N
N

N

HAL

open science

DC programming and DCA for solving some classes of

problems in transportation and communication systemes
Anh Son Ta

» To cite this version:

Anh Son Ta. DC programming and DCA for solving some classes of problems in transportation and
communication systemes. Other [cs.OH]. INSA de Rouen, 2012. English. NNT: 2012ISAM0012 .

tel-00776219

HAL Id: tel-00776219
https://theses.hal.science/tel-00776219
Submitted on 15 Jan 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://theses.hal.science/tel-00776219
https://hal.archives-ouvertes.fr

THESE

pour ’obtention du titre de

DOCTEUR DE I’INSTITUT NATIONAL
DES SCIENCES APPLIQUEES DE ROUEN

(arrété ministériel du 7 aoit 2006)

Spécialité : MATHEMATIQUES APPLIQUEES

Présentée et soutenue par

Anh Son TA

-Titre de la thése -

Programmation DC et DCA pour la résolution de
certaines classes des problémes dans les systémes de
transport et de communication

Soutenue le 22 Juin 2012

Membres du Jury :

Patrick STARRY Rapporteur, Professeur, Université Paris-Est Créteil Val-de-Marne

Nazim AGOULMINE Rapporteur, Professeur, Université d’Evry Val d’Essonne

Tao PHAM DINH Directeur de thése, Professeur, INSA de Rouen

Hoai An LE THI Directrice de thése, Professeur, Université de Lorraine

Djamel KHADRAOUI Responsable scientifique au Public Research Centre Henri Tudor,
Luxembourg

Viet Hung NGUYEN Examinateur, MCF, Université P. & M. Curie

Alain Burt Examinateur, Professeur,

Université de Versailles-St-Quentin-en-Yvelines

THESE PREPAREE AU LABORATOIRE DE MATHEMATIQUES DE L’INSTITUT
NATIONAL DES SCIENCES APPLIQUEES DE ROUEN, FRANCE

REMERCIEMENTS

Deés les premiéres lignes de ce mémoire, je tiens a remercier tous ceux qui dés le début
ont cru en moi et m’ont permis de démarrer et de mener & bien ce travail.

Je souhaiterais exprimer mes remerciements sincéres envers le Ministére de ’'Education
Vietnamienne et le Fonds National de la Recherche Luxembourg qui m’ont donné
Popportunité de réaliser cette thése. Ce travail a été réalisé en collaboration étroit en-
tre le LMI (INSA de Rouen), le LITA (Université de Lorrain) et le CRP Henri Tudor,
Luxembourg.

J’exprime ma profonde et respectueuse gratitude a mes directeurs de thése Prof.
PHAM DINH Tao et Prof. LE THI Hoai An pour leur confiance, leur patience,
leur soutien, leur disponibilité et leurs encouragements durant ces années. Merci aussi
pour les nombreuses discussions de tout et de rien.

Je tiens a remercier tout particuliérement mon responsable scientifique au CRP Henri
Tudor Dr.Djamel KHADRAOUI, qui m’a accueilli et m’a encadré dans votre groupe
de recherche au CRP Henri Tudor. La confiance que vous m’avez accordée pendant ces
quatre années ainsi que votre soutien sans faille m’a permis de progresser rapidement.
Soyez assuré de toute mon estime et de mon profond respect.

Je souhaiterais remercier aux rapporteurs : Prof. Patrick STARRY et Prof. Nazim
AGOULMINE pour leur commentaires et leur questions, tant sur la forme du mémoire
que sur son fond, ont contribué & améliorer de maniére significative le document.

Mes remerciements s’adressent également & mes collégues qui sont intervenus dans mon
travail : Dr. Phuc, Dr. Thuan, Dr. Quynh, Dr. Minh, M.Sc Cuong pour les nombreuses
discussions que nous avons eu dans les domaines de l'optimisation, programmation et
développement.

Je voudrais aussi avoir une pensée pour mes camarades de bureau, par leur présence
et leur amitiés, ont partagé leur joie et leur bonne humeur avec moi au sein du laboratoire
LMI & Rouen : Duc Manh, Viet Nga ; le LITA & Metz : Bich Thuy, Minh Thuy, Anh Vu
et I’équipe SSI & CRP Henri Tudor : Moussa, Gérard, Hed:.

Mes remerciements s’adressent & mes amis Vietnamiens pour tous les bons moments
passés ensemble : mes petits fréeres Huy Linh, Viet Dung et mes amis rencontrés & Rouen
et & Metz.

Enfin, une énorme pensée 4 mes parents, ma famille et & Mme. Bach Kim qui
m’ont remonté le moral dans les moments difficiles et les moments d’incertitude. Merci de
m’avoir soutenue et de me soutenir encore et toujours.

Dedicated to my little princess Nam!

Résumé

La présente thése a pour objectif principal de développer des approches déterministes et
heuristiques pour résoudre certaines classes des problémes d’optimisation dans les sys-
témes de transport et de communication: problémes de routage, problémes de covoiturage,
probléme de controle de ’alimentation dans un réseau sans fil, probléme d’équilibrage du
spectre dans les réseaux DSL. 1l s’agit des problémes d’optimisation non convexe de trés
grande taille. Nos approches sont basées sur la programmation DC et DCA, méthodes
de décomposition proximales et méthodes d’étiquetage des graphes. Grace aux techniques
de formulation /reformulation et de pénalité exacte nous avons établi, de maniére simple,
des programmes DC équivalents en vue de leur résolution par DCA. En outre, tenant
compte de la structure spécifique de ces problémes, des décompositions DC appropriées
et des choix judicieux de points initiaux pour DCA sont proposés afin d’ameéliorer sa per-
formance. Toutes ces méthodes ont été mises en ceuvre avec MATLAB, C/C++. Les
simulations numériques montrent la performance de nos algorithmes par rapport a des
méthodes existantes, surtout en grande dimension.

Mots-clé : Programmation DC et DCA, Méthode de décomposition proximale, Méth-
ode d’étiquetage des graphes, Problémes de routage, Problémes de covoiturage, Probléme
de controle de I'alimentation, Probleme d’équilibrage du spectre.

Abstract

In this thesis, we focus on developing deterministic and heuristic approaches for solving
some classes of optimization problems in Telecommunication and Mobility & Transport
domain: Routing problems, Car pooling problems, Power control problems in wireless
network, Optimal spectrum balancing problems in DSL networks. They are large-scale
nonconvex optimization problems. Our methodologies focus on DC programming and
DCA, Proximal decomposition method and Labeling method in graph theory. They are
well-known as powerful tools in optimization. The considered problems were reformulated
using the DC formulation /reformulation and exact penalty techniques then the DCA was
used to obtain the solution. Also, taking into account the structure of considered problems,
we can provide appropriate DC decompositions and the relevant choice strategy of initial
points for DCA in order to improve its efficiency. All these proposed methods have been
implemented with MATLAB, C/C++ to confirm the practical aspects and enhance our
research works.

Keywords: DC programming and DCA, Proximal decomposition method, Labeling
algorithms in graph theory, Routing problems, Car pooling problems, Power control prob-
lems, Optimal spectrum balancing problems.

Contents

Introduction xi
Publications xvii
List of abbreviations xix
I PRELIMINARY STUDIES 1
1 Preliminary Studies 3
1.1 Introduction L 3
1.2 DC programming and DCA 3
1.2.1 Fundamentals of DC analysis 4

1.2.2 DC optimization 7

1.23 DCA . . . e 11

1.3 DCA and DCA B&B method for solving MILPO-1 16
1.3.1 DCA for solving MILPO-1 16

1.3.2 B&B for MILPO1 o0 o oo 18

1.3.3 B&B combined with DCA 20

1.4 Proximal Decomposition Method (PDM) 22
1.4.1 Proximal decomposition on the graph of a maximal monotone operator 22

1.4.2 Proximal decomposition method 24

1.5 Conclusion 27

IT ROUTING PROBLEMS 29
2 Solving QoS Routing problems using DCA 31
2.1 Introductiono 31
2.2 Problem statement and mathematical formulation 33
2.2.1 Unicast QoS Routing problem 34

2.2.2 Multicast QoS Routing problem 37

2.2.3 Many to Many Multicast QoS Routing problem 39

2.3 Solving Many to Many Multicast Tree problem by DCA 41
2.4 Totally unimodular matrices and Initial point for DCA 43
2.4.1 Totally unimodular matriceso 43

2.4.2 Initial point for DCA o 44

2.5 Proximal decomposition method for solving sub-convex problems 44
2.6 Numerical simulation 0oL 45
2.6.1 Unicast QoS Routing 45

2.6.2 Multicast QoS Routing oo 48

2.6.3 Many to many Multicast QoS Routing 50

2.7 Conclusion. L e 52

viii Contents
3 Solving Partition Hub Location Routing problem via DCA 53
3.1 Introduction 53
3.2 Problem statement and mathematical model 54
3.2.1 Notations and problem statement 54

3.2.2 Mathematical model oL 55

3.3 Solving Partitioning Hub Location Routing problem by DCA 59
3.4 Numerical experimento 61
3.5 Conclusion. 65

IIT OPTIMAL SPECTRUM BALANCING IN DSL NETWORK

AND POWER CONTROL IN WIRELESS NETWORK

4 Power Control in Wireless Networks using DCA

4.1 Introduction
4.2 Systemmodel o
4.3 Power control via DC Programming

4.3.1 DC Algorithms for the Proposed Power Control problem

4.3.2 DCA applied to Problem 2 (4.7)-(4.9)
4.3.3 Initial point for DCA
4.4 Simulation Results 0.
4.5 Conclusion.o

5 Optimal Spectrum Balancing in DSL Network using DCA

5.1 Introduction
5.2 Spectrum Management problem (SMP)
5.2.1 DC formulations of SMP (5.3)
5.2.2 DCA applied to Problem (5.4)
5.3 Numerical experiments L.
54 Conclusion.

IV CAR POOLING PROBLEMS

6 Solving Car Pooling problem using DCA

6.1 Introductiono
6.2 Problem statement and mathematical model
6.2.1 Mathematical formulation
6.3 Solving Car Pooling problem by DCA
6.3.1 DC Algorithm for solving Car Pooling problem
6.3.2 A combined DCA-Branch and Bound algorithm
6.4 Numerical experiment00,
6.5 Conclusion.

7 Solving Multiobjective Dynamic Car Pooling problem

7.1 Introduction o
7.2 Problem statement
7.3 Algorithm description L.
7.4 Numerical results
7.5 Conclusion

Conclusions and Perspectives

67

69
69
71
72
72
74
0]
0]
7

79
79
80
82
84
84
86

89

91
91
92
93
94
94
96
98
100

101
101
102
103
107
109

111

Contents ix

Appendix 113
Index 119

References 121

Introduction

"Everything should be made as simple as possible, but not simpler."

Albert Einstein

Over the two last decades, the nonlinear optimization framework has provided both an
insightful modeling language and a powerful solution tool to tackle a much wider scope
of work in the analysis and design of communication systems. Recently, new demands in
the areas of communications and networking, in particular those in the context of mobile
network, have derived new challenges for researchers in these domains. So far, a variety
of models and methods have been developed, most of them deal with nonconvex optimiza-
tion framework. A main challenge today is on nonconvex problems in these applications.
Several approaches have been proposed in the literature, from nonlinear transformation
to turn an apparently nonconvex problem into a convex problem, to characterization of
attraction regions and systematically jumping out of a local optimum, from successive con-
vex approximation to dualization, from leveraging the specific structures of the problems
(e.g., Difference of Convex functions, concave minimization, low rank nonconvexity) to
developing more efficient branch-and-bound procedures.

The works in this thesis are motivated by, on one hand, new challenging problems in the
areas of communications and networking, and on another hand, new tools emerging from
optimization theory. Such tools include the powerful theories and highly efficient compu-
tational algorithms for nonconvex optimization, together with global solution methods and
decomposition techniques for solving large scale problems.

Generally speaking, there are two different but complementary approaches for noncon-
vex programming:

i) Global approaches such as Cutting Plane (CP), Branch and Bound (B&B), Branch and
Cut (B&C) can guarantee the globality of the solutions but they are very expensive, in
particular for large scale setting;

ii) Local approaches, on the contrary, are much faster while only local minima are avail-
able.

Current approaches in communication systems are not generally effective for large scale
networks in real world applications. Finding efficient algorithms that realize a compromise
between the quality (of solutions), the scalability and the effectively is a challenge of
nonconvex programming. Such algorithms must exploit specific structures of the problems
being considered. This thesis will address this question while taking into account the
following issues in the context of networking and mobile service:

e The topology of networks is dynamic and real-time data transmissions are needed.
Hence real-time algorithms are expected.

e Self-organization and self-configuration require all protocols in mobile networks to be
distributive and collaborative. By the way, distributed algorithms are necessary.

xii Introduction

e Location/Tracking management, in addition to the handover management and rout-
ing. In the case of hybrid communication networks, the choice of the best access gate-
way among a number of available access technologies becomes one of the important
considerations. Routing in hybrid networks should be handled by finding a suitable
mathematical model and efficient algorithms.

e Multi-user communications service involves large scale setting optimization problems.
Therefore the algorithms should be able to solve large size problems.

Our aim is to investigate efficient optimization algorithms meeting these requires. We
focus on DC (Difference of Convex functions) Programming and DCA (DC Algorithm),
powerful tools and innovative approaches in nonconvex optimization framework. DC pro-
gramming is an extension of convex programming to cover almost all real world nonconvex
optimization problems. As a part of local approaches, DCA has been introduced by Pham
Dinh Tao in 1985 and extensively developed by Le Thi Hoai An and Pham Dinh Tao since
1994 to become now classic and increasingly popular (see e.g. |[Pham Dinh, 1988]-|[Pham
Dinh and Le Thi, 1998 and [Le Thi, 1994]-[Le Thi et al., 2002]). DCA aims to solve a
general DC program that takes the form

a=1inf{f(x) :=g(x) — h(z): x € RP} (Py)

where g, h are lower semicontinuous proper convex functions on IR”. Such a function f is
called DC function, and g — h, DC decomposition of f while g and h are DC components
of f. DCA is a descent method without line search based on local optimality conditions
and DC duality. The construction of DCA involves DC components g and h but not the
function f itself: each iteration k of DCA consists of computing

y* € Oh(z¥), 2" € argmin{g(z) — h(zF) — (z — 2, yF) : 2 € RP} (Py).

Hence, for a DC program, each DC decomposition corresponds to a different version of
DCA. Since a DC function f has an infinite number of DC decompositions which have
crucial impacts on the qualities (speed of convergence, robustness, efficiency, globality of
computed solutions,...) of DCA, the search for a "good” DC decomposition is important
from algorithmic point of views. Moreover, despite its local character, DCA with a good
initial point can converge to global solutions. Finding a "good” initial point is then also an
important stage of DCA. How to develop an efficient algorithm based on the generic DCA
scheme for a practical problem is thus a judicious question to be studied, and the answer
depends on the specific structure of the problem being considered.
The use of DCA in this thesis is justified by various reasons:

e DCA is a robust and efficient method for smooth /nonsmooth nonconvex programming
which allows to solve large-scale DC programs.

e DCA is simple to use and easy to implement.

e DCA was successfully applied to a lot of different and various nonconvex optimization
problems to which it quite often gave global solutions and proved to be more robust and
more efficient than related standard methods. In particular, DCA has already efficiently
solved some DC programs in network optimization (see [Le Thi and Pham Dinh, 2002],
|Le Thi et al., 2008a], [Le Thi et al., 2008b|) and transportation systems (|[Le Thi et al.,
2008]...).

e By exploiting the nice effect of DC decomposition of the objective function we can
design distributed algorithms. This issue is very important in communication networks
that involve multi-users, in particular in the purpose of personalized mobile services.

xiii

The objective of this thesis is to investigate DC programming and DCA to some im-
portant classes of problems in communication systems and transportation systems, in the
context of mobility networks. The following areas in communications systems are studied:

e Routing: several models, from Unicast QoS routing to the complex Multicast and Many
to Many Multicast QoS routing, are considered. The traditional models of routing in
networks are those of Multicommodity Network Optimization Problems which are often
in the form of mixed integer programming (continuous/binary and/or integer variables).
In this thesis, we tackle the routing problems by developing the approaches adapted to
dynamic networks and based on DCA for Mixed Linear Integer Programming (MLIP)
models and proximal decomposition techniques (for large scale problems). We also con-
sider a so called Partitioning-Hub Location-Routing Problem (PHLRP) that consists
of partitioning a given network into sub-networks, locating at least one hub in each
sub-network, and routing the traffic within the network while minimizing the cost.

e Power control: power control and resource allocation techniques for cellular communi-
cation systems have been a recent focus of intensive studies. It has been proposed to
use the user signal to interference plus noise ratio (SINR) to adjust the transmitted
power. Several schemes for power control, centralized or distributed, have been exten-
sively studied since 1990s based on different transmission models and application needs.
Various objectives have been considered for developing power control algorithms. Par-
ticularly, one can maximize the minimum SINR, minimize total transmitted power, or
minimize outage probability in a cellular network [Chiang, 2006a]. In this thesis, we
consider new approaches of formulating power control problems through DC program-
ming framework, and develop efficient DCA schemes for the new DC formulation.

e Dynamic Spectrum Management (DSM): the DSM is an effective technique for miti-
gating detrimental effect of crosstalk in Digital Subscriber Lines (DSL). Among various
DSM techniques, centralized Optimal Spectrum Balancing (OSB) achieves the max-
imum possible data rates by computing the optimal PSDs for all modems in DSL
systems. Unfortunately, its computational complexity grows exponentially in the num-
ber of users N and becomes intractable for large N. To reduce the complexity of OSB,
we will exploit the fact that the non-convex optimization problem in OSB can be refor-
mulated as an equivalent global concave minimization problem by representing its ob-
jective function explicitly as a DC function. Hence we can investigate new and efficient
algorithms based on DC programming and DCA for solving nonconvex optimization
problems in OSB.

Also in the context of mobility network, we study one interesting application in trans-
portation systems, the Car Pooling problem. Car pooling consists of managing the sharing
of a pool of cars between several users that have whole or part of their route in common.
To solve the problem, several tasks should be performed: choosing drivers and passengers,
allocating passengers to cars, computing an optimized route for the cars. In this thesis,
we tackle the Car pooling problem by two approaches: in the first approach the Car pool-
ing problem is formulated as a Mix Integer Linear Program (MILP) for which DCA and
the combined DCA- Branch and Bound are investigated. In the second approach we con-
sider the Car pooling as a multiobjective programming problem and develop a heuristic
algorithm for solving it.

From a mathematical point of view we can classify the problems studied in our work
in three categories:

i) Binary Integer Linear Program (BILP) or Mixte Integer Linear Program (MILP): it
concerns with Unicast QoS routing, complex Multicast and Many to Many Multicast

xiv Introduction

QoS routing (BILP), Partitioning-Hub Location-Routing, and the Car Pooling problem
(MLIP).

ii) Continuous nonconvex programming: this category contains the Power control problem
and the DSM problem.

iii) Multiobjective programming problem: it deals with the Car pooling problem.

On the methodology, the use of DCA is universal in our work: we investigate DCA
for solving all considered problem. Indeed, although DCA is a continuous approach, its
can be used for solving the MILP via an exact penalty technique. DCA has been already
used for solving MILP in several applications (see e.g. [Pham Dinh et al., 2010|, |[Le Thi
and Pham Dinh, 2001], [Le Thi et al., 2007],...) In this work, exploiting the special
structure of problems being considered, we adapt DCA for the resolution of our problems
by developing several techniques: decomposition proximal techniques for QoS routing to
get the scalability of DCA, combination between DCA and Branch and Bound algorithms
to ensure the globality of solutions, dynamic update penalty parameter for obtaining good
initial points of DCA and the efficiency of DCA, ... We compare DCA with CPLEX, the
best solver for MILP. The comparative numerical results prove the efficiency, the scalabil-
ity and the superiority of DCA with respect to CPLEX, especially in large scale setting
problems.

It is interesting to note that although DCA works in a continuous domain, it gives an
integer solution with an appropriate value of penalty parameter.

The two (continuous) hard nonconvex programs (the Power control problem and the
DSM problem) are DC programs. It is easy to derive natural DC decompositions from
the definition of objective functions. But from a computational point of view, we observe
that other DC decompositions may be more interesting. In this work we propose elegant
DC decompositions for these problems that give birth very inexpensive DCA schemes.
Numerical experiments show that our algorithms are more efficient than the best existing
algorithms.

The thesis is divided into four parts:

e The first part deals with the background of DC programming and DCA, and the basis
notations/algorithms. After a presentation of the basics in the DC programming and
DCA in Section 1.2, we explore the technique of the Branch and Bound and the DCA-
Branch and Bound for solving Mixed 0-1 Linear Program in Section 1.3. Section 1.4
dedicates to a short presentation of the Proximal Decomposition Method in convex
programming.

e The second part is devoted to solve the Routing Problems:

— In Chapter 2, we study the QoS routing problems, from classical and simple Uni-
cast QoS routing problems to the complex Multicast and Many to Many Multicast
QoS routing problems. The problems are first formulated as Concave Quadratic
Program (CQP) or Binary Integer Linear Programs (BILP). Then we investigate
DC programming and DCA for solving them. Finally, we tackle large scale setting
problems (with large numbers of variables and constraints) by using the Proximal
Decomposition Method to solve sub-convex programs at each iteration of DCA.

— In Chapter 3, a specific case of the hub location problem called Partitioning-Hub
Location-Routing Problem (PHLRP) is considered. Basing on the formulation
given in |Ozsoy et al., 2008], we improve it and propose a new formulation on
which DC programming and DCA are applied.

XV

e The third part is dedicated to the solution of the Power control problems in wireless
network (Chapter 4) and the Optimal spectrum balancing problems in DSL network
(Chapter 5) by DC programming and DCA.

e The last part addresses the Car Pooling Problems. We first introduce the Car pooling
problem and then study two approaches for solving them. The deterministic approach
based on DC programming and DCA and Branch and Bound is presented in Chapter
6. The classical car pooling problem is formulated as a MILP for which DCA and
the combined DCA- Branch and Boubd are investigated. Chapter 7 introduces the
multiobjective car pooling model, which is an extension of the classical problem. Based
on labeling algorithms for solving multiobjective shortest path problem, we introduce
a new heuristic algorithm for solving the new problem.

Publications

Journal papers

[1]. A. S. Ta, H.A. Le Thi, D. Khadraoui, T. Pham Dinh, Solving Partitioning-Hub
Location-Routing Problem using DCA, Journal of Industrial and Management Optimization
(JIMO), vol.8, Issue.1, 2012, pp.87-102.

Conference with review committee

[2]. A.S.Ta, H.A. Le Thi, D. Khadraoui, T. Pham Dinh, Solving QoS Routing Problems
by DCA, In Proc. 2nd ACIIDS, Intelligent Information and Database Systems, Lecture
Notes in Artificial Intelligence (LNAI), pages 460-470, Hue, Vietnam, 2010. Springer Verlag
5991.

[3]. A.S.Ta, H.A. Le Thi, D. Khadraoui, T. Pham Dinh, Solving Multicast QoS Routing
Problem in the context V21 Communication Services using DCA, 9th IEEE/ACIS (ICIS
2010), August 18-20, 2010, Yamagata, Japan, pp.471-476 (published by IEEE Xplore).

[4]. A. S. TA, H. A. Le Thi, T. Pham Dinh, Power control by DC programming and
DCA, Proceedings of International Conference on Industrial Engineering and Systems Man-
agement IESM 2011, May 25-27, 8 pages.

[5]. A.S. Ta, H. A. Le Thi, G. Arnould, D. Khadraoui, T. Pham Dinh, Solving Car
Pooling Problem using DCA, Proceeding of Global Information Infrastructure Symposium
(GIIS 2011), Danang 4-6/August/2011, 6 pages (published by IEEE Xplore).

[6]. A.S Ta, H. A Le Thi, T. Pham Dinh, and D. Khadraoui. Solving many to many
multicast qos routing problem using dca and prozimal decomposition technigque, In Proc.
International Conference on Computing, Networking and Communications, pages 809-814,
Hawaii, American, 30/January-2/February, 2012. (published by IEEEXplore.)

[7]. A.S Ta, H. A Le Thi, T. Pham Dinh, and D. Khadraoui. A distributed algorithm
solving multiobjective dynamic car pooling problem. Proc. International Conference on
Computer and Informatic Science, 11-14/June, Kuala Lumpur, Malaysia, 2012. (published
by IEEEXplore)

Communication conference

[8]. A.S. Ta, H. A. Le Thi, T. Pham Dinh, T. Le Ngoc, Optimal spectrum balancing in
multi-user DSL network by DC programming and DCA, invited session on Novel opportu-
nities of DC programming and DCA for Industry and Finance, 23rd European Conference
on Operational Research, Bonn, July 5 - 8, 2009. (abstract)

[9]. A.S. Ta, H.A. Le Thi, D. Khadraoui, T. Pham Dinh, Solving Partitioning-Hub
Location-Routing Problem using DCA, Proceeding of The 8th International Conference on
Optimization: Techniques and Applications, Shanghai 12/2010. (abstract).

List of abbreviations

xc(.) the indicator function of C

['p(X) the set of all 1.s.c proper convex functions on X
(,.) the scalar product

Projo(.) the projection operator on the set C

Of(x) the subdifferential of f at point x

f* the conjugate function of f

Gr(T) the graph of operator T

SINR Signal to Interference plus Noise Ratio

X the Euclidean space IR"

Y the dual vector space of X

ADSL Asymmetric digital subscriber line

AWGN Additive white Gaussian noise

B&B Branch and Bound

BBDCA DCA combined with classical Branch and Bound algorithm
BILP Binary Integer Linear Program

Co(X) the set of convex functions on X

CPLEX an efficient software for solving optimization problems
CPP car pooling problem

CQP Concave Quadratic Program

DC Difference of Convex functions

DC(2) the set of all DC functions on §2

DCA DC algorithms

DMT Discrete multitone

dom(f) the effective domain of a function f

DSL Digital Subscriber Lines

DSM Dynamic spectrum management

epi(f) the epigraph of a function f

ISB Iterative Spectrum Balancing

ITU International Telecommunication Union

XX

List of abbreviations

IWF Distributed Iterative Water Filling

l.s.c lower semi-continuous

MCM Multi-Constrained Mutlicast Tree

MCOM Multi-Constrained Optimal Mutlicast Tree
MCOP Multi-Constrained Optimal Path

MCP Multi-Constrained Path

MCPP multiobjcetive car pooling problem
MILPO-1 Mix 0-1 integer linear programming

OSB Optimal Spectrum Balancing

PDM proximal decomposition method

PHLRP Partitioning-Hub Location-Routing Problem

PSD Power spectral density

QoS Quality of Service

SCALE Successive Convex Approximation for Low complExity

SIW Selective Iterative Water Filling

VDSL Very-high-bit-rate digital subscriber line

VRPPD Vehicle Routing Problem with Pickups and Deliveries

Part 1

PRELIMINARY STUDIES

CHAPTER 1

Preliminary Studies

1.1 Introduction

We report in this chapter a brief presentation of preliminary studies about DC program-
ming, DCA, Proximal Decomposition Method and how to use DCA, DCA combined with
Branch and Bound technique for solving mixed 0-1 integer linear program, that we will be
most useful in the sequel. This chapter is organized as follows. In section 1.2, we present
the main results concerning DC programming and DCA . The detailed content was intro-
duced in [Pham Dinh and Le Thi, 1997| and [Le Thi, 1994|. Section 1.3 address methods
based on DC programming and DCA for solving mixed 0-1 integer linear programming
(MILPO-1). After that, we combine Branch and Bound (B&B) and DCA algorithms to
globally solve these problems. Section 1.4 provides a brief description of Proximal Decom-
position Method which is applied to solve convex optimization problems, that will be used
to combine with DCA to handle large scale problems.

1.2 DC programming and DCA

The framework of convex programs is proved too narrow, and the notion of convex func-
tion has succeeded with that happiness, more general, DC function (difference of convex
functions). DC functions have many important properties that were derived from 1950s
by Alexandroff (1949), Landis (1951) and Hartman (1959). One of the main properties is
their relative stability in operations frequently used in optimization. However, it was until
the mid-80s when the class of DC functions was introduced in optimization, and expanding
the class of optimization problems with the appearance of DC programming. There are
two different but complementary approaches, we can say two schools, in DC programming;:

1. The combinatorial approach (this terminology is due to the fact that new introduced
tools were inspired by the concepts of combinatorial optimization) in continuous global
optimization,

2. The analysis convex approach in nonconvex optimization.

The first approaches are developed according to the spirit of the combinatorial optimiza-
tion, but with the difference that one works in the continuous frame work. In these ap-
proaches, optimal solutions are located by using the approximation methods, for instance,
cutting techniques, decomposition methods, branch and bound, etc. The pioneer of this ap-
proach is H. Tuy whose first work was introduced in 1964. His work is abundant, included
books by Horst-Tuy ([Tuy, 1993, 1995]) which present the theory, algorithms and applica-
tions of global optimization. Among the most important contributions to this approach,
it is worth citing the ones by Hoang Tuy, R. Horst, H. Benson, H. Konno, P. Pardalos,
Le Dung Muu, Le Thi Hoai An, Nguyen Van Thoai, Phan Thien Thach and Pham Dinh
Tao. However, the relatively sophisticated algorithms are very expensive to implement,
then they should be reserved for problems of reasonable size with appropriate structures
to methods when it is important to locate global optimum. Therefore, they definitively do
not achieve the aspiration of solving real life programs in their true dimension.

4 Chapter 1. Preliminary Studies

The second approach relies on the powerful arsenal of analysis and convex optimization.
The first work, due to Pham Dinh Tao (1975), concerning the calculation of matrix norms
(fundamental problem in numerical analysis) that is a problem of maximizing a convex
function over a convex set. The work of Toland (1978) [Toland, 1978| on the duality
and optimality local DC optimization generalizes elegantly the results established by
Pham Dinh Tao in convex maximization. The DC optimization theory is developed by
Pham Dinh Tao, J. B. Hiriart Urruty, Jean - Paul Penot, Phan Thien Thach, Le Thi
Hoai An. On the algorithmic part of the second approach, currently available as DCA
(DC Algorithms) introduced by Pham Dinh Tao (1986), which are based on optimality
conditions and duality in DC optimization. But it took until the joint work of Le Thi
Hoai An and Pham Dinh Tao (see [Le Thi, 1994]-|[Le Thi et al., 2002] and [Pham Dinh,
1988]-[Pham Dinh and Le Thi, 1998]) to show that it definitely needed in nonconvex
optimization as one of the simplest and most performance algorithms, capable of handling
large problems.

We report in this section the main results of DC Programming and DCA which will be
most useful for our work. These results are extracted from those presented in H. A. Le
Thi 1994 ([Le Thi, 1994]), H. A. Le Thi 1997 ([Le Thi, 1997]). For a detailed discussion
we refer to these two references (see also [Le Thi, 1994]-[Le Thi et al., 2002] and [Pham
Dinh, 1988]-[Pham Dinh and Le Thi, 1998]).

1.2.1 Fundamentals of DC analysis
Notations and properties

This paragraph is devoted to a brief recall of convex analysis for facilitating the reading of
certain passages. For more details, we refer to the work of P.J Laurent |Laurent, 1972|, of
R.T Rockafellar [Rockafellar, 1970] and of A. Auslender [Auslender, 1976]. Let X be the

Euclidean space R™, (.,.) be the scalar product, ||z| = (x,x}é be the Euclidean norm,
and the dual vector space of X is denoted by Y, which can be identified with X itself.
We use an usual tool of convex analysis where a function can take the infinite value oo
[Rockafellar, 1970]. We note IR = IR U {—o0, +oc}. A function f: S — IR is defined on
a convex set S in X, the effective domain of f, denoted by dom(f), is

dom(f) ={z € S: f(z) < +o0} (1.1)
and the epigraph of f, denoted by epi(f), is
epi(f) ={(z,a) € S xR : f(x) < a}.
If dom(f) # 0 and f(z) > —oc for all € S then we say that the function f(x) is proper.

A function f: S — IR is called conwvez if its epigraph is a convex set in X x IR. This is
equivalent to saying that S is a convex set in X and for all A € [0,1] we have

F(@ =Nzt +X2?) < Q=N f(ab) + Af(2?) - Val 22 € S. (1.2)
Let Co(X) be the set of convex functions on X.

In (1.2), if the strict inequality holds for all A €]0,1[and for all 2!, 2% € S with 2! # 22
then f is called strictly convex function.

A function f is called strongly conver on a convex set C' if there exists a number p > 0
such that

F(1=Na' +x2%) < (L= NF ") + M (@) = (L= WAS[l2" =22, (13)

1.2. DC programming and DCA 5

for all z',2% € C, and for all A € [0, 1]. It is amount to saying that f — £||.||? is convex on
C. The modulus of strong convezity of f on C, denoted by p(f,C) or p(f) if C = X, is
given by

p(f,C)=Sup{p>0:f— gHH2 is convex on C'} > 0. (1.4)

Clearly, f is convex on C' if and only if p(f,C) > 0. One says that f is strongly convez on
Cif p(f,C)>0.

Remark 1.1 f strongly conver = f strictly conver =—> f convex.

Let f be a proper convex function on X, a vector y° € Y is called a subgradient of f at a
point 20 € dom(f) if

(0 2 — 2% + f(2°) < f(x) VreX.
The set of all subgradients of f at 20 is called the subdifferential of f at 2° and is denoted

by Of ().
Let € > 0, a vector ¢° is called e-subgradient of f at point 20 if

Wz -2+ f(2°) < f(x) +e VzeX.

Then the set of all ¢ — subgradients of f at point 2 is called the the e-subdifferential of
f at 2° and is denoted by 0. f ().

A function f:S — R is called lower semi-continuous (l.s.c) at a point z € S if

lim inf f(y) > f(2).

Yy—x

Let I'o(X) be the set of all L.s.c proper convex functions on X.

Definition 1.1 Let a function f: X — IR, the conjugate function f*of f, is a function
belonging to T'(Y') and defined by

[(y) =sup{(z,y) — f(z) : z € X}. (1.5)
f* is an upper envelope of continuous affine functions y — (z,y) — f(x) on Y.

The main properties are summarized in the following proposition that will be needed for
further:

Proposition 1.1 If f € T'y(X) then:

o feTy(X) < f*eTlg(Y). In this case, we have f = f**,

y € 0f(v) <= f(x) + f*(y) = (v,y) and y € Of(z) <=z € f*(y),

Of(x) is a closed convez set,

If 0f (z) = {y} then f is differentiable at x and V f(x) =y,

f(@) =min{f(z),z € X} <= 0¢€ af(z").

6 Chapter 1. Preliminary Studies

Polyhedral convex functions

A convex set C' is called a polyhedral convex if
m
C= m{x :{aj,x) —a; <0} where a; € Y, € R, Vi=1,..,m.
i=1

A function is called a polyhedral convex if

f(z) =sup{{aj,x) —a;:i=1,...k} + xc(x).

where C'is a polyhedral convex set and x¢(.) stands for the indicator function of C| i.e.
xc(z) =0if z € C and 400 otherwise.

Proposition 1.2 ([Rockafellar, 1970])
o Let f be a polyhedral convex function. f is everywhere finite if and only if C' = X,

e f is polyhedral convexr then f* is also polyhedral. Moreover, if f is everywhere finite
then

f(z) =sup{{a;,x) —a;:i=1,...,k},
dom(f*) = co{a; :i=1,...,k},
f*(y) = min{ 2% Ny = 25 Nag, Ny > 0,28\ =11,

o If [is polyhedral then Of(x) is a nonempty polyhedral convex set at every point x €

dom(f).

DC functions

A function f : Q +— IR defined on a convex set convex € C IR" is called DC on if it can
be presented in the form of difference of two convex functions on €2, i.e.

where g and h are convex functions on €2, g — h is called a DC decomposition of f. Let
DC () be the set of all DC functions on €2, and DC¢(2) in case of g and h are finite
convex on {).

DC functions have many important properties that were derived from 1950s by Alexandroff
(1949), Landis (1951) and Hartman (1959); one of the main properties is their stability

3

with respect to frequently used operations in optimization. Specifically:
Proposition 1.3 (i) A linear combination of DC functions on € is DC on €,

(11) The upper envelope of a finite set of finite DC functions on Q is DC on €,
The lower envelope of a finite set of finite DC' functions on €2 4s DC on €,

(i) Let f € DCy(Q), then |f(z)|, fT(z) = maz{0, f(z)} and f~(z) = min{0, f(z)} are
DC on (.

These results generalize to the case of value in IRU{+o00} ([Le Thi, 1997]). It follows that
the set of DC functions on 2 is a vector space (DC(2)): it is the smallest vector space
containing all convex functions on Q(Co(f2)).

1.2. DC programming and DCA 7

Remark 1.2 Giwven a DC function f and a DC decomposition f = g — h, then for any
finite convex function ¢, f = (g+¢) — (h+ @) gives another DC decomposition of f. Thus,
a DC function has an infinite number of DC decompositions.

Denoted by C?(IR™), the class of twice continuously differentiable functions on IR™.

Proposition 1.4 Any function f € C%2(IR") is DC on an arbitrary compact convez set
QCcR™

Since the subspace of polynomials on € is dense in the space C'(€2) of continuous functions
on €2, we have:

Corollary 1.1 The space of DC functions on a compact convez set C IR"™ is dense in
c(Q), i.e.
Ve >0,3F € C(Q) : |f(z) — F(x)| <e VzeQ.

