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A B S T R A C T

Nowadays, mobile users integrate multiple wireless network interfaces in
their devices, like IEEE 802.11, 2G/3G/4G cellular, WiMAX or Bluetooth
since these heterogeneous technologies can provide Internet access in urban
areas. In this context, there is a potential for mobile users to exploit the di-
versity of the wireless interfaces in order to be always best connected to the
networks at any given time and place. However, taking advantage of this
network diversity requires an efficient mobility and multihoming manage-
ment. Regarding mobility, mobile users need to discover wireless networks
and perform seamless handovers between different points of attachment. In
order to support multihoming and allow using multiple wireless networks
simultaneously, there is a need to define network selection mechanisms to
assign the applications to the different wireless interfaces in the most opti-
mal manner. In this thesis, we first provide a characterization of the network
diversity by exploring and analyzing the performance of current wireless
deployments in urban areas, especially considering cellular and IEEE 802.11

community networks. Then, we focus on IEEE 802.11 mobility, particularly
on the access point scanning process, by providing two adaptive algorithms
that aim to set the most suitable scanning parameters for each scenario con-
dition. We evaluate these algorithms by experimentation and compare their
performance against common fixed-parameters scanning strategies. Finally,
we study the network selection in such a multi-homed scenario and pro-
vide a decision-making algorithm to find optimal flow-interface assignations,
considering QoS and energy consumption criteria. This decision algorithm
is modelled using a multi-objective optimization problem and genetic algo-
rithms. We evaluate, by the means of simulations, the performance of our
approach against preference-based decision-making algorithms.
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R É S U M É

Aujourd’hui, les utilisateurs mobiles intègrent plusieurs interfaces sans fil
dans leurs dispositifs mobiles, tels que IEEE 802.11, des technologies cellu-
laires 2G/3G/4G, WiMAX ou Bluetooth, car ces technologies hétérogènes
peuvent fournir un accès Internet dans les zones urbaines. Dans ce contexte,
il existe un potentiel pour les utilisateurs mobiles d’exploiter la diversité des
interfaces sans fil, afin d’être connectés aux réseaux de la meilleure manière
possible, à tout moment et partout. Cependant, afin de profiter de cette di-
versité des réseaux il est nécessaire d’avoir une gestion efficace de la mobilité
et de la multi-domiciliation. En ce qui concerne la mobilité, les utilisateurs
mobiles ont besoin de découvrir les réseaux sans fil et basculer entre des
points d’accès d’une façon transparente et sans coupures. Afin de supporter
la multi-domiciliation et de permettre l’utilisation de plusieurs réseaux sans
fil simultanément, il est nécessaire de définir des mécanismes de sélection
des réseaux visant à attribuer les flux d’applications aux différentes inter-
faces sans fil d’une manière optimale. Dans cette thèse, nous avons d’abord
caractérisé la diversité des réseaux en explorant et en analysant les per-
formances des déploiements sans fil actuelles dans les zones urbaines, en
particulier les réseaux cellulaires et les réseaux communautaires basés sur
IEEE 802.11. Ensuite, nous avons étudié la mobilité dans les réseaux IEEE
802.11, particulièrement le processus de découverte des points d’accès, en
fournissant deux algorithmes adaptatifs qui visent à utiliser les paramètres
de découverte les plus appropriés dans chaque scénario. Nous évaluons ces
algorithmes par l’expérimentation et nous comparons leurs performances
par rapport aux stratégies utilisant des paramètres par défaut. Enfin, nous
étudions la sélection des réseaux dans un scénario multi-domicilié et nous
proposons un algorithme de prise de décision pour trouver l’attribution opti-
male des flux aux différentes interfaces, en prenant en compte des critères de
qualité de service et de consommation d’énergie. Cet algorithme de décision
est modélisé par un problème d’optimisation multi-objectif et est résolu avec
des algorithmes génétiques. Nous évaluons, par le biais de simulations, les
performances de notre approche contre des algorithmes de décision basés
sur des préférences.
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1
I N T R O D U C T I O N

1.1 motivation and objectives

In the current wireless environment users can find different types of ac-
cess networks, like Wireless Personal Area Networks (WPAN), Wireless Local
Area Networks (WLAN) and Cellular Networks. Originally, these networks
have been designed to satisfy different needs in terms of capacity and cover-
age, oriented to different markets and user characteristics. For example, the
Bluetooth technology (WPAN) has been designed for device-to-device com-
munications and proximity data sharing, IEEE 802.11 (WLAN) to provide
high data-rate in very small coverage areas and cellular network technolo-
gies to cover very large areas with a reliable and high data-rate wireless
access.

These wireless technologies are based on different technical specifications.
They operate in different frequency bands, use diverse modulation and cod-
ing schemes, manage the radio resources in different manners and consume
different amounts of energy. Moreover, in the most general case, the net-
work deployments belonging to different technologies are loosely-coupled,
i.e., there is not a common control or management layer allowing collabora-
tion among them. Then, the heterogeneity of networks involves two aspects.
From the mobile user point of view, the heterogeneity implies having mul-
tiple accesses any time and any place. From a technological point of view,
the heterogeneity implies different specifications and mechanisms for the
physical, medium access control and radio resource management for each
particular technology.

All these network technologies have been intensively deployed in the
last years, especially in urban areas. At the same time, since none of these
technologies could lead the market, mobile device manufacturers have inte-
grated multiple wireless technologies in any single device model. In this sce-
nario, mobile users can now take advantage from multi-homing, having the
possibility of dynamically selecting different access networks, correspond-
ing to different wireless interfaces in an alternative or simultaneous manner.
Such an usage of the wireless networks is referred to as the Always Best
Connected (ABC) paradigm. This concept has been first proposed by Gustafs-
son and Jonsson [5], where the authors characterized the ABC scenario, in
which a user always selects the best available wireless interface to transmit
its flows. The different functional components that need to be implemented
in order to completely achieve the ABC paradigm are listed below:

1



2 introduction

• Access Discovery: to find the available networks and evaluate their
expected performance.

• Access Selection: to select the best network at any time considering
different criteria.

• Authentication, Authorization and Accounting (AAA): to facilitate AAA

by unifying procedures among access network operators

• Mobility Management: to guarantee session continuity, session trans-
fer and user reachability

• Profile Handling: to manage user subscriptions, credentials and ac-
counting information

• Content Adaptation: to be capable of detecting changing network con-
ditions and adapt applications demands to the new context

Far from being a fact, there are some limitations that restrict users from in-
telligently exploiting this heterogeneous wireless scenario in an ABC manner.
In this thesis, we propose contributions for the two first functional compo-
nents of the ABC paradigm: Access Discovery and Access Selection. Regard-
ing access discovery, a mobile user moving out from the boundaries of a
point of attachment needs to discover new point of attachments of different
technologies and connect to the best one while assuring a seamless transition
(i.e., handover).

With regard to access selection, we currently observe, a lack of multi-
homing management in mobile devices. Nowadays, mobile users get con-
nected to a single wireless interface at a time, i.e., mobile devices do not use
several network interfaces at the same time. Recently, different solutions and
protocols have been proposed to manage the usage of multiple interfaces.
Shim6 [6] and HIP [7] are two examples of this kind of protocols, giving a
single identifier for the applications (i.e., a default address) and a set of in-
termediate mechanisms that are able to transparently spread the application
flows on the different interfaces. However, there is still a lack of mechanism
to decide how the different flows have to be assigned to the different inter-
faces. This decision-making process, i.e., the network selection process, can
consider multiple criteria, leading to a variable complexity to come out with
optimal flow-interface assignations.

1.2 thesis overview and contributions

In this thesis, we study the diversity of current wireless accesses in order to
facilitate the exploitation of multi-homing in such a mobile heterogeneous
environment. In particular we focus on the two aforementioned limitations
related to handover support and decision-making for multihoming support.
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First, since we have observed that WLAN, and particularly Community
Networks, are as dense as cellular networks in urban areas, we study the
handover process in IEEE 802.11, in order to reduce its duration and allow a
continuity of WLAN connectivity while moving. Second, since different wire-
less technologies cohabit at any given place, we study the decision-making
process performed by multi-homed users aiming to simultaneously use sev-
eral interfaces at a time. In such a process, the user aims at assigning dif-
ferent application flows to multiple wireless interfaces in the most efficient
manner, considering different criteria.

We can divide the contribution of this thesis into four aspects:

design and implementation of a wireless sensing and analy-
sis platform (wi2me) In order to characterize the diversity of wireless
networks, there was the necessity of analyzing the real deployments, which
required a mobile sensing platform. There are nowadays a number of sens-
ing tools, but none of them provided a complete access to the collected traces
and, moreover, they did not allow automatic connection to existing networks
in order to evaluate their performance. We have designed and developed a
new sensing tool for the Android system, Wi2Me, providing fine-grained
statistics for WLAN and cellular networks. This tool is open-source and we
plan to distribute it to the general public.

evaluation study of current heterogeneous wireless deploy-
ments Using the Wi2Me platform, we have performed a complete evalua-
tion study of wireless deployments in the city of Rennes, France, particularly
focusing on Community Networks (CN), a new WLAN-based communication
paradigm that uses existing residential Access Point (AP) to provide Inter-
net connectivity for urban users. We show that CN provide a ubiquitous
wireless access, with a coverage equivalent to cellular technologies in urban
areas. However, we point out some existing limitations for CN. Due to the
high density of CN, a mobile user could seamlessly roam to a new AP, but
in practice, all application flows are interrupted even if the mobile user can
associate to a new CN AP. Additionally, using Wi2Me, we analyze the impact
of handover on the performance of on-going communications, showing that
they are greatly degraded.

access point discovery optimizations in ieee 802 .11 We aim
at minimizing the impact of handovers on on-going communications. Par-
ticularly in IEEE 802.11, this impact is mostly related to the AP discovery
process, which is the most time-consuming phase during a handover. In this
thesis, we provide a set of mechanisms that reduce the duration of the discov-
ery phase (i.e., the scanning latency) by efficiently configuring the scanning
parameters. We define two parameter adaptation algorithms, the Adaptive
Discovery Mechanism and the Cross-Layer Adaptive Scanning and evaluate
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them using open-source IEEE 802.11 drivers. By the means of experimenta-
tion, we show that an adaptation of the scanning parameters to the current
scenario can optimize the discovery process performance not only regarding
its duration but the number of discovered AP as well.

a decision-making framework to assign applications to wire-
less interfaces in multi-homed devices In order to exploit net-
work diversity, a decision-making mechanism to efficiently assign the differ-
ent application flows to the available interfaces needs to be defined. Several
network selection mechanisms have been proposed in the last years, con-
sidering a wide spectrum of parameters and criteria. These criteria include
for instance, Quality of Service (QoS) requirements for each application, user
preferences and monetary or energy costs of each interface. In all existing
solutions, these criteria are combined using preference values in the form
of weights. Using a preference-based strategy to solve a decision-making
problem simplifies its complexity and allows the decision-maker to rapidly
obtain a solution. However, the use of weights adds a high level of subjec-
tivity to the decision making and prevents from finding the real trade-off
between the different criteria. In order to overcome to this limitation, we de-
sign and evaluate a multi-objective approach to support network selection
based on two relevant criteria: the energy consumption and the bandwidth.
In order to obtain a complete view of the trade-off, we solve the optimization
problem using evolutionary algorithms.

1.3 outline

The thesis contribution is organized in three chapters. First, in order to char-
acterize the current wireless environment we propose in Chapter 2 an eval-
uation study of current wireless diversity including cellular networks and
WLAN, giving special attention to wireless CN. We propose a set of metrics
that not only show the characteristics of the current deployments but also
highlight the lack of mobility and multi-homing support. Then in Chapter 3,
we focus on the handover limitation in current IEEE 802.11 networks. We
propose a set of algorithms that aims at reducing the impact of the IEEE
802.11 discovery process duration on the on-going communications. These
algorithms use optimized parameters settings for the discovery process. Fi-
nally, in Chapter 4, we consider the decision-making support in multi-homed
devices, that aims at assigning applications flows to the the available wire-
less interfaces in an optimal manner. For such a decision-making process, we
propose a multi-objective optimization approach that considers the mobile
device’s energy consumption and the bandwidth demand of the different
applications flows.



2
W I R E L E S S H E T E R O G E N E O U S N E T W O R K S

2.1 network diversity

In the last twenty years, wireless communications have become a relevant
part of everyday life. Nowadays, mobile users need to permanently access
the Internet not only for professional purposes but also for getting communi-
cated with their entourage using different mobile applications and services.
In the current ecosystem of mobile communications, there is not a single
wireless technology covering all user requirements. For that reason, differ-
ent wireless technologies have been deployed and periodically enhanced,
giving a fully heterogeneous environment. This ecosystem is illustrated in
Figure 1, where it can be observed that different wireless technologies have
been designed to provide different performance in terms of data-rate, cover-
age area or mobility pattern. However, when considering real deployments,
the performance of the different networks is unpredictable, depending on
several parameters (e.g., the radio condition, the network load, the Mobile
Station (MS) characteristics). Moreover, there is not still a tight integration
among the different network technologies, which prevents mobile users from
fully exploiting the diversity and the ubiquity of the deployment, i.e., to
seamlessly transit among different access networks or to have the possibility
of simultaneously use more than one network without impacting on-going
flows.

Before proposing any mechanism to exploit the diversity of the networks,
we need to identify which are the particular characteristics of currently de-
ployed networks, i.e., if there is the real possibility that a given mobile user
could benefit of the presence of several networks at any given place, pro-
viding dissimilar performance. To this end, we propose in this chapter an
inventory of the current wireless Internet accesses in urban areas. This in-
ventory consists in a complete measurement study to evaluate the presence
of the networks and their performance in a mobility scenario. We consider
the two most popular technologies embedded in current mobile devices,
cellular-based and IEEE 802.11 networks, particularly focusing on a new
communication paradigm based on IEEE 802.11: the Community Networks,
which aims at offering an ubiquitous IEEE 802.11 coverage using residential
access points. To perform this measurement study, we have designed and
developed a set of Android applications that allow gathering and analyz-
ing traces from existing wireless networks: the Wi2Me platform. We found
that CN deployments are as dense as cellular networks, providing accept-
able performance. However, we have also observed that there are a number

5
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Figure 1: The current wireless ecosystem

of limitations related to a low received signal strength and a lack of mobil-
ity support which prevents mobile users from having seamless connectivity
while moving.

The chapter is organized as follows. In the following sections, the techni-
cal details of each wireless technology in the ecosystem and their evolutions
are proposed, including the main concepts in energy consumption of the
most popular broadband wireless technologies IEEE 802.11 and 3G cellu-
lar networks. Then, in Section 2.2, we present the related work on wireless
networks evaluation studies tending to characterize heterogeneous deploy-
ments. In Section 2.3, we present the Wi2Me platform, an Android tool to
gather traces from cellular networks and WLAN, having the ability to auto-
matically test the performance of CN and open networks. A detailed eval-
uation study of IEEE 802.11 CN and cellular networks is proposed in Sec-
tion 2.4, which characterizes the different networks in terms of different
metrics. Then, since we have observed a lack of mobility support in CN,
we propose in Section 2.5 a comparative study between CN and a managed
IEEE 802.11 deployment to evaluate the impact of mobility on the transport
layers. Finally, in Section 2.6 we discuss the possible evolutions in CN and in
Section 2.7, we conclude the chapter.

2.1.1 IEEE 802.11

IEEE 802.11 [8] is a standard for WLAN that has been released in 1997 to
provide high data-rate wireless connectivity in the Industrial Scientific and
Medical (ISM) frequency band. The medium access method is Carrier Sense
Multiple Access with Collision Avoidance (CSMA/CA). IEEE 802.11 has been



2.1 network diversity 7

Standard PHY Layer Data- Frequency Channel

Technology Rate Band Width

802.11-1997 DSSS/FHSS 1 − 2 Mbps 2.4 GHz 22 MHz

802.11b-1999 DSSS/CCK 5.5 − 11 Mbps 2.4 GHz 22 MHz

802.11a-1999 OFDM 6 − 54 Mbps 5 GHz 20 MHz

802.11g-2003 DSSS/OFDM 1 − 54 Mbps 2.4 GHz 20 MHz

802.11n-2009 OFDM 6 − 600 Mbps 2.4 / 5 GHz 20 / 40 MHz

Table 1: IEEE 802.11 physical layers [1]

Figure 2: IEEE 802.11b channel layout

continuously evolving, as detailed in Table 1, to provide nowadays a max-
imum theoretical data-rate of 600 Mbps and an average coverage area of
100 m. The first IEEE 802.11 standard was intended to provide a megabit-
per-second wireless access using Direct Sequence Spread Spectrum (DSSS)
and Frequency Hopping Spread Spectrum (FHSS) in the 2.4 GHz and the in-
frared band. A data-rate improvement was achieved two years after with
the introduction of IEEE 802.11b (based on DSSS but using Complementary
Code Keying (CCK) as modulation scheme), and IEEE 802.11a, which uses the
5 GHz band and Orthogonal Frequency Division Multiplexing (OFDM) mod-
ulation. The latest standard, IEEE 802.11n, significantly increases the maxi-
mum data-rate from its predecessor, including a number of enhancements
in the physical layer [9], such as Multiple Input Multiple Output (MIMO)
antenna system, enhanced OFDM (providing more sub-carriers, a reduced
guard-interval and optimized error correction codes) and an optional ex-
tended channel bandwidth, up to 40 MHz. It also provides some medium
access optimizations, like Frame Aggregation (allowing the MS to send mul-
tiple frames per medium access) and Block Acknowledgement (to acknowl-
edge multiple IEEE 802.11 packets with a single frame).

Regarding channel allocation in IEEE 802.11, the typical channel layout for
the European regulatory domain in the 2.4 GHz (IEEE 802.11b) is illustrated
in Figure 2. We observe that only three fully non-overlapping channels are
available (1,6 and 11). In the American regulatory domain, having only 11

channels, other possible channel combination of three of more channels suf-
fers from partial frequency overlap.

The on-going work in the IEEE 802.11 Working Group includes the spec-
ification of IEEE 802.11ac, a gigabit-per-second wireless access in the 5 GHz

band, IEEE 802.11y (approved in 2008) a high-power access (giving more
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Figure 3: IEEE 802.11 deployment modes

than 5 km range) in the 3.7 GHz band and IEEE 802.11ad, a very-high data-
rate access in the 60 GHz band, mainly intended for a multimedia home
wireless access.

2.1.1.1 Deploying IEEE 802.11

The main building block of an IEEE 802.11 network is defined by the Basic
Service Set (BSS), consisting in a group of stations communicating together.
The area where the communication takes place is identified as the Basic
Service Area, which is conditioned by the wireless medium characteristics
(i.e., path-loss, fading, interferences). In order to communicate within a BSS,
two different approaches exist (see Figure 3): the Independent Basic Service
Set (IBSS) (or adhoc) mode and the Infrastructure Mode.

independent bss mode Stations communicate directly with each other
when they are within a common coverage range. The adhoc designation is re-
lated to the fact that this kind of networks are designed for specific purposes
and usually for a sporadic or opportunistic usage. Commonly, when using
an adhoc topology, one of the nodes has access to the Internet, so the other
nodes in the network without an Internet connection may use the former
node as a relay to reach the public network.

infrastructure mode In this case, an AP bridges the MS connected
through the wireless medium with other hosts connected to a wired Ether-
net link, called the Distribution System (DS). This kind of architecture pro-
vides several advantages. First, it allows extending the coverage of a wired
network to a large number of MS connected to different AP. Differently from
IBSS, in the infrastructure mode the BSS is defined by the radio coverage of
the AP, which is normally located in a fixed position, giving a stable coverage
area, allowing scalability. Additionally, the AP may buffer frames targeted to
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Figure 4: The Extended Service Set

an MS, allowing it to enter in Power Saving Mode (PSM) mode and save ev-
ergy by switching-off the MS radio circuits (energy considerations for IEEE
802.11 are given in Section 2.1.4). In order to achieve a larger coverage area,
several BSSs may be chained together using a backbone network and con-
ceiving an Extended Service Set (ESS). The main feature offered by an ESS

is that an MS can send/receive frames to/from any other MS, even though
they belong to different BSS. In an ESS all BSS are identified with a common
Service Set Identifier (SSID). Figure 4 illustrates a typical ESS. In this case, the
AP is responsible for locating the MS in the ESS and deliver frames to its final
destination.

security in ieee 802 .11 In both modes, the standard provides a set
of security mechanisms for authentication and encryption. Originally, the
Wired Equivalent Privacy (WEP) was based on using a common shared key
for all MS in the network. Since WEP suffered from several weaknesses en-
abling users to easily crack the network key, the IEEE has rapidly proposed
IEEE 802.11i, including the Wi-Fi Protected Access (WPA) and WPA2 pro-
tocols, providing stronger encryption techniques, evolved pre-shared key
authentication and centralized authentication based on Remote Authentica-
tion Dial-In User Service (RADIUS) servers and the Extensible Authentication
Protocol (EAP).

2.1.1.2 Community Networks

The concept of CN has been developing in the last years in order to pro-
vide ubiquitous WLAN coverage in urban areas. These networks differ from
well-known WLAN hot-spot, metropolitan or municipal networks which only
cover a number of public places and point-of-interests around different cities
(e.g., train stations, transportation hubs, bars, shopping malls) requiring for
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special subscriptions to access the Internet. The CN concept is based on ex-
tending the usage of existing IEEE 802.11 residential networks. In CN, the
Internet Service Provider (ISP) gives to each customer a "box", which con-
tains an Asymmetric Digital Subscriber Line (ADSL) modem, a router and
an IEEE 802.11 AP. This box typically provides users with an Internet ac-
cess through a Network Address Translation (NAT). These AP are capable of
broadcasting multiple network identifiers, enabling users to share their ADSL

access with other customers of the same ISP using a common open-system
authentication network identifier, the CN SSID. In a common use case, when
a user is within the range of his own AP, the secured SSID, implementing
WEP or WPA, is used. Whenever a user is out of range of his own AP, he can
associate to a shared CN AP that broadcasts the CN SSID. Then, in order to
access the Internet, the user must provide his own identifiers through an
Hypertext Transfer Protocol Secure (HTTPS) captive portal. A common CN

deployment is depicted in Figure 5, where different ISP provide a CN access
to their subscribers, who also manually configure a private secured SSID.

This concept of sharing private broadband ADSL accesses was originally
proposed by FON1, who has been deploying its platform using a special
WLAN AP that users can plug to their routers at home. In France, wireless
CN have been increasingly deployed by the subscribers of four of the most
important ISP, counting around 13 millions AP: Free (claiming over 4 million
AP), SFR (claiming over 4 million AP), Bouygues Telecom (claiming over 700

thousand AP) and, very recently, Orange (claiming over 4 million AP).
In those CN, there is a concern about the incentive scheme to encourage

users to share their IEEE 802.11 access. Several authors have designed com-
plex incentives and credit-based schemes, like Manshaei et al. [10], who

1 http://www.fon.com

http://www.fon.com
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derived an incentive scheme using a game theoretical approach and Ai et
al. [11], who proposed a credit-based scheme, where users earn credits for
sharing bandwidth. In practice, the incentive scheme of the FON CN is based
on three user profiles that are chosen upon the first registration on the net-
work. The Alien users are those who do not share their IEEE 802.11 access
but still want to get connected to other AP without paying; the Bill users are
those that sell their access using a time-based pricing and share the earnings
with FON; finally the Linus users are those that fully share their access with-
out asking for money. Regarding the CN operators in France, there is not
complex pricing and incentive scheme, since users willing to access the CN

can do so only if they share their own Internet access with other subscribers.
In this case, the user can only access the CN belonging to his own ISP.

2.1.2 Cellular Networks

2.1.2.1 Technological Evolution

The other main broadband wireless access is provided by cellular networks,
giving a larger coverage and much better mobility capacities than the afore-
mentioned IEEE 802.11. The evolution of cellular networks has been divided
in generations, as depicted in Figure 6. The first generation included a num-
ber of analog systems, such as Radiocom 2000 in France. The transition to
digital systems arrived with the Second Generation Wireless Network (2G),
with the popular Global System for Mobile Communications (GSM) specifica-
tion which allowed digital voice services over cellular networks. In GSM, up-
link and downlink communications are divided using Frequency-Division
Duplexing (FDD) and an eight time-slot division using Time Division Multi-
ple Access (TDMA) to guarantee the medium access to up to eight users for
200 KHz channel. The evolution to data-packets networks based on GSM has
been first specified in General Packet Radio Service (GPRS), generally called
2.5G, providing a typical data-rate of 18 Kbps. It was based on allowing the
MS to use more than one time slot in the TDMA frame. Data-packet access net-
works have then evolved to Enhanced Data Rates for GSM Evolution (EDGE),
or 2.75G, being four times faster than GPRS, thanks to enhanced modulation
and coding schemes.

With the increasing demand of data services against traditional voice ser-
vices, the transition to the Third Generation Wireless Network (3G) was a
strong technological shift, since the FDD/TDMA architecture implicitly posed
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a performance limit. This technological shift, the Universal Mobile Telecom-
munications System (UMTS), is based on Wideband Code Division Multiple
Access (WCDMA), an evolution of the Code Division Multiple Access (CDMA)
technique, which required a completely new network deployment, i.e., new
base stations and frequency allocations. In WCDMA, instead of using narrow
frequency channels like in GPRS/EDGE, a larger channel of 5 MHz is used.
Then, communications are based on spread spectrum, so each MS uses dif-
ferent codes to allow multiple access. This new technique allows a theoreti-
cal maximum data-rate of 384 Kbps, which enabled new online applications
and a more fluid web-browsing. However, the increasing demand for band-
width (mainly related to audio and video applications) pushed the evolu-
tion of UMTS to High Speed Packet Access (HSPA), called the 3.5G, including
High Speed Downlink Packet Access (HSDPA) and High Speed Uplink Packet
Access (HSUPA). HSDPA allows a maximum downlink data-rate of 14 Mbps

by providing some enhancements from its predecessor, like a shared chan-
nel transmissions, higher rate modulations and shorter transmission time
intervals. Regarding HSUPA, a new transport channel is defined, namely the
Enhanced Dedicated Channel (E-DCH), giving a maximum uplink data-rate
of 5.8 Mbps. A further evolution has been designed in the Evolved High
Speed Packet Access (HSPA+), including MIMO and higher modulation rates,
providing 84 Mbps and 10.8 Mbps in the downlink and uplink respectively.

Even if HSPA and HSPA+ were designed to provide very high data-rates,
these technologies are limited in the distance in which data can be delivered,
since the symbol duration decreases with the increasing data rate, becom-
ing much smaller than the multipath distance, hindering the data retrieval.
Additionally, another limitation is related to the architecture of the core net-
work, which is not an all-IP architecture, forcing a co-existence with legacy
voice circuits and gateways.

The 3rd Generation Partnership Project (3GPP) started to define the require-
ments for a new generation of mobile communications, the Fourth Genera-
tion Wireless Network (4G), establishing a peak data-rate of 100 Mbps for
high speed mobility and up to 1 Gbps for low speed mobility or static users.
In this direction, the Long Term Evolution (LTE) standard has been released
in 2008. However, it does not still satisfy the requirements imposed for a
4G technology. For that reason, LTE is commonly referred to as 3.9G, even
if it is commercially referred as to 4G. LTE can provide up to 300 Mbps in
the downlink and 75 Mbps in the uplink, with a very low latency (5 ms in
optimal conditions) and supporting high mobility speeds, up to 500 km/h.
It uses the Orthogonal Frequency-Division Multiple Access (OFDMA) mech-
anism for multiple medium access, supporting both FDD and Time-Division
Duplexing (TDD) with variable channel bandwidth, from 1.4 MHz to 20 MHz

(recall that a fixed 5 MHz channel was used in 3G systems).
The first 4G standard has been finally defined in the LTE-Advanced speci-

fication, allowing gigabit-per-second data-rates by including carrier aggrega-
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tion, enhanced MIMO and relay nodes, providing better performance at the
cell edge.

2.1.2.2 Current Deployments

Mobile phones penetration rate has surpassed 85 % in 2011 [12], being more
than 100 % in some regions like Europe and the Americas, giving almost
6 billion subscribers worldwide. Moreover, after the transition to HSPA the
volume of mobile data has considerably increased (surpassing the amount of
data generated for voice-based services). Nowadays, more than 900 million
users have access to broadband wireless accesses through a 3G technology. In
parallel, there has also been a great expansion of the mobile devices market,
giving more than 3000 different mobile device models (supporting HSPA)
that have been launched in the last years.

To respond to this demand, worldwide network operators have been de-
ploying new networks. The current deployment of cellular networks is in
practice a mixture of technologies belonging to different generations. In most
countries, voice-based services are still carried out using the GSM network,
covering nowadays the 90 % of the world population [13]. Regarding the de-
ployment of worldwide data-packet networks, we find that HSPA is the most
used technology, since all the 3G commercial deployments have launched
the HSPA service. The mainstream on the deployment is marked by the im-
plementation of HSPA+, giving a total of 234 commercial networks in 112

different countries (in July 2012 [13]). However, there is also a fast develop-
ment of LTE in parallel with HSPA+. This is because networks operators have
still to amortize their 3G infrastructure and maximize benefit before shift-
ing to LTE, that will require important investments. There are currently 89

commercial LTE deployments in 45 different countries, expecting up to 150

deployments for the end of 2012.

2.1.3 Other Wireless Technologies

Even if the current wireless heterogeneous environment is dominated by a
mixture of cellular technologies and IEEE 802.11, there are other wireless
technologies that are also embedded in most mobile devices. First, the Blue-
tooth [14] technology, operating in the 2.4 GHz ISM band, has been originally
designed to provide wireless connectivity for data sharing among devices
(without any infrastructure) over short distances at relatively low data rates,
forming a WPAN. Common usages of Bluetooth include file sharing and mes-
saging between smartphones and computers, peripheral pairing (e.g., head-
sets, input devices, remote controls) and and Internet connection sharing
between smartphones and laptops (also called Bluetooth modem). Bluetooth
has been evolving over the last years and is able to provide, in its latest ver-
sions (v3.0 and v4.0), up to 24 Mbps, which is comparable to the common
data-rates obtained in IEEE 802.11.
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The IEEE 802.15.4 [15] standard has been conceived to provide low data
rates (up to 250 Kbps), short range and low energy-consumption communica-
tions. Its most popular applications are the Wireless Sensor Networks (WSN)
and the Internet of Things (IoT). Even if this technology is not strongly
present in current mobile devices (e.g., laptops, smartphones, tablets), it
has been recently reported2 the launch of a 802.15.4-enabled Android smart-
phone, also providing an IEEE 802.11, a UMTS/HSPA and a Bluetooth inter-
face.

Finally, the IEEE 802.16 family of protocols, known as Worldwide Inter-
operability for Microwave Access (WiMAX) has been designed to offer both
fixed and mobile wireless communications at high data-rates, up to 40 Mbps

with a very large coverage range. Even if it is currently part of the 4G spec-
ification, it did not meet the UMTS and HSPA success. However, there exists
a large number of deployments worldwide, serving around 20 million users
in 20113.

2.1.4 Energy Consumption of Wireless Interfaces

Energy efficiency of mobile devices has become a major issue in the design
of modern mobile communication devices, since the improvement of battery
technologies has not followed the exponential growth of mobile devices and
systems performance [16]. As stated earlier in this chapter, mobile devices,
and especially smartphones and tablets, are equipped with a great number
of wireless interfaces and have the ability to run several applications at the
same time, demanding a huge amount of energy. Moreover, the miniaturiza-
tion of mobile devices still limits the size of batteries, which have not greatly
improved their energy density (measured in Wh/l), commonly providing a
total energy of 1500 Wh for a typical smartphone battery, giving less than
one day of autonomy for a normal usage. If we consider a multi-interface
smartphone (i.e., having at least IEEE 802.11, 2G/3G/4G and Bluetooth wire-
less radio), in a common use case, the radio interfaces contribute, in aver-
age, to the 58 % of the total energy consumption of the device [17]. Note
that this contribution may increase if multiple interfaces are simultaneously
used (multi-homing). We detail in this section the differences, in terms of en-
ergy consumption and operating modes of the two most popular broadband
wireless technologies: 3G cellular and IEEE 802.11 networks.

2.1.4.1 UMTS/HSPA

As explained in [18], an MS communicating through a UMTS/HSPA interface
transits between three different operating states, as listed below:

2 http://www.taztag.com/

3 http://www.wimaxforum.org/news/2866

http://www.taztag.com/
http://www.wimaxforum.org/news/2866
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Figure 7: RNC state machines

• Paging Channel (PCH): No radio resource is allocated to the MS since
no Radio Resource Control (RRC) connection exists.

• Forward Access Channel (FACH): A RRC connection is established with-
out dedicated channels, limiting the bandwidth up to a few kbps.

• Dedicated Channel (DCH): An RRC connection is established and a ded-
icated channel has been allocated, giving a high data-rate access to the
MS.

The power consumption at each state depends on the particular MS hard-
ware, but in all cases the PCH is the less consuming state and DCH the most
consuming state (see Table 4). However, the logic to transit among these
states, i.e., the state machine, is not managed by the MS but by the Radio
Network Controller (RNC) in the network side, which is responsible for con-
trolling a set of base stations (or NodeB in the 3GPP nomenclature). Then,
different network operators may implement different configurations for the
state machine, leading in a different energy consumption for the same usage
for a given MS.

Two example of state machines are given in [18] for two of the most popu-
lar carriers in the USA. Figure 7 illustrates these state machines. In the case
of Carrier 1, each time an MS in the PCH state has to establish an RRC connec-
tion to send or receive data, it switches to the DCH state to exchange packets.
Then, it keeps staying in this state if the packet exchange continues or, in
the case it becomes idle for an inactivity timer of T1 seconds, it switches to
the FACH state, which consumes less power but provides lower bandwidth
than DCH as well. The MS then continously monitors the uplink and down-
link packet queue (Q) and if its length becomes larger than a threshold, it
switches again to the DCH state to exchange packets at a higher bandwidth.
On the other hand, if the MS remains idle in FACH for an inactivity timer T2,
it comes back to the idle state (PCH). A more conservative state machine is
implemented in the RNC of Carrier 2. In this case, an MS being in the PCH

state first switches to the FACH state for any RRC connection request. If a
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Figure 8: 3G state transitions for a Skype test-call

high throughput is demanded, it then switches to the DCH state. The inac-
tivity timers T1 and T2 follows in this case the same logic than for Carrier
1.

We performed an experiment to analyze the transitions of a 3G state ma-
chine, as illustrated in Figure 8 [19]. We have obtained this trace by perform-
ing a Skype test call in an HTC Dream smartphone using the SFR 3G network
and logging the activity of the MS using PowerTutor [20]. We can observe in
this trace that once the call ends at time 75 s, the MS remains in the DCH state
and switches to the FACH state at time 95 s. Then, 10 s after the transition to
the FACH, the MS becomes idle (transition to PCH).

The state machine is set by the network because it is the network oper-
ator who has to efficiently manage its limited wireless resources, i.e., the
dedicated channels. The network operator can set the logic of the state ma-
chine, values for T1 and T2 and the queue threshold. In the state machines
presented in [18], these parameters are set as detailed in Table 8. Note that
there is a trade-off while assigning dedicated channels. In order to negoti-
ate a transition to a DCH, several signalling packets have to be exchanged
between the MS and the network, which roughly takes 2 s. An MS willing
to consume a low amount of energy may request a DCH transition every
time there is some data to exchange and go immediately to the FACH or
PCH state (i.e., release the DCH channel) without waiting for an inactivity
timer. However, in this situation the user performance is strongly degraded
since there is a signalling overhead caused by multiple negotiations of a DCH

channel. On the other hand, if the MS wants to maximize the performance,
it should always remains in the DCH state, but in this case the negative im-
pact is twofold. First, a high energy consumption may be observed and so
the MS battery autonomy is reduced. Second, the network operator may run
out of wireless resources and so a great number of users may not be able to
perform RRC connections.
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Parameter Carrier 1 Carrier 2

T1 (s) 5 6

T2 (s) 12 4

Queue Threshold (bytes) 475 119

Table 2: State machine parameters

SLEEP

TX

IDLE

RX

Figure 9: WLAN state machine

2.1.4.2 IEEE 802.11

Differently from UMTS/HSPA cellular interfaces, in IEEE 802.11 the operation
mode is much simpler and the state transitions are exclusively managed by
the MS, i.e., there is not a centralized entity (like the RNC in cellular networks)
affecting the energy consumption of the device. Figure 9 illustrates the dif-
ferent states and transitions for a WLAN interface [21]. During an active com-
munication, the interface enters in the transmit (TX) and receive (RX) mode
intermittently. If no transmission is active, the MS remains IDLE. Addition-
ally, if the interface supports the PSM it can enter in the SLEEP mode, that
consumes very low energy (see Table 3). When being in such state, the MS

switches its circuits off and requests the AP to buffer its incoming packets.
Then, the MS will periodically wake up to receive AP beacons and will look
for a Traffic Indication Map (TIM) that announces buffered packets for the
MS. The transition to the SLEEP mode is usually performed after a timeout
(an analysis of different PSM strategies can be found in [22]).

2.1.4.3 Empirical studies and preliminary observations

Several studies exist in the literature trying to characterize how the differ-
ent wireless interfaces impact on the global energy consumption of an MS.
Petander [23] proposes an overview of energy consumption in terms of the
battery drain (measured in percentage) while using the IEEE 802.11 (WLAN)
and the 3G (UMTS) interfaces in an HTC Dream smartphone. Some exper-
iments are carried out by varying the traffic load and the signal strength
between the MS and the AP or cellular base station. Results show that even if
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WLAN State Nokia N810[21] HTC G1[21] Nokia N95[21] Nokia N90[26]

SLEEP 42 68 88 40

IDLE 884 650 1038 800

TRANSMIT 1258 1097 1687 2000

RECEIVE 1181 900 1585 900

Table 3: Power consumption (mW) of WLAN states

3G State N/A[17] N/A[26] Nokia N95[24] HTC TyTN II[18]

PCH < 18.5 19 282 0

FACH 370-740 555 549 400-460

DCH 740-1480 1100 742 600-600

Table 4: Power consumption (mW) of 3G states

UMTS consumes more energy per unit of data (between 0.2 % and 2.8 % per
MB), both interfaces slightly consumes the same amount of energy per unit
of time (around 0.01 % per second). Xiao et al. [24] proposed a measurement
analysis of YouTube video streaming using both UMTS and WLAN interfaces
and different scenarios (e.g., progressive download and view, download first
play next, local playback). The authors observe that in the case of UMTS,
even if the video download is finished and the MS only plays the video, the
power consumption does not immediately decrease, leading to a higher to-
tal energy consumption compared to WLAN. This is caused by the effect of
cellular networks inactivity timers (see Section 2.1.4.1). We proposed in [19]
an evaluation study of energy consumption of different mobile applications
using 3G (UMTS/HSPA) and WLAN interfaces in an Android MS. In particular,
these measurements have been performed using PowerTutor [20], a real-time
power estimation tool that allows tracing the instantaneous energy consump-
tion of the different components of the MS (e.g., procesor, screen, WLAN, 3G,
Bluetooth, GPS). As in [24], we have also observed the effects of inactivity
timers in 3G, especially when doing web-browsing, since during the idle time
between two web page requests (i.e., the reading time) the MS is not capable
of reducing the 3G power consumption. More particularly in [25], Haveri-
nen et al. study the energy consumption of always-on applications (based
on keep-alive message exchanges) using UMTS. They show the impact of in-
activity timers and keep-alive frequency, proposing some configurations to
both parameters to mitigate this negative impact on energy efficiency.

