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Introduction

Problem

In an industrial environment, mechanisms are assesseddyn&in criteria: quality and
throughput. The ability of a mechanism to operate at a higlegdgertainly improves through-
put, but what about quality? As a rule of thumb, the industwagis demands better quality
and more throughput, even though these two criteria contlicfortunately with serial robots,
there is a limit to the amount we can improve the quality amdughput.

In order to overcome this limit, parallel robots are desijie be faster and more accu-
rate than serial robots. Today, they are being used more arglimindustry. Although parallel
robots are theoretically more skillful, they are strucliyraery complex to manipulate. Further-
more, parallel robots are mostly modeled and controllett ajtproaches adopted from serial
robots, which is certainly not the best way. There are plaftgpecific controls for mobile
robots, for humanoids, etc., so why should parallel robetsdntrolled like serial robots?

Consequently, in order to push parallel robots to theirtbhmew methods are a must. So,
we are faced with the problem of how to control parallel rebat high speed. We can divide
this problem into 3 sub-sections:

1. How can parallel robots be simply and accurately modeled?
2. How can the dynamic state of a high speed parallel robotdsesored?

3. What is the appropriate control space for better perfogaa

Objectives

Thus, the first objective of this thesis is to develop an appate control-oriented modeling
approach for parallel robots. In modeling, we must alwayigesto obtain the simplest, most
accurate and most applicable solution possible. The semlgjadtive of this thesis is to measure
the posture and the velocity of a parallel robot at high spaédudan off-the-shelf sensor(s). The
third objective of this thesis is to explore the existing ttohspaces and to propose new ones
in order to improve the control of parallel robots.

Contributions

In this thesis, the key contributions are built upon thermagons of the legs of a parallel
robot. Figure 1 simply illustrates the global observatidrthe legs by a camera. The main
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contributions are as follows:

— Initially, we pushed the modeling of parallel robots by meaf leg orientations one step
further. We moved it from kinematics to dynamics. This kettfesdynamic model of a
parallel robot simple, clear, and linear. What is more thesans that one can write the
dynamic model of any complex parallel robot from beginniitigehd with just pen and
paper.

— Secondly, we proposed a new approach for estimating thandignstate of a parallel
robot at high speed. We achieved this using only the parisaia¥ contours of the legs.
These visual contours were measured from the sequentiaibgd small sub-images
of the legs during the motion of the parallel robot.

Figure 1 — A camera is observing the leg directions of a paredbot. Leg orientation vectors
unify modeling and control into a single linear controlesried framework.
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We published the following papers throughout this thesis:
1. “Dynamic Control of the Quattro Robot by the Leg Edges'RAC2011;

2. “Vector-Based Dynamic Modeling and Control of the Quatdarallel Robot by means
of Leg Orientations”, ICRA 2010;

3. “On the Adequation of Dynamic Modeling and Control of RlateKinematic Manipu-
lators", IMSD 2010.

and submitted the paper below:

1. “Linear Dynamic Modeling of Parallel Kinematic Maniptdas from Observable Kine-
matic Elements", submitted to Int. Journal of Mechanism liaghine Theory.

Outline of the Thesis

The rest of this thesis proceeds as follows: Chapter 1 safeystate-of-the-art works on
parallel robots and discusses the MICMAC project; Chapteutlnes a linear framework for
the kinematic and dynamic modeling of parallel robots basedeg orientations; Chapter 3
uses kinematic control to estimate the dynamic state (postad velocity) of a parallel robot
at high speed, and defines a versatile sensor-based contpried control law; Chapter 4 ex-
perimentally validates these new theoretical approadfiasjly, in the last Chapter, | conclude
my thesis and offer some future possibilities.






Chapter 1

State of The Art

This chapter gives background to the evolution of the thasthat the reader can be equip-
ped for the next. The state-of-the-art topics are focusedaateling, control, and identification
of parallel robots. We also discuss some new extensions.

1.1 Parallel Robots

1.1.1 Definition

A parallel robot can be conceptually imagined as Sir Nevgtdraind holding a red apple
with his fingertips (see Fig. 1.1). The palm of the hand forheskiase platform of the parallel
robot, and the fingers act like serial robots attached todhse platform all cooperatively ma-
nipulating the red apple. Here in the parallel robot, theapple represents a moving platform
that might have a large load.

Figure 1.1 — A metaphor for a parallel robot concept: a haridithg a red apple with its fin-
gertips. The palm of the hand forms the base platform. Fsgpresent the kinematic chains.
The red apple is either the moving platform or the movingfptat with a large heavy load.
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In a parallel robot, these serial robots are called kinesvatains and they usually contain
a single motorized joint while the rest of the joints are pas<£ach of these motorized joints
are generally located either at the base platform (i.e.h#ma’s knuckle joints) or at the very
first of joint locations close to the base platform. Theseskiatic chains are connected to
the moving platform all together, and consequently theynfarclosed-loop mechanism. The
structures of these kinematic chains are usually idenéindltheir placements are symmetric,
but they can be also different like the fingers of a hand. Thebr of these kinematic chains
must be equal to or greater than twa], so that we can call it parallel robot Here, “parallel”
does not imply that the kinematic chains are aligned as lpatiles, but it means rather that
these kinematic chains work together to achieve a task. allparobot shows better dynamic
performances than a serial robot in terms of speed and agcwtzle manipulating both large
and heavy loads [Mer00, Gog08]. Clearly, it would be diffidol eat the red apple with one
finger. Figure 1.2 shows the well-known two examples of palrabbots: the Gough-Stewart
platform [GW62, Ste65] and the Delta robot [Cla88, Cla91].

Figure 1.2 — The Stewart platform (left) and the Delta patathbot (right).

1.1.2 Joint Types and Graphical Layout

The primitive joints with different degrees of freedom (Hp€D02] are as follows:

— Prismatic Slides on an axisl(dof). It is noted by P).

— Revolute Rotates around an axi$ @of). It is noted by R).

— Spherical (ball) Rotates around three axesdof). It is a ball and noted byS).

Different combinations of these joints create differeqey:

— Universal It is composed of two revolute joints that allow two rotaso@ dof). It is
noted by Q).

— Spherical It can also be composed of three revolute joints that allued rotations3

dof). It is noted again byS).



— Parallelogram It is composed of four bars that are connected end to end\njute
joints [Cla88]. These four bars form a parallelogram sh#@pparallelogram keeps an
output link at fixed orientation with respect to an input litkallows translation in three
axes 8 dof) on a sphere. It is noted bi4§).

A graphical layout of a robot demonstrates the positionfefactuators, of the joints and

of the kinematic elements [Pie91, Kru03]. A graphical layis.composed of:

— Two bars representing a base and a moving platform.

— Boxes representing the joints. Each box has a symbol itwigcthe type of joint. If the
joint is actuated and contains a sensor (e.g., motor enctuar the symbol is underli-
ned.

— Lines representing the bodies.

Figure 1.3 shows the joint-oriented graphical layouts efptarallel robots in Fig. 1.2.

Moving platform

Moving platform

Base Base

Figure 1.3 — The Gough-Stewart platform (left) and the Delémallel robot (right) joint-
oriented graphical layouts.

1.1.3 Classification
1.1.3.1 Kinematic Classification

Parallel robots are classified into three groups [MerOOgbamn their motion capacities:

— Mechanism for translatianThe Speed-R-Man robot [RLN92], the Orthoglide robot
[WCO00].

— Mechanism for rotationThe Agile Eye [GH94].

— Mechanism for translation and rotatiofThe Gough-Stewart robot [GW62, Ste65], the
Delta robot [Cla88, Cla91], the Quattro robot, the 3RRR t¢BA88], the T3R1 parallel
robot [Gog02].



1.1.3.2 Architectural Classification

Parallel robots are also classified into three groups [G0Z Ren03] based on their struc-
ture:

— Groupl: It contains a prismatic joint between the two bodies of danbmatic leg.

— Group2: It contains a prismatic joint between the base and eachnidtie leg.

— Groupa3: It lacks prismatic joints.

Table 1.1 shows examples of these three groups of robots.

Table 1.1 — Architectural Classification.

The Gough — Stewart robot The Orthoglide robot The Quattrorobot

1.1.4 Compared with Serial Robots
1.1.4.1 Advantages

Parallel robots are, in theory, better than serial robots:

Lighter. Parallel robots usually have lighter kinematic legs beedts heavy actuators are
often mounted on the base platform rather than inside trenkatic legs.

Faster: Parallel robots move faster and consume less energy thaetia robots, since their
kinematic legs are lighter [Cla89, Mer00, TZR99]. Consetlye for a given energetic
expenditure, the acceleration of a parallel robot’s effieesfr is greater than a serial
robot’s end-effector.

Stronger: Against a disturbing force, a parallel robot's end-effectehich is supported by
many kinematic legs in a closed-loop form, shows more rigithan a serial robot’s
end-effector, which is supported through a single long aeal/i kinematic leg [Mer00].
The longer and heavier the kinematic leg is, the weaker ibimes. In addition, the
disturbing force applies a compression for the kinematneints of a parallel robot,
while for the kinematic elements of a serial robot it apphldsrsion.

More Accurate: Unlike serial robots, parallel robots can be more accufidiis is because er-
rors in the assembly of the mechanism and errors made whémltioig the mechanism
average out rather than accumulating [Mer00].
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1.1.4.2 Disadvantages

In practice, however, parallel robots suffer from:

Limited Workspace & Singularity: Even though they are larger in size they have limited
workspace [Mer00]. This is because of the closed-loop coimes between the kine-
matic legs. This workspace also gets smaller by the presehsmgularities [PK98],
which makes them harder to settle for a given pose than al sebat. Moreover, in
these singularity positions, they completely lose théfingtss and become shaky.

Modeling: Their modeling is difficult because of the complex closedplstructures and be-
cause of the existing passive joints [Mer00]. The cleararacel assembly errors in the
passive joints decrease the precision of the positionintpe®end-effector. Calibration
cannot solve this totally.

Control: Itis hard to compensate for the loss of accuracy in modetiimg,e the passive joints
are not motorized. Furthermore, as a result of the couplingregy the kinematic legs,
the motion of the end-effector in the Cartesian space ingpaskighly non-linear dy-
namic behavior on the parallel robot [DC99]. In industrialieonments, parallel robots
are usually controlled by single axis linear controllerbe3e controllers can take into
account neither the influences of the kinematic legs on ow¢han nor the non-linear
behavior of the dynamics.

In a high-speed trajectory tracking task, consequentlsalieh robots will loose accuracy
[DHO6, TDHO4].

1.1.5 The Duality of Parallel and Serial Robots

The fact that parallel robots use passive joints means ithapme respects, they behave
oppositely to serial robots [WH91, Bru99].
— From a configurational point of view:

A serial robot: The active joint values and the analytical forward kinemaiodel de-
fine uniquely the state of the serial robot [KD02]. There asaally several so-
lutions to the inverse kinematic problem. These solutiomay mot have a closed-
form.

A parallel robot: The end-effector pose and the analytical inverse kinennatidel de-
fine uniguely the state of the parallel robot [Mer0Q] (excepine of the parallel
robots, e.g.3RRR, 3RPR). The analytical inverse kinematic model is usually ex-
pressed in terms of the active joint values. Neverthelesting it in terms of the
end-effector pose is more pertinent [DAMMO06, DC99]. Unlgerial robots, the
forward kinematic model of a parallel robot does not alwagseha closed-form so-
lution and it needs to be estimated numerically. Unfortelyathis may yield many
solutions [Mer90, Hus94] and there are not very many pdnaileots that are deli-
berately designed to have closed-form forward kinematideteo[Gog04, WCO00].
By mechanical construction, one can reduce this set ofisakit(e.g., the Delta
robot, the Quattro robot).



— From a control point of view:
It is harder to master the behavior of the end-effector ofralf® robot than a serial ro-
bot. This is because of the two conflicting properties of alfpalrrobot: (i) the lack of a
closed-form solution for a forward kinematic model thatresgents the actual mechanics
of a parallel robot (i.e., manufacturing and assembly srrmint clearances and back-
lashes, flexibilities); (ii) the end-effector can be movetiydoy controlling the actuators
built in the base platform.

— From a sensing point of view:
The previous two points of views (should) induce naturaliis tthird one,duality in
sensing

Serial robots: Since active joints represent fully the configuration, gsinly the motor
encoders for sensing is adequate for control of serial sobot

Parallel robots: The full configuration of parallel robots, however, canneelxpressed
easily by the active joints (except a few, e.g., the Ortlumglithe Delta). On the
other hand, an end-effector pose can represent the fullgroafion of most of the
parallel robots. Thus, sensing the end-effector pose ofalpbrobot rather than
its active joints is more adequate [DAMMO6] for control.

1.1.6 Metrological Redundancy

One of the easiest and the fastest and consequently pokfeagto measure information
from parallel robots is to use again the motor encoders aittén done in serial robots. But
this simplifies neither modeling (e.g., forward kinemagiceblem) nor the control of parallel
robots as discussed above. Thus, it seems that differesingetechniques can affect funda-
mentally the performance of parallel robots.

Therefore, use of extra sensors (or so-cateetrological redundangyin modeling and
control of parallel robots has appeared in the literaturecgsplementary to actuation redun-
dancy where extra motors added in the structure [MPCO03], IYJHNCP12].

In [COB93], [BA95], [BTKL99] and [PCG99], redundant positi sensors and the motori-
zed joint encoders were used together to solve forward kitieproblems of parallel robots.

It is well known that the forward kinematics of the Goughv&et platform has 40 possible
solutions [Hus94]. But if one adds sensors to the passivgsjcihen the solution may become
straightforward (e.g., Gough-S. + length + direction of lggs).

Alternately to joint sensing, one can use exteroceptivaiagnsuch as vision [AMMO05],
[DAMMO6]. In [AMMO5], vision observed the mechanism legsdareplaced advantageously
redundant position sensors by delivering the internabstthe mechanism in the Cartesian
frame. This approach was then used to servo visually theiftegtibns of the Gough-Stewart
platform rather than its Cartesian pose. Thus, this apprpagposed an original vision-based
kinematic modeling and control method of parallel robotsdasbon observation of their legs.

In [DAMMOE6], the Cartesian space control of the Gough-Steéysatform was performed
using only vision (without using active joint positions)hi$ was done by directly measuring
the Cartesian end-effector pose of the Gough-Stewariophatby a camera observing a pattern
fastened to the moving platform. Thus, the forward kinemptbblem of the Gough-Stewart
platform was completely removed and replaced by a compugérvsystem. This computer
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vision system gives a unigue solution and makes the conttbedsough-Stewart type mecha-
nisms simpler than they are.

In [MCKPO02], the potential of redundant sensors was alsavehon a H4 parallel robot.
An optical encoder and a vision system observed togethezrttieeffector to yield a full pose
information of the H4 parallel robot. Then, this measured-effector pose was fused with the
active joint positions. These fused redundant measurenesitiose the H4 mechanism at both
ends (from base and end-effector). Consequently, intemeahanical errors were compensated
and the control accuracy was enhanced.

1.2 Modeling

The geometry, kinematics, mass distribution, and aca@earaf a robot define its behavior.

1.2.1 Kinematic Modeling

It would be possible to adapt one of the existing methodsHerkinematic modeling of
serial robots [DH55, KK86, GCB96] for use with parallel ra®oHowever, it would be pre-
ferable to use a method that takes into account the closgridonstraints of a parallel robot
[Kru03, Vivo4].

1.2.1.1 The Zeroth-Order Kinematic Models
These models describe the static relations between thegooation variables such as the
tool (end-effector) posK and the articular positiong of the robot:

Inverse Kinematic Model (IKM) This model describes the motor positiorg),(given the
end-effector poseX) and the geometric parameteis.(,) of the robot. For serial ro-
bots, IKM might offer several solutions:

@ = MP(X, &eo), i=1,....,n>2 (1.1)

On the other hand, for parallel robots except a few (e.g.,BRIKM yields a unique
solution:

q = M?p(x> ggeo) (12)

where M}, andM?p are the inverse kinematic models of a serial robot and of allgar
robot, respectively. The super-right script denotes tleoof the kinematic models.

Closed-form expressibilityThe IKM of a parallel robot can be expressed easily in a
closed form. But the IKM of a serial robot can be expressedIlizan a closed form.

Forward Kinematic Model (FKM) This model describes the pose of the end-effecioy, (
given the positions of the motorgX and the geometric parameters of the rolggt).
For serial robots, FKM yields a unique solution:

X = Mg}(qa ggeo) (13)
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whereX is a column-array representation of the end-effector pOsethe other hand,
for parallel robots, FKM might offer several solutions:

Xz’:Mjg‘p(qaggeo)a t=1,...,n> 2 (1'4)

where M}, andMgp are the forward kinematic models of a serial robot and of alfsdr
robot, respectively.

Closed-form expressibilityfhe FKM of a serial robot can be expressed in a closed form,
but the formulation of FKM of a parallel robot is more complied (except a few, e.g.,
the Orthoglide, the Isoglide4-T3R1, GauntryTau, Delka)i Use of additional sensors
can either complete the missing information of the passitg of a parallel robot to
express its FKM in a closed form [BTKL99] or eliminate the FKiy measuring directly
the end-effector posk of a parallel robot [DAMMO6].

Implicit Kinematic Model (ImplKM)  [And06] Since previously mentioned forward and in-
verse kinematic models of robots might not exist as injeathnappings (i.e., single input-
single output), one would prefer a formulation of the kindésgunder the form of an
implicit kinematic model. This model combines the previongdels into one implicit
model, given the relations between the end-effector pdsentotor positions and the
geometric parameters. It is a holonomic constraint for agvant state of the variables:

M(g(X> q, ggeo) =0 (1.5)

whereMg is the implicit kinematic model of a robot.

Redundant Implicit Kinematic Model (RImplKM) Here, we propose a more generic model
by deduction from the implicit model (1.5). Assuming thag tfobot is equipped with
different type(s) of sensor(s) providing redundant meas@ntsr, we rewrite (1.5) as
follows:

MgR(Xv q,r, gsensom ggeo) =0 (16)

whereé ., sor IS the parameter vector of the sensor(s) Mqﬁq is the redundant implicit
kinematic model. Equation (1.6) can be written in a more cachfform by assembling
q andr in a single measurement vectoas follows:

MzgR(Xa S, fsensom ggeo) =0 (17)

wheres contains all the signals of the sensors. The sensor(s) caropgoceptive (e.g.,
motor encoders), or exteroceptive (e.g., a camera), or dication of these. Conse-
quently, this can allov to be chosen as bijective (minimal) or surjective (redumjdim
the end-effector pose. For example, the possible choicesnfay be as follows:

se{q, {q, p}, {x1:X9, -+ s Xi}y ooy oor } (1.8)

wherep is a variable set completing the motor positions for a unigol@tion of the
end-effector pose, and whefe ,x,, ..., x;} is the set of unit vectors showing the
3D directions of the bodies in a robot, and so on. The restisftkiesis will extensively
discuss this issue.
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1.2.1.2 The First-Order Kinematic Models

The time differentiation of the previous kinematic modeigeg the differential kinematic
models relating the Cartesian velocity of the end-effepimse to the speed of the motors, or
more precisely to the velocity of the sensor sigsal
Inverse Differential Kinematic Model (IDKM) This model gives the speed of motors, given

the end-effector pose and velocity, and as well as the gemnpetrameters of the robot:

. aMO X) eo
o = PMICK Eyeo)

o5 X (1.9)

. OMP(X, &geo)
4 oX
whereM} is the inverse differential kinematic model of a robot. Tinisdel is necessary

for all the controls taking explicitly into account the nbnear couplings between the
joints.

Lx¢ or d = Mj(X, &eo) Lx ¢ (1.10)

Closed-form expressibilityThe IDKM of a parallel robot can be usually expressed in a
closed form. On the other hand, expressing IDKM of a seriabtds more complicated.

Forward Differential Kinematic Model (FDKM) This model gives the velocity of the end-
effector pose, given the positions and speeds of the motakraawell as the geometric
parameters of the robot:

OMp(a, &geo)
0q 4

whereX is a chosen representation for the end-effector pose. Teweoms forward dif-

ferential kinematic model can be associated to the kinentaist ¢, which defines the
instantaneous motion of the end-effector with respectéditise of the robog, is com-

posed of a translational velocity and a rotational velocityw. The choserX can be

expressed in terms of a representation dependant miagribelating the partial deriva-
tive of the pose to the kinematic twigt{Ang971]:

X = (1.11)

X = Ly ¢ = Ly [5} (1.12)

Then, one can rewrite (1.11) with the kinematic twjsis follows:

1 OMp(a, &geo) . _ .
C = LX1 % q or C = Lxl M}W(Q7 Sgeo)q (113)
whereM}. is the forward differential kinematic model of a robot. Thisdel can be used
for both simulation and prediction.

Closed-form expressibilityfThe FDKM of a parallel robot cannot be expressed easily in
a closed form. The FDKM is computed usually by inverting nucaly the IDKM of

a parallel robot. On the other hand, the FDKM of a serial raf@ot be expressed in a
closed form.
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Implicit Differential Kinematic Model (ImpIDKM)  [And06] The differentiation of (1.5) yields
the complete implicit differential kinematic model:

8M£(X7 q: ggeo) : + aMg(Xu q7 fgeo)
oX Jdq

4=0 (1.14)

or equivalently,
15 1 e
My X + Mjy4 =0 (1.15)
In the case of a flexible robot, one must add the term relatingsériations of the geo-
metric parameters:

OMY(X, 4, €geo) . OMYX, Q Egeo) .,  IMI(X, q, Egeo)

o = 0 (1.1
oX * dq q+ D000 &g 0 (1.16)

or equivalently,

M%(X) X + M¢1>(Q) q + M¢1>( )égeo =0 (2.17)

This model hag matrices: the differential Cartesian kinematic maM%(X); the diffe-

égeo

rential articular kinematic matriMdl)(q); and the sensibility matriMdl)(égeo). Rewriting
(1.15) and (1.17) in a matrix-vector form:
1 1 X _
| My Mg | [ 4 ] =0 (1.18)
X
1 1 1 . —
[ My Myq) My, ] aq | =0 (1.19)
ggeo

we get the implicit differential kinematic model matrM(}) and the flexible implicit
differential kinematic model matriMdl)f:

1 1 1

My = | My Mg | (1.20)
1 o 1 1 1

My, = | My Mg My | (1.21)

For a rigid robot, one can write from (1.18) the forwadd ) and the inverse /})
differential kinematic models as follows:

T T
1 _ 1 1 1 _ 1 1
Mp = - <M¢><X>) My, Mp = - (M¢><q>) Myx) (1.22)

provided tha'Mdl) andel) have full rank.

(X) (a)

Redundant Implicit Differential Kinematic Model (RImpIDK M) Similarly to the previous
part (ImpIDKM), the differentiation of (1.7) yields the cqnete redundant implicit dif-
ferential kinematic model:

j»ﬁ;;}{(sg) Bg _F' th;;]%(s) é - () (]..:Z:g)
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or equivalently,

[ Mipcxy Mg ] [ SSQ } =0 (1.24)
whereMlR % andM;R <) are the differential Cartesian kinematic matrix and the dif
ferential sensor(s) signaf kinematic matrix, respedgjivil the case of a flexible robot

equipped with dynamic sensors (e.g., a moving and/or zogpramera), the terms re-

lating the variations of the geometric parameters of th@talnd the variations of the

sensor parameters must be taken into account. Thus, tieeatiffation of (1.7) yields:

1 3 1 . 1 - 1 - _
Md)R( X) X + M¢R(s) S + MQSR(fsensor) gsensor + MQSR(fgeO) é‘geo - 0 (125)

or equivalently,

X
1 1 1 1 S —
|: Md)R( X) M¢R(S) M¢R(§senso’r‘) M¢R(§geo) ] ésensor - O (126)
égeo

whereM; R(Evensor) and M; R(€ge0) are the differential sensor kinematic matrix and the
sensibility matrix, respectively.

1.2.1.3 Singularities

Equation (1.17) yields three type of singularities [And06]
Articular Singularity: It happens when the differential articular kinematic maisisingular:

{(Xa q, ggeo)|M¢1>(q) (X> q, ggeo) q= O} (127)
and as well as where a motion of the active articular joinishee changes the end-
effector pose nor deforms the robot.

Cartesian Singularity: It happens when the differential Cartesian kinematic masrsingu-
lar:

{(X, @, &geo)| M) (X, @, Egeo) X = 0} (1.28)

and as well as where a motion of the end-effector neither gdsithe active articular
positions nor deforms the robot.

Sensibility Singularity: It happens when the sensibility matrix is singular:

{(X, q, ggeo)|M¢1>(§geo)(X> q, ggeo) égeo = O} (129)

In these configurations, deformations or variations in thengetric parameters of the
robot do not have any effect on the kinematic behavior of tiet. Reconfigurable
robots are not considered here.

In the rigid body assumption, the articular and cartesiagigarities correspond respecti-
vely to the well known serial and parallel singularities afallel robots [GA90, CW98].
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1.2.2 Dynamic Modeling

A dynamic model relates the active forces acting on a robtitd@ccelerations they cause,
or the other way around. These active forces can be both nterirerotation and forces in
translation.

Inverse Dynamic Model (IDM) An inverse dynamic model computes the torques and/or forces
that the actuators of the robot must deliver to make the éedter move in a certain
way. It is used for control of robot motions and forces:

I' = A(s)8 + h(s, 8) + I’y (1.30)

whereI is the force vector of the actuatord, is the inertia matrix of the robot is
the vector of the centrifugal, the Coriolis and the gravityces,I'; is the vector of the
friction forces, and is the state variable vector of the robot. In the case of alsaiot,
the inverse dynamic model is usually written in terms of thiatj positionsq, because
the joint positions uniquely define the posture of a seribbto

I'=A(q)4 +h(q, q) + Ty (1.31)

or equivalently,
= IDM( d? 617 q, ggeov gdyn) (132)

where¢,,, denotes the dynamic parameters of the robot. Since the aetbomodeling
of parallel robots are adopted from serial robots, the swelynamic model of a parallel
robot is generally written in terms of the articular posise [KD02] too. It is, however,
preferable to write the inverse dynamic model of a paratilot with the end-effector
poseX, since in most cases it is the end-effector pose which detiniggiely the posture
of a parallel robot:

' = IDM(X> X» X, ggeoa gdyn) (133)

This inverse dynamic model is used for control purposes dedlly it should be as
precise and as simple as possible.

Forward Dynamic Model (FDM) A forward dynamic model computes the accelerations of
the state variables for given forces, positions and ve&xtitt is also known as direct
dynamic modellt is mainly used for simulation. A forward dynamic modeliigearly
extracted from (1.30) as follows:

§=AYs)(T - h(s, 8 — Ty) (1.34)
or, equivalently, it can be noted as follows:
§ = FDM(T, 8, s, £5e0r Edyn ) (1.35)

For serial robots, (1.35) is again written in terms of thafgiositionsq, since the joint
positions define uniquely the posture of a serial robot:

61 = FDM( F> 617 q, ggeov gdyn) (136)
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And for parallel robots, (1.35) is again written in termsloé &nd-effector posk, since
in most cases the end-effector pose defines uniquely tharpasta parallel robot:

X = FDM(T, X, X, £eo Edyn) (1.37)

Implicit Dynamic Model (ImpIDM) Here, we introduce an implicit dynamic model which
actually corresponds to the equations of motion (EoM) ofteotoWe note it as follows:

0= ImplDM( F7§> éa S, gsensom ggeoa gdyn) (138)

wheres is the set of the measured variables which can express uyitheestate of a
robot. The definition o is similar to (1.8), and here we augment it with the end-eédfiec
poseX of a robot:

SE{X, q, {q> P}» {517527"'75143}7 R } (139)

where agairp is a complementary set of variables enriching the motortijposi for
the unique solution of a robot posture, afxd,;,x,, ..., x;} is the set of unit vectors
showing the 3D directions of the bodies in a robot, and so on.

1.2.3 Dynamic Modeling Methods of Serial Robots

Many methods exist for dynamic modeling of serial robotghsas the Euler-Lagrange
method, the recursive Newton-Euler method, the d’Alemimathod and Kane’s method. Now,
we shall describe briefly these methods.

1.2.3.1 Euler-Lagrange Method

The Euler-Lagrange method [Lag87] exploits the princifleanservation of energy in a
mechanism to derive the dynamic equations. The equatianganalytic and closed-form.
The Euler-Lagrange equations are obtained by differengjiahe Lagrangian function:

which yields:

d oL oL d oT oT oV
- - - =— | —]-(— - — ] =T 1.41
it (861) gq _ di (c‘m) (aq aq) (1.41)

whereT and U are the kinematic and potential energies. This method isl goostudy of
the dynamic properties and analysis of control schemes.eMexysince it is an energy-based
method, it is geometrically less intuitive and it is repdrte be computationally inefficient.
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1.2.3.2 Newton-Euler Method / Luh-Walker-Paul's Algorithm

The Newton-Euler method [Pau81, LWP80a] exploits the lmadari forces and torques in a
mechanism to derive the dynamic equations. The equati@ns aumeric and recursive-form.
This method uses the Newtonian equations of motion:

f =ma, T=I'& + w x (" w) (1.42)

wheref, 7, m, a, w andZ are the linear momentum, the angular momentum, the mass, the
linear acceleration, the angular velocity and the inerfithe body, respectively. The method
calculates the dynamics through two loops:

— Forward Loop moves from base to end to evaluate the velocities and tredeaations.

— Backward Loopmoves from end to base to compute the forces and torques.
It is systematic and efficient for real time implementatiénhe control schemes.

1.2.3.3 d'Alembert Method / Principle of Virtual Work

This method exploits the principle of conservation of \aftwork [IRd43] in a mechanism
to derive the dynamic equations. It states that the sum &drdiices in work, resulting from
either virtual forces acting through a real displacementeat forces acting through a virtual
displacement, is zero. The displacemeninfinitesimaland isconsistent with constraintsn
the system:

0=> (fi—ma;)" ox; (1.43)
7
wheref is an applied forceyn is the mass of a particle, is the acceleration of a particléx
is an infinitesimal displacement consistent with the camsts, andi enumerates a particular
particle in the system.

1.2.3.4 Kane's Method

Kane’s method [KL85] actually has the Lagrange form of dsleert principle and offers
many advantages, while obtaining the equations of motioa gfstem. It needs neither the
use of energy functions nor consequently their differ¢iatiaproblem. It uses the generalized
forces where the non-contributing forces are directly elated by projection. It allows the
choice of different variables other than the generalizeatdioates, which can have a signifi-
cant effect on the resulting equations of motion. This meis@lso more useful for multi-body
systems. Now, we introduce briefly the basic equations inekéamethod on which this work
is based. Further details will be given in Chapter 2.

Let {f: , fu, }|7—, be respectively thgeneralized inertia forceand generalized active
forcesfor a system withm degrees of freedom, and be given as:

b av T awk’ T
fsz((ﬁ) fu+ (52 T) cr=lean (144
k=1
P T T
v, ow
f“"zz<(auf> o (5) Tk)a r=l..n (1.45)
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wherep is the number of rigid bodies,, is ageneralized speed %‘;ff , &"Tf} are so-called

partial linear and angular velocitied;;,,, , Tin, } are thenertia forceand thenertia torquege-
nerated by the accelerated masses and inertias acting it thedy, {f;, 7, } are theresultant
force and theresultant torquethat are equivalent to a set of contact and distance fordexjac
on thek!" body. In order to have the equations of motion, namely Katg'mmical equations,
one just needs to add the generalized inertia and activeda@ed equate them to zero:

fo +fu, =0, r=1,....n (1.46)

1.2.4 Dynamic Modeling Methods of Parallel Robots

All the methods for serial robots can be adapted to paratliedts. In addition to those
methods, there exist one method designed for parallel saboparticular. Now, we explain
briefly this method.

1.2.4.1 Khalil's Method

Khalil proposed [KI04] to obtain the equations of motion gbarallel robot by extending
the systematic approach of the modeling of a serial robds approach proceeds as follows:
(i) Firstly, each of the kinematic legs of a parallel robot@sidered as an independent serial
robot and the inverse dynamic model of this kinematic legristen using one of the methods
proposed for modeling of serial robots; (ii) Then, the dbuitim of all the efforts (torques and
forces) applied on the moving platform is calculated. Tref&mts come from each of the kine-
matic legs, from the acceleration of the moving platform &ndh the external forces (weight,
contact, etc.); (iii) Finally, this total effort collectemh the moving platform is projected onto
the active joints.

This approach is strongly intuitive for handling of the kimatic constraints, because it
allows each leg to contribute for the total effort on the nmgvplatform:

Nlegs
I = FDKMY Wolatform + Y _ (JZ-T IDKM], IDMleg(Z-)) (1.47)
=1

robot

whereF' DK M ... is the forward differential kinematic model of the parati@bot,W,,4t form
is the wrench vector for the dynamics of the moving platfosiris the Jacobian matrix relating
the velocity of the terminal point of th#” leg to the end-effector velocity,D K M leg(s) 1S the
inverse differential kinematic model of thi€ leg, ID M g is the inverse dynamic model of
theit” leg. Thel DM leg(i) CAN be computed with any of the existing methods for serfadt®

1.3 Control

Motion control is concerned with moving the end-effectortioé robot to the desired po-
sition with a desired velocity profile. Motion control is wly performed by feeding back the
state of the robot, which is called either closed-loop adrdr feedback control. Closed-loop
motion control of robots is either at kinematic level or dyma level. In kinematic control
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the active forces and masses are not taken into account.dowehen a high-speed motion
is considered, these forces and masses severely perturnabement of the robot. And at
this point a dynamic control, which can handle these peatiobs, is required. Closed-loop
control is performed either directly in a sensor space omimaégmented space supported by
some auxiliary models. In the next two subsections, we wikpnt kinematic and dynamic
controls.

1.3.1 Kinematic Control

Some of the well known sensor-based kinematic controlsoame $pace kinematic control,
Cartesian-space kinematic control, and visual servoirmgti©l in the joint space is a sensor-
space control where the error is regulated over the measmtsnsupplied by the motor en-
coders. In the case of Cartesian-space control, two sosnaré possible: (i) if the Cartesian
end-effector pose is measured directly by a sensor, theanibe considered as sensor-space
control; (i) if the Cartesian end-effector pose is comgutgth the help of an additional algo-
rithm, then it can be considered as a model-space contrstiyl_aisual servoing is a specific
sensor-space control where the sensor is a camera anddhésetefined with some extracted
image features.

In a kinematic control, the control input for a robot is théoaity of the articular positions
g, and the observed output is usually the articular positeprigherefore, the robot is generally
considered as an integrator. Figure 1.4 shows the blockseptation of a robot in a kinematic
control.

Figure 1.4 — Robot model is assumed to be an integrator ineari@tic control.

In a sensor-space kinematic control [SLE91] (see Fig. IlebX be a representation of the
pose of the end-effector of the robot at titand lets be a sensor signal depending Xrand
as well as ort:

s = s(X(¢), t) (1.48)

then, the error functioe for the task is given as below:
e = e(X(1), 1) = C(s(X(t), t) — s*(1)) (1.49)

whereC' is a combination matrix of the current sensor signand the desired value of the
sensor signas*(¢). Afterwards, the control law that will minimize the errorbsilt upon the
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following assumptions: (i) the sensor sigr@i(¢), t) is observable during the task; (ii) the
variations of the matrixC' are negligible,C' < I, where! is an identity matrix; (iii) the
reference trajectory*(¢) corresponds to reachable poses; and (iv) the sensor sighdl), ¢)
is an injective mapping fron§ £/(3) to the sensor space.
Taking the previous assumptions into consideration, tfierdntiation of the error function
yields:
e=0Cs—-C¥%s" (1.50)

where the variation in the sensor siga@han be expressed as a function of the relative kinematic
twist (¢) of the robot pose with respect to the sensor, and of the ebdestene (e.g., static or
dynamic properties of shapes, colors, etc.):

0s . s ds

with L, (= g5 Lx ) the interaction matrix that relates the variations of thesse signak to
the relative kinematic twis{ of the end-effector of the robot, ardg; the matrix that relates the
variations of the pose of the end-effec®iof the robot to the relative kinematic twigt Then,
the differentiation of the error function (1.50) can be rigien as follows:

. 0s s

e:CLSCJrCa—Cs (1.52)
Assuming that the robot is a pure integrator, an exponetwiavergence for the error is impo-
sed by setting its derivative to be equalééo= — Ae with A > 0. Hence, one extracts the
kinematic twist¢ as below:

-1 Js o ¥
¢ = (C Ly) —)\e—CE+Cs (1.53)

and by usingC = Z\ST as the pseudo-inverse of an estimafed the kinematic twist is
calculated as follows:

¢ = (L 1) <—Ae—ij%+f;é*> (1.54)

Since the real interaction matrik, is not known, its estimationLAS should be as accurate as

possible so that the muItipIicatiof)\sT L, can be assumed to yield the identity matrix and so
that the so-called pseudo-control vector becomes:

C= —re-I0 9 LTy (1.55)
ot
Assuming that
9s _ o & —o0 (1.56)
_ = S g .
ot ’
the pseudo-control vectq@rin (1.55) gives:
¢ = —)e (1.57)
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The stability of the pseudo-control veciin (1.57) can be analyzed by substituting it into
the error dynamics in (1.52) with the assumptions in (1.56):

&= —\(Li Ly)e (1.58)

if the multiplication (Z\ST Ly ) is a positive-definite matrix, then the pseudo-control law i
stable in the sense of Lyapunov. The last step is the covedsithe pseudo-control law to the
actual control inpugy of the robot:

q=M¢ (1.59)

where]\//f} is an approximate inverse differential kinematic modelMD) that relates end-
effector kinematic twist (pseudo-control law) to the vélies of the active joints (control in-
put). And again for stability, the multiplication of the apgimated IDKM with the forward
differential kinematic mode . should also be a positive-definite matrixi{ M} > 0).

X 1€
Cllq

IDKM »| Parallel Robot

S*

Y+
Y

M
»|{ Control Law
N

Sensor |«

Figure 1.5 —Sensor-space kinematic contrslis the sensor signat; is the pseudo-control law, IDKM is the
inverse differential kinematic model computed with anrestied pose of the end-effect®; andq is the actual
control input of the parallel robot.

