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Introduction

Problem

In an industrial environment, mechanisms are assessed by two main criteria: quality and
throughput. The ability of a mechanism to operate at a high speed certainly improves through-
put, but what about quality? As a rule of thumb, the industry always demands better quality
and more throughput, even though these two criteria conflict. Unfortunately with serial robots,
there is a limit to the amount we can improve the quality and throughput.

In order to overcome this limit, parallel robots are designed to be faster and more accu-
rate than serial robots. Today, they are being used more and more in industry. Although parallel
robots are theoretically more skillful, they are structurally very complex to manipulate. Further-
more, parallel robots are mostly modeled and controlled with approaches adopted from serial
robots, which is certainly not the best way. There are plentyof specific controls for mobile
robots, for humanoids, etc., so why should parallel robots be controlled like serial robots?

Consequently, in order to push parallel robots to their limits, new methods are a must. So,
we are faced with the problem of how to control parallel robots at high speed. We can divide
this problem into 3 sub-sections:

1. How can parallel robots be simply and accurately modeled?

2. How can the dynamic state of a high speed parallel robot be measured?

3. What is the appropriate control space for better performance?

Objectives

Thus, the first objective of this thesis is to develop an appropriate control-oriented modeling
approach for parallel robots. In modeling, we must always strive to obtain the simplest, most
accurate and most applicable solution possible. The secondobjective of this thesis is to measure
the posture and the velocity of a parallel robot at high speedwith an off-the-shelf sensor(s). The
third objective of this thesis is to explore the existing control spaces and to propose new ones
in order to improve the control of parallel robots.

Contributions

In this thesis, the key contributions are built upon the orientations of the legs of a parallel
robot. Figure 1 simply illustrates the global observation of the legs by a camera. The main
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contributions are as follows:

– Initially, we pushed the modeling of parallel robots by means of leg orientations one step
further. We moved it from kinematics to dynamics. This keepsthe dynamic model of a
parallel robot simple, clear, and linear. What is more this means that one can write the
dynamic model of any complex parallel robot from beginning till end with just pen and
paper.

– Secondly, we proposed a new approach for estimating the dynamic state of a parallel
robot at high speed. We achieved this using only the partial visual contours of the legs.
These visual contours were measured from the sequentially grabbed small sub-images
of the legs during the motion of the parallel robot.

Figure 1 – A camera is observing the leg directions of a parallel robot. Leg orientation vectors
unify modeling and control into a single linear control-oriented framework.
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We published the following papers throughout this thesis:

1. “Dynamic Control of the Quattro Robot by the Leg Edges", ICRA 2011;

2. “Vector-Based Dynamic Modeling and Control of the Quattro Parallel Robot by means
of Leg Orientations", ICRA 2010;

3. “On the Adequation of Dynamic Modeling and Control of Parallel Kinematic Manipu-
lators", IMSD 2010.

and submitted the paper below:

1. “Linear Dynamic Modeling of Parallel Kinematic Manipulators from Observable Kine-
matic Elements", submitted to Int. Journal of Mechanism andMachine Theory.

Outline of the Thesis

The rest of this thesis proceeds as follows: Chapter 1 surveys the state-of-the-art works on
parallel robots and discusses the MICMAC project; Chapter 2outlines a linear framework for
the kinematic and dynamic modeling of parallel robots basedon leg orientations; Chapter 3
uses kinematic control to estimate the dynamic state (posture and velocity) of a parallel robot
at high speed, and defines a versatile sensor-based computed-torque control law; Chapter 4 ex-
perimentally validates these new theoretical approaches;Finally, in the last Chapter, I conclude
my thesis and offer some future possibilities.
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Chapter 1

State of The Art

This chapter gives background to the evolution of the thesisso that the reader can be equip-
ped for the next. The state-of-the-art topics are focused onmodeling, control, and identification
of parallel robots. We also discuss some new extensions.

1.1 Parallel Robots

1.1.1 Definition

A parallel robot can be conceptually imagined as Sir Newton’s hand holding a red apple
with his fingertips (see Fig. 1.1). The palm of the hand forms the base platform of the parallel
robot, and the fingers act like serial robots attached to thisbase platform all cooperatively ma-
nipulating the red apple. Here in the parallel robot, the redapple represents a moving platform
that might have a large load.

Figure 1.1 – A metaphor for a parallel robot concept: a hand holding a red apple with its fin-
gertips. The palm of the hand forms the base platform. Fingers represent the kinematic chains.
The red apple is either the moving platform or the moving platform with a large heavy load.
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In a parallel robot, these serial robots are called kinematic chains and they usually contain
a single motorized joint while the rest of the joints are passive. Each of these motorized joints
are generally located either at the base platform (i.e., thehand’s knuckle joints) or at the very
first of joint locations close to the base platform. These kinematic chains are connected to
the moving platform all together, and consequently they form a closed-loop mechanism. The
structures of these kinematic chains are usually identicaland their placements are symmetric,
but they can be also different like the fingers of a hand. The number of these kinematic chains
must be equal to or greater than two,“2”, so that we can call it aparallel robot. Here, “parallel"
does not imply that the kinematic chains are aligned as parallel lines, but it means rather that
these kinematic chains work together to achieve a task. A parallel robot shows better dynamic
performances than a serial robot in terms of speed and accuracy while manipulating both large
and heavy loads [Mer00, Gog08]. Clearly, it would be difficult to eat the red apple with one
finger. Figure 1.2 shows the well-known two examples of parallel robots: the Gough-Stewart
platform [GW62, Ste65] and the Delta robot [Cla88, Cla91].

Figure 1.2 – The Stewart platform (left) and the Delta parallel robot (right).

1.1.2 Joint Types and Graphical Layout

The primitive joints with different degrees of freedom (dof) [KD02] are as follows:
– Prismatic: Slides on an axis (1 dof). It is noted by (P).
– Revolute: Rotates around an axis (1 dof). It is noted by (R).
– Spherical (ball): Rotates around three axes (3 dof). It is a ball and noted by (S).
Different combinations of these joints create different types:
– Universal: It is composed of two revolute joints that allow two rotations (2 dof). It is

noted by (U).
– Spherical: It can also be composed of three revolute joints that allow three rotations (3

dof). It is noted again by (S).
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– Parallelogram: It is composed of four bars that are connected end to end by revolute
joints [Cla88]. These four bars form a parallelogram shape.A parallelogram keeps an
output link at fixed orientation with respect to an input link. It allows translation in three
axes (3 dof) on a sphere. It is noted by (Pa).

A graphical layout of a robot demonstrates the positions of the actuators, of the joints and
of the kinematic elements [Pie91, Kru03]. A graphical layout is composed of:

– Two bars representing a base and a moving platform.
– Boxes representing the joints. Each box has a symbol indicating the type of joint. If the

joint is actuated and contains a sensor (e.g., motor encoder) then the symbol is underli-
ned.

– Lines representing the bodies.
Figure 1.3 shows the joint-oriented graphical layouts of the parallel robots in Fig. 1.2.

Figure 1.3 – The Gough-Stewart platform (left) and the Deltaparallel robot (right) joint-
oriented graphical layouts.

1.1.3 Classification

1.1.3.1 Kinematic Classification

Parallel robots are classified into three groups [Mer00] based on their motion capacities:
– Mechanism for translation: The Speed-R-Man robot [RLN92], the Orthoglide robot

[WC00].
– Mechanism for rotation: The Agile Eye [GH94].
– Mechanism for translation and rotation: The Gough-Stewart robot [GW62, Ste65], the

Delta robot [Cla88, Cla91], the Quattro robot, the 3RRR robot [GA88], the T3R1 parallel
robot [Gog02].
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1.1.3.2 Architectural Classification

Parallel robots are also classified into three groups [GLZ+02, Ren03] based on their struc-
ture:

– Group1: It contains a prismatic joint between the two bodies of eachkinematic leg.
– Group2: It contains a prismatic joint between the base and each kinematic leg.
– Group3: It lacks prismatic joints.
Table 1.1 shows examples of these three groups of robots.

Table 1.1 – Architectural Classification.

Group 1 Group 2 Group 3

TheGough− Stewart robot TheOrthoglide robot TheQuattro robot

1.1.4 Compared with Serial Robots

1.1.4.1 Advantages

Parallel robots are, in theory, better than serial robots:

Lighter: Parallel robots usually have lighter kinematic legs because the heavy actuators are
often mounted on the base platform rather than inside the kinematic legs.

Faster: Parallel robots move faster and consume less energy than theserial robots, since their
kinematic legs are lighter [Cla89, Mer00, TZR99]. Consequently, for a given energetic
expenditure, the acceleration of a parallel robot’s end-effector is greater than a serial
robot’s end-effector.

Stronger: Against a disturbing force, a parallel robot’s end-effector, which is supported by
many kinematic legs in a closed-loop form, shows more rigidity than a serial robot’s
end-effector, which is supported through a single long and heavy kinematic leg [Mer00].
The longer and heavier the kinematic leg is, the weaker it becomes. In addition, the
disturbing force applies a compression for the kinematic elements of a parallel robot,
while for the kinematic elements of a serial robot it appliesa torsion.

More Accurate: Unlike serial robots, parallel robots can be more accurate.This is because er-
rors in the assembly of the mechanism and errors made when controlling the mechanism
average out rather than accumulating [Mer00].
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1.1.4.2 Disadvantages

In practice, however, parallel robots suffer from:

Limited Workspace & Singularity: Even though they are larger in size they have limited
workspace [Mer00]. This is because of the closed-loop connections between the kine-
matic legs. This workspace also gets smaller by the presenceof singularities [PK98],
which makes them harder to settle for a given pose than a serial robot. Moreover, in
these singularity positions, they completely lose their stiffness and become shaky.

Modeling: Their modeling is difficult because of the complex closed-loop structures and be-
cause of the existing passive joints [Mer00]. The clearances and assembly errors in the
passive joints decrease the precision of the positioning ofthe end-effector. Calibration
cannot solve this totally.

Control: It is hard to compensate for the loss of accuracy in modeling,since the passive joints
are not motorized. Furthermore, as a result of the coupling among the kinematic legs,
the motion of the end-effector in the Cartesian space imposes a highly non-linear dy-
namic behavior on the parallel robot [DC99]. In industrial environments, parallel robots
are usually controlled by single axis linear controllers. These controllers can take into
account neither the influences of the kinematic legs on one another nor the non-linear
behavior of the dynamics.

In a high-speed trajectory tracking task, consequently, parallel robots will loose accuracy
[DH06, TDH04].

1.1.5 The Duality of Parallel and Serial Robots

The fact that parallel robots use passive joints means that,in some respects, they behave
oppositely to serial robots [WH91, Bru99].

– From a configurational point of view:

A serial robot: The active joint values and the analytical forward kinematic model de-
fine uniquely the state of the serial robot [KD02]. There are usually several so-
lutions to the inverse kinematic problem. These solutions may not have a closed-
form.

A parallel robot: The end-effector pose and the analytical inverse kinematicmodel de-
fine uniquely the state of the parallel robot [Mer00] (exceptsome of the parallel
robots, e.g.,3RRR, 3RPR). The analytical inverse kinematic model is usually ex-
pressed in terms of the active joint values. Nevertheless, writing it in terms of the
end-effector pose is more pertinent [DAMM06, DC99]. Unlikeserial robots, the
forward kinematic model of a parallel robot does not always have a closed-form so-
lution and it needs to be estimated numerically. Unfortunately, this may yield many
solutions [Mer90, Hus94] and there are not very many parallel robots that are deli-
berately designed to have closed-form forward kinematic models [Gog04, WC00].
By mechanical construction, one can reduce this set of solutions (e.g., the Delta
robot, the Quattro robot).
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– From a control point of view:
It is harder to master the behavior of the end-effector of a parallel robot than a serial ro-
bot. This is because of the two conflicting properties of a parallel robot: (i) the lack of a
closed-form solution for a forward kinematic model that represents the actual mechanics
of a parallel robot (i.e., manufacturing and assembly errors, joint clearances and back-
lashes, flexibilities); (ii) the end-effector can be moved only by controlling the actuators
built in the base platform.

– From a sensing point of view:
The previous two points of views (should) induce naturally this third one,duality in
sensing.

Serial robots: Since active joints represent fully the configuration, using only the motor
encoders for sensing is adequate for control of serial robots.

Parallel robots: The full configuration of parallel robots, however, cannot be expressed
easily by the active joints (except a few, e.g., the Orthoglide, the Delta). On the
other hand, an end-effector pose can represent the full configuration of most of the
parallel robots. Thus, sensing the end-effector pose of a parallel robot rather than
its active joints is more adequate [DAMM06] for control.

1.1.6 Metrological Redundancy

One of the easiest and the fastest and consequently preferred way to measure information
from parallel robots is to use again the motor encoders as it is often done in serial robots. But
this simplifies neither modeling (e.g., forward kinematicsproblem) nor the control of parallel
robots as discussed above. Thus, it seems that different sensing techniques can affect funda-
mentally the performance of parallel robots.

Therefore, use of extra sensors (or so-calledmetrological redundancy) in modeling and
control of parallel robots has appeared in the literature ascomplementary to actuation redun-
dancy where extra motors added in the structure [MPC03], [MH11], [NCP12].

In [COB93], [BA95], [BTKL99] and [PCG99], redundant position sensors and the motori-
zed joint encoders were used together to solve forward kinematic problems of parallel robots.

It is well known that the forward kinematics of the Gough-Stewart platform has 40 possible
solutions [Hus94]. But if one adds sensors to the passive joints, then the solution may become
straightforward (e.g., Gough-S. + length + direction of thelegs).

Alternately to joint sensing, one can use exteroceptive sensing, such as vision [AMM05],
[DAMM06]. In [AMM05], vision observed the mechanism legs and replaced advantageously
redundant position sensors by delivering the internal state of the mechanism in the Cartesian
frame. This approach was then used to servo visually the leg directions of the Gough-Stewart
platform rather than its Cartesian pose. Thus, this approach proposed an original vision-based
kinematic modeling and control method of parallel robots based on observation of their legs.

In [DAMM06], the Cartesian space control of the Gough-Stewart platform was performed
using only vision (without using active joint positions). This was done by directly measuring
the Cartesian end-effector pose of the Gough-Stewart platform by a camera observing a pattern
fastened to the moving platform. Thus, the forward kinematic problem of the Gough-Stewart
platform was completely removed and replaced by a computer vision system. This computer
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vision system gives a unique solution and makes the control of the Gough-Stewart type mecha-
nisms simpler than they are.

In [MCKP02], the potential of redundant sensors was also shown on a H4 parallel robot.
An optical encoder and a vision system observed together theend-effector to yield a full pose
information of the H4 parallel robot. Then, this measured end-effector pose was fused with the
active joint positions. These fused redundant measurements enclose the H4 mechanism at both
ends (from base and end-effector). Consequently, internalmechanical errors were compensated
and the control accuracy was enhanced.

1.2 Modeling

The geometry, kinematics, mass distribution, and acceleration of a robot define its behavior.

1.2.1 Kinematic Modeling

It would be possible to adapt one of the existing methods for the kinematic modeling of
serial robots [DH55, KK86, GCB96] for use with parallel robots. However, it would be pre-
ferable to use a method that takes into account the closed-loop constraints of a parallel robot
[Kru03, Viv04].

1.2.1.1 The Zeroth-Order Kinematic Models

These models describe the static relations between the configuration variables such as the
tool (end-effector) poseX and the articular positionsq of the robot:

Inverse Kinematic Model (IKM) This model describes the motor positions (q), given the
end-effector pose (X) and the geometric parameters (ξgeo) of the robot. For serial ro-
bots, IKM might offer several solutions:

qi = M0
Is(X, ξgeo ) , i = 1, . . . , n > 2 (1.1)

On the other hand, for parallel robots except a few (e.g., 3RRR), IKM yields a unique
solution:

q = M0
Ip(X, ξgeo ) (1.2)

whereM0
Is

andM0
Ip

are the inverse kinematic models of a serial robot and of a parallel
robot, respectively. The super-right script denotes the order of the kinematic models.

Closed-form expressibility:The IKM of a parallel robot can be expressed easily in a
closed form. But the IKM of a serial robot can be expressed hardly in a closed form.

Forward Kinematic Model (FKM) This model describes the pose of the end-effector (X),
given the positions of the motors (q) and the geometric parameters of the robot (ξgeo).
For serial robots, FKM yields a unique solution:

X = M0
Fs
(q, ξgeo ) (1.3)
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whereX is a column-array representation of the end-effector pose.On the other hand,
for parallel robots, FKM might offer several solutions:

X i = M0
Fp
(q, ξgeo ) , i = 1, . . . , n > 2 (1.4)

whereM0
Fs

andM0
Fp

are the forward kinematic models of a serial robot and of a parallel
robot, respectively.

Closed-form expressibility:The FKM of a serial robot can be expressed in a closed form,
but the formulation of FKM of a parallel robot is more complicated (except a few, e.g.,
the Orthoglide, the Isoglide4-T3R1, GauntryTau, Delta-like). Use of additional sensors
can either complete the missing information of the passive joints of a parallel robot to
express its FKM in a closed form [BTKL99] or eliminate the FKMby measuring directly
the end-effector poseX of a parallel robot [DAMM06].

Implicit Kinematic Model (ImplKM) [And06] Since previously mentioned forward and in-
verse kinematic models of robots might not exist as injective mappings (i.e., single input-
single output), one would prefer a formulation of the kinematics under the form of an
implicit kinematic model. This model combines the previousmodels into one implicit
model, given the relations between the end-effector pose, the motor positions and the
geometric parameters. It is a holonomic constraint for any relevant state of the variables:

M0
φ(X, q, ξgeo ) = 0 (1.5)

whereM0
φ is the implicit kinematic model of a robot.

Redundant Implicit Kinematic Model (RImplKM) Here, we propose a more generic model
by deduction from the implicit model (1.5). Assuming that the robot is equipped with
different type(s) of sensor(s) providing redundant measurementsr, we rewrite (1.5) as
follows:

M0
φR(X, q, r, ξsensor, ξgeo ) = 0 (1.6)

whereξsensor is the parameter vector of the sensor(s) andM0
φR is the redundant implicit

kinematic model. Equation (1.6) can be written in a more compact form by assembling
q andr in a single measurement vectors as follows:

M0
φR(X, s, ξsensor, ξgeo ) = 0 (1.7)

wheres contains all the signals of the sensors. The sensor(s) can beproprioceptive (e.g.,
motor encoders), or exteroceptive (e.g., a camera), or a combination of these. Conse-
quently, this can allows to be chosen as bijective (minimal) or surjective (redundant) to
the end-effector pose. For example, the possible choices for s may be as follows:

s ∈ {q, {q, ρ}, {x 1,x 2, . . . , x k}, . . . , . . . } (1.8)

whereρ is a variable set completing the motor positions for a uniquesolution of the
end-effector pose, and where{x 1,x 2, . . . , x k} is the set of unit vectors showing the
3D directions of the bodies in a robot, and so on. The rest of this thesis will extensively
discuss this issue.
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1.2.1.2 The First-Order Kinematic Models

The time differentiation of the previous kinematic models gives the differential kinematic
models relating the Cartesian velocity of the end-effectorpose to the speed of the motors, or
more precisely to the velocity of the sensor signals:

Inverse Differential Kinematic Model (IDKM) This model gives the speed of motors, given
the end-effector pose and velocity, and as well as the geometric parameters of the robot:

q̇ =
∂ M0

I (X, ξgeo )

∂ X
Ẋ (1.9)

q̇ =
∂M0

I (X, ξgeo )

∂ X
LX ζ or q̇ = M1

I (X, ξgeo ) LX ζ (1.10)

whereM1
I is the inverse differential kinematic model of a robot. Thismodel is necessary

for all the controls taking explicitly into account the non-linear couplings between the
joints.

Closed-form expressibility:The IDKM of a parallel robot can be usually expressed in a
closed form. On the other hand, expressing IDKM of a serial robot is more complicated.

Forward Differential Kinematic Model (FDKM) This model gives the velocity of the end-
effector pose, given the positions and speeds of the motors and as well as the geometric
parameters of the robot:

Ẋ =
∂M0

F (q, ξgeo )

∂ q
q̇ (1.11)

whereX is a chosen representation for the end-effector pose. The previous forward dif-
ferential kinematic model can be associated to the kinematic twist ζ, which defines the
instantaneous motion of the end-effector with respect to the base of the robot.ζ is com-
posed of a translational velocityυ and a rotational velocityω. The chosenẊ can be
expressed in terms of a representation dependant matrixLX relating the partial deriva-
tive of the pose to the kinematic twistζ [Ang97]:

Ẋ = LX ζ = LX

[
υ

ω

]
(1.12)

Then, one can rewrite (1.11) with the kinematic twistζ as follows:

ζ = L−1
X

∂ M0
F (q, ξgeo )

∂ q
q̇ or ζ = L−1

X
M1

F (q, ξgeo ) q̇ (1.13)

whereM1
F is the forward differential kinematic model of a robot. Thismodel can be used

for both simulation and prediction.

Closed-form expressibility:The FDKM of a parallel robot cannot be expressed easily in
a closed form. The FDKM is computed usually by inverting numerically the IDKM of
a parallel robot. On the other hand, the FDKM of a serial robotcan be expressed in a
closed form.
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Implicit Differential Kinematic Model (ImplDKM) [And06] The differentiation of (1.5) yields
the complete implicit differential kinematic model:

∂ M0
φ(X, q, ξgeo )

∂ X
Ẋ +

∂ M0
φ(X, q, ξgeo )

∂ q
q̇ = 0 (1.14)

or equivalently,
M1

φ(X) Ẋ + M1
φ(q) q̇ = 0 (1.15)

In the case of a flexible robot, one must add the term relating the variations of the geo-
metric parameters:

∂M0
φ(X, q, ξgeo )

∂ X
Ẋ+

∂ M0
φ(X, q, ξgeo )

∂ q
q̇+

∂M0
φ(X, q, ξgeo )

∂ ξgeo
ξ̇geo = 0 (1.16)

or equivalently,
M1

φ(X) Ẋ + M1
φ(q) q̇ + M1

φ(ξgeo)
ξ̇geo = 0 (1.17)

This model has3 matrices: the differential Cartesian kinematic matrixM1
φ(X); the diffe-

rential articular kinematic matrixM1
φ(q); and the sensibility matrixM1

φ(ξgeo)
. Rewriting

(1.15) and (1.17) in a matrix-vector form:

[
M1

φ(X) M1
φ(q)

] [
Ẋ

q̇

]
= 0 (1.18)

[
M1

φ(X) M1
φ(q) M1

φ(ξgeo)

]



Ẋ

q̇

ξ̇geo


 = 0 (1.19)

we get the implicit differential kinematic model matrixM1
φ and the flexible implicit

differential kinematic model matrixM1
φf

:

M1
φ =

[
M1

φ(X) M1
φ(q)

]
(1.20)

M1
φf

=
[
M1

φ(X) M1
φ(q) M1

φ(ξgeo)

]
(1.21)

For a rigid robot, one can write from (1.18) the forward (M1
F ) and the inverse (M1

I )
differential kinematic models as follows:

M1
F = −

(
M1

φ(X)

)†
M1

φ(q) , M1
I = −

(
M1

φ(q)

)†
M1

φ(X) (1.22)

provided thatM1
φ(X) andM1

φ(q) have full rank.

Redundant Implicit Differential Kinematic Model (RImplDK M) Similarly to the previous
part (ImplDKM), the differentiation of (1.7) yields the complete redundant implicit dif-
ferential kinematic model:

M1
φR(X) Ẋ + M1

φR(s) ṡ = 0 (1.23)
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or equivalently, [
M1

φR(X) M1
φR(s)

] [
Ẋ

ṡ

]
= 0 (1.24)

whereM1
φR(X) andM1

φR(s) are the differential Cartesian kinematic matrix and the dif-
ferential sensor(s) signal kinematic matrix, respectively. In the case of a flexible robot
equipped with dynamic sensors (e.g., a moving and/or zooming camera), the terms re-
lating the variations of the geometric parameters of the robot and the variations of the
sensor parameters must be taken into account. Thus, the differentiation of (1.7) yields:

M1
φR(X) Ẋ + M1

φR(s) ṡ + M1
φR(ξsensor)

ξ̇sensor + M1
φR(ξgeo)

ξ̇geo = 0 (1.25)

or equivalently,

[
M1

φR(X) M1
φR(s) M1

φR(ξsensor)
M1

φR(ξgeo)

]



Ẋ

ṡ

ξ̇sensor
ξ̇geo


 = 0 (1.26)

whereM1
φR(ξsensor)

andM1
φR(ξgeo)

are the differential sensor kinematic matrix and the
sensibility matrix, respectively.

1.2.1.3 Singularities

Equation (1.17) yields three type of singularities [And06]:

Articular Singularity: It happens when the differential articular kinematic matrix is singular:

{(X, q, ξgeo)|M
1
φ(q)(X, q, ξgeo) q̇ = 0} (1.27)

and as well as where a motion of the active articular joints neither changes the end-
effector pose nor deforms the robot.

Cartesian Singularity: It happens when the differential Cartesian kinematic matrix is singu-
lar:

{(X, q, ξgeo)|M
1
φ(X)(X, q, ξgeo) Ẋ = 0} (1.28)

and as well as where a motion of the end-effector neither changes the active articular
positions nor deforms the robot.

Sensibility Singularity: It happens when the sensibility matrix is singular:

{(X, q, ξgeo)|M
1
φ(ξgeo)

(X, q, ξgeo) ξ̇geo = 0} (1.29)

In these configurations, deformations or variations in the geometric parameters of the
robot do not have any effect on the kinematic behavior of the robot. Reconfigurable
robots are not considered here.

In the rigid body assumption, the articular and cartesian singularities correspond respecti-
vely to the well known serial and parallel singularities of parallel robots [GA90, CW98].
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1.2.2 Dynamic Modeling

A dynamic model relates the active forces acting on a robot tothe accelerations they cause,
or the other way around. These active forces can be both moments in rotation and forces in
translation.

Inverse Dynamic Model (IDM) An inverse dynamic model computes the torques and/or forces
that the actuators of the robot must deliver to make the end-effector move in a certain
way. It is used for control of robot motions and forces:

Γ = A( s ) s̈ + h( s, ṡ ) + Γf (1.30)

whereΓ is the force vector of the actuators,A is the inertia matrix of the robot,h is
the vector of the centrifugal, the Coriolis and the gravity forces,Γf is the vector of the
friction forces, ands is the state variable vector of the robot. In the case of a serial robot,
the inverse dynamic model is usually written in terms of the joint positionsq, because
the joint positions uniquely define the posture of a serial robot:

Γ = A(q ) q̈ + h(q, q̇ ) + Γf (1.31)

or equivalently,
Γ = IDM( q̈, q̇, q, ξgeo, ξdyn ) (1.32)

whereξdyn denotes the dynamic parameters of the robot. Since the methods for modeling
of parallel robots are adopted from serial robots, the inverse dynamic model of a parallel
robot is generally written in terms of the articular positionsq [KD02] too. It is, however,
preferable to write the inverse dynamic model of a parallel robot with the end-effector
poseX, since in most cases it is the end-effector pose which definesuniquely the posture
of a parallel robot:

Γ = IDM( Ẍ, Ẋ, X, ξgeo, ξdyn ) (1.33)

This inverse dynamic model is used for control purposes and ideally it should be as
precise and as simple as possible.

Forward Dynamic Model (FDM) A forward dynamic model computes the accelerations of
the state variables for given forces, positions and velocities. It is also known as adirect
dynamic model. It is mainly used for simulation. A forward dynamic model islinearly
extracted from (1.30) as follows:

s̈ = A−1(s) (Γ − h(s, ṡ) − Γf ) (1.34)

or, equivalently, it can be noted as follows:

s̈ = FDM(Γ, ṡ, s, ξgeo, ξdyn ) (1.35)

For serial robots, (1.35) is again written in terms of the joint positionsq, since the joint
positions define uniquely the posture of a serial robot:

q̈ = FDM(Γ, q̇, q, ξgeo, ξdyn ) (1.36)
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And for parallel robots, (1.35) is again written in terms of the end-effector poseX, since
in most cases the end-effector pose defines uniquely the posture of a parallel robot:

Ẍ = FDM(Γ, Ẋ, X, ξgeo, ξdyn ) (1.37)

Implicit Dynamic Model (ImplDM) Here, we introduce an implicit dynamic model which
actually corresponds to the equations of motion (EoM) of a robot. We note it as follows:

0 = ImplDM(Γ, s̈, ṡ, s, ξsensor, ξgeo, ξdyn ) (1.38)

wheres is the set of the measured variables which can express uniquely the state of a
robot. The definition ofs is similar to (1.8), and here we augment it with the end-effector
poseX of a robot:

s ∈ {X, q, {q, ρ}, {x 1,x 2, . . . , x k}, . . . , . . . } (1.39)

where againρ is a complementary set of variables enriching the motor positions for
the unique solution of a robot posture, and{x 1,x 2, . . . , x k} is the set of unit vectors
showing the 3D directions of the bodies in a robot, and so on.

1.2.3 Dynamic Modeling Methods of Serial Robots

Many methods exist for dynamic modeling of serial robots, such as the Euler-Lagrange
method, the recursive Newton-Euler method, the d’Alembertmethod and Kane’s method. Now,
we shall describe briefly these methods.

1.2.3.1 Euler-Lagrange Method

The Euler-Lagrange method [Lag87] exploits the principle of conservation of energy in a
mechanism to derive the dynamic equations. The equations are in analytic and closed-form.
The Euler-Lagrange equations are obtained by differentiating the Lagrangian function:

L(q , q̇) = T (q , q̇) − V (q) (1.40)

which yields:

d

dt

(
∂ L

∂ q̇

)
−

∂ L

∂ q
=

d

dt

(
∂ T

∂ q̇

)
−

(
∂ T

∂ q
−

∂ V

∂ q

)
= Γ (1.41)

whereT andU are the kinematic and potential energies. This method is good for study of
the dynamic properties and analysis of control schemes. However, since it is an energy-based
method, it is geometrically less intuitive and it is reported to be computationally inefficient.
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1.2.3.2 Newton-Euler Method / Luh-Walker-Paul’s Algorithm

The Newton-Euler method [Pau81, LWP80a] exploits the balance of forces and torques in a
mechanism to derive the dynamic equations. The equations are in numeric and recursive-form.
This method uses the Newtonian equations of motion:

f = ma , τ = IT ω̇ + ω × (IT ω) (1.42)

wheref , τ , m, a, ω andI are the linear momentum, the angular momentum, the mass, the
linear acceleration, the angular velocity and the inertia of the body, respectively. The method
calculates the dynamics through two loops:

– Forward Loop: moves from base to end to evaluate the velocities and the accelerations.
– Backward Loop: moves from end to base to compute the forces and torques.

It is systematic and efficient for real time implementation of the control schemes.

1.2.3.3 d’Alembert Method / Principle of Virtual Work

This method exploits the principle of conservation of virtual work [lRd43] in a mechanism
to derive the dynamic equations. It states that the sum of differences in work, resulting from
either virtual forces acting through a real displacement orreal forces acting through a virtual
displacement, is zero. The displacement isinfinitesimaland isconsistent with constraintson
the system:

0 =
∑

i

(fi −mi ai)
T δx i (1.43)

wheref is an applied force,m is the mass of a particle,a is the acceleration of a particle,δx
is an infinitesimal displacement consistent with the constraints, andi enumerates a particular
particle in the system.

1.2.3.4 Kane’s Method

Kane’s method [KL85] actually has the Lagrange form of d’Alembert principle and offers
many advantages, while obtaining the equations of motion ofa system. It needs neither the
use of energy functions nor consequently their differentiation problem. It uses the generalized
forces where the non-contributing forces are directly eliminated by projection. It allows the
choice of different variables other than the generalized coordinates, which can have a signifi-
cant effect on the resulting equations of motion. This method is also more useful for multi-body
systems. Now, we introduce briefly the basic equations in Kane’s method on which this work
is based. Further details will be given in Chapter 2.

Let {f∗
ur
, fur}|

n
r=1 be respectively thegeneralized inertia forcesand generalized active

forcesfor a system withn degrees of freedom, and be given as:

f∗
ur

=

p∑

k=1

((
∂vck

∂ur

)T

fink
+

(
∂ω k

∂ur

)T

τ ink

)
, r = 1, . . . , n (1.44)

fur =

p∑

k=1

((
∂vck

∂ur

)T

fk +

(
∂ω k

∂ur

)T

τ k

)
, r = 1, . . . , n (1.45)
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wherep is the number of rigid bodies,ur is a generalized speed, {
∂vck

∂ur
, ∂ω k

∂ur
} are so-called

partial linear and angular velocities,{fink
, τ ink

} are theinertia forceand theinertia torquege-
nerated by the accelerated masses and inertias acting on thekth body,{fk, τ k} are theresultant
forceand theresultant torquethat are equivalent to a set of contact and distance forces acting
on thekth body. In order to have the equations of motion, namely Kane’sdynamical equations,
one just needs to add the generalized inertia and active forces and equate them to zero:

f∗
ur

+ fur = 0 , r = 1, . . . , n (1.46)

1.2.4 Dynamic Modeling Methods of Parallel Robots

All the methods for serial robots can be adapted to parallel robots. In addition to those
methods, there exist one method designed for parallel robots in particular. Now, we explain
briefly this method.

1.2.4.1 Khalil’s Method

Khalil proposed [KI04] to obtain the equations of motion of aparallel robot by extending
the systematic approach of the modeling of a serial robot. This approach proceeds as follows:
(i) Firstly, each of the kinematic legs of a parallel robot isconsidered as an independent serial
robot and the inverse dynamic model of this kinematic leg is written using one of the methods
proposed for modeling of serial robots; (ii) Then, the equilibrium of all the efforts (torques and
forces) applied on the moving platform is calculated. Theseefforts come from each of the kine-
matic legs, from the acceleration of the moving platform andfrom the external forces (weight,
contact, etc.); (iii) Finally, this total effort collectedon the moving platform is projected onto
the active joints.

This approach is strongly intuitive for handling of the kinematic constraints, because it
allows each leg to contribute for the total effort on the moving platform:

Γ = FDKM T
robot


Wplatform +

Nlegs∑

i=1

(
JT
i IDKMT

leg(i) IDM leg(i)

)

 (1.47)

whereFDKMrobot is the forward differential kinematic model of the parallelrobot,Wplatform

is the wrench vector for the dynamics of the moving platform,Ji is the Jacobian matrix relating
the velocity of the terminal point of theith leg to the end-effector velocity,IDKM leg(i) is the
inverse differential kinematic model of theith leg,IDM leg(i) is the inverse dynamic model of
theith leg. TheIDM leg(i) can be computed with any of the existing methods for serial robots.

1.3 Control

Motion control is concerned with moving the end-effector ofthe robot to the desired po-
sition with a desired velocity profile. Motion control is usually performed by feeding back the
state of the robot, which is called either closed-loop control or feedback control. Closed-loop
motion control of robots is either at kinematic level or dynamic level. In kinematic control
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the active forces and masses are not taken into account. However, when a high-speed motion
is considered, these forces and masses severely perturb themovement of the robot. And at
this point a dynamic control, which can handle these perturbations, is required. Closed-loop
control is performed either directly in a sensor space or in an augmented space supported by
some auxiliary models. In the next two subsections, we will present kinematic and dynamic
controls.

1.3.1 Kinematic Control

Some of the well known sensor-based kinematic controls are joint-space kinematic control,
Cartesian-space kinematic control, and visual servoing. Control in the joint space is a sensor-
space control where the error is regulated over the measurements supplied by the motor en-
coders. In the case of Cartesian-space control, two scenarios are possible: (i) if the Cartesian
end-effector pose is measured directly by a sensor, then it can be considered as sensor-space
control; (ii) if the Cartesian end-effector pose is computed with the help of an additional algo-
rithm, then it can be considered as a model-space control. Lastly, visual servoing is a specific
sensor-space control where the sensor is a camera and the error is defined with some extracted
image features.

In a kinematic control, the control input for a robot is the velocity of the articular positions
q̇, and the observed output is usually the articular positionsq. Therefore, the robot is generally
considered as an integrator. Figure 1.4 shows the block representation of a robot in a kinematic
control.

Figure 1.4 – Robot model is assumed to be an integrator in a kinematic control.

In a sensor-space kinematic control [SLE91] (see Fig. 1.5),letX be a representation of the
pose of the end-effector of the robot at timet and lets be a sensor signal depending onX and
as well as ont:

s = s(X(t), t) (1.48)

then, the error functione for the task is given as below:

e = e(X(t), t) = C ( s(X(t), t) − s∗(t) ) (1.49)

whereC is a combination matrix of the current sensor signals and the desired value of the
sensor signals∗(t). Afterwards, the control law that will minimize the error isbuilt upon the
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following assumptions: (i) the sensor signals(X(t), t) is observable during the task; (ii) the
variations of the matrixC are negligible,Ċ ≪ I, whereI is an identity matrix; (iii) the
reference trajectorys∗(t) corresponds to reachable poses; and (iv) the sensor signals(X(t), t)
is an injective mapping fromSE(3) to the sensor space.

Taking the previous assumptions into consideration, the differentiation of the error function
yields:

ė = C ṡ − C ṡ∗ (1.50)

where the variation in the sensor signals can be expressed as a function of the relative kinematic
twist (ζ) of the robot pose with respect to the sensor, and of the observed scene (e.g., static or
dynamic properties of shapes, colors, etc.):

ṡ =
∂ s

∂ X
Ẋ +

∂ s

∂ t
= Ls ζ +

∂ s

∂ t
(1.51)

with Ls

(
= ∂ s

∂ X
LX

)
the interaction matrix that relates the variations of the sensor signals to

the relative kinematic twistζ of the end-effector of the robot, andLX the matrix that relates the
variations of the pose of the end-effectorX of the robot to the relative kinematic twistζ. Then,
the differentiation of the error function (1.50) can be rewritten as follows:

ė = C Ls ζ + C
∂ s

∂ t
− C ṡ∗ (1.52)

Assuming that the robot is a pure integrator, an exponentialconvergence for the error is impo-
sed by setting its derivative to be equal toė = −λ e with λ > 0. Hence, one extracts the
kinematic twistζ as below:

ζ = (C Ls )
−1

(
−λ e − C

∂ s

∂ t
+ C ṡ∗

)
(1.53)

and by usingC = L̂s
†

as the pseudo-inverse of an estimatedLs, the kinematic twistζ is
calculated as follows:

ζ = ( L̂s
†
Ls )

−1

(
−λ e − L̂s

† ∂ s

∂ t
+ L̂s

†
ṡ∗
)

(1.54)

Since the real interaction matrixLs is not known, its estimation̂Ls should be as accurate as

possible so that the multiplication̂Ls
†
Ls can be assumed to yield the identity matrix and so

that the so-called pseudo-control vector becomes:

ζ = −λ e − L̂s
† ∂ s

∂ t
+ L̂s

†
ṡ∗ (1.55)

Assuming that
∂ s

∂ t
= 0 , ṡ∗ = 0 (1.56)

the pseudo-control vectorζ in (1.55) gives:

ζ = −λ e (1.57)
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The stability of the pseudo-control vectorζ in (1.57) can be analyzed by substituting it into
the error dynamics in (1.52) with the assumptions in (1.56):

ė = −λ ( L̂s
†
Ls ) e (1.58)

if the multiplication ( L̂s
†
Ls ) is a positive-definite matrix, then the pseudo-control law is

stable in the sense of Lyapunov. The last step is the conversion of the pseudo-control law to the
actual control inpuṫq of the robot:

q̇ = M̂1
I ζ (1.59)

whereM̂1
I is an approximate inverse differential kinematic model (IDKM) that relates end-

effector kinematic twist (pseudo-control law) to the velocities of the active joints (control in-
put). And again for stability, the multiplication of the approximated IDKM with the forward
differential kinematic modelM1

F should also be a positive-definite matrix (̂M1
I M

1
F > 0).

Figure 1.5 –Sensor-space kinematic control.s is the sensor signal,ζ is the pseudo-control law, IDKM is the
inverse differential kinematic model computed with an estimated pose of the end-effectorX̂, andq̇ is the actual
control input of the parallel robot.

When the regulation of the sensor signals is not enough to achieve the task, one calls for
a model-space control approach (see Fig. 1.6) to enrich the sensor signals with the known
geometry of the scene (robot geometry, object geometry, etc.) so that the task can be accom-
plished. This model can be the forward kinematic model (FKM)of the robot, an algorithm for
computing the relative pose of the end-effector of the robot, and etc.

In order to perform the kinematic control, the inverse differential kinematic model needs
the estimated end-effector posêX. The estimated end-effector poseX̂ can be obtained from
one of these options:

– X̂ can be sometimes directly measured (laser tracking, specific motions).
– X̂ = X∗(t) can be chosen as equal to the current desired end-effector pose.
– X̂ = argmin

X

‖ s − s(X, t) ‖ can be computed by minimizing the error between the

measured sensor signals (which is an image of the current end-effector pose) and the
initial guess of the sensor signal through the previously known end-effector pose.

