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Résumé 
L’étude du premier transfert de brin est importante pour mieux comprendre la transcription 

inverse et la recombinaison qui dépend du transfert de brin interne. La recombinaison joue un 
rôle important dans la variabilité génétique du VIH-1 et l’émergence de résistances aux 
antirétroviraux. Le premier transfert de brin, processus crucial, se produit pendant la 
transcription inverse lorsqu’une partie de l’ADN "strong stop" simple-brin (ADNss) s’apparie 
avec la séquence R en 3’ de l’ARN viral ; cette séquence peut former les tiges-boucles TAR 
et polyA. La protéine de nucléocapside du VIH-1 (NC) stimule ce processus par son activité 
chaperonne des acides nucléiques. La partie de l’ADNss, qui est complémentaire de R, est 
supposée former les tiges-boucles cTAR et cpolyA. Donc, le transfert repose probablement 
sur l’hybridation de deux acides nucléiques structurés. Bien que des études suggèrent un rôle 
des structures ADN et ARN dans le premier transfert de brin, elles n’ont pas ou très peu 
abordé directement l’aspect structural. Le rôle de la structure de l’ADNss dans l’hybridation 
responsable du premier transfert de brin avait été uniquement étudié avec un oligonucléotide 
(ADN cTAR) correspondant à peine au tiers de l’ADNss. A ce jour, la structure secondaire de 
l’ADNss n’a jamais été déterminée. L’objectif principal de ma thèse a été d’identifier les 
interactions et structures gouvernant l’hybridation de l’ADNss avec l’extrémité 3’ de l’ARN 
génomique du VIH-1 (3’UTR). Les outils de la biologie moléculaire et trois sondes de 
structure ciblant l’ADN [permanganate de potassium, DNase I et mung bean nucléase (MB)] 
ont été utilisés pour atteindre cet objectif. 

Premièrement, la structure secondaire de l’ADN cTAR a été déterminée en absence ou en 
présence de NC. L’analyse structurale au moyen des sondes de structure montre que l’ADN 
cTAR se replie sous la forme de deux tige-boucles qui sont en équilibre en absence de NC. 
Une conformation est nommée fermée car les extrémités 5’ et 3’ sont appariées tandis que 
l’autre conformation est dite en ‘Y’ car les extrémités 5’ et 3’ ne sont pas appariées. La NC 
déplace l’équilibre vers la conformation ‘Y’. Au moyen d’empreintes à la MB, nous avons 
montré qu’en présence de 7 mM MgCl2 (concentration optimale pour la transcription inverse 
et le transfert de brin in vitro) la NC se fixe plus fortement sur la boucle interne que sur la 
boucle apicale de la tige-boucle cTAR. Cette fixation préférentielle n’a pas été observée en 
présence de 0.2 mM MgCl2 (concentration intracellulaire). 

Deuxièmement, l’hybridation de l’ADNss sauvage et trois de ses mutants avec le 3’ UTR a 
été étudiée en absence ou en présence de NC dans 0,2 mM et 2 mM MgCl2 (concentration 
minimale pour la transcription inverse et le transfert de brin in vitro). Nous avons étudié deux 
ADNss : l’ADNss-L représente l’ADNss qui ne s’apparie pas avec la région PBS ;  l’ADNss-
S représente l’ADNss qui s’apparie avec la région PBS. Nous avons montré que la NC est 
exigée pour former un hétéroduplex constitué de l’intégralité de l’ADNss et du 3’ UTR. Nos 
résultats suggèrent que l’hybridation de l’ADNss avec le 3’ UTR peut être initiée à partir de 
plusieurs sites en présence de 0,2 mM MgCl2. En revanche, nos résultats suggèrent que 
l’initiation de l’hybridation via les boucles apicales des tiges-boucles TAR et cTAR joue un 
rôle important dans 2 mM MgCl2.  

Finalement, les structures secondaires des ADNss-L et ADNss-S ont été déterminées en 
absence ou en présence de NC. Nos résultats suggèrent que l’ADNss forme principalement 
une seule conformation dans 2 mM MgCl2. L’analyse des ADNss sur gel de polyacrylamide 
non-dénaturant suggère que l’ADNss adopte deux conformations en équilibre dans 0,2 mM 
MgCl2. Ces deux conformations de l’ADNss dépendent de la séquence cTAR qui peut former 
une tige-boucle longue ou une tige-boucle courte dans l’ADNss. Les conformations fermées 
et en ‘Y’ de l’ADN cTAR ne sont pas formées dans l’ADNss. La NC se fixe 
préférentiellement au niveau de la région simple-brin qui relie les tiges-boucles cTAR et 
cpolyA. Cette fixation joue probablement un rôle important dans l’hybridation des tiges-
boucles ARN et ADN complémentaires. 
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Abstract 
The reverse transcription of the HIV-1 genome consists in a succession of steps allowing 

the conversion of the single stranded RNA genome in a double stranded DNA molecule. In 
the laboratory, we investigate the first strand transfer during which the strong stop DNA 
(ssDNA) migrates from the 5' end of the genome to the 3' end. Analysis of this step is 
important to gain insights into the reverse transcription process and the associated genetic 
recombination. Indeed, the strand transfer process is responsible for the recombination events 
that produce resistance to antiretroviral drugs that constitute a major problem in the anti-HIV-
1 therapies. The main DNA and RNA sequences involved in the first strand transfer have 
been identified: these are the RNA sequences TAR and polyA and the complementary DNA 
sequences cTAR and cpolyA.!The first strand transfer is facilitated by the HIV-1 nucleocapsid 
protein (NC). During the strand transfer, NC destabilizes the nucleic acid secondary structures 
and promotes their association. Nevertheless, the annealing process of the full-length ssDNA 
to the 3’ end of the genomic RNA (3’ UTR) is not known at the molecular and structural 
level. The main aim of my thesis is to better understand this annealing process. The tools of 
molecular biology and three DNA-targeted probes [potassium permanganate, DNase I and 
mung bean nuclease (MB)] will be use to achieve this goal. 

Firstly, the cTAR secondary structure was determined in the absence or in the presence of 
NC. Structural analysis using structural probes showed that the cTAR DNA folds into two 
stem-loops in equilibrium in the absence of NC. One conformation is named closed because 
the 5’ and 3’ ends of the cTAR DNA are paired, while the other conformation is named ‘Y’ 
conformation because the 5’ and 3’ ends of cTAR are unpaired. NC slightly destabilizes the 
lower stem and shifts the equilibrium toward the ‘Y’ conformation. The MB footprinting 
results showed that in the presence of 7 mM MgCl2 (optimal concentration for reverse 
transcription and strand transfer in vitro) NC binds more strongly the internal loop than the 
apical loop of the cTAR hairpin. However, this preferential binding site has not been 
observed in the presence of 0.2 mM MgCl2 (intracellular concentration). 

Secondly, the annealing of the full-length wild-type ssDNA and its three mutations to the 
3’ UTR was investigated in the absence or in the presence of NC and in 0.2 mM and 2 mM 
MgCl2 (concentration required for reverse transcription and strand transfer in vitro). We have 
designed two full-length ssDNAs: ssDNA-L represents the ssDNA that is not annealed to the 
PBS region; ssDNA-S represents the ssDNA that is paired with the PBS region. We have 
shown that NC is required for the formation of heteroduplex of the full-length ssDNA and 3’ 
UTR. Our results suggest that the annealing of ssDNA to 3’ UTR can be initiated from 
different sites in the presence of 0.2 mM MgCl2, whereas the initiation of annealing via the 
apical loops of TAR and cTAR hairpins plays an important role in the presence of 2 mM 
MgCl2.  

Finally, we have determined the secondary structures of the full-length ssDNA-S and 
ssDNA-L in the absence or in the presence of NC. Our results suggest that ssDNA folds 
mainly into one conformation in 2 mM MgCl2. Analysis of ssDNA by non-denaturing 
polyacrylamide gel electrophoresis suggests that ssDNA adopts two conformations in 
equilibrium in 0.2 mM MgCl2. The formation of two conformers of ssDNA may be due to the 
cTAR sequence that can form a long stem-loop or a short stem-loop in ssDNA. The closed 
and ‘Y’ conformations of cTAR DNA are not formed in ssDNA. NC preferentially binds to 
the single-stranded region between the cTAR and cpolyA hairpins in ssDNA. This binding 
site probably plays an important role in the annealing of complementary DNA and RNA 
hairpins.  
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ZF  Zinc finger 
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Chapter 1. Retroviruses 

1. Characteristics of retroviruses 

The retrovirus is an RNA virus that infects the vertebrates and insects, and causes 

different diseases, such as tumours, neurological disorders and the acquired 

immunodeficiency syndrome (AIDS). The majority of retroviruses are constituted of the viral 

RNA, except the spumaviruses that contain an infectious DNA genome (260). The retrovirus 

carries two copies of genomic RNA (gRNA), positive sense and single stranded, in each viral 

particle so that it is considered as diploid RNA virus, a feature that strongly potentiates the 

mechanism of recombination. During the early stage of the replication, one copy of gRNA is 

reverse transcribed by the viral reverse transcriptase (RT) to a double-stranded DNA (dsDNA) 

in the cytoplasm of the host cell. This dsDNA is then integrated into the host’s genome by the 

viral integrase (IN), at which point the retroviral DNA is referred to a provirus. A special 

variant of retroviruses are endogenous retroviruses which are integrated into the genome of 

the host and inherited across generations. Around 8% of the human genome is derived from 

sequences with similarity to infectious retrovirus, which can be easily recognized because all 

infectious retroviruses contain at least three genes, including gag (encoding structural 

proteins), pol (viral enzymes) and env (surface envelop proteins), as well as long terminal 

repeats (LTRs) (Figure 1) (153). 

 
Figure 1. Structure of infectious retroviruses (153).  

2. Classification of retroviruses  

The reference of classification is from the International Committee of Taxonomy of 

Viruses (ICTV, http://www.ictvonline.org/virusTaxonomy.asp). The affiliation of one family 

is defined by common taxonomic denominators: genetic information as well as the replicative 

properties. Certain structure elements, as the presence of envelope and pathogenesis are 

equally counted in some cases. Retroviruses are further divided into seven groups defined by 

evolutionary relatedness, each with the taxonomic rank of genus. Five of these groups 

represent retroviruses with oncogenic potential (formerly referred to as oncoviruses), and the 
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other two groups are the lentiviruses and the spumaviruses (Figure 2). Retroviruses is broadly 

divided into two categories - simple and complex - distinguishable by the organization of 

their genomes (279). All oncogenic members except the human T-cell leukemia virus-bovine 

leukemia virus (HTLV-BLV) genus are simple retroviruses. HTLV-BLV, the lentiviruses and 

spumaviruses are complex. 

 
Figure 2. Dendrogram of retroviruses (197). ALV: Avian Leukosis Virus; BLV: Bovine Leukemia 
Virus; HERV: Human Endogenous Retrovirus; HFV: Human Foamy Virus; HIV: Human 
Immunodeficiency Virus; HTLV: Human T-Lymphotropic Virus; MLV: Murine Leukemia Virus; 
MMTV Mouse Mammary Tumor Virus; WDSV: Walleye Dermal Sarcoma Virus. 
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Chapter 2. General properties of HIV 

1 Identification of HIV from AIDS 

Nearly 30 years after the first reported cases of AIDS and the discovery of the etiologic 

agent, effective control of the AIDS pandemic, which is arguably the most serious infectious 

disease, remains elusive. In 2010, it was estimated that 34 million people are living with HIV, 

and in that year alone, 2.7 million people newly infected with HIV (Figure 3).  

 
Figure 3: Global summary of the HIV/AIDS epidemic, December 2010. (from World Health 
Organization and UNAIDS) http://www.who.int/hiv/data/en/ 

AIDS was first recognized in the United States in 1981, following an increase in the 

incidence of usually rare opportunistic infections (such as the pneumonia caused 

by Pneumocystis carinii) in homosexual men that were caused by a general immune 

deficiency. The common characteristic of all the patients is a dramatic diminution of CD4+ 

lymphocyte cells in peripheral blood. HIV was first isolated in 1983 by the team of L. 

Montagnier of Pasteur Institute at Paris (18). From a sample of patient with 

lymphoadenopathy, the activity of reverse transcription was identified. The visualization with 

electronic microscopy confirmed the presence of a retrovirus that was initially named as 

Lymphoadenopathy Associated Virus (LAV). Quickly, some teams identified two viruses that 

considered as the pathogenic agent responsible of AIDS, HTLV-III and AIDS Associated-
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Virus (64, 129). Until 1985 the scientific community concluded that these three viruses are 

identical. In 1986, the name of HIV was taken by the discovery of the second similar virus 

with slightly different genome structures, isolated from two West-African patients with AIDS 

and then called as HIV-2 (65). By its genomic sequences and its proteins, HIV-2 is different 

from the LAV-I/HTLV-III, isolated from U.S.A., Europe and Central Africa. It differs also 

from STLV-III, isolated from Rhesus Macaques with AIDS, but displays an antigenic 

relationship with the latter virus, at the level of its external envelope protein (64).  

2 Origin of HIV 

The key to understanding the origin of HIV was the discovery that closely related 

viruses-the simian immunodeficiency viruses (SIVs)-were present in a wide variety of 

African primates. Collectively, HIV and SIV comprise the primate lentiviruses, and SIVs 

have been isolated in more than 20 African primate species. 

The evolutionary history of HIV-1 and HIV-2 has been reconstructed in great detail by 

inferring phylogenetic trees of the primate lentiviruses. It was discovered that the two human 

viruses are related to different SIVs and therefore have different evolutionary origins (Figure 

4 and Table 1). Specifically, HIV-1 is most closely related to SIVcpz, which is found in 

some sub-species of chimpanzee that inhabit parts of equatorial Western and Central Africa, 

respectively (133, 325). This HIV-1 progenitor probably was passed from chimpanzees to 

human hunters through blood borne transmission. HIV-2 closely resembles SIVsm that is 

found in the West African sooty mangabey and the Taï Forest in Côte d’Ivoire. HIV-2 

ancestor may be passed from monkeys in the Sierra Leone and Liberia where is the sooty 

mangabey’s natural habitat through the bushmeat trade (88). 

Table 1. Comparison of HIV species  

Species Virulence Infectivity Prevalence Inferred origin 

HIV-1 High High Global Commun Chimpanzee 

HIV-2 Lower Low West Africa Sooty Mangabey 
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Figure 4. Evolutionary history of the HIV-1 and HIV-2 (325). Because both HIV-1 and HIV-2 
lineages (red branches) fall within the simian immunodeficiency viruses (SIVs) that are isolated from 
other primates, they represent independent cross-species transmission events. The tree and other 
evidence also indicate that HIV-1 groups M, N and O represent separate transfers from chimpanzees 
(SIVcpz), again because there is a mixing of the HIV-1 and SIV lineages. Similarly, HIV-2 seems to 
have been transferred from sooty mangabey monkeys (SIVsm) on many occasions. For clarity, only 
some subtypes of HIV-1 and HIV-2 are shown.  
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2.1 HIV-1 

Phylogenetic analysis of HIV-1 and related viruses from non-human primates suggest 

that three independent transmission events early in the 20th century spawned three HIV-1 

groups: M, N and O. Although strains related to the M and N groups have been found in 

chimpanzees, recent evidence suggests that HIV-1 O group may have originated in gorillas, in 

which the closest relatives of this group have been identified (367). It is speculated that the 

virus then spread among humans along the Congo River into Kinshasa, Zaire, where the 

earliest documented case of HIV-1 infection (with group M strain) in humans has been traced 

to a blood sample from 1959 (422). The group N and O remain essentially restricted to West 

Africa, whereas the M group is responsible for the global HIV-1 pandemic (Figure 5). HIV-1 

M group spread first throughout Africa where it has differentiated into several lineages called 

subtypes. Group M lineages include subtypes and circulating recombinant forms (CRFs). The 

HIV-1 M group is divided into 11 subtypes (A1, A2, B, C, D, F1, F2 G, H, J and K) and 48 

forms of CRFs. Among the HIV-1 isolates studied in different laboratories, HXB2, NL4-3 

and LAI are subtype B while MAL isolate is a mixed form of A1-D-K 

(http://www.hiv.lanl.gov/). 

2.2 HIV-2 

HIV-2 closely resembles SIVsm from the West African sooty mangabey (Cercocebus 

torquatus atys) (134), a simian virus that is thought to have entered the human population on 

at least eight separate occasions, yielding eight distinct HIV-2 groups of which only groups A 

and B are endemic; with the remainder being single-person infections (78, 160) HIV-2 is 

present throughout West Africa and the highest prevalence of HIV-2 reported two decades 

ago (in Guinea Bissau) was 8% in adults and up to 20% in individuals over 40 years of age 

(321). Most countries are now experiencing adecline in HIV-2 prevalence while HIV-1 

infection increases in the younger population (76).  
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Figure 5. Global distribution of HIV-1 subtype group M in 2011. CRF: Circulating recombinant 
form. (source from Los Alamos national laboratorary: 
http://www.hiv.lanl.gov/components/sequence/HIV/geo/geo.comp) 

3 Pathogenesis of HIV 

HIV infects primarily vital cells in the human immune system such as CD4+ T cells, 

macrophages, and dendritic cells (DCs). HIV infection leads to low levels of CD4+ T cells 

through three main mechanisms: First, direct viral killing of infected cells; second, increased 

rates of apoptosis in infected cells; and third, killing of infected CD4+ T cells by CD8 

cytotoxic lymphocytes that recognize infected cells. When CD4+ T cell numbers decline 

below a critical level, cell-mediated immunity is lost, and the body becomes progressively 

more susceptible to opportunistic infections. The typical course of HIV infection is presented 

in Figure 6. 
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Figure 6. Typical course of HIV infection. (4)!

4 Characteristics of HIV-1 

4.1 Structure of HIV-1 particle 

The HIV-1 particle is different in structure from other retroviruses. It is roughly 

spherical with a diameter of about 120 nm, around 60 times smaller than a red blood cell, yet 

large for a virus (Figure 7). In immature HIV particles, the major structural protein, Gag, is 

arranged in a radial fashion, with the N-terminal matrix (MA, p17) domain associated with 

the viral membrane, a lipid bilayer decorated with the products of the env gene. And it is 

followed by the internal capsid (CA, p24) domain and the C-terminal nucleocapsid (NC) 

domain pointed toward the center (126, 363, 398). The protein Env, consists of a cap made of 

three molecules called glycoprotein (gp) 120, and a stem consisting of three gp41 molecules 

that anchor the structure into the viral envelope. This glycoprotein complex enables the virus 

to attach to and fuse with target cells to initiate the infectious cycle. Both surface proteins, 

especially gp120, have been considered as targets of future treatments or vaccines against 

HIV-1. During or shortly after budding, Gag is cleaved by the viral protease (PR), leading to 

virus maturation, which is reflected in a dramatic morphological change required for 

infectivity (363, 388). 
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Figure 7. Structures of HIV-1 Virions (43). (A) A central slice through one-quarter of the field of 
view in one of the cryo-electron tomograms. The scale bar is 100 nm. (B) A single untilted image of 
the same area illustrating the even distribution of gold beads in the sample. The scale bar is 100 nm. 
(C) 3D rendering of three sample virions from the tomogram. Blue, viral membrane; yellow, density 
between the membrane and the core; red, viral capsid. (D) structures of immature and mature HIV-1 
particles. (source from: https://www.aidsreagent.org/program_info.cfm#5) 

4.2 Genetic organization 

The RNA genome consists of at least seven structural landmarks (LTR, TAR, RRE, PE, 

SLIP, CRS, and INS) (http://www.hiv.lanl.gov/), and nine genes (gag, pol, env, tat, rev, nef, 

vif, vpr, vpu and sometimes a tenth tev, which is a fusion of tat, env and rev), encoding 15 

proteins (Figure 8) (152).  

 
Figure 8. Genomic organization of HIV-1. Open reading frames (ORFs) are shown as rectangle. 5’ 
LTR and 3’ LTR are shown in yellow, TAR in blue, PE in green and RRE in pink.  
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LTR (long terminal repeat) is the DNA sequence flanking the genome of integrated 

proviruses. It contains important regulatory regions, especially those for transcription 

initiation and polyadenylation. 

TAR (transactivator response element) is the binding site for Tat protein and for 

cellular proteins; consists of approximately the first 57 nucleotides of the viral mRNAs in 

HIV-1. TAR RNA forms a hairpin stem-loop structure with a side bulge; the bulge is 

necessary for Tat binding and function. 

RRE (Rev responsive element) is an RNA element encoded within the env region of 

HIV-1. It consists of approximately 200 nucleotides (positions 7327 to 7530 from the start of 

transcription in HIV-1, spanning the border of gp120 and gp41). The RRE is necessary for 

Rev function; it contains a high affinity site for Rev; in all, approximately seven binding sites 

for Rev exist within the RRE RNA (221)  (http://www.hiv.lanl.gov/). 

PE (Psi element) is a set of 4 stem-loop (SL) structures preceding and overlapping the 

Gag start codon which are the sites recognized by the conserved motif with the canonical 

sequence CysX2CysX4HisX4Cys, identified as NC zinc fingers (ZFs). The PE is present in 

unspliced genomic transcripts but absent from spliced viral mRNAs. The Psi (#) site is 

formed with SL1 and SL3. 

SLIP is a TTTTTT slippery site, followed by a stem-loop structure, is responsible for 

regulating the -1 ribosomal frameshift out of the Gag reading frame into the Pol reading frame 

(221). 

CRS (cis-acting repressive sequences) postulated to inhibit structural protein expression 

in the absence of Rev. One such site was mapped within the pol region of HIV-1. The exact 

function has not been defined; splice sites have been postulated to act as CRS sequences (221). 

INS (inhibitory/instability RNA sequences) found within the structural genes of HIV-1 

and of other complex retroviruses. Multiple INS elements exist within the genome and can act 

independently. The INS elements have been defined by functional assays as elements that 

inhibit expression posttranscriptionally. Mutation of the RNA elements was shown to lead to 

INS inactivation and up-regulation of gene expression (http://www.hiv.lanl.gov/). 

5 Replication cycle 

The HIV-1 replication cycle (schematically shown in Figure 9) can be summarised in 

two phases.  
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/ Early phase: 1) attachment to the host cell and uncoating of the virion; 2) reverse 

transcription of gRNA; 3) provirus integration;   

/ Late phase: 4) transcription and processing of gRNA; 5) export of viral RNAs; 6) 

synthesis of viral proteins, packaging of gRNA and assembly of viral; 7) maturation and 

budding of the viral particle.  

 
Figure 9. HIV-1 life cycle (Adapted from (57)). 

5.1 Attachment to the host cell and uncoating of the virion 

HIV-1 can infect DCs that express two receptors: the principal receptor CD4 and an 

auxiliary co-receptor, which derives from the chemokine receptor family, typically either 

CCR5 or CXCR4 (244). DCs are one of the first cells encountered by the virus during sexual 

transmission. They are currently thought to play an important role by transmitting HIV to T-

cells when the virus is captured in the mucosa by DCs (318). HIV-1 enters cells through a 

pH-independent membrane fusion event, which results in release of the core particle into the 

cytoplasm. However, recent studies now describe HIV-1 entry and membrane fusion 
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following endocytosis (77, 269). The principal virus protein involved in entry is the envelope 

glycoprotein. The envelope gene encodes a protein Env that measures 160 kD when fully 

glycosylated and is divided into two regions: the surface unit gp120 and the transmembrane 

region gp41 (408). Entry to the host cell begins through interaction of the trimeric envelope 

complex (gp160 spike) and CD4-CCR5 or CD4-CXCR4 on the cell surface (Figure 10A) 

(54, 408). The first step in fusion involves the high-affinity attachment of the CD4 binding 

domains of gp120 to CD4. Once gp120 is bound with the CD4 protein, the envelope complex 

undergoes a structural change (Figure 10B), exposing the chemokine binding domains of 

gp120 (V3-loop, shown in Figure 10B et 10C) and allowing them to interact with the target 

chemokine receptor (Figure 10C) (54, 408). This makes a more stable two-pronged 

attachment, which allows the N-terminal fusion peptide gp41 to penetrate the cell membrane 

(54, 408). Heptad repeat (HR) sequences in gp41, HR1 (blue in Figure 10D), and HR2 (red in 

Figure 10D) then interact, causing the collapse of the extracellular portion of gp41 into a 

hairpin (Figure 10E). This loop structure brings the virus and cell membranes close together, 

allowing fusion of the membranes and subsequent entry of the viral capsid (Figure 10F) (54, 

408). After HIV-1 has bound to the target cell, the genomic RNA and various enzymes, 

including reverse transcriptase (RT), integrase (IN) and protease, are injected into the cell (54, 

408).  

 
Figure 10. Entry of the HIV-1 into a host cell (244).  
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5.2 Reverse transcription of genomic RNA 

Shortly after the viral capsid enters the cell, the viral RT copies the single-stranded (+) 

RNA genome into a dsDNA molecule (420). The process of reverse transcription is error-

prone, and the resulting mutations may cause drug resistance or allow the virus to evade the 

body's immune system. The reverse transcriptase also has ribonuclease H (RNase H) activity 

that degrades the gRNA during the synthesis of cDNA. The reverse transcription of the HIV-1 

genome will be developed in details in Chapter 4. 

5.3 Provirus integration  

At the end of the reverse transcription process, the viral dsDNA is transported into 

the cell nucleus. The integration of the viral DNA into the host cell's genome is carried out by 

the viral IN (Figure 11) (420). This integrated viral DNA may then lie dormant, in the latent 

stage of HIV infection (420). To actively produce the virus, certain cellular transcription 

factors need to be present, the most important of which is NF-"B, which is up-regulated when 

T-cells become activated (172). This means that those cells most likely to be killed by HIV-1 

are those currently fighting infection.  

!

Figure 11. Integration of viral DNA into the host chromosome (368) 
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5.4 Synthesis and processing of viral RNA 

During the late phase of the viral replication, the integrated 

DNA provirus is transcribed into full-length mRNA. Most HIV-1 strains use four different 

splice donors and eight different acceptors to produce more than 40 different spliced mRNA 

species in infected cells (210) (Figure 12).  

 
Figure 12. Locations of splice sites in the HIV-1 genome (Adapted from (210)). (Top) Schematic 
diagram of HIV-1 genome. The dark blue rectangles indicate ORFs and are labeled with the gene 
names. The LTRs are shown at each edge of the genome: U3-gray, R-black, U5-light blue. Full-length 
RNA transcripts begin at the 5’ end of the R region of the 5’ LTR (left) and 3’ processing and poly(A) 
addition takes place at the 3’ end of the R region in the 3’ LTR (right). (Middle) Locations of 5 splice 
donors (red bars) and 3 splice acceptors (black bars) in the HIV-1 genome. The splice sites D5 and A6 
exist only in the HXB-2 isolate. The location of the RRE is shown by the red rectangle. (Bottom) 
Incompletely and completely spliced mRNA generated by the splice sites indicated in the unspliced 
mRNA. The locations of the AUG codons used to initiate protein synthesis are shown as purple bars. 

The 3’ processing and polyadenylation of HIV-1 pre-mRNAs involves recognition of 

the AAUAAA and GU-rich motifs duplicated at the ends of the R sequences found in both the 

5’ and 3’ LTRs. HIV-1 uses multiple regulatory elements to direct processing to the 3’ LTR 

cleavage site. First, the HIV-1 U3 sequence, which is upstream of the 3’ processing signal, 

but not associated with the 5’ processing signal, contains upstream enhancer elements (USE) 

that act to facilitate binding of cleavage/polyadenylation specificity factor (CPSF) and 
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enhance polyadenylation at the 3’ end of the HIV-1 transcripts (142). Another USE near the 

5’ end of the Nef gene binds the cellular SR protein 9G8, which recruits the 3’ processing 

factor CF1m and CPSF (380). Second, the 5’ and 3’ LTR poly(A) processing sites are 

imbedded in a region of secondary structure called the poly(A) hairpin located immediately 

downstream from the TAR hairpin structure. Factors binding to sequences upstream of the 

AAUAAA site are believed to open up the poly(A) hairpin and allow preferential use of the 3’ 

LTR poly(A) processing site (84). Finally, the splicing factor U1 snRNP acts to inhibit the 3’ 

processing and poly(A) site in the 5’ LTR by binding to the adjacent 5’ splice donor D1 

(Figure 13). Mutations of D1 that weaken binding of U1 snRNP allow the usage of the 

normally silent 5’ LTR poly(A) site (8, 9). 

 
Figure 13. 5' polyadenylation signal is suppressed by interaction of U1 snRNP with D1. 
3' polyadenylation site is regulated by the competing inhibitory action of ESS3 (S) and the action 
of ESE3 (E). (Adapted from (259)) 

The basal transcriptional activity of HIV-1 is very low and the viral Tat protein and 

host factors increase the transcription of the viral genome. Tat acts through a cis-acting RNA 

enhancer, the TAR located in the R region of the LTR (17, 42, 138). The HIV-1 RNA then 

undergoes complex multiple splicing to produce mRNAs for the regulatory/accessory and 

structural proteins. In the early phase, HIV-1 mRNA is multiply spliced to produce several 

splice variants ranging from 1.8 to 2 kb in size. They are mainly polycistronic, but produce 

preferentially Tat, Rev or Nef (Figure 14A) depending on the splice acceptor site used (324, 

338). These mRNAs are constitutively exported to the cytoplasm and translated. In the late 

phase, in the presence of Rev, unspliced and incompletely spliced RNAs (4 kb) are exported 

to the cytoplasm to produce Gag, Pol, Env, Vif, Vpr and Vpu (Figure 14B). Rev and cellular 

factors work in concert to bring these RNAs to the cytoplasm for translation (259). 
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Figure 14. Early and late phases of HIV-1 mRNA expression (210). Full-length unspliced ~9-kb, 
incompletely spliced ~4-kb mRNA, and completely spliced ~1.8-kb mRNAs are expressed at both 
early and late times. (A) In the absence of Rev or when Rev is below the threshold necessary for it to 
function, the ~9-kb and ~4-kb mRNAs are confined to the nucleus and either spliced or degraded. 
Completely spliced ~1.8-kbmRNAs are constitutively exported to the cytoplasm and translated to 
yield Rev, Tat, and Nef. (B) When the levels of Rev (shown as a pink oval) in the nucleus exceed the 
threshold necessary for function, the ~9-kb and ~4-kb mRNAs are exported to the cytoplasm and 
translated. The RRE is shown as a red rectangle. 

5.5 Packaging of genomic RNA 

During the late phase of the viral replication cycle, the HIV-1 selectively and efficiently 

packages two copies of its positive strand, unspliced, 5’-capped, and 3’-polyadenylated RNA 

genome by a mechanism that has been extensively studied (75, 178, 298, 328). The packaging 

mechanism efficiently discriminates against the monomeric genome, the spliced viral mRNAs 

that encode for viral accessory envelope proteins, and the more highly abundant cellular 

mRNAs (35). Packaging is mediated by the retroviral Gag proteins, which can efficiently 

assemble in the absence of their native genomes by incorporating an equivalent amount of 

cellular RNAs (63, 277, 392). Although retroviruses can package essentially any RNA (some 
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mutants even package ribosomes (278)), RNAs containing the appropriate viral packaging 

signals are efficiently enriched in assembling virions. 

Genome selection appears to proceed via the direct binding of the NC domain of Gag to 

conserved RNA Psi (#) site, which are generally located near the 5’ end of the gRNA 

(Figure 15). As for most other retroviruses, the nucleotides that participate in HIV-1 genome 

selection appear to reside near the 5’ end of the genome and primarily within the 5’ UTR (75, 

100, 178). Relatively short elements within the 5’ UTR that are independently capable of 

directing heterologous RNAs into assembling virus-like particles (VLPs) have been identified 

for some retroviruses, but HIV-1 appears to require most of its 5’ UTR (2, 238) as well as 

downstream nucleotides within the gag coding region (48, 248, 301) for optimal packaging 

efficiency.  

 
Figure 15. (a) Diagram of the composition of the HIV-1 genome showing locations of the 5’ UTR and 
splice sites. (bದf) Representative secondary structures predicted for the HIV-1 5’ UTR. In this figure, 
variations among the recent predictions for the AUG region (green) are shown. (Adapted from (247)) 

The 5’ UTR is the most conserved region of the HIV-1 genome (220, 297), and in 

addition to promoting packaging, it also helps regulate or promote transcriptional activation, 

splicing, primer binding during reverse transcription, and dimerization of gRNA. Although 
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the dimerization initiation site (DIS, also known as SL1) appears to be a main determinant for 

RNA packaging, the U5-AUG interaction has been identified as a key player of regulation of 

genome packaging (1, 246, 350). More recently, Deforges et al. (89) proposed that the 

sequence in the major splice-site donor (SD, known as SL2) may also bring their contribution 

to this regulation in vitro. Furthermore, other studies found that the poly(A) in 5’ UTR is a 

major packaging determinant for both spliced and unspliced viral RNA (100, 178). There is 

now considerable evidence that genome selection is mediated primarily by HIV-1 The NC 

domain of Gag (Figure 16). 

