character: instead of demanding the whole
category to be pre-braided, one imposes a pre-braiding for a single object or a family of
objects only, omitting in particular the naturality condition. In the case of categorified pre-
braided systems, a third non-conventional point appears: the notion of braiding generalized
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this way becomes “partial”, i.e. it can be defined on V ⊗W without being defined on
W ⊗ V, making the whole construction highly non-commutative.

A categorification of self-distributive (=SD) structures and of the corresponding pre-
braiding is less straightforward. This is done in chapter 11, and constitutes one of the
main results of part III of this thesis. Our approach is different from the one proposed by
J.S.Carter, A.S.Crans, M. Elhamdadi, and M.Saito in [8] in that we make the diagonal
map (necessary for writing down the SD condition) a part of the categorical SD
structure, instead of requiring it on the level of the underlying category. The term
categorical self-distributive structure is abbreviated as CSD here. Schematically,

CSD = comultiplication ∆ + binary operation ⊳
3 coassociative, 3 self-distributive, with ∆ as diagonal,
3 central cocommutative; 3 respects ∆, in the braided bialgebra sense.

Table 1.3: Categorical self-distributivity

This choice of categorification is explained in chapter 11. One of the motivations comes
from the connection with virtual braid group representations.

We further recover categorical associative, Leibniz and Hopf algebras as CSD
for particular choices of the comultiplication, and the pre-braidings defined on them in
part I as particular cases of the pre-braiding for CSD. A braided homology theory for CSD
is also developed, with a particular role of categorical spindles.

The remaining chapters of part III are devoted to a categorification of the notion
of virtual braids and some other aspects of virtual braid group theory. We present here
some motivations for such a categorification.

The almost century-old braid theory is nowadays quite vast and entangled, with unex-
pected connections with different areas of mathematics still emerging. Patrick Dehornoy’s
spectacular results intertwining self-distributivity, set theory and braid group ordering
([18]) provide a good example. Virtual braid theory (cf. section 8.2 for definitions and
illustrations) dates from the pioneer work of L.H.Kauffman ([41]) and V.V.Vershinin ([80])
in the late 1990s, and it still reserves a lot of unexplored questions, in spite of numerous
results already obtained. This shows that this theory is far from being an elementary
variation of that of usual braids.

Virtual braids are most often considered in the context of virtual knots and links. The
topological aspects of these objects are thus naturally in the spotlight. Our aim is on the
contrary to clarify some categorical and representational aspects.

The flow of ideas related to the objects and concepts we are interested in here can be
represented – very schematically – by the following chart:

Categories

Topology
tools
⇆

intuition
Algebra

tools
⇆

intuition
Representation theory

One has thus a sort of a triptych of picturesque mathematical areas, with category
theory as a unifying background. Such unifications are precisely the raison d’etre of
categories. This chart, certainly subjective and simplified, is quite adequate for the content
of part III of this thesis.
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Part III starts with an extensive reminder on braid groups Bn in section 8.1, where
we extract from the large scope of existing results the ones to be extended to virtual
braid groups V Bn in the rest of the part. Section 8.2 is a survey of the steps of this vast
virtualization program which have already been effectuated. Particular attention is given
to usual and virtual SD structures. Virtuality means here the additional datum of a shelf
automorphism f, following V.O.Manturov ([54]). Subsequent chapters contain original
patches to the still very fragmentary virtual braid theory.

Chapter 9 is devoted to free virtual SD structures. The faithfulness of the V B+
n

(or V Bn) action on these structures is discussed, including a (reformulation of a) con-
jecture of V.O.Manturov ([56]). Some arguments in favor of the faithfulness in the free
monogenerated virtual shelf case are presented, however without a definite answer.

Theorem 13 is the heart of the topological part of this thesis. It suggests categorifying
the V Bn’s by “locally” braided objects in a “globally” braided symmetric cate-
gory C. Here is the correspondence between the algebraic notion and its categorification:

category level “global” symmetric braiding on C “local” braiding for V
V Bn level Sn part Bn part

Table 1.4: A categorification of V Bn

One thus recovers the recurrent situation encountered in parts I and II: some pre-
braidings were associated there to algebraic objects, often living themselves in a sym-
metric category. Thus our “structural” pre-braidings provide an unexpected source of
representations of virtual braid groups.

One more feature inherited from parts I and II is the attention to non-invertible situ-
ations. We thus study positive virtual braid monoids V B+

n , their categorification in
terms of pre-braided objects in a symmetric category, and representations given by shelves
– in particular by free shelves.

Our categorification of V Bn is quite different from that proposed by L.H.Kauffman
and S.Lambropoulou in [42]. Their inspiration comes from representation theory (they
discover strong connections between virtual braid groups and the algebraic Yang-Baxter
equation), while our starting point is an attemps to “virtualize” the interpretation of usual
braid groups as hom-sets of a free monogenerated braided category (theorem 12).

Among the advantages of our “double braiding approach” is its high flexibility, having
two consequences:

1. Manturov’s virtual racks are interpreted via a deformation of the underlying sym-
metric category structure;

2. the twisted Burau representation of D.S.Silver and S.G.Williams ([75]) is recovered
by twisting both the “local” and the “global” braidings with the help of another
symmetric braiding.

We finish the introduction by mentioning some of numerous new research directions
continuing the ideas of this thesis.

The first direction concerns the behavior of our braided bidifferentials with respect to
different operations on the complexes, for example the cyclic and the shuffle ones. We have
in mind the cyclic homologies for associative and Hopf algebras, as well as the Harrison
homology for associative algebras. In spite of some evidences in favor of a braided inter-
pretation of these homologies, the author can not present a satisfactory braided treatment.
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Another structure which is likely to have a braided or quantum shuffle interpretation is
the Gerstenhaber structure on the Hochschild homology.

Further, a homology theory for Zinbiel algebras and, more generally, a braided version
of the operad duality do not seem impossible. A braided treatment of the homology of
Poisson algebras would also be of interest. The author’s dream is to get new homologies
for certain algebraic structures with the help of the braided tools presented here.

The last questions concern the naturality aspects of our structural pre-braidings.
Namely, according to the Schur-Weyl duality, the symmetric group Sn is precisely the
centralizer of the group GLr acting diagonally on V ⊗n, where V is an r-dimensional vec-
tor space, and vice versa. In our settings, the action of the positive braid monoid B+

n on
the tensor powers of an algebra V commutes with all the algebra endomorphisms of V,
acting diagonally. We would like to understand how far these two monoids are from being
full mutual centralizers.

Notations and conventions

Linear algebra

We systematically use notation R for a commutative unital ring, and k for a field. The
word “linear” means R- (or k-) linear, and all tensor products are over R (or k), unless
we work in the settings of a general monoidal category.

Notation
T (V ) :=

⊕

n≥0

V ⊗n

is used for the tensor algebra of an R-module V, with V ⊗0 := R. A simplified notation is
used for its elements:

v = v1v2 . . . vn := v1 ⊗ v2 ⊗ . . .⊗ vn ∈ V
⊗n,

leaving the tensor product sign for

v1v2 . . . vn ⊗ w1w2 . . . wm ∈ V
⊗n ⊗W⊗m.

We often call the R-module T (V ) the tensor module of V , emphasizing that it can
be endowed with a multiplication different from the usual concatenation. We talk about
the tensor vector space of V in the k-linear setting. The tensor module/space T (V ) is
endowed with a grading by putting

deg(v1v2 . . . vn) = n. (1.1)

The dual of an R-module V is denoted by

V ∗ := HomR(V,R).

Sweedler’s notation

Sweedler’s notation, often with the summation sign omitted, is systematically used.
For example, a comultiplication, an iterated comultiplication, a left and a right coaction
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are denoted, respectively, by

∆(v) =
∑

(v)

v(1) ⊗ v(2) = v(1) ⊗ v(2),

∆n(v) = v(1) ⊗ · · · ⊗ v(n+1),

δL(v) = v(−1) ⊗ v(0),

δR(v) = v(0) ⊗ v(1).

Dualities

Given R-modules V,W and a pairing B : V ⊗W → R (for example the evaluation map

ev : H∗ ⊗H −→ R

f ⊗ a 7−→ f(a) (1.2)

for a module and its dual), there are two common ways of extending it to

B : V ⊗n ⊗W⊗n → R :

B(v1v2 . . . vn ⊗ w1w2 . . . wn) :=
B(v1 ⊗ wn) · · ·B(vn ⊗ w1) B(v1 ⊗ w1) · · ·B(vn ⊗ wn)

WV

B

WV

B

WV

B

WV

B

WV

B

WV

B

“rainbow” “arched”

Table 1.5: Rainbow and arched dualities

The “arched” version is more common in literature, but it is the “rainbow” version we
mostly use in this work, avoiding unnecessary flips (in the diagram it is reflected by the
absence of crossings). Similar conventions are used in the dual situation, i.e. for Casimir
elements, and in the general monoidal settings. In particular, the induced bialgebra
structure on the dual of a finite-dimensional k-linear bialgebra H is defined in this thesis
via the evaluation map ev, extended to H ⊗H and H∗⊗H∗ using the “rainbow” pattern.
The multiplication on H∗ is given for instance by

(l1l2)(h) = l1(h(2))l2(h(1)) ∀h ∈ H, l1, l2 ∈ H
∗,

or, graphically,

H∗H∗H

ev
µH∗ =

H∗H∗H

ev
∆H .

Figure 1.4: Dual structures via the “rainbow” duality

Analyzing the graphical interpretation, one sees that, on the level of structures, the “rain-
bow” duality corresponds to the central symmetry, while the “arched” duality – to the
horizontal mirror symmetry.
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Note that the same structure on H∗ can be obtained via the dual coevaluation map
coev or via “twisted versions” ev ◦ τ : H ⊗ H∗ → R and τ ◦ coev : R → H ⊗ H∗, still
with the “rainbow” extension on tensor products. Here τ is simply the transposition of
factors H and H∗. It is common to simplify notations, writing just ev and coev for the
latter maps, which we do systematically when it does not lead to confusion.

Notations in a strict monoidal category

For an object V in a strict monoidal category (e.g. for an R-module), the notation
V ⊗n is often reduced to V n, and IdV ⊗n to Idn . Further, given a morphism ϕ : V l → V r,
the following notations are repeatedly used:

ϕi := Id⊗(i−1)
V ⊗ϕ⊗ Id⊗(k−i+1)

V : V k+l → V k+r, (1.3)

ϕn := (ϕ1)◦n = ϕ1 ◦ · · · ◦ ϕ1 : V k → V k+n(r−l), (1.4)

where ϕ1 is composed with itself n times. Similar notations are used for morphisms on
tensor products of different objects.

“Differential” terminology

By a differential on a graded R-module (for example T (V )) we mean a square zero
endomorphism of degree +1 or −1, while a bidifferential is a pair of anticommuting dif-
ferentials. The word complex always means a differential (co)chain complex here, i.e. a
graded R-module endowed with a differential. Similarly, a bicomplex is a graded R-module
endowed with a bidifferential.

Symmetric and braid groups

The symmetric and braid groups on n elements are denoted by Sn and Bn respectively.
Inclusions Sn ⊂ Sm and Bn ⊂ Bm for n < m, implicit in what follows, are obtained by
letting an s ∈ Sn act on the first n elements of an m-tuple, and, respectively, by adding
m−n untangled strands on the right of an n-braid. We use the usual action of Sn on V ⊗n

for an R-module V :

σ(v1v2 . . . vn) := vσ−1(1)vσ−1(2) . . . vσ−1(n).

The cyclic group Zn is often identified with the subgroup of Sn generated by the cycle

tn =
(

1 2 ... n−1 n
2 3 ... n 1

)
. (1.5)

We have (tn)n = 1.
The non-trivial element of S2 is denoted by τ and is called a flip.
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Chapter 2

Braided world: a short reminder

We recall here various facts about braided vector spaces necessary for subsequent chap-
ters. Different aspects of the notions of braid groups and positive braid monoids are
recalled in more detail in part III. For a more systematic treatment of braid groups,
[40] is an excellent reference. A particular focus is made here on quantum (co-)shuffles,
introduced and studied by M.Rosso in [72] and [73]. These structures will provide an
important tool for constructing braided space (co)homologies in the next chapter. The
graphical calculus is also presented and justified in this chapter.

All the notions defined here for vector spaces are directly generalized for R-modules.
We prefer the language of vector spaces for its familiarity.

Pre-braided vector spaces

Definition 2.0.1. ú A pre-braiding on a k-vector space V is a linear map σ : V ⊗V →
V ⊗ V satisfying the Yang-Baxter equation (abbreviated as YBE)

σ1 ◦ σ2 ◦ σ1 = σ2 ◦ σ1 ◦ σ2 : V ⊗ V ⊗ V −→ V ⊗ V ⊗ V, (YB)

where σi is the braiding σ applied to components i and i+ 1 of V ⊗3 (cf. notation
(1.3)).

ú A braiding is an invertible pre-braiding.
ú A braiding is called symmetric if σ2 = IdV⊗V .
ú A vector space endowed with a (pre-)braiding is called (pre-)braided.
ú A braided morphism between pre-braided spaces (V, σV ) and (W,σW ) is a k-linear

map f : V →W respecting the pre-braidings:

(f ⊗ f) ◦ σV = σW ◦ (f ⊗ f) : V ⊗ V →W ⊗W.

Unlike most authors we mostly work with pre-braidings, giving interesting highly
non-invertible examples. One of the rare papers admitting non-invertible σ’s is [74].

Remark 2.0.2. A (pre-)braiding on a set is defined similarly: tensor products ⊗ are sim-
ply replaced by Cartesian products ×. These two settings are particular cases of a more
abstract one – that of (pre-)braided categories, studied in detail in chapter 5.

Example 2.0.3. The most familiar braidings are the flip, the signed flip and their gener-
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alization for graded vector spaces, the Koszul flip:

τ : v ⊗ w 7−→ w ⊗ v,

−τ : v ⊗ w 7−→ −w ⊗ v,

τKoszul : v ⊗ w 7−→ (−1)deg v deg ww ⊗ v (2.1)

for homogeneous v and w. The last braiding explains the Koszul sign convention in
many settings.

Remark 2.0.4. In general for a (pre-)braiding σ, its opposite −σ : v ⊗ w 7→ −σ(v ⊗ w) is
also a (pre-)braiding.

Braid monoid action and graphical calculus

A pre-braiding gives an action of the positive braid monoid B+
n on V ⊗n, i.e. a monoid

morphism

ρ : B+
n −→ Endk(V ⊗n),

b 7−→ bσ (2.2)

defined on the generators σi of B+
n by

σi 7→ Id⊗(i−1)
V ⊗σ ⊗ Id⊗(n−i−1)

V . (2.3)

This action is best depicted in the graphical form

σi(v) = · · · · · ·

v1 v2 vi−1 vi vi+1 vi+2 vn

v1 v2 vi−1 vi+2 vnσ(vi ⊗ vi+1)

⊗ ⊗ ⊗ ⊗ ⊗ ⊗

⊗ ⊗ ⊗ ⊗ ⊗

Figure 2.1: B+
n acts via pre-braidings

All diagrams in this work are to be read from bottom to top, as indicated by the arrow

on the diagram above. One could have presented the crossing as , which is often done
in literature. It is just a matter of convention, and the one used here comes from rack
theory (section 4.2).

For braidings, the action above is in fact an action of the braid group Bn, and for
symmetric braidings it is an action of the symmetric group Sn.

The graphical translation of the Yang-Baxter equation (YB) for pre-braidings is the
third Reidemeister move, which is at the heart of knot theory:

=
.

Figure 2.2: Yang-Baxter equation = Reidemeister move III
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Pre-braiding extended to tensor powers

Numerous constructions become natural in the graphical settings. For instance,

Remark 2.0.5. A (pre-)braiding σ on V naturally extends to a (pre-)braiding σ on its
tensor space T (V ) by

σ(v ⊗ w) = (σk · · ·σ1) · · · (σn+k−2 · · ·σn−1)(σn+k−1 · · ·σn)(vw) ∈ V ⊗k ⊗ V ⊗n

for v ∈ V ⊗n, w ∈ V ⊗k, or graphically:

⊗

v1v2 ·vn⊗w1w2·wk
.

Figure 2.3: Pre-braiding extended to T (V )

Here vw is simply the concatenation of pure tensors v and w.

Lifting permutations to positive braids

Recall the famous inclusion

Sn →֒ Bn

s = τi1τi2 · · · τik
7→ Ts := σi1σi2 · · ·σik

(2.4)

where

3 τi ∈ Sn are transpositions of neighboring elements i and i + 1, called simple trans-
positions,

3 σi are the corresponding generators of Bn,

3 τi1τi2 · · · τik
is one of the shortest words representing s.

It is well defined, since any shortest word representing s can be obtained from any other
one by applying YBE a finite number of times, and it is indeed an inclusion, since, followed
by the projection

Bn ։ Sn,

σ±1
i 7→ τi,

it gives identity. This inclusion factorizes through

Sn →֒ B+
n →֒ Bn.

This is a set inclusion not preserving the monoid structure. More precisely,

Lemma 2.0.6. One has Ts1s2 = Ts1Ts2 if and only if, for each pair of elements (i, j)
reversed by s2, their images (s2(i), s2(j)) are not reversed by s1.



28 CHAPTER 2. BRAIDED WORLD: A SHORT REMINDER

Shuffles

The following subsets of symmetric groups deserve particular attention:

Definition 2.0.7. The permutation sets

Shp,q :=
{
s ∈ Sp+q s.t.

s(1) < s(2) < . . . < s(p),
s(p+ 1) < s(p+ 2) < . . . < s(p+ q)

}

or, more generally,

Shp1,p2,...,pk
:=

{
s ∈ Sp1+p2+···+pk

s.t.

s(1) < s(2) < . . . < s(p1),
s(p1 + 1) < . . . < s(p1 + p2),
. . . ,
s(p+ 1) < s(p+ 2) < . . . < s(p+ pk)

}

where p = p1 + p2 + · · ·+ pk−1, are called shuffle sets.

The conditions from this definition mean that one permutes p1 + p2 + · · · + pk ele-
ments preserving the order within k consecutive blocks of size p1, p2, . . . , pk, just like when
shuffling cards, which explains the name. The set Shp1,p2,...,pk

consists of
(p1+p2+···+pk

p1,p2,...,pk

)

elements. Shuffles and their diverse modifications appear, sometimes quite unexpectedly,
in various areas of mathematics.

The first basic result about shuffles is

Lemma 2.0.8. Take p, q, r ∈ N and put n = p + q + r. Viewing Shp,q ⊆ Sp+q and
Shq,r ⊆ Sq+r as subsets of Sn by letting Shp,q permute the first p + q elements of an
n-tuple, and, similarly, by letting Shq,r permute the last q+ r elements of an n-tuple, one
has the following decomposition:

Shp,q,r = Shp+q,rShp,q = Shp,q+rShq,r.

That is, an element of Shp,q,r can be seen, in a unique way, as an element of Shp,q followed
by one from Shp+q,r, and similarly for the second decomposition.

Quantum shuffle Hopf algebra

Everything is now ready for defining quantum shuffle algebras. This structure orig-
inated in the work of M.Rosso ([71],[72]) and was rediscovered several times since then,
with different motivations.

Definition 2.0.9. The quantum shuffle multiplication on the tensor space T (V ) of a
pre-braided vector space (V, σ) is the k-linear extension of the map

�
σ

= �
σ

p,q : V ⊗p ⊗ V ⊗q −→ V ⊗(p+q)

v ⊗ w 7−→ v�
σ
w :=

∑

s∈Shp,q

T σ
s (vw). (2.5)

The expression vw means simply the concatenation of pure tensors v and w. Notation T σ
s

stands for the lift Ts ∈ B
+
n (cf. (2.4)) acting on V ⊗n via the pre-braiding σ (cf. (2.2)).

The algebra Shσ(V ) := (T (V ),�
σ

) is called the quantum shuffle algebra of (V, σ).
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The symbol � comes from a Cyrillic letter pronounced as “sh” in English.
In the case of the trivial braiding (σ = flip), one speaks simply about the shuffle algebra

of V, and a simplified notation � is used. This structure has a much longer history. For
instance, it was used by S.Eilenberg and S.MacLane in order to give an explicit formula
for the equivalence of complexes of the Eilenberg-Zilber theorem.

By a (pre-)braided Hopf algebra (in the sense of S.Majid, cf. Definition 2.2 in [52]
for example) we mean an additional structure on a (pre-)braided vector space satisfying all
the axioms of a Hopf algebra except for the compatibility between the multiplication and
the comultiplication, which is replaced by the braided compatibility (this last notion is
recalled in the following theorem). More generally, it is a Hopf algebra in a (pre-)braided
category; see chapter 5 for the categorical notions, and the categorical definition 7.4.1.

The quantum shuffle multiplication can be upgraded to an interesting pre-braided Hopf
algebra structure (braided commutative if the initial pre-braiding is symmetric):

Theorem 1. Let (V, σ) be a pre-braided vector space.

1. The multiplication �
σ

of Shσ(V ) is associative.

2. If σ2 = Id, then the multiplication �
σ

is σ-commutative, i.e.

�
σ

(v ⊗ w) = �
σ

(σ(v ⊗ w))

(with the extension σ of σ to T (V ) from remark 2.0.5).

3. The element 1 ∈ R is a unit for Shσ(V ).

4. The deconcatenation map

∆ : v1v2 . . . vn 7−→
n∑

p=0

v1v2 . . . vp ⊗ vp+1 . . . vn,

1 7−→ 1⊗ 1,

(where an empty product means 1), and the augmentation map

ε : v1v2 . . . vn 7−→ 0,

1 7−→ 1,

define, after a linearization, a counital coalgebra structure on T (V ).

5. These algebra and coalgebra structures are σ-compatible, in the sense that

∆ ◦�
σ

= (�
σ
⊗�

σ
) ◦ σ2 ◦ (∆⊗∆).

6. An antipode can be given on Shσ(V ) by linearizing the map

s : v 7−→ (−1)nT σ
∆n

(v), v ∈ V ⊗n,

1 7−→ 1,

where ∆n :=
(

1 2 ··· n
n n−1 ··· 1

)
∈ Sn. (2.6)

The pre-braided vector space (Shσ(V ),σ) becomes thus a pre-braided Hopf algebra.
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The operator T σ
∆n

defining the antipode is graphically depicted (for n = 4) as follows:

.

Figure 2.4: Antipode for Shσ(V )

Note that the lift T∆n
of ∆n in B+

n is the Garside element.

Proof. We only give the proof of the most difficult statements.
1. Let v ∈ V p, w ∈ V q, u ∈ V r. We have

(v�
σ
w)�

σ
u =

∑

s∈Shp+q,r,t∈Shp,q

T σ
s ◦ (T σ

t ⊗ Idr)(vwu)

Lemma 2.0.6=
∑

s∈Shp+q,r,
t∈Shp,q⊆Sp+q⊆Sp+q+r

T σ
s◦t(vwu)

Lemma 2.0.8=
∑

s∈Shp,q,r

T σ
s (vwu).

The same reasoning gives

v�
σ

(w�
σ
u) =

∑

s∈Shp,q,r

T σ
s (vwu),

so these two expressions are equal.
6. Take a v ∈ V ⊗n, n > 1. There are two types of signed summands in the expression

of �
σ
◦ (Id⊗ s) ◦∆(v): those where the last element in the quantum shuffle multiplication

comes from the first component of ∆(v) ∈ T (V ) ⊗ T (V ), and those where it comes from
the second one. Each summand appears exactly once in each type, and with different signs
due the sign (−1)··· in the formula for the antipode. The overall sum is therefore zero.

The above theorem is well-known for invertible braidings ([73]); we point out that it
still holds when the pre-braiding admits no inverse.

Quantum co-shuffle Hopf algebra

Dually (in the sense to be specified in section 5.4), the tensor space of a pre-braided
vector space (V, σ) can be endowed with the quantum co-shuffle comultiplication:

�
σ
|V ⊗n :=

∑

p+q=n; p,q>0

�
σ

p,q,

�
σ

p,q :=
∑

s∈Shp,q

T σ
s−1 : V ⊗n −→ V ⊗p ⊗ V ⊗q, (2.7)

which can be upgraded to a pre-braided Hopf algebra structure “dual” to that described
in theorem 1, and denoted by Shσ(V ).



Chapter 3

(Co)homologies of braided vector
spaces

We introduce here a homology and, dually, a cohomology theory of braided vector
spaces, which are at the heart of this thesis. Different aspects of these theories are studied
in detail. A comparison with existing “braided” (co)homology constructions is made.

We propose two different viewpoints on our “braided” differentials (all the notions and
properties are explained in this chapter):

approach section advantages

quantum (co-)shuffle 3.1 ⊞ the sign manipulation is hidden
(co)multiplication in the choice of the negative braiding −σ,
and square zero ⊞ a subscript-free approach,

(co)elements ⊞ compact formulas;
graphical calculus: 3.2 ⊞ a tool easy to manipulate,
diagrams, braids ⊞ a finer structure of a pre-bisimplicial complex,

⊞ an intuitive definition of degenerate and
normalized complexes via braided coalgebras.

Table 3.1: Two approaches to “braided” differentials

Besides the above-mentioned advantages of our construction, there are some more
useful features, common for the two approaches:

⊞ Given a pre-braided vector space (V, σ), our construction associates to every braided
(co)character (which are quite numerous in practice) two compatible differentials
on T (V ), which are often also compatible with differentials coming from other
(co)characters. One thus gets a rich family of differentials for every (V, σ).

⊞ The only properties needed to make everything work is the YBE for the pre-braiding
and the defining equation (3.1) (or (3.2)) for the braided (co)character. This sim-
plifies the verification of the equation d2 = 0 in concrete examples.

⊞ One obtains (section 3.3) a new interpretation and a generalization of J.-L.Loday’s
hyper-boundaries, automatically calculating all their compositions, some of which
are given in [46], exercise E.2.2.7.

⊞ One gets almost for free a generalization of some of the homology operations studied
by M.Niebrzydowski and J.Przytycki ([63], [67]) for quandle homology.

All these properties are illustrated with concrete examples in chapter 4.
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Everything described here can be translated verbatim to the setting of R-modules, and
even raised to the categorical level (chapter 5). We prefer working with vector spaces for
the sake of clarity.

The tools created here will be applied in various familiar algebraic situations in sub-
sequent chapters.

Fix a pre-braided k-vector space (V, σ).

3.1 Pre-braiding + character 7−→ homology

We present here a systematic way of constructing differentials on the tensor vector
space T (V ) of a pre-braided vector space. The compatibility of such differentials is also
studied. A survey of “braided” homology theories existing in literature concludes this
section.

Braided (co)characters

We start with distinguishing elements of V and V ∗ which behave with respect to the
pre-braiding σ as if it were just a flip τ.

Definition 3.1.1. ú Two elements v, w ∈ V are called σ-compatible if

σ(v ⊗ w) = w ⊗ v, and σ(w ⊗ v) = v ⊗ w.

ú A braided co-character is an element e ∈ V which is σ-compatible with itself, i.e.

σ(e⊗ e) = e⊗ e, (3.1)

or, in the shuffle form,
e �
−σ
e = 0.

ú Two co-elements f, g ∈ V ∗ are called σ-compatible if

(f ⊗ g) ◦ σ = g ⊗ f, and (g ⊗ f) ◦ σ = f ⊗ g.

ú A braided character is an element ǫ ∈ V ∗ σ-compatible with itself, i.e.

(ǫ⊗ ǫ) ◦ σ = ǫ⊗ ǫ, (3.2)

or, in the co-shuffle form,
(ǫ⊗ ǫ) ◦ �

−σ

1,1 = 0.

The definition of braided (co-)characters takes a simple graphical form:

e e

=
e e

,

ǫ ǫ

= ǫ ǫ

.

Figure 3.1: Braided (co-)characters

The labels e, ǫ are often omitted when clear from the context.
In chapter 4, we recover familiar notions of (co-)characters for algebraic structures

(such as associative algebras) as examples of braided (co-)characters for corresponding
“algebraic” braidings, which justifies our choice of the term. In what follows the part
“braided” of the term is omitted when it does not lead to confusion. Units and counits
often turn out to be braided (co-)characters, hence the notations e, ǫ.
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Remark 3.1.2. Braided characters can also be regarded as braided morphisms ǫ : V → k,
where k is endowed with the trivial braiding

k⊗ k ≃ k
Idk−→ k ≃ k⊗ k.

This is consistent with the interpretation of usual characters for algebraic structures as
homomorphisms to trivial structures.

Braided (co)homologies: the quantum shuffle approach

A pre-braiding and a braided (co-)character are sufficient for constructing (co)homologies:

Theorem 2. Let (V, σ) be a pre-braided vector space.

1. For a braided co-character e, the maps

ed : V ⊗n −→ V ⊗(n+1) and de : V ⊗n −→ V ⊗(n+1)

v 7−→ e �
−σ
v v 7−→ (−1)nv �

−σ
e

define differentials on T (V ).

2. For two braided co-characters e and f, one gets a differential bicomplex (T (V ), ed, df ).
If the co-characters are moreover σ-compatible, then one also gets differential bicom-
plexes (T (V ), ed, fd) and (T (V ), de, df ).

3. Similarly, for a braided character ǫ, the maps

V ⊗n −→ V ⊗(n−1)

ǫd : v 7−→ (ǫ⊗ Idn−1) �
−σ

1,n−1 (v)

dǫ : v 7−→ (−1)n−1(Idn−1⊗ǫ) �
−σ

n−1,1 (v)

define differentials on T (V ).

4. For two braided characters ǫ and ζ, one gets a differential bicomplex (T (V ), ǫd, dζ).
If the braided characters are moreover σ-compatible, then one also gets differential
bicomplexes (T (V ), ǫd, ζd) and (T (V ), dǫ, dζ).

Proof. Easy verifications using the associativity of �
−σ
, the coassociativity of �

−σ
and the

defining property of (co-)characters. For example,

ed
2(v) = e �

−σ
(e �
−σ
v) = (e �

−σ
e) �
−σ
v = 0 �

−σ
v = 0,

since a co-character e is defined by e �
−σ
e = 0. Similarly,

(ed ◦ fd+ fd ◦ ed)(v) = e �
−σ

(f �
−σ
v) + f �

−σ
(e �
−σ
v) = (e �

−σ
f + f �

−σ
e) �
−σ
v,

which, since the pre-braiding σ coincides with the flip τ on e⊗ f and f ⊗ e for compatible
e and f, equals

(e �
−τ
f + f �

−τ
e) �
−σ
v = (ef − fe+ fe− ef) �

−σ
v = 0.
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This proof can be understood as follows: the multiplication by a square zero element
in Sh−σ is a square zero operator. An interpretation in terms of simplicial modules, as
well as a graphical translation, are postponed until the next section.

The differentials ed and de increase the degree (1.1) by 1, thus defining cohomologies,
while ǫd and dǫ decrease the degree and therefore define homologies. We mostly work with
homologies in what follows.

The theorem gives for two braidings two compatible differentials on T (V ). Their linear
combinations are then also differentials; ǫd − dǫ is a recurrent example in practice. All
such (bi)differentials, corresponding (bi)complexes and (co)homologies are called braided
in what follows.

A survey of existing “braided” homologies

In [10], J.S.Carter, M.Elhamdadi and M.Saito develop a homology theory for solu-
tions (S, σ) of the set-theoretic Yang-Baxter equation using combinatorial and geometric
methods completely different from ours. They also provide applications to virtual knot
invariants. It can be checked that their differential on (ZS)⊗n coincides with our εd− dε,
where ε is the linearization of the map

ε : S −→ Z,

a 7−→ 1 ∀a ∈ S.

Our applications εd, where ε ∈ V ∗ are not necessarily braided characters, also recover
the braided-differential calculus of S.Majid ([50]). He introduces an addition law (related
to the quantum co-shuffle comultiplication) on the quantum plane associated to a braiding,
and defines a differentiation as an infinitesimal translation. In particular, taking

3 one-variable polynomials T (V ) = k[x] (i.e. V = kx),

3 the opposite of the q-flip x⊗ x 7→ qx⊗ x (with q ∈ k∗) as a braiding,

3 and the linearization of the map ε(x) = 1,

one gets the famous q-differentials

εd(x⊗n) = (n)qx
⊗(n−1), (n)q :=

qn − 1
q − 1

= qn−1 + · · ·+ q + 1.

The last approach to “braided” cohomologies to be mentioned here is M.Eisermann’s
Yang-Baxter cochain complex, cf. [22]. Motivated by the study of deformations of Yang-
Baxter operators, he defines a degree 1 differential on Homk(V ⊗n, V ⊗n). His second coho-
mology groups classify infinitesimal Yang-Baxter deformations. We do not know precisely
how his construction is related to ours, but the parallels between the graphical versions of
the two are very suggestive.

3.2 Comultiplication 7−→ degeneracies

The aim of this section is to better understand the structure of braided (bi)complexes
from theorem 2. The simplicial approach proves to be particularly helpful for such a study.
The contents of this section is categorified in section 5.1 and dualized in section 5.4.
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Simplicial vocabulary

First, recall the notion of simplicial vector spaces (cf. [46] for details and [67] for weak
simplicial notions; note that our definition is a shifted version of theirs, and that our
definition of bisimplicial vector spaces is different from the usual one):

Definition 3.2.1. Consider a collection of k-vector spaces Vn, n > 0, equipped with linear
maps dn;i : Vn → Vn−1 (and d′n;i : Vn → Vn−1 and/or sn;i : Vn → Vn+1 when necessary)
with 1 6 i 6 n, denoted simply by di, d

′
i, si when the subscript n is clear from the context.

This datum is (slightly abusively) called
ú a presimplicial vector space if

didj = dj−1di ∀1 6 i < j 6 n; (3.3)

ú a very weakly simplicial vector space if moreover

sisj = sj+1si ∀1 6 i 6 j 6 n, (3.4)

disj = sj−1di ∀1 6 i < j 6 n, (3.5)

disj = sjdi−1 ∀1 6 j + 1 < i 6 n; (3.6)

ú a weakly simplicial vector space if moreover

disi = di+1si ∀1 6 i 6 n; (3.7)

ú a simplicial vector space if moreover

disi = IdVn ∀1 6 i 6 n; (3.8)

ú a pre-bisimplicial vector space if (3.3) holds for the di’s, the d′i’s and their mixture:

did
′
j = d′j−1di ∀1 6 i < j 6 n, (3.9)

d′idj = dj−1d
′
i ∀1 6 i < j 6 n; (3.10)

ú a (weakly / very weakly) bisimplicial vector space if it is pre-bisimplicial, with both
(Vn, dn;i, sn;i) and (Vn, d

′
n;i, sn;i) giving (weakly / very weakly) simplicial structures.

The omitted subscripts n, n± 1 are those which guarantee that the source of all the above
mentioned morphisms is Vn. The di’s and the si’s are called face (resp. degeneracy) maps.

Simplicial vector spaces are interesting because of the following properties (see [46] for
most proofs):

Proposition 3.2.2. 1. For any presimplicial vector space (Vn, dn;i), the map

∂n :=
n∑

i=1

(−1)i−1dn;i

is a differential (called the total differential) for the graded vector space

Ṽ :=
⊕

n>0

Vn.

2. For any pre-bisimplicial vector space (Vn, dn;i, d
′
n;i), the differentials ∂n and

∂′n :=
n∑

i=1

(−1)i−1d′n;i

give a bidifferential structure on Ṽ .
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3. For any weakly simplicial vector space (Vn, dn;i, sn;i), the complex (Vn, ∂n) contains
a subcomplex (called the degenerate subcomplex)

Dn :=
n−1∑

i=1

sn−1;i(Vn−1).

4. If our vector space turns out to be simplicial, then the degenerate subcomplex is
acyclic, hence V∗ is quasi-isomorphic to the normalized complex

N∗ := V∗/D∗.

5. In the weakly bisimplicial case, D∗ is a sub-bicomplex of V∗, acyclic in the bisimplicial
setting.

In practice, one usually works with Vn = V ⊗n for a chosen space V, i.e. Ṽ = T (V ).

Pre-braided coalgebras

We will soon show that the (bi)complexes from theorem 2 come from pre-(bi)simplicial
structures. As for degeneracies, they arise from the following structure:

Definition 3.2.3. ú A pre-braided vector space (V, σ) endowed with a comultiplica-
tion ∆ : V → V ⊗ V is called a pre-braided coalgebra if

3 ∆ is co-associative:

(∆⊗ IdV ) ◦∆ = (IdV ⊗∆) ◦∆ : V → V ⊗ V ⊗ V, (3.11)

3 and ∆ is compatible with the pre-braiding – i.e., using notation ϕi from (1.3),

∆2 ◦ σ = σ1 ◦ σ2 ◦∆1 : V ⊗2 → V ⊗3, (3.12)

∆1 ◦ σ = σ2 ◦ σ1 ◦∆2 : V ⊗2 → V ⊗3. (3.13)

ú One talks about semi-pre-braided coalgebras if only (3.12) holds.
ú A (semi-)pre-braided coalgebra is called σ-cocommutative if

σ ◦∆ = ∆ : V → V ⊗ V. (3.14)

Representing the comultiplication ∆ as , the properties from the definition become

= ,
= σ

.

Figure 3.2: Coassociativity and σ-cocommutativity

= = .

Figure 3.3: Braided coalgebras
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Braided (co)homologies: a simplicial interpretation via the graphical ap-
proach

Theorem 3. Let (V, σ) be a pre-braided vector space.

1. For braided characters ǫ and ζ, the maps

dn;i(v) := ǫ1 ◦ T
σ
pi,n

(v) : V ⊗n → V ⊗(n−1), (3.15)

d′n;i(v) := ζn ◦ T
σ
p′

i,n
(v) : V ⊗n → V ⊗(n−1), (3.16)

define a pre-bisimplicial structure on T (V ). Here pi,n ∈ Sn (resp. p′i,n ∈ Sn) is the
permutation moving the ith element to the leftmost (resp. rightmost) position, and
the notation T σ

s comes from (2.4) and (2.2).
The total differentials ∂ and ∂′ coincide with the “shuffle” differentials ǫd and, re-
spectively, dζ from theorem 2.

2. If the braided characters are moreover σ-compatible, then the di’s for ǫ and the di’s
for ζ define a pre-bisimplicial structure on T (V ).

3. If a comultiplication ∆ endows (V, σ) with a pre-braided coalgebra structure, then the
preceding structures are completed into very weakly bisimplicial ones by

sn;i := ∆i : V ⊗n → V ⊗(n+1). (3.17)

4. If ∆ endows (V, σ) with a semi-pre-braided coalgebra structure only, then the data
(V ⊗n, dn;i, sn;i) described above give a very weakly simplicial vector space.

5. If ∆ is moreover σ-cocommutative, then the above structures on T (V ) are weakly
(bi)simplicial.

See figure 1.3 for a graphical version of the face and degeneracy maps from the theorem.

Proof. One has to deduce the “simplicial” relations of definition 3.2.1 from the properties
of the structures on V, which were conceived precisely for these relations to hold. This can
be done graphically, using the pictorial interpretation of face and degeneracy maps, and
the graphical definitions of a (σ-cocommutaive) pre-braided coalgebra presented above, as
well as the pictorial versions of the Yang-Baxter equation (figure 2.2) and of the definition
of braided (co)characters (figure 3.1).

For instance,

i j

1=

i j

2=

i j
.

Figure 3.4: Graphical proof of didj = dj−1di ∀1 6 i < j 6 n.

Here

1. is a repeated application of YBE;

2. follows from the definition 3.2 of a braided character (cf. figure 3.1).

Remark 3.2.4. When checking the axioms of different types of simplicial structures in the
theorem, one can get rid of the tiresome index chasing by reasoning in terms of strands.
For example, pulling a strand to the left commutes with applying the branching ∆ to any
other strand if a strand can pass over a branching.
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Concatenation and arrow operations on braided complexes

The last face map dn+1;n+1 on V ⊗(n+1) is of particular interest. It defines a useful
operation on T (V ):

Definition 3.2.5. Take a pre-braided vector space (V, σ) endowed with a braided char-
acter ǫ. For an element w of V, we call an arrow operation on T (V ) the map

v
ǫ
տ w := dn+1;n+1(vw) = ǫ1 ◦ T

σ
pn+1,n+1

(vw), ∀v ∈ V ⊗n.

The notation and the name come from the graphical presentation:

σ
σ
σ

w
V ⊗n .

ǫ

Figure 3.5: Arrow operation

This map will be interpreted in terms of modules over pre-braided vector spaces and
adjoint maps in proposition 6.1.4. Here we study arrow and concatenation operations,
and get a generalization of the homology operations of M.Niebrzydowski and J.Przytycki
([63], [67]). Our constructions are deeply inspired by their work.

Start with some technical definitions:

Definition 3.2.6. Take a pre-braided vector space (V, σ).
ú A normalized pair is an element w ∈ V and a co-element ψ ∈ V ∗ satisfying

ψ(w) = 1.

ú A w ∈ V and a ψ ∈ V ∗ are called right σ-compatible if

(IdV ⊗ψ) ◦ σ ◦ (v ⊗ w) = ψ(v)w ∀v ∈ V. (3.18)

Left σ-compatible pairs are defined similarly.
ú The pre-braiding σ is called natural with respect to a w ∈ V if

σ ◦ (w ⊗ v) = v ⊗ w ∀v ∈ V, (3.19)

σ ◦ (v ⊗ w) = w ⊗ v ∀v ∈ V, (3.20)

and semi-natural (or demi-natural) if only (3.19) (resp. (3.20)) holds.

These three notions – normalization, compatibility and naturality – are recurrent
in this work. Graphically the last two definitions mean

σ
w

ψ
= w

ψ, w
=

, w
=

.

Figure 3.6: Right σ-compatibility and naturality with respect to an element
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The naturality can be interpreted as follows: the element w can “pass through a
crossing” to the left / to the right. In general, all the σ-compatibilities and the naturality
of σ with respect to different structures, often encountered in this thesis, should be thought
of as something that “does not distinguish the pre-braiding σ from the flip τ”.

Note that condition (3.20) implies (3.18) for any ψ.

The compatibility of arrow operations
ǫ
տ w with the braided differential ǫd from the-

orem 2 follows from theorem 3, where we interpret ǫd as a total differential for which
ǫ
տ

is the last face map. This remark inspires the following analysis of the behavior of our
braided differentials with respect to arrow operations and concatenation operations

v 7→ vw

on T (V ), for a fixed w ∈ V.

Proposition 3.2.7. Let (V, σ) be a pre-braided vector space with braided characters ǫ, ξ, ζ,
the first two being σ-compatible, and the last one being right σ-compatible with a w ∈ V.

1. The map
ǫ
տ w is a bicomplex map for (T (V ), ξd, dζ), i.e.

ξd(v
ǫ
տ w) =ξd(v)

ǫ
տ w,

dζ(v
ǫ
տ w) =dζ(v)

ǫ
տ w.

2. The following relations hold between the concatenation operations and the braided
differentials:

ǫd(vw) = ǫd(v)w + (−1)nv
ǫ
տ w,

dζ(vw) = dζ(v)w + (−1)nζ(w)v.

3. If σ is demi-natural with respect to w, then the map
ǫ
տ w is a multiplication by a

scalar on T (V ):

∗
ǫ
տ w = ǫ(w) IdT (V ) .

Here the notation v stays for any pure tensor in V ⊗n.

This result admits an evident “left” version (with respect to w).

Proof. Point 1 follows, in the same way as the proof of theorem 3, from the YBE for σ
and from the σ-compatibilities (use for instance the graphical calculus).

