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Abstract

This thesis investigates the origin of spontaneous activity in the uterus. This organ
does not show any activity until shortly before delivery, where very fast and efficient
contractions are generated. The aim of this work is to provide insight into the origin of
spontaneous oscillations and also on the transition from asynchronous to synchronized
activity in the pregnant uterus.

One intriguing aspect in the uterus is the absence of any pacemaker cell. The organ
is composed of muscular cells, which are excitable, and connective tissue with cells
whose behavior is purely passive. None of these cells, taken in isolation, spontaneously
oscillates. We develop an hypothesis based on the observed strong increase in the
electrical coupling between cells in the last days of pregnancy. The study is based
on a mathematical model of (muscular) excitable cells, coupled to each other on a
regular lattice, and to a fluctuating number of passive cells, consistent with the known
structure of the uterus. The two parameters of the model, the coupling between
excitable cells, and between excitable and passive cells, grow during pregnancy.

Using both a model based on measured electrophysiological properties, and a
generic model of excitable cells, we demonstrate that oscillations can appear spon-
taneously when increasing the coupling coefficients, ultimately leading to coherent
oscillations over the entire tissue. We study the transition towards a coherent regime,
both numerically and semi-analytically, using the simple model of excitable cells.
Last, we demonstrate that, the realistic model reproduces irregular action propaga-

tion patterns as well as the bursting behavior observed in the in-vitro experiments.

Keywords: uterine myocyte model, excitable media, gap junction coupling, syn-

chronization, uterine contraction



Résumé

Cette these étudie I'origine de l'activité spontanée dans I'utérus. Cet organe n’a au-
cune activité jusqua la délivrance, ou les contractions rapides et efficaces sont générés.
Le but de ce travail est de fournir un apergu de l'origine des oscillations spontanés et
de la transition de 'activité asynchrone a synchronisé dans 'utérus gravide.

Un aspect intéressant de I'utérus est ’absence de pacemaker. L’organe est composé
de cellules musculaires, qui sont excitables, et conjonctives, dont le comportement est
purement passif, aucune de ces cellules, pris isolément, oscillent spontanément. Nous
développons une hypothese basée sur 'augmentation grande du couplage électrique
entre les cellules observée pendant la grossesse. L’étude est basée sur deux modeles
des cellules excitables, couplé a ’autre sur un réseau régulier, et un nombre variable de
cellules passives, en accord avec la structure connue de I'utérus. Les deux paramétres
du modele, le couplage entre les cellules excitables, et entre les cellules excitables et
passive, croissent pendant la grossesse.

En utilisant les deux modeles, nous démontrons que les oscillations peuvent ap-
paraitre spontanément lorsque 1'on augmente les coefficients de couplage, conduisant
finalement a des oscillations cohérentes sur I’ensemble du tissu. Nous étudions la
transition vers un régime cohérent, a la fois numériquement et semi-analytique, en
utilisant le modale simple des cellules excitables. Enfin, nous montrons que le modele
réaliste reproduit irréguliers modes de la propagation d’action potentiels ainsi que le

comportement de bursting, observé dans les expériences in vitro.

Mots-clefs: modele myocyte utérin, milieux excitable, couplage du jonction gap,

synchronisation, contraction utérine
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Chapter 1

Introduction

1.1 Rhythmic activities in biology

Oscillations are ubiquitous in biology [1]. Many biological processes in living systems
are performed in the form of oscillations with periods spanning more than ten orders
of magnitude, ranging from a fraction of a second in neurons up to tens of years in
ecology [1, 2, 3]. Rhythmic activities are of special importance to living animals.
Lacking of normal rhythmic activities or disruption of the rhythmic processes beyond
the normal bounds is usually related to diseases. The jet lag, a loss of normal circa-
dian rhythm caused by jet travel across multiple time zones, usually causes daytime
sleepiness, decreased alertness, loss of concentration, impaired performance, fatigue,
irritability, disorientation, depressed mood and gastrointestinal disturbance [4]. Dis-
ruptions of cardiac rhythmic contractions lead to a sharp decrease of the pressure that
pumps blood throughout the body. This is the leading cause of death, at least in the
industrialized world.

Because of potential clinical applications, the investigation of the origin and dy-
namics of the rhythmic activities has attracted research efforts not only from physi-
cians and experimental physiologists, but also from mathematicians and physicists.
Experimentalists have revealed that most of the spontaneous oscillations in living an-
imals are initiated by special agencies, capable of generating spontaneous oscillations.
For example, the rhythmic contractions of our heart is triggered by the sinoatrial
node [5]; the animal locomotion is controlled by a central pattern generator, which
is an intraspinal network of neurons capable of generating a rhythmic output [6]; the
circadian rhythm is controlled by suprachiasmatic nucleus (SCN neurons) [7], etc.
Mathematical results show that nonlinear equations are capable of describing the
physiological systems. After the milestone work of Hodgkin and Huxley [8], mod-
els that capture qualitatively and even in some cases very quantitatively complex
physiological processes have been proposed. In the case of cardiac electrophysiology,
models capture with an ever increasing accuracy the electric phenomena occurring
in the heart [9, 10, 11, 12, 13]. These computational descriptions have considerably
improved our understanding of the mechanisms of cardiac arrhythmias, and may even



lead to progress in developing treatments [14].

Rhythms in many organs is in fact imposed by a group of specialized cells, also
known as pacemakers, which generate action potentials spontaneously. In the heart,
the main pacemaker is the Sino-Atrial node, which consists of spontaneously oscillat-
ing cells. In smooth muscles, the Interstitial cell of Cajal have been shown to play
the role of pacemakers. Example include the ureter [15, 16] or the bladder [17].

Among the tissues that spontaneously oscillate, due to the presence of specialized
pacemaker regions, the uterus seem to have a different status: so far, the cells that
constitute the uterus have not been found to oscillate spontaneously, when taken in
isolation. Yet, the organ does produce very strong contractions during the late stage
of pregnancy, leading to the expulsion of the new-born !

1.2 Towards understanding uterine contractions

The uterus is a unique organ. Although it stays quiescent most of the time, it generates
forceful contractions necessary for the expulsion of the mature fetus at term. Like
in the heart and other smooth muscle assembles, the contractions are triggered by
electrical activity in the form of action potentials [20, 21, 22]. As illustrated in Fig.1.1,
the duration and the frequency of action potentials determine the amplitude and the
strength of the contractile force in smooth muscle cells [23]. However, the precise
mechanism responsible for the transition from a quiescent uterus during most of the
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Figure 1.1: The relationship between force and membrane potential in ureter smooth
muscle. (a) Simultaneous recording of force (top), [Ca*"]; (middle) and membrane
potentials Em (bottom) in strips (5mm in length) of guinea-pig ureter [18]. (b) Simul-
taneous recording of force and membrane potentials in a human uterine myocyte [19].



pregnancy, to a rhythmically contracting muscle at the onset of labour remains to be
fully understood. A good understanding of this issue has potentially a very significant
clinical impact. In fact, as shown in Fig. 1.2, preterm contractions occur in about 10%
of all pregnancies [24] and had a tendency to increase during the last two decades. This
in turn is the cause of approximately a third of all infant deaths in the USA [25]. And
the surviving premature infants are more likely to suffer from neurological disabilities,
whose cost has been estimated in the US to $26 billions each year [26]. In this context,
the lack of a precise understanding of the mechanism of contractions of the uterine
tissue is a serious impediment to the development of appropriate treatments.
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Figure 1.2: Birth rates at 34, 35, 36, and total 34 to 36 weeks of gestation: United
States, 1990-2006. Figure replotted from Ref. [24]

1.2.1 Absence of pacemaker cells in uterus

So far, the efforts aimed at understanding the origin of uterine contractions have
remained inconclusive. Despite several attempts, cells with an unambiguous pace-
maker role have not been found in the uterus [27, 28]. The Interstitial Cajal like cells
(ICLCs) closely related to the Interstitial Cajal cells acting as pacemaker in other
smooth muscle, such as the rabbit urethra [29, 16], have been thought to play the
role of pacemaker cells in uterine tissue. However, in the uterine tissue, ICLCs have
been proven to be electrically passive, and has even been argued to actually inhibit
electrical activity [30, 16]. It has therefore been suggested that the spontaneous elec-
trical behavior exhibited in the uterus is an inherent property of the smooth-muscle
cells within the myometrium [23]. Young et al. however pointed out that the myocyte
alone can not be responsible for generation of contraction forces and passage of action
potential [31], suggesting that some other aspects should been examined.

The observation that uterine contractions propagate generally from the fundus
toward the cervix during active labor [32], which facilitate the expulsion of the fetus,



suggests that although there may not be a specific type of individual pacemaker cell,
there may be general pacemaker regions later in gestation [23]. This prompts the
detailed investigation of the eletrophysiological changes occurring throughout preg-
nancy.

1.2.2 Uterine electrophysiological changes during pregnancy

Important hint concerning the cause of the spontaneous oscillations have been pro-
vided by the thorough investigations of the physiological changes occurring in uterine
tissue throughout pregnancy, resulting in modification of the electric activity [20], in
particular shortly before delivery. In fact, several important physiological changes
have been reported. The first obvious set of changes occurring during pregnancy con-
cern merely the morphological aspects of the uterus. The tissue has to enlarge to
accommodate the growing fetus, resulting in an enlargement from 70g to 1750g in
humans [31]. This is accompanied by the growth of single cell surface area by a factor
approximately 4 [33]. Consistent with the observed hypertrophy of the uterus, the
cell capacitance increases as the pregnancy progresses. In rat uterus, the membrane
capacitance (), has been observed to increase by a factor 4 during the course of the
pregnancy [33].

Electrophysiological recordings have shown changes, both for the outward (potas-
sium) and for the inward (Sodium, Calcium) transmembrane currents [33, 34]. In-
vitro experiments on rat uterus show that the maximum value of the current through
sodium channels increases by a factor slightly less than 2: the recorded peak sodium
current for non-pregnant uterine myocytes is about 2.8uA/cm? and grows to about
5.1uA /cm? for late-pregnant myocytes [33]. Similarly, important changes are also ob-
served for Calcium channel: the peak Calcium current decreases from approximately
5.7uA /cm? for non-pregnant to about 3.4uA/cm? for late-pregnant myocytes [33].
Significant changes in the myocyte resting potential have also been observed, which
increases from a value close to —70 mV at the beginning of pregnancy, to -55 mV at
middterm [35].

However, none of the above mentioned changes in the electrophysiological proper-
ties of the myocytes is sufficient to lead to a spontaneous electrical activity. For this
reason, it has been suggested that the primary control of the electrical activity of the
uterus may not be due to the myocytes themselves [31].

In comparison to the electrophysiological changes reported during pregnancy, the
increase in the expression of gap junctions during late pregnancy turns out to be
even more dramatic. The fractional area of gap junctions, defined as the ratio of the
membrane area occupied by gap junctions and the total membrane area, has been
observed to increase by a large factor, up to 20-fold, from 0.01 to 0.23 in the rat
uterus [36]. Further, increase of gap junctional conductance from 4.7nS at normal
preterm to 32 nS during delivery has been observed [37].

It is believed that the dramatic formation of gap junction is closely related to the
secretion of hormones [38]. The progesterone, secreted from the corpus luteum in



the ovary, inhibits the uterine contractions at early pregnancy. Toward the end of
pregnancy, the sharp increase of secretion of estrogen from the placenta overcomes
the effect of progesterone, and causes uterine muscle fibers to form gap junctions
with one another. This process is now thought to be related to the secretion of
corticotropin-releasing hormone (CRH), a clock that establishes to timing of
birth. Women who have higher levels of CRH earlier in pregnancy are more likely to
deliver prematurely [38].

1.2.3 Modeling uterine activities

Modeling approach has shown its power in improving our understanding of neural
science and the mechanism of cardiac diseases. In trying to understand how the
uterus is functioning, it has been proposed that detailed mathematical models, aimed
at predicting the experimentally observed phenomena, need to developed [39]. In
the absence of enough experimental information at the cellular level, several attempts
have been made to model uterine contractions using a more global point of view. This
approach had proven to be very fruitful in the heart [40]. In 1995, Andersen et al.
modeled the uterine contraction waveforms, by assuming each uterine cell is a contrac-
tile element and there are pacemaker cells initiating the rhythmic activities [41]. Two
years later, Young et al. improved this model by considering a double-signaling mecha-
nism, the action potential propagation and the intercellular calcium waves [32]. These
early contributions postulated the presence of pacemaker cells, as well as contractile
elements in the uterus. These assumptions have never been verified experimentally,
which has been a very serious impediment in efforts to model the uterus contractions
in the 1990s.

In the spirit of the description of Hodgkin-Huxley giant axon model, it is custom-
ary to develop models, based on the properties of single cells, which can be inferred
by integrating biophysical information from experimental facts. Important results
concerning the electrophysiology of uterine myocyte were obtained in the 1990s; the
results of references [33, 34, 42] still provide important information to build a model
of uterine myocytes. In 2009, a realistic model that incorporates the main ion cur-
rents based on experimental findings was proposed by Rihana et al. [43]. In 2011,
with the help of more accurate experimental data, Tong et al. developed a model
which reproduces very well the recorded uterine electrical activity [44]. The appli-
cations of electromyography (EMG) [45] and magnetomyography (MMG) [46] enable
the spontaneous recording of the electrical and mechanical activities, and has revealed
the relations between action potentials and the contractile force [23]. Based on this
information, a model describing the relation between action potential and the me-
chanical force has been proposed [47]. This very significant progress has not provided
an answer to the question concerning the origin of the electrical activity in the uterus
observed before delivery.



1.3 Anatomical description of uterus

The human uterus is a single, hollow, pear-shaped organ with a thick muscular wall;
it lies in the pelvic cavity between the bladder and rectum. The nonpregnant uterus
varies in size depending on the individual but generally is about 7 cm in length, 3 to
5 cm at its widest (upper) part, and 2.5 to 3.0 cm thick, but it enlarges by a factor
of four or five during pregnancy [48]. This enables the uterus to receive the fertilized
ovum and to provide accommodation for its development until birth.

The uterine wall is composed of three distinct layers in most species: an inner
layer, the endometrium, that lines the lumen of the organ, an intermediate layer,
the myometrium, and an external layer, the perimetrium. The perimetrium is the
serosal or peritoneal layer that covers the body of the uterus and supravaginal part
of the cervix posteriorly and the body of the uterus anteriorly. The myometrium
is the contractile elements of the uterus. It is believed the expulsive efforts of the
term-pregnant human uterus are the result of coordinated contractions of the 100

Figure 1.3: Electronmicrographs of human myometrium. Smooth muscle cells are
lebaled as sm. Long slender ICLC contains numerous mitochondria (m in A) and
makes close contact with a smooth-muscle cell (arrow heads in B). Original magnifi-
cation A: x 11200; B: x12 000; and C: x 48000 . Extracted from [27]
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Figure 1.4: Schematic drawing of the Distribution of ICLCs in the human uterus
wall. Relative ICLCs density: ~ 18% immediately under the epithelium, ~ 9% in the
lamina propria thickness, and ~ 7.5% in the musculaires. Replotted from Ref. [30].



billion smooth muscle cells (myocyte) in the myometrium [49]. Microanatomical in-
vestigation reveals four distinct structural elements: cylindric, sheet-like, fiber, and
communicating bundles [49]. These structures merge with each other and potentially
form an interlacing network, connecting the vast majority of the myocytes of the
uterus in a contiguous pathway.

The myometrium is inhomogeneous, consisting of bundles of smooth muscle cells
separated by thin strands of connective tissue that contain fibroblasts, Interstitial
Cajal-Like Cells (ICLCs) etc., as illustrated in Fig.1.3. The muscle cells (uterine
myocytes) compose the majority of the uterus wall. These cells are generally long,
spindle shaped, with a length of 30 to 50 pym in a non-pregnant uterus, but dur-
ing pregnancy, they hypertrophy to reach lengths of 500 to 600 pm or greater [33].
The increase in size goes together with an increase of membrane capacitance from
25pF to 120 pF. Among the connective cells, the ICLCs have the largest population.
They have been identified both in the uterus of rats and human [27], with a popula-
tion of ~10% (ratio between the number of ICLCs to that of the total cell number
in a uterus) [33, 27, 30]. In human uterus, the ICLCs density is about 100 — 150
cells/mm?. These cells scatter in the entire organ (see Fig.1.4), contributing ~18% of
the cell population immediately underneath the mucosal epithelium, and ~ 7.5% in
muscularis [30]. In shape, ICLCs are irregular, having multiple projections and/or a
spider-like appearance. These spider-like appearance forms close connection with the
surrounding myocytes [27, 30], as shown in Fig.1.3B.

1.4 Coupling induced oscillations

The increase in gap junctional coupling (due to increase in number of junctions as well
as the conductance of the junction) is one of the most spectacular electrophysiological
changes observed close to delivery. This increase suggests a prominent role of the
coupling in the spontaneous appearance of electrical activity. In addition it has been
shown that a reduced expression of connexin 43 (the components of gap junction
proteins) in transgenic mice leads to a significantly delayed partutrition [50]. More
spectacularly, it has been observed that disruption of the gap junctions by chemical
means immediately inhibit the oscillatory uterine contractions [51, 52, 53]. The two
former observations provide strong evidence that the gap junctional coupling plays a
very significant role in the appearance of a coordinated electrophysiological activity
in the uterus.

The recent numerical observation that coupling an excitable cell, whose behavior
is similar to a myocyte, with a passive cell can lead to oscillations [54, 55|, even
though none of the two cells are oscillating, is particularly important in the context
of our study. In cardiac tissue, physiological studies have revealed that gap junctions
do couple myocytes to fibroblasts, which behave passively [56]. As shown in Fig.1.5,
the smooth muscle cells, marked by red dye, are in direct contact to one or more
fibroblasts in-situ.



Figure 1.5: Fibroblast—myocyte interrealtion in the heart. Scale bars are 20pum in
A, C, and D, and 10um in B. M indicates myocyte; F, fibroblast. Replotted from
Ref. [56].

In the uterus, would the coupling between myocytes and connective tissues be
responsible for the initiation of the uterine spontaneous oscillations? Numerical
work [54, 55] suggesting that the coupling between myocytes and passive cells can
lead to oscillations was based on the study of very simplified ("generic") model of
myocytes. It suggests that the qualitative results should also apply to a precise de-
scription of the uterine cells. Still, it remains to check quantitatively whether, and
how, the qualitative conclusions of simplified models apply. As explained in Section
1.2.3, the newly available electrophysiological models [44, 43] provide a new opportu-
nity to investigate the question.

1.5 Synchronizations

A biological tissue usually contains numerous functional elements. Its proper function-
ing requires a coordination of events of all its components, i.e., all the elements need
to be synchronized. In the case of the heart, a coordinated contraction is necessary to
pump blood throughout the body. This is achieved by a synchronized contraction of
the muscle cells. Lack of synchronization can lead to ventricular fibrillation [57, 58],
which is the origin cardiac arrhythmias, a major cause of mortality. In human uterus,
the mere existence of oscillating cells in the uterus is not enough to give rise to strong
oscillations. To successfully expel the fetus, a coherent contraction of 100 billion
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smooth muscle cells is required [49].

In fact, synchronization phenomena are ubiquitous nature. Studies in the attempt
to understand how synchronization is achieved, have been carried out in the fields of
physical, chemical and biological systems [59, 60, 61]. Usually, the systems mostly
studied are only with one single type of elements: oscillatory [62] or excitable [63, 64].

In practice, in natural circumstances, the nonlinear oscillators constituting the
system are not all strictly identical. As an example, the heart contains oscillatory
(pacemaker) cells, excitable cells (myocytes), and passive cells (connective tissue,
such as fibroblasts). The interactions of these elements generate different forms of co-
herent behavior: synchronous regime [59] and spiral waves [65, 66] have been observed
experimentally. Much work has been devoted to heterogeneous system. Numerical
studies have been carried out in ensembles of oscillatory and excitable elements [67]
and ensembles of oscillatory and passive elements [68]. However, little has been done
to reveal the mechanisms of synchronization in ensembles of excitable and passive
elements. In these systems, no pacemaker cell exists. The mechanisms of synchro-
nization in systems without pacemakers are of general interest, in the uterine context,
as in possibly many others.

1.6 Main work of the thesis

The main objects of the thesis are to investigate, using a modelling approach, the
hypothesis that the coupling between myocytes and passive cells can generate oscil-
latory behavior and to understand the mechanisms of transition from asynchrony to
synchronized state by means of local interaction in a media without any coordinators,
which are reminiscent to the appearance of forceful contractions in the uterus during
pregnancy.

The thesis contains three parts. The first part focuses on the role the gap junction
coupling in inducing uterine contractions using a more realistic model. To complete
this analysis, a detailed investigation of different ionic channels and the construction
of an uterine myocyte model are needed, which is the main focus of Chapter 2. In
Chapter 3, the role of coupling is investigated using both FHN and the uterine myocyte
model.

In the second part, we extend our discussion to tissue level (2D-uterine model)
and focus on the mechanisms of transition from asynchrony to coherent state observed
in uterus during pregnancy [69]. To make our discussion more general, we use the
FitzHugh-Nagumo model and verify it with the realistic model in this part. Chap-
ter 4 is devoted to an exploration of the different dynamical regimes observed by the
increase of coupling strength, and to verifying the results using the realistic uterine
model. Chapter 5 discusses the large fluctuations of the observed regimes and gives
a qualitative explanation of the system size dependence of the observed dynamical
regimes. The last part presents our conclusions, and discusses several potential new
research directions.



Chapter 2

Description of smooth muscle cells

2.1 Overview of Hodgkin-Huxley model

Our understanding of neurons is based on the seminal work of Hodgkin and Huxley,
which laid the ground for the modeling of the ionic channels and of the propagation
of action potentials along nervous fibers [70, 71, 72, 8, 73]. For this outstanding
work, Hodgkin and Huxley were awarded in 1963 the Nobel Prize for Physiology and
Medicine.

The essential idea of the model is that the electrical properties of the cell’s mem-
brane can be modeled by an equivalent circuit of the form shown in Fig.2.1. The
membrane potential, V,,, is defined as the difference between the internal and exter-
nal potential across the cell membrane. The changes of the membrane potentials are
the direct consequences of fluxes of ions through ion channels, represented by the ac-
tive elements in Fig.2.1, which in turn lead to the charge of the membrane capacitance
(denoted by C,,).

The giant squid axon, initially studied by Hodgkin and Huxley, has two main ionic
channels, carrying sodium and potassium, in addition to a "leakage" channel. Using
Ohm’s law, it is straightforward to write the equations describing the evolution of the
membrane potential:

dv,,
m ]ion - Iex 2.1
C T + t (2.1)

In Eq.(2.1), the convention is that a positive inward current flowing through ionic
channels are counted as negative. Thus, a negative current tends to depolarize the
cell, i.e., to increase the value of the membrane potential. Note that in contrast,
external current I injected in the cell is counted as positive.