Note that DC functions occur very frequently in practice, both differentiable and
non-differentiable optimization. An important result established by Hartman (1959)
permits identified DC functions in many situations, simply by using a local analysis of the
convexity (local convex, local concave and local DC).

A function f: D +— IR defined on an open convex set D € IR" is called local DC if for all
x € D there is an open convex neighborhood U of x and a pair of convex functions g, h
on U such that fly = glv — h|v.

Proposition 1.5 A local DC function on a convez set D is DC on D.

1.2.2 DC optimization

Due to the preponderance and wealthy properties of DC functions, the transition of
the subspace Co(f2) to the vector space DC(2) permits to expand significantly convex
optimization problems in the non-convexity. The field of optimization problems involving
DC functions is relative large and open, covering most of the problems encountered in
applications.

However, we can not immediately deal with any non-convex and non-differentiable opti-
mization problem. The following classification has now become classic:

(1) sup{f(x):x € C},where f and C are convex

(2) inf{g(x) — h(x):x € X}, where g and h are convex
(3) inf{g(x) = h(z) : x € C, fi(x) — fa(z) <O},

where g, h, f1, fo and C are convex, these seem to be large enough to contain substantially
all nonconvex problems encountered in everyday life. Problem (1) is a special case of
Problem (2) with ¢ = x¢, the indicator function of C' and h = —f. Problem (2) can be
modified in the form equivalent to (1)

inf{t — h(x) : g(x) —t < 0}.

While Problem (3) can be transformed to the form (2) by using exact penalty related
to the DC constraints fi(x) — fo(x) < 0. Its resolution can also be reduced under
certain technical conditions, that is a series of Problems (1). Problem (2) is called a DC
program. It is a major interest both from practical and theoretical point of view. From the

8 Chapter 1. Preliminary Studies

theoretical point of view, we can note that, as we noted above, the class of DC functions is
remarkable stable with the operations frequently used in optimization. Moreover, there is
an elegant duality theory ([Pham Dinh, 1975, 1976, Toland, 1978, Urruty, 1985, Le Thi,
1994, 1997, Le Thi and Pham Dinh, 1997|) which, as convex optimization, has profound
practical implications for numerical methods.

DC algorithms (DCA) is introduced by Pham Dinh Tao ([Pham Dinh, 1986, 1988|)
who presented a new approach based on the DC theory. In fact, these algorithms are a
generalization of subgradients algorithms which were studied by the same author on the
convex maximization ([Pham Dinh, 1975, 1986]). However, it was until the joint work of
Le Thi et Pham Dinh during the past decades (see [Le Thi, 1994|-[Le Thi et al., 2002]
and [Pham Dinh, 1988]-[Pham Dinh and Le Thi, 1998|)) that DCA has now become
classical and popular.

DC duality

In convex analysis, the concept of duality (conjugate function, dual problem, etc.) is
a very powerful fundamental concept. For convex problems and in particular linear, a
duality theory has been developed over several decades [Rockafellar, 1970]. More recently,
an important concept of duality in nonconvex analysis has been proposed and developed,
first for convex maximization problems, before reaching the DC problems. DC duality
introduced by Toland (1978) can be regarded as a generalization of logic work of Pham
Dinh Tao (1975) on convex maximization. We will present below the main results (in
DC optimization) on optimal conditions (local and global) and the DC duality. For more
details, the reader is referred to the document of Le Thi (1997) (see [Le Thi and Pham
Dinh, 1997]).

Let space X = IR", usual inner product (.,.) and the Euclidean norm |.||. Let Y be the
dual space of X which can be identified with X itself and I'o(X) be the set of all proper
l.s.c convex functions on X.

Given g(z) and h(x) are two proper convex functions on X (g,h € T'¢(X)), considering
the DC problem

inf{g(z) —h(z):z € X} (P)

and the dual problem
inf{h*(y) —g"(y) :y €Y} (D)

where ¢*(y) (resp. h*(y)) denotes the conjugate function of g (resp. h).

The results of DC duality defined by using the conjugate functions give an important
relationship in DC optimization |Toland, 1978].

Theorem 1.1 Let g and h € Ty(X), then

(i)

peinf Ag(@) —h@)} = i AR @) =g W)} (1.6)

(ii) If y° is a minimizer of h* — g* on Y then x° € 0g*(y°) is a minimizer of g —h on X.

1.2. DC programming and DCA 9

Proof 1.1 (i)

inf{g(z) — h(z) :z € X}

= inf{g(z) —sup{(z,y) —h*(y) :y €Y} : 2 € X}
= inf{g(z) + inf{h*(y) — (z,y) :y €Y} : 2 € X}
= inf, inf, {h*(y) — (z,y) — g(2)}

= inf{h*(y) —g*(y) 1y € Y}.

Q
I

(11) cf. Toland ([Toland, 1978]).

The theorem 1.1 shows that solving the primal problem (P) implies resolution of the
dual problem D and vice versa.

Global optimality in DC optimization

In convex optimization, " minimizes a function f € T'o(X) if and only if 0 € df(2"). In DC
optimization, the following global optimality conditions [Urruty, 1989| are formulated by
using e-subdifferential of g and h. His demonstration is based on studying the behavior of
e-subdifferential of a convex function depending on the parameter €. The demonstration in
[Le Thi, 1997] is more simple and suitable in case of DC optimization: it simply expresses
that global optimality condition is a geometry translation and optimal values of primal
and dual DC programs are equal.

Theorem 1.2 (Global DC optimization) Let f = g — h where g, h € To(X) then 20 is
a global minimizer of g(x) — h(x) on X if and only if,

O:h(z%) C 9.g(z°) Ve > 0. (1.7)

Remark 1.3

(i) If f € To(X), we can write f = g — h with f = g and h = 0. In this case, the global
optimal in (P) - which is the same as the local optimal in (P) (because (P) is a conver
problem) - is characterized by,

0c af(z"). (1.8)

The fact that O-h(z") = Oh(2®) = {0}, Ve > 0,Vx € X, the relationship (1.8) is
equivalent to (1.7).

(11) More generally, considering DC decompositions of f € T'o(X) in the form f = g—h
with g = f+h and h € To(X) finite everywhere on X. The corresponding DC problem
1s a "false” DC problem because it is a convexr optimization problem. In this case, the
relationship (1.8) is equivalent to

Oh(z%) c dg(x°).

(11i) We can therefore say that (1.7) clearly marks the transition from convex optimization
to nonconvezr optimization. This feature of the global optimality of (P) indicates the
complexity of its practical use because it appeals to all e-subdifferential at 20.

10 Chapter 1. Preliminary Studies

Local optimality in DC optimization

We have seen that the relationship dh(z?) C 9g(2°) (using the subdifferential "exact") is
necessary and sufficient condition of global optimization for a "false" DC problem (a convex
optimization problem). In a global optimization problem, the minimization function is
local convex "around" a local minimum, then it is clear that the relation of subdifferential
inclusion will characterize a local minimum of a DC problem.

Definition 1.2 Let g and h € T'o(X). A point z* € dom(g) Ndom(h) is a local minimizer
of g(x) — h(x) on X if and only if

g(x) — h(z) > g(z®) — h(z®), Vz € Ve, (1.9)
where V,, denotes a neighborhood of x.

Proposition 1.6 (Necessary condition of local optimality) If x° is a local minimizer
of g — h then
Oh(x®) C 0g(z®). (1.10)

Proof 1.2 If x° is a local minimizer of g — h, then there exists a neighborhood V, of x
such that
g(x) —g(z®) > h(z) — h(z®), V€ V. (1.11)

Therefore if y* € Oh(x®) then
g(@) — g(a®) = (x — 2% y*%), Vz € Ve (1.12)

which is equivalent, under the convexity of g, at y* € dg(x*).

Note that for a number of DC problems and in particular for A polyhedral ones, the
necessary condition (1.10) is also sufficient, as we will see a little further. We say that z*
is a critical point of g — h if Oh(xz®) N dg(x®) is non empty [Toland, 1978]. It is a weakened
form of subdifferential inclusion. The search for such a critical point is at the DCA (simple
form) which will be studied in the next section. In general, DCA converges to a local
solution of a DC optimization problem. However, in theory, it is important to formulate
sufficient conditions for local optimality.

Theorem 1.3 (Sufficient condition of local optimality ([Le Thi, 1997, Le Thi
and Pham Dinh, 1997])) If x* admits a neighborhood V' such that

Oh(xz)Nog(z*) #0, Yz eV nNdom(g), (1.13)
then x* is a local minimizer of g — h.
Corollary 1.2 If x € int(dom(h)) verifies
Oh(z) € int(dg(x)),
then x 1s a local minimizer of g — h.

Corollary 1.3 If h € T'o(X) is polyhedral convez then Oh(x) C Og(x) is a necessary and
sufficient condition for x is a local minimizer of g — h.

1.2. DC programming and DCA 11

Proof 1.3 This result generalizes the first obtained by C. Michelot in this case where g, h €
To(X) are finite everywhere and h polyhedral convex [Le Thi, 1997, Le Thi and Pham
Dinh, 1997].

For solving a DC optimization problem, it is sometimes easier to solve the dual problem
(D) than the primal problem (P). Theorem 1.1 provides transportation by duality of
global minimizers. We establish the same duality transportation of local minimizers.

Corollary 1.4 (DC duality transportation of local minimizers [Le Thi, 1997, Le
Thi and Pham Dinh, 1997]) Supposed that z* € dom(0h) is a local minimizer of g—h,
let y* € Oh(z®) and Vyze a neighborhood of x* such that g(x) —h(x) > g(z*)—h(z®), Vz €
Ve Ndom(g). If

x® € int(dom(g*)) and 0g*(y*) C Ve, (1.14)

then y® is a local minimizer of h* — g*.

Proof 1.4 [t is implied immediately from the Proposition 1.1 by restricting f in the inter-
val Vye N dom(g).

Remark 1.4 Obviously, by duality, all the results in this section are transposed to the dual
problem D. For example: if y is a local minimizer of h* — g*, then dg*(y) C Oh*(y).

1.2.3 DCA

This is a new method based on subgradient optimality and duality in DC optimization (non
differential). This approach is completely different from classical subgradient methods in
convex optimization. In DCA, the construction algorithm seeks to exploit the structure
of the DC problem. It requires, first, to have a DC representation of the function to
minimize, i.e. f =g —h (g, h convex), because all transactions work only with the convex
components. The sequence of descent directions is obtained by computing a sequence of
subgradients not directly from the function f, but from convex components of primal and
dual problems.

Principle of DCA

The construction of DCA, discovered by Pham Dinh Tao (1986), is based on characteriza-
tion of local solutions in DC optimization of primal (P) and dual (D) problems.

a =inf{g(x) — h(z):x € X} (P),

a=inf{h*(y) —g*(y) :y €Y} (D).

The DCA consists of constructing two sequences {x*} and {y¥}. The first sequence is
a candidate to be a solution of the primal problem and the second of the dual problem.
These two sequences are related by duality and verify the following properties:

e the sequences {g(z*) — h(z¥)} and {n*(y*) — g*(y*)} are decreasing,

e and if (g — h)(z**1) = (g — h)(2*) then the algorithm stops at (k + 1) iteration and
the point z* (resp. y*) is a critical point of g — h (resp. h* — g*),

e otherwise every limit point z® of {z*} (resp. y® of {y*}) is a critical point of g — h
(resp. h* — g*).

12 Chapter 1. Preliminary Studies

The algorithm ultimately seeks a couple (z°,3y°*) € X x Y such that z* € dg*(y®) and
y® € Oh(z®).

Schema of simplified DCA

The main idea of the implementation of the algorithm (simple form) is to construct a
sequence {2*}, verify at each iteration dg(z*) N Oh(z*~1) # 0, convergence to a critical
point z®(Oh(x®*) N dg(x*) # B) and symmetrically, similar way by duality, a sequence {y*}
such that dg*(y*~1) N Oh*(y*) # 0 convergence to a critical point.

They are constructed as follows. (see Algorithm 1)

Algorithm 1 DCA

Step 0. Choose an initial point zY.

Step 1. For each k, z¥ is known, computing y* € oh(z").

Step 2. Finding ¢! € dg* (y").

Step 3. If stopping test is verified STOP; otherwise k < k + 1.

This description, with the help of iteration diagrams of fixed points of multi-applications
Oh and dg*, thus appears to be very simple.
Existence of generated sequences

The DCA algorithm is well defined if we can actually build the two sequences {z¥} and
{y*} as above from an arbitrary initial point 2.

e By construction, if 2° € dom(9h), then y° € Oh(z") is well defined.

e For k > 1, y* is well defined if and only if 2* is defined and contained in dom(dh);
consequently, 2% and y* are well defined if and only if dg*(y**!) N dom(dh) is non
empty, which implies that y**1 € dom(dg*).

Lemma 1.1 [Le Thi and Pham Dinh, 1997] The sequences {z*}, {y*} in DCA are well
defined if and only if

dom(9g) C dom(0h), and dom(Oh*) C dom(9Dg*).

The convergence of the algorithm is ensured by the following results [Le Thi and Pham
Dinh, 1997):
Let p; and pf, (i = 1,2) be positive real numbers such that 0 < p; < p(fi) (resp.

0 < pr < p;(fF)) where p; =0 (resp. p; = 0) if p(fi) =0 (resp. p(f¥) = 0) and p; (resp.
pr) can take the value p(f;) (resp. p(f7)) if this upper bound is reached. We consider

fi=g9.f2=h
Theorem 1.4 If the sequences {x*} and {y*} are well defined, then we have:

(i)
(9= W) < (0" — g)(0") — 2| < (g —) (a*) — 2T sk

(i)

. pI o pT + P5
(h* — g") (") < (g — h) (=) - 51!\dy’“||2 < (h* = g") ") - %Ildy’“\\2

1.2. DC programming and DCA 13

where da® = xFt1 — gk

Corollary 1.5 ([Le Thi and Pham Dinh, 1997])(Convergence)

1.
(9= M) < (0 =g - Glaat 2
< (g~ h)(a*) — [l |2 + 5 |y
2.)
(9= M) < (0 =) - Gldat >
< (o - W)~ (a2 + a1
3.)
(=g < (- WE = Gk
< (0 = g — (I + G 1da|
4.

< (g —h)(@™h) — Gldy* 12
< (0 = g")(y") — [Bda"? + & [l da]?]

Corollary 1.6 ([Le Thi and Pham Dinh, 1997]) If the equalities take place, we have:

N

)@ = (" = g*)(y*) <=y € On(z"*)

I\S]

3.

4-

W —g")(yF) = (9 — h)(a¥) <= 2F € 9g* ()

- (9—

(g = h)(@MY) = (g — h)(a*) <= o € Ag*(yF), yF € On(aFTT)

(

(h* = g*) (W) = (h* — g*)(y*) <= yF € On(a™Th), M1 € ag*(y*th)

In general, the qualities (robustness, stability, convergence rate, good local solutions)
of DCA depend on DC decomposition of the objective function f = g — h. Theorem 1.4
shows that the strong convexity of convex components in primal and dual problems can
affect DCA. To make convex components g and h strongly convex, we can usually apply
the following operation

_ _ A 2 A 2
r=g=n=(g+30) - (n+51I).

In this case, the convex components in the dual problem will be continuously differentiable.

Computation of subgradients

The description of DCA iteration schemes uses fixed points of multi-applications dh and
0g* (0g and Oh*), this can be expressed as follows:

zk

— y¥ € oh(zF)
/ 1.15
xk+1 c (9g*(yk) — yk+1 c 8h(mk+1) (.)

(yk c 8g($k+1)) (xk—&-l c 8h*(yk+1))

We see a perfect symmetry of the action of two sequences {zF} and {y*} on the dual
DC optimization.

14 Chapter 1. Preliminary Studies

The calculation of the subgradient of the function h at a point z* is usually easy, in
many practical problems we know the explicit expression of Oh. In contrast, the calculation
of a subgradient in the conjugate of the convex function g at point y* usually requires
solving the convex program,

g™ (y*) = argmin{g(z) — (y*,z) : z € X}. (1.16)

Indeed, recall that the explicit expression of the conjugate of a given function, in practice,

is not known. From (1.16), note that the computation of 2**! is equivalent to minimizing

a convex function derived from DC function f = g — h, by approximating the concave
component —h by its affine minorization at the point z¥, i.e.

2" e agr(yF) 2 e argmin{g(x) — [(yk,az —zF) + h(xk)] cx € X}
And similarly, by duality:

y" e onMt) M e argmin{h* (y) — [<x’““,y -y + 9*(y’“)} Lty eV}

Polyhedral DC optimization

Polyhedral DC optimization occurs when one convex component g or h is polyhedral
convex. Like the polyhedral convex optimization problems, this class of problems of DC
optimization is frequently encountered in practice and has interesting properties. We will
see that the description of DCA is particularly simple ([Le Thi, 1994, 1997, Le Thi and
Pham Dinh, 1997]).

Consider a DC program
inf{g(z) — h(z):x € X} (P).
When the convex component A is polyhedral, i.e.

h(z) = I;lg}({{((t ,xy—bi=1,...,m},

then the calculation of the subgradients y* = Oh(x*) is explicit. It is clear that limiting
(naturally) the choice of subgradients or gradients of affine minorization function h, i.e.
{y*} € {a’ : i =1,...,m}, which is a finite set, following the iteration {y*} is finite (k < m).
Indeed, the sequence {(h*—g*)(y*)} is, by construction of DCA, decreasing and the choices
of iterations y* are finite. Similarly, by duality the sequence {z*} is finite and {(g—h)(z*)}
is decreasing.

Theorem 1.5 (Finite convergence)
o the sequences {g(x*) — h(z*)} and {h*(y*) — g*(y*)} are decreasing,
o when (g — h)(x**1) = (g — h)(z¥) then the algorithm stops at (k + 1) iteration and a

point £ (resp. y¥) is a critical point of g — h (resp. h* — g*).

Note that if the convex component g is polyhedral, the conjugate function ¢g* is polyhedral
too and writing the dual problem, we found the same results as above.

1.2. DC programming and DCA 15

DCA interpretations

At each iteration of DCA, we replace the second component A in primal DC program by
its affine minorization hy(x) = h(2*) 4 (z — 2¥,%*) in a neighborhood of z* to obtain the
convex program following

inf{f, = g(x) — hp(z) : x € R"} (1.17)
whose set of optimal solutions is dg* (y*).

Similarly, the second DC component g* in dual DC program (1.6) is replaced by its
affine minorization (¢%)x(y) = g*(v*) + (y —y*, 2*¥+1) in a neighborhood of 4" to give birth
to the convex program

inf{h*(y) = (9")k(y) : y € R"} (1.18)

which Oh(zF*1) is the set of optimal solutions. Tt should be noted that DCA works with
DC components g and h and not with the function f itself. Each DC decomposition of f
gives rise to a DCA.

Such as f, is a convex function, the minimizer 2" is defined by 0 € 9f;(z**!) and
the minorization of f by f, ensures the decreasing of the sequence {f(z*)}. Indeed, as hy

is a affine minorization function of h at xj, f; is a minorization convex function of f,
f(z) < fi(), VreX,

which coincides at z* with f,

Therefore determining the iteration zF*! as the minimum convex program (1.17), the

decreasing of the sequence of iterations is endured,

Fa*h) < fah).

If at the iteration k + 1, f(z*') = f(2) then 2**! is a critical point of f (0 €
Ofp(a**h) = 0 € 9f (™).

Remark 1.5 If f, is strictly convex then there exists a unique minimizer x*+1.

Comment: It is important to note that the function f is replaced by function f in overall
domain of f,

Ful@) = glx) — (WF 2 — 2% + h(2F)) with ¢¥ € Oh(a¥), Ve e X

which, considered locally in the neighborhood of z*, is a first order approximation of f and
globally on IR™. Tt is noteworthy that f, is not defined narrowly from local information
of f at neighborhood of 2* (i.e. f(z*),df(x¥),...) but incorporates all of the first convex
components of f in its definition, i.e. f, = g—hg = f — (h+hyg). In other words, f}, is not
simply a local approximation of f in a neighborhood of ¥, but should rather be described
as "convexification majorant" of f globally related to DC function by the first convex
component defined on IR™. Therefore, no displacement of the z* to z**! is determined
from f globally defined for all x € IR™. DCA can not be simply regarded as a local
approximation method or a local descent method in classic, the global characteristic is the
"convexification majorant". Thus, unlike conventional local approaches (deterministic or
heuristic), DCA operates simultaneously local and global properties of the function to be
minimized during the iterative process and in practice converges to a good solution local

16 Chapter 1. Preliminary Studies

and sometimes global.

For a comprehensive study of DC programming and DCA, refer to [Le Thi, 1994]-|Le
Thi et al., 2002] and [Pham Dinh, 1988]-[Pham Dinh and Le Thi, 1998| and the reference
therein. The treatment of a nonconvex problem by DC approach and DCA should have
two tasks: looking for an appropriate DC decomposition and looking for a good starting
point.

For a DC program given, the issue of finding a good DC decomposition remains open,
in practice, we look for a DC decomposition to adapt with the structure of the DC program
for which the studied sequences {2*} and {y*} are easy to calculate. If the calculation is
explicit then the corresponding DCA is less expensive time and it is able to support very
large dimensions.

1.3 DCA and DCA B&B method for solving MILPO-1

1.3.1 DCA for solving MILPO-1
Restatement

Consider the mixed 0-1 integer linear programming in the form:

min f(z,y) = clz +dy

s.t.

(MILPO1) Az + By <b, (1.19)
xz €{0,1}",

yeRE.

where A and B are two matrices with the dimension (m x n) and (m X p) (resp.), m - the
number of constraints, n - the number of binary variables, p - the number of continuous
variables, (¢,d) € IR™ x IR? - the cost vectors and b € IR™.

We define two sets S (the set of feasible solutions) and K (the set of feasible solutions
of the standard linear relaxation) in the following:

S = {(z,y) €{0,1}" x RE : Az + By < b},

K :={(z,y) €[0,1]" x R} : Az + By <b}.

Consider the function p defined by:
n
p(z,y) = p(a) =) 2;(1 = ;).
j=1

It is clear that:
e pis concave on IR" x IR?,
e € K is a feasible point of (MILPO1) if and only if p(z) = 0,
e p is non negative, finite on K and we have:

S = {(z,y) € {0,1}" x RE : Az 4 By < b}

={(z,y) € K: p(z) =0}

1.3. DCA and DCA B&B method for solving MILPO-1 17

={(z,y) € K: p(z) <0}.

Therefore, (MILPO01) can be written in the form of a nonconvex continuous problem
defined as follows:

(NCP1) min{c'z+d"y: (z,y) € K,p(z) < 0}. (1.20)

Theorem 1.6 Let K be a nonempty bounded polyhedral convex set on IR". Let f be a
finite concave function on K and p be a finite nonnegative concave function on K. Then
there exists tog > 0 such that for t > to the following problems have the same optimal value
and the same solution set:

a(t) = inf{f(z) + tp(x) : z € K},

a=inf{f(z) 2z € K,p(z) <O0}.

Furthermore, if the vertex set of K, denoted by V(K) is contained in {x € K, p(z) < 0},
then to = 0, otherwise to = min{w}, where £ := min{p(x) : z € V(K),p(z) > 0} >
0.

Proof 1.5 See H A. Le Thi, T. Pham Dinh et M. Le Dung [Le Thi et al., 1999].

From Theorem 1.6, there exists a number ¢y such that V¢ > ¢y, (NCP1) is equivalent
to the concave minimization problem in the following:

(NCP2) min{c"z+d"y +tp(z): (z,y) € K}.

Note that, the the non-convexity constraints of problem (NCP1) is taken into account
in the objective function of problem (NCP2). We can reformulate (NCP2) as a DC
program, then DCA can be used to solve it.

DCA applied to the penalized problem MILPO1
The problem (NCP2) can be rewritten as

min{xx(z) +clz+d'y +tp(x) : z=(x,y) € R" x RP}, (1.21)
where .
X (2) = { SLOO fthzerf}vils(é (1.22)
is the indicator function of K.
We note g(z) := xx(z) and
h(z) = —cToe —dTy+t(—p)(z) = —cTo —dTy + ti: xj(x; —1). (1.23)

J=1

Since K is convex, g := xx is convex [Rockafellar, 1970]. Also, h is convex and p is
concave. Therefore, the problem (NCP2) is equivalent to the following DC program:

min{g(z) — h(z) : z= (z,y) € R" x RP}. (1.24)

According to the general diagram of DCA, we must compute the two suites {u*} and
{z*} such that
uf € Oh(ZF); e agr(ub).

18 Chapter 1. Preliminary Studies

Let z = (x,y) be an arbitrary point of IR" x IR?; from the definition (1.23) of function
h, a vector gradient in u = (o,<) € Oh(z,y) is chosen by:

oi=—¢+2tr;—tand gy =—-d; (i=1,....,n5=1,...,p). (1.25)
Then the computation of 25! is equivalent to solving the following problem:
min{g(z) — (z,u) : z € R" x IR"}. (1.26)
It can be rewritten as
min{—(z,u) : z € K}. (1.27)

The application of DCA to problem (1.24) can be written as follows:
Algorithm 1.1 Application of DCA to problem (1.24)

Step 1. Let 20 = (2°,4°) € IR™ x IRP be an initial point. Set k + 0;

Step 2. Calculate u* = (0%, %) € Oh(xk, y*) via (1.25).

Step 3. Calculate

= (@M) € argmin{—((o%, <), (2,9)) « (2,y) € K} (1.28)

Step 4.

If the stop criterion is verified, STOP;
Else return to Step 2;
Thanks to the theorem on the convergence of DCA for polyhedral programming [Le

Thi and Pham Dinh, 2001, 2005, Le Thi et al., 2007] we have directly following properties
of Algorithm 1.1.

Theorem 1.7 Convergence properties of Algorithm 1.1

i) Algorithm 1.1 generates a sequence {zF = (z¥ y*)} contained in the vertex set V(K)
of K such that sequence {g(z*, y*¥) — h(2*,y*)} is decreasing.

i) If at iteration v the point (x7,y") satisfies x7 € {0,1}", then (x¥,y*) satisfies z* €
{0,1}", for all k > r.

i) The sequence {(z*,y*)} converges to a solution (x*,y*) € V(K) after a finite number
of iterations and (x*,y*) is a critical point of the problem (1.24). Moreover, if x7 #
0.5, Vi=1,...,n, then (z*,y*) is a local solution of problem(1.24).

Proof 1.6 Sece, for example, H.A. Le Thi et al. [Le Thi et al., 2007].

1.3.2 B&B for MILPO1

This section discusses a particular case of B&B for mixed 0-1 integer linear problem
(MILPO1). Consider the following problem:

(min f(z,y) = Tz +dTy
s.t.
(MILPO1) Az + By < b, (1.29)
xz €{0,1}",
yeRE.

Let us set z = (z,y) and

1.3. DCA and DCA B&B method for solving MILPO-1 19

- 5= {z = (z,y): Az + By < b,z € {0,1}",y € Rﬂ} be the feasible set of (MILP01),
- Ry be the relax domain of S:

Ro={z=(z,y) : Az + By < b,z € [0,1]",y e R, },

- R be the set of all R; that can be divided,

- i (resp. k) be the lower bound (resp. the upper bound) of optimal value at iteration
k.

2* be the best known solution at iteration k (as we do not yet know whether it is a
feasible point, v, = 00),

- and Z be the optimal solution of relaxed problem of (MILPO-1).

Principle: We determined, at each iteration k, a lower bound S, and an upper bound
v of the optimal value of problem (MILP01), such that v — 8 — 0. We stop when
Y — B < . Specifically:

- the lower bound S is calculated by

Br =min{B(R;): R; e R} = Ifz?é%{f(z) 1z € Ri}.

- the best upper bound at iteration k is vy, = min{f(z;) : Vz; known in S}.

- at each iteration k, we consider the set R = {R; € R : B(R;) < &} and we remove
all the R; € R for which B(R;) > 7 (because we are sure that R; does not contain an
optimal solution if S(R;) > vk; in case where S(R;) = y; we can not determine on R;
a solution better than z%).

Algorithm 1.2 (BéB)

Step 0 (Initialization)

0.1. Calculate By and Z by solving the problem (MILPO1’') relazed problem of
(MILPO1).

- If Z € S then STOP, Z is an optimal solution of (MILPO1).
- Otherwise, set R :={Rp}, 70 = +00, k:= 1.
0.2. Go to the procedure of choice (Step 1).

Step 1 (Procedure of choice)
1.2. Choose a subset R € R such that
Br = min{B(R;) : R; € R}.
1.2. Go to the branch procedure (Step 2).
Step 2 (Branch procedure)
2.1. Let r be an index for which fff 1s not binary. Separate Ry into two subsets:

Ri1 ={z € Ry : &, = 0}; Ryo ={z € Ry : &, = 1}.

20 Chapter 1. Preliminary Studies

2.2. Go to the bounds procedure (Step 3).
Step 8 (Bounds procedure)

3.1. Calculate By and Bia by solving the two problems (MILPO01,,) and (MILP01},).
8.2. If "1 € S (ZF2 € S resp.), and f(Z*') <y (resp. f(Z*?) < i) then update vy

v = f(ZF); 2R = 2R, (resp. v == f(Z?); 25 = EkQ).
Step 4 (Optimal test)

4.1. R:=RU{Ry; : f(Z*) <p,i=1,2} \ {Ry}.
4.2. If R = 0 then STOP, z* is an optimal solution, otherwise k := k + 1 and go to
the procedure of choice (Step 1).

For the procedures selecting a subset Ry to separate, we can also use another procedure
of choice called "exploration depth-first" of tree (backtracking): select Ry the most recently
created. This procedure has two advantages and one disadvantage:

- It allows to quickly obtain a feasible solution,
- It allows to minimize the transfers between main memory and the peripheral memory.

We may create a combination of both procedures displayed: using a backtracking
strategy to "go down" in the tree, but when we found a sterile subset we choose the subset
maximum score non-sterile.

For procedures separation, we have certain rules to be applied to determine the index

- choose r for which one of two programs (MILP01},) and (MILPO01;,) has no feasible
solution (false separation);

- choose r for which Z,, (MILPO01}) is the fractional possible (its value is as close as
possible to 0.5).

1.3.3 B&B combined with DCA

In scheme B&B (shown in 1.3.2), the problem of finding a good upper bound plays an im-
portant role for the efficiency of B&B algorithm. Several studies in the literature showed
that the value obtained by DCA is often very close/coincides with the optimal value (es-
pecially when we restart DCA from a good starting point). We combine B&B and DCA
in order to find a good starting point for DCA and prove/find the global solution.

Recall that MILPO1 is transformed into a DC programming. We apply DCA to (NCP2)
(see Section 1.3.1) for determining the upper bound of (MILPO01).

Using the same notation as in Section 1.3.2, the algorithm B&B combined with DCA
can be described as follows:

Algorithm 1.3 (BBDCA)

Step 0 (Initialization)

0.1. Calculate By and Z by solving the problem (MILPO1’) relaxzed of (MILPO1).

- If z € S then STOP, % is an optimal solution of (MILPO1).
- Else, set R := {Rp} and k := 0.

1.3. DCA and DCA B&B method for solving MILPO-1 21

0.2. Apply DCA to problem (NCP2) from Z to obtain z]kDCA.

- If 2hoa €S, then i = f(2hea).
- Else, 7y, := +o0.

0.3. Set k :=1 and go to the procedure of choice (Step 1).
Step 1 (Procedure of choice)
1.2. Choose a subset R € R such that
Br = min{B(R;) : R; € R}.
1.2. Go to the separation (branch) procedure (Step 2).
Step 2 (Procedure of separation (branch))
2.1. Let r for which an index TF is not binary. Separate Ry, to two subsets

Ry ={z € Ry, : x, = 0}; Ryo ={z € Ry : & = 1}.

2.2. Go to the assessment procedure (Step 3).
Step 3 (Procedure of assessment (calculated bound))

3.1. Calculate B and Bia by solving two problems (MILPO01,,) and (MILPO1},).
8.2. Apply DCA to (NCP2) from z¥* and z*? to obtain 2%, and 2% ,.

8.8. If 25, € S (resp. 2§24 € S) and f(2ha) < e (resp. f(2e,) < i) then
update v

k1 k k1 k2 k k2
Tk = f(ZDCA)§Z ‘= ZDCA;S (resp. Yy = f(ZDCA)§Z = ZDCA)-
3.4. Go to Step 4.

Step 4 (Test of optimal conditions)

4.1. R:=RU {R}m : f(sz) < Yyt = 1,2} \ {Rk}

4.2. If R = 0 then STOP, z* is a optimal solution. Else k := k+1 and go to procedure
of choice (Step 1).

Note that, in the algorithm 1.3, step 3.2 is not always performed at each iteration.

The question when DCA is restarted (step 3.2 is executed) is interesting from numerical
points of view and it will be studied. As in several DC programs, DCA provides a global
solution to (NCP2) (and so to (MILP)) from a good starting point. Such a point can
be found efficiently while computing lower bounds. We will see in the computational
experiments that DCA provides an integer solution after several iterations of the Branch
and Bound algorithm. Nevertheless we must continue the Branch and Bound process to
ameliorate the lower bound until it is close to the best upper bound. In fact, the Branch
and Bound algorithm is introduced to find a good starting point for DCA and check the
globality of DCA.

22 Chapter 1. Preliminary Studies

Finding a good starting point for DCA

From Theorem 1.7 we see that, starting with a feasible solution to (MILP) DCA provides
a better feasible solution, although it works on a continuous feasible set of (NCP2). It is
so important to find a good feasible point to (MILP) for restarting DCA.

During the branch and bound procedure we can restart DCA from the best feasible
solution to (MILP) that is discovered while computing lower bounds. This is motivated by
a similar and efficient way introduced in the combined DCA-Branch and Bound algorithm
for nonconvex quadratic programming ([Le Thi and Pham Dinh, 2001]).

On the other hand, for obtaining rapidly a good feasible point to (MILP), we also inves-
tigate a fast procedure to compute an optimal solution of the concave quadratic program

Ozmin{iaji(l—xi) (z,y) GK}. (1.30)
=1

That is the DCA developed in [Le Thi and Pham Dinh, 2001].
In our algorithm, a suitable starting point is computed by choosing one of the two
procedures according to the current situation.

When DCA is restarted?

During the branch and bound process, we restart DCA when a feasible solution to (MILP),
which improves the best current upper bound, is pointed out. In such a case, the starting
point of DCA is the just mentioned feasible solution to (MILP).

On the other hand, DCA is also restarted when the number of the 0-1 components
of the binary variables (denoted by N, g,) of the solution (z%, y%*) to the corresponding
linear relaxation problem is sufficiently large, namely N_r, > m/2. The starting point of
DCA, in this case, is the solution of Problem (1.30).

1.4 Proximal Decomposition Method (PDM)

This section provides a brief presentation of Proximal Decomposition Method which is ap-
plied to solve conver optimization problems.

1.4.1 Proximal decomposition on the graph of a maximal monotone op-
erator

Definition 1.3 Let H be a real Hilbert space with inner product (.,.). A multifunction
T : H = H is called a monotone operator if

(x—a',y—y) >0, VyeT(x), y € T(x). (1.31)
The graph of T is defined by

Gr(T) = {(z,y) € X x X|y € T(2)}. (1.32)

Definition 1.4 An operator T is called maximal monotone if T' is monotone and there
dose not exist a monotone operator T such that Gr(T) C Gr(T").

Since T is maximal, its graph is not properly contained in the graph of any other monotone
operator.

1.4. Proximal Decomposition Method (PDM) 23

An operator T is called strongly monotone if there exists p > 0 such that:
(x—2,y—9) >pllx —2||?, Va,2’ € X and Vy € T(x), Vy € T/, (1.33)

and value py = max{p > 0 satisfying (1.33)} is called modulus of T
An operator T is called Lipschitz with constant L if

lly — /|| < L||z — 2'||, Vx,2’ € X and Vy € T(z), Yy € Tx'.

Theorem 1.8 If T is mazimal monotone, then (I+XT)~1 is unique and dom(I+\T)~1 =
X for all A > 0.

It means that, for each y € X and A > 0, there is unique x € X such that y € (I +A\T)(x)
and the operator P = (I + \T)~!is nonezpansive, i.c.,

1P(x) = P(2')]] < [lz — 2|, (1.34)

Note that P(x) = x if and only if 0 € AT'(x) and P is called Prozimal mapping associated
with AT

The prozimal point algorithm which aims to find z* such that 0 € T'(z*) constructs a
sequence () from an arbitrary initial point z° by the equation

e * D — (1 + \T) (2 ®) (1.35)
where {A;} is a sequence of positive real numbers.

Proposition 1.7 Let T be a mazimal monotone operator on X. Then the resolvent (I +
T)~! is firmly nonexpansive, i.e.,

(T+T) "N (z)— (I+T) "1 (2)||> < (w—a', [+T) " H(z)—(I+T)"(z')) Va,2’ € X. (1.36)

Moreover, if T is strongly monotone with modulus p, then

NI +T) 7 @) = I+ T) (@) <

<7 +p<m—x’, (I+T) Yz)-(T+T)" (") Va2’ € X.

(1.37)

The decomposition on the graph of a maximal monotone operator was first introduced
in (see [Mahey et al., 1995]), it is presented as follows.

Proposition 1.8 Given a mazimal monotone operator T and a vector (z,y) € X x X,
there exists a unique pair (u,v) € X X X such that: w+v =2z +y and (u,v) € Gr(T).

From Proposition 1.8, we see that the proximal decomposition of (z,y) on the graph of T'
is unique, and calculated by:

u=I+T)z+y),
v=(I+T7)(z+y)
=r+y—u.
As a result in [Mahey et al., 1995|, the proximal decomposition on the graph of a

maximal monotone operator is nonexpansive, when restricted to a product of orthogonal
subspaces of X x X.