– X̂ = argmin
X

‖q− IKM(X, ξgeo) ‖ can be computed by minimizing the error between

the measured motor positionsq (which is the map of the current end-effector pose via
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Figure 1.6 –Model-space kinematic control.s is the sensor signal,ζ is the pseudo-control law and IDKM is
the inverse differential kinematic model computed with an estimated pose of the end-effectorX̂, andq̇ is the actual
control input of the parallel robot.

IKM) and the initial estimate of the motor positions throughthe previously known end-
effector pose.

or one can use another convenient method.

1.3.2 Dynamic Control

The computed-torque controlmethod governs the dynamic behavior of a robot based on
its inverse dynamic model [LWP80b, Pau81] (see Fig. 1.8). Itcomputes the required actuator
forces which correspond to the current dynamic state of the robot. It decouples the non-linear
dynamic behavior of the robot and linearizes its control. Here, we recall this method which
will be later employed for control purposes. In a dynamic control, the control input is the
acceleration, and the observed output is usually the position of the robot. Therefore, a robot in a
dynamic control is considered as a double integrator. Figure 1.7 shows the block representation
of a robot in a dynamic control.

Figure 1.7 – Robot model is assumed to be a double integrator in a dynamic control.

The computed-torque control method can be simply illustrated using the Lagrange formu-
lation of the inverse dynamic model which is expressed by means of joint positionsq, brought

23



from (1.31), as follows:

IDM : Γ = A(q) q̈ + h(q, q̇) + Γf (1.60)

where againΓ is the force vector of the actuators,A is the inertia matrix of the robot,h is the
vector of the centrifugal, the Coriolis and the gravity forces,Γf is the vector of the friction
forces.

In an ideal case, the control lawu is equal to the acceleration̈q of the sensor signal. The
control lawu is usually obtained with a proportional-derivative control term u

PD
and with a

feed-forward term of the desired signal accelerationu
ff

:

u = u
ff

+ u
PD

(1.61)

where
u

ff
= q̈∗ , u

PD
= Kd ė+Kp e (1.62)

and wherëq∗ is the desired acceleration,Kp , Kd are the proportional and derivative positive
control gains,e = q − q∗ is the error between the measured signal and the desired reference
signal.

Knowing that in ideal caseu = q̈, the behavior of the error is characterized by the follo-
wing second order form:

ë + Kd ė + Kp e = 0 (1.63)

In the error dynamics, the oscillation and damping can be regulated by tuning the control gains
as follows:

Kp = ω2 , Kd = 2 ζ ω (1.64)

with ζ a fixed damping ratio (usually between0.9 and1) andω a cut-off frequency which is
fixed to the highest value with respect to the mechanical resonance frequency.

Actually, the behavior of the real robot can be written in thefollowing form [KD02]:

Γ = (Â(q) + Ã) q̈ + (ĥ(q, q̇) + h̃) + (Γ̂f + Γ̃f ) (1.65)

where hats( ·̂ ) are for the estimations and where tildes( ·̃ ) are for the errors of the estimations.
Since we calculate the dynamics of the robot with the estimated models, the inverse dynamic
model is rewritten as below:

Γ = Â(q)u + ĥ(q, q̇) + Γ̂f (1.66)

This dynamic model will perturb the system due to the errors in the modeling. If it is neces-
sary to improve the control of the robot, then one must identify the model parameters well
[OP01, SGT+97]. If this does not solve the problem, either robust control methods [BHC00,
HBS00, VPP03, LSCH03, BAP98, YOKN98] or adaptive control methods [Lam93] can be
used. Figures 1.8 and 1.9 show the joint-space computed-torque control and the Cartesian-
space computed-torque control block diagrams, respectively. The joint-space computed-torque
control is better suited for serial robots, while the Cartesian-space computed-torque control is
better suited for parallel robots.
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Figure 1.8 –Joint-space computed-torque control.q is the motor positions vector andu = q̈ is the control
signal. This control is more convenient for serial robots.

Figure 1.9 –Cartesian-space computed-torque control.X is the end-effector pose andu = Ẍ is the control signal.
This control is more convenient for parallel robots.

1.4 Identification

Identification process looks for the most accurate values ofmodel parameters to imitate
better the real robot behavior. A model of a real robot is usually built on its CAD model assu-
ming that the dimensions and the assembly of the robot are perfect. In reality, however, there
are always imperfections in the fabrication and assembly ofthe pieces, which mean that the
model is of a lower quality than its expected accuracy. Consequently, a model identification is
a necessary step for better control of robots. There are two types of model parameters to be
identified: geometric and dynamic parameters of the robot.

1.4.1 Geometric Identification

A good identification of the geometric parametersξgeo of the robot improves the preci-
sion of the estimated end-effector pose via FKM. Geometric parameters are usually obtained
through a non-linear minimization. There are two steps thatshould be taken into consideration
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before the identification:
– Configuration decision: Firstly, the number (n) of configurations (static states) should be

large enough to span the workspace of the robot as much as possible.
– Measurements: Afterwards, the corresponding measurement signals of these configura-

tions should be collected{ sm
i , s̄m

i } wherei = 1, . . . , n. For instancesm
i = Xm

i and
s̄m
i = qm

i or vice versa. Each of the pairs{ sm
i , ξgeo } and{ s̄m

i , ξgeo } should express
a static state of the robot.

Once the initial steps are completed, theξgeo is computed (see Fig 1.10) by minimizing the
following error function:

ξ̂geo = argmin
ξgeo

error (sm
i , sei ) , i = 1, . . . , n (1.67)

wherese is the estimated signal given by the model:

sei = Model( s̄m
i , ξ̂geo ) (1.68)

Figure 1.10 –Geometric parameter identification.{ sm, s̄m } andse are the measured and the estimated signals,
respectively. Theξgeo is the geometric parameters vector. The box “sensors" can contain different sensors such as
motor encoders, laser-tracker, camera, etc.

For a serial robot, the forward kinematic model (FKM) is analytically defined and it is
usually used as a model for minimization through the measured end-effector pose and the
articular positions:

s̄m
i = qm

i , sm
i = Xm

i , Model : FKM(qm
i , ξ̂geo ) = Xe

i (1.69)

ξ̂geo = argmin
ξgeo

n∑

i

‖Xm
i − Xe

i ‖
2 (1.70)

On the other hand, for a parallel robot, the inverse kinematic model (IKM) is analytically
defined and it is usually chosen as a model for minimization [BK99b] through the measured
end-effector pose and the articular positions:

s̄m
i = Xm

i , sm
i = qm

i , Model : IKM(Xm
i , ξ̂geo ) = qe

i (1.71)
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ξ̂geo = argmin
ξgeo

n∑

i

‖qm
i − qe

i ) ‖
2 (1.72)

Geometric identification methods can be classified in three groups: self-calibration me-
thods, constrained-motion methods, and external-calibration methods. In self-calibration me-
thods [YCYL02, HBP+05, HL95], either extra sensors are added to the passive joints or an
extra passive chain is added to the mechanism. On the other hand, constrained-motion me-
thods do not need extra sensors [RR01b, BK01, RR01a, CP04, RFS08]. Constrained-motion
methods either decrease number of degrees of freedom of the moving platform or the mobility
of any joint (e.g., fixing the length of a leg of the Gough-Stewart platform). And, external-
calibration methods use external measurement devices, such as theodolite [WLR86], inclino-
metres [BK99a, RPR+06], vision [RALD06, RVA+06], laser-tracker [KAS+98, NBHW00,
MTW03], and the coordinate measuring machine [Dan03, CYH06, YH05]. The minimization
algorithms can vary from a classical least square method [KD02] to an interval analysis method
[Dan99, DACP06].

1.4.2 Dynamic Identification

The computed-torque control has to use an inverse dynamic model (IDM) based on the dy-
namic parametersξdyn and previously identified geometric parametersξgeo of the robot. That is
to say, well identified dynamic parametersξdyn improve the trajectory tracking performance of
the robot. There are three steps that should be taken into consideration before the identification:

– Trajectory design: It is important to design a trajectory which spans the workspace with
different velocities so that it can excite all the parameters in the model [GK92].

– Fast sensor(s):Since the identification process requires exciting (high frequency) trajec-
tories, the sensors must be able to take measurements quickly and accurately.

– Velocity and acceleration measurements: Most of the robots are equipped with sensors
which are reasonably precise for position information. However, it is somewhat diffi-
cult to obtain precise velocity and acceleration information. Usually, they are compu-
ted by successive numerical differentiation of the position signal which introduces high
frequency noises. This, especially, makes the acceleration signal impractical. So, the
position signal should be passed through a low-pass filter before the numerical differen-
tiations [KD02, Gue03, Viv04, GP01].

Dynamic parameters can be obtained either through minimization methods (e.g., non-linear
constrained optimization [FDM07], interval analysis [PRV03]) similar to geometric identifica-
tion (see Fig 1.11) or through solving the simple linear system [Aea04] given below:

sm = W
(
s̄m, ˙̄s

m
, 〈 ¨̄s

m
〉, ξgeo

)
ξdyn (1.73)

where〈·〉 implies that the associated variable is optional,W is an observation matrix, function
of the measured signals{ s̄m, ˙̄s

m
, 〈 ¨̄s

m
〉 } and previously identified geometric parameters

ξgeo. And sm is an output signal measured by another sensor. Linear system (1.73) is written
from aModel of the robot which is noted as follows:

s e = Model( s̄m, ˙̄s
m
, 〈 ¨̄s

m
〉, ξgeo, ξ̂dyn ) (1.74)
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wherese is the estimated output signal corresponding to the measured output signalsm. This
Model can be either an inverse dynamic model (IDM), or an energy model (EM), or a power
model (PM) [KD02]. If it is an IDM, then (1.73) takes the form below:

Γm = WIDM

(
s̄m, ˙̄s

m
, ¨̄s

m
, ξgeo

)
ξdyn (1.75)

whereΓm is the measured actuators’ forces. If it is an energy model ora power model, this
time the acceleration signal does not appear in the observation matrix:

∫
(Γm)T q̇ = WEM

(
s̄m, ˙̄s

m
, ξgeo

)
ξdyn (1.76)

(Γm)T q̇ = WPM

(
s̄m, ˙̄s

m
, ξgeo

)
ξdyn (1.77)

For a parallel robot, it may be more pertinent to perform the identification through the
end-effector pose measurements{Xm, Ẋm, 〈 Ẍm 〉 }:

sm = W (Xm, Ẋm, 〈 Ẍm 〉, ξgeo ) ξdyn (1.78)

because the end-effector pose can be obtained by vision (an exteroceptive sensor) and because
it is analytically simpler to write the models from the Cartesian space to articular space.

Figure 1.11 –Dynamic parameter identification.{ sm, s̄m, ˙̄s
m
, ¨̄s

m
} andse are the measured and the estima-

ted signals, respectively.ξdyn is the dynamic parameters vector.

1.5 MICMAC

1.5.1 Introduction

MICMAC is the acronym of «Modélisation, Identification et Commande des MAchines
Complexes», but it also fits to the English translation «Modeling, Identification and Control of
complex MAChines». MICMAC is one of the research topics of the ROSACE (RObotique et
Systèmes Autonomes ComplexEs) team at the laboratory of LASMEA/ISPR of Pascal Insti-
tute. It is focused on thehigh-speed vision-based modeling, identification and control of paral-
lel robots.

28



The MICMAC project first started in kinematics, then progressed to dynamics. It did so
in two parts: firstlymodular MICMAC and secondlyintegratedMICMAC. The modeling,
control, and identification modules of parallel robots havebeen often treated separately so far
by being adapted from the customary approaches of the serialrobots. It can be, however, diffi-
cult to apply these modules for parallel robots as they do nothave sensors in their passive joints.
The modular MICMAC makes these processes easier by using vision sensor(s) to complete the
missing Cartesian geometry of the mechanism.

This is, however, still not enough for efficient control of parallel robots. That is because
parallel robots are a lot faster and much more architecturally complex than serial robots. Fur-
thermore, parallel robots work in duality, unlike serial robots. Consequently, it would be better
to develop new methodologies and sensors for precise and simple control of parallel robots.
On the other hand, the integrated MICMAC is concerned with the optimization of modeling,
control and identification modules regarding the performance of a mechanism.

In next two subsections, we introduce briefly the modular MICMAC and the integrated
MICMAC approaches.

1.5.2 Modular MICMAC

The following people have made important contributions to the modular MICMAC. Their
works are discussed in chronological order: (i) In the first part of his Ph.D. thesis [Ren03],
P. Renaud worked on geometric identification of parallel robots based on observation of the
end-effector pose by vision; (ii) In the first part of his Ph.D. thesis [Dal07], T. Dallej worked
on kinematic control of parallel robots based on observation of the end-effector pose by vi-
sion; (iii) In his Ph.D. thesis [Pac08], F. Paccot worked on dynamic modeling and Cartesian
control of parallel robots based on observation of the end-effector pose by fast vision. But the
modeling and visual feedback were neither optimal and nor fast enough; and (iv) In his Ph.D.
thesis [Dah10], R. Dahmouche worked on fast sensor-space (2D visual servoing) dynamic state
estimation of parallel robots based on observation of the end-effector pose with sequential ac-
quisition, and its integration into Paccot’s work [Pac08].

Moreover, P. Renaud and T. Dallej have evolved their works, in the rest of their theses, and
contributed to the integrated MICMAC part, too.

1.5.3 Integrated MICMAC

In [And06], N. Andreff proposed to observe visually the legsof parallel robots for effi-
cient modeling, control, and identification purposes. Observation of the legs unifies modeling,
control, and identification modules into a single control-oriented framework. In this control-
oriented framework, almost all the expressions are merged through the measurements of the
leg directions. These measurements of the leg directions replace many long expressions, thus
yielding simplified and more precise models regarding the sensor accuracy. It is shown that it is
possible to regulate the Cartesian space too while the leg directions are controlled. In the case
of a parallel robot, when the directions of the legs are followed, we find a unique solution for
the end-effector pose defining the state. The most attractive side of this approach that the 3D
leg directions can be directly calculated from 2D image measurements.
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So why not use the leg directions (3D lines) for control of parallel robots? Andreff’s main
objective in [And06] was to build: «a vision-based control-oriented framework for parallel
robots based on their leg observations» at kinematic and dynamic levels.

On the way to the main objective, the following mid-objectives are accomplished:
– Integration of the modeling, control, and identification modules at the kinematic level

based on observation of the leg edges [Ren03, Dal07, RALD06].
– Proposition of a global framework for the kinematic control of the parallel robots based

on observation of the leg edges [DAM11].
The following objectives remained:

– To identify the parallel robot parameters (geometric and dynamic) based on observation
of the leg edges.

– To estimate the dynamic state (position and velocity) of parallel robots at high speed
from the observation of the leg edges.

– To integrate modeling, control and identification modulesat the dynamic level based on
observation of the leg edges.

– To propose a vision-based global framework for dynamic control of parallel robots based
on observation of the leg edges.

1.5.4 Complementary Background

In this section, we recall some background information which forms the fundamental ba-
sics of the MICMAC project in complement to the above state-of-the-art. Before giving these
basics, in Figure 1.5.4, we outline the evolution of the MICMAC project up to now and we
highlight the rest of the main objectives once more. These basics will play a crucial role in the
solution of the remaining objectives.

Figure 1.12 – State of the MICMAC art with the unreached objectives (upper-right box).
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1.5.4.1 Vision

Let cP = [cX, cY , cZ]T be a point defined in the camera frameFc. Then, its projection
cp = [cx, cy, 1]T on the planecZ = 1 (see Fig. 1.13) is defined by [Fau93]:

cp α cP (1.79)

whereαmeans « proportional to ». Then, the pointcp is converted from normalized coordinates
to pixel coordinatesimp = [u, v, 1]T with the intrinsic camera matrixK:

imp = K cp (1.80)

Assuming that the pixels in the camera sensor are rectangular and are perfectly aligned, the
intrinsic matrixK is given as below:

K =




fu 0 uo
0 fv vo
0 0 1


 fu > 0

fv > 0
(1.81)

where (fu, fv) are the effective focal lengths (in pixel units) of the camera and where (uo, vo)
are the coordinates (in pixel units) of the image center. Consequently, the perspective projection
model is as follows:

imp α K cP (1.82)

Figure 1.13 –Perspective projection of a pointP onto the image plane.

1.5.4.2 Lines and Robotic Legs

Here in this section, we revise a 3D line representation, itsperspective projection, and we
discuss how lines can be adapted for the sensing and representation of the robotic legs.
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1.5.4.2.1 A 3D Line and Its Projection: A 3D line L can be uniquely represented in the
Euclidian space by Plücker coordinates [Plu65, SK52]:

(L) : (x, n ) (1.83)

wherex is the unit vector showing the direction of the 3D lineL, andn is a normal vector
to the plane, which contains the lineL and passes through the origin of the reference frame
(e.g., a camera frame). This plane is called theinterpretation plane. The normal vectorn can
be expressed using any 3D pointP located on the lineL:

n = P × x (1.84)

In [AEH02], it was suggested that the lineL can be represented by decomposing the normal
vectorn to the depthn of the lineL from the origin of the reference frame and to the unit
normal vectorn of the interpretation plane (n = nn):

(L) : (x, n, n ) (1.85)

If we want to express a different line,̃L, lying on the same interpretation plane, the previous
representation can be rewritten as follows [And99]:

(L̃) : ( x̃, n, ñ ) (1.86)

wherex̃ andñ are the direction and the depth of the lineL̃, respectively. SincẽL is on the same
interpretation plane, the unit normaln does not change.

Now, consider the intersection of the interpretation planewith the image plane. This gives
a unique projection lineℓ (see Fig. 1.14) corresponding to the perspective projections of all the
3D lines (except the line which is orthogonal to the image plane) lying on the interpretation
plane. Sinceℓ itself is also on the interpretation plane, then it too will be expressed with the
samen:

(ℓ) : (x ℓ, n, nℓ ) (1.87)

wherex ℓ andnℓ are the direction and the depth of the projection lineℓ on the image plane.
Consequently, in the representation of the projection lineℓ of any 3D lineL, we lose the
directionx and the depthn but we still keep in hand the plane unit normal vectorn. This
means that it should be possible to recover the unit normal vectorn from the image. Now, the
question is: How should one go about doing so?

On the image plane, we observe the pixel points{ impi, i = 1, . . . ,m ≥ 2 } lying on the
projection lineℓ. Any of these points holds the line equation:

impi
T imn = 0 (1.88)

The solution forimn (in pixel coordinates) is in the null space of the linear system written from
(1.88): 



imp1
T

...
impm

T


 (1.89)
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Figure 1.14 –3D Line representation and its projection.

The above system can be solved forimn either with QR decomposition [HJ85] (algebraic, bet-
ter for real-time considerations) or with SVD [HJ85] (iterative but more precise). Afterwards,
substituting (1.80) into (1.88) yields:

cpi
T KT imn = 0 (1.90)

and knowing that the line equation can be written in any spaceas long as the variables are also
expressed in the same space:

cpi
T cn = 0 (1.91)

we can recovercn (in metric coordinates) from (1.90) and (1.91) as follows:

cn =
KT imn

‖KT imn‖
(1.92)

and we can similarly writeimn in terms ofcn as below:

imn =
K−T cn

‖K−T cn‖
(1.93)

1.5.4.2.2 Sensing of Prism-Shaped Legs:Most of the parallel robots are equipped with
prism-shaped legs. Prisms are geometric solids whose basesare identical polygons lying in
parallel planes and whose sides are parallelograms (see Fig. 1.15). A cylinder may be conside-
red as a round prism, or one that has an infinite number of sides. A prism-shaped leg can be
considered as a 3D line and be modeled with Plücker coordinates:

(leg) : (x, n x, dx, shape ) (1.94)
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Figure 1.15 –Prisms.

wherex shows the direction axis,n x is the normal vector of the interpretation plane passing
through the direction axisx of the leg and the optical center of the camera,dx is the shortest
distance between the direction axis and the optical center,andshape gives information on the
geometric form of the leg (e.g., cylinder). When a leg is projected onto the image plane, we
see its visual contours (left and right side edges) located at the borders between the visible and
invisible parts of the leg. Figure 1.16 illustrates projection of prism-shaped legs.

Figure 1.16 –Perspective projections of the hexagon and cylinder prisms.

34



These visual contours correspond to the projection lines{ ℓLeft, ℓRight } of the two 3D
parallel lines{LLeft, LRight } on the leg surface. Then, we can obtain the unit normal vectors
{nLeft, nRight } of the interpretation planes as explained in the previous Subsection 1.5.4.2.1.
These 3D parallel lines{LLeft, LRight } are also parallel to the direction axisx of the leg. That
is to say, the left and right side interpretation plane unit normal vectors are orthogonal to the
direction axis:

nT
Left x = 0 , nT

Right x = 0 (1.95)

So, it is possible to calculate the 3D direction axisx of the leg from the interpretation plane
unit normal vectors:

x =
nLeft × nRight

‖nLeft × nRight ‖
(1.96)

Consequently, we can extract the following information from the perspective projection of
a prism-shaped leg with a calibrated camera (K is known) [And06]:

– Edges: the unit normal vectors of the interpretation planes (nLeft, nRight ).
– 3D direction: unit vector showing the direction of the leg (x).

1.5.4.2.3 Special Case of a Cylinder: Finally, we give some more properties related to a
cylindrical leg, since this type of leg is more common than other types of legs and is easier to
handle. The normal vectors of the interpretation planes of acylindrical leg can be computed as
follows:

nLeft = − cosϕ n x − sinϕ (x× n x) (1.97)

nRight = cosϕ n x − sinϕ (x× n x) (1.98)

wherecosϕ = dn/dx, sinϕ = r/dx, dn =
√

d2x − r2, and wherer is the cylindrical leg radius
(see Fig 1.17). In addition, the geometry of the cylinder imposes the following constraint:

PT nLeft = − r , PT nRight = − r (1.99)

whereP is any point lying on the direction axis of the cylinder.

Figure 1.17 –View of the geometry of the cylindrical leg from its 3D orientation directionx (perpendicular to
the paper plane).
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1.6 Thesis Objective

This chapter gave the state-of-the-art in control of parallel robots and the necessary back-
ground information for the rest of the thesis. We finish this chapter by stating the objective of
this thesis, which is to improve theintegrated dynamic MICMACproject further towards its
remaining goals:

1. Upgrading from kinematic level to the dynamic level in control-oriented modeling of
parallel robots from their leg observations.

2. Fast estimation of the dynamic state (position and velocity) of a parallel robot from its
leg observations.

3. Proposing a vision-based framework for the dynamic control of parallel robots from their
leg observations.

4. Identification of the dynamic parameters of a parallel robot from its leg observations.
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Chapter 2

Modeling

2.1 Introduction

This chapter presents a new approach to kinematic and dynamic modeling of parallel robots
which meets one of the objectives of the integrated dynamic MICMAC: « Upgrading from
kinematic level to dynamic level in control-oriented modeling of parallel robots from their leg
observations. »

The proposed methodology keeps the expressions simple and clear. Thus, one can easily
work out all the equations from the beginning till the end with pen and paper. Here, the metho-
dology will be carried out without paying attention to a particular parallel robot. Furthermore,
for better practical understanding, the methodology will be supported with a demonstration on
a simple2 degrees of freedom planar parallel robot. Then, at the end ofthe chapter, the metho-
dology will be illustrated on a very complex parallel robot:the Quattro robot. The applications
of the methodology to other well-known families of parallelrobots, such as the Gough-Stewart,
the Delta, the 3RRR and the Orthoglide can be followed in Appendix A.

2.2 Motivation and Objective

Modeling of robots can be categorized in two groups:application-orientedmethods and
analysis-orientedmethods.

In application-oriented modeling, the generic scenario isas follows: since the motor enco-
ders that measure the articular positions are directly implanted in robots and are rich enough
to supply information about the full geometric configuration of serial robots, they are adopted
immediately as a basic medium for sensing.

This misleads one into using them also for parallel robots. However, when parallel robots
are considered, this information becomes poor because of many other sensorless passive joints.
If one expresses models with only active joint coordinates,then the models inflate, become
slow, hard to understand and to implement. This inevitably urges one to offer simplifications
[VPP03] and to omit some of the modeling errors in the mechanism, thus giving simplified and
fast [NKC+08] but approximate new models for control. Thus, application-oriented methods,
based on joint sensing, become inefficient when the complexity of the robot increases.
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On the other hand,analysis-orientedmethods mostly concentrate on finding efficient, intui-
tive, simple and linear procedures for synthesis and analysis of complex robots. Some of these
analysis-oriented methods use Screw theory [WS06], [Fea00], [MLS94], [BS98], [RGM08],
[Tsa98], [MD85], [Tsa99] and Grassmann-Cayley [ST02] algebra which are based on lines of
motions. These lines of motions are thejoint axes, and these works model the joint motions.
However, their practical applicability on real complex robots is limited. Instead, they are used
for analysis.

Obviously, in these scenarios, the difficulties in modelingand applicability are sourced
from the lack of an appropriate sensing. What if we had extra sensor(s)? What if we knew
everything about the mechanism? Certainly, we would come upwith a better concrete method.

Our objective is to provide a simple, accurate and applicable modeling methodology which
would become the favorite option for researchers and engineers.

2.3 Discussions on the Inspiring Works

Most of the proposed approaches for deriving the kinematicsand dynamics of a parallel
robot suffer from the lack of efficiency - as defined by Kaneet al. -, namely «relative sim-
plicity, ease of manipulation for purposes of designing automatic control systems and minimal
consumption of time during numerical solution» [MK96]. Hence, we shall investigate Kane,
Khalil, and Tsai’s methodologies which have already made important steps forward in impro-
ving efficiency and inspired us to put forward our new control-oriented methodology.

2.3.1 Kane’s Method

With regards to efficiency, Kane has revealed the notion ofgeneralized speedsto increase
the efficiency of expressions [KL85]. Thegeneralized speedsare functions of generalized co-
ordinates (scalar joint values) and their speeds. Their choice is completely arbitrary, and is
usually determined by inspection of the velocities of bodies in a mechanism. A good choice of
generalized speedscan have important effect on the resulting equations. Once their choice is
made, then the methodology proposed by Kane is simply a matter of:

– deriving the mechanism’s kinematics in terms of the generalized coordinates and gene-
ralized speeds;

– computation of all the forces that exist in the mechanism;
– projecting these forces on the directions of motion (i.e.,directions associated to the ge-

neralized speeds) in order to obtain the generalized forces;
– formal calculus (i.e., automatic generation of the model equations).

Kane’s method might be considered as a way of overcoming the difficulties caused by the
inappropriate sensing of the mechanism. However, it seems that this method is still relevant for
modeling purposes and not for control ones when the parallelrobots are considered. Expressed
from the control point of view, this is a matter of defining themost appropriate dynamic state
variables for a parallel robot. It now seems certain that using the actuator positions (independent
set of generalized coordinates) as the static state variables is not necessarily the optimal choice,
because there is usually not a single solution to the forwardkinematic problem. Consequently,

38



using the actuator positions and their velocities as the dynamic state variables is certainly not
the appropriate choice either.

Since the inverse kinematic problem is usually well posed for a parallel robot, a more effi-
cient choice is to use the end-effector Cartesian pose and its velocity as dynamic state variables
since this is usually the operational space. This choice leads to efficient modelsas long as one
is able to measure or estimate the pose and velocity of the end-effector in the Cartesian space.
And here is another loss of efficiency: one can not directly measure in the Cartesian space, so
one has to estimate such variables, either through a mechanism or by optical means (e.g., laser,
vision). The estimation is always a non-linear problem, except for high cost laser trackers.

2.3.2 Khalil’s Method

In addition to Kane, Khalil [KI04] also proposes a methodology which is specific to parallel
robots. His approach has the advantage of intuitively handling the kinematic constraints. To do
so, Khalil expresses the dynamics of a parallel robot from the equilibrium of all forces applied
on the moving-platform. He takes the following steps in his methodology:

– to consider each kinematic leg of a parallel robot as an independent serial robot;
– to write the inverse dynamics of each kinematic leg using all the passive and active joint

coordinates (redundant set of variables);
– to transfer all the efforts of kinematic legs to the moving-platform using their inverse

velocity kinematic models;
– finally, to sum all the forces collected on the moving-platform and then to project the

final total effort onto the active joints.
However, the strong drawback of this method is its loss of efficiency, because it requires

sensing and actuation to be collocated. Moreover, the computation of the dynamics of each
kinematic leg loses its intuitiveness, and it needs computation of the inverse of the forward
velocity kinematic model of a serial kinematic leg because of the balance of all the efforts on
the moving-platform. Yet, as shown in [PAM09], the method becomes extremely efficient when
used together with the end-effector sensing, because it turns out entirely linear. Nonetheless, the
method in [PAM09] is probably not the most efficient one, since, as stated above, the sensing
part of it is "sub-efficient".

2.3.3 Tsai’s Method

In [Tsa99] Tsai formulated the dynamics of parallel robots based on virtual work principle.
This formulation follows the steps below:

– compute the kinematic twist and wrench twosome at the mass center of every link;
– compute the link Jacobians relating the link kinematic twist to the end-effector kinematic

twist.
– finally, express all the virtual works of the links, of the actuators and of the platform, in

the end-effector frame through the computed Jacobians.
Expressing every effort in the end-effector frame with a similar way to Khalil, Tsai easily takes
into account the motion constraints of the closed-loop kinematics. Using virtual work also sim-
plifies writing of the final equations of motion. For application purposes, by MATLAB simula-
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tions, Tsai demonstrated his formulation for the Gough-Stewart platform where the equations
were written based on joint values. However, as stated earlier, for real applications of parallel
robots joint sensing is not enough. Since Tsai’s work was rather for analysis purposes, he did
not put any discussion for the applicability of his method even it looks very intuitive.

The aim of this chapter is thus to investigate further efficient modeling.

2.4 Methodology

In order to reduce the ambiguity in the terminology and in thecontext, we redefine first
the descriptive and then a mathematical language for a robot. Afterwards, we proceed into the
details of the formulation of the proposed methodology.

2.4.1 The Descriptive Language of a Robot

Joint [articulation]: connects two or more units (e.g., a revolute joint).

Link [body, element]: a unit in a connected series of units (e.g.,a bar between the joints).

Limb [kinematic chain, linkage, leg, arm]: a chain of units forming a kinematic chain.

End-effector [active tool tip]: interacts with the environment. In parallel robots, it is so-
metimes incorrectly called a moving-platform, (or a moving-plate). Actually the end-
effector should be considered only as a sub-part of the moving-platform.

2.4.2 A Mathematical Language for a Robot

Every robot is a multi-body system and itsmotion space(i.e., static and dynamic state) can
be described through a set ofvariablesandconstant parameters. These variables consist of the
coordinates of joints, points, vectors fixed within the bodies (e.g., base, legs, moving-platform),
matrices defining the motion constraints of the links, and forces (e.g., actuator forces, inertial
forces, forces of gravity, frictions) acting on the links, while the constant parameters are the
lengths, the masses and the inertias.

2.4.2.1 Variables

Scalars ∈ ℜ1×1: They are represented with small letters and symbols. For example, a distance
between two points can be noted asd, and a rotation angle around an axis withθ.

Joint coordinates ∈ ℜ1×1: An active joint coordinate, q, may represent the angular (radian)
or the distance (meter) measure depending on the type of the joint (revolute or prismatic).

Points & Position Vectors ∈ ℜ3×1: They are represented with boldface capital letters, such
as:O, P, A, B, C, E and so on. TheO andE denote the respective origins of the base
and the end-effector frames.

Vectors ∈ ℜr×1: They are denoted with boldface small letters. For instance, a translational
displacementt. In addition unit vectors are underlined, such as the directions of a frame
axesx, y, z.

Matrices ∈ ℜr× c: They are represented with capital letters, such as the M, N,V and so on.
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Frames : A frameis a set of3 orthogonal unit axes (x,y, z) fastened to a reference point which
uniquely determines (with real numbers) the position and the orientation of a body. It is
noted asF point = { point, x point, y point

, z point }. For example, the base and end-

effector frames, which exist in every robot, will be noted asF o = {O, x o, y o
, z o }

andF e = {E, x e, y e
, z e }, respectively. Thex axis of a body frame is always orien-

ted in lengthwise direction of the body.

Poses∈ SE(3): A poseof a frame can be represented either as ar×c matrix or an×1 column
array. The representation of the pose of a frame will be notedwith X point regardless of
whether it is a matrix or a column array. The difference between a matrix and a column
array representations will be made known by definingX point as the element ofℜr×c or
ℜn×1, respectively. For example, in the context, the representation of the pose of a frame
located at pointA will be defined asX a. Only the representation of the pose of the end-
effector frame, which is located at pointE, will be noted asX without a sub-script for
the simplicity of the notation.

Mass centers∈ ℜ3×1: They are denoted withSpoint. For instance, the mass center of a link
attached to an articulation pointP will be noted asSp.

Velocities : They are noted with a dot (˙) over the variables. For example, velocity of a mass
center isṠ, velocity of a joint coordinate iṡq, velocity of a unit vector iṡx.

Accelerations : They are shown with double dot (¨) over the variables. For example, accele-
ration of a mass center is̈S, acceleration of a joint coordinate is̈q, acceleration of a unit
vector isẍ.

Active & Reactive Forces : A force will be noted with smallf letter and a force vector with
small boldfacef letter. Active forces are efforts of the linear motors and forces of gravity
of the bodies. In order to express a specific active force (or aforce vector), a subscript
will be added tof (or f ), e.g., a gravity force vector will befg. On the other hand,
reactive forces are inertial and frictional forces. An inertial force (force vector) will be
expressed withf∗ (f∗). A frictional force (force vector) will be noted with̄f (̄f ).

Active & Reactive Torques : A torque will be noted withτ letter and a torque vector with
boldfaceτ letter. Active torques are the efforts of the rotary motors.On the other hand,
reactive torques are inertias and frictions. An inertial torque (torque vector) will be ex-
pressed withτ∗ (τ ∗). A frictional torque (torque vector) will be noted with̄τ (τ̄ ).

Note: All the variables are expressed in a single fixed reference frame (e.g., a camera frame,
or the robot base frame). The relative velocities of these variables are also expressed with
respect to this same fixed reference frame.

2.4.2.2 Constant Parameters

Length : ℓ shows the length of a body.

Mass : m expresses the mass of a body.

Gravity constant : g is the constant gravity acceleration vector of the Earth.1

1. If the robot is mobile, then the direction of the gravity vector with respect to robot’s base frame may change.
If the robot is on another planet (e.g., moon), then the magnitude of the gravity vector changes too.
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Inertia 2: Ix, Iy, Iz are the principal moments of inertias of a body.

2.4.2.3 Motion Space

State Variables [Kane’s generalized coordinates]: a chosen set of variables used to define the
positions, velocities, accelerations and forces of all thelinks in the mechanism. These
variables can be either an independent set or a redundant set.

Motion Basis [Kane’s generalized speeds]: a chosen set of variables (i.e., scalars, vectors,
functions) whose linear combination expresses the motion of the mechanism. Normally,
a basis in linear algebra is a set of linearly independent vectors in the same space, but
here we let it also be a dependent set of non-homogenous variables for simplicity of the
equations. Hence, in our context, a motion basis is either a set of independent (minimal)
variables or a set of dependent (redundant) variables.

Motion Constraints [Change of Motion Basis]: map the motion of the mechanism expressed
in a redundant motion basis into the minimal motion basis made of actuator axes.

Kinematic Coordinates [Kane’s partial velocities]: express the velocity of the mechanism in
a given motion basis. The kinematic coordinates of the velocity of a mechanism are the
partial derivatives of its kinematic equations with respect to the motion basis compo-
nents.

Dynamic Coordinates [Kane’s generalized forces]: define the dynamic equilibrium of the me-
chanism in a given motion basis. They are computed from the active and reactive forces
of all the links in the mechanism.

2.4.3 Proposed Modeling Formulation

The methodology we propose here supposes that there is no restriction on the variable set
selection needed for modeling, and suggests that the selected state variables should fulfil as
much as possible the following criteria:

– Algebraicity: ability to be solved simply with formal tools, such as linear algebra;
– Completeness: ability to represent fully both kinematics and dynamics;
– Sensibility: ability to be perceived directly by physical sensors;
– Readability: ability to allow for a good and easy understanding of the model;
– Codability: ability to be implemented easily on a computer;

so that thesimplicity, the geometric intuitivenessand thenumerical efficiencyrequested by
Kane can be kept on the final expressions. The procedure whichlongs for these expressions
passes through the following steps:

Decomposition : We decompose the parallel robot into its simplest possiblerectilinear parts:
the kinematic elements of the kinematic legs and the moving-platform.

Choosing State Variables: We represent the states of these parts with aredundant set of
variables: orientation unit vectors of the kinematic elements, the actuator coordinates,
etc., so that expressions are compact and linear.

2. Sometimes the mass center can move with respect to its bodyframe, then the inertia is not constant anymore.
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Choosing a Motion Basis : We select aredundant motion basisand derive the motion constraints
between the passive (i.e., unactuated) and active (i.e., actuated) variables of this basis.

Computing the Coordinates : We compute the kinematic and dynamic coordinates of the
mechanism from each of the decomposed kinematic elements.

Writing Equations of Motion : We combine all the dynamic coordinates with the motion
constraints and then write the finalequations of motionof the parallel robot.

Note that we do not put any constraint on theminimality (which is inherited from serial
robots), contrarily we allow forredundancy.

In the light of d’Alembert’s principle of virtual work, the equations of motion (i.e., dynamic
equilibrium) take the following form:

(
Dynamic

Coordinates

)T (
Redundant

MotionBasis

)
= 0 (2.1)

which implies that the sum of all the exerted efforts on the defined redundant motion basis
should vanish. This can be rewritten in terms of the minimal motion basis (i.e., actuation space)
through the motion constraints (i.e., change of basis) as below:

(
Dynamic

Coordinates

)T ((
MotionConstraint
Transformations

)(
Minimal

MotionBasis

))
= 0 (2.2)

since the above system is defined at minimal motion basis, then it deduces to the following
final form: (

MotionConstraint
Transformations

)T (
Dynamic

Coordinates

)
= 0 (2.3)

where the dynamic coordinates (i.e., generalized forces) are written as follows:
(

Dynamic
Coordinates

)
=

(
Kinematic
Coordinates

)T ((
Active
Forces

)
+

(
Reactive
Forces

))
(2.4)

and where the kinematic coordinates express velocities of kinematic elements, namely the ve-
locity of the whole mechanism:

(
Mechanism
V elocity

)
=

(
Kinematic
Coordinates

)T (
Redundant

MotionBasis

)
(2.5)

Theorem 1 [Linear Implicit Dynamic Model]: Let geometric parameters, dynamic parame-
ters, positions, velocities, and accelerations of a mechanism be known, then a linear implicit
dynamic model (LImplDM) for this mechanism can be written asfollows:

AΓ + b = 0 (2.6)

where matrixA is dependant to mechanism configuration and it relates the unknown force vec-
tor Γ of the actuators to the contributing effortsb of the kinematic elements of the mechanism.

In the following subsections, we go into details of the steps(decomposing a robot to its
simplest parts, choosing state variables and a motion basis, deriving the motion constraints,
etc.) of the proposed modeling formulation and we prove the Theorem 1.
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A little note on “cross-product": We will use the cross-product frequently in our equations
for two purposes:

– (i) to produce a third perpendicular vector to a plane defined by given two independent
vectors (e.g., so as to form an orthogonal basis);

– (ii) to compute rotational velocity and acceleration of a body (e.g., motion of a link
attached to a revolute joint);

Symbolically cross-product is implied by “×" operator which takes left-hand and right-hand
operands to its sides. Leta = [ax, ay, az]

T ,b = [bx, by, bz]
T andc = [cx, cy, cz]

T be vectors
of 3 dimensional (3D) vector spaceℜ3, and where the cross-product ofa andb is c. Thus, one
can write:

a × b = c (2.7)

Equation (2.7) is just a mathematical notation of the cross-product which corresponds to:

cx = aybz − azby
cy = azbx − axbz
cz = axby − aybx

(2.8)

The weird calculations in above equations may mislead one tosuppose that the cross-product
is a non-linear operator. However, in (2.7), the cross-product is a linear map disguising itself as
a vector. One can rewrite (2.7) as follows:

[a]× b = c (2.9)

where{ [a]× : ℜ3 −→ ℜ3 | [a]× ∈ SO(3) } is a linear function of infinitesimal rotation group
which maps vectorb to vectorc in 3D Euclidean space:

[a]× =




0 −az ay
az 0 −ax
−ay ax 0


 ∈ ℜ3×3 (2.10)

In our expressions, we will use the first written style shown in (2.7) for the simplicity of nota-
tion, and the second written style shown in (2.9) for the algebraic manipulation consistency of
equations.