When the regulation of the sensor sigras not enough to achieve the task, one calls for
a model-space control approach (see Fig. 1.6) to enrichahsos signak with the known
geometry of the scene (robot geometry, object geometry), gicthat the task can be accom-
plished. This model can be the forward kinematic model (FKfthe robot, an algorithm for
computing the relative pose of the end-effector of the ro@dl etc.

In order to perform the kingmatic control, the inverse ddfgial kinematic model needs
the estimated end-effector po¥e The estimated end-effector po§ecan be obtained from
one of these options:

— X can be sometimes directly measured (laser tracking, speciftions).

— X = X*(t) can be chosen as equal to the current desired end-effecter po

- X = argmin IIs — s(X, t)|| can be computed by minimizing the error between the

X

measured sensor sigra(which is an image of the current end-effector pose) and the
initial guess of the sensor signal through the previouslywmend-effector pose.
— X = argmin || q — IKM(X, £4eo) || can be computed by minimizing the error between

X
the measured motor positiolg(which is the map of the current end-effector pose via
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Figure 1.6 —Model-space kinematic contrad.is the sensor signa, is the pseudo-control law and IDKM is
the inverse differential kinematic model computed with atireated pose of the end-effectdr andq is the actual
control input of the parallel robot.

IKM) and the initial estimate of the motor positions throute previously known end-
effector pose.
or one can use another convenient method.

1.3.2 Dynamic Control

The computed-torque contrahethod governs the dynamic behavior of a robot based on
its inverse dynamic model [LWP80b, Pau81] (see Fig. 1.&oihputes the required actuator
forces which correspond to the current dynamic state ofdbetr It decouples the non-linear
dynamic behavior of the robot and linearizes its controlreslave recall this method which
will be later employed for control purposes. In a dynamictoan the control input is the
acceleration, and the observed output is usually the pagiti the robot. Therefore, a robot in a
dynamic control is considered as a double integrator. Eigur shows the block representation
of a robot in a dynamic control.

[T

Figure 1.7 — Robot model is assumed to be a double integratodynamic control.

The computed-torque control method can be simply illusttatsing the Lagrange formu-
lation of the inverse dynamic model which is expressed bymm@éjoint positiongy, brought
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from (1.31), as follows:
IDM: T = A(q)d + h(q, q) + Ty (1.60)

where agail is the force vector of the actuatord,is the inertia matrix of the robot, is the
vector of the centrifugal, the Coriolis and the gravity fescI’; is the vector of the friction
forces.

In an ideal case, the control lawis equal to the acceleratiaip of the sensor signal. The
control lawu is usually obtained with a proportional-derivative cohterm u,,,, and with a
feed-forward term of the desired signal acceleration:

u=u, +u,, (1.61)

where

u, = 4, u,, = Kjée+K,e (1.62)

and wherej* is the desired acceleratiof, , K, are the proportional and derivative positive
control gainse = q — q* is the error between the measured signal and the desiragmeée
signal.
Knowing that in ideal casa = g, the behavior of the error is characterized by the follo-
wing second order form:
e+ Kgée+ Kye=0 (1.63)

In the error dynamics, the oscillation and damping can belaggd by tuning the control gains
as follows:
K, = w?, K; =2Cw (1.64)

with ¢ a fixed damping ratio (usually betweérd and1) andw a cut-off frequency which is
fixed to the highest value with respect to the mechanicah@soe frequency.
Actually, the behavior of the real robot can be written in fiblowing form [KD02]:

I = (A(q) + )4 + (h(q, &) + h) + (T;+Ty) (1.65)

where hatg™) are for the estimations and where tildég are for the errors of the estimations.
Since we calculate the dynamics of the robot with the es@thatodels, the inverse dynamic
model is rewritten as below:

T = A(q)u + h(q, 4) + Ty (1.66)

This dynamic model will perturb the system due to the errorthe modeling. If it is neces-
sary to improve the control of the robot, then one must idieritie model parameters well
[OPO01, SGT97]. If this does not solve the problem, either robust cdntrethods [BHCOO,
HBS00, VPPO03, LSCHO03, BAP98, YOKN98] or adaptive controltinogls [Lam93] can be
used. Figures 1.8 and 1.9 show the joint-space computgddotontrol and the Cartesian-
space computed-torque control block diagrams, respégctivee joint-space computed-torque
control is better suited for serial robots, while the Casespace computed-torque control is
better suited for parallel robots.
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Figure 1.8 —Joint-space computed-torque contrglis the motor positions vector andl = § is the control
signal. This control is more convenient for serial robots.
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Figure 1.9 —€artesian-space computed-torque conttdk the end-effector pose amnd= X is the control signal.
This control is more convenient for parallel robots.

1.4 Identification

Identification process looks for the most accurate valuesiadel parameters to imitate
better the real robot behavior. A model of a real robot is Igtmilt on its CAD model assu-
ming that the dimensions and the assembly of the robot afegbem reality, however, there
are always imperfections in the fabrication and assembih®fpieces, which mean that the
model is of a lower quality than its expected accuracy. Cognsetly, a model identification is
a necessary step for better control of robots. There are ypestof model parameters to be
identified: geometric and dynamic parameters of the robot.

1.4.1 Geometric Identification

A good identification of the geometric parametgys, of the robot improves the preci-
sion of the estimated end-effector pose via FKM. Geometiiameters are usually obtained
through a non-linear minimization. There are two stepsshatld be taken into consideration
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before the identification:
— Configuration decisionFirstly, the numberi) of configurations (static states) should be
large enough to span the workspace of the robot as much ablposs
— MeasurementsAfterwards, the corresponding measurement signals skthenfigura-
tions should be collectefls/”, 5" } wherei = 1,...,n. For instances” = X" and
s/ = q." or vice versa. Each of the paifs;", {,, } and{§;", {4, } should express
a static state of the robot.
Once the initial steps are completed, fg, is computed (see Fig 1.10) by minimizing the

following error function:

Egeo = argmin error (s;",s{), i=1,...,n (1.67)

geo

wheres® is the estimated signal given by the model:

s¢ = Model(5]", £ge0) (1.68)

States*
—

Parallel Robot »  Sensors

)

5 geo

Minimization >

Figure 1.10 -6eometric parameter identificatiops ™, §™ } ands® are the measured and the estimated signals,
respectively. The&., is the geometric parameters vector. The box “sensors" cataicodifferent sensors such as
motor encoders, laser-tracker, camera, etc.

For a serial robot, the forward kinematic model (FKM) is atighlly defined and it is
usually used as a model for minimization through the measera-effector pose and the
articular positions:

s = q" s/ = X", Model : FKM(Q", £4e0) = X§ (1.69)

€ jeo = arg min X" — X¢|? 1.70
Egeo = arg mir Z | | (1.70)
On the other hand, for a parallel robot, the inverse kinemmathdel (IKM) is analytically
defined and it is usually chosen as a model for minimizatioig&b] through the measured
end-effector pose and the articular positions:
s =X", s =q", Model : IKM(X/", £pe0) = o (1.71)

(2
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90 = argmin dola —af) P (1.72)
geo
Geometric identification methods can be classified in threegs: self-calibration me-
thods, constrained-motion methods, and external-calioranethods. In self-calibration me-
thods [YCYLO2, HBP 05, HL95], either extra sensors are added to the passivs joinan
extra passive chain is added to the mechanism. On the other banstrained-motion me-
thods do not need extra sensors [RRO1b, BKO1, RR01a, CPBO&FConstrained-motion
methods either decrease number of degrees of freedom ofdi@grplatform or the mobility
of any joint (e.g., fixing the length of a leg of the Gough-Stewplatform). And, external-
calibration methods use external measurement devicels,asutheodolite [WLR86], inclino-
metres [BK99a, RPRO06], vision [RALDO6, RVAT06], laser-tracker [KAS98, NBHWOO,
MTWO03], and the coordinate measuring machine [Dan03, CY,Y®805]. The minimization
algorithms can vary from a classical least square metho® b an interval analysis method
[Dan99, DACPO06].

1.4.2 Dynamic ldentification

The computed-torque control has to use an inverse dynamiehi®M) based on the dy-
namic parameterg;,,, and previously identified geometric parametggs of the robot. That is
to say, well identified dynamic parametgys,, improve the trajectory tracking performance of
the robot. There are three steps that should be taken intadmration before the identification:

— Trajectory designlt is important to design a trajectory which spans the wpake with
different velocities so that it can excite all the parameterthe model [GK92].

— Fast sensor(s)Since the identification process requires exciting (higig@iency) trajec-
tories, the sensors must be able to take measurementsyqaraklaccurately.

— Velocity and acceleration measuremeniost of the robots are equipped with sensors
which are reasonably precise for position information. Ildeer, it is somewhat diffi-
cult to obtain precise velocity and acceleration informatiUsually, they are compu-
ted by successive numerical differentiation of the posigsgnal which introduces high
frequency noises. This, especially, makes the accelaraignal impractical. So, the
position signal should be passed through a low-pass filferé¢he numerical differen-
tiations [KD02, Gue03, Viv04, GP01].

Dynamic parameters can be obtained either through mintiarzenethods (e.g., non-linear

constrained optimization [FDMO7], interval analysis [PB3]) similar to geometric identifica-
tion (see Fig 1.11) or through solving the simple linear sysfAea04] given below:

s™ =W (5™, 8", (§™), &eo) Eayn (1.73)

where(-) implies that the associated variable is optiof#ljs an observation matrix, function
of the measured signalgs™, 5™, (§™ )} and previously identified geometric parameters
£ge0- ANd s™ is an output signal measured by another sensor. Lineamsydt&'3) is written
from a M odel of the robot which is noted as follows:

s¢ = Model(8™, 8™, (8™), €geor Eayn ) (1.74)
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wheres€ is the estimated output signal corresponding to the medsautput signak™. This
Model can be either an inverse dynamic model (IDM), or an energyah(M), or a power
model (PM) [KDO02]. If it is an IDM, then (1.73) takes the forrelbw:

L™ = Wipn (87,8, 8™, &geo) Eayn (1.75)

whereI' ™ is the measured actuators’ forces. If it is an energy model power model, this
time the acceleration signal does not appear in the obsamvaiatrix:

[ a = W (5787 60 a (176

@™ q = Wpn (8™ 8™, €geo) Eayn (1.77)

For a parallel robot, it may be more pertinent to perform thentification through the
end-effector pose measuremefii§™, X (X™) }:

s™ = W(X™, X" (X™), &eo) Eayn (1.78)

because the end-effector pose can be obtained by vision{@meeptive sensor) and because
it is analytically simpler to write the models from the Caita space to articular space.

Trajectory™
————— | Parallel Robot »| Sensors
§dyn
— = Minimization >
s™ s§m §m
A
Model

Figure 1.11 -bynamic parameter identificatiofis™, 8™, 5™, §™ } ands® are the measured and the estima-
ted signals, respectively.,., is the dynamic parameters vector.

1.5 MICMAC

1.5.1 Introduction

MICMAC is the acronym of «Modélisation, Identification et @mande des MAchines
Complexes», but it also fits to the English translation «Miode Identification and Control of
complex MAChines». MICMAC is one of the research topics & ROSACE (RObotique et
Systémes Autonomes ComplexEs) team at the laboratory oMBSISPR of Pascal Insti-
tute. It is focused on thikigh-speed vision-based modeling, identification androbof paral-
lel robots
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The MICMAC project first started in kinematics, then progess to dynamics. It did so
in two parts: firsttymodular MICMAC and secondlyintegrated MICMAC. The modeling,
control, and identification modules of parallel robots haeen often treated separately so far
by being adapted from the customary approaches of the sebials. It can be, however, diffi-
cult to apply these modules for parallel robots as they ddvaegé sensors in their passive joints.
The modular MICMAC makes these processes easier by usimmnwaensor(s) to complete the
missing Cartesian geometry of the mechanism.

This is, however, still not enough for efficient control ofrgéel robots. That is because
parallel robots are a lot faster and much more architedyucaimplex than serial robots. Fur-
thermore, parallel robots work in duality, unlike seriabots. Consequently, it would be better
to develop new methodologies and sensors for precise arglesitontrol of parallel robots.
On the other hand, the integrated MICMAC is concerned withdptimization of modeling,
control and identification modules regarding the perforoeanf a mechanism.

In next two subsections, we introduce briefly the modular MEC and the integrated
MICMAC approaches.

1.5.2 Modular MICMAC

The following people have made important contributionsh odular MICMAC. Their
works are discussed in chronological order: (i) In the firgtt f his Ph.D. thesis [Ren03],
P. Renaud worked on geometric identification of parallebtstbased on observation of the
end-effector pose by vision; (ii) In the first part of his PhtBesis [Dal07], T. Dallej worked
on kinematic control of parallel robots based on obserdatibthe end-effector pose by vi-
sion; (iii) In his Ph.D. thesis [Pac08], F. Paccot worked gnamic modeling and Cartesian
control of parallel robots based on observation of the dfe#r pose by fast vision. But the
modeling and visual feedback were neither optimal and reirdaough; and (iv) In his Ph.D.
thesis [Dah10], R. Dahmouche worked on fast sensor-spérei¢al servoing) dynamic state
estimation of parallel robots based on observation of thiedfector pose with sequential ac-
quisition, and its integration into Paccot’s work [Pac08].

Moreover, P. Renaud and T. Dallej have evolved their work#e rest of their theses, and
contributed to the integrated MICMAC part, too.

1.5.3 Integrated MICMAC

In J[And06], N. Andreff proposed to observe visually the legfsparallel robots for effi-
cient modeling, control, and identification purposes. @lat@n of the legs unifies modeling,
control, and identification modules into a single controknted framework. In this control-
oriented framework, almost all the expressions are mergexigh the measurements of the
leg directions. These measurements of the leg directigriage many long expressions, thus
yielding simplified and more precise models regarding timsseaccuracy. It is shown that it is
possible to regulate the Cartesian space too while the fegtdins are controlled. In the case
of a parallel robot, when the directions of the legs are fa#ld, we find a unique solution for
the end-effector pose defining the state. The most atteastoe of this approach that the 3D
leg directions can be directly calculated from 2D image raessents.
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So why not use the leg directions (3D lines) for control ofgblat robots? Andreff’'s main
objective in [And06] was to build: @ vision-based control-oriented framework for parallel

robots based on their leg observationst kinematic and dynamic levels.

On the way to the main objective, the following mid-objeetvare accomplished:
— Integration of the modeling, control, and identificatiomdnles at the kinematic level

based on observation of the leg edges [Ren03, Dal07, RALDO6]
— Proposition of a global framework for the kinematic cohtbthe parallel robots based

on observation of the leg edges [DAM11].

The following objectives remained:
— To identify the parallel robot parameters (geometric ayntadhic) based on observation

of the leg edges.
— To estimate the dynamic state (position and velocity) oaliel robots at high speed

from the observation of the leg edges.
— To integrate modeling, control and identification modethe dynamic level based on

observation of the leg edges.
— To propose a vision-based global framework for dynamidrobof parallel robots based

on observation of the leg edges.

1.5.4 Complementary Background

In this section, we recall some background information WwHarms the fundamental ba-
sics of the MICMAC project in complement to the above stdtéie-art. Before giving these
basics, in Figure 1.5.4, we outline the evolution of the MI&Mproject up to now and we
highlight the rest of the main objectives once more. Thes&bavill play a crucial role in the

solution of the remaining objectives.

MICMAC
I T.Dallej [Dal07] 7
modeling : modeling
Integrated identification | identifilcation
; contro .
control : time

....................................................................................................

Modular modeling modeling
identi i control
identification ontro F.Paccot [Pac08]
R.Dahmouche [Dah10]
P.Renaud [Ren03] R
Kinematics : Dynamics

Figure 1.12 — State of the MICMAC art with the unreached dibjes (upper-right box).
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1.5.4.1 Vision

Let P = [°X,°Y,Z]T be a point defined in the camera frag&g. Then, its projection
°p = [°x,“y, 1]T on the plan€Z = 1 (see Fig. 1.13) is defined by [Fau93]:

‘pac‘P (1.79)

wherea means « proportional to ». Then, the pdiptis converted from normalized coordinates
to pixel coordinate$™p = [u, v, 1]T with the intrinsic camera matrik:

mp = K °p (1.80)

Assuming that the pixels in the camera sensor are rectargutbare perfectly aligned, the
intrinsic matrix K is given as below:

fu 0 u,
K=10 f uv ji“ ig (1.81)
0 0 1 v

where (f,,, f,) are the effective focal lengths (in pixel units) of the camend where,, v,)
are the coordinates (in pixel units) of the image centersgquently, the perspective projection
model is as follows:

mp o K P (1.82)

s
L ca) 2%
optet

Figure 1.13 -Perspective projection of a poilt onto the image plane.

1.5.4.2 Lines and Robotic Legs

Here in this section, we revise a 3D line representatiometspective projection, and we
discuss how lines can be adapted for the sensing and retatiserof the robotic legs.
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1.5.4.2.1 A 3D Line and Its Projection: A 3D line L can be uniquely represented in the
Euclidian space by Pliucker coordinates [Plu65, SK52]:

(L): (x,n) (1.83)

wherex is the unit vector showing the direction of the 3D lifie andn is a normal vector

to the plane, which contains the lideand passes through the origin of the reference frame
(e.g., a camera frame). This plane is calleditiierpretation plane The normal vecton can

be expressed using any 3D poltocated on the lind.:

n=Pxx (1.84)

In [AEHO02], it was suggested that the lidecan be represented by decomposing the normal
vectorn to the depthn of the line L from the origin of the reference frame and to the unit
normal vectom of the interpretation planea( = n n):

(L): (x,n,n) (1.85)

If we want to express a different ling,, lying on the same interpretation plane, the previous
representation can be rewritten as follows [And99]:

(L): (X n,7) (1.86)

wherex andn are the direction and the depth of the IiEerespectiver. Sincé is on the same
interpretation plane, the unit normaldoes not change.

Now, consider the intersection of the interpretation plaité the image plane. This gives
a uniqgue projection liné (see Fig. 1.14) corresponding to the perspective projestid all the
3D lines (except the line which is orthogonal to the imageng@)dying on the interpretation
plane. Since itself is also on the interpretation plane, then it too wal &xpressed with the
samen:

(0) : (x4, 1, ng) (1.87)

wherex , andn, are the direction and the depth of the projection knen the image plane.
Consequently, in the representation of the projection lired any 3D line L, we lose the
direction x and the deptm but we still keep in hand the plane unit normal vedorThis
means that it should be possible to recover the unit nornwbwe from the image. Now, the
guestion is: How should one go about doing so?

On the image plane, we observe the pixel poifft&p;, i = 1,...,m > 2} lying on the
projection linel. Any of these points holds the line equation:

impiT Mp = () (1.88)

The solution fof™n (in pixel coordinates) is in the null space of the linear egstvritten from
(1.88):
im T
P1
: (1.89)

m T

Pm
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n

Interpretation plane

Figure 1.14 -3D Line representation and its projection.

The above system can be solved 8 either with QR decomposition [HJ85] (algebraic, bet-
ter for real-time considerations) or with SVD [HJ85] (itéve but more precise). Afterwards,
substituting (1.80) into (1.88) yields:

‘p;" KT "™Mn=0 (1.90)

and knowing that the line equation can be written in any spadeng as the variables are also
expressed in the same space:
‘pi" ‘n =0 (1.91)

we can recovefn (in metric coordinates) from (1.90) and (1.91) as follows:

KT imn
‘n = ———— (1.92)
[ KT “mal
and we can similarly writé™n in terms ofn as below:
) KfT ‘n
mp = — 1.93
2= KT ] (1:99)

1.5.4.2.2 Sensing of Prism-Shaped Legs:Most of the parallel robots are equipped with
prism-shaped legs. Prisms are geometric solids whose basadentical polygons lying in
parallel planes and whose sides are parallelograms (se&.E%). A cylinder may be conside-
red as a round prism, or one that has an infinite humber of .silpsism-shaped leg can be
considered as a 3D line and be modeled with Pliicker coortinat

(leg) : (x, n,, dy, shape) (1.94)
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Figure 1.15 —Prisms.

wherex shows the direction axigy ,, is the normal vector of the interpretation plane passing
through the direction axig of the leg and the optical center of the cametajs the shortest
distance between the direction axis and the optical ceamershape gives information on the
geometric form of the leg (e.g., cylinder). When a leg is gctgd onto the image plane, we
see its visual contours (left and right side edges) locatéuesborders between the visible and
invisible parts of the leg. Figure 1.16 illustrates prajectof prism-shaped legs.

Cylinder

X
Hexagon

QL eft

Camera
frame

Figure 1.16 -Perspective projections of the hexagon and cylinder prisms
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These visual contours correspond to the projection linés.s:, {rign: } Of the two 3D
parallel lines{ Lycs:, Lrign: } ON the leg surface. Then, we can obtain the unit normal vector
{n sty g t Ofthe interpretation planes as explained in the previolis&etion 1.5.4.2.1.
These 3D parallel line§ L. r:, Lrign: } are also parallel to the direction axisf the leg. That
is to say, the left and right side interpretation plane upithmal vectors are orthogonal to the
direction axis:

jSeft x=0, leilight x=0 (1.95)

So, it is possible to calculate the 3D direction axisf the leg from the interpretation plane
unit normal vectors:
Drere X DRight (1.96)

”QLeft X 1 pight |

Consequently, we can extract the following informationirthe perspective projection of
a prism-shaped leg with a calibrated camekaig known) [And06]:

— Edgesthe unit normal vectors of the interpretation planes,( ;;, n g;gn; )-

— 3D direction unit vector showing the direction of the leg)(

5:

1.5.4.2.3 Special Case of a Cylinder: Finally, we give some more properties related to a
cylindrical leg, since this type of leg is more common thameottypes of legs and is easier to
handle. The normal vectors of the interpretation planesayfiadrical leg can be computed as
follows:

Dyepe=—CoSp N, —sing (xxn,) (1.97)

Dot = COS@ N, —sing (Xxn,) (1.98)

wherecos ¢ = dy,/dy, sinp = r/dy, d,, = \/d2 — r?, and where- is the cylindrical leg radius
(see Fig 1.17). In addition, the geometry of the cylinderasgs the following constraint:

Pinr.=—r, Plogg =—r (1.99)

whereP is any point lying on the direction axis of the cylinder.

n

—Left

Figure 1.17 -View of the geometry of the cylindrical leg from its 3D oriatibn directionx (perpendicular to
the paper plane).
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1.6 Thesis Objective

This chapter gave the state-of-the-art in control of paraibots and the necessary back-
ground information for the rest of the thesis. We finish thiamter by stating the objective of
this thesis, which is to improve thategrated dynamic MICMA®roject further towards its
remaining goals:

1. Upgrading from kinematic level to the dynamic level in totoriented modeling of

parallel robots from their leg observations.

2. Fast estimation of the dynamic state (position and vglpoif a parallel robot from its

leg observations.

3. Proposing a vision-based framework for the dynamic obofrparallel robots from their

leg observations.

4. ldentification of the dynamic parameters of a parallebtdlom its leg observations.
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Chapter 2

Modeling

2.1 Introduction

This chapter presents a new approach to kinematic and dgmaodeling of parallel robots
which meets one of the objectives of the integrated dynamiCMWAC: « Upgrading from
kinematic level to dynamic level in control-oriented madglof parallel robots from their leg
observations. »

The proposed methodology keeps the expressions simplelead Thus, one can easily
work out all the equations from the beginning till the endhwpen and paper. Here, the metho-
dology will be carried out without paying attention to a jartar parallel robot. Furthermore,
for better practical understanding, the methodology wélsbipported with a demonstration on
a simple2 degrees of freedom planar parallel robot. Then, at the etiteathapter, the metho-
dology will be illustrated on a very complex parallel robitte Quattro robot. The applications
of the methodology to other well-known families of paratiebots, such as the Gough-Stewart,
the Delta, the 3RRR and the Orthoglide can be followed in AppeA.

2.2 Motivation and Objective

Modeling of robots can be categorized in two grouggplication-orientedmethods and
analysis-orientednethods.

In application-oriented modeling, the generic scenarasi$ollows: since the motor enco-
ders that measure the articular positions are directlyameld in robots and are rich enough
to supply information about the full geometric configuratiaf serial robots, they are adopted
immediately as a basic medium for sensing.

This misleads one into using them also for parallel robotawvéirer, when parallel robots
are considered, this information becomes poor becausemf other sensorless passive joints.
If one expresses models with only active joint coordinateen the models inflate, become
slow, hard to understand and to implement. This inevitalbbfies one to offer simplifications
[VPPO3] and to omit some of the modeling errors in the medrmanthus giving simplified and
fast [NKCT08] but approximate new models for control. Thus, appl@atriented methods,
based on joint sensing, become inefficient when the comntglekihe robot increases.
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On the other handnalysis-orientednethods mostly concentrate on finding efficient, intui-
tive, simple and linear procedures for synthesis and aisatysomplex robots. Some of these
analysis-oriented methods use Screw theory [WS06], [HediS94], [BS98], [RGMO08],
[Tsa98], [MD85], [Tsa99] and Grassmann-Cayley [ST02] atgewhich are based on lines of
motions. These lines of motions are floant axes and these works model the joint motions.
However, their practical applicability on real complex otdis limited. Instead, they are used
for analysis.

Obviously, in these scenarios, the difficulties in modelanmygl applicability are sourced
from the lack of an appropriate sensing. What if we had extrasar(s)? What if we knew
everything about the mechanism? Certainly, we would comaitipa better concrete method.

Our objective is to provide a simple, accurate and appleatbdeling methodology which
would become the favorite option for researchers and eaggne

2.3 Discussions on the Inspiring Works

Most of the proposed approaches for deriving the kinemaiizk dynamics of a parallel
robot suffer from the lack of efficiency - as defined by Kaeteal. -, namely «relative sim-
plicity, ease of manipulation for purposes of designingoaudtic control systems and minimal
consumption of time during numerical solutiefMK96]. Hence, we shall investigate Kane,
Khalil, and Tsai’s methodologies which have already madgoirtant steps forward in impro-
ving efficiency and inspired us to put forward our new contmaénted methodology.

2.3.1 Kane’'s Method

With regards to efficiency, Kane has revealed the notiogewieralized speeds increase
the efficiency of expressions [KL85]. Tlgeneralized speedse functions of generalized co-
ordinates (scalar joint values) and their speeds. Theiicehia completely arbitrary, and is
usually determined by inspection of the velocities of bediea mechanism. A good choice of
generalized speedsan have important effect on the resulting equations. Omeie thoice is
made, then the methodology proposed by Kane is simply a nwitte

— deriving the mechanism’s kinematics in terms of the gdizexé coordinates and gene-

ralized speeds;

— computation of all the forces that exist in the mechanism;

— projecting these forces on the directions of motion (d&ections associated to the ge-

neralized speeds) in order to obtain the generalized fprces

— formal calculus (i.e., automatic generation of the modelations).

Kane’s method might be considered as a way of overcoming iffieutties caused by the
inappropriate sensing of the mechanism. However, it sekatshis method is still relevant for
modeling purposes and not for control ones when the paralteits are considered. Expressed
from the control point of view, this is a matter of defining tim@st appropriate dynamic state
variables for a parallel robot. It now seems certain thatgitlie actuator positions (independent
set of generalized coordinates) as the static state vagsiahot necessarily the optimal choice,
because there is usually not a single solution to the forkeneimatic problem. Consequently,
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using the actuator positions and their velocities as thewhjo state variables is certainly not
the appropriate choice either.

Since the inverse kinematic problem is usually well posedfparallel robot, a more effi-
cient choice is to use the end-effector Cartesian pose andlicity as dynamic state variables
since this is usually the operational space. This choiadsléa efficient modelas long as one
is able to measure or estimate the pose and velocity of theefadtor in the Cartesian space
And here is another loss of efficiency: one can not directhasoee in the Cartesian space, so
one has to estimate such variables, either through a meschamiby optical means (e.g., laser,
vision). The estimation is always a non-linear problem egtdor high cost laser trackers.

2.3.2 Khalil's Method

In addition to Kane, Khalil [KI04] also proposes a methodplavhich is specific to parallel
robots. His approach has the advantage of intuitively hiagdhe kinematic constraints. To do
so, Khalil expresses the dynamics of a parallel robot froenettpuilibrium of all forces applied
on the moving-platform. He takes the following steps in htmodology:

— to consider each kinematic leg of a parallel robot as anpedéent serial robot;
to write the inverse dynamics of each kinematic leg usihthalpassive and active joint
coordinates (redundant set of variables);
to transfer all the efforts of kinematic legs to the movpigtform using their inverse
velocity kinematic models;
finally, to sum all the forces collected on the moving-mati and then to project the
final total effort onto the active joints.

However, the strong drawback of this method is its loss otiefficy, because it requires
sensing and actuation to be collocated. Moreover, the ctatipn of the dynamics of each
kinematic leg loses its intuitiveness, and it needs contjmutaf the inverse of the forward
velocity kinematic model of a serial kinematic leg becaulsthe balance of all the efforts on
the moving-platform. Yet, as shown in [PAM09], the methoddraes extremely efficient when
used together with the end-effector sensing, becauseg twrt entirely linear. Nonetheless, the
method in [PAMO09] is probably not the most efficient one, sings stated above, the sensing
part of it is "sub-efficient".

2.3.3 Tsai's Method

In [Tsa99] Tsai formulated the dynamics of parallel robaisdd on virtual work principle.
This formulation follows the steps below:
— compute the kinematic twist and wrench twosome at the nmexgeicof every link;
— compute the link Jacobians relating the link kinematisto the end-effector kinematic
twist.
— finally, express all the virtual works of the links, of thdwators and of the platform, in
the end-effector frame through the computed Jacobians.
Expressing every effort in the end-effector frame with ailsinway to Khalil, Tsai easily takes
into account the motion constraints of the closed-loopkiatcs. Using virtual work also sim-
plifies writing of the final equations of motion. For applicet purposes, by MATLAB simula-
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tions, Tsai demonstrated his formulation for the Gougtwate platform where the equations
were written based on joint values. However, as statedeeaftir real applications of parallel
robots joint sensing is not enough. Since Tsai's work waserafor analysis purposes, he did
not put any discussion for the applicability of his methodreit looks very intuitive.

The aim of this chapter is thus to investigate further effitimodeling.

2.4 Methodology

In order to reduce the ambiguity in the terminology and in ¢batext, we redefine first
the descriptive and then a mathematical language for a.réffirwards, we proceed into the
details of the formulation of the proposed methodology.

2.4.1 The Descriptive Language of a Robot

Joint [articulation]: connects two or more units (e.g., a reveljgint).
Link [body, element]: a unit in a connected series of units (a.gar between the joints).
Limb [kinematic chain, linkage, leg, arm]: a chain of units fongpia kinematic chain.

End-effector [active tool tip]: interacts with the environment. In pdealrobots, it is so-
metimes incorrectly called a moving-platform, (or a movjigte). Actually the end-
effector should be considered only as a sub-part of the mepiatform.

2.4.2 A Mathematical Language for a Robot

Every robot is a multi-body system and iteotion spacdi.e., static and dynamic state) can
be described through a setwariablesandconstant parameterd hese variables consist of the
coordinates of joints, points, vectors fixed within the lesdje.g., base, legs, moving-platform),
matrices defining the motion constraints of the links, arrdds (e.g., actuator forces, inertial
forces, forces of gravity, frictions) acting on the linkshike the constant parameters are the
lengths, the masses and the inertias.

2.4.2.1 \Variables
Scalars € R'*!: They are represented with small letters and symbols. Famele, a distance
between two points can be notedd&snd a rotation angle around an axis with

Joint coordinates € R!*!: An activejoint coordinate ¢, may represent the angulaadian)
or the distancenfete) measure depending on the type of the joint (revolute onati).

Points & Position Vectors € R3*!: They are represented with boldface capital letters, such
as:0, P, A, B, C, E and so on. Th® andE denote the respective origins of the base
and the end-effector frames.

Vectors € R"*1: They are denoted with boldface small letters. For instaadeanslational
displacement. In addition unit vectors are underlined, such as the doestof a frame
axesx, y, z.

Matrices € R"*¢: They are represented with capital letters, such as the N, &hd so on.

40



Frames : A frameis a set of3 orthogonal unit axe(, y, z) fastened to a reference point which
uniquely determines (with real numbers) the position amdattientation of a body. It is
noted asF point = { point, X poins; Y point? & point }. For example, the base and end-
effector frames, which exist in every robot, will be notedas = {O, x,, y ,z,}
and7. ={E,x., y .z} respectively. The axis of a body frame is always orien-
ted in lengthwise direction of the body.

Posese SE(3): A poseof a frame can be represented either asa matrix or an x 1 column
array. The representation of the pose of a frame will be notigl X ,,.;,,; regardless of
whether it is a matrix or a column array. The difference betwa matrix and a column
array representations will be made known by defining,,,; as the element oR"* or
R><1 respectively. For example, in the context, the represientaf the pose of a frame
located at poinfA will be defined aX,. Only the representation of the pose of the end-
effector frame, which is located at poilt, will be noted asX without a sub-script for
the simplicity of the notation.

Mass centers € R3*1: They are denoted WitB,,.i,,¢. FOr instance, the mass center of a link
attached to an articulation poilt will be noted asS,.

Velocities : They are noted with a dot { over the variables. For example, velocity of a mass
center isS, velocity of a joint coordinate ig, velocity of a unit vector is.

Accelerations : They are shown with double dot)(over the variables. For example, accele-
ration of a mass center £ acceleration of a joint coordinatejsacceleration of a unit
vector isX.

Active & Reactive Forces : A force will be noted with smallf letter and a force vector with
small boldfacef letter. Active forces are efforts of the linear motors anatés of gravity
of the bodies. In order to express a specific active force forae vector), a subscript
will be added tof (or f), e.g., a gravity force vector will bé;. On the other hand,
reactive forces are inertial and frictional forces. An trarforce (force vector) will be
expressed withy* (f*). A frictional force (force vector) will be noted witlf (f).

Active & Reactive Torques : A torque will be noted withr letter and a torque vector with
boldface 7 letter. Active torques are the efforts of the rotary mot@a.the other hand,
reactive torques are inertias and frictions. An inertiatjte (torque vector) will be ex-
pressed with-* (7*). A frictional torque (torque vector) will be noted with (7).

Note All the variables are expressed in a single fixed refererarad (e.g., a camera frame,
or the robot base frame). The relative velocities of theséabbes are also expressed with
respect to this same fixed reference frame.

2.4.2.2 Constant Parameters

Length : £ shows the length of a body.

Mass : m expresses the mass of a body.

Gravity constant : g is the constant gravity acceleration vector of the Edrth.

1. If the robot is mobile, then the direction of the gravityet@ with respect to robot’s base frame may change.
If the robot is on another planet (e.g., moon), then the ntadaiof the gravity vector changes too.

41



Inertia 2: I, 1, I, are the principal moments of inertias of a body.

2.4.2.3 Motion Space

State Variables [Kane’s generalized coordinates]: a chosen set of vagalded to define the
positions, velocities, accelerations and forces of alllities in the mechanism. These
variables can be either an independent set or a redundant set

Motion Basis [Kane’s generalized speeds]: a chosen set of variables gcalars, vectors,
functions) whose linear combination expresses the motidneomechanism. Normally,
a basis in linear algebra is a set of linearly independentovedn the same space, but
here we let it also be a dependent set of non-homogenoudbherifor simplicity of the
equations. Hence, in our context, a motion basis is eithet afsndependent (minimal)
variables or a set of dependent (redundant) variables.

Motion Constraints [Change of Motion Basis]: map the motion of the mechanisnresged
in a redundant motion basis into the minimal motion basiseradictuator axes.

Kinematic Coordinates [Kane’s partial velocities]: express the velocity of theahanism in
a given motion basis. The kinematic coordinates of the wgl@é a mechanism are the
partial derivatives of its kinematic equations with regpecthe motion basis compo-
nents.

Dynamic Coordinates [Kane’s generalized forces]: define the dynamic equiliiorof the me-
chanism in a given motion basis. They are computed from ttiecaand reactive forces
of all the links in the mechanism.

2.4.3 Proposed Modeling Formulation

The methodology we propose here supposes that there istrigties on the variable set
selection needed for modeling, and suggests that the edlstate variables should fulfil as
much as possible the following criteria:

— Algebraicity ability to be solved simply with formal tools, such as linedgebra;

— Completenessbility to represent fully both kinematics and dynamics;

— Sensibility ability to be perceived directly by physical sensors;

— Readability ability to allow for a good and easy understanding of the efiod

— Codability: ability to be implemented easily on a computer;
so that thesimplicity, the geometric intuitivenesand thenumerical efficiencyequested by
Kane can be kept on the final expressions. The procedure Wdnigs for these expressions
passes through the following steps:

Decomposition : We decompose the parallel robot into its simplest poss#gélinear parts:
the kinematic elements of the kinematic legs and the mopiagerm.

Choosing State Variables: We represent the states of these parts witledundant set of
variables orientation unit vectors of the kinematic elements, thi@or coordinates,
etc., so that expressions are compact and linear.

2. Sometimes the mass center can move with respect to itsflaodg, then the inertia is not constant anymore.
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Choosing a Motion Basis: We select aedundant motion basend derive the motion constraints
between the passive (i.e., unactuated) and active (iteatecl) variables of this basis.

Computing the Coordinates : We compute the kinematic and dynamic coordinates of the
mechanism from each of the decomposed kinematic elements.

Writing Equations of Motion : We combine all the dynamic coordinates with the motion
constraints and then write the fireduations of motioof the parallel robot.