Theorem 1.9 Let A and B be two complementary orthogonal subspaces of X x X. The
mapping F which, to any (z,y) € A X B, associates its prorimal decomposition (u,v) on
the graph of T, is nonexpansive. Moreover, if T is strongly monotone with modulus p and
Lipschitz with constant L, then F is a contraction mapping.

24 Chapter 1. Preliminary Studies

1.4.2 Proximal decomposition method

Let T be a maximal monotone operator on X, A be a subspace and B be its orthogonal
subspace. We revisit now the problem (P) which was analyzed in [Mahey et al., 1995],
[Spingarn, 1983]. The problem consists in finding

(z,y) € X x X such that (z,y) € A x BNGr(T). (1.38)

The algorithm alternates a proximal decomposition on the graph of T" by a projection on
A x B. The algorithm can be summarized as Algorithm 2-PDG.

Algorithm 2 PDG
Initialization: (zo,y0) € Ax B, k=0
Iteration k
If (x4, yx) € Gr(T) then STOP
Else
2k = Tk + Yk
Proximal step
u, = (I +T)""(21)
Vg = 2k — Uk
Projection step
Try1 = Proj4(ug)
Yk+1 = Projg(vi)
k+—k+1

where Projo(.) is the projection operator on the set C.

Theorem 1.10 Assume that the set of solutions of (P) is nonempty, then the sequence
{(zk,yx)} generated by Algorithm 2-PDG converges to a solution of (P).

Proof 1.7 See Theorem 3 in [Mahey et al., 1995].

The Proximal point algorithm can be seen as a particular case of Algorithm 2-PDG when
let A = X, which implies B = 0.

Proximal scaled decomposition

To generalize, we present now a scaled decomposition on the graph of a maximal monotone
operator, which was first introduced in [Mahey et al., 1995].

Definition 1.5 Let (x,y) € X x X, T be a mazimal monotone operator and X\ be a positive
number. Then, the scaled prozimal decomposition of (x,y) on the graph of T is the unique
(u,v) such that:
u+A=x+\y
(u,v) € Gr(T)

The existence and unicity of (u,v) can be seen in the following, if v € T'u then
U+ Av € u+ Nlu,
=u=T+\T)"(u+)

= (I +XT) Yz + N\y),
1
v= X(JH—)\y—u).

The proximal scaled decomposition algorithm can be viewed as Algorithm 3-SPDG.

1.4. Proximal Decomposition Method (PDM) 25

Algorithm 3 SPDG
Initialization: (zg,y0) € AXx B, A>0, k=0
Iteration k
If (zx,yr) € Gr(T) then STOP
Else
2k = Tk + AYk
Proximal step
up = (I+T)7"(2)
Vi = %(Zk — uk)
Projection step
1 = Proja(uk)
Ykt1 = Projp(vg)
k+—k+1

Theorem 1.11 When T is strongly monotone with modulus p and Lipchitz with constant
L, then the convergence of the sequence {(xp, \yx)} generated by Algorithm 3-(SPDG) is

linear with speed ratio /(1 — %)

Proof 1.8 See Theorem /4 in [Mahey et al., 1995].

Solving convex optimization problems by proximal decomposition method

We consider a convex optimization problem,
min{f(z)| x € C}, (1.39)

where f is l.s.c proper convex function and C is a convex set on IR".

For solving this problem, it is equivalent to find € C such that 0 € df(x) or 0 €
I(f + xc)(x), where xco(x) is indicator function on C. Recall that fy is a l.s.c proper
convex function, then 0 fy is a maximal monotone operator (see in [Rockafellar, 1976]). We
have (f + x¢)(z) is a L.s.c proper convex function. Let T = 9(f + x¢), the optimization
problem (1.39) can be seen as finding x € X such that 0 € T'(z), where T is a maximal
monotone operator. It can be solved by Prozimal point algorithm . Moreover, when
T = 0(f + xc), the step (1.35) is replaced by (see Moreau [Moreau, 1965])

2B = argmin{ fx, (M) : uwe X} (1.40)

where]
Ia(z) :f(u)+XC(U)+ﬁ||x_uH2‘ (1.41)

m
We present now a general case of the aforementioned problem (1.39), when C' = () C;
i=1

where C} is convex for all ¢ = 1,--- ,m. The problem is rewritten as
m
min{f(z):x € C = ﬂ Ci} (1.42)
i=1

To solve this problem, we aim to find 0 € 9(f + x¢)(x). Following the theorem 23.8 in
[Rockafellar, 1970], it can be rewritten as 0 € df(x) + dxc(x) or

0€df(x)+ > Ixc,(x). (1.43)
i=1

26 Chapter 1. Preliminary Studies

Proximal decomposition algorithm

Let us set Ty = Of and T; = Oxc, for all ¢ = 1,--- ,m. Then we define a maximal

monotone operator 1" as
T(x) = To(zo) X Th(x1) X -+ X Ty (xh,)

where X' = ($0a$17' t ;xm) S Xm+17 T; € X Vi = 1,‘ e, M.
We define a subspace A and its orthogonal B by

A:{X:(:U()?xl)"'yxm): x():xl::xm},
B:{y:(y()ayl:"'aym): y0+y1++ym:0}

(1.44)

(1.45)
(1.46)

Our problem now consists in finding (X,Y) € A x BN Gr(T). We can use Algorithm
2-(PDG) or Algorithm 3-(SPDG) to solve this problem. Note that (I +T) 1(x) = ((I +
To) Hxo), (I + T1) (1), -+, (I +Tpn) (xm)) and by [Moreau, 1965], to calculate (I +

T)~1(x) we have

1
(I + Tp) " (20) & min{f(u) + gllu— zol*: ue X} (1.47)
1
(I +T3) " (2;) © min{xc, (u) + §Hu —z|PrueX}Vi=1,---,m, (1.48)
& Projo, (z;) Vi=1,2,--- ,m. (1.49)
The projection step is calculated by
. To+ -+ Ty To+ -+ Tm
P X) = e 1.50
FOJA() (m+1) ’ m+ 1)7 ()
: Yo+ -+ Ym Yo+ -+ Ym
P _ _ — I, 1.51
TOJB(y) (yO m+ 1) y Ym m+1) ()
Proximal copy decomposition algorithm
We replace the problem (1.42) by a new equivalent problem, it is defined as
min{F(x1, -+ ,Zm): (1,22, , &) EC=C1 xCoy X -+ X Cpy, 11 =Tog ="+ =Ty },
(1.52)
m
where F(xy1, -+ ,xm) = > fi(x;), and fi(z) = f(z)Vi=1,2,--- ,m.
i=1
We see that
8F($1, Lo, ,me) = Hf’;lafz(xz) 1.53)
Oxe(z1, @, -+, xm) = 2 Oxe, (24)- 1.54)
We define subspace A; and its orthogonal B; as
Al ={Xo = (21, ,Tp): T1 =" =Tp}, 1.55)
By ={Yoo= (1, s¥m) s Y1+ +ym =0}, 1.56)
then Problem (1.52) becomes to find (1, ,zy) € A; such that
0€d(F+ xe)(x1,xa,- -+ ,Tm).
On the other hand, we have
OF + xe)(x1, 22, s xm) = L (fi + X)) (24)- (1.57)

1.5. Conclusion 27

We define a maximal monotone operator 71 = II7",0(f; + xc,) then the problem (1.52) is
reformulated in the form

Finding (X, Vo) € A1 X B1 N Gr(T1). (1.58)
To solve this problem, in a similar way than with the algorithm above, we calculate:

e Proximal step

(T4 0(fi + X)) () & min{fi(w) + xe, () + gllu—wil?: we X} (159
< min{ fi(u) + %Hu — x| ue Gy Vi=1,2,-- ,m.
(1.60)
e Projection step
ProjAl(Xoo):(xl—i_'T'r;jom,... ,"’31+'7'n'+xm), (1.61)
Proj, (Vo) = (11 — 25 m“’m, S T W). (1.62)

Applications

One of the most important applications of Proximal decomposition and Proximal copy
decomposition (as mentioned above) is to solve convex optimization problems. Especially,
when the feasible set of the convex optimization problem is complex, the original problem
can be divided into many convex sub-problems associated with simple and smaller feasible
sets. They are easier to solve. Then, to solve the original problem, it is replaced by solving
the convex sub-problems at each iteration of the algorithm.

1.5 Conclusion

Section 1.2 introduces all the prerequisite notions and definitions concerning DC program-
ming and DCA. The fundamentals of DC analysis, DC optimization such as DC functions,
DC duality, global and local optimality in DC optimization are presented. After that, the
presentation focuses on DCA is introduced, with the principle, the computation and the
interpretations of DCA. In section 1.3, the presentation was devoted to how to use DCA
and DCA combined with Branch and Bound technique to solve Mixed 0-1 Integer Linear
Programming. The techniques which aim to find a good initial point and to restart DCA
are also presented. This is an efficient method for solving MILP 0-1 and will be used
frequently in the following chapters. Section 1.4 presents a short introduction of Prox-
imal decomposition method and how to use this approach to solve convex optimization
problems. When it comes to convex optimization problems with complex feasible sets, the
proximal decomposition algorithm and the proximal copy decomposition algorithm were
introduced to handle these problems. It will be useful in Chapter 2 to combine with DCA
for solving QoS routing problems in large dimensions.

Part 11

ROUTING PROBLEMS

CHAPTER 2
Solving QoS Routing problems using
DCA

This chapter devotes to solve QoS routing problem via DC programming and DCA. Firstly,
we analyzed the QoS routing problem from the classical Unicast QoS routing problems to the
compler Multicast and Many to Many multicast QoS routing problem. We introduced five
problems in Unicast, two problems in Multicast, two problems in Many to Many multicast
QoS routing and their mathematical formulation. Secondly, based on DC programming,
DCA and Prozimal decomposition method, a solution method and its numerical simulation
are investigated. The main content was concerned in [Ta et al., 2012¢/,[Ta et al., 2010b]
and [Ta et al., 2010a].

The Unicast (resp. Multicast) Quality of Service (QoS) routing emphasizes to find
paths (resp. a set of paths) from a source node to a destination node (resp. a set of
destination nodes) satisfying the QoS requirements. In this paper, we consider five prob-
lems in Unicast QoS Routing called the MCP (Multi-Constrained Path) problems, the
MCOP (Multi-Constrained Optimal Path) problems and two problems in Multicast QoS
Routing called the MCM (Multi-Constrained Mutlicast Tree) problems and the MCOM
(Multi-Constrained Optimal Multicast Tree) problems. After that, we consider an ex-
tension of Multicast QoS routing problem called Many to Many Multicast QoS routing
problems, which problem deals with routing from multi-source nodes to multi-destination
node sets satisfying the QoS constraints. It is a nonconvex program with a huge number
of constraints problem. They are all NP-complete. We first formulate these problems as
Concave Quadratic Program (CQP) or Binary Integer Linear Program (BILP) then inves-
tigate a new solution methods based on DC (Difference of Convex functions) programming
and DCA (DC Algorithms). The numerical results for solving Unicast and Multicast QoS
routing problem are compared with CPLEX, the best solver for BILP. To specify in Many
to many Multicast QoS routing problems, because of large-scale problem, to handle the
large number of constraints, we introduce the proximal decomposition technique in DCA
to tackle convex subprograms at each iteration. Preliminary numerical simulations are
reported to show the efficiency of our customized DCA and the quality of computed solu-
tions.

2.1 Introduction

In recent years, transmissions of multimedia content over the communication networks
have many challenges. Therefore, these transmissions might work properly, QoS measures
like bandwidth, delay, jitter and packet loss, etc., need to be controlled. These issues give
rise to the problem of routing in the network where the requirements of QoS are satisfied.

In general, the routing includes two entities: the routing protocol and the routing
algorithm. The routing protocol has the task of capturing the state of the network and its
available network resources, and of disseminating this information throughout the network.
The routing algorithm uses this information to compute an optimal path from a source
node to a destination node.

32 Chapter 2. Solving QoS Routing problems using DCA

The Unicast QoS Routing Problem consists of finding an optimal path from a source
node to a destination node subject to QoS constraints (e.g., time delay, cost or packets
loss constraints). It is well-known that this problem is NP-hard [Yuan and Liu, 2001].
The Multicast QoS Routing aims to find a set of paths from a source node to a set of
destination nodes satisfying the QoS requirements. It is also proved that this problem is
NP-complete [Kuipers and Mieghem, 2002].

The Routing problems become more complex as far as we consider mobile networks or
hybrid networks, because of dynamic topology and real time routing procedure.

As an example, we consider a scenario in Multicast routing problem, such as we are
staying in a car parking place. The mobile services are provided in each moving car,
equipped with a mobile device, via a car service center likes in the car parking place. There
are m cars sending their requests to a mobile car service center, they need help to find the
route to go to their destinations under the travel time constraint, the less latency traffic
jam, the jitter time delay constraint, the travel cost (same sources, different destinations,
considering local constraints to each mobile vehicle). So, based on the temporary update
data of the network state, the mobile car service system has to calculate the route and
given the answer for each car in a few seconds. In this context, we need a centralized and
efficient algorithm to calculate the routes.

Many approaches for solving the Unicast QoS routing problems have been proposed
(e.g., [Kuipers et al., 2002], [Liu and Ramakrushnam, 2001],[Mieghem and Kuipers, 2003],
[Mieghem and Kuipers, 2004], etc.). Most of the existing approaches are based on clas-
sical methods for solving the shortest path problem such as Dijkstra or Ford-Bellman
algorithms (e.g.,[Chen and Nahrstedt, 1998],[Mieghem and Kuipers, 2003],[Yuan and Liu,
2001]). Other approaches are based on network flow algorithms (e.g., [Orda and Sprintson,
2004]). In addition, there are several polynomial e-approximate solution methods for solv-
ing these problems (e.g.,[Hassin, 1992|,[Lorenz et al., 2000],[Warburton, 1987]).

For solving the Mutlicast QoS routing problems, many approaches have been proposed
(e.g.,|Ali et al., 2008], [Kuipers and Mieghem, 2002|,[Zhang et al., 2009]|, [Wang and Hou,
2000/, etc.). The existing approaches are usually based on the classical methods for solving
the shortest path tree problem (based on the Dijkstra and Ford-Bellman algorithms) (e.g.,
[Cormen et al., 1997],[Yuan and Liu, 2001]). Several heuristic methods are introduced
[Blokh and Gutin, 1995],[Chen and Nahrstedt, 1998|, [Korkmaz et al., 2002|, [Korkmaz
and Krunz, 2001], [Lorenz and Danny, 2001]... Other approaches are improved from the
minimum spanning tree algorithms, such as extension of Prim algorithm (e.g., [Cormen
et al., 1997], [Gallager et al., 1983]), or developed from Steiner tree problems (e.g., [Bauer,
1996],[Hwang, 1992|, [Salama, 1996]).

For solving Many to Many multicast QoS routing problem, almost of the existing
method are extension of method for solving Multicast QoS routing problem or heuristic
method (see [Paul and Raghavan, 2002|, [Tyan et al., 2003]). However, as father as we
know, because of the large-scale problems, the solution methods for solving these problems
are seldom investigated from a mathematical formulation, they usually use the properties
of an optimal Multicast tree or an optimal Many to many multicast tree to construct an
heuristic or approximate solution.

In this chapter, a new approach for solving the Unicast, Multicast and Many to Many
Multicast QoS routing problems is provided. We have formulated five Unicast QoS rout-
ing problems, two Multicast and two Many to Many Multicast QoS routing problems in
the form of CQP and BILP problems for which DC programming and DCA are investi-
gated. Moreover, we consider large-scale problems for which we use DCA and Proximal
decomposition technique to show the efficient of our approach.

As a result in Chapter 1.3, we know how to adapt this approach for solving the unicast
and multicast QoS routing problems formulated as BILP. The proposed DCA for BILP

2.2. Problem statement and mathematical formulation 33

*~— — — — —8
s1 d1
a) Unicast routing

PR
ol

81 o= — — —
o
—

s " D1

b) Multicast routing

¢) Many to many munticast routing

Figure 2.1: An illustration of Unicast, Multicast and Many to many multicast routings.

enjoys several advantages: it converges to a local (integer) solution after a finitely many
iterations, and requires only the solution of a few number of linear programs. Moreover, it is
worth to mention that, although the DCA is a continuous approach working on a continuous
domain, it provides an integer solution. This is unusual in continuous approaches and is
original property of the proposed DCA. The efficiency of DCA is compared with CPLEX,
the best solver for BILP. The computational results on several test problems show that
DCA is an efficient algorithm for solving BILP.

The efficiency of DCA combined with Proximal decomposition method is show that we
can find a feasible solution of large-scale problems while CPLEX 12.2 (the best solver for
BILP and Linear problem) cannot solve BILP problem, even CPLEX 12.2 cannot solve
the Linear relaxation of BILP problem.

2.2 Problem statement and mathematical formulation

In this paper, the network-state information is assumed to be temporarily static, and this
information is known at each node. The second task in unicast (resp. multicast) QoS
routing is considered, namely computing a path (resp. a set of paths) with given multiple
QoS constraints.

A network topology can be expressed as a weighted graph G = (V| E), where V is node
set, E is arc set. |V is the number of nodes and |E| is the number of arcs in the network.
Generally, supposed that there is only one arc between a pair of nodes in the network. The
related parameters could be set to describe the current situation of arc. The number of
QoS measures are denoted by p. Each arc is characterized by a p-dimensional arc weight
vector. Each vector composes p non-negative QoS weight components which are denoted
by w;(u,v),i=1,---,p, (u,v) € E.

The QoS measures of a path can either be additive, multiplicative, or min/max. The
path weight of additive measures (e.g., time delay or cost) equals to the sum of the QoS
weights of the arcs on the path. The multiplicative measures (e.g., probability packet
loss) can be transformed into additive measures by using the logarithm function. The path

34 Chapter 2. Solving QoS Routing problems using DCA

weight of min/max measures (e.g., min/max bandwidth) presents the minimum /maximum
of the QoS weights defining the path. The constraints on min/max QoS measures can easily
be settled by omitting all arcs (or disconnected nodes), which do not satisfy the requested
QoS constraints. In practice, the constraints on additive QoS measures are more difficult.
In this paper, QoS measures are assumed to be additive.

Definition 2.1 Considering a path P of G composed of a set of links, the i*" weight w; of
P is defined as:
wi(P)= > wi((u,v)). (2.1)
(u,w)eP

The vector weight of the path is also defined as:
w(P) = (w1(P), wz(P),- -, wp(P)).

Definition 2.2 (Multi-Constrained Path (MCP) Problem [Kuipers and Mieghem, 2005])
Consider a network G = (V, E). Each arc (u,v) € E is specified by p additive QoS weights
wi(u,v) > 0,i =1,---,p. Given p-vector constraints L = (L1, Lo, -, Ly), the problem
consists of finding a path P from a source node s to a destination node t such that:

w(P) < L.

A path P that satisfies the QoS constraints is called a feasible path. The Multi-Constrained
Optimal Path (MCOP) problem aims to find the optimal path. If the QoS constraints are
eliminated from the MCP and the MCOP, the resulting problems can be solved by Dijkstra
or Ford-Bellman algorithms. However, the MCP and the MCOP are NP-hard problems.

2.2.1 Unicast QoS Routing problem

In this subsection, we introduce the formulation of five problems in Unicast QoS routing.
Problem 1 consists of finding a feasible path. Problem 2 is to find an optimal path. Problem
3 and Problem 4 aim to find, respectively, k-arc disjoint paths and the maximal number of
arc disjoint paths such that the QoS constraints are satisfied. Problem 5 consists of finding
k feasible arc disjoint paths Py, --- , Py, each of them satisfying the QoS constraints.

Problem 1: Finding a feasible path P.
Define the binary variable y;; as:

o lif(i,j)GP,
Y5 = Y 0 otherwise.

Then a path from s to ¢ must satisfy the following constraints:

Z Ysv — Z yus:17

(s,v)eE (u,s)eE
Z Yuv — Z Yoo = 07 \V//U S N\{S7t}7
(u,v)eE (v,0)EE
Z Ytv — Z Yut = —1.
(tw)ERE (u,t)eEE

The QoS constraints can be formulated as:

Z Wi (U, V)Yup < Liy 1 =1,-++ | p. (2.2)
(u,v)EE

2.2. Problem statement and mathematical formulation 35

If the value of w;(u,v) is fixed to each arc (u,v) € E (e.g., the cost for sending one
message or one unit data on the arc (u,v), or the time delay on the arc (u,v)), then
the QoS constraints are linear constraints. When w;(u,v) is also a variable, this problem
becomes more complex.

Let us define a;; as follows:

1if (i,§) € E,
Qjj = —1if (],Z) SO
0 otherwise.
Furthermore, let A = (ai;) (resp. W = (w;(u,v))) be a m x n (resp. p x n) matrix, let
b=(1,0,---,0,-1)T ¢ IR™, y = (yij)z;,j)EE € R", and L = (Ly,--- ,L,)T € IR”.
Then, the QoS constraints (2.2) become Wy < L. Problem 1 consists of finding y €
{0,1}™ such that Ay =b and Wy < L.
We define a concave function p(y) as follows:

W)= > vl —yy)
(i,J)eE
We see that p(y) > 0Vy € [0,1]" and y € {0,1}" iff p(y) = 0.
Finally, Problem 1 can be formulated as a CQP in the following:

0 = min p(y)
(P1) Ay=0b, Wy<1L,
y € [0,1]™.

Problem 2: Finding an optimal path P satisfying the QoS constraints.

Problem 2 aims to find a feasible path with a minimum number of arcs under the QoS
constraints. Clearly, by adding an objective function into (P1) we obtain the mathematical
formulation of Problem 2 in the form of a BILP:

(P2) min Z yij Ay =b and Wy < L,y € {0,1}"
(i.j)eE
Problem 3: Finding k feasible arc disjoint paths which satisfy the QoS constraints.

Let us define the binary variable y;; as:

| 1if (i,5) € E belongs to the set of k arc disjoint paths,
Y5 =\ 0 otherwise.

Let by = (k,0,---,0,—k)T € IR™. Problem 3 aims to find y € {0,1}" such that Ay = by
and Wy < L, with the matrixes A, W, L being defined above.
Problem 3 can be formulated in a similar form with Problem 1,

0 = min p(y)
y € [0, 1"

Problem 4: Finding the mazimal number of arc disjoint paths from s to t which satisfy
the QoS constraints.

! Another definition of function p(y) as p(y) = Z<i ier min{y;j, 1 — ys;} is also considered with similar
properties.

36 Chapter 2. Solving QoS Routing problems using DCA

Let d = (d(m)eE)T € IR", where

1if (i,7) € E is outgoing arc from s,
dij = ¢ —1if (i,j) € E is ingoing arc to s,
0 otherwise.

Problem 4 (P4) can be then formulated as

max(d, y)
subject to
Z Ysv — Z Yus = ky
(s,w)eE (u,8)eE
Z Ytv — Z Yut = *k‘,
(tw)eE (u,t)EE
Z Yuv — Z Yve = 0, Vv € N\{S,t},
(u,w)ERE (v,))EE

Wy < L and y € {0,1}".

In wireless networks, the reliability (defined as the success packet delivery) is a key
factor. In the case where an arc changes and fails, the network is unreliable. The arising
problem is to find an alternative path when the initial one is damaged.

Problem 5: Finding k feasible arc disjoint paths Py, --- , Py, each path satisfies the QoS
constraints.
Define the binary variable y;;, as:

{ 1if (i,5) € Py, £=1,--- |k,
Yije =

0 otherwise.

Then, similarly to Problem 1, we have the following constraints:

Z Ysvt — Z yus£:17 (2.3)

(s,w)ERE (u,8)€EE
Z Yuvt — Z Yoqt = 07 Vv e N\{S,t}, (24)
(u,v)EE (v,9)EE
Z Yt — Z Yute = -1 (25)
(tw)eRE (u,t)eE

On the other hand, the next constraint ensures that each arc (7,7) € E belongs to at
most one path P, (£ =1,--- k):

k

Zyijg < 1,for each (i,j) € E. (2.6)
(=1

The QoS constraints for each path P, (£ =1,--- k) are expressed as

Z wi(u,v) < Lj, i=1,--- ,p. (2.7)
(’LL7’U)6P4
Problem 5 deals with finding y;;, € {0,1}((4,5) € E, £ =1,--- k) such that (2.3) —
(2.7) are satisfied.
Problem 5 can be formulated similarly to Problem 1 in the form of CQP.

2.2. Problem statement and mathematical formulation 37

We observe that (P1), (P3) and (P5) are MCP problems while (P2) and (P4) are of
the form MCOP.

Remark: The MCP problems and MCOP are formulated, respectively, as QCPs and
BILPs.

2.2.2 Multicast QoS Routing problem

To specify multicast QoS routing, the same assumption presented above are adopted. The
constraint vector L represents the limits allowed for the path weights from the source node
to every member of the destination node set. It represents the limits for end-to-end values
and not for the sum of values in the multicast structure.

Multicast QoS routing problem consists in finding a set of paths from a source node s
to ¢ destination nodes t; (j = 1,---,¢). In traditional multicast routing, this set of paths
corresponds to a tree but in multicast QoS routing it is not compulsorily a tree. In general
case, it corresponds to a sub-graph T'= (M, H) of G. T is regarded as a set of paths from
stot; (j=1,---,¢) which use the arcs in H.

Under such assumption, the Multi-Constrained Multicast (MCM)problems were intro-
duced in [Kuipers and Mieghem, 2002].

Definition 2.3 ((MCM) [Kuipers and Mieghem, 2002]) Let pr(s,t;) be the path from
source node s to destination node t;. T'(s, D) is a multicast tree. s € V is the source node
in multicast tree. D = {t1,ta,--- ,t;} C V\{s} is the destination node set in multicast
tree. The problem consists in finding a multicast tree T'(s, D) such that

w(pr(s,tj)) < Lj, Vj=1,2,--- ¢,

where w(pr(s,t;)) is calculated as (2.1) and Lj is a p-vector weight constraints correspond-
ing destination t;.

A multicast tree T that satisfies the QoS constraints is called a feasible multicast tree.
The Multi-Constrained Optimal Multicast Tree (MCOM) problem consists of finding an
optimal multicast tree. The objective function of the MCOM problem can be defined as
in [Kuipers and Mieghem, 2002|, or as total arc-cost in the multicast tree ([Zhang et al.,
2009]),---. It is proved in |Kuipers and Mieghem, 2002| that MCM is a NP-complete
problem.

We introduce now the formulation of two problems in Multicast QoS routing as CQP
and BILP problems. Problem 6 consists in finding a feasible multicast tree. Problem 7
aims to find an optimal multicast tree in which the objective function is equal to the sum
of the arc-costs in the multicast tree.

Problem 6: Finding a feasible multicast tree T(s, D).

The capacity of each arc (u,v) € E is denoted by e(u,v) € ZT, where ZT is the set of
positive integer numbers.

Define the binary variable y; ;. as:

- Lif arc (i,j)EpT(S,tk),]{:1,"',&
Yisk =\ 0 otherwise.

Then, we have the following constraints:

Z Ysvk — Z yuskzlakzlv"'vgv (28)

(sw)EE (u,8)EE

> Yuk— > Yuge =0, Vv € N\{s, D}, (2.9)

(u,w)EE (v,q)€EE

38 Chapter 2. Solving QoS Routing problems using DCA

Z Ytok — Z yutk:_l’VtEtlm]{ZL ,f. (210)
(tyw)eR (ut)eFE

In the other hand, the constraints ensure that the total transfer packets in each arc
(1,7) € E is less or equal the capacity of the arc (i,4) can be described as:

14

> wiji < eli.), for each (i,j) € E. (2.11)
k=1

The QoS constraints for each path pp(s,t;)
w(pr(s,tj)) < Lj, Vi=1,2,--- ¢,

can be expressed as:

> we(i)yijn < Lok, Ya=T,p; k=1,L. (2.12)
(i.4)eE
Let us define a matrix A = (a;;), a matrix W = (w;(u,v)) and a vector b =

(1,0,---,0,—1)T € R™, as in the Problem 1. Furthermore, let 3* = (yijk)g;,j)eE €
R" (k=1,---,0) and L; = (Lyj, -+, Lp;)T € R? (j =1,--- ,).

The constraints (2.8)-(2.10) and QoS constraints (2.12) can be rewritten respectively
as Ay¥ =band Wyk < Lp,Vk=1,--- L.

Let us set y = (y', 9% - ,y")7 € IR™, a vector capacity e = (e(i,7))(,j)er and a
matrix My, xn,¢ such that the constraints (2.11) can be expressed as My < e.

Problem 6 is to find y € {0,1}" satisfied Ay* = b, Wy* < Ly, Vk = 1,--- ,£ and
My < e.

A concave function p(y) is defined as follows:

p(y) = S vl = i)

(1,J)€E k=1, L

We can see that p(y) > 0 Vy € [0,1]™ and y € {0,1}" iff p(y) = 0.
Hence, Problem 6 can be formulated as a CQP:

0 = min p(y)
Ayk =b, Vk=1,--- ¢,
(P6){ WyF <Ly, Vk=1,--- ¢,
My <,
y € [0, 1]

Problem 7: Finding an optimal multicast tree T(s, D).
The cost value of each arc (i,j) € E is given by ¢;;. The total cost function is defined

by
[(T)= > ¢
(i,§)€T

Problem 7 deals with finding a multicast tree which minimizes total cost function and
satisfies QoS constraints.

The binary variable y;;;, is defined as in Problem 6. All the constraints and definitions
in Problem 6 are considered in Problem 7.

On the other hand, let us defined the binary variable x;; by

o 1if arc (¢,7) € T(s, D),
1 0 otherwise.

2.2. Problem statement and mathematical formulation 39

The constraints which present the value of z;; depending on the arc (i,5) € T can be

expressed:
l

Tij < Zyz‘jk < e(i, J)wi. (2.13)
k=1

The total cost function (the objective function) can be calculated as

(M) =) cijuy

(i,7)eE

Let us set z = (mij)%;,j)eE c= (Cij)a,j)eE € R", a matrix D = diag(e(4,7) (i)er)- So, the
constraints (2.13) can be rewritten as x < My < Dz. It is easy to see that the constraint
(2.13) covers the constraint (2.11).

Problem 7 can be formulated as a BILP:

min(c, x)
AyF =b, Vk=1,--- ¢,
(P7){ WyF <L, Vk=1,--- 4,
r < My < Dz,
x e {0,1}", y € {0, 1}

Problem 6 and Problem 7 are formulated, respectively, as CQP and BILP.

2.2.3 Many to Many Multicast QoS Routing problem

Definition 2.4 Let S = {s1,---,sx} (resp. D = {Dy,---,Dg}) be the set of source
nodes (resp. the set of destination node sets, source node s; corresponding with destina-
tion node set D;). Many to many multicast QoS routing deals with finding K multicast
trees T;(si, D;), (i =1,--- K), each of them satisfies the QoS constraints and the capacity
constraints in global network (e.g. limited of capacity).

We introduce now the formulation of Many to many multicast QoS routing as CQP or
BILP problems. Problem 8 consists in finding a feasible many to many multicast trees.
Problem 9 deals with the finding of an optimal many to many multicast trees in which the
objective function is equal to sum of arc-cost in the many to many multicast trees.
Problem 8: Finding a feasible many to many multicast tree T;(s;, D;), i =1,--- | K.
The capacity of each arc (u,v) € E is denoted by e(u,v) € Z*.
Define the binary variable yy; ;. as:

o 1if arc (4,75) € pr, (st tg), tx € Dy,
Ytigk 0 otherwise.

Let us set |D;| = 4;, i =1,--- , K (the number of nodes in D).
Then, fort =1,--- | K, s = s, and k = 1,--- ,{;,, we have the following constraints
(which aims to find a path from s; to tx € Dy):

Z Ytsvk — Z Ytusk = 1, (214)

(s,v)EE (u,8)€E
Z Ytuvk — Z Ytvgk = 0, Vv € N\{S, tk}v (215)
(u,w)EE (v,q)EE
Z Ytovk — Z Ytuok = —1,Vo = tk € Dt~ (216)

(o,v)eE (u,0)€E

40 Chapter 2. Solving QoS Routing problems using DCA

In the other hand, the constraints ensure that the total transfer packets in each arc
(1,7) € E is less or equal the capacity of the arc (7,) can be described as:

K 4
S vk < eli.), for each (i,4) € E. (2.17)
t=1 k=1

The QoS constraints for each path pr,(s;,t)(t; € Diji=1,--- | K)
w(pr,(si tj)) < Lij, Vt; € D,

can be expressed as:

> walis Nysije < Lok, Vg =T1,p; t € Dy. (2.18)
(i.j)eE

Let us define a;; as follows:

1if (i,j) € E,
a;; = —1if (j,1) € B,
0 otherwise.

Furthermore, let A = (a;;) (resp. W = (w;(u,v))) be a m x n (resp. p x n) matrix, let
b=(1,0,---,0,-1)" € R™, y" = (yuju); jep € R" (t =1, K, k=1,---,£) and
Lij = (L1, s Lpj)T € RP (=1, ,4).

The constraints (2.14)-(2.16) and QoS constraints (2.18) can be rewritten respectively
as Ay"* =band Wyt* < Ly Vt=1,--- K, k=1,--- .

Let us set ' = (y'1, 92, -, y*)T € R, vector capacity e = (e(4,4))(i,j)er and
matrix Mj(,xne,) such that the constraints (2.17) can be expressed as My" < e.

Problem 8 consists of finding y* € {0,1}"* satisfied Ayt = b, Wyt* < Ly, Vt =
1,---,K, k =1,--- 4 and Myy' < e. Let us set y = (y',---,y%). We see that
yt € {0,1}"t = 1,--- K is equivalent to p(y) = 0 where p(y) = > %i(1 —) and
p(y) > 0 Vyt € [0,1]", t = 1,--- , K. Hence, we define matrix A;, Wy (t =1,--- , K)
such that Problem 8 can be formulated as:

0 = minp(y)
Ayt = by, Wiyt < Ly,
yt e [0,1]", Myy' <e,

Vt=1,---,K.

(P8)

Problem 9: Finding an optimal many to many multicast tree T;(s;, D;) (i=1,--- , K).

The cost value of each arc (i,j) € E is given by ¢;;. The total cost function is defined
by f(T) = Zfil >_(ij)er, Cij- Problem 9 deals with finding a many to many multicast tree
which minimizes total cost function and satisfies QoS constraints.

We define the binary variable 15 as the same as in Problem 8. All the constraints
and definitions in Problem 8 are taken into account in Problem 9.

In the other hand, let the binary variable x;; be:

I lif arc (i,7) € T(st, Dy),t=1,-+- | K
% =) 0 otherwise.

Hence(for t = 1,--- , K, the constraints which present the value of z4; depending on the
arc (i,j) € T; can be expressed:

Ly

Ttij < Zytijk < e(i,])xtij. (2.19)
k=1

2.3. Solving Many to Many Multicast Tree problem by DCA 41

The global capacity constraints in the network can be expressed as:
K
> wuj < eliy), Vi, j) € E. (2-20)
t=1

The total cost function (the objective function) can be calculated

K
f(T) = Z Z CijTtig-

t=1(i,j)eE

Let us set 2t = (a:tij)aj)eE,c = (Cij)aj)eE € R", matrix D = diag(e(i, j) i j)er). So,
the constraint (2.19) can be rewritten as 2t < Myy! < Dat, t =1,--- | K. Tt is easy to see
that the constraint (2.19) covers the constraint (2.17). So, Problem 9 can be formulated as:

K
min Y (c, z%)
t=1
Atyt = bt7 Wtyt < Lt7
(P9) zt < Myy' < Dat,
Zfil wtij S 6(1,]),V(Z,j) S
zt € {0,1}", y' € {0,13",
vi=1,--- K.
Problem 8 and Problem 9 are formulated as CQP and BILP, respectively.
In the sequence, we investigate a new approach based on DCA for solving these prob-

lems in the form of BILP. The proposed algorithm for solving BILP problems are obtained
as the results of Chapter 1.3.

2.3 Solving Many to Many Multicast Tree problem by DCA

In this section, we consider the problem 9 (P9). Because the problem 9 is the most complex
problems with huge number of variables and constraints. The other problems in the form
of BILPs can solve with the same algorithm which is presented following.

By using an exact penalty result, we can reformulate problem (P9) in the form of a
concave minimization program. The exact penalty technique aims at transforming the
original problem (P9) into a more tractable equivalent DC program.

Let us set z = (z,y), matrix A and vector b are defined such that the constraints
(2.14)-(2.16), (2.18), (2.19) and (2.20) can be expressed as Az < b.

Let

K:={zeRN:A42<b, z€[0,1]V}.

The feasible set of (P2) is then
S={z:2ek, zc{0,1}V}.
Let us consider the function p : R — IR defined by:
N
p(z) =) zi(l -).
=1
It is clear that p(z) is concave and finite on K, p(z) > 0 Vz € K and that:

{z:2€8}={z:2€K,p(z) <0}. (2.21)

42 Chapter 2. Solving QoS Routing problems using DCA

Hence problem (P9) can be rewritten as:

N
min{z cizi iz € K, p(z) <0}. (2.22)
i=1

From the penalty results in Theorem 1.6 we get, for a sufficiently large number 7
(n > no), the equivalent concave minimization problem (P9):

min{ f,(z) := icizi +np(z) : z € K},
i=1
which is a DC program of the form:
min{g(z) — h(z) : z € IRN}, (2.23)
where:

N
9(2) = xx(2) and h(z) = —fy(2) = = > _ cizi — np(2).
=1

We have successfully transformed an optimization problem with integer variables into its
equivalent form with continuous variables. Notice that (2.23) is a polyhedral DC program
where ¢ is a polyhedral convex function (i.e., the pointwise supremum of a finite collection
of affine functions).