The total ionic current I, is the sum of currents due to the various ionic channels:

Iion = ]Na + IK + ]L

2.2
= Gna(Vin — Exa) + Gk (Vin — Ex) + GL(Vi — EL) (2:2)

where G; represents the conductance and FE; the equilibrium potential of each chan-

11
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Figure 2.1: Equivalent electrical circuit of squid giant axon membrane proposed by
Hodgkin and Huxley. C,, represents the membrane capacitance, G; and E; represent
the voltage-dependent conductance and the equilibrium potential of different ionic
channels (Hodgkin and Huxley [73]).

nel, and 7+ =Na, K and L. The conductance G; has been demonstrated to be voltage
dependent, except the leakage channel, which is set to be a constant, describing the
effect of chloride ions. Each individual channel contains a small number of physiolog-
ical gates, which allows ions enter to and exit from the cell. An individual gate has
two states called active and inactive, i.e., open and close, regulated by the membrane
voltage. At a particular potential, one active gate will contribute to a fraction the
total conductance, while the inactive will not. Thus the conductance can be seen as
being proportional to the product of the probability of each gate to be open.

Hodgkin and Huxley described the currents with the help of three variables: m
and h, which describe, respectively, the states of active and inactive gate of the sodium
channel: Gx, = gnam?®h, and n, which describes the state of active gate of potassium
channel: Gk = ggn*. The different powers of the gating variables count the number
of activating and inactivating gates in the channel. The values of the number of
gates depend on channel types as well as on animals. In the giant squid axon, it has
been demonstrated that there were three activating and one inactivating gates in the
sodium channel, and four activating gates and no inactivating gate in the potassium
channel.

In the previous expressions, g; represents the maximum conductance when the
gate is open. The gating variables, m, h and n, describe the probability of opening of
the gates. Their dynamics are described by:

dt 7 (Vi)

x € {m,h,n} (2.3)
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Here z; is the steady state of = at the potential V,,, and 7., is the time constant of
the gate at potential V,,,. These two variables can be measured using voltage clamping
technique [74]: applying a holding potential, the membrane potential is maintained at
a constant value, which eliminates the capacitance current. The injected stimulating
current is equal and opposite to the total current [75]. By selectively blocking the
various channels, direct informations (z;,7,,) can be obtained on each channel.

After the model has been developed to describe the squid giant axon [73], the
Hodgkin-Huxley modeling approach has been applied to many other cells. In 1977,
Beeler and Reuter applied it to reconstruct the action potential of mammalian ven-
tricular myocaidial fibers [10]. With the later improving work by Lou and Rudy [12],
this model has been applied to cardiac tissue [67], and largely improved our under-
standing the mechanism of heart diseases [76]. In 1983, Chay et al. first introduced
the Hodgkin-Huxley model to the describption the pancreatic (3-cell [77]. Combining
the changes of the intracellular calcium concentration, this model unveiled the mech-
anism of bursting oscillations of the membrane potential observed in the pancreatic
(-cell.

The success of Hodgkin-Huxley model encourages biophysicists to construct mod-
els on different cell types, in the hope of gaining a better understanding of life. During
the last decade, several uterine myocyte models have been proposed, all of them are
based on the original Hodgkin-Huxley model [47, 78, 43, 44]. In the following, we pro-
pose such a model to describe uterine myocytes’ electrical activities using the most
developed works recently published [43, 44].

2.2  Model of a uterine myocyte: approach of Ri-
hana et al.

We began our study of uterine myocyte models with the work of Rihana et al. [43].
This model incorporates six main ionic channels in the description: the sodium (Na),
calcium (Ca), the potassium (K), the calcium activated potassium (K(Ca)) and the
leakage channel (L), as shown in Fig 2.2. As before, g; indicates the conductance of
each channel, and Fj; its reversal potential. The total current through the membrane
ionic channels reads as:

Iion :gCa(vm - ECa) + gNa(Vm - ENa)

24
T (Vi — Br) + gicccm (Vin — Ex) + g0 (Vin — E) 24

The dynamics of the membrane with an external stimulus current can be expressed
by the Eq. (2.1).

The description of the ionic channels is based on voltage clamp experiments, as
described in the previous section. Rihana et al. [43] incorporated the available ex-
perimental measurements reported in the literature, to build their models. However,
some information could not be found in the literature. To address this problem, Ri-
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Figure 2.2: (a) Uterine cell transmembrane current is divided into capacitive current
(I¢) and ionic current (I;y,). (b) Electrical activity is modeled by a simple electrical
circuit. ¢g; and F; indicate the conductance and the reversal potential of each channel.

hana et al. had to specify a number of (otherwise unknown) parameters. While the
results presented in Ref. [43] are reasonable, we never had access to all parameters
in their model. For this reason, we determined ourselves these parameters, using the
procedure described below, which is essentially based on the available experimental
results, as explained in the following sections. In the following, we will give a detailed
description of the sodium, calcium, potassium channels and the other channels.

2.2.1 Sodium Channel

The sodium current, Iy, flows inside the cell (inward current). In the spirit of the
Hodgkin-Huxley equation, we express this current as:

INa = GNahNam4Na(Vm - ENa) (25)

The fourth power of the gating variable my, is chosen because of the presence of four
activating gates in the sodium channel. Ey, is the sodium reversal potential, we take
Ena = 83mV/, for reasons explicated later (see page 17). The other parameters need
to be extracted from literature.

e Sodium gating variables
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The variation of each variable (m and h) can be expressed by a first order differ-
ential equation same as Eq. (2.3):

dmNa o mNaoo(vm) — MNa

= 2.
dt TmNa(vm) ( 6a>
tha hNaoo<Vm) - hNa
= 2.6b
dt (Vo) (2.6b)

Here 7,,n, and 7,n. are the relaxation time constants, which are voltage dependent.
Yoshino et al. [33] measured the time constants at different potentials for both acti-
vation and inactivation (see table 2.1 and 2.2).

Table 2.1: Activation time constant of Na channel

Vm(mV) | -20 | -10 0 10 | 20
Tm(ms) |0.39 | 0.32 [ 0.26 | 0.2 | 0.18

Table 2.2: Inactivation time constant of Na channel

Vm(mV) [ -10 | 0 | 10 | 20 | 30
Ta(ms) | 0.77 | 0.59 | 0.49 | 0.42 | 0.41

= Experimen
Fitting

¢ Experimen
Fitting

1.5¢
1]
£ 1
.
0.5¢
0 ‘ ‘ 0 ‘ ‘
-40 -20 0 20 40 -40 -20 0 20 40
V_(mV) V_(mV)
m m
(a) ativation time constant (b) inativation time constant

Figure 2.3: Time constants of sodium channel as function of the transmembrane
potential. ¢ and [J denote data extracted from the literature. Solid curves show the
fitting to the experimental data.
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By fitting this data with an exponential function, we obtain a simple expression
for the time constant of both activation and inactivation gating variables:

TomNa = 0.2598¢002Vm (2.7a)

ThNa = 0.5034e~0033Vm 4 .09 03V (2.7b)

as shown in Figure 2.3.
In Equation 2.6, myas and hnaee denote the activation and inactivation steady
states, both of which follow a Boltzman distribution.

1
MNaco = Ve —Vhy (28)
1+exp B e Ao
1
hNaoo = Vin—Viings (29)
1 4 exp — N

kNah

where the half activating (Vjy,,, ) and inactivating potentials (Vjx,, ) and their slopes
( FNan, Fna,) are given by Ref. [33], ie., Vi, = -21mV, ky,, = —5mV, Vina, =
-508.9mV, kn,, = 8.7mV, respectively.

e Sodium Conductance

To fully determine the current due to the sodium ions, we also need to know the
value of the maximum conductance Gy,. It is not given explicitly in any reference,
but we can extract this value by doing a set of in-silico voltage-clamp experiments
(see Fig.2.4) on Na-channel using different trial value of G,.

Membrane potential

5L ‘ ‘
250 0 50 100 e L-05
Membrane Potential(mV) (nA)

Figure 2.4: Comparison of voltage-clamp experiment on mathematical model and a
real cell. A, I-V relationship measured from the model, here we use the surface area
of the cell is 9000um? [33]. B, Experimental data in [33] fig.3(D).
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For comparison, we took the same voltages protocol as [33] and found that if we
set Gna = 0.31mS/cm?, the result of numerical experiment reproduces the four main
features described in [33], namely:

1. Ina first appears at ~-40mV;
2. Ina reaches a maximum at 0-10mV;

3. taking into account the morphometric surface areas, the peak current density is
Ina = 5. 1A/ em?;

4. Iy, reverses at 80-84mV, as shown in Fig.2.4.

Using the fourth feature, we derive Eyn, = 83mV. This model is further validated
by simulating a voltage-clamp experiment using the following voltage protocol: the
current is recorded by holding the membrane potential at —80mV for 10 ms, and step
increasing to (depolarizing to) 10mV. When we take into account the morphometric
surface area S (=9000um?) of the cell [33] (we used this value of S throughout this
work), its response is very close to a real cell, shown in Fig.2.5

0 {
2-0.1.
£ i
7
S l —ha |
-0.5+ —hetla | T l 0.1 nA
i0 20 30 40 10 ms

Time(ms)

(a) (b)

Figure 2.5: Validation of the theoretical model of Na channel. (a) Response of the
Na channel (red curve) when a voltage-clamp experiment is applied using the same
voltage protocol: holding potential at -80 mV and depolarizing to 10mV. (b) Real
experimental data(curve 2) from [33] .

2.2.2 Calcium Channel

I, is the main component of the inward currents in uterine myocytes. It has a slow
dynamics, and is present in all stages of pregnancy [33]. As it is the case for the Na
channel, I, is expressed by the following equation:

[Ca = Gcam%ahca(vm — Eca) (2.10)

Here mg¢, is Ca channel activating probability, hc, the inactivating probability, and
we assume that there are two activating gates for the Ca channel [43].
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e Calcium gating variables

Calcium channel is a little complicated. There are two types of Ca channel: the
L — type and T — type [79, 80]. Experimental studies demonstrate that the L-type is
the prominent component of /¢, found in rat uterus [33, 81]. In the model, we keep
only L — type channel, and neglect the T" — type current. As it was the case for the
Na channel, a first order differential equation describes the evolution of the gating
variables mc, and hgy:

dmCa . mCaoo(vm) — MCa

= 2.11
dt TmCa(Vin) (2.11a)
dhCa hCaoo (Vm) - hCa
= 2.11b
dt Thca(vm) ( )

To give a better description of the Ca channel, Yoshino [33] pointed out that the
inactivation in a myocyte should be fitted by two exponential terms. Following this
suggestion, we split Eq. 2.11b into two parts: fast inactivation hc,y and slow inactiva-
tion hcas, €ach of which follows Eq 2.11b. These two components of inactivation have
very different time constants, hence the denomination fast and slow. As we have not
been able to find any article stating that their steady states are different, we assume
hcafoo = Rcasoco = hcaso- Taking into account the different weight of each components
in the total inactivation, hc, is expressed as [33]:

hea = 0.380cas + 0.22hc,s + 0.06 (2.12)

where 0.06 is added to describe the small non-inactivating or very slowly inactivating
component.

— Calcium time constants
The time constants can be obtained by fitting the data found in [33]. For the
activation time constant, the data found are listed in Tab. 2.3. which we fitted with:

Table 2.3: Activation time constant of Ca channel

Vin(mV) | -10 0 10 | 20 | 30
Tmca(ms) | 2.16 | 1.82 | 1.62 | 1.47 | 1.37

Tnca = 0.64e” 004V 11,188 (2.13)

Eq.2.13 describes well the relationship between membrane potential and the time
constants. Similar method applied to Ca inactivating channel works out the fast
inactivation time constants:

Theap = —0.00061V,2 + 0.074V,> — 1.5V}, + 41 (2.14)
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Table 2.4: Fast inactivation time constant of Ca channel

Vin(mV) [-10] 0 | 10 | 20 | 30 40
Tmcaf(ms) | 64 | 42 |32 | 34 | 46 58

The measurements concerning the slow inactivation time constant,7j,c,s, are scarce.
It is found that 7j,c.s is voltage dependent (175 ms at —10 mV, 81 ms at +20 mV,
289 ms at +40 mV) [33]. We cannot define an exact equation only from this data.
Considering the fact that 7,c.s is small, we assume that it is a constant, and take the
same value as Rihana et al., 7,c.s = 160 ms.

— Calcium steady states
Calcium steady states mcaco, Acaso also follow the Boltzman distribution:

1
MCaco = —
1+ exp(ivmkcz}fam)
, - 1 (2.15)
€0 = T exp(ToVacn)

et al. studied the calcium channel of rat uterine myocyte and gave a half inactivation
potential V., = —34mV with a slope kg, = 5.4mV and a half activation potential
of Vhcam = —7.4mV with the slope of kc,, = —6.6mV. One year later, Shmigol et
al. [42] published results on the same cell, giving Vi, o, = —53mV, kcay, = 9.9mV and
Vicam = —27.0mV | kcam = —11mV. This deviation suggests a possible range of these
characteristic variables.

In the study here, we take: Vica, = —34mV, kcan, = 5.4mV for inactivation and
Vicam = —25.4mV, kca, = —7.6mV for activation, values in the range of the two
studies.

e [Ca®*]; Dynamics

Experiments have demonstrated the relation between the intra-cellular calcium
concentration, noted as [Ca*"];, and the electrical activity [82]. The rises in intracel-
lular concentration are essential for contraction in human myometrial smooth muscle
cells [19]. However, to achieve normal functionality, the concentration needs to be
maintained at a certain level in the form of oscillation [83, 84]. Several mechanisms
permitting the regulation of the calcium concentration have been identified [85, 86].
The sarcoplasmic reticulum(SR) absorb Ca*" and store it for later use, thus func-
tioning as a buffer to adjust (limit) the cytosolic Calcium concentration [85]. Taking
into account that calcium flux from calcium channels, the governing equation can be
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written as [77]:
247
d[C;tL = fo(—adca — kea[Ca?'];) (2.16)

where f, is the fraction of free [Ca]*" inside the cell which has values between 0.01and
0.001 [77], and « is a constant describing contribution of I¢, to the intracellular con-
centration. In view of the standard convention that ionic current is counted as positive
outwards, so the minus sign before a expresses the fact that a positive (outward) Cal-
cium current reduces the cytosolic Calcium concentration. According to [77], this
value is defined as a = %, where S and v are the area and volume of the cell, and
F is the Faraday Constant. With the morphological data of uterine myocyte found
in [33], we get @ = 4 x 10~°mol- em~'C~!. k, is the rate constant for the removal of
Ca®*, which is in the rang of 0.01 ~ 0.06 ms~'.

The change in the Ca?" will cause changes in the equilibrium potential of calcium

channel F¢,, which can be described by the Nernst equation [87]

RT . [Ca®f], 258 [Ca®'],
Ega = —1 = 1
Ca” " [Ca®']; 2 [Ca®t];

(2.17)
where [Ca®'], is the extracellular calcium concentration. Both [Ca®t], and [Ca®*];
are both expressed in mM, and FE¢, is expressed in mV. In all the work done here,
we assume the calcium extracellular concentration is constant(the value of [Ca®*],
changes relatively little compared to the intercellular Calcium concentration), We
take the value of [Ca®"], = 3 mM, as specified in vitro experiment [33] .

e (Calcium Conductance

The Calcium conductance, Gg, has not been documented in the literature. To
determine this value from the available experiments, we took f. = 0.005 and k¢, =
0.06 ms™!, according to the reported values by Chay et al [77] and simulate a set
of voltage clamp experiments with the Ca®" channel by applying the same voltage
protocols as Yoshino et al., i.e., holding the membrane potential at V;, = —60mV’, and
step depolarizing to different potential. The recorded peak calcium current is plotted
in Fig: 2.6 as open circles. For comparison, we also plotted the in—vitro experimental
data reported by Yoshino et al. [33]. We found that when we set G, = 0.135 mS/cm?,
the current voltage relationship of the model reproduces the three main features of
the channel published by Yoshino and collaborators [33]; see in particular the open
circles in Fig: 2.6. Namely, we find that

1. first current is detected at ~ - 30 mV;
2. maximum current is obtained at ~10mV;

3. maximum current is 5.67uA /cm?
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61 —e— Yoshino(\=-60mV) | |
—u— Shmigol(V, =-50mV)
—o— ModeI(Vh:—GOmV)
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8 -50 0 50 100
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Figure 2.6: Relation between the measured peak calcium current /¢, and membrane
potential in the model V,, in vitro experiments (filled symbols) and in the model (open
symbols). Circles, voltage clamping experiments using protocols same as Yoshino et
al [33]: Holding potential V}, =-60mV, step depolarizing to different high potentials.
Squares, voltage clamping experiments using protocols same as Shmigol et al [42]:
Holding potential V;,=-50mV, step depolarizing to different high potentials. Parame-
ters: Gca = 0.135 mS/cm?; f. = 0.005, kg, = 0.06 ms™?

After the determination of the maximum calcium conductance G¢g,, the model can
be further tested by carrying out a set of simulations mimicking the in—vitro voltage
clamping experiments.

e Validation of Ca*" channel description

Validation of the mathematical description of Ca*" channel is carried out by com-
paring the response of the model under voltage clamping conditions to that of a real
cell as described in [42] and [33]. We simulated the dynamics of the Calcium channels
in order to compare the relationship between [Ca*"]; and Ic,. The membrane poten-
tial was held at a value of —50 mV during 1s, then changed to values ranging from
—60mV to 90mV for a duration of 200ms. We measured the variation of [Ca*"]; and
the peak of the current Ic,; the values found are shown in Fig.2.7a. This procedure
is identical to the one used experimentally in [42], with rat uterine myocytes; the
corresponding figure is shown in Fig.2.7b. We find that the values of the currents are
very similar when the membrane potential is less than ~ 10mV.

Note that in order to compare qualitatively with the experimental results of [42]
and [33], we converted the values of the currents in nA to pA/cm?, by assuming the
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Figure 2.7: Effects of varying the magnitudes of the depolarization on [Cai"] and
Ica. (a) simulation of depolarization steps to the voltages from —60mV to 90mV of
duration of 200ms from a holding potential of —50mV. Variation of [Ca®*];(top) and
Ica(bottom) are plotted. (b) Real experiments carried by Shmigol et al [42].

area of the cell surface is 9000pum?, and plotted the peak Ic, as a function of V,,, see
Fig 2.6.

The model give values of the peak of I, intermediate with the values reported in
Yoshino [33] or Shmigol [42] when V},, < 10 mV. Significant deviations are seen when
the membrane potential is larger than 20 mV. In a real cell, the inward current is
quickly inactivated, and is completely blocked at a potential ~ 60 mV. However, the
model suggests that the Calcium current still exists, up to a membrane potential of
~ 100 mV. In effect, the deviations at high holding potentials have little effect, since
no membrane potential high than ~ 20mV are observed.

2.2.3 Potassium Channel

The description of the potassium channel is more complicated than the description of
the sodium or calcium channels. Both Wang et al. [34] and Knock et al. [88] pointed
out that fitting the relationship between current and membrane potential requires
three components, which suggests the existence of three different potassium channels.
In the model, we therefore split the potassium currents into three elements, K;, Ky and
Kj, with nq, nqe, hy and hs denoting the activating and activating variables of K; and
K, respectively. The Ky inactivation he, which is very slow (see below), is assumed
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to be constant, and therefore, remains constant during the processes studied here.
For the third element, K3, no inactivation has been found [34], and the activation
is very fast. For this reason, the variable ns is replaced by the asymptotic value
Nk, 0. laking all these factors into account, the potassium current is expressed by
the equation:

I = (GKanlhKl + GK2nK2 —+ GKganoo)(Vm — EK) (2.18)

Here G; (i = 1,2, 3) is the maximum conductance of the K; component. The param-
eters Gx1, Gkz and Gk are set to 0.254, 0.064 and 0.033 mS/cm? according to [34].
The equilibrium potential Fx is in the range of —70 ~ —80mV [89, 77], in the model
we set this value to —70mV.

e Potassium gating variables

As usual, the dynamics of potassium channel is modeled by the following first order
differential equations.

dnKl nKloo — nKl

- 2.19
dt Tn, (2.19a)

ey _ Tteroe = i (2.19D)
dt ThKl )

ey _ Migseo = M1 (2.19¢)
dt Tok, '
NK; = NK35 (219d)

Here ny00 ,huoo and 7, (z = Kq, Ky, K3) are voltage dependent and time independent.
— Steady states
As mentioned above, the steady states of each channels follow a Boltzmann distri-
bution, which is determined by its half potential (V4 5,) and the slope (s;). Available
data can be obtained from Wang et al. [34] and Knock et al. [88]. The values used
in this model are obtained from [34], which is based on rat uterine myocyte (see
Table 2.5).

Table 2.5: Properties of each potassium channel

[tem rat uterine myocyte
K Ky K3
Vosn(mV) 7.7 4.2 63.4
Sp (mV) -23.7 22.1 -16.7
Vosp(mV') -62.7 -21.2 -
s, (mV) 6.3 5.7 -
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1
NKlco = - (2.20a)
1 + exp( Vm23.7%7)
1
P (2.20D)
1+ exp(Vm(‘;gQ'?)
1
NK200 = V.o _—4.2 (220C)
1 + exp( o )
1
NK300 — (220(1)
1+ exp(leg?fl)

— Time constants

Ref. [34] is not sufficient to accurately obtain the time constants of each compo-
nents. For example, for K, activation, 7,x, = 10ms at 20mV, 7,x, = 4ms at 70mV;
for Ky activation, 7,x, = 18ms at 20mV, 7k, = 9ms at 70mV. Knock et al. [88]
gave more detailed activation time constants on K; and Ky components based on
experiments on human uterine myocytes, reported in Table 2.6. We fit the data with
an exponential expression (see Fig 2.8), and found that for K; the time constants of
these two species are consistent, they can be fitted by the same expression. This is
not the same for 7¢,. In the model we take the equations from rat myocyte.