2.1.5 Discussion

This panoply of wireless technologies are commonly present in urban areas,
giving multiple access possibilities to mobile users. In particular for Internet
access, IEEE 802.11 and 3G networks appear as the most convenient wireless
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accesses in urban areas. In order to analyze their coexistence and the possi-
bility of simultaneously using both interfaces, there has been in the last years
the necessity of exploring and evaluating the wireless deployments. These
evaluation studies were usually taken as an input to design and evaluate
new protocols aiming at optimizing the user experience while using those
networks.

In the context of this thesis, a fine-grained knowledge of the wireless envi-
ronment and the collaboration between different technologies help to better
understand the drawbacks and limitations of current deployments and also
to identify the opportunities and challenges for optimizing those networks.
We particularly focus on optimizing IEEE 802.11 AP discovery in Chapter 3

and the decision-making processes for network selection in Chapter 4.
In the following, we present past evaluation studies of wireless diversity

so as to motivate the development of the Wi2Me platform, a new wireless
sensing tool that allow characterizing not only the presence and performance
of wireless networks but also their limitations for mobile users.

2.2 related work on wireless diversity evaluation

In this section, we present the related work on measurement and evaluation
studies aiming to characterize wireless networks in urban environments, in-
cluding the existing tools and applications to perform such studies. Regard-
ing WLAN deployments, we focus not only on measurement studies for open
AP deployments in urban areas but also for research dedicated networks, that
have been specifically deployed to analyze the performance of IEEE 802.11

under different usage conditions. However, in the study that we present in
Section 2.4, we focus on open urban WLAN deployments, particularly in CN

and their coexistence with operator-based cellular networks.

2.2.1 Evaluation Studies

In [2], Bychkovsky et al. propose an evaluation study of IEEE 802.11 AP de-
ployments in urban areas to provide network connectivity for moving vehi-
cles. This study consisted in 290 hours of evaluation of existing urban WLAN

deployments using Linux-based computers with an IEEE 802.11 card and a
5.5 dBi antenna and a Global Positioning System (GPS) device installed in sev-
eral vehicles. These computers were responsible for discovering the available
networks, associating to a (good) candidate AP, obtain an IP address, ping a
remote server and finally attempt to upload data through TCP connections.
During one year, nine vehicles have been moving around some urban areas
of Boston and Seattle (USA), discovering more than 32.000 AP and associat-
ing to more than 5.000 AP. However, since their system was only capable to
join open WLAN, i.e., without any authentication mechanism at the Medium
Access Control (MAC) layer, they could only successfully ping their remote
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Median time between AP association and IP address acquisition 3 s

Median time between AP association and first AP ping 8 s

Minimum / Average / Maximum Scan delay 120/750/7030 ms

Minimum / Average / Maximum Association delay 50/560/8970 ms

Average time between two successful associations 75 s

Average time between two successful end-to-end connections 260 s

Median connectivity duration to an AP 13 s

Median AP coverage 96 m

Average packet delivery rate 78 %

Median per-connection throughput 30 KB/s

Median per-connection uploaded data 216 KB

Table 5: General results [2]

server in only 20 % of the connections, i.e., the 3 % of the discovered APs. Us-
ing the traces collected during these connections, the authors evaluated the
networks using different performance metrics as given in Table 5. For mov-
ing vehicles, they have observed very short connection durations (in median
13 s) allowing to upload 216 KB in median.

Since this study focused on wireless connectivity for vehicles, the authors
provided a set of metrics to analyze the impact of speed on the connection
performance. They find that the number of successful associations to an AP

is uniform up to 60 km/h. Above this speed, they observe a very few number
of connections. The connection duration linearly decreases with an increas-
ing speed, up to 60 km/h. For greater speeds the connection duration behave
somehow random. However, they observe no correlation between the vehi-
cle’s speed and the packet delivery ratio.

With the same aim, Balasubramanian et al. [27] study the potential for
existing WLAN to provide connectivity to moving vehicles. Instead of inven-
torying existing wireless networks like in [2], they focus their attention on
two particular deployments, VanLAN [28] and DieselNet [29], that have been
specially conceived to analyze vehicular mobility under IEEE 802.11 deploy-
ments. In this case, they perform several measurement studies to collect bea-
cons from different AP in both networks so as to analyze, by the means of
trace-driven simulations, the performance of different handover algorithms
seeking to minimize the disruption in IEEE 802.11 connectivity.

In a more recent work, Balasubramanian et al. [3] perform a measurement
study to analyze the feasibility of offloading users’ connections from cellular
to WLAN networks. They conducted measurements in three different testbed
in the urban areas of Amherst, Seattle and San Francisco (USA), sensing both
3G cellular and IEEE 802.11 networks. They installed a computer carrying an
IEEE 802.11b and a 3G modem (HSDPA) in several vehicles. This computer
has a software that is able to scan for networks and transfer fixed amounts
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Average 3G availability over the time 87 %

Average WLAN availability over the time 11 %

Average Unavailability using 3G/WLAN simultaneously 5 %

Median 3G TCP throughput uplink/downlink 500/600 Kbps

Median WLAN TCP throughput uplink/downlink 280/200 Kbps

Median 3G UDP throughput uplink/downlink 850/1000 Kbps

Median WLAN UDP throughput uplink/downlink 400/500 Kbps

Average packet loss 3G/WLAN 7/22 %

Table 6: General results [3]

of data. In Amherst, these computers have been deployed on public buses,
performing fixed routes, while in Seattle and San Francisco the mobility pat-
tern was random. The results of this measurement study is presented in
Table 6. They observed a much higher TCP throughput than in [2]. This
could be due to more reduced speeds and because in some cases they con-
nect not only to open AP but to other AP they have deployed along the path.
The authors analyze, using trace-driven simulations, the offloading capacity
of 3G data over WLAN. They estimate that in the 53 % of the locations, at least
20 % of the 3G data could be sent/received over WLAN. Moreover, in 9 % of
the locations all 3G data could be sent over WLAN. The total amount of data
that a user may offload to WLAN not only depends on the availability of AP

but also on the tolerance of users to delay the transmission of some flows
until a WLAN becomes available.

A most recent evaluation study analyzing the offloading capacity of mo-
bile devices in urban heterogeneous networks is proposed by Lee et al.
in [30]. In this study, the authors distributed 100 iPhones to different users
moving around some metropolitan areas in Seoul (South Korea) during 20

days. These devices ran a especial application, DTap, that records the statis-
tics of available WLAN every three minutes and perform connections to open
AP to estimate throughput and Round Trip Time (RTT) using the ping com-
mand. The analysis of the statistics gives that the average temporal WLAN

coverage for a user is around 70 % while spatially, the area covered is be-
tween 10 % and 20 %. Users get connected through a WLAN in average 120

minutes per day with a time between connections of around 41 minutes.
They model the connection duration and the interconnection time using the
Weibull distribution and evaluate the performance of different offloading
strategies using trace-driven simulations. The authors estimate that up to
65 % of the traffic can be offloaded from 3G to WLAN, giving a maximum
energy saving of 55 %.

A measurement study of WLAN deployments in the city of Chicago (USA)
is presented in [4], aiming at collecting a large number of traces to evalu-
ate best AP selection algorithms using trace-driven simulations. This study
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Downtown Residential Suburban

AP found 797 464 256

Open AP found 78 81 43

AP per scan 2.4 2.0 1.8

Usable AP 53.9 % 100 % 97.7 %

Estimated Bandwidth (KB/s) 60 80 200

Estimated RTT (ms) 22 29 20

Table 7: General results [4]

is performed in three different urban areas (i.e., downtown, residential, sub-
urban), walking around a grid of 1.3 km2. Traces have been collected using
an iPaq handheld with an IEEE 802.11b card. In addition to discover AP,
the device estimated the RTT and ran a set of scripts to determine which
port numbers (e.g., HTTP, SMTP, Samba) were open. A summary of the re-
sults encountered in this measurement study is presented in Table 7. They
observed different performance for different urban areas, achieving the high-
est throughput in suburban areas, where the lowest density of AP (i.e., the
lowest interference) is found.

Another interesting case of study for urban WLAN deployments is the
Google Muni WiFi Network4. This is a public accessible IEEE 802.11 mesh
network in Mountain View, California (USA), covering a 31 km2 urban area
with more than 500 Tropos5 AP, serving up to 2.500 (in 2008 [31]) and most re-
cently 19.000 (in 2009 [32]) simultaneous users and daily transporting more
than 600 GB of data at a maximum downlink data-rate of 3 Mbps. Contrary
to CN, in which public indoor AP are shared to the public, the Google Muni
WiFi Network enters in the category of metropolitan or municipal WiFi Net-
works, which commonly consists in a dedicated deployment using outdoor
AP deployments which are managed by a governmental institution or a third-
party operator. Several municipal deployments exist nowadays all over the
world, specially in Europe and North America. In the case of the Google
Muni WiFi Network, different authors have performed measurement studies
to analyze its performance under urban mobility patterns. A very complete
evaluation of the usage patterns of this network is provided by Afanasyev
et al. [31]. Even if this evaluation study does not focus on the radio and
wireless aspects, it provides a number of metrics to analyze what users can
expect from the usage of this kind of networks. They distinguish three types
of users. The smartphone users (those holding a handheld or similar device),
the hotspot users (those users connecting with a laptop) and the modem users
(those users that deploy a high-transmit power equipment at home that con-
nects to the Google Muni WiFi Network and converts the wireless signal

4 http://wifi.google.com/

5 http://tropos.com

http://wifi.google.com/
http://tropos.com
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into a wired signal that users can access at home using an Ethernet inter-
face). Regarding the session duration, in 65 % of the cases modem users get
connected for less than one day, while for hotpot and smartphone users the
median session duration is 30 and 10 minutes respectively. Smartphone users
mainly generate HTTP and TCP traffic while modem and hotspot users gen-
erate additional traffic, like Peer-to-Peer, Virtual Private Network (VPN) and
interactive traffic (e.g., streaming, VoIP). The authors however find that there
is an order of magnitude more hotspot users than modem users but even in
this scenario, modem users generate a similar amount of traffic than hotspot
users. Regarding users’ mobility, in a one hour period a smartphone con-
nects to six different AP in median. The 10 % most moving smartphones get
connected to 32 different AP. They also observe some oscillations in fixed
modem users who change AP at least once. This could be due to the long
range of the Tropos AP, up to 500 m, which impacts the radio signal and
forces a handover on the modem side.

A second measurement study over the Google Muni WiFi Network is pro-
posed by Arjona et al. [33]. In this case, the authors analyze the capacity of
this network to support Voice over Internet Protocol (VoIP) for mobile users.
An experimentation campaign was carried out in sub-urban, urban and cor-
porative areas around the city using Skype-to-Skype and Skype-to-cellular
phone calls. Results show a poor performance of VoIP calls using the Google
Muni WiFi Network, measured with the Mean Opinion Score (MoS), espe-
cially for Skype-to-cellular phone calls. The authors estimate that, in order
to achieve a similar MoS than for cellular network phone calls, the Google
Muni WiFi network should increase its AP density from 30 to 81 AP/km2,
which they estimate as costly as a cellular network deployment.

All these studies show that, in urban environments, users have the pos-
sibility to intermittently connect to WLAN while moving. Note that in these
studies, open AP networks have been generally considered, which at that
time represented a considerable part of the deployment. These deployments
represent now a very low number of AP (only 3.12 % of the AP, excluding
CN AP, in our measurement study [34]). This motivated us to perform a com-
pletely new measurement study for 3G and WLAN using a new wireless sens-
ing tool that allows connecting to multiple CN. In the following, we present
the existing wireless sensing tools and we propose a new platform Wi2Me,
for Android mobiles.

2.2.2 Existing War-driving Applications

Even if the measurement studies introduced in 2.2.1 used ad hoc software
and hardware platforms to gather the traces from wireless networks, there
are nowadays several publicly available tools to do so, running on different
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mobile platforms. These tools are usually referred to as war-driving applica-
tions in the literature. In this section, we summarize some of them, mainly
those operating under the Android system, like the Wi2Me platform.

openbmap OpenBMap6 is a free and open source wireless sensing tool
for WLAN AP, cellular base stations (GSM, UMTS, HSPA and LTE) and Blue-
tooth devices that aims to build a free accessible data base. It is available
for Android, Windows Phone and openmoko mobile platforms, providing
in a website a limited view of the global traces, including coverage maps
of cellular networks and WLAN AP and a full view for self collected traces
(containing location information). In July 2012, the database contained cellu-
lar traces from 171 countries and more than 780.000 cells from 604 different
operators. Regarding WLAN traces, more than 650.000 AP from 57 different
countries have been inventoried.

sensorly The Sensorly7 project is an Android participatory sensing plat-
form that aims at creating a very precise wireless network cartography, show-
ing the network coverage for 2G, 3G and LTE technologies for more than 120

network operators in different countries. The application allows mobile users
to manually test the data-rate of different networks, which is then uploaded
to the remote Sensorly database, in order to feed the network maps. Regard-
ing CN in France, Sensorly allows obtaining an estimation of the position
of individual AP for the four main ISP in France: Free, Orange, Bouygues
Telecom and SFR, without providing any information about the overall per-
formance of those networks.

wigle Very similar to OpenBMap, the Wigle platform8 is a multi-platform
participatory sensing tool for WLAN and cellular networks that has been ac-
tively gathering traces since 2001. It actually runs on Android mobiles and
Linux, Mac and Windows computers, counting more than 125.000 users. In
July 2012 it counted more than 68 million WLAN AP and 1.5 millions cellular
base stations all around the world, mainly in Europe and North America.
They also propose a partial view of the traces and some interesting statis-
tics (e.g., evolution of the number of discovered networks and encryption
protocols over the time).

opensignalmaps OpenSignalMaps9 is an Android application provid-
ing similar functionalities than the Sensorly platform but particularly for 3G

networks. The traces are also represented in a dynamic heat-map while giv-
ing some metrics to compare two or more network operators in terms of av-
erage signal strength, uplink and downlink data-rate and round-trip latency.

6 http://openbmap.org/

7 http://www.sensorly.com/

8 http://wigle.net/

9 http://opensignalmaps.com/

http://openbmap.org/
http://www.sensorly.com/
http://wigle.net/
http://opensignalmaps.com/
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It also compares, for some cities in USA, United Kingdom, Italy, Germany
and Spain, the network performance compared to the average country or
worldwide performance. The OpenSignalMaps database contains coverage
and performance information from a large number of countries. The appli-
cation also discovers WLAN AP, but these traces are not available online.

2.3 the wi2me platform

2.3.1 Introduction

As it has been previously presented in Section 2.2, existing evaluation studies
of wireless heterogeneous networks provide a characterization of current de-
ployments by using ad hoc platforms, i.e., specific software installed in some
specific hardware to discover the networks and evaluate their performance.
On the other hand, public available war-driving applications are available
for different platforms, but, in all cases, even if they can successfully dis-
cover wireless networks and locate them in a map, they lack of automatic
mechanisms to trigger connections and evaluate the performance of the net-
works by downloading and uploading data packets in the background, with-
out requiring the intervention of the user. Moreover, the access to the traces
is very limited for the users, since only some predefined metrics are avail-
able. Unfortunately, the user has not the possibility to manipulate raw traces
(e.g., databases, files) and calculate their own metrics. Moreover, as we have
shown in a first measurement study [35] in Rennes (France), the high den-
sity of AP and especially of CN, required for a new sensing tool, capable to
analyze CN in an automated manner.

To reach our goal of analyzing the wireless diversity, we have designed
and implemented a new war-driving platform, called Wi2Me. The main goal
of this platform is to allow continuous AP and base station scanning and
automatic connection to cellular networks and CN, while gathering all the
collected traces into an internal database. In practice, this platform is com-
posed of a common Android core, containing the main functionality and two
front-ends, conforming two application versions: a user version, Wi2Me-User

and a research version, Wi2Me-Research. Both applications are detailed in the
next section.

2.3.2 Design and Implementation

2.3.2.1 Wi2Me-User

The Wi2Me-User version acts as a network manager for common smart-
phone users, aiming to automatically connect and authenticate to CN while
moving. With Wi2Me-User, a mobile user first sets his/her CN accounts (user-
name and password) that the application will use to attempt automatic con-
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Figure 10: Wi2Me Architecture

nection and authentication. Then, he/she simply pushes the "Start" button
to run the network manager, that will perform scanning, connection and
HTTPS authentication. After tracing the scanning, authentication and associ-
ation process, once the MS gets connected, it will start tracing the activity
of the mobile in a SQLite database. As illustrated in Figure 10, Wi2Me-User
logs information about the usage of the running applications. For instance,
it logs the number of bytes and packets transmitted and received (per appli-
cation and for all applications together) over the WLAN interface. It can also
log the evolution of the TCP connections by registering the state transitions
for each single connection.

2.3.2.2 Wi2Me-Research

functionalities Wi2Me-Research [36] is intended for participatory sens-
ing, i.e., to set up measurement campaigns to discover and deeply analyze
the performance of existing cellular networks and WLAN deployments by
taking in consideration not only CN but any captive portal based network.
Differently from Wi2Me-User, Wi2Me-Research allows a very fine-grained
trace collection, at a higher sampling rate, giving to the application the full
control of the wireless interfaces (i.e., it prevents other applications from
making use of the interfaces) by using a firewall.

This application performs geo-location, network scanning, automatic con-
nection and data traffic generation using the IEEE 802.11 and the cellular
interfaces. It differs from other war-driving applications, since for the best
of our knowledge, it is the first war-driving application that performs auto-
matic connection and authentication to existent CN, supporting different CN

providers and captive portal based networks. Wi2Me-Research also allows
easily adding to the application captive-portal authentication algorithms (in
JavaScript) for any existing network. The application runs in background
mode and logs different events and information in a local SQLite database.

Three main modules define the application’s operation, as shown in Fig-
ure 11. A first module obtains the MS position by using the GPS or network
location services (based on GSM and WLAN positioning). A second module is
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Figure 11: Wi2Me-Research modules

responsible for managing scanning, connection and traffic generation over
3G, while logging base station information. The third module is respon-
sible for managing scanning, connection and traffic generation for WLAN.
After a WLAN scanning, the application logs the list of discovered AP, in-
cluding for each AP the Basic Service Set Identifier (BSSID), the SSID, the sig-
nal strength, the channel number and the supported security capabilities. If
the user configures at least one CN account (i.e., username and password),
Wi2Me-Research can select and connect to an AP and generate data traffic
in order to evaluate the application level performance of the CN. Each time
the application finds a known CN SSID having a signal strength greater than
a threshold (by default, −85 dBm), it tries to associate with the AP and auto-
matically performs HTTPS authentication using JavaScripts plugins we have
developed to this end. Then the application may download and/or upload
files of different sizes (50, 100, 250 and 500 KB) from a web server located at
Telecom Bretagne. The WLAN connection lasts until the MS finishes transfer-
ring all the files or there is a disconnection due to poor radio link quality.
If no CN SSID is available, the application attempts a cellular connection and
performs the same file uploads and downloads. During each connection, the
application logs the current signal strength, the data rate and the number of
transmitted or received bytes.

As one of the goals in developing the Wi2Me application was to have
a complete picture as possible of the network state and its performance,
we have also monitored the network traffic on the server side. We use a
Common Gateway Interface (CGI) script on the web-server that triggers the
TCP connection tracing using the ss command (a socket statistics tool) to
measure the TCP Congestion Window (CWND), the RTT and the throughput.
Additionally, for each connection, all the packets are captured on the server
side using tcpdump. After a measurement campaign the user can upload the
traces (in SQLite) to a remote server via the application. Then, traces from
different users and measurement campaigns are merged in a single SQL
database. Finally we use Perl scripts to analyze the traces and compute rele-
vant performance metrics. We have also used tcptrace to analyze individual
TCP connections.

We have observed that for Wi2Me-Research, the intensive usage of the
wireless interfaces and the GPS has a strong impact on the battery autonomy,
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Figure 12: Battery drain different scanning strategies
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especially due to WLAN scanning. For that reason, in order to prolong the
battery lifetime, the application is paused if the MS stops moving during
a certain time (by default, 60 s). In order to detect movement, we use the
internal accelerometer, since it consumes much less energy. We illustrate
the energy consumption of different scanning strategies in Figure 12, where
the grey curves (sensor-aided scan) represent the battery drain (in %) for
different runs of the application using the accelerometer-based movement
detection. We observe that the usage of the accelerometer allows improving
the battery duration between 3 h and 10 h (depending on user’s mobility)
compared to continuous scanning (green and blue curves).

core implementation Wi2Me-Research was designed to be used by
any contributor having an Android smartphone with GPS, WLAN and 3G inter-
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Figure 14: Traces database schema

faces. To guarantee scalability, we have used a Model View Controller (MVC)
architectural pattern, as shown in Figure 13, that isolates the application
logic (the core) and the user interfaces. The View can be a complete client or
a simple experimental view. The application’s Controller and Model, belong-
ing to the Core module, contain the classes that collect and store the traces
and run in background mode, allowing the user to continue using the smart-
phone as long as the other applications do not interact with the network
interfaces. The Controller contains the configuration classes that allow select-
ing different parameters and options for the application. It also contains the
Services package which includes all the classes running the main flows and
providing interfaces to the device hardware, e.g., network interfaces, GPS,
battery, sensors. The Model contains all the classes that are responsible for
applying the control logic and policies, deciding when and how to perform
a certain action, e.g., trigger a scanning or a connection, transfer data, log
events. The model classes interact with the Controller services to transform
policies in specific actions. This allows extending the application functional-
ity by just implementing a new Model class or inheriting from the existing
one without modifying the Controller services.

The application is completely parametrizable. Some of the possible con-
figuration variables are: the time between successive WLAN scans (scanning
interval), the signal strength threshold for attempting a connection, the de-
lay to attempt a cellular connection after finding a new cell or the amount of
data to transfer during a connection.

traces organization When running Wi2Me-Research, the device starts
collecting information and organizes it in a database (see Figure 14). Every
information collected represents a Trace, e.g., a scanning result, an associa-
tion or connection event, an authentication event, a ping result or a connec-
tion information. A Trace is composed of a timestamp and the MS location in-
formation (altitude, latitude, longitude and speed). Location information can
be provided by either the GPS module or by network interfaces, which give
a low-precision location that is used when the GPS is unavailable. For each
connection information (WiFiConnectionData), scan result (WiFiScanResult)
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or ping command (WiFiPing), the application stores AP information in a
WiFiAP trace, which contains the BSSID (layer-2 address of the AP), SSID, chan-
nel number, signal level (in dBm), the supported security protocols and link
data-rate (in Mbps). For cellular-related information, the Cell trace stores
the Cell Identifier (CID), the Location Area Code (LAC), the operator name
and code, the signal level (in dBm) and the network type (GSM, GPRS, EDGE,
UMTS or HSPA). Regarding the connection information, the application logs
the connection type (download or upload), the IP address and the amount of
transferred data for both WLAN and 3G connections. During a connection, a
ConnectionData trace is logged every 50 ms. Additionally for WLAN connec-
tions, the WiFiConnectionData trace logs the number of received and trans-
mitted layer-2 packets and the number of layer-2 retransmissions. All these
traces are gathered and locally stored in a SQLite database on the smart-
phone. Unlike other war-driving applications that store the information in
plain text files, we decided to organize traces in a database for scalability
reasons and to simplify the post-processing phase. Once the application is
stopped, it is possible to send the collected traces to our remote server via
an FTP client integrated in the application. This feature allows aggregating
traces from multiple devices in a central server for off-line processing.

2.4 characterizing wireless networks with wi2me

2.4.1 Experimental Setup

The results presented in this section are based on the data obtained during
two measurement campaigns using Wi2Me-Research on Samsung Galaxy S
(GT-I9000) smartphones running Android 2.2.1. The first campaign [34], il-
lustrated in Figure 15, consisted in a single user walking in the city center
of Rennes, France10 carrying two smartphones. One of the smartphones per-
formed WLAN scanning and connected to CN to exchange data while the sec-
ond smartphone was scanning every 2 seconds for IEEE 802.11 networks and
receiving cellular beacons, while also performing cellular connections. The
aggregated path length was 34 km and the total experimentation time was
10h19. We have gathered traces from 6761 unique APs and 61 unique cellu-
lar base stations. The Wi2Me-Research application was configured to alternate
between downloading and uploading files of increasing size, between 50 KB

and 500 KB.
We have also performed a second measurement campaign where we fo-

cused on the performance of TCP connections observed by a mobile user. In
this case we performed multiple runs in urban areas by connecting to two
CN (FreeWiFi and SFR), as well as several connections to a campus WLAN

network at Telecom Bretagne, called SALSA, an open-system HTTPS captive-
portal based indoor network covering the campus. We used Wi2Me-Research

10 A map with the estimated AP locations: http://labo4g.enstb.fr/wi2me

http://labo4g.enstb.fr/wi2me
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500m

Figure 15: First measurement campaign

over the SALSA network in order to analyze the impact of handovers on TCP
connections since, in CN, layer 3 mobility is not currently supported and so
flows are interrupted after a handover. We performed 291 connections and
we obtained traces from the MS and the server side. In both campaigns, an
external 7 dBi antenna has been added to the smartphone to maximize AP

discovery and CN connection success rate.

2.4.2 Experimentation Results

2.4.2.1 Topology Discovery

density During the first measurement campaign, we have measured the
CN deployment density in terms of the number of discovered AP per scan.
A scan is triggered every second while the MS is moving. In Figure 16a, all
discovered WLAN AP are considered, resulting in a median density of 15 AP

per scan, which indicates a very dense environment. The CN AP use different
IEEE 802.11 physical layers. We observe in Figure 16d that in the case of
FreeWiFi, the MS can reach data rates higher than 54 Mbps, indicating an
IEEE 802.11n network. In the case of SFR, we can infer from the traces that
the MS is connected to the AP in IEEE 802.11b/g mode. Figure 16b shows
that FreeWiFi has a denser deployment compared to SFR and Bouygues. A
FreeWiFi user may find more than one AP in 70 % of the scans. In the case
of SFR, this value falls to 40 % and only 25 % for Bouygues. The number of
AP discovered per scan by a user having access to all the CN has a median of
3.3, denoting fairly dense community networks.
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Figure 16: Topology discovery metrics

channel overlap We study the AP distribution on the different chan-
nels. This is a critical issue, since in IEEE 802.11 adjacent channels partially
overlap, causing high levels of interference and frame loss [37]. In current
WLAN deployments, there is a coexistence of different IEEE 802.11 physi-
cal layers that use various modulation schemes and channel bandwidth (as
previously shown in Section 2.1.1). In all the cases, the channel separation
is 5 MHz, but in IEEE 802.11b channels are 22 MHz wide while in IEEE
802.11g/n, channels typically are 20 MHz wide.

Figure 16c shows the distribution of the AP on different channels. Around
80 % of the total number of AP are deployed in the IEEE 802.11b non-over-
lapping channels (1, 6 and 11). This result confirms the channel distribution
previously found in [38] and in our previous evaluation study [35]. To evalu-
ate the level of overlapping, two metrics are proposed. Figure 17a shows the
Cumulative Distribution Function (CDF) of the distance between the chan-
nels of all the AP observed in a single scan, called the inter-channel overlap.
We found that 45 % of the times the APs overlap with other neighboring APs
in the (up to four) adjacent channels, which may produce link degradation
and packet loss due to partial overlap (the corresponding cases are shown in
red). A four channel separation is needed, since we consider that there are
IEEE 802.11b users, that require a 22 MHz wide channel. We observe in Fig-
ure 17a that the most likely separation is five channels, which is the case of
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Figure 17: Channel overlap metrics

the classical non-overlapping deployment 1-6-11. Then, we define the intra-

channel overlap as the number of APs operating in the same channel. Figure
17b shows that in the 55.3 % of the cases a given channel is shared by two or
more APs. Even if most recent AP models implement an intelligent channel
selection mechanism to find the most convenient channel, the high AP den-
sity, the uncontrolled deployment and the limited spectrum in the 2.4 GHz

band generate an inevitable intra-channel overlapping. These interferences
notwithstanding, CN are capable of supporting user communications at rea-
sonable data rates, as illustrated in the following sections.

2.4.3 End-User Experience in Community Networks

2.4.3.1 General Results

Table 8 summarizes the results obtained in the first campaign, during which
we have performed 661 connections to two CN (FreeWiFi and SFR) and 17

connections to cellular base stations belonging to a single operator (SFR).
Such a difference between the number of connections to CN and cellular base
stations is due to the Wi2Me-Research connectivity policy, which attempts a
connection to a CN every time a CN AP having a signal strength greater than
a threshold (by default, −85 dBm) is available. Given the high density of CN

AP and the fact that the MS cannot simultaneously connect to both WLAN

and cellular networks, the MS was connected to a CN AP most of the time.
We downloaded 158 MB (in 1136 files) and uploaded 125 MB (in 900 files)
using CN. We observe different connection success rates among CN operators.
In the case of FreeWiFi, a connection attempt succeeds in almost 60 % of
the cases (510 CN connections over 858 attempts) while a SFR connection
succeeds only in 30 % of the attempts (151 CN connections over 504 attempts).
However, SFR shows a slightly higher average throughput than FreeWiFi. As
shown in Table 8, we have observed higher average and peak throughput in
cellular than in CN connections. This may be due the low signal strength
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Network APs / Connection L2/L3/CN Number of Files Tx/Rx MB Average Throughput Peak Throughput

Cells Attempts Connections (Down/Up) (Down/Up) (Down/Up) (KB/s) (Down/Up) (KB/s)

FreeWiFi 720 858 802/626/510 846 / 675 114.5 / 90.2 51.2 / 61.2 162.9 / 172.4

SFR 908 504 626/410 /151 290 / 225 43.5 / 35.1 65.5 / 41.2 367.9 / 126.5

Cellular 61 17 - 57 / 54 11.9 / 11.6 92.7 / 73.7 381.7 / 225.3

Table 8: Performance results for CN and cellular network connections

received from CN AP, as detailed in Section 2.4.3.3, and CN rate limitations
imposed by ISP as discussed in Section 2.4.3.5.

2.4.3.2 Complementarity between CN and 3G

The MS activity during the first experiment campaign is shown in Figure 18.
A cellular base station was available 99.2 % of the time, 45.5 % of the time
the service offered was HSDPA (supporting downlink speeds between 3.6
and 14.4 Mbps) and a UMTS access (up to 384 Kbps on the downlink) for the
rest of the time. Regarding WLAN, a CN AP with a signal level greater than
−85 dBm was available 98.9 % of the time. This dense deployment allowed
the MS to have a link layer connection to a CN for 93.9 % of the time.
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Figure 18: Smartphone activity during the first campaign

On the other hand, the MS has been successfully connected to the Internet
through a CN (i.e., at least one packet was successfully received) only for
53.8 % of the time. This is mainly due to packet loss during Dynamic Host
Configuration Protocol (DHCP) exchanges or to captive portal authentication
problems due to poor signal strength.

2.4.3.3 Signal Strength

Figure 20 shows the signal strength distribution for the different CN opera-
tors. FreeWiFi and SFR have an equivalent signal strength distribution (in
median, −80 dBm) while Bouygues has a weaker signal strength probably
due to a smaller gain of the embedded AP antenna or lower transmit power.
The low signal strength in CNs is related to the fact that residential APs are
commonly deployed indoor, as their main goal is to cover an apartment or a
house, reducing the power of the signals received outdoor. This issue is also
raised in [39], where the authors analyze the impact of verticality of indoor
AP in an outdoor usage. However, considering that a 7 dBi gain antenna has
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Figure 19: Signal strength distribution

been attached to the MS, a larger gain might be needed in both the MS and the
AP in order to guarantee a good user experience when connecting to CN in
a urban mobility use case. We have also investigated the distribution of the
signal strength during connection and disconnection events. In Figure 20a,
we can observe that the median signal strength during a connection attempt
is around −76 dBm for both FreeWiFi and SFR. However, successful connec-
tions (i.e., those with a successful CN authentication) require a higher signal
strength, giving a median value of −71 dBm for FreeWiFi and −73 dBm for
SFR. At disconnection, we obtained a median signal strength of −78 dBm for
FreeWiFi and −80 dBm for SFR (see Figure 20b).
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Figure 20: Signal strength distributions at connection and disconnection

In order to evaluate the signal strength impact on the download perfor-
mance, we have calculated the average throughput and the average number
of link layer retransmissions for different signal strength levels observed
in all connections to FreeWiFi during the second measurement campaign.
Figure 21a shows the average number of retransmissions per second for dif-
ferent signal strength levels. We observe that there is no retransmission for
signal strength levels greater than −60 dBm; for lower levels, the link quality
degrades, forcing the MS to retransmit packets. Figure 21b shows the relation
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between the signal strength and the average throughput. We observe that for
stronger signal strengths, the MS reaches the maximum average throughput
provided by the CN (around 100 KB/s). We can also observe that for low
signal strength levels, between −65 dBm and −80 dBm the throughput is ex-
tremely variable, resulting in unstable performance. Observe in Figure 21b
that the maximum achievable throughput is reached for signal strength val-
ues greater than −60 dBm. However, such a level of signal strength has been
observed during less than 2 % of the time, leading to fairly low average data
rates in our experimentation.
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Figure 21: Signal strength correlations

2.4.3.4 Connection and Disconnection Periods

We analyzed the connection duration and the distance covered by the user
while being connected to a CN AP. In our campaigns, the MS moves at a
walking speed (roughly 1 m/s). In Figure 23 we plot the relation between
the distance covered and the connection duration. Most of the points cluster
around the dashed reference line which corresponds to 1 m/s. Figures 22a
and 22b show the distribution of the covered distance and the duration of a
connection respectively. We observe a median connection duration of 27.5 s

corresponding to a displacement of 26 m. This result doubles the connection
time observed in [2]. We observe that the IP disconnection time, i.e., the time
between a disconnection and a new connection to a CN, has a median of
5 s. More precisely, the time needed to establish a layer-2 connection has a
median of 2 s and the time to have a functioning Internet connection after a
successful layer-2 connection has a median of 3 s. Even if these disconnection
times dramatically perturb real-time and interactive applications, they may
not greatly affect applications like email, micro-blogging or browsing, that
may tolerate a higher latency. Compared to results presented in [2], thanks
to the high density of CN, permanent connectivity could be feasible because
most of the time a CN AP is available. So instead of having the 23 s between
two connections calculated in [2], we observe a disconnection time of 5 s

that is only due to protocol latencies and not to the network deployment.
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Figure 22: Connection and disconnection metrics
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Note that these 5 s could be significantly reduced by carefully tuning the
parameters used in the protocol implementations (e.g., better triggering the
link going down event).

Regarding session continuity, we observed in all CN that the connections
are interrupted when the MS handovers to a new AP. In the case of FreeWiFi,
once associated to an AP, the MS obtains a public IP address which is leased
for 130 s, but even if the same IP address is used in the new AP, no com-
munication is possible. This could be caused by a missing routing update
causing IP packets to be routed to the wrong AP (recall that in CN, AP are
routers as well). In the SFR CN, the MS is behind a NAT and acquires a private
IP address using DHCP. Then, after a handover, the IP address is no longer
valid in the new AP and a complete reconfiguration is needed. In the case of
the university campus network, called SALSA, all the AP belong to the same
subnet, thus an MS is able to pursue its communication after a transition be-
tween two AP. In this case, we observe an uninterrupted download, even if
the bandwidth is highly degraded when a handover occurs.

2.4.3.5 Transport Layer Aspects

Thanks to the traces collected on the server side, which used TCP Reno, we
can reconstruct individual connections with a good level of detail. We use the
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tcptrace utility which can compute, among other parameters, an estimate
of the CWND, the value of the TCP Receiver Window (RWND), an estimate
of the RTT and of the TCP throughput. Figures 24a and 24b illustrate the
evolution of CWND and RWND for one SALSA and one FreeWiFi connection
respectively, where the MS was downloading the file and it was, therefore,
the TCP receiver. Note that in the case of the FreeWiFi connection, RWND is
never a limiting factor as it is always much larger than CWND. Instead, in
the case of the SALSA network (Figure 24a), at times the two windows are
identical, meaning that the application layer throughput is being limited by
the receiver. As we have observed this in multiple connections, we computed
the distribution of the ratio CWND/RWND for FreeWiFi, SFR and SALSA (Fig-
ure 24c). As CWND is always lower than RWND the ratio falls in the interval
(0, 1]. We observe that in CN, in almost all the cases, the ratio between the
two windows is lower than 0.2, meaning that RWND is at least five times
CWND. For the SALSA connections, instead, RWND is at most 1.25× CWND
in the 40 % of the cases. This confirms the fact that Figures 24a and 24b are
representative of our sample.