DCA applied to the DC program (2.23) consists of computing, at each iteration k,
the two sequences {zk}and {vk} such that v® € Oh(2*) and zF*1 solves the next linear
program of the form (Py)

min{g(z) — (z — 2*,v*) : z ¢ RV}
& min{—(z ,0v%): z e K} (2.24)
From the definition of h, a subgradient v* € Oh(2*) can be computed as follows:
P = Vh(zF) = 202F —ne — ¢, (2.25)

where e = (1,--- ,1)T e RN and ¢ = (c1,--- ,en) L.
The DCA scheme applied to Problem (2.23) can be summarized as Algorithm 4.

Algorithm 4

Initialization:
Choose a initial point 2°, set k = 0;
Let €1, 2 be sufficiently small positive numbers;

Repeat
Compute v* via (2.25);
Solve the linear program (2.24) to obtain 2+
k+—k+1;

Until either [[25+1 — 25| < &1([[2%]] 4+ 1) or |£,("+1) = fy(28)] < ea(|fy(=5)] + 1).

Theorem 2.1 (Convergence properties of Algorithm DCA)

e DCA generates the sequence {z¥} contained in V(K) such that the sequence {f,(z*)}
18 decreasing.

o The sequence {zF} converges to z* € V(K) after a finite number of iterations.

2.4. Totally unimodular matrices and Initial point for DCA 43

e The point z* is a critical point of Problem (2.23). Moreover if z} # % for all i €
{0,...,n}, then z* is a local solution to (2.23).

o For a number 0 sufficiently large, if at iteration r we have 2" € {0,1}", then zF € {0,1}"
for all k> r.

Proof 2.1 See Theorem 1.7.

Remark: For solving CQP problems, we can apply DCA in a similar way, for instance,
with Problem 1, we can choose a DC decomposition as g(z) = xx(z) and h(z) = —p(z).

2.4 Totally unimodular matrices and Initial point for DCA

2.4.1 Totally unimodular matrices

A matrix A is called totally unimodular matriz if each subdeterminant of A is 0, +1 or
-1. So, each element of A is 0, +1 or -1. The relation of integer linear program and totally
unimodular matrix is presented as the following theorem:

Theorem 2.2 Let A be a totally unimodular matriz and let b be an integral vector. Then
the polyhedron P := {x: Ax < b} is integral.
Proof 2.2 See Theorem 19.1 in [Schrijver, 1998].

The fundamental characteristic of totally unimodular matrix is introduced as follows.
Theorem 2.3 Let A be the matriz with entries 0, +1 or -1. The following are equivalent:

(i) A is totally unimodular, i.e;, each square submatriz of A has determinant 0, +1 or -1;
(ii) for each integral vector b the polyhedron {x : = > 0, Az < b} has only integral vertices;

(#i) for all integral vector a,b,c,d the polyhedron {x : ¢ < z < d, a < Ax < b} has only
integral vertices;

(iv) each collection of columns of A can be split into two parts so that the sum of the columns
i one part minus the sum of the column in the other part is a vector with entries only
0, +1 or -1;

(v) each nonsingular submatriz of A has a row with an odd number of non-zero components;

(vi) the sum of the entries in any square submatriz with even row and column sums is
divisible by four;

(vii) no square of A has determinant +2 or -2.
Proof 2.3 See Theorem 19.3 in [Schrijver, 1998].

Theorem 2.4 For those QoS routing problem (Problem 1,2,3,4,5,6,8), if we do not con-
sider the QoS constraints then the matrices which present the constraints of those problems
are totaly unimodular matrices.

Proof 2.4 For Problem 1, 2, 3, 4, the matrices are nodes-arcs adjacent matrices, then see
Chapter 19 in [Schrijver, 1998].

For Problem 5, we do partition the set of constraints such as: Set 1 consists of con-
straints (2.3),(2.4),(2.5), Set 2 includes constraints (2.6). For each collection of rows of
the constraints, we can do partition to S1 and S2 (corresponding with the constraints belong
to Set 1 or Set 2), by the property (iv) of Theorem 2.3 and the totaly unimodular property
of matriz A and its transpose AT is equivalent, then the constraints matriz of Problem 5
without QoS constraints is a totaly unimodular matriz.

Problem 6 and Problem 8 can do in a similar way than with Problem 5.

44 Chapter 2. Solving QoS Routing problems using DCA

2.4.2 Initial point for DCA

As further as we know, when using DCA, the question of finding an appreciate DC de-
composition and a good initial point for DCA are still open questions. Therefore, for
each particular problem, we try to find a DC decomposition such that the calculation is
simple. Moreover, because DCA is a local algorithm, then we also try to find a good initial
point for DCA.

In QoS routing problem, we usually use the solution of the linear relaxation problem
as an initial point of DCA. On the other hand, we also use the solution of the relaxed
problem, in which the QoS constraints is removed. In this case, if the constraint matrix
is a totaly unimodular matrix, then by solving a linear program we have a near optimal
point to use as an initial point of DCA.

2.5 Proximal decomposition method for solving sub-convex
problems

The (PDM) algorithm is used in our problem based on Proximal decomposition algorithm
on the graph of a maximal monotone operator, which is introduced in [Mahey et al., 1995].
The main result is summarized on Chapter 1.4.

The problem consists in finding:

(z,y) € A x AT such that y € T(x), (2.26)

where A is a subspace of a finite dimensional vector space X , Al is the orthogonal
subspace of A and T is a maximal monotone operator.
The algorithm consists in two separate step at each iteration:

e A proximal step is to regularize the objective function by adding a quadratic term
depending depending on the previous primal-dual pair of solution.

e A projection step on the corresponding subspaces.

Note that, when fy is a l.s.c proper convex function on IR", the operator 7 = 0o,
then a vector x is a solution of (2.26) if and only if 0 € 9(xa + fo)(x), where x4(zx)
is the indicator function of x on A. Following the theorem 23.8 in [Rockafellar, 1970],
0 € xa(z) + fol@).

Because of dx 4(z) = A then x € A is a solution of (2.26) if and only if there exists
y € At subject toy € dfo(z). That leads so to finding a couple (z,y) € (Ax AL)NGr(dfo).

When the dimension of Many to Many multicast QoS Routing problem is large, the
number of variables and the number of constraints are very large. We propose to use
Proximal decomposition for solving sub-convex problems (2.24) in each iteration of DCA.
Our purpose is to divide these convex problems into many sub-problems with a smaller
set of constraints and it is easier to solve. We consider the problem in the following (see
problem (2.24)):

min{ fo(z) = (¢*, z),z € K = N ,C;, C; closed convex}, (2.27)
where ¢* = v* in Problem (2.24) and C; is defined by

K
Cr={z=(u,0) : A" =by, Wiv! < Ly, u' < Myv' < D',y g < (i, j),
t=1
V(i,j) € B, ut € {0,137, ot € {0,137, t =1,-- | K.},
C; = {z = (u,v) : A’ = b, Win' < Ly, u' < Mp' < Du?, o € {0,1}",
vtef{o, 1} t=1,--. K}, Vi=2,--- K.

2.6. Numerical simulation 45

Define F(xy, - ,xx) = Zfil fi(x;) where fi(x) = fo(x)Vi = 1,--- K, and C =
Cq x -+ x Cg. The below problem is taken into account:

min{ F(X),X = (21, ,2x) € C,z1 =--- = vk }. (2.28)

Let us set A = {X = (z1,---,2x) : @1 =--- = xx} and T = [[X, 8(f; + xc,), then
At ={(y1,- - ,yK): y1 +y2 + - +yx = 0}. The problem (2.28) can be rewritten as:

min{(F + xc)(X) : X € A} (2.29)

Following the results of Prozimal copy decomposition algorithm and Prozimal scaled
decomposition algorithm in Chapter 1.4, the PDA algorithm for solving Problem (2.29)
can be expressed as Algorithm 5.

Algorithm 5 PDA
Initialization:
(X0 YD e Ax AL, A>0
Repeat
If (X;,Y;) € Gr(T) then STOP
Else
Zt =Xt +AY?
Proximal step:
Ul =(I+T)1(Z"), it means that
Ul = (I +0(fi + xc,)) " (Z}), then
Ul = argmin {£i(U;) + 55|12 — Ui||?, Ui € Ci}.
Vi=3(2t-U").
Projection step:
(XL Y1) = Proj 4, 41 (U, VY), it means that
Yt = (Vf — %(‘/&t_i_..._i_vlt(%... ’V&_%(Vlwr--drvf()).
t+—t+1

2.6 Numerical simulation

The algorithms have been coded in C++ and implemented on a Intel Core 2 CPU 2.53
Ghz, RAM 2GB. The directed graph G = (V, E) is randomly generated with m-vertices
and n-arcs. The number of QoS constraints (resp. the number of destinations) is p (resp.

0.

2.6.1 Unicast QoS Routing

In Unicast QoS routing, we apply the algorithm for solving Problem 2 and the numerical
experiment is presented respectively. The datasets are randomly generated in a similar
way as the data used in [Chen and Nahrstedt, 1998]. We consider two sets of data. In
the first dataset, the weight w(i, j) ((7,j) € F) are random values in the range [0, 10] and
the bound constraint L; are random values in the range [50,59]. In the second dataset,
we consider three QoS constraints (p = 3): the cost, the time delay, and the packet loss.
Denote wi (u,v), wa(u,v), ws(u,v) (resp. L1, Lo, L) are, respectively, the values of cost,
the time delay and the packet loss on arc (u,v) (resp. the bound of the cost, the bound
of the time delay and the bound of the packet loss). We generate five sub-data sets. Each
sub-data set is a random value in a range given below:

46 Chapter 2. Solving QoS Routing problems using DCA
DATA OBJ-DCA OBJ-CP12.2 ITE-DCA T-DCA T-CP12.2
DATA1 7 7 2 0.12 0.10
m=100 DATA2 9 9 3 0.14 0.11
n=200 DATA3 5 5 3 0.13 0.10
p=10 DATA4 5 4 2 0.12 0.10
DATA5 6 6 3 0.11 0.09
DATAG6 5) 2 0.55 0.28
DATAT 7 6 3 0.52 0.25
m=200 DATAS 6 6 2 0.54 0.30
n=>500 DATA9 2 2 2 0.54 0.38
p—20 DATA10 XXX XXX 3 0.53 0.46
DATA11 8 8 3 0.52 0.30
DATA12 7 7 2 0.51 0.33
DATA13 5 5 2 15.62 12.18
DATA14 6 6 3 17.11 11.98
DATA15 2 2 3 14.58 11.13
m=1000 | DATA16 3 3 3 23.05 | 14.69
n=5000 | DATA17 5 4 2 17.61 13.25
p=20 DATA18 5 5 3 19.85 12.71
DATA19 6 b) 3 18.50 12.33
DATA20 4 4 4 19.89 14.07
DATA21 7 6 3 17.73 | 12.38
Average 5.5 5.25 2.67 8.01 5.60
Table 2.1: Comparative results between DCA and Cplex 12.2 in Unicast QoS routing
problem.
DATA OBJ-DCA OBJ-CP12.2 ITE-DCA T-DCA T-CP12.2
m=500 | DATA22 3 3 4 140.33 120.73
n—7000 | DATA23 3 2 4 100.26 84.05
p=500 DATA24 2 2 2 83.15 62.50
m=>500 | DATA25 2 2 3 139.98 107.54
n=10000 | DATA26 3 3 3 118.87 86.76
p=>500 DATA27 3 3 3 124.27 104.61
m—1000 | DATA28 3 3 4 80.67 60.10
n=10000 | DATA29 3 3 3 102.02 81.51
p=100 DATA30 3 3 3 145.25 112.12
m=2000 | DATA31 5 5 2 150.34 | 109.86
n—10000 | DATA32 5) 4 149.54 111.66
p—100 DATA33 4 4 3 151.13 115.10
m=2000 | DATA34 2 2 4 169.91 131.89
n=12000 | DATA35 4 4 3 189.48 157.49
p=100 DATA36 5 5 2 160.98 142.55
m—5000 | DATA37 4 4 3 689.06 | 505.25
n=2000 | DATA38 5 b) 4 669.07 | 576.01
p=100 DATA39 6 6 3 702.50 | 549.96
m=7000 | DATA40 6 XXX 3 703.15 XXX
n=25000 | DATA41 2 XXX 4 1055.20 XXX
p—100 DATA42 7 7 3 1022.94 | 698.05
Average 3.81 3.73 3.14 326.09 | 206.72
Table 2.2: Comparative results between DCA and Cplex 12.2 in Unicast QoS routing
problem.

i) sub-data 1:

(m,n) = (100,200), wi(u,v)

e [0,200],

wa(u,v) €

ws(u,v) €[0%,5%]|, L1 €[600, 660], Ly € [150,165ms| and Lz €[5%,10%)|.

[0, 50ms],

2.6. Numerical simulation

47

DATA OBJ-DCA OBJ-CP12.2 ITE-DCA T-DCA T-CP12.2
DATAA43)) 3 0.19 0.17
m=100 | DATA44 5) 4 0.18 0.17
n=200 | DATA45 4 4 3 0.13 0.11
DATA46 4 4 2 0.14 0.10
DATAA47 4 4 3 0.13 0.12
DATAA48 4 4 3 0.57 0.52
m=200 | DATA49 3 3 3 0.53 0.36
n=400 | DATA50 b)) 4 0.54 0.47
DATA51 6 6 3 0.40 0.36
DATA52 3 3 4 2.09 1.94
m—500 | DATA53)) 3 2.20 2.03
n=1000 | DATA54 6 6 3 2.17 1.96
DATAb5 7 7 3 2.79 2.18
Average 4.69 4.69 3.15 0.93 0.81

Table 2.3: Comparative results between DCA and Cplex 12.2 in Unicast QoS routing
problem. (p = 3)
DATA OBJ-DCA OBJ-CP12.2 ITE-DCA T-DCA T-CP12.2
m=—1000 | DATAS56 7 6 3 7.82 6.62
n=2000 | DATA57 8 8 4 8.04 7.27
DATAS8 9 9 4 12.23 7.51
DATA59 9 9 3 136.04 | 127.08
DATAG0 XXX XXX 3 133.70 | 125.07
DATAG61 XXX XXX 4 142.83 | 132.70
DATAG2 12 12 3 144.97 132.10
m—5000 | DATAG63 16 12 4 152.86 120.94
n—7000 | DATA64 16 15 4 161.72 129.96
DATAG65 14 14 3 170.59 | 154.50
DATAG6 10 10 4 151.61 140.19
DATAG67 14 14 4 157.72 133.72
DATAGS 19 19 4 159.34 | 136.95
Average 12.18 11.64 3.62 118.42 104.20

Table 2.4: Comparative results between DCA and Cplex 12.2 in Unicast QoS routing
problem. (p = 3)

ii) sub-data 2: the sub-data 1 with the following modifications:
ws(u,v) €[0%,2%], Ls €[1%,5%)].

(m,n)— (200,400),

iii) sub-data 3: the sub-data 2 with the following modifications (m,n) =
L; €]2000,2050], Ly € [500,515ms].

(500,1000),

iv) sub-data 4: the sub-data 3 with the following modifications (m,n)= (1000,2000),
L3 €[5%,10%).

v) sub-data 5: the sub-data 4 with the following modifications (m,n)= (5000,7000),
Ly €[7000,7050], Ly € [3000, 3050ms], Ls €[0%,15%].

Table 2.1,2.2 and Table 2.3,2.4 present, respectively, the numerical results for the first
dataset and the second dataset. In these tables, OBJ-DCA, OBJ-CP12.2, ITE-DCA, T-
DCA, T-CP12.2 and DATA stand for, respectively, the objective value obtained by DCA,
and by CPLEX 12.2, the number of iterations of DCA, the CPU time of DCA, the CPU
time of CPLEX 12.2 and the name of the generated data (For example, for the "DATA1" (in

48 Chapter 2. Solving QoS Routing problems using DCA

DATA OBJ-DCA OBJ-CP12.2 ITE-DCA T-DCA T-CP12.2 GAP(%)

DATA1 22 22 2 0.04 0.04 0.00

m — 14 | DATA2 XXX XXX 3 0.04 0.04 0.00
n =20 | DATA3 19 19 3 0.04 0.04 0.00
p=3 | DATA4 14 14 3 0.04 0.04 0.00
¢ —2 | DATAS 13 13 2 0.05 0.07 0.00
DATAG6 15 15 3 0.05 0.05 0.00

DATA7Y 47 47 3 0.06 0.05 0.00

m = 50 | DATAS 21 21 4 0.11 0.10 0.00
n — 100 | DATA9 29 29 4 0.14 0.13 0.00
p =3 | DATAI10 16 16 3 0.11 0.12 0.00
¢/ =2 | DATA11 18 18 3 0.10 0.10 0.00
DATA12 31 31 3 0.08 0.09 0.00

DATAS57 21 21 3 0.09 0.09 0.00

DATAS58 16 16 3 0.09 0.06 0.00

DATA59 19 19 4 0.06 0.06 0.00

DATAG60 17 17 3 0.07 0.07 0.00

Average 21.20 21.20 0.080 | 0.091 0.00

Table 2.5: Comparative results between DCA and Cplex 12.2 in Multicast QoS routing
problem.

Table 1), it consists of the generated data for a problem, where m = 100, n = 200, p = 10,
the values of w;(u,v) and L; are given in a file "datal.txt".).
From the numerical results, we observe that:

e DCA always provides an integer solution and it converges after a few number of itera-
tions.

e In the most cases, the objective values given by DCA and CPLEX are the same: 33/41
problems in the first dataset and 21/24 problems in the second dataset (note that, the
feasible set of "DATA10" in the first dataset and of "DATAG0" and "DATA61" of the
second dataset are empty). For the remaining cases the difference is small (one).

e DCA works on all test problems while CPLEX 12.2 fails in some cases.

2.6.2 Multicast QoS Routing

The numerical experiment with respect to Problem 7 is presented following. The datasets
are randomly generated in a similar way as the data used in [Chen and Nahrstedt, 1998].
We regard the scenario as the example described in Section I. Herein, three QoS con-
straints: the travel time, the jitter time delay and the latency traffic jam are considered.
In the dataset, the weights wy (7, j), w2(i,7),ws(4,7), ((i,7) € E) (respectively, the travel
time, the jitter time delay and the latency traffic jam constraints) are randomly generated
in range [0, 10jminus, [0,10]s and [0%, 1%)]. The value of L;(i), L2(i), L3(i) are randomly
generated in range [50, 59]minus, [50,60]s and [5%, 6%)], respectively. The capacity (resp.
the travel cost) of each way are generated in [1,5] cars (resp. [1,10]).

In these tables (Table 2.5,2.6,2.7,2.8), OBJ-DCA, OBJ-CP12.2, ITE-DCA, T-DCA, T-
CP12.2 and DATA stand for, respectively, the objective value obtained by DCA | the one by
CPLEX 12.2, the number of iterations of DCA, the CPU time by DCA, the CPU time by
CPLEX 12.2 and the name of the generated data (For example, for the "DATA1" (in Table
2.5), it consists of the generated data for a problem, where m = 14,n = 20,p = 3,{ = 2
the values of w;(u,v), e(u,v), c(u,v) and L; are given in a file "datal.txt".)

2.6. Numerical simulation

49

DATA OBJ-DCA OBJ-CP12.2 ITE-DCA T-DCA T-CP12.2 GAP(%)

DATA13 29 29 4 0.09 0.10 0.00

m — 50 | DATA14 XXX XXX 4 0.14 0.14 0.00
n = 100 | DATA15 23 23 4 0.08 0.08 0.00
p =3 | DATA16 52 52 3 0.10 0.14 0.00
¢ =3 | DATA17 56 56 3 0.11 0.26 0.00
DATAI18 57 57 3 0.11 0.48 0.00

DATA19 32 32 4 0.12 0.13 0.00

m = 50 | DATA20 38 38 4 0.12 0.12 0.00
n — 100 | DATA21 70 69 3 0.13 0.12 1.44
p=3 |DATA22 | =xxx XXX 3 0.12 0.49 0.00
¢/ =4 | DATA23 115 108 3 0.22 0.27 6.48
DATA24 27 27 3 0.11 0.11 0.00

DATA25 45 45 3 0.10 0.14 0.00

DATAG61 23 23 3 0.10 0.11 0.00

DATAG62 32 31 4 0.11 0.10 3.22

Average 46.077 | 45.385 0.12 0.14 0.86

Table 2.6: Comparative results between DCA and Cplex 12.2 in Multicast QoS routing

problem.

DATA OBJ-DCA | OBJ-CP12.2 | ITE-DCA | T-DCA | T-CP12.2 | GAP(%)

DATA26 64 62 4 0.16 0.18 3.22

DATA27 49 48 4 0.20 0.48 2.08

m — 100 | DATA28 72 72 3 0.19 0.72 0.00
n — 200 | DATA29 19 18 4 0.18 0.17 5.56
p =3 | DATA30 46 46 3 0.19 0.18 0.00
/=3 | DATA31 44 44 3 0.10 0.11 0.00
DATA32 53 53 3 0.11 0.58 0.00

DATA33 24 24 4 0.16 0.16 0.00

DATA34 95 93 3 0.16 1.10 2.15

DATA35 XXX XXX 4 0.16 0.16 0.00

m = 100 | DATA36 100 97 4 0.20 0.52 3.09
n — 200 | DATA37 65 63 4 0.20 0.32 3.17
p—3 DATA38 40 40 3 0.11 0.14 0.00
=4 | DATA39 XXX XXX 3 0.10 0.12 0.00
DATA40 80 78 4 0.13 5.20 2.56

DATA41 92 91 4 0.16 1.51 1.10

Average 60.214 59.214 0.16 0.73 1.64

Table 2.7: Comparative results between DCA and Cplex 12.2 in Multicast QoS routing

problem.

The GAP column presents the value of the gap between OBJ-DCA and OBJ-CP12.2,

say:

GAP = 9BJpca—OBJcpiaa

OBL.]CPIZAQ 3 . 3
From the numerical result we observe that, like for the unicast routing:

e DCA always provides an integer solution and it converges after a few number of itera-
tions.

e In almost cases, the objective values given by DCA and CPLEX are the same: 16/16
in Table 2.5, 12/15 in Table 2.6, 8/16 in Table 2.7, 9/15 in Table 2.8 (note that the
feasible set of "DATA2", "DATA14", "DATA22", "DATA35", "DATA39", "DATA42",
"DATAS50" are empty). In the rest of DATA, GAP are small. It mean that the objective

50 Chapter 2. Solving QoS Routing problems using DCA

DATA OBJ-DCA OBJ-CP12.2 ITE-DCA T-DCA T-CP12.2 GAP(%)

DATA42 XXX XXX 3 1.80 3.68 0.00

DATA43 78 78 4 0.38 0.90 0.00

m — 200 | DATA44 47 47 3 0.28 0.35 0.00
n — 400 | DATA45 114 108 3 0.26 | 13.72 5.56
p — 3 | DATA46 84 81 4 0.36 3.38 3.70
/=4 DATAA47 112 109 3 0.42 2.64 2.75
DATA48 70 69 4 0.58 7.23 1.45

DATA49 92 92 4 0.30 | 33.62 0.00

DATA50 XXX XXX 4 0.18 0.19 0.00

m — 300 | DATAS51 105 99 4 0.50 | 35.32 6.06
n = 600 | DATA52 98 98 4 0.56 4.28 0.00
p=3 DATA53 43 43 3 1.16 1.40 0.00
/=4 DATA54 142 140 3 0.46 32.31 1.42
DATA55 101 101 4 0.66 | 131.51 | 0.00

DATAS56 97 97 3 0.58 | 54.16 0.00

Average 91.000 89.385 0.49 24.82 1.61

Table 2.8: Comparative results between DCA and Cplex 12.2 in Multicast QoS routing
problem.

value obtained by DCA are rather close to the optimal value (the objective value
obtained by CPLEX). 13/17 test instances have GAP which is smaller than 3.70%.
4/17 test instances have GAP between 5.56% and 6.48%.

e In large scale problems, CPU time of DCA is smaller than CPU time of CPLEX. For
example, "DATA48", "DATA 49", "DATA5’2", "DATA54", "DATAS55", "DATA56",
the GAPs are less than 1.5% while the ratio of CPU time of DCA & CPLEX varies
from 10 to 100 times.

2.6.3 Many to many Multicast QoS Routing

The numerical experiment of Problem 9 is presented in the following. The algorithm
has been coded in C++ and implemented on a Intel Core 2 CPU 2.8 Ghz, RAM 3GB.
The directed graph G = (V, E) is randomly generated with m-vertices and n-arcs. The
number of QoS constraints and the number of source-destination sets (resp.) are p and K
(m € [2300,2400], n € [4700,5000], K € [90,100], |D;| € [2,3], c(i,j) € [10,39], e(i,j) €
[100,109], w;(u,v) € [1,10], L; € [10000, 10500], A € [10,15]).

In these tables (Tabel 2.9, 2.10), NumVars, NumCons, OBJ-DCA, ITE-DCA, T-DCA
and DATA stand for, respectively, number of variables, number of constraints, the objective
value obtained by DCA, the number of iterations of DCA, CPU time by DCA and the
name of the generated data (For example, for the "D1AM", it consists of the generated
data for a problem, where m = 2400,n = 5000,p = 5, K = 100 the other values (e.g.,
wi(u,v), e(u,v), c(u,v),--- and L; are given in a file "datalAM.txt".)

From the numerical results, we observe that:

e DCA provides an integer solution and converges after a few number of iterations.

e The DCA-PDM is able to solve very large problems, while CPLEX 11.2 cannot solve
neither the BILP problem nor Linear relaxation of BILP problem.

Remark: The PDM is a method for solving convex program, so we cannot use PDM
directly for solving these problem.

2.6. Numerical simulation 51

100
90
B0 T
70 +
60+
50+

a0+ |
30 ||
20 2
- mlll
e T - T - T

14 50 100 200 300

B Val_DCA

mVal_Cplex

Vfalue of the objective function

Mumber of nodes m

Figure 2.2: The average value of objective functions of DCA and CPLEX 12.2 with m—14,
50, 100, 200, 300 in Multicast QoS Routing problem.

5 7

30

15 4+ mT_DCA

. - I1
o T T = T i
14 =0 100 200 300

B T_Cplex

The CPU times (s)

Mumber of nodes m

Figure 2.3: The average CPU times of DCA and CPLEX 12.2 with m—14, 50, 100, 200,
300 in Multicast QoS Routing problem.

52 Chapter 2. Solving QoS Routing problems using DCA

DATA NumVars | NumCons K OBJ-DCA | ITE-DCA | T-DCA
DIAM 1645000 1520950 100 44147 2 6979.81
D2AM 1635600 1516340 100 49603 2 6779.43
D3AM 1612100 1483530 97 101679 2 6579.22
DA4AM 1535000 1426885 90 154494 3 5979.83
DSAM 1590000 1453340 90 154537 2 6127.98
D6AM 1590000 1453340 90 144121 3 6182.94
D7AM 1585000 1458530 90 148958 2 5693.13
D8AM 1585000 1458530 91 150974 2 5601.97
D9AM 1605000 1468150 91 141837 3 5828.78
D1AT 1710800 1553220 100 50096 2 6582.94
D2AT 1461700 1360105 90 217213 3 4895.05
D3AT 1518100 1387765 90 223179 3 5128.89
D4AT 1588600 1457815 95 127108 2 6182.94
D5AT 1555000 1436505 90 146708 2 5306.05
D6AT 1590000 1453340 90 141841 3 5420.33
D7AT 1560000 1438910 90 151135 2 5928.34
D8AT 1585000 1450935 90 144578 3 5976.16
DIAT 1585000 1450935 90 148130 3 5992.30
D10AT 1595000 1463340 91 156572 2 5511.98
D11AT 1590000 1460935 91 147340 3 5731.02

Table 2.9: The numerical simulation results of DCA-PDM algorithm.

DATA NumVars | NumCons | K OBJ-DCA | TTE-DCA | T-DCA
D2AQ 1339500 1229225 80 196299 2 4743.97
D3AQ 1447600 1353190 90 194825 2 5727.02
D4AQ 1518100 1409050 93 181798 3 6549.11
D5AQ 1538600 1425620 90 186083 3 6494.14
D6AQ 1590000 1453340 90 154271 3 7442.67
D7AQ 1530000 1424480 90 149301 2 6125.42
D8AQ 1560000 1438910 90 138337 2 6792.95
DI9AQ 1550000 1434100 90 144611 2 7321.38
D10AQ 1580000 1448530 90 149159 2 7138.75
DIAY 1536900 1432460 95 149484 2 5484.32
D2AY 1585000 1450935 90 155018 2 5131.36
D3AY 1590000 1453340 90 139431 2 5173.02
D4AY 1595000 1455745 90 149689 2 5103.95
D5AY 1570000 1443720 90 152577 2 5015.41
D6AY 1570000 1451315 91 139672 3 5225.08
DTAY 1560000 1446505 91 146435 3 5170.07
D8AY 1605000 1468150 91 157759 3 5513.13

Table 2.10: The numerical simulation results of DCA-PDM algorithm.

2.7 Conclusion

In this paper, we introduced the CQP and BILP formulation for five Unicast QoS routing
problems and two Multicast QoS routing problems. An efficient approach based on DC
programming and DCA is proposed for solving these problems. The computational results
for Problem 2 and Problem 7 and Problem 9 show that this approach is efficient and
original as it gives integer solutions while working in a continuous domain. The DCA is
fast and furnished an optimal solution in all the most cases, and a near-optimal solution
in the rest cases. For large scale problems we investigated the proximal decomposition
technique to solve convex subprograms at each iteration of DCA. Computational results
show that this approach is efficient, especially for large-scale settings where the powerful
CPLEX fails to be applicable, Our works in progress are devoted to improve DCA-PDM
by a more sophisticated implementation, and to develop DCA-Cut to better solve and
globally solving these problems.

CHAPTER 3
Solving Partition Hub Location
Routing problem via DCA

This chapter dedicates to analyze Partition Hub Location Routing Problem (PHLRP) and
introduce a new mathematical model of PHLRP, then using DC programming and DCA to
solve this problem. The main content was considered in [Ta et al., 2012a].

The Partitioning-Hub Location-Routing Problem (PHLRP) is a hub location problem
involving graph partitioning and routing features. PHLRP consists of partitioning a given
network into sub-networks, locating at least one hub in each sub-network and routing the
traffic within the network at minimum cost. There are various important applications
of PHLRP, such as in the deployment of network routing protocol problems and in the
planning of freight distribution problems. We first present the formulation of this problem
as an Binary Integer Linear Programming (BILP) and then investigate a new method
based on DC (Difference of Convex functions) programming and DCA (DC Algorithms).
Preliminary numerical results are compared with CPLEX] the best solver for BILP. These
results show that the proposed algorithm is efficient.

3.1 Introduction

The problem of cost-effectively transferring a set of commodities (e.g., people, goods, data
packages, etc) between source-destination pairs is an important problem in the network
applications (e.g., in a vehicular network, in a freight distribution network, in a Internet
protocol network, etc). In general, a set of specific nodes is created as a backbone of trans-
ferring throughout the network. The backbone aggregates the traffic flow corresponding
to several source-destination pairs. Each node in the backbone is called a hub (i.e., trans-
shipment or switching points). The hub location problems consist of finding the backbone
in the networks with respect to optimal transfer costs. There are many versions of the hub
location problems (see [Alumur and Kara, 2008],|/Campbell, 2005]).

In this paper, we study a specific case of the hub location problem called the
Partitioning-Hub Location-Routing Problem (PHLRP). The PHLRP consists of partition-
ing a given network into sub-networks, locating at least one hub in each sub-network, and
routing the traffic within the network at minimum cost (see [Ozsoy et al., 2008|,|Catanzaro
et al., 2011]). We first analyze the formulation of PHLRP in [Ozsoy et al., 2008], and then
propose a new formulation in which some constraints are added (see Appendix). For solving
the PHLRP with this new formulation, we investigate an efficient approach based on DC
programming and DCA. As a result in Chapter 1.3, we show how to adapt this approach
for PHLRP formulated as BILP. The proposed DCA for BILP enjoys several advantages:
it converges to a local (integer) solution after a finitely many iterations, and requires only
the solution of a few number of linear programs. Moreover, it is worth to mention that,
although the DCA is a continuous approach working on a continuous domain, it provides
an integer solution. This is unusual in continuous approaches and is original property of
the proposed DCA. The efficiency of DCA is compared with CPLEX, the best solver for

54 Chapter 3. Solving Partition Hub Location Routing problem via DCA

BILP. The computational results on several test problems show that DCA is an efficient
algorithm for solving BILP.

3.2 Problem statement and mathematical model

In this section, we briefly present the notations, the problem statement and a new model
of PHLRP, which is obtained by adding the constraints (3.5) into the model of PHLRP
(Formulation 3) in [Ozsoy et al., 2008].

3.2.1 Notations and problem statement

e Assume that a network topology is presented as a directed graph D = (V, A). The arc
set A is symmetric (i.e., (j,7) € A for all (7,7) € A).

e Let (V1,---,V;) be a partition of V into subsets (i.e., Vi, -, V} are disjoint subsets of
V such that V = Uk V).

e The lower and upper bound values on the size of subsets are Fr, and Fy, respectively,
e, Fr <|Vi| < Fyfori=1,2,--- k.

e Let D; = (V;, A;), be a sub-network of D induced by V;, i=1,--- k, respectively.
e A subset H of nodes in V is defined as hub nodes.

e Let Y be an upper bound of the number of the hubs which can locate in the network,
so we have |[H| <Y. The nodes in V — H are called local nodes.

e The sub-network of D induced by H is defined as Dy = (H, Ap), which is called the
backbone.

e The set of all source-destination pairs which have traffic in-between is a set T'. For each
pair (u,v) € T, node w is called the source and node v is called the destination.

e The amount of required traffic flow between source-destination pair (u,v) € T'is defined
as dyy.

e When an unit flow associated with the pair (u,v) € T passes through the arc (i,7) € A,
an incurred non-negative cost is ¢’}

e A capacity value of the flow on an arc (i, j) is Cj ;.

e Let @ CV and S CV. Let 0(Q) be the set of all arcs in A whose both end-nodes are
in Q, ie., 0(Q) ={{i,j} € A:1i,5 € Q}. The set of arcs in A is denoted by o(Q, S)
with one end-node in @ and the other end-node in S, i.e., 0(Q,S) = {{i,j} € A:i €
Q,j € S}. The set of outgoing arcs from) and incoming arcs into) is denoted by

o (Q) and o~ (Q), respectively, i.e., 0T (Q) = (Q,V — Q) and 0 (Q) = o(V — Q, Q).
e Let Ny x4 be the node-arc incidence matrix of D, i.e.,
1 if (i,5) € o7 ({u}),
Ny =9 —1 if (i,5) € o~ ({u}), YueV,(ij) € A

0 otherwise,

e N f is the product of the matrix N by a flow vector f € IRl and (N f); stands for
the it component of the vector Nf, i.e., (N f); is equal to the net flow for node i. Let

> ies(Nf)i be (Nf)s.

3.2. Problem statement and mathematical model 55

We assume that routing of traffic between (u,v) pairs in 7' is in accordance with
the routing in ISIS protocol, i.e., the routing in our problem complies with the following
assumptions (|Ozsoy et al., 2008]):

(A1) Inter-area traffic flows can be sent through an arc (7,j) only if (4,7) is on the
backbone (i.e., (i,7) € Ag).

(A2) Intra-area traffic is realized over paths which entirely lie within the areas.

(A3) Local nodes always use the same hub to send or receive inter-area flows.
Assumptions (A1) and (A2) can be explained in more detail as follows:

— An area can exchange flows with the other areas only if it possesses a hub node (i.e.,
an area without a hub would be isolated from the rest of the network).

— Hubs of areas with traffic demand in-between have to be connected to each other
over the backbone.

— If the source and the destination of a traffic flow are in different areas, then the
flow is first directed towards the hub within the source area; subsequently, it is sent over
the backbone towards the hub of the destination area; finally, it is directed from this hub
towards the destination node.

— If the source and the destination are in the same area, then the flow is simply sent
over a path that is entirely contained within the area.

Now, given a network D = (V, A), an informal definition of this problem is represented
as:

1. Partitioning D into areas Dj, Da,--- , Dy of size at least Fy and at most Fy (i.e.,
partitioning V into subsets Vq, Vs, -+, Vi such that Fp < |V;| < Fy fori=1,2,--- k),

2. Determining H such that |H| <Y (the hub nodes),
3. Assigning every local router to a hub within its area (assumption (A3)),

4. Routing the traffic for every (u,v) € T in accordance with the assumptions (A1), (A2)
and capacity restrictions over the arcs,

Y

5. Minimizing the total cost of routing.

3.2.2 Mathematical model

There are six sets of variables used in this formulation:

e the partitioning variables w,,, € {0,1} for all u,v € V such that u # v with

Wy =

)

{1 if u and v are in the same area;

0 otherwise.
e the hub-location variables z,, € {0,1}, for all u,v € V, defined as:

1 if node u is assigned to the hub v for exchanging flows
Tyw = with outside of its area;

)

0 otherwise,

and
1 ifuis a hub;
Ly =

0 otherwise.