Table 2.6: Activation time constants of human and rat uterine myocyte

cell type Human rat
Vi(mV) | -40 | -30 | -20 | -10 0 10 | 20| 70
Tok, (ms) | 186.3 | 110 | 58 | 40 | 28.1 | 225 |10 | 4
TnK, (MS) ~ 33 1205|175 13 | 95 | 18] 9.0

The expressions for the inactivation time constants are not completely obvious.
The inactivation time constant of K; is best fitted by two exponential terms: the
fast and the slow ones [34, 88]. The recorded decay rate of K; current in rates
showed that the fast term is voltage dependent and stabilized at 200ms, the slow
term is voltage independent at ~ 2.5s. For humans, the fast term is stabilized at
~ 1016ms, the second at 5213ms. With these information, we are not able to fit
the time constants. We merely notice that the reported time constants are very long
compared to the duration of action potentials (~ 100ms). Larger time constant of K;
inactivation will prolong the action potential duration (larger than 100ms), and the
time that potassium current takes to reach the maximum value in voltage clamping
experiments should be larger than the experimentally measured value: 32.5ms [34].
In the model, we set 7, = 50ms. Ky component has a very slow inactivation (time
constants ~ 2100ms at 10mV in rat and 2552ms in human). Comparing with the
duration of an action potential (~ 100ms), it is reasonable to assume that Ko does
not inactivate. This is why we fixed hx, to 1, which explains why hxk, does not appear
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Figure 2.8: Time constant of each channel.(a) For K; channel, activation time con-

stants of two species can be fitted by single curve: 7, = 28.23exp(——225) . (b) K
activation time constants of human and rat can’t be fitted by a single curve. For rats,

the fitted curve is: 7,k = 23.75 exp(——12; ).

in Eq. 2.18. In summary, the time constant expressions used in the model are the
following:

Vin
Tk, = 28.23 exp(—m) (2.21a)
Vin
Tuk, = 23.75 exp(— 1 94) (2.21Db)
ThK; — 50 (2.21C)

e Validation of potassium channel description

In order to validate the description of potassium channel, and to check its accuracy,
we performed numerically a set of voltage clamp experiments at a holding potential
—40mV and by steps depolarizing for 300 ms with 10mV increments to 70mV. The
recorded membrane potential variations are plotted in Fig.2.9(a). For comparison, the
in—vitro experimental results [34] is shown on the right side. One sees that the model
confidently reproduces the experimental results: 1) no decay are observed within
300ms, 2) peak currents are detected at ~ 32.5ms. A iV}, relation of the currents at
maximum is shown in Fig.2.10.



26

12 70mV

= 8 — 70 mv
< 4
N
—e

0

200
Tlme(ms) 40 mv
(a) model (b) experiment

Figure 2.9: A, Voltage clamp experiment on the K channel of the mathematical model
with holding potential of -40mV, and step depolarized into 70mV with an increase of
depolarizing potential of 10mV. B. Same experiments done on the real rat uterus cell
by Wang et al [34].
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Figure 2.10: Maximum current of Ik using the voltage protocols in Figure 2.9. Blue

solid line is obtained from the model. Black dots are data extracted from Wang et
al. [34].

2.2.4 Calcium potassium dependent current

Besides the voltage-modulated potassium channels discussed above, there exists an-
other potassium channel, whose activation by membrane potential is not fixed, but
rather depends on the intracellular calcium concentration [Ca®*]; [90]. The depen-
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Closed Open

Figure 2.11: Schematic illustration of gating mechanism of the calcium activated
potassium channel. Left, the gating is closed in the absence of calcium binding to the
active protein. Right, by absorbing Ca?* to the binding, K* can go through freely.

dence can be understood as following: The proteins forming the channel align tightly
in the absence of Ca?* bound to it, blocking the flux of potassium ions. While there
are Ca?* bound to the active sites of the proteins, these proteins separate, forming
a pore, allowing K™ to move freely, as illustrated in Fig.2.11. Thus the status of the
channel can be described in terms of the fraction of sites bounded to Ca%*.

The binding process of Ca?* to the active sites of the proteins can be well modeled
by the Langmuir equation, which describes the relation of adsorption of molecules
on a solid surface to the molecule concentration above the solid surface at a fixed
temperature. A statistical derivation of this model is given in [91]. When all the active
sites are bound with Ca?*, potassium ions pass this channel under electrochemical
gradient with a conductance Gkca. In a intracellular environment with a calcium
concentration[Ca®t];, the current pass through this channel can be described as:

(Ca®*],"

K, + [Ca®*

Ik (cay = Gkea R (Vin — Ek), (2.22)

with Gkca=0.08 mS/cm? K 5,=0.015mM, N = 2 given in [43].

Calcium-activated potassium current (/x(cay) has been suggested to play impor-
tant roles in regulating the excitability of the uterus [92]. Three subclasses of calcium-
activated potassium channels that are activated when intracellular Ca®" levels rise

have been identified [93].
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2.2.5 Leakage Current

We have incorporated the most of the main ionic currents. Other currents, such as the
chloride current [94] and sodium-potassium pump current [95] may also contribute to
the electrical behavior. To these effect, a linear leakage current, described as [77]:

is added, where the conductance G = 0.0058 mS/cm? and the equilibrium potential
Ep = —40 mV are taken as in Ref. [77].

2.2.6 Limitations and Discussion

The model incorporates five ionic channels, with the help of experimental data coming
mostly from references Yoshino [33] and Wang [34], as well as reference Chay [77] con-
cerning the dynamics of the intracellular calcium concentration. The model therefore
reproduces quantitatively records concerning specific ionic channels.

The description of the Calcium channels however does not come directly from
experimental records, which are not available. As shown above, all measured values
of the half activation voltage Vjcam and its slope kca,, and half inactivation voltage
Vhe., and its slope kca, show large discrepancies in litterature. We took here some
intermediate values. This choice provides a consistent description of the experimental
records at low membrane potentials. As illustrated in Fig.2.6, the recorded calcium
peak currents of the model under voltage clamping conditions with V;,<20mV are
consistent with the experimentally measured values. As we are interested in the
spontaneous action potentials which can not reach very high potentials, thus the
model can be faithfuly used in the future studies.

However, there are limitations, as it is the case for any model of physiological
process. First, the smooth muscle cell is a complex system: 5 ionic currents are an
underestimate of the number of ion channels contributors to the myocyte membrane
electrical behavior. Scientific efforts devoted to identify different ion channels pre-
sented in cells’” membrane reveal other ion currents contributing to the generation of
action potentials. Hyperpolarization activated current [96], non-selective cation cur-
rent [97], sodium potassium pump current [98] and many others have been reported
in pregnant rats. Second, there are more mechanisms regulating the intracellular cal-
cium concentration. Shmigol et al pointed out that the Na-Ca exchanger is the main
way to remove [Ca®T] out of the cell; about 60-70% of the cytoplasmic [Ca®"] removal
was estimated to be via this exchanger [42]. However the current model doesn’t take
this into account. All these limitations prompt the construction of a more detailed
model.
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2.3 Model of a uterine myocyte: approach of Tong
et al.

In 2011, Tong and collaborators [44] published a uterine model , which takes into ac-
count fourteen experimentally identified ionic currents as well as different mechanisms
for regulating the intracellular calcium concentrations, as illustrated in Fig. 2.12.

I [Na ICaL ICaT lc:{{:a} NSCC NaCa PM{‘;A

“J l[] ulQ []ID [IID quj bl ¢
B s B ¢ fj

K(Ca)op1 i I
lkica)

Na* Ca% & CF caun Xt

Figure 2.12: Schematic illustration of the uterine myocyte electrogenic components
(replotted from [44])

2.3.1 Description of ion channels

Compared to the previous model, several new currents, namely Iy, Ica,., Icica),Inscc,
Inaca and In.k, are taken into account, while others remain the same but named
differently. For example, the three fitted components of the potassium channels are
called K;, Ky and A-type transient potassium current Ix,. We here merely focus on
the new ones for the reason of concision. As Iyaca is directly related to the mechanisms
of calcium removal, we discuss this current in Section 2.3.2.

e Hyperpolarization-activated current—1j

The hyperpolarization-activated current [, is common in smooth muscle cells. Its
presence has been confirmed both in cardiac [99] and in rat uterine myometrial
cells [96, 100]. TIts role is not well understood. It may contribute to depolarize
the membrane to the threshold potential and serve as a trigger for the generation
of action potentials and/or as a quick depolarizing mechanism following strong after-
hyperpolarization [96, 100].

Whole patch clamp experiments reveal that [, is activated by hyperpolarization
in a time- and voltage-dependent manner. This activation also follows a Boltzmann
equation with a half-maximum activation potential of -84.3 mV and a slop factor of
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9.6 mV. And the time constant can be well fitted by 7 = 1/(a + ) [100]. Differently,
this current does not inactivate. Thus the same equation can be written down to
describe the current with an activation gating variable y as:

Iy = Gry(Vin — E3) (2.24)

Tong et al. [44] fitted the available data [100] and gave a detailed mathematical
description.

e T-type Calcium current—/Ic,,

Compared to L-type calcium current Ic,,, /ca, is small, hence been ignored in Ri-
hana’s model. While experiments have confirmed its presence in both human and rat
myometrial cells [101, 102]. Despite their tiny amount, it has been suggested to play a
key role for the regulation of the frequency of spontaneous phasic contractions [102].
For this reason, Tong et al developed a model describing the electrophysiological
characteristics of I¢,,.. Detailed expressions are given in [44].

e Calcium-activated chloride current—Ic)(ca)

Channels permeable to chloride ions were first reported by Coleman and Parking-
ton [103]. Single cell voltage clamp experiments showed a linear relation between
the chloride current and the membrane potential (see Fig.2 in [103]), suggesting a
constant conductance to be used in describing the leakage current which is mainly
due to I¢y [73, 77]. However, the subsequent experiments revealed that there was
also other type chloride current, the calcium-activated chloride current [104, 94]. The
detailed single cell electrophysiological assessment of Icyca) in rat myometrial cells
done by Jones et al. [94] allowed Tong et al. to model this current precisely. Detailed
expressions are given in [44].

e Non-selective cation current—Inscc

The non-selective cation current in late pregnant rat myometrial cells was first re-
ported by Miyoshi et al. [97]. This current is time-independent and permeable to K*,
Nat, Cst and Ca?", with relative permeability ratios of Px : Pey :Pxa : Poa = 1 -
3:1:009:0.89 [97]. To determine the current, Tong et al. modeled Ixscc with
data from late pregnant rat myometrial cells recorded at room temperature. Detailed
model expressions are given in [44].

e Sodium potassium pump current—~Iy.x

The presence of this current has been confirmed both in pregnant rat [98] and human
myometrail cells [19]. It is suggested this current plays a role in regulating myometrial
activity, but there is little information available about the biophysical properties of
Inax in myometrial cells. Thus, Tong s et al. took the formulation of an electrogenic
Inak from rodent myocardial cells [105], by assuming the same [Na*], dependency with
Inak in smooth muscle cells as in the myocardial cells. Detailed model expressions
are given in [44].
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2.3.2 Intracellular calcium dynamics

The change of intracellular calcium concentration [Ca®"]; is of crucial importance for
the proper functioning of the uterus: it is a ubiquitous signaling mechanism that or-
ganizes the coordinated contractions [32, 82]; the spontaneous phasic contraction of
uterine smooth muscle - myometrium, is related to an increase in the concentration
of intracellular free Ca®" [106]. Mechanisms regulating the intracellular calcium con-
centration include (i) the Na*-Ca*" exchanger [86]; (ii) the plasma-membrane Ca?*
ATPase pump [107]; and (iii) membrane calcium channels. Thus the net concentration
of [Ca®"]; is controlled by:

d[Ca2+],~

dt = _(JCa,men + JNaca + JPMCA) (225)

Here Jcamem; JNaca and Jpuvca stand for the three main calcium flux in myometrial
cell.

e Na"-Ca?" exchanger

The Sodium-Calcium exchanger is the main agent responsible for removing Cal-
cium out of the cell: it carries about 60 — 70% of the total amount extruded from the
cytosol [42]. This exchanger takes one Calcium ion out, while bringing three Sodium
ions into the cell, thus carrying in a net positive charge. The exchanger therefore
results in a net inward current. As explained in Chapter 2, this inward current thus
contributes to the depolarization of the cell, while the outward flux of Calcium would
tend to hyperpolarize the cell. Thus the exchanger current Iyac, reads as:

1 ZCaF‘/c
Inaca = —= JINaCa 2.26
NaC 2XCmAcﬁNC ( )

where C), is the membrane capacitance, F' is the Faraday constant, A. and V, are
cell’s surface area and volume respectively, (3 is a buffering coeffecient, and zc, is the
valence of calcium ion. A pre-factor —% is added for the consideration of the opposite
direction of Jyaca and Inaca, as well as the ratio of Nat:Ca?t=3:1.

The model simulation of Ca?*-Nat exchanger current was first proposed by Weber
et al. in 2001 [86]. This current is expressed as the product of an electrochemical AE

and an allosteric factor Allo, i.e.,

Inaca = (All0)(AE) (2.27)
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where,
AE — Vi {[Na 2 [Ca®*],e 7 — [Na*[Ca? ;e "7}
chao [Na ] + KmNa [Ca2+] + KmNa [CaQJr} (1 + [Ca } )+ (y—1)VF
N fmcag (1 + kggpe™ BT )
Ko [Na* T30+ 8270 4 [Na*J?[Ca*], + [Na*J3[Ca?"],
(2.28)
and
Allo = !
(e

describes dependence of the adsorption of calcium ion to regulatory sites on [Ca“]i
[91]. Table 1. lists the parameter values used in [44] and the original paper [86].
We noticed that in the code of the supplementary materials of Ref. [44], the calcium
efflux tends (Jnaca ) to increase the intracellular calcium concentration, i.e., a "+'
is replaced by "-" in front of Jyaca in Eq.(2.25). As the wrong equation of calcium
concentration dynamics used in [44] during the fitting, we tend to use the original
values except K caat- This value shows a great discrepancy between the code and
the notes in supplementary materials: in the note Ky caat is said to be 3 x 1073 mM,
while in code this values is set to be 3 x 10~* mM. We here take an intermediate value
of K caat = 0.00125mM.

Table 2.7: parameter values

Variables Tong(supplementary) | Tong(code) Weber XU
Vinax (PA/PF) 11.67 11.67 22.6 22.6
KmCaact(mM) 3x 1073 3x107% [0.125 x 1073 [ 1.25 x 1073

mNaZ (mM) 30 30 12.3 12.3

K,nNa, (mM) 87.5 87.5 87.5 87.5

Kinca, (mM) 0.007 0.007 0.0036 0.0036

Kynca, (M) 1.3 1.3 1.3 1.3

n 4 4 2 2
Esat 0.27 0.27 0.27 0.27
0% 0.35 0.35 0.35 0.35

e Ca?t ATPase pump

The plasmalemmal Ca?t-ATPase (PMCA) is the second mechanisms of removing
Ca?* out from the cells. It is estimated to be responsible for about 30% of Ca?*
removal [108]. The efflux (Jpmca) is described using Hill functions [91] as:

Km,pmca '
1+ ( a7, )nPMCA

Jpmca =
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where npyca is the Hill coefficient, Jpyvca is the maximal velocity of Ca?* extraction,
and K, pymca os the Ca?* concentration for half-activation of the pump.

e Membrane calcium channels

The calcium current I, is a direct consequence of the Ca?* flow through the ionic
channels. However this Ca?* flow is further regulated by the sarcoplasmic reticulum
(SR) [109]: SR takes up and stores calcium, using ATPase and the Ca-buffering
proteins for later use. Consequently, only a fraction of this flow becomes free Ca?*
inside the cell. Taking into account this effect, Joamen reads as:

CinAcp
ZCaF‘/c

JCa,men = ICa (230>

where I, is the total calcium current, including Ic,r, Icar and the calcium component
of the non-selective current Inscc.

2.3.3 Validation of the modified Tong model

Validations have been done by comparing the model response under voltage-clamping
conditions with that of a real cell response reported the literatures, as done in [44].
As mentioned before, the model of Tong qualitatively reproduces the experimental
data, which allows us to validate our modified version by comparing directly with the
original version of the model.

Although the description of the Na™-Ca?' exchanger has been modified, no obvious
difference concerning the calcium or potassium channel dynamics can be observed.
As illustrated in Fig.2.13-2.15, the records obtained from the modified model collapse
very well with the original records of the Tong model. In fact, no distinction can be
made between these two models.

Fig.2.16 and Fig.2.17 test the Calcium concentration in the presence of a depo-
larizing current clamp: injecting a constant current, the variations of the membrane
potential is recorded. Although, quantitative difference could be observed, the mod-
ified model behaves qualitatively like the original one. Furthermore, both models
give a resting potential of -54mV, and an intracellular calcium concentration around
100nM. It has been mentioned in reference [44], that the original model produces a
resting membrane potential of —19mV, and a basal intracellular calcium concentra-
tion of 610 nM under physiological conditions of ionic concentrations, as the outward
NatCa*" exchanger current contributes to hyper-polarize the membrane potential.
Interestingly, with the modification introduced here, we do not find any unrealistic
value of the membrane potential, even when the sodium conductance is not set to
zZero.
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Figure 2.13: Myometrial I¢,;, model. (a) Simulated voltage-clamp [c.y, at voltage
steps of -40 to 0 mV from a holding potential of —60 mV. (b) i~V relation of the peak
currents. Data are normalized to the peak current at V' = 0mV.
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Figure 2.14: Myometrial Ic,t model. simulated Ic,r at voltage steps of -60 to 20mV
from a V}, of -80 mV. Data are normalized to the peak current at V' = —25mV.
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Figure 2.15: Myometrial [k, model. Simulated time tracings of Ik, at voltage steps
of -40 to 10 mV from a holding potential V}, =-80 mV. Data are normalized to the
peak current at 10mV.

2.4 Single cell response under stimulus

Excitable uterine myocytes are capable of generating continuous activity when sub-
mitted to an external current of appropriate intensity [43].

Fig.2.18 shows different patterns of activity, predicted by the modified model of
Rihana. For an intermediate value of the current, Iy, = 0.124uA/cm?, it generates
a single action potential, and relaxes to its resting state (Fig.2.18a). Increasing the
current larger than a critical value I. = 0.1360uA /cm?, repetitive spikes are obtained,
with a period of about several minutes ( Fig.2.18b). Further increase in the stimuli
reduces oscillation period (Fig.2.18¢c). The changes of the oscillating periods versus the
stimuli shows a logarithmic law (Fig.2.18d), indicating that a Homoclinic bifurcation
takes place as the system passes from excitable regime to oscillating regime [110].

When an external current is applied, sustained activity can also be observed in the
modified model of Tong, see Fig.2.19. The similarities between the results obtained
with the modified Rihana and Tong model suggest that the results obtained in this
thesis are robust, i.e., not finely dependent on the details of the model, or its imple-
mentation. In the rest of the manuscript, we restrict our discussion to the modified
Tong model.
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Figure 2.16: Action potentials (V(¢)) during a 2s depolarizing current clamp Iy =
—0.5pA/pF under control conditions (Figure 12 in Tong’s paper). Comparison be-
tween two codes (same parameters are used).

Tong Xu
20

0 10 20 300 10 20 30
Time(s) Time(s)

Figure 2.17: Reproducing Figure 13 in Tong’s paper. Simulation of the simultane-
ous recordings of myometrial V,, . Four consecutive single spike APs modeled by
-1.5pA/pF of 20ms, applied at 0.4Hz.
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Figure 2.18: Modified Rihana’s model: different uterine electrical activities under
stimulus currents and oscillation periods. (a): Single action potential induced by a
constant current of 0.124 pA/ecm?. (b), (c): repetitive action potentials simulated
in response to a current larger than a threshold value I.. (d): logarithmic changes
of period with the increase of stimulus currents indicates a homoclinic bifurcation.
Iy = 0.1364p A /cm?

2.5 FHN as a simplified myocyte model

Excitability describes the influence of external changes to the system behavior: the
system only responds to strong perturbations, while it is not affected by small per-
turbations. This all-or-none property is of crucial importance in brain function-
ing [111, 112], regulating the propagation and integration of synaptic signals. In
a neuron or a smooth muscle cell, the excitability is manipulated by the number and
properties of voltage gated ion channels [73, 11, 44], which involves high dimensional
non-linearity. Here we will show that the FitzHugh-Nagumo model, which contains
only two variables, a fast and a slow one, captures the main features of the excitabil-
ity. In fact, this modeling of excitable media by the interaction of a fast and a slow
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Figure 2.19: Repetitive action potentials under constant stimulus currents observed
in the modified Tong’s model.

variable has been very successful. Many other models have been proposed, such as
Hindmarsh-Rose model [113], Oregonator [114], etc. The Hindmarsh-Rose model,
developed in 1984 by J. L. Hindmarsh and R. M. Rose, allows for bursting, which
provides a very realistic description of the rapid firing of the neurons compared to
the relatively long interval between firing, and for this reason, it is frequently used
in the study of neuron science. The Oregonator model is the simplest realistic model
describing the chemical oscillations, and is mostly used in the study of chemistry.

2.5.1 Description of FHN model

The FitzHugh-Nagumo model (FHN) is a generic model for excitable cell and can
be applied to a variety of systems, in the biological sciences, including neuroscience
[115, 116] and the study of the heart [54, 55|, but also in chemistry [117]. It was
first introduced by FitzHugh in 1961 [9] as a simplification of the Hodgkin-Huxley
equations. Using the fact that n and A have slow kinetics compared to m, and that
n + h is approximately equal to 0.8, the original Hodgkin-Huxley model (Equ. (2.2)),
can be reduced to a two variables system [118]:

dV

CE = — gxn'(V — Eg) — gnam(V)(0.8 = n)(V — Eng) — g(V — Ey) + I
an o
dt — 7(V)

(2.31)

The simplified description of the electrical impulse in a cell is amenable to a geometric
representation, in the form of a phase space description [87]. Noticing that the V-
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Figure 2.20: Phase portrait and its kinetics of the FitzHugh-Nagumo model at I;; = 0.
The system returns to its stable fixed point directly when small perturbations are
introduced (gray and red curve in (a)). Their corresponding time variations are shown
in (b) and (c). A large enough perturbation from the fixed point leads to an action
potential before it returns to its fixed point (d).

nullcline, obtained from the condition V = 0, has a cubic shape, while n-nullcline is
approximately a straight line, FitzHugh suggested a polynomial model as

dv.

d :F<‘/;79):A‘é(l_%)(‘/e_a)_g—i_]est

dtg (2.32)
pri G(Ve,9) =e(Ve —g)

In this simple model, the variable V, represents the membrane potential, and ¢ rep-
resents the re-polarizing current. The parameter « is the excitation threshold, A
represents the characteristic rate of activation, and e the recovery rate of the medium
— note that € is much smaller than A, so that activation is fast, and recovery is slow.

Despite the fact that the model can be deduced, to some extend, from the original
Hodgkin-Huxley equations, it is not able to reproduce many quatitative features of
the propagation of electricity in neurons and muscles. Still, it correctly reproduces the
existence of a threshold of excitation, as well as the existence of a recovery period. As
a result, an external current can elicit an action potential. In 1964, Nagumo devised
a circuit using tunnel diodes for the nonlinear element. Hence, Equ. 2.32 became the
famous FitzHugh—Nagumo model (FHN).