Point 2 can be checked using the pre-braided Hopf algebra structure on Sh−σ(V ). For
instance, for the left differentials one has

ǫd(vw) = (ǫ⊗ Idn) ◦ �
−σ

1,n(vw)

(∗)
= (ǫ⊗ Idn)(�

−σ

1,n−1(v)w + T−σ
pn+1,n+1

(vw))

= (ǫ⊗ Idn)(�
−σ

1,n−1(v)w) + (−1)n(ǫ⊗ Idn) ◦ T σ
pn+1,n+1

(vw)

= ǫd(v)w + (−1)nv
ǫ
տ w.

Equality (∗) is the compatibility between the multiplication and the comultiplication in
the quantum co-shuffle Hopf algebra Sh−σ(V ).

Point 3 is straightforward.
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Corollary 3.2.8. 1. In the settings of proposition 3.2.7, the arrow operation
ǫ
տ w is

homotopic to zero on the complex (T (V ), ǫd), and to ζ(w) IdT (V ) on (T (V ), ǫd− dζ).

2. The complex (T (V ), ǫd) is acyclic if σ is demi-natural with respect to w and the pair
(w, ǫ) is normalized.

3. The complex (T (V ), dζ) is acyclic if the pair (w, ζ) is normalized.

Proof. 1. The contracting homotopies are given by the concatenation map v 7→ vw; use
relations from point 2 of the previous proposition.

2. The conditions on w imply, according to point 3 of the proposition, that
ǫ
տ w is an

identity map. Then use the previous point.

3. Use the last relation from point 2 of the proposition.

3.3 Loday’s hyper-boundaries

Our quantum shuffle setting provides a natural interpretation for J.-L.Loday’s hyper-
boundaries (see [46], exercise E.2.2.7), which we redefine as generalizations of the “shuffle”
differentials from theorem 2.

Definition 3.3.1. Let (V, σ) be a pre-braided vector space with a braided character ǫ.
The maps

V ⊗n −→ V ⊗(n−k),

ǫ,(k)d : v 7−→ (ǫ⊗k ⊗ Idn−k) ◦ �
−σ

k,n−k(v),

dǫ,(k) : v 7−→ (−1)kn−
k(k+1)

2 (Idn−k⊗ǫ
⊗k) ◦ �

−σ

n−k,k(v)

are called hyper-boundaries on T (V ).

The last sign should be understood as (−1)n−1(−1)n−2 · · · (−1)n−k.

For k = 1 one recovers the braided differentials ǫd and dǫ.

The next step is to understand compositions of hyper-boundaries, generalizing

d(1) ◦ d(1) = 0 = (1)d ◦ (1)d.

We start with a kind of a special case. This result seems to be well-known, but we prove
it here since the proof is difficult to find in literature.

Lemma 3.3.2. Consider a vector space W and an element w ∈W. One has

w⊗m
�
−τ
w⊗k =

(m+k
k

)
−1
w⊗(m+k),

where (
m+ k

k

)

−1

=





0 if mk is odd,
([(m+k)/2]

[k/2]

)
otherwise,

and the brackets [ · ] stand for the lower integral part of a number.
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Proof. By definition,

w⊗m
�
−τ
w⊗k =

∑

s∈Shm,k

T−τ
s w⊗(m+k) =

∑

s∈Shm,k

sign(s)w⊗(m+k),

where sign(s) is the sign of a permutation s. Now for each negative permutation in Shm,k

we will associate a positive one in an injective way, counting the remaining positive per-
mutations in Shm,k.

Given a negative permutation s ∈ Shm,k, choose, if it exists, the least i such that one
of the preimages s−1(2i− 1), s−1(2i) lies in the set {1, . . . ,m}, while the other one lies in
{m+ 1, . . . ,m+ k}. Such i’s will be called split. To such an s one associates s with

s−1 := (s(1)−1, . . . , s(2i− 2)−1, s(2i)−1, s(2i− 1)−1, s(2i+ 1)−1, . . . , s(m+ k)−1),

i.e. it is our s with the preimages of 2i−1 and 2i interchanged. This constructs a bijection
between negative and positive permutations for which a split i exists. It remains to count
permutations without split i’s (we call such permutations coupled) and to check that they
are all positive.

3 If m + k is even, a coupled permutation divides the elements 1, . . . ,m + k into
consecutive pairs with preimages by s lying in the same set {1, . . . ,m} or {m +
1, . . . ,m + k}. It is possible only when both m and k are even, giving

((m+k)/2
k/2

)

possibilities for the values of s−1 on (m+ k)/2 pairs.

3 If m+k is odd – say, m is even and k is odd – then, similarly, a coupled permutation
divides the elements 1, . . . ,m+k−1 into consecutive pairs with preimages by s lying
in the same set, and s−1(m+ k) lies automatically in {m+ 1, . . . ,m+ k}, since only
k is odd. This gives

((m+k−1)/2
(k−1)/2

)
=
((m+k−1)/2

m/2

)
possibilities.

To conclude, notice that all the coupled permutations obtained are positive, since, for any
i, the sign coming from the element s−1(2i − 1) is “killed” by the sign coming from the
element s−1(2i).

This lemma is crucial in the calculations giving

Theorem 4. Let (V, σ) be a pre-braided vector space with a braided character ǫ. One has

ǫ,(m)d ◦ ǫ,(k)d =
(m+k

k

)
−1

ǫ,(m+k)d,

dǫ,(m) ◦ dǫ,(k) =
(m+k

k

)
−1
dǫ,(m+k).

Proof. We prove the first formula only. By definition,

ǫ,(m)d ◦ ǫ,(k)d(v) = (ǫ⊗ · · · ⊗ ǫ⊗ Idn−k−m) ◦ (ǫ⊗ · · · ⊗ ǫ⊗ �
−σ

m,n−k−m) ◦ �
−σ

k,n−k(v).

By the coassociativity of the co-shuffle comultiplication, it equals

(ǫ⊗ · · · ⊗ ǫ⊗ Idn−k−m) ◦ (�
−σ

k,m ⊗ Idn−k−m) ◦ �
−σ

m+k,n−m−k(v).

Now ǫ is a braided character, so

(ǫ⊗ ǫ) ◦ σ = ǫ⊗ ǫ = (ǫ⊗ ǫ) ◦ τ,

thus

ǫ,(m)d ◦ ǫ,(k)d(v) = (ǫ⊗ · · · ⊗ ǫ⊗ Idn−k−m) ◦ (�
−τ

k,m ⊗ Idn−k−m) ◦ �
−σ

m+k,n−m−k(v).



42 CHAPTER 3. (CO)HOMOLOGIES OF BRAIDED VECTOR SPACES

The dual version of the previous lemma calculates

(ǫ⊗ · · · ⊗ ǫ) ◦ �
−τ

k,m =
(m+k

k

)
−1
ǫ⊗ · · · ⊗ ǫ,

and the previous expression becomes
(m+k

k

)
−1

ǫ,(m+k)d.

The relations from J.-L.Loday’s exercise, which are particular cases of the above the-
orem for several values of m and k, are thus easily proved and generalized thanks to our
quantum co-shuffle interpretation.



Chapter 4

Basic examples: familiar
(co)homologies recovered

Now we consider a k-vector space (or an R-module) V with some algebraic structure,
and we look for a pre-braiding σ encoding the properties of this structure. Such
pre-braidings are informally called structural. Certain algebraic properties of the initial
structure are coded by the invertibility condition for the corresponding pre-braiding.
In each case, braided (co)characters are determined, always up to scalar multiples, re-
covering the usual algebraic notions of (co)characters. Theorem 2 then gives numerous
bicomplex structures on T (V ). We calculate explicitly some of the differentials obtained
this way, recognizing many familiar (co-)homologies. Arrow operations are also consid-
ered, showing the triviality of some of the appearing (co)homologies (cf. corollary 3.2.8).
In some cases, V is endowed with a (semi-)pre-braided coalgebra structure, giving, accord-
ing to theorem 3, a (very) weakly bisimplicial structure on T (V ). The comultiplications
∆ we use always arise naturally from the original algebraic structure.

A typical section of this chapter contains five main lemmas, one for each question
emphasized above, followed by propositions explicitly describing the bidifferential or sim-
plicial structures obtained. Graphical calculus is extensively used.

We give here a table summarizing the algebraic counterparts of our braided notions in
the concrete examples from this chapter. Everything is explained in detail in what follows.
Several recovered familiar complexes are also mentioned. The fact that we get many
known constructions and results is not very surprizing: we were inspired by these concrete
examples of homologies of algebraic structures when developing our general braided theory.

structure pre-braiding inverse characters

vector flip τ : τ−1 = τ any ǫ ∈ V ∗

space V v ⊗ w 7→ w ⊗ v

unital σµ: no algebra character:
associative v ⊗ w 7→ inverse ǫ(v · w) = ǫ(v)ǫ(w),

algebra (V, ·,1) 1⊗ v · w in general ǫ(1) = 1
unital σ[,]: Lie character:

Leibniz v ⊗ w 7→ w ⊗ v ∃ σ−1
[,] ǫ([v, w]) = 0,

algebra (V, [, ],1) +1⊗ [v, w] ǫ(1) = 1
shelf (S,⊳), σ⊳ : ∃ σ−1

⊳ iff shelf character:
V := kS (a, b) 7→ (b, a⊳ b) S is a rack ǫ(a⊳ b) = ǫ(a)

43
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structure arrow operations ∆ complexes

vector space multiplication by scalars – Koszul
unital peripheral: bar,

associative v1 . . . vn−1vn

ǫ
տ w = ∆(v) = 1⊗ v Hochschild

algebra v1 . . . vn−1µ(vn ⊗ w)
unital adjoint: ∆(v) = Leibniz,

Leibniz v1 . . . vn

ǫ
տ w = v ⊗ 1 + 1⊗ v, Chevalley-

algebra
∑n

i=1 v1 . . . [vi, w] . . . vn ∆(1) = 1⊗ 1 Eilenberg
diagonal: shelf ([67],[68]),

shelf (a1, . . . , an)
ǫ
տ b = ∆(a) = (a, a) rack ([27]),

(a1 ⊳ b, . . . , an ⊳ b) quandle ([11])

Table 4.1: Main ingredients of braided homology theories in basic algebraic settings

Pre-braidings for vector spaces and self-distributive structures are classical; that for
Leibniz algebras was used in the Lie case by A.Crans in [15] (cf. also [8]), but does not seem
to be widely known; the author has never met the pre-braiding for associative algebras
elsewhere.

All the constructions for associative and Leibniz algebras can easily be effectuated
in any preadditive monoidal (symmetric in the Leibniz case) category, cf. chapter 5. A
categorification of self-distributive structures is more subtle; it is presented in chapter 11.

4.1 Koszul complex

Following a nice mathematical tradition, the first example we consider is the trivial
one: that of an “empty” structure. Take any vector space V and the flip

τ : v ⊗ w 7−→ w ⊗ v

as its braiding. Each e ∈ V is automatically a braided co-character, and each ǫ ∈ V ∗ is a
character. In particular,

ǫd = dǫ : v1 . . . vn 7−→
n∑

i=1

(−1)i−1ǫ(vi)v1 . . . v̂i . . . vn

gives the well-known Koszul differential, in its simplest form.
Further, a (τ -cocommutative) braided coalgebra structure on (V, τ) is precisely a (resp.

cocommutative) comultiplication in the usual sense. The corresponding very weakly sim-
plicial structure on T (V ) is simplicial if and only if ǫ is the counit for the comultiplication
∆, i.e.

(ǫ⊗ IdV ) ◦∆ = (IdV ⊗ǫ) ◦∆ = IdV .

In the last case the cocommutativity is not necessary for the structure to be simplicial.
Thus, according to theorem 3, one can quotient the Koszul complex by the images of
sn;i := ∆i without changing the homology.
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4.2 Rack complex

A pre-braiding encoding self-distributivity

The simplest non-trivial example of a braiding naturally coming from an algebraic
structure is the following. Take a set S with a binary operation ⊳ : S × S → S. Define an
application

σ = σ⊳ : S × S −→ S × S,

(a, b) 7−→ (b, a⊳ b). (4.1)

It is very familiar to topologists, since it can be interpreted in terms of the fundamental
group of the complement of a knot. See for instance the seminal paper [34], or [35] for a
very readable introduction. Graphically σ⊳ looks as follows:

ba .

b a⊳ b

Figure 4.1: Pre-braiding for shelves

All the “braided” notions are to be understood in the set-theoretic sense in this
section (cf. remark 2.0.2).

The structure for which σ⊳ is a pre-braiding is well-known:

Lemma 4.2.1. The map σ⊳ is a pre-braiding if and only if ⊳ is self-distributive:

(a⊳ b)⊳ c = (a⊳ c)⊳ (b⊳ c) ∀a, b, c ∈ S. (SD)

Proof. Here and in subsequent lemmas we content ourselves with graphical proofs.
Let us see what the Yang-Baxter equation (YB) means for σ = σ⊳:

a b c

c b⊳ c (a⊳ b)⊳ c

b a⊳ b

c (a⊳ b)⊳ c
=

a b c

c b⊳ c (a⊳ c)⊳ (b⊳ c)

c a⊳ c

c b⊳ c

.

Figure 4.2: Pictorial proof of lemma 4.2.1

In other words,

σ1 ◦ σ2 ◦ σ1(a, b, c) = (c, b⊳ c, (a⊳ b)⊳ c),

σ2 ◦ σ1 ◦ σ2(a, b, c) = (c, b⊳ c, (a⊳ c)⊳ (b⊳ c)).

The equality of these two triples is equivalent to (SD).

Definition 4.2.2. A pair (S,⊳) satisfying (SD) is called a shelf (the term is coined by
Alissa Crans, see [15]), or a self-distributive system.

The “if and only if” formulation of the lemma shows that the pre-braiding σ⊳ encodes
the defining property of a shelf, just as we wanted.

Fix a shelf (S,⊳) until the end of this section.
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Invertibility and the rack condition

Let us now study the invertibility conditions for σ⊳. They are also well-known:

Lemma 4.2.3. The pre-braiding σ⊳ is a braiding if and only if the application a 7→ a⊳ b
is a bijection on S for every b ∈ S, that is if there exists an application ⊳̃ : S × S −→ S
such that

(a⊳ b)⊳̃b = (a⊳̃b)⊳ b = a ∀a, b ∈ S. (R)

Definition 4.2.4. A triple (S,⊳, ⊳̃) satisfying (SD) and (R) is called a rack (the term
originates from J.H.Conway and G.Wraith’s correspondence).

Shelf characters, spindles and quandles

Linearize a shelf (S,⊳): put
V := kS,

where k is a field, and extend the braiding σ⊳ to V linearly. One gets a pre-braided vector
space (V, σ⊳). As usual, most statements remain true over a commutative unital ring R.

Let us describe all the braided (co)characters in this linearized setting.

Lemma 4.2.5. 1. Co-characters e =
∑

i∈I αiai ∈ V, where {ai}i∈I is a finite set of
pairwise distinct elements of S, and αi ∈ k∗, are characterized by

e⊳ ai = e ∀i ∈ I.

2. Characters ǫ ∈ V ∗ are characterized by

ǫ(a⊳ b) = ǫ(a) (4.2)

for all a, b ∈ S such that ǫ(b) 6= 0.

In the R-linear setting, these conditions are sufficient but not necessary in general.
Here are some examples of braided (co)characters:

Example 4.2.6. 1. All a ∈ S are co-characters if and only if S is a spindle (one more
term coined by A.Crans), i.e. a shelf with idempotent elements:

a⊳ a = a ∀a ∈ S.

2. The linearization of
ε : a 7→ 1 ∀a ∈ S (4.3)

is always a character.

3. The linearization of “Dirac maps”

ϕa(b) := δa,b =

{
1 if b = a,

0 for other b ∈ S
(4.4)

(here δa,b is the Kronecker delta) are characters precisely for idempotent a’s such
that b ⊳ a 6= a for b 6= a. In particular, if S is a quandle, i.e. a rack which is also
a spindle, then all the ϕa’s are characters. (The term “quandle” was introduced by
D.Joyce in [34]; he deliberately chose a word not existing in English.)
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We finish with a more conceptual construction of a class of braided characters. Recall
that a character for an algebraic structure is usually defined as a morphism to the trivial
structure. Here it is natural (having in mind the conjugation quandle) to define the trivial
shelf structure on a set X by

x⊳ y = x ∀x, y ∈ X.

Definition 4.2.7. A shelf character for a shelf (S,⊳) is a shelf morphisms ǫ : S → k,
where k is endowed with the trivial shelf structure. In other words, it is a map ǫ : S → k

satisfying (4.2) for all a, b ∈ S.

Lemma 4.2.5 then implies

Lemma 4.2.8. 1. The linearization of a shelf character is always a braided character
for the pre-braiding σ⊳.

2. Moreover, two braided characters coming from shelf characters are automatically
σ⊳-compatible.

Diagonal comultiplication

The last ingredient we need is a comultiplication. The one proposed here is quite
classical in the self-distributive world:

Lemma 4.2.9. Let ∆D : V → V ⊗ V be the linearization of the diagonal map

D : S −→ S × S,

a 7−→ (a, a) ∀a ∈ S.

Then

1. (V, σ⊳,∆D) is a semi-pre-braided coalgebra;

2. this coalgebra is pre-braided if and only if

a⊳ b = (a⊳ b)⊳ b ∀a, b ∈ S;

3. ∆D is σ⊳-cocommutative if and only if (S,⊳) is a spindle.

Remark 4.2.10. The image of the map

sn;i := ∆i = Id⊗(i−1)
V ⊗∆D ⊗ Id⊗(n−i)

V

is the linear span of the elements (a1, . . . , an+1) ∈ S×(n+1) with ai = ai+1.

Shelf, rack and quandle homologies

It is now time to put together all the ingredients and to make some concrete calculations
of bidifferentials. Only the case of braided characters and chain complexes is considered
here, the co-case being similar.

Start with the character ε defined by (4.3).
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Proposition 4.2.11. Take a shelf (S,⊳).

1. The pre-braiding σ⊳ from (4.1) and the character ε : a 7→ 1 ∀a ∈ S define the
following bicomplex structure on T (kS) (or T (RS)):

εd(a1, . . . , an) =
n∑

i=1

(−1)i−1((a1 ⊳ ai), . . . , (ai−1 ⊳ ai), ai+1, . . . , an),

dε(a1, . . . , an) =
n∑

i=1

(−1)i−1(a1, . . . âi . . . , an).

2. This bidifferential comes from a pre-bisimplicial structure given by

dn;i(a1, . . . , an) = ((a1 ⊳ ai), . . . , (ai−1 ⊳ ai), ai+1, . . . , an),

d′n;i(a1, . . . , an) = (a1, . . . âi . . . , an).

3. If our shelf is moreover a spindle, then (T (kS), dn;i, d
′
n;i, sn;i := ∆i) is a weakly

bisimplicial vector space. As a consequence, the linear span CD
∗ (S) of the elements

(a1, . . . , an) ∈ S×n with ai = ai+1 for an 1 6 i 6 n − 1 forms a sub-bicomplex of
(T (kS), εd, dε). The same holds in T (RS).

Proof. Points 1 and 2 are direct applications of theorems 2 and 3 respectively, combined
with the lemmas from this section.

As for point 3, theorem 3 gives only a half of this assertion: (T (kS), dn;i, sn;i) is
a weakly simplicial vector space, hence CD

∗ (S) is a subcomplex of (T (kS), ∂ = εd). Since
(kS, σ⊳,∆D) is only a semi-braided coalgebra in general, the compatibilities (3.5) between
the d′n;i’s and the sn;i’s should be verified by hand, which is an easy exercise. Finally, the
explicit description of the degenerate sub-bicomplex follows from remark 4.2.10.

Let us point out familiar complexes recovered in this proposition:

Example 4.2.12. 1. The complex

CR
∗ (S) := (T (ZS), εd− dε)

gives what is known as the rack homology.

2. The complex
C⊳∗ (S) := (T (ZS), εd)

gives the shelf, or one-term distributive, homology.

3. The quotient CQ
∗ (S) of CR

∗ (S) by the subcomplex CD
∗ (S) gives what is known as the

quandle homology.

The rack homology was first defined by R.Fenn, C.Rourke and B.Sanderson ([27], 1995;
according to Roger Fenn, “Unusually in the history of mathematics, the discovery of the
homology and classifying space of a rack can be precisely dated to 2 April 1990”), and the
quandle homology was later suggested by J.S.Carter, D.Jelsovsky, S.Kamada, L.Langford
and M.Saito ([11], 2003). The one-term distributive homology was recently introduced by
J.H.Przytycki and A.S.Sikora ([67], [68], 2011), with a multi-term generalization. Cycles
from the complexes defining these homologies provide an efficient tool for producing knot
invariants. Numerous computations can be found in literature.
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Arrow operations are diagonal

The map
ε
տ takes the familiar diagonal form here:

(a1, . . . , an)
ε
տ b = (a1 ⊳ b, . . . , an ⊳ b).

Moreover, ε is right σ⊳-compatible with any b ∈ S. Proposition 3.2.7 and corollary 3.2.8
are then applicable, recovering some results on homology operations from [63], [68] and
[67] and their consequences:

Proposition 4.2.13. 1. The complex (T (kS), dε) is acyclic.

2. If there exists an element b ∈ S such that the application a 7→ a⊳ b is a bijection on
S, then the complex (T (kS), εd) is acyclic.

3. If there exists an a ∈ S stable by all the inner shelf morphisms, i.e.

a⊳ b = a ∀b ∈ S, (4.5)

then the complex (T (kS), εd) is acyclic.
All the assertions are still valid for RS.

Proof. Point 1 follows from corollary 3.2.8 (point 3) and the observation that every b ∈ S
forms a normalized pair with ε.

Point 2 follows from corollary 3.2.8 (point 1), since the arrow operation
ε
տ b, shown

there to be homotopic to zero, is now invertible: the inverse is given by

(a1, . . . , an) 7−→ (a1⊳̃b, . . . , an⊳̃b),

where a 7→ a⊳̃b denotes the map inverse to a 7→ a⊳ b.
Point 3 follows from the “right” version of corollary 3.2.8 (point 3): condition (4.5)

means precisely that a is left σ⊳-compatible with ε, and the normalization condition is
automatic.

Thus, the complex (T (kS), εd) is acyclic for a rack. However, it can be highly non-
trivial for shelves (cf. ([67], [68]).

Dirac maps and partial derivatives

Further, let us turn to the characters given by Dirac maps defined by (4.4).

Proposition 4.2.14. 1. Take a quandle (S,⊳, ⊳̃) with a fixed element a. Theorem 2
applied to the character ϕa gives the following bicomplex structure on T (RS):

ϕad(a1, . . . , an) =
n∑

i=1

(−1)i−1δa,ai
((a1 ⊳ ai), . . . , (ai−1 ⊳ ai), ai+1, . . . , an),

dϕa(a1 . . . an) =
n∑

i=1

(−1)i−1δa,(ai⊳ai+1)⊳··· )⊳an
(a1, . . . âi . . . , an).

2. According to theorem 3, this bidifferential comes from the pre-bisimplicial structure

dn;i(a1, . . . , an) = δa,ai
((a1 ⊳ ai), . . . , (ai−1 ⊳ ai), ai+1, . . . , an),

d′n;i(a1, . . . , an) = δa,(ai⊳ai+1)⊳··· )⊳an
(a1, . . . âi . . . , an).
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3. The face maps dn;i combined with degeneracies sn;i := ∆i give a weakly simplicial
structure. Differential ϕad thus descends to the normalized complex T (RS)/CD

∗ (S).

The differentials ϕad are called partial derivatives and are denoted by
∂1

∂a
in [63].

Our general setting thus contains some results of [63].

Remark 4.2.15. One can not talk about weakly bisimplicial structure here, since the coal-
gebra (RS, σ⊳,∆D) is only semi-pre-braided, and the compatibilities (3.5) between the
d′n;i’s and the sn;i’s, which are automatical for pre-braided coalgebras and happen to hold
for the character ε, are no longer true for the ϕa’s. However, one checks that CD

∗ (S) is still
a sub-bicomplex of (T (RS), ϕad, dϕa): indeed, d′n+1;i ◦ sn;j(a1, . . . , an) is proportional to
sn−1;j−1(a1, . . . , âi, . . . , an) and is thus still in the image of sn−1;j−1 for all 1 6 i < j 6 n.

Twisted rack homology

We finish with an example where different characters are used on the right and on the
left. It is inspired by the work of J.S.Carter, M. Elhamdadi, and M.Saito, cf. [9].

Proposition 4.2.16. Take a shelf (S,⊳) and work with its linearization ΛS, Λ = Z[T±1].
The pre-braiding σ⊳, combined with characters ε and

ǫT : ΛS −→ Λ,

a 7−→ T ∀a ∈ S

define, via theorem 2, a bicomplex structure on T (ΛS) by

εd(a1, . . . , an) =
n∑

i=1

(−1)i−1((a1 ⊳ ai), . . . , (ai−1 ⊳ ai), ai+1, . . . , an),

dǫT (a1, . . . , an) =
n∑

i=1

(−1)i−1T (a1, . . . âi . . . , an).

These differentials come from a pre-bisimplicial or weakly bisimplicial structure analogous
to those from proposition 4.2.11.

The differential εd− dǫT defines the twisted rack homology from [9].

4.3 Bar complex

A pre-braiding encoding associativity

Take a k-vector space (or an R-module) V endowed with a bilinear operation µ :
V ⊗ V −→ V and a distinguished element 1 ∈ V, sometimes regarded as a linear map

ν : k −→ V,

α 7−→ α1.

Morally, one should think about modeling unital associative algebras. In this section
we construct quite an exotic non-invertible pre-braiding on V which encodes the associa-
tivity of µ.
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Consider the bilinear application

σ = σµ : V ⊗ V −→ V ⊗ V,

v ⊗ w 7−→ 1⊗ µ(v ⊗ w) (4.6)

or, graphically,

µν

wv

1 µ(v ⊗ w)

Figure 4.3: Pre-braiding for associative algebras

Lemma 4.3.1. Suppose that 1 is a right unit for µ, i.e.

µ(v ⊗ 1) = v ∀v ∈ V.

Then the map σµ is a pre-braiding if and only if µ is associative on V.

Proof. Graphically, YBE for σµ means

v w u

1 1µ(µ(v⊗w)⊗u)

1 µ(v⊗w)

1
=

v w u
.

1 1µ(v⊗µ(w⊗u))

1 v

1 µ(w⊗u)

Figure 4.4: Pictorial proof of lemma 4.3.1

This is equivalent to the associativity condition

µ(µ(v ⊗ w)⊗ u) = µ(v ⊗ µ(w ⊗ u)) ∀v, w, u ∈ V. (Ass)

The associativity condition is graphically depicted as follows:

=
.

Figure 4.5: Associativity

One thus gets, like in the case of shelves, a pre-braiding subtly encoding the algebraic
structure “associative algebra”.

Remark 4.3.2. The braiding σµ is highly non-invertible. More precisely,

σ2
µ = σµ

if 1 is moreover a left unit.

Fix an associative k-algebra (V, µ) with a right unit 1 until the end of this section.
Such algebras are called right-unital here.
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Algebra characters are braided characters

Now let us look for braided (co)characters. We work, as usual, up to scalar multiples.
Natural candidates are certainly the “structural” characters:

Definition 4.3.3. An algebra character is a unital algebra morphism ǫ : V → k, where k

is endowed with the trivial algebra structure. In other words, it is an ǫ ∈ V ∗ satisfying

ǫ(µ(v ⊗ w)) = ǫ(v)ǫ(w) ∀v, w ∈ V, (4.7)

ǫ(1) = 1.

A non-unital algebra character satisfies the first condition only.

Graphically, it means

µ

wv

ǫ

=

ǫ ǫ

wv
,

ν

ǫ

= 1.

Figure 4.6: Algebra character

Lemma 4.3.4. Take a right-unital associative k-algebra (V, µ,1).

1. The only braided co-character for (V, σµ) is the right unit 1.

2. Braided characters are precisely maps ǫ ∈ V ∗ satisfying

ǫ(1)ǫ(µ(v ⊗ w)) = ǫ(v)ǫ(w) ∀v, w ∈ V. (4.8)

3. In particular, every algebra character is a braided character.

4. Any non-zero solution of (4.8) is a scalar multiple of an algebra character.

Working over a commutative unital ring R instead of a field k, one has to drop the
last statement and the uniqueness assertion from the first one.

An exotic comultiplication

We present now a comultiplication for our pre-braided vector space.

Lemma 4.3.5. 1. The linear map

∆1 : V −→ V ⊗ V,

v 7−→ 1⊗ v

endows (V, σµ) with a pre-braided coalgebra structure.

2. The comultiplication ∆1 is σµ-cocommutative if and only if 1 is a left unit.

Arrow operations are peripheral

The last remarks concern arrow operations and the special role of the right unit 1 in
our braided story. Recall definition 3.2.6 and corollary 3.2.8.

Lemma 4.3.6. 1. The arrow operations give peripheral actions:

v1 . . . vn−1vn

ǫ
տ w = ǫ(1)v1 . . . vn−1µ(vn ⊗ w) ∀vi, w ∈ V.
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2. In particular, the right unit 1 acts by identity if ε is an algebra character:

∗
ε
տ 1 = IdT (V ) .

3. The pre-braiding σµ is demi-natural with respect to 1. Consequently, 1 is right
σµ-compatible with any f ∈ V ∗.

Hochschild homology with trivial coefficients

We now turn to concrete computations. Cochain complexes obtained in our situation
are not very interesting, while chain complexes are:

Proposition 4.3.7. Take a right-unital associative algebra (V, µ,1) over a commutative
unital ring R and two algebra characters ǫ and ζ.

1. The pre-braiding σµ from (4.6) and the braided characters ǫ and ζ define, via theorem
2, the following bicomplex structure on T (V ):

ǫd(v1 . . . vn) = ǫ(v1)v2 . . . vn +
n−1∑

i=1

(−1)iv1 . . . vi−1µ(vi ⊗ vi+1)vi+2 . . . vn,

dζ(v1 . . . vn) = (−1)n−1ζ(vn)v1 . . . vn−1

+
n−2∑

i=0

(−1)iζ(vi+1) · · · ζ(vn)v1 . . . vi11 . . .1.

2. According to theorem 3, this bidifferential comes from the pre-bisimplicial structure

dn;1(v1 . . . vn) = ǫ(v1)v2 . . . vn,

dn;i+1(v1 . . . vn) = v1 . . . vi−1µ(vi ⊗ vi+1)vi+2 . . . vn, 1 6 i 6 n− 1,

d′n;i(v1 . . . vn) = ζ(vi) · · · ζ(vn)v1 . . . vi−111 . . .1, 1 6 i 6 n− 1,

d′n;n(v1 . . . vn) = ζ(vn)v1 . . . vn−1.

3. The complex (T (V ), ǫd) is acyclic.

4. If 1 is a two-sided unit, then the above structure can be completed into a weakly
bisimplicial one by putting

sn;i(v1 . . . vn) = v1 . . . vi−11vi . . . vn, 1 6 i 6 n.

5. In this case the structure (T (V ), dn;i, sn;i) is even simplicial.

6. In the normalized bicomplex, d′n;i = 0 for i < n− 1.

7. Still supposing the unit 1 two-sided, the differential ǫd− dζ descends to T (V ′), where

V ′ := V/R1,

giving the differential

ǫdζ(v1 . . . vn) := ǫ(v1)v2 . . . vn

+
n−1∑

i=1

(−1)iv1 . . . vi−1µ(vi ⊗ vi+1)vi+2 . . . vn,

+ (−1)nζ(vn)v1 . . . vn−1.
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Proof. Most of the assertions follow from theorems 2 and 3, combined with preceding
lemmas.

Point 3 is the corollary 3.2.8 applied to the element 1, posseding the “nice” properties
described in lemma 4.3.6.

Point 5 also follows from the properties of 1.
More work is needed for proving point 7. Point 4 ensures that tensors v1 . . . vi−11vi . . . vn

with 1 6 i 6 n generate a sub-bicomplex of T (V ), hence a subcomplex of (T (V ), ǫd− dζ).
Further, proposition 3.2.7 implies that the concatenation map v 7→ v1 is a differential com-
plex endomorphism of (T (V ), ǫd− dζ), thus its image T (V )⊗ 1 is a subcomplex. Forming
the quotient by these two subcomplexes, one gets the desired differential on T (V ′).

Differential ǫdζ defines a (generalization of a) homology sometimes called the group
homology, which can also be regarded as the Hochschild homology with trivial coeffi-
cients.

A “non-unital” remark

Remark 4.3.8. In the non-unital case, i.e. when V is endowed with a bilinear operation µ
only, one enriches V with a formal two-sided unit: Ṽ := V ⊕R1, extending µ by

µ(1⊗ v) = µ(v ⊗ 1) = v ∀v ∈ Ṽ .

Due to the equivalence of the associativity of µ on V and on Ṽ , lemma 4.3.1 asserts
that σµ is a pre-braiding on Ṽ if and only if µ is associative on V . Take the character
ε(V ) ≡ 0, ε(1) = 1 on Ṽ . The differential εdε descends to T ((Ṽ )′) ≃ T (V ), as explained in
the previous proposition. One recovers the well-known bar (or standard) differential:

dbar(v1 . . . vn) =
n−1∑

i=1

(−1)iv1 . . . vi−1µ(vi ⊗ vi+1)vi+2 . . . vn.

Moreover, a non-unital algebra character ǫ ∈ V ∗ extends to an algebra character on Ṽ by
imposing ǫ(1) = 1. Two such non-unital algebra characters then define a differential ǫdζ

on T ((Ṽ )′) ≃ T (V ).

This trick of adding formal elements will often be handy in what follows.

Remark 4.3.9. One can also obtain the bar differential without doing this formal unit
gymnastics. It suffices to replace the total differential with a “cut version”

∂ :=
n∑

i=2

dn;i

for the pre-simplicial structure from point 2 of proposition 4.3.7.

4.4 Leibniz complex

Leibniz algebras are “non-commutative” versions of Lie algebras. They were discovered
by A.Bloh in 1965, but it were J.-L.Loday and his student C.Cuvier who woke the general
interest in this structure around 1989 by, firstly, lifting the classical Chevalley-Eilenberg
boundary map from the exterior to the tensor algebra, which yields a new interesting
chain complex, and, secondly, by observing that the antisymmetry condition could be
omitted (cf. [46],[16],[47],[48],[17]). Here we recover their complex guided by our “braided”
considerations. Our interpretation explains the somewhat mysterious element ordering and
signs in their formula.
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A braiding encoding the Leibniz condition

The braiding we construct for Leibniz algebras is inspired by the pre-braiding for
associative algebras and is quite exotic as well. It also appears, in the Lie algebra context,
in A.Crans’s work ([15]). She attributes this construction to James Dolan. See also [8].

Like in the previous section, let V be a k-vector space (or an R-module) with a bilinear
operation, denoted by [, ] : V ⊗ V −→ V this time, and a distinguished element 1 ∈ V.
Morally, think about modeling Lie or Leibniz algebras.

Consider the bilinear application

σ = σ[,] : V ⊗ V −→ V ⊗ V,

v ⊗ w 7−→ w ⊗ v + 1⊗ [v, w]. (4.9)

It is a kind of a mixture of the flip τ and the pre-braiding σµ for associative algebras.

Lemma 4.4.1. Suppose that 1 is a Lie unit, i.e. a central element, in V :

[1, v] = [v,1] = 0 ∀v ∈ V. (4.10)

Then the map σ[,] is a pre-braiding if and only if

[v, [w, u]] = [[v, w], u]− [[v, u], w] ∀v, w, u ∈ V. (Lei)

Proof. We omit the details of the calculations here; they are quite easy with our graphical
calculus. One gets:

σ1σ2σ1(v ⊗ w ⊗ u) = u⊗ w ⊗ v + 1⊗ w ⊗ [v, u] + 1⊗ [w, u]⊗ v+

+ u⊗ 1⊗ [v, w] + 1⊗ 1⊗ [[v, w], u],

σ2σ1σ2(v ⊗ w ⊗ u) = u⊗ w ⊗ v + 1⊗ w ⊗ [v, u] + 1⊗ [w, u]⊗ v+

+ u⊗ 1⊗ [v, w] + 1⊗ 1⊗ ([v, [w, u]] + [[v, u], w]).

So YBE for σ[,] is equivalent to (Lei) for [, ].

Note that for the “only if” part of the statement, it is essential to work over a field k,
or to demand another technical condition (cf. lemma 5.2.3).

The condition (Lei) is graphically depicted as follows:

= −
.

Figure 4.7: Leibniz condition

Definition 4.4.2. A pair (V, [, ]) satisfying (Lei) is a Leibniz algebra, called unital if
endowed with a Lie unit 1.

One gets the notion of Lie algebra when adding the antisymmetry condition.
Lemma 4.4.1 means that once again one gets a pre-braiding encoding an algebraic

structure – it is the Leibniz algebra structure this time.
Fix a unital Leibniz algebra (V, [, ],1) until the end of this section.

Lemma 4.4.3. The pre-braiding σ[,] is invertible, the inverse given by

σ−1
[,] : v ⊗ w 7−→ w ⊗ v − [w, v]⊗ 1.

Remark 4.4.4. The invertibility of σ[,] means that this braiding allows to construct braid
invariants out of any unital Leibniz algebra. It would be interesting to explore the nature
of these invariants.
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Lie characters

Now let us look for braided (co)characters. As usual, we start with the “structural”
characters.

Definition 4.4.5. A Lie (or Leibniz) character is a unital Leibniz algebra morphism
ǫ : V → k, where k is endowed with the trivial (i.e. identically zero) unital Lie algebra
structure, with 1 ∈ k as the Lie unit. In other words, it is an ǫ ∈ V ∗ satisfying

ǫ([v, w]) = 0 ∀v, w ∈ V, (4.11)

ǫ(1) = 1.

A non-unital Lie character satisfies the first condition only.

Lemma 4.4.6. Take a unital Leibniz k-algebra (V, [, ],1).

1. An e ∈ V is a braided co-character if and only if

[e, e] = 0.

2. Braided characters have to satisfy one of the following conditions:

3 either ǫ(1) = 0,

3 or ǫ is a Lie character.

In the R-linear setting, only the “if” parts of the statements hold.

“Primitive” comultiplication

The comultiplication we choose for Leibniz algebras is what one expects:

Lemma 4.4.7. Suppose that k1 is a direct factor of V, i.e. one has a Leibniz sub-algebra
V ′ of V and a Leibniz algebra decomposition

V ≃ V ′ ⊕ k1. (4.12)

Then the linear map

∆pr : V −→ V ⊗ V,

v 7−→ 1⊗ v + v ⊗ 1 ∀v ∈ V ′,

1 7−→ 1⊗ 1

endows (V, σ[,]) with a semi-braided σ[,]-cocommutative coalgebra structure.

This comultiplication turns all the elements of V ′ into primitive ones.

Definition 4.4.8. We call a unital Leibniz algebra which admits a decomposition (4.12)
split.
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Arrow operations are adjoint

Like in the associative algebra case, the Lie unit 1 enjoys important properties with
respect to arrow operations:

Lemma 4.4.9. 1. The arrow operations give adjoint actions:

v1 . . . vn

ǫ
տ w = ǫ(1)

n∑

i=1

v1 . . . [vi, w] . . . vn + ǫ(w)v1 . . . vn ∀vi, w ∈ V.

2. In particular, the Lie unit 1 acts by scalars:

∗
ε
տ 1 = ε(1) IdT (V ),

which is simply IdT (V ) if ε is a Lie character.

3. The pre-braiding σ[,] is natural with respect to the Lie unit 1. Thus 1 is right σ[,]-
compatible with any f ∈ V ∗.

Leibniz complex

Everything is now ready for explicit calculations of differentials. Only the left ones
give something interesting:

Proposition 4.4.10. Take a unital Leibniz algebra (V, [, ],1) over a commutative unital
ring R.

1. The braiding σ[,] from (4.9) and a braided character ǫ (for instance, a Lie character)
define, via theorem 2, the following differential on T (V ):

ǫd(v1 . . . vn) = ǫ(1)
∑

16i<j6n

(−1)j−1v1 . . . vi−1[vi, vj ]vi+1 . . . v̂j . . . vn+

+
∑

16j6n

(−1)j−1ǫ(vj)v1 . . . v̂j . . . vn.

2. According to theorem 3, it comes from a pre-simplicial structure given by

dn;j(v1 . . . vn) = ǫ(1)
∑

16i<j

v1 . . . vi−1[vi, vj ]vi+1 . . . v̂j . . . vn

+ ǫ(vj)v1 . . . v̂j . . . vn.

3. The complex (T (V ), ǫd) is acyclic if ǫ(1) = 1.

4. If V is split, then the above structure can be completed into a weakly simplicial one
by putting

sn;i(v1 . . . vn) =

{
v1 . . . vi−11vi . . . vn + v1 . . . vi1vi+1 . . . vn if vi ∈ V

′,

v1 . . . vi−111vi+1 . . . vn if vi = 1.

Proof. Most of the assertions follow from theorems 2 and 3, combined with preceding
lemmas. Point 3 is the corollary 3.2.8 applied to 1.
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A “non-unital” remark

Remark 4.4.11. Like for associative algebras, in the non-unital case one enriches V with
a formal unit: Ṽ := V ⊕ R1, extending the bracket by imposing 1 to be a Lie unit. Due
to the equivalence of the Leibniz condition for [, ] on V and on Ṽ , lemma 4.4.1 asserts
that σ[,] is a braiding on Ṽ if and only if [, ] is Leibniz on V . Taking the Lie character
ε(V ) ≡ 0, ε(1) = 1 on Ṽ and restricting εd to the subcomplex T (V ) ⊂ T (Ṽ ), one recovers
the familiar Leibniz differential:

εd(v1 . . . vn) =
∑

16i<j6n

(−1)j−1v1 . . . vi−1[vi, vj ]vi+1 . . . v̂j . . . vn.

A summary

Let us summarize the last two sections before proceeding to their categorical and then
dual versions. First, we recall all the ingredients for braided homology theories identified
in the associative and Leibniz settings:

Theorem 5. 1. A right-unital associative (or unital Leibniz) algebra V can be endowed
with a pre-braiding σµ (resp. a braiding σ[,]) defined by the formula (4.6) (resp.
(4.9)).

2. Comultiplication ∆1 (resp. ∆pr) completes this pre-braiding into a σ-cocommutative
pre- (resp. semi-)braided coalgebra structure if V is moreover unital (resp. split).

3. Any (Lie) character ϕ is a braided character for this pre-braiding.

4. Our pre-braiding is demi-natural (even natural in the Leibniz case) with respect to
the unit 1.

We then apply the general constructions of theorem 3 and corollary 3.2.8 to these
ingredients:

Corollary 4.4.12. 1. A pair of algebra (resp. Lie) characters ǫ, ζ on a right-unital
associative (resp. unital Leibniz) algebra V allows to construct a pre-bisimplicial
structure, hence a bidifferential, on T (V ).

2. If V is moreover unital (resp. split), then T (V ) can be endowed with a weakly
simplicial structure, giving normalized quotient complexes.

3. Concatenation v 7→ v1 provides a contracting homotopy for both the left and the
right differentials ǫd and dζ .



Chapter 5

An upper world: categories

This chapter is devoted to a categorification of our braided (co)homology theory and of
the pre-braidings and other “braided” ingredients for associative and Leibniz algebras. We
work in the settings of a preadditive monoidal category, symmetric for Leibniz algebras.
This categorification is rather straightforward. A (more subtle and technical) categorical
version of shelves and racks and of the corresponding braided differentials is postponed
until chapter 11.

The advantages of the categorical approach are illustrated with concrete examples,
where we automatically get pre-braidings and homology theories for the corresponding
algebraic structures:

3 Leibniz superalgebra homology;

3 homologies of dual structures: coassociative/co-Leibniz coalgebras etc.;

3 right Leibniz algebra homology.