As far as handovers are concerned, we have observed that no TCP con-
nection was able to continue after a handover in CN. Even in the case of
FreeWiFi, which (at least in some cases) uses the same public IP address
before and after a handover, there is no traffic on the server side after the
handover. As one can observe in Figure 25c the same is true on the MS side,
even though the received signal strength (Figure 25a) is high. One possible
explanation is that the IP packets are still routed to the previous AP, pre-
venting the TCP connection from working after the handover. In the SALSA
network, instead, TCP connections do keep working after a handover but, in
most cases, the TCP sender (i.e., the server in our case) experiences a time-
out after a handover, leading to an important reduction in the congestion
window. Figure 24a shows a typical evolution of the congestion window for
a TCP connection of a mobile user in the SALSA network. To quantify this
behavior, we have calculated the relative delay between the handover and
the reduction of the CWND to at least half its maximum value before the
handover (see Figure 24d). In some cases (less than 20%) the dynamics of
the TCP connection were such that the congestion window was cut shortly
before or about the same time as the handover but in 70% of the cases the
window was reduced during the 4 s following a handover. Given the small
RTT of the TCP connections in the SALSA data set, these timeouts and win-
dow reductions do not affect significantly the TCP throughput but such a
behavior could decrease the performance in the case of a wide area network
where RTT, and competing traffic can be significantly larger. Finally, it is
also interesting to observe that, as shown in Figure 24a, the aforementioned
problems with the RWND limiting the CWND at times, happen right after a
handover. One possible explanation is that the algorithm used by the MS to
compute the RWND is confused by the timeout and the corresponding in-
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Figure 24: CWND and RWND metrics

crease in the RTT, leading to a much smaller RWND. All this shows how, even
if the application-level performance is acceptable in the case of the SALSA
network, this could not be the case for a wide area network.

2.5 mobility issues in community networks

During our measurement campaigns, we found a high density of WLAN AP

along our itinerary. One could deduce that there is a potential for a low
cost and high data rate Internet access in urban areas. However, we have
observed a low received signal strength most of the time (even if an external
antenna has been used); 90 % of the measured signal strength samples are
lower than −70 dBm, and 50 % are lower than −80 dBm. This results in short
connection times, between 10 and 40 seconds, when a user is moving at
1 m/s (see Figure 23). This high density also makes the disconnection time
(with a median of 5 s) to be only dependent on the protocol latencies since
when a handover occurs there is always a candidate CN AP. Thus, while CN

are currently used mainly by static users, they have the potential to offer a
reliable Internet connectivity to mobile users, provided optimized mobility
protocols are deployed to support handover between AP. In this way, once
the current connection with an AP is lost, the MS can switch to another AP

while maintaining its communication. In the following sections, we study
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Figure 25: Performance metrics for CN and SALSA

the impact of handover on the applications and explain what could be done
to provide mobility support in CN.

2.5.1 Handover impact

A handover, which is deeply studied in Chapter 3, is the process performed
by an MS to change AP. It may be triggered by a low signal strength from the
current AP or bad link layer performance. A handover consists in discovering
potential APs operating in the MS radio range and then authenticating and
associating with one of them. Then, IP layer operations may be needed if the
new AP requires that the MS acquires a new IP address.
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Authentication after a handover is one of the critical aspects in CN. In
some cases, when an MS disconnects from a CN AP and re-associates to a
new AP of the same CN, HTTPS authentication through a captive portal has
to be carried out again. It means that a user typically enters his login and
password at each connection with an AP. In our application, no interaction is
needed with the user, scripts perform the authentication on the user behalf.
However, it still takes between 1 and 2 seconds, which is unacceptable for
several applications.

In order to further analyze the handover, we propose to study the impact
of handover on a data transfer by making a comparative analysis between
CN and the SALSA network, where only a layer 2 handover is needed (all
AP are on the same subnet). Figure 25 shows the signal strength, the total
number of packets transmitted (TX) and received (RX) as well as the link
layer retransmissions (retries) and the bandwidth (on the server side) for
two individual connections to FreeWiFi and SALSA. We have observed that,
in the case of CN, when the MS reaches the limit of its AP coverage area, the
MS automatically switches to a new AP. However, in all the cases, we have
observed that the download is interrupted as shown in Figure 25c. After a
handover (marked with a blue cross), even if a good signal strength is re-
ceived from the new AP (see Figure 25a), the RX packets curve from Figure
25c stops increasing. On the other hand, we observe exactly the contrary
in SALSA, where the MS can always continue the download after a han-
dover. Figure 25b shows the data rate and power after handovers (indicated
by a blue cross) while Figure 25d shows that the MS continuously receives
and sends traffic. Figures 25d and 25f also show the number of retries and
throughput. We can see that before each handover, the number of retries in-
creases and the throughput decreases. We also observed that, in some cases,
the throughput is low for some time after the handover, before the MS can
fully exploit the capacity of its new connection. This is the time needed by
the transport layer to adjust its transmission rate to the new capacity of the
network.

2.5.2 Predicting a handover

Two optimizations can be set up to reduce the handover impact on appli-
cations. First, the handover process can be enhanced, by proposing mecha-
nisms at different layers to either better manage the handover or limit the
impact on transport protocols. Second, it might be possible, at least in some
cases, to use a (short-term) prediction mechanism to forecast impending dis-
connections in order to execute a handover before the link conditions are sig-
nificantly degraded. We have observed that, in most cases, shortly before an
MS is disconnected from the current AP, the signal strength and the through-
put are both decreasing, while the number of link-layer retransmissions in-
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Figure 26: Signal strength, retries and RTT before a handover

creases significantly as shown in both FreeWiFi and SALSA connections in
Figure 25.

In order to better characterize and therefore better detect an impending
handover, we have computed three parameters. First, in Figure 26a, we show
the percentage of cases where the short-term trend of the signal strength
(slope) is negative as a function of the time before the handover. When the
handover approaches, around 80 % of the times there is a degradation of the
signal strength. Figure 26b the percentage of cases where there are more than
5 retries per second. We observe that 5 s before the handover occurs, a high
level of retries becomes more probable. Finally, in Figure 26c we consider
the average RTT measured on the server before the handover. We observe a
linear increase of the RTT when a handover approaches, reaching almost 1 s.

In order to anticipate handover decisions, we could monitor the signal
strength and the number of retransmissions. While link-layer retransmis-
sions can be measured only when the MS is sending data, this is exactly
the case where handover anticipation is most important.

2.5.3 Mobility Support in upper layers

If CN operators want to offer seamless connectivity, they need to deploy
mechanisms to quickly and efficiently handle frequent handovers at layers
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2, 3 and 4. First, in order to improve the radio link quality and so reduce
the handover frequency, CN AP may replace common internal antennas, that
have become popular due the miniaturization of devices, with high-gain ex-
ternal antennas. This could reduce the handover frequency and give more
time to the MS to anticipate and prepare the handover. Second, layer 3 mech-
anisms are needed to allow users to keep continuous IP-layer connectivity
while moving. Operators may configure CN AP in a single IP subnet or in a
set of geographically distributed subnets (e.g., one for each neighborhood).
However, this solution may not scale to the large number of current AP (i.e.,
several millions). Another approach is to introduce Mobile IP [40] in the net-
work architecture. In this case, each operator may deploy a Home Agent,
which allows the MS to continue receiving flows while moving from one net-
work to another. Moreover, a single Home Agent for several CN operators
having a roaming agreement could allow mobile users to roam between APs
belonging to different communities. Nevertheless, a negative handover im-
pact at the transport layer (i.e., layer 4) is observed for both CN and SALSA.
In the case of CN, the CWND can never recover due to a network disconnec-
tion. In the SALSA network, we observed that the throughput is drastically
reduced just after and before the handover due to the combination of poor
signal strength and the reduction and later recovery of the CWND. To over-
come the impact of handover at layer 4, some solutions already exists, like
FreezeTCP [41], which can prevent the CWND from dropping when a han-
dover occurs, provided the appropriate control message can be sent at least
one RTT before the handover takes place.

2.6 possible evolutions in community networks

2.6.1 Managing and Controlling Deployments

The fact that ADSL subscribers can easily share their WLAN access allows, on
the one hand, proposing a simple model to set up a dense network, but,
on the other hand, the AP coverage and capacity planning are uncontrolled.
Users can place AP and manually set the operating frequency (channel) and
the modulation scheme (IEEE 802.11b/ g/n and different data-rates). Users
can also turn-off and on the AP whenever they want, resulting in a com-
pletely dynamic topology. This uncontrolled deployment leads to high level
of interference, limited per AP coverage and relative low network perfor-
mance as also studied in [39].

A potential solution would be for CN operators to take control of the radio
configuration on behalf of their subscribers. First, they could automatically
select the AP channel depending on the environment (i.e., neighboring APs
and other devices operating in the ISM bands). This is currently implemented
in several AP, but since it is not mandatory, users may manually set the chan-
nel without having any knowledge of surrounding sources of interference.
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Second, operators could dynamically modify the CN AP deployment by re-
motely regulating the AP output power (or directly turning them off). This is
similar to cell-breathing techniques in cellular networks. Some cell breathing
algorithms for WLAN have been proposed in [42]. Using such a mechanism,
operators may adapt the deployment to the current users needs, possibly
leading to a more energy efficient network as a positive side effect.

2.6.2 Using multiple network interfaces

We have observed in Figure 18 that in urban areas, the density of wireless
community deployments is such that at least one CN AP having a signal
strength greater than −85 dBm is available 98.9 % of the time, which is equiv-
alent to the availability of cellular base stations (99.2 %). This should allow a
user to use both interfaces at the same time instead of alternating between
them. Existing mobile devices use a pre-established connectivity policy (em-
bedded in the OS) dictating the use of a single interface at a time for all
flows. On the contrary, if using multiple interfaces simultaneously were en-
abled, users could implement smart decision-making schemes. In Chapter 4,
we survey the decision-making in network selection and propose a multi-
objective decision-making problem that we solve using genetic algorithms.

Recent studies try to optimize this deterministic interface selection in or-
der to offload cellular data to WLAN networks [30]. Offloading strategies
focus on reducing the cellular overload by delaying data transmissions until
the user enters in a WLAN covered zone. As we have shown in the proposed
measurement study, in a urban environment, WLAN deployments appear to
be highly ubiquitous, therefore a user may have the opportunity to offload a
significant amount of traffic using CN or even to enhance his experience by
simultaneously using both access technologies.

2.7 concluding remarks

In this chapter, we have characterized CN using the Wi2Me-Research appli-
cation. This application was designed to periodically scan the radio envi-
ronment, connect to IEEE 802.11 AP and cellular base stations and evaluate
the application layer performance. CN are created by millions of users shar-
ing their residential AP with other subscribers. Particularly in urban areas,
CN have a high AP density, albeit coupled with an uncontrolled deployment.
During a CN connection, that we have measured to last between 10 and 40

seconds, we observed different values of throughput for the same signal
strength and vice versa. So that signal strength alone can hardly determine
the application performance. We have also shown that handovers are not
supported in CN, because after changing AP, the application flows are not
redirected to the new AP. In a controlled IEEE 802.11 deployment, such as
a campus network, a user may change AP without interrupting its commu-
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nication, if handovers are supported at layer 2 and 3. But even in this case,
the handover is not transparent for TCP as, in most cases, the congestion
window is significantly reduced for up to 6 seconds after a handover. Fur-
thermore we observed that sometimes after a handover, the TCP receiver is
still limiting the sender window size by announcing a low RWND.

We have shown that mobility support is required in CN because, due to the
limited connection time, handovers are frequent. We also observed that the
used protocols to manage handovers are not optimized: the time needed to
reconnect a new CN AP has a median of 5 s. To reduce the contribution of the
authentication process on the handover delay, some operators have started to
deploy Extensible Authentication Protocol Method for GSM Subscriber Iden-
tity Module (EAP-SIM) [43], aiming at automatically authenticating WLAN-
enabled smartphones using the GSM Subscriber Identity Modules (SIM) in-
stead of using captive portal based authentication. However, in order to still
reduce the handover delay, the MS may reduce the AP discovery latency by
optimizing the scanning algorithm. We address in Chapter 3 the handover
management, particularly the AP discovery process in IEEE 802.11.
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3.1 introduction

The usage of wireless networks has incredibly evolved during the last years.
Current mobile users have the possibility to connect to different network
technologies using multi-interface devices. In a typical use case, mobile users
access the Internet through a 2G/3G/4G cellular network or through an IEEE
802.11 AP. Particularly for IEEE 802.11, there has been a proliferation of hot-
spots and community networks, providing a high throughput Internet ac-
cess in urban environments. However, a single AP covers very short ranges,
limiting the users’ mobility.

In Chapter 2, we have shown that community networks appear to be
highly dense in urban areas, generally providing several access points (15

in median) per location. Under these conditions, a mobile user may be able
to connect to community networks and compensate the low AP coverage area
by transiting across AP. Such AP transition is called a handover. However, as
stated in the previous chapter, two main issues currently limit users from
moving across urban IEEE 802.11 and performing seamless handovers. First,
in current hot-spots and CN deployments there is a lack of mobility support
at the IP layer that guarantees session continuity of users’ applications. To
overcome to this drawback, the network operators may deploy existing IP
mobility support protocols, like MobileIP [40]. However, even if a handover
is managed at the IP layer, the MS has still to manage the disconnection from
the current AP and the transition to a new one at the MAC layer, i.e., the layer-
2 handover. Nowadays, existing mechanisms to support layer-2 handovers
lead to long handover delays, which strongly impacts the mobile users expe-
rience. In current MS, when a handover occurs, a degradation of the on-going
flows is observed, corresponding to a dramatic reduction of the TCP CWND

and the throughput.
In this chapter, the handover process at the layer-2 and, in particular, the

AP discovery are investigated. We analyze the AP discovery process and iden-
tify the main trade-offs while designing a scanning algorithm. We highlight
the importance of adapting the scanning parameters in order to provide
low latency scanning phases while discovering the maximum number of AP.
In this context, we propose two adaptive scanning algorithms, Adaptive Dis-
covery Algorithm (ADA) [44] and Cross-Layer Adaptive Scanning [45], which
aim at dynamically setting the scanning parameters for each particular sce-
nario in order to better manage the performance trade-off.

47
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The chapter is organized as follows. In Section 3.2, we describe the han-
dover process in IEEE 802.11 and provide, in Section 3.3, a set of preliminary
results that illustrate the impact of scanning on on-going communications.
Then, in Section 3.4, a description of the related work on handover optimiza-
tion is presented. In Section 3.5, we expose the limitations of current scan-
ning optimizations and present the motivations for an adaptive approach
while performing scanning. The contribution of this chapter is divided in
two parts. First, in Section 3.6, ADA is proposed with the goal of optimiz-
ing the AP scanning performance in terms of its latency and its success rate.
Then, a second adaptation algorithm for IEEE 802.11 scanning is proposed
in Section 3.7, based on cross-layer communication between the physical and
the MAC layer. Both adaptation algorithms are implemented in open-source
drivers and evaluated under experimentation. Finally in Section 3.8 we con-
clude the chapter.

3.2 the ieee 802 .11 discovery process

The IEEE 802.11 standard [8] has been designed to provide a high bandwidth
wireless access for short coverage areas, limited to some tenths of meters. In
order to provide mobility over IEEE 802.11, the standard has defined a set of
mechanisms to manage handovers, i.e., the MS transition across different AP

in the topology.
When defining handovers, a distinction has to be done depending on the

impact of handover on the communication layers. A layer-2 handover implies
the modification of the point of attachment in the network, while in a layer-
3 handover, the mobile user also get connected to a new access network
(i.e., packets needs to be transmitted over a different access router after the
handover). That is, for AP deployed in the same IP network, the MS performs
a layer-2 handover. For AP deployed in different networks, such as the case
of different CN AP in a urban environment, the MS has to perform first a
layer-2 handover and then a layer-3 handover in order to redirect the flows
through the new network.

Particularly in layer-2 handovers, the process can be divided in different
phases:

1. Triggering: The MS monitors the current connection and decides when
to declare the link going down and start the handover.

2. Scanning: In this phase the MS discovers candidate AP in its wireless
range.

3. Best AP Selection: A single AP is chosen to attempt connection

4. Authentication: The MS identity is verified by using one authentica-
tion method: Open System authentication, Shared Key authentication,
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Fast Transition (FT) authentication or Simultaneous Authentication of
Equals (SAE)

5. Association: The association procedure grants the MS with a full access
to the DS through the AP the MS selected in order to communicate with
other devices in the wireless and wired network.

Regarding the scanning process, the standard proposes two different scan-
ning algorithms namely passive and active scanning. In passive scanning, the
MS simply tunes its radio on each channel and listens for periodic beacons
sent by different AP. In active scanning, the MS proactively sends requests
on each channel as illustrated in Figure 27. In a given channel, the MS sends
a Probe Request management frame and waits for Probe Responses from
the AP. Since Probe Request frames are not acknowledged at layer-2, the MS

needs to wait for a pre-established amount of time to get responses from
AP. If at least one Probe Response is received before the expiration of a first
timer, called MinChannelTime (MinCT ), the MS waits until the expiration of
a longer timer, called MaxChannelTime (MaxCT ), in order to gather Probe
Responses from additional AP on the same channel. If no Probe Response
has been received when MinCT expires, the MS declares the channel empty,
switches to another channel and starts over the process. Once candidate APs
have been found, the MS selects the best AP and attempts the authentication
and association processes.

To completely scan all channels using passive scanning, the MS may switch
to every channel and remain listening for beacons for at least one beacon
period (by default, 100 ms), giving a scanning latency of around one second.
Using active scanning, the MS can look for AP in a proactive manner, reducing
the time spent on each channel to just the time required to receive Probe
Responses. For active scanning, the standard does not provide any values
for MinCT and MaxCT but it only imposes the condition that MinCT 6

MaxCT . Existing IEEE 802.11 drivers implement scanning algorithms which
usually last between 100 ms and 800 ms.
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Figure 27: IEEE 802.11 active scanning

In the following, we present a set of experimentations aiming to identify
the impact of the layer-2 handover process on the on-going data communi-
cations.
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Device OS Version Chipset Avg. Thr Avg. Thr Num. of Avg. RTT σRTT

Static Mobile hdv. (ms) (ms)

(MB/s) (MB/s)

Asus N10J Win XP SP2 AR5006 5.19 0.878 4 103 43

Asus N10J Ubuntu 10.04 AR5006 4.88 0.601 2 161 360

Nexus S Android 4.0.3 BCM4329 3.80 0.568 5 129 114

MacBook MAC OS 10.7.4 BCM4322 8.44 0.613 3 167 276

Table 9: Handover performance of different OS

3.3 handover impact on data communications

During a layer-2 handover, the MS is not able to send or receive application
flows. This is because, usually, when an MS triggers a handover, the link
quality does not allow exchanging frames anymore, and because the MS is
often switching channel to discover APs. In this section, the handover and,
in particular, the scanning impact on applications flows is evaluated.

operating systems benchmark To illustrate how the handover im-
pacts data flows, a set of experiments to evaluate the degradation of TCP
performance for different devices and Operative Systems (OS) has been per-
formed. To this end, we have generated TCP connections between a server
and the different devices and we have gathered all the packets on the server
side using tcpdump. Then, the performance of the TCP connections has been
analyzed using tcptrace. Table 9 shows the number of handovers and the
average TCP throughput that has been observed for the same path and same
speed using different devices and OS. As a baseline, the maximum achieved
throughput is showed for each device remaining static and connected to a
single AP. The best result is observed using Windows, since the MS performs
up to four handovers, reaching an average throughput of 0.878 MB/s. Ad-
ditionally for Windows, the time in which no data is downloaded (i.e., the
disconnected time) is relatively short compared to the other OS. The Asus
netbook running Ubuntu reacts slowly to variations on the channel condi-
tions. In this case the MS remains disconnected for more than 20 s and exe-
cutes only two handovers. This indicates that the MS waits until the quality
of the radio link is significantly degraded to perform handover. Figure28

shows the evolution of the downloaded data for each case. Additionally, it
has been observed that for the Windows device, the average RTT is the low-
est one (103 ms) having also a low standard deviation. This differs from the
other devices which reach higher and more unstableRTT.

scanning impact Several studies in the literature [46] [47] has shown
that, during a handover, scanning is the most time-consuming phase, which
may represent up to 90 % of the handover duration, depending on the au-
thentication method. During a scanning, the MS switches to different chan-
nels and so is not able to send or receive packets. An MS may use the PSM

defined in IEEE 802.11 to request its current AP to buffer incoming packets
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Figure 28: Downloaded data for different OS

during the scanning. This way, instead of loosing packets during the scan-
ning phase, an MS can receive the packets after the scanning phase, albeit
with an extra delay

An illustration of the scanning impact can be observed in Figure 29, which
shows the evolution of the amount of downloaded data for a TCP flow that
we have monitored using tcpdump. The MS is an Android smartphone (Sam-
sung GT I9023) and the TCP flow was generated using iperf. We have con-
figured the MS to periodically perform active scanning on the 13 available
channels with MinCT = 50 ms (and MaxCT = MinCT ). We observe that
at time 0.6 s the throughput slows down since the MS requests to enter in
PSM. Then, no packets are received between time 0.8 s and 1.5 s. Once the
scanning is finished, the MS comes back to its current AP, and starts receiv-
ing TCP packets again. Finally, the complete interruption of the flow (i.e.,
just before the MS request to enter in PSM and the recover of the reception
of new TCP packets) lasts for around 0.9 s. Note that in this case, the sta-
tion comes back to the original channel, so no additional authentication or
association delays have to be considered. This level of latency greatly affects
the user experience, specially in applications like VoIP, online gaming or live
streaming.

3.4 handover optimizations and related work

Most of the related work done for the IEEE 802.11 handover process concerns
the optimization of the layer-2 handover, when an MS roams from one AP to
another. In this section, we present the main strategies to reduce the scanning
latency. The objective of any handover optimization focusing on scanning is
to reduce the latency, i.e., the time spent to discover new candidate AP, while
maximizing the number of discovered AP. In the following, we list the most
relevant scanning optimization techniques, that mainly focus on providing
fast handovers.
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Figure 29: Communication disruption in active scanning

3.4.1 Selective Scanning

The most common manner to perform scanning in IEEE 802.11, as depicted
in Figure 27, involves probing all the available channels. We refer to this as
a full scanning. Evidently, the scanning latency is directly proportional to
the number of channels to scan. As stated in Chapter 2, in IEEE 802.11, the
number of available channels depends on the particular physical layer and
the regulatory domain. In the most common IEEE 802.11b and IEEE 802.11g
deployments, 11 (in USA), 13 (in Europe) and 14 (in Japan) channels are
available in the 2.4 GHz ISM band.

One simple way to reduce the full scanning latency is to only scan a sub-
set of channels from the complete list of available channels. Shin et al. [48]
suggest the utilization of a channel binary mask to select which channels to
scan. This mask is updated after each handover. During the first handover,
the mask is initialized with 1 for all channels, meaning that all channels
are scanned. Then, for the next handover, the MS builds a new mask con-
taining a value of 1 for the non overlapping channels (1, 6 and 11) and for
those channels where a Probe Response has been received in the previous
scanning. The mask contains 0 for channels where no Probe Response has
been received. The channel in which the MS’s AP was previously operating
is turned to 0 in the mask, since authors consider that a neighboring AP op-
erating on the same channel is not probable. This consideration contradicts
the statement presented in [49], where a neighboring AP in the same channel
is considered highly probable. Moreover, we have shown in the evaluation
study in Chapter 2 that in 55.3% of the cases a single channel is shared by two
or more AP. When a new scanning has to be performed, channels marked
as 1 in the binary mask are scanned, if no Probe Responses is received on
those channels, the mask values are logically inverted and the MS continues
probing these new channels. If the scanning process is still unsuccessful, a
standard full scanning process is executed all over again (i.e., to scan the
complete list of channels). In addition, the authors propose to use a Caching
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method where neighbor AP information is stored in a table during the MS

operation. This table will allow the MS to directly probe (using a Probe Re-
quest) a neighbor AP when the MS returns to an AP that has already been
visited. Selective Scanning reduces the full scanning latency in average 43 %.
Applying the caching mechanism, the layer-2 handover latency is reduced
to reauthentication and reassociation delays, which are negligible compared
to the scanning latency in open system authentication networks. Regardless
of these results, even if selective scanning may be easily implemented in an
MS without introducing modifications in the AP side, the neighbor AP table
has to be carefully maintained. Erroneous information in the caching table,
such as unavailable AP that have been previously discovered, would leads
to handover failure (i.e., the impossibility to reassociate to the candidate AP).
On the other hand, as both the cache and the binary mask are incrementally
built (i.e., as the MS moves across AP), the first handovers will use the stan-
dard technique, i.e., scanning the whole list of available channels, resulting
in higher latencies.

3.4.2 Reduced Scanning Timers

A simple method to reduce the scanning latency is to reduce the value of
the scanning timers. As previously stated in this Chapter, the IEEE 802.11

standard does not propose any specific values for the scanning timers, i.e.,
MinCT and MaxCT . Then, every firmware or driver implementation sets
specific values, giving different scanning performance.

MinCT is, by definition, the minimum time to wait for Probe Responses
in a channel. At the same time, it is the maximum time an AP has to success-
fully answer a Probe Request. On the other hand, MaxCT is the maximum
time to wait for Probe Responses on a channel that allows collecting the
largest number of Probe Responses from different AP. Using a low value
for MinCT may prevent receiving the first Probe Response on the channel
and so erroneously declaring the channel empty. Also, setting a low value
for MaxCT may prevent discovering all the APs in the channel but only a
subset.

Velayos and Karlsson [50] try to infer the best values for both timers pre-
senting theoretical considerations and simulation results. For MinCT , the
authors base on the maximum time an AP needs to answer a Probe Request,
considering that both the AP and the channel being probed are idle. If prop-
agation delay and Probe Response generation time are neglected, then the
IEEE 802.11 MAC Distributed Coordination Function (DCF) establishes that
the maximum response time has the form of Equation 1. MinCT should
allow the station to wait for DCF Interframe Space (DIFS) and the backoff
(considering the maximum value for the contention window during the first
transmission attempt, aCWmin), reaching 670 µs. The authors decide then
to set MinCT to 1 Time Unit (TU), which is equal to 1024 µs.
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MinCT = DIFS + (aCWmin · aSlotTime)

= 50µs + (31slot · 20
µs

slot
)

= 670µs

∼= 1 TU

(1)

For MaxCT , the authors analyze the Probe Response delay depending on
traffic load and the number of stations on each channel. They conclude that
MaxCT is not bounded as long as the number of stations increases. They
recommend to set MaxCT to 10 TU to avoid responses from overloaded AP.
This is based on the hypothesis that ten MS associated with the same AP is
an adequate number in order to achieve good throughput in a channel.

However, as it will be detailed in the following sections, using fixed timers
may not allow maximizing the number of discovered AP while giving a re-
duced latency in all possible scenarios. Authors introduced several consider-
ations regarding the number of MS operating on each channel and data traf-
fic conditions. The experimental results presented in this chapter will prove
that the proposed fixed value for MinCT , 1 TU, is not long enough to receive
the first Probe Response in a channel in the most typical AP deployments.
In this case, if no AP is found due to a short MinCT , a scanning failure oc-
curs, giving a link layer disconnection if no AP is found after scanning all the
channels.

3.4.3 Handover Anticipation

Other handover optimizations in the literature aim to reduce the impact of
handover on data communication by intelligently deciding the most suitable
moment to trigger the scanning, authentication and association. These op-
timizations differ from previously presented works since in those cases the
authors aim at providing optimal parameters and heuristics for the scanning
process itself. In this section, we first present a set of solutions that consider
different mechanisms to trigger the handover process. Then, we present the
periodic scanning and the synchronized passive scanning mechanisms.

handover triggers The simplest mechanism to trigger a handover is
to monitor the Received Signal Strength Indication (RSSI) as an estimation of
the link quality and start the handover process if the current RSSI is lower
than a pre-established threshold. This is commonly referred to as a Link

Going Down indicator in the context of IEEE 802.21 Media Independent Han-
dover [51]. When declaring a Link Going Down, there is a trade-off between
the number of times a handover is triggered and the link quality. If the MS

declares the link going down when the MS has still and acceptable link layer
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connection with an AP, handovers will be more frequently executed, gen-
erating additional delays for the user. On the other hand, if the MS waits
until a very weak link situation, the data communications start degrading
before the handover occurs. The main goal is to anticipate the handover and
trigger the transition to a new AP under optimal conditions. Mhatre and
Papagiannaki [49] propose a set of handover algorithms based on continu-
ously monitoring the wireless link, i.e., listening to beacons from the current
and neighboring channels. The authors propose a taxonomy of triggering
algorithms to anticipate handover based on different criteria. In particular,
they propose five different algorithms. First, the Beacon approach triggers a
handover based on the number of consecutive lost Beacon frames from the
current AP without analyzing the condition of neighboring AP. The Threshold

algorithm uses the current RSSI to trigger a handover, i.e., it waits until a very
low RSSI value and does not consider neighbor AP information neither. Then,
three algorithms are defined by considering and comparing neighboring AP

information in the current and the neighboring channels. These algorithms
aim to avoid triggering a handover if no better AP is deployed in those chan-
nels. The Hysteresis(∆) algorithm considers RSSI values from the current and
neighboring AP deployed in the overlapping channels. it triggers a handover
if the RSSI of one of the AP in the overlapping channels exceeds the current
AP RSSI by a value of ∆. Then, the Trend algorithm uses the RSSI measure-
ment of neighboring AP and calculate, for each one of them, the trend of
the smoothed RSSI during a time window. The handover is triggered if the
new candidate AP has a positive trend ∆ while the current AP has a nega-
tive trend having the same absolute value, −∆. Finally, the LSE uses a Least
Square Estimator to predict the RSSI value in the next time interval. Then,
a handover is triggered only if the least square estimator of the candidate
AP RSSI plus the associated error of the estimation is greater than the least
square estimator of the current AP RSSI plus the error. The authors evaluate
these approaches in a real testbed. The Beacon and Threshold algorithms give
average handover latencies between 530 and 860 ms since they always rely
on scanning all the channels after deciding to trigger the handover. On the
other hand Hysteresis, Trend and LSE succeed in avoiding to scan all the chan-
nels by using information from AP in the current and overlapping channels
and so average handover latencies are between 140 and 450 ms. However,
since these approaches need to listen to beacons from neighboring channels,
it is necessary to modify the firmware of the wireless card, which may not
always be possible.

Similarly to the approaches presented in [49], Yoo et al. [52] propose a
number of handover triggering mechanisms based on predicting RSSI sam-
ples at a given future time using Least Mean Square (LMS) filters. In this algo-
rithm, the device continuously monitors the RSSI and computes the LMS pre-
diction if the RSSI is below a certain threshold (PPred). Then, if the predicted
RSSI value is lower than a second threshold (PMin) the MS starts a handover.
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The authors propose simulation results showing that the difference between
the simulated RSSI samples and the LMS 500 ms ahead predictions is lower
than 0.35 dB for a MS speed lower than 4 m/s. However, the simulation re-
sults only consider a single value for PMin, without providing an analysis of
the trade-off between the handover frequency and the link quality.

periodic scanning and smooth handover The periodic scanning
concept is based on decoupling AP scanning (i.e., the most time-consuming
handover phase) from the actual AP transition (i.e., AP selection, authentica-
tion and association). Wu et al. [53] propose Proactive Scanning, which con-
sists in two phases. First, when the MS is connected to its current AP, it alter-
nates short scanning phases with data communication. Each short scanning
phase is approximately 10 ms long, so the effect on data traffic is minimized.
To achieve this, the scanning interval (i.e., the time between two scanning
phases) and the channel sequence (i.e., the list of channels to scan in each
short phase) are dynamically adapted. The scanning interval is adapted de-
pending on the current signal level and varies between 100 and 300 ms. The
channel sequence is selected based on a priority list that is built based on
historical information. To build the priority list, the MS stores the channel
where AP have been discovered during long scanning phases (i.e., where all
possible channels are probed). The authors also propose an analysis of the
scanning timers to allow receiving Probe Responses from AP. After perform-
ing some experiments introducing some traffic load on the AP, they conclude
that using MinCT = MaxCT = 5 ms allows the MS to successfully receive
Probe Responses even in highly loaded situations. Experimental results are
proposed showing that service interruption is reduced using proactive scan
compared to standard handoff procedures of existing wireless cards. More-
over, the overhead of proactive scan, measured as the degradation of the
TCP throughput, strongly depends on the scanning interval and the link
rate, varying between 1 % and 36 %.

The Smooth Handover [54] and the Periodic Scanning [55] methods are also
based on splitting the discovery phase into multiple sub-phases to allow
an MS to alternate between data packet exchange and the scanning pro-
cess. Liao et al. [54] propose to scan a group of channels in each sub-phase,
while in [55] only one channel is scanned during MinCT . Each sub-phase is
triggered depending on the current RSSI. The Smooth Handover [54] perfor-
mance was evaluated in a real testbed and showed that the data packet loss
is strongly reduced (up to 93 %) compared to a full scanning based handover.
In Periodic Scanning [55], network simulations on six different scenarios are
proposed. The handover delay and the packet loss rate result lower than in
full scanning and selective scanning [48] techniques. However, they observe
that for Periodic Scanning, the MS generates a larger number of packets per
handover, contributing to a high energy consumption.
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The main limitation of periodic scanning techniques is that, after collecting
Probe Responses or Beacons from different AP before the actual handover is
triggered, those AP may no longer be available or may have a lower signal
strength due to the MS mobility. In this case, the MS has no option but to per-
form a full scanning that may greatly impact the on-going communication
flows.

3.4.4 Synchronized Passive Scanning

Unlike common handover optimizations focusing on active scanning, the
SyncScan [56] method is based on the standard passive scanning, where an
MS simply waits for periodic beacons on a given channel. The passive scan-
ning latency is related to the number of channels and the Beacon Period timer,
commonly set to 100 ms. Therefore, passive scanning latencies usually ex-
ceed one second when listening for beacons in all the channels. SyncScan
synchronizes short listening periods at the MS with periodic Beacons recep-
tion from the AP. Then, the MS switches to a given channel when a beacon is
about to arrive. Using SyncScan the MS has up-to-date information about AP

without probing the channels. Once the MS decides to execute a handover, it
only needs to authenticate and associate to the selected AP.

Like in [54] and [55], the scanning latency is spread during data com-
munication, but some limitations should be analyzed. The fact that the MS

must switch to a channel when a beacon is about to arrive adds a complex
time synchronization management between the MS and all deployed APs.
Clock accuracy becomes critical in this approach because even a minor de-
viation in time synchronization becomes non-negligible, preventing an MS

from discovering neighbor AP. Authors propose the usage of Network Time
Protocol (NTP) that maintains time within 10 ms accuracy over the Internet,
achieving precisions of 200 µs or better in local area networks, under ideal
conditions. Under these considerations, SyncScan implementation appears
as a solution limited to very specific deployments (e.g. enterprise or campus
deployments), where a central administrator can manage the channel alloca-
tion and synchronization between beacons from all AP. Synchronizing AP in
a fully heterogeneous environment like the one presented in Chapter 2 (e.g.
hotspots or community deployments from multiple operators around a city)
for the implementation of SyncScan seems impractical. In all the cases, the
SyncScan procedure is performed regularly, resulting in several unavailable
periods for data packets transmissions, so packet loss may be observed while
exploring other channels, just as in periodic scanning.
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3.5 motivation

3.5.1 Preliminary Considerations

The previously presented handover optimizations aim at reducing the han-
dover delay by proposing low-latency scanning mechanisms. For every fast
handover approach, an MS still needs to scan channels one after the other to
discover AP and this requires an appropriate configuration of the scanning
process. In smooth handover [54] or in periodic scanning [55], the discovery
phase is split into several independent sub-phases that are separated by a
certain time period (during which the MS may still exchange data packets).
During each of these sub-phases, the MS scans the channels one by one, just
as in a continuous scanning phase. In the selective scanning [48], the order
in which channels are scanned is determined by a binary mask built from
previous scanning phases. For each channel, the different AP also need to
be probed and thus the time to spend on each channel (i.e., the value of the
timers) needs to be defined. In the synchronized passive scanning [56], chan-
nels are not actively probed but still the MS needs to define a time to wait on
each channel. Moreover, the optimization proposed in [56] cannot be applied
in an heterogeneous scenario, since synchronisation between possible neigh-
bours is not achievable. We observe that in those mechanisms there is still
a lack of work in the determination of the most adequate values defining
the specific parameters to use while doing scanning. In Section 3.5.1.1, we
describe the configuration of the scanning parameters that can be currently
found in the literature.

3.5.1.1 Configuring the scanning parameters

In every scanning mechanism, the MS needs to define appropriate parame-
ters in order to assure a low scanning latency while discovering the maxi-
mum number of AP in the environment. We differentiate between two differ-
ent parameters for a scanning mechanism: the timer values and the channel

sequence.

The timer values define the amount of time that an MS waits for Probe Re-
sponses on a channel after sending a Probe Request. Since these values are
not defined in the standard, several studies in the literature [50] [47] [53] sug-
gest using fixed values for MinCT and MaxCT . Velayos et al. [50] derives
MinCT = 1 ms and MacCT = 10 ms using some theoretical considerations.
Wu et al. [53] proposes using MinCT = MaxCT = 5 ms. On the other hand,
Mishra et al. [47] provide an experimental study to deduce the values of
MinCT and MaxCT for three different IEEE 802.11b wireless cards (Cisco,
Lucent and ZoomAir). They show that for Cisco cards MinCT equals 13 ms

and MaxCT equals 38 ms. In the case of Lucent and ZoomAir cards, several
Probe Requests are send on different channels and the time to wait for re-
sponses (the authors do not find a correlation that indicates the usage of two
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timers MinCT/MaxCT ) varies between 10 and 75 ms. We have investigated
the values used by two popular open-source drivers: ath5k1 and MadWiFi2.
Their timer values vary between 20 ms and 200 ms, resulting in a scanning
latency that can be greater than one second.

Regarding the channel sequence, the MS has to decide which channels to
scan and their ordering. The channel sequence and its order are relevant
since a scanning strategy can decide to stop the scanning once an AP has
been discovered (or if another condition is satisfied). Common implementa-
tions in open-source drivers switch channels sequentially. Mishra et al. [47]
showed that Cisco cards probe all the channels sequentially, while Lucent
and ZoomAir cards only probe channels 1, 6 and 11 and take profit from the
channel overlap to gather Probe Responses from neighboring channels with
a lower probability (like in [49]). We have observed that in Android mobile
devices, for example, the MS implements a channel switching technique simi-
lar than the mechanism proposed in [53], interleaving short scanning phases
to data communication.

3.5.2 The Probe Response Delay

In all the previously cited strategies, different values for the timers and the
channel sequence are proposed. These values are fixed on each particular
firmware or driver implementation and used each time an MS needs to scan.

However, in the case of the timers, using fixed values cannot assure that
Probe Responses will be received before their expiration in all possible sce-
narios. Probe Responses may be delayed because of channel congestion, caus-
ing packet collisions and retransmissions, or due to a high traffic load on the
AP, adding extra delays to treat a Probe Request and generate Probe Re-
sponses. To evaluate this, we have performed different measurements of the
Probe Response delay under different deployment conditions.