Without any loss of generality, in the study here, we restrict ourselves to the set
of parameters v =0.2, A = 3.0 and ¢=0.08 (Eq. ( 2.32)). As shown in Fig.2.20, in the
absence of any current, I, = 0, the V.-nullcline intersects the g-nullcline at (0,0), so
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that (0,0) is the only fixed point of the system. We observe that the system returns
to the fixed point when a small perturbation is applied (panel b and ¢). On the
contrary, when a large perturbation is applied, the solution is observed to vary by a
large amount before returning to the fixed point, see panel d.

2.5.2 Stability analysis

Much insight can be obtained by performing a linear stability analysis of the system
in the vicinity of the fixed point when an external stimulus is applied. The analy-
sis consists in linearizing Eq.(2.32) around the only fixed point (V?, ¢"), that is, in

considering a small perturbation (§V,,dg) around the fixed point (V.,g) = (V2, ¢°),

and by writing F(V? + 6V, ¢° + dg) ~ OF/OV.(V?,g°)éV. + 0F/0g(V?, ¢°)dg and
G(V. + 6V.,g + 6g) =~ 0G/OV.(V2,¢°)oV. + G /Dg(V?, g°)6g which results in the

system:
5V, oL BN (5v, 5V,
( : ): (%« o) ([ sa ] =M (2.33)
og ov.  og g g

which defines the Jacobi matrix M. The time evolution is determined by the eigen-
values A of M, which are found to be:

T+VT?—4A

Ao = 9

(2.34)

where A and T are the determinant and trace of the matrix M. For this set of
parameters, the two eigenvalues A\; and Ay are conjugated. As the real part of the
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Figure 2.21: (a) Changes of the real part of the eigenvalues A\; and Ay as [ increase.
Oscillations are observed when real(\) is positive . (b)~(d), System dynamics under
different I;.



41

two eigenvalues passes from negative to positive values, the stable fixed point loses its
stability, hence oscillations appear. Fig.2.21 shows the relations between real(\) and
the system behavior. We see that oscillations are only observed when the eigenvalues
have a positive real part. A more detailed analysis can be found in Ref. [119, 120].

2.6 Conclusion

In this chapter, we first established two realistic models of the uterine myocyte. The
first model, based on the work of Rihana et al. [43], deals with 5 ion channels. The
second model is based on the work of Tong et al. [44], which contains detailed descrip-
tions of 14 different currents. With minor corrections on the Nat-Ca?* exchanger,
although quantitative differences are found between these two models, they behave
qualitatively the same, both well manifesting properties of excitability.

The excitability is one of the main characteristics of the uterine smooth muscle
cells—the myocytes. To well describe it, Rihana’s model takes 11 variables (differen-
tial equations needed to describe whole cell electrical activities), and 24 variables in
Tong’s model. While a FHN model, which only contains two variables, is sufficient to
capture this property. This simplicity allows us to study the uterine activities at the
organ level, which usually involves millions of uterine cells.



Chapter 3

Coupling induced oscillations in
Uterus

As mentioned in the introduction, aside from the smooth muscle cells which are phys-
ically excitable, being able to generate action potentials under proper stimuli, there
are passive cells in the uterus. In this chapter, we will see that the interaction between
these two cell types can give rise to spontaneous oscillations.

3.1 Description of passive cells

The dynamics of the membrane potential V}, of such passive cell can be well described
by the equation [121]:
dv,
dt
Here V| stands for the equilibrium potential. €}, and G, are the membrane capac-
itance and the conductance. Contrary to the case of excitable cell, the membrane
potential V}, always relaxes exponentially to its resting state,V,, — V7 when ¢ — oo.

A fibroblast is a passive cell. In fact, Eq.(3.1) was first introduced by Kohl et al.
to describe the fibroblasts in the sino—atrial node region of rat heart [121]. In the
uterus, the population of fibroblasts is small [27], but it plays an important role in
remodelling the human uterine cervix during pregnancy and parturition [122, 123].
The size of fibroblasts is also small: their shape is approximately spherical, with a
diameter of ~ 8um [124]. The very small size of the fibroblast results in individual
cells having a capacitance of only about 4 — 6pF [125, 124], which is much less than
those of myocytes or ICLCs (85pF [27]). Their resting potential, V};, varies over a
large range, from —70 to 0 mV, but mostly in the range -25mV < Vi < 0mV (in
~ 75% of all cases), with a peak of the distribution at —15mV [126]. We describe the
dynamics of the fibroblast membrane potential, Vi, by Eq. (3.1), with a membrane
conductance Gg = 1nS [121], and Vi = —15mV.

ICLC are also passive cells. Duquette et al. [27] demonstrated that uterine ICLCs

G, = GV, — V) (3.1)

42
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Figure 3.1: Membrane potentials recorded from a ICLC in response to a hyperpo-
larizing and three progressively increasing depolarizing current pulses. Only passive
electronic potentials, but not active responses, were recorded from this cell, indicating
its inability to generate action potentials (replotted from Ref.[27]).

did not exhibit spontaneous depolarizations. Experimental investigations led to the
conclusion that there are no inward currents in ICLCs, therefore excluding the possi-
bility to generate action potentials [27]. In addition, by applying an external current,
it was found that the membrane potential of the cell relaxes essentially exponentially,
with a characteristic time of the order of 0.2 ~ 1s, see Fig.3.1. This suggests that the
dynamics of the membrane potential of ICLCs can also be well described by Eq. (3.1).
The capacitance of the ICLC is found to be C} ~ 84.8 + 18.1 pF, and the input re-
sistance to be G; ~ 3.04 4 0.50 G(2, close to the values of the myocytes. The resting
potential V; is found to be V;' ~ —58 =7 mV, that is, ~ 10 mV higher than the
membrane potential of the myocytes. Note that the variation of the relaxation time
suggested by Fig.3.1, could result from a dependence of G in the membrane poten-
tial. Although Eq. 3.1 is a simplification, it is expected to capture the main aspects
of the dynamics.

3.2 Coupling induced pacemaker activity in FHN
model
Pacemaker activity (spontaneous oscillation) can exist in the mixed medias of ex-

citable and passive elements [54, 55]. The uterus contains excitable cells (myocytes)
and passive cells (fibroblasts and ICLCs). It is promising that the interaction be-
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tween myocytes and ICLCs or/and fibroblasts could give rise to pacemaker activities
in uterus. We study here the interaction between an myocyte, described by the FHN
model which captures many electrical properties of myocytes, and an electrically pas-
sive cell, whose membrane potential obeys [121]:

dV, ,
L= K, -1)) (32)

Here V[ and K indicate the resting potential and the inverse of the time scale (product
of membrane resistance and capacity: K~ = C,/G,) of the passive cell, respectively.
Taking into account the fact that fibroblasts or ICLC have a higher resting potential,
and typically a smaller capacitance than myocytes [124, 125], we take here V] = 1.5
and K = 0.25. This choice is made without any particular attempt to reproduce
finely the results of the realistic physiological model; we are mostly interested here in
some qualitative understanding of the system.

o
. @
'/
¢ ©

Figure 3.2: Schematic illustration of the coupled FHN system. Excitable element (E)
is surrounded by n, identical passive elements(P). Interactions (arrows) only exist
between Excitable and Passive elements.

We are asking here what is the evolution of a cell pair, consisting of one myocyte,
coupled to a passive cell. The problem has been studied by Jacquemet [54], and our
approach follows his original analysis. The precise problem that we have in mind can
be simply modeled by Fig.3.2: one myocyte cell (Fig.3.2) is coupled to n, identical
passive cells described by Eq. 3.2 (n, = 6 in Fig. 3.2). In the case where all the values
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of V,, are identical for all the passive cells, the equations for the system simply read:

O AV VOV — ) — g 1,V — V) (3.30)
dg

a =e(Ve — g) (3.3b)
A

rr =K(V, = V) + C(Ve = V) (3.3¢)

where C) is coupling strength between the two cell types, and n, indicates the number
of passive elements attached to the excitable one.

The reason why the system Eq.(3.3) can lead to oscillations can be traced back
to the difference in the resting potentials of the cells. The coupling C, leads to
a depolarizing current for the myocyte, which under proper conditions can be large
enough to lead to an oscillatory state. In the following, we refer to the system Eq.(3.3)
as the 0-dimensional (0-D) model, as this set of equations is simply for one myocyte,
independent of any spatial effect. This case can be also thought of as a mean field
limit, where the coupling between myocytes is so strong that only the averaged number
of passive cells coupled to the myocyte, f = (n,) plays a role, and the local spatial
fluctuations can be ignored. Note that in general, the averaged number f needs not
be an integer number. For this reason, we replaced n, by f, and have investigated
the properties of the system Eq.3.3 for an arbitrary value of f and C,.

The dynamical properties of the system Equ.(3.3) can be discussed by carrying
out the linear stability analysis, as discussed in 2.5.2. The Jacobi matrix around a
fixed point (V2, ¢°, V;DO) is:

3AVY? £ 24(1 — a)V0 — (Aa+n,C,) -1 fC,
M = € —€ 0 (3.4)
C, 0 —(K+0C)

where it is understood that (V,¢°, V) is a fixed point of the system. The analysis
of the eigenvalues of the matrix M shows that at a given coupling strength, C)., when
the value of f exceeds a critical value, f!, the system bifurcates from excitable to
oscillatory. We also observe that when f exceeds another threshold f2, the system
becomes again non-oscillatory. A detailed study in the (C,, f) parameter space leads
to the identification of the region where the system oscillates, as shown in orange
in Fig. 3.3. One observes that at a given value of f, larger than a critical value,
oscillations are found by increasing the coupling strength C,.. Our numerical work
suggests a linear relation between f and 1/C,. In fact, in the case of a relatively rapid
relaxation of the passive cell, that is, for a large enough value of the parameter K in
Eq.3.2 or 3.3c, we may assume that the relaxation of V, to its equilibrium value is
very fast, given the value of the myocyte membrane potential V.: V), is obtained by
solving dV},/d¢ = 0. This substitution leads to the addition to the right hand side of
Eq.3.3a, of a term equal to f/(1+ K/C,)(V, —V¢). This implies that at a fixed value
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of V', the behavior of the system can be understood as a function of the parameter
I, which in turn implies that the threshold values f}? behave as A+ B/C,. This is
completely consistent with our numerical findings, see the insets of Fig.3.3.

: Y — |
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Figure 3.3: The 0-d system has oscillating solutions in the yellow region when the
passive cell fraction f is in the range [f!f?]. These two values can be obtained by
linear stability analysis (red coloring) or numerical integration (dots).

The dynamical properties of the system Eq. 3.3 in the (C,, f) plane can also be
investigated by direct numerical integration. We solved FEq.3.3 using a fourth-order
Runge-Kutta scheme, implemented in C, with a time step dt = 0.05. The initial
condition was chosen to be random. The results, concerning the state (oscillatory,
excitable) of the system are shown in Fig. 3.3. The filled symbols show the points
where a transition between oscillatory and excitable is observed. These transitions can
be directly compared to the stability analysis presented above. We find an extremely
good agreement between the results of the direct integration and the stability analysis
concerning the values of f2.

On the other hand, discrepancies are found for the other boundary, f!. This dif-
ference between the two bifurcations is a result of the difference in the natures of
the transitions. Oscillations appear, close to f!, with a finite amplitude. This is a
result of the subcritical nature of the corresponding bifurcation [120]. As a result,
oscillations persist for values of f smaller than f!. An example, at C, = 1.9 is given
in Fig.3.4. Panel (a) and (b) show the amplitude Am, defined as the difference be-
tween the maximum and minimum values of variable V., and frequency of oscillation,
respectively. Numerical integrations give a critical value of f° = 0.529, whereas nu-
merical stability analysis leads to f! = 0.545. Panel (c¢) provides details of the region
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Figure 3.4: Coupled cell-pair dynamics at C,. = 1.9 and varying f. (a), (b) variations
of oscillating amplitude and frequency at different f. (c) Between f; = 0.529 and
f1'=0.545, one observes bistability; the red dotted line is a schematic drawing of the

unstable branch. (d) Close to f? oscillations vanish like A,, o< (fZ — f)l/ *

of values of f where one sees that the system has two attracting basins for values of f
such that fo < f < fl. The branch with a high value of the amplitude corresponds to
an oscillating solution, whereas red dashed curves schematically shows the un-stable
oscillating branch, where the system eventually relaxes to its fixed point.

The existence of a multiplicity of basins of attraction even in the simplest 0-D
problem, may seem at first sight as a curiosity. We merely notice here that this multi-
stability has implications for the study of the transition in 2-dimensional systems, to
be discussed in Chapter 4

In comparison, we noticed that the conjugated eigenvalues of the Jacobian Matrix
at the fixed points have zero real parts at the bifurcation point. This suggests the
bifurcation from oscillatory to non-oscillatory behavior close to f = f2 occurs to
via regular Hopf bifurcation. While surprisingly, the amplitude A,, vanishes like
Ay o (f2— f)1/4, rather than A, oc (f2 — f)1/2 (see panel d).

In summary, our numerical solutions allow us to determine the dependence of the
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values fo, f! and f2 as a function of C,:

0.112

fo= +0.471 (3.5a)
0.117

fl= 5 T+ 0.484 (3.5b)
0.343

f2= o 1349 (3.5¢)

With these equations, an estimation of a coupled cell-pair dynamics can be obtained
at a given f and C,.

3.3 Coupling induced pacemaker activity in real-
istic model

We have seen in the previous section that coupling between myocyte, modeled by
the generic FHN model, and the passive cells provides a way to sustained oscillations
in the uterus. Together with similar works [54, 127, 55, 128], we hypothesized that
the spontaneous action potentials are initiated by the coupling between passive cells
and myocytes. Indeed, as stated in the introduction, experiments have demonstrated
the role of the intracellular coupling of uterine myocytes in the transition from weak
and desynchronized contractions, to powerful synchronous contractions during labour
(36, 37]. Furthermore, the disruption of the gap junctions by chemical means can
inhibit the uterine contractions [51]. In the uterus, close contact between ICLCs and
smooth muscle cells has been observed [27]. Although, up to now, no direct evidence
shows the existence of electrical coupling between myocytes and fibroblasts via gap
junctions, studies of cardiac tissues in vitro strongly suggest such a coupling [56, 129].
All these suggest us to carry out detailed studies on the role of gap junctional coupling
in the uterus.

We begin with considering the role of the coupling between myocytes and passive
cells. The gap junctions, composed of connexin proteins, provide channels of low
electrical resistance between cells. Through these pores a current can flow from cell
to cell when the cellular membrane potentials are different. To evaluate the influence
of passive cells on the electrical behavior of the myocyte, we consider a biophysical
model composed of a myocyte coupled to n, passive elements, while no connections
between passive cells (see Fig. 3.2). Taking into account the two types of passive cells
(ICLCs and fibroblasts) in the uterus, the interactions between excitable and passive
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cells via the gap junctions can be described by the following differential equations:

mdd‘/;:n = — Iion — n[G(Vm — V}) — nFG(Vm — VF) (36&)
dv;

cfd—tf =—G(Vi = V)= G(Vi = Vpn) (3.6b)
av;

de—tF = — Gp(Ve = VL) = G(Ve — Vi) (3.6¢)

Here n; and np indicate the number of ICLCs cells and fibroblasts attached to a my-
ocyte; GG is the gap junction conductance; G; and G are the membrane conductance
of ICLCs and fibroblasts respectively. The conductivity of a single gap junction chan-
nel is ~ 50 pS[130], thus the increase of gap junction channel during pregnancy can
be modeled by the parameter GG, which describes the excitable—passive cell coupling
strength. For simplicity, we assume all ICLCs and fibroblasts are identical, with rest-
ing potential of V' and V} respectively. With a gap junction channel, each passive
cell (with V,, denoting its membrane potential) contributes a current G(V,, — V},) to
the myocyte. Thus the parameters n; and ng count the number currents received of
ICLCs and fibroblasts. While a passive cell is only coupled to a myocyte, the coupling
current to the passive one is simply G(V, — V,,,).

To understand the mechanisms of uterine contraction, we investigate the influence
of different parameters on the system behaviors by varying: 1), the coupling strength
G that mimics the development of gap junctions expressions between myocyte and
passive cells; 2) the number of passive cells a myocyte coupled to which describes
the changes of effective n, as excitable-excitable coupling increases ; and 3), the
passive resting potential V,'. We first consider a system composed of one myocyte
and ICLCs and no fibroblasts. The membrane capacitance and conductance are set
as C,,=80pF, G;=1.0nS respectively. Considering the difference between V! and V/,
as well as the large error bars of the experimented data, we set V/=-40mV in the
following simulations.

3.3.1 Role of G

In the presence of coupling, a myocyte generates spontaneous action potentials due to
a coupling current from passive cells to the myocyte, resulted from the difference of
membrane potentials. The most significant change during pregnancy is the increase
of gap junctions. Increasing GG gradually, the system passes from quiescent state to
rhythmic activity.

To study this effect, in the simulations, we consider here a myocyte only coupled
to one ICLC cell, i.e., n, = n; =1, and set V;/ = —40mV. At small G, the myocyte
membrane potential V,,, eventually reaches a resting state close to V. By gradually
increasing G to 0.18nS, the coupled system (Equ.3.6) gives rise to spontaneous action
potentials after a long transient time (~10mins). A typical oscillating pattern close to
the critical value is depicted in Fig.3.5(a). Further increase in G leads to a decrease of
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Figure 3.5: Myocyte-ICLC cell pair behavior of the two models under different cou-
pling strength. (a-b), modified Tong’s model with gn, = 0.03nS/pF. (a) Long period
(~ 5min) spikes at G=0.2nS. (b), plateau-type action potentials at G=0.5nS. Break-
ing down the gap junctions (G = 0, after the dashed line) terminates the oscillations.
(c-d) Similar behaviors in the modified Rihana’s model with Vi = —20mV. (c) Burst-
ing at G = 0.1nS. (d) regular spiking is observed at G=0.15nS, while no oscillations
after setting G = 0.

the oscillation periods (panel b). Same as observed in mammalian uteri [51], breaking
down the gap junctions immediately terminates the spontaneous generation of action
potentials (panel b).

We noticed that when G is close to threshold value G, = 0.1778 nS, the amplitude
of the oscillation remains the same, while the oscillation period T,,. diverges logarith-
mically as T,s. ~ In(G — G,), as shown in Fig. 3.6. This strongly suggests that the
transition to an oscillatory state occurs via a homoclinic bifurcation [131, 132].

Interestingly, we noticed that qualitatively similar behaviors could be observed
using the modified Rihana’s model. As shown in Fig.2.18 and Fig.3.5(c-d), repetitive
action potentials are generated when a proper external stimulus current is applied as
well as in the case of coupling with a passive cell. As both the models capture the
essential properties of the cells’ electrical behavior, we restrict our discussion to the
modified Tong’s model presented in Chapter 2. To capture the changes of the sodium
conductance during pregnancy, we increase gy, to 0.04nS, which corresponds to late
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Figure 3.6: The oscillation period T,,. diverges logarithmically: T,s. ~ In(G — G.).
Parameters: n, =n; =1, V= —40mV.

pregnancy.

3.3.2 Role of V;j"

As mentioned already, the coupling current I, = G(V, — V},,) is due to the the dif-
ference in membrane potential between adjacent cells. The membrane potential V,

T(s)
100
1.2

-44 -41 -38 -35 -32
v;anV)

Figure 3.7: Influence of passive cell resting potential on the cell-pair behavior. The
color code indicates the oscillating period(s). Parameter: n, = 1.
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of the passive cells, is higher when the resting potential V" is higher. Increasing the
resting potential of the passive cell V7 makes it possible to push the myocyte mem-
brane potential above the excitation threshold, thus making it possible for the pair
to oscillate, provided the coupling is strong enough.

Fig. 3.7 shows the domain in the (G,V}) plane, where oscillations in the pair made
of a myocyte and a passive cell (n, = n; = 1). Oscillations are observed only for a
restricted set of parameters. When the value of V" is very small, the coupling with
an [CLC never results in the appearance of spontaneous oscillations. This can be
understood by noting that when V" is close to the resting membrane potential of
the myocyte, the coupling term leads only to a small modification of the membrane
potential of the cell. Provided the membrane potential of the myocyte is below some
excitation threshold, no oscillation is observed.

3.3.3 Role of n,

Anatomical studies of the uterus reveal that passive cells are distributed unevenly [31].
This implies that each myocyte can be connected to a varying number of passive cells
(0, 1, 2 or more). This uneven character is counterbalanced by the coupling between
myocytes. This coupling is known to increase as pregnancy progresses, especially
close to the term. As a result of this coupling, the passive cells are "shared" by more
than one myocyte. The effective number of ICLCs coupled to a myocyte becomes
non-integer.

0.8 Oscillating

2 3 4 1 2 3
G(nS) 1/G(nS)
(a) (b)

Figure 3.8: Oscillating regions in (n,, ) parameter space with/without (blue/yellow)
the consideration of fibroblasts influence.

For this reason, we ask now in the plane (G,n,) where do oscillations appear.
Fig. 3.8 shows the result, for a value of the passive cell resting potential set to V| =
—40 mV. We observe that when the number of passive cells increases, the value of the
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coupling necessary to see oscillations decreases. This can be qualitatively understood
by noting that the depolarizing current is proportional to the product n x G. Thus,
the limiting value of n,, for the threshold of oscillation can be written as n, = A/G+ B,
as shown in the right panel of Fig. 3.8.

From Fig. 3.8, we see that the oscillations can be observed only if there are at the
minimum a fraction of 22%=(n, /(14 n,) )of passive cells in the uterus. However, we
know that ICLC account only for 18 4 2% of the total cell population [31], which is
not enough to trigger oscillations in the system.

3.3.4 Combined effect of ICLC and fibroblasts.

We have seen in Sect. 3.3.2 that a myocyte generates spontaneous action potentials due
to the membrane potential difference that triggers a coupling current from passive cells
to the myocyte. The higher V" is, the easier it generates oscillations. Unfortunately,
ICLCs have a low resting potential close to that of myocyte and the population fraction
in the uterine tissue is too small to generate oscillations.

Aside from ICLC, the uterine tissue also contains other kinds of passive cells.
We pay particularly attention to the fibroblasts here, which have a small membrane
capacitance, Cr = 6 pF, and a high resting potential Vi = —15mV. These cells
play an important role in the development of the uterus during pregnancy [122, 123].
Their role in altering the electrical activities in cardiac tissue has been studied both
numerically numerically [133] and experimentally [68]. However, no such study has
been carried out in the case of the uterine tissue. We thus consider here the case that
the fibroblasts are coupled to uterine myocyte through gap junctions. The fraction of
fibroblasts among the non-muscular cells is relatively small; we set a relative fraction
ng/n, = 10%, where n, is the sum of the number of ICLC n; and of fibroblasts np.