One of the essential features of our categorical constructions is the “local” nature of the
pre-braidings we use, in contrast with the classical “global” notion of braided category.
Concretely, our pre-braiding is defined for one object and not for all the objects of a
category, and no naturality is imposed.

This local/global distinction becomes especially important in chapter 10, where the
categorification presented here re-emerges in the context of virtual braid theory. In a
few words, the construction of a pre-braiding on an object already living in a symmetric
category (and thus automatically braided) leads to a “double-braiding” situation, which
we will show to be precisely the categorical counterpart of virtual braids, with their two
types of crossings (usual and virtual).

Only basic tools of category theory are used here; S.MacLane’s and V.G.Turaev’s fa-
mous books [49] and [79] are excellent references for the general and, respectively, “braided”
aspects of category theory. We also recommend the preprint [81] by Q.Westrich, where
most of the categorical notions used here are nicely presented and illustrated. In order to
make this work as self-contained as possible, we recall here all the necessary definitions.

59
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5.1 Categorifying braided differentials

Basic categorical notions

We start with recalling some classical definitions from category theory.

Definition 5.1.1. ú A strict monoidal (or tensor) category is a category C endowed
with
3 a bifunctor ⊗ : C × C → C satisfying the associativity condition;
3 an object I which is a left and right identity for ⊗.

ú A strict monoidal category C is called pre-braided if it is endowed with a pre-braiding
(or a commutativity constraint), i.e. a natural family of morphisms

c = {cV,W : V ⊗W →W ⊗ V } ∀V,W ∈ Ob(C),

satisfying

cV,W⊗U = (IdW ⊗cV,U ) ◦ (cV,W ⊗ IdU ), (5.1)

cV⊗W,U = (cV,U ⊗ IdW ) ◦ (IdV ⊗cW,U ) (5.2)

for any triple of objects V,W,U. “Natural” means here

cV ′,W ′ ◦ (f ⊗ g) = (g ⊗ f) ◦ cV,W (5.3)

for all V,W, V ′,W ′ ∈ Ob(C), f ∈ HomC(V, V ′), g ∈ HomC(W,W ′). One talks about
braidings and braided categories if the cV,W ’s are moreover isomorphisms.

ú A braided category C is called symmetric if its braiding is symmetric:

cV,W ◦ cW,V = IdW⊗V , ∀V,W ∈ Ob(C). (5.4)

We omit the part “monoidal” of the usual terms “braided monoidal” and “symmetric
monoidal” in what follows.

ú A category C is called preadditive if all its morphism sets HomC(V,W ) are abelian
groups, the composition of morphisms being Z-bilinear. For a preadditive and
monoidal category to be called preadditive monoidal, its tensor product should be
bilinear on morphisms. The same condition is imposed on pre-braided (and in
particular symmetric) preadditive categories.

ú A preadditive category C is called additive if all finite collections of objects V1, . . . , Vn

of C have a biproduct V1 ⊕ · · · ⊕ Vn in C.
ú A (unital) associative algebra in a strict monoidal category C, abbreviated as (U)AA,

is an object V together with morphisms µ : V ⊗V → V (and ν : I→ V ), satisfying
the associativity (and the unit) conditions:

µ ◦ (IdV ⊗µ) = µ ◦ (µ⊗ IdV ) : V ⊗3 → V,

µ ◦ (IdV ⊗ν) = µ ◦ (ν ⊗ IdV ) = IdV .

For a right-unital associative algebra we demand only the µ ◦ (IdV ⊗ν) = IdV part
of the last condition.
The dual notion (in the sense of section 5.4) is that of a (counital) coassociative
coalgebra.
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ú A (unital) Leibniz algebra in a symmetric preadditive category C, abbreviated as
(U)LA, is an object V together with morphisms [, ] : V ⊗ V → V (and ν : I → V )
satisfying the generalized Leibniz (and the Lie unit) conditions:

[, ] ◦ (IdV ⊗[, ]) = [, ] ◦ ([, ]⊗ IdV )− [, ] ◦ ([, ]⊗ IdV ) ◦ (IdV ⊗cV,V ) : V ⊗3 → V,

[, ] ◦ (IdV ⊗ν) = [, ] ◦ (ν ⊗ IdV ) = 0 : V → V.

See for instance [2] and [52] for the definition of algebras in a monoidal category, and
[30] for a survey on Lie algebras in a symmetric preadditive category.

We work only with strict monoidal categories here for the sake of simplicity; according
to a theorem of S.MacLane ([49]), any monoidal category is monoidally equivalent to a
strict one. This justifies in particular notations V ⊗W ⊗ U and V ⊗n. The word “strict”
is omitted but always implied in what follows.

Note that to define a unital Leibniz algebra, one needs more structure on the underlying
category than for associative algebras.

A list of categories

Here are some basic examples sufficient for what follows. See chapter 2 for the braidings
used here.

Example 5.1.2. 1. The category of sets Set is monoidal, with the Cartesian product×
as its tensor product, and a one-element set I as its identity object. An identification
of (A×B)× C with A× (B × C) and of I×A with A× I and with A for any sets
A,B,C, which is implicitly done in what follows, gives a strict monoidal category.
This category is symmetric, with the braiding provided by the usual flip isomorphism.

2. The category of R-modules and R-linear maps ModR (and, in particular, that of
k-vector spaces Vectk) can be regarded as symmetric in two ways. Firstly, it can be
endowed with the usual tensor product over R, the free one-dimensional module R
as an identity object, and the flip

τ : v ⊗ w 7−→ w ⊗ v

as a braiding. This structure is symmetric additive. Secondly, one can take the
direct sum ⊕ as a tensor product, the zero module as an identity object, and the flip

τ : v ⊕ w 7−→ w ⊕ v

as a symmetric braiding. Notation Mod⊕R will be used for the second structure.
Identifications similar to those for sets are implicit in both cases to assure the strict-
ness.
The linearization map gives a functor of symmetric categories

Lin : Set→ModR, (5.5)

S 7→ RS.

One more functor of symmetric categories, the forgetful one, is of interest:

For : Mod⊕R → Set, (5.6)

V 7→ V.

Observe that both functors are faithful but not full in general.
Note also the full subcategory vectk of Vectk consisting of finite-dimensional vector
spaces.
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3. The category of graded R-modules ModGradR is symmetric additive, with the
usual graded tensor product and direct sum, the one-dimensional zero-graded space
R as its identity object and the Koszul flip (2.1) as its braiding. Necessary identifi-
cations are effectuated to assure the strictness.

4. One can replace the sign (−1)deg v deg w in the definition of the Koszul flip with any
other antisymmetric bicharacter. Concretely, take a finite abelian group Γ endowed
with an antisymmetric bicharacter χ. The category ΓModR of R-modules graded
over Γ is symmetric, with the usual Γ-graded tensor product, the zero-graded R as
its identity object and, as a braiding, the so-called color flip

τcolor : v ⊗ w 7−→ χ(f, g)w ⊗ v

for homogeneous v and w graded over f and g ∈ Γ respectively.

5. Any monoidal category C has two interesting subcategories:

(a) The subcategory UAlg(C) of UAAs and unital algebra morphisms (i.e. mor-
phisms respecting µ and ν) in C. It is a monoidal subcategory if C is pre-braided:
it is stable by tensor products since

µV⊗W := (µV ⊗ µW ) ◦ (IdV ⊗cW,V ⊗ IdW ), (5.7)

νV⊗W := νV ⊗ νW (5.8)

give a UAA structure on V ⊗W for UAAs V and W, and it includes I with
identities as algebra structures, which will be the default UAA structure on I
in what follows. UAlg(C) is moreover a symmetric subcategory if C is sym-
metric, since the symmetry of the braiding guarantees that it respects algebra
structures. We write Alg when dealing with non-unital algebras.
For a preadditive C, UAlg(C) is not a preadditive subcategory in general, since
f + g is not necessarily an algebra morphism even if f and g are.

(b) If C is moreover symmetric preadditive, one also has the subcategory ULei(C)
of ULAs and unital Leibniz algebra morphisms (i.e. morphisms respecting [, ]
and ν) in C. It is neither preadditive nor even monoidal in general. It includes I
with the zero bracket and ν = IdI, which will be the default ULA structure on I
in what follows. We write Lei when dealing with non-unital Leibniz algebras.

In particular, UAlg(ModR) and ULei(ModR) are the familiar categories of R-
linear unital associative and Leibniz algebras respectively.

Braided objects, families and algebras

Now we introduce several new categorical notions, necessary for categorifying our con-
structions. Notations ϕi from (1.3) are widely used here.

Start with a “local” notion of braiding:

Definition 5.1.3. ú An object V in a monoidal category C is called pre-braided if it
is endowed with a “local” pre-braiding, i.e. a morphism

σ = σV : V ⊗ V → V ⊗ V,

satisfying a categorical version of (YB):

(σV ⊗ IdV ) ◦ (IdV ⊗σV ) ◦ (σV ⊗ IdV ) = (IdV ⊗ σV ) ◦ (σV ⊗ IdV ) ◦ (IdV ⊗σV ).



5.1. CATEGORIFYING BRAIDED DIFFERENTIALS 63

ú A family F of objects in a monoidal category C is called pre-braided if it is endowed
with a “local” pre-braiding, i.e. a morphism

σV,W : V ⊗W →W ⊗ V

for each V,W ∈ F satisfying a categorical version of (YB) on V ⊗W ⊗ U for each
triple V,W,U ∈ F .

ú A pre-braided family F is said to be natural with respect to a morphism ϕ : V →W,
with V,W ∈ F , if, for any U ∈ F , one has

σW,U ◦ (ϕ⊗ IdU ) = (IdU ⊗ϕ) ◦ σV,U , (5.9)

σU,W ◦ (IdU ⊗ϕ) = (ϕ⊗ IdU ) ◦ σU,V . (5.10)

One talks about semi-naturality if only (5.9) holds, and demi-naturality if only
(5.10) holds.

ú A pre-braided (unital) algebra V in a monoidal category C is a pre-braided object
(V, σ) endowed with a (U)AA structure µ (resp. (µ, ν)) compatible with the pre-
braiding:

σ ◦ µ1 = µ2 ◦ (σ1 ◦ σ2) : V ⊗3 → V ⊗2, (5.11)

σ ◦ µ2 = µ1 ◦ (σ2 ◦ σ1) : V ⊗3 → V ⊗2; (5.12)

σ ◦ ν1 = ν2 : V = I⊗ V = V ⊗ I→ V ⊗2, (5.13)

σ ◦ ν2 = ν1 : V = I⊗ V = V ⊗ I→ V ⊗2. (5.14)

One talks about semi-pre-braided (unital) algebras if only (5.11) (and (5.13)) hold.
The dual notions are those of a (semi-)(pre-)braided (counital) coalgebra (cf. (3.12),
(3.13)).

ú One talks about braided objects/families/algebras etc. if all the pre-braidings in-
volved are invertible.

ú In a monoidal category, a morphism ǫ : V → I is called a braided character for a
pre-braided object V if

ǫ⊗ ǫ = (ǫ⊗ ǫ) ◦ σV : V ⊗ V → I⊗ I = I.

In other words, it is a homomorphism between pre-braided objects (V, σV ) and
(I, IdI).

For a graphical interpretation of pre-braided unital algebras, see (the horizontally
symmetric version of) figure 3.3, and figure 3.6.

Example 5.1.4. Every object in a pre-braided category C is pre-braided, with σV = cV,V ,
since the YBE is automatic in C (take V ′ = V, W ′ = W = V ⊗ V, f = IdV and g = cV,V

in the condition (5.3) expressing naturality).

However, the most interesting situation is that of a pre-braiding proper to an object.

The idea of working with “local” pre-braidings on V instead of demanding the whole
category C to be “globally” braided is similar to what is done in [30], where self-invertible
YB operators are considered in order to define YB-Lie algebras in an additive monoidal
category C. Note that, contrary to their operator, our pre-braiding is not necessarily
invertible.

Continuing the local/global considerations, we remark that a pre-braiding σ on V ∈
Ob(C) “globalizes” to a pre-braiding on a certain subcategory of C:
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Lemma 5.1.5. 1. Take a (pre-)braided object (V, σ) in a monoidal category C. The
family of its tensor powers F = {V ⊗n}n>0, where V ⊗0 := I, can be endowed with
the following (pre-)braiding:

σV ⊗n,V ⊗k := (σk · · ·σ1) · · · (σn+k−2 · · ·σn−1)(σn+k−1 · · ·σn). (5.15)

2. This (pre-)braiding on F endows the monoidal subcategory of C generated by the
object V and the morphism σ with a (pre-)braided structure.

3. Further, given a (pre-)braided family F in C, one can add to F the tensor products
of all the n-tuples of its elements, for all the n ∈ N, extending the (pre-)braiding
thanks to formulas analogous to (5.15). This extended family is denoted by F⊗.

See remark 2.0.5 for a graphical version of the extended pre-braiding σ.

Definition 5.1.6. A pre-braiding for an object V (or a family F) in a monoidal category
C is said to be natural with respect to a morphism ϕ : V ⊗l → V ⊗r (resp. ϕ : V1⊗ . . .⊗Vl →
W1 ⊗ . . .⊗Wr, with Vi,Wj ∈ F) if the pre-braided family {V }⊗ = {V ⊗n}n>0 (resp. F⊗)
from the preceding lemma is natural with respect to ϕ, and similarly with semi- and
demi-naturality.

A pre-braided (unital) algebra can now be seen as a (unital) algebra structure and
a pre-braiding natural with respect to it, and similarly for coalgebras and for semi- or
demi-pre-braided (co)algebras.

Normalizations

Definition 5.1.7. ú In a monoidal category, a pair (η : I → V, ǫ : V → I) is said to
be normalized if

ǫ ◦ η = IdI .

ú An algebra character for an object V of UAlg(C) is a unital algebra morphism
ǫ ∈ HomUAlg(C)(V, I). A Lie character for an object V of ULei(C) is a unital
Leibniz algebra morphism ǫ ∈ HomULei(C)(V, I), i.e. it satisfies ǫ ◦ [, ] = 0 and
ǫ ◦ ν = IdI . The characters are called non-unital if they are maps in Alg or Lei
only.

ú A normalized morphism ϕ : V → W for V,W ∈ UAlg(C) or ∈ ULei(C) is a
morphism in C respecting the units, i.e.

ϕ ◦ νV = νW . (5.16)

For W = I this means that (νV , ϕ) is a normalized pair:

ϕ ◦ νV = IdI . (5.17)

Tensor (bi)differentials

Definition 5.1.8. ú A degree −1 differential for a family of objects {Vn}n>0 of a
preadditive category C is a family of morphisms {dn : Vn → Vn−1}n>0, satisfying

dn−1 ◦ dn = 0 ∀n > 1.
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ú A bidegree −1 bidifferential is a pair of families of morphisms {dn, d
′
n : Vn →

Vn−1}n>0, satisfying

dn−1 ◦ dn = d′n−1 ◦ d
′
n = d′n−1 ◦ dn + dn−1 ◦ d

′
n = 0 ∀n > 1. (5.18)

ú A degree −1 tensor (bi)differential for an object V of a preadditive monoidal cate-
gory C is defined as a degree −1 (bi)differential for the family of objects {V ⊗n}n>0.

ú Given a degree −1 differential {dn}n>0 for a family of objects {Vn}n>0 of a pread-
ditive category C, one defines a contracting homotopy as a family of morphisms
{hn : Vn → Vn+1}n>0, satisfying

hn−1 ◦ dn + dn+1 ◦ hn = IdVn ∀n > 0.

ú Different types of simplicial objects in a category C are defined by replacing the
words “vector space” by “object in C” in the definition 3.2.1.

Note that points 1 - 3 of proposition 3.2.2 remain valid for simplicial objects in a
preadditive category C.

The presence of a contracting homotopy means, in the category C = ModR, that the
complex (Vn, dn) is acyclic.

Observe that any monoidal (and braided and/or preadditive when necessary) functor
preserves all the structures from the previous four definitions.

Braided bidifferentials: a categorified version

One more tool is missing for a categorification of theorems 2 and 3. It is a categorical
quantum (co)shuffle (co)multiplication, which we define here.

Any pre-braided object (V, σ) in a monoidal category comes with an action of the
monoid B+

n on V ⊗n for each n > 1, defined by formula (2.3). If the category is moreover
preadditive, one can mimic the construction of the quantum (co)shuffle (co)multiplication
to get morphisms

�
σ

p,q : V ⊗n = V ⊗p ⊗ V ⊗q → V ⊗n

and
�
σ

p,q : V ⊗n → V ⊗p ⊗ V ⊗q = V ⊗n.

Here n = p + q. Still in the preadditive context, −σ is well defined and gives a new
pre-braiding for V.

Theorems 2 and 3 and proposition 3.2.7 (with their proofs!) are now generalized as
follows (we freely use the notations from those theorems here):

Theorem 6. In a preadditive monoidal category (C,⊗, I), take a pre-braided object (V, σ)
endowed with braided characters ǫ and ζ.

1. The families of morphisms

(ǫd)n := ǫ1 ◦ �
−σ

1,n−1,

(dζ)n := (−1)n−1ζn ◦ �
−σ

n−1,1

define a bidegree −1 tensor bidifferential for V.
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2. This bidifferential can be derived from a pre-bisimplicial structure on (V ⊗n)n>0 given
by

dn;i := ǫ1 ◦ T
σ
pi,n

,

d′n;i := ζn ◦ T
σ
p′

i,n
.

3. If a comultiplication ∆ endows (V, σ) with a pre-braided coalgebra structure, then the
maps

sn;i := ∆i

complete the preceding structure into a very weakly bisimplicial one.

4. If a comultiplication ∆ endows (V, σ) with a semi-pre-braided coalgebra structure,
then the data (V ⊗n, dn;i, sn;i) described above give a very weakly simplicial object
only.

5. If ∆ is moreover σ-cocommutative, i.e.

σ ◦∆ = ∆ : V → V ⊗ V,

then the above structures on (V ⊗n)n>0 are weakly (bi)simplicial.

6. Take a morphism η : I→ V. The family

hn = (−1)n IdV ⊗n ⊗η : V ⊗n −→ V ⊗(n+1)

ú is a contracting homotopy for (V ⊗n, (ǫd)n) if the pair (η, ǫ) is normalized, and σ
is demi-natural with respect to η.

ú is a contracting homotopy for (V ⊗n, (dζ)n) if the pair (η, ζ) is normalized and
right σ-compatible, i.e.

(IdV ⊗ζ) ◦ σ ◦ (IdV ⊗η) = η ◦ ζ : V → V. (5.19)

The versions of the theorem for braided co-characters and for “right” differentials are
obtained in subsequent sections via different types of categorical dualities.

Note that the demi-naturality of σ with respect to η implies (5.19) for any ζ.

5.2 Basic examples revisited

Shelves

According to lemma 4.2.1, every shelf S ∈ Ob(Set) is endowed with a pre-braiding
σ⊳ : (a, b) 7→ (b, a ⊳ b). Since the one-element set I is a final object in Set, the unique
morphism S → I is necessarily a braided character. The diagonal map D : a 7→ (a, a) gives
a semi-pre-braided coalgebra structure on S, σ⊳-cocommutative if S is a spindle. Given
a commutative unital ring R, the monoidal functor LinR provides then the linearization
RS of our shelf in the additive category ModR. The induced semi-pre-braided coalgebra
structure and braided character on RS give, according to theorem 6, a pre-bisimplicial and
a weakly simplicial (in the spindle case) structures, and thus a bidegree −1 bidifferential.
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Associative and Leibniz algebras

Next we consider more complicated “structural” braidings. We categorify theorem 5
and study several related questions.

Theorem 5cat.

1. Take a right-unital associative algebra (V, µ, ν) in a monoidal category (C,⊗, I).

(a) V can be endowed with a pre-braiding

σAss := ν ⊗ µ : V ⊗ V = I⊗ V ⊗ V → V ⊗ V. (5.20)

(b) Comultiplication

∆Ass := ν ⊗ IdV : V = I⊗ V → V ⊗ V

completes this pre-braiding into a σAss-cocommutative pre-braided coalgebra
structure if ν is moreover a two-sided unit.

(c) Any algebra character ǫ ∈ HomUAlg(C)(V, I) is a braided character for (V, σAss).

(d) The pre-braiding σAss is demi-natural with respect to the unit ν. Moreover, for
any algebra character ǫ, the pair (ν, ǫ) is normalized.

2. Take a unital Leibniz algebra (V, [, ], ν) in a symmetric preadditive category (C,⊗, I, c).

(a) V can be endowed with an invertible braiding

σLei := cV,V + ν ⊗ [, ]. (5.21)

(b) Comultiplication

∆Lei|V ′ := ν ⊗ IdV ′ + IdV ′ ⊗ν : V ′ → V ⊗ V,

∆Lei|I := ν ⊗ ν

completes this braiding into a σLei-cocommutative semi-braided coalgebra struc-
ture if C is additive and one has a Leibniz algebra decomposition V ≃ V ′ ⊕ I.

(c) Any Lie character ǫ ∈ HomULei(C)(V, I) is a braided character for (V, σLei).

(d) The braiding σLei is natural with respect to the unit ν. Moreover, for any Lie
character ǫ, the pair (ν, ǫ) is normalized.

Observe that in the Leibniz algebra setting, the naturality (with respect to morphisms
ν and [, ] in particular) and the symmetry of the braiding c are essential in proving that
σLei is indeed a braiding, while the naturality of c with respect to ǫ shows that ǫ is a
braided character for (V, cV,V ) (which implies that it is a braided character for (V, σV ) if
it preserves the Leibniz structure).

Remark 5.2.1. According to the theorem, a ULA V provides an example of a “doubly
braided” object: σV and cV,V are indeed two distinct braidings for V. One can say more:
the two braidings endow tensor powers of V with an action of the virtual braid group
(cf. the foundational paper of virtual knot theory [41]; see also [80], where the virtual
braid group was introduced and studied). The close connections between (pre-)braided
objects and virtual braid groups are studied in detail in part III.

Theorems 6 and 5cat put together give categorical versions of propositions 4.3.7 and
4.4.10, as well as of the “non-unital” remarks 4.3.8 and 4.4.11:
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Corollary 5.2.2. 1. Any algebra character ǫ : V → I for a UAA (V, µ, ν) in a pread-
ditive monoidal category C produces a degree −1 tensor differential for V, given by

(ǫd)n := ǫ1 +
n−1∑

i=1

(−1)iµi,

with a contracting homotopy
hn = (−1)nνn+1.

2. Any non-unital algebra characters ǫ, ζ : V → I for an associative algebra (V, µ) in
an additive monoidal C produce a degree −1 tensor differential for V, given by

(ǫdζ)n := ǫ1 +
n−1∑

i=1

(−1)iµi + (−1)nζn.

3. Any Lie character ǫ : V → I for a ULA (V, [, ], ν) in a symmetric preadditive category
C produces a degree −1 tensor differential for V, given by

(ǫd)n := ǫ1 ◦�
−c

1,n−1 +
∑

16i<j6n

(−1)j−1[, ]i ◦ (Id⊗i
V ⊗cV ⊗(j−i−1),V ⊗ Id⊗(n−j)

V ),

with a contracting homotopy
hn = (−1)nνn+1.

4. Any non-unital Lie character ǫ : V → I for a Leibniz algebra (V, [, ]) in a symmetric
additive category C produces a degree −1 tensor differential for V, given by

(ǫd)n :=
∑

16i<j6n

(−1)j−1[, ]i ◦ (Id⊗i
V ⊗cV ⊗(j−i−1),V ⊗ Id⊗(n−j)

V ).

An “if and only if” result

Working in Vectk in chapter 4, we noticed that the pre-braidings obtained for as-
sociative and Leibniz algebras encode the underlying algebraic structures (lemmas 4.3.1
and 4.4.1). It still holds, with some additional technical assumptions, in the categorical
setting:

Lemma 5.2.3. 1. Take an object V in a monoidal category (C,⊗, I) endowed with two
morphisms µ : V ⊗ V → V and ν : I→ V, with ν being a two-sided unit for µ. The
morphism σAss defined by (5.20) is a pre-braiding if and only if µ is associative.

2. Take an object V in a symmetric preadditive category (C,⊗, I, c) endowed with two
morphisms [, ] : V ⊗V → V and ν : I→ V, with ν being a Lie unit for [, ]. Additionally
suppose the existence of a normalized morphism γ : V → I (in the sense of (5.17)).
The morphism σLei defined by (5.21) is a braiding if and only if [, ] satisfies the
Leibniz condition.

Proof. One repeats the proofs of lemmas 4.3.1 and 4.4.1. The only non-trivial step is to
show that

ν ⊗ ν ⊗ f = ν ⊗ ν ⊗ g : V ⊗3 → V ⊗3

implies
f = g : V ⊗3 → V.

When ν is a left unit for µ, this is done by applying µ ◦ (IdV ⊗µ) to both sides of the
first identity. In the Leibniz case, apply γ ⊗ γ ⊗ IdV .
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Naturality

The pre-braidings constructed above enjoy a naturality property, providing moreover
a characterization of associative/Leibniz algebra morphisms:

Proposition 5.2.4. 1. In the settings of theorem 5cat, one has

(f ⊗ f) ◦ σV = σW ◦ (f ⊗ f) : V ⊗ V →W ⊗W (5.22)

for any morphism f : V → W in UAlg(C) (resp. ULei(C)), where σV and σW are
the pre-braidings σAss (resp. σLei) for V and W.

2. Suppose additionally, for the algebra case, that ν is a two-sided unit, and, for the
Leibniz case, the existence of a normalized morphism γ : V → I.

Then any normalized morphism f : V → W (cf. (5.16)) in C, compatible with the
σ’s in the sense of (5.22), necessarily respects the multiplications. In other words,
such an f is a morphism in UAlg(C) (resp. ULei(C)).

Proof. The first point is easy. For the second one, since f is normalized, (5.22) means

νW ⊗ (f ◦ µV ) = νW ⊗ (µW ◦ (f ⊗ f)),

and similarly – with µ replaced by [, ] – in the Leibniz case, since the braiding c is natural.
Now, like in the proof of lemma 5.2.3, apply µW (resp. γ ⊗ IdW ) to both sides.

Note that, contrary to the naturality of the pre-braiding in a pre-braided category, one
can not take two distinct morphisms f, g : V →W here.

5.3 The super trick

The first bonus one generally gains when passing to abstract symmetric categories is
the possibility to derive graded and super versions of algebraic results for free, thanks to
the Koszul flip τKoszul from (2.1). One clearly sees where to put signs, which is otherwise
quite difficult to guess. Here is a typical example.

Take a graded unital Leibniz algebra (V, [, ], ν), i.e. an object of ULei(ModGradR).
Recall that the category ModGradR comes with the symmetric braiding τKoszul. Leibniz
condition in this setting is

[v, [w, u]] = [[v, w], u]− (−1)deg u deg w[[v, u], w]

for any homogeneous elements v, w, u ∈ V. On the figure 4.7 illustrating (Lei), the crossing
on the right corresponds to the “internal” braiding cV,V = τKoszul.

Theorem 5cat gives a braiding for V :

σV : v ⊗ w 7−→ (−1)deg v deg ww ⊗ v + 1⊗ [v, w],

which, together with a Lie character ǫ : V0 → R (it has to respect degrees, and thus to be
zero on other components of V ), can be fed into the machinery from theorem 6 to give

Proposition 5.3.1. 1. An R-linear graded unital Leibniz algebra (V, [, ], ν) with a Lie
character ǫ can be endowed with the degree −1 tensor differential

ǫd(v1 . . . vn) =
∑

16i<j6n

(−1)j−1+αi,jv1 . . . vi−1[vi, vj ]vi+1 . . . v̂j . . . vn+

+
∑

16j6n

(−1)j−1+α0,j ǫ(vj)v1 . . . v̂j . . . vn,
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where
αi,j := deg(vj)

∑

i<k<j

deg(vk).

2. An R-linear graded Leibniz algebra (V, [, ]) with a non-unital Lie character ǫ can be
endowed with the degree −1 tensor differential

ǫd(v1 . . . vn) =
∑

16i<j6n

(−1)j−1+αi,jv1 . . . vi−1[vi, vj ]vi+1 . . . v̂j . . . vn.

All the vi’s are taken homogeneous here.

Observe that the (−1)αi,j part of the sign comes from the Koszul braiding, while
(−1)j−1 appears because we take the opposite braiding when defining (ǫd)n := ǫ1 ◦�

−σ

1,n−1.

Leibniz superalgebras are treated similarly: one has just to work in the category of
super modules over R. The reader is sent to [45] and other papers on the subject for
details. One thus recovers the Leibniz superalgebra homology, which is a lift of the
Lie superalgebra homology.

Similarly, one gets for free the color Leibniz algebra homology (cf. [20], or [70] for
a Lie version), since color Leibniz algebras are particular cases of Leibniz algebras in the
symmetric additive category ΓModR (cf. example 5.1.2).

See also [81] for an excellent survey of different types of braided Lie algebras.

5.4 Co-world, or the world upside down

One more nice feature of the categorical approach is an automatic treatment of du-
alities. The most common notion of duality, the “upside-down” one, is described here,
with the cobar complex for coalgebras (first defined by Cartier in [12]; cf. also [19] and
[77]) providing an example. In the monoidal context, one has two more dualities, the
“right-left” and the combined ones, treated in the next section.

Generalities on co-categories

Definition 5.4.1. Given a category C, its dual (or opposite) category Cop is constructed
by keeping the objects of C and reversing all the arrows. In other words, the domain
and codomain of any morphism change places. One writes fop ∈ HomCop(W,V ) for the
morphism in Cop corresponding to an f ∈ HomC(V,W ).

We sometimes call Cop a co-category in order to avoid confusion with other notions of
duality. Observe that this construction is involutive: (Cop)op = C.

Example 5.4.2. A well-known example comes from the full subcategory vectk of Vectk
consisting of finite dimensional vector spaces. The usual duality functor sending V to
V ∗ := Homk(V,k) and f to f∗ gives an equivalence of symmetric preadditive categories
vectk and (vectk)op.

The duality principle (cf. [49], section II.2) tells that a “categorical” theorem for C
implies a dual theorem for Cop by reversing all arrows and the order of arrows in every
composition. Our aim here is to apply this principle to theorems 6 and 5cat.



5.4. CO-WORLD, OR THE WORLD UPSIDE DOWN 71

Dualities for structures

To get a notion of duality for categorical structures, it suffices to place them to the
co-category. For example,

Definition 5.4.3. A counital coassociative coalgebra (abbreviated as co-UAA) in a strict
monoidal category C is an object V together with morphisms ∆ : V → V ⊗V and ε : V → I,
such that (V,∆op, εop) is a UAA in Cop.

The associativity condition is then “reversed” to the coassociativity condition (3.11)
(cf. figure 3.2), and the unit condition to the counit condition.

Counital co-Leibniz coalgebras (abbreviated as co-ULA) are defined similarly; cf. [59]
where Lie coalgebras are introduced. The subcategory of co-UAAs and co-ULAs in C are
denoted by coUAlg(C) and coULei(C) respectively. Coalgebra and co-Lie co-characters,
braided co-characters, degree 1 tensor differentials dn and bidegree 1 tensor bidifferentials
(dn, d′n) are also defined via dualities. A braided co-character e : I → V is described for
example by the familiar condition

e⊗ e = σV ◦ (e⊗ e) : I = I⊗ I→ V ⊗ V.

A convenient way to handle the “upside-down” duality is the graphical one: changing
from C to Cop consists simply in turning all the diagrams upside down, i.e. taking a
horizontal mirror image. By “diagrams” we mean those scattered throughout this
work. Here is the example for the co-Leibniz condition

(IdV ⊗∂) ◦ ∂ = (∂ ⊗ IdV ) ◦ ∂ − (Id⊗cV,V ) ◦ (∂ ⊗ Id) ◦ ∂ :

= − .

Figure 5.1: Co-Leibniz condition

Now let us make a list of dualities for categorical structures.

monoidal structure on C monoidal structure on C
(pre-)braiding on C (pre-)braiding on C

symmetric braiding on C symmetric braiding on C
(pre)additive structure on C (pre)additive structure on C

unital associative algebra (V, µ, ν) co-UAA (V, µop, νop)
unital Leibniz algebra (V, [, ], ν) co-ULA (V, [, ]op, νop)
algebra character ϕ for (V, µ, ν) coalgebra co-char. ϕop for (V, µop, νop)

Lie character ϕ for (V, [, ], ν) co-Lie co-char. ϕop for (V, [, ]op, νop)
pre-braiding σ for V pre-braiding σop for V

braided character ǫ for (V, σ) braided co-character ǫop for (V, σop)
(bi)degree −1 tensor (bi)degree 1 tensor

(bi)bidifferential for V (bi)differential for V

Table 5.1: Categorical duality

Note also that for a pre-braided object (V, σ) and the action of B+
n on V ⊗n coming

from σ, one has
(T σ

s )op = T
(σop)
s−1 ∈ EndCop(V ⊗n) ∀s ∈ Sn,
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since a decomposition of s−1 into simple transpositions can be obtained from one for s by
reversing the order in the decomposition. Thus, assuming the category preadditive, the
definition (2.7) of quantum co-shuffle comultiplication is translated as

(�
σ

p,q)op = �
σop

p,q.

In particular, all the properties of the quantum co-shuffle comultiplication follow from this
duality.

Categorical braided degree 1 differentials

Everything is now ready for dualizing theorems 6 and 5cat. We present only short
versions of these results here, leaving the dualization of the points concerning simplicial
and pre-braided coalgebra structures to the reader.

Theorem 6co. Let (C,⊗, I) be a preadditive monoidal category. For any pre-braided
object (V, σ) with braided co-characters e and c, the morphisms

(ed)n := �
−σ

1,n ◦ (e⊗ IdV ⊗n),

(dc)n := (−1)n
�
−σ

n,1 ◦(IdV ⊗n ⊗c)

define a bidegree 1 tensor bidifferential for V.

Pre-braidings for coassociative and co-Leibniz algebras

Theorem 5co.

1. Take a counital coassociative coalgebra (V,∆, ε) in a monoidal category (C,⊗, I).
(a) V can be endowed with a pre-braiding

σcoAss := ε⊗∆ : V ⊗ V → I⊗ V ⊗ V = V ⊗ V.

(b) Any coalgebra co-character e ∈ HomcoUAlg(C)(I, V ) is a braided co-character
for (V, σcoAss).

2. Take a counital co-Leibniz coalgebra (V, ∂, ε) in a symmetric preadditive category
(C,⊗, I, c).
(a) V can be endowed with a braiding

σcoLei := cV,V + ε⊗ ∂.

(b) Any Lie co-character e ∈ HomcoULei(C)(I, V ) is a braided co-character for
(V, σcoLei).

A graphical depiction of, for instance, σcoAss is by construction the horizontal mirror
image of the diagram one had for UAAs:

∆ε .

Figure 5.2: σcoAss = HorMirror(σAss)

A co-version of corollary 5.2.2 is then formulated in the evident way, with dual explicit
formulas. Lemma 5.2.3 and proposition 5.2.4 are also dualized directly. In particular, the
pre-braidings from the previous theorem encode the co-associativity (resp. co-Leibniz)
condition.



5.5. RIGHT-LEFT DUALITY 73

Cobar differential

We finish this section with some remarks proper to our favorite category ModR.

Lemma 5.4.4. In ModR, a map e : R → V, α 7→ αe for a co-UAA (V,∆, ǫ) is a non-
unital coalgebra co-character if and only if e ∈ V is group-like, i.e. ∆(e) = e⊗ e, while
a non-unital Lie co-character for a co-ULA (V, ∂, ǫ) corresponds to an e ∈ Ker(∂).

Further, “non-unital” remarks 4.3.8 and 4.4.11 admit co-versions. To create a counit
for a coassociative or co-Leibniz coalgebra (V, δ) (resp. (V, ∂)), one extends it by adding
a formal element: Ṽ := V ⊕R1, modifying the comultiplication:

∆(v) = δ(v) + 1⊗ v + v ⊗ 1 ∀v ∈ V,

∆(1) = 1⊗ 1

in the coassociative coalgebra case, and

∂(1) = 0,

keeping the original ∂ on V, in the co-Leibniz case. Thus the application ε ∈ Ṽ ∗ given by
ε(V ) ≡ 0, ε(1) = 1 is a (Lie) counit for ∆ (resp. ∂), and 1 is a group-like element (resp.
1 ∈ Ker(∂)). One easily checks the following

Lemma 5.4.5. The new comultiplication ∆ (resp. ∂) is coassociative (resp. co-Leibniz)
if and only if the original δ (resp. ∂) is.

To conclude, we write down the left braided differentials obtained in this particular
setting:

Proposition 5.4.6. Given an R-linear coalgebra (V, δ), extend it to a counital one (Ṽ ,∆, ε)
as described above. Then the group-like 1 gives, via theorem 6co, the following differential
on T (Ṽ ):

1d(v1 . . . vn) = 1v1 . . . vn +
n∑

i=1

(−1)iv1 . . . vi−1∆(vi)vi+1 . . . vn.

The ideal I1 of the tensor algebra T (Ṽ ) generated by the element 1 is 1d-stable. The
differential induced on T (V ) ≃ T (Ṽ /R1) ≃ T (Ṽ )/I1 is

1̃d(v1 . . . vn) =
n∑

i=1

(−1)iv1 . . . vi−1δ(vi)vi+1 . . . vn.

One eagerly recognizes the cobar differential for coalgebras.

5.5 Right-left duality

One more notion of duality is available for a monoidal category (C,⊗, I). One can
simply change its tensor product to the opposite one:

V ⊗op W := W ⊗ V

for objects, and similarly for morphisms. We call this new monoidal category monoidally
dual to C, denoting it by C⊗

op
(there seem to be no universally accepted notation, some
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authors even using Cop here and another notation for co-categories). Graphically, the
categories C and C⊗

op
differ by the vertical mirror symmetry for all diagrams.

Applying monoidal duality to a co-category Cop, one gets

Cop,⊗op
:= (Cop)⊗

op
≃ (C⊗

op
)op.

Graphically, it corresponds to the central symmetry.
Similarly to what we have seen for Cop, all “categorical” notions and theorems have

monoidally dual versions in C⊗
op
. This gives in particular right differentials (dǫ)n, (de)n,

monoidally dual to the left ones (ǫd)n, (ed)n. Note that these differentials should be endowed
with a sign (cf. theorem 2) if one wants a bidifferential structure.

One also has right braidings, monoidally dual to those from theorems 5cat and 5co.
In particular, a new braiding emerges for UAAs:

σr
Ass := µ⊗ ν : V ⊗ V = V ⊗ V ⊗ I→ V ⊗ V.

Its diagram is a vertical mirror symmetry of what one had in the “left” case:

µ ν
.

Figure 5.3: σr
Ass = V ertMirror(σAss)

Remark that the Leibniz algebra structure is not right-left symmetric: a Leibniz algebra
in C⊗

op
is in fact a left Leibniz algebra in C (cf. [48]). Thus one automatically obtains

braided homology theories for left Leibniz algebras.



Chapter 6

Braided modules and homologies
with coefficients

In this chapter we present two approaches to braided (co)homologies with coefficients.
The first one is quite conceptual. It consists in defining a suitable notion of modules
and bimodules over braided objects, specializing to the usual notions of (bi)modules for
concrete examples of pre-braidings encoding algebraic structures. The second one is rather
“handiwork”: we simply remark that, for instance, a module M over an algebra V is the
same thing as a special algebra structure on V ⊕ M, and thus one can simply study
the braided complexes for this latter algebra, and its reasonable subcomplexes. See the
introduction to each section for more details on each method.

The two approaches will be extensively used in part II in the context of Hopf and
Yetter-Drinfel′d structures.

6.1 Modules and bimodules over braided objects

We introduce here the notions of modules and bimodules over a pre-braided object V
in a monoidal category (in particular over a pre-braided vector space). These “braided”
modules generalize, in quite an unexpected manner, the following structures:

3 modules and bimodules over associative algebras;

3 modules over Leibniz algebras (cf. [46]);

3 rack modules (= the rack-sets of S.Kamada [37], or the shadows of W.Chang and
S.Nelson [13]), having knot-theoretical motivation.

Since at the same time a braided module generalizes a braided character, one naturally
arrives to homologies of pre-braided objects with coefficients. As particular cases, we point
out Hochschild and Chevalley-Eilenberg complexes.

We also endow each tensor power V ⊗n with an “adjoint” braided V -module structure,
generalizing the tensor powers of the adjoint representation of Leibniz algebras. Our
braided differentials then turn out to be braided V -module morphisms for the adjoint
modules V ⊗n, recovering in particular some properties of the bar complex.

All these facts speak in favor of our notion of braided modules.

Fix a monoidal category (C,⊗, I).

75
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Braided modules: definition and examples

Definition 6.1.1. ú A right module over a pre-braided object (V, σ) is an object
M ∈ Ob(C) equipped with a morphism ρ : M ⊗ V →M satisfying

ρ ◦ (ρ⊗ IdV ) = ρ ◦ (ρ⊗ IdV ) ◦ (IdM ⊗σ) : M ⊗ V ⊗ V →M. (6.1)

We talk about braided V -modules when the pre-braiding σ is clear from the context.
ú A left module is a right one in C⊗

op
.

ú A right (or left) comodule is a right (resp. left) module in Cop.
ú A braided V -module morphism is a morphism ϕ between braided V -modules (M,ρ)

and (N, π) such that

ϕ ◦ ρ = π ◦ (ϕ⊗ IdV ) : M ⊗ V → N. (6.2)

Condition (6.1) is graphically depicted as follows:

ρ
ρ

VVM

M
= ρ

ρ

VVM

M

σ
.

Figure 6.1: Braided module

Start as usual with a trivial example: in a preadditive category, any object M equipped
with the zero map M⊗V →M is a module over any pre-braided object (V, σ). We further
interpret our new notion in more complicated settings from chapter 4.

Example 6.1.2. 1. When the braiding is simply a (signed) flip, one recovers the notion
of (anti)commuting operators on M.

2. Take C = Set, and as a pre-braiding on a set S take σ⊳ from (4.1), coming from a
self-distributive operation ⊳. Condition (6.1) becomes

(m⊳ a)⊳ b = (m⊳ b)⊳ (a⊳ b) ∀m ∈M,a, b ∈ S,

which defines precisely a rack module (cf. [37] and [13]).

3. Any UAA (V, µ, ν) in C comes with the pre-braiding σAss from (5.20). Take a right
module (M,ρ) which we suppose normalized here, i.e.

ρ ◦ (IdM ⊗ν) = IdM (6.3)

(morally, “the unit acts by identity”). Condition (6.1) becomes

ρ ◦ (ρ⊗ IdV ) = ρ ◦ (IdM ⊗µ).

One recognizes the familiar notion of right modules over associative algebras.

4. Take a ULA (V, [, ], ν) in a symmetric preadditive category C. Endow V with the
braiding σLei from (5.21). Take a normalized right module (M,ρ). Condition (6.1)
becomes

ρ ◦ (ρ⊗ IdV ) = ρ ◦ (ρ⊗ IdV ) ◦ (IdM ⊗cV,V ) + ρ ◦ (IdM ⊗[, ]).

One recognizes the familiar notion of right modules over Leibniz algebras (cf.
[46]), raised to the categorical level.

Note that, dually, left modules over associative or left Leibniz algebras are particular
cases of left modules over pre-braided objects.
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Trivial and adjoint braided modules

Now, returning to the general monoidal category setting, try a special choice of M,
putting M = I.