In 2009 [44], we have set an MS that performed scanning using the Mad-
WiFi driver over a DLink DWL-AG660 card. The network deployment was
composed of Linksys and DLink AP that have been set in a three non-over-
lapping channel deployment (i.e., one AP in channel 1, 6 and 11) and logged
the First Probe Response Delay (FRD), i.e., the time elapsed between sending
the Probe Request and receiving the first Probe Response on each channel.
Figure 30 shows the distribution of the FRD. We observe that the introduction
of traffic in the network (using D-ITG [57]) delays Probe Responses signif-
icantly. For instance, waiting 6 ms after sending the Probe Request allows
receiving the 87 % of the Probe Responses without traffic while it allows
receiving only the 43 % of the responses with traffic.

Later in 2010 [45], we have evaluated the FRD by performing scanning
with a Netgear WG511T card using the ath5h open source driver. We have

1 http://linuxwireless.org/

2 http://madwifi-project.org/

http://linuxwireless.org/
http://madwifi-project.org/
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performed this test in a different laboratory deployment than in the previous
experiment, using Linksys WRT54GL AP. In this case, we have introduced
different levels of traffic using iperf3. The distribution of the first FRD is illus-
trated in Figure 31 and the variation of the FRD with different levels of traffic
is shown in Table 10. In Figure 31, the FRD distribution has been calculated in
an environment with a single AP deployed (i.e., no interferences from neigh-
boring AP). In the case of the FRD with traffic, it corresponds to the highest
traffic level, i.e., 12.5 Mbps. In this experiment, we have observed shorter
FRD than in the previous experiment (2009), possibly due to the different
wireless cards and AP that have been used.
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Finally, we aimed at gathering a large number of Probe Responses in an
heterogeneous deployment [35]. In 2011, we have performed a measurement
study using an the internal wireless card of an Asus N10J laptop carrying an
external 7 dBi antenna. This MS has continuously performed scanning along
an 8 km path in the city center of Rennes, gathering more than 51, 000 first

3 iperf available at: http://sourceforge.net/projects/iperf/

http://sourceforge.net/projects/iperf/
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Table 10: FRD experiments

Flow (Mbps) Load (%) Ē[FRD] (ms) σ̄(FRD) (ms)

Bkg 1.52 1.83 2.12

1 5.62 1.79 1.19

2 9.68 1.84 1.03

4 20.05 1.81 0.58

10 51.97 2.07 0.62

11.5 73.11 3.9 5.7

12.5 74.49 3.58 4.87

Probe Responses from different AP. The distribution in Figure 32 shows a
median FRD of 3 ms.

Along these experiments, we can observe that the delay of Probe Re-
sponses varies depending on multiple parameters, e.g., the AP deployment,
the specific hardware and drivers. Then, the specification of the timer values
is not straightforward, since unique fixed values for MinCT and MaxCT

may be appropriate only for some scenarios. For example, if we consider
the MinCT specified by Velayos et al. [50] (MinCT = 1 ms), it does not
allow an MS to successfully discover the first Probe Response in a given
channel with a high probability. Particularly in our experiments carried out
in 2009 and 2010, we have observed that no Probe Response arrived before
MinCT = 1 ms while in the 2011 experiment only the 3.7 % of the first Probe
Responses arrived before 1 ms.
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Figure 32: Experiment 2011 - First Probe Response Delay distribution

Then, we can assume that in order to reduce the latency and maximize
the number of discovered AP, the values of the timers have to be dynam-
ically adapted to the different scenario conditions rather than using fixed
values. In the following, we define the trade-off between the different perfor-
mance metrics when doing scanning. Then, in Sections 3.6 and 3.7, we define,
implement and evaluate two adaptive strategies for IEEE 802.11 scanning.
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3.5.3 Scanning Performance Metrics: A Trade-off

In every active scanning process, the MS has to configure a set of parameters
(i.e., the timer values and the channel sequence) to discover for AP on the
different channels. The main objective is to minimize the disruption of on-
going communications while discovering a large number of AP. In order to
measure the performance of the scanning process, a set of metrics is defined:

1. Scanning Latency: The time spent for the discovery process, i.e., to
scan all the channels in the channel sequence. The scanning latency is
measured as the difference between the time of the Probe Request in
the first channel in the sequence after the expiration of the last timer
in the last channel in the sequence (i.e., MinCT if no Probe Response
is received or MaxCT if at least one Probe Response is received).

2. Scanning Failure: A Scanning Failure corresponds to the case where
no AP is discovered after scanning all channels in the channel sequence.
A scanning failure occurs if no AP is deployed in the scenario or if
the scanning parameters do not allow to discover at least one of the
existing AP.

3. Discovery Rate: The number of discovered AP over the total existing
number of AP. This metric provides a measure of the proportion of the
deployment that has been discovered.

4. First Discovery Time: The time elapsed between the beginning of the
scan (i.e., the sending of the first Probe Response) and the reception of
the first Probe Response. This metric is useful to analyze the effect of
different channel sequences and timers in a scanning algorithm aiming
at discovering a single AP as soon as possible.

The purpose of adapting the timers and the channel sequence is not to
determine the best values that fit a particular scenario, since we assume un-
known and unpredictable deployments and so the topology on every discov-
ery process is rather unknown. Thus, an adaptive scanning algorithm aims at
finding a trade-off between a minimum scanning latency, a minimum scan-
ning failure, a maximum discovery rate and a minimum first discovery time.
Recall that when decreasing the latency we increase the failure and decrease
the discovery rate.

In the following, two adaptive algorithms for IEEE 802.11 scanning are de-
fined and evaluated by the means of experimental testbeds. The first adap-
tive algorithm, ADA, is based on dynamically varying MinCT and MaxCT

while scanning, depending on the previously discovered AP (i.e., in the pre-
vious channels) and using a random channel sequence giving priority to
the non-overlapping channels. The second adaptive approach uses physical
layer information, i.e., the channel load and the power, to dynamically set
the timers values and the channel sequence.
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3.6 ada : adaptive discovery algorithm

The ADA consist in dynamically changing the values for MinCT and MaxCT

during the scanning process based on the previously discovered AP. This
approach allows an MS to spend less time on some channels once candidate
APs have been already found whereas a fixed timers scanning would spend
the same time on each channel. The main goal is to reduce the timers channel
by channel while APs are discovered. This is because the MS can assume
the risk of missing further APs (by using lower timers) if other APs have
been discovered before. On the contrary, timers may be increased if no AP

has been found, in order to increase the chances of finding an AP on the
next channel(s). In this section, we analyze the behavior of such an adaptive
scanning algorithm against a fixed timers scanning approach. A particular
adaptation function is presented, but other adaptation function could also
be implemented.

The selection of the channel sequence becomes important if we consider
timers adaptation, because timers are adapted according to the activity on
each channel. The sooner an AP is found, the faster the timers will be de-
creased, and thus, it is important to scan first channels in which APs may be
operating. In IEEE 802.11 networks, only three non-overlapping channels ex-
ist. As stated in [58] and [59], a proper deployment typically uses only these
channels. Results found in Eriksson et al. [60], Giordano et al. [38], Castig-
nani et al. [35] and our own measurement study in Chapter 2, confirms that
the non-overlapping channels are the most likely used in real deployments.
In [60], the authors propose an optimal scanning strategy that gives more
priority to channels 1, 6 and 11, since they found that 83 % of AP are as-
signed to those channels. On the other hand, experimenting over a different
deployment, the authors of [38] states that 77.98 % of AP are deployed in
the non-overlapping channels. Our own experiments on a city-wide WiFi de-
ployment [35] results in 78.21 % of occupancy in non-overlapped AP. Then,
it could be assumed that prioritizing those channels, as stated in [48] and
[60], the MS has more chances to find an AP in the first scanned channels and
so reduce the timer values for the following channels. In ADA, the channel
sequence is built using two different random sub-sequences. In the first sub-
sequence, the MS randomly switches between the non-overlapping channels
(1, 6 and 11). Then, the rest of the channels are also randomly considered. If
an AP with relative good signal level is discovered in channels 1, 6 and/or 11,
the adaptive system will set lower timers for the next channels to scan. In all
cases, timers are adapted between pre-established bounds (defined by exper-
imentation in Section 3.6.2.2). A different strategy to compute the channel
sequence is proposed in [60], where the ordering of the channels is propor-
tional to the channel occupancy, e.g., if 20 % of the AP have been observed
to be deployed on channel 6, then channel 6 is scanned with a probability of
0.2. ADA considers to scan all the channels in the sequence, but giving more
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priority to the non-overlapping channels, i.e., increasing the probability that
a high timer will be used on those channels. However, a different adapta-
tion function may consider to use shorter channel sequences, and so stop
scanning at any given time.

3.6.1 Design and Implementation

In this Section, the logic of the proposed ADA is detailed. Given the high
variability of the Probe Response delay, we propose to adapt MinCT and
MaxCT between pre-established bounds (defined in Section 3.6.2.2). The
main goal is to allow the MS to use low timers once APs have been previ-
ously discovered. As illustrated in Figure 33, the MS starts scanning using
half the maximum bounds for both timers. This strategy aims at balancing
the trade-off between the scanning latency, the scanning failure and the dis-
covery rate. In this first adaptation algorithm we do not consider the first
discovery time performance metric, since we consider scanning all the chan-
nels in ADA. Observe that, if an MS started scanning using the maximum
bounds of the timers, it would end up with a higher scanning latency. Oth-
erwise, if an MS started scanning with the lower bounds, it could fall in a
high scanning failure. For a channel in which at least one AP has been dis-
covered, the MS calculates the greatest quality of all discovered AP on that
channel (Q) and the number of APs that have replied on that channel (N).
N is obtained by simply counting the number of Probe Responses received
from different APs. Regarding Q, the RSSI of each Probe Response is consid-
ered. Both Q and N are combined in order to establish the criteria that will
be used to rank discovered AP, and decide whether the timers for the next
channel (Tn+1) can be reduced or increased. In Figure 33, Tn+1 represents
the tuple (MinCT , MaxCT), since both timers are simultaneously adapted
(i.e., MinCT and MaxCT are equally increased or decreased). Then, Tn+1 is
calculated considering a decision making parameter (R, in Equation 2) calcu-
lated for each channel by using Q and N.

R =
Q

N
(2)

This simple relation allows adapting timers differently, depending on the
quality of the APs that have been discovered on the previous channels. Two
different APs having the same RSSI and operating in different channels are
considered in different ways, since populated channels (having a high N)
will not be prioritized as well as those with a lower N. This choice comes
from the observation that in a wireless environment, weak signal and collisions

are considered as the factors limiting link performance. A packet transmit-
ted through an IEEE 802.11 link may be lost because of a weak signal or a
collision, but discerning the real cause is quite difficult. We consider the re-



3.6 ada : adaptive discovery algorithm 65

Figure 33: ADA implementation

sults obtained in [61], in which a set of testbeds were implemented so as to
independently analyze the effect of a weak signal (due to a low RSSI between
the MS and the AP) and collision (due to several MSs and APs operating on
the same channel). The authors have empirically showed that for 98 % of the
packets with errors, they observed a Bit Error Rate (BER) lower than 12 % in a
weak signal scenario (low RSSI, without collisions) against a BER of 50 % in a
collision scenario (without weak signal effects). We can infer that the fact of
having a high N, i.e., multiple AP sharing the channel, which produce colli-
sions, is less desirable than a low RSSI scenario since it causes a much higher
BER. Then, using N as the divisor in Equation 2 prevents from drastically
reducing the timer if a high congested channel has been previously found,
giving a higher chance to discover a better AP in the next channels.

Then the MS takes into account the value of R calculated on the channel
and adapts both MinCT and MaxCT using the same proportional factor
(f(R)). f(R) is implemented in a way that for higher values of R, timers are
more strongly reduced. In contrast, as shown in Figure 33, if no AP is discov-
ered, no R is calculated on the correspondent channel and then timers are
increased to half the difference between the last successful timers (those from
whom at least one response has been received from an AP) and the timers
used on the previous channel (those from whom no response was received
from any AP). Increasing timers using this approach avoids overshooting,
since timers are smoothly augmented.
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Figure 34: Testbed configuration

3.6.2 Experimentation and Results

3.6.2.1 Testbed setup

A real testbed was implemented using up to thirteen AP from different man-
ufacturers and seven MS for traffic generation on the different channels (see
Figure 34). All the devices in the testbed implemented 802.11b as physical
layer. The MS performing scanning uses an Atheros based D-LINK DWL-
AG660. The ADA algorithm and a set of fixed-timers strategies have been
implemented in the MadWiFi driver (Version 0.9.4). Up to 64 different net-
work scenarios were evaluated using eight different channel allocations, two
different traffic conditions and four configurations for MinCT and MaxCT

timers. Traffic was generated using D-ITG (Distributed Internet Traffic Gen-
erator) [57], injecting, in all configurations, a UDP traffic load of 8 Mbit/s

between one sender and one receiver, which leads to overloaded cells in IEEE
802.11b. With regard to the channel allocation, the following configurations
were evaluated.

• Configuration 1: Thirteen APs allocated on channels 1 to 13 (one AP

per channel).

• Configuration 2: Thirteen APs all allocated on channel 11 (13 AP on
the same channel).

• Configuration 3: Three APs allocated on channels 1-6 -11 (one AP per
channel).

• Configuration 4: Twelve APs allocated on channels 1-6-11 (4 AP per
channel).

Note that the performance of ADA depends on each particular scenario.
However, these configurations have been chosen from all the possible cases
since they are a valid representation of real deployments (as shown in [38]
and [60]) and include favourable cases (for the discovery process) as well as
challenging environments. In each of our experiments, the scanning process
is measured a hundred times in every configuration. For each scanning, all
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channels are probed by the MS one by one, i.e., the MS do not prematurely
stop the scanning process.

3.6.2.2 Bounds Determination for MinCT and MaxCT

In order to set up ADA, the bounds for MinCT and MaxCT need to be
defined, i.e., the intervals in which MinCT and MaxCT will vary. We de-
fine MinLower and MinUpper as the lower and upper bounds for MinCT

and MaxLower and MaxUpper as the lower and upper bounds for MaxCT .
For this purpose, we measured the delay of the first and further received
Probe Responses on each channel for each particular AP deployment con-
figuration, with and without traffic. We define Further Probe Responses as
those that arrive after the first Probe Response. We configured the MS with
(50 ms, 200 ms) for (MinCT , MaxCT) in order to allocate enough time for
the discovery of all operating AP (we were not interested in the scanning
latency, but in collecting the delay of each Probe Response). Note that, as
illustrated in Figure 30, a MinCT equal to 50 ms allows the MS to gather all
the first Probe Responses in a channel.

Table 11 gives the main conclusion for bounds determination. Optimistic
and pessimistic scenarios have been considered to define the upper and
lower bounds. We also considered different percentages of received Probe
Responses for each bound (e.g., we considered a high percentage of received
Probe Responses for MinUpper because this bound will be used when no AP

has been found). As presented before, Figure 30 shows the FRD in a three non-
overlapping channel configuration with and without traffic (configuration 3).
This scenario is considered as an ideal AP configuration where interferences
are minimized and thus helps to determine the minimum limits for MinCT .
If we observe the FRD received over all the trials without traffic, it can be
observed that 87 % of the first Probe Responses were received before 6 ms.
Thus MinLower is set to 6 ms as stated in Table 11. We allowed such a low
percentage (8ms could have been taken where 96 % of the Probe Responses
were received) because it can be afforded to risk few unsuccessful discov-
eries in our adaptive strategy when this minimum value is used. Note that
in the considered adaptive strategy, this minimum value is only used when
AP(s) have been previously discovered (See Section 3.6.1).

With the same aim and considering configuration 4, without traffic, MaxLower

is set at 8ms where 50 % of further Probe Responses from other AP were al-
ready received. Then, MaxCT can be adapted up to a low limit that covers
less cases than MinCT (only 50 %), since the situation of not discovering
more AP is not as risky as not discovering the first AP, in which the channel
will be declared empty.

On the other hand, the upper bounds MinUpper and MaxUpper are deter-
mined using the results obtained in the other scenarios (which are highly
affected by interference and congestion), like configuration 1 and 2, includ-
ing traffic. MinUpper has been set to 34 ms (96 % of further Probe Responses
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Table 11: Bounds for MinCT and MaxCT

Bound Value % of Probe Conf. Traf.

Resp. received

MinLower 6 ms 87% 3 No

MinUpper 34 ms 96% 1 Yes

MaxLower 8 ms 50% 4 No

MaxUpper 48 ms 87% 2 Yes

received in configuration 1) and MaxUpper has been set to 48 ms (87 % of
further Probe Responses received in configuration 2). These upper bounds
are meant to be used when no AP has been previously discovered, in order
to have a higher probability of getting Probe Responses.

3.6.2.3 General Results

ADA was tested using bounds defined in Table 11 and the fixed timers
strategy was evaluated considering three different values for the timers,
(10 ms, 20 ms), (25 ms, 50 ms) and (50 ms, 200 ms) for (MinCT , MaxCT) re-
spectively. Table 12 shows the results organized by configuration scenario,
where the full-discovery rate indicates in how many scanning processes all
available AP were discovered. The failed scanning values describe the scan-
ning failure as a percentage from the total cases. Finally the average scan-
ning latency, including the standard deviation (σ) for the adaptive strategy,
shows a low dispersion of the obtained latencies.

The main observation of these experiments is that the discovery process
performance highly depends on the deployment scenarios and a high scan-
ning failure may be observed for the fixed timers strategy in some common
network scenarios. Considering all the scenarios, ADA only shows 2 % of
scanning failure in a single scenario (configuration 2 and loaded cells) and
keeps a low scanning latency. A detailed analysis of results of Table 12 is
presented in the following paragraphs.

impact of traffic load Figure 30 illustrates configuration 3, where
Probe Responses are notably delayed when traffic is injected. While before
6 ms the 87 % of the Probe Responses are received in non loaded scenarios,
only 43 % is received when there is traffic. As shown in Table 12, in the
case of configuration 3 with traffic, for several scanning attempts a Probe
Response is not received before 25ms, causing 20 % of scanning failure. Even
when using a MinCT equal to 50 ms the scanning failure reaches 13 %. The
effect of traffic also produces a decrease in the percentage of discovered AP

in all evaluated scenarios. ADA helps to reduce the effects of traffic, since
no scanning process fails except in configuration 2 (with traffic), where we
observe only 2 % of scanning failure.
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Table 12: Comparative results

Scenario Discovery Rate Scanning Failure Scanning Latency

(%) (%) (ms)

AP Channels Number Traffic Fixed Timers ADA Fixed Timers ADA Fixed Timers ADA

conf. of APs 10-20 25-50 50-200 10-20 25-50 50-200 10-20 25-50 50-200 σ

1 1 to 13 13 No 65% 87% 93% 49% 0 0 0 0 275 708 2567 256 11%

lightgray 1 1 to 13 13 Yes 24% 69% 82% 40% 2% 0 0 0 317 636 2378 248 13%

2 11 13 No 75% 92% 94% 96% 2% 2% 0 0 152 360 807 423 3%

lightgray 2 11 13 Yes 54% 88% 98% 83% 29% 3% 0 2% 159 363 814 434 5%

3 1-6-11 3 No 92% 94% 99% 94% 0 0 0 0 117 414 1119 190 11%

lightgray 3 1-6-11 3 Yes 38% 51% 61% 81% 52% 20% 13% 0 227 403 1025 210 18%

4 1-6-11 12 No 98% 98% 100% 95% 0 0 0 0 179 419 1121 390 3%

lightgray 4 1-6-11 12 Yes 39% 60% 87% 84% 13% 1% 0 0 239 450 1110 378 13%
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theory vs . experimentation Our experimental results do not match
theoretical considerations and simulations presented in [50]. In this work, a
value of 1 ms for MinCT is considered enough to wait for the first Probe
Response before switching to the next channel in the sequence. On the other
hand, our experience shows that MinCT needs to be greater than 10 ms to
receive the 97 % of first Probe Responses in an ideal three non-overlapping
channel scenario without traffic. Moreover, as shown in Figure 30, the earli-
est first Probe Responses only appear after 2ms in the same configuration.
Regarding MaxCT , authors of [50] state that it is unbounded and claims
for a MaxCT equal to 10 ms to be enough. It has been shown during the
bound determination that this value could not be sufficient for some sce-
narios. This gap between results proposed in [50] and our experimentation
(that are close to those presented in Mishra et al.[47]) may be explained by
additional delays neglected in the literature, such as channel switching, con-
gestion condition and processing time for management frames.

impact of the number of aps In configurations 3 and 4 where only
non-overlapping channels were used, a reduced scanning failure is observed
when there are four AP operating on the same channel (configuration 4).
When there is a single AP per channel (configuration 3), a higher scanning
failure is attained for the fixed timers strategy. This may be due to the back-
off timer of the MAC protocol, since there are more chances to pick a small
random number when there are more active AP.

scanning latency The scanning latency depends on the values of
MinCT and MaxCT during the discovery process. In ADA, MinCT is ini-
tially set to half the value of MinUpper and it gradually decreases until
MinLower if APs are discovered. Figure 35 shows scanning latency values
for all configurations with traffic including the scanning failure (in percent-
age) for each case. Even if fixed timers strategies may give good results in
some scenarios, the adaptive strategy provides lower or equivalent scanning
latency from 190 ms to 434 ms. The fixed timers strategy configured with
(10 ms, 20 ms) gives better latencies in AP configuration 2, around 150 ms,
against 420 ms for ADA. But in this case the scanning failure reaches 29 %,
while the adaptive strategy only gives 2 % of failure. Moreover, in configu-
ration 3 with traffic, the adaptive strategy gives the best scanning latency
without any failure, while all other evaluated strategies reach high levels of
failure, up to 52 %.

3.6.3 Discussion

ADA has been proposed to better manage the trade-off between the differ-
ent scanning performance metrics, i.e., to achieve a low-latency discovery
while discovering the maximum number of AP and reduce failed scanning
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Figure 35: Testbed results

attempts. However, other adaptation strategies can be studied in order to
avoid using fixed timers for the discovery process. In Section 3.7, we define
a different adaptive strategy that uses physical layer information in order to
use the most adequate timers for each specific channel condition.

3.7 cross-layer scanning : a phy-mac approach

As proposed in Section 3.6, ADA is based on dynamically adapting the scan-
ning timers, i.e., the value of the timers to use in the current channel is based
on the discovered resource on the previous channels. This allows reducing
the scanning latency while having a controlled scanning failure. However,
a different adaptation strategy could find the most suitable timers for each
channel based on reliable information characterizing the particular condi-
tion of each channel. In order to have a knowledge of the channel activity
before performing scanning at the MAC layer, an MS has different options.
First, an MS may rely on IEEE 802.11k [62], a recent amendment for Radio
Resource Management in IEEE 802.11. Using IEEE 802.11k, an MS is able to
request for channel measurement information to its current AP and to other
MS in the cell. Some of the information that can be requested are the BSSID

and operating channel of neighboring AP, the radio condition of the differ-
ent channels or the load and the error rate of different AP. Athanasiou et
al. [63] propose a cooperative handover mechanism based on IEEE 802.11k.
However, since IEEE 802.11k only defines the protocol for message exchange
to perform the radio measurements but not any particular algorithm to cal-
culate those parameters (i.e., channel load estimation, access delay), there
is still a lack of real IEEE 802.11k implementations. In [63], the cooperative
handover approach is only evaluated by the means of simulations.
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Another approach to assist the scanning mechanism is based on the co-
operation between the MAC layer and the physical layer in every single MS.
In such a cross-layer approach, the MS may request the physical layer for
some link-related parameters that characterize the current situation on the
different channels. In the following sections, we propose an adaptive cross-
layer scanning algorithm that uses physical layer information such as the
channel load and the power measured on each channel in order to improve
the scanning performance. This information provides the MAC layer with a
preliminary knowledge of wireless deployment, so as to accurately select the
channels to scan and the timer values. An implementation of two adaptive
approaches in the ath5k IEEE 802.11 open-source driver is evaluated in differ-
ent scenarios. The evaluation of the proposed cross-layer adaptive scanning
considers the performance metrics described in Section 3.5.3. Note that in
the case of the first discovery time metric, that has not been considered for
the ADA approach, it becomes now important since, using the cross-layer in-
formation, the MS may stop the scanning process as soon as an AP is found.
The trade-off between these performance metrics is identified and evaluated.

3.7.1 Preliminary Considerations

In Section 3.5.2, we have presented a set of experiments to analyze the de-
lay of the first probe response (FRD). In particular, for the design and eval-
uation of the cross-layer adaptive scanning, we consider the experimental
FRD distribution of Figure 31 and the results of Table 10, showing the mean
and standard deviation of FRD for different levels of traffic that has been
injected to the network. It can be appreciated that both the empirical mean
(Ē[FRD]) and standard deviation (σ̄(FRD)) tends to increase as the traffic load
increases. One relevant observation is illustrated in Figure 31, which shows
the empirical cumulative distribution function of FRD (P[FRD < t]). The ef-
fect of loading the cell produces a great dispersion of the FRD. In the case
of background traffic (i.e., only management frames circulate on the chan-
nel), almost no FRD dispersion is observed. However, when a high traffic
load is injected (12.5 Mbps in Figure 31), the FRD tends to follow a displaced
exponential distribution.

3.7.2 Physical Layer Measurements

In the proposed cross-layer approach, two physical parameters are consid-
ered: the channel load and the measured power on each channel. An MS can
measure the power on the channel and the load in order to determine the
presence of AP on the channels and to estimate the most suitable time to
wait for Probe Responses while doing scanning. Regarding the power on
each channel, it is simply measured from the captured signal during a given
time window. On the other hand, the channel load is estimated by calculat-
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ing the ratio between the signal-plus-noise and the noise-only samples. The
estimation mechanism is presented below. This physical-layer information
could be estimated by a wireless network card just before scanning. How-
ever, in the particular case of this experimentation, as it will be explained in
Section 3.7.4, this physical-layer information is obtained using a dedicated
device, a Universal Software Radio Peripheral (USRP2)4, that allows sensing
and processing IEEE 802.11-based physical signals.

3.7.2.1 Estimation Mechanism

For the channel load, we use the estimation mechanism that has been de-
fined by Oularbi et al. [64]. The medium access control in IEEE 802.11 defines
different Interframe-Spacing (IFS) intervals between two consecutive frames
that guarantee different priorities to access the channel. At the receiver side,
the observed signal is a succession of signal plus noise samples correspond-
ing to data frames or noise samples corresponding to the IFS intervals or to
idle periods.

We assume that there is only one data frame in the observation window.
Let y = [y(1), . . . , y(Ns)] be a set of Ns observations on a given channel, such
that















y(m) = w(m) 1 6 m 6 m1 − 1

yi(m) =
∑L−1

l=0 h(l)x(m − m1 − l) + w(m) m1 6 m 6 m2

y(m) = w(m) m2 + 1 6 m 6 Ns

(3)

where the x for j = 1, . . . , M is the data transmitted signal, h(l) is the chan-
nel response from source signal to the receiver’s antenna, L is the order of
the channel h. w(m) is a complex additive white Gaussian noise with zero
mean and variance σ2

w. The variance σ2
w is assumed to be known or at least

estimated. In practice, the noise power is captured by the USRP2 device. A
channel with no traffic and no active AP is first observed. In this case, no
data signal is present and the only signal observed is due to thermal noise
and background noise. Thus the noise power is equal to the variance of the
observed samples.

The vector y can be divided into three parts : noise , signal plus noise
and noise. Starting from the set of observation y, the goal is to find which
samples correspond to noise and which ones correspond to signal plus noise.
The used approach relies on the following : since the samples are supposed
to be independent in the noise areas and correlated in the signal plus noise
area due to the channel effect and their OFDM structure, a likelihood function
is used to provide information about the independence of the processed
sample.

Let Y(u) in Equation 4 denote the following set of observations :

Y(u) = [y(u), . . . , y(Ns)] 1 6 u < Ns (4)

4 http://www.ettus.com/

http://www.ettus.com/
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And let us define fY (see Equation 5) the joint probability density function
of Y(u). If Y(u) is composed of only noise samples

fY(Y(u)) =

Ns
∏

m=u

fw(y(m)), (5)

where fw (see Equation 6) is the probability density function of a complex
Normal law centered and variance σ2

w, given by

fw(x) =
1

πσ2
w

e−|x|2/σ2
w , (6)

The log-likelihood that the vector Y(u) is formed of (Ns − u) noise inde-
pendent samples is expressed as in Equation 7.

J(u) = log

[
Ns
∏

m=u

fw(y(m))

]

= −(Ns − u) log(πσ2
w) −

1

σ2
w

Ns
∑

m=u

|y(m)|2 (7)

As u varies in the interval [1, m1), the number of noise samples composing
Y(u) decreases and so does J(u) until it reaches a minimum bound at m1

(see Fig 36).
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Figure 36: Example with one frame and corresponding criterion behaviour.

However, for u varying from m1 to m2 the number of signal plus noise
samples decreases, therefore the ratio between noise samples and signal plus
noise samples increases and by the way J(u) increases. It reaches its maxi-
mum value if and only if Y(u) contains only noise samples, i.e when u = m2.
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Sense Ns signal samples
on the treated channel

Compute the criterion
J(u) values using (7)

Compute the functions
Φ(u) values using (8)

Deduce the Load
thanks to (9)

Figure 37: Estimation algorithm phases

Finally for m2 < u < Ns, J(u) decreases again for the same reason than
the one explained for 1 < u < m1.

Based on the behavior of J(u), it can be clearly seen in Fig 36 that the slope
of J(u) is positive when u corresponds to the index of a signal plus noise
sample and negative when u corresponds to the index of a noise sample.
Therefore, the gradient of J(u) can be used to distinguish the nature of the
observed samples. The function Φ(u) is introduced in Equation 8.

Φ(u) =
1

2
[sign{∇(J(u))} + 1] (8)

Here ∇ denotes the gradient of J(u) and sign{.} denotes the sign operator.
According to this, Φ(u) equals 1 when signal plus noise samples are present
and zero when it is only noise, and the channel load (or occupancy rate) is
estimated by Ĉor, as shown in Equation 9.

Ĉor =
1

Ns

Ns
∑

u=1

Φ(u) (9)

The whole algorithm is summarized in Figure 37.

3.7.3 Algorithm Design and Implementation

3.7.3.1 Theoretical Analysis

The proposed cross-layer scanning algorithm aims to obtain an expression
to generate the waiting time on each channel. In Figure 31 the empirical
FRD distribution is approximated using a random variable that follows a
displaced exponential distribution. For the cross-layer adaptive scanning al-
gorithm, a single-timer approach is considered (i.e., only tmin is used), that
differs from the standard two-timers approach, (i.e., MinCT and MaxCT ). A
single-timer approach is also used in common wireless devices, like Android
smartphones.
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Let T be the FRD, then T is modelled as a displaced exponential distribu-
tion, i.e., T ∼ a + exp(λ). Remark that for each traffic load, an exponential
law with a different parameter λ is obtained. The value of a is defined as
the minimal observed time for a Probe Response to arrive. The goal is to
find an expression that represents the amount of waiting time on each chan-
nel (tmin) that allows receiving a Probe Response with a given probability
(P[T 6 tmin] > p). Then, the probability density function (see Equation 10) of
the displaced exponential variable T is used to calculate probabilities. Then
P[T 6 tmin] can be expressed as shown in Equation 11.

f(t, λ) =







λe−λ(t−a) t > a

0 t < a
(10)

Focusing on the side t > a, then we aim to find T = tmin that satisfies
P[T > tmin] > p. This yields to Equation 11.

P[T 6 tmin] =

∫tmin

a

λe−λ(t−a)dt

= λ

∫tmin

a

e−λ(t−a)dt

= −λ
eλ(a−t)

λ

]tmin

a

= 1 − eλ(a−tmin)

(11)

Then, tmin can be expressed in terms of λ and p.

P[T > tmin] > p

1 − eλ(a−tmin) > p

eλ(a−tmin) < 1 − p

λ(a − tmin) < ln(1 − p)

tmin > a −
ln(1 − p)

λ
(12)

Note that Equation 12 is an expression for tmin that depends on the pa-
rameter of the distribution (λ, which varies with the traffic load), the mini-
mum observed FRD and the probability p, which represents the confidence
interval (a grade of precision for the calculated tmin). Then, giving that
the variance of an exponential random variable is well known (σ2 = 1/λ2),
the parameter of the distribution (λ) can be estimated by using the empiri-
cal standard deviation (σ̄) obtained in the preliminary experimentation (see
Table 10). Finally, in Equation 13, an estimator for tmin is expressed consid-
ering λ̂ = 1/σ̄.
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Figure 38: Timer values for different σ and p

t̂min > a − σ̄ln(1 − p) (13)

This two-variable function gives values for tmin that are used on each
channel depending on the standard deviation (σ) and the precision (p). Fig-
ure 38 illustrates the behavior of this function, the x-axis represents the stan-
dard deviation, the y-axis represents the precision and the z-axis gives the
timer value (tmin). If the value of σ increases (i.e., the traffic load increases)
the value of tmin linearly increases for a same value of p. Then, when in-
creasing the confidence interval p, for a fixed value of σ, the value of tmin

increases exponentially.
In summary, we propose a simple mechanism that gives the waiting time

on a channel using two variables, p and σ. The value of σ is varied depend-
ing on the channel load. Then the value of p is set by considering other
parameters, like the channel power or the priority of the channel.

3.7.3.2 Implementation

Based on Equation 13, the timer setting strategy is implemented in the ath5k
open-source driver as follows:

Timer = FRD_min + Deviation * Precision

Where the FRD_min component is the absolute minimum observed FRD,
Deviation is the empirical standard deviation of the FRD (Table 10) and
Precision is the calculation of the term −ln(1 − p) for different values of
p. Using different Precision values, the timer for each channel can be in-
creased or decreased. Precision values are indicated in Table 13 and have
been set after several experimental trials, in order to find the best ones in
terms of the scanning performance. In general, higher values of p are used,
i.e., higher Precision for the first channels to scan, since, as it has been ob-
served in Figure 39, the power level generally indicates the presence of AP

in the channel. For that reason, a higher precision value (i.e., a longer timer)
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is given to channels with relative high power in order to avoid missing a
response due to a scarce timer. Channels with relative low power will use
shorter timers (due to a smaller Precision value), since an AP is less likely
to be found. Two algorithms have been envisaged, the main difference be-
tween them is related to how they consider the measured channel power to
calculate the channel sequence.

simple precision algorithm The Simple Precision Algorithm (SPA)
was implemented using the timer calculation mechanism of Equation 13

with a FRD_min equal to 1.69 ms, since it has been the minimum FRD we
have observed in the preliminary experiments. Then, the Deviation term
was implemented considering an extrapolation of the empirical relation be-
tween the channel load and the standard deviation of the FRD (Table 10). In
this case, the channel load values are used as an input, separated in steps of
5 %. The channel sequence was calculated by simply ordering the channels
by power (decreasingly), i.e., different values of p (i.e., different Precision
values) are used for different position in the channel sequence (the first chan-
nels have greater p).

local maximum precision algorithm The Local Maximum Preci-
sion Algorithm (LMPA), takes into account the problem of channel overlap.
As shown in Figure 39, even if only channels 1, 6 and 11 have an AP de-
ployed, the power measured in the neighboring channels is still high due to
channel overlap. As it has been previously explained in Section 2.1.1, this
is due to the channel allocation in IEEE 802.11, where channels are 20 MHz

or 22 MHz wide, with a separation of 5 MHz. In order to prevent from con-
sidering high power channels that do not have any AP deployed, instead of
simply ordering the channels by decreasing power, we propose to use a high
Precision value for the local maximums in terms of measured power. In the
example of Figure 39, the sequence will first consider channels 1, 6 and 11,
which are the local maximums. Note also that the power levels of channels
1, 6 and 11 are quite different among them. This can be explained by the
fact that different AP brands and models have been used, which may yield
in different radio modules, antennas, etc.

Table 13: Precision values

p Precision (−ln(1 − p)) No of Channels to scan

0.95 2.996 3 (or all local maximum)

0.85 1.897 3

0.80 1.609 3

0.75 1.386 4

Figure 40 illustrates the cross-layer adaptive algorithms logic. The MS first
computes the channel sequence depending on the approach (SPA or LMPA)
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Figure 39: Measured power in scenario 2

by considering the power measured on the channels (Ch_Power_List). For
each channel to scan, the MS calculates a timer (T[i]) based on the channel
load (Ch_Load[i]) and the precision (obtained after computing the chan-
nel sequence using Ch_Power_List). The scanning process finishes when the
number of scanned channels reaches MAX_CH (whose value depends on the
number of channels in the sequence).

3.7.4 Performance Evaluation

3.7.4.1 Testbed

To evaluate the performance of SPA and LMPA, a testbed using real IEEE
802.11b/g devices has been deployed. An MS implementing a Netgear WG511T
card based on an Atheros chipset is used for scanning. We used a modified
version of the ath5k driver that allows controlling all the parameters of the
active scanning function. Up to five Linksys WRT54GL AP were deployed in
different channels (see Section 3.7.4.2) in an isolated environment without
interferences from any other wireless device. Traffic load was generated us-
ing iperf on a set of DELL Latitude laptops and ASUS netbooks. Since the
Atheros card using ath5k driver does not allow physical-layer measurements
in the MAC layer, a dedicated USRP2 device has been used. This device allows
sensing and processing IEEE 802.11-based signals. The performance of the
scanning algorithms are evaluated in two steps. First, after deploying the sce-
nario (AP and MS for traffic generation) the channel load and the power are
estimated as explained in Section 3.7.2 over signal samples gathered by the
USRP2 device. Second, both parameters are statically set on the ath5k driver
before scanning a particular scenario using SPA, LMPA and a set of fixed-timer
scanning algorithms. The scenario’s conditions remain constant during the
measurement and the scanning phase. Note that these measurements could
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Figure 40: Cross-layer adaptive algorithm

also be performed before triggering the handover, in periodic sub-phases.
Moreover, physical-layer information could be directly requested by the MAC

layer using IEEE 802.11k to an AP or an MS by simply using Channel Load
Request/Report and Link Measurement Request/Report messages.

We consider the metrics introduced in Section 3.5.3 to compare the per-
formance of the different evaluated scanning algorithms. As stated before,
these metrics define a trade-off, since using a fixed timer for scanning all
channels cannot simultaneously keep a reduced latency, provide a high dis-
covery rate, reduce the failure rate and spend a low time to discover the first
AP.