Fig.3.9 shows the influence of fibroblasts in the triggering of oscillations. Com-
paring with the yellow region Fig.3.8 (in the absence of fibroblasts), the oscillating
domain in the (G,n,) plane is largely expanded. In particular, we find that the addi-
tion of a small number of fibroblasts allows to reduce the minimum fraction of passive
cells necessary to see oscillations, from n, ~ 0.28 to n, ~ 0.18.

In this section, we have demonstrated that uterine contractions can be originated
from the coupling between myocytes and the ICLCs. With structure modifications
done to the Na™-Ca?" exchanger in the Tong’s modell, a single myocyte is capable of
generating spontaneous electrical activities when a stimulus current is applied. The
coupling current acts a current and leads to the appearance of spontaneous activity.
This coupling current increases when the coupling between myocytes and when passive
cells n, is increased.

We note that the electrophysiological changes during pregnancy, leading to an
increase of GG as well as gy, tend to facilitate the appearance of a spontaneous elec-
trical activity. However, the dependence of the results on the parameters provides
constraints on the model. As stated above, the population of ICLC is not sufficient,
if taken without the influence of other cells (fibroblasts).
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Figure 3.9: Influence of fibroblasts. By adding the small fraction(10%) of fibroblasts,
global oscillations could be observed in the uterus. parameters: Cy = 6.0pF,G ;=1.0nS

Theoretical estimates

Myocytes are cells of size ~212um [33], typically much larger than ICLC (size ~75um [30]
or fibroblasts (size ~8um [124]). As a consequence, the membrane capacitance of my-
ocytes is much larger than the membrane capacitance of passive cells (C,, ~120um [27],
Cr ~85pum [27] and Cp ~4.5um [124]). On general grounds, the relaxation time of
a cell is proportional to the cell capacitance, which leads to the expectation that the
membrane potential in the small cells (fibroblasts, ICLC) evolves much faster than
the membrane potential of the myocytes.

To document this effect, we computed the relaxation time in a system consisting
of a myocyte, coupled to a fibroblast and an ICLC. We begin by considering the case
where the deviation from the resting membrane potential of the myocytes is small, so
the full equation can be linearized:

dvp, 1 GGy

O - g, Ol gt

GGp
G+ Gr

(Vin = Vi) +np (Vi = Vi) (3.7)

Together with Eq. 3.6b, 3.6¢, the equations can be simply written as:

4 (Vi — (G +C7}FG +n;G) ’;CLEG yd V., ggm i
dt = % N GO G o g—fVIT (38)
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The solution of this set of equation can be written as a sum of three exponentially
decaying solutions, of the form exp(—\;t), i = 1,2, 3. The decay rates, A; are obtained
by diagonalizing the 3 x 3 matrix in the right-hand side of Eq. 3.8. Fig. 3.10 shows the
decay rates of the solutions, sorted in such a way that Ay > Ay > A\3. The solutions
have been determined numerically as a function of the coupling conductance, G. We
have used here C,, = 120pF, C; = 80pF and Cr = 6.0pF (shown with diamonds),
C,, = 60pF, C; = 80.0pF and Cr = 6.0pF (shown with left pointing triangles), and
C,, = 120pF, C; = 40.0pF and Cr = 6.0pF (shown with squares). The values of
the conductances are G,, = 0.33nS, G; = 0.5nS and G = 1.0nS. The three decay
rates are widely different, being separated by one order of magnitude from each other.
The highest decay rate, A; depends neither on the capacitance of the myocyte nor
on the capacitance of the ICLC, and can therefore be associated with the dynamics
of the fibroblasts. Similarly, we find that by diminishing the capacitance C} by a
factor 2 leads to an increase of the intermediate decay rate Ay by a factor ~ 2. Same
application done to (), leads to an increase of A3 by the same factor. Therefore
this demonstrates that Ay characterizes the relaxation associated with ICLC, and A3
the relaxation of the myocytes. In addition, we note that the eigenvector associated
with A\ (respectivement Ay, A3) has its largest component in the third (respectively
second, first) direction, thus demonstrating that each of the three eigenvalues are
indeed associated with the relaxation of the membrane potential in one of the three
coupled cells, as shown in Fig.3.11

The main conclusion here is that the membrane potential of the myocytes has
the slowest dynamics, by at least one order of magnitude compared to the dynamics
of ICLC or fibroblasts. This feature suggests that the membrane potentials of the
fibroblast, and to a lesser extend, of the ICLC relax very quickly towards the equilib-
rium value, consistent with the value of the myocyte. From a mathematical point of
view, this suggests to eliminate the value of Vr and V;, to reduce Eq. 3.6a, 3.6b, 3.6¢
to a single equation, where V; and Vi are obtained by setting dV;/dt ~ dV/dt = 0,
i.e., by solving G,(V, — V) + G(V, — V;,) = 0 where p = I (respectively ) for the
ICLC (respectively fibroblasts). The resulting equation for V,,, reads:

dV,,
Cm? = _Izon<vm) —nys

GGy
G+ Gy

GG
Feyar

(Vm - va) - (Vm - V}) (39>
We consider first the case of a myocyte attached only to ICLC (ng = 0, n; # 0) so
Eq. 3.9 reduces to:

dv,, GG

- =_T _
C’m dt zon(vm) nIG+GI

(Vi = V) (3.10)

The electric coupling between the myocyte and the ICLC, G, and the number of
ICLC coupled to the myocyte, n;, enter Eq.3.10 through the parameter k; = GG+GGI,
only. As a result, oscillations appear in the system of coupled cells only when the

parameter k; reaches some certain values. Noticing that, by definition, n; = GGJFGC? =
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Figure 3.10: Time scale of cell dynamics. Changing C,,( C;) by 50%, while leaving
Cr and C (C),) unchanged reveals fibroblast has the smallest time scale, which is

one order of magnitude smaller than the others. The method is applied to determine
the time scale of the other cells.

k1(1/G+1/Gy), one immediately concludes that the existence of oscillations requires
that n; is proportional to (1/G + 1/Gy). This provides a natural explanation for
the curves shown in 3.8(b) and Fig.3.9. In addition to the linear relation between
n; and 1/G, the analysis above allows us to obtain an estimate of the occurrence of
oscillations in the uterus.

The fibroblast has an essential role in inducing oscillations in the coupled system by
increasing the effective passive resting potential. With the analysis above, fibroblast
relaxes to its resting state immediately, while myocyte and ICLCs behave with time
scales 77 and 7, respectively. Thus we have,

_ GrVE+ GV,

- 11
Ve G+ Gr (3.11)

With this assumption, Equ.3.6 is reduced into (see the Appendix B for the detailed
derivation):

dv,,
—Cmﬁ =lion, + angap<Vm — ‘/p) (3128,)
dv, .
O (V= V)G + GV, — Vi) (3.120)

Here V, and V| are the equivalent passive cell membrane potential and its resting
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Figure 3.11: Components of eigenvectors associated with Aj(a), A2(b) and A3(c)

potential, defined as
n Vi + gV

V) —
p n,

(3.13)

From Eq.(3.13), it is easy to understand the role of fibroblasts: it increases the effective
resting potential, hence the coupling current. Taking into account the ratio between
ny and ng, and their resting potentials, we worked out that effective resting potential
V;,(”) is about -35mV.

The green region in Fig.3.8 shows the effect of an effective passive cell with
V) = =35mV. Clearly, oscillations could be observed by increasing the gap junc-
tion conductance G, provided there are at least n,/ny > 17% in the entire organ,
i.e., the passive cell population should be larger than 14.5%. As we mentioned above,
the passive cell population accounts for about 20%. We would expect oscillations to
occur at later stage of pregnancy due to the increase of gap junctions.

3.4 Discussion & Conclusions

Without the evidence of pacemaker cells in the uterus, the origin of spontaneous activ-
ities observed close to labor is not well understood. The coexistence of excitable and
passive cells in the uterus, namely the myocytes and the Interstitial Cajal-Like Cells
(ICLCs), implies interactions between them. Through these interactions, our numeri-
cal simulations using the very generic FHN model show that spontaneous oscillations
may result from the coupling between the two populations.

In addition to the pacemaker activity observed in the generic model, the experi-
mental investigations on the role of coupling on the uterine contractions and the direct
observations of the gap junction connections between myocyte and ICLCs, promoted
the hypothesis that the coupling between myocytes and the passive cells is the key
role in triggering rhythmic activities in uterus.

The essential reason for the induction of oscillations in the coupled myocyte-passive
cells pair system is the resting membrane potential difference between these cell types.
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Our results show that at a given passive cell resting potential larger than the crit-
ical value, oscillations can be observed by increasing the coupling strength G. The
fibroblasts, with a relatively high resting potential, largely facilitate the generation
of oscillations: both in terms of the required coupling strength G and the number
of passive cells n,. Our study here also revealed the effective role of fibroblasts in
the coupled system is nothing but increasing the effective passive resting membrane
potential. This allows an easier analysis in the future work, as no distinctions are
needed between fibroblasts and ICLCs.

The similar observation both in the coupled FHN model and the realistic myocyte
model suggests that the oscillations that we have obtained here, with a realistic model
of uterine cells, are in fact a general phenomenon, observable for the general class of
excitable cells.

Our work here is based on recently published models of uterine cells [78, 43,
44), especially the Tong et al.. Tt is motivated by the electrophysiological changes
observed during pregnancy, in particular at the late stage. In fact, we are restricting
ourselves to the set of parameters observed shortly before delivery. The gap junctions
between myocytes and passive cells provide a coupling, which is helpful to generate a
depolarizing current for the myocyte.

The investigation of other aspects [98, 96, 134], such as the change of membrane
potential of the myocytes from -70mV to -55mV [134] shows that spontaneous oscilla-
tions may result from a combined effect of several electrophysiological changes during

1 : :
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Figure 3.12: Influence of g, on the induction of oscillations. At n, = 0.2, comparing
to the case of gna = 0.04, extreme larger gap junction channels (~ 800) are needed to
trigger oscillation when gn,=(0.03nS) is slightly reduced.
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the pregnancy. A particularly important example is provided by the sodium channels.
As shown in Fig.3.12, at a state of lower sodium channel expression (gn,=0.03nS), to
induce oscillations in a cell-pair system with n, = 0.2, gap junction channel expres-
sions as large as ~ 800 channels are needed. The increase of the sodium conductance,
up to values of gn. = 0.06n.S, could significantly facilitate the generation of oscilla-
tions. We believe that all these factors together guarantee quiescent state at early
pregnancy and forceful contractions right before the term.



Chapter 4

Oscillations in extended systems:
clusters and synchronisation

In the previous chapter, it has been seen that excitable myocytes, coupled to passive
cells, can oscillate. The question that is asked here is whether, and how, an extended
system with myocytes and passive cells can synchronize, potentially leading to the
strong contractions observed in the uterus before birth. Again, we stress that the
emergence of oscillations would occur here without the presence of pacemaker cells,
which makes the problem very different from the problem of the emergence of a rhythm
in other organs, such as the heart.

In the previous section, we have explored the implication of the increase in the
coupling between one myocyte and several passive cells. Here, we investigate the
implications of the increased coupling between mycocytes, at the level of a tissue. For
the ease of computation and analysis, we begin our analysis with the phenomenal FHN
model in Section 4.1, and check the results using the realistic model in Section 4.2.

4.1 2-D FHN model of the uterus

The qualitative similarity between the realistic myocyte model and the simple FHN
model, as well as between the coupled myocyte-ICLCs cell-pair and the coupled FHN
gives us the confidence to discuss role of gap junctions coupling between excitable
myocytes using the FitzHugh-Nagumo model.

4.1.1 Model & Method

Anatomical investigations have shown the detailed structure of the uterine wall. As
illustrated in Fig.4.1, the myocytes (light color who have weak or no affinity to the
Methylene blue dye) form an interlacing network with pathways connecting the cells,
while the ICLCs (dark blue, having strong affinity to the dye) are scattered in the
network [30]. We abstract this information and model the uterus tissue with a N, x N,
nodes Cartesian grid, with each node standing for a myocyte cell; on top of it passive

60
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cells are randomly distributed. Passive cells are few, and scattered in the whole
tissue, thus no direct connections between them are expected. Fig.4.2 gives schematic
illustration of the uterine model. Each myocyte (red circle) may couple to n, passive
cells.

As stated previously, myocytes are connected by gap junctions, which is a low
resistance pathway that allows ions to go through freely. Thus a current is expected
when the neighboring cells have a difference in their membrane potentials. Together
with current from the passive cell, n% C,.(V,/ — V7), the electrical dynamics of each
cell (7, 7) in the tissue is described as following:

dvy ij 4,33 (174, ij i.j 1] ij 27 7isj

dt — A‘/evj(l _ ‘/;7])(‘/67] _ O{) _ g 5J _l_ np»]c’r(‘/pv] _ ‘/ea]> _|_ Dv ‘/;J
dag®I . .

& = Vi — g) (@)
dVi - o .

d’; :K(Vp —V;J’J)—I—C’r(Vé’]—Vp’J)

The term DV?V added to the equation of the excitable element represents the
resistive coupling between neighboring excitable cells. In fact, we use only the 5-
stencil representation of the Laplacian, which couples a cell of index (i, ) to the 4
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Figure 4.1: Representative methylene blue staining of myometrial ICLC in culture [30].

The myocytes (ligth color, with no affinity for the dye) forms a networks, while the

ICLCs( dark blue color, with strong affinity for the dye) scattered in the network.
Original magnification: x400.
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Figure 4.2: Schematic illustration of a 2-D uterine model. Myocytes form a regular
grid, and passive cells (ICLCs and fibroblasts) scatter on the top.

neighbor cells (i £ 1,7) and (i,j £ 1) as

DV*V,(i,j) = D x (4.2)
(Ve(@+1,5) + Ve(i = 1,5) + Vel(i, g — 1) + Ve(i, j + 1) — 4Ve(i, j))

A random number of passive cells, np , are attached to a myocyte (4, 7). The total
number of passive cells in the system is N,. We fix here N,, or alternatively, the ratio
f = N,/N? which we choose to be equal to 0.5. We took as values of the parameters
A=3.0,a=02,¢=008, K =0.25and V, = 1.5. In our investigation of the global
synchronization of the system, we vary both C, and D, which are reminiscent to the
changes of gap junctional conductances.

Numerically, Eq.4.1 is integrated with a fourth order Runge-Kutta scheme imple-
mented in C. We are using here periodic boundary conditions. However, we checked
that qualitatively similar conclusions would be reached with no-flux boundary con-
ditions. We use a time step dt = 0.05. We checked the accuracy and convergence
by reducing the time step (dt = 0.02) . The results presented here are based on the
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analysis of the steady state regimes. In all simulations, we began by integrating the
system over a time of T, = 2x 10%, before starting to analyze the solution. The system
was integrated for a very long time, typically T, = 5 x 10. We checked in several
cases that the results obtained truly characterize the steady state properties of the
system.

4.1.2 Passive cell distribution

We consider here systems of 100 x 100 excitable cells. Additionally, we randomly
distribute N, = 5000 passive cells. Fig.4.3 shows a typical pattern of passive ele-
ments. The choice of a distribution of passive cells can be viewed as the result of
some quenched disorder. In the following, we denote the distribution of passive cells
attached to excitable cells a "replica". To characterize a replica, the histogram, shown
in the right inset of Fig.4.3, shows the histogram of passive cells attached to one ex-
citable cell, which is essentially close to a Poisson distribution. We will talk about
this in the next chapter. The distribution of passive cells being uneven, some regions
with a density of passive cells can be observed in the system (white regions in the left
inset of Fig.4.3, which represent a zoom of the region marked by a dashed square at
the bottom left of the system). Similarly, regions of high density are also formed.

In the rest of this section, we focus on the role of the coupling between excitable
cells, i.e., the effect of the diffusion coefficient D. We take C, = 4.6. At this value,

——— w5

100 : = o LI PISLE STt [
1 100
Figure 4.3: Passive elements distribution is a system of size 100 x 100. A zoom of
the rectangular region( reft inset) shows coexistence of low and high passive density
regions. The right inset shows a histogram of the number of passive elements coupled

to an excitable one.
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the analysis of the previous chapter shows that the critical value f° = 0.495. With
our current value f = 0.5 > f°, we therefore expect that oscillations should be seen
when the coupling D between excitable cells is large enough (the mean-field limit).

4.1.3 Cluster formation

In the presence of a weak coupling (small values of D), passive elements affect the
dynamics of the excitable cells only very close to where they are actually attached.
The 0-D analysis shows that oscillations can be seen only for cell pairs with n, >
% = 0.495. Therefore, one does not expect to see any activity unless one, or more,
passive cell is present.

Fig. 4.4 shows a set of snapshots of the variable V. at different times. As
expected, oscillations are observed in some regions, whereas cells in other regions
remain inactive (quiescent). To describe this effect, quantitative measurements are
needed. To characterize the state of the system, we introduce the fraction of oscillatory
cells, ngs., defined as the ratio between the number of oscillating cells N,s. and the
total excitable cells N = N2. To define a meaningful fraction of oscillatory cells,
one needs to introduce a threshold to distinguish oscillations from small amplitude

t0+10

0.4

10.2

Figure 4.4: Four snapshots of V*J with a time interval of 10. The lattice is composed
of 100 x 100 FHN excitable elements and 5000 passive elements. The distribution of
passive cells are shown in Fig. 4.3 . Random initial condition and periodic boundary
conditions are used. Parameters: C, = 4.6, D = 0.5.
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noise. We chose here a threshold of 0.1, which corresponds to an amplitude of about
10% of the maximum amplitude for the oscillation of V.. The effect of thresholding
is illustrated in Fig.4.5, which shows the time evolution of V, at different locations
in the system. The oscillating amplitude, A,,, is defined here as the maximum value
between the maximum and the minimum as a function of time. It is found to be of
order 1, see panel (a). However, the amplitude may be much lower, as observed in
panel (b) or (c¢). With the threshold taken here, the cell shown in panel (c), whose
amplitude is 0.09 < 0.1, is not counted as oscillating, whereas the cell shown in (b),
with an amplitude of 0.35 > 0.1, is counted as oscillating.

0.7 (b)
YAV VAV
” o4 |

0.7} (c)

0 50 100 150 200
t

Figure 4.5: Time evolutions of V, chosen from the system. (a~ b) oscillating cells,
(¢) non-oscillating cell (V,,, = 0.09).

The standard deviation ¢*/ for a give cell (i, 7) , defined as:

tn

o= J e (V) - T (43)

t=to

provides also some information about the variation in time of individual cells: an
oscillation with a large amplitude is equivalent to a large standard deviation. The
sum in Eq.4.3 refers to a sum of the points in a time series; note that V7 is the average
over time. Fig. 4.6 shows the distribution of amplitude (panel a) and of standard
deviation (panel b) for the same replica. As expected, the two patterns correlate very
well. We found that a threshold of o, = 0.03 provides a good criterion, essentially
equivalent to the criterion for A,,. Interestingly, we notice that the subcriticality of
the transition close to f! makes our results have little dependence on the threshold
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Figure 4.6: (a) Amplitude map (A,,) and (b) the standard deviation map (o).

value. As we see extreme sharp decreases close to the boundary in the amplitude map
or the standard deviation map.

Another interesting quantity is the oscillating frequency. Typical way of estimat-
ing the average oscillation frequency is 2 = (n — 1)/At, where n is the number of
positive maxima of V,(t), and At is the time elapsed between the first and the last
maximum [55]. This method can give incorrect results at the collision point of two
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Figure 4.7: (a,b) For regular oscillating signals frequency measured in time space is
same as that measured in Fourier space. (c,d) For modulated signals, direct measure-
ment is affected by the modulation, while measured in Fourier space is un-affected.



67

waves with different frequencies, as shown in Fig.4.7(c).

To avoid this problem, we measure the oscillation frequency in Fourier space. The
procedure is the following: we compute the power spectrum density (p.s.d.) of V,(t),
the oscillation frequency is then determined by the position of the hightest peak. An
example is given in Fig. 4.7. For regular oscillating signals (without any modulation)
the two methods give the same results (panel (a),(b)). For signals as shown in panel
(c) direct measurement gives a higher value, as it counts the tiny peaks resulted from
the modulation of another signal, while the measurement from Fourier space (panel
(d)) is not affected.

The quantities previously defined are now used to study the role of the coupling
in the emergence of a global synchronization in the system. Fig. 4.8 shows spatial
activity in the system at 3 different values of coupling strength D, starting from a
random initial condition. At low coupling (D = 0.2), small "islands" with oscillating
cells are scattered in the system. No ordered behavior is observed. Close examination
of oscillation frequency reveals that within each "island", all cells are oscillating with
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Figure 4.8: Snapshots of the variable V, in a two dimensional domain at different
coupling D starting from random initial conditions. When the coupling is small
(D = 0.2) there is no order behavior. With the increase of coupling D, oscillating
regions emerge and enlarge. Propagating waves are observed (D = 0.4 and D = 0.6).
The last row shows pseudocolor plots of the corresponding oscillation frequencies.
Increasing D results in decreasing the number of clusters (N¢) with distinct oscillation
frequencies.
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the same frequency, while different islands usually have different frequencies. We call
these islands as "clusters". Here, we introduce two new quantities to describe this
phenomena: the number of oscillating frequencies Np and the number of clusters
N¢. As some clusters may have the same frequency, and they are well separated,
N¢ is usually larger than Np. At small D, both quantities are larger than one. We
refer to this behavior as cluster synchronization (CS). With increasing D, clusters get
larger and the number of different oscillation frequencies gets smaller. As the clusters
grow, waves generated at different sources propagate within the clusters (D=0.4).
The number of clusters as well as the wave sources and the corresponding number of
frequencies decrease, eventually resulting in a single frequency (D = 0.6). As there
are still a few cells staying quiescent, we term it as local synchronization (LS). Further
increasing D, only one wave source persists in the system. It generates waves that
propagate through out the entire system, as shown in Fig. 4.9. We term this behavior
as global synchronization (GS), which is characterized by all elements in the system
oscillating with the same frequency.

These results presented above show a close connection to two well-known obser-
vations of the electrical behavior in the pregnant uterus: (1) the gap junction which
serves as the coupling between myocytes shows a remarkable increase close to the par-
turition and (2) activities are initially irregular, but toward labor coherent activities
involving millions of cells are observed [135].

4.1.4 Global synchronization

We have seen that increasing the coupling leads to a globally synchronized state,
characterized by all cells oscillating with the same frequency, although possibly with
different phases. We now document that, upon further increasing of the strength of
the coupling, the phases of the system also synchronize, leading to all cells oscillating
collectively, therefore optimizing the contraction of the organ.