2.5 New Construction « Kinematic Element » Definition

A robot can be broken down into its basic primitives as below:

(robot) : ( { base platform } ∪ { limb(s) } ∪ { end− effector } )

(base platform) : ( { link(s) } )

(limb) : ( { joints } ∪ { links } )

(end− effector) : ( { link } ) (2.11)

where each of{ joints } can be either active or passive.Roughly speaking, a robot is a set
of static and moving bodies. Our objective is here to homogenize the theoretical construction
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of a robotic mechanism by defining a single basic structure. We will call this basic structure
as akinematic element. Here, akinematic elementis an elementary rectilinear sub kinematic
chain which contains both joint(s) and link(s), and consequently which has mobilities. In the
light of the rough definition of a robot, thesekinematic elementswill replace the static and
moving bodies. The definition of akinematic elementis built upon rigid-body assumption of
its primitive components (e.g., links, joints). That is to say, the external forces exerted on a
component of thekinematic elementdo not cause any deformation, or any given two points
in the component preserve their distance. A rigid-body robotic mechanism can be thus simply
redefined as follows:

(robot) : { (kinematic element)1 , . . . , (kinematic element)n } (2.12)

Tej Dallej in his Ph.D. thesis [Dal07] has roughly employed the “kinematic element" termino-
logy for the last link of a kinematic chain of a parallel robotin order to propose a framework for
the modeling and control of parallel robots at kinematic level. However, in [Dal07] a “kinema-
tic element" was never fully formalized. On the other hand, here, we will give a mathematical
model of akinematic elementwhich is intuitive and empiric. Furthermore, we are interested
not only with the kinematics but also with the dynamics of this kinematic element. In the next
subsections, we briefly recall some basic primitives and go into details of the definition of such
akinematic element.

Note: In IFToMM dictionary (standardization of terminology of machine and mechanism
theory), the term “element” has already been defined as a solid body or a fluid component of
a mechanism [Ion03]. Here, we augmented this term with the adjective “kinematic” to express
our new basic structurewhich has various mobilities. For the time being, we could not find a
better name.

2.5.1 Construction Primitives

2.5.1.1 Joints

The mobility of the links of a robot are defined by these joint types:
– Revolute: Rotates around an axis (1 dof). It is noted by (R).
– Universal: Rotates around two axes (2 dof). It is noted by (U).
– Spherical: Rotates around three axes (3 dof). It is noted by (S).
– Prismatic: Slides on a direction (1 dof). It is noted by (P).
– Parallelogram: Translates in three axes (3 dof). It is noted by (Pa).

We note that a parallelogram actually is a mechanical structure composed of links and joints.
The reason why we included it here is because another link canbe firmly fastened to such a
parallelogram, and here we consider the parallelogram linkas a pseudo-joint.

2.5.1.2 Links

The base platform, the limbs (so-calledarmsor legs) and the end-effector of a robot are
formed by a set of links (rigid bodies). Links are connected to each other with previously
mentioned joint types and move interactively with respect to the mobility given by these joints.
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2.5.2 Geometric Representation of a « Kinematic Element »

Here, we propose to model the geometric state of akinematic elementaccording to its
mobilities which are generated by the interactions with other kinematic elementsand by the
joints exist in itself. So, we suppose that akinematic elementcan haveextrinsicand intrinsic
mobilities.

The extrinsic mobility can exist due to the connection joint(s) at the input articulation point
of a kinematic element, and it can be noted as follows:

(extrinsic mobility joints) :∈ {∅, (R), (U), (Pa) } (2.13)

We define the state of the extrinsic mobility as below:

(extrinsic mobility state) : {A, x } (2.14)

whereA is the input articulation point andx is the3D unit direction vector of thekinematic
elementrepresenting the pose sourced from the angular position(s)of the revolute, universal,
spherical or parallelogram type joints.

The intrinsic mobility can exist due to the implanted joint(s) inside of akinematic element,
and it can be noted as follows:

(intrinsic mobility joints) :∈ {∅, (P), (R) } (2.15)

We define the state of the intrinsic mobility as below:

(intrinsic mobility state) : {∅, d, θ } (2.16)

where∅, d andθ denote nothing (when there is no intrinsic mobility), the implanted prisma-
tic joint coordinate (elongation alongx) and the implanted revolute joint coordinate (twisting
aboutx), respectively. An implanted prismatic joint elongates orcontracts thekinematic ele-
mentalong its directionx. Similarly, an implanted revolute joint rotates thekinematic element
around itself, namely aroundx (see Fig. 2.1). Thus, a generic geometric representation ofa
kinematic elementcan be described as follows:

(geometric state) : {A, x, d, θ } (2.17)

Analogy 1 Chasles’ theorem [Cha30] states that any rigid body displacement can be reduced
to a canonical form, where the displacement is achieved by a rotation (θ) around a geometric
line L and a translation (d) along the same lineL.

This implies that a kinematic element, which uses the same geometric variables for its state
(see Fig. 2.1), can be considered as a physical (visually concrete) representation of the canonic
displacement between its connection points with the previous and next kinematic elements in the
chain. LetA andB be the connection points at the tips of a kinematic element (not necessarily
on the direction axis), then the displacement fromA toB can be represented as follows:

B = A + dx + r(θ) (2.18)
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Figure 2.1 –A kinematic element and its geometric state variables: the input joint centerA, the unit 3D direction
vectorx, the lengthd and the rotation angleθ around its direction vector.B is the output joint center.

wherer is a vector which is a function of the rotation parameterθ. Usually, these connection
points are designed to lie on the direction axis (or an axis parallel to the direction axis) of an
element so that‖r‖ ≈ 0, thus (2.18) appears in this way:

B = A + dx (2.19)

this helps keep the expressions simple. Consequently,θ does not have any effect on the position
of the output articulation point (B) of the element. Ifθ is not an internal mobility 3 of the
mechanism, then it does influence the direction axis of the next kinematic element in the chain.

Below, we give examples for the4 most common types ofkinematic elementsthat exist in
parallel robots:

Bar Type [B] A kinematic element which has only extrinsic mobility. It moves under the
influence of one or more joints, which can be revolute joint, or universal joint, or a
combination of revolute and universal joints, or parallelogram pseudo-joint. Hence, we
write its geometric state as follows:

(bar state) : {A, x }︸ ︷︷ ︸
varying

∪ { d, θ }︸ ︷︷ ︸
constant

(2.20)

whereA is the varying input point andx is the varying3D direction unit vector of the
kinematic element. They vary due to the interactions with other kinematic elements and
extrinsic joints of the kinematic element.d andθ are the constant length and angular
rotation coordinate of the kinematic element, respectively. In some cases, there might

3. Internal mechanism mobility: a redundant motion which does not change the geometric configuration of the
mechanism.
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be a rotation around the direction vectorx, then its geometric state can be rigorously
rewritten as(A, x, θ ) by replacingθ from constant part to the varying part of the state
representation in (2.20). However, we note that in most of the parallel robots this rotation
θ is passive (i.e., internal mechanism mobility) and does noteffect the orientation of
the next kinematic element in the chain. Therefore, the geometric state of abar type
kinematic element will be considered only as its input pointA and its unit direction
vectorx without a rotation. For instance, a parallelogram link, whose rotation around
its lengthwise direction is restricted, perfectly fits intothis bar type kinematic element
representation. Thebar kinematic elementis the most common type and exists almost in
every parallel robot.

Spindle Type [Sp]A kinematic element which has an extrinsic mobility with an active rotation
around its direction vector, or an extrinsic mobility plus an intrinsic mobility with an
implanted revolute joint. Thus, we write its geometric state as follows:

(spindle state) : {A, x, θ }︸ ︷︷ ︸
varying

∪ { d }︸︷︷︸
constant

(2.21)

whereθ is the varying angular coordinate of the rotation due to active extrinsic joints and
implanted intrinsic revolute joint. One can find some spindle type kinematic elements in
Zlatanov’s 3-URU DYMO parallel mechanism [ZBG02].

Telescopic Type [T ] A kinematic element which has extrinsic mobility and as wellas intrinsic
mobility due to an implanted prismatic joint. For instance,this telescopic typekinematic
element exists in a Gough-Stewart parallel robot. Its geometric state is as follows:

(telescopic state) : {A, x, d }︸ ︷︷ ︸
varying

∪ { θ }︸︷︷︸
constant

(2.22)

whered is the varying metric coordinate of the implanted prismaticjoint, and it also
corresponds to the length of the kinematic element.

Screw Type [Sc] A kinematic element which has an extrinsic mobility and as well as an in-
trinsic mobility due to the implanted active prismatic and revolute joints. The fourth leg
of the Delta parallel robot (i.e., the one that gives a rotation to the end-effector) can be
considered as an example of thisscrew typekinematic element. Its geometric state is
written as follows:

(screw state) : {A, x, d, θ }︸ ︷︷ ︸
varying

(2.23)

One can imagine other types and can easily define their stateswith the concept given in these
examples.This is a non-minimal representation, but nonetheless it allows one to write the
equations in a compact and linear fashion.

Remark: Given the base connection point of a kinematic chain, one canexpress any point
(e.g., an input articulation pointA of a kinematic element) along this kinematic chain in terms
of only the{x, d, θ } variables of the kinematic elements belong to the this kinematic chain.
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2.5.3 Dynamic Representation of a « Kinematic Element »

Dynamic state of a kinematic element can be defined with:

(dynamic state) : {A,x, d, θ } ∪ {m, I, S, Ṡ, S̈, Ȧ, ẋ, ḋ, θ̇, Ä, ẍ, d̈, θ̈ } ∪

{ fg, f
∗, τ ∗, τx, τ

∗
x, τ̄x, fd, f

∗
d , f̄d, τ θ, τ

∗
θ, τ̄ θ }

(2.24)

which contains:
– (i) intrinsic dynamic parameters and higher-order kinematics:

– its massm and its central inertia dyadicI;
– its mass center position, velocity and acceleration:S, Ṡ andS̈;
– the velocities of its geometric state variables:Ȧ, ẋ, ḋ, θ̇;
– the accelerations of its geometric state variables:Ä, ẍ, d̈, θ̈;

– (ii) forces and torques:
– its gravity forcefg;
– its body inertial forcef∗ and inertial torqueτ ∗;
– an active extrinsic torqueτx of an extrinsic rotary actuator that turns the kinematic

element aroundz axis of its body frame, where

y = ẋ / ‖ẋ‖ , ( ẋ ⊥ x ) , z = x × y (2.25)

and as well as the inertial torqueτ ∗
x and the frictional torquēτx of this rotary actuator;

– an active intrinsic forcefd which elongates or shortens the kinematic element along
its directionx, and as well as the inertial forcef∗d and frictional forcēfd of this active
prismatic joint;

– an active intrinsic torqueτ θ of an intrinsic rotary actuator that turns the kinematic
element around its directionx, and as well as the inertial torqueτ ∗

θ and frictional
torqueτ̄ θ of this intrinsic rotary actuator;

2.6 Kinematics of a « Kinematic Element »

2.6.1 Positions

The output articulation point (the end point)B of the kinematic element can be computed
by using its state parameters and its articulation input point A (the initial point) as follows:

B = A + dx (2.26)

and the mass centerS of a kinematic element can be written as follows:

S = A + xx + e (2.27)

wherex is the projection coordinate of the mass center onto the direction vectorx of the
kinematic element, ande is a vector representing the eccentricity of the mass centerto the
direction axisx of the kinematic element (e⊥x). If the kinematic element is axis-symmetric
and it has a uniform mass distribution alongx, thenx ande become:

x =
d

2
, e = 0 (2.28)
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2.6.2 Translational Velocity and Acceleration

The translational velocities of a kinematic element are as follows:

Ḃ = Ȧ + ḋx + d ẋ (2.29)

Ṡ = Ȧ + ẋx + x ẋ + ė (2.30)

where, thanks to rigidity,
ė = θ̇ x × e (2.31)

The translational accelerations of a kinematic element areas follows:

B̈ = Ä + d̈x + 2 ḋ ẋ + d ẍ (2.32)

S̈ = Ä + ẍx + 2 ẋ ẋ + x ẍ + ë (2.33)

where
ë = θ̈ (x × e) + θ̇ ((ẋ × e) + (x × ė)) (2.34)

If a kinematic element ishomogenous, symmetricand has aconstant length, then its translatio-
nal velocities and accelerations can be represented as follows:

Ḃ = Ȧ + d ẋ , B̈ = Ä + d ẍ (2.35)

Ṡ = Ȧ + x ẋ , S̈ = Ä + x ẍ (2.36)

2.6.3 Rotational Velocity and Acceleration

Lemma 1 The rotational velocity of a kinematic element, expressed in a fixed reference frame
with respect to the same fixed reference frame, can be directly written with its unit direction
vector, the velocity of it and the angular velocity of a kinematic element around its unit direction
vector:

ω = x × ẋ + θ̇ x (2.37)

Proof of Lemma 1: The velocity of a kinematic element’s unit direction vector, subject to an
arbitrary rotational velocityω, is governed by the following equation:

ẋ = ω × x (2.38)

The arbitrary rotational velocityω can be written as follows:

ω = q̇ z q (2.39)

whereq̇ is the angular velocity of a kinematic element around an arbitrary instantaneous unit
vectorz q. Then, substituting (2.39) into (2.38) yields:

ẋ = ( q̇ z q ) × x (2.40)
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Expressingz q in terms of the kinematic element’s frame vectors{x, y, z } as below:

z q = ax + by + c z (2.41)

then (2.40) is rewritten as follows:

ẋ = ( a q̇ x + b q̇ y + c q̇ z ) × x (2.42)

which simplifies into:
ẋ = − b q̇ z + c q̇ y (2.43)

If (2.43) is cross-producted from the left hand side withx, it yields:

x × ẋ = b q̇ y + c q̇ z (2.44)

and by adding the term (a q̇ x ) to the both sides of (2.44), we end up with:

a q̇ x + x × ẋ = ω (2.45)

which can be deduced to:
θ̇ x + x × ẋ = ω (2.46)

The term (̇θ x) corresponds to the rotation of the kinematic element around itself and the term
(x × ẋ) corresponds to the rotation component which changes the directionx. �

Remark: In cases where the kinematic element has an extrinsic mobility influenced only by
a revolute joint (R) and an intrinsic mobility without a revolute joint (R), the rotation of this
kinematic element around itself is not possible and the rotational velocity can be written as
follows:

if (extrinsic mobility joint) = (R) & (intrinsic mobility joint) 6= (R), then

ω , x × ẋ

(2.47)
as long as rigidity is preserved.

In some other cases, even if the kinematic element turns around itself (due to universal or
spherical joints), this does not change the configuration ofthe mechanism that it exists in (i.e.
just creates an internal mechanism mobility). Then, the term (θ̇ x) is useless and can be dropped
while expressing the rotational velocity of this kinematicelement.

Thus, the rotational acceleration of a kinematic element can be then written regarding (2.37)
as below:

ω̇ = x × ẍ + θ̈ x + θ̇ ẋ (2.48)

2.7 Dynamics of a « Kinematic Element »

Disturbing a kinematic element with some active forces (e.g., contact forces, distance
forces, actuator torques/forces) will cause reactive inertial forces (linear and angular momen-
tums) and frictional forces. In the following subsections,we will explore these forces in detail.
The reader is referred to Section 2.5.3, if needs to rememberthe dynamic state variables of a
kinematic element.

51



2.7.1 Active Forces and Torques

2.7.1.1 Forces and Torques of Actuators

We write the actuator force/torque vectors (fd, τx, τ θ), which can exist in a kinematic
element, as follows:

fd = fd x , τx = τx z , τ θ = τθ x (2.49)

wherefd is the intrinsic translational force of a kinematic elementdue to the intrinsic active
prismatic actuator whose orientation is along the direction (x) of the kinematic element;τx is
the extrinsic torque of a kinematic element due to the activerotary actuator whose rotation axis
is z and whose rotating kinematic element is oriented alongx; τθ is the intrinsic torque of a
kinematic element due to the intrinsic active rotary actuator whose rotation axis isx and whose
self-rotating kinematic element is oriented alongx.

2.7.1.2 Force of Gravity

Afterwards, the active force of gravity (fg), which is assumed to act at the center of mass
of a kinematic element, is given as below:

fg = mg (2.50)

wherem is the mass of the kinematic element andg is the gravity acceleration vector oriented
towards the center of the Earth.

2.7.2 Reactive Forces and Torques

2.7.2.1 Inertial Forces and Torques

Inertial forces and torques will appear at a kinematic element due to its accelerated matter
inertia and mass. These inertial forces and torques offer resistance to change of motion of the
kinematic element.

Inertial Forces and Torques of Actuators: The rotary actuator inertial torqueτ ∗
x, which

appears due to the extrinsic torqueτx, can be written as follows:

τ ∗
x = −Iz (q̈ z) = −Iz (x × ẍ ) (2.51)

whereIz is the rotary inertia of the actuator around thez axis andq̈ is the angular acceleration
of the actuator. The rotary actuator inertial torqueτ ∗

θ, which appears due to the intrinsic torque
τ θ, can be written as below:

τ ∗
θ = −Ix (θ̈ x) (2.52)

whereIx is the rotary inertia of the actuator around thex axis andθ̈ is the angular acceleration
of the actuator. The linear actuator inertial forcef∗d can be written as follows:

f∗d = −md d̈x (2.53)

wheremd is the mass moved inside the kinematic element by the linear actuator andd̈ is the
linear acceleration coordinate of this linear actuator.
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Body Inertial Force and Torque: The accelerated matter mass and inertia of the kinema-
tic element produce the inertial force and torque. The inertial force and torque (f∗ , τ ∗) of a
kinematic element can be calculated with the Newton-Euler equations:

f∗ = −m S̈ , τ ∗ = −I T ω̇ − ω × (I T ω) (2.54)

wherem, S̈, I andω are the mass, the translational acceleration vector of the mass center, the
central inertia dyadic and the rotational velocity vector of the kinematic element, respectively.

2.7.2.2 Frictional Forces and Torques

Frictional forces/torques (f̄d, τ̄x, τ̄ θ) will appear at the joint locations of a kinematic ele-
ment due to its relative mobility. A frictional force/torque offers resistance on the motion of
a kinematic element. The extrinsic frictional torque of a rotating kinematic element can be
calculated as follows:

τ̄x = −
(
τ̄v(x) q̇ + τ̄c(x) sign(q̇)

)
z = − τ̄v(x)ω − τ̄c(x) sign(ω

T z ) z (2.55)

whereτ̄v(x) andτ̄c(x) are the viscous and Coulomb friction coefficients of the extrinsic joint (q)
of the kinematic element;ω is the relative rotational velocity vector between the extrinsic joint
and the rest of the kinematic element; andz is the axis of rotation of the kinematic element.
The intrinsic frictional torque of a self-rotating kinematic element can be calculated as follows:

τ̄ θ = −
(
τ̄v(θ) θ̇ + τ̄c(θ) sign(θ̇)

)
x (2.56)

where τ̄v(θ) and τ̄c(θ) are the viscous and Coulomb friction coefficients of the intrinsic joint
(θ) of the kinematic element whose orientation is alongx. The intrinsic frictional force of an
intrinsically translating kinematic element can be calculated as below:

f̄d = −
(
f̄v(d) ḋ + f̄c(d) sign(ḋ)

)
x (2.57)

wheref̄v(d) andf̄c(d) are the viscous and Coulomb friction coefficients of the intrinsic transla-
tional joint (d) of the kinematic element whose direction isx.

2.8 Physical Formation of a Parallel Robot

Here, we homogeneously define the physical formation of a parallel robot through this new
constructionkinematic element.

2.8.1 A Base Platform

A base platformis composed of base element(s) and its formation can be notedas follows:

(base platform) : { (base element)1, . . . , (base element)k } (2.58)

with k ≥ 1 and where a base element is a kinematic element without motion.
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2.8.2 A Kinematic Leg

A kinematic legis a chain of consecutive kinematic elements and it can be formed as
follows:

(kinematic leg) : { (kinematic element)1, . . . , (kinematic element)j } (2.59)

wherej is the number of kinematic elements, whose value may be different in another kinema-
tic leg of the parallel robot.

2.8.3 Nacelle

A nacelle is made of an articulated set of nacelle elements. The form of a nacelle can be
defined as follows:

(nacelle) : { (nacelle element)1, . . . , (nacelle element)n } (2.60)

wheren is number of nacelle elements. One of these nacelle elementsis the moving platform,
or if n = 1, then the nacelle itself is the moving platform. Therefore,a moving platform is
made of a single nacelle element. The moving platform can be always a nacelle element, but
any nacelle element is not necessarily the moving platform.Hence, the moving platform can
be defined as below:

(moving platform) : {nacelle element } (2.61)

where a nacelle element is a kinematic element. A parallel robot can have either a nacelle or
only the moving platform. If a nacelle exists in a parallel robot, then it is attached to all of the
kinematic legs, and its moving platform carries a payload. Otherwise, when the nacelle does
not exist, then the moving platform is directly attached to all of the kinematic legs, and it carries
the payload.

2.8.4 A Parallel Robot

A parallel robot is composed of a base platform,k kinematic legs and a nacelle. Its forma-
tion can be written as follows:

(parallel robot) : { (base platform),




(kinematic leg)1
...

(kinematic leg)k


 , (nacelle) } (2.62)

2.9 Distribution of Nacelle Dynamics

Here, the distribution of nacelle dynamics has not yet been solved completely. We try,
however, to give some solutions for this problem.

If the nacelle of a parallel robot has equal number of nacelleelements with the number of
kinematic legs, then the dynamics of nacelle can be shared such that a kinematic leg contains
an additional nacelle element. Otherwise, if the nacelle ofa parallel robot has different number
of nacelle elements than the number of kinematic legs, then we show how to treat this case by
examples in the following subsections.
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2.9.1 Moving Platform Distribution

In order to share equally the dynamics of the moving platformby each of the kinematic legs
of the parallel robot, we will divide the moving platform into k virtual platform elements in the
sense of inertia and mass. The number of virtual platform elements is equal to the number of
kinematic legs. So, the new form of the moving platform can bewritten as below:

(moving platform) : { (virtual platform element)1, . . . , (virtual platformelement)k }
(2.63)

where a virtual platform element is a kinematic element witha virtual mass and a virtual inertia.

Mass Distribution: The massm of the moving platform of the Gough-Stewart parallel robot
can be divided into6 point masses (i.e.,m/6). These point masses are concentric and located at
the same position with the moving platform’s real mass center. Figure 2.2 illustrates the mass
distribution of the Gough-Stewart parallel robot’s movingplatform.

Figure 2.2 –(Left): The moving platform of the Gough-Stewart parallel robot. The black circle is the mass center
of the platform. (Right): The moving platform with6 point masses. These point masses are concentric and located
at the same position with the moving platform’s real mass center.

Inertia Distribution: For example, let the inertia of the moving platform of the Gough-
Stewart parallel robot beI. This inertia is calculated about a frame which is fixed at themass
center of the moving platform. This moving platform can be divided into6 virtual pieces such
that each kinematic leg of the Gough-Stewart parallel robotcan be augmented with one of these
pieces. Then, let the inertias of these pieces, calculated again about the same frame which is
fixed at the mass center of the moving platform, beI1, I2, I3, I4, I5 andI6. Then, we can
write the total inertia of the moving platform in terms of theinertias of the virtual pieces as
follows:

I =

6∑

i=1

Ii (2.64)

Figure 2.3 illustrates the inertia distribution of the Gough-Stewart parallel robot’s moving plat-
form.

55



Figure 2.3 –(Left): The moving platform of the Gough-Stewart parallel robot and its inertia calculated about a
given frame. The white circles are the connection points of the kinematic legs. (Right): The6 virtual pieces of the
moving platform and their inertias calculated around the same frame.

Example of a Distributed Moving Platform: Figure 2.4 shows how the Gough-Stewart
parallel robot’s moving platform can be split into6 virtual platform elements. The masses of
these virtual platform elements are assigned to bem/6 as explained in the mass distribution
subsection, and their inertias are assigned to beI1, I2, I3, I4, I5, I6 as explained above in the
inertia distribution subsection.

Figure 2.4 –(Left): The moving platform of the Gough-Stewart parallel robot. The white circles are the connec-
tion points of the kinematic legs, and the black circle is themass center of the platform. (Right): The distributed
moving platform with6 virtual platform elements. The massm of the platform is shared by six of the virtual
platform elements equally (i.e.,m/6). Their mass centers are concentric and located at the same position with the
moving platform’s real mass center. The inertiaI of the platform is shared by these virtual platform elements(i.e.,
I = I1 + . . .+ I6).

Remark:Since the moving platform is rigid, any virtual platform element’s rotational velo-
city is always equal to the real moving platform’s rotational velocity. Thus, total dynamics of
all the virtual elements will be also equal to the dynamics ofthe moving platform.
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2.9.2 Nacelle Distribution

Figure 2.5 shows an example of the H4 parallel robot’s nacelle. Its nacelle is composed
of 3 articulated nacelle elements while it has 4 kinematic legs. The moving platform (i.e.,
one of the nacelle elements) of the nacelle of H4 parallel robot is located in the middle of
the two parallel nacelle elements and connects them with revolute joints. The parallel nacelle
elements have only translational motion, therefore they donot have inertias. However, their
relative motion turns the moving platform (i.e., the middlenacelle element) and thus the moving
platform has an inertiaI. Each of the parallel nacelle elements can be divided into 2 virtual
nacelle elements so that we have a virtual nacelle element per kinematic leg. The kinematic
legs are now augmented with these virtual nacelle elements up to the connection points of the
moving platform. We can divide also the moving platform of the H4 parallel robot into4 virtual
platform elements in a similar way as explained in the previous section for a Gough-Stewart
parallel robot’s moving platform. So, the inertiaI of the moving platform is shared by4 virtual
platform elements whose inertias areI1, I2, I3 andI4. Note that the inertiaI of the moving
platform should be recalculated at each iteration (or anytime its configuration changes) before
sharing it among the virtual platform elements.

Figure 2.5 –(Left): The nacelle of the H4 parallel robot. It is composed of 3 articulated nacelle elements and
it has4 kinematic legs. The white circles are the connection pointsof the kinematic legs, and the black circles are
the mass centers of the nacelle elements. (Right): The reconstruction of the nacelle with8 virtual nacelle elements.
The mass of each nacelle element is shared equally by virtualnacelle elements. The mass centers of these virtual
kinematic elements are concentric and located at the same positions with the nacelle elements’ real mass centers.
The inertiaI of the moving platform is shared by4 virtual platform elements (i.e.,I = I1 + I2 + I3 + I4).

For the other types of nacelles, one can use a similar conceptto share equally the masses
and the inertias of the nacelle elements to the each of the parallel robot’s kinematic legs. Finally,
we remark that there is still some work to do to formalize completely the nacelle dynamics.

2.10 Sate Variables and Motion Basis of a Parallel Robot

2.10.1 State Variables

Instead of writing the geometric relations and the motion ofa mechanism in terms of the
independent number (nq) of generalized scalar coordinates{q1, . . . , qnq} (i.e., active joint va-
lues), we break out of the customary routine and we express the geometric relations and the
motion with the unit direction vectors of all (nke) kinematic elements{x1, . . . ,xnke

}, the va-
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rying lengths of these kinematic elements{d1, . . . , dnke
}, and the self-rotation angles around

the unit directions of these kinematic elements{θ1, . . . , θnke
}. That is to say, we use a redun-

dant set of variables (5nke ≫ nq) and we express equations in a vector form wherever possible
rather than in a scalar form.

2.10.2 Motion Basis

Choosing a motion basis, different from the first order derivatives of the independent gene-
ralized coordinates{q̇1, . . . , q̇nq} of a robot, was proposed for the first time by Kane which is
named asgeneralized speeds. Traditionally, in Kane’s method the generalized speeds,ur, are
defined (still as scalars) as functions of the derivatives ofa minimal set ofnq generalized scalar
coordinates{ q1, . . . , qnq}:

u r ,

nq∑

i=1

yri q̇ i + zr , r = 1, . . . , nq (2.65)

whereyri andzr are functions of{ q1, . . . , qnq} and the timet. The choice of these functions
in (2.65) should yield a unique solution for{q̇1, . . . , q̇nq} [KL85].

Since the redundant set of state variables that we proposed,

{x 1, . . . ,xnke
} , { d1, . . . , dnke

} , { θ1, . . . , θnke
} , (2.66)

compactly represents the configuration of the mechanism andlinearizes the expressions, the
choices of the generalized speeds appear spontaneously themselves. So (without needing to
inspect the expressions), we define directlythe motion basisas the time derivatives of the
redundant set of motion variables of (2.66):

u xi , ẋ i udi , ḋi uθi , θ̇i i = 1, . . . , nke (2.67)

Namely,yri = 1 andzr = 0 in (2.65).
This definition preserves the geometric intuitiveness of the mechanism and eases the follo-

wing of equations.

2.11 Kinematics of a Parallel Robot

To give the notion clearly in the rest of the context, from time to time we will refer to
a simple2 degrees of freedom (dof) five-bar mechanism which is a RRR-RR structure planar
parallel robot. Figure 2.6 illustrates this2 dof five-bar mechanism. Regarding defined kinematic
element types, a kinematic leg of this robot is composed of two consecutivebar typekinematic
elements, and this five-bar mechanism can be renamed as a 2BB parallel robot.

2.11.1 Mass Centers

The mass center position of theith kinematic element of a kinematic leg (with respect to a
constant attachment pointP of the kinematic leg onto the base) can be formulated by summing

58



Figure 2.6 –A 2-dof planar five-bar mechanism. The revolute joints rotate around thezpi andzai axes which are
orthogonal to the paper plane. Actuators are located atPi points. All the kinematic elements are homogenous and
symmetric.ℓpi andℓai are the constant lengths of the kinematic elements. On the right side of the figure, we see
the joint-oriented kinematic graph and the new body-oriented kinematic graph of the five-bar mechanism. A pseudo
moving platform can be imagined as one of the identical kinematic elements (e.g.,[A2E]). The end-effector is
located at pointE.

thei− 1 elements and adding finally theith mass center:

Si = P+
i−1∑

j=1

dj x j + xi x i + ei (2.68)

Example: So, assuming that all the kinematic elements of the five-bar mechanism are homo-
genous and symmetric, the mass center positions of the kinematic elements shown in Fig. 2.6
can be simply expressed as follows:

Spi = Pi +
ℓpi
2

x pi , Sai = Pi + ℓpi x pi +
ℓai
2

x ai , i = 1, 2 (2.69)

wherePi is a constant point,{x pi , x ai} are the unit direction vectors defining the state of the
kinematic leg, and{ℓpi , ℓai} are the constant lengths of the kinematic elements.

2.11.2 Velocities

2.11.2.1 Translational Velocity

The mass center velocity of theith kinematic element of a kinematic leg (with respect to a
constant attachment pointP of the kinematic leg onto the base) can be formulated by simply
time differentiating (2.68), which yields:

Ṡi =

i−1∑

j=1

(
ḋj x j + dj ẋ j

)
+ ẋi x i + xi ẋ i + ėi (2.70)
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Example: So, the velocities of the mass centersSpi andSai of the five-bar mechanism shown
in Fig. 2.6 are written as follows:

Ṡpi =
ℓpi
2

ẋ pi , Ṡai = ℓpi ẋ pi +
ℓai
2

ẋ ai , i = 1, 2 (2.71)

2.11.2.2 Rotational Velocity

According to Lemma 1, the rotational velocity of any kinematic element in a kinematic
leg, expressed in a fixed reference frame with respect to the same fixed reference frame (e.g.,
camera frame or robot base frame), will be equal to (2.37):

ω i = x i × ẋ i + θ̇i x i (2.72)

Example: So, the rotational velocity vectors of the kinematic elements {PA}i and{AE}i
of theith kinematic leg of the five-bar mechanism given in Fig. 2.6 can be calculated as below:

ω pi , x pi × ẋ pi , ω ai , x ai × ẋ ai , i = 1, 2 (2.73)

2.11.3 Accelerations

2.11.3.1 Translational Acceleration

The mass center acceleration of theith (with respect to base) kinematic element of a kine-
matic leg is derived from the time derivative of the mass center velocity:

S̈i =

i−1∑

j=1

(
d̈j x j + 2 ḋj ẋ j + dj ẍ j

)
+ ẍi x i + 2 ẋi ẋ i + xi ẍ i + ëi (2.74)

Example: Then the accelerations of the mass centersSpi andSai of the five-bar mechanism
shown in Fig. 2.6 are computed as below:

S̈pi =
ℓpi
2

ẍ pi , S̈ai = ℓpi ẍ pi +
ℓai
2

ẍ ai , i = 1, 2 (2.75)

2.11.3.2 Rotational Acceleration

The rotational acceleration vector of theith (with respect to base) kinematic element of a
kinematic leg will be equal to (2.48):

ω̇i = x i × ẍ i + θ̈i x i + θ̇i ẋ i (2.76)

Example: Then the rotational accelerations of the kinematic elements{PA}i and{AE}i of
theith kinematic leg of the five-bar mechanism given in Fig. 2.6 can be expressed as below:

ω̇ pi , x pi × ẍ pi , ω̇ ai , x ai × ẍ ai , i = 1, 2 (2.77)
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2.12 Kinematic Constraints of a Parallel Robot

2.12.1 Configuration Constraints

If the positions, orientations, and lengths of the kinematic elements of a robot are restricted
by the presence of each other’s contacts, then the robot is said to be subject toconfiguration
constraints. Such restrictions are expressed through the implicit kinematic model (ImplKM) of
the robot or so-called theholonomic constraint equation[KL85]:

f
(
O, P, E, x ji, dji, (θji), ξgeo

)
= 0

i = 1, . . . , nleg j = 1, . . . , nke(i)

(2.78)

whereξgeo is the vector of constant geometric parameters,nleg is the number of kinematic
legs, andnke(i) is the number of kinematic elements in theith kinematic leg of a parallel robot.
Assuming that: the connection points of the kinematic elements are lying on the axes of the
direction vectors; the self-rotationsθji of the kinematic elements do not change the positions
of these connection points; and the end-effector frame is located at the mass center of the
moving platform; then, equation (2.78) can be precisely rewritten as follows:

−−→
OE −

nke(i)∑

j=1

dji x ji −
−−→
OPi = 0 , i = 1, . . . , nleg (2.79)

where the sumnke(1) + . . . + nke(nleg) = nke is equal to the total number of kinematic
elements in a parallel robot.

Example: For the five-bar mechanism shown in Fig. 2.6, theclosed-loop holonomic constraint
equationscan be written as follows:

−−→
OE − ℓai x ai − ℓpi x pi −

−−→
OPi = 0 , i = 1, 2 (2.80)

2.12.2 Motion Constraints

If the components of motion basis{ ẋ i, ḋi, θ̇i } of the mechanism are not mutually inde-
pendent, then the mechanism is said to be subject tomotion constraints, and the mechanism is
named as anonholonomic system. The motion constraints equation can be written by differen-
tiating the configuration constraints equation (2.79), which gives:

MC(X) Ẋ +
m∑

i=1

(
MC(xi)

ẋ i + MC(di) ḋi

)
= 0 (2.81)

whereMC(X) ∈ ℜ3×r is the Cartesian pose kinematic matrix,MC(xi)
∈ ℜ3×3 andMC(di) ∈

ℜ3×1 are the kinematic element’s direction kinematic matrices and length kinematic vectors,
respectively.
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Example: For the five-bar mechanism shown in Fig. 2.6, the motion constraint equations are
written by differentiating (2.80) as follows:

Ẋ − ℓpi ẋ pi − ℓai ẋ ai = 0 , i = 1, 2 (2.82)

whereẊ = Ė. From (2.82), we can derive the inverse differential kinematic models of the
kinematic elements’ variables. To do so, we exploit two properties of the vectors:

– The projection of a vector onto its velocity vector is equalto zero:xT ẋ = 0,
– If vectorsa andc are parallel (a // c), thena (bT c ) = (bT a ) c.

By projecting (2.82) withx ai, we eliminate its motion variablėx ai from the equation:

xT
ai Ẋ − ℓpi x

T
ai ẋ pi = 0 (2.83)

Afterwards, multiplying the last equation withy
pi

which is parallel toẋ pi, we obtain:

y
pi
xT

ai Ẋ − ℓpi y pi
xT

ai ẋ pi = 0 (2.84)

This allows us to use the second property of the vectors mentioned above. Then, we rewrite
(2.84) as follows:

y
pi
xT

ai Ẋ − ℓpi (x
T
ai y pi

) ẋ pi = 0 (2.85)

This avoids a matrix inversion while computing the inverse differential kinematic model of
ẋ pi:

ẋ pi = Mpi Ẋ , Mpi =

[
y

pi
xT

ai

ℓpi (xT
ai y pi

)

]
∈ ℜ3×3 (2.86)

Then, to derive the other inverse differential kinematic model related toẋ ai, we proceed as
follows:

Ẋ − ℓpi Mpi Ẋ − ℓai ẋ ai = 0 (2.87)

and from (2.87) we write easily:

ẋ ai = Mai Ẋ , Mai =

[
1

ℓai
( I3 − ℓpi Mpi )

]
∈ ℜ3×3 (2.88)

whereI3 is the3 by 3 identity matrix. Finally, we derive the inverse differential kinematic
model of the active joint coordinateṡqi. Knowing that:

ω pi , x pi × ẋ pi = q̇i z pi (2.89)

we can take ouṫqi as below:
q̇i = (x pi × ẋ pi )

T z pi (2.90)

which can be reformulated in terms ofẊ as follows:

q̇i = Mqi Ẋ , Mqi =
[
zTpi [x pi ]× Mpi

]
∈ ℜ1×3 (2.91)

where[·]× represents the skew-symmetric matrix of an associated cross-product vector.
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2.13 Kinematic Coordinates of a Parallel Robot

Kane [KL85] expresses the linear and rotational velocitiesof the kinematic elements uni-
quely through the minimal set of generalized scalar coordinates, the generalized speeds in
(2.65) and thepartial velocities. Then, Kane writes the linear velocity for the mass center and
the rotational velocity of a kinematic element as follows:

Ṡ =

nq∑

r=1

vr u r + vt (2.92)

ω =

nq∑

r=1

wr u r +wt (2.93)

wherevr, wr, vt andwt are functions of{ q1, . . . , qnq } and the timet.
The vectorsvr ∈ ℜ3×1 andwr ∈ ℜ3×1 are therth partial linear and rotational velocities

of the kinematic element. So, for a kinematic element, Kane definesnq partial linear velocities
andnq partial rotational velocities with the use ofnq scalar generalized speeds:

vr =
∂ Ṡ

∂ u r
, wr =

∂ ω

∂ u r
, r = 1, . . . , nq (2.94)

Before proceeding on the rest of the text, we would like to first clarify the naming of some
technical terms in Kane’s method and in our method:

– What Kane calls “generalized coordinates", here we replace it with “state variables";
– What Kane calls “generalized speeds", here we replace it with “motion basis";
– What Kane calls “partial velocities", here we replace it with “kinematic coordinates";
Regarding the definition of our motion basis (direction vectors, lengths and rotation angles)

in (2.67), the kinematic coordinates take the form of eithermatrices or vectors:

Vxi =
∂ Ṡ

∂ u xi
, Wxi =

∂ ω

∂ u xi
, i = 1, . . . , nke (2.95)

vdi =
∂ Ṡ

∂ u di
, wdi =

∂ ω

∂ u di
, i = 1, . . . , nke (2.96)

vθi =
∂ Ṡ

∂ u θi
, wθi =

∂ ω

∂ u θi
, i = 1, . . . , nke (2.97)

whereVxi ∈ ℜ3×3 andWxi ∈ ℜ3×3 are the linear and rotational kinematic coordinates (ma-
trices) of the kinematic element with respect to theith kinematic element’s direction vector
variablexi, and wherevdi ∈ ℜ3×1 andwdi ∈ ℜ3×1 are the linear and rotational kinematic co-
ordinates (vectors) of the kinematic element with respect to theith kinematic element’s length
variabledi, and wherevθi ∈ ℜ3×1 andwθi ∈ ℜ3×1 are the linear and rotational kinema-
tic coordinates (vectors) of the kinematic element with respect to theith kinematic element’s
self-rotation variableθi.
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Example: Then, for the five-bar mechanism shown in Fig. 2.6, the motionbasis will be as
follows:

u x1 , ẋ p1 , u x2 , ẋ p2 u x3 , ẋ a1 u x4 , ẋ a2 (2.98)

Table 2.1 tabulates the linear and rotational kinematic coordinates of this five-bar mechanism.
These kinematic coordinates are algebraic expressions written from the geometric states of the
kinematic elements. Note that while calculating the kinematic coordinates of a kinematic leg,
the kinematic leg will have contributions only from itself since it can solely be represented by
its own motion variables. The contributions from the rest ofkinematic legs will be zero.