56 Chapter 3. Solving Partition Hub Location Routing problem via DCA

B

(a) A network example (d) An exampls of inter-area
Tolting

(b An example of partitioning of
the network into areas el An example of inter-area
Tonting
= hub

o) Hubs located an the network

Figure 3.1: An example of partitioning hub location and routing components ([Ozsoy et al.,
2008]).

Figure 3.2: An example of partitioning hub location and routing components ([Ozsoy et al.,
2008]).

3.2. Problem statement and mathematical model 57

In the formulation below, two replicates of D (see Figure 3.2.1) are using. The definition
of costless and incapacitated inter-layer arcs in both directions between identical nodes of
the two layers are presented. An inter-layer arc from node ¢ of Layer 1 to node i of Layer
2 is created and vice versa. If a source-destination pair (u,v) lies in the same area, so the
flow from u to v is in Layer 1. If u and v lie in different areas, then the flow starts at u
of Layer 1, and jumps to Layer 2 over the hub that u is allocated to. It continues within
Layer 2 until reaching the hub that v is allocated to, and returns over this hub to Layer 1,
where it is sent towards v (see Figure 3.2.1).

In Layer 2, only the flows whose its arcs belong to Ay are permitted. On the other
hand, in Layer 1, the flows only through arcs that lie within areas are permitted. Moreover,
the inter-layer flows only through the inter-layer arcs corresponding to hubs are permitted.

° ¢§L’]fu, fy;“f for all (u,v) € T and (i,j) € A to represent the flows in Layer 1 and Layer
2, respectively;

wo {1 if the flow from u to v passes through the arc (7, j) in Layer 1;

0 otherwise;

S {1 if the flow from u to v passes through the arc (7,) in Layer 2;
T

0 otherwise.

1,u,v 2,u,v

o 7,0 17" € {0,1} for all (u,v) € T and i € V, to represent the inter-layer flows

from Layer 1 to Layer 2 and from Layer 2 to Layer 1, respectively;

1 if the flow from u to v passes from Layer 1 to Layer 2

Til’“’v = over vertex i (i.e., through arc (i,7) between two layers);
0 otherwise;
1 if the flow from u to v passes from Layer 2 to Layer 1
Tf’u’v = over vertex i (i.e., through arc (i,7) between two layers);

0 otherwise.

The (PHLRP) problem can be formulated as follows:

min Y Y G duu(6] +) (3.1)

(u,v)€ET (i,j)€EA

subject to

Wy + Wyt — Wyt <1 Yu,v,t €V iu#v,u#tv<t, (3.2)
> wup < Fy—1VueV, (3.3)

veV—{u}
> wuw=Fp—1Vuev, (3.4)

veV—{u}
Wy = Wy YU, v €V, (3.5)
Y dup=1VueV, (3.6)

veV

Ty < Tyy Yu,v €V i u#uv, (3.7)

58 Chapter 3. Solving Partition Hub Location Routing problem via DCA

> myw <Y, (3.8)

ueV
Ty + Tou < Wy YU, v EV iu <, (3.9)
Z Vi < @iy Y(u,0) €T, Vi€V, (3.10)
JEV,(3,5)€A
BV 1§40 < wiy W(u,v) €T, (i, j) € A, i <, (3.11)
Z duﬂ}((ﬁzﬂjv + Vz}v) < Ci,j V(i,j) € A: (3-12)
(u,)eT
1 ifi=u
(NG"?); + 7 — 72" =80 ifieV —{u,v} V() €T, (3.13)
-1 ifi=w
(N,Yu,’u)i _ T,L'Lu’v + TZ2,U7U — O V(u,v) G T, (314)
ZTE’“’” =1—wy, Y(u,v) €T, (3.15)
eV
Til’“’v < Ty Y(u,v) € T,Vi €V, (3.16)
7127u7v < Ty Y(u,v) e T,Vi €V, (3.17)
Gy €10,1} V(i j) € A, (u,v) €T, (3.18)
wi; €{0,1} Vi, j €V, i #j, (3.19)
Tij € {0, 1} Vi, 7 €V, (3.20)
7’2’“’”,7‘3’"’” €{0,1} VieV, (u,v) €T. (3.21)

The objective function (3.1) presents the total cost of the routing in the network. Con-
straints (3.2), called triangle inequalities, are ensured the valid partitioning of the network
into areas. They were used firstly by M. Grotschel and Y. Wakabayashi in |Grotschel
and Wakabayashi, 1990]. These constraints guarantee that if two edges of a triangle lie
within an area then the third edge lies within this area too. Constraints (3.3) and (3.4)
present upper and lower bounds, Fiy and Ff, respectively. Constraints (3.5) are necessary
for the definition of wy, ,, because these constraints in [Ozsoy et al., 2008] do not guarantee
Wy = Wyy Yu,v € V (see Appendiz 1). Constraints (3.6) guarantee that each node is
allocated to a hub to communicate with nodes outside its area. Constraints (3.7) check a
local node from being assigned to a local node. An upper bound Y of the number of hubs
can be located in the network presented by constraints (3.8). Constraints (3.9) guarantee
that each local node is assigned to a hub which belongs to the same areas as itself. Con-
straints (3.10) prevent that the backbone consists of only hubs. In addition, in (3.10) if a
node is not a hub then it does not receive any flow from other nodes in Layer 2. Constraints
(3.11) guarantee that the flow in Layer 1 do not cut area borders. Constraints (3.12) stand
for the restriction of the capacity over the arcs. Constraints (3.13) (resp. (3.14)) are flow
balance equations for Layer 1 (resp. Layer 2). Constraints (3.15) ensure that the flow
stays within in Layer 1, if the source-destination pair (u,v) € T lies within in the same
area (i.e., if wy, = 1). Constraints (3.16) force to get on the backbone (i.e., to pass to
Layer 2) through the hub the source is allocated to (i.e., through ¢ € V for which z,,; = 1).
Constraints (3.17) fulfill the symmetrical requirement, that is, the flow is force to get off
the backbone on the hub that the destination is allocated to.

The assumptions (A1) — (A3) are complied in this formulation. Constraints (3.10) and
(3.11) present the assumption (A1). Constraints (3.11) and (3.13) describe the assumption
(A2). Finally, the constraints (3.12) stand for the assumption (A3).

3.3. Solving Partitioning Hub Location Routing problem by DCA 59

An example of applications

The previous optimization problem may be applied to a practical scenario related to the
transport of passengers. To this effect we shall consider a carpooling use case where a
community of persons chooses to share the car they own with other passengers going the
same way. It is most useful for frequent travelers, for instance those do the same trip
everyday between their home and their working place. In conventional carpooling systems,
there exists a limited number of rendezvous points where carpoolers can meet and decide
on an ad-hoc basis the cars occupation and planning. The lack of flexibility of this kind
of solution leads to a bad overall acceptance factor for carpooling as an efficient transport
mode.
We consider a dynamic carpooling scenario that will use the following hypothesis:

e There are no predetermined meeting points and these meeting points have the same
role than hubs in our algorithm.

e Passengers and drivers planning are computed so that the resulting routes have an
optimal cost.

The problem is to optimal at the same time: the positioning of the hubs depending of
the starting and arriving points of the travelers, and the routing of the passengers.

3.3 Solving Partitioning Hub Location Routing problem by
DCA

In this section, we show how to use DCA for solving the Partitioning Hub Location Routing
Problem (PHLRP). By using an exact penalty result, we can reformulate the PHLRP in the
form of a concave minimization program. The exact penalty technique aims at transforming
the original problem (PHLRP) into a more tractable equivalent DC program. Firstly, we

define vectors ¢, y,w, z, 7%V, 72%Y as follows:

° ¢ = (07)(ig)eA, (uv)eT
o u,v

Y= (/71'7]')(i,j)eA7 (u,)ET>
w = (Wij)ijev, i),

= (2ij)ijev,

o ~luwy __ Luw

T = (TZ‘)iEV, (u,0)ET>
o 2uv __ (2’“‘7”) i

T =7 i€V, (u,v)eT

Let us set z = (¢, 7, w, z, 7LV 72wY) g maftrix A and a vector b are defined such that

the constraints (3.2) -(3.17) can be expressed as Az < b.
Let o
K:={zeRN:A2<b, ze[0,1]V}.

The feasible set of (PHLRP) is then
S={z:ze€K, ze{0,1}V}.

Let us consider the function p : R™Y — IR defined by:

N

p(z) = Z zi(1 — z).

i=1

60 Chapter 3. Solving Partition Hub Location Routing problem via DCA

It is clear that p(z) is concave and finite on K, p(z) > 0 Vz € K and that:
{z zeS} {z z€ K,p(z <0}

Let ¢ be the cost vector of the linear objective function of (3.1), i.e. ¢ is the vector such
that the problem (3.1) can be rewritten as:

mm{z cizi:z € K p(z) < O}
=1

Following the result of penalty theorem (see Theorem 1.6) we have, for a sufficiently
large number 1 (n > 1), the equivalent concave minimization problem (3.1):

min{ f,,(2) Zcm +np(z) 1z € K},

which is a DC program of the form:

min{g(z) — h(z) : z € R}, (3.22)
where:
N
9(2) = xx(2) and h(z) = = f(2) = = Y _ cizi — p(2).
i=1

We have successfully transformed an optimization problem with integer variables into
its equivalent form with continuous variables. Notice that (3.22) is a polyhedral DC pro-
gram where ¢ is a polyhedral convex function (i.e., the pointwise supremum of a finite
collection of affine functions).

DCA applied to DC program (3.22) consists of computing, at each iteration k, the two
sequences {zk} and {vk} such that v* € dh(z¥) and 2**1 solves the next linear program
of the form (Py) (see Introduction)

min{g(z) — (z — 2%, %) : 2 € RV} & min{—(z ,o*) : 2z € K}. (3.23)
The function h is differentiable and a gradient v* € dh(2*) can be computed as follows:
F = Vh(zF) = 22 —ne — ¢, (3.24)

where e = (1,--- ,1)T ¢ RN and ¢ = (c1,- -+, en) L.
The DCA scheme applied to (3.22) can be summarized in Algorithm 6.

Algorithm 6 DCA
Initialization:
Choose a initial point 2%, set k = 0;
Let €1, 2 be sufficiently small positive numbers;
Repeat
Compute v¥ via (3.24);

Solve the linear program (3.23) to obtain z*+1;
k+—k+1;
Until either |[2F* — 2| < ei(||2F]] + 1) or |f,(2FT1) — £,(2F)] < ex(|f,(2F)| + 1).

Theorem 3.1 (Convergence properties of Algorithm DCA)

3.4. Numerical experiment

61

e DCA generates the sequence {z*} contained in V(K) such that the sequence {f,(z*)}

18 decreasing.

e The sequence {z¥} converges to z* € V(K) after a finite number of iterations.

o The point z* is a critical point of Problem (3.22). Moreover if z} # % for all i €
{0,..., N}, then z* is a local solution to (3.22).

e For a number n sufficiently large, if at iteration v we have 2" € {0,1}, then z

{0, 1}V for all k > r.

Proof 3.1 See Theorem 1.7.

DATA OBJ-DCA OBJ-CP9.0 ITE-DCA T-DCA T-CPLEX GAP(%)
DATA1 183 183 2 0,06 | 0,35 0
m=9 | DATA2 559 559 2 0,10 | 0,09 0
n=26 | DATA3 321 321 2 0,06 | 0,05 0
(= DATA4 278 278 2 0,09 | 0,09 0
Fy = DATA5 555 555 9 0,33 1,31 0
F, =3 | DATAG 377 377 2 0,06 | 0,07 0
Y=3 [DATA7 549 525 3 0,14 | 0,56 4,57
DATAS 723 703 2 0,08 | 0,94 2,84
DATA9 226 226 3 0,14 | 0,12 0
DATAIO | 3%5 385 3 0,11 0,09 0
DATAI1 | 429 429 2 0,08 | 0,37 0
m=9 | DATAI2 | 267 267 2 0,08 | 0,32 0
n—46 | DATAI3 | 236 236 3 0,19 | 0,19 0
(=3 [DATA14 | 179 179 2 0,11 0,08 0
Fy =4 | DATAL5 | 329 318 3 017 | 0,13 3,46
F, =3 | DATAL6 | 402 402 2 0,14 | 0,14 0
Y =3 | DATAI7 | 386 372 3 0,16 | 0,21 3,76
DATAIS | 399 399 2 0,06 | 0,12 0
DATA19 | 280 280 2 0,12 | 0,12 0
DATA20 | 224 224 2 0,13 | 0,12 0
DATA21 | 149 149 2 0,11 0,09 0
DATA22 | 258 258 3 024 | 0,21 0
m=9 | DATA23 | 403 403 2 0,09 | 0,08 0
n—64 | DATA24 | 365 365 2 013 | 0,35 0
(=3 [DATA25 | 322 322 2 0,13 | 0,35 0
Fy =4 | DATA26 | 219 219 2 0,12 | 0,12 0
Fp =3 | DATA27 | 156 156 2 0,13 | 0,12 0
Y =3 | DATA28 | 717 717 3 0,14 | 0,13 0
DATA29 | 106 106 2 0,15 | 0,15 0
DATA30 | 210 210 2 0,13 | 0,14 0
Average 330,73 | 337,43 253 | 0,13 | 024 0,49

Table 3.1: Comparative results between DCA and Cplex 9.0.

3.4 Numerical experiment

k

S

The algorithm has been coded in C++ and implemented on a Intel Core 2 CPU 2.53
Ghz, RAM 2GB. The directed graph D = (V, A) is randomly generated with m-vertices
and n-arcs. The number of pair source-destination in the network is ¢. The datasets are
randomly generated in a similar way as the data used in [Ozsoy et al., 2008]. For each size
of the parameters (m,n, ¢, Fyy, Fr,Y') we consider ten test problems.

62 Chapter 3. Solving Partition Hub Location Routing problem via DCA

400

350

300 H

250

Value 2004 2 Avg DCA

mAvg_Cplex

150 4

1004

50

Number of nodes (m)

Figure 3.3: Comparison the average value of objective functions between DCA and CPLEX
9.0 with m—=9, 10, 15, 20, 25.

354

304

254

mAvg_TDCA

204 m Avg_TiCplex

Value

154

104

N P A = 4

9 10 15 20 25
Number of nodes (m)

Figure 3.4: Comparison the average value of CPU times between DCA and CPLEX 9.0
with m=9, 10, 15, 20, 25.

3.4. Numerical experiment

63

DATA OBJ-DCA OBJ-CP9.0 ITE-DCA T-DCA T-CPLEX GAP(%)

DATA31 | 407 407 3 017 | 0,15 0

m=10 | DATA32 | 411 411 3 0,18 | 0,17 0
n=32 | DATA33 | 230 230 2 0,16 | 0,15 0
(=3 | DATA34 | 538 538 2 0,19 | 0,19 0
Fy=4 | DATA35 | 472 P 2 023 | 021 0
F, =3 | DATA36 | 488 488 3 0,16 | 0,17 0
Y=3 [DATA37 | 412 412 2 0,18 | 0,16 0
DATA3S | 755 755 2 0,09 | 0,11 0

DATA30 | 358 358 2 0,4 | 0,12 0

DATA40 | 744 744 2 0,11 | 0,09 0

DATA4l | 142 142 2 0,12 | 0,09 0

m=10 | DATA42 | 125 125 2 0,13 | 0,12 0
n—46 | DATA43 | 216 216 3 0,19 | 0,19 0
(=3 [DATA44 | 248 248 2 011 | 0,8 0
Fy =4 [DATA45 | 401 101 3 0,09 | 0,71 0
F, =3 | DATA46 | 240 240 2 0,14 | 0,12 0
Y =3 [DATA47 | 246 246 3 0,16 | 025 0
DATA48 | 573 573 3 0,16 | 0,16 0

DATA49 | 135 135 2 012 | 0,12 0

DATA50 | 126 126 2 013 | 0,14 0

DATA51 | 400 400 2 0,09 | 0,11 0

DATA52 | 189 189 2 0,10 | 0,11 0

m=10 | DATA53 | 246 246 3 0,09 | 0,11 0
n—72 | DATA54 | 288 288 2 013 | 0,15 0
(=3 [DATA55 | 194 194 2 0,10 | 0,15 0
Fy =4 [DATAR6 | 299 299 2 0,12 | 0,12 0
F, =3 | DATA57 | 232 232 2 0,13 | 0,12 0
Y =3 | DATA38 | 100 100 3 0,14 | 0,13 0
DATAS9 | 437 137 2 0,08 | 0,09 0

DATAGO | 169 169 2 013 | 0,14 0

Average 327.37 | 327,37 2,2 0,14 | 0,16 0

Table 3.2: Comparative results between DCA and Cplex 9.0.

In these tables, OBJ-DCA, OBJ-CP9.0, ITE-DCA, T-DCA, T-CP9.0 and DATA stand
for, respectively, the objective value obtained by DCA, the one obtained by CPLEX 9.0,
the number of iterations of DCA| the running time of DCA, the running time of CPLEX9.0

and the name of the generated data.

64 Chapter 3. Solving Partition Hub Location Routing problem via DCA

DATA OBJ-DCA OBJ-CP9.0 ITE-DCA T-DCA T-CPLEX GAP(%)

DATAG61 658 658 3 0,22 0,22 0

m=15 | DATA62 280 280 2 0,18 0,19 0
n="72 DATAG63 433 433 3 0,25 0,25 0
(=3 DATAG64 510 510 3 0,31 0,32 0
Fy =5 | DATA65 509 509 3 0,55 0,49 0
I, =3 | DATAG6 619 619 3 0,31 0,61 0
Y=5 DATAG67 307 307 2 0,44 0,44 0
DATAG68 372 372 2 0,33 0,32 0

DATAG69 246 246 2 0,43 0,43 0

DATA70 605 605 2 0,41 0,51 0

DATA71 180 180 2 0,15 0,11 0

m=15 | DATA72 188 188 4 0,65 0,67 0
n—120 | DATAT73 398 398 3 0,21 0,21 0
(=3 DATA74 217 217 2 0,23 0,23 0
Fy =5 | DATA75 624 624 3 0,29 0,31 0
I = DATA76 210 210 2 0,24 0,22 0
Y =5 | DATAT77 124 124 2 0,26 0,25 0
DATATS8 171 171 2 0,21 0,21 0

DATA79 | 231 231 1 0,41 0,42 0

DATARO 216 216 3 0,51 0,51 0

DATAR1 328 328 3 1,99 2,15 0

DATAR2 375 375 2 7,40 7,54 0

m—20 | DATAS3 324 324 3 2,09 2,16 0
n—126 DATAR&4 122 122 4 2,13 2,61 0
(=3 [DATAR | 186 186 1 210 | 2,15 0
Fy =5 | DATAR6 213 213 4 1,12 1,31 0
I = DATAR7 222 222 3 3,13 3,03 0
Y =5 | DATASS 224 224 5 3,14 2,39 0
DATAR9 160 160 3 2,13 2,49 0

DATA90 410 410 2 1,53 1,94 0

Average 322,07 322,07 2,7 1,11 1,16 0

Table 3.3: Comparative results between DCA and Cplex 9.0.

The GAP column presents the value of the gap between OBJ-DCA and OBJ-CP9.0:

_ OBJpca — OBJcpg.o

GAP
OBJcpg.o

From the numerical results, we observe that:

e DCA always provides an integer solution and it converges after a few number of itera-
tions.

e In most of cases, the objective values given by DCA and CPLEX are the same: 26/30
in Table 3.1, 30/30 in Table 3.2, 30/30 in Table 3.3, 18/20 in Table 3.4, 20/22 in Table
3.5.

e In the rest of DATA (8 instances), GAPs are small. It means that the objective value
obtained by DCA are rather close to the optimal value (the objective value obtained
by CPLEX). In all experiments GAP is not larger than 4.57%.

e In general DCA is faster than CPLEX: the average CPU time of DCA is smaller than
the one of CPLEX.

3.5. Conclusion 65

DATA OBJ-DCA OBJ-CP9.0 ITE-DCA T-DCA T-CPLEX GAP(%)

DATA91 856 856 2 272 | 2,72 0
m=20 | DATAO2 540 540 1 6,83 | 9,06 0

n=126 | DATA93 746 742 6 255 | 2,51 0,54
(=5 [DATA% 651 651 2 251 251 0

Fy =5 [DATAGS 570 556 3 835 | 8,39 2,52
Fp = DATA96 629 614 6 504 | 9,17 0
Y=5 | DATA97 389 389 3 214 | 2,14 0
DATA9S 430 130 3 233 | 2,32 0
DATA99 582 582 2 7.97 | 10,09 0
DATAI00 | 242 242 6 341 | 348 0
DATA101 | 204 204 3 315 | 331 0
m=20 | DATAI02 | 127 127 2 245 | 241 0
n=210 | DATAI03 | 265 265 3 2,21 2,24 0
¢=3 [DATAI04 | 376 376 3 223 | 2,23 0
Fy =5 [DATAI0S 2 26 2 229 | 231 0
F; =3 | DATAL06 | 151 151 3 224 | 2,14 0
Y =5 | DATAL07 | 144 144 1 266 | 2,71 0
DATAI08 | 265 265 3 2,21 2,55 0
DATAI09 | 453 153 2 331 | 3,32 0
DATAI110 | 306 306 5 351 | 3,51 0

Average 397,60 | 395,95 335 | 355 | 395 0,15

Table 3.4: Comparative results between DCA and Cplex 9.0.

DATA OBJ-DCA OBJ-CP9.0 ITE-DCA T-DCA T-CPLEX GAP(%)
DATAI1L | 554 554 3 388 | 3,59 0
m=20 | DATAII2 | 326 326 1 283 | 2,39 0
n=210 | DATAI13 | 3%5 385 3 255 | 2,72 0,0
¢=5 [DATA114 | 417 A7 2 321 | 3,25 0
Fy =5 | DATALLS | 425 425 8 235 | 2,78 0
F, =3 | DATALI6 | 621 617 3 533 | 1082,31 | 0,65
Y=5 [DATA117 | 398 398 2 234 | 2,33 0
DATAI11S | 501 501 5 333 | 3,53 0
DATA119 | 403 403 3 125 | 11,33 0
DATA120 | 405 405 3 341 | 342 0
m=25 | DATAI21 | 186 186 3 215 | 2,42 0
n=320 | DATAI22 | 289 289 3 345 | 3,80 0
¢=3 [DATAI23 | 315 315 3 121 | 424 0
Fy =5 | DATAI24 | 286 286 2 223 | 2,32 0
F, =3 | DATA125 | 122 122 2 2,39 | 2,35 0
Y =7 | DATAI26 | 516 499 D) 984 | 284 1,40
m =25 | DATA127 | 422 422 1 851 | 12,47 0
n=320 | DATAI28 | 225 225 1 1221 | 23,05 0
¢=5 [DATA129 | 315 315 1 1431 | 24,75 0
Fy =5 | DATAI30 | 260 260 3 1351 | 23,86 0
F, =3 | DATAI31 | 3%6 336 1 12,45 | 2343 0
Y =7 | DATAI32 | 152 152 3 11,75 | 17,71 0
Average 359,50 | 358,55 3,36 | 561 | 57,31 | 0,09

Table 3.5: Comparative results between DCA and Cplex 9.0.

3.5 Conclusion

In this paper, the BILP formulation for Partitioning-hub Location-routing problems given
in [Ozsoy et al., 2008] has been improved. An efficient approach based on DC programming
and DCA is proposed for solving this problem. The computational results show that

66 Chapter 3. Solving Partition Hub Location Routing problem via DCA

this approach is efficient and original as it can give integer solutions while working in a
continuous domain. In a future work we plan to combine DCA and Branch-and-Bound or
Branch-and-Cut Algorithm for globally solving these problems.

Part 111

OPTIMAL SPECTRUM
BALANCING IN DSL NETWORK
AND POWER CONTROL IN
WIRELESS NETWORK

CHAPTER 4
Power Control in Wireless Networks
using DCA

This chapter devotes to solve Power control problems in wireless networks by DCA. It is
well known as a nonconver optimization problem and difficult to solve. In this chapter, we
provides an appropriate DC decomposition and then DCA can work efficiency associated
with this decomposition.

Nowadays the wireless networks are becoming an innovative business environment in
which new values can be created by competing as well as collaborating enterprises through
innovation. Power control is typically used in wireless cellular networks in order to optimize
the transmission subject to quality of service (QoS) constraints. It has been shown earlier
that the power control problem in the wireless cellular network framework can be efficiently
solved using the so-called geometric programming. However, in order to enable the appli-
cation of geometric programming to solve the throughout maximization or weighted sum
of data rates maximization problems, SINR + 1 has to be approximated as SINR where
SINR is the signal to interference-and-noise ratio. Such change of the original problem
formulation is obviously imprecise and might be very loose, especially at low SINR regime
which is an usual scenario for systems with CDMA applications. In this paper, based on
difference of convex functions (DC) programming and DC' Algorithm (DCA), we investigate
a new solution method for solving the aforementioned problems. Albeit sub-optimal, the
numerical simulations are compared with geometric programming show that the proposed
algorithm is an efficient approach.

4.1 Introduction

The technology and business of wireless communication system have been developed dra-
matically since 1990s. With new mobile satellites coming on line, business arrangements,
technology and spectrum allocations make it possible for people to make and receive tele-
phone calls anytime anywhere. Today, the mobile telephone success story calls the wireless
communications community to turn its attention to other information services, most of
them in the category of "wireless data" communications. Wireless technology is a truly
revolutionary paradigm shift, enabling multimedia communications between people and
devices from any location. It also underpins exciting applications such as sensor networks,
smart homes, telemedicine, and automated highways. Wireless networks continue to de-
velop, usage has grown in 2010. Cellular phones are part of everyday wireless networks,
allowing easy personal communications. Inter-continental network systems use radio satel-
lites to communicate across the world. Emergency services such as the police utilize wireless
networks to communicate effectively. Individuals and businesses use wireless networks to
send and share data rapidly, whether it be in a small office building or across the world.
Nowadays the Wireless networks are becoming an innovative business environment in which
new values can be created by competing as well as collaborating enterprises through in-
novation. Wireless networks significantly contribute to the seamless collaboration and
interoperability within and outside the enterprises.

70 Chapter 4. Power Control in Wireless Networks using DCA

In practice, one of the most important problem is the resources management problem
with embedded communication capabilities (power control, channel assignment, and hand-
offs). Resource management will be critical problem in the systems that include high speed
data applications such as high speed delivery of multimedia information integrated with
voice, image and data. Therefore, there is an increased urgency to develop and investigate
advanced in radio resource management problem on wireless data transmission.

One important issue of the radio resource management is power control. Power control
and resource allocation techniques for cellular communication systems have been a recent
focus of intensive studies [Chiang, 2005],[Foschini and Miljanic, 1993],[Yates, 1995]. It has
been proposed to use the user signal to interference plus noise ratio (SINR) to adjust the
transmitted power [Farrokhi et al., 1998]. To specify in CDMA systems, it is particularly
important, where users transmit at the same time over the same frequency bands and
their spreading codes are not perfectly orthogonal. Transmit power control is often used
to tackle this problem of signal interference |Chiang et al., 2008]. In this way, power
control is used to control interference, and therefore, to control also individual user’s quality
of services (QoS). Various objectives have been considered for developing power control
algorithms. Particularly, one can maximize the minimum SINR, minimize total transmitted
power, or minimize outage probability in a cellular network [Biguesh et al., 2004], [Chiang,
2005],|Julian et al., 2002]|, [Farrokhi et al., 1998]. The objective represents a systemwide
goal to be optimized; however, individual users’ QoS requirements also need to be satisfied.
Any power allocation must be satisfied by these minimum requirements constraints from
the users. For example, a constrained optimization captures the tradeoff between user-
centric constraints and some network-centric objective. Because a higher power level from
one transmitter increases the interference levels at other receivers, there may not be any
feasible power allocation to satisfy the requirements from all the users. Sometimes there
exist a solution which can be satisfied the set of requirements, but when a new user is
admitted into the system, the solution is no more feasible power control requirements, or
the maximized objective is reduced due to the tightening of the constraint set, leading to
the need for admission control and admission pricing, respectively (see [Chiang, 2006b]).
Although various iterative methods have been developed to solve the power control problem
in cellular wireless systems, these methods are not general to allow a diverse set of QoS
constraints and objective functions.

A general framework for the power control based on geometric programming was de-
veloped in [Chiang, 2005],[Kandukuri and Boyd, 2002]. However, in order to enable the
application of geometric programming to solve the throughout maximization or weighted
sum of data rates maximization problems, SINR + 1 has to be approximated as SINR.
Unfortunately, such approximation might be very imprecise and loose, especially at low
SINR regime which is a usual scenario for systems with CDMA applications. Moreover,
note that the aggregate system throughput or sum of log(1+SINR), is the actual target for
network optimization. It turns out that the resulting problem is NP-hard. Although the
original formulations can be solved using the method of successive convex-approximation
as described in [Chiang, 2005], the number of iterations, i.e., the number of geometric
programs that need to be solved, may be large, and thus, leads to high overall complexity.
Moreover, global optimality is also not guaranteed.

QoS provisioning in a wireless network is a particularly difficult task because physical
layer problems; such as path loss, fading, and multi-path; can make the communication
links unreliable. Since the channel gains vary all the time, there is a need for low-complexity
algorithms to carry out resource allocation, i.e., power control, in wireless networks. More-
over, such algorithms should also provide good performance in order not to waste radio
resources. This is precisely our aim in this work. Specifically, in this paper, we directly
consider the aggregate system throughput as objective function in solving the power con-

4.2. System model 71

trol problem for cellular systems. We show that the corresponding optimization problem
belongs to the class of so-called DC programming problems which can be globally and
efficiently solved using modern optimization methods [Horst et al., 1995]. However, due
to the high complexity of global DC programming, we propose low complexity DC Algo-
rithms (DCA) to solve the resulting problems. Albeit sub-optimal, the proposed approach
achieves near optimal results.

In this paper we show how to use this approach for solving the aforemention prob-
lem. The numerical simulations are compared with geometric programming show that the
proposed DCA is an efficient algorithm.

4.2 System model

We consider a cellular network with K users (links!) and a single base station. Uplink
transmission is considered in this paper although a more general system set up, such as an
ad hoc network, is also applicable. An extension to multiple base stations is straightfor-
ward.

The effects of three signal strength attenuation factors: path loss, shadowing, and mul-
tipath fading are considered in the following propagation model. Let Py be the transmitted
power level of the k" user. Then, the propagation model for the k' user can be written
as [Chiang, 2005]

Bk
Py = PyFy <do> ; (4.1)
d
where Py, is the received power, di, is the propagation path length, dj is a reference distance
for the antenna far-field, F} is multipath fading gain, and S is the path loss exponent for
the k' user. Note that in the aforementioned model we ignore the effect of shadowing for
brevity. Using (4.1), the SINR for the k" receiver can be defined by

LPyFrdaed, ™
K ﬁ 718 b
> ik PiFydy’d; 7 + o,

SINR;, = (4.2)

where o7 is the noise power at the common base station and L := W/R > 1 is the spreading
gain of the CDMA system, where W is the chip rate and R is the data rate of the user.
Although SINR is often used as a QoS parameter, it is the network throughput which
is of concern. Indeed, it is well known that the capacity of Gaussian channel with Gaussian
interference is a function of SINR. Then the throughput for the k** user is given by

Ry = logy(1 4+ SINRy,). (4.3)

Let us denote Gj = Fjdgj d]-_ﬁj > 0, Vj for the path attenuation of interfering user j. One
popular power control problem is based on maximizing the weighted sum of data rates
under the peak power constraints for all users. Mathematically, this problem can then be
formulated as follows.

Problem 1:
K
maximize Z wi Ry (4.4)
k=1
subject to 0 <Y P < PUB, (4.5)
0 < P, < P Vi, (4.6)

'Each link represents a unidirectional path from the transmitter to the receiver.

72 Chapter 4. Power Control in Wireless Networks using DCA

where wy, k = 1,...,K are weights, PYP is the upper bound of the total transmitted

power. Note that constraint (4.6) limits the transmitted power of each transmitter to be
smaller than the available power P;"®*, Vk.

The aforementioned power control scheme in wireless cellular networks takes into ac-
count the fairness consideration since the fairness among different users is also a major
issue in a QoS policy. In other words, fairness issues must also be taken into account for
low priority users. This weight wy, Vk reflects this fairness.

Problem 1 is clearly a nonlinear nonconvex optimization problem which is extremely
hard to solve. The goal of the following discussion is to show that it can be rewritten in
the form of the so-called DC' programming problem.

4.3 Power control via DC Programming

4.3.1 DC Algorithms for the Proposed Power Control problem

First, we rewrite Problem 1 in the form of a minimization program

Problem 2:
K
minimize —) " wy Ry (4.7)
k=1
subject to 0 < ZPk < pYB, (4.8)
0 < P, < P Vk. (4.9)

Denote P = (Py,--- , Pg)T. The feasible set C of Problem 2 (4.7)-(4.9) is

K
C:={PeRN|Y P, <P’ 0<P <P, k=1K}
k=1

Obviously, C' is a polyhedra convex set in IR¥.

Note that, we do not impose the constraints on the minimum data rate for each user.
However, if there are such constraints, they can also be expressed as linear constraints on
Py, ..., P as follows

R, > B <= SINR,>2%" —1
K

< —LPGk+ % (Z PG + o,%) <0
ik

where 7, = 20— 1. Thus, all the user’s rate constraints are recast as convex linear
inequality constraints.
For simplicity of notion, let us set

ok = (él,‘ .. aak—laLékaak—H,‘ .. ’éK)T’
bk = (ala"‘ Jék*1707ak‘+17' o 76K)T7

K
hk(Pl,...,PK) = —wk10g2<zpjéj—|—0',%>, (410)
ik
K
ge(PL, ..., Pr) = —wy, log2<z Pj(’;jJFLPkGHa,%). (4.11)

%k

4.3. Power control via DC Programming 73

Thus, we have
gk(P) = —wy logy((a”, P) + 07),

(
hi(P) = —wy,logy (0", P) + o),
) —

wi Ry, = hy(P) — gi(P).
The objective function of Problem 2 (4.7)-(4.9) can be rewritten as
K
F(P) =Y "(gr(P) — hi(P)) = g(P) — h(P), (4.12)
k=1

where h(P) = Y hi(P) and g(P) = > gx(P). Since hy(P),gx(P), k = 1,--- K are
convex functions then h(P) and g(P) are convex functions.

However, from numerical points of view, DCA scheme corresponding to this DC decom-
position is not interesting because it requires an iterative algorithm for solving a convex
program at each iteration. In an elegant way, we introduce a nice DC reformulation of
Problem 2 for which the resulting DCA is explicitly determined via a very simple formula.
Such a DC decomposition of f is inspired by the following result.

Theorem 4.1 There exists p > 0 such that the function H(P) := 1p||P||?*— f(P) is convez
on C.

Proof 4.1 We have

k k
Wy, —a Wy, —b
\% ,Vhp(P) = .
9P = e W P T o2 K(P) log2 (b, P) + 02
Hence,
k(,k\T bE (b T
Vig(P) = o2 @) L V2hi(P) = % (&)

log 2 ((a*, P) + o2)? log 2 ((bk, P) + 03)?

Because gi(P), hip(P) are convex functions, then V2gi(P) and V*hy(P) are semi-definite
positive.

Moreover,
K K
V2g(P) =) Vigk(P), VEh(P) =) Vhi(P
k=1 k=1
are semi-definite positive.
On the other hand, we have
K
2 k
V0Pl < ot g mataf 3o
So, if
K K
k k
P23 oty (ot el
then

pI =Y V?gi(P) = pI — V?g(P)
k=
is semi-definite positive. Thus, p||P||* — g(P) is a convez function. Consequently,

H(P) = LollPII> = (P) = 5pllPIP — g(P) + h(P)

18 a conver function.

74 Chapter 4. Power Control in Wireless Networks using DCA

Using the theorem above, we get the next DC decomposition of f:
G(P) = SollPIP + xe(), H(P)= SpllPIP — £(P),
and Problem 2 (4.7)-(4.9) can be now written in the standard form of DC program:
min{G(P) — H(P) | P € R¥}. (4.13)

4.3.2 DCA applied to Problem 2 (4.7)-(4.9)

Starting with P(©) € C, we have to compute two sequences {P*)} and {Q®} such that
Q™ e oH(P®) and Q*tY € o(G)*(Q™M).
As indicated above P**1) is an optimal solution of the convex quadratic program
min{ 3P| ~ (P.QW)|P € C). (4.14)

The DCA applied to Problem 2 can be summarized as Algorithm 7.

Algorithm 7
Initialization:
* Choose an initial point P e C, set r = 0;
* Let € be a sufficiently small positive number;
Repeat:
* Calculate

Q") =VH(PM) = p P —vf(PM)
* Calculate P+ € 9(G)*(Q)) by solving the linear constrained quadratic program

min{ 5pl| Pl ~ (P.QU)|P € C) (4.15)

*Set r <1+ 1;
Until either [|[PUFD — PO < (||[PW]| 4 1) or [f(PUD) = f(PO)] < e(|f(PD)]+1)

Theorem 4.2 (Convergence properties of Algorithm DCA)

i) Algorithm 7 generates a sequence {P*} such that the sequence {f(P¥)} is
monotonously decreasing.

i) The sequence {PF} converges to the point P* which satisfies the necessary local opti-
mality condition.

Proof 4.2 (i) and (i1) are direct consequences of the convergence properties of general DC
programs and the fact that f is differentiable.

Complexity analysis:

As we have shown, at each iteration, the algorithm requires solving a convex quadratic
program with linear constraints. This convex quadratic program can be solved using any
standard method. DCA has a linear convergence for general DC programs.