Lemma 6.1.3. Take a pre-braided object (V, σ) in C. For a morphism ǫ : V = I ⊗ V =
V ⊗ I→ I, the following conditions are equivalent:

1. ǫ defines a right braided V -module;

2. ǫ defines a left braided V -module;

3. ǫ is a braided character.

Thus a braided character for V defines a right and left braided V -module structure on
I. This observation can be generalized to endow each tensor power of V with a braided
V -module structure. Recall notations ϕi from (1.3).

Proposition 6.1.4. Given a pre-braided object (V, σ) with a braided character ǫ, the map

ǫπ := ǫ1 ◦ σV ⊗n,V : V ⊗n ⊗ V → V ⊗n

defines a right braided V -module structure on V ⊗n. The braiding σ is extended here to
arbitrary powers of V as in lemma 5.1.5.

Proof. The definition of ǫπ and repeated application of the YBE give

ǫπ ◦ (ǫπ ⊗ IdV ) ◦ (Id⊗n
V ⊗σ) =

(ǫ⊗ ǫ⊗ Id⊗n
V ) ◦ σV ⊗n,V ⊗2 ◦ (Id⊗n

V ⊗σ) =

((ǫ⊗ ǫ) ◦ σ)⊗ Id⊗n
V ) ◦ σV ⊗n,V ⊗2

which, by the definition of braided character, is the same as

(ǫ⊗ ǫ⊗ Id⊗n
V ) ◦ σV ⊗n,V ⊗2 = ǫπ ◦ (ǫπ ⊗ IdV ).

The reader is advised to draw some diagrams to better follow the proof.

Definition 6.1.5. We call the modules (V ⊗n, ǫπ) adjoint.

One recognizes the map
ǫ
տ from section 3.2. See that section for a diagrammatic

depiction and some properties. In particular, proposition 3.2.7 gives the following

Proposition 6.1.6. The action ǫπ on T (V ) intertwines the left braided differential ξd for
σ-compatible braided characters ǫ and ξ.

In other words, ξd is a braided V -module morphism, for the adjoint braided V -module
structure on V ⊗n.

The motivation for our term comes from examples, where one recognizes familiar ac-
tions on T (V ):

Example 6.1.7. 1. Take a shelf S in C = Set and, as a braided character, the only
map from S to the one-element set I. Then S×n becomes a braided S-module, hence
a rack module, via the diagonal action

(a1, . . . , an)⊳ b = (a1 ⊳ b, . . . , an ⊳ b).
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2. For a UAA V in C with an algebra character ǫ, only the rightmost component of
V⊗n is affected by the adjoint action:

ǫπ = Id⊗(n−1)
V ⊗µ, n > 0.

One gets the peripheral action.

3. For a ULA V in C with a Lie character ǫ, one gets

ǫπ =
n∑

i=1

[, ]i ◦ (Id⊗i
V ⊗cV ⊗(n−i),V ) + ǫ1 ◦ cV ⊗n,V .

Starting with a non necessarily unital Leibniz algebra in an additive category, adding
a formal unit, taking the character ε and then restricting everything to T (V ) (cf.
remark 4.4.11), one gets rid of the last term and arrives to the usual adjoint action
of a Lie algebra V on T (V ).

Braided differentials and adjoint modules with coefficients

We have seen that a module over a pre-braided object is a generalization of a braided
character. Observe that this generalization picks the right property for a generalized
version of theorem 6 (where we replace the braided V -module I by arbitrary braided
modules) to hold:

Theorem 6coeffs. Let (C,⊗, I) be a preadditive monoidal category, (V, σ) a pre-
braided object in C, and (M,ρ) and (N,λ) a right and a left braided V -modules respectively.
Then two families of morphisms

(ρd)n := (ρ⊗ Id⊗(n−1)
V ⊗ IdN ) ◦ (IdM ⊗ �

−σ

1,n−1 ⊗ IdN ),

(dλ)n := (−1)n−1(IdM ⊗ Id⊗(n−1)
V ⊗λ) ◦ (IdM ⊗ �

−σ

n−1,1 ⊗ IdN ),

define a bidegree −1 tensor bidifferential for V with coefficient in M and N.

The complicated expression a bidegree −1 tensor bidifferential for V with coefficient in
M and N hides what one naturally expects: it means two families of morphisms dn, d

′
n :

M ⊗ V n ⊗N →M ⊗ V n−1 ⊗N, satisfying (5.18).
Pictorially, (ρd)n for example is a signed sum of terms of the form

σ
σ
σ

ρ

M NV ⊗n .

Figure 6.2: Braided differentials with coefficients

The proof of this result is a direct generalization of that of theorem 6. Moreover, all
the remaining points of that theorem can be generalized to “coefficient” versions.

Remark 6.1.8. Taking as M or N the unit object I with a zero module structure, one
obtains a degree −1 tensor differential for V with coefficient in the left braided V -module
N (resp. right braided V -module M) only.

As usual, everything described here can be dualized, in any of the three senses described
in sections 5.4 and 5.5.

Adjoint modules also admit a version with coefficients. Only left coefficients are con-
sidered here.
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Proposition 6.1.9. Given a pre-braided object (V, σ) and a right braided V -module (M,ρ),
the morphisms

ρπ := ρ1 ◦ (IdM ⊗σV ⊗n,V ) : M ⊗ V ⊗n ⊗ V →M ⊗ V ⊗n

define a right braided V -module structure on M ⊗ V ⊗n, intertwining the left differential
ρd.

In other words, ρd is a braided V -module morphism.

Definition 6.1.10. We call (M ⊗ V ⊗n, ρd) adjoint modules with coefficient.

Braided bimodules

Having the Hochschild homology in mind, one should also categorify the notion of
bimodules.

Definition 6.1.11. A bimodule over a pre-braided object (V, σ) is an object M ∈ Ob(C)
equipped with two morphisms ρ : M ⊗ V → M and λ : V ⊗M → M, turning M into a
right and left modules respectively and satisfying the following compatibility condition:

ρ ◦ (λ⊗ IdV ) = λ ◦ (IdV ⊗ρ) : V ⊗M ⊗ V →M.

Another interpretation of bimodules – in terms of modules over appropriate pre-braided
systems – will be given in chapter 7.

The bidifferential structure from theorem 6coeffs can be nicely adapted to bimodules:

Proposition 6.1.12. Let (C,⊗, I, c) be a symmetric preadditive category, (V, σ) a pre-
braided object in C, and (M,ρ, λ) a bimodule over V . Then the families of morphisms

(ρd)n := (ρ⊗ Idn−1
V ) ◦ (IdM ⊗ �

−σ

1,n−1),

(dλ)n := (−1)n−1c−1
M,V n−1 ◦ (Idn−1

V ⊗λ) ◦ (�
−σ

n−1,1 ⊗ IdM ) ◦ cM,V n ,

define a bidegree −1 tensor bidifferential for V with coefficients in M on the left.

By definition, (dλ)n is a signed sum of terms of the form

λ

M V V V V

Figure 6.3: Braided differentials with bimodule coefficients

Proof. Relations (ρd)n−1 ◦ (ρd)n = 0 and

(dλ)n−1 ◦ (dλ)n = c−1
M,V n−2 ◦ (d′λ)n−1 ◦ cM,V n−1 ◦ c−1

M,V n−1 ◦ (d′λ)n ◦ cM,V n

= c−1
M,V n−2 ◦ (d′λ)n−1 ◦ (d′λ)n ◦ cM,V n = 0,

with (d′λ)n := (−1)n−1(Idn−1
V ⊗λ)◦(�

−σ

n−1,1⊗IdM ), follow directly from the corresponding

identities in theorem 6coeffs.
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To prove the compatibility between (ρd)n and (dλ)n, observe that

(dλ)n = (−1)n−1((λ ◦ cM,V )⊗ Idn−1
V ) ◦ (IdM ⊗c

−1
V,V n−1) ◦ (IdM ⊗�

−σ

n−1,1),

then use the defining property of a bimodule, the naturality of the braiding c and the YBE
for σ.

Remark 6.1.13. We have kept the notation c−1, redundant for symmetric c, to be able to
treat the non symmetric situation. In this case, on the picture showing (dλ)n the thick
line (corresponding to M) should go behind all normal lines, in order to distinguish c from
c−1. One should be careful to differentiate two braidings, c and σ, which is difficult to do
pictorially. For the above theorem to be still valid, one should change the compatibility
condition defining a bimodule to the following one, different from the old one in general:

λ ◦ (IdV ⊗ρ) ◦ cM⊗V,V = ρ ◦ (λ⊗ IdV ) ◦ cM,V ◦ c
−1
V,V : M ⊗ V ⊗ V →M.

λ

ρ

M V V

=
λ

ρ

M V V

Figure 6.4: Bimodules in the non symmetric case

All the crossings correspond to the braiding c here.

A more elegant solution for the non symmetric case would be welcome.

Recovering classical homologies with coefficients

Example 6.1.14. 1. Taking a vector space V with a simple flip as a braiding and, for
instance, its symmetric algebra S(V ) as a module over V (with the action coming
from concatenation, as usual), one obtains more complicated versions of the Koszul
complex.

2. In the case of shelves, one recovers the shelf and rack homologies with coeffi-
cients, hinted at in [13].

3. For Leibniz algebras, our machinery gives the Leibniz homology with coeffi-
cients, generalizing the Chevalley-Eilenberg homology (cf. [46]).
In these three cases one generally puts the coefficients only on the left (cf. remark
6.1.8).

4. Coefficients on both sides turn out to be particularly useful for associative algebras
in a symmetric preadditive category. In this setting, proposition 6.1.12 gives the
following differential for an algebra bimodule (M,ρ, λ):

(ρd− dλ)n := ρ⊗ Idn−1
V +

n−1∑

i=1

(−1)iµi + (−1)n(λ⊗ Idn−1
V ) ◦ cM⊗V n−1,V

+ some terms involving ν.

For C = ModR, one can get rid of the terms with ν as it was done in the proof of
point 7 of proposition 4.3.7, getting the Hochschild differential.

5. The co-version of the previous differential is the Cartier differential for coalgebras
(cf. [12], where it was first introduced). It is easily obtained by duality.
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6.2 Structure mixing techniques

Another approach to studying (bi)modules over an associative / Leibniz algebra con-
sists in interpreting these structures as an associative / Leibniz multiplication on a larger
object, mixing the module structure and the multiplication on the acting algebra. It re-
sembles what is often done when studying Hochschild or Leibniz extensions (see [1] and
[48] for example).

We work in ModR here for simplicity, but everything presented in this section remains
valid in an additive monoidal category.

Only the example of a bimodule M ∈ VModW over associative algebras is studied in
detail here.

Take three R-modules V,W,M with four bilinear operations

µV : V ⊗ V −→ V µW : W ⊗W −→W
λ : V ⊗M −→M ρ : M ⊗W −→M.

These operations are denoted by a dot, e.g. v · a = λ(v ⊗ a), when it does not lead to
confusion.

Now mix these structures:
M ′ := V ⊕W ⊕M

and defining a bilinear operation µ on M ′ by

µ|V⊗V = µV , µ|W⊗W = µW ,

µ|V⊗M = λ, µ|M⊗W = ρ,

extended by zero for other couples of modules. One easily checks the following

Lemma 6.2.1. The associativity of µ is equivalent to a set of conditions:
ú V and W are associative algebras;
ú λ is a left action of V on M ;
ú ρ is a right action of W on M ;
ú these actions are compatible, in the sense that

(v · a) · w = v · (a · w), ∀v ∈ V,w ∈W,a ∈M.

Add a formal unit
M̃ := M ′ ⊕R1

and consider the application σµ from section 4.3. Combining the preceding lemma with
lemma 4.3.1, one gets:

Corollary 6.2.2. The application σµ is a braiding on M̃ if and only if the maps µV , µW , λ, ρ
define a structure of two associative algebras V and W and a bimodule M ∈ VModW .

Thus our pre-braiding encodes the structure of a bimodule.
Proceeding as in the “non-unital” remark 4.3.8, consider the braided character

ε(M ′) ≡ 0, ε(1) = 1.

Trying to reasonably restrict the differential εd, one notices that the submodule

T (V ;M ;W ) := T (V )⊗M ⊗ T (W ) ⊆ T (M̃)

is εd-stable. Explicit calculations give
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Proposition 6.2.3. Take a bimodule M ∈ VModW . The restriction of the differential εd
described above to T (V ;M ;W ) gives a differential

εd(v1 . . . vnaw1 . . . wm) =

=
n−1∑

i=1

(−1)iv1 . . . vi−1(vi · vi+1)vi+2 . . . vnaw1 . . . wm

+ (−1)nv1 . . . vn−1(vn · a)w1 . . . wm + (−1)n+1v1 . . . vn(a · w1)w2 . . . wm

+
m−1∑

i=1

(−1)n+1+iv1 . . . vnaw1 . . . wi−1(wi · wi+1)wi+2 . . . wm.

The differential from the proposition can be used to construct the Hochschild differ-
ential and the cyclic homology, using some “cyclic” considerations. This gives an aproach
alternative to the one presented in the previous section. This will be done in a subsequent
publication.



Part II

Hopf and Yetter-Drinfel′d
Structures via Braided Systems
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Chapter 7

Braided systems: general theory
and examples

The aim of this chapter is twofold.
On the one hand, we construct braided (co)homology theories for bialgebras, Hopf

algebras, Hopf modules, Hopf bimodules and Yetter-Drinfel′d modules, recovering fa-
miliar (co)homologies (for instance, the bialgebra cohomology of M.Gerstenhaber and
S.D.Schack, cf. [29]). For this we use “braided” techniques generalizing those from part
I. The particularity of the structures in question is that one has to deal with components
of different nature (for example, an algebra, its dual and several Hopf modules over it) at
the same time. One can try to amalgamate all the structures into one, as it was done in
section 6.2 for bimodules over associative algebras, but in this chapter we present a more
elegant and flexible tool, which we call a (pre-)braided system. This generalization turns
out to be sufficient for encoding the algebraic structures listed above, just like the notion
of pre-braided object which we used for encoding simpler structures in preceding chapters.

On the other hand, we focus on the presentations of Hopf bimodules and other “compli-
cated” structures as “simpler” structures – algebra modules – over certain “complicated”
algebras (for example, the algebra X of C.Cibils and M.Rosso, cf. [14]), which are braided
(or twisted in some sources) tensor products of some “simpler” algebras. See table 1.1 for
the concrete examples we are interested in. In this chapter, we introduce an intermediate
interpretation of such structures as multi-braided modules over appropriate pre-braided
systems. This gives a convenient tool for a systematic study of braided tensor products of
algebras, describing in particular

3 their associativity conditions;

3 interchanging rules for their components;

3 modules over such braided tensor product algebras.

Our theory recovers the iterated twisted tensor products of algebras, studied by P.Jara
Martínez, J.López Peña, F.Panaite and F. van Oystaeyen (cf. [32]).

Continuing the example of the algebra X , we automatically recover its Y and Z

versions, introduced by F.Panaite in [65], as well as the explicit isomorphisms between the
three. Moreover, we include these three algebras into a family of 24 pairwise isomorphic
braided tensor product algebras. Our systematic method allows to minimize the technical
verifications necessary to establish this kind of results.

Feeding the multi-braided-module interpretation of the “complicated” structures above
into the general multi-braided homology theory with coefficients we develop here (gener-
alizing the contents of section 6.1), we reinterpret different “complicated” structures on

85
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concrete braided differential complexes (for instance, the Hopf bimodule structure on the
bar complex of a bialgebra with coefficients in a Hopf bimodule).

In the concrete settings of Hopf and Yetter-Drinfel′d structures, the building blocks for
our pre-braided systems are the pre-braiding σAss encoding the associativity, and the pre-
braiding σY D for two Yetter-Drinfel′d modules, both with several “twisted” modifications.
See formulas (5.20), (7.12) and figure 7.12.

In the first two sections we create a general abstract framework for dealing with the two
types of questions we are interested in here, while in the remaining sections we consider
more or less general examples.

7.1 General recipe

Fix a monoidal category C.

Pre-braided systems and braided characters

Start with making the concept of a pre-braided family of objects (definition 5.1.3) more
precise:

Definition 7.1.1. A pre-braided system in C is an ordered finite family V1, V2, . . . , Vr ∈
Ob(C) endowed with morphisms

σi,j : Vi ⊗ Vj −→ Vj ⊗ Vi ∀1 6 i 6 j 6 r,

satisfying the Yang-Baxter equation (YB) on all the tensor products Vi ⊗ Vj ⊗ Vk with
1 6 i 6 j 6 k 6 r.

Such a system is denoted by ((Vi)16i6r, (σi,j)16i6j6r) or briefly (r, V , σ).
We call the family braided if all the σi,j ’s are invertible.
For given 1 6 s 6 t 6 r, the pre-braided (s, t)-subsystem of (r, V , σ), denoted by

(r, V , σ)[s, t], is the subfamily Vs, . . . , Vt with the σi,j ’s from σ.

Thinking pictorially, one allows a strand to overcross only the strands colored with a
smaller or equal index i ∈ {1, 2, . . . , r}.

The difference from the notion of a pre-braided family consists in two points:

1. the finiteness condition;

2. the definition of braiding for the ordered couples of objects only.

Note that one has
(r+2

3

)
YBEs to verify.

The pre-braiding constructed earlier for a bimodule M ∈ VModW does not fit directly
to these settings, since σµ(v⊗ a) = 1⊗ v · a ∈ 1⊗M for a ∈M, v ∈ V, i.e. the element of
M stays on the right instead of passing to the left as it happens in pre-braided systems.

As for positive examples, the simplest one is the following:

Lemma 7.1.2. Pre-braided objects (Vi, σi), 1 6 i 6 r in a pre-braided category (C,⊗, I, c)
form a pre-braided system when endowed with the pre-braiding

σi,i := σi,

σi,j := cVi,Vj
, i < j.

Proof. There are three kinds of tensor products on which one should check (YB):

1. Vi ⊗ Vi ⊗ Vi. Use YBE for σi here.
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2. Vi ⊗ Vi ⊗ Vj or Vi ⊗ Vj ⊗ Vj for i < j. Use the naturality of the pre-braiding c with
respect to σi or σj .

3. Vi ⊗ Vj ⊗ Vk for i < j < k. Use YBE for the pre-braiding c.

Here are two useful elementary properties of pre-braided systems:

Lemma 7.1.3. Take a pre-braided system (r, V , σ) in C.

1. For any subset I ⊆ {1, . . . , r}, one has a pre-braided system

((Vi)i∈I , (σi,j)i6j∈I×I),

called a pre-braided subsystem of (r, V , σ).

2. For any 1 6 i < r, the pre-braiding σ gives a pre-braiding on

(V1, . . . , Vi−1, Vi ⊗ Vi+1, Vi+2, . . . , Vr)

by choosing the identity or the zero (if C is preadditive) pre-braiding on (Vi⊗Vi+1)⊗2

and by using the formulas for extending a pre-braiding to tensor products (cf. lemma
5.1.5) on (Vi ⊗ Vi+1)⊗ Vj and Vk ⊗ (Vi ⊗ Vi+1).

The notions of compatible co-elements and braided characters are inherited from the
ones we had in the context of pre-braided vector spaces:

Definition 7.1.4. ú Families of morphisms fi, gi : Vi → I, 1 6 i 6 r are called
σ-compatible if

(fj ⊗ gi) ◦ σi,j = gi ⊗ fj ,

(gj ⊗ fi) ◦ σi,j = fi ⊗ gj

on Vi ⊗ Vj for all i 6 j.
ú A braided character for (r, V , σ) is a family ǫ of morphisms ǫi : Vi → I which is

σ-compatible with itself.

Braided differentials: a “multi-version”

From now on, suppose C additive monoidal. In particular, one can interpret the col-
lection σ as a partial braiding σpart on

V := V1 ⊕ V2 ⊕ · · · ⊕ Vr.

We then show that the collection σ suffices for defining a partial version of quantum
shuffle structures.

Definition 7.1.5. ú An ordered tensor product for a pre-braided system (r, V , σ) in
C is a tensor product of the form

V ⊗m1
1 ⊗ V ⊗m2

2 ⊗ · · · ⊗ V ⊗mr
r , mi > 0.

ú A reversely ordered tensor product is one of the form

V ⊗mr
r ⊗ V

⊗mr−1

r−1 ⊗ · · · ⊗ V ⊗m1
1 , mi > 0.
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ú The degree of such a tensor product is simply the sum
r∑

i=1

mi.

ú The direct sum of (reversely) ordered tensor products of degree n is denoted by
T (V )→n (resp. T (V )←n ).

In ModR, the T (V )→n ’s sum up to

T (V )→ := T (V1)⊗ T (V2)⊗ · · · ⊗ T (Vr).

Lemma 7.1.6. Let (r, V , σ) be a pre-braided system in C. The (categorical version of the)
quantum co-shuffle comultiplication (2.7) is well defined on ordered tensor products. It
gives a coassociative comultiplication denoted by

�
σ

p,q : T (V )→p+q −→ T (V )→p ⊗ T (V )→q .

Proof. It is sufficient to observe that if an ordered tensor product is fed into the formula
(2.7) defining �

σ
, then the braiding σ is applied only to components Vi⊗Vj with i 6 j.

Dualizing, one gets an associative multiplication

�
σ

p,q : T (V )←p ⊗ T (V )←q −→ T (V )←p+q.

Note that even when its source is an ordered tensor product, the target of �
σ

p,q is not

a single tensor product of ordered tensor products, but their direct sum in general. This
explains why we need additive categories here.

In the additive setting, a braided character for (r, V , σ) can be seen as a morphism
ǫ : V → I satisfying

(ǫ⊗ ǫ) ◦ �
−σi,j

= 0 : Vi ⊗ Vj −→ I, ∀i 6 j.

An example of such braided characters is given by “partial characters” :

Lemma 7.1.7. A braided character ǫi for the pre-braided object (Vi, σi,i), extended to
the other Vj ’s by zero, is a braided character for (r, V , σ).

Further, the notion of (bi)degree −1 tensor (bi)differentials for (r, V , σ) is ob-
tained from that for an object V (cf. definition 5.1.8) by replacing all the occurencies of
V ⊗n with its ordered substitute T (V )→n (or, in the dual situation, T (V )←n ).

Everything is now ready for a multi-version of theorem 6:

Theorem 6 multi. Let (C,⊗, I) be an additive monoidal category. For a pre-braided
system (r, V , σ) with two braided characters ǫ and ζ, the morphisms

(ǫd)n := (ǫ⊗ IdT (V )→
n−1

) ◦ �
−σ

1,n−1 : T (V )→n −→ T (V )→n−1,

(dζ)n := (−1)n−1(IdT (V )→
n−1
⊗ζ) ◦ �

−σ

n−1,1 : T (V )→n −→ T (V )→n−1

define a bidegree −1 tensor bidifferential. So do the families (ǫd)n and (ζd)n if ǫ and ζ are
σ-compatible.

This theorem comes with a co-version, generalizing theorem 6co. Recall that one should
work with T (V )←n in the dual settings, since a pre-braiding on the system (V1, . . . , Vr) in
Cop is the same thing as a pre-braiding on the reversed sytem (Vr, . . . , V1) in C.

As usual, other points of theorem 6 are easily generalized to the “multi”-setting.
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Remark 7.1.8. In practice, some sub-bicomplexes of the above-mentioned bicomplexes are
often useful. A typical example (cf. section 6.2) is

T (V1;V2;V3) := T (V1)⊗ V2 ⊗ T (V3),

which is ǫd- and dǫ-stable if ǫ is the zero map on the component V2 of V . Note that in this
situation one never has two neighboring V2 components, hence the pre-braiding σ2,2 for
V2 does not matter and can be chosen identity for simplicity, automatically giving YBE
on all the triple tensor products Vi ⊗ Vj ⊗ Vk with at least two consecutive V2’s.

Adding coefficients: multi-braided modules

The notion of braided module has a particularly fruitful generalization for pre-braided
systems:

Definition 7.1.9. ú A right multi-module over a pre-braided system (r, V , σ) in C is
an object M ∈ Ob(C) equipped with morphisms

ρi : M ⊗ Vi →M ∀ 1 6 i 6 r

satisfying, for all 1 6 i 6 j 6 r,

ρj ◦ (ρi ⊗ IdVj
) = ρi ◦ (ρj ⊗ IdVi

) ◦ (IdM ⊗σi,j) : M ⊗ Vi ⊗ Vj →M. (7.1)

ú Left modules and comodules, as well as multi-module morphisms, are defined in the
usual way.

ú Denote by Mod(r,V ,σ) the category of such right multi-modules and multi-module
morphisms.

ú We talk about multi-braided V -modules and use the notation Mod(V1,...,Vr) when
the pre-braided system structure is clear from the context.

Remark 7.1.10. A multi-braided V -module can be seen as a braided (Vi, σi,i)-module ∀ 1 6
i 6 r, these structures being compatible in the sense of (7.1).

As usual, a left or right V -module structure on the unit object I of C is the same thing
as a braided character for V .

In the following sections, we interpret algebra bimodules, Hopf (bi)modules and Yetter-
Drinfel′d modules as multi-braided modules over appropriate pre-braided systems.

Theorem 6 multi clearly admits a version with coefficients:

Theorem 6 multi,coeffs. Let (C,⊗, I) be an additive monoidal category. For a pre-
braided system (r, V , σ) and a multi-braided V -module (M,ρ := (ρi)16i6r), the family of
morphisms

(ρd)n := (ρ⊗ IdT (V )→
n−1

) ◦ (IdM ⊗�
−σ

1,n−1) : M ⊗ T (V )→n −→M ⊗ T (V )→n−1

defines a degree −1 tensor differential.

The theory of adjoint modules, including its version with coefficients and the homo-
logical consequences (propositions 6.1.6 and 6.1.9), have a natural multi-version. We treat
directly the version with coefficients here.

Proposition 7.1.11. Take numbers 1 6 s 6 t 6 r, a pre-braided system (r, V , σ) and a
multi-braided V -module (M,ρ). Denote by (t−s+1, V ′, σ) the pre-braided (s, t)-subsystem
of (r, V , σ).
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1. For any n ∈ N, M ⊗ T (V ′)→n becomes a multi-braided (r, V , σ)[t, r]-module via the
morphisms

ρπi := (ρi ⊗ Id
T (V

′
)→
n

) ◦ (IdM ⊗σ
T (V

′
)→
n ,Vi

) : M ⊗ T (V ′)→n ⊗ Vi →M ⊗ T (V ′)→n

for all t 6 i 6 r.

2. Moreover, the left differentials (ρd)n are multi-braided module morphisms for the
multi-braided module structure ρπ over (r, V , σ)[t, r].

Thus, for instance, for components Vi and Vi+1 of a pre-braided system, the differential
ǫid on T (Vi) is a morphism of braided (Vi+1, σi+1,i+1)-modules, with the module structure
ǫi+1π, if ǫi and ǫi+1 are braided characters on (Vi, σi,i) and (Vi+1, σi+1,i+1) respectively,
compatible in the following sense:

(ǫi+1 ⊗ ǫi) ◦ σi,i+1 = ǫi ⊗ ǫi+1 : Vi ⊗ Vi+1 → I.

Invertibility questions

The invertibility of some of the σi,j ’s, often encountered in practice, can be helpful in
extending pre-braided – and thus differential – structures:

Proposition 7.1.12. Let (r, V , σ) be a pre-braided system in C, with σi,j invertible for

s 6 i < j 6 t. Then one can glue the objects Vs, . . . , Vt together into Vs:t :=
t⊕

i=s

Vi and

extend the pre-braiding onto (V1, . . . , Vs−1, Vs:t, Vt+1, . . . , Vr), putting

σ|Vj⊗Vi
:= σ−1

i,j ∀s 6 i < j 6 t.

Note that the invertibility of the σi,i’s is not required here even for s 6 i 6 t.

Proof. One has to check additional YBEs appearing when passing to Vs:t, i.e. (YB) on all
the Vi ⊗ Vj ⊗ Vk with

3 s 6 i, j, k 6 t and any order on {i, j, k};

3 s 6 i, j 6 t < k and any order on {i, j};

3 i < s 6 j, k 6 t and any order on {j, k}.

In other words, one wants

σ
εi,j

|i,j|σ
εi,k

|i,k|σ
εj,k

|j,k| = σ
εj,k

|j,k|σ
εi,k

|i,k|σ
εi,j

|i,j| : Vi ⊗ Vj ⊗ Vk → Vk ⊗ Vj ⊗ Vi (YB±)

where εα,β := −1 if α > β (allowed only when s 6 α, β 6 t) and 1 otherwise, |α, β| =
(min{α, β},max{α, β}), and the braidings σ are tensored with the identity on the left or
on the right in the evident manner.

The condition (YB±) for the signs ε := (εi,j , εi,k, εj,k) = (−1, α, β) results from (YB±)
for ε = (1, β, α): multiply the latter by σ−1

i,j on the left and on the right, and permute the
subscripts i, j, k. (We do not speak about equivalence here since the σ’s are not necessarily
invertible.) The same works for (α, β,−1)⇐ (β, α, 1). This allows to forget the instances
of (YB±) with the minus signs on the left or on the right, leaving just two cases:

1. ε = (1, 1, 1), where (YB±) holds by the definition of pre-braided system;

2. ε = (1,−1, 1), meaning k < i 6 j 6 k, which is impossible.
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On the level of multi-braided modules, the invertibility of σi,i+1 allows to interchange
the components Vi and Vi+1 of a pre-braided system without changing the module category:

Proposition 7.1.13. Let (r, V , σ) be a pre-braided system in C, with σi,i+1 invertible for
a given i between 1 and r − 1. Then the following categories of multi-braided modules are
equivalent:

Mod(V1,...,Vi,Vi+1,...,Vr) ≃Mod(V1,...,Vi+1,Vi,...,Vr),

where the second pre-braided system inherits the pre-braidings σ except on Vi+1⊗Vi, where
we choose σ−1

i,i+1.

Proof. The existence of the second pre-braided system from the proposition, which we
denote by V

′
, is guaranteed by proposition 7.1.12, since the set of occurrencies of YBE

one has to check is a subset of those one has for the system (V1, . . . , Vi ⊕ Vi+1, . . . , Vr).
Further, given an object M ∈ Ob(C) equipped with morphisms ρj : M ⊗ Vj →M, the list
of compatibility conditions (7.1) one has to check for V differs from the list for V ′ only in
the conditions for components i, i+ 1:

ρi+1 ◦ (ρi ⊗ IdVi+1) = ρi ◦ (ρi+1 ⊗ IdVi
) ◦ (IdM ⊗σi,i+1)

versus
ρi ◦ (ρi+1 ⊗ IdVi

) = ρi+1 ◦ (ρi ⊗ IdVi+1) ◦ (IdM ⊗σ
−1
i,i+1).

These two conditions are clearly equivalent. So the identity functor of C gives the de-
manded category equivalence.

7.2 A protoexample: pre-braided systems of algebras

This section is devoted to a study of pre-braided systems whose components Vi have
a structure of unital associative algebras, the pre-braidings σi,i being our algebra pre-
braiding σAss or its right version σr

Ass. Such systems are proved to be in one-to-one corre-
spondence with multi-braided tensor products of algebras, and multi-braided modules over
such systems are shown to coincide with modules over the corresponding tensor product
algebras. As a consequence, “invertibility” propositions 7.1.12 and 7.1.13 can be applied.
Concrete examples illustrating the advantages of our braided system approach follow in
subsequent sections.

Multi-braided tensor products of algebras

We start with showing that the tensor product of UAAs in a pre-braided category (cf.
(5.7) - (5.8)) can be generalized to the setting of a pre-braided system. Recall the notion
of naturality from definition 5.1.6, which we extend to families of morphisms which are
not necessarily pre-braidings in the evident manner.

Theorem 7. Take r UAAs (Vi, µi, νi), 1 6 i 6 r, in a monoidal category C, each unit νi

being a part of a normalized pair (νi, ǫi), and, for each couple of subscripts 1 6 i < j 6
r, a morphism ξi,j natural with respect to νi and νj . The following statements are then
equivalent:

1. The morphisms

σi,i := σAss ∀i,

σi,j := ξi,j ∀i < j

define a pre-braided system structure on V .
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2. Each ξi,j is natural with respect to µi and µj , and, for each triple i < j < k, the ξ’s
satisfy the categorical Yang-Baxter equation on Vi ⊗ Vj ⊗ Vk.

3. A UAA structure on
←−
V := Vr ⊗ Vr−1 ⊗ · · · ⊗ V1

can be defined by

µ←−
V

:= (µr ⊗ µr−1 ⊗ · · · ⊗ µ1) ◦ T ξ
ω2r
, (7.2)

ν←−
V

:= νr ⊗ νr−1 ⊗ · · · ⊗ ν1 (7.3)

(cf. notations (2.2) and (2.4)), with

ω2r :=
( 1 2 ... r r+1 r+2 ... 2r

1 3 ... 2r−1 2 4 ... 2r

)
∈ S2r. (7.4)

Proof. We show that points 1 and 3 are both equivalent to the (intermediate) point 2.
Start with 1. YBE on the Vi⊗Vi⊗Vi’s is automatic via theorem 5cat. On Vi⊗Vi⊗Vj , i <

j, YBE becomes

(ξi,j ⊗ IdVi
) ◦ (IdVi

⊗ξi,j) ◦ (νi ⊗ µi ⊗ IdVj
) =

(IdVj
⊗νi ⊗ µi) ◦ (ξi,j ⊗ IdVi

) ◦ (IdVi
⊗ξi,j),

or, graphically,

VjViVi

Vj Vi Vi

=

VjViVi

Vj Vi Vi

.

Figure 7.1: YBE for Vi ⊗ Vi ⊗ Vj

The naturality of ξi,j with respect to the units permits to “pull” the short strand out of
the crossing on the left diagram. The equation obtained is equivalent to ξi,j being natural
with respect to µi:

VjViVi

=

VjViVi
.

Figure 7.2: Naturality with respect to µi

(compose the equation above with IdVj
⊗µi, like in the proof of lemma 5.2.3, to get one of

the implications).
Similarly, YBE on Vi ⊗ Vj ⊗ Vj , i < j, is equivalent to ξi,j being natural with respect

to µj . This terminates the proof of the equivalence 1 ⇔ 2.
Let us now prove 3 ⇔ 2. We use shortcut notations

ιj := νr ⊗ · · · ⊗ νj+1 ⊗ IdVj
⊗νj−1 ⊗ · · · ν1 : Vj →

←−
V ∀1 6 j 6 r. (7.5)
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Given a collection of ξi,j ’s satisfying the consitions of point 2, one verifies (for instance
graphically) that the morphisms from 3 define a UAA structure on

←−
V . This is a general-

ization of the verifications usually made while defining the tensor product of algebras in a
symmetric category. To show that all the conditions from 2 are indeed necessary, consider
the associativity condition for µ←−

V
composed with

ú either ιi⊗ ιj ⊗ ιk : Vi⊗Vj ⊗Vk →
←−
V ⊗3 on the right and the ǫt’s on all the positions

except for i, j, k on the left;
ú or ιi ⊗ ιi ⊗ ιj : Vi ⊗ Vi ⊗ Vj →

←−
V ⊗3 on the right and the ǫt’s on all the positions

except for i, j on the left;
ú or ιi ⊗ ιj ⊗ ιj : Vi ⊗ Vj ⊗ Vj →

←−
V ⊗3 on the right and the ǫt’s on all the positions

except for i, j on the left.
Using the naturality of the ξ’s with respect to the units and the defining property of a
normalized pair, in the first case one gets YBE for the ξ’s on Vi ⊗ Vj ⊗ Vk with i < j < k,
in the second and third cases – the naturality of ξi,j with respect to µi and µj respectively,
with i < j.

This proposition gives a “braided” (point 1), an “algebraic” (point 3) and a “mixed
”(point 2) interpretations of the same phenomenon. In practice, it is often convenient to
use points 1 or 2 in order to check the associativity of the multiplication µ←−

V
.

Definition 7.2.1. A pre-braided system of the type described in the above theorem is
called a pre-braided system of UAAs, and the UAA from the theorem is called the multi-
braided tensor product of the UAAs V1, . . . , Vr, denoted by

←−
V = Vr ⊗

ξ
Vr−1 ⊗

ξ
· · · ⊗

ξ
V1.

Our notion of multi-braided tensor products recovers the iterated twisted tensor
products of P.Jara Martínez, J.López Peña, F.Panaite and F. van Oystaeyen (cf. [32]).
They show in particular that, using the language of our theorem, 2 ⇒ 3. The role of the
naturality of the ξ’s with respect to the µ’s is underlined in [7]. We make their results more
precise, raise all the structures to an arbitrary monoidal category (they work in Vectk),
and, the most importantly, add a “fully braided” interpretation (point 1), necessary later
on for studying homologies.

Remark 7.2.2. In the above proposition, one can replace the existence of the ǫi’s, used only
to prove 3 ⇒ 2, by demanding the point 3 to hold for all subsystems of V . In this case,
while proving 3 ⇒ 2, one can work with the appropriate subsystem instead of composing
with the ǫi’s in order to get to the desired tensor product. In particular, the existence of
the ǫi’s is not necessary for r = 2.

Remark 7.2.3. Some or all of the maps σi,i can be replaced with a right version (in the
sense of section 5.5)

σi,i := σr
Ass = µi ⊗ νi,

or, in the graphical form, . The previous theorem still holds, with analogous proof.

Example 7.2.4. According to lemma 7.1.2, for a pre-braided category C, the choice
ξi,j := cVi,Vj

in the theorem above gives a pre-braided system. In addition, the cVi,Vj
’s are

natural with respect to everything hence in particular the units. The UAA structure on
←−
V is the usual tensor product of algebras in a pre-braided category in this case. We use
the undecorated notation ⊗ in this setting.
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Multi-braided modules as modules over algebras

The structure equivalence from theorem 7 has an important counterpart on the level
of modules. A normalized version of multi-braided modules is necessary to formulate the
result:

Definition 7.2.5. A multi-module M over a pre-braided system (r, V , σ) of UAAs is called
normalized if the corresponding braided module structures (M,ρi) over each UAA Vi are
normalized in the sense of (6.3). We use notation Mod for the category of normalized
multi-modules.

Proposition 7.2.6. In the settings of theorem 7, the following categories are equivalent:

Mod(V1,...,Vr) ≃ModVr⊗
ξ

Vr−1⊗
ξ

...⊗
ξ

V1 .

The second category is the usual category of modules over a UAA.

Proof. According to remark 7.1.10 combined with example 6.1.2, a normalized multi-
module M over the pre-braided system described in theorem 7 is a module (M,ρi) over
each UAA Vi, these structures being compatible in the sense of (7.1). But this is the same
thing as a module (M,ρ) over the UAA Vr ⊗

ξ
Vr−1 ⊗

ξ
· · · ⊗

ξ
V1: the correspondence is given

by (using notation (7.5))
ρj := ρ ◦ (IdM ⊗ιj),

ρ := ρr ◦ (ρr−1 ⊗ IdVr ) ◦ · · · ◦ (ρ1 ⊗ IdV2 ⊗ · · · ⊗ IdVr ).

The identity functor of C and this structure correspondence give thus the desired category
equivalence.

This proposition recovers a result from [32]. As usual, our main contribution, besides
generalizing the context to that of a monoidal category, consists in the interpretation of
module structures over the algebras Vi in terms of braided modules, while in the cited
paper the braidings appear only in the study of the interactions of the Vi- and the Vj-
module structures for different i and j. The advantages of our approach will be visible on
the homology level.

Consider now the situation when one of the ξi,i+1’s is invertible. In particular, propo-
sitions 7.1.12 and 7.1.13 are applicable.

Proposition 7.2.7. In the settings of theorem 7, suppose one of the ξi,i+1’s invertible.
Then

1. UAAs V1, . . . , Vi−1, Vi+1, Vi, Vi+2 . . . , Vr endowed with the ξ’s one had for the system
V , completed by ξ−1

i,i+1 on Vi+1 ⊗ Vi, still form a pre-braided system of UAAs.

2. Further, the map

IdVr ⊗ . . .⊗ IdVi+2 ⊗ξ
−1
i,i+1 ⊗ IdVi−1 ⊗ . . .⊗ IdV1 ,

abusively denoted by ξ−1
i,i+1, gives an algebra isomorphism between the multi-braided

UAA tensor products
←−
V and

τi(
←−
V ) := Vr ⊗

ξ
· · · ⊗

ξ
Vi+2 ⊗

ξ
Vi ⊗

ξ−1
Vi+1 ⊗

ξ
Vi−1 ⊗

ξ
· · · ⊗

ξ
V1

(the notation is abusive as well).
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3. The last isomorphism is compatible with the category equivalence

Mod←−
V
≃Mod(V1,...,Vi,Vi+1,...,Vr) ≃Mod(V1,...,Vi+1,Vi,...,Vr) ≃Mod

τi(
←−
V )
,

(M,ρ←−
V

)↔ (M,ρ
τi(
←−
V )

),

in the sense that
ρ←−

V
= ρ

τi(
←−
V )
◦ (IdM ⊗ξ

−1
i,i+1).

Proof. 1. Proposition 7.1.12 allows to interchange the components Vi and Vi+1 of the
pre-braided system (V1, . . . , Vr) from point 1 of theorem 7. The new pre-braided system
(V1, . . . , Vi+1, Vi, . . . , Vr) then satisfies again the conditions of point 1 from theorem 7.
Moreover, ξ−1

i,i+1 is natural with respect to the units since so is ξi,i+1. One thus gets the
desired pre-braided system of UAAs.

2. Theorem 7 (point 3) then gives the multi-braided UAA tensor product τi(
←−
V ).

Applying YBE several times, one shows that, in order to see that ξ−1
i,i+1 is an algebra

morphism, it is sufficient to work with Vi and Vi+1 only. Namely, one has to prove

ξ−1
i,i+1 ◦ (νi+1 ⊗ νi) = νi ⊗ νi+1,

which follows from the naturality with respect to the units, and

(µi ⊗ µi+1) ◦ (Idi⊗ξ
−1
i,i+1 ⊗ Idi+1) ◦ (ξ−1

i,i+1 ⊗ ξ
−1
i,i+1) =

ξ−1
i,i+1 ◦ (µi+1 ⊗ µi) ◦ (Idi+1⊗ξi,i+1 ⊗ Idi) :

(Vi+1 ⊗ Vi)⊗2 → Vi ⊗ Vi+1,

or, graphically,

ViVi+1ViVi+1

=

ViVi+1ViVi+1

µi+1 µiξ

ξ−1

.

Figure 7.3: ξ−1
i,i+1 is an algebra morphism

This relation follows from the naturality of ξi,i+1 (and hence ξ−1
i,i+1 ) with respect to µi

and µi+1 (point 2 of theorem 7).
3. The equivalence of module categories is a consequence of propositions 7.2.6 and

7.1.13, and their proofs.

7.3 A toy example: algebra bimodules

We illustrate the general theory from previous sections by the quite elementary example
of algebra bimodules and enveloping algebras. It is certainly much faster to verify the
results obtained here directly, but in more complicated settings (that of Hopf bimodules
for instance) similar ideas allow to avoid technical calculations and give useful intuitions.
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Algebra bimodules as modules over the enveloping algebra

Take two UAAs (V, µ, ν) and (V ′, µ′, ν′) in a braided category (C,⊗, I, c). The asso-
ciated pre-braided object for V is (V, σAss), and similarly for V ′. Remark further that
(µ ◦ c, ν) is another UAA structure on V, giving a pre-braiding

σop
Ass := ν ⊗ (µ ◦ c).