3.7.4.2 Scenarios

Like for the ADA evaluation, we consider a set of scenarios aiming to repre-
sent real deployments. Five different scenarios have been considered, using
different channel allocations and traffic load. The scenarios are as follows:

• Scenario 1: Three AP deployed in channels 1 − 6 − 11 (one on each
channel). This could be an example of an enterprise or campus non-
overlapping deployment. Uplink and downlink traffic from 5 to 15 Mbps

is injected in all channels.

• Scenario 2: Five AP deployed in channels 1 − 6 − 11. One AP in channel
1, and 2 AP in channels 6 and 11. This is another non-overlapping
scenario. Uplink and downlink traffic from 5 to 15 Mbps is injected
in all channels.
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• Scenario 3: Five AP deployed in channels 3 − 4 − 8 − 9 − 13. This could
be an example of an heterogeneous city-wide deployment. Uplink and
downlink traffic from 1 to 15 Mbps is injected in all channels.

• Scenario 4: Two AP deployed in channels 1 − 11. This is another non-
overlapping scenario (separation of 9 channels). Uplink and downlink
traffic from 5 to 10 Mbps is injected in both channels.

• Scenario 5: One AP deployed in channel 6. This is a common non pop-
ulated scenario. Downlink traffic of 20 Mbps is injected in the channel.

3.7.4.3 Results

general results Five scanning approaches have been considered, three
fixed strategies using a single fixed timer (FX 2 ms, FX 5 ms and FX 10 ms)
and two cross-layer adaptive approaches (SPA and LMPA), in the five different
scenarios described above.

For the fixed timers approaches (FX), we consider that there is not a a-
priori information to build the channel sequence. Then, the channel sequence
is always randomly calculated on each scanning trial. This is to avoid that
a pre-established channel sequence penalizes or benefits a scenario. Regard-
ing the timers, note that they are lower than the timers used in the ADA

evaluation, which used different devices for the testbed.
For the two adaptive approaches, the tmin timer, calculated using Equa-

tion 13, varies between 2 ms to 18 ms, depending on the traffic load esti-
mation and the measured power on each channel. Also in this case, the
standard deviation for all the performance metrics is always comparable to
fixed timers strategies. Focusing on the scanning latency, Figure 41a shows
that the cross-layer adaptive approaches give a latency lower than or equal
to the FX 10 ms strategy, being always between 85 ms and 176 ms. Moreover,
LMPA can reduce the latency in non-overlapping scenarios 1, 2 and 4, since
it prevents from setting a high timer in the neighboring channels due to a
high power. Regarding the failure (see Figure 41b), the adaptive strategies
always give reduced rates, between 0.2 % and 16 %. Only in scenario 5 LMPA

failure is slightly higher than the FX 10 ms approach. Figure 41c shows that
the adaptive approaches keep a high discovery rate (up to 84 %) even for
scenarios where the latency is lower than the fixed timers strategies. Finally,
focusing on the first discovery time, Figure 41d shows that both SPA and
LMPA always discover the first AP sooner than all of the fixed timer approach.
The first discovery time for the adaptive approaches varies between 6.35 ms

and 26.87 ms, but for fixed timer approaches it can reach up to 86.14 ms in
average.

comparative results In order to provide a comparative view for the
metric results, we define a simple score function (see Equation 14), where D
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(a) Latency (b) Failure

(c) Discovery Rate (d) First Discovery Time

Figure 41: Experimentation results

is the discovery rate, L is the latency, F is the failure and T defines the first
discovery time. All metrics are equally considered.

Si = 1 −
Di

max(Di)
+

Li

max(Li)
+

Fi

max(Fi)
+

Ti

max(Ti)
(14)

Figure 42: Score function
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For each approach (i) a score is assigned. The approach managing better
the trade-off between the performance metrics is the one that tends to min-
imize the score function (Si). Figure 42, illustrates the score functions for
each scenario. This figure gives a global view of each approach and also il-
lustrates how a particular scenario influences the scanning performance. The
adaptive cross-layer approaches minimize the score in every scenario, since
both SPA and LMPA curves are closer to the origin. Moreover, LMPA gives
better scores than SPA in scenarios 2 and 4, since it allows setting longer
timers only on channels where an AP is deployed. Regarding fixed timers
approaches, FX 5ms behaves better than the rest of the fixed strategies. The
adaptive approaches are capable to behave differently for each particular
scenario, by taking into account its specific constraints in terms of interfer-
ence and traffic load. They help to keep a reduced latency and failure rate
while also importantly reducing the time to discover the first AP, and giving
high discovery rates. Remind that only one timer (tmin) is used in the five
evaluated approaches. Although this is not the case of the standard spec-
ification, we focus on the most critical timer and we expect that a second
timer (MaxCT ) may only improve the discovery rate in a fixed or adaptive
approach, by increasing the latency in both cases.

3.7.5 Discussion

We proposed and evaluated a cross-layer mechanism to improve the IEEE
802.11 scanning process in layer-2 handovers. We have shown that scanning
timers can be adapted using samples of signal power and congestion levels.
Like in ADA, we have evaluated the scanning process in terms of a trade-
off between different performance metrics. Since an optimal timer value for
scanning (i.e., the one to wait for Probe Responses) depends on each par-
ticular AP deployment, we proposed and evaluated two different adaptive
algorithms, SPA and LMPA, that consider the same physical layer information.
These cross-layer adaptive approaches ensure that each timer matches the
characteristics of each channel.

The main limitation of a cross-layer scanning approach is how the physi-
cal layer information is shared with the management functions at the MAC

layer. In our evaluation, we gather physical layer information with a differ-
ent device than the one that is performing scanning. In our experiments, the
load and the power are estimated in a separate phase by gathering signal
samples for each individual channel during 1 to 10 ms using the USRP2 de-
vice. In order to reduce this phase in the case of a real implementation of
the estimation mechanism in a wireless card, we are actually studying a new
mechanism that takes advantage from the channel overlap to infer the load
and the power of neighboring channels by only considering physical layer
measurement of a limited number of channels that partially overlap (e.g.,
channels 3, 5, 7 and 9). We have used the USRP2 device since in existing IEEE
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802.11 wireless cards signal samples are not available at the driver level and
so the power and load estimation cannot be assured. This limitation could be
overcome by using the IEEE 802.11k amendment, providing radio resource
management for WLAN or by implementing the estimation mechanism at
the firmware level. Such a protocol allows requesting physical layer mea-
surements to other nodes in the network.

3.8 concluding remarks

In this chapter, the handover process in IEEE 802.11 has been presented to-
gether with existing optimizations focusing on reducing the impact of han-
dover on the user experience. Handovers in IEEE 802.11 have become an
essential issue, since, as shown in Chapter 2, the number of IEEE 802.11

networks have dramatically increased, giving high dense deployments in ur-
ban deployments. The challenge for IEEE 802.11 networks is to evolve from
providing static wireless connections to provide seamless mobility, and in
this context, a fast and reliable handover support arises as one of the most
important issue.

A special attention has been given to the AP discovery process, the most
time consuming process while performing a handover. As a result, a perfor-
mance trade-off for scanning has been defined and analyzed: while scanning,
the MS aims to discover the largest number of candidate AP by spending a
low delay to discover them and avoiding the case in which no candidate
is found due to misconfiguration of the scanning parameters. We have pro-
posed two different approaches to manage the performance trade-off while
scanning. First, ADA is a simple adaptation function for scanning timers that
is based only on local information, i.e., it decides to use longer or shorter
timers for scanning the different channels depending on previously found
AP. The second approach, is based on a tight collaboration between the phys-
ical and the MAC layers in IEEE 802.11. It has been demonstrated that the
average time to receive the first Probe Response in a channel while scan-
ning and its dispersion increase with the AP load. The proposed cross-layer
approach is capable to adaptively select the channels to scan and the time
to spend on a channel in order to better manage the performance trade-off.
Both approaches have been evaluated under experimental testbeds, using
different type of devices and open-source wireless drivers.



4
A N E N E R G Y- E F F I C I E N T A P P R O A C H F O R N E T W O R K
S E L E C T I O N

4.1 mobility and multi-homing in a wireless context

Nowadays, users run different kind of applications over the Internet: instant
messaging, mailing, voice-over-IP, video-on-demand , web-browsing or so-
cial networking. These applications generate an important number of flows
and gather a high variety and amount of information. Moreover, users want
to be always best connected [5] when running their applications, receiving
the best possible performance at any time while moving. Different types of
portable devices have been introduced in the market in the last years, and
very frequently, they embed different wireless access technologies, like IEEE
802.11 (WiFi), 2G/3G/4G cellular, WiMAX or Bluetooth interfaces. In general,
these access technologies have been designed to support different use-cases,
e.g., cellular networks for large coverage and high speed mobility communi-
cations, IEEE 802.11 networks for local area communications or Bluetooth for
proximity services. As previously shown in Chapter 2, due to the increasing
number of deployments of these networks and because no wireless technol-
ogy could cover all market needs, every single MS is able to access one or
several networks in any given place. Then, it is usual that users associate
with more than one network, increasing the number of IP addresses allo-
cated by user and opening the way to multi-homing, which gives users the
possibility to exploit the diversity of their networks by gaining in reliability
and performance. In particular, the IPv6 protocol allows flow distribution for
a very high number of connected nodes implementing different link-layer
technologies. However, in a mobile and multi-homed environment (i.e., in
which multiple wireless interfaces are available on a single mobile device),
the definition of the policies establishing how the different flows are mapped
to the different available interfaces/paths is still an open research topic. We
generally refer to this issue as the network selection process. In the literature,
solutions for network selection follows two different directions. First, there
are solutions aiming to manage vertical handovers, i.e., the decision-making
process to establish when to switch all the on-going flows to a different
interface. A typical example for vertical handover is an MS connected to a
3G network aiming to switch all the flows when entering in a WLAN cov-
ered zone. A second group of solutions for network selection consider the
decision-making problem aiming to assign the different flows to the avail-
able interfaces, enabling load spreading and a simultaneous usage of the
wireless interfaces.

85
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As it will be exposed in this chapter, we present solutions for vertical han-
dover and load spreading but we particularly focus on the decision-making
process for the flow-interface assignation. Note that the flow-interface assig-
nation strategy in the network selection process can highly impact the user
experience. The lack of an intelligent decision-making process can lead, for
example, to situations where some wireless interfaces become overloaded
while other wireless interfaces having an acceptable available capacity are
not even used. Also, it may produce that high bandwidth demanding appli-
cation flows are assigned to high energy consuming interfaces, which dras-
tically drain the MS battery.

In this chapter, a decision-making framework for network selection is
defined and evaluated. This framework allows searching an optimal flow-
interface assignation in a multi-homed MS. The optimality of this assigna-
tion is measured in terms of the bandwidth satisfaction of a flow using a
particular interface and its energy efficiency. The flow-interface assignation
is modelled as a multi-objective optimization problem, and we propose us-
ing evolutionary algorithms to search for optimal solutions.

The chapter is organized as follows. The related work on decision-making
mechanisms for network selection is introduced in Section 4.2, including
Multi-Attribute Decision Making, Neural Networks, Combinatorial and Multi-
Objective optimization. Then in Section 4.3, an energy-efficient network se-
lection mechanism is defined and modelled as a multi-objective optimization
problem. We propose a set of simulation results in Section 4.4. The proposed
simulator generates random scenarios and solves the multi-objective prob-
lems using the PISA [65] framework for evolutionary computation. We com-
pare the results obtained for such a multi-objective approach against existing
preference-based techniques. Finally, the chapter is concluded in Section 4.5.

4.2 decision making for network selection

Monitor Decision 
Making Enforcement

Criteria Search 
Algorithm

Trigger
Optimal 
Solution

Figure 43: Network selection process

The network selection in wireless multi-homed devices implies different
processes, as illustrated in Figure. 43. As stated before, the final goal while
performing network selection in a load spreading approach is to find the
assignation of the on-going application flows to the different available inter-
faces that optimizes a given criteria. First, in order to identify when the MS
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needs to look for a new assignation one may suppose that the MS needs to
monitor the current status of the flows and the interfaces, while also doing
network discovery to find the available points of attachment. Then, under
certain conditions, the MS may decide that the current assignation is no more
optimal and so a decision-making process has to be triggered in order to find a
new optimal assignation. The conditions to trigger the decision-making pro-
cess may be related, for instance, to some interfaces or networks becoming
active or inactive, to the initialization or termination of a new application
flow or some QoS variations on the available networks or the application
flow requirements. The decision-making process itself has to consider a set
of criteria to evaluate the optimality of the assignation. Finally, an enforcement

process is carried out to set up the new assignations on the device. During
this enforcement process, the MS connects to new interfaces or turns-off other
interfaces that will no longer be used in the new flow-interface assignation.
It also considers the seamless switching of some flows to different interfaces
based on some existing multi-homing support protocols like shim6 [6] or
Host Identity Protocol (HIP) [7].

The decision-making process itself is the core mechanism that will pro-
vide the most optimal assignation as an output. To achieve this, at least the
following issues have to be considered:

1. Which criteria has to be considered to measure the optimality of a
certain flow to be transmitted over a certain interface ?

2. How to combine the different criteria in a way to represent a realistic
decision-making ?

3. How to manage the combination of contradictory criteria ?

4. Once the criteria has been combined, how to search for optimal solu-
tions ?

5. How to select a single optimal solution if different optimal solutions
exist ?

Different works in the literature propose a set of frameworks, models and
mechanisms to give response to one or more of the aforementioned ques-
tions. In the following sections, a number of mechanisms are described.

4.2.1 Multi-Attribute Decision Making

Multi-Attribute Decision Making (MADM) [66] is a technique used for decision-
making based on preference decisions over an available set of possible alter-
natives. These alternatives are usually characterized by multiple discordant
attributes, that are measured in different units or, in some cases, some at-
tributes may have incommensurable units. As an example, in the context of
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network selection, one may consider that an alternative is a particular flow-
interface assignation (i.e., in the case of load spreading) or the interface to
use by default for all the flows in the MS (i.e., in the case of vertical han-
dover). Each assignation may have attributes, e.g., QoS satisfaction, interface
and flow characteristics, security issues, associated cost.

Alternatives (A)

Attributes (C)

Decision          
Matrix (X)

Weighting 
Vector (W)

Normalization

Ranking Best 
Alternative

Figure 44: MADM flow chart

A generic flow chart for MADM is illustrated in Figure 44, describing
the different phases to find the best alternative. More formally, an MADM

problem may be modelled as a set of m alternatives, A, as shown in Equa-
tion 15 [66]:

A = {a1, a2, a3, · · · , am−1, am} (15)

And a set of n attributes C in Equation 16

C = {c1, c2, c3, · · · , cn−1, cn} (16)

In every MADM mechanism, a weight vector W is defined (see Equation 17)
in order to express the relative importance of each attribute in the problem,
satisfying the following condition:

∑n
i=1 wi = 1.

W = w1, w2, w3, · · · , wn−1, wn (17)

Additionally, a decision matrix X, in Equation 18, contains the elements
xij representing the performance of each alternative ai for each attribute cj

where i ∈ [1, m] and j ∈ [1, n].

Xm,n =




x1,1 x1,2 · · · x1,n

x2,1 x2,2 · · · x2,n
...

...
. . .

...

xm,1 xm,2 · · · xm,n




(18)

Then, after defining the weight vector W and the decision matrix X, the
goal is to combine them to come out with a single optimal alternative. This
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process is composed of two different phases. First, since the different at-
tributes are certainly measured in different units, a normalization phase is
required. Then, an aggregation process is performed in order to combine nor-
malized attributes with the weight vector W, and so rank the different alter-
natives to come out with a decision.

Regarding normalization, different methods may be applied [67], mainly
based on linear-scale transformation. Let rij be the normalized performance
xij forming the normalized matrix R. In the following, we describe the dif-
ferent methods to obtain rij.

The Vector Normalization given in Equation 19, also referred to as Euclidean
Normalization, is based on dividing each performance value xij by its norm
(i.e., the square root of the sum of squared performances for the n alterna-
tives).

rij =
xij√

∑m
i=1 x2

ij

(19)

In the Max Method, each performance value is divided by the maximum
performance value among all possible alternatives. Equation 20 shows the
normalization formula for benefit attributes (i.e., attributes that should be
maximized), while Equation 21 shows the formula for cost attributes (i.e.,
attributes that should be minimized).

rij =
xij

max(xj)
(for benefit attributes) (20)

rij = 1 −
xij

max(xj)
(for cost attributes) (21)

The Max-Min Method (see Equations 22 and 23), has the advantage of
producing normalized performance values in the range [0, 1], which facil-
itates comparisons. It is obtained by dividing the difference between the
performance xij and the minimum for all the alternatives (for the benefit
attributes) or the difference between the maximum performance and xij (for
cost attributes) by the difference between the maximum and minimum per-
formance for all the alternatives.

rij =
xij − min(xj)

max(xj) − min(xj)
(for benefit attributes) (22)

rij =
max(xj) − xij

max(xj) − min(xj)
(for cost attributes) (23)

Finally, the Sum Method (see Equation 24) divides the performance value
by the sum of the performance values among all the alternatives.
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rij =
xij

∑n
j=1 xij

(24)

Once the MADM problem is defined, i.e., the decision matrix (X) has been
defined and normalized, different aggregation techniques exist to combine
the normalized decision matrix (R) and the weight vector (W) to outcome
with the most feasible alternative. In the context of network selection, the
final goal is to select one of the interfaces (in a vertical handover context)
or flow-interface assignations (in a load spreading context) among all the
available alternatives. Different works in the literature have modelled the
network selection problem using MADM considering different attributes (C),
weight vectors (W) and aggregation methods. In the following sections, the
different aggregation methods are described. Then, existing network selec-
tion methods based on MADM are discussed.

4.2.1.1 Simple Additive Weighting

In the Simple Additive Weighting (SAW) aggregation method, each alterna-
tive is rated by calculating the weighted sum of its attributes. More formally,
let aSAW

i be the rating of the alternative ai using SAW. Then, aSAW
i is calcu-

lated as shown in Equation 25.

aSAW
i =

n
∑

j=1

rij ·wj (25)

Then, the optimal alternative sSAW , is the one that maximizes the weighted
sum: sSAW = max∀i(a

SAW
i ).

4.2.1.2 Multiplicative Exponential Weighting

In the Multiplicative Exponential Weighting (MEW), the rating of each al-
ternative aMEW

i is calculated as the exponentially weighted product of the
attributes (as in Equation 26). In this case, as weights are exponentially con-
sidered, they are positive for benefit values (xwj

ij ) and negatives for cost at-

tributes (x−wj

ij ). Note that, in the case of MEW, normalization is not required
since attributes are combined in a product rather than a sum.

aMEW
i =

n
∏

j=1

x
wj

ij (26)

In contrast to SAW, aMEW
i values have not an upper bound when us-

ing exponential weights [66]. Then, to come out with the optimal alter-
native (sMEW), it is necessary to compare each alternative with an ideal
performance vector a∗ = (x∗1, x∗2, · · · , x∗m) representing an ideal alternative,
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that is defined as an imaginary alternative composed of the best values
for each individual attribute, i.e., a∗

j = max∀i xij for benefit attributes and
a∗

j = min∀i xij for cost attributes. Finally, the optimal alternative sMEW is
calculated in Equation 27, with ρi defined in Equation 28 as the ratio be-
tween the MEW rating of the evaluated solution ai and the ideal solution
a∗.

sMEW = max
∀i

ρi (27)

ρi =

∏n
j=1 x

wj

ij
∏n

j=1(x∗ij)
wj

(28)

4.2.1.3 Technique for Order Preference by Similarity to Ideal Solution

The Technique for Order Preference by Similarity to Ideal Solution (TOPSIS)
is an MADM method proposed by Yoon and Hwang [66]. Optimal solutions
calculated by TOPSIS are those having the shortest distance to the positive
ideal solution and, at the same time, the farthest from the negative ideal
solution.

In order to solve an MADM problem using TOPSIS, once having defined the
decision matrix X, Euclidean normalization is applied to obtain the normal-
ized R matrix. Then, a new matrix V is calculated by computing the product
V = WT × R (see 29).

V = WT × R =




w1r1,1 w2r1,2 · · · wmr1,n

w1r2,1 w2r2,2 · · · wmr2,n
...

...
. . .

...

w1rm,1 w2rm,2 · · · wmrm,n




(29)

Each element vij of matrix V represents the weighted normalized perfor-
mance of the alternative ai with regard to the attribute cj. Then, in order to
determine the ideal positive V+ and negative V− solutions, consider J the set
of benefit attributes and J ′ the set of cost attributes. Then, the positive ideal
alternative V+ is defined in Equation 30 and the negative ideal alternative
V− is defined in Equation 31.

V+ = {v+
1 , · · · , v+

m} where v+
j = {max

∀i
(vij) if j ∈ J; min

∀i
(vij) if j ∈ J ′} (30)

V− = {v−
1 , · · · , v−

m} where v−
j = {min

∀i
(vij) if j ∈ J; max

∀i
(vij) if j ∈ J ′} (31)

Then, for each alternative, the distance from the positive ideal alternative
(S+

i , in Equation 32) and the negative ideal alternative (S−
i , in Equation 33)
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are calculated to finally compute the relative closeness to the ideal solution
γi (Equation 34). TOPSIS finally selects the optimal alternative as the one with
γi closest to 1.

S+
i =

√√√√
m
∑

j=1

(vij − v+
j )2 (32)

S−
i =

√√√√
m
∑

j=1

(vij − v−
j )2 (33)

γi =
S−

i

S+
i + S−

i

(34)

4.2.1.4 Analytic Hierarchy Process

The Analytic Hierarchy Process (AHP) [68], proposed by Thomas Saaty, is an
MADM method to solve complex decision problems, having a large number
of alternatives and attributes. The versatility of AHP allowed its application
in different fields, like in economics, management and education, among oth-
ers. In general, AHP allows prioritizing the different attributes (i.e., finding
the weights vector W) in a pairwise comparison manner. AHP is based on de-
composing a complex problem in a hierarchy of simpler sub-problems (i.e.,
the decision factors). This hierarchy is modelled as illustrated in Figure 45.
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Figure 45: The Analytic Hierarchy Process

The final goal, i.e., choosing the best alternative, is placed at the top of
the hierarchy. Then, in the middle of the hierarchy, the decision factors are
placed and finally, at the bottom, the different alternatives are placed. After
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decomposing the problem, the different decision factors within the same
parents are being compared among them using pairwise comparison. That
is, for two given factors, it has to be decided which one of them is more
important than the other and by how much (using a 1 to 9 numeric scale).
After completing the pairwise comparison, a reciprocal symmetric matrix M

(n×n) is obtained (see Equation 35). Each element of M has been calculated
using pairwise comparison, representing a ratio between weights of different
factors with respect to their parents.

M =




x1,1 x1,2 · · · x1,n

x2,1 x2,2 · · · x2,n
...

...
. . .

...

xn,1 xn,2 · · · xn,n




=




1 w1/w2 · · · w1/wn

w2/w1 1 · · · w2/wn

...
...

. . .
...

wn/w1 wn/w2 · · · 1




(35)

As demonstrated in [69], for a reciprocal matrix, Equation 36 is satisfied.
Where the eigenvector V is a non-zero vector and λ is the eigenvalue.

MV = λV (36)

In the case of the matrix M, the weights of the decision factors wi i ∈ [1, n],
that are the elements of vector W, can be calculated by considering V = W

and λ = n [69]. The obtained weight vector can suffer from inconsistencies
originated by pairwise comparisons misjudgements. To address this issue, a
consistency ratio is defined so that the weighting vector is consistent if this
ratio does not exceed 10 % (details on the consistency ratio calculation can
be found in [68]).

4.2.1.5 Grey Relational Analysis

The Grey Relational Analysis (GRA) [70], similarly to the TOPSIS algorithm, an-
alyzes the level of similarity and variability of the different alternatives. The
problem is modelled as any MADM approach, having a set of n alternatives
A and a set of m attributes C. To perform the best alternative selection, three
phases are required in GRA: normalization, definition of the ideal alternative
and calculation of the Grey Relational Coefficient (GRC). The normalization
procedure follows the rules of the Max-Min method (see the normalization
methods in Section 4.2.1), giving normalized performance values rij. Then,
the ideal alternative S∗ = {r∗0, · · · , r∗m} is calculated as the alternative con-
taining the best values for each attribute. Finally, the GRC index for each
alternative, GRCi is calculated as shown in Equation 37.

GRCi =
1

m

m
∑

1

min∀i(δi) + max∀i(δi)

δi + max∀i(δi)
where δi = |r∗j − rij| (37)

The best alternative is simply chosen by maximizing the coefficient, i.e.,
max∀i(GRCi).
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4.2.1.6 Existing MADM Mechanisms for Network Selection

After introducing the most popular MADM techniques, we aim now to present
the application of MADM particularly for the network selection process. Most
part of existing MADM-based mechanisms in the literature have been pro-
posed to support vertical handover in multi-homed mobile devices.

topsis-based network selection In [71] and [72] two different net-
work selection mechanisms are defined based on TOPSIS. Savitha and Chan-
drasekar [71] propose a network selection scheme to support vertical han-
dovers, i.e., the transition between two access networks belonging to differ-
ent technologies. In such a mechanism, they consider as the alternatives the
different available access networks at a given time. They consider jitter, cost,
bandwidth and delay as attributes for the alternatives and a set of weights,
that unfortunately are not clearly specified. The best network is then ob-
tained using TOPSIS. On the other hand, Bari et al. [72] proposed to use
a variation of TOPSIS, namely Iterative-TOPSIS, to tackle the ranking abnor-
malities observed when using traditional TOPSIS. A ranking abnormality [73]
occurs when the best selected alternative changes if an alternative (differ-
ent to the best one) is replaced by a worse alternative without changing the
weights. Ranking abnormality in the context of a network selection problem
is also identified in [74], where the authors show that SAW and MEW pro-
vide more stable solutions when removing an alternative different from the
best one. Moreover, Triantaphyllou and Shu [75] have shown that in TOPSIS,
these abnormalities increase with the number of alternatives and attributes.
To avoid this problem, the authors propose an MADM problem similar than
in [71] but using the monetary cost per byte, the total bandwidth of the
network, the allowed bandwidth for the MS using a network, the network
load, the packet delay and jitter as the set of attributes to characterize each
alternative. Regarding the definition of weights, they consider the user QoS

subscription. For example, a "Bronze" subscription indicates that more pri-
ority (i.e., higher weights) is given to cost rather than QoS attributes. Using
Iterative-TOPSIS, once the best alternative has been selected (i.e., a problem
iteration), the worst alternatives are removed from the set. Simulation re-
sults show that even if Iterative-TOPSIS can manage ranking inconsistencies,
for the first iterations, there are still some ranking abnormalities that cannot
be eliminated.

combined madm network selection A different MADM approach
is proposed by Puttonen et al. [76], as a part of the VERHO vertical han-
dover framework. In this case, the network selection is also modelled as an
MADM problem considering a set of alternatives corresponding to the avail-
able interfaces, a set of attributes and a dynamic weighting scheme. With
regard to attributes, the signal strength, the bit-rate, the power consumption
of the interface, the cost of using the network, the coverage range and the
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security level are considered. However, differently from the previous mech-
anisms, attributes are considered in a fuzzy manner. In such a Fuzzy Logic
approach [77], attributes are no longer considered as absolute values but as
linguistic variables (e.g., low, medium, high) that can be easily transformed
to a 0 to 1 range through a membership function obtaining a fuzzy set. Then,
instead of dealing with values, units and normalization, decisions can be
directly taken combining the fuzzy sets with logic operators. In [76], power
consumption, cost , coverage range and security are fuzzified in a scale of
length 5 (very low, low, medium, high, very high). The authors propose a
comparative study of SAW, MEW and TOPSIS aggregation mechanisms against
some fixed policies for network selection, such as best bit-rate, best signal
strength and a fixed priority list (i.e., in this order: Ethernet, WLAN, Blue-
tooth, Cellular). They also consider three weighting vectors (referred to as
"profiles") that are dynamically chosen depending on the user’s and applica-
tions’ requirements; one of them prioritizing signal strength and bit-rate, the
second one prioritizing mobility-related attributes and the third one being
neutral (i.e., equal distribution of weights). A set of simulations is presented
and authors conclude that due to the large difference observed in the se-
lected network using different MADM methods, a combined mechanism may
be used. This combined algorithm performs the decision-making using SAW,
MEW and TOPSIS and selects the network using the MADM mechanism that
minimizes the distance to a potential ideal solution. A limited implementa-
tion of the VERHO framework is proposed in [78] for the Maemo platform
(formerly supporting some Nokia Internet Tables) based on Mobile IPv6 [79].
In this implementation, the authors only consider SAW for network selection,
and no evaluation for the other MADM methods is given.

ahp-gra network selection As introduced in Section 4.2.1.4, AHP

provides a mechanism to define attribute preferences (i.e., the weights) with-
out asking the decision-maker to directly define the W vector but to perform
pairwise comparisons and obtain the W vector after doing some algebra. The
network selection mechanism proposed in [80] takes advantage from the AHP

weight definition and uses it as input in a GRA problem to rank the alterna-
tives and find the best network. In such an approach, an AHP hierarchy is
defined considering user-based parameters, including QoS parameters (e.g.,
availability, throughput, timeliness, reliability, security and cost) at the top
of the hierarchy. Then, the availability, timeliness and reliability elements
are decomposed in sub-attributes. Regarding availability attributes, signal
strength and coverage area are considered. Then, delay, response time and
jitter are considered for the timeliness attribute and BER, packet loss, burst
error and retransmissions for the reliability attribute. Two different alterna-
tives are considered at the bottom of the hierarchy, UMTS and WLAN. The
GRA problem is modelled using network parameters as attributes for each
interface. Simulation results are proposed for a single scenario with only
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four alternatives, one UMTS base station and three available WLAN, and no
comparative study with other solutions is proposed. The simulation results
consider a single set of AHP weights, but the authors also show the variability
of the selected networks for variations in the weights.

A similar approach is presented by Zhang et al. in [81], using AHP for
weighting and a modified GRA for ranking. The problem modelling corre-
sponds exactly to the model presented in [80], using the same set of at-
tributes and alternatives. However, the authors propose a slight modifica-
tion in the raking mechanism using GRA. This modification implies not only
comparing the alternatives against the (positive) ideal solution but also to
the worst solution, i.e., the negative ideal solution. Finally, the proposed
modified GRA is very similar than the TOPSIS algorithm, which reduces the
contribution of such a modified GRA.

Balasubramaniam et al. [82], proposed a different AHP-based approach. In
this work, a network selection framework for vertical handover is presented,
considering context information of user devices, location, network perfor-
mance and application’s requested QoS. The authors consider a system in
which there is a preliminary knowledge of the available networks at each
geographical location and their provided QoS. In this environment, an MS

can request for the most suitable network to handover (called Impending
Network Profile, INP) based on its location. The authors define two types
of network selection, the locality-based and the QoS-based network selec-
tion. Every time the selection process has to be triggered, the MS performs a
locality-based network selection, in which the MS asks for the set of networks
that it could connect to. Then, it selects a subset of them in which there are
users or devices in the proximity of the MS. A QoS-based selection is per-
formed among this last networks sub-set. This QoS-based selection is mod-
elled as an AHP problem, in which the final goal is to maximize the user’s
preferences and the application bandwidth and minimize jitter, delay, loss
and bandwidth fluctuations. The framework is evaluated with simulations
by focusing on the evolution of the MS received QoS over the time. However,
since this framework relies on a centralized entity that is capable to provide
very detailed information about all the available networks at every single
location, it appears to be unrealistic for the current wireless environment,
which is mainly characterized by a diversity of technologies and network
operators.

4.2.1.7 MADM Limitations: Attributes and Weighting Subjectivity

As it has been previously described in Section 4.2.1.6, different MADM-based
mechanisms have been proposed for network selection. However, two main
problems can be highlighted. First, since MADM algorithms have been de-
signed to support a very large number of attributes, the proposed network
selection mechanisms consider a large number of attributes, including very
detailed network performance parameters, user preferences or constraints
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and application QoS requirements. In all cases, the authors do not consider
how to gather those parameters in a real environment, i.e., how to actu-
ally feed the MADM algorithm with those attributes and if it is useful to
gather such an amount of attributes for the decision-making. Additionally,
the monetary cost is frequently considered as an attribute, but, since wire-
less accesses have been evolving to flat-rate pricing schemes, there may be
no longer the interest to consider the cost as an attribute. The second prob-
lem is related to the logic to define priorities among attributes. In SAW, MEW,
TOPSIS and GRA, it is the decision-maker who manually set the weights. AHP

introduces a more complex logic to define weights, defining the relative im-
portance of an attribute over the others. Even if the latter avoids manually
setting the weights, which leads to subjectivity by nature, AHP may still in-
troduce subjectivity and, even worst, inconsistency.

Several studies propose comparative analysis for different MADM algo-
rithms (e.g., SAW, MEW, TOPSIS, GRA) mainly pointing out the limitations
related to weights definitions due to subjectivity. Stevens-Navarro et al. [83]
modelled the network selection with MADM using the following attributes:
the available bandwidth, the end-to-end delay, the jitter and the BER. As in
the previous models, the alternative set contains the different available inter-
faces. The authors propose a comparative study that focuses in two different
aspects. First, the observed performance (in terms of average bandwidth
and average delay) is analyzed for different MADM methods. Second, a sen-
sibility study is proposed to show how the decision-making is affected by
weight variations for different MADM methods. In those studies, four dif-
ferent traffic classes are considered (i.e., conversational, streaming, interac-
tive, background), assigning different weights to the attributes depending
on the traffic class. Regarding weights, they are defined as described in Sec-
tion 4.2.1.4, using AHP pairwise comparisons. Simulation results show that,
depending on the traffic class, MADM methods have different performance
in terms of average bandwidth and delay. To analyze the effect of weight
variation, a simulation is carried out by modifying the weights (from 0 to
1) of the jitter attribute (for conversational and streaming traffic classes) and
the BER attribute (for background and interactive traffic). Two main results
have been observed. First, for the same weight, there are up to 30 % of the
cases in which the different MADM mechanisms select different interfaces.
Second, the authors have observed that the decision-making is highly vari-
able for slight weight variations, which highlights the importance of weights
definition in MADM.

More deeply in [84] weight subjectivity is analyzed for different MADM

algorithms. Differently from previous studies and frameworks, in [84], two
types of network selection are being considered: a single-homed (SH) net-
work selection, in which all application flows are assigned to the best se-
lected network (i.e., vertical handover), and multi-homed (MH) network se-
lection, in which different applications may be assigned to different inter-
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faces (i.e., load spreading), enabling the simultaneous usage of multiple wire-
less interfaces. By the means of simulations, the authors conclude that, even
if MADM algorithms provide dissimilar selection results for the same prob-
lem, these results are generally reasonable. However, regarding the weight-
ing method, it is inconvenient to manually evaluate weights based on AHP

pairwise comparison matrices. To partially solve this issue, the authors pro-
pose to classify weights in two different types: objective weights (such as net-
work attributes or provided QoS) and subjective weights (such as MS proper-
ties, user preferences or application QoS requirements). As the authors state,
it is more important to evaluate the relationship between changes in sub-
jective attributes and changes in subjective weights than to define concrete
values for subjective weights each time using AHP. Then, a trigger-based
scheme is proposed, in which a mapping pot is used to store the effects of
changes of the subjective attribute on the subjective weights. In a second
phase, subjective and objective weights are combined to perform the best
alternative selection.

In any case, trying to avoid subjectivity in the weight definition adds a
relatively high level of complexity to the decision-making which prevents
the decision maker to easily set up and solve network selection problems.

4.2.2 Artificial Neural Networks

Artificial Neural Networks (ANN) [85] have been proposed to model systems
that behave as a biological nervous system, i.e., they have a number of inter-
connected elements (neurons) that work in parallel to solve a specific prob-
lem. An ANN has the capacity to learn using examples in what it is called a
training phase. These systems can solve different types of problems, includ-
ing pattern recognition, event predictions or complex optimization problems.
When modelling an optimization problem with ANN (such as a network se-
lection problem), the ANN is defined and iteratively operates to converge to
an optimal solution.

Some applications of ANN to network selection can be found in [86] and [87].
Espi et al. [86] model the network selection using a Hopfield ANN [88], which
is commonly used to solve optimization problems [89]. A cost function is de-
fined and the ANN will iteratively converge to a solution that minimizes the
cost of assigning a particular application flow to one of the available inter-
faces. The cost function is defined in a way that guarantees that the same
application flow is not spread among different networks, that only one net-
work is selected for each particular interface, that the MS does not demand
more than the maximum available capacity of each interface and, finally, that
the total available bandwidth utilization is maximized. The authors propose
a simulation study, comparing the Hopfield ANN approach against a round-
robin network selection (i.e., resources are cyclically assigned to applications)
and an optimum bit-rate approach (i.e., it assigns the application to the inter-
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face whose available bandwidth is the closest to the application demands).
These approaches are compared in terms of blocking probability, buffering
time and latency for a 1 MB file download. The Hopfield ANN approach of-
fers a zero bloking probability and lower buffering time and latency than
the other selection mechanisms.

A combined Fuzzy-Logic ANN approach, called Adaptive Multi-Criteria
Vertical Handover (AMVHO) is proposed by Guo et al. [87] to support verti-
cal handover decisions in a UMTS/WLAN environment. The decision-making
for vertical handovers are modelled in a Fuzzy Inference System (FIS) [77].
The required bandwidth, the MS velocity and a prediction of the number of
users attached to each available access network are used as the input for the
FIS. The authors state that the number of users connected to the network is
an important input because it has a strong impact on UMTS (CDMA-based)
and WLAN (ALOHA-based) networks, since their capacity depends on the
number of users. However, since the number of attached users is not com-
monly provided by the networks, its value has to be predicted. In this case,
the authors use a Modified Elman Neural Network, an extension of the ba-
sic Elman ANN [90] consisting in four layers (i.e., input, hidden, context and
output layers). Then, the three inputs of the FIS are fuzzified using three level
membership functions (low, medium and high) and the vertical handover de-
cision is taken by looking to the fuzzy inference rules table, that combines the
required bandwidth, MS velocity and predicted number of users fuzzy data
to decide if a UMTS to WLAN or WLAN to UMTS handover is necessary. The
authors propose a simulation evaluation of AMVHO (without deeply detail-
ing the simulation environment and parameters) against a common vertical
handover algorithm, which only considers signal strength as a trigger. They
show that AMVHO can reduce the bit-error rate, the delay and the number of
retransmissions, while also improving the received signal strength at the MS.