4.4. Simulation Results 75

18
16

14 f
12 /—

——cP
/ —a— Doa

T T T T T T T T 1
o 2 4] 8 10 12 14 16 18 20 22

Total rate

=T

Spreading gain L
Figure 4.1: Comparative results between DCA and Geometric Programming.

4.3.3 Initial point for DCA

Based on the ideal of SCALE algorithm for solving Optimal Spectral Balancing (OSB)
problem in DSL network [Papandriopoulos and Evans, 2006 (see Appendix 3), we propose
to use SCALE algorithm applying for Power control problem and finding the initial point
for DCA.

In SCALE for solving Power control problem (SCALEP) algorithm, at each iteration,
the calculation is quite tractable but the number of iteration of SCALEP is usually large.
While the number of DCA usually small and if we have a good initial point, DCA converges
to a good solution. There is a simple ideal that combine SCALEP and DCA algorithms.
We can fix a small number of iteration of SCALEP, after that we get the value as initial
point for DCA. We can see the improve of this technic in numerical experiment.

4.4 Simulation Results

The algorithm has been coded in Matlab 7.5 and implemented on an Intel Core 2 CPU
2.53 GHz, RAM 2 GB. Our algorithm is compared with Geometric programming (GP)
approach, which is a standard method for solving Power control problem [Chiang, 2005],
and the GP code is supported in [Grant and Boyd, 2010] with CVX implementation.

We consider a single cell consisting of a base station located at the origin and K = 10
users randomly distributed in a two-dimensional region of the size 100m x 100m. The
distance of the user with medium distance to the base station is used as a reference. The
power drop off factor g = S = 3.7, Vk. The noise power is o = O"% = bmW, Vk for all
users. We perform 200 fast-scale fading channel realizations for each simulation scenario.

Fig. 4.4 shows the ergodic capacity of the system when the spreading gain changes from
1 to 20 and P = 2.0, VEk obtained by DCA and GP. Note that the smaller the spreading
gain, the lower SNR regime. Fig. 4.4 presents the average running time of DCA and GP.
We can see that, when the spreading gain increased from 1 to 20, the result obtained by
DCA is slightly better than the one obtained by GP. However, the average running time
of DCA is about 10 times better than the one of GP. Fig. 2 shows the increasing speed of
running time of DCA and GP when the number of user increases. We see that, the average
running time of GP increases dramatically when the number of users increases while the
one of DCA is quite stable. Even though, when the number of users are greater or equal
to 30, the GP approach can’t give any results, while DCA can solve the problem with 500
Or More users.

Table 4.1 and Table 4.2 show more insights into the performance of DCA and GP.
In Table 4.1, 4.2, K stands for the number of users, Time-DCA and Time-GP stand for
the average running time (in seconds) of DCA and GP, respectively. In Table 4.1 and

76 Chapter 4. Power Control in Wireless Networks using DCA

120

/
. /._.//
 —

0 ¥ + > > - > ag ng

=4=—Time_DCA

=f=Time_GP

Ave rage running time
Average running time

O Rk MoWw B N oo N omoW

Wttt bttty

B 10 1z 4 16 13 20 12 2¢ 35 18 30 0 2z 4 6 8 10 12 14 16 18 20 22

Number of users Spreading gain L

Figure 4.2: Comparative average running time between DCA and Geometric Programming.

Table 4.2, we can see more details about the efficiency of DCA when the number of users
increases: the average running time of DCA is always much smaller than the one of GP.
Note that GP do not solve the problem when the number of users is greater or equal to
30, while DCA works always, say DCA gives a solution in all cases.

Table 4.1: Comparative results between DCA and Geometric Programming.

K 10 12 1 16 18 20 22 24 26
Time-DCA | 0.6251 | 0.6969 | 0.6469 | 0.9531 | 1.0438 | 0.9281 | 1.3501 | 1.3281 | 1.4312
Time-GP 8.7565 | 15.5156 | 20.3594 | 26.1875 | 34.6250 | 48.3532 | 49.3874 | 61.2063 | 89.7907

Table 4.2: Comparative results between DCA and Geometric Programming.
K 28 30 34 36 40 50 80 200 500
Time-DCA 1.4751 1.6969 | 1.5188 | 1.7969 | 1.9188 | 2.6375 | 4.1469 | 20.6156 | 159.7063
Time-GP | 112.0655 | —— | —— | — | — | — | —— — —

L GP DCA Time-DCA Time-GP
1 1.5147 1.8975 1.8887 7.4929
2 2.8859 2.8902 0.5425 8.2988
3 4.1396 4.1424 0.4138 8.2714
4 5.2897 5.2927 0.4456 7.6876
) 6.3578 6.3603 0.4713 7.4669
6 7.3484 7.3514 0.5409 7.4120
7 8.2795 8.2834 0.4766 7.4716
8 9.1498 9.1544 0.6397 7.3729
9 9.9731 9.9768 0.5791 7.3800
10 10.7481 10.7544 0.5238 7.6071
11 11.4922 11.4934 0.6047 7.5484
12 12.1915 12.1961 0.5197 7.5095
13 12.8626 12.8648 0.6184 7.4797
14 13.5079 13.5087 0.7419 7.3597
15 14.1227 14.1232 0.6088 7.3743
16 14.7055 14.7063 0.6991 7.4776
17 15.2792 15.2793 0.6506 7.2482
18 15.8079 15.8113 0.6644 7.6587
19 16.3351 16.3366 0.6628 7.5445
20 16.8475 16.8481 0.5981 7.5920

Table 4.3: Comparative results between DCA and Geometric Programming.

4.5. Conclusion 77

From the numerical results, we observe that:
e The objective function obtained by DCA is always slightly better than by GP.

e The average running time of DCA is much faster than of GP, most of the ratio time
(Time-GP/Time-DCA) in range [10,20].

e When the number of users increases, DCA can solve the large-scale problems while GP
cannot.

4.5 Conclusion

In this paper, we have developed various QoS provisioning problems for wireless cellular
networks based on the resource allocation perspective. The individual user data rate or
aggregate system throughput are used as performance metrics. The optimization of the
queuing delay is also considered. The consider problem can be solved efficiently by DCA.
Numerical simulation example demonstrates the effectiveness and the performance of the
proposed approach.

CHAPTER 5
Optimal Spectrum Balancing in DSL
Network using DCA

This chapter presents how to solve Optimal spectrum balancing problem by DCA. From the
mathematical point of view, it can be seen as a generic problem of Power control problem
in Chapter 4. This problem is solved in a similar way by DCA.

Dynamic spectrum management (DSM) is an effective technique for mitigating detri-
mental effect of crosstalk in Digital Subscriber Lines (DSL). Among various DSM tech-
niques, centralized Optimal Spectrum Balancing (OSB) achieves the maximum data rates
by computing the optimal PSDs (power spectral density) for all modems in DSL systems.
In this chapter, we investigate a new and efficient algorithm based on DC programming
and DCA for solving nonconvex optimization problems in OSB. Preliminary numerical
experiments on real-world data show the efficiency of the proposed algorithm.

5.1 Introduction

Crosstalk is the dominant source of performance degradation in DSL systems, and can
severely limit system performance if not mitigated. The effects of crosstalk can be mitigated
through spectrum management in an interference-limited DSL system. Traditional static
spectrum management (SSM) techniques employ identical spectral masks based on worst-
case scenarios for all modems. Consequently, these spectral masks are unduly restrictive
and lead to conservative performance. DSM [Song et al., 2002||Report, 2005] recently
gains popularity as a new paradigm, aiming to jointly adapt PSDs of each modem based
on physical-channel characteristics to minimize crosstalk and to enhance achievable rates.

Distributed Iterative Water Filling (IWF) [Yu et al., 2002], one of the first DSM al-
gorithms, offers significant rate enhancement as compared to SSM techniques. Another
algorithm known as Selective Iterative Water Filling (SIW) [Xu et al., 2007] was intro-
duced. SIW selectively applies IWF to users in the under-utilized sections of the frequency
spectrum until all users use up their total power. While STW shows significant performance
gains over IWF, the performance is still sub-optimal.

A centralized Optimal Spectrum Balancing (OSB) approach based on dual decompo-
sition with the assumed explicit coordination among the users and hence complete knowl-
edge of all channel responses, was introduced to solve the rate maximization problem, and
demonstrated better performance than distributed IWF [Cendrillon et al., 2006]. Its com-
putational complexity is linear in the number of frequency tones , but exponential in the
number of users . The exponential part of the complexity in N, i.e., , is due to exhaustive
search on each tone to find the optimal power allocation tuple. This exhaustive search
essentially makes OSB intractable with more than 5-6 users.

The principal reason for obtaining the optimum solution via exhaustive search is that
the optimization problem in OSB is highly non-convex and has many local maxima as
argued in [Cendrillon et al., 2006]. Conventional local optimization techniques, which are
designed for finding one of local optima, cannot be applied to obtain global maxima for

80 Chapter 5. Optimal Spectrum Balancing in DSL Network using DCA

the non-convex optimization problem in OSB. Hence, [Cendrillon et al., 2006] proposed
to use exhaustive search to find the global maxima, which inevitably leads to exponential
complexity in N. Another approach [6] attempted to find global optimum by computing
all roots of the first-order necessary conditions and boundary points of the optimization
problem, and then selecting the one with largest value. However, this method cannot be
generalized for multiple users.

Recently, [Cendrillon and Moonen, 2005]-[Cendrillon et al., 2007] proposed several low-
complexity heuristic DSM algorithms based on OSB. Among low-complexity heuristic al-
gorithms [Cendrillon and Moonen, 2005]-[Cendrillon et al., 2007], two near-optimal low-
complexity centralized algorithms called Iterative Spectrum Balancing (ISB) were intro-
duced in [Cendrillon and Moonen, 2005], [Lui and Yu, 2005], whose main idea is to locally
optimize non-convex function in OSB by employing coordinate descent method through
a series of line searches. The other two autonomous low-complexity algorithms SCALE
and ASB were presented in [Papandriopoulos and Evans, 2006], [Cendrillon et al., 2007],
respectively. But none of these low-complexity heuristic algorithms can guarantee finding
the global optimum for the non-convex problem in OSB.

It is of key importance to notice that basic components of the objective function of
nonconvex optimization problem in OSB are logarithmic bit-loading rate functions of signal
to interference and noise ratio (SINR) at receiver side. Since, thus, instead of manipulating
the bit-loading rate function as a single nonconvex function, we can express it alternately
as the difference of two logarithmic functions. Because the resulting logarithmic functions
are both convex, this objective function can be expressed as the difference of two convex
functions (each convex function is called DC component of the objective function). In
recent years there has been a very active research in DC (Difference of Convex functions)
programming. A great deal of work involves global optimization (which is concerned with
finding global solutions to nonconvex programs) whose main tools and solution methods are
developed according to the spirit of the combinatorial optimization, but with the difference
that one works in the continuous framework (see [Horst et al., 1995, Horst and Tuy, 1996]).
However, most robust and efficient global algorithms actually do not meet the expected
desire: solving real life programs in their true dimension. In contrast with the combinatorial
approach where many global algorithms have been studied, there have been a very few
algorithms for solving DC programs in the convex analysis approach where the convexity
of the two DC components of the objective function has been used to develop appropriate
tools from both theoretical and algorithmic viewpoints.

5.2 Spectrum Management problem (SMP)

Discrete multitone (DMT) [Starr et al., 1999] has been adopted as standard in various DSL
applications such as asymmetric DSL (ADSL) and more recently for VDSL by ITU (Inter-
national Telecommunication Union). For a sufficiently large number of sub-carriers, DMT
transmission over a frequency-selective fading channel can be modeled as a set of K parallel
independent flat-fading sub-carrier AWGN channels. Under this Gaussian assumption, the
achievable bit-loading rate of user n on tone k is

2
1 9" | pi
TZ = 10g2(1+* 2
P o™ o+ wp
m#n
1 Py
= log,(1+ = k 5.1
OgZ(+F Z Z,mpz@_i_o_g) ()

m#n

where

5.2. Spectrum Management problem (SMP) 81

e p} denote user n’s transmit PSD (Power spectral density) on tone k.
e w; denote user n’s transmit noise power on tone k.

° g]:"m is the channel path gain from user m to user n on tone k.

T, 2
° hZ’m = ‘é’%,n“Z is the normalized interference path power gain from user m to user n on
k
tone k.
n wy . . .
o 0] = W is the noise variance of user n on tone k.
k

e ['is the SNR~gap to capacity.

e The data rate of user n is

where fs is the DMT symbol rate.

The goal of spectrum management problem is to achieve best possible user rates tradeoff
among users in the network, i.e., to find the boundary of rate region. Assume that each
user is subject to an individual total transmission power constraint. Finding the boundary
of rate region is mathematically equivalent to

max R (5.2)
P1.p2, " PK

R, >T,,Vn > 1,
St szgpna vn7k
.t. :

mask
pr < pp™ %, Vn, k

where

e 1), is minimum target rates of user n.

e P, is maximum total transmission power of user n.

The spectrum management problem (5.2) aims to maximize the rate of user 1 while
guarantees the achievable rates of other users higher than their required minimum target
rates 1,,. P, denotes the maximum total transmission power of user n. Spectral mask
constraints pZ’maSk may also be applied if needed.

The centralized algorithm based on dual decomposition for OSB, proposed in [Cen-
drillon et al., 2006], decouples joint optimization across all tones to make the problem
solvable per-tone basis. If the rate region is convex, the optimization problem (2) is equiv-

alent to the weighted sum rate optimization:

max anRn (5.3)

P1,PK

Yopp <P, Vn
s.t k

0< pz < pz,mask Vk, n

where the weight for user 1, wy, is set to unity, resulting in the maximization of the rate
of user 1; whereas w, > 0, n # 1 can be adjusted to guarantee the target rate of user n.

82 Chapter 5. Optimal Spectrum Balancing in DSL Network using DCA

Note that the assumption that the rate region is convex is justified in [Cendrillon et al.,
2006] for two-user in DSL system, and the same logic for two-user can be applied to justify
the convexity of rate region for multiple-user case. This approximate convexity of rate
region is based on the channel correlation between adjacent tones and small tone spacing,
and only becomes exact as the tone spacing approaches zero.

5.2.1 DC formulations of SMP (5.3)

First we write Problem (5.3) in the form of a minimization program

N — R, 0.4
pibin =2 (-4

Yopp < P,Vn
s.t k

k
0<pj < pl™ " Vh,n
We have
K
—anRn = —an <fSZrZ> (5.5)
n n k=1
For simplicity of notations, let us set

)

p= 1,2 pr) s k= D8,y)T

B = (CHY o TP 0, TR)T
Q.p = (FhZJ’ . 7FhZ,n—1’ 1’ th,n-ﬁ-l’ . 7FhZ,]\f)T’
hien (D) = — wn loga (81 .0k + Tayy),

9k.n (pk) = —Wn 10g2(a£npk + Fo_l?)‘

Then the objective function of Problem (5.4) can be expressed as

K
f() = f(pr,p2, -+ o) = > Filpr) (5.6)
k=1

with
N
Fi(pr) = _(gkn(0r) = hiem (D))
n=1

Since g, and hy, , are convex functions, f is a DC function with the following natural DC
decomposition:

f(p) = g(p) — h(p),

where

K N K N
9(0) == D> gkn(pr), hp) = D) hin(pr)-

k=1n=1 k=1n=1

However, from numerical point of views, the DCA scheme corresponding to this DC
decomposition is not interesting because it requires an iterative algorithm for solving a
convex program at each iteration. In an elegant way we introduce a nice DC reformulation
of the problem (5.4) for which the resulting DCA is explicitly determined via a very simple
formula. Such a DC decomposition of f is inspired by the following result.

5.2. Spectrum Management problem (SMP) 83

Theorem 5.1 There exists p > 0 such that the function

(o) = olloll* ~ 7() (57)

is convex on C, the feasible set of (5.4), say

K
C:={p e REN | Y pp < P, ogpggpz’m“’“ Vn=1,2,---,N; k=1,2---, K}
k=1

Proof 5.1 First, note that the function h is twice differentiable, and its Hessian is V?h =
pI —N2f. Furthermore we observe that the function h is convez on C if and only if Hessian
V2h(p) is semi-definite positive on C. The Hessian of f is computed as

V2 f = diag ([V? Fr(pr) (N < N) k=1, K) -

Thus, we have
Vif|| < V2F .
| | knllaXPH k (k)|

In other hand, we can calculate V2 Fy(py) as

N
V2F(pr) Z (V2 g0 (k) — Vhin(pr)),
n=1

with -
w ak,n(ak,n>
"log(2) (o npr + Toll)?
Bk,n(ﬁk,n)T
"1og(2)(Bk,npk + Lott)?

It is easy to check that V2gg n(pr) and V2?hy . (px) are semi-definite positive. Therefore, if

V2gkn(pr) =

v2hk,n(pk) =w

N
p> zlog o o) (k)

then

N
p> Z V2 g (pr)|

n=1

and so

N
[p] — Z V20kn(pr)] — semi-definite positive.

n=1

By the way V?h = pI — V?f is semi-definite positive.

Using the theorem above we get the next DC decomposition of f:

o) = 5olbll, 1(p) = gollpll® ~ F(p),

and Problem (5.4) can be now written in the form

min{ f(p) :=g(p) — h(p) | p € C}

or again, in the standard form of DC program:

min{xc(z) + f(p))|p € RV*F}.

84 Chapter 5. Optimal Spectrum Balancing in DSL Network using DCA

5.2.2 DCA applied to Problem (5.4)

Starting with p(®) = (pgo), e ,pf,?)) € C, we have to compute two sequences {p®)} and

{q®} such that

a® € on(p™) and p**tY € a(g + xo)* (@)
As indicated above p*+1) is an optimal solution of the convex quadratic program
min{g(p) — (p,q")|p € C}. (5.8)

Then, DCA apply to Problem (5.4) is described as Algorithm 8.

Algorithm 8
Initialization:
* Choose an initial point p(® € C, set r := 0;
* Let € be a sufficiently small positive number;
Repeat:
* Calculate

q") = Vh(p")) =pp" - Vf(p")

* Calculate pth) e (g + XC)*(q(T)) by solving the linear constrained quadratic
program

1 .
min{ 2 pllp[|* — (p, a)p € C} (5.9)

* Setr«r+1;
Until either [|[pT+) —p®|| < e(|lp™||+1) or [f(pUTV) — ()| < e(|f (™) +1).

Theorem 5.2 (Convergence properties of DCA)

i) Algorithm 8 generates a sequence {PF} such that the sequence {f(p¥)} is
monotonously decreasing.

it) The point p* is a critical point of Problem (5.4).

5.3 Numerical experiments

In this section, the performance of proposed OSB based on concave minimization is eval-
uated in various realistic upstream VDSL scenarios with 26-gauge (0.4 mm) lines, tone
spacing A f =4.3125 kHz, DMT symbol rate f; =4 kHz, and target symbol error probabil-
ity of 107 or less. The coding gain and noise margin are set to 3 and 6 dB, respectively.
ETSI noise model A [Oksman and Cioffi, 1999] is implemented to model non-VDSL dis-
turbers, consisting of 10 ADSL, 4 HDSL, and 10 ISDN disturbers. In all our simulations,
we adopted the FDD band plan 998 [McCammon, 2000], which specifies two separate bands
for upstream transmission: 3.75-5.2 MHz and 8.5-12 MHz. The optional 30-138 kHz band
is not used. The value of the maximum transmit power equals to 11.5 dBm.

Simulations were test with DCA and SCALE, OSB, IWF, SIW algorithms. The results
are presented in Figure 9.2.We can see that even is a local algorithm DCA almost converges
to a global solution. The rate region obtains by DCA almost the same with OSB (a global
algorithm) and SCALE algorithm.

5.3. Numerical experiments

85

_140 1 1 1 1 1 1 1 1 1
0 2 4 5] 8 10 12 14 16 18
Figure 5.1: Test case for 2 users.

14
£ 1
E r
w 10
£
& 5 ol YT A
z
= —f— 5B
MmoB
[
£ \ = [WF
2 4
g i 5 [
™
B 2 i SCALE

ﬂ T T T T T

0 10 20 30 40 50 &0

Data rate for 1500ft line (Mbps)

Figure 5.2: Rate region for 2 users, 1148 tones.

86 Chapter 5. Optimal Spectrum Balancing in DSL Network using DCA

14

=l=[DCA
=—4=—(5B
== \WF

S

=== 5CALE

Figure 5.3: Rate region for 2 users, 100 tones.

Other numerical results

We simplify more datasets from the original real data with respect to difference tones. The
numerical results are presented in the following to show the efficiency and promising of
DCA (see Figure. 9.3,9.4,9.5) in OSB problem.

5.4 Conclusion

In this paper, we presented an algorithm based on DCA and DC programming for solving
OSB problem efficiently. The preliminarily numerical results are compared with SCALE
which are some standard algorithms for solving SMP. From the result, it is promising to
apply DCA or combine DCA with an other algorithms in general case (e.g., the number of
user increases and the channel is non-symmetric).

5.4. Conclusion

14
12
10 —8—DCA
8 = 055
& \ = W F
4 SIW
5 e SCALE
0 T T T T T
0 10 20 30 40 50 &0
Figure 5.4: Rate region for 2 users, 200 tones.
14
-
=,
o 10
£
E g ol DCA
g —t— (58
m 5
8 \\ iy W
2 1
C i S
[
E ¢ i SCALE
0 T T T T T
0 10 20 30 a0 50 60

Data rate for 1500ft line (Mbps)

Figure 5.5: Rate region for 2 users, 400 tones.

Part 1V

CAR POOLING PROBLEMS

CHAPTER 6
Solving Car Pooling problem using

DCA

This chapter dedicates to introduce and solve Car pooling problem by DCA and Branch
and Bound-DCA. The main content of this chapter was taken into account in [Ta et al.,
2011].

Car pooling is a well known transport solution that consists in sharing a car between
a driver and passengers sharing the same route, or part of it. The challenge is to minimize
both the number of required cars and the additional cost in terms of time for the drivers.
There are two resulting problems that are interdependent and NP-complete: assigning
passengers to cars and finding the shortest path for the drivers so that the overall cost
is minimized. In this paper, we present the formulate of Car pooling problem as a Mix
Integer Linear Program (MILP) and then investigate a new solution method based on DC
(Difference of Convex functions) programming and DCA (DC Algorithms). In order to
globally solve the problem, we combine DCA with classical Branch and Bound algorithm
(BBDCA). DCA is used to calculate upper bound while lower bound is calculated from a
liner relaxation problem. Preliminary numerical results which obtained by DCA and BB-
DCA are compared with CPLEX, the best solver for MILP. They show that the proposed
algorithm is an efficient algorithm for solving MILP.

6.1 Introduction

Car pooling consists in managing the sharing of a pool of cars between several users that
have whole or part of their route in common. To solve the problem, several tasks should
be performed: choosing drivers and passengers, allocating passengers to cars, computing
an optimized route for the cars.

At each step, user preferences or specific constraints may be taken into account, such as
the maximum amount of additional time a driver accepts to dedicate to taking passengers,
or the time and location constraints for each user such as: departure and arrival place,
maximum travel time, etc.

As such, the car pooling transport problem may be described as some kind of fleet
management problem, since it consists in optimizing the route of several vehicles taking
into account the time constraints of both the drivers and potential passengers. According
to a recent survey classifying pickup and delivery problems [Parragh et al., 2008], it is a
Vehicle Routing Problem with Pickups and Deliveries (VRPPD), where passengers play
the same role as "goods". More precisely, it is a subset of the dial-a-ride problem [Cordeau
and Laporte, 2003], where the planning step can be done either a long time prior to the
trip — for instance the day before — or in real-time in a demand responsive fashion. In the
first case, the quality of the solution would be prioritized, whereas in the second one, speed
of execution would be paramount.

There are multiple forms for the car pooling problems, mainly depending on the scenario
and use cases considered. If car pooling is managed for the employees of a large company
or similarly of group of companies located at the same place, the problem is somehow

92 Chapter 6. Solving Car Pooling problem using DCA

simplified since there’s only one possible destination with several possible starting points
for the passengers and the drivers.

In this paper, we introduce the car pooling problem (CPP) and the formulation of
this problem as MILP (see [Baldacci et al., 2004]). As a result in Chapter 1.3, we show
how to adapt this approach for solving the car pooling problem in the form of MILP.
The proposed DCA for MILP enjoys several advantages: it converges to a local (integer)
solution after a finitely many iterations, and requires only the solution of a few number of
linear programs. Moreover, it is worth to mention that, although the DCA is a continuous
approach working on a continuous domain, it provides an integer solution. This is unusual
in continuous approaches and is original property of the proposed DCA.

The numerical results of DCA is compared with BBDCA and CPLEX. The computa-
tional results on several test problems show that DCA is an efficient algorithm for solving
MILP.

6.2 Problem statement and mathematical model

In this paper, the car pooling problem is considered as the problem which is description in
[Baldacci et al., 2004]. The topology of the network is given as a directed graph G = (V, A),
where V' = {0, ...,n} is the set of nodes and A is the set of arcs. The node 0 is associated
with the company workplace and the set of nodes V' = {1,...,n} C V is corresponding
to the employees. Let Vi = {1,...,ns} (resp. V. = {ns + 1,...,n}) be the subset of
nodes associated with the servers (resp. the clients), so we have V' = V5 U V.. The sets
of ongoing and incoming of node ¢ € V are denoted by I'; and Fi_l., respectively (i.e.,
T; ={j:(i,5) € Ay and ;' = {i : (4,5) € A}). Let d;; be a nonnegative cost and ¢;; be
a travel time associated with each arc (i,5) € A.

Each client 7 € V. has an associated penalty p; representing its contribution to the
total cost in case no server picks him up. Each employee ¢ € V| let e; be the earliest start
time from home and [; be the latest arrival time to workplace. Associated with each server
k € Vg, let Qr and T} be the the number of places available on his car and the maximum
driving time planing to spend to go from home to workplace.

It is assumed that txg < Ty <l — e Vk € V5. A simple path P = (i1,42,* ,im, im+1)
in G starting from server i; € Vj, visiting clients {ig,, i, } C V. and ending at workplace
im+1 = 0, is called a feasible path if it satisfies the following constraints (see [Baldacci et al.,
2004]):

(i) Capacity constraint: The number of vertices in P must be not greater than Q.

(ii) Mazimum traveling time constraint: The total travel time of P must be not greater
than T3, .

(iii) Departure/arrival time constraint: Let s;. be the departure time from vertex 7, in P
and let s;,, ., be the arrival time at the workplace. Path P satisfies the departure/arrival

time constraint if a feasible solution {s;,, ss,, - , s, } exists to the following inequal-
ities:
Sir+1 — S, Z tirir.t,_p VT' = 17 s, M, (61)
S, > €,,Vr=1,---,m,
li, 2 Sipyr, Vr=1,--- ,m.

The CPP is to find ns feasible paths visiting each employee at most one with respect to
manimize the sum of the path costs plus the penalties of unservices clients.

6.2. Problem statement and mathematical model 93

Useful Reduction

To reduce the time of the computational performance, the arcs can be removed from G if
that cannot belong to any feasible path. Let sht;; be the value of the shortest time path
from ¢ to j. In this paper, the following reductions are considered:

(1) A server cannot pick up another server; hence, remove arcs (i,j) € A with i,j € V.

(2) Server k cannot go directly to pick up client i if the total travel time exceeds the
maximum ride time of server k; hence, remove every arc (k,7), with k € Vs and i € V,
such that ti; + sht;p > Tj.

(3) Server k cannot go directly to pick up client ¢ if he cannot reach the workplace be-
fore time min[l,[;]; hence, remove any arc (k,i), with k € Vs and i € V., such that
max[ei, e + tki] + sht;g > min[lk, lz]

6.2.1 Mathematical formulation

In this section, we present a mathematical formulations of the CPP |Baldacci et al., 2004].
The one is based on three-index decision variables specifying the arcs traversed by each
server. We consider four sets of variables:

o for all (i,7) € A and k € Vj, let us set

ok 1 if arc (4, j) is traversed by server k,
K 0 otherwise,

e for all i € V., let us set

1 if client 4 is not picked up by any server,
Yi = .
0 otherwise,

e s; representing the pickup time of employee ¢ € V,
e 1" denoting the arrival time of server k € V; at the workplace.

A mathematical formulation of the CPP is the following:

min z(F) = Z Z dijxfj + sz‘yi (6.4)

keVs (i,5)€A i€V,
subject to

S oaf=1,keV, (6.5)

JjEy
S aky=1,keV, (6.6)

jergt
doahi- Y ali=0ie Ve, keV, (6.7)

jer;? Jjery

> ak < Qi keV, (6.8)

(i,j)€A
Z tijl'fj <Ty, keV (6.9)

(i,7)€EA

94 Chapter 6. Solving Car Pooling problem using DCA

sj—si <tij+M(1=) a), (i,j) € A’ (6.10)
keVs
si>ep, i€V, (6.11)
WE > si+tig— M1 —zk), ieV', keV,, (6.12)
W <L+ M1 =) afy), i€V, keV, (6.13)
Jer;
YN i +ui=1, i€V, (6.14)
keVs jel;
zj; €{0,1}, (i,§) € A, k€ V,, (6.15)
RF >0, keVyands; >0, ieV. (6.16)

In this problem, the objective function (6.4) aims to minimize the sum of the costs of
the paths used by the servers to reach the workplace plus the penalties cost of the un-
serviced clients. Equations (6.5) ensure that each server leaves its house, while Equations
(6.6) impose that each server arrives at the workplace. Equations (6.7) are continuity
constraints. Inequalities (6.8) and (6.9) are capacity and maximum time constraints, re-
spectively. Inequalities (6.10) and (6.11) define the pick up time variables s;,7 € V’, while
inequalities (6.12) and (6.13) set the arrival times k¥, k € V, of the servers at the workplace
and ensure that every employee ¢ € V' arrives at the workplace at a time compatible with
l;, respectively. Equations (6.14) ensure that each client is either picked up by a server or
is left unserviced.

6.3 Solving Car Pooling problem by DCA

6.3.1 DC Algorithm for solving Car Pooling problem

In this section, we consider the car pooling problem (6.4)-(6.16). By using an exact penalty
result, we can reformulate the car pooling problem in the form of a concave minimization
program. The exact penalty technique aims at transforming the original problem (6.4)-
(6.16) into a more tractable equivalent DC program.

Let us set u = (s,h) € R?,v = (z,y) € IR™, matrix A and vector b are defined such

that the constraints (6.5)-(6.14) can be expressed as A(u,v) < b.
Let N N
K = {(u,v) € R"™™ : A(u,v) <b, u € R", v e [0,1]"}.

The feasible set of (6.4) is then
S ={(u,v) : (u,v) € K, u e R}, ve{0,1}"}.

Let us consider the function p : R — IR defined by:

m

p(u,v) = Zvi(l — ;).

i=1
It is clear that p(u,v) is concave and finite on K, p(u,v) > 0 V(u,v) € K and that:

{(u,v) : (u,v) € S} = {(u,v) : (u,v) € K,p(u,v) <0}.

'The constraints (9) in [Baldacci et al., 2004] is s; —s; > t;; + M (1 — > kev. z¥), (i,§) € A, but there
is a text error in this inequality, in which > has to replace by < as in (6.10).

6.3. Solving Car Pooling problem by DCA 95

Hence problem (6.4) can be rewritten as:

min{z civi : (u,v) € K, p(u,v) <0}. (6.17)
i=1

From the penalty results in Theorem 1.6 we get, for a sufficiently large number 7
(n > o), the equivalent concave minimization problem (6.17):

min{ f,, (u,v) := Zcivi + np(u,v) : (u,v) € K},
i=1

which is a DC program of the form:
min{g(u,v) — h(u,v) : (u,v) € R"™}, (6.18)

where
g(u, U) = XK(U’ U)v
m
h(ua U) = _fr](u7 U) = - Z CiUj — ﬁp(uv U)'
i=1
We have successfully transformed an optimization problem with integer variables into
its equivalent form with continuous variables. Notice that (6.18) is a polyhedral DC pro-
gram where g is a polyhedral convex function (i.e., the pointwise supremum of a finite
collection of affine functions).
DCA applied to the DC program (6.18) consists of computing, at each iteration k, the
two sequences { (u*,v*)} and {(a*,¢*)} such that (o, ¢¥) € On(uF, o) and (uFt?, vk +1)
solves the next linear program of the form (FPy)

min{g(u, v) — {(u,v) = (@*,v%), (¥,) : (u,v) € "™}
& min{—((u,v), (&, ¢*)) : (u,v) € K}. (6.19)
From the definition of h, a subgradient (a®,(¥) € Oh(u*,v*) can be computed as follows:
(a®, ¢F) = Vh(uF, %) = (0, 200F — ne — ¢), (6.20)

where e = (1,--- ,)T € R™ and ¢ = (c1,- -+ ,em)?.
The DCA scheme applied to (6.18) can be summarized as Algorithm 9.

Algorithm 9 DCA
Initialization:
Choose an initial point (u?,v%), set k = 0;
Let &1, 9 be sufficiently small positive numbers;
Repeat
Compute (¥, ¢¥) via (6.20);
Solve the linear program (6.19) to obtain (uf*!, vF+1);
k<+—k+1;
Until either |[(u*1, o8+ — (Wb, o) < e(||(uF,oF)]] + 1) or |fy(uftLoF) —
Folak, o) < 23 (b, o)+ 1).

Theorem 6.1 (Convergence properties of Algorithm DCA)

e DCA generates the sequence {uF,v*} contained in V(K) such that the sequence
{fy(u®,v¥)} is decreasing.

96 Chapter 6. Solving Car Pooling problem using DCA

o The sequence {(u¥,v*)} converges to (u*,v*) € V(K) after a finite number of iterations.

o The point (u*,v*) is a critical point of Problem (6.18). Moreover if v} # % for all
i €{0,...,n}, then (u*,v*) is a local solution to (6.18).

e For a number n sufficiently large, if at iteration v we have v" € {0,1}™, then v* €

{0,1}™ for all k > r.

Proof 6.1 See Theorem 1.7.

6.3.2 A combined DCA-Branch and Bound algorithm

For globally solving the strategic car pooling problem we combine the DCA with the
classical Branch and Bound method applied to MILP. The linear relaxation is used for
computing lower bounds while the upper bounds are determined by applying DCA to
(6.18). The main result is presented in Chapter 1.3.

Our combined algorithm can be summarized as follows: starting with the rectangle
Ry := [0,1]™, we consider at each iteration k& > 0 the rectangle Ry corresponding to
the smallest lower bound [i. The selected rectangle Ry is divided into two subrectangles
Ry,i = 0,1 and the lower bound is improved by solving the corresponding linear programs.
The upper bound ~; is determined by applying the DCA to (6.18). The procedure is
terminal when v, — 0r < € and it provides an e-optimal solution of MILP.

The combined algorithm.

Let Ry :=[0,1]™.
Set g := +00, fy := —o0, restart := true, R := {Ro}, and k = 0.
Let e be sufficiently small positive number.

1. Let Ry be the rectangle such that
Br = B(Rk) = min{S(R) : R € R}.
Bisect R}, into two subrectangles Ry, and Ry, via the index jx*
Ry, ={ve Ry :vj,=1, i=0,1}
2. Compute lower bounds S, (i = 0,1) by solving the linear relaxation problems corre-
sponding to the set Ry,.

3. If (restart = true) then update 7y, the best upper bound of the optimal value of
(MILP) by applying DCA to Problem (6.18) from a suitable starting point discovered
in Step 2.

4. f R = (ie. 7 — Br < ¢€), then STOP, the optimal solution is (u,v*) that verify
(c,v) = g, otherwise update

R(—RU{Rki B(sz) <’yk—€,i:0,l}\Rk
and go to Step 1.

The combined algorithm differs from the classical Branch and Bound scheme by Step 3
in which DCA is investigated. Here restart is a boolean variable which takes value true
when we decide to restart DCA.

The question when DCA is restarted is interesting from numerical points of view and
it will be studied. As in several DC programs, DCA provides a global solution to (6.18)

6.3. Solving Car Pooling problem by DCA 97

(and so is to (MILP)) from a good starting point. Such a point can be found efficiently
while computing lower bounds. We will see in the computational experiments that DCA
provides an integer solution after several iterations of the Branch and Bound algorithm.
Nevertheless we must continue the Branch and Bound process to ameliorate the lower
bound until it is close to the best upper bound. In fact, the Branch and Bound algorithm
is introduced to find a good starting point for DCA and check the globality of DCA. The
starting point of DCA in this case is the solution of linear relaxation problem.

When DCA is restarted?

During the branch and bound process we restart DCA when a feasible solution to (MILP)
which improves the best current upper bound is pointed out. In such a case, the starting
point of DCA is the just mentioned feasible solution to (MILP).

On the other hand, DCA is also restarted when the number of the 0-1 components of
the binary variables (denoted N, r,) of the solution (ufts vfk) to the corresponding linear
relaxation problem is sufficiently large, namely Nyr,, = m/2.

We now describe the combined DCA-Branch and Bound algorithm for globally solving
Problem (MILP) as Algorithm 10.

Algorithm 10 Branch and Bound-DCA (BBDCA)

Initialization:

Let Ry := [0, 1]™.

Solve the linear relaxation problem of (MILP) to obtain an optimal solution (uf, vf)
and the first lower bound Sy := B(Ry).