Fig. 4.9 shows an example. Comparing with the case at D = 1.0, more cells fire
simultaneously at D = 4.0. A coherent state (COH), characterized by a state where
all cells oscillate in phase is expected when D is further increased. Coherence is of
significant importance in biological system [136]. To characterize the emergence of a
coherent state, we define the maximum firing phase difference A® by:

|t; — tol

A = max( ) (4.4)
Here ty is the time duration after which a reference cell first reach its maxima. ¢; is the
elapsed time from starting point when the " element first reaches its maxima, and
T is the oscillation period. The maximum is taken over the entire system. Clearly,
the more cells oscillate simultaneously, the smaller A® is, and a perfectly coherent
state gives A® = 0. Fig. 4.10 shows the measured maximum firing phase difference
at different values of D. One could see that AP goes to zero linearly as a function of
D%, which is expected from the laplacian term DV?V, in Eq. (4.1).
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Figure 4.9: Snapshots and the corresponding frequencies show global synchronization
resulted from increasing coupling strength D. Random initial conditions are used.
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Figure 4.10: Coherent state resulted from increase coupling. Maximum firing phase

difference goes to zeros linearly as function of D~2. Random initial conditions are
used for each D.
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When the system has reached a coherent state (COH), each excitable element
shares the same amount of passive cells (f = 0.5). Its oscillation frequency can
therefore be estimated from the 0-D analysis: w = 0.0211. Hence, a determination
of the oscillation frequency at different coupling strength (D), provides a good way
to understand the mechanisms of the appearance of COH. Interestingly, the results
show two different scenarios that lead to COH state: 1), the frequency decreases
continuously towards the mean field limit value w with the increase of D when initial
conditions are chosen randomly and 2) the oscillation frequency goes to the mean
field limit value through jumps when the system is allowed to evolve starting from a
random initial state at small D, and then adiabatically increasing D.

Fig. 4.11 shows the changes of the measured oscillation frequencies as a function of
D, after the system has reached the globally synchronized (GS) state. The frequency
of scenario 1 continuously decreases to the ultimate value w (dashed line), while for
scenario 2, it first increases with D, then suddenly jumps to a lower value. Depending
on the starting states, it may take several jumps before the frequency reaches the
ultimate value. For a given coupling D, there are different frequency branches. This
suggests that the system is multistable. Indeed, depending on the initial conditions,
different oscillating patterns are observed at a given value of D. Fig. 4.12 shows the
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Figure 4.11: Changes of global oscillation frequency with the increase of D show two
scenarios leading to the COH state. Solid curve with filled symbols, corresponding
to random initial condition at each D, shows a continuous decrease of the frequency.
Solid curve with open symbols corresponds to gradually increasing D starting from a
random initial state at low D. Dashed line shows the ultimate frequency determined
by the 0-D analysis.
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/A1

Figure 4.12: Four different oscillating patterns associated with the 4 distinct oscilla-
tion frequency branches in Fig. 4.11 ( from top to bottom ). Snapshots are taken at
D = 3.1. The characterizing wave numbers are (3,1),(2,2),(2,0) and (1, 1) from left
to right, respectively.
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four observed different oscillating patterns at D = 3.1 associated with the frequencies
shown in Fig. 4.11 (from top to bottom). Interestingly, we noted that the oscillations
of highest frequency are always associated with the highest wave number in the system,
k, defined in our 2-D system by k* = k2 + k7, where k, and k, are the wave numbers
in the two directions x and v.

The observation is that the lower the frequency, the lower the value of k. Hence, at
different values of D, different oscillating patterns can be quantitatively identified by
the value of k. The four patterns shown in Fig. 4.12 can be labelled by (&, k,) = (0, 3)
(panel a) (2,2) (panel b), (2,1) (panel ¢) and (2,0) (panel d).

When random initial conditions are used for each value of D (scenario 1), only
target waves are observed (see Fig.4.9). For Scenario 2, patterns with different wave
numbers are successively observed before a final jump to the pattern of &, =k, = 0.
We also noticed that a jump in frequency is always associated with a drastic change
in the oscillating pattern: from large wave number pattern to patterns with smaller
k. Fig. 4.13 shows observed oscillating pattern at D = 5.0 after the frequency jumps.
Panel (a) and (b) show the observed patterns which correspond to those in Fig.4.12.
For D = 3.4, the pattern with (k,, k,) = (0,3) jumps into a pattern with (k,, k,) =
(0,2), identical to the one shown in panel (c) of Fig.4.12. This is consistent with the
changes in frequency: after the jump, the observed frequencies for the two solutions
become identical, see (see Fig. 4.11). The pattern with (k,, k,) = (2,2) turns into a
pattern with (k,, k,) = (1,1) at a larger D(=3.9).

The dramatic change of oscillating pattern and its associated jump in frequency
can be normalized in terms of diffusion coefficient D and the square of the wave
number k2. Fig.4.14 shows the variation of oscillating frequency with DE2. One
sees that all the frequency branches merge into one, and the frequency increases
monotonically with Dk?. The frequency increase in excitable media with the presence
of noise has been reported, and an explanation was given in term of the excitation
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(a) (b)

Figure 4.13: Snapshots of variable V, after the frequency jumping. (a) Corresponding
oscillating pattern (D = 5.0) of panel (a) in Fig.4.12 after the frequency jumping at
D = 3.4. (b) Corresponding oscillating pattern (D = 5.0) of panel (b) in Fig.4.12
after the frequency jumping at D = 3.9.
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Figure 4.14: Changes of oscillation frequency with Dk?. All the frequency branches
merge into one.

across a potential barrier [137]. Here, a simple explanation can be given as the
following: the increase of D makes propagation of the action potential easier, thus
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the oscillation frequency must increase to keep the oscillating pattern unchanged.

4.1.5 Phase diagram

To get more information on the dependance of dynamics of the heterogeneous ensem-
bles on the (D, C,) parameter space, we carried out a set of numerical experiments
on a system of size N, = 100 containing 50% of passive cells. To determine the dy-
namical properties of each point in the space, we let the system evolve from a random
initial condition. After discarding the transient, n,., Nr and N, are calculated, hence
determine its dynamical properties.

0.5 1 15 2
D

Figure 4.15: Different dynamical regimes in the (D, C,) parameter space of two dif-
ferent replicas of N, = 100 and f = 0.5. Dashed horizontal line represents the critical
value of C). that is able to trigger oscillations with f = 0.5 from the 0-D analysis.
Completed absence of oscillation (NO) is expected below this line as D — oo, and
global synchronization (GS) is expected above the line. Cluster synchronization (CS)
and the local synchronization (LS) regions appear at intermediate values of coupling
strength, but with large fluctuations.

Fig. 4.15 shows the results calculated from a fixed replica. A rich variety of
different dynamics can be identified in the system. The cluster synchronization (CS)
is characterized as n,s. < 1 and N¢ > 1. Both local synchronization (LS) and Global
synchronization states have No = 1. The only difference is that LS has n,,. < 1
while GS has n,. = 1. We see at a given coupling strength between passive and
excitable element (C,), the increase of the diffusion D (the coupling between excitable
elements) leads the system pass from cluster SC to GS or to no activity (NO), which
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is characterized by n,s. = 0, via local synchronization (LS) regime, depending on
the value of C.. Close to the no oscillation region, there are only a small fraction of
oscillating elements in the LS regime. While close to the GS regime, the LS states
contain a large amount of oscillating elements, which could be seen as a GS state but
with some defects. The appearance of global synchronization requires both large D
and C,.. Reducing either of the two leads to a destruction of GS.

From the 0-D analysis, one would expect that no global synchronization could be
observed below the line of C? = 0.112/(f — 0.472) = 3.82 (see Eq. (3.5)), which is
indicated by the dashed line in figure. Surprisingly, GS appears far below the crit-
ical value at intermediate D. With the increase of D, the boundary shifts toward
the dashed line, and eventually ends at it. One would argue that this regime largely
depends on the initial conditions. The continuous region below the dashed line shows
no such dependence. Thus the only possible reason comes from the distribution of
passive elements, i.e., the replica. A potential explanation would be as the follow-
ing: at intermediate D, the influence of passive elements is limited in the neighboring
excitable elements, which gives an average f in the local region larger than f!. Con-
sequently, these elements play the role of pacemakers, organizing the whole system.
With increasing D, the influence of passive elements reaches the entire system, result-
ing in f = 0.5 < f! everywhere. No pacemaker regions exist, hence GS disappears.
A more detailed discussion will be given in the next chapter.

The above observations suggest that there are large fluctuations close to the tran-
sition. This motivates a detailed study on how the replicas influence the transition
from the asynchronous state at low coupling strength to coherent state at high cou-
pling. A quantitative description can be given in terms of the oscillating fraction n,s.,
the number of frequencies Nr and the number of clusters N¢.

We first focus on the transition to global synchronization (GS). For this reason we
fix C}. = 4.6, which is above the dashed line in Fig.4.15, and vary D. Fig. 4.16 shows
the averaged variations of the oscillating fraction n,,. as coupling D is increased. Here
the average is taken over 33 realizations. To reveal the changes of the clusters, the
fraction of oscillating cells in the largest cluster (the main cluster) n,,, defined as the
number of oscillating cells in the largest cluster divided by the total excitable cells
N2, is also plotted in the figure. The corresponding number of oscillating frequencies,
Npr and the number of clusters, N¢ are shown in Fig. 4.17.

At low coupling strength, oscillations are scattered in the system. No prevailing
cluster is observed, as indicated by the large difference between the total oscillat-
ing fraction and that of the main cluster. Several small oscillating regions coexist
(N¢ > 1), oscillating with a given frequency, and each of them contains a small
number of oscillating cells (n,s. < 1). With the increase of D, oscillations expand,
and small clusters merge, forming larger clusters. This is accompanied by a reduc-
tion in the number of oscillation frequencies as well as the number of clusters. This
cluster synchronization (CS) turns into local synchronization (LS), when N¢ or Ng
reduces to 1, while oscillations do not reach the entire system (n,5. < 1). The global
synchronization (GS) appears when D is further increased.
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Indeed, the appearance of different oscillating regimes largely rests on the distri-
bution of passive elements (the replica). As illustrated in the insets of Fig. 4.17 and
Fig. 4.16 which show the standard deviations of n,s., Ng and N¢ have large fluctua-
tions, especially at low coupling. These fluctuations may result from the distribution
of initial conditions, as discussed in Section. 4.1.4. A detailed discussion will be given
in the next chapter.

We now turn our discussion to the transitions towards no oscillation (NO). In the
uterus, the passive cell, mainly composed of Interstitial Cajal-Like Cells (ICLCs) and
fibroblasts, comprise about 20% of the cell population in the uterine tissue [27, 30].
One knows from Chapter 3 that with the constraint on f, a critical value of C, is
required which guarantees the pacemaker-like behavior, i.e., generating spontaneous
action potentials. When C). is larger than the required value, global synchronization
is observed. Then what happens in the case where C, is less than the critical value?
To answer this question, we carried out the same simulations at C,. = 1.9, which is
below the critical value (see the dashed line in Fig.4.15).

Fig. 4.18 shows the average oscillation fraction with the changes of D. Different
from the case at C,. = 4.6, the increase of D eventually leads to a complete disappear-
ance of oscillations, rather than a GS state. This is expected from the O-dimensional
analysis: as at C, = 1.9, f2 = 0.545 > f = 0.5. We label this state as no oscillation
(NO), which is characterized by n,s. = 0. The inset shows the corresponding standard

osc

ml

Figure 4.16: Variation of oscillating fraction n,s. in the entire system as well as in the
largest cluster n,, with coupling strength D at C,. = 4.6, N, = 100 and f = 0.5. Data
is averaged over 33 different replicas. The corresponding standard deviation is shown
in the inset.
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Figure 4.17: Variations of the averaged number of clusters No and the number of

oscillating frequencies Nr with the coupling strength D. Parameters are same as in
Fig. 4.16
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Figure 4.18: Variation of oscillating fraction n,s. in the entire system with coupling
strength D at C. = 1.9, N, = 100 and f = 0.5. The corresponding standard deviation
is shown in the inset. Average over 50 replicas.
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deviations. One sees that extremely large fluctuations exist for intermediate values
of D. A close look reveals that global synchronization could be achieved from some
replicas at intermediate D, while not for others.

4.2 2-D realistic model of the uterus

We have shown in the previous section, using the FHN model, that the global synchro-
nization can indeed result from the increase of coupling strength in mixed medium of
excitable and passive elements. To verify what it is the case in the pregnant uterus
close to term, we restrict here our discussion on the uterine behavior using a realistic
model.

4.2.1 Model & Method

Considering the fact that in the uterus, passive cells (mainly ICLCs and fibroblasts)
occupy as many as 18+2% (= n,/(1 + n,), i.e. n, ~ 25%) of the total cell popula-
tions [31], in the model we set the average f =< n, >= 0.2. That gives the total
passive cell population N, = fN2. Taking into account the length of uterine my-
ocyte (225um) [33], in the studies here, IV, is set to 50, which gives a system size of
lemx lem, close to the tissue preparations used in real experiments [138, 139].

Connected by gap junction channels, the membrane potential of each myocyte is
the tissue is described as follows:

Vi L )
Chm T :—Iijn—n;;JG(V,ff —VZ’J) — DV*V,,

dVii . . . (4.5)
Gy = = GV = V) = GV — Vi)

Here n:f;j indicates how many passive cells are connected to the myocyte at (i, j), and

we assumed all passive cells have the same resting potential V| = —35mV. I s
the total ionic currents, described in Section 2.3. Since the random distribution of
passive cells, nj;j can be 0, 1 or 2 etc. for different myocte (i, 7). As pregnancy goes
on, the gap junctions increase dramatically, which can be modeled by an increase of
the diffusion coefficient D and the coupling strength G.

Changes of uterine activity as pregnancy goes on can be studied by integrating
Eq.4.5, which involves more than 20 differential equations for each cell. To solve it, we
use a fourth-oder Runge-Kutta scheme implemented in C. A standard 5-point stencil is
used for the spatial coupling between the excitable elements, the Laplacian term. The
short time constants of some gating variables prevent us using large time steps in the
simulations. For example, the activation gate of Ix(cq) has a time constant 7, ~ 0.1
ms. Noticing the fact that with such a short time constant, the gating variable x,, will
relax to its steady state T, quickly, we simply set 24 (t) = Zaoo(Vir). This enables a
time step of 0.5 ms to be taken without bringing any qualitative changes of the system
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behavior (errors less than 0.2% in measuring the periods of oscillations). However,
the integration is still a tedious work: it evolves a total of more than 100 equations
for each cell, and for the system we consider here it requires a huge computations. As
there are multi-cup clusters available in Pdle Scientifique de Modélisation Numérique
(PSMN), we use the Message-Passing-Interface (MPI) library to distribute the work
load to different processors.

4.2.2 Results

As mentioned already stages of pregnancy can be described in terms of coupling
strengths between excitable myocytes D and between myocytes and passive cells G,
We study here the dependence of the system dynamics on these two parameters.
Fig.4.19 shows the spatiotemporal evolution of the membrane potential of the uter-
ine tissue as diffusion coefficient D increases at a given coupling strength G = 3.5nS
between myocyte and passive cells. At early stage, gap junctions are too few, no action
potentials are observed, the uterus stays quiescent (not shown). As the gap junction

D=0.004nS/pF D=0.015nS/pF D=0.020nS/pF
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Figure 4.19: Emergence of different global activity regime with increasing gap junction
conductance. Snapshots of V;, (first row) in a 2-D uterine model (N, = 50) with 20%
passive cells, and with different values of the diffusive coupling between myocytes D.
Th second row shows pseudocolor of the periods of individual myocytes in the model.
An increase in D leads to a decrease in the number of clusters with distinct oscillation
periods, and this eventually leads to globally synchronized oscillations. Simulations
are done with G = 3.5nS.
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between myocytes is increased during pregnancy, we observe a transition from highly
localized, asynchronized oscillations to spatially organized global oscillations: For low
gap junction density (D = 0.004nS/pF), areas with relatively high passive cell density
start to oscillate with distinct periods, while the cells in the same area have the same
period. Note that regions with low passive cell density stay quiescent. This regime
is termed as Cluster-Synchronization (SC). With increased values of D the oscillat-
ing clusters merge, forming larger clusters, and reducing of the number of different
periods. This eventually ends up with only one period in the system. Depending
on the coverage of oscillations, there are two regimes: Local synchronization (LC),
characterized by g = Nyse/N2 < 1 and Global synchronization characterized by
Nese = 1 as studied in the FHN case [140].

4

0 0.05 0.1 0.15
D (nS/pF)

Figure 4.20: Different dynamical regimes of the uterine tissue model in (G, D) param-
eter plane indicating the regions (i) without any oscillating activity (NO), (ii) cluster
synchronization (SC), (iii) local synchronization (LS), and (iv) global synchronization

(GS).

To get a deeper insight of the different activity regimes exhibited in the system by
increasing gap junction conductance, we built a phase diagram in (G,D) parameter
space (see Fig.4.20). In addition to the above mentioned regimes, we also observe
a region in which all the cells stay quiescent, which we label "No Oscillation" (NO).
As one would expect the boundary between the NO and GS tends to a value of
G ~ 2.7nS determine by n, = A/G + B as D goes to infinity. Below this critical
value, the increase of D eventually leads to a complete disappearance of oscillations.
The observation that global synchronization only appears at large D and G suggests
that the break-down of the gap junctions (i.e., small D and G) could lead to the
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disappearance of the uterine rhythmic activity. Indeed, Tsai et al. has shown that
the disruption of the gap junction communications by chemical agents immediately
inhibits the spontaneous uterine contractions [51].

The spontaneous increase of gap junctions during pregnancy suggests that the
uterus undergoes a series changes from the left-bottom corner of the phase diagram to
the right-up corner. This allows the uterus to experience different dynamical regimes,
from quiescent to global activities via cluster synchronization.

To further understand the electrical activities right before parturition, we also
looked at the propagation of action potential waves in the system in the regime of
GS. As depicted in Fig.4.21, spiral like waves emerge in the system. Comparing to
the experimental measured pattern of propagation of action potentials recorded in
rat uterus [141], as depicted in Fig. 4.22, our results faithfully reproduce the observed
features.

Fig.4.23 shows a trajectory of the tip of spiral waves. The tip moves randomly
in the system. When the tip moves out from the system, it follows a long period of
quiescence, after which waves of action potential settle in again. A long time trace
of the membrane potential of one randomly chosen cell in the system shows bursting
behavior (see Fig.4.24): a series of action potentials follow a long time period of
quiescence. We noticed that each burst composed of several long period spikes (~20s)
and fast spikes (short period, ~1s). These fast spikes are related to the appearance
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Figure 4.21: Patterns of electrical activity observed in the model. Action potentials
rotate around the tip of the spiral. Parameters: G = 3.5nS, D =0.1nS/pF.
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Figure 4.22: Experimentally measured propagation of action potentials in pregnant
uterus. A through D display a continuous sequence of propagation during a period of
2.8 seconds. Replotted from [141]

of spiral waves.
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Figure 4.23: Trajectory of the spiral tip of the spiral waves shown in Fig.4.21.

Bursting of membrane potential is of crucial importance to the generation of force-
ful contraction in uterus. The frequency, amplitude, and duration of contractions are
determined mainly by the frequency of occurrence of the uterine electrical bursts, the
total number of cells that are simultaneously active during the bursts, and the dura-
tion of the uterine electrical bursts, respectively [23]. Simple excitation-contraction
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models [44, 47] suggest a high-frequency-pass mechanism in the generation of cal-
cium induced contractile force. This indicates that the strength of contractile force is
mainly determined by the number of fast action potentials. We have mentioned pre-
viously that spiral waves terminate as the tip moves out from the system. Since the
tip does a random walk in the system, doubling the system sizes can lead to increase
of the number of fast spikes by a factor 4. Stronger contractile force is expected in
larger uterus.

With the increase of the gap junction conductance D, these waves become more
regular: generated in a region with relative high passive cell density and propagating
through out the whole system (See Fig.4.25). We noticed that it takes about 340
ms for the wave to propagate from one side to the other side. By assuming the cell
length is 225um [33], we got a action potential propagation velocity of 3.2cm/s. This
observation is consistent with the experimentally measured value [139, 142].

4.3 Discussion & Conclusion

We demonstrated in this chapter, using the FHN model, the appearance of synchro-
nization in heterogeneous systems without any oscillating agency can be achieved
through self-organized manner. Depending on the coupling strength, a rich variety
of collective behaviors is observed; in particular, at intermediate coupling strength,
groups of cells spontaneously form clusters that oscillate at different frequencies while
maintaining same frequency within each clusters. With the increase of coupling
strength, clusters expand and merge with each other forming larger clusters, and
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Figure 4.24: Bursting behavior of uterine electrical activity. Each burst comprises
long period spikes and fast spikes, which correspond to spiral waves. Increasing the
system size leads to an increase of fast spikes within a burst, with evident change of
the inter burst interval.
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Figure 4.25: (a) Wave patterns at large coupling strength D=0.2nS/pF. A wave front
takes about 340ms to from top of the system to the bottom. (b) Time trace of the
variation of membrane potential of a randomly chosen cell in the system.

eventually give rise to a globally synchronized state. Coherent state marked as all
cells firing simultaneously is achieved by further increase of the coupling. These re-
sults catch qualitatively a set of changes occurring in the uterus during pregnancy,
and can be used to explain several important features known about the emergence of
contractions.

The mechanism of synchronization in uterus suggested by the studies of coupled
FHN system has been confirmed by considering a realistic uterine model, in which no
pacemaker-like agencies has been identified experimentally. The emergence of spon-
taneous oscillations in the coupled excitable and passive systems gives reasonable
explanation of the origin of uterine contractions, as close connections between my-
ocytes and ICLCs do exist in the uterus [27]. The dramatic increase of gap junctions
during pregnancy [36] suggests that the changes in the uterus with time are similar
to increase D and C, simultaneously in Fig. 4.15, which leads from quiescence at low
coupling, eventually to global synchronized oscillations at strong coupling. In addi-
tion, the frequency enhancement in the case of adiabatic increase of coupling is also
consistent with experiments [134].

The results obtained both from the very generic FHN model and the realistic
model show a great similarity. Although in the case of FHN model, we considered a
system containing a larger number of passive element fraction comparing with that
in the uterus, no qualitative changes is observed compared to the realistic model.
Comparing to the results obtained using f = 0.7 [140], smaller f only shifts the
transition boundaries to high values of C,.. This suggests that the mechanisms of
synchronization we discussed here can be applied to a broad class of systems composed
of passive and excitable elements [65, 66, 132].
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Besides these qualitative description, the realistic model went much further: (1)
The irregular action potential propagating patterns have been reported in rat uterus [141],
the similarities have been confirmed both in terms of wave direction and wave veloc-
ity; (2) Bursting of the action potential, which is of crucial importance for a successful
expulsion of the fetus, is observed at tissue level. Indeed, to the best of our knowledge,
no bursting has been reported in vitro or in vivo experiment at the single cell level,
but it does appear in the uterus [36]. These results strongly prove our assumption of
the role of gap junction couplings in process of pregnancy.