Note that we do not put any constraint on ténimality (which is inherited from serial
robots), contrarily we allow foredundancy

In the light of d’Alembert’s principle of virtual work, theggiations of motion (i.e., dynamic
equilibrium) take the following form:

. T
< Dynamic > < Redundant >: 0 2.1)

Coordinates Motion Basis

which implies that the sum of all the exerted efforts on théngel redundant motion basis
should vanish. This can be rewritten in terms of the minimadiom basis (i.e., actuation space)
through the motion constraints (i.e., change of basis) Eswbe

Dynamic 4 Motion Constraint Minimal _ 0 2.2)
Coordinates Transformations Motion Basis - '
since the above system is defined at minimal motion basis, ithdeduces to the following

final form:

. - T )
<MotzonCon5tramt> ( Dynamic ) _ (2.3)

Transformations Coordinates

where the dynamic coordinates (i.e., generalized foraes)vatten as follows:

Dynamic _ Kinematic \ Active n Reactive 2.4)
Coordinates )  \ Coordinates Forces Forces '
and where the kinematic coordinates express velocitiegnehkatic elements, namely the ve-
locity of the whole mechanism:

<Mecham'sm) - ( Kinematic )T ( Redundant ) 2.5)

Velocity Coordinates Motion Basis

Theorem 1 [Linear Implicit Dynamic Model]: Let geometric parameters, dynamic parame-
ters, positions, velocities, and accelerations of a meigmrbe known, then a linear implicit
dynamic model (LImpIDM) for this mechanism can be writtefolews:

AT +b =0 (2.6)

where matrixA is dependant to mechanism configuration and it relates tk@aonn force vec-
tor I" of the actuators to the contributing effoftsof the kinematic elements of the mechanism.

In the following subsections, we go into details of the st@fecomposing a robot to its
simplest parts, choosing state variables and a motion,bdsiving the motion constraints,
etc.) of the proposed modeling formulation and we prove theofem 1.
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A little note on “cross-product™:  We will use the cross-product frequently in our equations
for two purposes:
— (i) to produce a third perpendicular vector to a plane ddfimegiven two independent
vectors (e.g., so as to form an orthogonal basis);
— (ii) to compute rotational velocity and acceleration of @ (e.g., motion of a link
attached to a revolute joint);
Symbolically cross-product is implied byx" operator which takes left-hand and right-hand
operands to its sides. Lat= [a,, a,, a;]7, b = [bs, by, b,]T andc = [c,, ¢y, c.]T be vectors
of 3 dimensional (3D) vector spad®, and where the cross-productafindb is c. Thus, one
can write:

axb=c (2.7)

Equation (2.7) is just a mathematical notation of the cymssluct which corresponds to:

cx = ayb, — a.by
¢y = azby — azb, (2.8)
c; = azby — ayb,

The weird calculations in above equations may mislead oseppose that the cross-product
is a non-linear operator. However, in (2.7), the cross-pebis a linear map disguising itself as
a vector. One can rewrite (2.7) as follows:

[a]xb = ¢ (2.9)

where{ [a]x : 2 — R |[a]x € SO(3) } is a linear function of infinitesimal rotation group
which maps vectob to vectorc in 3D Euclidean space:

0 —a. ay
Ay = | a. 0 —a, | €R¥3 (2.10)
TR 0

In our expressions, we will use the first written style showif2.7) for the simplicity of nota-
tion, and the second written style shown in (2.9) for the lalgie manipulation consistency of
equations.

2.5 New Construction « Kinematic Element » Definition

A robot can be broken down into its basic primitives as below:

(robot) : ({ baseplatform} U {limb(s)} U {end — ef fector })
(base plat form) : ({link(s) })
(limb) : ({ joints } U {links})
(end — ef fector) : ({link }) (2.11)

where each of joints } can be either active or passiieoughly speaking, a robot is a set
of static and moving bodie®ur objective is here to homogenize the theoretical coostm
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of a robotic mechanism by defining a single basic structure viM call this basic structure
as akinematic elementHere, akinematic element an elementary rectilinear sub kinematic
chain which contains both joint(s) and link(s), and consadjy which has mobilities. In the
light of the rough definition of a robot, thesgnematic elementwiill replace the static and
moving bodies. The definition of kinematic elemenis built upon rigid-body assumption of
its primitive components (e.g., links, joints). That is tmysthe external forces exerted on a
component of th&inematic elementio not cause any deformation, or any given two points
in the component preserve their distance. A rigid-body ticbmechanism can be thus simply
redefined as follows:

(robot) : { (kinematic element)y , ..., (kinematic element),, } (2.12)

Tej Dallej in his Ph.D. thesis [Dal07] has roughly employkd tkinematic element” termino-
logy for the last link of a kinematic chain of a parallel roliobrder to propose a framework for
the modeling and control of parallel robots at kinemati@leiAowever, in [Dal07] a “kinema-
tic element" was never fully formalized. On the other haretehwe will give a mathematical
model of akinematic elemenivhich is intuitive and empiric. Furthermore, we are intézds
not only with the kinematics but also with the dynamics o #tinematic elementn the next
subsections, we briefly recall some basic primitives anchgmdetails of the definition of such
akinematic element

Note: In IFToMM dictionary (standardization of terminology of et@ne and mechanism
theory), the term “element” has already been defined as d ody or a fluid component of
a mechanism [lon03]. Here, we augmented this term with tiectde “kinematic” to express
our new basic structurevhich has various mobilities. For the time being, we couldfiral a
better name.

2.5.1 Construction Primitives
2.5.1.1 Joints

The mobility of the links of a robot are defined by these joypes:

— Revolute Rotates around an axi$ ¢of). It is noted by R).

— Universal Rotates around two axe8 ¢of). It is noted by ().

— Spherical Rotates around three axesdof). It is noted by §).

— Prismatic Slides on a directioni(dof). It is noted by P).

— Parallelogram Translates in three axe3 dof). It is noted by Pa).
We note that a parallelogram actually is a mechanical stractomposed of links and joints.
The reason why we included it here is because another linkbedirmly fastened to such a
parallelogram, and here we consider the parallelogramasé pseudo-joint.

2.5.1.2 Links

The base platform, the limbs (so-calladnsor leg9 and the end-effector of a robot are
formed by a set of linksr{gid bodieg. Links are connected to each other with previously
mentioned joint types and move interactively with respet¢he mobility given by these joints.
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2.5.2 Geometric Representation of a « Kinematic Element »

Here, we propose to model the geometric state &ih@matic elemenaccording to its
mobilities which are generated by the interactions witheotinematic elementand by the
joints exist in itself. So, we suppose thakiaematic elementan haveextrinsic andintrinsic
mobilities.

The extrinsic mobility can exist due to the connection jhat the input articulation point
of akinematic elementind it can be noted as follows:

(extrinsic mobility joints) :€ {2, (R), (U), (Pa)} (2.13)
We define the state of the extrinsic mobility as below:
(extrinsic mobility state) : { A, x} (2.14)

whereA is the input articulation point ang is the3 D unit direction vector of th&inematic
elementrepresenting the pose sourced from the angular positiofifgle revolute, universal,
spherical or parallelogram type joints.

The intrinsic mobility can exist due to the implanted joftinside of &kinematic element
and it can be noted as follows:

(intrinsic mobility joints) :€ {@, (P), (R)} (2.15)
We define the state of the intrinsic mobility as below:
(intrinsic mobility state) : { @, d, 0} (2.16)

whered, d andf denote nothing (when there is no intrinsic mobility), theplemted prisma-
tic joint coordinate (elongation along) and the implanted revolute joint coordinate (twisting
aboutx), respectively. An implanted prismatic joint elongatesontracts th&inematic ele-
mentalong its directiornx. Similarly, an implanted revolute joint rotates tkieematic element
around itself, namely aroung (see Fig. 2.1). Thus, a generic geometric representatian of
kinematic elementan be described as follows:

(geometric state) : { A, x, d, 0} (2.17)

Analogy 1 Chasles’ theorem [Cha30] states that any rigid body displaent can be reduced
to a canonical form, where the displacement is achieved ltation ) around a geometric
line L and a translation ) along the same liné..

This implies that a kinematic element, which uses the saoraeegeic variables for its state
(see Fig. 2.1), can be considered as a physical (visuallgaia) representation of the canonic
displacement between its connection points with the posvaémd next kinematic elements in the
chain. LetA andB be the connection points at the tips of a kinematic element@cessarily
on the direction axis), then the displacement frdnto B can be represented as follows:

B=A+dx+r(9 (2.18)
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Figure 2.1 -A kinematic element and its geometric state variables:ripatijoint centerA,, the unit 3D direction
vectorx, the lengthd and the rotation anglé around its direction vectoB is the output joint center.

wherer is a vector which is a function of the rotation paramefetJsually, these connection
points are designed to lie on the direction axis (or an axigapal to the direction axis) of an
element so thafr| = 0, thus (2.18) appears in this way:

B = A +dx (2.19)

this helps keep the expressions simple. Consequémtbes not have any effect on the position
of the output articulation pointB) of the element. 18 is not aninternal mobility® of the
mechanism, then it does influence the direction axis of tkekirrematic element in the chain.

Below, we give examples for themost common types dfinematic elementhat exist in
parallel robots:

Bar Type [B] A kinematic element which has only extrinsic mobility. It wes under the
influence of one or more joints, which can be revolute joimtuniversal joint, or a
combination of revolute and universal joints, or parabgdon pseudo-joint. Hence, we
write its geometric state as follows:

(bar state) : {A,x} U {d, 0} (2.20)
i tant
varying constan

where A is the varying input point ang is the varying3 D direction unit vector of the
kinematic element. They vary due to the interactions witteokinematic elements and
extrinsic joints of the kinematic element.and ¢ are the constant length and angular
rotation coordinate of the kinematic element, respectiiel some cases, there might

3. Internal mechanism mobility: a redundant motion whicksinot change the geometric configuration of the
mechanism.
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be a rotation around the direction vectorthen its geometric state can be rigorously
rewritten ag A, x, ) by replacingd from constant part to the varying part of the state
representation in (2.20). However, we note that in most@fiirallel robots this rotation

0 is passive (i.e., internal mechanism mobility) and doeséiif#ct the orientation of
the next kinematic element in the chain. Therefore, the gddmstate of abar type
kinematic element will be considered only as its input pakntand its unit direction
vector x without a rotation. For instance, a parallelogram link, sdeotation around
its lengthwise direction is restricted, perfectly fits inkis bar type kinematic element
representation. Thiear kinematic elemens$ the most common type and exists almost in
every parallel robot.

Spindle Type [Sp] A kinematic element which has an extrinsic mobility with atize rotation
around its direction vector, or an extrinsic mobility plus iatrinsic mobility with an
implanted revolute joint. Thus, we write its geometric stas follows:

(spindle state) : {A,x,0} U {d} (2.21)
i tant
varying constan

whered is the varying angular coordinate of the rotation due tovaagtrinsic joints and
implanted intrinsic revolute joint. One can find some spngpe kinematic elements in
Zlatanov’s 3-URU DYMO parallel mechanism [ZBG02].

Telescopic Type [T'] A kinematic element which has extrinsic mobility and as vaslintrinsic
mobility due to an implanted prismatic joint. For instanttes telescopic typ&inematic
element exists in a Gough-Stewart parallel robot. Its geoostate is as follows:

(telescopic state) : {A, x,d} U {0} (2.22)
i tant
varying constan

whered is the varying metric coordinate of the implanted prismaiot, and it also
corresponds to the length of the kinematic element.

Screw Type [Sc] A kinematic element which has an extrinsic mobility and adl @& an in-
trinsic mobility due to the implanted active prismatic aeslalute joints. The fourth leg
of the Delta parallel robot (i.e., the one that gives a rotato the end-effector) can be
considered as an example of tlsisrew typekinematic element. Its geometric state is
written as follows:

(screw state) : { A, x,d, 0} (2.23)
—_——

varying

One can imagine other types and can easily define their stétfeshe concept given in these
examples.This is a non-minimal representation, but nonethelessldved one to write the
equations in a compact and linear fashion

Remark: Given the base connection point of a kinematic chain, oneeganess any point
(e.g., an input articulation poink of a kinematic element) along this kinematic chain in terms
of only the{ x, d, 6 } variables of the kinematic elements belong to the this ketéchain.
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2.5.3 Dynamic Representation of a « Kinematic Element »
Dynamic state of a kinematic element can be defined with:

(dynamic state) : { A,x,d, 0} U {m,Z,S, S.S, A, %, d, 6, A, %, d, 9} U

* * * = x 0 * = (224)
{fg7 f , Ty T&? T§7 T&a fd7 fdu fd7 To, Ty, TG'}

which contains:
— (i) intrinsic dynamic parameters and higher-order kingrsa
— its massn and its central inertia dyadig;
— its mass center position, velocity and acceleratfy$s andS;
the velocities of its geometric state variablds:x, d, 6;
— the accelerations of its geometric state variablesk, d, 6;
— (ii) forces and torques:
— its gravity forcefy;
— its body inertial force™ and inertial torquer™;
— an active extrinsic torquey of an extrinsic rotary actuator that turns the kinematic
element around axis of its body frame, where

y = x/ %[, (x L x), z=XXYy (2.25)

and as well as the inertial torqu€, and the frictional torqué of this rotary actuator;

— an active intrinsic forcd; which elongates or shortens the kinematic element along
its directionx, and as well as the inertial fordg and frictional forcef; of this active
prismatic joint;

— an active intrinsic torque- of an intrinsic rotary actuator that turns the kinematic
element around its directior, and as well as the inertial torque;, and frictional
torqueTy of this intrinsic rotary actuator;

2.6 Kinematics of a « Kinematic Element »

2.6.1 Positions

The output articulation point (the end poi) of the kinematic element can be computed
by using its state parameters and its articulation inputtpdi (the initial point) as follows:

B=A +dx (2.26)
and the mass cent&rof a kinematic element can be written as follows:
S=A+zx+e (2.27)

where z is the projection coordinate of the mass center onto thectilire vectorx of the
kinematic element, and is a vector representing the eccentricity of the mass cdatére
direction axisx of the kinematic elemene(L x). If the kinematic element is axis-symmetric
and it has a uniform mass distribution alorgthenz ande become:

d
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2.6.2 Translational Velocity and Acceleration

The translational velocities of a kinematic element areoflevfis:

B=A +dx + dx (2.29)
S=A+ix+azx+é (2.30)

where, thanks to rigidity,
é=60x x e (2.31)

The translational accelerations of a kinematic elemenaaifellows:

B=A +dx + 2dx + dx (2.32)
S=A+ix+2i%k+ ok + 8 (2.33)

where )
é=0(xxe +0((xxe) + (xxé&) (2.34)

If a kinematic element isomogenoussymmetricand has &onstant lengththen its translatio-
nal velocities and accelerations can be represented as/fll

B=A + dx, B=A +dx (2.35)

S=A + zx, S=A+z% (2.36)

2.6.3 Rotational Velocity and Acceleration

Lemma 1 The rotational velocity of a kinematic element, expressetlfixed reference frame
with respect to the same fixed reference frame, can be directtten with its unit direction
vector, the velocity of it and the angular velocity of a kimimielement around its unit direction
vector:

w=X XX+ 0x (2.37)

Proof of Lemma 1. The velocity of a kinematic element’s unit direction vectubject to an
arbitrary rotational velocity, is governed by the following equation:

X=wXxXX (2.38)
The arbitrary rotational velocity can be written as follows:

w=qz, (2.39)

whereq is the angular velocity of a kinematic element around anti@yi instantaneous unit

vectorz . Then, substituting (2.39) into (2.38) yields:
x = (4z,) xx (2.40)
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Expressingz , in terms of the kinematic element’s frame vectfss y, z } as below:

z,=ax + by + cz (2.41)
then (2.40) is rewritten as follows:
x=(adx +bdy +cqz) x x (2.42)
which simplifies into:
X = —-bdz + cqy (2.43)
If (2.43) is cross-producted from the left hand side vith’t yields:
X X X =04y + cqz (2.44)
and by adding the terma(¢ x) to the both sides of (2.44), we end up with:
agX +X X X = w (2.45)
which can be deduced to: '
Ix + X XX =w (2.46)

The term ¢ x) corresponds to the rotation of the kinematic element atdtself and the term
(x x %) corresponds to the rotation component which changes thetidinx. [

Remark: In cases where the kinematic element has an extrinsic mpolrifluenced only by
a revolute joint R) and an intrinsic mobility without a revolute joinRY(), the rotation of this
kinematic element around itself is not possible and thetiomal velocity can be written as
follows:

if (extrinsic mobility joint) = (R) & (intrinsic mobility joint) # (R), then

lI>

w=XXZX
(2.47)
as long as rigidity is preserved.
In some other cases, even if the kinematic element turnsdritself (due to universal or
spherical joints), this does not change the configuratia@imechanism that it exists in (i.e.
just creates an internal mechanism mobility). Then, tha (6rx) is useless and can be dropped

while expressing the rotational velocity of this kinemalement.

Thus, the rotational acceleration of a kinematic elemembesthen written regarding (2.37)
as below:

w=xXX+0x+0x (2.48)

2.7 Dynamics of a « Kinematic Element »

Disturbing a kinematic element with some active forces.{ecgntact forces, distance
forces, actuator torques/forces) will cause reactivetimlefiorces (linear and angular momen-
tums) and frictional forces. In the following subsectiong, will explore these forces in detail.
The reader is referred to Section 2.5.3, if needs to remethieedynamic state variables of a
kinematic element.
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2.7.1 Active Forces and Torques
2.7.1.1 Forces and Torques of Actuators

We write the actuator force/torque vectofs, (T, 74), Which can exist in a kinematic

element, as follows:
fg = fax, 7Tx=1T1x2Z, Tg=T9X (2.49)

where f; is the intrinsic translational force of a kinematic elemdue to the intrinsic active
prismatic actuator whose orientation is along the direc¢ of the kinematic element is
the extrinsic torque of a kinematic element due to the acttery actuator whose rotation axis
is z and whose rotating kinematic element is oriented atengy is the intrinsic torque of a
kinematic element due to the intrinsic active rotary aciuathose rotation axis i& and whose
self-rotating kinematic element is oriented alang

2.7.1.2 Force of Gravity

Afterwards, the active force of gravityfy), which is assumed to act at the center of mass
of a kinematic element, is given as below:

fo = mg (2.50)

wherem is the mass of the kinematic element anid the gravity acceleration vector oriented
towards the center of the Earth.

2.7.2 Reactive Forces and Torques
2.7.2.1 Inertial Forces and Torques

Inertial forces and torques will appear at a kinematic elgndee to its accelerated matter
inertia and mass. These inertial forces and torques offésteace to change of motion of the
kinematic element.

Inertial Forces and Torques of Actuators: The rotary actuator inertial torque, which
appears due to the extrinsic torqog, can be written as follows:

T = ~L(iz) = —L.(x x X) (2.51)

X

whereZ, is the rotary inertia of the actuator around thaxis andj is the angular acceleration
of the actuator. The rotary actuator inertial torgtjg which appears due to the intrinsic torque
T4, Can be written as below:

T; = -1 (95) (2.52)

whereZ, is the rotary inertia of the actuator around thaxis and is the angular acceleration
of the actuator. The linear actuator inertial foffigecan be written as follows:

£ = —mgdx (2.53)

wherem, is the mass moved inside the kinematic element by the lingtaator and! is the
linear acceleration coordinate of this linear actuator.
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Body Inertial Force and Torque: The accelerated matter mass and inertia of the kinema-
tic element produce the inertial force and torque. The i@efbrce and torquef( , 7*) of a
kinematic element can be calculated with the Newton-Eldeagons:

f* = —mS, ™ =—ITd - wx (ITTw) (2.54)

wherem, S 7 andw are the mass, the translational acceleration vector of desmenter, the
central inertia dyadic and the rotational velocity vectbthe kinematic element, respectively.

2.7.2.2 Frictional Forces and Torques

Frictional forces/torquestf, T, T¢) Will appear at the joint locations of a kinematic ele-
ment due to its relative mobility. A frictional force/torguwffers resistance on the motion of
a kinematic element. The extrinsic frictional torque of #atimg kinematic element can be
calculated as follows:

Tx = — (ﬂ,(x)q' + Tex) sign(q’)) Z = —Tyx)W — Tex) sign(wl'z)z (2.55)

whereT, ) and7, ) are the viscous and Coulomb friction coefficients of theiesic joint (q)
of the kinematic elementy is the relative rotational velocity vector between theiesic joint
and the rest of the kinematic element; ant the axis of rotation of the kinematic element.
The intrinsic frictional torque of a self-rotating kineriea¢lement can be calculated as follows:

Tg = — (ﬂ,(g)é + Te(o) Slgn(e)) X (2.56)

whereT, ) and7,g) are the viscous and Coulomb friction coefficients of theimsic joint
(9) of the kinematic element whose orientation is alengrhe intrinsic frictional force of an
intrinsically translating kinematic element can be cadtedl as below:

fo = — (fu(d)d + fea Sign(d)) x (2.57)
where fv(d) and fc(d) are the viscous and Coulomb friction coefficients of theimsic transla-
tional joint (d) of the kinematic element whose directionxis
2.8 Physical Formation of a Parallel Robot

Here, we homogeneously define the physical formation of allearobot through this new
constructiorkinematic element

2.8.1 A Base Platform
A base platfornis composed of base element(s) and its formation can be astélows:
(base plat form) : { (base element)y, ..., (base element)y } (2.58)

with £ > 1 and where a base element is a kinematic element without motio
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2.8.2 AKinematic Leg

A kinematic legis a chain of consecutive kinematic elements and it can baddras
follows:

(kinematic leg) : { (kinematic element)y, ..., (kinematic element); } (2.59)

wherej is the number of kinematic elements, whose value may berdifén another kinema-
tic leg of the parallel robot.

2.8.3 Nacelle

A nacelle is made of an articulated set of nacelle elemerfts.form of a nacelle can be
defined as follows:

(nacelle) : { (nacelle element)y, ..., (nacelle element),, } (2.60)

wheren is number of nacelle elements. One of these nacelle elensathiis moving platform,
or if n = 1, then the nacelle itself is the moving platform. Theref@enoving platform is
made of a single nacelle element. The moving platform canveaya a nacelle element, but
any nacelle element is not necessarily the moving platfétemce, the moving platform can
be defined as below:

(moving plat form) : { nacelle element } (2.61)

where a nacelle element is a kinematic element. A parall@troan have either a nacelle or
only the moving platform. If a nacelle exists in a parallddog then it is attached to all of the
kinematic legs, and its moving platform carries a payloathe@vise, when the nacelle does
not exist, then the moving platform is directly attachedltofthe kinematic legs, and it carries
the payload.

2.8.4 A Parallel Robot

A parallel robotis composed of a base platforinkinematic legs and a nacelle. Its forma-
tion can be written as follows:

(kinematic leg)q
(parallel robot) : { (base platform), : , (nacelle) } (2.62)
(kinematic leg)y,

2.9 Distribution of Nacelle Dynamics

Here, the distribution of nacelle dynamics has not yet bedved completely. We try,
however, to give some solutions for this problem.

If the nacelle of a parallel robot has equal humber of haedeents with the number of
kinematic legs, then the dynamics of nacelle can be shaiddthat a kinematic leg contains
an additional nacelle element. Otherwise, if the nacelke gdrallel robot has different number
of nacelle elements than the number of kinematic legs, treshew how to treat this case by
examples in the following subsections.
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2.9.1 Moving Platform Distribution

In order to share equally the dynamics of the moving platfbyreach of the kinematic legs
of the parallel robot, we will divide the moving platform @ virtual platform elements in the
sense of inertia and mass. The number of virtual platforrmefds is equal to the number of
kinematic legs. So, the new form of the moving platform cambigen as below:

(moving plat form) : { (virtual plat form element)y, ..., (virtual plat form element)y, }
(2.63)

where a virtual platform element is a kinematic element @itfirtual mass and a virtual inertia.

Mass Distribution:  The massn of the moving platform of the Gough-Stewart parallel robot
can be divided int® point masses (i.em/6). These point masses are concentric and located at
the same position with the moving platform’s real mass aefigure 2.2 illustrates the mass
distribution of the Gough-Stewart parallel robot’s movipigtform.

.

Figure 2.2 «Left): The moving platform of the Gough-Stewart paraltaot. The black circle is the mass center
of the platform. (Right): The moving platform withpoint masses. These point masses are concentric and located
at the same position with the moving platform’s real masseren

Inertia Distribution:  For example, let the inertia of the moving platform of the Glou
Stewart parallel robot b&. This inertia is calculated about a frame which is fixed atrtfass
center of the moving platform. This moving platform can bédid into6 virtual pieces such
that each kinematic leg of the Gough-Stewart parallel rehatbe augmented with one of these
pieces. Then, let the inertias of these pieces, calculagath @about the same frame which is
fixed at the mass center of the moving platform,/heZ,, 73, Z4, Zs andZg. Then, we can
write the total inertia of the moving platform in terms of timertias of the virtual pieces as
follows:

7 = Z Z; (2.64)

Figure 2.3 illustrates the inertia distribution of the Ghugtewart parallel robot’s moving plat-
form.
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Figure 2.3 —Left): The moving platform of the Gough-Stewart parallebot and its inertia calculated about a
given frame. The white circles are the connection pointhefdinematic legs. (Right): Th@virtual pieces of the
moving platform and their inertias calculated around thees&ame.

Example of a Distributed Moving Platform: Figure 2.4 shows how the Gough-Stewart
parallel robot's moving platform can be split inGovirtual platform elements. The masses of
these virtual platform elements are assigned terhé as explained in the mass distribution
subsection, and their inertias are assigned t6.h&,, 73, 74, Zs, Zs as explained above in the

inertia distribution subsection.

Figure 2.4 —Left): The moving platform of the Gough-Stewart parallebot. The white circles are the connec-
tion points of the kinematic legs, and the black circle is t@ss center of the platform. (Right): The distributed
moving platform with6 virtual platform elements. The mass of the platform is shared by six of the virtual
platform elements equally (i.ex;/6). Their mass centers are concentric and located at the sasitop with the
moving platform’s real mass center. The ineffiaf the platform is shared by these virtual platform eleméings,
I:I1+...+16).

Remark:Since the moving platform is rigid, any virtual platform elent’s rotational velo-
city is always equal to the real moving platform’s rotatibwelocity. Thus, total dynamics of
all the virtual elements will be also equal to the dynamicthefmoving platform.
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2.9.2 Nacelle Distribution

Figure 2.5 shows an example of the H4 parallel robot’s nacéi$ nacelle is composed
of 3 articulated nacelle elements while it has 4 kinematgslerhe moving platform (i.e.,
one of the nacelle elements) of the nacelle of H4 parallebtr@b located in the middle of
the two parallel nacelle elements and connects them withiuts joints. The parallel nacelle
elements have only translational motion, therefore theyalohave inertias. However, their
relative motion turns the moving platform (i.e., the middéeelle element) and thus the moving
platform has an inertid. Each of the parallel nacelle elements can be divided intot@al
nacelle elements so that we have a virtual nacelle elemerkipematic leg. The kinematic
legs are now augmented with these virtual nacelle elemgnts the connection points of the
moving platform. We can divide also the moving platform af th4 parallel robot intd virtual
platform elements in a similar way as explained in the pnevisection for a Gough-Stewart
parallel robot’'s moving platform. So, the inerffzof the moving platform is shared kiyvirtual
platform elements whose inertias arg 7, Zs andZ,. Note that the inerti& of the moving
platform should be recalculated at each iteration (or amgiits configuration changes) before
sharing it among the virtual platform elements.

@ (*\ 0) ©

o\ /

@ N\ °)

Figure 2.5 —Left): The nacelle of the H4 parallel robot. It is composédarticulated nacelle elements and
it has4 kinematic legs. The white circles are the connection paifthe kinematic legs, and the black circles are
the mass centers of the nacelle elements. (Right): The s&cmtion of the nacelle with virtual nacelle elements.
The mass of each nacelle element is shared equally by vitaadlle elements. The mass centers of these virtual
kinematic elements are concentric and located at the sasitgns with the nacelle elements’ real mass centers.
The inertiaZ of the moving platform is shared kyvirtual platform elements (i.eZ, = Z; + Zo + Zs + Z4).

For the other types of nacelles, one can use a similar conoeyhiare equally the masses
and the inertias of the nacelle elements to the each of tladig@aobot’s kinematic legs. Finally,
we remark that there is still some work to do to formalize ctatedy the nacelle dynamics.

2.10 Sate Variables and Motion Basis of a Parallel Robot

2.10.1 State Variables

Instead of writing the geometric relations and the motioma eiechanism in terms of the
independent numbenf) of generalized scalar coordinateg, .. ., ¢y, } (i.€., active joint va-
lues), we break out of the customary routine and we expresgdbmetric relations and the
motion with the unit direction vectors of alh(.) kinematic element$x,, ...,x, }, the va-
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rying lengths of these kinematic elemefts, ..., d,,, }, and the self-rotation angles around
the unit directions of these kinematic elemefds, ..., 6,,_}. Thatis to say, we use a redun-
dant set of variable$t. > n,) and we express equations in a vector form wherever possible
rather than in a scalar form.

2.10.2 Motion Basis

Choosing a motion basis, different from the first order deiies of the independent gene-
ralized coordinatesqi, . - ., gn, } Of a robot, was proposed for the first time by Kane which is
named ageneralized speed3raditionally, in Kane’s method the generalized speegsare
defined (still as scalars) as functions of the derivatives minimal set of,, generalized scalar
coordinates q1, - - -, qn, }

Nq

uréZqu'i—kzr, r=1,...,n4 (2.65)
i=1

wherey,; andz, are functions of ¢i, ..., ¢y, } and the time. The choice of these functions
in (2.65) should yield a unique solution g1, . . ., 4, } [KL85].
Since the redundant set of state variables that we proposed,

{xy,00x,, t, {di,oodn by {01,000, ), (2.66)

compactly represents the configuration of the mechanisnliaedrizes the expressions, the
choices of the generalized speeds appear spontaneousigdives. So (without needing to
inspect the expressions), we define dire¢lg motion basisas the time derivatives of the
redundant set of motion variables of (2.66):

u, =X ug = d; ugi £ 0 t=1,. 0 Npe (2.67)

Namely,y,; = 1 andz, = 0in (2.65).
This definition preserves the geometric intuitiveness ehtlechanism and eases the follo-
wing of equations

2.11 Kinematics of a Parallel Robot

To give the notion clearly in the rest of the context, fromditio time we will refer to
a simple2 degrees of freedom (dof) five-bar mechanism which iSRRRRR structure planar
parallel robot. Figure 2.6 illustrates tHislof five-bar mechanism. Regarding defined kinematic
element types, a kinematic leg of this robot is composed ofd@wnsecutivdar typekinematic
elements, and this five-bar mechanism can be renamed aB p&8llel robot.

2.11.1 Mass Centers

The mass center position of th#é kinematic element of a kinematic leg (with respect to a
constant attachment poiRt of the kinematic leg onto the base) can be formulated by sugmi
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E platform
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2 kinematic graph kinematic graph

Figure 2.6 -A 2-dof planar five-bar mechanism. The revolute joints mtabund the,, andz,; axes which are
orthogonal to the paper plane. Actuators are locatd®); gioints. All the kinematic elements are homogenous and
symmetric.¢,; and{,; are the constant lengths of the kinematic elements. On g¢ie side of the figure, we see
the joint-oriented kinematic graph and the new body-ogdriinematic graph of the five-bar mechanism. A pseudo
moving platform can be imagined as one of the identical kisenelements (e.g[A2E]). The end-effector is
located at poinE.

thei — 1 elements and adding finally thi& mass center:
i—1
Si=P+) dix; +zix; + & (2.68)
j=1

Example: So, assuming that all the kinematic elements of the five-lh@anism are homo-
genous and symmetric, the mass center positions of the kitieglements shown in Fig. 2.6
can be simply expressed as follows:

@ Eai

9 Xpiv Sai:Pi-i-gpi Kpi"’_? Xaio 7= 1,2 (269)

whereP; is a constant poinx ,; , x,; } are the unit direction vectors defining the state of the
kinematic leg, and/,; , £,;} are the constant lengths of the kinematic elements.

Spi =P, +

2.11.2 \Velocities
2.11.2.1 Translational Velocity

The mass center velocity of thi& kinematic element of a kinematic leg (with respect to a
constant attachment poilt of the kinematic leg onto the base) can be formulated by simpl
time differentiating (2.68), which yields:

i—1
$i=> (dix; + djx;) + dix; + mixk; + & (2.70)
j=1
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Example:

So, the velocities of the mass cent8gs andS,; of the five-bar mechanism shown
in Fig. 2.6 are written as follows:

. Cpi . . lai .
Spi:%XPiy Saizgpi Xpi"i_? Xais 221,2
2.11.2.2 Rotational Velocity

(2.71)

According to Lemma 1, the rotational velocity of any kineioatlement in a kinematic
leg, expressed in a fixed reference frame with respect todime gixed reference frame (e.g.,
camera frame or robot base frame), will be equal to (2.37):

w; =X; X X; + 9z§Z
Example:

(2.72)
So, the rotational velocity vectors of the kinematic eletadiPA }; and{AE},
of thei*" kinematic leg of the five-bar mechanism given in Fig. 2.6 cacdlculated as below:
(Jin ézpz XX])Z’ wai ézaz XXG/L" 221,2 (273)
2.11.3 Accelerations
2.11.3.1 Translational Acceleration

The mass center acceleration of iHe(with respect to base) kinematic element of a kine-
i—1

matic leg is derived from the time derivative of the mass eentlocity:

S, :Z (c'l'jgj +2d;%; + djgj) + X 4 20X, 4+ X, 4+ &
7=1

(2.74)
Example: Then the accelerations of the mass censggsandS,,; of the five-bar mechanism
shown in Fig. 2.6 are computed as below:

. Lpi .. . loi .. .
Spizgzm‘a Saizgpizpi"i_% Xais 221,2
2.11.3.2 Rotational Acceleration

(2.75)

The rotational acceleration vector of tfé (with respect to base) kinematic element of a
kinematic leg will be equal to (2.48):

w, =x; X X; +0;x; +0;x;

A . N
wpz - Xpi X Xpi? waz -

(2.76)
Example: Then the rotational accelerations of the kinematic eles@f }; and{AE},; of
thei** kinematic leg of the five-bar mechanism given in Fig. 2.6 camxpressed as below:

Xai X Xgis

i=1,2 (2.77)
60



2.12 Kinematic Constraints of a Parallel Robot

2.12.1 Configuration Constraints

If the positions, orientations, and lengths of the kinematlements of a robot are restricted
by the presence of each other’s contacts, then the roboidgsae subject ta@wonfiguration
constraints Such restrictions are expressed through the implicitrkigtéc model (ImplKM) of
the robot or so-called theolonomic constraint equatioiKL85]:

/ (07 P, E, X i dﬂ? (eji)v ggeo) =0
(2.78)
i=1,..., N J=1 ke

whereg ., is the vector of constant geometric parameteys, is the number of kinematic
legs, andh,,(;) is the number of kinematic elements in e kinematic leg of a parallel robot.
Assuming that: the connection points of the kinematic el@sare lying on the axes of the
direction vectors; the self-rotatiorts; of the kinematic elements do not change the positions
of these connection points; and the end-effector framedatéa at the mass center of the
moving platform; then, equation (2.78) can be preciselyritésn as follows:

Nke(i)

—
OE - 3 djix;i —OP, =0, i=1,..., (2.79)
7j=1
where the sum) + ... + Nke(nge,) = Mke is equal to the total number of kinematic

elements in a parallel robot.

Example: Forthe five-bar mechanism shown in Fig. 2.6, ¢hesed-loop holonomic constraint
equationscan be written as follows:

ﬁ - Eai X ai

1

lyx, -~ OP, =0, i=12 (2.80)

pr

2.12.2 Motion Constraints

% ., d;, 0; } of the mechanism are not mutually inde-
pendent, then the mechanism is said to be subjetiation constraintsand the mechanism is
named as aonholonomic systeriThe motion constraints equation can be written by differen
tiating the configuration constraints equation (2.79),chtgives:

If the components of motion bas{sk

MC(X)X + Z (MC(&)&‘ + Mcq,) di) =0 (2.81)
=1

whereM¢(x) € R**" is the Cartesian pose kinematic matidc(, ) € R3*3 and M (q,) €
R3x1 are the kinematic element’s direction kinematic matrices l@ngth kinematic vectors,
respectively.
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Example: For the five-bar mechanism shown in Fig. 2.6, the motion caimttequations are
written by differentiating (2.80) as follows:

X = Uy % — Llai X0y =0, i=1,2 (2.82)
whereX = E. From (2.82), we can derive the inverse differential kindmenodels of the
kinematic elements’ variables. To do so, we exploit two prtips of the vectors:

— The projection of a vector onto its velocity vector is ecgatero:x’ x = 0,
— If vectorsa andc are parallel4 // c), thena (b’ c) = (b’ a)c.
By projecting (2.82) withx ,;, we eliminate its motion variable ,; from the equation:

a?

x5 X =l x5 %, =0 (2.83)
Afterwards, multiplying the last equation Wi§_hpi which is parallel tax ,;, we obtain:
Xpi Xz;i X - glm' Xpi Xjé;i Xpi =0 (284)

This allows us to use the second property of the vectors egdi above. Then, we rewrite
(2.84) as follows: '
YpiXa X = bpi (XY )%, =0 (2.85)

This avoids a matrix inversion while computing the inversiecential kinematic model of
sz

. Yy Xh
= My X, My = | — 2 ——— | e R33 (2.86)

x
" Cpi (X7 Y pi )

Then, to derive the other inverse differential kinematicoelorelated tax ,;, we proceed as
follows: ' '
X - Epi Msz - Eai Xai =0 (287)

and from (2.87) we write easily:

: 1
Xg = My X, My = [E_ (I3 — Ly Mpi):| € R3x3 (2.88)
where I3 is the 3 by 3 identity matrix. Finally, we derive the inverse differaitkinematic
model of the active joint coordinatgs. Knowing that:

L

Wpi = Xy X Xy = (iZy; (2.89)

we can take ouf; as below:

¢ = (Xpi X Xpi )T—pi (290)
which can be reformulated in terms Xfas follows:
G = MyX, My = |20 [x,,]x Mpi] c RLX3 (2.91)

where[-]« represents the skew-symmetric matrix of an associated-@asluct vector.
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2.13 Kinematic Coordinates of a Parallel Robot

Kane [KL85] expresses the linear and rotational velocitiEthe kinematic elements uni-
quely through the minimal set of generalized scalar coatéi the generalized speeds in
(2.65) and thepartial velocities Then, Kane writes the linear velocity for the mass center an
the rotational velocity of a kinematic element as follows:

Ng
S=) veur+wv (2.92)
r=1
g
w = Z Wy Uy + Wy (2.93)
r=1
wherev,, w,, v andw; are functions of ¢, . .., g,, } and the time.