 
Figure 16. Models for selective encapsidation of viral unspliced and spliced RNAs (100). (A) The 
full-length RNA (FL RNA) includes the Psi site formed by SL1 and SL3 hairpins that is properly 
folded and specifically recognized by Gag. The NC domain of Gag is indicated in black and 
GagMA/SP1 domains in grey. (A) The poly(A) hairpin harbored by FL and spliced RNAs, could also 
be recognized by the NC domain of Gag, conferring to the FL RNA a second Gag binding site. Thus, 
FL RNA is more competitive than spliced RNAs, since the FL RNA through its polyA and Psi sites 
can bind more Gag molecules than spliced RNAs. (B) In this alternative model, GagMA/SP1 domains 
bind loosely to the poly(A), while the NC domain of Gag, as in (A), tightly binds to the Psi region. 
These two types of Gag:RNA interaction illustrate how FL RNA is more competitive that spliced 
RNAs for packaging. 
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5.6 Assembly of genomic RNA and virion proteins 

The requirement for two genome molecules is intriguing since all other viruses contain 

only a single copy of their genetic material (388). Both RNA molecules are utilized for 

strand-transfer-mediated recombination during reverse transcription (180, 181), but only one 

DNA allele is generated, and retroviruses are therefore considered “pseudodiploid”. Thus, 

strand transfer-mediated recombination from heterozygotes likely serves as a primary 

pathway for the rapid evolution of viruses that are resistant to antiretroviral therapies (291). 

Retroviral genomes exist as weak, non-covalently linked dimers in immature and young virus 

particles, and the stability of the RNA dimer increases with virus age, which might be 

important for subsequent reverse transcription events. The genome also appears to play a 

structural role in virus assembly, although this function can also be achieved by cellular 

RNAs (277). 

The assembly of new HIV-1 virions (Figure 17), begins at the plasma membrane of the 

host cell. The Env polyprotein (gp160) goes through the endoplasmic reticulum (ER) and is 

transported to the Golgi complex where it is cleaved by PR and processed into two HIV-1 

envelope glycoproteins gp41 and gp120. They are then transported to the plasma 

membrane of the host cell where gp41 anchors the gp120 to the membrane of the infected cell. 

The Gag (Pr55) and Gag-Pol (Pr160) polyproteins also associate with the inner surface of the 

plasma membrane along with the HIV-1 gRNA as the forming virion begins to bud from the 

host cell.  

 
Figure 17. Genome packaging and assembly of HIV-1. (Adapted from (247)) 



"#$%&'()$*&#!

&%!!

5.7 Maturation of the viral particle 

The construction of the spherical virion of HIV-1 driven by the viral gag proteins. The 

precursor proteins of Gag (Pr55) and Gag–Pol (Pr160) are expressed from an unspliced full-

length viral RNA, which is targeted to the plasma membrane by their N-terminal 

myristoylation and the adequate accumulation of precursor proteins drive virion assembly 

beneath the host cell membrane (132). Many features of the virion assembly, budding, and 

release processes are largely unknown, but many host cell factors are suggested to support 

and/or actively contribute to these processes (255).  ~1000 – 1500 copies of Gag precursors 

are required to construct the normal virion (45, 60, 131), but budded particle is not fully 

infectious at its current state. To acquire infectivity, the virion must undergo a maturation 

process, which is initiated by the activation of the viral protease (PR) (44). Virion maturation 

is believed to initiate and complete during or immediately after particle release (49, 207), 

although it still remains unclear what triggers viral PR activation. The viral PR cleaves the 

Gag polyproteins into individual functional proteins and enzymes which arrange the unstable 

gRNA into stable gRNA dimer.  

The Pr55 polypeptide is composed of six proteins and peptides, with the N-to-C order 

as MA-CA-sp2-NC-sp1-p6, thus contains five proteolytic cleavage sites to be processed by 

PR. It was previously demonstrated that the processing rates of the five cleavage sites were 

not equal (307). The processing rate of the cleavage site between SP1 and NC (SP1/NC) is the 

fastest, while SP2/p6 and MA/CA are the second and the third, respectively. The processing 

rates of the two remaining sites (CA/SP2 and NC/SP1) are much slower than those of the 

three aforementioned sites (Figure 18).  

During the virion maturation process, stabilization of the RNA dimer primes during the 

primary cleavage (SP1/NC) of Pr55Gag. However, the primary cleavage alone is insufficient 

and the ensuing cleavages are required for complete the uniform dimerization of viral RNA. 

During proteolysis, HIV-1 NC exists in two intermediate forms, NCp15 (partial cleavage 

product containing NC/SP2/p6) and NCp9 (partial cleavage product containing NC/SP2) and 

the fully processed form, NCp7. All three of these proteins exhibit nucleic acid chaperone 

activities (74). An extended structural model of the HIV-1 Gag polypeptide has been 

proposed from high-resolution structures of isolated domains (Figure 22B). SP1-NC cleavage 

by PR rapidly separates the MA-CA shell and the nucleocapsid complex formed between 

RNA, NCp15, RT and IN. NCp15 processing by PR into NCp9 and finally NCp7 leads to 

NC:RNA co-aggregation/condensation within the confines of the capsid cone. NCp7 is 
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followed by the p6 domain. This later p6 domain is required for particle budding during 

which the viral particles pinch-off from the cellular membrane (90). The p6 domain contains a 

Proline-rich and a di-Leucine domains, which are the target of the cellular proteins Tsg101 

and ALIX, respectively, involved in the cellular class E protein sorting pathway and the HIV-

1 budding machinery (90, 357, 389). 

 
Figure 18. Maturation of Gag proteins in HIV-1 (Adapted from (267)). 
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Chapter 3. Proteins involved in HIV-1 DNA synthesis 

+, Cellular proteins!

Several cellular proteins have roles in the replication cycle of HIV-1 (Figure 19). The 

infection begins when Env glycoprotein spikes engage the host receptor complex CD4-CCR5 

(step 1), leading to fusion of the viral and cellular membranes and entry of the viral particle 

into the cell (step 2). Partial core shell uncoating (step 3) facilitates reverse transcription (step 

4), which yields the pre-integration complex (PIC). Following import into the cell nucleus 

(step 5), PIC-associated integrase orchestrates the formation of the integrated provirus, aided 

by the host chromatin-binding protein lens epithelium-derived growth factor (LEDGF) (step 

6). Proviral transcription (step 7), mediated by host RNA polymerase II and positive 

transcription elongation factor b (P-TEFb), yields viral mRNAs of different sizes, the larger 

of which require energy-dependent export to leave the nucleus via host protein CRM1 (step 

8). These mRNAs serve as templates for protein production (step 9), and the full-length RNA 

is incorporated into viral particles with protein components (step 10). Viral-particle budding 

(step 11) and release (step 12) from the cell is mediated by ESCRT complexes and ALIX, and 

is accompanied or soon followed by PR-mediated maturation (step 13) to create an infectious 

viral particle. Each step in the HIV-1 replication cycle is a potential target for antiviral 

intervention (110).  

 
Figure 19. Roles of the host proteins in the replication cycle of HIV-1 (110). The sites of action of 
clinical inhibitors (white boxes) and cellular restriction factors (blue boxes) are indicated.  
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TRIM5 

HIV-1 infects humans and chimpanzees but not Old World Monkeys (OWMs) such as 

the rhesus monkey (Rh) and cynomolgus monkey (CM) (359). HIV-1 effiently enters cells of 

OWMs but encounters a block before reverse transcription. Importantly, resistance against 

HIV-1 infection was shown to be dominant in heterokaryons between human and OWM cells, 

suggesting the presence of inhibitory factor(s) against HIV-1 infection but not for SIV in 

OWM cells (272). In 2004, the screening of an Rh cDNA library identified tripartite motif 5" 

(TRIM5") as a species-specific cellular antiviral factor (359) (Table 2). TRIM5 present in the 

cytoplasm recognizes motifs within the capsid proteins and interferes with the uncoating 

process, therefore preventing successful reverse transcription and transport to the nucleus of 

the viral genome (339, 360). 

Table 2. Species-specific restriction by TRIM5"  (281). 

 

“Yes” denotes restriction. “Weak” 
denotes weak restriction. “No” 
denotes no restriction. “N.D.” 
denotes no result has yet been 
published. SIVmac, simian 
immunodeficiency virus isolated 
from a macaque; SIVagm, simian 
immunodeficiency virus isolated 
from an African green monkey; N-
MLV, N-tropic murine leukemia 
virus; B-MLV, B-tropic murine 
leukemia virus. 

 

TRIM5" is one of splicing variants produced by TRIM5 gene and TRIM5 proteins are 

members of the TRIM family containing RING, B-box 2, and coiled-coil domains (Figure 

20). The RING domains possess E3 ubiquitin ligase activity (193). TRIM5" has been shown 

to form a dimer (208, 228). The B-box 2 domain mediates higher-order self-association of 

Rh-TRIM5" oligomers (98, 241). The coiled-coil domain of TRIM5" is important for the 

formation of homo-oligomers (268), and the homo-oligomerization of TRIM5" is essential 

for antiviral activity (196, 280). Among TRIM5 splicing variants, TRIM5" alone has an 

additional C-terminal PRYSPRY domain (Figure 20). TRIM5" recognizes the multimerized 

CA proteins (viral core) of an incoming virus by its PRYSPRY domain and is thus believed to 

control retroviral infection. 
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Figure 20. Domains of rhesus monkey (Rh) TRIM5" and TRIMCyp proteins (281). The RING, 
B-box2, Coiled-coil and PRYSPRY domains of Rh-TRIM5# are shown by squares. Polymorphisms 
are shown outside the squares. The numbers in parentheses show the amino acid positions counting 
from the initiation methionine codon of the CypA ORF. 

It has also been reported that some Rh and CM individuals have retrotransposed 

cyclophilin A ORF in the TRIM5 gene (290, 334), which produces TRIM5-cyclophilin A 

fusion protein (TRIMCyp). TRIMCyp was originally identified as an anti-HIV-1 factor of 

New World owl monkeys (NWM) (374). The interaction between HIV-1 CA and CypA can 

be inhibited by cyclosporine A. This is a very interesting example of a gain-of-function by 

retrotransposition. The owl monkey has been shown to express only TRIMCyp but not 

TRIM5". 

Even moderate overexpression of wild-type human TRIM5 provides substantial 

reduction of HIV-1 infection (212). It is conceivable that the alleles regulating TRIM5" 

protein levels can have a major effect on HIV-1 acquisition or HIV-1 replication. Although 

TRIM5 missense polymorphisms explain little of the variation in European descent 

populations tested to date, TRIM5 expression could be important in HIV acquisition.  

APOBEC3 

The mammalian Apolipoprotein B mRNA-editing enzyme-catalytic polypeptide-like 3 

(APOBEC3) protein family has emerged as a key mediator of intrinsic restriction to 

retroviruses, including HIV, and to hepatitis B virus (61). APOBEC3 proteins, a class of 

cytidine deaminase enzymes, are incorporated into virions. APOBEC3G enzymes, with two 

zinc finger domains, edit newly synthesized viral DNA by deaminating dC to dU, resulting in 

lethal G-to-A hypermutations. The antiviral activity of APOBEC3 can also be deaminase-

independent through interference with virus transcription or integration (38, 173, 288). HIV-1 

has clearly out-maneuvered its host – HIV-1 encoded viral infectivity factor (vif) targets 
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APOBEC3G and 3F for proteasomal degradation through a ubiquitination pathway that 

involves the host proteins Cullin5, elongins B and C, and Rbx1 (412). Seven APOBEC3 

family genes (A, B, C, DE, F, G and H) are located in a tandem array on chromosome 22q12–

q13.2 that spans 150 kb. Their anti-HIV activity and sensitivity to degradation mediated by 

HIV vif is variable (Table 3). 

Table 3. Anti-HIV-1 profile of APOBEC3 proteins (4). 

 

Among all APOBEC3 proteins, APOBEC3G has arguably the strongest antiviral effect. 

The impact of the APOBEC3G expression levels on HIV-1 infection and the severity of HIV 

disease has been investigated. Most studies reported a positive correlation between expression 

levels and favorable outcomes (37, 101, 200, 296). Higher APOBEC3G expression in PBMCs 

and cervical tissues was observed in HIV-exposed seronegative women; their PBMCs were 

also resistant to infection with a macrophagotropic HIV-1 strain (R5) (37). APOBEC3G 

mRNA levels range from high to low in non-progressors > exposed uninfected > progressors, 

respectively, and were inversely correlated with virus load and positively correlated with 

CD4+ T-cell levels (199). Taken together, the evidence indicates that APOBEC3 genetic 

variation and expression levels modify HIV-1 acquisition and disease progression in vivo, 

suggesting that delivery of vif-resistant APOBEC3 protein to HIV-1 susceptible cells could 

potently restrict HIV-1 replication. 

In cells infected with $Vif HIV-1, APOBEC3G is not degraded and is effectively 

incorporated into the budding virus and transferred to the next target cell, where it exerts 

antiviral effects at multiple levels. APOBEC3G can inhibit the elongation of the RT in a 

deaminase-independent manner (Figure 21-1). Presumably, APOBEC3G binds directly to the 

viral RNA and thereby impairs the movement of the RT along the RNA template. Most 

importantly, APOBEC3G can trigger massive deamination of dC to dU during synthesis of 

the viral minus-strand DNA (Figure 21-2). During synthesis of the plus-strand DNA, 

adenosines are incorporated instead of the original guanines, resulting in G-to-A mutation. 

Finally, APOBEC3G also inhibits viral DNA integration and provirus formation, probably by 

inducing defects in tRNA cleavage during second strand transfer, leading to the formation of 

aberrant viral DNA ends (Figure 21-3). APOBEC3G also interacts with the HIV-1 IN, which 
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might interfere with the integrity of the integration complex, resulting in diminished 

integration rates. 

 
Figure 21. The impact of APOBEC3G on the life cycle of $Vif HIV-1 (402). 

2. HIV-1 proteins 

The viral proteins (Table 4) are synthesized from more than 40 mRNAs, which are all 

derived from the same primary transcript (Figure 12).  
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Table 4. HIV-1 proteins (source: http://www.hiv.lanl.gov/) 

 

2.1 Viral envelope (Env) 

The envelope (Env) spikes on HIV-1 define the viral tropism, mediate the fusion 

process and are the prime target of the humoral response. Three gp120 subunits comprise the 

‘head’ of Env and three gp41 subunits comprise the ‘stalk’ and other membrane-associated 

elements. The mature gp120-gp41 proteins are bound by non-covalent interactions and are 

associated as a trimer on the cell surface. The gp120 moiety has five hypervariable regions, 

designated V1 through V5. V3 loop is not involved in CD4 binding, but is rather an important 

determinant of the preferential tropism of HIV-1 for either T lymphoid cell lines or primary 

macrophages (187). Sequences within the V3 loop interact with the HIV-1 co-receptors 

CXCR4 and CCR5, which partially determine the susceptibility of cell types to given viral 

strains (91). The V3 loop is also the principal target for neutralizing antibodies that block 

HIV-1 infectivity. 
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2.2 Structural proteins 

2.2.1 Matrix (MA) 

MA, which forms the N-terminal domain (NTD) of the Pr55Gag precursor, has been 

implicated in the targeting of Gag to the plasma membrane, Env glycoprotein incorporation 

into virions, and early postentry events. The structure of the HIV-1 MA protein has been 

determined by both NMR spectroscopy and X-ray crystallography (69, 171, 256). The protein 

folds into a compact core domain, consisting largely of "-helices and a three-stranded %-sheet. 

The C-terminal ~30 residues of MA form an "-helix which may serve to connect MA and CA 

domains in Pr55Gag (Figure 18B). In the mature HIV-1 virus, MA is located under the virion 

envelope, which derives from the infected cell membrane. MA is myristoylated and contains 

basic amio acids within its N-terminus. Membrane binding is mediated by insertion of the 

myristoyl group into the lipid bilayer and by the basic patch, which binds acidic 

phospholipids, particularly PI(4,5)P2, a phosphoinosotide that is concentrated in the plasma 

membrane (Figure 22) (273).  

 
Figure 22. Models for membrane binding by the N-terminal MA domain showing a side view of the 
MA trimer bound to a lipid bilayer with the myristoyl chain (colored in green) inserted into the inner 
leaflet, and basic residues (blue) interacting with acidic phospholipid headgroups, including PI(4,5)P2 
(yellow) (132). 

2.2.2 Capsid (CA) 

In the mature virion, CA forms a shell surrounding the viral RNA genome and core-

associated proteins. The CA domain of Pr55Gag plays an important role in virus assembly, and 

the mature CA protein functions in virion maturation and also appears to be involved in early 

postentry steps. The CA protein is composed of two domains: an N-terminal region (the so-
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called ‘core’ domain, composed of residues 1–145), which functions in virion maturation and 

incorporation of the cellular protein CypA, and a C-terminal ‘dimerization’ domain (residues 

151–231), which contributes to Gag-Gag interactions (Figure 23). The core domain is highly 

helical, being composed of seven "-helices, two %-hairpins, and an exposed loop. The 

exposed loop serves as the binding site for CypA (130). 

 
Figure 23. Model of capsid (Adapted from (319)). (a) Top view of the pentamer, with the NTD 
colored in orange and the CTD in blue. Helices are represented as cylinders. (b) and (c) Top view (b) 
and side view (c) of the pentamer, with the helices as ribbons. Each subunit is in a different color. (d), 
(e) and (f) Equivalent views of the hexamer. The yellow spheres in (a) and (d) indicate the positions of 
the pentamer-stabilizing (N21C/A22C) and hexamer-stabilizing (A14C/E45C) disulfide bonds, 
respectively. (g) Stereoview of a backbone-only fullerene cone model composed of 1,056 CA 
subunits. The hexamers, pentamers, and dimers are colored in orange, yellow, and blue, respectively. 

2.2.3 Nucleocapsid protein (NC) 

2.2.3.1 Structure of NC 

The HIV-1 NC is a small basic nucleic acid-binding protein generated by the proteolytic 

cleavage of the Gag precursor. PR-directed cleavage of Gag (Figure 18A) first generates 

NCp15, next NCp9 (1-71) and ultimately NCp7 (currently named as NC) composed of 55 

amino acid residues, containing two highly conserved CCHC zinc fingers that coordinate zinc 

ions with high affinity (Figure 24).  

2.2.3.2 Properties of NC 

About 1000-1500 NC molecules coating the gRNA in a dimeric form (45, 56, 60) are 
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found within the infectious HIV-1 particles. The NC:gRNA ratio is therefore about 1 to 12-18 

nucleotides. 

 
Figure 24. Sequence (A) and 3D structure (B) of NC (144). Two zinc finger domains (ZF1 and ZF2) 
are in green, separated by a highly basic linker (orange), and flanked by poorly folded N-terminal 
(grey) and C-terminal (deep purple) domains. 

In vitro NC is endowed with nucleic acid (NA) binding, condensing, annealing, and 

strand transfer activities. NC is a NA chaperone (73, 336, 377), which is the key property and 

means that NC can remodel NA structures so that the most thermodynamically stable 

conformations that have the maximal number of base pairs (16, 73, 239) are gained (Figure 

25). Two main components account for the NC chaperone activities: 1) the transient 

destabilization of the nucleic acid secondary structure upon binding of NC molecules; 2) the 

NC-promoted annealing of complementary nucleic acid sequences (144). 
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Figure 25. Viral NA structure remodeling by NC (82). Schematic model of the entropy exchange 
process between NC and the dimer initiation sequence of the HIV-1 gRNA. (1) Intrinsically 
unstructured NC molecules bind to the kissing complex form of the RNA dimer. (2) The binding is 
accompanied by mutual conformational rearrangements, leading to partial folding of NC (" helix in 
yellow) and partial melting of the RNA stem structures. (3) NC is released, allowing the RNA to 
conduct a conformational search, which - after successive cycles of binding and release (the on and off) 
- ultimately leads to the extended duplex conformation. 

2.2.3.2.1 Nucleic acid destabilization activity 

The capability of HIV- 1 NC to destabilize NAs is mainly driven by its ZFs. The 

destabilization activity is dependent of the stability of the NA sequences. The motifs, such as 

bulges, internal loops, mismatches and terminal base pairs are likely important to ensure a 

selective destabilization by NC (144, 239). The NC-induced NA destabilization initiates 

preferentially at the single-stranded region. NC then opens the neighbouring base pairs in 

order to help the initial destabilization to propagate. As a consequence, this may allow the 

sliding of NC and/or the binding of additional NC molecule (144). Thus, the destabilization 

activity induces the secondary structure fluctuations and ultimately leads to the reactive 
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species required for the specific intra- or inter-molecular annealing processes occurring 

during the viral life cycle. 

2.2.3.2.2 Nucleic acid aggregation activity 

HIV-1 viral assembly and replication require multiple annealing reactions involving a 

large number of NA sequences. The ability of NC to non-specifically aggregate NAs 

(234)facilitates the nucleation step of the annealing reaction. Nucleation is a diffusion-limited 

association, which is slowed down by the electrostatic repulsion between the annealing 

strands and by the low probability of the correct positioning of nucleotides for annealing (315, 

316). Multiple studies suggest that NC remains highly mobile when bound to NAs (371-373, 

404). High mobility of multivalent cationic ligands in their NA-bound state is a key feature of 

efficient aggregating or condensing agents (166, 167, 217). NC is highly cationic with its N-

terminal responsible for the strong NA aggregating properties. The NTD are unstructured in 

free NC, but form "-310 helix upon NA binding (239). Together with the N-terminal tail, the 

basic residues in the linker region between the two NC ZFs contribute to robust and dynamic 

binding/dissociation interaction with nucleic acids, which ensures NAs aggregation (74, 355). 

Although NC preferentially binds to single-stranded G-rich sequences through stacking 

interactions via hydrophobic residues (29, 117, 239), NC’s non-specific NA binding and 

aggregating ability are an essential part of its chaperone function. 

 

2.2.3.2.3 Nucleic acid structure and NC binding properties 

The binding constants of NC for NAs strongly depend on the nature, the sequence, and 

the folding of the interacting sequences and can thus vary by several orders of magnitude. 

This strong variation in the binding constants confers on the protein the ability to exert 

different functions, depending on the nature of the interacting NA sequences and the 

respective concentrations of the protein and the NA sequences (82). Studies based on NMR 

and isothermal titration calorimetry (ITC) showed that the RNA apical loops displaying the 

GNG sequences constitue high-affinity binding sites for NC (3, 86). An early surface plasmon 

resonance (SPR) experiment showed that in a moderate salt concentration (0.15 M NaCl) NC 

binds preferentially to the single-stranded DNA (117). The data obtained by a study based on 

single molecule stretching were consistent with the preferential binding of NC to the single-

stranded DNA (401). However, in 10 mM sodium phosphate (pH 7.0), the affinity of NC for 

the double-stranded DNA is only slightly smaller in magnitude than the affinity for the single-
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stranded DNA (378). NC also exhibits sequence-specific binding properties to a number of 

defined single-stranded sequences. These specific and strong binding properties play notably 

a critical role in the recognition, by the NC domain of Gag, of the encapsidation signal of the 

gRNA, enabling its specific recognition and selection among a large excess of cellular RNAs 

during virus assembly (2, 62, 238, 273, 274). 

NC was also found to bind with high affinity to single-stranded TG, GNG, and TNG 

motifs (10, 11, 21, 29, 116, 117, 390) (Table 5). These motifs are specifically recognized by 

NC in two viral (-) DNA stem-loops, namely, the (-)primer binding site (PBS) and the (14-39) 

complementary trans-activation response element (called mini-cTAR) (21, 40).  

A model was proposed to describe the formation of specific complexes between NC and 

its RNA and DNA targets (21, 82) (Figure 26). In this model, the interaction is initiated by 

the stacking between the W37 residue of the C-terminal ZF and a guanine residue (Figure 

26A-b and 26B-b). In the NC:DNA complexes, this primary contact positions the 

hydrophobic residues of NC (T24, F16, M46, and Q45) for hydrophobic interactions with the 

C2’atoms of the sugars (Figure 26A-c), which in turn lead to the stretching and deformation 

of the phosphodiester backbone (Figure 26A-c and 26D-b). Moreover, this modification of 

the phosphodiester backbone is accompanied by a weakening of the stacking interactions 

between the bases of the tetranucleotide sequence interacting with NC. In the NC:RNA 

complexes, the presence of the hydroxyl group at the C2’position (violet position in the 

sugars colored black) was found to prevent the interaction of the hydrophobic residues (F16 

in the NC:SL2 complex) with the C2’atoms of the sugars at the expense of sugars at the O4’ 

(red atoms in the sugar colored black) and O5’ positions (Figure 26B-b and 26B-c). In the 

NC:RNA complexes, it is mainly the O4’/O5’/C5’/C4’atoms that are involved in the contacts, 

while in the NC:DNA complexes, it is the C2’/C1’atoms. Note also that the number of protein 

residues involved in these contacts is larger in the NC:DNA complexes than in the NC:RNA 

complexes. As a consequence, even if the sequence preference rules and binding mode appear 

similar for DNA and RNA sequences, with notably an insertion of a G residue in the 

hydrophobic cleft formed on the C-terminal ZF, the RNA sequences were found to bind NC 

with an opposite polarity as compared to DNA sequences (21). This underlines the important 

role of the sugar-protein contacts in the determination of the NA binding polarity of NC. 

Moreover, in contrast to the DNA sequences, NC was found to only slightly destabilize and 

stretch the contacted RNA sequence and, thus, induce only limited changes in the stacking 

interactions between the contacted RNA bases (Figure 26B). 
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Table 5. NC affinities for various target oligonucleotide sequences (82).!
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Figure 26. A simplified view of amino acidದsugar interactions directing the NA binding polarity 
of NC (82). (A) Hypothetical steps of the NC-DNA interaction illustrated by the binding of NC(11-55) 
to mini-cTAR. (B) Hypothetical steps of the NC-RNA interaction illustrated by the binding of NC to 
SL2. (C) View of the primary W37-guanine contact in the NC:mini-cTAR DNA complex (a) and in 
the NC:SL2 RNA complex (b). Note that the relative positioning of the two residues is very similar, 
including the relative sugar orientation. (D-a) the free CTGG sequence of mini-cTAR determined by 
NMR (413); (D-b) the same part of mini-cTAR complexed to NC (21). 

2.2.3.3 Roles of NC in the replication cycle 

Since NC can bind either specifically or nonspecifically to nearly any NA sequence, it 

plays multiple roles in virus replication cycle (82). HIV-1 NC has been extensively studied 

during the past 20 years and was shown to be implicated in the assembly of virus particles, 

genomic RNA dimerization and packaging, reverse transcription and integration into the host 



"#$%&'()$*&#!

'+!!

genome (52, 151, 158). NC functions in both precursor and fully processed forms throughout 

the replication cycle (Figure 27). Typically, in precursor forms, NC is involved in assembly 

processes, specifically recognizing and binding genomes as RNA dimers (56, 123). The 

precursor is also involved in placement of the tRNA primer onto genomes. 

 
Figure 27. NC’s involvement in HIV-1 replication cycle (267). 

Assembly of gRNA and RNA packaging (Figure 27 step 1-2) 

Gag binding through its NC domain initiates at the Psi RNA region ensuring viral RNA 

dimerization, which then acts as a nucleation point to aggregate other Gag and Gag-Pol units 

through Gag-Gag interactions and Gag-RNA interaction. Genetic analyses have demonstrated 

that the NC domain of Gag is critical for specific recognition and packaging of gRNA since 
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the ZF mutations (158) or multiple basic residues in the NC domain of Gag (63, 317) can 

significantly reduce the genome packaging. RNA packaging and Gag-Gag interactions 

mediate assembly of the particle that subsequently buds from the cell as an immature and 

non-infectious particle. Deletion of the NC domain of Gag caused an overall accumulation of 

Gag polyprotein at the plasma membran in vivo and essentially in diffuse pattern (154). 

Virus budding and maturation (Figure 27 step 3-4) 

A necessay step for virus particle maturation is the formation of a stable dimer complex 

between the two molecules of gRNA present in the virus particle. It has been demonstrated 

that NC is critical for the formation of this complex (124, 125). The mechanism for this 

stabilization is thought to begin with limited base pairing between the genomes, termed a 

“kiss loop structure”, which, with the assistant of NC expands to form a more complex, 

extended structure (275, 312). This process, termed “dimer maturation”, results in the 

formation of a more thermostable RNA dimer, and occurs during the maturation of the virus 

particle after budding (124, 125, 233, 351). Maturation results in NC:RNA complex 

condensation at the centre of the core where NC chaperone activity modulates RNA tertiary 

and quaternary structures. Mutations in ZFs have a negative impact on virus budding and Gag 

processing in vivo (154). 

Reverse transcription (Figure 27 step 5) 

After entry of the HIV-1 particle into the cytoplasm of a newly infected cell, RT 

catalyses viral DNA synthesis in the context of a ribonucleoproteic complex where NC 

accelerates the first and second strand transfers required for minus and plus strand DNA 

synthesis and induce a complete remodeling of the capsid and its contents, which are 

ultimately converted into a PIC, depleted of most of the NC initially bound to the gRNA. NC 

promotes specific cDNA synthesis and efficient strand transfer by preventing non-specific 

self-primed cDNA synthesis, and by increasing the rate and extent of annealing 

complementary sequences, respectively (83, 103, 157, 158, 230, 231, 410). More details will 

be given in Chapter 4. 

Integration of viral DNA 

The HIV-1 virion core that enters the cytoplasm is thought to consist of a CA shell 

which surrounds the nucleocapsid core (dimerized RNA genome, tRNA(Lys,3) primers, and 

~1500 molecules of NC). In addition, purified cores have been shown to contain RT, IN, PR, 

Vpr and small amounts of Pr55Gag and p41MA-CA (263, 396). This nucleoprotein assembly is 



"#$%&'()$*&#!

'-!!

termed as reverse transcription complex (RTC). When the RTC uncoats, reverse transcription 

proceeds and the complex is transported through the cytoplasm to the nucleus where it is 

converted into a PIC, which is actively transported into the nucleus (393). The presence of 

NC in PICs is expected to some extent because of its presence in RTCs and the experiments 

have shown nuclear localization of NC after infection (418). However, there has been a 

conspicuous inability to detect it in isolated HIV-1 PICs (287). The failure to detect NC may 

be due to weak NC-NA interaction in PICs. There have been proposed two models to explain 

the failure. The first model suggests that NC binds non-specifically dsDNA, forces IN to bind 

to areas of higher affinity, and/or stabilizes IN binding into LTR ends (313). Once IN is 

bound at the correct position, it may not be necessary for NC to remain present. The second 

model proposes that NC is bound at low concentrations to specific parts of the full-length 

viral DNA. TEM virualization showed that dsDNA contains a central DNA flap where may 

be bound NC (266) since it binds single-strand DNA better that dsDNA. In addition, the PR-

digestion of NCp15 is unlikely to 100%, so that a small amount of NCp9 is expected, and 

NCp9 binds equally well to single-strand DNA and dsDNA (265). Interestingly, it has been 

demonstrated that NCp9 binding has a cooperative component (74), suggesting that perhaps a 

small amount of NCp9 could assist IN in forming complexes at LTR ends. It was also 

observed that NCp9 stimulated corrdinated integration to a greater degree than NC in in vitro 

integration assays (135). 

2.3 Nonstructural proteins 

2.3.1 Regulatory proteins and accessory proteins 

HIV-1 encodes two regulatory proteins, the transcriptional transactivator (Tat) and the 

regulator of virion gene expression (Rev). The virus encodes four so-called accessory proteins: 

the ill-named ‘negative effector’ (Nef), viral infectivity factor (Vif), and the viral proteins r 

(Vpr) and u (Vpu). 