Chapter 5

Disorder-induced fluctuations,
system-size dependence and scaling

5.1 Introduction

In the previous chapters, we have studied the appearance of electrical activity, lead-
ing to uterine contractions using both a realistic model (Tong’s model) and a generic
model (FitzHigh-Nagumo model). Our work suggests that the increase of the cou-
pling, resulting from the increased expression of gap junctions during pregnancy, can
lead to an electrical activity that is synchronized over the entire uterus, eventually
leading to strong contractions and to the expulsion of the fetus. Using available infor-
mation on the structure of the uterine tissue, we have introduced a simple model with
excitable cells on a simple square lattice, in a 2-dimensional system of size N, x N,
each excitable cell being coupled to a varying number n, of passive cell. The number
n, was chosen randomly, to reflect the strong variability observed in real tissue [30];
in the study, we restricted ourselves to simple probabilistic laws, such as the binomial
or the Poisson law [143]. Once the specific distribution has been chosen, the mean
value of the distribution of passive cells, f = mean(n,), is thus the parameter that
characterizes the distribution. The numerical solutions of this model exhibit a variety
of irregular spatio-temporal regimes, reminiscent of what has been observed in other
systems of coupled cells, essentially in the cardiac context [65, 66, 132, 68, 144]. In re-
lation to the physiological problem, the systematic dependence of the behavior of the
solution of the model has been studied as a function of the two coupling coefficients:
D between excitable cells, and C,. between passive and excitable cells [140]. The main
conclusion of this work concerns the emergence of synchronized oscillations when the
coupling coefficients D and C, become large enough, in qualitative agreement with
what is known for uterine tissue.

However, the disorder, due to the random distribution of passive cells coupled
to excitable cells, has not been addressed so far. The importance of the disorder in
various phase transitions has been studied very extensively [145, 146]. In our case,
we are interested in the transition towards a regime of sustained activity, and the
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question we are asking is: how does disorder affect the transition ?

A given distribution of passive cells attached to the myocytes in the lattice can
be viewed as a particular realization of a quenched disordered system. We use here
the terminology of the spin glass theory [147], and denote an individual realization as
a replica. Whereas one may expect that the emergence of synchronized oscillations
in the system, which is a macroscopic property, should depend on the macroscopic
properties of the system, i.e., the mean value f, one may also expect that the detailed
(microscopic) properties of the distribution will be important, hence that the tran-
sition may depend on the particular replica. We are therefore interested here in the
fluctuations in the macroscopic behavior of the system, due to the particular disorder
of the system (replica).

To this end, we characterized the nature of the numerical solutions, and determined
the dependence of these solutions on the two coupling coefficients, D and C, [140].
One of the main features observed in our numerical study of systems with a relatively
small size, N, = 100, is the existence of very large fluctuations of the behavior of the
system for a given set of coupling parameters, (D, C,), depending on the replica (see
Fig.4.16). In fact, for a given set of coupling parameters, the system can be either in a
state where all the cells oscillate with the same frequency, whereas for other replicas,
the system can be in a state where the majority of cells are inactive, with a weak
activity localized in some sub-domains of the system.

These very different behaviors can be understood qualitatively by observing that
for aset (D, C,.), oscillations are possible only when the number of passive cells coupled
to a given excitable cell f is within a certain range, f! < f < f? (see Fig.3.3 in
Chapter 4). One of the main observations of this chapter is that for values of f < fI,
the dynamics of the system strongly differs from one replica to the other. This is
manifested in particular when studying the dependence of the dynamics when the
coupling coefficient D is varied. This is due to the fact that close to the threshold f ~

1 the local fluctuations of passive cell density, not just the mean value over the entire
tissue, are important. The definition of the local density involves a coarse-graining
length, d. On general grounds, this length is expected to be related to the coupling
between excitable cells, that is, d o D'/2. At a given value of the coupling coefficient
between ecitable cells, D, and between excitable and passive cell, C,., whether cells
oscillate or not will therefore be critically dependent on the detailed properties of the
distribution of passive cells attached to excitable elements. In this work, we quantify
these effects, and characterize these large replica-to-replica fluctuations.

One consequence of the above pictures is that the properties of the system should
depend on the size N, of the system. Indeed, as the size of the system N, increases,
the probability that, for a given couple of values of D and C,., the fluctuation of the
number of coupled passive cells around a myocyte becomes larger. As a result, the
probability to find oscillating cells, for a given set of coupling parameters D and C, is
expected to increase with the size N, of the system. We characterize this finite-size
effect, and show indeed a dependence of the properties of the system with its size,
typically involving the logarithm of the size, In V,.



87

The picture presented in the previous paragraph leads to the prediction that
the parameter that controls the averaged behavior of the system is the combina-
tion ﬁ x w; where p = (f — f1(C,))/f} represents the difference between the
averaged number of passive cells connected to an excitable cell, f, and the critical
value, f1(C,), estimated from 0-D analysis Eq.(3.5b), normalized by the ratio %,
which represents a competition between diffusion, which tends to smooth the local
differences of the passive cell density, and the increase of the system size, which allows
the system to explore more local configurations of the passive cell distribution. The
introduction of this variable can be interpreted as a scaling relation, familiar in the
context of transition to the thermodynamic limit in statistical mechanics (finite-size
scaling). We demonstrate that this variable correctly represents our own numerical
results.

5.2 Global oscillations and large fluctuations

The model we consider here is same as that presented in Chapter 4: excitable cells
form a grid of size N = N, x N,, with each nodes representing an excitable cell, and
M = N x f passive cells are randomly distributed on the top of the lattice. The system
dynamics is governed by Eq.(4.1). As usual, C, and D describe the excitable-passive
and excitable-excitable coupling strengths, respectively.

Each excitable cell (7, j) is locally coupled to a different number n};7 of passive cells.
The quantities n;;7 are integer numbers and were chosen by the following procedure:
a set of M pairs of indices (i, 7) were randomly generated, each pair having the same
probability (= 1/N). A particular pair of indices can be chosen an integer number
of times; we then attach to each node, i.e., to each excitable cell, as many passive
cells as the number of times that its indices appear in the list of M pairs. Spatial
distributions of the set {ngj } are refered to as replicas. Each replica can be viewed
as a realization of a quenched disorder.

We have shown in Chapter 4 that as long as there is more than f = 0.484 passive
cells attached to a myocyte, oscillations could be observed by increasing .., the
coupling strength between passive and excitable cells. We considered here the case
C, =1.9,f = 0.5 ( green %), which is slightly below the oscillating boundary, as
shown in Fig.3.3. At this coupling strength C, = 1.9, f is smaller than f! a 0.545
and fy ~ 0.529, below which finite amplitude solutions do not exist. The deviation
between the value of f and the threshold is:

p= (e =N/ 57107 <1 (5.1)

which characterizes the distance to the onset. With this set of parameters, several
features of the solutions can be predicted from the following arguments.

e When the coupling between excitable cells is very strong, D — oo, a mean-field
approach ngj = f is expected to become exact and the analysis of the 0-D system
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leads to the expectation that no oscillations exist.

e In the opposite limit of a very weak coupling, D — 0, cells which are not coupled to
a passive cell do not oscillate, whereas cells coupled to a single passive cell oscillate,
and no global behavior is expected to emerge.

We focus here on the situation of intermediate coupling between excitable cells. To
this end, we integrate the system (Eq. (4.1) ) numerically with a fourth-order Runge-
Kutta scheme, using time step dt = 0.05, starting from random initial conditions. The
time variation of V, is recorded for 5000 time units, after having integrated for 20, 000
time units, which turned to be sufficient to reach the statistically steady state of the
system. The recorded signal is then used to calculate the fraction of oscillating cells
Nese, the frequencies, and other quantities characterizing the evolution of the system as
a function of D (see Chapter 4). The results reveal that the typical oscillation periods
are of the order of 37, in our time units. The value of the period is typically determined
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Figure 5.1: Replica-dependent fluctuations close to the transition to sustained oscil-
lations in 2D systems of coupled excitable and passive cells, with identical sets of
parameters (f = 0.5, C, = 1.9, N, = 100), and increasing values of the coupling
strength D. Snapshots of activity V. for two different replicas are shown in the top
rows of (a) and (b). The frequencies of individual oscillators in the medium are shown
in the pseudocolor plots in the second row (white corresponds to absence of oscilla-
tion). The last row shows the local density of passive cells averaged over a length
scale d indicated below each frame. For the replica shown in (a), we observe global
synchronization at D = 2 followed by progressive cessation of spontaneous periodic
activity in the system indicated as a shrinking region of oscillating cells when coupling
is increased further. However, for the replica in (b), coherent oscillation is not ob-

served as D is increased, with the existing localized oscillating clusters having distinct
frequencies gradually decreasing in size.
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by the relaxation of the slow variable, ~ 1/e [87]. Fig. 5.1 shows several snapshots
for two different replicas and for increasing values of the diffusion coefficient D. One
sees that, as shown in Chapter 4, oscillations exist in localized regions of various sizes,
denoted as clusters, where propagating waves are observed. Depending on the replica,
global synchronization (GS), defined as all cells in the system oscillate with the same
frequency, can be observed, see Fig. 5.2a (D = 2,middle column), even in the case
of f < fo. On the contrary, no trace of global synchronization is observed for other
replicas: oscillations remain confined within localized regions, and oscillations occur
with different frequencies, as indicated in the second column of Fig. 5.1b.

Another illustration of the quantitative difference between the dynamical regimes
observed for different replicas can be seen from the phase diagrams, obtained by
varying both the coupling coefficient between excitable cells D and between excitable
and passive cells C,.[140]. Fig. 5.2 shows two phase diagrams corresponding to two
different replicas of size N = 50%. As already seen (see Chapter 4), the observable
dynamical regimes are either (i) no oscillations (NO); (ii) oscillations exist in clusters
in which all cells share the same frequency but with different frequencies from one
cluster to another (region labeled "CS" for cluster synchronisation), (iii) oscillations
exist in one cluster but with some non-oscillating cells in the system (region labeled
'LS", for local synchronisation), and (iv) oscillations exist everywhere in the system
with the same frequency ("GS', for global synchronisation). These regimes, color
coded as explained in the caption of Fig. 5.2, are shown for two different replicas. In

05 1 15 2 05 1 15 2 25
D D
(a) Replica 1 (b) Replica 2

Figure 5.2: (a,b) : Phase diagrams for f = 0.5 in two systems of size N = 50% with
different replicas. Every point was evolved out of random, hence different, initial
conditions. Horizontal dashed line represents the value of C? such that f!(CY) = f.
Below this line the system is subcritical according to the 0-d analysis and no oscillation
exist for D — oo.
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particular, it is seen that a globally coupled (GS) state can be observed for values
of C, much smaller than the critical value C? = 3.7, below which no oscillations are
observed in the 0-D model.
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Figure 5.3: Averaged value of the fraction of oscillating cells (n,s.) for system sizes
N, = 50 and N, = 100. Each point is obtained by averaging over 200 replicas.
C.=1,9, f=0.5, p=57x 1072

The general aspect of the phase diagrams shown in Fig. 5.2, is very reminiscent of
the corresponding phase diagram shown in Chapter 4, Fig. 4.15, obtained in a system
of size N, = 100, f = 0.5. By comparison, it can be noticed that the boundary
separating CS and GS shifts toward smaller D. This suggests a size dependence
of the system behavior. To characterize this size dependence, we have carried out
simulations, as done in section 4.1.5, on systems of small size N, = 50, with the
same value of f. The value of n,, was determined for at least 200 replicas. The
average of n,s. is shown in Fig. 5.3. In addition to the value shown in Fig. 4.18 with
N, = 100 (blue diamonds), we also show values obtained for N, = 50 (red open
squares). Fig. 5.3 shows that, as the coupling coefficient D increases, the average
number of oscillating cells in the system decreases, and eventually reaches zero. This
is consistent with the 0-D analysis. The high values of the standard deviation, shown
in the inset, reveals strong replica—to-replica dependence.

Despite these similarities, a clear difference can be observed: oscillations vanish
at larger values of D for larger systems. This size dependence will be analyzed more
thoroughly in the following section.
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5.3 Fluctuations of passive cell density and local
activity

The behavior described in the previous section can be qualitatively understood by
noticing that diffusion effectively couples excitable cells which are within a distance
o v/D. As a consequence, one may expect that a given excitable cell is sensitive not
so much to the passive cells that are directly coupled to it, but more to all the cells
that are within a distance oc /D from this cell. This suggests to relate the observed
activity of a cell in the system to the fluctuations of the density of passive cells in a
domain surrounding the cell.

5.3.1 Averaging procedure

With this motivation, we begin by defining how we computed the local density of
passive cells surrounding a given excitable cell. We define the local passive density ng,
coarse-grained over a scale d as the convolution ngy = K4 *n of the initial distribution
of passive cells n;j with a 2-dimensional averaging kernel Ky(i,7). The kernels we
have considered are all separable, in the sense that Ky(i,j) = kq(i/d) X kq(j/d).
Because the coupling term is effectively described by a Laplacian term, a natural
choice for the coarse-graining kernel K, is the Gaussian kernel, obtained with £§ given
by: )
1 7
kz?(l) = \/W eXp(_ﬁ> )
For the analysis discussed below, it is also convenient to consider the simpler "top
hat" square kernel, kI, defined by:

(5.2)

K() = SH (i~ d/2]) (5.3)

where, H(x) is the Heavyside function, defined as H(z) = 1, for x>0, and H(xz) =0
otherwise. In this latter case, n4(7,j) is simply the number of passive cells, averaged
over a square subregion of size Ny = d? centered at the point (4, 7). In the case of the
Gaussian kernel K¢, the contribution from a site (7, j') to n, at site (i, j) depends on
the distance between the two. The variance of n; can be written as 03 = 0%/Ny, where
o? is the variance of n,, and Ny (= 47d?) is the effective number of sites contributing
to ﬁd.

The numerical study of the problem, discussed in the rest of this section, has been
carried out by using the Gaussian kernel; the top hat kernel will be useful for the
theoretical analysis, presented in section 5.4.
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5.3.2 Pacemaker-like regions and diffusion

The third line of Fig. 5.1 shows how the passive cell density ny evolves when d is
increased. The patterns of 4y and of the oscillation amplitude are clearly similar. As
can be seen in Fig. 5.1, oscillations are located in regions which correspond to the
largest local passive cell density. In addition, we observe that increasing the diffusion
coefficient D and increasing the size d lead to similar effects. In fact, increasing D
eventually leads to a reduced number of oscillating cells, a consequence of the fact that
in the regime investigated in Fig. 5.1, the value of f is lower than the critical value fj
at very large values of D. In the same spirit, by increasing d, the coarse-graining size,
the variance of n, decreases, therefore reducing the variations of the local density of
passive cells connected to excitable cells in the system.

To go beyond the qualitative impression given by Fig. 5.1, we define a “pacemaker-
like region" as a set of adjacent cells with a local density n, larger than the critical
value f!(C,). The analysis carried out for a single cell (0-D) suggests that these
cells are the ones that will lead to oscillation. The number of pacemaker-like regions
depends both on the replica and on the coarse-graining length d; this number decreases
when d increases, and becomes 0 as d becomes very large.

For a given replica, we look for the smallest value of d, d* above which the number
of pacemaker-like regions in the system is zero. We can then relate this value of d* to
the value D* of the diffusion coefficient above which the number of oscillating cells in
the system vanishes.

The results are presented in Fig.5.4. Each point corresponds to one replica. Several
system sizes have been studied, as indicated by the symbols (see the caption). We
observe that d*? and D* are close to being proportional: d*? ~ T'D*; T' = 36.6 being
a typical time of the system. The characteristic time T' = d*?/D* is of the order of
the slow time scale of the system, ~ 1/e. In fact, the measured value, 7' = 36.6 is in
the middle of the range of observed period of oscillations, which from 40 down to 31
when D is increased in a 50 x 50 system). We do not have any convincing explanation
relating T" to the oscillation period..

A very important observation from Fig.5.4 is that both D* and d* increase when
the size of the system increases: the larger the size of the system, where f < fl the
larger the range of values of D over which oscillations can be seen. Quantifying the
size dependence is the object of section 5.4.

5.4 Statistical description

The relation between clusters of oscillating cells and regions containing pacemaker-like
regions, suggested by Fig. 5.1, and also by the proportionality between the values of D*
and d* (see Fig. 5.4) suggests that the fluctuations observed when considering different
replicas can be simply understood by investigating the presence of pacemaker-like
regions as a function of the coarse-graining size d.
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Figure 5.4: Relation between the largest values of coarse-graining length d* and dif-
fusion coefficient D* for which a given 2D system possesses regions with oscillatory
activity. Each point corresponds to a different replica whereas different symbols rep-
resent different system sizes N = N2. Error bars centered around averages of replicas
for the same system size express the standard deviation. The linear fit between d*?
and D*, shown as a broken line, has a slope T ~ 36.6 that lies in the middle of the
range of observed oscillation periods (lying between 31 and 40) for different values of
the diffusive coupling strength in a 2D system with N, = 50

In this spirit, in order to understand the main features observed numerically, we
analyze here the effect of coarse-graining on the existence of pacemaker-like regions.
To simplify the analysis of the coarse-graining process, our analysis is carried out first
with the square kernel introduced above, see Eq. (5.3).

5.4.1 Distribution of passive cells

The probability of having N, passive cells in a region of N; = vN excitable cells,
knowing that there is a total of M = f x N passive cells randomly distributed in a
system of N = N2 excitable cells, is given by the binomial distribution

PN (Na, Np) = Cof ™ (1 — )M, (5.4)
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which reduces when N — oo to a Poisson distribution of parameter fNjy :

(f Na)Nre= I

pOO(Nd7Np) = N'
p-

(5.5)
independent of the system size N. For a top hat kernel, the averaging occurs over

N, = d? sites where d is the coarse-graining length and the local passive cell density
ng = N,/Nq.

5.4.2 Probability of having a pacemaker-like region in a sub-
set of N, cells

Given the probability mass function of passive cells, we write the probability that
a cell (7,7) in the center of a region of Ny cells has an effective passive cell density
na(i,j) = N,/Ng > fl, i.e., larger than the critical value. In that case, we expect
that the corresponding averaging region of size N, around the center cell (, ) will
behave, at least close to (i,7), as a pacemaker-like region. We have

PY(Ng)= Y pY(Na, )

Np:fclNd
M M! 5.6
— Z ﬁVN’«l . U)M—Np ( )
N, SN, N(M — N,)!

=I,(f!Na, fN — fINg+ 1)

where I,,(a, b) is the regularized (incomplete) beta function [148]. PY(N;) depends on
the system size N but for large N — oo it tends to a regularized incomplete gamma
function that does not involve the system size N anymore:

PP (Nq) = P=(Na) = i (fNg) eI

Np=N, Np!
00 N Np
=(fNg)Nee N Néo g\;p j)l)! (5.7)
(! Na, fNa)
~ (N,—1)!

where (a, b) is the incomplete gamma function, defined as y(a, b) = [{ t*~'e~dt [149).

To verify our analysis, we measure the probability of having a pacemaker-like
region in the subregion N, as the following: for a given replica, we first compute
the average passive cell density by applying the average process Eq.5.2 and Eq.5.3
for Gaussian and square kernels, respectively, with length d. We then ask whether
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the center of a region of size N; having ng4(i, ) larger than f! for Gaussian (square)
kernel. To get a good statistics, we took four well separated regions (the four corners)
in each replica. We repeated this procedure for 200 different replicas. Then P> (1NV,)
can be expressed as the total number of the observations of pacemaker-like regions
divided by 4 x 200. Fig. 5.5 shows a comparison between the numerically measured
probabilities and those obtained using the above expressions. Although Egs. (5.6)
and (5.7) are assuming a simple local average as the one given by the convolution
with the square kernel (5.3), they also represent perfectly the measurements of the
passive cell density obtained by convolution with the Gaussian kernel (5.2), as can be
seen in Fig. 5.5.

In the limit of large system sizes N, we can rewrite P*(N;) by factorizing the
first term of the sum in Eq.(5.6) :

PR(Ng) = p (N SN0 S T o220
- dy JeiVd EECEE

and then use a Stirling expansion for the first term, while we rewrite the products
by keeping only lower order terms in 1/N, in the large N, limit. Further neglecting

PN )

10 L L A L L >
0 500 1000 N 1500 2000 2500

Figure 5.5: Probability P (N,) of having local passive cell density greater than f!
in a neighborhood of Ny excitable cells as a function of N;. Open (filled) symbols
represent numerical observations using Gaussian (square top hat) kernel. The broken
curves indicate the corresponding probabilities obtained from the analytical expression
of Pf\}; , Eq. (5.6). The solid curve shows Pg’, the probability values obtained for
infinitely large system, Eq. (5.7).
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v = Ny4/N, we obtain for any fixed value of p:

e e 55)

*(Na) ~ 5.8
27chlNd 2

where we defined A = —p — In(1 — ). To obtain an expression valid for arbitrarily

small i, we remark that A >~ p?/2 > 0 and we use the variable X = p?f1 N, to write:

1
P>*(Ny) ~ -
W)= oz
5.4.3 Probability of having a pacemaker-like region in the

system

vl

(5.9)

Fig.5.1 suggests that that oscillations are induced by the presence of one, or several
pacemaker-like regions in the system. A reasonable assumption is that pacemaker-like
regions are able to entrain a fraction of the system. The dependence of the probability
of obtaining a pacemaker-like region in the system on the system size can be simply
understood from the following considerations. Consider two systems of sizes N; and
Ny (N7 > Ns), with the same amount of average passive cells, expressed by the

N]_ NZ

Figure 5.6: Size effect on the pacemaker fraction. Each subregion N, has the same
probability of being a pacemaker p,. For the N; system, its probability of having

Ny
non-zeros pacemaker fraction is 1 — (1 — PN(Ny)) ¥, and 1 — (1 — PN(N,)) N % for the
Ny system.
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fraction f. As a given coarse-graining scale d, or equivalently, at a given value of
the coupling between excitable cells D, the larger system contains a larger number of
independent subregions Ny, as illustrated in Fig.5.6. The probability of having at least
one pacemaker region in a system containing 7 = N/N,; non-overlapping subregions
can be expressed as:

Y (Ng) =1 - (1= PY(Ny)" (5.10)

Since 1 — PN (N,) < 1, Equ. 5.10 indicates that larger system has higher probability of
having pacemaker-like regions at a given d, hence oscillations sustain for larger values
of D.