Table 2.1 – The (transposed) kinematic coordinates of the five-bar mechanism (2BB), i=1,2.

∂ Ṡpi ∂ ω pi ∂ Ṡai ∂ ωai

∂ ẋ pi
ℓpi
2 I3 [x pi]

T
× ℓpi I3 0

∂ ẋ ai 0 0 ℓai
2 I3 [x ai]

T
×

2.14 Dynamic Coordinates of a Parallel Robot

The forces consist ofcontributingandnon-contributingparts for the dynamics of a robot.
The computation of the dynamic coordinates (i.e., generalized forces) is concerned only with
the extraction of thecontributingparts.

The forces acting on a robot can be listed in two groups: active and reactive forces. Firstly,
we will list these active and reactive forces. Then, we will explain how to compute the dynamic
coordinates of a robot from its revealed active and reactiveforces.

2.14.1 Listing the Active and Reactive Forces

As it is explained in Section 2.7 for a kinematic element, theactive forces of a robot are
similarly theactuator forces and torques(i.e., generated by the linear and rotary motor motions)
and thedistance forces(e.g., gravitational, magnetic). And, subsequently, the reactive forces
are theinertial forces and torques(i.e., generated by the accelerated masses and inertias) and
thecontact forces(e.g., friction).

Example: In this example, we list all the active and reactive forces offive-bar mechanism
shown in Figure 2.6.

– Forces of Actuators and Gravity:Parallel robots have usually a single actuator per ki-
nematic leg. Thus, probably only one of the efforts of (2.49)will appear as an actuator
force/torque in a kinematic leg. For the kinematic elementsof the five-bar mechanism
shown in Fig. 2.6, the active forces and torques can be written as follows:

τxpi
= τxpi

zpi , fg(pi) = mpi g , fg(ai) = mai g , i = 1, 2 (2.99)

whereτxpi
is the actuator torque,fg(pi) andfg(ai) are the forces of gravity.
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– Inertial Forces of the Actuators:For the five-bar mechanism shown in Fig. 2.6, the iner-
tial torques of actuators can be written as follows:

τ ∗
xpi

= −Ipi (xpi × ẍpi) , i = 1, 2 (2.100)

– Body Inertial Forces of the Kinematic Elements:For the five-bar mechanism shown in
Fig. 2.6, the inertial forces and torques of the kinematic elements can be written as
follows:

f∗pi = −mpi S̈pi , τ ∗
pi = −I T

pi ω̇ pi − ω pi × (I T
pi ω pi) , i = 1, 2 (2.101)

f∗ai = −mai S̈ai , τ ∗
ai = −I T

ai ω̇ ai − ω ai × (I T
ai ω ai) , i = 1, 2 (2.102)

– Frictional Forces:For the five-bar mechanism shown in Fig. 2.6, the frictional torques
can be written as follows:

τ̄xpi
= − τ̄v(xpi)

ωpi − τ̄c(xpi)
sign(ωT

pi zpi ) zpi , i = 1, 2 (2.103)

whereτ̄xpi
is the extrinsic actuator frictional torque. Since the actuators are placed in the

fixed base platform, the relative rotational velocity vector is directly equal to the velocity
of the actuator. Then, the frictional torques on the passivejoints are as follows:

τ̄xai
= − τ̄v(xai)

(ωai − ωpi ) − τ̄c(xai)
sign

(
(ωai − ωpi )

T
zai

)
zai , i = 1, 2

(2.104)
We can now list all the local forces and torques for the five-bar mechanism as in Table 2.2.

Table 2.2 – The local forces and torques of the five-bar mechanism, i=1,2.

Active Friction Inertia∗

Actuator Gravity Actuator PassiveJoint Actuator Element

Forces (pi) 0 fg(pi) 0 0 0 f∗pi
Torques (pi) τxpi

zpi 0 τ̄xpi
0 τ ∗

xpi
τ ∗
pi

Forces (ai) 0 fg(ai) 0 0 0 f∗ai
Torques (ai) 0 0 0 τ̄xai

0 τ ∗
ai

2.14.2 Computing Dynamic Coordinates

Here, for the computation of dynamic Coordinates, Kane’s method is used. This method
simply eliminates thenon-contributing forcesby projecting the resultant forces and torques,
which act on the mass centers of the kinematic elements, ontothe motion directions (i.e., kine-
matic coordinates) of the kinematic elements:



A
Dynamic
Coordinate

of a
Kinematic
Element



r

=

nke∑

i=1










Linear
Kinematic
Coordinate




T

ir




Rotational
Kinematic
Coordinate




T

ir






∑

Force i

∑
Torque i







(2.105)
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wherenke is the total number of kinematic elements in a parallel robot, andr ∈ { ẋj, ḋj , θ̇j }
with j = 1, . . . , nke shows that a kinematic coordinate corresponds to which component of the
motion basis. One dynamic coordinate per motion basis component is computed. Each kine-
matic element has3 dynamic coordinates corresponding to its own motion basis components
{ ẋ, ḋ, θ̇ }. Totally, 3nke dynamic coordinates are computed fornke kinematic elements.

Example: The dynamic coordinates of the five-bar mechanism (2BB) shown in Fig. 2.6 can
be simply computed through the matrix-wise multiplicationof the Tables 2.1 (transposed kine-
matic coordinates) and 2.2 (sum of the local forces and torques).

[
Fx

pi

Fxai

]
=

[
Kinematic
Coordinates
Table 2.1

]

(2×4)




Sum of
Forces
Torques
Table 2.2



(4×1)

which can be explicitly written as follows:

[
Fx

pi

Fxai

]
=




ℓpi
2 I3 [x pi]

T

×
ℓpi I3 0

0 0 ℓai

2 I3 [x ai]
T

×







fg(pi) + f∗pi

τx
pi
zpi + τ̄x

pi
+ τ ∗

x
pi

+ τ ∗

pi

fg(ai) + f∗ai

τ̄x
ai

+ τ ∗

ai




(2.106)

where the dynamic coordinates,Fxpi andFxai , are exiting forces effecting the rotations of the
bars of the mechanism. In other words, these rotations of thebars are the result of the total
work done by these exiting forces along the displacement directionsẋpi andẋai.

2.15 Dynamic Constraints of a Parallel Robot

The dynamic constraints of a parallel robot can be written from d’Alembert’s principle of
virtual work as follows:

nke∑

i=1

(
FT
xi
ẋ i + Fdi ḋi + Fθi θ̇i

)
= 0 (2.107)

whereFxi ∈ ℜ3×1, Fdj ∈ ℜ1×1 andFθk ∈ ℜ1×1 are the corresponding dynamic coordinates.
The dynamic constraints (2.107) can be reformulated through the known motion constraint

models which relate the kinematic elements’ motions to the velocity of the end-effector pose
(i.e., to a motion basis of the constraint space):

ẋ i = Mxi
Ẋ , ḋi = Mdi Ẋ , θ̇i = Mθi Ẋ (2.108)

The substitution of (2.108) into (2.107) yields:

nke∑

i=1

(
FT
xi
(Mxi

Ẋ ) + Fdi (Mdi Ẋ ) + Fθi (Mθi Ẋ )
)

= 0 (2.109)
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EliminatingẊ from (2.109), dynamic constraints take the final form as below:

nke∑

i=1

(
MT

xi
Fxi

+ MT
di
Fdi + MT

θi
Fθi

)
= 0r×1 (2.110)

Remark:Equation (2.110) can be proved probably by a better solutionwhich passes through
the differential implicit kinematic model (DImplKM) of a robot rather than passing through the
expressions in (2.108).

Example: Exploiting (2.110), the dynamic constraints of the five-barmechanism (2BB) are
written as follows:

2∑

i=1

(
MT

pi Fxpi
+ MT

ai Fxai

)
= 03×1 (2.111)

MT
p Fxp + MT

a Fxa = 03×1 (2.112)

whereFxp ∈ ℜ6×1 andFxa
∈ ℜ6×1 are the stacked vectors of the dynamic coordinates of

Fxpi
∈ ℜ3×1 andFxai ∈ ℜ3×1, respectively.Mp ∈ ℜ6×3 andMa ∈ ℜ6×3 are also stacked

matrices of the motion constraint modelsMpi ∈ ℜ3×3 andMai ∈ ℜ3×3, respectively.

2.16 Linear Solution for the Inverse Dynamics

Every equation from the beginning up to the last equation (2.110) is expressed in a linear
form. Therefore, progressing from (2.110) to the linear implicit dynamic model (LImplDM)
expressed in Theorem 1 of a parallel robot is just a matter of some simple linear algebraic
manipulations, once the motorized joints are specified. In order to write this LImplDM, the
following parameters and variables are required:

– ξgeo: constant geometric parameters of the robot (e.g., lengths, points).
– ξdyn: constant dynamic parameters of the robot (e.g., masses, inertias, frictions).
– {x, d, θ}: 0th order variables of the kinematic elements. They allow us to write the static

configuration of the robot, the motion constraint models andthe kinematic coordinates.
– {ẋ, ḋ, θ̇}, {ẍ, d̈, θ̈}: 1st and2nd order variables of the kinematic elements. They allow

us to write the local forces and torques.
– Γ: force vector of the robot’s actuators (e.g., forces of active prismatic joints and torques

of active revolute joints).

Corollary 1 The inverse dynamics (IDM) of a parallel robot can then be obtained by solving
a unique linear system of the LImplDM:

AΓ + b = 0 r×1 (2.113)

whereA ∈ ℜr×k is the configuration-dependant matrix relating the unknownforce vector
Γ ∈ ℜk×1 of the actuators to the contributing effortsb ∈ ℜr×1 of the kinematic elements. The
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r is the dimension of a surjective motion basis (r ≥ k). As long as the matrixA is full rank,
one can solve forΓ:

Γ = −A† b (2.114)

whereA† is the pseudo-inverse of the matrixA to be computed with a QR or SVD decomposi-
tion for a fast and robust solution rather than literally with the Moore-Penrose formula.

Example: We solve for the inverse dynamic of the five-bar mechanism shown in Fig. 2.6. To
do so, we first write explicitly the equation of the dynamic coordinate (the first one in (2.106))
which includes the motor torques:

Fxpi
= [x pi ]

T
× z pi τxpi

+ F̃xpi (2.115)

which can be rewritten as follows:

Fxpi = τxpi
y

pi
+ F̃xpi

(2.116)

where

F̃xpi
=

ℓpi
2

( fg(pi) + f∗pi ) + [x pi ]
T
×

(
τ̄xpi

+ τ ∗
xpi

+ τ ∗
pi

)
+ ℓpi ( fg(ai) + f∗ai ) (2.117)

Afterwards, we can rewrite the equations of motion (2.112) of the five-bar mechanism as below:

MT
p

([
y

p1
03×1

03×1 y
p2

] [
τxp1

τxp2

]
+

[
F̃xp1

F̃xp2

])
+ MT

a Fxa = 03×1 (2.118)

which can be reformulated in the form of (2.113):

A

[
τxp1

τxp2

]
+ b = 0 3×1 (2.119)

whereA ∈ ℜ3×2 is as follows:

A = MT
p

[
y

p1
03×1

03×1 y
p2

]
(2.120)

and whereb ∈ ℜ3×1 is as below:

b = MT
p

[
F̃xp1

F̃xp2

]
+ MT

a Fxa (2.121)

Finally, the solutionΓ = [ τxp1
, τxp2

]T (torque vector of the motors) of inverse dynamics of
the five-bar mechanism is computed as follows:

[
τxp1

τxp2

]
= −A† b (2.122)
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2.17 A Global View to the Proposed Methodology

In short, using the proposed methodology, one can writeefficiently the inverse dynamic
model of a parallel robot by simply following these6 steps:

1. Decompose the parallel robot to its kinematic elements (by inspection);

2. Define the type of each of the « kinematic elements » (by inspection);

3. Compute the kinematic coordinates and the kinematic constraints (automatic);

4. List the local forces and torques on the kinematic elements (automatic);

5. Compute the dynamic coordinates and the dynamic constraints (automatic);

6. Solve linearly for the inverse dynamic model (automatic).

The state variables{x, d, θ} can be directly measured with proprioceptive/exteroceptive sen-
sors (e.g., motor encoders, camera, etc.), and/or be obtained through some mechanical kinema-
tic models, if this does not lower the efficiency. Therefore,we generalize the representation of
the inverse dynamic model, without concern for sensors and the models used, as follows:

Γ = IDM( s̈, ṡ, s, ξgeo, ξdyn ) = −A†(s)b(̈s, ṡ, s) (2.123)

wheres is the set of state variables of the kinematic elements:

s : {x i, di, θi} , i = 1, . . . , nke (2.124)

2.17.1 Compared to Khalil’s, Kane’s and Tsai’s Methods

– We were inspired by the idea of using passive joint coordinates with the active ones
(redundancy) in modeling from Khalil, and we recommended a new redundant set of
state variables which keeps the equations compact and linear. Furthermore, in this way
we do not need to compute the global balancing force at the end-effector.

– We were inspired by the idea of to be free in our choice of a motion basis (minimal or
redundant) from Kane, and we proposed a unique redundant motion basis which makes
Kane’s method easily applicable to broad range of robots (serial and parallel).

– We were inspired by the idea of writing final equations of motion easily using the lo-
cal efforts done on each of the kinematic elements from Tsai,and we improved Tsai’s
formulation by Khalil and Kane’s inspirational ideas such that it became geometrically
more intuitive, simpler, completely linear and more practical.

2.17.2 Originality

Body-based modeling and control methodology rather than joint-based:
– We use lines to model the moving bodies (concrete) rather than the joint axes (abstract).

This enhances the visual perception of a robot, such that a human brain can almost
vividly imagine a robot’s motion by just reading the equations (augmented reality).

– Equations of motion use simple linear vector algebra and are in compact form. This eases
the codability and the fast solvability of equations on the computer. Even for the most
complex robots, the inverse dynamic model can be worked out with pen and paper.
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Practical applicability:
– Vision allows us to sense the moving bodies (directed 3D lines) in Cartesian space, which

uniquely define the state of the robot. Thus, vision allows for a direct use of our method
on the real robots.

– Vision and motor encoders together increase the quality (accuracy and richness) of the
information for simple modeling and precise control.

2.18 Applied to the Quattro Parallel Robot

The proposed modeling methodology was applied to the Quattro, the Gough-Stewart, the
Delta, the 3-RRR and the Orthoglide parallel robots. At the end of this chapter, the proposed
modeling methodology is shown in detail only for the Quattroparallel robot. For the rest of the
parallel robots, the reader is referred to the Appendix A.

Figure 2.7 – The Quattro parallel robot with a base-mounted camera (left) and its joint-oriented
graphical layout (right).

2.18.1 State Variables

The Quattro is composed of four identical kinematic legs which carry the articulated nacelle
(see Fig. 2.7). Each of the4 kinematic legs is actuated from the base by a revolute motor
located atPi. A kinematic leg has two consecutive kinematic elements: anupper-leg[PiAi]
and a lower-leg[AiBi]. Lower-leg and upper-leg are attached to each other atAi. At the top,
the upper-legs are connected to the motors, while at the bottom, the lower-legs are connected
to the articulated nacelle. Also, the form of the lower-legswith attached nacelle is called the
umbrellaof the Quattro robot, which can be thought of as being an articulated object attached to
the independent upper-legs. The articulated nacelle is designed with four kinematic elements
[NRC+05]: the two lateral kinematic elements (either[B1B2], [B3B4] or [C1C2], [C3C4])
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and the two central kinematic elements ([C3C2], [C4C1]) linking lateral ones with revolute
joints (see Fig. 2.8).

Kinematic Element Types: Hence, we have the following kinematic elements in the Quattro
robot to inspect and to decide their types: upper-legs, lower-legs and the four parts of the
nacelle. The configurations of those kinematic elements will be defined by the unit direction
vectors of the bodies rather than the non-linear joint coordinates:

Upper-legs [PiAi] An upper-leg rotates around a fixed axis. It has 1 dof rotational extrinsic
mobility due to a motorized (R)evolute joint. It is abar typekinematic element:x pi.

Lower-legs [AiBi] Each lower-leg consists of two slim and cylindrical shaped rods fitted
with ball-joints ((Ai1,Ai2) and (Bi1,Bi2)), forming a parallelogram. The joint-oriented
notation of a kinematic leg, which contains this type of a lower-leg, is symbolically
denoted asR − (S − S)2. ThisR − (S − S)2 also equalsR − U − U whereR andS
stand for an actuated revolute joint and a passive sphericaljoint, respectively. The(S −

S)2 architecture of a lower-leg fastened to an upper-leg ensures that the vectors
−−−−→
Ai1Ai2

and
−−−−→
Bi1Bi2 are always kept parallel to a fixed direction (zpi). This motion constraint

completely restricts the rotation of a lower-leg around itslengthwise direction (xai).
Thus, this parallelogram lower-leg rotates only around a moving axis which means that
it has 2 dof rotational extrinsic mobility due to the existing (S)pherical joints. Therefore,
it is abar typekinematic element:x ai.

Nacelle [CiCi+1] The articulated nacelle has two lateral and two central kinematic elements
which are structurally restricted to be coplanar with respect to each other. The articulated
nacelle itself has only a translational motion, but each of its lateral kinematic elements
can be independently translated in one fixed direction (xb) which lets the central ones
have an additional relative rotational motion around an axis that is parallel to a fixed
direction. Thus, the end-effectorE, which is located on the[C2C3] central kinematic
element (i.e., the moving platform), reaches4 degrees of freedom, namely3 for the
translational movements and1 for the rotational movement. The moving-platform also
has an amplification system to transform the relative rotation θ into a proportional rota-
tion (β = κθ) in the end-effectorE (see Fig. 2.8). As a result of this structure of the na-
celle, the lateral kinematic elements have only translational extrinsic mobility due to the
parallelogram lower-legs, and the central kinematic elements have the same translational
extrinsic mobility with a relative rotation allowed by the (R)evolute joints. Thus, each
kinematic element is abar type: x bi = δi x e whereδ1 = δ3 = 0, δ2 = −1, δ4 = 1. If
i = 4 theni+ 1 , 1.

The static state of the mechanism is therefore totally and redundantly defined by the unit vec-
tors{xpi, xai, xbi}. Figure 2.9 shows the new body-oriented graphical layout ofthe Quattro
parallel robot. In modeling, the following notation is used:

– i = 1, 2, 3, 4 denotes the kinematic legs.
– j = {p, a, b} is the literal representation of the kinematic elements in the mechanism.
– ξgeo = {Pi, ℓji, ℓh, d, dx, h, hy ,a} are the geometric parameters (e.g., constant lengths

and points).
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Figure 2.8 – Side and front views of a kinematic leg with its variables and parameters (left).
The plan of the nacelle with its variables and parameters (right).

Figure 2.9 – Body-oriented graphical layout of the Quattro parallel robot.

– ξdyn = {mji,Iji, fvi , fci} are the dynamic parameters (e.g., weights, inertias, frictions).
– F o = (O,x o,y o

, z o), F e = (E,x e,y e
, z e), F pi = (Pi,x pi,y pi

, z pi) andF ai =

(Ai,x ai,y ai
, z ai) denote respectively the base, the end-effector, thei th upper-leg and

thei th lower-leg frames.
– qi is the articulated position of thei th upper-leg motor.
– The end-effector pose (X) is composed of the origin (E) of the end-effector frame and

the orientation of the[C2C3] moving platform (xe). The end-effector pose velocity is
thenĖ andẋe:

X ,

[
E

x e

]
, Ẋ ,

[
Ė

ẋ e

]
∈ ℜ6×1

2.18.2 Kinematics

Mass Centers: Figure 2.10 shows the mass centersSji of the kinematic elements in the
mechanism. The expressions are fully in vector form as none of the kinematic elements have
intrinsic mobility. Then, the mass centers of the basic parts of the Quattro robot are written as

72



follows: (i) for the upper-legs,

S pi = Pi +
ℓpi
2

x pi (2.125)

(ii) for the lower-legs,

S ai = Pi + ℓpi x pi +
ℓai
2

x ai (2.126)

(iii) for the nacelle’s kinematic elements,

S bi = Pi + ℓpi x pi + ℓai x ai +
−−−→
BiS bi (2.127)

where
−−−−→
B1S b1 and

−−−−→
B3S b3 are constant, since they are located on the translational lateral kine-

matic elements of the nacelle. The
−−−−→
B2S b2 and

−−−−→
B4S b4 are the sum of a constant vector and a

component along the rotating central kinematic elements ofthe nacelle:

−−−→
BiS bi = consti +

h

2
x bi (2.128)

Figure 2.10 – The mass centersSji (white squares) of the kinematic elements. All of the kine-
matic elements are assumed to be homogenous and symmetric.

Velocities: The translational velocities are derived by simply differentiating (2.125), (2.126)
and (2.127). The rotational velocities are compactly represented through the unit orientation
vectors. Then, the velocities are written as follows: (i) for the upper-legs,

Ṡ pi =
ℓpi
2

ẋ pi , ωpi , x pi × ẋ pi (2.129)

(ii) for the lower-legs,

Ṡ ai = ℓpi ẋ pi +
ℓai
2

ẋ ai , ωai , x ai × ẋ ai (2.130)
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(iii) for the nacelle’s kinematic elements,

Ṡ bi = ℓpi ẋ pi + ℓai ẋ ai +
h

2
ẋ bi , ωbi , x bi × ẋ bi (2.131)

Accelerations: The accelerations are obtained by differentiating (2.129), (2.130) and (2.131)
with respect to time. Then, the accelerations are written asfollows: (i) for the upper-legs,

S̈ pi =
ℓpi
2

ẍ pi , ω̇pi , x pi × ẍ pi (2.132)

(ii) for the lower-legs,

S̈ ai = ℓpi ẍ pi +
ℓai
2

ẍ ai , ω̇ai , x ai × ẍ ai (2.133)

(iii) for the nacelle’s kinematic elements,

S̈ bi = ℓpi ẍ pi + ℓai ẍ ai +
h

2
ẍ bi , ω̇bi , x bi × ẍ bi (2.134)

2.18.3 Kinematic Constraints

The closed-loop constraint equation for each of the kinematic legs can be written as follows:

−−→
OE + (ay

e
+ εi

h

2
x e + βi

−−−→
C2C1 + γi

−−−→
C3C4 +

−−−→
CiBi) − ℓai x ai − ℓpi x pi −

−−→
OPi = 0

(2.135)
whereO, Pi,

−−−→
C2C1,

−−−→
C3C4 and

−−−→
CiBi are constants, and whereεi, βi andγi are as follows:

ε1 = ε2 = 1 , ε3 = ε4 = −1 , β1 = 1 , β2 = β3 = β4 = 0 , γ1 = γ2 = γ3 = 0 , γ4 = 1
(2.136)

Afterwards, one can differentiate (2.135) with respect to time in order to obtain the motion
constraint equation, which yields:

Ė + (a ẏ
e
+ εi

h

2
ẋ e) − ℓai ẋ ai − ℓpi ẋ pi = 0 (2.137)

The motion constraints for the attachment pointsBi of the nacelle can be written from (2.137)
as below:

Ė + (a ẏ
e
+ εi

h

2
ẋ e) = Ḃi (2.138)

where
ẏ

e
= ωe × y

e
= (x e × ẋ e) × y

e
= [ z e ]× ẋ e (2.139)

Then, (2.138) becomes:

Ė + (a [ z e ]× + εi
h

2
I3) ẋ e = Ḃi (2.140)
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which can be rewritten as follows:

Ḃi = L
Bi

Ẋ , L
Bi

=
[
I3 (a [ z e ]× + εi

h
2 I3)

]
(2.141)

whereL
Bi

∈ ℜ3×6 is the relation between the Cartesian velocity of the terminal point of the

ith kinematic leg and the end-effector pose velocityẊ ∈ ℜ6×1. Finally, we reformulate (2.137)
to ease the derivation of kinematic relations as below:

L
Bi

Ẋ e − ℓai ẋ ai − ℓpi ẋ pi = 0 (2.142)

Constraints on the Active Upper-Legs: The kinematic constraint on each unit orientation
vector of the active upper-legs is defined from (2.142) by exploiting the following relations:

xT
ai ẋ ai = 0 , y

pi
// ẋ pi (2.143)

By multiplying (2.142) withxT
ai and then withy

pi
, one finds that:

ℓpi y pi
(xT

ai ẋ pi) = y
pi
xT

ai LBi
Ẋ (2.144)

where the left side of (2.144) can be rewritten from the parallelism of the vectors as follows:

ℓpi (x
T
ai y pi

) ẋ pi = y
pi
xT

ai LBi
Ẋ (2.145)

then, one can obtain the inverse differential kinematic model for an upper-leg orientation unit
vector as below:

ẋ pi = Mpi Ẋ =
y

pi
xT

ai

ℓpi x
T
ai y pi

L
Bi

Ẋ (2.146)

whereMpi ∈ ℜ3×6. The completeMp ∈ ℜ12×6 will be noted as below:

Mp =




Mp1
...

Mp4


 (2.147)

Constraints on the Passive Lower-Legs: The kinematic constraint on the unit orientation
vector of each passive lower-legs can be furnished by substituting (2.146) into (2.142) as below:

ẋ ai = Mai Ẋ =
1

ℓai

(
L

Bi
− ℓpi Mpi

)
Ẋ (2.148)

whereMai ∈ ℜ3×6 is the inverse differential kinematic model associated between a lower-leg
unit orientation vector and the pose. The fullMa ∈ ℜ12×6 can be written in the following
stacked form:

Ma =




Ma1
...

Ma4


 (2.149)
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Constraints on the Passive Nacelle: The kinematic constraint on a orientation unit vector of
the passive nacelle is defined with the following relation:

ẋ bi = Mbi Ẋ = δi
[
03 I3

]
Ẋ (2.150)

whereMbi ∈ ℜ3×6. Due to parallelograms, the nacelle stays parallel to its initial plane and
thus, the end-effector has a rotation axisz e parallel to a fixed direction. Then, the complete
Mb ∈ ℜ12×6 will be defined as follows:

Mb =




Mb1
...

Mb4


 (2.151)

Sincex e = x b4, thenMe = Mb4 and one can write:

ẋ e = Me Ẋ = Mb4 Ẋ =
[
03 I3

]
Ẋ (2.152)

2.18.4 Kinematic Coordinates

The instantaneous configuration of the Quattro is expressedwith the following redundant
set of12 generalized vectors (orientation unit vectors of the kinematic elements):

{x pi, x ai, x bi } , i = 1, . . . , 4 (2.153)

and the motion of the Quattro is expressed through the motionbasis which is directly defined
as the time derivatives of the12 generalized vectors:

u xji
∈ { ẋ ji | j ∈ {p, a, b} , i ∈ {1, 2, 3, 4} } (2.154)

Note that the nacelle is shared by each of the kinematic legs by extending them with a corres-
ponding kinematic element of the nacelle. Then, from now on,a kinematic leg is composed of
an upper-leg, a lower-leg and a corresponding kinematic element of the nacelle ([CiCi+1], if
i = 4, then(i+ 1) , 1 ).

For each kinematic element in the mechanism, the translational and rotational kinematic co-
ordinates are tabulated in the Table 2.3 by computing the partial derivatives of (2.129)-(2.131)
with respect to the motion basis.

Table 2.3 – The (transposed) kinematic coordinates of the Quattro parallel robot, i=1,2,3,4.

∂ Ṡ pi ∂ ω pi ∂ Ṡ ai ∂ ω ai ∂ Ṡ bi ∂ ω bi

∂ ẋ pi
1
2 ℓpi I3 [x pi]

T
× ℓpi I3 0 ℓpi I3 0

∂ ẋ ai 0 0 1
2 ℓai I3 [x ai]

T
× ℓai I3 0

∂ ẋ bi 0 0 0 0 δ2i
1
2 h I3 [x bi]

T
×
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2.18.5 Dynamic Coordinates

2.18.5.1 Listing Active and Reactive Forces

There is a set of active forces/torques acting on the kinematic elements of the Quattro
parallel robot due to actuator torques and forces of gravity.

– Actuator Torques:We write the actuator torque vectors (τx) of the active kinematic
elements as follows:

τxpi
= τxpi

zpi (2.155)

whereτxpi
is the active torque of a rotary actuator whose rotation axisis zpi and whose

rotating kinematic element is oriented alongxpi.
– Forces of Gravity:Afterwards, the active forces of gravity (fg), which is assumed to act

at the center of masses of the kinematic elements, are given as below:

fg(pi) = mpi g , fg(ai) = mai g , fg(bi) = mbi g (2.156)

wheremji is the mass of thejith kinematic element andg is the gravity acceleration
vector oriented towards the center of the Earth.

As a consequence of the accelerated matters in the Quattro parallel robot, reactive inertial
and frictional forces/torques will appear at the actuatorsand at the kinematic elements.

– Actuator Inertial Torques:The rotary actuator inertial torquesτ ∗
x can be written as fol-

lows:
τ ∗
xpi

= −Ipi ω̇ pi = −Ipi (xpi × ẍpi) (2.157)

whereIpi is the rotary motion inertia of the actuator around thezpi axis andω̇ pi is the
rotational acceleration vector of the kinematic element (xpi) which is firmly fastened to
the actuator.

– Kinematic Element Body Inertial Forces and Torques:The accelerated masses and iner-
tias of the kinematic elements produce the set of inertial forces and torques{f∗ji , τ

∗
ji}.

These inertial forces and torques can be calculated using the Newton-Euler equations:

f∗pi = −mpi S̈pi , τ ∗
pi = −I T

pi ω̇ pi − ω pi × (I T
pi ω pi) (2.158)

f∗ai = −mai S̈ai , τ ∗
ai = −I T

ai ω̇ ai − ω ai × (I T
ai ω ai) (2.159)

f∗bi = −mbi S̈bi , τ ∗
bi = −I T

bi ω̇ bi − ω bi × (I T
bi ω bi) (2.160)

wheremji, S̈ji, Iji andω ji are the mass, the translational acceleration vector of the mass
center, the central inertia dyadic and the rotational velocity vector of thejith kinematic
element, respectively.

– Frictional Torques:Frictional torques (̄τxji
) will appear at the joint locations of the ki-

nematic elements due to their relative motions among themselves. The frictional torques
of the actuators can be computed as follows:

τ̄xpi
= − τ̄v(xpi)

ωpi − τ̄c(xpi)
sign(ωT

pi zpi ) zpi (2.161)
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The frictional torques of the passive joints can be computedas below:

τ̄xai
= − τ̄v(xai)

(ωai − ωpi ) − τ̄c(xai)
sign( (ωai − ωpi )

T
zai ) zai (2.162)

τ̄xbi
= − τ̄v(xbi)

(ωbi − ωai ) − τ̄c(xbi)
sign( (ωbi − ωai )

T
zbi ) zbi (2.163)

whereτ̄v(xji)
andτ̄c(xji)

are the viscous and Coulomb friction coefficients of the joint of

jith kinematic element, and whereωji andzji are the rotational velocity vector and the
axis of rotation of the kinematic element (xji), respectively.

Hence, one can list all these local forces and torques as in Table 2.4. Figure 2.11 shows the
local forces and torques which act on one of the identical kinematic leg of the Quattro parallel
robot.

Figure 2.11 – Local forces and torques which act on one of the identical kinematic legs. Left
figure shows the active forces and torques of a kinematic leg.Right figure shows the reactive
inertial and frictional forces/torques which balance the active forces/torques.

Computing Dynamic Coordinates: In order to eliminate the non-contributing forces, the
dynamic coordinates are computed through the matrix-wise multiplication of the Tables 2.3
(transposed kinematic coordinates) and 2.4 (sum of local forces and torques).
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Table 2.4 – The local forces and torques of the Quattro parallel robot, i=1,2,3,4.

Active Friction Inertia∗

Actuator Gravity Actuator Passive Joint Actuator Element

Forces (pi) 0 fg(pi) 0 0 0 f∗pi
Torques (pi) τxpi

zpi 0 τ̄xpi
0 τ ∗

xpi
τ ∗
pi

Forces (ai) 0 fg(ai) 0 0 0 f∗ai
Torques (ai) 0 0 0 τ̄xai

0 τ ∗
ai

Forces (bi) 0 fg(bi) 0 0 0 f∗bi
Torques (bi) 0 0 0 τ̄xbi

0 τ ∗
bi




Fxpi

Fxai
Fxbi


 =




Kinematic
Coordinates
Table 2.3



(3×6)




Sum of
Forces
Torques
Table 2.4



(6×1)

(2.164)

which can be explicitly written as follows:




Fxpi

Fxai

Fxbi




=




1
2 ℓpi I3 [x pi]

T
× ℓpi I3 0 ℓpi I3 0

0 0 1
2 ℓai I3 [x ai]

T
× ℓai I3 0

0 0 0 0 δ2i
1
2 h I3 [x bi]

T
×







fg(pi) + f∗pi

τxpi
zpi + τ̃ pi

fg(ai) + f∗ai

τ̄xai
+ τ ∗

ai

fg(bi) + f∗bi

τ̄xbi
+ τ ∗

bi




(2.165)
where

τ̃ pi = τ̄xpi
+ τ ∗

xpi
+ τ ∗

pi (2.166)

2.18.6 Dynamic Constraints

Exploiting (2.110), the dynamic constraints of the Quattrorobot are written as follows:

MT
p Fp + MT

a Fa + MT
b Fb = 06×1 (2.167)

whereFp ∈ ℜ12×1, Fa ∈ ℜ12×1 andFb ∈ ℜ12×1 are the stacked vectors of the dynamic
coordinates:

Fp =




Fxp1
...

Fxp4


 , Fa =




Fxa1
...

Fxa4


 , Fb =




Fxb1
...

Fxb4


 (2.168)
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and whereMj ∈ ℜ12×6 is as in (2.147), (2.149) and (2.151) forj ∈ { p, a, b }.

2.18.7 Inverse Dynamics

In order to extract the motor torques, we explicitly write the dynamic coordinateFxpi from
(2.165) which contains these torquesτxpi

:

Fxpi = τxpi
y

pi
+ F̃xpi

(2.169)

where

F̃xpi =
ℓpi
2

(fg(pi) + f∗pi) + [x pi]
T
× τ̃ pi + ℓpi (fg(ai) + f∗ai) + ℓpi (fg(bi) + f∗bi) (2.170)

Consequently the stackedFp can be noted as follows:

Fp = Yp Γ + F̃p (2.171)

whereYp ∈ ℜ12×4, Γ ∈ ℜ4×1 andF̃p ∈ ℜ12×1 are as below:

Yp =




y
p1

0 0 0

0 y
p2

0 0

0 0 y
p3

0

0 0 0 y
p4


 , Γ =




τxp1

τxp2

τxp3

τxp4


 , F̃p =




F̃xp1

F̃xp2

F̃xp3

F̃xp4


 (2.172)

Afterwards, replacing (2.171) in (2.167), we can write (2.167) as follows:

AΓ + b = 0 (2.173)

whereA ∈ ℜ6×4 andb ∈ ℜ6×1 are defined as below:

A = MT
p Yp , b = MT

p F̃p + MT
a Fa + MT

b Fb (2.174)

One can then write the solution of (2.173) as follows:

Γ = −A†(x ) b ( ẍ, ẋ, x ) (2.175)

Consequently, the inverse dynamic model of such a complex Quattro robot has been com-
pactly expressed by means of the orientation unit vectors.

Γ = IDM( ẍ, ẋ, x ) (2.176)

Note that the longest part of the calculus is the kinematics (made very easy by using the vector
form), then the listing of the forces and torques. If all these are given, the dynamics are obtained
through one single formula (2.167) and its linear solution.
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2.19 Conclusions

This chapter outlined a framework for control-oriented dynamic modeling of parallel ro-
bots which uses the leg orientations. This modeling approach is easily applied to wide range
of parallel robots. Written equations use only addition (+)and multiplication (*) operators.
Neither trigonometric nor exponential functions are used.There is only the piecewise-linear
signumfunction in the Coulomb friction which needs a simple sign check for its implementa-
tion. The equations are simple and compact even for complex robots. This is achieved with the
3D unit direction vectors of the leg orientations. Thus, we accomplished the first objective of
the integrated dynamic MICMAC which is stated at the end of the Chapter 1.

This modeling approach is linear on the condition that theseunit direction vectors,x, of
the leg orientations and their velocities,ẋ, are given. As stated in the integrated MICMAC
part of the Chapter 1, one can measure these 3D unit directionvectors of the legs from their
2D image projections, and subsequently one can numericallydifferentiate them to obtain the
velocities of the leg orientations. But, what about the speed of measurement? Certainly, this
will not be greater than a video rate∼ 40Hz when a conventional camera with a conventional
line tracking algorithm is used. This speed of measurement can be enough for a vision-based
kinematic control, but however a dynamic control requires high-speed feedback.

Consequently, the next chapter is devoted to answer the following questions: (i) How can
one measurex and ẋ at high speed in order to exploit linearity of this modeling approach?
(ii) Which control law should be built upon the presented inverse dynamic model? and (iii) In
which space should the control error be regulated for betterdynamic control of parallel robots?
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Chapter 3

Control

3.1 Introduction

Dynamic control of a robot requires high-frequency sensor feedback. In the case of a serial
robot, this requirement is satisfied with dynamic control strategies based on classical high-
frequency joint sensing at about1 kHz. However, the performance of robots can be further
improved by importing the vision-based control schemes [CH07], even though satisfying a
reasonable accuracy and frequency for visual feedback hurts. In serial robots the solution for
vision-based dynamic control is found in a cascade of two control loops, where:

– the first loop, the fast one, compensates for the dynamics. This internal loop uses an
inverse dynamic model based on joint values which are easilyprovided by the motor
encoders at high-frequency.

– the second loop, slower one, uses the feedback of a vision sensor. This outer loop is
actually a kinematic control made possible by the internal loop which compensates for
the dynamics of the serial robot.

This approach does not work for parallel robots, because thejoint values do not determine
uniquely the state of a parallel robot. The dynamic state of aparallel robot for a dynamic
control, in most cases, can be simply represented by its end-effector pose and velocity, but this
is not necessarily the only way. Therefore, one should now investigate how to adapt vision
sensor for high-speed pose and velocity computation.

Some of the attempts to adapt vision for control schemes are as follows: Since the state
of a parallel robot is expressed by its end-effector pose andvelocity, these variables are tried
to be found by the classical pose estimation algorithms. Unfortunately, these algorithms can
not directly give the velocity information. The pose velocity is usually computed by numerical
differentiation of the estimated pose, thus introducing additional noise. Besides, the predictive
control techniques are exploited to adapt the visual sampling rate to the control sampling rate,
but this increases the complexity as well [GM03]. Instead, from a control point of view, increa-
sing the visual feedback frequency up to the control frequency is more appropriate [Vin00],
[Cor95]. Then to do so, one compresses the image data [Ric03], builds fast communication
interfaces, or embeds the image processing unit closer to the camera [WHB96], [NITM00],
[CB07], etc.
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We believe that these attempts encumber the system. So, the aim of this chapter is to look
for a simpler solution for vision-based dynamic control of aparallel robot.

The rest of this chapter proceeds as follows: Section 3.2 exploits kinematic control to com-
pute the posture and the velocity of a parallel robot at an instant of time through sequentially
partial observation of the kinematic legs. This is a kind of fast vision-based dynamic state
observer of a parallel robot where a virtual robot (a copy of the real robot) imitates its mo-
tion. This virtual robot will deliver the leg orientationsx and their velocitieṡx to the inverse
dynamic model presented in Chapter 2, and as well as it will provide requested feedback si-
gnal for dynamic control. In the light of MICMAC concept, from now on, we will call this
observer “High-speed integrated dynamic MICMAC observer". Section 3.3 derives a versatile
computed-torque control law based on different feedbacks coming from the vision-based dy-
namic state observer. Hence, this versatile computed-torque control allows one to control the
parallel robot in different variable spaces (where a variable space should represent the state
of the robot) to discover the best performance for the proposed modeling methodology in the
previous chapter.

3.2 High-Speed Integrated Dynamic MICMAC Observer

Here, we propose a simpler solution inspired by the following two ideas:
– (i) Is there a visual information which can give the staticsand velocity of a parallel

robot for dynamic control purposes? In integrated kinematic MICMAC, it was shown
that the image projection of a parallel robot’s legs is a relevant alternative to express
the state, since they similarly encode the static configuration of the whole mechanism
[Dal07]. It was good, because control and sensing were in harmony with the kinematics
since image lines correspond to the legs of the robot. On the other hand, it is not fast
(∼ 40Hz) enough when a dynamic control is concerned and yet it cannotgive directly
the velocity of the mechanism. This is because a slow conventional camera was used and
the detection of the leg edges in the full image costed too much time.