Tat (86-101 amino acids) binds the TAR stem-loop structure (139). It is produced from 

incompletely and compleltely spliced mRNAs (Figure 12). Tat is one of two essential viral 

regulatory factors of HIV-1 gene expression. It recruits several cellular proteins to make the 

chromatin structure accessible for the transcription machinery, to acquire the posttranslational 

modifications essential for its function, and to produce efficient viral replication (68). Low 

levels of both proteins are found in persistently infected cells. Tat has been localized 

primarily in the nucleolus/nucleus by immunofluorescence. The binding of Tat to TAR occurs 
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in conjunction with cellular proteins that contribute to the effects of Tat. The binding of Tat to 

TAR activates transcription from the HIV-1 LTR at least 1000 folds (114, 206). 

Rev (116 amino acids) is a sequence-specific RNA binding protein. It is produced from 

completely spliced mRNAs (Figure 12). The binding of Rev to the RRE facilitates the export 

of unspliced and incompletely spliced viral RNAs from the nucleus to the cytoplasm (115). 

Recent research showed that this binding was inhibited by Adenosine Deaminase Acting on 

RNA 1 (ADAR1) (39). 

Nef (206 amino acids) is functionally complex. It is produced from completely spliced 

mRNAs (Figure 12). It has a structured core, amino acids 62–147 and 179–200; flexible N- 

and C-termini, amino acids 2–61 and 201–206; and an internal flexible loop, amino acids 

148–178 (standard NL4-3 numbering) (120). Nef is considered to be a pathogenic factor, but 

its role in the development of AIDS is not mechanistically understood. Although Nef effects 

are due to protein–protein interactions, only one host cell protein, the protein tyrosine kinase 

Hck, has been found to bind directly to HIV-1 Nef (KD approximately 200 nM, (209, 236)). 

Nef has been shown to have multiple activities, including the down regulation of the cell 

surface expression of CD4, the perturbation of T cell activation, and the stimulation of HIV-1 

infectivity.  

Vpr (viral protein R, 96 amino acids) plays a role in the ability of HIV-1 to infect non-

dividing cells by facilitating the nuclear localization of the PIC (169). It is produced from 

incompletely spliced mRNAs (Figure 12). Other critical functions include transcriptional 

coactivation of viral and host genes, induction of cell-cycle arrest, both direct and indirect 

contributions to T-cell dysfunction, and regulation of NF-!B activity (218). 

Vpu (viral protein U, 81 amino acids) is specific to HIV-1 and SIVcpz (the closest SIV 

relative of HIV-1). It is produced from completely spliced mRNAs (Figure 12). There is no 

similar gene in HIV-2 or other SIVs. Two different biological functions have been attributed 

to Vpu: (a) HIV-1-induced CD4 receptor downregulation by mediating the proteasomal 

degradation of newly synthesized CD4 in the ER, and (b) enhancement of virion release from 

the plasma membrane of HIV-1-infected cells (361, 400). Recent discoveries suggest that 

these two functions may have impacted primate immunodeficiency virus cross-species 

transmission and this accessory protein helps HIV-1 to escape from host defenses (106). 

Vif (viral infectivity factor, 220 amino acids) is Rev-dependent mRNA (137, 375). It is 

produced from completely spliced mRNAs (Figure 12). Vif is essential for the replication of 

HIV-1 in peripheral blood lymphocytes, macrophages, and certain cell lines (358). Vif 

inhibits the antiviral activity of the cellular protein APOBEC3G from entering the virion 
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during budding from a host cell by targeting it for ubiquitination and proteasomal degradation 

(235, 340, 412).  

2.3.2 Protease (PR) 

HIV-1 PR activity is not required for virus production and release per se, but is essential 

for viral maturation leading to infectious viral particles. It generates mature infectious virus 

particles through cleavage of the viral Gag and Gag-Pol precursor proteins. HIV-1 PR is part 

of the family of aspartic proteases (with an aspartic acid in the active site at position 25) and 

is a symmetrically assembled homodimer consisting of two identical subunits of 99 amino 

acids (282, 403). The centre of the enzyme is formed by the substrate binding cleft, which 

interacts with the different substrate cleavage site sequences in the Gag and Gag-Pol proteins. 

Dimerization of Gag-Pol precursor proteins is required for the activation of viral protease that 

is embedded in the Gag-Pol protein.  

2.3.3 Integrase (IN) 

The HIV-1 IN is an essential enzyme for the integration of viral DNA into the host cell 

genome. The process of DNA incorporation occurs in two spatially and temporally distinct 

steps known as 3’ processing and strand transfer (Figure 11). 

Mechanistically and structurally, IN belongs to a diverse family of polynucleotidyl 

transferases (107). In each newly formed virion, approximately 50 to 100 copies of the IN 

enzyme are packaged (258). IN is a 32 kD protein that comprises three structurally 

independent domains: the amino-terminal domain (NTD), the catalytic core domain (CCD) 

and the carboxy-terminal domain (CTD) (Figure 28). 

 
Figure 28. Structural domains of HIV-1 IN (314). 



"#$%&'()$*&#!

(&!!

IN is supposed to be in equilibrium between its monomeric, dimeric, tetrameric and 

high order oligomeric states (Figure 29). Only the dimer is able to bind the viral DNA, and 

thus it represents the active form of the enzyme (112, 155). The IN:DNA complex is then 

transported into the nucleus by several cofactors such as Transportin-SR2 (TR2) (381). 

LEDGF/p75 is another cellular cofactor of HIV-1 IN that interacts with IN through its IN 

binding domain (IBD) and tethers the viral PIC to the host cell chromatin (370). These two 

host cellular proteins have been recently reported to mediate PIC import. 

 A                   B           

        
Figure 29. A) Hypothetical oligomerization IN equilibrium; B) Free IN tetramer. (370) 

2.3.4 Reverse transcriptase (RT)  

2.3.4.1 Structure of RT 

The RT is an asymmetric heterodimer that is generated by cleavage of the Gag-Pol 

precursor and consists of two subunits, p66 (560 amino acids) and p51 (the first 440 amino 

acids of the p66 subunit) (219). The larger p66 subunit has two domains with the following 

functions: the NTD contains DNA- and RNA-dependent DNA polymerase activity, which is 

responsible for the critical step of conversion of the minus stranded RNA viral genome into 

double stranded DNA; the CTD contains RNase H activity, which degrades the RNA strand 

in an RNA-DNA hybrid. Both subunits are encoded by the same sequence in the viral genome. 

RNase H consists of the last 120 amino acids in the CTD of the p66 subunit, which 

correspond to the p15 fragment cleaved from the p66 subunit by the viral protease to generate 

the p51 subunit (195, 219). The p51 subunit lacks catalytic activity and has a structural role. 

Like other polynucleotide polymerases, the overall three-dimensional structure of the p66 

subunit is often compared to a right hand (Figure 30), with fingers (amino acids 1-85 and 
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118-155), a palm (amino acids 86-117 and 156-237) and a thumb (amino acids 238-318) 

domain (353). The palm domain contains the polymerase active site with its three aspartic 

acids (D110, D185 and D186) characteristic motif. The incoming dNTP binds between the 

palm and the finger subdomains, and the ribose and base make important contacts with 

residues including L74, Y115, M184 and Q151. The catalytic pocket is formed by the fingers 

folding down into the palm domain (182). Next to the catalytic domain, the p66 subunit also 

contains the RNase H domain (amino acids 427-560), linked by the connection domain 

(amino acids 319-426). The connection domain is also involved in interactions with the NA 

and the p51 subunit. Despite their sequence homology, the p66 subunit assumes a flexible and 

open structure, whereas the p51 subunit is rather compact, and seems to play a structural role, 

devoid of catalytic activity, with the three aspartic acids buried inside. 

 
Figure 30. Crystal structure of HIV-1 RT with NA (333). The fingers, palm, thumb, connection, 
and RNase H subdomains of the p66 subunit are shown in blue, red, green, yellow, and orange, 
respectively. The p51 subunit is shown in dark brown. The template and primer DNA strands are 
shown in light gray and dark gray, respectively. 

2.3.4.2 Properties of RT 

RT has two enzymatic activities: a DNA polymerase activity that can copy either a 

DNA or an RNA template, and an RNase H activity that cleaves RNA only if the RNA is part 

of an RNA-DNA duplex. The two-enzymatic functions of RT, polymerase and RNase H, 

cooperate to convert the RNA into a double stranded linear DNA. However, HIV-1 RT lacks 

exonucleolytic proofreading activity which confirms that the DNA transcript produced is an 

accurate copy of the RNA template, and confers a mutation rate of approximately 3.4 x 10-5 

mutations per base pair (251) in the replication cycle. Since the HIV-1 genome is an estimated 

104 base pairs in length, and HIV infection is characterized by a very high replication rate, 
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with the production of 1 to 10 billion new virus particles per day in an untreated infected 

individual, millions of viral variants are produced in any infected person in a single day, and a 

mutant at each nucleotide position in the viral genome is produced every day (85, 306). After 

DNA synthesis has been completed, the resulting linear double-stranded viral DNA is 

translocated to the nucleus where the viral DNA is inserted into the host genome by IN.!

2.3.4.2.1 DNA polymerase activity 

The mechanism of DNA polymerization by HIV RT is reasonably well understood; 

extensive biochemical and crystallographic data have helped to define the individual steps of 

the process. The reaction begins with the binding of RT to the NA substrate, which results in 

a conformational change in the position of the p66 thumb, from a closed to an open 

conformation. Like many other DNA polymerases, RT requires both a primer and a template. 

In most sequence contexts, RT preferentially binds to a double-stranded NA so that the 3’ end 

of the primer strand is bound at the priming site (P site), adjacent to the polymerase active site 

(41, 195, 252, 253). The initial step in nucleotide incorporation is the binding of the incoming 

dNTP at the nucleotide-binding site (N site) to form a ternary complex (182). The rate-

limiting step in the polymerization reaction is a conformational change in which a portion of 

the p66 fingers subdomain close down on the incoming dNTP, which helps to precisely align 

the 3’-OH of the primer, the "-phospate of the dNTP, and the polymerase active site (182, 

211, 327). The chemical step that follows leads to the formation of a phosphodiester bond 

between the newly incorporated nucleoside and the primer with the concomitant generation of 

pyrophosphate. The fingers open to allow the pyrophosphate to leave the active site. In 

processive DNA synthesis, the NA substrate must translocate relative to RT to free the 

nucleotide-binding site so that RT can bind the next incoming dNTP. The dependence of the 

rate-limiting step on correct dNTP binding and base-pairing forms the basis for the fidelity of 

polymerization (203). The chemical step requires two divalent metal ions and there is good 

reason to believe that the normal in vivo metals are both Mg2+. The metals coordinate the 

oxygens of all three phosphates of the incoming dNTP and the side chains of the three 

catalytic Asp residues (D110, D185, D186). Metal coordination at the polymerase site 

facilitates the attack of the 3’-OH on the "-phosphate of the incoming nucleotide by 

activating the hydroxyl group (Figure 31). The two metal ions also stabilize the charge of the 

reaction intermediates (354). 
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Figure 31. Metal chelation in the RT polymertase active site (333). The nucleotide binding site (N 
site or pre-translocation site) and the priming site (P site or post-translocation site) are shown. 

2.3.4.2.2 RNase H activity 

The RNase H active site in RT is located in the CTD and is separated from the 

polymerization site by 18 base pairs in DNA-RNA heteroduplex substrates (127, 150). This 

configuration allows RT to make cleavages in RNA during cDNA synthesis, which is known 

as polymerization-dependent RNase H activity (337) (Figure 32). However, the 

polymerization rate of RT is greater than the rate of RNA hydrolysis, thus polymerization-

independent cuts, made during revisits of RT molecules to remaining RNA-DNA hybrids, are 

necessary for complete removal of the genomic template (96, 337) (Figure 32). HIV-1 RNase 

H was also shown to function in a two metal ion mechanism similar to other polymerase-

associated nucleases. The crystal structure of the RNase H fragment shows two Mn2+ bound 

the active site. Calorimetry and solution NMR experiments demonstrated the presence of two 

Mn2+ or two Mg2+ bound to RNase H active site (71, 300). Biochemical assays suggested that 

the optimal RNase H activity is obtained in the presence of one Mg2+ and one Mn2+ (216). 

However, it is likely that, in vivo, both metals are Mg2+. It has been suggested that the RNase 

H specificity for RNA-DNA hybrid relies on the width of the minor groove (13, 113). This 

proposal comes from the observation that RNA-DNA has an intermediate conformation 

between A- and B-form double-stranded NA named H-form, which has a minor groove width 

of ~9-10 Å (364). The crystal structure of RT bound to an RNA-DNA hybrid supports the 

idea that it is the width of the minor groove, in combination with the RNase H primer grip, 

that binds and positions the primer strand on the enzyme, which is responsible for cleavage 

specificity (364). 
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Figure 32. Two different cleavages by HIV-1 RT (24). RT can bind to a nucleic acid substrate in 
two distinct binding modes. The polymerase-dependent mode is characterized by the polymerase 
active site being in contact with the 3’ primer terminus. All other possible conformations are 
considered polymerase-independent.  

RNase H activity is responsible for the degradation of the RNA portion of the RNA-

DNA hybrids that is formed during minus strand DNA synthesis. It is also responsible for the 

removal of the priming tRNA(Lys,3) (323) and the PPT (185). Viruses deficient in RNase H 

activity are non-infectious (335, 366). In general, degradation of the gRNA is not sequence 

specific. However, the RNase H of HIV-1 RT does make some specific cleavages. The 

removal of the tRNA(Lys,3) primer occurs one nucleotide from the RNA-DNA junction (323). 

This cleavage defines the right end of the unintegrated viral DNA. The cleavages that 

generate and remove the polypurine tract (PPT) primer used to initiate plus-strand DNA 

synthesis during the replication cycle are also specific. The PPT primer is completely 

removed by RNase H, which define the left end of the unintegrated viral DNA (397). These 

ends are the substrates for the integration of the DNA into the host genome. 
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Chapter 4.  Reverse transcription of HIV-1 genomic RNA 

Although some viral particles initiate reverse transcription before entering cells (245, 

376, 419), this process generally begins when the virion enters the cytoplasm of the host cell. 

Recently, it has been shown that SAMHD1 restricts the replication of HIV-1 by depleting the 

intracellular pool of deoxynucleoside triphosphates (224). Recent studies showed that 

mutations in the NC domain affected the timing of reverse transcription (99, 177, 368). 

Indeed, reverse transcription occurred before viral particles were released from cells. These 

studies suggest that NC restricts the viral cDNA synthesis during viral formation and 

maturation. Many laboratoires have developed cell-free systems to determine the mechanisms 

involved in the key steps of reverse transcription. Thus, reverse transcription intermediates 

and products identical to those made in infected cells can be synthesized in the purified 

virions (referred to as natural endogenous reverse transcription or NERT) (415, 416, 419). 

Reverse transcription inside the purified virions is increased in the presence of 

deoxyribonucleotides and mild detergents (referred to as endogenous reverse transcription or 

ERT) (141, 176, 394). However, the yield of full-length products in ERT and NERT assays is 

extremely low (178, 224). 

Reverse transcription consists of a complex series of events that culminate in the 

synthesis of a linear dsDNA copy from the single-stranded gRNA, which is ultimately 

integrated into the host chromosome (Figure 33) (170, 333). This process, catalyzed by RT, 

is an early postentry event that occurs in the cytoplasm of infected cells. The chaperone 

activity of NC is critical for reverse transcription (239, 240, 368). 

1. The primer binding site (PBS) 

Localized within the 5’ UTR, the PBS sequence, complementary to the last 18 

nucleotides of tRNA(Lys,3), is a requirement for the initiation of reverse transcription (254). 

From SHAPE (selective 2’-hydroxyl acylation analysed by primer extension) experiments 

performed with gRNA extracted from virions and cells, Weeks’ group (395) proposed a 

secondary structure model for the 5’ UTR (Figure 34). SHAPE, a high-throughput RNA 

analysis techonology, was used to chemically interrogate local nucleotide flexibility at 99.4% 

of the 9,173 nucleotides in the NL4-3 HIV-1 RNA genome. 1-methyl-7-nitroisatoic anhydride 

(1M7), used as a chemical probe, preferentially acylates conformationally flexible nucleotides 

at the ribose 2’-OH position (261, 270). The resulting 2’-O-adducts are detected as stops to 

primer extension by RT using fluorescently labeled primers and capillary electrophoresis (270, 
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399) and are quantified by whole-trace Gaussian integration (384). SHAPE measurements are 

reproducible between independent biological replicates (395). SHAPE reactivities are highly 

sensitive to local nucleotide flexibility and disorder, but are insensitive to solvent accessibility 

(140, 261). SHAPE reactivities therefore provide direct model-free information about the 

overall level of structure, or architecture, for any RNA. The median SHAPE reactivity varies 

markedly across the HIV-1 genome (395). Regions with median reactivities below 0.25 

indicate domains with substantial base-paired secondary RNA structure, whereas median 

SHAPE reactivities of 0.5 and greater indicate regions of largely unstructured nucleotides. 

Studies suggest that in the absence of tRNA, the PBS region of the NL4-3 isolate is almost 

not paired (297, 399).  

 

Figure 33. Schematic diagram of events in reverse transcription of HIV-1 genomic RNA. The 
tRNA primer is represented by a short violet line attached to a “cloud” (remaining tRNA bases); 
gRNA by a red solid line; (-)DNA by a blue solid line while (+)DNA by an orange solid line. 
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Figure 34. Secondary structure model of 5’ UTR of HIV-1 (NL4-3 isolate) (Adapted from (395)). 
Nucleotides are coloured by their absolute SHAPE reactivities (see the scale).  

2. Binding of primer tRNA(Lys,3) to the HIV-1 genome 

2.1 Annealing of tRNA(Lys,3) to the PBS sequence 

The 18 nt of the 3’ end of the primer tRNA(Lys,3) is perfectly complementary to the 18-nt 

PBS in the 5’ region of  gRNA (Figure 34). Even there are three cellular tRNALys isoacceptor 

populations selectively incorporated into virions during assembly (198, 250, 303) along with 
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the tRNALys-binding protein, lysyl-tRNA synthetase (LysRS) (53), only tRNA(Lys,3) serves as 

the primer for reverse transcription in HIV-1 (250, 254). This reaction is termed “tRNA 

primer placement”. NC and RT are the main proteic factors involved in this process. Earlier 

studies found that tRNA placement onto the PBS occurs even in virions lacking HIV-1 PR 

activity, suggesting that the NC domain of Gag chaperones the annealing process in vivo 

(183). More recent studies showed that Gag-annealed tRNA is not as stable as NC-annealed 

tRNA (156, 331), suggesting that there is a two-step annealing process: initial tRNA 

annealing is promoted by the NC domain of Gag with final primer-template remodeling 

promoted by mature NC. Interestingly, Roldan et al. (330) found that NC annealing was more 

efficient when NC was combined with the C-terminal domain of CA. This suggests that other 

protein domains in the context of Gag or Gag-Pol may have an effect on gRNA-tRNA 

interactions. 

RNA remodeling by NC likely facilitates the reverse transcription process. For example, 

NC was found to destabilize hairpins and other secondary structures in the 5’ UTR to prevent 

pausing or stalling of RT in vitro (331). A strategy to rapidly measure RNA backbone 

flexibility using SHAPE provided a secondary structure model of the first 10% (976 nt) of 

gRNA of the NL4-3 isolate inside native virions (399). This strategy was also used to locate 

gRNA regions affected by NC’s chaperone activity. Surprisingly, the helix destabilizing 

activity of NC was not observed uniformly throughout the gRNA, but was detected in the first 

185 nt at six compact sites between the 5’ end of gRNA and the PBS sequence (399). This 

region includes the site of tRNA annealing as well as the initial sequence copied by RT 

during ssDNA synthesis. Therefore, this localized destabilization activity is consistent with 

NC’s role in facilitating both tRNA primer annealing and the reverse transcription process.  

The interactions between NC and gRNA during packaging of the RNA genome place 

the NC domain of Gag at a key position for its role in the formation of the initiation complex 

prior to reverse transcription. Whether annealing of tRNA(Lys,3) to the gRNA occurs before or 

after packaging is unclear, but it is known that annealing is facilitated by the NA chaperone 

activity of Gag (16, 81, 239, 368). The basic amino acids of NC bring the complementary 

tRNA and PBS sequences together, while the two NC zinc finger domains are responsible for 

destabilizing structured RNA regions (239). It is unknown when tRNA(Lys,3) is displaced from 

PBS, but displacement is necessary to allow copying of the PBS and 18 nt of 3’ end of the 

tRNA into DNA (Figure 33). Therefore, the displacement of the tRNA primer could occur 

either before or after the first strand transfer. 
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2.2 Additional interactions between tRNA(Lys,3) and 5’ UTR 

Additional interactions between 5’ UTR and tRNA(Lys,3) were identified in vitro (Figure 

35). The first interaction is between the anticodon loop of tRNA(Lys,3) and a conserved A-rich 

loop (nucleotides 168-171 in Figure 34) located upstream of the HIV-1 PBS (188, 190). This 

template-primer loop-loop interaction was observed with the natural tRNA(Lys,3), but not with 

a syntheic tRNA(Lys,3) lacking the natural modified nucleotides (190). The second interaction 

is between the T#C loop in tRNA(Lys,3) and a conserved 8-nt sequence downstream of the 

PBS (termed the “primer activation signal” or PAS, nucleotides 123-130 in Figure 34) (22, 

146, 295, 331). Mutational analysis of gRNA template in regions upstream of the PBS 

supported the possibility that NC promotes an interaction between tRNA(Lys,3) (in particular, 

the 3’ arm of the anticodon stem and a part of the variable loop) and the 142-148 sequence of 

the NL4-3 RNA (192).  

 
Figure 35. Interactions between 5’ UTR and tRNA(Lys,3) (Adapted from (345)). Secondary 
structure (A) and three-dimensional structure (B) of tRNA(Lys,3). The motifs complementary to the viral 
RNA are indicated as follows: the sequence complementary to the PBS in blue, to the PAS in red, to 
the A-rich loop in green and to the nucleotides 142-148 in purple. (C) Base-pairing interactions 
between viral RNA and tRNA(Lys,3). 
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3. Initiation of reverse transcription 

Nuclease mapping studies showed that the A-rich loop interaction was more important 

in the HIV-1 MAL isolate than in the HXB2 genome for efficient initiation of reverse 

transcription in vitro (147, 148, 189, 190). In addition, the interaction between the T#C loop 

of tRNA(Lys,3) and PAS promotes efficient initiation of ssDNA synthesis in vitro in the HXB2 

and LAI isolates (22, 146, 295, 331). 

The initiation process is sensitive to the helical conformation of the NA duplexes (364) 

that react with RT. For example, when an 18-nt DNA complementary to the PBS (D18) was 

used instead of tRNA(Lys,3), synthesis of ssDNA bypassed the initiation mode entirely and 

proceeded exclusively in the elongation mode (189, 225, 226). In the absence of NC, efficient 

ssDNA synthesis in vitro required the presence of at least 24 nt downstream of the PBS in 

template RNA, when the primer was tRNA(Lys,3) or an 18-nt RNA complementary to the PBS 

(R18), but not D18 (192). Interestingly, NC abrogated the requirement for the 24-nt element 

only in tRNA(Lys,3)-primed ssDNA synthesis but not in reactions primed by R18 (192). This 

suggested that NC might promote extended interactions between the tRNA primer and the 

gRNA template that are not possible with an 18-nt oligonucleotide primer. 

In the absence of NC, early works proposed that additional interactions would facilitate 

RT binding to the substrate by preventing steric clashes between RT and the NA duplex (188, 

191). However, gel-shift experiments showed that in the absence of dNTPs, NC did not affect 

RT binding to complexes constituted with either wild-type RNA or mutant templates having 

changes in the 143-149 sequence (192). In a similar assay in which there was also a +1 

extension of the tRNA primer, NC stimulated incorporation with the wild-type, but not with 

the mutant templates (239). Thus, it would appear that the NC stimulation was dependent on 

RT binding to the substrate and extension of the primer by at least 1 nt. 

4. Minus-strand strong-stop DNA synthesis 

Extension of the tRNA primer by RT leads to synthesis of strong-stop DNA (ssDNA), a 

short DNA consisting of sequences complementary to the R-U5 region of gRNA (Figure 33). 

The ssDNA was first discovered in the synthesis of Rous sarcoma virus (RSV) DNA in vitro 

by the virion endogenous DNA polymerase activity (67). A major product of this synthesis is 

a piece of DNA 101 nucleotides long but not full-length viral DNA, so named “strong-stop” 

DNA (ssDNA). There is evidence of limited DNA synthesis in HIV-1 virions prior to the 

entry of the virion into the target cell (245, 376, 419). Indeed, the ratio of ssDNA to genomic 

RNA is approximately 1:103 (419). In HIV-1 virions, the number of ssDNA molecules is 10-



"#$%&'()$*&#!

)'!!

100 times greater than the number of DNA molecules synthesized after the first strand 

transfer (376, 419). When purified HIV-1 virions are mixed with dNTPs, approximately one 

copy of ssDNA is synthesized for one genomic RNA molecule (419). 

During ssDNA synthesis, RT encounters RNA-DNA hybrid substrates and uses three 

distinct cleavage modes for degradation of the gRNA sequences (fragments represented by 

red broken lines in Figure 33): (1) 3’ end directed cleavage, in which the 3’-OH of the DNA 

primer is recessed over a long RNA template and cleavage is coupled to DNA synthesis 

(polymerase-dependent cleavage, Figure 32); (2) RNA 5’ end directed cleavage, in which the 

5’ end of an RNA is recessed over a long minus-strand DNA; and (3) internal cleavage. Both 

(2) and (3) represent polymerase-independent cleavage events (Figure 32) (337). Mechanistic 

studies of RNase H cleavage have revealed that the RNA-DNA substrate contacts both the 

polymerase and RNase H sites at the same time (25). There is evidence that during the course 

of polymerase-independent cleavages, NC helps to remove gRNA fragments resulting from 

primary cleavage events (194, 320). Thus, as RNase H cleavage proceeds during minus-strand 

ssDNA synthesis, the remaining hybrids become shorter and their thermodynamic stability is 

reduces. When this occurs, the helix destabilizing activity of NC displaces the RNA strand in 

the duplex and the RNA is released (240, 320). It has also been suggested that NC 

collaborates with RNase H by forming an NC-RT complex (50, 104, 237, 304), possibly 

through a zinc finger-dependent mechanism (104). 

5. First strand transfer 

Upon reaching the 5’ end of the genome, the nascent ssDNA is generated. In order to 

complete synthesis of the minus strand DNA, ssDNA transfers to the 3’ end of the same or 

the other co-packaged genome (19). This process is named as the first strand transfer and is 

highly efficient in vivo, since significant amounts of ssDNA did not accumulate in infected 

cells (383)! (Figure 33). More details on the first strand transfer will be given in the next 

chapter.   

6. Synthesis of full-length minus-strand DNA 

Following the first strand transfer, RT catalyzes elongation of ssDNA, which is 

accompanied by further degradation of gRNA by RNase H (Figure 33). Very low amounts of 

full-length minus-strand DNA is detected in ERT assays (394). Synthesis of minus-strand 

DNA can also be carried out in vitro in totally reconstituted reactions including only a primer, 

an RNA template, RT and NC. However, a full-length DNA copy of a 7 kb gRNA template 
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cannot be detected in these reconstituted reactions (7). In the presence of NC, minus-strand 

DNAs of approximately 4 kb can be synthsized in vitro, but the yield is low (7). Using an 

874-nt gRNA template in vitro, Drummond et al. (105) showed also that in the presence of 

high concentrations of NC, almost all the synthesized DNA products were full-length but with 

a low yield. The relative positions of the NC zinc finger domains were not important for this 

effect. Since the RNA template is highly structured (399), when RT encounters a secondary 

structure, it pauses at that site or in some cases, prematurely terminates polymerization. The 

duplex destabilization activity of NC alleviates pausing, thereby allowing RT to continue to 

traverse the template unimpeded (7, 227). Interestingly, it was shown that large aggregates are 

formed in the presence of NC, RT and nucleic acids (234, 237, 265, 356, 365). The 

aggregation activity of NC was more important than its duplex-destabilization activity for 

generation of long DNA products (7). 

7. Plus-strand DNA synthesis from PPTs 

Although almost the entire RNA genome is ultimately degraded by RNase H during the 

course of minus-strand DNA synthesis, there are two 15-nt regions containing only purine 

bases, which function as the primers for plus-strand DNA synthesis: (1) the 3’ PPT, which 

abuts the 5’ boundary of U3; and (2) the cPPT, which is found in the center of the IN coding 

region (Figure 33). The sequences of the two PPTs (5’-AAA AGA AAA GGG GGG-3’) are 

identical (111, 326, 337). These two PPTs promote the plus-strand DNA synthesis. The PPT 

duplexes are not like all other RNA-DNA hybrids, since they are resistant to RNase H 

cleavage. Several factors contribute to this unusual property. Especially the stretch of six Gs 

at the 3’ end is required for proper RNase H cleavage and primer extension by RT (111, 262, 

322, 326, 337). This unusual structure may play a role in the proper recognition of the PPT by 

HIV-1 RT. Studies utilizing different biochemical and biophysical techniques including X-ray 

crystallography, chemical probing alone or combined with mass spectrometry, and NMR 

revealed that the structure of the PPT is also crucial (111, 239, 326, 332). The 5’ end of the 

PPT-DNA duplex consists of conventional, albeit weakened, Watson-Crick base pairs and 

assumes an A-form-like helical conformation, although certain structural anomalies were 

detected (409). Results from the NMR study and earlier work (223) are consistent with an 

inherent flexibility in the HIV-1 PPT-DNA duplex and with limited long-range structural 

effects (223). It was suggested that upon binding to RT, structural perturbations throughout 

the PPT sequence provide access to residues present in different sub-domains of RT, thereby 

achieving optimal binding and precise cleavage at the PPT-U3 junction (111).  
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Figure 36. Generation and degradation of PPT (24). A) During minus-strand DNA synthesis, the 
PPT region of the RNA genome is resistant to RNase H cleavage, while a portion of the RNA genome 
is degraded concomitantly with minus-strand DNA synthesis. Here, a specific cleavage is made to 
create the PPT primer. B) The RNase H-resistant PPT sequence forms the primer for plus-strand DNA 
synthesis when the rest of the genome is completely degraded by RNase H. C) The RNA primer is 
extended by 12 nucleotides, D) then RT pauses and changes its orientation to a polymerase-
independent binding mode in order to cleave at the DNA-RNA junction, and remove the PPT primer. 
E) The 12-nt fragment is extended toward the 5’ end of the minus-strand DNA. After the second 
strand transfer event, the plus-strand DNA is fully synthesized resulting in a fully double-stranded 
provirus. 

The 3’ PPT is generated by a precise RNase H cleavage at the PPT-U3 junction (Figure 

36B). The 3’ end of the newly formed RNA primer is extended by RT to position +12 

downstream from the PPT RNA (Figure 36C). RT then pauses, re-orients itself and makes a 

specific cleavage at the PPT-U3 junction (Figure 36D). This cleavage is important as it 
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defines the end of the 3’ LTR, which is used as a substrate by the viral IN. PPT primers with 

aberrant cleavages or that improperly begin DNA synthesis is not used efficiently and reverse 

transcription does not proceed (204). In order for RT to successfully initiate plus-strand DNA 

synthesis, RT must bind as a polymerase to extend the primer and as an RNase H to cleave at 

the RNA-DNA junction. As the active sites of RT are simultaneously positioned on opposite 

strands of the NA, RT must recognize its position on the genome and dynamically change its 

binding orientation appropriately for the task at hand. Thus, the primer removal reaction 

requires polymerase-independent RNase H activity. Cleavage at the 5’ end to remove the PPT, 

once it is utilized as a primer, is less precise (337). 

As minus-strand DNA synthesis proceeds, the 3’ PPT primer is extended by RT, using a 

template consisting of minus-strand DNA still attached to the 5’ end of the tRNA(Lys,3) primer 

(Figure 33). The resulting DNA extension product is termed plus-strand strong-stop DNA 

((+)ssDNA). Elongation is expected to terminate when RT has copied the base preceding the 

methyl A at position 58 at the 3’ end of the tRNA primer, which reconstitutes the PBS 

sequence in (+)ssDNA. 

8. Second strand transfer 

The second strand transfer is required for synthesis of a full-length copy of minus-

strand viral DNA. The (+) ssDNA transfer to the 3’ end of the minus strand to complete viral 

replication. The second strand transfer is only between an intramolecular process (411). This 

process relies on the PBS region and RNase H cleavage. This event is mediated by base 

pairing of the 18-nt PBS region at the 3’ end of (+)ssDNA, termed (+) PBS and the 

complementary region, termed (-) pbs, at the 3’ end of minus strand DNA (Figure 33), 

resulting in the formation of a circular intermediate. NC stimulates overall the second strand 

transfer and its NA chaperone activity has been shown to be crucial for efficient removal of 

the tRNA primer and for facilitating the annealing reaction (158, 240). Removal of the primer 

involves primary and secondary RNase H cleavages. Primary cleavage does not occur at the 

tRNA-DNA junction, but rather between the 3’ end rA of the tRNA and the penultimate rC. 