The vectorsv, € R3*! andw, € R3*! are ther?” partial linear and rotational velocities
of the kinematic element. So, for a kinematic element, Kafandsn,, partial linear velocities
andn, partial rotational velocities with the use of scalar generalized speeds:

_ 0S8 w 0w
 du, " du,’

Vi r=1,...,n4 (2.94)
Before proceeding on the rest of the text, we would like td Giarify the naming of some
technical terms in Kane’s method and in our method:
— What Kane calls “generalized coordinates”, here we regtasith “state variables";
— What Kane calls “generalized speeds”, here we replacethit‘wiotion basis";
— What Kane calls “partial velocities", here we replace ithwkinematic coordinates”;
Regarding the definition of our motion basis (direction vestlengths and rotation angles)
in (2.67), the kinematic coordinates take the form of eithetrices or vectors:

oS Oow )
Vei = dug;’ Wee = Oug;’ P b ke (299
o8 Ow
Vi Oug’ Wi Oug’ v ooy ke (2.96)
S
Vo = 0 ; Wo; = 0w soot=1,00 nge (2.97)
8Um Oup;

whereV,; € 133 andW,; € R3*3 are the linear and rotational kinematic coordinates (ma-
trices) of the kinematic element with respect to iHekinematic element’s direction vector
variablex;, and wherevy; € R#3%! andwg; € R3*! are the linear and rotational kinematic co-
ordinates (vectors) of the kinematic element with respetheéi” kinematic element’s length
variabled;, and wherevy; € 2#3*! andwy; € R3*! are the linear and rotational kinema-
tic coordinates (vectors) of the kinematic element wittpees to theit” kinematic element’s
self-rotation variabld,.
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Example: Then, for the five-bar mechanism shown in Fig. 2.6, the mabiasis will be as
follows:

A .
- Xal ufB4

2 X4 (2.98)

A A .
Uyl = Xpla Ugz2 = §p2 U3

Table 2.1 tabulates the linear and rotational kinematicdioates of this five-bar mechanism.
These kinematic coordinates are algebraic expressiotiemwfiom the geometric states of the
kinematic elements. Note that while calculating the kinéeneoordinates of a kinematic leg,

the kinematic leg will have contributions only from itseifise it can solely be represented by
its own motion variables. The contributions from the reskiaEmatic legs will be zero.

Table 2.1 — The (transposed) kinematic coordinates of tieelfar mechanism (28), i=1,2.
H @sz ‘ 8wpi ‘ OSM ‘ 8wm- ‘

0%, | 0 | % | s | 0

0 0 ZQM I3 [&n’]i

2.14 Dynamic Coordinates of a Parallel Robot

The forces consist afontributingandnon-contributingparts for the dynamics of a robot.
The computation of the dynamic coordinates (i.e., germdlforces) is concerned only with
the extraction of theontributingparts.

The forces acting on a robot can be listed in two groups: @etihd reactive forces. Firstly,
we will list these active and reactive forces. Then, we wiflain how to compute the dynamic
coordinates of a robot from its revealed active and readtikees.

2.14.1 Listing the Active and Reactive Forces

As it is explained in Section 2.7 for a kinematic element, dlogve forces of a robot are
similarly theactuator forces and torqudsge., generated by the linear and rotary motor motions)
and thedistance forcege.g., gravitational, magnetic). And, subsequently, getive forces
are theinertial forces and torquei.e., generated by the accelerated masses and inertids) an
the contact forcege.qg., friction).

Example: In this example, we list all the active and reactive forcesiva-bar mechanism
shown in Figure 2.6.

— Forces of Actuators and GravityParallel robots have usually a single actuator per ki-
nematic leg. Thus, probably only one of the efforts of (2.4@) appear as an actuator
force/torque in a kinematic leg. For the kinematic elemaftthe five-bar mechanism
shown in Fig. 2.6, the active forces and torques can be wrasefollows:

TKm = Tﬁpi Zpi’

fopiy = Mpi8,  fga) = Maig, i=1,2 (2.99)

wherery . is the actuator torquey ;) andfy(,) are the forces of gravity.

64



— Inertial Forces of the Actuatordzor the five-bar mechanism shown in Fig. 2.6, the iner-
tial torques of actuators can be written as follows:

T;pi = _Ipi (sz X sz)?

i=1,2 (2.100)
— Body Inertial Forces of the Kinematic ElemenEor the five-bar mechanism shown in
Fig. 2.6, the inertial forces and torques of the kinemat&rants can be written as

follows:

£ = —myi Spi, Tho= — Ll &p — wp x (LEwy), i=12 (2.101)

£ = —mai Sai, Tho= — T 0y — wa X (TEwe), i=1,2 (2.102)

— Frictional Forces:For the five-bar mechanism shown in Fig. 2.6, the frictionajties
can be written as follows:

715?%’ = — ﬂ,(x ) Wpi — %c(x ) sign(wgl Zy; ) Zy; 1=1,2 (2.103)

whereq-x is the extrinsic actuator frictional torque. Since the attits are placed in the
fixed base platform, the relative rotational velocity vedesadirectly equal to the velocity
of the actuator. Then, the frictional torques on the pagsives are as follows:

Tx . = —7_'1;(5 ) (wai - wpi) _7__6(5(“-) Sign ((wai — Wpi )T Zaz‘) Zg; s = 172

(2.104)
We can now list all the local forces and torques for the fiverbachanism as in Table 2.2.

Table 2.2 — The local forces and torques of the five-bar meshari=1,2.

Active Friction Inertia*

Actuator Gravity | Actuator PassiveJoint | Actuator Element
Forces(pi) |0 fo(pi) 0 0 0 £
Torques (pi) || Tx,, Zpi 0 Tx,, 0 Tgm. Tpi
Forces(ai) |0 fo(ai) 0 0 0 £
Torques (at) || O 0 0 Tx,. 0 T

2.14.2 Computing Dynamic Coordinates

Here, for the computation of dynamic Coordinates, Kane'shoa is used. This method

simply eliminates thaon-contributing forcedy projecting the resultant forces and torques,
which act on the mass centers of the kinematic elements tbatmotion directions (i.e., kine-
matic coordinates) of the kinematic elements:

A
CDO(Z)J:CZZZ; Ne Linear T Rotational \ > Force;
of a = Kinematic Kinematic
Kinematic i=1 Coordinate Coordinate > Torque;
FElement

(2.105)
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whereny, is the total number of kinematic elements in a parallel rohotlr € {%;, d;, 6, }
with j = 1,..., ni. shows that a kinematic coordinate corresponds to which comt of the
motion basis. One dynamic coordinate per motion basis caemgas computed. Each kine-
matic element ha8 dynamic coordinates corresponding to its own motion bassponents
{x, d, é}. Totally, 3 nx. dynamic coordinates are computed fqf. kinematic elements.

Example: The dynamic coordinates of the five-bar mechanismBR&hown in Fig. 2.6 can
be simply computed through the matrix-wise multiplicatadrthe Tables 2.1 (transposed kine-
matic coordinates) and 2.2 (sum of the local forces and ewgu

Kinematic Sum of
Fy . Forces
=ri | = | Coordinates
Fa,, Table 2.1 Torques
(2x4) | Table2.2 (4x1)
which can be explicitly written as follows:
[ e + £y |

F, B [x,)l Gils 0 Ty Zpi T T, T T Ty
{ 2, } _ (2.106)

0 0 [(17113 [Xai]T

X

fo(aiy + £

= *
L Té,,,i + T ai J

where the dynamic coordinateEEpi andFF, ., are exiting forces effecting the rotations of the
bars of the mechanism. In other words, these rotations ob#ng are the result of the total
work done by these exiting forces along the displacemesttionsx,,; andx,,,.

2.15 Dynamic Constraints of a Parallel Robot

The dynamic constraints of a parallel robot can be writtemfid’ Alembert’s principle of
virtual work as follows:
Nke
3 (ng + Fy, d; + F, 9) =0 (2.107)
=1
whereF,,, € R3*!, Fy, € R*! andFy, € R'*! are the corresponding dynamic coordinates.
The dynamic constraints (2.107) can be reformulated thralng known motion constraint

models which relate the kinematic elements’ motions to #lecity of the end-effector pose
(i.e., to a motion basis of the constraint space):

k; = My, X, di =My, X, 6 =MX (2.108)

7

The substitution of (2.108) into (2.107) yields:

Nke
Z(FQ(MEX)+Fdi(MdiX)+Fei(MeiX)) =0 (2.109)
i=1
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EliminatingX from (2.109), dynamic constraints take the final form aswelo

Nke
i=1

Remark:Equation (2.110) can be proved probably by a better solwibith passes through
the differential implicit kinematic model (DImplKM) of a bt rather than passing through the
expressions in (2.108).

Example: Exploiting (2.110), the dynamic constraints of the five-bechanism (2B) are
written as follows:

(Mzz; szi + Mg; Fgai) = 03x1 (2.111)
=1

M, Fe, + M Fy, = 031 (2.112)

whereF, € R*! andF,, € R°*! are the stacked vectors of the dynamic coordinates of
F,, € ®" andF,, € R, respectively.M, € R%* and M, € R°** are also stacked
matrices of the motion constraint mod@lf,; € R3*3 and M,; € R3*3, respectively.

2.16 Linear Solution for the Inverse Dynamics

Every equation from the beginning up to the last equatiohl(@). is expressed in a linear
form. Therefore, progressing from (2.110) to the linearlioipdynamic model (LImpIDM)
expressed in Theorem 1 of a parallel robot is just a matteoofessimple linear algebraic
manipulations, once the motorized joints are specified.rtfeoto write this LimpIDM, the
following parameters and variables are required:

- &,.,- cOnstant geometric parameters of the robot (e.g., lengthsts).

— &4y, CONstant dynamic parameters of the robot (e.g., massatiam frictions).

- {x,d,6}: 0" order variables of the kinematic elements. They allow usritewthe static

configuration of the robot, the motion constraint models @wedkinematic coordinates.

- {%,d,6}, {%,d,0}: 15" and2"? order variables of the kinematic elements. They allow

us to write the local forces and torques.

— I': force vector of the robot’s actuators (e.g., forces ofvagtirismatic joints and torques

of active revolute joints).

Corollary 1 The inverse dynamics (IDM) of a parallel robot can then beaot#d by solving
a unique linear system of the LImpIDM:

AT 4+ b = 0,5 (2.113)

where A € R7** is the configuration-dependant matrix relating the unkndemce vector
I' € ®¥*1 of the actuators to the contributing effoitsc R™*! of the kinematic elements. The
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r is the dimension of a surjective motion basisX k). As long as the matrid is full rank,
one can solve fofF"
r = —Afb (2.114)

whereA' is the pseudo-inverse of the matrixto be computed with a QR or SVD decomposi-
tion for a fast and robust solution rather than literally Withe Moore-Penrose formula.

Example: We solve for the inverse dynamic of the five-bar mechanismwvsehno Fig. 2.6. To
do so, we first write explicitly the equation of the dynamiotinate (the first one in (2.106))
which includes the motor torques:

Fo, = [Xpi)% 2pi7x,, + Fa, (2.115)

Lpi

which can be rewritten as follows:

Fa, = Tx,,¥,; T Fe, (2.116)

T,
where

o™ 14 7 * — * * *
= 2 (g + £) + [x,:]% (r;pi +75, + Tm-) + i (£g(ay + £3) (2.117)

Lpg 2

Afterwards, we can rewrite the equations of motion (2.1¥2hefive-bar mechanism as below:

MT Xpl 03 x1 T§p1
p O3>< 1 Xp2 T§p2

which can be reformulated in the form of (2.113):

_Ip1

_|_

> + M F,, = 035 (2.118)

Zp2

Al ™0 | 4 b= 03 (2.119)
Tx,
whereA € R#3*? is as follows:
0
A=pmT | I T (2.120)
3x1 Y o
and whereb € 73> is as below:
b=M" Eﬁl MI'F 2.121
=M = + M! F, (2.121)
Zpo
Finally, the solutionl’ = [szp T, ] (torque vector of the motors) of inverse dynamics of
the five-bar mechanism is computed as follows:
| — _Atp (2.122)
T,



2.17 A Global View to the Proposed Methodology

In short, using the proposed methodology, one can veiiieiently the inverse dynamic
model of a parallel robot by simply following the§esteps:

1. Decompose the parallel robot to its kinematic elemenisn&pection);
Define the type of each of the « kinematic elements » (byeictamn);
Compute the kinematic coordinates and the kinematictints (automatic);
List the local forces and torques on the kinematic elem@nitomatic);
Compute the dynamic coordinates and the dynamic conttrgutomatic);

a kr wn

6. Solve linearly for the inverse dynamic model (automatic)

The state variable§x, d, 6} can be directly measured with proprioceptive/exterovepsen-
sors (e.g., motor encoders, camera, etc.), and/or be eltdinough some mechanical kinema-
tic models, if this does not lower the efficiency. Therefave,generalize the representation of
the inverse dynamic model, without concern for sensors laadniodels used, as follows:

T = IDM(5, 5,8, £geor Eayn) = — Al(s)b(8, 8, s) (2.123)
wheres is the set of state variables of the kinematic elements:

st {x, di, 0},  i=1,... np (2.124)

2.17.1 Compared to Khalil's, Kane’s and Tsai’'s Methods

— We were inspired by the idea of using passive joint cootdmavith the active ones
(redundancy) in modeling from Khalil, and we recommendeda nedundant set of
state variables which keeps the equations compact and.|iRedhermore, in this way
we do not need to compute the global balancing force at thee@fadtor.

— We were inspired by the idea of to be free in our choice of dandbasis (minimal or
redundant) from Kane, and we proposed a unique redundaimnrudsis which makes
Kane’s method easily applicable to broad range of robotsaj{send parallel).

— We were inspired by the idea of writing final equations of iomteasily using the lo-
cal efforts done on each of the kinematic elements from Esal, we improved Tsai’s
formulation by Khalil and Kane’s inspirational ideas subhttit became geometrically
more intuitive, simpler, completely linear and more preaiti

2.17.2 Originality

Body-based modeling and control methodology rather thiat-jmsed:

— We use lines to model the moving bodies (concrete) ratlzer tiie joint axes (abstract).
This enhances the visual perception of a robot, such that@ahuorain can almost
vividly imagine a robot’s motion by just reading the equatidaugmented reality).

— Equations of motion use simple linear vector algebra aathazompact form. This eases
the codability and the fast solvability of equations on tbenputer. Even for the most
complex robots, the inverse dynamic model can be worked @ghtpen and paper.
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Practical applicability:

— Vision allows us to sense the moving bodies (directed 3&s)im Cartesian space, which
uniquely define the state of the robot. Thus, vision allowsafdirect use of our method
on the real robots.

— Vision and motor encoders together increase the qualityufacy and richness) of the
information for simple modeling and precise control.

2.18 Applied to the Quattro Parallel Robot

The proposed modeling methodology was applied to the @udtie Gough-Stewart, the
Delta, the 3-RRR and the Orthoglide parallel robots. At the end of this ¢diagthe proposed
modeling methodology is shown in detail only for the Quagtamallel robot. For the rest of the
parallel robots, the reader is referred to the Appendix A.

Base

Nacelle

Figure 2.7 — The Quattro parallel robot with a base-mounésdera [eft) and its joint-oriented
graphical layoutright).

2.18.1 State Variables

The Quattro is composed of four identical kinematic legsolvttiarry the articulated nacelle
(see Fig. 2.7). Each of thé kinematic legs is actuated from the base by a revolute motor
located atP;. A kinematic leg has two consecutive kinematic elementugrer-leg[P; A;]
and a lower-ledA;B;]. Lower-leg and upper-leg are attached to each othér;aft the top,
the upper-legs are connected to the motors, while at therbpthe lower-legs are connected
to the articulated nacelle. Also, the form of the lower-legth attached nacelle is called the
umbrellaof the Quattro robot, which can be thought of as being anidatied object attached to
the independent upper-legs. The articulated nacelle igmied with four kinematic elements
[NRCT05]: the two lateral kinematic elements (eith#;B;], [B3B4] or [C1Cs], [C5C4))
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and the two central kinematic elemeni€{C-|, [C4C,]) linking lateral ones with revolute
joints (see Fig. 2.8).

Kinematic Element Types: Hence, we have the following kinematic elements in the Qoiatt
robot to inspect and to decide their types: upper-legs, idags and the four parts of the
nacelle. The configurations of those kinematic elementkbeildefined by the unit direction
vectors of the bodies rather than the non-linear joint coatds:

Upper-legs [P;A;] An upper-leg rotates around a fixed axis. It has 1 dof rotatiemtrinsic
mobility due to a motorized (R)evolute joint. It isoar typekinematic elementk ;.

Lower-legs [A;B;] Each lower-leg consists of two slim and cylindrical shapedsrfitted
with ball-joints ((A;1, A;2) and B;1, B;2)), forming a parallelogram. The joint-oriented
notation of a kinematic leg, which contains this type of adoeg, is symbolically
denoted agt — (S — S)2. ThisR — (S — S)9 also equalsR — U — U whereR andS
stand for an actuated revolute joint and a passive sphgoicd] respectively. Th¢.S —
S)9 architecture of a lower-leg fastened to an upper-leg esshed the vectord\ ;; A,
andB;;B;, are always kept parallel to a fixed directiag, ). This motion constraint
completely restricts the rotation of a lower-leg aroundlésgthwise directionx,;).
Thus, this parallelogram lower-leg rotates only around &inmgpaxis which means that
it has 2 dof rotational extrinsic mobility due to the exigti(s)pherical joints. Therefore,
it is abar typekinematic elementk ;.

Nacelle [C,;C, 1] The articulated nacelle has two lateral and two centralrkiie elements
which are structurally restricted to be coplanar with respeeach other. The articulated
nacelle itself has only a translational motion, but eachfateral kinematic elements
can be independently translated in one fixed directigy) Which lets the central ones
have an additional relative rotational motion around ars &lxat is parallel to a fixed
direction. Thus, the end-effectd, which is located on théC,C3] central kinematic
element (i.e., the moving platform), reacheslegrees of freedom, namedyfor the
translational movements aridfor the rotational movement. The moving-platform also
has an amplification system to transform the relative raatiinto a proportional rota-
tion (8 = x#) in the end-effectoi (see Fig. 2.8). As a result of this structure of the na-
celle, the lateral kinematic elements have only trangtafiextrinsic mobility due to the
parallelogram lower-legs, and the central kinematic el@skave the same translational
extrinsic mobility with a relative rotation allowed by thR)evolute joints. Thus, each
kinematic element is bar type x;,;, = d;x, whered; =3 =0, d = —1, 04 = 1. If
i =4theni+1 £ 1.

The static state of the mechanism is therefore totally addréantly defined by the unit vec-
tors { x,,;, X,;, Xp; }- Figure 2.9 shows the new body-oriented graphical layothefQuattro
parallel robot. In modeling, the following notation is used
— i =1,2,3,4 denotes the kinematic legs.
— j ={p,a,b} is the literal representation of the kinematic elementsiérhechanism.
— &geo = {Pi, i, ln,d, dy, b, by, @} are the geometric parameters (e.g., constant lengths
and points).
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B,

Figure 2.8 — Side and front views of a kinematic leg with itsiakles and parameterteft).
The plan of the nacelle with its variables and parametgghty.

Nacelle
S s :
B B, | | B B
Base .| B B! Base
Bl T 51T ‘Hel{B

____________

Figure 2.9 — Body-oriented graphical layout of the Quat@oafiel robot.

— Eayn = {mji, Zji, fv,, fc, } are the dynamic parameters (e.g., weights, inertiasidnisj.

- Fo = (07507X07Zo)1 Fe = (E7§e7ze7ge)’ Fpi = (Pivzpwzpivgpi) and ¥, =
(Ai, X4,y .+ Zq;) denote respectively the base, the end-effector; theipper-leg and
thei " lower-leg frames.

— ¢, is the articulated position of thi” upper-leg motor.

— The end-effector poséX] is composed of the originK) of the end-effector frame and
the orientation of théC,C3] moving platform &.). The end-effector pose velocity is

thenE andx,:
2] a4 e

Xe Ke

2.18.2 Kinematics

Mass Centers: Figure 2.10 shows the mass cent&rs of the kinematic elements in the
mechanism. The expressions are fully in vector form as ndileeckinematic elements have
intrinsic mobility. Then, the mass centers of the basicgafthe Quattro robot are written as
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follows: (i) for the upper-legs,

Spi=P;+ %gpi (2.125)
(i) for the lower-legs,
Sai = Pi+ lpix,; + % X o (2.126)
(iii) for the nacelle’s kinematic elements,
Spi =Pi+lpixp + lai X g + ITSJ (2.127)

whereBS;; andB3S ;3 are constant, since they are located on the translatioteahl&ine-

matic elements of the nacelle. TiS ;2 andB4S 4 are the sum of a constant vector and a
component along the rotating central kinematic elementsehacelle:

— h
B,;Sy; = const; + 5 Xbi (2.128)

Figure 2.10 — The mass centd (white squares) of the kinematic elements. All of the kine-
matic elements are assumed to be homogenous and symmetric.

Velocities: The translational velocities are derived by simply diffarating (2.125), (2.126)
and (2.127). The rotational velocities are compactly re@néed through the unit orientation
vectors. Then, the velocities are written as follows: (i)tfee upper-legs,

3 ,el
S, = 2x wpi £ X, X %, (2.129)

9 =pio pi 7~ =pi
(i) for the lower-legs,

Eai

Sai = bpiXp + 5 Xai Wai & Xgi X X (2.130)
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(iii) for the nacelle’s kinematic elements,

L

sz‘ = gpiXpi Flai X + = Xy Wy = Xp X Xy, (2.131)

2

Accelerations: The accelerations are obtained by differentiating (2.1€9130) and (2.131)
with respect to time. Then, the accelerations are writteiolémsvs: (i) for the upper-legs,

Spi = %Xpi? Whi 2 Xpi X Xp; (2.132)

(ii) for the lower-legs,

S
8
>

Sui = lpi%kp + 2%, Gai 2 X, X %, (2.133)

(iii) for the nacelle’s kinematic elements,

(1>

h
Kot 5 Xy Wi = Xy X Xy, (2.134)

Sy = CpiX i +lai X 5

2.18.3 Kinematic Constraints

The closed-loop constraint equation for each of the kineantegs can be written as follows:

—

— gpiﬁpz’ — OPZ' =0
(2.135)

whereO, P;, C,C;, C3C, andC;B; are constants, and whetg 5; and~; are as follows:

ai

h
OF + @y, + &5 xe + 5 C2C1 + 7 C3Cs + CiBi) — laix

e1=¢e=1, egg=e4=-1, fi=1, fa=03=01=0, m=12=73=0, un=1

(2.136)
Afterwards, one can differentiate (2.135) with respectineetin order to obtain the motion
constraint equation, which yields:

h
E + (aze + 62‘536) - gaigai - Epigpi =0 (2137)

The motion constraints for the attachment poiBt{sof the nacelle can be written from (2.137)
as below:

. h .
E + (aze + 5,536) = B; (2.138)
where
YV, =We Xy, = (x, X X,.) X y, = [Z.]x X, (2.139)
Then, (2.138) becomes:
. h . .
E + (a[ge]x + €i§I3)§e = B; (2140)



which can be rewritten as follows:

B, = LBiX, Ly =[5 (alz.]x +&21) ] (2.141)

7

whereLBi € R3%6 is the relation between the Cartesian velocity of the teaiimint of the

ith kinematic leg and the end-effector pose veloditg R6*!. Finally, we reformulate (2.137)
to ease the derivation of kinematic relations as below:

Ly Xe = laiXy — lpiXy = 0 (2.142)

ai

Constraints on the Active Upper-Legs: The kinematic constraint on each unit orientation
vector of the active upper-legs is defined from (2.142) bylatpg the following relations:

xl %, =0, Y i/l %pi (2.143)

By multiplying (2.142) withxZ, and then witrypi, one finds that:

Epz‘zpi (XZiXpi) = Y, xT L X (2.144)

B;

where the left side of (2.144) can be rewritten from the paliaim of the vectors as follows:
byi (X0 ¥ ) %pi = ¥ Xai Ly, X (2.145)

then, one can obtain the inverse differential kinematic ehdéak an upper-leg orientation unit
vector as below:

. Y i Xai :
pizai Xpi

whereM,,; € R3*6. The completels,, € R2*6 will be noted as below:

My,
M, = | : (2.147)
M,

Constraints on the Passive Lower-Legs: The kinematic constraint on the unit orientation
vector of each passive lower-legs can be furnished by sutisg (2.146) into (2.142) as below:

. 1 .
Xai = Mai X = E_ (LBz - gpi Mpz) X (2148)

whereM,,; € 13*6 is the inverse differential kinematic model associateavben a lower-leg
unit orientation vector and the pose. The fill, € R'2*% can be written in the following

stacked form:
Mal

M, = | (2.149)
Ma4
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Constraints on the Passive Nacelle: The kinematic constraint on a orientation unit vector of
the passive nacelle is defined with the following relation:

Xy = My X=0;[05 I3 ] X (2.150)

where M,; € R3%6. Due to parallelograms, the nacelle stays parallel to it@irplane and
thus, the end-effector has a rotation axjsparallel to a fixed direction. Then, the complete
M, € R2%6 will be defined as follows:

My,
M, = : (2.151)
My
Sincex . = x4, thenM, = M;, and one can write:

X, =MX=MyX=[03 3] X (2.152)

2.18.4 Kinematic Coordinates

The instantaneous configuration of the Quattro is expressddthe following redundant
set of12 generalized vectors (orientation unit vectors of the kiagoelements):

{Xpi Xai» Xpi }, i=1,...,4 (2.153)

and the motion of the Quattro is expressed through the mabtisis which is directly defined
as the time derivatives of the generalized vectors:

usz‘ € {X]’L |j € {pu a, b}7 (&S {1727374}} (2154)

Note that the nacelle is shared by each of the kinematic legxtending them with a corres-
ponding kinematic element of the nacelle. Then, from nowadkinematic leg is composed of
an upper-leg, a lower-leg and a corresponding kinematimee of the nacelle[C; C; 1], if
i=4,then(i+1) = 1).

For each kinematic element in the mechanism, the transkdtand rotational kinematic co-
ordinates are tabulated in the Table 2.3 by computing thiéiapderivatives of (2.129)-(2.131)
with respect to the motion basis.

Table 2.3 — The (transposed) kinematic coordinates of tregt€@uparallel robot, i=1,2,3,4.
H 8Spl ‘ 8wpi ‘ 8Sm- ‘ 8wai ‘ E)sz ‘ 8wbi ‘

8;;01' %gpz Ig [Xpi]zz gpi ]3 0 gpi ]3 0
OX 4 0 0 Sloi I | [xo]% | lai I3 0
DXy, 0 0 0 0 |072nl; | [x,]%
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2.18.5 Dynamic Coordinates
2.18.5.1 Listing Active and Reactive Forces

There is a set of active forces/torques acting on the kinengdééments of the Quattro
parallel robot due to actuator torques and forces of gravity
— Actuator TorquesWe write the actuator torque vectors,( of the active kinematic
elements as follows:
(2.155)

Txpi = Tx,; Zpi

where@pi is the active torque of a rotary actuator whose rotation s, and whose
rotating kinematic element is oriented along.

— Forces of Gravity:Afterwards, the active forces of gravitf,{, which is assumed to act
at the center of masses of the kinematic elements, are gs/balaw:

f

g(pi) — Mpi 8, f

gai) = Mai8,  fgwi) = muig (2.156)

wherem; is the mass of thgi'" kinematic element ang is the gravity acceleration
vector oriented towards the center of the Earth.

As a consequence of the accelerated matters in the Quattalebaobot, reactive inertial
and frictional forces/torques will appear at the actuatord at the kinematic elements.
— Actuator Inertial TorquesThe rotary actuator inertial torques; can be written as fol-
lows: a
TE = _Ipi‘-bpi = _Ipi (E S X X z) (2157)

X, pi © Sp

whereZ,; is the rotary motion inertia of the actuator around #heaxis andw ; is the
rotational acceleration vector of the kinematic elemenf)(which is firmly fastened to
the actuator.

— Kinematic Element Body Inertial Forces and Torquéke accelerated masses and iner-
tias of the kinematic elements produce the set of inertialef® and torque$t’; , 77, }.
These inertial forces and torques can be calculated usesnyéiwvton-Euler equations:

f;z’ = T Mpi épz’» T;Z‘ = —Ipﬂbm — Wy X (Ipr‘gwpi) (2.158)
£ = —mai Sai o= =T G — wa X (TE wa) (2.159)
fg; = — My gbi? TZZ' = _ij;wbi — Wy X (Ib,wai) (2160)

wherem;;, S;;, Z;; andw ;; are the mass, the translational acceleration vector of tesm
center, the central inertia dyadic and the rotational \iglo@ctor of thejit* kinematic
element, respectively.

— Frictional Torques:Frictional torquesfzji) will appear at the joint locations of the ki-
nematic elements due to their relative motions among thiesser he frictional torques
of the actuators can be computed as follows:

Txy = ~ To(x,,) Wpi — Te(x,,) sz‘gn(wgi Zpi ) Zp; (2.161)
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The frictional torques of the passive joints can be compatedelow:

T = —Tolx,) (Wai = Wpi) = Tex,) 5190 (wai — wpi)' 24;) 20 (2.162)

a1

Txp = ~To(xy) (Wi — Wai) = Te(x,,) sign( (wpi — wai )" 2y )z, (2.163)

whereT,x ) and7, ) are the viscous and Coulomb friction coefficients of thetjoin

jith kinematic element, and whete;; andgji are the rotational velocity vector and the
axis of rotation of the kinematic element (), respectively.

Hence, one can list all these local forces and torques adiile Pa4. Figure 2.11 shows the
local forces and torques which act on one of the identicadrkiatic leg of the Quattro parallel
robot.

fg(bi)

Earth

Figure 2.11 — Local forces and torques which act on one ofdbastical kinematic legs. Left
figure shows the active forces and torques of a kinematicReght figure shows the reactive
inertial and frictional forces/torques which balance thtva forces/torques.

Computing Dynamic Coordinates: In order to eliminate the non-contributing forces, the
dynamic coordinates are computed through the matrix-wigkiptication of the Tables 2.3
(transposed kinematic coordinates) and 2.4 (sum of locaéfoand torques).
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Table 2.4 — The local forces and torques of the Quattro ghrabot, i=1,2,3,4.

Active Friction Inertia*
Actuator Gravity | Actuator Passive Joint | Actuator FElement
Forces (pi) 0 fopi) 0 0 0 f;i
Torques (pi) Tx,; Zpi 0 Tx,, 0 T;pi Ty
Forces (ai) | 0 fo(ai) 0 0 0 £
Torques (ai) || O 0 0 Tx,. 0 T
Forces(bi) |0 fo(bi) 0 0 0 £
Torques (bi) || O 0 0 Tx,, 0 T
F, Kinematic Sum of
P ) Forces
F, | = | Coordinates (2.164)
F—az Table 2.3 Torques
Lpi ' (3x6) | Table 2.4
(6x1)
which can be explicitly written as follows:
fewi) + L
1 T TXPi Zpi + ;pi
szi bl fpi Ig [Xpi] % gpi ]3 0 Epi ]3 0
L fe(ai) + fai
Fﬂai = 0 0 5 fm' Ig [Xai]g f(u‘ Ig 0
7_-5111' + TZZ'
Fo,, 0 0 0 0 23hly [x]%
fawi) + fi;
Txpe T Thi
(2.165)
where
Tpi = Tx,, + T, T Tpi (2.166)

2.18.6 Dynamic Constraints
Exploiting (2.110), the dynamic constraints of the Quattibot are written as follows:
M} Fp + M, Fo + M Fy = 0gx1 (2.167)

whereF, € R2*1, F, € R2*! andF, € R'?*! are the stacked vectors of the dynamic

coordinates:
F, F

Zp1 Za1 Zp1
Fp = : , Foq = : , Fy = : (2.168)
F, F

Zaa Lpa



and wherel/; € R'?*0 is as in (2.147), (2.149) and (2.151) fpe {p, a, b}.

2.18.7 Inverse Dynamics
In order to extract the motor torques, we explicitly write tynamic coordinat@zpi from
(2.165) which contains these torques, :

Fy,, = 7x,,¥,; + Pz, (2.169)

T,
where

o l % * ~ * *
= B (fgi) + £) + [Xpil% Tpi + bpi (Fg(ai) + fai) + Lpi (Fgiy + ) (2.170)

Zpi — 9
Consequently the stackét} can be noted as follows:
F,=Y,T + F, (2.171)

whereY, € R12*4, T ¢ #4*1 andF, € 2! are as below:

Yo 0 0 0 Txp1 Flpl

y, — 0 Y o 0 0 T TX,40 : ﬁ‘;p _ Flﬂ (2.172)
0 0 y p3 0 TXP‘S IE£F3
0o 0 0 y, (e Fe,,

Afterwards, replacing (2.171) in (2.167), we can write §Z)Las follows:
AT +b =0 (2.173)
whereA € R6*4 andb € R6*! are defined as below:
A=M'Y,, b=MTF,+M'F,+ MTF, (2.174)
One can then write the solution of (2.173) as follows:
I = —Al(x) b(% %, x) (2.175)

Consequently, the inverse dynamic model of such a complettf@urobot has been com-
pactly expressed by means of the orientation unit vectors.

T = IDM(%, %, x) (2.176)

Note that the longest part of the calculus is the kinematitade very easy by using the vector
form), then the listing of the forces and torques. If all #hage given, the dynamics are obtained
through one single formula (2.167) and its linear solution.
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2.19 Conclusions

This chapter outlined a framework for control-oriented alync modeling of parallel ro-
bots which uses the leg orientations. This modeling appriseasily applied to wide range
of parallel robots. Written equations use only addition & multiplication (*) operators.
Neither trigonometric nor exponential functions are usHtkre is only the piecewise-linear
signumfunction in the Coulomb friction which needs a simple sigedahfor its implementa-
tion. The equations are simple and compact even for compleots. This is achieved with the
3D unit direction vectors of the leg orientations. Thus, weamplished the first objective of
the integrated dynamic MICMAC which is stated at the end ef@hapter 1.

This modeling approach is linear on the condition that thasedirection vectorsx, of
the leg orientations and their velocities, are given. As stated in the integrated MICMAC
part of the Chapter 1, one can measure these 3D unit direatictors of the legs from their
2D image projections, and subsequently one can numeriddfgrentiate them to obtain the
velocities of the leg orientations. But, what about the dpaemeasurement? Certainly, this
will not be greater than a video rate 40 H = when a conventional camera with a conventional
line tracking algorithm is used. This speed of measuremamte enough for a vision-based
kinematic control, but however a dynamic control requirghfspeed feedback.

Consequently, the next chapter is devoted to answer theniolfy questions: (i) How can
one measurg andx at high speed in order to exploit linearity of this modelingpeoach?
(ii) Which control law should be built upon the presenteceirse dynamic model? and (iii) In
which space should the control error be regulated for bd{teamic control of parallel robots?
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Chapter 3

Control

3.1 Introduction

Dynamic control of a robot requires high-frequency sensedback. In the case of a serial
robot, this requirement is satisfied with dynamic controateigies based on classical high-
frequency joint sensing at abolikHz. However, the performance of robots can be further
improved by importing the vision-based control schemes(QHeven though satisfying a
reasonable accuracy and frequency for visual feedback.Harserial robots the solution for
vision-based dynamic control is found in a cascade of twarobloops, where:

— the first loop, the fast one, compensates for the dynamius. ifiternal loop uses an
inverse dynamic model based on joint values which are easilyided by the motor
encoders at high-frequency.

— the second loop, slower one, uses the feedback of a visiwoseThis outer loop is
actually a kinematic control made possible by the interaaplwhich compensates for
the dynamics of the serial robot.

This approach does not work for parallel robots, becausegoihe values do not determine
uniquely the state of a parallel robot. The dynamic state paiallel robot for a dynamic
control, in most cases, can be simply represented by ite#adtor pose and velocity, but this
is not necessarily the only way. Therefore, one should nawsiigate how to adapt vision
sensor for high-speed pose and velocity computation.

Some of the attempts to adapt vision for control schemes safellaws: Since the state
of a parallel robot is expressed by its end-effector posevatatity, these variables are tried
to be found by the classical pose estimation algorithmsoldmfately, these algorithms can
not directly give the velocity information. The pose vetgds usually computed by numerical
differentiation of the estimated pose, thus introducindimhal noise. Besides, the predictive
control techniques are exploited to adapt the visual sanmgphte to the control sampling rate,
but this increases the complexity as well [GMO03]. Insteaaiyfa control point of view, increa-
sing the visual feedback frequency up to the control frequaés more appropriate [Vin00],
[Cor95]. Then to do so, one compresses the image data [Rib0Blis fast communication
interfaces, or embeds the image processing unit closeretedmera [WHB96], [NITMOO],
[CBO7], etc.
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We believe that these attempts encumber the system. Samha ¢his chapter is to look
for a simpler solution for vision-based dynamic control gfaaallel robot.

The rest of this chapter proceeds as follows: Section 3.b#gfkinematic control to com-
pute the posture and the velocity of a parallel robot at ataimi<of time through sequentially
partial observation of the kinematic legs. This is a kind aftfvision-based dynamic state
observer of a parallel robot where a virtual robot (a copyhef teal robot) imitates its mo-
tion. This virtual robot will deliver the leg orientationsand their velocities to the inverse
dynamic model presented in Chapter 2, and as well as it waNige requested feedback si-
gnal for dynamic control. In the light of MICMAC concept, fronow on, we will call this
observer “High-speed integrated dynamic MICMAC observB8ection 3.3 derives a versatile
computed-torque control law based on different feedbaoksirtg from the vision-based dy-
namic state observer. Hence, this versatile computeditocgntrol allows one to control the
parallel robot in different variable spaces (where a vadgiapace should represent the state
of the robot) to discover the best performance for the prepasodeling methodology in the
previous chapter.