4.2.3 Combinatorial Optimization

Combinatorial Optimization [91] mechanisms allow looking for an optimal
alternative from a large set of alternatives that are typically represented in
a graph. The most common example for a combinatorial optimisation prob-
lem is the Travelling Salesman problem [92], aiming to find, for a known
number of cities and distances between each pair of cities, the shortest route
traversing all cities only once.

Ben Rayana [93] models the decision-making for network selection using
a combinatorial optimization approach. In this case, the author considers
network selection in a load spreading manner, aiming to assign flows to the
different interfaces. The problem is modelled by considering m flows having
up to k different QoS levels (i.e., each flow could be transported in differ-
ent modes, consuming a different amount of bandwidth ti and providing a
profit pi) and n different networks. For each assignation of a flow mode j
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and a network i, a score Sij is calculated mainly considering QoS constraints,
power consumption and security. The problem is then modelled with a di-
rected graph, in which each node corresponds to an assignation of a flow
mode to a network (aij). Each edge has an assigned weight corresponding
to the cost (in terms of energy for example) of activating a particular inter-
face. In order to find the optimal assignation for all flows, authors propose
to use the Ant Colony Optimization (ACO) [94] heuristic to assign each flow
(in a particular mode) to an available network while maximizing an utility
function, calculated by the difference of the total score (i.e., the sum of the
score for each node) and the total cost (i.e., the sum of the cost of each edge).

As in previously presented MADM-based frameworks for network selec-
tion, in this case the calculation of scores still requires manual weights defi-
nition for the different criteria. Moreover, the cost of activating a particular
interface while assigning flows are manually fixed. In this case, activating
the UMTS interface is three times more expensive than the WLAN interface.
However, as it will be further discussed in the following sections, such a
situation is unrealistic, since the energy cost of assigning a set of flows to a
given interface is not constant.

4.2.4 Multi-Objective Optimization

Multi-Objective Optimization (MOO) [95] allows modelling problems where
a defined number of conflicting objectives have to be simultaneously mini-
mized/maximized subject to a number of constraints. The main difference
between MOO and MADM is that in MADM, the set of alternatives (or solutions)
is discrete and finite, while in MOO the solutions set can be continuous and
infinite. Moreover, in MOO, the objectives are explicitly defined as mathemat-
ical functions, while in MADM, attributes are aggregated in a pre-established
manner (e.g., SAW, MEW, TOPSIS). More formally, an MOO problem has the
form given in Equation 38.

Minimize/Maximize fm(X), m ∈ [1, M] (38)

subject to gj(X) > 0, j ∈ [1, J]

hk(X) = 0, k ∈ [1, K]

xL
i > xi > xu

i , i ∈ [1, ν]

The decision variables X = {x1, x2, · · · , xn} are bounded within lower (xL
i )

and upper (xU
i ) limits, delimiting what is called a decision space Λ. The prob-

lem may also be constrained by equality (hk(X)) or inequality (gj(X)) con-
straints. Constraints are useful to limit the set of feasible solutions to par-
ticular regions in the space. The objective space Θ is defined by M objective
functions f(X) = {f1(X), f2(X), · · · , fM(X)}, that can be maximized or mini-
mized. However, due the duality principle [96], the whole problem can be
converted to a minimization problem by multiplying by −1 the objective
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functions to be maximized. Then, for each point X (i.e., a solution) in Λ,
there is a corresponding point in Z, denoted by f(X) = Z = {z1, z2, · · · , zM}.
Figure 46 illustrates an MOO problem example with n = M = 2.

Figure 46: Decision and objective space in MOO

4.2.4.1 Pareto Optimality

In the minimization example of Figure 46, depending on the constraints, it is
possible that not every X in Λ corresponds to a feasible decision vector. Then,
a point in the feasible region of Λ can be mapped to a feasible solution in the
feasible region of Θ. Two individual feasible solutions in Θ can be compared
to decide which of them is more optimal than the other. In the proposed
example, consider the solutions Z, Z ′ and Z ′′. The solutions Z ′ and Z ′′ lie
on the grey dashed curve, representing the closest boundary to the origin
of the feasible objective region. The feasible solutions in this curve minimize
f(X) and are called the Pareto-optimal front (P). Observe in our example that
the solution Z is worse than Z ′ or Z ′′ in at least one of the objectives and that
Z ′ is only better than Z ′′ in one of the objectives (f1(X)). These comparison
between solutions can be defined in terms of the domination of one solution
over the other. A solution Z ′ is said to dominate Z (Z ′

⊳ Z) if Z ′ is not worse

than Z in all of the objectives (in our case, f1(Z ′) 6 f1(Z) and f2(Z ′) 6 f2(Z))
and if Z ′ is strictly better than Z in at least one objective (in our example,
f1(Z ′) < f1(Z) or f2(Z ′) < f2(Z) ). Note that, Z ′

⊳ Z ≡ Z ⊲ Z ′. For P to be a
valid Pareto-optimal front, the following conditions must be satisfied:

• There is not a domination relationship between any pair of solutions
belonging to P (in our example, Z ′ ⋪⋫ Z ′′).

• Any solution that does not belong to P is dominated by at least one
solution of P.

4.2.4.2 Solving Algorithms

In a multi-objective optimization problem, all solutions belonging to P are
equally important. Then, any algorithm searching for optimal solutions may
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find as many solutions in P as possible. While looking for these solutions,
one may consider the following goals:

• Closeness to P: to find solutions as close as possible to the real Pareto-
optimal front.

• Diversity of solutions: to find solutions barely spaced in the Pareto-
optimal front, giving the most complete set of solutions.

MOO Problem

Multi-objective 
Optimizer

Pareto-
Optimal Front

High-Level 
Information

One Solution

High-Level 
Information

Weights

Single-objective 
Optimizer

SOO Problem

or any other combination 
of weights and functions

Ideal

Preference-

based

Figure 47: Ideal versus preference-based algorithms

Several searching algorithms exist, giving optimal solution sets with a dif-
ferent closeness to P and level of diversity. For these algorithms, a classifica-
tion may be considered as illustrated in Figure 47, differencing between ideal
and preference-based algorithms. In an ideal algorithm, multiple trade-off
solutions are found to converge to the Pareto-optimal front. Then, from this
front, one individual solution may be chosen using high level information
provided by the decision maker. In a preference-based approach, objectives
are first combined using high level information in the form of weights (as
in MADM problems), reducing the complexity of the problem to a single ob-
jective optimization problem (i.e., a weighted sum in the example of Fig 47).
Observe that even if in both cases high level information is used, in an ideal
approach, this information is not used to generate and evaluate new solu-
tions but to simple pick a single solution from an existing optimal trade-off.
The most popular preference-based algorithm is the weighted sum, which
is defined as an MADM SAW. We observe that for a preference-based algo-
rithm, there is the same limitation observed in MADM approaches, i.e., the
subjectivity of defining weights (see Section 4.2.1.7). The main concern in a
preference-based approach is that the decision maker has not information
about the existing trade-off among objectives, i.e., which is the relation be-
tween objectives in a given problem. In the case the user has a knowledge of
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this trade-off, then it is possible to use a preference-based approach. How-
ever, as it will be shown in the simulation results (see Section 4.4), one cannot
assume a previous knowledge of the trade-off in the network selection prob-
lem. An explanation and classification of some of the existing multi-objective
algorithms following the ideal optimization process, including Evolutionary
Algorithms, is presented in Section 4.3.

4.2.4.3 Existing MOO-based Frameworks for Network Selection

Suciu [97] proposed a multi-objective based framework for network/inter-
face selection. In particular, two maximization objectives are defined, Si the
score of the interface i and Ui the utility of assigning a set of flows to the
interface i.

Regarding Si, the objective function of Equation 39 is considered. In this
case, for interface i, Bi is the mean bit-rate, Ei the monitored packet error,
Di the average delay and Ci the cost of utilization. The parameter γ (γ ∈

[0, 1]) indicates the relative preference (i.e., the weight) of QoS. Then, 1 − γ is
the preference given to the cost attribute. Reference values indicated in the
equation are fixed by the author. The natural logarithm function is used as
a sort of normalization, even if a well-defined normalization could be used
(see Section 4.2.1).

Si =







γ
(

ln Bi

Bref
+ ln Eref

Ei
+ ln Dref

Di

)
+ (1 − γ) ln Cref

Ci
if Bi > 0

0 if Bi 6 0
(39)

For the second objective, the utility of a flow j being assigned to interface i,
Uij is first calculated as shown in Equation 40. Here, the difference between
the interface offer (Bi, Ei, Di and Ti) and the application demand (bj, ej, dj

and tj) for each QoS parameter is considered. In this case, Ti is a measure
of the security offered by interface i and tj the required level of security.
The parameter α indicates (if α = 1) that the interface satisfies all the QoS

parameters (i.e., the offer of QoS and security is greater than the demand).
Finally, to calculate the objective Ui, a weighted sum of assigning J flows to
the interface i is calculated as Ui =

∑J
j=1 wjUij, where wj is the importance

of flow j in the set (i.e., the weight).

Uij =







ln Bi−bj

Bref
+ ln ej−Ei

Eref
+ ln dj−Di

Dref
+ ln Ti−tj

Tref
if α = 1

0 if α = 0
(40)

Two preference-based approaches are proposed in this work. A weighting
sum using equal weights for Si and Ui is first proposed. Then, a second ap-
proach is based on a metric that minimizes the distance to an ideal solution
(as in TOPSIS). This network selection approach suffers from the same limita-
tions observed in the previously presented approaches, mostly related to the
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important amount of weights that have to be defined. In this particular case,
not only the preference values of the weighted sum approach are needed
(to ponder Si and Ui) but the parameter γ and the importance of each ap-
plication flow on the set as well. Additionally, the author does not present
a sensibility study for the weight definition and the difference between the
two solving algorithms for the multi-objective model.

4.2.5 Existing Energy-Aware Network Selection Mechanisms

The network selection mechanism that will be proposed in Section 4.3 con-
siders the energy consumption as a criteria for the decision-making. In this
section, we summarize the related work on energy-aware vertical handover
and network selection mechanisms.

4.2.5.1 Energy-Efficient Vertical Handovers

A number of energy-aware network selection mechanisms exist in the lit-
erature. Petander [23] proposes a decision-making rule to support vertical
handover (i.e., switching from UMTS to a WLAN when it becomes available)
based on minimizing the energy cost. This decision-rule is formalized in
Equation 41, and establishes that a vertical handover from UMTS to WLAN

is energetically advantageous by comparing the amount of energy spent to
exchange N bytes of data through the UMTS (NEU) with two different cases
while using WLAN. In the first case, if the vertical handover succeeds (this
occurs with probability PVHO), the energy consumed when using WLAN is
equal to the energy needed for a vertical handover (EVHO) and the energy
consumed to transmit the data over WLAN (NEW). The second case considers
an unsuccessful vertical handover, in which case a WLAN scanning has been
performed and finally data is transmitted using UMTS.

NEU = PVHO (EVHO + NEW) + (1 − PVHO) (Escan + NEU) (41)

Finally, the MS attempts a vertical handover to WLAN if the amount of data
to exchange is greater than the threshold NT (see Equation 42), obtained by
solving the Equation 41 for N.

NT =
PVHOEVHO + (1 − PVHO) Escan

PVHO (EU − EW)
(42)

The authors provide empirical values for the different parameters in the
previous equation, obtained in a measurement study using a Nokia N95.
They observed that the energy needed for a vertical handover (EVHO) was
in average between 0.127% and 0.212% of the battery capacity and the energy
of a scan (Escan), 0.122%. Then, depending on the conditions (e.g., load and
signal strength) of the UMTS and the WLAN connections, NT may oscillate
between 0.1 and 0.9 MB of data.
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A similar energy-aware network-selection mechanism, called WISE, is pro-
posed by Nam et al. [98]. In this case a tightly coupled 3G-WLAN system is
considered, in which the same network operator provides 3G and WLAN net-
works in a centralized manner. The authors propose a new entity in the
3G core network, the Virtual Domain Controller (VDC), that manages the
vertical handover decisions in such a tightly-coupled system, i.e., it man-
ages vertical handover requests from MS and executes them by transferring
the context of the MS to guarantee session continuity of the on-going ap-
plications. In WISE, the MS is able to dynamically request to switch the net-
work interface in order to consume less energy while being aware of possible
throughput degradation caused by the selection of a new interface. The MS

permanently monitors its uplink and downlink traffic and decides which in-
terface consumes less energy under the current traffic situation. Particularly
for the decision-making, the authors propose a fixed rule based on the fact
that 3G interfaces consume more energy than WLAN while transmitting and
less energy while receiving or being idle. This assumption is based on two
measurements using a CDMA modem and an external WLAN card. When an
MS decides to perform a handover, it transmits a vertical handover request to
the VDC, which evaluates the impact of this decision on the overall network
performance. The VDC can then reject the request if the overall network
performance is degraded.

4.2.5.2 Delay-Tolerance and Energy Efficiency

The network selection mechanisms proposed by Balasubramanian et al. [99]
and Ra et al. [100] are based on delaying the use of some network interfaces
depending on the reduction of energy consumption that an MS may observe
if it delays the transmission of some application flows for a certain period
of time, that varies according to a degree of tolerance for each application.
An example of a delay-tolerant mechanism for network selection [100] is
illustrated in Figure 48, where an MS has access to three different wireless
networks (EDGE, 3G and WLAN), having variable bandwidth and availability
(as shown in the highest part of Figure 48) and consuming different levels of
power. In this example, the user triggers two application flows (Flow 1 and
Flow 2) and the network selection mechanism reacts differently depending
on the delay tolerance (e.g., Minimum Delay, WLAN Only, Optimal Energy).
If the user desires a minimum delay, the flows are immediately sent over the
best available wireless interface (in Figure 48, it first uses EDGE then 3G and
finally WLAN for Flow 1). Then, both flows are successfully transmitted after
246 s consuming 246 J. However, if the user can support longer delays to
transmit these flows by waiting for a WLAN to become available for example,
it will spend a longer time to successfully transmit the flows but also much
less energy (up to 50 J) will be consumed, since the usage of high energy-
consuming interfaces is minimized.



106 an energy-efficient approach for network selection

Fl
ow

 1

Fl
ow

 2

Minimum Delay

320 s0 s 160 s

WLAN Only

Optimal Energy

EDGE
3G
WLAN

Figure 48: Impact of delay tolerance on energy consumption

Ra et al. [100] particularly focus on the analysis of the energy-delay trade-
off to design a network selection algorithm that decides whether to use one
of the available interfaces or to defer the transmission of a set of flows since
a more energy-efficient network will become available later. Such an algo-
rithm is modelled using a single objective optimization problem with one
constraint. This is to minimize the total energy consumption subject to keep-
ing the flow queue length finite (i.e., to avoid deferring the flow indefinitely).

In the same perspective, the TailEnder mechanism [99] takes advantage
from the operating logic of 2G/3G cellular networks, in which the MS remains
in a high consuming energy state after completing a flow transmission (as
explained in Section 2.1.4.1). Thanks to a measurement study, the authors
have determined that nearly 60 % of the total energy corresponds to tail en-
ergy, i.e., caused by the MS remaining in the high energy consuming state
during an inactivity timer (as explained in Section 2.1.4). Then, if applica-
tion flows are delayed, the MS could amortize this tail energy by scheduling
several flows one after the other, separated by a time interval lower than
the inactivity timer. For example, when writing e-mails, the users normally
send each one of them just after completing the edition. However, the user
can tolerate a short delay and cumulate several e-mails to perform a single
access and send them altogether. TailEnder is also modelled as a single ob-
jective optimization problem, that aims at minimizing the total time spend
in high power states by satisfying that each flow is transmitted before a pre-
define deadline (i.e., the delay tolerance). Regarding the WLAN interface, the
authors state that it is still more energy efficient than the 3G interface and,
additionally, the energy consumed is independent from the time between
two transmissions, so there is no necessity to use TailEnder over WLAN. Then,
WLAN can be used each time it becomes available.
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4.2.6 Discussion

In the precious sections, a number of decision-making models and tech-
niques together with existing frameworks for network selection have been
presented. Most part of the existing frameworks are based on MADM or,
most commonly, on a combination of methods. As stated in Section 4.2.1.7,
the main limitation of these approaches is the high level of subjectivity that
influences the decision-making. This subjectivity usually takes the form of
weights, i.e., a measure of the relative preference between different attributes
or criteria. When dealing with a high number of attributes and alternatives,
weighting techniques are very convenient, since they reduce the complexity
of the optimization problem to a single function to be optimized. However,
a reasonable weighting is very hard to obtain. Several authors propose to
use AHP to facilitate the weight definition to decision makers, but as shown
in 4.2.1.7, AHP may introduce inconsistencies due to pair-wise comparisons.

Another approach is to use MOO, which is a more general method than
MADM since instead of merging attributes and alternatives in a decision ma-
trix, in MOO, the goal is to optimize a set of discrete or continuous mathemat-
ical functions that may model more evolved metrics than a single attribute
(like a QoS parameter). In this case, depending on how the decision maker
models the optimization problem (i.e., which decision variables and which
objectives), solving the problem may give a trade-off of optimal solutions in-
stead of a single optimal solution (like in MADM, a single-objective optimiza-
tion or a preference-based MOO). However, when using a preference-based
algorithm to solve the problem (like the weighted sum or SAW approach),
a single optimal solution is obtained for each weight combination. Then,
in order to approximate the Pareto-optimal front (i.e., the trade-off of solu-
tions) several runs using different weight combinations must be performed.
However, using a weighted sum algorithm and different weight combina-
tions over a non-convex problem may not give a good approximation of the
Pareto-optimal front [95].

These issues may be addressed using an optimization algorithm that al-
lows obtaining the complete Pareto-optimal front without using preference
values or weights. In the following sections, a multi-objective optimization
model for network selection is proposed and solved using evolutionary al-
gorithms. These algorithms can provide a very good approximation of the
Pareto-optimal front without using a priori high layer information (e.g.,
weights, priorities or preferences). Moreover, we have observed that the pre-
vious proposed frameworks for network selection commonly try to quantify
user demands in terms of several QoS parameters, monetary cost or secu-
rity metrics, which imposes very complex monitor and estimation processes
to gather all this information. In the proposed approach, the number of at-
tributes is reduced in order to provide a more realistic network selection
framework, mostly focusing on energy consumption, since it has become
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one of the most critical issues on today’s mobile devices. As differently as
the energy-aware network selection mechanisms presented before, we con-
sider the energy consumption in fine-grained manner. Considering the dif-
ferent operating modes of IEEE 802.11 and 3G cellular networks and their
power consumptions, as introduced in Section 2.1.4, in our proposed net-
work selection mechanism in Section 4.3, we use traffic models to estimate
the energy consumption of each interface by determining the amount of time
the interfaces remain on each operating state. As in the solutions introduced
in Section 4.2.5, we highlight the importance of inactivity timers in 3G net-
works and PSM in WLAN networks, and we consider these issues to model
our network selection mechanism.

4.3 energy-efficient network selection using genetic algo-
rithms

4.3.1 Introduction

As illustrated in the previous sections, the most part of current network
selection mechanisms suffer from the following shortcomings:

• They are commonly based on MADM decision-making, which implies
the definition of preference values (in the form of weights) for the dif-
ferent criteria. This imposes a high user involvement, adding an impor-
tant level of subjectivity to the decision-making process.

• They are particularly designed to support vertical handovers, i.e., the
transfer of all on-going flows to a new selected interface. In those cases,
the advantages of wireless multi-homing is not fully exploited, since a
user is not able to simultaneously use different wireless interfaces.

• They consider energy consumption of wireless interfaces as a constant
criteria, in which the interfaces are ranked using a constant energy
cost. As it has be presented in Section 4.2.5, depending on how the ap-
plication flows are arranged, the interfaces can be more or less energy-
efficient.

• There are several solutions considering different QoS parameters and
energy as criteria, giving an important number of criteria to be simul-
taneously optimized, which increases the complexity of the problem.

To overcome these drawbacks, we propose a network selection mecha-
nism that does not consider subjective criteria but only objective criteria in
a multi-objective optimization approach: the total energy consumption and
the bandwidth satisfaction of flows assigned to the different interfaces. Such
a mechanism does not require the definition of weights or preference values
to solve the optimization problem. We consider network selection as a load
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spreading problem in a per-flow granularity, i.e., each flow is individually
assigned to a single interface.

Moreover, in order to consider energy consumption, we use energy mod-
els (as those detailed in Section 2.1.4) to estimate the average power con-
sumed by each group of flows over a particular interface. In such a model,
we consider the power consumption of the different operating states of the
two most common wireless technologies, UMTS/HSPA and WLAN. This differs
from previous network selection mechanisms, where the effects of inactivity
timers (in 3G) and PSM (in WLAN) are not taken into consideration while as-
signing flows. As it has been introduced in Section 4.2.5.2, the flow-interface
assignation strategy greatly affects the energy consumption. This is mainly
due to the tail energy observed in UMTS/HSPA cellular networks, in which
the MS is not able to come back to low energy consuming states just after
the end of a transmission, since it has to wait for inactivity timers to expire.
In the case of IEEE 802.11 interfaces, even if the MS comes back to the IDLE
state just after a transmission terminates, it has the possibility to enter in the
SLEEP state (PSM) after a timeout in order to consume much less energy.

Additionally, instead of modelling the decision-making problem using
MADM, we propose to model the flow-interface assignation problem using
Multi-Objective Optimization. It is solved following an ideal approach (see
Section 4.2.4.2), which differs from a preference-based solving algorithm
(like the weighted sum algorithm), since it provides a set of optimal solutions
instead of a single solution. Using an ideal approach, the decision-maker can
have a complete view of the energy-bandwidth trade-off to select the most
suitable flow-interface assignation for each particular scenario. As it will be
presented in Section 4.4, we search for solutions using a genetic algorithm,
which gives a good approximation to the energy-bandwidth trade-off and
can reduce the solving time for problems with a large number of applica-
tions and interfaces.

4.3.2 Problem Statement

We model the network selection as a flow-interface assignation problem in
an MOO approach. In such a problem, there are n application flows A =

{a1, a2, · · · , an} and m available interfaces I = {i1, i2, · · · , im}. We aim at
finding the optimal decision vectors in the discrete decision-space Λ, X =

{x1, x2, · · · , xn}, in which each element xk with k ∈ [1, n] corresponds to the
interface to use for the application flow ak, i.e., xk ∈ I. In the objective space
Θ, the objective function is defined in Equation 43, where E(X) is the inter-
face energy consumption and B(X) is the overall bandwidth dissatisfaction
related to the decision vector X.

Minimize F(X) = {E(X), B(X)} (43)
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Figure 49: Decision and objective space for the MOO network selection

An illustration of the optimization problem, including the decision space
Λ and the objective space Θ is presented in Figure 49. In this example, a
decision vector X = {2, 3, 3, 4, · · · , m} is evaluated in terms of E(X) and B(X)

giving a solution Z that belongs to the Pareto-optimal front in Θ.

4.3.3 Solution Searching using Genetic Algorithms

4.3.3.1 Introduction

In order to search for optimal solutions in a single-objective or a multi-
objective optimization problem, a search algorithm is used to explore the
decision space. Some of the classical search algorithms [96], like the Simplex
method, the Newton method or the Gradient descent method use a set of
heuristics that iteratively approach optimal solutions. On each iteration, the
classical algorithms suggest a search direction and calculate a new decision
vector that is closer to the optimal solution. The process is repeated for a
pre-established number of times or until a convergence criterion is satisfied.
However, as stated in [95], in general these algorithms present a number of
limitations:

1. The convergence to an optimal solution strongly depends on the initial
(random) solution provided to the search algorithm.

2. These algorithms could get stuck to suboptimal solutions, which pre-
vents finding the real optimal solution, or, in a multi-objective problem,
a good approximation of the Pareto-optimal front.

3. If the problem definition changes (e.g., objective and constraints def-
inition, decision-space modelling) a classic search algorithm may no
longer be suitable to search for solutions in the new problem.

4. Classical algorithms are not efficient in solving discrete decision space
problems
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The latter two drawbacks especially limit the use of classical algorithms
in the proposed network selection problem. Each time the MS triggers a
decision-making problem to solve the flow-interface assignation, it will set-
up a new problem, that may have different number of interfaces (m) and
applications (n). Moreover, as it has been defined in Section 4.3.2, the bi-
dimensional decision-space is made of a combination of two discrete vari-
ables (I and A).

For that reason, we have decided to use genetic algorithms to search for
optimal solutions. Genetic algorithms have been first proposed by Jhon Hol-
land [101] and have the ability to explore a decision space inspired on the
principles of genetics and natural selection. To achieve this, the decision-
space is modelled in a binary representation, that allows applying genetic
operations between different decision vectors.

4.3.3.2 Binary-Coding

In a binary-coded problem, the decision vectors X are represented using bit-
strings (also called chromosomes or individuals). In our problem, we first
assign a bit-string bl (l ∈ [1, m]) to each available interface by converting the
integer interface index to binary. The length of bl is exactly ⌈log2 m⌉, which
guarantees that we use the necessary number of bits for the total number
of interfaces in the problem. Then, the binary representation of X consists
in joining, for each application flow, the binary value bl for the interface to
which it has been assigned. For example, for a n = 4 and m = 6 problem
(six applications to be assigned to four different interfaces), the interfaces are
coded as follows: b1 = 00, b2 = 01, b3 = 10 and b4 = 11. Consider as an
example the decision vector X = {1, 1, 2, 1, 1, 4}, then, its binary representation
is:

X =000001000011

4.3.3.3 Genetic Algorithm Working Principles

Figure 50 illustrates a generic genetic algorithm, which can be divided in
four main processes: generation of an initial population, fitness evaluation,
selection and variation (mutation and crossover).

After defining the problem and representing the decision space in a binary-
coded manner, the genetic algorithm first creates an initial random population

of solutions (we refer to solution or decision vector indistinctly). In our case,
this is simply to assign each application flow in A to a random interface in
I and represent them in a bit-string. Then, for each solution, the algorithm
evaluates its fitness. The fitness is a way of combining the objective values
and the constraints violations. In our problem, since it is unconstrained, the
fitness of a solution X is simple calculated as F(X) = {E(X), B(X)}. At this
point, all initial random solutions have an assigned fitness. Then, the selec-

tion process identifies good solutions in the population, makes several copies
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Figure 50: Genetic algorithm operations

Figure 51: A one-bit mutation example

of them (referred as to reproduction in the literature) and eliminates bad
solutions. In order to differentiate between good and bad solutions, the fit-
ness metric is considered in different manners, depending on the particular
genetic algorithm. After the selection process is performed, the different so-
lutions (and copies of solutions) remaining in the population form what it
is called a mating-pool. This mating-pool is taken as the input of the variation

process, which generally performs two operations over the existing solutions:
Mutation and Crossover. These operators are responsible for combining so-
lution chromosomes to create new (and hopefully better) solutions and keep
diversity on the population, which is one of the goals of the searching pro-
cess.

Regarding mutation, there are several mutation operators. The one-bit mu-

tation randomly selects a single bit in the solution and inverses it (from 0 to
1 or vice-versa), as illustrated in Figure 51. Another common mutation op-
eration is the independent-bit mutation, which inverts each bit of the solution
with probability p.

Unlike mutation, the crossover operator requires two solutions from the
matting pool as an input. As illustrated in Figure 52, in a one-point crossover, a
random position inside the bit-string is calculated. Then, two new solutions
are created by taking the leftmost part of each original string in the new so-
lution and switching the rightmost part of the strings. A different crossover
operator is the uniform crossover, in which two new solutions are created by
switching the bits of the original solutions with a probability p.
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Figure 52: A one-point crossover example
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Figure 53: Non-dominated sets example

Finally, the process is repeated for a pre-established number of generations.
The population remaining after the last iteration is the approximation to the
Pareto-optimal front.

4.3.3.4 The NSGA2 Genetic Algorithm

The genetic algorithm description in Section 4.3.3.3 represents the operation
of a basic genetic algorithm. However, there are a number of genetic algo-
rithms introducing optimizations to reduce their computational complexity.
These optimizations are mainly introduced in the selection procedure, i.e.,
the process that compare individuals and decide which are the individuals
that remain for the next generation. In a single-objective approach, the com-
parisons between individuals are based on their fitness. However, as stated
in Section 4.2.4, in MOO these comparisons are based on the dominance cri-
teria since there is not a single value to compare individuals. Then, the selec-
tion procedure needs to rank individuals depending on its dominance level.
This ranking procedure is called non-dominated sorting. To explain the non-
dominated sorting, consider the example in Figure 53, an MOO minimization
problem with a population P of size six. At a given time, the six individuals
in the population are P = {1, 2, 3, 4, 5, 6} and their fitness in terms of the objec-
tives f1 and f2 are as shown in Figure 53. Then, the different individuals can
be assigned to three different non-dominated sets: F1 = {6, 4, 3}, F2 = {5, 2}

and F3 = {1}. Observe that a non-dominated set is composed of individuals
that do not dominate each other and, moreover, each individual in Fn (n > 1)
is dominated by at least one individual in Fn−1.
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The non-dominated sorting is used in several MOO selection algorithms,
including Non-dominated Sorting Genetic Algorithm 2 (NSGA2) [102] which
is used in our network selection mechanism to search for solutions in the de-
cision space. NSGA2 is an elitist and low complexity selection algorithm that
provides close convergence to the Pareto Optimal front. It has an O(MN2)

computational complexity, where M is the number of objectives and N the
population size, improving the O(MN3) complexity of its predecessor Non-
dominated Sorting Genetic Algorithm (NSGA). Regarding elitism [95], it is a
technique that allows using previously found good solutions in the next gen-
erations to avoid degrading the overall fitness of the population. Elitism can
be introduced for instance by copying to the next generation a fixed num-
ber of best individuals from the previous generation. Particularly in NSGA2,
elitism is achieved by combining the previous population P and the offspring

Q (i.e., the population after crossover and mutation) in a new set R. This is
illustrated in Figure 54 , where Rt = Pt ∪Qt is ranked using non-dominated
sorting and finally the new population Pt+1 is composed of the first and the
second non-dominated sets F1 and F2 and by some individuals of F3, ob-
tained by crowding distance sorting [95] (which prefers solutions in a lesser
crowded region so as to improve diversity), in order to have exactly N el-
ements in the new population. Then, Qt+1 is obtained after crossover and
mutation.

4.3.4 Modelling Flows and Interfaces

Up to this point, we have defined an MOO problem, including the decision
space, the objective space and the genetic algorithm basics that allow explor-
ing the decision space for optimal solutions. In this section, details are given
on the variables modelling the decision space (i.e., the application flows A

and the interfaces I) in order to evaluate the proposed network selection
approach.
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4.3.4.1 Interface Model

A multi-homed MS can get connected to the network through different in-
terfaces, either alternatively or simultaneously. We consider the case of be-
ing simultaneously connected through multiple interfaces as a common sce-
nario, since the density of wireless networks of different technologies has
importantly increased (as detailed in our measurement study in Chapter 2).
Note that when referring to a multi-homed MS, one may consider not only
common user devices (e.g., smartphones, tablets, laptops) but also mobile
routers, which may be connected to different wireless access networks and
provide a local wireless access to a multiplicity of users moving together.

For the network selection mechanism, we consider that an interface ij,
j ∈ [1, m] is characterized by three parameters. First, we assume that an in-
terface has, at any time, an associated available bandwidth bwj. Second, as
stated in Section 2.1.4, each interface consumes different levels of power in
each operating state. Thus, we define an energy vector ej (see Equation 44)
depending on the interface technology (i.e., WLAN or UMTS/HSPA, as intro-
duced in Section 2.1.4).

ej =







{pDCH
j , pFACH

j , pPCH
j } if ij is a UMTS/HSPA interface

{pTxRx
j , pIDLE

j , pSLEEP
j } if ij is a WLAN interface

(44)

For simplicity, we consider the WLAN interface having the same level of
power in the transmission than in the reception mode. Finally, we consider
that each interface has a vector of timeouts, tj. In the case of UMTS/HSPA, we
consider the inactivity timers T1 and T2 and in the case of WLAN, the PSM

timeout TT .

tj =







{T
j
1, T j

2} if ij is a UMTS/HSPA interface

T
j
T if ij is a WLAN interface

(45)

Each time the a flow-interface assignation optimization problem has to be
solved, bwj, ej and tj for j ∈ [1, m] are provided as an input to the system.

4.3.4.2 Traffic Model

existing traffic and energy models A special effort has been given
to model the energy consumption of wireless interfaces depending on the
amount and type of application flows that are being transmitted. Basically,
combining a traffic model with the state transition of the different wireless
interfaces allows the MS to estimate how much time an interface spends on
each different operating state (ti, where i ∈ [0, n] is an operating state) while
transmitting/receiving an application flow. Then, assuming that each inter-
face has an associated energy vector ej (that gives the power consumption
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Figure 55: Traffic model for non real-time traffic

of each operating state), the energy consumption (measured in Joules) is cal-
culated as the sum, for each state, of the product between the time spent on
the state and its associated power. The power consumption may be easily
estimated for each particular MS and can be considered as constant for each
operating state. In Section 2.1.4, we listed the different power values found
in the literature, showing very dissimilar values for different MS. Then, the
traffic model has to be capable of giving an estimation of the time spent on
each state, depending on the particular application flow.

Different models exist in the literature trying to estimate the energy con-
sumed for different types of flows. Yeh et al. [103] proposed an analytical
traffic and energy model for UMTS/HSPA considering two different types of
application flows, non real-time and real-time. The non-real-time traffic is
modelled as the web-browsing traffic model suggested by the 3GPP [104],
as illustrated in Figure 55. It considers several browsing sessions, each ses-
sion includes one or more packet calls (i.e., a sequence of packets after a
web-request). Between two consecutive packet calls there is an idle time (i.e.,
reading time). These model variables follow different random distributions.
The time between two sessions is modelled as a geometrically distributed
random variable with a mean of 600 s; the number of packet calls per ses-
sion, the number of packets per packet call and the reading time are also
modelled as geometric random variables of mean 5 calls, 25 packets per call
and 412 s respectively. On the other hand, real-time traffic is modelled as
video streaming flows in an ON/OFF approach (see Figure 56), in which
the duration of the different requests for videos (ON periods) follows an ex-
ponential random variable of mean 30 s and the time between requests (the
OFF periods) are also exponential of mean 120 s. To estimate the energy con-
sumed by each flow, they model the operation of the UMTS/HSPA interface
using a Discrete Markov chain, and the average time spent on each opera-
tional state (DCH, FACH, PCH) is estimated using the steady-state probability
of the chain.

A different traffic and energy model is also proposed in [21] for bursty
traffic. The authors model bursty traffic, where SB is the burst size, TI is the
time between two burst (both depends on the application flow) and TB is the
burst duration (that depends on the hardware data-rate). Then, the rate (r)
of the bursty traffic is calculated as shown in Equation 46.
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Figure 56: Traffic model for real-time traffic

Flow Type Model Variable Distribution

Non Real-Time Number of requests Geometric

Number of packets per request Geometric

Packet size Pareto

Time between requests Geometric

Real-Time Number of sessions Geometric

On-Time Geometric

Off-Time Geometric

Media type Uniform

Table 14: Traffic model

r =
SB

T
=

SB

TB + TI
(46)

To model the energy consumption two scenarios are considered. In the
first scenario, the MS does not enter into PSM (because it is not enabled or
because the PSM timeout, TT , in greater than TI). In the second scenario, the
MS has PSM enabled and TT < TI. In a download use case, the Energy (E, in
Joules) is calculated as in Equation 47, where PR, PI and PS are the power
consumption in the RX, IDLE and SLEEP state respectively.

E =







PRTB + PITI for Scenario 1

PRTB + PITT + PS(TI − TT ) for Scenario 2
(47)

application flows modelling Like in [103], we consider two dif-
ferent types of application flows: real-time and non-real-time. For real-time
flows, we consider up to four different types of flows, demanding different
levels of bandwidth. Table 14 summarizes the random distribution chosen
for each parameter modelling each flow type. The specific parameter values
are then given in Section 4.4, since they will be used for the evaluation of the
network selection algorithm.

We assume that a real-time or non real-time application flow ak with
k ∈ [1, n] is a sequence of data of a given size s, separated by a given time
interval t, as exemplified in Figure 57. Then, each application can be formal-
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Figure 57: Application flow example

ized as follows, ak = {(s1, t1) , (s2, t2) , · · · , (sr, tr)} where r is the number of
sequences of data (i.e., packet calls) to transmit/receive.

4.3.5 Computing Objectives

Having defined application flows and interfaces for the decision-space, the
calculation of the objectives for a particular flow-interface assignation (i.e.,
energy consumption and bandwidth dissatisfaction) is detailed in this sec-
tion.

4.3.5.1 Bandwidth Dissatisfaction

We define the bandwidth dissatisfaction on each interface, Bj with j ∈ [1, m],
as in Equation 48.

Bj =







Dj − bwj if Dj > bwj

0 if Dj 6 bwj

(48)

Then, the overall bandwidth dissatisfaction is B =
∑m

j=1 Bj. As seen in
Equation 48, the bandwidth dissatisfaction on each interface is calculated as
the difference between the applications’ bandwidth demand and the avail-
able bandwidth of the interface. The bandwidth demand on each interface
(Dj) is equal to the sum of the bandwidth of each application assigned to
that particular interface. Then, to calculate the bandwidth demand of each
application, we average the bandwidth of the most recent (s, t) pairs of each
application. To this end, consider the example of Figure 58, where three ap-
plications, a1, a2 and a3 are assigned to the same interface ij at time Tn

(just when a new flow starts). If the last two transmitted/received (s, t) pairs
are considered, then the bandwidth demand of the different applications are
as in Equation 49. Note that for the new application (a3 in the example),
we consider the pair (s1, t1), since no past information is available. Finally,
Dj is calculated as the bandwidth of all the applications assigned to inter-
face j, which exclusively depends on the decision vector. For this example,
Dj = ba1

+ ba2
+ ba3

.
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Figure 58: Bandwidth demand calculation example
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=
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4.3.5.2 Energy Consumption

The energy objective, E, is calculated as the sum of the average power con-
sumption (in Watts) of all the interfaces, i.e., E =

∑m
j=1 pj. This is to avoid

using the absolute energy values, in Joules, since this hinders the compari-
son if the flows last different amounts of times. To calculate pj, we estimate
the time the interface will remain in each operating state (as described in the
energy and traffic models in Section 4.3.4.2). To achieve this, we first need to
establish a time window (T j

W) during which the average power consumption
will be calculated. To calculate T

j
W we consider, as for the bandwidth, the two

last sent/received (s, t) pairs. Then, we calculate the difference between the
current time (Tn, in Figure 58) and the first considered (s, t) pair of each
application (T0 in Figure 58). Finally, we chose the minimum difference as
the value for T

j
W , in our example TW = Tn − T

a1

0 . Since we aim at calculating
during how long the interface is being used/busy (T j

B) or being idle (T j
I ), we

consider the previous value for T
j
W since it is the most restrictive interval to

send/receive all flows.
In order to calculate T

j
B and T

j
I we first consider the ratio rT in Equation 50

between the total application demand and the available bandwidth of the
interface

rT =

∑

bai

bwj
∀i assigned to j (50)
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Then, if rT > 1, the applications’ demand is equal to or exceeds the avail-
able bandwidth and so the interface will be used all the time, which means
T

j
B = T

j
W and T

j
I = 0. On the other hand, if rT < 1, there will be a time inter-

val in which the interface will be idle, then T
j
B = rTT

j
W and T

j
I = (1 − rT )T

j
W .