This results in the attachment of an rA residue to the 5’ end of minus-strand DNA and 

formation of a 17 nt hybrid consisting of sequences from the 3’ end of the tRNA and the (+) 

PBS in plus ssDNA (239).  

Using in vitro reconstituted systems that model the steps in the second strand transfer, it 

was shown that the primary RNase H cleavage was not sufficient to completely remove the 

tRNA, presumably because the 17-nt hybrid is relatively stable (346, 404). Thus, second 
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RNase H cleavages are also required. Interestingly, the NA chaperone activity of NC could 

mediate tRNA removal by dissociation of the 17-nt hybrid, but not as efficiently as RNase H 

activity (404). Removal was actually most efficient when both RNase H and NC were present. 

Subsequent studies demonstrated that the native ZFs are required for NC function in primer 

removal, indicating that NC’s duplex destabilization activity is critical for this step (158, 159). 

NC plays also a role in the annealing responsible for the second strand transfer. One 

NMR study suggested that NC-induced conformational changes in the (-) pbs that facilitate 

annealing to the (+) PBS (201). Another NMR study performed with NC(12-55) or full-length 

NC with a (-) pbs construct lacking the 3’ overhang showed that binding is mediated by 

hydrophobic residues of the ZFs (40). Fluorescence studies demonstrated that NC only 

weakly destabilizes the PBS hairpins (108) and the NA aggregation also plays a role in the 

PBS annealing reaction, but its contribution is less than for the TAR hairpin annealing step 

(386, 387). Biochemical studies with longer NA constructs that model the donor and acceptor 

DNA substrates in the second strand transfer and contain the complementary PBS sequences 

showed that NC facilitates the annealing (404). 

9. dsDNA synthezised with LTR 

Due to the second strand transfer, the DNA replication intermediate is circularized 

(Figure 33). Priming from both PPTs involves discontinuous DNA synthesis, which 

generates the ~99 nt central DNA flap at the center of the unintegrated dsDNA product (55). 

The flap is part of a triple-stranded structure containing two overlapping plus-strand DNA 

segments and a complementary minus-strand (55). The downstream segment is initiated from 

the cPPT, whereas the upstream segment is initiated from the 3’ PPT. Flap removal and repair 

of the gap in dsDNA have not been demonstrated in vivo, although it is assumed that cellular 

enzymes are involved (326). More recently, two independent studies have presented evidence 

indicating that the cPPT protects HIV-1 from the activity of the human APOBEC3 restriction 

factors (179, 407). 

Formation of a circular intermediate during the second strand transfer allows RT to 

extend both the plus- and minus-strands of DNA (Figure 33). Following the circularization, 

RT displaces 636 nt to generate the LTR sequence (U3-R-U5) at the ends of both DNA 

strands. Completion of reverse transcription requires strand-displacement synthesis, which is 

strand synthesis through a region of dsDNA. RT by itself is capable of such synthesis, but 

again, the presence of NC greatly enhances this process (118, 161, 213, 302, 379). The failure 
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to complete strand-displacement synthesis would result in incomplete LTR ends. This, in turn, 

would create viral DNA that cannot integrate. 

10.   DNA strand transfers and recombination 

Retroviruses have evolved a complex replication process that expands the gRNA into a 

DNA transcription unit that includes sequences that control transcription and proviral DNA 

integration. Although complicated, strand transfer has become an essential part of reverse 

transcription because it is crucial to carrying out this expansion and creations of the long 

terminal repeat sequences for integration. Since retrovirus particles contain two identical 

copies of gRNA, strand transfer can occur in an intra- or intermolecular manner (181, 202, 

299, 382). In instance where the virus particles contain two non-identical RNA genomes, 

intermolecular strand transfer leads to recombination, which in turn generates viral diversity 

and provides a mechanism to resist antiviral host factors and the action of antiviral agents (6, 

128, 180, 284, 293). 

In addition to the requisite strand transfer events associated with replication at the ends 

of the genome, the RT has been shown to switch templates within internal regions during 

replication. Many of basic features of first and second strand transfer are also preserved 

during these internal transfer events. When the two co-packaged RNAs are genetically 

distinct, internal transfer can result in the production of a recombinant virus (Figure 37). The 

low fidelity of the RT creates mutations that can be dispersed by the efficient strand transfers. 

This creates a favourable environment for rapid viral evolution by means of recombination. 

10.1 Models of strand transfer 

Models of strand transfer during minus strand synthesis include “forced copy choice”, 

“copy choice” and “dynamic copy choice” (66, 286, 362) (Figure 38). The forced copy 

choice and copy choice models describe the fundamental configurations of the templates that 

promote transfer, whereas dynamic copy choice describes the enzymatic requirements of 

efficient transfer by forced copy or copy choice. In the “forced copy choice” model proposed 

by Coffin (66), breaks in the RNA genome induce strand transfer during minus strand 

synthesis. In the model, primer elongation initiates on one RNA genome and continues until a 

break in the template is reached. At this point, on the basis of template homology, the primer 

switches to the other co-packaged RNA genome and continues synthesis. The “copy choice” 

model of strand transfer expands the possibility of template switching during minus strand 

synthesis to include regions of the genome containing intact templates (286). As with the 
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forced copy choice model, template homology is a prerequisite for copy choice transfer. In 

studies of non-homologous recombination, the average recombination rate was approximately 

0.1-1.0% of that of homologous recombination (419). The evolution of the strand transfer 

model led to a new hypothesis, the “dynamic copy choice” model proposed by Pathak and co-

workers (186, 289, 362). This model is descriptive of some factors that influence copy choice 

strand transfer. The model proposes that the ratio between the polymerase activity and RNase 

H activity of RT dictates the efficiency of strand transfer (362). In this model, a slower 

polymerization rate allows more time for RNase H cleavage of the template, and promotes 

transfer. 

 
Figure 37.  Evolution of diversity in HIV-1 during the viral life cycle and creation of unique 
recombinant forms in the context of coinfection with two subtypes (367). 
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Figure 38. Models for strand transfer during minus strand synthesis (19). (A) Forced copy choice 
strand transfer. cDNA (patterned blue) extends along the donor RNA (solid blue) until it reaches a 
break in the donor RNA. To complete reverse transcription of the RNA template the cDNA must 
transfer to the acceptor RNA (solid red) and resume synthesis using the acceptor as the template 
(patterned red). (B) Copy choice strand transfer. cDNA (patterned blue) extends along the donor RNA 
(solid blue) until it transfers to the acceptor RNA (solid red). There is no donor RNA template 
configuration, such as a break in the template, which forces strand transfer. (C) Dynamic copy choice 
strand transfer. RT enzymatic activities (polymerase and RNase H) influence the efficiency of strand 
transfer. Compared to WT RT, slow polymerase activity results in more frequent RNase H cleavage 
and increased strand transfer. In contrast, slow RNase H activity results in reduced strand transfer. 

10.2 Mechanisms of strand transfers 

The mechanisms of strand transfers have been investigated in vitro using donor-

acceptor RNA template systems. Typically, synthesis is initiated from a primer annealed to 

the 3’ end of the donor template. As the primer is extended through a region of the donor 

RNA that is homologous to a corresponding 3’-terminal region of the acceptor template, the 

primer terminus switches to the acceptor and synthesis of DNA continues on the acceptor (19). 

10.2.1 Invasion-driven transfer in vitro 

Invasion-driven transfer is a mechanism in which the first interaction of the cDNA with 

the acceptor RNA occurs at a site upstream of the DNA primer terminus. The process is 

termed “docking” or “invasion” and the site is called the “invasion site” (Figure 39) (283). 

The site is a region cleared by RT RNase H activity so that acceptor can interact with 

the cDNA. An early model proposed by Negroni and Buc (283) indicated that as synthesis 

proceeds, the chaperone activity of NC facilitates annealing of the acceptor RNA to the 

cDNA via complementary sequences of NA. As synthesis progresses and the acceptor-cDNA 

interaction expands, the pre-existing hairpins in the acceptor are disrupted while new 

secondary structures are transiently formed. Ultimately, transfer is accomplished by 

displacement of the cDNA primer from the donor and completion of synthesis on the acceptor 
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RNA template (283). 

To determine the position of the invasion site, a series of DNA oligonucleotides were 

designed to interfere with strand transfer (58). These DNA oligomers were homologous to 

different regions of the acceptor RNA and therefore complementary to the cDNA in those 

regions. When both acceptor and these DNA oligomers were added into a reaction, the DNA 

oligomer would compete with the acceptor for binding to the cDNA at the invasion site, 

resulting in lower transfer efficiency due to inefficient invasion. Alternatively, the interaction 

of the acceptor RNA and the cDNA has been examined by measuring the susceptibility of the 

acceptor to RT RNase H cleavage in a time-dependent manner. The early cleavages define the 

point of invasion. This procedure has been termed “acceptor mapping”. To address how and 

where the primer terminus switches templates, base substitutions were introduced throughout 

the acceptor. The point of strand transfer could be determined then by sequencing the transfer 

product and identifying the mutations that were incorporated. Using these techniques, studies 

of several different template systems have revealed that invasion occurs well upstream of the 

point of terminus transfer, thereby supporting the invasion-driven transfer mechanism (136, 

329, 348). 

 

Figure 39. Invasion-driven transfer (19). When the RT extends the DNA primer (black), it 
periodically cleaves the donor template (blue). A series of closely spaced RNase H cuts creates a 
region of single stranded cDNA and allows the acceptor (red) to anneal to the cDNA. This step is 
termed ‘docking’ or ‘invasion’. The acceptor–cDNA hybrid propagates by branch migration, 
displacing the cleaved pieces of donor template. Eventually, the primer terminus is released from the 
donor and annealed or ‘locked’ onto the acceptor, allowing synthesis to the 5’ end of the acceptor. 
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10.2.2 Pause-dependent transfer 

Secondary structures in the RNA genome, such as hairpins and G-quartets can pause the 

RT during DNA synthesis promoting RNase H cleavages in the RNA template (329, 341).!In 

vitro experiments showed that RNase H activity is important for strand transfer, and stalling 

of RT on the donor template could facilitate more efficient transfer. In the pause-dependent 

transfer mechanism, there is a positive correlation between pausing of RT and strand transfer 

(95, 97, 163, 285). It was proposed that pausing allows the RT to make adjacent cuts on the 

donor, facilitating the interaction between cDNA and acceptor (95-97, 163, 285).  

10.2.3 Pause-independent transfer 

Efficient transfer can also be facilitated through a favourable interaction between the 

acceptor and the cDNA in the absence of strong pausing on the donor (14, 92, 93). Studies 

carried out by the DeStefano group showed that in the absence of NC, transfer efficiency was 

significantly greater with weakly structured sequences from the pol-vif region than with 

highly structured sequences from the gag-pol region (93). Another transfer mechanism has 

also been proposed based on experimental data using substrates harbouring the DIS that is 

responsible for linking the diploid genome in a dimeric state (232, 276, 344). Deletion of DIS 

from substrates tested in vitro resulted in about a 4-fold decrease in transfer efficiency (14, 

15). These data suggest that the dimerization of the donor and acceptor RNAs improves the 

efficiency of template switching by increasing the local concentration of the acceptor and thus 

facilitating its initial interaction with the cDNA. 
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Chapter 5. The first strand transfer 

The first strand transfer is mediated by base pairing of the complementary R and r 

sequences at the 3’ end of the gRNA and the ssDNA (Figure 33). This step is obligatory for 

reverse transcription and viral replication. Since HIV-1 viral particles contain two identical 

copies of the gRNA, the first strand transfer can occur in an intra- or intermolecular manner 

(181, 202, 299, 382). The vast majority of first strand transfers appear to occur after the 

completion of ssDNA (292). The first strand transfer reaction is inefficient in intact virions 

(176, 376, 414, 417). In contrast, most of the viral DNA detected in infected cells is full-

length or nearly so, suggesting that the first strand transfer occurs rapidly in vivo (176). Most 

of studies dealing with the first strand transfer rely on in vitro systems. 

1. Roles of RNase H and NC activities in the first strand transfer 

The early studies on the first strand transfer were performed in vitro with systems 

containing relatively unstructured viral donor and acceptor RNA templates (5’ and 3’ ends of 

the genome, respectively) and no NC (122, 249, 305). These works demonstrated that during 

ssDNA synthesis, the 5’ end of the template must be degraded by the RNase H activity of RT 

to allow subsequent strand transfer (122, 249, 305). This RNase H activity frees the ssDNA, 

enabling its annealing to the R sequence in the 3’ end of gRNA and continuation of minus-

strand synthesis. The excess RT molecules may be important in carrying out RNase H 

cleavage in order to clear the minus strand DNA to allow efficient strand transfer. Taking into 

account the RNase H activity, the team of Bambara proposed that first strand transfer is an 

invasion-driven transfer (Figure 39) (58, 59). 

The first strand transfer is greatly enhanced by NC. This enhancement is due at least in 

part to the ability of NC to increase the annealing of the 5’ r region of the ssDNA to the 3’ R 

region of the genome (158, 304). Since highly structured RNA and DNA molecules must be 

annealed, the reaction is dependent on the ability of NC to destabilize these secondary 

structures (158, 159). In fact, unfolding of these structures was thought to be a rate-limiting 

step in the annealing reactions with DNA and RNA molecules containing most of R (410). 

The destabilizing activity of NC makes it possible for NC to perform another function in the 

first strand transfer, i.e. inhibition of a competing, non-specific reaction. It was previously 

reported that a secondary structure in the RNA template can lead to RT pausing and a 

decrease in the efficiency of full-length DNA synthesis during elongation of minus-strand 

DNA (406).  
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Unexpectedly, Guo et al. (157) demonstrated in vitro that DNAs, much longer than 

ssDNA, were synthesized in the absence of acceptor RNA, which is later on definited as 

“self-priming” (SP) product. Since ssDNA contains the cTAR sequence (sequence 

complementary to TAR RNA) that can form a stem-loop, it could induce self-annealing at the 

3’ end of ssDNA, thereby allowing ssDNA to act as both primer and template for synthesis of 

plus-strand DNA in the absence of acceptor RNA. It is clear that if SP occurs in vivo, virus 

replication would be adversely affected. However, no SP DNAs were detected in endogenous 

reactions with detergent-treated HIV-1 virions, which demonstrates that HIV-1 has overcome 

this potential problem. NC was supposed to be the important protein for inhibiting SP induced 

by the cTAR structure (157). It was reported that SP in the absence of acceptor could be 

blocked by NC alone (230), possibly because under the conditions used, increasing amount of 

NC inhibited overall reverse transcription. Other groups found that NC had little effect on SP 

in the absence of the acceptor (102, 149, 168, 175). However, if acceptor RNA and NC were 

both present, SP was dramatically reduced (46, 102, 103, 149, 157-159, 168, 175, 230) and a 

concomitant increase in strand transfer resulted. 

2. NA structures involved in the first strand transfer 

In vitro studies showed that pre-incubation of NC with the acceptor RNA rather than the 

donor RNA, significantly enhanced the efficiency of minus strand transfer (283). This 

suggests that destabilization by NC of structures within the 3’ UTR is beneficial for the 

annealing reaction which is necessary for the first strand transfer. 

 

Figure 40. The 5’ and 3’ UTRs in HIV-1 genomic RNA (MAL isolate, GenBank: X04415.1). 

The HIV-1 NL4-3 isolate is widely used by several teams in the world. Our team and 

other teams in France use the HIV-1 MAL isolate which is a complex recombinant of HIV-1 

subtypes A, D, and I, and it contains a 23-nucleotide duplication, including parts of the PBS 

and the downstream regions (20). However, as shown by the aligment of the 5’ and 3’ UTR 

sequences of the two isolates (Figure 41), there are no large differences in the R sequences, 

motifs SL1 to SL3, segment 1 and ‘9nt’, while the PBS and PPT sequences are highly 

conserved. 
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Figure 41. Alignment of 5’ and 3’ UTRs of HIV-1 MAL and NL4-3 isolates. R regions and AUG 
codon are indicated in orange; PBS in red; PPT in blue; motifs SL1-3, segment 1 and ‘9nt’ in green; 
the 23-nt insertion in MAL isolate is indicated in violet.  
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2.1 RNA structures formed by the UTRs 

2.1.1 Folding of the R sequence 

The R sequence (96 nt in the MAL isolate) present at both ends of the genome (Figure 

40) is required for the first strand transfer. Deletion and mutational analysis of the R region 

shows that not all the R region is required for transfer in HIV-1. HIV-1 can still effectively 

complete replication with an R homology much shorter than 97 nt (32). Note that the sizes of 

the R elements in different retroviruses vary significantly from 15 nt in Mouse mammary 

tumor virus (MMTV) to 247 bases in HLTV-2 (79, 308, 347). Extensive in vitro studies 

strongly suggest that the structure adopted by the R region play an important role in the first 

strand transfer (30, 34, 222, 271).  

The 5’ R sequence folds into secondary structures corresponding to the TAR and the 

poly(A) hairpins (Figure 34). In an RNA corresponding to the 3’ UTR, 3’ R sequence folds 

in vitro into secondary structures (Figure 42) corresponding to the 3’ TAR stem-loop and the 

upper part of the poly(A) hairpin (205). The stem-loop structure of 3’ TAR is important for 

reverse transcription (164). Mutations in TAR that either alter the upper stem-loop orientation 

or the apical loop sequence greatly reduced the synthesis of minus-strand “strong-stop” DNA 

(ssDNA) (164, 165). The 3’ poly(A) sequence can form a hairpin (31, 205), but there is no 

data showing that this secondary structure is present in the entire HIV-1 RNA genome. In 

vitro studies suggest that the 3’ poly(A) hairpin structure is not of critical importance for the 

strand transfer (205, 271). 

 
Figure 42. Secondary structure model proposed for the 3’R region of the MAL isolate (Adapted 
from (205)). The palindrome sequence is boxed.!
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2.1.2 Circularization of the genome by the TAR-TAR interaction 

A palindromic sequence of 10 nucleotides in the apical stem-loop of the TAR hairpin 

could be involved in genome dimerization, in addition to the primary site of dimerization that 

is named DIS (5). Since the TAR is present at both ends of the viral RNA, the palindromic 

sequences could interact and circularize the HIV-1 genome (Figure 43). Stem-loops and 

loop-loop kissing structures formed by sequences at both ends of the RNA genome were 

demonstrated to participate in genome circularization in many plant viruses (264).  

 
Figure 43. Model of the structural rearrangements in the TAR hairpins of HIV-1 (MAL isolate). 
TAR-TAR dimerization induced by NC gives rise to a kissing-loop complex and an extended duplex.  

2.1.3 Circularization of the genome by the U3-tRNA
(Lys,3)

 interaction 

Sequence U3 (457 nt in the MAL isolate) is unique and located at the 3’ end of the 

genomic RNA. Early studies have identified a conserved nonanucleotide sequence in the U3 

region that is complementary to the anticodon stem of tRNA(Lys,3) (46). The primer tRNA was 
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proposed to serve as a bridging factor holding RNA genome ends together. The primer 

tRNA(Lys,3) may interact with the 3’ end of the viral gRNA by a base pairing interaction 

involving nine nucleotides of U3 and nine nucleotides of the anticodon stem of tRNA(Lys,3) 

(46). Recent studies revealed the striking result that the 9 nt sequence is a part of a much 

larger sequence with strong homology to the entire tRNA(Lys,3) (Figure 44) (310). This 

sequence stretches over regions surrounding the U3 and R border. Segment 1 is located just 

upstream of motif 9nt and resembles the PBS, which interacts with the 3’end of tRNA(Lys,3) 

(Figure 44a). 

 
Figure 44. Sequences in HIV-1 U3R complementary to tRNA(Lys,3) (MAL isolate, adapted from 
(310)). (a) The 9nt segment in U3 proposed to interact with tRNA(Lys,3) is a part of a longer sequence 
with additional complementarities to tRNA(Lys,3) and could derive from an ancient tRNA gene 
incorporated at an early stage of HIV-1 evolution. The U3 and R sequences are indicated. The black 
underlines indicate probable regions of interaction with tRNA(Lys,3). (b) An example of a tRNA with an 
intron present in its gene. The sequence shown is that of tRNALys (gene scaffold_208396) of the 
domestic cat (Felis catus). 

2.1.4 Circularization of the genome by the gag-U3,poly(A) interaction 

Detailed structure probing of RNA heterodimers indicated that sequences in the poly(A) 

and U3 region base pair with gag sequences in vitro (294). This gag-U3,poly(A) interaction 

can be proposed for all HIV-1 subtypes (294), suggesting that this base-pairing interaction 

involving the 5’ and 3’ ends of the genome has been conserved during HIV-1 evolution. This 

interaction involves nucleotides of the gag ORF and 16 nt of U3 and 28 nt of the poly(A) 

hairpin of 3’ R in the NL4-3 isolate (23, 294). This interaction has been proposed to 

circularize the HIV-1 genome in vivo (Figure 45) (23). !

2.2 Structure of the strong-stop DNA 

The r region of ssDNA (Figure 33) is totally complementary to the R region of gRNA 

and contains the sequences complementary to TAR and poly(A), which are named cTAR and 

cpoly(A). Since TAR and poly(A) fold into stem-loop structures, it was thought that the 
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complementary sequences could also fold into stem-loop structures. Using NMR and probing 

methods, Zargarian et al. (413) investigated the structural and dynamical properties of the top 

half of the cTAR DNA (mini-cTAR). It was shown that the upper stem located between the 

apical and the internal loops is stable, but that the lower stem of mini-cTAR is unstable. The 

results are consistent with the functions of cTAR DNA in the first strand transfer and help to 

define the structure of cTAR DNA. The longest ssDNA fragment studied was of 128-nt 

length (157, 168) and was investigated for self-priming (SP) which can occur during the first 

strand transfer (157, 168). When I started my thesis, the structures adopted by the cTAR and 

cpoly(A) sequences in the full-length ssDNA, i.e. in the natural sequence context, were not 

characterized. 

 
Figure 45. Proposed RNA structure of the gag–U3poly(A) interaction in the MAL isolate. The 
motif ‘9nt’ and ‘segment 1’ are indicated by boxes. 

3. Mechanisms involved in the first strand transfer 

3.1 Circularization of the HIV-1 genome would facilitate the first strand 

transfer  

Circularization of the HIV-1 genome in a way that juxtaposes the R elements should 

facilitate the first strand transfer. As mentioned previously, several RNA-RNA interactions 

(Figure 46) were described in vitro that may mediate circularization of the HIV-1 genome. 

The first strand transfer in vitro was not significantly affected (23) by mutations that 

prevented TAR RNA dimerization. Early studies showed that the ‘9nt’ sequence (5’-
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CCCUCAGAU, in Figure 44) promotes the first strand transfer in vitro (46). Recent studies 

showed that the 9 nt segment “motif 9nt” and a nearby sequence ‘segment 1’ (5’-

CUUGGGCGGGAC, in Figure 44), both increased transfer in vitro, and most efficiently 

when present together (310). The team of Bambara also reported that mutations in the U3 

region within ‘motif 9nt’ and ‘segment 1’ decreased from 9% to 26% the efficiency of ssDNA 

in infected cells (311). They showed that mutations in ‘segment 1’ had the greatest effect on 

the strand transfer, whereas the alteration of ‘motif 9nt’ or both sequences caused a smaller 

reduction than the ‘segment 1’ alone (311). The interaction with ‘segment 1’ could facilitate 

the displacement of tRNA(Lys,3) and promote the second strand transfer. Using RNA 

heterodimers and mutational analysis, it has been shown that the gag-U3, poly(A) interaction 

stimulates the first strand transfer in vitro (23). Circularization of the HIV-1 genome would be 

exclusive for unspliced gRNA because all spliced subgenomic mRNAs lack the gag 

interaction domain. To date, circularization of the HIV-1 RNA genome in the viral particle or 

in the infected cells remains to be demonstrated. 

 
Figure 46. Proposed interactions of 5’ end and 3’ end of the HIV-1 RNA genome (Adapted from 
(309)). The model shows the interactions between the gag and 3’U3poly(A) sequences, and between 
tRNA(Lys,3)

  (red), bound to the PBS region (black thick line), and motif 9 nt (light blue) in U3. 
Sequences of loops of the hairpins TAR (green) and poly(A) (orange) are indicated. Sequences of 
segment 1 (dark blue) and the synthesized minus strand DNA (gray) are also shown. The rest of the 
HIV-1 genome is designated by a dotted line.  

3.2 Roles of the poly(A) and cpoly(A) hairpins 

In the 5’ UTR, the R sequence forms the TAR and poly(A) haipins (395). Note that the 

lower stem of the poly(A) hairpin is extended by base-pairing with a complementary portion 

of the U5 region. In the 3’ UTR, the TAR hairpin is formed, whereas the poly(A) hairpin is 

predicted but not demonstrated (395). A model has been proposed whereby the first strand 

transfer is facilitated by two loop-loop interactions involving the TAR and poly(A) hairpins of 

the acceptor RNA and the complementary cTAR and cpoly(A) hairpins of ssDNA (34). 
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However, an in vitro mutational analysis based on the insertion of the R sequence into 

different RNA contexts suggested that the poly(A) hairpin is not important for strand transfer 

(271). Consistent with this finding, R-mediated strand transfer remained efficient from an 

artificial internal template position, in which the TAR hairpin was formed but not the poly(A) 

hairpin (205). However, using progressively elongated DNA acceptors in an in vitro 

competitive approach, the bottom of TAR, i.e. the poly(A) sequence, was identified as the 

invasion site for the annealing reaction (349). Indeed, the DNA acceptors containing the 

poly(A) sequence greatly inhibit the transfer of ssDNA to the RNA acceptor when compared 

to other DNA acceptors containing only the TAR sequence.  This annealing mechanism relies 

on the hypothesis that the strand transfer process occurs through a two-step mechanism: 

docking of the acceptor RNA onto the nascent DNA and displacement of the donor RNA by 

the acceptor RNA (283, 329). 

3.3 Roles of the TAR and cTAR hairpins 

An ex vivo study based on mutational analysis of HIV-1 gRNA showed that the great 

majority of first strand transfers occur after the completion of ssDNA synthesis (292), i.e. the 

entire cTAR sequence would be required for efficient strand transfer. Our group found that 

the upper part of the TAR hairpin structure (nucleotides 17-44 in Figure 43) was conserved 

within three different acceptor RNAs containing the R sequence that were able to promote 

strand transfer in vitro (205). The in vitro strand stransfer efficiency did not decrease when 

both donor and acceptor RNAs contained the upper part of the TAR hairpin but not the lower 

part of the TAR hairpin (34). In contrast, the in vitro strand transfer efficiency was strongly 

reduced when the 3’ RNA could not form the upper part of the TAR hairpin because R was 

limited to the 5’ first 29 nucleotides (83). These results are consistent with the notion that the 

upper part of the TAR stem-loop in the acceptor RNA is important for the strand transfer.  

Since mutations in the TAR apical loop strongly decreased the strand transfer in vitro, 

Berkhout et al. (34) suggested that the first strand transfer involves a  ‘kissing’ complex 

formed by the apical loops of TAR and cTAR hairpins (Figure 47). This loop-loop 

interaction may be a docking step when strand transfer occurs in R in the absence of NC (271). 

This hypothesis was consistent with the findings of our group showing that mutations 

preventing the putative loop-loop interaction almost completely abolished the annealing of the 

cTAR hairpin to 3’ UTR in the absence of NC (205). Furthermore, in the presence of NC the 

annealing rate of loop mutant was 2.8-fold reduced compared to the wild-type  (205).  
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Most of in vitro studies on the annealing mechanism were performed with the short 

TAR and cTAR sequences. The TAR RNA sequence forms a stable hairpin that is barely 

destabilized by NC (one base pair per molecule) (36). Our group showed that the NC zinc 

fingers interact with the guanine residues of the TAR apical loop, while the basic residues 

interact with the adjacent stem. FRET-based assays performed with the cTAR sequence 

support a dynamic structure of the cTAR hairpin, involving equilibrium between both the 

closed conformation and the partially open ‘Y’ conformation (12, 36, 175, 243). In the! ‘Y’ 

conformation, the lower stems are open and the upper stems are closed. FRET studies suggest 

that NC largely enhances the fraying of the cTAR hairpin ends, shifting the distribution of 

hairpin conformations toward the more open structures (26, 36, 175). Studies using TAR 

RNA and cTAR DNA hairpins derived from the HIV-1 NL4-3 isolate, suggest that both the 

apical loops and the 3’/5’ termini of complementary hairpins are the initiation sites for the 

annealing reaction (242, 386). Indeed, Vo et al. (386) reported that cTAR DNA-TAR RNA 

annealing in the absence of NC depends on nucleation through the apical loops, whereas 

cTAR DNA-TAR RNA annealing in the presence of saturated NC depends on nucleation 

through the 3’/5’ termini, resulting in the formation of a ‘zipper’ intermediate (Figure 47).  

 
 

Figure 47. Two pathways of full-length TAR RNA-cTAR DNA annealing (Adapted from (386)). 
Left: loop-loop ‘kissing’ pathway, which involves initial formation of an extended kissing complex 
followed by subsequent strand exchange to form the fully annealed duplex. Right: ‘zipper’ pathway 
involving nucleation through the 3’-5’ termini resulting in formation of a zipper intermediate followed 
by conversion to the fully annealed duplex. 
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Moreover, cTAR DNA and TAR RNA anneal via both ‘kissing’ and ‘zipper’ pathways 

under subsaturating concentrations of NC (386). The annealing process has also been 

investigated using sequences derived from the HIV-1 MAL isolate (143, 205). Thus, Godet et 

al. (143) reported that under low-salt concentrations, the TAR hairpins anneal almost 

exclusively via the ‘zipper’ pathway in the presence of NC(12-55), a truncated form of NC 

which lacks the N-terminal domain and is therefore a poor aggregating agent. Note that the 

two annealing pathways have not been demonstrated for the annealing reaction between the 

full-length ssDNA and the 3’ end of the gRNA. 
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Characterization of mechanisms involved in the first strand transfer contributes to gain 

insights into the reverse transcription process and the associated genetic recombination. 

Indeed, the strand transfer process is responsible for the recombination events that produce 

resistance to antiretroviral drugs that constitute a major problem in the anti-HIV-1 therapies. 

In the laboratory, we investigate the NC-mediated annealing process that is in a large part 

responsible for the first strand transfer in HIV-1. The main purpose of the laboratory is to 

understand how NC interacts with ssDNA and the 3’ end of gRNA (3’ UTR) and mediates 

annealing of these molecules that are folded. 

As mentioned in the introduction, the cTAR sequence, a part of ssDNA, plays an 

important role in the annealing process. The first aim of my PhD project was to determine the 

cTAR secondary structure and the NC binding sites within cTAR. 

Although the full-length ssDNA is the natural actor in the NC-mediated annealing 

process, its annealing to 3’ UTR has not been studied. Thus, the annealing pathways are 

unknown for the full-length ssDNA. The second aim of my project was to study the annealing 

of the full-lengh ssDNA to the 3’ UTR under conditions mimicking the natural conditions of 

the first strand transfer in order to identify the annealing pathway(s). 

The ssDNA is probably folded when it interacts with NC and the 3’ UTR. It is likely 

that ssDNA’s folding has an effect on the efficiency of the NC-mediated annealing process. 

To date, the ssDNA structure and the NC binding sites within this structure have not been 

determined. In addition, we do not know if double-stranded regions of ssDNA are 

preferentially destabilized by NC. So the third aim of my PhD project was to determine the 

secondary structure of the full-lengh ssDNA in the absence or in the presence of NC using 

chemical and enzymatic probes. This study should allow to charaterize within ssDNA the 

double-stranded regions destabilized by NC and the regions protected by NC. 

My study should provide new data on the molecular mechanisms that are responsible 

for annealing of ssDNA to the 3’ end of the genomic RNA. 
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1. NC preparation 

Full-length NC (55 amino acids) was synthesized by the Fmoc/opfp chemical method 

and purified to homogeneity by HPLC (87). NC was dissolved at a concentration of 2 mg/ml 

in a buffer containing 25 mM HEPES (pH 6.5), 50 mM NaCl and 2.2 mol of ZnCl2 per mole 

of peptide.  