3.2 High-Speed Integrated Dynamic MICMAC Observer

Here, we propose a simpler solution inspired by the foll@ativo ideas:

— (i) Is there a visual information which can give the staticel velocity of a parallel
robot for dynamic control purposes? In integrated kinemBtICMAC, it was shown
that the image projection of a parallel robot’s legs is avahe alternative to express
the state, since they similarly encode the static configuraif the whole mechanism
[Dal07]. It was good, because control and sensing were imbay with the kinematics
since image lines correspond to the legs of the robot. On tier dvand, it is not fast
(~ 40 Hz) enough when a dynamic control is concerned and yet it cagimetdirectly
the velocity of the mechanism. This is because a slow comm@ailtcamera was used and
the detection of the leg edges in the full image costed todmtiure.

— (i) In vision-based applications, a full image is grablzed processed. The processing
step is simply the extraction of the meaningful featuremfeoregion around an approxi-
mately predicted location. It appears that the rest of thegenis untouched, and the
time spent for grabbing and transmitting this part is wastédekn, to increase the visual
feedback frequency up to the control frequency, why notguab a region of an image
[URLPO4], [DAMMO09] where only the meaningful features efis

Hence, the reader may now wonder: (i) How shall the previausideas be integrated for
fast estimation? and (ii) Which compatible method shall besen to figure out the dynamic
state of the robot?

Since a small sub-image acquisition allows only for a lodagesvation in the field of
view of the camera and the legs exist plentifully in a patathot, this impliesa sequential
grabbing strategy(one by one) for collecting the required amount of informatfrom the
whole mechanism. In these sub-images, we observe the eerbthe legs, since in an image
contours are one of the simplest visual features to detdwn,Tthe required information is
the set of contours detected from the sub-images of the Wdgish are sequentially grabbed
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at discrete time instants of the motion of the robot. On tieohand, although simultaneous
multiple sub-images (located anywhere in the image) grapbtrategy (non-sequential) can
provide all the required information at once, it is not prafde because of the addressing
problem and because it is slower for estimation.

In order to figure out the full state at each control samplestithe following methods are
proposed: In [WHB96], an extended Kalman filter predictsrtiative state of the robot by fu-
sing the set of image feature points belonging to an objeitt sgme redundant measurements.
In [AAALMO6], a CMOS Rolling Shutter camera captures a seaghage row by row, which
causes image artifacts for the moving objects. Then, etipipthese visual artifacts, the pose
and velocity of a moving object are simultaneously estithat@h a non-linear least squares
method. In [DAMMO09] and [Dah10], a virtual visual servoingh@me [MCO02] is used and va-
lidated for estimating the state variables by sequent@iijpbing the blobs of an artificial rigid
pattern at high speed.

Our work also exploits the virtual visual servoing schenmsoamted with sequential grab-
bing as in [Dah10] and improves it in the sense of trackingrdawated set of legs of a parallel
robot at high speed rather than tracking a rigid patterefet to the end-effector at high speed.
Yet, since we do not need a pattern, in a roundabout way, ¢tgsrigl of the tedious calibration
among the pattern, the camera and the end-effector. Thetge of this part of the chapter
are as follows:

— to allow the posture and velocity of a parallel robot to beéngsted through a virtual

robot imitating its motion.

— to progress towards putting into effect the dynamic comfa parallel robot based on

leg kinematics [OBAM11].

3.2.1 Differential Edge Kinematics of a Cylindrical Kinematic Element

Image edges of slim legs of a parallel robot are the keystohése integrated kinematic
MICMAC, and this time their differential kinematics play @amore an important role for the
dynamic state estimation of a parallel robot. Slim cyliodlishaped legs are the most common
kinematic elements in robots. They are also easy to handleeiry and practice. Therefore,
first we explain how to compute the differential kinematiédghe edges of a cylindrical ki-
nematic element. Figure 3.1 depicts a simple projectivergiy of a cylindrical kinematic
element in a camera frame.

3.2.1.1 Notation

— B € #%*!is one of the tip points lying on the revolution axis of theingltical kinematic
element.

- x € 7! is the orientation unit vector and also corresponds to thielution axis
direction of the cylindrical kinematic element.

— se{L, R}isthe literal representation for tié ) eft or the(R) ight side of the cylin-
drical kinematic element seen from the camera.

— p, € R3*!is a projection contour point lying on the image plane andited inside a
visual edge of the cylindrical kinematic elemept, = [z, y, 1]7.
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camera
frame

Figure 3.1 — View of the geometry of a cylindrical kinematleraent from its 3D orientation
direction (perpendicular to the paper plane).

—n, € ®¥*! is a unit vector orthogonal to the plane defined by the prgeatenterO
of the camera and by a side visual contour of the cylindrigaiatic element (see Fig.
3.1). Hence, it stands for a mathematical representaticuiaf a visual contour.

— X € ®"*!is a representation of the end-effector pose of a paralteltro

— Unless specified in a left supper-script, all the varialales expressed in the camera
frame.

3.2.1.2 Differential Edge Kinematics

Let M, € ®3*" andLp € R3*" be respectively the differential kinematic models (e.g.,
for the Quattro robot see Chapter 2 equations (2.148) aidd ). that relate the velocity of
the end-effector pose to the velocity of the orientatiort wactorx and to the velocity of the
tip point B of the cylindrical kinematic element in a kinematic leg:

x=M, X, B=LpX (3.1)

The geometry of a cylindrical kinematic element (see Fi)) Bnposes the following profitable
constraints:
BTE =—-r, XTgszov PZQSZO (32)

S

wherer is the radius of the cylindrical kinematic eleme8ince we would like to exploit the
contours of a cylindrical kinematic element, the third dosisit will be used in the virtual
visual servoing schem@&his requires the completion of a differential model dedibetween
an edgen , and the end-effector pose. Exploiting the second constraint and knowing that

nl n = 0, the image velocity of the contouir, is expressed as follows:

n,=ax+ f(xxny) (3-3)

86



wherea andg are two scalars to be figured out. Theomes out by differentiating the second
constraint in (3.2) and replacing (3.3) into the differatdéd constraint, which yields:

"o, +x"(ax+ B (xxn,)=0 (3.4)

that givesa as below:
B . -
a= M, }.{ with My =[0,, —nl ] (3.5)

Afterwards, thes is computed by differentiating the first constraint in (3a2gd replacing (3.3)
and (3.5) into the differentiated constraint, respecivéhis yields:

B 'n, + B (ax+ B (xxn,)=0 (3.6)

which allows to calculat@ as follows:

B = Mj [5} with Mﬁz[ —n; B"x n} ] (3.7)

BT (xxn,) BT(xxn,)

Then, the differential model between an edge velocity aaatid-effector pose velocity shows
up by plugging (3.5), (3.7) and (3.1) into (3.3), which gives
n, =M, X (3.8)
whereM, € R3*" is as below:
Lp
M. = (e Mo+ s x m) M) [ 1] 39)

Finally, the complete differential model for both of thetlahd right edges of a cylindrical
kinematic element is defined as follows:

n=M, X (3.10)

wheren € R6*! andM,, € R6*" are as below:

n:[gL], Mn:[ML} (3.11)

n;

3.2.2 High-Speed Dynamic State Observer via Sequential \ial Sensing
3.2.2.1 Maotivation for Sequential Visual Sensing

The non-sequential (simultaneous) acquisition approastiamtly gives a robot’s complete
static posture information. On the other hand, the secalesntguisition approach requires one
to take severalk)) successive sub-images to collect the same amount of iataym Since the
sequential acquisition approach requikesiccessive sub-images to give the same information,
one needs the previous- 1 sub-images to be stored. Then, the static posture can beutedp
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at each sub-image grabbing instant with previously stéred sub-images. The beauty of this
scenario is that it allows us to simultaneously estimaté lthé static posture and its velocity
at the time of the latest sub-image by using the kagtabbed sub-images, when the sampling
time T...merq DEtWEEN the consecutive static posture instéhtst; 1, ..., ¢} is known. Fur-
thermore, the estimation is a lot faster than the non-sdigliepproach. Table 3.1 compares
the requirements of the tasks (e.g., acquisition, featutaetion, etc.) of the sequential and
non-sequential sensing approaches for the computatiomeo$tatic posture and the velocity
of a parallel robot. To keep the comparison simple, a task {srassessed in terms of either a
sub-image processing tini&,,;, or a full image processing timeéy,,;, whereTy,;, < Tyyy.

In Table 3.1 the algorithm for the posture computation isiassd to cost same amount of time

Table 3.1 — Comparison of sequential and non-sequentiabappes.

‘ Task H Sequential ‘ Non — Sequential ‘
Image acquisition 1T 1T
Feature extraction 1T 1T
Posture computation kTsup kTsup
Posture and velocity computatign & T, 2k Tyup

in both of the sequential and non-sequential approaches alhthe information is available.
While computing posture and velocity together, the norusatjal approach needs to calculate
at least 2 sequential postures in order to obtain velocitgdayvation, whereas the sequential
approach gives it directly.

For example: If a 40 x 40 pixels sub-image is grabbed rather than afall4 x 1024 pixels
image, then in sequential approach:

— image acquisition time is reduced to ab6ob times.

— feature extraction time is possibly reduced to alsigittimes.

— posture computation time stays the same.

— posture and velocity computation time is reduced to abaumes.
The estimation of the dynamic state of the robot is fasternuine information grabbed is
smaller. On the other hand, when smaller pieces of infoonadire grabbed, less information
is kept for the present time and less accuracy is expectetsegoently, an optimum should be
determined regarding this tradeoff within theoretical phgsical limits.

Remark: In the robotic literature, the terngoseand postureare sometimes confused. We
would like to give a clear notion of these two terms. A pose lis@esentation of a state of a
robot. A posture is how the physical components of a robotipgthe 3D Euclidean space. A
posture is always a pose, but a pose is not necessarily alvpgsture. A pose in a 3D task
can be the position and the orientation of the end-effectdhe robot, while in a 2D visual

servoing task it can be the image primitives, for instanoeners, lines, circles, lightening, etc,
such that they satisfy the task accomplishment. Here, tresage is a pose may not provide
the full geometrical configuration of the robot, nonethgelgscan be defined such a way that
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one can conclude the full geometry of the robot. On the oteadha posture directly gives the
full geometry of the robot and this is what we shall estimate.

3.2.2.2 Algorithm: « Single-Iteration Virtual Visual Servoing »

The classical virtual visual servoing (VVS) repeats theimimation steps of a tracking
error until this error becomes smaller than a certain tholelstalue. Therefore, when this clas-
sical VVSis used in a vision-based control (VBC) task fockiag purposes of the robot state,
the VBC loop becomes sluggish. However, unlike the clab$e&, we do not repeat the mini-
mization steps of a tracking error more than once betv2egeryuisition instants of the camera
in our single-iterationVVS. This is because our objective is to use this fast siitglation
VVS in dynamic control of parallel robots. Table 3.2 gives tivo pseudo-codes of the clas-
sical virtual visual servoing and the single-iteratiortwél visual servoing which are used in a
vision-based control task.

I/l Slow VBC Loop

¢ while (control error >¢q)

e image grabbing

e detection

/l Classical VVS Loop

o while (tracking error >es)
e error computation
e correction
e state update

e control computation

e move robot

I/l Fast VBC Loop

e while (control error >¢)

e sub-image grabbing

e detection

/I Single-iteration VVS
e error computation
e correction
e state update

e control computation

e move robot

Table 3.2 — Pseudo-codes for a vision-based control loop thi# slow classical VVS state
tracking (left) and the fast single-iteration VVS stateckiag (right).

In the next subsections, we explain this fast single-itenatirtual visual servoing scheme.

3.2.2.3 Notation

-t € {t., t. } denotes the time, wherg is an acquisition instant of the camera dnds
an estimation instant for the state variables of the virtahbt.

- T € {T., T.} are the periods of sub-image acquisition of the camera atiteafpdate
of the virtual robot state variables, respectively. Theudl time periodT’. should be
equal to or greater than the acquisition time pefipaf the camera®l. > T,) so that
the virtual robot can catch the motion of the real robot.

- j(t)e{1,2,...}isafunction of time instants that denotes which cylindricgaematic
element is observed at tinte
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3.2.2.4 Spatiotemporal Reference Signal

The reference signal, which defines the posture and theitelota parallel robot, is
constructed from the portions of the legs’ contours. Theseaurs are extracted from the sub-
images of the legs which are grabbed at successive disoretaristants of the motion of the
robot. Figure 3.2 gives an example set of the grabbed sugamduring the motion of the
Quattro parallel robot, and Figure 3.3 simulates this nmotio

™ te te-Te  t.-2T. te-(k-DTe

| .’_.:..
..'.-' e

spatlotemporal reference signal

Figure 3.2 — Spatiotemporal set of the reference sub-imaigibe legs.

Figure 3.3 — Sequentially grabbed sub-images of the legaglithe motion of the Quattro
robot. The lighter the color of the robot is, the more the mwofs in the past.

3.2.2.5 Sequential Postures Error

A posture error is formed with a pair of reference projectiontour points (in metric units),
{pJL , p* e } extracted from the sub-image of a cylindrical kinematicredat of the real ro-
bot, and their associated edges (feedback signal) comfratedhe virtual robot’s cylindrical

kinematic element:
*T

iji —JL
*T
iji —JR
wherei = 1,...,mis the index of a detected contour point in a sub-image. Ei§ut explains

the formation of a posture error.
Then, the error vectas; € R*™*! of the j " cylindrical kinematic element of the virtual
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sub-image

Figure 3.4 — A posture error is defined using a single sub-@magich is captured from a
cylindrical leg of the real robot. The detected edge pixélthis sub-image allow us to form
the reference green and red side rays which pass tangemt sortface of the cylindrical leg of
the real robot. And the current feedback signals are thengeed red edge vectors computed
from the copy of the same cylindrical leg which belongs towiial robot. On the condition
that the reference rays (i.e., contour points) are measamddhe feedback edge vectors are
constructed in the same camera frame, these reference ndythese edge vectors become
perpendicular to each other only when the virtual leg is sogesed onto the real leg. That is
to say, minimization of error (3.12) draws the posture ofiiial robot to the posture of the
real robot.

robot is noted for all the contour points as follows:
ej = C]* nj (313)

wheren is as in (3.11) and’} € R2mx*6 is a constant reference contour matrix:

P o0
* JL
C; { ) P;g } (3.14)

with {P;L, P;‘R} the detected left and right side contours of & cylindrical kinematic
element of the real robot at an instant of time:

;L = [ pj_‘Ll ij } e R3xm (3.15)

m

P*R:[P:Rl P

: e ] e jIm (3.16)

J

Finally, having the sets of contour matrices from the relabtand their corresponding feed-
back edge pairs from the virtual robot which are saved up sgquential discrete instants of
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time:
C - { Cj(fc) Cj(fc—(k—l)Tc) }

N:{ Mo 77 - -1To) }

the complete error vectar € R2*™*1 is formed by stacking the laét posture errors of the
legs:
Cj(tc) n,; (tc)
e — : (3.17)
i (te = (=1)Te) V5 (Fe = (h=1) Tc)

wherej (-) enumerates circular-wise the cylindrical kinematic elata@t consecutive instants
of time. Figure 3.6 shows an example for the enumerationeofver-legs of the Quattro robot
in a static pose.

In order to assemble the feedback edgeshe virtual robot's posture is evolved back in
time with aconstant velocity motion modelince the latest estimated dynamic stgfe X} of
the robot is up to first order (i.e., velocity). Assuming ttied latest estimated dynamic state and
the differential kinematic models of the time instamt— 7. are the approximate predictions
of the time instant.,, the feedback edge set is calculated as follows:

Ny _aA; = Nz, — AtMn{C X{c (3.18)

where At = T, is the virtual time displacement with= 0,1,..., (k — 1). Figure 3.5
illustrates the formation of the complete error of the postu

3.2.2.6 Approximated Edge Evolution Model

In order to regulate this time-space error to zero, a tinessmlifferential model between
an edgen at time instant + At and the effector posE at reference time instanineeds to be
defined. To find this model, we first write small displacemédrdroedgen:

nig Ay = ng + 0ny (3.19)

where At tells how far in time the displaced edge is, and whate is the displacement in
the edge values with respect to reference time ingtadhe can approximate the displacement
on, through (3.10):

on; ~ M,, 60X, (3.20)

The displacement in the end-effector pé3g; can be approximated with a constant accelera-
tion model as follows:

. 1 ..
0X; ~ AtX; + §At2xt (3.21)

If the representation of the end-effector pdSgis not an element of a linear vector space,
(3.21) is valid only if the rotational axis of the motion dugiA ¢ time remains constant. Other-
wise, it will be still acceptable for a smal¢.
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Virtual Robot Postures

Real Robot Postures

Figure 3.5 — Sequentidl postures of the real robot (bottom left) and the virtual rtoftop
right) which imitates the real robot. We grab a sub-imagepuesture from a leg of the real
robot and extract the edge contours. The green squares shelidh posture, which leg, and
which part of this leg is observed. The green arrow shows tbgom path of the real robot,
and below this green arrow we see the sub-images grabbewhdbis motion. When the last
sub-image is grabbed, the virtual robot’s motion is evolwgith the latest estimated dynamic
state{X, X} in order to approximate thie postures of the real robot. The motion of the virtual
robot evolves on a straight line whereas the motion of therodmt can be along a curve as
in the green arrow. The red straight arrow shows the motidh phthe virtual robot. Then,
for each virtual robot posture, we find the leg which corresjsoto the leg observed on the
real robot. The red lines on the virtual robot postures shecbrresponding observed legs of
the real robot. Below the red arrow, we see the 3D cylindetbede legs recovered from the
postures of the virtual robot. Finally, the stacked congkatror is formed with the extracted
edge contours of thegesub-images and the visual edge vectors of te3B cylinders.

Finally, the approximated differential model can be expeesusing (3.19), (3.20) and
(3.21) as below:

o DypAy — Dy ony

1 N —— = — .22
N At Al At (3 )

, X
nipat ~ Heg g [ Xi ] (3.23)

whereH ; Ay € R6x2n s the constant acceleration evolution model of the edgegbai leg:
H(t, At) = [ MTlt %AtMnt ] (324)
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This approximation allows us to solve the inverse kinemptblem of a parallel robot only
once instead of times, where; is equal to or greater than the number of observed legs.
3.2.2.7 Visual Servoing Control Law

The control law that will bring the error to zero is computedibst differentiating the error
in (3.13) with respect to time, which gives:

Thus replacinga; by (3.23) and imposing; = —\ e; for an exponential convergence, (3.25)
becomes: )
Xt Y
ORI A YR (3.26)

whereL.; € R2mx2n is the so-called interaction matrix which relates the effigetor pose
velocity and its derivative to the implicit error functiof aleg:

LEj — C; Hj(t, At) (327)

i 1T
Then, so as to converge to the state of the real robot, we pedpe control lava = [XE, Xﬂ
for update of the pose and the velocity of the virtual roboiohtsatisfies the following system:

LE[X"}:—)\(e—é), A>0 (3.28)

whereL, € R2mx2n andé € R2*™ 1 are obtained by stacking associated interaction ma-
trices and the individual errors at each sub-image, resedct

Le; s CF (1) B4 (£e)

L. = 5 e :

(3.29)
Le; s h-1y70) CF (te = (h=1) 7o) B (e — (k—1)T)

The terme in (3.28) is difficult to approximate, because we do not use @mrespondence

between the successively detected reference contouispdimerefore, it will be considered as

a disturbance and it will be neglected. The classical smiutb (3.28) is then as follows:

[i“] = -ALle, A>0 (3.30)

However, (3.30) should not be directly calculated with saohordinary pseudo-inverse least
squares regression, since it can be unstable and slow. {(3€38) is just a representation of
the numerical solution of (3.28). Actually, a better way ¢dve (3.28) uses damped total least
squares and QR decomposition yielding robust and fastigofitThus, one can write (3.28)
as follows:

Au=>b (3.31)
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where A e R @kmt2n) x2n gndp (kmt+2n) X1 gre the augmented coefficient matrix and the
augmented error vector, respectively:

A:{iﬂ, b:[_ée} (3.32)

with . damping parameter, (2n x 2n) identity matrix, andd (2n x 1) zero vector. Finally,
(3.31) can be solved far with QR decomposition.

Indeed, high-speed control of parallel kinematic mecharigs hardly conceived in a ki-
nematic way, but rather in a dynamic way (computed-torquerot). However, this kinematic
control is relevant for tracking whereX ,,, X, } can be numerically integrated.

3.2.2.8 Virtual Parallel Robot Dynamic State Update

Pose Representations: In our case, the end-effector paXeof the virtual parallel robot has
to be in a vector form. In the literature, some well known gkeuector form representations
of the end-effector pose are as follows:

t
X a Xy = | ° (3.33)
1= 81> 2= ue |l .
Y
wheret = [z,y,2]T is the Cartesian translation vectéw, 3, v) are the Euler orientation

angles,uf is the axis-angle orientation vector. There is also a m&trim representation of
end-effector pose which is simple to integrate through agptial formulas:

Xy = []g ; ] € SE(3) (3.34)

whereR € SO(3) is the orientation matrix. However, this matrix form of eefflector pose
does not coherent with the estimation equations, becaoissstance, the edge velocity rela-
tion in (3.8) does not fit.

Redundant Pose Representation: Nonetheless, we can still directly profit from the expo-
nential formulas, thanks to our redundant representatfaheoend-effector pose which fits
better to our objectives: linearity, simplicity, algelmiay, readability, codability. For example,
let the redundant end-effector pageits velocity X and its acceleratioi for a6 degrees of
freedom parallel robot be given as follows:

E

E
X = , X=|x|, X= e RI! (3.35)
y

<2 |4 o

x
y

whereE, x andz are the origin, the unit-axis vector, and the unijf-axis vector of the end-
effector frame, respectively. The doublet of dynamic staie X}, allows us easily to pass to
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the linear differential twist space:(3):

gz[”]:[ E } CA:[[ngg]Ese(S) (3.36)

w §><3+0'§

where¢ € R6%! is the velocity twist of the end-effector frame agde R4<4 is the homo-
genous coordinates of the velocity twistWe wrote the rotational velocity using Chapter
2 Lemma 1. Then, we replace the angular veloditysing the known motion of thg-axis as
below:

b=(yxy)lx (3.37)

At this point, we can reformulate (3.36) in a matrix-vectooguct fromse(3) space to our
redundant pose space:

T

. I3x3  O3xs
X =Lx¢, Lx=|03x3 [x]] | RO (3.38)
05x3 [y

and as well as from our redundant pose space () space:

‘ I3x3  03x3 03x3
¢=LtX, L= € ROX9
0553 [x], (x(xxy) —(xxy)'x1Is:3)
(3.39)
wherelsy3 is 3 x 3 identity matr[x. )
Consequently, the triplgtX, X, X} yields the acceleration twist:

: v E 6x1
= = , . 3.40
¢ [w} [;xg+9§+eg € R (3.40)

where angular acceleratighcan be replaced by the differentiation of (3.37) with respec
time: )
0=(yxy)x+(yxy)x (3.41)

Static State Update: The latest estimated posgin (3.35) at time instant, — T, can be
updated with the control layX,,, X, } as follows:

X X
= oT 3.42
Gl e

wheredT € R19%10 is a homogenous transformation for a small displacementéadandant
Euclidean space:
R 0 0 ot
0 R 0 O
T=| o o sr o (3.43)
0 0 0 1
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The §R and ot are the orientation and position displacements generatatiebexponential
map of the control twist¢,,, ¢, }. These control twists are generated by ffie X,, X,}
triplet as it is explained through (3.35)-(3.41). For a ¢ansvelocity evolution model, these
displacements are computed as follows:

OR o0t | 7.C,
[ 0 1 ] =e (3.44)

For a constant acceleration evolution model, these digpiaats are computed as follows:

[ 5(1)% (51t } _ T (G +1Ted,) (3.45)

where¢, € R4 and¢,, € R4 are the homogenous coordinates of the control twists.

Velocity State Update: The latest estimated pose velociyat time instantt, — T'. can
be updated with the acceleration control twj‘:gt This acceleration control twist is computed
using the triple{X, X, X, } as it is explained through (3.35)-(3.41). Hence, assuntiagthe
acceleration is constant durifi¢g seconds, the end-effector pose velocity is updated asvsilo

. . _ <
o= Feny + (8] [ T (3.4

te Tc)

where[éu} € R9%10 is a homogenous transformation which relates the homogeioomn of
the current end-effector podgto the end-effector pose velocik:

(W] x 0 0 Uy,
(&) =] 0 @l o o (3.47)
0 0 [dJx O

3.2.2.9 Predicting Future Sub-Image Location

The next dynamic state estimation needs a future sub-ingagegrabbed at the next future
sampling timet, + T.. The position of this sub-image on the image plane must becity
predicted from the current dynamic stdt¥, X} computed for the time instamt. Otherwise
there will not be any useful signal in the grabbed sub-imageteacking will fail. Achieving
a correct prediction is, itself, a proof of the correct perftance of the proposed methdd
order to predict any of the corresponding sub-image positad the legs, we first find the likely
future pose of the real robot:

[X] :5T[§1§] (3.48)
1 (tc+Tc) EC

wheredT is a homogenous transformation, as it is shown in (3.43}ewrifrom the exponen-
tial map of the current end-effector velocity twigtusing a constant velocity motion model.
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Once the likely future end-effector po§é(tc+TC) is found, it is dissolved for the tip point
]§j and for the orientation unit vectcirj of a leg through the inverse kinematic model (IKM).
Subsequently, the next location of the corresponding swdge center is calculated as follows:
2 [imwj]—K(ﬁ—d&-) (3.49)
J 1 - J J =) .
where’™w; € R2*! is the next predicted location of a sub-image center in pixéts, d; is

a distance that indicates how far along the cylindrical eghe leg’s tip point the observed
region is,z; is the projective scale factor, arfd is the camera intrinsic matrix.

3.2.3 Applied to the Quattro Parallel Robot

In the case of the Quattro robot, the static posture is emt@ué¢he contours of thd
lower-legs. Thus, the dynamic state of the Quattro robotlemaestimated by using at least
sub-images, which are grabbed from each of the lower-legsretecutive discrete time instants
of the motion. Figure 3.6 shows thessub-images on the lower-legs of the Quattro.

Figure 3.6 — A full image of lower-legs with their sub-imadgesm the base-mounted camera
of the Quattro robot. These sub-images are consecutivalybgd at discrete time instants and
given to the virtual visual servoing as a reference. In tmade, the Quattro robot is static.

3.2.3.1 On the Observability of the Legs

Furthermore, while even the lower-leg rod being observephisially out of the field of
view of the camera, we can still obtain meaningful inforrmatby keeping the sub-image in
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the visible region via the parametéyf, which slides the sub-image along the observed leg,
and/or by observing the other rod if the leg is a parallelogtgpe.

In the case of a detected occlusion in the sub-image, onddstedacate another sub-image
on an unobstructed region of the same leg without forgetthmut the change in the acquisition
period T, for the next state estimation. Even better, not to waste tonéhe next estimation,
one can foresee the occlusion and can locate the sub-imagdlylon the unobstructed region
of the leg. Consequently, this discussion poses the fatigwjuestions: (i) How can one detect
the occlusion in the sub-image? (ii) How can one foresee tiotusion before grabbing the
sub-image?

3.2.3.2 End-Effector Pose Representation

The end-effector of the Quattro parallel robot has 4 degofewnobility: 3 translational
mobility along thez, y, z axes, and 1 rotational mobility{) around thez axis. These motion
axes are decoupled and they form a linear vector space. 8irsceepresentation is linear, it
eases algebra and increases accuracy of the edge evolutibelsnSince this representation
is minimal, it accelerates computations through smallee sif matrix multiplications. Thus,
in high-speed dynamic state estimation of the Quattro |ghradbot, we use minimal pose
representation of the end-effector:

T

X=[E" 9,] er*! (3.50)

rather than the redundant pose representation which isingedapter 2 for linear modeling
purposes:
X =[ET xU]" entx (3.51)

€

whereE is the origin andk . is thex axis of the end-effector frame. The velocity of the minimal
pose representaticki € R**! is directly in the 4 dofse(3) space:
v

X = Lx [ } , Ly = Iyxq (3.52)

Wz
wherew, is rotational speed around theaxis (i.e., the third component @$). Then, the
dynamic state of the Quattro parallel robot can be simplyatguias follows:

Xg, =X ny + Te Xy (3.53)

3.2.3.3 \Validation By Simulations

The proposed high speed state estimation approach is debjiesimulation results on
Matlab software. Figures 3.7 and 3.8 show the simple blopkesentations of the estimation
algorithm and of the validation process. Each estimatiodoise with a single-iteration vir-
tual visual servoing. We remark that the computation of thlaity control lawX, is very
ill-conditioned. Therefore, the pose velocity estimatisrdirectly assigned equal to the pose
update control lavik,,.
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Figure 3.7 — Single-iteration virtual visual servoing faist dynamic state estimation of the
Quiattro robot.
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Figure 3.8 — Validation of the estimated state variables.

Acquisition Scenario: The camera sub-image acquisition frequency is sed@oH z. Then,
the reference contour set will be composed of the last samedg grabbed! sub-images of the
corresponding lower-legs while the Quattro robot is beirayed on a defined test trajectory.
For example, the first estimation will use the set of sub-iesagof the lower-legg1, 2, 3,4},
the second will use the set §2, 3, 4,1} and so on. Each sub-image ig@x 40 pixel’ region
and contains approximateBb pixels for each side (left and right) of the observed lovesgy-|
rod. Figure 3.9 explains the acquisition scenario of theadyic state estimation.

Performance Metrics: The end-effector pose of the Quattro robot is composed of &b p
tional part ¢yz) and 1D orientational pard}. Thus, we will evaluate the performances in these
two parts. In order to evaluate the performance of the estithstates, we will use two different
accuracy metrics: root-mean-square of residuals (RMS#&Hausdorff distance. RMSE is the
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Figure 3.9 — The scenario of the sub-image acquisition mstaf the legs of the Quattro
robot for its dynamic state estimation. Black squares sagreinstants of already grabbed
sub-images. White squares are future instants of sub-imedmbing.t. is the last acquisition
instant of the camerd.. is the last estimation instant. Black triangles represestiaints of al-
ready made estimations for the dynamic state of the robotteétfiangles are future estimation
instants.T is a time period of successive acquisitions of the camera.

most well-known metric to assess the tracking errors:

RMSE = \/ Lizt (”;_ re); (3.55)

wherez is a known stater,. is an estimated state which corresponds to the known stade, a
n is the number of estimations. However, if there is a latemcyracking, RMSE might not
tell enough about the similarity of two trajectories in spablore explicitly, even if the per-
formed trajectory by the real robot and the estimated ttajgdy the single-iteration virtual
visual servoing are perfectly aligned in 3D Euclidean sp&MSE might yield errors due to
existing tracking latency. Therefore, we will also use Hirf distance metric, which can
compare how close the two space curves are, without condettmedracking latency. Let
A = {ay,...,ap}andB = {by,...,b,} be the two curves of points, then Hausdorff
distance is defined as follows:

H(A,B) = max{h(A,B), h(B,A) } (3.56)
whereh(A, B) is the maximum distance of a curve to the nearest point intther curve:
h(A, B) = max{min |la — b] } (3.57)

namely (3.57) says that for every pomf A, find its smallest distance to any pointof B;
finally keep the maximum distance found among all points

Test Trajectory: The test trajectory is @2 m diameter half-circle motion with m /s maxi-
mum velocity andiG maximum acceleration. It is planned to span XY, XZ and YZ pkn
Figure 3.10 shows traces of the test trajectory in time spEalgle 3.3 tabulates accuracies of
the position and orientation estimations without any naisthe system. In Table 3.3, even
though there is no noise at all, the source of estimationr®@ae due to the following three
reasons:
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Figure 3.10 — The evolution of the reference trajectorynmetin the robot base frame.

Table 3.3 — Dynamic state estimation errors (without noise)

Pose Errors Velocity Errors
xyz (m) ‘ 0 (rad) || xiyz (m/s) ‘ 0 (rad/s)
RMSE 0.0090 | 0.047 0.216 1.049
Hausdorff || 0.0024 | 0.007 0.095 0.887

— the constant velocity model being used for evolution offdeelback edges of the virtual
robot while the movement of the real robot is accelerating.

— use of an approximated spatiotemporal edge evolution hiodiast estimation.

— using the pose update control law for the pose velocityredion, since the computation
of the velocity update control law is very ill-conditioned.

Robustness To Noise: We imitate the following sensor noises to test the robustméghe
estimation method:
— Calibration noise:Camera extrinsic parameters, orientation ma#ind position vector
t with respect to robot base frame, are subjected to noisen@tion matrix? is deflec-
ted with 1° degree around an arbitrary axis. The position vettiardisplaced).005m
away along an arbitrary direction.
— Image noise:The reference contour pixels are orthogonally and unifgrpérturbed
(with respect to their corresponding edges) by, +1] pixel.
Table 3.4 tabulates accuracies of the position and orientastimations under the aforemen-
tioned noises. Figure 3.11 depicts the reference and dstin@@artesian space curves. Figure
3.12 plots estimated Cartesian velocities of the end-&ffe@rsus time. Figure 3.13 plots po-
sitional and orientational estimation errors versus time.
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Table 3.4 — Dynamic state estimation errors (with noise).

Pose Errors Velocity Errors
xyz (m) ‘ 0 (rad) || zyz (m/s) ‘ 0 (rad/s)
RMSE 0.0108 | 0.083 0.221 1.143
Hausdorff || 0.0052 | 0.023 0.163 0.792

Estimated
------- Reference

-0.72

-0.74

Z (m)

-0.76

-0.78

-0.05

0:05 _002 -0.04 -0.06 —0.08

008 006 0.04 002 O

Figure 3.11 — Reference (blue dotted line) and estimatebs@kd line) Cartesian space curves
in the robot base frame (for the results of Table 3.4).

When Hausdorff distance results of Tables 3.3 and 3.4 argawed, we see that the ca-
libration noise of the camera is directly pronounced on sterated 3D trajectory, while the
uniform distribution of the image noise almost has no effBMSE results show that we have
a certain latency in tracking which remains about at the sdistance without noise and with

noise.
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Figure 3.12 — Superimposed reference (red dotted line) str&ed (black solid line) Carte-
sian velocities in the camera frame (for the results of Ta@.

3.2.3.4 Conclusions

We validated by simulations correctness of the high-spatshiated dynamic MICMAC
observer on the Quattro parallel robot. At the same tims,diilnamic state observer meets the
second objective of the thesis which is stated as « Fastastimof the dynamic state (position
and velocity) of the parallel robot from its leg observation at the end of the Chapter 1. The
obtained results are promising, and we shall see what thfs$peed dynamic state observer
will give in experiments in Chapter 4. The next section dés@s on some possible control
scenarios built upon the inverse dynamic model present€thapter 2 and on the fast dynamic

state observer explained here.
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Figure 3.13 — Pose and pose velocity tracking errors vemsigs(for the results of Table 3.4).

3.3 Sensor-Based Computed-Torque Control based on Sequéit
Leg Observations

In this part, we integrate the linear inverse dynamic model the high-speed dynamic
state observer in order to define various computed-torquéraldaws. The objective of this
part is to explore the regulation of different error funoscand to discover the formative points
of better control of parallel robots.

3.3.1 Control Variable

The actual sensor signal is the set of teaitours {C*}, of the cylindrical kinematic ele-
ments extracted from sequentially grabbed sub-imagesseTbentours are then exploited to
compute the dynamic state of the real robot through a virtlabt imitating its motion.

105



This virtual robot is controlled by a single-iteration val visual servoing scheme at each
sub-image acquisition instant as it is explained in Sec3@2. This virtual robot can deliver
every variable and its velocity needed for efficient modgland control of the real robot.
Thus, we can test our linear inverse dynamic model with gifie control spaces. Figure 3.14
illustrates the selection of a variable set for a controtspd he chosen control spasemust
represent the state of the parallel robot. So, one can h#feeatlit candidates fas,. depending
on the architecture of the parallel robot. For example, @reuse the following variables as a
control space of the Quattro robot:
the edges of the kinematic elemensi /., 0 gigp: }
the orientation unit vectors of the kinematic elemeasts:
the pose of the end-effectat:
the articular positionsy
More precisely, the control spasg can be noted as follows:

Sce{{gLeftagRight}azvxvq>"'} (3.58)

Thes, can also be chosen as a combination set of those variableptforal control purposes.
Note that onlyq itself should not bes., becausey alone cannot define always the state of a
parallel robot but it can be taken in any combination set ekth

[ ———> S
.. contours D"'Igh-_Spg?dt c

= S »| Dynamic State .
q _— {C * } Observer  f——>§_

Figure 3.14 — Control space selection.

3.3.2 \Versatile Control Law

In order to define a versatile control law, which can regukatg control space, we will

consider that the chosen control spageis different than the state spasef the linearized
dynamics of the robot:

IDM(§, 5, s) 2 A(s)u + h(s, $) (3.59)
wheres is replaced by the linear control law. Hence, we should first relate this actual control
law u to a pseudo-control law. This pseudo-control law linearizes the dynamics of the

chosen control spacé. = w and itis built upon an error functiofi which is written in terms
of the control space variables rather than the linearizaig space variables:

e = fe(sc(t), sc(t)) (3.60)
wheres is a reference state in the control space at time ingtant
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In order to find the relation between the actual control iaand the pseudo-control law
w, we assume that there is a second-order diffeomorphisetween the state spas@nd the
control space.. If so, one can write the zeroth-order bijective mappingaisws:

s = fs.(sc) (3.61)

where f5_ is a bijective function which maps control space to statespd@hen, let the first-
order diffeomorphism be noted as below:

§ =L, & (3.62)

whereL,_ is a differential model which maps the differential contspkce to the differential
state space. Finally, the second-order diffeomorphismrigen by differentiating the first-
order diffeomorphism (3.62) with respect to time:

§ = L, 8.+ Lg, 5. (3.63)

Using the second-order diffeomorphism given in (3.63), oaa find the relation between
pseudo and actual control laws by replacing their dynamiitk themselves of the control
laws§ = u ands. = w, respectively:

u = fu(Ls, L., S, w) = Ly, 8 + Ls w (3.64)

where f,, is a function of the differential model;, and its derivative, of the derivative of
the control-variables, and the pseudo-control law. Consequently, one has to know the set
{s¢, $¢, Ls., LSC} to calculate the actual control lawby the pseudo-control law.