Solve (6.18) by DCA from the starting point (10, v%) to obtain (u®, v[).
If (ul™ vf) is feasible to (MILP) then set o := (¢, v} and set (u?,v%):=(ul®, vf)
else set v := +o0.
If (vo — Bo) < €|yo| then (u,v°) is an e-optimal solution of (MILP)
else set R < {Rp}, k < 0.
While stop — false do

Select a rectangle Ry such that gy = B(Ry) = min{8(R) : R € R}.

Bisect R}, into two subrectangles Ry, and Ry, via the index jx*

Rki:{UGRkZUj*:i, i:O,l}

Solve the subproblems (Py,) to obtain 3(Ry,) and (uf™: vf:), (i =0, 1):
(Pe,) B(Rk,) :=min {{c,v) : (u,v) € K, v € Ry}

If (uf™i %) is the best feasible solution to (MILP) then

update 7, and the best feasible solution (u*,v*) by applying DCA to (6.18) from

(ufi pfthi),

else if (NyRki >m/2) then

: . Ry. Ry,
Solve the linear relax problem to obtain (u, ", v,).

Apply DCA to (6.18) from (ufkl,vfikl)
Update v, and the best feasible point (u*,v").
Endif
Endif
Set R(—’RU{Rki : IB(R]%) <V —E,1 = 0,1}\Rk
If R =0 then STOP, (u*,v*) is e-optimal solution, else k « k + 1.
Endwhile

98 Chapter 6. Solving Car Pooling problem using DCA

DCA BBDCA CPLEX12.2

DATA OBJ Time | GAP OBJ Time GAP OBJ Time | GAP1 GAP2
DATAT | 4340 | 0,17 | 6,93 | 4340 0,28 | 6,93 | 4190 | 0,13 | 3,46 | 3,46
DATA2 | 3908 | 0,19 | 2,66 | 3908 0,27 | 2,66 | 3869 | 0,15 | 1.00 | 1.00
DATA3 | 4529 | 0,17 | 9,29 | 4529 0,28 | 9,29 | 4301 | 0,11 | 5,03 | 5,03
DATA4 | 4411 | 0,19 | 3,42 | 4411 0,27 | 3,42 | 4382 | 0,18 | 0,66 | 0,66
DATA5 | 4414 | 0,17 | 9,64 | 4243 | 18,47 | 6,00 | 4188 | 0,19 | 5,12 | 1,30
DATAG | 3883 | 0,19 | 5,44 | 3827 5,47 | 4,06 | 3815 | 0,17 | 1,75 | 0,31
DATA7 | 4335 | 0,19 | 5,45 | 4308 | 177,82 | 4,86 | 4244 | 0,19 | 2,10 | 1,49
DATAS | 4046 | 0,17 | 6,70 | 3907 0,73 | 3,38 | 3888 | 0,18 | 3,91 | 0,49
DATA9 | 4436 | 0,27 | 9,37 | 4436 0,36 | 9,37 | 4250 | 0,19 | 4,19 | 4,19
DATA10 | 4259 | 0,18 | 4,24 | 4259 0,27 | 4,24 | 4215 | 0,18 | 1,03 | 1,03
DATALL | 3773 | 0,17 | 6,82 | 3773 0,28 | 6,82 | 3639 | 0,19 | 3,65 | 3,55

DATA12 | 4384 | 0,17 | 6,94 | 4384 0,25 | 6,94 | 4246 | 0,17 | 3,15 | 3,15
DATA13 | 4035 | 0,19 | 5,74 | 4035 0,28 | 5,74 | 3882 | 0,17 | 3,79 | 3,79
DATA14 | 4123 | 0,19 | 5,31 | 4028 0,64 | 3,08 | 3982 | 0,18 | 3,42 | 1,14

DATA15 | 4293 | 0,17 | 5,88 | 4293 0,27 | 5,88 | 4201 | 0,18 | 2,14 | 2,14
DATA16 | 4299 | 0,17 | 4,94 | 4299 0,27 | 4,94 | 4263 | 0,19 | 0,84 | 0,84
DATA17 | 4474 | 0,16 | 4,73 | 4474 0,26 | 4,73 | 4390 | 0,15 | 1,88 | 1,88
DATA18 | 4112 | 0,19 | 7,41 | 4060 7,75 | 6,22 | 4018 | 0,15 | 2,29 | 0,99
DATA19 | 4018 | 0,28 | 3,37 | 4018 0,38 | 3,37 | 3998 | 0,31 | 0,50 | 0,50
DATA20 | 4112 | 0,19 | 5,88 | 4085 0,64 | 5,26 | 4059 | 0,21 | 1,30 | 0,64
Average | 4209,2 | 0,19 | 6,00 | 4180,8 | 10,76 | 5,36 | 4101 | 0,18 | 2,55 | 1,88

Table 6.1: Comparative results between DCA, BBDCA and Cplex m—=51, n ~ 400.

DCA BBDCA CPLEX12.2

DATA OBJ Time GAP OBJ Time GAP OBJ Time GAP1 GAP2
DATA21 | 9010 | 0,64 | 7,60 | 9010 0,07 | 7.6 | 8516 | 0,45 | 5,48 | 548
DATA22 | 8075 | 0,72 | 8,23 | 8075 1,05 | 8,23 | 7665 | 0,91 | 5,08 | 5,08
DATA23 | 9620 | 0,64 | 7,44 | 9238 | 154,92 | 3,61 | 9142 | 0,47 | 4,97 | 1,04
DATA24 | 7990 | 0,63 | 6,59 | 7804 | 37,17 | 4,36 | 7718 | 0,65 | 3,40 | 1,10
DATA25 | 9333 | 0,66 | 6,1 | 9333 0,95 | 6,1 | 9012 | 0,61 | 3,44 | 3,44
DATA26 | 8572 | 0,64 | 8,25 | 8572 1,00 | 8,25 | 8084 | 0,71 | 5,69 | 5,69
DATA27 | 8331 | 0,64 | 5,81 | 8331 1,02 | 5,81 | 8016 | 0,52 | 3,78 | 3,78
DATA28 | 9167 | 0,64 | 8,4 | 9167 0,97 | 8,4 | 8754 | 0,61 | 4,51 | 4,51
DATA29 | 8873 | 0,66 | 6,34 | 8623 2,34 | 363 | 8528 | 0,53 | 3,89 | 1,10
DATA30 | 8589 | 0,67 | 8,17 | 8194 | 67,05 | 3.75 | 8168 | 0,82 | 4,90 | 0,32
DATA31 | 8280 | 0,64 | 6,75 | 8280 0,95 | 6,75 | 7908 | 0,51 | 4,49 | 4,49
DATA32 | 8210 | 0,66 | 7,64 | 8210 1,00 | 7,64 | 7835 | 0,59 | 4,57 | 4,57
DATA38 | 8994 | 0,75 | 7,06 | 8759 | 22.89 | 4,57 | 8652 | 0,76 | 3,80 | 1,22
DATA39 | 8782 | 0,72 | 8,06 | 8782 1,08 | 8,06 | 8439 | 0,45 | 3,91 | 3,91
DATA40 | 8752 | 0,72 | 5,38 | 8752 1,14 | 5,38 | 8583 | 0,55 | 1,93 | 1,93
DATA4L | 8268 | 0,78 | 6,24 | 8268 1,15 | 6,24 | 8029 | 0,68 | 2,89 | 2,89
DATA42 | 8738 | 0,78 | 7,28 | 8738 1,14 | 7,28 | 8497 | 0,52 | 2,76 | 1,22
DATA43 | 8146 | 0,75 | 6,09 | 7915 2,58 | 3,35 | 7849 | 0,79 | 3,65 | 0,83
DATA44 | 8274 | 0,73 | 7,06 | 8034 | 101,18 | 4,29 | 7912 | 0,75 | 4,38 | 1,52
DATA45 | 8992 | 0,76 | 6,49 | 8992 1,05 6,49 | 8674 | 0,51 | 3,54 | 3,54
DATA46 | 8980 | 0,72 | 7,45 | 8980 1,15 | 7,45 | 8695 | 0,55 | 3,17 | 1,33
DATA47 | 9102 | 0,75 | 6,06 | 9102 1,41 | 6,06 | 8772 | 0,72 | 3,63 | 3,63
DATA48 | 9268 | 0,76 | 7,39 | 8968 17,68 | 4,30 | 8812 | 0,49 | 4,92 | 1,74
DATA49 | 8940 | 0,78 | 7,87 | 8940 1,16 | 7,87 | 8578 | 0,88 | 4,05 | 4,05
DATA50 | 9584 | 0,76 | 6,89 | 9392 | 112,44 | 5,02 | 9324 | 0,59 | 2,71 | 0,32
Average | 8754,8 | 0,70 | 7,07 | 8658,36 | 21,41 | 6,01 | 8406,5 | 0,63 | 3,98 | 2,88

Table 6.2: Comparative results between DCA, BBDCA and Cplex m=101, n = 800.

6.4 Numerical experiment

In this section, the results furnished by DCA and Brand and Bound-DCA (BBDCA) are
compared with CPLEX 12.2. The algorithm has been coded in C++ and implemented
on a Intel Core 2 CPU 2.53 Ghz, RAM 2GB. The directed graph G = (V, E) is randomly
generated with m-nodes and n-arcs. The datasets are randomly generated in a similar way
as the data used in [Baldacci et al., 2004]. For Brand and Bound algorithm, the STOP
condition is setup by maximize number of iteration equaled 1000 or the GAP is less than
10%.

6.4. Numerical experiment 99

DCA BBDCA CPLEX12.2

DATA OBJ Time GAP OBJ Time GAP OBJ Time GAP1 GAP2
DATABL | 10277 | 1,14 | 7,53 | 10277 1,83 5,48 | 9951 | 1,29 | 3,17 | 1,02
DATA52 | 10208 | 1,10 | 7,95 | 10208 1,59 | 7,95 | 9761 | 0,86 | 4,38 | 0,83
DATAB3 | 11283 | 1,13 | 6,59 | 11283 1,52 6,59 | 10932 | 0,79 | 3,11 | 3,11
DATA54 | 10718 | 1,03 | 7,01 | 10718 1,55 | 7,01 | 10312 | 1,31 | 3,79 | 3,79
DATA55 | 10895 | 1,05 | 7,33 | 10895 1,58 | 7,33 | 10472 | 2,05 | 3,88 | 3,88
DATAB6 | 10886 | 1,02 | 5,01 | 10526 | 96,31 | 2,69 | 10428 | 0,75 | 4,21 | 0,93
DATA57 | 11021 | 0,98 | 7,92 | 11021 1,56 | 7,92 | 10496 | 0,84 | 4,76 | 4,76
DATA58 | 11201 | 1,03 | 4,86 | 10989 | 96,64 | 3,04 | 10962 | 0,68 | 2,13 | 0,25
DATA59 | 10689 | 1,02 | 6,91 | 10689 1,50 | 6,91 | 10285 | 0,89 | 3,78 | 3,78
DATA60 | 10438 | 1,05 | 8,05 | 10438 1,58 | 8,05 | 9915 | 1,09 | 5,01 | 5,01
DATAG61 | 11046 | 1,03 | 7,13 | 11046 1,52 | 7,13 | 10537 | 1,01 | 4,61 | 4,61

DATA62 | 11463 | 1,05 | 9,25 | 11463 1,55 | 9,25 | 10881 | 0,85 | 5,08 | 5,08
DATA63 | 11239 | 1,00 | 7,03 | 11239 1,58 | 7,03 | 10718 | 0,81 | 4,64 | 4,64
DATA64 | 10591 | 1,05 | 4,76 | 10591 1,56 | 4,76 | 10296 | 1,03 | 2,79 | 2,79

DATA65 | 11079 | 1,02 | 6,76 | 10728 | 101,79 | 3,71 | 10645 | 0,84 | 3,92 | 0,77
Average | 10868,9 | 1,05 | 7,00 | 10807,4 | 20,91 | 6,46 | 10439,4 | 1,00 | 3,95 | 3,40

Table 6.3: Comparative results between DCA, BBDCA and Cplex m—126, n = 1000.

DCA BBDCA CPLEX12.2

DATA OBJ Time GAP OBJ Time GAP OBJ Time GAP1 GAP2
DATA33 | 13328 | 1,42 | 6,92 | 13328 2,14 | 6,92 | 12672 | 1,11 | 4,02 | 4,92
DATA34 | 12374 | 1,41 | 8,14 | 12374 2,13 | 8,14 | 11819 | 1,38 | 4,49 | 4,49
DATA35 | 13056 | 2,13 | 6,46 | 12590 | 184,50 | 3,00 | 12497 | 1,33 | 4,28 | 0,74
DATA36 | 12297 | 1,45 | 5,44 | 12297 2,19 | 5,44 | 11948 | 1,32 | 2,84 | 2,84
DATA37 | 12162 | 1,48 | 9,63 | 12162 2,20 | 9,63 | 11406 | 1,58 | 6,23 | 6,23
DATA66 | 12579 | 1,50 | 6,10 | 12270 | 164,29 | 3,74 | 12181 | 2,14 | 3,16 | 0,73
DATA67 | 13235 | 1,13 | 7,02 | 13235 1,73 | 7,02 | 12785 | 1,72 | 3,40 | 3,40
DATA68 | 13138 | 1,47 | 5,45 | 12818 | 341,41 | 3,09 | 12732 | 0,99 | 3,09 | 0,67
DATA69 | 12907 | 1,47 | 9,27 | 12907 2,22 9,27 | 12178 | 1,75 | 5,65 | 5,64
DATA70 | 12735 | 1,86 | 9,35 | 12735 2,50 | 9,35 | 12123 | 1,78 | 4,81 | 4,81
DATA71 | 12056 | 1,17 | 5,73 | 11924 | 98,21 | 4,71 | 11823 | 1,01 | 1,93 | 0,62
Average | 127152 | 1,50 | 7,23 | 12603,6 | 73,04 | 6,37 | 12196,7 | 1,47 | 4,07 | 3,19

Table 6.4: Comparative results between DCA, BBDCA and Cplex m—151, n ~ 1200.

The results obtained by DCA, BBDCA and CPLEX 12.2 are shown in the same tables.
We use the following notations:

e { DATA: name of generated problem (For example, for the "DATA1", it consists of
the generated data for a problem, where m = 51,n = 400, n, = [(m —1)/4] +2 and the
values of another parameters are given in a file "datal.txt".),

e < OBJ: the objective function of each problem,
e Time: CPU time in second of each algorithm,

e GAP = %.100% where LB is the best lower bound and OBJ is the objtive
function of each problem,

OBJobtained by DcA—OBJoptained by CPLEX
° = .
¢ GAPI OB Jobtained by DCA 100%’

OB Johtained by BBDCA —OBJobtained by CPLEX
L] = = . .
<> GAP2 OBJobtained by BBDCA 100%

From the numerical results, we observe that:

e DCA always provides an integer solution and it converges after a few number of itera-
tions.

e In BBDCA, the DCA with restarting provides a feasible solution to (MILP) very rapidly.

100 Chapter 6. Solving Car Pooling problem using DCA

14000 1

12000

10000 WOCA

8000 W BBOCA

5000 W CPLEX
4000

2000

Average value of the objective function

51 101 126 151

Mumber of nodes m

Figure 6.1: Comparison the average value of objective functions between DCA, BBDCA
and CPLEX 12.2 with m=51, 101, 126, 151.

e The results of BBDCA is slight better than of DCA but the CPU time of DCA is better
than of BBDCA.

e CPLEX12.2 is also slight better than DCA and BBDCA including CPU time and the
value of the objective function. However, we note that CPLEX12.2 (the latest version
of CPLEX) is combined by many efficient algorithms to solve MILP while DCA is only
a local algorithm.

6.5 Conclusion

In this paper, we present MILP formulation for Car pooling problems. An efficient ap-
proach based on DC programming and DCA is proposed for solving this problem. The
combine DCA-Branch and Bound Algorithm (BBDCA) is given to globally solve problem.
Preliminary numerical simulations show that the BBDCA is very interesting. The DCA is
original because it can give a mixed integer solution while it works in a continuous domain.
Its inexpensiveness is crucial to high-dimensional problems that we address in future work.

CHAPTER 7
Solving Multiobjective Dynamic Car
Pooling problem

This chapter devotes to introduce a particular Car pooling problem in the form of Multiob-
jective optimization problem. It is an extension version of Car pooling problem in Chapter
6. Then, we proposed a heuristic algorithm to solve the multiobjective dynamic car pooling
problem. The main content of this chapter is presented in [Ta et al., 2012b].

Car pooling problem (CPP) is a well known transport solution that consists in sharing
a car between a driver and passengers sharing the same route, or part of it. The challenge
is to minimize both the number of required cars and the additional cost in terms of time for
the drivers. There are two resulting problems that are interdependent and NP-complete:
assigning passengers to cars and finding the shortest path for the drivers so that the
overall cost is minimized. In this paper, we consider a multiobjective dynamic car pooling
problem, where both the cost and the total travel time of drivers are to be minimized. We
based on labeling algorithms for solving the multiobjective shortest problem investigate a
new algorithm to solve this problem. Preliminary numerical results in a real scenario are
reported to show the efficiency of our proposed algorithm and promising to apply in real
time applications.

7.1 Introduction

Car pooling consists in managing the sharing of a pool of cars between several users that
have whole or part of their route in common. To solve the problem, several tasks should
be performed: choosing drivers and passengers, allocating passengers to cars, computing
an optimal route for the cars.

At each step, user preferences or specific constraints can be considered, such as the
maximum travel time a driver accepts to dedicate to taking passengers, or the time and
location constraints of each user such as: earliest departure time and latest arrival time at
workplace, etc.

To specify, when the role of passenger is considered as "goods", the car pooling problem
may be described as some kinds of fleet management problem. According to a recent survey
classifying pickup and delivery problems |Parragh et al., 2008], it is a Vehicle Routing
Problem with Pickups and Deliveries (VRPPD). More precisely, it is a subset of the dial-
a-ride problem |Cordeau and Laporte, 2003|, [Cordeau and Laporte, 2007|, [Ropke et al.,
2007], vehicles routes and schedules are designed for users who specify pickup and delivery
requests between origins and destinations where the planning step can be done either a long
time prior to the trip — for instance the day before — or in real-time in a demand responsive
fashion. In the first case, the quality of the solution would be prioritized, whereas in the
second one, the speed of execution would be paramount. However, the major difference
between the dial-a-ride problems and the CPP is the vehicle ownership. In the former
dial-a-ride problems, there must be full time drivers that service all of the passengers. In
the CPP, the vehicles belong to the participants, who take turns sharing use of their cars

102 Chapter 7. Solving Multiobjective Dynamic Car Pooling problem

and act as drivers to pick up the others. In other words, the drivers are also subject to a
transportation demand.

There are multiple forms for the car pooling problems, mainly depending on the sce-
nario and use cases considered. It usually focused on the to-work problem (from different
origins to a common destination) or the return-from-work problem (from the same origin
to different destinations).

In [Baldacci et al., 2004], [Ta et al., 2011], the car pooling problem is managed for the
employees of a large company or similarly of group of companies located at the same place,
the problem is somehow simplified since there’s only one possible destination with several
possible starting points for the passengers and the drivers. In [Baldacci et al., 2004], an
exact and a heuristic method are proposed, based on two integer programming formula-
tions, for solving the problem. Their exact method is based on a bounding procedure that
combines three lower bounds derived from different relaxations of the problem. A valid
upper bound is obtained by the heuristic method, which transforms the Lagrangian lower
bound solution into a feasible solution. In [Ta et al., 2011], based on DC programming,
DC Algorithm and using penalty technique to solve Binary Integer Linear Program, the
two algorithms are presented (DCA) for solving the problem and DCA-Branch and Bound
to globalize solution of DCA. In [Calvo et al., 2004], the authors presented an integrated
system for the organization of a car pooling service, using several current Information and
Communication Technologies (ICT) such as: web, GIS and SMS. The core of the system
is an optimization module which solves heuristically the specific routing problem.

However, to the best of our knowledge, there has not yet been any study of car pooling
as a multiobjective optimization problem. In this paper, we consider CPP as a bi-objective
optimization problem. The problem consists in finding a solution for drivers and passengers
sharing their cars with respect to bi-objective: minimize cost (travel cost + penalty cost
of unservices clients) and minimize the total travel time of the drivers. Based on labeling
algorithm for solving multiobjective shortest path problem, we investigate a new algorithm
to solve this problem. The preliminary numerical results of a real scenario are presented
to show the efficiency of the proposed algorithm.

The paper is organized as follows. In Section 2 we introduce the multiobjcetive car
pooling problem (MCPP). The algorithm is developed in Section 3 while the numerical
results are reported in Section 4. Finally, the conclusions are presented in Section 5.

7.2 Problem statement

Herein, the car pooling problem is considered as a generalization of the CPP problem which
is description in |Baldacci et al., 2004] and in |Ta et al., 2011|. Two objective functions
are considered in MCPP are minimize the cost (travel cost + penalty cost of unservices
clients) and minimize total travel time.

The topology of the network is given as a directed graph G = (V, A), where V =
{0,1,...,n} is the set of nodes and A is the set of arcs. The node 0 is associated with the
company workplace and the set of nodes V' = {1,...,ny} C V (ny < n) is corresponding to
the employees (drivers and passengers). Let Vi = {1,...,ns} (resp. V. = {ns + 1,...,n¢})
be the subset of nodes associated with the drivers (resp. the passengers), so we have
Vi=V,UV.CV.

Each passenger ¢ € V. has an associated penalty p; representing its contribution to the
total cost in case no driver picks him up. Each employee ¢ € V', let e; be the earliest
start time from home and [; be the latest arrival time to his destination. Associated with
each driver k € Vg, let @ and T}, be the the number of available places on his car and the
maximum driving time planing to spend to go from home to his destination.

It is assumed that t5g < Ty <l — e Yk € V5. A simple path P = (41,42, ,im, im+1)

7.3. Algorithm description 103

in G starting from server i; € V;, visiting vertices {ia,.....,4m} € V\{0} and ending at
destination 4,,41 = 0, is called a feasible path if it satisfies the following constraints:

(i) Capacity constraint: The number of passengers in P must be not greater than Q.

(ii) Mazimum traveling time constraint: The total travel time of P must be not greater
than T3, .

(iii) Departure/arrival time constraint: Let s; be the departure time from vertex i, (as-
sociated with the employee at 4,) in P and let s; , be the arrival time at his des-
tination. Path P satisfies the departure/arrival time constraint if a feasible solution

{Si1+8ips -+ Sipy } exists to the following inequalities:
Sipy1 — Sip > tirir+17 Vr = 17 T, M, (71)
s, > e, ¥r=1,---,m, and i, € V' 2)
L, > Sip., Vr=1,---,m, andi, € V.

The MCPP is to find ng feasible paths with respect to bi-objective: minimize the sum
of the path costs plus the penalties of unservices passengers and minimize the total travel
time of the drivers.

Moreover, the system can be changed by incoming (or leaving) of new drives (cars) or
passengers. Thus, for solving this problem, it is necessary to investigate an inexpensive
and distributed algorithm. From the practical point of view, we propose a new algorithm,
in spite of consider all the drivers at the same time, we consider one driver each time, then
try to find an efficient path (a Pareto point) corresponding with the driver which minimizes
the path costs plus the penalties of unservices passengers and minimizes the total travel
time of the driver.

7.3 Algorithm description

The inspiration of our algorithm is based on labeling algorithms (e.g., Martin algorithm,...)
for solving multiobjective shortest path problems (see in [Ehrgott, 2005]). The idea of our
algorithm is quite simple. Firstly, we take the driver whose departure time is smallest
(earliest). Secondly, from this driver, we find a feasible path with respect to minimize the
cost (path cost + penalty cost of unservices clients) and minimize the total travel time, it is
called an efficient path. Thirdly, we remove the driver and its passengers into the solution
list and restart with a new driver (who have new smallest departure time) and passengers
(the rest of passengers). At each restart time, we update new drivers and passengers.

For finding an efficient path, at each iteration, at each vertex, we consider two different
sets of labels: permanent labels (PT) and temporary labels (TL). The algorithm selects
the minimum dominant lexicographic label from all the sets of temporary labels, converts
it to a permanent label, and propagates the information contained in this label to all the
temporary labels of its successors. The procedure stops when there are no more temporary
labels. A label L; can be defined as follows:

L; = (ci, ti, ni, Ty, 4, hy, I1D;) (7.4)
where
e ¢; is the cost,
e {; is the departure time,

e 1, is the available places,

104 Chapter 7. Solving Multiobjective Dynamic Car Pooling problem

T; is the latest arrival time,

j is the adjacent vertex from which it was possible to label the vertex 1,

h is the identification of the label in the list of labels on vertex 7 from which it created
the label L;,

e [D; is the identification of label L;.

At each driver, the departure time, the mazimal travel time, the number of available places
are known, supposed that the latest arrival time of the driver equals to the departure time
plus maximal travel time of the driver. At each passenger, the penalty cost, the earliest
departure time, the latest arrival time are known and each arc associates with a vector (arc
cost, arc travel time). At each vertex, we define a dominant relation between two labels
L; = (¢, ti,ni, T;,—,—,—) and Lj = (¢j,tj,n,Tj,—, —, —) as follows: we said that L; is
dominated by L; if and only if ¢; < ¢j, t; = tj, n; > nj, T; > T; and denote L; < Lj. At
one vertex, a label L; is called dominance label if and only if there don’t exist a label L;
such that L; is dominated by L;.
The algorithm can be presented as Algorithm 11.

Algorithm 11
Initialization:

Read input data: a digraph G = (V, A), with (travel cost, travel time) arc vectors;
number of drivers; number of passengers; departure time and maximal travel time and
number of available places of drivers; penalty cost, earliest departure time and latest
arrival time of passengers.

Repeat

Finding a server s with the minimal departure time;

Calculate label L at server s and let TL := {L};

While 7L # 0 do

Let label L = (¢, t,n,T,vq, h, k) of vertex v; be the lexicographically smallest label
in TL;
Remove L from 7L and add it to PL;
For all v; € V such that (v;,v;) € A do
Create set of labels (see Create label procedure) L' = (¢, ¢/, n',T',v;, k,r) as the
next label at node v; and add it to T L;
Sort label at v; by lexicographic order;
Delete all labels of node v; dominated by L', delete L’ if it is dominated by
another label of node v;
End for;
End while
At the destination node
Delete label (c¢j,tj, —, —, —) if there exists a label (¢;,t;, —, —, —) such that ¢; > ¢
and t]‘ > ti;
Use the predecessor labels in permanent labels to recover all efficient paths from s
to destination node, choose an efficient path as the solution (depend on user’s criteria);
Remove driver s (resp. its passengers) from set of drivers (resp. from set of passen-
gers) into the solution list;
Until (Number of servers (drivers) = 0)

The algorithm is illustrated by the following example. Let us consider the network in
Figure 7.1 with the goal of computing an efficient path from driver 1s and driver 5s to
destination 6d, and consider three passengers 2c,3c,4c. For more details, driver 1s (resp.

7.3. Algorithm description 105

Algorithm 12 Create labels procedure

Initialization:
(vi,vj) € A and start from label L = (¢, t,n,T, vy, h, k) of vertex v; (see in Algorithm
11)
If (T > t+t;))
Create label L} = (¢ + ¢;j,t + tij,n, T, v;, k,r1) and add it to TL;
If (v; has a passenger and n > 1)
If (e; <t -+t <)
Create label L), = (¢ + ¢;jj — pj, t + tij,n — 1, min{T, T;},v;, k, r2) and add it to
TL;

5s) depart at time 10 (resp. 12), maximal travel time is 9 (resp. 10), number of available
places is 2 (resp. 2). Firstly, we have to find the minimum of departure time of driver 1s
and driver 5s, it equals to 10 associated with driver 1s. Thus, we start computing at driver
1s with label (27, 10, 2, 19,-, -,1), the cost value equals to the sum of penalty costs of all
clients (passengers). From driver 1s, we can visit passengers 2c and 3c.

At passenger 2c, we have (penalty cost, earliest departure time, latest arrival time) =
(6, 12, 17). To visit passenger 2c¢, we have one label at vertex 2c: (32, 13, 2, 19,1,1,1),
the cost equals to the cost in previous label plus cost path (1s-2c), it is 27+5= 32, the
departure time at 2c is 10 + 3 — 13 (depart time at 1s plus travel time from 1s to 2¢), the
number of available places is 2 (in this case, the driver goes to visit passenger 2c¢ but he
does not take passenger 2c), then the latest arrival time is 19 (it equals to latest arrival
time in previous label).

To continue, we test the conditions departure time at 1s plus travel time from 1s to
2¢ is belong to the interval: [earliest departure time, latest arrival time] of passenger 2c¢
and the number of place available is greater or equal 1. If the answer is TRUE, then the
driver can take the passenger, otherwise the driver cannot. The inequality in this case is
12 < 10 + 3 < 17, the number of available place is 2, then the answer is TRUE. Thus,
driver 1s can take the passenger 2c. Thus, a new label is (26, 13, 1, 17,1,1,2), the cost
equals to the cost in previous label (1s) plus cost path (1s-2¢) minus penalty cost (2¢), the
latest arrival time equals to the minimum of latest arrival time of driver (1s) (at previous
label) and the latest arrival time of passenger (2c), in this case, the latest arrival time
equals to min{19, 17} = 17, the number of available places is also updated. After that, we
sort the label at node (2c) by lexicographic order (¢;, t;, n;, T, —, —, —).

Similarity, when the driver (1s) visits passenger (3c), we have two labels
(31,12,2,19,1,1,1) and (21,12,1,18,1,1,2). Next step, when the driver at (2c), he can
visit vertex (3c) and (5). Firstly, he visits vertex (3c) then the labels at vertex (3c)
are (27,14,1,17,2,2,3), (17,14,0,17,2,2.4) and (33,14,2,19.2,1,5), (23,14,1,18,2,1,6). La-
bel (27,14,1,17,2,2,3) is dominated by label (23,14,1,18,2,1,6) so we delete the label
(27,14,1,17,2,2,3) from the label list at vertex (3c). Now, in vertex (3c), there are five
dominance labels and we sort these labels as (17, 14, 0, 17, 2, 2, 4), (21, 12, 1, 18, 1, 1, 2),
(23,14, 1, 18, 2, 1, 6), (31, 12,2, 19, 1, 1, 1) and (33, 14, 2, 19, 2, 1, 5). When the driver
at (2c¢) visits vertex (5), two labels are updated (30,14,1,17,2,2,1) and (36,14,2,19,2,1,2).

From vertex 5, we can visit vertex (3c), then four labels are created: (32, 17, 1, 17, 5,
1,7),(22,17,0,17,5, 1, 8), (38, 17, 2,19, 5, 2, 9) and (28, 17, 1, 18, 5, 2, 10). Label (32,
17,1, 17, 5, 1, 7) is dominated by label (28, 17, 1, 18, 5, 2, 10) so we delete it from the
label list.

From (3c), the driver can visit passenger (4c). For visiting passenger (4c), the labels
are expressed as (20, 16, 0, 17, 3, 4, 1), (24, 14, 1, 18, 3, 2, 2), (26, 16, 1, 18, 3, 6, 3), (34,
14, 2,19, 3, 1, 4) and (36, 16, 2, 19, 3, 5, 5).

When the driver at vertex (4c), it can go to the destination (6d), so the labels at (6d)

106 Chapter 7. Solving Multiobjective Dynamic Car Pooling problem

(6,12,17)

@) (12,10.2)

(10,9.2)

> 4c
(10,11,18) (3.2) (11,17,21)

Figure 7.1: An illustration of the network topology.

are (28, 18, 1, 18, 4, 2, 1) and (38, 18, 2, 19, 4, 4, 2). Therefore, the optimal solution
obtained by the algorithm is (28, 18, 1, 18, 4, 2, 1) and the corresponding path is 1 —
34— 6 (labels: (27,10,2,19, —, —, 1) — (21,12,1,18,1,1,2) — (24,14,1,18,3,2,2) —
(28,18,1,18,4,2,1)), total travel time is 8 and driver takes the passenger at 3c (see Fig.
7.2).

After that, we start with server 5s and the rest of passenger at (2c) and (4c) (see
Fig. 7.3). Then, the optimal path is 5 — 3 — 4 — 6 (labels: (17,12,2,22,—, —,1) —
(19,15,2,22,5,1,1) — (11,17,1,21,3,1,2) — (15,21,1,21,4,2, 1)), total travel time is 9
and driver takes the passenger at 4c.

At the destination node, we short all the labels (¢;, ¢, —, —, —,—,—) by using Ri
lexicographic order (e.g., (¢ ti,— — —,—,—) < (¢,t5,— —, —,—,—) if and only if
¢ < c¢jand t; < tj, and we said that label (cj,tj,—,—,—,—,—) is dominant by label
(ciytiy—,—,—,—,—)), after we short and delete all non-dominant labels at the destination

node. So, the set of dominant label at destination node is called D. Now, we prove that if
we have only one server s then (after terminal algorithm start from server s) D is the set
of the efficient solution associated with the server s.

Theorem 7.1 If there is only one server, then after terminal Algorithm 11, the set D is
the set of the efficient solutions (i.e, the set D consists of all the Pareto points).

Proof 7.1 Firstly, assumption that there exists a label L; = (cj,tj,nj,Tj,—,—,—) in D
but it 1s not an efficient solution. So, there is an efficient path from the server node s to
the destination node d such that its cost c¢q and its departure time (at destination node) tq
satisfy (cj,tj) > (cq,tq). Suppose this path is P = (s — v;; — v, — -+ = v;, — d), we
calculate the labels Ly — L;; — L;, — --- — L;, — Lq corresponding with this path at
each node from s to d. At the destination node d, the label is Ly = (cq,tq,ng, Ty, —, —, —).
If the label Lg is belong to D, so the label L; is dominant by label Lq by Ri lezicographic
order, so Lj is already deleted at final step of Algorithm 11. It is a contradiction. Thus,
label Ly is not belong to D, then there is two possibilities:

a) the label Ly is created at node d but it is deleted by an another dominant label L at
destination node d, then L; is dominated by the dominance label L};. Then L; is not
belong to D and it is a contradiction.

b) in the path P = (s — v, — vjy — -+ — v;, — d), there is a node v;, where the
label Li, = (ci,,ti.,ni., Ty, —,—,—) in path P is deleted by a dominant label L} =

e’

7.4. Numerical results 107

(30, 14, 1,17, 2.2, 1)
(26,13,1,17.1,1,2)
(32,13,2,19.1,1, 1) P MRS LR

(27,119,219, -, =,

(17,14,0,17, 2,2, 4)
&1, 12,7, 18, 1.1.,2)

TE A

(31,12, 219, 1. 1. 1)
(33,14,2,19,2,1,5) X

20, 16,0, 7. 3.4, 1)
24,14, 1,18, 3,2, 2)

[

| ettt - (
(22, 17,0, 17,5, 1, 8) % 48 16 1183 & 81

[

[

| (38,17,2,19,5,2,9) (27,14, 1,

1
| @817,1,18,5.2,10) o e ¢ 34, 14,2, 19,3,1, 4)

1

1

36, 16,2, 19, 3, 5, 5)

(17.14,0,17, 2.2, 4)
(21.12,1,18, 1,1, 2)
(22, 17. 0,17, 5. 1, 8)
(23,14, 1,18, 2, 1, 6)
(28, 17. 1, 18. 5, 2, 10)
(31,122, 19,1, 1, 1)
(33.14,.2,19. 2.1, 5
(38,17 2,19,5.2,9)

Figure 7.2: An illustration of our algorithm with driver 1s.

(c}e,t}e,n}e, Z»le,—,—,—) (i.e., ¢, > cz-le, ti, = t}e, n;, < ”2‘167 T;, < Tzle) Now, we
consider a path Py which is created by the path from s to v;, corresponding with label
L}e and the rest of its path is belong to P. It is easy to show that Py is also an efficient
path. We restart the proof with the path P;. Because we have only finite paths from
sever s to destination d then at last we obtain an efficient solution corresponding with
a label L) = (cq,ta, — —,—, — —) at destination node d. Then label L; is deleted by

the dominant label LY. It is also a contradiction.

Secondly, we show that D consists of all the efficient solution (all the Pareto points).
Supposed that there exist an efficient solution which is not belong to D. Then the efficient
solution can be presented by a path P = (s — v, — vj, — -+ — v;, — d). By the similar

way in the first step, the proof is consequence.

7.4 Numerical results

The algorithm has been coded in VC++ and implemented on a Intel Core 2 CPU 2.53
Ghz, RAM 2GB.

We test our algorithm based on a real scenario, the network obtained from Open-
StreetMap system (see Figure 7.4), which presents a part of Luxembourg city, Luxembourg.
The scenario can be summarized as: we have a company and its employees, they want to
go from their homes to workplace in the morning. The employees consist of drivers and
passengers. The passengers want to participate with drivers whose cars have at least one
available place to go to their workplace. The interval [earliest departure time, latest arrival
time] of passengers is randomly generated in [7h,9h|. The departure time of drivers are
randomly generated in [7h,7h30]. The travel cost and travel time is generated based on
the distance of its arc. The distance of one arc (u, v) is calculate by GPS position of nodes

108 Chapter 7. Solving Multiobjective Dynamic Car Pooling problem

(6,12,17) (17,12,2,22,-,-, 1)

{19,15,2,22,5,1, 1) (11,17, 1,

Figure 7.4: A part of Luxembourg city.

u and v. The latest arrival time of drivers (resp. penalty cost of passengers) is generated
based on the shortest path from the driver (resp. the passenger) to the destination node.
The number of available places is randomly generated in {2,3,4}. From the network in
Figure 7.4, we consider the largest connected component, it can be expressed as a graph
with 324 nodes and 918 arcs. We randomly generated the drivers and passengers and their
corresponding parameters (i.e., departure time, latest arrival time,...). We consider ten
datasets, which have pairs (number of driver, number of employees) = (81,162), (108,243),
(120, 260), (121, 283), (129,259), (121, 288), (144,294), (147, 274), (202,288) and (140,300),
respectively. For each dataset, we generated 15 sub-datasets which have the same num-
ber of drivers and number of employees, the other parameters are randomly generated as
above, then we implement test our algorithm with each sub-dataset.