2. Oligonucleotides 

DNA oligonucleotides were purchased from Eurogentec. In the following 

oligonucleotide sequences, the upper-case letters indicate the bases that are complementary to 

the DNA sequence of the HIV-1 MAL isolate and the positions of the HIV-1 sequence 

targeted by the oligonucleotides are in parentheses. 

2.1 Oligonucleotides for construction of plasmids 

O1 5’-gcagaattctggagataatacgactcactataGGTCTCTCTTGTTAGAC-3’ (1-17) 
O1DIS 5’-CCAGCGCTGAGGaaaACACAGCAAGAGGCG-3’ (263-292) 
O2 5’-gcagcggtcgacGGTATCACTTCTGGGC-3’ (876-861) 
O3 5’-gcaatacGGTCTCTCTTGTTAGACCAGGTCGAGCaatttgGCTCTCTGGC 

TAGC-3’ (1-47) 
O4 5’-gcaatacGGTCTCTTGTTAGACCAGGTCGAGCCCttGAGCTCTCTGGC 

TAG-3’ (1-46) 
O5 5’-ccgccgtgactaccgcgagacccac-3’ 
O6 5’-gctcgaaCCCGGGCTCGACCTGGTCTAACAAGttcttCCtatagtgagtcgtattc-3’ 

(27-7) 
O7 5’-catccaCCCGGGAGCTCTCTGGCTAGCAAGtctctggCACTGCTTAAGCC 

TC-3’ (32-70) 
O8 5’-gaagaattctggagtaatacgactcactataGGAGGCGTAACTTGGG-3’ (9055-9070) 
O9 5’-atcgataccgtcgacc-3’ 
O10 5’-gcagaattctggagtaatacgactcactataGGAGCTTTTGATCTCAG-3’ (8635-9229) 
O11 5’-gcagaattctggagtaatacgactcactataGGCGCCCGAACAGG-3’ (180-193) 
O12 5’-gcagccttctggagtaatacgactcactataGGGACTCGAAAGCGG-3’ (215-229) 
!

2.2 Oligonucleotides for labeling and synthesis of cTAR, ssDNAs and DNA 

size markers 

cTAR 5’-GGTTCCTTGCTAGCCAGAGAGCTCCCGGGCTCGACCTGGTCTAA 
CAAGAGAGACC-3’ (55-1) 

cPBS 5’-GTCCCUGTTCGGGCGCCA-3’ (196-179)  
P158 5’-CTGCTAGAGATTTTTACACCG-3’ (158-178) 
CompSS 5’-ctGGTCTCTCTTGTTAGACCAG-3’ (1-20) 
PU3b1M 5’-TCCGGATGTTGTTCTC-3’ (8990-8975) 
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3. Construction of plasmids 

Standard procedures were used for restriction enzyme digestion and plasmid 

construction (312). Restriction endonucleases and T4 DNA ligase were purchased from New 

England Biolabs. The expand high fidelity PCR system was from Roche Applied Science. 

Cloned sequences and mutations were verified by DNA sequencing (Eurofins MWG Operon).  

Plasmids pHIVCG-4 and pHIVCG8.6 contain DNA fragments of the HIV-1 genome 

derived from the MAL isolate (80, 229). Plasmid pYC5’ was generated by PCR amplification 

of linearized pHIVCG-4 with EcoRI using oligonucleotides O1 and O2. The resulting PCR 

product was digested with EcoRI and SalI and ligated into pHIVCG-4 digested with the same 

enzymes. Plasmid pYC5’DIS was generated by PCR amplification of linearized pYC5’ with 

EcoRI using oligonucleotides O1DIS and O2. The resulting PCR product was digested with 

Bpu10 I and SalI and ligated into pYC5’ digested with the same enzymes. Plasmids pBCSL1 

and pBCSL2 were generated by PCR amplification of linearized pYC5’ with EcoRI using 

oligonucleotide O5 with oligonucleotides O3 and O4, respectively. The! resulting PCR 

products were digested with BsaI and ligated into pYC5’ digested with the same enzyme. 

Plasmid pCCinv was generated by PCR amplification of linearized pYC5’ with AvaI using 

oligonucleotides O6 and O7. The resulting PCR product was then digested with AvaI and 

ligated intramolecularly. Plasmid pFC3’-2 was generated by PCR amplification of linearized 

pHIVCG8.6 with EcoRI using oligonucleotides O8 and O9. The resulting PCR product was 

digested with EcoRI and XhoI and ligated into pCG44 (119) digested with the same enzymes. 

Plasmid pFC3’UTR was generated by PCR amplification of linearized pHIVCG8.6 with 

EcoRI using oligonucleotides O9 and O10. The resulting PCR product was digested with 

EcoRI and XhoI and ligated into pCG44 digested with the same enzymes. Plasmids 

pBC180wt and pBC215wt were generated by PCR amplification of linearized pYC5’ with 

EcoRI using oligonucleotide O2 with oligonucleotides O11 and O12, respectively. The!

resulting PCR products were digested with EcoRI and SalI and ligated into pYC5’ digested 

with the same enzyme. Plasmids pBC180DIS and pBC215DIS were generated by PCR 

amplification of linearized pYC5’DIS with EcoRI using oligonucleotide O2 with 

oligonucleotides O11 and O12, respectively. The!resulting PCR products were digested with 

EcoRI and SalI and ligated into pYC5’ digested with the same enzyme. 

4. In vitro RNA synthesis and purification  

Plasmids pYC5’, pYC5’DIS, pBCSL1, pBCSL2 and pCCinv were digested with HaeIII 

to generate templates for in vitro synthesis of RNAs 1-415wt, 1-415DIS, 1-415SL1, 1-
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415SL2 and 1-415inv, respectively. Plasmids pBC180wt, pBC180DIS, pBC215wt and 

pBC215DIS were digested with AvrII to generate templates for in vitro synthesis of RNAs 

180-816wt, 180-816DIS, 215-816wt and 215-816DIS, respectively. These RNA transcripts 

start and end with authentic HIV sequences, i.e. they do not contain additional sequences 

resulting from DNA plasmid construction. Plasmid pFC3’-2 was digested with XhoI to 

generate the template for in vitro synthesis of RNA 3’-2 (200 nucleotides) that contains at the 

3’-end a poly(A) tail (22 adenine residues) and five nucleotides corresponding to the XhoI 

site. Plasmid pFC3’UTR was digested with XhoI to generate the template for in vitro 

synthesis of RNA 3’UTR (615 nucleotides). Five µg of the cleaved plasmids was transcribed 

with bacteriophage T7 RNA polymerase under the conditions stipulated by the RiboMAX™ 

large-scale RNA production system (Promega). Plasmid pHIVCG 8.6 was digested with XhoI 

to generate the template for in vitro synthesis of RNA 3’HIV-1 (662 nucleotides). Five µg of 

the cleaved plasmid was transcribed with T3 RNA polymerase under the conditions stipulated 

by the MEGAscript® T3 high yield transcription kit (Ambion). RNAs were purified as 

described (312). RNAs were loaded onto a denaturing polyacrylamide gel in 89 mM Tris-

borate, 2 mM EDTA, electrophoresed, visualized by UV shadowing. The gel bands 

containing RNAs were excised from the gel, and RNAs were extracted from the gel bands by 

passive elution that relies on (diffusion processes). Then, RNAs were precipitated by ethanol   

and the RNA precipitates were dissolved in distilled water and dialyzed (Millipore filters type 

V6, 0.025 mm) for 40 min against distilled water. The purity and integrity of the RNA 

transcripts were checked on denaturing polyacrylamide gels and the concentration was 

determined by UV spectroscopic measurement at 260 nm. 

5. 5’ end labeling of RNA 3’-2 

Purified RNA 3’-2 was treated with alkaline phosphatase from calf intestine (Roche 

Molecular Biochemicals) and 5’ end labeled using phage T4 polynucleotide kinase (New 

England Biolabs) and [&-32P] ATP (Perkin Elmer). The 5’ end-labeled RNA 3’-2 was then 

purified by electrophoresis on a denaturing 8% polyacrylamide gel.  The gel band containing 

RNA 3’-2 was excised from the gel, and RNA 3’-2 was extracted from the gel band by 

passive elution that relies on diffusion processes. Then, the purified 5’ end-labeled RNA 3’-2 

was precipitated by ethanol and the RNA precipitate was dissolved in distilled water and 

conserved at -20°C.  
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6. Assays of labeling DNAs at their 3’ end 

One pmol of cPBS and 1.5 pmol of RNA 1-415 in 7.5 $l of water were heated at 90 °C 

for 2 min and frozen for 5 min on dry ice-ethanol bath. Then, 6.9 $l of reaction buffer (final 

concentrations: 78 mM KCl, 1 mM DTT and 52 mM Tris-HCl, pH 7.8) containing 0.5 units 

of HIV-1 reverse transcriptase (Worthington) was added and the sample was pre-incubated at 

37 °C for 10 min before the primer extension reaction was initiated by 0.3 $l of MgCl2 and 

0.3 $l of dNTPs. Final reaction contained 50 mM Tris-HCl (pH 7.8), 75 mM KCl, 2 mM 

MgCl2, 1 mM DTT and 300 $M dNTPs. Reaction was incubated at 37°C for 1h and 

terminated by addition of 10 $l of 0.3 M NaOH-0.05 M EDTA and heating at 90°C for 15 

min in order to destroy the RNA template. Then the sample was extracted by phenol-

chloroform followed by ethanol precipitation and the dried pellet was resuspended in 10 $l of 

Tris-HCl (10 mM, pH 7.8). The sample underwent another ethanol-precipitation and the dried 

pellet was dissolved in distilled water. Since we estimated that the recovery rate of full-length 

ssDNAs was approxomately 50%, the pellet contained about 0.5 pmol of full-lenth ssDNA; 

0.75 pmol CompSS (ssDNA:CompSS, v:v = 1:1.5) was then added and the mixture was heat-

denatured like mentioned above.  

For the assays using Klenow fragment of DNA polymerase I (New England Biolabs), 1 

$l of Klenow buffer (final concentration: 50 mM NaCl, 10 mM MgCl2 and 10 mM Tris-HCl, 

1 mM DTT, pH7.9) was added. The annealed ssDNA was then incubated at 25 or 37 °C for 

15 min with 0.8 $M ["-32P] dATP (Perkin Elmer) and 0.05 unit of Klenow fragment. For the 

assays using Taq DNA polymerase (New England Biolabs), 1 $l of Taq buffer (final 

concentration: 50 mM KCl, 0.5 or 1.5 mM MgCl2 and 10 mM Tris-HCl, pH8.3) was added. 

The annealed ssDNA was then incubated at 75°C for 15 min with 0.8 $M ["-32P] dATP 

(Perkin Elmer) and 0.5 unit of Taq DNA polymerase. For the assays using AMV RT 

(Invitrogen), 1 $l of RT buffer (final concentrations: 30 mM KCl, 8 mM MgCl2, 1 mM DTT 

and 50 mM Tris-HCl, pH8.5) was added. The annealed ssDNA was then incubated at 42°C 

for 15 min with 0.8 $M ["-32P] dATP and 2 units of AMV RT. All the reactions were stopped 

by adding 10 $l EDTA (75 mM) and followed by phenol-chloroform extraction and two 

ethanol precipitations. The dried pellet resuspended in 7 $l of loading buffer A (7 M urea, 

0.03 % w/v bromophenol blue and 0.03 % w/v xylene cyanol). G and T+C sequence markers 

of the labeled ssDNAs were produced by the Maxam-Gilbert method (257). ! 
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7. Labeling and purification of cTAR 

Full-length cTAR was first purified by electrophoresis as described (312). The cTAR 

DNA was loaded onto a 10% denaturing polyacrylamide gel, electrophoresed and visualized 

by UV shadowing. The gel band containing cTAR was excised from the gel, and cTAR was 

extracted from the gel band by passive elution that relies on diffusion processes. Then, the 

purified cTAR was precipitated by ethanol and the DNA precipitate was dissolved in distilled 

water. The purity and integrity of the cTAR DNA was checked on a denaturing 11% 

polyacrylamide gel and the concentration was determined by UV spectroscopic measurement 

at 260 nm. The purified cTAR DNA was then 5’ end labeled using phage T4 polynucleotide 

kinase (New England Biolabs) and [&-32P] ATP (Perkin Elmer). The reaction was carried out 

in a final volume of 10 $l. 50 pmol of cTAR was dissolved in 3 $l of distilled water. Then 1 

$l of labeling buffer was added (final concentrations: 70 mM Tris-HCl, 10 mM MgCl2 and 5 

mM dithiothreitol (DTT), pH 7.6). T4 polynucleotide kinase (10 U) and [&-32P] ATP (50 $Ci, 

16.67 pmol) were also added into the mixture. This mixture was incubated 45 min for 37°C. 

10 $l of loading buffer A was added to the mixture. The 5’ end labeled cTAR was then heat-

denatured and ready for purification. Full-length cTAR was also labeled at its 3’ end as 

follows. Twenty-five pmol of the cTAR DNA and 37.5 pmol of the oligonucleotide CompSS 

were mixed in a 1:1.5 ratio and incubated at 75°C for 10 min in the Taq polymerase buffer 

(final concentrations: 10 mM Tris-HCl (pH 8.3), 50 mM KCl, 0.5 mM MgCl2 and 0.4 $M ["-
32P] dATP (Perkin Elmer)). Then, five units of Taq DNA polymerase (New England Biolabs) 

were added to the mixture. The reaction was carried out in a final volume of 50 $l and 

incubated at 75°C for another 15 min. The labeling reaction was then stopped by adding 10 $l 

EDTA (75 mM) and followed by two phenol-chloroform extractions and two ethanol 

precipitations. The dried pellet resuspended in 40 $l of loading buffer A and heat denatured 

was ready for purification. The 5’ and 3’ end-labeled cTAR DNAs were loaded onto a 10 % 

denaturing polyacrylamide gel. At the end of electrophoresis, the gel band containing cTAR 

was excised from the gel and cTAR was extracted from the gel band by passive elution that 

relies on diffusion processes; Then, the purified labeled cTAR was precipitated by ethanol 

and the DNA precipitate was dissolved in distilled water and conserved at -20°C. 
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8. Synthesis, labeling and purification of ssDNAs and DNA size markers  

First, the DNA oligonucleotides cPBS, P158 and PU3b1M were 5’-end labeled using 

T4 polynucleotide kinase (New England Biolabs) and [&-32P] ATP (Perkin Elmer), and 

purified as described above for cTAR. Second, these labeled oligonucleotides were used as 

primers for synthesis of 5’ end-labeled ssDNAs and DNA size markers (M1 and M2). More 

precisely, 90 pmol of 5’-end-labeled primer (3 % 105 cpm/pmol) and 60 pmol of RNAs 1-415, 

3’UTR or 3’HIV-1 in 150 $l of water were heated at 90 °C for 3 min and frozen for 5 min on 

dry ice-ethanol bath. Then, 138 $l of reaction buffer (final concentrations: 78 mM KCl, 1 mM 

DTT and 52 mM Tris-HCl, pH 7.8) containing 30 units of HIV-1 reverse transcriptase 

(Worthington) was added and the sample was pre-incubated at 37 °C for 10 min before the 

primer extension reaction was initiated by 6 $l of MgCl2 and 6 $l of dNTPs. Final reaction 

contained 50 mM Tris-HCl (pH 7.8), 75 mM KCl, 2 mM MgCl2, 1 mM DTT and 300 $M 

dNTPs. Reaction was incubated at 37°C for 1 h and terminated by addition of 200 $l of 0.3 M 

NaOH-0.05 M EDTA and heating at 90 °C for 15 min in order to destroy the RNA template. 

Then, the sample was extracted by phenol-chloroform followed by ethanol precipitation and 

the dried pellet was resuspended in 40 $l of loading buffer A.  

The ssDNAs were labeled at their 3’-end by adding one labeled adenine residue as 

follows. The primer extension reaction with HIV-1 RT was the same as described above 

except that oligonucleotide cPBS or P158 was not labeled and the dried pellet containing 30 

pmol of ssDNA was resuspended in 50 $l of Taq polymerase buffer containing 30 units of 

Taq DNA polymerase (New England Biolabs), 0.8 $M ["-32P] dATP (Perkin Elmer) and 45 

pmol of oligonucleotide CompSS. Following incubation at 75 °C for 15 min, the reaction was 

terminated by addition of 10 $l of 75 mM EDTA. The 3’-end-labeled ssDNA was extracted 

by phenol-chloroform followed by ethanol precipitation and the dried pellet was resuspended 

in 40 $l of loading buffer A.  

The 5' and 3’ end-labeled DNAs were loaded onto a 6% denaturing polyacrylamide gel. 

At the end of electrophoresis, the gel band containing ssDNA or a DNA size marker was 

excised from the gel and ssDNA was extracted from the gel band by passive elution that relies 

on diffusion processes. Then, the purified labeled DNAs were precipitated by ethanol and the 

DNA precipitates were dissolved in distilled water and conserved at -20°C. 
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9. Gel-shift annealing assay 

The annealing assay was carried out in a final volume of 10 $l. The 5’ end-labeled 

ssDNA (0.15 pmol at 4 % 105 cpm/pmol) in 4 $l of water was heated at 90 °C for 2 min and 

chilled for 2 min on ice. Then, 1 $l of renaturation buffer was added (final concentrations: 75 

mM KCl, 0.2 or 2 mM MgCl2 and 50 mM Tris-HCl, pH 7.8) and the sample was incubated at 

37 °C for 15 min. Unlabeled RNA 3’-2 (0.45 pmol) underwent the same renaturation 

treatment and was then added to refolded ssDNA. The reaction mixture was then incubated at 

37 °C for 15 min in presence of NC at various concentrations or incubated at 37 °C for 

various times in the absence of NC. At the end of incubations, 4 $l of loading buffer B was 

added to assays without protein, and the assays with NC were phenol-chloroform extracted 

and each aqueous phase was mixed with 4 $l of loading buffer B. The heat-denatured control 

of 5’ end-labeled ssDNA (0.15 pmol at 4 % 105 cpm/pmol in 10 $l of water) was performed 

by heating at 90 °C for 2 min and chilling for 2 min on ice, and mixing with 4 $l of loading 

buffer B. The samples were analyzed by electrophoresis on a 2 % agarose (QA-AgaroseTM, 

Qbiogene) gel at 25 °C in 0.5 X TBE (45 mM Tris-borate (pH 8.3), 1 mM EDTA). After 

electrophoresis, the gel was fixed, dried and autoradiographed as described (119). Unannealed 

and annealed ssDNAs were quantified using a TyphoonTM TRIO (GE Healthcare) and 

ImageQuant software. The percent of annealed ssDNA-RNA was determined as 100 % 

(annealed/(annealed + unannealed)). 

The 5’ end-labeled RNA 3’-2 (0.45 pmol at 7 % 104 cpm/pmol) in 4 $l of water was 

heated at 90 °C for 2 min and chilled for 2 min on ice. Then, 1 $l of renaturation buffer was 

added (final concentrations: 75 mM KCl, 0.2 or 2 mM MgCl2 and 50 mM Tris-HCl, pH 7.8) 

and the sample was incubated at 37 °C for 15 min. Five $l of annealing buffer (final 

concentration as same as the renaturation buffer) was added. The samples was then incubated 

at 37 °C for various times in the absence of NC. At the end of incubations, 4 $l of loading 

buffer B was added. The heat-denatured control of 5’ end-labeled RNA (0.45 pmol at 7 % 104 

cpm/pmol in 10 $l of water) was performed by heating at 90 °C for 2 min and chilling for 2 

min on ice, and mixing with 4 $l of loading buffer B. The samples were analyzed by 

electrophoresis on a 2 % agarose (QA-AgaroseTM, Qbiogene) gel at 25 °C in 0.5 X TBE (45 

mM Tris-borate (pH 8.3), 1 mM EDTA). After electrophoresis, the gel was fixed, dried and 

autoradiographed as described (119). 



34$0%*452!4#'!30$6&'2!

,(!

10. Gel-shift analysis of ssDNAs folding 

The assay was carried out in a final volume of 10 $l. The 5’-end-labeled ssDNA (0.15 

pmol at 4 % 105 cpm/pmol) was dissolved in 7.2 $l of water, heated at 90 °C for 2 min and 

chilled for 2 min on ice. Then 0.8 $l of the renaturation buffer was added (final 

concentrations: 75 mM KCl, 0.2 or 2 mM MgCl2 and 50 mM Tris-HCl, pH 7.8) and the 

sample was incubated at 37 °C for 45 min. The reaction mixtures were then incubated at 37 

°C for 15 min in the presence of NC at various concentrations. The incubations were stopped 

by extraction with phenol-chloroform and each aqueous phase was mixed with 4 $l of loading 

buffer B (50 % w/v glycerol, 0.05 % w/v bromophenol blue, 0.05 % w/v xylene cyanol). The 

heat-denatured control of 5’-end-labeled ssDNA (0.15 pmol at 4 % 105 cpm/pmol in 10 $l of 

water) was performed by heating at 90 °C for 2 min and chilling for 2 min on ice, and mixing 

with 4 $l of loading buffer B. Formation of homoduplexes was analyzed by electrophoresis 

on 2% agarose (QA-AgaroseTM, Qbiogene) gels at 4 °C in 0.5 X TBM (45 mM Tris-borate 

(pH 8.3), 0.1 mM MgCl2). After electrophoresis, the gel was fixed, dried and 

autoradiographed as described (119). Monomeric conformations were analyzed by 

electrophoresis on 6 % polyacrylamide gels (37.5:1 (w/w), acrylamide/bisacrylamide) at 25 

°C in 1 X TBE (90 mM Tris-borate (pH 8.3), 2 mM EDTA) and at 20 °C in 0.5 X TBM-0.2 

(45 mM Tris-borate (pH 8.3), 0.2 mM MgCl2) or 0.5 X TBM-2 (45 mM Tris-borate (pH 8.3), 

2 mM MgCl2). After electrophoresis, the gels were fixed, dried and autoradiographed. 

Conformers of ssDNAs were quantified using a TyphoonTM TRIO (GE Healthcare) and 

ImageQuant software. 

11. Structural probing of cTAR and ssDNAs 

Potassium permanganate (KMnO4) and piperidine were purchased from Sigma-Aldrich. 

Mung bean nuclease (MB) and DNase I were purchased from New England Biolabs and 

Promega, respectively. Structural probing of cTAR or ssDNAs was carried out in a final 

volume of 10 $l.  

11.1 Probing of purified cTAR 

The 5’ or 3’ end-labeled cTAR (1 pmol at 5 % 104 cpm/pmol) in 5.5 $l of distilled water 

was heated at 90 °C for 2 min and chilled for 2 min on ice. Then, 2.5 $l of renaturation buffer 

(final concentrations: 75 mM KCl, 0.2 or 7 mM MgCl2 and 50 mM Tris-HCl, pH 7.8 for 

probing with DNase I; 75 mM KCl, 0.2 or 7 mM MgCl2 and 50 mM sodium cacodylate, pH 

6.5 for probing with mung bean nuclease) was added and the sample was incubated at 37 °C 
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for 30 min. The reaction mixtures were then incubated at 37 °C for 15 min in the absence or 

in the presence of NC at various concentrations. The samples were then incubated with an 

enzyme as follows: 1.5, 3 or 6 U of MB for 15 min at 37 °C; or 0.05, 0.1 or 0.2 U of DNase I 

for 7 min at 37 °C. These cleavage reactions were stopped by phenol-chloroform extraction 

followed by ethanol precipitation. The dried pellets were resuspended in 7 $l of loading 

buffer A. The cleavages sites in the labeled cTAR were identified by running in parallel the 

sequencing of DNA. G and T+C sequence markers of the labeled cTAR were produced by the 

Maxam-Gilbert method (257). All samples were analyzed by different migration times on 

denaturing 14 % polyacrylamide gels. 

11.2 Probing of purified ssDNAs 

The 5’- or 3’-end-labeled ssDNA (0.15 pmol at 4 % 105 cpm/pmol) in 7.2 $l of water 

was heated at 90 °C for 2 min and chilled for 2 min on ice. Then, 0.8 $l of renaturation buffer 

(final concentrations: 75 mM KCl, 0.2 or 2 mM MgCl2 and 50 mM Tris-HCl, pH 7.8 for 

probing with KMnO4 or DNase I; 75 mM KCl, 0.2 or 2 mM MgCl2 and 50 mM sodium 

cacodylate, pH 6.5 for probing with MB) was added and the sample was incubated at 37 °C 

for 45 min. The reaction mixtures were then incubated at 37 °C for 15 min in the absence or 

in the presence of NC at various concentrations. The samples were then incubated with 0.75, 

1.25 or 1.5 U of mung bean nuclease for 15 min at 37 °C or with 0.2, 0.3 or 0.4 U of DNase I 

for 7 min at 37 °C. These cleavage reactions were stopped by phenol-chloroform extraction 

followed by ethanol precipitation. The dried pellets were resuspended in 7 $l of loading 

buffer A. For potassium permanganate probing, ssDNA was treated with 0.5, 1 or 2 mM of 

KMnO4 for 1 min at 37 °C. The treatment was stopped by adding 40 $l of the termination 

buffer (0.7 M %-mercaptoethanol, 0.4 M NaOAc (pH 7.0), 10 mM EDTA, 25 $g/ml tRNA). 

DNA was then extracted with phenol-chloroform, ethanol precipitated and dried. DNA was 

subjected to piperidine cleavage by resuspension of the dried pellet in 100 $l of freshly 

diluted 1 M piperidine and heating at 90 °C for 30 min. The samples were lyophilized, 

resuspended in 20 $l of water, and lyophilized again. After a second lyophilization from 15 $l 

of water, the samples were resuspended in 7 $l of loading buffer A. G, G+A and T+C 

sequence markers of the labeled ssDNAs were produced by the Maxam-Gilbert method (257). 

In some cases, the cleavage sites in the 5’-end-labeled ssDNAs were identified by running in 

parallel the sequencing of RNAs 1-415 performed with the avian myeloblastosis virus reverse 

transcriptase (Invitrogen) following the Sanger method (205). All samples were analyzed by 
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short and long migration times on denaturing 8-14% and 6% polyacrylamide gels, 

respectively. 

11.3 Probing of ssDNAs in the reverse transcription mixture 

The DNA oligonucleotide cPBS was 5’-end labeled using T4 polynucleotide kinase 

(New England Biolabs) and [&-32P] ATP (Perkin Elmer), and purified as described above for 

cTAR. The labeled oligonucleotide was used as primer for synthesis of 5’ end-labeled 

ssDNAs. More precisely, 1.5 pmol of 5’-end-labeled primers (1 % 105 cpm/pmol) and 1 pmol 

of RNA 1-415 in 7.5 $l of water were heated at 90 °C for 2 min and frozen for 3 min on dry 

ice-ethanol bath. Then, 6.9 $l of reaction buffer (final concentrations: 78 mM KCl, 1 mM 

DTT and 52 mM Tris-HCl, pH 7.8) containing 0.5 units of HIV-1 reverse transcriptase 

(Worthington) was added and the sample was pre-incubated at 37 °C for 10 min before the 

primer extension reaction was initiated by 0.3 $l of MgCl2 and 0.3 $l of dNTPs. Final 

reaction contained 50 mM Tris-HCl (pH 7.8), 75 mM KCl, 2 mM MgCl2, 1 mM DTT and 100 

$M dNTPs. Reaction was incubated at 37°C for 1h. The samples were then incubated with 

different concentrations of mung bean nuclease for 15 min at 37 °C or with differeny 

concentration of DNase I for 7 min at 37 °C. Reaction was then terminated by addition of 10 

$l of 0.3 M NaOH-0.05 M EDTA and heating at 90 °C for 5 min. Then, the sample was 

extracted by phenol-chloroform followed by ethanol precipitation and the dried pellet was 

resuspended in 7 $l of loading buffer A. For potassium permanganate probing, the sample 

was treated with different concentrations of KMnO4 for 1 min at 37 °C. The treatment was 

stopped by adding 60 $l of the termination buffer (0.7 M %-mercaptoethanol, 0.4 M NaOAc 

(pH 7.0), 10 mM EDTA, 25 $g/ml tRNA). DNA was then extracted with phenol-chloroform, 

ethanol precipitated and dried. DNA was subjected to piperidine cleavage by resuspension of 

the dried pellet in 100 $l of freshly diluted 1 M piperidine and heating at 90 °C for 30 min. 

The samples were lyophilized, resuspended in 20 $l of water, and lyophilized again. After a 

second lyophilization from 15 $l of water, the samples were resuspended in 7 $l of loading 

buffer A. The cleavage sites in the 5’-end-labeled ssDNAs were identified by running in 

parallel the sequencing of RNAs 1-415 performed with the avian myeloblastosis virus reverse 

transcriptase (Invitrogen) following the Sanger method (205). All samples were analyzed by 

short and long migration times on denaturing 8 % and 6% polyacrylamide gels, respectively. 
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12. Basis of structural analysis 

A large part of my thesis was devoted to determination of the folding of HIV-1 single-

stranded DNAs. For this purpose, we used the Mfold program (423), two enzymatic probes 

and one chemical probe providing informations on single-stranded and double-stranded 

regions. DNase I is a double-stranded-specific endonuclease that produces single-strand nicks 

(162). Mung bean nuclease (MB) is highly selective for single-stranded nucleic acids and 

single-stranded regions in double-stranded nucleic acids (94). Note that single-base 

mismatches in double-stranded DNA are poor substrates for MB cleavage at 37 °C (94, 369). 

Potassium permanganate (KMnO4) can be used to detect regions of DNA that are unpaired or 

distorted (72, 174): it is an oxidizing agent that preferentially attacks the 5,6 double bond of 

thymine. In B-DNA, this bond is shielded by base stacking interactions and, thus, the T 

residues in such DNA duplexes are relatively resistant to oxidation. After treatment of DNA 

with piperidine, the DNA backbone was cleaved at the sites of the modified thymines. The 

probes were used under statistical conditions where less than one cleavage or modification 

occurs per molecule, i.e. less than 50% of the DNA should be cleaved or modified (47, 109, 

215). These conditions prevent additional cuts (named secondary cuts) in the same DNA 

molecule that could not reflect the original structure. Indeed, one cut in a DNA molecule can 

induce conformational rearrangements that potentially provide new targets to the probe 

(Figure 48). To identify the cleavage products by electrophoresis on a denaturing 

polyacrylamide gel, the DNA molecule should be labeled at either the 5’ or 3’ end. One 

advantage of using 5’ and 3’ end-labeled DNA in parallel is that it allows distinction between 

primary and secondary cuts (Figure 48), since the secondary cuts cannot be detected with the 

two types of labeling.  

13. Determination of cleavage sites at the nucleotide level 

The cleavage sites induced by the probes in DNAs are identified by running in parallel 

the sequence markers produced by the Maxam-Gilbert method (413). The Maxam-

Gilbert method (257), a series of chemical reactions which cleave at one or two of the four 

bases, involves three consecutive steps: modification of a base, removal of the modified base 

from its sugar and DNA strand scission at that sugar.  

Here (Figure 49), a part of cTAR (nucleotides 7-13) (Figure 49A) is taken as an 

example  to compare the cleavages induced by the Maxam-Gilbert method and those induced 

by the chemical and enzymatic probes that were used in our study. 
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Figure 48. Examples of cleavages induced by optimal or high concentrations of structural probe. 
DNA molecule folded into two hairpins (H1 and H2) is an example. This molecule can be labeled at 
either 5’ (black dot) or 3’ (red dot) end. In the presence of optimal concentration of the probe (blue 
lightning), less than one cleavage occurs in the loop of H2 region per DNA molecule. In the presence 
of high concentration of the probe, primary cut induces a conformational rearrangement in the DNA 
molecule (indicated by the blue rectangle) that may fold into an other two-hairpin structure (H3 and 
H4). The H4 region could be a new target for the probe that would induce a secondary cut in this 
region, which distorts the structural analysis of DNA molecule. 