Finally, using T
j
B, T

j
I , the power vector ej and the timeouts tj, we calcu-

late the average power consumption like in the model proposed by Xiao et
al. [21], introduced in Section 4.3.4.2. Algorithm 1 illustrates the calculation
of E for UMTS/HSPA and WLAN interfaces. Observe that for UMTS/HSPA we
consider a RRC state machine like in Figure 7a, in which the MS access to a
DCH channel each time it has any data to transmit or receive.

Algorithm 1 Algorithm to calculate E

1: for j = 1 → m do

2: if j ∈ UMTS/HSPA then

3: if T
j
I 6 T

j
1 then

4: aux = (T
j
B + T

j
I)pDCH

j

5: else if T
j
I 6 (T

j
1 + T

j
2) then

6: aux = (T
j
B + T

j
1)pDCH

j + (T
j
I − T

j
1)pFACH

j

7: else

8: aux = (T
j
B + T

j
1)pDCH

j + T
j
2pFACH

j + (T
j
I − T

j
1 − T

j
2)pPCH

j

9: end if

10: else

11: if T
j
I 6 T

j
T then

12: aux = T
j
BpTxRx

j + T
j
IpIDLE

j

13: else

14: aux = T
j
BpTxRx

j + T
j
T pIDLE

j + (T
j
I − T

j
T )pSLEEP

j

15: end if

16: end if

17: pj = aux/T
j
W

18: E+=pj

19: end for

4.4 simulation results

In this section we aim at evaluating the proposed network selection mecha-
nism. We have developed a simulator implementing the PISA Framework [65]
for MOO. We first introduce the simulator environment and then we propose
the simulator results.

4.4.1 Simulation Environment

4.4.1.1 The PISA Framework

The PISA framework [65] is an open source interface that allows modelling
optimization problems, including MOO. It has the ability to split the opti-
mization problem in two independent modules, the optimization problem
definition itself (in our case, the network selection) and the algorithms to
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search for solutions. In the context of genetic algorithms, the PISA frame-
work allows defining an MOO problem, called the Variator, (i.e., decision and
objective space definition, fitness evaluation, variation of solutions) indepen-
dently from the Selector logic (i.e., the genetic algorithm). Then, different
Selectors can be used to solve a particular Variator and analyze their per-
formance when searching for optimal solutions. The interface between the
Variator and the Selector in PISA is handled using plain text files. In a gen-
eral case, the Variator, containing the problem, initializes a random popu-
lation, calculates the fitness of each individual of the population and per-
forms reproduction. Then, the Variator sets a value in a text file indicating
the Selector the end of the reproduction process and the necessity to per-
form selection over the current population. This process loops for a fixed
number of generations and the optimal solutions are given in an output
file. PISA provides open source implementations for a number of Selectors
(e.g., NSGA2 [102], Strength Pareto Evolutionary Algorithm 2 (SPEA2) [105],
Fair Evolutionary Multiobjective Optimizer (FEMO) [106]) and some Variator
examples from typical optimization problems (e.g., Leading Ones Trailing
Zeros (LOTZ), Bi-objective Binary Value (BBV), Knapsack Problem).

For the purpose of our work, we developed a new Variator and used
NSGA2 (Section 4.3.3.4) as a Selector which has shown better performance
than other implemented Selectors. A comparison study of the two most pop-
ular elitism-based Selectors, NSGA2 and SPEA2 is proposed by Bui et al. [107].
In this study, the authors conclude that even if SPEA2 gives better results
than NSGA2 in the early generations, NSGA2 outperforms SPEA2 in the last
generations independently from the problem considered.

When solving a problem with PISA, some input parameters are required,
as described in Table 15. Some of these parameters are common for the Vari-
ator and the Selector. On each run of the MOO problem, µ parent individuals
are selected from the population of size α. After variation (i.e, crossover and
mutation), λ individuals are generated in the offspring. Specifically for the
Variator, the number of generations g indicates how many iterations have
to be performed after outputting the solution trade-off. On each iteration,
crossovers of type ct and mutations of type mt are performed using the
probabilities indicated in Table 15.

4.4.1.2 Network Selection Simulator

We have developed a network selection simulator using the Practical Ex-
traction and Report Language (PERL), as illustrated in Figure 59, that is re-
sponsible for the generation of random scenarios and the computation of
network selection using different algorithms. In our simulator, we consider
that a network selection process is triggered each time a new application
has to be assigned (i.e., a simulation event). However, other triggers could
be used, like the interface bandwidth variations or when application flows
terminates.
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Common Parameters

α Size of the initial population

µ Number of parents

λ Number of individuals after variation (offspring)

d Problem dimension (number of objectives)

Variator Parameters

g Number of generations

ct Crossover Type (uniform or one-point)

pc Probability that a given pair of individuals undergoes crossover

mt Type of mutation (one-bit, independent-bit)

pm Probability that a given pair of individuals undergoes mutation

pb Probability that a bit is turned

Table 15: PISA parameters

random scenarios In order to evaluate network selection by simula-
tion, a scenario has to be defined in a first phase. In our context, as shown
in Figure 59, a scenario includes an application flow arrival process (i.e., the
process defining at what time each application needs to receive/send data
over the network) and an interface availability process (i.e., indicating the
time and bandwidth availability of each interface). We consider the appli-
cation flow arrival process as a Poisson process of parameter λa. On each
arrival an application flow is a non real-time flow with probability pnrt and
a real-time flow with probability prt (note that pnrt + prt = 1). Each ap-
plication flow is modelled as described in Section 4.3.4.2. In particular, for
real-time flows, we consider four different types, consuming different levels
of bandwidth (e.g., 0.5, 0.9, 2 and 3 Mbps). These values correspond to the
most typical YouTube quality profiles [108]. Regarding the interfaces, their
availability is calculated by interleaving exponentially distributed connected
and disconnected periods of parameters λ3G

c and λ3G
d for UMTS/HSPA inter-

faces and λWLAN
c and λWLAN

d for WLAN respectively. In both interface types,
the available bandwidth is uniformly distributed.

decision-making algorithms In a second phase, for each applica-
tion arrival (i.e., an event in the simulation), a decision-making process is
triggered. Each event considers the subset of applications (A) corresponding
to the active applications (i.e., those transmitting/receiving data) and the
current available interfaces (I). For each event, we run an instance of our
implementation of the PISA Variator and the NSGA2 Selector. A trade-off of
solutions is obtained after g generations. Then, for comparison purposes, we
calculate the set of solutions obtained using two preference-based algorithms
explained in Section 4.2.1, SAW and MEW, with different weight combinations
for each parameter. Since for preference-based algorithms only one solution
is obtained on each run, we use different weight combinations to obtain a set
of optimal solutions. In our particular case we consider 41 different weight
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Figure 59: Network selection simulator

vectors W = [wE, wB] for E and B from W0 = [0, 1] to W40 = [1, 0] with steps
of ±0.025 (i.e., [0, 1], [0.025, 0.975], [0.05, 0.95], ..., [0.975, 0.025], [1, 0]).

4.4.2 Simulation Results

In this section, we present a set of simulations results aiming to evaluate
the network selection mechanism. First, we provide a detail on the scenarios
generation and the parameters chosen for the random variables modelling
application flows an interfaces. Then, simulations results for a particular
scenario are presented. Finally, a comparative study of the performance of
the proposed multi-objective approach using genetic algorithms versus two
of the most used preference-based algorithms (SAW and MEW) is presented.

4.4.2.1 Scenarios and Simulation Parameters

For each simulation run (that corresponds to a single set of parameters of
Table 15), we consider one hundred different random scenarios. For each sce-
nario, an arrival process of 20 application flows is considered. Additionally, a
random interface availability process is considered for each scenario. Regard-
ing application flows, they follow the parameters in Table 16. The interface
availability process is also calculated using the parameters in Table 17.

Following a Poisson process, the application inter-arrival time is exponen-
tial (λ = 1/30). We have decided that each application is non real-time with
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Variable Distribution Parameter

General Arrival Process Poisson Process λ = 1/30

Type of flow Bernoulli p = 0.6 (Non Real-Time)

Non Real-Time Number of requests Geometric p = 1/5 [103]

Number of packets per request Geometric p = 1/25 [103]

Packet size (B) Pareto scale = 81.5, shape = 1.1 [103]

Time between requests (s) Geometric p = 1/12 [109]

Real-Time Number of sessions Geometric p = 1/10

On-Time (s) Geometric p = 1/30 [103]

Off-Time (s) Geometric p = 1/120 [103]

Media type Discrete Uniform a = 1, b = 4

Table 16: Simulation parameters for application flows

a probability of 0.6 and real-time with a probability of 0.4. For non real-time
applications, the number of sessions is geometric of mean 10 sessions and
the bit-rate is uniform between four different bit-rates, depending on the
quality. The ON-Time and the OFF-Time follows the distribution and param-
eters proposed by Yeh et al. [103]. Regarding non-real time flows, they are
also modelled as proposed in [103] but considering a more realistic time be-
tween request (i.e., the reading time) as proposed in [109] which is geometric
of average 12 seconds.

For the interface availability process, we define different parameters for
the connected and disconnected time exponential distributions for WLAN

and 3G. We consider that an MS remains connected longer to a 3G network
and connects intermittently to a WLAN, having a longer disconnected time.
We set then the power consumption of each state and the inactivity timers
following uniform distributions between common ranges we have found in
previous energy measurements (see Tables 3 and 4)

4.4.2.2 A simulation case

We consider in this section a set of simulation results for a representative
scenario in order to illustrate the performance of the genetic algorithm ap-
proach for different number of generations and problem size (i.e., the chro-
mosome size). The proposed scenario corresponds to the flow arrival pro-
cess illustrated in Figure 60a and to the interface availability process de-
picted in Figure 60b. In Figure 60a, we illustrate for each application ak =

{(s1, t1) , (s2, t2) , · · · , (sr, tr)} (k ∈ [1, 20])the size (si, in KB, in the y-axis) and
the arrival time (ti, in seconds, in the x-axis) of each sequence of data (si, ti).
Each application ak corresponds to a different color in the scale. In this case
the MS launches up to twenty application flows, the first at time 3 s and the
last at time 576 s. On each event, we consider a flow ak as active (and so to
be assigned to an interface) if the event time (te) is in between t1 and tr, i.e.,
t1 6 te 6 tr. The arrival of new flows, i.e., the time of the first pair (s1, t1)
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Variable Distribution Parameter

3G Connected time (λ3G
c ) Exponential λ = 1/1800

Disconnected time (λ3G
d ) Exponential λ = 1/2

Available bandwidth (KB/s) Uniform a = 1, b = 125

DCH Power pDCH (W) Uniform a = 0.6, b = 1.2

FACH Power pFACH (W) Uniform a = 0.2, b = 0.5

PCH Power pPCH (W) Uniform a = 0.01, b = 0.08

Inactivity Timer T1 (s) Uniform a = 5, b = 6

Inactivity Timer T2 (s) Uniform a = 4, b = 12

WLAN Connected time (λWLAN
c ) Exponential λ = 1/300

Disconnected time (λWLAN
d ) Exponential λ = 1/10

Available bandwidth (KB/s) Uniform a = 10, b = 250

TX/RX Power pTxRx (W) Uniform a = 0.6, b = 1.2

IDLE Power pIDLE (W) Uniform a = 0.2, b = 0.5

SLEEP Power pSLEEP (W) Uniform a = 0.01, b = 0.08

PSM Timeout TT (s) Uniform a = 5, b = 6

Table 17: Simulation parameters for interfaces
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Figure 60: Simulation scenario

for each application ak, are indicated with blue crosses, which correspond
also to the time of the events for the decision-making. Regarding the inter-
faces in Figure 60b, we consider up to four interfaces (from 0 to 3) having
different connection and disconnection times (in the x-axis) and bandwidth
availabilities (in the y-axis).

We present six different events of a single scenario. As said before, each
event is treated as a unique optimization problem, which corresponds to
a given chromosome size (related to the number of applications and inter-
faces) and has been solved using the NSGA2 genetic algorithm (called GA
in Figure 61) using different generation values. We also provide the set of
solutions found using SAW and MEW with different weight combinations. We
consider, for NSGA, a population size (α) equal to 100 individuals, a number
of parents (µ) equal to 50 and an offspring size (λ) equal to 50 individuals.
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The Event 1 in Figure 61a is triggered at time 45 s and corresponds to an
assignation of 4 applications to 4 interfaces, which gives a chromosome size
of 8. The red crosses represent the value of the objectives (E and B) for all
the possible flow-interface assignations (exactly 28 in this case). Then GA-
10, GA-25 and GA-500 represent the solutions for NSGA2 solutions for 10,
25 and 500 generations. We observe that all the possible assignations have
B = 0, which means that the bandwidth demand is always lower than the
offer. The GA-25 approach gives a good approximation to the least energy
consuming solution.

For a later event (Event 2), at time 164 (see Figure 61b), there are a number
of solutions that have B > 0, meaning that the bandwidth demand is greater
than the offer for some assignations. Using a low number of generations
(e.g., GA-10) the NSGA2 approach is not capable to find the most optimal
solutions, since it provides some dominated solutions on the last generation
(e.g., the green crosses with B between 5 and 35). However, for GA-50 and
GA-500 the algorithm only provide solutions with B = 0.

The problem becomes more complex at time 400 s, where 7 flows have
to be assigned to 4 interfaces, giving a chromosome size of 14 and up to
214 possible solutions. We observe that GA-500 gives a good approximation
of the Pareto-optimal front. For lower number of generations, NSGA2 finds
non-dominated sets that are relatively far from the real front. Particularly for
the non-dominated set found by GA-25, it does not provide any solution be-
longing to the front. The same behavior is observed for later events, having
longer chromosome size. Note that for greater chromosome size, in order to
have a better approximation of the Pareto-optimal front, the Genetic Algo-
rithm needs to iterate for a longer number of generations. This is the case of
Event 6 at time 537 s, which requires between 1000 and 2000 generations to
provide a good approximation of the trade-off.

Regarding the solutions found using preference-based algorithms SAW

and MEW, in both cases the solutions belong to the Pareto-optimal front,
since a full search (i.e., all solutions are evaluated) is performed on the deci-
sion space. This gives perfect closeness to the Pareto-optimal front. However,
we observe that there is a larger separation between solutions than for the
NSGA2 obtained solutions, affecting the diversity of the set, which is one of
the main concerns while approximating the optimal set. In the following
section, we focus on the comparison of the genetic approach against the
preference-based algorithms.

4.4.2.3 Comparative Analysis: Genetic vs. Preference-based Algorithms

In this section we aim at studying the differences between solving the op-
timization problem using a genetic approach and a preference-based algo-
rithm, focusing on different performance metrics. To this end, we have per-
formed a set of simulations using different configurations for the genetic
algorithm (NSGA2), i.e., the number of individuals in the initial population
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(a) Event 1 - Time 45 s - Size 8 (b) Event 2 - Time 164 s - Size 10

(c) Event 3 - Time 400 s - Size 14 (d) Event 4 - Time 466 s - Size 16

(e) Event 5 - Time 477 s - Size 20 (f) Event 6 - Time 537 s - Size 22

Figure 61: Simulation results
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Parameter Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

α 20 60 100 20 60 100

µ 10 30 50 10 30 50

λ 10 30 50 10 30 50

ct One-point One-point One-point Uniform Uniform Uniform

pc 1 1 1 1 1 1

mt Indep-bit Indep-bit Indep-bit One-bit One-bit One-bit

pm 1 1 1 1 1 1

pb 0.5 0.5 0.5 0.9 0.9 0.9

Table 18: Simulation cases

(α), the number of parents (µ), the offspring size (λ) and the different param-
eters for mutation and cross-over. The different parameters and their values
are listed in Table 18. On each simulation case, we have simulated 100 scenar-
ios of 20 event each, in order to obtain good averaged values. As observed in
Table 18, for NSGA2, we consider three population sizes (20, 60 and 100) and
two sets of parameters for mutation and crossover. One of the configurations
considers One-Point cross-over and Independent-Bit mutation. In this case,
for each pair of solutions selected from the matting pool crossover is always
performed (pc = 1). Regarding mutation, it is performed to all the solutions
(pm = 1) and in this case all the bits are turned with a probability pb = 0.5.
The second set of parameters for NSGA2 considers a less aggressive mutation
(only one bit is mutated with a probability pb = 0.9) and uniform crossover.
For uniform crossover, the bits of two solutions from the matting pool are
switched with a probability p = 0.5.

We perform a set of simulations in order to compare both the genetic and
the preference-based algorithms using four metrics:

• Diversity of solutions: the number of different solutions found on each
approach

• Optimality of the solutions: a measure to the closeness to the Pareto-
optimal front

• Calculation time: the delay to come out with a set of optimal solutions

• Number of reallocations: the number of flows that have to be real-
located to a different interface than its previous one after a decision-
making

diversity of solutions We measure the diversity of the solutions of
the different approaches as the number of different solutions in the obtained
non-dominated set. In Figure 62, we show the number of different solutions
obtained using SAW, MEW and the genetic algorithms for different chromo-
some size. For the genetic algorithms, we consider eight different number of
generations, i.e., 10, 25, 50, 100, 250, 500, 1000 and 2000.
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In the case of preference-based SAW/MEW solution sets, providing a single
solution per weight vector, we observe in all simulation cases in Figure 62

that even if 41 different weight vectors are considered for each event, they
cannot provide a large number of different solutions. For SAW and MEW,
each weight combination gives a single solution. However, different weight
vectors can give exactly the same solution, reducing the total number of
solutions found and so the diversity. This limitation of preference-based al-
gorithms is also raised by Deb in [95]. The author suggests that a decision-
maker may pick up a single solution (using weights or other high level infor-
mation) from the Pareto-optimal front (calculated after solving the problem
using Genetic Algorithms) instead of using preference-based algorithms to
obtain the front. In the latter case, it is not always possible to obtain a good
approximation of the Pareto-optimal front using different weight combina-
tions. In our simulations (see Figure 61) even if all the solutions provided
in SAW/MEW belongs to the Pareto-optimal front, we observe a low number
of solutions, giving a reduced diversity. Additionally, we observe that in all
simulation cases, MEW is able to provide a greater number of solutions than
SAW.

Regarding the genetic algorithm, we observe that the diversity increases
with the chromosome size. This is because an increasing chromosome size in-
dicates a large number of applications, which gives more possible solutions
and then a larger range for E and B. Observe also that using the second set
of parameters for NSGA2 (i.e., simulation cases 4, 5 and 6) we obtain almost
the same number of solutions for every generation value (except for g = 10).
However, since for the second set of parameters we use one-bit mutation
(which leads to a less aggressive variation), the number of solutions as a
function of the chromosome size seems to increase more slowly than for the
first set of parameters.

optimality of solutions In order to measure the optimality of the so-
lutions provided by the different optimization algorithms, we use a reference-
point based quality indicator as proposed in [110]. We consider the set of
solutions Z∗ = {z∗1, z∗2, · · · , z∗l } (l = 2c, where c is the chromosome size and
z∗i = {Ei, Bi}) representing all the possible flow-interface assignations in the
scenario. We choose two reference-points: the ideal solution Z∗

min (see Equa-
tion 51), that is composed of the minimum values for E and B in the problem
and the worst solution Z∗

max (see Equation 52) that considers the maximum
values for both E and B.

Z∗

min = {min∀iEi, min∀iBi} i ∈ [1, l] (51)

Z∗

max = {max∀iEi, max∀iBi} i ∈ [1, l] (52)
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Figure 62: Diversity: number of different solutions
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Then, consider the non-dominated sets obtained after solving the problem
using the genetic algorithm (ZGA), SAW (ZSAW) and MEW (ZMEW). We can
apply Max-Min normalization (see Section 4.2.1) using Z∗

min and Z∗
max over

these sets, giving the normalized sets Z ′

GA, Z ′

SAW and Z ′

MEW . These nor-
malized sets contain normalized values for the objectives in the range [0, 1],
which facilitates comparisons.

Since the goal is to compare the optimality of the solutions provided by
the different solving algorithms, we propose to use the minimum distance
to the ideal solution Z∗

min. The distance to the ideal solution is computed as
the Euclidean distance (operator d) between the solutions in the normalized
sets and Z∗

min. For each solving algorithm (GA, SAW and MEW) we find
the solution having the closest distance to the ideal solution as shown in
Equation 53.

dSAW = min
∀i

d(z ′

SAW , Z∗

min) (53)

dMEW = min
∀i

d(z ′

MEW , Z∗

min)

dGA = min
∀i

d(z ′

GA, Z∗

min)

Finally, we calculate the differences D(GA, SAW) and D(GA, MEW) be-
tween dGA and dSAW and dMEW respectively (see Equation 54). Using this
difference, we can see which approach provides solutions closer to the ideal
solution. Then, if DA(GA, SAW) is positive, it means that SAW found so-
lutions closer to the ideal than the genetic algorithm. If DA(GA, SAW) or
DA(GA, MEW) equal zero, it means that the genetic algorithms and the
preference-based approaches provide solutions with the same distance to
the ideal solution.

D(GA, SAW) = dGA − dSAW (54)

D(GA, MEW) = dGA − dMEW

In Figures 63 and 64 we illustrate D(GA, SAW) and D(GA, MEW) respec-
tively, for different chromosome sizes. We observe that for an increasing
chromosome size, the genetic approach gives increasing positive values for
D(GA, SAW) and D(GA, MEW), meaning that the the closest distance to the
ideal solution in genetic algorithms is greater than for SAW and MEW. How-
ever, for increasing α, µ and λ, the genetic algorithms can provide closest
distance to the ideal solution. This is an indication of a better approxima-
tion to the Pareto-optimal front for the genetic algorithms. Regarding the
number of generations, the closest distance to the ideal solution provided by
genetic algorithms decreases for an increasing number of generations. Note
that when using the second set of parameters for the genetic algorithm we
obtain much lower values for D(GA, SAW) and D(GA, MEW), showing that,
for our problem, uniform mutation and one-bit mutation can better explore
the decision space.
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We have observed that in addition to providing a greater number of dif-
ferent solutions than SAW, MEW is also capable to give closer solutions to the
ideal solution. This is observed in Figure 64, where it is most common to
find negative values for D(GA, SAW) than for D(GA, MEW) for the the two
set of parameters

calculation time The calculation time, i.e., the time to obtain an ap-
proximation to the Pareto-optimal front, is a main concern in network selec-
tion. In this context, mobile devices are usually on the move and need to
take decisions as fast as possible in order to prevent impacting the on-going
applications. We compute in our simulations the calculation time for the
genetic algorithms (with different numbers of generations) and preference-
based approaches (SAW and MEW).

Regarding genetic algorithms we compute the time spent between the ini-
tialization of the random population and the last iteration (i.e., the last gen-
eration of solutions). However, as we have stated before in Section 4.4.1.1,
the PISA implementation uses two independent processes, the Variator (i.e.,
the optimization problem) and the Selector (i.e., the solving algorithm or op-
timizer, in our case NSGA2) that communicate through text files to indicate
the start and the end of the variation and selection processes. Each time the
Variator does mutation and crossover over the current population, it waits
until the Selector performs non-dominated sorting and selection. This adds
a time overhead that may not exists if the Variator and the Selector were
implemented as a single process. For our simulations, we have reduced to
1 ms the frequency used by the Variator to check for the termination of the
Selector, and vice-versa. Then, for the genetic algorithms, we can consider
the calculation time shown in Figure 65 as an upper bound.

We observe in Figure 65 that, for the genetic algorithms, the calculation
time does not depend on the chromosome size of the problem but on the
number of generations, meaning how many times the algorithm will iterate
before providing an approximation to the Pareto-optimal front.

In the case of SAW/MEW, there is an exponential relation between the cal-
culation time and the chromosome size (note that the y-axis has log scale).
Recall that for SAW and MEW, a full search is performed on the decision
space. In this case, the algorithm first iterates to perform normalization (in
the case of SAW) and determines the minimum and maximum bounds for E

and B, since they are required for the computation of the normalization and
the multiplicative weighting (see Section 4.2.1.2).

We observe that the genetic algorithms calculation time slightly increases,
in all the considered generations, for greater α, µ and λ (i.e., the different
simulation cases). Computing solutions using preference-based algorithms
performing a full search on the decision space becomes as time consuming
as genetic algorithms for chromosome sizes greater than 8 or 10 (i.e., 4 or 5

applications among 3 or 4 interfaces). For a chromosome size greater than 18
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Figure 63: Optimality comparison against SAW
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Figure 64: Optimality comparison against MEW
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or 20 (depending on the simulation case), the preference-based algorithms
becomes high time consuming, spending more up to 200 s for a 24 chromo-
some size.

number of reallocations When performing flow-interface assigna-
tion, it is not desirable for a given flow to be assigned to different inter-
faces each time a decision-making is performed, since it may affect its per-
formance. The set of solutions obtained after solving the decision-making
problem should provide optimal solutions that minimize the number of real-
locations, i.e., the number of flows that have to be assigned to a new interface
different than the previous one.

To measure the number of reallocations for each decision-making algo-
rithm we first obtain, for each event in the scenario, the solution from the set
giving the lowest number of reallocations from the previous event. We con-
sider that, for the previous event, the closest to the ideal solution is chosen
for each decision algorithm (NSGA2, SAW and MEW). Finally, for each simula-
tion case, we calculate the average number of reallocations observed on each
event. This is illustrated in Figure 66. We observe that the genetic algorithms
using a reduced population size (α = 20, µ = 10 and λ = 10) are not able
to provide solutions with lower number of reallocations than SAW and MEW.
For higher α, µ and λ, the genetic algorithms can provide a lower number
of reallocations. Comparing the two sets of parameters for the genetic al-
gorithms, we observe a lower number of reallocations using the second set,
regardless to the number of generations. This is observed in Figures 66b, 66d
and 66f.

4.4.2.4 Discussion

The simulation results show that using genetic algorithms to solve the net-
work selection problem allows obtaining a set of optimal flow-interface assig-
nations, representing the best trade-off between the two objectives: the en-
ergy consumption and the bandwidth dissatisfaction. For problems having
a low number of applications to be assigned to a low number of interfaces,
we observe that the calculation time for the genetic algorithms is higher than
doing a full search using preference-based algorithms, since for the genetic
algorithms, it only depends on the number of generations. Note that, in
the results presented for the genetic algorithms, there are additional calcula-
tion delays caused by the inter-process communication between the Variator
and Selector in PISA, which is based on state variables that are written in
plain text files. In a real implementation of the genetic algorithm in a device,
the Variator and Selector could be implemented in a single process, reduc-
ing the time overhead observed in PISA. However, for problems concerning
more than 4 or 5 applications (e.g., a chromosome size of 8 or 10) the NSGA2

with low number of generations have equivalent calculation delays. We have
also observed that the genetic algorithms, compared to the preference-based
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Figure 65: Calculation time
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(b) Simulation Case 4
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(c) Simulation Case 2
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(d) Simulation Case 5

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0  2  4  6  8  10  12  14  16  18  20

C
u
m

u
la

ti
v
e
 a

v
e
ra

g
e
 n

u
m

b
e
r 

o
f 
re

a
llo

c
a
ti
o
n
s

Event

g=10
g=25

g=50
g=75

g=100
g=250

g=500
g=1000

g=2000
SAW

MEW

(e) Simulation Case 3

 0

 2

 4

 6

 8

 10

 12

 14

 0  2  4  6  8  10  12  14  16  18  20

C
u
m

u
la

ti
v
e
 a

v
e
ra

g
e
 n

u
m

b
e
r 

o
f 
re

a
llo

c
a
ti
o
n
s

Event

g=10
g=25

g=50
g=75

g=100
g=250

g=500
g=1000

g=2000
SAW

MEW

(f) Simulation Case 6

Figure 66: Number of reallocations



138 an energy-efficient approach for network selection

approaches always provide a greater diversity of solutions, giving a good
approximation to the real Pareto-optimal front.

After performing decision-making and obtaining a set of optimal solu-
tions, an MS must select one particular solution from the optimal set and
perform flow-interface assignation. At this point, the decision-maker (i.e.,
the mobile user) can use high level information to take the final decision.
Some possible alternatives to select the most suitable solution from the opti-
mal set are as follows:

• A posteriori preference-based: The decision-maker may set up a single
objective optimization using weights to combine E and B (like in SAW

or MEW) but only considering the solutions obtained in the previously
calculated optimal set using the genetic algorithm. This problem is
easy and fast to solve since it only concerns a very limited number of
decision vectors (depending on the population size used for the genetic
algorithm). In this case, the mobile user can dynamically set a weight
vector (giving more or less preference to E and B) depending on the
current condition, e.g., if the mobile is running out of battery, one may
give more preference to E.

• Proximity to the ideal solution: The decision-maker can select, as the
most optimal solution, the solution with the closest distance to the
ideal solution composed of the best values of E and B in the previously
obtained set.

• Similarity to the current assignation: In order to minimize the impact
of switching the application flows between the different interfaces, the
mobile user can select the most similar optimal solution to the current
assignation (i.e., the solution of the previous event). Then, it can con-
sider the solution that minimizes the number of reallocations. Note
that in this case the decision does not consider the objectives values.

4.5 concluding remarks

In this chapter, we have introduced the network selection problem in multi-
homed mobile devices. First, we have surveyed the existing mechanisms for
network selection, that mainly focused on vertical handover between WLAN

and 3G, where the problem modelling is based on deciding when to switch
all the flows to a different interface. These mechanisms consider different
criteria, including the QoS required by the applications and provided by the
interfaces, the security level, the monetary and energy cost. Regarding en-
ergy, in existing frameworks, the energy consumption is usually measured
as a constant cost or penalty produced by the event of turning an interface
on.

In order to model the network selection problem, MADM, MOO, Neural
Networks and combinatorial optimization frameworks have been proposed
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so far. However, in the existing frameworks, we identified some limitations.
First, they are based on multiple criteria to be optimized, but in most of
the cases, the authors do not consider the corresponding monitoring mech-
anisms that provide all these criteria to the decision-making engine (i.e.,
the input of the network selection problem). Then, regarding the decision-
making engine itself, it usually considers a combination of the different cri-
teria using some weighting schemes, in order to simplify the problem. This
is referred to as a preference-based decision-making. As it has been noted
in [95], solving the decision-making problem using a preference-based ap-
proach may prevent the decision-maker from finding the complete trade-off
of optimal solutions among different criteria.

Based on this, we propose to model the network selection based problem
using MOO. We consider the model as a flow-interface assignation, which un-
like traditional vertical handover decision-making, is capable to individually
assign flows to different interfaces, enabling load spreading in multi-homing
devices. In this mechanism, we consider two criteria that do not require com-
plex monitoring. First, we consider the overall bandwidth dissatisfaction of
the mobile device by computing the difference between the overall band-
width demand (of the applications) and the available bandwidth of each
interface. Second, we consider the overall energy consumption of the mobile
device as an estimation of the average power consumed by each interface. In
the latter case, for a given flow-interface assignation, we estimate the amount
of time each interface spends on each operating state (e.g., idle, transmit,
sleep). Then we use the power consumption for each state to estimate the
average power.

To solve this optimization problem, we propose and evaluate the usage
of genetic algorithms. For the evaluation, we provide a set of simulation re-
sults that consider different scenarios (i.e., different application flows and
interface availability) and solve the optimization problem with traditional
preference-based algorithm and different configurations for a particular ge-
netic algorithm, NSGA2. The simulation results show that genetic algorithms
provide a good approximation to the Pareto-optimal front and more reduced
calculation delays than preference-based algorithms for problems aiming to
assign more than 4 or 5 applications to 3 or 4 different interfaces. Observe
that even if our proposed algorithm can enhance the decision-making in a
single MS, in the case of a mobile network (i.e., composed of several nodes
connected to a mobile router), the problem size scales and so our multi-
objective approach can provide optimal assignations in a relatively short
delay. For less applications, preference based algorithms seem to provide
some optimal solutions faster than genetic algorithm, even if in the latter
case some time overhead may be added by the simulator framework (i.e.,
PISA) architecture.





5
C O N C L U S I O N A N D P E R S P E C T I V E S

5.1 concluding remarks

The current wireless environment is characterized by a diversity of technolo-
gies providing broadband Internet accesses, including WPAN, WLAN, and cel-
lular networks (2G, 3G and 4G). Particularly in the last years, there has been
a proliferation of community networks based on IEEE 802.11 that have been
deployed by residential ADSL subscribers, providing ubiquitous WLAN cov-
erage in urban environments. To access those networks, mobile users are
now multi-homed, i.e., they can have access to different networks at any
place and any time, using different wireless interfaces. In this context, mo-
bile users may exploit the network diversity in an Always Best Connected
manner, i.e., to obtain the best connection performance while being simul-
taneously connected to multiple wireless networks. Such an exploitation of
the network diversity poses a number of questions that we tried to address
in this thesis, e.g., how to optimize the handover process between different
points of attachment or how to perform an optimal network selection while
using multiple wireless networks.

In order to analyze the potential for an Always Best Connected scenario in
current wireless networks, we provided in Chapter 2 an evaluation study of
IEEE 802.11 and cellular networks, particularly focusing on the performance
of CN deployments. This evaluation study has been performed using a new
participatory sensing platform we have designed and implemented for the
Android mobile system, called Wi2Me. We have gathered traces from more
than 6000 AP and 60 cellular base stations and generated almost 700 connec-
tions to CN and cellular networks. We proposed a set of metrics to charac-
terize the different networks. We have observed that CN provide the same
level of coverage than cellular networks in urban areas, albeit with a low
average received power from the IEEE 802.11 APs, limiting the connection
performance and duration, which was in median 27.5 s at pedestrian speed.
Regarding the deployment condition in IEEE 802.11, the uncontrolled AP lo-
cation and channel settings may produce a high level of interference that is
generated by several APs allocated on the same or in an overlapping chan-
nel. In this case, we have observed that around 80 % of the APs are deployed
in the non-overlapping channels (1, 6 and 11), giving that in around 50 % of
the cases a single channel is shared by two or more APs. We have also an-
alyzed the impact of handovers on on-going communications. In managed
deployments (like a corporate or campus deployment), even if handovers
are supported and the on-going communications do not break after an AP
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transition, we have shown that the TCP connections are highly degraded
due to a reduction of the CWND. Particularly in existing CN deployments, we
have found that even if the high density of CN AP could provide the MS a
continuous connection through CN, there is still a lack of handover support
providing seamless transitions between APs and a continuity of the on-going
applications flows.

Regarding the optimization of the handover process, we have focused on
the IEEE 802.11 AP discovery process in Chapter 3, since it is the most time-
consuming process during a handover. The discovery process during an
IEEE 802.11 handover consists in performing active scanning in the available
channels. On each channel, the MS sends Probe Request frames and waits for
Probe Responses from different AP during a certain waiting time. This wait-
ing time is managed by two timers: MinChannelTime and MaxChannelTime,
whose values are not defined in the IEEE 802.11 standard. The values of the
timers on each channel strongly depend on the delay of the Probe Responses,
which appears to have a high variability, depending on the channel condition
(e.g., congestion, interferences). Then, there is a a trade-off when setting the
timers, since fixing low values for the timers to reduce the scanning latency
may also reduce the number of discovered APs or, even worst, avoid discov-
ering any AP in the channels. Unlike most of the current state of the art, that
mainly focused on reducing the latency of the discovery process to mitigate
the impact of handovers on on-going communications, we considered the
trade-off between the duration of the process and the amount and quality
of the AP discovered during a scanning. To manage this trade-off, we have
proposed a set of adaptive scanning algorithms aiming at setting the most
suitable scanning parameters for each particular channel. In this context,
we first defined the Adaptive Discovery Algorithm (ADA), which dynami-
cally sets the waiting time on each channel depending on the previously
discovered APs. Then, we defined and evaluated the Cross-Layer Adaptive
Scanning Algorithm, which uses physical layer information (i.e., the chan-
nel load and the power measured on each channel) to set the most suitable
channel sequence and the waiting time for each channel. We implemented
both adaptive functions in open-source IEEE 802.11 drivers and performed
an experimental evaluation in two different testbeds, in order to compare
the adaptive algorithms against typical fixed-timers approaches (using dif-
ferent values for the timers). We have found that using an adaptive strategy
while scanning allows managing the trade-off between the scanning latency
and the topology discovery, i.e., for a given latency, an adaptive algorithm
is able to discover a larger number of access points. In the case of ADA we
have observed that at most in 2 % of the cases the MS is not able to discover
any AP after scanning all channels. However, this percentage increased up
to 52 % when using low fixed timers. Using Cross-Layer adaptive scanning,
since the MS uses longer timers in the channels where APs are more likely
to be deployed, we have found that the algorithm provides a low scanning
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latency and a high number of discovered APs, while also reducing the time
to discover the first AP. The latter metric becomes important in the case that
the MS needs to find a single AP as soon as possible.