Denote by V op the object V endowed with this modified UAA structure. This “twisted”
multiplication provides a useful transition between left and right module structures:

Lemma 7.3.1. Given a UAA (V, µ, ν) in a braided category (C,⊗, I, c), the following
functors give an equivalence of module categories:

ModV op ≃V Mod,

(M,ρ) 7→ (M,λ(ρ) := ρ ◦ c−1
M,V ), (7.6)

(M,ρ(λ) := λ ◦ cM,V ) 7→(M,λ). (7.7)

Next, according to lemma 7.1.2, the data

V1 := V, V2 := V ′op,

σ1,1 := σAss,

σ2,2 := σop
Ass,

σ1,2 := cV,V ′

define a pre-braided system structure.
Remark 7.1.10 combined with example 6.1.2 show that two morphisms

ρ : M ⊗ V1 = M ⊗ V →M,

ρ′ : M ⊗ V2 = M ⊗ V ′ →M,

both normalized in the sense of (6.3), define a right (V, V ′op)-module M if and only if they
are both algebra actions, compatible in the sense of (7.1):

ρ′ ◦ (ρ⊗ IdV ′op) = ρ ◦ (ρ′ ⊗ IdV ) ◦ (IdM ⊗cV,V ′).

In terms of the correspondence from lemma 7.3.1, it means precisely that ρ and λ(ρ′)
define an algebra bimodule in the usual categorical sense, M ∈ V ′ModV .

One thus gets an interpretation of algebra bimodules in terms of multi-modules over
a pre-braided system of UAAs. Recall proposition 7.2.6, which suggests another interpre-
tation via modules over a multi-braided tensor product of UAAs, and proposition 7.2.7
allowing to interchange the components V1 and V2. Put together, these results give

Proposition 7.3.2. Take two UAAs (V, µ, ν) and (V ′, µ′, ν′) in a braided category C. Re-
call the pre-braided system (V, V ′op) defined above. The following categories are equivalent:

ModV ′op⊗
c

V ≃Mod(V,V ′op) ≃V ′ ModV ≃Mod(V ′op,V ) ≃ModV ⊗
c−1

V ′op .

The case V ′ = V gives the familiar enveloping algebra of a UAA V :

V e := V ⊗ V op.
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Bar complex with coefficients in a bimodule

We finish by applying proposition 7.1.11 to our bimodule context, choosing s = t = 1.
Recall notations ϕi from (1.3).

Proposition 7.3.3. Take a bimodule (M,ρ : M ⊗ V → M,λ : V ′ ⊗M → M) over two
UAAs V and V ′ in a braided category C. The bar complex for V with coefficients in (M,ρ)
on the left, i.e. (M ⊗ T (V ), ρd), is a complex in V ′ModV , i.e. the differentials (ρd)n are
bimodule morphisms, the bimodule structure on M ⊗ V ⊗n being given by

ρbar := µn+1 : M ⊗ V ⊗n ⊗ V →M ⊗ V ⊗n,

λbar := λ1 : V ′ ⊗M ⊗ V ⊗n →M ⊗ V ⊗n.

Proof. Plug the pre-braiding for the system (V, V ′op) decribed in the beginning of this
section (with, in particular, σV,V = σAss and σV,V ′ = cV,V ′) into the formulas from propo-
sition 7.1.11. Further, recall the correspondence between bimodules and normalized right
multi-modules (lemma 7.3.1). This gives

ρπ1 = ρ1 ◦ (IdM ⊗σV ⊗n,V )

= IdM ⊗ Id⊗(n−1)
V ⊗µ : M ⊗ V ⊗n ⊗ V →M ⊗ V ⊗n,

λ = ρ′

π2 ◦ c
−1
M⊗V ⊗n,V ′

= (λ ◦ cM,V ′)1 ◦ (IdM ⊗σV ⊗n,V ′) ◦ c−1
M⊗V ⊗n,V ′

= (λ ◦ cM,V ′)1 ◦ (IdM ⊗cV ⊗n,V ′) ◦ c−1
M⊗V ⊗n,V ′

= λ1 : V ′ ⊗M ⊗ V ⊗n →M ⊗ V ⊗n.

This bimodule structure on the bar complex is important for one of the methods of
obtaining the Hochschild cohomology.

7.4 The first real example: two-sided crossed products

We reinterpret here F.Panaite’s example (cf. [65]), consisting in applying some kind
of “braided” techniques to a study of two-sided crossed products A#H#B (or the gener-
alized two-sided crossed products A◮<C>◭B, defined by D.Bulacu, F.Panaite and F.Van
Oystaeyen in. [5]). We recover his techniques as a particular case of our general tools,
and we automatically obtain (via proposition 7.2.7) six equivalent versions of the algebra
A#H#B. Moreover, we raise all the constructions to an arbitrary symmetric category.
Pursuing further the “braided” ideas and using our results on adjoint multi-braided mod-
ules, we get, in the same settings, a bimodule structure

C⊗n ∈ BModA,

applied in section 7.6 to the study of bialgebras.

Categorical bialgebras and module algebras

We need the categorical versions of some familiar algebraic notions:

Definition 7.4.1. ú A bialgebra structure in a pre-braided category (C,⊗, I, c), some-
times called a (pre-)braided bialgebra, is a unital associative algebra structure (µ, ν)
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and a counital coassociative coalgebra structure (∆, ε) for an object H, compatible
in the following sense:

∆ ◦ µ = (µ⊗ µ) ◦ c2 ◦ (∆⊗∆) : H ⊗H → H ⊗H, (7.8)

∆ ◦ ν = ν ⊗ ν : I→ H ⊗H,

ε ◦ µ = ε⊗ ε : H ⊗H → I,

ε ◦ ν = IdI : I→ I.

ú If moreover H has an antipode, i.e. a morphism s : H → H satisfying

µ ◦ (s⊗ IdH) ◦∆ = µ ◦ (IdH ⊗s) ◦∆ = ν ◦ ε, (s)

then it is called a Hopf algebra in C.
ú For a bialgebra H in C, a left H-module algebra is a UAA structure (M,µM , νM )

and a left H-module structure (M,λ : H ⊗M → M) on an M ∈ Ob(C), such that
µM and νM are morphisms of left H-modules:

λ ◦ (IdH ⊗µM ) = µM ◦ (λ⊗ λ) ◦ c2 ◦ (∆⊗ Id⊗2
M ), (7.9)

λ ◦ (IdH ⊗νM ) = νM ◦ ε. (7.10)

Right H-module algebras, left and right H-comodule algebras, and H-bi(co)module
algebras are defined similarly.

Graphically, the bialgebra compatibility condition (7.8) means

µ
∆ =

µ

∆

µ

∆

c

.

Figure 7.4: Bialgebra relation

See figure 7.11 for a graphical depiction of (7.9) and (7.10).
In ModR, (7.8) takes the familiar form

(hg)(1) ⊗ (hg)(2) = h(1)g(1) ⊗ h(2)g(2) ∀h, g ∈ H,

and (7.9) becomes

h · (ab) = (h(1) · a)(h(2) · b) ∀h ∈ H, a, b ∈M,

where the notations of the multiplication µM and of the action λ are omitted.

Two-sided crossed products as multi-braided tensor products

Everything is now ready for handling generalized two-sided crossed product.

Proposition 7.4.2. Take a bialgebra H, a left H-module algebra (A, λ), a right H-module
algebra (B, ρ) and an H-bicomodule algebra (C, δl : C → H ⊗ C, δr : C → C ⊗ H) in a
symmetric category C. Then

1. The UAAs (B,C,A) together with morphisms

ξ1,2 = (IdC ⊗ρ) ◦ (cB,C ⊗ IdH) ◦ (IdB ⊗δr),

ξ2,3 = (λ⊗ IdC) ◦ (IdH ⊗cC,A) ◦ (δl ⊗ IdA),

ξ1,3 = cB,A

form a pre-braided system of UAAs, and formulas (7.2)-(7.3) define a UAA structure
on A⊗ C ⊗B.
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2. The category of modules over the algebra defined this way is equivalent to the category
of multi-braided normalized modules Mod(B,C,A):

Mod(B,C,A) ≃ModA⊗
ξ

C⊗
ξ

B. (7.11)

Proof. The key point is to notice that the ξ’s satisfy the conditions of the point 2 of
theorem 7. Indeed,

3 YBE on B ⊗ C ⊗ A follows from the compatibility between the left and the right
H-coactions on C;

3 the naturality of the ξ’s with respect to µC is a consequence of the defining properties
of H-bicomodule algebras for C;

3 the naturality of the ξ’s with respect to µA and µB can be deduced from the defining
properties of H-module algebras for A and B.

As an example, we show in detail that ξ1,2 is natural with respect to µB:

ξ1,2 ◦ (µB ⊗ IdC)
1= (IdC ⊗ρ) ◦ (cB,C ⊗ IdH) ◦ (µB ⊗ δr)
2= (IdC ⊗ρ) ◦ (IdC ⊗µB ⊗ IdH) ◦ (cB⊗B,C ⊗ IdH) ◦ (Id⊗2

B ⊗δr)
3= (IdC ⊗µB) ◦ (IdC ⊗ρ⊗ ρ) ◦ (IdC⊗B ⊗cB,H ⊗ IdH)◦

(cB⊗B,C ⊗∆H) ◦ (Id⊗2
B ⊗δr)

4= (IdC ⊗µB) ◦ (IdC ⊗ρ⊗ IdB) ◦ (cB,C ⊗ IdH⊗B) ◦ (IdB ⊗δr ⊗ ρ)◦

(IdB ⊗cB,C ⊗ IdH) ◦ (Id⊗2
B ⊗δr)

5= (IdC ⊗µB) ◦ (ξ1,2 ⊗ IdB) ◦ (IdB ⊗ξ1,2),

where we use

1. the definition of ξ1,2,

2. the naturality of c,

3. the defining property of right H-module algebra for B,

4. the defining property of right H-comodule for C and the naturality of c,

5. the definition of ξ1,2.

The reader is advised to draw diagrams in order to better follow these verifications.
Further, the naturality with respect to units follows from the defining properties of

H-(co)module algebras as well. Point 1 from theorem 7 then confirms that the ξ’s to-
gether with the σAss’s form a pre-braiding, while point 3 proves the associativity of the
multiplication (7.2).

Finally, proposition 7.2.6 gives the required category equivalence

The tensor product algebra from the proposition is known as the generalized two-
sided crossed product (cf. [5])

A◮<C>◭B := A⊗
ξ
C ⊗

ξ
B.

The choice C = H (with both comodule structures given by ∆H) gives the two-sided
crossed product of F.Hausser and F.Nill (cf. [31]), usually denoted by

A#H#B := A⊗
ξ
H ⊗

ξ
B.
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Two-component multi-braided tensor products of UAAs

A#H := A⊗
ξ
H, H#B := H ⊗

ξ
B

are called left and right crossed (or smash) products respectively, with a generalized
version for an arbitrary left and, respectively, right H-comodule C.

We have thus obtained an alternative conceptual proof of the associativity ofA◮<C>◭B
and of the category equivalence (7.11), otherwise very technical.

Remark 7.4.3. If H is a Hopf algebra with an invertible antipode s, then all the ξ’s are
invertible:

ξ−1
1,2 = ((ρ ◦ cH,B)⊗ IdC) ◦ (s−1 ⊗ cC,B) ◦ ((cC,H ◦ δr)⊗ IdB),

ξ−1
2,3 = (IdC ⊗(λ ◦ cA,H)) ◦ (cA,C ⊗ s

−1) ◦ (IdA⊗(cH,C ◦ δl)),

ξ−1
1,3 = cA,B.

Proposition 7.2.7 then allows to permute components of A ⊗
ξ
C ⊗

ξ
B, giving six pairwise

isomorphic UAAs, these isomorphisms being compatible with the equivalences of their
module categories. In particular, one recovers the algebra isomorphisms from [31]:

A#H#B ≃ (A⊗B) ⊲⊳ H.

Remark 7.4.4. Supposing the category C moreover additive, one can start with an H-
bimodule (C ′, δl, δr) and introduce an artificial trivial UAA structure by adding the formal
unit

C := C ′ ⊕ I,

taking the zero multiplication on C ′ and making νC := IdI : I→ C a unit. The bicomodule
structure on C ′ extended to C by putting

δl|I := νH ⊗ νC , δr|I := νC ⊗ νH

endows C with an H-bicomodule algebra structure.
This formal construction will be useful in what follows.

Adjoint actions

We finish this example by applying the theory of adjoint multi-modules (cf. propo-
sition 7.1.11) to the pre-braided system of UAAs from proposition 7.4.2, choosing trivial
coefficients (M = I).

Start with a preliminary general observation:

Lemma 7.4.5. Take a pre-braided system ((V1, . . . , Vr), σ) in a symmetric additive cat-
egory C, with the component σ1,r being simply the underlying symmetric braiding cV1,Vr

of C. Take further two braided characters ǫ and ζ for this pre-braided system. Then the
right braided Vr-module structure ǫπr and the left braided V1-module structure πζ

1 on
T (V )→n , n ∈ N, commute:

ǫπr ◦ (πζ
1 ⊗ IdVr ) = πζ

1 ◦ (IdV1 ⊗
ǫπr) : V1 ⊗ T (V )→n ⊗ Vr → T (V )→n .
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Proof. The symmetric braiding c is natural with respect to everything, in particular to
the components of ǫ and ζ. This is sufficient to show that the two morphisms from the
desired equality coincide with

(ǫr ⊗ IdT (V )→
n
⊗ζ1) ◦ T σ

pn
,

where pn :=
( 1 2 ... n n+1 n+2

n+2 2 ... n n+1 1

)
∈ Sn+2 (recall notations (2.4) and (2.2)).

Now return to the two-sided crossed products. Recall notations (1.3) and (1.4).

Proposition 7.4.6. In a symmetric additive category C, take a bialgebra H, a left H-
module algebra (A, λ) and a right H-module algebra (B, ρ), endowed with algebra characters
ǫA and ǫB respectively. Take moreover an H-bicomodule algebra (C, δl, δr). The tensor
powers of C become bimodules, C⊗n ∈ BModA ∀n ∈ N, via the formulas

ǫAπ = (ǫA)1 ◦ λ1 ◦ (IdH ⊗cC⊗n,A) ◦ µn−1 ◦ ((ω−1
2n ◦ δ

⊗n
l )⊗ IdA) :

C⊗n ⊗A→ C⊗n,

πǫB = (ǫB)n+1 ◦ ρn+1 ◦ (cB,C⊗n ⊗ IdH) ◦ (µn−1)n+2 ◦ (IdB ⊗(ω−1
2n ◦ δ

⊗n
r )) :

B ⊗ C⊗n → C⊗n,

where ω−1
2n ∈ S2n from (7.4) acts on tensor products of copies of C and H via the symmetric

braiding c.

These actions are graphically depicted as

δl δl δl

µn−1

λ

ǫA

,
AC⊗n

C⊗n

δr δr δr

µn−1

ρ
ǫB

.
B C⊗n

C⊗n

Figure 7.5: BModA structure on C⊗n

Proof. Proposition 7.1.11 and its right version applied to the pre-braided system (B,C,A)
from proposition 7.4.2 and to the algebra characters (hence braided characters) ǫA and ǫB
give a right braided A-module structure and a left braided B-module structure on C⊗n.
One verifies that they coincide with the structures given here. Further, since the ξ1,2 and
ξ2,3 components of the pre-braiding on (B,C,A) are natural with respect to the units,
these braided modules are normalized, and thus, according to example 6.1.2, they are
algebra modules over the corresponding UAAs. It remains to show that the actions of A
and B commute. But this is precisely the assertion of lemma 7.4.5 in our setting.

7.5 Yetter-Drinfel′d systems

Here we describe quite a general pre-braided system including as particular cases pre-
braided systems for the following structures: bialgebras, Hopf algebras, Hopf and Yetter-
Drinfel′d modules. The key idea is to take up theorem 7 and to choose the well-known
braiding for Yetter-Drinfel′d modules as the ξi,j components of a pre-braiding for a system
of UAAs.

Fix a symmetric category (C,⊗, I, c).
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A reminder on Yetter-Drinfel′d modules

Yetter-Drinfel′d modules were introduced by D.Yetter in [85] under the name of “crossed
bimodules” and rediscovered later by different authors under different names. The pre-
braiding on the category of Yetter-Drinfel′d modules over a fixed bialgebra has also seen
multiple inventors, and no fixed name in literature. We propose the name Woronowicz
pre-braiding, since S.L.Woronowicz was (probably) the first to discover this structure
(cf. [83]).

Concretely,

Definition 7.5.1. A left-right Yetter-Drinfel′d (or YD) module structure over a bialgebra
H in C consists of a left H-module structure λ and a right H-comodule structure δ on an
object V, satisfying the Yetter-Drinfel′d (or YD) compatibility condition

(IdV ⊗µH) ◦ (δ ⊗ IdH) ◦ cH,V ◦ (IdH ⊗λ) ◦ (∆H ⊗ IdV ) = (YD)

(λ⊗ µH) ◦ (IdH ⊗cH,V ⊗ IdH) ◦ (∆H ⊗ δ).

The category of left-right YD modules over a bialgebra H (with, as morphisms, those
preserving the H-module and H-comodule structures) is denoted by HYDH .

In the graphical form, (YD) becomes

λ

δ µH

∆H

V

V

H

H

=
λ

δ

µH

∆H

V

V

H

H

.

Figure 7.6: Left-right Yetter-Drinfel′d compatibility condition

It takes in ModR the familiar form

(h(2)v)(0) ⊗ (h(2)v)(1)h(1) = h(1)v(0) ⊗ h(2)v(1) ∀h ∈ H, v ∈ V.

The importance of YD modules in the theory of YBE solutions comes from the following

Lemma 7.5.2. The category HYDH can be endowed with the pre-braiding

σY D := cV,W ◦ (IdV ⊗λW ) ◦ (δV ⊗ IdW ) : V ⊗W →W ⊗ V, (7.12)

where V,W ∈ Ob(HYDH).

Definition 7.5.3. We call the pre-braiding σY D Woronowicz pre-braiding.

In the graphical form, σY D is depicted as

λWδV

σY D =

WV
.

W V

Figure 7.7: Woronowicz pre-braiding for left-right YD modules
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In ModR, this pre-braiding becomes

σY D : v ⊗ w 7−→ v(1)w ⊗ v(0), ∀v ∈ V,w ∈W.

The notion of Yetter-Drinfel′d module is often considered in the left-left version: it
is a left H-module and a left H-comodule structures (V, λ, δ) over a Hopf algebra H in a
symmetric category C, with the following compatibility condition:

λ

δ

V

V

H

H

=

µH

∆H

s

V

V

H

H

Figure 7.8: Left-left YD module

or, in an equivalent but less familiar antipode-free form,

λ

δ

V

V

H

H
µH

∆H

=

V

V

H

H

,

µH

∆H

Figure 7.9: Left-left YD module II

which in ModR become

(hv)(−1) ⊗ (hv)(0) = h(1)v(−1)s(h(3))⊗ h(2)v(0) ∀h ∈ H, v ∈ V,

and, respectively,

(h(1)v)(−1)h(2) ⊗ (h(1)v)(0) = h(1)v(−1) ⊗ h(2)v(0) ∀h ∈ H, v ∈ V.

The category of left-left YD modules H
HYD is also pre-braided, with the pre-braiding

given by

(λW ⊗ IdV ) ◦ (IdH ⊗cV,W ) ◦ (δV ⊗ IdW ), V,W ∈ Ob(H
HYD), (7.13)

or, in the graphical form,

λW

δV
WV

W V

.

Figure 7.10: Woronowicz pre-braiding for left-left YD modules

Right-right and right-left Yetter-Drinfel′d modules, with the corresponding pre-
braidings, can be defined by applying the right-left duality from section 5.5 to the preceding
structures.
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Remark 7.5.4. If H is a Hopf algebra with an invertible antipode s, then, say, the right-
right and left-right YD module structures are equivalent, with the following relation be-
tween left and right actions:

λ = ρ ◦ (IdV ⊗s
−1) ◦ cH,V : H ⊗ V → V =

ρ
s−1

.

One checks that the pre-braiding for right-right H-YD modules gives under this equiv-
alence a pre-braiding for left-right H-YD modules which is the inverse of the σY D from
lemma 7.5.2.

Note that in the category vectk, the antipode of a Hopf algebra is always invertible
(cf. [76]). However, even in the finite-dimensional k-linear setting, we will often explicitly
demand the invertibility of s when we use it, having in mind possible generalizations.

Yetter-Drinfel′d system as an example of a pre-braided system of algebras

Let H ∈ Ob(C) be endowed with a unital associative algebra structure (µ, ν) and a
counital coassociative coalgebra structure (∆, ε). No compatibility conditions are required.

In the pictures that follow, thin lines stand for H, thick lines for the Vi’s, and dashed
lines for the dual H∗. All crossings depict the symmetric braiding c. Notation Idi := IdVi

is often used for brevity.

Definition 7.5.5. A (left-right) Yetter-Drinfel′d system over H (or an H-YD system) in
C is an ordered finite family V1, V2, . . . , Vr of objects endowed with the following structure:

ú unital associative algebra structures (µi, νi) on all the Vi’s;
ú left H-module structures λi : H ⊗ Vi → Vi on V2, . . . , Vr;
ú right H-comodule structures δi : Vi → Vi ⊗H on V1, . . . , Vr−1;

satisfying the following conditions:

3 algebra structures on the Vi’s are compatible with H-module and H-comodule struc-
tures (when defined), in the sense of left Hcop-module algebras and right H-comodule
algebras (cf. definition 7.4.1);

3 H-module and H-comodule structures on each Vi, 2 6 i 6 r−1 satisfy the left-right
Yetter-Drinfel′d compatibility condition.

For the reader’s convenience, we give here a graphical form of the compatibilites of the
algebra structures and the H-(co)module structures demanded in the definition:

µi

δi

ViVi

Vi H

=
µi µH

δi δi

ViVi

Vi H

µi

λi

ViVi

Vi

H

=
µi

∆H

λi λi

ViVi

Vi

H

νi

δi

ViH

= νi νH

ViH

νi

λi

Vi

H

= νi

εH

Vi

H

Figure 7.11: Compatibilities between UAA and YD structures
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or, in the language of formulas,

δi ◦ µi = (µi ⊗ µH) ◦ (Idi⊗cH,Vi
⊗ IdH) ◦ (δi ⊗ δi),

λi ◦ (IdH ⊗µi) = µi ◦ (λi ⊗ λi) ◦ (cH,H⊗Vi
⊗ Idi) ◦ (∆H ⊗ Idi⊗ Idi),

δi ◦ νi = νi ⊗ νH ,

λi ◦ (IdH ⊗νi) = νi ◦ εH .

Now we show how to endow a YD system with a pre-braiding.

Theorem 8. A pre-braiding can de defined on a Yetter-Drinfel′d system (V1, . . . Vr) over
H by

σi,i := σAss = νi ⊗ µi : Vi ⊗ Vi −→ Vi ⊗ Vi

σi,j := σY D := cVi,Vj
◦ (Idi⊗λj) ◦ (δi ⊗ Idj) : Vi ⊗ Vj −→ Vj ⊗ Vi, i < j.

The graphical form of this pre-braiding is

µiσi,i =

ViVi

,

Vi Vi

νi λjδi

σi,j =

VjVi

.

Vj Vi

Figure 7.12: Pre-braiding for a Yetter-Drinfel′d system

The following lemma is used in the proof and afterwards:

Lemma 7.5.6. The Woronowicz pre-braiding σY D is natural with respect to the units.

Proof. Use the compatibility of the H-(co)module structures with the units νi, the trivi-
ality of the action by ν and of the coaction composed with ε, and the naturality of c.

Proof of the theorem. According to theorem 7 and taking lemma 7.5.6 into consideration,
only three properties remain to be verified.

ú σi,j is natural with respect to µi, i < j.
Graphically it means

VjViVi

Vj Vi

=

VjViVi

Vj Vi

.

Figure 7.13: Naturality with respect to µi.

We give a detailed graphical proof of this relation, leaving the details of the proofs
of the remaining two properties to the reader. The labels Vi, Vj are omitted here
for compactness.

1= 2= 3=
.

Figure 7.14: Naturality with respect to µi: details
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We apply here

1. the defining property of right H-comodule algebras for Vi,

2. the defining property of left H-modules for Vj ,

3. the naturality of the symmetric braiding c.

ú σi,j is natural with respect to µj , i < j.
Graphically it means

VjVjVi

Vj Vi

=

VjVjVi

Vj Vi

.

Figure 7.15: Naturality with respect to µj .

To prove this, one needs

1. the defining property of left Hcop-module algebras for Vj ,

2. the defining property of right H-comodules for Vi,

3. the naturality of c.

ú For each triple i < j < k, the σY D’s satisfy YBE on Vi ⊗ Vj ⊗ Vk.
Present (YB) graphically:

VkVjVi

VkVj Vi

=

VkVjVi

VkVj Vi

.

Figure 7.16: Yang-Baxter equation for Yetter-Drinfel′d modules

To prove this, one needs

1. the defining property of right H-comodules for Vi,

2. the defining property of left Hcop-modules for Vk,

3. the Yetter-Drinfel′d property for Vj .

Note that, although one can not say that the maps defined in the theorem give a
pre-braiding if and only if all the conditions in the definition of YD system are satisfied
(the kind of equivalences encountered in previous chapters), each of these conditions is
essential in the proof. The necessity questions are discussed in more detail for the concrete
example of a two component YD system in proposition 7.6.4.

Remark 7.5.7. According to remark 7.2.3, some or all of the maps σi,i can be replaced by
a right version σr

Ass = µi ⊗ νi.
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Remarks on the definition: precisions and alternative versions

We now comment on three non-conventional points in the definition of YD system,
explaining their effect on the theorem.

Remark 7.5.8. One would expect a slightly different form of compatibility between the
multiplication µi and the H-action λi on Vi, in the spirit of H-module algebras:

µi

λi

ViVi

Vi

H

=
µi

∆H

λi λi

ViVi

Vi

H
.

Figure 7.17: Alternative compatibility condition

However, our “twisted” form is needed for theorem 8 to hold. A nice way to interpret
our choice is to take the symmetric category C = vectk and to consider the induced left
H∗-coaction on Vi (cf. table 1.5 and subsequent remarks concerning the (co)evaluation
maps and the dual (co)algebra structure on H∗):

Vi

Vi

H∗

:=
coev

λi

Vi

Vi

.

H∗

Figure 7.18: The duals come into play

The induced compatibility condition is the familiar

µi

ViVi

ViH∗

=
µiµH∗

ViVi

ViH∗

.

Figure 7.19: Compatibility for the left H∗-coaction

Recall the categorical definition of a bialgebra (definition 7.4.1). We note that it
appears naturally in the YD system context:

Remark 7.5.9. No compatibility between the algebra and coalgebra structures on H are
demanded explicitly. However, other properties of a YD system dictate that H should be
not too far from a bialgebra, at least as far as (co)actions are concerned. For example,

Vi Vi

Vi H H

=

Vi Vi

Vi H H

=

Vi Vi

Vi H H

=

Vi Vi

Vi H H

=

Vi Vi

Vi H H

,

Figure 7.20: Almost a bialgebra



108 CHAPTER 7. BRAIDED SYSTEMS: GENERAL THEORY AND EXAMPLES

and similarly for module structures.

The last observations concern alternative notions of YD modules.

Remark 7.5.10. A left-left Yetter-Drinfel′d system over H can be defined similarly to
how it was done for a left-right H-YD system, with the following differences:

3 right H-comodule structures on V1, . . . , Vr−1 are replaced by the left ones;

3 the compatibilities of algebra structures on the Vi’s with H-module and H-comodule
structures are no longer “twisted” (cf. remark 7.5.8);

3 the module-comodule compatibility is the one from figure 7.9.

An analogue of theorem 8 holds for left-left YD systems with only one change: components
σi,j = σY D of the pre-braiding for i < j should be replaced by that from equation 7.13.
Using the pre-braiding σr

Ass on some of the Vi’s (cf. remark 7.5.7) is still possible in this
setting.

One can also define right-left and right-right Yetter-Drinfel′d system, applying
the right-left duality from section 5.5. If H is a Hopf algebra with an invertible antipode
s, then remark 7.5.4 explains how to pass from right-right to left-right YD systems.

Characters

We now turn to the last ingredient missing for producing braided differentials: char-
acters.

Definition 7.5.11. Take an H-YD system (V1, . . . , Vr). A collection of algebra characters
ǫi : Vi → I for i ∈ I ⊆ {1, 2, . . . , r} is called a YD system character if

(ǫi ⊗ ǫj) ◦ (Idi⊗λj) ◦ (δi ⊗ Idj) = ǫi ⊗ ǫj : Vi ⊗ Vj −→ I ∀i < j ∈ I. (7.14)

Graphically, the compatibility of the ǫi’s looks as follows:

VjVi

ǫi ǫj

=

VjVi

ǫi ǫj

.

Figure 7.21: YD system character

The simplest example is given by a single algebra character (i.e. |I| = 1), which will
often be our choice. Another example is given by the following

Lemma 7.5.12. Take an H-YD system (V1, . . . , Vr). A collection of algebra characters
ǫi : Vi → I for i ∈ I ⊆ {1, 2, . . . , r} forms a YD system character if

1. either all the ǫi’s with i > 1 respect the H-module structures:

ǫi ◦ λi = ε⊗ ǫi : H ⊗ Vi → I,

2. or all the ǫi’s with i < r respect the H-comodule structures:

(ǫi ⊗ IdH) ◦ δi = ν ◦ ǫi : Vi → H = I⊗H.

The notion of YD system character is designed for producing braided characters:

Lemma 7.5.13. Take an H-YD system (V1, . . . , Vn) in a symmetric preadditive category
C. A YD system character ǫI := (ǫi)i∈I completed by zeroes on the Vj ’s with j /∈ I is a
braided character for the pre-braiding from theorem 8.

Notation 7.5.14. We denote the completed braided character from the lemma by ǫ.
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Summary

Applying the general theory of section 7.1 to a pre-braided system coming from an
H-YD system, one concludes:

Corollary 7.5.15. In a symmetric additive category (C,⊗, I, c), choose

1. a UAA and coUAA H;

2. an H-YD system (V1, . . . , Vr);

3. for each i, a left or right version of the braiding σAss;

4. two YD system characters (ǫi)i∈I⊆{1,2,...,r} and (ζj)j∈J⊆{1,2,...,r}.

The formulas from theorem 6 multi, applied to the pre-braided structure from theorem 8 and
to the braided characters ǫ and ζ from lemma 7.5.13, give a bidegree −1 tensor bidifferential
for T (V )→∗ .

Now we move on to concrete – and familiar – examples. Explicit calculations of braided
differentials in subsequent sections are representative enough to give an idea of what they
look like in the general setting of the above corollary.

7.6 Bialgebras

The first examples of H-Yetter-Drinfel′d systems we consider are two-component sys-
tems. In particular, we do not work with the YD compatibility condition in this section.
As components, we choose our bialgebra H and its dual and/or opposite versions, post-
poning the work with “external” modules and/or comodules over H until further sections.

The main results of this section are summarized in the table which continues table 4.1:

structure system σ invertibility characters complexes

bialgebra (H,H∗) σAss & iff H is εH & Gerstenhaber-
H σY D a Hopf algebra εH∗ Schack, [29]

Table 7.1: Main ingredients of braided homology theory for a bialgebra

Like for basic algebraic structures in part I, the results in this section are of the “if and
only if” type – i.e. we obtain “braided” characterizations of the bialgebra compatibility
condition and of the existence of the antipode in terms of the YBE and, respectively, in
terms of the braiding invertibility.

Here we work in C = vectk. Note however that one could stay in the general setting
of a symmetric additive category and choose a braided bialgebra in C admitting a dual.

A pre-braiding encoding the bialgebra structure

Let H be a finite-dimensional k-bialgebra (we consider only unital, counital, associative
and coassociative bialgebras here). Recall the evaluation map ev : H∗⊗H → k from (1.2)
and its dual coevaluation map coev : k → H∗ ⊗ H, as well as their “twisted versions”
ev ◦τ : H⊗H∗ → k and τ ◦coev : k→ H⊗H∗, still denoted by ev and coev for simplicity.
Note that in the general settings of a symmetric additive category with dualities, the flip
τ should be replaced with the braiding c.

The dual H∗ of H has an induced bialgebra structure via the evaluation map ev
extended to H ⊗H and H∗⊗H∗ using the “rainbow” pattern, cf. table 1.5. Note that
because of this non-conventional choice, we sometimes get formulas slightly different from
the ones found in literature.
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Proposition 7.6.1. For a finite-dimensional k-bialgebra (H,µ, ν,∆, ε), there is an H-YD
system structure on (H,H∗) given by:

ú the usual unital associative algebra structure on H and the induced structure on H∗;
ú right H-comodule structure on H given by the comultiplication ∆;
ú left H-module structure on H∗ given by

h · l := h(l(1))l(2) ∀h ∈ H, l ∈ H∗, (7.15)

for the induced comultiplication on H∗.

See remark 7.5.8 for the last structure. It is graphically depicted as

:=

ev

∆ .

Figure 7.22: The action of H on H∗

Proof. Verifications are easy. The least trivial condition – the compatibility of the algebra
structure on H∗ (H) with the H-(co)module structure – is precisely the compatibility
condition (7.8) defining a bialgebra.

Observe that the “rainbow” pairing between H⊗H and H∗⊗H∗ is necessary for (7.15)
to define an action.

Choose the right braiding for H and the left one for H∗ (cf. section 5.5 and remark
7.5.7). With this choice, theorem 8 applied to the previous proposition gives

Proposition 7.6.2. A pre-braiding can be given on the H-YD system (H,H∗) by

σH,H = µ ν

,
σH,H∗ =

ev ,
σH∗,H∗ = ∆∗ε∗

.

Figure 7.23: Pre-braiding for the system (H,H∗)

Notation 7.6.3. We denote this pre-braided system (H,H∗) by H.

Like for most algebraic structures considered in previous chapters, we get a pre-braiding
characterizing the structure of a bialgebra:

Proposition 7.6.4. Take an H ∈ vectk endowed with a (not necessarily associative)
multiplication µ : H⊗H → H with a unit ν : H → I and a comultiplication ∆ : H → H⊗H
with a counit ε : H → I. Consider the “rainbow”-dual structures on H∗. The structure
(H,µ, ν,∆, ε) describes a bialgebra if and only if the three maps from proposition 7.6.2
define a pre-braiding on (H,H∗).

Proof. According to lemma 4.3.1, YBE on H⊗3 is equivalent to µ being associative. By
duality, YBE on (H∗)⊗3 is equivalent to ∆ being coassociative. Further, due to the
preceding proposition 7.6.2, one has YBE on H ⊗ H ⊗ H∗ and H ⊗ H∗ ⊗ H∗ if H is a
bialgebra. On the contrary, applying ν∗ ⊗ IdH ⊗ε (or ν∗ ⊗ IdH∗ ⊗ε) and the evaluation-
coevaluation duality to the YBE on H ⊗H ⊗H∗ (resp. H ⊗H∗ ⊗H∗), one recovers the
bialgebra compatibility relation.

Remark 7.6.5. We could have started just with a multiplication and a comultiplication on
H, adding a formal unit and upgrading the structures on H as usual. In this case one
gets a partial braiding on T (H̃) ⊗ T ((H̃)∗) if and only if these new structures define a
bialgebra, which is not the same as imposing the bialgebra compatibility relation on the
original multiplication and comultiplication!
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Twisted and dual variations

Interesting YD systems can be obtained by applying the above construction to the
dual and/or the “twisted” version of our bialgebra H. Since these constructions will be
used below in the study of bialgebra homologies, we present them in detail.

First, via the evaluation-coevaluation duality, proposition 7.6.1 endows (H∗, H)
with an H∗-YD system structure, hence with a pre-braiding analogous to that from propo-
sition 7.6.2.

Let us further consider “twisted” versions of H. A classical result (which we state
here in full generality, istead of restricting ourselves to C = vectk) says

Lemma 7.6.6. Take a bialgebra (H,µ, ν,∆, ε) in a braided category (C,⊗, I, c). Then

1. Hop := (H,µ ◦ c−1, ν,∆, ε) is a bialgebra in (C,⊗, I, c−1).

2. Hcop := (H,µ, ν, c−1 ◦∆, ε) is a bialgebra in (C,⊗, I, c−1).

3. Hop,cop := (H,µ◦ c−1, ν, c◦∆, ε) and Hcop,op := (H,µ◦ c, ν, c−1 ◦∆, ε) are bialgebras
in (C,⊗, I, c).

4. If the bialgebra H turns out to be a Hopf algebra with an antipode s, then so are
Hop,cop and Hcop,op, with the same antipode s. If s is invertible, then s−1 becomes
the antipode for Hop and Hcop.

5. Moreover, one has the following bialgebra or Hopf algebra isomorphisms:

(Hop)∗ ≃ (H∗)cop, (Hcop)∗ ≃ (H∗)op, (Hop,cop)∗ ≃ Hcop,op.

Return now to our bialgebra H in C = vectk. In particular, the bialgebras Hop,cop and
Hcop,op coincide. Proposition 7.6.1 can be applied to each of the bialgebras Hop, Hcop and
Hop,cop. Theorem 8 then gives three new pre-braided system structures on (H,H∗).

Summarizing, one gets

Proposition 7.6.7. For a finite-dimensional k-bialgebra (H,µ, ν,∆, ε), one can construct
the following pre-braided systems:

1. Hop := (H,H∗), with

σ1,1 = (µ ◦ τ)⊗ ν,

σ2,2 = ε∗ ⊗∆∗,

σ1,2 = σop
Y D := τ ◦ (IdH ⊗ev ⊗ IdH∗) ◦ (∆⊗ (τ ◦ µ∗));

2. Hcop := (H,H∗), with

σ1,1 = µ⊗ ν,

σ2,2 = ε∗ ⊗ (∆∗ ◦ τ),

σ1,2 = σcop
Y D := τ ◦ (IdH ⊗ev ⊗ IdH∗) ◦ ((τ ◦∆)⊗ µ∗);

3. Hop,cop := (H,H∗), with

σ1,1 = (µ ◦ τ)⊗ ν,

σ2,2 = ε∗ ⊗ (∆∗ ◦ τ),

σ1,2 = σop,cop
Y D := τ ◦ (IdH ⊗ev ⊗ IdH∗) ◦ ((τ ◦∆)⊗ (τ ◦ µ∗));
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4. Hr := (H∗, H), with

σ1,1 = ∆∗ ⊗ ε∗,

σ2,2 = ν ⊗ µ,

σ1,2 = σr
Y D := τ ◦ (IdH∗ ⊗ev ⊗ IdH) ◦ (µ∗ ⊗∆),

and the three “twisted” versions of the last structure.

Notations Hr and σr
Y D come from the interpretation of the system H

r as a “right”
version of H, in the sense of category vect⊗

op

k (cf. section 5.5). Remark that the notion
of bialgebra is stable with respect to this duality.

Here are graphical versions of the “twisted” Woronowicz braidings:

σop
Y D =

ev ,
σcop

Y D =
ev ,

σop,cop
Y D =

ev .

Figure 7.24: “Twisted” Woronowicz braidings

Bialgebra homology of Gerstenhaber and Schack

Our next goal is to write down explicit braided differentials for pre-braided systems
from propositions 7.6.2 and 7.6.7. We do it for partial characters εH (the counit of H
extended to H∗ by zero) and εH∗ (the counit of H∗, i.e. (1H)∗, extended to H by zero);
cf. lemma 7.1.7.

In this section the letters hi always stay for elements of H, lj – for elements of H∗, the
pairing 〈, 〉 is the evaluation, and the multiplications µ and ∆∗ on H and H∗ respectively
are denoted by · for simplicity.

Start with some preliminary observations. The first ones concern adjoint actions of
H on the tensor powers of H∗, and vice versa.

Recall the left H-module structure on H∗ given by (7.15). Together with the usual
multiplication and unit on H∗, they form a left Hcop-module algebra structure (cf. remark
7.5.8 concerning the necessity of twisting the comultiplication of H). By the right-left
symmetry (cf. section 5.5), H∗ is also a right Hcop-module algebra. The triple (A =
H∗, C = Hcop, B = H∗) and the character εH∗ = (1H)∗ can thus be fed into proposition
7.4.6 (note that all the (bi)(co)module structures are now defined over Hcop and not over
H). One gets

Lemma 7.6.8. The tensor powers of a finite-dimensional k-bialgebra (H,µ, ν,∆, ε) can
be endowed with an H∗-bimodule structure via formulas

πH∗

:= πεH∗ = ev1 ◦ ev2 · · · evn ◦ ((µ∗)n−1 ⊗ (ω−1
2n ◦∆⊗n)) :

H∗ ⊗H⊗n → ⊗H⊗n,

H∗

π := εH∗π = evn+1 ◦ evn+2 · · · ev2n ◦ ((ω−1
2n ◦∆⊗n)⊗ (µ∗)n−1) :

H⊗n ⊗H∗ → ⊗H⊗n.

The H∗-actions are graphically depicted as
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∆ ∆ ∆

(µ∗)n−1 ev

ev

ev

,
H∗ H⊗n

H⊗n

∆ ∆ ∆
(µ∗)n−1

ev

ev

ev

.
H∗H⊗n

H⊗n

Figure 7.25: H⊗n as an H∗-bimodule

On the level of elements, the formulas can be written as

πH∗

(l ⊗ h1 . . . hn) =
〈
l(1), hn(1)

〉〈
l(2), hn−1(1)

〉
. . .
〈
l(n), h1(1)

〉
h1(2) . . . hn(2),

H∗

π(h1 . . . hn ⊗ l) =
〈
l(1), hn(2)

〉〈
l(2), hn−1(2)

〉
. . .
〈
l(n), h1(2)

〉
h1(1) . . . hn(1).

Interchanging the roles of H and H∗, one gets an H-bimodule ((H∗)⊗m, πH ,Hπ). By
abuse of notation, we define, for all m,n ∈ N for which this makes sense, the following
morphisms from H⊗n ⊗ (H∗)⊗m to H⊗(n−1) ⊗ (H∗)⊗m or H⊗n ⊗ (H∗)⊗(m−1):

H∗

π := H∗

π ⊗ Id⊗(m−1)
H∗ ,

πH∗

:= (πH∗

⊗ Id⊗(m−1)
H∗ ) ◦ τH⊗n⊗(H∗)⊗(m−1),H∗ ,

πH := Id⊗(n−1)
H ⊗πH ,

Hπ := (Id⊗(n−1)
H ⊗Hπ) ◦ τH,H⊗(n−1)⊗(H∗)⊗m .

Lemma 7.6.9. The endomorphisms H∗

π, πH∗

, πH and Hπ of T (H)⊗T (H∗) pairwise com-
mute.

Proof. Lemma 7.6.8 implies the commutativity of H∗

π and πH∗

. The commutativity of Hπ
and πH follows by duality. Next, returning to the braided interpretation of the adjoint
actions, πH corresponds to pulling the rigtmost H strand to the right of all the H∗

strands (using the pre-braiding on H) and applying εH , while H∗

π corresponds to pulling
the leftmost H∗ strand to the left of all the H strands and applying εH∗ . Thus πH and
H∗

π clearly commute, and so do πH∗

and Hπ by duality.
In order to prove the commutativity of the two remaining pairs, consider the linear

isomorphism

∆n ⊗ Id⊗m
H∗ : H⊗n ⊗ (H∗)⊗m ∼

−→ (Hop)⊗n ⊗ ((Hop)∗)⊗m, (7.16)

where ∆n ∈ Sn, defined by (2.6), acts on H⊗n via the flip τ. This isomorphism, extended
to T (H)⊗ T (H∗) by linearity, is denoted by ∆∗ by abuse of notation (unfortunately, the
common notation for Garside elements coincides with that for the comultiplication on H).
One checks that ∆∗ transports the endomorphisms H∗

π, πH∗

, πH and Hπ of H⊗n⊗(H∗)⊗m

to, respectively, (Hop)∗

π, π(Hop)∗

,Hop
π and πHop

. Thus the commutativity of (Hop)∗

π and
πHop

induces that of H∗

π and Hπ, and similarly for πH∗

and πH .