DNA fragments generated by DNase I cleavage between G9-C10 (Figure 49B) are 

compared to the sequence markers (C and G) produced by the Maxam-Gilbert method 

(Figure 49C).  For the 5’ end-labeled DNA, DNase I probing product (Figure 49B-a) 

consists of T7-T8-G9 with a 3’-hydroxyl terminus, whereas the sequence marker C (Figure 

49C-a) is composed of three bases (T7-T8-G9) with a 3’-phosphorylated terminus. Since the 

3’-phosphate end displays an additional charge than the 3’-hydroxyl end, DNA marker C 

labeled at its 5’ end migrates slightly faster in a denaturing polyacrylamide gel than the 

DNase I DNA fragment labeled at its 5’ end (413). In general, the difference in 

electrophoretic mobility is barely detected for DNA fragments higher than 30 nucleotides. In 

contrast, the difference in mobility varies between 0.5 to 2 bands for short DNA fragment 

(121). Interestingly, if the DNA molecule is labeled at its 3’ end, there is no difference in 

mobility between the labeled products derived from sequencing and enzymatic probing 

(Figures 49 C-b and B-b). For chemical probing (for instance, KMnO4), there is also no 
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difference in mobility between the probing products and the sequence markers because they 

have the same 5’ and 3’ end at the level of the cleavage site (Figures 49 D and E).  

For the purpose of well-defined secondary structure of studied DNAs, it is necessary to 

label these DNAs at their 3’ end to confirm some enzymatic cleavage sites determined from 

the 5’ end-labeled DNAs. 

 

Figure 49. Determination of cleavage sites induced by enzymatic and chemical probes. (A) A part 
of cTAR (nucleotides 7-13) is taken as an example. DNA fragment is labeled with 32P at its 5’ (black 
dot) or 3’ end (red dot). (B) DNase I probing. There is a strong cleavage by DNase I at G9 in cTAR 
DNA (data shown in the paper in the end of this part). The black and red rectangles show the 5’ end- 
and 3’ end-labeled fragments that can be detected on the denaturing gel, respectively. (C) Sequence 
markers C (a) and G (b) by the Maxam-Gilbert method. Maxam-Gilbert sequencing requires a DNA 
fragment labeled at one end. First, in a limited reaction, some reagent specifically modifies one or two 
of the four DNA bases, generally by substituting a puring ring or a pyrimidine ring. Then, a second 
reaction removes this modified base from its sugar, and finally a third reaction cleaves the 
phosphodiaster bond of DNA by eliminating the sugar moiety and generating 3’- and 5’-phosphate 
ends (circles). (D) KMnO4 probing. There is a weak cleavage by KMnO4 at T11 in cTAR DNA (data 
shown in the paper in the end of this part). (E) Sequence marker T by the Maxam-Gilbert method. 
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Part 1. Structural analysis of cTAR DNA 

1. Introduction 

Mutational analysis of HIV-1 gRNA suggests that the great majority of first strand 

transfers occur after completion of ssDNA synthesis, i.e. with the entire cTAR sequence (292). 

FRET-based assays performed with the cTAR sequence suggest that the majority (~70-80%) 

of the cTAR DNA molecules adopt the hairpin conformation (closed form) and the remaining 

(20-30%) are partially or totally melted (open forms) (36, 175). Furthermore, single-molecule 

techniques (12, 243) were used to show that the NC-coated cTAR hairpin exhibits a dynamic 

equilibrium between a “Y”-shaped and a closed conformation. In the “Y” conformation, the 

lower part of the stem is open and the upper part of the stem is closed. Note that the 

secondary structure of the full-length cTAR sequence has not been determined until our study. 

Unfolding of the complementary hairpins is thought to be rate-limiting in the annealing 

process leading to the first strand transfer (410). In vitro studies show that NC (Figure 50) 

stimulates the first strand transfer (58, 83, 157, 304), due, at least in part, to the NC 

stimulatory effect on the rate of annealing of the complementary hairpins (239, 410). NC 

induces a limited melting of the TAR RNA secondary structure (one base pair per molecule) 

(36), but largely enhances the fraying of the cTAR hairpin ends, shifting the distribution of 

hairpin conformations toward the more open structures (26, 36, 175). The cTAR sequence 

binds eight NC molecules at saturating protein concentrations under low ionic strength 

conditions (30 mM NaCl, 0.2 mM MgCl2) (27), through both weak and strong binding sites, 

that were not identified (342). 

 
Figure 50. Sequence of NC used in our study. 

The in vitro reverse transcription and strand transfer assays are usually performed under 

high-salt concentrations, i.e. at KCl concentrations ranging from 50 to 100 mM and at MgCl2 

concentrations ranging from 5 to 7 mM (46, 157, 227, 271, 310). Before my arrival to the 

laboratory, our group had begun the investigation of the annealing process using DNA and 

RNA sequences derived from the HIV-1 MAL isolate under high-salt concentrations (75 mM 

KCl, 7 mM MgCl2). Thus, our group has shown that efficient annealing of cTAR DNA to the 
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3’ end of gRNA relies on sequence complementarities between TAR and cTAR apical loops 

under high-salt concentrations allowing cDNA synthesis by RT and strand transfer (205). 

Recently, using cTAR labeled at its 5’ end and chemical (KMnO4) probe, and gel retardation 

assays, our group has obtained data on the cTAR secondary structure and the NC binding 

sites. Since my presence in the group, we used cTAR DNA labeled at either the 5’ or 3’ end 

and enzymatic probes (DNase I and mung bean nuclease (MB)) to provide supplementary 

informations on the secondary structure of the cTAR hairpin and the NC binding sites within 

this DNA molecule. 

2. Purification and labeling of cTAR DNA   

The oligonucleotide cTAR DNA (55 nt) was first purified by electrophoresis on a 

denaturing polyacrylamide gel to eliminate the abortive DNA fragments generated during the 

chemical synthesis (Figure 51A). Usually, the cTAR DNA is 5’ end-labeled (Figure 51B) for 

structural analysis because this type of labeling is efficient and easy to perform. However, as 

described in the Part 13 of the ‘Materials and Methods’ section, DNA should be labeled at its 

3’ end (Figure 51B) to determine the precise location of cleavage at some sites. We used the 

3’ end-labeling method that we developed for the structural analysis of full-length ssDNA 

(see the Part 2 of the ‘Results and Discussion’ section). The cTAR DNA was then checked for 

purity and integrity on a 10% denaturing polyacrylamide gel (Figure 51C). Purified cTAR 

DNA was therefore usable for structural and functional analysis. 

 
Figure 51. Purification and labeling of cTAR DNA. (A) Analysis of purified cTAR DNA on a 11% 
denaturing gel. BB: Bromophenol blue. (B) 5’ and 3’ end-labeling of cTAR DNA and second 
purification on a 10% denaturing polyacrylamide gel. (C) Analysis of 5’ and 3’ end-labeled cTAR 
DNA after second purification on a 10% denaturing polyacrylamide gel.  
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3. Structural analysis of cTAR under high-magnesium concentrations 

This part of work has already been published in Nucleic Acid Research (see the paper at 

the end of this Part), and all my contributions are presented in Figure 5 of this paper. 

3.1 Analysis of cTAR secondary structure in the absence of NC 

The secondary structure of cTAR DNA was investigated at 37°C in the strand transfer 

buffer (75 mM KCl, 7 mM MgCl2 and 50 mM Tris-HCl, pH7.8), i.e. under conditions 

allowing strand transfers and annealing of cTAR DNA to the 3’ end of the gRNA (157, 205, 

271). The cTAR was monomeric after incubation in the absence of NC as assessed by native 

agarose gel electrophoresis in the TBM and TBE buffers (data not shown). Therefore, the 

structural analysis was not complicated by the presence of homoduplexes. The secondary 

structure of cTAR DNA was probed with MB and DNase I. MB is highly selective for single-

stranded nucleic acids and single-stranded regions in double-stranded nucleic acids (94). Note 

that single-base mismatches in double-stranded DNA are poor substrates for MB cleavage at 

37 °C (94, 369). DNase I is a double-strand-specific endonuclease that produces single-strand 

nicks (162). Running Maxam-Gilbert sequence markers of cTAR on the same gels in parallel 

identified the cleavage sites. Representative examples of probing experiments are shown in 

Figure 52 (A-D) and the results of a series of independent experiments are summarized in 

Figure 52E. As mentioned in the Part 13 of ‘Materials and Methods’ section, the nucleases 

cleave the phosphodiester bond and generate a 3’-hydroxyl terminus on 5’ end-labeled DNA, 

whereas, the Maxam-Gilbert reactions generate a 3’-phosphorylated terminus (257). The 

electrophoretic mobility of Maxam-Gilbert sequence markers is therefore slightly greater than 

that of fragments produced by nucleases. To determine the precise position of cleavage at 

some sites, the 3’ end-labeled cTAR was used (examples in Figure 52 A and B). 

The partially melted ‘Y’ conformation is the most stable cTAR structure predicted by 

the Mfold program (423). It has been proposed that the cTAR sequence forms the closed 

conformation (143, 243, 386). Therefore, the probing data were suprimposed on these two 

conformations (Figure 52E). In both conformations, the 6-48 sequence forms the same stem-

loop structure. There were strong and moderate DNase I cleavages between G9-C10 and C10-

T11, all of which are predicted to lie at the ends of stems. There were moderate and strong MB 

cleavages between C25-C26, C26-C27, A34-C35 and C35-C36 that are predicted to be in the apical 

and internal loops. The moderate MB cleavage between C5 and C6 is consistent with the 

partially melted conformation of cTAR.  
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Figure 52. Enzymatic probing of cTAR under high-magnesium concentrations. Enzymatic 
probing experiments were performed as described in the ‘Materials and Methods’ section. (A and B) 
In the absence of NC, the 3’ end-labeled cTAR DNA was incubated with DNase I (0.05, 0.1 and 0.2 
U) or mung bean nuclease (MB) (1.5, 3 and 6 U). (C) In the absence of NC, the 5’ end-labeled cTAR 
DNA was incubated with MB (1.5, 3 and 6 U). Lanes C are controls without enzyme. G and T+C refer 
to Maxam-Gilbert sequence markers. Arrows indicate the cleavage sites. (D) 5’ end-labeled cTAR 
DNA was incubated with MB (3 U) in the absence (lane 1) or in the presence of NC (lanes 2-5). The 
protein to nucleotide molar ratios were 1:8 (lane 2), 1:4 (lane 3), 1:2 (lane 4) and 1:1 (lane 5). The 
strong protections induced by NC at the level of MB cleavage sites are indicated by asterisks. (E) 
Secondary structures for the partially melted and closed forms of cTAR. Delta G-values were 
predicted by mfold. Closed, gray and open symbols indicate strong, medium, and weak cleavage sites, 
respectively, for the various enzymes (triangle for DNase I and circle for MB). 
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However, the 3’/5’ terminal ends may be involved in transient interactions to form the 

closed conformation since there was moderate DNase I cleavage between T4 and C5. Taken 

together, the enzymatic probing data are consistent with a structural heterogeneity for the 

3’/5’ terminal ends of cTAR in the absence of NC. This heterogeneity is supported by 

KMnO4 probing of cTAR (see the paper at the end of this Part). 

3.2 Analysis of cTAR secondary structure in the presence of NC 

The cTAR was also monomeric after incubation with NC as assessed by native 

polyacrylamide gel electrophoresis in the TBE buffer (data not shown). Therefore, the 

structural analysis was not complicated by the presence of homoduplexes. To identify 

destabilized regions and protections induced by NC in the cTAR hairpin, enzymatic probing 

patterns of cTAR were compared in the absence or presence of increasing concentrations of 

NC. In the presence of increasing concentrations of NC, DNase I cleavage at the level of all 

sites decreased at the same rate, i.e. NC did not induce specific protection against DNase I 

(data not shown). These results indicate that the double-stranded regions of cTAR do not 

contain preferential binding sites for NC. Interestingly, NC induced a strong decrease in MB 

sensitivity for A34 and C35 (Figure 52D) that are located in the internal loop (Figure 52E).  

PhosphorImager quantification indicated that the cleavage rate for MB in the internal 

loop at a protein to nucleotide molar ratio of 1:4 corresponded to 52% of that observed in the 

absence of NC. In contrast, at the same ratio, the cleavage rate for MB in the apical loop 

(residues C25 and C26) corresponded to 96% of that observed in the absence of NC. These data 

indicate that the internal loop is a strong binding site for NC, and that, if NC binds the apical 

loop, its binding is too weak to be detected at a protein to nucleotide molar ratio of 1:4. 

However, PhosphorImager quantification indicated that the cleavage rate for MB in the apical 

loop at a protein to nucleotide molar ratio of 1:2 corresponded to 55% of that observed in the 

absence of NC, i.e. NC binds the apical loop at protein to nucleotide molar ratio equal to or 

greater than 1:2 (Figure 52D, lanes 4 and 5). Taken together the data indicate that the apical 

and internal loops are weak and strong binding sites for NC, respectively. 

4. Structural analysis of cTAR under low-magnesium concentrations 

Although the in vitro reverse transcription and strand transfer assays are usually 

performed at MgCl2 concentrations ranging from 5 to 7 mM (46, 157, 227, 271, 310), the NC-

mediated annealing process is significantly inhibited at MgCl2 concentrations equal or greater 

than 2 mM, presumably because Mg2+ competes with NC for non-specific binding to the 
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negatively charged phosphate groups of nucleic acids (385, 405). In addition, a DNA hairpin 

can be greatly stabilized by increasing the MgCl2 concentration from 0.2 to 2.5 mM (70). The 

Mg2+ concentration in virions and in infected cells is not known, but it could be in the range 

of 0.2-0.25 mM, as in the case for uninfected cells ((145) and references therein). To 

determine the role of magnesium in the folding of cTAR and the interactions between cTAR 

and NC, probing experiments with MB were performed in the presence of 0.2 mM MgCl2 

(see the “Materials and Methods” section).  

 

Figure 53. Enzymatic probing of cTAR under low-magnesium concentrations. MB probing was 
performed as described in the ‘Materials and Methods’ section. (A) In the absence of NC, the 5’ end-
labeled cTAR DNA was incubated with MB (1.5, 3 and 6 U). Lanes C are controls without enzyme. G 
and T+C refer to Maxam-Gilbert sequence markers. Arrows indicate the cleavage sites. (B) 5’ end-
labeled cTAR DNA was incubated with MB (1.5 U) in the absence (lane 1) or in the presence of NC 
(lanes 2-5). The protein to nucleotide molar ratios were 1:8 (lane 2), 1:4 (lane 3), 1:2 (lane 4) and 1:1 
(lane 5).  

In the absence of NC, the MB cleavage patterns in 0.2 mM MgCl2 (Figure 53A) and 7 

mM MgCl2 (Figure 53C) were similar. Therefore, the folding of cTAR does not seem to 

depend on magnesium concentration. In the presence of NC (Figure 53B), the MB sensitivity 

decreased dramatically for both internal (residues A34 and C35) and apical (residues C25 and 
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C26) loops. PhosphorImager quantification indicated that the cleavage rate for MB in both 

loops at a protein to nucleotide molar ratio of 1:8 corresponded to 43-44% of that observed in 

the absence of NC. Moreover, at a protein to nucleotide molar ratio of 1:4, the cleavage rate 

for MB corresponded to 22-23% of that observed in the absence of NC. Taken together these 

data indicate that the degree of protection by NC was the same in both loops under low-

magnesium concentrations. Therefore, in contrast to the NC interactions occuring under high-

magnesium concentrations, NC does not preferentially bind the internal loop of the cTAR 

hairpin under low-magnesium concentrations. Finally, MB probing data are consistent with: 1) 

the folding of cTAR into a stem-loop structure under low-magnesium concentrations; 2) 

binding of NC to the apical and internal loops under low-magnesium concentrations. 

5. Discussion 

5.1 cTAR adopts two alternative conformations in the absence of NC 

FRET-based assays have been developed to study the folding of the cTAR DNA 

molecule derived from the MAL (36) or NL4-3 isolate (175). These studies suggest that the 

majority (~70-80%) of the cTAR DNA molecules adopt the hairpin conformation (closed 

form) and the remaining (20-30%) are partially or totally melted (open forms) in the absence 

of NC. Using single-molecule spectroscopy (SMS) techniques and cTAR DNA molecules 

derived from the NL4-3 isolate, it has been reported that the partially open ‘Y’ conformation 

is the dominant form for the cTAR hairpin in the NC-meditaed annealing process (70, 243). 

These studies suggest that the 5’ and 3’ unpaired termini of the ‘Y’ conformation are 

accessible for TAR RNA-DNA annealing. Note that the double-stranded and single-stranded 

regions of the ‘Y’ conformation were deduced from the analysis of hairpin mutants. Here, 

nucleases were used to determine the secondary structure of cTAR derived from the wild-type 

MAL isolate. The probing experiments were performed under both high-salt concentrations 

allowing strand transfer and annealing (157, 205, 271) and low-magnesium concentrations 

that promote the NC-mediated annealing process (385, 405) and that are more likely in 

virions (70, 145). Our MB probing data suggest that the folding of cTAR is the same under 

low- and high- magnesium concentrations. The 6-48 sequence forms a stem-loop structure 

containing a C-A mismatch, a T bulge in the looped-out conformation and an internal loop 

(Figure 52E). Consistent with the stem involving nucleotides 6-9/45-48, there was a strong 

DNase I cleavage between G9 and C10. Nucleotides 1-5 and 50-55 are paired in the closed 

conformation and are unpaired in the ‘Y’ conformation. Our probing data are consistent with 

the equilibrium between the closed and ‘Y’ conformations of the cTAR hairpin in the absence 
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of NC. 

5.2 NC’ effects on the structure of the cTAR DNA hairpin 

FRET-based assays suggest that the populations of the partially or totally melted forms 

of the cTAR hairpin are moderately increased in the presence of NC (36, 175). The regions 

opened by NC are expected not to become accessible to MB because they probably bind the 

NC. Consistent with this notion, MB cleavage did not increase in the presence of NC (Figure 

52D and 53B). Probing data obtained with a small probe (KMnO4) do not support the 

hypothesis (70) that a population of cTAR DNA molecules is totally melted in the presence of 

NC (see the paper in end of this part). Taken together, chemical and enzymatical probing data 

suggest that NC slightly destabilizes the lower stem that is adjacent to the internal loop and 

shifts the equilibrium toward the ‘Y’ conformation (Figure 54). 

 

Figure 54. NC’s effects on the equilibrium of ‘Y’ and closed conformations of cTAR DNA. 

5.3 NC binding sites in the cTAR hairpin 

A recent study suggests that the cTAR sequence contains weak and strong binding sites 

for NC in the absence of magnesium and in the presence of 100 mM NaCl (342). 

Identification of preferred binding sites in the cTAR molecule is necessary to propose models 

for the annealing mechanism mediated by NC. Our study is the first to identify the NC 

binding sites using NC and cTAR DNA under both high- and low-magnesium concentrations 

(Figure 55). The DNase I probing data indicate that the double-stranded regions of cTAR 

bind NC but do not contain preferential binding sites for this protein. In a previous report, our 

group showed that the N-terminal basic domain of NC is required for providing protection 

against RNase V1 that cleaves double-stranded RNA (205). These results are consistent with 
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the notion that NC binds the double-stranded regions of nucleic acids non-specifically 

through electrostatic interactions of the basic residues with the phosphodiester backbone (229, 

391). At high- but not low-magnesium concentrations, NC preferentially binds the internal 

loop than the apical loop. This may be due to stabilization of the T.G mismatch base pair by 

magnesium. This stablization effect would decrease the flexibility of the apical loop and 

therefore its ability to interact with NC. 

 
Figure 55. Preferential binding sites for NC in cTAR DNA and TAR RNA under high-
magnesium concentrations. In cTAR DNA, NC (red oval) binds the internal loop, whereas it binds 
the apical loop in TAR RNA (205). 

6. Publication 
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Part 2. Structure-function relationship of the minus  

“strong-stop DNA” 

1. Introduction 

The main object of my thesis is minus-strand “strong-stop” DNA (ssDNA), synthesized 

during the first step of reverse transcription (Figure 33). The first requirement for synthesis of 

ssDNA is the annealing of the human primer tRNA(Lys,3) onto the primer binding site (PBS) of 

the genomic RNA. It is unknown when tRNA(Lys,3) is displaced from PBS, but displacement is 

necessary to allow copying of the 3’ end of the tRNA into DNA (311). Therefore, the 

displacement of the tRNA primer could occur either before (Figure 56A, hypothesis a) or 

after the first strand transfer (Figure 56A, hypothesis b). The first strand transfer is mediated 

by base pairing of the R region at the 3’ end of the genomic RNA and the complementary r 

region at the 3’ end of ssDNA (Figure 56A). The R sequence contains the transactivator 

response element (TAR) and a portion of the poly(A) signal (31, 114). The 3’ TAR sequence 

folds into a hairpin in the entire HIV-1 RNA genome extracted from virions (395). The 3’ 

poly(A) sequence can form a hairpin (31, 205), but there is no data showing that this 

secondary structure is present in the entire HIV-1 RNA genome. Moreover, in vitro studies 

suggest that the 3’ U3-poly(A) and gag sequences are involved in base pairing interactions to 

circularize the HIV-1 genome (23, 294). These interactions stimulate the first strand transfer 

during reverse transcription in vitro (23). The r sequence of ssDNA is predicted to fold into 

hairpins that are complementary to the TAR and poly(A) RNA sequences and are therefore 

named cTAR and cpoly(A), respectively (34, 36). To date, the secondary structure of the full-

length ssDNA has not been determined. Thus, there is no data showing that the cTAR and 

cpoly(A) sequences form the predicted hairpins in the context of the full-length ssDNA. 

Mutations within the first 10 nucleotides of the 5’ R sequence produce virions that are 

markedly defective for reverse transcription (292). These results suggest that the great 

majority of first strand transfers occur after completion of ssDNA synthesis, i.e. the entire 

cTAR sequence would be required for efficient strand transfer in vivo. Several studies 

performed with the cTAR sequence (55 to 59 nucleotides) support a dynamic structure of the 

cTAR hairpin, involving equilibrium between both the closed conformation and the partially 

open “Y” conformation (12, 36, 175, 243). As described in the Part 1 of the ‘Results and 

Discussion’ section, we showed that NC slightly destabilizes the lower stem that is adjacent to 

the internal loop and shifts the equilibrium toward the “Y” conformation exhibiting at least 



702(5$2!4#'!8*2)(22*&#!

%%*!

twelve unpaired nucleotides in its lower part. We also showed that the apical and internal 

loops of cTAR are binding sites for NC. To date, the NC binding sites within the full-length 

ssDNA have not been identified.   

 

Figure 56. (A) Schematic diagram of events leading to the first strand transfer. The 3’ 18 nucleotides 
of the tRNA primer are annealed to the PBS, a complementary sequence in the viral genome (black 
line); numbering is relative to the genomic RNA cap site (+1). Once annealed, RT catalyzes extension 
of the primer tRNA (green) to form ssDNA (purple line). The 5’ end of the gRNA is degraded (broken 
line) by the action of the RNase H activity of RT, and ssDNA is transferred to the 3’ end of the gRNA. 
This transfer is mediated by base pairing of the R and r regions that are complementary. The 
displacement of the tRNA primer could occur either before (pathway a) or after the first strand transfer 
(pathway b). (B) RNA and ssDNAs used in this study. RNA 3’-2 (200 nucleotides) contains the 3’ end 
of the U3 sequence and the full-length R sequence; ssDNA-L (196 nucleotides) and ssDNA-S (178 
nucleotides) are the extension products of primers cPBS and P158, respectively. Primer cPBS 
represents the 3’-terminal 18 nucleotides of tRNALys,3 that are complementary to the primer binding 
site (PBS). Primer P158 is complementary to the 3’ end of the U5 sequence and corresponds to the 
first 21 nt of ssDNA. 

Since mutations in the TAR apical loop decrease the first strand transfer in vitro, 

Berkhout et al. (34) suggested that this process involves a “kissing complex” formed by the 

apical loops of TAR and cTAR hairpins. Consistent with this hypothesis, we found that 

efficient annealing of cTAR DNA to the 3’ end of the genomic RNA relies on sequence 

complementarities between TAR and cTAR apical loops under high-salt concentrations 

allowing cDNA synthesis by RT and strand transfer (157, 205, 271). Studies using TAR RNA 
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and cTAR DNA hairpins, suggest that both the apical loops and the 3’/5’ termini of 

complementary hairpins are the initiation sites for the annealing reaction under subsaturating 

concentrations of NC (242, 385). In contrast, cTAR DNA-TAR RNA annealing in the 

presence of saturated NC depends only on nucleation through the 3’/5’ termini, resulting in 

the formation of a “zipper” intermediate (143, 385). Note that the two annealing pathways 

have not been demonstrated for the annealing reaction between the full-length ssDNA and the 

3’ end of the genomic RNA. 

Here, we used two full-lenth ssDNAs (Figure 56B) to investigate the relationship 

between the structure and function of ssDNA in 0.2 mM (intracellular concentration) and 2 

mM MgCl2 (concentration required for reverse transcription and strand transfer in vitro). 

ssDNA-L represents the full-length ssDNA that is not annealed to the PBS region (Figure 

56A, hypothesis a), i.e. it contains the complementary sequence to PBS (cPBS) that might 

influence the folding of ssDNA. If the full-length ssDNA is annealed to the PBS region 

(Figure 56A, hypothesis b), then its folding is not influenced by the cPBS sequence; this 

possibility is represented by ssDNA-S that is deleted of the cPBS sequence.  

The number of Gag molecules in immature HIV-1 particles was estimated to be 1400-

2400 (51, 421). About 1000-1500 NC molecules coating the gRNA in a dimeric form were 

found within the infectious HIV-1 particles (45, 60). Therefore, the NC to nucleotide molar 

ratios were probably between 1:18 and 1:7 within the infectious HIV-1 particles. To take into 

account these observations, the NC assays were performed at NC to nucleotide molar ratios of 

1:24, 1:18, 1:12 and 1:7. 

2. Synthesis, labeling and purification of ssDNAs 

2.1 Purification and labeling of ssDNA-S generated by chemical synthesis 

We purchased from IBA (Germany) and Eurogentec (Belgium) oligonucleotides that 

were obtained by chemical synthesis and should correspond to ssDNA-S (178 nt). 

Unfortunately, even the best oligonucleotide solution contained a large amount of 

oligonucleotides that were shorter than the full-length ssDNA-S (Figure 57A, lane 3). Even 

after purification by electrophoresis on a denaturing polyacrylamide gel, the oligonucleotide 

solution contained products that formed a smear above ssDNA-S (Figure 57B, lane 3). 

As mentioned for 5’ end labeling of cTAR (see in the ‘Materials and Methods’ section), 

the purified oligonucleotide ssDNA-S could also be labeled at its 5’ end. As shown in Figure 

57C, the oligonucleotide solution was not quite pure. Three slices of gel (a, b and c) were 

eluted, and the oligonucleotides were purified and analyzed in parallel with ssDNA-L and 
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ssDNA-S generated by reverse transcription. Lanes 3, 4 and 5 in Figure 57D correspond to 

oligonucleotides purified from slices a, b and c in Figure 57C, respectively. Band a 

corresponds to ssDNA-S,  whereas band b and c probably correspond to the +1 and -1 

products of ssDNA-S, respectively (Figure 57D). Despite the purification of labeled ssDNA-

S, a smear was again observed (Figure 57D, lane 3). It is likely that this smear correspond to 

partially protected oligonucleotides, i.e. the deprotection step in oligonucleotide synthesis was 

not complete. In addition, the recovery rate of ssDNA-S was low (about 10%). Finally, we 

chose to synthesize ssDNAs by reverse transcription because the purified ssDNA-S produced 

by chemical synthesis contained protected nucleotides and the yield of purification was low. 

!
Figure 57. Analysis of oligonucleotide ssDNA-S. (A) Five $g of oligonucleotide ssDNA-S was 
analyzed on a 6% denaturing polyacrylamide gel. (B) Seven hundred ng of the first purification of 
ssDNA-S was analyzed on a 6% denaturing polyacrylamide gel. Lanes 1 and 2 in A and B indicate the 
size markers (197 nt and 157 nt). The 5’ end-labeled oligonucleotide ssDNA-S was analyzed before 
(C) and after (D) the second purification. Lanes 1 and 2 in D correspond to ssDNA-L and ssDNA-S 
synthesized by reverse transcription, respectively. Lanes 3, 4 and 5 in D correspond to purification of 
slices a, b and c indicated in C, respectively.  

2.2 Synthesis, labeling and purification of ssDNAs by reverse transcription 

Previous studies in our group found that the yield of reverse transcription products was 

higher using the RNA template (RNA 1-415) than other smaller or longer RNA template. 

Both ssDNA-L and ssDNA-S were then synthesized by reverse transcription of RNA 1-415 

from the cPBS and P158 primers, respectively (Figure 58).  
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Figure 58. Synthesis, labeling  and purification of ssDNA-L generated by reverse transcription. 
(A) In vitro transcription of RNA 1-415 using the template generated from plasmid pYC5’ digested by 
Hae III. (B) In vitro reverse transcription of RNA 1-415 initiated by 5’ end-labeled cPBS primer. All 
the reverse transcription products, including ssDNA-L and abortive DNA fragments were labeled at 
their 5’ end. (C) In vitro reverse transcription of RNA 1-415 initiated by the cPBS primer. In the 
presence of oligonucleotide CompSS, a DNA polymerase and "-32P-labeled dATP, ssDNA-L was 
labeled at its 3’ end. Both 5’ and 3’ end-labeled ssDNA-L were purified by electrophoresis on a 
denaturing polyacrylamide gel. The plasmid is indicated in red, RNA 1-415 in black, cPBS primer in 
green, abortive DNA fragment in brown, ssDNA-L in purple and CompSS in blue. The red asterisk 
and the red A indicate the 5’ and 3’ end-labeling, respectively. 
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2.2.1 Synthesis and purification of RNA 1-415 

To optimize full-length ssDNA synthesis, it is important that RNA 1-415 is not partially 

degraded or contaminated by RNA fragments that are produced by abortive transcription. As 

shown in Figure 59, the preparation of RNA 1-415 contains a significant amount of an 

abortive RNA fragment at the end of transcription by T7 RNA polymerase. Therefore, RNA 

1-415 was purified using a denaturing polyacrylamide gel (see in the ‘Materials and Methods’ 

section). After purification, RNA 1-415 was full-length and ready to serve as template for 

ssDNA synthesis (Figure 58A). 

 
Figure 59. Analysis of transcription products before and after purification on a 5% denaturing 
polyacrymide gel. On the left, the mixture of products (RNA1-415 and an abortive RNA fragment) 
obtained at the end of transcription. On the right, RNA1-415 after purification. 

2.2.2 Synthesis and 5’ end labeling of ssDNAs 

The cPBS or P158 primer was firstly 5’ end-labeled using T4 polynucleotide kinase and 

&-32P-labeled ATP. The reverse transcription of the RNA template (RNA 1-415) initiated by 

the 5’ end-labeled primer generates ssDNA-L or ssDNA-S and other DNA fragments that 

were labeled at their 5’ end (Figure 58B). After purification, the 5’ end-labeled ssDNAs were 

then checked for purity and integrity on a 6% denaturing polyacrylamide gel. As shown in 

Figure 60, ssDNAs were pure and therefore usable for structural and functional analysis. All 

the dimerization, conformation and annealing assays in this Part were carried out with the 5’ 

end-labeled ssDNAs. 
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Figure 60. Analysis of purified 5’ end-labeled ssDNAs. One hundred fifty fmol (6 x 104 cpm) of the 
5’ end-labeled ssDNA-L (lane 1) and ssDNA-S (lane 2) in 4 $l of loading buffer A (7 M urea, 0.03 
w/V% bromophenol blue and 0.03 w/v% xylene cyanol) were heated at 90 °C for 2 min, chilled for 2 
min on ice and analysed by electrophoresis on a 6% denaturing polyacrylamide gel. After 
electrophoresis, the gel was fixed, dried and autoradiographed. 

2.2.3 Synthesis and 3’ end labeling of ssDNAs 

2.2.3.1 Experimental strategy 

Since the synthesis of ssDNA generates a lot of abortive DNA fragments during the 

reverse transcription of HIV-1 RNA (23, 33, 103, 145, 157, 348), we developed a new 

method to label only the full-length ssDNA-L and ssDNA-S at their 3’ end among the mixture 

of reverse transcription products (Figure 58C). Our labeling method is based on the study of 

Huang and Szostak (184) that used an oligonucleotide to label the 3’ end of an RNA. The 

short DNA template with a two nucleotide 5’ overhang of 3’-TA-5’, 3’-TG-5’ or 3’-TC-5’ is 

annealed to the 3’ end of an RNA and the Klenow fragment of DNA polymerase I can then 

cleanly and efficiently extend the 3’ end of the RNA by the incorporation of a single a-32P-

labeled dATP residue. Thus, we used the CompSS oligonucleotide that is complementary to 

the 3’ end of ssDNA and cTAR DNA with a non-hybridizing tail of two nucleotides (5’-CT-

3’). 