In Table 7.1, Num Servers, Num Employees, Ave-Total Time, Ave-Time per Server and
Services (%) stand for the number of drivers, the number of employees, the average of total
CPU time, the average of CPU time per driver (it equals to the average of total CPU time
divide by the number of drivers) and the percentage of passengers who are serviced by
drivers.

7.5. Conclusion 109

Num Servers | Num Employees | Ave-Total Time | Ave-Time per Server | Services (%)
81 162 212.22 2.62 66.67
108 243 362.97 2.69 68.89
120 260 376.94 2.92 73.84
121 283 414.28 3.42 70.98
129 259 380.59 2.92 69.92
121 288 457.64 3.78 68.26
144 294 483.13 3.36 79.33
147 274 437.05 2.97 71.65
202 288 578.06 2.86 68.60
140 300 438.50 3.13 69.38

Table 7.1: A numerical simulation of car pooling in a part of Luxembourg city.

From the numerical results, we observe that:

e The algorithm can give a set of efficient solution for each driver after a few second
(2-3s).

e The percentage of passengers who are serviced of drivers is usually greater than 66%.

e For dynamic case, we can update new driver and new passenger after a few second. It
can be applied in a real car pooling scenario.

e When the number of drivers and the number of passengers are changed but the original
network is not changed, the average CPU times per driver are slight changed. It seem
to be depend only the original network.

Algorithm complexity and Applications

In general, the algorithm has exponential complexity. The CPU time depend on the
dimension (the size) and the structure, the density of the network. However, in the car
pooling problem, we consider the road map, so the density of the network is low and
the dimension also is not too large. As the results in Table 7.1 with the road map of
Luxembourg city, we can get the results for each drivers after a few second. Thus, our
algorithm is promising to apply in a real scenario with multiobjective and dynamic car
pooling problem.

7.5 Conclusion

In this paper, we present a multiobjective car pooling problem. This is a "particular"
problem in intelligent transportation system, as further as we know, there isn’t any al-
gorithm considering the car pooling problem in the form of the aforementioned problem.
An efficient approach based on labeling algorithm is proposed for solving this problem. In
general, the proposed algorithm can not guarantees the efficient solution in global context
but it can solve rapidly the sub-problem (each step with one driver) then the set of efficient
solution is found. Thus, users can choose the best solution depend on the priority of the
criteria or the tradeoff between two criteria. Preliminary numerical simulations show that
the algorithm is very interesting and promising to apply in real-time car pooling problems.
Furthermore, the global context solution and the general multiobjective car pooling (e.g.,
multiple servers and multiple destinations) are also planing for our future work.

Conclusions and Perspectives

Conclusions

In this thesis, we have considered several optimization problems in Telecommunication,
Mobility and Transport domain:

e Routing problems,

e (Car pooling problems,

e Power control problems in wireless network,

e Optimal spectrum balancing problems in DSL networks.

Our methodologies focus on DC programming and DCA, Proximal decomposition
method and Labeling method in graph theory. They are well-known as powerful tools
in optimization. The considered problems were reformulated using the DC formula-
tion /reformulation and exact penalty techniques, and the DCA was used to get a solution.
Also, taking into account the structure of considered problems, we provide appropriate
DC decompositions and relevant strategy of initial points for DCA in order to improve its
performance. The main contribution is to develop new approaches for efficiently solving
these problems, especially in very large dimension. Specifically:

e The formulation of nine problems in QoS routing, from the classical simple problems to
the complex ones, is presented and casted into the form of Concave Quadratic Program
or Binary Integer Linear Program. Then a solution method based on DC programming
and DCA is investigated. In the Many to Many Multicast QoS routing problems,
to handle a large number of constraints, we introduce the proximal decomposition
technique in DCA to tackle convex subprograms at each iteration. We also provide
some properties of the feasible set of these problems, which might be used to find a
good initial point for the proposed algorithms. Numerical results obtained from the
QoS routing problem solving are compared with CPLEX, the best solver for BILP.

e The mathematical formulation of Partitioning-Hub Location-Routing Problem
(PHLRP) is analyzed and a new mathematical formulation of PHLRP is introduced as
a Binary Integer Linear Program. To solve this problem, a new algorithm was proposed
on the basis of DC programming and DCA. The preliminary numerical simulations are
compared with CPLEX.

e A classical model of car pooling problem in the form of Mixed 0-1 Linear Programm
was presented. The solution method, based on DC programming, DCA and combined
DCA & Branch and Bound is explored. The numerical simulations of DCA, DCA-BB
and CPLEX are compared.

e For Power control problems in wireless network and Optimal spectrum balancing prob-
lems, they are nonconvex and difficult to solve. An appropriate DC decomposition was
proposed and well adapted for DCA. The numerical simulations are compared with
those obtained from the well-known algorithms for solving these problems (GP, OSB,
IWF, SIW, SCALE).

112 Conclusions and Perspectives

e A new multiobjective car pooling problem is introduced. It is followed by the study
of a new distributed algorithm based on labeling algorithm for solving multiobjective
shortest path problem. Preliminary numerical results in a real scenario with real data
show the efficiency of our proposed algorithm and appear to be very promising in real
time applications.

Moreover, the efficiency of our approaches was demonstrate by numerical results, the
optimization algorithms were implemented in MATLAB, C/C++, in applications to many
problems at the end of each chapter.

Perspectives and future works

e The DC algorithm designed and tested during this work provided us with interesting
results in terms of solution accuracy and computational effort. However, theoretically,
the computed solutions are still local optimal solutions. Recently, a new cutting tech-
nique developed for the DCA has allowed to reach global optimal solutions. We think
that including such a promising technique in our next work would allow us to find the
global optimal solutions for large-scale networks and thus obtain a decisive advantage
compared with the other approaches.

e For car pooling algorithms, we may consider the case of multiple sources nodes (e.,
many cars and many passengers) and multiple destinations. Then we can plan to apply
our algorithm in a real application, for instance, car pooling problem in the context of
to-work problems.

e From the promising distributed algorithm to solve multiobjective car pooling, we plan to
extend the algorithm for solving some multiobjective optimization problems in mobility
transportation and try to find a better way to evaluate its solution.

e We also need to do further research inside DCA by more sophisticated development
(e.g., the question of a good DC decomposition, an appropriate initial point for DCA
and how to adapt this approach in case of a new problem to be solved).

Appendix

Appendix 1

A counterexample

In this section, we present an example which show that the constraints (3.5) are necessary
(these constraint are missing in the Formulation 3 of [Ozsoy et al., 2008] and in the formu-
lation of PHLRP of [Catanzaro et al., 2011]). We will show, by an example, that a solution
of BILP exists with an couple of vertices (7, j) such that w; j # w;;. It is a contradiction
with the definition of wj ;.

Example 1

e The problem are generate with m =9, n =26, £ =3, Fy =4, F, =3,Y = 3.

e The vertex set is V' = {0,---,8} and the set of arcs with the capacity in each arc are
presented in the following:

Coq Cio Cop Cao Cio Con 95 71 119 152 64 &0
Cig Ci1 Co3 C32 Oy Cyp 200 30 166 30 20 150
C34 Cuz Cus Csy Csg Cga| = |127 66 57 49 64 16
Cs6 Coss Css Css Cer Cre 31 21 54 22 94 76
Crg Cyr 141 70

o [= {(4, 2), (8,6), (2,8)} and d472 = 9, d8,6 = 1, d278 =15.

e The cost matrices are presented as follows ((¢;%), (u,v) € T, (i,j) € A) :

- 42 42 42 42 42 4.2-))
9 9 % % G Y| [ooum s
4 wr 33 %2 34 Gzl |9 8 103D
Ci% cizg Ci:g ci% cizg Ci% =1 15 10 4 13 9
Cs6 Ce5 Css Cs5 Cer Crp L8 7 15 3 11
12 45 1 8
[C78 C87 | - -
- 86 86 86 86 86 861)

Woa G [0 2w
ORI I | I Dy B R
C%:é cgzg Cg% cgzé cgjg cg% =2 14 11 14 8 12
Cs6 Cos Css C5 Cor Crl 12 11 15 19 19 16
86 86 2 13

G758 C87 J - -
- 28 28 28 28 28 28) i}
PRARB YUY P71
UHL 3R p G4 G| |2 S I AT
cgzg cgzg c%:g cgzg cgzg cgzg =3 5 15 15 12 15
Css Ce5 Cs8 Cs5 Ce7 Crp 20 3 20 4 4 9
28 218 8 10

[C78 Cg7 J - -

114 Appendix

e The result obtained by CPLEX 9 0 of this problem is presented:

4,2 4,2 2.8
¢12—1 o471 =1, ¢76— ¢s7— ¢01— ¢20— s 01 =1,
¢4,8 =1, wp=1 woe=1 woa=1 wipg=1 wia=1 wrs =1,
wor =1, weg =1, w3eg =1, w37 =1, wa7 =1, wyg =1, wsp =1,
wso =1, wg2 =1, wer =1, wrp =1, wrg =1, wg3z =1, wge =1,
w7 =1, x00 =1, ;19=1, 1200=1, 237 =1, 240=1, 255 =1,

142

xe7 =1, x77 =1, xg7 =1, 7,7 = 1, and all the rest of variables are equal to 0.

e In this solution, we see that w1 # w10, wo2 # wayp, Wi # wa1.

Appendix 2

Solving Power control problem via Geometric programming

A. Geometric programming

This section presents a class of nonlinear optimization problems, in natural form, that
is nonconvex problems. However, by using a change of variables and a transformation
of the objective function and constraint functions, these problem can be transformed to
convex optimization problems.

Monomial and posynomial function

A function f: R" — R with dom(f) = R}, defined as
Fo) = catiag? (75)

where ¢ > 0 and a; € R, is called a monomial function (or a monomial'). A sum of
monomials is called a posynomial function (or a posynomial) with K terms, i.e., a function
in the form of

Z cpr* g - ik (7.6)

where ¢, > 0.

Geometric programming problem

An optimization problem of the form

minimize fy(x)
subject to fi(z) <1;i=1,---,m.

where fo,- -, i, are posynomials and hq,--- , h, are monomials, is called a geometric
program (GP). The domain of this problem is D = R} | ; the constraint > 0 is implicit.

In general, geometric programs are not convex optimization problems, nonetheless, by
a change of variables and a transformation of the objective and constraint functions, they
can be transformed to convex problems.

The variables y; is defined as y; = log(z;), so x; = e¥i. So, if f is the monomial function

of z, i.e.,
§ Ckxalk flzk”, nk

'The term ‘monomial’ conflicts with the standard definition from algebra, in which the exponents must
be nonnegative integers, but this should not cause any confusion.

115

then

f(-%') — f(ey17 . ,ey")
— c(eyl)al - (eyn)an

T
— ¢ y-i—b’

where b = log(c).
Similarly, if f is the posynomial (7.6), i.e.,

K
f($) — Z Ckﬂjcflkl’g% . x%nk
k=1

then

=

)= Y et
k=1

where a, = (a1k, - , ank) and by = log(cg).
The geometric program in terms of the new variable y can be described in the following,

Ko

C T
minimize Ze%ky"'bo"
k=1
K;
. T b, .
subject to Ze“ikwbl’“ <l;yi=1,---,m,
k=1
T
cythi 9. s
egly _172_1)"'71)7
where a;;, € R", i = 0,--- ,m, contain the exponents of the posynomial inequality con-
straints, and ¢g; € R", ¢ = 1,--- ,p, contain the exponents of the monomial equality

constraints of the original geometric program.
Using the logarithm function to transform the objective and constraint functions, so
this results in the problem

Ko
minimize fo(y) = log(z e“gk“bo’“)
k=1
K;
subject to ﬁ(y) = log(z e“ﬁ“bi’“) <0;i=1,---,m,
k=1

hity) =gl y+hi=0; i=1,---,p.

Because the functions f; are convex (|Boyd and Vandenberghe, 2003]), and h; are affine,
this problem is a convez optimization problem.

We see that the transformation between the posynomial form geometric program and
the convex form geometric program does not consists of any computation, the problem
data for the two problems are the same. It only changes the form of the objective and
constraint functions.

B. Solving Power control problem via Geometric programming

We consider the context of high-SINR. Prior work usually made use of a high-SINR
approximation, i.e.,

Ry, = log, (1 + SINRy) ~ log,(SINRy) (7.7)

116 Appendix

on the link rates. We have

Ry ~ logsy(SINRy)
LGP,
—
> ik GilPj+o i
K
~ logy(LGy) — logy (Y G;PP; ' + 07 P 1),
ik

)

~ logs(

We replace Ry by logy(LGy,) — logZ(Zﬁ;k G;PjP; ' +02P; ") and P, by variable trans-
formation]Bl = log(F;) in Problem 2. It is easy to see that it is a geometric programming

in the form of convex programming. So, we can use an efficiently available software for
solving GP problem such as CVX that are using in Chapter 4.

Appendix 3

Successive Convex Approximation for Low complExity (SCALE)

Successive Convex Approximation for Low complExity (SCALE) was first introduced in
[Papandriopoulos and Evans, 2006] and [Papandriopoulos and Evans, 2009]. It solves
problem (5.3) by approximating it with a concave lower bound (to avoid the d.c. structure),
maximizing the approximation, this is a convex optimization problem, and repeating the
process with another approximation. SCALE introduces a method of distributing the
required processing over multiple users.

SCALE users the lower bound approximation in the following

alog(z) + 8 <log(l+ z) (7.8)

where v = {72 and 8 = log(1 + zp) — 13%-10g(20). The inequality is tight when 2 = 2.

Applying (7.8) to the optimization problem (5.3), results in the relaxation problem is?
max Y3 wnof 8§k +) (79)
— r 2 hy, " pilt + o}
m=z=n

st. Y pp < P, Vn,
k
0 < p} < PP vk, n.

Let pj = log(p}), so the new problem is in the form

1 ~n n.m pm n n
maxz Z wy (af log(fepk) — aj log(Z hy, " ePe + o) + By) (7.10)
n k m#n

s.t. Zeﬁz < el vn,
k

~r'”

0 < ePi < ePk

mask
Vk,n.

The bound of the achievable system rate is improved periodically by maximizing a
lower-bound. The results of the procedure is presented below. The initial choice of the
constants {«, 8} is not critical, it makes use of a simple high-SINR approximation with
a=1and g=0.

*We replace log,(.) by log(.) for simple regarding. This replacement is not effect to the computation,
it only changes the value of objective function by divide log 2.

117

1. initialize iteration counter t =0

2. initialize all o (t) = 1, 8}(t) = 0 (high-SINR approx.)

3. repeat

4. maximize: solve sub-problem (7.10) to give solution pj(t)
5. tighten: update o (t + 1) and B} (t + 1) at zo(p}(t))

6. increment ¢

7. until convergence

Note that, the sequence of iterates produces a monotonically increasing objective and will
always converge (see [Papandriopoulos and Evans, 2006]).

Any convex optimization tool can be used to solve Problem (7.10), but SCALE proposes
a gradient approach that can also be distributed among each users by using the function’s
Lagrangian:

~ 1 =n n.m pm n n
LIPAN) =D wnlof log(pe™) — ai log() hy™et +a}l) + Bf)
n k

m#n

= MO et~ Py). (7.11)
n k

The corresponding dual problem is then m)%n max £(13, A).
P
We update dual variables A, through a gradient descent

AED = max{0, A + (3O - p,)) (7.12)
k

for fixed Py, where ¢ is a sufficiently small step-size and ¢ is an iteration number for the
sub-problem. Each)\, is updated locally by each user n.

By taking the Lagrangian’s gradient with respect P (and A fixed) then setting it equal
to zero, the spectrum update formula is obtained:

WO,

pr = (7.13)

m,n m
hy, " wmag

A
n Tt Dt > g RO

The denominator of the update equation, Equation (7.13), contains information about
other users. This additional information allows the distributed algorithm to converge to
a locally optimal point. In order to gather this information, a message passing system
is required. Every user measures their total interference and noise on every tone and
transmits it back to the Spectrum Management Center (SMC). Since the SMC has partial
channel knowledge, the message passing system and update formula can be simplified as
follows:

Wy
NP = Nk 7.14
S T o .
R=) 0 A (7.15)
m#n
n wnaz
Pr = (7.16)

Ao + M

118 Appendix

At every iteration, every user n calculates IV}’ on every tone and sends it to the SMC.
The SMC produces the M;' values and distributes them to each user n. The full SCALE
algorithm is summarized in SCALE Algorithm below.

SCALE Algorithm

At each user n’s modem:
Initialize PSD: s = 0, Vk;
Initialize o)} = 1, Vk;
repeat
Receive M} from SMC;
Update spectrum using (17);
At every m iterations, update af, Vk;
Generate N and send to SMC ;
indefinitely
At the SMC:
repeat
Receive N from every user;
Generate M;" and send to SMC;
indefinitely

e-subdifferential, 5, 9
e-subgradient, 5

affine minorization, 14, 15

B&B, 18

backbone, 53, 54

BBDCA, 91, 92, 97, 98

BILP, 32, 35, 37, 39, 41, 53, 54, 113

car pooling, 91, 101
conjugate function, 5
convex function, 4

CPP, 92, 93, 101

CQP, 32, 35, 37, 38, 41, 43

DC decomposition, 6, 69, 73, 74, 82, 83

DC function, 6

DC program, 7, 17, 60, 95

DCA, 8, 11, 12, 15, 32, 41, 53, 59, 74, 76,
84, 91, 98

destination, 54

dial-a-ride problem, 91, 101

effective domain, 4
epigraph, 4

geometric programming, 69, 114
hub, 53, 54, 58
indicator function, 6, 25, 44

Lipschitz operator, 23
lower semi-continuous function, 5

Many to many Multicast QoS Routing, 44,
50

Many to many Multicast QoS routing, 31,
32, 39

Many to many multicast tree, 32

maximal monotone operator, 22, 25, 44

MCM, 31, 37

MCOM, 31, 37

MCOP, 31, 34, 37

MCP, 31, 34, 37

MCPP, 102, 103

MILP, 91, 92, 97

Index

MILPO1, 16, 18

monotone operator, 22

Multicast QoS Routing, 31, 32, 48
Multicast QoS routing, 37

nonexpansive operator, 23

PHLRP, 53, 54, 57, 59, 113
polyhedra convex
set, 72
polyhedral convex
function, 6, 42
set, 6
polyhedral DC optimization, 14
polyhedral DC program, 42, 95
proper function, 4
proximal copy decomposition algorithm, 26,
45
proximal decomposition algorithm, 26
proximal mapping, 23
proximal point algorithm, 23-25
proximal scaled decomposition algorithm,
24, 45

QoS constraints, 32, 34, 38, 40, 69
QoS measures, 33

routing algorithm, 31
routing protocol, 31

source, 54

strictly convex function, 4
strongly convex function, 4, 13
strongly monotone operator, 23
subdifferential, 5, 10
subgradient, 5, 11, 14, 42, 95

Unicast QoS Routing, 31, 32
Unicast QoS routing, 45
Unicast QoS Routing problem, 34

VRPPD, 91, 101

References

N. B. Ali, M. Molnar, and A. Belghith. Multi-constrained qos multicast routing optimiza-
tion. Public interner 1882, IRISA, 2008.

S. Alumur and B. Y. Kara. Network hub location problems: The state of the art. European
Journal of Operational Research, 190(1):1-21, 2008.

A. Auslender. Optimisation Méthodes Numériques. Paris: Masson, 1976.

R. Baldacci, V. Maniezzo, and A. Mingozzi. An exact method for the car pooling problem
based on lagrangean column generation. Oper. Res., 52(3):422-439, 2004.

F. Bauer. Multicast routing in point-to-point networks under constraints. PhD dissertation,
University of Carlifornia, Santa Cruz, 1996.

M. Biguesh, S. Shahbazpanahi, and A. B. Gershman. Robust downlink power control
in wireless cellular systems. FURASIP J. Wireless Communications and Networking,
special issue on Multiuser MIMO Networks, 2:261 272, 2004.

D. Blokh and G. Gutin. An approximation algorithm for combinatorial optimization prob-
lems with two parameters. AUSTRALASIAN J. COMBIN, 14:157 164, 1995.

S. Boyd and L. Vandenberghe. Convexr Optimization. Cambridge University Press, 2003.

R. W. Calvo, F. L. Luigi, P. Haastrup, and V. Maniezzo. A distributed geographic infor-
mation system for the daily car pooling problem. Computers and Operations Research,
31:2263 2278, 2004.

J. F. Campbell. Strategic network design for motor carriers. Springer, U.S.A.; 2005.

D. Catanzaro, E. Gourdin, M. Labbe, and F. A. Ozsoy. A branch-and-cut algorithm for
the partitioning-hub location-routing problem. Computers & Operations Research, 38
(2):539 549, 2011.

R. Cendrillon and M. Moonen. Iterative spectrum balancing for digital subscriber lines.
In Proc. IEEE ICC2005, Seoul, Korea, May 2005.

R. Cendrillon, W. Yu, M. Moonen, J. Verlinden, and T. Bostoen. Optimal multiuser

spectrum management for digital subscriber lines. IEEE Trans. Comm., 54:922 933,
May 2006.

R. Cendrillon, J. W. Huang, M. Chiang, and M. Moonen. Autonomous spectrum balancing
for digital subscriber lines. IEEE Trans. Signal. Processing, 55(8):4241-4257, 2007.

S. Chen and C. Nahrstedt. On finding multi-constrained paths. International Journal of
Computational Geometry and Applications, 1998.

M. Chiang. Geometric programming for communication systems. Foundations and Trends
i Communications and Information Theory, 2:1-154, 2005.

M. Chiang. Nonconver Optimization for Communication Networks, volume 3 of Advances
in Mechanics and Mathematics, chapter 5. Dedicated to Gilbert Strang on the Occasion
of His 70th Birthday. Edited by David Y. Gao & Hanif D. Sherali., 2006a.

122 References

M. Chiang. Chapter 5: Nonconvex optimization for communication networks. Advances
1 Mechanics and Mathematics, 3:136 196, 2006b.

M. Chiang, P. Hande, T. Lan, and C. W. Tan. Power control in wireless cellular networks.
Foundation and Trends in Networking, 2:1-156, 2008.

J. F. Cordeau and G. Laporte. The dial-a-ride problem (darp): Variants modeling issues
and algorithms. JOR, 1:89-101, 2003.

J. F. Cordeau and G. Laporte. The dial-a-ride problem: Models and algorithms. Annals
of Operations Research, 153:29-46, 2007.

T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to algorithm. MIT Press,
1997.

M. Ehrgott. Multicriteria Optimization. Lecture Notes in Economics and Mathematical
Systems. Second edition, 2005.

F. Rashid Farrokhi, K. J. R. Liu, and L. Tassiulas. Transmit beamforming and power
control for cellular wireless systems. IEEE Journal Selected Areas in Communicatiopns,

16:1437-1450, 1998.

G. J. Foschini and Z. Miljanic. A simple distributed autonomous power control algorithm
and its convergence. IEEE Trans. Veh. Technol., 42:641-646. 1993.

R. Gallager, P. Humblet, and P. Spira. A distribited algorithm for minimum-weight span-
ning tree. ACM Transactions an Programming Languages and Systems, pages 66 77,
1983.

M. Grant and S. Boyd. CVX: Matlab Software for Disciplined Convexr Programming.
Version 1.21 (Build 781), http://cvxr.com/cvx/download, 2010.

M. Grotschel and Y. Wakabayashi. Facets of the clique partitioning polytope. Mathematical
Programming: Series A and B, 47(3):367-387, 1990.

R. Hassin. Approximation schemes for the restricted shortest path problem. Mathematics
of Operations Research, 17(1):36 42, 1992.

R. Horst and Hoang Tuy. Global optimization (Deterministic Approaches). Springer-Verlag,
Berlin, third edition, 1996.

R. Horst, P. M. Pardalos, and N. V. Thoai. Introduction to global optimization. Dordrecht,
Netherlands: Kluwer Academic Publishers, 1995.

F.K. Hwang. Steiner problems, pages 55—89. Networks. 1992.

D. Julian, M. Chiang, D. O’Neill, and S. P. Boyd. Qos and fairness constrained convex
optimization of resource allocation for wireless cellular and ad hoc networks. Proc. IEEE
INFOCOM’02, 1:477-486, 2002.

S. Kandukuri and S. P. Boyd. Optimal power control in interference-limited fading wireless
channels with outage-probability specifications. IEEE Trans. Wireless Communications,
1:46-55, 2002.

T. Korkmaz and M. Krunz. Multi-constrained optimal path selection. In Proceedings IEEE
INFOCOM 2001, volume 2, pages 834-843, 2001.

References 123

T. Korkmaz, M. Krunz, and S. Tragoudas. An efficient algorithm for finding a path subject
to two additive constraints. Computer Communications Journal, 25(3):225 238, 2002.

F. Kuipers and P. V. Mieghem. Mamcra: A constrained-based multicast routing algorithm.
Computer Communications, 25(8):801-810, 2002.

F. A. Kuipers and Piet F. A. Van Mieghem. Conditions that impact the complexity of qos
routing. Networking, IEEE/ACM Transactions, 13, 2005.

F. A. Kuipers, T. Korkmaz, M. Krunz, and P. Van Mieghem. Overview of constraint-based
path selection algorithms for qos routing. IEEE Commun. Mag., 40(12):50-55, 2002.

P. J Laurent. Approxzimation et optimisation. Paris: Hermann, 1972.

H. A Le Thi. Analyse numérique des algorithmes de l’optimisation DC. Approches locale
et globale. Codes et simulations numériques en grande dimension. Applications. Thése
de doctorat, Université de Rouen, 1994.

H. A Le Thi. Contribution a l’optimisation non conveze et [’optimisation globale: Théorie,
Algorithmes et Applications. Habilitation & diriger des recherches, Université de Rouen,
1997.

H. A Le Thiand T. Pham Dinh. Solving a class of linearly constrained indefinite quadratic
problems by dc algorithms. Journal of Global Optimization, 11:253-285, 1997.

H. A Le Thi and T. Pham Dinh. A continuous approach for globally solving linearly
constrained quadratic zero - one programming problems. Optimization, 50:93-120, 2001.

H. A Le Thi and T. Pham Dinh. The dc (difference of convex functions) programming
and dca revisited with dc models of real world nonconvex optimization problems. Annals
of Operations Research, 133:23-46, 2005.

H. A Le Thi, T. Pham Dinh, and M. Le Dung. Exact penalty in dc programming.
Vietnam Journal of Mathematics, 27, 1999.

H. A Le Thi, T. Pham Dinh, and T. Nguyen Van. Combination between local and global
methods for solving an optimization problem over the efficient set. Furopean Journal of
Operational Research, 142:257-270, 2002.

H. A. Le Thi, T. P Nguyen, and T. Pham Dinh. A continuous dc programming approach
to the strategic supply chain design problem from qualified partner set. European Journal
of Operational Research, 183, 2007.

H. A. Le Thi, N. B Mbaye, and T. Pham Dinh. Solving a multimodal transport problem
by dc. In Proc. IEEE International conference on Research, Innovation and Vision for

the future in Computing & Communications Technologies, pages 49-56, Ho Chi Minh
city, Vietnam, 2008. IEEEXplore.

H. A. Le Thi and T. Pham Dinh. D.c. programming approaches for multicommodity
network optimization problems with step increasing cost functions. Journal of Global
Optimization, 22:204-233, 2002.

H. A. Le Thi, Q. T. Nguyen, T. Pham Dinh, and T. K. Phan. Energy minimization-based
cross-layer design in wireless networks. In Proceedings of the 2008 High Performance
Computing & Simulation Conference (HPCS 2008), pages 283-289, Nicosia, Cyprus,
2008a.

124 References

H. A. Le Thi, Q. T. Nguyen, T. Pham Dinh, and T. K. Phan. Cross-layer optimization
in multi-hop tdma networks using dca. In 17th International Conference on Computer
Communications and Networks (ICCCN 2008), 2008b.

G. Liu and K. G. Ramakrushnam. A*prune: an algorithm for finding k shortest paths
subject to multiple constraints. In Proceedings of IEEE INFOCOM, volume 2, pages
743-749, 2001.

D. H. Lorenz and Raz. Danny. A simple efficient approximation scheme for the restricted
shortest path problem. Operations Research Letters, 28(5):213-219, 2001.

D.H. Lorenz, A. Orda, D. Raz, and Y. Shavitt. Efficient qos partition and routing of
unicast and multicast. In Proceedings IEEE/IFIP IWQoS, Pittsburgh, PA, 2000.

R. Lui and W. Yu. Low-complexity near-optimal spectrum balancing for digital subscriber
lines. In Proc. IEEE ICC2005, Seoul, Korea, May 2005.

P. Mahey, S. Oualibouch, and T. Pham Dinh. Proximal decomposition on the graph of a
maximal monotone operator. SIAM J. Optim., 5:454-466, May 1995.

K. McCammon. G. vdsl: Vdsl band plan for north america. Technical report, ITU, ITU
contribution D. 715, 2000.

P. V. Mieghem and F. A. Kuipers. On the complexity of qos routing. Computer Commu-
nications, 26(4):376-387, 2003.

P. V. Mieghem and F. A. Kuipers. Concepts of exact qos routing algorithms. IEEE/ACM
Trans. on Networking, 12(5):851-864, 2004.

J. J. Moreau. Proximité et dualité dans un espace hibertien. Bull. Soc. Math. France, 93:
273-299, 1965.

V. Oksman and J. M. Cioffi. Noise models for vdsl performance verification. Technical
report, ANSI, ANSI T1E1.4/99-438R2, 1999.

A. Orda and A. Sprintson. Efficient algorithm for computing disjoint qos paths. In Pro-
ceedings of IEEE INFOCOM, volume 1, pages 727-738, 2004.

F. A. Ozsoy, M. Labbe, and E. Gourdin. Analytical and empirical comparison of integer
programming formulations for a partitioning-hub location-routing problem. Technical
Report 586, Fanstord University, ULB, Department of Computer Science, 2008.

J. Papandriopoulos and J. S. Evans. Low-complexity distributed algorithms for spectrum
balancing in multi-user dsl networks. In Proc. IEEE [CC2006, Istanbul, Turkey, 2006.

J. Papandriopoulos and J. S. Evans. Scale: A low-complexity distributed protocol for
spectrum balancing in multiuser dsl networks. IEEE Trans. Inform. Theory, 55:3711
3724, 2009.

S. N. Parragh, K. F. Doerner, and R. F. Hartl. A survey on pickup and delivery problems,
part ii: Transportation between pickup and delivery locations. Journal fur Betrieb-
swirtschaft, 58(2):81-117, 2008.

Pragyansmita Paul and S. V. Raghavan. Survey of multicast routing algorithms and pro-
tocols. In Proceedings of the 15th international conference on Computer communication
(ICCC 02), Washington DC, USA, 2002.

References 125

T. Pham Dinh. Elements homoduaux relatifs & un couple de normes (¢,). applications
au calcul de sy, (a). Technical report, Grenoble, 1975.

T. Pham Dinh. Calcul du maximum d’une forme quadratique définie positive sur la boule
unité de la norme du max. Technical report, Grenoble, 1976.

T. Pham Dinh. Algorithms for solving a class of non convex optimization problems.
Methods of subgradients. Fermat days 85. Mathematics for Optimization. Elsevier Science
Publishers B.V. North-Holland, 1986.

T. Pham Dinh. Duality in DC (difference of convez functions) optimization. Subgradient
methods, volume 84 of Trends in Mathematical Optimization, International Series of
Numer Math., pages 277-293. 1988.

T. Pham Dinh and H. A Le Thi. Dc optimization algorithms for solving the trust region
subproblem. STAM Journal of Optimization, 8(2):476-505, 1998.

T. Pham Dinh, N. Nguyen Canh, and H. A Le Thi. An efficient combined dca and
b&b using dc/sdp relaxation for globally solving binary quadratic programs. J. Global
Optimization, 48(4):595 632, 2010.

T. Pham Dinh and H. A. Le Thi. Convex analysis approach to dc programming: Theory,
algorithms and applications. Acta Mathematica Vietnamica, 22:289-357, 1997.

DSM Report. Ansi nipp-nai contribution 2005-031r5. Technical report, Las Vegas, NV,
2005.

R. T. Rockafellar. Conver Analysis. Princeton University Press, Princeton, 1970.

R. T. Rockafellar. Monotone operator and the proximal point algorithm. SIAM J. control
and optimization, 14(5):877-898, 1976.

S. Ropke, J. F. Cordeau, and G. Laporte. Models and branch-and-cut algorithms for pickup
and delivery problems with time windows. Networks, 49:258 272, 2007.

H.F. Salama. Multicast routing for real time communication in high speed networks. PhD
dissertation, North Calorina State University, Raleigh, 1996.

A. Schrijver. Theory of Linear and Integer Programming. Wiley-Interscience Series in
Discrete Mathematics and Optimization. Second edition, 1998.

K. B. Song, S. T. Cheung, G. Ginis, and J. M. Cioffi. Dynamic spectrum management for
next-generation dsl systems. IEEE Comm. Mag., 40:101-109, 2002.

J. E. Spingarn. Partial inverse of a monotone operator. Applied Mathematics and Opti-
mization, 10(1):247-265, 1983.

T. Starr, J. M. Cioffi, and P. Silverman. Understanding Digital Subscriber Line Technology.
Prentice Hall, 1999.

A. S Ta, H. A Le Thi, D. Khadraoui, and T. Pham Dinh. Solving qos routing problems
by dca. In Proc. 2th ACIIDS, Intelligent Information and Database Systems, Lecture
Notes in Artificial Intelligence (LNAI), pages 460 470, Hue, Vietnam, 2010a. Springer
Verlag 5991.

A. S Ta, H. A Le Thi, D. Khadraoui, and T. Pham Dinh. Solving multicast qos routing
problem in the context v2i communication services using dca. In Proc. 9th IEEE/ACIS
(ICIS 2010), pages 471-476, Yamagata, Japan, 2010b. IEEEXplore.

126 References

A.S Ta, H. A Le Thi, G. Arnould, D. Khadraoui, and T. Pham Dinh. Solving car pooling
problem using dca. In Proc. Global Information Infrastructure Symposium (GIIS), pages
1-6, Danang, Vietnam, 2011. IEEEXplore.

A. S Ta, H. A Le Thi, D. Khadraoui, and T. Pham Dinh. Solving partitioning-hub
location-routing problem using dca. Journal of Industrial and Management Optimization

(JIMO), 8(1):87 102, 2012a.

A. S Ta, H A Le Thi, T. Pham Dinh, and D. Khadraoui. A distributed algorithm
solving multiobjective dynamic car pooling problem. In Proc. International Conference
on Computer and Informatic Science, Kuala Lumpur, Malaysia, 2012b.

A. S Ta, H. A Le Thi, T. Pham Dinh, and D. Khadraoui. Solving many to many
multicast qos routing problem using dca and proximal decomposition technique. In
Proc. International Conference on Computing, Networking and Communications 2012,
pages 809-814, Hawaii, American, 2012¢c. IEEEXplore.

J. F Toland. Direct calculation of the information matrix via the EM algorithm. Journal
of Mathematical Analysis and Applications, 66:399-415, 1978.

Hoang Tuy. Global Optimization : Deterministic Approaches. Springer-Verlag, Berlin,
second edition, 1993.

Hoang Tuy. DC Optimisation : Theory, Methods and Algorithms, Handbook of Global
Optimisation, pages 149 216. Horst and Pardalos eds, Klaver Academic Publishers,
1995.

Hung-Ying Tyan, Jennifer C. Hou, and Bin Wang. Many-to-many multicast routing with
temporal quality of service guarantees. IEEE Transaction on Computers, 52(6):826-832,
2003.

J. B. H Urruty. Generalized differentiability, duality and optimization for problem dealing
with differences of convex functions, volume 256 of Lecture Notes in Economics and
Mathematical Systems, pages 260-277. Springer Verlag, 1985.

J. B. H Urruty. Conditions nécessaires et suffisantes d’optimalité globale en optimisation
de différences de deuz fonctions convexes, pages 459-462. 1. CRAS, 1989.

B. Wang and J. C. Hou. Multicast routing and its qos extention: Problems, algorithms
and protocols. Network, IEEFE, 14(1):22-36, 2000.

Q. Warburton. Approximation of pareto optima in multiple objective shortest path prob-
lems. Operations Research, 35:70-79, 1987.

Y. Xu, S. Panigrahi, and T. Le Ngoc. Selective iterative water filling for digital subscriber
lines (dsl). EURASIP J. Appl. Signal Process., 2007, 2007.

R. D. Yates. A framework for uplink power control in cellular radio systems. IEEE Journal
Selected Areas in Communications, 13:1341 1347, 1995.

W. Yu, G. Ginis, and J. M. Cioffi. Distributed multiuser power control for digital subscriber
lines. IEEE JSAC, 20:1105 1115, 2002.

X. Yuan and X. Liu. Heuristic algorithms for multi-constrained quality of service routing.
In Proceedings of IEEE INFOCOM, volume 2, pages 844-853, 2001.

L. Zhang, L. Cai, M. Li, and F. Wang. A method for least-cost qos multicast routing based
on genetic simulated annealing algorithm. Computer Communications, 32:105-110, 2009.