Further, recall the bar differential

dbar(h1 . . . hnl1 . . . lm) =
n−1∑

i=1

(−1)ih1 . . . hi−1(hi · hi+1)hi+2 . . . hnl1 . . . lm,
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and the cobar differential

dcob(h1 . . . hnl1 . . . lm) =
m−1∑

i=1

(−1)ih1 . . . hnl1 . . . li−1(li · li+1)li+2 . . . lm

on T (H)⊗T (H∗); cf. remark 4.3.8 and proposition 5.4.6. Note that we use the evaluation-
coevaluation duality in order to transform the degree 1 cobar differential on Endk(T (H))
into a degree −1 differential on T (H)⊗ T (H∗).

Putting everything together, one gets

Proposition 7.6.10. For a finite-dimensional k-bialgebra (H,µ, ν,∆, ε), one has the fol-
lowing bidifferential structures on T (H)⊗ T (H∗):

1. dbar (−1)ndcob

2. dbar + (−1)nπH (−1)ndcob + (−1)n(H∗

π)
3. dbar + Hπ (−1)ndcob + (−1)n+mπH∗

4. dbar + (−1)nπH + Hπ (−1)ndcob + (−1)n(H∗

π) + (−1)n+mπH∗

Table 7.2: Bidifferential structures on T (H)⊗ T (H∗)

The signs (−1)n etc. here are those one chooses on the component H⊗n ⊗ (H∗)⊗m of
T (H)⊗ T (H∗).

Proof. We prove the assertion for each pair of morphisms separately, keeping the order
from the statement.

1. We have seen that dbar and dcob are differentials. They affect different components
of T (H) ⊗ T (H∗) (T (H) and, respectively, T (H∗)), and thus commute. The sign
(−1)n then assures the anticommutativity.

2. Return to the pre-braided system H. One calculate the braided differentials:

εH∗d = (−1)ndcob + (−1)n(H∗

π),

dεH = −(dbar + (−1)nπH),

obtaining the desired bidifferential.

3. Dually, one gets a bidifferential ((−1)mdbar +(−1)m(Hπ), dcob +(−1)mπH∗

). Observe
that multiplying the first differential by (−1)m and the second one by (−1)n, one
still gets a bidifferential, coinciding with the desired one.

4. The last point follows from the three preceding ones thanks to the following elemen-
tary observation:

Lemma 7.6.11. Take an abelian group (S,+, 0, a 7→ −a) endowed with an operation
· distributive with respect to +. Then, for any a, b, c, d, e, f ∈ S such that

(a+ b) · (d+ e) = (a+ c) · (d+ f) = a · d = b · f + c · e = 0,

one has
(a+ b+ c) · (d+ e+ f) = 0.

Proof.

(a+ b+ c) · (d+ e+ f) = (a+ b) · (d+ e) + (a+ c) · (d+ f)− a · d+ (b · f + c · e).
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Now take S = EndR(T (H) ⊗ T (H∗)) with the usual addition and the operation
a · b := a ◦ b (for proving that the two maps from the fourth line of our table
are differentials), or the operation a · b := a ◦ b + b ◦ a (for proving that the two
maps anti-commute). The equalities of the type b · f + c · e = 0 follow from the
pairwise anti-commutativity of (−1)n(H∗

π), (−1)n+mπH∗

, (−1)nπH and Hπ (which is
a consequence of lemma 7.6.9), and the remaining ones from the preceding points of
the proposition.

One recognizes in dbar +(−1)nπH +Hπ the Hochschild differential of H with the (right)
coefficients in the H-bimodule T (H∗) (cf. the dual version of lemma 7.6.8), and similarly
for (−1)ndcob+(−1)n(H∗

π)+(−1)n+mπH∗

. Thus the last bidifferential from the proposition
defines the bialgebra homology of M.Gerstenhaber and S.D.Schack; cf. [29] where it was
first introduced, R.Taillefer’s thesis [77] for detailed calculations and a comparison with
other bialgebra homologies, and M.Mastnak and S.Witherspoon’s paper [57] for explicit
formulas and the passage from Homk(H⊗m, H⊗n) to H⊗n ⊗ (H∗)⊗m.

The existence of an antipode as an invertibility condition

Here we return to the general setting of anH-YD system (V1, V2, . . . , Vr) in a symmetric
preadditive category C.

The pre-braidings σi,i are highly non-invertible, as was pointed out in section 4.3. It
is however interesting to explore when the pre-braidings σi,j , i < j, have inverses, keeping
in mind proposition 7.1.12. A well-known sufficient condition is the following:

Lemma 7.6.12. If the bialgebra H is moreover a Hopf algebra, then all the σi,j ’s with
i < j are invertible, the inverse given by

σ−1
i,j = σ−1

Y D = (Idi⊗λj) ◦ (Idi⊗s⊗ Idj) ◦ (δi ⊗ Idj) ◦ cVj ,Vi
. (7.17)

The inverse is graphically depicted as

δi
λj

σ−1
i,j =

ViVj

Vi Vj
s

Figure 7.26: The inverse for the Woronowicz braiding

and, in ModR, takes the form

σ−1
i,j (v ⊗ u) = u(0) ⊗ s(u(1))v.

Returning to proposition 7.1.12, one gets the following

Corollary 7.6.13. Any YD system (V1, V2, . . . , Vr) over a Hopf algebra H in a symmetric
additive category C comes with a total pre-braiding on V :=

⊕
Vi.

In particular, given a finite-dimensional Hopf k-algebra H, this method provides the
vector spaceH⊕H∗ with a pre-braiding, extending for instance the bidifferential (εH∗d, dεH )
from proposition 7.6.10 from T (H,H∗) to T (H ⊕H∗).

Now let us see to what extent the invertibility of σi,j distinguishes Hopf algebras
among other bialgebras. We return here to C = vectk (or to a more general setting
described at the beginning of this section).
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Proposition 7.6.14. Let H be a finite-dimensional k-bialgebra. Consider the pre-braided
system H from proposition 7.6.2. The component σ1,2 of the partial pre-braiding on H is
invertible if and only if H is a Hopf algebra.

Proof. The “if” part follows from the previous lemma. For the “only if” part, suppose the
existence of σ−1

1,2 and put

s̃ := (((εH ⊗ ǫH∗) ◦ σ−1
1,2)⊗ IdH) ◦ τ2 ◦ (coev ⊗ IdH) : H → H

or, graphically,

s̃ :=

.
coev

ǫH∗ǫH

σ−1
1,2

Figure 7.27: A candidate for the antipode

Let us prove that s̃ is the antipode. The part

s̃(h(1))h(2) = ε(h)1H (7.18)

of the defining relation (s) is a direct consequence of σ−1
1,2 ◦ σ1,2 = Id and the evaluation-

coevaluation duality (graphical calculus is the easiest way to check this). One would expect
to deduce the second part of (s) from σ1,2 ◦σ

−1
1,2 = Id, but surprisingly it does not seem to

work. Some algebraic tricks come into play instead. Mimicking the formula (7.17) for the
inverse Woronowicz braiding, set

σ̃(l ⊗ h) := h(1) ⊗ s̃(h(2)) · l,

where · is the action of H on H∗ defined by (7.15). Relation (7.18) implies

σ̃ ◦ σ1,2 = IdH⊗H∗ .

But σ−1
1,2 is the inverse of σ1,2, so

σ̃ = σ̃ ◦ (σ1,2 ◦ σ
−1
1,2) = (σ̃ ◦ σ1,2) ◦ σ−1

1,2 = σ−1
1,2.

This gives σ1,2 ◦ σ̃ = IdH∗⊗H , i.e.

(h(2)s̃(h(3))) · l ⊗ h(1) = l ⊗ h ∀h ∈ H, l ∈ H∗,

or, writing explicitly the H-action · on H∗,
〈
l(1), h(2)s̃(h(3))

〉
l(2) ⊗ h(1) = l ⊗ h ∀h ∈ H, l ∈ H∗.

Applying εH∗ ⊗ ǫH to both sides and using εH∗(l) = 〈l, 1H〉 , one gets
〈
l, h(1)s̃(h(2))

〉
= 〈l, ε(h)1H〉 ∀h ∈ H, l ∈ H∗,

and thus the second part of (s) for s̃.

In part I, we have recovered the defining properties of different algebraic structure as
instances of YBE. The equation (s) defining the antipode seems quite difficult to encode
by a YBE, but the previous proposition shows how to do it in terms of the invertibility of
a braiding.
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7.7 Yetter-Drinfel′d modules

This section is devoted to two “braided” approaches to Yetter-Drinfel′d (=YD) modules
(see the reminder at the beginning of section 7.5).

The first one consists in viewing a YD module as a part of a Yetter-Drinfel′d system.
This is very natural, since in a YD system all the central components Vi, i.e. those with
1 < i < r, are by definition YD modules. This viewpoint is particularly appropriate for
dealing with two kinds of questions:

1. defining tensor products of YD modules (cf. the constructions of L.A.Lambe and
D.E.Radford in [44]);

2. constructing homology theories for a pair of YD modules, in the spirit of proposi-
tion 7.6.10; one recovers in particular the deformation cohomology for YD modules,
defined by F.Panaite and D.Ştefan in [66].

In the second approach, we see a YD module as a multi-braided module over an
appropriate pre-braided system of algebras. Thus, it becomes a module of coefficients
rather than a component of a pre-braided system. We interpret the YD compatibility
between an action and a coaction in terms of a braiding, allowing one to use the language
of multi-braided modules and, consequently, the language of multi-braided tensor products
of UAAs (cf. section 7.2), recovering the notion of the Drinfel′d double of a bialgebra.
The same method is applied to Hopf (bi)modules in section 7.8.

We finish this section with a digression: we recover braidings coming from the R-matrix
of a quasi-triangular Hopf algebra as a particular case of the Woronowicz pre-braiding,
confirming the central place of YD modules in the study of solutions to the YBE.

A pre-braided system encoding the Yetter-Drinfel′d module structure

Let (M,λ, δ) be a left-right Yetter-Drinfel′d module over a finite-dimensional bialgebra
H in vectk. Add a formal unit

M̃ := M ⊕ k1

and define a trivial unital associative multiplication m on M̃ by

m|M⊗M = 0, m(1⊗ a) = m(a⊗ 1) = a ∀a ∈ M̃ (7.19)

(cf. remark 7.4.4). Let H act on 1 by the counit:

λ(h)(1) = εH(h)1 ∀h ∈ H,

and extend the coaction by
δ(1) = 1⊗ 1H .

This extends the YD module structure to M̃. Moreover, this extended YD module struc-
ture trivially respects the multiplication and the unit of M̃ in the sense of definition 7.5.5.
Thus one can “insert” M̃ to the H-YD system H from the proposition 7.6.1:

Proposition 7.7.1. Given a left-right Yetter-Drinfel′d module M over a finite-dimensional
bialgebra H in vectk, there is an H-YD system structure on (H, M̃,H∗) given by the struc-
tures of proposition 7.6.1, the trivial multiplication m from (7.19) on M̃ and the extended
left-right YD module structure on M̃.

Like in the bialgebra case, we choose the right braiding for H and the left one for H∗.
The choice for M̃ is arbitrary and does not matter for what follows.
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Corollary 7.7.2. Theorem 8 gives a pre-braiding on the H-YD system (H, M̃,H∗), with
the graphical presentation from figure 7.23 completed by

σ
H,M̃

=
λ∆ ,

σ
M̃,M̃

= m 1

,
σ

M̃,H∗ =
ev

µ∗δ
.

Figure 7.28: Pre-braiding for the system (H, M̃,H∗)

Remark 7.7.3. More generally, for a family of left-right Yetter-Drinfel′d modulesM1, . . . ,Mr

over a finite-dimensional bialgebra H in vectk, the structures above extend to an H-YD
system – and thus to a pre-braided system – structure on (H, M̃1, . . . , M̃r, H

∗).

Using the same type of arguments as for bialgebras (proposition 7.6.4), one shows that
the pre-braiding above characterizes the structure of a YD module over a bialgebra:

Proposition 7.7.4. Take an H ∈ vectk endowed with a (not necessarily associative)
multiplication µ : H⊗H → H with a unit ν : H → I and a comultiplication ∆ : H → H⊗H
with a counit ε : H → I. Consider the “rainbow”-dual structures on H∗. Further, take an
M ∈ vectk and two linear morphisms λ : H ⊗M →M and δ : M →M ⊗H, normalized
in the sense of (6.3). Then this structure describes a bialgebra H and a left-right YD
module over H if and only if the six maps from the above corollary define a pre-braiding
on (H, M̃,H∗).

Homologies

In what follows, the letters hi always stay for elements of H, lj – for elements of H∗,
a ∈ M, b ∈ N∗, the pairing 〈, 〉 is the evaluation, and the multiplications µ and ∆∗ on H
and H∗ respectively are denoted by · for simplicity.

Like for bialgebras, interesting differentials appear for the characters εH and εH∗ ex-
tended by zero elsewhere. These differentials are easily seen to preserve the subspace

T (H;M ;H∗) := T (H)⊗M ⊗ T (H∗) ⊂ T (H)⊗ T (M̃)⊗ T (H∗)

(cf. remark 7.1.8), giving

Proposition 7.7.5. For a left-right YD module (M,λ, δ) over a finite-dimensional k-
bialgebra (H,µ, ν,∆, ε), there is a bidifferential on T (H)⊗M ⊗ T (H∗) given by

εH∗d(h1 . . . hn ⊗ a⊗ l1 . . . lm) =

(−1)n+1
〈
l1(1), a(1)

〉〈
l1(2), hn(2)

〉〈
l1(3), hn−1(2)

〉
. . .
〈
l1(n+1), h1(2)

〉
×

× h1(1) . . . hn(1) ⊗ a(0) ⊗ l2 . . . lm

+
m−1∑

i=1

(−1)n+i+1h1 . . . hn ⊗ a⊗ l1 . . . li−1(li · li+1)li+2 . . . lm,

dεH (h1 . . . hn ⊗ a⊗ l1 . . . lm) =

(−1)n−1
〈
l1(1), hn(m)

〉〈
l2(1), hn(m−1)

〉
. . .
〈
lm(1), hn(1)

〉
×

× h1 . . . hn−1 ⊗ (hn(m+1) · a)⊗ l1(2) . . . lm(2)

+
n−1∑

i=1

(−1)i−1h1 . . . hi−1(hi · hi+1)hi+2 . . . hn ⊗ a⊗ l1 . . . lm.
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These differentials admit evident contracting homotopies

h⊗ a⊗ l 7−→ 1Hh⊗ a⊗ l,

h⊗ a⊗ l 7−→ h⊗ a⊗ l1H∗ .

So, to get non-trivial homologies, we now try to “cycle” this bidifferential, in the spirit of
proposition 7.6.10 for bialgebras.

Start with an observation concerning dualities:

Remark 7.7.6. The notion of left-right YD module is self-dual, with the duality in the
sense of the category Cop,⊗op

(cf. section 5.5). It means that the structures of YD module
in C and in Cop,⊗op

coincide. Recall that graphically this duality corresponds to a central
symmetry.

As a consequence, one gets (using, as usual, the “rainbow” duality on tensor products):

Lemma 7.7.7. The data (M,λ, δ) give a left-right H-YD module structure in vectk if
and only if (M∗, δ∗, λ∗) give a left-right H∗-YD module structure.

With this in mind, we propose the following setting for adding coefficients to proposi-
tion 7.6.10. Take a left-right YD module (M,λM , δM ) and a finite-dimensional left-right
YD module (N,λN , δN ) over a finite-dimensional bialgebra H in vectk. Our aim is to
endow the graded vector space

T (H)⊗M ⊗ T (H∗)⊗N∗

with four bidifferentials analogous to those from proposition 7.6.10.
Recall the bar and cobar differentials

dbar(h1 . . . hnal1 . . . lmb) =
n−1∑

i=1

(−1)ih1 . . . hi−1(hi · hi+1)hi+2 . . . hnal1 . . . lmb,

dcob(h1 . . . hnal1 . . . lmb) =
m−1∑

i=1

(−1)ih1 . . . hnal1 . . . li−1(li · li+1)li+2 . . . lmb.

To introduce a generalization of maps πH∗

, πH , . . . which were defined in the bialgebra
setting on T (H)⊗ T (H∗), the following observation is useful:

Lemma 7.7.8. A pre-braiding can be given on the system

V H,M,N := (H∗, Ñ∗, H, M̃,H∗)

by combining the pre-braiding on (H, M̃,H∗) from corollary 7.7.2, its dual version (in the
sense of lemma 7.7.7) on (H∗, Ñ∗, H), and flips τ as components σ1,4, σ1,5, σ2,4 and σ2,5.

Proof. We have seen that formula (7.15) and its dual version endowH∗ with a left and right
Hcop-module algebra structures. Further, M̃ is a left Hcop-module algebra by construction,
and, dually, Ñ∗ is a right Hcop-module algebra. Together with the Hcop-comodule algebra
Hcop, this gives four triples to be fed into proposition 7.4.2. One checks that the pre-
braidings obtained this way are precisely those imposed on the corresponding components
of V H,M,N in the statement of the lemma. Thus one gets the instances of the YBE
where all the components belong to one of these triples. On the other hand, corollary
7.7.2 guarantees the YBEs where all the components are from the triples (H, M̃,H∗) or
(H∗, Ñ∗, H). The remaining triples combine the first two and the last two components of
V H,M,N . For such triples, the YBE trivially follows from the naturality of the flip.
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Lemma 7.4.5 now gives an H∗-bimodule structure on T (V H,M,N )→n and, by restriction,
on N∗ ⊗Hn ⊗M via formulas

πH∗

:= πεH∗ = ev2 ◦ ev3 · · · evn+1 ◦ τ(H∗)n,N∗ ◦ (λN∗)n+1◦

((µ∗)n ⊗ IdN∗ ⊗(ω−1
2n ◦∆⊗n)⊗ IdM ) :

H∗ ⊗N∗ ⊗Hn ⊗M → N∗ ⊗Hn ⊗M,

H∗

π := εH∗π = evn+2 ◦ evn+3 · · · ev2n+1◦

(IdN∗ ⊗(ω−1
2(n+1) ◦ (∆⊗n ⊗ δM ))⊗ (µ∗)n) :

N∗ ⊗Hn ⊗M ⊗H∗ → N∗ ⊗Hn ⊗M.

We use the same notation πH∗

for the action on N∗ ⊗Hn obtained by restricting oneself
to the corresponding pre-braided subsystem, and similarly for other actions.

Dually, one gets an H-bimodule structure (M ⊗ (H∗)m ⊗ N∗, πH ,Hπ). By abuse of
notation, we define, for all m,n ∈ N for which this makes sense, the following morphisms
from Hn ⊗M ⊗ (H∗)m ⊗N∗ to Hn−1 ⊗M ⊗ (H∗)m ⊗N∗ or Hn ⊗M ⊗ (H∗)m−1 ⊗N∗:

H∗

π := H∗

π ⊗ Idm−1
H∗ ⊗ IdN∗ ,

πH∗

:= τN∗,Hn⊗M⊗(H∗)m−1 ◦ (πH∗

⊗ Id⊗(m−1)
H∗ ) ◦ τHn⊗M⊗(H∗)(m−1),H∗⊗N∗ ,

πH := Id⊗(n−1)
H ⊗πH ,

Hπ := (Id⊗(n−1)
H ⊗Hπ) ◦ τH,Hn−1⊗M⊗(H∗)m⊗N∗ .

The bidifferential from proposition 7.7.5 can be written with our new notations as

εH∗d = (−1)n+1(H∗

π) + (−1)n+1dcob,

dεH = (−1)n−1πH − dbar.

Generalizing lemma 7.6.9, one gets

Lemma 7.7.9. The endomorphisms H∗

π, πH∗

, πH and Hπ of T (H) ⊗M ⊗ T (H∗) ⊗ N∗

pairwise commute.

We have thus generalized all the ingredients of the proof of proposition 7.6.10 to the
settings with components, obtaining

Proposition 7.7.10. For a left-right YD module M and a finite-dimensional left-right
YD module N over a finite-dimensional bialgebra H in vectk, one has the following bid-
ifferential structures on T (H)⊗M ⊗ T (H∗)⊗N∗:

1. dbar (−1)ndcob

2. dbar + (−1)nπH (−1)ndcob + (−1)n(H∗

π)
3. dbar + Hπ (−1)ndcob + (−1)n+mπH∗

4. dbar + (−1)nπH + Hπ (−1)ndcob + (−1)n(H∗

π) + (−1)n+mπH∗

Table 7.3: Bidifferential structures on T (H)⊗M ⊗ T (H∗)⊗N∗

The signs (−1)n etc. here are those one chooses on the component H⊗n⊗M⊗(H∗)⊗m⊗N∗

of T (H)⊗M ⊗ T (H∗)⊗N∗.
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Substituting the graded vector space T (H) ⊗M ⊗ T (H∗) ⊗ N∗ we work in with its
alternative version Homk(N⊗T (H), T (H)⊗M), we obtain (the dual of a mirror version of)
the deformation cohomology for YD modules, defined by F.Panaite and D.Ştefan in [66].
We have thus developed a conceptual framework for this cohomology theory, replacing
case by case verifications (for instance, when proving that one has indeed a bidifferential)
with a structure study, facilitated by graphical tools.

Remark 7.7.11. Working with a YD module M, one does not exploit the power of YD
systems to the full, since one uses the trivial algebra structure on M. A situation where
this part of the YD system structure becomes important is that of an H-module algebra
M. In this case, one has an Hcop-YD system (Hcop,M). Studying the associated braided
differentials, one recovers the deformation bicomplex of module algebras, introduced by
D.Yau in [84]. The work on this question is in progress.

Tensor products of YD modules

The interpretation of a YD module as a part of a YD system is particularly useful
while working with tensor products of YD modules. For example, it suggests and explains
the YD structure on such a tensor product, which is not so intuitive: for instance, the
usual diagonal action and coaction fail to satisfy (YD) in general.

Proposition 7.7.12. Take two left-right YD modules (M,λM , δM ) and (N,λN , δN ) over
a finite-dimensional k-bialgebra (H,µ, ν,∆, ε). Then the maps

λM⊗N = (λM ⊗ λN ) ◦ (cH,H⊗M ⊗ IdN ) ◦ (∆⊗ IdM⊗N ),

δM⊗N = (IdM⊗N ⊗µ) ◦ (IdM ⊗cH,N ⊗ IdH) ◦ (δM ⊗ δN )

give a YD module structure on M⊗N. On the element level, taking h ∈ H, m ∈M, n ∈ N,
and denoting the H-actions and the multiplication µ by · for simplicity, it means

h · (m⊗ n) = h(2) ·m⊗ h(1) · n,

δ(m⊗ n) = m(0) ⊗ n(0) ⊗m(1) · n(1).

In other words, one uses the diagonal coaction and the twisted diagonal action.

Proof. We use the “braided” characterization of YD modules from proposition 7.7.4 and
some technical formal unit gymnastics. Remark 7.7.3 describes a YD system, and thus a
pre-braided system, (H, M̃, Ñ ,H∗). Lemma 7.1.3 extracts a pre-braided system (H, M̃ ⊗
Ñ ,H∗) from it, with σ2,2 = 0. The pre-braiding further restricts to (H,M ⊗ N,H∗).

Extending the zero pre-braiding on M ⊗ N to σAss on M̃ ⊗N := (M ⊗ N) ⊕ k1, with
the trivial multiplications on the latter space, one gets precisely the type of pre-braiding
demanded in proposition 7.7.4, with λ = λM⊗N and δ = δM⊗N . The latter maps then
define a left-right YD module structure on M ⊗N.

Note that the formulas from the proposition can be easily generalized to the case of n
YD modules.

Remark 7.7.13. As was noticed in remark 7.7.6, the notion of YD module is self-dual.
However, the structures from proposition 7.7.12 are not self-dual. One thus obtains an
alternative notion of tensor product for YD modules. Namely, one should take
the twisted diagonal coaction and the diagonal action:

h · (m⊗ n) = h(1) ·m⊗ h(2) · n,

δ(m⊗ n) = m(0) ⊗ n(0) ⊗ n(1) ·m(1).
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Both tensor products of YD modules presented here were introduced by L.A.Lambe
and D.E.Radford in [44].

Yetter-Drinfel′d modules and the Drinfel′d double

Now we turn to a multi-braided module interpretation of a left-right Yetter-Drinfel′d
module (M,λ, δ) over a bialgebra H in vectk. An easy preliminary lemma is first necessary:

Lemma 7.7.14. The following functors give an equivalence of categories:

ModH ≃ModH∗ ,

(M, δ) 7→ (M, (IdM ⊗ev) ◦ (δ ⊗ IdH∗)), (7.20)

(M, (ρ⊗ IdH) ◦ (IdM ⊗coev)) 7→(M,ρ). (7.21)

Cf. remark 7.5.8 and the graphical interpretation therein.
Note that for this lemma to hold, it is essential to use the “rainbow” duality.

Lemmas 7.3.1 and 7.7.14 allow to see our left-right YD module M as a right module
(M,ρH) over the opposite algebra Hop and a right module (M,ρH∗) over the dual algebra
H∗, with the compatibility condition obtained from (YD) (cf. also figure 7.6):

ρH∗ ◦ (ρH ⊗ IdH∗) ◦ (IdM ⊗((IdH ⊗ev ⊗ IdH∗) ◦ ((τ ◦∆)⊗ µ∗)) =

ρH ◦ (ρH∗ ⊗ IdH) ◦ (IdM ⊗(τ ◦ (IdH ⊗ev ⊗ IdH∗) ◦ (∆⊗ (τ ◦ µ∗))).

If H is a Hopf algebra with an invertible antipode s, this condition reads

ρH∗ ◦ (ρH ⊗ IdH∗) =

ρH ◦ (ρH∗ ⊗ IdH) ◦ (IdM ⊗(((ev ◦ (s−1 ⊗ IdH∗))⊗ τ ⊗ ev) ◦ ω6 ◦ (∆2 ⊗ (µ∗)2)))

(recall notations (1.4) and (7.4)), or, graphically,

ρH∗

ρH

M Hop H∗

=

∆2 (µ∗)2
s−1

ρH∗

ρH

ev ev

M Hop H∗
.

Figure 7.29: YD modules: compatibility between the Hop and the H∗ actions

On the element level, the compatibility condition becomes

(a · h) · l =
〈
s−1(l(1)), h(1)

〉〈
l(3), h(3)

〉
(a · l(2)) · h(2),

where a ∈ M, h ∈ H, l ∈ H∗, the pairing 〈, 〉 is the evaluation, and all the actions are
denoted by · for simplicity.

Arguments similar to those leading to proposition 7.3.2 give
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Proposition 7.7.15. Let (H,µ, ν,∆, ε, s), be a finite-dimensional k-linear Hopf algebra
(consequently, with an invertible antipode). The following categories are equivalent:

ModHop ⊗
σ−1

H∗ ≃Mod(H∗,Hop) ≃H YDH ≃Mod(Hop,H∗) ≃ModH∗⊗
σ

Hop ,

where
σ = ((ev ◦ (s−1 ⊗ IdH∗))⊗ τ ⊗ ev) ◦ ω6 ◦ (∆2 ⊗ (µ∗)2).

Here the σ1,2 component of the pre-braiding for the pre-braided systems of UAAs is the
one used for the corresponding multi-braided tensor product of UAAs (i.e. σ or σ−1).

Proof. We give a complete proof of a similar statement for Hopf modules (proposition
7.8.2) and thus omit the details here. The only difference with the Hopf module case
consists in the necessity of checking the naturality of σ with respect to multiplications,
which can be done by easy calculations.

The multi-braided tensor product of UAAs

D(H) := H∗ ⊗
σ
Hop

from the proposition coincides, up to some op signs (due, as usual, to our choice of the “rain-
bow” pairing), with the familiar Drinfel′d double of H. We thus add a new viewpoint
– that of multi-braided modules – to the well-known interpretation of Yetter-Drinfel′d
modules as modules over the Drinfel′d double (cf. for example [51] or [69]).

Note that, if one completes the UAA structure on D(H) into a bialgebra structure,
the category equivalence above gives another method of defining a tensor product of YD
modules. Namely, one can transfer the structure from the category ModD(H) of modules
over a bialgebra (cf. proposition 7.7.12 and [44]).

Digression: braidings coming from an R-matrix as a particular case of
the Woronowicz pre-braiding

The Woronowicz pre-braidings for Yetter-Drinfel′d modules are known to form a very
vast family of solutions to the Yang-Baxter equation (YB). According to [23], [24] and [69],
this family is complete in the category vectk. This has led L.A.Lambe and D.E.Radford
to use the eloquent term quantum Yang-Baxter module instead of the more historical term
Yetter-Drinfel′d module, cf. [44]. Here we recover another famous family of YBE solu-
tions, namely those coming from (a generalization of) the R-matrix of a quasi-triangular
Hopf algebra (see for example [38] for an introduction to this theory), as a subfamily of
Woronowicz pre-braidings, confirming the central place of Yetter-Drinfel′d modules in the
study of YBE solutions. This fact is probably well-known, but the author has not found
it in literature. We point out two non-conventional points in our treatment of R-matrices:

1. we do not demand their invertibility, staying in our pre-braided settings;

2. only the “right half” of the usual compatibility relations with the bialgebra structure
is required.

We work in an arbitrary symmetric category (C,⊗, I, c) here.

Let (µ, ν) and (∆, ε) be a UAA and, respectively, a coUAA structures on an object H
of C. Take a left module (M,λ) over the algebra H and a morphism R : I −→ H ⊗H. Put

δR := (λ⊗ IdH) ◦ (IdH ⊗cH,M ) ◦ (R⊗ IdM ) : M →M ⊗H

or, graphically,
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δR :=
R

λ

M

M H

.

Figure 7.30: Action + R-matrix 7−→ coaction

Now try to determine conditions on R which make (M,λ, δR) a left-right Yetter-
Drinfel′d module for any M. One arrives to the following set of conditions:

Definition 7.7.16. A morphism R : I → H ⊗ H is called a weak R-matrix for a UAA
and a coUAA object (H,µ, ν,∆, ε) in C if

1. (IdH ⊗∆) ◦R = (µ⊗ IdH⊗H) ◦ c2 ◦ (R⊗R)

2. (IdH ⊗ε) ◦R = ν,

3. µH⊗H ◦ (R⊗∆op) = µH⊗H ◦ (∆⊗R),

or, graphically,

=

R

∆ ,
R R

µ
=

R

ε
ν
,

=
R

∆

µ µ

.
R

∆

µ µ

Figure 7.31: A weak R-matrix

Here we use the notation µH⊗H from (5.7), and

∆op := c ◦∆.

Note that H is not necessarily a bialgebra in general.
One can informally interpret the first two conditions by saying that R, extended to

tensor powers of H in the “arched” way (cf. table 1.5), provides a duality between the
UAA (H,µ, ν) on the left and the coUAA (H,∆, ε) on the right.

As was hinted at above, a weak R-matrix for H allows to upgrade a module struc-
ture over the algebra H into a Yetter-Drinfel′d module structure:

Proposition 7.7.17. Take a UAA and a coUAA object (H,µ, ν,∆, ε) in C equipped with
a weak R-matrix R.

1. For any left H-module (M,λ), the data (M,λ, δR) form a left-right YD module.

2. Moreover, the Woronowicz pre-braiding

σY D = cM,N ◦ (IdM ⊗λN ) ◦ ((δR)M ⊗ IdN ) : M ⊗N → N ⊗M

for two such modules (and hence YD modules) (M,λM ) and (N,λN ) coincides with
the customary pre-braiding given by the R-matrix:

σR := cM,N ◦ (λM ⊗ λN ) ◦ (IdH ⊗cH,M ⊗ IdN ) ◦ (R⊗ IdM⊗N ).

Proof. The first two conditions from the definition of weak R-matrix guarantee that δR is
a counital coalgebra coaction, while the last one implies the YD compatibility (YD). The
equality of the two pre-braidings follows from the definition of δR.
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The weak notion of R-matrix can be easily seen to generalize the well-known notion
of R-matrix in a quasi-triangular Hopf algebra. The following two lemmas explain
where the missing conditions come from.

Lemma 7.7.18. If H is moreover a Hopf algebra with an antipode s, then a weak R-
matrix R for H has an inverse,

R−1 := (IdH ⊗s) ◦R,

in the sense that

µH⊗H ◦ (R⊗R−1) = µH⊗H ◦ (R−1 ⊗R) = ν ⊗ ν.

Note also that if R is invertible, then the condition 2 from the definition of weak
R-matrix follows from 1.

Let now H be a bialgebra with a weak R-matrix R. Take two modules (and hence
YD modules) (M,λM ) and (N,λN ). According to proposition 7.7.12, M ⊗N has a tensor
product YD module structure given by

λM⊗N = (λM ⊗ λN ) ◦ (IdH ⊗cH,M ⊗ IdN ) ◦ (∆op ⊗ IdM⊗N ),

δM⊗N = (IdM⊗N ⊗µ) ◦ (IdM ⊗cH,N ⊗ IdH) ◦ ((δR)M ⊗ (δR)N ).

On the other hand, another coaction is given via the weak R-matrix:

(δR)M⊗N = (λM⊗N ⊗ IdH) ◦ (IdH ⊗cH,M⊗N ) ◦ (R⊗ IdM⊗N ).

Similarly, the unit object I of C can be endowed with two different coactions ν and (δR)I.

Lemma 7.7.19. If a weak R-matrix R for a bialgebraH in C satisfies additional conditions

1. (∆⊗ IdH) ◦R = (IdH⊗H ⊗µ
op) ◦ c2 ◦ (R⊗R)

2. (ε⊗ IdH) ◦R = ν,

then the two Yetter-Drinfel′d structures on M ⊗N (resp. I) described above coincide.

Definition 7.7.20. A weak R-matrix satisfying the conditions from the previous lemma
is called an R-matrix.

Note that our conditions on R correspond to the conditions usually imposed on R−1.
Remark also that the invertibility of R is not required in our definition.

The preceding lemma leads to a stronger version of proposition 7.7.17 for R-matrices:

Proposition 7.7.21. Take a bialgebra (H,µ, ν,∆, ε) in C equipped with an R-matrix R.
Then HMod can be seen as a full pre-braided subcategory of HYDH via the inclusion

iR : HMod →֒ HYDH ,

(M,λ) 7→ (M,λ, δR).

Proof. Point 1 of proposition 7.7.17 shows that the map is well defined. Further, a mor-
phism in HMod automatically preserves the co-actions δR (see the definition of the latter
and use the naturality of c), so it is the same thing as a morphism in HYDH for the struc-
tures from the statement. Lemma 7.7.19 proves that the functor iR preserves the monoidal
structures, and point 2 of proposition 7.7.17 asserts that iR respects the pre-braidings.
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7.8 Hopf (bi)modules

In this section, we apply our “braided” tools to Hopf (bi)modules.
Similarly to what was done for Yetter-Drinfel′d modules in section 7.7, we interpret the

Hopf compatibility condition in terms of pre-braidings, which allows us to use the language
of multi-braided modules and, consequently, the language of multi-braided tensor products
of UAAs (cf. section 7.2). We thus recover

1. the Heisenberg doubles as a multi-braided tensor product corresponding to the struc-
ture of Hopf module,

2. and the algebra X of C.Cibils and M.Rosso (cf. [14]), as well as F.Panaite’s algebras
Y and Z (cf. [65]), as multi-braided tensor products corresponding to the structure
of Hopf bimodule.

Moreover, we include the algebras X, Y and Z into a family of 4! = 24 algebras, giving
explicit isomorhisms between them. One thus avoids tedious verifications and case-by-case
studies, made for instance in [65].

As for homologies, we present two theories here:

1. the cohomology of Hopf bimodules, introduced by C.Ospel in the one-module case
(cf. [64]) and R.Taillefer (cf. [77] and [78]) in the two-module case;

2. the cohomology of Hopf modules, defined by F.Panaite and D.Ştefan in [66].

Our theory of multi-braided adjoint modules with coefficients turns out to be useful in the
first case, giving thus an application of our “braided” interpretation of Hopf bimodules on
the homology level. As for the second cohomology theory, we show the relevance of the
structure mixing techniques from section 6.2.

Definitions

Recall the categorical definitions of Hopf (bi)modules:

Definition 7.8.1. Take a pre-braided category (C,⊗, I, c).
ú A right module structure ρ : M ⊗H →M and a right comodule structure δ : M →

M ⊗H on M are said to form a right-right Hopf module structure over a bialgebra
H in C if they satisfy the right-right Hopf compatibility condition

δ ◦ ρ = (ρ⊗ µ) ◦ (IdM ⊗cH,H ⊗ IdH) ◦ (δ ⊗∆) : M ⊗H →M ⊗H. (7.22)

ú A left module structure λ : H ⊗M → M and a right comodule structure δ : M →
M ⊗H on M are said to form a left-right Hopf module structure over a bialgebra
H in C if they satisfy the left-right Hopf compatibility condition

δ ◦ λ = (λ⊗ µ) ◦ (IdH ⊗cH,M ⊗ IdH) ◦ (∆⊗ δ) : H ⊗M →M ⊗H. (7.23)

ú Right-left and left-left Hopf modules are defined similarly.
ú A Hopf bimodule structure is a left and right module and a left and right comodule

structures satisfying the bimodule, the bicomodule and all the four possible Hopf
compatibility conditions.

ú The categories of right-right, left-right Hopf modules and Hopf bimodules over H
and their morphisms are denoted by, respectively, ModH

H , HModH and H
HModH

H ,
and similarly for the two remaining “double” structures and for the “single” struc-
tures of left or right (co)modules.
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Condition (7.22) is graphically depicted as

ρ
δ =

ρ

δ

µ

∆

c

.

Figure 7.32: Right-right Hopf compatibility condition

In ModR, it takes the familiar form

(a · h)(0) ⊗ (a · h)(1) = a(0) · h(1) ⊗ a(1) · h(2) ∀a ∈M,h ∈ H.

Hopf bimodules were introduced by W.D.Nichols in [62] and rediscovered further by
S.L.Woronowicz in [82].

We place everything into the category C = vectk; see the remarks in the beginning of
section 7.6 concerning a possible higher level of generality.

Fix a bialgebra H in vectk.

Hopf modules and the Heisenberg double

We work at first with right-right Hopf modules and multi-modules over the pre-
braided system H = (H,H∗) from proposition 7.6.2. This study essentially follows the
lines of section 7.3.

Lemma 7.7.14 allows to construct a chain of category equivalences in the spirit of
proposition 7.3.2:

Proposition 7.8.2. 1. The following categories are equivalent:

ModH
H ≃Mod(H,H∗) ≃ModH∗⊗

σ
H ,

where

σ = σY D = τ ◦ (IdH ⊗ev ⊗ IdH∗) ◦ (∆⊗ µ∗) : H ⊗H∗ → H∗ ⊗H

(cf. figure 7.23).

2. If the bialgebra H turns out to be a Hopf algebra with an antipode s, then this chain
of category equivalences can be continued on the left:

ModH ⊗
σ−1

H∗ ≃Mod(H∗,H) ≃ModH
H ,

where

σ−1 = (σY D)−1 = (IdH ⊗(ev ◦ (s⊗ IdH∗)⊗ IdH∗) ◦ (∆⊗ µ∗) ◦ τ.

Proof. According to remark 7.1.10 combined with example 6.1.2, a right normalized multi-
braided (H,H∗)-module is a right algebra H-module and a right algebra H∗-module struc-
tures ρH and ρH∗ on M, compatible in the sense of (7.1):

ρH∗ ◦ (ρH ⊗ IdH∗) = ρH ◦ (ρH∗ ⊗ IdH) ◦ (IdM ⊗(τ ◦ (IdH ⊗ev ⊗ IdH∗) ◦ (∆⊗ µ∗))).

Further, according to lemma 7.7.14, a right-right Hopf module structure over H is the
same thing as a right algebra H-module and a right algebra H∗-module structures, with
the compatibilty condition obtained by



128 CHAPTER 7. BRAIDED SYSTEMS: GENERAL THEORY AND EXAMPLES

ú applying IdM ⊗ev to relation (7.22), tensored with IdH∗ on the right,
ú and then using equation (7.20) in order to transform H-comodule structures into

H∗-module structures.
The two compatibilty conditions coincide, implying ModH

H ≃Mod(H,H∗).
Next, since the Woronowicz pre-braiding σY D is natural with respect to the units

(lemma 7.5.6), proposition 7.2.6 gives Mod(H,H∗) ≃ModH∗⊗
σ

H (remark 7.2.2 relieves us

from exhibiting normalized pairs for units, since r = 2).
In the Hopf algebra case, proposition 7.1.13 combined with the invertibility lemma

7.6.12 give Mod(H,H∗) ≃ Mod(H∗,H), the last category equivalent to ModH ⊗
σ−1

H∗ again

via proposition 7.2.6.

Denote by
H
′(H) := H ⊗

σ−1
H∗

one of the multi-braided tensor products of UAAs from the proposition. Then

H (H) := H
′(H∗) = H∗ ⊗

σ−1
H

is the well-known Heisenberg double of the Hopf algebra H (cf. for example [60] or [14]).
Note that some authors use this name for one of the other multi-braided tensor products
of UAAs described in the preceding and the following propositions. Moreover, because of
our use of the “rainbow” pairing between H ⊗H and H∗ ⊗H∗, our definitions may differ
from the conventional ones by some op signs.

Hopf bimodules and the algebras X, Y and Z

Continuing in the same vein, we are now heading towards an interpretation of Hopf
bimodules in terms of multi-modules over a pre-braided system of UAAs, and, conse-
quently (via proposition 7.2.6), in terms of modules over a multi-braided tensor product
of UAAs. Since a Hopf bimodule is simultaneously an algebra bimodule, a coalgebra
bicomodule, and a Hopf module for the four possible left/right choices, the key ideas are

1. to mix constructions from propositions 7.3.2 and 7.8.2,

2. and to study the behavior of category equivalences from proposition 7.8.2 with re-
spect to twisting the multiplication and/or the comultiplication of our bialgebra in
the sense of lemma 7.6.6 (recall that such twists allow the left-right passage, cf.
lemma 7.3.1).

We start with point 2. Recall the notations of type σop
Y D from proposition 7.6.7.

Proposition 7.8.3. The following categories are equivalent:

1. HModH ≃Mod(Hop,H∗) ≃ModH∗⊗
σ

Hop , where σ = σop
Y D;

2. HModH ≃Mod(H,(H∗)op) ≃Mod(H∗)op⊗
σ

H , where σ = σcop
Y D;

3. H
HMod ≃Mod(Hop,(H∗)op) ≃Mod(H∗)op⊗

σ
Hop , where σ = σop,cop

Y D .

If the bialgebra H turns out to be a Hopf algebra with an invertible antipode s, then the
H and H∗ components of each pre-braided system and of each multi-braided tensor product
of UAAs can be interchanged, with σ replaced by σ−1, given explicitly by, respectively,

1. (σop
Y D)−1 = (IdH ⊗(ev ◦ (s−1 ⊗ IdH∗)⊗ IdH∗) ◦ (∆⊗ (τ ◦ µ∗)) ◦ τ ;
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2. (σcop
Y D)−1 = (IdH ⊗(ev ◦ (s−1 ⊗ IdH∗)⊗ IdH∗) ◦ ((τ ◦∆)⊗ µ∗) ◦ τ ;

3. (σop,cop
Y D )−1 = (IdH ⊗(ev ◦ (s⊗ IdH∗)⊗ IdH∗) ◦ ((τ ◦∆)⊗ (τ ◦ µ∗)) ◦ τ.