2.2.3.2 Labeling assays 

Purified RNA 1-415 was the template and the cPBS DNA oligonucleotide was used as 

primer for the synthesis of ssDNA-L as described in the ‘Materials and Methods’ section. 

Reverse transcription initiated from the 5’ end-labeled cPBS primer was taken as control 

showing the bands corresponding to ssDNA-L and abortive DNA fragments (Figure 61, lane 

5). Note that the length of 5’ end-labeled DNAs was not greater than that of ssDNA-L. After 

reverse transcription of RNA 1-415, the 3’ end-labeling assay was performed at 25 °C or 37 

°C for 15 min using Klenow fragment of DNA polymerase I, ["-32P] dATP and in the 
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absence or in the presence of oligonucleotide CompSS. Consistent with the optimal 

temperature for Klenow fragment activity, DNAs were more efficiently labeled at 37 °C than 

at 25 °C. Despite the absence of oligonucleotide CompSS, ssDNA-L (196 nucleotides) and 

DNA fragments (165-170 nucleotides), named DF, were labeled at their 3’ end (Figure 61, 

lanes 1 and 3). A possible hypothesis is that the 3’ ends of these DNAs fold into stem-loop 

structures serving as self-primers that incorporate the labeled adenine in the presence of the 

Klenow fragment of DNA polymerase I (Figure 62a). This hypothesis is supported by studies 

reporting self-priming from ssDNA (149, 157). As expected, the 3’ end labeling of ssDNA-L 

was strongly increased in the presence of oligonucleotide CompSS (Figure 61, lanes 2 and 4). 

The DFs (165-170 nt) did not contain the complementary sequence of oligonucleotide 

CompSS if they are synthesized from the cPBS primer (Figure 62a). However, labeling of 

these DNAs was increased in the presence of oligonucleotide CompSS (Figure 61, lanes 2 

and 4). Therefore, we propose that these DNAs did not originate from cPBS extension by RT. 

Our hypothesis is that the DFs were generated from extension of RNA fragments produced by 

abortive reverse transcription events (Figure 62b). These RNAs contained the template for 

the complementary sequence of oligonucleotide CompSS and were able to form hairpins 

serving as self-primers for reverse transcription. The full-length RNA 1-415 and large 

fragments of this RNA were probably also self-primers for DNA synthesis (Figure 63), since 

DNAs longer than ssDNA-L (named LDF) were observed (Figure 61). 
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Figure 61. 3’ end-labeling assays of full-length ssDNA-L performed by Klenow fragment of DNA 
polymerase I after reverse transcription. Lanes 1 and 2: 3’ end-labeling performed at 25 °C for 15 
min. Lanes 3 and 4: 3’ end-labeling performed at 37 °C for 15 min. The Klenow buffer contains a final 
concentration of 10 mM MgCl2. Lanes 1 and 3: controls without oligonucleotide CompSS. Lanes 2 
and 4: assays with CompSS. Lane 5: ssDNA-L synthesized by reverse transcription with the 5’ end-
labeled cPBS primer and RNA 1-415. DF indicates 3’ end-labeled abortive DNA fragments shorter 
than ssDNA-L. LDF indicates 3’ end-labeled DNA fragments longer than ssDNA-L. 54-nt DF 
indicates the 54-nucleotide DNA fragment. 



702(5$2!4#'!8*2)(22*&#!

%&(!

 

Figure 62. 3’ end-labeling in the absence or presence of oligonucleotide CompSS. Reverse 
transcription of HIV-1 RNA 1-415 generates a mixture of DNAs, including ssDNA-L and abortive 
DNA fragments. (a) Abortive DNA fragments are generated during reverse transcription. Some of 
these abortive DNA fragments could fold into hairpin that serves as self-primer for labeling at its 3’ 
end in the absence of oligonucleotide CompSS. (b) Due to abortive reverse transcription events, RNA 
1-415 is partially degraded by the RNase H activity of RT. RNAs shorter than RNA 1-415 could fold 
into a primer-template that could serve as self-primer for synthesis of DNA fragments. Self-priming 
products contain also the complementary sequence to CompSS. Thus, in the presence of 
oligonucleotide CompSS, both ssDNA-L and self-priming products are labeled at their 3’ ends. RNA 
fragments generated by RNase H are indicated in gray and abortive DNA fragments in brown. 

Finally, the 3’ end labeling by the Klenow fragment occurred under conditions (10 mM 

MgCl2 and 37 °C) that probably favor formation of hairpins at the 3’ end of DNAs. In 

addition, these conditions may facilitate nonspecific annealing of oligonucleotide CompSS to 

DNAs containing sequences that are partially complementary to this oligonucleotide. To 

improve the 3’ end-labeling method, lower magnesium concentrations and higher 

temperatures than 37 °C were tested for the labeling step. AMV RT and Taq DNA 

polymerase were chosen because the optimal activity temperature for these enzymes is 42 and 
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75 °C, respectively. Note that the melting temperature (Tm) of oligonucleotide CompSS is 

about 56°C, i.e. between the optimal temperatures for AMV RT and Taq DNA polymerase.  

 

Figure 63. Hypothesis on folding of RNA 1-415 and synthesis of long DNA fragments. (A) In the 
presence of MgCl2 (2 mM in reverse transcription assay), some of the 3’ end of RNA 1-415 folds into 
a hairpin structure. (B) Reverse transcription of RNA 1-415. (a) ssDNA-L is synthesized from the 
RNA template in the presence of primer cPBS, RT and dNTPs. (b) In the presence of RT and dNTPs, 
long DNA fragment is synthesized from the hairpin located at the 3’ end of RNA 1-415. After reverse 
transcription, the mixture of DNA and RNA is treated with NaOH-EDTA to destroy the RNA 
template (see Materials and Methods). RNA 1-415 is indicated in black, cPBS in green, ssDNA-L in 
purple and long DNA fragment in brown. 

As expected, ssDNA-L was barely labeled by AMV RT in the absence of 

oligonucleotide CompSS, whereas it was strongly labeled in the presence of this 

oligonucleotide (Figure 64, compare lanes 1 and 2). However, 3’ end labeling by AMV RT 

was not chosen because an abortive DNA (54 nt long) was significantly labeled. Nonspecific 
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labeling of 54-nt DF is probably due to its folding into a stem-loop structure that is stable at 

42 °C in the presence of 8 mM MgCl2. Note that this abortive DNA fragment was also 

identified by reverse transcription from the 5’ end-labeled cPBS primer (Figure 61, lane 5). 

 

Figure 64. 3’ end-labeling assays of ssDNA-L performed by AMV RT and Taq DNA polymerase 
after reverse transcription. Lanes 1 and 2: 3’ end-labeling by AMV RT incubated at 42°C for 15 
min. The RT buffer contains a final concentration of 8 mM MgCl2. Lanes 3-6: 3’ end-labeling by Taq 
DNA polymerase incubated at 75°C for 15 min. Lanes 3 and 4: assays were incubated in the presence 
of 0.5 mM MgCl2. Lanes 5 and 6: assays were incubated in the presence of 1.5 mM MgCl2. Lanes 1, 3 
and 5: controls without CompSS. Lanes 2, 4 and 6: assays with CompSS. Lanes G and T+C refer to 
Maxam-Gilbert sequence markers. DF indicates 3’ end-labeling abortive DNA fragments. LDF 
indicates 3’ end-labeled DNA fragments longer than ssDNA-L. SDF indicates short DNA fragments. 
54-nt DF indicates the 54-nucleotide DNA fragment. 

To prevent the 3’ end labeling of 54-nt DF, we used Taq DNA polymerase at 75 °C in 

the presence of low magnesium concentrations (0.5 or 1.5 mM MgCl2) (Figure 64, lanes 3-6). 
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Consistent with our hypothesis, 54-nt DF was not labeled (Figure 64, lanes 3-6). Furthermore, 

nonspecific labeling was low in the absence of oligonucleotide CompSS (Figure 64, lanes 3 

and 5). Interestingly, the yield of 3’ end-labeled ssDNA-L was higher with Taq DNA 

polymerase than with AMV RT (Figure 64, compare lane 2 to lanes 4 and 6). In addition, 

the data show that 3’ end-labeling of ssDNA-L by Taq DNA polymerase was slightly more 

efficient at 0.5 mM MgCl2 than at 1.5 mM MgCl2 (Figure 64, lanes 4 and 6). Note that there 

were short DNA fragments (SDF) and only one LDF that were weakly labeled in the presence 

of oligonucleotide CompSS (Figure 64, lanes 4 and 6). Since nonspecific labeling of DNA 

fragments by Taq DNA polymerase was low at 75 °C in the presence of 0.5 mM MgCl2, we 

chose these conditions to specifically label ssDNA-L and ssDNA-S. 

In summary, the ssDNAs were labeled at their 3’ end in the presence of Taq DNA 

polymerase, oligonucleotide CompSS and "-32P-labeled dATP. After purification, the 3’ end-

labeled ssDNAs were checked for purity and integrity on a 6% denaturing polyacrylamide gel. 

As shown in Figure 65, ssDNAs were pure and therefore usable for structural and functional 

analysis. 

!
Figure 65. Analysis of purified 3’ end-labeled ssDNAs. One hundred fifty fmol (6 x 104 cpm) of the 
3’ end-labeled ssDNA-S (lane 1) and ssDNA-L (lane 2) in 4 $l of loading buffer A were heated at 90 
°C for 2 min, chilled for 2 min on ice and analysed by electrophoresis on a 6% denaturing 
polyacrylamide gel. !

3. Dimerization assays of ssDNAs 

Previous studies showed that both loose and tight duplexes can be characterized by 

native agarose gel electrophoresis at 4 °C in the TBM buffer (28, 232, 344). The labeled 

ssDNAs were monomeric after incubation with or without NC and analyzed under the 

electrophoretic conditions described above (Figure 66). Therefore, the structural and 

functional analysis were not be complicated by the presence of homoduplexes. 
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Figure 66. Analysis of ssDNAs dimerization. The samples were analyzed by 2% agarose gel 
electrophoresis at 4 °C in the TBM buffer and visualized by autoradiography. 5’ end-labeled ssDNA-L 
(A) and ssDNA-S (B) in the absence (lances C1 and C2) or in the presence of NC (lanes 4-6 and 8-10) 
were incubated at 37°C in the presence of 0.2 or 2 mM MgCl2 as described in the ‘Materials and 
Methods’ section. The protein to nucleotide molar ratios were 1:18 (lanes 4 and 10), 1:12 (lanes 5 and 
9) and 1:7 (lanes 6 and 8). Lanes Den, heat-denatured ssDNAs. Lanes C1 are controls without phenol-
chloroform extraction and ethanol precipitation. Lanes C2 are controls with phenol-chloroform 
extraction and ethanol precipitation. Monomeric forms of ssDNAs are indicated by m. M1 and M2 
indicate the size markers. 

4. Analysis of ssDNA-3’UTR annealing 

As mentioned previously, the annealing reaction between the full-length ssDNA and the 

3’ end of the gRNA has not been studied. Here we investigated the annealing process using 

the two full-length ssDNAs and RNA 3’-2 representing the 3’ end of gRNA (Figure 56B). To 

determine whether the magnesium concentration has an effect on the annealing pathway, the 

annealing assays were performed in 0.2 and 2 mM MgCl2 as described in the ‘Materials and 

Methods’ section. Since the 3’ UTR and ssDNA are probably folded during the first strand 

transfer, RNA 3’-2 and ssDNA-L or ssDNA-S were denatured and renatured before to be 

mixed together. 
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4.1 Annealing in the absence of NC 

Annealing of ssDNA-S to RNA 3’-2 was tested in the absence of NC in order to 

determine whether annealing of the full-length ssDNA to 3’ UTR is possible without the 

chaperone activity of NC. After one-hour incubation in the presence of 0.2 mM or 2 mM 

MgCl2, most of ssDNA-S molecules were in the unannealed form (Figure 67).  

 
Figure 67. Time course of ssDNA-S annealing with RNA 3’-2 in the absence of NC and in the 
presence of 0.2 mM (A and C) or 2 mM MgCl2 (B and D). (A and B) Annealing was performed as 
described in the ‘Materials and Methods’ section. Lane Den, heat-denatured 5’ end-labeled ssDNA-S. 
Lanes C, 5’ end-labeled ssDNA-S was incubated at 37 °C for 24 h in the absence of RNA 3’-2. Lanes 
3-7 in A and lanes 2-6 in B, 5’ end-labeled ssDNA-S and RNA 3’-2 were incubated together at 37 °C 
for various times. Lanes M1 and M2, size markers. (C and D) All experiments were repeated at least 
three times and error bars show standard deviations.  

Surprisingly, two new bands appeared for incubation times equal to or greater than three 

hours. The positions of these bands suggest that they did not correspond to the full-length 

heteroduplex (378 nt) of RNA 3’-2 and ssDNA-S but to shorter heteroduplexes. It is well 

established that the magnesium ion accelerates the spontaneous degradation of RNA. 

Interestingly, the annealing rate was greater in 2 mM MgCl2 than in 0.2 mM MgCl2 (Figure 

67, compare C and D). Therefore, we propose that the two heteroduplexes resulted from 

annealing between ssDNA-S and two RNA fragments generated by spontaneous cleavages of 

RNA 3’-2 (Figure 68). Note that formation of heteroduplexes was not efficient, since the 

annealing rate was not maximal before 24-hour incubation (Figure 67).  
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Figure 68. Hypothesis for the formation of heteroduplexes shorter than the full-length 
heteroduplex of ssDNA-S and RNA 3’-2. (A) RNA 3’-2 (200 nt) and ssDNA-S (178 nt) used in the 
annealing assays. (B) A putative spontaneous cleavage in the apical loop of TAR divides the TAR 
region into two parts (TAR-a and TAR-b). This cleavage generates RNA fragment A (RFA, ~110 nt) 
and RNA fragment B (RFB, ~90 nt). (C) (a) The heteroduplex (~288 nt) generated by the annealing of 
ssDNA-S to RFA that is mediated by base pairing of the complementary TAR and cTAR sequences. 
(b) Another heteroduplex (~268 nt) generated by the annealing of ssDNA-S to RFB that is mediated 
by base pairing between the (TAR-b)-polyA region and the cTAR-cpoly(A) region. RNA 3’-2 is 
indicated in black, ssDNA-S in purple, and RNA fragment in gray. The blue rectangle (broken line) 
indicates the base-pairing region in the heteroduplexes. 

In the absence of ssDNA-S and after incubation at 37 °C for various times, most of 

RNA 3’-2 molecules were in the full-length form but not in the cleaved forms (Figure 69). 

Nevertheless, there were weak spontaneous cleavages in RNA 3’-2 for incubation times equal 

to or greater than three hours. As expected, the spontaneous cleavage of RNA 3’-2 was 

slightly greater in the presence of 2 mM MgCl2 than 0.2 mM MgCl2 (Figure 69). There are 

two possible explanations for our results. First, the sensitivity of RNA 3’-2 to spontaneous 

cleavage was increased strongly in the presence of ssDNA-S, i.e. the cleavage of RNA 3’-2 

increased with the incubation time, thus facilitating formation of heteroduplexes shorter that 

the full-length heteroduplex of RNA 3’-2 and ssDNA-S. Note that the cleavage of RNA 3’-2 

probably destroyed the stable TAR hairpin. Second, most of RNA 3’-2 molecules remained in 

the full-length form in the presence of ssDNA-S which annealed exclusively to RNA 
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fragments generated by the spontaneous cleavage of RNA 3’-2. In summary, formation of the 

full-length heteroduplex of RNA 3’-2 and ssDNA-S was not observed in the absence of NC. 

 

Figure 69. Time course of RNA 3’-2 cleavage in the absence of ssDNA-S. 5’ end-labeled RNA 3’-2 
was incubated in the annealing buffer (containing 0.2 mM or 2 mM MgCl2) at 37 °C for various times: 
1 h (lanes 2 and 13); 3 h (lanes 3 and 12); 6 h (lanes 4 and 11); 12 h (lanes 5 and 10) and 24 h (lanes 6 
and 9). Lane Den, heat-denatured 5’ end-labeled RNA 3’-2. Lanes M1 and M2, size markers.  

4.2 Annealing assays of ssDNAs and RNA 3’-2 in the presence of NC 

Consistent with our results mentioned above, annealing of RNA 3’-2 to ssDNAs was 

barely detected after 15 min incubation in the absence of NC (Figure 70, lanes C3). In 

contrast, wild-type ssDNA-L and ssDNA-S were annealed to RNA 3’-2 and formed full-

length heteroduplexes after 15 min incubation in the presence of NC (Figure 70A, lanes 4-7; 

Figure 70B, lanes 3-6). Thus, the chaperone activity of NC stimulated strongly the annealing 

process between ssDNAs and RNA 3’-2. There were no large difference in annealing 

efficiency between the assays performed in 0.2 mM MgCl2 and those performed in 2 mM 

MgCl2 (Figure 70C). Note that ssDNA-S was more efficient than ssDNA-L to anneal to RNA 

3’-2 in the presence of 2 mM MgCl2. The bands above the full-length heteroduplex may 

correspond to multimers induced by NC in which the dimeric form of RNA 3’-2 was annealed 

to one or two ssDNA molecules (Figure 70 A and B). In agreement with this hypothesis, a 

tiny fraction of RNA 3’-2 molecules dimerized in the absence of NC (Figure 69, see the 

bands at the level of size markers). 

 



702(5$2!4#'!8*2)(22*&#!

%'&!

 

Figure 70. Annealing of wild-type ssDNAs to RNA 3’-2 is facilitated by NC. The NC-mediated 
annealing assays in the presence of 0.2 mM MgCl2 (A) or 2 mM MgCl2 (B) were performed as 
described in the ‘Materials and Methods’ section. The samples were analyzed by 2% agarose gel 
electrophoresis at 25 °C in the TBE buffer. Lanes C1, 5’ end-labeled ssDNA-S or ssDNA-L was 
incubated with NC in the absence of RNA 3’-2. Lanes C2, 5’ end-labeled ssDNA-S or ssDNA-L was 
heat-denatured. Lanes C3, 5’ end-labeled ssDNA-S or ssDNA-L was incubated with RNA 3’-2 in the 
absence of NC. Lanes M1 and M2, size markers. mlm: multimer; hd: full-length heteroduplex; hd1 
and hd2: heteroduplexes shorter than full-length heteroduplex; ssDNA: 5’ end-labeled ssDNA-S or 
ssDNA-L. (A) Lanes 4-7, 5’ end-labeled ssDNA-S or ssDNA-L was incubated with RNA 3’-2 in the 
presence of NC. The protein to nucleotide molar ratios were 1:24 (lanes 4), 1:18 (lanes 5), 1:12 (lanes 
6) and 1:7 (lanes 7). (B) Lanes 3-6, 5’ end-labeled ssDNA-S or ssDNA-L was incubated with RNA 3’-
2 in the presence of NC. The protein to nucleotide molar ratios were 1:24 (lanes 3), 1:18 (lanes 4), 
1:12 (lanes 5) and 1:7 (lanes 6). (C) The graphs show the percentage of 5’ end-labeled ssDNA-S or 
ssDNA-L that was annealed to RNA 3’-2 in the presence of NC. All experiments were repeated at 
least three times and error bars show standard deviations. Black square: in the presence of 0.2 mM 
MgCl2; red square: in the presence of 2 mM MgCl2. 
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Figure 71. Predicted secondary structures for the cTAR sequence in the wild-type and mutant 
ssDNA-L and ssDNA-S. Zuker’s DNA folding program (423) was used to predict the most stable 
secondary structure for each cTAR sequence. Numbering is relative to the first nucleotide of ssDNA-L. 
Mutations are shown as lower case letters in boxes. 

To determine the role of the apical loop and the lower stem of the cTAR hairpin in the 

NC-mediated annealing process, three mutants were investigated (Figure 71). The SL1 

mutant was designed such that it forms the stem-loop structure in the cTAR hairpin of 

ssDNAs, but its apical loop cannot base-pair with the apical loop of the TAR hairpin in RNA 

3’-2. The SL2 mutant was designed so that the loop-loop interaction should be prevented by 

single-base substitutions that introduce two base-pair mismatches. The INV mutant was 

designed so that the cTAR stem-loop can form only the “Y” conformation and its lower part 

cannot base-pair with the bottom of the TAR hairpin in RNA 3’-2. The rate of annealing in 

0.2 mM MgCl2 and in the presence of NC was not significantly reduced with the ssDNA 

mutants, compared to the wild-type ssDNAs (Figures 72C and 73C). These results show that 

NC-mediated annealing of ssDNA to 3’ UTR does not rely only on one pathway (‘kissing’ or 

‘zipper’) in 0.2 mM MgCl2. The results are also consistent with the notion that the NC-

mediated annealing process could be initiated through sequences that do not involve the 

apical loop and the bottom of the TAR hairpin. In the presence of 2 mM MgCl2, the NC-

mediated annealing process was not significantly impaired by the INV and SL2 mutations 

(Figures 72C and 73C). However, it seems that the annealing rate of ssDNA-S (SL2) to 

RNA 3’-2 was slightly reduced. Interestingly, the rate of annealing in 2 mM MgCl2 and in the 

presence of NC was on average 1.8-fold reduced with the SL1 mutants, compared to the wild-

type ssDNAs (Figures 72C and 73C). These results suggest that about fifty percent of 

ssDNA molecules annealed to RNA 3’-2 through the ‘kissing’ pathway in 2 mM MgCl2.  
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Figure 72. Mutational analysis of the annealing of RNA 3’-2 and ssDNA-S in the presence of NC. 
The NC-mediated annealing assays were performed in the presence of 0.2 mM MgCl2 (A) or 2 mM 
MgCl2 (B) as described in the ‘Materials and Methods’ section. The samples were analyzed by 2% 
agarose gel electrophoresis at 25 °C in the TBE buffer. Lanes C1, 5’ end-labeled ssDNA-S incubated 
with NC in the absence of RNA 3’-2. Lanes C2, 5’ end-labeled ssDNA-S was heat-denatured. Lanes 
C3, 5’ end-labeled ssDNA-S was incubated with RNA 3’-2 in the absence of NC. Lanes M1 and M2, 
size markers. mlm: multimer; hd: full-length heteroduplex; hd1 and hd2: heteroduplexes shorter than 
the full-length heteroduplex; ssDNA: 5’ end-labeled ssDNA-S. (A) Lanes 4-7, 5’ end-labeled ssDNA-
S and RNA 3’-2 were incubated in the presence of NC. The protein to nucleotide molar ratios were 
1:24 (lanes 4), 1:18 (lanes 5), 1:12 (lanes 6) and 1:7 (lanes 7). (B) Lanes 3-6, 5’ end-labeled ssDNA-S 
and RNA 3’-2 were incubated in the presence of NC. The protein to nucleotide molar ratios were 1:24 
(lanes 3), 1:18 (lanes 4), 1:12 (lanes 5) and 1:7 (lanes 6). (C) The percentage of 5’ end-labeled 
ssDNA-S that was annealed to RNA 3’-2 in the presence of NC. All experiments were repeated at 
least three times and error bars show standard deviations. Left graph: 0.2 mM MgCl2; right graph: 2 
mM MgCl2. Black square: wild type; purple circle: SL1; yellow triangle: SL2; blue diamond: INV. 
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Figure 73. Mutational analysis of the annealing of RNA 3’-2 and ssDNA-L in the presence of NC. 
The NC-mediated annealing assays were performed in the presence of 0.2 mM MgCl2 (A) or 2 mM 
MgCl2 (B) as described in the ‘Materials and Methods’ section. The samples were analyzed by 2% 
agarose gel electrophoresis at 25 °C in the TBE buffer. Lanes C1, 5’ end-labeled ssDNA-L incubated 
with NC in the absence of RNA 3’-2. Lanes C2, 5’ end-labeled ssDNA-L was heat-denatured. Lanes 
C3, 5’ end-labeled ssDNA-L incubated with RNA 3’-2 in the absence of NC. mlm: multimer; hd: full-
length heteroduplex; hd1 and hd2: heteroduplexes shorter than the full-length heteroduplex; ssDNA: 
5’ end-labeled ssDNA-L. Lanes M1 and M2, size markers. (A) Lanes 4-7, 5’ end-labeled ssDNA-S 
and RNA 3’-2 were incubated in the presence of NC. The protein to nucleotide molar ratios were 1:24 
(lanes 4), 1:18 (lanes 5), 1:12 (lanes 6) and 1:7 (lanes 7). (B) Lanes 3-6, 5’ end-labeled ssDNA-L and 
RNA 3’-2 were incubated in the presence of NC. The protein to nucleotide molar ratios were 1:24 
(lanes 3), 1:18 (lanes 4), 1:12 (lanes 5) and 1:7 (lanes 6). (C) The percentage of 5’ end-labeled 
ssDNA-L that was annealed to RNA 3’-2 in the presence of NC. All experiments were repeated at 
least three times and error bars show standard deviations. Left graph: 0.2 mM MgCl2; right graph: 2 
mM MgCl2. Black square: wild type; purple circle: SL1; yellow triangle: SL2; blue diamond: INV. 

It seems suprising that the SL2 mutation did not efficiently inhibit heteroduplex 

formation by introducing two adjacent destabilizing A.G mismatches in the loop-loop 
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complex. A possible explanation is that these mismatches are stablized by the flanking G-C 

base-pairs, i.e. a transient loop-loop interaction could be recognized by NC and sufficient to 

initiate heteroduplex formation. 

In summary, NC-mediated annealing of ssDNA to 3’ UTR can initiate through different 

regions of the R sequence in the presence of 0.2 mM MgCl2 (intracellular concentration). We 

do not know the Mg2+ concentration in the partially disassembled virus particles that are in 

the infected cells. Therefore, we cannot exclude the possibility that this concentration is 

locally greater than 0.2 mM. Our results suggest that the ‘kissing’ pathway plays an important 

role in the NC-mediated annealing of ssDNA to 3’ UTR if this process occurs in the presence 

of 2 mM MgCl2 (concentration required for reverse transcription and strand transfer in vitro). 

It is possible that ssDNA-S and ssDNA-L fold differently in 2 mM MgCl2, since ssDNA-S 

was more efficient than ssDNA-L to anneal to RNA 3’-2 (Figure 70C). Thus, it is important 

to investigate the conformations of ssDNA-S and ssDNA-L to gain insight into the 

mechanism of NC-mediated ssDNA-3’ UTR annealing. 

5. Conformation analysis of ssDNAs 

Two conformers of an RNA molecule can be separated by non-denaturing 

polyacrylamide gel electrophoresis (214). Furthermore, single-strand conformation 

polymorphism (SSCP) showed that different conformations of a DNA molecule can be 

characterized by non-denaturing polyacrylamide gel electrophoresis (343, 352). Consistent 

with the analysis of ssDNAs by native agarose gel electrophoresis in a TBM buffer (Figure 

66), ssDNAs were monomeric after incubation with or without NC and analysed by non-

denaturing polyacrylamide gel electrophoresis in the TBM buffers (Figure 74).  

Interestingly, in the presence of 0.2 mM MgCl2 in the incubation and electrophoresis 

buffers, the 5’ end-labeled ssDNAs separated into two distinct bands in the absence or 

presence of NC (Figure 74 A and C). These observations suggest that ssDNAs adopted two 

different conformations in the presence of 0.2 mM MgCl2. PhosphorImager quantification 

indicated that 60% of ssDNA molecules folded into the m1 conformation. In contrast, only 

one band was observed in the presence of 2 mM MgCl2 in the incubation and electrophoresis 

buffers (Figure 74 B and D). We also observed only one band when the assays were 

analyzed by non-denaturing polyacrylamide gel electrophoresis in the TBE buffer (Figure 75). 

These observations suggest that the conformer identified by the TBM-2 gel required 

magnesium to be formed, whereas the conformer identified by the TBE gel did not require 

this divalent cation to be formed. It is likely that at low magnesium concentrations as 0.2 mM, 



702(5$2!4#'!8*2)(22*&#!

%'+!

there were the two types of conformers. Determination of secondary structures of ssDNAs 

may allow characterizing the folding of conformers. 

 

Figure 74. Analysis of conformers by non-denaturing PAGE in TBM buffers. 5’ end-labeled 
ssDNA-L (A and B) and ssDNA-S (C and D) in the absence (lanes C1 and C2) or in the presence of 
NC (lanes 4-6 and 10-12) were incubated at 37 °C in the presence of 0.2 mM MgCl2 (A and C) or 2 
mM MgCl2 (B and D) as described in the ‘Materials and Methods’ section. The samples were 
analyzed by 6% polyacrylamide gel electrophoresis at 20°C in the TBM-0.2 or TBM-2 buffer. The 
protein to nucleotide molar ratios were 1:18 (lanes 4 and 10), 1:12 (lanes 5 and 11) and 1:7 (lanes 6 
and 12). Lanes Den, heat-denatured ssDNAs. Lanes C1 are controls without phenol-chloroform 
extraction and ethanol precipitation. Lanes C2 are controls with phenol-chloroform extraction and 
ethanol precipitation. Lanes 7-12 correspond to a short-exposure autoradiography of lanes 1-6. 
Monomeric forms of ssDNAs are indicated by m. Note that two monomeric conformations of ssDNAs 
(m1 and m2) can be separated by electrophoresis in the TBM-0.2 buffer.  
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Figure 75. Analysis of conformers by non-denaturing PAGE in the TBE buffer. 5’ end-labeled 
ssDNA-L (A) and ssDNA-S (B) in the absence (lanes C1 and C2) or in the presence of NC (lanes 4-6 
and 10-12) were incubated at 37 °C in the presence of 0.2 or 2 mM MgCl2 as described in the 
‘Materials and Methods’ section. The samples were analyzed by 6% polyacrylamide gel 
electrophoresis at 25 °C in TBE. Monomeric forms of ssDNAs are indicated by m. The protein to 
nucleotide molar ratios were 1:18 (lanes 4 and 10), 1:12 (lanes 5 and 11) and 1:7 (lanes 6 and 12). 
Lanes Den, heat-denatured ssDNAs. Lanes C1 are controls without phenol-chloroform extraction and 
ethanol precipitation. Lanes C2 are controls with phenol-chloroform extraction and ethanol 
precipitation.  

6. Structural analysis of ssDNAs 

Using potassium permanganate (KMnO4), mung bean nuclease (MB) and DNase I, we 

determined the secondary structures of the two ssDNAs and the NC binding sites within these 

DNAs. Note that due to the size of DNase I and MB, the absence of cuts by these enzymes 

may also be a result of steric hindrance. As mentioned previously, the nucleases cleave the 

phosphodiester bond and generate a 3’-hydroxyl terminus in the 5’ end-labeled DNA. In 

contrast, the Maxam-Gilbert reactions generate a 3’-phosphorylated terminus in the 5’ end-

labeled DNA. The electrophoretic mobility of Maxam-Gilbert sequence markers is therefore 

slightly greater than that of fragments produced by nucleases. Short and long migrations were 

used to identify the cleavages sites (examples in Figures 76 and 87). To determine the 

precise position of cleavage, the 5’ and 3’ end-labeled ssDNA were used (examples in 

Figures 81 and 87). Only the cleavage sites that were observed with the two types of labeling 

(5’ and 3’ ends) were taken into account to build the secondary structure models of ssDNAs. 

To generate the secondary structure models, we selected the foldings predicted by the Mfold 

program (423), which were the most consistent with the experimental data. To facilitate 

comparisons between the ssDNA-S and ssDNA-L, we used the same numbering for 

nucleotides. Consistent with the probing data and the results of the conformation assays, two 

conformations of ssDNAs in the presence of 0.2 mM MgCl2 (Figures 79 and 83) and one 

conformation in the presence of 2 mM MgCl2 (Figures 80 and 84) are proposed. 
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6.1 Structural analysis of ssDNAs in the absence of NC 

Representative examples of probing experiments are shown in Figures 76-78 (ssDNA-S) 

and 81-82 (ssDNA-L) and the results of a series of independent experiments are summarized 

in Figures 79-80 (ssDNA-S) and 82-83 (ssDNA-L).  

6.1.1 Probing of ssDNA-S 

 

Figure 76. DNase I probing of 3’ end-labeled ssDNA-S in the presence of 2 mM MgCl2. DNase I 
probing experiments were performed as described in the ‘Materials and Methods’ section. (A) Short 
migration on an 8% denaturing polyacrylamide gel. (B) Long migration on a 6% denaturing 
polyacrylamide gel. Lanes Ct are controls without DNase I. The 3’ end-labeled ssDNA-S was 
incubated with DNase I (0.2, 0.3 and 0.4 U). G and C refer to Maxam-Gilbert sequence markers. 
Arrows indicate the medium and strong DNase I cleavage sites.  