Supposing that the system is indeed composed of non-overlapping subregions of
size N4, the probability of finding at least one pacemaker-like region IV (N,) is fully
determined by Eq. 5.10, which is plotted in Fig. 5.7 for different system sizes with solid
lines. To verify our analysis, we first computed the probability of a system (N, x IV,)
composed of non-overlapping subregions N, having at least one pacemaker-like region
numerically. As shown previously, the probability is independent on the shape of the
kernel, as long as the proper sizes of subregion are taken( gaussian: Ny = 47d?, square:
Ny = d?). For simplicity, the square kernel was used. Numerically, we compute the
average passive cell density map ny using a square kernel of size Ny. The system is
then divided into n = (int(N,/d))? independent subregions of size N;. We then search
for the maximum value (n}]') of the central points of the 7 subregions. If 7} larger
than fl, we put 1, and 0 otherwise, i.e.,

1 if A > fh

5.11
0 otherwise ( )

Here int(z) gives the integer part of . The average over 400 realizations of the
step function Eq.5.11 associated to N, gives the probability of finding at least one
pacemaker like regions in the system composed of 7 independent subregions of size N4,
which is plotted in Fig.5.7 with filled symbols. By taking into account the residual,
i.e., n = int(N,/d)? Eq.5.10 is consistent with numerical measurements.
Oscillations are expected to vanish when IV (Ny) is less than 1/2, which gives the
critical values of N; =542, 1094 and 1887 for systems of size N, = 50,100 and 200
respectively. Using the relation d*? = T'D* obtained from Fig. 5.4, oscillations are
expected to vanish at values of D* = 1.2,2.3 and 4.1. We found that these values are
much smaller than the ones measured for the corresponding systems, suggesting that
the non-overlapping gives an underestimation of the probability. Indeed, as stated
before, oscillations emerge as long as there is a pacemaker-like region, wherever it
is in the system. Eq.5.10, by taking N/N, independent subregions Ny, which does
not count properly all possible pacemaker-like regions, is an underestimate TT™ (N).
On the contrary, using exponent /N instead of  would over-estimate the probability
IV (N,4) because of correlations in overlapping subregions. To well describe TIV(N,),
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Figure 5.7: The probabilities of having at least one pacemaker-like region in systems
containing non-overlapping subregions. Symbols: numerical measurement with square
kernel. Lines: theoretical estimation from Eq.5.10

we introduce parameter m. Combined with N/Ny, it gives the effective number of
independent subregions:

Y (Ng) =1-(1- PN(Nd))mN% (5.12)

gives the probability of having at least one pacemaker-like region in the entire system.

From the numerical point of view, applying the same procedure of Eq.5.11 with
the step function that gives 1 when max(ng(i, 7)) > f! and 0 otherwise, we get a direct
measurement of ITV(N,). A single step function vanishes for N} = 4nd*? where d*
is the value plotted in Fig. 5.4 for the corresponding replica. Averaging over replicas
gives a smooth sigmoid-shaped curve, as plotted in Fig. 5.8 as open symbols.

We experimentally measure the effective number (mN/Ny) of independent subsets,
so that we can reproduce reasonably well the experimental observations, as can be
seen on Fig. 5.8. The value of m is obtained by a least-square fit of numerical curves
by the analytical expression Eq. (5.12). We obtain a value of m that has no clear
dependence on the system size, which can easily be understood as follows. Consider
the covariance of the two variables, f;(i,j) = Ny(7,7)/Ng and f4(i',j'), i.e., of the
average number of passive cells at the two sites (4, j) and (', j') separated by a distance

[ = \/(z — )2+ (4 — 5')%. It has the exact expression op(l)/N; where 0 = (1 —v)f
and p(l) = exp[—(1/2d)?] is the correlation between the two sites. Thus, how fast
the two values of f; decorrelate is simply given by p(l). To estimate the number of
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Figure 5.8: Probability of having at least 1 pacemaker-like cell in a system of size
N = N2 as a function of the number of points Ny under the Gaussian kernel. Different
symbols are for different systems size from N, = 50 to 6400, and continuous lines are
fits described further in the text.

independent subsets containing N, points, we introduce k, defined as the maximum
possible correlation between two independent subsets. The correlation length [y is
then defined by p(ly) = &, so that two subsets separated by a distance | > [, are
independent. This implies the existence of N/I2 independent blocks, suggesting in
turn that m = Ny/I2. Intuitively, one expects Iy to be of the order of the width
of the Gaussian kernel, d, yielding m =~ 4w. We have numerically obtained the
effective number m by least-square fitting of the numerical data shown in Fig. 5.8
with the theoretical expression of Eq. (5.12). This gives values of m lying in the range
9.5 <m < 16.5, which is in fact consistent with the heuristic estimate m = 4.

5.4.4 System size dependence

From the curves in Fig. 5.8, we define N, the largest size of the pacemaker region
in a system of N excitable cells, and therefore the value of the diffusion coefficient at
which oscillations disappear in the system, resp. d*, as the value of Ny, resp. d, for
which II(N]) = 1/2. These quantities are defined by averaging over many replicas,
for a given system size N. The larger the system size, the larger the probability for
a fixed value of N,;. This property is consistent with our previous observation that
larger systems sustain oscillations for larger values of D, see (Fig. 5.3).
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Fig.5.9 shows the measured values of Nj(open circles) for different system sizes.
By using the relation D = T'd?, with T = 36.6 (see section 5.3.2), we also obtain a
measurement using data from Fig.5.4, plotted with open circles. Theoretically, the
value of N is the solution of:

IY(N) = 1— (1= PY(Np)) "™ =172 (5.13)

where m accounts for the effective number of independent subregions. To solve this
equation, we assume that the system is large enough such that PV (N7) is independent
of N, and we use the expansion of P*(N}) given by Eq. (5.8). Consequently, the
only dependence of ITV(N,) in N comes from the exponent mN/N, in Eq. (5.13).
We obtain a linear relation between In(N) and N, reproduced in Fig. 5.9. Ne-
glecting additional logarithmic corrections, one obtains:
2 p1 A% (2 fim
pfo Ny = 2log N + 2log log(2)v/2r (5.14)

Eq. 5.14 effectively defines V. For large systems, the behavior of N is well described

6000 w w w 7

O Numerical ~ ,
Pw

4000

2000

Figure 5.9: The largest coarse-graining size for which oscillations are observed in the
system, Nj, defined as IT = 1/2, as a function of the system size N. The circles
represent numerical data shown in Fig. 5.8. The dashed straight line is a guide to
the eye indicating the slope 1/(\f!). The solid line and dashed-dotted line represent
the solutions of Eq. (5.13) using the expressions given by Eq. (5.6) and Eq. (5.7)
respectively.
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by the log(N) tern in Eq. 5.14, shown by a straight line in Fig.5.9. Deviations from
the log(N) scaling are observed for N < 10%. They can be capture by the constant
term in the R.H.S. of Eq. 5.14. It is worth noticing that the log(/N) scaling appears
very naturally in the general context of extreme value statistics.

5.5 Discussion

5.5.1 Influence of the mean passive cell density

In the 0-d system, the average passive cell density f plays the same role as C,., whereas
in 2-d system n, gets averaged by diffusion. The analysis presented in the previous
sections, in particular Eq.5.14 allowed us to identify a characteristic coarse-graining
size, which determines the existence of pacemakers in a system of size N. Our analysis
suggests that the number of pacemaker cells in a given system is determined by the
ratio Ng/Nj. The relation Ny = 4wd? = 47T D allows us to relate the diffusion to
the appearance of pacemaker cells in a given system. As the existence of pacemakers
is related to the appearance of oscillations in the system, the averaged fraction of
oscillating cells is suggested to be a function of 47T'D/N}.

Fig.5.10 shows the average and the standard deviation of the oscillating cell frac-
tion at fixed values of u, D and N,. Remarkably, all the curves collapse within the
error bars in the region where our analysis is valid. This provides a strong evidence
that the properties of the system indeed are a function of u?D/N;.

5.5.2 Influence of the law of probability of the passive cell
distribution

We notice that in Fig.5.10 the scaling law is not valid at small values of N,;. This
results from our particular choice of passive cell distribution. During the numerical
simulation, the way we chose to distribute the passive cells coupled to the excitable
cells in the system was dictated by the constraint of having a constant mean fraction
f = mean(n,), the averaging being over all cells for a given replica. Using a Poisson
distribution of passive cells does not fulfill this requirement, because for a Poisson
distribution, the mean fraction f depends on the replica. For this reason, we used a
binomial distribution in the numerical simulations. While for the reason of simplicity,
we used poisson distribution in the theoretical analysis. In the limit of large system
size, both the binomial and Poisson distributions give the same behavior, which is
a consequence of the fact that the fluctuations of the total number of passive cells in
the Poisson case are small, when NN is large. However, for intermediate system sizes,
using the Poisson distribution introduces biases due to the fluctuations of the number
of passive cells, therefore modifying our predictions: the scaling in X ~ Nyu? has to
be corrected by terms of the order v = Ny/N = 47T D/N. This effect can be seen
in Fig. 5.3, where size effects are due to the choice of system size. Our values of N
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Figure 5.10: Averaged value and standard deviation of the fraction of oscillating cells
in a 2D system as a function of the reduced variable 477D /N, where N} is defined
in Eq.5.14. The symbols indicated in the legend correspond to different values of NV,
and f, i.e., N and p. The different curves all collapse, within the error bars in the
region where our analysis is valid.

are not large enough : from Fig. 5.5, we see that system size 50% and 100 are very
far from the asymptotic Poisson regime, and so they are for the order parameter ngc.
As already stated, this difference vanishes as the system sizes are increased.

5.6 Conclusion

We have explored the effect of diffusion on the the spatial distribution of passive
cells and its effect on the observed activity of the system. This has been achieved by
several steps. Based on the zero-D analysis introduced in Section 3.2, our first step has
consisted in relating the role of coupling between excitable cells to spatial filtering of
the passive cell distribution, and then, in connecting the disappearance of oscillating
cells and of pacemaker-like regions. As a second step, we have applied the results of
the zero-D analysis to ensemble averages of replicas, to estimate the fluctuations of
the local density of passive cells, thus effectively measuring the size of pacemaker-like
regions. By using the natural assumption that the effect of the diffusion coefficient
D is to average the information over Ny cells, we estimated D = d?/T = Ny/T". We
quantified the influence of the system size as facilitating the existence of oscillations
and showed that this effect is logarithmic in V.
As a consequence of these properties, governing the probability to observe pacemaker-

like regions in the system, we have establised the dependence of the transition towards
a regime of activity as a function of the size N of the system. The log(V) scaling of
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the control parameter is observed both for very large systems (Poisson distributions)
and intermediate systems sizes (binomial distribution). Although when integrating
Eq.(4.1) in 2-d systems, we have indeed always used moderate system sizes, for com-
putational time issues, our results provide convincing evidence that the log(N) de-
pendence is indeed appropriate to describe the transition to a regime of spontaneous
activity.



Chapter 6

Conclusions and future work

In this chapter, we first briefly summarize the main achievements of this thesis, and
present some possible extensions of our work for the future.

6.1 Conclusions

The pregnant uterus is a unique organ in many aspects. The most surprising one
is the observation of a change of the organ shortly before labor, from a quiescent
tissue to a state with intense rhythmic contractions, capable of expelling the new-
born. The aim of this thesis was precisely to provide some understanding of the
mechanisms underlying this transition. To this end, we used a modeling approach.
We have focused on the electric activity, which is known to act as a precursor of the
mechanical activity.

6.1.1 Uterine myocyte models

First of all, a description of the main ionic channels of the uterine myocytes, in the
spirit of the Hodgkin-Huxley model, has been presented.

The first model we used has been developed by Rihana et al. [43]. It incorpo-
rates five classes of ionic channels (sodium, potassium, calcium, calcium activated
potassium and leakage), and has been validated with respect to most known elec-
trophysiological (voltage clamp) experiments. The differences observed between the
model and the experiments are due, to a large part, to a lack of a precise measurement
of the calcium channel kinetic. However, they are confined to large values of the high
membrane potential, which are outside of the range of membrane potential in natural
conditions.

The second model is based on the recent work of Tong et al. [44], which considers
the influence of 14 different ionic channels. The main modification that we have
introduced concerns the Na™— Ca*" exchanger. This exchanger brings one Ca?' out at
the cost of an influx of three Na™, which gives rise to a net inward current. This current
tends to depolarize the membrane potential (make it more positive). While in the
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original model, this current tends to hyper-polarize the membrane potential, leading
an unrealistic resting state and an extremely high intracellular calcium concentration
at physiological conditions. After introducing the modifications, we have verified that
the modified model reproduces well the experimental recorded signals under realistic
physiological conditions.

The second class of model is based on a generic model of excitable cells. Namely, we
took the well-known FitzHugh-Nagumo model, which is known to provide a qualitative
description of most phenomena involving excitable cells. We generally found a good
qualitative agreement between predictions based on the more precise models and those
based on the simple FitzHugh-Nagumo model.

6.1.2 Uterine activities

We took the strong change in the expression of gap junctions, observed during the late
stage pregnancy as a hint that electric coupling plays a crucial role in the transition to
a regime of oscillations. We thus proposed that oscillations are induced by the increase
in the coupling between myocytes, and between myocytes and passive cells. We
have studied this hypothesis using our models, based on the description of myocytes
introduced in Chapter 2.

We have first shown that oscillations can spontaneously occur when taking a my-
ocyte, coupled to a passive cell, and increasing the electrical coupling. This behavior
is common to all myocyte models.

We have then extended our study to a simple model of tissue, consisting of ex-
citable cells coupled together on a lattice, each of the excitable cell being coupled to
a varying number of passive cells. We observe a transition to a coherent oscillatory
activity. In the case of the simple FitzHugh-Nagumo model, we fully characterize
the transition numerically. Our study based on a more realistic model of myocytes
confirms qualitatively the results obtained with the FitzHugh-Nagumo model. In ad-
dition, the model does reproduce the bursting activity observed in recent experiments
[141]. We view these features as evidence supporting our hypothesis concerning the
role of the coupling in the transition towards oscillations in the tissue.

With the simple FitzHugh-Nagumo model, we also elucidate analytically certain
aspects of the transition, in particular, those concerning the large fluctuations ob-
served when varying the distribution of passive cells attached to myocytes in the
tissue. A statistical (counting) argument allows us to characterize the relevant fluctu-
ations of the density of the passive cell when the coupling between myocytes is varied,
and allows us to derive a simple scaling relation for the appearance of activity in the
system.
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6.2 Future work

We have shown that the modified Rihana’s model, whose description of the ion chan-
nels are mainly based on experimental work done by Yoshino and Wang [33, 34], could
recover most of the experimental data, but there were deviations, especially in the
higher range of membrane potential. The access to more precise experimental data
allowed Tong and his coworkers to build a uterine myocyte model that reproduces
better the experimental signals. Due to the complexity of living systems, and sample
to sample fluctuations during the experiments, more precise description of the ion
channels are still needed. Although not expected to influence uterine excitable dy-
namics qualitatively, more channel informations would be expected to influence the
threshold of the excitability. Moreover, this would allow us to investigate the influence
of electro-physiological changes more precisely.

Hormonal activity is known to play a crucial role during pregnancy [150]. Hor-
mones induce changes, which are crucial for the maintenance of the pregnancy, and for
the expulsion of the new-born. In-vitro experiments also show that some hormones
can inhibit uterine contractions [150]. Understanding at what level, in the model
developed here, do hormones affect the myocytes is a very important question. It is
very likely that the effect of the coupling discussed here is in fact complemented by
some action of hormones before delivery. These questions are particularly relevant for
potential pharmaceutical developments.

Throughout this work, we have made the assumption that the random distribution
of passive cells is statistically homogeneous throughout the tissue. Our results show
that electrical activity starts in regions with a high passive cell density. In reality,
uterine contractions are directed from the fundus towards the cervix. A possibility
would be that the density of passive cells is higher close to the fundus. On the other
hand, Young et al. suggest that the functional units in the uterus are myocytes
bundles [49]. The effect of the geometric structures in connection to the phenomena
studied here remains to be elucidated.

Ultimately, labor involves a strong force to expel the new-born. Although it is
well known that the contractile force of smooth muscle cells is directly related to the
underlying changes of membrane potential, the question of which mechanism generates
the force has not been well addressed yet. Indeed, this has attracted scientific effort.
Models, such as the Cross-Bridge phosphorylation and latch-state model proposed by
Hai and Murphy [151] have been applied to describe the contractile force generated
by a single myocyte [44, 78], with a maximum value about 3uN. Taking the size of
each uterine myocyte, an estimation of the uterine wall tension is about 0.1N/cm?.
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Appendix A

Modified Rihana’s model

Variables

CluFfem?)
t(ms)

7;(ms)

3(jum?)
[Ca®t]; . (mM)
gi (mS/em?)

Vinis Vi (m\/)

Txca(pd /em?)
MNa;Na,
MNaco 7hNaoo
mca, hCai 3

mCaothaoo
nKi 7h‘K¢7
NKeoo; 7hKooi

capacitance of the cell membrane
time
time constants of activation and inactivation,; = Na,Ca,K
area of cell membrane surface
intra and extra cellular calcium concentration
Largest conductance of channel i, ¢ = Na,Ca,K;, Ky and K3
slope factor of half activation and inactivation of channel 4,
i = Na,Ca, Ky, Ky and K3 V,,, (mV) membrane potential
reversal potential of each channel,; =Na, Ca, K,Leakage
half activating and inactivating potential,

1= Na,Ca,K

externally applied stimulus current
Na current

K current

Ca current

Leakage current

calcium activated potassium current
Na activating and inactivating variables
Na activating and inactivating steady states

Ca activating and inactivating variables, ¢ = s, f;

s, slow inactivating component, f, fast inactivating component
Ca activating and inactivating steady states

K activating and inactivating variables,s = 1,2 and 3.

K activating and inactivating steady states,s = 1,2 and 3.
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Equations used in the model

Main equation
dV,

cell OW gCa(Vm - ECa) - gNa(vm - ENa)
- gK(Vm - EK) - gK(Ca)(Vm - EK) - gL(Vm - EL)
dV,,
CW — [st - (INa+ICa+IK +IL)

Sodium channel

Ina = Gxahnami, (Vi — Exa), Gxa = 0.31mS/cm?, By, = 83mV

dmNna  MNaoo(Vin) — Mya
dt n TmNa(Vm)

dhne  PNaco(Vin) — hxa
dt - ThNa(Vm)

TNam = 0.2598¢~ 0021V

TNan = 0.5034e70:033Vm 4 () 09¢%-03Vm

1

mNaoo - mev ) Vh am, = _217 kNa"L = _5
1+ exp —p e ’
1
hNaoo = Vin VhNah y VhNah = —58.9mV, kNah = 8.7

1+ exp

Calcium channel
Ica = Geam@,hea(Vin — Eca)
RT [Ca”]o
zF [ [Ca™];
Gca = 0.095mS/cm?
hca = 0.38hcas + 0.22hcay + 0.06

Ec, = , [Ca®"], = 3.0mM

i
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(A.3)

(Ada)

(A.4b)



dmCa _ MCaco ( ) mca
dt TmCa (Vm)
dhCaf _ hCaoo ( ) hCaf
dt ThCaf (Vm>
dhCas hCaoo ( ) hCas
== as — 1
dt ThCas (Vm) ’ The 00ms

hca = 0.38hcas + 0.22hcay + 0.06
TmCa = 0.646_0'04*Vm + 1.188
Teap = —0.00061V2 + 0.074V.2 — 1.5V, + 41

1
MCaco = s Vh
1+ exp( 2
1
hCaoo - 5 Vh ah _34mv7 kfcah = 5.4mV
14 exp(F Vican can

Cah

= —25.4m\/, kCah = 7.6mV

Cam

[ Ca]?t Dynamics

2+

A aden — kealCa?))
fe =0.004
a =4 x10"°mol - cm~1C™!
k. =0.01ms

Potassium channel
Ix = (Gx,nk, hie, + Gynig, + GrgNiksos) (Vin — Ex)
Gk, = 0.254mS/cm*, Gk, = 0.064mS/cm’, Gk, = 0.033mS/cm?

EK = -70mV
dnKl _ nKloo — nKl
dt Tng,
dhic, _ igyoo = hig,
dt ThKl
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(A.10a)
(A.10Db)
(A.10c)

(A.11)
(A.12)
(A.13)

(A.14a)

(A.14D)

(A.15)

(A.16)

(A.17)



Leakage Current

Iy = G(Vin — Ep),

1
NKi0o = —Vm
! 1+ eXp(7'723.‘; )
1
hK oo =
B T exp(E)
1
n =
1
NKz00 = Vm
7 oS

Vin
Tok, = 28.23 exp(— )

—21.8
Vin
Tk, = 35.75exp(— _71'94)
ThK1 = 50

G = 0.0058mS/cm?, By, = -40mV

Calcium potassium dependent current

IK(Ca) = GKCa

[Caj )
K{\;Q + [CaZt|V

(Vm - EK)

Gxca = 0.08 mS/cm?, K /5 = 0.015mM, N = 2
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(A.19)
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Appendix B

Derivation of effective passive cell
resting potential

Considering two different passive cells, the ICLCs and fibroblasts, are coupled to a
myocyte cell, the equation governing the myocyte membrane potential dynamics is
Equ.3.6a:

Vi,
_Cmﬁ :Iion + (nFGgap(Vm - VF) + nIGgap(vm - ‘/}))
=lion + (TLF + nI>Ggame - (nFVF + n[‘/f)
n n
=lion + MpGgap(Vin — (lVF + *IVI))
np Np

=lion + angap<Vm - ‘/p)

where np and n; are the number of fibroblasts and ICLCs coupled to the myocyte,
and n, = np + ny counts the total number of passive passive cells. Taking into
account the fibroblasts’ small membrane capacitance and low resistance, its membrane
potential quickly relaxes to steady state defined as Eq. (3.11). Substitute Eq.(3.11)
into Eq.(3.13), we get

1 GpVi+ GV,

Vi=—(n,V, —nr
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Using V, = nip(nFVF + n;V7), we have

Vy i dVi | g dVi

dt n, dt n, dt
1 nFGFVFT—l-GVm nr ng GFV;;—FGVm ny
=GV, -V +GdV, - —— — —V,,
CI( 1V np G+ Gp Ny 1)+ G0 n, G+ Gp Ny )

B 1 nrg GFVFT nr. . nr GGFVm
- C[ (GI<‘/;) (np G + GF np g )) np G —I— GF
ng va nr nrg GGFVFT
+ G- (S My ) Me COTE
1 nrg va GFGVm nr
= — — — (— 7vm
oG -GGy Y e T,
ng va G[va nr
_ (I My
eV -GGG T aeran) e, )
1 1
=— 5(G1(Vp — —(nrVe +niV])) + GV, = V)
I ’er

1

o GV = V) + GV, = Vi)

(B.3)

where the assumption that dc‘z/tF = (0 and G; = GF are used in the derivation. We see

that by definingV" = é(n rVE4+n;V]), the total effect of passive cells is returned to
the normal form [121].
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