Proof. Apply proposition 7.8.2 to

1. HModH ≃ModH
Hop ≃ModHop

Hop ;

2. HModH ≃ModHcop

H ≃ModHcop

Hcop ;

3. H
HMod ≃ModHcop

Hop ≃ModHop,cop

Hop,cop .

In the Hopf algebra case, use the antipodes for the “twisted” structures given in lemma
7.6.6, and apply proposition 7.1.13 combined with the invertibility lemma 7.6.12.

Now, according to point 1 of our program, we mix all the “bi”-structures into a
“quadri”-structure of a Hopf bimodule:

Theorem 9. 1. The following categories are equivalent:

H
HModH

H ≃Mod(H,Hop,H∗,(H∗)op) ≃Mod(H∗)op⊗
σ

H∗⊗
σ

Hop⊗
σ

H ,

where the pre-braiding σ on the UAA system

H4 := (H,Hop, H∗, (H∗)op)

is given by σAss on each component and, on the pairs of distinct components, by

σ1,2 = τ, σ1,3 = σY D, σ1.4 = σcop
Y D,

σ3,4 = τ, σ2,3 = σop
Y D, σ2,4 = σop,cop

Y D .

2. If the bialgebra H turns out to be a Hopf algebra with an invertible antipode s, then
the components of H4, and thus of

X (H) := (H∗)op ⊗
σ
H∗ ⊗

σ
Hop ⊗

σ
H,

can be arranged in an arbitrary order, with the components of σ replaced by their
inverses when necessary. This gives 4! = 24 isomorphic multi-braided tensor products
of UAAs, these isomorphisms being compatible with the equivalences of corresponding
module categories. Explicitly, given an s ∈ S4, the algebra morphism T σ−1

s effectuates
the permutation s of the 4 components of the X (H).

Proof. 1. Lemma 7.3.1 and its dual version, together with lemma 7.7.14, show that a Hopf
bimodule is the same thing as a module over four UAAs H,Hop, H∗ and (H∗)op, with a
compatibility condition for each of the six pairs of algebras. Propositions 7.3.2 and its dual
version, and proposition 7.8.2 and its twisted version 7.8.3, translate each compatibility
condition into the “braided” language, giving the family σ from the statement of the
theorem. Thus, to get the first category equivalence, it remains to check that σ is indeed
a pre-braiding. Since each two-component subsystem of (4, H4, σ) is a pre-braided system
according to the above cited propositions, one has to check the YBE on tensor products
of three distinct components only. We study in detail the case H ⊗ Hop ⊗ H∗ here,
the three other triples being similar. The left actions of H and Hop on H∗ are given
by formula (7.15) and, respectively, the left versions of formulas (7.15) and (7.7). They
commute because of the coassociativity of H∗. The form of the Woronowicz pre-braiding
σY D allows to conclude.
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The second equivalence follows from proposition 7.2.6, remark 7.2.2 and the naturality
of all the pre-braidings in the story with respect to the units (which is a consequence of
lemma 7.5.6 and of the naturality of τ).

2. In the Hopf algebra case, use, as usual, propositions 7.1.13 and 7.2.7.

Note that in the Hopf algebra case, the multi-braided tensor product algebra X (H)
coincides, up to a permutation (of the kind described in the theorem) and some op signs
(due, as usual, to our choice of the “rainbow” pairing), with the algebra X of C.Cibils and
M.Rosso (cf. [14]). We recover thus their interpretation of Hopf bimodules as modules over
an algebra, adding to it one more viewpoint – that of multi-braided modules. This gives
in particular an alternative proof of the associativity of the algebra X. Further, among
the 24 algebras isomorphic to X (H), one recovers F.Panaite’s algebras Y (H) and Z (H)
(cf. [65]) and explicit isomorhisms between them. One thus avoids tedious verifications
and case-by-case study.

Homological consequences

Having interpreted Hopf bimodules as multi-braided H4-modules, we can use them as
coefficients for braided differentials. As an example, we apply proposition 7.1.11 to our
Hopf algebra context and the pre-braided system H4, choosing s = t = 1. Recall notations
(1.3) and (1.4).

Proposition 7.8.4. Take a Hopf bimodule (M,ρ : M ⊗ H → M,λ : H ⊗M → M, δ :
M →M ⊗H, γ : M → H ⊗M) over a bialgebra (H,µ, ν,∆, ε) in vectk. The bar complex
for H with coefficients in (M,ρ), i.e. (M ⊗ T (H), ρd), is a complex in H

HModH
H , i.e. the

differentials (ρd)n are Hopf bimodule morphisms, the Hopf bimodule structure on M⊗H⊗n

being given by

ρbar := µn+1 : M ⊗H⊗n ⊗H →M ⊗H⊗n,

λbar := λ1 : H ⊗M ⊗H⊗n →M ⊗H⊗n,

δbar := (µn)n+2 ◦ ω
−1
2(n+1) ◦ (δ ⊗∆⊗n) : M ⊗H⊗n →M ⊗H⊗n ⊗H,

γbar := µn ◦ ω−1
2(n+1) ◦ (γ ⊗∆⊗n) : M ⊗H⊗n → H ⊗M ⊗H⊗n,

where ω2(n+1) ∈ S2(n+1) is defined by (7.4), and S2(n+1) acts on M ⊗H⊗(2n+1) by the flip
τ.

The proof essentially repeats that of proposition 7.3.3.
The Hopf bimodule structure on M ⊗H⊗n thus combines the “peripheral” bimodule

and the codiagonal bicomodule structures, the latter graphically depicted as

δ ∆ ∆ ∆

µn

,
M H⊗n

M H⊗n H

γ ∆ ∆ ∆

µn

.
M H⊗n

M H⊗nH

Figure 7.33: H-bicomodule structure on the bar complex with coefficients
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This Hopf bimodule structure on the bar complex, as well as its dual one on the
cobar complex, are essential in defining the cohomology of Hopf bimodules, introduced
by C.Ospel in the one-module case (cf. [64]) and R.Taillefer (cf. [77] and [78]) in the
two-module case.

Structure mixing techniques for Hopf modules

We finish this section with an interpretation of F.Panaite and D.Ştefan’s cohomology
of Hopf modules (cf. [66]) using the tools from section 6.2.

In vectk, take two left-right Hopf modules (M,λM , δM ) and (N,λN , δN ) over a bial-
gebra (H,µH ,∆H). Amalgamate all these structures together:

V := H ⊕M ⊕N

and define a multiplication µ and a comultiplication ∆ on V by

µ|H⊗H = µH , ∆|H = ∆H ,

µ|H⊗M = λM , ∆|M = δM ,

µ|H⊗N = λN , ∆|N = δN ,

extending µ by zero for other couples of spaces. One easily checks the following

Lemma 7.8.5. The applications µ and ∆ above define a (non-unital non-counital) bial-
gebra structure on V if and only if the following conditions hold:

ú H is a bialgebra;
ú M and N are left-right Hopf modules over H.

If H is moreover unital and counital, then 1H and εH become, respectively, the left unit
and the right counit of V.

Proposition 7.6.10 now gives bidifferentials on T (V )⊗ T (V ∗) and, in particular, on its
sub-bicomplex (for any of the four structures from the proposition)

T (H)⊗M ⊗ T (H∗)⊗N∗.

Note that we cheat a little here, since the bialgebra V has only one-sided unit and counit.
Some technical work is necessary in order to see that on the above sub-bicomplex, this
partial structure suffices.

Writing explicitly the last bidifferential from proposition 7.6.10 in our setting, one gets

Proposition 7.8.6. For two finite-dimensional left-right Hopf modules (M,λM , δM ) and
(N,λN , δN ) over a finite-dimensional k-bialgebra (H,µ, ν,∆, ε), there is a bidifferential
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structure on T (H)⊗M ⊗ T (H∗)⊗N∗ given, using our usual notations, by

d(h1 . . . hn ⊗ a⊗ l1 . . . lm ⊗ b) =

(−1)n+1
〈
l1(1), a(1)

〉〈
l1(2), hn(2)

〉〈
l1(3), hn−1(2)

〉
. . .
〈
l1(n+1), h1(2)

〉
×

× h1(1) . . . hn(1) ⊗ a(0) ⊗ l2 . . . lm ⊗ b

+
m−1∑

i=1

(−1)n+i+1h1 . . . hn ⊗ a⊗ l1 . . . li−1(li · li+1)li+2 . . . lm ⊗ b

+ (−1)n+m+1h1 . . . hn ⊗ a⊗ l1 . . . lm−1 ⊗ (lm · b),

d′(h1 . . . hn ⊗ a⊗ l1 . . . lm ⊗ b) =

−
〈
l1(2), h1(m+1)

〉
. . .
〈
lm(2), h1(2)

〉〈
b(1), h1(1)

〉
×

× h2 . . . hn ⊗ a⊗ l1(1) . . . lm(1) ⊗ b(0)

+
n−1∑

i=1

(−1)i−1h1 . . . hi−1(hi · hi+1)hi+2 . . . hn ⊗ a⊗ l1 . . . lm ⊗ b

+ (−1)n−1h1 . . . hn−1 ⊗ (hn · a)⊗ l1 . . . lm ⊗ b.

Substituting the graded vector space T (H) ⊗M ⊗ T (H∗) ⊗ N∗ we work in with its
alternative version Homk(N ⊗ T (H), T (H)⊗M), we obtain (the dual of a mirror version
of) the cohomology of Hopf modules from [66]. Note that the theory of multi-braided
adjoint modules with coefficients and other “braided” tools can now be applied to this
cohomology theory.



Part III

A Categorification of Virtuality
and Self-distributivity

133





Chapter 8

A survey of braid and virtual
braid theories

This chapter is a short and very selective introduction to the theory of braids and
virtual braids. We present only the concepts and results which will be virtualized and/or
categorified in subsequent chapters. Different aspects of braid theory are involved in
our story. Our vision of braids can thus be described, somewhat poetically, as that of
crossings at the intersection of algebra, topology, representation theory and
category theory.

8.1 Different avatars of braids

The notion of braids, completely intuitive from the topological viewpoint, was first
introduced by Emil Artin in 1925, although it was implicitly used by many XIXth century
mathematicians. Its algebraic counterpart, the notion of braid groups, accompanies its
“twin brother” from the birth. Representation theory methods have been extensively
applied to braids since then, with, as two major examples, the Burau representation (and,
later, quantum invariants) and Artin action on free groups, both recalled in this section (see
for instance [4] for more details). Braided categories, a natural categorification of the braid
group, appeared in 1993 (A.Joyal and R.H.Street, [33]), long after symmetric categories,
corresponding to symmetric groups (1965, S.Eilenberg and G.M.Kelly, [21]). The aim of
this section is to recall all those different viewpoints on braids, before proceeding to their
virtualization in the rest of this part.

Almost no proofs are given here. For a more detailed exposition, the reader is sent to
the wonderfully written books [4] and [40] for the general aspects of braid theory, and [79]
for the categorical aspects.

Topology: the birth

Topologically, a braid can be thought of as a C1 embedding of n copies I1, . . . , In

of I = [0, 1] into R2 × I, with the left ends of the Ij ’s being sent bijectively to points
(l, 0, 0), 1 6 l 6 n; the right ends being sent bijectively to (r, 0, 1), 1 6 r 6 n; the
tangents being vertical at the endpoints of the Ij ’s; and the images of the Ij ’s always
looking “up” (i.e. the embedding Ij →֒ R2 × I composed with the projection R2 × I ։ I
is a homeomorphism). One could also consider smooth or piece-wise linear embeddings,
with the same resulting theory. Such embeddings, considered up to isotopy, are called

135
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braids on n strands. They are represented by diagrams corresponding to the projection
“forgetting” the second coordinate of R2 × I, with the under/over information for each
crossing:

.

Figure 8.1: A braid on 5 strands

The vertical “stacking” of braids on n strands, followed by an obvious contraction,
defines a group structure on them:

ξ2 · ξ1 =
ξ1

ξ2

.

Figure 8.2: Composition of braids

This group is denoted by Bn.
The topological interpretation of braids is particularly useful in knot theory due to the

closure operation, effectuated by passing to R3 ⊃ R2 × I and connecting all the pairs of
points ((j, 0, 0), (j, 0, 1)), with 1 6 j 6 n, by untangled arcs living “outside” the braid.

Figure 8.3: The closure of a braid

Alexander’s theorem (1923) assures that all links and knots are obtained this way, and
Markov’s theorem (1935) explains which braids give the same link.

Algebra: a twin brother

Algebraically, the (Artin) braid group Bn is a generalization of the symmetric group
Sn. It is defined by generators σ1, σ2, . . . , σn−1, subject to relations

σiσj = σjσi if |i− j| > 1, 1 6 i, j 6 n− 1, (BrC)

σiσi+1σi = σi+1σiσi+1 ∀ 1 6 i 6 n− 2. (BrY B)

The first equation means partial commutativity. The second one is a form of the
Yang-Baxter equation, or briefly YBE.

The symmetric group is then the quotient of Bn by

σ2
i = 1 ∀ 1 6 i 6 n− 1. (Symm)

Other quotients of (the group rings of) Artin braid groups are extensively studied by
representation theorists. Hecke algebras give a rich example.

The link between algebraic and topological viewpoints was suggested by Emil Artin
already in 1925:
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Theorem 10. There exists an isomorphism ϕ between the groups Bn and Bn, given by

σi 7→

· · · · · ·
1 2 i−1 i i+1i+2 n

.

Figure 8.4: Bn ≃ Bn

Thus the Yang-Baxter equation (BrY B) is simply the algebraic translation of the third
Reidemeister move for braid diagrams (cf. figure 2.2).

Positive braids: little brothers

In some contexts it is interesting to regard braid diagrams having crossings
only. The braids represented by such diagrams are called positive. Their interest resides,
among other properties, in the fact that every braid is a (non-commutative) quotient
of two positive braids. Admitting no inverses, they form a monoid only. The algebraic
counterpart is the positive braid monoid B+

n . It is generated – as a monoid this time –
by σ1, σ2, . . . , σn−1, with the same relations as those defining Bn. One can show that this
is a submonoid of Bn. A “positive” analogue of theorem 10 is obvious.

Remark 8.1.1. Considering crossings instead, one gets the notions of negative braids
and negative braid monoid B−n , isomorphic to B+

n via the obvious monoid map σ−1
i 7→ σi.

Note that for most authors our positive braids are negative, and vice versa. We prefer our
terminology for the sake of compatibility with the previous parts.

Representations: a full wardrobe

Algebraic structures, even those admitting easy descriptions, are often difficult to study
using algebraic tools only. Even comparing two elements of a group defined by generators
and relations can be a hard task. A recurrent solution consists in exploring representations
(linear or more general) of algebraic objects instead, i.e., in a metaphorical language, in
looking for fitting clothes. Free actions are of particular interest, since they allow one to
easily distinguish different elements. The corresponding concept on the topological level
is that of invariants.

Note that symmetric groups are even defined via their action on a set. This suggests
the importance of braid group representations, two of which are recalled here.

The first one was discovered by W.Burau as early as in 1936 ([6]).

Proposition 8.1.2. An action of the braid group Bn on Z[t±1]⊕n can be given, in the
matrix form, by

ρ(σi) =




Ii−1 0 0 0
0 0 1 0
0 t 1− t 0
0 0 0 In−i−1


 , (8.1)

ρ(σ−1
i ) =




Ii−1 0 0 0
0 1− t−1 t−1 0
0 1 0 0
0 0 0 In−i−1


 .
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This representation is interesting from the topological viewpoint: the Alexander poly-
nomial, a famous knot invariant, can be interpreted as det(I − ρ∗(b)), where b is any
braid whose closure gives the knot in question, and ρ∗ is (a reduced version of) the Burau
representation.

The Burau representation, conjectured to be faithful for a long time, turns out not to be
so for n > 5. A faithful linear representation was found later by R.Lawrence, D.Krammer
and S.Bigelow.

Another representation – a faithful one this time – was already known by E.Artin. See
[4] or [26] for a topological proof, or [18] for a short algebraic one.

Theorem 11. Denote by Fn the free group with n generators x1, . . . , xn. The braid group
Bn faithfully acts on Fn according to the formulas

σi(xj) =





xi if j = i+ 1,

xixi+1x
−1
i if j = i,

xj otherwise;

σ−1
i (xj) =





xi+1 if j = i,

x−1
i+1xixi+1 if j = i+ 1,

xj otherwise.

These two seemingly different representations can be interpreted as particular cases of
a much more general one, which we describe next.

Shelves and racks: arranging the wardrobe

Here we give an example of a topological idea inspiring important algebraic structures
– that of shelves, racks and quandles – with an extremely rich representation theory.

For a detailed introduction to the theory of self-distributive structures, as well as for nu-
merous examples, we send the reader to the seminal papers of D.Joyce [34] and S.Matveev
[58], or to [35] and [15] for very readable surveys. The connections between racks and
braids are explored in detail in [26]. For free self-distributive structures applied to braids,
[18] and [39] are nice sources. Some related notions, with historical and bibliographical
remarks, were already introduced in section 4.2, but we recall them here for the reader’s
convenience.

Definition 8.1.3. ú A shelf is a set S with a binary operation ⊳ : S × S −→ S
satisfying the self-distributivity condition

(a⊳ b)⊳ c = (a⊳ c)⊳ (b⊳ c) ∀a, b, c ∈ S. (SD)

ú If moreover the application a 7→ a⊳ b is a bijection on S for every b ∈ S, that is if
there exists an “inverse” application ⊳̃ : S × S −→ S such that

(a⊳ b)⊳̃b = (a⊳̃b)⊳ b = a ∀a, b ∈ S, (R)

then the couple (S,⊳) is called a rack.
ú A quandle is a rack satisfying moreover

a⊳ a = a ∀a ∈ S. (Q)

We use the term SD structures to refer to any of these three structures, emphasizing
the importance of relation (SD).

There are numerous examples of SD structures coming from various areas of mathe-
matics. Only several of them are relevant here, allowing us to recover the two braid group
actions described above.
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Example 8.1.4. 1. The one-element shelf is necessarily a quandle, called the trivial
quandle.

2. A group G can be endowed with, among others, a conjugation quandle structure:

a⊳ b := b−1ab,

a⊳̃b := bab−1.

This quandle is denoted by Conj(G). Morally, the quandle structure captures the
properties of conjugation in a group, forgetting the multiplication structure it comes
from. This is the algebraic motivation for studying self-distributivity.

3. The Alexander quandle is the set Z[t±1] with the operations

a⊳ b := ta+ (1− t)b, (8.2)

a⊳̃b := t−1a+ (1− t−1)b.

4. The cyclic rack CR is the set of integers Z with the operations

n⊳m := n+ 1 ∀n,m ∈ Z,

n⊳̃m := n− 1 ∀n,m ∈ Z.

Note that it is very far from being a quandle: the property (Q) is false for all the
elements. Moreover, the quotient of CR by (Q) is the trivial quandle. This somewhat
strange structure will be interpreted in the context of free racks.

The theory of racks and quandles owes its rising popularity to topological applications:
it allows to upgrade the fundamental group of the complement of a knot to a complete
knot invariant (up to a symmetry; cf. [34]). The connection to groups is clear from the
example of the conjugation quandle. The connection to knots and braids is illustrated by
the following well-known result, which will be better explained later.

Proposition 8.1.5. Take a shelf (S,⊳). An action of the positive braid monoid B+
n on

S×n can be given as follows:

σi(a1, . . . , an) = (a1, . . . , ai−1, ai+1, ai ⊳ ai+1, ai+2, . . . , an).

If S is a rack, then this action becomes a braid group action:

σ−1
i (a1, . . . , an) = (a1, . . . , ai−1, ai+1⊳̃ai, ai, ai+2, . . . , an).

More precisely, these formulas define an action of B+
n (resp. Bn) if and only if the couple

(S,⊳) satisfies the shelf (resp. rack) axioms.

SD structures are thus the “right” structures for carrying a braid group/monoid action.
They give a rich source of representations of B+

n and Bn.
The action from the proposition is diagrammatically depicted via braid coloring:

ba

b a⊳ b

ba

b⊳̃a a

.

Figure 8.5: Braid group action for a rack
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Thus when a strand passes over another one, the corresponding element of S acts by
⊳ (when going to the left) or ⊳̃ (when going to the right) on the element on the lower
strand. In some references it happens the other way round (i.e. it is the element on the
lower strand that acts), which is simply a matter of choice; cf. also remark 8.1.1.

Note that, with our choice of composing braids from bottom to top, the actions are
always depicted from bottom to top here, which is indicated above by the arrow.

Free shelves and racks: basic wardrobe

We now make a short survey of free SD structures.

Notation 8.1.6. Given a set X, the free shelf, rack and quandle on X are denoted by
FS(X), FR(X), FQ(X) respectively. This is abbreviated to

FSn := FS({x1, . . . , xn}),

FSZ := FS({xi, i ∈ Z}),

and similar for racks and quandles.

Start with monogenerated free SD structures:

1. Free shelves, even generated by one element only, are extremely complicated struc-
tures. They have in particular allowed Patrick Dehornoy to construct, in the early
90’s, a total left-invariant group order on Bn (see [39] or [18]).

2. Monogenerated quandles are trivial, since x⊳ x = x for the generator x.

3. As for racks, which are intermediate objects between shelves and quandles, the mono-
generated free structure is quite simple but not trivial: one has a rack isomorphism

FR1
∼
−→ CR, (8.3)

((x⊳ x)⊳ · · · )⊳ x 7−→ n,

((x⊳̃ x)⊳̃ · · · )⊳̃x 7−→ −n,

where n is the number of operations ⊳ (resp. ⊳̃) in the expression.

For larger sets X, the free quandle FQ(X) becomes interesting. In particular,

Lemma 8.1.7. The free quandle FQn can be described via the quandle injection

FQn →֒Conj(Fn), (8.4)

xi 7→ xi.

The image of this injection is the sub-quandle of Conj(Fn) generated by the xi’s.

Proof. Remark that
ú any element of FQn can be written in the form

((xi0 ⊳
ε1 xi1)⊳ε2 · · · )⊳εk xik

,

where the values of the εj ’s are ±1’s, with notations

⊳
1 = ⊳, ⊳

−1 = ⊳̃;

ú in Conj(G), one has a⊳̃b = a⊳ b−1.
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We finish with some faithfulness remarks for free SD structures.

Proposition 8.1.8. The action of the positive braid monoid B+
n on FS×n

1 is free.

Proof. This is an easy consequence of P.Dehornoy’s results on the ordering of free shelves
and braid groups (cf. [39] and [18]). He shows that FS1 has a total order < generated by
the partial order ≺ :

a = c⊳ b =⇒ b ≺ a.

This induces an anti-lexicographic order < on FS×n
1 . (The prefix “anti” is needed here

since we consider the right version of self-distributivity, while P.Dehornoy works with the
left one.) Then he proves that this order is sufficiently nice to induce a total order on the
group Bn by declaring, for α, β ∈ Bn,

α < β ⇐⇒ (α(a) < β(a) ∀a ∈ FS×n
1 ).

Here α(a) and β(a) denote a partial extension to Bn of the action of B+
n , and one takes only

those a for which α(a) and β(a) are both defined (one shows that such a’s exist). Thus,
if α and β act on an element of FS×n

1 in the same way, this means precisely α = β.

Observe that a monogenerated free rack is not sufficient to produce a faithful action:
passing to CR, via the isomorphism (8.3), one sees that the action of Bn on CR×n simply
counts the algebraic number of times a strand passes under other strands (with the sign
“+” when moving to the right and “−” when moving to the left); thus the following two
braids are indistinguishable by their action:

kmn

n+1m−1k−1

6=

kmn

n+1m−1k−1

.

Figure 8.6: Distinct braids acting on CR×3 in the same way

An example of indistinguishable positive braids can be given by σ2σ2σ1σ1 and σ1σ1σ2σ2.

However, more complicated racks and quandles can give faithful actions:

Proposition 8.1.9. The action of the braid group Bn on FQ×n
n is faithful.

Proof. One remarks, for a braid α ∈ Bn, the identity

α(x1, . . . , xn) = (α−1(x1), . . . , α−1(xn)),

where the action on the right is that of theorem 11, which is faithful, thus permitting to
conclude.

Note that this action is not free, since, for instance, the elements 1 and σ1 of Bn act
in the same way on diagonal elements (a, a, . . . , a) ∈ FQ×n

n , a ∈ FQn.

Since FQ(X) is the quotient of FR(X) by (Q), one has

Corollary 8.1.10. The action of Bn on FR×n
n is faithful.
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Categories: maturity

The notion of braids is very “categorical” – more than that of knots for example.
Braids naturally “correspond” (in the sense to be specified here) to the notion of braided
monoidal category. See section 5.1 for this and other categorical notions used here.

Two important classical results express a deep connection between the notions of braids
and braided categories.

Theorem 12. Denote by Cbr the free braided category generated by a single object V. Then
for each n one has a group isomorphism

ψ : Bn
∼
−→ EndCbr

(V ⊗n),

σ±1
i 7→ Id⊗(i−1)

V ⊗c±1
V,V ⊗ Id⊗(n−i−1)

V . (8.5)

Thus braid groups describe hom-sets of a free monogenerated braided category.
The second result is the following:

Corollary 8.1.11. For any object V in a braided category C, the map defined by formula
(8.5) endows V ⊗n with an action of the group Bn.

This corollary is a major source of representations of the braid group.
Theorems 10 and 12 put together give

Corollary 8.1.12. The category Cbr is equivalent, as a braided category, to the category

Br of braids (objects = N, EndBr(n) = braids on n strands, c1,1 = ).

8.2 Virtual braids and virtual racks

Some history

The concept of virtuality was born in the topological framework in L.Kauffman’s pio-
neer 1999 paper [41] (announced in 1996). See also [61] for an express introduction. The
original idea is very natural. One tries to encode a knot by writing down the sequence
of its crossings encountered when moving along a diagram of the knot, with additional
under/over and orientation information for each crossing. This code, called Gauss code,
is unambiguous but not surjective: some sequences do not correspond to any knot, since
while decoding them one may be forced to intersect the part of the diagram drawn before.
L.Kauffman’s idea was to introduce in this situation a new, virtual type of crossings in

a diagram. They are depicted like this: . Such crossings “are not here”, they come
from the necessity to draw in the plane a diagram given abstractly by its Gauss code. The
same happens when one has to draw an abstract non-planar graph in R2. Note that the
“under/over” distinction is no longer relevant for virtual crossings.

We call the non-virtual crossings usual here, while in literature one encounters the
terms real and classical for the same notion.

Another situation where virtual knots, i.e. knots with both usual and virtual cross-
ings, naturally emerge is when one wants to depict in R2 knot diagrams living on surfaces
other than the plane (for instance, on a torus).

A virtual theory parallel to that of classical knots has been developed in numerous
papers. We extract from it only the part concerning virtual braids, essentially due to
V.V.Vershinin (see his 1998 paper [80]). To emphasize the connection to virtual knots,
one notes the Alexander-Markov type result of S.Kamada ([36]) describing the closure
operation for virtual braids.
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Definitions

Unfortunately there seem to be no purely topological elementary definition of virtual
braids. The common definition is combinatorial: one considers braid diagrams with usual
and virtual crossings up to certain relations, which are versions of Reidemeister moves and
which are dictated by the Gauss coding. Here is an example of a relation involving both
usual and virtual crossings – the mixed Yang-Baxter relation:

=
.

Figure 8.7: Mixed Yang-Baxter relation

It is thus natural to start from the algebraic viewpoint.

Definition 8.2.1. The virtual braid group V Bn is defined by a set of generators {σi, ζi, 1 6
i 6 n− 1}, and the following relations:

1. (BrC) and (BrY B) for the σi’s;

2. (BrC), (BrY B) and (Symm) for the ζi’s;

3. mixed relations

σiζj = ζjσi if |i− j| > 1, 1 6 i, j 6 n− 1, (Brm
C )

σiζi+1ζi = ζi+1ζiσi+1 ∀ 1 6 i 6 n− 2. (Brm
Y B)

In other words, the group V Bn is the direct product Bn ∗Sn factorized by the relations
(Brm

C ) and (Brm
Y B). This explains the name braid-permutation group used in [25] for a

slightly different, but closely related structure.

Now virtual braids on n strands can be (rather informally) defined as the monoid of
braid diagrams with usual and virtual crossings up to ambient isotopy, factorized by the
kernel of the monoid surjection

· · · · · ·
1 i−1 i i+1i+2 n

7→ σi,

· · · · · ·
1 i−1 i i+1i+2 n

7→ σ−1
i ,

· · · · · ·
1 i−1 i i+1i+2 n

7→ ζi.

Figure 8.8: A topological version of V Bn

The (evident) definition of the monoid of braid diagrams with usual and virtual crossings
is omitted here for the sake of concision.

In particular, figure 8.7 becomes a graphical translation of the equation (Brm
Y B).

Observe that virtual braids inherit a group structure from V Bn. Note also that theorem
10 becomes a definition in the virtual world. In what follows, virtual braids are identified
with corresponding elements of V Bn.
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Remark 8.2.2. In V Bn one automatically has two other versions of Yang-Baxter relation
with one σ and two ζ’s. On the contrary, YB relations with one ζ and two σ’s do not hold.
It comes from the fact Gauss decoding process unambiguously prescribes the pattern of
usual crossings and leaves a certain liberty only in placing virtual crossings (recall that
the definition of virtual knots was motivated by Gauss coding). Such YB relations are
called forbidden. Here is an example:

6=
.

Figure 8.9: A forbidden mixed Yang-Baxter relation

Virtual SD structures

As for representations, shelves and racks remain relevant in the virtual world:

Proposition 8.2.3. Given a rack (S,⊳), the virtual braid group V Bn acts on S×n by

σi(a1, . . . , an) = (a1, . . . , ai−1, ai+1, ai ⊳ ai+1, ai+2, . . . , an), (8.6)

ζi(a1, . . . , an) = (a1, . . . , ai−1, ai+1, ai, ai+2, . . . , an). (8.7)

Note that one can not hope such actions to be faithful, since virtual braids σiσi+1ζi

and ζi+1σiσi+1 act on S×n in the same way, implying the forbidden YB relation depicted
above.

V.O.Manturov proposed in 2002 (cf. [54]) a structure more adequate for the virtual
world, namely a virtual quandle. We recall it here, as well as its non-idempotent and
non-invertible versions.

Definition 8.2.4. A virtual shelf is a shelf (S,⊳) endowed with a shelf automorphism
f : S −→ S, i.e.

1. f admits an inverse f−1,

2. f(a⊳ b) = f(a)⊳ f(b) ∀a, b ∈ S.

If moreover (S,⊳) is a rack or a quandle, then the triple (S,⊳, f) is called a virtual
rack/quandle.

Note that for a virtual rack, one automatically has

f(a⊳̃b) = f(a)⊳̃f(b).

The actions from proposition 8.2.3 can now be upgraded as follows:

Proposition 8.2.5. Given a virtual rack (S,⊳, f), the virtual braid group V Bn acts on
S×n by (8.6) and

ζi(a1, . . . , an) = (a1, . . . , ai−1, f
−1(ai+1), f(ai), ai+2, . . . , an). (8.8)

We finish this section with two examples proposed by V.O.Manturov (cf. [54]).
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Example 8.2.6. In an arbitrary rack R, right adjoint action by an element a, given by
b 7→ b ⊳ a for all b ∈ R, is a rack automorphism. Its inverse is b 7→ b⊳̃a. Thus Conj(Fn)
can be given a virtual quandle structure by

f(a) := a⊳ xn ∀a ∈ Fn.

This virtual quandle appears in the context of free virtual SD structures.

Example 8.2.7. The Alexander quandle (8.2) can be endowed with two virtual quandle
structures.

1. The first one is obtained by fixing an element ε ∈ Z[t±1] and putting

f(a) := a+ ε ∀a ∈ Z[t±1]. (8.9)

This virtual quandle is used by V.O.Manturov to define the virtual Alexander poly-
nomial, carrying extremely rich topological information about a link. Recall that in
the classical setting the Alexander quandle leads to the usual Alexander polynomial,
for instance through the Burau representation (cf. example 10.1.5).
Note that morphism (8.9) is not linear.

2. The second virtual structure is more interesting in a slightly generalized context: one
replaces Z[t±1] with an arbitrary Z[t±1]-module A, keeping the quandle structure
from (8.2). If A is moreover a Z[t±1, s±1]-module, then

f(a) := sa ∀a ∈ A (8.10)

defines a virtual quandle structure, linear this time.

The aim of the rest of this part is to add some patches to the patchwork of concepts
and results around virtual braids presented here. We do it by virtualizing a part of the
content of section 8.1.

Positive virtual braid monoids

The first patch, quite a small one, is the notion of positive virtual braid monoid. This
concept seems absent in the literature, but we need it here for a study of virtual shelves.

Definition 8.2.8. The positive virtual braid monoid V B+
n is defined by the set of monoid

generators {σi, ζi, 1 6 i 6 n− 1}, and relations identical to those from definition 8.2.1.

One gets a submonoid of V Bn.
Like in the real world, the structure of shelf bears an action of this monoid:

Proposition 8.2.9. ú Given a shelf (S,⊳), formulas (8.6) and (8.7) define an action
of the positive virtual braid monoid V B+

n on S×n.
ú Given a virtual shelf (S,⊳, f), formulas (8.6) and (8.8) define an action of the

positive virtual braid monoid V B+
n on S×n.
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Chapter 9

Free virtual self-distributive
structures

The next patch we add to virtual braid theory consists in some steps towards under-
standing the structure of free virtual SD structures and the action of the V Bn’s or the
V B+

n ’s on them. Some methods from the theory of usual SD structures (section 8.1) are
adapted to the virtual context. However, many open question are left.

We start with some observations allowing one to see free virtual SD structures
as free SD structures on a larger set of generators. Thus, the results on free
SD structures can be trasnsported to the virtual world. However, the monogenerated free
virtual shelves and quandles, which are the most interesting for us, correspond to infinitely
generated free shelves and quandles, and very little is known about the latter.

Section 9.2 is a study of free virtual shelves. Some of P.Dehornoy’s “ordering” methods
are adapted to the virtual situation. In particular, this allows to recover some information
about positive virtual braids (such as their linking numbers and their projection on
Sn) from their action on products of the monogenerated free virtual shelf, and to show
the faithfulness of this last action for V B+

2 . We also prove that the Sn and the B+
n

parts of the positive virtual monoid V B+
n are indeed its submonoids, extending the braid-

permutation interpretation of virtual braid groups to the positive setting.
Section 9.3 contains a reformulation of V.O.Manturov’s conjecture on the structure of

free virtual quandles in terms of the conjugation virtual quandle of a free group.

Notation FV Sn stands here for a free virtual shelf on n generators, and similarly for
racks and quandles.

9.1 Adding virtual copies of elements

First, one easily verifies

Proposition 9.1.1. The morphism of shelves defined by

FSZ −→ FV S1,

xk 7−→ fk(x),

where x := x1 is the generator of FV S1, is an isomorphism. Analogous isomorphisms take

147
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place for racks and quandles:

FRZ
∼
−→ FV R1,

FQZ
∼
−→ FV Q1.

Notation 9.1.2. In what follows, we implicitly use this isomorphism, writing xk instead
of fk(x) when working in FV S1.

Similarly, FV Sn can be seen as a free shelf with separate “virtual” copies xi,k of xi for
all k ∈ Z.

Summarizing, a free virtual SD structure can be seen as a free SD structure (on a
larger set of generators).

9.2 Free virtual shelves and P.Dehornoy’s methods

Let us now work with shelves, trying to understand how nice the V B+
n -actions on

FS×n
1 and FV S×n

1 are (cf. proposition 8.2.9). These actions are called real and virtual
respectively for brevity. The generator x1 of FS1 is denoted by x.

The following devirtualization shelf morphism is systematically used here to extend
known results for FS1 to the virtual world (cf. notation 9.1.2):

FV S1 ≃ FSZ
devirt
։ FS1,

xk 7−→ x.

Preliminary remarks

First, the freeness result from proposition 8.1.8 does not hold in the virtual context:

Lemma 9.2.1. The virtual action of V B+
n on FV S×n

1 is not free.

Proof. It is sufficient to notice that all the ζi’s act as identities on n-tuples of the form
(xk, xk+1, . . . , xk+n−1) ∈ FV S×n

1 .

The author does not know if the virtual action is faithful. Here are some arguments
giving hope for it.

Recall that choosing flips as the actions corresponding to the ζi’s can lead to a forbidden
YB relation, thus implying non-faithfulness. For the virtual action there is no such danger,
as one can easily check

Lemma 9.2.2. The virtual action distinguishes the two sides of each forbidden YB rela-
tion from remark 8.2.2.

Characteristics of elements of FV S1

A more refined study of the structure of FV S1 is needed to prove further results.
The following definition is inspired by [18].

Definition 9.2.3. Fix an alphabet X. The free magma TX on X is the closure of the set
X under the formal (non-associative!) operation (t1, t2) 7→ t1 ∗ t2. The elements of TX are
called terms. Notations T{x1,...,xn} and T{xi,i∈Z} are abbreviated as Tn and TZ respectively.
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Consider the maps

D : TZ ։ FV S1, D : T1 ։ FS1,

xi 7→ xi, x1 7→ x,

∗ 7→ ⊳; ∗ 7→ ⊳.

Concretely, one simply factorizes by the relation (SD). The notation D comes from the
word “distributivity”.

Definition 9.2.4. Take a term t = ((xf ∗ t1) ∗ · · · ) ∗ tk in TZ or Tn.

ú Its first subscript, denoted by F(t), is defined to be f.
ú Its sequence/multiset of first subscripts is the sequence/multiset formed by F(t1), . . . ,F(tk).

The multiset of first subscripts is denoted by F(t).
ú Finally, l(t) := k is called the length of t.

Note that for n = 1 only the length function l is relevant.
Playing with the relation (SD), one gets

Lemma 9.2.5. 1. Take two terms giving the same shelf element, i.e. t, t′ ∈ TZ (or Tn)
such that D(t) = D(t′). One then has l(t) = l(t′), F(t) = F(t′) and F(t) = F(t′).

2. Moreover, given a t ∈ TZ with l(t) = k and a permutation θ ∈ Sk, there exists a
t′ ∈ TZ such that D(t) = D(t′) and their sequences of first subscripts differ precisely
by the permutation θ.

Thus one gets several simple characteristics of elements of FV S1:

Definition 9.2.6. One defines the functions l(a), F(a) and F(a) for any a ∈ FV S1 as
l(t), F(t) and F(t) for any term t representing a. The length l(a) of an a ∈ FS1 is defined
similarly.

Recovering the linking numbers of positive virtual braids and their pro-
jection on the plane

The combinatorics of first subscripts permits to extract useful information from the
virtual action. For this, consider the forgetful monoid morphism

For : V B+
n ։ Sn,

ζi, σi 7→ ζi.

The ζi’s on the right denote the standard generators of Sn. This morphism can be seen
as a projection of a virtual braid on the plane, with a loss of the usual/virtual crossing
distinction and the under/over information.

Proposition 9.2.7. 1. The real action of a θ ∈ V B+
n on FS×n

1 permits to recover
For(θ) and the number of the σ’s in θ.

2. The virtual action of a θ ∈ V B+
n on FV S×n

1 permits to recover For(θ) and the
number of the σ’s in θ.

3. The virtual action of θ ∈ V B+
n on FV S×n

1 permits to recover, for each strand of the
virtual braid θ, the multiset of strands passing (non-virtually) under it.
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Note that the number of the σ’s in θ and the multisets from the last point are stable
under all authorized virtual braid relations and are thus well-defined. The multisets give
in particular the linking number of any strands i and j, i.e. the number of times the
strand i passes under j.

Proof. 1. Put (a1, a2 . . . , an) := θ(x, x, . . . , x) and lj := l(aj). Changing the ith element
x in the n-tuple (x, x, . . . , x) to x⊳ x increases exactly one of the lj ’s by one. This
j is precisely the value of For(θ)(i).
Further, the real action of a ζi on FS×n

1 does not change the total length of the
elements of an n-tuple, whereas the real action of a σi increases it by 1. Thus one
recovers the number M of the σ’s in θ.

2. Follows from the previous point by devirtualizing.

3. In the virtual context, the F ’s and F ’s refine the information given by the length
function.
The virtual action of a ζ ∈ Sn seen as an element of V B+

n (via the intuitive injection
ζi 7→ ζi, rigorously studied later) can be written for “simple” n-tuples like this:

ζ(xi1 , xi2 , . . .) = (xi
ζ−1(1)+1−ζ−1(1), xi

ζ−1(2)+2−ζ−1(2), . . .).

Note that |k−ζ−1(k)| 6 n−1 for all the k’s. In general, working with first subscripts,
one sees that ζ applied to a general n-tuple changes the first subscript F of the
element on each strand at most by n − 1. Recall the number M of the σ’s in θ
determined in the previous point. Remark also that each σi simply switches the first
subscripts of two of the elements in an n-tuple.
Summarizing, the action of our θ, as well as of its subterms, changes the F of the
element on any strand at most by (n− 1)(M + 1). Put

N := (n− 1)(M + 1) + 1

and
(y1, y2, . . . , yn) := θ(x2N , x4N , . . . , x2nN ).

The ith strand of θ will be called 2iN for simplicity.
For any i, replacing each number in F(yi) by the closest multiple of 2N, one recovers
the multiset of strands passing over the strand corresponding to the closest to F(yi)
multiple of 2N. This follows from the observations F(a ⊳ b) = F(a) ∪ F(b) and
F(a ⊳ b) = F(a), from the explicit formulas defining the virtual action, from the
estimations for subscript modifications above, and from the independence of F and
F from the choice of term representing the braid.

Precisions on the braid-permutation interpretation of V B+
n

We now return to the interpretation of V B+
n as the direct product B+

n ∗ Sn factorized
by relations (Brm

C ) and (Brm
Y B).

Consider two monoid morphisms

Sn
iS−→ V B+

n , B+
n

iB−→ V B+
n , (9.1)

ζi 7−→ ζi; σi 7−→ σi.

Proposition 9.2.8. The action of Sn (resp. B+
n ) on FS×n

1 induced by the real action of
V B+

n via morphism iS (resp. iB) is faithful (resp. free).



9.2. FREE VIRTUAL SHELVES AND P.DEHORNOY’S METHODS 151

Proof. The statement about B+
n follows from proposition 8.1.8.

As for Sn, its induced action is the usual action by permutations. Elements

ak := ((x⊳ x)⊳ · · · )⊳ x,

with k occurrences of x, are of different lengths (l(ak) = k − 1) and are hence pairwise
distinct. Therefore a permutation ζ ∈ Sn is completely defined by ζ(a1, a2, . . . , an).

Devirtualizing, as usual, one gets the same statement for the virtual action.
Results of this kind allow one to easily get a useful

Corollary 9.2.9. The submonoid of V B+
n generated by the ζi’s (resp. σi’s) is isomorphic

to Sn (resp. B+
n ).

Proof. The submonoids in question are images of iS and iB, which are monoid injections
according to the preceding proposition.

On a virtual Dehornoy order

It is now time for some remarks on a generalization of the Dehornoy order to FV S1.
Define a partial order on FV S1, as usual, by

a = c⊳ b =⇒ b ≺ a.

Devirtualizing and using the acyclicity of the Dehornoy order on FS1 ([18]), one sees that
only one of the relations a = b, b ≺ a, a ≺ b can hold for given a, b ∈ FV S1. Thus,

Lemma 9.2.10. The partial order < on FV S1 generated by ≺ is acyclic.