In Chapter 4, we have focused on the decision-making process for network
selection in multi-homing devices. Two different approaches exist when per-
forming decision-making for network selection. The first approach focuses
on the network selection during a vertical handover, i.e., when to decide to
switch all the on-going application flows to a new available wireless inter-
face. The second network selection approach consists in finding the most
optimal flow-interface assignation in the case the MS wants to simultane-
ously use several interfaces. In both cases, existing works on network selec-
tion have modelled the problem using different optimization tools, consid-
ering various criteria (e.g., QoS, cost, security, energy). In our approach, we
have modelled the network selection as a decision-making problem for flow-
interface assignation using multi-objective optimization and genetic algo-
rithms to search for feasible solutions. We have considered two minimization
objectives for the multi-objective approach: the energy consumption and the
bandwidth dissatisfaction. Regarding the energy consumption, differently
from existing network selection mechanisms, where the energy is considered
as a fixed cost associated to each interface, we have taken into account the en-
ergy consumption in a fine-grained way. To this end, we use traffic models to
estimate the amount of energy consumed by a given flow-interface assigna-
tion. For the second objective, we consider the bandwidth dissatisfaction as
the difference between the bandwidth demand of the application flows and
the available bandwidth provided by the interfaces. We have evaluated our
mechanism by simulation, considering different scenarios corresponding to
a mobile user running different types and number of applications over dif-
ferent interfaces. We have found that solving the decision-making problem
using genetic algorithms can provide a complete view of the trade-off be-
tween the objectives (energy consumption and bandwidth dissatisfaction).
Moreover, when the number of applications to assign scales, the genetic
algorithms provide a lower calculation delay to obtain the Pareto-optimal
front than performing full search with preference-based algorithms. Finally,
depending on the user’s policies or other high level information, one single
solution may be chosen from the optimal set.

5.2 future work

In order to extend the contributions of this thesis, the following issues may
be considered for the future work. Regarding the Wi2Me platform, we have
recently published and distributed the source code of the Wi2Me-User and
Wi2Me-Research applications and applied to several project calls in order
to extend the possibilities for further collaboration with research groups,
network operators and other industrial partners. In current community net-
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works, the network operators have no return on their deployment charac-
teristics and performance (e.g., channel allocation, density of APs, average
bandwidth and QoS). In addition, the usage pattern of community networks
by the mobile users remains unknown. Both limitations could be solved by
performing very large evaluation studies using Wi2Me-User and Wi2Me-
Research. Using Wi2Me-Research, we are able to analyze the deployment of
wireless networks (IEEE 802.11, 2G, 3G or LTE). It is thus possible to character-
ize the environment, the coverage area and the complementarity of different
access networks in different locations. At this time, there is no other tool
to perform these studies with a high level detail. Concerning the use of
community networks, the Wi2Me-User application is able to trace the user’s
activity. Thus it would be possible for the network operators to determine
which applications are being used over their networks and derive the traf-
fic model (i.e., the type of flows, the amount of data to transmit/receive,
the arrival process of the flows, the place and time of the connections). A
network operator providing access to different technologies could benefit
from such a study by better knowing the possible connectivity options for
each user at any place. For any geographic point, an operator could have a
preliminary knowledge of the available technologies and their performance.
Thus, these data may allow better sizing and planning the networks or de-
ploying offloading techniques (e.g., transferring some 3G users to an IEEE
802.11 community network under certain conditions). In a second step, the
Wi2Me-User application could be massively distributed through the Google
Play platform, providing a community network connection manager that is
able to trace the usage of the networks and the deployment characteristics.
The distribution of this application would create a large scale automated
tracing system that could be very beneficial not only to operators but to
the research community in order to better understand the network diversity.
In addition, it will allow the mobile users to take advantage of automatic
connection tools for community networks that improve connectivity across
heterogeneous networks.

Regarding the contributions presented in Chapter 3, the future work may
focus not only on the definition of the most feasible parameters for the scan-
ning algorithm but also on the handover triggering. We have found that
current mobile devices lack efficient mechanisms to trigger the handover
process. In most cases, they base their handover decision on the current link
condition, i.e., they wait until the instantaneous value of the received signal
strength from the AP reaches a fairly low level to trigger a handover. Then,
new triggering mechanisms need to be designed in order to allow the MS

to rapidly react to link degradations and so start the handover process as
soon as better APs become available. The main goal of better triggering the
handover is to enhance the mobile user experience by keeping a high sig-
nal strength, a low number of packet retransmissions and a high connection
throughput while being on the move and traversing several APs. In such
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a mechanism, the MS continuously monitors the received signal strength
from the current AP and instead of considering its absolute value, it may
use some filtering/smoothing technique (such as Kalman filters) to predict
the short term evolution of the signal strength and so decide when to trigger
the adaptive scanning. This adaptive scanning, as proposed in this thesis,
may integrate physical layer information to set the most suitable param-
eters. This information could be based on some message exchange using
the IEEE 802.11k amendment, like channel load reports or noise histograms.
Moreover, the scanning configuration may also consider the effect of chan-
nel overlapping when receiving Beacons or Probe Responses. It has been
previously observed [49] that when probing a channel, the MS may receive
responses from APs in the neighboring channels, albeit with a lower RSSI.
The adaptive scanning algorithm may consider this issue by intelligently se-
lecting a channel sequence that takes profit from the overlapping nature of
the channels. For instance, a channel may not be probed if a response from
an AP deployed on this channel has been received when probing a neigh-
boring channel. This allows the MS to reduce the latency of the scanning pro-
cess. Another possible adaptation strategy for the scanning process may use
triggers from the higher layers (like the transport or the application layers)
and set the scanning parameters depending on some specific QoS profiles.
Then, an MS may use low timers and a reduced channel sequence to achieve
a low latency scanning if the QoS profile of current flows/applications re-
quire a new AP as soon as possible (e.g., if the user runs VoIP or streaming
flows). On the other hand, the MS may set longer timers and larger channel
sequences to discover a high number of APs if the QoS profile is more elas-
tic (e.g., web-browsing, messaging or microblogging applications) and can
tolerate a longer connectivity disruption during a handover.

With regards to the decision-making framework for network selection that
we have proposed in Chapter 4, we have evaluated its performance by the
means of simulation. For the future work, an implementation and evalua-
tion of this mechanism may be carried out using real multi-interface mo-
bile devices moving in a heterogeneous wireless deployment. Moreover, as
stated before, we should consider an hybrid approach for network selec-
tion, that uses preference-based algorithms (or MADM) doing a full search
on the decision space for small problems (i.e., a few number of applications
to be assigned to the available interfaces) and uses a genetic algorithm to
search for solutions when the problem size scales (i.e., a high number of
applications and interfaces). In addition, other existing solution searching
algorithms/heuristics may be evaluated and compared against the genetic
approach, since in this thesis we have only compared the performance of
our proposed mechanism against a full-search in the decision space. Addi-
tionally, the decision-making process needs to be integrated to the mobility
and multi-homing support architecture. In this case, as stated before, multi-
homing protocols like shim6 or HIP may be implemented in the mobile de-
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vices to allow enforcing the output generated by the decision-making mecha-
nism. Regarding the input of the decision-making mechanism itself, in order
to select an optimal solution from the computed trade-off, high-level infor-
mation or policies still may be required. These policies may be provided not
only by the mobile user but by an external entity as well (e.g., the network
operator). Then, there may be a need for a new component in the network to
store and maintain those policies and a set of messages to request or modify
them.

5.3 perspectives

From a more general perspective, we consider that tomorrow’s networks will
not be composed of a single wireless access covering all the user needs but
of several technologies, networks operators and deployments competing in
the market. Then, in order to achieve the Always Best Connected paradigm
in such an scenario, a high level of cooperation among the different actors
will be required. This will allow the mobile users to fully exploit the network
diversity by connecting to different access networks belonging to different
technologies and operators, performing handovers and dynamically adapt-
ing the usage of the networks depending on the particular scenario. Such
a cooperation will take place not only between network operators but be-
tween the users as well. Network operators will need to establish roaming
agreements, allowing the subscribers from different operators to use their de-
ployments belonging to different technologies. They will also need to deploy
common mobility and multi-homing support protocols, which may guaran-
tee the mobile user the continuity of the on-going communications even
when a handover to a network managed by a different operator occurs. Re-
garding the collaboration among users, they may be able to exchange infor-
mation about the best available networks at any given place, which can be
used as an input for handover and flow-interface assignation decisions.

Second, from the mobile device point of view, even if network operators
could provide a full mobility and multihoming support in future networks
and if the mobile devices can assure a low latency discovery process and an
optimal flow-interface assignation, the mobile devices currently lack of reac-
tivity to rapidly detect changes in the topology (e.g., new networks, a link
going down or a degrading QoS) and take smart decisions. However, be-
ing reactive requires monitoring different performance parameters and po-
tentially exchange information among users, which may contribute to more
overhead and, especially, an increasing energy consumption. Then, new algo-
rithms and mechanisms should be designed to provide smart triggers to de-
tect changes in the environment. Particularly for WLAN, these smart triggers
may use physical and link layer information provided by a radio resource
management layer based on IEEE 802.11k, that needs still to be deployed in
current networks.
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Finally, we have observed that CN has been increasingly deployed (at
least in France) by the most important network operators. In Chapter 2, we
showed that there is a very high density of APs in urban areas, giving in me-
dian more than 3 CN APs in any given place. Moreover, if all the deployed
APs are considered, we observed in median 15 APs at one single point of
measure. This yields a high level of interference since users can manually
configure their APs in a particular channel and may also add external an-
tennas to extend the coverage area of a single AP. Moreover, this high AP

density clearly shows the potential for energy saving by turning off most
of these access points when there are only few mobile users to serve. We
may consider drastically reducing the number of APs given the current de-
ployment density. The Internet boxes provided by ISP to ADSL subscribers
which embed IEEE 802.11 APs and TV decoders, globally consumed around
1.6 TWh per year in 2008, and since then, the number of deployed boxes has
increased (and will increase in the future, as the penetration rate is 70 % of
the population today), as well as their energy consumption. Today, one box
consumes around 35 W, between 10 W and 18 W for the Internet access and
around 20 W for the TV decoder. With advanced standby and efficient wake-
up techniques, we could reduce by half the total boxes energy consumption.
In a sense, this could be viewed as a generalization of the concept of commu-
nity networks to private network. A given ISP could allocate a unique SSID

to all its boxes. This would lead users to always connect to the unique SSID

(whether they are at home or not) and the network operator could simply
choose which AP needs to be turned on, and which ones could be turn off,
depending on the deployment conditions and the users’ demand for band-
width. The network operator can then mitigate the interferences and reduce
the energy consumption, enhancing the overall user experience.
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R É S U M É

introduction

Dans l’environnement sans fil actuel, les utilisateurs peuvent trouver des dif-
férents types de réseaux d’accès, tels que les réseaux locaux sans fil (WLAN),
les réseaux personnels (WPAN) ou les réseaux cellulaires. Ces réseaux ont
été conçus pour répondre aux différents besoins en termes de performance
et de couverture, orientés vers des différents marchés et des caractéristiques
des utilisateurs. Par exemple, la technologie Bluetooth (WPAN) a été conçu
pour les communications entre dispositifs mobiles à proximité pour le partage
de données, la norme IEEE 802.11 (WLAN) pour fournir un accès à haut
débit dans des petites zones de couverture et les technologies cellulaires
pour couvrir des zones très larges avec un accès haut débit mobile.

Toutes ces technologies réseaux ont été intensivement déployées dans les
dernières années, en particulier dans les zones urbaines. Au même temps,
puisque aucune de ces technologies ne s’est imposée sur le marché, des
dispositifs mobiles intègrent plusieurs technologies sans fil. Dans ce scé-
nario, les utilisateurs pourraient désormais profiter d’une utilisation mobile,
en traversant des différents points d’accès de façon transparente, et de la
multi-domiciliation, en ayant la possibilité de sélectionner dynamiquement
différents réseaux d’accès sur des différentes interfaces sans fil de manière
alternative ou simultanée. Une telle utilisation des réseaux sans fil est décrit
par le paradigme « Always Best Connected », proposé par Gustafsson et
Jonsson [5].

Cependant, dans le contexte actuel ils existent plusieurs limitations qui
empêchent l’exploitation de la diversité des réseaux d’une manière « Always
Best Connected ». Par rapport à la gestion de la mobilité, les utilisateurs mo-
biles doivent découvrir des points d’accès aux réseaux dans leur voisinage et
assurer une transition transparente vers un nouveau point d’accès lors d’une
dégradation de la connexion avec le point d’accès courant. Concernant la ges-
tion de la multi-domiciliation, les utilisateurs mobiles actuels se connectent
typiquement à un seul réseau à tout moment, sans profiter des différents
réseaux sans fils disponibles dans un même endroit. Afin de rendre possible
l’utilisation de plusieurs interfaces réseaux au même temps, des protocoles
de gestion de la multi-domiciliation, tels que shim6 ou Host Identity Proto-
col (HIP), permettent de donner un identificateur unique aux applications
et des mécanismes intermédiaires pour assurer qu’un flux puise changer
d’interface sans être interrompu. Cependant, même si ces protocoles peu-
vent assurer une continuité des flux, l’utilisateur doit décider à tout moment
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quelle est l’attribution des flux aux interfaces qui s’adapte le mieux à ses
besoins.

Objectifs

Dans cette thèse, nous étudions la diversité des réseaux d’accès sans fil dans
le but d’exploiter l’utilisation simultanée de plusieurs interfaces dans le con-
texte des utilisateurs mobiles. En particulier, nous nous concentrons sur les
deux limitations cités précédemment: le support de la mobilité et la prise
de décision pour le support de la multi-domiciliation. Les objectifs de cette
thèse sont énoncés dans la liste suivante:

• Comprendre, grâce à des études sur le terrain, la diversité des dé-
ploiements sans fils actuels et identifier le potentiel et les limitations
pour une exploitation intelligente des différents réseaux, particulière-
ment aux problèmes liés à la gestion de la mobilité et de la multi-
domiciliation.

• Analyser les problématiques liées à la mobilité dans les réseaux IEEE
802.11 en étudiant les processus de découverte des points d’accès. Ce
processus, étant le processus le plus couteaux en temps, l’objectif prin-
cipal est de réduire sa durée afin d’affaiblir l’impact sur les applications
en cours.

• Définir des mécanismes d’adaptation des paramètres du processus de
scanning des points d’accès pour garantir une découverte la plus com-
plète possible des déploiements au même temps qu’un délai réduit
pour ce processus.

• Etudier la problématique de la multi-domiciliation dans les terminaux
mobiles, en particulier aux limitations liés à l’utilisation simultanée de
plusieurs interfaces réseaux.

• Proposer un mécanisme d’attribution des flux aux différentes inter-
faces sans fils (i.e., répartition de la charge) afin de trouver le meilleur
compromis entre la qualité de service et l’énergie consommée par les
interfaces.

contributions

Etude d’évaluation de la diversité des réseaux

Afin de caractériser la diversité des réseaux sans fil, il y avait la nécessité
d’analyser les déploiements réels. Dans un contexte urbain, nous retrou-
vons des déploiements cellulaires (2G, 3G et 4G), ainsi que des réseaux IEEE
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802.11 (WLAN) déployés d’une façon typiquement incontrôlé. Dans ces dé-
ploiements WLAN, nous retrouvons depuis quelques années les réseaux com-

munautaires, composés par des bornes IEEE 802.11 des abonnées Internet
résidentiels qui acceptent de partager une partie de leur bande passante en
utilisant un identifiant réseaux commun. Particulièrement en France, ils ex-
istent aujourd’hui plus de 13 millions de points d’accès communautaires
déployés dans des centaines de villes, appartenant à plusieurs opérateurs,
tels que Free, SFR, Bouygues Telecom et Orange.

Pour explorer ces réseaux et analyser un tel déploiement hétérogène, nous
avions besoin d’une plate-forme mobile pour la capture de traces et le cal-
cul de statistiques. Ils existent aujourd’hui un certain nombre d’outils pour
collecter des traces des réseaux cellulaires et WLAN. Nous retrouvons en-
tre autres OpenBMap, Sensorly, Wigle et OpenSignalMaps, qui fonctionnent
sur des différents plateformes (e.g., Linux, Android, iOS). Cependant, au-
cun de ces outils n’est capable de fournir tous les mécanismes essentiels
pour analyser la performance de ces réseaux, en particulier, ils ne permettent
pas la connexion automatique aux réseaux communautaires et la génération
de trafic pour estimer la qualité de service de ces réseaux. Pour cela, nous
avons conçu et développé un nouvel outil de sondage des réseaux cellulaires
et WLAN (y compris les réseaux communautaires) pour le système Android,
Wi2Me, capable de collecter des traces pour le calcul de statistiques. Deux ap-
plications sont proposées: Wi2Me-User et Wi2Me-Research. Wi2Me-User agit
comme un gestionnaire des réseaux WLAN communautaires, en fournissant
un mécanisme automatique pour la connexion et l’authentification aux réseaux
communautaires. Il permet de collecter des traces d’utilisation de l’interface
IEEE 802.11, tels que le volume des donnés échangés par les applications ou
l’évolution des connexions TCP dans le temps. D’autre part, Wi2Me-Research

est une application de war-driving qui a été conçu pour le sondage détaillé
des réseaux sans fils pour des buts spécifiques de recherche. Elle est ca-
pable de collecter des traces avec un échantillonnage plus fin que Wi2Me-
User et de contrôler d’une façon précise la génération de flux de donnés
pour évaluer la performance des réseaux. Dans un cas typique d’usage de
Wi2Me-Research, le dispositif mobile recherche périodiquement des points
d’accès IEEE 802.11 et des stations de base 2G/3G ainsi qu’il obtient des
informations de géolocalisation. Dans le cas qu’un point d’accès communau-
taire avec une puissance raisonnable (e.g., −80 dBm) est trouvé, le mobile
essaie de se connecter et s’authentifier à ce réseau. Puis, il envoie et reçoit
des fichiers sur des différentes connexions TCP. Dans le cas où aucun point
d’accès n’est disponible, le mobile essaie de se connecter au réseau cellulaire
et d’envoyer et recevoir ces mêmes fichiers. Toutes les traces collectées lors
de l’utilisation de Wi2Me-Recherche sont enregistrées dans une base de don-
nées SQLite en local et sont ensuite envoyées vers un serveur distant qui est
responsable de ressembler les traces des différents dispositifs et de calculer
des statistiques.
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Dans cette thèse, nous proposons des différentes expérimentations menées
avec Wi2Me-Research pour caractériser la diversité des réseaux dans un mi-
lieu urbain. Dans une première étude, nous avons fixé un parcours de mobil-
ité dans la ville de Rennes qui a duré plus de 10 heures. Cela nous a permis
de découvrir 6761 points d’accès IEEE 802.11 et 61 stations de base et de
se connecter à plus de 660 points d’accès communautaires et 17 stations de
base d’un seul opérateur cellulaire (SFR). Nous avons observé que dans le
parcours considéré, la disponibilité des réseaux communautaires des deux
opérateurs les plus importants (Free et SFR) est équivalente à celle fournie
par le réseau cellulaire (i.e., 98.9 % du temps contre 99.2 % du temps respec-
tivement) avec une densité de 15 points d’accès par scanning (dont 3.3 points
d’accès communautaires). Cependant, nous avons trouvé que la puissance
reçue des réseaux communautaires lors d’une connexion est en médiane
−80 dBm. Nous avons aussi observé des potentiels interférences causées par
le déploiement de points d’accès dans des canaux qui chevauchent, ce qui
limite potentiellement le débit du lien. La durée médiane des connections est
de 27.5 s, ce qui nous a permis dans notre expérimentation de se déplacer
en médiane 26 à une vitesse d’environ 1 m/s. Nous avons enregistré aussi
dans ces expérimentations les paquets échangés entre le serveur TCP et le
mobile, ce qui nous a permis d’étudier l’évolution des connexions TCP dans
le temps, particulièrement des paramètres pour le contrôle de la congestion.
Nous avons identifié dans ce cas que pour les réseaux communautaires il
existe une limitation de bande passante (d’environ 1 Mbps) car la fenêtre de
congestion TCP (CWND) est toujours beaucoup plus réduite que la fenêtre
du récepteur (RWND).

Nous avons analysé, grâce à la recollection de traces dans le serveur de
fichiers, l’évolution des connexions TCP lors d’un handover, i.e., une tran-
sition entre deux points d’accès IEEE 802.11. Dans ce cas, nous observons
une des limitations les plus importantes pour les réseaux communautaires,
car lors d’une déconnexion d’un point d’accès, même si un nouveau point
d’accès du même opérateur communautaire est disponible, la continuité des
flux d’applications n’est pas garantie. Cela démontre un manque de gestion
de la mobilité au niveau réseau (i.e., niveau 3) pour les réseaux commu-
nautaires. Contrairement, dans un réseau contrôlé (tel qu’un déploiement
de points d’accès au sein d’une entreprise ou d’un campus) la mobilité au
niveau 3 est suivant gérée, mais avec des forts impacts du handover dans
la performance de la connexion courante. Nous proposons un ensemble
d’expérimentations au sein du réseau WLAN de notre campus (SALSA)
pour montrer que le nombre de retransmissions et le délai augmentent de
façon considérable à partir de 10 s avant le handover, résultant en une ré-
duction de la fenêtre de congestion TCP, qui se produit en médiane une
secondes après le handover.

Nous remarquons l’importance pour les opérateurs communautaires d’op-
timiser les réseaux en faisant un contrôle plus important des aspects sans
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fils, qui généralement sont gérés directement par les abonnés. Par exemple,
pour éviter des interférences causées par des chevauchements des canaux,
les opérateurs pourraient gérer l’allocation des canaux pour chaque point
d’accès de façon centralisée, ou même éteindre des points d’accès dans des
zones à très forte couverture (où plusieurs points d’accès sont disponibles
das un même endroit). Aussi, une solution de contrôle de puissance pour
les points d’accès pourrait être envisageable. L’impact du handover dans
les communications en cours nous pousse à étudier le processus de décou-
verte dans IEEE 802.11 à fin de réduire son délai. De plus, vu la forte den-
sité de points d’accès que nous avons trouvé, une utilisation simultanée de
différents réseaux d’accès semble possible. Nous étudions donc des mécan-
ismes de attribution des flux aux différentes interfaces dans le contexte des
mobiles multi-interfaces et multi-domiciliés.

Algorithmes adaptatifs pour la découverte des points d’accès IEEE 802.11

Lors d’un handover entre des points d’accès IEEE 802.11 plusieurs processus
son concernés. D’abord, un dispositif mobile doit être capable de détecter les
dégradations du lien avec son point d’accès courant et décider quand est-ce
qu’une transition vers un nouveau point d’accès est nécessaire. Dans cette
transition, le dispositif doit d’abord faire une recherche des points d’accès
candidats pour le handover, sélectionner le meilleur d’entre eux et finale-
ment s’authentifier et s’associer. Aussi, si le nouveau point d’accès sélec-
tionné appartient à un réseau différent, une configuration de la couche IP
est nécessaire pour garantir aux applications d’accéder au réseau. Nous
faisons référence dans ce dernier cas à un handover de niveau 3, qui se
déroule jusqu’à après le handover de niveau 2 (qui finit par l’association
avec le nouveau point d’accès). Des solutions existent (e.g., MobileIP [40])
pour gérer le handover au niveau 3 et garantir une continuité des applica-
tions sans couper les connexions au niveau transport. Cependant, le déroule-
ment de ces phases dans le processus de handover implique que le dispositif
ne puisse pas communiquer avec le réseau pendant un certain temps. En
particulier pour le handover de niveau 2, il a été démontré dans plusieurs
travaux [46] [47] que la durée du processus de découverte des points d’accès
(i.e., scanning) implique le 90 % du temps total du handover de niveau 2.

Ce processus de scanning est défini par le standard [8] avec deux modal-
ités: le scanning passif et le scanning actif. Dans le scanning passif, le dis-
positif mobile découvre son environnement en écoutant les balises diffusées
par les points d’accès voisins qui sont envoyés tous les 100 ms. Dans le scan-
ning actif, le dispositif mobile demande des informations aux points d’accès
en envoyant des Probe Requests et en attendant des Probe Responses. Cela
permet de réduire le délai du processus de scanning, car dans chaque canal
le dispositif mobile doit seulement attendre les réponses à sa requête, ce qui
est plus rapide que la fréquence des balises dans le scanning passif. Dans



166 résumé

chaque canal, après l’envoi du Probe Request, le mobile attend un temps
égal à MinChannelTime (MinCT ). Si au moins un point d’accès répond avant
ce temps, le mobile attend alors plus longtemps, jusqu’à MaxChannelTime

(MaxCT ). Voir donc que MinCT 6 MaxCT . Cependant, la définition des
valeurs de MinCT et MaxCT n’est pas fournie par le standard. Noter que
les valeurs pour ces temps et la séquence de canaux à explorer définissent la
performance du processus de scanning, qui peut être mesurée par sa durée
(i.e., la latence), le taux de découverte (i.e., le nombre de points d’accès dé-
couverts dans le voisinage), le taux de échec du processus (i.e., le nombre de
fois qu’aucun point d’accès est découvert à cause des mauvaises paramètres)
et le temps pour découvrir le premier point d’accès (dans le cas où le disposi-
tif ait besoin de découvrir rapidement un seul point d’accès). Dans ce cas,
chaque implémentation de firmware/pilote IEEE 802.11 exige la définition
des valeurs de ces temps et de la séquence de canaux. Nous avons observé
que dans les dispositifs actuels, il y a un grade diversité de paramètres, ce
qui donne des performances de scanning différentes. En plus, nous mon-
trons dans cette thèse que, selon les conditions du déploiement, le délai de
réception des réponses des points d’accès varie énormément, ce qui nous
incite à définir des algorithmes de scanning capables d’adapter dynamique-
ment ses paramètres dans le but principal de minimiser la latence et de
maximiser le taux de découverte de la topologie.

Dans cette thèse, nous proposons deux algorithmes pour l’adaptation des
paramètres de scanning: Adaptive Discovery Algorithm (ADA) et Cross-
layer Adaptive Scanning. Dans ADA, nous utilisons une séquence de canaux
aléatoire que donne la priorité aux canaux 1, 6 et 11, car nous avons trouvé
que dans des déploiements urbains, autour de 80 % des points d’accès sont
déployés dans ces canaux [35]. Par rapport aux valeurs de MinCT et MaxCT ,
nous avons d’abord étudié le délai des Probe Responses pour proposer un
algorithme qui ajuste les valeurs de ces temps selon les points d’accès que
le mobile découvre pendant le processus de scanning. L’algorithme établi
d’abord des valeurs moyens pour MinCT et MaxCT et puis il augmente
ou diminue ces valeurs selon il découvre ou il ne découvre pas des points
d’accès. Nous avons implémenté ADA sur le pilote sans fil MadWiFi et nous
avons mis en place des scénarios de expérimentation pour évaluer sa per-
formance et la comparer à des algorithmes à paramètres fixes. Les résultats
montrent que pour une même latence de scanning, ADA est capable de dé-
couvrir plus de points d’accès et de fournir un taux d’échec presque zéro.

Nous avons observé que les conditions dans chaque canal, particulière-
ment le trafic généré par des stations, génèrent un fort délai des Probe
Responses lors d’un scanning. Un deuxième algorithme adaptatif, Cross-
layer Adaptive Scanning, a été conçu pour utiliser des informations de la
couche physique, telles que le taux de charge et la puissance mesurées dans
chaque canal. En utilisant ces informations, le mobile est capable de sélec-
tionner la meilleure séquence de canaux et d’établir les valeurs de MinCT
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et MaXCT les plus appropriées pour recevoir les réponses dans chaque scé-
nario. Dans ce cas, nous implémentons l’algorithme dans le driver ath5k
pour Linux et nous expérimentons dans cinq scénarios de déploiement dif-
férents, pour comparer la performance de l’algorithme adaptatif face à des
stratégies de paramètres fixes. Nous observons dans ce cas qu’en utilisant
des informations de la couche physique, l’algorithme adaptatif peut iden-
tifier des canaux qui ont très probablement des points d’accès déployés et
utiliser des temps d’attente plus longues dans ces cas pour augmenter la
probabilité de recevoir des réponses.

Mécanisme de prise de décision pour les terminaux multi-domiciliés

Tel que nous avons montré dans l’étude d’évaluation de la diversité des dé-
ploiements sans fil, il existe actuellement un potentiel pour une utilisation
simultanée des interfaces réseaux. Pour cela, l’utilisateur doit définir des
mécanismes de sélection des réseaux visant à exploiter la diversité des inter-
faces. Typiquement, ils existent deux types de mécanismes pour la sélection
des réseaux, ceux orientés à déterminer le meilleur réseau pour basculer
tous les flux d’application (i.e., le cas du handover vertical) et ceux orientés
trouver la répartition des flux la plus optimal entre les différentes interfaces
réseaux (i.e., le cas de la multi-domiciliation). Des différentes solutions ont
été proposées dans la littérature qui définissent des mécanismes de décision
pour le handover vertical. Ces solutions peuvent être basés sur des algo-
rithmes de prise de décision multicritères (MADM) en utilisant des critères
très divers (e.g., QoS, profil des utilisateurs, état des interfaces) ou sur des
mécanismes de décisions modelés comme des problèmes d’optimisation multi-
objectifs. Cependant, dans ces solutions, les problèmes sont suivant sim-
plifiés en utilisant des informations de haut niveau visant à établir des
préférences des différents critères/objectifs lors de la prise de décision. Ces
informations de haut niveau sont traduites par des poids, qui indiquent une
mesure subjective de la préférence. L’utilisation des poids réduit la complex-
ité du problème à une seule dimension et empêche à l’utilisateur d’évaluer
le compromis qui existe entre des différents critères/objectifs contradictoires.
Nous observons aussi que dans les solutions existantes, un nombre très im-
portant de critères est utilisé pour la prise de décision, ce qui augmente
la complexité du mécanisme car dans ce cas, le dispositif doit surveiller
plusieurs paramètres au même temps.

En particulier, la consommation énergétique est parfois considérée comme
un critère pour la prise de décision. Typiquement un coût énergétique con-
stant est attribué à chaque interface réseaux. Cependant, la consommation
d’une interface dépend fortement de la façon dans laquelle elle est utilisée,
i.e., des caractéristiques des flux applicatifs transportés par chaque interface.

Nous proposons un mécanisme de sélection des réseaux visant à attribuer
les différents flux sur des interfaces disponibles. Nous modélisons ce mé-
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canisme comme un problème d’optimisation multi-objectifs qui considère
deux aspects: l’énergie consommée par les interfaces et l’écart entre la de-
mande de bande passante des applications et la capacité disponible des inter-
faces. D’autre part, pour éviter la subjectivité dans la prise de décision, nous
n’utilisons aucun poids pour les objectifs mais des algorithmes génétiques
capables d’obtenir des solutions optimales en évaluant chaque solution sur
plusieurs objectifs au même temps grâce au critère de non-dominance.

Nous évaluons notre approche par simulation (en utilisant le framework
pour optimisation multi-objectifs PISA [65]) et nous faisons des compara-
isons face à des mécanismes de combinaison de poids type MADM (tels
que Simple Additive Weighting ou Multiplicative Exponential Weighting).
Nous observons qu’en utilisant des algorithmes génétiques, il est possible
d’obtenir plusieurs solutions optimales qui mettent en évidence le compro-
mis existant entre les deux objectifs proposés. Nous observons aussi dans
nos résultats de simulation que pour les problèmes qui concernent plusieurs
applications à attribuer, notre approche permet d’obtenir des solutions plus
rapidement qu’en faisant une recherche complète avec des algorithmes basés
sur des poids, avec une bonne approximation aux solutions optimales.

conclusion

L’environnement sans fil actuel se caractérise par une diversité de technolo-
gies. Ces technologies ont été déployées dans les dernières années visant à
fournir un accès Internet sans fil à haut débit pour les utilisateurs mobiles.
En particulier dans ces dernières années, les réseaux communautaires basés
sur IEEE 802.11 ont été déployés par des abonnes résidentielles ADSL, en
créant des réseaux omniprésentes en milieu urbain. Cela ouvre la possibilité
aux utilisateurs multi-domiciliés d’exploiter la diversité des réseaux d’une
façon « Always Best Connected ».

Toutefois, dans un tel environnement hétérogène sans fil, il y a encore
quelques limitations qui empêchent les utilisateurs mobiles d’exploiter pleine-
ment la diversité des réseaux. Tout d’abord, comme nous l’avons montré
dans l’étude d’évaluation de la diversité des réseaux réalisé avec la plate-
forme Wi2Me, même s’il y a une forte densité des réseaux sans fil (IEEE
802.11 et les réseaux cellulaires) dans les zones urbaines, la faible intégra-
tion des déploiements des différentes technologies empêche les opérateurs
de fournir une mobilité transparente à travers les différentes technologies
réseau, et plus particulièrement entre les différents points d’accès IEEE 802.11

des différents opérateurs. D’autre part, nous avons également montré dans
notre étude d’évaluation qu’il existe une grande complémentarité des réseaux
IEEE 802.11 et les réseaux cellulaires dans le milieu urbain, permettant à
l’utilisateur mobile de communiquer avec plusieurs interfaces sans fil à tout
moment. Cependant, il existe actuellement un manque de mécanisme de
sélection des réseaux pour permettre l’utilisation simultanée de plusieurs in-
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terfaces (généralement WLAN et les réseaux cellulaires), afin de maximiser
l’exploitation de la diversité sans fil.

Dans cette thèse, nous nous sommes concentrés sur les deux limitations
mentionnées ci-dessus. Après avoir fourni une étude d’évaluation des réseaux
sans fil actuels dans les zons urbaines nous avons d’abord analysé les lim-
itations de la mobilité et, en particulier, le processus de découverte dans
la norme IEEE 802.11. Nous avons montré que les optimisations actuelles
de l’algorithme de scanning actif dans IEEE 802.11 ne considèrent pas le
compromis entre la latence du processus et les points d’accès découverts
dans la topologie. Nous gérons ce compromis en proposant un ensemble
d’algorithmes de scanning adaptatifs, qui visent à définir les paramètres
les plus appropriés pour chaque canal. Nous avons implémenté deux algo-
rithmes adaptatifs sur des pilotes open-source IEEE 802.11 et nous avons pro-
posé une évaluation expérimentale dans deux bancs d’essai différents, afin
de comparer les algorithmes adaptatifs contre des algorithmes à paramètres
fixes. Les résultats montrent que l’utilisation d’une stratégie d’adaptation
permet de mieux gérer le compromis entre la latence et la découverte de
topologie, c’est à dire, pour une latence donnée, un algorithme adaptatif est
capable de découvrir un plus grand nombre de points d’accès.

La deuxième contribution de cette thèse a porté sur le processus de prise
de décision pour la sélection des réseaux dans un contexte multi-domicilié.
Dans ce cas, nous considérons qu’un utilisateur mobile doit décider com-
ment attribuer les flux applicatifs différents pour les interfaces disponibles.
Cela diffère des mécanismes existants de sélection des réseaux, qui se con-
centrent principalement sur le soutien à la prise de décision pour handover
vertical, afin d’optimiser un ensemble de critères (par exemple, la qualité
de service, le coût, la sécurité, l’énergie). Nous considérons particulièrement
la consommation d’énergie des interfaces sans fil comme un critère pour
la prise de décision. A différence des mécanismes de sélection des réseaux
existants, dans lesquels l’énergie est considérée comme un coût fixe asso-
cié à chaque interface, nous prenons en compte la consommation d’énergie
d’une manière fine. Dans ce cas, nous utilisons des modèles de trafic pour
estimer la quantité d’énergie consommée par l’assignation d’un flux sur
une interface. Nous modélisons le problème d’assignation des flux comme
un problème d’optimisation multi-objectif et nous cherchons des solutions
en utilisant des algorithmes génétiques. En tant qu’objectifs, nous consid-
érons la minimisation de la consommation d’énergie des interfaces et de
l’insatisfaction de bande passante qui est généré lorsque la bande passante
demandée par les applications dépasse la bande passante disponible des
interfaces. Nous évaluons notre mécanisme par simulation, en prenant en
compte des différents scénarios qui correspondent à des différents types
d’applications et de caractéristiques des interfaces. Les résultats des simu-
lations montrent que la résolution du problème avec des algorithmes géné-
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tiques fournissent une vue complète du compromis entre les différents ob-
jectifs.

Il y a encore un certain nombre de questions ouvertes dans le contexte de
la mobilité et de la gestion de la multi-domiciliation dans les réseaux sans fil
hétérogènes. Même si nous pouvons assurer une latence de handover faible
et une assignation optimale des applications, nous avons observé que dans
les dispositifs actuels, il y a encore des limitations qui dégradent l’expérience
des utilisateurs. Tout d’abord, les dispositifs mobiles utilisent généralement
une seule interface réseaux à la fois. Toutefois, cette limitation peut être sim-
plement remédié en modifiant les politiques implémentés dans le système
d’exploitation et en mettant en œuvre un protocole de multi-domiciliation
(shim6, HIP). Deuxièmement, nous avons constaté que les dispositifs actuels
ne sont pas réactifs aux changements dans l’environnement sans fil, c’est
à dire qu’il n’y a pas des algorithmes de déclenchement intelligents afin
de déterminer si la situation actuelle se dégrade et que le dispositif a donc
besoin de s’adapter à cette nouvelle situation. Dans ce cas, le mobile doit
découvrir des nouveaux réseaux et calculer l’attribution des flux las plus
optimal. Nous travaillons actuellement dans un algorithme d’anticipation
sur Android qui surveille l’évolution à court terme du signal avec le point
d’accès pour déclencher le processus adaptatif de découverte (comme ceux
que nous avons proposé dans cette thèse). En ce qui concerne la sélection
des réseaux, nous avons évalué les processus de décision déclenchés par
l’utilisateur (par exemple, lorsque des nouvelles applications sont exécutées).
Dans ce cas, nous n’avons pas considéré ce processus étant déclenchée par
une modification de l’environnement sans fil. Dans le futur, cette situation
pourrait être considérée afin de concevoir des déclencheurs plus efficaces
pour le processus de prise de décision.
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2G Second Generation Wireless Network
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3G Third Generation Wireless Network

4G Fourth Generation Wireless Network

AAA Authentication, Authorization and Accounting

ABC Always Best Connected
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ADA Adaptive Discovery Algorithm
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GSM Global System for Mobile Communications

HIP Host Identity Protocol

HSDPA High Speed Downlink Packet Access

HSPA+ Evolved High Speed Packet Access

HSPA High Speed Packet Access
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MS Mobile Station
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NSGA Non-dominated Sorting Genetic Algorithm
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QoS Quality of Service

RADIUS Remote Authentication Dial-In User Service
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RWND TCP Receiver Window
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SSID Service Set Identifier
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TDMA Time Division Multiple Access

TIM Traffic Indication Map

TOPSIS Technique for Order Preference by Similarity to Ideal Solution

TU Time Unit

UMTS Universal Mobile Telecommunications System

USRP2 Universal Software Radio Peripheral

VoIP Voice over Internet Protocol

VPN Virtual Private Network

WCDMA Wideband Code Division Multiple Access
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WPAN Wireless Personal Area Networks

WPA Wi-Fi Protected Access

WSN Wireless Sensor Networks

WiMAX Worldwide Interoperability for Microwave Access
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