In order to show that the errge can be regulated too, one should prove that the linearized
dynamics in the state spa¢g = u) is equivalent to the linearized dynamics in the control
space($. = w). In order to prove this equivalence, one can rewrite thalized dynamics of
the state space using the right sides of the last two expressi (3.63) and (3.64):

Lo, 8+ Ly, 8 = Ly 8 + Ly, w (3.65)

and this boils down to the linearized dynamics of the corgpaice( S, = w), on the condition
that good approximations of the models exastd (S, — w) does not lie in the null-space of
L, . Finally, the pseudo-control law can be extracted from the following second-order error
dynamics:

0=K,e+ K, é+é& (3.66)

whereK , and K, are the proportional and derivative positive controlleingarespectively.
The derivative of the error vecterwith respect to time is written as follows:

o 8f6 ok 8f€ .
~ Os: Se t 0s, Se

. d .
&= - (fe(s:(t), 5c(t))) (3.67)

1. invertible and differentiable smooth functions
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The pseudo-control law which we look for is hidden in thé&. In order to make it appear, we
differentiate the velocity of the error vecterwith respect to time, too. This yields:

. d? X ~d Ofey ., Ofc o  d Ofe, . o f.
& = g (el se)) = G (5 ) 8c + g5 %+ 5 (55,) % + g, @ (368)

The term in front of the pseudo-control lawin (3.68) can be expressed as below:

0 fe
0s.

whereC'(s’(t) ) is a matrix written from the reference stafeof the control space at time
As long as this matrixC (s} (¢) ) is non-singular, one can calculate the pseudo-controtdaw

d O fe O fe . d dfe, .
E(E)sz ost Se @(856) S (3.70)
This yields a second-order convergence nFigure 3.15 shows the block diagrams of the li-

nearized dynamics in the control space and in the state dpgeee 3.16 describes the versatile
computed-torque control scheme.

— O(si(t)) (3.69)
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Figure 3.15 — Linearized dynamics in the control space)(kid linearized dynamics in the
state space (right).
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Figure 3.16 — Versatile computed-torque control schem€TE).

3.3.3 \Variations Upon the Control Space

In the following parts, we propose three novel control lamsdomparative purposes of
the dynamic control of a parallel robot. Proposed novel rmbiiéws are derived from the afo-
rementioned versatile computed-torque control schemesé&lgontrol laws differ from each
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other by the choice of the control space (i.e., control \deia.) and consequently by the use
of various transformations in the control schernfie (f,,). Proposed control laws are applicable
to any parallel robot. Here, we demonstrate the applicasfdhese novel control laws on the

Quattro parallel robot in order to be consistent with theegiexamples throughout the thesis
and to ease the following of the expressions. Before goitm details of these control laws,

we remind the inverse dynamic model of the Quattro paradlebt once more:

T = IDM(%, %, x) (3.71)

where the inverse dynamics is expressed by means of theigaiionsx.

Proposition I: Body Orientation Space Computed-Torque Cortrol (BS-CTC)

Since the3D direction vectors of the kinematic elements stand almo#teateart of the
inverse dynamic model of the Quattro robét & u), the control variable set is chosen as
se = {Xpi X4 X.|iz; }, and the error is directly regulated over them in order toehan

efficient performance:

Xp1 Xp1
*k
. 554 §p4
fe(xx)=e= | x5/ | — | Xu (3.72)
X4 Xa4
L XZ i L Xe |

where{x}, X7, , Xt *_, } are the desired orientation vectors of the kinematic el¢snand

e € R?"™<1 is the orientations error vector. Afterwards, the pseudiatol law,w € R27*1, can
be calculated through (3.72) and (3.70):

w=K,e+K,é&+x" (3.73)

One can directly use this pseudo-control law as the finalroblaw u = w, since the state
space of linearized dynamics and the control space are the space f, = 1). Figure 3.17
shows the block diagram of the body orientation space cosgptairque control scheme.

X
= > u . . ]._‘
Leg - > IDM( X, X, x)
Orientations | X fe i
Path > 1
a sk Control Law T
Generator X
A A
X -
. = \ High-Speed contours (e
X Dynamic State [m— ' P
Observer {C*} iuf':—wn,:; ~

Figure 3.17 — Body orientation space computed-torque ob(BS-CTC).
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Note that we exploited all the direction vectors of the kiagioelements of the Quattro
robot as a control signal to control its full posture. In dmestparallel robot, the full posture
might be controlled by some of the direction vectors of theekaatic elements, such as using
only the directions of the observed kinematic elementshéndase of the Quattro robot, only
the directions of the observed lower-legs cannot providaique posture. For example, for
every configuration of the lower-legs of the Quattro robdtjck stays around a line that passes
through the originO and is parallel to the-axis of its base frame, there is a second posture of
the Quattro robot with the same configuration of the lowgslélhis second posture is where
the upper-legs are symmetric to the first posture with reagpethe plane passing through the
motor positions at the base platform. Figure 3.18 shows plesmf these postures.

O\ ; 10

Figure 3.18 — The Quattro robot postures on thaxis where lower-legs have the same 3D
orientation vectors.

Proposition II: Leg-Based Cartesian-Space Computed-Torge Control (LCS-CTC)

In this control scheme, the minimal end-effector pose regntation of the Quattro parallel
robot is used as a Cartesian space control variable:

X=[El ¢,]" enp (3.74)

Figure 3.19 shows the block diagram of the leg-based Cartesppace computed-torque control
scheme.

ek
X4 A f‘ u |DM( — ) T
i g > ¥ X, X
SE(3) 5.{* f‘e » i % x
Path 4 > Pseudo 7y - -
Generator * |
X, % Control Law s
A A | l
X4 Hi
X gh-Speed " -
X4 r Dynamic State 4% e . -
Observer {C*} E

Figure 3.19 — Leg-based Cartesian-space computed-tomnimtscheme (LCS-CTC).
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Here, we will note this minimal end-effector pose repreagom withX 4 rather tharX in
order not to confuse it with thé x 1 redundant end-effector pose representation of the Quat-
tro parallel robot. Subsequently, we will note the redundard-effector pose representation
with X g for consistency of the notation. Since this minimal poseesgntation has decoupled
components, the error can be defined as a direct differerbe iGartesian space:

fo(X, Xy) = e =X — X4y (3.75)

whereX* andX, are the desired and the current minimal pose vectors. Aftetsy the pseudo-
control laww can be calculated through (3.75) and (3.70) as follows:

w=K,e+ K, é+ X} (3.76)
As a consequence of (3.76), the control lmawan now be calculated from (3.64) as below:
u=1IL,X4 4+ L,w = fulL, L,, X4,w) (3.77)

where L, € R2™4 s the inverse differential kinematic model between the-effiector pose
X4 and the3D direction vectors of the kinematic elements. Using theed#htial kinematic
models defined in (2.147), (2.149) and (2.152) of Chaptere2can writeL, as follows:

M, °T,
L, = | M,5Ty (3.78)
Me 6T4

where M,,, M, and M, are the differential kinematic models of the direction westof the
upper-legs, the lower-legs, and the rotational-bar of tieete, respectively.T;, € R6*4 is the
transition matrix which maps velocity of the minimal endeetor pose representation to the
redundant pose representation:

X = STy X,. o7, = [ I3x3 03x1 } (3.79)
0351 y

€

whereXs = [ET XE]T € R6x1 s the redundant pose representation which is used in Qhapte
2 for linear modeling purposes, and all the differentialkiratic models brought from Chapter

2 were written with respect to this redundant p&se

Proposition Ill: Edge-Space Computed-Torque Control (ESCTC)

The left and the right edge equations in pixel-ufit§™n sy, ™1 gign; )i Hisy € B3
of the image projections of the lower-leg rods (see Fig. 8f@he Quattro parallel robot are
exploited directly as a control variable set. These visulgeevectors of the lower-legs are
enough to define the state of the Quattro robot. Thereforelov®t need to use in addition the
visual edge vectors of the other kinematic elements (eppemlegs). Figure 3.20 shows the
block diagram of this edge-space computed-torque contigérae. In this scheme, the error
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Figure 3.20 — Edge-space computed-torque control scheB«EED).

vector for each lower-legs; € 76*1, is defined as follows:

M ¥ m .
€ = [ on } B [ (img*Left - z‘mgLeft ) (3.80)
€Ri ("Rt — "D Right )i

where{ img*Left, imﬂ*mght } are the left and right desired projection-edges of a lowgrrbd.
The complete error vectas of all the lower-legs is noted in a stacked form using (3.89) a
follows:

fe(imn*, img) =e = [er{, eQT, er‘3r, e4T]T (3.81)

Hence, one can derive the differential relation betweenotientation vector of a lower-
leg rod and its projection-edges in pixel coordinates bfed#htiating the expressions below
brought from (1.96) and (1.92):

c c T i
. Dyere X MDpiont . K* ""n

Xy = L= e (3.82)
"ol mpes X pign | | KT |
After some algebraic calculus, the following expressiopesps:
Xy = Mg, [ EimELeﬁ)), ] (3.83)
= Right)t

whereM ... € R®3*6 is the interaction matrix between the velocities of a lovegrrod 3D
direction and its projection-edges:

7 (“Xai)

NTqi

c m((°nLest)i) c m((“nRight)i)
[ 16D rigne)s|E Toomietd KT [ pegeilx Tommandh) KT |
(3.84)

and wherex,; and (“ny.y/rign )i are respectively the non-unit vectors of the direction of a
cylindric leg and the visual edges of the same leg:

- C~e .
[|°%ail

Kai = (CQLeft)i X (CQRight)ia (CnLeft/Right)i =K' (imﬂ Left/Rz’ght)i (3.85)

Thew(-) € ®3*3 denotes an orthogonal projection matrix with respect tossociated vector.
This orthogonal projection matrix(-) appears in the time derivation of a unit vector. For
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instance, lek be an orientation vector of a leg of a robot, then time dekieatf the normalized
orientation vector can be expressed by the orthogonal gifojematrix = (x) as follows:

d X 1 ) 1 .
u (W) = 7 700 % = o (8 - xx) % (3.86)

Then, we proceed by writing down all relations between3hedirections of lower-legs and
their projection-edges in a matrix-vector from:

(ng Left)l

(%mﬂ Right)l
cXal Mnﬂ?al 0 0 0 (ng Left)2
cy imee
X2 _ 0 Mnﬂfaz 0 0 ( gRight)Q 3.87
Cga?, 0 0 Mn;tag 0 (ng Left)3 ( ' )
“Kaa 0 0 0 Muyg, ("1 Right)3

o (ng Left)4
Xa Mna im e
L ( ERightM ]
zmﬁ

whereX, € R12x1 M,, € R12x24 and™N e R2?**! are the stacked vector 6%,,, the
concatenated block diagonal matrix/af,,,, and the stacked vector 6f"n ;. ; /Right)i» T€S-
pectively. After that, we continue by writing the differeitmodel which relates the velocities
of lower-leg direction vectors to the rest of the velocitshe direction vectors of the kine-

matic elements:
°x

'pl M Xal
P [ p} AR (3.88)
cx Me .
R I B [ 4
X@ Mape
— X
X Dq

Ape

where M,,. € R'°*12 requires only at x 4 linear system solving in its computation due
to the pseudo-inverse of thel/, € R1?*4. The M,, M, and M, are again the differential
kinematic models of the directions vectors of the uppes;lelge lower-legs, and the rotating
rod of the nacelle, respectively. These differential kiaimmmodels can be found in Chapter
2. TheXpe e R!5*1 is the stacked vector of,,; and°x.. Now at this point, we can write
the first-order diffeomorphism between the differentiahttol space and the differential state

space: .
X M -
Ko | _ na im g (3.89)
x| i,
Ln

whereL,, € R27*? s the differential model of the first-order diffeomorphisithen, we write
the control lawu € R27<! from (3.64) as follows:

u=fu(LnLp "™N,w) =L,""N + Lpw (3.90)
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where the pseudo-control lawis computed by using (3.82) and (3.70):

w=K,e+ K, &+ "N (3.91)

3.3.4 Validation By Simulations

The proposed vision-based computed-torque control lawsardated by simulations on
the Quattro parallel robot. These simulations are conduatethe ADAMS & Simulink plat-
form. The simulation frequency is set 500 Hz. A 0.2 m diameter reference circle motion
with 2 m /s maximum velocity andtG maximum acceleration is planned such that it spans
XY, XZ and YZ planes. Figure 3.21 shows this reference cirolgtion versus time. The si-
mulations are executed for previously explained three egethtorque control laws: BS-CTC,
LCS-CTC, and ES-CTC. Afterwards, the results are compared.

- === -
-

-0.5F 1

Reference Trajectory (m, rad)

2 I I I I I I I I I
0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1

Time (s)

Figure 3.21 — Cartesian space reference trajectory exqut@ésshe camera frame.

3.3.4.1 Feedback Sensing

The high-speed dynamic state observer is not integrategifoecomputation of the feed-
back signals. We did so to analyse the respective propetige proposed control laws inde-
pendently from the technological constraints. Indeedgd#welopment of smart fast cameras in
the coming years might enable fast tracking of all the lega gimultaneous way. Moreover,
our high-speed dynamic state observer can be easily adaptbeé developing new sensing
technologies so as to perform simultaneous posture andityetsstimations of all the legs. As
a consequence, we deliberately take the following assompti

Assumption 1 Image projection lines of the lower-legs and their velociti@s can be preci-
sely measured at high speed and simultaneously.
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Here, we take the opportunity to propose another trackiggrithm [OAM10] based on
the Assumption 1, although it is not feasible in practicdluhé smart fast cameras become a
reality. On the other hand, this algorithm is perfectly iepstvith our methodology in the sense
of linearity and codability. The additional advantage aéthew tracking algorithm is that it
forms a constructive proof of:

Lemma 2 The edge setVj, Vi, {n;,n;}|j € {(L)eft,(R)ight}, i € {1,2,3,4}) of
the first cylindric rods of the lower-legs implies the dynastate of the Quattro parallel robot,
and the required variable set for kinematics and dynamicslmmcalculated from this set.

Cylindrical Kinematic Element Constraints We remind once more the two profitable geo-
metric constraints of a cylindrical rod in a lower-leg:

Bz‘lTﬂji = -r (3.92)
Xy = ok X RR (3.93)
[n; X n g

wherex,; , n;; andr are the direction, a projection-line and the radius of tHendyical rod in
a lower-leg, respectively. Fore further details on the timhleg projection and 3D construction,

the reader is referred to the integrated MICMAC part of theyaér 1.

Computation of the Attachment Points Recalling the assumption that the attachment point
B;1 (i.e., the point located on the nacelle) is lying on the retioh axis of the lower-leg rod
with radiusr, the geometric constraint in (3.92) is applied on the botprofection-lines (i.e.,
left and right sides) of the first rods of the lower-leigand2. This yields:

T T
n B = —Tr n B = —7r
HLITBH — —LQTB” — (3.94)
np 1 = —-r npo 21 = —T
Taking into account the nacelle parameters, one can haveltbeing relation:
—
Bi1 = Boy + BBy (3.95)

whereB5;B;; is a constant vector, which can be retrieved by calibratiofran the CAD

model:
—_— H H

By replacingBy; in (3.94) with (3.95), the following linear system can beabed from the
image information:

R

T T
n,, —r —np; (B2aiBi)
ng’ —r —n 7 (ByByy)
— B21 — A R1 21D11 (3_97)
n
_L2T —r
n po —r
NJ'21 Bar
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The least-square solutioi3s; , of this4 x 3 linear system is unique provided thaf the
interpretation planes are linearly independent:

By = N}, Ba (3.98)

whereN]T21 is the pseudo-inverse af;,, € 43 and needs onl$ x 3 matrix inversion which
can be algebraically computed. Using (3.95), one can atseatB ;.

After that, a second linear system can be built to com@ge andBy4; by repeating the
same procedure on lower-legsaand4. We would like to point out that this estimation is per-
formed in a single image. Note that this result was alreadified in [DAMO07] on a real I14R
robot, and was adapted here for the end-effector of the Q@uatbot.

Computation of the Attachment Point Velocities The velocities of the attachment points
B;1 can be computed by differentiating the constraints in (8a®d solving the linear systems
for Bo; andBg;. In order to calculatd,; the new linear system is written as follows:

. T
n L1T —n LlTBH
T .
n . —-n B
n RlT By, = n RlT B11 (3.99)
no —Njo 21
T . T
npo —1 o Bag

while B3; can be computed similarly. Then, velocities of the (attaehthpoints that are loca-
ted on the same rigid part of the nacelle will be equal:

¢, = Cy, = By = Byy (3.100)

C; = C4 = By, = By (3.101)

Required Variable Set Looking at carefully to the modeling of the Quattro robotts &nd
of the Chapter 2, one can list the required variable set fogrkiatics and dynamics as follows:
= {Xpis Xpis Xpis Y, } the variables related to the active upper-legs.
— { x4, X4, X, }the variables related to the passive lower-legs.
- {x., %., X., y_} the variables related to the passive nacelle.
S0, one can start computing the zero-order variables ofabetr The variables of the upper-

legs are given as follows:

1 —
Xpi = E_pi (Bil -P, — AJA — Uy Xaz‘) (3.102)
Ypi = Zpi X Xpi (3.103)

where/ly;, 4, Pi, AjAi andz, are the constant parameters and vectors. The nacelle va-
riables are expressed as below:
x. = (Ca2 — C3)/h (3.104)

v =1z, XX, (3.105)

—e
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wherez, andh are constants, and tl@, andCj3 can be represented as follows:

—

Cy = By + By1Cy (3.106)
—

C; = Bs1 + B31Cs (3.107)

with { B2; C2, B3 C3} constant vectors and tHeBs; , Bs; } attachment points of the lower-
legs to the nacelle.
The first-order variables of the passive nacelle can be leaittias follows:
x, = (Cy — Cy)/h (3.108)
v, =z, x %k, (3.109)

After that, the end-effector po§éand its velocityX can be expressed as below:

% h
X = (B21 + B21Cy — 5x. —ay,) ] (3.110)
X,
) 35, — % — gy
% _ [ (Ba 2 % ay,) } (3.111)

Then, the rest of the first-order variables (upper-legsgelelegs, parts of nacelle) is obtained
as below:

My, | .
X=| M, |X=»MgX (3.112)

M,

whereX € R?7*! is the variable vector of the system:
T
X - [ Egh e 73;1;47 Kg‘h e 733—‘4; Kz ]

(3.113)

and wherelfx € R?7%6 is the interaction matrix between the end-effector posetl@dystem
variables. The second-order variables can be computedfeyatfitiating (3.112) as follows:

X = MxX + MxX (3.114)

The actuated joint speedsand their acceleratiori$ which are required for computation of the
actuator inertial and frictional torques can be also oletdias below:

q = M,X (3.115)
= M,X + M,X (3.116)
where My, M, and M, are written from the zero-order and the first-order variahbiéich
already exist since (3.112). The second-order time dérevatf the end-effector pose will be
coming directly from the control-law (if the control-vabi is chosen as the end-effector pose)
or it will be computed through the second-order diffeomdsphbetween the chosen control-
variable and the end-effector pose.
Thereby, at this pointve substantiate that exploiting only the image edgesnd their
velocitiesn of the lower-legs of the Quattro parallel robot, it is podsilo figure out the whole

variable set for dynamic controNote that this confluence is made easy, thanks to the vector-
based formulation of both the dynamics and the differeig@metry in the imagel
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Figure 3.22 shows the block diagram of the versatile contptdegue control scheme in-
tegrated with this edge-based linear dynamic state ohserve
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X
Path SC
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i

Figure 3.22 — Versatile computed-torque control schenmegnated with the edge-based linear
dynamic state observer.

3.3.4.2 Noises for Robustness Test

The following two noise types are contaminated to the systetast the robustness of the

control laws:

— Mechanical noise Firstly, 100um of uncertainty is injected on the 3D coordinates of
the extremity point§ A1, B;;} of the lower-legs of the Quattro robot so as to imitate
the effects of clearances in passive joints, assemblysredc. This noise has a great
impact on the orientations of the lower-legs. A good catibrais a must in the case of
ignorance of that kind of mechanical errors.

— Sensory noise Afterwards, for sensory noise, the locations of the vist@itours of
a lower-leg are orthogonally perturbed (with respect tondsseless projection-line) in
between—2, +2] pixels. This noise makes the new fitted line take a slight dedie off
the previous noiseless one.

3.3.4.3 Performance Metric

The accuracy of the proposed control laws is assessed irs i@rmean and standard de-
viation values of the positionef/z) and orientation) tracking errors of the end-effector pose.
Table 3.5 lists these accuracy results for each control laaimed under previously explained
noise types. The mean values are showiaid font and the standard deviation values are
shown initalic font.

3.3.4.4 End-Effector Computed-Torque Control (EE-CTC)

We also performed another computed-torque control withealdack pose estimated by
the direct observation of the end-effector pose (EE-CT6temd of computing this pose from
the lower-leg edges. This feedback p&seis corrupted with 100 um, 0.01°} noise which
corresponds to state-of-the-art accuracy of high-spesidrvi The results of this EE-CTC are
shown in the last row of the Table 3.5 below of LCS-CTC colufrigure 3.23 shows the block
diagram of the end-effector computed-torque control sehem
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Figure 3.23 — End-effector computed-torque control sch@eieCTC). IDKM is the inverse
differential kinematic model. IKM is the inverse kinemaiimodel.

3.3.4.5 Results

Figures 3.24, 3.25, and 3.26 depict traces of the performagettories and applied torques
obtained under the noises given in the fourth row of the T8te Observing results in Table
3.5, one can immediately conclude that LCS-CTC performigbahd ES-CTC performs worse
than the others. It is surprising to have that result whileeogpectations are put on the ES-CTC
since the control variabl&n is directly defined in the very sensor-space. However, diffees
on the orders of magnitudes of the errors are not so decisigeotmote one over the others.

Going into details of results given in Table 3.5, one can gmthat: ES-CTC and BS-CTC
seem robust only to the noises in the sensor space (lingfétieily smooths out the 2D sensory
noise), while being sensitive to the mechanical errorsyTdre slightly better in rotation but
slightly worse in translation than LCS-CTC. It seems thiag, ¢loser the control space to the
operational space of the robot is, the better the resultsMwesover, the superior robustness
of LCS-CTC to both types of noise (i.e., mechanical and sgis@an be explained by the fact
that the pose is calculated from the projection-lines ofltineer-legs. This imposes explicitly
the closed-loop kinematic constraint that is helping to stih@ut the 3D mechanical noise.

In the applied torques LCS-CTC performs better too, whigedthers are more oscillatory
and peaky. One can observe these oscillations and peakgurebi3.24 and 3.25.

Let us finally remark that EE-CTC is worse than any other pseplocontrols, which
confirms thabbserving the lower-legs is probably one good way to the eoé@ accuracy

Note that those results were achieved with a PD+FF controfider the assumption of a
perfect decoupling and linearizing of the dynamics. In pica¢ due to noise, this assumption
might not be valid and the actual performance of the systasaldibe improved by advanced
control techniques.
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Figure 3.24 — Reference (red) and performed (black) supased trajectories in ZY and ZX
planes (top), motor torques (bottom) for the ES-CTC.
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Figure 3.25 — Reference (red) and performed (black) supased trajectories in ZY and ZX
planes (top), motor torques (bottom) for the BS-CTC.
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Figure 3.26 — Reference (red) and performed (black) supased trajectories in ZY and ZX
planes (top), and motor torques (bottom) for the LCS-CTC.
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Table 3.5 — Tracking errors versus noises in different abisppaces.

ES-CTC BS-CTC LCS-CTC

zyz (pm) 0 (deg) || zyz (pm) 6 (deg) || xyz (pm) 6 (deg)
no noise || 408 0.23° [ 356 0.23° [ 359 0.23°

239 0.19 190 0.16 182 0.16
100 pm 674 0.32° || 652 0.37° || 553 0.36°

447 0.26 385 0.26 269 0.25
+2 pizels || 553 0.22° |[ 522 0.22° || 529 0.34°

428 0.18 | 371 0.16 | 236 0.23
100 pum 881 0.28° || 899 0.29° || 560 0.36°
+2 pizels || 647 0.23 || 703 0.24 || 264 0.28
100 pm B B 862 0.56°
0.01° 400 0.38

3.3.4.6 Conclusions

In this part, for a competent control performance of a parabbot, the control spaces
have been explored regarding a specific inverse dynamic Ineagesssed in leg orientations.
The prevailing results are brought by the LCS-CTC. This onite suggests the following
important formative points in order to improve the perfonoa of parallel robots:

— (i) the control space should be in the operational spadeeofdbot;

— (i) the control space should be also as close as possilte ttensor space;

— (iii) the models should be linearly and compactly exprddsethe measurements of the

Sensor space;
The above conclusions once more clearly distinguish « wisi@s one of the best options in
the sense of allowing us to satisfy all of tBéormative points at the same time.

Finally, we would like to remark that the presented versatibmputed-torque control
scheme meets the third objective of the integrated dynam@NAC part which is stated as
at the end of the Chapter 1 as follows: « Proposing a visiaeddramework for the dynamic
control of parallel robots from their leg observations. »
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3.4 Conclusions

We can give a brief summary of this chapter as follows:

— Firstly, we presented a vision based high-speed dynaatie abserver. This observer can
provide all the necessary variables which keep the modaliagas well as the control in
linear form. It computes the position and the velocity of eafial robot simultaneously,
because it uses sequential observation information ofefye &f a parallel robot which
encodes the state of motion. It is fast, because it obsemal gortions of the legs with
relatively small sub-images, and because it uses a sitegition virtual visual servoing
to compute the position and the velocity.

— Secondly, we proposed a versatile computed-torque dostheme based on the leg
observations of a parallel robot. This control scheme ahlbws easily to define control
laws for different control spaces. Then, we explored theat$f of error regulations in
different control spaces and as a consequence we discoseneel formative points of
better control of parallel robots.

Correctness of these new theories are validated by simofatNow, in the next Chapter,

it is time to prove the feasibility of these theories on thal experimental setups.
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Chapter 4

Experiments

This chapter experimentally validates the feasibility lué# presented theories for dynamic
modeling, for high-speed dynamic state estimation andyoathic control of parallel robots.

4.1 High-Speed Integrated Dynamic MICMAC Observer

The high-speed dynamic state tracking algorithm which s&cdbed in Chapter 3 Section
3.2 will be tested on the Quattro parallel robot. First, wé give the details of the test-bed,
then we will explain an experimental scenario.

4.1.1 Test-Bed Setup

Figure 4.1 shows test-bed of the Quattro parallel robothiktest-bed the following points
are important to note:

Choosing a cameraln order to do high-speed estimation, camera frame rateldHmifast
enough. A Photon Focus CMOS CamLink TrackCam is a relevargosdor our state
estimation algorithm. It allows for fast sequential sutage acquisition. One should also
choose a short focal lens for better perspective effect@nyttindrical legs of the Quattro
robot. The more perspective effect there is, the better stiemation is. Unfortunately,
short focal lens brings distortions on the image which sthanal carefully taken care of.

Positioning of the camera For a good observation of the legs, the camera should beslbcat
somewhere far away from occlusions. In the Quattro robetctimera is placed onto the
robot base, looking downwards to the legs and to the endteffeln this location, the
field of view of the camera is less cluttered than the spacsidmithe legs. Figure 4.1
shows the base-mounted camera of the Quattro robot and ge italeen by this camera.

Lighting If fast acquisition is desired, CMOS sensor of the camerallshioe exposed for a
short time. This short exposure time causes dark imagese§ubntly, to have clear
images, the scene must be very strongly and properly illatath That is to say, a good
visibility of the legs must be guaranteed while keeping tn@age noise at a moderate
level. For instance, strong lighting can produce reflegtioausing false edges on the
legs. A solution might be a white back light which allows oneobserve the shadows
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Back Light

Figure 4.1 -Left picture The Quattro robot and its cell. The camera is mounted or@d#se
looking downwards to the legs. The back light platform isobethe legsRight picture An
image of the legs from the base-mounted camera.

(i.e., silhouettes) of the legs on the image. This lightingvies almost a binary image
where many of the unwanted false edges are removed. On tke tudind, the white
back light limits the visibility of the scene to its lightirgurface. This also implies that
the back light can limit the workspace to a smaller regiomttiee field of view of the
camera.

Camera-robot calibration Intrinsic calibration of the camera should be accurates st
be performed with a method which can give a direct model fios ldistortion correction
(e.g., Visp) rather than an indirect (iterative) model. Aedt model accelerates the state
estimation. Afterwards, the pose of the camera frame wiheet to robot base frame
(i.e., extrinsic calibration)R, t| should be calculated accurately. The accuracy and the
speed of the estimation depend on all these parameters.

Synchronization In order to have a ground truth to compare the results, themestcoders
of the robot and the camera are synchronized to capture amiafion at the same time.
So, motor encoders read the joint positions at the moment wWieecamera grabs a sub-
image of a leg.

4.1.2 Experimental Scenario

To validate the feasibility of the dynamic state trackingaaithm, we proceed as follows:

1. Calibration: We shall first calibrate the extrinsic pose parameters efdiimera with
respect to the robot base frame. This extrinsic pose of thewill be calculated by
using the visual edges of the lower-legs of the robot.

2. Reference TrajectoryVe will design a Cartesian space trajectory which expahdses
of motion of the robot, and we will calculate a region of imtstr (ROI) image trajectory
of the lower-legs which corresponds to this designed rafex€artesian space trajectory.
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3. Data Collection The Quattro robot will be moved along the reference Catespace
trajectory with simple Cartesian space kinematic confbalring this motion, we will
synchronously save the joint values measured by the motmdens and as well as the
sub-images of the lower-legs grabbed by the camera.

4. Off-Line Dynamic State Computatiowe will then compute the dynamic state of the
Quattro parallel robot and the ROI predictions through #gstered sub-images of the
lower-legs.

5. Comparison Finally, we will compare calculated results with the penfied reference
motion of the Quattro parallel robot.

4.1.3 Calibration

Here, we shall calculate the posd(, °t,) of the camera frame with respect to the robot’s
base frame. It is assumed that the camera intrinsic makfjx {(he lens distortion correction
coefficients, and the geometric parametéys, of the robot are known.

4.1.3.1 Camera-Quattro Parallel Robot Calibration from Leg Edges

In order to find the pose of the camera frame with respect tbdise frame of the Quattro
robot, we exploited a geometric constraint of the cylinglriegs as an objective function for
minimization. The geometric constraint is as follows:

‘n;” B, = —r (4.1)

wheren is a visual side edge of a cylindrical 1eB, is the connection point of this cylindrical
leg to the nacelley is the radius of the cylindrical led,c {1,2,...,8} is the cylindrical leg
index, andj € {L, R} is the left or right side visual edge index. Figure 4.2 depan image
of the Quattro robot with itd6 edges of the& cylindrical legs. Therefore, from an image of a
known robot posture, we can writé constraint equations.

Constraint (4.1) can be rewritten with the pose paramefeteeccamera frame as below:

CnijT (CROOBi + Cto) = —T (42)

where this time the connection poiBtis expressed in the robot’s base frame, and it is known
from the 3D CAD model of the robot. We rewrite (4.2) for the nplwn pose parameters as
follows:

Aij X = —-T (43)

where the coefficient row vectot;; € %!'*!? and the unknown parameters column vector
x € R'?*! are as below:

°B] 0O1x3 0O1x3 1 0 O
Ay =‘n;m | Oix3 °BY 0153 0 1 0|, x=[ 2 (4.4)
01x3 0O1x3 °Bf 0 0 1

127



Figure 4.2 — The 6 edges (red lines) frorf cylindrical legs of the Quattro robot for a given
pose in calibration.

and wherer; 3 € %% are the row vectors of the orientation matfik,. Stacking all the
linear constraint systems of all the observed cylindriegslcomputed fromk images, one can
write the following complete system:

Ax =D (4.5)

whereA € R1%%*12 andb € R are as follows:
LA

. 1,4:11% ’ b — : (4.6)

Agr

Linear solution of (4.5) yields the extrinsic pose paramsetd the camera frame with respect to

base frame of the robot. However, the computed orientatiaimixf R, may not be orthogonal.
One can make it orthogonal using its SVD decomposition:

‘R, = UDVT @4.7)

assuming that the diagonal matrix is identity. Then, the new orthogonal orientationtmxas
calculated as below:
‘R, =UVT (4.8)

While calibrating the camera frame with respect to the rdtahe, we have taken images
of 25 different known poses of the robot expressed in its basedraith respect to its base
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Table 4.1 — Calibration residual errors of the geometricst@mt given in (4.1).
[ Linear solution] Non-linear solution]|

[RMSE]] 0.0022m |  0.0008m |

frame. We solved the extrinsic parameters through thediggstem explained above. In order
to compare the correctness of the results, we also solvedoi&raint equations written in
(4.2) through the non-linear “trust-region-reflective"nimization method [CL96]. Table 4.1
depicts the root mean squares (RMSE) of the constraintuaksiabf the linear and non-linear
solutions. When two solutions (i.e., linear and non-linedrorientation matrices are compa-
red with the geodesic distance metric, the difference iaddu0016 rad. When two solutions

of position vectors are compared with the Euclidean diganetric, the difference is found
0.0017 m. Figure 4.3 shows thgrobot posture images with the back-projection of the connec
tion pointsB. Back-projection is performed with the extrinsic cameragparameters which
are computed linearly.

Figure 4.3 — Back-projection (white circles) of connectjmints B with linearly computed
extrinsic pose parameters.

4.1.3.2 Coarse to Fine Calibration

One may start with a coarse set of the extrinsic param@fér:*f | in order to perform the
dynamic state estimation of the robot:

R =ARR, t=t+ At (4.9)

where[ R, t | are the correct extrinsic parameters, afdr, At ] are the errors of these para-
meters. As a consequence, the dynamic state estimatidrgiwgilerroneous results. However,
since the error§ AR, At | of the extrinsic parameters of the camera stay constangitine
dynamic state estimation of the robot, these errors wilixstitemselves as an offset between
the performed trajectory by the real robot and the estimagedctory by the virtual robot. A
solution for this offset can be approximated by a 3D posenadion between these two space
trajectories. Le{ Py, ..., P,,} € ®¥*t and{P3, ..., P} € ®3*! be two sub-sets of point
correspondences in the estimated and performed trajestagspectively. Hence, in order to
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calculate this offset, the objective function for minintipa is written as follows:

P; — ARP; — At|?, > 3 4.10
i Z [ [ m (4.10)

wherem is the minimum number of non-collinear corresponding moi@nce this offset is
computed, one can update the extrinsic parameters as follow

R = (AR)TR, t=1t— At (4.11)

where R andt are the new approximated parameters which will yield betsults. So, this
dynamic state estimation algorithm can also serve for asedarfine camera-robot calibration.

4.1.4 Reference Trajectory

The reference Cartesian space motikn)(is a0.08 m by 0.08 m square trajectory on the
zy-plane. There is no rotation in this trajectory. The maximeetocity and acceleration of the
motion are).25m,/s and1m/s?, respectively. This square trajectory is rotatedsby degrees
around ther-axis so as to cross tt¥eaxes of the motion space. Afterwards, a region of interest
(ROI) image trajectory is created for the observation of ltveer-legs of the Quattro robot
using this reference Cartesian space motidt) (The image trajectory contains the upper-left
corner pixel coordinates of the sub-images that shall beieed during the reference square
motion of the robot. The size of sub-images &8e< 48 pixel’. Figure 4.4 shows this reference
sub-image ROI*) trajectory of the lower-legs of the Quattro robot.

ROILegl | _
400 [ ROl Leg 2
ROI Leg 3
ROI Leg 4

4501 B

—

a
o
o
T
I

o
a
o
T
I

y (pixels)

7 D |

700 | | L I I I
350 400 450 500 550 600 650
x (pixels)

Figure 4.4 — ReferencROI* upper-left corner positions on the image plane. Red, giges,
and black traces belong to the first, second, third and fortlef-legs, respectively.
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4.1.5 Data Collection

The Quattro parallel robot is moved along the referencerequajectory through a simple
Cartesian space kinematic control. During this motion, aerded ab00 H = the joint posi-
tions (@) of the motors given by the encoders and as well as the sugeisngrabbed syn-
chronously by the camera. Figure 4.5 shows the block diagrfathis kinematic control and
synchronous data acquisition. These measured joint posiig™) are then used to calculate

ROI ROI*
»| position
calculation
* S 0 \
X =
Path}=—L>(4 Cﬁg‘g]ol 25 IDKM 1 . ro
«---| =
m
X
FKM le—1
A \
q” sub-image
buffer buffer

Figure 4.5 — Cartesian space kinematic control with synubme data acquisition. FKM and
IDKM are the iterative forward kinematic model and the irseedifferential kinematic model
of the Quattro robot, respectively.

the Cartesian space end-effector pos8svfa the iterative forward kinematic model (FKM) of
the Quattro parallel robot:

X = FKM(q™, X,) (4.12)

whereX, is an initial guess for the end-effector pose. Table 4.vBgythe pseudo-code of this
iterative FKM.