The order < is unfortunately far from being total: the xi’s are all minimal elements
(since b < a entails l(a) > 0, whereas l(xi) = 0) hence mutually incomparable.

The author knows no reasonable total order either on FV S1 or on V B+
n . Note that

one can not hope for a left- or right-invariant order on V B+
n since it has torsion (ζ2

i = 1).

Case n = 2

The last result concerns the case n = 2.

Proposition 9.2.11. The real action of V B+
2 on FS×2

1 is faithful.

Proof. Put ζ := ζ1, σ := σ1. An element θ of V B+
2 can be uniquely written, after applying

ζ2 = 1 several times, in its shortest form θ = ζεkσ · · ·σζε1σζε0 , where εi ∈ {0, 1}.
We first prove that the value of

(a, b) := θ(x, x) ∈ FS×2
1

allows one to determine whether k > 0 and, if so, to calculate εk and

(a′, b′) := θ′(x, x) ∈ FS×2
1 ,

where θ = ζεkσθ′. Indeed, consider three possibilities and their consequences:

1. k = 0 =⇒ (a, b) = (x, x);

2. k > 0, εk = 0 =⇒ a ≺ b;

3. k > 0, εk = 1 =⇒ b ≺ a.
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Here ≺ is the partial Dehornoy order. Its acyclicity proves that only one of the relations
a = b, b ≺ a, a ≺ b can hold. Thus the pair (a, b) tells whether k > 0 and, if so, calculates
εk. To determine (a′, b′), recall the right cancellativity of FS1:

a⊳ b = a′ ⊳ b ⇒ a = a′

(cf. [18]). Thus, for instance, relation a ≺ b implies that there exists a unique c ∈ FS1

with b = c⊳ a, so (a′, b′) = (c, a). Case b ≺ a is similar.
Proceeding by induction, one gets the value of k and all the εi’s for i > 0. This

determines θ up to the rightmost ζ. To conclude, observe that the presence or absence of
this rightmost ζ determines For(θ) ∈ S2 = {Id, ζ}, which, according to proposition 9.2.7,
can be read from the real action.

Remark 9.2.12. In fact, we have proved a more precise result: V B+
2 acts freely on couples

of the form (a, b) ∈ FS×2
1 with distinct a and b which are not directly comparable (i.e. one

has neither b ≺ a nor a ≺ b). An example of such a and b is given by x and x⊳ (x⊳ x):
relation (SD) can not be applied to any of these two terms, hence they both have a unique
presentation, in which the desired properties are easily verified.

Devirtualizing, one gets

Corollary 9.2.13. The virtual action of V B+
2 on FV S×2

1 is faithful.

Remark 9.2.14. The author does not know whether FV S1 is right cancellative. If it were
true, the preceding proof could be easily adapted to show that V B+

2 acts freely on couples
(a, b) ∈ FV S×2

1 which are not directly comparable (i.e. b 6= f(a) and, for all k ∈ Z, one
has neither b ≺ fk(a) nor a ≺ fk(b)). An example of such a and b is given by xi and xj

with j − i 6= 1.

9.3 Free virtual quandles and a conjecture of V.O.Manturov

Let us now turn to free virtual quandles. Developing example 8.2.6, where Conj(Fn+1)
was endowed with the virtual quandle structure

f(a) := a⊳ xn+1 ∀a ∈ Fn+1,

one gets a virtual analogue of the quandle injection (8.4):

Proposition 9.3.1. The virtual quandle morphism defined on the generators by

FV Qn−→Conj(Fn+1),

xi 7−→ xi ∀1 6 i 6 n,

is injective.

Notation 9.3.2. The image of this injection is denoted by V Conjn.

The virtual quandle V Conjn consists of all the conjugates in Conj(Fn+1) of the xi’s
with 1 6 i 6 n. In particular, xn+1 ∈ Conj(Fn+1) plays a role different from that of the
other xi’s: it is not a generator of the virtual quandle V Conjn, but is it here to give the
“virtualizing” morphism f.

A conjecture raised by V.O.Manturov in [55] (cf. [56] for an English version) is equiv-
alent to the following:
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Conjecture 1. The virtual braid group V Bn acts freely on (x1, x2, . . . , xn) ∈ FV Q×n
n ,

thus generalizing theorem 11 and proposition 8.1.9.

Manturov formulated his conjecture in terms of cosets

Ei := {xi}\Fn+1 = Fn+1/(a = xia ∀a).

He endowed E := ⊔n
i=1Ei with the operations

a ∗ b := ab−1xjb ∈ Ei ∀a ∈ Ei, b ∈ Ej ,

f(a) := axn+1 ∈ Ei ∀a ∈ Ei.

To see that Manturov’s conjecture is equivalent to the one given above, note that (E, ∗, f)
is a virtual quandle, and that one has a virtual quandle isomorphism

E
∼
−→ V Conjn,

a ∈ Ei 7−→ a−1xia.
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Chapter 10

Categorical aspects of virtuality

Now let us look for a categorical counterpart – in the sense of theorem 12 – of the notion
of virtual braids. Interesting results in this direction were obtained by L.H.Kauffman and
S.Lambropoulou in [42]. They introduced the String Category and explored its tight
relationship with, on the one hand, the algebraic Yang-Baxter equation, and, on the other
hand, virtual braid groups. Morally, passing from the usual to the algebraic YBE requires,
besides a braiding, a (substitute for the) flip, thus suggesting connections with virtual braid
groups. This point of view turns out to be very fruitful, in particular when working with
pure braid groups. In this chapter, we present our categorification of V Bn which is quite
different from the one from [42]. It is closer in spirit to the categorification of Bn, and it
produces a convenient machine for constructing representations of V Bn.

Concretely, the categorical counterpart we propose for virtual braids is the notion of
a (pre-)braided object in a symmetric category. In particular, we show that virtual
braid groups are isomorhic to the hom-sets of a free symmetric category generated by a
single braided object, and similarly for positive virtual braid monoids and free symmetric
category generated by a single pre-braided object. As a consequence, our constructions
from parts I and II, where we endowed an object of a category, often symmetric from
the very beginning, with another, more compicated “structural” (pre-)braiding, provide
interesting examples of representations of V Bn or V B+

n .

This categorification of V Bn is thus another patch we add to the theory of virtual
braids.

One of the advantages of the categorical vision of virtual braid group actions is an
enhanced flexibility. In particular, if one has a braided object (V, σV ) in a symmetric
category (C,⊗, I, c), then one can change the associated action of V Bn on V ⊗n by changing
either the braiding σV of V, or the symmetric braiding c on C. This gives new actions for
free. The same is true for pre-braided objects and the actions of V B+

n . Section 10.2 is
devoted to two applications of this flexibility:

1. we interpret V.O.Manturov’s virtual racks via a deformation of the underlying sym-
metric structure;

2. we recover the twisted Burau representation of D.S.Silver and S.G.Williams ([75])
by twisting both braidings with the help of another symmetric braiding.

This gives two more patches to the theory of virtual braids, this time without analogues
for usual braids.

155
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10.1 A categorical counterpart of virtual braids

Virtual braid groups as hom-sets

Two types of braiding present in the definition of V Bn suggest looking at categories
with two distinct braided structures. But this approach is too naive to work: the naturality
of the braidings would imply that one can pass any braiding “through” the other one,
meaning one of the forbidden YB relations (cf. remark 8.2.2). Thus one needs an adequate
non-functorial notion of braiding. The right notion turns out to be precisely that of a
pre-braiding from definition 5.1.3.

Theorem 13. Denote by C2br the free symmetric category generated by a single braided
object (V, σV ). Then for each n one has a group isomorphism

ψvirt : V Bn
∼
−→ EndC2br

(V ⊗n)

ζi 7−→ ci := Id⊗(i−1)
V ⊗cV,V ⊗ Id⊗(n−i−1)

V , (10.1)

σ±1
i 7−→ σ±1

i := Id⊗(i−1)
V ⊗σ±1

V ⊗ Id⊗(n−i−1)
V . (10.2)

Notation C2br emphasizes that two different braidings are present in the story.

Proof. 1. To check that ψvirt is well defined, one should check three instances of the
YB relation in C2br, the other verifications being trivial. YB relation for σV is a part
of the definition of braiding. That for cV,V was proved in example 5.1.4. The mixed
one, with one occurrence of σV and two of cV,V , is a consequence of the naturality
of c: take W = V ⊗ V and g = σV in (5.3).

2. To see that the ci’s and the σi’s generate the whole EndC2br
(V ⊗n), remark that the

braiding c on tensor powers of V, which is the only part of the structure not described
yet, is automatically expressed, due to (5.1) and (5.2), via the ci’s:

cV ⊗n,V ⊗k = (ck · · · c1) · · · (cn+k−2 · · · cn−1)(cn+k−1 · · · cn). (10.3)

3. It remains to show that all the relations in EndC2br
(V ⊗n) follow from those which

are images by ψvirt of some relations from V Bn.

Equations (5.1) and (5.2) for c on tensor powers of V are guaranteed by (10.3). So
is the symmetry of c. Naturality of cV ⊗n,V ⊗k is the only condition left. According to
point 2, it suffices to check it for the generating morphisms ci’s and σi’s only. But
then everything follows from the appropriate versions of YB relation, discussed in
point 1.

Thus virtual braid groups describe hom-sets of a free symmetric category generated
by a single braided object.

Note that a free monogenerated braided category is the same thing as a free monoidal
category generated by a single braided object, so the local/global distinction is not relevant
for the categorification of the Bn’s.

Remark 10.1.1. Observe that checking that one has a symmetric category with a braided
object is somewhat easier than verifying directly that one actually has a V Bn-action.
It comes from the fact that some of the relations in V Bn are already “built-in” on the
categorical level:

ú commutation relations (BrC) and (Brm
C ) are “hidden” in the definition of the action

ψvirt;
ú YB relations (Brm

Y B) and (BrY B) for the ζi’s are consequences of the naturality of
the braiding c.
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Consequences on the representation level

The categorical vision of V Bn offers, as usual, a machine for constructing its represen-
tations:

Corollary 10.1.2. For any braided object V in a symmetric category C, the morphisms
defined by formulas (10.1) and (10.2) endow V ⊗n with an action of the group V Bn.

Concrete examples will be given later. The following notation will shorten their pre-
sentation:

Definition 10.1.3. Given an object V in a monoidal category C, we briefly say that a
pair (ξ, ϑ) of endomorphisms of V ⊗V defines a V Bn (or V B+

n ) action if the assignments
ζi 7→ ξi and σj 7→ ϑj (recall notation (1.3)) define an action of V Bn (or V B+

n ) on V ⊗n.

The above corollary says for instance that (cV,V , σV ) defines a V Bn action.

A positive version

Positive virtual braid monoids can be categorified similarly:

Theorem 13+. Denote by C+
2br the free symmetric category generated by a single

pre-braided object (V, σV ). Then for each n one has a monoid isomorphism

ψvirt,pos : V B+
n
∼
−→ EndC+

2br
(V ⊗n)

ζi 7−→ Id⊗(i−1)
V ⊗cV,V ⊗ Id⊗(n−i−1)

V ,

σi 7−→ Id⊗(i−1)
V ⊗σV ⊗ Id⊗(n−i−1)

V .

As usual, on the level of representations one deduces that, for any pre-braided object
(V, σV ) in a symmetric category (C, c), the pair (cV,V , σV ) defines a V B+

n action.

Examples: “structural” braidings

Recall the (pre-)braidings constructed for basic algebraic structures in chapter 4, with
a categorification in chapter 5. In those chapters, we associated pre-braidings to simple
algebraic structures (e.g. an algebra). Such braidings involved the defining morphisms of
the structures (e.g. the multiplication in the case of an algebra) and encoded the defining
properties of these morphisms (e.g. associativity) as YB relations. While the purpose of
part I was to recover basic homologies of algebraic structures as the braided homologies
for the corresponding pre-braidings, in this part we discover an independent interest
of the “structural" braidings in the virtual world.

We list here the “structural” (pre-)braidings from part I for the reader’s convenience,
specifying the corresponding action of V Bn (resp. V B+

n ) given by corollary 10.1.2 (resp.
its non-invertible version).

Proposition 10.1.4. 1. A rack (or a shelf) S endowed with the map

σ = σ⊳ : S × S −→ S × S

(a, b) 7−→ (b, a⊳ b).

is a (pre-)braided object in the symmetric category Set. The pair (τ, σ⊳) defines
a V Bn (resp. V B+

n ) action on S×n, recovering that from proposition 8.2.3 (resp.
8.2.9).
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2. A unital associative algebra (V, µ, ν) in a monoidal category (C,⊗, I) is a pre-braided
object in C, with the pre-braiding given by

σAss := ν ⊗ µ : V ⊗ V = I⊗ V ⊗ V → V ⊗ V.

If the category C is moreover symmetric, with the symmetric braiding c, then the pair
(cV,V , σµ) defines a V B+

n action.

3. A unital Leibniz algebra (V, [, ], ν) in a symmetric preadditive category (C,⊗, I, c) is
a braided object in C, with the braiding given by

σLei := cV,V + ν ⊗ [, ].

The pair (cV,V , σ[,]) defines a V Bn action.

Here is a concrete example.

Example 10.1.5. Take the Alexander quandle (8.2). Recall the faithful forgetful functor
For from (5.6). Observe that the braiding σS,⊳ can be pulled back to Mod⊕R, with
R = Z[t±1], since this pull-back turns out to be an R-linear automorphism of R⊕R. One
recovers the virtual Burau representation (cf. proposition 8.1.2), studied in detail by
V.V.Vershinin in [80]. The σi’s act by (8.1), like in the case of usual braid groups, and
the action of the “virtual” ζi’s can be written in the matrix form as

ρ(ζi) =




Ii−1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 In−i−1


 .

10.2 Flexibility of the categorical construction

Virtuality as a choice of the “right” world

A nice illustration of the flexibility of our categorification of V Bn is given by the “real”
and “virtual” actions of V Bn on a virtual rack, cf. propositions 8.2.3 and 8.2.5. More
precisely, we interpret here the “virtualization” of the action as moving to a new symmetric
category rather that adding extra structure (the “virtualization morphism” f) to a rack.

The symmetric category we suggest is a particular case of the following general con-
struction.

Theorem 14. Take a symmetric category (C,⊗, I, c), and fix an object V with an auto-
morphism f ∈ AutC(V ) in it.

1. A monoidal subcategory of C can be defined by taking as objects tensor powers
V ⊗n, n > 1 and V ⊗0 := I, and as morphisms all the morphisms in C compatible
with f :

Homf (V ⊗n, V ⊗m) := {ϕ ∈ HomC(V ⊗n, V ⊗m)|f⊗m ◦ ϕ = ϕ ◦ f⊗n}.

2. This subcategory admits, besides c, a new symmetric braiding given on V ⊗ V by

cf
V,V := (f−1 ⊗ f) ◦ cV,V .
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Before proving the result, note that, thanks to the naturality of c, one has an alternative
expression

cf
V,V = cV,V ◦ (f ⊗ f−1)

and, more generally, one can push any occurrence of f±1 from one side of cV,V to the
other. Remark also that some basic morphisms are automatically in Homf , such as

ú identities IdV ⊗n ;
ú morphisms f±1;
ú the original braiding c (thanks, as usual, to its naturality).

Proof. 1. One easily checks that all the IdV ⊗n ’s are in Homf , and that the latter is
stable by composition and tensor product.

2. First, the previous point and remarks preceding the proof guarantee that cf
V,V ∈

Homf . Next, extend cf to other powers V ⊗n by formula (10.3). This extension
remains in Homf . Such an extension ensures relations (5.1) and (5.2) for cf . Re-
maining properties (5.3) and (5.4) for cf follow from the corresponding properties
for c by pushing all the instances of f±1 on the left of each expression, using the
naturality of c and the compatibility of the morphisms in Homf with f.

Notation 10.2.1. The monoidal category constructed in theorem 14 is denoted by CV,f .

Now take C = Set and let (S,⊳) be a rack. We have seen that σ⊳ is a braiding for S.
One checks whether it remains so in new categories of type SetS,f :

Lemma 10.2.2. Given an f ∈ AutSet(S), the map σ⊳ is a morphism in the subcategory
SetS,f of Set if and only if f is a rack morphism.

This observation leads to the following

Proposition 10.2.3. Take a virtual rack (S, f). The action of V Bn on the braided ob-
ject (S, σ⊳) of the symmetric category (SetS,f , τ

f ) is precisely the “virtual” action from
proposition 8.2.5.

Proof. According to theorem 14, one can change the symmetric braiding τ of SetS,f to
τ f . Further, the previous lemma shows that σ⊳ is a morphism in SetS,f , since f is a rack
morphism. Thus (S, σ⊳) remains a braided object in the symmetric category (SetS,f , τ

f ).
One concludes by writing down explicit formulas for τ f and comparing them with (8.8).

Virtually twisted braidings

Changing the (pre-)braiding σV for an object V while keeping the underlying symmet-
ric braiding c can also be interesting. In particular, one can twist σV using cV,V :

Theorem 15. Take a (pre-)braided object (V, σV ) in a symmetric category (C,⊗, I, c).
Then V can be endowed with another (pre-)braiding

σV := cV,V ◦ σV ◦ cV,V .

Proof. One should check equation (YB) for σV , and show that it is invertible if σV is. We
treat only invertible braidings here, the pre-braided case being similar.

Consider the “twisting map”

t : V Bn −→ V Bn,

θ 7−→ ∆nθ∆n,
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where ∆n is the Garside element, i.e. the total twist ∆n :=
(

1 2 ··· n
n n−1 ··· 1

)
∈ Sn, seen as an

element of V Bn via inclusion (9.1). Since ∆n∆n = 1, the map t is extremely nice:

1. t is a group map;

2. t is involutive, hence an isomorphism.

On the generators, t gives

t(σi) = σn−i,

t(σ−1
i ) = σ−1

n−i,

t(ζi) = ζn−i,

where σj := ζjσjζj , σ
−1
j := ζjσ

−1
j ζj ∀j. Relation (BrY B) for the σ’s is now a consequence

of (BrY B) for the σ’s. Observing that (σV )j is precisely the action, according to corollary
10.1.2, of the element σj of V Bn, one sees that (BrY B) for the σ’s implies (YB) for σV .

Further, relation σ−1
1 σ1 = σ1σ

−1
1 = 1 in V B2 implies that the action σ−1

V := cV,V ◦

σ−1
V ◦ cV,V of σ−1

1 on V ⊗ V is the inverse of σV , the latter being the action of σ1.

Definition 10.2.4. We call the (pre-)braiding from the previous theorem virtually twisted.

The element σi of V Bn (or V B+
n ) is graphically depicted as

i i+1
.

Figure 10.1: Virtually twisted braiding

This element is quite famous in virtual knot theory, since many invariants do not
distinguish it from the original σi.

In theorem 14, we encountered a category with two distinct symmetric braidings. With
this in mind, one can state a stronger version of the previous theorem, based on similar
observations:

Proposition 10.2.5. Take a braided object (V, σV ) in a category (C,⊗, I) admitting two
symmetric braidings b and c. Put

σ′′V := cV,V ◦ bV,V ◦ σV ◦ bV,V ◦ cV,V ,

b′V,V := cV,V ◦ bV,V ◦ cV,V .

Then the pair (σ′′V , b
′
V,V ) defines a V Bn action, isomorphic to the action given by (σV , bV,V ).

Proof. Put σ′V := bV,V ◦ σV ◦ bV,V .
The involutive action of ∆n :=

(
1 2 ··· n
n n−1 ··· 1

)
∈ Sn on V ⊗n via the symmetric braiding

b intertwines (σV )i and (σ′V )n−i, as well as (bV,V )i and (bV,V )n−i. Further, the involutive
action of ∆n on V ⊗n via the second symmetric braiding c intertwines (σ′V )i and (σ′′V )n−i,
as well as (bV,V )i and (b′V,V )n−i. Their composition yields the announced isomorphism.
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An analogue of this result for positive virtual braid actions can easily be formulated.
Let us now see what this proposition gives in the setting of theorem 14, which is a

source of two symmetric braidings coexisting in a category. Taking b = cf , one gets

Proposition 10.2.6. In a symmetric category (C,⊗, I, c), take a braided object (V, σV )
endowed with an automorphism f compatible with the braiding, i.e.

σV ◦ (f ⊗ f) = (f ⊗ f) ◦ σV .

Then the pairs (σV , c
f
V,V ) and ((f ⊗ f−1) ◦ σV ◦ (f−1 ⊗ f), cf−1

V,V ) give V Bn actions, which
are isomorphic.

Applying this proposition to categories CV,fk , one obtains

Corollary 10.2.7. In the settings of the preceding proposition, the pairs (σV , c
fk+1

V,V ) and

((f ⊗ f−1) ◦ σV ◦ (f−1 ⊗ f), cfk−1

V,V ) give isomorphic V Bn actions for any k ∈ Z.

Example 10.2.8. Consider the second virtual quandle structure from example 8.2.7.
The automorphism f(a) = sa is compatible with the braiding σ⊳ since f is a quandle
morphism (cf. lemma 10.2.2). Then the preceding corollary establishes an isomorphism
between V Bn actions given by the pairs (σ⊳, τ fk+1

) and (σ′′⊳, τ
fk−1

), where

σ′′⊳(a, b) = (s2b, ts−2a+ (1− t)b).

Note that A is also a Z[u±1, v±1]-module, with u acting by s2 and v by ts−2. The matrix
form of σ′′⊳ is then (

0 u
v 1− uv

)
,

which is precisely the twisted Burau matrix (cf. [75], or [43], where it is recovered via
Alexander biquandles).

Further, the isomorphism of actions for k = 1 can be interpreted, in this example, as
follows: virtualizing the V Bn action on a rack, in the sense of proposition 8.2.5 (for a
new quandle morphism f̃ : a 7→ f2(a) = s2a = ua) is equivalent to “double-twisting”
the braiding σ⊳, in the sense of proposition 10.2.5 (i.e., concretely, passing to σ′′⊳). This
was noticed in [3].

The equivalence of actions observed in the previous example holds, more generally,
in the settings of proposition 10.2.6, whenever the automorphism f of V is a square of
another automorphism, which is still compatible with σV . In particular, one obtains

Example 10.2.9. One more result from [3] admits a natural interpretation using the tools
developed here. It is the possibility to transform a matrix solution

(
A B
C D

)
of the YBE over

a commutative unital ring R into a solution
(

A tB
t−1C D

)
, with t ∈ R∗, and the equivalence

of the two induced representations of the braid group Bn. This, as well as their theorem
7.1, follows from corollary 10.2.7 by taking C = Mod⊕R, k = 1 and f(v) = sv, with s2 = t
(one formally adds a square root of t to R if necessary).
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Chapter 11

Categorical aspects of
self-distributivity

As we have seen in chapter 5, associative and Leibniz algebras in monoidal categories
are defined very naturally and provide a rich source of (pre-)braided objects in symmetric
categories – and thus of representations of virtual braid groups and positive virtual braid
monoids. Since shelves and quandles are braided objects par excellence, it would be
interesting to categorify them and to look for new examples of braidings emerging in this
generalized setting. Such a categorification is given in section 11.1, with several examples
in section 11.2, including – quite unexpectedly – associative, Leibniz and Hopf algebras.

Our notion of categorical, or generalized, self-distributivity (briefly, GSD) can be pre-
sented as follows:

GSD = comultiplication ∆ + binary operation ⊳ + compatibility
coassociative, self-distributive, in the braided

weakly cocommutative with ∆ as diagonal bialgebra sense

Note in particular that the comultiplication ∆ becomes a part of the GSD struc-
ture, which is the main difference between our approach and that of J.S.Carter, A.S.Crans,
M. Elhamdadi, and M.Saito (cf. [8]). We discuss the role of this distinction in detail in
section 11.1.

The braided homology theories for GSD structures are studied in section 11.3. In
particular, this study naturally leads to a notion of categorical spindle.

Note that, having the non-cocommutative comultiplication ∆Ass := ν ⊗ IdV for asso-
ciative algebras in mind, we choose not to impose the cocommutativity in the definition
of GSD. This entails some technical weaker notions of central and left cocommutativity.

11.1 A categorified version of self-distributivity

Motivations

The main difficulty in defining the self-distributivity in a monoidal category resides in
interpreting the diagonal map

∆D : a 7→ (a, a), (11.1)

implicit on the right side of (SD). The flip, equally implicit in (SD) (moving one of the
c’s before b), is also to be appropriately interpreted. Two approaches are proposed by
J.S.Carter, A.S.Crans, M. Elhamdadi, and M.Saito in [8] (see also [15]):

163
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1. generally, one can work in an additive category, which admits binary products and
hence diagonal and transposition morphisms;

2. a concrete example of an additive category is Coalgk, the category of counital coas-
sociative cocommutative coalgebras over a field k, with the comultiplication as a
diagonal map and the flip as a transposition map.

The approach presented here is different. We make the comultiplication ∆, which
generalizes the diagonal map, a part of the GSD structure, instead of requiring it on the
categorical level. A bialgebra-like compatibility with the “multiplication” ⊳ is imposed on
∆. As for the flip, we leave it on the categorical level, working in a symmetric category. Our
choice is motivated by the virtual braid group action we want to obtain, via theorem 13,
from the (pre-)braiding we hope to extract from the GSD structure via a generalization of
lemma 4.2.1. We reserve the underlying symmetric category structure only for the “virtual
part” of V Bn (the ζi’s) and the (pre-)braided object structure (which, according to lemma
4.2.1, uses ⊳ and ∆) for the “real part” (σi’s). This seems to us more consistent with the
topological interpretation, where virtual crossings are just artefacts of depicting a diagram
in the plane, while usual crossings come from the intrinsic knot structure.

One more argument in favor of a “local” rather than “global” comultiplication is its
special role in the homology theory of (pre-)braided objects (cf. section 3.2 for details,
or theorem 6 for a categorical version): together with a (pre-)braiding (which we hope
to obtain from a categorical SD structure) and a braided character, they are used in the
construction of a weakly simplicial structure.

Here is a list of other advantages of our approach:
ú we work in a general monoidal rather than k-linear setting;
ú no counit is demanded (note that counits cause some problems in [8], and they do

not exist in one of the examples given below);
ú cocommutativity, often demanded in [8], is replaced by a weaker notion – again,

with an example when it is necessary;
ú the flexibility in the choice of the underlying symmetric category allows to treat,

among other structures, Leibniz superalgebras.
On the negative side, our definition is quite heavy, since, for example, one has to

replace conditions like “a morphism in Coalg” by their concrete meaning. The reader is
advised to draw pictures, in the spirit of parts I and II or [8], to better manipulate all the
notions.

Shelves and racks in other worlds

Recall notations (1.3) and (1.4).

Definition 11.1.1. Take a symmetric category (C,⊗, I, c).
ú An object V of C is called a shelf in C if it is endowed with two morphisms ∆ :

V −→ V ⊗ V and ⊳ : V ⊗ V −→ V satisfying the following conditions (where the
braiding cV,V is denoted simply by c for succinctness):

1. ∆ is a coassociative central-cocommutative comultiplication, i.e.

∆1 ◦∆ = ∆2 ◦∆ : V −→ V ⊗3,

c2 ◦∆3 = ∆3 : V −→ V ⊗4;

2. ⊳ is self-distributive in the generalized sense (abbreviated as GSD):

⊳
2 = ⊳ ◦ (⊳⊗⊳) ◦ c2 ◦∆3 : V ⊗3 −→ V ; (GSD)
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3. the two morphisms are compatible in the braided bialgebra sense:

∆ ◦⊳ = (⊳⊗⊳) ◦ c2 ◦ (∆⊗∆) : V ⊗2 −→ V ⊗2. (11.2)

ú A shelf V is called a rack in C if moreover it is endowed with

1. a right counit ε : V −→ I, i.e.

ε2 ◦∆ = IdV : V −→ V,

2. a morphism ⊳̃ : V ⊗ V −→ V which is the “twisted inverse” of ⊳:

⊳̃ ◦⊳1 ◦ c2 ◦∆2 = ⊳ ◦ ⊳̃1 ◦ c2 ◦∆2 = IdV ⊗ε : V ⊗2 −→ V.

Note that usual cocommutativity implies the central one, and the converse holds if,
for example, there exists a counit for ∆. We prefer keeping our weaker condition in order
to allow non-cocommutative examples in the next section.

Our definition is designed for a generalized version of lemma 4.2.1 to hold:

Proposition 11.1.2. 1. A shelf (V,∆,⊳) in a symmetric category (C,⊗, I, c) admits
a pre-braiding

σ = σSD := ⊳2 ◦ c1 ◦∆2.

2. This pre-braiding is invertible if V is moreover a rack, the inverse given by

σ−1 = ⊳̃1 ◦ c2 ◦ c1 ◦ c2 ◦∆1.

The verifications are easy but lengthy, so they are not given here. Diagrammatic proof
is probably the least tiresome. Here is for instance the graphical form of the (pre-)braiding:

∆
⊳c

.

Figure 11.1: Pre-braiding for a categorical shelf

Corollary 11.1.3. In the settings of the previous proposition, the pair (σSD, cV,V ) gives
a V B+

n or V Bn action.

Alternative definitions

One could have started with proposition 11.1.2 and asked oneself what conditions on
morphisms ∆ and ⊳ make σSD a (pre-)braiding. In fact, the conditions from definition
11.1.1 are very far from being unique, unlike the “if and only if” results from parts I and
II. We cite just two more of multiple alternative sets of conditions here.

1. The central cocommutativity can be transformed to

c2 ◦ c3 ◦∆3 = ∆3 : V −→ V ⊗4,

and condition (GSD) to

⊳
2 = ⊳2 ◦ c2 ◦⊳2 ◦∆3 : V ⊗3 −→ V.

Note that in the cocommutative case this coincides with the original definition.
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2. The condition (GSD) can be substituted with the usual associativity, and the com-
patibility condition can be made Yetter-Drinfel′d-like:

⊳2 ◦ c1 ◦∆2 ◦⊳2 ◦ c1 ◦∆2 = (⊳⊗⊳) ◦ c2 ◦ (∆⊗∆) : V ⊗2 −→ V ⊗2

(cf. the right version of figure 7.9).

Morally, starting with a bialgebra structure, one should substitude either the com-
patibility condition with a Yetter-Drinfel′d-like, or the associativity condition with the
GSD.

Observe that one could also work with a slightly different morphism in proposition
11.1.2:

σ := σ′SD := c ◦⊳1 ◦∆2,

which coincides with σSD in the cocommutative case. Conditions similar to those for σSD

guarantee that it is a (pre-)braiding. This choice makes the rack case less “twisted”: we
demand ⊳̃ to be simply the inverse of ⊳ and omit the occurrences of c2 in the defining
property for ⊳̃.

Our choice in definition 11.1.1 is motivated by concrete examples which follow.

Remark 11.1.4. The GSD can be efficiently expressed with the help of σ = σSD:

⊳
2 = ⊳2 ◦ σ2.

In other words, (V,⊳) is right module over the pre-braided object (V, σSD), in the sense
of section 6.1.

Recovering usual shelves and racks

Now let us move to examples. The first one is naturally that of usual SD structures.
Choose Set as the underlying symmetric category. Recall the diagonalization map (11.1).
Further, for a set S, denote by ε the map from S to I, unique since the one-element set
I is a final object. One easily sees that (S,∆D, ε) is a counital cocommutative coalgebra
in Set. This ensures some of the properties of definition 11.1.1. Analyzing the remaining
ones, one gets

Proposition 11.1.5. Take a set S endowed with a map ⊳ : S → S × S.

1. The triple (S,∆D,⊳) is a shelf in the symmetric category Set if and only if (S,⊳)
is a usual shelf.

2. The datum (S,∆D, ε,⊳, ⊳̃) is a rack in the symmetric category Set if and only if
(S,⊳, ⊳̃) is a usual rack.

3. Moreover, for a shelf (S,⊳), the pre-braiding σSD from proposition 11.1.2 coincides
with σ⊳ from lemma 4.2.1.

Thus generalized self-distributivity includes the usual one. Examples from the next
section show that the generalized notion is in fact much wider.

11.2 Associative, Leibniz and Hopf algebras are shelves

The aim of this section is to recover associative, Leibniz and Hopf algebras under the
guise of categorical shelves, choosing suitable comultiplications.
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Associative algebras

Start with UAAs. The following result allows to see associativity as a particular
case of generalized self-distributivity:

Proposition 11.2.1. Take an object V in a symmetric category (C,⊗, I, c), equipped with
two morphisms µ : V ⊗V −→ V and a right unit ν : I −→ V for µ, i.e. µ ◦ ν2 = IdV . Put

∆Ass := ν ⊗ IdV .

1. The triple (V,∆Ass, µ) satisfies all the conditions from definition 11.1.1 but (GSD),
which is equivalent to the associativity of µ.

2. Moreover, for a UAA (V, µ, ν) and the GSD structure above, the pre-braiding σSD

from proposition 11.1.2 coincides with σAss from theorem 5cat.

This example is somewhat exotic. It explains why we were quite demanding in choosing
the conditions in definition 11.1.1. In particular,

ú ∆Ass is cocommutative in the central but not in the usual sense;
ú ∆Ass admits only a left counit in general;
ú (V,∆Ass, µ) is not a rack in general;
ú the pre-braiding for (V,∆Ass, µ) is not invertible in general.

Leibniz algebras

The case of ULAs is somewhat trickier. A natural candidate for comultiplication is

∆ = ν ⊗ IdV + IdV ⊗ν,

but to recover the Leibniz condition (Lei) as a GSD one, one wants the “right multiplication
by one” (i.e. [, ] ◦ ν2 : V −→ V ) to be identity and not zero, as the definition of ULA
imposes. A standard solution is to start with a (not necessarily unital) Leibniz algebra
V ′ and to introduce a “formal unit”, i.e. to work in V := V ′ ⊕ I. This “unit problem”
turns out to be the only one in interpreting Leibniz algebras via GSD, as witnesses the
next result.

Take an object V ′ in a symmetric additive category C, and a morphism [, ] : V ′⊗V ′ →
V ′. Put

V := V ′ ⊕ I

and denote by ν the identity IdI seen as a morphism from I to V. Define a comultiplication
∆Lei and a counit εLei on V by

∆Lei|V ′ := ν ⊗ IdV ′ + IdV ′ ⊗ν : V ′ → V ⊗ V, εLei|V ′ := 0,

∆Lei|I := ν ⊗ ν : I→ V ⊗ V, εLei|I := IdI,

and binary operations ⊳Lei, ⊳̃Lei on V by

⊳Lei |V ′⊗V ′ = −⊳̃Lei|V ′⊗V ′ := [, ],

⊳Lei |V⊗I = ⊳̃Lei|V⊗I := IdV ,

⊳Lei |I⊗V ′ = ⊳̃Lei|I⊗V ′ := 0.

Proposition 11.2.2. 1. The datum (V,∆Lei, εLei,⊳Lei, ⊳̃Lei) satisfies all the condi-
tions from definition 11.1.1 but the GSD, which is equivalent to the Leibniz condition
for [, ].
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2. Moreover, for a Leibniz algebra (V ′, [, ]) and the GSD structure above, the braiding
σSD on V from proposition 11.1.2 coincides with σLei from theorem 5cat, where [, ]
is extended to V by declaring ν a Lie unit.

The GSD structure found here turns out to be the same as in [8].
Note that the map ⊳Lei is neither Leibniz nor anti-symmetric when one of the com-

ponents is I. The advantage of the treatment of ULAs proposed in section 4.4 was that
one always stayed within the Leibniz world. Another nice feature was a simple compact
formula σLei = c+ ν ⊗ [, ] for the braiding, whereas its analogue here σ = c+ ν ⊗⊳Lei is
false on V ⊗ I.

Working in different symmetric additive categories (ModR, ModGradR etc.), one
treats the case of Leibniz (super-/color) algebras and other types of structures.

The role of the comultiplication

In the two preceding examples, it is the particular choice of the comultiplication that
dictated the nature of the multiplicative structure. More precisely, the comultiplication
∆Ass or ∆Lei imposed the equivalence between the GSD and the associativity or, respec-
tively, the Leibniz condition. For usual shelves this “control” is even stronger:

Lemma 11.2.3. Take the linearization RS of a set S, where R is a commutative unital
ring without zero divisors. Consider the comultiplication on RS which is the linearization
of the diagonal map ∆D on S. Suppose that, together with a multiplication ⊳, it endows
RS with a GSD structure. Then, for any a, b ∈ S, the product a ⊳ b is either zero or an
element of S.

Proof. Put a⊳ b =
∑

i γici, with γi ∈ R, and ci ∈ S pairwise distinct, in the compatibility
condition (11.2). One gets

γiγj =

{
0 if i 6= j,

γi if i = j.

Since R has no zero devisors, the coefficients γi are either all zero, or they are zero except
one which equals 1.

Thus ⊳ “almost comes from a shelf structure on S”. This is a generalization of lemma
3.8 from [8].

Another example is that of the trigonometric coalgebra T = Ca⊕ Cb with

∆tr(a) = a⊗ a− b⊗ b,

∆tr(b) = a⊗ b+ b⊗ a.

It was also considered in [8]. The elements x = a + ıb, y = a − ıb being group-like (i.e.
∆tr(x) = x ⊗ x, ∆tr(y) = y ⊗ y), all the GSD structures with trigonometric ∆tr are
isomorphic to GSD structures with linearized diagonal ∆D. In particular, lemma 3.9 from
[8] is just a reformulation of their lemma 3.8.

Hopf algebras

The last example of “hidden” self-distributivity, studied in [8] as well, is that of a Hopf
algebra.
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Proposition 11.2.4. Let (H,µ,∆, ν, ε, S) be a cocommutative Hopf algebra in a symmet-
ric category (C,⊗, I, c). Define

⊳H = µ2 ◦ S1 ◦ c1 ◦∆2 : H ⊗H −→ H,

⊳̃H = ⊳H ◦ S
−1
2 : H ⊗H −→ H.

The datum (H,∆, ε,⊳H , ⊳̃H) satisfies all the conditions from definition 11.1.1. Proposi-
tion 11.1.2 then endows H with a braiding.

In ModR, the definition of ⊳H is written, using Sweedler’s notation, as

x⊳H y = S(y(1))xy(2),

x⊳̃Hy = y(2)xS
−1(y(1)),

which are the well-known adjoint actions. The braiding becomes

σSD(x⊗ y) = y(1) ⊗ S(y(2))xy(3).

This is precisely the braiding obtained viewing H as a Yetter-Drinfel′d module over itself,
cf. [83]. Note in particular that the cocommutativity condition is redundant, since it is
not used in the Yetter-Drinfel′d approach.

11.3 Homologies of categorical shelves and spindles

We finish the study of GSD structures by generalizing the cohomology constructions
from section 4.2. The main ingredient – a pre-braiding – was already obtained in propo-
sition 11.1.2. Here we consider the remaining ingredients: braided characters and a com-
patible comultiplication.

Note that another cohomology theory of categorical self-distributivity was proposed in
[8]. Their definition was inspired by the bialgebra cohomology and extension-deformation-
obstruction ideas. The approach developed here is different. Our motivation is a direct
generalization of rack and Chevalley-Eilenberg homologies, with potential applications to
topology.

Let us now fix a shelf (V,∆,⊳) in a symmetric category (C,⊗, I, c). Endow it with the
pre-braiding σSD from proposition 11.1.2.

Categorical spindle as a cocommutative braided coalgebra

The intrinsic comultiplication ∆ of our shelf is a natural candidate for a comultiplica-
tion giving degeneracy maps in theorem 6. Analyzing its cocommutativity and compatibil-
ity with the pre-braiding σSD (in the braided coalgebra sense), one arrives to a categorical
version of the notion of spindle. Recall notations (1.3) and (1.4).

Definition 11.3.1. A shelf (V,∆,⊳) in a symmetric category (C,⊗, I, c) is a spindle if

1. ∆ is left-cocommutative:
c1 ◦∆2 = ∆2

2. and ⊳ is ∆-idempotent:
⊳ ◦∆ = IdV .
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The first condition is rather technical, while the second one is really essential. It is

its graphical form
=

that explains the term. It was coined, together with the term
“shelf”, by Alissa Crans in her thesis [15].

Note that the left cocommutativity is stronger than the central one and weaker than
the usual one.

Proposition 11.3.2. Take a shelf (V,∆,⊳) in a symmetric category (C,⊗, I, c). The data
(V, σ = σSD,∆) define a semi-braided coalgebra, σ-cocommutative if V is a spindle.

Proof. Compatibility relation (3.12) follows from the coassociativity of ∆ and the bialgebra-
type compatibility between ∆ and ⊳. As for σ-cocommutativity, it is a consequence of the
two properties defining spindles.

The additional conditions in the definition of a spindle turn out not to be too restrictive:

Lemma 11.3.3. The following GSD structures are spindles:

1. usual spindles in Set;

2. UAAs (for which ∆-idempotence is equivalent to ν being a left unit);

3. ULAs;

4. cocommutative Hopf algebras.

Characters

Another ingredient missing for applying theorem 6 is a source of characters. Here are
nice candidates:

Definition 11.3.4. A GSD character for a shelf (V,∆,⊳) in C is a morphism ǫ : V → I
compatible with ∆ and ⊳:

(ǫ⊗ ǫ) ◦∆ = ǫ : V −→ I,

ǫ ◦⊳ = ǫ⊗ ǫ : V ⊗ V −→ I.

One easily checks

Lemma 11.3.5. A GSD character for a shelf (V,∆,⊳) in C is a braided character for the
pre-braided object (V, σSD).

Simplicial structures

Everything is now ready for applying theorem 6:

Theorem 16. Let ǫ and ζ be two GSD characters for a shelf (V,∆,⊳) in a symmetric
preadditive category (C,⊗, I, c). Morphisms

(ǫd)n;i := ((ǫ⊗⊳⊗(i−1)) ◦ ω(2i−1) ◦ (∆i−1)i)⊗ Id⊗(n−i)
V : V n → V n−1,

(dζ)n;i := Idi−1
V ⊗ζ ⊗ χ⊗(n−i) : V n → V n−1,

define then a pre-bisimplicial structure on Cn := V n, where

χ := (IdV ⊗ζ) ◦∆ : V −→ V,

and ω(2i−1) =
( 1 2 ··· i−1 i i+1 ··· 2i−1

2 4 ··· 2(i−1) 1 3 ··· 2i−1

)
∈ S2i−1 acts on the tensor powers of V via the

symmetric braiding c.
Further, (Cn, (ǫd)n,i, sn,i := ∆i) is a very weakly simplicial object, becoming weakly

simplicial if V is a spindle in C.



11.3. HOMOLOGIES OF CATEGORICAL SHELVES AND SPINDLES 171

As a consequence, any linear combination of total differentials ǫd and dζ defines a
differential for V, and thus a homology theory if the category C is sufficiently nice.

For usual shelves and categorical UAAs and ULAs, the homology theories above coin-
cide, for a suitable choice of characters, with the braided homology theories from chapters
4 and 5, and thus recover many known homologies. Moreover, for usual spindles and
unital associative algebras, the weakly simplicial structures (V n, (ǫd)n;i,∆i) are precisely
the familiar ones.

Remark 11.3.6. In fact in the settings of the theorem one has a (very) weakly bisimplicial
structure if ζ is a GSD character: although the second braided coalgebra condition (3.13)
does not hold in general, one checks directly the relations between the (dζ)n;i’s and the
sn,i’s, using the central or left cocommutativity of ∆ and its compatibility with the GSD
character ζ.

Note also that if ζ is a counit for ∆, then the structure (V n, (dζ)n;i,∆i) is (trivially)
simplicial.
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