– (ii) In vision-based applications, a full image is grabbedand processed. The processing
step is simply the extraction of the meaningful features from a region around an approxi-
mately predicted location. It appears that the rest of the image is untouched, and the
time spent for grabbing and transmitting this part is wasted. Then, to increase the visual
feedback frequency up to the control frequency, why not justgrab a region of an image
[URLP04], [DAMM09] where only the meaningful features exist?

Hence, the reader may now wonder: (i) How shall the previous two ideas be integrated for
fast estimation? and (ii) Which compatible method shall be chosen to figure out the dynamic
state of the robot?

Since a small sub-image acquisition allows only for a local observation in the field of
view of the camera and the legs exist plentifully in a parallel robot, this impliesa sequential
grabbing strategy(one by one) for collecting the required amount of information from the
whole mechanism. In these sub-images, we observe the contours of the legs, since in an image
contours are one of the simplest visual features to detect. Then, the required information is
the set of contours detected from the sub-images of the legs,which are sequentially grabbed
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at discrete time instants of the motion of the robot. On the other hand, although simultaneous
multiple sub-images (located anywhere in the image) grabbing strategy (non-sequential) can
provide all the required information at once, it is not preferable because of the addressing
problem and because it is slower for estimation.

In order to figure out the full state at each control sample time, the following methods are
proposed: In [WHB96], an extended Kalman filter predicts therelative state of the robot by fu-
sing the set of image feature points belonging to an object with some redundant measurements.
In [AAALM06], a CMOS Rolling Shutter camera captures a single image row by row, which
causes image artifacts for the moving objects. Then, exploiting these visual artifacts, the pose
and velocity of a moving object are simultaneously estimated with a non-linear least squares
method. In [DAMM09] and [Dah10], a virtual visual servoing scheme [MC02] is used and va-
lidated for estimating the state variables by sequentiallygrabbing the blobs of an artificial rigid
pattern at high speed.

Our work also exploits the virtual visual servoing scheme associated with sequential grab-
bing as in [Dah10] and improves it in the sense of tracking an articulated set of legs of a parallel
robot at high speed rather than tracking a rigid pattern fastened to the end-effector at high speed.
Yet, since we do not need a pattern, in a roundabout way, this gets rid of the tedious calibration
among the pattern, the camera and the end-effector. The objectives of this part of the chapter
are as follows:

– to allow the posture and velocity of a parallel robot to be estimated through a virtual
robot imitating its motion.

– to progress towards putting into effect the dynamic control of a parallel robot based on
leg kinematics [OBAM11].

3.2.1 Differential Edge Kinematics of a Cylindrical Kinematic Element

Image edges of slim legs of a parallel robot are the keystonesof the integrated kinematic
MICMAC, and this time their differential kinematics play once more an important role for the
dynamic state estimation of a parallel robot. Slim cylindrical shaped legs are the most common
kinematic elements in robots. They are also easy to handle intheory and practice. Therefore,
first we explain how to compute the differential kinematics of the edges of a cylindrical ki-
nematic element. Figure 3.1 depicts a simple projective geometry of a cylindrical kinematic
element in a camera frame.

3.2.1.1 Notation

– B ∈ ℜ3×1 is one of the tip points lying on the revolution axis of the cylindrical kinematic
element.

– x ∈ ℜ3×1 is the orientation unit vector and also corresponds to the revolution axis
direction of the cylindrical kinematic element.

– s ∈ {L , R } is the literal representation for the(L)eft or the(R) ight side of the cylin-
drical kinematic element seen from the camera.

– p s ∈ ℜ3×1 is a projection contour point lying on the image plane and located inside a
visual edge of the cylindrical kinematic element.p s = [x, y, 1]T .
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Figure 3.1 – View of the geometry of a cylindrical kinematic element from its 3D orientation
direction (perpendicular to the paper plane).

– n s ∈ ℜ3×1 is a unit vector orthogonal to the plane defined by the projection centerO
of the camera and by a side visual contour of the cylindrical kinematic element (see Fig.
3.1). Hence, it stands for a mathematical representation ofsuch a visual contour.

– X ∈ ℜn×1 is a representation of the end-effector pose of a parallel robot.
– Unless specified in a left supper-script, all the variablesare expressed in the camera

frame.

3.2.1.2 Differential Edge Kinematics

Let Mx ∈ ℜ3×n andLB ∈ ℜ3×n be respectively the differential kinematic models (e.g.,
for the Quattro robot see Chapter 2 equations (2.148) and (2.141)) that relate the velocity of
the end-effector pose to the velocity of the orientation unit vectorx and to the velocity of the
tip pointB of the cylindrical kinematic element in a kinematic leg:

ẋ = Mx Ẋ , Ḃ = LB Ẋ (3.1)

The geometry of a cylindrical kinematic element (see Fig. 3.1) imposes the following profitable
constraints:

BT n s = − r , xT n s = 0 , pT
s n s = 0 (3.2)

wherer is the radius of the cylindrical kinematic element.Since we would like to exploit the
contours of a cylindrical kinematic element, the third constraint will be used in the virtual
visual servoing scheme. This requires the completion of a differential model defined between
an edgen s and the end-effector poseX. Exploiting the second constraint and knowing that
ṅT

s n s = 0, the image velocity of the contouṙn s is expressed as follows:

ṅ s = α x + β (x × n s ) (3.3)
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whereα andβ are two scalars to be figured out. Theα comes out by differentiating the second
constraint in (3.2) and replacing (3.3) into the differentiated constraint, which yields:

ẋT n s + xT (α x + β (x × n s )) = 0 (3.4)

that givesα as below:

α = Mα

[
Ḃ

ẋ

]
with Mα =

[
01×3 −nT

s

]
(3.5)

Afterwards, theβ is computed by differentiating the first constraint in (3.2)and replacing (3.3)
and (3.5) into the differentiated constraint, respectively. This yields:

ḂT n s + BT (α x + β (x × n s )) = 0 (3.6)

which allows to calculateβ as follows:

β = Mβ

[
Ḃ

ẋ

]
with Mβ =

[
−nT

s

BT (x×n s )
BT x nT

s

BT (x×n s )

]
(3.7)

Then, the differential model between an edge velocity and the end-effector pose velocity shows
up by plugging (3.5), (3.7) and (3.1) into (3.3), which gives:

ṅ s = Ms Ẋ (3.8)

whereMs ∈ ℜ3×n is as below:

Ms = (x Mα + (x × n s ) Mβ )

[
LB

Mx

]
(3.9)

Finally, the complete differential model for both of the left and right edges of a cylindrical
kinematic element is defined as follows:

ṅ = Mn Ẋ (3.10)

wheren ∈ ℜ6×1 andMn ∈ ℜ6×n are as below:

n =

[
n

L

n
R

]
, Mn =

[
M

L

M
R

]
(3.11)

3.2.2 High-Speed Dynamic State Observer via Sequential Visual Sensing

3.2.2.1 Motivation for Sequential Visual Sensing

The non-sequential (simultaneous) acquisition approach instantly gives a robot’s complete
static posture information. On the other hand, the sequential acquisition approach requires one
to take several (k) successive sub-images to collect the same amount of information. Since the
sequential acquisition approach requiresk successive sub-images to give the same information,
one needs the previousk−1 sub-images to be stored. Then, the static posture can be computed
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at each sub-image grabbing instant with previously storedk−1 sub-images. The beauty of this
scenario is that it allows us to simultaneously estimate both the static posture and its velocity
at the time of the latest sub-image by using the lastk grabbed sub-images, when the sampling
timeTcamera between the consecutive static posture instants{tk, tk−1, . . . , t1} is known. Fur-
thermore, the estimation is a lot faster than the non-sequential approach. Table 3.1 compares
the requirements of the tasks (e.g., acquisition, feature extraction, etc.) of the sequential and
non-sequential sensing approaches for the computation of the static posture and the velocity
of a parallel robot. To keep the comparison simple, a task time is assessed in terms of either a
sub-image processing timeTsub or a full image processing timeTfull, whereTsub ≪ Tfull.
In Table 3.1 the algorithm for the posture computation is assumed to cost same amount of time

Table 3.1 – Comparison of sequential and non-sequential approaches.
Task Sequential Non− Sequential

Image acquisition 1Tsub 1Tfull

Feature extraction 1Tsub 1Tfull

Posture computation k Tsub k Tsub

Posture and velocity computation k Tsub 2k Tsub

in both of the sequential and non-sequential approaches once all the information is available.
While computing posture and velocity together, the non-sequential approach needs to calculate
at least 2 sequential postures in order to obtain velocity byderivation, whereas the sequential
approach gives it directly.

For example: If a 40× 40 pixels sub-image is grabbed rather than a full1024× 1024 pixels
image, then in sequential approach:

– image acquisition time is reduced to about655 times.
– feature extraction time is possibly reduced to about655 times.
– posture computation time stays the same.
– posture and velocity computation time is reduced to about2 times.

The estimation of the dynamic state of the robot is faster when the information grabbed is
smaller. On the other hand, when smaller pieces of information are grabbed, less information
is kept for the present time and less accuracy is expected. Consequently, an optimum should be
determined regarding this tradeoff within theoretical andphysical limits.

Remark: In the robotic literature, the termsposeandpostureare sometimes confused. We
would like to give a clear notion of these two terms. A pose is arepresentation of a state of a
robot. A posture is how the physical components of a robot occupy the 3D Euclidean space. A
posture is always a pose, but a pose is not necessarily alwaysa posture. A pose in a 3D task
can be the position and the orientation of the end-effector of the robot, while in a 2D visual
servoing task it can be the image primitives, for instance: corners, lines, circles, lightening, etc,
such that they satisfy the task accomplishment. Here, the message is a pose may not provide
the full geometrical configuration of the robot, nonetheless it can be defined such a way that
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one can conclude the full geometry of the robot. On the other hand, a posture directly gives the
full geometry of the robot and this is what we shall estimate.

3.2.2.2 Algorithm: « Single-Iteration Virtual Visual Servoing »

The classical virtual visual servoing (VVS) repeats the minimization steps of a tracking
error until this error becomes smaller than a certain threshold value. Therefore, when this clas-
sical VVS is used in a vision-based control (VBC) task for tracking purposes of the robot state,
the VBC loop becomes sluggish. However, unlike the classical VVS, we do not repeat the mini-
mization steps of a tracking error more than once between2 acquisition instants of the camera
in our single-iterationVVS. This is because our objective is to use this fast single-iteration
VVS in dynamic control of parallel robots. Table 3.2 gives the two pseudo-codes of the clas-
sical virtual visual servoing and the single-iteration virtual visual servoing which are used in a
vision-based control task.

// Slow VBC Loop
• while ( control error >ǫ1 )

• image grabbing
• detection
// Classical VVS Loop
• while ( tracking error >ǫ2 )

• error computation
• correction
• state update

• control computation
• move robot

// Fast VBC Loop
• while ( control error >ǫ )

• sub-image grabbing
• detection
// Single-iteration VVS

• error computation
• correction
• state update

• control computation
• move robot

Table 3.2 – Pseudo-codes for a vision-based control loop with the slow classical VVS state
tracking (left) and the fast single-iteration VVS state tracking (right).

In the next subsections, we explain this fast single-iteration virtual visual servoing scheme.

3.2.2.3 Notation

– t ∈ { tc, t̄c } denotes the time, wheretc is an acquisition instant of the camera andt̄c is
an estimation instant for the state variables of the virtualrobot.

– T ∈ {Tc , T c } are the periods of sub-image acquisition of the camera and ofthe update
of the virtual robot state variables, respectively. The virtual time periodT c should be
equal to or greater than the acquisition time periodTc of the camera (T c > Tc) so that
the virtual robot can catch the motion of the real robot.

– j (t) ∈ { 1, 2, . . . } is a function of time instants that denotes which cylindrical kinematic
element is observed at timet.
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3.2.2.4 Spatiotemporal Reference Signal

The reference signal, which defines the posture and the velocity of a parallel robot, is
constructed from the portions of the legs’ contours. These contours are extracted from the sub-
images of the legs which are grabbed at successive discrete time instants of the motion of the
robot. Figure 3.2 gives an example set of the grabbed sub-images during the motion of the
Quattro parallel robot, and Figure 3.3 simulates this motion.

Figure 3.2 – Spatiotemporal set of the reference sub-imagesof the legs.

Figure 3.3 – Sequentially grabbed sub-images of the legs during the motion of the Quattro
robot. The lighter the color of the robot is, the more the motion is in the past.

3.2.2.5 Sequential Postures Error

A posture error is formed with a pair of reference projectioncontour points (in metric units),
{p∗

jL i
, p∗

jR i
} extracted from the sub-image of a cylindrical kinematic element of the real ro-

bot, and their associated edges (feedback signal) computedfrom the virtual robot’s cylindrical
kinematic element:

eji =




p∗T
jL i

n
jL

p∗T
jR i

n
jR


 (3.12)

wherei = 1, . . . ,m is the index of a detected contour point in a sub-image. Figure 3.4 explains
the formation of a posture error.

Then, the error vectorej ∈ ℜ2m×1 of the j th cylindrical kinematic element of the virtual
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Figure 3.4 – A posture error is defined using a single sub-image which is captured from a
cylindrical leg of the real robot. The detected edge pixels of this sub-image allow us to form
the reference green and red side rays which pass tangent to the surface of the cylindrical leg of
the real robot. And the current feedback signals are the green and red edge vectors computed
from the copy of the same cylindrical leg which belongs to thevirtual robot. On the condition
that the reference rays (i.e., contour points) are measuredand the feedback edge vectors are
constructed in the same camera frame, these reference rays and these edge vectors become
perpendicular to each other only when the virtual leg is superimposed onto the real leg. That is
to say, minimization of error (3.12) draws the posture of thevirtual robot to the posture of the
real robot.

robot is noted for all the contour points as follows:

ej = C∗
j nj (3.13)

wheren is as in (3.11) andC∗
j ∈ ℜ2m×6 is a constant reference contour matrix:

C∗
j =

[
P ∗T
jL 0

0 P ∗T
jR

]
(3.14)

with {P ∗
jL , P ∗

jR } the detected left and right side contours of thej th cylindrical kinematic
element of the real robot at an instant of time:

P ∗
jL =

[
p∗

jL
1

· · · p∗
jLm

]
∈ ℜ3×m (3.15)

P ∗
jR =

[
p∗

jR
1

· · · p∗
jRm

]
∈ ℜ3×m (3.16)

Finally, having the sets of contour matrices from the real robot and their corresponding feed-
back edge pairs from the virtual robot which are saved up atk sequential discrete instants of

91



time:
C∗ =

{
C∗

j ( tc)
· · · C∗

j ( tc − (k−1)Tc)

}

N =
{

n
j ( t̄c)

· · · n
j ( t̄c − (k−1) Tc)

}

the complete error vectore ∈ ℜ2 km×1 is formed by stacking the lastk posture errors of the
legs:

e =




C∗
j ( tc)

n
j ( t̄c)

...
C∗

j ( tc − (k−1) Tc)
n

j ( t̄c − (k−1)Tc)


 (3.17)

wherej (·) enumerates circular-wise the cylindrical kinematic elements at consecutive instants
of time. Figure 3.6 shows an example for the enumeration of the lower-legs of the Quattro robot
in a static pose.

In order to assemble the feedback edgesn, the virtual robot’s posture is evolved back in
time with aconstant velocity motion model, since the latest estimated dynamic state{X, Ẋ} of
the robot is up to first order (i.e., velocity). Assuming thatthe latest estimated dynamic state and
the differential kinematic models of the time instantt̄c − T c are the approximate predictions
of the time instant̄tc, the feedback edge set is calculated as follows:

n t̄c−∆t ≈ n t̄c − ∆tMnt̄c
Ẋ t̄c (3.18)

where∆t = i T c is the virtual time displacement withi = 0, 1, . . . , (k − 1). Figure 3.5
illustrates the formation of the complete error of the postures.

3.2.2.6 Approximated Edge Evolution Model

In order to regulate this time-space error to zero, a time-space differential model between
an edgen at time instantt+∆t and the effector poseX at reference time instantt needs to be
defined. To find this model, we first write small displacement of an edgen:

n t+∆ t = n t + δn t (3.19)

where∆ t tells how far in time the displaced edge is, and whereδn t is the displacement in
the edge values with respect to reference time instantt. One can approximate the displacement
δn t through (3.10):

δn t ≈ Mnt δX t (3.20)

The displacement in the end-effector poseδX t can be approximated with a constant accelera-
tion model as follows:

δX t ≈ ∆t Ẋ t +
1

2
∆t2 Ẍ t (3.21)

If the representation of the end-effector poseX t is not an element of a linear vector space,
(3.21) is valid only if the rotational axis of the motion during∆ t time remains constant. Other-
wise, it will be still acceptable for a small∆t.
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Figure 3.5 – Sequentialk postures of the real robot (bottom left) and the virtual robot (top
right) which imitates the real robot. We grab a sub-image perposture from a leg of the real
robot and extract the edge contours. The green squares show in which posture, which leg, and
which part of this leg is observed. The green arrow shows the motion path of the real robot,
and below this green arrow we see the sub-images grabbed during this motion. When the last
sub-image is grabbed, the virtual robot’s motion is evolvedwith the latest estimated dynamic
state{X, Ẋ} in order to approximate thek postures of the real robot. The motion of the virtual
robot evolves on a straight line whereas the motion of the real robot can be along a curve as
in the green arrow. The red straight arrow shows the motion path of the virtual robot. Then,
for each virtual robot posture, we find the leg which corresponds to the leg observed on the
real robot. The red lines on the virtual robot postures show the corresponding observed legs of
the real robot. Below the red arrow, we see the 3D cylinders ofthese legs recovered from the
postures of the virtual robot. Finally, the stacked complete error is formed with the extracted
edge contours of thesek sub-images and the visual edge vectors of thesek 3D cylinders.

Finally, the approximated differential model can be expressed using (3.19), (3.20) and
(3.21) as below:

ṅ t+∆t ≈
n t+∆ t − n t

∆t
=

δn t

∆t
(3.22)

ṅ t+∆t ≈ H( t, ∆t)

[
Ẋ t

Ẍ t

]
(3.23)

whereH( t, ∆t) ∈ ℜ6×2n is the constant acceleration evolution model of the edge pair of a leg:

H( t, ∆t) =
[
Mn t

1
2 ∆tMn t

]
(3.24)
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This approximation allows us to solve the inverse kinematicproblem of a parallel robot only
once instead ofk times, wherek is equal to or greater than the number of observed legs.

3.2.2.7 Visual Servoing Control Law

The control law that will bring the error to zero is computed by first differentiating the error
in (3.13) with respect to time, which gives:

ėj = C∗
j ṅj + Ċ∗

j nj (3.25)

Thus replacinġnj by (3.23) and imposinġej = −λ ej for an exponential convergence, (3.25)
becomes:

−λ ej = Lej

[
Ẋ t

Ẍ t

]
+ Ċ∗

j nj (3.26)

whereLej ∈ ℜ2m×2n is the so-called interaction matrix which relates the end-effector pose
velocity and its derivative to the implicit error function of a leg:

Lej = C∗
j Hj( t,∆t) (3.27)

Then, so as to converge to the state of the real robot, we propose the control lawu =
[
ẊT

u, Ẍ
T
u

]T

for update of the pose and the velocity of the virtual robot which satisfies the following system:

Le

[
Ẋ u

Ẍ u

]
= −λ ( e − ẽ ) , λ > 0 (3.28)

whereLe ∈ ℜ 2km×2n and ẽ ∈ ℜ 2km×1 are obtained by stacking associated interaction ma-
trices and the individual errors at each sub-image, respectively:

Le =




Lej ( t̄c)

...
Le

j ( t̄c − (k−1) Tc)


 , ẽ =




Ċ∗
j ( tc)

nj ( t̄c)

...
Ċ∗
j ( tc − (k−1) Tc)

nj ( t̄c − (k−1)T c)


 (3.29)

The termẽ in (3.28) is difficult to approximate, because we do not use any correspondence
between the successively detected reference contour points. Therefore, it will be considered as
a disturbance and it will be neglected. The classical solution to (3.28) is then as follows:

[
Ẋ u

Ẍ u

]
= −λL†

e e , λ > 0 (3.30)

However, (3.30) should not be directly calculated with suchan ordinary pseudo-inverse least
squares regression, since it can be unstable and slow. Here,(3.30) is just a representation of
the numerical solution of (3.28). Actually, a better way to solve (3.28) uses damped total least
squares and QR decomposition yielding robust and fast solutions. Thus, one can write (3.28)
as follows:

Au = b (3.31)
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whereA ∈ ℜ (2km+2n)×2n andb (2km+2n)×1 are the augmented coefficient matrix and the
augmented error vector, respectively:

A =

[
Le

µ I

]
, b =

[
−λ e
0

]
(3.32)

with µ damping parameter,I (2n × 2n) identity matrix, and0 (2n × 1) zero vector. Finally,
(3.31) can be solved foru with QR decomposition.

Indeed, high-speed control of parallel kinematic mechanisms is hardly conceived in a ki-
nematic way, but rather in a dynamic way (computed-torque control). However, this kinematic
control is relevant for tracking where{ Ẋ u, Ẍ u } can be numerically integrated.

3.2.2.8 Virtual Parallel Robot Dynamic State Update

Pose Representations: In our case, the end-effector poseX of the virtual parallel robot has
to be in a vector form. In the literature, some well known pseudo-vector form representations
of the end-effector pose are as follows:

X 1 =




t

α
β
γ


 , X 2 =

[
t

u θ

]
, . . . (3.33)

wheret = [x, y, z]T is the Cartesian translation vector,(α, β, γ) are the Euler orientation
angles,u θ is the axis-angle orientation vector. There is also a matrix-form representation of
end-effector pose which is simple to integrate through exponential formulas:

X 3 =

[
R t

0 1

]
∈ SE(3) (3.34)

whereR ∈ SO(3) is the orientation matrix. However, this matrix form of end-effector pose
does not coherent with the estimation equations, because, for instance, the edge velocity rela-
tion in (3.8) does not fit.

Redundant Pose Representation: Nonetheless, we can still directly profit from the expo-
nential formulas, thanks to our redundant representation of the end-effector pose which fits
better to our objectives: linearity, simplicity, algebraicity, readability, codability. For example,
let the redundant end-effector poseX, its velocity Ẋ and its acceleration̈X for a 6 degrees of
freedom parallel robot be given as follows:

X =




E

x

y


 , Ẋ =




Ė

ẋ

ẏ


 , Ẍ =




Ë

ẍ

ÿ


 ∈ ℜ9×1 (3.35)

whereE, x andy are the origin, the unitx-axis vector, and the unity-axis vector of the end-

effector frame, respectively. The doublet of dynamic state, {X, Ẋ}, allows us easily to pass to
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the linear differential twist spacese(3):

ζ =

[
υ

ω

]
=

[
Ė

x × ẋ + θ̇ x

]
, ζ̂ =

[
[ω]× υ

0 0

]
∈ se(3) (3.36)

whereζ ∈ ℜ6×1 is the velocity twist of the end-effector frame and̂ζ ∈ ℜ4×4 is the homo-
genous coordinates of the velocity twistζ. We wrote the rotational velocityω using Chapter
2 Lemma 1. Then, we replace the angular velocityθ̇ using the known motion of they-axis as
below:

θ̇ = (y × ẏ )T x (3.37)

At this point, we can reformulate (3.36) in a matrix-vector product fromse(3) space to our
redundant pose space:

Ẋ = LX ζ , LX =




I3×3 03×3

03×3 [x ]T×
03×3 [y ]T

×


 ∈ ℜ9×6 (3.38)

and as well as from our redundant pose space tose(3) space:

ζ = L†
X
Ẋ , L†

X
=




I3×3 03×3 03×3

03×3 [x ]×
(
x (x × y )T − (x × y )T x I3×3

)


 ∈ ℜ6×9

(3.39)
whereI3×3 is 3× 3 identity matrix.

Consequently, the triplet{X, Ẋ, Ẍ} yields the acceleration twist:

ζ̇ =

[
υ̇

ω̇

]
=

[
Ë

x × ẍ + θ̈ x + θ̇ ẋ

]
∈ ℜ6×1 (3.40)

where angular acceleration̈θ can be replaced by the differentiation of (3.37) with respect to
time:

θ̈ = (y × ÿ )T x + (y × ẏ )T ẋ (3.41)

Static State Update: The latest estimated poseX in (3.35) at time instant̄tc − T c can be
updated with the control law{Ẋu, Ẍu} as follows:

[
X

1

]

t̄c

= δT

[
X

1

]

(t̄c−T c)

(3.42)

whereδT ∈ ℜ10×10 is a homogenous transformation for a small displacement in aredundant
Euclidean space:

δT =




δR 0 0 δt
0 δR 0 0

0 0 δR 0

0 0 0 1


 (3.43)
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The δR and δt are the orientation and position displacements generated by the exponential
map of the control twists{ζu, ζ̇u}. These control twists are generated by the{X, Ẋu, Ẍu}
triplet as it is explained through (3.35)-(3.41). For a constant velocity evolution model, these
displacements are computed as follows:

[
δR δt
0 1

]
= eT c ζ̂u (3.44)

For a constant acceleration evolution model, these displacements are computed as follows:
[
δR δt
0 1

]
= eT c ( ζ̂u + 1

2
T c

̂̇
ζu) (3.45)

whereζ̂u ∈ ℜ4×4 and̂̇ζu ∈ ℜ4×4 are the homogenous coordinates of the control twists.

Velocity State Update: The latest estimated pose velocityẊ at time instant̄tc − T c can
be updated with the acceleration control twistζ̇u. This acceleration control twist is computed
using the triplet{X, Ẋ, Ẍu} as it is explained through (3.35)-(3.41). Hence, assuming that the
acceleration is constant duringT c seconds, the end-effector pose velocity is updated as follows:

Ẋ t̄c = Ẋ(t̄c−T c)
+ T c

[
ζ̇u

] [
X

1

]

(t̄c−T c)

(3.46)

where
[
ζ̇u

]
∈ ℜ9×10 is a homogenous transformation which relates the homogenous form of

the current end-effector poseX to the end-effector pose velocitẏX:

[
ζ̇u

]
=




[ω̇u]× 0 0 υ̇u

0 [ω̇u]× 0 0

0 0 [ω̇u]× 0


 (3.47)

3.2.2.9 Predicting Future Sub-Image Location

The next dynamic state estimation needs a future sub-image to be grabbed at the next future
sampling timetc + Tc. The position of this sub-image on the image plane must be correctly
predicted from the current dynamic state{X, Ẋ } computed for the time instanttc. Otherwise
there will not be any useful signal in the grabbed sub-image and tracking will fail. Achieving
a correct prediction is, itself, a proof of the correct performance of the proposed method. In
order to predict any of the corresponding sub-image positions of the legs, we first find the likely
future pose of the real robot:

[
X̂

1

]

(tc+Tc)

= δT

[
X

1

]

t̄c

(3.48)

whereδT is a homogenous transformation, as it is shown in (3.43), written from the exponen-
tial map of the current end-effector velocity twistζ using a constant velocity motion model.
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Once the likely future end-effector posêX ( tc +Tc) is found, it is dissolved for the tip point

B̂j and for the orientation unit vector̂xj of a leg through the inverse kinematic model (IKM).
Subsequently, the next location of the corresponding sub-image center is calculated as follows:

zj

[
imwj

1

]
= K ( B̂j − dj x̂j ) (3.49)

whereimwj ∈ ℜ2×1 is the next predicted location of a sub-image center in pixelunits,dj is
a distance that indicates how far along the cylindrical leg to the leg’s tip point the observed
region is,zj is the projective scale factor, andK is the camera intrinsic matrix.

3.2.3 Applied to the Quattro Parallel Robot

In the case of the Quattro robot, the static posture is encoded in the contours of the4
lower-legs. Thus, the dynamic state of the Quattro robot canbe estimated by using at least4
sub-images, which are grabbed from each of the lower-legs atconsecutive discrete time instants
of the motion. Figure 3.6 shows these4 sub-images on the lower-legs of the Quattro.

Figure 3.6 – A full image of lower-legs with their sub-imagesfrom the base-mounted camera
of the Quattro robot. These sub-images are consecutively grabbed at discrete time instants and
given to the virtual visual servoing as a reference. In this image, the Quattro robot is static.

3.2.3.1 On the Observability of the Legs

Furthermore, while even the lower-leg rod being observed ispartially out of the field of
view of the camera, we can still obtain meaningful information by keeping the sub-image in
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the visible region via the parameterdj , which slides the sub-image along the observed leg,
and/or by observing the other rod if the leg is a parallelogram type.

In the case of a detected occlusion in the sub-image, one should relocate another sub-image
on an unobstructed region of the same leg without forgettingabout the change in the acquisition
periodTc for the next state estimation. Even better, not to waste timefor the next estimation,
one can foresee the occlusion and can locate the sub-image directly on the unobstructed region
of the leg. Consequently, this discussion poses the following questions: (i) How can one detect
the occlusion in the sub-image? (ii) How can one foresee the occlusion before grabbing the
sub-image?

3.2.3.2 End-Effector Pose Representation

The end-effector of the Quattro parallel robot has 4 degreesof mobility: 3 translational
mobility along thex, y, z axes, and 1 rotational mobility (θz) around thez axis. These motion
axes are decoupled and they form a linear vector space. Sincethis representation is linear, it
eases algebra and increases accuracy of the edge evolution models. Since this representation
is minimal, it accelerates computations through smaller size of matrix multiplications. Thus,
in high-speed dynamic state estimation of the Quattro parallel robot, we use minimal pose
representation of the end-effector:

X =
[
ET θz

]T
∈ ℜ4×1 (3.50)

rather than the redundant pose representation which is usedin Chapter 2 for linear modeling
purposes:

X =
[
ET xT

e

]T
∈ ℜ6×1 (3.51)

whereE is the origin andx e is thex axis of the end-effector frame. The velocity of the minimal
pose representationX ∈ ℜ4×1 is directly in the 4 dofse(3) space:

Ẋ = LX

[
υ

ωz

]
, LX = I4×4 (3.52)

whereωz is rotational speed around thez axis (i.e., the third component ofω). Then, the
dynamic state of the Quattro parallel robot can be simply updated as follows:

X t̄c = X (t̄c−T̄c) + T̄c Ẋu (3.53)

Ẋ t̄c = Ẋ (t̄c−T̄c) + T̄c Ẍu (3.54)

3.2.3.3 Validation By Simulations

The proposed high speed state estimation approach is verified by simulation results on
Matlab software. Figures 3.7 and 3.8 show the simple block representations of the estimation
algorithm and of the validation process. Each estimation isdone with a single-iteration vir-
tual visual servoing. We remark that the computation of the velocity control lawẌu is very
ill-conditioned. Therefore, the pose velocity estimationis directly assigned equal to the pose
update control laẇXu.

99



Figure 3.7 – Single-iteration virtual visual servoing for fast dynamic state estimation of the
Quattro robot.

Figure 3.8 – Validation of the estimated state variables.

Acquisition Scenario: The camera sub-image acquisition frequency is set to500 Hz. Then,
the reference contour set will be composed of the last successively grabbed4 sub-images of the
corresponding lower-legs while the Quattro robot is being moved on a defined test trajectory.
For example, the first estimation will use the set of sub-images of the lower-legs{1, 2, 3, 4},
the second will use the set of{2, 3, 4, 1} and so on. Each sub-image is a40× 40 pixel2 region
and contains approximately25 pixels for each side (left and right) of the observed lower-leg
rod. Figure 3.9 explains the acquisition scenario of the dynamic state estimation.

Performance Metrics: The end-effector pose of the Quattro robot is composed of 3D posi-
tional part (xyz) and 1D orientational part (θ). Thus, we will evaluate the performances in these
two parts. In order to evaluate the performance of the estimated states, we will use two different
accuracy metrics: root-mean-square of residuals (RMSE) and Hausdorff distance. RMSE is the
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Figure 3.9 – The scenario of the sub-image acquisition instants of the legs of the Quattro
robot for its dynamic state estimation. Black squares represent instants of already grabbed
sub-images. White squares are future instants of sub-imagegrabbing.tc is the last acquisition
instant of the camera.̄tc is the last estimation instant. Black triangles represent instants of al-
ready made estimations for the dynamic state of the robot. White triangles are future estimation
instants.Tc is a time period of successive acquisitions of the camera.

most well-known metric to assess the tracking errors:

RMSE =

√∑n
i=1 (x − xe)2i

n
(3.55)

wherex is a known state,xe is an estimated state which corresponds to the known state, and
n is the number of estimations. However, if there is a latency in tracking, RMSE might not
tell enough about the similarity of two trajectories in space. More explicitly, even if the per-
formed trajectory by the real robot and the estimated trajectory by the single-iteration virtual
visual servoing are perfectly aligned in 3D Euclidean space, RMSE might yield errors due to
existing tracking latency. Therefore, we will also use Hausdorff distance metric, which can
compare how close the two space curves are, without concern of the tracking latency. Let
A = {a1, . . . ,am} andB = {b1, . . . ,bn} be the two curves of points, then Hausdorff
distance is defined as follows:

H(A,B) = max{h(A,B), h(B,A) } (3.56)

whereh(A,B) is the maximum distance of a curve to the nearest point in the other curve:

h(A,B) = max
a∈A

{min
b∈B

‖a − b‖ } (3.57)

namely (3.57) says that for every pointa of A, find its smallest distance to any pointb of B;
finally keep the maximum distance found among all pointsa.

Test Trajectory: The test trajectory is a0.2m diameter half-circle motion with2m/s maxi-
mum velocity and4G maximum acceleration. It is planned to span XY, XZ and YZ planes.
Figure 3.10 shows traces of the test trajectory in time space. Table 3.3 tabulates accuracies of
the position and orientation estimations without any noisein the system. In Table 3.3, even
though there is no noise at all, the source of estimation errors are due to the following three
reasons:
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Figure 3.10 – The evolution of the reference trajectory in time in the robot base frame.

Table 3.3 – Dynamic state estimation errors (without noise).
Pose Errors Velocity Errors

xyz (m) θ (rad) ˙xyz (m/s) θ̇ (rad/s)

RMSE 0.0090 0.047 0.216 1.049
Hausdorff 0.0024 0.007 0.095 0.887

– the constant velocity model being used for evolution of thefeedback edges of the virtual
robot while the movement of the real robot is accelerating.

– use of an approximated spatiotemporal edge evolution model for fast estimation.
– using the pose update control law for the pose velocity estimation, since the computation

of the velocity update control law is very ill-conditioned.

Robustness To Noise: We imitate the following sensor noises to test the robustness of the
estimation method:

– Calibration noise:Camera extrinsic parameters, orientation matrixR and position vector
t with respect to robot base frame, are subjected to noise. Orientation matrixR is deflec-
ted with1◦ degree around an arbitrary axis. The position vectort is displaced0.005m
away along an arbitrary direction.

– Image noise:The reference contour pixels are orthogonally and uniformly perturbed
(with respect to their corresponding edges) by[−1,+1] pixel.

Table 3.4 tabulates accuracies of the position and orientation estimations under the aforemen-
tioned noises. Figure 3.11 depicts the reference and estimated Cartesian space curves. Figure
3.12 plots estimated Cartesian velocities of the end-effector versus time. Figure 3.13 plots po-
sitional and orientational estimation errors versus time.
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Table 3.4 – Dynamic state estimation errors (with noise).
Pose Errors Velocity Errors

xyz (m) θ (rad) ˙xyz (m/s) θ̇ (rad/s)

RMSE 0.0108 0.083 0.221 1.143
Hausdorff 0.0052 0.023 0.163 0.792
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Figure 3.11 – Reference (blue dotted line) and estimated (red solid line) Cartesian space curves
in the robot base frame (for the results of Table 3.4).

When Hausdorff distance results of Tables 3.3 and 3.4 are compared, we see that the ca-
libration noise of the camera is directly pronounced on the estimated 3D trajectory, while the
uniform distribution of the image noise almost has no effect. RMSE results show that we have
a certain latency in tracking which remains about at the samedistance without noise and with
noise.
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Figure 3.12 – Superimposed reference (red dotted line) and estimated (black solid line) Carte-
sian velocities in the camera frame (for the results of Table3.4).

3.2.3.4 Conclusions

We validated by simulations correctness of the high-speed integrated dynamic MICMAC
observer on the Quattro parallel robot. At the same time, this dynamic state observer meets the
second objective of the thesis which is stated as « Fast estimation of the dynamic state (position
and velocity) of the parallel robot from its leg observations. » at the end of the Chapter 1. The
obtained results are promising, and we shall see what this high-speed dynamic state observer
will give in experiments in Chapter 4. The next section discusses on some possible control
scenarios built upon the inverse dynamic model presented inChapter 2 and on the fast dynamic
state observer explained here.
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Figure 3.13 – Pose and pose velocity tracking errors versus time (for the results of Table 3.4).

3.3 Sensor-Based Computed-Torque Control based on Sequential
Leg Observations

In this part, we integrate the linear inverse dynamic model and the high-speed dynamic
state observer in order to define various computed-torque control laws. The objective of this
part is to explore the regulation of different error functions and to discover the formative points
of better control of parallel robots.

3.3.1 Control Variable

The actual sensor signal is the set of thecontours, {C∗}, of the cylindrical kinematic ele-
ments extracted from sequentially grabbed sub-images. These contours are then exploited to
compute the dynamic state of the real robot through a virtualrobot imitating its motion.

105



This virtual robot is controlled by a single-iteration virtual visual servoing scheme at each
sub-image acquisition instant as it is explained in Section3.2.2. This virtual robot can deliver
every variable and its velocity needed for efficient modeling and control of the real robot.
Thus, we can test our linear inverse dynamic model with different control spaces. Figure 3.14
illustrates the selection of a variable set for a control space. The chosen control spacesc must
represent the state of the parallel robot. So, one can have different candidates forsc depending
on the architecture of the parallel robot. For example, one can use the following variables as a
control space of the Quattro robot:

– the edges of the kinematic elements:{n Left , n Right }
– the orientation unit vectors of the kinematic elements:x

– the pose of the end-effector:X
– the articular positions:q

More precisely, the control spacesc can be noted as follows:

sc ∈ {{n Left , n Right } , x , X , q , . . . } (3.58)

Thesc can also be chosen as a combination set of those variables foroptimal control purposes.
Note that onlyq itself should not besc , becauseq alone cannot define always the state of a
parallel robot but it can be taken in any combination set of the sc.

Figure 3.14 – Control space selection.

3.3.2 Versatile Control Law

In order to define a versatile control law, which can regulateany control space, we will
consider that the chosen control spacesc is different than the state spaces of the linearized
dynamics of the robot:

IDM( s̈ , ṡ , s ) , A(s)u + h(s , ṡ) (3.59)

wherës is replaced by the linear control lawu . Hence, we should first relate this actual control
law u to a pseudo-control lawω. This pseudo-control lawω linearizes the dynamics of the
chosen control spacësc = ω and it is built upon an error functionfe which is written in terms
of the control space variables rather than the linearized state space variables:

e = fe( s
∗
c(t), sc(t) ) (3.60)

wheres∗c is a reference state in the control space at time instantt.
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In order to find the relation between the actual control lawu and the pseudo-control law
ω, we assume that there is a second-order diffeomorphism1 between the state spaces and the
control spacesc. If so, one can write the zeroth-order bijective mapping as follows:

s = fsc( sc ) (3.61)

wherefsc is a bijective function which maps control space to state space. Then, let the first-
order diffeomorphism be noted as below:

ṡ = Lsc ṡc (3.62)

whereLsc is a differential model which maps the differential controlspace to the differential
state space. Finally, the second-order diffeomorphism is written by differentiating the first-
order diffeomorphism (3.62) with respect to time:

s̈ = L̇sc ṡc + Lsc s̈c (3.63)

Using the second-order diffeomorphism given in (3.63), onecan find the relation between
pseudo and actual control laws by replacing their dynamics with themselves of the control
laws s̈ = u ands̈c = ω, respectively:

u = fu(Lsc , L̇sc , ṡc, ω ) = L̇sc ṡc + Lsc ω (3.64)

wherefu is a function of the differential modelLsc and its derivative, of the derivative of
the control-variablesc and the pseudo-control lawω. Consequently, one has to know the set
{ sc, ṡc, Lsc , L̇sc} to calculate the actual control lawu by the pseudo-control lawω.