X = X, [/ start with an initial pose
do{
q = IKM(X)
Aq =9q" — q
X=X+ M(;l Aq
while ([Aq[| > €)

Table 4.2 — Pseudo-code for the forward kinematic model (fFiiMthe Quattro robot)M

is the inverse differential kinematic model (IDKM) betwethe joint velocities and the end-
effector pose velocityd = Mgy X). IKM is the inverse kinematic model which relates Car-
tesian end-effector pose to the joint positionss a threshold for the desired precision of the
computed Cartesian end-effector pogé. and q are the measured and the computed joint
positions, respectively.
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Assuming that the known geometric parameters of the Qup#rallel robot are perfect,
these computed poseX)(will be used as ground truth (i.e., reference motion) fanparison.
Figure 4.7 shows traces of the calculated Cartesian erdteffposesX) of the Quattro paral-
lel robot which are expressed in its base frame. Figure f&thevelocities and accelerations
of this performed square motioiX). Velocities and accelerations are obtained by numerical
differentiation of the Cartesian end-effector poses. Fegu6 shows simple block diagram for
the computation of the ground truth sta{g§ X, X}.

X* e ™ qm X d X d X
Path—— %, 7 — | FKM gz ya

Figure 4.6 — The ground truth end-effector poXg, end-effector pose velocityX() and end-
effector pose acceleratioX) generation.
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Figure 4.7 — Performed square motidf) [during kinematic controlLeft figure 3D Cartesian
end-effector pose trajectory with starting and ending p@ed circle).Right figure Evolution
of the Cartesian end-effector poses versus time.

4.1.6 Off-Line Dynamic State Computation

The estimation algorithm is coded in C++ witlfs matrix library [FLCSO07]. In order to
validate the dynamic state estimation algorithm, we firsécted and extracted the edge pixels
(i.e., contours) of partially observed cylindrical legsrfr the registered sub-images. This edge
extraction is performed with Canny edge-detection meti@ahB6]. Figure 4.9 shows a se-
guence of sub-images of the lower-legs of the Quattro pnadbot with their detected edge
pixels. Finally, we conducted the dynamic state estimaaigorithm with these detected edge
pixels which are transformed to metric units. Figure 4.1y illustrates this dynamic state
estimation process. Table 4.3 tabulates the accuracidgeqgfdsition and orientation estima-
tions. These accuracies are calculated with the root mesres|of the tracking errors (RMSE)
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Figure 4.8 —Left figure Cartesian end-effector pose velocii)(prints of the square motion.
Right figure Cartesian end-effector pose acceleratipdrints of the square motion.
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Figure 4.9 — From left to right, sequentially grabbed & 48 pixel?) sub-images of the lower-
legs 1, 2, 3 and 4, of the Quattro parallel robot. White dogstlae detected edge pixels for the
dynamic state estimation algorithm. In this figure, the subges are zoomed.
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Figure 4.10 — High-speed dynamic state estimation scheme.

and Hausdorff distance metric regarding to ground trutfedtaries. Table 4.4 tabulates the
approximate average times taken for each of the processdsrua single dynamic state esti-
mation of the Quattro parallel robot. These processes raterm, the exposure of ROI region
on the CMOS sensor, the transfer of the ROI pixel informatiba detection of the edge pixels
of a cylindrical leg in this ROI, and the computation of theremt dynamic state of the robot.
Consequently, an estimation takes abbifi0 us (microseconds) which comfortably allows to
discover the current posture and velocity of the robot mbean 500 Hz. To our best know-
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Table 4.3 — Dynamic state estimation errors.

Pose Errors Velocity Errors
xyz (m) ‘ 0 (rad) || iz (m/s) ‘ 0 (rad/s)
RMSE 0.004 0.027 0.098 0.31
Hausdorff || 0.007 0.048 0.267 0.88

ledge, this method also implies the first proposed visicsetadynamic motion estimation of
an articulated object at high speed by sequential sub-iraegeisition.

Table 4.4 — Times taken for an estimation with x 48 sub-images.
| ROl exposure| ROl transfer| Edge detectior| Estimation]

[Time(s) ]| 500 | 100 | 200 | 600 |

4.1.7 Comparison

Figure 4.11 depicts the referencg) (@nd the estimated?i() Cartesian space curves.

0.54
0.56
Estimated
g 058 = = = Reference
N

0.62 0.04

0.09
0.08

Y (m) 0.07 :
—-0.02

0.06 -0.03

Figure 4.11 — Superimposed estimat&j é&nd referenceX) 3D trajectories expressed in the
camera frame. Red solid line is the estimated trajectoryldinel dashed line is the reference

trajectory.
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In Figure 4.11, the estimated 3D trajectoi}@)(ﬁts rather well to the referenc&J trajec-
tory. Note that in reality, the referencK) trajectory might differ from the real performed one
by the robot, because the numerical FKM may not perfectiyfthe mechanics of the robot.

The error between the referenc®)(and the estimatedX() Cartesian poses is calculated as
below:

e, = X - X (4.13)

Figure 4.12 plots these positional and orientational esion errors versus time. In Figure
4.12, we observe that the estimated trajectory is not veryotimin the depth A-axis) and

as well as in the orientatiorg). Figure 4.13 plots the estimatei)(and the referenceX(
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Figure 4.12 — Cartesian pose estimation erretg {ersus time for the Figure 4.11.

Cartesian velocities of the end-effector versus time.niztied velocities look quite good for
thez andy axes while they are very noisy feraxis andd. These noisy estimations of velocity
in the depth and orientation can be directly deduced fronréelts of Figure 4.12. Figure
4.14 shows the superimposed referenB€)(*) and predicted Iﬁ) sub-image upper-left
corner position trajectories of the lower-legs of the Qugtarallel robot. Figure 4.15 plots the
prediction errors of these sub-image positions on eachedbtier-legs. A ROI prediction error
is calculated as Euclidean distance between the referemttha predicted sub-image upper-
left corner positions. The maximum prediction error for &-gmage position is calculated as
4.2 pixels through the whole tracking process. This maximundigt®n error of4.2 pixels
for a 48 x 48 pixel’ sub-image corresponds ta6& error on the diagonal length of the sub-
image. These predictions are quite enough to guaranteebervability of the edges during
the motion of the Quattro parallel robot.
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Figure 4.13 — Superimposed estimat&g &nd referenceX) Cartesian pose velocities versus
time for the Figure 4.11.
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Figure 4.15 — ROI prediction errors on each of the observgsl & the Quattro parallel robot.
A prediction error for a ROl is computed as the Euclideanadiseé between the reference ROI
position and the predicted ROI position. The maximum pitaahicerror is calculated a$.2
pixels through the whole tracking process.

Discussion: This estimation method does not need a special artificisépats the legs are
observed, and it is applicable to any parallel robot witmgdrism-shaped legs. It is feasible by
an edge detection in a quite small and well structured swdg@nThe sub-image contains only
a partial region of a slim leg. When the dynamic state estonakesults are inspected, one can
say that the depthz{axis) and the orientatiord)] estimations are quite noisy (see Figs. 4.12
and 4.13). The errors, in the depth and the orientation asitms, might appear because of a
cylindrical leg whose radius-] is relatively smaller than its observational distangg) from
the camera. This makes estimations, especially the deptte sensitive to small noises:

do
=2 (4.14)
T

where Z is the ambiguity in the depth andis a small observation error on the radius of a
cylindrical leg € < r). On the image:
— (i) if one observes a leg thinner ¢ ¢) than it is, the depth of this leg is calculated farther
from the camera;
— (ii) If one observes a leg thicker (+ ¢) than it is, the depth of this leg is calculated
closer to the camera;
Subsequently, different depth errors on each of the legsatsate orientation errors. Figure
4.16 illustrates this depth ambiguity.
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(¢}

Figure 4.16 — A cylinder whose radius) (s relatively smaller than its observational distance
(d,) from the camera. A smalk)] noise on the measured thickness of the cylinder on the image
creates ambiguity on the depth of the revolution axis of ffimder with respect to the optical
centerO of the camera. The red line shows this ambiguitydn the depth.

For example, the radius of a cylindrical leg of the Quattroatais» = 0.0078 m and the
approximate observation distance of the legs during tHereace square motion was =
0.4m. Hence, considering an image noise corresponding 0 0.0001 m ambiguity on the
radius of the observed legs causes approxima&télys m depth errors in the estimations.

In our experimental test-bed, the source of this image nweseappear because of back
lighting from a surface source. In the case of a point-sotnaat light, the visible part of the
cylindrical leg is the lighted region. On the other hand,he tase of a surface-source back
light, the visible part of the cylindrical leg is the unligitt region and this unlighted region can
be thinner than it is in front lighting. This means that it @spible to calculate the depth of the
cylindrical legs farther than they are. We can observe thiglktision in Figure 4.12 frorfi to
1 seconds and from to 5 seconds. In these time intervals, the robot is in a waitingegae.,
static) before the motion and after the motion, therefoedadck light effect is homogenous on
every leg which yields farther estimated positions. Whenrdbot moves, the back light effect
is irregular since the sub-images are taken sequentialtiiffatent time instants. Thus, this
irregular back light effect causes different depth errargach of the leg and as a consequence
worse orientation estimations appear frono 4 seconds. Figure 4.17 illustrates the effect of a
surface-source back lighting on the observable thickneasylindrical leg.

Generally speaking, the source of the errors comes: (i) fimeruse of the approximated
theoretical models; (ii) from the calibration of the camexrdrinsic parameters; and (iii) from
the image noise which creates false edges.

Future perspectives: In order to increase the accuracy and the speed of the efstimat
the following perspectives are considered: (i) an invesitgn of the grabbing strategy with
different number, size, location, and order of the sub-iesagii) an exploration of the number
of rods @ or 8) and the number of sub-images on each cylindrical leg;dnijmplementation

of the edge detection algorithm on a smart camera which haméedded FPGA/DSP /ARM
hardware; and (iv) an investigation of the proper lightifighe legs;

Once all these problems are solved, one can also imaginehfijst tracking of the leg
contours (e.g., treatment of occlusions); (i) efficienplementation of the algorithm (e.g.,
reducing computation time); (iii) generalization to otlparallel robots; and (iv) industrial
applications.
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Surface-Source Backlighting

Point-Source Frontlighting |
o

Figure 4.17 — Lighting effects and visibility of a cylindakleg. O is the optical center of the
cameraleft Front lighting from a point source which is assumed at thexionity of the O. In
the case of a point-source front light, the visible part &f tlylinder is the lighted region (bold
arc).Right Back lighting from a surface source. In the case of a suracgce back light, the
visible part of the cylinder is the unlighted region (bold)eand this region is now thinner than
it is in front lighting.

4.2 Inverse Dynamic Model

4.2.1 Validation of the Inverse Dynamic Model

The proposed inverse dynamic model (IDM) of the Quattro Ipnabot, which is written
in terms of the unit orientation vectors of the legs as exygdiin Chapter 2:

I = — Al(x) b(%, %, x) (4.15)

is validated comparing to a reference inverse dynamic maasiented in [NKC08].

A Reference Inverse Dynamic Model for the Quattro Parallel Robot

In [NKC*08], a simplified inverse dynamic model is proposed for thRMM Par4 pa-
rallel robot, and it is shown that this simplified inverse dgric model is almost correct as the
complete dynamic model of the Par4 parallel robot. The ctmess of this simplified inverse
dynamic model is validated by simulations in Adams softwaard by experimentations on the
LIRMM Par4 parallel robot. The Par4 parallel robot is thethier" prototype of the Quattro
parallel robot. That is to say, the Quattro and the Par4 afstacturally the same parallel ro-
bots. The only difference in two robots is the slight vadas in lengths and in weights of the
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kinematic elements. Thus, we took this simplified inverseasigic model as a reference inverse
dynamic model for the Quattro parallel robot in order to canepit with our proposed inverse
dynamic model. In this reference model, the simplificatiars as follows: (i) the weight of a
parallelogram lower-leg is considered as two point masseach extremity; (ii) the inertia of
two rotating rods of nacelle are neglected; and (iii) thegheibf these two rotating rods are
considered as two point masses at each extremity.

This reference IDM of the Quattro robot is written based anniotorized joint positions
(q) and posesX; andX,) of the mass centers of the two translational bars of thelleadéne
formulation of the reference IDM is as follows:

. .. .. V4
Tref = Zoet G+ JE My (Xy + g) + JF Mo (KXo + g) — cos(q) g (M3 5T Myl) + Ty (4.16)

whereZ,.; is the inertia matrix which contains the inertias of the atits, upper-legs and
point mass lower-legs]; and.J; are the robot Jacobians written for each of the two poses of
the translational bars of the nacell®f; and .M are the mass matrices of these translational
bars of the nacelleg = [00g]” is the constant gravity vecto {3 and M, are the mass
matrices of the upper-legs and point mass lower-legs, ctisply; ¢ is the length of an upper-
leg; andl'y = f,q + f.sign(q) is the friction term offering resistance on the the actuated
joints, with f,, viscous andf. Coulomb friction coefficient matrices.

Comparison

In comparison of the reference IDM and our proposed IDM ofGhattro parallel robot,
we used the same geometr{;{,) and dynamic{y,,) parameters in both of the models. The
lengths of kinematic elements are obtained from the CAD rddee weights of the lower-
legs and the moving platform are measured on a balance. Tightwef the upper-legs and the
inertias of the motors are obtained from Adept Company.&dt® lists the length and weight
of each of the identical kinematic elements of the Quattralped robot. All the required input

A Kinematic Leg Nacelle
‘ ‘ length ‘ weight ‘ ‘ ‘ length ‘ weight ‘
an upper-leg 0.375m | 1.5kg a translational-bar 0.131m 0.555 kg

alower-leg | 0.825m | 0.48kg arotational-bar | 0.06172m | 0.555 kg

Table 4.5 — Geometric and dynamic parameters of the idéritineamatic elements of the
Quattro parallel robot. A motor inertia is obtainedZas = 0.000043 kg.m? from Adept.

variables for comparison of the reference IDM and the pre@d®M are calculated from the
measured joint positiongy(*). The conversion between the variables is performed wih th
kinematic models of the Quattro robot and numerical difiéegion with respect to time:

X = FKM(q™), x = IKM(X),

X = 4(FKM(q™)), %=IDKM(X), §¢=42(qm) (4.17)

X = £ (FKM(q™)), % =IDKMy(X), &= 4 (qm)
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where F K M is the forward kinematic model which relates joint positido the end-effector
pose;l K M is the inverse kinematic model which relates end-effectsepo the unit orien-
tation vectors of the kinematic elemenfd) K M is the inverse differential kinematic model
which relates velocity of the end-effector pose to the viilex of the unit orientation vectors of
the kinematic elements; add) K M, is the second-order inverse differential kinematic model
which relates acceleration of the end-effector pose to tieelarations of the unit orientation
vectors of the kinematic elements. Figure 4.18 depicts hamvparison is made between the
reference and proposed inverse dynamic models using theumaehjoint positions during a
motion of the Quattro robot.

Path ) g
1 —»| Reference Ler
L <19 || IDM
| 4t 1
FKM ]
> [KM
VX
4 | X
e ' Proposed
. X I
I% » IDKM > DM
4 X
~— IDKM, —
ft | 2

Figure 4.18 — Flow chart for the comparison of the outputshef teference IDM and the
proposed IDM with the measurements obtained during a mofitime Quattro robott’ K M is
the forward differential kinematic model.D K M is the inverse differential kinematic model
which relates the end-effector pose velocity to the veyoaitleg orientation vectord. D K My

is the second order inverse differential kinematic modeictvhielates the end-effector pose
acceleration to the acceleration of leg orientation vesctor

The comparison is evaluated using the normalized root mga@erss (NRMSE) metric:

MSE TPy
NRMSE = RMS where RMSE = \/ Liz (Tres =70 (4 19

max (1) — min (1) n

wherer,.; is a reference model output torqueis a proposed model output torque; ands
the number of outputspax (7) andmin (7) are the maximum and minimum torque values
of the proposed model outputs. In comparison of models, thgimum difference rate of
motor torques is calculated less th2ii. This difference confirms that our proposed dynamic
modeling is accurate enough to be used in control. Thisréiffee also does not mean that our
proposed IDM is worse than the reference IDM, since the eefz IDM is a simplified model.

141



Figure 4.19 depicts the superimposed output torques okfleeence (red dashed line) and the
proposed (black solid line) inverse dynamic models of that@a parallel robot during the
motion of the test square trajectory shown in Figure 4.7.igufe 4.19, one can observe that
the output curves fit each other quite well. Figure 4.20 shibserrors between the reference
IDM output torques ;.. s) and proposed IDM output torqueE)versus time for the given test
square trajectory.
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Figure 4.19 — Superimposed motor torques for the squardrggsttory. Red dashed line is
the output torquelf,.;) of the reference inverse dynamic model, and black solid inthe
output (') of our proposed inverse dynamic model. The maximum diffeeebetween these
two models is found to be less thaf using the normalized root mean squares of the output.
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Figure 4.20 — The errors between the reference IDM outpques ;.. r) and proposed IDM
output torqueslI() for Figure 4.19.
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4.2.2 Inverse Dynamic Model with High-Speed Dynamic State Bserver

The proposed inverse dynamic model of the Quattro robotégated with the high-speed
dynamic state estimation algorithm, and then compared thighreference inverse dynamic
model [NKCT08] once more. This time, the unit orientation vectats ¢f the legs and their
velocities &) for the proposed IDM are delivered by the high-speed dynastate observer
which uses the sequentially grabbed leg contours. The aqmélerations can be either directly
received from the desired reference trajectory or compfrtad the measured joint positions
(g™). Figure 4.21 shows how comparison is made between theereferand proposed inverse
dynamic models using the measurements during a motion @tiztro parallel robot.

m

- q R
Path—> )
/14 N r
. dt i Reference ref
| d _ ——>
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. X /71 X
v S >
FKM|——| £ -
. X
2 > [DKM, »>
g % Proposed I
= High-Speed — s
leg contours . IDM
» Dynamic State | X
Observer >

Figure 4.21 — Flow chart for the comparison of the outputhefreference IDM and proposed
IDM integrated with the high-speed state estimation athori The accelerations are obtained
from the measured articular positions of the Quattro robat' M is the forward differential
kinematic modell DK M, is the second order inverse differential kinematic modeictvh
relates the end-effector pose acceleration to the actielerat leg orientation vectors.

In comparison of models, the difference rate of motor tosgisecalculated a5% using
the normalized root mean squares (NRMSE) metric. Thisrdiffee implies that the proposed
IDM with the integrated high-speed dynamic state observgarécise enough to be used in
a dynamic control. Figure 4.22 depicts the superimposegdubtbrques of the reference (red
dashed line) and the proposed (black solid line) inverseuhyo models of the Quattro parallel
robot during the motion of the test square trajectory shawRigure 4.7. Figure 4.23 shows
the errors between the output torqués.() of the reference IDM and the output torqué3 (
of the proposed IDM versus time for the given test squaredteyy.
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Figure 4.22 — Superimposed motor torques for the squareagsttory. Red dashed line is the
output of the reference inverse dynamic model, and blacll 8ok is the output of our propo-
sed inverse dynamic model integrated with the high-speedmjc state estimation algorithm.
The difference between these two models is calculatéd/assing the normalized root mean
squares of the output torques.
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Figure 4.23 — The errors between the output torgiies,{ of the reference IDM and the output
torques ) of the proposed IDM integrated with the high-speed dynastate observer. The
errors of Figure 4.22.
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4.3 Conclusions

In this Chapter, we first performed the extrinsic calibraiid the camera with respect to the
base frame of the Quattro parallel robot by means of the lgg®drlhis extrinsic calibration
was one of the initial steps of the high-speed dynamic statking algorithm. Secondly, we
showed the feasibility of the high-speed dynamic stat&ingcalgorithm in an off-line manner
on the Quattro parallel robot. Then we discussed the sodite @rrors of the tracking results
and proposed some ways to improve the speed and the acctitheyabgorithm.

Afterwards, we validated the correctness of the proposeehti inverse dynamic model
which is based on the leg orientations of the Quattro panadlgot comparing to a reference
inverse dynamic model. As we stated earlier, this proposestse dynamic model is linear on
the condition that the leg orientations of the parallel toéad their velocities are provided.
Therefore, we integrated the previously validated highespdynamic state observer to the in-
verse dynamic model so that this observer can feed the edstrsamic model and can keep it
linear. The integrated system of the current high-speedumtjo state observer and the propo-
sed inverse dynamic model produced quite accurate reshlthwallow to use this integrated
system in the construction of a high-speed vision-basedmjaoicontrol framework.

In order to perform a vision-based dynamic control, we sthdinst identify the dynamic
parameters of the Quattro robot which is another quite ehglhg problem of parallel robots.
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Chapter 5

Conclusions and Perspectives

5.1 Conclusions

This thesis accomplishekiof the 4 remaining objectives of thimtegrated dynamic MIC-
MAC. This means that we have almost finished drawing the big giadéi the vision-based
control of parallel robots based on their leg observati@ueaking more precisely in the light
of the MICMAC project, in this thesis we achieved the follogigoals:

— Firstly, we pushed control-oriented modeling of paraitddots further from the kinema-
tic level to the dynamic level based on the observations @if legs. Furthermore, we
improved modeling from joint-based representation to bodsed representation. That
is to say, we exploit the motion of concrete lines (i.e., midions of the kinematic ele-
ments) rather than the motion of abstract axes (i.e., joi@s)ya This brings more physical
and geometrical insight to the modeling of mechanisms. pitdposed modeling scheme
is applicable to wide range of parallel robots. In additithe, presented modeling scheme
is linear since it uses the geometry of lines.

— Secondly, we presented a novel method which estimateg/tizrdc state (i.e., position
and velocity) of a parallel robot using high-speed visiQrs(00H z). In order to perform
fast estimations, we sequentially observed small portidrike slim legs of the parallel
robot by a technologically available sequential acquisittoncept. This dynamic state
estimator is a non-linear observer based on a virtual viselaloing scheme. Moreover,
we proposed another dynamic state observer which is liedthgugh not yet feasible
with off-the-shelf cameras.

— Thirdly, we proposed a versatile computed-torque costbeme based on the observa-
tions of the legs of parallel robots. This versatile conschheme allows one to perform
a task in different control spaces so that one can examin@dhfermances and then
choose the best control space for the given task.

These new theoretic approaches are validated with the fioghiping simulation and ex-
perimental results which encourage us to explore furtreptbposed research path of parallel
robots based on their leg observations in the future. Thaulsmccomplished goal of the inte-
grated dynamic MICMAC project is as follows:
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— Identification of the dynamic parameters of a parallel tdtmm its leg observations.
Who is next to solve it?

The aforementioned novel schemes are contributions tathgriated dynamic MICMAC,
and now we demonstrate once more the new updated state o @dAC art in Figure 5.1.

MICMAC
t T.Dallej [Dal07] ; E.Ozgur ‘?
modeling modeling identification
Integrated identification | state observer
control : control

time

Modular modeling modeling

i i i 5 control
idEitifisatian s F Paccot [Pac08]

R.Dahmouche [Dah10]

P.Renaud [Ren03]

Kinematics : Dynamics

Figure 5.1 — New state of the MICMAC art.

Finally, we would like to point out that the message of thissik is to say that: ebserving
the legs of parallel robots is an interesting option, anddisithe potential of making mode-
ling and control of parallel robots simpler and more accuwrdty means of lines. Of course,

these presented novel methods need to be investigate@iftiotbe competitive with the other
methods.

5.2 Perspectives

There are a lot of things to improve in the drawn big picturéhefvision-based control of
parallel robots based on their leg observations. In thi§ par remark the important points of
this picture and we propose some future perspectives somaake this picture more colorful.

5.2.1 Control-Oriented Linear Dynamic Modeling

The linearity, simplicity and accuracy properties of thegmsed modeling scheme requires
that the orientation vectors of the legs of a parallel rolet be measured precisely at each
sampling instance. Therefore, the modeling scheme nekdsnt sensing techniques so as to
be feasible.

Moreover, this control-oriented linear dynamic modelirgs lthe following main points to
be improved:

— (i) the proposed modeling scheme is built upon the rigidyesumption and dynamic

control of parallel robots interests with high speed matiorhat is to say, in high speed
motions it is possible that the vibrations can appear on théble kinematic elements
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due to the accelerated masses of the parallel robot, andtwimédely the current propo-
sed modeling scheme does not compensate for the flexifiiysource of the flexibility

in a parallel robot can come from the construction mateoélhe kinematic elements
and from the backlashes and clearances of the passive. joimsefore, the proposed
modeling scheme should be improved to take into account yhardics of the robot

flexibility so that the possible vibrations can be suppréssehe control.

— (ii) in order to increase the accuracy in the proposed ningischeme and consequently
in the control scheme, the dynamic parameters should béfiddrbased on this mode-
ling concept. This is an essential step before the contvel.l@hat is to say, the dynamic
constraint equations of this proposed modeling schemeldtbaufirst rewritten in a li-
near form in terms of the dynamic parameters, and then shmukblved with exciting
trajectories.

5.2.2 Vision-Based High-Speed Dynamic State Observer

The proposed vision-based observer has the following maintpto be improved:

— (i) the calibration errors of the extrinsic parameteref¢camera are directly pronounced
on the estimated states, because it is the main referenoe fnath respect to which
everything is defined,;

— (i) if the observational distance of a cylindrical leg lmetscene is quite long compared
to its radius, then the depth estimation of the leg along thtecal axis of the camera
becomes very ill conditioned;

— (iii) good observability of the cylindrical legs by a caraext high speed is quite difficult
because of the challenging lighting problem of the scene;

— (iv) existence of occlusion puts off the state estimatior sub-image acquisition time
later, and it seems difficult to foresee an occlusion in theimage before the sub-image
is grabbed;

— (v) itis not possible to perform a dynamic control, for thee being, more thab00 H =
with the proposed vision-based system. This is because gftthisical limits of the sen-
sing environment rather than the theoretical limits, suctha relatively long exposure
time of the CCD/CMOS sensor;

One solution to increase the accuracy and the robustness digh-speed dynamic state
observer can be the use of a camera which can grab multipleragdes at a time, which is
technologically possible today [URLPO4]. The scenariosi$alows:

— we can first simultaneously observe small portions of @lldys (e.g., for the Quattro
robot the 4 lower-legs at the same time) rather than one by amek consequently we
can form the spatiotemporal reference input signal for thgls iteration virtual visual
servoing by stacking at least the last two sequential sanelbus measurements of the
legs. This should increase the accuracy since there is mferation for the present
time and since fewer steps (i.e., 1 or 2 steps) are sufficieavalve back in time with
the approximated motion models than before. This will ¢elgencrease the robustness
against the occlusions, since it is possible to calculaedimamic state as long as one
sub-image per leg exists and at least one of the sub-imaggmlibed at a different
time instant than the others. In the case of detected oocisigin the certain legs, we
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can foresee them for the next step and we can securely Ideatsub-images on the
unobstructed region of the legs. Moreover, the speed otridiking algorithm will not
be much worse than our current setup.

Although all these points are improved, this does not meantttis vision-based observer
can ensure the best control performance. Maybe the optinmupractical sense is to fuse
sensors in order to have a faster, more accurate and mor&t miiserver. Thus, one can imagine
simply fusing vision and motor encoders to define a new sthgemer, and then one can
propose, for example, a joint-spacg) (plus a body-orientation spac&)(computed-torque
control scheme (JBS-CTC), which might yield better results

5.2.3 We do need VISION and DYNAMIC CONTROL

Vision is a contactless optical sensor and dynamic conwaldwith forces. These pro-
perties make vision-based dynamic control the only salufiiw certain applications where the
other sensing techniques (e.g., motor encoders) and tomtbods (e.g., kinematic control)
are not adequate or not possible at all. For instance:

Micro space In micro space, the dimensions of robots and objects dexiteasicro scales,
and micro space tasks require adequate sensors which stamddbetter resolution (i.e.,
nanoscale) than this micro space. Furthermore, these spaee tasks usually need glo-
bal scene information. The construction of such sensorsiwtan meet these demands
is quite challenging and yet to be achieved. At this poirgjori seems to be the only
available proper sensing technique. Afterwards, it isrggting to note that the domi-
nant (e.g., gravity) and the subordinate (e.g., surfacee®of macro space contrarily
constitute the subordinate and dominant forces of micreespurthermore, in micro
space, the surface forces (e.g., Van der Waals) are a loigeiraghan the gravity forces,
such that the manipulated micro-scale object can fly fromsamtace to another easily
and stick to it because of adhesion forces. In such a spaceswiedynamic effects are
extreme, dynamic control is inevitable. For example, onéhefmost well known pro-
blems in micro space is that it is difficult to release an abjeuich is being held by the
gripper to a desired position due to adhesive surface fofdss simple solution might
be to arrive this desired position with a certain acceleraéind suddenly stop the gripper
such that the final inertia force of the object can defeat thitase adhesive forces and
release itself.

Macro space In macro space, one of interesting application is the cbofreable driven giant
parallel robots. The main objective of such giant paratdelts is both to carry heavy ob-
jects and to do long-distance moves. Therefore, they hangedables, and unfortunately
the forces of gravity along such long cables can deform treeg$itness of cables and
can lengthen them due to their elasticity. Consequentyrithdity assumption is not va-
lid anymore. In addition, these effects will probably beggerated by the presence of a
heavy payload. Therefore, the use of motor encoders as arserssich a giant robot can
give only the local information, and furthermore it is notyéeasible to place any sensor
somewhere on the cable in order to have more informationtdhewgeometry since the
cables are rolled back and forward on spools. Thus, the musigiation seems poor to
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provide a precise control of the moving platform becausdldhase deformations cau-
sed by the dynamic effects and insufficient feedback abe&utdhot. Once again, vision
seems one of the best solutions to observe the geometry lofygarat robots since itis a
contactless distance sensor and of course the dynamiot@ngissential too in order to
compensate undesired dynamic effects.

5.2.4 From MICMAC to RODAP

Why must parallel robots be blind? Why not save the skillfgiyuyparallel robots by dres-
sing them up? So, why should the outcome of MICMAC art not leeititiation of a new art:
MICMAC oriented RObot Design and AdaPtation (MICMAC-RODARhe objectives of this
new art can be envisioned as follows:

— Robots with MICMAC eyedo change vision from being an exteroceptive sensor to a
proprioceptive sensor on parallel robots, and to make tluprpceptive vision sensor
exploit the MICMAC algorithms on an embedded system of thmtp

— Robots with MICMAC legsto design parallel robots with slim, cylindrical and obser
vable legs so that they are consistent with the line geonaetdyvision;

— Robots with MICMAC costumetd dress up existing geometrically and visually non
compatible parallel robots with costumes in order to adaeint to the MICMAC art.
For instance, imagine axial cylindrical shells that justedape the physical boundaries
of non-uniform links of a parallel robot.

Thus, one can imagine a RODAP development framework in oedber to produce a
MICMAC robot or to adapt a current parallel robot to the MICK3A&oncept. This framework
can be built upon the following 6 modules which interact kesw each other:

1. CAD module: Synthesis of the geometry of the kinematic elements ofdbet

N

. Blender module Treatment of the lighting conditions of the robot legs.

w

. Adams & Simulink module: Analysis of the dynamics and control of the robot.

N

. Coding module Development of a MICMAC library in advanced programming-la
guages where the MICMAC theories are efficiently implemertes., real time and se-
curity considerations).

5. Sensing module Development of fast smart cameras and adaptation of atkaligent
sensing technologies for the MICMAC concept.

6. Optimization module: Governs the interactions between the modules in ordettisfsa
the desired criteria for a MICMAC robot.
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Appendix A

Modeling: Applied to Parallel Robots

A.1 The Gough-Stewart Robot

Moving platform

Base

Figure A.1 — The Gough-Stewart parallel robleff) and its graphical layoutight).

A.1.1 Geometry and Notation

The Gough-Stewart parallel robot incorporaiedentical kinematic legs. Figure A.1 shows
the Gough-Stewart parallel robot and its graphical layde mechanism'’s fixed basgA,
..., Ag}, holds the moving-platform with these kinematic legs. Thevimg-platform is a
single rigid body,{B, ...,Bg}. Each kinematic leg is a telescopic system consisting of a
single kinematic elemen;B;] with an embedded prismatic actuator. A kinematic leg of the
Gough-Stewart is symbolically noted 8s- P — S whereS and P stand for a passive spherical
joint and an actuated prismatic joint, respectively. Thas®iators gives degrees of freedom
to the moving-platform by pushings and pullingstranslational movements in, y, z axes
(lateral, longitudinal and vertical), arglrotational movements (pitch, roll and yaw). Figure
A.2 depicts the geometrical notation of the Gough-Stewabt. In modeling, the following
notation is used:

—-1=1,2,3,4,5,6 denotes the kinematic legs.
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Figure A.2 — The notation of the Gough-Stewart parallel tobo

— j ={a, b} is the literal representation of the kinematic elements.

— &ge0 = {0, Ay, i, o, B} are the geometric parameters (constant lengths and points)

— &ayn = {mji, Lji, [v;, [, } are the dynamic parameters (weights, inertias and frigjion

- Fo = (Ovzoazovzo)i Fe = (E,Xeaze,le), Fai = (Aivgai?zai?zai) and Fy; =
(Bi. x4,y ,,;,Zp:) denote respectively the base, the end-effector; the&inematic leg
and the moving-platform’s?” virtual kinematic element frames.

— dg; is the dynamic length of th&” kinematic leg.

— The end-effector pose is composed of the orBirof the x-axis unit vectox . and of
the rotational anglé. around the x-axix . of the end-effector frame. The end-effector
pose velocity is thei, x, andf,:

E E
X2 |x, |, X2|x, | er™ (A1)
0 6,

A.1.2 State Variables
Kinematic Element Types

The Gough-Stewart parallel robot has 2 different kinds oEkaatic elements:

Kinematic legs [A;B;] Each of these kinematic elements has 3 dof rotational ektrimobi-
lity due to (S)pherical joint and as well as 1 dof translagilbintrinsic mobility (along its
direction) due to the (fPismatic joint. Spherical joints located at the tips of Kiigematic
element allow for a self-rotation which does not have angatfbn the moving-platform
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configuration or on the end-effector frame. It is thuslascopic typ&inematic element:
{Xaiﬂ dai}'

Moving-platform [B;E] Each of these virtual kinematic elements of the movingfptat
has 3 dof rotational extrinsic mobility due to (S)pheriaahi and as well as 1 dof self-
rotational intrinsic mobility (around its direction) duethe pushings and pullings of the
other kinematic legs attached to the moving-platform. thiss anspindle typeinematic
element{x,;, Oy }.

The{ x,;, dai, X4, O} are the new variables that redefine the state of the mechanism

a1

A.1.3 Kinematics
Mass Centers
Assuming that all the kinematic elements are homogenousymdetric, the mass center

positions are written as follows:

1
S, = A; + Edaizai, Sei = Ai + daiXg; + loi Xy, (A-2)

Velocities

The translational and rotational velocities of the kineamekements are computed as below:
(i) translational velocities,

. 1 . . .
Sui = 5 (doiXr + dai%s ) o S = (dusXes + duiXer ) + luky  (AD)

(ii) rotational velocities,
Wai =Ko X Xy + 00iXpp = Wai =Xy X Xy (A.4)
The rotationd,,; does not change the posture of the moving-platform.
Whi = Xp; X Xy + Oi Xy, (A.5)

Accelerations

The translational and rotational accelerations of therkisic elements are computed as
below: (i) translational accelerations,

Sui = 5 (doixar + 2duiXys + duiXy ) (A.6)
Sy = (Jaizai + 2dai X g + daiiai> + L Xy (A7)
(i) rotational accelerations,
‘-bai é Xai X Xai (A8)
Wy =Xy X Xy + ébz‘zbi + ébiibi (A.9)
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A.1.4 Kinematic Constraints

Assuming that the end-effector frame is located at the mastec position of the moving
platform, the closed-loop constraint equation for eachhefkinematic legs can be written as
follow:

OF — Uy Xy — doi X — OA; = 0 (A.10)

whereO andA,; are constants. Afterwards, one can differentiate the lased-loop constraint
equation with respect to time in order to obtain the motionst@int equation, which yields:

E - sz‘ibi - dai&ai - daz’iai =0 (A.11)

The motion constraints for the attachment poiBtsof the moving-platform can be derived
from (A.11) using the constant parametessand5; as below:

Xp = X, + By, (A.12)

Xp = X, + By, (A.13)

¥, =wexy, = (x.x%,+0cx,) xy, (A.14)
V, =12z, %%, + 6z, (A.15)

Xy = X, + Biz, x X, + Biz,0e (A.16)
E— f;%, =B, (A.17)

B, = Lp;X, Lpi=[Iz —ly(ails+ Bilzx) —libiz. | € R¥>7 (A18)
whereLp; is the relation between the Cartesian velocity of the teafnpoint of theit" kine-
matic leg and the end-effector pose velocity

Constraints on the Active Telescopic Kinematic Legs

Constraints on the variations of the lengths of the telesckipematic elements are com-
puted as follows:

doiX i + dai%,; = Lpi X (A.19)

dai = MdaiX7 Mdai = [Ezl LBZ:| € §R1X7 (A20)

Constraints on the orientations of the telescopic kinetreléments are computed as below:

dai X g + Xgs My, X = Lp; X (A.21)
: 1
Xoi = MaiX, Mo = |o— (Lpi — X0 Ma,i) | € R3IXT (A.22)
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Constraints on the Passive Moving-Platform Virtual Kinematic Elements

Constraints on the orientations of the virtual axis typeskmatic elements of the moving-
platform are computed as follows:

Xy = My X, My =[03x3 (qils+ Bilz)x) Biz. ] € R (A.23)

Constraints on the self-rotations of the virtual axis typeeknatic elements of the moving-
platform are computed as below:

Wp = We, i=1,...,6 (A.24)

we =My X, My =[053 [x.]c x,] R (A.25)
Oni = Xpiwhi = Xy (Xp; X X + OpiXpy) (A.26)

Opi = My, X, My, = x5, M, ] e R (A.27)

A.1.5 Kinematic Coordinates

Equation (A.28) and Table A.1 show the motion basis and therkatic coordinates of the
mechanism, respectively.
Udy; = daia Ug,; = Xai s Uz, = Xpi ug,,;, = ébia i=1,...,6 (A.28)

Table A.1 — The (transposed) kinematic coordinates of thegB<stewart robot, i=1, ... ,6.
| 9Sai | Owai | 98k | dwi |

ddg || 1x7, 0351 x. 0351
0%y || 2dails | [x4]% | dails | Osx3
0%y || O3x3 03x3 | lhils | [x4]%
00y 03x1 03x1 | O3x1 X},

A.1.6 Dynamic Coordinates
Listing the Active and Reactive Forces

The active forces are as follows:
— Actuator and Gravity Forces:

fa,, = fdui Xai fo(ai) = Mai 8, fovi) = Mbi g (A.29)
wheref;,, andfg;;) are the actuator and gravity forces, respectively.