The DNase I and MB cleavage patterns (Figures 76 and 77) were consistent with the 

secondary structures proposed for ssDNA-S in 0.2 mM and 2 mM MgCl2 (Figures 79 and 

80). Indeed, most of the moderate and strong DNase I cleavages occured within stems or at 

the ends of stems, whereas most of moderate and strong MB cleavages occured within 

unpaired regions. Consistent with the formation of stems, T23, T61, T63, T98, T101, T102, T110, 

T140, T172 and T178 were unreactive to KMnO4 and the sensitivity of T59, T126, T132, T133 and 
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T183 to KMnO4 were low (Figure 78). In contrast, the thymine residues in the loops displayed 

high and moderate sensitivities to KMnO4. The high sensitivity of T181 (Figure 78) indicates 

that at least one side of the plane of the heterocyclic ring of the thymine residue is exposed. 

This suggests that T181 adopts the looped-out bulge conformation (Figures 79 and 80).  

 

Figure 77. MB probing of 5’ end-labeled ssDNA-S in the presence of 0.2 mM MgCl2 (A) or 2 mM 
MgCl2 (B). MB probing experiments were performed as described in the ‘Materials and Methods’ 
section. The 5’ end-labeled ssDNA-S was incubated with MB (0.75, 1 and 1.25 U). Lanes Ct are 
controls without MB. G and C refer to Maxam-Gilbert sequence markers. Arrows indicate the medium 
and strong MB cleavage sites. The differences in cleavage rate between 0.2 mM and 2 mM MgCl2 are 
indicated by asterisks. 

We did not find significant differences between the cleavage patterns generated by 

DNase I in 0.2 mM and 2 mM MgCl2 (data not shown). The cleavage patterns generated by 

MB in 0.2 mM and 2 mM MgCl2 were similar but not identical (Figure 77). Indeed, the rate 

of MB cleavage between A117-A118 and A118-G119 was greater in 0.2 mM MgCl2 than in 2 mM 

MgCl2. In contrast, the rate of MB cleavage between A108-C109, T123-A124 and A124-T125 was 

greater in 2 mM MgCl2 than in 0.2 mM MgCl2. These cleavage differences were restricted to 

the upper part of a long stem-loop structure (Figures 79 and 80) and probably resulted from 
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differences in the accessibility of this stem-loop to MB. It is likely that the three-dimensional 

folding of ssDNA-S is modulated by the magnesium ions. The KMnO4 probing patterns of 

ssDNA-S in 0.2 mM and 2 mM MgCl2 exhibited differences for T148, T149 and T152 (Figures 

78-80). Interestingly, the differences in the reactivity of T148, T149 and T152 to KMnO4 

between 0.2 and 2 mM MgCl2 (Figure 78) are consistent with a dynamic structure of the 

cTAR hairpin in ssDNA-S. Our KMnO4 probing data are consistent with the equilibrium 

between two conformations of the cTAR hairpin in 0.2 mM MgCl2 (Figure 78). Our data also 

suggest that the cTAR sequence folds into the partially closed conformation in the majority of 

ssDNA-S molecules that are in the presence of 2 mM MgCl2. 

 

Figure 78. KMnO4 probing of 5’ end-labeled ssDNA-S. KMnO4 probing experiments were 
performed in the presence of 0.2 mM MgCl2 (A) or in the presence of 2 mM MgCl2 (B) as described 
in the ‘Materials and Methods’ section. Lanes Ct are controls without any chemical treatment. Lanes 
Cpip are controls without KMnO4 treatment but with piperidine treatment. The 5’ end-labeled ssDNA-S 
was incubated with KMnO4 (0.5, 1 and 2 mM). Arrows indicate the medium and strong KMnO4 
reactive thymine residues. The difference in KMnO4 sensitivity between 0.2 mM and 2 mM MgCl2 are 
indicated by asterisks. 
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Figure 79. Secondary structure models of ssDNA-S in the presence of 0.2 mM MgCl2. ssDNA-S 
may adopt two conformations (a and b). Delta G-values were predicted by mfold. Closed, gray and 
open symbols indicate strong, medium and weak cleavage sites, respectively, for the various enzymes 
(triangle for DNase I and circle for MB). The color codes used for the reactivity of thymine residues 
are indicated in the inset. The differences in KMnO4 sensitivity and in the cleavage rate between 0.2 
mM and 2 mM MgCl2 are indicated by asterisks. Numbering of ssDNA-S is relative to the first 
nucleotide of ssDNA-L. 
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Figure 80. Secondary structure model of ssDNA-S in the presence of 2 mM MgCl2. ssDNA-S 
forms a stable conformation. Delta G-values were predicted by mfold. Closed, gray and open symbols 
indicate strong, medium and weak cleavage sites, respectively, for the various enzymes (triangle for 
DNase I and circle for mung bean nuclease). The color codes used for the reactivity of thymine 
residues are indicated in the inset. The differences in KMnO4 sensitivity and in the cleavage rate 
between 0.2 mM and 2 mM MgCl2 are indicated by asterisks. Numbering of ssDNA-S is relative to 
the first nucleotide of ssDNA-L. 

6.1.2 Probing of ssDNA-L 

The DNase I and MB cleavage patterns (Figures 81 and 87) were consistent with the 

secondary structures proposed for ssDNA-L in 0.2 mM and 2 mM MgCl2 (Figures 83 and 

84). Indeed, most of the moderate and strong DNase I cleavages occured within stems or at 

the ends of stems, whereas most of moderate and strong MB cleavages occured within 

unpaired regions. Consistent with the formation of stems, T47, T61, T63, T98, T101, T102, T110, 

T126, T140, T172 and T178 were unreactive to KMnO4 and the sensitivity of T23, T132, T133 and 

T183 to KMnO4 were low (Figure 82). In contrast, the thymine residues in the loops displayed 

high and moderate sensitivities to KMnO4. The high sensitivity of T181 (Figure 82) indicates 

that at least one side of the plane of the heterocyclic ring of the thymine residue is exposed. 

This suggests that T181 adopts the looped-out bulge conformation (Figures 83 and 84). 

Surprisingly, T42 displayed a moderate sensitivity to KMnO4, although it is predicted to lie in 

a stem. T42 could be in a distorted DNA helix, since KMnO4 also allows to detect this type of 

structure (72, 174). 
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Figure 81. Enzymatic probing of ssDNA-L. Enzymatic probing experiments were performed as 
described in the ‘Materials and Methods’ section. (A) In the presence of 0.2 mM MgCl2, the 5’ end-
labeled ssDNA-L was incubated with DNase I (0.2, 0.3 and 0.35 U). Lane Ct is the control without 
DNase I. Sequence lanes (A, C, G and T) were run in parallel. (B) The 3’ end-labeled ssDNA-L was 
incubated with DNase I (0.2 mM: 0.12 and 0.15 U; 2 mM: 0.05 and 0.08 U). Lanes Ct are controls 
without enzymes. Lanes 1 to 3, assays performed in the presence of 0.2 mM MgCl2. Lanes 4-6, assays 
performed in the presence of 2 mM MgCl2. G+A refers to Maxam-Gilbert sequence markers. Arrows 
indicate the medium and strong cleavage sites. 

No significant difference was found between the cleavage patterns generated by DNase 

I in 0.2 mM and 2 mM MgCl2 (Figure 81). The cleavage patterns generated by MB in 0.2 

mM and 2 mM MgCl2 were similar but not identical (data not shown). Indeed, the rate of MB 

cleavage between C146-C147 and A166-C167 was greater in 2 mM MgCl2 than in 0.2 mM MgCl2. 
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In contrast, the rate of MB cleavage between C175-C176 was greater in 0.2 mM MgCl2 than in 

2 mM MgCl2. These cleavage differences were restricted to the cTAR stem-loop structure 

(Figures 83 and 84) and probably resulted from differences in the accessibility of this stem-

loop to MB. It is likely that the three-dimensional folding of ssDNA-L is also modulated by 

the magnesium ions. 

  

Figure 82. KMnO4 probing of 5’ end-labeled ssDNA-L. KMnO4 probing experiments were 
performed in the presence of 0.2 mM MgCl2 (A) or in the presence of 2 mM MgCl2 (B) as described 
in the ‘Materials and Methods’ section. Lanes Ct are controls without any chemical treatment. Lanes 
Cpip are controls without KMnO4 treatment but with piperidine treatment. The 5’ end-labeled ssDNA-
L was incubated with KMnO4 (0.5, 1 and 2 mM). Arrows indicate the medium and strong KMnO4 
reactive thymine residues. The differences in KMnO4 sensitivity between 0.2 mM and 2 mM MgCl2 
are indicated by asterisks. 
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Figure 83. Secondary structure models of ssDNA-L in the presence of 0.2 mM MgCl2. ssDNA-L 
may adopt two conformations (a and b). Delta G-values were predicted by mfold. Closed, gray and 
open symbols indicate strong, medium and weak cleavage sites, respectively, for the various enzymes 
(triangle for DNase I and circle for mung bean nuclease). The color codes used for the reactivity of 
thymine residues are indicated in the inset. The differences in KMnO4 sensitivity and in the cleavage 
rate between 0.2 mM and 2 mM MgCl2 are indicated by asterisks.  
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Figure 84. Secondary structure model of ssDNA-L in the presence of 2 mM MgCl2. ssDNA-L 
forms a stable conformation. Delta G-values were predicted by mfold. Closed, gray and open symbols 
indicate strong, medium and weak cleavage sites, respectively, for the various enzymes (triangle for 
DNase I and circle for mung bean nuclease). The color codes used for the reactivity of thymine 
residues are indicated in the inset. The differences in KMnO4 sensitivity and in the cleavage rate 
between 0.2 mM and 2 mM MgCl2 are indicated by asterisks. 

The KMnO4 probing patterns of ssDNA-L in 0.2 mM and 2 mM MgCl2 exhibited 

differences for T148, T149 and T152 (Figures 82-84). Interestingly, the differences in the 

reactivity of T148, T149 and T152 to KMnO4 between 0.2 and 2 mM MgCl2 (Figure 78) are 

consistent with a dynamic structure of the cTAR hairpin in ssDNA-L. Our KMnO4 probing 

data support the equilibrium between two conformations of the cTAR hairpin in 0.2 mM 

MgCl2 (Figure 78). Our data also suggest that the cTAR sequence folds into the partially 

closed conformation in the majority of ssDNA-L molecules that are in the presence of 2 mM 

MgCl2. 

6.1.3 Comparison of secondary structures adopted by the two ssDNAs 

Probing data show that there is no difference between ssDNA-S and ssDNA-L for the 

folding of the r region (nucleotides 101-196) (Figures 79, 80, 83 and 84). In contrast, there 

are differences between ssDNA-S and ssDNA-L for the folding of the 19-89 sequence (a large 

part of the u5 region), which is present in both ssDNAs. These differences are due to 

nucleotides 16-18 in ssDNA-L that allow nucleotides 16-49 to fold to into the stem-loop 
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containing a single-nucleotide bulge. The 22-49 sequence in ssDNA-S is involved in a stem-

loop containing a large internal loop that is less stable ($G = -1,09 kcal/mol) than the stem-

loop ($G = -1,87 kcal/mol) described above.  

6.1.4 Probing of ssDNA in the reverse transcription mixture 

 
Figure 85. Specific 3’ end labeling of ssDNA-L and its cleavage products. 1) In vitro transcription 
of RNA 1-415 via the template generated from plasmid pYC5’ digested by HaeIII. 2) In vitro reverse 
transcription of RNA 1-415 from the cPBS primer. 3) Structural probing of the mixture of reverse 
transcription products. 4) Annealing of oligonucleotide CompSS. Only the probing products 
containing the complementary sequence of CompSS should be annealed. 5) A labeled adenine is 
added to the 3’ end of ssDNA due to the 5’ tail of CompSS. The plasmid is indicated in red, RNA 1-
415 in black, abortive DNA fragments in brown and ssDNA-L in purple. The cleavage induced by the 
probe is indicated by a blue lightning. 
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Our 3’ end-labeling method was also designed to investigate by chemical and enzymatic 

probes the secondary structure of ssDNA after reverse transcription, i.e. within a mixture 

containing abortive DNA fragments and DNA fragments generated by a probe. More 

precisely, this method should allow to check that ssDNA in the reverse transcription mixture 

adopts the same folding as the purified ssDNA that has been denatured and renatured. As 

shown in Figure 85 (step 3), both ssDNA-L and abortive DNA fragments may be sensitive to 

one structural probe. When DNAs are labeled at their 5’ ends, all the probing products can be 

detected on a denaturing polyacrylamide gel, which complicates the analysis of the secondary 

structure of ssDNA-L. However, using specific 3’ end-labeling (Figure 85 steps 4 and 5), 

only the probing products derived from ssDNA-L should be detected on the gel.  

After the reverse transcription of RNA 1-415 (Figure 85 step 2), we tried to label only 

the 3’ ends of full-length ssDNAs and DNA fragments produced by cleavage of full-length 

ssDNAs with an enzymatic probe (DNase I or mung bean nuclease). Despite many trials, we 

did not get reproducible results allowing to determine the secondary structure of ssDNAs. 

Indeed, the enzymatic probes did not produced dose-dependent cleavages and there were high 

levels of nonspecific labeling (data not shown). A likely explanation is that DNA and RNA 

fragments interfered with the enzymatic activity of probes and nonspecific labeling is the 

result of an increase in the number of DNA molecules exhibiting a 3’ end. 

6.2 Structural analysis of ssDNA-L in the presence of NC 

Both ssDNA-S and ssDNA-L were monomeric after incubation with NC as assessed by 

native polyacrylamide gel electroporesis in the TBE buffer (Figure 66). Therefore, the 

structural analysis was not complicated by the presence of homoduplexes. To analyze the NC 

binding sites, we have taken into account the knowledges that are mentioned here. The 

binding site size of NC is 5 to 8 nucleotides (239). NC preferentially interacts with single-

stranded regions and unpaired guanines. More precisely, NC binds with high affinity the TG, 

TNG and GNG motifs in DNA (10, 11, 390). Based on NMR structures, our team recently 

proposed that NC binds to DNAs and RNAs with opposite polarities (21). The binding 

polarity of NC complexed to DNA would be the following: the C-terminal zinc finger 

interacts with a guanine residue and the N-terminal zinc finger interacts with a residue (C or T) 

upstream to the guanine residue. To identify destabilized regions and protections induced by 

NC in ssDNA, we compared the enzymatic and KMnO4 probing patterns of ssDNA-L in the 

absence or presence of increasing concentrations of NC. Unreactive thymine residues in stems 

can become reactive to KMnO4 if these stems are destabilized by NC (see paper in the end of 
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this part). A close examination of the structures of the NC:DNA complexes (21, 40) shows 

that the 5, 6 double bond of the nucleobase of the thymine residues is accessible to KMnO4 

that is a small probe. Therefore, KMnO4 is expected to interact with the nucleobases of 

unpaired thymine residues that interact with the N-terminal zinc finger of NC. In other word, 

KMnO4 allows to identify the destabilized stems but not the thymine residues interacting with 

NC. After several trials, the KMnO4 assays did not show any significant: 1) NC-mediated 

destabilization of stems in ssDNA-L; 2) change induced by NC in the ssDNA-L secondary 

structure. 

The rate of DNase I cleavage at the level of T98, A138 and G141 was not deeply affected 

by NC at protein to nucleotide molar ratios equal to or lower than 1:12 (Figure 86), showing 

that the part of the stem containing these nucleotides is not a strong binding site for NC. This 

is expected since NC preferentially binds the single-stranded regions. Interestingly, the rate of 

DNase I cleavage was deeply affected at the level of most sites in the presence of increasing 

concentrations of NC. DNase I cleavage strongly increased at the level of A26, A28, C62 and 

T63, suggesting that the regions containing these nucleotides are more accessible in the 

presence of NC than in its absence. In other words, the three-dimensional folding of ssDNA-L 

may be changed by NC. The effect of NC on the three-dimensional folding may depend on 

the magnesium concentrations. Indeed, in the presence of increasing concentrations of NC, 

DNase I cleavage at the level of A104 increased in 0.2 mM MgCl2, whereas it decreased in 2 

mM MgCl2 (Figure 86). In the presence of increasing concentrations of NC, DNase I 

cleavage at the level of several sites did not decrease at the same rate, i.e. NC induced specific 

protection against DNase I (Figure 86). In both conditions (0.2 mM and 2 mM MgCl2), there 

were moderate protections at the level of T42, T47, T101, A108 and A128 (Figures 86, 88 and 89). 

In the presence of 2 mM MgCl2, there were also moderate protections at the level of T126, T145, 

G150 and C151. These results are consistent with the notion that NC binds the double-stranded 

regions of nucleic acids non-specifically through electrostatic interactions of the basic 

residues with the phosphodiester backbone (229, 391). The stem containing the TG motif with 

the bulged guanine may be a strong binding site for NC since the protein induced a strong 

decrease in DNase I sensitivity at the level of C19 and G20. This hypothesis is not supported by 

the MB probing data. Indeed, the sensitivity of A18, T20 et G21 did not decrease in the presence 

of NC (Figures 88 and 89). In the presence of 0.2 mM MgCl2, there was a strong protection 

at the level of T126, suggesting that the stem containing this residue is a strong binding site for 

NC. Since the binding site size of NC is 5 to 8 nucleotides (239), a likely hypothesis is that 

the zinc fingers of NC interacted with the unpaired G114 and G115 of the apical loop, whereas 
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the basic N-terminal domain of NC interacted with the adjacent stem. This hypothesis is 

consistent with a moderate protection at the level of T126 in the presence of 2 mM MgCl2. 

Indeed, Mg2+ could compete with the basic N-terminal domain of NC for nonspecific binding 

to the stem. In the presence of 0.2 mM MgCl2, there were strong protections against DNase I 

within the 145-152 sequence (Figures 86 and 88). These results suggest that NC bound the 

single-stranded 148-151 sequence and switched the equilibrium toward the open 

conformation of the cTAR hairpin. The strong protection at the level of C147 in 2 mM MgCl2 

(Figure 86), suggests that the lower part of the cTAR hairpin is a strong binding site for NC 

(Figure 89). 

The rate of MB cleavage at the level of A34 was not deeply affected by NC (Figure 87), 

showing that the part of the apical loop containing this nucleotide is not a strong binding site 

for NC. Note that there is no unpaired guanine near A34 (Figures 88 and 89). Surprisingly, 

there was a strong protection at the level of C69, although there is no unpaired guanine near 

C69. We do not think that the apical loop containing this nucleotide and G65 constitute an NC 

binding site. Indeed, there was no protection against DNase I at the level of T63 and A64. 

Although there is a moderate protection at the level of A124, we think that the surrounding 

nucleotides do not consitute an NC binding site. Indeed, there is no unpaired guanine near 

A124. We propose that binding of NC to G119 induced structural changes in the apical loop 

leading to decrease the accessibility of A124 to MB. Interestingly, the moderate protections at 

the level of T50, T52, A54, A108 and A117 occurred within unpaired regions containing at least a 

guanine residue (Figures 87-89). Therefore, these regions are probably binding sites for NC. 

In both conditions (0.2 mM or 2 mM MgCl2), the 85GATGG89 and 146CCTTG150 sequences 

are probably strong binding sites for NC since there were strong protections against MB 

within these sequences (Figures 87-89). Note that the TG motif is present in both sequences. 

Interestingly, the MB sensitivity of A187 and A188 increased in the presence of NC and 2 mM 

MgCl2, suggesting that the sequence containing these residues became more accessible for 

MB. In the same conditions, the MB sensitivity of A190 and A192 decreased, suggesting that 

the sequence containing these residues may be a NC binding site. This is consistent with the 

hypothesis that NC bound the 148-151 sequence and slightly destabilized the lower part of the 

cTAR hairpin. In the presence of 2 mM MgCl2, there was a moderate protection at the level of 

C166, suggesting that the apical loop containing this residue is a binding site for NC. The C-

terminal zinc finger of NC may interact with G168 of the apical loop. However, this hypothesis 

is not compatible with the observation that the sensitivity of C167 to MB did not decrease in 

the presence of NC (Figure 87B). A likely explanation is that NC changed the three-
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dimensional folding of ssDNA-L and therefore the accessibility of the cTAR apical loop. In 

the presence of NC and 2 mM MgCl2, the rate of MB cleavage increased between A157-G158, 

A159-G160, A175-C176 and C176-C177, suggesting that the internal loop became more accessible 

to MB. Taken together, these data suggest that NC induced changes in the accessibility to the 

upper part of the cTAR hairpin. 

 

Figure 86. DNase I probing of ssDNA-L in the presence of NC. The NC-mediated probing 
experiments were performed and analyzed as described in the ‘Materials and Methods’ section. In the 
absence (lanes 1 and 5) or presence of NC (lanes 2-4 and 6-8), the 3’ end-labeled ssDNA-L was 
incubated with DNase I (0.15 U for lanes 1-4 and 0.08 U for lanes 5-8). Lanes Ct and Ct’ are controls 
without NC and DNase I. Lanes 1-4, assays performed in the presence of 0.2 mM MgCl2. Lanes 5-8, 
assays performed in the presence of 2 mM MgCl2. The protein to nucleotide molar ratios were 1:18 
(lanes 2 and 6), 1:12 (lanes 3 and 7) and 1:7 (lanes 4 and 8). G refers to Maxam-Gilbert sequence 
markers. Arrows indicate the medium and strong DNase I cleavage sites. For the assays performed in 
0.2 mM MgCl2, moderate and strong protections induced by NC are indicated by one and two black 
stars, respectively. The white stars indicate the sites where the rate of cleavage increased in the 
presence of NC. The red star indicates the DNase I site where the cleavage rate in the presence of NC 
depends on magnesium concentration. 
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Figure 87. MB probing of ssDNA-L in the presence of NC. The NC-mediated probing experiments 
were performed and analyzed by short (A) and long (B) migrations as described in the ‘Materials and 
Methods’ section. (A) In the absence (lanes 1 and 5) or presence of NC (lanes 2-4 and 6-8), the 3’ end-
labeled ssDNA-L was incubated with MB (0.12 U). Lanes Ct and Ct’ are controls without NC and MB. 
Lanes 1-4, assays performed in the presence of 0.2 mM MgCl2. Lanes 5-8, assays performed in the 
presence of 2 mM MgCl2. The protein to nucleotide molar ratios were 1:18 (lanes 2 and 6), 1:12 (lanes 
3 and 7) and 1:7 (lanes 4 and 8). G refers to Maxam-Gilbert sequence markers. (B) In the absence 
(lane 1) or presence of NC (lanes 2-4), the 5’ end-labeled ssDNA-L was incubated with MB (0.12 U) 
in the presence of 2 mM MgCl2. Lane Ct is the control without NC and MB. The protein to nucleotide 
molar ratios were 1:18 (lane 2), 1:12 (lane 3) and 1:7 (lane 4). Sequence lanes (A, C, G and T) were 
run in parallel. Arrows indicate the medium and strong DNase I cleavage sites. For the assays 
performed in 0.2 mM MgCl2, moderate and strong protections induced by NC are indicated by one and 
two black stars, respectively. The white stars indicate the sites where the rate of cleavage increased in 
the presence of NC. The red star indicates the DNase I site where the cleavage rate in the presence of 
NC depends on magnesium concentration. 
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Figure 88. Secondary structure models for ssDNA-L in the presence of NC and in the presence 
of 0.2 mM MgCl2. ssDNA-L may adopt two conformations (a and b). Delta G-values were predicted 
by mfold. Closed, gray and open symbols indicate strong, medium and weak cleavage sites, 
respectively, for the various enzymes (triangle for DNase I and circle for mung bean nuclease). The 
color codes used for the reactivity of thymine residues are indicated in the inset. The protection 
induced by NC at the level of enzymatic cleavage sites are indicated by black stars (the strong 
protections are indicated by two black stars). The white stars indicate the sites where the rate of 
cleavage increased in the presence of NC. The red stars indicates the DNase I site where the cleavage 
rate in the presence of NC depends on magnesium concentrations. The protection or destabilization 
induced by NC at the level of MB cleavages in the 157-196 sequence has not been determined. 
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Figure 89. Secondary structure model for ssDNA-L in the presence of NC and in the presence of 
2 mM MgCl2. ssDNA-L forms a stable conformation. Delta G-values were predicted by mfold. 
Closed, gray and open symbols indicate strong, medium and weak cleavage sites, respectively, for the 
various enzymes (triangle for DNase I and circle for mung bean nuclease). The color codes used for 
the reactivity of thymine residues are indicated in the inset. The protections induced by NC at the level 
of enzymatic probe cleavage sites are indicated by the black stars  (the strong protections are indicated 
by two black stars). The white stars indicate the sites where the rate of cleavage increased in the 
presence of NC. The red stars indicates the DNase I site where the cleavage rate in the presence of NC 
depends on magnesium concentrations. 



90#0%45!:&#)5(2*&#2!

%)*!

!

!

!

!

!

!

!

!

!

!

GENERAL CONCLUSIONS
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Our study is the first analysis of structure-function relationships in the full-length 

ssDNA. Until our study, this analysis has not been performed because it requires relatively 

large amounts of the full-length ssDNA. Therefore, a part of my thesis was devoted to 

develop a method to prepare sufficient amounts of the pure full-length ssDNA. I prepared and 

studied ssDNA-S and ssDNA-L that are two full-length ssDNAs (Figure 56). ssDNA-L 

represents the full-length ssDNA that is not annealed to the PBS region, whereas ssDNA-S 

represents the full-length ssDNA that is paired with this region. All experiments were 

performed in 0.2 mM MgCl2 (intracellular concentration) and 2 mM MgCl2 (concentration 

required for reverse transcription and strand transfer in vitro). 

1. ssDNA adopts two distinct conformations in 0.2 mM MgCl2 

Our results suggest that ssDNA-S or ssDNA-L folds mainly into one conformation in 

the presence of 2 mM MgCl2. In contrast, analysis of ssDNA-S and ssDNA-L by non-

denaturing polyacrylamide gel electrophoresis suggests that ssDNA adopts two distinct 

conformations in equilibrium in the presence of 0.2 mM MgCl2. Although the cPBS sequence 

is deleted in ssDNA-S, we observed two conformers for this DNA. Therefore, the cPBS 

sequence has no role in formation of the two confomers. Our probing data suggest that 

formation of two conformers is due to the cTAR sequence that can form a long stem-loop or a 

short stem-loop in ssDNA (Figure 90B). To demonstrate this hypothesis, it will be necessary 

to design mutations within the cTAR sequence that block one conformation. 

2. Folding of the r region 

The r region in ssDNA-S and ssDNA-L does not fold as an independent domain. Indeed, 

8 base pairs (conformer 1) or 11 base pairs (conformer 2) are formed between the u5 and r 

sequences (Figure 90B). As predicted by Berkhout et al. (34), the r sequence folds into the 

cpolyA and cTAR hairpins. Our probing data strongly suggest that the secondary structures of 

the cTAR sequence alone or within ssDNA are not identical (Figure 90, compare A and B). 

Thus, the closed conformation is not formed in ssDNA and the cTAR hairpin is more open 

(conformer 2) in ssDNA than the ‘Y’ conformation of the cTAR sequence alone. In both 

conformations of ssDNA, the 5’ end of the cTAR sequence forms a base-pairing interaction 

with nucleotides of the u5 region. In contrast, the 3’ end of the cTAR sequence is unpaired in 

both conformations of ssDNA. In the absence of NC and in the presence of 7 mM MgCl2, our 

data support a dynamic structure of the cTAR hairpin, involving equilibrium between both the 

closed conformation and the ‘Y’ conformation. Our data suggest that most of ssDNA 
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molecules fold into conformer 1 in the absence of NC and in the presence of 2 mM MgCl2. It 

is likely that the magnesium ions stabilize the lower part of the cTAR hairpin in conformer 1. 

Finally, our results indicate that a DNA oligonucleotide corresponding to the cTAR sequence 

is not a perfect model for the annealing reaction, since its folding is partially different from 

the cTAR sequence in ssDNA. 

 
Figure 90. Comparison of secondary structures of cTAR DNA involved in the annealing of 
ssDNA to 3’ UTR. (A) Secondary structures for the closed and ‘Y’ conformations of cTAR DNA. (B) 
Secondary structure models of the r region in ssDNA. (C) Secondary structure of R region in 3’ UTR. 
The cTAR DNA, the cTAR hairpin in ssDNA and the TAR hairpin in 3’ UTR are indicated in purple. 
The cpoly(A) region in ssDNA and the poly(A) region in 3’ UTR are indicated in blue. Numbering of 
ssDNA corresponds to +1 of ssDNA-L and numbering of 3’ UTR corresponds to +1 of HIV-1 (MAL 
isolate). 
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3. NC binding sites in ssDNA  

Our footprinting experiments were performed at NC to nucleotide molar ratio of 1:18, 

1:12 and 1:7 that have been found in infectious HIV-1 particles (45, 60). Our probing data 

suggest that there are at least five preferential binding sites for NC in ssDNA. Taken together, 

the DNase I and MB probing data suggest that the 85GATGG89 and 146CCTTG150 sequences 

are two strong NC binding sites, whereas the 50TCTGAG55, 106GCA108 and 117AAGC120 

sequences are moderate NC binding sites. All NC binding sites contain at least one unpaired 

guanine. Note that the TG motif is present in both strong NC binding sites. In the u5 region, 

the two NC binding sites are within single-stranded regions that are located between two 

stem-loops. In the r region; the three NC binding sites are located within: 1) the internal loop 

of the cpolyA hairpin; 2) the apical loop of the cpolyA hairpin; 3) the single-stranded region 

between the cpolyA and cTAR hairpins. Surprisingly, we do not have evidence that NC binds 

the apical and internal loops of the cTAR hairpin in ssDNA, althought we found that NC 

binds these loops in a DNA oligonucleotide corresponding to the cTAR sequence (Figure 53 

and paper at the end of Part 1 of the ‘Results and Discussion’ section). A hypothesis is that 

the unpaired G168 and G174 are not accessible to NC in structured ssDNA. However, this 

hypothesis is not supported by the observation that MB cleaves with these loops in structured 

ssDNA. To date, we cannot give any logical explanation for the discrepancy between the 

footprinting results obtained with cTAR DNA and ssDNA. 

4. Relationships between the ssDNA structure and the annealing reaction 

We showed that mutations targeting the apical loop and the 3’ end of the cTAR 

hairpin did not prevent the annealing of ssDNA to 3’ UTR in the presence of 0.2 mM MgCl2. 

These results support the notion that NC-mediated annealing of ssDNA to 3’ UTR can be 

initiated through different regions of the R sequence in 0.2 mM MgCl2 (intracellular 

concentration). Our results suggest that the r region folds into two conformations in 

equilibrium in the presence of 0.2 mM MgCl2 (Figure 90B). Under these conditions, the 

initiation sites for the annealing reaction are probably unpaired regions, i.e. the apical loops, 

the 3’ end of the cTAR sequence and the single-stranded regions between the hairpins 

(Figure 90 B and C). The complementary apical loops are present in both partners, whereas 

the complementary sequences of single-stranded regions are in stems (nucleotides 132-139 in 

ssDNA and 9134-9145 in 3’ UTR). Opening of these stems is required for the annealing 

reaction and is probably more efficient in 0.2 mM MgCl2 than 2 mM MgCl2. The NC binding 

site at the junction of the cpolyA and cTAR hairpins suggests that NC facilitates the opening 
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of stems. Our group did not find a NC binding site between the TAR and polyA hairpins; 

although this single-stranded region contains the UG motif (205). Since this study was 

performed in the presence of 7 mM MgCl2, we cannot exclude the possibility that NC binds 

the junction of the TAR and polyA hairpins at low magnesium concentrations. Interestingly, 

we showed that approximately half of ssDNA molecules annealed through the ‘kissing’ 

pathway in 2 mM MgCl2 (concentration required for reverse transcription and strand transfer 

in vitro). In contrast, our results do not support the ‘zipper’ pathway in 2 mM MgCl2. The 

lower stems of the TAR and cpolyA elements are probably too stable in 2 mM MgCl2 to be 

used as initiation sites for the annealing reaction. Therefore, we propose that the apical loops 

of the polyA and cpolyA hairpins are the second initiation sites for the annealing reaction in 2 

mM MgCl2. Note that these apical loops contain 11 unpaired nucleotides (Figure 90 B and 

C). Finally, our results showed that NC plays an essential role in annealing of ssDNA to 3’ 

UTR, since no full-length heteroduplexes were formed in the absence of NC. 
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