In order to show that the errorfe can be regulated too, one should prove that the linearized
dynamics in the state space(̈s = u) is equivalent to the linearized dynamics in the control
space( s̈c = ω). In order to prove this equivalence, one can rewrite the linearized dynamics of
the state space using the right sides of the last two expressions in (3.63) and (3.64):

L̇sc ṡc + Lsc s̈c = L̇sc ṡc + Lsc ω (3.65)

and this boils down to the linearized dynamics of the controlspace( s̈c = ω), on the condition
that good approximations of the models existand ( s̈c − ω) does not lie in the null-space of
Lsc . Finally, the pseudo-control lawω can be extracted from the following second-order error
dynamics:

0 = K
P
e + K

D
ė + ë (3.66)

whereK
P

andK
D

are the proportional and derivative positive controller gains, respectively.
The derivative of the error vectore with respect to time is written as follows:

ė =
d

dt
( fe( s

∗
c(t), sc(t) ) ) =

∂ fe
∂ s∗c

ṡ∗c +
∂ fe
∂ sc

ṡc (3.67)

1. invertible and differentiable smooth functions
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The pseudo-control lawω which we look for is hidden in thëe. In order to make it appear, we
differentiate the velocity of the error vectore with respect to time, too. This yields:

ë =
d2

dt2
( fe( s

∗
c(t), sc(t) ) ) =

d

dt
(
∂ fe
∂ s∗c

) ṡ∗c +
∂ fe
∂ s∗c

s̈∗c +
d

dt
(
∂ fe
∂ sc

) ṡc +
∂ fe
∂ sc

ω (3.68)

The term in front of the pseudo-control lawω in (3.68) can be expressed as below:

∂ fe
∂ sc

= C(s∗c(t)) (3.69)

whereC( s∗c(t) ) is a matrix written from the reference states∗c of the control space at timet.
As long as this matrixC( s∗c(t) ) is non-singular, one can calculate the pseudo-control lawω:

ω = −C†

(
K

P
e + K

D
ė +

d

dt
(
∂ fe
∂ s∗c

) ṡ∗c +
∂ fe
∂ s∗c

s̈∗c +
d

dt
(
∂ fe
∂ sc

) ṡc

)
(3.70)

This yields a second-order convergence insc. Figure 3.15 shows the block diagrams of the li-
nearized dynamics in the control space and in the state space. Figure 3.16 describes the versatile
computed-torque control scheme.

Figure 3.15 – Linearized dynamics in the control space (left) and linearized dynamics in the
state space (right).

Figure 3.16 – Versatile computed-torque control scheme (V-CTC).

3.3.3 Variations Upon the Control Space

In the following parts, we propose three novel control laws for comparative purposes of
the dynamic control of a parallel robot. Proposed novel control laws are derived from the afo-
rementioned versatile computed-torque control scheme. These control laws differ from each
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other by the choice of the control space (i.e., control variable sc) and consequently by the use
of various transformations in the control scheme (fe, fu). Proposed control laws are applicable
to any parallel robot. Here, we demonstrate the applicationof these novel control laws on the
Quattro parallel robot in order to be consistent with the given examples throughout the thesis
and to ease the following of the expressions. Before going into details of these control laws,
we remind the inverse dynamic model of the Quattro parallel robot once more:

Γ = IDM( ẍ, ẋ, x ) (3.71)

where the inverse dynamics is expressed by means of the leg orientationsx.

Proposition I: Body Orientation Space Computed-Torque Control (BS-CTC)

Since the3D direction vectors of the kinematic elements stand almost atthe heart of the
inverse dynamic model of the Quattro robot (ẍ = u), the control variable set is chosen as
sc = {x pi ,x ai ,x e |

4
i=1 }, and the error is directly regulated over them in order to have an

efficient performance:

fe(x
∗, x ) = e =




x∗
p1
...

x∗
p4

x∗
a1
...

x∗
a4

x∗
e




−




xp1
...

xp4

xa1
...

xa4

xe




(3.72)

where{x∗
pi ,x

∗
ai ,x

∗
e |

4
i=1 } are the desired orientation vectors of the kinematic elements and

e ∈ ℜ27×1 is the orientations error vector. Afterwards, the pseudo-control law,ω ∈ ℜ27×1, can
be calculated through (3.72) and (3.70):

ω = K
P
e + K

D
ė + ẍ∗ (3.73)

One can directly use this pseudo-control law as the final control law u = ω, since the state
space of linearized dynamics and the control space are the same space (fu = 1). Figure 3.17
shows the block diagram of the body orientation space computed-torque control scheme.

Figure 3.17 – Body orientation space computed-torque control (BS-CTC).
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Note that we exploited all the direction vectors of the kinematic elements of the Quattro
robot as a control signal to control its full posture. In another parallel robot, the full posture
might be controlled by some of the direction vectors of the kinematic elements, such as using
only the directions of the observed kinematic elements. In the case of the Quattro robot, only
the directions of the observed lower-legs cannot provide a unique posture. For example, for
every configuration of the lower-legs of the Quattro robot, which stays around a line that passes
through the originO and is parallel to thez-axis of its base frame, there is a second posture of
the Quattro robot with the same configuration of the lower-legs. This second posture is where
the upper-legs are symmetric to the first posture with respect to the plane passing through the
motor positions at the base platform. Figure 3.18 shows examples of these postures.

Figure 3.18 – The Quattro robot postures on thez-axis where lower-legs have the same 3D
orientation vectors.

Proposition II: Leg-Based Cartesian-Space Computed-Torque Control (LCS-CTC)

In this control scheme, the minimal end-effector pose representation of the Quattro parallel
robot is used as a Cartesian space control variable:

X =
[
ET θz

]T
∈ ℜ4×1 (3.74)

Figure 3.19 shows the block diagram of the leg-based Cartesian-space computed-torque control
scheme.

Figure 3.19 – Leg-based Cartesian-space computed-torque control scheme (LCS-CTC).
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Here, we will note this minimal end-effector pose representation withX 4 rather thanX in
order not to confuse it with the6 × 1 redundant end-effector pose representation of the Quat-
tro parallel robot. Subsequently, we will note the redundant end-effector pose representation
with X 6 for consistency of the notation. Since this minimal pose representation has decoupled
components, the error can be defined as a direct difference inthe Cartesian space:

fe(X
∗
4, X 4 ) = e = X∗

4 − X 4 (3.75)

whereX∗
4 andX 4 are the desired and the current minimal pose vectors. Afterwards, the pseudo-

control lawω can be calculated through (3.75) and (3.70) as follows:

ω = K
P
e + K

D
ė + Ẍ∗

4 (3.76)

As a consequence of (3.76), the control lawu can now be calculated from (3.64) as below:

u = L̇
X
Ẋ 4 + L

X
ω = fu(LX

, L̇
X
, Ẋ 4, ω ) (3.77)

whereL
X
∈ ℜ27×4 is the inverse differential kinematic model between the end-effector pose

X 4 and the3D direction vectors of the kinematic elements. Using the differential kinematic
models defined in (2.147), (2.149) and (2.152) of Chapter 2, we can writeL

X
as follows:

L
X
=




Mp
6T4

Ma
6T4

Me
6T4


 (3.78)

whereMp, Ma andMe are the differential kinematic models of the direction vectors of the
upper-legs, the lower-legs, and the rotational-bar of the nacelle, respectively.6T4 ∈ ℜ6×4 is the
transition matrix which maps velocity of the minimal end-effector pose representation to the
redundant pose representation:

Ẋ 6 = 6T4 Ẋ 4 ,
6T4 =

[
I3×3 03×1

03×1 y
e

]
(3.79)

whereX 6 =
[
ET xT

e

]T
∈ ℜ6×1 is the redundant pose representation which is used in Chapter

2 for linear modeling purposes, and all the differential kinematic models brought from Chapter
2 were written with respect to this redundant poseX 6.

Proposition III: Edge-Space Computed-Torque Control (ES-CTC)

The left and the right edge equations in pixel-units{( imnLeft,
imnRight )i }|

4
i=1 ∈ ℜ3×1

of the image projections of the lower-leg rods (see Fig. 3.6)of the Quattro parallel robot are
exploited directly as a control variable set. These visual edge vectors of the lower-legs are
enough to define the state of the Quattro robot. Therefore, wedo not need to use in addition the
visual edge vectors of the other kinematic elements (e.g., upper-legs). Figure 3.20 shows the
block diagram of this edge-space computed-torque control scheme. In this scheme, the error
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Figure 3.20 – Edge-space computed-torque control scheme (ES-CTC).

vector for each lower-leg,ei ∈ ℜ6×1, is defined as follows:

ei =

[
eLi
eRi

]
=

[
( imn∗

Left −
imnLeft )i

( imn∗
Right −

imnRight )i

]
(3.80)

where{ imn∗
Left,

imn∗
Right } are the left and right desired projection-edges of a lower-leg rod.

The complete error vectore of all the lower-legs is noted in a stacked form using (3.80) as
follows:

fe(
imn∗, imn ) = e = [ eT1 , e

T
2 , e

T
3 , e

T
4 ]T (3.81)

Hence, one can derive the differential relation between theorientation vector of a lower-
leg rod and its projection-edges in pixel coordinates by differentiating the expressions below
brought from (1.96) and (1.92):

cxai =
cnLeft ×

cnRight

‖ cnLeft ×
cnRight ‖

, cn =
KT imn

‖KT imn ‖
(3.82)

After some algebraic calculus, the following expression appears:

cẋai = Mnxai

[
(imṅLeft)i
(imṅRight)i

]
(3.83)

whereMnxai
∈ ℜ3×6 is the interaction matrix between the velocities of a lower-leg rod3D

direction and its projection-edges:

Mnxai
=

π(cxai)

‖cxai‖

[
[ (cn Right)i ]

T
×

π((cnLeft)i)
‖(cnLeft)i‖

KT [ (cn Left)i ]×
π((cnRight)i)
‖(cnRight)i‖

KT
]

(3.84)
and wherecxai and(cnLeft/Right)i are respectively the non-unit vectors of the direction of a
cylindric leg and the visual edges of the same leg:

cxai = (cnLeft)i × (cnRight)i , (cnLeft/Right)i = KT (imn Left/Right)i (3.85)

Theπ(·) ∈ ℜ3×3 denotes an orthogonal projection matrix with respect to an associated vector.
This orthogonal projection matrixπ(·) appears in the time derivation of a unit vector. For
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instance, letx be an orientation vector of a leg of a robot, then time derivative of the normalized
orientation vector can be expressed by the orthogonal projection matrixπ(x) as follows:

d

dt

(
x

‖x ‖

)
=

1

‖x ‖
π(x) ẋ =

1

‖x ‖

(
I3 − xxT

)
ẋ (3.86)

Then, we proceed by writing down all relations between the3D directions of lower-legs and
their projection-edges in a matrix-vector from:




cẋa1
cẋa2
cẋa3
cẋa4




︸ ︷︷ ︸
Ẋa

=




Mnxa1 0 0 0

0 Mnxa2 0 0

0 0 Mnxa3 0

0 0 0 Mnxa4




︸ ︷︷ ︸
Mna




(imṅLeft)1
(imṅRight)1
(imṅLeft)2
(imṅRight)2
(imṅLeft)3
(imṅRight)3
(imṅLeft)4
(imṅRight)4




︸ ︷︷ ︸
imṄ

(3.87)

whereẊa ∈ ℜ12×1, Mna ∈ ℜ12×24 and imṄ ∈ ℜ24×1 are the stacked vector ofcẋai, the
concatenated block diagonal matrix ofMnxai

, and the stacked vector of(imṅLeft/Right)i, res-
pectively. After that, we continue by writing the differential model which relates the velocities
of lower-leg direction vectors to the rest of the velocitiesof the direction vectors of the kine-
matic elements: 



cẋp1
...

cẋp4
cẋe




︸ ︷︷ ︸
Ẋpe

=

[
Mp

Me

]
Ma

†

︸ ︷︷ ︸
Mape




cẋa1
...

cẋa4




︸ ︷︷ ︸
Ẋa

(3.88)

whereMape ∈ ℜ15×12 requires only a4 × 4 linear system solving in its computation due
to the pseudo-inverse of theMa ∈ ℜ12×4. TheMp, Ma andMe are again the differential
kinematic models of the directions vectors of the upper-legs, the lower-legs, and the rotating
rod of the nacelle, respectively. These differential kinematic models can be found in Chapter
2. TheẊpe ∈ ℜ15×1 is the stacked vector ofcẋpi and cẋe. Now at this point, we can write
the first-order diffeomorphism between the differential control space and the differential state
space: [

Ẋa

Ẋpe

]
=

[
Mna

MapeMna

]

︸ ︷︷ ︸
Ln

imṄ (3.89)

whereLn ∈ ℜ27×24 is the differential model of the first-order diffeomorphism. Then, we write
the control lawu ∈ ℜ27×1 from (3.64) as follows:

u = fu(Ln, L̇n,
imṄ, ω ) = L̇n

imṄ + Ln ω (3.90)
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where the pseudo-control lawω is computed by using (3.82) and (3.70):

ω = K
P
e + K

D
ė + imN̈

∗
(3.91)

3.3.4 Validation By Simulations

The proposed vision-based computed-torque control laws are validated by simulations on
the Quattro parallel robot. These simulations are conducted on the ADAMS & Simulink plat-
form. The simulation frequency is set to500 Hz. A 0.2 m diameter reference circle motion
with 2 m/s maximum velocity and4G maximum acceleration is planned such that it spans
XY, XZ and YZ planes. Figure 3.21 shows this reference circlemotion versus time. The si-
mulations are executed for previously explained three computed-torque control laws: BS-CTC,
LCS-CTC, and ES-CTC. Afterwards, the results are compared.
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Figure 3.21 – Cartesian space reference trajectory expressed in the camera frame.

3.3.4.1 Feedback Sensing

The high-speed dynamic state observer is not integrated here for computation of the feed-
back signals. We did so to analyse the respective propertiesof the proposed control laws inde-
pendently from the technological constraints. Indeed, thedevelopment of smart fast cameras in
the coming years might enable fast tracking of all the legs ina simultaneous way. Moreover,
our high-speed dynamic state observer can be easily adaptedto the developing new sensing
technologies so as to perform simultaneous posture and velocity estimations of all the legs. As
a consequence, we deliberately take the following assumption:

Assumption 1 Image projection linesn of the lower-legs and their velocitieṡn can be preci-
sely measured at high speed and simultaneously.
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Here, we take the opportunity to propose another tracking algorithm [OAM10] based on
the Assumption 1, although it is not feasible in practice until the smart fast cameras become a
reality. On the other hand, this algorithm is perfectly in step with our methodology in the sense
of linearity and codability. The additional advantage of this new tracking algorithm is that it
forms a constructive proof of:

Lemma 2 The edge set(∀j , ∀i , {n ji , ṅ ji } | j ∈ {(L)eft, (R)ight}, i ∈ {1, 2, 3, 4} ) of
the first cylindric rods of the lower-legs implies the dynamic state of the Quattro parallel robot,
and the required variable set for kinematics and dynamics can be calculated from this set.

Cylindrical Kinematic Element Constraints We remind once more the two profitable geo-
metric constraints of a cylindrical rod in a lower-leg:

Bi1
T nji = −r (3.92)

xai =
nLi × nRi

‖nLi × nRi‖
(3.93)

wherexai , nji andr are the direction, a projection-line and the radius of the cylindrical rod in
a lower-leg, respectively. Fore further details on the robotic leg projection and 3D construction,
the reader is referred to the integrated MICMAC part of the Chapter 1.

Computation of the Attachment Points Recalling the assumption that the attachment point
Bi1 (i.e., the point located on the nacelle) is lying on the revolution axis of the lower-leg rod
with radiusr, the geometric constraint in (3.92) is applied on the both ofprojection-lines (i.e.,
left and right sides) of the first rods of the lower-legs1 and2. This yields:

nL1
T B11 = −r

nR1
T B11 = −r

nL2
T B21 = −r

nR2
T B21 = −r

(3.94)

Taking into account the nacelle parameters, one can have thefollowing relation:

B11 = B21 +
−−−−−→
B21B11 (3.95)

where
−−−−−→
B21B11 is a constant vector, which can be retrieved by calibration or from the CAD

model:
−−−−−→
B21B11 =

H

2
zp2 − (d+ 2dx)xb −

H

2
zp1 (3.96)

By replacingB11 in (3.94) with (3.95), the following linear system can be obtained from the
image information:




n L1
T

n R1
T

n L2
T

n R2
T




︸ ︷︷ ︸
Nj21

B21 =




−r − n L1
T (

−−−−−→
B21B11)

−r − n R1
T (

−−−−−→
B21B11)

−r
−r




︸ ︷︷ ︸
β21

(3.97)
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The least-square solution,B21 , of this 4 × 3 linear system is unique provided that3 of the
interpretation planes are linearly independent:

B21 = N †
j21

β21 (3.98)

whereN †
j21

is the pseudo-inverse ofNj21 ∈ ℜ4×3 and needs only3 × 3 matrix inversion which
can be algebraically computed. Using (3.95), one can also arrive atB11.

After that, a second linear system can be built to computeB31 andB41 by repeating the
same procedure on lower-legs3 and4. We would like to point out that this estimation is per-
formed in a single image. Note that this result was already verified in [DAM07] on a real I4R
robot, and was adapted here for the end-effector of the Quattro robot.

Computation of the Attachment Point Velocities The velocities of the attachment points
Bi1 can be computed by differentiating the constraints in (3.97) and solving the linear systems
for Ḃ21 andḂ31. In order to calculatėB21 the new linear system is written as follows:




n L1
T

n R1
T

n L2
T

n R2
T


 Ḃ21 =




−ṅ L1
T B11

−ṅ R1
T B11

−ṅ L2
T B21

−ṅ R2
T B21


 (3.99)

while Ḃ31 can be computed similarly. Then, velocities of the (attachment) points that are loca-
ted on the same rigid part of the nacelle will be equal:

Ċ1 = Ċ2 = Ḃ21 = Ḃ11 (3.100)

Ċ3 = Ċ4 = Ḃ31 = Ḃ41 (3.101)

Required Variable Set Looking at carefully to the modeling of the Quattro robot at the end
of the Chapter 2, one can list the required variable set for kinematics and dynamics as follows:

– {xpi, ẋpi, ẍpi, y
pi
} the variables related to the active upper-legs.

– {xai, ẋai, ẍai} the variables related to the passive lower-legs.
– {xe, ẋe, ẍe, y

e
} the variables related to the passive nacelle.

So, one can start computing the zero-order variables of the robot. The variables of the upper-
legs are given as follows:

xpi =
1

ℓpi

(
Bi1 − Pi −

−−−−→
AiAi1 − ℓai xai

)
(3.102)

y
pi

= zpi × xpi (3.103)

whereℓpi, ℓai, Pi,
−−−−→
AiAi1 andzpi are the constant parameters and vectors. The nacelle va-

riables are expressed as below:
xe = (C2 − C3)/h (3.104)

y
e
= ze × xe (3.105)
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whereze andh are constants, and theC2 andC3 can be represented as follows:

C2 = B21 +
−−−−→
B21C2 (3.106)

C3 = B31 +
−−−−→
B31C3 (3.107)

with {
−−−−→
B21C2 ,

−−−−→
B31C3} constant vectors and the{B21 ,B31} attachment points of the lower-

legs to the nacelle.
The first-order variables of the passive nacelle can be calculated as follows:

ẋe = (Ċ2 − Ċ3)/h (3.108)

ẏ
e
= ze × ẋe (3.109)

After that, the end-effector poseX and its velocityẊ can be expressed as below:

X =

[
(B21 +

−−−−→
B21C2 − h

2 xe − ay
e
)

xe

]
(3.110)

Ẋ =

[
(Ḃ21 − h

2 ẋe − a ẏ
e
)

ẋe

]
(3.111)

Then, the rest of the first-order variables (upper-legs, lower-legs, parts of nacelle) is obtained
as below:

Ẋ =




Mp

Ma

Me


 Ẋ = MX Ẋ (3.112)

whereX ∈ ℜ27×1 is the variable vector of the system:

X =
[

xT
p1, . . . ,x

T
p4, xT

a1, . . . ,x
T
a4, xT

e

]T
(3.113)

and whereMX ∈ ℜ27×6 is the interaction matrix between the end-effector pose andthe system
variables. The second-order variables can be computed by differentiating (3.112) as follows:

Ẍ = ṀX Ẋ + MX Ẋ (3.114)

The actuated joint speedsq̇ and their accelerations̈q which are required for computation of the
actuator inertial and frictional torques can be also obtained as below:

q̇ = Mq Ẋ (3.115)

q̈ = Ṁq Ẋ + Mq Ẍ (3.116)

whereṀX, Mq and Ṁq are written from the zero-order and the first-order variables which
already exist since (3.112). The second-order time derivative of the end-effector pose will be
coming directly from the control-law (if the control-variable is chosen as the end-effector pose)
or it will be computed through the second-order diffeomorphism between the chosen control-
variable and the end-effector pose.

Thereby, at this pointwe substantiate that exploiting only the image edgesn and their
velocitiesṅ of the lower-legs of the Quattro parallel robot, it is possible to figure out the whole
variable set for dynamic control.Note that this confluence is made easy, thanks to the vector-
based formulation of both the dynamics and the differentialgeometry in the image.2

117



Figure 3.22 shows the block diagram of the versatile computed-torque control scheme in-
tegrated with this edge-based linear dynamic state observer.

Figure 3.22 – Versatile computed-torque control scheme integrated with the edge-based linear
dynamic state observer.

3.3.4.2 Noises for Robustness Test

The following two noise types are contaminated to the systemto test the robustness of the
control laws:

– Mechanical noise: Firstly, 100µm of uncertainty is injected on the 3D coordinates of
the extremity points{Ai1,Bi1} of the lower-legs of the Quattro robot so as to imitate
the effects of clearances in passive joints, assembly errors, etc. This noise has a great
impact on the orientations of the lower-legs. A good calibration is a must in the case of
ignorance of that kind of mechanical errors.

– Sensory noise: Afterwards, for sensory noise, the locations of the visualcontours of
a lower-leg are orthogonally perturbed (with respect to itsnoiseless projection-line) in
between[−2,+2] pixels. This noise makes the new fitted line take a slight deflection off
the previous noiseless one.

3.3.4.3 Performance Metric

The accuracy of the proposed control laws is assessed in terms of mean and standard de-
viation values of the position (xyz) and orientation (θ) tracking errors of the end-effector pose.
Table 3.5 lists these accuracy results for each control law obtained under previously explained
noise types. The mean values are shown inbold font and the standard deviation values are
shown initalic font.

3.3.4.4 End-Effector Computed-Torque Control (EE-CTC)

We also performed another computed-torque control with a feedback pose estimated by
the direct observation of the end-effector pose (EE-CTC) instead of computing this pose from
the lower-leg edges. This feedback poseX 4 is corrupted with a{100µm, 0.01◦} noise which
corresponds to state-of-the-art accuracy of high-speed vision. The results of this EE-CTC are
shown in the last row of the Table 3.5 below of LCS-CTC column.Figure 3.23 shows the block
diagram of the end-effector computed-torque control scheme.
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Figure 3.23 – End-effector computed-torque control scheme(EE-CTC). IDKM is the inverse
differential kinematic model. IKM is the inverse kinematicmodel.

3.3.4.5 Results

Figures 3.24, 3.25, and 3.26 depict traces of the performed trajectories and applied torques
obtained under the noises given in the fourth row of the Table3.5. Observing results in Table
3.5, one can immediately conclude that LCS-CTC performs better and ES-CTC performs worse
than the others. It is surprising to have that result while our expectations are put on the ES-CTC
since the control variableimn is directly defined in the very sensor-space. However, differences
on the orders of magnitudes of the errors are not so decisive to promote one over the others.

Going into details of results given in Table 3.5, one can end up that: ES-CTC and BS-CTC
seem robust only to the noises in the sensor space (line fitting easily smooths out the 2D sensory
noise), while being sensitive to the mechanical errors. They are slightly better in rotation but
slightly worse in translation than LCS-CTC. It seems that, the closer the control space to the
operational space of the robot is, the better the results are. Moreover, the superior robustness
of LCS-CTC to both types of noise (i.e., mechanical and sensory) can be explained by the fact
that the pose is calculated from the projection-lines of thelower-legs. This imposes explicitly
the closed-loop kinematic constraint that is helping to smooth out the 3D mechanical noise.

In the applied torques LCS-CTC performs better too, while the others are more oscillatory
and peaky. One can observe these oscillations and peaks in Figures 3.24 and 3.25.

Let us finally remark that EE-CTC is worse than any other proposed controls, which
confirms thatobserving the lower-legs is probably one good way to the enhanced accuracy.

Note that those results were achieved with a PD+FF controller under the assumption of a
perfect decoupling and linearizing of the dynamics. In practice, due to noise, this assumption
might not be valid and the actual performance of the system should be improved by advanced
control techniques.
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Figure 3.24 – Reference (red) and performed (black) superimposed trajectories in ZY and ZX
planes (top), motor torques (bottom) for the ES-CTC.
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Figure 3.25 – Reference (red) and performed (black) superimposed trajectories in ZY and ZX
planes (top), motor torques (bottom) for the BS-CTC.
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Figure 3.26 – Reference (red) and performed (black) superimposed trajectories in ZY and ZX
planes (top), and motor torques (bottom) for the LCS-CTC.
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Table 3.5 – Tracking errors versus noises in different control spaces.

ES-CTC BS-CTC LCS-CTC
xyz (µm) θ (deg) xyz (µm) θ (deg) xyz (µm) θ (deg)

no noise 408 0.23◦ 356 0.23◦ 359 0.23◦

239 0.19◦ 190 0.16◦ 182 0.16◦

100µm 674 0.32◦ 652 0.37◦ 553 0.36◦

447 0.26◦ 385 0.26◦ 269 0.25◦

±2 pixels 553 0.22◦ 522 0.22◦ 529 0.34◦

428 0.18◦ 371 0.16◦ 236 0.23◦

100µm 881 0.28◦ 899 0.29◦ 560 0.36◦

±2 pixels 647 0.23◦ 703 0.24◦ 264 0.25◦

100µm _ _ 862 0.56◦

0.01◦ 400 0.38◦

3.3.4.6 Conclusions

In this part, for a competent control performance of a parallel robot, the control spaces
have been explored regarding a specific inverse dynamic model expressed in leg orientations.
The prevailing results are brought by the LCS-CTC. This outcome suggests the following3
important formative points in order to improve the performance of parallel robots:

– (i) the control space should be in the operational space of the robot;
– (ii) the control space should be also as close as possible tothe sensor space;
– (iii) the models should be linearly and compactly expressed by the measurements of the

sensor space;
The above conclusions once more clearly distinguish « vision » as one of the best options in
the sense of allowing us to satisfy all of the3 formative points at the same time.

Finally, we would like to remark that the presented versatile computed-torque control
scheme meets the third objective of the integrated dynamic MICMAC part which is stated as
at the end of the Chapter 1 as follows: « Proposing a vision-based framework for the dynamic
control of parallel robots from their leg observations. »
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3.4 Conclusions

We can give a brief summary of this chapter as follows:
– Firstly, we presented a vision based high-speed dynamic state observer. This observer can

provide all the necessary variables which keep the modelingand as well as the control in
linear form. It computes the position and the velocity of a parallel robot simultaneously,
because it uses sequential observation information of the legs of a parallel robot which
encodes the state of motion. It is fast, because it observes small portions of the legs with
relatively small sub-images, and because it uses a single-iteration virtual visual servoing
to compute the position and the velocity.

– Secondly, we proposed a versatile computed-torque control scheme based on the leg
observations of a parallel robot. This control scheme allowed us easily to define control
laws for different control spaces. Then, we explored the effects of error regulations in
different control spaces and as a consequence we discoveredsome formative points of
better control of parallel robots.

Correctness of these new theories are validated by simulations. Now, in the next Chapter,
it is time to prove the feasibility of these theories on the real experimental setups.
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Chapter 4

Experiments

This chapter experimentally validates the feasibility of the presented theories for dynamic
modeling, for high-speed dynamic state estimation and for dynamic control of parallel robots.

4.1 High-Speed Integrated Dynamic MICMAC Observer

The high-speed dynamic state tracking algorithm which is described in Chapter 3 Section
3.2 will be tested on the Quattro parallel robot. First, we will give the details of the test-bed,
then we will explain an experimental scenario.

4.1.1 Test-Bed Setup

Figure 4.1 shows test-bed of the Quattro parallel robot. In this test-bed the following points
are important to note:

Choosing a cameraIn order to do high-speed estimation, camera frame rate should be fast
enough. A Photon Focus CMOS CamLink TrackCam is a relevant sensor for our state
estimation algorithm. It allows for fast sequential sub-image acquisition. One should also
choose a short focal lens for better perspective effect on the cylindrical legs of the Quattro
robot. The more perspective effect there is, the better the estimation is. Unfortunately,
short focal lens brings distortions on the image which should be carefully taken care of.

Positioning of the camera For a good observation of the legs, the camera should be located
somewhere far away from occlusions. In the Quattro robot, the camera is placed onto the
robot base, looking downwards to the legs and to the end-effector. In this location, the
field of view of the camera is less cluttered than the space outside the legs. Figure 4.1
shows the base-mounted camera of the Quattro robot and an image taken by this camera.

Lighting If fast acquisition is desired, CMOS sensor of the camera should be exposed for a
short time. This short exposure time causes dark images. Subsequently, to have clear
images, the scene must be very strongly and properly illuminated. That is to say, a good
visibility of the legs must be guaranteed while keeping the image noise at a moderate
level. For instance, strong lighting can produce reflections causing false edges on the
legs. A solution might be a white back light which allows one to observe the shadows
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Figure 4.1 –Left picture: The Quattro robot and its cell. The camera is mounted onto the base
looking downwards to the legs. The back light platform is below the legs.Right picture: An
image of the legs from the base-mounted camera.

(i.e., silhouettes) of the legs on the image. This lighting provides almost a binary image
where many of the unwanted false edges are removed. On the other hand, the white
back light limits the visibility of the scene to its lightingsurface. This also implies that
the back light can limit the workspace to a smaller region than the field of view of the
camera.

Camera-robot calibration Intrinsic calibration of the camera should be accurate. This must
be performed with a method which can give a direct model for lens distortion correction
(e.g., Visp) rather than an indirect (iterative) model. A direct model accelerates the state
estimation. Afterwards, the pose of the camera frame with respect to robot base frame
(i.e., extrinsic calibration)[R, t] should be calculated accurately. The accuracy and the
speed of the estimation depend on all these parameters.

Synchronization In order to have a ground truth to compare the results, the motor encoders
of the robot and the camera are synchronized to capture an information at the same time.
So, motor encoders read the joint positions at the moment when the camera grabs a sub-
image of a leg.

4.1.2 Experimental Scenario

To validate the feasibility of the dynamic state tracking algorithm, we proceed as follows:

1. Calibration: We shall first calibrate the extrinsic pose parameters of the camera with
respect to the robot base frame. This extrinsic pose of the camera will be calculated by
using the visual edges of the lower-legs of the robot.

2. Reference Trajectory: We will design a Cartesian space trajectory which expands all axes
of motion of the robot, and we will calculate a region of interest (ROI) image trajectory
of the lower-legs which corresponds to this designed reference Cartesian space trajectory.
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3. Data Collection: The Quattro robot will be moved along the reference Cartesian space
trajectory with simple Cartesian space kinematic control.During this motion, we will
synchronously save the joint values measured by the motor encoders and as well as the
sub-images of the lower-legs grabbed by the camera.

4. Off-Line Dynamic State Computation: We will then compute the dynamic state of the
Quattro parallel robot and the ROI predictions through the registered sub-images of the
lower-legs.

5. Comparison: Finally, we will compare calculated results with the performed reference
motion of the Quattro parallel robot.

4.1.3 Calibration

Here, we shall calculate the pose (cRo,
cto) of the camera frame with respect to the robot’s

base frame. It is assumed that the camera intrinsic matrix (K), the lens distortion correction
coefficients, and the geometric parameters (ξgeo) of the robot are known.

4.1.3.1 Camera-Quattro Parallel Robot Calibration from Leg Edges

In order to find the pose of the camera frame with respect to thebase frame of the Quattro
robot, we exploited a geometric constraint of the cylindrical legs as an objective function for
minimization. The geometric constraint is as follows:

cn ij
T cBi = − r (4.1)

wheren is a visual side edge of a cylindrical leg,B is the connection point of this cylindrical
leg to the nacelle,r is the radius of the cylindrical leg,i ∈ {1, 2, . . . , 8} is the cylindrical leg
index, andj ∈ {L, R} is the left or right side visual edge index. Figure 4.2 depicts an image
of the Quattro robot with its16 edges of the8 cylindrical legs. Therefore, from an image of a
known robot posture, we can write16 constraint equations.

Constraint (4.1) can be rewritten with the pose parameters of the camera frame as below:

cn ij
T ( cRo

oBi +
cto ) = − r (4.2)

where this time the connection pointB is expressed in the robot’s base frame, and it is known
from the 3D CAD model of the robot. We rewrite (4.2) for the unknown pose parameters as
follows:

A ij x = −r (4.3)

where the coefficient row vectorA ij ∈ ℜ1×12 and the unknown parameters column vector
x ∈ ℜ12×1 are as below:

A ij = cn ij
T




oBT

i 01×3 01×3 1 0 0
01×3

oBT

i 01×3 0 1 0
01×3 01×3

oBT

i 0 0 1


 , x =




rT

1

rT

2

rT

3
cto


 (4.4)
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Figure 4.2 – The16 edges (red lines) from8 cylindrical legs of the Quattro robot for a given
pose in calibration.

and wherer1,2,3 ∈ ℜ1×3 are the row vectors of the orientation matrixcRo. Stacking all the
linear constraint systems of all the observed cylindrical legs computed fromk images, one can
write the following complete system:

Ax = b (4.5)

whereA ∈ ℜ16k×12 andb ∈ ℜ16k are as follows:

A =




1A1L
1A1R

...
kA8R


 , b =




−r
...
−r


 (4.6)

Linear solution of (4.5) yields the extrinsic pose parameters of the camera frame with respect to
base frame of the robot. However, the computed orientation matrix cRo may not be orthogonal.
One can make it orthogonal using its SVD decomposition:

cRo = U DV T (4.7)

assuming that the diagonalD matrix is identity. Then, the new orthogonal orientation matrix is
calculated as below:

cRo = U V T (4.8)

While calibrating the camera frame with respect to the robotframe, we have taken images
of 25 different known poses of the robot expressed in its base frame with respect to its base
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Table 4.1 – Calibration residual errors of the geometric constraint given in (4.1).
Linear solution Non-linear solution

RMSE 0.0022 m 0.0008 m

frame. We solved the extrinsic parameters through the linear system explained above. In order
to compare the correctness of the results, we also solved theconstraint equations written in
(4.2) through the non-linear “trust-region-reflective" minimization method [CL96]. Table 4.1
depicts the root mean squares (RMSE) of the constraint residuals of the linear and non-linear
solutions. When two solutions (i.e., linear and non-linear) of orientation matrices are compa-
red with the geodesic distance metric, the difference is found 0.0016 rad. When two solutions
of position vectors are compared with the Euclidean distance metric, the difference is found
0.0017m. Figure 4.3 shows the3 robot posture images with the back-projection of the connec-
tion pointsB. Back-projection is performed with the extrinsic camera pose parameters which
are computed linearly.

Figure 4.3 – Back-projection (white circles) of connectionpointsB with linearly computed
extrinsic pose parameters.

4.1.3.2 Coarse to Fine Calibration

One may start with a coarse set of the extrinsic parameters[ R̂, t̂ ] in order to perform the
dynamic state estimation of the robot:

R̂ = ∆R R , t̂ = t + ∆t (4.9)

where[R, t ] are the correct extrinsic parameters, and[∆R, ∆t ] are the errors of these para-
meters. As a consequence, the dynamic state estimations will give erroneous results. However,
since the errors[∆R, ∆t ] of the extrinsic parameters of the camera stay constant during the
dynamic state estimation of the robot, these errors will show themselves as an offset between
the performed trajectory by the real robot and the estimatedtrajectory by the virtual robot. A
solution for this offset can be approximated by a 3D pose estimation between these two space
trajectories. Let{P1, . . . , Pm} ∈ ℜ3×1 and{P∗

1, . . . , P
∗
m} ∈ ℜ3×1 be two sub-sets of point

correspondences in the estimated and performed trajectories, respectively. Hence, in order to

129



calculate this offset, the objective function for minimization is written as follows:

min
(∆R,∆t)

m∑

i=1

‖P∗
i − ∆RPi − ∆t ‖2 , m > 3 (4.10)

wherem is the minimum number of non-collinear corresponding points. Once this offset is
computed, one can update the extrinsic parameters as follows:

R = (∆R)T R̂ , t = t̂ − ∆t (4.11)

whereR andt are the new approximated parameters which will yield betterresults. So, this
dynamic state estimation algorithm can also serve for a coarse to fine camera-robot calibration.

4.1.4 Reference Trajectory

The reference Cartesian space motion (X∗) is a0.08m by 0.08m square trajectory on the
xy-plane. There is no rotation in this trajectory. The maximumvelocity and acceleration of the
motion are0.25m/s and1m/s2, respectively. This square trajectory is rotated by60◦ degrees
around thex-axis so as to cross the3 axes of the motion space. Afterwards, a region of interest
(ROI) image trajectory is created for the observation of thelower-legs of the Quattro robot
using this reference Cartesian space motion (X∗). The image trajectory contains the upper-left
corner pixel coordinates of the sub-images that shall be acquired during the reference square
motion of the robot. The size of sub-images are48× 48 pixel2. Figure 4.4 shows this reference
sub-image (ROI∗) trajectory of the lower-legs of the Quattro robot.

350 400 450 500 550 600 650

400

450

500

550

600

650

700

x  (pixels)

y 
 (

pi
xe

ls
)

 

 ROI Leg 1 
ROI Leg 2
ROI Leg 3
ROI Leg 4

Figure 4.4 – ReferenceROI∗ upper-left corner positions on the image plane. Red, green,blue
and black traces belong to the first, second, third and forth lower-legs, respectively.
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4.1.5 Data Collection

The Quattro parallel robot is moved along the reference square trajectory through a simple
Cartesian space kinematic control. During this motion, we recorded at500Hz the joint posi-
tions (qm) of the motors given by the encoders and as well as the sub-images grabbed syn-
chronously by the camera. Figure 4.5 shows the block diagramof this kinematic control and
synchronous data acquisition. These measured joint positions (qm) are then used to calculate

Figure 4.5 – Cartesian space kinematic control with synchronous data acquisition. FKM and
IDKM are the iterative forward kinematic model and the inverse differential kinematic model
of the Quattro robot, respectively.

the Cartesian space end-effector poses (X) via the iterative forward kinematic model (FKM) of
the Quattro parallel robot:

X = FKM(qm, Xo ) (4.12)

whereXo is an initial guess for the end-effector pose. Table 4.1.5 gives the pseudo-code of this
iterative FKM.

X = Xo // start with an initial pose

do{
q = IKM(X)

∆q = qm − q

X = X + M−1
q ∆q

}while ( ‖∆q‖ > ǫ )

Table 4.2 – Pseudo-code for the forward kinematic model (FKM) of the Quattro robot.Mq

is the inverse differential kinematic model (IDKM) betweenthe joint velocities and the end-
effector pose velocity (̇q = Mq Ẋ). IKM is the inverse kinematic model which relates Car-
tesian end-effector pose to the joint positions.ǫ is a threshold for the desired precision of the
computed Cartesian end-effector pose.qm andq are the measured and the computed joint
positions, respectively.
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Assuming that the known geometric parameters of the Quattroparallel robot are perfect,
these computed poses (X) will be used as ground truth (i.e., reference motion) for comparison.
Figure 4.7 shows traces of the calculated Cartesian end-effector poses (X) of the Quattro paral-
lel robot which are expressed in its base frame. Figure 4.8 depicts velocities and accelerations
of this performed square motion (X). Velocities and accelerations are obtained by numerical
differentiation of the Cartesian end-effector poses. Figure 4.6 shows simple block diagram for
the computation of the ground truth states{X, Ẋ, Ẍ}.

Figure 4.6 – The ground truth end-effector pose (X), end-effector pose velocity (Ẋ) and end-
effector pose acceleration (Ẍ) generation.
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Figure 4.7 – Performed square motion (X) during kinematic control.Left figure: 3D Cartesian
end-effector pose trajectory with starting and ending point (red circle).Right figure: Evolution
of the Cartesian end-effector poses versus time.

4.1.6 Off-Line Dynamic State Computation

The estimation algorithm is coded in C++ withnT2 matrix library [FLCS07]. In order to
validate the dynamic state estimation algorithm, we first detected and extracted the edge pixels
(i.e., contours) of partially observed cylindrical legs from the registered sub-images. This edge
extraction is performed with Canny edge-detection method [Can86]. Figure 4.9 shows a se-
quence of sub-images of the lower-legs of the Quattro parallel robot with their detected edge
pixels. Finally, we conducted the dynamic state estimationalgorithm with these detected edge
pixels which are transformed to metric units. Figure 4.10 simply illustrates this dynamic state
estimation process. Table 4.3 tabulates the accuracies of the position and orientation estima-
tions. These accuracies are calculated with the root mean squares of the tracking errors (RMSE)
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Figure 4.8 –Left figure: Cartesian end-effector pose velocity (Ẋ) prints of the square motion.
Right figure: Cartesian end-effector pose acceleration (Ẍ) prints of the square motion.