157



The reactive forces are as follows:
— Actuator Inertial ForcesThe inertial forces of the linear actuators are as below:

*

fdai = —Mq,, dai Xai

(A.30)

wherem,_. is the mass moved inside ttf& kinematic leg by the linear actuator.
— Kinematic Element Body Inertial Forces and Torquéke inertial forces and torques of
the kinematic elements are follows:

5 = —mai Sai » Tho= T G — wai x (TEwa) (A.31)
£ = — my; Ses Tho= =Ty Wy — Wy X (Ty wii) (A.32)
— Active Joint Frictional ForcesThe frictional forces of the intrinsic active joints are as
follows:
fii = = (foldar) doi + Fo(d) $i9n(dai) ) Xq; (A.33)
wheref, ..y and f.,,) are the viscous and Coulomb friction coefficients of thedine
actuators.
— Passive Joint Frictional TorqueS:he frictional torques of the extrinsic passive joints are
as follows:
Tx = —Tu(x,) Wai — Te(x,,) S0 Wi Zo; ) Za; (A.34)
Txy = — To(xy,) (wp — wWai) — Te(x,,) sign( (wp — Wai )T Zy; ) Zy; (A.35)

Where%v(zji) and%c(zﬁ) are the viscous and Coulomb friction coefficients of the pass
rotary joints.

Table (A.2) tabulates all these local forces and torquelafiough parallel robot.

Table A.2 — The local forces and torques of the Gough panailedt, i=1, ... ,6.

Active Friction Inertia*

Actuator Gravity | Actuator Passive Joint | Actuator Element
Forces (ai) fdos Xai fo(ai) £, 0 0 £
Torques (ai) || O 0 0 Tx,, 0 T
Forces (bi) 0 fo(0i) 0 0 0 i
Torques (bi) || O 0 0 Tx,, 0 T

Computing Dynamic Coordinates

So as to eliminate the non-contributing forces, the dynaooicrdinates are computed
through the matrix-wise multiplication of the Tables A.Ingmatic coordinates) and A.2 (sum
of the local forces and torques).

Fy
ani

]F7
Febi

ai

Kinematic Sum of

. Forces
Coordinates Torques
Table A.1 (4x4) | Table A.2
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which can be explicitly written as follows:

[ Fa,, ] [ %zﬁz 031 X0 0351 | [ fdos Xai + fui |
Fy,. 5dails [X,]% dails  Osxs Tx,i + Tai
_ (A.37)
Fg,. O3x3 03x3  lyilz [x4]% fowiy + 1y
L ngi | L O3><1 03><1 03><1 ng . 7_-5171' + TZZ' -
where ~
foi = fg(ai) + fda,i + f;lka,i + f;i (A.38)

A.1.7 Dynamic Constraints

Exploiting (2.110), the dynamic constraints of the Gougéwirt robot are written as fol-
lows:
O6x1 = My Fg, + M Fo + M} Fy, + M Fo, (A.39)

whereF,;, € R0, F, € R F, € R18<! andF,, € R°*! are the stacked vectors of the
dynamic coordinates:

Fa,, Fy F
]Fda, e s ]Fa e s ]Fb = 5 Fe = (A40)
Faue Fy F Foyq

Za4q Lpa

and whereMl,, € R6<7, M, € R1®*7, M, € R¥®*7 andM,, € R6*" are the stacked matrices
of the inverse differential kinematic modeM, . € R'*7, M,; € R3*7, M; € R3*7 and
My,, € R'™7, respectively.
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A.2 The Delta Robot

Moving platform

Base

Figure A.3 — The Delta parallel robdeft) and its graphical layouright).

A.2.1 Geometry and Notation

The Delta robot consists dfkinematic legs interconnecting the fixed base with the ngvin
platform. The moving-platform is a single rigid triangulbody {B;, B2, Bs}. Figure A.3
shows the Delta robot and its graphical layout. All the kiatimlegs are actuated from the
base by revolute motors located{®,, ..., P,}. The Delta robot hag degrees of freedom:

3 translational and rotational. The3 of the kinematic legs are identical and each of these
identical kinematic legs has two consecutive kinematienelats (an upper-le¢P; A;] and

a lower-leg[A;B;]) linked with each other afA;. Each lower-leg consists of two slim and
cylindrical shaped rods fitted with ball-jointsX(;, A;2) and B,1, B;2)), forming a parallelo-
gram. A kinematic leg of the Delta is symbolically notedias- (S — S), (this also equals to
R — U — U)whereR andS stand for an actuated revolute joint and a passive sphéoica)
respectively. The parallelograms of the identical kindbggs restrict the movement of the
moving-platform to pure translations if y andz axes. From the base, a fourth non-identical
kinematic leg[P4E] extends to the middle of the moving-platform to give the effdctor a
fourth, rotational degree of freedom around the z-axi®f the end-effector frame. Figure A.4
depicts the geometric notation of the kinematic legs andrbeing-platform. In modeling, the
following notation is used:

— i =1,2,3 denotes the identical kinematic legs.

— j ={p,a,b} represents literally the kinematic elements in identicaékatic legs.

— &geo = {0, Py, Ly, Ly, Uy } are the geometric parameters (constant lengths and points)

— &ayn = {mji, Zji, fv,, fc,} are the dynamic parameters (weights, inertias and frigjion
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—Fo = (0.x0,¥ v2,)s Fe = (Bx,¥ 120) Fpi = (PiXpy 02y0) Fai =
(Ais X400 Y yirZai) Foi = (BisXp, ¥, 25) andFy = (Py, x4,y ,,24) denote res-
pectively the base, the end-effector, #é upper-leg, thei?” lower-leg, the moving-
platform’s " virtual kinematic element and thg” kinematic leg frames.

— ¢, is the articulated position of thé" upper-leg leg.

— d, andf, are the length and the rotational angle around itself ofstftenon-identical
kinematic leg.

— The end-effector pose is composed of the orBiof the end-effector frame and rota-
tional angled, of the4*" non-identical kinematic leg. The end-effector pose véjoisi

thenE andd,: |
X = " ) X £ E € §R4X1 (A.41)
04 0,
,,,,,,,,,,,,,,,,,,,,,,,,, ;pi P1
lpi
""""""""""" AQI Ay B,
. Ai
$e

¢l B;,

Figure A.4 — Side and front views of a kinematic leg with itsiables and parameterkeft).
The plan of the moving-platform with its variables and pagsens (ight).

A.2.2 State Variables
Kinematic Element Types

We have got the following basic parts in the Delta: uppes/dégwer-legs, the fourth non-
identical kinematic leg and the moving platform. The comnfigions of those parts are defined
by the new variable set of a kinematic element rather thandinelinear joint coordinates:

Upper-legs [P;A;] An upper-leg rotates around a fixed axis. It has 1 dof rotatiemtrinsic
mobility due to a (R)evolute joint. It is bar typekinematic elementx .

Lower-legs [A;B;] A lower-leg (a parallelogram) rotates around a moving axibas 2 dof
rotational extrinsic mobility due to the existing (S)pluadi joints. It is thus &ar type
kinematic elementk .
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Fourth-leg [P4E] The fourth non-identical kinematic leg has 3 dof rotatioeetrinsic mobi-
lity and as well as 2 dof intrinsic mobility (1 for translati@long its direction and 1 for
self-rotation around its direction). It isstrew typekinematic element{x ,, da, 04}.

Moving-platform [B;E] A virtual kinematic element of the rigid moving-platformlgrrans-
lates in space. It is bar typekinematic elementk,; (moving vector with a fixed direc-
tion).

The{x,,;, X,;, X4, d4, 04} are now the new variables that redefine the state of the mischan

A.2.3 Kinematics
Mass Centers
Assuming that all the kinematic elements are homogenousyndetric, the mass center

positions are written as follows:

1 1 .
Spi = P + §€pi§pia Sui = P; + Epi&pi + §€ai§ai7 1=1,2,3 (A.42)
Sbi = PZ + Epizpi + Eaizai + Ebizbi ’ 1= 17 27 3 (A43)

The direction vectorsx;;) of the virtual kinematic elements of the moving-platforavh fixed
orientations. The mass center position of the non-idelnkice&matic leg is written as below:

1
Sy = Py + §d4 Xy (A44)

Velocities

The translational and rotational velocities of kinematengents are computed as follows:
1

Spi = §€piipia Wpi 2 Xy X Xy, (A.45)
Sui = lpi X, + %&u‘iai, Wai = Xgi X X (A.46)
Sti = lpiXp + laiXy, wy =0 (A.47)
Sy = % <d4§4+d434) ; wi=x%X, X X4 + 04x, (A.48)

Accelerations

The translational and rotational accelerations of kinecredéments are computed as below:

Spi = 5 iy Oy S x, X (A.49)
Sui = iy + 5 lui% o, Gai 2x, % %, (A50)
Sei = lpiXy + lai Xy, wp =0 (A.51)
§, = % <J4§4+2d4g4+d4$4) . Ga=x, x %, +0ix, + 0%, (AS52)
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A.2.4 Kinematic Constraints

Assuming that the end-effector frame is located at the mastec position of the moving
platform, the closed-loop constraint equation for eachhefitlentical kinematic legs can be
written as follow:

OF — lixp — laiXes — lpiX, — OP =0,  i=1,23 (A.53)

whereO, P; and(¢; x,,;) are constants. Afterwards, one can differentiate the lased-loop
constraint equation with respect to time in order to obtaérhotion constraint equation, which
yields:

=0 (A.54)

E - gaizai - Epizpi

Constraints on the Active Upper-Legs

Constraints on the orientations of the active upper-legcamputed as follows:

e R A (A.55)
sz!jc;iE - gpiXpin;iXpi =0 (A.56)
Y, Xe B = bixgy X, =0 (A.57)
T
X, = DpB, Dy = [% € R¥3 (A.58)
Xpi = MPin My = [ Dpi 0351 | € R4 (A.59)

Constraints on the Passive Lower-Legs

Constraints on the orientations of the passive lower-leggamputed as follows:

B — lyiXy — LDy E =0 (A.60)
Xy = DuE,  Da = % (Is — Ly Dyi) | € R (A.61)
Xo = MaiX, Mg = [ Do 03,1 | € R (A.62)

Constraints on the Active Fourth Kinematic-Leg

Constraint on the variation of the length of thé¢ kinematic leg is computed as follows:

OF — dyx, — OP, = 0 (A.63)
E—dix, —dix, =0 (A.64)
xIBE—d =0 (A.65)
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dy=xE (A.66)
di = Mg, X, Mg, =[x} 0] ept (A.67)

Constraint on the orientation of tH&" kinematic leg is computed as follows:

E-x,x/E—di%x, =0 (A.68)

: 1
Xy =DiE, Di= o (Is — x,x%) | € R¥ (A.69)
X, = MyX, My =[Dy 03 | €R¥! (A.70)

Since the rotation of the end-effector directly comes frtwa4” kinematic leg, then the
self-rotation of thet!” kinematic leg is computed as follows:

01 = Mg, X, My, = [ 01x3 1] e RV (A71)

Constraints on the Active Joints

Constraints on the active joints coordinates are compugddilaws:

T o .
gi = qu'Xv Mg, = X?;Z Dyi 0 | e RV (A.74)

A.2.5 Kinematic Coordinates

Equations (A.75), (A.76) and Tables (A.3), (A.4) show thetimmobasis and the kinematic
coordinates of the mechanism, respectively.

Wi =Xy, W =X, 0= 1,23 (A.75)

Uz, = 34, Ug, = d4, ug, = 94 (A.76)

Table A.3 — The (transposed) kinematic coordinates of tHeaparallel robot, i=1,2,3.
H E)sz ‘ E)wpi ‘ 8Sai ‘ 8wai ‘ 8sz ‘ 8wbi ‘

5lils | [x,]% | il 03x3 | £pil3 | O3x3

X, || Osx3 0sx3 | 5lails | [x4]% | Cails | O3x3

A.2.6 Dynamic Coordinates
Listing Active/Reactive Forces and Torques

Tables A.5 and A.6 tabulate the local forces and torqueseobitlta parallel robot.
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Table A.4 — The (transposed) kinematic coordinates ofithdeg of the Delta parallel robot.

| 08, | 0w, |
%y || 3dals | [x4]%
ddy || 5x45 | 031
00, 031 x’

Table A.5 — The local forces and torques of the Delta pareslebt, i=1,2,3.

Active Friction Inertia*

Actuator Gravity | Actuator Passive Joint | Actuator FElement
Forces (pi) 0 fopi) 0 0 0 f;i
TO’I”QUGS (pZ) Txpi Zpi 0 %Xpi 0 T;pi T;i
Forces(ai) |0 fo(ai) 0 0 0 £
Torques (ai) || O 0 0 Tx,. 0 T
Forces(bi) |0 fo(bi) 0 0 0 £
Torques (bi) || O 0 0 Tx,, 0 0

Computing Dynamic Coordinates

So as to eliminate the non-contributing forces, the dynacoeordinates are computed
through the matrix-wise multiplication of the Tables A.Bafisposed kinematic coordinates)
and A.5 (sum of the local forces and torques).

Kinematic ‘?ZTCZ({
[ Lpi } = | Coordinates (A.77)
Zai Table A.3 Torques
’ (2x6) | Table A.5
(6x1)
which can be explicitly written as follows:
fewi) + i

Txpi Z p; + ;7\:172'
[ F, } Shils [X,0%  Lpils  Osxs Ll Ozxs foai) + foi
033 033 %gai I3 [x4]% Llails Osxs Tx,, + Tui

fei) + £

(A.78)
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Table A.6 — The local forces and torques of i leg of the Delta parallel robot.

Active Friction Inertia*
Actuator Gravity | Actuator Passive Joint | Actuator FElement
Forces(4) || 0 fo(4) 0 £, 0 fr
Torques (4) || 19, X4 0 To, Tx, Th, T
where
Tpi = Tx,, T Tx,, T Tpi (A.79)

The dynamic coordinates for thé"* kinematic leg of the Delta are computed with the matrix-
wise multiplication of the Tables A.4 and A.6:

F, Kinematic Sum of
4 . Forces
Fq, | = | Coordinates (A.80)
F Table A.4 Torques
O ‘ (3x2) | Table A.6
(2x1)
which can be explicitly written as follows:
sdals [x,]% B
F£4 fg(4) + fd4 + fff
Fa, | = $xh 034 (A.81)
Fo, To, X4 + To, + Tx, + T, + Th
03x1 x

A.2.7 Dynamic Constraints

Exploiting (2.110), the dynamic constraints of the Deltaabare written as follows:

Iy

O = [ M 01J, ] |

] + MIF, + M{ F,, + MJ Fy, (A.82)

4

whereF,, € R%*! andF, € R?*! are the stacked vectors of the dynamic coordinates:

Fa

Zp1

F, = : ) F, = : (A.83)

and wheref, € R Fy, € R%! andFy, € R'*! are brought from (A.81). Tha/, €
R4 and M, € R are the stacked matrices of the inverse differential kirtemmaodels
M,; € R34 and M,,; € R34, respectively. Thél, € R3*4, My, € R4 and My, € R1*4
are brought from (A.70), (A.67) and (A.71), respectively.
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A.3 The 3RRR Robot

A.3.1 Geometry and Notation

The 3-RRR consists o8 kinematic legs interconnecting a moving-platform to a fikege.
The moving-platform is a single triangular rigid bod¥;, B2, Bs}. Figure A.5 shows the
3-RRR planar parallel robot and its graphical layout.

Moving platform
€ D

=
I~
I~

Base

Figure A.5 — The 3-RR planar parallel robotdft) and its graphical layouright).

The 3-RRR is designed symmetrically, that is to say, the base andnthéng platform
are equilateral triangles as well as the kinematic legsdestical. Each kinematic leg has
consecutive kinematic elements (an upperflRgA ;] and a lower-ledgA;B;]) linked with each
other atA;. A kinematic leg of 3-lRRR symbolically is noted aB — R— R whereR andR stand
for an actuated revolute joint and a passive revolute joeggpectively. The moving-platform
has3 degrees of freedon2:translational movements inandy axes and rotational movement
around ther axis. All the kinematic legs are actuated from the base bylué® motors located
at{P;,P,,P3}. Figure A.6 depicts the geometrical notation of the medranin modeling,
the following notation is used:

— 1 =1,2,3 denotes the kinematic legs.

— j ={p,a,b} is the literal representation of the kinematic elements.

— &ge0 = {0, Py, £y, Lai, Ui, o, B; } are geometric parameters (constant lengths, points).

— &ayn = {mji, Lji, [v;, [, } are the dynamic parameters (weights, inertias and frigjion

—Fo = (0.x0,¥ v2,)s Fe = (BXe,y  2e) Fpi = (PiXpiny 02y0)s Fai =

(AiX0is Y 0 Bai) ANAF oy = (Bi, x4,y , .. 2;,;) denote respectively the base, the end-
effector, thei " upper-leg, the " lower-leg, the moving-platform’s* virtual kinematic
element frames.

— ¢, is the articulated position of thé" upper-leg leg.

— The end-effector pose is composed of the orijimnd = axis x . of the end-effector
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frame. The end-effector pose velocity is tHBrandx ,:

(A.84)

Figure A.6 — The notation of the 3MR planar parallel robot.

A.3.2 State Variables

Kinematic Element Types

We have got the following basic parts in the 3-RRR: uppes;légver-legs and the moving
platform. The configurations of those parts are defined byptbposed new variable set of a
kinematic element rather than the non-linear joint coatéia:

Upper-legs [P;A;] An upper-leg rotates around a fixed axis. It has 1 dof rotatientrinsic
mobility due to a (R)evolute joint. It is bar typekinematic elementk ;.

Lower-legs [A;B;] A lower-leg rotates around a fixed axis. It has 1 dof rotatiadrinsic
mobility due to a (R)evolute joint. It is bar typekinematic elementk ;.

Moving-platform [B;E] A virtual kinematic element of the rigid moving-platformtabes
around a fixed axis. It has 1 dof rotational extrinsic mopitite to a (R)evolute joint. It
is abar typekinematic elementk ;.

The{x

vis Xai> Xp; ) @re now the new variables that redefine the state of the mischan
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A.3.3 Kinematics
Mass Centers

Assuming that all the kinematic elements are homogenousyandetric, the mass center
positions are written as follows:

1
Spi = Pi + 5 by, (A-85)
1
Sm‘ = PZ + Epi Xpi + 5&12‘5&2‘ (A86)

Velocities

The translational and rotational velocities of the kineamelements are computed as below:

. 1. .
Spi = §fpi§pi, Wi £ Xy X Xy (A.88)
. . L. 2 .
Sai = lpiXp; + 5 baiXai, Wai = Xgi X Xy (A.89)
Sti = lpiXpi + laiXy + li%y w2 x X Xy (A.90)

Accelerations

The translational and rotational accelerations of therkisic elements are computed as
follows:

Spi = 5 lpiXpi Wpi S X, X Ky (A.91)
) . 1 . . A .

Sai - Epizpi + §£ai§m‘7 Wai = Xgi X Xgi (A92)
Sbi = lpi%y + LRy + Uiy, @y =Xy X Xy (A.93)

A.3.4 Kinematic Constraints

Assuming that the end-effector frame is located at the mastec position of the moving
platform, the closed-loop constraint equation for eacthefkinematic legs can be written as
follow: N

OF — lyixy; — luiXy; — lpix,; — OP, =0, i=1,23 (A.94)

whereO andP; are constants. Afterwards, one can differentiate the lased-loop constraint
equation with respect to time in order to obtain the motionst@int equation, which yields:

E — lyiXy — lai%a — lpi%y = 0 (A.95)
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The motion constraints for the attachment poiBtsof the moving-platform can be derived
from (A.95) as below:

Xy = X, + Gy, (A.96)

Xp = X, + By, (A.97)

V,2wexy 2 (x.x%)xy, £z, %%, (A.98)

Xy = X, + Biz, X X, (A.99)

E — (%, = B; (A.100)

B, = Lp;X, Lpi=[Iz —ly(ails+ Bilz]x) ] € R¥C (A.101)

whereLp; is the relation between the Cartesian velocity of the teafnpoint of theit" kine-
matic leg and the end-effector pose velocity

Constraints on the Active Upper-Legs

Constraints on the orientations of the active upper-legcamputed as follows:

lpiXp + laiX g = Lpi X (A.102)
lpi X%, = Xb; Lpi X (A.103)
gpiXpi Xgiipi =Y, Xh; Lpi X (A.104)
Cpi XgiXpiXpi = Y XEZ- Lp; X (A.105)
g X izgi 3%6
Xpi = Mpi X, My; = | —2—— Lp; | € ®* (A.106)
bpiXai ¥

Constraints on the Passive Lower-Legs

Constraints on the orientations of the passive lower-leggamputed as follows:

Cpi MpiX + laik o = Lpi X (A.107)
: 1
Xoi = MuX,  Ma = |5~ (Lei — bpiMpi) | € R36 (A.108)

Constraints on the Passive Moving-Platform Virtual Kinematic Elements

Constraints on the orientations of the virtual axis typeskiatic elements of the moving-
platform are computed as follows:

Xy = My X, My =03 (osl3+ Bilz]x) | € R3x6 (A.109)

170



Constraints on the Active Joints

Constraints on the active joint coordinates are computddliasvs:

Yo Xpi = i (A.111)
G = My X, M, = [zﬁ Mpi} € R0 (A.112)

A.3.5 Kinematic Coordinates

Equation (A.113) and Table (A.7) show the motion basis aeckthematic coordinates of
the mechanism, respectively.

Uz, = X Ug,; = Xaiv Uy, = Xbiv i =1,2,3 (A113)

pi

Table A.7 — The (transposed) kinematic coordinates of tR&RR parallel robot, i=1,2,3.
H 8Spl ‘ E)wpi ‘ 8Sm- ‘ 8wm- ‘ E)Sb, ‘ 8wbi ‘

OXpi || 3wils | [x,]% | bpils 03x3 | €pil3 | Osxs
OXai || Osxs 033 | 5lails | [xei]% | Caids | O3xs
00Xy, 033 033 033 03x3 | Ghils | [xp;]%

A.3.6 Dynamic Coordinates
Local Active/Reactive Forces and Torques

Table A.8 tabulates the local forces and torques of the 3-B&Rllel robot.

Table A.8 — The local forces and torques of the 3-RRR parailebt, i=1,2,3.

Active Friction Inertia*

Actuator Gravity | Actuator Passive Joint | Actuator FElement
Forces(pi) |0 fo (pi) 0 0 0 £
Torques (pi) || Tx,, Zpi 0 Tx,; 0 T;pi Tpi
Forces(ai) |0 fo(ai) 0 0 0 £
Torques (ai) || O 0 0 Tx,; 0 T
Forces(bi) |0 fo(bi) 0 0 0 £y
Torques (bi) || O 0 0 Tx,, 0 T
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Computing Dynamic Coordinates

So as to eliminate the non-contributing forces, the dynatoordinates are computed
through the matrix-wise multiplication of the Tables A.7afisposed kinematic coordinates)
and A.8 (sum of the local forces and torques).

. . Sum of
Fe, K mematzc Forces
F, . | = | Coordinates Torques (A.114)
Fa,, Table AT 1 3x0) | Table A8 o)
which can be explicitly written as follows:
[ fei) + £i
Tx,, Zpi T Tpi
%‘gpi I3 [Xpi]::( gpi I3 O3x3 ‘€pi I3 03x3
Fy,, fo(ai) + fas
Fo.. | = | Osxs  Osxs  $lails [X4]% flails  Osxs
]Fl},i FK(” + T:;Z
03x3  O3xz  O3x3  O3x3 lhilz [x4]%
£ + £
g(bi) bi
L %ébi + Tzl i
(A.115)
where

A.3.7 Dynamic Constraints

Exploiting (2.110), the dynamic constraints of the 3-RRBatoare written as follows:
06x1 = M, Fp + M, Fo + M F, (A.117)

whereF, € R, F, € R9*! andF, € R*! are the stacked vectors of the dynamic coordi-
nates:
F, F

£pl Lal Zp1
Fp = : , Fo = : , Fp = : (A.118)
F, F

Lp3 *a3 Zp3

and whereM,, € R%*6, M, € R9*¢ and M, € R*C are the stacked matrices of the inverse
differential kinematic modeld/,; € ®3*°, M,; € 3<% andM,; € R3*Y, respectively.
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A.4 The Orthoglide Robot

Moving platform

Base

Figure A.7 — The Orthoglide parallel robdéft) and its graphical layoutight).

A.4.1 Geometry and Notation

The Orthoglide robot consists Bfidentical kinematic legs. Each kinematic leg Banse-
cutive kinematic element§P; A;], [A;B,], [B;C;]}. A kinematic leg of the Orthoglide is sym-
bolically noted as? — R — Pa — R whereP, R and Pa denote an actuated prismatic joint, a
revolute joint and a parallelogram joint, respectivelye Wnematic legs interconnect the fixed
base to the moving-platform. The moving-platform is a ngdid body{C;, Cy, Cs}. It is
attached to the parallelograms which restrict its motioly tmtranslational movements i} y
andz axes. As a result, the moving-platform of the Orthoglideotdias3 degrees of freedom.
Figure A.7 shows the Orthoglide robot and its graphical leay@he kinematic legs are actua-
ted from base by prismatic joints. The motion directionshafsie prismatic joints are oriented
orthogonally to each other. Figure A.8 shows the geomeutation of the Orthoglide robot.
In modeling, the following notation is used:

— 1 =1,2,3 denotes the kinematic legs.

— j ={p,a,b,c} is the literal representation of the kinematic elements.

— &geo = {0, Py, Lo;, by, L } are the geometric parameters (constant lengths and points)

— &ayn = {mji, Lj;, fu,;, fe; } are the dynamic parameters (weights, inertias and frigjion

-Fo = (O,EO,XO,ZO), Fe = (Evzevzevge% Fpi = (Pi’zpivzpivgpi% Fai =

(Ai’zaivzaivgai% Fri = (Bivzbi’zbi’zbi) andf; = (Ci’zci’zcivgci) denote res-
pectively the base frame, the end-effector frame 1tti&inematic element frame of the
ith kinematic leg, the2"? kinematic element frame of th&” kinematic leg, the3™?
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i Ci; 1

Figure A.8 — The notation of the Orthoglide parallel robot.

kinematic element frame of thé" kinematic leg, and the moving-platforn$® virtual
kinematic element frame.

— dy; is the prismatic joint coordinate of thé&" kinematic leg.

— The end-effector pose is the oridihof the end-effector frame:

X£2[E], X2&[E]epr¥ (A.119)

A.4.2 State Variables
Kinematic Element Types

The identical kinematic legs and the moving-platform of @ehoglide robot have the
following kinematic elements:

Kinematic Elements [P;A;] Each of these kinematic elements has only 1 dof transldtiona
(along its direction) intrinsic mobility. It is thus gelescopic type&kinematic element:
{X,i» dpi}- Thex,,; is a moving vector with a fixed direction.

Kinematic Elements [A;B;] Each of these kinematic elements only translates in spazédu
prismatic joint of the previous kinematic element. It isax typekinematic elementk ,;
(moving vector with a fixed direction).

Kinematic Elements [B;C;] Each of these kinematic elements (a parallelogram) has2nly
dof rotational extrinsic mobility due to existing (R)evi#uoints. It is abar typekine-
matic elementx ;.

Moving-Platform [C;E] Each of these virtual kinematic elements of the movingfptat has
only 3 dof translational extrinsic mobility due to (Pa)edtigram pseudo-joint. It is thus
abar typekinematic elementk ., (moving vector with a fixed direction).
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The{d,;, x;,; } is the new variable set that redefine the state of the mechanis

A.4.3 Kinematics
Mass Centers

Assuming that all the kinematic elements are homogenousymdetric, the mass center
positions are written as follows:

1
Sai = Pi + dpiXy + 5 lai Xai (A.120)
1
Sei = Pi + dpiXpi + laiXoi + 5 loiXpi (A.121)
Sei = Pi + dpixp; + laiXgy + li Xy + leiXyy (A.122)

where &), (¢ai x ;) and €.; x ;) are constants.

Velocities

The translational and rotational velocities of the kindmalkements are computed as below:

Sai = dpix,;, Wai =0 (A.123)
. . 1

Sti = dpi Xpi + 5 loiXpi Wh Xy X Ky, (A.124)
Sei = Czpz!pi + Ly Xy, we =0 (A.125)

Accelerations

The translational and rotational accelerations of therkisic elements are computed as
follows:

Sai = dpix,; Wi =0 (A.126)
. . 1

Sti = dypiXp; + 5 b %y, Dy = Xp X Xy (A.127)
Sei = dpi Xy + by, @ei = (A.128)

A.4.4 Kinematic Constraints

Assuming that the end-effector frame is located at the mastec position of the moving
platform, the closed-loop constraint equation for eachhefkinematic legs can be written as
follow:

—
OF — (i — lyiXy — laiXes — dpix,, — OP; =0, =123 (A129)

whereO, P, (x,,), (fai x,4;) and €.; x ;) are constants. Afterwards, one can differentiate the
last closed-loop constraint equation with respect to timarder to obtain the motion constraint
equation, which yields:

E — lyiXy — dpix, =0 (A.130)
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Constraints on the Active [P; A ;] Telescopic Type Kinematic Elements

Constraints on the variations of the lengths of the actilest®pic type kinematic elements
are computed as follows:

xh X — dpx}hx, = 0 (A.131)

€ pix3 (A.132)

Constraints on the PassivgB;C;| Bar Type Kinematic Elements

Constraints on the orientations of the passive bar typeatie elements are computed as
follows:

X — lyiky — X Mg X = 0 (A.133)
: 1
Xp = MyX, My = T (Is — x, Mg;) | € R (A.134)

A.4.5 Kinematic Coordinates

Equation (A.135) and Table A.9 show the motion basis and thenkatic coordinates of
the mechanism, respectively.

Uy, = dpi, Wy, = Xp; s i=1,2,3 (A.135)

Table A.9 — The (transposed) kinematic coordinates of thbagtide parallel robot, i=1,2,3.
H 9S i ‘ 0w g ‘ 0Sp; ‘ 0wy, ‘ 08 ‘ 0w ¢ ‘

Odpi | x3,; | O3x1 X0 031 | x; | 03x1

0%y || Osxs | Osx3 | 20ils | [x4;]% | G I3 | Osx3

A.4.6 Dynamic Coordinates
Listing Active and Reactive Forces

The active forces are as follows:
— Actuator and Gravity Forces:

fa,, = fa, Xpis  fga) = Mai8s  fgoi) = Mg, Ly = meig (A.136)

wheref; , andf,

e(;i) are the actuator and gravity forces, respectively.
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The reactive forces are as follows:
— Actuator Inertial ForcesThe inertial forces of the linear actuators are as below:

£, = —maidpi X, (A.137)

wherem,; is the mass moved by the linear actuator. These inertia¢$oof the actuators
correspond to the inertias of tlg kinematic elements, since these kinematic elements
are rigidly attached to the linear actuators.

— Kinematic Element Body Inertial Forces and Torqu&be inertial forcef; of the aith
kinematic element is compensated by the actuator ineri,jreertial torquer?, = 0
since theuit" kinematic element does not have a rotational mobility. Thiea inertial
forces and torques of the rest of the kinematic elements ateemwas follows:

fg; = — My, ébi> TZZ- = —Igcbbi — Wy X (Ib{wbi) (A138)

£ = —myi S, T =0 (A.139)

— Active Joint Frictional ForcesThe frictional forces of the linear actuators are as follows

fa,. = = (Foldp) dpi + Feta) 5i9n(dpi )) X (A.140)

where ﬁ,(dpi) and fc(dm.) are the viscous and Coulomb friction coefficients of thedime
actuators.
— Passive Joint Frictional Torqueshe frictional torques of the passive joints are as fol-
lows:
Tx,, = — Toxy,) Whi — Te(xy,) sign( Wi, zy; ) Zy; (A.141)

Tx . — _7_—,0(5(;1') (wei — wpi) — 7_'6(561,) sign( (we; — wp )TZCZ-)ZCZ- (A.142)

=ct

Wherefv(zji) and%c(zﬁ) are the viscous and Coulomb friction coefficients of the pass
rotary joints.

Table A.10 tabulates all of the local forces and torques ®@fQithoglide parallel robot.

Table A.10 — The local forces and torques of the Orthoglidalfe robot, i=1,2,3.

Active Friction Inertia*
Actuator Gravity | Actuator Passive Joint | Actuator FElement

Forces(pi,ai) || fa,, Xpi £ (ai) fa,; 0 f:ikpi 0
Torques(pi,ai) || 0 0 0 0 0 0
Forces(bi) 0 fo(bi) 0 0 0 £
Torques(bi) 0 0 0 Tx,. 0 Thi
Forces(ci) 0 fo(ci) 0 0 0 £
Torques(ci) 0 0 0 T, 0 0
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Computing Dynamic Coordinates

So as to eliminate the non-contributing forces, the dynatoordinates are computed
through the matrix-wise multiplication of the Tables A.8afisposed kinematic coordinates)
and A.10 (sum of the local forces and torques).

F Kinematic iﬂum of
[ dyi } = | Coordinates orees (A.143)
Fa, Table A.9 Torques
’ (2x6) | Table A.10
(6x1)
which can be explicitly written as follows:
[ J,; Xpi + £ ]
0
|: F, ] X;i 03x1 X;i 03x1 X;i 03x1 fg(bi) + £
DL —
Fe, | _ «
v O3x3 O3x3 30ils [x4]% ol Ozxs Tx,, + Th;
foen) + 15
L Tx.; i
(A.144)
where N B
£ = fo(an) + La,, + £, (A.145)

A.4.7 Dynamic Constraints
Exploiting (2.110), the dynamic constraints of the Ortldglrobot are written as follows:
03x1 = M Fq, + M Fy (A.146)
whereF,;, € ®**! andF, € R?*! are the stacked vectors of the dynamic coordinates:
Fa,, Fy,,

Fq, = : , Fp = : (A.147)
de3 F

Zp3

and wherelM;, € R°*3 and M, € R?*3 are the stacked matrices of the inverse differential
kinematic models\/;,, € R andM,,; € R3*3, respectively.
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Abstract

This thesis presents novel methods for modeling, trackmbcantrol of parallel robots by
means of lines. A parallel robot is composed of several didsep kinematic chains which
cause a highly coupled-motion behavior. By treating the lgiga parallel robot as 3D lines
and representing the geometry with a skeleton construoted these 3D lines of the legs, the
modeling, tracking and control of a parallel robot becomengetrically and physically simpler
and more intuitive.

The common key point for the simplicity and accuracy of atigh methods is the precise
observation of the 3D orientation vectors of the legs at lsigled. This is because of parallel
robots are designed for high speed applications. Thus, stediéveloped a body-based linear
scheme both for kinematic and dynamic modeling of paratiebts. This body-based linear
modeling scheme is so simple such that one can work out aédhations even for the most
complex parallel robot by pen and paper. The simplicity aadibility of this modeling scheme
are conditioned on that the 3D leg direction vectors and tredocities are known. Therefore,
secondly we proposed a high-speed vision based dyname abaerver which can provide
these 3D leg direction vectors of a parallel robot and thelogities at each sampling time.
We achieved this by sequentially observing small portidrit®legs in order to form a spatio-
temporal reference signal and then by minimizing the cangs written from the geometric
shapes of the legs in a single-iteration virtual visual sieny scheme.

Afterwards, we constructed a versatile computed-torqurobscheme which allows us to
control the parallel robot for a given task in different qohspaces. We defined this versatile
control scheme so that we can analyse and then choose theobest space for better control
of parallel robots for a given specific task.

These proposed novel methods are validated by the first pimagnsimulation and expe-
rimental results. Obtained results encourage us to exphmes the modeling, tracking and
control of parallel robots by means of lines.
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Résumé

Cette thése présente des nouvelles approches de modélisddi suivi visuel et de com-
mande des robots paralléles en utilisant des droites. Ui patvalléle est composé de plusieurs
chaines cinématiques fermées. Par conséquent, un fotageugle comportement apparait du-
rant le mouvement du robot.

La géométrie (squelette) d’'un robot paralléle peut étrendefin considérant les jambes
de ce robot comme des droites 3D. Nous avons montré qu’emvalnseces droites 3D, la
modélisation, le suivi visuel et la commande d'un robot p@eadeviennent plus simples et que
sa représentation géométrique et physique est plus rgultie point commun des méthodes
proposées est I'observation des orientations 3D des jaaMaesprécision et a grandes vitesses.
Cela permet de commander les robots paralleles de manpide ravec une bonne précision.

Pour la modélisation cinématique et dynamique des roboti@les, nous avons déve-
loppé une représentation basée sur les éléments cinéemiigl constituent le robot. Cette
représentation rend la modélisation simple et immédiats.rhodéles obtenus sont basés sur
les mesures des orientations et des vitesses des élémantmatiques.

Pour cela, nous avons proposé un observateur d’état dynanidiaute vitesse qui peut
fournir les orientations et les vitesses des éléments @tiqoes. La méthode proposée est
basée sur I'observation séquentielle et par portion deumnde chaque jambe. Nous avons
utilisé ces contours pour construire une consigne spatigbrelle et des fonctions d'erreurs
basées sur des contraintes géométriques. Ensuite, ce®ifend’erreurs sont minimisées en
une seule itération d’'une tache d’asservissement visttekeli

Nous avons également proposé une commande dynamique padieoun robot paralléle
dans différents espaces de commande. Ceci nous a permisideaes analyses pour identifier
I'espace le plus adéquat pour réaliser une tache spécifique.

Ces nouvelles approches sont validées en simulation éelfgnent, en expérimentation.
Les résultats obtenus sont satisfaisants et ouvrent depgmtives dans le domaine de la mo-
délisation, du suivi visuel et de la commande des robotdipkra basé sur I'observation des
jambes.
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