Figure 4.9 – From left to right, sequentially grabbed (48× 48 pixel2) sub-images of the lower-
legs 1, 2, 3 and 4, of the Quattro parallel robot. White dots are the detected edge pixels for the
dynamic state estimation algorithm. In this figure, the sub-images are zoomed.

Figure 4.10 – High-speed dynamic state estimation scheme.

and Hausdorff distance metric regarding to ground truth trajectories. Table 4.4 tabulates the
approximate average times taken for each of the processes used in a single dynamic state esti-
mation of the Quattro parallel robot. These processes are, in turn, the exposure of ROI region
on the CMOS sensor, the transfer of the ROI pixel information, the detection of the edge pixels
of a cylindrical leg in this ROI, and the computation of the current dynamic state of the robot.
Consequently, an estimation takes about1400µs (microseconds) which comfortably allows to
discover the current posture and velocity of the robot more than500Hz. To our best know-
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Table 4.3 – Dynamic state estimation errors.
Pose Errors Velocity Errors

xyz (m) θ (rad) ˙xyz (m/s) θ̇ (rad/s)

RMSE 0.004 0.027 0.098 0.31
Hausdorff 0.007 0.048 0.267 0.88

ledge, this method also implies the first proposed vision-based dynamic motion estimation of
an articulated object at high speed by sequential sub-imageacquisition.

Table 4.4 – Times taken for an estimation with48× 48 sub-images.
ROI exposure ROI transfer Edge detection Estimation

Time (µs) 500 100 200 600

4.1.7 Comparison

Figure 4.11 depicts the reference (X) and the estimated (̂X) Cartesian space curves.
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Figure 4.11 – Superimposed estimated (X̂) and reference (X) 3D trajectories expressed in the
camera frame. Red solid line is the estimated trajectory andblue dashed line is the reference
trajectory.
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In Figure 4.11, the estimated 3D trajectory (X̂) fits rather well to the reference (X) trajec-
tory. Note that in reality, the reference (X) trajectory might differ from the real performed one
by the robot, because the numerical FKM may not perfectly fit to the mechanics of the robot.
The error between the reference (X) and the estimated (̂X) Cartesian poses is calculated as
below:

e
X
= X − X̂ (4.13)

Figure 4.12 plots these positional and orientational estimation errors versus time. In Figure
4.12, we observe that the estimated trajectory is not very smooth in the depth (z-axis) and

as well as in the orientation (θ). Figure 4.13 plots the estimated (̂̇X) and the reference (Ẋ)
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Figure 4.12 – Cartesian pose estimation errors (e
X
) versus time for the Figure 4.11.

Cartesian velocities of the end-effector versus time. Estimated velocities look quite good for
thex andy axes while they are very noisy forz-axis andθ. These noisy estimations of velocity
in the depth and orientation can be directly deduced from theresults of Figure 4.12. Figure
4.14 shows the superimposed reference (ROI∗) and predicted (̂ROI) sub-image upper-left
corner position trajectories of the lower-legs of the Quattro parallel robot. Figure 4.15 plots the
prediction errors of these sub-image positions on each of the lower-legs. A ROI prediction error
is calculated as Euclidean distance between the reference and the predicted sub-image upper-
left corner positions. The maximum prediction error for a sub-image position is calculated as
4.2 pixels through the whole tracking process. This maximum prediction error of4.2 pixels
for a 48 × 48 pixel2 sub-image corresponds to a6% error on the diagonal length of the sub-
image. These predictions are quite enough to guarantee the observability of the edges during
the motion of the Quattro parallel robot.
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Figure 4.15 – ROI prediction errors on each of the observed legs of the Quattro parallel robot.
A prediction error for a ROI is computed as the Euclidean distance between the reference ROI
position and the predicted ROI position. The maximum prediction error is calculated as4.2
pixels through the whole tracking process.

Discussion: This estimation method does not need a special artificial pattern as the legs are
observed, and it is applicable to any parallel robot with slim prism-shaped legs. It is feasible by
an edge detection in a quite small and well structured sub-image. The sub-image contains only
a partial region of a slim leg. When the dynamic state estimation results are inspected, one can
say that the depth (z-axis) and the orientation (θ) estimations are quite noisy (see Figs. 4.12
and 4.13). The errors, in the depth and the orientation estimations, might appear because of a
cylindrical leg whose radius (r) is relatively smaller than its observational distance (do) from
the camera. This makes estimations, especially the depth, more sensitive to small noises:

z̃ = ǫ
do
r

(4.14)

where z̃ is the ambiguity in the depth andǫ is a small observation error on the radius of a
cylindrical leg (ǫ ≪ r). On the image:

– (i) if one observes a leg thinner (r − ǫ) than it is, the depth of this leg is calculated farther
from the camera;

– (ii) If one observes a leg thicker (r + ǫ) than it is, the depth of this leg is calculated
closer to the camera;

Subsequently, different depth errors on each of the legs also create orientation errors. Figure
4.16 illustrates this depth ambiguity.
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Figure 4.16 – A cylinder whose radius (r) is relatively smaller than its observational distance
(do) from the camera. A small (ǫ) noise on the measured thickness of the cylinder on the image
creates ambiguity on the depth of the revolution axis of the cylinder with respect to the optical
centerO of the camera. The red line shows this ambiguity (z̃) on the depth.

For example, the radius of a cylindrical leg of the Quattro robot isr = 0.0078m and the
approximate observation distance of the legs during this reference square motion wasdo =
0.4m. Hence, considering an image noise corresponding toǫ = 0.0001m ambiguity on the
radius of the observed legs causes approximately0.005m depth errors in the estimations.

In our experimental test-bed, the source of this image noisecan appear because of back
lighting from a surface source. In the case of a point-sourcefront light, the visible part of the
cylindrical leg is the lighted region. On the other hand, in the case of a surface-source back
light, the visible part of the cylindrical leg is the unlighted region and this unlighted region can
be thinner than it is in front lighting. This means that it is possible to calculate the depth of the
cylindrical legs farther than they are. We can observe this conclusion in Figure 4.12 from0 to
1 seconds and from4 to 5 seconds. In these time intervals, the robot is in a waiting pose (i.e.,
static) before the motion and after the motion, therefore the back light effect is homogenous on
every leg which yields farther estimated positions. When the robot moves, the back light effect
is irregular since the sub-images are taken sequentially atdifferent time instants. Thus, this
irregular back light effect causes different depth errors on each of the leg and as a consequence
worse orientation estimations appear from1 to 4 seconds. Figure 4.17 illustrates the effect of a
surface-source back lighting on the observable thickness of a cylindrical leg.

Generally speaking, the source of the errors comes: (i) fromthe use of the approximated
theoretical models; (ii) from the calibration of the cameraextrinsic parameters; and (iii) from
the image noise which creates false edges.

Future perspectives: In order to increase the accuracy and the speed of the estimations,
the following perspectives are considered: (i) an investigation of the grabbing strategy with
different number, size, location, and order of the sub-images; (ii) an exploration of the number
of rods (4 or 8) and the number of sub-images on each cylindrical leg; (iii)an implementation
of the edge detection algorithm on a smart camera which has anembedded FPGA / DSP / ARM
hardware; and (iv) an investigation of the proper lighting of the legs;

Once all these problems are solved, one can also imagine: (i)robust tracking of the leg
contours (e.g., treatment of occlusions); (ii) efficient implementation of the algorithm (e.g.,
reducing computation time); (iii) generalization to otherparallel robots; and (iv) industrial
applications.
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Figure 4.17 – Lighting effects and visibility of a cylindrical leg.O is the optical center of the
camera.Left: Front lighting from a point source which is assumed at the proximity of theO. In
the case of a point-source front light, the visible part of the cylinder is the lighted region (bold
arc).Right: Back lighting from a surface source. In the case of a surface-source back light, the
visible part of the cylinder is the unlighted region (bold arc) and this region is now thinner than
it is in front lighting.

4.2 Inverse Dynamic Model

4.2.1 Validation of the Inverse Dynamic Model

The proposed inverse dynamic model (IDM) of the Quattro parallel robot, which is written
in terms of the unit orientation vectors of the legs as explained in Chapter 2:

Γ = −A†(x) b(ẍ, ẋ, x) (4.15)

is validated comparing to a reference inverse dynamic modelpresented in [NKC+08].

A Reference Inverse Dynamic Model for the Quattro Parallel Robot

In [NKC+08], a simplified inverse dynamic model is proposed for the LIRMM Par4 pa-
rallel robot, and it is shown that this simplified inverse dynamic model is almost correct as the
complete dynamic model of the Par4 parallel robot. The correctness of this simplified inverse
dynamic model is validated by simulations in Adams softwareand by experimentations on the
LIRMM Par4 parallel robot. The Par4 parallel robot is the “father" prototype of the Quattro
parallel robot. That is to say, the Quattro and the Par4 are architecturally the same parallel ro-
bots. The only difference in two robots is the slight variations in lengths and in weights of the

139



kinematic elements. Thus, we took this simplified inverse dynamic model as a reference inverse
dynamic model for the Quattro parallel robot in order to compare it with our proposed inverse
dynamic model. In this reference model, the simplificationsare as follows: (i) the weight of a
parallelogram lower-leg is considered as two point masses at each extremity; (ii) the inertia of
two rotating rods of nacelle are neglected; and (iii) the weight of these two rotating rods are
considered as two point masses at each extremity.

This reference IDM of the Quattro robot is written based on the motorized joint positions
(q) and poses (X1 andX2) of the mass centers of the two translational bars of the nacelle. The
formulation of the reference IDM is as follows:

Γref = Iact q̈ + JT
1 M1 (Ẍ1 + g) + JT

2 M2 (Ẍ2 + g) − cos(q) g (M3
ℓ

2
+ M4 ℓ) + Γf (4.16)

whereIact is the inertia matrix which contains the inertias of the actuators, upper-legs and
point mass lower-legs;J1 andJ2 are the robot Jacobians written for each of the two poses of
the translational bars of the nacelle;M1 andM1 are the mass matrices of these translational
bars of the nacelle;g = [0 0 g]T is the constant gravity vector;M3 andM4 are the mass
matrices of the upper-legs and point mass lower-legs, respectively; ℓ is the length of an upper-
leg; andΓf = fv q̇ + fc sign(q̇) is the friction term offering resistance on the the actuated
joints, withfv viscous andfc Coulomb friction coefficient matrices.

Comparison

In comparison of the reference IDM and our proposed IDM of theQuattro parallel robot,
we used the same geometric (ξgeo) and dynamic (ξdyn) parameters in both of the models. The
lengths of kinematic elements are obtained from the CAD model. The weights of the lower-
legs and the moving platform are measured on a balance. The weights of the upper-legs and the
inertias of the motors are obtained from Adept Company. Table 4.5 lists the length and weight
of each of the identical kinematic elements of the Quattro parallel robot. All the required input

A Kinematic Leg
length weight

an upper-leg 0.375m 1.5 kg

a lower-leg 0.825m 0.48 kg

Nacelle
length weight

a translational-bar 0.131m 0.555 kg

a rotational-bar 0.06172m 0.555 kg

Table 4.5 – Geometric and dynamic parameters of the identical kinematic elements of the
Quattro parallel robot. A motor inertia is obtained asIm = 0.000043 kg.m2 from Adept.

variables for comparison of the reference IDM and the proposed IDM are calculated from the
measured joint positions (qm). The conversion between the variables is performed with the
kinematic models of the Quattro robot and numerical differentiation with respect to time:

X = FKM(qm ) , x = IKM(X ) ,

Ẋ = d
dt (FKM(qm ) ) , ẋ = IDKM( Ẋ ) , q̇ = d

dt (q
m )

Ẍ = d2

dt2
(FKM(qm ) ) , ẍ = IDKM2( Ẍ ) , q̈ = d2

dt2
(qm )

(4.17)
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whereFKM is the forward kinematic model which relates joint positions to the end-effector
pose;IKM is the inverse kinematic model which relates end-effector pose to the unit orien-
tation vectors of the kinematic elements;IDKM is the inverse differential kinematic model
which relates velocity of the end-effector pose to the velocities of the unit orientation vectors of
the kinematic elements; andIDKM2 is the second-order inverse differential kinematic model
which relates acceleration of the end-effector pose to the accelerations of the unit orientation
vectors of the kinematic elements. Figure 4.18 depicts how comparison is made between the
reference and proposed inverse dynamic models using the measured joint positions during a
motion of the Quattro robot.

Figure 4.18 – Flow chart for the comparison of the outputs of the reference IDM and the
proposed IDM with the measurements obtained during a motionof the Quattro robot.FKM is
the forward differential kinematic model.IDKM is the inverse differential kinematic model
which relates the end-effector pose velocity to the velocity of leg orientation vectors.IDKM2

is the second order inverse differential kinematic model which relates the end-effector pose
acceleration to the acceleration of leg orientation vectors.

The comparison is evaluated using the normalized root mean squares (NRMSE) metric:

NRMSE =
RMSE

max (τ) − min (τ)
where RMSE =

√∑n
i=1 (τref − τ)2i

n
(4.18)

whereτref is a reference model output torque;τ is a proposed model output torque; andn is
the number of outputs;max (τ) andmin (τ) are the maximum and minimum torque values
of the proposed model outputs. In comparison of models, the maximum difference rate of
motor torques is calculated less than2%. This difference confirms that our proposed dynamic
modeling is accurate enough to be used in control. This difference also does not mean that our
proposed IDM is worse than the reference IDM, since the reference IDM is a simplified model.
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Figure 4.19 depicts the superimposed output torques of the reference (red dashed line) and the
proposed (black solid line) inverse dynamic models of the Quattro parallel robot during the
motion of the test square trajectory shown in Figure 4.7. In Figure 4.19, one can observe that
the output curves fit each other quite well. Figure 4.20 showsthe errors between the reference
IDM output torques (Γref ) and proposed IDM output torques (Γ) versus time for the given test
square trajectory.
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Figure 4.19 – Superimposed motor torques for the square testtrajectory. Red dashed line is
the output torque (Γref ) of the reference inverse dynamic model, and black solid line is the
output (Γ) of our proposed inverse dynamic model. The maximum difference between these
two models is found to be less than2% using the normalized root mean squares of the output.

−0.2

0

0.2

e 1 (
N

.m
)

−0.2

0

0.2

e 2 (
N

.m
)

−0.2

0

0.2

e 3 (
N

.m
)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−0.2

0

0.2

time  (s)

e 4 (
N

.m
)

Figure 4.20 – The errors between the reference IDM output torques (Γref ) and proposed IDM
output torques (Γ) for Figure 4.19.
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4.2.2 Inverse Dynamic Model with High-Speed Dynamic State Observer

The proposed inverse dynamic model of the Quattro robot is integrated with the high-speed
dynamic state estimation algorithm, and then compared withthe reference inverse dynamic
model [NKC+08] once more. This time, the unit orientation vectors (x) of the legs and their
velocities (̇x) for the proposed IDM are delivered by the high-speed dynamic state observer
which uses the sequentially grabbed leg contours. The inputaccelerations can be either directly
received from the desired reference trajectory or computedfrom the measured joint positions
(qm). Figure 4.21 shows how comparison is made between the reference and proposed inverse
dynamic models using the measurements during a motion of theQuattro parallel robot.

Figure 4.21 – Flow chart for the comparison of the outputs of the reference IDM and proposed
IDM integrated with the high-speed state estimation algorithm. The accelerations are obtained
from the measured articular positions of the Quattro robot.FKM is the forward differential
kinematic model.IDKM2 is the second order inverse differential kinematic model which
relates the end-effector pose acceleration to the acceleration of leg orientation vectors.

In comparison of models, the difference rate of motor torques is calculated as5% using
the normalized root mean squares (NRMSE) metric. This difference implies that the proposed
IDM with the integrated high-speed dynamic state observer is precise enough to be used in
a dynamic control. Figure 4.22 depicts the superimposed output torques of the reference (red
dashed line) and the proposed (black solid line) inverse dynamic models of the Quattro parallel
robot during the motion of the test square trajectory shown in Figure 4.7. Figure 4.23 shows
the errors between the output torques (Γref ) of the reference IDM and the output torques (Γ)
of the proposed IDM versus time for the given test square trajectory.
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Figure 4.22 – Superimposed motor torques for the square testtrajectory. Red dashed line is the
output of the reference inverse dynamic model, and black solid line is the output of our propo-
sed inverse dynamic model integrated with the high-speed dynamic state estimation algorithm.
The difference between these two models is calculated as5% using the normalized root mean
squares of the output torques.
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Figure 4.23 – The errors between the output torques (Γref ) of the reference IDM and the output
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4.3 Conclusions

In this Chapter, we first performed the extrinsic calibration of the camera with respect to the
base frame of the Quattro parallel robot by means of the leg edges. This extrinsic calibration
was one of the initial steps of the high-speed dynamic state tracking algorithm. Secondly, we
showed the feasibility of the high-speed dynamic state tracking algorithm in an off-line manner
on the Quattro parallel robot. Then we discussed the source of the errors of the tracking results
and proposed some ways to improve the speed and the accuracy of the algorithm.

Afterwards, we validated the correctness of the proposed linear inverse dynamic model
which is based on the leg orientations of the Quattro parallel robot comparing to a reference
inverse dynamic model. As we stated earlier, this proposed inverse dynamic model is linear on
the condition that the leg orientations of the parallel robot and their velocities are provided.
Therefore, we integrated the previously validated high-speed dynamic state observer to the in-
verse dynamic model so that this observer can feed the inverse dynamic model and can keep it
linear. The integrated system of the current high-speed dynamic state observer and the propo-
sed inverse dynamic model produced quite accurate results which allow to use this integrated
system in the construction of a high-speed vision-based dynamic control framework.

In order to perform a vision-based dynamic control, we should first identify the dynamic
parameters of the Quattro robot which is another quite challenging problem of parallel robots.
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Chapter 5

Conclusions and Perspectives

5.1 Conclusions

This thesis accomplished3 of the4 remaining objectives of theIntegrated dynamic MIC-
MAC. This means that we have almost finished drawing the big picture of the vision-based
control of parallel robots based on their leg observations.Speaking more precisely in the light
of the MICMAC project, in this thesis we achieved the following goals:

– Firstly, we pushed control-oriented modeling of parallelrobots further from the kinema-
tic level to the dynamic level based on the observations of their legs. Furthermore, we
improved modeling from joint-based representation to body-based representation. That
is to say, we exploit the motion of concrete lines (i.e., orientations of the kinematic ele-
ments) rather than the motion of abstract axes (i.e., joint axes). This brings more physical
and geometrical insight to the modeling of mechanisms. Thisproposed modeling scheme
is applicable to wide range of parallel robots. In addition,the presented modeling scheme
is linear since it uses the geometry of lines.

– Secondly, we presented a novel method which estimates the dynamic state (i.e., position
and velocity) of a parallel robot using high-speed vision (@500Hz). In order to perform
fast estimations, we sequentially observed small portionsof the slim legs of the parallel
robot by a technologically available sequential acquisition concept. This dynamic state
estimator is a non-linear observer based on a virtual visualservoing scheme. Moreover,
we proposed another dynamic state observer which is linear,although not yet feasible
with off-the-shelf cameras.

– Thirdly, we proposed a versatile computed-torque controlscheme based on the observa-
tions of the legs of parallel robots. This versatile controlscheme allows one to perform
a task in different control spaces so that one can examine theperformances and then
choose the best control space for the given task.

These new theoretic approaches are validated with the first promising simulation and ex-
perimental results which encourage us to explore further the proposed research path of parallel
robots based on their leg observations in the future. The last unaccomplished goal of the inte-
grated dynamic MICMAC project is as follows:
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– Identification of the dynamic parameters of a parallel robot from its leg observations.
Who is next to solve it?

The aforementioned novel schemes are contributions to the integrated dynamic MICMAC,
and now we demonstrate once more the new updated state of the MICMAC art in Figure 5.1.

Figure 5.1 – New state of the MICMAC art.

Finally, we would like to point out that the message of this thesis is to say that: «observing
the legs of parallel robots is an interesting option, and it has the potential of making mode-
ling and control of parallel robots simpler and more accurate by means of lines». Of course,
these presented novel methods need to be investigated further to be competitive with the other
methods.

5.2 Perspectives

There are a lot of things to improve in the drawn big picture ofthe vision-based control of
parallel robots based on their leg observations. In this part, we remark the important points of
this picture and we propose some future perspectives so as tomake this picture more colorful.

5.2.1 Control-Oriented Linear Dynamic Modeling

The linearity, simplicity and accuracy properties of the proposed modeling scheme requires
that the orientation vectors of the legs of a parallel robot can be measured precisely at each
sampling instance. Therefore, the modeling scheme needs relevant sensing techniques so as to
be feasible.

Moreover, this control-oriented linear dynamic modeling has the following main points to
be improved:

– (i) the proposed modeling scheme is built upon the rigid body assumption and dynamic
control of parallel robots interests with high speed motions. That is to say, in high speed
motions it is possible that the vibrations can appear on the flexible kinematic elements
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due to the accelerated masses of the parallel robot, and unfortunately the current propo-
sed modeling scheme does not compensate for the flexibility.The source of the flexibility
in a parallel robot can come from the construction materialsof the kinematic elements
and from the backlashes and clearances of the passive joints. Therefore, the proposed
modeling scheme should be improved to take into account the dynamics of the robot
flexibility so that the possible vibrations can be suppressed in the control.

– (ii) in order to increase the accuracy in the proposed modeling scheme and consequently
in the control scheme, the dynamic parameters should be identified based on this mode-
ling concept. This is an essential step before the control level. That is to say, the dynamic
constraint equations of this proposed modeling scheme should be first rewritten in a li-
near form in terms of the dynamic parameters, and then shouldbe solved with exciting
trajectories.

5.2.2 Vision-Based High-Speed Dynamic State Observer

The proposed vision-based observer has the following main points to be improved:
– (i) the calibration errors of the extrinsic parameters of the camera are directly pronounced

on the estimated states, because it is the main reference frame with respect to which
everything is defined;

– (ii) if the observational distance of a cylindrical leg in the scene is quite long compared
to its radius, then the depth estimation of the leg along the optical axis of the camera
becomes very ill conditioned;

– (iii) good observability of the cylindrical legs by a camera at high speed is quite difficult
because of the challenging lighting problem of the scene;

– (iv) existence of occlusion puts off the state estimation one sub-image acquisition time
later, and it seems difficult to foresee an occlusion in the sub-image before the sub-image
is grabbed;

– (v) it is not possible to perform a dynamic control, for the time being, more than500Hz
with the proposed vision-based system. This is because of the physical limits of the sen-
sing environment rather than the theoretical limits, such as the relatively long exposure
time of the CCD/CMOS sensor;

One solution to increase the accuracy and the robustness of our high-speed dynamic state
observer can be the use of a camera which can grab multiple sub-images at a time, which is
technologically possible today [URLP04]. The scenario is as follows:

– we can first simultaneously observe small portions of all the legs (e.g., for the Quattro
robot the 4 lower-legs at the same time) rather than one by one, and consequently we
can form the spatiotemporal reference input signal for the single iteration virtual visual
servoing by stacking at least the last two sequential simultaneous measurements of the
legs. This should increase the accuracy since there is more information for the present
time and since fewer steps (i.e., 1 or 2 steps) are sufficient to evolve back in time with
the approximated motion models than before. This will certainly increase the robustness
against the occlusions, since it is possible to calculate the dynamic state as long as one
sub-image per leg exists and at least one of the sub-images isgrabbed at a different
time instant than the others. In the case of detected occlusions on the certain legs, we
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can foresee them for the next step and we can securely locate the sub-images on the
unobstructed region of the legs. Moreover, the speed of thistracking algorithm will not
be much worse than our current setup.

Although all these points are improved, this does not mean that this vision-based observer
can ensure the best control performance. Maybe the optimum in practical sense is to fuse
sensors in order to have a faster, more accurate and more robust observer. Thus, one can imagine
simply fusing vision and motor encoders to define a new state observer, and then one can
propose, for example, a joint-space (q) plus a body-orientation space (x) computed-torque
control scheme (JBS-CTC), which might yield better results.

5.2.3 We do need VISION and DYNAMIC CONTROL

Vision is a contactless optical sensor and dynamic control deals with forces. These pro-
perties make vision-based dynamic control the only solution for certain applications where the
other sensing techniques (e.g., motor encoders) and control methods (e.g., kinematic control)
are not adequate or not possible at all. For instance:

Micro space In micro space, the dimensions of robots and objects decrease to micro scales,
and micro space tasks require adequate sensors which shouldhave better resolution (i.e.,
nanoscale) than this micro space. Furthermore, these microspace tasks usually need glo-
bal scene information. The construction of such sensors which can meet these demands
is quite challenging and yet to be achieved. At this point, vision seems to be the only
available proper sensing technique. Afterwards, it is interesting to note that the domi-
nant (e.g., gravity) and the subordinate (e.g., surface) forces of macro space contrarily
constitute the subordinate and dominant forces of micro space. Furthermore, in micro
space, the surface forces (e.g., Van der Waals) are a lot stronger than the gravity forces,
such that the manipulated micro-scale object can fly from onesurface to another easily
and stick to it because of adhesion forces. In such a space where the dynamic effects are
extreme, dynamic control is inevitable. For example, one ofthe most well known pro-
blems in micro space is that it is difficult to release an object which is being held by the
gripper to a desired position due to adhesive surface forces. The simple solution might
be to arrive this desired position with a certain acceleration and suddenly stop the gripper
such that the final inertia force of the object can defeat the surface adhesive forces and
release itself.

Macro space In macro space, one of interesting application is the control of cable driven giant
parallel robots. The main objective of such giant parallel robots is both to carry heavy ob-
jects and to do long-distance moves. Therefore, they have long cables, and unfortunately
the forces of gravity along such long cables can deform the straightness of cables and
can lengthen them due to their elasticity. Consequently, the rigidity assumption is not va-
lid anymore. In addition, these effects will probably be exaggerated by the presence of a
heavy payload. Therefore, the use of motor encoders as a sensor in such a giant robot can
give only the local information, and furthermore it is not very feasible to place any sensor
somewhere on the cable in order to have more information about the geometry since the
cables are rolled back and forward on spools. Thus, the current situation seems poor to
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provide a precise control of the moving platform because of all these deformations cau-
sed by the dynamic effects and insufficient feedback about the robot. Once again, vision
seems one of the best solutions to observe the geometry of such giant robots since it is a
contactless distance sensor and of course the dynamic control is essential too in order to
compensate undesired dynamic effects.

5.2.4 From MICMAC to RODAP

Why must parallel robots be blind? Why not save the skillful ugly parallel robots by dres-
sing them up? So, why should the outcome of MICMAC art not be the initiation of a new art:
MICMAC oriented RObot Design and AdaPtation (MICMAC-RODAP). The objectives of this
new art can be envisioned as follows:

– Robots with MICMAC eyes: to change vision from being an exteroceptive sensor to a
proprioceptive sensor on parallel robots, and to make this proprioceptive vision sensor
exploit the MICMAC algorithms on an embedded system of the robot;

– Robots with MICMAC legs: to design parallel robots with slim, cylindrical and obser-
vable legs so that they are consistent with the line geometryand vision;

– Robots with MICMAC costumes: to dress up existing geometrically and visually non
compatible parallel robots with costumes in order to adapt them to the MICMAC art.
For instance, imagine axial cylindrical shells that just envelope the physical boundaries
of non-uniform links of a parallel robot.

Thus, one can imagine a RODAP development framework in ordereither to produce a
MICMAC robot or to adapt a current parallel robot to the MICMAC concept. This framework
can be built upon the following 6 modules which interact between each other:

1. CAD module: Synthesis of the geometry of the kinematic elements of the robot.

2. Blender module: Treatment of the lighting conditions of the robot legs.

3. Adams & Simulink module: Analysis of the dynamics and control of the robot.

4. Coding module: Development of a MICMAC library in advanced programming lan-
guages where the MICMAC theories are efficiently implemented (i.e., real time and se-
curity considerations).

5. Sensing module: Development of fast smart cameras and adaptation of other intelligent
sensing technologies for the MICMAC concept.

6. Optimization module: Governs the interactions between the modules in order to satisfy
the desired criteria for a MICMAC robot.
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Appendix A

Modeling: Applied to Parallel Robots

A.1 The Gough-Stewart Robot

Figure A.1 – The Gough-Stewart parallel robot (left) and its graphical layout (right).

A.1.1 Geometry and Notation

The Gough-Stewart parallel robot incorporates6 identical kinematic legs. Figure A.1 shows
the Gough-Stewart parallel robot and its graphical layout.The mechanism’s fixed base,{A1,
. . . ,A6}, holds the moving-platform with these kinematic legs. The moving-platform is a
single rigid body,{B1, . . . ,B6}. Each kinematic leg is a telescopic system consisting of a
single kinematic element[AiBi] with an embedded prismatic actuator. A kinematic leg of the
Gough-Stewart is symbolically noted asS−P−S whereS andP stand for a passive spherical
joint and an actuated prismatic joint, respectively. Theseactuators give6 degrees of freedom
to the moving-platform by pushings and pullings:3 translational movements inx, y, z axes
(lateral, longitudinal and vertical), and3 rotational movements (pitch, roll and yaw). Figure
A.2 depicts the geometrical notation of the Gough-Stewart robot. In modeling, the following
notation is used:

– i = 1, 2, 3, 4, 5, 6 denotes the kinematic legs.
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Figure A.2 – The notation of the Gough-Stewart parallel robot.

– j = {a, b} is the literal representation of the kinematic elements.
– ξgeo = {O,Ai, ℓbi, αi, βi} are the geometric parameters (constant lengths and points).
– ξdyn = {mji,Iji, fvi , fci} are the dynamic parameters (weights, inertias and frictions).
– F o = (O,x o,y o

, z o), F e = (E,x e,y e
, z e), F ai = (Ai,x ai,y ai

, z ai) andF bi =

(Bi,x bi,y bi
, z bi) denote respectively the base, the end-effector, thei th kinematic leg

and the moving-platform’si th virtual kinematic element frames.
– dai is the dynamic length of thei th kinematic leg.
– The end-effector pose is composed of the originE, of the x-axis unit vectorx e and of

the rotational angleθe around the x-axisx e of the end-effector frame. The end-effector
pose velocity is theṅE, ẋe andθ̇e:

X ,




E

x e

θe


 , Ẋ ,




Ė

ẋ e

θ̇e


 ∈ ℜ7×1 (A.1)

A.1.2 State Variables

Kinematic Element Types

The Gough-Stewart parallel robot has 2 different kinds of kinematic elements:

Kinematic legs [AiBi] Each of these kinematic elements has 3 dof rotational extrinsic mobi-
lity due to (S)pherical joint and as well as 1 dof translational intrinsic mobility (along its
direction) due to the (P)rismatic joint. Spherical joints located at the tips of thekinematic
element allow for a self-rotation which does not have any effect on the moving-platform
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configuration or on the end-effector frame. It is thus atelescopic typekinematic element:
{x ai, dai}.

Moving-platform [BiE] Each of these virtual kinematic elements of the moving-platform
has 3 dof rotational extrinsic mobility due to (S)pherical joint and as well as 1 dof self-
rotational intrinsic mobility (around its direction) due to the pushings and pullings of the
other kinematic legs attached to the moving-platform. It isthus anspindle typekinematic
element:{x bi, θbi}.

The{xai, dai, xai, θbi} are the new variables that redefine the state of the mechanism.

A.1.3 Kinematics

Mass Centers

Assuming that all the kinematic elements are homogenous andsymmetric, the mass center
positions are written as follows:

Sai = Ai +
1

2
dai x ai , Sbi = Ai + dai x ai + ℓbi x bi (A.2)

Velocities

The translational and rotational velocities of the kinematic elements are computed as below:
(i) translational velocities,

Ṡai =
1

2

(
ḋai x ai + dai ẋ ai

)
, Ṡbi =

(
ḋai x ai + dai ẋ ai

)
+ ℓbi ẋ bi (A.3)

(ii) rotational velocities,

ω ai = x ai × ẋ ai + θ̇ai x ai ⇒ ω ai , xai × ẋ ai (A.4)

The rotationθai does not change the posture of the moving-platform.

ω bi = x bi × ẋ bi + θ̇bi x bi (A.5)

Accelerations

The translational and rotational accelerations of the kinematic elements are computed as
below: (i) translational accelerations,

S̈ai =
1

2

(
d̈ai x ai + 2 ḋai ẋ ai + dai ẍ ai

)
(A.6)

S̈bi =
(
d̈ai x ai + 2 ḋai ẋ ai + dai ẍ ai

)
+ ℓbi ẍ bi (A.7)

(ii) rotational accelerations,
ω̇ ai , x ai × ẍ ai (A.8)

ω̇ bi = x bi × ẍ bi + θ̈bi x bi + θ̇bi ẋ bi (A.9)
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A.1.4 Kinematic Constraints

Assuming that the end-effector frame is located at the mass center position of the moving
platform, the closed-loop constraint equation for each of the kinematic legs can be written as
follow:

−−→
OE − ℓbi x bi − dai x ai −

−−→
OAi = 0 (A.10)

whereO andAi are constants. Afterwards, one can differentiate the last closed-loop constraint
equation with respect to time in order to obtain the motion constraint equation, which yields:

Ė − ℓbi ẋ bi − ḋai xai − dai ẋ ai = 0 (A.11)

The motion constraints for the attachment pointsBi of the moving-platform can be derived
from (A.11) using the constant parametersαi andβi as below:

x bi = αi x e + βi y e
(A.12)

ẋ bi = αi ẋ e + βi ẏ e
(A.13)

ẏ
e
= ωe × y

e
= (x e × ẋ e + θ̇e x e ) × y

e
(A.14)

ẏ
e
= z e × ẋ e + θ̇e z e (A.15)

ẋ bi = αi ẋ e + βi z e × ẋ e + βi z e θ̇e (A.16)

Ė − ℓbi ẋ bi = Ḃi (A.17)

Ḃi = LBi Ẋ , LBi =
[
I3 − ℓbi (αi I3 + βi [z e]× ) − ℓbi βi z e

]
∈ ℜ3×7 (A.18)

whereLBi is the relation between the Cartesian velocity of the terminal point of theith kine-
matic leg and the end-effector pose velocityẊ.

Constraints on the Active Telescopic Kinematic Legs

Constraints on the variations of the lengths of the telescopic kinematic elements are com-
puted as follows:

ḋai x ai + dai ẋ ai = LBi Ẋ (A.19)

ḋai = Mdai Ẋ , Mdai =
[
xT

ai LBi

]
∈ ℜ1×7 (A.20)

Constraints on the orientations of the telescopic kinematic elements are computed as below:

dai ẋ ai + x aiMdai Ẋ = LBi Ẋ (A.21)

ẋ ai = Mai Ẋ , Mai =

[
1

dai
(LBi − x aiMdai )

]
∈ ℜ3×7 (A.22)
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Constraints on the Passive Moving-Platform Virtual Kinematic Elements

Constraints on the orientations of the virtual axis type kinematic elements of the moving-
platform are computed as follows:

ẋ bi = Mbi Ẋ , Mbi =
[
03×3 (αi I3 + βi [z e]× ) βi z e

]
∈ ℜ3×7 (A.23)

Constraints on the self-rotations of the virtual axis type kinematic elements of the moving-
platform are computed as below:

ω bi = ω e , i = 1, . . . , 6 (A.24)

ω e = Mωe Ẋ , Mωe =
[
03×3 [x e ]× x e

]
∈ ℜ3×7 (A.25)

θ̇bi = xT
biω bi = xT

bi (x bi × ẋ bi + θ̇bi x bi) (A.26)

θ̇bi = Mθbi Ẋ , Mθbi =
[
xT

biMωe

]
∈ ℜ1×7 (A.27)

A.1.5 Kinematic Coordinates

Equation (A.28) and Table A.1 show the motion basis and the kinematic coordinates of the
mechanism, respectively.

udai = ḋai , uxai
= ẋ ai , uxbi

= ẋ bi , uθbi = θ̇bi , i = 1, . . . , 6 (A.28)

Table A.1 – The (transposed) kinematic coordinates of the Gough-Stewart robot, i=1, . . . ,6.

∂ Ṡ ai ∂ ω ai ∂ Ṡ bi ∂ ω bi

∂ ḋ ai
1
2 x

T

ai 03×1 xT

ai 03×1

∂ ẋ ai
1
2 dai I3 [x ai ]

T
× dai I3 03×3

∂ ẋ bi 03×3 03×3 ℓbi I3 [x bi ]
T
×

∂ θ̇ bi 03×1 03×1 03×1 xT

bi

A.1.6 Dynamic Coordinates

Listing the Active and Reactive Forces

The active forces are as follows:
– Actuator and Gravity Forces:

fdai = fdai xai , fg(ai) = mai g , fg(bi) = mbi g (A.29)

wherefdji andfg(ji) are the actuator and gravity forces, respectively.
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The reactive forces are as follows:
– Actuator Inertial Forces:The inertial forces of the linear actuators are as below:

f∗dai = −mdai d̈ai xai (A.30)

wheremdai is the mass moved inside theith kinematic leg by the linear actuator.
– Kinematic Element Body Inertial Forces and Torques:The inertial forces and torques of

the kinematic elements are follows:

f∗ai = −mai S̈ai , τ ∗
ai = −I T

ai ω̇ ai − ω ai × (I T
ai ω ai) (A.31)

f∗bi = −mbi S̈bi , τ ∗
bi = −I T

bi ω̇ bi − ω bi × (I T
bi ω bi) (A.32)

– Active Joint Frictional Forces:The frictional forces of the intrinsic active joints are as
follows:

f̄dai = − ( f̄v(dai) ḋai + f̄c(dai) sign( ḋai ) )xai (A.33)

wheref̄v(dai) andf̄c(dai) are the viscous and Coulomb friction coefficients of the linear
actuators.

– Passive Joint Frictional Torques:The frictional torques of the extrinsic passive joints are
as follows:

τ̄xai
= − τ̄v(xai)

ωai − τ̄c(xai)
sign(ωT

ai zai ) zai (A.34)

τ̄xbi
= − τ̄v(xbi)

(ωbi − ωai ) − τ̄c(xbi)
sign( (ωbi − ωai )

T zbi ) zbi (A.35)

whereτ̄v(xji)
andτ̄c(xji)

are the viscous and Coulomb friction coefficients of the passive
rotary joints.

Table (A.2) tabulates all these local forces and torques of the Gough parallel robot.

Table A.2 – The local forces and torques of the Gough parallelrobot, i=1, . . . ,6.

Active Friction Inertia∗

Actuator Gravity Actuator Passive Joint Actuator Element

Forces (ai) fdai xai fg(ai) f̄dai 0 f∗dai f∗ai
Torques (ai) 0 0 0 τ̄xai

0 τ ∗
ai

Forces (bi) 0 fg(bi) 0 0 0 f∗bi
Torques (bi) 0 0 0 τ̄xbi

0 τ ∗
bi

Computing Dynamic Coordinates

So as to eliminate the non-contributing forces, the dynamiccoordinates are computed
through the matrix-wise multiplication of the Tables A.1 (kinematic coordinates) and A.2 (sum
of the local forces and torques).




Fdai

Fxai

Fxbi
Fθbi


 =




Kinematic
Coordinates
Table A.1



(4×4)




Sum of
Forces
Torques
Table A.2



(4×1)

(A.36)
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which can be explicitly written as follows:




Fdai

Fxai

Fxbi

Fθbi




=




1
2 x

T

ai 03×1 xT

ai 03×1

1
2 dai I3 [x ai ]

T
× dai I3 03×3

03×3 03×3 ℓbi I3 [x bi ]
T
×

03×1 03×1 03×1 xT

bi







fdai xai + f̃ai

τ̄xai
+ τ ∗

ai

fg(bi) + f∗bi

τ̄xbi
+ τ ∗

bi




(A.37)

where
f̃ai = fg(ai) + f̄dai + f∗dai + f∗ai (A.38)

A.1.7 Dynamic Constraints

Exploiting (2.110), the dynamic constraints of the Gough-Stewart robot are written as fol-
lows:

0 6×1 = MT
da Fda + MT

a Fa + MT
b Fb + MT

θb
Fθb (A.39)

whereFda ∈ ℜ6×1, Fa ∈ ℜ18×1, Fb ∈ ℜ18×1 andFθb ∈ ℜ6×1 are the stacked vectors of the
dynamic coordinates:

Fda =




Fda1
...

Fda6


 , Fa =




Fxa1
...

Fxa4


 , Fb =




Fxb1
...

Fxb4


 , Fθ =




Fθb1
...

Fθb6


 (A.40)

and whereMda ∈ ℜ6×7, Ma ∈ ℜ18×7, Mb ∈ ℜ18×7 andMθb ∈ ℜ6×7 are the stacked matrices
of the inverse differential kinematic modelsMdai ∈ ℜ1×7, Mai ∈ ℜ3×7, Mbi ∈ ℜ3×7 and
Mθbi ∈ ℜ1×7, respectively.
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A.2 The Delta Robot

Figure A.3 – The Delta parallel robot (left) and its graphical layout (right).

A.2.1 Geometry and Notation

The Delta robot consists of4 kinematic legs interconnecting the fixed base with the moving-
platform. The moving-platform is a single rigid triangularbody {B1,B2,B3}. Figure A.3
shows the Delta robot and its graphical layout. All the kinematic legs are actuated from the
base by revolute motors located at{P1, . . . ,P4}. The Delta robot has4 degrees of freedom:
3 translational and1 rotational. The3 of the kinematic legs are identical and each of these
identical kinematic legs has two consecutive kinematic elements (an upper-leg[PiAi] and
a lower-leg[AiBi]) linked with each other atAi. Each lower-leg consists of two slim and
cylindrical shaped rods fitted with ball-joints ((Ai1,Ai2) and (Bi1,Bi2)), forming a parallelo-
gram. A kinematic leg of the Delta is symbolically noted asR− (S − S)2 (this also equals to
R − U − U ) whereR andS stand for an actuated revolute joint and a passive sphericaljoint,
respectively. The parallelograms of the identical kinematic legs restrict the movement of the
moving-platform to pure translations inx, y andz axes. From the base, a fourth non-identical
kinematic leg[P4E] extends to the middle of the moving-platform to give the end-effector a
fourth, rotational degree of freedom around the z-axisz e of the end-effector frame. Figure A.4
depicts the geometric notation of the kinematic legs and themoving-platform. In modeling, the
following notation is used:

– i = 1, 2, 3 denotes the identical kinematic legs.
– j = {p, a, b} represents literally the kinematic elements in identical kinematic legs.
– ξgeo = {O,Pi, ℓpi, ℓai, ℓbi} are the geometric parameters (constant lengths and points).
– ξdyn = {mji,Iji, fvi , fci} are the dynamic parameters (weights, inertias and frictions).
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– F o = (O,x o,y o
, z o), F e = (E,x e,y e

, z e), F pi = (Pi,x pi,y pi
, z pi), F ai =

(Ai,x ai,y ai
, z ai), F bi = (Bi,x bi,y bi

, z bi) andF 4 = (P4,x 4,y 4
, z 4) denote res-

pectively the base, the end-effector, thei th upper-leg, thei th lower-leg, the moving-
platform’s i th virtual kinematic element and the4 th kinematic leg frames.

– qi is the articulated position of thei th upper-leg leg.
– d4 andθ4 are the length and the rotational angle around itself of the4 th non-identical

kinematic leg.
– The end-effector pose is composed of the originE of the end-effector frame and rota-

tional angleθ4 of the4 th non-identical kinematic leg. The end-effector pose velocity is
thenĖ andθ̇4:

X ,

[
E

θ4

]
, Ẋ ,

[
Ė

θ̇4

]
∈ ℜ4×1 (A.41)

Figure A.4 – Side and front views of a kinematic leg with its variables and parameters (left).
The plan of the moving-platform with its variables and parameters (right).

A.2.2 State Variables

Kinematic Element Types

We have got the following basic parts in the Delta: upper-legs, lower-legs, the fourth non-
identical kinematic leg and the moving platform. The configurations of those parts are defined
by the new variable set of a kinematic element rather than thenon-linear joint coordinates:

Upper-legs [PiAi] An upper-leg rotates around a fixed axis. It has 1 dof rotational extrinsic
mobility due to a (R)evolute joint. It is abar typekinematic element:x pi.

Lower-legs [AiBi] A lower-leg (a parallelogram) rotates around a moving axis.It has 2 dof
rotational extrinsic mobility due to the existing (S)pherical joints. It is thus abar type
kinematic element:x ai.
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Fourth-leg [P4E] The fourth non-identical kinematic leg has 3 dof rotationalextrinsic mobi-
lity and as well as 2 dof intrinsic mobility (1 for translation along its direction and 1 for
self-rotation around its direction). It is ascrew typekinematic element:{x 4, d4, θ4}.

Moving-platform [BiE] A virtual kinematic element of the rigid moving-platform only trans-
lates in space. It is abar typekinematic element:x bi (moving vector with a fixed direc-
tion).

The{xpi, xai, x4, d4, θ4} are now the new variables that redefine the state of the mechanism.

A.2.3 Kinematics

Mass Centers

Assuming that all the kinematic elements are homogenous andsymmetric, the mass center
positions are written as follows:

Spi = Pi +
1

2
ℓpi x pi , Sai = Pi + ℓpi x pi +

1

2
ℓai x ai , i = 1, 2, 3 (A.42)

Sbi = Pi + ℓpi x pi + ℓai x ai + ℓbi x bi , i = 1, 2, 3 (A.43)

The direction vectors (x bi) of the virtual kinematic elements of the moving-platform have fixed
orientations. The mass center position of the non-identical kinematic leg is written as below:

S4 = P4 +
1

2
d4 x 4 (A.44)

Velocities

The translational and rotational velocities of kinematic elements are computed as follows:

Ṡpi =
1

2
ℓpi ẋ pi , ω pi , x pi × ẋ pi (A.45)

Ṡai = ℓpi ẋ pi +
1

2
ℓai ẋ ai , ω ai , x ai × ẋ ai (A.46)

Ṡbi = ℓpi ẋ pi + ℓai ẋ ai , ω bi = 0 (A.47)

Ṡ4 =
1

2

(
ḋ4 x 4 + d4 ẋ 4

)
, ω 4 = x 4 × ẋ 4 + θ̇4 x 4 (A.48)

Accelerations

The translational and rotational accelerations of kinematic elements are computed as below:

S̈pi =
1

2
ℓpi ẍ pi , ω̇ pi , x pi × ẍ pi (A.49)

S̈ai = ℓpi ẍ pi +
1

2
ℓai ẍ ai , ω̇ ai , x ai × ẍ ai (A.50)

S̈bi = ℓpi ẍ pi + ℓai ẍai , ω̇ bi = 0 (A.51)

S̈4 =
1

2

(
d̈4 x 4 + 2 ḋ4 ẋ 4 + d4 ẍ 4

)
, ω̇ 4 = x 4 × ẍ 4 + θ̈4 x 4 + θ̇4 ẋ 4 (A.52)
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A.2.4 Kinematic Constraints

Assuming that the end-effector frame is located at the mass center position of the moving
platform, the closed-loop constraint equation for each of the identical kinematic legs can be
written as follow:

−−→
OE − ℓbi x bi − ℓai x ai − ℓpi x pi −

−−→
OPi = 0 , i = 1, 2, 3 (A.53)

whereO, Pi and(ℓbi x bi) are constants. Afterwards, one can differentiate the last closed-loop
constraint equation with respect to time in order to obtain the motion constraint equation, which
yields:

Ė − ℓai ẋ ai − ℓpi ẋ pi = 0 (A.54)

Constraints on the Active Upper-Legs

Constraints on the orientations of the active upper-legs are computed as follows:

xT
ai Ė − ℓpi x

T
ai ẋ pi = 0 (A.55)

y
pi
xT
ai Ė − ℓpi y pi

xT
ai ẋ pi = 0 (A.56)

y
pi
xT
ai Ė − ℓpi x

T
ai y pi

ẋ pi = 0 (A.57)

ẋ pi = Dpi Ė , Dpi =

[
y

pi
xT
ai

ℓpi xT
ai y pi

]
∈ ℜ3×3 (A.58)

ẋ pi = Mpi Ẋ , Mpi =
[
Dpi 03×1

]
∈ ℜ3×4 (A.59)

Constraints on the Passive Lower-Legs

Constraints on the orientations of the passive lower-legs are computed as follows:

Ė − ℓai ẋ ai − ℓpiDpi Ė = 0 (A.60)

ẋ ai = Dai Ė , Dai =

[
1

ℓai
( I3 − ℓpiDpi )

]
∈ ℜ3×3 (A.61)

ẋ ai = Mai Ẋ , Mai =
[
Dai 03×1

]
∈ ℜ3×4 (A.62)

Constraints on the Active Fourth Kinematic-Leg

Constraint on the variation of the length of the4th kinematic leg is computed as follows:

−−→
OE − d4 x 4 −

−−→
OP4 = 0 (A.63)

Ė − ḋ4 x 4 − d4 ẋ 4 = 0 (A.64)

xT
4 Ė − ḋ4 = 0 (A.65)
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ḋ4 = xT
4 Ė (A.66)

ḋ4 = Md4 Ẋ , Md4 =
[
xT

4 0
]
∈ ℜ1×4 (A.67)

Constraint on the orientation of the4th kinematic leg is computed as follows:

Ė − x 4 x
T
4 Ė − d4 ẋ 4 = 0 (A.68)

ẋ 4 = D4 Ė , D4 =

[
1

d4

(
I3 − x 4 x

T
4

) ]
∈ ℜ3×3 (A.69)

ẋ 4 = M4 Ẋ , M4 =
[
D4 03×1

]
∈ ℜ3×4 (A.70)

Since the rotation of the end-effector directly comes from the4th kinematic leg, then the
self-rotation of the4th kinematic leg is computed as follows:

θ̇4 = Mθ4 Ẋ , Mθ4 =
[
01×3 1

]
∈ ℜ1×4 (A.71)

Constraints on the Active Joints

Constraints on the active joints coordinates are computed as follows:

ẋ pi = q̇i z pi × x pi = q̇i y pi
(A.72)

yT
pi

ẋ pi = q̇i (A.73)

q̇i = Mqi Ẋ , Mqi =
[
yT

pi
Dpi 0

]
∈ ℜ1×4 (A.74)

A.2.5 Kinematic Coordinates

Equations (A.75), (A.76) and Tables (A.3), (A.4) show the motion basis and the kinematic
coordinates of the mechanism, respectively.

ui1 = ẋ pi , ui2 = ẋ ai , i = 1, 2, 3 (A.75)

ux4 = ẋ 4 , ud4 = ḋ4 , uθ4 = θ̇4 (A.76)

Table A.3 – The (transposed) kinematic coordinates of the Delta parallel robot, i=1,2,3.

∂ Ṡ pi ∂ ω pi ∂ Ṡ ai ∂ ω ai ∂ Ṡ bi ∂ ω bi

∂ ẋ pi
1
2 ℓpi I3 [x pi ]

T
× ℓpi I3 03×3 ℓpi I3 03×3

∂ ẋ ai 03×3 03×3
1
2 ℓai I3 [x ai ]

T
× ℓai I3 03×3

A.2.6 Dynamic Coordinates

Listing Active/Reactive Forces and Torques

Tables A.5 and A.6 tabulate the local forces and torques of the Delta parallel robot.
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Table A.4 – The (transposed) kinematic coordinates of the4th leg of the Delta parallel robot.

∂ Ṡ 4 ∂ ω 4

∂ ẋ 4
1
2 d4 I3 [x 4 ]

T
×

∂ ḋ4
1
2 x

T

4 03×1

∂ θ̇4 03×1 xT

4

Table A.5 – The local forces and torques of the Delta parallelrobot, i=1,2,3.

Active Friction Inertia∗

Actuator Gravity Actuator Passive Joint Actuator Element

Forces (pi) 0 fg(pi) 0 0 0 f∗pi
Torques (pi) τxpi

zpi 0 τ̄xpi
0 τ ∗

xpi
τ ∗
pi

Forces (ai) 0 fg(ai) 0 0 0 f∗ai
Torques (ai) 0 0 0 τ̄xai

0 τ ∗
ai

Forces (bi) 0 fg(bi) 0 0 0 f∗bi
Torques (bi) 0 0 0 τ̄xbi

0 0

Computing Dynamic Coordinates

So as to eliminate the non-contributing forces, the dynamiccoordinates are computed
through the matrix-wise multiplication of the Tables A.3 (transposed kinematic coordinates)
and A.5 (sum of the local forces and torques).

[
Fxpi

Fxai

]
=




Kinematic
Coordinates
Table A.3



(2×6)




Sum of
Forces
Torques
Table A.5



(6×1)

(A.77)

which can be explicitly written as follows:

[
Fxpi

Fxai

]
=




1
2 ℓpi I3 [x pi ]

T
× ℓpi I3 03×3 ℓpi I3 03×3

03×3 03×3
1
2 ℓai I3 [x ai ]

T
× ℓai I3 03×3







fg(pi) + f∗pi

τxpi
z pi + τ̃ pi

fg(ai) + f∗ai

τ̄xai
+ τ ∗

ai

fg(bi) + f∗bi

τ̄xbi




(A.78)
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Table A.6 – The local forces and torques of the4th leg of the Delta parallel robot.

Active Friction Inertia∗

Actuator Gravity Actuator Passive Joint Actuator Element

Forces (4) 0 fg(4) 0 f̄d4 0 f∗4
Torques (4) τθ4 x 4 0 τ̄ θ4 τ̄x4

τ ∗
θ4

τ ∗
4

where
τ̃ pi = τ̄xpi

+ τ ∗
xpi

+ τ ∗
pi (A.79)

The dynamic coordinates for the4th kinematic leg of the Delta are computed with the matrix-
wise multiplication of the Tables A.4 and A.6:




Fx4
Fd4

Fθ4


 =




Kinematic
Coordinates
Table A.4



(3×2)




Sum of
Forces
Torques
Table A.6



(2×1)

(A.80)

which can be explicitly written as follows:




Fx4
Fd4

Fθ4


 =




1
2 d4 I3 [x 4 ]

T
×

1
2 x

T

4 03×1

03×1 xT

4







fg(4) + f̄d4 + f∗4

τθ4 x 4 + τ̄ θ4 + τ̄x4
+ τ ∗

θ4
+ τ ∗

4


 (A.81)

A.2.7 Dynamic Constraints

Exploiting (2.110), the dynamic constraints of the Delta robot are written as follows:

0 4×1 =
[
MT

p MT
θ4

] [ Fp

Fθ4

]
+ MT

a Fa + MT
4 Fx4 + MT

d4 Fd4 (A.82)

whereFp ∈ ℜ9×1 andFa ∈ ℜ9×1 are the stacked vectors of the dynamic coordinates:

Fp =




Fxp1
...

Fxp3


 , Fa =




Fxa1
...

Fxa3


 (A.83)

and whereFx4 ∈ ℜ3×1, Fd4 ∈ ℜ1×1 andFθ4 ∈ ℜ1×1 are brought from (A.81). TheMa ∈
ℜ9×4 andMp ∈ ℜ9×4 are the stacked matrices of the inverse differential kinematic models
Mai ∈ ℜ3×4 andMpi ∈ ℜ3×4, respectively. TheM4 ∈ ℜ3×4, Md4 ∈ ℜ1×4 andMθ4 ∈ ℜ1×4

are brought from (A.70), (A.67) and (A.71), respectively.
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A.3 The 3RRR Robot

A.3.1 Geometry and Notation

The 3-RRR consists of3 kinematic legs interconnecting a moving-platform to a fixedbase.
The moving-platform is a single triangular rigid body{B1,B2,B3}. Figure A.5 shows the
3-RRR planar parallel robot and its graphical layout.

Figure A.5 – The 3-RRR planar parallel robot (left) and its graphical layout (right).

The 3-RRR is designed symmetrically, that is to say, the base and themoving platform
are equilateral triangles as well as the kinematic legs are identical. Each kinematic leg has2
consecutive kinematic elements (an upper-leg[PiAi] and a lower-leg[AiBi]) linked with each
other atAi. A kinematic leg of 3-RRR symbolically is noted asR−R−R whereR andR stand
for an actuated revolute joint and a passive revolute joint,respectively. The moving-platform
has3 degrees of freedom:2 translational movements inx andy axes and1 rotational movement
around thez axis. All the kinematic legs are actuated from the base by revolute motors located
at {P1,P2,P3}. Figure A.6 depicts the geometrical notation of the mechanism. In modeling,
the following notation is used:

– i = 1, 2, 3 denotes the kinematic legs.
– j = {p, a, b} is the literal representation of the kinematic elements.
– ξgeo = {O,Pi, ℓpi, ℓai, ℓbi, αi, βi} are geometric parameters (constant lengths, points).
– ξdyn = {mji,Iji, fvi , fci} are the dynamic parameters (weights, inertias and frictions).
– F o = (O,x o,y o

, z o), F e = (E,x e,y e
, z e), F pi = (Pi,x pi,y pi

, z pi), F ai =

(Ai,x ai,y ai
, z ai) andF bi = (Bi,x bi,y bi

, z bi) denote respectively the base, the end-

effector, thei th upper-leg, thei th lower-leg, the moving-platform’si th virtual kinematic
element frames.

– qi is the articulated position of thei th upper-leg leg.
– The end-effector pose is composed of the originE andx axis x e of the end-effector
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frame. The end-effector pose velocity is thenĖ andẋ e:

X ,

[
E

x e

]
, Ẋ ,

[
Ė

ẋ e

]
∈ ℜ6×1 (A.84)

Figure A.6 – The notation of the 3-RRR planar parallel robot.

A.3.2 State Variables

Kinematic Element Types

We have got the following basic parts in the 3-RRR: upper-legs, lower-legs and the moving
platform. The configurations of those parts are defined by theproposed new variable set of a
kinematic element rather than the non-linear joint coordinates:

Upper-legs [PiAi] An upper-leg rotates around a fixed axis. It has 1 dof rotational extrinsic
mobility due to a (R)evolute joint. It is abar typekinematic element:x pi.

Lower-legs [AiBi] A lower-leg rotates around a fixed axis. It has 1 dof rotational extrinsic
mobility due to a (R)evolute joint. It is abar typekinematic element:x ai.

Moving-platform [BiE] A virtual kinematic element of the rigid moving-platform rotates
around a fixed axis. It has 1 dof rotational extrinsic mobility due to a (R)evolute joint. It
is abar typekinematic element:x bi.

The{xpi, xai, x bi} are now the new variables that redefine the state of the mechanism.
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A.3.3 Kinematics

Mass Centers

Assuming that all the kinematic elements are homogenous andsymmetric, the mass center
positions are written as follows:

Spi = Pi +
1

2
ℓpi x pi (A.85)

Sai = Pi + ℓpi x pi +
1

2
ℓai x ai (A.86)

Sbi = Pi + ℓpi x pi + ℓai x ai + ℓbi x bi (A.87)

Velocities

The translational and rotational velocities of the kinematic elements are computed as below:

Ṡpi =
1

2
ℓpi ẋ pi , ω pi , x pi × ẋ pi (A.88)

Ṡai = ℓpi ẋ pi +
1

2
ℓai ẋ ai , ω ai , x ai × ẋ ai (A.89)

Ṡbi = ℓpi ẋ pi + ℓai ẋ ai + ℓbi ẋ bi , ω bi , x bi × ẋ bi (A.90)

Accelerations

The translational and rotational accelerations of the kinematic elements are computed as
follows:

S̈pi =
1

2
ℓpi ẍ pi , ω̇ pi , x pi × ẍ pi (A.91)

S̈ai = ℓpi ẍ pi +
1

2
ℓai ẍ ai , ω̇ ai , x ai × ẍ ai (A.92)

S̈bi = ℓpi ẍ pi + ℓai ẍ ai + ℓbi ẍ bi , ω̇ bi , x bi × ẍ bi (A.93)

A.3.4 Kinematic Constraints

Assuming that the end-effector frame is located at the mass center position of the moving
platform, the closed-loop constraint equation for each of the kinematic legs can be written as
follow:

−−→
OE − ℓbi x bi − ℓai x ai − ℓpi x pi −

−−→
OPi = 0 , i = 1, 2, 3 (A.94)

whereO andPi are constants. Afterwards, one can differentiate the last closed-loop constraint
equation with respect to time in order to obtain the motion constraint equation, which yields:

Ė − ℓbi ẋ bi − ℓai ẋ ai − ℓpi ẋ pi = 0 (A.95)
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The motion constraints for the attachment pointsBi of the moving-platform can be derived
from (A.95) as below:

x bi = αi x e + βi y e
(A.96)

ẋ bi = αi ẋ e + βi ẏ e
(A.97)

ẏ
e
, ωe × y

e
, (x e × ẋ e ) × y

e
, z e × ẋ e (A.98)

ẋ bi = αi ẋ e + βi z e × ẋ e (A.99)

Ė − ℓbi ẋ bi = Ḃi (A.100)

Ḃi = LBi Ẋ , LBi =
[
I3 − ℓbi (αi I3 + βi [z e]× )

]
∈ ℜ3×6 (A.101)

whereLBi is the relation between the Cartesian velocity of the terminal point of theith kine-
matic leg and the end-effector pose velocityẊ.

Constraints on the Active Upper-Legs

Constraints on the orientations of the active upper-legs are computed as follows:

ℓpi ẋ pi + ℓai ẋ ai = LBi Ẋ (A.102)

ℓpi x
T
ai ẋ pi = xT

ai LBi Ẋ (A.103)

ℓpi y pi
xT

ai ẋ pi = y
pi
xT

ai LBi Ẋ (A.104)

ℓpi x
T
ai y pi

ẋ pi = y
pi
xT

ai LBi Ẋ (A.105)

ẋ pi = Mpi Ẋ , Mpi =

[
y

pi
xT

ai

ℓpi xT
ai y pi

LBi

]
∈ ℜ3×6 (A.106)

Constraints on the Passive Lower-Legs

Constraints on the orientations of the passive lower-legs are computed as follows:

ℓpiMpi Ẋ + ℓai ẋ ai = LBi Ẋ (A.107)

ẋ ai = Mai Ẋ , Mai =

[
1

ℓai
(LBi − ℓpiMpi )

]
∈ ℜ3×6 (A.108)

Constraints on the Passive Moving-Platform Virtual Kinematic Elements

Constraints on the orientations of the virtual axis type kinematic elements of the moving-
platform are computed as follows:

ẋ bi = Mbi Ẋ , Mbi =
[
03 (αi I3 + βi [z e]× )

]
∈ ℜ3×6 (A.109)
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Constraints on the Active Joints

Constraints on the active joint coordinates are computed asfollows:

ẋ pi = q̇i z pi × x pi = q̇i y pi
(A.110)

yT
pi

ẋ pi = q̇i (A.111)

q̇i = Mqi Ẋ , Mqi =
[
yT

pi
Mpi

]
∈ ℜ1×6 (A.112)

A.3.5 Kinematic Coordinates

Equation (A.113) and Table (A.7) show the motion basis and the kinematic coordinates of
the mechanism, respectively.

uxpi
= ẋ pi , uxai

= ẋ ai , uxbi
= ẋ bi , i = 1, 2, 3 (A.113)

Table A.7 – The (transposed) kinematic coordinates of the 3-RRR parallel robot, i=1,2,3.

∂ Ṡ pi ∂ ω pi ∂ Ṡ ai ∂ ω ai ∂ Ṡ bi ∂ ω bi

∂ ẋ pi
1
2 ℓpi I3 [x pi ]

T
× ℓpi I3 03×3 ℓpi I3 03×3

∂ ẋ ai 03×3 03×3
1
2 ℓai I3 [x ai ]

T
× ℓai I3 03×3

∂ ẋ bi 03×3 03×3 03×3 03×3 ℓbi I3 [x bi ]
T
×

A.3.6 Dynamic Coordinates

Local Active/Reactive Forces and Torques

Table A.8 tabulates the local forces and torques of the 3-RRRparallel robot.

Table A.8 – The local forces and torques of the 3-RRR parallelrobot, i=1,2,3.

Active Friction Inertia∗

Actuator Gravity Actuator Passive Joint Actuator Element

Forces (pi) 0 fg(pi) 0 0 0 f∗pi
Torques (pi) τxpi

zpi 0 τ̄xpi
0 τ ∗

xpi
τ ∗
pi

Forces (ai) 0 fg(ai) 0 0 0 f∗ai
Torques (ai) 0 0 0 τ̄xai

0 τ ∗
ai

Forces (bi) 0 fg(bi) 0 0 0 f∗bi
Torques (bi) 0 0 0 τ̄xbi

0 τ ∗
bi
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Computing Dynamic Coordinates

So as to eliminate the non-contributing forces, the dynamiccoordinates are computed
through the matrix-wise multiplication of the Tables A.7 (transposed kinematic coordinates)
and A.8 (sum of the local forces and torques).




Fxpi

Fxai

Fxbi


 =




Kinematic
Coordinates
Table A.7



(3×6)




Sum of
Forces
Torques
Table A.8



(6×1)

(A.114)

which can be explicitly written as follows:




Fx
pi

Fxai

Fx
bi


 =




1
2 ℓpi I3 [x pi ]

T

×
ℓpi I3 03×3 ℓpi I3 03×3

03×3 03×3
1
2 ℓai I3 [xai ]

T

×
ℓai I3 03×3

03×3 03×3 03×3 03×3 ℓbi I3 [x bi ]
T

×







fg(pi) + f∗pi

τx
pi

z pi + τ̃ pi

fg(ai) + f∗ai

τ̄x
ai

+ τ ∗

ai

fg(bi) + f∗bi

τ̄x
bi

+ τ ∗

bi




(A.115)
where

τ̃ pi = τ̄xpi
+ τ ∗

xpi
+ τ ∗

pi (A.116)

A.3.7 Dynamic Constraints

Exploiting (2.110), the dynamic constraints of the 3-RRR robot are written as follows:

0 6×1 = MT
p Fp + MT

a Fa + MT
b Fb (A.117)

whereFp ∈ ℜ9×1, Fa ∈ ℜ9×1 andFb ∈ ℜ9×1 are the stacked vectors of the dynamic coordi-
nates:

Fp =




Fxp1

...
Fxp3


 , Fa =




Fxa1
...

Fxa3


 , Fb =




Fxb1
...

Fxb3


 (A.118)

and whereMp ∈ ℜ9×6, Ma ∈ ℜ9×6 andMb ∈ ℜ9×6 are the stacked matrices of the inverse
differential kinematic modelsMpi ∈ ℜ3×6, Mai ∈ ℜ3×6 andMbi ∈ ℜ3×6, respectively.
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A.4 The Orthoglide Robot

Figure A.7 – The Orthoglide parallel robot (left) and its graphical layout (right).

A.4.1 Geometry and Notation

The Orthoglide robot consists of3 identical kinematic legs. Each kinematic leg has3 conse-
cutive kinematic elements{[PiAi], [AiBi], [BiCi]}. A kinematic leg of the Orthoglide is sym-
bolically noted asP − R− Pa− R whereP , R andPa denote an actuated prismatic joint, a
revolute joint and a parallelogram joint, respectively. The kinematic legs interconnect the fixed
base to the moving-platform. The moving-platform is a single rigid body{C1,C2,C3}. It is
attached to the parallelograms which restrict its motion only to translational movements inx, y
andz axes. As a result, the moving-platform of the Orthoglide robot has3 degrees of freedom.
Figure A.7 shows the Orthoglide robot and its graphical layout. The kinematic legs are actua-
ted from base by prismatic joints. The motion directions of these prismatic joints are oriented
orthogonally to each other. Figure A.8 shows the geometric notation of the Orthoglide robot.
In modeling, the following notation is used:

– i = 1, 2, 3 denotes the kinematic legs.
– j = {p, a, b, c} is the literal representation of the kinematic elements.
– ξgeo = {O,Pi, ℓai, ℓbi, ℓci} are the geometric parameters (constant lengths and points).
– ξdyn = {mji,Iji, fvi , fci} are the dynamic parameters (weights, inertias and frictions).
– F o = (O,x o,y o

, z o), F e = (E,x e,y e
, z e), F pi = (Pi,x pi,y pi

, z pi), F ai =

(Ai,x ai,y ai
, z ai), F bi = (Bi,x bi,y bi

, z bi) andF ci = (Ci,x ci,y ci
, z ci) denote res-

pectively the base frame, the end-effector frame, the1st kinematic element frame of the
i th kinematic leg, the2nd kinematic element frame of thei th kinematic leg, the3nd
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Figure A.8 – The notation of the Orthoglide parallel robot.

kinematic element frame of thei th kinematic leg, and the moving-platform’si th virtual
kinematic element frame.

– dpi is the prismatic joint coordinate of thei th kinematic leg.
– The end-effector pose is the originE of the end-effector frame:

X ,
[
E
]
, Ẋ ,

[
Ė
]
∈ ℜ3×1 (A.119)

A.4.2 State Variables

Kinematic Element Types

The identical kinematic legs and the moving-platform of theOrthoglide robot have the
following kinematic elements:

Kinematic Elements [PiAi] Each of these kinematic elements has only 1 dof translational
(along its direction) intrinsic mobility. It is thus atelescopic typekinematic element:
{x pi, dpi}. Thex pi is a moving vector with a fixed direction.

Kinematic Elements [AiBi] Each of these kinematic elements only translates in space due to
prismatic joint of the previous kinematic element. It is abar typekinematic element:x ai

(moving vector with a fixed direction).

Kinematic Elements [BiCi] Each of these kinematic elements (a parallelogram) has only2
dof rotational extrinsic mobility due to existing (R)evolute joints. It is abar typekine-
matic element:x bi.

Moving-Platform [CiE] Each of these virtual kinematic elements of the moving-platform has
only 3 dof translational extrinsic mobility due to (Pa)rallelogram pseudo-joint. It is thus
abar typekinematic element:x ci (moving vector with a fixed direction).
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The{ dpi, x bi } is the new variable set that redefine the state of the mechanism.

A.4.3 Kinematics

Mass Centers

Assuming that all the kinematic elements are homogenous andsymmetric, the mass center
positions are written as follows:

Sai = Pi + dpi x pi +
1

2
ℓai x ai (A.120)

Sbi = Pi + dpi x pi + ℓai x ai +
1

2
ℓbi x bi (A.121)

Sci = Pi + dpi x pi + ℓai x ai + ℓbi x bi + ℓci x ci (A.122)

where (x pi), (ℓai x ai) and (ℓci x ci) are constants.

Velocities

The translational and rotational velocities of the kinematic elements are computed as below:

Ṡai = ḋpi x pi , ω ai = 0 (A.123)

Ṡbi = ḋpi x pi +
1

2
ℓbi ẋ bi , ω bi , x bi × ẋ bi (A.124)

Ṡci = ḋpi x pi + ℓbi ẋ bi , ω ci = 0 (A.125)

Accelerations

The translational and rotational accelerations of the kinematic elements are computed as
follows:

S̈ai = d̈pi x pi , ω̇ ai = 0 (A.126)

S̈bi = d̈pi x pi +
1

2
ℓbi ẍ bi , ω̇ bi , x bi × ẍ bi (A.127)

S̈ci = d̈pi x pi + ℓbi ẍ bi , ω̇ ci = 0 (A.128)

A.4.4 Kinematic Constraints

Assuming that the end-effector frame is located at the mass center position of the moving
platform, the closed-loop constraint equation for each of the kinematic legs can be written as
follow:

−−→
OE − ℓci x ci − ℓbi x bi − ℓai xai − dpi x pi −

−−→
OPi = 0 , i = 1, 2, 3 (A.129)

whereO, Pi, (x pi), (ℓai x ai) and (ℓci x ci) are constants. Afterwards, one can differentiate the
last closed-loop constraint equation with respect to time in order to obtain the motion constraint
equation, which yields:

Ė − ℓbi ẋ bi − ḋpi x pi = 0 (A.130)
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Constraints on the Active [PiAi] Telescopic Type Kinematic Elements

Constraints on the variations of the lengths of the active telescopic type kinematic elements
are computed as follows:

xT
bi Ẋ − ḋpi x

T
bi x pi = 0 (A.131)

ḋpi = Mdpi Ẋ , Mdpi =

[
xT

bi

xT
bi x pi

]
∈ ℜ1×3 (A.132)

Constraints on the Passive[BiCi] Bar Type Kinematic Elements

Constraints on the orientations of the passive bar type kinematic elements are computed as
follows:

Ẋ − ℓbi ẋ bi − x piMdi Ẋ = 0 (A.133)

ẋ bi = Mbi Ẋ , Mbi =

[
1

ℓbi

(
I3 − x piMdi

) ]
∈ ℜ3×3 (A.134)

A.4.5 Kinematic Coordinates

Equation (A.135) and Table A.9 show the motion basis and the kinematic coordinates of
the mechanism, respectively.

udpi = ḋpi , uxbi
= ẋ bi , i = 1, 2, 3 (A.135)

Table A.9 – The (transposed) kinematic coordinates of the Orthoglide parallel robot, i=1,2,3.

∂ Ṡ ai ∂ ω ai ∂ Ṡ bi ∂ ω bi ∂ Ṡ ci ∂ ω ci

∂ ḋpi xT

pi 03×1 xT

pi 03×1 xT

pi 03×1

∂ ẋ bi 03×3 03×3
1
2 ℓbi I3 [x bi ]

T
× ℓbi I3 03×3

A.4.6 Dynamic Coordinates

Listing Active and Reactive Forces

The active forces are as follows:
– Actuator and Gravity Forces:

fdpi = fdpi xpi , fg(ai) = mai g , fg(bi) = mbi g , fg(ci) = mci g (A.136)

wherefdpi andfg(ji) are the actuator and gravity forces, respectively.
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The reactive forces are as follows:
– Actuator Inertial Forces:The inertial forces of the linear actuators are as below:

f∗dpi = −mai d̈pi xpi (A.137)

wheremai is the mass moved by the linear actuator. These inertial forces of the actuators
correspond to the inertias of theai kinematic elements, since these kinematic elements
are rigidly attached to the linear actuators.

– Kinematic Element Body Inertial Forces and Torques:The inertial forcef∗ai of theaith

kinematic element is compensated by the actuator inertia, and inertial torqueτ ∗
ai = 0

since theaith kinematic element does not have a rotational mobility. Then, the inertial
forces and torques of the rest of the kinematic elements are written as follows:

f∗bi = −mbi S̈bi , τ ∗
bi = −I T

bi ω̇ bi − ω bi × (I T
bi ω bi) (A.138)

f∗ci = −mbi S̈bi , τ ∗
ci = 0 (A.139)

– Active Joint Frictional Forces:The frictional forces of the linear actuators are as follows:

f̄dpi = − ( f̄v(dpi) ḋpi + f̄c(dpi) sign( ḋpi ) )xpi (A.140)

wheref̄v(dpi) andf̄c(dpi) are the viscous and Coulomb friction coefficients of the linear
actuators.

– Passive Joint Frictional Torques:The frictional torques of the passive joints are as fol-
lows:

τ̄xbi
= − τ̄v(xbi)

ωbi − τ̄c(xbi)
sign(ωT

bi zbi ) zbi (A.141)

τ̄xci
= − τ̄v(xci)

(ωci − ωbi ) − τ̄c(xci)
sign( (ωci − ωbi )

T zci ) zci (A.142)

whereτ̄v(xji)
andτ̄c(xji)

are the viscous and Coulomb friction coefficients of the passive
rotary joints.

Table A.10 tabulates all of the local forces and torques of the Orthoglide parallel robot.

Table A.10 – The local forces and torques of the Orthoglide parallel robot, i=1,2,3.

Active Friction Inertia∗

Actuator Gravity Actuator Passive Joint Actuator Element

Forces(pi, ai) fdpi xpi fg(ai) f̄dpi 0 f∗dpi 0

Torques(pi, ai) 0 0 0 0 0 0

Forces(bi) 0 fg(bi) 0 0 0 f∗bi
Torques(bi) 0 0 0 τ̄xbi

0 τ ∗
bi

Forces(ci) 0 fg(ci) 0 0 0 f∗ci
Torques(ci) 0 0 0 τ̄xci

0 0
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Computing Dynamic Coordinates

So as to eliminate the non-contributing forces, the dynamiccoordinates are computed
through the matrix-wise multiplication of the Tables A.9 (transposed kinematic coordinates)
and A.10 (sum of the local forces and torques).

[
Fdpi

Fxbi

]
=




Kinematic
Coordinates
Table A.9



(2×6)




Sum of
Forces
Torques

Table A.10



(6×1)

(A.143)

which can be explicitly written as follows:

[
Fdpi

Fxbi

]
=




xT

pi 03×1 xT

pi 03×1 xT

pi 03×1

03×3 03×3
1
2 ℓbi I3 [x bi ]

T
× ℓbi I3 03×3







fdpi xpi + f̃pi

0

fg(bi) + f∗bi

τ̄xbi
+ τ ∗

bi

fg(ci) + f∗ci

τ̄xci




(A.144)
where

f̃pi = fg(ai) + f̄dpi + f∗dpi (A.145)

A.4.7 Dynamic Constraints

Exploiting (2.110), the dynamic constraints of the Orthoglide robot are written as follows:

0 3×1 = MT
dp Fdp + MT

b Fb (A.146)

whereFdp ∈ ℜ3×1 andFb ∈ ℜ9×1 are the stacked vectors of the dynamic coordinates:

Fdp =




Fdp1
...

Fdp3


 , Fb =




Fxb1
...

Fxb3


 (A.147)

and whereMdp ∈ ℜ3×3 andMb ∈ ℜ9×3 are the stacked matrices of the inverse differential
kinematic modelsMdpi ∈ ℜ1×3 andMbi ∈ ℜ3×3, respectively.
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Abstract

This thesis presents novel methods for modeling, tracking and control of parallel robots by
means of lines. A parallel robot is composed of several closed-loop kinematic chains which
cause a highly coupled-motion behavior. By treating the legs of a parallel robot as 3D lines
and representing the geometry with a skeleton constructed from these 3D lines of the legs, the
modeling, tracking and control of a parallel robot become geometrically and physically simpler
and more intuitive.

The common key point for the simplicity and accuracy of all these methods is the precise
observation of the 3D orientation vectors of the legs at highspeed. This is because of parallel
robots are designed for high speed applications. Thus, we first developed a body-based linear
scheme both for kinematic and dynamic modeling of parallel robots. This body-based linear
modeling scheme is so simple such that one can work out all theequations even for the most
complex parallel robot by pen and paper. The simplicity and feasibility of this modeling scheme
are conditioned on that the 3D leg direction vectors and their velocities are known. Therefore,
secondly we proposed a high-speed vision based dynamic state observer which can provide
these 3D leg direction vectors of a parallel robot and their velocities at each sampling time.
We achieved this by sequentially observing small portions of the legs in order to form a spatio-
temporal reference signal and then by minimizing the constraints written from the geometric
shapes of the legs in a single-iteration virtual visual servoing scheme.

Afterwards, we constructed a versatile computed-torque control scheme which allows us to
control the parallel robot for a given task in different control spaces. We defined this versatile
control scheme so that we can analyse and then choose the bestcontrol space for better control
of parallel robots for a given specific task.

These proposed novel methods are validated by the first promising simulation and expe-
rimental results. Obtained results encourage us to exploremore the modeling, tracking and
control of parallel robots by means of lines.
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Résumé

Cette thèse présente des nouvelles approches de modélisation, de suivi visuel et de com-
mande des robots parallèles en utilisant des droites. Un robot parallèle est composé de plusieurs
chaînes cinématiques fermées. Par conséquent, un fort couplage de comportement apparait du-
rant le mouvement du robot.

La géométrie (squelette) d’un robot parallèle peut être définie en considérant les jambes
de ce robot comme des droites 3D. Nous avons montré qu’en observant ces droites 3D, la
modélisation, le suivi visuel et la commande d’un robot parallèle deviennent plus simples et que
sa représentation géométrique et physique est plus intuitive. Le point commun des méthodes
proposées est l’observation des orientations 3D des jambesavec précision et à grandes vitesses.
Cela permet de commander les robots parallèles de manière rapide avec une bonne précision.

Pour la modélisation cinématique et dynamique des robots parallèles, nous avons déve-
loppé une représentation basée sur les éléments cinématiques qui constituent le robot. Cette
représentation rend la modélisation simple et immédiate. Les modèles obtenus sont basés sur
les mesures des orientations et des vitesses des éléments cinématiques.

Pour cela, nous avons proposé un observateur d’état dynamique à haute vitesse qui peut
fournir les orientations et les vitesses des éléments cinématiques. La méthode proposée est
basée sur l’observation séquentielle et par portion des contours de chaque jambe. Nous avons
utilisé ces contours pour construire une consigne spatio-temporelle et des fonctions d’erreurs
basées sur des contraintes géométriques. Ensuite, ces fonctions d’erreurs sont minimisées en
une seule itération d’une tâche d’asservissement visuel virtuel.

Nous avons également proposé une commande dynamique pour contrôler un robot parallèle
dans différents espaces de commande. Ceci nous a permis de mener des analyses pour identifier
l’espace le plus adéquat pour réaliser une tâche spécifique.

Ces nouvelles approches sont validées en simulation et, partiellement, en expérimentation.
Les résultats obtenus sont satisfaisants et ouvrent des perspectives dans le domaine de la mo-
délisation, du suivi visuel et de la commande des robots parallèles basé sur l’observation des
jambes.
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